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    Chapter 13   

 Cardiovascular Nanomedicine: Materials and Technologies       

      Anirban     Sen Gupta       

  Abstract 

   The advent of nanotechnology in the medical arena has led to unique ways of biomaterials engineering and 
device modifi cations, disease detection and treatment. To this end, the two principal nanomedicine focus 
areas are cancer and cardiovascular pathologies. The current chapter is aimed at presenting a comprehen-
sive review of nanotechnology-based strategies in cardiovascular diseases, with emphasis on targeted deliv-
ery of therapeutic payloads selectively at the disease site. The rationale for such strategies stem from the 
need of resolving the issues of (1) rapid drug clearance, (2) plasma-induced drug deactivation, (3) subop-
timal drug availability at the disease site, and (4) indiscriminate biodistribution of the drugs leading to 
harmful systemic side effects, all of which arise when drugs are administered directly in systemic circula-
tion. The most signifi cant application of nanotechnology in resolving these issues is by packaging the drugs 
within plasma-stable nanovehicles that can preferentially accumulate at the vascular disease site via passive 
uptake or bind actively to the site via antigen-specifi c ligands decorated on the vehicle surface. During past 
three decades, signifi cant advancements in understanding vascular disease-associated genomics and pro-
teomics, cellular and molecular mechanisms as well as nanoscale and microscale strategies of biomaterials 
engineering have led to several exciting nanomedicine approaches in vascular disease treatment. The chap-
ter will describe these approaches in terms of materials engineering, payload release mechanisms, bio-
chemical and biophysical design parameters of the delivery platforms, and integration of multiple design 
parameters and functionalities on single vehicle platform, along with discussing the promises and limita-
tions of such vascular nanomedicine approaches.  
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1      Introduction 

 Vascular diseases continue to be the number one cause of  tissue   
morbidities and mortalities in the USA and globally [ 1 ,  2 ]. 
According to the recent statistical data reported by the American 
Heart Association, ~40 % of adult American adults suffer from vas-
cular diseases and the number is over 80 % in the aging (80+ years) 
population. Mortalities from vascular diseases in the USA were 
reported to be close to 800,000 (male + female) in a recent statisti-
cal report in 2010 [ 1 ]. Consequently, signifi cant research and 
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 clinical efforts are directed in prevention and treatment of these 
diseases. Vascular diseases can fall into many categories, for exam-
ple, coronary heart disease leading to unstable angina and myocar-
dial infarction, cerebrovascular disease leading to ischemia and 
stroke, atherosclerosis and peripheral arterial diseases, deep vein 
thrombosis, pulmonary and distal embolisms, restenosis following 
catheterized interventions, and congenital or acquired heart dis-
eases or hemostatic dysfunctions. Many of these disease conditions 
have common spatiotemporal cellular and molecular mechanisms, 
the most predominant of which is the formation of intravascular 
occlusive clots (thrombi) that reduce antegrade blood fl ow to vital 
 tissues   and organs, often leading to tissue morbidities and mortali-
ties. Therefore, many clinical strategies are focused on prophylac-
tic, emergent and sustained prevention of thrombo-occlusive 
events to maintain normal blood fl ow to tissues and organs. The 
prophylactic strategies mainly involve oral or systemic administra-
tion of anticoagulant (e.g., heparin) and antiplatelet (e.g., Aspirin 
and Clopidogrel) agents, the emergent strategies mainly involve 
mechanical (e.g., catheter-mediated or aspiration-based thrombec-
tomy, balloon angioplasty), surgical (e.g., aortic or coronary 
thrombus removal, bypass grafting) and fi brinolytic pharmacother-
apy (e.g., intravascular bolus administration or infusion of plas-
minogen activators like streptokinase (SK) and tissue plasminogen 
activator (tPA)) procedures, while the sustained strategies mostly 
involve post-procedural prolonged oral administration of antico-
agulant and antiplatelet drugs as well as drug-eluting stent (DES, 
releasing anticoagulant or antiproliferative drugs) placement dur-
ing catheter-based interventional procedures like balloon angio-
plasty. As evident from these descriptions, systemic (oral and 
intravascular) administration of drug molecules that prevent plate-
let activation and aggregation (antiplatelet agents), block coagula-
tion pathways (anticoagulant agents), degrade clot  proteins   
(fi brinolytic agents), or downregulate unwanted cellular prolifera-
tion (antiproliferative agents) remain a major component of clini-
cal regimen in treating occlusive vascular disease conditions. 
Systemic administration of these drugs presents several harmful 
issues [ 3 – 6 ]:

    (a)    Rapid drug washout and clearance from the target site due to 
dynamic blood fl ow   

   (b)    Plasma-induced inactivation of the drugs and reduced circula-
tion half-life   

   (c)    Systemic nonspecifi c distribution of the drugs resulting in sub-
optimal availability at target   

   (d)    Systemic nonspecifi c action of the drugs leading to harmful 
side effects like coagulopathy, neurotoxicity and nephrotoxic-
ity, and hemorrhage    
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  These issues can be potentially resolved by localizing the deliv-
ery (and action) of the drugs at the target clot sites. One way to 
achieve such site-selective delivery is by implanted devices like 
trans-arterial infusion catheters and DES. Implantation procedures 
like these are expensive, require specifi c expertise in terms person-
nel and facilities, and are not accessible by or amenable to many 
patients within required treatment windows [ 7 – 10 ]. Another way 
is to manufacture drug molecules that possess some target- 
specifi city of binding (and action) by virtue of bioconjugation of 
antibodies and other ligands directly to the drug molecules or by 
recombinant modifi cations of the drug itself to impart target- 
specifi city [ 11 – 15 ]. Direct antibody conjugation to drugs may 
affect drug activity and recombinant technologies make the resul-
tant products quite expensive for global use especially in develop-
ing countries. Therefore, in recent years, alternative drug delivery 
strategies utilizing the “nanomedicine” approach have raised sig-
nifi cant clinical interest [ 16 ]. The ideal “nanomedicine” design for 
site-selective delivery of drugs in vascular diseases should consist of 
a “carrier vehicle” that can encapsulate the drug in its core or 
embed it on the vehicle surface, protect the drug from plasma- 
induced inactivation while increasing its circulation half-life, local-
ize via passive uptake and/or active molecular mechanisms to the 
vascular disease site to ensure site-specifi c delivery of the drug pay-
load, enable controlled release of the payload via diffusion, disper-
sion, or stimuli-triggered mechanisms to allow site-selective 
therapeutic action while reducing systemic harmful side-effects, 
and biodegrade or get cleared from the body safely within a rea-
sonable time frame so as to not render long term effects. The “pay-
load” in such vehicles can not only be drug molecules, but also 
 imaging   probes that can allow detection and diagnosis of disease 
sites, and the combination of therapeutic and diagnostic payloads 
can potentially lead to “theranostic” nanomedicine systems tar-
geted to vascular disease sites. The following sections review the 
various “nanomedicine” technologies that have been developed 
and are undergoing research currently in the context of the above- 
described design, followed by a discussion of the pros and cons and 
future endeavors.  

2     Nanomedicine   Systems Without Ligand-Based Site-Specifi c Active Binding 
Mechanisms 

 Direct systemic delivery of therapeutic (and diagnostic) agents 
often leads to inactivation of the agents by various plasma compo-
nents, rapid washout from target site, and rapid clearance from 
circulation via organs like liver and kidney. Resolving these issues 
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require increasing the circulation residence time of the agents in 
active form. This is where “packaging” of the agents within carrier 
vehicles can provide a solution. The concept is derived originally 
from the “Ringsdorf Model” in the application of macromolecular 
modifi cations of  cancer   drugs (Fig.  1 ), where the drug molecules 
are conjugated to  polymers   that prevent rapid plasma clearance of 
the small drug molecules due to enhancement of overall hydrody-
namic radius by virtue of the drug– polymer   conjugates [ 17 – 19 ]. 
The conjugation of the drugs to the various polymers are mediated 
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  Fig. 1    The Ringsdorf Model of drug–macromolecule conjugates and some com-
mon nanoparticle systems utilized for vascular nanomedicine technologies       
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by chemical bonds like amide, orthoester, ester, anhydride, car-
bonate, and urethane that can be cleaved by enzymatic and/or 
pH-sensitive reaction mechanisms to release the active drug for 
subsequent action. For cardiovascular drugs, this design has been 
tried by  polyethylene glycol   ( PEG  )-based modifi cation (PEG- 
ylation) of fi brinolytic agents like tPA, SK, urokinase (uPA), and 
staphylokinase (Sak) [ 20 – 24 ]. The antiproliferative drug Paclitaxel 
(clinicaly used in DES for treatment of restenosis and intimal 
hyperplasia) has also been conjugated to polymers like polyglu-
tamic acid (PGA) to result in products like Xyotax that are under-
going clinical study for cancer treatment but may also fi nd 
cardiovascular applications. Besides drug–polymer conjugates, the 
other strategy to protect the drugs and increase circulation stability 
and residence time, is to package them in microparticulate and 
nanoparticulate vehicles. To this end, extensive research has been 
carried out using vehicles like liposomes, polymeric particles, lipo-
protein particles, micelles, engineered red blood cells (RBCs), 
quantum dots, gold particles,  dendrimers  , ultrasound-sensitive 
bubbles and  iron oxide   particles (Fig.  1 ).

   Vesicular liposomal structures, originally reported by Sir Alec 
Bangham [ 25 ,  26 ], have a lipidic (hydrophobic) shell and an aque-
ous core, thereby providing potential volume fractions for encap-
sulating both hydrophobic and hydrophilic drugs.  Liposomes   are 
formed by thermodynamically driven self-assembly of lipid-based 
amphiphilic molecules when exposed to an aqueous environment. 
Specifi cally, these molecules would need to have a  packing fraction  
( v  ×  a  −1  ×  l  −1  where “ v ” is the hydrophobic volume, “ a ” is the hydro-
philic surface area, “ l ” is hydrophobic length) equal to 1, such that 
when exposed in an aqueous environment, they would form planar 
lamellar bilayer structures that ultimately fold into spherical vesi-
cles with a bilayer lipidic shell and aqueous core. This kind of self- 
assembled vesicular structure can be unilamellar (single lamellar 
shell) or multilamellar (multiple concentric bilayer shells), and 
their  size   can range from about 50 nm to a few microns in diame-
ter. Usually by extrusion through nanoporous polycarbonate 
membranes or by exposing to high frequency ultrasound, larger 
multilamellar vesicles can be reduced to nanoscale (50–200 nm 
diameter) unilamellar vesicles. Furthermore, modifi cation of the 
liposome lamella outer surface with hydrophilic  polymers   like  PEG   
imparts a steric hindrance to opsonization (blood  protein   adsorp-
tion) and macrophagic uptake, and thereby renders a “stealth” 
property to avoid rapid clearance from circulation [ 27 ], that in 
effect enhances the circulation residence time of the encapsulated 
drug payload. The most signifi cant clinical application of liposomes 
is in the formulation of  cancer   drugs like Doxil ® , Daunosome ® , 
and Myocet ®  [ 28 ], which have made this class of vehicles a popular 
choice in studying encapsulation and delivery of drugs to other 
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diseases including cardiovascular diseases. To this end, various anti-
thrombotic agents have been encapsulated in liposomes and these 
formulations have shown enhanced circulation half-life of the 
drugs and increased therapeutic effi cacy in vitro as well as in vivo in 
small animal models [ 29 – 33 ]. Liposomes, especially with cationic 
lipid shells, have been also used to complex DNA for gene delivery 
in cardiovascular diseases [ 34 – 39 ]. Besides drugs and DNA, lipo-
somes have also been reported to encapsulate  imaging   agents like 
the  MRI   contrast agent  gadolinium   (Gd), either by direct loading 
of Gd salts or by lipid conjugation of Gd chelates, for imaging of 
vascular diseases [ 40 – 43 ]. Instead of lipidic systems, amphiphilic 
block co-polymeric systems with  packing fraction  equal to 1 can 
also be used to assemble similar vesicular structures called polymer-
somes [ 44 – 46 ]. Potentially such structures can also be used to 
package and deliver a wide variety of therapeutic agents in cardio-
vascular pathologies. Similar to liposomes, micelles are also self- 
assembled colloidal nanostructures with a hydrophobic core and a 
hydrophilic shell formed from amphiphilic molecules with packing 
parameter of ~1/3 when exposed to aqueous environment, and 
can be formed from lipid-based or  polymer  -based amphiphilic sys-
tems. These vehicles also have been extensively investigated in for-
mulation of cancer drugs, but only a limited number of reports are 
available regarding their drug delivery applications in the cardio-
vascular area. PEG-polycation micelles have been utilized for gene 
delivery to arterial disease lesions in rabbit models [ 47 ]. Potential 
micelle-based strategies that could be directed toward diseased or 
dysregulated endothelial components of atherosclerotic and 
thrombotic sites in vascular diseases have been recently reviewed 
[ 48 ,  49 ]. To this end, several micelle-based strategies have been 
studied by incorporating ligand-based active targeting, which will 
be discussed in the next section. 

 Polymer based microparticles and  nanoparticles   have been of 
great interest in vascular drug delivery for past two decades [ 7 ,  8 , 
 50 ]. Polymer-based drug-carrier particles can be formed by a wide 
variety of methods like oil/water or water/oil/water emulsion 
based solvent evaporation technique, solvent diffusion technique, 
solvent displacement technique, salting out technique, interfacial 
 polymerization   technique, and supercritical fl uid technologies 
[ 51 ]. Polymeric nanoparticle carriers based on co-polymerized sys-
tems of biocompatible  polymers   like poly-lactic- co -glycolic acid 
( PLGA  ),  polyethylene glycol   ( PEG  ), polyvinyl alcohol (PVA), etc. 
have been utilized to encapsulate and deliver anticoagulant agents 
like heparin [ 52 ], fi brinolytic agents like tPA and SK for clot dis-
solution [ 31 ,  53 ], and antiproliferative agents like probucol, 
rapamycin and paclitaxel for reducing restenosis [ 54 – 61 ]. Some 
 polymer   nanoparticle-based anti-restenotic formulations have also 
been evaluated in clinical studies [ 62 ]. Ultrasound  imaging   
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 modalities are well established in diagnosis of physiological and 
pathological  tissues  , and ultrasound contrast agent bubbles like 
Defi nity (Bristol Meyers Squibb), a perfl uoropropane/air fi lled 
lipid-shelled microbubble, have been approved in the clinic for car-
diac imaging [ 63 ]. Consequently, such bubble systems have also 
been investigated for vascular therapeutic and diagnostic applica-
tions, where the bubble not only acts as a carrier for drugs but also 
allows focused ultrasound-mediated cavitation for site-selective 
release of the drugs. For example, poly(vinyl alcohol) (PVA)-based 
bubble structures were reported that can be loaded with the vaso-
dilatory and antithrombotic bioactive gas nitric oxide (NO), for 
simultaneous imaging and NO delivery to vascular disease tissues 
[ 64 ]. Ultrasound-sensitive bubbles that allow cavitation-induced 
payload release have been reported for delivery of DNA, double 
stranded RNA and oligonucleotides, recombinant  proteins  , growth 
factors and thrombolytic agents (e.g., SK, tPA, etc.) [ 65 – 69 ]. 
Terminologies like “sonothrombolysis” has been coined to empha-
size the combined effect of ultrasound-induced mechanical cavita-
tion and site-specifi c thrombolytic drug release to enhance clot 
dissolution properties. Dendrimers are another important class of 
highly branched polymeric globular nanosystems originally devel-
oped in the 1980s by “convergent” or “divergent” chemical tech-
niques [ 70 ,  71 ], that have undergone extensive studies in the 
delivery of genes, drugs and imaging agents utilizing the  den-
drimer   core, the branching zone and the branch extremities [ 72 ]. 
Most  dendrimeric   applications in vascular drug delivery have 
involved ligand-based active targeting and will be discussed in the 
next section. 

 Among inorganic nanovehicle systems, carrier particles made 
from gold and  iron oxide   have been extensively studied in delivery 
of therapeutic and  imaging   agents in  cancer   [ 73 – 78 ]. Colloidal 
 gold nanoparticle   s   can be prepared by an array of methods that are 
mainly based on reduction of chloroauric acid in presence of a col-
loidal suspension stabilizing agent, and the methods vary mostly in 
terms of the reducing agents and reaction conditions [ 79 – 82 ]. 
Galvanic replacement methods have also been utilized to synthe-
size hollow gold nanostructures from gold salts [ 83 ,  84 ]. Gold 
 nanoparticles   and nanostructures have been studied not only as 
carrier vehicles for drug delivery and imaging, but also because of 
their plasmonic activity and near infra-red (NIR) wavelength sensi-
tivity, they have been used to render NIR-induced targeted photo-
thermal phenomena and photoacoustic imaging. To this end, gold 
nanoparticles have been recently reported in the context of cell- 
specifi c imaging as well as  image  -guided targeted drug delivery in 
the cardiovascular disease area [ 85 ,  86 ]. In a recent report, novel 
Au-based lipoprotein-coated nanoparticles (Au core coated with 
Apolipoprotein A-1 and phospholipids) were shown to be taken up 

Cardiovascular Nanomedicine: Materials and Technologies



258

by atherosclerosis-relevant macrophages in ApoE−/− mice in vivo 
and hence provided a way for enhanced multispectral and multi-
modality imaging of the lesions for  characterization   of macrophage 
burden, calcifi cation and stenosis [ 87 ]. In another report, NIR-
fl uorescence- quenched gold nanoparticle based imaging probes 
were used where the particles were surface-modifi ed by a peptide 
sequence that can be specifi cally degraded by matrix metalloprote-
ases (MMPs) and also surface-modifi ed with an NIR fl uorescence 
dye, Cy5.5 [ 88 ]. MMP activity is prevalent in matrix remodeling 
and lesion progression processes in atherosclerosis, and therefore 
such nanosystems may become useful in detection and evaluation 
of vascular lesion progression. In another interesting work, the 
photothermal ablative effects of gold nanoparticles were used to 
render disruption and recanalization of atherosclerotic plaques in 
coronary arteries in human postmortem ex vivo specimens [ 89 ]. 
Iron oxide particles are usually prepared by co-precipitation meth-
ods involving addition of alkali to iron salts [ 90 ]. Superparamagnetic 
iron oxide (SPIO) particles are categorized mostly by their hydro-
dynamic diameter, e.g., Oral-SPIO (300 nm–3.5 μm), Standard- 
SPIO (SSPIO, 60–150 nm), Ultrasmall-SPIO (USPIO, 5–40 nm), 
and a subset of USPIO called monocrystalline iron oxide  NPs   
(MION). Furthermore, MIONs with a chemically cross-linked 
polysaccharide shell are termed Cross Linked Iron Oxide (CLIO) 
[ 91 ,  92 ]. Iron oxide nanoparticles have been extensively reported 
in magnetic resonance based cellular and molecular imaging of car-
diovascular diseases [ 93 – 102 ]. Incorporating therapeutic mole-
cules in such iron oxide systems can provide effi cient theranostic 
systems for cardiovascular therapies, as has been recently demon-
strated regarding delivery of antithrombotic and anticoagulant 
agents using such particles [ 103 ,  104 ]. In another interesting 
work, iron oxide nanoparticles were incorporated within  PLGA   
particles and co-loaded with paclitaxel to form drug-loaded mag-
netic nanoconstructs, which were guided by an induced magnetic 
fi eld to carotid artery sites in vivo in animal models for sustained- 
release vascular antiproliferative therapy [ 105 ]. In recent years, 
there has been signifi cant interest in engineering of multicompo-
nent nanoparticle systems for theranostic use or multimodal tar-
geted imaging applications, by combining different types of 
imaging probes and therapeutic agents on an iron oxide nanopar-
ticle platform [ 106 – 109 ]. Another class of inorganic nanostruc-
tures that have been extensively researched in targeted drug 
delivery and imaging is Quantum dots (QDs), that are semicon-
ductor nanocrystals (e.g., QD with a cadmium selenide core with 
a zinc sulfi de shell) with unique  size  - and composition-dependent 
fl uorescent properties and are also suffi ciently electron dense to 
facilitate  electron microscopy   [ 110 ]. The in vivo distribution, resi-
dence, and safety of QDs remain a matter of debate [ 111 – 114 ]. 
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Nonetheless, QDs have been investigated in vascular delivery and 
imaging applications, for example, by incorporating them in high 
density lipoprotein (HDL)-based plaque-targeting for optical 
imaging of plaques [ 115 ]. The same HDL particles, incorporated 
with  MRI   probes, have been further investigated for targeted 
imaging of atherosclerotic plaques [ 115 – 117 ]. Several QD-based 
nanosystems have also been investigated in ligand-mediated active 
targeting to vascular lesions, which will be discussed in the next 
section.  

3     Nanomedicine   Systems with Ligand-Based Site-Specifi c Active Binding 
Mechanisms 

 Many of the nanovehicle systems described in the previous section 
have also been utilized to developed “actively targeted” delivery 
devices where the particles can bind to disease sites and diseased 
cells by virtue of specifi c ligand–receptor interactions. The ligands 
in such cases can be antibodies, antibody fragments,  proteins   and 
peptides, while, the receptors are antigens and proteins either 
uniquely expressed or quantitatively upregulated at the disease site 
cells and matrix. Such active targeting is thought to help with 
selectivity and specifi city of targeting as well as with receptor- 
mediated internalization of the vehicles within diseased cells for 
intracellular delivery in some cases [ 118 – 120 ]. The ligands can be 
decorated on the nanoparticulate vehicles via non-covalent meth-
ods as well as a variety of covalent bioconjugation techniques. 

 Non-covalent adsorption methods to surface-decorate nano-
vehicles with ligands mostly involve physical (e.g., hydrophobic, 
affi nity-based, charge-based) interactions of ligand molecules with 
the surface material of the particles. For example, polystyrene par-
ticles have been reported to be coated with P-selectin and E-selectin 
targeting antibodies using adsorbed bacterial  protein   A molecules 
as spacers [ 121 ]. These selectins are often expressed on activated 
platelets, stimulated endothelial cells and monocytes at the site of 
vascular injuries and lesions, and therefore are relevant systems for 
active targeting of  drug delivery system   s   to such vascular disease 
sites. Similar techniques have also been reported for coating chito-
san particles with anti-amyloid monoclonal antibodies to target 
amyloid beta-protein deposits in cerebral vasculature of mice 
[ 122 ]. In other work, liposomes, latex beads and albumin particles 
have been non-covalently surface-modifi ed with recombinant gly-
coprotein Ib-alpha (rGPIbα) and recombinant glycoprotein Ia-IIa 
(rGPIa-IIa) to actively bind to von Willebrand Factor (vWF) and 
collagen respectively [ 123 – 125 ]. vWF is secreted and deposited 
from injured endothelial cells and activated platelets, while  collagen 
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is often exposed as the major sub-endothelial matrix protein at vas-
cular injury sites due to endothelial denudation. Therefore such 
vWF- and collagen-targeting systems can have potential applica-
tion in targeted delivery to vascular injury sites. Another interest-
ing non-covalent approach to decorate  nanoparticles   with targeting 
motifs is the use of avidin-biotin affi nity  interaction  . Avidin (and 
analogous Streptavidin) is a highly glycosylated positively charged 
protein that is uniquely stable against heat, denaturants, pH and 
proteolytic enzymes, and has high affi nity towards Biotin (Vitamin 
B6) with a dissociation constant ( K  d ) of 10 −15  M [ 126 ,  127 ]. 
Consequently particles can be surface-modifi ed with avidin and 
incubated with biotinylated ligand motifs, or vice versa, to create 
ligand-decorated actively targeted delivery systems. This approach 
has been used extensively in decorating particle surfaces with anti-
bodies and antibody fragments for targeting to  cancer  . In the area 
of targeting cardiovascular diseases, this technique has been 
employed to surface-decorate RBCs with antithrombotic mole-
cules (e.g., tPA) as well as to decorate various nanovehicle systems 
with antibodies directed to a variety of vascularly relevant cell adhe-
sion molecules (CAMs) [ 128 – 131 ]. Covalent bioconjugation 
techniques involve specifi c chemical reactions of reactive groups on 
ligand motifs to complimentary reactive groups on the nanovehicle 
surface. The most common chemical bioconjugation methods are 
amide linkages (reaction between amine and carboxyl termini), 
hydrazine-based linkages (reaction between hydrazide and alde-
hyde termini), sulfhydryl-mediated linkages (reaction between 
sulfhydryl group and maleimide, sulfone, acetamide or pyridyl 
groups) and alkyne-azide based “click” chemistry [ 132 ]. Figure  2  
shows schematic of some common bioconjugation strategies for 
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decorating nanoparticle surfaces with targeting motifs. These 
methods can be utilized to conjugate antibodies, antibody frag-
ments, aptamers,  proteins  , and peptides to a wide variety of nano-
vehicle systems either by reacting to appropriate functional groups 
on the surface of preformed particles (solid  polymer   particles, 
QDs,  dendrimers  , etc.), or by reacting to the termini of constitu-
ent molecules fi rst and then assembling the modifi ed molecules 
into particles (e.g., liposomes, micelles). Figure  3  shows the com-
monly studied cellular and noncellular targets for vascular nano-
medicine technologies.

    By utilizing the various non-covalent or covalent surface- 
modifi cation techniques stated above, a large number of actively 
targeted nanoparticle systems have been reported for site-specifi c 
delivery of drugs and  imaging   probes in vascular diseases. To this 
end, echogenic liposomes have been reported that can target 
fi brinogen, fi brin or intercellular adhesion molecule-1 (ICAM-1) 

  Fig. 3    Relevant cellular and noncellular targets utilized for active targeting of 
vascular nanomedicine systems. The targets can be cell-surface antigens as 
well as a variety of substrate  proteins   relevant to the vascular disease site.  CAMs  
cell adhesion molecules,  ADP  adenosine diphosphate,  PDGF  platelet derived 
growth factor,  FGF  fi broblast growth factor,  LDL  low density lipoproteins       
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by virtue of anti-fi brinogen, anti-fi brin, and anti-ICAM-1 antibod-
ies and allow ultrasound-induced cavitation mediated delivery of 
thrombolytic agents [ 133 – 135 ]. In another work, Gadolinium 
(Gd)-based  MRI   contrast agent delivery to atherosclerotic  tissue   
was demonstrated by using liposomes modifi ed with Gd-lipid con-
jugates and phosphatidylserine (PS) to enable preferential uptake 
by atherosclerotic site-relevant macrophages [ 41 ]. Similar strategy 
in macrophage-targeting of liposomes was also demonstrated with 
liposomes modifi ed by the ligand decadeoxyguanine, which has 
high affi nity to macrophagic scavenger receptor class A (SRA) 
[ 42 ].  Liposomes   surface-decorated with antibodies directed to low 
density lipoprotein receptors LOX-1 have been reported to enable 
atherosclerotic lesion-targeted delivery of radioimaging and MR 
imaging agents [ 136 ]. Another liposomal formulation, named 
LipoCardium, was reported for targeted delivery of anti- 
infl ammatory prostaglandins to atheroslecrotic sites using lipo-
somes surface decorated with antibodies directed to Vascular Cell 
Adhesion Molecule-1 (VCAM-1) [ 137 ]. Besides surface- 
decoration of antibodies, liposomes have also been reported to be 
surface-decorated with small peptides having targeting ability to 
vWF, collagen, activated platelet glycoprotein IIb-IIIa (GPIIb- 
IIIa) and P-selectin, all of which are suitable target molecules in 
the context of endothelial injury, endothelial denudation, platelet 
activation, and thrombosis in vascular pathologies [ 138 – 145 ]. 
Therefore these liposomal systems can have potential application in 
targeted delivery of drugs and imaging agents to various spatio-
temporal phases of vascular injury and vascular disease. Similar to 
liposomes, micelles (both lipidic and block co-polymeric) have 
been studied for actively targeted delivery to vascular disease sites. 
Micelles surface-decorated with antibodies specifi c for macrophage 
scavenger receptors (MSR) and loaded with Gd chelates or fl uores-
cent probes were shown to selectively target and accumulate at 
atherosclerotic arterial sites in ApoE−/− mice for molecular imag-
ing of the disease [ 146 ,  147 ]. Gd-loaded  PEG  -lipid micelles 
surface- modifi ed by antibodies that bind to oxidized LDL lipopro-
teins in atherosclerotic plaques, have also been reported [ 148 ]. 
Similar Gd-loaded micelles surface-decorated with anti-CD36 
antibodies were shown to target macrophages in atherosclerotic 
vessels [ 149 ]. Recently, lipid- polymer   hybrid particles (polymer 
core with lipid shell) decorated with a phage library-identifi ed pep-
tide sequence KZWXLPX (Z: hydrophobic amino acid, X: any 
amino acid) were reported as “nanoburrs” that can actively target 
exposed collagen IV at arterial injury (i.e., endothelial denudation) 
sites and deliver antiproliferative agents to modulate smooth mus-
cle cell activity [ 150 ,  151 ]. In another recent work, micelles were 
surface decorated with a 9-amino acid sequence CGNKRTRGC 
(also known as Lyp-1) that binds to p32 receptors in  atherosclerotic 
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plaques as well as with CREKA peptides that bind to fi brin- 
fi bronectin clots, and these micelles showed enhanced homing to 
atherosclerotic plaques in vivo [ 152 ,  153 ]. 

 Similar to liposomes and micelles, solid polymeric particles 
have also been studied for surface-modifi cation with ligands to 
enable targeted binding to vascular injury or vascular disease sites. 
For example,  PLGA   nanoparticles   have been loaded with thrombo-
lytic drugs like tPA and coated with Arginine-Glycine-Aspartic 
Acid (RGD)-peptide modifi ed chitosan to render targeted binding 
to clots for enhanced thrombolytic effi cacy [ 53 ]. PLGA nanopar-
ticles have also been reported to be surface-modifi ed with anti-
ICAM- 1 antibodies for specifi c immunotargeting to infl amed 
vascular endothelium in vitro and in vivo, which has relevance to 
targeting atherosclerotic plaques [ 154 ]. Similarly, poly(sebacic 
acid)-co- PEG   (PSAPEG) microparticles and nanoparticles surface- 
modifi ed with anti-VCAM-1 antibodies have been reported to 
undergo enhanced adhesion, binding and accumulation at athero-
sclerotic lesion sites in ApoE−/− mice [ 155 ]. Nanoparticles made 
from poly- l -lysine-co-poly-lactic acid copolymer (PLL-PLA), 
surface- decorated with RGD peptides have been reported to be 
able to aggregate with active platelets at the site of traumatic vas-
cular injury [ 156 ]. Similar designs of RGD-decorated or the 
fi brinogen- derived peptide sequence HHLGGAKQAGDV- 
decorated particles have also been reported using RBCs, latex 
beads or albumin particles as the carrier vehicle [ 157 – 162 ]. The 
HDL nanoparticles described in the previous section were designed 
to be naturally taken up into atherosclerotic lesions via lipoprotein 
transport mechanisms; however these same particles have also been 
reported to be modifi ed with RGD peptides to enable active tar-
geting ability to vasculature [ 163 ]. Ligand-based active targeting 
strategies have also been reported for ultrasound-sensitive bubbles 
where the bubbles were surface-decorated with antibodies directed 
against  infl ammation   and atherosclerosis relevant upregulated cell- 
surface markers like various CAMs and integrins (e.g., αVβ3), on 
leukocytes and injured endothelium, in vitro and in vivo, for tar-
geted drug delivery to and molecular  imaging   of vascular disease 
[ 164 – 166 ]. In similar work, ultrasound-sensitive bubbles were 
developed with shells bearing maleimido-4(p-phenylbutyrate)-
phospholipid, which were then surface-conjugated with platelet 
integrin GPIIb-IIIa-specifi c therapeutic antibody Abciximab 
(ReoPro by Eli Lilly, Indianapolis, Indiana), that enabled enhanced 
targeting to activated platelet-rich thrombi for molecular imaging 
applications in vitro and in vivo [ 167 ]. Dendrimers have also been 
studied for active targeting to vascular pathology sites, where bio-
degradable dendritic structures surface-modifi ed with endothelial 
αVβ3 integrin-targeting cyclic RGD peptides and loaded with 
radioactive Bromine ( 76 Br) for positron emission tomography 
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(PET), were capable of targeted molecular imaging of hindlimb 
ischemia in a mouse model [ 168 ]. Similar targeted molecular 
imaging of vascular disease-specifi c biomolecules and cellular phe-
notypes have also been demonstrated with  dendrimers   modifi ed by 
a variety of other ligands [ 169 – 171 ]. 

 The inorganic nanosystems described in the previous section 
have also undergone extensive investigation for actively targeted 
delivery to vascular disease and injury sites. Cross-linked dextran- 
coated  iron oxide   (CLIO)  nanoparticles   have also been surface- 
decorated with peptides and small molecules that can target CAMs 
and clot-associated fi brin to enable active targeting of the particles 
to infl ammatory, angiogenic and thrombotic cellular phenotypes 
and biomarkers of atherosclerosis for contrast enhanced targeted 
molecular  imaging   [ 92 ]. Iron oxide particles have also been 
reported to be surface-decorated with ligands directed towards 
VCAM-1, P-selectin and platelet integrin GPIIb-IIIa for targeted 
contrast-enhanced MR imaging of atherosclerosis and thrombosis 
in animal models [ 172 ]. In another interesting work, SPIOs were 
surface-modifi ed by Annexin V that can specifi cally interact with 
lipoproteins on the outer membrane leafl et of apoptotic cells and 
hence enabled  interaction   and selective targeting of “foam cells” in 
atheromatous plaque in rabbit models for T2-weighted MR imag-
ing [ 173 ]. QDs have also been utilized to actively bind a variety of 
CAMs (e.g., VCAM, ICAM, PECAM) using QD surface- 
decoration with anti-CAM antibodies [ 174 ,  175 ] and these facili-
tated in vivo optical imaging of atherosclerotic lesions. Other 
approaches to ligand-directed vascular disease-specifi c targeting of 
QDs for optical imaging include targeting to oxidized LDL recep-
tor CD36, phosphatidylserine-exposing cells, and plaque-relevant 
MMPs [ 176 ,  177 ]. Instead of directly targeting QDs to the vascu-
lar disease site, they have also been used as “payloads” in other 
actively targeted nanosystems to allow for concurrent optical imag-
ing modality for vascular diseases. This strategy has been utilized 
by loading QDs within paramagnetic micelles immunotargeted to 
macrophagic scavenger receptors [ 178 ] as well as within HDL 
nanoparticles [ 115 ]. In an interesting work,  gold nanoparticle   s   
were conjugated to QDs via a proetolytically degradable peptide 
sequence such that in the “bound” state the QD luminescence was 
non-radiatively suppressed, and enzymatic cleavage of the conju-
gate links signifi cantly restored luminescence [ 179 ]. Such unique 
strategies can be envisioned to be applicable in probing proteolytic 
activities (e.g., MMP activity) in atherosclerotic lesions.  
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4    Other Miscellaneous Applications of  Nanomaterials   in  Cardiovascular   Disease 
Treatment 

 As evident from the descriptions and examples provided in the pre-
vious sections, “nanotechnology” has provided an effi cient way to 
render localized or site-selective delivery of various therapeutic 
agents and  imaging   probes in vascular diseases and injuries. Such 
localized delivery can potentially overcome the issues of potency 
and narrow therapeutic window of many drug molecules by achiev-
ing greater local concentrations with lower overall dose, to maxi-
mize the effects in target  tissue   while avoiding systemic 
indiscriminate distribution and harmful side-effects. The idea of 
local delivery in the cardiovascular arena emerged about two 
decades ago in the context of using perivascular delivery systems 
successfully in animal models [ 180 ,  181 ]. In these systems, heparin- 
releasing polymeric matrix devices were placed around rat carotid 
arteries at the time of balloon angioplasty, to allow continuous 
local release of the drug for predetermined periods of time. These 
approaches were found to reduce post-procedural arterial occlu-
sion more effectively compared to systemic heparin infusion from 
pumps or from drug-releasing  polymer   matrices placed subcutane-
ously distant from the target artery site. Similar local polymeric 
systems bearing endothelial cells as a source of endogenous vaso-
regulatory agents were also shown to have enhanced effi ciency in 
reducing neointimal hyperplasia in rat and pig models of vascular 
injury [ 182 ,  183 ]. Over the past two decades, other “local deliv-
ery” systems have been developed for cardiovascular applications, 
including intraluminal, intramural and stent-based systems [ 184 ], 
all of which have proved to be much more effi cient in rendering 
therapeutic effect at the target tissue while avoiding poor distribu-
tion and harmful side-effect issues of systemic delivery. 
 Nanotechnology   has contributed to refi nement such devices. For 
example, silver  nanoparticles   have been used to modify implantable 
and intravascular devices to prevent bacterial adhesion, growth and 
biofi lm development [ 185 ]. Carbon nanotubes have been incorpo-
rated in catheters to provide mechanical versatility as well as impart 
antithrombotic and drug delivery functions [ 186 ]. Such carbon 
nanotubes have also been incorporated in stents [ 187 ]. Other 
application of nanotechnology in stents include refi ned nanofabri-
cation and nanomorphological texturing techniques to allow for 
enhanced drug loading, tissue-material interactions and drug 
release [ 188 ], as well as incorporating drug- or gene-loaded 
nanoparticles within stent coatings for sustained local delivery fol-
lowing angiopalstic procedures and stent placement [ 189 ,  190 ]. 
Nanotechnology has also been used in fabrication of artifi cial arte-
rial grafts and conduits [ 191 ], although it is too early to conclude 
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on long-term success of these designs. In the context of artifi cial 
vascular grafts, chemical nanocomposites have also been incorpo-
rated to release nitric oxide and to impart infection resistance 
[ 192 ]. 

 In recent years, another facet of nanotechnology that is raising 
signifi cant interest, especially in the context of drug delivery vehi-
cles in the vascular compartment, is the role of “physical” design 
parameters like shape,  size  , modulus, etc. Several recent reports 
have established that particles of anisotropic shapes (spheroids, 
rods, disks, etc.) have a higher probability of margination from 
fl owing blood volume towards the vascular wall [ 193 – 195 ]. 
Parallel studies have also shown that size of particles play an impor-
tant role in their extent of margination to the vascular wall [ 196 –
 198 ]. In fact a natural example of this is seen in blood platelets 
which can marginate better to the vascular wall through the RBC 
volume of fl owing blood owing to their biconvex discoid shape 
and their quiescent ~2 μm size [ 199 – 201 ]. Based on such studies, 
recent research has focused on development of particles with tai-
lored shapes and sizes to facilitate margination to the vascular wall 
[ 202 – 207 ]. Such margination-facilitating geometric parameters 
can be potentially integrated with ligand-based active targeting 
functionalities on particle platforms to create drug delivery and 
nanomedicine systems with increased site-selective localization and 
delivery effi ciency in the vascular compartment. Another impor-
tant design parameter for  drug delivery system   s   is the mechanism 
of drug release. Traditionally most particulate delivery systems 
depend upon diffusion and degradation/dissolution mediated 
mechanisms for payload release [ 208 – 210 ]. Beyond such mecha-
nisms, certain stimuli-triggered mechanisms have been investigated 
for drug delivery systems, where the payload release is induced by 
chemical and/or physical changes in the drug delivery system in 
response to internal stimuli like pH, enzyme action, temperature, 
etc., or, external triggers like NIR irradiation (e.g., for  gold 
nanoparticle   s  ), electromagnetic wave (e.g., for  iron oxide   parti-
cles), high frequency focused ultrasound (e.g., for ultrasound bub-
bles), etc. [ 211 – 216 ]. A few recent studies have utilized “shear 
forces” as a physical release trigger because of its relevance to vas-
cular thrombo-occlusive sites. In these studies using polymeric or 
lipidic particles, the increased shear forces caused by thrombo- 
occlusion have resulted in the disintegration of the carrier particles 
to release drugs like thrombolytic agents, site-selectively [ 217 , 
 218 ]. Furthermore, an interesting aspect in the context of ligand- 
mediated active targeting of drug delivery vehicles is the utilization 
of concurrent binding to multiple receptor/antigen types perti-
nent to the disease site (also known as heteromultivalent binding) 
instead of targeting to only one type of receptor. Such targeting 
approaches have shown enhanced effi cacy of anchorage of the 
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 vehicles to the target site under hemodynamic fl ow environment 
[ 142 ,  219 ], and this can potentially allow for increased target spec-
ifi city as well as retention for enhanced therapeutic release. These 
newer design parameters are continuing to add exciting properties 
to vascular nanomedicine systems, that can be tailored to act selec-
tively at disease sites by virtue of enhanced margination, enhanced 
anchorage, and enhanced drug release.  

5    Discussion 

 Localized delivery of therapeutic molecules and  imaging   probes at 
the sites of vascular disease results in enhanced treatment and 
detection effi cacy.  Nanotechnology   provides an effi cient way to 
achieve such localized delivery in the context of packaging thera-
peutic payloads within nanoparticulate vehicles that can be intrave-
nously injected and can accumulate passively or bind actively at the 
target vascular sites. The success of such approaches depend upon 
effi cient encapsulation of the payload within the  nanoparticles   to 
protect from plasma-induced deactivation, minimize pre-target 
leakage or release of the payload, maintain circulation for suffi cient 
periods of time to reach the target site, render effi cient passive or 
active binding to the target site under hemodynamic fl ow, and 
enable effi cient release of the payload by internal or external trig-
gers. Because of the need to stay retained at the target site under 
hemodynamic fl ow environment, active binding strategies may be 
more effective in vascular drug delivery, compared to passive accu-
mulation mechanisms. The delivery systems must be biocompati-
ble, in terms of minimal immunogenicity, minimal complement 
activation, minimal toxicity, and minimal carcinogenicity. The  drug 
delivery system   s   must also be either easily cleared from the body 
within a reasonable period of time, or easily biodegradable to 
resorbable or metabolizable products in the body. Additional 
design parameters to consider for the particulate vehicles are their 
margination-infl uencing shape,  size  , and morphology, their active 
targeting and anchorage-infl uencing ligand decoration chemistry 
and density, and their response to internal and external triggers. 
For effi cient clinical translation, research should also be focused on 
cost and convenience of manufacture and quality control of vascu-
lar nanomedicine technologies.     
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