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            Learning Points 

•     VBA is a technique that evaluates local voxel- 
wise differences across the whole brain based on 
a multistep pipeline, which includes spatial nor-
malization (or image registration) to a template 
or atlas, smoothing, and statistical analysis.  

•   VBA is most useful for investigating group 
differences in DTI measures in an exploratory 
manner, without the need for specifi c a priori 
hypotheses about the location of potential 
alterations in DTI measures.  

•   VBA assumes that the spatial location of vox-
els is equivalent between subjects and is 
therefore fundamentally dependent on image 
registration to correct the inherent mismatch 

between individual images due to anatomical 
variation and pathology.  

•   Tract-based spatial statistics (TBSS) is a popu-
lar type of VBA that evaluates changes in a 
skeleton comprising a limited amount of white 
matter, in order to increase sensitivity by reduc-
ing registration error and partial volume effects.     

    An Introduction to Voxel-Based 
Analysis 

 Voxel-based analysis (VBA) of diffusion tensor 
imaging (DTI) data is an exploratory technique 
to evaluate differences/changes of diffusion 
metrics in every voxel of a brain data set. In 
essence, VBA investigates DTI  m  easures at the 
smallest scale possible, i.e., the voxel level, and 
as these measures are compared in every voxel, 
VBA also simultaneously evaluates the data at 
the largest scale, i.e., the whole brain. As a 
result, unlike with region-of-interest (ROI) anal-
ysis, VBA does not require an “a priori” hypoth-
esis about precisely where in the brain 
differences may be found. This makes it an 
interesting analysis approach when there is a 
clear hypothesis that there are potential differ-
ences in DTI parameters somewhere in the 
brain, but the location of such differences is not 
known in advance. Although VBA indeed has 
many advantages compared to standard ROI or 
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tractography-based approaches, it also has many 
limitations, which one should be aware of before 
embarking on any VBA study. 

 The aim of this chapter is to provide the reader 
with an overview of the different processing steps 
that need to be performed for a voxel-based analy-
sis of DTI data, whilst emphasizing potential 
sources of error or specifi c challenges associated 
with each step. Along the way we will address 
common questions posed by those wishing to start 
their fi rst DTI VBA, for example: When is VBA a 
good option for the analysis of your data? What 
assumptions underlie the method? What are the 
potential pitfalls in each processing step? Why is 
image registration and template selection so impor-
tant? What is smoothing? What is multiple hypoth-
esis testing?, and do I  really  need to worry about it? 
(yes you  really  do!) What is the difference between 
VBA and tract-based spatial statistics (TBSS)? 
And how do I interpret the resulting fi ndings? 

 It is important to remember that the most opti-
mal results will only by obtained by considering 
the many possible options that are inherent in con-
ducting a VBA study of DTI data,  before you start 
the analysis . 

    Summary Points 

•     VBA is a technique that evaluates local voxel- 
wise differences across the whole brain.  

•   It is most useful for investigating group differ-
ences in DTI measures.  

•   It can be used in an exploratory manner, without 
the need for specifi c a priori hypotheses about 
the location of differences in DTI measures.      

    From Individual Data Sets to VBA 
Group Results: The Different Steps 

 As VBA compares diffusion metrics, such as 
 fractional anisotropy (FA)   or mean diffusivity 
(MD), between subjects at the voxel level, one of 
the main assumptions of VBA is that the DTI 
information located at a specifi c voxel is com-
pared equivalently in each individual. In other 
words, the anatomical location of a particular 
voxel should be the same for each subject. In 

general, the gross anatomy of the brain is very 
similar across the (healthy) population, and all 
brain regions are present in more or less the same 
spatial position across individuals. Nevertheless, 
as a result of natural anatomical variation, there 
remain clear differences in the size and shape of 
different brain regions (e.g., due to age, gender, 
or pathology). Therefore, if we attempt to com-
pare the same voxel in one person to the equiva-
lent location in another person without accounting 
for this normal variation, we will fail. And if we 
fail, we also violate one of the main assumptions 
of the VBA method. Luckily, we can try and 
overcome this problem. 

 The  image processing technique   that aims to 
correct for differences in brain structure by chang-
ing the size and shape of the brain image as well as 
its local structure is called   image registration   . The 
end result of the image registration step is thus a 
brain image that has been  warped  to match another 
image, and in which voxels with the same spatial 
coordinates represent the same voxel of the same 
brain structure of both images. If images cannot be 
aligned to each other well, it makes no sense com-
paring quantitative DTI values on a voxel level. 

 Now one may pose the question: to which 
image will we align all our data sets? This image 
to which all data sets are registered is called the 
atlas or template, and many strategies and options 
exist for this  template selection . 

 Once all data sets are located in the same atlas 
space,   smoothing       is typically applied, in order to 
increase the power of the statistical tests that are 
subsequently performed in each voxel. There are 
other reasons why you may wish to smooth the 
data and different choices have to be made 
regarding the type and extent of smoothing used. 
This will be discussed later in this section. 

   Statistical analysis    is then performed on 
these warped, smoothed images. The results of 
these statistical tests, with or without correction 
for multiple comparisons, are then displayed with 
a color on the different slices of the atlas image, 
thus providing a global view of where in the brain 
the DTI measures are statistically different 
between groups of subjects. 

 In the following sections we will dive a bit 
deeper into these different steps of the VBA pipe-
line and highlight some options and limitations. 
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  Fig. 10.1    Overview of different steps in the VBA pipeline of DTI data       
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 A theoretical example of the VBA  pipeline   is 
displayed in Fig.  10.1 . The DTI data of six sub-
jects, three in each group, are registered to a DTI 
atlas. Once all data sets are located in the same 
space, FA values can be compared between both 
groups in each voxel. Note that in this example, 
all data sets are perfectly aligned to the atlas, 
which is an important assumption, but also an 
ideal situation that is not realistic.

      Summary Points 

•     VBA assumes that the spatial location of vox-
els is equivalent between subjects,  

•   Natural variation in anatomy and pathology 
causes an inherent mismatch between indi-
vidual images that can be corrected by regis-
tration to a template,  

•   The VBA pipeline contains three main steps: 
spatial normalization (or image registration), 
smoothing, and statistical analysis.      

    Image Registration 

    Introduction 

 One of the main assumptions of VBA is that the 
same voxels in different images are aligned to 
each other. Only in this case, can DTI measures, 
such as FA or MD, be compared between the 
same voxels of different subjects. Note that the 
process of spatially matching different images is 
frequently described using different terms, such 
as normalization, warping, aligning, registration, 
coregistration, etc. But in the end, although these 
terms may differ slightly in their technical defi ni-
tion, essentially they refer to the same concept. 

 A simplifi ed example of the registration con-
cept is shown in Fig.  10.2 . The data set we want to 
register is shown on the top left of Fig.  10.2  and is 
also referred to as the  fl oat image , as this image 
will change during the registration process. On 
the top right of Fig.  10.2 , the   reference image   , 
usually the atlas, is displayed. This is our target 

  Fig. 10.2    The goal of 
image registration is to 
match a fl oat image to the 
same coordinate space as 
the reference image. This 
can be done by applying 
global warping together 
with local alignment of 
structures       
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image for registration, i.e., we want to warp the 
fl oat image so that it looks like the reference 
image. The result of the registration process is 
shown on the right bottom of Fig.  10.2 . This reg-
istered image is the original fl oat image, but 
warped into the space of the reference image. You 
can note two important characteristics of registra-
tion. First, you can see that the fl oat image is 
translated (i.e., shifted in position along the cardi-
nal axes, up/down, forward/back, and left/right) 
and rotated, but also that local structures of the 
fl oat image, such as the mouth in this case, are 
deformed to match the reference image. Second, 
you can note from this example that the fl oat 
image is spatially transformed, but that the col-
ors—in DTI these are the values of the metrics, 
such as FA or MD—are not changed after regis-
tration. Thus, the goal of image registration is to 
spatially warp images in a way that corresponding 
voxels are in the same location, without changing 
the original image values of these voxels [ 1 ].

   As the global as well as local morphology of 
the  brain   can signifi cantly vary between different 
subjects, image registration is a challenging task. 
In addition to natural inter-subject brain variabil-
ity, brain morphology can depend for example, on 
age, gender, and ethnicity. To make image regis-
tration even more challenging in the VBA setting, 
brain morphology can be signifi cantly altered by 
the pathologies in patients that are studied.  

    Image Registration Techniques 

 The goal of this section is to provide some  basi  c 
background knowledge of image registration. 
Image registration can be considered as an opti-
mization problem, for which the similarity 
between two or more images needs to be maxi-
mized iteratively [ 2 ]. The image registration 
problem can thus be subdivided into:

•    a method or algorithm used to fi nd a maximal 
similarity  

•   an approach to measure similarity between 
images    

 Image registration algorithms can be subdi-
vided into two broad categories:  global  and  local  
registration techniques.

•      Global     image registration techniques  apply 
the same deformation fi eld (the matrix of 
numbers that defi nes how much a point is 
shifted), which transforms one data set to 
another, to all voxels of that data set. This can 
be done by rotating and translating the data 
set, referred to as a  rigid - body   transformation. 
In addition, global shearing (“stretching”) and 
scaling parameters can be added, then result-
ing in an  affi ne  transformation.  

•    Local registration techniques  determine a 
 local deformation   fi eld for every voxel of the 
data set, in order to match every voxel with its 
corresponding voxel in the other data set.    

 A simplifi ed example is given in Fig.  10.3 , in 
which sagittal views of the brain, including the 
corpus callosum, are shown. In this example, the 
brain of subject X (shown in red) needs to be 
transformed to the template or atlas brain shown 
in blue. As a fi rst step, the whole brain data set of 
subject X can be rotated and translated globally, 
in order to increase the similarity with the tem-
plate brain. This registration technique, visual-
ized in Fig.  10.3  by the purple box, is referred to 
as a   rigid - body transformation   . Subsequently, 
the resulting brain image can be scaled and 
skewed globally. The combination of the  rigid- 
body transformation   with additional global scal-
ing and skewing is referred to as an   affi ne 
registration    (the purple and green boxes in Fig. 
 10.3 ). However, in order to obtain a better match 
of corresponding voxels in different data sets, 
local deformation fi elds need to be applied to the 
globally registered data set of subject X. This 
transformation is referred to as a  non-rigid   or 
non - affi ne registration  and aims at aligning cor-
responding voxels of different data sets.

   As aforementioned, an accurate image regis-
tration result is of paramount importance for a 
reliable VBA result. For example, if a non-affi ne 
registration would not be performed, the fi nal 
registration result of subject X to the template 
would include a mismatch around the corpus 
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 callosum in this example (see Fig.  10.4 ). Because 
similar registration errors would be present for 
the other subjects, it is clear that a voxel-wise 
comparison of DTI measures would lead to unre-
liable results. Indeed, the DTI measures in voxels 
of subject X are then compared with the same 
measures in non-corresponding voxels of subject 
Y, which might be more similar to the atlas or 
contain different registration errors.

   In order to optimize the image registration 
algorithms, appropriate  image similarity 
 measures   need to be defi ned. In the end, it will 
be this image similarity measure that will be opti-
mized to obtain the most optimal image align-
ment. Examples of similarity measures are the 
sum of  squared intensity differences (SSD),   cross 
correlation, and mutual information (MI). In the 
SSD approach, the intensity in corresponding 
voxels of two images is subtracted and the abso-
lute value of the result is squared. The SSD is 
then calculated as the sum of this squared differ-
ence over all voxels in the image. A schematic 
example is shown in Fig.  10.5 . The sagittal views 
of the affi ne registration result, which was shown 

in Fig.  10.4 , are visualized in grayscale intensi-
ties. On the top row, the image X that was regis-
tered to the template, the template image, and the 
overlay between both are displayed, showing 

  Fig. 10.4    Example of an affi ne registration result. 
Although both data sets are globally aligned, signifi cant 
local image registration errors can be seen in the region of 
the corpus callosum       

  Fig. 10.3    Overview of the 
combination of global and 
local image registration 
techniques. To transform 
the brain of subject X to 
the template brain, both 
global and local image 
registration techniques are 
necessary. The  purple box  
shows the rigid-body 
transformation, including 
global rotation and 
translation. In the  green 
box , global scaling and 
skewing are added to the 
transformation, referred to 
as the affi ne 
transformation. The use of 
local deformations, as 
shown in the  orange box  
and referred to as 
non-affi ne transformations, 
allows one to align both 
images on a local level       
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some misregistration of the corpus callosum. 
In the second row, the calculation of the SSD is 
schematically depicted, highlighting the mis-
match regions. If a perfect registration could be 
performed, the SSD measure would be zero, 
demonstrating optimal image similarity.

   The SSD is a simple approach to evaluate sim-
ilarity between images. More advanced methods 
that can take into account different intensity val-
ues of similar structures in different images, such 
as mutual information, generally produce better 
results. In addition, some specifi c image similar-
ity methods have been developed for DTI data, 
using information on tensors, statistical relation-
ships between measures, or anatomical informa-
tion. In contrast to typical grayscale MRI images, 
DTI data contain more information in each voxel; 
therefore similarity measures can be optimized to 
make use of this additional information [ 3 ,  4 ].  

    Summary Points 

•     To register two images you need (a) a model 
(global and/or local) to warp the fl oating 
image to the reference image, and (b) a way to 

measure how well both images are aligned, in 
order to fi nd an optimal registration.  

•   Rigid-body registration involves only transla-
tions and rotations, whilst affi ne registration 
also includes scaling and shearing.  

•   Examples of similarity measures include sum 
of squared intensity differences (SSD), cross 
correlation, and mutual information (MI).     

    Registration of DTI Data 

 The registration of  DTI data   is especially challeng-
ing. This is mainly caused by the fact that DTI 
data, unlike anatomical MRI or CT data, contain a 
tensor in each voxel, which also represents orien-
tational information. Taking this tensor informa-
tion into account can improve the registration 
result (an overview of DTI registration methods is 
provided in [ 5 ]). In the following paragraphs, we 
will describe several challenges in more detail. 

    DTI Registration Challenge 1: 
Reorientation 
 The tensor is directionally dependent and contains 
orientational information about the underlying 

  Fig. 10.5    An example of the sum of squared differences 
technique to measure image similarity. The intensities of 
the registered image and template are subtracted in every 

voxel and subsequently squared. Then, the total sum in 
every voxel is taken. When both images would be perfectly 
aligned, the sum of squared differences would be zero       

 

10 DTI Analysis Methods: Voxel-Based Analysis



190

white matter microstructure. When transforma-
tions are applied to align data sets, a correction 
(i.e., a tensor reorientation strategy) needs to be 
applied to ensure that the directional DTI informa-
tion is still accurate. 

 The need for  tensor reorientation   after image 
alignment of DTI data or during iterative regis-
tration processes is explained in Fig  10.6 . To sim-
plify things, the concept of reorientation is 
explained for only one white matter fi ber bundle, 

containing three voxels. Consider that in the orig-
inal DTI data set of subject X, this bundle runs 
vertically. The DWI image intensities of the three 
voxels in that bundle are high for the DWI that 
was acquired with a diffusion sensitized gradient 
perpendicular to the bundle, and low for the DWI 
acquired with a diffusion sensitized gradient par-
allel to the bundle. For simplicity, only two DWIs 
are considered here. The corresponding white 
matter bundle of the template image, however, 

  Fig. 10.6    Simplifi ed 
overview of the tensor 
reorientation problem in 
DTI. Tensors indeed need 
to be reoriented after image 
registration in order to be 
aligned with the underlying 
microstructure       

 

W.V. Hecke et al.



191

contains some curvature. As a result, the DWI 
intensities for the different gradients are different 
in these voxels.

   It is now assumed that we can align both white 
matter bundles perfectly, i.e., the corresponding 
voxels of the white matter bundle are perfectly 
registered. The resulting deformation fi eld is then 
applied to the DWIs and the tensor is recalcu-
lated. Now, if we refer to Fig.  10.6  again, we see 
that the registration process changes the spatial 
location of voxels in order for them to match, but 
not their values or image intensity. However, if 
only the spatial location of the voxels is changed, 
and not their image intensities, the directional 
diffusion information, and therefore the tensor, 
are not changed compared to the information in 
native space. Indeed, as explained in Chaps.   4     
and   6    , the image intensities of the different DWIs 
and the values of the tensor are related to the ori-
entation of the white matter bundle. 

 As a result, the tensor information of the reg-
istered data set of subject X to template space 
thus no longer refl ects the underlying microstruc-
tural white matter information, as can be observed 
in Fig  10.6 . In order to correct for this, Alexander 
and Gee [ 4 ] proposed different methods, referred 
to as the “fi nite strain” and the “preservation of 
principle directions” approach. The fi nite strain 
method decomposes the transformation matrix in 
a deformation and a rotation component, where-
after only the latter is used to reorient the tensors. 
However, shearing, nonuniform scaling, and 
stretching factors affect the orientation as well. 
Together with the rotational component, they are 
taken into account in the preservation of principal 
direction strategy. 

 When a global, i.e., rigid-body or affi ne, regis-
tration method is applied, the same reorientation 
is applied to all voxels. However, in the case of 
non-rigid registrations, the local transformation 
matrix, which can be different for each voxel, is 
used to calculate local tensor reorientation. 

 It is important to note that tensor reorientation 
approaches do not affect the rotationally invariant 
quantitative DTI measures, such as the eigenval-
ues, the FA, or MD. As they are rotationally 
invariant, reorienting the tensor does not change 
their values. In a VBA analysis, it is therefore not 

necessary to reorient the tensors if only the rota-
tionally invariant, quantitative DTI information 
is used in the subsequent analysis.  

    DTI Registration Challenge 2: 
The Tensor Information 
 DTI image registration can be optimized by using 
information from other modalities, such as ana-
tomical MRI, or by incorporating scalar and  ten-
sor information  . Park et al. [ 6 ] compared the use 
of different input images on the overall registra-
tion result of DTI data. They evaluated registra-
tion results after using T2-weighted images, FA 
images, the difference of the fi rst and second ten-
sor eigenvalues, FA and the tensor trace, all three 
tensor eigenvalues, and fi nally the six indepen-
dent tensor components [ 6 ]. In this study, it was 
demonstrated that the use of the six independent 
tensor components as input channels performed 
most optimal in aligning the tract morphology 
and tensor orientation. This was further con-
fi rmed by other studies [ 7 ].  

    Scalar Anatomical MRI Information, 
Such as 3D T1-Weighted Images 
 Using  scalar anatomical MRI information   to 
determine the deformation fi eld between DTI 
data sets is similar to the approach used in func-
tional MRI analysis. First, the DTI data set is 
transformed to the 3D T1-weighted image of the 
same subject, using a rigid-body or affi ne trans-
formation. The DTI information used for this 
registration is normally the b0 or non-diffusion 
weighted image, as this image mostly resembles 
the anatomical image. Thereafter, the 3D 
T1-weighted image is aligned to a T1-weighted 
atlas, such as the Montreal Neurological Institute 
(MNI) template. The resulting deformation fi eld 
is then applied to the DWIs, which were trans-
formed into the space of the T1, or to the trans-
formed quantitative DTI maps directly. 

 The advantages of this approach are:

•    T1-weighted atlases can be used.  
•   Many open-source software packages support 

this type of algorithms, such as SPM (  www.
fi l.ion.ucl.ac.uk/spm    ), FSL (  www.fmrib.ox.
ac.uk/fsl    ), AFNI (afni.nimh.nih.gov/afni).    
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 However, using this approach is not optimal 
for DTI data, for several reasons:

•    The unique white matter DTI information is 
not used to guide the registration. The image 
intensity of white matter is uniform on 
T1-weighted images, which can result in mis-
matching of different fi ber bundles [ 6 ,  8 ].  

•   As DTI data sets are usually acquired using an 
EPI sequence, different artifacts are present 
compared to the T1 image. For example, geo-
metric distortions due to eddy currents and 
susceptibility. This results in misregistration 
between the b0 image and T1-weighted image.     

    Scalar DTI Information, Such as  FA or 
MD Maps   
 In this approach, the scalar DTI information, 
such as contained in FA or MD maps, is used as 
input information to guide the registration. As 
a result, no anatomical data sets are involved, 
and registration is directly performed based the 
DTI information. Compared to using anatomi-
cal information, this method has several 
advantages:

•    Some white matter information (as present in 
FA or MD maps) is used to increase the regis-
tration accuracy.  

•   The DTI information is directly aligned to an 
atlas and no anatomical MRI image is needed.    

 Although this will increase registration accu-
racy, this approach has some drawbacks:

•    FA and MD values do not always discriminate 
fi ber bundles that are located close to one 
another, potentially resulting in misregistra-
tion of these bundles.  

•   There needs to be an FA template to align the 
subject data to.     

     Diffusion Tensor Information   
 Many approaches have been proposed that 
incorporate the specifi c DTI information into the 

registration process in order to increase registra-
tion quality. For example:

•    By including several channels of scalar image 
information. Guimond et al. [ 9 ] and Park et al. 
[ 6 ] have used different channels of input infor-
mation, such as the T2-weighted image inten-
sity, fractional anisotropy, trace of tensor, and 
eigenvalues.  

•   By using the scalar information from the 
whole tensor to align two DTI data sets and 
detect correspondences between them [ 6 ,  7 , 
 10 – 13 ]. In addition to using the tensor ele-
ments, DTI feature vectors can be derived and 
used to drive the registration ([ 14 – 16 ]).  

•   By using DTI tractography or other connectivity 
information to guide image alignment [ 17 – 20 ].    

 It has been demonstrated that the use of DTI- 
specifi c information with multiple channels results 
in more accurate registration of DTI data. As an 
accurate image alignment is one of the most impor-
tant assumptions in VBA, including DTI informa-
tion during the registration will increase the 
reliability of the VBA results [ 6 ,  7 ]. However, some 
drawbacks of this approach should be mentioned:

•    As this approach is more complex compared 
to the scalar registration methods, computa-
tion time is increased.  

•   There is a need for tensor information in atlas 
space, as this tensor information is needed to 
drive the registration.      

    Summary Points 

•     In order to achieve successful DTI registra-
tion, the orientational dependence of the diffu-
sion data needs to be accounted for, i.e., any 
rotation of the DWIs should be corrected for, 
e.g., by using tensor reorientation during 
affi ne registration.  

•   Registration can be improved by incorporat-
ing diffusion information, such as scalar DTI 
measures (e.g., FA/MD), tensor information, 
or a combination of different data types.     
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    Atlas or Template 

 The atlas or template is the reference frame to 
which all data are registered and which is used to 
report the results. It has been demonstrated that 
the choice of this atlas or template can affect the 
VBA results [ 21 – 23 ]. As a result, the atlas selec-
tion is an important step in the VBA processing 
pipeline for DTI data. An overview of possible 
DTI atlas selection approaches is provided in 
Zhang and Arfanakis [ 23 ]. 

 DTI  templates   can be subdivided into two 
broad categories:

•    a standard template,  
•   a population-/study-specifi c template    

 A population- or study-specifi c template is 
usually constructed based on the data sets that are 
analyzed. As a result, in theory, this atlas is the 
best representation of these data sets, and should 
thus result in minimizing the registration errors. 
A standard template, on the other hand, is an atlas 
that was created from a group of healthy subjects 
and is independent from the subject data sets that 
need analyzing. However, these atlases usually 
contain anatomical labels and predefi ned region 
of interests, which might be of interest for the 
study. So, again, there is no single correct 
approach of selecting an optimal template for 
your study. The optimal choice will depend on 
your study and data (i.e., goals, hypothesis, 
patient population, data quality). In the following 
paragraphs, a more detailed description of the 
template selection choice is provided, including 
some advantages and limitations of the different 
approaches. 

    Standard Template 
  Standard templates   are typically constructed by 
averaging data from a group of healthy subjects 
that have been registered to a stereotaxic atlas. 
For example, anatomical T1-weighted templates 
were constructed by the Montreal Neurological 
Institute (MNI) and the International Consortium 
of Brain Mapping (ICBM) [ 24 – 26 ], and are 
widely used in functional MRI research. Mori 
et al. created the fi rst standard DTI atlas in the 

ICBM space, containing fi ber orientation maps 
and white matter parcellation maps [ 27 ]. Peng 
et al. [ 28 ] and Zhang et al. [ 21 ] created a DTI 
atlas in the ICBM-152 space by registering high 
quality DTI data sets of 67 healthy subjects using 
a non-affi ne registration procedure. 

 One of the main   advantages    of using standard 
templates is that they provide the possibility to 
make use of predefi ned anatomical regions for 
subsequent region-of-interest analysis in atlas 
space. Furthermore, as the standard templates are 
widely used, results, and coordinates of signifi -
cant fi ndings in particular, can be easily com-
pared across studies. 

 However, there are some  drawbacks  when 
using a standard template. First, as most standard 
templates are created from healthy subject data, 
they do not necessarily represent an average brain 
of the subjects of your study, especially when 
pathology is present in some subjects. A simpli-
fi ed example is given in Fig.  10.7 . Assume again 
that DTI measures are compared between healthy 
subjects and patients with Alzheimer’s disease. 
Although some atrophy can be present in the 
 healthy control group  , it will be more severe in 
the Alzheimer’s group. As a result, when all data 
is transformed to a standard atlas of a healthy 
brain, the registration result will be much better 
for the healthy subject data compared to the 
Alzheimer subject data. This is especially notable 
at borders with CSF (shown in black in Fig. 
 10.7 ), where the groups will not be matched cor-
rectly. Not only will there be registration errors 
(something we don’t want in VBA), there is also 
a bias towards a certain subject group. As a result, 
this will create false positive fi ndings, caused by 
more signifi cant misregistration in one of the 
subject groups in specifi c brain regions.

   Another limitation of some standard templates 
is that the diffusion tensor information is not 
always present, hence limiting the information 
that can be used to drive the registration process 
to this atlas.  

    Population-Specifi c Atlas 
 The general idea of population- or  study-specifi c 
atlases   is to use the data sets that are studied to 
determine an atlas space, to which all data sub-
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sequently are registered. The simplest way to 
construct a study-specifi c atlas is to select  one 
DTI data set  from the study population as the 
template. This subject can be chosen randomly, 
based on visual inspection of all data or based on 
calculations that determine which subject is 
most representative for the population. In the lat-
ter case, all data sets are registered to each other 
and the deformation fi elds from one subject to 
all others are averaged. The subject with the 
smallest average deformation fi eld to all other 
subjects can then be regarded as the most repre-
sentative subject of the population under study. 

 The  advantage  of selecting an individual sub-
ject of the study as the template is that the data 
quality of the template image is similar to the 
data quality of all other subjects. In addition, ten-
sor information is present in this atlas and can 
therefore be used during the registration of all 
data sets to this atlas. However, this approach 
also has some  limitations . As discussed, select-
ing the most representative subject is not trivial. 
In addition, in the case of an individual subject 
atlas, there is information on predefi ned anatomi-
cal regions, as is the case in standard template 
spaces. Similar as with the standard templates, a 

  Fig. 10.7    A simplifi ed 
example of image 
registration of healthy 
subjects and subjects with 
enlarged ventricles to a 
healthy subject atlas. 
Registration errors can 
occur in the group with 
enlarged ventricles, thereby 
introducing a potential bias 
in the VBA results       
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bias can be introduced as the selected subject can 
be a patient or a control subject. 

 Instead of selecting an individual subject as 
the atlas space, population-specifi c atlases can be 
constructed based on the whole population that is 
studied [ 29 ,  30 ]. The resulting atlas should then 
be the best average representation of all the data 
that is being analyzed. Van Hecke et al. [ 22 ] dem-
onstrated that the accuracy of VBA results can be 
improved when using a population-specifi c atlas 
compared to the use of a standard template. 

 As mentioned, the main   advantage    of the 
population- or study-specifi c atlas is that it is the 
best representation possible of the data sets that 
are studied (when the appropriate approach and 
registration techniques are used). As a result, 
image registration accuracy will be maximized 
and unbiased to the subject group. By construct-
ing a study-specifi c atlas, registration errors to 
the atlas can still be present, but they will be 
unbiased towards the subject groups. Another 
advantage of a study-specifi c data set is that it can 
be made with all tensor information present. This 
provides the opportunity to use the tensor-based 
information during registration, again improving 
registration accuracy; or to perform tractography 
in the atlas space. 

 As with the individual subject atlas, an impor-
tant  limitation  of the population-specifi c atlas is 
that it does not contain anatomical labels and 
delineated regions, in contrast to the standard 
templates. In addition, as it is made from the data 
of a specifi c study, it is usually (though not neces-
sarily) constructed from fewer data sets com-
pared to the standard templates.   

    Summary Points 

•     In order to compare DTI values between 
groups, individual datasets need to be regis-
tered to a common template space or atlas  

•   Standard atlases are created from large num-
bers of subjects and are useful for reporting 
results in a commonly used and well-defi ned 
space. Standard atlases are less suitable for 
subjects with gross morphological differences 
to the standard template.  

•   A population-specifi c atlas is created only 
from subjects under investigation and is less 
subject to misregistration bias.     

     Smoothing   

    What Is Smoothing? 
 Smoothing involves blurring the data using a fi l-
ter, typically a Gaussian kernel. As a result, the 
image value in each voxel is recalculated, based 
on the weighted values of neighborhood voxels, 
as determined by the kernel. Typically, the size of 
this kernel is defi ned by the full width at half 
maximum ( FWHM  ).    The FWHM is an indication 
of the distribution of the kernel values, meaning 
that when the FWHM is 4 mm, the kernel is 
4 mm wide at 50 % of its peak value. Consider 
the example given in Fig.  10.8 .

   In Fig.  10.8a , an  axial FA slice   is shown that 
will be smoothed by a Gaussian kernel. As an 
example, we focus on a row of voxels, as shown 
in Fig.  10.8b . Note that in this example, we 
explain Gaussian smoothing in a single row of 
voxels in the  x  direction, whereas in practice the 
voxels in the  y  and  z  direction will also be taken 
into account. In Fig.  10.8b , the FA values of the 9 
voxels of interest are displayed. The FA value of 
the middle voxel is depicted in red, as the value 
of this voxel will be changed during the smooth-
ing in this example. Of course, in practice this 
process is repeated for all voxels. The Gaussian 
kernel that will be used for smoothing is shown 
in Fig.  10.8b . Note that the FWHM of this kernel 
is 6 mm, as we assume a voxel to have a width of 
2 mm. The FA values of the different voxels will 
be weighted, whereby the weighting factor is 
determined by the Gaussian kernel. The total sum 
of the weighting factors thereby equals 1. The 
resulting weighting factors for the different vox-
els for this  Gaussian kernel      are shown in Fig. 
 10.8c . Next, the FA value of every voxel is multi-
plied by the corresponding weighting factor (see 
Fig.  10.8d ), and the resulting sum of these values 
will be the FA value middle voxel in the smoothed 
image, in this case an FA of 0.664. As mentioned, 
this process is repeated for all voxels, thereby 
taking all neighboring voxels (in all dimensions) 
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into account. The resulting smoothed FA map is 
also shown in Fig.  10.8d .  

    Why Should You Smooth (and 
Why Not)?  
 In Fig.  10.8 , the process of smoothing was 
explained. In this simplifi ed example, an isotro-
pic Gaussian smoothing kernel was used. But 

why would you smooth your data? Why would 
you bother blurring images when you pushed 
your scanner and patients to the limits to acquire 
high resolution data sets? There are several rea-
sons why  DTI data sets   are smoothed before sta-
tistical testing in VBA:

•    It helps to accommodate for imperfect 
registration.  

•   It reduces the noise and increases SNR.  
•   It makes the data more normally distributed.    

 However, an obvious limitation of smoothing 
is that the resulting data is blurred. In addition, by 
smoothing the data, information of different 
white matter structures and tissue types (white 
matter vs. gray matter vs. CSF) will be averaged. 
Although it does make sense to integrate infor-
mation from different neighboring voxels of the 
same white matter structure, averaging informa-
tion from other structures or tissue types can 
introduce false positive as well as false negative 
results.  

    Determining the Smoothing 
Kernel Size 
 An important  parameter   related to smoothing is 
the smoothing kernel size. However, it is not 
straightforward to determine the optimal size of 
the smoothing kernel for a specifi c study. To 
complicate matters further, it has been demon-
strated that the choice of the kernel size can sig-
nifi cantly affect the VBA results [ 31 ,  32 ]. This 
stresses the importance of selecting the optimal 
kernel size, or at least having a clear argument for 
using a specifi c smoothing kernel width. 

 So, is there a way of determining an optimal 
smoothing kernel size? According to the matched 
fi lter theorem, the optimum smoothing kernel 
width should be similar to the expected extent of 
the signal difference, as the SNR then reaches its 
maximum [ 33 ]. In other words, for DTI, an “a 
priori” hypothesis is needed on the extent of 
change in the diffusion metrics that are expected. 
But this shifts the problem from not knowing 
how to choose the optimal kernel size to the prob-
lem of predicting the size of the hypothesized dif-
ferences. After all, one of the strengths of VBA is 

  Fig. 10.8    A simplifi ed example of the process of image 
smoothing in one dimension. An FA map ( a ) is smoothed 
by a Gaussian kernel with an FWHM of 6 mm ( b ). In ( c ) 
the different weighting factors are shown. Finally, the 
resulting FA value after smoothing is calculated ( d ) and 
the smoothed FA map is displayed       
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that it is an exploratory approach to search in the 
whole brain for unknown group differences. 

 Although similar problems exist with func-
tional MRI analysis, they may be more straight-
forward to address, as the expected differences 
relate to the extent of GM brain activity in fMRI 
and the size of anatomical structures in VBM.  

    Smoothing  in DTI   
 The problems related to smoothing DTI data are 
similar to problems in ROI analysis, as for both 
methods, the size of the expected differences 
should be known for an optimal result. However, 
in ROI analysis the location of the differences 
should also be known, which is not necessary for 
VBA, as all the voxels of the whole brain are 
evaluated simultaneously. On the other hand, 
smoothing of DTI data in VBA has some specifi c 
issues. These are related to the specifi c nature of 
DTI information, i.e., white matter tract informa-
tion. These white matter tracts are aligned along 
a specifi c orientation and can signifi cantly vary in 
size and width. Smoothing with isotropic 
Gaussian kernels will therefore introduce wide-
spread averaging of information across different 
white matter bundles and tissue types. This is not 
desirable, as we know for example that white 
matter degeneration is not present in CSF. An 
example of how different kernel sizes would 
average information from different structures is 
shown in Fig.  10.9 .

   Not only can an  isotropic Gaussian smoothing 
kernel   average out signals from different struc-
tures and/or tissue types, this effect will also 
depend on their location, as white matter tracts 
and brain structures vary in size, shape, and width 
across the brain. 

 To address these problems, anisotropic 
smoothing kernels were introduced in DTI-based 
VBA [ 32 ,  34 ]. In these methods, the smoothing 
kernel shape is not isotropic and can vary across 
the brain. For example, the kernel shape can be 
determined based on an FA map. At edges of the 
FA image, for example between the white matter 
structure and CSF, the smoothing kernel will 
stop, as shown in Fig.  10.10 . As a result, the 
chance of averaging signal in the white matter 

structure alone is increased. In addition, this 
approach can cope with the variations between 
shape, size and width of white matter tracts 
across the brain, as the shape of the smoothing 
kernel is locally adapted.

   However, signal can still be averaged between 
adjacent white matter structures. In addition, this 
still relies on a prior hypothesis of the size and 
shape of the expected differences in diffusion 
metrics between groups of subjects.   

    Summary Points 

•     Smoothing is typically performed after image 
registration to accommodate for imperfect 
registration, to reduce the noise and increase 
SNR, and to obtain more normally distributed 
data.  

  Fig. 10.9    An example of how voxel values from different 
structures and tissue types are taken into account during 
smoothing with an isotropic Gaussian smoothing kernel 
with different widths. In this example, the diameter of the 
 yellow circles  refl ects the FWHM of the Gaussian smooth-
ing kernels. As can be observed, different information is 
included during smoothing for different FWHM of the 
smoothing kernels       
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•   The FWHM refl ects the smoothing kernel size 
of the Gaussian kernel.  

•   VBA results can be affected by the smoothing 
that is performed and the FWHM of the 
smoothing kernel.  

•   Anisotropic smoothing methods were intro-
duced to average out information within white 
matter structures during smoothing.     

     Statistical Analysis   

 As with all VBA approaches, such as VBM and 
functional MRI, statistical comparison of DTI 
metrics is performed in every voxel. Although 
this is one of the strengths of the technique, i.e., 
an exploratory whole brain analysis at the small-
est scale, it also introduces a “multiple compari-
sons” problem. 

    The “Multiple Comparisons” Problem 
 When a statistical test is performed, a threshold—
for example  p  < 0.05—is used to assess whether 
the result is statistically signifi cant or not. However, 
for a threshold of 0.05, there is still 5 % chance that 
a type I error—i.e., a false positive result—occurs. 
Although this is reasonable for a single statistical 
test, it becomes problematic when thousands of 
statistical tests are performed, all with a 5 % chance 
of a type I error. This is known as the multiple 
comparisons problem. In order to reduce the type I 
error in VBA, some correction for multiple com-
parisons should be performed. When very strict 
corrections, such as the Bonferroni correction 
(dividing the statistical threshold by the number of 
statistical tests that are performed), are applied, 
typically no statistically signifi cant differences are 
found. However, there is a whole range of other 
less strict methods to correct for multiple compari-
sons, the most popular being the theory of Gaussian 
Random Fields [ 35 ], false discovery rate [ 36 ], and 
permutation-based approaches [ 37 ]. Unfortunately, 
there is no consensus on the most optimal tech-
nique to correct for multiple comparisons. 
Different techniques are used in literature, which 
makes it diffi cult to compare results, and in many 
studies no signifi cant fi ndings are reported after 
correction for multiple comparisons. For the latter 
reason, many studies report uncorrected values. It 
is therefore important to interpret the results of 
studies in the context of the statistical analysis and 
correction for multiple comparisons that was used. 

 There are several options to reduce the num-
ber of statistical tests that need to be performed in 
a VBA setting. For example, one can apply a 
white matter mask and only evaluate the voxels 
within this mask. In many studies this would 
make sense, as the quantitative DTI measures are 
best characterized in white matter and research-
ers are typically only interested in white matter 
when DTI is used. Other approaches can be even 
more limiting in the amount of voxels analyzed, 
by deriving masks in atlas space from:

•    Predefi ned anatomical labels  
•   Manually drawn regions of interest  
•   Tractography results in atlas space     

  Fig. 10.10    Example of an anisotropic smoothing kernel. 
As can be seen, the information that is included during 
smoothing is limited to the white matter structure that is 
delineated in  yellow . The FWHM of the smoothing kernel 
will affect the information included during smoothing, 
and thus the results, less       
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    Parametric or Nonparametric 
 Statistics  ? 
 Parametric statistical tests, such as the typically 
used  t -test or regression tests, require the residu-
als of the model to be normally distributed. 
However, Jones et al. demonstrated that this 
assumption only holds in around 60 % of the 
voxels [ 31 ]. Most of the voxels in which the 
residuals were not normally distributed were 
situated in the gray matter. When DTI metrics of 
smaller groups of subjects are compared, non-
parametric statistics, such as permutation or 
bootstrap based testing, should be strongly con-
sidered. Jones et al. [ 31 ] also demonstrated that 
Gaussian smoothing reduces the amount of vox-
els with non-normally distributed residuals, but 
the number of voxels with non-normally distrib-
uted residuals remained high.   

    Summary Points 

•     As statistical tests are performed in all voxels, 
false positive results can be reported. A cor-
rection for multiple comparisons should be 
performed to reduce the number of false posi-
tive fi ndings.  

•   Nonparametric statistical analysis should be 
considered, especially when the subjects 
groups that are studied are small.      

    To VBA or Not to VBA? 

    Pros and Cons 

 So, given all the aforementioned limitations, 
should we use VBA at all? The answer is not 
straightforward. VBA has many  advantages :

•    It is an exploratory technique.  
•   DTI metrics are evaluated in the whole brain 

and at the same time at the smallest scale with 
which one can obtain diffusion measures, i.e., 
the voxel level.  

•   It doesn’t need a lot of manual interaction, 
making it less observer dependent.    

 However, VBA also has some signifi cant 
 limitations :

•    Results are only relevant when perfect image 
registration is achieved.  

•   Results are less observer dependent, but are 
signifi cantly parameter dependent.    

 The latter point is very important. In every 
step of the VBA pipeline, choices have to be 
made, for example, regarding:

•    the registration technique and its parameter 
settings
 –    which affi ne technique?  
 –   which non-affi ne technique?  
 –   which information to drive the registration?  
 –   which similarity measure for registration?     

•   the atlas to use
 –    standard vs. population specifi c?     

•   the smoothing method and the kernel width
 –    anisotropic vs. isotropic smoothing?  
 –   kernel width?     

•   the statistical test and method to correct for 
multiple comparisons
 –    parametric vs. nonparametric tests?  
 –   correction for multiple comparison? Which 

method?       

 Note that this is a non-exhaustive list of exam-
ples, and at each level there are even more param-
eter settings to consider!  

    Why  Parameter Settings   Are 
Important? 

 The importance of the choices made at different 
steps of the VBA pipeline has been demonstrated 
by Jones et al. [ 38 ]. In this study, the same DTI 
data sets were sent to nine different research 
groups. Each of these groups performed a voxel- 
based analysis of the same DTI data set, using 
their own selected set of methods and parameters. 
The nine research groups reported different clus-
ters in various anatomical locations despite ana-
lyzing identical DTI datasets. This demonstrates 
the sensitivity of VBA to choices in the pipeline. 
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 Although most VBA studies follow the proto-
typical pipeline, i.e., image registration, smooth-
ing, and voxel-based statistical analysis, there is 
currently no standardization with regard to the 
methods and parameters that should be used. As 
a result, different VBA approaches and parameter 
settings are used in different studies. In light of 
the Jones et al. [ 38 ] study, comparison of results 
across studies is very diffi cult.  

    Tract-Based Spatial Statistics, 
an Alternative to VBA 

 With the goal of optimizing VBA for DTI data 
sets, tract-based spatial statistics (TBSS) was 
introduced by Smith et al. [ 39 ]. Although this 
approach can also be regarded as a voxel-based 
analysis, some modifi cations from the standard 
VBA pipeline were introduced in TBSS. The 
main difference between TBSS and standard 
VBA is the construction of “a skeleton.” First, all 
FA images are aligned to a template by using a 
non-affi ne transformation and are subsequently 
averaged to result in a group mean FA map. From 
this image, a skeleton is created by selecting the 
locally maximal FA values, which are assumed to 
form the center of the white matter tracts. TBSS 
then projects the FA values of each registered 
data set onto the skeleton. More specifi cally, the 
locally highest FA value perpendicular to the 
skeleton in each registered FA map is then pro-
jected onto the skeleton. The projection on the 
FA skeleton can, to a certain extent, compensate 
for potential registration errors. In addition, as 
statistical tests are performed on the skeleton, 
there is no need for smoothing and less statistical 
tests are performed compared to a standard VBA. 

 Although the skeleton projection step in TBSS 
can indeed correct for some local misregistration, 
it cannot compensate for larger registration errors 
that might occur. As the projection procedure 
must search locally for the highest FA value, in 
order to avoid fi nding spurious correspondences, 
it will not be able to correct for larger misregistra-
tions [ 40 ]. Indeed, the study of Zalesky and col-
leagues [ 40 ] used synthetic deformations of 
ground truth images to demonstrate that the skel-

eton projection only recovers less than 10 % of 
the registration errors. As an accurate image reg-
istration is as important in TBSS as in classical 
VBA, similar care must be taken with respect to 
the use of a non-affi ne registration method, tensor 
information during registration, and population- 
specifi c atlases in case subjects are studied with 
signifi cant pathology or atrophy. It was indeed 
demonstrated by Keihaninejad et al. [ 41 ] that the 
use of a population-specifi c atlas outperformed 
the standard template or individual subject tem-
plate in the study of Alzheimer’s disease. 

 Although TBSS is an elegant way of trying to 
overcome some of the drawbacks of VBA, as for 
all methods, there are some limitations, which 
should be taken into account when performing a 
TBSS analysis. For example, as only the local 
maximal FA values are projected on to the skele-
ton and therefore evaluated, an inherent assump-
tion is made that pathology will mainly affect the 
local maximal FA values, which is not necessar-
ily the case. TBSS is also more sensitive to 
changes in DTI measures in diagonally oriented 
tracts, as their skeleton contains more voxels than 
horizontal or vertical ones [ 42 ]. In addition, the 
presence of white matter lesions that reduce FA 
values will affect the results, as it is possible that 
some voxels that do not belong to the core of the 
tract have larger FA than those in the core because 
of the presence of the lesion [ 43 ]. Furthermore, 
by limiting the analysis to local FA maxima on 
the skeleton, which comprises a relatively small 
percentage of the total image, a lot of potentially 
valuable information is not used in the analysis. 
Sometimes this may not be apparent as some 
authors choose to display their fi ndings on an 
artifi cially thickened skeleton which appears to 
encompass more white matter voxels than were 
actually analyzed. This is typically done to 
emphasize fi ndings, but as with tractography 
visualizations, it can be misleading to those unfa-
miliar with the techniques (see Chap.   8    ). Finally, 
in regions of crossing fi bers, the FA skeleton can-
not be determined reliably as the FA in these 
regions is typically very low. With 60–90 % of 
white matter voxels containing multiple fi ber 
populations, this may complicate the interpreta-
tion of TBSS fi ndings signifi cantly [ 44 ].  
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    How Do TBSS and Classical VBA 
Approaches Compare? 

 Given the fact that TBSS and classical VBA 
approaches differ with regard to core aspects of 
voxel-based analysis, i.e., registration and 
smoothing, and given we know that parameter 
selection signifi cantly affects VBA results, it is 
worth exploring how TBSS results compare with 
those from classical VBA. Although most studies 
choose to apply one method or the other, a few 
studies have directly compared results of the typ-
ical VBA approach with those of TBSS when 
analyzing the same dataset. Sage et al. [ 8 ], for 
example, reported very similar results to TBSS 
when an optimized VBA (in terms of registration 
method and atlas building) was performed. It was 
also demonstrated that the VBA results were 
more reliable compared to the results of a non- 
optimized VBA. Preti et al. [ 45 ] compared TBSS 
results with an atlas-based approach to obtain 
DTI measures in specifi c tracts of healthy sub-
jects and subjects with mild cognitive impair-
ment and Alzheimer’s disease. They concluded 
that the comparison of the healthy subjects with 
the patients was similar for the atlas-based 
approach and TBSS, but that the atlas-based 
approach was more sensitive to detecting changes 
between patients with mild cognitive impairment 
and Alzheimer’s disease. 

 Schwarz et al. [ 46 ] evaluated the use of more 
advanced group-wise registration methods on the 
accuracy of VBA  and TBSS  . Using synthetic 
data sets as well as comparing healthy subject 
data with data from Alzheimer’s patients, they 
showed that the TBSS skeleton projection step 
 lowered  the overall accuracy of the results when 
the image registration was optimized. 

 In summary, both classical VBA and TBSS 
can be successfully applied to study voxel-wise 
differences in DTI parameters at a group level. 
Despite the widespread adoption of TBSS as a 
gold standard VBA approach, it is not without 
signifi cant shortcomings. There have been insuf-
fi cient studies that have compared the accuracy 
of TBSS results with classical VBA results on the 
same datasets to determine if one approach 
should be used in preference to the other. 

Regardless of which technique is applied how-
ever, the quality of the inter-subject registration is 
central to determining the sensitivity and accu-
racy of VBA results.  

    VBA in  Clinical Practice  ? 

 When applied responsibly, with due consider-
ation for its limitations, VBA can be a powerful 
tool to analyze DTI data from patient populations 
with neurological and psychiatric disorders. 
However, is it the most appropriate tool to use in 
clinical practice, when a DTI data set from an 
individual patient needs to be analyzed and inter-
preted? Although the most appropriate use of 
VBA is for group analysis, some authors have 
applied the technique to analyze individual 
patient data. For example, in traumatic brain 
injury patients, Lipton et al. [ 47 ] used the 
enhanced Z-score microstructural assessment of 
pathology (EZ-MAP) approach to evaluate 
regional FA abnormalities. In this VBA approach, 
a patient’s FA value is compared to the FA values 
of a normal reference group in every voxel. 
However, this requires a large reference group 
and the results can depend on this reference 
group. Kim et al. [ 48 ] suggested some improve-
ments to overcome these problems. Patel et al. 
[ 49 ] used VBA to detect FA changes in lesions 
and normal appearing white matter in individual 
MS patients. Although FA reductions were 
observed in many regions, the authors also 
reported abnormal FA values due to misregistra-
tion. Given its underlying assumptions and limi-
tations, we would not advocate the use of standard 
VBA (or TBSS) to analyze individual patient 
data at the present time.   

    Conclusion 

 The aim of this chapter was to introduce the VBA 
approach for DTI data, to elaborate on the differ-
ent steps involved, and to outline its advantages 
and limitations. Compared to a standard ROI or 
even tractography-based analysis, VBA is a more 
automated approach and therefore less observer 
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dependent. However, many choices have to be 
made in the VBA pipeline with regard to image 
registration, template selection, smoothing, and 
statistical analysis, which the fi nal VBA results 
will ultimately depend on. VBA should not be 
viewed as a generic DTI analysis technique that 
can be applied without any hypothesis. Whether 
or not VBA is a suitable way to analyze your data 
will depend on your specifi c study, the questions 
you hope to answer, on the number and type of 
patients that are studied, the type of DTI data 
acquisition and data quality, etc. Although VBA 
has been applied in many DTI studies, the lack of 
a standard approach means that it remains pri-
marily a research tool, rather than a technique 
that can be used clinically to assess individual 
patients.     
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