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            Learning Points 

•     Different strategies to defi ne regions of inter-
est (ROI)  

•   Advantages and limitations of a ROI analysis  
•   Effects of ROI size, co-registration, and statis-

tical analysis methods on results     

    Introduction 

 The region of interest (ROI) analysis method is 
based on the delineation of predefi ned  a  reas of 
the image and is a commonly used method for 
quantitative analysis of diffusion tensor imaging 
data. A ROI is defi ned as a selected area of an 
image from which the individual or average pixel 
values are extracted for further analysis. The ROI 

commonly has to be manually drawn, but in 
some cases it can be obtained by (semi-)auto-
mated segmentation. The chosen region can be a 
geometrical shape (i.e., sphere, cube) or be 
defi ned by the shape of the anatomical structure 
of interest. The fi rst is faster but less precise, 
whereas the second option is more time consum-
ing but in general gives more accurate results, as 
will be discussed further on. 

 Overall the ROI analysis method is rela-
tively easy to use and is supported by most dif-
fusion tensor imaging data analysis software 
[ 1 ]. Its main benefi t is the high sensitivity to 
small changes of the parameters of interest [ 2 ]. 
Additionally the method requires only little 
technical know-how compared to other tech-
niques discussed later on in this and following 
chapters. However, it also has numerous draw-
backs. ROI analysis is very time consuming 
and a clear hypotheses about the location of 
pathology is needed. Therefore it does not 
allow for full brain coverage and requires at 
least a moderate knowledge of the anatomy. 
Furthermore, even with expert knowledge of 
the anatomy and precise ROI defi nition the 
technique is very susceptible to inter- and intra-
user variability. 

 This section covers the basis of ROI analysis, 
when to use and more importantly when not to 
use the technique. When applying ROI analysis a 
clear hypotheses is needed and the ROIs have to 
be accurately defi ned. Important considerations 
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that will be discussed are the effect of the  position 
and size  , ROI normalization, image registration, 
and statistical analysis.  

    When to Use ROI Analysis 

 Because of its good sensitivity, ROI analysis is 
best performed when a clear hypothesis is pres-
ent about the expected differences in white 
matter in a well-defi ned region of the brain. As 
stated in the introduction, the region can be 
defi ned by anatomical structure (e.g., corpus 
callosum, amygdala), pathology (stroke, lesion, 
tumor, etc.), geometry (sphere, cube, etc.) or 
input from another modality, e.g., fMRI. The 
ROI should not be too large in size, because of 
statistical reasons explained further on in this 
chapter. ROI analysis is especially useful in 
regions where there are lesions, e.g., tumors. In 
these cases tract based analysis (TBA) might 
be impossible due to the lack of normal fi ber 
pathways. Furthermore, registration of a brain 
with lesions to a standard brain atlas may be 
diffi cult or fl awed due to deviations from the 
normal anatomy.  

    When Not to Use ROI Analysis 

 ROI analysis can clearly not been used if there is 
no hypothesis about the location of the effects in 
the brain. If structural data are absent or of poor 
quality, other  metho  ds such as extraction of diffu-
sion metrics from fi ber bundles, histogram analy-
sis [ 3 ,  4 ], voxel-based analysis [ 5 ], or TBSS [ 6 ] 
might be better suited, as will be discussed in the 
next chapters.  

    Well-Defi ned Regions 

 To defi ne a ROI usually the region is drawn by 
hand on a structural MRI image (T1/T2 
weighted). To the investigator (“anatomist”) it 
should be clear what the borders of the regions 
are and to what extent it should be included. For 
example, the  corpus callosum   could be outlined 

on a mid-sagittal slice and extended 2–3 slices 
laterally in both directions. 

 ROIs can also be defi ned on FA or ADC 
images, especially when white matter structures 
are being investigated, where contrast is minimal 
on a T1- or T2-weighted image. In this approach 
care must be taken not to fall into the trap of cir-
cular reasoning, because drawing of the ROI is 
not independent of the studied data. This 
approach can also be taken when investigating 
pathologies on ipsi- and contralateral sides of the 
brain as is shown in the next paragraph. 

 Some pathologies, stroke for instance, are 
clearly visible on a trace or ADC map, but not on 
other modalities, as is shown in Fig.  9.1 . In this 
case the trace or  ADC   map is the obvious choice 
for ROI defi nition. By mirroring the ROI to the 
contralateral side of the brain, DW metrics can be 
studied in both affected and healthy tissue.

   When the researcher is interested in a sub-part 
of a certain structure and wants to have control 
over the size of the ROI, a geometrical ROI (cir-
cle/sphere, square/cube, etc.) could be used. The 
ROI is then placed in the center of the structure 
and has the same size in each subject, in contrast 

  Fig. 9.1    Multimodality data from a stroke patient, 7 h 
since last seen normal (LSN). Note the difference in con-
trast between different modalities. In this case, the DWI 
and ADC maps provide excellent contrast for ROI defi ni-
tion of the stroke area: hyperintense on DWI, hypointense 
on ADC.  DWI  diffusion-weighted image,  ADC  apparent 
diffusion coeffi cient,  T2WI  T2-weighted image,  CBF  cere-
bral blood fl ow,  CBV  cerebral blood volume,  MTT  mean 
transit time,  Tmax  time to max in perfusion [adapted from 
Wu et al. [ 7 ]. With permission from Wolters Kluwer Health]       
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to manual ROI delineation where ROI size is dif-
ferent for each subject. 

 The sites of activation of a BOLD fMRI 
study can also serve as a ROI, for example to 
start tractography, and it may lead to a very-well-
localized ROI in each subject. Because the main 
signal is in the gray matter, it may be necessary 
to dilate the ROI into the white matter [ 8 – 10 ].  

    Atlas-Based ROIs 

 There are multiple predefi ned atlases of white 
matter available, and these may serve as good 
starting points for ROI analysis. Well-known 
atlases are the  JHU atlas   [ 11 ] and the probabilis-
tic Juelich atlas [ 12 ]. Data from multiple subjects 
is used to create a 3-D overview of well-defi ned 
brain regions. A key advantage of using an atlas 
is that it is created in a standard space (i.e., MNI, 
Talaraich), which makes it easy to compare 
between subjects or studies. A common approach 
is therefore to register the subject’s data to the 
atlas data, or vice versa. When using atlases, care 
must be taken to check overlap of the regions 

with the data under study, as misalignment may 
obscure region location. Once the data is correctly 
aligned, diffusion measures such as FA or ADC 
can be easily extracted from predefi ned regions 
such as corpus callosum, fornix etc.  

    ROI Defi nition 

 While relatively easy to implement, there are 
some important things to keep in mind when per-
forming ROI analysis. As mentioned before, a 
ROI can be best defi ned on high quality T1 or T2 
weighted anatomical reference images. This is to 
avoid bias of defi ning the ROI on the parameter 
map of interest, which may infl uence the posi-
tion and boundaries or the ROI. However, when 
choosing this approach one has to take great care 
that the ROI position on the reference images 
and the parameter map of interest are aligned as 
illustrated in Fig.  9.2 . In this fi gure the contour 
of the brain derived from the reference scan is 
overlaid on the diffusion weighted images and 
the  FA map  . Both images were acquired during 
the same scanning session, which should assure 

   Fig. 9.2     Examples of misalignment between different 
image types.  Panels  ( a ) and ( e ) show high-resolution 
T2-weighted images with the contour of the brain outlined 

in   red .  This contour is overlaid on the corresponding un- 
weighted ( b  = 0, ( b)  and ( f )) and diffusion weighted 
( b  = 1000 s/mm 2 , ( c ) and ( g )) images and the FA map ( d  and  h )       
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a good alignment. At fi rst sight, the un-weighted 
and the diffusion-weighted images seem to 
match well with the reference image. However, 
closer examination clearly shows misalignment. 
This same misalignment may not be so apparent 
when just looking at the corresponding FA map 
(see Fig.  9.2d, h ).

   The origin of the discrepancy between the dif-
ferent images can have multiple reasons but can 
have a great effect on parameter quantifi cation 
and fi ber tractography [ 13 ]. One common reason 
for misalignment is that the  diffusion images   are 
usually acquired with a single-shot EPI readout, 
which commonly has nonrigid geometric distor-
tions due to its sensitivity to susceptibility arti-
facts (see Chap.   6    ). Furthermore, there can be 
patient motion in between acquisition of the ref-
erence image and diffusion data within the same 
scan protocol. This motion causes rigid misalign-
ment of the images  

    Effect of Motion and Size 

 Although the distortions and offset might seem 
negligible, one has to realize that only a small 
misalignment can have serious impact on the 
parameter estimation. To illustrate this point, two 

regions of interest in the corpus callosum were 
defi ned. Both the regions were based on the ana-
tomical reference image as well as the FA map 
(see Fig.  9.3 ). Furthermore, the size of the two 
different ROIs was varied to illustrate the effect 
of partial volume effects and user bias in defi ning 
the regions of interest. The results for the average 
 FA and MD value  s from these different ROIs are 
given in Table  9.1 . The variation of the parame-
ters clearly emphasizes the sensitivity of the 
technique to ROI defi nition and positioning [ 14 ]. 
Small ROIs will typically be more sensitive to 
erroneous voxels within the ROI. Increasing the 
ROI size will generally decrease the sensitivity to 
these errors, but will increase contamination by 
other structures, also known as  partial volume 
effects  , decreasing the sensitivity [ 15 ].

    This implies that the defi nition of the ROIs 
should be done with great care and accuracy. 
Although the positioning of circles or rectangles 
is fast and easy it is generally better to accurately 
outline the ROI according to the shape of the 
structure. The latter is more time consuming but 
can greatly help minimize the inclusion of other 
structures [ 16 ]. Another way to exclude different 
types of tissue is to exclude pixels based on diffu-
sion parameters. For example one can exclude 
cerebrospinal fl uid by excluding pixels with high 

  Fig. 9.3    Two examples of a rectangular ROI selecting the 
frontal and middle part of the corpus callosum. For each 
region one ROI was drawn based on the high-resolution 
reference scan ( red ) and one ROI was drawn based on the 

FA map ( blue ). The selections are shown on the 
T2-weighted anatomical image ( a  and  e ), the un-weighted 
diffusion image ( b  and  f ), the FA map ( c  and  g ), and the 
MD map ( d  and  h )       
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MD and low FA. However, with this method it is 
also possible to exclude the tissue of interest with 
pathology and thus affected parameters.  

    Registration 

 There are multiple strategies to correct for the 
distortions of the EPI images, e.g., B0 fi eld map-
ping [ 17 ,  18 ], point spread function mapping 
[ 19 ,  20 ], or reversed gradient acquisition [ 21 , 
 22 ]. However, these correction methods demand 
an extra data acquisition prolonging scan time. 

Another commonly available method is image 
registration (see Chap.   10    ). This technique is 
widely available in data processing software [ 1 ]. 
Figure  9.4  shows an example of nonrigid regis-
tration to correct for the misalignment between 
the diffusion tensor  imaging   data and the corre-
sponding anatomical reference data. In panel A 
and B one can clearly see the misalignment 
between the corpus callosum, shown in red on the 
color-coded FA map, and the lateral ventricles, 
shown in white on the anatomical reference 
image. After nonrigid registration using 
 ExploreDTI  [ 23 ] one can appreciate the correct 
alignment of these structures as shown in panel C 

   Table 9.1    Average values for two part of the corpus callosum for different sizes of manually drawn rectangular regions 
of interest. The ROIs were drawn both on the anatomical reference images and the FA maps   

 Anatomy  FA map 

 Size (pixels)  FA  MD (×10 −3  mm 2 /s)  FA  MD (×10 −3  mm 2 /s) 

 Front  3 × 5  0.71 ± 0.20  0.82 ± 0.44  0.81 ± 0.11  0.77 ± 0.17 

 5 × 7  0.59 ± 0.33  1.19 ± 0.82  0.77 ± 0.20  0.85 ± 0.49 

 7 × 9  0.52 ± 0.35  1.34 ± 0.87  0.63 ± 0.28  0.96 ± 0.58 

 Mid  7 × 7  0.75 ± 0.13  0.79 ± 0.11  0.80 ± 0.10  0.76 ± 0.13 

 9 × 9  0.75 ± 0.16  0.80 ± 0.17  0.75 ± 0.16  0.85 ± 0.32 

 11 × 11  0.75 ± 0.19  0.81 ± 0.23  0.71 ± 0.22  0.93 ± 0.47 

  Fig. 9.4    Color coded FA 
maps overlaid on high 
resolution anatomical 
images to illustrate the 
result of non-rigid 
registration for EPI 
distortion correction. The 
images on the  left  ( a  and  b ) 
show the uncorrected data, 
whereas the images on the 
 right  ( c  and  d ) show the 
corrected data. The  white 
arrows  indicate locations 
where the correction of the 
misalignment is clearly 
visible       
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and D. The effect of registration on parameters 
estimated from ROIs drawn on the anatomical 
image are shown in Table  9.2 . The ROIs were 
drawn in the regions indicated by the white 
arrows. In this example the FA increases and MD 
decreases after registration. For all parameters 
the standard deviation decreased.

        Spatial Normalization 

  Spatial normalization      is the process of bringing 
the study data into a common stereotaxic space. 
It is a crucial step for group analysis of MRI data 
and it allows for use of a standard 3D coordinate 
space for analysis and reporting of neuroimaging 
data [ 24 ]. It consists of mapping the individual 
subject data to a template, for instance to the 
well-known Talairach brain [ 25 ] or the MNI tem-
plate [ 26 ]. Once the data is in common space, 
ROIs can be easily compared and checked for 
accuracy in size and location. An example is 
shown in Fig.  9.5 . It is recommended not to trans-
fer tensor data into a common space, because 
interpolation of tensor data is not straightforward 
and data will be corrupted [ 28 ]. Consequently, 
one should only use scalar maps (FA, ADC, etc.) 
for conversion into a standard space.

       Statistical Analysis 

 The choice of which statistical method to use 
depends on the hypotheses and experimental set 
up [ 29 ]. When there is a clear hypothesis and a 
 corr  esponding well-defi ned anatomical region, 
the ROI analysis can be very sensitive. However, 

when the hypothesis is less strong and multiple 
regions are investigated, a correction for multiple 
comparisons should be carried out to reduce false 
positives [ 30 ]. More specifi cally, when there is 
no effect of the null hypothesis, and a  p -value of 
0.05 is used, 5 out of each of 100 comparisons 
will falsely reject the null hypothesis (known as 
alpha error or type 1 error). There are numerous 
possibilities to correct for the multiple compari-
son problem. One of the most commonly used 
but also the most conservative is the Bonferroni 
correction, which treats each comparison as an 
independent experiment. This implies that the 
 p -value at which the null hypothesis is rejected 
has to be divided by the number of comparisons. 
So for ten different ROIs the  p -value will be 
0.005 instead of 0.05, i.e., 0.05/10. The  p -value 
becomes even lower when multiple parameters 
are compared. If FA and MD are evaluated in 
these ten regions, the Bonferroni threshold of sig-
nifi cance will even decrease to 0.0025, i.e., 
0.05/20. 

 As stated before, ROI analysis is highly user 
dependent as variability in ROI placement is eas-
ily introduced by different observers. Secondly, 
variability might be introduced when multiple 
datasets from the same subject are analyzed by a 
single observer at different time points. It is 
therefore good practice to calculate inter- and 
intra-observer agreement (for instance, using the 
 κ -statistic) [ 31 ]. Agreement can be calculated on 
the basis of extracted DTI metrics (FA, ADC) but 
also, as percent overlap, on the actual ROI coor-
dinates. The demonstrated overlap in Fig.  9.5  for 
multiple subjects should then be replaced by the 
inter- or intra-observer overlap.  

   Table 9.2    Average values for two part of the corpus callosum based on three manually drawn regions of interest in the 
corpus callosum based on T1 images before and after registration   

 Normal  Corrected 

 FA  MD (×10 −3  mm 2 /s)  FA  MD (×10 −3  mm 2 /s) 

 ROI1  0.70 ± 0.20  0.82 ± 0.33  0.76 ± 0.14  0.77 ± 0.14 

 ROI2  0.70 ± 0.18  0.81 ± 0.24  0.78 ± 0.12  0.76 ± 0.14 

 ROI3  0.67 ± 0.23  0.95 ± 0.38  0.70 ± 0.20  0.95 ± 0.34 
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    Summary: The Pros and Cons of ROI 
Analysis 

 In conclusion, ROI analysis is a simple and effec-
tive means to investigate white matter changes in 
small, well defi ned regions on good quality data. 
However, the technique is prone to error and not 
suitable for the investigation of structures with 
complex boundaries or poorly defi ned changes in 
white matter microstructure. This particularly 

applies for areas of compromised data quality. 
The delineation of ROIs can be very time con-
suming and both intra and inter-rater measures 
are poorly reproducible which impacts on both 
cross-sectional and longitudinal studies [ 32 – 34 ]. 
Furthermore, ROI  placement   without any prior 
knowledge can lead to inaccurate ROI segmenta-
tion which will result in different degrees of par-
tial voluming. Therefore ROI analysis is highly 
user dependent and reliability measures need to 
be calculated to assess the quality of the results.     

  Fig. 9.5    An example of ROI overlap in ten healthy con-
trols ( top rows  in each  panel   a – c ) and patient ( bottom 
rows ). The ROIs were drawn in native space fi rst, and then 

mapped into Talairach space and combined to form proba-
bilistic maps of ROI overlap [adapted from Tamietto et al. 
[ 27 ]. With permission from Elsevier]       
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