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    Chapter 13   

 Corneal Immunosuppressive Mechanisms, Anterior 
Chamber-Associated Immune Deviation (ACAID) 
and Their Role in Allograft Rejection       

     Oliver     Treacy    ,     Gerry     Fahy    ,     Thomas     Ritter     , and     Lisa     O’Flynn      

  Abstract 

   Corneal transplantation is the most frequently performed transplant procedure in humans. Human leuko-
cyte antigen matching, while imperative for other types of organ transplants, is usually not performed 
before cornea transplantation. With the use of topical steroid immunosuppressants, which are subsequently 
tailed off to almost zero, most corneal transplants will not be rejected in recipients with low risk of graft 
rejection. This phenomenon has been described as immune privilege by Medawar many years ago. 
However, this immune privilege is relative and can be easily eroded, e.g. by postoperative nonspecifi c 
infl ammation or other causes of corneal or ocular infl ammation. Interestingly, corneas that are at high risk 
of rejection have a higher failure rate than other organs. Considerable progress has been made in recent 
years to provide a better understanding of corneal immune privilege. This chapter will review current 
knowledge on ocular immunosuppressive mechanisms including anterior chamber-associated immune 
deviation and discuss their role(s) in corneal allograft rejection. Ultimately, this evolving information will 
be of benefi t in developing therapeutic strategies to prevent corneal transplant rejection.  

  Key words     Cornea  ,   Transplantation  ,   ACAID  ,   Immunosuppression  ,   Tregs  

1       Introduction 

 The  cornea   is one of only a select few tissues in the body that 
enjoy immune-privileged status by maintaining immunological 
ignorance (others include the brain, testes, the pregnant uterus, 
and the anterior chamber (AC) of the eye). Any corneal infl amma-
tory events, if allowed to proceed unabated, may break down 
immunological barriers. The most serious consequence for the 
cornea is immunological destruction of corneal endothelial cells, 
which have no capacity to regenerate. The result of this rejection 
process is  cornea  l edema, corneal opacifi cation, and blindness. 
The concept of relative immune privilege, as applied to the cor-
nea, is supported by observations of high survival rates of corneal 
allografts without routine human leukocyte antigen (HLA) 
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matching between donor and host tissues and the use of only 
locally applied topical corticosteroids, as opposed to using systemic 
immunosuppressants which would be standard for other organ 
transplants. Corneal allograft- associated immune privilege, how-
ever, cannot be ascribed to one single mediator or mechanism and 
is likely to be the result of multiple anatomical, physiological, and 
immunomodulatory properties inherent to the allograft itself and 
also the host graft bed [ 1 ].  

2     Physiological and Anatomical Properties of the Immune-Privileged Cornea 

 Physiologically, the normal, healthy cornea is both avascular and 
devoid of lymphatic vessels, thereby shielding itself from immune- 
mediated attack by denying potentially harmful infi ltrating immune 
cells getting access to the graft and preventing transport of anti-
gens and antigen-presenting cells (APCs) to secondary lymphoid 
tissues, such as the  draining   lymph nodes (DLN) [ 2 ]. It has been 
shown that maintenance of corneal avascularity is due to constitu-
tive expression of soluble vascular endothelial growth  fact  or recep-
tor- 1 (VEGFR-1) by epithelial cells [ 3 ]; with another study 
demonstrating that administration of VEGF receptor-3 (VEGFR- 3) 
can also suppress hemangiogenesis [ 4 ]. Another naturally occur-
ring angiogenesis inhibitor is endostatin. Endostatin can inhibit 
endothelial cell functions by several means, including attenuation 
of VEGF receptor signaling and its subsequent binding to α 5 β 1  
integrins [ 5 ]. Furthermore, Tan and colleagues could show that 
both syngeneic and allogeneic corneal grafts produce endostatin 
and while levels remained high in syngeneic grafts, they began to 
decrease in allografts 10 days post- transplantation  . This correlated 
with early recruitment of allo-specifi c T cells into grafts, which led 
to the destruction  of   endostatin-producing cells and ultimately 
allograft rejection in 75 % of cases [ 6 ]. The authors also found that 
local administration of exogenous endostatin  treatment   could 
attenuate allograft rejection. 

 Lymphangiogenesis, on  th  e other hand, is suppressed by secre-
tion of soluble VEGFR-2 (which inhibits VEGF-C activity) by 
keratocytes and corneal epithelial cells but, interestingly, does not 
affect hemangiogenesis [ 7 ]. In this study, the authors showed that 
soluble VEGFR-2 could inhibit lymphatic vessel infi ltration into 
“high-risk” corneal grafts, that is, graft beds in which intrastromal 
sutures had been placed 2 weeks prior  to   transplantation to induce 
lymphangiogenesis and hemangiogenesis. Their results also showed 
that a single intracorneal injection of soluble VEGFR-2 was suffi -
cient to signifi cantly prolong corneal allograft survival compared 
to untreated recipients [ 7 ]. 

 Another important factor with regard to corneal immune 
privilege is the weak or absence of expression of MHC class I 
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and II antigens, respectively, by corneal epithelial, stromal, and 
endothelial cells. This has the effect of limiting immunogenicity to 
foreign antigens as the capacity for antigen uptake is attenuated [ 8 ].  

3     Soluble and Cell Membrane-Bound Mediators of Corneal  Immunosuppression   

 In addition to the physiological and  anato  mical properties outlined 
above, the cornea also expresses numerous cell membrane-bound 
immunomodulatory molecules and molecules capable of inducing 
apoptosis of effector immune cells. These include Fas ligand ( FasL  , 
CD95L), complement regulatory proteins (CRPs),    tumor necrosis 
factor (TNF)-related apoptosis-inducing ligand (TRAIL), pro-
grammed death-ligand 1 (PD-L1), and MHC-Ib.    FasL is an 
apoptosis- inducing molecule expressed by a number of ocular cells, 
including corneal epithelial and endothelial cells and can induce 
apoptosis of  infi ltrating   Fas receptor (CD95)-expressing effector 
T cells and neutrophils [ 9 ,  10 ], thereby protecting the corneal 
graft from immune-mediated rejection. The importance of FasL 
was highlighted by studies in which murine corneal allografts with 
 defective   FasL expression, when transplanted, displayed a much 
higher incidence of immune-mediated rejection when compared 
to wild-type controls [ 11 ,  12 ]. Similar  to   FasL, corneal cells also 
express PD-L1 which, following engagement with its receptor pro-
grammed death (PD)-1 on T cells, leads to inhibition of T-cell 
proliferation and induction of apoptosis as well as reduced  inter-
f  eron (IFN)- γ   secretion, thereby promoting corneal allograft sur-
vival [ 1 ,  13 – 15 ]. Further evidence supporting the key role of 
PD-L1 in determining the fate of corneal allografts comes by way 
of a study by Shen and co-workers where they reported that murine 
C57BL/6 PD-L1 −/−  allografts were more susceptible to rejection 
than wild-type allografts when placed into Balb/c hosts [ 14 ]. 
Furthermore, we have shown recently that lentivirus-mediated 
overexpression of PD-L1 on donor corneas leads to >80 % allograft 
survival compared to just 20 % in  untreated   allogeneic control 
grafts underlining the importance of this molecule in  protecting   
corneal tissues from immune response [ 16 ]. TRAIL is another 
pro-apoptotic molecule that, similar  to   FasL and PD-L1, can 
induce apoptosis of infl ammatory cells. However, although corneal 
cells do express TRAIL [ 17 ,  18 ] and evidence suggests adenovirus- 
mediated overexpression of TRAIL can prolong murine corneal 
allograft survival [ 19 ], no reports have yet been published establish-
ing a link between TRAIL expression and preservation of corneal 
immune privilege specifi cally. CRPs play a vital role in protecting 
cells from complement-mediated damage and are expressed pre-
dominantly by the corneal epithelium [ 20 ]. Soluble CRPs are also 
present in physiologically relevant quantities in the aqueous humor 
(AH) that bathes the corneal endothelium and function to protect 
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this pivotal nonregenerative cell layer from  complement  -mediated 
lysis [ 20 ,  21 ]. Additionally, some CRPs, such as decay accelerating 
factor (DAF, also known as CD55), can disrupt APC:T cell interac-
tions and contribute to corneal allograft immune privilege in this 
way [ 22 ] . Indeed, Esposito and colleagues [ 22 ] demonstrated in a 
murine corneal transplant model that when either the donor cornea 
or the recipient graft bed is defi cient in DAF, rapid rejection ensues. 

 The AH contains a large amount of immunosuppressive mol-
ecules that contribute signifi cantly to maintaining immunological 
ignorance. These include anti-infl ammatory cytokines (e.g. tissue 
growth factor (TGF)-β2), complement inhibitors [ 21 ], neuropep-
tides, alpha-melanocyte stimulating hormone, vasoactive intestinal 
peptide, and calcitonin gene-related peptide [ 23 – 26 ]. A soluble 
version  of   FasL is also found in the AH and is an important 
 endogenous immunosuppressant as it can suppress neutrophil 
recruitment and activation [ 27 ,  28 ]. As  mentione  d earlier, corneal 
cells only weakly express MHC class I molecules, if at all and this is 
an important characteristic in maintaining immune privilege. 
However, the corneal cells may become a target for natural killer 
(NK) cells, as these cells are programmed to target and kill any cell 
that does not express MHC class I molecules [ 29 ]. The cells at 
highest risk of attack are those comprising the corneal endothe-
lium and it has been shown that  rats   undergoing corneal allograft 
rejection have NK cells  prese  nt in their AH, which bathes the 
endothelium [ 30 ]. To counteract this possible NK cell-mediated 
cytolysis, however, the AH contains physiologically relevant levels 
of TGF-β and macrophage migration inhibitory factor, both of 
which are capable of neutralizing the  effect  s of NK cells [ 31 – 34 ].  

4     Anterior Chamber-Associated Immune Deviation and Corneal Allograft Fate 

 As described previously, key mechanisms which characterize ocular 
immune privilege are the unique anatomical and cellular barriers of 
the eye and the expression of key immunomodulatory molecules 
including but not limited to interleukin (IL)-10, TGF-β,    FasL, and 
PD-L1 [ 9 ,  12 ,  14 ,  16 ,  20 ,  35 – 37 ]. In addition to maintaining a 
local immunosuppressive environment, the eye is also capable of 
 orchestrating   systemic immunoregulatory responses against intra-
ocular antigens. This mechanism of  ocular   immunosuppression has 
been given the term anterior chamber-associated immune devia-
tion (ACAID) [ 38 – 40 ]. In  corneal   transplantation, the donor 
allografts are in direct contact with the AC and it is this location 
that correlates closely with the allograft’s capacity to survive and 
induce ACAID to donor alloantigens [ 41 – 43 ]. 

 ACAID, an atypical systemic response to alloantigens is not, 
as once believed, due to immunological ignorance but rather an 
active process that induces unique cellular mechanisms which can 
suppress destructive cellular responses such as delayed type 
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hypersensitivity (DTH) and cytotoxic T lymphocytes (CTLs) [ 44 ]. 
Studies have illustrated AC injection of donor cells prior to ortho-
topic  corneal   transplantation results in a  signifi   cant increase in the 
acceptance of corneal allografts in  rats   and mice [ 41 ,  45 ]. However, 
it is the introduction of alloantigens during and after routine kera-
toplasty that is believed to contribute to the ACAID role in  corneal 
  transplantation survival [ 41 ]. 

 The AC contains AH consisting of  biologic  ally relevant con-
centrations of various immunomodulatory factors as previously 
described [ 20 ,  35 – 37 ]. Compelling evidence demonstrates that 
the F4/80-positive APCs in the eye, maintained in an immature 
state due to the presence of constitutively expressed TGF-β2, 
 capture intraocular antigens [ 46 ]. These antigen-bearing APCs 
subsequently migrate through the blood stream to the marginal 
zone of the spleen where they induce the formation of ACAID-
regulatory T cells ( Tregs  ) [ 39 ,  41 ,  43 ,  47 ]. Both cell-associated 
and soluble antigen injected into the eye has been detected in the 
DLN at 6 h and in the spleen after 16–24 h post injection [ 48 ,  49 ]. 
Once ocular- derived APCs enter the spleen, a series of complex 
cellular interactions which are not yet fully understood involving 
CD4 + T cells, natural killer (NK) T cells,  B cells  , and γδT cells 
culminate in the generation  of   Tregs that suppress DTH responses 
in an antigen- specifi c manner [ 42 ,  50 ,  51 ]. 

 Eventually, antigen- specifi c   Tregs that mediate ACAID emerge 
from these cell clusters in the spleen [ 39 ,  44 ]. It is these antigen- 
specifi c CD4+ and CD8+    Tregs that contribute to ocular immune 
privilege by down-regulating immune responses and protecting a 
graft from immune rejection  after   transplantation [ 52 ]. The fi rst 
“ affe  rent” set of cells made up of CD4 +    Tregs prevent the activa-
tion and differentiation of antigen-specifi c effector T helper cells 
(Th1). Following this, a second set of “efferent” cells consisting of 
the CD8 +    Tregs are associated with the inhibition of DTH [ 40 ]. 
Interestingly, it is these different forms of immune  tolerance   which 
have been demonstrated to be involved in the induction of ACAID 
and play a role in the promotion of corneal allograft survival [ 53 , 
 54 ]. These fi ndings suggest that ACAID may be required for long- 
term survival of corneal allografts and indicates that immune privi-
lege in the eye is sustained through the cooperation of various cells 
from organs other than the eye itself. 

 The concept of ACAID, in which antigen-bearing APCs 
migrate from the eye, is not yet proven in  humans   and animal stud-
ies have demonstrated that cells do not need to leave the ocular 
microenvironment for  antige  n to induce a reduced DTH [ 55 ,  56 ]. 
The nature of the APC which promotes ACAID- induced   tolerance 
is unclear, but mice defi cient in cells expressing the macrophage 
surface marker F4/80 fail to generate tolerance after injection fol-
lowing donor antigen challenge [ 57 ]. Others have suggested that 
ocular fl uids containing material such as soluble proteins from 
incoming infl ammatory cells enter the blood circulation and arrive 
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at the spleen where further amplifi cation of the NKT cell/F4/80 
spleen cell-mediated process of T-cell apoptosis occurs [ 58 ]. 
Winton et al. also suggest antigen  may   travel from the eye to the 
spleen, lymph nodes of the head and neck, and mesenteric lymph 
nodes in a soluble form through blood and lymph [ 56 ]. 

 The CD4+ T cells which recognize alloantigen via the indirect 
pathway are the cells which are believed to be required for induc-
tion of corneal allograft rejection [ 59 ]. It also has been described 
 that   IFN-γ is not necessary for the rejection of MHC-mismatched 
corneal grafts. However,    IFN-γ and Th1 immune mechanisms 
have been demonstrated to be necessary for the rejection of MHC- 
matched but minor histocompatibility mismatched corneal 
allografts [ 60 ]. Interestingly, it has been recently demonstrated 
 that   IFN-γ is needed for alloantigen-specifi c ACAID CD8+    Tregs 
to execute their suppressive function but not required for the 
establishment of ACAID CD8+    Tregs [ 51 ]. Paunicka et al. provide 
evidence that  the   Tregs induced by AC injection of alloantigens 
(i.e. ACAID) are different from the Tregs induced by corneal 
allografts [ 51 ]. For example, in vivo administration of anti-CD8 
 antibody   abolishes ACAID but has no effect on the immune privi-
lege of corneal allografts. The authors suggest that an additional 
role  of   IFN-γ in exerting  suppression   during ACAID may be its 
ability to enhance the susceptibility of CD4+ effector cells to be 
suppressed by CD8+ Tregs [ 51 ]. 

 Several cell-based  thera  pies have been explored for their capac-
ity to modulate the immune system of the corneal transplant recip-
ient [ 61 – 63 ]. As described, APCs are key players in determining 
the induction of ACAID  or   tolerance. APCs are the cells with the 
capacity to transmit antigen-specifi c signals and direct adaptive 
immune responses. In one study by Khan et al. corneal allograft 
survival was prolonged by intravenously administering CTLA4-
KDEL- expressing  dendritic cells (DCs)  , however, this was only 
when the DCs were capable of indirect presentation of alloantigen 
[ 62 ]. Using donor-derived tolerogenic DCs, Hattori et al. demon-
strated that corneal allograft recipients signifi cantly suppress the 
indirect pathway of allorecognition and that this led to the inhibi-
tion of CD4 +    IFN-γ T cell frequencies. This DC  cell therapy   was 
also associated with an increase in  Foxp3   expression in  the   Treg 
cell  comp  artment [ 61 ]. We have recently shown that intravenous 
injection of donor bone marrow-derived DCs (BMDCs) or donor 
BMDCs treated with dexamethasone signifi cantly prolongs cor-
neal allograft survival without the need for  additional   immunosup-
pression. With  both   cell therapies, a signifi cant reduction in the 
level of allograft cellular infi ltration and a signifi cant increase in  th  e 
ratio of intragraft FoxP3 expressing regulatory cells in both the 
allograft and the DLNs were observed [ 63 ]. 

 As well as examining APC- derived   cell therapies, much interest 
has also been focused on the development of mesenchymal stromal 
cell (MSC)-based therapies to promote corneal allograft survival 
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[ 64 ,  65 ]. We recently demonstrated that allogeneic  MSC   treatment 
prolongs corneal allograft survival by suppressing peripheral immune 
responses and promoting an intragraft immunoregulatory milieu. 
This response was associated with a higher proportion of splenic 
CD4 + Foxp3+    Treg cells [ 64 ]. Interestingly, Zhang et al. illustrated 
that systemic administration of human umbilical cord- derived MSCs 
(hUC-MSC) could potentiate the antigen-specifi c immune-suppres-
sive responses induced by ACAID. The authors also demonstrated 
how administration of hUC-MSC was associated with increased 
cytokine production  and   Treg cell expansion within the spleen, 
capable of promoting and maintaining ACAID [ 66 ]. 

 Aside  from   Treg expansion in the spleen, the possibility  that 
  Tregs can be induced locally within the eye has been a topic of 
much debate [ 55 ]. However, there is some evidence to suggest 
that naïve T cells that gain access to the ocular microenvironment 
may be skewed toward  a   Treg phenotype in situ [ 55 ].    Tregs 
recruited into the eye from the periphery, therefore, may be critical 
to tip the balance and together with local conversion help induce 
an immunosuppressive microenvironment and bring  abo  ut resolu-
tion of  potential   transplantation rejection [ 55 ]. It must be noted 
that ACAID is not maintained when DTH is present under normal 
conditions and ACAID may be disturbed/abolished due to 
surgery- induced trauma, viral infection or chronic infl ammation, 
all of which may contribute to corneal allograft rejection.  

5     Conclusions 

 Relative ocular immune privilege is  a   fascinating area of  immunology   
research. It is not the result of a single immunosuppressive mecha-
nism, but rather is a combination of both local and systemic immu-
nomodulation involving soluble factors as well as regulatory cells. 
Although corneal transplants benefi t from relative ocular immune 
privilege, this privilege can be lost with subsequent failure of the 
transplant and blindness.  Transplant      immunology and eye research 
is proving benefi cial at identifying factors and processes that pro-
tect cells and tissues from immune-mediated destruction or rejec-
tion. Future research will further elucidate the mechanisms of 
ocular immune privilege and open new areas of immunomodula-
tion, particularly with respect  t  o patients at high risk of corneal 
transplant rejection, that may also benefi t other transplant models 
or immune-mediated diseases.     
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