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    Chapter 9   

 RNA-Seq Experiment and Data Analysis       

     Hanquan     Liang     and     Erliang     Zeng       

  Abstract 

   With the ability to obtain tens of millions of reads, high-throughput messenger RNA sequencing (RNA- Seq) 
data offers the possibility of estimating abundance of isoforms and fi nding novel transcripts. In this 
 chapter, we describe a protocol to construct an RNA-Seq library for sequencing on Illumina NGS plat-
forms, and a computational pipeline to perform RNA-Seq data analysis. The protocols described in this 
chapter can be applied to the analysis of differential gene expression in control versus 17β-estradiol treat-
ment of in vivo or in vitro systems.  
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1      Introduction 

 Recent advancements in next-generation sequencing (NGS) tech-
nologies enable sequencing of tens of millions to billions of cDNA 
fragments generated from RNA, offering great opportunity to 
directly quantify entire messenger RNA (mRNA) from a sample 
[ 1 ,  2 ]. In high-throughput transcript data a large number of tran-
scripts are concurrently sensed using fragments of cDNAs (called 
reads), with the idea that abundance of a transcript is estimated by 
integrating the counts of reads likely to be produced from the tran-
script [ 3 – 6 ]. If the reads are uniquely associated with a transcript, 
estimating its expression value is relatively simple—roughly speak-
ing, the total read counts associated with a transcript divided by 
the base length of the transcript with a fi xed scaling gives an esti-
mate [ 4 ]. There are many platforms that can be used for NGS and 
many pathways for data analysis. This chapter describes how to 
prepare an  RNA-Seq   library for sequencing on Illumina platforms 
[ 7 ], and how to use a computational pipeline for estimating expres-
sion of transcripts and for statistical analysis to discover differen-
tially expressed genes (DEGs). Starting with total RNA, the library 
construction steps include mRNA purifi cation and fragmentation, 
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fi rst-strand cDNA synthesis, and second-strand cDNA synthesis. 
The double-strand cDNA is then ligated to adapters, and enriched 
with PCR amplifi cation. The computational pipeline for RNA-Seq 
data analysis consists of steps for data quality assessment, read 
aligning and gene expression estimating, and statistical analysis. 
The protocols described in this chapter can be applied to the analy-
sis of differential gene expression in control versus  17β-estradiol   
treatment of in vivo or in vitro systems.  

2    Materials 

     1.    Samples of purifi ed total RNA from control and  17β-estradiol   
treated cells or tissues.   

   2.    Oligo (dT)25 magnetic beads and magnetic stand (Invitrogen).   
   3.    Washing Buffer B, comes with Oligo (dT)25 magnetic beads 

reagent (Invitrogen).   
   4.    Binding Buffer, comes with Oligo (dT)25 magnetic beads 

reagent (Invitrogen).   
   5.    10 mM Tris–HCl, pH 7.5 (Invitrogen).   
   6.    10× RNA Fragmentation Buffer (New England Biolabs).   
   7.    10× RNA Fragmentation Stop Solution (New England 

Biolabs).   
   8.    Random hexamers (100 pmol/μL).   
   9.    First-Strand Reaction Buffer (Invitrogen): 4 μL 5× fi rst-strand 

buffer, 2 μL 100 mM dithiothreitol, 1 μL dNTP mix, 1 μL 
SuperScript II per reaction tube.   

   10.    dNTP mix (10 mM each dATP, dCTP, dGTP, dTTP).   
   11.    Second-strand reaction buffer: 51 μL nuclease-free water, 

20 μL 5× second-strand reaction buffer, 2 μL dNTP mix, 5 μL 
 E. coli  DNA Polymerase I (10 U/μL) (New England Biolabs, 
NEB), 1 μL  E. coli  DNA Ligase (10 U/μL) (NEB), 1 μL  E. 
coli  RNase H (5 U/μL) (NEB) per reaction tube.   

   12.    dA tailing mix: 5 μL 10× A-tailing buffer, 10 μL 1 mM dATP, 
3 μL Klenow fragment (3′→5′ exo-) per reaction (NEB).   

   13.    End repair reaction mix: 25 μL nuclease-free water, 10 μL 10× 
phosphorylation reaction buffer, 4 μL dNTP mix, 5 μL T4 
DNA polymerase, 1 μL  E. coli  DNA polymerase I, Large 
(Klenow) Fragment, 5 μL T4 Polynucleotide Kinase (New 
England Biolabs).   

   14.    T4 DNA ligation mix: 5 μL nuclease-free water, 3 μL 10× T4 
DNA ligation buffer (NEB), 1 μL Illumina Adapters (Illumina), 
1 μL T4 DNA ligase (NEB).   

   15.    Universal  Primer   Mix (10 μM each forward & reverse).   
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   16.    2× Phusion High-Fidelity PCR Master Mix (Thermo Scientifi c).   
   17.    QIAquick PCR Purifi cation Kit (Qiagen).   
   18.    RNeasy MinElute Cleanup Kit (Qiagen).   
   19.    AMPure XP beads (Beckman Coulter).   
   20.    Nuclease-free water.   
   21.    80 % ethanol.   
   22.    Qubit Fluorometer (Invitrogen).   
   23.    Thermal cycler.   
   24.    Agilent 2100 Bioanalyzer (Agilent).      

3    Methods 

   Before starting, it is highly recommended to assess the total RNA 
quality of the samples using an Agilent Bioanalyzer 2100. To 
achieve the best results, the RNA Integrity Number (RIN) esti-
mated by the Bioanalyzer should be 8 or higher. Low quality sam-
ples may yield seemingly good libraries and good sequencing reads, 
but analysis of such data is challenging and the results may be mis-
leading. In the second-strand cDNA synthesis reaction, the second 
strand of cDNA is synthesized and the RNA templates are removed. 

 In the mRNA purifi cation steps, messenger RNA with poly-A 
tails will be captured, while other RNA components (rRNA, tRNA) 
will be removed from the samples. For mRNA fragmentation, the 
mRNA is cleaved into small pieces by heating in divalent metal 
cation buffer. The fi rst-strand cDNA synthesis steps will generate 
the fi rst strand of cDNA using reverse transcriptase and random 
primers. The second-strand cDNA synthesis steps generate the sec-
ond strand of cDNA and removes the RNA templates from the 
reaction. In the end repair steps, the ends of double-strand cDNA 
fragments are converted into blunt ends. An adenine (A) base is 
then added to the 3′-end of blunt double strand cDNA to facilitate 
adapter ligation. The adaptor ligated cDNA is then enriched and 
amplifi ed by PCR to achieve a suffi cient amount of library. Finally 
the library is quantifi ed and its quality is checked.

    1.    For mRNA purifi cation, dilute 100–1000 ng of total RNA with 
nuclease-free water to a fi nal volume of 50 μL ( see   Note 1 ).   

   2.    Add 50 μL resuspended oligo-dT beads (prepared according 
to the manufacturer’s recommendation if necessary) to each 
RNA sample.   

   3.    Place the samples in a thermal cycler and heat at 65 °C for 
5 min, and then 4 °C on hold. Remove the tubes from the 
thermal cycler after the temperature reaches 4 °C.   

   4.    Incubate samples at room temperature for 5 min ( see   Note 2 ).   

3.1   RNA-Seq   
Experiment
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   5.    Place the samples on a magnetic stand for 5 min or until the 
solution is clear. Keeping the tubes on the magnetic stand, 
carefully remove and discard supernatants without disturbing 
the beads ( see   Note 3 ).   

   6.    Remove the tubes from the magnetic stand. Resuspend the 
beads with 200 μL washing buffer B.   

   7.    Place the tubes on a magnetic stand for 5 min or until the solu-
tion is clear. Keeping the tubes on the magnetic stand, carefully 
remove and discard the supernatants without disturbing the 
beads.   

   8.    Remove the tubes from the magnetic stand. Resuspend the 
beads with 50 μL 10 mM Tris–HCl buffer.   

   9.    Place the tubes in a thermal cycler. Heat the samples at 80 °C 
for 2 min, and then 25 °C on hold. In this step, binding is 
disrupted and RNA is released into the supernatant.   

   10.    Remove the tubes from the thermal cycler. Add 50 μL binding 
buffer and resuspend beads.   

   11.    Incubate the samples at room temperature for 5 min. In this 
step, the mRNA rebinds to the poly-dT beads.   

   12.    Place the tubes on a magnetic stand for 5 min or until the solu-
tion is clear. Keeping the tubes on the magnetic stand, carefully 
remove and discard the supernatants without disturbing the 
beads.   

   13.    Remove the tubes from the magnetic stand. Resuspend the 
beads with 200 μL washing buffer B.   

   14.    Place the tubes on a magnetic stand for 5 min or until the solu-
tion is clear. Keeping the tubes on the magnetic stand, carefully 
remove and discard the supernatants without disturbing the 
beads ( see   Note 4 )   

   15.    Remove the tubes from the magnetic stand. Resuspend the 
beads with 20 μL of nuclease-free water.   

   16.    Place the tubes on a magnetic stand for 5 min or until the solu-
tion is clear. Keeping the tubes on the magnetic stand, carefully 
transfer 18 μL of the supernatant to new tubes.   

   17.    For mRNA fragmentation, add 2 μL 10× RNA fragmentation 
buffer to the samples.   

   18.    Place the tubes in a thermal cycler and incubate at 94 °C for 
5 min. Immediately transfer the tubes to ice ( see   Note 5 ).   

   19.    Add 2 μL 10× RNA fragmentation stop solution.   
   20.    Clean up fragmented RNA using RNeasy MinElute columns 

following the manufacturer’s instructions. Elute fragmented 
mRNA with 12 μL nuclease-free water.   
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   21.    For fi rst-strand cDNA synthesis, add 1 μL random hexamers. 
Incubate at 70 °C for 10 min, and quick-chill on ice.   

   22.    Add 8 μL fi rst-strand cDNA reaction mixture to each reaction.   
   23.    Incubate at 25 °C for 10 min, 42 °C for 50 min, 70 °C for 

15 min, hold at 4 °C ( see   Note 6 ).   
   24.    For second-strand cDNA synthesis, add 80 μL of second- 

strand reaction mixture to each reaction.   
   25.    Place the tubes in a thermal cycler at 16 °C for 2 h.   
   26.    Purify the double-stranded cDNA using the QIAquick PCR 

Purifi cation Kit following the manufacturer’s directions and 
elute in 50 μL nuclease-free water.   

   27.    For the end repair steps, add 50 μL of end repair reaction mix 
to each double-stranded cDNA sample.   

   28.    Incubate at 20 °C for 30 min.   
   29.    Purify end-repaired double-stranded cDNA using the QIAquick 

PCR Purifi cation Kit and elute in 32 μL nuclease-free water.   
   30.    To carry out the dA tailing step, add 18 μL of dA tailing mix 

to each 32 μL of end-repaired cDNA.   
   31.    Incubate at 37 °C for 30 min.   
   32.    Purify dA-tailed double-stranded cDNA using QIAquick PCR 

Purifi cation Kit and elute in 20 μL nuclease-free water.   
   33.    To ligate the adapters, add 10 μL of T4 DNA ligation mix to 

each dA-tailed sample (20 μL) ( see   Note 7 ).   
   34.    Incubate the samples in a thermal cycler at 30 °C for 10 min.   
   35.    Add 1.2× (42 μL) resuspended AMPure XP beads to each 

reaction and mix thoroughly by pipetting. Incubate at room 
temperature for 10 min.   

   36.    Place the tubes on a magnetic stand for 5 min or until the solu-
tion is clear. Keeping the tubes on the magnetic stand, carefully 
remove and discard the supernatants without disturbing the 
beads.   

   37.    With the tubes on the magnetic stand, add 200 μL of 80 % 
freshly prepared ethanol.   

   38.    Incubate at room temperature for 30 s, and then discard all 
supernatant without disturbing the beads.   

   39.    Repeat ethanol wash one more time.   
   40.    Keep the tubes on the magnetic stand, leave lids open and air- dry 

the beads for 10 min (but do not over dry).   
   41.    Remove tubes from magnetic stand. Suspend beads with 52 μL 

nuclease-free water, and then incubate at room temperature 
for 2 min.   
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   42.    Place the tubes on a magnetic stand for 5 min or until the solu-
tion is clear. Keeping the tubes on the magnetic stand, carefully 
transfer 50 μL of the supernatant to new tubes.   

   43.    Perform size selection by purifying the adapter-ligated DNA 
with 1× (50 μL) AMPure XP beads ( steps 35 – 40 ) ( see   Note 8 ).   

   44.    Remove tubes from magnetic stand. Suspend beads with 25 μL 
nuclease-free water, and then incubate at room temperature 
for 2 min.   

   45.    Place the tubes on a magnetic stand for 5 min or until the solu-
tion is clear. Keeping the tubes on the magnetic stand, carefully 
transfer 23 μL of the supernatant to new tubes.   

   46.    For PCR amplifi cation of the cDNA samples, add 2 μL 
Universal  Primer   Mix and 25 μL of 2× Phusion High-Fidelity 
PCR Master Mix to each adapter-ligated cDNA (23 μL).   

   47.    Place the samples in a thermal cycler and program the cycles as 
follows ( see   Note 9 ):
   (a)    98 °C for 30 s   
  (b)    98 °C for 10 s   
  (c)    60 °C for 30 s   
  (d)    72 °C for 30 s   
  (e)    Go to  step  ( b ) for 14×   
  (f)    72 °C for 5 min   
  (g)    Hold at 10 °C    

      48.    Purify the PCR-enriched library with 1× (50 μl) AMPure XP 
beads ( steps 35 – 40 ).   

   49.    Remove tubes from magnetic stand. Suspend beads with 22 μL 
nuclease-free water, and then incubate at room temperature 
for 2 min.   

   50.    Place the tubes on a magnetic stand for 5 min or until the solu-
tion is clear. Keeping the tubes on the magnetic stand, carefully 
transfer 20 μL of the supernatant to new tubes.   

   51.    Use an Agilent Bioanalyzer to check the quality of the library 
and to estimate library size ( see   Note 10 ).   

   52.    Quantify library using Qubit Assay (Invitrogen) by following 
the manufacturer’s documents.   

   53.    Based on library size and concentration, dilute library to 
20 nM. Pool libraries if necessary ( see   Note 11 ).   

   54.    Store the library at −20 °C.   
   55.    Perform sequencing by following the manufacturer’s protocol. 

This library is designed for sequencing on the Illumina plat-
form. Alternatively, send the samples out for sequencing.      

Hanquan Liang and Erliang Zeng



105

   A functional laptop/desktop with 4GB or larger of RAM is 
required for running the computational pipeline. The computa-
tional pipeline for analysis of RNAseq data described here includes 
a series of steps. First, some simple quality control checks need to 
be performed to ensure that the raw data is of good quality before 
analyzing the  RNA-Seq   data [ 8 ]. FastQC is a computational tool 
that provides a QC report which can spot problems originating 
either in the sequencer or in the starting library material [ 9 ]. 
Second, the R and  Bioconductor   (a set of packages that run in R) 
programs will be installed. R and Bioconductor will be used to 
perform most of the analyses [ 10 ,  11 ]. R is a free, very powerful 
statistics environment [ 10 ]. The sequence fi les will be read and the 
sequence reads will be mapped to a reference genome.  Gene 
expression   values will be estimated by calculating either the raw 
read count number or Reads Per Kilobase of transcript per Million 
reads mapped (RPKM).  Statistical analyse  s will be performed to 
discover DEGs.

    1.    For the quality control checks, download an appropriate ver-
sion of FastQC from   http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/     ( see   Note 12 ).   

   2.    Install FastQC as instructed ( see   Note 13 ).   
   3.    Perform basic operations in FastQC, including opening a 

sequence fi le, evaluating results, and saving a report ( see   Note 14 ).   
   4.    Go to R project website (  http://www.r-project.org/    ), down-

load and install an appropriate R version (R Version 3.1.2 and 
up is recommended).   

   5.    Start R on your computer.   
   6.    After starting R, paste or type following commands to install 

 Bioconductor   (if the Bioconductor    program has not been 
installed before). The installation will take a few minutes. 
  source(“http://bioconductor.org/biocLite.R”)  
  biocLite()    

   7.    Set working director to your local folder. In the following 
command, change “path to your local folder” to your specifi c 
working directory. For example, I set my working directory 
as  setwd(“/Users/ezeng/Documents/Teaching/   RNA-Seq    ”) . Note 
that my data subdirectory is “/ Users/ezeng/Documents/
Teaching/RNA-Seq /data.” The data subdirectory contains 
RNA- Seq FASTQ fi les from the study of human estrogen recep-
tors, as well as the corresponding human reference genome 
sequence (FASTA) and annotation (GFF) fi le ( see   Note 15 ). 
  setwd(“path to your local folder”)    

   8.    Install and load  QuasR  [ 12 ].  QuasR  is a versatile NGS map-
ping and post-processing pipeline for  RNA-Seq   data analysis. 

3.2   RNA-Seq   Data 
Analysis
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It uses  Rbowtie  for ungapped alignments and  SpliceMap  for 
spliced alignments. Install and load  QuasR  package. 
  biocLite(“QuasR”)  

  library(QuasR)    

   9.    To read sequence fi les and map sequence reads to the reference 
genome, fi rst read sequence fi le information. The FASTQ fi les 
are organized in the provided samples.txt fi le in data subdirec-
tory ( see   Note 16 ). To import samples.txt, we run the follow-
ing commands from R. 
  samples <- read.delim(“data/samples.txt”)    

   10.    Set environment. 
  write.table(samples[,1:2], “data/QuasR_samples.txt”, 

row.names=FALSE, quote=FALSE, sep=”\t”)  

  sampleFile <- “./data/QuasR_samples.txt”  

  genomeFile <- “./data/Homo_sapiens.GRCh38.dna.top-
level.fa”  

  # Note: all output data will be written to subdirec-
tory ‘results’  

  dir.create(“results”)  

  # Defi nes location where to write results  

  results <- “./results”  

  # Defi nes number of CPU cores to use  

  cl <- makeCluster(1)    

   11.    Use single command to index reference, align all samples, and 
generate BAM fi les ( see   Note 17 ). 
  proj <- qAlign(sampleFile, genome=genomeFile, max-

Hits=1, splicedAlignment=FALSE, alignmentsDir=
results, clObj=cl, cacheDir=results)    

   12.    Get alignment summary report. 
  alignstats <- alignmentStats(proj)  

  alignstats    

   13.    Enumerate the number of reads in each FASTQ fi le and how 
many of them aligned to the reference. For  QuasR  this step 
can be omitted because the  qAlign  function generates this 
information automatically. 
  biocLite(“ShortRead”)  

  biocLite(“Rsamtools”)  

  library(ShortRead)  

  library(Rsamtools)  

  Nreads <- countLines(dirPath=”./data”, pattern=”.
fastq$”)/4  

  bfl  <- BamFileList(alignments(proj)$genome$FileName, 
yieldSize=50000, index=character())  
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  Nalign <- countBam(bfl )  

  read_statsDF <- data.frame(FileName=names(Nreads), 
Nreads=Nreads, Nalign=Nalign$records, Perc_
Aligned=Nalign$records/Nreads*100)  

  write.table(read_statsDF, “results/read_statsDF.
xls”, row.names=FALSE, quote=FALSE, sep=”\t”)    

   14.    To estimate the gene expression values, calculate either raw 
read count number or RPKM. To do this, get annotation data 
from GFF. 
  biocLite(“rtracklayer”)  
  biocLite(“GenomicRanges”)  

  library(rtracklayer)  

  library(GenomicRanges)  

  gff <- import.gff(“./data/ref_GRCh38_top_level.gff3”, 
asRangedData=FALSE)  

  seqlengths(gff) <- end(ranges(gff[which(elementMeta
data(gff)[,”type”]==”chromosome”),]))  

  subgene_index <- which(elementMetadata(gff)[,”type”] 
== “exon”)  

  gffsub <- gff[subgene_index,] # Returns only gene 
ranges  

  ids <- gsub(“Parent=|\\..*”, “”, elementMetadata(gf
fsub)$group)  

  gffsub <- split(gffsub, ids) # Coerce to GRangesList    

   15.    Store annotation rangers in  TranscriptDb  databases, which 
make many operations more robust and convenient. 
  biocLite(“GenomicFeatures”)  

  library(GenomicFeatures)  

  txdb <- makeTranscriptDbFromGFF(fi le=”data/ref_
GRCh38_top_level.gff3”,  

  format=”gff3”,  

  dataSource=”NCBI”,  

  species=”Homo sapiens”)  

  saveDb(txdb, fi le=”./data/GRCh38.sqlite”)  

  txdb <- loadDb(“./data/GRCh38.sqlite”)  

  eByg <- exonsBy(txdb, by=”gene”)    

   16.    Read counting with  qCount  from  QuasR . 
  countDF <- qCount(proj, txdb, reportLevel=”gene”, 

orientation=”any”)  

  write.table(countDF, “results/countDFgene.xls”, 
col.names=NA, quote=FALSE, sep=”\t”)  

  write.table(countDF[,2:5], “./results/countDF”, 
quote=FALSE, sep=”\t”, col.names = NA)    
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   17.    Perform a simple RPKM normalization ( see   Note 18  for an 
alternative way to calculate RPKM). 
  returnRPKM <- function(counts, gffsub) {  

  geneLengthsInKB <- sum(width(reduce(gffsub)))/1000  

  millionsMapped <- sum(counts)/1e+06  

  rpm <- counts/millionsMapped  

  rpkm <- rpm/geneLengthsInKB  

  return(rpkm)  

  }  

  countDFrpkm <- apply(countDF, 2, function(x) 
returnRPKM(counts=x, gffsub=eByg))    

   18.    Check the sample reproducibility by computing a correlating 
matrix and plotting it as a tree ( see   Note 19 ). 
  biocLite(“ape”)  
  library(ape)  

  d <- cor(rpkmDFgene, method=”spearman”)  

  hc <- hclust(dist(1-d))  

  plot.phylo(as.phylo(hc), type=”p”, edge.col=4, edge.
width=3, show.node.label=TRUE, no.margin=TRUE)    

   19.    To perform statistical analyses to discover differentially expressed 
genes (DEGs), defi ne the  colAg()  function ( see   Note 20 ). 
  colAg <- function(myMA=myMA, group=c(1,1,1,2,2,2,3,

3,4,4), myfct=mean, …) {  

  myList <- tapply(colnames(myMA), group, list)  

  names(myList) <- sapply(myList, paste, collapse=
“_”)  

  myMAmean <- sapply(myList, function(x) apply(myMA
[, x,  

  drop=FALSE], 1, myfct, …))  

  return(myMAmean)  

  }    

   20.    Compute mean values for replicates using function  colAg()  
( see   Note 21 ). 
  countDFrpkm_mean <- colAg(myMA=rpkmDFgene, group=

c(1,1,2,2), myfct=mean)    

   21.    Calculate log 2  fold changes. 
  countDFrpkm_mean <- cbind(countDFrpkm_mean, log2ratio=

log2(countDFrpkm_mean[,2]/countDFrpkm_mean[,1]))  

  countDFrpkm_mean <- countDFrpkm_mean[is.
fi nite(countDFrpkm_mean[,3]),]  

  degs2fold <- countDFrpkm_mean[countDFrpkm_mean[,3] 
>= 1 | countDFrpkm_mean[,3] <= -1,]  

  write.table(degs2fold, “./results/degs2fold.xls”, 
quote=FALSE, sep=”\t”, col.names = NA)  

  degs2fold <- read.table(“./results/degs2fold.xls”)    
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   22.    Perform statistical analysis with DESeq library ( see   Note 22 ). 
Note that DESeq is expected to use raw count data [ 13 ]. 
  biocLite(“DESeq”)  

  library(DESeq)  

  countDF <- read.table(“./results/countDF”)  

  conds <- samples$Factor  

  # Creates object of class CountDataSet derived from 
eSet class  

  cds <- newCountDataSet(countDF, conds)  

  # Estimates library size factors from count data.  

  cds <- estimateSizeFactors(cds)  

  # Estimates the variance within replicates  

  cds <- estimateDispersions(cds)  

  # Calls DEGs with nbinomTest  

  res <- nbinomTest(cds, “Control”, “Treatment”)  

  res <- na.omit(res)  

  res2fold <- res[res$log2FoldChange >= 1 | 
res$log2FoldChange <= -1,]  

  res2foldpadj <- res2fold[res2fold$padj <= 0.05,]    

   23.    Perform statistical analysis with edgeR library ( see   Note 22 ). 
Note that edgeR is also expected to use raw count data [ 14 ]. 
  biocLite(“edgeR”)  

  library(edgeR)  

  countDF <- read.table(“./results/countDF”)  

  # Constructs DGEList object  

  y <- DGEList(counts=countDF, group=conds)  

  # Estimates common dispersion  

  y <- estimateCommonDisp(y)  

  # Estimates tagwise dispersion  

  y <- estimateTagwiseDisp(y)  

  # Computes exact test for the negative binomial 
distribution.  

  et <- exactTest(y, pair=c(“Control”, “Treatment”))  

  topTags(et, n=4)  

  edge <- as.data.frame(topTags(et, n=50000))  

  edge2fold <- edge[edge$logFC >= 1 | edge$logFC <= 
-1,]  

  edge2foldpadj <- edge2fold[edge2fold$FDR <= 0.05,]    

   24.    Perform statistical analysis with edgeR using generalized linear 
models (glms) ( see   Note 22 ). 
  library(edgeR)  

  countDF <- read.table(“./results/countDF”)  
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  # Constructs DGEList object  

  y <- DGEList(counts=countDF, group=conds)  

  # Filtering and normalization  

  keep <- rowSums(cpm(y)>1) >= 2; y <- y[keep,]  

  y <- calcNormFactors(y)  

  # Design matrix  

  design <- model.matrix(~0+group, data=y$samples); 
colnames(design) <- levels(y$samples$group)  

  # Estimates common dispersions  

  y <- estimateGLMCommonDisp(y, design, verbose=TRUE)  

  # Estimates trended dispersions  

  y <- estimateGLMTrendedDisp(y, design)  

  # Estimates tagwise dispersions  

  y <- estimateGLMTagwiseDisp(y, design)  

  # Fit the negative binomial GLM for each tag  

  fi t <- glmFit(y, design)  

  # Contrast matrix is optional  

  contrasts <- makeContrasts(contrasts=”AP3-TRL”, 
levels=design)  

  # Takes DGEGLM object and carries out the likelihood 
ratio test  

  lrt <- glmLRT(fi t, contrast=contrasts[,1])  

  edgeglm <- as.data.frame(topTags(lrt, n=length
(rownames(y))))  

  # Filter on fold change and FDR  

  edgeglm2fold <- edgeglm[edgeglm$logFC >= 1 | 
edgeglm$logFC <= -1,]  

  edgeglm2foldpadj <- edgeglm2fold[edgeglm2fold$FDR 
<= 0.05,]    

   25.    Heatmap of top-ranking DEGs ( see   Note 23 ). 
  biocLite(“lattice”)  

  biocLite(“gplots”)  

  library(lattice)  

  library(gplots)  

  y <- countDFrpkm[rownames(edgeglm2foldpadj)[1:20],]  

  colnames(y) <- targets$Factor  

  y <- t(scale(t(as.matrix(y))))  

  y <- y[order(y[,1]),]  

  levelplot(t(y), height=0.2, col.regions=colorpanel
(40, “darkblue”, “yellow”, “white”), main=
“Expression Values (DEG Filter: FDR 5 %, FC > 2)”, 
colorkey=list(space=”top”), xlab=””, ylab=”Gene 
ID”)     
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4       Notes 

     1.    Although it is possible to start with 100 ng total RNA or even 
less, a smaller quantity of starting material will yield subopti-
mal results, e.g., ineffi cient adapter ligation, lower library yield, 
and inaccurate quantifi cation.   

   2.    This heating step denatures the RNA and disrupts secondary 
structures.   

   3.    Allow beads to fully pellet against magnetic stand. Do not 
allow the beads to dry.   

   4.    Take care to remove all supernatant; fragmentation will be 
affected if there is contamination with residual washing buffer.   

   5.    A shorter incubation time will result in longer fragments. 
Fragment size can be checked by running 1 μL of isolated 
RNA on Agilent BioAnalyzer.   

   6.    The 42 °C incubation is for reverse transcription. The reverse 
transcriptase is deactivated during the 70 °C incubation.   

   7.    If multiple samples will be sequenced in the same lane, use 
adapters with different index. Take care to avoid cross 
contamination.   

   8.    Library size (including ds cDNA insert and adapters) can be 
adjusted by changing the volume ratio of bead:sample. 
Increased bead to DNA ratio recovers more shorter fragments, 
while keeping the long fragments. When only longer frag-
ments are desired, user should try lower the ratio, thus to 
remove short fragments. However, lower ratios usually result 
in lower yields.   

   9.    Too many PCR cycles may introduce bias (certain sequences 
get more representation in the  RNA-Seq   data) and higher 
duplication rate (same sequence get sequenced multiple times).   

   10.    Bioanalyzer electropherograms of libraries described in this 
protocol usually show a peak starting from 200 bp to 500 bp, 
with a summit at around 260–280 bp. Pay attention to any 
adapter/dimer peaks, which show up approximately 60 bp or 
120 bp if they are present. Adapters have negative effects for 
library quantifi cation and cluster generation. If necessary, per-
form one more round of purifi cation to remove adapters. 
Average library size can be estimated by Bioanalyzer software 
(refer to the manufacturer’s documents).   

   11.    It is highly recommended to have suffi cient index diversity in a 
pooled library. Low diversity in the index sequences would 
result in unbalanced signals and low base-calling quality, which 
makes de-multiplexing diffi cult. Illumina provides software 
(Illumina Experiment Manager,   http://support.illumina.com/
sequencing/sequencing_software/experiment_manager/
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downloads.html    ) to help check index compatibility for 
pooling.   

   12.    Based on your operating system, there are Windows, Linux, 
and MAC versions available for downloading. Users can also 
download source code and build FastQC from scratch.   

   13.    Detailed installation and setup instructions are available on 
the website   http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/INSTALL.txt    . FastQC is a java application. In 
order to run, your system must have a suitable Java Runtime 
Environment (JRE) installed.   

   14.    Detailed information about basic FastQC operations can be 
found on   http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/Help/2%20Basic%20Operations/    . Documentation about 
analysis modules is available on   http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/Help/3%20Analysis%20
Modules/    . It is important to notice that although the analysis 
results appear to give a pass/fail result, these evaluations must 
be taken in the context of what you expect from your library. 
A “normal” sample as far as FastQC is concerned is random 
and diverse. Users should treat the summary evaluations as 
pointers to their own concentration, if the experiments are 
expected to produce libraries that are biased in particular ways. 
An example report of good Illumina data can be found at 
  http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
good_sequence_short_fastqc.html    , and an example report of 
bad Illumina data can be found at   http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/bad_sequence_fastqc.html    . 
It is recommended to perform additional data trimming and 
fi ltering if needed.   

   15.    Download human reference genome sequence (FASTA) from 
  ftp://ftp.ensembl.org/pub/release-78/fasta/homo_sapiens/
dna/Homo_sapiens.GRCh38.dna.toplevel.fa.gz    , unzip it and 
store it to the data subdirectory. Download the annotation 
(GFF) fi le from   ftp://ftp.ncbi.nih.gov/genomes/Homo_sapi-
ens/GFF/ref_GRCh38_top_level.gff3.gz    , unzip it, and store 
it to the data subdirectory.   

   16.    The fi le samples.txt is a tab-delimited fi le that records informa-
tion about experiments. An example of the content in samples.
txt is as following: 

 FileName  SampleName  Factor 

 Seq1.fastq  Sample1  Control 

 Seq2.fastq  Sample2  Control 

 Seq3.fastq  Sample3  Treatment 

 Seq4.fastq  Sample4  Treatment 
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       17.    In this command,  splicedAlignment  should be set to  TRUE  
when reads are  >=50 nt  long. In this example, the read length 
is short and less than 50 nt, so  splicedAlignment  was set to 
 FALSE .   

   18.    An alternative way to calculate RPKM, you will see same results 
stored in  countDFrpkm  and  rpkmDFgene  
  rpkmDFgene <- t(t(countDF[,-1]/countDF[,1] *1000)/

colSums(countDF[,-1]) *1e6)    

   19.    The  plotMDS  function from  edgeR  is a more robust method 
for this task.   

   20.    The  colAg()  function is a convenience function for applying a 
variety of computations on any combination of column aggre-
gates in a matrix or data frame. 
 How to run the function: 
  myMA <- matrix(rnorm(100000), 10000, 10, dimnames=

list(1:10000, paste(“C”, 1:10, sep=””)))  

  colAg(myMA=myMA, group=c(1,1,1,2,2,2,3,3,4,4), myfct=
mean)[1:4,]    

   21.    In this example, four samples are assumed to be analyzed, of 
which, two are samples for controls, and the other two are 
group with treatment (the same as example samples.txt in 
 Note 16 ). Users need change the code accordingly, based on 
their own experimental designs. For example, if the experi-
ment has three groups, each having three replicates, then the 
command should like this: 
  countDFrpkm_mean <- colAg(myMA=rpkmDFgene, group=

c(1,1,1,2,2,2,3,3,3), myfct=mean)    

   22.    There are different ways to discover DEGs using statistical 
analysis.  Steps 19 ,  20 , and  21  include commands to discover 
DEGs using three methods. Users can select all of the three 
methods, and compare the sets of three DEGs using visualiza-
tion tool such as Venn diagram. Note that the fi nal DEGs as 
obtained from  steps 19 ,  20 , and  21  require twofold change 
or larger and an adjusted p-value less than 0.05. Users may 
change these parameters accordingly.   

   23.    These commands generate a heatmap of top 20 DEGs resulting 
from  step 21 . Users can change related parameters to generate 
heatmaps resulting from  steps 19  and  20  as well.         

  Acknowledgments 

 We thank Dr. Thomas Girke at the University of California 
Riverside for sharing his R scripts.  

RNA-Seq Experiment and Data Analysis



114

   References 

    1.    Wang Z, Gerstein M, Snyder M (2009) RNA- 
Seq: a revolutionary tool for transcriptomics. 
Nat Rev Genet 10(1):57–63  

    2.    Ozsolak F, Milos PM (2011) RNA sequencing: 
advances, challenges and opportunities. Nat 
Rev Genet 12:87–98  

    3.    Marioni JC, Mason CE, Mane SM, Stephens 
M, Gilad Y (2008) RNA-seq: an assessment of 
technical reproducibility and comparison with 
gene expression arrays. Genome Res 18(9):
1509–1517  

    4.    Mortazavi A, Williams BA, McCue K, Schaeffer 
L, Wold B (2008) Mapping and quantifying 
mammalian transcriptomes by RNA-seq. Nat 
Methods 5(7):621–628  

   5.    Twine NA, Janitz K, Wilkins MR, Janitz M 
(2011) Whole transcriptome sequencing 
reveals gene expression and splicing differences 
in brain regions affected by Alzheimer’s dis-
ease. PLoS One 6(1), e16266  

    6.    Eksi R, Li HD, Menon R et al (2013) 
Systematically differentiating functions for 
alternatively spliced isoforms through integrat-
ing RNA-seq data. PLoS Comput Biol 9(11), 
e1003314  

    7.     http://www.illumina.com/applications/
sequencing/rna/mrna-seq.html      

    8.    Leggett RM, Ramirez-Gonzalez RH, Clavijo 
BJ, Waite D, Davey RP (2013) Sequencing 
quality assessment tools to enable data-driven 
informatics for high throughput genomics. 
Front Genet 4:288  

    9.   Andrews S (2010) FastQC: a quality control 
tool for high throughput sequence data. 
  http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/      

     10.   R: A language and environment for statistical 
computing.   http://www.r-project.org/      

    11.    Gentleman RC, Carey VJ, Bates DM et al 
(2004) Bioconductor: open software develop-
ment for computational biology and bioinfor-
matics. Genome Biol 5:R80  

    12.   Gaidatzis D, Lerch A, Hahne F, Stadler MB 
(2014) QuasR: quantifi cation and annota-
tion of short reads in R. Bioinformatics pii, 
btu781  

    13.    Anders S, Huber W (2010) Differential expres-
sion analysis for sequence count data. Genome 
Biol 11:R106  

    14.    Robinson MD, McCarthy DJ, Smyth GK 
(2010) edgeR: a Bioconductor package for 
differential expression analysis of digital 
gene expression data. Bioinformatics 26:
139–140    

Hanquan Liang and Erliang Zeng

http://www.illumina.com/applications/sequencing/rna/mrna-seq.html
http://www.illumina.com/applications/sequencing/rna/mrna-seq.html
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.r-project.org/

	Chapter 9: RNA-Seq Experiment and Data Analysis
	1 Introduction
	2 Materials
	3 Methods
	3.1 RNA-Seq Experiment
	3.2 RNA-Seq Data Analysis

	4 Notes
	References


