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 In the mid-1980s, some 30 years ago, investigators fi rst developed the notion 
that magnetic resonance imaging (MRI) could be used to provide information 
about molecular diffusion in tissues. The concept of measuring diffusion was 
visionary, but the practical implementation turned out to present formidable 
challenges. It was a time when most MRI systems were operating at a fi eld 
strength of 0.5 T and gradient hardware was not well developed; as a result, 
early diffusion images suffered from a very poor signal to noise ratio and 
were severely degraded by eddy currents and motion artifacts. The fi rst trials 
were not very successful and the outcomes were rather disappointing. 
Moreover, the radiological community did not fully understand the potential 
of this technique, and many eminent scholars were doubtful that it would ever 
be possible to measure diffusion in the human body. 

 Slowly, but steadily, technical limitations were overcome. Vendors devel-
oped MRI scanners with higher fi eld strength, improved magnet homogene-
ity, steeper gradients, decreased eddy currents, etc. By the middle to late 
1990s, it became possible to produce good quality diffusion-weighted images 
(DWI) with “b-values” of up to 1000 s/mm 2 . The “b-value” is a measure of 
the sensitivity to diffusion and depends on the intensity, duration, and time 
interval of the diffusion gradient pulses as well as on the gyromagnetic ratio. 
In DWI images, the intensity of each voxel refl ects the magnitude (or rate) of 
water diffusion in that specifi c location. However, these images not only 
refl ect “true” diffusion, but are also affected by “confounders” such as perfu-
sion effects; this led to the introduction of the concept of the apparent diffu-
sion coeffi cient (ADC). The higher the “b-value,” the more the signal intensity 
refl ects “true” tissue water diffusion changes. In DWI, the diffusion gradients 
are applied in three orthogonal directions (simultaneously); this allows an 
estimation of the “trace,” which is an indicator of the average diffusivity. 
Trace-weighted diffusion images initially found their main area of applica-
tion in neurological disorders, especially for the early detection of the cyto-
toxic edema associated with acute ischemic stroke. Since about 15 years ago, 
DWI has become a crucial part of routine clinical MRI examinations of the 
brain, and, increasingly, other organs. 

   Foreword   
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 Diffusion-weighted sequences provide information about the magnitude 
of free water diffusion in tissues. However, already in the early 1990s, it 
became clear that diffusion in white matter of the brain was anisotropic, 
depending on the orientation of nerve fi bers. This observation led to the 
notion that diffusion-weighted techniques could be modifi ed to provide 
 additional information about the directionality and other properties of diffu-
sion, at a microstructural level. In this way, diffusion tensor imaging (DTI) 
was born, where diffusion is probed in many more directions (typically >30) 
to describe the full diffusion tensor. When tissues have a complex (internal) 
structure, such as the bundles of myelinated axons in white matter, water dif-
fusion occurs more rapidly along the longitudinal direction of these axonal 
fi bers and more slowly when moving perpendicularly to the long axis. In 
order to obtain the directional information, which is essential for DTI, diffu-
sion gradients need to be applied in at least 6 directions, and preferably more. 
From the acquired DTI data, metrics such as fractional anisotropy (FA) and 
mean diffusivity (MD) can be derived. Taking into account the main direction 
of the diffusion tensor, it becomes possible to extrapolate the connectivity of 
white matter tracts in the central nervous system. This technique is known as 
“tractography” and yields spectacular 3-dimensional images of the brain and 
spinal cord in which white matter tracts can be represented as colored spa-
ghetti strands. In only a few years, DTI has emerged as the foremost tech-
nique for white matter disorders, revealing abnormalities in white matter fi ber 
structure and providing maps of brain connectivity. 

 Unfortunately, for many newcomers (and even for more experienced profes-
sionals), the boundaries between the general fi eld of DWI and the specifi c 
world of DTI are somewhat fuzzy. The complexities of DTI are diffi cult to 
fathom because of the advanced mathematics and physics involved in this tech-
nique. Moreover, it is always hard to see the forest for the trees; people have a 
natural tendency to focus on the many details and fail to see the overall view. 
This book aims at fi lling the knowledge gap between basic science and clinical 
applications of DTI. The editors have conceived this textbook as a practical 
manual, which covers the different steps of a DTI study, and provides advice 
and guidance toward optimization of the process. It is intended for radiologists, 
clinicians, technologists, and neuroscientists. Readers will learn tips and tricks 
and become familiar with the advantages and disadvantages of this complex 
diagnostic technique. The focus of the book is to help practitioners, in each 
clinical situation, to choose the parameters that are most likely to address the 
diagnostic issues and to guide clinical management. All chapters have been 
written by a team of experienced and well-known specialists in the fi eld of 
DTI. The editors, Wim Van Hecke, Louise Emsell, and Stefan Sunaert, have 
done an excellent job to integrate the various contributions and to provide a 
comprehensive update of current knowledge and future developments of DTI. 
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We trust this book will inspire readers to learn all they can about the basic sci-
ence and clinical applications of DTI, and that this knowledge will ultimately 
lead to the delivery of better health care to our patients.  

                   Paul     M.     Parizel, MD, PhD 
     Professor of Radiology  
 University of Antwerp
Chair, Department of Radiology
Antwerp University Hospital
   Antwerp ,  Belgium    

    Frederik     Barkhof, MD, PhD    
  Professor of Neuroradiology 
Director, Image Analysis Center (IAC) 
Department of Radiology and Nuclear Medicine  
 VU University Medical Center 
  Amsterdam ,  The Netherlands    
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 It is generally accepted that the best way to elicit an honest opinion is to ask 
a child. Having conducted this experiment with our own children, we hereby 
bring you a practical handbook about colorful hedgehogs (sometimes also 
confused with whole brain diffusion tensor imaging tractograms). Hedgehogs 
aside, diffusion tensor imaging (DTI) is certainly one of the most colorful 
medical imaging techniques available, one which creates such spectacular 
representations of the brain that at times it appears to effortlessly blur the 
boundaries of art and science. Some may argue that it does this rather too 
effortlessly. For indeed, the beauty of DTI is also its greatest handicap; its 
ability to create images that nearly always look good and appear plausible 
makes discerning between reliable and unreliable fi ndings extraordinarily 
challenging. This all the more so when the ground truth to validate them is 
hard to fi nd. 

 On the other hand, DTI is an incredibly powerful technique for visualizing 
and quantifying diffusion noninvasively in a matter of minutes. Its ability to 
provide insights into microstructural status through enhanced visualization 
and quantifi cation has yielded thousands of scientifi c papers relating to its 
application in a broad range of basic science and clinical domains, and in 
neurology and psychiatry in particular. 

 We are therefore left with the situation in which we have an exceptionally 
powerful, ground-breaking imaging technique that when implemented cor-
rectly can be incredibly useful, but when implemented incorrectly can, at 
best, yield misleading fi ndings, and at worst, be potentially harmful. It is our 
aim, through writing this book, to tip the balance in favor of the former, to 
help people acquire and analyze DTI data optimally to generate results that 
do not just look reliable, but are as reliable as possible. 

 Our motivation for writing  Diffusion Tensor Imaging :  A Practical 
Handbook  was simple: to help nonexperts come to grips with the practical 
aspects of DTI, from understanding the basis of the technique through selec-
tion of the right protocols, troubleshooting data quality, and analyzing DTI 
data optimally. We also wanted to introduce our readers to advanced non-
tensor- based diffusion MRI techniques, so we have included a special section 
on “Beyond DTI.” Also, we wanted to showcase some clinical applications of 
DTI while being mindful of the special challenges associated with DTI in 
different disorders. 

  Pref ace   
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    About the Contents 

 Notably, in this book, we have chosen to focus exclusively on DTI of the 
brain. This is because DTI is presently the most common clinical implemen-
tation of diffusion MRI, and the brain is currently the most studied organ 
using the technique and hence boasts the greatest wealth of associated knowl-
edge, validation, and clinical application. In general, the principles and strate-
gies described in this book are also broadly applicable to non-neurologic DTI 
applications. For detailed knowledge, however, the reader is encouraged to 
consult specialist literature on the topic. 

 In our professional practice, we are advocates of both DTI and other forms 
of diffusion MRI, such as High Angular Resolution Diffusion Imaging 
(HARDI), higher order modeling approaches, and multi-shell diffusion imag-
ing, which we believe are and will be increasingly important techniques in the 
future. We are, however, mainly advocates of choosing the  right technique for 
a given application  and implementing it in the  best possible way given a cer-
tain set of circumstances . And this is the position we have taken in writing 
this book. 

 Our mantra throughout was to keep our book as short and simple as pos-
sible, unburdened by extensive theory, but without losing important detail. In 
this context, there are other books and atlases available which provide a much 
more comprehensive theoretical coverage of DTI than this book. For exam-
ple, Derek Jones’ much acclaimed reference book,  Diffusion MRI :  Theory , 
 Methods and Applications  (Oxford University Press, 2009), remains the stan-
dard reference for the fi eld, while other textbooks provide newcomers to DTI 
with comprehensive theoretical introductions, notably Susumu Mori and 
Donald Tournier’s  Introduction to Diffusion Tensor Imaging and Higher 
Order Models , Second Edition (Academic Press, 2014), and Heidi Johansen- 
Berg and Tim Behrens book entitled  Diffusion MRI :  From Quantitative 
Measurement to in vivo Neuroanatomy , Second Edition (Academic Press, 
2014). For those looking for a comprehensive DTI atlas, Bram Stieltjes, 
Romuald M. Brunner, Klaus Fritzsche, and Frederik Laun’s  Diffusion Tensor 
Imaging :  Introduction and Atlas  (Springer, 2013) is an excellent choice. We 
are fortunate and grateful to Bram for providing an excerpt of this atlas for 
our book. 

 What sets our book apart from these other excellent reference texts is that 
we have aimed for our handbook to be as practical as possible. This means 
that you will fi nd far fewer equations and theoretical content here than in 
other DTI books, and instead more decision schemes, practical examples, and 
lots of images illustrating the core material.  

    Acknowledgments and Thanks 

 A book is only as good as its content and therefore we aimed to share as much 
expert knowledge as possible. We are thus extremely fortunate and grateful 
that so many experts wanted to share their knowledge with us and with our 
wider readership. We unreservedly thank our team of coauthors for their 
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 contributions to our book, for being patient and responsive with and to all the 
revision requests and email reminders despite their busy workloads and other 
commitments, for sharing their enthusiasm with us, and for delivering top 
quality chapters. In particular, we would like to highlight our inclusion of 
contributions from both leading experts in the fi eld and from emerging tal-
ents. Our contributors have lived up to all expectations and provide excellent 
coverage of their topics. Thank you all! 

 On the topic of thanks and acknowledgment, we would also like to thank 
Springer for inviting us to write the book in the fi rst place and for their sup-
port during the different phases of its development and publication. We 
extend particular gratitude to Janet Foltin, Patti Donofrio, and Michael Sova 
for their continued patience, enthusiasm, support, and editorial expertise 
throughout the publishing process.  

    Personal Notes 

 Undertaking such an endeavor is always challenging, takes far more time 
than planned, and involves the support of far more people than appear on the 
book cover or author list. We would therefore like to thank our friends and 
families for all their support and particularly our children, for not being 
remotely interested in colorful hedgehogs. We would also like to thank our 
employers and colleagues at icometrix, University Hospital Antwerp, KU 
Leuven, and University Hospital Leuven for supporting this work and in par-
ticular for providing us with the freedom and opportunity to spend so much 
time working on it, especially in the fi nal phase leading up to the deadline. 

 Finally, we would like to thank you, the reader, for choosing to buy and 
read this book. We hope that you fi nd it as enjoyable and educational as we 
have during its preparation, and that it inspires you to incorporate DTI and 
other advanced diffusion MRI-based techniques into your future work.   

  Leuven, Belgium     Wim     Van     Hecke, PhD     
     Louise     Emsell, PhD     
     Stefan     Sunaert, MD, PhD    
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 1

            Aim and Scope 

 As outlined in the Preface, the aim of this book is 
to provide the new or less experienced DTI user 
with a practical guide that provides an overview 
of the different steps in a DTI study and how to 
optimize each of these steps according to the 
aims of the DTI study. It stands apart from other 
contemporary works on the topic by focusing on 
the practical aspects of using DTI in the context 
of clinical research and future clinical practice.  

    Contents 

 The book is divided into six parts, which can be 
read in succession or consulted as stand-alone 
chapters. As a practical guide, it should be pos-
sible to dip in and out of different chapters to 
obtain helpful information quickly. This is facili-
tated by a summary of “learning points” at the 
beginning of each chapter, and decision schemes 

to assist in making informed choices at each 
stage of the DTI pipeline (see Sect.  3  in this 
chapter). At the end of the book, a comprehen-
sive glossary provides a useful summary of 
many of the key terms related to the acquisition 
and analysis of DTI data. 

 “Part I: Introduction” introduces both the 
book (Chap.   1    ) and the DTI technique (Chap.   2    ) .  
Specifi cally, Chap.   2     provides a conceptual 
framework for the rest of the book by introducing 
themes that will be developed throughout the 
remaining chapters, such as the basics of the 
technique, the DTI study pipeline and the role of 
DTI in clinical practice. The topics in this chapter 
are introduced in an accessible manner that 
assumes no prior knowledge of the DTI 
technique. 

 “Part II: Diffusion Tensor Imaging: From 
Theory to Practice” provides the necessary theo-
retical background to understand the core concepts 
of the technique and its  practical implementation.   
The fi rst three chapters (Chaps.   3    –  5    ) cover topics 
related to concepts of diffusion in MRI and how 
diffusion MRI measurements from the scanner 
translate into quantitative parameters. The part 
then concludes with two chapters covering the 
practical aspects of DTI acquisition (Chap.   6    ) and 
a guide to checking and correcting DTI data 
(Chap.   7    ). 

 “Part III: Diffusion Tensor Imaging Analysis” 
is concerned with obtaining useful information 
from DTI data. It begins with an introductory 
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chapter (Chap.   8    ) describing the different DTI 
analysis techniques in the context of the whole 
DTI study pipeline, practical considerations for 
optimizing DTI analysis, and an overview of 
 software packages   that are presently available for 
analyzing DTI data. The remaining chapters in 
this part provide more detailed information about 
how to perform region-of-interest (Chap.   9    ), 
voxel-based analysis (Chap.   10    ) and tractography- 
based analysis (Chap.   11    ), respectively. 

 In the spirit of practical utility, “Part IV: 
Normal Diffusion Tensor Imaging Anatomy” 
includes a reference atlas (Chap.   12    . “DTI atlas”), 
which illustrates the appearance of different brain 
structures on colour fractional anisotropy maps 
in standard 2D radiological views. It also pro-
vides examples of 3D tractography reconstruc-
tions of the most commonly assessed white 
matter fi bre tracts and detailed information about 
how the reconstructions were performed. 

 As in Part III, “Part V:  Clinical Applications   
of Diffusion Tensor Imaging” opens with an 
introductory chapter (Chap.   13    ) that provides a 
detailed overview of the myriad challenges and 
considerations that should be taken into account 
when conducting DTI studies in clinical popula-
tions. The remaining chapters include example 
clinical applications of DTI, including neurosur-
gical planning, the assessment of brain tumours, 
demyelinating disease, dementing disorders, psy-
chiatric disorders, and traumatic brain injury. 
Due to the nature of the book, which focuses pri-
marily on the practical application of DTI rather 
than the applications per se, it has not been pos-
sible, nor would it have been appropriate to 
include chapters on the use of DTI in every clini-
cal disorder. The selection included here is 
intended to simply provide the reader with an 
overview of how DTI can be applied to study a 
range of pathologies and how different diseases 
offer unique challenges, again emphasizing the 
need to tailor the DTI approach to the given 
 application  . 

 The fi nal part of the book, “Part VI: Beyond 
Diffusion Tensor Imaging” introduces more 
 advanced concepts and techniques   based on 
multi-shell diffusion imaging (Chap.   21    ) and 
higher order models (Chap.   20    ). These tech-

niques, which are primarily used in a research 
setting, aim to address some of the limitations of 
the simple diffusion tensor model and are likely 
to be increasingly useful in the future. In a certain 
sense, this part does not mark the end of the book, 
but the start of a new book in the diffusion MRI 
library. 

 It is important to understand that in order to 
present information in this book in an accessible 
manner, it has necessarily been oversimplifi ed. 
The fi eld of diffusion MRI is large and complex. 
The technique is based on physical principles and 
models that are not completely understood, and 
imperfect imaging techniques that, like the fi eld 
itself, are continuously evolving. In this context, 
this book should be viewed as a complementary 
guide, akin to the “quick-start” guide provided 
with new computing or electrical equipment, that 
helps to get up and running, but which lacks the 
technical detail of the user manual. Throughout 
the book, the reader is therefore referred to 
important publications and educational texts, 
which provide more detail on the topics covered 
in the chapters. These “must-reads” are conve-
niently located in a separate section of each chap-
ter. In addition to consulting these publications, 
the reader may also wish to refer to the papers 
cited within each chapter and to the reference 
works listed in the  preface  .  

      Decision schemes   

 One of the core themes of this book is encourag-
ing readers to ask themselves questions through-
out the course of a DTI study, from the initial 
decision to acquire DTI data, to interpreting the 
fi nal results. It is only by answering such ques-
tions that DTI can be implemented optimally and 
to justify the reasons behind a given implementa-
tion. Although it is impossible to provide answers 
to all these questions, this book aims to provide 
guidance on which questions to ask and offers 
some generic solutions. This is the case in the 
majority of chapters; however, some chapters 
also include more formal decision schemes to 
guide this process, either as separate fi gures or as 
checklists. 
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 When consulting such schemes it is important 
to bear in mind that they are simply intended as a 
guide and should not be viewed as formal pre-
scriptive solutions. The complex nature of DTI 
means that it is simply not possible to provide a 
single answer to every question, as many solu-
tions and implementation strategies exist each 

with their own strengths and weaknesses. 
Performing DTI optimally therefore involves 
fi nding the right balance for a given application. 

 It should become evident that with DTI, there 
is no “one size fi ts all.” This book aims to teach 
DTI users the art of tailoring and hopefully how 
to go about creating the perfect fi t for  them  .      

1 How to Use this Book



7© Springer Science+Business Media New York 2016 
W. Van Hecke et al. (eds.), Diffusion Tensor Imaging, DOI 10.1007/978-1-4939-3118-7_2

      Introduction to Diffusion Tensor 
Imaging       

     Louise     Emsell      ,     Wim     Van     Hecke     , 
and     Jacques-Donald     Tournier    

 2

            Learning Points 

•     Diffusion tensor imaging (DTI) is one of sev-
eral diffusion MRI-based techniques that can 
be used to noninvasively, indirectly assess tis-
sue macro- and microstructure.  

•   DTI can be used as a visualization tool to dis-
tinguish between large oriented macromolec-
ular structures, such as white matter fi ber 
bundles in the brain.  

•   Several scalar quantitative parameters can be 
derived from DTI, the most common of which 

are the (mean) apparent diffusion coeffi cient 
(ADC) and fractional anisotropy (FA).  

•   The primary application of DTI is in (pre)
clinical research. It is also used in clinical 
practice for assessing the evolution of stroke 
and for neurosurgical planning.  

•   Acquiring and analyzing DTI data is not triv-
ial and requires careful consideration of many 
choices throughout the acquisition and analy-
sis pipeline.  

•   DTI is highly sensitive to changes in diffu-
sion, but lacks specifi city, which confounds 
the interpretation of underlying biological or 
pathological processes.  

•   DTI suffers from a number of limitations that 
confound the interpretation of quantitative 
measures and the accuracy of fi ber tracking.    

 It is arguably one of the most beautiful imag-
ing techniques presently available in the fi eld of 
radiology, and has captured the imagination of 
neuroscientists and clinicians in equal measure. 
However, diffusion tensor imaging (DTI) should 
not be held aloft simply for its artistic merit. DTI 
has revolutionized the management of acute isch-
emia and the assessment of brain lesions.    Its abil-
ity to visualize and segment white matter fi ber 
bundles has opened up new perspectives for neu-
rosurgeons. Its capacity to quantify diffusion 
within neural tissue has provided clinical research 
with a remarkable tool with which to investigate 
the living brain in health and disease; and beyond 
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the brain, DTI continues to gain ground in the 
assessment of muscle and other organs such as the 
kidney and prostate. Yet despite such promise, 
since its inception two decades ago [ 1 ], the impact 
of DTI in general radiological practice has been 
surprisingly limited. Possible reasons for this 
include, amongst others, the relatively long time it 
takes to acquire and process the data compared to 
conventional clinical MRI methods; the vast 
number of different approaches to data acquisi-
tion and analysis; and the poor accuracy of the 
technique and its sensitivity to a number of fac-
tors (described in this book), which means that 
maps and measures cannot be reliably reproduced 
under different conditions, such as across MRI 
scanners or between individual patients. These 
important caveats have been a stumbling block to 
the widespread adoption of DTI in the clinic, 
where being able to obtain reliable information on 
disease status in as short a time frame as possible 
is paramount. Recognizing and understanding 
how such challenges could be overcome so that 
DTI can be used optimally in a clinical setting, 
either in research or potentially in clinical practice 
in the future, forms the basis of this book. 

 This opening chapter provides an introduction 
to the DTI technique. The following pages pro-
vide a brief overview of topics that will be cov-
ered in detail in the remainder of the book. In the 
fi rst part of the chapter, the biophysical basis of 
DTI is introduced, as well as the quantitative mea-
sures that can be derived from it and some exam-
ple applications. In the second part of the chapter, 
the typical DTI pipeline is introduced, from the 
initial hypothesis, through data acquisition, pro-
cessing and analysis to interpretation. The fi nal 
section of the chapter highlights the pros and cons 
of DTI in the context of different applications and 
considers the potential role of DTI and related dif-
fusion MRI techniques in the future.  

    Introducing the DTI Technique 

    A Useful Contrast 

  Classical clinical MRI techniques   provide a sin-
gle scalar value for each image pixel (or, in 3D, 
each voxel), yielding an image made up of grey 

scale intensities that refl ect the tissue property to 
which the imaging sequence is sensitized. So for 
example, in T1-weighted images, fl uid will 
appear dark, whilst in T2-weighted images, fl uid 
will appear bright. The seasoned radiologist will 
quickly be able to draw upon their knowledge of 
how different types of tissue appear on different 
scans to distinguish between normal tissue and 
that affected by pathology, and be able to describe 
approximately where such pathology is located 
in anatomical terms. However, such conventional 
scans are not intrinsically sensitive to the micro-
structural architecture of the tissue and do not 
explicitly capture or account for the infl uence of 
tissue orientation on the MRI measurements. 
This is the added value of DTI, which allows it to 
be used to identify ischemic changes before they 
are visible on non-diffusion- weighted scans and 
to map the orientation of (and thus differentiate 
between) white matter fi ber bundles that cannot 
be distinguished using any other imaging tech-
nique (Fig.  2.1    ).

       How Does DTI Work? 

 In an environment in which there are no obstacles 
in their path, such as in a glass of water, mole-
cules jostling about due to thermal motion will 
disperse in a uniform manner, traveling an equal 
distance in all directions. This is termed   isotropic  
diffusion  . However, if the molecules encounter 
obstructions that are coherently oriented, they 
will no longer disperse equally in all directions, 
and diffusion will be  anisotropic .    When consid-
ered in the simplest terms, diffusion-weighted 
MRI measures the net displacement of water 
molecules in a voxel over a few milliseconds. By 
measuring the degree and direction of diffusion, 
it aims to infer the structure of the local environ-
ment of the diffusing molecules. Consider that 
during the short time frame of the diffusion mea-
surement, the water molecules will travel a dis-
tance of several micrometers. If, during this time, 
the water molecules are not obstructed in any 
way, such as in cerebrospinal fl uid, then the mea-
sured MRI signal will be approximately the same 
in all directions. However, if the molecules inter-
act with a boundary, such as a cell membrane, 
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then their pathway will be obstructed, altering the 
measured MRI signal. Moreover, if these bound-
aries are coherently oriented, as for example 
within a white matter tract, then the measured 
signal will also be affected differently depending 
on the orientation of the diffusion gradients rela-
tive to the orientation of the tissue (Fig.  2.2    ).

   In brain tissue, there are many obstructions to 
diffusion that molecules may encounter at the 
length scale of the MRI measurement, such as 
macromolecules, organelles, and cell mem-
branes. These boundaries will give rise to both 
hindered and restricted diffusion, which is often 
attributed to water trapped within and between 
cells respectively. Therefore, by measuring 
changes in the MRI signal along different direc-
tions, it is possible to learn something about the 
underlying tissue architecture [ 2 ]. For example, 
in the case of white matter, the orientation of 
axons strongly infl uences the direction of diffu-
sion [ 3 ], which forms the basis for diffusion trac-
tography (described later in this chapter and in 
Chaps.   8    ,   11     and   12    ) (Fig.  2.3 )   .

   It is worth noting, however, that the DTI tech-
nique only provides a snapshot of diffusion 
within tissue over a given time frame and length 
scale, which is determined by the duration that 

the diffusion gradients are applied (typically 
around 40 ms in a clinical scanner) and the dis-
tance that separates the water molecules from a 
physical obstacle. In brain tissue, for example, 
diffusing molecules will travel several microme-
ters during a typical diffusion measurement. This 
means that the diffusion signal is most sensitive 
to changes in microstructure within this range of 
spatial scales [ 3 ]. 

 It is also important to note that the typical spa-
tial resolution of a DTI scan is 2–3 mm, meaning 
that diffusion across many  heterogeneous 
 microstructural environments  , including differ-
ent cell types, sizes, densities etc., contributes to 
the average signal in each image voxel. 

 In addition to the degree of potential molecu-
lar displacement, the snapshot of diffusion also 
depends on the traditional fundamental sources 
of contrast in the MRI signal, i.e., T1 and T2. In 
a typical DTI sequence, a long echo time is typi-
cally unavoidable, which means that some impor-
tant microstructural elements with short T2 
relaxation times do not contribute to the mea-
sured signal, notably myelin water. Concepts of 
diffusion in biological tissues and measuring it 
with MRI are introduced in the following chapter 
(Chap.   3    ). 

  Fig. 2.1     Improved directional contrast with DTI:   ( a ) On 
a T1-weighted image, white matter appears homoge-
neous. ( b ) DTI can be used to generate diffusion anisot-
ropy (e.g., Fractional Anisotropy, FA) maps that can be 
color coded according to the principal direction of diffu-
sion, termed “directionally encoded color,” or DEC maps. 
The DEC-FA map is calculated by multiplying the FA 
map with the fi rst eigenvector map. This is useful for dis-

tinguishing between different fi ber bundles. For example, 
the cingulum bundle running anterior–posteriorly ( green ) 
is easily distinguished from the corpus callosum running 
ventromedially ( red ) on the color FA map ( orange arrow ), 
compared to the T1 image. Using the DEC convention, 
diffusion in an anterior–posterior direction is  green , ven-
tromedial is  red , and superior–inferior is  blue . [Images 
courtesy of T. Billiet and A. Leemans]       
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 Diffusion tensor imaging extends these con-
cepts further by modeling diffusion as a mathe-
matical tensor, to describe the amount and 
direction of diffusion in each voxel by relating 
the measured signal to the applied diffusion- 
sensitizing gradient [ 1 ]. The tensor can be repre-
sented as an ellipsoid whose main axis represents 
the principal direction of diffusion, and which 
forms the basis of the most common quantitative 
DTI measures (Fig.  2.4    ) [ 4 ].

       A  Quantitative Technique   

 One of the great features of the DTI technique is 
its ability to capture information about complex 
microstructure and summarize it with a few 
 simple quantitative metrics derived from the dif-
fusion tensor. Unlike qualitative radiological 

assessments, such quantitative measures can 
be used to statistically compare patient groups 
with healthy subjects, or quantify changes over 
time, which may refl ect normal developmental 
and neurodegenerative processes or stages of 
disease. 

 The most clinically useful DTI measures are 
presently the mean apparent diffusion coeffi cient 
( ADC  )    (alternatively, the “trace” or mean diffu-
sivity (MD)), which describe the total amount of 
diffusion in a given voxel. The most commonly 
used metric in research studies is fractional 
anisotropy ( FA  ),    which characterizes the degree 
of anisotropy in each voxel. The FA is consid-
ered a summary metric describing the general 
status of the underlying tissue architecture. For 
example, a change in microstructural confi gura-
tion, such as cell loss, changes in cell density, or 
increases in tissue water content, will result in a 

  Fig. 2.2    Compared to the 
non-diffusion-weighted 
 image   ( center ), the contrast 
in the six diffusion- 
weighted images (outer 
images) changes as a 
function of the orientation 
of the tissue relative to the 
direction of the applied 
diffusion gradient       
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change in FA. It is important to understand, 
 however, that FA is only a very indirect measure-
ment based on an oversimplifi ed model of the 
behavior of diffusing water molecules averaged 
over the scale of the voxel. This model makes 
many assumptions that are not satisfi ed in real 
tissue. Moreover, the measurement of FA, and 
other DTI-derived parameters are strongly infl u-
enced by many different factors related both to 
the MRI technique itself, such as system-induced 
noise and artifacts, and physiological factors 
such as the effects of perfusion and partial vol-
ume. For these reasons, DTI parameters such as 
FA, MD, etc. should only ever be interpreted as 
a very indirect approximation of microstructural 
 stat  us [ 5 ,  6 ].  

    Applications 

 The main  applications of   DTI are in the assess-
ment of tissue microstructure, predominantly in 
brain tissue (although the number of non-brain 
applications is increasing) and to segment white 

matter fi ber bundles using tractography. In the 
clinic, this translates to the investigation of sus-
pected acute ischemic stroke, to differentiate 
vasogenic versus cytotoxic oedema and to char-
acterize intracranial lesions such as pyogenic 
abscess, infections, tumors, and trauma [ 7 ]. 
However, the predominant use of DTI is as a 
(pre)clinical research tool, where it has been 
applied to study, most typically, white matter 
microstructure in a broad range of neurological 
and psychiatric disorders [ 8 ]. 

 The ability to estimate a principal direction of 
diffusion using the tensor has also yielded the 
tractography technique, which has been applied 
to study brain connectivity [ 9 ]. Essentially, trac-
tography aims to virtually dissect white matter 
fi ber bundles by propagating “streamlines” that 
follow the main direction of diffusion, which is 
assumed to refl ect the underlying orientation of 
axons (Fig.  2.3 ). In one class of tractography 
applications, the dissected bundles are simply 
used as a visualization tool to locate the boundar-
ies of fi ber bundles which otherwise cannot 
be distinguished on conventional MRI images. 

  Fig. 2.3    Schematic representation  illustrating   how the 
diffusion tensor relates to axonal architecture. ( a ) 
Coherently organized structures such as axons give rise to 
anisotropic diffusion. ( b ) anisotropy can be characterized 
using the diffusion tensor, which can be represented geo-
metrically as a three-dimensional ellipsoid. The longest 
axis of the ellipsoid represents the principal direction of 
diffusion and is assumed to refl ect the underlying axonal 
orientation. ( c ) The contribution of many microscopic 
determinants of anisotropy is averaged and represented by 
a single tensor ellipsoid in each voxel. The principal 

direction of diffusion can then be followed in each voxel 
to reconstruct a path through the image. This is known as 
tractography or fi ber tracking. ( d ) Many such tractogra-
phy streamlines can be displayed together to form virtual 
reconstructions, which may provide a reasonable approxi-
mation of macroscopic anatomical white matter fi ber 
bundles. Note the difference in scale between ( a ,  b ) and 
( c ,  d ). [Adapted from Beaulieu C. The basis of anisotropic 
water diffusion in the nervous system—a technical review. 
NMR Biomed. 2002 Nov–Dec;15(7–8):435–55. With 
permission from John Wiley & Sons, Inc.]       
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This has been used in neurosurgical applications. 
In another application, the segmented bundles are 
used as regions of interest. One of the more con-
troversial uses of tractography is to quantify rela-
tionships between DTI tractography derived 
measures and functional grey matter regions to 
infer something about the underlying brain con-
nectivity. This latter application is confounded by 
the fact that DTI cannot characterize more than 
one dominant fi ber direction in a voxel, and thus 

the reconstructed streamlines do not refl ect the 
underlying anatomy. This major caveat of DTI is 
now widely accepted in the scientifi c fi eld and 
has resulted in a concerted effort to develop new 
modeling techniques for assessing brain connec-
tivity [ 10 ]. 

 It is important to understand that although 
DTI is one of the most widely used implementa-
tions, it is just one of a number of techniques 
based on diffusion MRI (dMRI),  all  of which can 

  Fig. 2.4    The diffusion tensor. ( a ) geometric representa-
tion of the  diffusion   tensor and derivative DTI parameter 
maps. The diffusion tensor, ( b ( i )), can be mathematically 
decomposed ( b ( ii )), into eigenvectors ( b ( iii )) represent-
ing the direction of diffusion, and eigenvalues ( b ( iv )) rep-
resenting the magnitude of diffusion. In the geometric 
representation, the eccentricity of the ellipsoid character-
izes the degree of diffusion anisotropy. The longest axis 
is the fi rst eigenvector and represents the direction of 
maximal diffusion, along which the axial diffusivity 
(AD) is calculated (sometimes referred to as  λ  || , longitudi-
nal, or parallel diffusivity). The fi rst eigenvector is also 
used to calculate the directionally encoded color (DEC) 

map. The second and third eigenvalues are used to calcu-
late the radial diffusivity (RD) (sometimes referred to as 
 λ  ⊥ , transverse or perpendicular diffusivity). The mean 
diffusivity (MD) is a measure of the overall diffusivity in 
a particular voxel regardless of direction and is calculated 
as the average of the eigenvalues. The degree of anisot-
ropy can be represented by the fractional anisotropy 
(FA), a scalar measure, without units, ranging between 0 
(isotropic—darkest grey on a standard FA map) and 1 
(anisotropic—lightest grey on a standard FA map). 
Further details about how to calculate and interpret FA 
and other DTI measures are provided in Chap.   5    . [Images 
courtesy of A. Leemans]       
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be used to characterize microstructure in vivo. 
It is therefore incorrect to equate or synonymize 
DTI with other dMRI-based methods, or consider 
it to be the only means to assess white matter 
“integrity” in vivo. The simplest form of dMRI is 
the basic diffusion-weighted scan, which is used 
widely in clinical practice to assess early isch-
emic injury; DTI is a relatively simple extension 
of this. Beyond DTI, there are a host of “higher- 
order” models, some of which can be applied to 
“DTI” data (i.e., acquired using the same proto-
col) and some that require different dMRI acqui-
sition strategies, for example, acquiring data with 
several different  b -values or many more gradient 
directions [ 10 ]. Such higher-order models are 
sometimes encompassed under the general 
umbrella term “high-angular resolution diffusion 
imaging” or  HARDI     . Although strictly speaking, 
the term HARDI refers to the data  acquisition  
strategy and higher-order models refers to the 
data  reconstruction  method, the two terms gener-
ally apply to more advanced, non-DTI-based 
dMRI  methods   (see Chap.   20    ).   

    The DTI Pipeline 

 Designing and carrying out a DTI study in an 
optimal manner, either on an individual patient or 
in a research study, is not trivial. Extracting the 
rich, multivariate information captured in the dif-
fusion signal requires careful attention at many 
different stages in the study pipeline (Fig.  2.5    ) 
[ 11 ]. This next section introduces some of these 
considerations, which form the framework of the 
remainder of this book.

      The Goal of the DTI Investigation 

 Although often taken for granted, the motivation 
for undertaking a DTI study is most usually the 
expectation that there may be a measurable dif-
ference or change in microstructural properties 
in a given individual or group of individuals that 
can be correlated with a pathological or natural 
biological process such as neurodevelopment or 
 aging  . This motivation must exist to justify 

spending the extra time, cost, and potential 
inconvenience associated with extending an 
existing scan protocol by an extra 5–15 min. 

 The nature and extent of any hypothesized 
changes has an important impact on the choices 
that need to be made with regard to both the DTI 
data acquisition and analysis strategies. For 
example, if the goal of the DTI study is to iden-
tify acute ischemia, a simple <6 direction DWI 
acquisition of one or two minutes will suffi ce to 
calculate the ADC. However, if the goal is to 
visualize fi ber tracts as part of a presurgical plan-
ning work- up  , a much longer, more advanced 
sequence is required including many more gradi-
ent directions (>30), greater diffusion weighting 
(i.e., b-value), and more advanced (non-DTI) 
reconstruction techniques. It is therefore impor-
tant to consider what the motivation and ultimate 
aim of the DTI investigation is prior to data 
collection. 

 In practice, particularly in a research context, 
a clear hypothesis may be lacking and DTI data is 
collected with a view to future exploratory analy-
sis. In such situations, it is often helpful to at least 
anticipate what type of analysis might be con-
ducted in the future by, for example, consulting 
current scientifi c literature, and to collect data of 
suffi cient quality and with a suffi cient number of 
gradient directions to be able to perform a range 
of different analyses. There are few things more 
frustrating than spending time collecting data 
only to discover later that it is unsuitable due to 
poor quality or an inadequate imaging sequence. 
The importance of optimizing the DTI acquisi-
tion protocol before collecting data, and checking 
data quality at the time of scanning or as soon as 
possible thereafter, cannot be stressed enough.  

     Data Acquisition      

 As anyone working with MRI data will under-
stand, there are myriad parameter settings avail-
able that all interact to give rise to the fi nal image. 
In conventional imaging, manipulating basic 
parameters will weight the sequence to a particu-
lar tissue property, such as T1, T2, diffusion, per-
fusion etc., alter the contrast and signal to noise 
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ratio (SNR), and the spatial resolution of the 
image. These same principles apply equally to 
DTI; however, the acquisition of both non- 
diffusion and multiple diffusion-weighted images 
adds an extra level of complexity. For example, 
one must decide along how many noncollinear 
gradient directions diffusion weighting will be 
applied. Mathematically, while only six are 
required for standard DTI [ 12 ] in practice acquir-

ing more will improve the estimation of the diffu-
sion tensor [ 13 ], and acquiring even more (e.g., 
>45) will allow more advanced reconstruction 
methods to be used that may be able to resolve 
complex fi ber architecture [ 10 ]. However, 
 acquiring more directions will extend the scan 
time and thus decrease tolerability and increase 
the likelihood of motion artifacts, which may 
degrade image quality. This is just one example 

   Fig. 2.5      Prototypal DTI study pipeline  . Whole-brain 
tractogram and connectivity matrix. [Reprinted from 
Caeyenberghs K, Leemans A, Leunissen I, Gooijers J, 
Michiels K, Sunaert S, et al. Altered structural networks 
and executive defi cits in traumatic brain injury patients. 
Brain Struct Funct. 2014 Jan;219(1):193–209. With per-
mission from Springer Verlag]. Voxel-based analysis 
 fi gure. [Adapted from Emsell L, Langan C, Van Hecke W, 
Barker GJ, Leemans A, Sunaert S, et al. White matter 

 differences in euthymic bipolar I disorder: a combined 
magnetic resonance imaging and diffusion tensor imaging 
voxel-based study. Bipolar Disord. 2013 Jun;15(4):
365–376. With permission from John Wiley & Sons.] 
Axon micrograph. [Reprinted from Beaulieu C. The basis 
of anisotropic water diffusion in the nervous system—a 
technical review. NMR Biomed. 2002 Nov–Dec;15
(7–8):435–455. With permission from John Wiley & 
Sons, Inc.] Corrected DTI maps. [Courtesy of A. Leemans]       
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out of many more that are described in Chap.   6    . 
The take-home message however is that it pays to 
spend some time becoming familiar with the 
parameter choices that are especially relevant in 
DTI, such as the degree of diffusion weighting 
( b -value), the number and orientation of the 
applied diffusion gradients, the echo time (TE), 
the need for adequate fat suppression and so on, 
and deciding what is the most optimal balance 
between scan time and image quality for your 
particular  application   [ 14 ].  

     Data Pre-processing      

 Having collected the raw DTI data (i.e., a series 
of diffusion-weighted image volumes, each com-
prising a number of 2D images with a particular 
diffusion weighting), it is necessary to perform a 
number of steps in order to both correct the data 
for typical artifacts associated with the EPI 
sequence used to acquire the data, and to gener-
ate DTI scalar maps (e.g., FA maps). For exam-
ple, eddy currents induced by the rapid switching 
of the applied diffusion gradients often affect EPI 
sequences, which warp the DWIs along the direc-
tion of phase encoding. The relatively long scan 
time means that bulk motion effects are unavoid-
able in awake subjects. These geometric distor-
tions are often corrected by realignment to a 
non- or less deformed image such as a non-
diffusion- weighted image (sometimes known 
informally as the “b = 0”) [ 10 ]. 

 There are also different approaches for esti-
mating the diffusion tensor from the raw DWI 
data, which will have an impact on the accuracy 
of any quantitative measures derived from it [ 15 ]. 
In fact, there are many such “under the hood” cal-
culations and image processing steps that con-
tribute to generating the fi nal DTI parameters and 
derivative maps, and which are easily over-
looked. While this may be due mainly to a lack of 
awareness, it does highlight the need to work 
with or consult specialists when collecting and 
analyzing DTI data. Image pre-processing for 
DTI analysis is addressed in more detail in Chaps 
8-11 of this book, and Chaps.   4     (from raw DWI 
to tensor) and   7     (checking and correcting data) in 
particular.  

    Data Analysis 

 Having acquired and pre-processed the data, the 
next logical step is deciding how to extract useful 
information from it. Clearly, this will depend on 
the motivation for acquiring the data in the fi rst 
place, e.g., is it for visualization or quantifi cation, 
for clinical use in an individual patient, or in a 
group study as part of clinical research? 
Considering these types of questions prior to ana-
lyzing the data (or preferably, before acquiring it) 
will help in choosing which of the many available 
analysis strategies to use to gain the most useful 
and reliable insights. This topic is discussed and 
a decision tree to aid such a thought process is 
provided in Chap.   8     (Strategies and challenges in 
DTI analysis). 

 Briefl y, DTI  analysis strategies   can be divided 
into three main classes: (1) techniques that can be 
used to assess the whole structure or organ (e.g., 
brain) as a single entity, (2) techniques that assess 
a specifi c region (e.g., a specifi c white matter 
fi ber bundle or pathological lesion), and (3) tech-
niques that assess individual voxels, and from 
this infer local alterations in DTI metrics. 
Examples include histogram analysis, manual or 
automated tracing of lesions, tractography-based 
segmentation of fi ber bundles, voxel-based anal-
ysis (VBA), and graph-based analysis of “con-
nectivity” (Fig.  2.6 ).

   Each technique has its own strengths and limi-
tations, and will be more or less suited to a given 
application than another. As the different 
 techniques provide different information and are 
strongly infl uenced by their underlying assump-
tions and methodological implementation, it is 
often useful to perform more than one type of 
analysis to gain insight into any observed 
changes. The greatest insights however may be 
achieved by combining DTI with other imaging 
modalities, and with functional and clinical 
measurements.  

    Interpretation 

  Interpretation   in the context of DTI imaging can 
be understood in terms of the qualitative visual 
interpretation of the DTI derived maps, or the 
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interpretation of changes in DTI parameters 
detected by quantitative statistical analysis. With 
respect to the former, visual interpretation 
involves both the assessment of the raw and pro-
cessed data quality, and, in some cases, such as 

with lesion differentiation, the clinical interpreta-
tion of the DTI parameter maps. Data quality 
assessment is a vital and essential step in any DTI 
study and should not be neglected. The presence 
of artifacts in the raw DWI data results in the 

   Fig. 2.6     DTI analysis  methods  : ( a ) Whole-brain tractog-
raphy, ( b ), region-based tractography, ( c ) graph-based 
connectivity models, ( d ) histogram analysis, ( e ) region-
of- interest analysis, and ( f ) voxel-based analysis. ( a  and 
 c ) [Reprinted from Caeyenberghs K, Leemans A, 
Leunissen I, Gooijers J, Michiels K, Sunaert S, et al. 
Altered structural networks and executive defi cits in trau-
matic brain injury patients. Brain Struct Funct. 2014 
Jan;219(1):193–209. With permission Springer Verlag]. 
( f ) ( left ): [Reprinted from Emsell L, Langan C, Van 
Hecke W, Barker GJ, Leemans A, Sunaert S, et al. White 

matter differences in euthymic bipolar I disorder: a com-
bined magnetic resonance imaging and diffusion tensor 
imaging voxel-based study. Bipolar Disord. 2013 
15(4):365–76. With permission from John Wiley & Sons, 
Inc.] ( f ) ( right ): [Reprinted from Holleran L, Ahmed M, 
Anderson- Schmidt H, McFarland J, Emsell L, Leemans 
A, et al. Altered interhemispheric and temporal lobe 
white matter microstructural organization in severe 
chronic schizophrenia. Neuropsychopharmacology. 2014 
Mar;39(4):944–54. With permission from Nature 
Publishing Group]       
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misestimation of DTI parameters, and it is there-
fore important to be able to recognize them or 
their consequences in the derived parameter 
maps and tractograms [ 16 ]. Chapters   6     and   7     
contain many pictorial examples of such arti-
facts, as well as information about how they can 
be avoided and corrected using different acquisi-
tion and image processing strategies. 

 The interpretation of statistically signifi cant 
changes in quantitative parameters is particu-
larly challenging. Although DTI is highly sensi-
tive to changes in diffusion, it lacks specifi city 
and the derived parameters are strongly infl u-
enced by many factors. As it is extraordinarily 
diffi cult to disentangle the relative contribution 
of these biological and methodological factors to 
a given DTI parameter value in a given voxel, it 
is simply not possible to ascribe changes in DTI 
parameters to changes in specifi c microstruc-
tural elements such as the degree of myelination, 
or axon density [ 5 ]. In this context, although 
DTI may be infl uenced by changes in micro-
structural integrity, it is by no means a direct 
measure of it. Nevertheless, given its sensitivity 
to changes in diffusion, DTI remains a useful 
tool for noninvasively identifying potential dif-
ferences attributable to disease status, and when 
combined with other evidence can contribute 
valuable complementary information about 
pathological mechanisms, treatment effects, and 
 neurobiology  . 

 Chapter   5     (Quantitative DTI parameters) pro-
vides a detailed overview of this topic and guide-
lines for interpreting changes in quantitative 
parameters.   

    The DTI Balancing Act 

 Of all the possible take-home messages, one of 
the most useful to remember is that with DTI, 
there is no “ one - size fi ts all. ” Carrying out a DTI 
investigation optimally is not to say there is ever 
a perfect solution or implementation of the tech-
nique. As will become apparent throughout this 
book, the myriad choices that need to be made at 
multiple steps throughout the DTI pipeline will 
be infl uenced by the ultimate goal of the investi-

gation, and will also determine the quality and 
nature of the fi nal results. It pays to spend time 
becoming familiar with these considerations and 
choices, not only to optimize a given investiga-
tion but also to aid the understanding and assess-
ment of other DTI-based studies and fi ndings 
reported in clinical and scientifi c literature. 

 There are many pros and cons of DTI (see 
information box: “pros and cons of DTI”) and the 
art of using the technique optimally (which also 
includes deciding whether it is appropriate for a 
given application at all) necessarily involves a 
careful cost-benefi t analysis for a given applica-
tion. For example, scientists conducting explor-
atory research studies on large numbers of 
subjects may be less concerned with limitations 
in estimated fi ber bundle trajectories than a neu-
rosurgeon planning an operation on a patient. In 
this context, it is clear that the limitations of DTI 
assume greater signifi cance, and in some applica-
tions may outweigh the benefi ts, in a clinical 
 setting (see Box  2.1    ).   

    The Future Role of DTI in  Clinical 
Practice   

 In comparison to other radiological techniques, a 
dichotomy exists between the perceived utility of 
DTI in the clinic and in scientifi c research. Whilst 
DTI is sometimes considered to be an advanced, 
somewhat novel technique on the brink of enter-
ing mainstream clinical practice, a large body of 
the diffusion MRI scientifi c community is mov-
ing away from DTI-based imaging and develop-
ing new strategies to obtain information captured 
from the diffusion signal that aim to overcome 
some of the limitations of the technique. However, 
despite this transition away from DTI in the 
 diffusion MRI fi eld, and the fact that it is not 
widely used in clinical practice, DTI is used 
extensively in research, having been applied in 
thousands of (pre)clinical research studies to date. 

 It is worth considering why this dichotomy 
exists. In order to be clinically useful, a given 
technique or method of assessment should logi-
cally satisfy a number of criteria. For example, it 
should be performed as quickly and reliably as 
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possible, and provide well-defi ned measures that 
are reproducible across different clinical centers 
and defi ned by standard, normative ranges. It 
should provide information that is complemen-
tary to other clinical measures by providing addi-
tional information that is not revealed by other 
techniques. It should have diagnostic or prognos-
tic utility; for example, by being able to detect 
pathology, distinguish between different diseases 
or for staging disease processes. Preferably, it 
should also be inexpensive, accessible, and easy 
to implement on a large scale. When considering 
such criteria, it is clear why DTI has not yet been 
adopted in mainstream clinical practice. At the 
same time, one can also appreciate why after 
decades of failing to penetrate into clinical prac-
tice it has not yet been abandoned. The  potential  
of DTI to provide unique clinical solutions and 
complementary biomarkers in some areas of 
medicine remains, and it is this potential that is 
presently fueling the substantial research efforts 
in this domain. 

 Since the inception of DTI, there have been sig-
nifi cant technological and methodological 
advances in the fi eld, as well as a greater aware-
ness of the limitations of the technique. These 
advances in technology and understanding con-
tinue to contribute to improvements in data qual-
ity, to reducing scan time and to relating the 
diffusion signal to the microarchitectural proper-
ties that DTI aims to probe. Nowadays, it is per-
haps more appropriate to think of DTI as just one 
out of a range of diffusion MRI-based techniques 
(see Chaps 20 and 21). Its future utility in  clinical 
practice  and that of its relatives will ultimately be 
determined by their ability to satisfy the aforemen-
tioned criteria and improve patient healthcare.        
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3

 Learning Points

• Water molecules in biological tissue are in 
continuous motion. They collide with each
other and with local molecules and structures 
such as cell membranes. Three separate types
of diffusion are: free diffusion in free water
and hindered and restricted diffusion in the
presence of boundaries such as cell
membranes.

• Tissue structure hinders and restricts diffusion
of water; different tissue structures have dif-
ferent effects on the diffusion profile of the
water.

• White matter has a highly coherent fibrous
structure, which encourages anisotropic diffu-
sion of water; this effect can be exploited to
estimate the orientation of white matter fibers
using DTI. Grey matter has a less coherent
structure, water diffuses more isotropically in
grey matter, and the overall effect on diffusion
properties is much more complicated and 
harder to interpret.

• MRI scans can be made sensitive to the
displacement of water molecules at millisec-
ond time scales via the use of modulated mag-
netic gradients using the gradient coils present 
in standard MR scanners.

• The pulsed gradient spin echo (PGSE)
sequence combined with EPI readout is the
most commonly used sequence for diffusion
MRI. It consists of an excitation pulse and a
refocusing pulse, sandwiched between two
equal magnetic gradients which affect the
phase coherence of the spins and cause signal
attenuation in the presence of diffusing
molecules.

 What Is Diffusion?

In 1826 a botanist named Robert Brown was 
studying the seemingly random pattern of motion
that pollen grains exhibited when suspended in
water through his microscope [1]. Initially puz-
zled, he attributed it to some biological phenom-
enon of the pollen, but when he later observed the
same behavior with inanimate, inorganic sub-
stances, he rejected this hypothesis. It later
became clear that the motion that he had observed
was due to the buffeting of the pollen grains by
water molecules surrounding them. This led to
the revelation that liquids and gases were not
static and lifeless as they might appear at first
glance. The atoms and molecules from which
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they are constituent are in constant motion,
undergoing persistent collisions and energy
exchanges with other molecules and atoms. This
led to an intuitive understanding of phenomena
observed in everyday life, such as the spreading
of an ink drop in a glass of seemingly motionless
water or the propagation of a perfume scent
through still air. The physical and mathematical
theories of diffusion were developed and refined
over the next two centuries by prominent scien-
tists including Thomas Graham, Adolf Fick [2, 3], 
and eventually Albert Einstein [4, 5], who devel-
oped a rigorous mathematical framework, which
is still in use today.

The principles of diffusion and its importance
in biological tissue can be conceptualized simply,
without a need to consider the mathematical basis 
of diffusion theory. Water molecules at room
temperature, or at body temperature, are in con-
stant motion due to their inherent thermal energy.
In the absence of any obstacles, a water molecule
would continue to move in the same direction
forever in accordance with Newton’s first law of
motion. However, in the presence of many other
water molecules, each and every molecule under-
goes many collisions in a short space of time,
each of which change the direction of the water

molecule. The dynamics of this process are too
complex to predict exactly, so from a practical
perspective the direction of each molecule
changes effectively at random. This process of
translation and randomly changing direction is
often referred to as a “random walk.” In the fol-
lowing, we will refer only to the diffusion of
water molecules, as this is of importance in diffu-
sion tensor imaging (DTI). However, the basic
principles discussed apply to all gases and
liquids.

Consider the diagrams in Fig. 3.1. Let us imag-
ine that the blue dots represent water molecules in 
an open body of water such as in a glass of water.
In the first diagram, we see water molecules, all of
which are in motion and randomly colliding with
each other, performing a random walk. The paths
taken by three randomly selected molecules are
outlined by the red trails in Fig. 3.1a. If we could
label a small cluster of the water molecules such
as those highlighted in red in Fig. 3.1b and watch 
their progress over a short time, we would see the
labeled molecules spread out evenly in each direc-
tion as in the latter diagrams 3.1c, d after times
T and 2T respectively. In Fig. 3.1d it can also be 
seen that the labeled molecules are clustered 
around the point of origin of the labeled set.

Fig. 3.1 Illustration of the
free diffusion of water
molecules in pure water 
over time interval 2T. The
random walks of a
selection of molecules are
illustrated with red lines. 
The progression of a small
group of molecules
highlighted in red is shown 
in (b–d)
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This kind of diffusion is normally referred to as
“free diffusion” as the water molecules are free to
move in any direction with only the other water
molecules obstructing them. Free diffusion leads
to a zero-mean Gaussian distribution of particle
displacements. This means it is more likely for a
molecule to travel a shorter distance, than a longer
distance, and in fact the most likely distance to
move is zero. It is important to note that a zero
displacement does not imply that the molecule
has not moved at all during a particular time
period; it has simply back-tracked in its random
walk and is in a similar position at the start and 
end of the time period we are observing.

If we were to view this process in three
dimensions, we would observe that a labeled
cluster of water molecules would spread out in a
roughly spherical profile. In free diffusion the
progress of molecules is unobstructed by obsta-
cles and is therefore independent of direction.
Diffusion that is independent of direction also
has a special term: “isotropic diffusion.” Things
get more interesting when we consider the effect
of the presence of boundaries on the propagation
of water. If diffusing water molecules encounter
boundaries, such as cell membranes in nervous
tissue, the presence of such boundaries will
cause a departure from the isotropic, free diffu-
sion we observe in a glass of water. DTI gives us
a powerful tool to examine this departure from
free diffusion properties, which can give us
insight into the geometric properties of the
boundaries and allow us to infer details about
tissue structure.

In water at room temperature, the average
distance moved of a water molecule in one sec-
ond is around 100 μm, or 1/10th of a millimeter.
In 50 ms, which is a time of the order of magni-
tude relevant to DTI sequences, the average dis-
placement of a water molecule is about 25 μm. 
This length scale is of a similar magnitude to
that of many cellular structures of central ner-
vous system tissue. Hence if we probe the
motion of water molecules at such timescales
with diffusion tensor imaging, we can probe the
geometric structure of the tissue of the central
nervous system at the cellular level from outside
the body.

 Hindered/Restricted/Free Diffusion

We have already covered the concept of “free dif-
fusion,” the diffusion of water molecules unim-
peded by the presence of any boundaries.
However, in the presence of boundaries, the dif-
fusion properties of water are different. There are
two more types of diffusion, which commonly
occur in biological tissue: restricted diffusion and
hindered diffusion.

 Restricted Diffusion

Restricted diffusion occurs when water mole-
cules are constrained by impermeable boundar-
ies, which impedes the progress of water
molecules beyond a certain maximum displace-
ment in a particular direction. In the context of
biological tissue, this kind of diffusion occurs for
water molecules trapped inside a cell boundary,
otherwise known as the “intracellular” region.
The motion of water molecules within this region
is restricted to within a certain range unless they
can permeate the cell membrane. In this regime, 
the diffusion properties of water are largely gov-
erned by the geometric properties of the con-
straining membrane.

 Hindered Diffusion

Hindered diffusion occurs when the progress of
water molecules as they diffuse is impeded by
obstacles, but not completely confined by a con-
tinuous boundary as in the case of restricted dif-
fusion. Hence the mean displacement of a set of
water molecules is reduced overall in any direc-
tion in which boundaries are encountered. The
net result is that the average displacement of
water molecules is reduced in directions, which 
impinge on boundaries. In biological tissue, this 
type of diffusion is exhibited by water present in
the interstitial space between cells, otherwise 
known as the “extracellular” region.

In Fig. 3.2, we can see the difference between
molecules exhibiting restricted diffusion and
molecules exhibiting hindered diffusion. The red
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molecules inside the boundaries are restricted 
and cannot exceed a certain maximum displace-
ment as they are restricted from doing so by the
cell boundary. The motion of a single water mol-
ecule is exemplified by the red path. The blue
molecules, however, can diffuse in any direction.
Their progress is impeded, but not restricted, by
the presence of the boundaries. A typical path of
a “hindered” water molecule is exemplified by
the dark blue path. Given enough time, these
“hindered” molecules could reach any distance;
however, their progress is impeded by the pres-
ence of the boundaries. Therefore we see a depar-
ture from free diffusion properties, which is
dependant on the geometry of the boundaries.

Of particular interest in DTI is the effect of
specifically shaped boundaries. It is easy to see
from the previously mentioned examples and
illustrations how water molecules would behave
in and around a spherical boundary, but it is also
interesting to consider how a diffusing water
molecule would behave inside a cylindrical
boundary as in Fig. 3.3. The cylindrical boundary
presents an obstacle to diffusion in the direction
perpendicular to its axis, while presenting no
obstacle to diffusion along its axis. Therefore the
diffusion properties of water in and around cylin-

drical boundaries become highly dependent on
the orientation of the cylindrical boundaries.
Water diffuses a lot more readily along the axis of
a set of packed cylinders than perpendicular to it.
This is a phenomenon that becomes highly
important in DTI when studying neural tissue, as
we will see when we examine the cellular struc-
ture of tissue in the next section. There is a spe-
cial term for this kind of directionally dependent
diffusion: “anisotropic diffusion.” The terms
“anisotropic” and “isotropic” are regularly used
in DTI terminology, so it’s worth taking note of
what they mean.

 Microstructural Tissue Properties 
at the Scale of Diffusion MR 
Measurements

In biological tissue, such as that of the central
nervous system, the components of the cells that
make up the tissue create boundaries to diffu-
sion. The various properties of cellular structures
such as the cell membrane, the viscosity of the
material within the cell, and the presence of sub-
cellular structures such as mitochondria, nuclei, 
and microfibrils have an effect on the diffusion

Fig. 3.2 Illustration of
hindered and restricted 
water inside and around 
boundaries, such as cell 
membranes. The red dots 
represent molecules which 
are restricted by the
presence of the boundaries
while the blue dots 
represent molecules which 
are hindered by the
presence of the boundaries
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properties of water in and around the cell and this
has an impact on the measurements we take in 
DTI. In the following, we will examine the cellu-
lar composition of central nervous system tissue.

The fundamental building blocks of the brain’s
processing network are neurons. Neurons are 
electrically excitable cells and are typically
divided into two major parts, the soma or “body”
of the neuron and the neuritic protrusions: den-
drites and an axon [6].

The main cellular structures are illustrated in
Fig. 3.4. The body of the neuron, the soma, varies
in size and shape throughout the central nervous
system, typical sizes range from 5 to 100 μm. The
soma contains the cell nucleus and other cell 
structures such as Nissl bodies, mitochondria, 
and microfibrils.

The soma has numerous protrusions collec-
tively termed “neurites.” Neurites fall into two
types: dendrites and axons. Dendrites are small,
short, branched projections which taper towards 
the end. They facilitate short range exchange of
electrical and chemical signals between neigh-
boring neurons and axons. Most neurons typi-
cally also have a single axon. The axon is an
elongated protrusion of the nucleus which facili-
tates long range connection with other neurons 

and there is only one axonal protrusion of each
neuron. The longest axons in the bodies of mam-
mals, such as the sciatic nerve in humans, can be
many centimeters or even over a meter in length.
They can vary in diameter between around 0.2
and 20 μm in the brain [7].

Many axons throughout the central nervous
system are covered by a fatty layer known as the
myelin sheath. The myelin sheath exhibits peri-
odic gaps called Nodes of Ranvier, which are
extremely important for the transmittance of
electrical excitation along the axon. Charge
builds up at each node and hops to the next one in
rapid succession, facilitating fast, efficient com-
munication of electrical excitation or “action
potentials” along the axon. The myelin sheath
serves to both facilitate the propagation of action
potentials and insulate each axon from interfer-
ence from action potentials traveling in other
axons and electrically charged ions in the sur-
roundings. The myelin sheath is composed of
several layers, which are formed by the winding
of the protrusion of an oligodendrocyte cell
around the axon. Each oligodendrocyte can serve
many axons. The myelin, made of a multilayered
wrapping of a protrusion of an oligodendrocyte
cell, is illustrated in Fig. 3.5.

Fig. 3.3 Illustration of
water molecules restricted 
inside a cylindrical
boundary. The red lines 
represent the paths taken 
by a small selection of
molecules trapped inside 
the cylinders
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There are other types of cells that exist around
neurons. The aforementioned oligodendrocyte
cells are numerous and serve to provide the insu-
lating myelin sheath to axons. Microglia are small
cells which vary widely in size and shape and
serve as the immune defence for the central ner-
vous system. They act as macrophages do else-
where in the body, i.e., identifying and clearing
plaques, damaged neurons, and infectious agents.
Astrocytes are star-shaped cells that serve a num-
ber of maintenance and metabolic functions. They
are the most abundant cell type in the brain.

This brings us to an important distinction to
make between the two major tissue types in the
brain: grey matter and white matter. Figure 3.6 is 
a highly simplified illustration of the contrast
between grey matter and white matter structure.

Fig. 3.4 Simple 
illustration of cellular
components of neural
tissue including the soma, 
axons, and glia

Fig. 3.5 Illustration of the multilayered myelin sheath
formed from a protrusion of an oligodendrocyte
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Grey matter is the tissue which can be
observed on the surface of the brain; this region is
often referred to as the “cerebral cortex.” The
cerebral cortex is the outermost layer of neural
tissue and is usually 2–4 mm thick in humans.
The cerebral cortex is divided up into different
areas which are active in cognition, motor, and
sensory responses. There are also some deep
“subcortical” regions of grey matter, which are
located in and around the brainstem and serve
many basic purposes, such as cardiac and respira-
tory regulation, sleep and appetite regulation, and
also as relays for connection between multiple
cortex regions and the rest of the body. The grey
matter mainly consists of the soma, the dendrites,
and other cells such as microglia and astrocytes.

The organization of grey matter tissue is
highly complex, with many neuron bodies and a
complex web of dendrites and glial cells. The dif-
fusion characteristics of water in grey matter are
consequently highly complicated, due to com-
plex structural trends in the tissue. As a result of
this interpreting DTI measurements in grey mat-
ter is very challenging.

White matter is the tissue that lies underneath 
the cortex and serves to connect neurons in
different parts of the brain to form the neural
network. It is composed almost entirely of
myelinated axons. The name “white matter”
comes from the fact that myelin is a white sub-
stance; therefore white matter appears white
when observed in dissection. The axons in white
matter are organized into tight bundles of thou-

sands or millions, which are coherent and tightly
packed. Hence diffusion characteristics of water
in white matter are often highly directionally
dependent. The intracellular water tends to dif-
fuse much more readily along the axis of the
axons in a coherent bundle than in any other
direction and the extracellular water is also heav-
ily guided by the lattice structure formed by the
axons. Intracellular water tends to exhibit
restricted diffusion properties, while extracellu-
lar water tends to exhibit hindered diffusion
properties, both of which were discussed in the
previous section. Therefore probing the diffusion
characteristics of water in white matter can yield
information on the direction of bundles of axons
as they traverse the brain. This is of critical
importance to DTI as it provides us a very power-
ful tool to probe the connectivity of the brain.

There are many other structures and sub-
stances that affect the diffusion of water in and
around cells in the central nervous system such as
cytoplasm, neurofilaments, mitochondria, the
extracellular matrix, and blood vessels. However
the effect of these biological elements on DTI is
often negligible or too complicated to be effec-
tively modelled, and is hence beyond the scope of
this book.

Figure 3.7 shows an electron micrograph of
the optic nerve of a healthy rat sliced in a plane
perpendicular to the axis of the nerve fibers. The
optic nerve is a white matter structure comprised
largely of myelinated axons. Many of the cellular
structures discussed in this section can be 

Fig. 3.6 Simple 
illustration of the contrast
between grey matter and 
white matter
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observed in this picture. The filled red arrow indi-
cates the interior of an axon and the open arrow
points out the compact myelin layer surrounding
axons. N indicates the nucleus of an oligodendro-
cyte; C indicates the cytoplasm of the same oligo-
dendrocyte. M shows the nucleus of a microglial
cell. + indicates part of an astrocyte, * shows
hemochromatin, and the filled triangle shows the
Gogli apparatus of the oligodendrocyte.

 Sensitizing MR Measurements 
to Diffusion

Magnetic resonance imaging relies on the inter-
action of the applied magnetic fields with nuclei
in the sample. “Spin” is a quantum mechanical
property of a nucleus and over a large number of
nuclei it gives rise to a net magnetization once
placed in a magnetic field. The net magnetization
of spins precesses with a frequency proportional
to the local strength of the magnetic field. This is
known as Larmor precession and it is by manipu-
lating this relationship that we can acquire a mag-
netic resonance image and also apply diffusion
weighting. For biological tissue, the majority of
the signal arises from the hydrogen nuclei in
water molecules.

 Basic Concepts: How to Diffusion 
Weight the MRI Signal

 The Pulsed Gradient Spin Echo 
Sequence

Currently, the Pulsed Gradient Spin Echo (PGSE)
method is the most common way of sensitizing
the MRI signal to molecular diffusion. PGSE
sequences comprise a spin echo with magnetic 
field gradients before and after the refocusing
pulse followed by an acquisition module
(Fig. 3.8). The effects of diffusion on spin echo
NMR experiments in a constant magnetic field
gradient were first formulated by Hahn [8] and 
extended by Carr and Purcell [9]. Stejskal and 
Tanner [10] described the PGSE sequence in
which the magnetic field gradients are “pulsed”
instead of being constant over time. They also
derived the signal equation for the sequence in
freely diffusing liquids (Eq. 3.1). Such is the 
impact of their paper that the terms “Stejskal-
Tanner sequence” and “Stejskal-Tanner equation”
are still commonly used. The use of pulsed gradi-
ents for diffusion weighting allows more control
over how the signal is weighted by diffusion.
Furthermore, it allows the diffusion weighting

Fig. 3.7 Electron
micrograph of the optic
nerve of a healthy rat sliced
in a plane perpendicular to 
the axis of the nerve fibers
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gradients to be separate from other pulsed gradi-
ents to be used for spatial localization, thus allow-
ing for the quantification of diffusion in MRI
experiments.

 How the PGSE Signal Is Generated

Let us consider the evolution of net magnetiza-
tion during the PGSE sequence, ignoring T1 and 
T2 relaxation, and assuming the pulsed gradients
are short. We will need to know one key concept:
the frequency of precession of the net magnetiza-
tion is proportional to the field that the molecules
experience (i.e., the Larmor equation, f = γB, 
where f is the frequency in Hertz, γ is the gyro-
magnetic ratio in Hertz per Tesla, and B is the
applied field in Tesla). Thus, when a magnetic
field gradient is applied across a sample, the net
magnetization will precess at different frequen-
cies across that gradient (Fig. 3.9).

Figure 3.10 shows the evolution of magnetiza-
tion during the PGSE sequence in the rotating
frame. Also see Fig. 3.8 for corresponding points
along the pulse sequence.

(a)> (b) The excitation pulse rotates net mag-
netization onto the transverse plane.

(b)> (c) The first pulsed gradient dephases the
spin magnetization due to the variation of the fre-
quency of precession along the gradient.

(c)> (d) The refocusing pulse rotates the mag-
netization about the y-axis.

(d) > (e) The second pulsed gradient rephases
magnetization:

• No diffusion: Magnetization is completely
rephased since the field experienced by the
molecules has not changed.

• Free diffusion: (i) Molecules have changed
position between the start of the first and sec-
ond gradients (diffusion time) (ii) The field
that they experience has changed. (iii) The fre-
quency of precession has changed. (iv) The
phase of the magnetization after the second
gradient will not be the same as before the first
gradient. (v) In free diffusion, the motion of
molecules is incoherent and the magnetization 
will have a distribution of phases. (vi) The net
magnetization is attenuated.
(e) The signal is acquired: In the presence of

diffusion, the signal is attenuated.

 b-Value: A Handy Way to Quantify 
Diffusion Weighting

The “b-value” [11] quantifies the applied diffu-
sion weighting of a pulse sequence in a single
number. This single number has become the stan-
dard metric of quantifying diffusion weighting in
MRI sequences. A low b-value scan has more
signal compared to a high b-value one (see
Fig. 3.11), or, in other words, a high b-value scan
exhibits more signal attenuation in the presence

Fig. 3.8 Schematic of a PGSE pulse sequence
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of diffusion than a low b-value scan. So the
b-value could be said to be a rough measure of
how much the signal in an image will be affected
by the diffusion of water in tissue. A b-value of
zero will give no diffusion weighting at all in
the image and diffusion weighted acquisitions

normally include one or more zero b-value scans
for normalization. These scans are often referred
to as b-zero images.

Informally, the b-value is often given in units
of s/mm2. For example, “b-value of 1000” is an
often heard phrase in the clinic—roughly, this

Fig. 3.9 Frequency and phase relationship of Larmor precession in the presence of a magnetic field gradient
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will normally give approximately 40–60 % sig-
nal attenuation in the brain, depending on the tis-
sue type in which the water is embedded.
Elsewhere in the body, b-values used in clinical
investigations are often lower from 50 s/mm2 and 
below to 500 s/mm2 [12, 13]. Selection of b-value
is influenced by the intended application and a
balance between practical concerns and hardware 
limitations [14]. It is worth noting that at higher 
b- values, as there is more signal attenuation in 
the presence of diffusion, there is less overall sig-

nal; hence this lowers the signal to noise ratio
(SNR). Therefore when choosing the b-value for
diffusion weighted scans, it is important to con-
sider the compromise between SNR and contrast. 
High b-value scans can offer extra information
about tissue structure, especially structure at very
small length scales. However, we must keep in
mind that the SNR will be lower when planning 
an acquisition and processing image data. More 
advanced techniques often use considerably
higher b-values of 2000 or above [15–17].

Fig. 3.10 The evolution of
magnetization during the 
PGSE sequence
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 PGSE Signal

The signal of a PGSE scan of a freely diffusing
sample is given by the Stejskal-Tanner equation:
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such:
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where δ is the gradient duration, Δ is the time 
between the start of each gradient, G is the gradi-
ent strength, γ is the gyromagnetic ratio, S is the 
signal, S0 is the signal without diffusion weight-
ing gradients, and D is the diffusion constant.

The PGSE signal decays exponentially as a
function of the parameters of the applied gradi-
ents and the diffusion constant (see Fig. 3.11). In 
imaging experiments, additional pulse magnetic
field gradients are applied for spatial localization.
These gradients, and other applied magnetic field
gradients, may contribute to diffusion weighting.
These are often partially factored out by dividing
signal from scans with diffusion weighting gradi-
ents by that of scan with no or low diffusion
weighting gradients, the latter being used to min-
imize the effects from perfusion [18].

The b-value summarizes the three parameters
G, δ, Δ used to control the amount of diffusion
weighting in a PGSE sequence. It should be noted
that the same b-value can produce very different
contrast depending upon the combination of G, δ, 
Δ, the selection of which can be optimized for
particular applications and tissue types [19].

 Free, Hindered, and Restricted 
Diffusion

Thus far we have discussed the diffusion MRI
signal in the case of free diffusion, i.e., molecules
are free to diffuse as in a large pool of liquid
(Fig. 3.1). Let us consider again a population of
diffusing molecules, if at time t=0 they are all at
the same point, then at t > 0 their spatial distribu-
tion is Gaussian (or in shorthand a “Gaussian dis-
persion pattern” or just “Gaussian diffusion”).
The average distance between the position of
molecules at the start and end of the diffusion
time (or more technically, the root mean square
(RMS) displacement) is given by:

 RMS = 6Dt  (3.3)

For biomedical applications there are only a few
specific locations in which free diffusion
occurs—for example in cerebrospinal fluid in
large cavities in the ventricular system. In other
tissues, diffusion is hindered and restricted by
intra- and extra-cellular constituents and by the
cellular membranes (Fig. 3.2). In these cases, the 
diffusion constant quantified using the Stejskal-
Tanner equation is not the innate diffusion con-
stant of the tissue water but rather an “apparent
diffusion coefficient” (ADC)—equivalent to the
self-diffusion constant of a more viscous, freely
diffusing liquid.

In tissue water that is not confined within the
microstructure of the tissue, for example in the
extracellular space, the RMS displacement is
approximated quite well by substituting D with
ADC in Eq. (3.3). The relationship between ADC
and RMS displacement is less straightforward in
the case of molecules that are confined within the
tissue microstructure (or more accurately, where
water molecules have a low probability of leaving
the bounding structure during the diffusion time

Fig. 3.11 Diffusion weighted MRI signal as a function of
b-value
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such as water inside myelinated axons). For short
diffusion times, RMS diffusion is well approxi-
mated by ADC. At long diffusion times the mole-
cules will have had enough time to traverse across
the structure and “bounce off” the bounding wall.
In this case, RMS displacement is not well 
approximated by Eq. (3.3). On the scale of an
MRI voxel, tissue contains a mixture of hindered
and restricted “compartments”; thus quantifica-
tion of indices of microstructure based solely on
Eq. (3.3) should be used in an informed manner.
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 Learning Points

•	 The	diffusion	coefficient;	 the	apparent	diffu-
sion	 coefficient	 (ADC);	 their	 relation	 to	 the	
pair	 of	 acquired	 diffusion-weighted	 images	
(DWI)	 and	 nondiffusion-weighted	 images	
(B0);	and	a	few	general	properties	of	the	ADC	
in	relation	to	the	amount	of	diffusion	weight-
ing	(the	b-value).

•	 The	concept	of	directionality	of	the	diffusion	
sensitizing	gradient;	the	concept	of	anisotropy	
in	 the	 acquired	 data;	 and	 inferring	 useful	
information	on	the	orientation	of	axon	bundles	
based	on	raw	DWIs,	normalized	DWIs,	ADC	
maps,	 and	 spherical	 polar	 plots	 of	 the	 latter	
two	quantities.

•	 The	 apparent	 diffusion	 tensor;	 evaluating	 a	
tensor	model;	 the	 link	between	 the	diffusion	
tensor	and	the	acquired	DWIs/B0;	the	mean-
ing	and	interpretation	of	the	tensor	elements;	
and	visualizing	the	tensors	by	spherical	polar	
plots	(ADC	peanuts).

•	 Eigendecomposition	of	the	tensor;	the	mean-
ing	 and	 interpretation	 of	 eigenvalues	 and	
eigenvectors;	and	interpreting	maps	of	eigen-
values	and	directionally	encoded	color	(DEC)	
maps	of	eigenvectors.

•	 Basic	visualization	of	 tensors	by	glyphs;	 the	
meaning	of	the	tensor	ellipsoid;	and	maps	of	
common	 measures	 such	 as	 mean	 diffusivity	
(MD),	 fractional	 anisotropy	 (FA),	 DEC	 FA,	
and	a	few	other	shape	measures.

•	 The	issue	of	tensor	fitting;	and	specific	tensor	
fitting	 methods:	 linear	 least	 squares	 (LLS),	
weighted	linear	least	squares	(WLLS),	nonlin-
ear	least	squares	(NLS),	and	robust	estimation	
of	tensors	by	outlier	rejection	(RESTORE).

 The (Self-)Diffusion Coefficient

 Measuring (Self-)Diffusion  
in the MR Scanner

Sit	 down,	 relax,	 and	 grab	 yourself	 a	 glass	 of	
water.	 Now	 put	 it	 in	 a	 nearby	MR	 scanner	 (or	
rather,	imagine	doing	this).	Acquire	a	(nondiffu-
sion-weighted)	 T2-weighted	 image	 as	 well	 as	
one	 of	 those	 fancy	 new	 diffusion-weighted	
images.	Now	let’s	see	if	we	can	recover	the	diffu-
sion	coefficient	of	water	from	these	two	images.	
More	 accurately,	 we’re	 talking	 about	 the	 self	
	diffusion coefficient	here:	it	quantifies	the	freedom	
of	movement	of	any	single	molecule	of	water,	in	
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the	glass	of	water.	We’ll	simply	refer	to	it	as	D.	
Also	note	that	we	need	(at	least)	two	images:	the	
diffusion-	weighted	 image	 would	 appear	 exactly	
the	same	as	the	T2-weighted	image,	if	it	were	not	
weighed down	by	the	appearance	of	diffusion;	i.e.,	
we’re	interested	in	the	relative	difference	between	
both	images.	Since	D	should	be	the	same	in	the	
entire	glass	of	water,	we	simply	choose	one	voxel.	
The	intensity	of	the	diffusion-	weighted	image	in	
this	voxel	will	be	referred	to	as	S,	while	the	(non-
diffusion-weighted)	 T2-weighted	 image’s	 inten-
sity	equals	S0.	As	explained	in	Chap.	3,	the	process	
of	diffusion	should	have	caused	attenuation	in	S,	
so	S	should	always	be	smaller	than	S0.	The	decay	
of	 S	 relative	 to	 S0	 is	 given	 by	 the	 so-called	
Stejskal-Tanner	equation	[1]:

	 S S e b D= -
0•

•

	 (4.1)

The	b-factor	in	this	equation	captures	all	the	rel-
evant	scanning parameters	and	was	introduced	
to	take	abstraction	of	them	[2].	In	general,	it	can	
be	 seen	 as	 the	 amount	 of	 diffusion weighting	
that	is	applied;	i.e.	how	sensitive	the	acquisition	
is	 to	 diffusion.	 Its	 value	 is	 typically	 set	 and	
reported	 in	 s/mm2.	As	a	 realistic	value	 for	our	
simple	experiment	at	hand,	we	could	have	cho-
sen	e.g.	800	s/mm2.	We	can	rewrite	this	equation	
so	it	becomes
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The	left	side	of	the	equation	only	contains	mea-
surements	we	obtained	 from	 the	 scanner	 (S	 and	
S0),	 while	 the	 right	 side	 contains	 the	 scanning	
parameters	 in	 function	 of	 which	 we	 did	 so	 (all	
contained	within	the	b-factor)	and	a	constant	(D	
for	our	glass	of	water	at	room	temperature).	From	
this	we	learn	that	a	logarithmic transform	(i.e.,	“−
ln(…)”)	 of	 our	 normalized measurement	 (i.e.,	
“S/S0”)	depends	linearly	on	the	applied	diffusion	
weighting	(i.e.,	b).	As	they	are	both	simply	related	
by	a	factor	D,	plotting	−	ln(S/S0)	in	function	of	b	
yields	a	straight	line	through	the	origin,	as	shown	
in	(Fig.	4.1).	The	slope	of	this	line	equals	D:

	
D

S
S

b
=
- ln( )

0

	
(4.3)

The	value	of	D	is	typically	reported	in	mm2/s.	For	
our	glass	of	water,	D	=	2.2	×	10−3	mm2/s	should	be	
realistic	at	room	temperature.	If	we	were	lying	in	
the	 scanner	 ourselves	 and	 performed	 the	 above	
calculation	 for	 a	 voxel	 of	 cerebrospinal	 fluid	
(CSF)	 in	 the	ventricles	of	 our	brain,	 a	 value	of	
about	3.1	×	10−3	mm2/s	 is	 to	be	expected.	While	
CSF	consists	mostly	(99	%)	of	water,	the	differ-
ence	can	be	explained	by	our	body temperature,	
which	is	of	course	higher	than	the	normal	room	
temperature.	One	point	is	enough	to	fully	fix	the	
slope	of	the	line	in	(Fig.	4.1)	and	per	consequence	
also	 determine	D.	 If	we	would	have	performed	
the	 measurement	 using	 a	 different	 b-value,	 we	
would	 obtain	 another	 point	 on	 this	 exact	 same	
line.	Using	a	higher b-value	would	result	in	more 
decay,	and	thus	a	lower value for S	(this	can	be	
most	easily	appreciated	by	looking	at	Eq.	4.1).	A	
lower value for S	 means	 a	 higher value for	 −
ln(S/S0).	Consequently,	we	are	 simply	consider-
ing	a	point	further	up	the	same	line	in	(Fig.	4.1).

 Conclusions

We	 are	 now	 able	 to	 calculate	 the	 self-diffusion 
coefficient D	of	free	water	(be	it	in	a	glass	or	as	
CSF	in	the	ventricles),	using	measurements	from	

Fig. 4.1	 In	case	of	free	diffusion	(e.g.,	in	a	glass	of	water,	
or	CSF	in	the	ventricles	of	the	brain),	the	plot	of	−	ln(S/S0)	
in	function	of	b-value	is	a	straight line	through	the	origin.	
One	point	(grey short dashed lines)	is	enough	to	fully	fix	
this	 line.	 It	 requires	 two	 images	 (S	 and	 S0)	 as	 well	 as	
knowledge	of	the	b-value	used	to	acquire	S.	The	slope	of	
the	resulting	line	equals	the	self-diffusion	coefficient	D
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a	MR	scanner	and	the	Stejskal-Tanner	equation.	
The	minimum requirements	 are	 a	 nondiffusion-	
weighted	image	(S0),	a	diffusion-weighted	image	
(S)	and	knowledge	of	the	b-value	that	was	used	
for	 performing	 the	 acquisition	 of	 the	 diffusion-	
weighted	image.

 The Apparent Diffusion Coefficient

 Apparent Complications

Feeling	confident	about	the	newly	gained	ability	
to	obtain	D	from	the	two	images	we	acquired	of	
our	brain,	we	also	attempt	 to	perform	 the	same	
calculation	 in	a	voxel	of	gray	matter.	Suddenly,	
however,	 we	 are	 confronted	 with	 a	 resulting	
value	of	about	0.9	×	10−3	mm2/s.	Apparently,	 the	
self-	diffusion	 coefficient	 of	water	 has	 changed,	
just	because	we	measured	 it	 in	 the	gray	matter.	
Maybe	something	went	wrong	with	the	scan?	We	
perform	the	acquisition	again	for	a	couple	of	dif-
ferent	b-values.	Carefully	dotting	out	the	obtained	
values	of	−	ln(S/S0)	in	function	of	b	and	connect-
ing	everything	loosely	by	hand,	we	obtain	a	curve	
such	as	the	one	depicted	in	(Fig.	4.2).	Apparently,	
the	 self-diffusion	coefficient	of	water	now	even	
changes	 in	 function	 of	 our	 chosen	 acquisition	
parameters.	 Using	 Eq.	 (4.3)	 to	 calculate	 D	
equates	 to	 connecting	 a	 certain	measured	 point	
on	this	curve	with	the	origin	by	a	straight line	(as	
shown	 in	 Fig.	 4.2)	 and	 assuming	 its	 slope	 still	
equals	D.	 Since	 the	 obtained	 values	 are	 clearly	
lower	than	expected	and	they	also	seem	to	vary	in	
function	 of	b,	 such	 a	 value	 is	 referred	 to	 as	 an	
apparent diffusion coefficient	(ADC)	[3].	It’s	cal-
culated	 from	 the	 measurements	 in	 exactly	 the	
same	way	as	D:

	
ADC =

- ln( )
S
S

b
0

	
(4.4)

To	understand	the	behavior	of	the	obtained	ADC	
in	regions	containing	tissue	(e.g.,	gray	matter),	we	
need	to	look	into	how	the	acquisition	of	a	diffu-
sion-weighted	 image	 works.	 An	 existing	 (e.g.,	
T2-weighted)	 sequence	 is	modified	by	 adding	 a	

couple	 of	 diffusion-sensitizing	 gradients.	 By	
	taking	abstraction	of	any	complicated	MR	phys-
ics,	we	 could	 say	 the	MR	 scanner	 actually	 per-
forms	a	simple	experiment	in	each	voxel:	it	takes	
a	snapshot	of	all	the	water	molecules,	waits	a	bit,	
and	then	takes	another	snapshot.	During	the	short	
waiting	 time,	 however,	 the	 molecules	 have	 the	
opportunity	 to	diffuse	 a	 bit.	 Per	 consequence,	 a	
relative	displacement	of	each	molecule	can	 take	
place	 in	 between	 both	 snapshots.	 The	 expected	
signal	of	the	original	(e.g.,	T2-weighted)	sequence	
is	 attenuated	 in	 function	 of	 the	 amount	 of	 dis-
placement	of	all	water	molecules	in	the	voxel	(as	
well	 as	 the	amount	of	 applied	diffusion	weight-
ing).	From	the	measurements	of	such	an	experi-
ment	(relative	to	a	nondiffusion-weighted	image),	
the	 Stejskal-Tanner	 equation	 is	 able	 to	 reliably	
calculate	D…	if	and	only	if	nothing	disturbs	the	
experiment.	However,	in	tissue,	such	as	gray	mat-
ter,	 there	are	cell membranes	 all	over	 the	place.	
Because	the	water	molecules	happen	to	bump	into	
the	 cells—i.e.,	 they	 are	 hindered—they	 have	 a	
harder	 time	 to	 diffuse	 further	 away	 during	 the	
experiment.	Water	 inside	 the	 cells	may	 even	 be	
restricted	to	a	confined	space.	And	thus,	our	cal-
culation	of	D	will	apparently	yield	a	 lower	out-
come,	which	is	why	we	call	it	the	ADC	instead.	
The	time	the	experiment	allows	the	molecules	to	

Fig. 4.2	 In	 case	of	 hindered/restricted	diffusion	 (in	 tis-
sue,	e.g.	the	grey	matter	of	the	brain),	the	plot	of	−	ln(S/S0)	
in	function	of	b-value	is	a	curve	through	the	origin.	Based	
on	one	point	(grey short dashed lines),	we	can	calculate	an	
apparent	diffusion	coefficient	(ADC).	Just	like	D,	it	equals	
the	slope	of	the	line	that	connects	this	point	to	the	origin	
(black long dashed line)
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diffuse	is	one	of	the	parameters	that	makes	up	the	
b-value.	It’s	easy	to	imagine	that	a	larger	diffusion	
time	 will	 allow	more	molecules	 to	 hit	 some	 of	
these	 cell	 membranes.	 Hence,	 the	 effect	 of	 the	
hindered/restricted	diffusion	on	our	measurement	
will	increase	with	b-value;	yet	another	reason	to	
refer	to	the	outcome	of	our	calculations	using	the	
term	“ADC”.	This	is	also	illustrated	in	(Fig.	4.3):	
using	a	larger b-value	renders	the	measurement	of	
S less sensitive to	(truly)	free diffusion,	in	favor	of	
hindered/restricted	diffusion.	As	 such,	S	will	 be	
less attenuated	and	the	value	of	−	ln(S/S0)	will	be	
smaller	than	expected,	yielding	a	downward cur-
vature	 when	 plotting	−	ln(S/S0)	 in	 function	 of	 b.	
This	finally	leads	to	an	important	property	of	the	
ADC	in	tissue,	as	indicated	in	(Fig.	4.3):	using	a	
higher b-value	results	in	a	lower ADC.

 Apparent Advantages

At	this	point,	you	might	start	to	wonder	what	the	
point	is	of	trying	to	find	out	D	in	voxels	contain-
ing	tissue,	only	to	end	up	having	to	deal	with	a	

deceiving	 ADC	 instead.	 However,	 you	 have	 to	
look	at	it	from	the	bright	side:	we	now	effectively	
have	 access	 to	 a	 probe	 that	 tells	 us	 something	
about	 these	 cells	 that	 hinder/restrict	 diffusion.	
That’s	right:	even	though	our	voxel	size	might	be	
quite	 crude	 (2	×	2	×	2	 mm3	 or	 larger	 is	 not	
unusual),	 the	 measured	 values	 are	 sensitive	 to	
differences	in	structure	at	a	micrometer	scale!	We	
are	not	interested	in	the	ADC	for	the	purpose	of	
quantifying	diffusion	itself,	but	rather	to	investi-
gate properties of the tissue	 that	 apparently	
caused	the	diffusion	process	to	behave	in	the	way	
that	we	measure.

Before	moving	on,	let’s	investigate	one	more	
property	of	 the	ADC	that	 teaches	us	 something	
else	about	its	capacity	in	distinguishing	different	
tissues.	Consider	the	setting	in	(Fig.	4.4):	it	pres-
ents	again	−	ln(S/S0)	in	function	of	b,	but	this	time	
for	measurements	at	two	different	locations	(e.g.,	
in	the	brain).	Looking	at	 the	plots	and	applying	
what	we	just	learned,	we	can	safely	say	that	the	
voxel	 at	 position	 pg	 contains	 more	 hindering/
restricting	tissue	than	the	voxel	at	position	pf.	The	
former	 voxel’s	 plot	 shows	 greater	 curvature,	

Fig. 4.3	 The	ADC	is	dependent	on	 the	b-value	used	 to	
acquire	 S.	 Due	 to	 the	 downwards	 curvature	 of	 the	 plot	
of	−	ln(S/S0)	in	function	of	b-value,	a	larger	b-value	results	
in	a	lower	ADC.	An	explanation	lies,	e.g.,	in	the	fact	that	
increasing	 the	 diffusion	 time	 allows	more	molecules	 to	
bump	into	cell	membranes.	This	will	on	average	decrease	
their	final	displacement,	resulting	in	a	reduced	amount	of	
attenuation	 of	 S	 and	 finally	 leading	 to	 a	 lower	 value	
for	−	ln(S/S0)	 than	 expected	 in	 a	 free	 (non-hindered/
restricted)	environment

Fig. 4.4	 The	contrast	of	the	ADC,	e.g.,	between	two	dif-
ferent	tissues	at	voxel	positions	pf	and	pg,	is	dependent	on	
the	b-value	used	to	acquire	S.	Due	to	different	tissue	prop-
erties,	both	plots	of	−	ln(S/S0)	in	function	of	b-value	show	
a	 different	 curvature.	 The	 tissue	 at	pf	 imposes	 less	 hin-
drance/restriction	on	the	diffusion	as	compared	to	the	tis-
sue	at	pg	and	thus	the	accompanying	curve	is	closer	to	a	
straight line.	Hence,	ADCf	is	larger	than	ADCg	for	a	given	
b-value.	Increasing	the	b-value	also	results	in	an	increase	
of	the	relative	difference	between	both	ADC	values,	i.e.,	
an	increase	of	contrast
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while	 the	 latter	better	approximates	 the	 straight	
line	we	would	 expect	 in	 case	 of	 free	 diffusion.	
Due	to	this	difference	in	curvature	of	both	plots,	
the	relative difference	in	magnitude	of	−	ln(S/S0),	
and	thus	also	ADC,	increases for larger b-values.	
In	other	words,	using	a	larger b-value	results	in	a	
better contrast	 when	 calculating	 an	ADC	map.	
This	 fact	 of	 course	 begs	 the	 question	 why	 we	
should	 still	 limit	ourselves	 to	 a	 certain	b-value.	
That	is,	why	not	use	an	absurdly	high	b-value	for	
maximal	contrast?	The	two	most	important	fac-
tors	 that	 generally	 contribute	 to	 the	b-value	 are	
the	 strength	 of	 the	 applied	 diffusion-sensitizing	
gradients	and	the	time	that	we	allow	the	water	to	
diffuse	during	the	experiment.	The	former	is	lim-
ited	by	what	we	can	achieve	with	available	hard-
ware.	 The	 latter	 is	 fully	 under	 our	 control.	
Allowing	 a	 too	 long	 diffusion	 time,	 however,	
might	result	in	other	more	macroscopic	motion	to	
be	captured	and	thus	confounding	our	measure-
ments.	Even	if	this	would	not	be	the	case,	we	also	
have	to	recall	that	S	only	decays	further	in	func-
tion	of	b-value	(remember	Eq.	4.1	again?).	The	
noise level	 of	 our	 measurements,	 on	 the	 other	
hand,	does not decrease;	 that	 is,	using	a	higher 
b-value	 yields	 a	 lower signal-to-noise ratio	
(SNR)!

 Conclusions

We	have	 learned	why	 the	MR	measurements	 in	
combination	 with	 the	 Stejskal-Tanner	 equation	
are	not	suited	to	calculate	the	true	self-diffusion	
coefficient	of	water	 in	voxels	 containing	 tissue,	
e.g.,	 where	 diffusion	 is	 hindered	 or	 even	
restricted.	The	obtained	apparent diffusion coef-
ficient	 (ADC),	 on	 the	 other	 hand,	 can	 provide	
interesting	information	about	the	microstructure	
of	 the	 tissue	 under	 investigation.	The	minimum 
requirements	 for	 obtaining	 it	 are	 again	 a	
nondiffusion-	weighted	 image	 (S0),	 a	 diffusion-	
weighted	image	(S)	and	knowledge	of	the	b-value	
that	was	used	 for	performing	 the	acquisition	of	
the	diffusion-weighted	image.	The	ADC	is,	how-
ever,	dependent	on	the	b-value:	a	higher b-value	
results	in	a	lower ADC.	It	also	improves the con-
trast	(e.g.,	of	the	ADC	map),	but	at	the	cost	of	a	

reduced SNR.	Due	to	 these	dependencies,	 inter-
preting/reporting	 the	 ADC	 only	 makes	 sense	
when	the	b-value	is	also	specified.	Finally,	com-
paring	 ADC	 values	 or	 maps	 originating	 from	
acquisitions	 with	 different	 b-values	 does	 not	
make	a	lot	of	sense.

 Gradient Directions and Anisotropy

 Anisotropic Complications

Up	 to	 now,	 we’ve	 been	 silently	 ignoring	 yet	
another	important	fact	that	will	complicate	every-
thing	even	more.	It	concerns	that	diffusion-sensi-
tizing	gradient:	it’s	about	time	we	started	taking	
into	 account	 that	 it’s	 applied	 along	 a	 certain	
direction.	Nothing	to	worry	about,	if	it	were	not	
for	the	fact	that	our	measurements	are	only	sensi-
tive	 to	 diffusion	 along	 this	 direction.	 Actually,	
that	is	not	fully	correct;	it’s	better	to	say	that	they	
are	only sensitive to diffusion with a component 
along this direction.	Before	we	start	talking	fur-
ther	about	directions,	 let’s	 settle	on	some	refer-
ence	frame.	We	define	three	(perpendicular)	axes	
through	the	brain	as	follows:	x	runs	from	left to 
right,	y	from	back to front,	and	z	from	bottom to 
top.	 So	 suppose	 we	 would	 apply	 the	 diffusion	
gradient	 along	 the	 direction	 of	 x,	 what	 are	 the	
implications	 then?	 It	 basically	 means	 that	 the	
measurements	 are	 fully sensitive	 to	 diffusion	
along x,	but	gradually less sensitive	to	diffusion	
along	directions	that	increasingly deviate	from	x,	
up	to	the	point	where	they	are	completely insensi-
tive	 to	 diffusion	 along	 directions	perpendicular	
to	x	(i.e.,	directions	in	the	yz-plane).

But	why	should	we	worry	about	directionality	
of	diffusion	anyway?	In	our	earliest	experiments	
with	a	glass	of	water	or	CSF	in	the	ventricles,	we	
shouldn’t:	 diffusion	 takes	 place	 equally in all 
directions.	In	tissue	randomly	containing	cells—
imagine	 a	 bunch	 of	 spherical	 cells	 packed	
together—diffusion	 is	 hindered	 and	 restricted,	
yet	 probably	more	 or	 less	 equally in all direc-
tions.	So	again,	there’s	nothing	to	worry	about:	as	
we	are	in	both	cases	studying	isotropic	measure-
ments,	 it	 is	 sufficient	 to	 only	 measure	 along	 a	
single	direction.	Our	findings	(e.g.	calculating	the	
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ADC)	 should	have	been	 the	 same	 for	measure-
ments	 along	 any	 other	 direction.	 But	 let’s	 con-
sider	the	more	interesting	case	of	the	white	matter	
in	the	brain:	it	consists	of	long	coherent	bundles	
of	axons,	almost	resembling	a	bunch	of	cylindri-
cal	tubes	packed	closely	together	(see	Chap.	3).	
One	can	imagine	that	water	molecules	in	between	
and	inside	these	tubes	have	an easier time diffus-
ing along them rather than perpendicular to 
them.	We	thus	say	that	diffusion	in	the	white	mat-
ter	is	anisotropic.

But	 how	 relevant	 is	 this?	 Is	 this	 anisotropy	
large	enough	to	be	measured;	i.e.	can	we	see	it	in	
our	 diffusion-weighted	 images?	 To	 answer	 this	
question,	 we’ll	 introduce	 some	 real	 data.	 In	

(Fig.	 4.5),	 we	 start	 by	 presenting	 a	 classic	
T1-weighted	 and	 T2-weighted	 image	 for	 refer-
ence.	Next	 is	 the	nondiffusion-weighted	 image:	
it’s	 again	 a	 T2-weighted	 image,	 but	 it	 already	
shows	the	lower spatial resolution	at	which	DWI	
datasets	are	 typically	acquired.	 In	 this	case,	 the	
voxel	 size	 equals	 2.2	×	2	×	2	 mm3.	 Because	 the	
image	is	not	diffusion-weighted,	but	it	is	acquired	
as	 part	 of	 a	 DWI	 dataset,	 we	 also	 sometimes	
(informally)	 refer	 to	 it	 as	 the	 “B0”	 (it	 equals	 a	
diffusion-weighted	 image	with	 a	 b-value	 of	 0).	
For	 convenience,	 we	 already	 applied	 a	 whole	
brain	mask	to	it.	On	the	second	row	of	(Fig.	4.5),	
three	 diffusion-weighted	 images	 (DWIs)	 are	
shown	 (also	 masked).	 They	 were	 all	 acquired	

Fig. 4.5	 Top row:	 T1-weighted	 image,	 T2-weighted	
image,	 B0	 image	 (“diffusion-weighted	 image”	 with	 a	
b-value	 of	 0,	 i.e.,	 non	diffusion-weighted).	Bottom row:	
diffusion-weighted	images	(DWIs)	acquired	by	applying	

gradients	 along	 the	 direction	 of	 x,	 y	 and	 z.	 The	arrows	
indicate	 a	 region	 in	 the	 genu	 of	 the	 corpus	 callosum	
(GCC),	 where	 the	 anisotropy	 can	 be	 easily	 seen	 and	
understood
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using	 exactly	 the	 same amount	 of	 diffusion	
weighting:	 b	=	800	 s/mm2.	 The	 diffusion-	
sensitizing	gradients	are,	however,	applied	along 
different directions:	respectively	along	the	direc-
tion	 of	 x,	 y	 and	 z.	 Differences	 in	 contrast	 can	
clearly	 be	 seen,	 which	 consequently	 confirms	
that	we	will	have	to	account	for	anisotropy	in	our	
measurements.

 Anisotropic Advantages

Just	as	when	we	introduced	the	ADC,	we’ll	also	
try	 to	 use	 this	 fact	 to	 our	 advantage:	 we	 now	
have	access	 to	a	probe	that	might	even	provide	
us	 with	 information	 on	 the	 anisotropy of the 
microstructure	that	hinders	and	restricts	the	pro-
cess	of	diffusion.	Applying	what	we	have	learned	
from	this	chapter	up	to	this	point,	let’s	see	if	we	
can	 already	 figure	 out	 something	 useful	 from	
these	three	diffusion-	weighted	images.	Consider	
the	 indicated	 region	 in	 the	 genu	 of	 the	 corpus	
callosum	 (GCC):	 it	 has	 a low DWI-intensity 
along x,	but	a	 (relatively)	higher DWI-intensity 
along y and z.	Because	we	know	that	more	diffu-
sion	 causes	 increased	 decay	 of	 S	 (the	 DWI-
intensity),	we	 can	 conclude	 from	 these	 images	
that	 there	 is	more free diffusion along x,	while	
there	is	more hindrance and restriction along y 
and z.	 Translating	 this	 to	 “reality”,	 we	 might	
infer	that	a bundle of tubelike axons runs along 
the left-right axis	in	this	region,	connecting	both	
hemispheres	of	the	brain.	Note	that	we	are	apply-
ing	inductive	reasoning	here:	we	know	that	such	
a	 left-right	 oriented	 structure	 would	 result	 in	
such	 a	 pattern	 of	 diffusion	 and	 thus	 also	 such	
DWI	measurements	along	these	three	directions,	
yet	we	reason	that	the	latter	measurements	were	
effectively	 caused	 by	 the	 former	 structure.	
Considering	 we	 only	 measured	 along	 three	
directions,	 that’s	a	pretty	strong	conclusion.	Of	
course,	 inherently	 we	 might	 have	 also	 applied	
possible	anatomical	knowledge	and	the	fact	that	
a	structure	along	this	direction	makes	sense	con-
sidering	the	spatial/anatomical	neighborhood	of	
the	 region	 (i.e.,	 the	 region	 is	 in	 between	 both	
hemispheres).

 Getting a Grip on the Information 
Overload

In	 practice,	 however,	we	will	 typically	 perform	
the	 acquisition	 using	 more	 than	 three	 different	
gradient	directions.	In	the	previous	example,	we	
were	just	lucky	that	the	structure	under	investiga-
tion	accidently	happened	to	run	along	one	of	the	
three	mutually	 perpendicular	 directions	 that	we	
sampled.	 If	 it	 would	 instead	 be	 running	 at	 any	
other	 oblique	 angle,	 these	 three	 measurements	
would	 clearly	 be	 inadequate	 to	 determine	 its	
direction.	 In	 our	 experiment	 at	 hand,	 however,	
we	actually	acquired	DWIs	for	a	total	of	45 dif-
ferent gradient directions!	The	specifics	of	such	
an	acquisition	are	presented	in	the	gradient table,	
that	 contains	one row for each acquired image,	
representing	 its	 gradient	 direction	 and	 b-value.	
The	gradient	table	for	our	current	experiment	is	
provided	 in	 (Fig.	 4.6).	 As	 it	 was	 already	 quite	
tedious	to	infer	information	by	mentally	combin-
ing	 three	 images,	 considering	 45	 DWIs	 all	 at	
once	is	nearly	impossible.	To	begin	with,	we	will	
no	longer	visualize	the	original	DWIs,	as	they	are	
still	 only	 representing	 a	 (partially)	 decayed	
T2-weighted	signal.	Because	of	this,	these	DWIs	
suffer	so-called	T2 shine-through:	a	higher	inten-
sity	 might	 not	 (only)	 result	 due	 to	 hindered/
restricted	diffusion;	it	might	also	be	caused	by	an	
originally	 high	T2	 intensity	 (e.g.,	 in	 areas	 con-
taining	 CSF).	 Therefore,	 it	 is	 more	 evident	 to	
consider	 DWIs	 after	 normalization by the B0	
(i.e.,	the	normalized	measurements	“S/S0”).	Such	
normalized	versions	of	our	original	DWIs	for	the	
three	x,	y,	and	z	gradient	directions	are	shown	in	
(Fig.	4.7).	Next	up	is	the	actual	challenge	of	visu-
alizing	 the	 information	 of	 all	 45	 normalized	
DWIs	 in	 a	 conveniently	 organized	way.	 Rather	
than	showing	45	separate	images,	we	could	try	to	
combine	all	information	of	each	single	voxel	and	
visualize	it	within	that	particular	voxel.	Since	the	
different	values	of	S/S0	are	a	function of the gra-
dient direction,	a	spherical polar plot	is	the	per-
fect	 candidate	 for	 the	 job.	 In	 such	 a	 plot,	 the	
radius	of	a	sphere	is	locally	manipulated	to	equal	
the	 function	 value	 at	 that	 three-dimensional	
angle.	We	also	smoothly	interpolated	the	values	
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between	the	45	directions	in	order	to	achieve	the	
final	visualization	in	(Fig.	4.7).	Note	that,	due	to	
the	multitude	of	information	on	display,	we	have	
to	 zoom	 in	 up	 to	 a	 reasonable	 level	 to	 show	
everything	 with	 the	 required	 amount	 of	 detail.	
We	choose	to	further	focus	on	the	region	of	the	
GCC	that	was	the	subject	of	our	earlier	thought	
experiment.	Furthermore,	a	little	extra	color	was	
added	to	the	plot:	each	point	on	the	surface	of	the	
spherical	 polar	 plots	 is	 colored	 according	 to	 its	
direction:	red	is	assigned	to	x,	green	to	y	and	blue	
to	z.	In	(the	middle	of)	the	GCC,	we	spot	larger	
values	for	green	(y)	and	blue	(z),	and	smaller	val-
ues	 for	 red	 (x).	 By	 linking	 larger values	 to	
hindrance/restriction,	 we	 can	 thus	 confirm	 our	
hypothesis	 of	 an	 axonal	 bundle	 connecting	 left	
and	right.

Associating	 larger	 values	 with	 less	 diffusion	
still	feels	a	bit	awkward,	to	say	the	least.	So	why	
don’t	we	simply	employ	 the	ADC	values?	Easy	
enough:	just	calculate	the	45	ADC	maps	from	the	
normalized	 DWIs	 using	 Eq.	 (4.4).	 We	 present	
these	maps—again	for	the	three	x,	y,	and	z	gradi-
ent	 directions—in	 (Fig.	 4.8).	 This	 time,	 larger 
values	equal	more free diffusion.	We	can	 just	as	
well	create	a	spherical	polar	plot	of	the	45	ADC	
values	in	each	voxel,	which	is	again	provided	for	
the	GCC	region	 in	 (Fig.	4.8).	Larger values	 are	
now	conveniently	oriented	along	the	direction	of	
the	greatest amount of free diffusion,	and	colored	
accordingly.	 Finally,	 remember	 that	 property	 of	
the	contrast	increasing	with	b-value?	Of	course,	it	
also	applies	for	measurements	(and	ADC	values)	
acquired	using	different	gradient	directions:	using	

Fig. 4.6	 The	gradient	
table	contains	one	row	for	
each	acquired	image.	The	
x,	y	and	z	components	of	
the	gradient	direction	are	
provided	in	the	first	three	
columns,	while	the	b-value	
is	given	in	the	last	one.	A	
b-value	of	0	indicates	a	B0	
image;	the	gradient	
direction	is	irrelevant	in	
such	a	case.	The	red 
encircled rows	refer	to	the	
DWIs	presented	in	Fig.	4.5
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a	 higher b-value	 will	 increase the contrast	 in	
these	spherical	polar	plots.	However,	as	we	rea-
soned	before,	the	SNR	will	also	drop.

 Conclusions

We	 started	 taking	 into	 account	 the	 fact	 that	 the	
diffusion-sensitizing	 gradient	 is	 applied	 along	 a	
certain	 direction.	 The	 resulting	 DWI	 measure-
ment	is	only	sensitive	to	diffusion with a compo-
nent along this direction.	 From	DWIs	 acquired	
using	different	gradient	directions,	we	could	con-
clude	that	anisotropic diffusion	takes	place	in	the	

white matter	 up	 to	 a	 measurable	 extent.	 Again	
using	this	to	our	advantage,	we	now	have	a	probe	
for	the	anisotropy of microstructure	in	each	voxel.	
There	are	different	ways	to	visualize	data	result-
ing	from	acquisitions	using	many	different	gradi-
ent	directions,	yet	the	most	convenient	option	was	
a spherical polar plot of the ADC values	in	each	
voxel:	 such	 a	 visualization	 shows	 larger values	
along	the	direction	exhibiting	the	greatest amount 
of free diffusion.	 Optional	 color coding	 is	 typi-
cally	done	according	to	a	directional	scheme:	red 
for x	(left-right),	green for y	(back-front),	and blue 
for z	 (bottom-top).	The	requirements	 for	 investi-
gating	the	anisotropic	nature	of	diffusion	are	a	B0	

Fig. 4.7	 Top row:	DWIs	for	the	x,	y,	and	z	gradient	direc-
tions,	after	normalization	by	the	B0	(i.e.,	the	normalized	
measurements	“S/S0”).	Bottom row:	Spherical	polar	plots	

of	 the	 normalized	DWI	values	 in	 a	 region	 of	 the	GCC,	
overlaid	on	a	map	of	the	average	normalized	DWI	value
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(nondiffusion-	weighted	 image),	 a	 number	 of	
DWIs	and	knowledge	of	the	b-value	and	gradient 
directions	 that	 were	 used	 for	 performing	 the	
acquisition	of	the	DWIs.	This latter point is very,	
very important!	Did	we	 just	stress	 that	enough?	
Because	it	 is	(very,	very	important):	without	 the	
accompanying	 b-value	 and	 gradient directions,	
the	 full	 set	 of	 carefully	 acquired	 DWIs	 is	 nigh	
useless;	we	wouldn’t	be	able	to	associate	the	(nor-
malized)	measurements	nor	the	ADC	values	with	
any	 directions.	 This	 vital	 piece	 of	 information	
should	 thus	 be	 stored	 with	 the	 data;	 it	 is	 often	
summarized	 in	 a	 gradient	 table,	 as	 shown	 in	
(Fig.	4.6).	On	the	number	of	gradient	directions:	
more	measurements	are	of	course	always	better,	

yet	 require	 more	 scanning	 time.	 And	 finally,	 a	
higher b-value	yields	better contrast—also	in	the	
spherical	polar	plots	of,	e.g.,	 the	ADC	values—
but	will	reduce SNR.

 The (Apparent) Diffusion Tensor

 Motivation and Implications 
of Modeling

Looking	back	at	the	spherical	polar	plots	of	the	
ADC	 values	 in	 (Fig.	 4.8),	 we	 notice	 that	 they	
appear	 quite	 noisy.	 That’s	 not	 surprising,	 since	
they	simply	present	a	logarithmic	transformation	

Fig. 4.8	 Top row:	ADC	maps	for	the	x,	y,	and	z	gradient	directions.	Bottom row:	Spherical	polar	plots	of	the	ADC	
values	in	a	region	of	the	GCC,	overlaid	on	a	map	of	the	average	ADC	value
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of	the	original	(normalized)	data:	nothing	is	mod-
eled,	all	 the	measurement	noise	 is	still	 showing	
(albeit	logarithmically	transformed	…	remember	
this,	 as	 it	will	 happen	 to	 bug	 us	 later	 on).	And	
thus	models	were	 invented.	Without	 going	 into	
the	how	and	why	of	some	historical	choices	that	
have	been	made	in	model	development,	we’ll	just	
introduce	the	(legendary)	diffusion tensor model	
[4]	 that	 is	 central	 to	 the	 theory	 and	 practice	 of	
DTI.	In	this	context,	to	be	exact,	we	should	refer	
to	it	as	the	apparent	diffusion	tensor.	This	name	
refers	to	the	fact	that	we	will	employ	a	tensor	to	
represent/model	 the values of the ADC	 in	 func-
tion	of	 (gradient)	 direction,	 in	 each	voxel.	This	
means	that,	once	we	have	somehow	determined	
the	 correct	 parameters	 of	 this	 model	 in	 each	
voxel,	we	can	evaluate	it	for	as	many	directions	
as	we	like	in	order	to	visualize	it	again	as	a	spher-
ical	polar	plot	of	(modeled)	ADC values.	As	the	
diffusion	 tensor	model	 has	only six parameters	
(compare	 this	 to	 the	 45	 ADC	 values	 we	 just	
obtained	from	our	dataset	in	each	voxel!),	it	will	
greatly	 simplify	 the	 features	 of	 our	 directional	
profile	of	the	ADC.

 Understanding DTI, in Theory: 
The Maths!

Mathematics	…	it’s	not	as	hard	as	it	sounds,	so	
let’s	 just	 get	 to	 it	 then!	From	 this	 point	 on,	we	
will	 represent	 a	 (gradient)	 direction	by	 a	 three-	
element	column	vector	g,	and	the	apparent	diffu-
sion	tensor	D	by	a	3	×	3	symmetric matrix:

	

g D= =[ ] [ ]

g

g

g

D D D

D D D

D D D

x

y

z

xx xy xz

xy yy yz

xz yz zz
	

(4.5)

For	the	mathematics	(and	software	that	employs	
it)	to	work	out	well,	g	should	be	a	unit vector.	As	
stated	 before,	 the	 tensor	 D	 has	 only six free 
parameters	(the	tensor	elements	Dxx,	Dyy,	Dzz,	Dxy,	
Dxz,	Dyz)	because	its	matrix	is	symmetric:	the	ele-
ments	above	and	below	the	main	diagonal	are	the	
same.	We’ll	get	into	the	meaning	of	these	separate	

tensor	elements	later.	Given	such	a	tensor	D,	we	
can	“evaluate”	it	for	a	given	direction	g	by	using	
the	following	expression:

g DgT = + +
+ + +

g D g D g D

g g D g g D g g D
x xx y yy z zz

x y xy x z xz y z yz

2 2 2

2 2 2 	
(4.6)

where	gT	is	the	transpose	of	g.	The	right	side	of	
the	 equation	 simply	 shows	 what	 you	 would	
obtain	 if	 you	 did	 the	 symbolic	 math	 by	 hand	
using	 the	 vector	 and	 tensor	 element	 symbols	
from	Eq.	(4.5).	The	outcome	of	this	expression—
if	we	were	to	fill	in	some	specific	numbers	repre-
senting	the	vector	and	tensor	elements—is	thus	a	
single	 scalar	 number:	 the value of our tensor 
model,	along a given direction.	As	we	will	now	
employ	such	a	tensor	to	symbolize	the	ADC	val-
ues,	 we	 can	 simply	 plug	 it	 into	 the	 good	 old	
Stejskal-Tanner	Eq.	(4.1)	to	obtain	the	following	
expression:

	 S S e b= -
0•

•g DgT

	 (4.7)

Don’t	take	this	one	lightly:	this is the	essence	of 
DTI.	It	provides	the	direct	relationship	between	
the	 chosen	 experimental	 parameters	 (b	 and	 g),	
the	measurements	(S	and	S0),	and	the	parameters	
of	 the	diffusion	tensor	model	(D).	It	now	effec-
tively	 includes	 the	 gradient	 direction	g	 that	we	
took	 abstraction	 of	 before,	while	 the	 vehicle	 to	
describe	the	ADC	is	no	longer	a	single	number,	
but	a	tensor	that	can	describe	values	that	vary	in	
function	of	(gradient)	direction.	Just	like	we	did	
before	with	the	Stejskal-Tanner	equation,	we	can	
rewrite	Eq.	(4.7)	to	single	out	the	parts	that	equate	
to	the	ADC:

	
g DgT =

- ln( )
S
S

b
0

	
(4.8)

The	right-hand	side	equals	the	expression	of	the	
ADC	 that	 we	 introduced	 before	 (i.e.	 Eq.	 4.4),	
while	 the	 left-hand	 side	 simply	 says	 that	 we	
would	like	to	see	this	ADC	value	arising	from	our	
model	D	when	evaluated	for	 the	gradient	direc-
tion	g	 that	this	particular	ADC	value	relates	 to.	
Completely	 writing	 out	 the	 left-hand	 side	
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expression	 using	 Eq.	 (4.6)	 finally	 yields	 the	
	following	result:

	

g D g D g D

g g D g g D g g D

S S

x xx y yy z zz

x y xy x z xz y z yz

2 2 2

0

2 2 2

+ +
+ + +
= - ln( / ) / bb 	

(4.9)

If	we	now	perform	a	DWI	experiment	as	before	
(acquiring	S	and	S0,	carefully	noting	down	b	and	
g),	we	can	fill	in	everything	but	the	six unknown 
parameters	 of	 the	 diffusion	 tensor	 model.	 As	
solving	 a	 single	 equation	 for	 six	 unknowns	 is	
quite	an	impossible	task,	we’ll	clearly	need	more	
of	 these	 equations,	 and	 by	 consequence	 more	
acquisitions.	 Mathematically,	 we	 know	 that	 at	
least	six	equations	will	be	necessary	to	be	able	to	
determine	 the	 full	 apparent	diffusion	 tensor.	 In	
practice,	we’ll	be	needing	at least	six	DWIs	for	
different	gradient	directions	as	well	 as	a	 single	
B0	to	normalize	our	measurements	to.	As	stated	
before,	it	is	essential	that	every	DWI	is	tied	to	its	
respective	 gradient	 direction.	 Acquiring	 more	
DWIs	 (for	 different	 gradient	 directions)	 will	
lead	 to	more	 than	 six	 equations.	 In	 such	a	 set-
ting,	no	exact	solution	for	the	six	unknown	ten-
sor	 elements	 generally	 exists,	 because	 the	 full	
system	 of	 equations	 is	 overdetermined.	 This	
actually	 is	 a	 good	 thing!	 Even	 though	we	 can	
find	a	single	exact	solution	 in	case	of	six	DWI	
measurements,	 this	 solution	 will	 also	 exactly	
represent	all	the	noise	in	the	data.	If	we	perform	
the	acquisition	using	a	larger	amount	of	differ-
ent	gradient	directions,	a	solution	will	have	to	be	
found	that	fits	the	data	as	good	as	possible.	We	
then	hope	that	the	part	that	doesn’t fit	the	model	
(i.e.,	the	residuals)	is	the	noise,	which	we	(opti-
mally)	don’t	want	to	model	anyway.	We’ll	focus	
on	the	 issue	of	 tensor	fitting	later.	For	 the	 time	
being,	let’s	take	it	for	granted.

 Understanding the Tensor Elements, 
in Practice

So,	 effectively	 applying	 such	 a	 tensor	 fitting	
method	 to	 our	 45	 gradient	 direction	 dataset	 at	
hand,	we	end	up	with	six	numbers	in	each	voxel,	
i.e.,	the	components	which	describe	an	apparent	
diffusion	tensor.	Now	what	can	we	actually	do	

with	 it?	 For	 starters,	 let’s	 take	 a	 look	 at	 some	
maps	of	these	six	tensor	elements.	There	are	two	
distinct	categories	amongst	 them:	 the	diagonal	
elements	(Dxx,	Dyy,	Dzz)	and	the	off-diagonal	ele-
ments	(Dxy,	Dxz,	Dyz).	The	former	are	presented	
on	the	first	row	of	(Fig.	4.9),	while	the	latter	are	
shown	on	the	second	row.	The	interpretation	of	
the	 diagonal	 elements	 is	 straightforward:	 they	
represent	 ADC	 values	 along	 the	 respective	
directions	of	x,	y,	and	z.	Because	we’ve	shown	
maps	 of	 the	 original	 (unfitted)	 ADC	 values	
along	these	directions	in	(Fig.	4.8),	we	can	com-
pare	them	directly	 to	 the	maps	of	Dxx,	Dyy,	and	
Dzz	in	(Fig.	4.9).	Indeed,	they	look	more	or	less	
alike.	The	more	careful	observer	may	note	that	
the	latter	look	less	noisy.	This	is	not	surprising:	
they	represent	fitted	values,	i.e.,	all	45	measure-
ments	 contributed	 to	 them.	 From	 what	 we	
already	know,	we	can	even	figure	out	mathemat-
ically	why	e.g.	Dyy	corresponds	to	 the	value	of	
the	tensor	model	(i.e.	the	ADC)	along	y:	just	fill	
in	[0	1	0]T	(i.e.,	the	direction	of	y)	as	direction	g	
in	 Eq.	 (4.6)	 and	 evaluate	 using	 the	 right-hand	
side	 expression;	 the	 outcome	 trivially	 equals	
Dyy.	We	can	thus	conclude	that	the	diagonal	ele-
ments	are	in	practice	meaningful	and	quite	easy	
to	understand.	The	off- diagonal	 elements	 (sec-
ond	row	of	Fig.	4.9),	on	the	other	hand,	offer	a	
less	intuitive	source	of	information.	They	repre-
sent	 the	 covariance	 between	 each	 pair	 of	 axes	
(i.e.,	xy,	xz,	and	yz).	That’s	because	the	full	dif-
fusion	 tensor	 is	 actually	 a	 covariance	 matrix.	
Apart	from	being	a	great	conversation	starter	at	
an	 engineering	 party,	 those	 last	 two	 sentences	
won’t	 get	 you	 anywhere	 in	 daily	 practice:	 the	
off-diagonal	 elements	 just	 don’t	 really	 have	 a	
direct practical use	or	meaning.	The	only	reason	
we	do	discuss	them	here,	is	to	emphasize	what	
they	don’t mean:	they	do	not	represent	the	val-
ues	of	the	ADC	along	some	diagonal	direction	
(so	 don’t	mistake	 them	 for	 that!).	 This	 should	
also	 be	 clear	 from	 the	 fact	 that	 they	 equally	
cover	a	range	of	positive	as	well	as	negative	val-
ues	(while	ADC	values	should	not	be	negative).	
One	final	property	worth	mentioning	though:	if	
all	off-diagonal	elements	are	zero,	the	tensor	is	
perfectly	aligned	to	the	x-,	y-,	and	z-axes.	What	
that	means	will	become	more	clear	if	we	visual-
ize	the	tensor	in	3D.
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 Understanding the Tensor, in Practice: 
Peanuts!

Talking	about	visualization,	let’s	take	a	look	at	a	
spherical	 polar	 plot	 of	 the	ADC	values	 actually	
represented	by	the	fitted	diffusion	tensors.	These	
are	shown	for	our	trustworthy	GCC	region	on	the	
bottom	row	of	(Fig.	4.9),	and	can	again	be	directly	
compared	 to	 the	 original	 (unfitted)	 values	 in	
(Fig.	4.8).	From	this	comparison,	it	is	obvious	that	
the	 noisy	 appearance	 has	 been	 greatly	 reduced:	
while	the	original	plots	showed	a	unique	and	dif-
ferent	 pattern	 in	 each	 voxel	 (due	 to	 the	 varying	
noise),	 the	directional	profiles	 that	 represent	 the	
tensor	 fitted	 values	 are	 much	 more	 consistent	

within	regions.	In	regions	where	a	single	bundle	
of	axons	is	present,	e.g.	the	GCC,	these	plots	typi-
cally	take	on	the	shape	of	peanuts.	The	advantage	
of	modeling	is	that	some	features	of	interest,	such	
as	the	main direction	of	the	tensor,	are	recovered	
more	 prominently.	 From	 the	 region	 shown	 in	
(Fig.	 4.9),	 it	 is	 now	 also	 more	 evident	 that	 the	
nearby	CSF	in	the	ventricles	exhibits	an	isotropic	
pattern	of	diffusion.	And	finally,	for	those	who’d	
like	 to	 go	 just	 that	 extra	 mile	 in	 interpretation:	
consider	again	one	of	those	curious	maps	of	the	
off-diagonal	elements,	Dxy,	and	note	that	it	indeed	
shows	a	value	of	zero	for	the	voxels	right	in	the	
middle	of	the	GCC,	where	the	main	directions	of	
the	tensors	are	nicely	aligned	to	the	x-axis.

Fig. 4.9	 Top row:	Maps	of	
the	diagonal	diffusion	tensor	
elements	(Dxx,	Dyy,	Dzz).	
Middle row:	Maps	of	the	
off-diagonal	diffusion	tensor	
elements	(Dxy,	Dxz,	Dyz).	The	
background grey	level	
equals	zero;	darker/brighter	
levels	represent	negative/
positive	values.	Bottom row:	
Spherical	polar	plots	of	the	
ADC	values	provided	by	the	
diffusion	tensor	model	in	a	
region	of	the	GCC,	overlaid	
on	a	map	of	the	average	
ADC	value.	Note	the	
characteristic	peanut	shapes	
that	appear	in	the	GCC
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 Conclusions

We	have	introduced	the	(apparent)	diffusion ten-
sor	model	[4],	which	is	used	in	DTI	to	represent	
the	ADC values	of	our	measurements	along	dif-
ferent	(gradient)	directions.	The	diffusion	tensor	
D	 is	 represented	 by	 a	 3	×	3	 symmetric matrix,	
containing	six unique tensor elements,	and	can	be	
evaluated	along	any	direction	g	by	the	expression	
gTDg.	Casting	 this	expression	 in	 the	 role	of	 the	
ADC	value	in	the	Stejskal-Tanner	equation	yields	
the	one	and	only	equation	at	the	core	of DTI:	it	
directly	relates	the	experimental	parameters,	the	
measurements	 and	 the	 parameters	 of	 the	 diffu-
sion	 tensor	model	 to	 each	 other.	 This	 equation	
can	 again	 be	 rewritten	 to	 show	 clearly	 that	 the	
diffusion tensor	model	 is	meant	 to	 fit	 the	ADC 
values.	 As	 there	 are	 now	 six unknowns	 in	 this	
equation,	 the	minimum requirements	 for	obtain-
ing	the	diffusion	tensor	are	a	B0	(non	diffusion-
weighted	 image),	 at	 least	 six	 DWIs	 and	
knowledge	 of	 the	 b-value	 and	 gradient direc-
tions	that	were	used	for	performing	the	acquisi-
tion	of	the	DWIs.	We	simply	cannot	stress	enough	
that	 knowledge	 of	 the	 b-value	 and	 gradient 
directions,	i.e.,	the	full	gradient	table	as	shown	in	
(Fig.	 4.6),	 is	 absolutely	 essential	 to	 fill	 in	 the	
equations	and	obtain	the	diffusion	tensors!	Fitting	
the	tensor	model	to	data	with	a	larger	(than	six)	
number	of	DWIs	reduces the noisy appearance of 
the ADC values	when	 visualized	 as	 a	 spherical	
polar	plot.	In	regions	of	white	matter	containing	a	
single	consistent	bundle	of	axons,	the	plot	has	a	
characteristic	 peanut	 shape	 that	 clearly	 shows	
features	such	as	the	main direction	of	the	tensor.	
The	 diagonal	 elements	 of	 the	 diffusion	 tensor	

represent	ADC values along the x-,	y-,	and z-axes,	
while	 the	 off-diagonal	 elements	 represent	 the	
covariance	between	pairs	of	those	axes.	Maps	of	
the	former	thus	provide	a	meaningful	interpreta-
tion,	while	maps	of	the	latter	are	neither	intuitive	
nor	useful	in	daily	practice.	Just	don’t mistake the 
off-diagonal elements	 for	 ADC	 values	 along	
some	oblique	angle.	A	final	overview	of	the	most	
important	steps	taken	up	to	this	point	is	shown	for	
a	 single	 voxel	 in	 the	 middle	 of	 the	 GCC	 in	
(Fig.	4.10):	from	raw	DWI	measurements,	to	cal-
culated	ADC	values,	and	finally	the	fitted	tensor!

 Eigenvalues and Eigenvectors

 The Tensor Elements: Not Very 
Practical

Looking	back	at	the	ADC	peanuts	that	represent	
the	 diffusion	 tensor	 values	 in	 (Fig.	 4.9)	 and	
(Fig.	 4.10),	 we	 notice	 that	 the	 tensor	 model	
indeed	 did	 a	 good	 job	 in	 capturing	 the	 most	
important	 features	 of	 the	 angular	ADC	 profile:	
we	 can	 clearly	 observe	 its	 main	 direction,	 the	
maximal	ADC	value	(along	this	main	direction),	
etc.	 and	how	 these	 features	 relate	 to	each	other	
over	larger	regions	(e.g.,	qualitatively	observe	the	
curving	 global	 path	 of	 the	 axon	 bundle	 in	 the	
GCC).	Although	these	very	practical	features	are	
in	each	voxel	captured	and	described	by	those	six	
unique	 tensor	 elements,	 it’s	 not	 immediately	
clear	how.	We	do	have	 the	diagonal	 tensor	 ele-
ments	 (Dxx,	 Dyy,	 Dzz)	 that	 come	 with	 a	 clear	
	interpretation	 (i.e.,	 the	 ADC	 values	 along	 x,	 y,	

Fig. 4.10	 From	DWI	data	to	the	tensor,	for	a	single	voxel	in	the	middle	of	the	GCC.	Spherical	polar	plots	of	the	DWI	
values	(left),	the	ADC	values	(middle)	and	the	ADC	values	evaluated	from	the	fitted	tensor	(right)
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and	z).	From	the	ADC	peanuts	in	(Fig.	4.9),	we	
can	 tell	 for	 instance	 that	 the	 value	 of	Dxx	 will	
coincide	with	the	maximal	ADC	value	of	the	pea-
nuts	 right	 in	 the	 middle	 of	 the	 GCC,	 because	
those	 peanuts	 are	 nicely	 aligned	 along	 x.	
However,	 as	 we	 move	 away	 from	 that	 middle	
region,	 the	 orientation	 of	 the	 peanuts	 changes,	
causing	Dxx	 to	 gradually	 take	 on	 lower	 values.	
The	 information	on	 the	maximal	ADC	value	of	
the	 peanuts	 is	 now	 “spread	 out”	 somewhere	
between	Dxx	and	Dyy.	And	to	make	matters	even	
worse,	 the	 information	 on	 how	 this	 “spread”	 is	
balanced	 between	 those	 components,	 is	 in	 turn	
encoded	 somehow	 by	Dxy,	 one	 of	 those	 elusive	
off-diagonal	tensor	elements.	That’s	also	why	we	
didn’t	run	into	all	that	trouble	right	in	the	middle	
region:	Dxy	equals	zero	in	that	part	of	the	GCC.

 Reasoned Wishful Thinking 
of Alternatives

So,	what	is	at	the	core	of	all	this	confusion	and	
why	do	we	need	to	be	so	tedious	about	trying	to	
infer	useful	information	from	the	tensor	compo-
nents?	 The	 answer	 is	 simple:	 our	 definition	 of	
axes	 (i.e.,	 x,	 y,	 and	 z)	 is	 in	 fact	 quite	 artificial	
and—more	 importantly—very rigid.	 To	 formu-
late	 it	 in	 another,	 maybe	 more	 clear,	 way:	 the	
axon	bundles	simply	couldn’t	care	less	about	how	
we	 happened	 to	 define	 our	globally fixed axes;	
they	just	happily	twist	and	curve	through	the	full	
3D	space.	On	those	rare	occasions	where	the	ten-
sor	perfectly	aligns	to	our	predefined	axes,	we	get	
lucky:	 the	 off-diagonal	 elements	 become	 zero	
and	the	 three	diagonal	components	describe	 the	
shape and size	of	the	tensor	in	a	more	direct,	intu-
itive	manner.	But	how	do	we	solve	our	problem	
in	all	those	other	voxels	then?	As	we	just	stated,	
the	 axon	bundles	 are	 not	 going	 to	 adjust	 them-
selves	to	our	axes;	and	thus	the	only	solution	will	
be	 to	 adjust our axes	 to	 them	 in	 each	 voxel	
instead.	 So,	 what	 we	 are	 looking	 for	 is	 a	 new	
description	of	the	diffusion	tensor	that	provides	a 
set of axes aligned to the tensor	as	well	as	three	
“new diagonal tensor elements”	 to	describe	 the	
tensor	within	this	new	local	set	of	axes	(the	“new	
off-diagonal	tensor	elements”	become	zero).	The	

benefits	are	twofold.	These	“new	diagonal	tensor	
elements”	should	provide	us	with	everything	we	
need	to	know	about	the	shape and size	of	the	ten-
sor,	 independently of its orientation.	 On	 top	 of	
that,	 the	 customized	 set	 of	 axes	 by	 itself	 also	
describes	the	full	3D	orientation	of	the	tensor.	To	
conclude,	 such	 a	 representation	 thus	 effectively	
splits up	 information	 about	 the	 orientation	 and	
the	 shape/size	 of	 the	 tensor,	while	 the	 classical	
six	tensor	elements	mix it all	up.

 Maths to the Rescue: 
The Eigendecomposition

Now	that	we	know	what	we	want,	 the	question	
remains	 how	 to	 obtain	 it.	 In	 this	 case,	 we	 are	
lucky:	 the	mathemagician	 can	 help	 us	 out	with	
something	 called	 eigendecomposition.	 Applied	
to	the	diffusion	tensor,	it	basically	boils	down	to	
rewriting	 the	 3	×	3	 symmetric	 tensor	 in	 the	 fol-
lowing	format:
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where	 λ1	≥	λ2	≥	λ3,	 and	 ϵ1,	 ϵ2,	 and	 ϵ3	 are	 three-	
element	 unit	 vectors	 that	 are	 mutually	 perpen-
dicular	 to	 each	 other.	 The	 right-hand	 side	
intuitively	reads:	start	with	a	tensor	(with	diago-
nal	elements	λ1,	λ2,	and	λ3)	aligned	to	the	axes	(x,	
y,	and	z),	and	then	reorient	it	to	a	new	set	of	axes	
(ϵ1,	ϵ2,	and	ϵ3).	The	process	of	eigendecomposi-
tion	aims	 to	reverse	 this	 set	of	 actions:	 it	 starts	
with	 the	 diffusion	 tensor	 D,	 and	 subsequently	
tries	to	figure	out	which	axis	aligned	tensor	could	
have	been	reoriented	to	which	new	set	of	axes	in	
order	to	obtain	D.	The	result	is	referred	to	as	the	
eigenvalues	(λ1,	λ2,	and	λ3)	and	eigenvectors	(ϵ1,	
ϵ2,	and	ϵ3)	of	D.	They	come	 in	so-called	eigen-
pairs	(e.g.,	λ2	is	paired	to	ϵ2):	an	eigenvalue	(e.g.,	
λ2)	represents	the	ADC	value	of	the	tensor	along	
the	 direction	 of	 the	 corresponding	 eigenvector	
(e.g.,	 ϵ2).	 The	 eigenvector	 ϵ1	 that	 is	 associated	
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with	the	largest	eigenvalue	λ1	is	also	referred	to	as	
the	principal eigenvector.	It	plays	quite	an	impor-
tant	role	in	DTI:	due	to	its	orientation	along	the	
peak	direction	of	the	ADC	peanut,	it’s	indicative	
of	the local direction of the axon bundle.	While	
the	 largest	 eigenvalue	 λ1	 equals	 the	 maximal	
value	of	the	ADC	peanut,	the	smallest	eigenvalue	
λ3	represents	its	minimal	value.

 Understanding the Eigenvalues,  
in Practice

Maps	of	the	eigenvalues	(λ1,	λ2,	and	λ3)	are	pre-
sented	in	the	top	row	of	(Fig.	4.11).	A	strict	order-
ing	 (λ1	≥	λ2	≥	λ3)	 is	 always	 enforced.	 As	 stated	

before,	 the	combination	of	all	 three	eigenvalues	
fully	encodes	the	exact	total	shape and size	of	the	
tensors	(and	by	consequence,	the	ADC	peanuts)	
by	providing	the	ADC	value	along	three	perpen-
dicular	axes	aligned	to	the	tensors	(the	eigenvec-
tors).	In	some	regions	(e.g.,	the	GCC,	or	the	white	
matter	 in	 general)	 a	 larger	 mutual	 difference	
between	the	eigenvalues	can	be	seen	as	compared	
to	 other	 regions	 (e.g.,	 the	 CSF).	 This	 clearly	
relates	to	the	differing	amounts	of	anisotropy	that	
we	could	also	see	in	the	ADC	peanuts.	Because	
all	information	on	the	shape	and	size	of	the	ten-
sors	is	stored	in	the	eigenvalues,	they	will	also	be	
the	basis	for	other	tensor	measures	that	are	inde-
pendent	of	the	tensor’s	orientation;	but	we’ll	get	
to	that	later.

Fig. 4.11	 Top row:	Maps	of	the	eigenvalues	(λ1,	λ2,	λ3).	Bottom row:	Directionally	encoded	color	(DEC)	maps	of	the	
eigenvectors	(ϵ1,	ϵ2,	ϵ3)
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 Understanding the Eigenvectors,  
in Practice

Directionally encoded color	 (DEC)	maps	 [5]	of	
the	 eigenvectors	 (ϵ1,	ϵ2,	 and	ϵ3)	 are	provided	 in	
the	bottom	row	of	(Fig.	4.11).	Since	each	eigen-
vector	has	unit	length,	no	magnitude	information	
is	represented	in	these	maps;	only	orientation	is	
encoded.	This	is	achieved	by	assigning	the	three	
elements	of	an	eigenvector	to	the red,	green and 
blue channels	of	a	color	image.	As	the	eigenvec-
tor	itself	is	specified	relative	to	the	original	(x,	y	
and	z)	axes,	the	meaning	of	the	colors	is	similar	
to	 the	 scheme	 we	 used	 before	 for	 displaying	
spherical	polar	plots:	red	is	linked	to	x,	green	to	y,	
and	blue	 to	 z.	As	mentioned	before,	 one	of	 the	
most	 important	outcomes	of	DTI	is	 the	orienta-
tion	 of	 the	 principal eigenvector	 ϵ1.	 Within	
regions	of	the	white	matter	(e.g.,	 the	GCC),	the	
DEC	map	of	ϵ1	shows	a	consistent	and	smoothly	
evolving	pattern	that	can	intuitively	be	related	to	
the	 local orientation of the axon bundles.	 In	
regions	 such	 as	 the	 CSF,	 the	 orientation	 of	 ϵ1	
proves	to	be	more	or	less	random,	resulting	in	a	
noisy	 appearance	of	 its	DEC	map	 in	 those	par-
ticular	regions.	Associated	with	the	isotropic	pat-
tern	 of	 diffusion	 in	 these	 regions,	 we	 should	
ideally	observe	a	spherical	ADC	plot	(instead	of	
a	peanut),	satisfying	λ1	=	λ2	=	λ3.	However,	due	to	
random	noise	in	the	data,	there	might	be	a	slight	
deviation	from	this	pattern.	The	orientation	of	the	
principal	 (and	any	other)	eigenvector	 is	entirely	
determined	by	the	random	noise	in	such	a	case.	
Whenever	two	(or	all	three)	of	the	eigenvalues	of	
a	given	tensor	are	(nearly)	equal,	we	say	that	the	
corresponding	eigenvectors	become	ill	defined.

 Conclusions

We	introduced	the	eigendecomposition	of	the	dif-
fusion	tensor	in	its	eigenvalues	and	eigenvectors.	
The	six	diffusion	tensor	components	mix up	infor-
mation	on	 the	shape,	 size	and	orientation	of	 the	
tensor	and	it	becomes	hard	to	untangle	the	infor-
mation	 we’re	 typically	 interested	 in	 by	 purely	
intuitive	reasoning	on	these	components.	Our	new	
representation,	 however,	 nicely	 separates	 infor-

mation	on	the	size/shape	of	the	tensor	from	infor-
mation	 on	 its	 orientation.	 This	 is	 achieved	 by	
recovering	a	set	of	axes	(the	eigenvectors)	that	is	
locally	aligned	to	the	tensor	as	well	as	three	ADC 
values	(the	eigenvalues)	of	the	tensor	along	these	
new	 axes.	 The	 solution	 thus	 comes	 as	 a	 set	 of	
eigenpairs:	a	certain	eigenvalue	encodes	the	ADC	
along	a	specific	eigenvector.	Whereas	the	eigen-
values	encode	the	size/shape	independently	of	the	
orientation,	the	eigenvectors	describe	the	orienta-
tion	independently	of	the	size/shape.	A	final	sche-
matic	(2D)	example,	illustrating	these	properties	
and	providing	an	overview	of	the	relation	between	
the	most	important	tensor-related	numbers	we’ve	
come	 across	 up	 to	 this	 point,	 is	 shown	 in	
(Fig.	 4.12).	 The	 eigenvector	 associated	 to	 the	
largest	eigenvalue	is	also	referred	to	as	the	princi-
pal eigenvector.	 Mapping	 eigenvectors	 is	 typi-
cally	done	by	use	of	directionally encoded color	
(DEC)	maps.	One	of	the	key	practices	in	DTI	con-
sists	of	mapping	the	principal eigenvector,	since	
it	is	indicative	of	the	local orientation of the axon 
bundles.	 In	 regions	 of	white	matter	 such	 as	 the	
GCC,	 this	 map	 shows	 a	 consistent	 pattern.	 In	
regions	of	(nearly)	isotropic	diffusion	such	as	the	
CSF,	however,	the	principal	eigenvector	becomes	
ill defined,	 leading	 to	 a	noisy	 appearance	of	 the	
associated	 DEC	 map.	 Since	 there	 are	 no	 axon	
bundles	hindering/restricting	the	diffusion	in	such	
a	region,	the	principal	eigenvector	therein	is	pretty	
meaningless	anyway.

 Visualizations, Measures, and Maps

 Aiming for Usability: Tensor Glyphs

While	 all	 maps	 and	 visualizations	 (using,	 e.g.,	
spherical	polar	plots)	presented	up	 to	 this	point	
have	 provided	 us	 with	 great	 insight	 into	 the	
underlying	 information	 that	 eventually	 leads	 to	
the	 diffusion	 tensors	 and	 describes	 their	 main	
features,	we	 are	 yet	 to	 encounter	 the	 visualiza-
tions	and	maps	that	we’re	most	likely	to	run	into	
when	processing	DTI	data	in practice.	Let’s	first	
have	a	look	at	the	most	common	3D	visualization	
of	 the	 diffusion	 tensor,	 which	 is	 not	 the	 ADC	
	peanut	 we’ve	 already	 become	 acquainted	 with	
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(even	though	it	most	directly	shows	all	the	values	
that	the	tensor	represents).	Instead,	we	will	only	
visualize	the	most prominent features	that	define	
its	size/shape	and	orientation,	as	provided	by	its	
eigenvalues	 and	 eigenvectors:	 meet	 the	 tensor 
glyphs!	Two	variations	are	shown	in	(Fig.	4.13)	
for	our	familiar	GCC	region:	cuboids	and	ellip-
soids.	In	general,	a	mostly	primitive	3D	shape	is	
chosen	 (e.g.,	 a	 rectangular	 cuboid	 or	 a	 scalene	
ellipsoid)	 and	 its	 three	 main	 dimensions	 are	
scaled by the eigenvalues	 (or	 a	 transformation	
thereof)	 and	 aligned along the eigenvectors.	
Optionally,	the	glyph	is	colored	according	to	the	
DEC	map	of	the	principal eigenvector	(i.e.	using	
the	map	of	ϵ1	in	(Fig.	4.11)).	Comparing	our	pre-
vious	ADC	peanuts	in	(Fig.	4.9)	with	the	newly	
obtained	glyphs	in	(Fig.	4.13),	we	can	clearly	tell	
the	latter	score	higher	on	the	usability	scale:	they	
show	a	more	contrasting	description	of	 the	 fea-
tures	that	really	matter	(and	still	fully	define	the	
tensor	and	thus	its	ADC	peanut).	The	most	com-
monly	visualized	glyph	shape	is	the	ellipsoid	[6],	
but	since	a	cuboid	requires	far	fewer	polygons	to	
be	drawn	onscreen,	it	lends	itself	for	faster	inter-
action	with	larger	tensor	fields.	Interaction	with	a	
field	of	glyphs	is	useful	for	a	better	characteriza-

tion	of	their	full	3D shapes:	e.g.	in	(Fig.	4.13),	we	
freely	 rotated	 the	 slice	 of	 glyphs	 to	 a	 certain	
angle.	Especially	when	the	axon	bundles	are	not	
running	“in	plane”,	the	ability	to	freely	rotate	the	
tensor	field	is	a	helpful	addition.	A	reason	to	pre-
fer	ellipsoids	 (instead	of	e.g.	cuboids)	might	be	
that	they	do	not	overexaggerate	some	features	of	
the	 tensor	 in	cases	where	 those	features	are	not	
very	meaningful	or	appropriate	anyway.	A	good	
example	is	the	isotropic	diffusion	in	the	CSF,	as	
seen	 in	 (Fig.	 4.13):	 the	 cuboids	 become	 cubes,	
but	 still	 clearly	 indicate	 the	 orientation	 of	 the	
eigenvectors,	even	though	they	are	ill defined	in	
this	region.	The	ellipsoids,	however,	take	on	the	
shape	of	spheres,	and	thus	any	visual	cues	of	the	
eigenvectors	 inherently	 fade away	 (apart	 from	
the	coloration,	which	 is	of	course	also	not	very	
informative	in	this	region).	Another	reason	why	
ellipsoids	 are	 a	 meaningful	 choice	 is	 that	 they	
actually	come	with	a	true	meaning	when	scaled	
using	 the	 square roots of the eigenvalues	 [6]:	
under	the	model	of	diffusion	that	DTI	assumes,	if	
we	 would	 investigate	 a	 single	 water	 molecule	
that	 starts	 at	 the	 center	 of	 the	 ellipsoid	 and	 is	
allowed	to	diffuse	randomly	during	a	fixed	time	
interval,	 then	 there	 is	 an	 equal	 chance	 for	 it	 to	

Fig. 4.12	 Example	of	2D	tensors	and	the	convenience	of	
eigenvalue	 decomposition.	 Left:	 Perfectly	 axis	 aligned	
tensor.	The	 diagonal	 tensor	 elements	 directly	 define	 the	
tensor	 shape.	The	 eigenvectors	 coincide	with	 the	global	
axes	and	the	eigenvalues	are	equal	to	the	diagonal	tensor	
elements.	Right:	 General	 (not	 axis	 aligned)	 tensor.	 The	

diagonal	 tensor	 elements	 encode	 the	 value	 of	 the	ADC	
peanut	along	the	global	axes,	yet	do	not	fully	define	the	
tensor	shape.	The	eigenvectors	provide	a	new	set	of	axes	
along	which	the	eigenvalues	directly	provide	the	informa-
tion	on	the	shape
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displace	 to	 any	 specific	 point	 on	 the	 surface	 of	
this	 ellipsoid.	 It	might	 take	 a	 few	 reads	 of	 that	
sentence	before	one	may	grasp	its	meaning,	and	
we	won’t	even	go	into	why	it	is	true;	the	fact	just	
is	that	there	exists	a	pretty	good	reason	to	prefer	
these	ellipsoids	over	any	other	specific	glyph!	In 
practice,	however,	any glyph will do	for	explor-
ing	 the	 data	 (even	 though	 some	 software	 may	
offer	many	different	options),	as	long	as	it’s	easy	
on	 the	 eyes	 and	 the	 processing	 power	 of	 the	
machine	one	is	working	on.

 Mapping Size: Mean Diffusivity (MD) 
and Friends

Now	let’s	consider	some	of	the	more	common	dif-
fusion	 tensor	measures.	All	 the	measures	we’re	
about	to	present	are	so-called	rotationally invari-

ant	 measures:	 they	 tell	 us	 something	 about	 the	
size	or	shape	of	the	tensors,	independently	of	their	
orientation.	Therefore,	they	are	typically	defined	
in	function	of	the	eigenvalues	of	the	tensors.	Let’s	
start	with	a	straightforward	one:	 the	mean diffu-
sivity	(MD)	[7].	It	is	defined	as	follows:
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As	simply	being	the	average of the eigenvalues,	it	
describes	 the	 overall	 size	 of	 the	 tensor	 and	 as	
such	 represents	 a	 rotationally	 invariant	 ADC	
measure.	A	map	of	it	is	provided	in	(Fig.	4.14).	
The	same	contrast	is	sometimes	also	referred	to	
as	 the	 trace	 [7],	 which	 equals	 the	 sum	 of	 the	
eigenvalues.	Other	related	variants	exist,	such	as	
the	pair	of	axial diffusivity	(equating	to	the	first	
eigenvalue)	and	radial	diffusivity	(equating	to	the	
average	of	the	second	and	third	eigenvalues).	As	

Fig. 4.13	 Tensor	glyphs	
(top:	cuboids;	bottom:	
ellipsoids)	in	a	region	of	
the	GCC.	The	glyphs	are	
colored	according	to	the	
DEC	map	of	the	principal	
eigenvector	ϵ1
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seen	in	Eq.	(4.11),	the	MD	can	(surprisingly)	also	
be	obtained	by	averaging	the	diagonal tensor ele-
ments:	even	though	these	individual	elements	are	
dependent	on	the	orientation	of	the	tensor,	 their	
average	 is	 not.	 An	 important	 warning	 at	 this	
point:	 this	 does	 not	 mean	 that	 we	 can	 simply	
acquire	three	DWIs	using	perpendicular	gradient	
directions,	 and	 subsequently	 average	 the	 three	
ADCs	 in	 order	 to	 obtain	 the	 same rotationally 
invariant MD	 [7]!	 It	only	applies	 for	 three	per-
pendicular	ADC	values	as	evaluated	from	a	ten-
sor model,	so	six gradient directions	are	still	the	
bare	mathematical	minimum	in	order	to	account	
for	the	anisotropy	in	the	measurements!

 Mapping Fractional Anisotropy (FA) 
and Orientation

Next	 up	 is	 the	 fractional anisotropy	 (FA)	 [7],	
probably	the	most	unique	selling	point	of	DTI.	It	
is	calculated	by	the	following	hefty	formula:
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where	l 	is	the	average	of	the	three	eigenvalues.	
In	words,	this	amounts	to	the	standard deviation	
of	 the	 eigenvalues	 divided by	 their	 root mean 
square.	 Or,	 more	 simply:	 a	 measure	 for	 how	
much	the	eigenvalues	differ,	but	normalized,	so	it	
becomes	 independent	 of	 their	 absolute	 magni-
tude.	As	such,	it	describes	an	aspect	of	the	shape	
of	 the	 tensor,	 independently	 of	 its	 size	 (and	 of	
course,	orientation).	Because	of	the	way	the	for-
mula	 is	 carefully	 normalized,	 the	 FA	 takes	 on	
values	 in	an	 interval	between zero and one,	 the	
former	 representing	 perfect	 isotropy	 (i.e.,	 all	
eigenvalues	are	equal)	and	the	latter	correspond-
ing	to	perfect	anisotropy	(e.g.,	the	extreme	case	
where	only	λ1	would	have	a	nonzero	value).	An	
FA	map	is	provided	in	(Fig.	4.14).	From	this,	we	
learn	 that	 the	 white	 matter	 clearly	 has	 higher	
anisotropy	than	any	other	(healthy)	tissue	in	the	
brain.	 As	 we	 already	 know,	 in	 regions	 of	 low	
anisotropy,	 the	 principal	 eigenvector’s	 orienta-

tion	becomes	 ill defined.	Hence,	 the	FA	map	 is	
the	perfect	candidate	to	weight	the	DEC	map	of	
the	principal	eigenvector	from	(Fig.	4.11):	doing	
so	will	hide	the	colors	in	regions	where	they	are	
ill defined	(i.e.,	where	they	are	noisy,	confusing,	
and	 meaningless).	 The	 result	 is	 known	 as	 the	
DEC FA map	 [5],	 and	 is	 also	 presented	 in	
(Fig.	4.14).	This	map	isn’t	 the	most	 iconic	DTI	
map	 for	 no	 reason:	 it’s	 a	 very	 handy	 one	 and	
becoming	acquainted	with	the	color	encoding	is	
key	 to	quickly	 interpreting	a	 lot	of	 the	valuable	
and	 unique	 information	 in	 the	 dataset	 at	 once.	
Mentally	processing	DEC	should	become	second	
nature;	 red for x	 (left-right),	green for y	 (back- 
front),	and blue for z	 (bottom-top).	Take	a	 look	
again	at	the	original	(grayscale)	FA	map.	Notice	
how	easily	we	could	be	 tempted	 to	believe	 that	
every	bundle-like	feature	of	this	map	represents	
an	in-plane	axonal	bundle.	Now	shift	your	atten-
tion	back	 to	 the	DEC	FA	map,	 and	 realize	 that	
blue	 stands	 for	 an	 orientation	 perpendicular	 to	
the	 visualized	 slice.	 There	 you	 have	 it;	 that’s	
some	indispensable DEC information	for	you!

 Exploring Shape Space and Reaching 
Beyond…

Finally,	 let’s	 briefly	 touch	 upon	 a	 triplet	 of	
slightly	more	exotic	measures:	a	linear	measure	
(cl),	a	planar	measure	(cp),	and	a	spherical	mea-
sure	(cs)	[8].	This	is	what	their	formulas	look	like:
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All	of	them	are	again	automatically	restricted	to	
an	interval	of	values	between zero and one.	The	
sum	of	these	three	measures	exactly	equals	one.	
The	full	triplet	of	measures	provides	the	coordi-
nates	 of	 our	 tensor	 in	 some	 “shape space”:	 a	
higher	 cl	 means	 a	 more	 linear,	 prolate,	 cigar-	
shaped	tensor	ellipsoid;	a	higher	cp	means	a	more	
planar,	oblate,	pancake-shaped	tensor	ellipsoid;	a	
higher	cs	means	a	more	spherical,	isotropic,	ball-	
shaped	 tensor	 ellipsoid.	 Just	 like	 the	 FA,	 these	
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measures	each	describe	an	aspect	of	the	shape	of	
the	 tensor,	 independently	 of	 its	 size	 (and	 of	
course,	orientation).	One	could	even	use	them	to	
come	up	with	new	anisotropy	measures,	such	as	
1	−	cs	=	cl	+	cp	[8].	Maps	of	the	shape	measures	are	
provided	 in	 (Fig.	 4.14).	We	 also	 present	 a	map	
where	we	employ	the	red	and	green	color	chan-
nels	to	encode	cl	and	cp.	This	final	map’s	absolute	
intensity	thus	equals	the	custom	anisotropy	mea-
sure	we	just	mentioned,	while	the	color	somehow	
shows	what	“kind	of	anisotropy”	is	present:	lin-
ear or planar.	Interestingly,	we	notice	(in	the	pre-
sented	 slice)	 that	mostly	 the	 central	 part	 of	 the	
corpus	callosum	(including	 the	GCC	region	we	
have	been	considering	in	all	our	examples)	shows	
highly	linear	behavior,	while	many other regions	
of	white	matter	contain	a	decent	portion	of	pla-
nar diffusion.	Reasoning	about	the	axon	bundles	
as	a	bunch	of	cylindrical	tubes,	as	we	did	before,	

cannot	simply	cause	such	a	pattern	if	all	axons	in	
the	voxel	are	coherently	running	along	the	same	
direction:	 they	 must	 be	 curving	 or	 dispersing	
(within	certain	planes),	or	maybe	more	than	one	
population	 of	 axons	 is	 present	 in	 such	 voxels.	
Whatever	 the	 underlying	 situation	 might	 be	 in	
those	voxels,	the	planarity	hints	at	certain	limita-
tions	of	the	DTI	model	….

 Conclusions

We	 introduced	 some	 of	 the	 most	 mainstream	
visualizations	and	maps	that	one	is	bound	to	run	
across	 in	 daily	DTI	 practice.	These	 include	 the	
visualization	of	the	tensors	by	glyphs	(most	nota-
bly	the	diffusion tensor ellipsoid)	and	maps	of	the	
mean diffusivity	 (MD),	 fractional anisotropy	
(FA),	DEC FA	as	well	as	a	slightly	more	exotic	

Fig. 4.14	 Top row:	Maps	of	the	mean	diffusivity	(MD),	
fractional	anisotropy	(FA),	DEC	FA.	Bottom row:	Maps	of	
a	linear	measure	(cl),	planar	measure	(cp),	spherical	mea-

sure	 (cs),	 combination	 of	 cl	 and	 cp	 using	 red	 and	green	
color	channels
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triplet	of	 linear,	planar and spherical measures	
(cl,	 cp,	 cs).	 Other	 measures	 exist,	 but	 these	 are	
typically	 variations	 of—or	 at	 least	 heavily	
inspired	by—the	ones	we	presented:	axial	diffu-
sivity,	radial	diffusivity,	the	trace,	several	variants	
of	anisotropy	measures,	etc.	The	most	standard	
measures	 of	 them	 all,	 however,	 are	 the	 typical	
couple	 of	MD	 and	FA:	 the	 former	 representing	
the	 average	 size	 of	 the	 tensor	 (independent	 of	
shape	and	orientation)	and	the	latter	encoding	its	
anisotropy,	an	aspect	of	 the	shape	of	 the	 tensor	
(independent	of	size	and	orientation).	Information	
on	the	orientation	can	also	be	included	by	com-
bining	the	FA	map	and	a	DEC	map	of	the	princi-
pal	 eigenvector	 in	 order	 to	 obtain	 the DEC FA 
map.	This	map	is	not	only	iconic	for	DTI,	but	it’s	
also	a	very	handy	tool	to	quickly	gain	insight	into	
any	DTI	dataset.

 Tensor Fitting Methods

 Facing the Issue

Up	to	now,	we’ve	been	taking	an	essential	step	in	
the	whole	process	for	granted:	the	actual	 tensor 
estimation.	As	a	matter	of	 fact,	 this	 is	 the	 least 
trivial	 step	 along	 the	 pipeline;	 everything	 else	
we’ve	discussed	up	to	this	point	simply	consists	
of	applying	some	well-defined	and	quite	straight-
forward	 formulas	 in	 the	 right	 order.	 Even	 the	
eigendecomposition—or	at	least	what	we	desire	
it	 to	 yield	 for	 an	 outcome—is	 exactly	 defined	
(i.e.,	Eq.	4.10;	no	more,	no	less),	and	we	can	rely	
on	computer	science	to	provide	us	with	an	algo-
rithm	that	does	the	job.	In	those	cases	where	the	
outcome	proved	to	be	ill	defined	(e.g.,	 isotropic	
diffusion),	 the	 ill	 defined	 parts	 of	 the	 outcome	
(i.e.,	the	eigenvectors)	were	not	informative	any-
way.	 But	 the	 tensor estimation	 …	 that’s	 an	
entirely	 different	 beast!	 Different,	 because	 this	
time	even	the	definition	of	“what we want”	is	not	
all	that	clear.	Or	is	it?	We	simply	want	the	tensor	
to	fit	the	data	(or	the	ADC	values	…?)	as good as 
possible,	 right?	But	what	 is	 “as good as possi-
ble”?	 It’s	 vague,	 that’s	what	 it	 is;	 and	 hence,	 a	
plethora	 of	 definitions	 and	 associated	 fitting	
methods	 exist.	While	 it	 easily	 provides	 enough	

material	 to	 write	 a	 decent	 book	 on	 the	 subject	
alone,	 consider	 the	 following	 as	 your	 average	
quick	and	dirty	hitchhiker’s	guide	to	making	the	
right	 choice.	 In	 the	 foreign	 restaurant	 of	 tensor	
fitting,	it	should	enable	you	to	more	or	less	trans-
late	 the	 menu,	 pick	 something	 that	 you’re	 not	
allergic	 to,	 all	 the	 while	 giving	 you	 the	 confi-
dence	that	your	choice	will	leave	you	satisfied	up	
to	a	certain	level,	but	also	allow	you	to	leave	the	
restaurant	in	time,	so	you	can	still	catch	your	bus.	
How	 they	 actually	 arrange	 stuff	 in	 the	 kitchen	
though,	is	the	least	of	our	concerns.	Have	a	seat;	
the	daily	menu	consists	of:	 linear least squares	
(LLS),	weighted linear least squares	(WLLS),	and	
nonlinear least squares	 (NLS).	 On	 top	 of	 that,	
there’s	also	today’s	special:	robust estimation of 
tensors by outlier rejection	 (RESTORE).	 Now	
let’s	have	a	look	at	our	advice!

 LLS: Quick and Dirty

Linear least squares	 (LLS)	 is	 the	 most	 basic	
choice.	It	will	solve	your	system	of	equations—
of	which	each	single	one	takes	on	the	form	of	Eq.	
(4.9)—by	minimizing the	sum of squared residu-
als	of	those	equations.	In	the	case	where	we	have	
more	than	six	equations	(as	opposed	to	only	six	
unknowns),	it	is	typically	impossible	to	perfectly	
satisfy	all	equations.	The	error	or	difference	that	
still	exists	between	the	left-	and	right-hand	sides	
of	one	such	equation	is	referred	to	as	its	residual.	
In	 practice,	minimizing	 the	 sum	of	 the	 squared	
residuals	of	all	the	equations	amounts	to	“spread-
ing out”	those	unavoidable	residuals	as	much	as	
possible	over all of them.	 This	 is	 equivalent	 to	
stating	that	each	equation	has	an	“equal say”	in	
the	process	of	the	fit.	A	great	advantage	of	LLS	is	
that	it	can	be	implemented	as	a	single-step pro-
cess.	 That’s	 right:	 it	 just	 takes	 a	 single	 specific	
operation	 on	 the	 whole	 system	 of	 equations	 to	
automatically	obtain	 the	 solution	 that	optimally	
minimizes	 that	 sum	 of	 squared	 residuals.	
Depending	 on	 your	 hardware	 and	 the	 size	 and	
number	 of	 DWIs	 in	 the	 dataset,	 you	 can	 have	
your	tensors	rolling	out	in	mere	seconds!	In	fact,	
the	 tensors	 we	 generated	 in	 this	 chapter—and	
thus	 all	 the	 resulting	 visualizations	 and	 maps	
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we’ve	been	looking	at—are	the	result	of	a	single	
quick	application	of	LLS.	For	 that	specific	pur-
pose,	LLS	 is	certainly	well	 suited:	qualitatively	
speaking,	our	tensors	and	the	subsequently	calcu-
lated	maps	of	tensor	measures	look	perfectly fine.	
So,	 why	 don’t	 we	 just	 stick	 with	 LLS	 for	 all	
intents	and	purposes	then?	The	problem	is	subtle	
and	 quite	 well	 hidden:	 it	 actually	 concerns	 the	
fact	 that	 we	 allowed	 each	 equation	 to	 have	 an 
equal say	in	the	fit.	This	assumes	that	each	value	
that	we	are	trying	to	fit,	was	provided	to	us	with	
an	error	(i.e.,	the	measurement	noise)	of	a	“simi-
lar	magnitude”.	In	more	professional	words	and	
adapted	 to	 how	we	 specifically	 formulated	 Eq.	
(4.9):	 LLS	 assumes	 that	 the	 noise	on the	ADC 
values	(i.e.,	the	right-hand	side	of	each	equation,	
which	we	are	trying	to	fit	with	the	left-hand	side)	
results	from	a	distribution	that	has	the	exact same 
variance	for	all	our	different	ADC	values.	While	
this	is	the	case	for	our	DWI	values	(that	originate	
directly	 from	 the	 scanner,	 where	 the	 noise	 is	
“officially”	added	to	the	measurements),	it	does	
not	apply	to	the	ADC	values:	the	distribution	of	
the	noise	on	 the	original	data	 is	 logarithmically	
transformed	along	with	 those	data	 to	obtain	 the	
ADC	values!	You	might	remember	that	we	men-
tioned	 this	 before,	 additionally	 stating	 that	 it	
would	happen	to	“bug	us	later	on”.	So	now,	here	
it	is:	officially	bugging	us.	The	problem	at	hand	is	
that	 each	 “measured”	 (i.e.,	 calculated)	 ADC	
comes	with	noise	of	a	different	variance:	i.e.,	we	
can	trust	some	ADCs	more	(or	less)	than	others.	
It	seems	sensible	to	weigh	the	amount	of	say	of	
each	 equation	 in	 the	 fit	 with	 this	 information.	
That’s	 where	 weighted linear least squares	
(WLLS)	kicks	in.

 WLLS: Still Quick, Less Dirty

Weighted linear least squares	(WLLS)	assigns	to	
each	 equation	 (still	 of	 the	 form	 of	 Eq.	 4.9)	 a	
weight	according	to	how	much	the	original	noise	
variation	is	affected	by	the	logarithmic	transform	
of	the	data.	These	weights	directly	depend on the 
magnitudes of the original	data	(i.e.,	the	intensity	
of	 the	 different	 DWIs).	 In	 practice,	 once	 these	
weights	are	known,	only	a	 limited	modification	

has	to	be	made	to	LLS	to	take	them	into	account	
and	obtain	a	WLLS	fit,	which	now	truly	provides	
us	with	the	optimal	correct	fit!	It	still	only	takes	a	
single	 (slightly	 bigger)	 operation	 on	 the	 whole	
system	of	equations	to	get	this	solution:	it	might	
take	a	few	extra	seconds,	but	it	still	just	remains	a	
matter	 of	 mere	 seconds	 to	 have	 your	 tensors	
again	 rolling	out;	yet	much	more	accurately.	 If	
we	 would	 have	 generated	 all	 the	 maps	 in	 this	
chapter	based	on	a	WLLS	fit	of	the	tensors,	you	
wouldn’t	have	noticed	 the	difference:	 it	doesn’t	
suddenly	 change	 the	 visually	 informative	 con-
trast	 of	 those	 maps.	 For	 quantitative	 purposes	
(such	as	group	studies)	though,	it	certainly	mat-
ters,	a lot:	WLLS	already	removes	a	great	deal	of	
inherent	biases	 on	final	measures	 (such	 as	MD	
and	FA)	that	are	typically	caused	by	careless	use	
of	LLS.	So,	why	don’t	we	just	stick	with	WLLS	
for	all	intents	and	purposes	then?	Again,	a	sneaky	
problem	 manifests	 itself:	 to	 determine	 the	
weights,	we	need	the	magnitudes	of	the	original	
data	…	without the noise.	 Of	 course,	 once	 we	
have	obtained	a	fitted	tensor,	we	could	reason	that	
we	got	rid	of	the	noise	(because,	optimally,	only	
the	noise	is	left	in	the	residuals).	We	could	then	
evaluate	that	tensor	for	all	gradient	directions	and	
calculate	from	the	ADCs	back	to	the	DWIs,	i.e.	
the	noiseless	magnitudes	that	we	needed	to	deter-
mine	the	weights.	So,	if	we	could	obtain	a	fitted	
tensor,	then	we	would	also	have	our	weights;	but	
in	order	 to	obtain	a	fitted	tensor,	we	need	those	
weights	 in	 the	first	place.	Yes,	 that’s	a	chicken-
and- egg problem	we’re	 facing	 here.	No	 perfect	
solution	 exists	 (and	 thus,	 unfortunately,	 also	
WLLS can never be perfect).	 A	 first	 approach	
could	be	to	just	use	the	magnitudes	of	the	original	
noisy	 data	 to	 determine	 the	weights.	This	may,	
however,	result	in	a	worse	outcome	as	compared	
to	using	plain	old	LLS!	A	second	trick	is	to	start	
by	performing	a LLS fit,	and	get	DWI	magnitudes	
from	this	fit	(where	the	noise	should	then	already	
be	accounted	for	up	to	a	great	extent)	in order to 
determine the	weights	for a subsequent WLLS fit.	
One	 could	 then	 even	 repeat	 this	 process	 in	 the	
hope	 of	 getting	 gradually	 better	 fits	 and	 subse-
quent	weights	for	 the	next	fit	(but	 this	 typically	
does	 not	 add	much:	most	 of	 the	 “magic”	 is	 in	
using	 that	 first	 LLS	 just	 for	 a	 robust	 set	 of	
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weights).	 In	 practice,	 it’s all still fast:	 a	 LLS	
	followed	by	a	WLLS.	The	danger	lies	in	the	fact	
that	 some	 software	 packages	 might	 perform	
WLLS	using	 the	 first	 approach,	 yielding	worse	
results	as	compared	to	LLS.	On	the	other	hand,	a	
responsible	 implementation	of	WLLS	using	 the	
second	approach	should	definitely lead to better 
results,	without	any	significant	increase	in	com-
putation	time	as	compared	to	LLS:	it’s	typically	
still	 done	 in	 mere	 seconds!	 However,	 we	 can	
never	 truly	know	the	correct	weights	due	to	 the	
chicken-and-egg	 format	 of	 the	 problem:	 so	 the	
approach	doesn’t	fix	everything.	The	core	of	the	
original	problem	was	that	the	noise	got	logarith-
mically	transformed	in	the	ADC	values,	and	that	
we	formulated	Eq.	(4.9)	based	on	an	ADC	value	
in	 the	 left	 and	 right	 hand	 side	 of	 the	 equation.	
Knowing	now	that	we	actually	want	to	compare	
the	values	of	the	original	signals,	can’t	we	mod-
ify	 that	 equation	 so	 it	 compares	 stuff	 that isn’t 
logarithmically transformed?	Easy	enough:	 just	
remove	 the	 logarithm	by	 taking	 the	exponential	
of	both	sides!	Now	we	are	facing	the	correct	form	
of	the	equation,	but	sadly,	it	also	lost	its	linearity	
in	 the	 unknowns:	 the	 linear	 sum	 of	 these	
unknowns	 on	 the	 left	 hand	 side	 now	 appears	
under	that	exponential function.	Long	story	short:	
it’s	a	nonlinear	equation.	That’s	where	nonlinear 
least squares	(NLS)	kicks	in.

 NLS: A Long and Brave Quest 
in the Mountains

Nonlinear least squares	(NLS)	will	try	to	solve	an	
overdetermined	 system	 of	 nonlinear	 equations,	
again	 aiming	 to	 minimize the	 sum of squared 
residuals	 of	 those	 equations.	Going	 into	details	
about	this	one	is	nigh	impossible:	many	methods	
exist.	 They	 all	 share	 a	 common	 thing,	 though:	
they	 take	 a	much,	much	 longer time	 to	 reach	 a	
solution	as	compared	 to	LLS	and	WLLS.	They	
are	 basically	 facing	 the	 fiendishly	 difficult	
	problem	of	finding	the	lowest	point	in	the	lowest	
valley	 of	 a	 mountainous	 landscape	 in	 a	 six-
dimensional	 world.	 Actually,	 LLS	 and	 WLLS	
also	did,	but	due	to	the	specific	simple	shape	of	
the	landscape	when	the	equations	are	linear,	they	

could	come	up	with	a	nifty	trick	of	finding	that	
lowest	point	in	a single step.	NLS,	on	the	other	
hand,	 is	 just	 dropped	 somewhere	 on	 the	 land-
scape	and	has	 to	 start	a	walk	 in	 the	unprepared	
hitchhikers	fashion:	without	a	map	(because	the	
landscape	is	too	big	and	complex)	and	just	rely-
ing	on	its	eyes	and	feeling	to	gradually	move	to	
lower	 regions.	 In	 theory,	 truly	 solving	 the	NLS	
problem	will	yield	 the	optimal	 result.	However,	
the	problem	is	not	easy	to	solve.	Due	to	the	lim-
ited range of sight	 in	 the	 mountains,	 an	 NLS	
algorithm	might	get	stuck	in	a	suboptimal	valley	
(not	 knowing	 there	 exists	 another	 lower	 valley	
somewhere).	 Some	 algorithms	 are	 more	 robust	
against	this	than	others,	but	it’s	nearly	impossible	
to	come	up	with	an	algorithm	that	never	makes	
these	mistakes.	In	general,	many	NLS	algorithms	
exist	 that	will	 in	most	 cases	 further	outperform 
WLLS.	 In	 some	 specifically	 challenging	 voxels	
though,	such	an	algorithm	might fail to converge	
or	get	stuck	in	the	previously	mentioned	subopti-
mal	 valleys.	 If	 and	 when	 the	 algorithm	 might	
detect	this,	it	could	for	instance	perform	a	WLLS	
fit	instead	(still	better	than	nothing	or	something	
really	 wrong,	 right?).	 Because	 NLS	 algorithms	
are	forced	to	take	a	walk	in	the	mountains	any-
way,	 they	 may	 also	 come	 with	 extra	 bells	 and	
whistles	allowing	them	to	generate	a	solution	that	
specifically	 satisfies	 some	 constraints.	 Due	 to	
noise	in	the	data,	LLS	and	even	WLLS	can	some-
times	come	up	with	tensors	that	have	one	or	more	
negative eigenvalues.	 Of	 course,	 this	 doesn’t	
make	sense:	negative	eigenvalues,	and	thus	nega-
tive	ADCs,	have	no physically sensible meaning.	
An	NLS	algorithm	can	be	guided	to	not	encoun-
ter	such	unwanted	cases	in	the	first	place:	barriers	
can	be	put	up	on	the	landscape	in	order	to	simply	
deny	the	NLS	hitchhiker	access	to	these	forbid-
den	areas.	This	all	typically	does	come	at	an	extra	
computational	cost,	and	thus	your	valuable	time.	
Depending	 on	 your	 hardware,	 the	 size	 of	 the	
dataset	and	the	kind	of	NLS	algorithm	(and	the	
bells	and	whistles	it	might	come	with),	some	of	
these	 strategies	may	 take	 anywhere	 from	a	 few	
minutes	 to	 several	 hours	 to	 finish	 calculating	
your	tensors.	Using	a	brain mask	(so	no	unneces-
sary	 calculations	 are	 performed	 for	 voxels	 out-
side	of	the	brain)	is	typically	strongly	advised	to	
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reduce	 running	 time.	And	 guess	what?	 Even	 if	
the	hitchhiker	would	be	so	extremely	experienced	
that	he	would	always	find	the	lowest	point	in	the	
landscape,	 his	 optimal	NLS	 solution	 could	 still	
be	 unsatisfying.	 That’s	 because	 the	 data	 aren’t	
only	messed	 up	 by	 noise,	 but	 possibly	 also	 by	
outliers!	Motion,	 distortions,	 cardiac	 pulsation,	
signal	 dropout,	 ghosting	…	 artifacts	 are	 abun-
dant	in	MRI.	Some	can	be	avoided	during	acqui-
sition,	 others	 can	 be	 partially	 dealt	 with	 by	
preprocessing,	 but	 in	 the	 end	 some	 still leave 
their mark	 on	 the	 data	when	we	 offer	 it	 to	 our	
favorite	tensor	fitting	method.	They	cause	outli-
ers:	data	points	that	have	lost	all	of	their	informa-
tive	 value	 by	 taking	 on	 truly	 silly	 values	 that	
don’t fit the picture,	 at	 all.	That’s	where	 robust 
estimation of tensors by outlier rejection	
(RESTORE)	kicks	in.

 RESTORE and Beyond: Expecting 
the Unexpected

Robust estimation of tensors by outlier rejection	
(RESTORE)	[9],	as	its	name	suggests,	will	handle	
outliers	by	 rejecting	 them.	To	 reject	 them,	 they	
first	have	to	be	detected	though.	To	do	this,	it	will	
start	with	a	NLS	fit.	 It	will	subsequently	assign	
each	measurement	a	weight,	depending	on	how	
well	it	fits	the	picture.	Another	NLS	is	performed,	
where	 each	 equation	 is	 weighted	 according	 to	
how	well	its	measurement	fit	the	picture	before.	
This	process	 is	repeated until convergence.	The	
final	weights	 should	now	be	 a	 reliable	measure	
for	how	well	each	measurement	does	(not)	fit	in,	
i.e.,	 for	 its	 “outlier-ness”.	 Those	measurements	
that	 meet	 a	 certain	 threshold	 are	 officially	
regarded	as	outliers,	and	simply	kicked	out	of	the	
game.	The	final fit	is	then	performed	by	employ-
ing	only	the	surviving	“non-outlier”	data.	While	
this	 is	 an	 ingenious	 and	very	 robust	 strategy,	 it	
does	have	a	 few	implications.	A	first	one	 is	 the	
fact	that	it	might	have	to	perform	several	subse-
quent	NLS	fits:	that	will	surely	have	an	impact	on	
the	 total	 computation	 time.	 It	 could	 on	 average	
take	more	than	three	times	as	long	as	compared	
to	a	single	NLS	fit	[9].	A	second	one	is	the	fact	
that,	after	kicking	out	a	possibly	decent	amount	

of	 outliers,	 enough	 measurements	 should	 of	
course	still	be	left	to	reliably	obtain	the	final	fit.	
Those	measurements	are	even	needed	to	actually	
reliably	classify	the	other	ones	as	outliers	in	the	
first	place.	Hence,	data	redundancy	is	an	impor-
tant	 requirement.	 Even	 very	 recently,	 further	
improvements	have	still	been	made	to	relax	that	
redundancy	 requirement	 up	 to	 a	 certain	 extent	
[10].	Given	that	the	DTI	model	is	about	20	years	
old	 now,	 this	 certainly	 proves	 that	 the	 fitting	
problem	still	remains	far from trivial.

 Conclusions

We	took	a	bite	out	some	of	the	most	common	ten-
sor	 fitting	 methods:	 linear least squares	 (LLS),	
weighted linear least squares	 (WLLS),	nonlinear 
least squares	(NLS),	and	robust estimation of ten-
sors by outlier rejection	 (RESTORE).	 It	 is	 typi-
cally	 said	 that	 this	 specific	 ordering	 is	 one	 of	
increasing complexity,	implying	increasingly bet-
ter results	at	the	cost	of	an	even	steeper	increase of 
computation time	 (especially	 for	 the	 nonlinear	
methods).	 This	 is	 generally	 true;	 provided	 that	
each	variant	 is	 implemented	as	good	as	possible	
(we	 rely	 on	 the	 responsibility	 of	 the	 software	
developers	here).	If	your	dataset	has	enough	data	
redundancy	(let’s	say,	DWIs	for	more	than	30–40	
unique	gradient	directions	[10]),	we	could	easily	
always	 advise	 you	 to	 use	 RESTORE.	 However,	
depending	 on	 the	 specific	 implementation	 of	
RESTORE,	the	hardware,	the	size	or	even	number	
of	datasets	you	have	to	process,	etc.	it	might	take	
quite	a	while	(possibly	up	to	several hours)	before	
you	 have	 access	 to	 your	 tensors	 for	 further	 pro-
cessing.	 All	 the	 bells	 and	 whistles	 in	 these	
advanced	nonlinear	algorithms	may	not	be	neces-
sary,	if	you’re	just	concerned	about	having	a	quick	
qualitative	look	at	the	data.	For	quantitative	pur-
poses	though,	we	certainly	advice	to	go	“beyond 
LLS.”	 A	 very	 big	 gain	 is	 already	 achieved	 by	
WLLS	(if	implemented	responsibly),	at	a	minimal	
extra	computational	cost.	Certainly	be	on	the	look-
out	for	the	method	your	favorite	piece	of	DTI	soft-
ware	is	packing,	or	even	what	different	choices	it	
might	be	offering;	as	you	now	speak	and	under-
stand	some	basic	tensor	fitting	language!
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 Final Conclusions

In	 this	 chapter,	 we	 provided	 an	 overview	 that	
took	us	all	the	way	from	the	raw	DWI	data	to	the	
diffusion	tensor	and	even	further	to	some	of	the	
more	common	visualizations	and	measures.	This	
fact	by	itself	makes	for	the	most	important	con-
clusion:	 while	 the	 more	 “classical”	 imaging	
modalities	 (e.g.,	 T1,	 T2)	 are	 obtained	 straight	
from	 the	 scanner,	 the	 maps	 that	 are	 typically	
employed	in	the	practice	of	DTI	(e.g.,	MD,	FA,	
DEC	FA)	result	from	a	postprocessing	pipeline:	
i.e.	 these maps are calculated,	 not directly 
acquired.	Most	of	this	pipeline	is	clearly	defined;	
but	for	the	actual	tensor fitting,	there	are	quite a 
few options.	 The	 more	 advanced	methods	 may	
also	take	a	reasonable	time	to	be	computed.	Some	
scanner software	 offers	 the	 option	 to	 directly	
show	 and	 export	 MD,	 FA,	 DEC	 FA,	 and	 even	
other	maps;	however,	don’t let that fool you:	this	
software	still	has	to	go	through	all	the	steps	we’ve	
come	across	in	this	chapter.	Also,	if	the	software	
almost	instantly	provides	you	with	e.g.	a	DEC	FA	
map,	you	should	now	be	aware	that	it	may	prob-
ably	not	have	performed	much	more	than	a	sim-
ple	LLS	fit	(which	might	of	course	be	sufficient,	
if	 you’re	 just	 qualitatively	 inspecting	 the	 data).	
The	scanner	software	also	has	to	rely	on	the	same	
DWI	dataset	for	this,	and	thus	is	not any more or 
less reliable	 in	 general	 than	 any	 other	 piece	 of	
software	if	it	comes	to	providing	you	with	accu-
rate	 maps:	 if	 you	 do	 use	 its	 features,	 certainly	
also	 try	 to	 find	 out	 what	 (tensor	 fitting)	 algo-
rithms	it	employs	under	the	hood!	If	you	want	to	
take	advantage	of	the	plethora	of	different	avail-
able	 (freeware)	 software packages	 that	 imple-
ment	 several	 advanced	 tensor	 fitting	 methods	
(and	 further	 postprocessing	 steps,	 such	 as	 fiber	
tractography),	you’ll	need	to	export	the	raw	DWI	
data	 from	 your	 scanner.	We’ve	 also	 stressed	 at	
several	 occasions	 that	 these	 images	 are	 quite	
worthless	if	they	don’t	come	with	the	accompa-
nying gradient directions and b-values.	More	and	
more	manufacturers	are	starting	to	take	this	into	
account	and	tuck	that	information	safely	away	in,	
e.g.,	 the	 DICOM	 headers,	 the	 headers	 of	 their	
own	proprietary	formats,	or	even	in	separate	files	
(containing	 a	 gradient table	 in	 one	 way	 or	
another).	However	they	do	it,	just	try	to	somehow	

make	sure	that	it	is	effectively	packed	with	your	
data.	Your	next	concern	then	is	to	get	it	imported	
correctly	into	your	DTI	software	package.	Unless	
that	 package	 supports	 a	 whole	 list	 of	 different	
(more	and	 less)	 standards,	you	might	be	up	 for	
yet	 another	 daunting	 task.	 We’re	 lucky	 up	 to	
some	extent,	however,	as	the	“diffusion commu-
nity”	 and	 the	 specific	 supporting	 communities	
revolving	 around	 some	 software	 packages	 are	
often	 very	 active	 and	 responsive:	 your	 specific	
question	could	be	answered	quickly	after	a	sim-
ple	e-mail	to	a	support	mailing	list.	Once	you	get	
your	workflow	up	and	running,	the	use	of	DTI	in	
your	daily	practice	should	provide	you	with	new 
and exciting insights!
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5

 Learning Points

•	 Visual assessment of diffusion MR images 
can be supported by nonspecific quantitative 
measures that can be derived from DTI data, 
including fractional anisotropy and mean 
diffusivity.

•	 Variation in image acquisition parameters in 
both individual cases and group studies affects 
both qualitative and quantitative analysis.

•	 Fractional anisotropy can be modulated by 
numerous biological and methodological fac-
tors and should not be blindly interpreted as a 
quantitative marker of white matter integrity.

•	 Interpreting changes of the axial and radial dif-
fusivities on the basis of the underlying tissue 

structure should not be performed unless 
accompanied by a thorough investigation of 
their mathematical and geometrical properties.

•	 Normal brain development and ageing, and 
the timing and severity of injury/pathology 
should be considered when interpreting DTI 
metrics.

 Why Is Quantification Important 
in Medical Imaging?

Radiological diagnosis is based almost entirely 
on subjective visual evaluation and quantitative 
image analysis is rarely employed. While routine 
clinical diagnosis can be determined qualita-
tively, image quantification is essential for under-
standing the basic disease mechanisms which 
underlie neurological or psychiatric disorders of 
the human brain, and for the development of bio-
markers of brain disease which can be used to 
evaluate pathology status and treatment efficacy.

Advanced and automated tools play an essen-
tial role in extracting such information about spe-
cific brain regions or structures within the patient 
population (e.g., hippocampal atrophy). These 
tools provide objective criteria, quantification, 
and a high level of precision (reproducibility), 
which can inform statistically driven conclusions. 
Without quantification, group differences cannot 
be statistically analyzed, and image-based find-
ings cannot be correlated with clinical outcomes.

mailto:kathleen.curran@ucd.ie
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Whilst clinicians are well trained in reading 
scalar images, i.e., the grayscale images charac-
teristic of computed tomography and conven-
tional MRI sequences, they are less familiar with 
deriving quantitative information from complex 
imaging data such as captured using dMRI. As 
the preceding chapters of the book demonstrate, 
dMRI data provides additional information that 
requires nontrivial processing before the data can 
be analyzed and interpreted. Not only does it 
offer insight into tissue microstructure, but also 
the orientational information captured in the 
diffusion- weighted MR signal can be used to 
generate impressive and useful qualitative results 
on the shape of fibre bundles and the connection 
patterns of brain regions. However, whilst the ori-
entation information contains important informa-
tion on brain connectivity, it is important to 
remember that it is insufficient for its complete 
characterisation and there are many challenges in 
disentangling the true meaning of quantitatively 
derived metrics (see Chap. 11 for further details 
about using DTI to study brain connectivity).

The reduction of the measured diffusion infor-
mation to a diffusion tensor and then to a scalar 
value means that when changes or differences are 
found in one of the scalar metrics, it is difficult to 
draw conclusions about the exact cause at a 
microstructural level. While this can be consid-
ered a drawback of dMRI, the systematic infor-
mation reduction can also be advantageous. For 
example, the human brain is a complex system, 
the complete characterization of which is cur-
rently not possible. If we want to characterise its 
anatomical status, and compare it with different 
populations, we need to find a way to summarise 
the complexity in a more simple form. dMRI 
offers such a solution as it provides a quantitative 
means of systematically reducing the anatomical 
information into manageable scalar indices.

 Which Quantitative Measures Can 
Be Calculated from a DTI Dataset?

Earlier chapters in this section (e.g., 4) describe 
how the dMRI signal can be used to calculate the 
diffusion tensor, the basic building block from 

which several quantitative measures describing 
the amount of diffusion and its orientational pref-
erence can be derived [4]. While direct visualisa-
tion of the diffusion tensor components is not 
readily interpretable, the ellipsoid model is per-
haps the most widely used visual representation 
[4]. An ellipsoid is a three-dimensional represen-
tation of the diffusion distance in the X, Y, and Z 
planes by molecules in a given diffusion time. In 
the ellipsoidal representation (Fig. 5.1), the ori-
entation of the axes is provided by the three 
eigenvectors e1, e2, and e3 while the radius of the 
ellipsoid along its axes is proportional to l1 , 
l2 , and l3  (see Box 5.1).

Having obtained the diffusion tensor for each 
voxel and having computed the eigenvectors and 
the corresponding eigenvalues, several metrics 
can be derived (Fig. 5.2), including standard met-
rics such as fractional anisotropy (FA), a measure 
of the diffusion anisotropy, and trace or mean dif-
fusivity [6] which reflect the average amount of 
water diffusion in a voxel.

It is important to note that some measures 
depend on the orientation of the tissue relative to 
the applied gradient (rotationally variant), whilst 
others do not (rotationally invariant) as this has 
implications for interpretation and for image 

Box 5.1 What Is the Difference Between 

Eigenvalues and Eigenvectors?

Eigenvalues: The ADC values of the ten-
sor along the directions of the eigenvectors. 
They describe the shape and size of a ten-
sor, independently of its orientation.

Eigenvectors: A new set of customized 
axes for a tensor, aligned along its specific 
orientation. They describe the orientation 
of a tensor, independently of its size and 
shape.

Eigenvalues are rotationally invariant, 
whilst eigenvectors are rotationally 
variant.

K.M. Curran et al.
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 registration (see Chap. 10). For example, eigen-
vector orientations are rotationally variant but FA 
and trace are rotationally invariant. Apparent 
 diffusion coefficient (ADC) values, on the other 
hand, are rotationally variant. Recall from Chap. 
4 that ADC quantifies the magnitude of diffusion 
along a given gradient direction and depends on 
the strength of the diffusion weighting, i.e., 
b-value. In the case of anisotropic tissue, for 
example, ADC is highest (diffusion is fastest) 
along the length of the pathway and lower in 
other directions [7].

 Diffusivity Measures

 Trace
The trace (Tr) of the diffusion tensor (D) reflects 
the overall water content. Trace, Tr (D), is a com-
monly used clinical measure, which gives an indi-
cation of the overall diffusivity in a given voxel 
and is computed as the sum of the three eigenval-
ues λ1, λ2, and λ3 or the sum of the diagonal ele-
ments of D (Dxx, Dyy, Dzz). Trace is completely 
rotationally independent, and therefore unlike 
with ADC, changes in Tr(D) can be attributed 

Fig. 5.1 Schematic illustration of the relationship 
between the mathematical diffusion tensor and its ellip-
soid representation. Decomposition of the tensor into 
eigenvectors and eigenvalues provides information on 
the orientation and amount of diffusion, respectively. 
Various mathematical formulas as a function of the 

eigenvalues and vectors form the basis of quantitative 
DTI parameters. Top left image: Adapted from Beaulieu 
C. The basis of anisotropic water diffusion in the nervous 
system – a  technical review. NMR Biomed. 2002 Nov- 
Dec;15(7–8):435–55. With permission from John Wiley 
& Sons, Inc.
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solely to changes in tissue structure. Trace has 
become an important metric in the assessment and 
diagnosis of stroke [1, 8]:

 Tr( )D D D Dxx yy zz= + + = + +l l l1 2 3  

 Mean Diffusivity (MD)
Mean diffusivity characterizes the overall mean 
squared displacement of molecules (average 
ellipsoid size) and is simply a scaled version of 
the trace Tr(D) [9, 10]:

 
D

Tr D D D Dxx yy zz= =
+ +

=
+ +( )

3 3 3
1 2 3l l l

 

MD, sometimes denoted mathematically as D, is a 
measure of the overall diffusivity in a particular 
voxel regardless of direction. Just like Tr(D), MD 
is low within white matter but high, for example, in 
the ventricles, where the movement of water mol-
ecules is unrestricted. This measure of overall dif-
fusion rate can be used to delineate the area affected 
by stroke, as demonstrated by van Gelderen [8].

 Axial Diffusivity (AD)
Axial (or longitudinal or parallel) diffusivity, l||  
is simply the diffusivity along the principal axis 
of the diffusion ellipsoid and is given by λ1 (see 
Box 5.2).

 Radial Diffusivity (RD)
Radial (or transverse or perpendicular) diffusiv-
ity, l^ , is a measure used to express the diffusiv-
ity perpendicular to the principal direction of 
diffusion:

 
l

l l
^ =

+2 3

2  

 Westin Measures
In addition to the basic ellipsoidal representa-
tion, Westin et al. [11] proposed a set of geo-
metrical diffusion measures to quantify the 
diffusion ellipsoid’s shape in terms of its linear 
(cl), planar (cp) and spherical (cs) anisotropy 
components:

 
cl =

-l l
l

1 2

1  

 
cp =

-l l
l

2 3

1  

 
cs =

l
l
3

1  

 c c cl p s+ + =1 

The linear component describes how prolate or 
cigar shaped the ellipsoid is, the planar compo-
nent describes how oblate or disc shaped it is, and 
the spherical component describes how sphere or 
ball-like the ellipsoid is. See Fig. 5.3 for an illus-
trative example.

The linear and planar diffusion tensor geome-
try indices have been used as criteria to distin-
guish single-fibre voxels from crossing-fibre 
voxels [12]. To some extent, voxels where the 
planar diffusion coefficient (cp) is largest, i.e., 
larger than linear (cl) and spherical coefficients 
(cs) can be classified as crossing-fibre configura-
tion voxels; all voxels where linear diffusion is 
largest can be classified as single-fibre configura-
tion voxels. A high cs may not only arise from 
multiple-fibre populations but also from partial 
volume effects with CSF [12].

Box 5.2: What Is the Difference Between 

ADC, Trace, and MD?

ADC: amount of diffusion in a single 
direction
Trace: sum of the eigenvalues, or “mean 
ADC”
MD: Trace/3
The ADC depends on diffusion anisotropy 
and is rotationally variant, whereas trace 
and MD are measures of the average 
amount of diffusion in a voxel irrespective 
of the gradient direction or underlying 
microstructure.

K.M. Curran et al.
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 Anisotropy Measures

The degree of anisotropy describes how molecu-
lar displacements vary as a function of orientation 
(ellipsoid eccentricity) and is related to the pres-
ence and coherence of oriented structures [9].

 Fractional Anisotropy (FA)
FA is a metric used to quantify the ratio between 
the magnitude of the anisotropic component of 
D and the entire magnitude of D, the diffusion 
tensor. FA values lie in the range [0, 1] and can 
be calculated in each voxel using the following 

expression based on the eigenvalues of the 
 diffusion tensor:

 

FA =
- + - + -

+ +
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This rotationally invariant, dimensionless mea-
sure, expresses the anisotropy of the tensor rang-
ing from 0, when the tensor is completely 
isotropic to 1 when diffusion is bound to a single 
axis.

In addition to the FA, many other measures of 
anisotropy have been proposed, including, but 

Fig. 5.2 Example parameter maps derived from diffusion 
imaging. Note the changing contrast in the diffusion- 
weighted images (DWIs), reflecting tissue orientation 
changes relative to the applied diffusion gradients. The 
color FA map, bottom center, is generated by multiplying 
the direction-encoded color map, generated from the prin-
cipal eigenvector of the diffusion tensor, with the FA map. 
The colour FA map therefore contains information about 

fibre orientation (color) and the degree of anisotropy 
(intensity). Abbreviations: B0, non-diffusion-weighted 
image, DWI, diffusion-weighted image, MD, mean diffu-
sivity, AD, axial diffusivity, RD, radial diffusivity, A-P, 
anterior-posterior, L-R, left-right, I-S, inferior-superior, 
DEC, direction-encoding color, FE, first eigenvector, FA, 
fractional anisotropy
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not limited to, the relative anisotropy [6], disper-
sion of the principal diffusion direction [13] or 
mode of anisotropy [14].

Further discussion of how FA relates to tissue 
microstructure and other technical features of 
dMRI data are discussed in a later section of this 
chapter.

 Quantitative Parameters Derived 
from Multi-Shell dMRI

Anisotropy present at a microscopic level (for 
instance, in the presence of oriented structures, 
such as dendrites in the brain cortex) may not 
exist at a voxel level due to the averaging effect 
over the many different directions present in the 
voxel. This presents a problem for single-shell 

data (i.e., data acquired with one non-zero b-value, 
e.g., b = 1000 mm/s2), reconstructed with the dif-
fusion tensor, which cannot model more than one 
orientation per voxel (see Chap. 20). However, 
new multi-shell approaches can be used to gener-
ate alternative metrics, which provide additional 
information about the underlying tissue micro-
structure. These multi-shell approaches are 
described in detail in Section VI of this book 
“Beyond DTI”; however, a brief summary of rep-
resentative examples is provided below.

 Diffusion Kurtosis Imaging

Diffusion kurtosis imaging (DKI) is a recent MR 
technique that employs diffusion-sensitising gra-
dients similar to that used in DTI, but acquires 

Fig. 5.3 Westin measures: Panel (a) illustrates the geo-
metric decomposition of the diffusion tensor, D, (yellow), 
into triangular barycentric space, characterised by cigar 
(red), disc (green), and ball-shaped (blue) ellipsoids. 
Axial maps of the corresponding Westin measure, cl, cp, 
and cs can be found beneath each ellipsoid. Panel (b) 

illustrates how useful additional information can be 
obtained by combining the measures in a single map. By 
omitting the spherical component, it is possible to more 
easily distinguish between linear and planar diffusion 
(bottom image). Compare to the fractional anisotropy 
map (top)

K.M. Curran et al.
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three or more diffusion weighting b-values 
instead of two [15]. While this technique is gen-
erally not used in a clinical environment due to 
time constraints (typical scan times are in the 
order of 20 min), DKI has been applied to study 
microstructural changes in a number of preclini-
cal and clinical research populations [16–18]. 
Whilst DTI is concerned with modeling hindered 
Gaussian diffusion (see Chap. 3), DKI captures 
information about redistricted diffusion, which 
can be approximated to water bound by cell 
membranes and which is inaccessible to 
DTI. This means that DKI may provide more 
sensitive and specific markers for tissue injury 
than DTI data alone [19, 20]. Since the acquisi-
tion protocol used to obtain a DKI dataset 
includes all the information necessary to derive a 
standard DTI dataset, it can be used to calculate 
both types of indices. DKI measures include the 
kurtosis anisotropy (KA), mean, axial and radial 
kurtosis (MK, AK, RK, respectively). These 
measures quantify the degree of non-Gaussianity 
and can be regarded as indices of tissue compart-
mentalization or complexity [15]. For example, a 
high mean kurtosis may reflect an increase in tis-
sue complexity. This is in contrast to high mean 
diffusivity, which would reflect an increase in 
freely diffusing water. Further information about 
DKI can be found in Chap. 21.

 Tissue (Compartment) Model-Based 
Approaches

Whilst DTI and DKI do not assume a specific 
biophysical tissue model, other MRI based 
frameworks aim to incorporate additional fea-
tures into their models that reflect some proper-
ties of tissue microstructure such as the behavior 
of water in intracellular and extracellular com-
partments [21]. For example, approaches such as 
CHARMED [22], AxCaliber [23], and ActiveAx 
[24] enable the extraction of a multitude of 
microstructural parameters (axon diameter distri-
bution, mean axonal diameter, and axonal den-
sity) [25]. To date however, these approaches 
have been applied primarily in a research context 

owing to the complexity of analyzing such data 
and because of clinically prohibitive scan times. 
Neurite orientation dispersion and density imag-
ing (NODDI) has recently been proposed as a 
more clinically feasible alternative and can be 
used to estimate the density and angular variation 
of neurites (dendrites and axons) in-vivo [26]. 
NODDI is based on a three-compartment tissue 
model and data is acquired using at least two 
shells differing from one another only in choice 
of b-values and optimized for clinical (research) 
feasibility (scan time <30 min).

It should be remembered however that all the 
techniques based on tissue models are still lim-
ited by the simplicity of the model and provide 
only indirect measures that may relate to tissue 
features, but do not actually directly quantify, for 
example, neurite density, in the same way as a 
histological examination.

 Section Summary

•	 The diffusion tensor provides a means to 
quantify the amount and orientational prefer-
ence of diffusion at a voxel level.

•	 A number of rotationally invariant scalar 
parameters can be derived from the diffusion 
tensor, including the FA, MD, AD, and RD.

•	 The mean ADC, trace(D), and MD are all 
measures of the average diffusion in a voxel. 
They relate to the absence of barriers to water 
diffusion.

•	 FA is the most widely used DTI measure and 
describes the degree of diffusion anisotropy in 
a voxel. It is related to the presence of barriers 
to diffusion, such as axonal membranes.

 The Influence of Image Acquisition 
on DTI Parameters

Deriving scalar values from dMRI data and even-
tually comparing them between groups of sub-
jects and/or correlating them with other 
parameters begins with the raw data acquisition, 
followed by a pipeline of image processing steps. 

5 Quantitative DTI Measures
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Each one of these steps is susceptible to sources 
of bias, which may not only limit the accuracy 
and precision of DTI parameter estimation, but 
can lead to substantial errors. A more detailed 
coverage of this topic is performed in the follow-
ing chapters of this section (Chaps. 6 and 7); 
however, a brief summary of selected influential 
factors is presented below.

 Effect of Field Strength

Clinical MR systems typically used for routine 
DTI scanning of humans are 1.5 or 3 T, although a 
small number of specialist research centers offer 
the possibility of scanning (predominantly healthy) 
subjects at 7 T. As DTI parameters should not be 
dependent on the static magnetic field strength, the 

reproducibility of measures at different field 
strengths is largely dependent on signal-to-noise 
ratio and the effect of artifacts [27]. It is commonly 
accepted that scanning at higher field strengths 
increases signal-to-noise (SNR); therefore one 
would expect higher fields to equate with higher 
quality. Although this is the case for conventional 
imaging, the competing decreases in T2 time and 
increased b0 inhomogeneity associated with 
increasing field strength, coupled with increased 
distortions due to eddy currents, magnetic suscep-
tibility, and chemical shift artifacts, off-set the gain 
in image quality in DTI. Nevertheless, it has been 
shown that the uncertainty of fitted DTI parame-
ters decreases with increasing field strength, which 
may impact positively on fibre-tracking results 
[27]. Figure 5.4 illustrates the effect of field 
strength in a single subject.

Fig. 5.4 Comparison of FA measured in two ROIs in the 
same subject at 1.5 and 7 T. Coronal DTI data of the 
human brain in the same subject acquired at 1.5 and 7 
T. FA was calculated in the centrum semiovale at 1.5 T: 
FA mean = 0.48 (SD = 0.11) and 7 T: FA mean = 0.47 
(SD = 0.08); and in the genu of the corpus callosum at 1.5 

T: FA mean = 0.67 (SD = 0.18) and at 7 T: FA mean = 0.66 
(SD = 0.14). Note the difference in image quality at differ-
ent field strengths, which in this subject has a relatively 
minor effect on the FA when averaged across each 
ROI. SD = standard deviation [Legend data provided cour-
tesy of FMRIB Centre, University of Oxford]

K.M. Curran et al.
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 Effect of Number of DWIs

Reconstruction of the diffusion tensor requires a 
minimum of seven MR images [28], one without 
any diffusion sensitizing gradients applied and 
at least six diffusion-weighted images with 
 gradients applied in non-collinear directions. 
Mathematically, only six non-collinear diffusion- 
weighted directions are necessary to reconstruct 
the diffusion tensor; however, in practice more 
images should be acquired to improve the accu-
racy of tensor estimation [29].

When using the tensor model, the more direc-
tions that are acquired the better the angular reso-
lution that can be achieved; however, research 
has shown that the “cost” (in this case scan time) 
versus benefit curve starts to flatten out at around 
30–32 unique directions. Jones et al. [29] found 
that robust determination of mean diffusivity, FA 
and tensor orientation requires a dMRI sampling 
scheme in which at least 30 unique and evenly 
distributed sampling orientations are employed. 
However, for anisotropy measurement only, the 
measurements will be robust when at least 20 
unique sampling orientations are used. When 
comparing indices derived from DT-MRI, if the 
number of sampling orientations is low (<30) and 
not uniformly distributed over the surface of a 
sphere, then the variance in derived indices can 

be strongly dependent on structural orientation 
[30]. For example, the lowest variance in a 
parameter such as FA is found when the fibre is 
aligned with one of the sampling orientations, 
and is largest when the fibre is at the greatest 
angle to the sampling vectors. These variations 
will effectively increase the standard deviation of 
measurements obtained from a region of interest 
(ROI) encompassing voxels containing tissue 
with different fibre orientations. Such increased 
variance will reduce the statistical power for 
quantitative analyses of mean diffusivity in dif-
ferent ROIs and will, in general, spuriously 
increase the heterogeneity of the apparent trace 
within ROIs (Fig. 5.5).

Combined with the number of diffusion 
weighting directions used, there is a requirement 
to acquire multiple non-diffusion-weighted 
images if large numbers of DWIs are acquired 
using different gradient orientations. The optimal 
ratio of diffusion weighted to non-diffusion- 
weighted images was calculated to be roughly 
9:1 [31]. Typically one b = 0 image is acquired for 
every 8–9 diffusion-weighted images. HARDI 
methods typically use a higher number of gradi-
ent directions (>45) depending on the reconstruc-
tion method used, and similar to DTI, increasing 
the number of directions improves the angular 
precision achievable [32].

Fig. 5.5 Illustrates synthetic color FA maps for (a) 16 (blue), (b) 30 (red), and (c) 60 (green) directions. Increasing the 
number of gradient directions increases SNR and therefore the accuracy of estimated the DTI measurements
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 Effect of b-Value

The number and strength of b-values influence 
the derived measures of diffusion and anisotropy 
[30] (Fig. 5.6). Attention to the choice of diffu-
sion sensitisation parameters is important when 
making decisions regarding clinical feasibility 
(acquisition time) and obtaining normative 
measures.

Within an ROI, the mean and variance of the 
trace will be dependent on the b-value [30]. The 
trace of the tensor is dependent on the amount of 
diffusion weighting used to characterise it [30]. 
As the diffusion weighting is increased there is 
an increasing dissociation between grey and 
white matter, with the trace in white matter being 
lower than in grey matter. This not only intro-
duces more heterogeneity within ROIs, but also 
means that comparison with normative databases 
or data from other centres and, by extension, 
multicenter studies is problematic unless the 
same degree of diffusion weighting is employed 
(which is seldom the case).

The diffusion characteristics of a voxel con-
taining a single-fibre population can be charac-
terized by a tensor whose associated ellipsoid is 
prolate. In voxels containing multiple fibre popu-
lations (e.g., crossing-fibre regions), the diffusion 
characteristics observed at low b-values can still 
be described by a single tensor but the diffusion 
ellipsoid may be less prolate or may become 
spherical or even oblate. In such cases, the tensor 
model does not adequately reflect the underlying 
tissue microstructure. Unfortunately, this is the 

case in an estimated 60–90 % of brain voxels 
[34], which again emphasizes the need for cau-
tion when interpreting DTI measures. Several 
groups have proposed methods for elucidating 
complex tissue microstructure by examining the 
non-Gaussian diffusion behavior that only 
becomes apparent at higher b-values (see [32] for 
a review).

 Effect of Image Quality

 Noise

The effect of noise on anisotropy measurements 
derived from DT MRI was first described by 
Pierpaoli and Basser [35]. Noise in the diffusion- 
weighted signals will mean that, even in a per-
fectly isotropic medium such as a glass of water, 
it is not possible to obtain three identical eigen-
values. Low signal-to-noise ratios correspond to 
high eigenvalue discrepancies. Thus, there is a 
noise-induced bias in measurements of anisot-
ropy. The variance in anisotropy increases as the 
added noise increases. However, the mean value 
remains approximately constant in the white mat-
ter, but increases rapidly in the grey matter [30]. 
Therefore unless the acquisitions are matched so 
that the SNR in the non-diffusion-weighted 
images is the same and, equally importantly, so 
that the same number of b = 0 images and 
diffusion- weighted images are acquired, then 
comparing anisotropy values across different 
subjects, time points, and centers is particularly 
problematic (see Box 5.3).

Fig. 5.6 Illustration of change in contrast and SNR with increasing b-value [33]
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The SNR depends linearly on the voxel vol-
ume. Clinical protocols typically limit voxel 
sizes to a minimum of about 2 mm3 at 3 Tesla (T) 
or 2.5 mm3 at 1.5 T. Reducing the edge length 
from 2 to 1.5 mm would reduce the SNR by more 
than half [36]. This reduction in SNR can only be 
compensated for by repeating and averaging the 
measurements, if averaging is performed in the 
complex domain and appropriate models of noise 
are invoked [36]. The SNR should never be below 
about 3:1 in any of the DW images in order to 
avoid the problems associated with the rectified 
noise floor [30]. Results reported in [37] and [38] 
suggest 10:1 as a safe minimum (Box 5.3).

It has also been found that that even within the 
three popular regression methods (linear least 
squares, LLS, weighted-linear least squares, 
WLLS, nonlinear least squares, NLLS) that do 
not explicitly account for the noise-floor, there 
are differential responses [37, 39]. This means 

that results will be different when using different 
estimation methods, and therefore, it is important 
when comparing measures of diffusion anisot-
ropy to establish not only what acquisition was 
used, but also what tensor estimation routine was 
used (see previous Chap. 4 for further discussion 
on the topic of tensor estimation strategies).

SNR of the diffusion-weighted images is also 
influenced by the diffusion weighting factor or 
b-value used. Low b-values provide higher SNR 
but at a cost of reduced angular resolution. 
Correspondingly, high b-values are better for 
HARDI acquisitions but SNR is significantly 
reduced.

 Artifacts

Although general guidelines exist for optimizing 
a DTI acquisition protocol in terms of SNR, 
b-value, voxel size, diffusion gradient directions, 
and cardiac gating [40], large variations in data 
quality remain as a result of differences in scan-
ner hardware, pulse sequences and available scan 
times. Tournier et al. [32] and Jones et al. [36] 
present excellent reviews on pre-processing 
dMRI data and the recommended quality assess-
ment that should be performed. There are a num-
ber of artifacts that can be identified in DTI data, 
including geometric distortions, ghosting, and 
signal dropouts. Detailed information regarding 
the prevention, recognition, and correction of 
such artifacts is provided in Chaps. 6 and 7 of this 
book.

Such artifacts can affect the accuracy of the 
tensor estimation, and by extension, the derived 
DTI parameters. For example, FA values greater 
than one can result from negative eigenvalues in 
the diffusion tensor, which typically occur at the 
interface between the CSF and the surrounding 
white matter, as artificially low-intensity rims 
[36]. Correcting for CSF-contamination partial 
volume effects in the structures of interest on a 
voxel-by-voxel basis prior to drawing inferences 
about underlying changes in white matter struc-
tures is therefore recommended [41].

Not only the artifacts themselves, but also the 
strategies employed to correct them may also 

Box 5.3: Comparing DTI Measures  

in Different Studies

It is not trivial to directly compare DTI 
measures (e.g., FA) derived from data 
acquired on different scanners with differ-
ent acquisition parameters (e.g., b-value).

Example: For a given patient, the FA in 
the corpus callosum is found to be 0.8. In 
another study, the FA in the corpus callo-
sum in a healthy individual is reported to 
be 0.9. Intuitively, one may conclude that 
the patient has a lower FA than normal. 
This is incorrect because the FA was calcu-
lated based on data with different acquisi-
tion parameters, and possibly also using 
different tensor estimation and analysis 
techniques. The correct way to assess if a 
patient has a different FA value in the cor-
pus callosum compared to a healthy indi-
vidual would be to do a case–control group 
study with patients and healthy control 
subjects scanned with identical scan proto-
cols and processed/analyzed in an identical 
manner.
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introduce errors. For example, when correcting 
for motion and eddy-current induced geometric 
distortions by performing affine registration of 
the diffusion-weighted images to one of the non- 
diffusion weighted images, it is important to also 
reorient the encoding vectors with the same rota-
tion matrix [42]. Neglecting to perform this 
important step may have minimal impact on sca-
lar indices such as FA but it can introduce biases 
of the order of a couple of degrees to estimates of 
the principal eigenvector, or peaks in the fibre 
orientation distribution (fODF) or diffusion ori-
entation distribution (dODF).

It is also important to correct for any residual 
eddy currents along the phase-encode direction 
by modulating the signal intensity back to its cor-
rect value by scaling the intensity in proportion to 
the change in the volume of the voxel. Neglecting 
to do this can introduce biases in quantitative 
metrics and estimates of orientation [30].

 Section Summary

•	 DTI metrics are influenced by a number of 
factors related to data acquisition, including 
the magnetic field and gradient strength, the 
b-value, the number of gradient directions, 
and image quality.

•	 Pre- and post-processing strategies used to 
estimate the tensor and correct for artifacts 
will affect the calculation of DTI measures.

 Interpreting Quantitative Diffusion 
Measures

… in most in vivo DTI cases, all that is proven is 
that there is a change in the diffusion parameters of 
water in a specific neural region, the interpretation 
of which is merely a plausible hypothesis. 
(C. Beaulieu, [43]).

Diffusion-weighted MRI measurements 
reflect the amount of hindrance and restriction 
experienced by water molecules moving with a 
component of displacement along the axis of the 
applied gradient, averaged over a voxel. Exactly 
how restriction and hindrance influence the sig-

nal is an open and complicated question and 
relies on a number of modelling assumptions, 
which may or may not be correct [36]. The gen-
eral mobility of water molecules depends on bar-
riers and obstacles imposed by microstructure, 
e.g., cell membranes, myelin sheaths, and micro-
tubules. Such barriers slow down the diffusing 
particles (“hindered diffusion”) or even impose 
an upper limit on their overall mean-square dis-
placement (“restricted diffusion”). The distinc-
tion between restriction and hindrance is 
important when interpreting diffusion MR data. 
While the tensor parameters are influenced by 
both restricted and hindered diffusion, the tensor 
model assumes Gaussianity and therefore trans-
lates restricted into hindered diffusion.

It is important to understand that when there is 
any component of displacement along the applied 
gradient axis that this will lead to signal attenua-
tion. In other words, if the gradient is applied 
along a given axis, water molecules do not have 
to be moving parallel to this axis to cause signal 
loss. It is only when the displacement is perfectly 
perpendicular to the encoding axis that there will 
be no contribution to signal loss since it is only at 
this orientation that there is no component of dis-
placement along the encoding axis.

 Relating DTI Parameters 
to Neurobiology

 Fractional Anisotropy

Several DTI indices can be derived from the 
eigenvalues to quantify the properties of white 
matter noninvasively, but the most widely used is 
FA, which is an index of the amount of anisot-
ropy. FA describes the directional coherence of 
water diffusion in tissue and is generally inter-
preted as a quantitative biomarker of white mat-
ter “integrity.” This is because pathological 
studies tend to show a reduction of FA associated 
with neurodegenerative processes [44–48] and 
developmental studies tend to show an increase 
of FA through infancy, childhood, and adoles-
cence [49–53], whilst IQ or improved perfor-
mance in particular cognitive domains often 
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correlates with increased FA [54–56]. However, 
equating FA with an index of white matter “integ-
rity” is an oversimplified interpretation because 
FA cannot disentangle the individual microscopic 
contributions (partly due to the relatively large 
voxel size) [12, 30, 36].

FA is influenced by large, oriented macro-
molecules, organelles and membranes. The 
degree of myelination, axon packing, the rela-
tive membrane permeability to water, the inter-
nal axonal structure, and the tissue water content 
all contribute to tissue anistropy [57]. The 
degree of anisotropy is often most strongly cor-
related with axon count and density [43], whilst 
the degree of myelination correlates with FA, 
but does not determine tissue anisotropy, which 
has also been demonstrated in non-myelinated 

fibres. Furthermore, as axon count and myelin 
are strongly correlated, it is impossible to dif-
ferentiate between them when interpreting FA 
changes. For this reason, FA should not be 
equated with an index of myelination or myelin 
damage.

Large regional differences have been observed 
in WM FA measurements. These differences fol-
low a typical pattern of high FA in the core of 
fibre bundles and low FA in the periphery [58], 
although there are exceptions. For example, in 
regions of where fibre bundles cross, FA is low. 
Regional anisotropy may arise from differential 
rates in developmental and degenerative trajecto-
ries for different fibre pathways [51]. For exam-
ple the superior longitudinal fasciculus matures 
at a relatively later stage of development than 
other white matter fibre bundles, and an anterior- 
posterior gradient of FA decline in later adult-
hood has been observed [59, 60]. This regional 
heterogeneity introduces its own challenges with 
regard to both study design and the interpretation 
of results, as discussed later in this chapter and in 
Chaps. 8 and 13.

 Mean Diffusivity

Recall that MD is a measure of the overall diffu-
sivity in a particular voxel regardless of direction. 
It is highest in areas where water diffuses most 
freely, such as in the ventricles, and is lowest in 
areas of high tissue complexity and hence, more 
barriers to diffusion, such as in grey matter. MD 
or “mean” ADC is an important measurement 
when assessing the evolution of stroke as 
ischemia- induced changes in tissue water content 
can be visualized on DWI and ADC maps before 
they appear on T2-weighted images (see Box 
5.4). In the adult brain, white matter water con-
tent is lower than that of the grey matter (65 % 
versus 85 %); however, the MD values for the 
two regions are virtually identical [61, 62]. This 
indicates that white matter is less restrictive to 
water diffusion than grey matter and may be 
related to the fact that water diffusion parallel to 
axons is relatively unrestricted, compared to dif-
fusion perpendicular to axons or in grey matter.

Box 5.4: The Effect of Timing on DTI Metrics: 

Stroke

The acute assessment and monitoring of 
stroke evolution remain the most useful 
and widely adopted clinical applications of 
DTI. Within several minutes of stroke onset 
there is a substantial decrease in mean 
ADC/MD in ischaemic brain tissue (by 
30–50 %). The basic mechanism underly-
ing this decrease remains unclear [1], but 
may be due to reduction in extra- and intra-
cellular water mobility, a shift of water 
from the extracellular to intracellular space, 
an increase in the intracellular diffusion 
restriction due to changes in membrane 
permeability, an increased tortuosity in the 
extracellular space due to cell swelling [2] 
and the consequences of cytotoxic oedema. 
The initial drop in MD pseudo-normalizes 
around a week later, as a result of blood–
brain barrier breakdown, damage to cell 
membranes, and vasogenic oedema, and 
gradually continues to rise over the follow-
ing months. In contrast, anisotropy briefly 
increases in the hyper-acute phase (<7 h) 
before decreasing to below pre-lesion lev-
els within 2 or 3 days [3].
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Brain water content decreases with maturation. 
In the immature brain, the MD of white matter is 
almost twice that of the fully myelinated brain 
due to the large extracellular spaces present in 
unmyelinated white matter [63]. During brain 
maturation, structures such as cell and axonal 
membranes become more densely packed, and 
water molecule mobility becomes increasingly 
restricted. As white matter develops, changes in 
water diffusion perpendicular to white matter 
fibres may indicate changes due to premyelin-
ation (change in axonal width) and myelination 
[23]. Differences in water content could also 
affect the contrast between white and grey matter 
in the paediatric brain [64, 65]. Therefore, as with 
FA, it is important to consider the age of the study 
population when interpreting changes in MD.

 Axial and Radial Diffusivities

Recall that axial diffusivity, l||  is simply the dif-
fusivity along the principal axis of the diffusion 
ellipsoid (λ1), whilst radial diffusivity, l^  is an 
average of diffusion along its two minor axes, 
which expresses the amount of diffusivity per-
pendicular to the principal direction of diffusion, 
or, in single-fibre populations, perpendicular to 
the direction of fibre orientation. Some studies 
have related AD and RD to specific microstruc-
tural features. For example, axial diffusivity has 
been associated with axonal damage, and frag-
mentation in particular, whilst radial diffusivity 
has been associated with axonal density, myelin 
integrity, axonal diameter, and fibre coherence 
[3, 66].

However, it is important to emphasize that the 
diffusion direction associated with the axial dif-
fusivity is not always preserved in pathological 
tissue and is not always aligned with the under-
lying expected tissue architecture [67]. 
Therefore, interpreting changes in axial and 
radial diffusivities in terms of underlying bio-
physical properties, such as myelin and axonal 
density is discouraged, unless accompanied by a 
thorough investigation of their mathematical and 
geometrical properties [68]. In this context, it 
also inappropriate to statistically compare the 

eigenvalues of the diffusion tensor without 
checking the alignment of the corresponding 
eigenvectors with the underlying tissue struc-
tures, especially when comparing patients with 
healthy controls [68]. The comparison of eigen-
values between different subjects or compari-
sons of the contralateral side of a tract affected 
by pathology in the same subject may be mean-
ingless because they could represent completely 
different physical information.

 Fibre Count

Although not strictly a DTI parameter, the “fibre 
count” (number of streamlines that pass through 
or between given regions of interest) can be 
derived from DTI-based tractography analysis 
(see Chap. 11). It is sometimes (incorrectly) used 
as a direct measure of connectivity or fibre 
 density [36]. For this reason, the use of the term 
“fibre count” has been discouraged and it is pro-
posed that reporting the number of streamlines is 
a safer and unambiguous way of reporting results 
[36]. Similarly, the number of streamlines pass-
ing through a voxel will be modulated by fea-
tures of the pathway (curvature, length, width, 
myelination) and local variations in SNR and 
therefore interpreting this measure as fibre den-
sity is problematic. In this context, it may also be 
inappropriate to compare the streamline count 
between white matter structures that have differ-
ent shapes [36].

 DTI Parameters as Complementary 
Measures

Measures derived from the diffusion tensor, such 
as FA, essentially combine the contributions from 
the different sub-compartments of white matter 
into a single metric. Improving the biological 
specificity of diffusion MRI demands improve-
ments in both acquisition and modeling schemes. 
Advanced MR methods may provide putative 
cellular markers, such as “axon/neurite density,” 
mean axon diameter, axon diameter distributions, 
and neurite dispersion (e.g., CHARMED [22], 
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AxCaliber [23], ActiveAx [24], and NODDI 
[26]). As quantification of myelin via diffusion is 
extremely problematic, other MR contrast mech-
anisms may provide complementary information, 
for example, quantitative magnetization transfer 
imaging [69, 70] and multicomponent relaxome-
try (e.g., [71, 72]). Indeed, recent work has dem-
onstrated the utility of this approach in the 
assessment of the microstructural basis of T2 
hyperintensities in neurofibromatosis (NF1) [18].

 Section Summary

•	 DTI measures can be correlated with micro-
structural features such as axon count and 
density, myelination, and membrane 
permeability.

•	 It is inappropriate to attempt to interpret DTI 
measures in terms of specific microstructural 
features or as a measure of white matter 
integrity

•	 Fiber count cannot be equated with fibre or 
axon density. Reporting the number of stream-
lines is more appropriate.

•	 Complementary information from other imag-
ing modalities, advanced dMRI techniques, 
and histology can support the biological inter-
pretation of DTI metrics.

 Challenges of Interpretation

One of the great accomplishments of DTI is 
reducing complex information into a handful of 
simple, sensitive, useful measures. However, this 
oversimplification comes at a price, and that price 
is the lack of specificity of DTI metrics and their 
dependence on many methodological and bio-
logical factors. By extension, this means that 
changes in DTI metrics cannot be ascribed to a 
single factor (or biological/pathophysiological 
feature), and this makes the interpretation of 
changes in DTI metrics extremely challenging. 
For example, the demographics of subjects and 
controls, the timing and severity of injury or 
pathology, technical factors related to image 
acquisition and analysis, and the nature and loca-

tion of abnormalities, are all important factors 
when relating DTI metrics to clinical outcome 
measures. This next section summarizes some of 
these issues.

 Model Limitations

As described earlier in this chapter, and revisited 
throughout this book, DTI measures are derived 
from an oversimplified mathematical representa-
tion of the average diffusion in a given voxel 
given a number of assumptions, most of which 
cannot be satisfied in the “real-world” situation. 
Although it is beyond the scope of this 
 introductory text to go into detail on this topic, it 
is useful to consider some of the limitations of 
the tensor model (further discussion can be found 
in Chap. 20).

For example, the tensor model assumes that 
diffusion follows a Gaussian distribution, when 
in fact, typical dMRI sequences primarily capture 
signal from intracellular water, which is restricted 
and hence follows a non-Gaussian distribution. It 
also assumes a single fibre direction in each 
voxel, but we know that this condition is rarely 
satisfied in (complex mammalian) neural tissue. 
Other, perhaps less intuitive assumptions are that 
the temperature of the diffusing molecules 
remains constant and they remain in the same 
environment, e.g. there is no exchange between 
intra and extracellular compartments. In reality, 
variations in temperature will occur as a function 
of the thermal conductivity of the examined tis-
sue and the proximity of blood vessels, and water 
molecules may move between compartments 
during the application of the diffusion-sensitizing 
gradients.

Another important limitation concerns the 
ellipsoid representation of the diffusion tensor. 
Recall that the degree of eccentricity of the ellip-
soid reflects the degree of anisotropy, i.e., a long, 
thin ellipsoid reflects highly anisotropic diffusion 
(i.e., high FA), and a more spherical ellipsoid 
reflects more isotropic tissue and (i.e., low FA). 
However, FA reflects the relative contributions of 
the axial and radial diffusivities, such that differ-
ent combinations of axial or radial diffusivity can 
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give rise to the same FA. In this context, by only 
examining FA, it is not possible to identify the 
origin of the observed values. For instance, the 
prolate ellipsoid with λ1 = 3, λ2 = 1, λ3 = 1 and 
oblate ellipsoid: λ1 = 7, λ2 = 7, λ3 = 1 (arbitrary 
units) have the same FA value of 2/√11, but have 
different AD and RD values [73].

 Biological Confounds

 Demographics

Abnormalities in DTI pararmeters are typically 
defined on the basis of comparison with a healthy 
control group because universal thresholds for 
abnormality have not yet been established. In this 
context, a number of studies have examined DTI 
changes in healthy controls across the lifespan. 
As described earlier, FA typically increases and 
MD decreases through childhood and adoles-
cence [74] until the fourth decade when white 
matter volume begins to decrease [51, 75]. 
However, the lack of standardized DTI acquisi-
tion and analysis protocols, means that standard, 
normative data describing thresholds of normal-
ity across the general population are presently 
unavailable. This situation is likely to change in 
the future as large-scale, harmonized multicenter 
studies and data-sharing gain ground.

In addition to age-related effects, other factors 
may confound DTI findings, including brain vol-
ume, gender, ethnicity, level of education, hand-
edness, medical comorbidity, alcohol and 
smoking use, and medication status, to name but 
a few (see Chap. 13 for further information).

 Timing

In addition to age, sex and anthropometrics, 
injury mechanism and the chronicity of injury 
can greatly influence DTI metrics and it is there-
fore important that these issues are considered 
when designing studies and interpreting results. 
Primary injury and secondary injury play differ-
ent roles in the evolution of pathology as a func-
tion of time post-injury. Microstructural 

pathology, as detected with DTI, may change 
over time and it is therefore important to system-
atically assess the timing of DTI after injury, par-
ticularly in the acute and sub-acute periods 
(between 2 weeks and 1 year) [76] (see Box 5.4).

 Complex Tissue Architecture 
and Crossing Fibres

One of the most important confounds in DTI 
analysis is the inability of the tensor model to 
correctly characterise diffusion in regions of 
complex fibre architecture (i.e., when an image 
voxel contains fibre populations with more than 
one dominant orientation, such as in bending or 
interdigitating fibre configurations at the voxel 
level) [32] (Chap. 20). The impact of crossing 
fibres on the main DTI metrics is summarized 
below.

 Impact of Crossing Fibres on FA
The FA, in particular, is strongly affected in areas 
of complex fibre architecture [35]. FA values are 
lower in such areas because there is no single 
dominant diffusion direction and the diffusion 
profiles of the different fibre configurations aver-
age out. Consider how the shape of the diffusion 
ellipsoid would change in a voxel with more than 
one fibre bundle. This effect is clearly visible on 
a standard mid-coronal FA in the semiovale 
region, at the intersection of multiple fibre path-
ways (Fig. 5.7).

In neurodegenerative conditions, the deterio-
ration of one fibre bundle could result in an adja-
cent or functionally related fibre bundle becoming 
more dominant, resulting in a paradoxical 
increase in FA. In some neuropathological stud-
ies, for example, investigating Wallerian degen-
eration and mild cognitive impairment, higher FA 
values have been observed in patients than in 
healthy controls [77, 78].

 Impact of Crossing Fibres on the Trace
The b-value and the number, orientation, and 
trace of individual fibre populations within a 
voxel affect the trace [48]. In a voxel with two 
fibre populations, the trace in that voxel is not 
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only dependent on the trace values of the under-
lying fibre populations but also depends on the 
angle of intersection between these two fibre 
populations. As the angle between the two popu-
lations increases, the trace in a crossing fibre 
region gradually decreases with respect to trace 
in a region with only a single population, reach-
ing its minimum when the populations are 
orthogonal. The trace therefore depends on the 
configuration of the crossing, i.e., the angle of 
intersection between populations and the vol-
ume fraction of each of the fibre populations in a 
voxel [12].

 Impact of Crossing Fibres on Mean 
Diffusivity
There are a number of factors that may influence 
the estimate of MD, for example the choice of 
tensor estimation routine or the set of gradient 
sampling vectors [79]. Vos et al. [12] demon-
strate that the MD is lower in complex white mat-
ter configurations, compared with tissue where 
there is a single dominant fibre (SF) orientation 
within the voxel. They also show that the magni-
tude of this reduction depends on various factors, 
including the relative contributions of different 
fibre bundles, microstructural properties, and 
acquisition settings such as the b-value.

The dependence of the MD on the tissue 
geometry has implications for statistical testing. 
In regions that are comprised of voxels with 

purely SF-configurations, the MD will be rela-
tively uniform. Likewise, for areas of tissue 
where there is uniformity in the complexity of the 
tissue, the MD may be lower but it will be uni-
formly lower. However, in regions that contain a 
mixture of SF and crossing fibre configurations 
that take different geometrical forms, there will 
be a larger variation in MD. Consequently, there 
will be a higher variance in such regions, and 
therefore less statistical power to detect differ-
ences in MD.

 Impact of Crossing Fibre 
Configurations on AD and RD
Wheeler-Kingshott and Cercignani [68] have 
demonstrated the challenges of interpreting 
changes in axial diffusivity (AD) and radial dif-
fusivity (RD) in crossing fibre regions. Their 
experiments revealed that AD increased when 
the RD of one of the underlying fibre popula-
tions was increased. Similarly, RD decreased 
when there was a reduction in AD in one of the 
underlying populations. They propose a frame-
work to address some of these issues [80]. Vos 
et al. [12] have also shown an associated reduc-
tion in one or more of the tensor’s eigenvalues 
with lower MD values in regions of complex 
fibre architecture. With two fibre populations in 
a voxel, the diffusivity becomes more planar, 
leading to an underestimation of λ1 and an over-
estimation of λ2.

Fig. 5.7 The dark, low-anisotropy region (silver box) 
that is typically visible in the centrum semiovale on coro-
nal FA maps (a) reflects the inability of the tensor to char-
acterize more than one dominant fibre direction in a 

given voxel. Compare the more spherical tensor ellipsoid 
glyphs in this region (b), with those obtained from higher 
order models (in this case, constrained spherical decon-
volution) (c)
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 Technical Issues

 Partial Volume Effects

Spatial resolution is an important consideration 
when assessing anisotropy and the aggregate 
range of diffusivities across the tissues compos-
ing the voxel, as it will determine to a large 
extent, the influence of partial volume effects 
(PVEs) (Fig. 5.8).

PVE is defined as the intra-voxel heterogene-
ity of different tissue organizations. For example, 
within one voxel, a variety of tissue types (grey 
matter, white matter, CSF, vascular tissue) may 
be present, each with a different type and degree 
of cellular architecture and fluid content. When 
averaged out over the voxel as part of the tensor 
reconstruction, the contribution of all these dif-
ferent tissue structures will give rise to a single 
dominant diffusion direction. The relative contri-
bution of each tissue type will determine the 
dominant diffusion direction, so for example, a 
voxel located in the core of a white matter bundle 
will be less influenced by PVE than for example, 
a voxel at the edge of a bundle, or near the 

 ventricles. Vos et al. demonstrated that FA and 
MD are modulated by fibre bundle thickness, ori-
entation and curvature as a result of PVE [36] 
and recommend accounting for these features in 
DTI analysis.

 Impact of CSF Contamination 
on Diffusion Metrics

Given that diffusion in CSF is isotropic and has a 
mean diffusivity that is approximately four times 
larger than water in tissue, it is clear that partial 
volume contamination any voxel by CSF will 
influence DTI parameter measurements [82]. This 
is particularly problematic at the interfaces of tis-
sue with CSF-filled spaces [83] and is an impor-
tant confound in studies of development and 
ageing, and in pathological volume change [82].

CSF-suppression techniques such as FLAIR 
have been used to ameliorate CSF contamination 
at the point of acquisition [84] but this can pro-
long acquisition time. Jones et al. [36] recom-
mend the use of a multicomponent modeling 
solution [85, 86].

Fig. 5.8 The thickness of 
a fibre bundle modulates 
the DTI metrics along its 
length, with smaller, 
thinner bundles being more 
susceptible to PVE than 
larger, thicker bundles. In 
this example, FA is highest 
in the middle of a 
cross-sectional ROI of the 
cingulum compared to at 
the bundle periphery. The 
scatter plot (left bottom) is 
based on data from 
Szczepankiewicz et al. 
2013 [81]
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In a recent study, Metzler-Baddeley et al. [41] 
highlight the importance of correcting for CSF- 
contamination partial volume effects in structures 
of interest on a voxel-by-voxel basis prior to 
drawing inferences about underlying changes in 
white matter structures. They found that diffusiv-
ity metrics (mean diffusivity, axial and radial dif-
fusivity) were more prone to partial volume CSF 
contamination errors than fractional anisotropy. 
After free water elimination (FWE) based voxel-
by- voxel partial volume corrections [85], the sig-
nificant positive correlations between age and 
diffusivity metrics, in particular with axial diffu-
sivity, disappeared whereas the correlation with 
anisotropy remained. Free water elimination may 
be a more useful strategy than correcting for 
whole brain volume, which had little effect in 
removing these spurious correlations [41].

 The Role of the Analysis Technique
DTI can be used to study brain structure at a 
voxel, regional or whole-brain level (See Section 
III). Regional analyses include those in which an 
a priori region of interest is chosen for study, and 
tractography-based analysis, in which an a priori 
fibre bundle (or bundles) of interest is selected 
for investigation. In both approaches, typically, 
average diffusion values such as FA are extracted 
from voxels within the ROIs or tracts for subse-
quent analysis. Whole-brain analyses include 
voxel-based analysis (VBA) (Chap. 10) and his-
togram analyses of all the voxels in the brain 
image or in a white matter mask.

Because the different analysis approaches 
utilize different assumptions and image process-
ing strategies, it is possible that different results 
can be obtained from each type of analysis. For 
example, in a recent investigation of bipolar dis-
order endophenotypes, Chaddock et al. [87] and 
Emsell et al. [88] report differences in the extent 
of regional FA changes and association with 
genetic risk in the same dataset. This does not 
necessarily mean the results from one type of 
analysis are correct and the other incorrect. In 
fact using multiple analytic strategies is impor-
tant for cross-validation of results. The most 
commonly implicated regions are generally 

similar across approaches, whilst subtle, more 
local effects or spurious findings tend to occur 
less frequently.

 Section Summary

•	 Disentangling the relative contributions of 
biophysical, pathological and methodological 
factors to DTI measures is challenging and 
confounds their interpretation.

•	 The tensor model is an over-simplification, 
which provides useful summary measures in 
single-fibre regions such as the corpus callo-
sum and fornix, but has limited applicability 
in regions of complex microstructure or 
“crossing-fibres.”

•	 Investigators should consider biological con-
founds such as subject demographics, the 
 timing and severity of pathology and the loca-
tion of DTI changes when interpreting results

•	 Cross-validation of results using different 
analysis techniques can yield useful informa-
tion about the reliability and location of DTI 
metric changes.

 Chapter Summary

Qualitative assessment of diffusion MR images 
can be supported by quantitative measures 
derived from DTI data. However, such metrics 
are influenced by many biological and method-
ological factors, and should therefore be inter-
preted with due caution. Fractional anisotropy is 
a summary measure derived from DTI, which 
describes the directional coherence (anisotropy) 
of water diffusion within tissue, while mean axial 
and radial diffusivity may more specifically 
describe the direction and magnitude of tissue 
water diffusion.

Equating FA with an index of white matter 
integrity is an oversimplified interpretation 
because FA cannot disentangle individual micro-
scopic contributions at the voxel level. Similarly, 
the interpretation of measures that are sensitive to 
the sorting of the eigenvectors or to the effect of 
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noise and partial volume, such as the axial and 
radial diffusivities, should be discouraged unless 
accompanied by a thorough investigation of their 
geometrical properties.

It is important to emphasise that comparing 
data that have been acquired using different 
acquisition parameters may be meaningless. This 
is particularly important in ROIs that contain 
complex tissue geometry, which will result in 
greater variation in diffusion measures leading to 
higher variance in ROIs across subjects and 
therefore less statistical power to detect differ-
ences in diffusion measures.

The accuracy and reliability of DTI based 
results can be improved by undertaking quality 
assurance, appropriate pre- and post-processing 
to correct for artifacts, and by incorporating 
PVE-related covariates into statistical analysis.
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            Learning Points 

•     Common acquisition methods used for DTI  
•   Basic imaging considerations in DTI  
•   Standard parameters for DTI acquisitions  
•   Common EPI artifacts and their cause  
•   Appearance of common EPI artifacts  
•   How to reduce or avoid most DTI artifacts  
•   How to diagnose and correct for DTI artifacts     

    Introduction 

 In this chapter, we will discuss acquisition meth-
ods for DTI. This discussion will focus on  Echo 
Planar Imaging  (EPI) and touch on  Fast Spin- 
Echo   (FSE) acquisition methods. We will address 
situations where these methods are particularly 
well suited, as well as common problems seen 
when using these methods in DTI. Please note 
that many of the image quality aspects are inde-
pendent of whether DTI or DWI is performed. 
Hence for this chapter, unless specifi cally men-
tioned, the terms DWI and DTI can be used 
interchangeably. 

 Throughout this chapter, we strive to help the 
reader to best understand DTI acquisitions and DTI 
parameters so that one can select and adjust the 
acquisition that fi ts best. However, in order to pro-
duce the highest quality results for any kind of dif-
fusion imaging study, it is important to plan and 
test the acquisition beforehand because there are 
often complicated image changes from a single 
parameter modifi cation. This planning ensures that 
the scan goes smoothly, and that costly and poten-
tially impossible reacquisitions are not required. 

 This chapter is presented in seven major parts: 
Stejskal-Tanner diffusion encoding, an image 
acquisition background, echo planar imaging, 
fast spin-echo imaging, motion sensitivity of dif-
fusion imaging, image reconstruction, and pedi-
atric imaging considerations. 

 We hope that the information presented  h  ere 
about possible DTI acquisition methods and their 
associated pitfalls will help you establish reliable 
acquisitions and diagnose acquisition problems. 
Our aim is that this will enable you to choose the 
acquisition method with the greatest chances of 
success and get the best performance out of your 
MRI scanner.  

    Stejskal-Tanner Diffusion  Encoding   

 Diffusion theory was discussed in detail in a pre-
vious chapter (Chap.   3    ). For this chapter, it is 
important to keep in mind how water molecules 
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behave in different tissues. Regions of the 
brain—such as gray matter—are only slightly 
structured at the cellular level, and therefore have 
relatively similar diffusion in all directions. 
However, white matter, which is predominantly 
axons and other tissues that are structured at the 
cellular level, often have signifi cantly anisotropic 
diffusion. That is, the diffusion coeffi cient that 
one can observe will differ dependent along 
which direction it is measured. 

 This  cellular structure   can be uniquely probed 
with MRI using the pulsed gradient acquisition 
introduced by  Stejskal and Tanner  [ 1 ] (Fig.  6.1 ). 
Here, a long-TE spin-echo sequence is modifi ed 
by straddling the 180° refocusing RF pulse with a 
pair of strong gradients of equal polarity. To 
review from the diffusion chapter, these gradi-
ents, often termed diffusion-encoding gradients 
or motion-probing gradients, reduce the signal 
from randomly moving (diffusing) water while 
leaving the signal amplitude from stationary or 
coherently fl owing water unchanged. It is impor-
tant to remember that the diffusion information 
extracted from this sequence is often termed the 
  Apparent Diffusion Coeffi cient  (ADC)   as it is an 
approximation of the diffusion coeffi cient that is 
made up from the contribution of individually 
diffusing spins (a spin is the individual signal unit 
in MRI; many spins make up a voxel) within the 
voxel under investigation and certain sequence 
parameters (i.e., “shutter speed” of the diffusion 
measurement). These assumptions allow for an 
easy evaluation of the ADC, which closely 
refl ects the actual diffusion in the tissues.

   Also note that one can measure the  ADC   only 
along the direction of the applied diffusion- 
encoding gradient. This can be in any direction in 
the magnet by using a combination of the gradi-
ents in the  x- ,  y- , and  z -axes. The conventional 
notation for diffusion direction is the so-called 
unit vector (i.e., magnitude of the vector equals 
“1”), in which the tip of the vector points along 
the direction one wants to measure diffusion. It is 
important to note that the diffusion section of the 
pulse sequence (i.e., the diffusion amplitudes on 
the  x ,  y , and  z  gradients) is independent from the 

rest of the pulse sequence, and in fact, a non-
diffusion- weighted ( b  = 0) scan is a part of every 
diffusion protocol and is simply the diffusion 
sequence with the diffusion gradient amplitudes 
set to zero. 

 For our purposes, the diffusion tensor acquisi-
tion can be considered an extension of the 
Stejskal-Tanner DWI acquisition. The only dif-
ference between  DWI and DTI   is that a DTI 
acquisition requires a minimum of six or more 
DWIs, along with at least one image (and often 
more) without diffusion encoding (i.e., where the 
diffusion-encoding gradients are turned off, often 
called a T2w or  b  = 0 scan) [ 2 ,  3 ]. The acquisition 
of the set of diffusion images is followed by dif-
fusion post-processing, which is used to calculate 
the directionality and diffusion coeffi cient, both 
of which were covered in more detail in the pre-
ceding chapter (Chap.   4    ). For the purposes of this 
chapter, note that the six or more diffusion direc-
tions required to measure the tensor need to be 
spread out as much as possible in the  3D sphere 
of diffusion   ( D   x  ,  D   y  ,  D   z  ). The sphere of diffusion 
refers to the diffusion direction (direction from 
the center of the sphere) and the strength of the 
diffusion-encoding gradients (the distance from 
the center of the sphere) and directions that are 
spread evenly around the sphere are mathemati-
cally best for the diffusion post-processing and 
therefore produce the best diffusion tensor 
results. The minimum of six diffusion directions 
is required because there are six unknown ele-
ments of the diffusion tensor ( D   xx  ,  D   yy  ,  D   zz  ,  D   xy  , 
 D   xz  , and  D   yz  ). 

 The groups of diffusion directions (and some-
times multiple diffusion sensitivities, called 
 b -values) are often called “schemes” or “sets.” 
These sets are often chosen individually for spe-
cifi c applications. One example of these is 
schemes, often termed  High Angular Resolution 
Diffusion Imaging  (HARDI) acquisitions, with 
generally more than 60 diffusion-encoding 
directions [ 4 ]. A  HARDI   gradient scheme allows 
for better differentiation of complex white mat-
ter structures and is often used in white matter 
tract tracing applications. The high spherical 
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resolution allows for observation of directional 
diffusion differences in highly complex white 
matter structures such as crossing or fi ber bun-
dles with other complex patterns (see Chap.   21     
for more details about HARDI techniques). 
However, regardless of the direction scheme 
chosen (HARDI or otherwise), the rest of the 
acquisition (RF pulses, readout method, etc.) is 
often entirely interchangeable and can be modi-
fi ed to best suit the anatomy and physiology 
being imaged. 

 To review, there are two  elements   essential to 
Stejskal-Tanner DTI:

•    Paired diffusion gradients, typically spaced 
around a 180° RF pulse.  

•   A set of six or more diffusion gradients well 
spaced around the  D   x  ,  D   y  , and  D   z   axes.     

    Acquisition Background 

 In order to better describe DTI acquisitions, it is 
important to understand some of the elements of 
MRI data acquisition. In this section, we will dis-
cuss  k -space—the form of the image as it is 
acquired on the scanner—and complex numbers, 
both of which are important to keep in mind 
when discussing the distortions and artifacts typi-
cal in DTI acquisitions. 

      K -Space   

 The inherent “image” that is acquired by any 
MRI scanner is not the image that is shown on the 
scanner. When mapping the acquired MR signal 

  Fig. 6.1    This fi gure shows the readout, phase encode, 
slice select, and radiofrequency ( G  ro ,  G  pe ,  G  ss , and RF 
respectively) of a typical Stejskal-Tanner diffusion pulse 
sequence with an EPI readout. The Stejskal-Tanner core 
(the diffusion gradients labeled with  arrows ) is the bipolar 
gradients, which are separated by a 180° RF pulse. These 
gradients are dotted to show that they change to vary the 

amount (amplitude or  b -value) and direction of the diffu-
sion sensitivity. The  hollow arrows  indicate the EPI read-
out, which in this case is a partial Fourier readout. An EPI 
readout very effi ciently covers  k -space and the  black  RF 
envelope indicates that the spin echo is designed to occur 
in the center of  k -space ( hollow arrow ) in the readout       
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into  k -space, it actually becomes the spatial 
 frequency spectrum of the MR image so that a 
simple Fourier transform (after some processing 
not discussed here) will yield the MR image and 
vice versa. In this chapter, we will call the axes in 
 k -space  k   x   and  k   y   for the  x-  and  y -axes respec-
tively. The typical acquisition is a Cartesian—
also called a rectilinear or raster—sampling of 
  k -space  , which is shown in Fig.  6.2 . For typical 
MR imaging, all the points in  k -space are acquired, 
and then a 2D or 3D Fourier transform is applied 
to create the 2D or 3D image itself. More details 
about the transition from  k -space to image 
space—generally called the reconstruction—will 
be discussed in detail in a later chapter.

   Another tricky detail with EPI is that the gra-
dient polarity changes for every other line in 
 k -space, which leads to the well-known “zig-zag” 
pattern of the EPI readout (Fig.  6.2 ). While the 
 k   y  -axis increases linearly for the entire readout, 
the  k -space axis reverses for every other line. 
Thus, the time axis for every other gradient echo 
needs to be reversed to match the MR data sam-
ple with its location in  k -space. If the timing of 
the odd and even gradient echo lines is off, ghost-
ing artifacts can occur, a phenomenon that will be 
discussed later. 

 To review,  k -space from an EPI acquisition 
has three important characteristics:

•     K -space is the “image” acquired directly from 
the MRI scanner.  

•   A Fourier transform can be used to convert 
 k -space to an image.  

•   The traversal of  k -space may change signifi -
cantly depending on scan parameters, such as 
parallel imaging and partial Fourier 
acquisitions.     

    Complex Numbers 

 Each point in  k -space, and each point in the 
image itself is a  complex number  —even though 
it is not often shown in the fi nal results. A com-
plex number is a number that consists of both real 
and imaginary parts—often called magnitude and 
angle or magnitude and phase in MRI. The phase 
of the  k -space points is important during the 
image generation, and unwanted phase is the 
source of most of the image artifacts in EPI. 

 While the  signal magnitude   is straightforward 
for most users to understand because it is simply 
the strength of the MR signal in each voxel, the 
concept of having an image where each voxel is a 
complex number is not as easily understood. An 
intuitive way to think about it is that if in general 
the spins in a voxel precess (rotate) slightly faster 
or slower than normal, by the time the sequence 
reads out, the angle that is seen is slightly larger 
or smaller than normal. An analogy to this is a 
clock that is slightly faster or slower than a per-
fect clock. If fast, slow, and perfect clocks are set 
and started at noon, and checked an hour later, 

  Fig. 6.2    This fi gure shows the readout in  k -space of three 
bidirectional EPI acquisitions. The different readout 
direction on odd ( arrows  going  left ) and even ( arrows  
going  right )  lines  is the source of EPI “ghosting.” Parallel 
imaging with a reduction factor of 2 is shown, and for this 

reduction factor every  second line  is skipped. Partial 
Fourier imaging is shown in the third panel. In this case, 
 k -space lines are skipped at the beginning of the readout 
rather than every other. The acquisition diagram for EPI is 
shown in Fig.  6.1        
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the minute hand of the perfect clock will be 
pointing up at 12 again. However, the minute 
hand of the slow clock may only be pointing at 
50, and the fast clock may be pointing at 5. In this 
example, the angle (phase) at the time the clock is 
checked (TE or echo time in MRI) is the angle of 
the minute hand relative to 12. The phase accrual 
can be slowed down or sped up deliberately by 
applying a magnetic fi eld gradient or uninten-
tionally by eddy currents,  B  0  inhomogeneities, 
susceptibility differences, and RF. 

 The schematic in Fig.  6.3  shows how  phase 
angles   change over time with respect to a magnetic 
fi eld. In fact, phase accrual is the basis for diffusion 
imaging—the use of the phase coupled with the 
random walk (diffusion) of spins across very small 
distances is the indicator that diffusion occurred. 
The phase is also used in the image acquisition to 
help form  k -space. Many of the artifacts discussed 
in this chapter are the result of incorrect phase in 
 k -space or image space due to a wide range of fac-
tors including motion, diffusion,  B  0  inhomogene-
ities, readout gradient inconsistencies, and others.

   To review, complex numbers are important in 
 EPI-MRI   for two reasons:

•    All MRI data are complex.  
•   In diffusion processing, the phase is typically 

discarded at the end of the processing, but it is 
important to understand because it is the 
source of many image artifacts in EPI.      

    The Echo Planar Imaging 
Acquisition 

    Echo Planar  Imaging   

  Echo Planar Imaging  (EPI) is the clinical and 
research standard acquisition for DTI. The stan-
dard EPI acquisition is usually a single-shot 
 spin- echo acquisition which consists of a 90° 
excitation, 180° refocusing pulse (Fig.  6.1 ), and a 
bidirectional Cartesian readout which linearly 
traverses  k -space (Fig.  6.2 ) in one go. The EPI 
trajectory uses a small “blip gradient” to inch its 
way up the  k   y  -axis, which is orthogonal to the 
readout. The diffusion-encoding pulses, which 
are not an inherent part of an EPI readout, are 
placed on either side of the 180° pulse for 
Stejskal-Tanner imaging. 

 The number one reason why the EPI readout 
is the most popular option for  DTI   is that any 
DWI method is notoriously sensitive to motion. 
This motion sensitivity becomes immediately 
apparent if one thinks about the minute  molecular 
motion we are trying to capture with this 
sequence. Any bulk motion while these strong 
motion-probing gradients are on would pick up 
substantial phase. Due to the unpredictable nature 
of bulk motion, these phase changes would most 
likely differ for each diffusion preparation—
readout pair and compete with regular gradient 
encoding and lead to considerable artifacts. 

  Fig. 6.3    This fi gure shows 
the phase or angle in 
regions of an image with 
different magnetic fi elds 
over time. This phase is 
often removed from the 
fi nal images; however this 
change in phase over time 
is the source of shim and 
 B  0  artifacts. In some cases, 
the phase can also affect 
the combination of data, 
which can result in 
cancellation of signal       
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With single-shot EPI the phase errors do not 
 disappear but they are the same for the entire 
 k -space data set and do not bother us. DWI 
motion sensitivity becomes a problem again 
when we want to average multiple measurements 
together. If the number of signal averages is 
larger than one, the typical method to perform 
averaging is to directly average the acquired MR 
signals as they come in. This standard form of 
MR signal averaging does not work for diffusion 
images as the individual measurements may inter-
fere destructively (Fig.  6.4 ). A simple remedy is to 
reconstruct each acquisition separately and aver-
age the magnitude images afterwards. However, 
averaging in magnitude mode is a challenge in 
itself. As the noise in MR magnitude data is no 
longer Gaussian distributed (for the nerds amongst 
you: it is a Rice- Nakagami distribution), the 
image becomes hazy in regions with  low sig-
nal - to - noise ratio  ( SNR  ) as the signal effectively 
“bounces” off the nonzero mean noise fl oor. The 
interested reader is referred to the literature for 
methods used to resolve this problem [ 5 ,  6 ].

   With the increasing demand  for   ever thinner 
slices, the TR of DTI sequences increases along 
with the large number of diffusion-encoding 
directions or intensities for HARDI, Q-ball or 
q-space imaging. This creates another challenge 
for diffusion imaging, which is the lengthening of 
the overall scan time. Single-shot EPI is currently 
the fastest and most time-effi cient diffusion imag-
ing technique, as it is capable of acquiring a whole 
2D image in a single excitation and therefore a 
full DTI dataset in a very short amount of time 
(Fig.  6.5 ). Only recently, a further speed-up has 
emerged through simultaneous multi-band acqui-
sition, but at the time of this writing, this tech-
nique is not yet commercially available and is 
currently only used in research settings [ 7 ].

   In summary, acquiring the entirety of  k -space 
in a single excitation confers two major advan-
tages in DTI. The fi rst is simply the scan effi -
ciency—the speed—of the acquisition. For each 
slice in DTI, a minimum of seven images—and 
often many more—must be acquired to fully cal-
culate the diffusion tensor parameters. This is a 

  Fig. 6.4    This fi gure shows an example of a non-corrected 
and corrected shot combination in non-diffusion and dif-
fusion imaging. Note how the non-diffusion imaging 
shots have nearly identical phase patterns, and therefore 
can be combined cleanly—without any noticeable arti-
facts—even without phase correction. However, because 
of the sensitivity of diffusion imaging to motion, the 

 diffusion images have phase differences, and it is there-
fore often impossible to combine the shots without induc-
ing artifacts before phase correction is applied. This case 
was a two-shot acquisition, so the artifact from poor phase 
combination largely manifests itself as FOV/2 ghosts, 
which will be discussed later       
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signifi cant increase in scan time from a single 
anatomical scan; and by acquiring each image in 
a single—albeit longer—TR, it allows DTI to 
remain achievable within a clinical setting. The 
second  advantage   of EPI for DTI is the whole 
image coverage means that it does not require a 
complicated reconstruction involving data com-
bination in order to prevent phase cancellation 
between acquisitions. Despite these strengths, 
and the standard use of EPI in DTI, single-shot 
EPI is not without its disadvantages, which will 
be discussed in the following sections. 

 To review, EPI is used for DWI and DTI for 
two major reasons:

•    It is fast because a single image can be 
acquired for each excitation.  

•   The full image does not require complicated 
 acq  uisition and reconstruction tricks to avoid 
image phase cancellation.     

    Scan Parameters and Their Effects 

 In DTI, several scan parameters are changed from 
standard anatomical imaging in order to work best 
with the constraints of DTI. A list of the basic 
parameters, typical values, and comments about 
them is in Table  6.1 . This table is intended as a 
general guide rather than rules for DTI acquisi-
tions and we hope this will aid your understand-
ing of the parameters and the EPI acquisition.

   Generally, a DTI acquisition is  slower   and has 
more images than anatomical imaging because of 

  Fig. 6.5    This fi gure shows 
DTI results from a medial 
slice in a “typical” EPI 
acquisition. It shows the 
non-diffusion-weighted 
( b  = 0), mean diffusion 
( b  = 1000), mean apparent 
diffusion coeffi cient 
(ADC), and the color FA 
map. The mean diffusion is 
simply the average signal 
intensity from all of the 
diffusion images acquired. 
The mean ADC is 
calculated using the 
average of the ADC in all 
three directions (for those 
of you interested, it is the 
average of eigenvalues 
1–3), and higher values 
refl ect more diffusion in 
those regions. The color FA 
indicates the major 
unidirectional regions of 
diffusion color coded based 
on the direction ( red  is 
left-right,  blue  is superior- 
inferior, and  green  is 
anterior-posterior)       
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the time needed to acquire diffusion-weighted 
images in at least six directions plus at least a sin-
gle non-diffusion-weighted (T2w or  b  = 0) image. 
It is important to remember that this is the mini-
mum number of images to compute the diffusion 
tensor. Diffusion acquisitions like HARDI [ 4 ] or 
Q-Ball [ 8 ] require many more diffusion directions, 

sometimes calling for more than 100 diffusion-
weighted images per slice. Multiple diffusion 
magnitudes ( b -values) can also be acquired in a 
single scan [ 9 ], as in Q-space imaging. Using more 
diffusion directions and more  b -values can 
improve the fi delity of the tensor estimation, espe-
cially in cases where there are multiple structures 

   Table 6.1    Typical DTI parameters   

 Parameter  Value  Comment 

 Flip angle  90°  90° for the excitation and 180° for the spin echo(es) 
to achieve maximum signal 

 TR  >3 s  At least 2 × T 1  of tissue to allow full signal 
recovery—keep large number of slices within 
1 TR by simply increasing TR 

 TE  60–110 ms  As short as possible—depends on maximum gradient 
strength available for a given  b -value as well as 
whether or not partial Fourier imaging is used 

 Partial Fourier  Yes  20 overscan lines for 128 × 128 

 7/8 partial Fourier 

 70 % partial Fourier 

 Go higher on this factor to avoid “worm hole” 
artifacts. When in doubt use full echo but this 
increases TE signifi cantly 

 Matrix size  128 × 128  96–192 are typical, mostly isotropic in plane 

 rFOV  100 %  Cannot do rFOV because PE is along A/P 

 Scan %  100 %  Keep an isotropic in-plane resolution 

 FOV  24 × 24 cm  Large enough to prevent aliasing 

 Phase-encode direction  A/P  To keep distortions L/R symmetric on axial scans 

 Frequency-encode direction  L/R 

 Parallel imaging factor  2–3  Highly dependent on the RF coil 

 Some coils afford 4—if reduction factor is too 
high the parallel imaging noise enhancement 
impairs image quality 

 # of  b  = 0 images  1–3  About 1 per 6 diffusion images 

 # of diffusion directions  Approx. 21  6+ required, more than 100 possible 

 Slice thickness  3 mm  1–6 mm 

 Slice gap  0 mm  To avoid gaps and better fi ber tracking—use 
interleaved slice acquisition to minimize SNR 
penalty from slice cross-talk 

  b -value  1000 s/mm 2   500–5000+ 

 For HARDI acquisitions 2500 

 For q-space even higher, e.g., 5–8000 

 Bandwidth  Maximum for bandwidth  Almost always the maximum (minimum for 
water-fat shift) possible for the system  Bandwidth per pixel 

 Water-fat shift  Minimum for water-fat shift 

 Imaging axis  Axial/Oblique  Axial or oblique close to axial 

 Lipid/fat suppression  Yes  SPIR/SPSP/SPAIR/CHESS 

  Note that this is only intended as a guideline for the most important parameters for standard single-shot EPI sequences. 
For all acquisitions there are more parameters to consider, and some sequences may typically have parameters well 
outside of these ranges  
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within a voxel, such as two tensor tracts crossing 
or splitting. These methods use more advanced 
processing methods beyond the standard eigen-
value DTI processing; however a discussion of 
these methods is beyond the scope of this chapter. 

 A side effect of acquiring many diffusion 
directions and  b -values is that the many acquisi-
tions act as a form of averaging, which increases 
the  signal - to - noise - ratio  (SNR) of the diffusion 
tensor images (Fig.  6.6 ). This is advantageous 
because another consideration is that the reduc-
tion of the MR signal due to diffusion weighting 
causes the SNR to be generally lower in the 
diffusion- weighted images when compared to an 
anatomical image with similar scan parameters. 

In clinical practice, acquiring more diffusion 
directions rather than repeating diffusion direc-
tions is the preferred method of performing aver-
aging. This is done because it is a robust way to 
both increase the SNR and ensure more than 
enough diffusion directions were acquired.

   Furthermore, as the   b -value   increases, the 
SNR in the individual diffusion images decreases 
(Fig.  6.6 ). This becomes a trade-off between the 
contrast between the diffusion-weighted images 
and their SNR; the former potentially showing 
more detail and the latter providing less-noisy 
images. A simple solution to counteract the lower 
SNR is to increase the voxel size compared to 
that used with anatomical imaging. 

  Fig. 6.6    This fi gure shows images with different num-
bers of diffusion directions used ( top row ) as well as dif-
ferent  b -values used ( bottom row ). The  top row  shows the 
fractional anisotropy maps ( brighter  indicates more direc-
tionality in the tissue) all with a  b -value of 1000, calcu-
lated using 6, 14, and 21 directions from  left  to  right . Note 
that even though nothing else is changed between the 
acquisitions, the clarity of the images improves as more 
diffusion directions are added, which is primarily due to 

the averaging effects of more images. The  bottom row  
shows (in a separate slice) a single diffusion direction 
(applied left-right) with  b -values of 500, 1000, and 1500 
s/mm. Note that the signal is higher in the  b  = 500 s/mm 
scan, but it is diffi cult to differentiate between structures. 
Also note that depending on the direction of the fi ber tract, 
higher  b -values tend to emphasize ( thin arrow ) or de- 
emphasize ( thick arrow ) the structures       
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 Another consideration of increased  b -values is 
increased eddy current distortions, which are 
covered in detail later in this chapter. In short, 
higher  b -values—stronger diffusion gradients—
can cause distortions in the image. These may not 
be obvious by looking at the images, but they 
may cause artifacts around the edge of the brain 
in the processed maps. 

 The fi rst general MRI scan parameter to dis-
cuss is the  echo time  (TE). With the inclusion of 
the diffusion-encoding gradients, the minimum 
TE is increased by the duration of the gradients. 
While the minimum TE—or very close to the 
minimum—is often used, the minimum TE is 
often far longer than what is possible without the 
diffusion gradients, as in the non-diffusion- 
weighted image. The one caveat for the TE is that 
it should be the same for all diffusion directions 
and weightings, including the non-diffusion- 
weighted image, in order to prevent any T 2  decay 
(or differences thereof) from infl uencing the cal-
culation of the diffusion coeffi cient. A standard 
TE for DTI is around 80 ms, although it can vary 
greatly depending on the scanner’s gradient hard-
ware as well as the requested scan and diffusion 
parameters. 

 The increased  TE   is also a source of decreased 
SNR relative to anatomical MRI. In conjunction 
with the diffusion-encoding gradients, which 
also decrease the signal, DTI acquisitions have 
a lower SNR than anatomical images. It is in 
part because of the low signal that often more 
than 15 diffusion-encoding directions and mul-
tiple T 2 - weighted images are used in standard 
clinical DTI. 

 Note that unlike in anatomical imaging where 
a long TE generates T 2 -weighted contrast in the 
image, the ADC images only have diffusion con-
trast. While the individual images in the series 
have T 2 -weighted contrast from the TE, this con-
trast is removed in the DTI processing because 
all of the diffusion images have the same TE. This 
results in images which are unaffected by image 
contrast beyond that intentionally created by the 
diffusion gradients. 

 Because of the increased TE, the minimum 
 repetition time  (TR) is also increased. An impor-
tant point to remember for DTI is that the TR 

should be at least three times the tissue T 1 - 
relaxation time in order to allow near full relax-
ation of the spins. In the brain, this means that the 
minimum TR is considered to be at least 3 s, and 
preferably more than 5 s. Often, however, with 
multi-slice scans, the time it takes to acquire all 
of the slices—and make it fi t into one TR—is 
more than the 3, or even 5-s minimum. While a 
TR that is too low reduces the SNR and can 
induce T 1 -weighting into the diffusion images, 
anything beyond approximately 5 s does not 
improve or degrade the images in any way. 

 Another important scan parameter is the reso-
lution of the scan.  EPI-DTI   is typically acquired 
at a relatively low resolution compared to ana-
tomical imaging protocols that take approxi-
mately the same amount of time. The low 
resolution is primarily because of the reduced 
signal in the diffusion-weighted images caused 
by the diffusion-encoding gradients, as well as 
the time required to encode the seven or more 
diffusion-encoding directions, which are required 
for a suffi cient SNR for the tensor calculation. 

 Typically, the resolution is as high as possible 
while still allowing a high enough SNR as is 
required by the application. The balance between 
resolution, SNR, and the number of diffusion- 
encoding directions in general is an open research 
question, and even for specifi c applications it is 
not easy to determine without specifi c testing. It 
often depends on the anatomy under exploration, 
as well as the SNR and resolution that the post- 
processing methods require. Because of these 
complicated trade-offs, it is important to check 
previous protocols and work to verify what is 
required of the technique and to confi rm that it is 
possible with your scanner before scanning 
patients. 

 To review, there are three major parameters 
that are treated differently for DTI than most 
other  MRI   scans:

•    The TE is set as short as possible to get the 
highest SNR possible because the contrast is 
created with the diffusion gradients, not the 
TE and TR.  

•   The TR is set to be as short as possible for 
speed, but it must stay longer than three times 
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the expected T 1  of the tissue—typically more 
than 3 s.  

•   The resolution is set as high as possible while 
still allowing for good SNR. There is no equa-
tion for this; it is all determined by testing.     

    Consequences of the EPI Trajectory 

 This section will discuss the EPI trajectory and 
common artifacts, which are often seen in con-
junction with DTI-EPI. The EPI trajectory is 
unique because it samples multiple Cartesian 
lines in  k -space in a single readout. This is very 
effi cient in terms of scan time and has the nice 
property for diffusion-weighted imaging that the 
whole image can be acquired in a single excita-
tion, which helps prevent problems from 
diffusion- encoding induced phase errors which 
will be discussed later. 

 However, acquiring data in a single, long read-
out enhances several types of artifacts, which can 
pose problems when reading or analyzing the 
images. These consist of:

•    Chemical shift artifacts in which fat/lipid sig-
nal is also shifted signifi cantly relative to the 
rest of the image and can cause masking of the 
true image in places of overlap.  

•   Distortions due to off-resonance in the object 
from main magnetic fi eld distortions such as 
 B  0  inhomogeneities or a bad shim.  

•   Ghosting, which is due to inconsistent phase 
encoding in odd and even lines in  k -space.    

 The main consequence of a  Cartesian EPI   
readout with the phase-encode lines acquired lin-
early from one edge of  k -space to the other is that 
the EPI readout is very fast in the readout direc-
tion ( k   x  ), but very slow in the phase-encode direc-
tion ( k   y  ) (Fig.  6.2 ). The consequence of this 
readout is that artifacts, which in other scan types 
manifest in the readout direction, present very 
strongly in the phase-encode direction in EPI. For 
example, the fat-water shift can be tens of pixels 
in the phase-encode direction in EPI images, 
whereas in normal gradient or spin-echo imag-
ing, the shift is typically less than two pixels in 

the readout direction. Do note that different 
 vendors report either bandwidth in kHz (GE), 
bandwidth in Hz per pixel (Siemens), or water-
fat shift (Philips). 

 This water-fat shift is caused by the different 
resonant frequency of fat compared to water. As 
mentioned above, the slow read progression in  k   y   
causes the chemical shift artifact as in standard 
gradient or spin-echo imaging. However, chemi-
cal shift is not limited to chemical species; the 
same principle applies to any region where off- 
resonance is present. In EPI images this causes 
the signal from the off-resonance regions to be 
shifted, which—due to the gradual off-resonance 
change—looks like stretching or signal pileup in 
the image rather than a distinct shift (Fig.  6.7 ). 
This can be caused by off-resonance effects such 
as a poor shim, or more commonly by air-tissue 
interfaces such as those adjacent to the sinuses or 
other cavities in the head, which cause irregular 
magnetic fi elds in the neighboring brain tissue.

   The  B  0  (main magnetic fi eld) and  chemical 
shift artifacts   are caused by off-resonance differ-
ences or natural chemical frequency in different 
regions of the image. These artifacts can be 
reduced with careful shimming and fast scans, 
and fat saturation pulses respectively. In fact, 
because the resonance frequency of fat is not the 
same as water, fat is typically shifted a signifi cant 
amount when compared to the rest of the image, 
often into the brain itself (Fig.  6.8 ). Lipids have a 
very low diffusion coeffi cient and therefore vox-
els that have fat overlaid appear hypointense 
(dark) on ADC maps. Similarly, residual lipid 
ghost often confounds diffusion anisotropy maps. 
Because of this, a fat saturation pulse, or some 
other method of suppressing the fat signal, is 
required. Alternatively, one can use “water-only” 
excitation pulses (i.e., spectral-spatial RF pulses) 
that do not excite fat protons within a slice.

   Another artifact called “ ghostin  g” is inherent 
to EPI in which the  k -space readout is performed 
in both directions, which is what is shown in Fig. 
 6.2 . This is the most common type of EPI used in 
the clinic. Ghosting is caused by differences 
between odd and even (readouts progressing to 
the right and left respectively)  k -space lines. 
These differences manifest as image “ghosts” at a 
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fraction of the fi eld of view. For single-shot EPI, 
with altering odd and even echoes, the ghost is 
shifted by half the FOV. Ghost artifacts like this 
(called FOV/2 ghosts) are often fi xed in the 
reconstruction, though this is not always the case 
and ghosting may be more prevalent if the imag-
ing plane is oblique. Similar to residual fat over-
laying on the tissue of interest, the diffusion 
tensor information can be confounded by the 
aliased FOV/2-ghost. Quantitative measurements 

as well as scalar images (e.g.,  b  = 0) will be most 
corrupted when there is a substantial signal 
 intensity difference between the original and the 
aliased voxel (e.g., brain tissue vs. eyeball). 

 There are two different causes of ghosting: the 
phase difference and shift between the even and 
odd echoes in  k -space. Both of these result in 
ghosting, but their appearance is different and 
they are caused by the intercept and slope of the 
phase terms, respectively [ 6 ]. Figure  6.9  shows 

  Fig. 6.7    These EPI images 
show off-resonance 
induced artifacts due to an 
inhomogeneous magnetic 
fi eld. When comparing the 
phase encode (PE) up vs. 
down, it is clear that the 
image is either stretched or 
compressed in regions with 
off-resonance, such as the 
regions indicated by the 
 gray  and  white arrows . 
Even though this artifact 
affects the whole image, 
the  gray  and  white arrows  
show regions where the 
differences between the up 
and down PE artifact are 
easy to see. The speed at 
which the image is 
acquired decreases from 
the fastest, (a matrix of) 
128 × 128, to 128 × 128 
without ramp sampling, to 
the slowest, 192 × 192. 
Because of this reduction 
in the sampling speed, the 
artifacts increase, which is 
easy to see when 
comparing regions near the 
 gray  or  white arrows  for 
the three different sampling 
speeds. Note that 
decreasing the resolution is 
not the only way to 
increase the sampling 
speed and therefore 
decrease the off-resonance 
artifacts; however it is a 
way to modulate the 
distortion       
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  Fig. 6.8    Lipid suppression is very important in EPI and 
DTI imaging in order to remove the unwanted fat signal 
from the diffusion calculations. The fi rst image, in which 
both fat and water are excited with a normal RF pulse, 

shows how the fat signal is shifted and can disrupt regions 
in the image. The next two images show how both fat 
saturation and spectral-spatial pulses work well to sup-
press the unwanted fat signal       

  Fig. 6.9    This fi gure shows how differences between odd 
and even echoes cause EPI ghosting. The fi rst row shows 
how the phase difference between the echoes causes vary-
ing intensity ghosts in the image. Note how (from  left  to 
 right ) the 0° (no ghosting) and 18° vary only slightly, but at 
90° the ghost and original have equal intensities, and at 
180° only the aliased image remains visible. The  arrows  in 

the  circles above the fi rst row  show the phase of the even 
echo and odd echo in  black  and  gray  respectively. The  sec-
ond row  shows how shifts between the odd and even echoes 
cause bands of aliased and un-aliased regions in the image. 
Note that (from  left  to  right ) the number of ghosted bands is 
equivalent to an increased echo shift in  k -space. For all 
these images the phase-encode direction is up-down       
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different types of ghosting, and disabling ghost 
correction as seen in Fig.  6.10  shows combina-
tions of both echo phase and echo shift ghosts.

    Another variant of magnetic fi eld distortions 
is due to eddy currents (see section “Examples 
and Mitigation of DTI-EPI Artifacts”) induced in 
the conducting elements of the magnet by switch-
ing the strong diffusion-encoding gradients and 
which cause spatiotemporal variations of the 
effective fi eld “seen” by the protons. 

 To review, there are three common types of 
artifacts which can manifest—typically, but not 
always—in the phase-encode direction:

•    Chemical (fat/water) shift (Fig.  6.8 ).  
•   Magnetic fi eld (susceptibility and shim) dis-

tortions (Fig.  6.7 ).  

•   Ghosting, which is caused by differences 
between back-and-forth readout lines 
(Figs.  6.9  and  6.10 ).     

    Hardware Limitations 

 There are many  hardware limitations   in MRI that 
are considerations for DTI; some of which are 
imposed by engineering challenges, and some by 
the human body itself. There are two major limi-
tations when it comes to the performance of the 
magnetic fi eld gradients and one for the use of 
the radiofrequency (RF) system. 

 For the gradient systems, which are especially 
stressed during DTI acquisitions due to the 
extremely strong diffusion gradients, the two 

  Fig. 6.10    These images show EPI ghosting with different 
parallel imaging factors. Note that with the exception of 
( a, e ) these images were generated by turning off the 
“ghost correction” portion of the reconstruction, ghosting 
can also arise when the ghost correction is used, but is 
simply unsuccessful. This is the case in the 192 × 192 
resolution ghost corrected image ( a ,  white arrow ) where 
some slight aliasing is still present, which is similar to 
that in ( b ). The “ghosts” are shifted by a fraction related 
to the parallel imaging used and are caused by inconsis-
tent even and odd readout lines (see Fig.  6.2 ). Traditional 
EPI ghosts (also called  N /2 or Nyquist ghosts) are shifted 
halfway around the image like in ( b ), i.e., FOV/2. 

However, when parallel imaging is used, the ghost shift 
changes relative to the parallel imaging factor: FOV/(2 R ) 
where  R  is the parallel imaging acceleration. The  thick 
arrows  show the top of a “ghosted” brain in the  R  = 1, 2, 
and 3 images  (b–d) , which shows how it shifts with the 
changes in the parallel imaging factor. The two images 
for a parallel imaging acceleration of 2 show how differ-
ent ghosting can look between similar images. The  gray 
arrow  in ( f ) shows a vertical band where no correction is 
needed to produce a good image; however in the same 
image, the  hollow arrow  shows a band where the image 
is entirely ghosted and the true image  (e)  is not 
represented       
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major limitations are the maximum gradient 
strength and the rate at which the gradient 
changes strength (slew rate). Table  6.2  lists sev-
eral  scan parameters   that can affect the gradient 
system and infl uence the maximum gradient 
strength and slew rate in some way.

   In diffusion imaging, the maximum gradient 
strength is often reached during the diffusion sen-
sitizing gradients. If the gradient strength can be 
increased, the duration of the diffusion pulses can 
be decreased for the same desired  b -value. To 
review the diffusion equation from the diffusion 
chapter, the  b -value for a diffusion-weighted 
(single) spin-echo sequence is defi ned by 
( γG  Diff  δ ) 2 (Δ −  δ /3) where  γ  is the gyromagnetic 
ratio,  G  Diff  is the strength of the diffusion gradi-
ents, Δ is the time from the beginning of the fi rst 
diffusion gradient to the beginning of the second 
diffusion gradient, and  δ  is the duration of the dif-
fusion gradient. A rule of thumb is that the 
 b -value increases quadratically with the diffusion 
gradient strength,  G  Diff , and with the third power 
of diffusion time,  δ . A shorter diffusion gradient 
duration equates to a shorter TE and thus higher 
SNR as well as shorter TR and thus a faster scan. 
The gradient coils (i.e., their diameter, induc-
tance, and resistance) and amplifi ers (i.e., peak 
power and sustained power) often limit the maxi-
mum gradient strength in the system, and beyond 
changing scanners or using a gradient insert, 
there is unfortunately no way to change how fast 
the gradients can be switched or their maximum 
gradient strength. 

 The slew rate is the speed at which the gradi-
ents can change strength. A high slew rate is very 
advantageous for an EPI readout, which requires 
very fast positive and negative switching of the 
gradients to achieve an effi cient back-and-forth 
trajectory (Figs.  6.1  and  6.2 ); the faster the gradi-

ents switch, the faster the acquisition becomes 
and the smaller the geometric distortions become. 
The limitations on the slew rate are twofold. The 
fi rst, like the maximum gradient strength, is 
caused by hardware limitations, as it is diffi cult 
to increase and decrease the power in the gradient 
coils very quickly. The second is  peripheral 
nerve stimulation  ( PNS  ), which is nerve stimula-
tion caused by rapidly changing magnetic fi elds 
around the scan subject. It actually occurs in 
body parts that are located near the edges of the 
gradient coil, i.e., far away from isocenter, where 
the temporal change in the effective fi eld pro-
duced by the gradient is highest. PNS is typically 
felt as a muscle twitch, and is normally only an 
annoyance, but can be painful and should be 
avoided if possible. The easiest way to avoid PNS 
is simply to decrease the intensity of the gradient 
switching. This can be achieved by decreasing 
the resolution or the readout bandwidth. In fact, 
even changing the orientation of the scan is often 
used to help alleviate PNS. 

 The limitation on the   radiofrequency  (RF) 
system   is called the   Specifi c Absorption Rate  
(SAR),   which is in effect the heating of the sub-
ject by the RF excitations. RF excitations are 
done through the RF coil and are a vital part of 
any MRI pulse sequence. SAR limitations can 
vary based on the regulations at the institution as 
well as the body part being imaged. This heating 
is not enough for the patient to notice or is noticed 
with delay as the heating occurs inside the body 
and not from the outside where the people would 
be able to sense it with the thermoreceptors in the 
skin, which is why it is very important not to 
exceed the tissue heating limit. Luckily, it is a US 
Food and Drug Administration (FDA) require-
ment that all clinical scanners in the United States 
track the SAR of the pulse sequences and stop the 
scan if it exceeds the allowed limits. Similar 
 limits are generally used worldwide, and differ-
ent countries and regions have their own laws 
and regulations regarding limits. 

 Because the SAR is caused by the RF pulses, 
and higher fl ip angles cause more tissue heating, 
any pulse sequence with many 90° and especially 
180° pulses is prone to having a high tissue 
 heating. Unfortunately, once the maximum tissue 
heating is reached, the only option is to wait until 

   Table 6.2    Scan parameter and gradient limitations   

 Parameter  Gradient “Diffi culty” 

 ↑ Matrix size  ↑ 

 ↑ FOV  ↓ 

 ↑  B -value  ↑ 

 ↑ Slice thickness  ↓ 

  Here we loosely defi ne diffi culty as those applications that 
require higher gradient performance, which includes both 
gradient strength and slew rate  
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the tissue cools. Because waiting during an MRI 
is highly undesirable, it is important to avoid the 
SAR threshold when prescribing the sequence. 
Sequences that may reach the SAR limits are 
FSE—where there are many 180° pulses—as 
well as some spin-echo EPI sequences with fast 
repetition times. It is important to notice that 
SAR also goes up quadratically with fi eld 
strength. So SAR management is very important 
at 3 T and even more so at experimental high- 
fi eld systems, such as 7 T scanners. 

 Another component to the SAR limit is the 
weight of the subject and even the body part being 
scanned. Different body parts have different SAR 
limits as determined by the FDA, and these limits 
are set per body weight (W/kg). Even though DTI 
is typically performed on the head, the weight of 
the subject determines the SAR limit for head 
scans. Variations in patient weight typically do 
not cause problems, but if the sequence is set very 
close to the SAR limit, a very small patient may 
cause the sequence to pause or abort. This is eas-
ily understood when considering that an arbitrary 
RF pulse deposits a certain amount of energy—in 
this case heat measured in Watts—in the body. A 
SAR limit is the amount of energy per amount of 
tissue (W/kg) over time; therefore heavier patients 
can be scanned with more energetic pulses than 
lighter-weight patients. 

 To review, there are three limitations caused 
by MRI hardware, which may cause limitations 
for EPI-DTI.

•    Slew rate—the speed at which the gradients 
can change strength, which is important dur-
ing the readout.  

•   Maximum gradient strength, which is reached 
during the diffusion-encoding gradients.  

•   SAR—the maximum tissue heating from RF.     

    Examples and Mitigation of DTI-EPI 
Artifacts 

 Even though there are a few fundamental types of 
EPI artifacts, there are many causes of EPI arti-
facts. It is important to be able to recognize the 
major types and be familiar with the causes of 
each in order to reduce or remove the artifacts. 

 The fi rst artifact to discuss is “ghosting” as 
explored above (Figs.  6.9  and  6.10 ). The typical 
EPI readout is the back-and-forth type that is 
shown in Fig.  6.2 . The consequence of inconsis-
tent data in the odd and even readout lines is 
shown in Figs.  6.9  and  6.10 . Even though the odd 
and even readouts are spaced differently with dif-
ferent parallel imaging accelerations, the result is 
always similar. In each case, there are shifted 
“ghosts” that are seen in the phase-encode direc-
tion. This artifact can be complicated, especially 
when high parallel imaging values are used; how-
ever it is often corrected in the reconstruction 
[ 10 ]. If the ghosts are not easily corrected, scans 
in the axial plane may have less inherent ghosting 
than oblique, sagittal, or coronal scans. This has 
to do with the fact that the physical gradient coils 
are all slightly different, especially the  z -gradient 
coil, and therefore demonstrate different timing 
errors that in turn cause the data inconsistencies 
that cause “ghosts.” When prescribing oblique 
scans, a combination of the physical gradients 
(with different temporal responses) is used to 
generate the logical gradient and corrections are 
no longer simple. Alternatively, if ghosts are still 
present, a fl yback EPI trajectory can be used. 
This trajectory samples all readouts in the same 
direction, but is slower than the back-and-forth 
trajectory and may not be available on all 
systems. 

 Ghosting may also be caused by motion in 
some cases. In these cases, it can be very diffi cult 
to differentiate between the acquisition ghosts 
discussed above and the motion ghosts. However, 
if other slices and EPI scans are ghost-free, then 
it is likely that it is a motion ghost. Also, if there 
is additional distortion like signal smearing or 
blurring, that is a good indication that the ghost-
ing is due to motion. 

 Another major  source   of EPI artifacts are off- 
resonance distortions that are regional imperfec-
tions in the shim that cause distortions in the 
phase-encode direction. The infl uences of off- 
resonance distortions can be seen in Fig.  6.7  
where opposite phase-encode directions are com-
pared. Typical sources for off-resonances are:  B  0  
inhomogeneities (i.e., deviation in the static fi eld 
provided by the magnet), susceptibility errors 
(i.e., when spins are magnetized differently due 

E. Peterson and R. Bammer



105

to the differential fi eld they produce at interfaces 
of matter with different susceptibility, e.g., air 
and tissue), eddy currents (residual magnetic 
fi elds from the diffusion gradients), and lipids 
(which are not actually off-resonance, but pre-
cess at a different frequency, which then looks 
similar to off-resonance). These distortions can 
be from the aforementioned sources, but they are 
inherently related to the slow sampling speed of 
EPI in the phase-encode direction. Figure  6.7  
highlights these differences by showing the same 
slice, sampled in different directions and at differ-
ent speeds, and Fig.  6.11  shows the distortion of 
different sampling speeds when compared to a  fast 
spin-echo (FSE)   scan. These are the typical distor-
tions in EPI, and these artifacts are often accepted 
in order to acquire DTI data in clinically accept-
able times; however these may cause issues when 
trying to quantify the diffusion in the brain [ 11 ].

   For the same reason that susceptibility gradi-
ents, main fi eld inhomogeneities, and eddy cur-
rents all cause geometric distortions, the fat 
signal is shifted by a signifi cant amount relative 
to the brain water signal. Because of this, some 
kind of fat suppression should be used for any 
EPI acquisition. This is shown in Fig.  6.8 , which 
illustrates how the fat signal is shifted and over-
laps the brain. However, when a fat saturation or 
water selective excitation is used, the fat signal is 
removed. There are various methods that can be 
used, and each vendor has their preferred method, 
which often has the best performance on their 

respective systems. These methods can differ not 
only in the effectiveness of the lipid suppression 
but also in how much time is spent to acquire 
each slice. Here, spectral-spatial pulses are obvi-
ously much more effective than inversion (SPIR, 
SPAIR, STIR) or saturation/binomial (CHESS, 
ProSet). Fat suppression is not only important 
because of the unpleasant visual appearance of 
fat rings. Since lipids have very low diffusion 
coeffi cients, any residual lipid artifact will affect 
the ADC in the voxel that contain the fat ghost. 

 An EPI image artifact type that is uniquely 
associated with DTI and diffusion imaging is 
eddy current artifacts. These are due to the strong 
diffusion gradients that are used to visualize the 
structures in the brain. These extremely strong 
gradients can cause residual magnetic fi eld gradi-
ents on any combination of the gradient axes dur-
ing the imaging section of the pulse sequence 
[ 12 ]. Note that eddy current artifacts also belong 
to the family of off-resonance artifacts. These 
residual currents cause transient changes in the 
magnetic fi eld that lead to scaling, translation, or 
shearing in the image depending on the axis in 
which the eddy current occurs. An example of 
this can be seen in Fig.  6.12 , which shows the 
differences between images with eddy currents in 
three different directions. These distortions gen-
erally increase with increasing diffusion gradient 
strength and therefore are not signifi cant under 
typical (non-diffusion) imaging conditions. 
A dual spin-echo acquisition, which will be 

  Fig. 6.11    This comparison shows the difference between 
an FSE ( a ) and single-shot EPI at three different resolu-
tions ( b – d ). Note how the off-resonance distortions are 
much greater in the EPI images when compared to the 
FSE image ( red outline ). The increasing distortions in the 

EPI images are caused by the progressively slower speed 
in which  k -space is traversed in the phase-encode direc-
tion: from 128 to 288. The distortions are caused by the 
combination of off-resonance distortions and the EPI 
readout       
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 discussed later, can be used to mitigate these dis-
tortions at the cost of slightly reduced SNR.

   Other distortion effects, in the same family 
as off-resonance distortions, are caused if the 
shim is set incorrectly. The difference between 
local  susceptibility artifacts   and distortions 
caused by incorrect shim values are that shim-
related artifacts generally affect the whole 
image and are preventable with careful shim-
ming, whereas susceptibility- related artifacts 
are local and typically manifest around air-tis-
sue interfaces. 

 In fact, the distortions from poor shim values 
look like eddy current distortions where the 
images are stretched, compressed, and sheared; 
the cause is off-resonance spins due to bad shim 
settings. Even though the shims on modern MR 
systems are typically very good, in some cases 
the available shim gradients may be insuffi cient 
to properly account for the major inhomogene-
ities in the imaging volume. Most clinical scan-
ners only have linear, or at most fi rst-order 
nonlinear shims, so any fi eld changes that are not 
corrected by those are uncorrectable and the 
remaining fi eld changes result in the distortions 

seen in Fig.  6.13 . Typical clinical scanners have 
robust auto-shim procedures, but in some cases 
the shim may be determined incorrectly, and in 
these cases it is possible to re-run the auto-shim 
or manually shim the volume.

   A further aspect to the shim and fat-induced 
artifacts is that when the off-resonance distor-
tions are severe, fat suppression can cause the 
suppression of nonfat signal because the 
 off- resonance distortions cause the frequency of 
the brain to shift to frequencies near fat. It is also 
clear that in these regions the image is greatly 
distorted due to the off-resonance distortions. 
This is shown in Fig.  6.14 , which demonstrates 
unsaturated and saturated fat in the case of severe 
off-resonance distortions.

   To review, there are three major types of arti-
facts that are caused by off-resonance effects in 
EPI images:

•    Shim and local magnetic fi eld off-resonance 
(Figs.  6.11  and  6.13 ).  

•   Eddy current distortions caused by the diffu-
sion gradients (Fig.  6.12 ).  

•   Fat suppression errors (Fig.  6.14 ).     

  Fig. 6.12    The switching of strong diffusion-encoding 
gradients leads to eddy currents and associated fi eld per-
turbations, which in turn can cause different distortions 
based on the direction of the diffusion-encoding gradi-
ents. This is commonly called “eddy current” distortion, 
and is a concern in diffusion-weighted EPI. These images 
show the distortion caused by gradients along the  x- ,  y- , 
and  z -axes, which are shear, scaling, and translation, 

respectively. As you can see from the  outline , there are 
many smaller differences in the outlines between the 
images as well. Eddy current effects can be reduced by 
using a dual spin-echo imaging sequence, reducing the 
strength or slew rate of the diffusion gradients, or by sim-
ply increasing the speed at which  k -space is traversed 
along the phase-encode direction (e.g., via parallel imag-
ing, interleaved EPI, or ramp sampling)       
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    Considerations When Prescribing EPI 

 There are a number of factors to pay attention to 
when prescribing an EPI scan. Many of them are 
similar in non-EPI imaging, but often their effects 
are amplifi ed or altered in some way in EPI. The 
previous section described these artifacts and this 
section discusses how to best avoid these issues 
when prescribing scans. 

 Checklist 1 is a generic outline for  trouble-
shooting   DTI. We intend it to help troubleshoot 
the potential major problems in a clinical set-
ting. It is written generically and may not apply 
well to all applications. We encourage you to 
use this as a basis for an “artifact checklist” that 
applies to your scans that you can use to quickly 
and effi ciently diagnose and fi x common DTI 
errors. 

  Fig. 6.13    This fi gure 
shows how the shim 
quality can distort and 
change the image. In the 
 left  column, the small  red  
and  large blue arrows  
indicate regions that 
change signifi cantly inside 
the brain due to the shim 
changes, with changing 
distortion as the shim 
progresses from  top  to 
 bottom . In the  right  
column, the  red  boundary 
shows how the brain shape 
is changed by the shim. 
Also note how the SNR of 
the images decreases as the 
shim worsens. To fi x this, 
the shim values may be 
manually changed, and 
there may also be higher 
order shims, which can 
help smooth the magnetic 
fi eld over larger regions. In 
this example, only the 
linear shims were changed. 
If higher order shims were 
used, the distortions would 
become increasingly 
complex       
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 If the scan is artifacted:

    1.    Does it look like motion? Is there ghosting, 
signal variation, or blurring?
    (a)    Did the person move? Ask them, or a sim-

ple test for large motion is to re-run the 
localizer to check for major motion. Ask 
them to hold still and re-run the scan. 
Alternatively, use better head restraints or 
turn on motion correction, if available.       

   2.    Is the image geometrically distorted 
(squeezed, stretched)?
    (a)    The shim may be bad, or eddy currents 

may be distorting the diffusion images.   
   (b)    If the localizer looks okay, but if both the 

diffusion images and the non-diffusion 
images look distorted, it could be a bad 
shim.

•    Try looking at the line width of the 
spectrum from a manual prescan to 
evaluate the shim.  

•   A manual or a local automatic shim 
may help.  

•   Use parallel imaging or multi-shot 
regime.      

   (c)    If the  non-diffusion images   are not dis-
torted, but the diffusion images are dis-
torted—typically differently from image to 
image—it may be caused by eddy currents.
•    Try a dual spin-echo acquisition, or a 

post-processing eddy current correc-
tion. You could also reduce the  b -value 
as eddy currents increase dispropor-
tionally as you increase the  b -value.  

•   A lower  b -value will reduce the distor-
tions, but it is often not possible to 

  Fig. 6.14    This image 
shows a brain with large 
off-resonance 
inhomogeneities with 
unsuppressed ( a ,  b ) and 
suppressed fat ( c ,  d ) 
images. In this case, 
because of the off- 
resonance inhomogeneities, 
the fat suppression 
removes signal from the 
center of the brain because 
its resonance frequency 
was too far away from the 
base water frequency       
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change the  b -value for typical DTI 
protocols. Alternatively, try to increase 
TE and lower the diffusion gradient 
strength.  

•   Use  parallel imaging or multi-shot 
regimes  .  

•   Some scanners allow the combination 
of two gradient coils to increase maxi-
mum gradient strength at the cost of 
lower gradient slew rate and hence 
slower  k -space progression. If you 
desire to have less geometric distor-
tion, try to avoid these enhanced modes 
and go for the higher slew rate. The 
lack of gradient strengths can increase 
TE but can be mitigated by extra 
averages.          

   3.    Is the image distorted in local regions or 
asymmetrically?
    (a)    Is/are these distortion(s) near the sinuses 

e.g., the nose/ears?
•    These are common off-resonance dis-

tortions near the air/tissue interfaces.
   Increasing the bandwidth, increasing the par-

allel imaging factor, or reducing the read-
out length will reduce the distortions.  

  Multi-shot EPI also often has reduced distor-
tions from off-resonance, so even though 
this will lengthen the scan time, it may be 
possible to use it to minimize the 
distortions.         

   (b)    If the distortions is/are exceptionally large 
and potentially located in a place that 
does not often suffer from large off- 
resonance distortions, it could be from 
metal in or near the brain.
•     Metal   can cause extremely large dis-

tortions and a fast spin-echo sequence 
may be required if the methods listed 
above for air/tissue interfaces do not 
work.      

   (c)    If the distortions in a  brain scan   are asym-
metric and oriented in the left/right direc-
tion, you probably have chosen L/R as 
phase-encode direction (and A/P as read-
out direction). These are the orientations 
for normal brain imaging but for EPI to 
keep distortions symmetric you want to 

choose phase-encode direction to be 
along A/P and readout along L/R.       

   4.    Are there “worm”-like artifacts or fl uctuating 
signal near the ventricles or even the whole 
brain?
    (a)    The partial Fourier fraction could be too 

low.
•    Try a larger partial Fourier setting in 

your scan or avoid it entirely.          
   5.    Is there ghosting?

    (a)    Try changing the orientation to be axial, if 
possible. Also, if possible, a unidirec-
tional (fl yback) EPI readout would remove 
the ghosting at the expense of increased 
off-resonance artifacts, i.e., distortions 
etc., because of the slower  k -space 
traversal.       

   6.    Do the individual images look good, but the 
tensor does not?
    (a)    It could be caused by motion, eddy cur-

rents, or low SNR.
•    Try to determine if motion occurred by 

looking at the images and asking the 
subject.  

•   Try a double spin-echo scan or increase 
the bandwidth along the phase-encode 
direction (by parallel imaging, ramp 
sampling, or smaller matrix) to reduce 
the time it takes to read one line of 
 k -space and thus reduce eddy current 
artifacts.  

•   It could be the SNR is too low or there 
are too few diffusion or non-diffusion- 
weighted images.          

   7.    Is there a distinct ring, or part of a ring, in the 
images that may overlap the brain in places?
    (a)    It is likely that the  fat suppression method   

is turned off or failed. Verify that some 
type of fat suppression is on. If it is on and 
failed, this is often due to poor shimming.   

   (b)    If possible, use a spectral-spatial pulse, 
but test all the available methods as some 
may work better than others on your 
system.   

   (c)    If you are using a thin slice, try to increase 
your slice thickness until you can use 
spectral-spatial water-only excitation 
pulses. Spectral-spatial excitation pulses 
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are not available for extremely thin slices, 
so if residual fat is visible it may be neces-
sary to sacrifi ce slice thickness for 
improved fat suppression.   

   (d)    If possible, change the polarity of slice 
select gradient for your excitation pulse 
and the refocusing pulse to improve fat 
suppression. Only spins that are on- 
resonance will see both the 90° and 180° 
pulses and show up in the image.   

   (e)    Band-like artifacts could also be residual 
aliasing from a poorly calibrated  SENSE 
or ASSET scan  . Particularly at high fi eld, 
there can be a large mismatch between 
undistorted coil sensitivity calibration 
scans and the distorted (stretched or com-
pressed) EPI scans. Try to use calibration 
scans that have similar levels of distor-
tions as the EPI scan.         

 If the scan has a low SNR:

    1.    Check the receiver coil
    (a)    You could have picked the body coil 

rather than the head coil.   
   (b)    Some of your  coil elements   might be 

defective. Try to reconstruct them 
individually.       

   2.    Check the parallel imaging value
    (a)    It could be too high if regions at the center 

of the image look noisier than the periph-
ery or if this noisy region repeats itself as 
a fraction of the FOV.       

   3.    Check the resolution and slice thickness
    (a)    The FOV/matrix gives the resolution, and 

if this is smaller than 4 mm 3  the resolution 
may be too high for DTI.   

   (b)    Try not to be too aggressive and attempt 
imaging slices that are too thin. SNR is 
directly proportional to slice thickness. 
Too aggressive reduction can have signifi -
cant SNR loss as a result.       

   4.    If the image is also distorted
    (a)    It is very likely the shim is bad; try auto-

matically or manually re-shimming.       
   5.    If the images look good but the diffusion ten-

sors are noisy

    (a)    Check the  b -values, about 1000 s/mm 2  are 
normal for clinical imaging.   

   (b)    For HARDI acquisitions  b -values above 
2000 s/mm 2  are recommended. To get 
reasonable SNR back down on your voxel 
size, i.e., use a larger FOV, smaller matrix 
size, and thicker slices.         

 Checklist 1: How to diagnose common DTI 
artifacts and SNR issues. Use this as a basis for 
troubleshooting DTI artifacts and lack of 
SNR. Each system and application has their own 
sources of artifacts, so this is only a template con-
taining common artifacts. This is intended as an 
example checklist, and you are encouraged to use 
this as a basis for your own checklist that better 
suits your acquisition. 

 The speed of the readout—the bandwidth—
can be changed in order to speed up or slow down 
the acquisition. An increased bandwidth results 
in a faster scan and reduces off-resonance arti-
facts, but it may alter—positively or negatively—
eddy current artifacts and ghosting. The 
bandwidth has a dual effect on SNR: with a 
higher bandwidth noise is increased, but the TE is 
shorter. For EPI, generally the best results are 
when the bandwidth is close to the maximum so 
that the distortions are kept minimal and the TE is 
short. 

 As previously discussed, in EPI the phase- 
encode direction is the direction in which most of 
the artifacts manifest. Therefore, it is important 
to consider how the artifact may affect the image, 
and which phase-encode direction would be best 
to mitigate the expected artifacts. Typically, for 
brain DTI the slices are prescribed axially or 
obliquely (although close to axial), and the PE 
direction is anterior-posterior or another direc-
tion that causes symmetric artifacts in both hemi-
spheres of the brain (Fig.  6.15 ).

   Even though the artifacts predominantly 
appear in the in-plane direction, reformatting the 
scans can effectively mask the distortions. 
Figure  6.16  shows how multi-slice axially 
acquired images can be displayed in other axes. 
The distortions are still present in this case, but 
this is a good way to view axial and sagittal 
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images rather than acquiring EPI data in these 
axes. While it is possible, the artifacts and distor-
tions are generally less signifi cant in the axial 
plane rather than the coronal, sagittal, or oblique 
planes.

   In some cases the  gradient performance  , par-
ticularly in the  z -axis, may be signifi cantly differ-
ent from the other axes. This can induce stronger 
than normal ghosting, and because of this 
oblique—or even non-axial—imaging may be 
discouraged on some systems. However, this is 
highly system dependent, and as the gradients are 
improving in more modern scanners, this is 
increasingly less problematic. 

 Magnetic fi eld inhomogeneities greatly affect 
EPI acquisitions, and in the brain the sinuses 
cause signifi cant distortions. Additionally, if 
there is any metal (e.g., surgical clips) close to 
the imaging area there can be signifi cant distor-
tions and signal dropout close to the object as 
well as distortions away from the object 
(Fig.  6.17 ). Unfortunately, it is diffi cult to avoid 
these artifacts entirely, but increasing the sam-
pling speed, multi-shot methods (e.g., interleave 
EPI, readout-segmented EPI), or parallel imaging 
can help reduce them.

   However, increasing the speed is not always 
possible because of   peripheral nerve stimulation  

  Fig. 6.15    This fi gure shows how the phase-encode direc-
tion affects off-resonance artifacts in the brain. The  thick , 
 gray ,  hollow , and  thin  arrows show how the distortions 
change signifi cantly when changing the phase-encode 
direction in various slices. Even though the distortions are 
often in the periphery of the brain, this is not always the 
case. The  thin arrows  indicate clear distortions in the mid-
dle of the brain, which are especially important because 
these distortions can make it diffi cult for radiologists to 
read the scans. Because of the asymmetry caused by the 
left/right phase-encode direction, the phase-encode direc-
tion is normally chosen to be up/down, which causes the 
distortions to be symmetric in the brain. This creates more 

visually pleasant distortions, where the structures near the 
 dashed ,  thick , and  thin  arrows are more symmetric when 
the phase-encode direction is up/down rather than left/
right. The  wedge  indicates the residual ghosting and 
shows how slight ghosting is present in the phase-encode 
direction in all cases. Important Note: For technologists it 
is common practice for brain scans to choose left/right as 
the phase-encode direction. However, for EPI the phase- 
encode direction should almost always be anterior/poste-
rior or frequency-encode left/right. Choosing the wrong 
phase-encode direction is the most frequent technologist 
error one encounters with EPI scanning       
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(PNS)   limitations. PNS is caused by fast gradient 
switching, which is essential for EPI, especially 
as the scan speed is increased. Even though the 
scanner has a limited slew rate, it is easy to cause 
PNS in some subjects with EPI-DTI. Simply 
slowing down the sampling rate or increasing the 

FOV can help reduce the effects of gradient 
switching; however those have the side effects of 
increased distortion and lower resolution respec-
tively. It is important to remember that  PNS   is 
patient-specifi c, so scans which cause no PNS in 
some people can be uncomfortable for others. 

  Fig. 6.16    When scanning in an axial orientation, it is 
possible to view multi-slice images in the coronal and 
sagittal axes. In this case, the distortions remain primarily 
in the anterior/posterior direction, so the reformatted 
images are relatively clear of distortions. The  arrow  
shows a distortion in the axial plane, and in the sagittal 
reformat, the  arrow  shows the same artifact. The trick is 

that when one performs multi-planar reformation with the 
slice direction chosen in the phase-encode direction of the 
acquisition, the reformation algorithm usually uses a slice 
thickness of several millimeters and thus reduces the 
visual effect of the distortions by moving the most obvi-
ous distortions into the reformatted slice direction       

  Fig. 6.17    This fi gure shows common sources of distor-
tion in EPI, such as distortions near the base of the brain 
( a ), sinus ( b ), and metal ( c ). The effects of each are simi-
lar, but the intensity of the artifacts is very different. Note 
how the metal artifact ( c ) is much more potent than the 
sinuses ( b ) and even larger than the similar artifacts in the 

base of the brain ( c ) such as the ear canals. Because of the 
large image distortion in ( c ), it is clearly important to 
know if the subject has any metal implants in or near their 
head. Even metal implants that are MR safe—such as den-
tal fi llings or implants—can cause distortions in large 
regions of the brain       
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At times it may be necessary to abort a scan and 
re- scan with slightly different parameters in order 
to avoid PNS. 

 No matter the speed, it is always necessary to 
use fat/lipid suppression with EPI. This is because 
of the extremely large fat-water shift (Fig.  6.8 ), 
which is an important characteristic of EPI. While 
it may seem like there is not much fat in the head, 
there is enough subcutaneous fat present that 
some may shift into the brain during an EPI 
acquisition, causing diffi culties in radiological 
reads as well as distortions in the quantifi cation 
of the diffusion tensor. Notice that spectral-
spatial- based fat suppression also uses a fast 
slewing, EPI-type waveform—played simultane-
ous to the RF pulses—for the slice selection gra-
dient. When very thin sections are used, the 
gradient strength might be maxed out and PNS 
thresholds might be reached. This is particularly 
problematic for coronal EPI, such as is used for 
hippocampus DTI, as the slice is parallel to the 
largest cross-sectional area of the body. 

 To remove fat from EPI scans, there are many 
kinds of  lipid suppression methods   available, 
such as lipid spoiling (CHESS), lipid pre- 
saturation with an inversion pulse (SPIR, SPAIR), 
inversion of the lipid signal and imaging at a time 
with no lipid signal (signal null) (STIR), bino-
mial RF pulses, and selective excitation of the 
water signal without exciting the lipids at all 
(SPSP). Each of these has its own advantages and 
disadvantages and each vendor has their pre-
ferred method, so it is best to evaluate each sys-
tem and application individually. Generally with 
a good shim, any method may be used; however 
STIR is typically avoided with EPI as it inher-
ently decreases the SNR and is additionally sen-
sitive to the presence of contrast agents. 

 Besides the lipid suppression method, other 
preparations are used to reduce the artifacts 
associated with DTI. A method called  Dual Spin- 
Echo   ( DSE  ) diffusion preparation can be used to 
reduce the effects of the eddy currents (Fig. 
 6.18 ) [ 13 ,  14 ]. Here, rather than performing a 
typical Stejskal-Tanner diffusion preparation 
with the gradients spaced around a single 180° 
pulse, a series of four diffusion gradients are 

used. Having four shorter—rather than two 
 longer—diffusion gradient lobes helps to cancel 
out eddy currents in the EPI readout. This DSE 
diffusion preparation greatly reduces eddy cur-
rent effects, but since a second 180° refocusing 
pulse is needed, the longer echo time reduces the 
SNR of the acquisition. Therefore, if signifi cant 
eddy current artifacts are anticipated, a DSE 
acquisition may be considered, but with the cost 
of reduced SNR due to a longer echo time. The 
DSE acquisition is becoming increasingly popu-
lar, but as the trend is to move to ever-smaller 
voxel sizes and is therefore becoming increas-
ingly SNR starved, the DSE approach may be 
abandoned and sophisticated eddy current cor-
rection methods used.

   Another method for diffusion preparation is 
the   Stimulated Echo  (STE) diffusion   preparation. 
It consists of three non-180° RF pulses. STE 
imaging inherently has half the signal of Stejskal- 
Tanner imaging simply due to the spin physics of 
the three excitations (Fig.  6.19 ). STE, however, 
can have a shorter TE than a Stejskal-Tanner dif-
fusion preparation scheme. This makes the STE 
preparation more effective for tissues with a short 
T 2  (e.g., liver, muscles), as well as some applica-
tions in high-fi eld systems (higher than 3 T) 
where the T 2  times are reduced by the fi eld 
strength. However, because its uses are limited, 
STE is not a common acquisition method, and it 
is not typically supported on current clinical 
scanners.

   To review, there are four major considerations 
when prescribing DTI-EPI:

•    The phase-encode direction should always be 
anterior/posterior rather than the more typical 
left/right for non-EPI scans (Fig.  6.15 ).  

•    Magnetic fi eld inhomogeneities   (Fig.  6.17 ) 
can cause signifi cant artifacts for any EPI- 
based imaging.  

•    Lipid/fat suppression   is necessary because of 
the large chemical shift of lipids with EPI.  

•   Eddy currents become signifi cant with clinical 
 DTI-EPI diffusion gradients   and may require 
DSE or post-processing compensation 
(Fig.  6.18 ).     
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  Fig. 6.18    The Double 
Spin-Echo (DSE) image 
has less shearing and 
stretching than the single 
spin-echo (Stejskal-Tanner) 
image. This is caused by 
eddy currents, which can 
also be seen in Fig.  6.12 . 
The distortions are not 
typically very large, but in 
certain cases, such as 
strong diffusion gradients 
(high  b -values) and single 
spin echo, if not addressed, 
can disrupt the results. The 
major distortion can be 
seen where the  arrow  is 
pointing to the FA images 
where a band of artifi cially 
high FA is visible in the 
single spin-echo image. 
This can also be seen in the 
color FA image in the same 
region. Bands of high 
diffusion anisotropy at the 
cortex are usually the 
hallmark for eddy current 
mis-registration. The 
advantage of the single 
spin-echo imaging method 
is a higher SNR, which is 
due to a much shorter echo 
time than with a double 
spin echo       

  Fig. 6.19    This fi gure 
shows a comparison of a 
spin-echo and stimulated 
echo diffusion acquisition 
with similar imaging 
parameters. The lower 
SNR of the STE image is 
obvious       
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    Pros and Cons of Multi-shot EPI 

 Separating  k -space into several groups (called seg-
ments or interleaves), each of which is acquired 
with separate excitations, can reduce many of the 
distortions previously discussed. This results in 
acquisitions that have less distortion from T 2 *-
decay and higher SNR due to a shorter TE time. 
Depending on how  k -space is separated, multi-
shot acquisitions can also reduce off-resonance 
artifacts. Also, using a multi-shot acquisition can 
allow higher resolution images than would other-
wise be possible. However, splitting  k -space into 
multiple segments means taking longer to acquire 
the whole image, so scan time increases approxi-
mately by the number of segments. 

 Another, more diffi cult, problem arises from 
issues of motion and motion-induced phase dif-
ferences between the readouts. If there are any 
motion or phase differences between the data, a 
simple combination of the data will result in an 
artifacted image (Fig.  6.4 ). This is because the 
extra phase accrued due to motion between indi-
vidual interleaves is inconsistent between the 
shots, and this inconsistency results in false sig-
nal cancellations and additions. Because of this, 

when using multi-shot acquisitions, it is neces-
sary to run a phase and motion navigator to cor-
rect for any phase changes as well as motion, 
both of which may have occurred between the 
shots. For many years this has been poorly under-
stood or no effective phase-correction methods 
were in place. Only recently have multi-shot 
techniques emerged that can reliably handle this 
problem. 

 A method of acquiring multi-shot data with 
reduced distortions from off-resonant spins and 
T 2  decay, as well as higher SNR, is called 
 Readout-Segmented EPI (RS-EPI)   (Fig.  6.20 ) 
[ 15 ]. It splits  k -space into segments along the 
readout direction rather than the phase-encode 
dimension as is traditionally performed in multi- 
shot imaging, e.g., interleaved EPI. As with all 
multi-shot imaging methods, there is a navigator 
acquired before or after the data acquisition in 
order to correct for phase and motion differences 
between the segments [ 16 – 18 ].

   Other methods that are robust to motion and 
distortions, such as  Short Axis PROPELLER 
(SAP)   [ 19 ], can be used as well; however, they 
generally have similar advantages and disadvan-
tages as RS-EPI [ 6 ]. 

  Fig. 6.20    There are several kinds of EPI, and this fi gure 
shows some differences between different EPI readout 
trajectories. These are single shot with low (2) and high 
(6) parallel imaging factors, and multi-shot Readout- 
Segmented EPI (RS-EPI) with a low parallel imaging fac-
tor of 2. Note how the artifacts are reduced signifi cantly in 
RS-EPI and  R  = 6 EPI due to the faster progression 

through  k -space. However, the distortions are similar 
between  R  = 6 EPI and  R  = 2 RS-EPI because the splitting 
of  k -space in RS-EPI speeds up the phase encode progres-
sion through  k -space. The SNR of the RS-EPI case is also 
similar to the  R  = 2 EPI because they both have the same 
parallel imaging acceleration and similar echo and repeti-
tion times       
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 To review, multi-shot EPI has one major 
advantage and two disadvantages:

•    The advantage is that the distortions are 
reduced with multi-shot EPI (Fig.  6.20 ).  

•   A disadvantage is that the SNR is reduced 
because of the parallel imaging (Fig.  6.20 ).  

•   A second disadvantage is that the processing 
becomes more diffi cult due to phase differ-
ences between shots.      

    The Fast Spin-Echo Acquisition 

 A  Fast Spin - Echo  (FSE) imaging sequence con-
sists of a single 90° excitation RF pulse followed 
by a train of 180° refocusing RF pulses, often 
called a  Carr - Purcell - Meiboom - Gill  ( CPMG     ) 
pulse train (Fig.  6.21 ). It is also possible to use 
refocusing pulses less than 180°, which allows 
for longer echo trains to be used but introduces 
additional signal modulations and cancellations 

beyond the scope of this chapter. An interested 
reader may refer to [ 20 ]. A single line of  k -space 
is acquired between each 180° pulse, which 
results in a pulse/readout train that is typically 
between 32 and 128 echoes long. The reason for 
using 180° pulses to refocus the signal between 
each line is that this creates the much longer- 
lived T 2 -weighting rather than the shorter-lived 
T 2 *-weighting observed with EPI. In fact, FSE 
readouts can also use much lower fl ip angles than 
180°, which helps to sustain the echo train beyond 
the duration of normal T 2  times due to contribu-
tions from STE and higher order spin echoes. 
Regardless of the type, FSE is a very robust 
imaging method (Fig.  6.11 ), which is typically 
free from signifi cant distortions and artifacts 
because each readout is centered on an 
RF-refocused spin echo.

   Despite its advantages, because of technical 
diffi culties with exciting exactly 180° pulses, a 
certain amount of the signal is lost beyond the 
expected T 2  decay. This results in a decay in the 
echo train that is faster than T 2  decay alone, 

  Fig. 6.21    This fi gure shows a fast spin-echo sequence 
diagram. The readout section is repeated until the desired 
number of phase-encode lines is completed for each FSE 
train. Note the similarities to an EPI readout, which is 

seen in Fig.  6.1 . However, despite the similarities, the EPI 
readout is much faster and has a much lower SAR than the 
FSE readout due to the lack of refocusing pulses for each 
readout line       
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which limits the image resolution. Another issue 
with using a train of 180° pulses is that the tis-
sue heating (SAR) from all the RF pulses is 
quite high, often requiring an increased TR in 
order to allow for tissue cooling, thus increasing 
scan time. 

 These restrictions often limit the number of 
180° pulses to less than what is required for a 
single-shot acquisition. This necessitates a 
multi- shot acquisition, which has the same shot 
combination issues as multi-shot EPI acquisi-
tions as well as phase differences between the 
readout lines if non-180° refocusing RF pulses 
are used. A common solution to the shot combi-
nation diffi culties is a PROPELLER acquisition 
(also called BLADE on Siemens systems), 
which is an acquisition with rotated segments 
[ 21 ]. These segments can be ordered and 
acquired in many different ways, all of which are 
designed to reduce the distortion and to improve 
robustness to motion. An improvement called 
SPLICE can be used in PROPELLER to coun-
teract some of the phase inconsistencies between 
readout lines when non-180° pulses are used; 
however this reduces the SNR and increases the 
scan time [ 22 ]. 

 Generally, as with segmented  k -space acquisi-
tions using EPI, multi-shot FSE acquisitions—
PROPELLER or standard Cartesian—result in 
signifi cantly longer scan times and residual 
image phase inconsistencies which result in dis-
tortions and signal loss. Because of these charac-
teristics, FSE acquisitions are not commonly 
used with DTI and are often only used in regions 
where EPI is too distorted to effectively acquire 
the image. In the brain this is often in the brain-
stem, near the orbits and sinuses, or in regions 
close to metallic implants. 

 To review, the FSE acquisition can be used in 
similar situations as EPI, but there are two key 
differences between the techniques to keep in 
mind:

•    FSE is more robust to off-resonance 
distortions.  

•   EPI is faster and is therefore more commonly 
used for DTI.     

     Motion Sensitivity   of Diffusion- 
Weighted Imaging 

 Motion is the most common source of artifacts in 
DTI MRI. It is also one of the few artifacts that 
cannot be reliably avoided with proper setup and 
testing. Because of this, and the relative sensitiv-
ity of DTI to motion, motion corruption is the 
most common reason to re-run a scan. Motion 
also is often hard to diagnose, as different motions 
cause different artifacts. There are too many dif-
ferent types of motion artifacts to cover in this 
chapter, but it should be the fi rst possibility eval-
uated when an image is artifacted. 

 Because of this variability, this section will 
attempt to outline types of motion and generic 
correction methods in a general fashion. This will 
allow you to understand the sources of motion 
artifacts, and use that knowledge to avoid or 
choose acquisitions that are robust to motion 
whenever possible. 

 The simplest types of motion in DTI are turns 
and shifts of the head. These are commonly 
called “rigid” motion. These motions can be 
intentional, such as a reaction to the scanner or 
discomfort from lying motionless in the scanner. 
They can also be unintentional, such as slight 
motion from breathing, falling asleep, or an 
involuntary reaction to the noise of the scan. 

 As with all MRI, motion causes problems in 
DTI. Because single-shot EPI or FSE acquires a 
single image in very little time from a single exci-
tation, motion does not often occur during the 
image generation. It primarily occurs between 
images, which must then be re-aligned before the 
processing is performed. 

 However, if multi-shot EPI or FSE—where 
data from several excitations are combined to 
form an image—is used, or if the motion occurs 
during the image generation during single-shot 
EPI/FSE, signal changes and image distortions 
can occur. In this case, rigid motion of the head 
during imaging will cause blurring of the brain at 
best, and signal dropout at worst. An example of 
slight rigid motion can be seen in Fig.  6.22 , which 
shows un-corrected and corrected images with 
rigid—in this case a turning of the head—motion.
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   Unfortunately, the motion sensitivity of DTI 
does not stop with rigid motion and single-shot 
EPI. There are many distortions and artifacts 
caused by motion in DTI, and in order to under-
stand the more complicated multi-shot scans and 
other effects of rigid and nonrigid motion, it is 
important to briefl y review MRI data 
acquisition. 

 For all MRI, many imaging parameters, such 
as the fi eld of view (FOV), resolution, and read-
out type, are controlled at the physical level by 
the magnetic fi eld gradients in the scanner. The 
magnetic fi eld gradients that control the imaging 
are the same ones that are used for diffusion. 
Thus the magnetic fi eld gradients used for imag-
ing are similar to those used for diffusion, just 

  Fig. 6.22    Rigid motion—
even minor motion as in 
this case—can induce 
blurring in the diffusion 
tensor calculation. When 
prospective motion 
correction is used, these 
artifacts can be reduced or 
removed entirely. This 
allows low contrast ( blue 
arrow ) and smaller ( red 
arrow ) regions to be 
resolved with motion 
correction. The FA shows 
how directionally intense 
the diffusion is while the 
color FA  incorporates the 
direction of the diffusion as 
well ( red  is left-right,  blue  
is superior-inferior, and 
 green  is anterior-posterior). 
Also note that the diffusion 
image without diffusion 
correction is relatively 
crisp, but both the FA and 
color FA without motion 
correction look noisy and 
generally poorly resolved 
in contrast with the motion 
correction images. This is 
typical of motion between 
the images, and therefore 
the diffusion images do not 
properly align for the 
tensor calculation       
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with different strengths and shapes. This similar-
ity can cause mixed effects—the diffusion gradi-
ents can cause imaging-like effects, and the 
imaging gradients can cause diffusion-like 
effects. 

 In order to understand these effects, however, 
it is important to remember that the acquired 
 k -space and the images themselves are inherently 
complex valued. This means that each pixel in 
the image—in both  k -space and image space—
contains a magnitude and phase. 

 The changes in phase due to motion are called 
motion-induced phase errors and are common in 
diffusion imaging. This is because the diffusion- 
encoding gradients are designed to be very sensi-
tive to molecular motion, which means that any 
small motion—a heartbeat, a small shift of the 
head, or even blood fl ow-induced distortions—
can cause a large change in image phase and 
potentially the magnitude as well. This motion 
can be rigid, such as a translation or rotation, or 
nonrigid, such as cerebral spinal fl uid or blood 
pulsing. 

 The  motion-induced phase error   (from either 
rigid or nonrigid motion) can cause interferences 
and signal cancellation in the image (Figs.  6.4  
and  6.23 ). Importantly, this phase is generated 
by the diffusion gradients, so each shot (excita-
tion) can have a different phase error. These 

 differences can make it diffi cult to combine data 
across shots, and often multi-shot scans require 
an extra step in the acquisition, called a “naviga-
tor” (echo/image) in order to combine the shots 
without  signal cancellation and generation arti-
facts (Fig.  6.4 ).

   While rigid  motion artifacts   can be greatly 
reduced with navigators as well as more advanced 
motion correction methods, such as prospective 
motion correction, nonrigid motion artifacts can 
be more diffi cult to remove due to the compli-
cated motion that can occur. Generally, the 
majority of  nonrigid phase errors   in the brain are 
caused by pulsation of both blood and cerebral 
spinal fl uid. Luckily, this means that most of the 
nonrigid phase errors manifest primarily in the 
basal regions of the brain near the hippocampus, 
cerebellum, thalamus, and hypothalamus. 
Therefore, if the scan is focused on more apical 
regions in the head, the effects of nonrigid phase 
errors can often be ignored. However, if the 
region of interest is basal, it is often advanta-
geous to use cardiac gating—and potentially 
respiratory gating as well—in order to reduce the 
effects of nonrigid motion in those regions. It is 
important to note that while this primarily applies 
to multi-shot techniques, gating can help improve 
single-shot techniques as well improve the con-
sistency between images. 

  Fig. 6.23    Images of the 
brain without and with 
cardiac gating show the 
signal cancellation that 
occurs due to the pulsatile 
motion of brain regions 
caused by blood or as a 
consequence of CSF 
spaces. The gating 
effectively increases the 
signal in the affected 
regions as well as helps to 
produce consistent signal 
across all diffusion 
directions. Note that the 
pulsatile motion can almost 
completely remove the 
signal in specifi c regions 
( arrow ) or generally dim 
the signal from large 
regions ( wedge )       
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 As mentioned above, another source of arti-
facts due to motion in DTI is that if the images 
themselves are artifact free, but not well aligned, 
this can produce signifi cant error in the diffusion 
calculation. This misalignment can often be rem-
edied through aligning the images before diffu-
sion processing, a process called registration. 
While this process works well, and is often used 
in the standard DTI processing chain, it is best to 
try to avoid motion in the fi rst place if at all 
possible. 

 To review, motion is most frequently caused 
by  two   sources, both of which can cause major or 
minor artifacts:

•    Motion of the head during scanning, either 
intentional or unintentional.  

•   Motion of blood or cerebral spinal fl uid in the 
head due to respiration, the heart, or cerebral 
spinal fl uid pulsations.     

    The Reconstruction 

 The  reconstruction   takes the acquired data and 
produces images from that data. The acquisition 
and reconstruction need to work together to pro-
duce the fi nal images. In this section we will 
briefl y discuss the reconstruction techniques that 
have a direct link to how the acquisition is 
performed. 

    Parallel Imaging 

 Parallel imaging was a signifi cant development 
in MRI because it allows the acquisition of less 
data than is normally required for the image. 
Parallel imaging is possible through the use of 
multi-channel receive coils and pulse sequences 
which are designed to best take advantage of the 
speed-up characteristics of parallel imaging. 

 The parallel imaging reconstruction can be 
done in many different ways, but the two major 
 groups of methods operate in either  k -space 
(GRAPPA)   [ 23 ] or image space (SENSE) [ 24 ]. 
Parallel imaging is often relatively fast and 

robust, but it requires a good RF coil shape with 
an acquisition method that works with—not 
against—the RF coil. In addition to this, all paral-
lel imaging methods require some kind of coil 
calibration in conjunction with the standard 
images. 

 The classic parallel imaging acquisition is 
Cartesian acquisitions performed by skipping 
phase-encode lines in  k -space. The skipped lines 
effectively reduce the FOV of the image, which 
results in a “wrapped” or “aliased” image. The 
 acceleration factor  ( R ) starts at one (which is a 
fully sampled image) and the  R  number indicates 
that every  R th line is sampled. While it is theo-
retically limited by the number of receive coils, it 
is typically less than four for standard brain DTI 
acquisitions for SNR and artifact reasons. The 
coil geometry—the placement of the subcoils 
around the object—also matters. The coil ele-
ments (subcoils) may be more or less suited for 
parallel imaging in different directions, depend-
ing on the construction of the coil as a whole. 

 While the specifi cs of any parallel imaging 
method can be very complicated, the advantages 
are signifi cant. The  acquisition speed   is increased 
by the acceleration factor, as is the speed at which 
 k -space is traversed in an EPI acquisition. This 
not only speeds up the acquisition itself, resulting 
in shorter TE and TR times, but for EPI it also 
reduces off-resonance distortions by the acceler-
ation factor as well. 

 However, these benefi ts do not come without a 
price: the SNR of a parallel imaging acquisition 
is lower than the same acquisition when fully 
sampled (Figs.  6.24  and  6.25 ). Also, the SNR is 
no longer homogeneous across the image; it is 
coil and region dependent, which often results in 
a lower SNR at the center of the coil, which 
unfortunately is also often the center of the 
object. The inherent lower SNR can be offset to 
some extent by a shorter TE time, but generally 
the SNR of a parallel imaging acquisition is 
lower than that of the same acquisition performed 
without parallel imaging.

    Another previously mentioned limitation of 
 parallel imaging   is that a coil calibration of some 
kind is necessary in order to perform the parallel 
imaging reconstruction. The coil calibration 
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  Fig. 6.24    This fi gure shows progressive parallel imaging 
values from no parallel imaging ( R  = 1), to values of  R  = 2, 
4, and 5. Note how the most distorted image is  R  = 1—the 
one without parallel imaging—which is due to the reduced 
scan speed, and the noisiest is the one with a parallel 
imaging value of 5. When comparing the geometric dis-
tortions of the images with different parallel imaging val-

ues, it is clear how much distortion is present, even in the 
 R  = 2 images. However, the trade-off is the reduced SNR 
of the higher parallel imaging factors. It is clear that paral-
lel imaging factors of  R  = 4 and above have increased 
noise values when compared to lower parallel imaging 
values. This demonstrates the balance between distortion 
and SNR that parallel imaging can provide       

  Fig. 6.25    The demonstration in Fig.  6.24  used GRAPPA 
(a  k -space based) parallel imaging, but a different set of 
parallel imaging errors can occur with SENSE (an image 
space based) parallel imaging. SENSE is based on a coil 
calibration scan, and this scan can easily become cor-
rupted through motion or distortion differences between 
the calibration and the EPI scan. When the calibration is 
correct, the SENSE reconstruction performs very well 

when un-aliasing the image. However, when the calibra-
tion is incorrect—as in the right-most image—the un- 
aliasing does not perform as well. As the  arrows  indicate, 
this results in images that are incorrectly un-aliased. In 
this case, the major artifact is the eye causing a bright spot 
in the brain, which could potentially be confused with 
abnormal pathology by a radiologist unaware of the pos-
sibility for this error       
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method varies between parallel imaging tech-
niques, but in essence all of the calibration meth-
ods are ways to interpret the sensitivity of the RF 
coils, which are then used to form the fi nal image. 
If the calibration is incorrect, serious artifacts can 
be produced, which can either mask or appear to 
be actual medically important information in the 
images (Fig.  6.25 ). As a rule of thumb, the 
 k -space velocity of the calibration scan should 
ideally be identical to the  k -space velocity of the 
SENSE scan to be distortion matched. 

 Often, parallel imaging coils for head imaging 
contain multiples of eight channels (Fig.  6.26 ). 
These are typically arranged symmetrically in 
rings around the head, with each set of eight 
channels in a different position respective to the 
apex of the coil. Therefore, a typical 8-channel 
head coil has a single ring of coils, and a 
32- channel head coil has four rings spaced 
equally along its length. Because of this, a 
32-channel head coil should be able to support 
accelerations in any direction, whereas an 
8- channel coil can only reliably support parallel 
imaging in the  x-  and  y -axes. With parallel imag-
ing, it is therefore important to consider the coil 

geometry when deciding on the imaging plane 
and acceleration factor, in conjunction with the 
previously discussed imaging parameters. 
Typically, clinical scanners will have some 
awareness of the parallel imaging capabilities 
and the allowed acceleration, but this is often 
intended to prevent scans from being run which 
will fail completely.

   To review, parallel imaging is frequently used 
in MRI for three major reasons:

•    Parallel imaging reduces the distortion from 
off-resonance with a negligible SNR penalty 
if used conservatively.  

•   Multi-channel coils are commonly available 
in the clinic.  

•   Parallel imaging reconstructions are robust 
and readily available.     

    Partial Fourier Imaging 

 Partial Fourier acquisition is another method 
used to reduce the  TE and TR  . In this case, 
 k -space lines are also skipped; however the lines 

  Fig. 6.26    This schematic shows common head coil con-
fi gurations. It shows a transverse view of a typical 8- or 
32-element head coil ( a ), a longitudinal view of a 
32- element coil ( b ), and a longitudinal view of an 

8- element coil ( c ). Note that this is just an example of a 
common element setup, and they may vary signifi cantly 
from coil to coil       
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omitted are a contiguous block of high-frequency 
readouts that are often skipped before the echo, 
thereby shortening the TE. The partial Fourier 
reconstruction then relies not on multiple RF 
coils but on an assumption about the image—that 
the phase angle across the image changes slowly. 
In essence, if the phase angle change across the 
image is assumed to be slow, the whole  k -space is 
not required to correctly reconstruct the image. 
Because this is generally a valid assumption, a 
partial Fourier approach is often used to decrease 
the scan and TE times. 

 However, as with any imaging technique 
where   k -space   is sampled less than it should be, 
sampling too few lines in  k -space will result in a 
distorted image (Fig.  6.27 ). It is diffi cult to deter-
mine how much is too much, as it often depends 
on the scan and the phase angle change in the 
object [ 25 ]. As with parallel imaging, it is always 
better to err on the side of caution rather than 
have an artifacted scan.

   To review, partial Fourier imaging is often 
used clinically for two reasons:

•    It is a straightforward way to shorten the TE 
and TR of scans without inducing signifi cant 
artifacts if used conservatively (Fig.  6.27 ).  

•   The reconstruction is robust and widely 
implemented.     

     Eddy Current Correction   

 Eddy currents, as previously discussed, can cause 
geometric distortions in diffusion-weighted 
images (Figs.  6.12  and  6.18 ). While the  Double 
Spin-Echo (DSE) pulse sequence   approach to 
eddy current distortion reduction is one possible 
solution, it is also possible to correct eddy current 
distortions in post-processing [ 11 ,  26 ]. The post- 
processing consists of an alignment of the group 
of images in the diffusion series to ensure they 

  Fig. 6.27    This fi gure shows images with progressively 
more partial Fourier sampling, with values from 0.5625 
( a ,  d ), 0.625 ( b ,  e ) to 0.75 ( c ,  f ). Patient 1 shows a case 
where a very low partial Fourier fraction causes very little 
artifact (compare  a – c ). However, patient 2 is a case where 

a much higher partial Fourier fraction is required in order 
to allow a good reconstruction (compare  d – f ). The sus-
ceptibility of the patients to the partial Fourier fraction is 
impossible to predict, so a suffi ciently high fraction is 
necessary to avoid signifi cant artifacts in all cases       
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are all well aligned with one another before the 
diffusion tensor processing step takes place. This 
alignment is typically performed as part of the 
DTI post-processing pipeline in conjunction with 
motion correction (and sometimes even distor-
tion correction) because without correcting for 
even mild motion and eddy currents, the tensor 
computation can become signifi cantly degraded. 

 To review, eddy currents can be corrected in 
the acquisition and reconstruction:

•    In the acquisition a DSE scan can signifi cantly 
reduce the eddy current distortions.  

•   In the reconstruction, registration can be per-
formed to reduce the eddy current distortions.      

     Pediatric Considerations   

 The previous sections of this chapter have been 
written generally for any kind of DTI—pediatric 
or otherwise. However, as pediatric imaging is 
performed much less often than adult imaging, 
protocols are often adapted from adult studies for 
use in pediatric exams. This conversion is typi-
cally minor; however there are few changes that 
should be considered when modifying a standard 
DTI protocol for pediatric imaging. 

 An important consideration in the acquisition 
for pediatric imaging is that children often are 
less likely to follow instructions and are more 
likely to move while in the scanner. Because of 
this, acquisitions that are robust to motion, such 
as PROPELLER or single-shot EPI, are more 
commonly used. Other types of prospective and 
retrospective motion corrections are benefi cial 
and can be used; however these are beyond the 
scope of this section. A simple method to help 
reduce motion is to simply add more pads around 
the patient’s head to help discourage head move-
ment during the scan session. 

 Another pediatric DTI imaging consideration 
is the size of the head. Often protocols designed 
for adults will have FOVs that are substantially 
larger than what is required for children. In this 
case, it is important to remember that a smaller 

FOV requires stronger gradients than a larger 
FOV, so reducing the FOV to better tailor it to the 
smaller head asks more of the imaging gradients. 
It simply may not be possible to achieve the 
desired scan parameters (e.g., TE and TR) with a 
smaller FOV, but this is very system dependent. 

 Additionally, the SAR limit for children—
who are signifi cantly lighter than adults—is sig-
nifi cantly lower. This can cause problems for 
FSE or spin-echo sequences, and can be a hidden 
surprise when transitioning from adult to pediat-
ric imaging. The SAR is diffi cult to change 
 without signifi cantly changing the type of imag-
ing, so it may be necessary to change the imaging 
type or slow down the acquisition (increase the 
TR) in order to perform the desired type of 
imaging. 

 Finally, as children’s brains are still growing, 
there is less developed structure to provide diffu-
sion contrast, so the diffusion values need to be 
reduced. As values around 1000 s/mm 2  are typi-
cally used in adults, values less than that, typi-
cally around 700 s/mm 2 , are used in pediatric 
DTI studies [ 27 ]. 

 As we have suggested earlier, it is vitally 
important to test the adapted sequence and proto-
col before using it on a child. This will ensure 
that it proceeds smoothly and quickly—which is 
crucial to ensure high quality results with the 
least amount of motion in pediatric studies. 

 To review, there are four major changes to be 
made for pediatric DTI:

•    Because children are more unlikely to follow 
instructions and hold still, any motion correc-
tion or motion restriction is greatly 
encouraged.  

•   The head is smaller, so the FOV should be 
reduced to  better   fi t the smaller anatomy.  

•   The SAR limit is lower because children are 
smaller than adults, so it is important to test 
the SAR of the sequence before scanning a 
child.  

•   Because the brain is still developing, the diffu-
sion of water is typically higher in children, so 
a lower  b -value should be used when com-
pared to adults.     
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    Conclusion 

 We hope that this chapter has given you a basic 
understanding of the acquisition for diffusion 
tensor imaging. Above all, we advise you to test 
parameters for yourself to see how best to tune 
them for your application. In order to help you 
with this process, we have provided basic descrip-
tions and images of the most important parame-
ters and acquisition methods. Our hope is that 
these descriptions and examples will help you 
run the best DTI acquisitions for your 
applications.     
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            Learning Points 

•     Data quality assurance is important in DTI.  
•   Artifacts can severely affect subsequent quali-

tative and quantitative analyses.  
•   Bad data quality can be detected during acqui-

sition or image processing.  
•   Correction of artifacts can be done during the 

acquisition and image processing stage.  
•   Quality assurance can be used to improve data 

quality on the scanner.     

    Introduction 

  Diffusion MRI data   is, like any other MRI tech-
nique, prone to artifacts. Most diffusion MRI anal-
yses are based on a voxel-wise computation of 
quantities from a series of diffusion-weighted 

images (DWIs) acquired with different orientation 
and magnitude of diffusion sensitization, and the 
results may be severely affected by artifacts. It is 
therefore of great importance to avoid or correct 
for these artifacts before subsequent analyses [ 1 ]. 

 There are various ways to classify artifacts in 
diffusion MRI data. They may be present in the 
 DWIs   themselves (e.g., Gibbs ringing, suscepti-
bility artifacts), or become apparent when com-
bining all DWIs (e.g., subject motion). Some 
artifacts are related to MRI acquisition in general 
(e.g., Gibbs ringing and EPI distortions) or are 
specifi c to diffusion weighting.  Spin-echo echo- 
planar imaging (SE EPI)   is often the method of 
choice for diffusion acquisition since it is a rela-
tively fast technique, but the resulting images are 
locally distorted due to differences in tissue sus-
ceptibility. The rapid switching of gradients 
required when acquiring diffusion MRI data 
leads to eddy current distortions. The origin of 
some artifacts is system related (e.g., eddy cur-
rent distortions, signal dropouts, vibration arti-
facts), whereas others are subject related (subject 
motion, susceptibility artifacts). 

 In this chapter, we will review the most clini-
cally relevant artifacts from different angles. It is 
not the purpose to extensively discuss each arti-
fact, but to focus on the practical issues instead. 
The origin, recognition, and correction methods 
for each artifact are briefl y outlined in the fi rst sec-
tion, where we specifi cally focus on the different 
 processing stages   (Fig.  7.1 ). We will distinguish 
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the acquisition stage, in which we consider recog-
nition and correction on raw data only, from the 
image processing stage, which includes any form 
of processing of the data (e.g., fi tting a tensor or 
calculating standard deviations of the measure-
ments). The central question throughout this chap-
ter is:  How can I recognize and ,  potentially ,  correct 
for artifacts ,  either during scanning or when I 
have already acquired the data ? We present a deci-
sion tree scheme, which can be used as a stepwise 
manual for optimal data acquisition and processing 
(including pre- processing and tensor estimation), 

answering the question to  which acquisition and 
processing methods to consider in a stepwise man-
ner for optimal data quality for subsequent analy-
sis ? Obviously, prevention is better than cure, 
which is why we will discuss methods to assure 
data quality in the second section. Quality assur-
ance (QA) focuses on  how to make sure that the 
scanner is able to acquire high quality data ,  before 
actual patient data acquisition . We provide some 
examples when to accept or reject data. Finally, it 
is important to understand  how artifacts infl uence 
quantitative and directional  diffusion MRI mea-

   Fig. 7.1     Decision tree 
scheme for checking and 
correcting of diffusion 
data.  Std  standard 
deviation  ,  interslice inst.  
interslice instabilities,  PIS  
physically implausible 
signal,  MDC  motion- 
distortion correction,  TV  
total variation,  FA / DEC  
direction-encoded FA map, 
 perc.  percentage       

 

C.M.W. Tax et al.



129

sures . To this end, the last section focuses on the 
possible effect of artifacts on voxel-wise computed 
quantitative measures such as mean diffusivity 
(MD) and fractional anisotropy (FA) and on trac-
tography results. The  guidelines   for checking and 
correcting data presented in this chapter are not 
specifi c to DTI only, but often extend to other dif-
fusion acquisition techniques such as high angular 
resolution diffusion imaging (HARDI).

         Recognition and Correction 
of Artifacts   

    Eddy Current-Induced Distortions  

   Origin 
 Conductive elements of the MRI scanner (e.g., 
the gradient coils) permit the fl ow of electric 
charges. When a conductor is located in a chang-
ing magnetic fi eld, this will induce currents in the 
conductor. Because their fl ow patterns resemble 
swirling eddies in a river, they are called eddy 
currents. Besides gradients for spatial localiza-
tion of the MR signal, additional magnetic gradi-
ents are used to make MR sensitive to diffusion. 
The diffusion-sensitizing gradients have to be 
switched on and off very rapidly, and induce 
eddy currents [ 2 ] in conductors present. The  eddy 
currents  , in turn, induce additional magnetic gra-
dient fi elds which will change the actual diffu-
sion gradient, as can be seen in Fig.  7.2b , where 
the actual diffusion gradient is different from the 

desired one in Fig.  7.2a . The effect on the DWIs 
is twofold: overlap of the changed diffusion gra-
dient with spatial encoding gradients will lead to 
geometric distortions and thus misalignment of 
individual DWIs; and the deviation of the diffu-
sion gradient from what we expect will lead to 
errors in diffusion estimates.    

    Recognition and Correction 
in Acquisition Stage  
 When eddy current-induced fi elds overlap with 
the spatial encoding period of the image acquisi-
tion, this will lead to geometric distortions. These 
distortions are visible in the raw DWIs in the 
phase-encoding direction (PE, most commonly 
anterior–posterior or y-direction) and depend on 
the direction of the eddy current gradient. An 
eddy current gradient in left–right ( x ) direction 
will result in a shear in the axial ( xy ) plane, 
assuming that the PE direction is anterior–poste-
rior ( y ). Likewise, an eddy current gradient in 
 y -direction causes scaling in  y -direction (Fig. 
 7.3a  shows compression in  y -direction), whereas 
eddy current gradients in inferior–superior ( z ) 
direction translates each slice in y-direction 
dependent on the slice position [ 3 ].

   Generation of eddy currents is inevitable in 
diffusion MRI; however, there are methods to 
minimize them. Replacing the single-refocused 
spin-echo diffusion preparation (Fig.  7.2a ) by a 
twice-refocused spin-echo (TRSE) preparation 
(Fig.  7.2c ) reduces the eddy currents resulting in 
less severe geometric distortions [ 4 ]. This is also 

   Fig. 7.2     Diffusion MR sequences. ( a ) For the standard, 
once-refocused, diffusion preparation, after the excitation 
(90° RF pulse) there are two gradients that sensitize the 
signal to diffusion, with a refocusing pulse (180° radio- 
frequency (RF) pulse) at half the echo time (TE/2) to form 

an echo during the readout. ( b ) The diffusion gradient is 
not as desired and overlaps with the spatial encoding gra-
dients. ( c ) TRSE: The twice-refocused diffusion prepara-
tion ( bottom line ) has two refocusing pulses splitting four 
gradient blocks to form an echo during the readout       
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called  dual spin-echo (DSE) diffusion imaging  . 
The TRSE/DSE diffusion sequence is available 
in most, if not all, recent MRI scanners, making 
this an easy to use option. Figure  7.3c  shows a 
raw image with minimal eddy current distortions. 
The downside of a TRSE sequence is a small 
increase in echo time (TE), caused mainly by the 
additional 180 pulse. As a result, the signal-to- 
noise ratio (SNR) decreases and the repetition 
time (TR) may increase, which would result in a 
longer acquisition time.   

    Recognition and Correction in Image 
Processing Stage  
 Different geometric distortions of every individ-
ual DWI will result in misalignment of the 
images, which will, in general, affect diffusion- 
derived measures that are estimated on a voxel-
by- voxel basis. Eddy current-induced 
misalignment artifacts become visible as bands 
of increased FA at the periphery of the brain 
(Fig.  7.4a ) but, although less pronounced, are 
also present throughout the brain. The  direction- 

  Fig. 7.3    Example of DW image with scaling induced by 
eddy currents in the phase-encoded anterior–posterior (AP, 
indicated by the  arrows ) direction ( a ), compared to the 

undistorted B 0  image ( b ). The lines overlaid in red indicate 
brain edges and boundaries of the undistorted B 0  image. ( c ) 
Raw data in which the effect of eddy currents is minimized       

  Fig. 7.4    ( a ) DEC map 
showing an orientational 
bias in the high anisotropy 
rim at the periphery of the 
brain. ( b ) The same map 
calculated after distortion 
correction       
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encoded color (DEC) map  s [ 5 ] furthermore show 
a dominant orientation in these bright rims, which 
is typical for eddy current-induced geometric dis-
tortions when they are only visible in the phase- 
encoding (PE) orientation of the image.

   Correction for eddy current-induced distor-
tions is commonly done in the diffusion MRI 
image processing pipeline. Various image regis-
tration based methods have been developed for 
correction [ 2 ,  6 ,  7 ]. Typically, mutual informa-
tion is used to register all DWIs to the non-DW 
( b  = 0) image, which has no eddy current-induced 
distortions. For this purpose no additional scans 
are needed. Figure  7.4b  displays the DEC map 
after correction. 

 Besides image distortions, eddy currents can 
also infl uence diffusion measurements in another 
way. Figure  7.2b  already showed that the actually 
applied diffusion gradient differs from the desired 
one. The diffusion weighting of an image is thus 
not exactly what we expect, which will result in 
errors in the estimates of the diffusion parame-
ters. This is often hard to recognize and impracti-
cal to correct for.   

     Subject Motion  

   Origin 
 The acquisition of a typical clinical DTI dataset 
takes around 5–10 min, for research purposes this 
can even be longer. Although subjects are 
instructed to lie still during a scan, head or body 
motion is diffi cult to avoid. Motion can be subdi-
vided into translations (in  x- ,  y-,  and  z -direction) 
and rotations (yaw, pitch, and roll). Many  DWIs   
have to be acquired to estimate diffusion proper-
ties accurately, and misalignment due to motion 
will lead to errors in these estimates.  

     Recognition and Correction 
in Acquisition Stage  
 Instead of a time-consuming detailed slice-by- 
slice inspection of the raw DW MRI data, subject 
motion can also be investigated by looping 
through the DW images at a frame rate of approx-
imately ten frames per second, or quickly tog-
gling between the fi rst and last acquired DW 
MRI image. 

 During acquisition, all care should be taken to 
immobilize the subject. This is commonly done by 
placing cushions, or pads, between the subject’s 
head and the inside of the head coil. This makes it 
easier for the subject to keep his or her head still. 

 Even for the most willing and cooperative sub-
jects, head motion is likely to occur to some extent. 
Slight movement of the brain may result in a mis-
match between subsequent slices, which means 
these slices cannot be combined correctly. Several 
new pulse sequences have been proposed that can 
correct for  in - plane  motion, e.g., PROPELLER or 
SNAILS [ 8 ]. However, these cannot correct for 
  through - plane  motion  . Prospective volume regis-
tration can account for through-plane motion. 
Here, the  fi eld-of-view (FOV)   is repositioned after 
each 3D image volume, so after each TR. This 
method can correct the motion for any subsequent 
volume accurately, but the volume in which 
motion occurred is corrupt and must be re-
acquired, elongating the scan time. To truly 
account for any motion, however, the motion must 
be detected with a higher temporal resolution. 
Zaitsev et al. [ 9 ] proposed such a real-time pro-
spective motion correction setup: when head 
motion is detected, the imaging fi eld-of- view is 
adjusted accordingly for the next excitation. Their 
system used a mouthpiece with markers outside 
the mouth that could be imaged by optical cameras 
outside of the magnet bore. In this way, rigid body 
motion of the head can be detected and corrected 
for a wide range of  rotations and translations. 
Recent advances in this fi eld were focused on 
ease-of-use as well as correction accuracy, with 
methods that use a small object attached to the 
subject’s forehead that is imaged by a camera 
within the bore, capable of correcting translations 
and rotations as small as 10 μm and 0.01° [ 10 ,  11 ]. 
For an extensive overview, one is referred to [ 12 ]. 
Currently, these methods are transforming from a 
purely developmental setup to products shared 
between neuroscientifi c research groups.   

    Recognition and Correction in Image 
Processing Stage  
 Subject motion will, just like eddy current geo-
metric distortions, result in misregistration of DW 
volumes. This misregistration can in some cases 
also be recognized by rims of high anisotropy 
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with orientational bias at the periphery of the 
brain, but this will, in contrast to misregistration 
produced by eddy currents, appear on all sides of 
the brain (Fig.  7.5a ). In other cases, overall 
changes in FA or MD can be observed (Fig.  7.5b ). 
In addition to DEC maps, misregistration artifacts 
(resulting from either eddy currents or subject 
motion) can also be recognized by inspecting 
images of the standard deviation across the DWIs, 
in which the size and brightness of the rims at 
brain edges and tissue interfaces refl ect the degree 
of misalignment (Fig.  7.5c ). Recognition and cor-
rection of subject motion on these maps is not 
always straightforward and depends largely on the 
kind of motion (abrupt or gentle, small or large).

    Image registration   is commonly employed in 
diffusion MRI to correct for subject motion, and 
uses six parameters in total for translation and 
rotation. The corrected maps are visualized in 
Fig.  7.5d–f . The total transformation of eddy cur-
rent distortion correction and subject motion are 
ideally applied at once on the original images [ 2 ]. 
A complication when dealing with registration of 
DWIs is that they contain directional informa-
tion: diffusion gradients are applied in a specifi ed 
direction. When the subject is rotated, one should 
rotate the  b -matrix associated with each 
DWI. Neglecting to rotate the  b -matrix can lead 
to incorrect diffusion metrics and erroneous trac-
tography [ 13 ].   

  Fig. 7.5    Subject motion can be recognized on FA/DEC 
maps by a bright rim ( a ) or an overall change of FA ( b ). 
( c ) When plotting the standard deviation across all DWIs, 

bright rims at brain edges indicate misalignment. ( d – f ) 
show the same maps, corrected for subject motion       
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     Interslice Instabilities   

    Origin  
 A specifi c type of motion artifact is interslice 
instability. This is discussed separately, since it 
only arises when motion occurs during an acqui-
sition in which slices are scanned interleaved, 
i.e., even and odd-numbered slices of an EPI vol-
ume are collected sequentially (so fi rst slices 1, 3, 
5… and subsequently slices 2, 4, 6…).  

     Recognition and Correction 
in Acquisition Stage  
 Although it seems straightforward, checking the 
raw data in orthogonal views other than the slice 
direction is often omitted. Interslice instabilities 
such as intensity differences between slices 
resulting from interleaved acquisition can be rec-
ognized on these orthogonal views, see Fig.  7.6a . 
 Artifacts   arising from the interleaved acquisition 
are visible in the corpus callosum and at the brain 
edges, and result in signal dropouts. The best way 
to prevent these artifacts if they are motion 
related is to properly immobilize the subject or to 
use prospective motion correction as discussed 
above.

        Recognition in Image Processing Stage  
 Interslice instabilities can become visible on FA 
DEC maps. The infl uence of motion in combina-
tion with interleaved acquisition is illustrated in 
Fig.  7.6b , where the artifact becomes apparent in 

different brain regions, such as the corpus 
callosum.   

     Table Vibrations  

   Origin 
  Table vibrations   are the result of low-frequency 
mechanical resonances of the system due to 
application of the diffusion gradients [ 14 ,  15 ]. 
Spatial phase ramps in the phase image occur 
when neighboring voxels move over a different 
distance. These phase ramps correspond with 
shifts in k-space that result in signal loss. The 
amount of signal loss for a standard  b -value of 
1000 s/mm 2  can be 5–17 %, and increases with 
the  b -value. Moreover, the twice-refocused spin-
echo sequence suffers more from these vibrations 
due to the even more rapid switching of the gra-
dients [ 15 ]. So, although the TRSE sequence 
ameliorates the eddy current-induced distortions, 
one must ensure that it does not come at the cost 
of increased table vibration.  

     Recognition and Correction 
in Acquisition Stage  
 Table vibrations can result in localized signal 
loss, which is not a result of diffusion. The move-
ment resulting from vibration is primarily directed 
in left–right direction, and the artifact is therefore 
visible in DWIs with a large component of the 
diffusion gradient in the left–right direction. 

  Fig. 7.6    ( a )  Interslice instabilities   might not be visible on the axially interleaved acquisition plane, but becomes visible 
on the orthogonal planes in a DWI volume. ( b ) DEC map with interleave artifact       
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Figure  7.7  illustrates this signal loss in a left–right 
sensitized image. When the region of signal loss 
overlaps with pathology, important diagnostic 
information can get lost.

   Most  diffusion protocols   do not acquire the 
whole k-space, but use partial coverage instead to 
shorten TE which reduces scan time and increases 
SNR. In case of partial k-space acquisitions, 
vibrations could move the center of k-space out 
of the scanned k-space, resulting in severe loss of 
information for proper reconstruction of the 
DWI. Several acquisition options exist to reduce 
vibrations. Most conveniently, a mechanical 
decoupling of the patient table and gradient coils 
would reduce the vibrations themselves. This is, 
however, not a user acquisition choice as such, 
since this is determined by the vendor when 
designing the scanner. Second, full k-space cov-
erage avoids this issue, generally at the expense 
of increases in TE [ 14 ]. At the expense of longer 
scan times, one could opt for a longer TR which 
would allow for the decay of vibrations between 
subsequent excitations.   

    Recognition and Correction in Image 
Processing Stage  
 Quantitative measurements such as  FA and MD   
can be infl uenced by local signal dropouts in 
DWIs. In DEC maps, areas of the artifact can 
have artifi cially high FA in left–right orientation as 
can be seen in Fig.  7.8a . To improve the reliability 

of diffusion measures such as FA, a tensor fi tting 
approach should be used that can account for the 
infl uence of this signal dropout. One possibility 
is to include the infl uence of the artifact as co-
regressor in the tensor estimation [ 14 ]. The result 
of data correction can be appreciated in Fig.  7.8b . 
When one is not very familiar with these color-
coded DEC maps or when pathology is involved, 
it might be hard to recognize areas of artifi cially 
high FA. In such cases, residual maps, which rep-
resent the difference between the actual measure-
ment and the prediction after fi tting the tensor 
model to the data, can illustrate the artifact more 
specifi cally. Signal dropouts in one or a few 
DWIs generally cause the tensor fi t to be less 
accurate in those regions, which causes locally 
higher residuals (Fig.  7.8c ). After correction, the 
residual map does not show the vibration arti-
facts anymore (Fig.  7.8d ).    

     Pulsation   

    Origin  
 Even when the subject lies still, motion of brain 
tissue occurs due to the infl ow of arterial blood 
following cardiac systole. These displacements 
are in the order of 1 mm and cannot be consid-
ered as simple rigid body motion as different 
brain regions have different displacement profi les. 
The largest motion can be observed in inferior 

  Fig. 7.7    Signal dropouts 
in DWIs with a large 
component of the diffusion 
gradient in  left – right  
orientation resulting from 
table vibrations       
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regions of the brain that move mostly along the 
inferior–superior direction [ 16 ]. Pulsation can be 
recognized for example around the lateral ven-
tricles and brainstem. Two complications arise in 
further DTI analysis due to these pulsations. 
When DWIs are acquired in different stages of 
the cardiac cycle, they will have different local 
deformations, which results in local misregistra-
tion of structures between successive images. 
Furthermore, incoherent intra-voxel motion leads 
to additional signal attenuation [ 17 – 19 ].  

     Recognition and Correction 
in Acquisition Stage  
 The raw images can be used to detect local defor-
mations, which are most pronounced in the 
region of the brain stem. Due to the differential 
contrast and eddy current-induced distortions 
between DWIs, it is hard to determine whether 
any observed deformations are caused by pulsa-
tion. When multiple non-DWIs are acquired, 
looping through the raw images at a high frame 
rate (e.g., 10 fps) may already illustrate the effect 
of cardiac pulsation. 

 As there is a direct mathematical relation 
between the  image and the k-space  , any artifact in 

the image is also present in k-space. Pulsation can 
result in dispersion or corruption in k-space lead-
ing to signal dropouts in the image. Holdsworth 
et al. [ 20 ] proposed the use of k-space entropy as 
a measure for k-space dispersion, where images 
with higher entropy than a given threshold value 
are defi ned as corrupted. Once a threshold is set, 
any corrupted slices can then be re-acquired later 
in the scan without the need for user input. 
Although this provides an automated method, the 
implementation requires online processing of the 
acquired data, and therefore nontrivial alterations 
to the scanner software. 

 To prevent the pulsation artifact from occur-
ring in the acquired data, it is possible to acquire 
images only during several phases of the cardiac 
cycle, called cardiac gating. By ensuring that 
each slice is scanned during diastole, where there 
is little pulsatile motion, it is possible to acquire 
images that are unaffected by pulsation [ 21 ]. 
Although effective, gating comes at the cost of 
increased scan time, since there are periods in the 
cardiac cycle where no images can be acquired. 
In general, pulsation affects regions at and below 
the level over the  corpus callosum   [ 22 ]. With 
this knowledge, Nunes et al. [ 23 ] devised an 

  Fig. 7.8    ( a ) Areas of artifi cially high FA in  left – right  
direction resulting from vibration artifacts. ( b ) Same FA 
map after correction for the vibration artifact by account-

ing for signal dropouts in tensor estimation. Mean resid-
ual map of the tensor fi t ( c  and  d ) gives an indication of 
data quality and is sensitive to artifacts ( c )       
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optimized acquisition setup where these inferior 
areas are scanned in the diastolic phase and supr-
acallosal slices during the systolic phase. Using 
this setup they demonstrated a decrease in scan 
time of 30 % compared to the traditional cardiac- 
gated scan, while obtaining the same artifact-free 
images. Most MR vendors provide a cardiac gat-
ing option in their DWI sequences, making this a 
very convenient solution to pulsation artifacts, 
albeit at the expense of increased scan time.   

    Recognition and Correction in Image 
Processing Stage  
 Plotting the standard deviation across the non- 
DWIs for each voxel can show a high variability 
near moving regions, such as the medial parts of 
the brainstem and the lateral ventricles, due to 
pulsatile artifacts (Fig.  7.9 ).

   On top of local misalignment artifacts, intra- 
voxel dephasing leads to additional signal attenu-
ation, which will be interpreted as increased 
diffusion. This will bias the diffusion tensor esti-
mate and will infl uence anisotropy measures and 
tractography results [ 17 ]. 

  Tensor estimation   in the presence of cardiac- 
induced artifacts can be improved by more 
advanced tensor estimation methods that recog-
nize corrupted data as outliers. Robust estimation 
approaches such as Robust Estimation of Tensors 
by Outlier Rejection (RESTORE, see also 
Chap.   6     and [ 24 ]) and Robust Extraction of 
Kurtosis INDices with Linear Estimation 

(REKINDLE)   [ 25 ] can be very effective in 
obtaining diffusion tensor parameters that are not 
affected by cardiac- induced artifacts.   

     Susceptibility-Induced Distortions   

    Origin  
 Magnetic susceptibility refers to the degree of 
magnetization of an object in response to an 
applied magnetic fi eld. Tissue is diamagnetic, 
which means that it creates a magnetic fi eld in 
opposition to the externally applied magnetic 
fi eld. The magnetic fi eld in the tissue will there-
fore be slightly lower than the scanner magnetic 
fi eld. Different tissues have different magnetic 
susceptibilities, which makes the magnetic fi eld 
(B 0 ) dependent on the shape and composition of 
the body part that is imaged. Susceptibility dif-
ferences are particularly large in regions where 
air-fi lled sinuses are close to bone or tissue, such 
as in the temporal and frontal lobe. EPI images 
are prone to these susceptibility differences in 
particular, since a whole volume is acquired 
within a single excitation. In clinical practice, 
k-space is fi lled as displayed in Fig.  7.10a . The 
locally altered magnetic fi eld will cause a local 
displacement of the object in the PE direction 
[ 26 ,  27 ]. More specifi cally, the geometric distor-
tions scale linearly with the FOV in the PE direc-
tion, and with the time between two consecutive 
points in the PE direction.

  Fig. 7.9    Standard deviation across all non-DW (B 0 ) images shows high signal variability around the ventricles and the 
brainstem due to pulsation. FA DEC maps of the same slices are shown for anatomical reference       
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        Recognition and Correction 
in Acquisition Stage  
 The distortions may cause regions of signal “pile 
up,” where the signal of several voxels is com-
pressed into one voxel (Fig.  7.11b ), or signal 
“smearing,” where the signal from one voxel is 
stretched over several voxels (Fig.  7.11a ).

   To compensate for B 0  inhomogeneities, an 
additional magnetic fi eld can be created by run-
ning currents through small coils [ 28 ]. This is 
called shimming, and the coils used are called 
shim coils. In MRI brain imaging, there is always 
some form of shimming. Mostly, linear shim-
ming is used, also called fi rst-order shimming, 
where additional magnetic fi elds along  x ,  y , and  z  
are applied to make the B 0  fi eld more homoge-
neous. Higher-order shimming is also possible, 
where second- or third-order fi elds are applied to 
account for highly nonlocalized magnetic inho-
mogeneities [ 29 ]. These higher-order shimming 
methods require additional coils and software, 
but are widely available in dedicated brain imag-
ing centers. 

 In the presence of an object that causes an 
inhomogeneous B 0  fi eld,  shimming   is the 
accepted method to correct these inhomogene-
ities. However, the acquisition of the DWIs can 
be adjusted such that the effects of inhomogene-
ities are minimized. One way to do this is by par-
allel imaging methods, e.g., SMASH, SENSE, or 
GRAPPA, which were designed to speed-up MR 
image acquisition by acquiring only parts of 

k-space, and then reconstructing the whole image 
[ 30 – 32 ]. The use of multiple receiver coils that 
detect the MR signal then provides the additional 
spatial information to reconstruct the complete 
image from an incompletely sampled, or unders-
ampled, k-space. It is most effi cient to unders-
ample in the PE direction because this provides 
the largest speed-up. An additional benefi t is that 
in EPI, this also reduces the image distortions 
caused by local fi eld inhomogeneities, with 
higher parallel imaging factors giving lower 
distortions. 

 Another way to reduce image distortions is to 
change the way k-space data is acquired. Several 
pulse sequences have been designed that do this, 
including short-axis PROPELLER EPI (SAP- 
EPI, [ 27 ]) and readout segmented EPI (RS-EPI, 
[ 20 ]). SAP-EPI acquires multiple rotating and 
overlapping “blades” in k-space that together 
create a full k-space (Fig  7.10b ). Instead, RS-EPI 
acquires several parallel adjacent “blinds” in 
k-space that combine to a full k-space (Fig  7.10c ). 
However, these techniques require multiple 
blades or blinds to be scanned to construct a full 
k-space. Since the individual blades or blinds are 
acquired after separate excitations, this results in 
longer scan times. Recently, diffusion-weighted 
vertical gradient and spin-echo EPI was pro-
posed, which basically acquires all the RS-EPI 
blinds after a single excitation, signifi cantly 
increasing the imaging speed compared to 
RS-EPI [ 33 ]. Although these techniques provide 

  Fig. 7.10    ( a )  k-space trajectory   of single-shot EPI, where 
the entire k-space is read after a single excitation. ( b ) 
Short-axis propeller EPI, where rotating “blades” in 

k-space are read out after each excitation. ( c ) Readout- 
segmented EPI reads out “blinds” of k-space in each 
excitation       
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a higher image quality and have been shown to 
provide improved diagnostic confi dence [ 34 ], 
they are not widely available and thus not widely 
used in diffusion MRI.   

    Recognition and Correction in Image 
Processing Stage  
 Deformations of the DWIs can be recognized 
when fusing them with an anatomical image 
which is less geometrically distorted. Figure  7.12a  
shows the overlay of the DEC map with a T1 
image after rigid registration, showing a clear 
mismatch between the two images.

   There are several “unwarping” methods that 
can be used to deal with these distortions in 
image processing stage. Most of these methods, 
however, require additional image acquisitions 
and as such are not purely post-processing strate-

gies. One option is distortion correction with the 
use of a fi eld map. An example fi eld map is 
shown in Fig.  7.13 , which illustrates the devia-
tion of B 0  from the Larmor frequency. Spatial 
variations in B 0  cause the distortions, and know-
ing these variations enables us to calculate the 
shift per voxel and compensate for the shift [ 35 ]. 
A drawback of this method is that it cannot cor-
rect for signal “pile up,” because the intensity of 
that particular location is then a mix of intensities 
from different voxels, and this is impossible to 
resolve [ 36 ].

   An alternative method is to acquire two datas-
ets with opposite PE direction (and thus oppo-
sitely directed distortions), so that one could 
reconstruct the undistorted image from these two 
data sets [ 37 ]. This is called the  reverse polarity 
gradient method   because of the opposite polarity 

  Fig. 7.11    ( a ) 
Susceptibility-induced 
distortions when using 
negative EPI blips, 
displacements toward the 
front. ( b ) Positive EPI blips 
result in displacements 
posteriorly. ( c ) Corrected 
data. [Courtesy of Dr. 
Roland Bammer, Stanford 
University]       
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of the PE gradient in this method. The benefi t here 
is that regions with signal “pile up” in one image 
have signal “smearing” in the other image, and 
vice versa. Recall Fig.  7.11a, b . This overcomes 
the main drawback of the fi eld map method. A 
downside to this method is that more images 
should be acquired, increasing the scan time. 

 Finally, an undistorted image (e.g., T1, T2) 
can be used to unwarp residual EPI distortions 
present in DWI data by non-rigid image registra-
tion [ 38 ], see Fig.  7.12b . 

 Conceptually, the last two correction methods 
could be combined, where the registration to an 
undistorted image fi ne-tunes the images cor-
rected with the fi eld map of reverse polarity 
method.   

     Nyquist Ghosting  

   Origin 
 The  origin   of Nyquist ghosting is hardware 
related. In the scanner, there is a time delay of 
microseconds between the application of the 
readout gradient and the actual acquisition. This 
leads to a shift of the data in k-space, which cor-
responds to a phase ramp in image space: the 
“ghost” [ 39 ]. The ghost arises due to a mismatch 
between readout from positive and negative read-
out directions.  

     Recognition and Correction 
in Acquisition Stage  
 Ghosting can immediately be recognized in the 
raw images as a copy of the object, shifted by 
half of the FOV (see Fig.  7.14) .

   Multiple  correction methods   have been pro-
posed and generally fall into methods that 
require additional acquisitions (e.g., a reference 
scan) or those that do not. To correct for the 
shift in k-space, the reference scan is composed 
of multiple readouts through the center of 
k-space which can be used to determine the dif-
ference between positive and negative readouts. 
This difference—acquired without diffusion 
weighting—can then be used to correct all 
acquired non-DWI and DWIs in the rest of the 
session [ 40 ]. Although this is a very quick 
method, the downside is that it is not suitable for 
longer DWI scans, which are more and more 

  Fig. 7.12    Color FA map 
derived from DW-MRI 
data overlaid on anatomical 
undistorted image. Due to 
EPI deformations in the 
DWI, there is a 
misregistration that is most 
obvious near the brain stem 
and corpus callosum ( a ). 
( b ) Result after correction 
by non-rigid image 
registration       

  Fig. 7.13    Field map with the gray values representing B 0  
variations in Hz       
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common to accommodate HARDI (see also 
Chap.   13    ). Subtle changes in the MR system 
during the scan may render the reference 
acquired at the beginning inadequate for ghost 
correction at the end of the scan. To resolve this, 
reference scans can be acquired intermittently 
during scanning to update the correction param-
eters. If multiple non-DWIs are acquired and 
these are spread out over the session, these ref-
erences can be scanned during the “dead time” 
because of the missing diffusion- weighting gra-
dients. Mostly, the scanner has one fi xed method 
to do ghost correction, which leaves the user 
with no alternatives. However, if these “stan-
dard” methods prove insuffi cient to fully correct 
for ghosting, one should realize there are alter-
native methods that could prove to be benefi cial.   

    Recognition  and Correction in  Image 
Processing Stage   
 Alternatively, one can use the acquired images 
themselves to do ghost correction. By generat-
ing separate images from the odd and even 
echoes, phase maps of those two images can be 
generated. Under the assumption that phase 
changes have a low spatial frequency, the two 
phase maps can be used to calculate a phase cor-
rection and reconstruct one fi nal un-ghosted 
image [ 39 ,  41 ].   

     Gibbs Ringing   

    Origin  
 Gibbs ringing is a common artifact in MRI but is 
often overlooked in diffusion MRI applications 
[ 3 ]. To describe steep intensity transitions in an 
image (e.g., cerebrospinal fl uid, CSF, next to 
white matter), one needs high frequencies. When 
acquiring k-space, however, the acquisition win-
dow is not infi nitely large but rectangular. High 
frequencies beyond the acquisition window are 
assumed to be zero. This leads to the well-known 
ringing artifact in the image [ 42 ], see Fig.  7.15 .

        Recognition and Correction 
in Acquisition Stage  
  Gibbs ringing artifacts   are the most prominent in the 
non-DW image because the intensity differences are 

   Fig. 7.14      Nyquist 
ghosting   can be recognized 
as a copy of the image that 
is shifted over half the 
FOV       

  Fig. 7.15    Ringing artifact around large steps in intensity       
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largest in this image, as shown in Fig.  7.16a  at the 
interface of CSF and brain tissue.

   Sampling a larger interval in k-space (with 
proportionally more points in k-space) for a fi xed 
fi eld-of-view will reduce the pixel width, and 
therefore the spatial distance over which the ring-
ing propagates. Running two scans with different 
k-space intervals can give insight in the Gibbs 
ringing artifact, but this is not often an option due 
to prolonged acquisition time.   

    Recognition and Correction in Image 
Processing Stage  
 The Gibbs ringing artifact can also be recognized 
on DEC maps as intensity variations, see 
Fig.  7.16b . Since diffusion will lead to signal 
decay, the non-DW image should always have a 
larger intensity than DWIs for each voxel. Due to 
Gibbs ringing artifacts, amongst others, this is 
not always the case. Visualizing the occurrence 
of these physically implausible signals (PIS) 

  Fig. 7.16     Gibbs ringing artifact  . ( a ) B 0  image shows the 
artifact at the location of high intensity gradients. ( b ) DEC 
map with Gibbs ringing artifact. ( c ) PIS map, indicating 

regions where the  b  = 0 image has smaller intensity than 
the DWIs. ( d – f ) show the corrected images       
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overlaid on an FA map indicates at which loca-
tions these artifi cial signals occur, as shown in 
Fig.  7.16c  [ 3 ]. 

 Gibbs ringing artifacts have infl uence on dif-
fusion estimates, and it is therefore desirable to 
correct for these artifacts. There are several 
approaches that deal with Gibbs ringing arti-
facts, e.g.  [ 43 – 47 ] . The  total variation (TV) 
approach  , for example, calculates a corrected 
image by including a term that preserves edge 
information in the image and meanwhile mini-
mizes the contribution of large adjacent intensity 
differences  [ 46 ] .   

     Chemical Shift Artifact   

    Origin  
 When placed in a magnetic fi eld, protons in fat 
have a different resonance frequency than those 
in water. During acquisition of the MR images, 
the frequency and phase of the signal are used for 
spatial encoding of the signal. The difference in 
frequency of fat and water can therefore be inter-
preted as a difference in position. In EPI images, 
fat containing structures are therefore shifted 
from their true positions in the phase-encoding 
direction.  

     Recognition and Correction 
in Acquisition Stage  
 On a 3T clinical system, the fat/water chemical 
shift can approach 5 cm [ 48 ]. When imaging the 
brain, the largest fat component can be found 
between the skull bone and skin. The hyperin-
tense band of the fat signal can be visible on raw 
DWIs, as shown in Fig.  7.17a .

   To ensure there is no fat signal to disrupt the 
image, several “fat suppression” methods have 
been proposed that can be generally classifi ed 
into three different methods: specifi cally exciting 
the water protons; saturation of the fat magneti-
zation; moving the fat signal away from the 
imaged object. The fi rst method was initially pro-
posed by [ 49 ] as a spectral-spatial (SPSP) selec-
tive excitation, where interplay between 
switching slice-selection gradients and RF pulse 
excites only the water protons. This is the most 
effective method in terms of fat suppression, but 
suffers from two main drawbacks: (1) Due to 
hardware constraints on clinical systems (mostly 
the gradient slew rate), slice thicknesses is lim-
ited to around 2.4 mm or thicker; (2) The SPSP 
pulse can be relatively long in order to get a good 
fat suppression, thus increasing scan time. The 
second method uses an RF pre-pulse, to null the fat 
magnetization before the actual water excitation. 

  Fig. 7.17     Fat band   is sometimes visible as bright intensity band on raw images ( a ), whereas it is often missed on DEC 
maps ( b ). Residual map clearly shows the chemical shift artifact ( c )       
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Two pre-pulses exist: (1) An inversion pulse 
(e.g., SPIR, [ 50 ]), where the fat magnetization is 
inverted and the actual excitation is done at the 
time that fat has zero magnetization. The time 
between inversion and excitation is called the 
 inversion time  , and tuning this is critical for good 
suppression. (2) The fat is excited and then 
“spoiled” before excitation (CHESS, [ 51 ]), 
resulting in no magnetization of fat. Unfortunately, 
at current clinical fi eld strengths of 1.5T or 3T, 
this approach commonly provides incomplete fat 
suppression (as illustrated in Fig.  7.17a  and a 
slight increase in scan time). The third method 
uses slice-selection gradient reversal (SSGR) 
[ 52 ,  53 ]. Due to relative differences in frequency, 
the slice of fat that is excited is shifted along the 
slice direction compared to the excited water. 
When opposite gradient polarities are used during 
the excitation and refocusing RF pulse, the fat 
slice will in turn be shifted in opposite directions 
in the excitation and refocusing part. As a result, 
the volume of fat tissue that experiences both the 
excitation and refocusing pulse is very small, 
which means there is little signal from fat. This is 
shown schematically in Fig  7.18 .

   In a recent overview, Sarlls et al. [ 54 ] com-
pared different fat suppression methods for twice-
refocused DW imaging: CHESS, SSGR, SPSP, 
and a combined CHESS-SSGR approach. The 
SPSP and CHESS-SSGR methods performed 

similarly in terms of effective fat suppression and 
SNR, but the CHESS-SSGR combination resulted 
in a slightly shorter scan time. 

 Depending on the vendor, one or several of 
these fat suppression options are available. Even 
within one option, there are specifi c parameters 
that can be tuned to try and optimize fat suppres-
sion. In SPIR, for instance, the inversion time can 
be set for each scan. Alternatively, the difference 
between the water and fat resonance frequency 
can be set in SPIR, CHESS, and SPSP. Optimal 
values of these parameters are dependent on sev-
eral scanner-specifi c settings, including the main 
fi eld strength, gradient strength, and gradient 
slew rate, but are certainly worth investigating to 
provide proper suppression.   

    Recognition  in  Image Processing Stage   
 Insuffi cient fat suppression can become visible 
on DEC maps, but this is not always obvious 
(Fig.  7.17b ). The easiest method to detect these 
artifacts is by making a residual map of the diffu-
sion tensor residuals, where the chemical shift 
artifact can be recognized as a bright band of 
higher residuals (Fig.  7.17c ). It is diffi cult to cor-
rect for this artifact at this stage, and one should 
be careful with interpretation of the data in these 
corrupted regions. The locally biased tensor esti-
mation can become apparent globally in tractog-
raphy analyses.   

  Fig. 7.18    Schematic representation of the  slice-selection 
gradient reversal (SSGR) method  . The  solid black line  
indicates the spatial location of the slice of water that is 
excited. The fat slice that is excited is displaced with 
respect to the water slice along the slice direction ( shifted 
up ,  dashed line ). The refocusing pulse is then combined 

with a gradient that has an opposite polarity to that used in 
the excitation pulse. The fat volume that experiences this 
pulse is shifted downwards ( dashed - dotted line ). The 
overlapping area in the middle of the slice ( gray ) is the 
only part of the fat signal from this slice that will give an 
echo       
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     Signal and Slice Dropouts   

    Origin  
 Signal dropouts can have many origins, such as 
gross subject motion, cardiac pulsation, strong 
local susceptibility difference (e.g., dental braces), 
and hardware problems, among others. Since the 
fi rst three causes have been described at length 
previously, we focus here on the hardware- related 
problems. One example is a loose connection in 
the scanner, which can cause part of k-space to not 
be stored. Depending on the part of k-space miss-
ing, and the extent, this artifact can have various 
representations in the image. Alternatively, 
receiver calibration can be incorrect. Prior to scan-
ning, the scanner performs a quick test scan to see 
what the maximum signal will be to calibrate the 
system. If this is set too low, points in k-space may 
have their intensities “clipped,” resulting in artifi -
cial contrast differences in the image.  

     Recognition and Correction 
in Acquisition Stage  
 Given that hardware-related problems can pres-
ent themselves as a broad range of image arti-
facts, the artifacts can be diffi cult to detect and 
their origins hard to pinpoint. On raw data, detec-
tion can best be done by looking for structural 
hypointense areas, such as slice dropouts, shown 
in Fig.  7.19 . One should be aware, however, that 
not all dropouts are as obvious as this example, 
and the best way of detection is in the post- 
processing stage.

        Recognition and Correction in Image 
Processing Stage  
  Signal dropouts   are sometimes subtle and not 
always obvious to recognize on raw images or 
FA maps (Fig.  7.7 ). Residual maps of the ten-
sor estimation are sensitive to dropouts, see 
Fig.  7.20 . When fi tting a tensor, the RESTORE 

  Fig. 7.19     Total slice 
dropout   in the sagittal ( left ) 
and coronal ( right ) view       

  Fig. 7.20    ( a ) Slice 
dropouts are hard to spot 
on FA maps, but do 
infl uence diffusion 
measures locally. ( b ) On 
the tensor residual map, the 
slice dropout can well be 
recognized       
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and REKINDLE approaches can deal with 
these outliers by ignoring them during tensor 
estimation  [ 24 ] .

         Quality Assurance 

 Several of the artifacts discussed in this chapter 
can be corrected for, either at the acquisition or 
the processing stage. As such, they do not limit 
the analyses of DTI data, but rather force the user 
to consciously consider the acquisition and pro-
cessing steps prior to the analyses. Since the 
introduction of DWI and DTI, much research has 
been devoted to solve or reduce image artifacts. 
Eddy current-induced and susceptibility-induced 
image distortions, for instance, can now be 
addressed both by tuning the acquisition and the 
image processing side, with clear pros and cons 
to both options. In terms of the image processing 
steps described here, most software packages 
available to date provide users with adequate 
options to do these correction steps. Although 
there are various ways to correct for artifacts, it is 
of major importance to check quality require-
ments before acquiring data on clinical or 
research subjects, by using  quality assurance 
(QA) tests  . 

    QA and Phantoms 

 QA is concerned with the implementation of 
activities to fulfi ll quality requirements, such as 
comparison to a gold standard. Standard QA tests 
consist of gradient calibration (including linear-
ity, uniformity, and agreement in amplitude), 
fi eld mapping to minimize B 0  inhomogeneities, 
and eddy current compensation [ 55 ]. This is most 
commonly done by imaging phantoms with dif-
ferent gradient directions and  b -values. Phantoms 
are suitable for validation of acquisition parame-
ters, as well as diffusion measures and fi ber trac-
tography results [ 56 – 59 ]. It is important to 
quantify precision, accuracy, and reproducibility 
in diffusion MRI analysis. Vegetables (like aspar-
agus [ 60 ]) or animal nerve structures (like rat spi-
nal cord, garfi sh, or lobster nerves [ 61 ,  62 ]) are 
sometimes used. However, in such organic mat-

ter it is more diffi cult to manipulate the natural 
geometry of the tissue in order to refl ect more 
complex microstructural confi gurations (i.e., to 
construct interdigitated crossing fi bers), and the 
diffusion properties of such organic material may 
change over time. Hardware phantoms can be 
made of isotropic media (e.g., liquids of known 
diffusivity) or anisotropic media (e.g., capillaries 
or artifi cial fi bers). The properties of these phan-
toms are tuned to resemble human white matter. 
Liquids of known diffusivity (e.g., Dodecane) 
can be used to calibrate absolute gradient power. 
Glass capillaries or PTFE (Tefl on) capillaries 
[ 63 ] are rigid, while for example hydrophobic 
fi ber materials (with high FA, [ 64 ]) can be 
adapted to the desired geometry to create artifi -
cial fi ber phantoms.  

    Quality Control 

 One important aspect of  quality assurance and 
control   is that the user should always remain crit-
ical when employing automated correction meth-
ods. One example could be the use of robust 
estimation procedures on data with artifacts. 
When a DW image is partly corrupted, 
RESTORE or REKINDLE might classify those 
corrupted voxels as outliers, and disregard them 
in tensor estimation. However, if a large portion 
of the image is corrupted, the image might not be 
correctly registered, which could mean that the 
“good” voxels that are included in tensor estima-
tion are also unreliable because they provide dif-
fusion information about different spatial 
locations. An example of this is shown in Fig. 
 7.21  for a DW image (Fig.  7.21a ) simulated to 
have an interleaved artifact (Fig.  7.21b ). The 
coregistration of such an image to the other 
images will not be accurate. Residual maps (Fig. 
 7.21c ) will not show this. However, the number 
of outliers detected is a very good indicator of a 
subtle image artifact (Fig.  7.21d ). As shown here, 
the interleaved artifact only causes 7 % of all 
brain voxels to be judged by RESTORE as outli-
ers, even though at least half of all WM voxels 
are misaligned and therefore provide erroneous 
information. This is because misregistration of 
voxels within the WM might not provide a strong 
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enough contrast difference to be classifi ed as arti-
fact. In such cases, one could argue to remove the 
entire DW volume from further analyses to 
ensure they are not negatively affected.

        Implications for Further Analysis 

    Effects of Bad Quality Data 
on Quantifi cation 

 MD and FA are, amongst others, important quan-
titative measures that can be used in subsequent 
ROI analyses, voxel based analyses (VBA), and 
tractography analyses (See Chaps.   6    ,   7    ). 
Comparison of these values between different 
groups can reveal associations with clinical 
parameters, which has been the focus of a large 
amount of studies. Artifacts can infl uence the dif-
fusion measures, as shown in Fig.  7.22 , where FA 
values (top two rows) and MD values (bottom 
row) are locally altered. Furthermore, artifacts 
can complicate proper analyses in particular 
areas. It is well known that structures in the 
 orbitofrontal cortex, for example, are prone to 
susceptibility artifacts, which makes these white 

matter areas less accessible to study. This might 
attribute to the fact that larger white matter tracts 
with densely packed neuronal fi bers tend to be 
studied more than less prominent pathways. For 
example, the corpus callosum is a pathway that 
can readily be identifi ed, which makes this path-
way better suited for investigation in quantitative 
studies [ 65 ]. We have seen that most artifacts 
cause diffi culties in the registration of individual 
DWIs, which will eventually affect any subse-
quent analysis. One should be aware that the 
 corpus callosum, for example, can also be cor-
rupted by artifacts, such as susceptibility distor-
tions (Fig.  7.10 ), Gibbs ringing (Fig.  7.13 ), and 
interleave artifacts (Fig.  7.15 ).

       Effects of Bad Quality Data 
on Tractography Results 

 With tractography, the architectural confi guration 
of white matter fi ber bundles can be investigated 
in vivo (See Chap.   11    ). For DTI tractography, the 
local fi rst eigenvector is typically used for tract 
propagation (Chap.   6    ). Besides noise and partial 
volume effects, data artifacts and lack of proper 

  Fig. 7.21    Importance of 
 manual data quality 
assurance  . One DW image 
(the tenth) shown 
uncorrupted ( a ) and with 
interleaved artifact ( b ). The 
tensor residual map at this 
slice ( c ) does not show the 
presence of any artifact. 
However, outlier 
percentages per DW image 
( d ) strongly indicate an 
artifact. Interesting, only 7 
% of all brain voxels are 
classifi ed as outliers, 
whereas roughly half of the 
image is misaligned       
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correction can severely confound local fi ber con-
fi gurations and therefore fi ber tractography 
results. Figure  7.23  shows examples of the infl u-
ence of bad quality data on tractography results 
using a deterministic algorithm, for different arti-
facts. The results clearly show the deviation in the 
reconstructed pathways when proper correction 
methods are not taken into account. Pathways can 
have a different geometry and may even terminate 

in other brain areas [ 66 ]. To date, tractography is 
mostly used for analyses in which quantitative 
measures along tracts are compared between 
patients and controls, to study which areas in the 
brain are connected, and for neurosurgical plan-
ning. It is of major importance to assure data 
quality before acquisition and correct for artifacts 
during acquisition and image processing to ensure 
the reliability of all subsequent analyses.

  Fig. 7.22    Effects of bad quality data on quantitative mea-
sures (FA  top two rows , MD  bottom row ), showing ( i ) 
vibration artifact, ( ii ) Gibbs ringing, ( iii ) Susceptibility 

distortions anterior, ( iv ) Motion and eddy current distor-
tions, ( v ) interleave artifacts       
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  Fig. 7.23    Effects of bad quality data on tractography 
results. ( a ) Tractography of the uncinate fasciculus before 
( red ) and after ( yellow ) motion and eddy current distortion. 
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            Learning Points 

•     DTI analysis forms only one part of a DTI 
study and is mutually dependent on other stages 
in the DTI pipeline, such as data acquisition.  

•   There are many different approaches for ana-
lyzing DTI and the most optimal method 
depends on the goal(s) of the DTI 
investigation.  

•   DTI analysis methods can be categorized into 
three main classes: whole-brain, regional, and 
voxel-based approaches.  

•   There are pros and cons in all DTI analysis 
approaches, and there is no single best or 
worst analysis method, but a range of tech-
niques that are more or less suited to any given 
application.  

•   Many software packages and tools are avail-
able to process and analyse DTI data, which 
vary considerably in functionality.  

•   The broad range of analysis approaches and 
heterogeneous functionality in software pack-
ages contributes to a lack of standardization 
that complicates the analysis of DTI data and 
the interpretation of results.     

    Introduction to DTI Analysis 

 Since its introduction, DTI has been used to 
study microstructural tissue changes in a wide 
range of neurologic and psychiatric disorders, as 
well as in normal development and ageing [ 1 ]. 
Many approaches have been proposed to extract 
DTI measures from the data and compare them 
across subjects. As each of these methods have 
some advantages and limitations, the most opti-
mal analysis approach will depend on the clinical 
and research questions that need answering. 
Furthermore, the limitations of the selected 
method should be considered during the interpre-
tation of the results. This chapter provides a brief 
overview of the different options that are avail-
able for the analysis of DTI data. In the following 
chapters, more detailed information is provided 
about three main analysis techniques, i.e., region 
of interest analysis (Chap.   9    ), voxel-based analy-
sis (Chap.   10    ), and tractography and connectivity 
analysis (Chap.   11    ). 

mailto:wim.vanhecke@icometrix.com
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 Analyzing DTI data is only one part of the 
whole DTI processing pipeline. Figure  8.1  sum-
marizes a prototypal DTI  pipeline  , from the goal 
of the DTI study, through to data acquisition, data 
analysis, and interpretation of the results. As 
highlighted in Chap.   2     and discussed in more 

detail in the chapters of Section 2, many choices 
have to be made at each step of this pipeline. 
Note that these different steps are not indepen-
dent of each other; for example, the most optimal 
analysis technique will depend on the quality of 
the data and how it is acquired.

   Fig. 8.1     Prototypal DTI study pipeline. Whole-brain 
tractogram and connectivity matrix. [Reprinted from 
Caeyenberghs K, Leemans A, Leunissen I, Gooijers J, 
Michiels K, Sunaert S, et al. Altered structural networks 
and executive defi cits in traumatic brain injury patients. 
Brain Struct Funct. 2014 Jan;219(1):193–209. With per-
mission from Springer Verlag]. Voxel-based analysis fi g-
ure. [Adapted from Emsell L, Langan C, Van Hecke 
W,Barker GJ, Leemans A, Sunaert S, et al. White matter 

differences in euthymic bipolar I disorder: a combined 
magnetic resonance imaging and diffusion tensor imaging 
voxel-based study. Bipolar Disord. 2013 Jun;15(4):365–
376. With permission from John Wiley & Sons.]Axon 
micrograph. [Reprinted from Beaulieu C. The basis of 
anisotropic water diffusion in the nervous system—a 
technical review. NMR Biomed. 2002 Nov–Dec;15 
(7–8):435–455. With permission from John Wiley & 
Sons, Inc.] Corrected DTI maps. [Courtesy of A. Leemans]        
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       Why Do We Need to Analyze 
DTI Data?  

 Diffusion-weighted imaging ( DWI  ) is widely 
used in clinical practice as it provides unique, 
rapidly accessible information that can be used in 
the assessment of ischaemic stroke, to differenti-
ate vasogenic versus cytotoxic oedema and to 
characterize intracranial lesions such as pyogenic 
abscess, infections, tumors, and trauma [ 2 ]. 
However, whilst the processing of DWI data is 
relatively easy, the analysis of DTI data is signifi -
cantly more complex. For example, the need for 
more diffusion-weighted images makes the 
acquisition longer and more challenging. In addi-
tion, motion correction becomes more important, 
and the tensor estimation is more complex com-
pared to ADC calculations. There are also more 

techniques available for analyzing DTI data com-
pared to DWI. In clinical practice, DWI informa-
tion, typically the DWI and ADC maps, is 
interpreted visually by a radiologist. It has been 
demonstrated that DTI can be useful in evaluat-
ing changes in the normal appearing white mat-
ter. However, qualitative assessment of DTI 
information, such as FA maps, may be more dif-
fi cult there. 

 To illustrate the challenge of qualitatively 
assessing scalar DTI maps, consider the axial 
color-encoded  FA maps   in Fig.  8.2 . This random 
assortment of images comprises seven pairs of 
axial slices generated from patients with pathol-
ogy that has been associated with changes in 
white matter microstructure, and two healthy 
subjects. There are two patients with tinnitus, two 
with cerebral palsy, two with multiple sclerosis, 

  Fig. 8.2    A matching 
puzzle with DTI. Match 
the axial colour-encoded 
FA maps with the correct 
pathology. In addition to 
two healthy subjects, there 
are two images of patients 
with tinnitus, cerebral 
palsy, multiple sclerosis, 
schizophrenia, Alzheimer’s 
disease, spinocerebellar 
ataxia, and amyotrophic 
lateral sclerosis       
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two with schizophrenia, two with Alzheimer’s 
disease, two with spinocerebellar ataxia and two 
with amyotrophic lateral sclerosis. Is it possible 
to match the FA maps with the correct pathology 
and identify the healthy controls?

   For all subjects, a similar  axial slice   was 
selected. Data from the subjects with the same 
pathology were acquired using the same protocol 
in the same study, whereas data from subjects 
with different pathologies were acquired in differ-
ent studies (and therefore mostly with different 
acquisition protocols). Hence, it may be possible 
to match some subjects based on image quality or 
based on prior knowledge about the presence of 
neurodegeneration and ventriculomegaly in some 
of these disorders. However, when these factors 
are excluded from the visual assessment of the 
data, it becomes very diffi cult to match the pathol-
ogy to the DTI data. This demonstrates fi rstly, that 
changes in FA that occur due to pathology are not 
always readily visualised on colour FA maps, and 
secondly, that such FA changes are not specifi c to 
one particular disorder. Although visual assess-
ment of colour FA maps can be useful, in general, 
there is a need for reliable quantitative analysis 
methods that allow meaningful conclusions to be 
drawn from the DTI data.  

    DTI Analysis Techniques 

 Many different DTI  analysis techniques and 
approaches   have been applied to study a range 
of pathologies and include region of interest 

analysis, tractography, histogram analysis, atlas-
based segmentation, quantifi cation of graph-based 
connectivity networks, and voxel-based analysis 
to name but a few. Each of these techniques has 
its own strengths and limitations and there is no 
single technique that can be regarded as superior 
to all the others. The most optimal analysis 
approach depends on many factors, including:

•    The  purpose   of the analysis (e.g., to delineate 
a known fi bre bundle, to explore the data)  

•   Whether it is for a single subject or group 
comparison  

•   If there is a hypothesis about the location and 
extent of change or difference in DTI measures  

•   The data acquisition protocol (e.g., # of direc-
tions, b-value, voxel size)  

•   The  data quality    
•   …    

 For simplicity, the different techniques that 
are available to analyze DTI data sets can be clas-
sifi ed into three categories:

•    Whole-brain analyses  
•   Region-specifi c analyses  
•   Voxel-based analyses    

 This subdivision of analysis techniques is 
based on the scale that is used to evaluate the DTI 
measures in the brain. As shown in Fig.  8.3 , DTI 
analysis can be performed at the level of the whole 
brain (Fig.  8.3a ), at a regional  level   (Fig.  8.3b ), or 
at the smallest scale, i.e., the voxel (Fig.  8.3c ).

  Fig. 8.3    Subdividing DTI analysis methods into three parts: whole-brain analysis approaches ( a ), region-specifi c anal-
ysis methods ( b ), and voxel-based analysis methods ( c )       
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   In most voxel-based analysis approaches, DTI 
measures are evaluated at the voxel level, but at 
the same time in every voxel of the brain. As 
such, this method can also be regarded as a 
whole-brain analysis technique. This next section 
provides a brief overview of each of these major 
classes of DTI analysis methods. 

    Whole- Brain Analysis Techniques   

 The general concept of whole brain DTI analysis 
techniques is to obtain quantitative DTI measures 
from all the voxels that include brain white mat-
ter, and can thus be subdivided into two parts (see 
Fig.  8.4 ):

•     An approach to defi ne which voxels are part 
of the brain white matter  

•   An approach to extract relevant DTI informa-
tion from these voxels    

 The selection of the  voxels   to be included in 
the analysis can be done using brain segmenta-
tions from anatomical MRI data sets (located in 
the same image space as the DTI data) or by per-
forming whole-brain tractography. In whole- 
brain tractography, all brain voxels are used as 
seed regions to start the tractography process. 
Using specifi c parameter constraints such as an 
FA and curvature threshold, the tracts will mainly 
traverse white matter voxels, as the FA is lower in 
grey matter and cerebrospinal fl uid. 

 Once the voxels are selected, the DTI infor-
mation can be extracted. If anatomical MR 
based segmentations are used, it is important to 
ensure that the anatomical image and the DTI 
data set are located in the same space. It is there-
fore necessary to register both images to each 
other (image registration is introduced in Chap. 
  10    ). Usually, the  anatomical image   is trans-
formed to the non diffusion-weighted image 
using a rigid- body or affi ne transformation. As 
all the diffusion- weighted images should already 
be in the same space as the non-diffusion-
weighted image (done during the motion correc-

tion, see Chap.   7    ), the calculated tensors and 
diffusion metrics will also be aligned with the 
anatomical MRI. Extracting the diffusion infor-
mation after whole-brain tractography doesn’t 
involve image registration with an anatomical 
MR image. DTI measures from voxels that contain 
a streamline from the whole-brain tractography 
result will be selected. 

  Fig. 8.4    An example of whole-brain analysis of DTI 
measures. Brain or white matter voxels are defi ned by a 
mask created from either an anatomical MRI segmenta-
tion or by performing whole brain tractography. A histo-
gram of the diffusion values in these voxels is obtained 
and relevant information can be extracted and compared       
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    Histogram Analysis 
 Once the DTI measures have been extracted from 
the selected voxels of interest, they can be sum-
marized using a histogram (see Fig.  8.4 ). This 
histogram is a frequency distribution that dis-
plays the number of voxels with a specifi c value 
of the diffusion measure (e.g., FA). From this his-
togram, the following  parameters   can be 
extracted:

•    Mean or median of the diffusion measure 
values  

•   The peak height of the histogram: voxel count 
of the value that is present the most  

•   The peak location of the histogram: the diffu-
sion measure value that is present the most in 
the data set    

 Usually, studies will only obtain the mean or 
median value of the diffusion measure. The 
resulting values can then be statistically com-
pared across groups of subjects or correlated with 
other variables, such as clinical, neuropsycho-
logical or other test scores. 

 Whole-brain analysis of DTI data has the fol-
lowing strengths and limitations:

  Strengths 
•   Does not require prior knowledge of where 

hypothesized differences could be found  
•   Less reliant on user intervention than other 

approaches  
•   Results obtained quickly, without labor- 

intensive interventions  
•   Fewer statistical tests (i.e., multiple compari-

sons), compared to other techniques as only 
one set of diffusion measures is obtained for 
the whole brain   

  Limitations 
•    Regional information   is lost as DTI measures 

are averaged over the whole-brain white 
matter  

•   Results are sensitive to partial volume effects 
due to atrophy  

•   Results can depend on segmentation/registra-
tion accuracy or whole-brain tractography 
parameters      

    Region-Specifi c Analysis Techniques 

 In region specifi c analysis techniques, diffusion 
 measures   are obtained in one or more predefi ned 
areas of the brain. DTI measures, such as the FA 
and MD are thus statistically evaluated in an ana-
tomical region or white matter tract reconstruc-
tion. There are two main approaches:

•    Region of interest analysis  
•   Tractography analysis    

    Region of Interest Analysis 
 In   region of interest  ( ROI )  analysis   , diffusion 
measures are obtained from a specifi c brain 
region, which is defi ned by manual delineation or 
by automated segmentation or parcellation. As 
automated segmentations are less observer 
dependent and thus more reproducible, they have 
some clear advantages over manual delineations. 
However, automated segmentations are not 
always appropriate, for example due to ill-defi ned 
boundaries in regions of pathology. 

 Manual delineation of ROIs is typically per-
formed by  fr  eehand drawing of the region or by 
placing basic shapes such as circles or squares on 
2D slices. Due to the manual interaction that is 
needed, the results are observer dependent. In 
addition, manually delineating specifi c regions 
in a group of subjects is time consuming. This is 
especially the case when white matter fi bre bun-
dles need to be delineated, as they run through 
several slices, and thus many 2D ROIs need to be 
drawn in order to delineate as much of the bundle 
as possible. Ideally, ROIs should be drawn on 
maps that are independent of the diffusion mea-
sures of interest. For example if FA maps are 
used to delineate regions, and the FA is a mea-
sure of interest, a bias can be introduced in the 
results because ROIs are typically drawn around 
regions with a higher FA. However, FA might be 
lower in areas of pathology, which could then be 
excluded from the analysis, thereby artifi cially 
decreasing differences with the control group. In 
contrast, regions delineated on an anatomical 
MR (T1/T2) image are drawn independently of 
the diffusion measures that will be analyzed. 
However, this approach also has some potential 
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limitations, as the anatomical MRI data set needs 
to be registered accurately to the DTI data set, 
which is not always straightforward due to dif-
ferent distortions in both images [ 3 ]. An alterna-
tive approach is to delineate the regions on the 
 non-diffusion- weighted image, which should be 
in the same space as the quantitative diffusion 
maps after motion correction. However, the 
delineation of white matter bundles on either the 
anatomical scans or non-diffusion-weighted 
images is confounded by the lack of orientational 
contrast (which is provided by the color FA map). 
This is illustrated in Fig.  8.5 , which shows axial, 
sagittal, and coronal slices of a T1-weighted 
image and corresponding color-coded FA slices 
of a healthy subject

   In the presence of lesions, ROI analysis (actu-
ally all DTI analyses) can become challenging. 
This is demonstrated in Fig.  8.6 , which illustrates 
axial non-diffusion-weighted and color-encoded 
FA slices from fi ve patients with cerebral palsy. 
The lesions in the left hemisphere clearly affect 
the visualization of the corticospinal tract (CST). 
Reliably comparing diffusion values from the left 
CST with the contralateral CST in this popula-
tion or of a healthy population would be diffi cult. 
For example, delineating the ROI based on the 
color-encoded FA maps can be biased by the 
lower FA values in the lesion. However, drawing 
the ROI on the non-diffusion-weighted image, 
which is independent from the diffusion mea-
sures, is also challenging.

   Instead of delineating regions and structures 
manually, automatic segmentation methods can 
be used. Such automated methods are especially 
useful when structures or lesions can be accu-
rately segmented on the anatomical MRI. As an 
example, T2 lesions could be segmented in a 
patient with multiple sclerosis. After registering 
the T1/T2 MR image to the DTI data set and 
applying the deformation fi eld to the segmented 
lesion masks, DTI measures can be derived from 
these lesions. Bear in mind that these results will 
strongly depend on the segmentation and regis-
tration accuracy, especially when some of the 
lesions are small. In addition, the resolution of 
the DTI image is  typicall  y lower than the resolu-
tion of the anatomical MRI that is used for the 
segmentation, leading to partial volume effects. 
Finally, note that it is not easy to obtain automatic 
segmentations of white matter tracts based on 
anatomical MR images. 

 Region-specifi c analysis of DTI data by using 
 the   ROI approach has the following advantages 
and limitations:

  Strengths 
•   In comparison to whole-brain analyses, more 

regionally specifi c information is obtained  
•   Manual delineation is closer to the original 

data than other techniques which require more 
complex modeling and image processing  

•   ROI analysis is less dependent on parameter set-
tings than tractography or voxel-based analysis   

  Fig. 8.5    Axial, sagittal, and coronal slices of a T1 weighted image and the color-encoded FA maps of a healthy 
subject       
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  Limitations 
•   Requires a prior hypothesis about where dif-

ferences could be found, as that is where the 
ROI will be placed.  

•   Intra- and inter-observer reproducibility of 
results should be assessed, as manual delinea-
tion is subjective.  

•   Requires clear guidelines that describe how 
the ROI should be defi ned (e.g., size, anatomi-
cal location, boundaries).  

•   The selection of many ROIs increases the 
number of statistical tests that are performed 
and therefore correction for multiple compari-
sons is required.  

  Fig. 8.6    Axial non-diffusion-weighted and color-encoded FA slices in fi ve patients with cerebral palsy. The presence 
of lesions make ROI delineation challenging       
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•   Results can be biased if ROIs are drawn on the 
parameter map of the measure of interest, e.g., 
drawing an ROI on a color FA map when 
investigating FA.  

•   Results can depend on segmentation/registra-
tion accuracy when ROIs are delineated on 
anatomical MR images.  

•   Delineating regions manually is very time 
consuming and laborious.  

•   Excludes (potentially valuable) information 
from regions that are not selected/studied.  

•   Drawing an ROI or segmenting a  str  ucture can 
be challenging in the presence of pathology.     

    Tractography Analysis 
 The delineation of white matter tracts using only 
2D manually drawn ROIs or anatomical MR 
 images   is not optimal for the reasons outlined 
previously. However, by using the inherent direc-
tional diffusion information in the DTI data set, 
virtual representations of white matter fi bre bun-
dles can be reconstructed, using  tractography  (or 
“fi bre tracking”). Tractography refers to the 
mathematical reconstruction of white matter 
fi bre bundle representations by integrating the 
local diffusion tensor information from every 
voxel. In its simplest form, tractography can be 
compared with a puzzle “connecting the dots.” 
As shown in Fig.  8.7 , by following the letters 
alphabetically, and drawing lines between subse-
quent letters, one can complete the drawing and 
the global picture.

   How diffusion tractography relates to “con-
necting the  dots  ,” is shown in Fig.  8.8 . Instead of 
the alphabet and the natural sequence of letters, 
the orientational diffusion information can be 
followed and connected to create a more global 
picture of the white matter bundle. Consider two 
voxels in the brain, i.e., the green and blue vox-
els that are shown in Fig.  8.8a . The DTI data can 
be used to estimate tensors in every voxel. Recall 
that these tensors can be represented by an ellip-
soid whose longest axis represents the direction 
of maximal diffusion. For visualization pur-
poses, only the relevant tensors between the 
green and blue voxels are displayed, as shown in 
Fig.  8.8b . As explained in Section 2 of this book 

(Chaps   3    –  5    ), the orientation of the estimated 
tensor is assumed to relate to the underlying 
white matter architecture, as the amount of diffu-
sion along the axonal bundles will be greater 
compared to the amount of diffusion perpendicu-
lar to them.  DTI   tractography is based on the 
assumption that by following the maximal 
amount of diffusion in a given direction (i.e., the 
longitudinal axis of the ellipsoid) in each voxel, 
the orientation of axon bundles can be followed, 
and hence the tensors provide an indirect, sim-
plistic, discrete representation of white matter 
fi bre pathways, as shown in Fig.  8.8c . In prac-
tice, these assumptions suffer major fl aws, which 
are discussed in detail in several other chapters 
(see especially Chaps.   5    ,   11     and   21    ).

   If the tractography process is started in the 
 green voxel   A (referred to as the seed voxel), the 
main direction of diffusion is followed, until a 
new voxel is reached (voxel B in Fig.  8.8d ). This 
process is then repeated until a certain stop crite-
rion is reached. Typical tracking initiation and 
termination criteria are based on selection and 
exclusion ROIs, and FA, fi bre length and curva-
ture thresholds. For example, tracking may be 
stopped when the FA in a voxel is below 0.2, to 
prevent streamlines going into low anisotropy 
grey matter or CSF. These ROIs and thresholds 
determine the number of streamlines and how 

  Fig. 8.7    Connecting the dots: by following the alphabet 
and drawing a line between subsequent letters, the global 
picture (i.e., a house) becomes clear       
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they travel through the data, and hence the fi nal 
tract reconstruction. It is therefore important to 
realize that tractography is both operator and 
parameter dependent, and there is no ‘ground- 
truth’ solution to validate tracking results. 

 In the example of Fig.  8.8 , tracking ends in the 
 blue voxel  , as shown in Fig.  8.8d . The pathway 
from seed voxel to end point can be represented 
by a streamline. In this simplifi ed case, a single 
the streamline represents a fi bre tract (see the 
orange line in Fig.  8.8e , representing part of the 
cingulum); however in practice, many stream-
lines make up a fi bre tract. 

 It is worth noting that some of the  terminology   
used in tractography can be confusing. In tractog-
raphy, a fi bre, streamline or track is  not  synony-
mous with an actual nerve fi bre in the biological 
sense, and a fi bre tract is not synonymous with an 
anatomical fi bre bundle (even in the case of fi bre 
bundles that include “tract” in their anatomical 
name, such as the corticospinal tract!). These 
concepts are explained in more detail in Chap. 
  11    . In this context, it is very important to under-
stand that the resulting fi bre tracts are virtual 

mathematical reconstructions that bear some 
resemblance to parts of axonal bundles. Therefore 
the thickness, length or number of these recon-
structed tracts cannot be  directly  related to the 
underlying microstructure or anatomy. 

 As tractography uses directional diffusion 
information to reconstruct connections in the 
brain, it is an elegant technique for obtaining dif-
fusion measures from specifi c white matter bun-
dles. One of the most useful and common 
applications of tractography is the noninvasive, 
virtual dissection of fi bre bundles in 3D, i.e., seg-
mentation. The  segmented tract   is equivalent to a 
3D ROI from which diffusion measures can be 
calculated. This obviates the need to delineate the 
bundle manually by using 2D ROIs on different 
slices or to apply segmentation methods to ana-
tomical MR images, which contain less specifi c 
white matter tract information. Typically, the 
average of the DTI measure, e.g., FA, is calcu-
lated from all voxels that are part of the delin-
eated tract. A less commonly used, but useful 
strategy is to also measure the value at predefi ned 
points or along the length of the bundle. Such 

  Fig. 8.8    A simplifi ed 
example or diffusion tensor 
tractography. Two voxels 
are selected in the brain 
( a ) and the relevant tensors 
in between the voxels are 
visualized ( b ). As these 
tensors are representations 
of the underlying white 
matter axonal bundles ( c ), 
they can be used to 
mathematically reconstruct 
virtual representations of 
these bundles ( d  and  e )
[Courtesy of A. Leemans]       
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tract profi les or distributions may reveal more 
localized differences that are lost when averaging 
over the length of the tract. Some people refer to 
this as “tractometry” [ 4 ]. 

 An example of a tractography analysis is 
shown in Fig.  8.9 . Starting from a sagittal color- 
encoded FA slice (Fig.  8.9a ), a region of interest 
is drawn as a seed region for tractography (Fig. 
 8.9b ). The resulting tracts, in this case a represen-
tation of the splenium of the  corpus callosum  , are 
shown in Fig.  8.9c . Diffusion measures can then 
be extracted from these tracts and compared 
across subject groups or correlated with clinical 
or neuropsychological scores.

    Region specifi c analysis   of DTI data using 
tractography has the following strengths and 
limitations:

  Strengths 
•   In comparison to whole  brain   tractography or 

histogram analyses, more regionally specifi c 
information is obtained.  

•   Tractography provides an intuitive way of 
reconstructing 3D virtual representations of 
white matter bundles in vivo using diffusion 
information.  

•   As typically only very few  ROIs   are necessary 
to calculate the tracts, it is in general more 
reproducible compared to ROI-based methods.   

  Limitations 
•   Requires a prior hypothesis about where dif-

ferences could be found as DTI measures 
will only be analyzed in the tracts that are 
reconstructed.  

•   Tract reconstructions depend on many 
parameters.  

•   Tractography results are often affected by the 
“crossing-fi bre” problem.  

•   In non-automated methods, the use of manu-
ally defi ned ROIs for tract selection means 
that tractography results are observer depen-
dent. Ideally, clear guidelines should be fol-
lowed regarding ROI placement.  

•   Noise and other artifacts affect tract  recon-
struction  , and therefore the selection of voxels 
that will be used in the analysis.  

•   The selection of many tracts increases the 
number of statistical tests that are performed 
and therefore correction for multiple compari-
sons is required.  

  Fig. 8.9    An example of a 
tractography analysis. A 
sagittal slice is selected ( a ) 
to draw a seed region for 
tractography ( b ). Diffusion 
measures can then be 
calculated from the 
resulting tracts ( c )       
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•   Pathology can affect the tractography result, 
again potentially creating a bias.  

•   There is no ground truth to validate tractogra-
phy results.    

 Note that region-specifi c analyses can also be 
performed using automated approaches and 
 templates/atlases. This will be discussed in the 
next section on voxel-based analysis.   

    Voxel-Based Analysis 

 One of the advantages of region-specifi c analyses 
compared to a whole- brain analysis   is that infor-
mation can be obtained from specifi c brain areas 
of interest. As such, the obtained DTI measures 
have the potential of being more sensitive (not 
averaged out over the whole brain) as well as spe-
cifi c (localized changes might be related to a cer-
tain pathology). Voxel-based analysis techniques 
take this idea further by evaluating and compar-
ing DTI measures at the smallest imaging scale 
possible, i.e., the individual voxel. At the same 
time, DTI measures are compared in all voxels, 
so this analysis method could also be regarded as 
a whole-brain analysis technique. 

 One of the main challenges of any group 
analysis, and particularly voxel-based analysis, 
is selecting spatially corresponding voxels 
across subjects to compare the DTI values. If 
this condition is not satisfi ed, it does not make 
sense to compare the voxel measures. The pro-
cess of aligning corresponding voxels in differ-
ent data sets is referred to as image registration, 
and is an important step in the voxel-based anal-
ysis pipeline. Between-subject image registra-
tion is especially challenging because the brains 
of different subjects can vary in size and shape at 
the global as well as local level. However, when 
correspondence between images can be achieved 
at the voxel level, voxel-based analysis is a pow-
erful tool to analyze DTI data. Since it is highly 
automated, there is no need for an a priori 
hypothesis about the location of anticipated 
changes, and the observer dependence of the 
results is minimized. 

 Typically, a voxel-based analysis  pipeline   
consists of the following steps:

    1.    Selection of the atlas/template space to which 
all data will be aligned   

   2.    Alignment of all data to this atlas using global 
and local registration methods   

   3.    Smoothing of the aligned data sets   
   4.    Statistical analysis in every voxel    

  For each of these steps, there are a  number   of 
choices to be made, both in terms of selecting the 
appropriate approach as well as choosing the 
 specifi c parameters that will be used. As it has 
been shown that voxel-based analysis results 
depend on these choices, every step of the pipe-
line should be considered with care and parame-
ter selections should be justifi ed. 

 An overview of VBA is provided in Fig.  8.10 . 
Voxel-based comparison of  FA   values is per-
formed for two groups of subjects, each consist-
ing of fi ve subjects. In Fig.  8.10c, d . Although 
these images are warped during spatial align-
ment, the registration process ensures that voxels 
in the spatially aligned images retain the same 
quantitative diffusion values as in the original 
data, thereby allowing statistical comparisons to 
be made. Depending on the type of VBA imple-
mentation used, the warped images may be 
smoothed, for example to increase signal-to- 
noise in the parameter maps (smoothing is dis-
cussed in detail in Chap.   10    ). A specifi c voxel 
with the same  x ,  y , and  z  coordinates in the atlas 
space is then selected across subjects and subject 
groups (as shown by the blue and green lines in 
Fig.  8.10c, d ). The FA values from the different 
subjects in that voxel can be visualized by a his-
togram (as shown in Fig.  8.10e ). FA values in 
that specifi c voxel can then be compared statisti-
cally between the groups. When statistical sig-
nifi cance is reached, the voxel can be given a 
colour, as shown in white in Fig.  8.10f ). This 
process of statistical testing of FA values between 
groups is repeated for every voxel, resulting in a 
VBA map that displays the voxels and regions in 
which a statistical difference is found between 
the groups.
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   As there are many thousands of voxels in a 
typical  DTI parameter image  , many thousands of 
statistical tests need to be performed in VBA, 
making it necessary to perform some sort of cor-
rection for multiple comparisons, to reduce the 
number of false positive fi ndings. The number of 
statistical tests can be reduced by limiting the 
analysis to, for example:

•    White matter  
•   Manually drawn regions in atlas space  
•   Specifi c regions, as derived from atlas 

parcellations  
•   Specifi c white matter tracts, by performing 

tractography in atlas space (tensor informa-
tion should then be available in the atlas)    

 These “hybrid” analysis  methods   combine the 
strengths of the different analysis techniques and 
try to avoid specifi c limitations of them. 

 Voxel-based analysis of DTI data has the fol-
lowing advantages and limitations:

   Advantages   
•   The data is analyzed at the smallest scale, i.e., 

at the voxel level.  
•   The whole brain is evaluated as all voxels are 

included in the analysis.  
•   No a priori hypothesis about the location of 

the expected differences is needed.  
•   The manual observer interaction and therefore 

the observer dependence of the results is 
minimized.   

  Fig. 8.10    An example of a voxel-based analysis of two 
groups of fi ve subjects. The original data sets ( a  and  b ) are 
transformed from their native space to the atlas space ( c  
and  d ). Within each voxel of the registered data sets the 
diffusion measures, such as the FA value, can be evaluated 

statistically ( e ). Statistically signifi cant voxels are then 
highlighted, for example by labeling with a specifi c color 
(here,  white ) or by coloring according to a test statistic. 
This provides a visual map of group differences ( f )       
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   Limitations   
•   Results depend on the parameters that are cho-

sen in the voxel-based analysis pipeline.  
•   As statistical analysis is performed in every 

voxel, there is a chance of false positive 
 fi ndings and multiple comparison correction 
should be applied.  

•   Diffusion measures are compared in every 
voxel, not in specifi c tracts.  

•   Results are only meaningful when accurate 
image registration can be achieved.  

•   Pathology and lesions can affect the results, 
especially when the location of the lesions is 
variable across subjects.      

    Choosing an  Optimal Analysis 
Approach      

 Unfortunately, there is no single DTI analysis 
approach that is optimal for evaluating diffusion 
MRI measures for all studies and purposes. As 
different analysis techniques each have their own 
strengths and weaknesses, and rely on various 
assumptions, choosing the most optimal analysis 
approach for a given purpose is an important step 
in the DTI pipeline. For example, Fig.  8.11  pro-
vides a summary of what can and cannot be done 
using different analysis approaches.

  Fig. 8.11    Capabilities and limitations of different analysis approaches       
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   In this section, a short and non-exhaustive 
overview of  factors and guidelines   is provided to 
help select the best analysis technique(s) for dif-
ferent applications. Ideally, these considerations 
should be made  before  acquiring the data. A 
much more detailed overview of factors that need 
to be considered when using DTI in clinical pop-
ulations can be found in Chap.   13    . It is important 
to stress that these guidelines are not prescriptive 
and the choice of which methodology to choose 
ultimately rests with the DTI user. The important 
point is that each choice should be appropriately 
reasoned and justifi ed.  

    Things to Consider before Starting 
DTI Data Analysis 

    Goal and Hypothesis 

 The choice of which DTI analysis technique to 
apply will depend on the  general goal  of using 
DTI, i.e. whether the data will be used for a group 
study in a research setting or for individual patient 
analysis in clinical practice. For example:

•    In research studies, typically, a longer DTI 
acquisition can be performed compared to the 
clinical routine, which can impact the selec-
tion of a DTI analysis approach. For example, 
some of the more advanced tractography tech-
niques (see Chaps.   11     and   20    ) require the 
acquisition of a large number of diffusion- 
weighted images acquired along different gra-
dient directions.  

•   Not all DTI analysis techniques can be easily 
applied in individual patients, e.g., voxel- 
based analyses.  

•   The use of DTI for an individual patient in 
clinical practice requires the use of CE/FDA 
approved software, thereby limiting the pos-
sible DTI analysis options.    

 The presence or absence of a  specifi c hypoth-
esis  about the nature and/or location of the 
expected diffusion changes can also infl uence the 
selection of an appropriate analysis technique.

•     Region-specifi c DTI analysis  methods can be 
used to evaluate the diffusion measures in areas 
where changes are expected. When differences 
are hypothesized to be present in specifi c 
white matter bundles, fi bre tractography can 
be used to reconstruct virtual approximations 
of these pathways. To evaluate the diffusion 
measures in lesions or specifi c parts of a white 
matter bundle, region of interest analysis can 
be applied.  

•     Voxel-based analysis    can be used for explor-
atory studies or if no clear hypothesis can be 
made about the location of the expected dif-
ferences in diffusion parameters. Recall that 
in a voxel-based analysis, it is assumed that 
the changes in the diffusion measures occur in 
similar regions of the brain in different 
patients. This is unlikely to be the case in 
many clinical populations, e.g., traumatic 
brain injury.  

•     Whole-brain analysis  methods   can be applied 
if more global diffusion changes are expected 
or if the location of diffusion changes is het-
erogeneous between patients.     

    The Study Population 

 With regard to the study population, the follow-
ing factors should be considered:

•      Population composition   : Can the patient group 
be regarded as one homogeneous group, or 
does it need to be subdivided into different 
subgroups? Is there a need for a matched 
healthy control group?  

•    Population size : How many subjects should be 
included in each group in order to be able to 
draw meaningful conclusions? This will depend 
on the magnitude of expected differences or 
changes in diffusion parameters. For example 
is the amount of change likely to be statistically 
or visually detectable given the unavoidable 
presence of noise or artifacts in the data?  

•     Population characteristics   : Different factors, 
such as age, gender, IQ, handedness, etc. may 
affect the diffusion measures. Different subject 
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groups should therefore be carefully matched 
with respect to these factors. For example, if 
children or elderly subjects are scanned, the 
choice of which DTI analysis technique to 
apply can be affected, because:
 –    The DTI acquisition time may be shorter 

and data quality may be affected by 
increased subject motion.  

 –   Of differential rates of brain structural change 
due to development or neuro degeneration.  

 –   Image registration of DTI data from chil-
dren or elderly to an adult atlas can 
 introduce errors, which will therefore 
impact analysis techniques that don’t make 
use of appropriate population atlases [ 5 ].     

•     Population pathology   : The presence and 
nature of brain lesions can complicate DTI 
analysis by distorting normal anatomy (see 
Fig.  8.6 ), and hindering image registration and 
tractography. The degree to which analysis 
will be affected or the affect on method selec-
tion will depend on:
 –    If the lesions are focal or diffuse  
 –   The size and location of the lesion/s  
 –   The number of lesions  
 –   Variability of location across patients 

 –  In addition to the presence of lesions, neuro-
degeneration can affect DTI analysis and 
interpretation, because of:  
 –   The increased presence of partial volume 

effects  
 –   The challenges associated with image reg-

istration to a healthy adult atlas        

    The Data Acquisition 

  Data quality and data analysis   are affected by the 
choice of  DTI acquisition  parameters such as the:

•    Number of diffusion directions  
•   Image resolution  
•    b -Value  
•   Number of  b -values  
•   Number of averages    

 For example, the tensor estimation, tractogra-
phy result and image registration result depend 

on the data quality, which depends on which DTI 
acquisition parameters are chosen. Some types of 
analysis techniques, such as tractography are 
indeed more suited to acquisition schemes with 
more gradient directions. In longitudinal or mul-
ticenter studies, the scanner performance and 
acquisition parameters should be monitored. 
A DTI hardware phantom is useful for quantify-
ing data quality over time and across centers.  

    The Resources 

 The following resources should be considered 
with regard to DTI analysis:

•     People : Which clinical and technical/software 
expertise is present or needed to perform the 
analysis and interpret the results?  

•    Time : How much scan time is available to 
obtain the DTI data? Is there time to evaluate 
different analysis approaches and compare 
the results, or perform labour-intensive anal-
ysis methods such as a region of interest 
analysis or non-automated fi bre-tracking? Is 
there time to run complex computational 
processes that may take hours or several 
days to complete, or are results required 
immediately?  

•     Software and hardware     for analysis : Will the 
data be processed on the scanner or off-line on 
a separate computer or server? Which soft-
ware will be used?  

•    Money : Is there money available to buy specifi c 
software packages or licenses, to acquire enough 
data sets, or to outsource part of the analysis?      

    Selecting an Optimal DTI Analysis 
Approach 

 When faced with so many  factors   to consider, it 
is easy to become overwhelmed with choices 
and lose sight of the reason for acquiring DTI 
data in the fi rst place. The decision scheme in 
Fig.  8.12  therefore aims to guide the DTI user in 
choosing which type of analysis technique to 
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use according to the initial goal of the DTI 
investigation.

   It is important to  stress   that this decision 
scheme does not provide a complete and compre-
hensive overview of all the relevant questions 
that could be asked when choosing a DTI analy-
sis method, nor does it provide formal solutions 
or strict answers. Figure  8.12  should be inter-
preted as an example of how knowledge about 
the different analysis options and their pitfalls 
can be incorporated into an informed decision 
process, which can assist in the selection of a spe-
cifi c analysis approach.  

    Selecting a Software Package 
to Analyze the Data 

 Many DTI  software packages   are available, all 
with different functionalities, ranging from data 
import, basic image viewing and processing, 
image quality correction, registration, automatic 
segmentation, and DTI tractography to higher 
order diffusion modeling and advanced tractogra-
phy. Most of the packages can perform the funda-
mental pre-processing needed for DTI analysis, 
such as tensor estimation, and visualization of 
scalar diffusion maps and glyphs. However, the 
specifi c approaches for preprocessing, e.g., the 
mathematical model for tensor estimation, and 
motion and artifact correction methods, can dif-
fer. In addition, there are a wide range of different 
options and approaches for tractography, which 
vary according to the algorithms used in the soft-
ware package and the parameters that can be cho-
sen to control them. 

 This inconsistency between different DTI 
analysis tools is further complicated by the use 
of different terminology for both the same and 
different operations across packages. It is 
(unfortunately) possible to perform (apparently) 
the same analysis using (apparently) the same 
parameters on the same dataset and obtain dif-
ferent results when using different packages [ 6 ], 
or even using different software versions of the 
same package. This is because of (sometimes 
subtle) differences in the way the software 

developers have integrated the continuously 
evolving theoretical methods that underlie DTI 
 data processing   into their applications, as well 
as the way their code interacts with different 
software programs and operating systems. Not 
only does this add to the challenges of interpret-
ing fi ndings, but means that it is extremely 
important to use the same package and software 
version for the analysis of all the datasets in the 
same study. This is particularly important in lon-
gitudinal investigations and may require analyz-
ing new data with older software, or preferably, 
all the data with the most up-to- date software 
version. 

 In this context, it is also important to become 
familiar with the different parameter settings and 
how changing them affects the fi nal results. 
Although most packages provide reasonable 
default settings, the most optimal results may 
require some empirical parameter adjustment. 
This is particularly relevant in VBA and 
tractography- based analysis, and indeed in any 
analysis employing image registration (including 
data correction strategies). Chapter   11     provides 
some compelling visual examples of how chang-
ing just a single parameter can drastically alter 
tractography results. 

 New DTI software packages and tools are 
continuously being released whilst older ones are 
being developed to incorporate new features, bug 
fi xes, and enhancements. For this reason, specifi c 
DTI software tools and their functionality are not 
listed in this chapter. Instead, we recommend 
consulting The Neuroimaging Informatics Tools 
and Resources Clearinghouse (  www.nitrc.org    ) 
and ‘I do Imaging’ (  www . idoimaging . com    ) web-
sites which list many of the latest noncommer-
cially developed DTI software. Details about 
proprietary DTI vendor software can be obtained 
from the respective MRI scanner manufacturer 
applications specialists. Further details about 
DTI analysis software can be found in Chap.   13    , 
including topics such as data storage, export/
import and fi le formats, version control, and 
licensing. Figure  8.13  provides a summary 
 checklist of considerations   related to choosing 
DTI analysis software.
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       Conclusion 

 In conclusion, the analysis of DTI data sets forms 
only one part of a DTI study. In each phase of a 
DTI investigation, choices and decisions have to 

be made. The most optimal analysis approach 
will therefore depend on the decisions made in 
earlier stages of the DTI pipeline. 

 There are many options available for analyz-
ing DTI data sets, ranging from whole brain to 
regional and voxel-based analysis. Knowing the 

  Fig. 8.13     Checklist of 
considerations   and features 
to DTI analysis software       
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advantages and pitfalls of each analysis tech-
nique can help with selecting the best strategy for 
a given application. 

 The following chapters in this section provide 
a more detailed overview of the most commonly 
used DTI analysis techniques.     
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     Appendix: Memory Game Solution 

 In Fig.  8.14 , the solution to the memory game in 
Fig.  8.2  is provided. Was it possible to match the 
pathologies with the FA maps?

  Fig. 8.14    Solution to the DTI  memory game         
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            Learning Points 

•     Different strategies to defi ne regions of inter-
est (ROI)  

•   Advantages and limitations of a ROI analysis  
•   Effects of ROI size, co-registration, and statis-

tical analysis methods on results     

    Introduction 

 The region of interest (ROI) analysis method is 
based on the delineation of predefi ned  a  reas of 
the image and is a commonly used method for 
quantitative analysis of diffusion tensor imaging 
data. A ROI is defi ned as a selected area of an 
image from which the individual or average pixel 
values are extracted for further analysis. The ROI 

commonly has to be manually drawn, but in 
some cases it can be obtained by (semi-)auto-
mated segmentation. The chosen region can be a 
geometrical shape (i.e., sphere, cube) or be 
defi ned by the shape of the anatomical structure 
of interest. The fi rst is faster but less precise, 
whereas the second option is more time consum-
ing but in general gives more accurate results, as 
will be discussed further on. 

 Overall the ROI analysis method is rela-
tively easy to use and is supported by most dif-
fusion tensor imaging data analysis software 
[ 1 ]. Its main benefi t is the high sensitivity to 
small changes of the parameters of interest [ 2 ]. 
Additionally the method requires only little 
technical know-how compared to other tech-
niques discussed later on in this and following 
chapters. However, it also has numerous draw-
backs. ROI analysis is very time consuming 
and a clear hypotheses about the location of 
pathology is needed. Therefore it does not 
allow for full brain coverage and requires at 
least a moderate knowledge of the anatomy. 
Furthermore, even with expert knowledge of 
the anatomy and precise ROI defi nition the 
technique is very susceptible to inter- and intra-
user variability. 

 This section covers the basis of ROI analysis, 
when to use and more importantly when not to 
use the technique. When applying ROI analysis a 
clear hypotheses is needed and the ROIs have to 
be accurately defi ned. Important considerations 

mailto:m.froeling@umcutrecht.nl
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that will be discussed are the effect of the  position 
and size  , ROI normalization, image registration, 
and statistical analysis.  

    When to Use ROI Analysis 

 Because of its good sensitivity, ROI analysis is 
best performed when a clear hypothesis is pres-
ent about the expected differences in white 
matter in a well-defi ned region of the brain. As 
stated in the introduction, the region can be 
defi ned by anatomical structure (e.g., corpus 
callosum, amygdala), pathology (stroke, lesion, 
tumor, etc.), geometry (sphere, cube, etc.) or 
input from another modality, e.g., fMRI. The 
ROI should not be too large in size, because of 
statistical reasons explained further on in this 
chapter. ROI analysis is especially useful in 
regions where there are lesions, e.g., tumors. In 
these cases tract based analysis (TBA) might 
be impossible due to the lack of normal fi ber 
pathways. Furthermore, registration of a brain 
with lesions to a standard brain atlas may be 
diffi cult or fl awed due to deviations from the 
normal anatomy.  

    When Not to Use ROI Analysis 

 ROI analysis can clearly not been used if there is 
no hypothesis about the location of the effects in 
the brain. If structural data are absent or of poor 
quality, other  metho  ds such as extraction of diffu-
sion metrics from fi ber bundles, histogram analy-
sis [ 3 ,  4 ], voxel-based analysis [ 5 ], or TBSS [ 6 ] 
might be better suited, as will be discussed in the 
next chapters.  

    Well-Defi ned Regions 

 To defi ne a ROI usually the region is drawn by 
hand on a structural MRI image (T1/T2 
weighted). To the investigator (“anatomist”) it 
should be clear what the borders of the regions 
are and to what extent it should be included. For 
example, the  corpus callosum   could be outlined 

on a mid-sagittal slice and extended 2–3 slices 
laterally in both directions. 

 ROIs can also be defi ned on FA or ADC 
images, especially when white matter structures 
are being investigated, where contrast is minimal 
on a T1- or T2-weighted image. In this approach 
care must be taken not to fall into the trap of cir-
cular reasoning, because drawing of the ROI is 
not independent of the studied data. This 
approach can also be taken when investigating 
pathologies on ipsi- and contralateral sides of the 
brain as is shown in the next paragraph. 

 Some pathologies, stroke for instance, are 
clearly visible on a trace or ADC map, but not on 
other modalities, as is shown in Fig.  9.1 . In this 
case the trace or  ADC   map is the obvious choice 
for ROI defi nition. By mirroring the ROI to the 
contralateral side of the brain, DW metrics can be 
studied in both affected and healthy tissue.

   When the researcher is interested in a sub-part 
of a certain structure and wants to have control 
over the size of the ROI, a geometrical ROI (cir-
cle/sphere, square/cube, etc.) could be used. The 
ROI is then placed in the center of the structure 
and has the same size in each subject, in contrast 

  Fig. 9.1    Multimodality data from a stroke patient, 7 h 
since last seen normal (LSN). Note the difference in con-
trast between different modalities. In this case, the DWI 
and ADC maps provide excellent contrast for ROI defi ni-
tion of the stroke area: hyperintense on DWI, hypointense 
on ADC.  DWI  diffusion-weighted image,  ADC  apparent 
diffusion coeffi cient,  T2WI  T2-weighted image,  CBF  cere-
bral blood fl ow,  CBV  cerebral blood volume,  MTT  mean 
transit time,  Tmax  time to max in perfusion [adapted from 
Wu et al. [ 7 ]. With permission from Wolters Kluwer Health]       
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to manual ROI delineation where ROI size is dif-
ferent for each subject. 

 The sites of activation of a BOLD fMRI 
study can also serve as a ROI, for example to 
start tractography, and it may lead to a very-well-
localized ROI in each subject. Because the main 
signal is in the gray matter, it may be necessary 
to dilate the ROI into the white matter [ 8 – 10 ].  

    Atlas-Based ROIs 

 There are multiple predefi ned atlases of white 
matter available, and these may serve as good 
starting points for ROI analysis. Well-known 
atlases are the  JHU atlas   [ 11 ] and the probabilis-
tic Juelich atlas [ 12 ]. Data from multiple subjects 
is used to create a 3-D overview of well-defi ned 
brain regions. A key advantage of using an atlas 
is that it is created in a standard space (i.e., MNI, 
Talaraich), which makes it easy to compare 
between subjects or studies. A common approach 
is therefore to register the subject’s data to the 
atlas data, or vice versa. When using atlases, care 
must be taken to check overlap of the regions 

with the data under study, as misalignment may 
obscure region location. Once the data is correctly 
aligned, diffusion measures such as FA or ADC 
can be easily extracted from predefi ned regions 
such as corpus callosum, fornix etc.  

    ROI Defi nition 

 While relatively easy to implement, there are 
some important things to keep in mind when per-
forming ROI analysis. As mentioned before, a 
ROI can be best defi ned on high quality T1 or T2 
weighted anatomical reference images. This is to 
avoid bias of defi ning the ROI on the parameter 
map of interest, which may infl uence the posi-
tion and boundaries or the ROI. However, when 
choosing this approach one has to take great care 
that the ROI position on the reference images 
and the parameter map of interest are aligned as 
illustrated in Fig.  9.2 . In this fi gure the contour 
of the brain derived from the reference scan is 
overlaid on the diffusion weighted images and 
the  FA map  . Both images were acquired during 
the same scanning session, which should assure 

   Fig. 9.2     Examples of misalignment between different 
image types.  Panels  ( a ) and ( e ) show high-resolution 
T2-weighted images with the contour of the brain outlined 

in   red .  This contour is overlaid on the corresponding un- 
weighted ( b  = 0, ( b)  and ( f )) and diffusion weighted 
( b  = 1000 s/mm 2 , ( c ) and ( g )) images and the FA map ( d  and  h )       
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a good alignment. At fi rst sight, the un-weighted 
and the diffusion-weighted images seem to 
match well with the reference image. However, 
closer examination clearly shows misalignment. 
This same misalignment may not be so apparent 
when just looking at the corresponding FA map 
(see Fig.  9.2d, h ).

   The origin of the discrepancy between the dif-
ferent images can have multiple reasons but can 
have a great effect on parameter quantifi cation 
and fi ber tractography [ 13 ]. One common reason 
for misalignment is that the  diffusion images   are 
usually acquired with a single-shot EPI readout, 
which commonly has nonrigid geometric distor-
tions due to its sensitivity to susceptibility arti-
facts (see Chap.   6    ). Furthermore, there can be 
patient motion in between acquisition of the ref-
erence image and diffusion data within the same 
scan protocol. This motion causes rigid misalign-
ment of the images  

    Effect of Motion and Size 

 Although the distortions and offset might seem 
negligible, one has to realize that only a small 
misalignment can have serious impact on the 
parameter estimation. To illustrate this point, two 

regions of interest in the corpus callosum were 
defi ned. Both the regions were based on the ana-
tomical reference image as well as the FA map 
(see Fig.  9.3 ). Furthermore, the size of the two 
different ROIs was varied to illustrate the effect 
of partial volume effects and user bias in defi ning 
the regions of interest. The results for the average 
 FA and MD value  s from these different ROIs are 
given in Table  9.1 . The variation of the parame-
ters clearly emphasizes the sensitivity of the 
technique to ROI defi nition and positioning [ 14 ]. 
Small ROIs will typically be more sensitive to 
erroneous voxels within the ROI. Increasing the 
ROI size will generally decrease the sensitivity to 
these errors, but will increase contamination by 
other structures, also known as  partial volume 
effects  , decreasing the sensitivity [ 15 ].

    This implies that the defi nition of the ROIs 
should be done with great care and accuracy. 
Although the positioning of circles or rectangles 
is fast and easy it is generally better to accurately 
outline the ROI according to the shape of the 
structure. The latter is more time consuming but 
can greatly help minimize the inclusion of other 
structures [ 16 ]. Another way to exclude different 
types of tissue is to exclude pixels based on diffu-
sion parameters. For example one can exclude 
cerebrospinal fl uid by excluding pixels with high 

  Fig. 9.3    Two examples of a rectangular ROI selecting the 
frontal and middle part of the corpus callosum. For each 
region one ROI was drawn based on the high-resolution 
reference scan ( red ) and one ROI was drawn based on the 

FA map ( blue ). The selections are shown on the 
T2-weighted anatomical image ( a  and  e ), the un-weighted 
diffusion image ( b  and  f ), the FA map ( c  and  g ), and the 
MD map ( d  and  h )       
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MD and low FA. However, with this method it is 
also possible to exclude the tissue of interest with 
pathology and thus affected parameters.  

    Registration 

 There are multiple strategies to correct for the 
distortions of the EPI images, e.g., B0 fi eld map-
ping [ 17 ,  18 ], point spread function mapping 
[ 19 ,  20 ], or reversed gradient acquisition [ 21 , 
 22 ]. However, these correction methods demand 
an extra data acquisition prolonging scan time. 

Another commonly available method is image 
registration (see Chap.   10    ). This technique is 
widely available in data processing software [ 1 ]. 
Figure  9.4  shows an example of nonrigid regis-
tration to correct for the misalignment between 
the diffusion tensor  imaging   data and the corre-
sponding anatomical reference data. In panel A 
and B one can clearly see the misalignment 
between the corpus callosum, shown in red on the 
color-coded FA map, and the lateral ventricles, 
shown in white on the anatomical reference 
image. After nonrigid registration using 
 ExploreDTI  [ 23 ] one can appreciate the correct 
alignment of these structures as shown in panel C 

   Table 9.1    Average values for two part of the corpus callosum for different sizes of manually drawn rectangular regions 
of interest. The ROIs were drawn both on the anatomical reference images and the FA maps   

 Anatomy  FA map 

 Size (pixels)  FA  MD (×10 −3  mm 2 /s)  FA  MD (×10 −3  mm 2 /s) 

 Front  3 × 5  0.71 ± 0.20  0.82 ± 0.44  0.81 ± 0.11  0.77 ± 0.17 

 5 × 7  0.59 ± 0.33  1.19 ± 0.82  0.77 ± 0.20  0.85 ± 0.49 

 7 × 9  0.52 ± 0.35  1.34 ± 0.87  0.63 ± 0.28  0.96 ± 0.58 

 Mid  7 × 7  0.75 ± 0.13  0.79 ± 0.11  0.80 ± 0.10  0.76 ± 0.13 

 9 × 9  0.75 ± 0.16  0.80 ± 0.17  0.75 ± 0.16  0.85 ± 0.32 

 11 × 11  0.75 ± 0.19  0.81 ± 0.23  0.71 ± 0.22  0.93 ± 0.47 

  Fig. 9.4    Color coded FA 
maps overlaid on high 
resolution anatomical 
images to illustrate the 
result of non-rigid 
registration for EPI 
distortion correction. The 
images on the  left  ( a  and  b ) 
show the uncorrected data, 
whereas the images on the 
 right  ( c  and  d ) show the 
corrected data. The  white 
arrows  indicate locations 
where the correction of the 
misalignment is clearly 
visible       
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and D. The effect of registration on parameters 
estimated from ROIs drawn on the anatomical 
image are shown in Table  9.2 . The ROIs were 
drawn in the regions indicated by the white 
arrows. In this example the FA increases and MD 
decreases after registration. For all parameters 
the standard deviation decreased.

        Spatial Normalization 

  Spatial normalization      is the process of bringing 
the study data into a common stereotaxic space. 
It is a crucial step for group analysis of MRI data 
and it allows for use of a standard 3D coordinate 
space for analysis and reporting of neuroimaging 
data [ 24 ]. It consists of mapping the individual 
subject data to a template, for instance to the 
well-known Talairach brain [ 25 ] or the MNI tem-
plate [ 26 ]. Once the data is in common space, 
ROIs can be easily compared and checked for 
accuracy in size and location. An example is 
shown in Fig.  9.5 . It is recommended not to trans-
fer tensor data into a common space, because 
interpolation of tensor data is not straightforward 
and data will be corrupted [ 28 ]. Consequently, 
one should only use scalar maps (FA, ADC, etc.) 
for conversion into a standard space.

       Statistical Analysis 

 The choice of which statistical method to use 
depends on the hypotheses and experimental set 
up [ 29 ]. When there is a clear hypothesis and a 
 corr  esponding well-defi ned anatomical region, 
the ROI analysis can be very sensitive. However, 

when the hypothesis is less strong and multiple 
regions are investigated, a correction for multiple 
comparisons should be carried out to reduce false 
positives [ 30 ]. More specifi cally, when there is 
no effect of the null hypothesis, and a  p -value of 
0.05 is used, 5 out of each of 100 comparisons 
will falsely reject the null hypothesis (known as 
alpha error or type 1 error). There are numerous 
possibilities to correct for the multiple compari-
son problem. One of the most commonly used 
but also the most conservative is the Bonferroni 
correction, which treats each comparison as an 
independent experiment. This implies that the 
 p -value at which the null hypothesis is rejected 
has to be divided by the number of comparisons. 
So for ten different ROIs the  p -value will be 
0.005 instead of 0.05, i.e., 0.05/10. The  p -value 
becomes even lower when multiple parameters 
are compared. If FA and MD are evaluated in 
these ten regions, the Bonferroni threshold of sig-
nifi cance will even decrease to 0.0025, i.e., 
0.05/20. 

 As stated before, ROI analysis is highly user 
dependent as variability in ROI placement is eas-
ily introduced by different observers. Secondly, 
variability might be introduced when multiple 
datasets from the same subject are analyzed by a 
single observer at different time points. It is 
therefore good practice to calculate inter- and 
intra-observer agreement (for instance, using the 
 κ -statistic) [ 31 ]. Agreement can be calculated on 
the basis of extracted DTI metrics (FA, ADC) but 
also, as percent overlap, on the actual ROI coor-
dinates. The demonstrated overlap in Fig.  9.5  for 
multiple subjects should then be replaced by the 
inter- or intra-observer overlap.  

   Table 9.2    Average values for two part of the corpus callosum based on three manually drawn regions of interest in the 
corpus callosum based on T1 images before and after registration   

 Normal  Corrected 

 FA  MD (×10 −3  mm 2 /s)  FA  MD (×10 −3  mm 2 /s) 

 ROI1  0.70 ± 0.20  0.82 ± 0.33  0.76 ± 0.14  0.77 ± 0.14 

 ROI2  0.70 ± 0.18  0.81 ± 0.24  0.78 ± 0.12  0.76 ± 0.14 

 ROI3  0.67 ± 0.23  0.95 ± 0.38  0.70 ± 0.20  0.95 ± 0.34 
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    Summary: The Pros and Cons of ROI 
Analysis 

 In conclusion, ROI analysis is a simple and effec-
tive means to investigate white matter changes in 
small, well defi ned regions on good quality data. 
However, the technique is prone to error and not 
suitable for the investigation of structures with 
complex boundaries or poorly defi ned changes in 
white matter microstructure. This particularly 

applies for areas of compromised data quality. 
The delineation of ROIs can be very time con-
suming and both intra and inter-rater measures 
are poorly reproducible which impacts on both 
cross-sectional and longitudinal studies [ 32 – 34 ]. 
Furthermore, ROI  placement   without any prior 
knowledge can lead to inaccurate ROI segmenta-
tion which will result in different degrees of par-
tial voluming. Therefore ROI analysis is highly 
user dependent and reliability measures need to 
be calculated to assess the quality of the results.     

  Fig. 9.5    An example of ROI overlap in ten healthy con-
trols ( top rows  in each  panel   a – c ) and patient ( bottom 
rows ). The ROIs were drawn in native space fi rst, and then 

mapped into Talairach space and combined to form proba-
bilistic maps of ROI overlap [adapted from Tamietto et al. 
[ 27 ]. With permission from Elsevier]       
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            Learning Points 

•     VBA is a technique that evaluates local voxel- 
wise differences across the whole brain based on 
a multistep pipeline, which includes spatial nor-
malization (or image registration) to a template 
or atlas, smoothing, and statistical analysis.  

•   VBA is most useful for investigating group 
differences in DTI measures in an exploratory 
manner, without the need for specifi c a priori 
hypotheses about the location of potential 
alterations in DTI measures.  

•   VBA assumes that the spatial location of vox-
els is equivalent between subjects and is 
therefore fundamentally dependent on image 
registration to correct the inherent mismatch 

between individual images due to anatomical 
variation and pathology.  

•   Tract-based spatial statistics (TBSS) is a popu-
lar type of VBA that evaluates changes in a 
skeleton comprising a limited amount of white 
matter, in order to increase sensitivity by reduc-
ing registration error and partial volume effects.     

    An Introduction to Voxel-Based 
Analysis 

 Voxel-based analysis (VBA) of diffusion tensor 
imaging (DTI) data is an exploratory technique 
to evaluate differences/changes of diffusion 
metrics in every voxel of a brain data set. In 
essence, VBA investigates DTI  m  easures at the 
smallest scale possible, i.e., the voxel level, and 
as these measures are compared in every voxel, 
VBA also simultaneously evaluates the data at 
the largest scale, i.e., the whole brain. As a 
result, unlike with region-of-interest (ROI) anal-
ysis, VBA does not require an “a priori” hypoth-
esis about precisely where in the brain 
differences may be found. This makes it an 
interesting analysis approach when there is a 
clear hypothesis that there are potential differ-
ences in DTI parameters somewhere in the 
brain, but the location of such differences is not 
known in advance. Although VBA indeed has 
many advantages compared to standard ROI or 
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tractography-based approaches, it also has many 
limitations, which one should be aware of before 
embarking on any VBA study. 

 The aim of this chapter is to provide the reader 
with an overview of the different processing steps 
that need to be performed for a voxel-based analy-
sis of DTI data, whilst emphasizing potential 
sources of error or specifi c challenges associated 
with each step. Along the way we will address 
common questions posed by those wishing to start 
their fi rst DTI VBA, for example: When is VBA a 
good option for the analysis of your data? What 
assumptions underlie the method? What are the 
potential pitfalls in each processing step? Why is 
image registration and template selection so impor-
tant? What is smoothing? What is multiple hypoth-
esis testing?, and do I  really  need to worry about it? 
(yes you  really  do!) What is the difference between 
VBA and tract-based spatial statistics (TBSS)? 
And how do I interpret the resulting fi ndings? 

 It is important to remember that the most opti-
mal results will only by obtained by considering 
the many possible options that are inherent in con-
ducting a VBA study of DTI data,  before you start 
the analysis . 

    Summary Points 

•     VBA is a technique that evaluates local voxel- 
wise differences across the whole brain.  

•   It is most useful for investigating group differ-
ences in DTI measures.  

•   It can be used in an exploratory manner, without 
the need for specifi c a priori hypotheses about 
the location of differences in DTI measures.      

    From Individual Data Sets to VBA 
Group Results: The Different Steps 

 As VBA compares diffusion metrics, such as 
 fractional anisotropy (FA)   or mean diffusivity 
(MD), between subjects at the voxel level, one of 
the main assumptions of VBA is that the DTI 
information located at a specifi c voxel is com-
pared equivalently in each individual. In other 
words, the anatomical location of a particular 
voxel should be the same for each subject. In 

general, the gross anatomy of the brain is very 
similar across the (healthy) population, and all 
brain regions are present in more or less the same 
spatial position across individuals. Nevertheless, 
as a result of natural anatomical variation, there 
remain clear differences in the size and shape of 
different brain regions (e.g., due to age, gender, 
or pathology). Therefore, if we attempt to com-
pare the same voxel in one person to the equiva-
lent location in another person without accounting 
for this normal variation, we will fail. And if we 
fail, we also violate one of the main assumptions 
of the VBA method. Luckily, we can try and 
overcome this problem. 

 The  image processing technique   that aims to 
correct for differences in brain structure by chang-
ing the size and shape of the brain image as well as 
its local structure is called   image registration   . The 
end result of the image registration step is thus a 
brain image that has been  warped  to match another 
image, and in which voxels with the same spatial 
coordinates represent the same voxel of the same 
brain structure of both images. If images cannot be 
aligned to each other well, it makes no sense com-
paring quantitative DTI values on a voxel level. 

 Now one may pose the question: to which 
image will we align all our data sets? This image 
to which all data sets are registered is called the 
atlas or template, and many strategies and options 
exist for this  template selection . 

 Once all data sets are located in the same atlas 
space,   smoothing       is typically applied, in order to 
increase the power of the statistical tests that are 
subsequently performed in each voxel. There are 
other reasons why you may wish to smooth the 
data and different choices have to be made 
regarding the type and extent of smoothing used. 
This will be discussed later in this section. 

   Statistical analysis    is then performed on 
these warped, smoothed images. The results of 
these statistical tests, with or without correction 
for multiple comparisons, are then displayed with 
a color on the different slices of the atlas image, 
thus providing a global view of where in the brain 
the DTI measures are statistically different 
between groups of subjects. 

 In the following sections we will dive a bit 
deeper into these different steps of the VBA pipe-
line and highlight some options and limitations. 
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  Fig. 10.1    Overview of different steps in the VBA pipeline of DTI data       
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 A theoretical example of the VBA  pipeline   is 
displayed in Fig.  10.1 . The DTI data of six sub-
jects, three in each group, are registered to a DTI 
atlas. Once all data sets are located in the same 
space, FA values can be compared between both 
groups in each voxel. Note that in this example, 
all data sets are perfectly aligned to the atlas, 
which is an important assumption, but also an 
ideal situation that is not realistic.

      Summary Points 

•     VBA assumes that the spatial location of vox-
els is equivalent between subjects,  

•   Natural variation in anatomy and pathology 
causes an inherent mismatch between indi-
vidual images that can be corrected by regis-
tration to a template,  

•   The VBA pipeline contains three main steps: 
spatial normalization (or image registration), 
smoothing, and statistical analysis.      

    Image Registration 

    Introduction 

 One of the main assumptions of VBA is that the 
same voxels in different images are aligned to 
each other. Only in this case, can DTI measures, 
such as FA or MD, be compared between the 
same voxels of different subjects. Note that the 
process of spatially matching different images is 
frequently described using different terms, such 
as normalization, warping, aligning, registration, 
coregistration, etc. But in the end, although these 
terms may differ slightly in their technical defi ni-
tion, essentially they refer to the same concept. 

 A simplifi ed example of the registration con-
cept is shown in Fig.  10.2 . The data set we want to 
register is shown on the top left of Fig.  10.2  and is 
also referred to as the  fl oat image , as this image 
will change during the registration process. On 
the top right of Fig.  10.2 , the   reference image   , 
usually the atlas, is displayed. This is our target 

  Fig. 10.2    The goal of 
image registration is to 
match a fl oat image to the 
same coordinate space as 
the reference image. This 
can be done by applying 
global warping together 
with local alignment of 
structures       
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image for registration, i.e., we want to warp the 
fl oat image so that it looks like the reference 
image. The result of the registration process is 
shown on the right bottom of Fig.  10.2 . This reg-
istered image is the original fl oat image, but 
warped into the space of the reference image. You 
can note two important characteristics of registra-
tion. First, you can see that the fl oat image is 
translated (i.e., shifted in position along the cardi-
nal axes, up/down, forward/back, and left/right) 
and rotated, but also that local structures of the 
fl oat image, such as the mouth in this case, are 
deformed to match the reference image. Second, 
you can note from this example that the fl oat 
image is spatially transformed, but that the col-
ors—in DTI these are the values of the metrics, 
such as FA or MD—are not changed after regis-
tration. Thus, the goal of image registration is to 
spatially warp images in a way that corresponding 
voxels are in the same location, without changing 
the original image values of these voxels [ 1 ].

   As the global as well as local morphology of 
the  brain   can signifi cantly vary between different 
subjects, image registration is a challenging task. 
In addition to natural inter-subject brain variabil-
ity, brain morphology can depend for example, on 
age, gender, and ethnicity. To make image regis-
tration even more challenging in the VBA setting, 
brain morphology can be signifi cantly altered by 
the pathologies in patients that are studied.  

    Image Registration Techniques 

 The goal of this section is to provide some  basi  c 
background knowledge of image registration. 
Image registration can be considered as an opti-
mization problem, for which the similarity 
between two or more images needs to be maxi-
mized iteratively [ 2 ]. The image registration 
problem can thus be subdivided into:

•    a method or algorithm used to fi nd a maximal 
similarity  

•   an approach to measure similarity between 
images    

 Image registration algorithms can be subdi-
vided into two broad categories:  global  and  local  
registration techniques.

•      Global     image registration techniques  apply 
the same deformation fi eld (the matrix of 
numbers that defi nes how much a point is 
shifted), which transforms one data set to 
another, to all voxels of that data set. This can 
be done by rotating and translating the data 
set, referred to as a  rigid - body   transformation. 
In addition, global shearing (“stretching”) and 
scaling parameters can be added, then result-
ing in an  affi ne  transformation.  

•    Local registration techniques  determine a 
 local deformation   fi eld for every voxel of the 
data set, in order to match every voxel with its 
corresponding voxel in the other data set.    

 A simplifi ed example is given in Fig.  10.3 , in 
which sagittal views of the brain, including the 
corpus callosum, are shown. In this example, the 
brain of subject X (shown in red) needs to be 
transformed to the template or atlas brain shown 
in blue. As a fi rst step, the whole brain data set of 
subject X can be rotated and translated globally, 
in order to increase the similarity with the tem-
plate brain. This registration technique, visual-
ized in Fig.  10.3  by the purple box, is referred to 
as a   rigid - body transformation   . Subsequently, 
the resulting brain image can be scaled and 
skewed globally. The combination of the  rigid- 
body transformation   with additional global scal-
ing and skewing is referred to as an   affi ne 
registration    (the purple and green boxes in Fig. 
 10.3 ). However, in order to obtain a better match 
of corresponding voxels in different data sets, 
local deformation fi elds need to be applied to the 
globally registered data set of subject X. This 
transformation is referred to as a  non-rigid   or 
non - affi ne registration  and aims at aligning cor-
responding voxels of different data sets.

   As aforementioned, an accurate image regis-
tration result is of paramount importance for a 
reliable VBA result. For example, if a non-affi ne 
registration would not be performed, the fi nal 
registration result of subject X to the template 
would include a mismatch around the corpus 
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 callosum in this example (see Fig.  10.4 ). Because 
similar registration errors would be present for 
the other subjects, it is clear that a voxel-wise 
comparison of DTI measures would lead to unre-
liable results. Indeed, the DTI measures in voxels 
of subject X are then compared with the same 
measures in non-corresponding voxels of subject 
Y, which might be more similar to the atlas or 
contain different registration errors.

   In order to optimize the image registration 
algorithms, appropriate  image similarity 
 measures   need to be defi ned. In the end, it will 
be this image similarity measure that will be opti-
mized to obtain the most optimal image align-
ment. Examples of similarity measures are the 
sum of  squared intensity differences (SSD),   cross 
correlation, and mutual information (MI). In the 
SSD approach, the intensity in corresponding 
voxels of two images is subtracted and the abso-
lute value of the result is squared. The SSD is 
then calculated as the sum of this squared differ-
ence over all voxels in the image. A schematic 
example is shown in Fig.  10.5 . The sagittal views 
of the affi ne registration result, which was shown 

in Fig.  10.4 , are visualized in grayscale intensi-
ties. On the top row, the image X that was regis-
tered to the template, the template image, and the 
overlay between both are displayed, showing 

  Fig. 10.4    Example of an affi ne registration result. 
Although both data sets are globally aligned, signifi cant 
local image registration errors can be seen in the region of 
the corpus callosum       

  Fig. 10.3    Overview of the 
combination of global and 
local image registration 
techniques. To transform 
the brain of subject X to 
the template brain, both 
global and local image 
registration techniques are 
necessary. The  purple box  
shows the rigid-body 
transformation, including 
global rotation and 
translation. In the  green 
box , global scaling and 
skewing are added to the 
transformation, referred to 
as the affi ne 
transformation. The use of 
local deformations, as 
shown in the  orange box  
and referred to as 
non-affi ne transformations, 
allows one to align both 
images on a local level       
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some misregistration of the corpus callosum. 
In the second row, the calculation of the SSD is 
schematically depicted, highlighting the mis-
match regions. If a perfect registration could be 
performed, the SSD measure would be zero, 
demonstrating optimal image similarity.

   The SSD is a simple approach to evaluate sim-
ilarity between images. More advanced methods 
that can take into account different intensity val-
ues of similar structures in different images, such 
as mutual information, generally produce better 
results. In addition, some specifi c image similar-
ity methods have been developed for DTI data, 
using information on tensors, statistical relation-
ships between measures, or anatomical informa-
tion. In contrast to typical grayscale MRI images, 
DTI data contain more information in each voxel; 
therefore similarity measures can be optimized to 
make use of this additional information [ 3 ,  4 ].  

    Summary Points 

•     To register two images you need (a) a model 
(global and/or local) to warp the fl oating 
image to the reference image, and (b) a way to 

measure how well both images are aligned, in 
order to fi nd an optimal registration.  

•   Rigid-body registration involves only transla-
tions and rotations, whilst affi ne registration 
also includes scaling and shearing.  

•   Examples of similarity measures include sum 
of squared intensity differences (SSD), cross 
correlation, and mutual information (MI).     

    Registration of DTI Data 

 The registration of  DTI data   is especially challeng-
ing. This is mainly caused by the fact that DTI 
data, unlike anatomical MRI or CT data, contain a 
tensor in each voxel, which also represents orien-
tational information. Taking this tensor informa-
tion into account can improve the registration 
result (an overview of DTI registration methods is 
provided in [ 5 ]). In the following paragraphs, we 
will describe several challenges in more detail. 

    DTI Registration Challenge 1: 
Reorientation 
 The tensor is directionally dependent and contains 
orientational information about the underlying 

  Fig. 10.5    An example of the sum of squared differences 
technique to measure image similarity. The intensities of 
the registered image and template are subtracted in every 

voxel and subsequently squared. Then, the total sum in 
every voxel is taken. When both images would be perfectly 
aligned, the sum of squared differences would be zero       

 

10 DTI Analysis Methods: Voxel-Based Analysis



190

white matter microstructure. When transforma-
tions are applied to align data sets, a correction 
(i.e., a tensor reorientation strategy) needs to be 
applied to ensure that the directional DTI informa-
tion is still accurate. 

 The need for  tensor reorientation   after image 
alignment of DTI data or during iterative regis-
tration processes is explained in Fig  10.6 . To sim-
plify things, the concept of reorientation is 
explained for only one white matter fi ber bundle, 

containing three voxels. Consider that in the orig-
inal DTI data set of subject X, this bundle runs 
vertically. The DWI image intensities of the three 
voxels in that bundle are high for the DWI that 
was acquired with a diffusion sensitized gradient 
perpendicular to the bundle, and low for the DWI 
acquired with a diffusion sensitized gradient par-
allel to the bundle. For simplicity, only two DWIs 
are considered here. The corresponding white 
matter bundle of the template image, however, 

  Fig. 10.6    Simplifi ed 
overview of the tensor 
reorientation problem in 
DTI. Tensors indeed need 
to be reoriented after image 
registration in order to be 
aligned with the underlying 
microstructure       
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contains some curvature. As a result, the DWI 
intensities for the different gradients are different 
in these voxels.

   It is now assumed that we can align both white 
matter bundles perfectly, i.e., the corresponding 
voxels of the white matter bundle are perfectly 
registered. The resulting deformation fi eld is then 
applied to the DWIs and the tensor is recalcu-
lated. Now, if we refer to Fig.  10.6  again, we see 
that the registration process changes the spatial 
location of voxels in order for them to match, but 
not their values or image intensity. However, if 
only the spatial location of the voxels is changed, 
and not their image intensities, the directional 
diffusion information, and therefore the tensor, 
are not changed compared to the information in 
native space. Indeed, as explained in Chaps.   4     
and   6    , the image intensities of the different DWIs 
and the values of the tensor are related to the ori-
entation of the white matter bundle. 

 As a result, the tensor information of the reg-
istered data set of subject X to template space 
thus no longer refl ects the underlying microstruc-
tural white matter information, as can be observed 
in Fig  10.6 . In order to correct for this, Alexander 
and Gee [ 4 ] proposed different methods, referred 
to as the “fi nite strain” and the “preservation of 
principle directions” approach. The fi nite strain 
method decomposes the transformation matrix in 
a deformation and a rotation component, where-
after only the latter is used to reorient the tensors. 
However, shearing, nonuniform scaling, and 
stretching factors affect the orientation as well. 
Together with the rotational component, they are 
taken into account in the preservation of principal 
direction strategy. 

 When a global, i.e., rigid-body or affi ne, regis-
tration method is applied, the same reorientation 
is applied to all voxels. However, in the case of 
non-rigid registrations, the local transformation 
matrix, which can be different for each voxel, is 
used to calculate local tensor reorientation. 

 It is important to note that tensor reorientation 
approaches do not affect the rotationally invariant 
quantitative DTI measures, such as the eigenval-
ues, the FA, or MD. As they are rotationally 
invariant, reorienting the tensor does not change 
their values. In a VBA analysis, it is therefore not 

necessary to reorient the tensors if only the rota-
tionally invariant, quantitative DTI information 
is used in the subsequent analysis.  

    DTI Registration Challenge 2: 
The Tensor Information 
 DTI image registration can be optimized by using 
information from other modalities, such as ana-
tomical MRI, or by incorporating scalar and  ten-
sor information  . Park et al. [ 6 ] compared the use 
of different input images on the overall registra-
tion result of DTI data. They evaluated registra-
tion results after using T2-weighted images, FA 
images, the difference of the fi rst and second ten-
sor eigenvalues, FA and the tensor trace, all three 
tensor eigenvalues, and fi nally the six indepen-
dent tensor components [ 6 ]. In this study, it was 
demonstrated that the use of the six independent 
tensor components as input channels performed 
most optimal in aligning the tract morphology 
and tensor orientation. This was further con-
fi rmed by other studies [ 7 ].  

    Scalar Anatomical MRI Information, 
Such as 3D T1-Weighted Images 
 Using  scalar anatomical MRI information   to 
determine the deformation fi eld between DTI 
data sets is similar to the approach used in func-
tional MRI analysis. First, the DTI data set is 
transformed to the 3D T1-weighted image of the 
same subject, using a rigid-body or affi ne trans-
formation. The DTI information used for this 
registration is normally the b0 or non-diffusion 
weighted image, as this image mostly resembles 
the anatomical image. Thereafter, the 3D 
T1-weighted image is aligned to a T1-weighted 
atlas, such as the Montreal Neurological Institute 
(MNI) template. The resulting deformation fi eld 
is then applied to the DWIs, which were trans-
formed into the space of the T1, or to the trans-
formed quantitative DTI maps directly. 

 The advantages of this approach are:

•    T1-weighted atlases can be used.  
•   Many open-source software packages support 

this type of algorithms, such as SPM (  www.
fi l.ion.ucl.ac.uk/spm    ), FSL (  www.fmrib.ox.
ac.uk/fsl    ), AFNI (afni.nimh.nih.gov/afni).    
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 However, using this approach is not optimal 
for DTI data, for several reasons:

•    The unique white matter DTI information is 
not used to guide the registration. The image 
intensity of white matter is uniform on 
T1-weighted images, which can result in mis-
matching of different fi ber bundles [ 6 ,  8 ].  

•   As DTI data sets are usually acquired using an 
EPI sequence, different artifacts are present 
compared to the T1 image. For example, geo-
metric distortions due to eddy currents and 
susceptibility. This results in misregistration 
between the b0 image and T1-weighted image.     

    Scalar DTI Information, Such as  FA or 
MD Maps   
 In this approach, the scalar DTI information, 
such as contained in FA or MD maps, is used as 
input information to guide the registration. As 
a result, no anatomical data sets are involved, 
and registration is directly performed based the 
DTI information. Compared to using anatomi-
cal information, this method has several 
advantages:

•    Some white matter information (as present in 
FA or MD maps) is used to increase the regis-
tration accuracy.  

•   The DTI information is directly aligned to an 
atlas and no anatomical MRI image is needed.    

 Although this will increase registration accu-
racy, this approach has some drawbacks:

•    FA and MD values do not always discriminate 
fi ber bundles that are located close to one 
another, potentially resulting in misregistra-
tion of these bundles.  

•   There needs to be an FA template to align the 
subject data to.     

     Diffusion Tensor Information   
 Many approaches have been proposed that 
incorporate the specifi c DTI information into the 

registration process in order to increase registra-
tion quality. For example:

•    By including several channels of scalar image 
information. Guimond et al. [ 9 ] and Park et al. 
[ 6 ] have used different channels of input infor-
mation, such as the T2-weighted image inten-
sity, fractional anisotropy, trace of tensor, and 
eigenvalues.  

•   By using the scalar information from the 
whole tensor to align two DTI data sets and 
detect correspondences between them [ 6 ,  7 , 
 10 – 13 ]. In addition to using the tensor ele-
ments, DTI feature vectors can be derived and 
used to drive the registration ([ 14 – 16 ]).  

•   By using DTI tractography or other connectivity 
information to guide image alignment [ 17 – 20 ].    

 It has been demonstrated that the use of DTI- 
specifi c information with multiple channels results 
in more accurate registration of DTI data. As an 
accurate image alignment is one of the most impor-
tant assumptions in VBA, including DTI informa-
tion during the registration will increase the 
reliability of the VBA results [ 6 ,  7 ]. However, some 
drawbacks of this approach should be mentioned:

•    As this approach is more complex compared 
to the scalar registration methods, computa-
tion time is increased.  

•   There is a need for tensor information in atlas 
space, as this tensor information is needed to 
drive the registration.      

    Summary Points 

•     In order to achieve successful DTI registra-
tion, the orientational dependence of the diffu-
sion data needs to be accounted for, i.e., any 
rotation of the DWIs should be corrected for, 
e.g., by using tensor reorientation during 
affi ne registration.  

•   Registration can be improved by incorporat-
ing diffusion information, such as scalar DTI 
measures (e.g., FA/MD), tensor information, 
or a combination of different data types.     
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    Atlas or Template 

 The atlas or template is the reference frame to 
which all data are registered and which is used to 
report the results. It has been demonstrated that 
the choice of this atlas or template can affect the 
VBA results [ 21 – 23 ]. As a result, the atlas selec-
tion is an important step in the VBA processing 
pipeline for DTI data. An overview of possible 
DTI atlas selection approaches is provided in 
Zhang and Arfanakis [ 23 ]. 

 DTI  templates   can be subdivided into two 
broad categories:

•    a standard template,  
•   a population-/study-specifi c template    

 A population- or study-specifi c template is 
usually constructed based on the data sets that are 
analyzed. As a result, in theory, this atlas is the 
best representation of these data sets, and should 
thus result in minimizing the registration errors. 
A standard template, on the other hand, is an atlas 
that was created from a group of healthy subjects 
and is independent from the subject data sets that 
need analyzing. However, these atlases usually 
contain anatomical labels and predefi ned region 
of interests, which might be of interest for the 
study. So, again, there is no single correct 
approach of selecting an optimal template for 
your study. The optimal choice will depend on 
your study and data (i.e., goals, hypothesis, 
patient population, data quality). In the following 
paragraphs, a more detailed description of the 
template selection choice is provided, including 
some advantages and limitations of the different 
approaches. 

    Standard Template 
  Standard templates   are typically constructed by 
averaging data from a group of healthy subjects 
that have been registered to a stereotaxic atlas. 
For example, anatomical T1-weighted templates 
were constructed by the Montreal Neurological 
Institute (MNI) and the International Consortium 
of Brain Mapping (ICBM) [ 24 – 26 ], and are 
widely used in functional MRI research. Mori 
et al. created the fi rst standard DTI atlas in the 

ICBM space, containing fi ber orientation maps 
and white matter parcellation maps [ 27 ]. Peng 
et al. [ 28 ] and Zhang et al. [ 21 ] created a DTI 
atlas in the ICBM-152 space by registering high 
quality DTI data sets of 67 healthy subjects using 
a non-affi ne registration procedure. 

 One of the main   advantages    of using standard 
templates is that they provide the possibility to 
make use of predefi ned anatomical regions for 
subsequent region-of-interest analysis in atlas 
space. Furthermore, as the standard templates are 
widely used, results, and coordinates of signifi -
cant fi ndings in particular, can be easily com-
pared across studies. 

 However, there are some  drawbacks  when 
using a standard template. First, as most standard 
templates are created from healthy subject data, 
they do not necessarily represent an average brain 
of the subjects of your study, especially when 
pathology is present in some subjects. A simpli-
fi ed example is given in Fig.  10.7 . Assume again 
that DTI measures are compared between healthy 
subjects and patients with Alzheimer’s disease. 
Although some atrophy can be present in the 
 healthy control group  , it will be more severe in 
the Alzheimer’s group. As a result, when all data 
is transformed to a standard atlas of a healthy 
brain, the registration result will be much better 
for the healthy subject data compared to the 
Alzheimer subject data. This is especially notable 
at borders with CSF (shown in black in Fig. 
 10.7 ), where the groups will not be matched cor-
rectly. Not only will there be registration errors 
(something we don’t want in VBA), there is also 
a bias towards a certain subject group. As a result, 
this will create false positive fi ndings, caused by 
more signifi cant misregistration in one of the 
subject groups in specifi c brain regions.

   Another limitation of some standard templates 
is that the diffusion tensor information is not 
always present, hence limiting the information 
that can be used to drive the registration process 
to this atlas.  

    Population-Specifi c Atlas 
 The general idea of population- or  study-specifi c 
atlases   is to use the data sets that are studied to 
determine an atlas space, to which all data sub-
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sequently are registered. The simplest way to 
construct a study-specifi c atlas is to select  one 
DTI data set  from the study population as the 
template. This subject can be chosen randomly, 
based on visual inspection of all data or based on 
calculations that determine which subject is 
most representative for the population. In the lat-
ter case, all data sets are registered to each other 
and the deformation fi elds from one subject to 
all others are averaged. The subject with the 
smallest average deformation fi eld to all other 
subjects can then be regarded as the most repre-
sentative subject of the population under study. 

 The  advantage  of selecting an individual sub-
ject of the study as the template is that the data 
quality of the template image is similar to the 
data quality of all other subjects. In addition, ten-
sor information is present in this atlas and can 
therefore be used during the registration of all 
data sets to this atlas. However, this approach 
also has some  limitations . As discussed, select-
ing the most representative subject is not trivial. 
In addition, in the case of an individual subject 
atlas, there is information on predefi ned anatomi-
cal regions, as is the case in standard template 
spaces. Similar as with the standard templates, a 

  Fig. 10.7    A simplifi ed 
example of image 
registration of healthy 
subjects and subjects with 
enlarged ventricles to a 
healthy subject atlas. 
Registration errors can 
occur in the group with 
enlarged ventricles, thereby 
introducing a potential bias 
in the VBA results       
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bias can be introduced as the selected subject can 
be a patient or a control subject. 

 Instead of selecting an individual subject as 
the atlas space, population-specifi c atlases can be 
constructed based on the whole population that is 
studied [ 29 ,  30 ]. The resulting atlas should then 
be the best average representation of all the data 
that is being analyzed. Van Hecke et al. [ 22 ] dem-
onstrated that the accuracy of VBA results can be 
improved when using a population-specifi c atlas 
compared to the use of a standard template. 

 As mentioned, the main   advantage    of the 
population- or study-specifi c atlas is that it is the 
best representation possible of the data sets that 
are studied (when the appropriate approach and 
registration techniques are used). As a result, 
image registration accuracy will be maximized 
and unbiased to the subject group. By construct-
ing a study-specifi c atlas, registration errors to 
the atlas can still be present, but they will be 
unbiased towards the subject groups. Another 
advantage of a study-specifi c data set is that it can 
be made with all tensor information present. This 
provides the opportunity to use the tensor-based 
information during registration, again improving 
registration accuracy; or to perform tractography 
in the atlas space. 

 As with the individual subject atlas, an impor-
tant  limitation  of the population-specifi c atlas is 
that it does not contain anatomical labels and 
delineated regions, in contrast to the standard 
templates. In addition, as it is made from the data 
of a specifi c study, it is usually (though not neces-
sarily) constructed from fewer data sets com-
pared to the standard templates.   

    Summary Points 

•     In order to compare DTI values between 
groups, individual datasets need to be regis-
tered to a common template space or atlas  

•   Standard atlases are created from large num-
bers of subjects and are useful for reporting 
results in a commonly used and well-defi ned 
space. Standard atlases are less suitable for 
subjects with gross morphological differences 
to the standard template.  

•   A population-specifi c atlas is created only 
from subjects under investigation and is less 
subject to misregistration bias.     

     Smoothing   

    What Is Smoothing? 
 Smoothing involves blurring the data using a fi l-
ter, typically a Gaussian kernel. As a result, the 
image value in each voxel is recalculated, based 
on the weighted values of neighborhood voxels, 
as determined by the kernel. Typically, the size of 
this kernel is defi ned by the full width at half 
maximum ( FWHM  ).    The FWHM is an indication 
of the distribution of the kernel values, meaning 
that when the FWHM is 4 mm, the kernel is 
4 mm wide at 50 % of its peak value. Consider 
the example given in Fig.  10.8 .

   In Fig.  10.8a , an  axial FA slice   is shown that 
will be smoothed by a Gaussian kernel. As an 
example, we focus on a row of voxels, as shown 
in Fig.  10.8b . Note that in this example, we 
explain Gaussian smoothing in a single row of 
voxels in the  x  direction, whereas in practice the 
voxels in the  y  and  z  direction will also be taken 
into account. In Fig.  10.8b , the FA values of the 9 
voxels of interest are displayed. The FA value of 
the middle voxel is depicted in red, as the value 
of this voxel will be changed during the smooth-
ing in this example. Of course, in practice this 
process is repeated for all voxels. The Gaussian 
kernel that will be used for smoothing is shown 
in Fig.  10.8b . Note that the FWHM of this kernel 
is 6 mm, as we assume a voxel to have a width of 
2 mm. The FA values of the different voxels will 
be weighted, whereby the weighting factor is 
determined by the Gaussian kernel. The total sum 
of the weighting factors thereby equals 1. The 
resulting weighting factors for the different vox-
els for this  Gaussian kernel      are shown in Fig. 
 10.8c . Next, the FA value of every voxel is multi-
plied by the corresponding weighting factor (see 
Fig.  10.8d ), and the resulting sum of these values 
will be the FA value middle voxel in the smoothed 
image, in this case an FA of 0.664. As mentioned, 
this process is repeated for all voxels, thereby 
taking all neighboring voxels (in all dimensions) 
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into account. The resulting smoothed FA map is 
also shown in Fig.  10.8d .  

    Why Should You Smooth (and 
Why Not)?  
 In Fig.  10.8 , the process of smoothing was 
explained. In this simplifi ed example, an isotro-
pic Gaussian smoothing kernel was used. But 

why would you smooth your data? Why would 
you bother blurring images when you pushed 
your scanner and patients to the limits to acquire 
high resolution data sets? There are several rea-
sons why  DTI data sets   are smoothed before sta-
tistical testing in VBA:

•    It helps to accommodate for imperfect 
registration.  

•   It reduces the noise and increases SNR.  
•   It makes the data more normally distributed.    

 However, an obvious limitation of smoothing 
is that the resulting data is blurred. In addition, by 
smoothing the data, information of different 
white matter structures and tissue types (white 
matter vs. gray matter vs. CSF) will be averaged. 
Although it does make sense to integrate infor-
mation from different neighboring voxels of the 
same white matter structure, averaging informa-
tion from other structures or tissue types can 
introduce false positive as well as false negative 
results.  

    Determining the Smoothing 
Kernel Size 
 An important  parameter   related to smoothing is 
the smoothing kernel size. However, it is not 
straightforward to determine the optimal size of 
the smoothing kernel for a specifi c study. To 
complicate matters further, it has been demon-
strated that the choice of the kernel size can sig-
nifi cantly affect the VBA results [ 31 ,  32 ]. This 
stresses the importance of selecting the optimal 
kernel size, or at least having a clear argument for 
using a specifi c smoothing kernel width. 

 So, is there a way of determining an optimal 
smoothing kernel size? According to the matched 
fi lter theorem, the optimum smoothing kernel 
width should be similar to the expected extent of 
the signal difference, as the SNR then reaches its 
maximum [ 33 ]. In other words, for DTI, an “a 
priori” hypothesis is needed on the extent of 
change in the diffusion metrics that are expected. 
But this shifts the problem from not knowing 
how to choose the optimal kernel size to the prob-
lem of predicting the size of the hypothesized dif-
ferences. After all, one of the strengths of VBA is 

  Fig. 10.8    A simplifi ed example of the process of image 
smoothing in one dimension. An FA map ( a ) is smoothed 
by a Gaussian kernel with an FWHM of 6 mm ( b ). In ( c ) 
the different weighting factors are shown. Finally, the 
resulting FA value after smoothing is calculated ( d ) and 
the smoothed FA map is displayed       
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that it is an exploratory approach to search in the 
whole brain for unknown group differences. 

 Although similar problems exist with func-
tional MRI analysis, they may be more straight-
forward to address, as the expected differences 
relate to the extent of GM brain activity in fMRI 
and the size of anatomical structures in VBM.  

    Smoothing  in DTI   
 The problems related to smoothing DTI data are 
similar to problems in ROI analysis, as for both 
methods, the size of the expected differences 
should be known for an optimal result. However, 
in ROI analysis the location of the differences 
should also be known, which is not necessary for 
VBA, as all the voxels of the whole brain are 
evaluated simultaneously. On the other hand, 
smoothing of DTI data in VBA has some specifi c 
issues. These are related to the specifi c nature of 
DTI information, i.e., white matter tract informa-
tion. These white matter tracts are aligned along 
a specifi c orientation and can signifi cantly vary in 
size and width. Smoothing with isotropic 
Gaussian kernels will therefore introduce wide-
spread averaging of information across different 
white matter bundles and tissue types. This is not 
desirable, as we know for example that white 
matter degeneration is not present in CSF. An 
example of how different kernel sizes would 
average information from different structures is 
shown in Fig.  10.9 .

   Not only can an  isotropic Gaussian smoothing 
kernel   average out signals from different struc-
tures and/or tissue types, this effect will also 
depend on their location, as white matter tracts 
and brain structures vary in size, shape, and width 
across the brain. 

 To address these problems, anisotropic 
smoothing kernels were introduced in DTI-based 
VBA [ 32 ,  34 ]. In these methods, the smoothing 
kernel shape is not isotropic and can vary across 
the brain. For example, the kernel shape can be 
determined based on an FA map. At edges of the 
FA image, for example between the white matter 
structure and CSF, the smoothing kernel will 
stop, as shown in Fig.  10.10 . As a result, the 
chance of averaging signal in the white matter 

structure alone is increased. In addition, this 
approach can cope with the variations between 
shape, size and width of white matter tracts 
across the brain, as the shape of the smoothing 
kernel is locally adapted.

   However, signal can still be averaged between 
adjacent white matter structures. In addition, this 
still relies on a prior hypothesis of the size and 
shape of the expected differences in diffusion 
metrics between groups of subjects.   

    Summary Points 

•     Smoothing is typically performed after image 
registration to accommodate for imperfect 
registration, to reduce the noise and increase 
SNR, and to obtain more normally distributed 
data.  

  Fig. 10.9    An example of how voxel values from different 
structures and tissue types are taken into account during 
smoothing with an isotropic Gaussian smoothing kernel 
with different widths. In this example, the diameter of the 
 yellow circles  refl ects the FWHM of the Gaussian smooth-
ing kernels. As can be observed, different information is 
included during smoothing for different FWHM of the 
smoothing kernels       
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•   The FWHM refl ects the smoothing kernel size 
of the Gaussian kernel.  

•   VBA results can be affected by the smoothing 
that is performed and the FWHM of the 
smoothing kernel.  

•   Anisotropic smoothing methods were intro-
duced to average out information within white 
matter structures during smoothing.     

     Statistical Analysis   

 As with all VBA approaches, such as VBM and 
functional MRI, statistical comparison of DTI 
metrics is performed in every voxel. Although 
this is one of the strengths of the technique, i.e., 
an exploratory whole brain analysis at the small-
est scale, it also introduces a “multiple compari-
sons” problem. 

    The “Multiple Comparisons” Problem 
 When a statistical test is performed, a threshold—
for example  p  < 0.05—is used to assess whether 
the result is statistically signifi cant or not. However, 
for a threshold of 0.05, there is still 5 % chance that 
a type I error—i.e., a false positive result—occurs. 
Although this is reasonable for a single statistical 
test, it becomes problematic when thousands of 
statistical tests are performed, all with a 5 % chance 
of a type I error. This is known as the multiple 
comparisons problem. In order to reduce the type I 
error in VBA, some correction for multiple com-
parisons should be performed. When very strict 
corrections, such as the Bonferroni correction 
(dividing the statistical threshold by the number of 
statistical tests that are performed), are applied, 
typically no statistically signifi cant differences are 
found. However, there is a whole range of other 
less strict methods to correct for multiple compari-
sons, the most popular being the theory of Gaussian 
Random Fields [ 35 ], false discovery rate [ 36 ], and 
permutation-based approaches [ 37 ]. Unfortunately, 
there is no consensus on the most optimal tech-
nique to correct for multiple comparisons. 
Different techniques are used in literature, which 
makes it diffi cult to compare results, and in many 
studies no signifi cant fi ndings are reported after 
correction for multiple comparisons. For the latter 
reason, many studies report uncorrected values. It 
is therefore important to interpret the results of 
studies in the context of the statistical analysis and 
correction for multiple comparisons that was used. 

 There are several options to reduce the num-
ber of statistical tests that need to be performed in 
a VBA setting. For example, one can apply a 
white matter mask and only evaluate the voxels 
within this mask. In many studies this would 
make sense, as the quantitative DTI measures are 
best characterized in white matter and research-
ers are typically only interested in white matter 
when DTI is used. Other approaches can be even 
more limiting in the amount of voxels analyzed, 
by deriving masks in atlas space from:

•    Predefi ned anatomical labels  
•   Manually drawn regions of interest  
•   Tractography results in atlas space     

  Fig. 10.10    Example of an anisotropic smoothing kernel. 
As can be seen, the information that is included during 
smoothing is limited to the white matter structure that is 
delineated in  yellow . The FWHM of the smoothing kernel 
will affect the information included during smoothing, 
and thus the results, less       
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    Parametric or Nonparametric 
 Statistics  ? 
 Parametric statistical tests, such as the typically 
used  t -test or regression tests, require the residu-
als of the model to be normally distributed. 
However, Jones et al. demonstrated that this 
assumption only holds in around 60 % of the 
voxels [ 31 ]. Most of the voxels in which the 
residuals were not normally distributed were 
situated in the gray matter. When DTI metrics of 
smaller groups of subjects are compared, non-
parametric statistics, such as permutation or 
bootstrap based testing, should be strongly con-
sidered. Jones et al. [ 31 ] also demonstrated that 
Gaussian smoothing reduces the amount of vox-
els with non-normally distributed residuals, but 
the number of voxels with non-normally distrib-
uted residuals remained high.   

    Summary Points 

•     As statistical tests are performed in all voxels, 
false positive results can be reported. A cor-
rection for multiple comparisons should be 
performed to reduce the number of false posi-
tive fi ndings.  

•   Nonparametric statistical analysis should be 
considered, especially when the subjects 
groups that are studied are small.      

    To VBA or Not to VBA? 

    Pros and Cons 

 So, given all the aforementioned limitations, 
should we use VBA at all? The answer is not 
straightforward. VBA has many  advantages :

•    It is an exploratory technique.  
•   DTI metrics are evaluated in the whole brain 

and at the same time at the smallest scale with 
which one can obtain diffusion measures, i.e., 
the voxel level.  

•   It doesn’t need a lot of manual interaction, 
making it less observer dependent.    

 However, VBA also has some signifi cant 
 limitations :

•    Results are only relevant when perfect image 
registration is achieved.  

•   Results are less observer dependent, but are 
signifi cantly parameter dependent.    

 The latter point is very important. In every 
step of the VBA pipeline, choices have to be 
made, for example, regarding:

•    the registration technique and its parameter 
settings
 –    which affi ne technique?  
 –   which non-affi ne technique?  
 –   which information to drive the registration?  
 –   which similarity measure for registration?     

•   the atlas to use
 –    standard vs. population specifi c?     

•   the smoothing method and the kernel width
 –    anisotropic vs. isotropic smoothing?  
 –   kernel width?     

•   the statistical test and method to correct for 
multiple comparisons
 –    parametric vs. nonparametric tests?  
 –   correction for multiple comparison? Which 

method?       

 Note that this is a non-exhaustive list of exam-
ples, and at each level there are even more param-
eter settings to consider!  

    Why  Parameter Settings   Are 
Important? 

 The importance of the choices made at different 
steps of the VBA pipeline has been demonstrated 
by Jones et al. [ 38 ]. In this study, the same DTI 
data sets were sent to nine different research 
groups. Each of these groups performed a voxel- 
based analysis of the same DTI data set, using 
their own selected set of methods and parameters. 
The nine research groups reported different clus-
ters in various anatomical locations despite ana-
lyzing identical DTI datasets. This demonstrates 
the sensitivity of VBA to choices in the pipeline. 
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 Although most VBA studies follow the proto-
typical pipeline, i.e., image registration, smooth-
ing, and voxel-based statistical analysis, there is 
currently no standardization with regard to the 
methods and parameters that should be used. As 
a result, different VBA approaches and parameter 
settings are used in different studies. In light of 
the Jones et al. [ 38 ] study, comparison of results 
across studies is very diffi cult.  

    Tract-Based Spatial Statistics, 
an Alternative to VBA 

 With the goal of optimizing VBA for DTI data 
sets, tract-based spatial statistics (TBSS) was 
introduced by Smith et al. [ 39 ]. Although this 
approach can also be regarded as a voxel-based 
analysis, some modifi cations from the standard 
VBA pipeline were introduced in TBSS. The 
main difference between TBSS and standard 
VBA is the construction of “a skeleton.” First, all 
FA images are aligned to a template by using a 
non-affi ne transformation and are subsequently 
averaged to result in a group mean FA map. From 
this image, a skeleton is created by selecting the 
locally maximal FA values, which are assumed to 
form the center of the white matter tracts. TBSS 
then projects the FA values of each registered 
data set onto the skeleton. More specifi cally, the 
locally highest FA value perpendicular to the 
skeleton in each registered FA map is then pro-
jected onto the skeleton. The projection on the 
FA skeleton can, to a certain extent, compensate 
for potential registration errors. In addition, as 
statistical tests are performed on the skeleton, 
there is no need for smoothing and less statistical 
tests are performed compared to a standard VBA. 

 Although the skeleton projection step in TBSS 
can indeed correct for some local misregistration, 
it cannot compensate for larger registration errors 
that might occur. As the projection procedure 
must search locally for the highest FA value, in 
order to avoid fi nding spurious correspondences, 
it will not be able to correct for larger misregistra-
tions [ 40 ]. Indeed, the study of Zalesky and col-
leagues [ 40 ] used synthetic deformations of 
ground truth images to demonstrate that the skel-

eton projection only recovers less than 10 % of 
the registration errors. As an accurate image reg-
istration is as important in TBSS as in classical 
VBA, similar care must be taken with respect to 
the use of a non-affi ne registration method, tensor 
information during registration, and population- 
specifi c atlases in case subjects are studied with 
signifi cant pathology or atrophy. It was indeed 
demonstrated by Keihaninejad et al. [ 41 ] that the 
use of a population-specifi c atlas outperformed 
the standard template or individual subject tem-
plate in the study of Alzheimer’s disease. 

 Although TBSS is an elegant way of trying to 
overcome some of the drawbacks of VBA, as for 
all methods, there are some limitations, which 
should be taken into account when performing a 
TBSS analysis. For example, as only the local 
maximal FA values are projected on to the skele-
ton and therefore evaluated, an inherent assump-
tion is made that pathology will mainly affect the 
local maximal FA values, which is not necessar-
ily the case. TBSS is also more sensitive to 
changes in DTI measures in diagonally oriented 
tracts, as their skeleton contains more voxels than 
horizontal or vertical ones [ 42 ]. In addition, the 
presence of white matter lesions that reduce FA 
values will affect the results, as it is possible that 
some voxels that do not belong to the core of the 
tract have larger FA than those in the core because 
of the presence of the lesion [ 43 ]. Furthermore, 
by limiting the analysis to local FA maxima on 
the skeleton, which comprises a relatively small 
percentage of the total image, a lot of potentially 
valuable information is not used in the analysis. 
Sometimes this may not be apparent as some 
authors choose to display their fi ndings on an 
artifi cially thickened skeleton which appears to 
encompass more white matter voxels than were 
actually analyzed. This is typically done to 
emphasize fi ndings, but as with tractography 
visualizations, it can be misleading to those unfa-
miliar with the techniques (see Chap.   8    ). Finally, 
in regions of crossing fi bers, the FA skeleton can-
not be determined reliably as the FA in these 
regions is typically very low. With 60–90 % of 
white matter voxels containing multiple fi ber 
populations, this may complicate the interpreta-
tion of TBSS fi ndings signifi cantly [ 44 ].  
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    How Do TBSS and Classical VBA 
Approaches Compare? 

 Given the fact that TBSS and classical VBA 
approaches differ with regard to core aspects of 
voxel-based analysis, i.e., registration and 
smoothing, and given we know that parameter 
selection signifi cantly affects VBA results, it is 
worth exploring how TBSS results compare with 
those from classical VBA. Although most studies 
choose to apply one method or the other, a few 
studies have directly compared results of the typ-
ical VBA approach with those of TBSS when 
analyzing the same dataset. Sage et al. [ 8 ], for 
example, reported very similar results to TBSS 
when an optimized VBA (in terms of registration 
method and atlas building) was performed. It was 
also demonstrated that the VBA results were 
more reliable compared to the results of a non- 
optimized VBA. Preti et al. [ 45 ] compared TBSS 
results with an atlas-based approach to obtain 
DTI measures in specifi c tracts of healthy sub-
jects and subjects with mild cognitive impair-
ment and Alzheimer’s disease. They concluded 
that the comparison of the healthy subjects with 
the patients was similar for the atlas-based 
approach and TBSS, but that the atlas-based 
approach was more sensitive to detecting changes 
between patients with mild cognitive impairment 
and Alzheimer’s disease. 

 Schwarz et al. [ 46 ] evaluated the use of more 
advanced group-wise registration methods on the 
accuracy of VBA  and TBSS  . Using synthetic 
data sets as well as comparing healthy subject 
data with data from Alzheimer’s patients, they 
showed that the TBSS skeleton projection step 
 lowered  the overall accuracy of the results when 
the image registration was optimized. 

 In summary, both classical VBA and TBSS 
can be successfully applied to study voxel-wise 
differences in DTI parameters at a group level. 
Despite the widespread adoption of TBSS as a 
gold standard VBA approach, it is not without 
signifi cant shortcomings. There have been insuf-
fi cient studies that have compared the accuracy 
of TBSS results with classical VBA results on the 
same datasets to determine if one approach 
should be used in preference to the other. 

Regardless of which technique is applied how-
ever, the quality of the inter-subject registration is 
central to determining the sensitivity and accu-
racy of VBA results.  

    VBA in  Clinical Practice  ? 

 When applied responsibly, with due consider-
ation for its limitations, VBA can be a powerful 
tool to analyze DTI data from patient populations 
with neurological and psychiatric disorders. 
However, is it the most appropriate tool to use in 
clinical practice, when a DTI data set from an 
individual patient needs to be analyzed and inter-
preted? Although the most appropriate use of 
VBA is for group analysis, some authors have 
applied the technique to analyze individual 
patient data. For example, in traumatic brain 
injury patients, Lipton et al. [ 47 ] used the 
enhanced Z-score microstructural assessment of 
pathology (EZ-MAP) approach to evaluate 
regional FA abnormalities. In this VBA approach, 
a patient’s FA value is compared to the FA values 
of a normal reference group in every voxel. 
However, this requires a large reference group 
and the results can depend on this reference 
group. Kim et al. [ 48 ] suggested some improve-
ments to overcome these problems. Patel et al. 
[ 49 ] used VBA to detect FA changes in lesions 
and normal appearing white matter in individual 
MS patients. Although FA reductions were 
observed in many regions, the authors also 
reported abnormal FA values due to misregistra-
tion. Given its underlying assumptions and limi-
tations, we would not advocate the use of standard 
VBA (or TBSS) to analyze individual patient 
data at the present time.   

    Conclusion 

 The aim of this chapter was to introduce the VBA 
approach for DTI data, to elaborate on the differ-
ent steps involved, and to outline its advantages 
and limitations. Compared to a standard ROI or 
even tractography-based analysis, VBA is a more 
automated approach and therefore less observer 
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dependent. However, many choices have to be 
made in the VBA pipeline with regard to image 
registration, template selection, smoothing, and 
statistical analysis, which the fi nal VBA results 
will ultimately depend on. VBA should not be 
viewed as a generic DTI analysis technique that 
can be applied without any hypothesis. Whether 
or not VBA is a suitable way to analyze your data 
will depend on your specifi c study, the questions 
you hope to answer, on the number and type of 
patients that are studied, the type of DTI data 
acquisition and data quality, etc. Although VBA 
has been applied in many DTI studies, the lack of 
a standard approach means that it remains pri-
marily a research tool, rather than a technique 
that can be used clinically to assess individual 
patients.     
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            Learning Points 

•     Tractography does not represent individual 
axons but average trajectories of macroscopic 
white matter bundles.  

•   Different tractography methods are avail-
able, each with its own strengths and 
weaknesses.  

•   Prior knowledge on the trajectory of pathways 
is indispensable and is utilized by drawing 
seeding and masking ROIs.  

•   Data quality and tracking parameters highly 
infl uence the tracking results.  

•   Tracking of major pathways can be automated, 
but may require signifi cant processing time.  

•   DTI tractography may offer indirect mea-
surements of brain structural connectivity, 
but quantifi cation based on such metrics is 
challenging and requires cautious 
interpretation.     

    From Local to Global 

 One of the unique properties of  diffusion weighted 
MRI (DWMRI)   is its ability to measure the 
microscopic orientation of white matter tissue on 
a macroscopic scale. The axonal diameter is in the 
order of 1–10 μm [ 1 ]. A single voxel in a DWMRI 
scan of 2 × 2 × 2 mm 3  thus comprises a diffusion 
measurement on an ensemble in the order of 10 5  
axons.    The compactness and organization of 
white matter bundles enable the measurement of 
anisotropic diffusion on a macroscopic scale. This 
property of white matter organisation is exploited 
in   tractography   , or  fi bre tracking , which is a 
post-processing technique that is used to virtually 
dissect white matter fi bre bundles in vivo. 

 White matter bundles are macroscopic struc-
tures facilitating communication between brain 
regions over varying distances.   Association fi bres       
connect gyri within one hemisphere and can be 
both short and long [ 2 ]. Short association fi bres 
connecting adjacent gyri are termed U-fi bres. 
Connections between both hemispheres are 
called   commissural fi bres   . The largest commis-
sural fi bre bundle is the corpus callosum, which 
connects the hemispheres.   Projection fi bres       con-
nect the cortex of the cerebrum to lower brain 
parts, as well as the spinal cord. An example is 
the corticospinal tract, which is mainly associ-
ated with motor function. Its fi bres arise in the 
precentral gyrus (the primary motor cortex) and 
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travel through the brainstem and spinal cord, 
where they synapse and connect with peripheral 
nerves travelling to the limbs. 

 Detailed analysis of neuronal network archi-
tecture can only be performed ex vivo, e.g., by 
individual fl uorescent staining of axons [ 3 ]. 
Tractography aims to reconstruct white matter 
bundles traversing through multiple voxels, 
in vivo. Estimated fi bre tracts are, in contrast to 
microscopic staining,  in no way a direct 
 representation of single axons . They merely rep-
resent an integrative pathway of continuous 
smoothly curved diffusion orientation informa-
tion. Fortunately, validation in macaques has 
demonstrated good correspondence between 
tractography and histology in a number of white 
matter bundles [ 4 ]. Nevertheless, there are a 
number of caveats that leave a high chance of 
obtaining either false positive or false negative 
fi ndings, as will be shown in this chapter. Note, in 
this context “false positives” and “false  nega-
tives  ” represent incorrect estimations of stream-
line trajectories, not the classical statistical 
concept. Tractography should hence be per-
formed with care and adequate prior anatomical 
knowledge, such as available in text books [ 5 ]. 

 One of the main applications of  tractography   
is the segmentation of tracts in individual sub-
jects. In the clinic, critical pathways in the neigh-
borhood of a brain tumor may be reconstructed 
[ 6 ]. In a research setting, tractography allows the 
effect of a pathological process on particular 
white matter bundles to be studied. In a way, 
tracking serves to defi ne a region of interest in 
which changes in (tensor-derived)  measures   such 
as  fractional anisotropy (FA)   and  mean diffusiv-
ity (MD)   (Chap.   5    ) are assessed. Some authors 
refer to this type of analysis as “ tractometry  ” [ 7 ]. 

 In this chapter, a  bundle  refers to the ground 
truth, i.e., the anatomical substrate, while a  tract  
refl ects a reconstructed pathway.  

       Principles of Deterministic 
Tractography 

 Fibre tracts are estimated from measured 
DWMRI data using computing algorithms. 
Tractography takes advantage of the fact that 

both the orientation and shape of the diffusion 
profi le are estimated from the diffusion data. In 
 deterministic tractography , pathways are inte-
grated in the  principal   eigenvector fi eld, which 
can be computed from the diffusion tensor fi eld 
(Chap.   4    ). Tractography is dependent on user 
input to specify locations in the brain through 
which tracts are to be reconstructed and that, 
dependent on the choice, are known to be ana-
tomically connected. 

 Consider a starting point, called a   seed point      , 
defi ned in a particular voxel of interest. From this 
seed point a tract is generated along both direc-
tions of the diffusion orientation in the seed 
voxel. The tract direction is continuously updated 
according to the local eigenvector orientation. As 
a result, a curved tract will be found, representing 
a part of a white matter bundle of  interest   (see 
Fig.  11.1  for an example). By seeding from mul-
tiple points distributed over an imaginary bundle 
intersection, the entire bundle may be represented 
by a series of streamlines.

   Certain criteria are required to generate ana-
tomically plausible tracking results. Tracking is 
terminated once a voxel is reached that is 
unlikely to belong to the bundle of interest. A 
curvature threshold prevents sharp bending of a 
tract and possible propagation in an adjacent 
bundle. Thresholding  on   fractional anisotropy 
(FA) limits tracking to white matter regions 
where FA is higher.    Curvature thresholds of 
between 30 and 70° are typically used (examples 
are illustrated in Fig.  11.2 ),  while   FA is typically 
limited to values >0.2 (as can be seen in 
Fig.   11.3 ) [ 9 ].  Parameter values   are best empiri-
cally chosen, balancing between false positive 
and negative tracking results and accounting for 
the complexity of the structure. By starting at 
more conservative values and slowly proceeding 
to a more liberal regime, optimal parameter val-
ues may be determined empirically. Importantly, 
when multiple datasets or tracking results need 
to be compared, identical settings must be 
applied to avoid a biased result.

    Additional  masking   may be applied to restrict 
tracking to specifi c regions. Most algorithms 
allow a minimal and maximal tract length to be 
set, as well as a  seed point density  , i.e., multiple 
seed points per voxel.  
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    Data Requirements 

 Reliable tractography can only be obtained in data 
of suffi cient quality. A correct setting of specifi c 
scanning parameters of the diffusion weighted 
imaging protocol is therefore crucial. The spatial 
resolution and the sensitivity of orientation encod-
ing (specifi ed by the  b -value [ 10 ]) must be suffi -

ciently high for accurate tract reconstruction, with 
minimal systematic errors. In addition, a high sig-
nal-to-noise ratio (mainly determined by the fi eld 
strength, coil design, number of gradient direc-
tions, and parallel or multiband imaging settings) 
ensures that the tracking will be precise, with min-
imal variation. We will now discuss critical param-
eters and their infl uence on tract reconstruction. 

  Fig. 11.1    In vivo 
illustration of  a   single 
streamline created in 
 the     corpus callosum, 
superimposed on the 
principal orientation fi eld. 
The seed point is denoted 
by an  asterisk . Image 
created with ExploreDTI 
software [ 8 ]       

  Fig. 11.2    Effect of  the 
  curvature threshold on the 
reconstruction of highly 
curved U-fi bres (language 
pathways). No single 
optimal curvature threshold 
exists, the optimal value 
depends on the tract of 
interest and software and 
must be heuristically 
determined. In this case, 
40° or 50° may be chosen       
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    Resolution 

 Diffusion-weighted MRI is limited by a  relatively 
  low spatial resolution, compared to other MR 
modalities. At 3 T, a resolution of 2 mm in- and 
through-plane can reasonably be achieved. In ini-
tial work on multislab imaging, higher isotropic 
resolutions of 1.3 mm [ 11 ] and 1 mm at 7 T [ 12 ] 
were reported. 

 The low  resolution   has a number of limiting 
factors on tractography. First, most white matter 
bundles have a thickness of only a few millime-
ters resulting in a coarse sampling and partial 
voluming. As a result, one  voxel   may constitute 
of two or more adjacent but perpendicular tracts. 
It was shown that up to 70 % of white matter vox-
els contain fi bre crossings [ 13 ]. Estimating the 
principal diffusion orientation is then no longer 
possible using the diffusion tensor model. This 
problem was recognized more than a decade ago 
[ 14 ] and is known in the fi eld as the “ crossing 
fi bre  ” issue. In practice however, it refers not just 
to confi gurations where fi bre tracts literally cross, 
but several other confi gurations where bundles 
fan, bend or “kiss.” This problem and solutions to 
overcome it are introduced below and covered in 
more detail in Chap.   21    . 

 Second, the low resolution limits the maximum 
curvature of a tract that can be reconstructed. 
 U-fi bres   or other connections between gyri curve 

over 180° within the distance of a few voxels (see 
Fig.  11.2 ). A tract thus needs to propagate by steps 
of 45° or more between adjacent voxels. Such 
strong bends may easily be ignored by tracking 
algorithms in favour of continuous straight con-
nections. In addition, the chance of  false positive 
tracking results   increases by applying a liberal 
curvature threshold. This manifests as tracts “step-
ping over” or “jumping” between different adja-
cent bundles. A careful  ROI placement   is essential 
for accurate tract selection (see Fig.  11.4 ).

  Fig. 11.3    Effect of  the   FA 
threshold on the 
reconstruction of the left 
corticospinal tract. A low 
threshold of FA = 0.1 
results in more cortical 
tract with the cost of false 
positive tracts (indicated by 
the  red arrow ), which may 
be removed using an 
addition AND-ROI. A high 
FA = 0.3 threshold appears 
to be too strict, with only 
few tracts remaining (see 
the  red arrow ). A threshold 
of FA = 0.2 is considered 
optimal and is commonly 
adopted for most bundles       

  Fig. 11.4       False-positive tracking result. The  white 
arrows  point to crossing fi bre regions where incorrect 
modeling results in corticospinal fi bres traversing via the 
corpus callosum, contralaterally to the cortex. Anatomical 
prior knowledge is a prerequisite for correct tracking 
results       

 

 

M.W.A. Caan

http://dx.doi.org/10.1007/978-1-4939-3118-7_21


209

    Tracking algorithms   require data to be 
acquired at isotropic resolution, i.e. identical 
along all three axes. Data generated with suffi -
cient in-plane resolution but a higher slice thick-
ness does not support accurate tract reconstruction, 
as  illustrated   in Fig.  11.5  [ 15 ]. Given the current 
hardware supplied by most vendors, an isotropic 
voxel size of 2.0–3.0 mm is recommended [ 16 ].

        b- Value 

 The  strength   of diffusion weighting as quantifi ed 
by the  b -value (Chap.   3    ), should be suffi ciently 
high for a precise orientation estimation. 
Although a low  b -value of 600 s/mm 2  enables the 
reconstruction of large, uniform white matter 
tracts (see Fig.  11.6 ), a value of  b  = 1000 s/mm 2  is 
advised for obtaining reliable results in the 
majority of bundles [ 17 ].

   In case of crossing fi bre tracts, an even stron-
ger diffusion weighting is required to unravel 
multiple diffusion orientations within one voxel 
(see Fig.  11.7 ). In simulations it was shown that 

increasing the  b -value from 1000 to 3000 s/mm 2  
reduced the minimally resolvable angle from 45° 
to 30° [ 20 ]. In addition to acquiring data at a 
higher  b -value, a higher order diffusion model 
must be employed to resolve crossing fi bres. 
 Multi-tensor models   and  constrained spherical 
deconvolution (CSD)   are examples of approaches 
to this problem [ 19 ,  21 ,  22 ] (Chap.   21    ).

   Increasing the  b -value reduces the measured 
signal value such that multiple signal averages 
need to be acquired, or sequences with more gra-
dient directions must be chosen, to achieve suffi -
cient data quality for performing reliable 
tractography (Chap.   6    ).  

    Gradient Directions/Signal Averages 

 DWMRI measures diffusion in a limited number 
 o  f orientations, which are combined to estimate 
an arbitrarily oriented diffusion profi le. Still, the 
angular resolution depends on the number and 
confi guration of the gradient directions chosen. 
Figure  11.8  illustrates that the uncertainty in the 

  Fig. 11.5    The effect  of 
  anisotropic resolution on 
tractography: an increased 
slice thickness from 2 to 
6 mm with a constant 
in-plane resolution of 
2 × 2 mm introduces voids 
in the body of the corpus 
callosum ( top ,  white 
arrow ) and reduces the 
tract volume in the right 
uncinate fasciculus 
( bottom )       
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estimated orientation decreases when increasing 
the number of gradient directions from 12 to 46. 
 Unbiased tractography   requires an optimal distri-
bution of gradient directions over the unit sphere 
[ 23 ]. Different methods exist for doing so, e.g., 
by tessellations of an icosahedron [ 24 ], or a dis-
tribution of charges. Some vendors provide pre-
defi ned sets of gradient directions of different 
numbers (e.g., 12, 32, or 64 directions). Note that 
these sets may not be optimized for tractography, 
in which case, if possible, a user-defi ned gradient 
set should be entered.

   Theoretically, six directions are required  to   
estimate the diffusion tensor. Practically, more 

directions are chosen for improved precision in 
the estimation. In Fig.  11.9 , the uncinate  fascicu-
lus      can be tracked with at least 24 gradient direc-
tions. In literature, a minimal set of 30 gradient 
directions is advised [ 23 ], while 60–80 directions 
are recommended for minimal variance in trac-
tography [ 16 ].

   In addition, the  number of signal averages 
(NSA)   can be increased. Note that both dou-
bling the number of gradient directions and 
choosing NSA = 2 increase scanning time by a 
factor of 2. Generally speaking, a higher num-
ber of gradient directions slightly increases 
the angular resolution and is preferable over 
multiple signal averages. Clearly, if time per-
mits choosing NSA = 2 will improve the track-
ing precision even more. However, increasing 
the scanning time also increases  the   likelihood 
of motion artifacts, which may detract from 
the image quality gain achieved by increasing 
the NSA.  

     Field Strength   

 Imaging  a  t higher fi eld strengths increases the 
measured signal, which in turn reduces the 
uncertainty in the estimated diffusion orienta-
tion. A fi eld strength of 3.0 T is currently com-
mon practice in tractography-based clinical 
research studies. Tractography can successfully 

  Fig. 11.6     Tracking   in a dataset with a lower  b -value of 
600 s/mm 2 . The uncinate fasciculus can be accurately 
delineated in this dataset       

  Fig. 11.7    Tractography 
 through   fi bre crossings in a 
patient with abnormal 
pathway development in 
the pons [ 18 ]. In addition 
to non-diffusion-weighted 
images, 92 gradient 
directions with a  b -value of 
1600 s/mm 2  were acquired. 
Deterministic tractography 
with a constrained 
spherical deconvolution 
(CSD) clearly shows 
crossing pathways [ 19 ]. 
Tracking performed in 
ExploreDTI software       
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performed at 1.5 T, e.g., by acquiring two signal 
averages (NSA = 2), acquiring data along a 
greater number of diffusion gradient directions 
and by using  multichannel phased-array head-
coils   (see Chap.   6    ). In a prospective evaluation 
of the depiction of fi bre tracts at 1.5 and 3.0 T, 
higher visual scores, larger numbers of fi bres, 
and a higher asymmetry index in the CST were 
obtained at 3.0 T [ 25 ]. 

  High-fi eld scanners   (7.0 T and above) enable 
smaller anatomical structures to be identifi ed 
[ 12 ]. Diffusion-weighted imaging at 7.0  T   com-
pared  to   1.5 and 3.0 T showed an increased SNR 
that was larger than what could be expected 
from fi eld strength alone: improved receive coil 
hardware largely contributes to higher image 
quality [ 26 ]. 

 As a downside, imaging artifacts will have a 
higher impact at  higher   fi eld strength. 
 Inhomogeneities   of the static fi eld ( B  0 ) spatially 
distort the images. Increasing the acceleration 
factor partly compensates this effect. Additionally, 
variations in the radiofrequency fi eld ( B  1 ) 
   increase signal heterogeneity at 7.0 T [ 27 ].   

    Tract Selection 

 In tractography, prior anatomical knowledge on 
the trajectory of the bundle of interest is indis-
pensable. Based on this knowledge, one of more 
regions of interest ( ROIs)      through which a bundle 
traverses need to be defi ned. By means of logic 
combinations, a set of fi bre tracts representing 
the bundle can be obtained. See Section 4, “DTI 
Tractography Atlas” for further details on how to 
track specifi c white matter bundles. 

    Seeding 

 Fibre  tracking   is initiated from so-called  seed 
points   (see Fig.  11.1 ). These points may be man-
ually annotated by the user in a single voxel or 
ROI. A drawback of this approach is that fi bre 
tracking is a non-commutative procedure [ 28 ], 
meaning that tracking from a tract end point will 
not automatically result in a pathway back to the 
initial seed region, as is illustrated  in   Fig.  11.10 . 
An alternative approach to single ROI seeding is 

  Fig. 11.8    Cones  of 
  uncertainty  of   the 
estimated diffusion 
orientation superimposed 
on the FA of a sagittal slice 
through the cingulum 
(cing) and corpus callosum 
(CC) for datasets with 12 
and 46 gradient directions 
( n  g ). Notice increased 
uncertainty for  n  g  = 12 and 
in voxels with low FA       
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  whole-brain tractography   , in which an algorithm 
initiates seeding in all voxels that satisfy certain 
criteria, e.g., all white-matter voxels with FA > 0.2 
act as seed points, as displayed in Fig.  11.11 . 
From this whole-brain tractography, the user can 
select a set of tracts using an ROI. The advantage 
of this approach is its symmetry, whereby tracts 
starting in the ROI and tracts from other brain 
regions passing through the ROI are found. This 
does not result in commutative tracking, but will 

at least result in a more robust tracking of sepa-
rate branches (see Fig.  11.12 ). If  whole-brain 
tractography   is not supported or practically cum-
bersome such as in probabilistic tractography 
(see “Tract Selection”),       multiple seed ROIs in all 
possible branches need to be defi ned as will be 
explained in the next section.

         Logic Combination:  OR/AND/NOT   

 Logic  combi  nation applied to multiple ROIs is 
commonly needed to delineate a bundle. The 
OR-operator on two ROIs returns fi bres travers-
ing through one or two ROIs. Applying the AND- 
operator is stricter and only returns fi bres passing 
through both ROIs (see Fig.  11.13  for an exam-
ple). The NOT-operator, removing fi bres entering 
a specifi c ROI, must be used sparingly to obtain a 
reproducible tracking result.

       Good Practice for ROI-Drawing 

  Tractography    requires   spatial awareness and 
interpretation of a 3D representation on a 2D 
screen (although some packages support stereo-
viewing). Hence it requires a number of trial-
and-error experiments before an accurate result is 
achieved. Direct feedback from the software aids 
in speeding up the training phase. A number of 
programs support interactive exploration, provid-
ing instant tracking results after the user updates 
selection regions. There are currently methods 
available, which allow interactive positioning of 
a single seed point or one or more selection  boxes 
  (Fig.  11.14 ).

   More accurate tracking may  be   achieved by 
delineating arbitrarily shaped ROIs on anatomical 
scans. The fractional anisotropy (FA)  map   color-
coded for orientation provides a good reference for 
annotation. Essentially, this map encodes all infor-
mation employed during tracking. Most accurate 
tracking is achieved by annotating on a plane per-
pendicular to the (local) tract orientation. The 
color information aids the user to identify such a 
plane. Including  low-intensity voxels   representing 
low FA will not affect tractography, since these 

  Fig. 11.9    Tractography of  the   uncinate fasciculus (UF)   
for increasing number of gradient directions. With the 
theoretical minimum of six directions, the UF cannot be 
reconstructed       
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  Fig. 11.10    Illustration of 
 the   non-commutative 
property of fi bre tracking: 
seeding from the end voxel 
of the left tract results in a 
different pathway       

  Fig. 11.11     Whole-brain 
tractography   (sagittal 
view), obtained by seeding 
from all voxels with 
FA > 0.2, colored  red  on the 
 left image        

voxels are automatically disregarded based on an 
FA threshold by the algorithm (see Box  11.1 )  

 Be aware that annotating ROIs on  the   FA map 
may create a bias, since the ROIs are drawn on 
the same maps that will be used  for   statistical 
comparison. 

 A high-resolution structural scan  provides   
additional anatomical reference and can be used 
in addition to the color-coded FA map. One must 
keep in mind that the spatial resolution of the dif-
fusion data is commonly a factor of two lower. 
Also, it is necessary to verify that the scans are 
spatially aligned and a correction for possible 
head motion will typically be needed. In  addition, 

a spatial distortion correction of the diffusion data 
may be required by means of acquiring a  B  0 -map 
or performing nonrigid registration (see Chap.   7    ). 

 The tractography result is dependent on the 
selection criteria as imposed by the user. 
Procedures for reproducible reconstruction of 
major white matter tracts with deterministic trac-
tography have therefore been proposed [ 31 ]. Even 
when following  synchronized   tracking proce-
dures, the inter-observer agreement in practice has 
been reported as not exceeding 90 % [ 32 ]. This 
means that some variability exists in the tract vol-
ume obtained from ROIs drawn by different users. 
This variability is illustrated in Fig.  11.15 , sum-
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  Fig. 11.12    Different 
seeding strategies: ( a ) 
 single-seed ROI   versus ( b ) 
whole-brain  tractography     , 
in which case all brain 
white matter voxels serve 
as seeds. A more dense 
tracking is obtained using 
whole-brain tractography. 
One sagittal ROI was 
drawn in the body of the 
corpus callosum (not 
shown)       

  Box 11.1: On Estimating  Tract Volume   and   FA 
(Consideration Box for Researchers)  

  In a research study, there  may   be hypotheses 
of  microstructural  damage, resulting in 
reduced FA in a tract or white matter atrophy 
resulting in reduced tract volume on  macro-
scopic  level. Figure  11.15  shows results of a 
 tractography training session   of students and 
suggests that tract volume is measured with 
less precision compared to the mean FA within 

a tract, considering the large variation in the 
number of obtained voxels by the students. 
Indeed, in literature larger variations in tract 
volume than tract FA were reported [59]. This 
work also showed that traumatic volume loss 
 confounds   FA estimates, since FA was reduced 
in smaller volume tracts, likely caused by par-
tial volume effects.    Including tract volume as 
covariate in the statistical model is one way of 
overcoming this issue [60].  
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marizing a training session in which students were 
assigned to reconstruct the forceps major and cin-
gulum tracts. Large variations in tract volume are 
observed, resulting from differences in ROI size 
and positioning. One can conclude that training on 
multiple datasets is required to converge to repro-
ducible fi ndings. Also note that the inter-observer 
 variability   in average FA is relatively low. 

 The following  guidelines   may aid in achiev-
ing a reproducible tracking:

•    Draw ROIs as large as possible. This may 
seem counter-intuitive, but ensures that any 
possible fi bre belonging to a bundle will be 
included.  

•   Annotate 2D ROIs in the  plane   perpendicular 
to the bundle orientation.  

•   Apply as few ROIs as possible. In most situa-
tions, two or three ROIs suffi ce, i.e., one OR 
ROI at one end of the tract, an AND ROI at 
another end and another AND ROI along the 
pathway to exclude any deviating tracts.  

•   Use NOT-ROIs sparingly. Only  fi bres   appear-
ing as clear outliers may be removed.  

•   In case whole-brain tractography is unavailable, 
generate two overlapping seed and AND ROIs 
at both sides of a tract. By doing so  a   symmetric 
tracking result is obtained (see Fig.  11.17 ).  

•   Section 4 of this book discusses normal anat-
omy described by a DTI atlas.      

       Probabilistic Tractography 

 The principal orientation of diffusion can only be 
estimated with a certain limited precision [ 33 ]. 
The uncertainty increases both with higher noise 
levels or fewer gradient directions and lower dif-
fusion anisotropy (see Fig.  11.8 ). 

  Tractography is highly   sensitive to uncertainty 
in the orientation estimation. By each tracking 
step into an adjacent voxel, the pathway will fur-
ther deviate from the truth. In other words, the 
uncertainties  propagate  or  accumulat  e, such that 
tracts may terminate prematurely and the target 
pathway may not be found. One must be aware 
that this uncertainty is invisible in conventional 
deterministic tractography visualizations, which 
tend to be perceived as precise segmentation 
while in reality this may not be the case, as is 
illustrated in Fig.  11.4 . 

 Fortunately, knowledge on the amount of 
uncertainty in the orientation estimation can be 
used to obtain potentially precisely delineated 
pathways. Tractography as it has been introduced 
thus far is characterized as  deterministic . Repeated 

  Fig. 11.13    Accurate delineation of a  longitudinal fascic-
ulus  .    A single-seed ROI ( a ) results in many false positive 
fi bres ( b ). Adding a second AND ROI ( c ) removes these 
fi bres from the selection, resulting in the desired pathway        
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  Fig. 11.14       Interactive 
tractography of the 
 cingulum bundle   using two 
boxes. Transparent colored 
fi bres refl ect fi bres 
originating from the 
corresponding box.  Solid 
green fi bres  represent the 
cingulum tract, connecting 
both boxes. Image created 
with DTI interactive (DTIi) 
software [ 29 ]       

  Fig. 11.15       Results of  a   training session of a group of 15 
students. ( a ) Mean FA and number of voxels of two tracts 
created by the students. ( b ) Illustrative image of a correct 

tracking of the Forceps Major, containing approximately 
4000 voxels. Tracking performed in DTI-Studio software 
[ 30 ]       

tracking instances from a single seed point will 
return identical tracking results, based on an aver-
age  orientation   estimate per voxel (Fig.  11.16 ).

    Probabilistic  tractography instead estimates 
the orientation  distribution  in each voxel [ 21 ,  34 ] 

(see Fig.  11.8 ). The mean of this distribution 
equals the orientation used in deterministic trac-
tography. The width of the distribution is 
 proportional to the uncertainty. Once the distri-
bution is known,  multiple tracts   in the order of 
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10,000 are seeded from each seed point.    A tract is 
computed on an orientation estimate drawn from 
the distribution in all voxels. Each tract thus fol-
lows a different pathway. From the average num-
ber of visits of the tracts to each voxel, a tract 
probability map can be derived. When the orien-
tation uncertainty is low, all tracts will traverse 
along a similar pathway. Tracts passing through a 
single area with high uncertainty will spread and 
show a diffuse pattern afterwards. 

  Mapping connections    from   gray matter regions 
such as the thalamus to the cortex is challenging. 

Deterministic tractography will be unable to fi nd 
tracts due to the large distance to be tracked and 
the uncertainty in the principal orientation in gray 
matter. By using probabilistic tractography, spe-
cifi c distinct subregions within the thalamic gray 
matter have been identifi ed, which correspond to 
histological studies [ 35 ]. 

 Probabilistic tractography is computation-
ally much more demanding than deterministic 
tractography. Estimating the initial orientation 
distribution, e.g., by Bayesian estimation of 
diffusion parameters implemented in  FSL 

  Fig. 11.16       Deterministic 
and probabilistic 
tractography. ( a ) 
Deterministic tractography 
is based on the principal 
eigenvector, while 
probabilistic tractography 
is based on  a   distribution of 
estimated possible 
orientations. ( b ) From a 
seed voxel, a single tract is 
computed in deterministic 
tracking. Probabilistic 
tracking proceeds along 
one randomly selected 
orientation per voxel. ( c ) 
After probabilistic 
tracking, a tract probability 
map is computed for the 
relative number of tracts 
passing through a voxel       
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BedpostX   [ 21 ] takes approximately 15 h to 
complete. There are however, other (non-
Bayesian) based methods available that can 
perform whole-brain probabilistic tractography 
in a shorter time-frame (see [ 36 ] for a review). 
Due to the many seeds per voxel, computa-
tional demands and less intuitive visualization, 

whole-brain probabilistic tracking is less com-
monly performed than deterministic tracking. 
To obtain symmetric and precise tracking 
results, using combined seed and waypoint 
masks is advised as illustrated in Fig.  11.17 . 
The obtained probability map may be visual-
ized in 3D using a volume rendering such as in 

  Fig. 11.17    ( a )    In 
probabilistic tractography, 
more accurate tract 
selection is possible by 
adding a waypoint mask, 
returning only fi bres 
passing through this mask. 
( b ) This type of selection 
is asymmetrical, swapping 
the seed and waypoint 
mask will generate a 
different outcome, with the 
highest probability in the 
seed mask. ( c ) Using both 
ROIs as seeds and 
waypoints results in a 
more representative 
probability map       
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Fig.   11.18c  or a volume isosurface such as in 
Fig.  11.19 . Dependent on the application, 
deterministic tractography remains the fi rst 
method for interactive exploration and selec-
tion, while probabilistic tractography can add 
robustness  i  f required.

         Higher Order Model Tractography 

  The   diffusion tensor  m  odel assumes a single- 
fi bre bundle traversing through a voxel. It has 
however been estimated that up to 70 % of all 
white matter voxels contain contributions of at 

  Fig. 11.18       Automated 
atlas-based  t     ractography. 
Here,  ROIs   are manually 
annotated in standard- 
space ( a , cross sections 
shown in  dashed red ). 
Then, the atlas FA volume 
is registered to the 
subject’s FA volume ( b ). 
The ROIs are transformed 
accordingly. ( c ) In the 
subjects’ dataset, 
frontostriatal-thalamic 
fi bres are reconstructed 
using probabilistic 
tractography, using all 
three ROIs both as seed 
and waypoint masks. 
Registration and 
tractography is performed 
using FSL software. A 3D 
volume rendering is 
created in 3D-Slicer 
software       

 

11 DTI Analysis Methods: Fibre Tracking and Connectivity



220

  Fig. 11.19       Automated 
tractography by means  of 
     TRACULA [ 37 ]. A 
 T  1 -weighted scan is 
segmented by freesurfer 
software, the resulting 
labels serve as ROIs in the 
tractography. Diffusion 
weighted MRI data are 
processed by FSL 
bedpostX software to 
compute multiple diffusion 
orientations per voxel (to 
model fi bre crossings). 
TRACULA combines these 
data to reconstruct 18 fi bre 
pathway probability maps       
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least two bundles [ 13 ]. Fortunately, despite 
this model error, it is possible to successfully 
reconstruct the core structure of major bundles, 
which is suffi cient for preclinical research 
studies investigating groups of subjects. Note 
however, this important limitation means that 
DTI tractography is not the most appropriate 
method for presurgical planning (see Chaps.   15     
and   21    ). 

 As stated in Chap.   21    , a large number of 
higher order models for complex fi bre confi gu-
rations have been proposed. Estimating higher 
order models requires higher quality data with 
a greater number of diffusion gradient direc-
tions and higher b-values compared to classical 
DTI (see Chap.   6    ). This type  of   acquisition  is 
  commonly referred to as  high angular resolu-
tion diffusion imaging  or  HARDI  . A higher 
 b -value of  b  > 1500 s/mm 2  and >60 gradient 
directions are preferred, compared to the typi-
cal  b  = 1000 s/mm 2  and 30 directions for 
DTI. This increases the scan time beyond 8 min 
per average. Previously this has proved an 
obstacle for clinical research; however, it is 
now possible to obtain good quality HARDI 
data in under 15 min. 

 Figure  11.7  presents an example  of   tractogra-
phy using CSD in the pons of a patient with an 
embryonic defect in axonal guidance [ 38 ]. The 
patient showed symptoms of reduced coordina-
tion of muscle movements (ataxia), eye move-
ments (nystagmus), sensory deafness and 
episodes of hypothermia. Common interhemi-
spherical connections were diminished in this 
patient (data not shown); instead an additional 
transversal bundle was observed,    connected to an 
abnormal projection out of the brain stem.  

       Automated Tractography 

 Fibre reconstruction relies on manual identifi ca-
tion of anatomical landmarks of a tract of inter-
est. This subjective judgment is a potential source 
of experimental variability. In addition,  manual 
reconstruction   in a large number of datasets is 
time consuming. Several methods have therefore 
been proposed for automated tractography. 

     White Matter Atlas   

 Stereotaxic human brain atlases are often 
 em  ployed in neuroimaging research as an ana-
tomical reference. Based on an existing anatomi-
cal template averaged over 152 subjects 
(ICBM-152), a hand-segmented white matter 
parcellation map was created, based on fi bre ori-
entation information [ 39 ]. Instead of performing 
tractography, such a  map   may be used to segment 
a novel dataset after spatial alignment by means 
of registration. The accuracy of the segmentation 
relies on registration errors, mainly caused by 
inter-subject anatomical variation. As an exten-
sion, a white matter parcellation atlas was created 
by populating tract probability maps of  multiple 
  subjects [ 40 ]. This atlas allows for automated 
tract-specifi c quantifi cation of  DTI   measures.  

       Atlas-Based Tractography 

 A disadvantage  of   using white matter atlases is 
that not all inter-subject morphologic variations 
can be modeled. Alternatively, seeding and mask-
ing ROIs may be selected from an atlas for track-
ing in specifi c datasets, which is  named 
   atlas-based tracking  [ 41 ,  42 ]. While minor spa-
tial offsets in the ROIs may be expected, the 
tracking results obtained potentially more accu-
rately describe the anatomy in the datasets com-
pared to atlas-based segmentation alone, as 
described in the previous section. 

 In the atlas, a set of  r  eference regions of inter-
est ( rROIs)      is defi ned that allow the bundle of 
interest to be tracked. Next, spatial correspon-
dence needs to found between the atlas and the 
dataset in which tracking needs to be performed. 
In Fig.  11.18 , this is achieved by linear (affi ne) 
registration. The rROIs are transformed accord-
ingly and tracking in the target dataset is per-
formed using the rROIs. Following this approach, 
suffi cient agreement with a manual approaches 
was obtained ( κ  > 0.8) [ 42 ], showing that atlas- 
based automated tracking is relatively robust to 
registration errors between the atlas and the data-
set of interest. See Chaps.   10     and   12     for further 
details about DTI atlases and spatial alignment. 
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 Additional prior information for tractography 
may be obtained from a high-resolution struc-
tural  T  1 -weighted scan. An automated segmenta-
tion and parcellation of subcortical and cortical 
structures [ 43 ] provides accurately defi ned ROIs 
for seeding and masking. 

 A method was  proposed   that allows the auto-
mated delineation of 18 “tracts constrained by 
underlying anatomy” ( TRACULA  )   . The method 
takes  T  1 - and diffusion-weighted images as input. 
Spatial distortions that appear in DWIs need to be 
corrected by including an additional B0-scan or by 
registration. The  T  1 -scan is segmented using 
Freesurfer software [ 43 ,  44 ] and diffusion orienta-
tion distributions are estimated by means of 
BedpostX (see “Tract Selection”). Based on these 
data tractography is performed resulting in subject- 
specifi c tract probability maps. These are displayed 
in Fig.  11.19  at a threshold of 20 %. In case of gross 
anatomical variation, automated tractography 
might fail, in which case it is advisable to manually 
defi ne more ROIs than are  defi ned   by   default.   

    Connectivity 

 The human brain is a highly interconnected organ 
in which different brain regions are mutually 
dependent on one another. This leverages a high 
potential for studies into  large-scale   connectivity 
that may provide novel insight into complex brain 
disorders.  DW-MRI   has been enthusiastically 
adopted by neuroscientists as a tool for assessing 
structural connectivity in the human brain. One 
goal is to associate this structural connectivity 
with measures of functional connectivity, e.g., 
derived from correlation measures in functional 
MRI data. As an example, in a study into Major 
Depressive Disorder, a negative structure- 
function relation was identifi ed that was posi-
tively associated with depression severity [ 45 ]. 

 The purpose of studying white matter  connec-
tivity   is to gain insight into the function of the 
brain [ 28 ]. The challenging task is to  quantify   
connectivity using certain measures that may be 
compared over time or between individuals. One 
structural aspect of connectivity is  defi ned   by the 
number of axonal projections: the more axons 

traverse between two brain regions, the stronger 
the connection is. Additionally, changes in the 
local microstructural composition of the myelin 
sheath and cell membranes may affect connectiv-
ity. Rather than quantifying these neurobiologi-
cal features, connectivity in the context of 
tractography refers to the probability of recon-
structing a pathway based on diffusion [ 46 ]. The 
question to be answered is if tractography-derived 
measures can be used as markers of connectivity. 
If so, then variations in these measures must be 
related to changes in the known (or hypothesized) 
 connectivity   and be minimally driven by mea-
surement and reconstruction errors. We will 
briefl y touch upon aspects the reader may 
encounter when considering a tractography- 
based connectivity study. 

    What Were We  Measuring   Again? 

 It is important to stress that the signal measured 
with diffusion MRI is really distant from what 
connectivity aims to capture.  Random Brownian 
motion   of water molecules causes an orientation 
dependent signal attenuation. As discussed 
before, diffusion MRI is measuring at limited 
resolution, orders of magnitude higher than the 
 axonal scale  . For the purpose of tractography, the 
principal orientations of diffusion are obtained 
from the data using any number of modeling 
schemes, among which  CSD   [ 19 ] and  compart-
ment models   [ 47 ]. One must be aware that these 
are the available measures based on which 
research questions are to be defi ned and  a  nswered.  

    What Not to Do 

 Streamline deterministic tractography as intro-
duced in this chapter answers the question if a 
connection between regions can be reconstructed 
from the given data with a clear “yes” or “no.” 
Any other inferences on quality or confi dence of 
the connection cannot be made. Anatomically 
implausible  connections      such as given in 
Fig.  11.4  are displayed with equally solid stream-
lines as other connections that are known to be 
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present. Probabilistic tractography by no means 
overcomes this issue of inaccuracy: nonexisting 
 connections      are shown with equally large repro-
ducibility as for deterministic tractography [ 28 ]. 
Consequently, one cannot bluntly track fi bres 
between any pair of brain regions and obtain 
massive connectivity matrices without at least 
introducing anatomical prior knowledge on con-
nections that are known are there. This is not to 
state that, if carefully designed, such matrices 
cannot be reconstructed, as is shown in [ 48 ].  

    Fibre Count 

 It is tempting to  interpret   streamline or   fi bre count    
as a measure for the number of axons. However, 
as has been made clear, tractography is measured 
on an entirely different measurement scale. Also, 
a number of factors affect the fi bre count:

•    Increasing length and curvature will decrease 
the fi bre count, since tracts ‘bend off’ and are 
early terminated.  

•   Brain diseases may locally affect white matter 
bundles such that tractography may primarily 
follow other pathways. It is likely that in such 
a situation an increased number of fi bres are 
found in these other pathways, which clearly 
does not refl ect the underlying confi guration.  

•   Brain atrophy is highly correlated with DTI 
measures [ 49 ] and tract volume [ 50 ] and needs 
to be accounted for in statistical analyses.  

•   The fi bre count is highly dependent on the 
uncertainty in the estimated diffusion orienta-
tion, which in turn is dependent on FA and 
data quality (see Fig.  11.8 ). FA is directly 
related to the diffusion profi le and must be 
assessed if appropriate.  

•    Track-weighted imaging   or  tract density imag-
ing   and allied techniques uses a sophisticated 
form of interpolation to visualize diffusion 
data  at   a higher resolution than the acquired 
resolution by locally integrating the number  of 
  visiting streamlines [ 51 ,  52 ]. While visually 
attractive (see Fig.  11.20 ) and reproducible 
[ 53 ], these maps are primarily qualitative and 
still subject to similar limitations as other 
probabilistic tractography based methods.

          Other Connectivity Measures? 

  Probabilistic   tractography outputs the reproduc-
ibility of tracking in a tract visitation map. These 
numbers must not be interpreted as a probability 
of the local existence of a connection, but instead 
as a measure of variation in the obtained result. 
Figure  11.17  shows that the tracking variation is 
minimal close to the seeding area and thus opera-
tor dependent. Also other topology-induced vari-
ation is present. This makes it clear that these 
probabilistic outcomes cannot be directly inter-
preted as connectivity estimates. 

  Global tractography   (not to be confused with 
“whole-brain tractography”) is a more recent 
development in the fi eld based on HARDI data, 
which models the problem of estimating the trac-
togram in a different way to the other techniques 
discussed so far. In classical approaches, algo-
rithms try and fi nd a close match between the 
local diffusion signal and underlying microstruc-
ture in each voxel, and propagate streamlines 
based on the principal direction(s) of diffusion. 
This means they are sensitive to cumulative errors 
along the fi bre trajectory. In global approaches, 
algorithms reconstruct the whole tractogram 
simultaneously by fi nding the most optimal paths 
through the diffusion fi eld that best fi t the underly-
ing data. In contrast to classical, local approaches, 
in global tractography, neighboring pathways 
infl uence each other as part of the optimization 
process. The advantage of such global approaches 
is that they are less infl uenced by local perturba-
tions in the diffusion signal (e.g., due to artefacts, 
noise) and the accumulation of errors. This may 
make them more appropriate for investigating 
global  connectivity than   classical approaches. The 
disadvantage however, is that they are computa-
tionally very demanding and are therefore pres-
ently used only in a research context. For further 
information, the reader is directed to [ 54 ].  

    Foresight 

 How to proceed  in   assessing connectivity based 
on diffusion MRI? There is increasing evidence 
that tractography-derived measures correlate 
with independent modalities, such as fMRI. Future 
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research should identify the underlying processes 
that co-occur in these data. Novel imaging modal-
ities such as mapping myelin density [ 55 ]  may   
shed new light on this highly interesting debate. 
Meanwhile, tractography-derived measures may 
be adopted, as long as the strong underlying 
assumptions are recognized and not violated in 
analysis and interpretation [ 56 ].   

    Discussion 

 In this chapter, a number of different tractogra-
phy methods have been presented, each with its 
own strengths and weaknesses. Data quality and 
tracking parameters highly infl uence the tracking 
results. Unfortunately, no ground truth is avail-
able to the user for validation. Prior knowledge 
on the global trajectory of pathways is indispens-
able in drawing seeding and masking ROIs. 

 Different software packages exist for per-
forming  tractography  . The software that has 

been used for creating fi gures is mentioned in 
the captions wherever appropriate. The reader is 
referred to Chap.   13     for further discussion on 
practical issues related to the analysis of DTI 
data using presently available software. Some 
vendors provide software for online tracking on 
the scanner console or a connected computer. 
The advantage is that data do not have be trans-
ferred and processed off-line (requiring time 
and expertise) but can be analyzed on the fl y, 
and results can easily be integrated in the 
acquired dataset to be archived in the hospital 
PACS. An example  of   online tracking is given 
in Fig.  11.21 .

   In conclusion, tractography is a powerful 
method to obtain estimates of global structural 
connections between brain regions from local 
measurements of diffusion. If performed and 
interpreted correctly, it may provide useful com-
plementary information in preclinical research 
and has potential future utility  in   routine clinical 
practice (Fig.  11.22 ).

  Fig. 11.20    ( a ) Axial  FA   map  color   coded   by orientation 
(Fac) at original resolution of 2.5 mm (isotropic). ( b ) 
 Color-coded track-density image (TDI)   generated from 
the same data as ( a ) using probabilistic tractography (con-
strained spherical deconvolution), with 20 million stream-
lines on a 2.5 mm isotropic grid (i.e., original resolution). 
( c )  Color-coded super-resolution TDI   generated from the 

same data as ( a ), with 20 million streamlines on a 0.5 mm 
isotropic grid. Note the enhanced detail in deep white 
matter structures, but the apparent loss of detail in the cor-
tex due to  higher   uncertainty in long-range connections in 
these regions. Images generated using MRTrix software. 
Courtesy of Thijs Dhollander       
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  Fig. 11.21     Online 
tracking result with scanner 
software   (Fibretrak, Philips 
Medical Systems) of the 
corticospinal tract. 
Multiple ROIs were 
defi ned by the user to 
obtain the left corticospinal 
tract. An FA map color 
coded for orientation is 
blended with a  T  1 -weighted 
structural scan to aid in 
delineating the tract. A 
short diffusion weighted 
protocol was chosen: 
resolution 2.5 mm 
isotropic, 30 gradient 
directions,  b  = 1000 s/mm 2 , 
total scanning time 3 min 
and 30 s. Head motion was 
corrected for prior to 
tractography       

  Fig. 11.22    What is  my 
  tractography goal?       
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       Must Reads 

     1.    One of the fi rst articles that introduced trac-
tography [ 57 ].   

   2.    Principles and limitations of tractography [ 15 ].   
   3.    Discussion on connectivity and tractography 

[ 28 ,  36 ].   
   4.    Overview paper discussing challenges to be 

addressed in the future [ 7 ].   
   5.    A paper providing a distinctive mapping 

between thalamic and cortical regions using 
probabilistic tractography [ 35 ].         
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            Learning Points 

•     Normal diffusion tensor imaging-based anat-
omy of the healthy brain.  

•   The identifi cation of several major white mat-
ter fi ber bundles on 2D directionally encoded 
color fractional anisotropy maps in axial, cor-
onal, and sagittal views.  

•   The identifi cation of common 3D virtual 
reconstructions of DTI-based white matter 
fi ber tracts.  

•   Region-of-interest placement in order to virtu-
ally reconstruct commonly identifi ed DTI- 
based white matter fi ber tracts.     

    Representation of White Matter 
Anatomy Using Diffusion Tensor 
Imaging 

  As       diffusion   tensor imaging permits estimation 
of the main nerve fi ber direction within a voxel, 
a natural extension is to reconstruct the course 
of whole  nerve tracts   [ 1 – 7 ]. Figure  12.1  shows 
a sketch of a brain with diffusion tensor ellip-
soids plotted in several brain voxels. The con-
sidered person is watching a red-leaved fl ower. 
This information is caught by the eye and 
passed to the visual brain cortex through the 
optical tract. This tract is observable in the ten-
sor ellipsoids: they are elongated in tract voxels 
and refl ect the main fi ber direction. In the 
sketch, the diffusion is isotropic in voxels not 
containing the optic tract.

   Figure  12.1b  illustrates a straightforward 
approach to reconstruct tracts from the  tensor 
ellipsoids  , the so-called FACT  algorithm   
(FACT = fi ber assignment by continuous  track-
ing  ) [ 4 ,  5 ]. The tract is started in one voxel and it 
follows the orientation of the ellipsoid in this 
voxel until it hits the border of the voxel. Then, 
this process is iterated in the adjacent voxel. 
Usually several starting points—which are also 
called  seeds  —are chosen. For example, in 
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Fig.  12.1b , the  tract   starting in the center of the 
initial voxel does not reach the end of the optic 
nerve tract, since the tract is interrupted when it 
reaches a voxel with isotropic diffusion. The 
other tract, which starts in the upper part of the 
initial voxel, reaches the visual brain cortex. 
Thus, by choosing several seeds instead of only 
one seed, the chance is increased that the actual 
tract is reconstructed. 

 In Fig.  12.1b , an important  property   of fi ber 
tracking results can be appreciated: the strong 
 dependency   on the chosen algorithm and its 
parameters. The  termination criterion   of the 
algorithm depicted in Fig.  12.1b  is to stop the 
tract if an isotropic voxel is reached. However, 
if the tract were allowed to maintain its direc-
tion in an isotropic voxel under the condition 
that the next voxel is anisotropic, then the 
 broken fi ber would make it to the end of the 
optic tract. In practice, of course,  voxels   are 
usually not perfectly isotropic, so one would 
rather choose a certain anisotropy threshold to 
terminate the fi ber. The fi nal tracking result will 
in any case depend strongly on this threshold. 
As there is often no unique and perfect choice 
of algorithm and parameters, the obtained 
results should not be regarded as a perfect 

ground truth. Nonetheless, it has been shown 
that the main fi ber tracts can be reconstructed 
correctly. 

 Since the initial works on  fi ber   tracking, 
many fi ber tracking algorithms and strategies 
have been developed. Since a detailed review of 
these techniques is beyond the scope of this 
introduction and covered in Chap.   11     of this 
book, here we only present an in-depth descrip-
tion of the algorithm used for the fi ber tracking 
in the “Three-Dimensional Tract Representation” 
section.  

    Protocol 

     Data Acquisition   

  The   data  were   acquired using a 3 T scanner (TIM 
Trio, Siemens, Erlangen, Germany) equipped 
with a 32-channel head coil. A single-shot  echo-
planar imaging (EPI) sequence   was applied for 
DTI assessment (TR 6400 ms, TE 91 ms, 96 × 96 
matrix size, fi eld of view 240 mm). Fifty axial 
slices with a thickness of 2.5 mm and no gap, 60 
 gradient   directions,    and two  b -values (0 and 
1000 s/mm 2 ) were obtained.  

  Fig. 12.1    The principle of  fi ber tracking  .    ( a ) Schematic 
view of a person watching a fl ower. Information is trans-
ported from the eye to the visual cortex at the back of the 
head. ( b ) Close-up of the voxel-wise diffusion measure-

ment. The optical tract shows anisotropic (ellipsoid) water 
displacement and the tract can be reconstructed using dif-
fusion tensor imaging       
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     Data Preprocessing   

 Eddy  currents      and head motion were corrected 
using   FSL fl irt    (  www.fmrib.ox.ac.uk/fsl/    ) by 
affi ne registration of the baseline and diffusion 
weighted volumes to the fi rst baseline volume. 
Gradient directions were corrected according to 
the transformation. FSL bet was used in order to 
estimate brain masks. Tensors were fi t using the 
 teem library   (teem.sourceforge.net). Negative 
Eigenvalues were corrected by adding (to all 
Eigenvalues) the amount  by   which the smallest is 
 negative   (corresponding to increasing the non- 
diffusion weighted image value).  

     Tracking Algorithm   

  The    tractography algorithm   that was used to 
generate the fi ber tracking results was originally 
introduced by Reisert et al. [ 8 ] and is a so-called 
 global tracking    algorithm   [ 9 ,  10 ]. This algo-
rithm ranked fi rst in an evaluation study by 
Fillard et.al. on the performance of tractography 
algorithms [ 11 ] and is implemented in MITK- 
Diffusion ([ 12 ],   www.mitk.org/ Difu  sion    ). The 
complete procedure is described in more detail 
in [ 13 ].   

    Two- Dimensional   Tract 
Representation 

    Introduction (2D) 

 Here we present a diffusion tensor imaging 
derived color map produced using  MITK- 
Diffusion     ([ 12 ],   www.mitk.org/Difusion    ). In 
these maps, the directional orientation of fi ber 
tracts is color coded in the following fashion: 
tracts moving left-right are coded red (e.g., the 
Corpus callosum), anterior-posterior tracts are 
coded green (e.g., the Cingulum), and cranio- 
caudal tracts are coded blue (e.g., the cortico- 
spinal tract). The intensity or hue indicates the 
fractional anisotropy, a measure of fi ber density. 

The most important, central parts of the  brain   are 
displayed in the three main radiological planes, 
axial, coronal, and sagittal.  

    Two- Dimensional   Anatomy 

   Axial slices       (Figs.  12.2 ,  12.3 ,  12.4 ,  12.5 ,  12.6 , 
 12.7 ,  12.8 ,  12.9 , and  12.10 )

             Coronal slices       (Figs.  12.11 ,  12.12 ,  12.13 , 
 12.14 ,  12.15 ,  12.16 ,  12.17 ,  12.18 , and  12.19 )

            Sagittal    slices          (Figs.  12.20 ,  12.21 ,  12.22 , 
 12.23 ,  12.24 ,  12.25 ,  12.26 , and  12.27 )

               Three-Dimensional Tract 
Representation 

    Introduction (3D) 

 The three- dimensional   part covers the most 
prominent white matter connections within the 
cerebral hemispheres. The complete reconstruc-
tion process is covered in a consistent, step-by- 
step fashion. First the relevance and anatomy of 
the tract is discussed and an initial region of 
interest (ROI) is shown.  This   ROI is chosen as to 
yield an optimal fi nal result. By using inclusion 
(green) and exclusion (red) ROIs, the result is 
further refi ned. The fi nal result is represented 
without the ROIs to optimally appreciate the 
anatomical location. The color coding of these 
tracts is identical to the two-dimensional color 
maps (section, Introduction 2D). The intricate 
anatomy of important adjacent tracts is further 
illustrated in combined overviews. Here each 
individual tract is represented in unicolor to 
enhance the visualization of the complex, inter-
woven anatomy.  

    Three-Dimensional Anatomy 

    The Corpus Callosum 
 Fiber  tracking   of  the      corpus  callosum   is relatively 
straightforward. Select a midsagittal on the sagit-
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  Fig. 12.2     Axial slices      of a color-coded diffusion tensor 
image. The colors represent fi ber direction;  red  = left to 
right,  blue  = cranio-caudal, and  green  = anterior-posterior. 

The intensity represents the fractional anisotropy (FA) also 
indicated in the  lower corner . In the  upper corners , the 
slice section is indicated in the coronal and sagittal plane       
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  Fig. 12.3     Axial      slices of a color-coded diffusion tensor 
image. The colors represent fi ber direction;  red  = left to 
right,  blue  = cranio-caudal, and  green  = anterior-posterior. 

The intensity represents the fractional anisotropy (FA) also 
indicated in the  lower corner . In the  upper corners , the 
slice section is indicated in the coronal and sagittal plane       
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  Fig. 12.4     Axial      slices of a color-coded diffusion tensor 
image. The colors represent fi ber direction;  red  = left to 
right,  blue  = cranio-caudal, and  green  = anterior-posterior. 

The intensity represents the fractional anisotropy (FA) also 
indicated in the  lower corner . In the  upper corners , the 
slice section is indicated in the coronal and sagittal plane       
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  Fig. 12.5     Axial      slices of a color-coded diffusion tensor 
image. The colors represent fi ber direction;  red  = left to 
right,  blue  = cranio-caudal, and  green  = anterior-posterior. 

The intensity represents the fractional anisotropy (FA) also 
indicated in the  lower corner . In the  upper corners , the 
slice section is indicated in the coronal and sagittal plane       
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  Fig. 12.6     Axia     l slices of a color-coded diffusion tensor 
image. The colors represent fi ber direction;  red  = left to 
right,  blue  = cranio-caudal, and  green  = anterior-posterior. 

The intensity represents the fractional anisotropy (FA) also 
indicated in the  lower corner . In the  upper corners , the 
slice section is indicated in the coronal and sagittal plane       
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  Fig. 12.7     Axial      slices of a color-coded diffusion tensor 
image. The colors represent fi ber direction;  red  = left to 
right,  blue  = cranio-caudal, and  green  = anterior-posterior. 

The intensity represents the fractional anisotropy (FA) also 
indicated in the  lower corner . In the  upper corners , the 
slice section is indicated in the coronal and sagittal plane       
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  Fig. 12.8     Axial      slices of a color-coded diffusion tensor 
image. The colors represent fi ber direction;  red  = left to 
right,  blue  = cranio-caudal, and  green  = anterior-posterior. 

The intensity represents the fractional anisotropy (FA) also 
indicated in the  lower corner . In the  upper corners , the 
slice section is indicated in the coronal and sagittal plane       
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  Fig. 12.9     Axial      slices of a color-coded diffusion tensor 
image. The colors represent fi ber direction;  red  = left to 
right,  blue  = cranio-caudal, and  green  = anterior-posterior. 

The intensity represents the fractional anisotropy (FA) also 
indicated in the  lower corner . In the  upper corners , the 
slice section is indicated in the coronal and sagittal plane       
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  Fig. 12.10     Axial      slices of a color-coded diffusion tensor 
image. The colors represent fi ber direction;  red  = left to 
right,  blue  = cranio-caudal, and  green  = anterior-posterior. 

The intensity represents the fractional anisotropy (FA) also 
indicated in the  lower corner . In the  upper corners , the 
slice section is indicated in the coronal and sagittal plane       
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  Fig. 12.11     Coronal slices of a      color-coded diffusion ten-
sor image. The colors represent fi ber direction;  red  = left to 
right,  blue  = cranio-caudal, and  green  = anterior- posterior. 

The intensity represents the fractional anisotropy (FA) also 
indicated in the  lower corner . In the  upper corners , the 
slice section is indicated in the axial and sagittal plane       
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  Fig. 12.12     Coronal slices of a      color-coded diffusion ten-
sor image. The colors represent fi ber direction;  red  = left to 
right,  blue  = cranio-caudal, and  green  = anterior- posterior. 

The intensity represents the fractional anisotropy (FA) also 
indicated in the  lower corner . In the  upper corners , the 
slice section is indicated in the axial and sagittal plane       
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  Fig. 12.13     Coronal slices      of a color-coded diffusion ten-
sor image. The colors represent fi ber direction;  red  = left to 
right,  blue  = cranio-caudal, and  green  = anterior- posterior. 

The intensity represents the fractional anisotropy (FA) also 
indicated in the  lower corner . In the  upper corners , the 
slice section is indicated in the axial and sagittal plane       
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  Fig. 12.14     Coronal slices      of a color-coded diffusion ten-
sor image. The colors represent fi ber direction;  red  = left to 
right,  blue  = cranio-caudal, and  green  = anterior- posterior. 

The intensity represents the fractional anisotropy (FA) also 
indicated in the  lower corner . In the  upper corners , the 
slice section is indicated in the axial and sagittal plane       
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  Fig. 12.15     Coronal slices      of a color-coded diffusion ten-
sor image. The colors represent fi ber direction;  red  = left to 
right,  blue  = cranio-caudal, and  green  = anterior- posterior. 

The intensity represents the fractional anisotropy (FA) also 
indicated in the  lower corner . In the  upper corners , the 
slice section is indicated in the axial and sagittal plane       

 

12 Normal Diffusion Tensor Imaging-Based White Matter Anatomy



248

  Fig. 12.16     Coronal slices      of a color-coded diffusion ten-
sor image. The colors represent fi ber direction;  red  = left to 
right,  blue  = cranio-caudal, and  green  = anterior- posterior. 

The intensity represents the fractional anisotropy (FA) also 
indicated in the  lower corner . In the  upper corners , the 
slice section is indicated in the axial and sagittal plane       
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  Fig. 12.17     Coronal      slices of a color-coded diffusion ten-
sor image. The colors represent fi ber direction;  red  = left to 
right,  blue  = cranio-caudal, and  green  = anterior- posterior. 

The intensity represents the fractional anisotropy (FA) also 
indicated in the  lower corner . In the  upper corners , the 
slice section is indicated in the axial and sagittal plane       
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  Fig. 12.18     Coronal      slices of a color-coded diffusion ten-
sor image. The colors represent fi ber direction;  red  = left to 
right,  blue  = cranio-caudal, and  green  = anterior- posterior. 

The intensity represents the fractional anisotropy (FA) also 
indicated in the  lower corner . In the  upper corners , the 
slice section is indicated in the axial and sagittal plane       

 

B. Stieltjes



251

  Fig. 12.19     Coronal      slices of a color-coded diffusion ten-
sor image. The colors represent fi ber direction;  red  = left to 
right,  blue  = cranio-caudal, and  green  = anterior- posterior. 

The intensity represents the fractional anisotropy (FA) also 
indicated in the  lower corner . In the  upper corners , the 
slice section is indicated in the axial and sagittal plane       
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  Fig. 12.20     Sagittal slices o     f a color-coded diffusion ten-
sor image. The colors represent fi ber direction;  red  = left to 
right,  blue  = cranio-caudal, and  green  = anterior- posterior. 

The intensity represents the fractional anisotropy (FA) also 
indicated in the  lower corner . In the  upper corners , the 
slice section is indicated in the axial and coronal plane       
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  Fig. 12.21    Sagittal slices of a color-coded diffusion ten-
sor image. The colors represent fi ber direction;  red  = left to 
right,  blue  = cranio-caudal, and  green  = anterior- posterior. 

The intensity represents the fractional anisotropy (FA) also 
indicated in the  lower corner . In the  upper corners , the 
slice section is indicated in the axial and coronal plane       
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  Fig. 12.22    Sagittal slices of a color-coded diffusion ten-
sor image. The colors represent fi ber direction;  red  = left to 
right,  blue  = cranio-caudal, and  green  = anterior- posterior. 

The intensity represents the fractional anisotropy (FA) also 
indicated in the  lower corner . In the  upper corners , the 
slice section is indicated in the axial and coronal plane       
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  Fig. 12.23    Sagittal slices of a color-coded diffusion ten-
sor image. The colors represent fi ber direction;  red  = left to 
right,  blue  = cranio-caudal, and  green  = anterior- posterior. 

The intensity represents the fractional anisotropy (FA) also 
indicated in the  lower corner . In the  upper corners , the 
slice section is indicated in the axial and coronal plane       
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  Fig. 12.24    Sagittal slices of a color-coded diffusion ten-
sor image. The colors represent fi ber direction;  red  = left to 
right,  blue  = cranio-caudal, and  green  = anterior- posterior. 

The intensity represents the fractional anisotropy (FA) also 
indicated in the  lower corner . In the  upper corners , the 
slice section is indicated in the axial and coronal plane       
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  Fig. 12.25    Sagittal slices of a color-coded diffusion ten-
sor image. The colors represent fi ber direction;  red  = left to 
right,  blue  = cranio-caudal, and  green  = anterior- posterior. 

The intensity represents the fractional anisotropy (FA) also 
indicated in the  lower corner . In the  upper corners , the 
slice section is indicated in the axial and coronal plane       

 

12 Normal Diffusion Tensor Imaging-Based White Matter Anatomy



258

  Fig. 12.26    Sagittal slices of a color-coded diffusion ten-
sor image. The colors represent fi ber direction;  red  = left to 
right,  blue  = cranio-caudal, and  green  = anterior- posterior. 

The intensity represents the fractional anisotropy (FA) also 
indicated in the  lower corner . In the  upper corners , the 
slice section is indicated in the axial and coronal plane       
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  Fig. 12.27    Sagittal slices of a color-coded diffusion ten-
sor image. The colors represent fi ber direction;  red  = left to 
right,  blue  = cranio-caudal, and  green  = anterior- posterior. 

The intensity represents the fractional anisotropy (FA) also 
indicated in the  lower corner . In the  upper corners , the 
slice section is indicated in the axial and coronal plane       
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tal plane (Fig.  12.28a ). The corpus callosum 
appears as a central large red structure. Outline 
the structure (white outline) and you should yield 
an initial tracking result that appears similar to 
Fig.  12.28b . Since the cingulum and the fornix 
run directly  adjac  ent to the corpus callosum in 
the midsagittal plane, parts of these tracts are 
included in the initial result. These spurious tracts 
can be removed by placement of two ROIs (red 
ROIs, Fig.  12.28b ). The fi rst ROI is placed just 
posteriorly of the caudal tip of the genu of the 
corpus callosum (left red ROI) and the cingulum 
fi bers from this ROI are excluded. The second 
ROI is placed anteriorly of the caudal tip of the 
splenium of the corpus callosum (right red ROI). 
   This ROI excludes fi bers from the fornix and the 
posterior aspect of the cingulum.

   The previous result can be segmented further 
into three distinct areas of the corpus callosum, 
the anterior part or genu, the central part or body, 
and the posterior aspect or splenium. To achieve 
this segmentation, the fi rst tracking result is taken 
 and   three new  ROIs   are drawn (Fig.  12.29a ). The 
red ROI delineates the midsagittal aspect of the 
genu, the yellow ROI the body, and the green 
ROI the splenium. In Fig.  12.29b , the results 

from this fi ber tracking are shown in correspond-
ing colors.

       The Cingulum 
 The  cingulum   is  a   paired parasagittal structure 
that extends from the septal area to the uncus 
region of the temporal lobe. Due to its close prox-
imity to the corpus callosum, especially while in 
proximity of the cingulate gyrus, callosal fi bers 
are invariably included in the starting ROI. The 
ROI outlined in white includes the left and right 
cingulum. The appropriate coronal plane is found 
when the large green structure above the corpus 
callosum is selected in  the    sa  gittal plane 
(Fig.  12.30a ).    The callosal fi bers can be easily 
removed by using the midsagittal ROI previously 
used as starting ROI for tracking of the corpus 
callosum. The fi nal result is in Fig.  12.30b .

       The Fornix 
 Fiber tracking  of   the  fornix      is  quite   challenging. 
First, it is a very thin structure with a relatively 
low fractional anisotropy, most probably due to 
substantial partial volume effects of the sur-
rounding gray matter and cerebrospinal fl uid. 
This low anisotropy may cause fi ber tracking to 

  Fig. 12.28     Tracking   of 
 the   Corpus callosum (CC), 
fi rst step. ( a ) Midsagittal 
view of the CC with the 
initial starting region of 
interest (ROI) in  white . ( b ) 
Removal of spurious fi bers 
mainly from the cingulum 
using exclusion ROIs ( red )       
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  Fig. 12.29     Tracking   of 
 the   Corpus callosum, 
second step. ( a ) 
Midsagittal view of the CC 
with the initial starting ROI 
in  white  and the sub- 
segmentation in  red , 
 yellow , and  green . ( b ) 
Tracking result in colors 
corresponding to the initial 
ROIs       

  Fig. 12.30     Tracking   of 
 th  e bilateral  cingulum 
bundle (CB)  . ( a ) Initial 
ROI encompassing the CB 
bilaterally ( white ) in the 
coronal plane. ( b ) Tracking 
result overlaid on a sagittal 
fi ber density map       

be aborted. Second, it is a highly curved struc-
ture that poses additional diffi culties for fi ber 
tracking algorithms. And fi nally, the fornix lies 
in close proximity to other fi ber bundles such as 
the corpus callosum and the anterior commissure 
that further hamper fi ber reconstruction. The for-
nix is of great interest, especially in psychiatric 
research on Alzheimer’s, since it is one of the 

major tracts  relate  d to the hippocampus and 
memory function. Its fi bers run along the medial 
aspect of the hippocampus, forming the fi mbria, 
that project posterosuperiorly. The bilateral fi b-
ria form the crus, run over the thalamus, and then 
join to form the body. Running frontally, the cor-
pus separates again to form the column and the 
majority of the fi bers terminate in the mammil-
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lary body. The body of the fornix is a good start-
ing region best found in the midsagittal plane. 
Then,  the   full fornix can be delineated on the 
corresponding  coronal   slice (Fig.  12.31a ).  The 
  initial result contains spurious fi bers from the 
corpus callosum and the anterior commissure 
that can be removed subsequently. The fi nal 
result as shown in Fig.  12.31b  is somewhat frag-
ile and, depending on your data, may look less 
well defi ned.

       The Inferior Longitudinal-, Inferior 
Fronto-Occipital- and Uncinate 
Fasciculus 
 Fiber tracking of  the    i   nferior      longitudinal  fascic-
ulus   can be started from the temporal lobe. As 
indicated in Fig.  12.32a , a large, somewhat non-
specifi c starting region can be chosen to encom-
pass the temporal lobe on the coronal slice (right). 
This yields a large complex of fi ber bundles 
(Fig.  12.32b ) that can be further dissected.

  Fig. 12.31    Unilateral 
 tracking   of the fornix (FX). 
( a )    Initial ROI ( white 
circle ) encompassing the 
FX in the coronal plane. 
( b ) Tracking result overlaid 
on a sagittal fi ber density 
map       

  Fig. 12.32    ( a ) Initial ROI 
( white circle )  for    all   the 
following tracts. ( b ) 
Through the red exclusion 
ROI, the Uncinate 
Fasciculus (UF) is 
excluded       
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   The  inferior   longitudinal fasciculus  is   the main 
bundle connecting the temporal and occipital lobes. 
The two other major fi ber bundles that are part of 
the initial complex (Fig.  12.32b ) are the uncinate- 
and the inferior fronto-occipital fasciculus. These 
two bundles can be easily excluded by the exclu-
sion ROI (red) indicated in Fig.  12.32b  at  the 
  fronto-temporal junction.    This is also a perfect 
starting ROI for these two structures. This is 
described in the next section on these two struc-

tures. Additional spurious fi bers, mainly stemming 
from the anterior commissure and the corpus cal-
losum, can be excluded by a large parieto-occipital 
inclusion ROI (Fig.  12.33a ). Figure  12.33b  shows 
the inferior longitudinal fasciculus bilaterally.

   As mentioned in  the   previous  sec  tion on the 
inferior longitudinal fasciculus, a coronal ROI 
at the fronto-temporal junction (Fig.  12.32b ) is 
the ideal starting region for the reconstruction 
of the inferior fronto-occipital and uncinate fas-

  Fig. 12.33    Tracking of  the      
inferior longitudinal 
fasciculus (ILF). ( a ) 
Placement of large 
occipital inclusion ROI 
( white circle ). ( b ) 
Depiction of the ILF 
overlaid on a fi ber density 
map       

  Fig. 12.34     Tracking   of 
 the   uncinate fasciculus 
(UF). ( a ) Starting ROI at 
the fronto-temporal 
junction. ( b ) Initial 
tracking result and green 
inclusion ROI       
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ciculus. As can be seen in  the   initial result in 
Fig.  12.34b , no spurious fi bers are present, and 
in two easy steps the two bundles can be iso-
lated.    To better appreciate the intricate interwo-
ven structure of the above named three fi ber 
bundles, this section is concluded with a com-
bined overview. Since the uncinate fasciculus 
connects the frontal and temporal lobe whereas 
the inferior fronto- occipital fasciculus connects 

the frontal and occipital lobe, a second  inclu-
sion   ROI, as depicted in Fig.  12.34a, b  (green 
ROI) within the temporal lobe, effectively iso-
lates the uncinate fasciculus. The results can be 
seen in Fig.  12.35 . Note that no additional ROIs 
are required to remove spurious fi bers. Likewise,    
the inferior fronto-occipital fasciculus can be 
isolated by placing an inclusion ROI directly 
posterior to the point where both bundles  jo  in 

  Fig. 12.35    Depiction  of   
the UF overlaid on  a   
sagittal fi ber density map       

  Fig. 12.36    Tracking of 
 the      inferior fronto-occipital 
fasciculus (IFOF). ( a ) 
Initial ROI as in Fig.  12.34 . 
( b ) Initial tracking result 
and green inclusion ROI       
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(Fig.  12.36a, b ) and the fi nal result is shown in 
Fig.  12.37 .

      Figure  12.38   is   an overview where the previ-
ously reconstructed tracts are shown in a com-
bined array. The uncinate fasciculus is colored 
red,  th   e   inferior longitudinal fasciculus is colored 
green, and the inferior fronto-occipital fasciculus 
is colored yellow.

       The Superior Longitudinal-, Superior 
Fronto-Occipital- and Arcuate 
Fasciculus 
  The   superior longitudinal,       superior fronto- 
occipital      and arcuate fasciculus can all be isolated 
from one starting ROI (Fig.  12.39a ).    The arcuate 
fasciculus especially is of great interest in 
neuroscience and neurosurgery alike, since it 

  Fig. 12.37    Depiction of 
 the      IFOF overlaid on an 
axial fi ber density map       

  Fig. 12.38    Combined 
bilateral view  of   the UF 
( red ), the IFOF ( yellow ), 
and the ILF ( green )       
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connects the speech areas of Broca and Wernicke 
in the dominant (mostly left) hemisphere.

   Spurious fi bers from the uncinate and inferior 
fronto-occipital fasciculus can be removed by 
using the starting ROI for these two bundles, as 
 descri  bed in the previous section, as exclusion 
ROI. Spurious fi bers from the cortico-spinal tract 
can be removed by placing a large ROI in the pos-
terior limb of the internal capsule (Fig.  12.39b ). 
The fi nal result shown in Fig.  12.39c  can be used 

as a starting point to isolate the individual fi ber 
bundles. 

 The superior fronto-occipital  fas  ciculus runs 
slightly more medial and superiorly of the superior 
longitudinal fasciculus. Thus, by choosing the bun-
dle that follows this course from the initial result, 
the superior fronto-occipital fasciculus can be iso-
lated. A ROI drawn on a coronal  section ensures 
the complete inclusion of the tract (Fig.  12.40a, b ) 
and the result is shown in Fig.  12.41 .

  Fig. 12.39    Initial ROI 
including  the            superior 
longitudinal fasciculus 
(SLF), the arcuate 
fasciculus (AF), and the 
 superior fronto-occipital 
fasciculus (SFOF).      ( a ) 
Initial unilateral ROI 
placement. ( b ) Removal of 
spurious fi bers from the 
internal capsule ( white 
ROI ). ( c ) 3D overview of 
the initial tracking result 
and the exclusion ROI as 
in ( b ) ( red circle )       

  Fig. 12.40    Selection of 
the SFOF. ( a ) Initial ROI 
displayed on the coronal 
color map. ( b ) Depiction of 
the same inclusion ROI 
( white circle )       on the 3D 
tracking result after 
removal of the fi bers from 
the internal capsule       
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  Fig. 12.41    Depiction of 
the SFOF  ov      erlaid      on a 
sagittal fi ber density map       

    After isolation and exclusion of the superior 
fronto-occipital fasciculus, the result shown in 
Fig.  12.42b  includes the arcuate and superior longi-
tudinal fasciculus. Since the arcuate fasciculus is 
the only bundle of the two entering the temporal 
plane, a ROI  plac  ed to include this region 
(Fig.  12.42a, b ) will effectively isolate the arcuate 
fasciculus. The results of this dissection are dis-
played in Fig.  12.43 . The superior longitudinal fas-

ciculus can be obtained by excluding both  the   
arcuate and the superior fronto-occipital fasciculus 
from the initial result and it is displayed in 
Fig.  12.44 .

     In Fig.  12.45 , the previously  reconstructed         
 tracts   are shown in a combined array. The supe-
rior fronto-occipital fasciculus is colored red, the 
arcuate  f   as  ciculus is colored green, and the supe-
rior longitudinal fasciculus is colored yellow.

  Fig. 12.42    Selection of 
the AF. ( a )  Initial    ROI 
  displayed on the coronal 
color map. ( b ) Depiction of 
the same inclusion ROI 
( white circle ) on the 3D 
tracking result after 
removal of the fi bers from 
the SFOF       
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  Fig. 12.43    Depiction of 
the AF  overlai   d   on a 
sagittal fi ber density map       

  Fig. 12.44    Depiction of 
the  SLF       overla      id   on a 
sagittal fi ber density map. 
   This image was obtained 
by removing the AF and 
the SFOF from the initial 
tracking result       

       The  Cerebral Peduncles   
 The  cerebral   peduncles  contain    three   major fi ber 
bundles, the fronto-pontine, the cortico-spinal, 
and the temporo-parieto-occipito-pontine tract. 
The most renowned of the three is the cortico- 
spinal tract, as it is the main connection from the 
motor cortex to the spinal cord and of critical 

importance for motor function in humans. The 
initial result as shown below can be obtained by 
encompassing the cerebral peduncle on an axial 
slice as indicated in Fig.  12.46a . The initial result 
(Fig.  12.46b ) includes all three tracts.

   The fronto-pontine tract can  b  e selected by 
placing a relatively large ROI in the frontal lobe. 
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  Fig. 12.45    Combined 
 unilateral      view  o     f  th     e 
SFOF ( red ), the SLF 
( yellow ), and the AF 
( green )       

To include all tracts, the coronal plane should be 
used. The cortico-spinal tract can be selected by 
placing a relatively large ROI to encompass the 
corona radiata. To include all tracts, the axial 
plane should be used. The temporo-parieto- 
occipito-pontine tract can be selected by placing 
a relatively large ROI in the parieto-occipital 

area. To include all tracts, the coronal plane 
should be used. In the overview, the previously 
reconstructed tracts are shown in a combined 
array (Fig.  12.47 ). The fronto- po  ntine tract  is   col-
ored red, the temporo-parieto-occipital-pontine 
tract is colored green, and the cortico-spinal tract 
is colored yellow.

  Fig. 12.46    Initial tracking 
 of    the   fronto-pontine-, the 
cortico-spinal-, and the 
parieto-occipito-pontine 
tract (FPT, CST, and POPT 
respectively). ( a ) Initial 
ROI overlaid on an axial 
color map. ( b ) Initial 
tracking result with a 
combined representation of 
the FPT, the CST, and the 
POPT overlaid on a sagittal 
fi ber density map       
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  Fig. 12.47    Combined 
unilateral  v   iew   of the FPT 
( red ), the CST ( yellow ), 
and the POPT ( green )       
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            Learning Points 

•     DTI can be used in a variety of clinical situa-
tions and is not limited to neurological 
applications.  

•   DTI is used to varying degrees in clinical 
practice and despite its utility, remains primar-
ily a preclinical research tool.  

•   There are a number of special considerations 
that need to be taken into account when using 
DTI in clinical practice.     

    DTI in Clinical Practice  and Research   

 The utility of DWI in clinical practice is well 
established and it is routinely used in the investi-
gation of suspected acute ischaemic stroke, to 
differentiate vasogenic versus cytotoxic oedema 
and to characterize intracranial lesions such as 
pyogenic abscess, infections, tumors, and trauma 
[ 1 ]. DTI, however, remains predominantly a tool 
for preclinical research. Presently, one clinical 
application of DTI with potential clinical value, 
is for the planning of neurosurgical and radio-
therapeutic procedures where it can be used in 
combination with invasive electrophysiological 
monitoring and functional MRI to locate essen-
tial motor and eloquent functional pathways. In 
this context, DTI and/or tractography may also 
have a future role in the placement of electrodes 
for deep brain stimulation. As a preclinical 
research tool, DTI has been applied widely to 
study a broad range of neurological and psychiat-
ric disorders (Fig.  13.1 ). A selection of such clini-
cal applications and the special issues that are 
associated with them is provided in the following 
chapters. Although, the topic is not covered 
explicitly in detail in this book,  DTI   also has been 
used to investigate nonbrain tissue, including the 
spinal cord [ 2 ,  3 ], peripheral nerves [ 4 ,  5 ], heart 
(myocardium) [ 6 ], breast [ 7 ,  8 ], skeletal muscle 
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[ 5 ,  9 ], kidney [ 10 ,  11 ], prostate [ 12 ,  13 ], and 
uterus [ 14 ], and may be relevant for the investi-
gation of allied disorders.

       Special Considerations in the Clinic 

 When embarking on DTI  data collection   in a 
clinical setting or in the context of clinical 
research, there are a number of considerations 
that could be taken into account that will guide 
the way data will be acquired and how it is ana-
lyzed. Each of these is summarized below.  

    Scan Population: Whom Are 
We Going to Scan? 

    Nature of Patient Group/Pathology 

 Different clinical groups present specifi c chal-
lenges. For example, acquiring DTI data on neo-
nates is clearly different in practice to acquiring 
data on adults. Similarly, acquiring DTI data in 

the presence of substantial traumatic brain dam-
age will present more challenges than scanning 
patients with more subtle organic pathology, such 
as in  prodromal schizophrenia  . These are extreme 
cases, however, they illustrate the importance of 
considering the nature of the patient group and 
their pathology, when acquiring and analyzing 
DTI data. Some specifi c examples are provided 
in the following chapters, however, more gener-
ally, you may consider the following. 

    Age 
 The brain changes signifi cantly over the course 
of the lifespan, and this in turn is refl ected by 
alterations in DTI parameters that are modulated 
by structural changes as the brain develops and 
ages. Such changes are not uniform across the 
brain, and throughout each stage of life fi ber 
pathways are developing and degenerating at dif-
ferent rates [ 15 ,  16 ]. Understanding when these 
changes occur is useful both when considering 
the design of DTI research studies and when 
interpreting clinical fi ndings in the context of 
other imaging or histopathological data. 

  Fig. 13.1    Nonexhaustive 
selection of preclinical 
applications       

 

L. Emsell and S. Sunaert



277

    Developmental Phase   
 Although the possibility of acquiring in vivo DTI 
data and performing tractography in utero has 
been demonstrated [ 17 ], the numerous challenges 
associated with acquiring such data limits the 
techniques use in clinical practice. Nevertheless, 
several groups have applied DTI to study fetal 
brain development both ex-vivo, using postmor-
tem brains [ 18 ,  19 ] and in-vivo, by scanning pre-
term infants [ 20 ]. As DTI provides contrast in the 
absence of myelination, these fascinating studies 
have been able to build on prior histological 
knowledge to provide further insight into brain 
development. Far from being small, simplifi ed 
versions of the adult brain, the fetal brain is a 
unique, and continuously changing with transient 
structures such as the ganglionic eminence [ 21 ] 
and fi ber bundles that may disappear during fetal 
life, at term or in early childhood. Others bun-
dles, such as the superior longitudinal fasiculus, 
may not be detectable until the third trimester or 
even at birth [ 22 ]. Unlike in later developmental 
stages where DTI is most useful in delineating 
white matter structure, in the fetal brain, the orga-
nization of the cerebral wall is also apparent. 
Notably, the presence of radially oriented struc-
tures that guide neuronal migration to the cortical 
surface between the second and third trimesters, 
give rise to anisotropy perpendicular to the corti-
cal surface, which results in high FA in the cor-
tex. As anisotropy decreases with increasing 
microstructural laminar and columnar complex-
ity in later development, FA, in turn, becomes 
much lower in the cortex. 

 Knowledge of such variations in anatomical 
organization and DTI parameters during fetal life 
will become increasingly valuable in future clini-
cal applications involving preterm and newborn 
infants [ 23 ]. 

 Typically, as myelination progresses, anisot-
ropy within the white matter continues to increase 
and diffusivity decreases rapidly during the 
course of brain development, with the most dra-
matic changes occurring in the fi rst 2 years of 
life. After this period, the rate of change decreases 
as the brain approaches adult proportions in mid- 
childhood [ 24 ]. For a detailed review on the topic 
of white matter development during the fetal, 
neonate and infant stages, see Dubois et al. [ 25 ]. 

 In order to investigate DTI changes during 
development, various groups have proposed a 
series of age-specifi c population atlases includ-
ing data from neonates, infants, and children 
through to adolescence [ 15 ,  26 ]. Although  differ-
ent   studies are broadly in agreement with respect 
to the identifi cation of increases in anisotropy 
followed by decreases in diffusivity during devel-
opment, the precise trajectory of such changes 
remains to be confi dently elucidated owing to the 
myriad challenges associated with DTI data col-
lection and analysis.  

    Senescent Phase   
 It is generally accepted that the age-related 
decline in white matter volume in late adulthood 
is an indicator of senescence. Precisely when this 
phase begins and development end is unclear, 
however DTI data suggests it may occur as early 
as the fourth decade [ 27 ]. In line with heteroge-
nous DTI changes during development, FA and 
diffusivity changes during senescence are equally 
regionally variable. One prevailing view is that of 
retrogenesis, which describes how fi ber tracts 
that are myelinated the latest, are the most vul-
nerable to neurodegenerative processes. Such 
early myelinated fi bers, which reach maturation 
in utero or perinatally (e.g. primary motor fi bers) 
are thought to be more robust than those matur-
ing later (e.g. SLF). An allied phenomenum is the 
concept of an anterior-posterior gradient of diffu-
sion changes, whereby age-related decline in FA 
is greatest in frontal and parietal WM compared 
to occipital WM [ 28 ]. 

 Advancing age is associated with a loss of 
white matter volume, FA decrease, and increase 
in diffusivity measures. There are also other age- 
related phenomena that may impact upon DTI 
metrics, which deserve consideration. A common 
feature of elderly MRI scans are hyperintense 
lesions on T2-weighted fl uid-attenuated inver-
sion recovery (FLAIR) images. These “white 
matter hyperintensities” (WMH)       refl ect regional 
leukaraiosis arising from multiple histopatho-
logic processes, including ischemia/infarction, 
demyelination, infl ammation, gliosis and rarefac-
tion, and amyloid angiopathy [ 29 ]. WMH typi-
cally occur in a regionally characteristic pattern, 
with focal or punctuate lesions that may become 
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confl uent, occurring in the deep and subcortical 
white matter; and periventricular WMH charac-
terized by smooth, confl uent bands and periven-
tricular caps. The former are thought to arise 
from primarily vascular pathology, whilst the lat-
ter periventricular lesions are believed to have a 
non-ischaemic origin [ 30 ]. Historically, the 
boundaries of WMH have been defi ned by a 
sharp change in intensity on FLAIR images 
allowing relatively trivial qualitative clinical rat-
ings and automated segmentation. However, a 
more contemporary view is that WMH refl ect a 
late, severe stage of damage that extends beyond 
the hyperintense boundary; a view supported by 
recent work combining DTI and FLAIR to inves-
tigate the evolution of WMH [ 29 ,  31 ]. In this 
context, DTI studies in populations that include 
subjects with  WMH  , should take into account not 
just the clearly delineated WMH, but also con-
sider potential broader microstructural changes 
and partial volume effects. 

 A less widely considered factor in the context 
of DTI, is the change in brain iron content with 
advancing age. Ferritin, a protein controlling the 
storage and release of iron, decreases in white 
matter and increases in subcortical gray matter 
[ 32 ,  33 ]. As iron changes MR-signal intensity 
and causes susceptibility artifacts, any increase in 
iron-content will infl uence DTI metrics.   

    Effect on Brain Structure 
 Different clinical groups will share both overlap-
ping and distinct neuroanatomical features. For 
example, infants will share similar features to 
other infants, but will have markedly different 
brains to older typically developing children and 
adults. Similarly, healthy adults of comparable 
age will share similar gross anatomy, but adults 
within that age category who have multiple  scle-
rosis  , will have brains with regionally altered 
white matter composition. It is important to rec-
ognize and consider such differences in the con-
text of DTI as the size, shape, and composition of 
the brain impacts  DTI parameters   in a number of 
ways. For example, by differentially changing 
the homogeneity of the magnetic fi eld, particu-
larly at tissue interfaces such as the  frontal and 

temporal sinuses  , there will be differential 
degrees of gradient susceptibility distortions and 
signal loss. In such regions, the measured diffu-
sion signal will be corrupt and therefore any 
derived DTI metrics will be inaccurate. Although 
it may be possible to recover some information 
by applying offl ine postprocessing correction 
strategies such as informed RESTORE [ 34 ] or 
 fi eld-map-based techniques   [ 35 ], attempting to 
reduce these effects during data acquisition are 
encouraged. 

 Brain geometry will also determine the extent 
of partial volume effects ( PVE)        . For example, 
larger brains may be expected to have larger fi ber 
bundles and therefore less PVE-contaminated 
voxels relative to smaller fi ber bundles. As DTI 
parameters represent a voxel-average scalar mea-
sure, PVE modulate DTI parameters [ 36 ]. It fol-
lows that systematic differences in PVE may 
introduce bias into tract-based statistics. 

 Almost all DTI processing will be performed 
in another reference space than the native image 
space. This is because image quality correction 
techniques that attempt to reduce the effect of 
eddy currents and motion, require the image to be 
transformed using  image registration techniques     . 
For example, by mapping the DWIs to the non- 
DWI (b0), or to an anatomical scan. Image regis-
tration is also required for any sort of group 
analysis where equivalent voxels/anatomy needs 
to be compared between subjects equitably. In 
simple terms, registration algorithms seek to fi nd 
common features between images in order to 
match them. In the presence of large differences 
in brain structure such as gross atrophy or lesions, 
the registration will perform more poorly. In the 
case of individual datasets with atypical anatomy 
and/signifi cant pathology, special attention 
should be paid to assessing the quality of correc-
tion strategies. In the case of group comparisons, 
the template space should match the study popu-
lation as closely as possible (e.g. pediatric). 
Ideally, a population atlas derived from combin-
ing all the subjects data, should be used, or alter-
natively, a high quality template developed by the 
 neuroimaging community   (see Chap.   10     for fur-
ther details).  
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    Effect on Patient  Mobility   
 The sequences used to acquire DTI data (e.g. 
EPI), are particularly susceptible to motion. In 
the absence of real-time motion correction, it is 
therefore preferable for the subject to remain as 
still as possible for the duration of the scan. There 
are a number of clinical groups where this may 
be more challenging. For example: children, 
patients with motor disorders or hyperkinesia due 
to other pathology or medication, and patients 
that are particularly restless, agitated, or anxious 
(including patients with active psychiatric symp-
tomatology). When such subjects are included in 
group studies, it is particularly important to rec-
ognize the potential for bias if there are more 
motion artifacts in the patient data compared to 
the control data. 

 Aside from increased motion, patients may 
also present with reduced or restricted mobility. In 
such cases, patients may not be positioned opti-
mally within the scanner, or suffer discomfort. 

 In both cases of increased and decreased 
mobility, it may be sensible to consider limiting 
scan time, using optimized sampling of diffusion 
gradients [ 37 ,  38 ] and/or allowing breaks between 
sequences in order to ensure optimal data  acqui-
sition   and patient comfort.  

    Degree of  Patient Compliance   
 The patient’s motivation for having a DTI scan 
and their understanding of the procedure may 
impact on the success of data collection. A sig-
nifi cant number of patients may refuse or termi-
nate scanning early due to anxiety, typically 
arising out of claustrophobia [ 39 ]. Aside from the 
risk of incomplete data collection, data quality 
may be reduced by motion artifacts arising from 
gross patient movement, increased respiration 
and swallowing. DTI sequences involving EPI 
are characterized by a persistent, loud high fre-
quency repetitive beep and strong gradients that 
may vibrate the scanner table. These features 
may startle or unnerve anxious patients. However, 
careful explanation and the provision of realistic 
expectations of the scanning process has been 
shown to reduce patient anxiety and increase 
compliance, and therefore reduce unwanted 
motion effects or early termination of scans [ 40 ].   

    DTI in Children 

 Aside  from   the analytical challenges associated 
with changes in  brain development   described 
above, there are other practical factors that should 
be considered when acquiring DTI data in chil-
dren (for a detailed review, see [ 41 ]). These con-
siderations can be broadly divided into the 
following themes. 

    Child-Centered Approach to Scanning 
 Acquiring  DTI   data on children is challenging 
across all age groups, as the scanning procedure 
requires that they lay still in an unfamiliar, noisy 
restrictive space for a relatively long period of 
time. This can be challenging enough for adults, 
let alone for younger children who may not com-
prehend what is happening and why. At best, this 
may result in poor quality data due to excessive 
bulk motion artifacts, at worst; it will result in sig-
nifi cant distress and termination of the scan and 
thus incomplete data acquisition. Approaches to 
avoid these scenarios are therefore necessary, both 
for the sake of clinical care and the child’s well-
being, and also to prevent potential bias due to 
motion artifacts in case–control group studies. The 
most appropriate approach will be guided by the 
age of the child and the context of the  scanning 
protocol  . For example, if the DTI scan is required 
for clinical purposes, such as for presurgical plan-
ning, where good quality data is essential to clini-
cal care, the child will typically be sedated. If the 
child is voluntarily taking part in a clinical research 
study, a different approach will be required. Babies 
are encouraged to sleep and pre-school or school-
aged children are typically awake. 

 Broadly, a child-centered approach involving 
parents and carers is recommended, both in the 
scanning environment and in communication. 
This could involve a decorated waiting area, the 
provision of child-size furniture and toys, and 
child-friendly uniforms for medical staff. Some 
institutions have a mock scanning facility, which 
can be used to introduce the child to the scanner by 
replicating the scanning experience in a safe, con-
trolled manner. Child-appropriate  scanning equip-
ment   is useful, for example, a smaller head coil, 
foam padding and blankets, ear-plugs/headphones 
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to reduce  scanner background noise (SBN)        , and 
the opportunity to stream children’s music/videos 
within the scanner. 

 With regard to communication, it is important 
to engage both parents/carers and children, as 
parental anxiety and misunderstanding will trans-
late to the child. Furthermore, parents are required 
to provide written informed consent in addition to 
verbal consent from the child, and should there-
fore fully comprehend the purpose and procedures 
surrounding the DTI scan. Some ethical commit-
tee regulations may also require written consent 
from children, typically over 12 years of age. 
Appropriate communication can take many forms 
but should always make use of child- specifi c and/
lay terminology and be presented in a calm, unhur-
ried, and friendly manner. Aside from general ver-
bal instructions, it is useful to offer illustrated 
information booklets, brochures, and videos. 
Beyond these basic  approaches  , a variety of other 
methods can be used, for example drawing on 
behavioral and situational training techniques 
[ 41 ]. Further technical details about acquiring DTI 
data in children can be found in Chap.   6    .   

     Ethical Considerations   

 A complete discussion of ethical considerations 
associated with the use of DTI data is beyond the 
scope of this book. However, a few points deserve 
mention. Firstly, the same fundamental principles 
apply to DTI scanning as to any other noninva-
sive imaging procedure. Informed consent should 
be obtained and the DTI examination should con-
form to local institutional regulatory ethical stan-
dards and those required within broader national 
and international frameworks e.g. International 
Code of Medical Ethics, Declaration of Helsinki 
and The Belmont Principles. 

 Secondly, the decision to use DTI in a clinical 
setting should not be undertaken without due con-
sideration of the limitations of the technique, par-
ticularly with regard to risk-assessment. The 
question arises as to whether or not to use DTI data 
if it is available i.e.  is suboptimal, potentially 
incorrect data about white matter anatomy better 
than no information at all ? This is especially perti-
nent in the context of surgical planning. For exam-

ple, it has been clearly demonstrated that DTI-based 
fi ber tractography does not provide a complete 
representation of anatomy and underestimates the 
size and cortical extent of white matter tracts [ 42 ], 
therefore using the technique without due regard 
to this limitation is potentially harmful. In prac-
tice however, surgeons typically draw on a range 
of imaging and electrophysiological techniques 
for presurgical risk assessment and planning. They 
are also more likely to use the color FA maps in 
the fi rst instance, with DTI- based tract reconstruc-
tions providing a coarse assessment of tract dis-
placement (see Chap.   20    ). When used responsibly, 
this complementary information may improve 
surgical outcomes [ 43 ]. Surgical planning is an 
illustrative example, however, the decision to use 
DTI data in other clinical settings should be 
guided by the acting physicians duty of care. 

 Thirdly, there are different ethical issues asso-
ciated with acquiring data for clinical care and 
for preclinical research, and due attention such be 
paid to this distinction. Of particular note are 
issues associated with managing incidental fi nd-
ings [ 44 ] and the diffi culty patients may experi-
ence distinguishing between a diagnostic brain 
scan and one used for research purposes i.e. the 
“ therapeutic misconception  ” (e.g. clinical study 
participants may incorrectly assume the scan 
forms part of their medical record and will be 
used to identify pathology) [ 45 ]. Finally, there is 
an increasing trend towards data-sharing within 
the neuroimaging research community and a con-
certed effort to understand brain connectivity, 
often incorporating DTI data. This sharing of 
clinical research data for secondary analysis 
presents additional ethical challenges, particu-
larly relating to  informed   consent (see Brakewood 
and Poldrack [ 46 ], for a detailed review).   

    Scanner Resources: What 
Equipment Is Available? 

    Hardware 

     Magnetic Field Strength   
 Clinical MR systems typically used for routine 
DTI scanning of humans are 1.5 T or 3 T, although 
a small number of specialist research centers 
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offer the possibility of scanning (predominantly 
healthy) subjects at 7 T. As DTI parameters 
should not be dependent on the static magnetic 
fi eld strength, the reproducibility of measures at 
different fi eld strengths is largely dependent on 
signal-to-noise ratio and the effect of artifacts 
[ 47 ]. It is commonly accepted that scanning at 
higher fi eld strengths provides increased signal-
to- noise, therefore one would expect higher fi elds 
to equate with higher quality. Although this is the 
case for conventional imaging, the competing 
decreases in T2 time and increased b0 inhomoge-
neity associated with increasing fi eld strength, 
coupled with increased distortions due to eddy 
currents, magnetic susceptibility, and chemical 
shift artifacts, off-set the gain in image quality in 
DTI. Nevertheless, it has been shown that the 
uncertainty of fi tted DTI parameters decreases 
with increasing fi eld strength, which may impact 
positively on fi ber-tracking results [ 47 ]. 
Additionally, the use of multichannel phased- 
array head radio-frequency coils in place of a tra-
ditional birdcage coil allows the use of parallel 
imaging techniques such as sensitivity encoding 
(SENSE), array spatial sensitivity encoding tech-
nique (ASSET), and generalized auto-calibrating 
partially parallel acquisition (GRAPPA) to 
improve DTI data quality. At moderate accelera-
tion factors (e.g. 2 or 3) these techniques may 
reduce susceptibility-induced geometric warping 
artifacts and T2 effects by allowing a reduced 
EPI echo train and TE time [ 48 ].  

     Gradient System   
 Aside from the static fi eld, the number and 
strength of transmit and receive gradient coils 
contributes signifi cantly to DTI data quality. 
Additionally, the gradient duty cycle determines 
how many 2D images can be acquired per 
TR. Modern scanners will have larger duty cycles 
and therefore allow more data to be collected in 
less time. Increasing gradient strength allows 
stronger diffusion weighting and read-out in a 
shorter period of time. In turn, this means TE can 
be reduced, which improves data quality by 
decreasing susceptibility effects. The rate at 
which the gradients can be turned on and off, the 
  slew rate ,   is also important. Fast slew rates are 
preferable for DTI. However, the rapid rise and 

fall of strong gradients can induce image distort-
ing eddy currents and mechanical vibrations. 
More signifi cantly for the patient, rapid gradient 
switching can cause peripheral nerve stimulation 
leading to involuntary muscle contractions. For 
safety reasons, the maximal gradient amplitude 
and slew rate are therefore limited. Typical clini-
cal systems operating within these safety limits 
use gradients in the order of 40–80 mT/m maxi-
mal gradient amplitude and 150–200 mT/m per 
millisecond maximal slew rate, although new 
 systems   with stronger gradients and faster slew 
rates are emerging on the market and in specialist 
research centers.  

     Peripheral Equipment   
 DTI data quality may be improved by using non-
standard equipment provided by the scanning 
manufacturer or developed by and for research-
ers. For example, using multi-channel phased 
array coils instead of birdcage coils to boost SNR 
and to allow parallel imaging a simple way to 
improve DTI data quality. However, it should be 
noted that increasing the number of component 
coils may introduce a bias fi eld which favors cor-
tical coverage over deep white matter and there-
fore may be less optimal for DTI in these regions. 
Peripheral cardiac-gating is commonly supplied 
by MRI vendors and enables DTI data to be 
acquired only during the diastole phase of the 
cardiac cycle, thereby reducing pulsation arti-
facts. At the other end of the spectrum, prospec-
tive motion correction using real-time tracking 
with external devices such as cameras is gaining 
ground in high-fi eld research centers [ 49 ]. When 
such advanced equipment is available, the choice 
remains as to whether or not it would be appro-
priate to use it. For example, cardiac-gating 
increases scan time and may not be useful in rest-
less subjects or when data must be acquired 
quickly.  

   Number of  Scanners   
 This will determine to a great extent, the relative 
availability of DTI scanning time. Consider, how 
many people are using the scanner/s and how fre-
quently. In a primary clinical setting, consider the 
patient turnover of the department. DTI sequences 
can vary in length from a few minutes to half an 
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hour or more depending on the amount of data 
acquired and number of gradient directions sam-
pled. In a small clinic with only one scanner and 
a high patient turnover, it is clearly more sensible 
to consider short sequences, and the possibility 
of performing long, complex longitudinal data 
collection may be limited. The need for 
 standardization of protocols and effective quality 
assurance procedures is particularly  important   
within a center with multiple scanners.   

    Software 

    Data Management   
 An often-overlooked issue when managing DTI 
data is how it will be stored and transferred 
from the scanner to other platforms. Typical 
DTI datasets are much larger than standard clin-
ical scans and therefore present additional stor-
age issues, greater burden on PACS (Picture 
Archiving and Communication System)       and 
extended transfer time. 

    Data Storage   
 It is beyond the scope of this chapter to discuss 
DTI data storage options in detail; however, 
those working with DTI data should consider 
how and in what form it will be stored. For 
example, will the data be archived on PACS? Or 
stored off-line on a secure server? Or within a 
cloud computing framework? Will there be a 
back-up? Who will have access to this data? How 
will it be accessed? Who will manage the data? 
Will the raw DICOM data be stored, or also pro-
cessed data? These are examples of issues com-
mon to all types of imaging data. The difference 
with DTI data however is that DTI datasets are 
larger and thus present a more disproportionate 
storage burden than other data.  

   Data Format 
 There are different data formats that can be 
exported from the scanner. The DICOM (Digital 
Information and Communication in Medicine)       
format is the industry standard. As this format is 
constantly being revised to match the pace of 

technological developments, there may be subtle 
differences in the way DTI data is coded in the 
DICOM headers, which should contain all the 
relevant information about the scan (such as 
patient details, date and location of acquisition, 
scan parameters etc.). These differences can pres-
ent issues for DICOM conversion software, 
which attempt to use specifi c tags in the DICOM 
header to work out the image type, orientation, 
size, and diffusion gradient directions. These 
issues present real challenges with regard to left- 
right switching and incorrect gradient vectors, 
and should not be ignored. Nevertheless, DICOM 
remains the preferred format for data export and 
most DTI analysis packages support DICOM fi le 
conversion. 

 In addition to DICOM, MRI vendors have 
their own fi le formats that conform to the DICOM 
standard. However, these formats are not typi-
cally compatible across different vendor plat-
forms and are supported to varying degrees by 
noncommercial image analysis software. 

 In order to address these issues, another stan-
dard has been developed by the neuroimaging 
community called NIFTI (Neuroimaging 
Informatics Technology Initiative)      , with an asso-
ciated fi le format that is compatible across non-
commercial DTI analysis software applications, 
represented with the fi le extension “.nii”. Some 
vendors are now also including a nifti export 
function. There are also a variety of freely avail-
able tools that can convert DICOM data to nifti 
format. 

 The choice of fi le format to export will there-
fore depend on the users available storage/trans-
fer capacity resources. DICOM format is the 
option of choice as it is the most cross-platform 
compatible and can easily be converted to other 
formats. However, cautious users and those wish-
ing to use vendor fi rmware to analyze their data 
should consider exporting DTI data in both ven-
dor and DICOM formats.  

    Data Security   
 When considering clinical data management, 
confi dentiality and data security are important 
considerations. When data is used in clinical 
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practice, patient identifi cation is crucial and 
should be readily accessible. However, in clinical 
research, personal identifi ers such as the patients 
name, such be removed, i.e. the data should be 
anonymised. This can be done relatively trivially 
using software tools to remove the relevant infor-
mation from the DICOM header. 

 Aside from issues of confi dentiality, data pro-
tection extends to the secure storage and transfer 
of data. Data that is being transferred within and 
between hospital environments and research 
institutions outside of PACS may be controlled 
by fi rewalls. This important barrier protects sen-
sitive data, however, it may also present an obsta-
cle to DTI data transfer. The institution network 
administrator should be consulted for advice on 
this issue as using a secure shell fi le transfer pro-
tocol (sftp) is one of the safest and most effi cient 
 ways   of transferring DTI data.  

    Data Transfer   
 Aside from sftp, another method of data transfer 
is by exporting data to an external device such as 
a portable hard drive or CD/DVD. Using portable 
devices such as USB sticks carries additional 
risks for MRI vendors in the form of potential 
malware or virus transfer to the scanner, and in 
some institutions is not recommended. If you are 
interested in using this method of transfer, you 
should consult the recommended protocol for 
your institution for advice. Aside from potential 
malware issues, portable devices may not be opti-
mal for transferring large amounts of DTI data 
due to the speed at which they operate. There are 
also added risks associated with losing small por-
table devices and for data loss due to cross- 
platform incompatibility.   

    Licensing Issues   
 When choosing software, the user should con-
sider the type of software license associated with 
it, both in the context of liability and terms of use. 
For example, different software will have differ-
ent degrees of approval for clinical use that will 
dependent on the purpose for which it is used and 
the geographical region in which it is used (e.g. 
Does the software fall within the scope of the 

Federal Drugs Agency (FDA) regulations or to 
any other national or international regulatory 
standard). Typically Vendor software will be 
approved for clinical use, however, users should 
check to what degree and under what conditions 
this approval extends to DTI data. Noncommercial 
and open-source DTI software almost universally 
contains a disclaimer stating that the software is 
not approved for clinical use. 

 Aside from liability issues, there are fi nancial 
considerations associated with software licenses. 
For example, commercial software, by defi ni-
tion, invariably has associated costs. This may 
be justifi ed in terms of its conformation to the 
required clinical/regulatory standards, multi-
platform compatibility, security, and the avail-
ability of dedicated technical support. 
Noncommercial and open-source software is 
freely available and constantly in development 
making it an attractive option for those interested 
in using the most advanced methods available 
and for tailoring processing and analysis pipe-
lines to their data. The disadvantage to this 
approach however, is that the newest methods 
are unlikely to be clinically validated thereby 
introducing an element of risk. Some noncom-
mercial software also makes use of licensed soft-
ware such as “Matlab” (The MathWorks, Inc., 
Natick, Massachusetts, United States) in order to 
run. Also, there may be platform compatibility 
issues, a higher rate of software bugs and less 
technical support than for commercial software. 
Typically, technical support for freeware is found 
in mailing lists and online support forums, as 
well as in manuals. The degree of support varies 
widely depending on the software package. The 
most commonly used packages tend to have the 
most active mailing lists and support forums, 
whilst more specialized packages often (but not 
always) rely on the provision of support by a 
small development team who provide technical 
advice on an ad hoc basis alongside their normal 
research commitments.  

    Version Control   
 Both scanner software and DTI analysis software 
is in continuous development in order to keep 
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apace of scientifi c and technical developments, 
and to address technical issues/problems with the 
software code (e.g. bug fi xes/patches). This 
means that all software will require upgrading at 
some point. Although in practice this may seem a 
relatively trivial procedure, there may be unin-
tended consequences that users should be aware 
of. For example, scanner software upgrades may 
result in alterations to data acquisition parame-
ters and image quality. Some specialist research 
sequences, such as “work in progress” or “WIP” 
protocols may only function with specifi c soft-
ware versions. These issues are normally 
addressed by the local MR physicist(s) and 
Vendor applications specialist, however, being 
aware of the timing of scanner software upgrades 
is useful when planning data acquisition and an 
important part of DTI data quality control. 

 Upgrades to analysis software are usually more 
explicit for end-users as changes are typically 
documented in release notes. However  major  
software upgrades can signifi cantly alter the way 
data is processed or how the software interfaces 
with other software and hardware. In such cases, 
data processed with two different versions of the 
same software package may not be truly compa-
rable. This is important when the DTI data will be 
used longitudinally, such as for patient follow-up 

or in a group analysis investigating treatment 
effects or illness evolution. It is also important in 
cross-sectional group analysis where data is being 
collected over a long time frame, such that some 
preliminary analysis is completed using a differ-
ent software version. In all these situations, it is 
better to analyze all the data using the same soft-
ware version, and when practical, this means 
using the latest offi cial release (not the beta ver-
sion). If this is not practical, then the software 
version may need to be included as a nuisance 
variable in statistical analyses.  

   Software  Features   
 Just as there is no standard way of acquiring or 
analyzing DTI data, there is no standard DTI 
software application. However, most software 
packages will share some core features, typically: 
a raw data/DICOM reader/converter, a viewer to 
visualize the data, a diffusion tensor estimation 
tool and derivative FA maps, color FA maps and 
MD or ADC maps, deterministic and/or probabi-
listic fi ber-tracking and region-of-interest analy-
sis, and a user-manual. Beyond these fundamental 
features, there are a variety of add-ons and 
advanced modeling tools available which are 
incorporated to  varying   degrees into different 
packages. These are summarized in Fig.  13.2 .

  Fig. 13.2    Nonexhaustive 
list of features available in 
different DTI software 
packages       
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       Multimodal Viewing and Analysis   
 It is useful to be able to combine different kinds 
of data in order to maximally benefi t from the 
complementary information they provide. For 
example, clinical neuronavigation software typ-
ically integrates neurophysiological and imag-
ing data such as from EEG, MEG, fMRI, sMRI, 
and DTI, for the purpose of presurgical assess-
ment and planning. Vendor supplied software 
has the advantage of being intuitive to use and 
specifi cally designed for clinical use. However, 
the “one-size fi ts all” approach may not always 
be the most appropriate, particularly in the con-
text of DTI analysis. Off-line processing offers 
the benefi t of fl exibility and the possibility to 
use more advanced image processing and analy-
sis strategies. However, this added customiz-
ability makes it diffi cult to establish the industry 
standards required for comparability across 
clinical groups. This lack of standardization 
presents a signifi cant challenge for both soft-
ware developers and users. A recent study high-
lights the point. It compared 4 DTI software 
packages, two commercial and two freeware, 
and found signifi cantly divergent reconstruc-
tions of the corticospinal tract in the same indi-
vidual across the packages, even when using the 
same or similar tracking algorithms (FACT) 
[ 50 ] and single regions of interest (ROIs), as 
well as background threshold, fractional anisot-
ropy (FA) threshold, maximum fi ber angulation, 
and fi ber length [ 51 ]. 

 Essentially, combining multimodal data is an 
image registration issue. This is discussed in 
more detail in Chap.   10    .    

    Human Resources: Who Can Help? 

    Availability and Expertise 
of  Support Staff   

 A number of people with various roles are 
involved in MRI-based operations. For example 
physicists, radiographers, specialist nurses, 

technicians, radiologists, and imaging scientists. 
The availability and expertise of these individu-
als will vary widely from one setting to the next, 
and will determine the degree of support avail-
able for DTI scanning. Consider for example, is 
there a physicist available to optimize acquisi-
tion protocols, program the scanner, perform 
specialist quality assurance, and trouble-shoot 
data quality? Who will acquire the data? Are 
they familiar with DTI sequences and the special 
issues associated with them? Who will analyze 
the data? Are there trained radiologists or imag-
ing scientists available to process, analyze and 
interpret the data?  

    Time 

 As always with medical imaging, there needs to 
be a balance that aims to minimize scan time 
whilst maximizing image quality and obtaining 
suffi cient relevant data to provide useful informa-
tion. In a clinical setting, DTI scan time may 
need to be reduced, for example, to accommodate 
a busy schedule, for fi nancial reasons, for 
improved patient tolerance or due to the nature of 
the patients medical condition. In this context, 
consideration must be paid not only to the length 
of the scan itself, but also peripheral, allied 
activities. 

    Preparation   
 Consider how much time is needed to register 
the patient, perform safety checks, gain 
informed consent, explain procedures, set up 
the patient in the scanner, set-up any auxiliary 
equipment etc.  

    Acquisition   
 Consider not only the duration of data DTI acqui-
sition (see Chap.   6    ), but the duration in the con-
text of the entire protocol, e.g. how many other 
scans are being acquired, are there preparatory/
in-line correction routines; what is the motivation 
for the DTI scan, e.g. is it the most important part 
or an add-on? Etc.  
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    Analysis/Off-Line Processing   
 Consider whether the data is going to be analyzed 
immediately on the scanner using vendor soft-
ware, if there will be immediate data quality 
checks (recommended!), or if the data needs to 
be exported for off-line processing using special-
ist software. If it will be exported, consider the 
type of postprocessing and analysis, who will 
perform this and how long it will take.  

    Radiological Reporting   
 Is the data going to be assessed clinically or used 
in the context of preclinical research? Who will 
do this and how will it be integrated into their 
clinical or research schedule?  

    Outsourcing   
 It is possible to outsource complex advanced 
radiological data, such as DTI data, for process-
ing and analysis by third parties. This can be in 
the form of an academic collaboration whereby 
clinicians recruit and scan a clinical population 
of interest which is then analyzed by expert bio-
medical imaging scientists or students, under the 
supervision of such scientists, and then jointly 
published. Alternatively, a commercial image 
analysis services provider is paid to analyze the 
data and provide a report of the results for a fee. 
Both options have advantages and disadvantages. 
For example, academic collaboration is useful for 
long-term training and for fostering strategic 
partnerships to boost long-term research output 
and project fi nancing. Commercial service pro-
viders offer a more short-term solution that can 
be attractive to clinicians and clinical researchers 
needing more immediate results or who require a 
more standardized or regulated approach (for 
example, ISO certifi cation, FDA-approval).   

     Cost   

 The amount of DTI data acquired may be deter-
mined by the availability of fi nancial resources, and 
the various costs associated with MRI scanning 
should be considered. The following are examples. 

   Costs Associated with Scanning 
 Consider access to the scanner—can you collect 
data routinely? Do you need to rent time on the 
hospital scanner? Are you able to rent time on a 
research scanner? Who pays for scanning? For 
example, are the scanning costs covered by local 
departmental funds, a third-party funding agency, 
a governmental body or by national or private 
health insurance providers? Clearly, with limited 
fi nancial resources, less data can be collected. 
You may need to think about acquiring a greater 
amount of high quality data on fewer subjects, or 
using shorter sequences on a greater number of 
subjects. These decisions will be informed by 
your rationale for acquiring DTI data in the fi rst 
place.  

   Costs Associated with Analysis 
 Consider who  will analyze the data (see above 
section “Availability and Expertise of Support 
Staff”) and whether or not there are  costs   associ-
ated with this e.g. Do you need to hire or train 
specialized staff? Are you planning on outsourc-
ing the data analysis? Consider  how  you will ana-
lyze the data. Do you need to purchase any 
software? (see above section “Software”).    

    Summary 

 In this introductory chapter we have presented a 
high-level overview of clinical DTI applications 
and the types of things that could be considered 
before embarking on DTI data-collection and 
analysis in clinical populations. These consider-
ations are illustrated in Figs.  13.3 ,  13.4 , and  13.5 . 
Although we have presented what may seem like 
an exhaustive list, our aim in providing such an 
overview is primarily to raise awareness of issues 
related to the implementation of DTI in clinical 
populations that are often over-looked by the DTI 
novice. In this way, we hope to encourage both 
the thoughtful implementation of future DTI 
investigations, and also to provide the reader with 
a broader appreciation of the many issues under-
lying clinical research studies.
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  Fig. 13.3    Who will be scanned? (characteristics of the patient population)       

  Fig. 13.4    How will they be scanned? (scanning, hardware and software resources)       
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            Learning Points 

•     Functional MRI provides information regard-
ing cortical function, but DTI provides com-
plementary information about important 
subcortical structures and may thus have util-
ity in neurosurgical and  radiotherapeutic plan-
ning   when applied correctly.  

•   Neurosurgical application of DTI has special 
challenges, including the effects of patho-
physiology and intraoperative procedures on 
 fi ber pathways   as well as the integration of 
DTI data with other modalities in neuronavi-
gation software.  

•   Standard deterministic DTI tractography may 
not be the most reliable method to map elo-
quent fi ber pathways and alternative 
approaches such as  HARDI   should be consid-
ered in neurosurgical applications.     

    Introduction 

 While noninvasive and invasive cortical and sub-
cortical electrophysiologic measurements for 
clinical mapping of brain function have been 
available for decades [ 1 ], multiple noninvasive 
techniques are now increasingly available for 
routine neurosurgical planning. These include 
cortical mapping using magnetoencephalography 
(MEG) and BOLD functional magnetic reso-
nance imaging (fMRI) and subcortical  mapping   
using diffusion-based methods such as diffusion 
tensor imaging (DTI).  Intraoperative electro-
physiologic mapping   remains the gold standard 
for most applications, but limitations do exist 
including intraindividual and interindividual 
variability and inaccuracy from penetration of 
current; and thus, noninvasive mapping provides 
at least complementary information [ 2 – 4 ]. The 
purpose of this chapter is to focus on practical 
aspects of DTI in neurosurgical planning.  

    Role of DTI in Neurosurgical 
Planning 

 DTI methods provide not only microstructural 
information on local cellular environment and 
organization, but also macrostructural  informa-
tion   regarding white matter tracts and 
 connections between important cortical and 
subcortical functional regions in the brain. 
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Microstructural elements including cellularity, 
intraaxonal organization and fi ber density, 
myelination, and fi ber diameter combine with 
macrostructural organization of fi bers to affect 
diffusion anisotropy, the basis for the color frac-
tional anisotropy (FA) and tractography  maps   
primarily used in neurosurgical planning. The 
color FA maps provide a 3D image data set 
showing direction and degree of anisotropy on a 
voxel by voxel level, while fi ber tractography 
(FT) depicts likely “connections” from voxel to 
voxel and thus from one region (or regions) of 
the brain to another. It is important to remember 
that visualization strategies create virtual tracts 
and do not represent nerves or real fi bers, but 
these can be used to provide a macrostructural 
guide for preoperative planning and intraopera-
tive navigation [ 5 – 10 ] and for the purpose of 
the chapter will be collectively referred to as 
DTI  FT     . Currently, this and other techniques 
based on diffusion (e.g., high-angular resolu-
tion diffusion  MRI-HARDI-techniques  ) are the 
only means to perform in vivo, noninvasive 
localization of important white matter tracts. 
There is growing evidence supporting the role 
of fMRI and  fi ber tracking   in the presurgical 
setting not only for formulating a surgical plan 

but also with regard to safety, postsurgical treat-
ment and outcome. 

    Prevention of Injury to  Eloquent WM 
Pathways   

 There is enough interindividual anatomic varia-
tion such that standard landmarks are not always 
reliable for motor or language functional cortex 
[ 11 ,  12 ], hence the need for preoperative map-
ping. Primary goals are to determine feasibility 
of resection and to maximize extent of resection 
while avoiding injury to eloquent  cortical and 
subcortical structures  . To visualize a tract of 
interest with DTI FT, a region or volume of inter-
est (ROI)          is chosen as the origin (seed) and typi-
cally combined with additional inclusion (target, 
‘AND’) and exclusion (non-target, ‘OR’) ROIs. 
Activation maps from  fMRI   can be incorporated 
to improve specifi city, which is particularly help-
ful when mass effect distorts anatomy of cortical 
or subcortical structures such that standard land-
marks are obscured [ 13 ,  14 ]. If fMRI fails, in 
some cases DTI can provide suffi cient informa-
tion to localize functional cortex [ 15 ] (Figs.  14.1  
and  14.2 ). The anatomy of subcortical white mat-
ter tracts is of course very complex, but there are 

  Fig. 14.1    Corticospinal tract (CST) mapping with fMRI 
guidance. Seed ROIs in the cerebral peduncles showed 
multiple fi ber tracts in addition to CST, left more than 
right. Hand ( magenta ) and face ( orange ) activation maps 
( a  and  b , enhanced T1 images) were used to select an 
inclusion ROI around sensorimotor cortex. The patient 
could not move their left hand and no hand activation was 

elicited, but face motor activation was identifi ed in the 
right hemisphere ( arrows ). A generous ROI similar to that 
in ( b ) was chosen for both sides, showing left greater than 
right CST tracking ( c , 3D cut plane view). Lower extrem-
ity function was still partially intact at this time, and the 
ROI included this cortical region as well (fMRI not 
shown)       
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three main  categories  : association, projection, 
and commissural. This chapter focuses on asso-
ciation (language) and projection (motor and 
vision) pathways.

       Motor 
 Preservation of motor function is critical and 
mapping of the  corticospinal (pyramidal) tract 
(CST)         and motor cortex is most commonly 
requested. There are multiple reports of its utility 
in preoperative planning [ 13 ,  16 – 20 ]. If pathol-
ogy has not suffi ciently altered the tract, basic 
single tensor DTI FT for the CST in  general   
works well for trunk and in some cases hand and 
lower extremity; however, it is less successful for 
cortical regions like the face because intervening 
tracts like the SLF interfere with continuous 
tracking in critical voxels due to crossing fi bers 
in these locations. Some detail in  somatotopic 
mapping   is possible [ 6 ,  13 ]. Yamada et al. [ 21 ] 
used cortical ROIs for lower extremity, trunk, 

hand, face, and tongue and found robust tracking 
only for the trunk with a single tensor approach 
while a HARDI-based multitensor  approach   was 
more successful in tracking for other cortical 
regions including face and tongue. Techniques 
such as HARDI will be required if detailed 
somatotopic mapping is desired [ 3 ,  21 ]. 

 Multiple studies have addressed validation of 
cortical and subcortical motor mapping with DTI 
FT [ 3 ,  15 ,  22 – 24 ]. Berman et al. [ 22 ] used seed 
points identifi ed during  intraoperative stimula-
tion mapping (ISM)         to retrospectively map ipsi-
lateral CST in 11 glioma patients using the 
preoperative imaging data after the surgery was 
complete. Though not used for surgery, they 
showed appropriate tracking to the  central cere-
bral peduncle   based on the seed points verifi ed 
intraoperatively; however, there were some fail-
ures in tracking depending on the extent of 
 pathologic alterations in or near the CST. Kamada 
et al. reported studies confi rming CST mapping 

  Fig. 14.2    Corticospinal 
tract (CST) and superior 
longitudinal fasciculus 
(SLF). For a patient with 
gliomatosis, fMRI failed 
because the tumor 
interfered with language 
such that the patient could 
not follow commands, 
even for motor tasks; 
however, fi ber tracking was 
adequate. Left CST ( a ,  b ) 
and SLF ( c ,  d ) are shown 
on FLAIR ( a ,  c ) and 3D 
cut plane views ( b ,  d )       
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with subcortical [ 23 ] and cortical mapping [ 15 ]. 
The latter included 30 patients with lesions in 
proximity to the motor system, with central sul-
cus and sensorimotor cortex identifi ed using DTI 
FT and verifi ed with intraoperative cortical 
 somatosensory evoked potential (SEP)         measure-
ments. Functional MRI or MEG identifi cation of 
primary motor cortex failed in nine patients while 
DTI FT was successful in all. 

 Accuracy of CST localization with DTI FT 
compared with subcortical stimulation appears to 
be within 10 mm [ 3 ,  24 ,  25 ]. Berman et al. [ 3 ] 
reported a mean distance of 8.7 mm (±3.1 mm 
standard deviation) for 16 sites in 9 patients. 
Mikuni et al. [ 24 ] found consistent  motor evoked 
potentials (MEP)         at 7 mm or less and absent 
MEP over 13 mm when  stimulating   near the 
mapped CST fi bers at the inferior aspect of the 
mass. Between 8 and 12 mm, stimulation near the 
mapped CST at the level of the corona radiata 
consistently elicited MEPs. Another study of 40 
patients with masses within 2 cm of CST found 
MEPs elicited at less than 1 cm from mapped 
CST in 18 of 21, negative MEPs in 5 at stimula-
tion points greater than 2 cm, and negative MEPs 
in 12 of 15 at 1–2 cm from mapped CST [ 26 ]. 
Motor function was ultimately preserved in all, 
improved in fi ve cases with weakness prior to 
surgery, and two of the cases with negative MEP 
at 1–2 cm distance developed  SMA syndrome     , 
which subsequently resolved. 

 Other studies have also addressed impact on 
surgical plan and/or outcomes [ 16 ,  25 ,  27 – 31 ], in 
general with preserved or improved clinical func-
tion postoperatively. Bello et al. [ 27 ] reported high 
correlation of DTI FT for CST (and multiple lan-
guage tracts) with intraoperative subcortical map-
ping (ISM). With low grade gliomas, fi bers tracking 
through the  neoplasm   were often found. A combi-
nation of DTI FT and ISM decreased surgery time, 
patient fatigue and intraoperative seizure rate. 

 With increased extent of resection, postopera-
tive defi cits have been reported to increase tran-
siently but with improvement over time [ 25 ,  32 , 
 33 ]. The concept of a safety margin of about 
5–10 mm has been introduced, but with careful 
intraoperative mapping this boundary may be 

minimized [ 32 ]. In a prospective randomized 
study by Wu et al. [ 30 ], 238 patients with sus-
pected primary supratentorial glioma (214 ulti-
mately proven gliomas) not previously treated 
and near the pyramidal tract with at least 1/5 
motor strength were randomized to surgery with 
conventional neuronavigation versus neuronavi-
gation with integrated DTI data. Only  FA maps   
were used for intraoperative mapping, although 
in the later stages of the study tractography was 
added for preoperative planning and postopera-
tive assessment (23 of the cases). Those in the 
neuronavigation plus DTI group were more likely 
to have complete resection of high grade tumors 
(74.4 % vs. 33.3 %), although low grade gliomas 
had similar extent of resection. Decline in  motor   
function postoperatively was less likely overall 
(15.3 % versus 32.8 %) and 6 month  Karnofsky 
scores      were better (86 ± 20 vs. 74 ± 28). They also 
reported improved survival for high grade glio-
mas (21.2 months vs. 14.0 months).  

    Vision and Language 
 The  optic radiations (OR)         and in particular 
Meyer’s loop pose diffi culties for DTI 
FT. Problems include not only the anatomy with 
tight turns, but location along medial temporal 
lobe where  susceptibility-related artifacts   can 
affect image quality with DTI sequences using 
EPI [ 34 ,  35 ]. Crossing fi bers can create problems 
here as elsewhere. There are early reports using 
DTI FT to map visual pathways with integrity of 
OR on DTI FT linked to defi cits pre- and/or post-
operatively [ 29 ,  35 – 38 ], and intraoperative cor-
relation also described in at least one case [ 36 ]; 
however, results remain preliminary and further 
validation is required and caution warranted in 
this setting [ 35 ]. 

 Validation of language  tractography      is also 
ongoing and though reports are less extensive 
than for CST mapping, experience is growing. 
Co-localization with intraoperative mapping 
seems to be similar to CST; that is, distance 
between DTI FT prediction and subcortical map-
ping is in the range of 5–10 mm. For example, 
Kamada et al. [ 39 ] studied 22 lesions near the 
 superior longitudinal/arcuate fasciculus (SLF/
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AF)         in the dominant hemisphere, using fMRI or 
MEG to choose seed and target ROIs. For two of 
these cases,  functional mapping   was integrated 
into neuronavigation and validated by cortical 
and subcortical mapping during awake surgery 
with stimulation near AF leading to paranomia 
without speech arrest at a distance of 6 mm. 
Leclercq et al. [ 40 ] studied multiple language 
tracts in ten patients with low grade gliomas or 
dysplasia, reporting positive subcortical stimula-
tion responses 6 mm or less from DTI FT predic-
tion in 81 %, but they also reported four false 
negative results (positive stimulations away from 
any mapped fi ber tract). Of course, understand-
ing of language functional cortical regions and 
connections remains incomplete, and important 
fi ber tracts not anticipated and thus not mapped 
are considerations as well [ 41 ]. 

 False positives for  DTI FT   based on subcorti-
cal mapping have also been described [ 27 ], with 
DTI FT mapping of SLF larger than identifi ed on 
subcortical mapping in some cases such that ISM 
did not evoke a response in some tracked fi bers, 
and there were also false negatives in this study 
which could be addressed in part by adjusting 
ROI placement. For low grade gliomas, tracts 
could be identifi ed within the neoplasm and in 
some cases ISM evoked a response within the 
mass even when tracts appeared interrupted. 
 IFOF and UF   were also evaluated in this study. 
The majority of patients where motor or language 
tracts were identifi ed with ISM had decline 
immediately after surgery, in general improving 
after 1 week (about 90 % normal at 1 month). 

 Zhao et al. [ 42 ] used preoperative as well as 
intraoperative DTI FT for the SLF/AF in 20 
patients, 9 of which had no preoperative defi cit 
and 11 with variable conduction aphasia. They 
monitored intraoperative shifts of the tract from 
−5 to 2 mm. After surgery, follow up within 1 
month revealed one previously normal patient 
with new conduction aphasia while those with 
language defi cit had improved. Many of the stud-
ies discussed here have integrated DTI FT data 
with  neuronavigation systems  , but not all scenar-
ios necessarily require it. Review of preoperative 
data may be suffi cient for confi rming or altering 

an operative approach. Powell et al. [ 43 ] used a 
probabilistic  fi ber tracking method   for  hemi-
sphere dominance   prior to anterior temporal lobe 
resection, fi nding a signifi cant correlation 
between frontotemporal tract lateralization to 
dominant hemisphere resections and postopera-
tive naming defi cits. Romano et al. [ 29 ] per-
formed  tractography   for CST, OR, and AF in 25 
patients, and for 35 of 75 tracts analyzed which 
were in proximity to a given neoplasm reported a 
change in surgical plan in 16 % and a  change   in 
extent of resection in 68 %.   

    Reduction in  Radiation Damage   
to Eloquent WM Pathways 

 The concepts for sparing eloquent structures in 
surgery extend also to radiosurgery and to an 
extent to other therapeutic radiation strategies. 
Koga et al. [ 44 ] for example integrated tractogra-
phy for CST, OR, and AF with navigation for 
AVM Gamma Knife radiosurgery in 71 of 155 
treatments for 144 patients, optimizing dose such 
that the maximum dose to CST, OR, and AF was 
20 Gy, 8 Gy, and 8 Gy respectively. Of the 71/155 
treatments planned with this approach, 60 % had 
less than 5 mm separation from these WM tracts. 
Maruyama [ 45 ] integrated tractography f or OR   
with navigation in ten patients receiving Gamma 
Knife near OR, reporting 8 Gy or more single 
dose to be associated with neurological changes 
such as visual fi eld defi cit and new (or improved) 
migraine symptoms. Another study included 24 
patients (9 retrospective and 15 prospective) [ 46 ], 
reporting maximum dose to CST of 23 Gy with 5 
% complication risk and 20 Gy and 25 Gy vol-
umes for 5 % complication risk were 58 mm 3  and 
21 mm 3 , respectively. 

 There is also an interest in using DTI metrics 
for microstructural assessment not only to esti-
mate extent of infi ltration [ 47 – 50 ] but also to 
improve accuracy in diagnosis, assess grade or 
prognosis, evaluate treatment response, and 
potentially predict recurrence patterns. Jena et al. 
[ 48 ] described the use of a DTI-based “high risk 
volume” or IHV DTI  which allowed a 35 % reduc-
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tion in planning target  volume   and a dose 
 escalation such that complications did not exceed 
conventional plan.  

    Targeted  DBS Electrode Placement   

 Conventional imaging is often inadequate for 
visualization of important functional anatomy; for 
example, the  subthalamic nucleus (STN)      is diffi -
cult to demonstrate with high image contrast and 
targeting is not trivial [ 51 ].  DTI data   can be used 
to improve localization of functional anatomy rel-
evant to deep brain stimulation (DBS) placement. 
Simple integration of color FA maps has been uti-
lized to augment identifi cation of STN and  globus 
pallidus interna (GPi)      targets   [ 52 ]. 

 Other studies have shown proof of concept for 
use of DTI FT in this setting. Pouratian et al. [ 53 ] 
retrospectively studied cases where DBS had 
been placed using traditional methods for tremor 
control. The procedure was effi cacious in 11/12 
electrodes placed (six patients), and postopera-
tive CT or MR fused with preoperative probabi-
listic tractography for thalamic voxel connectivity 
to primary, premotor, and prefrontal cortex 
showed thalamic sites with connectivity to pre-
motor and supplemental motor regions were most 
effi cacious in controlling tremor. A postoperative 
study of white matter tracts in proximity to leads 
placed in GPi, STN, and  ventral intermediate 
nucleus (VIM)         was useful in understanding side 
effects related to stimulator setting [ 54 ]. Tracts of 
interest in proximity to these targets included 
motor, premotor, supplemental motor, and frontal 
eye fi elds. Coenen et al. [ 55 ] also used a retro-
spective approach for DTI FT, showing unilateral 
refractory tremor control in a patient with 
Parkinson disease with DBS placement involving 
the  dentate-rubral-thalamic tract (DRT)     , subse-
quently prospectively targeting the  DRT for DBS      
implantation bilaterally with excellent control of 
head tremor in a patient with  myoclonus dystonia   
[ 56 ]. Other fi elds of interest where  tractography   
may be potentially useful in this setting include 
neuropsychiatric problems [ 57 ,  58 ] including 
OCD and depression [ 59 ,  60 ], headache and 
chronic pain [ 61 ,  62 ].   

    Practical Considerations 
in Neurosurgery 

    Clinical Implementation 

    Image Acquisition and Postprocessing 
 There are multiple sources of potential image deg-
radation related to patient and technique.  Bulk 
and physiologic motion   including cardiac and 
respiratory can degrade image quality. 
Additionally, the imaging sequence typically used 
(single shot spin echo EPI) has limitations which 
include eddy current distortion, mechanical vibra-
tions related to large amplitude and rapidly 
switching gradients, Nyquist ghosting, chemical 
shift, magnetic fi eld inhomogeneity, local suscep-
tibility effects near  bone and paranasal sinus inter-
faces  , and limitations in spatial resolution and 
SNR [ 9 ]. Pathologic and postsurgical changes can 
also be problematic (e.g., hemorrhage and surgi-
cal hardware). There are strategies for solving or 
at least minimizing these problems including 
 fat saturation techniques  , cardiac gating, parallel 
imaging, and phased array coils. Improvements in 
image quality need to be balanced with the need 
for effi cient implementation in this clinical setting 
such that data are adequate for presurgical plan-
ning but acquisition or processing times do not 
exceed a patient’s ability to cooperate or a clini-
cian’s ability to obtain processed data integrated 
with other imaging data for surgical planning and 
intraoperative navigation. 

 An example of a standard acquisition at 3 T is 
provided in Table  14.1 . While at least six diffusion 
encoding directions plus one baseline ( b  = 0 s/
mm 2  or low  b -value) are needed to generate the 
diffusion tensor, a minimum of 30 directions are 
recommended for good quality DTI in this setting 
with at least 3–6 low- b  acquisitions if possible [ 9 , 
 63 ]. Acquisition time under 10 min is a reasonable 
target for integration into a full planning protocol 
and for patient compliance.  Cardiac gating   is not 
routinely used at our institution due to increased 
scan time, but this can improve image quality 
[ 64 ]. Small  isotropic voxels   with no gaps between 
imaging sections, on the order of 2 mm at 3 T, 
helps minimize partial volume effects and thus 
extent of crossing fi bers in a given voxel [ 9 ].
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   Post-processing may include motion correc-
tion and eddy current distortion as well as regis-
tration with structural imaging data. 
Post-processed DTI data include  scalar and 
directional data   which can be used for fi ber track-
ing, usually with a  fi ber assignment by continu-
ous tracking (FACT)    approach   (most of the 
vendor supplied algorithms currently in use are 
based on this strategy). At least one “seed” ROI 
must be chosen, but typically at least one seed 
and target (inclusion)  ROI   are most commonly 
used (see below). Additional inclusion or exclu-
sion ROIs are useful to minimize stray tracked 
fi bers. Typical starting FA thresholds might be 
greater than 0.1–0.15 and turning angle less than 
40–70°, and these can be adjusted for optimal 
display of desired tracts. 

 Preparation of multiple fi ber tracts can be 
time-consuming and requires an understanding 
of  neuroanatomy  . A knowledgeable support staff 
is needed. Judicious selection of fi ber tracts cho-
sen and displayed for  intraoperative navigation   is 
important; for example, some navigation soft-
ware can display only binary imported tract maps 
and though independent colors can be assigned, 
the amount of information can become confusing 
and counterproductive. Another approach is to 
generate all tracts based on a chosen threshold 
FA and curvature around the anatomic region of 
interest with subsequent selection of specifi c 
tracts of interest using ROIs [ 9 ]. Automated or 
semiautomated fi ber tracking strategies are not 

routinely used for preoperative planning, but a 
technique allowing  atlas-based segmentation   
would be of obvious utility for preoperative or 
radiation planning [ 65 ]. 

 Both color FA maps and  tractography      should 
be used in interpretation [ 66 ,  67 ]. FA maps can be 
more reliable in proximity to a mass distorting 
local anatomy, while tractography is helpful for 
visualizing major tracts travelling in proximity to 
each other though less successful and potentially 
misleading when anatomy is substantially dis-
torted and/or when anisotropy is altered such that 
fi bers can no longer be tracked [ 68 ] (Fig.  14.3 ). 
Some institutions currently integrate only the 
color FA map for  intraoperative navigation  .

       Incorporation into Navigation Software 
for Multimodal Data 
 Functional  MRI  , MEG and DTI with or without 
tractography are complementary techniques for 
assessing feasibility and extent of resection, pre-
dicting risk, and planning operative approach and 
they are also helpful intraoperatively for shorten-
ing cortical and subcortical intraoperative map-
ping times [ 68 – 70 ]. Many of the studies using 
DTI and/or  tractography   in preoperative planning 
discussed so far have also integrated results into 
neuronavigation systems prospectively, and 
while not yet universal across institutions this is 
becoming more widespread as validation 
improves. Tractography can show variable results 
with different software packages and with differ-
ences in user selection of tracking ROIs [ 66 ,  71 ], 
and of course pathology in and around a brain 
neoplasm can also lead to suboptimal or failed 
 fi ber tracking  . 

 DTI and fMRI data can be integrated into 
commonly used navigation packages, in some 
instances the DTI/tractography software is inte-
grated with the navigation software. In our cur-
rent implementation, fMRI and DTI/tractography 
 data   are processed separately and functional acti-
vation maps and selected fi ber tracts are uploaded 
to the navigation computer in DICOM format 
pre-registered with structural images, but there 
are many possible solutions which can be cus-
tomized for each institution’s needs (Fig.  14.4 ).

   Table 14.1    Sample DTI parameters at 3 T   

 Resolution (mm)  1.72 × 1.72 × 3.0 a  

 Matrix  128 

 FOV (cm)  22 cm 

 Encoding directions  30 (plus baseline) 

 NEX  2–3 

  b -value (s/mm 2 )  1000 

 TR/TE  5000/86 ms 

 Acquisition time  8 min 

 Parallel imaging acceleration  2 

   a Isotropic voxels may be better for multiplanar reformat-
ting of tractography, e.g., on the order of 2 mm for 3 T or 
2.5 mm for 1.5 T [ 9 ], but acquisition time and coverage 
will need to be balanced  
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        Clinical Examples 

 Atlases of white matter tracts including proposed 
ROIs for tract generation are available [ 72 – 75 ]. 
These only provide guidelines since factors such 
as location and size of mass, degree of infi ltration 
or destruction of fi bers, presence of blood prod-
ucts or surgical hardware causing susceptibility, 
motion, or other factors affecting image quality 
may necessitate one or more approaches for a 
given patient. Alternatively, tractography may 
have to be abandoned if inadequate or potentially 
misleading. 

    Corticospinal (Pyramidal) Tract 
 A  simple   approach is to choose a seed ROI in the 
 cerebral peduncle   and display all tracts passing 
through this region. Other fi ber tracts will be 
incorporated including  thalamocortical fi bers   and 
other tracts in proximity in the peduncle, so 

increased specifi city can be accomplished by 
using inclusion ROIs in the posterior limb of the 
internal capsule and/or subcortical ROIs in prox-
imity to the precentral gyrus based on standard 
neuroanatomic landmarks. Alternatively, one 
may choose seed ROIs adjacent to the precentral 
gyrus and use inclusion ROIs corresponding to 
the posterior limb of the internal capsule (PLIC) 
and/or cerebral peduncle. Unwanted fi bers can be 
further eliminated by choosing inclusion or 
exclusion ROIs above and/or below the 
tentorium. 

 Mapping of the CST is most frequently 
requested since preservation of motor function is 
paramount. Depending on extent of fi ber disrup-
tion and where it occurs, motor impairment can 
be devastating and also more enduring than at the 
cortical level. The basic strategies outlined here 
are not suffi cient for mapping the more lateral 
primary motor cortex for the face and sometimes 

  Fig. 14.3    Fiber tracking 
and color fractional 
anisotropy (FA) maps. 
Coronal enhanced T1 ( a ), 
reformatted FLAIR ( b ), 
and color FA maps with 
and without superior 
longitudinal fasciculus 
(SLF) tracts displayed 
( c ,  d ). Fiber tracking on 
left was incomplete and did 
not extend anterior to 
enhancing mass, color FA 
maps show decreased 
intensity and loss of 
directional information 
( d ,  arrowhead ) compared 
to normal hemisphere 
( d ,  arrow )       
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for the hand and foot, but is usually robust for 
 fi ber tracking   corresponding to the locus for 
trunk. Better tracking can ultimately be obtained 
with more complex techniques with longer acqui-
sitions such as  HARDI  . The primary goal is to 
preserve contralateral motor function and so the 
focus here was on the CST, but of course other 

important tracts pass through the internal capsule 
in the anterior limb, the genu as well as in the 
 PLIC   (e.g., thalamocortical sensory fi bers 
 intermingle and are tracked with motor fi bers). 
Other  defi cits   may also occur with injuries to 
PLIC near the CST, including sensory defi cits 
and ataxia [ 72 ] (Fig.  14.5 ).

  Fig. 14.4    Incorporation of fi ber tracking into navigation 
software. Registered FLAIR, 3D T1 post-contrast and 
fi ber bilateral corticospinal tract masks ( a ) were uploaded 
to the intraoperative navigation computer ( b ). Fiber tracts 
were less selective in this case to show cut-off anteriorly 

near the enhancing mass, a glioblastoma. The patient had 
facial paralysis on the left, but upper and lower extremity 
motor function was intact (although there was left upper 
extremity numbness)       
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       Superior Longitudinal/Arcuate 
Fasciculus 
  Though      not strictly accurate, SLF and AF are 
commonly used to represent the same fi ber 
tract(s) linking frontal, parietal and temporal 
perisylvian cortex, and for the purposes of this 

chapter they are used interchangeably. Typically 
one triangular ROI places on coronal views is 
suffi cient (Fig.  14.6 ), though specifi city and 
image quality can be improved by adding a target 
or inclusion ROI. Disruption of this tract in the 
dominant hemisphere may lead to not only con-

  Fig. 14.5    Corticospinal 
tract (CST). A seed ROI 
was chosen to include the 
cerebral peduncle ( a ), 
leading to multiple fi ber 
tracts in addition to CST 
displayed ( b ,  c  FLAIR and 
T1 post-contrast and  d , 3D 
cut plane view). Fibers 
pass between 
nonenhancing 
(anteromedial) and 
enhancing (posterolateral) 
parts of a multicentric 
glioblastoma ( b ,  c ). An 
inclusion ROI chosen 
based on fMRI ( e ) around 
precentral and postcentral 
gyri was used in this case, 
resulting in ( f ). For the 
fMRI in ( e ), the  red / yellow  
color scale corresponds to 
hand motor activation 
(weaker in right precentral 
gyrus) and  orange / white  
corresponds to left foot 
tapping. Both tasks show 
supplemental motor area 
as well       
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duction aphasia but also other defi cits including 
ideational apraxia [ 72 ]. In the nondominant 
hemisphere, injury to the  SLF      may result in con-
tralateral neglect.

      Inferior Longitudinal Fasciculus, 
Inferior Frontal Occipital Fasciculus 
  These   can be seeded together from an ROI in 
the occipital region when tracts are intact, with 
inclusion ROIs in the mid temporal lobe and 
anterior frontal lobe for ILF and  IFOF           , respec-
tively (Fig.  14.7 ). If this fails (e.g., extensive 
occipital lobe pathology), one could use seed 

ROIs in the mid temporal lobe and anterior 
frontal lobe instead, tracking posteriorly and 
using appropriate inclusion ROIs. Injury to the 
ILF may result in visual agnosia, alexia, and 
defi cits in naming and visual memory. Examples 
of defi cits related to the IFOF include semantic 
paraphasias and problems with visuospatial pro-
cessing and visual recognition [ 72 ] (Figs.  14.7 , 
 14.8 , and  14.9 ).

        Uncinate Fasciculus 
 The  inclusion   ROI   for the IFOF in the anterior 
frontal lobe can be used again as the target or as a 

   Fig. 14.6     Superior 
longitudinal fasciculus 
(SLF). Two cases are 
shown, one patient with 
anaplastic astrocytoma 
(AA, a-c) and the other 
patient with breast cancer 
metastasis after whole 
brain radiation and 
subsequent stereotactic 
radiosurgery now with 
primarily treatment related 
necrosis (TRN, d-f). Seed 
ROIs are shown for the left 
SLF in each case ( a ,  d ). 
For the patient with AA 
(a-c), decreased FA 
compared to contralateral 
side is noted ( a ), likely 
refl ecting infi ltration of 
SLF fi bers by the 
neoplasm. Fiber tracking 
was suboptimal anterior 
and posterior to the mass. 
For the patient with TRN 
(d-f), color FA in SLF is 
more symmetric and 
tracking was more 
complete ( e , 3D cut plane 
view), but fi bers of inferior 
longitudinal fasciculus 
(ILF) and inferior frontal 
occipital fasciculus (IFOF) 
were asymmetric ( f , 
 arrows ). Both SLF and 
ILF/IFOF tracked in 
proximity to edge of 
enhancing mass 
( arrowhead  and  arrow , 
respectively)       
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  Fig. 14.7    Inferior 
longitudinal fasciculus 
(ILF) and inferior frontal 
occipital fasciculus (IFOF). 
For a patient with 
treatment related necrosis 
(TRN, same case as in 
Fig.  14.6 , d-f), seed ROI 
was placed in the occipital 
lobe ( a ), with inclusion 
ROI in mid temporal lobe 
( b – d ) to include both ILF 
and IFOF. Fibers of ILF 
and IFOF track together 
posteriorly and separate 
anteriorly, ROIs can be 
chosen to separate these 
(see below), but for 
practical neurosurgical 
implementation they can 
often be displayed together       

  Fig. 14.8    Separating 
inferior longitudinal 
fasciculus (ILF) from 
inferior frontal occipital 
fasciculus (IFOF). For a 
patient with anaplastic 
astrocytoma (AA, same 
patient as in Fig.  14.6 , a-c), 
seed ROI in left occipital 
lobe ( a ) with inclusion ROI 
left frontal ROI ( b ) can be 
used to select IFOF ( c ) or 
an anterior temporal 
inclusion ROI chosen to 
select ILF ( d )       
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seed for generating the UF, with the other ROI in 
the anterior temporal lobe (Fig.  14.10 ). Disruption 
of this tract may lead to specifi c memory defi cits 
depending on side; for example defi cits in memo-
ries of personal experiences on the right and in 
general knowledge of facts on the left or domi-
nant side [ 72 ].

        Pitfalls and Sources of Error 

   Misregistration 
and Intraoperative Shift  
  Discrepancies   between tractography and  true 
anatomic and functional localization   may of 
course occur. Though DTI FT may be imperfect, 

  Fig. 14.9    Inferior frontal occipital fasciculus (IFOF). 
For a patient with gliomatosis, histologically anaplastic 
astrocytoma (AA, WHO grade III), a left occipital seed 
ROI was chosen ( a ), a mid temporal ROI ( b ) posterior to 
separation of ILF and IFOF (d, e on FLAIR,  arrowheads , 

and g on 3D cut plane views) selected both tracts ( d ,  e , 
 g ). A seed ROI in left frontal lobe ( c ) could be used 
instead of the mid temporal ROI to select the IFOF alone 
shown on 3D cut plane views ( h ,  i ) and coronal FLAIR 
( f ,  arrow )       
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subcortical stimulation is not a perfect reference 
standard and may also have error in localization 
[ 68 ]. Ultimately, misregistration is often a com-
bination of effects many of which have already 
been introduced, including those related to ste-
reotactic localization error and brain shift, DTI 
FT uncertainty and registration error, and stimu-
lation errors related to current penetration [ 3 ]. 
There can also be intra- and inter-user variability 
as well as variability between institutions and dif-
ferent fi ber tracking software and/or  navigation 
systems  . 

 Overall error in registration of DTI/tractogra-
phy data with structural images for navigation 
can be reduced to about 2 mm or less, which is on 
a par with errors in an optical navigation system 
with structural images alone [ 3 ,  20 ,  71 ]. Despite 
intraoperative checks on landmarks in navigation 
and surgical approach to minimize anticipated 
shifts, major shifts may render preoperative map-
ping inaccurate. Nimsky et al. [ 19 ] reported max-
imum tract shift of the CST or CC ranging from 
−8 to +15 mm, outward more frequent than 
inward. Zhao et al. [ 42 ] reported AF shifts of −5 
to 2 mm, with the direction or pattern of shift 
more complex. Intraoperative MRI with updated 
tractography can adjust for this [ 19 ,  76 ,  77 ]. In 
spite of these problems, concordance of subcorti-
cal intraoperative mapping with fi ber tracts has 
been reported to be within 10 mm in multiple 
studies [ 3 ,  23 – 26 ,  40 ,  69 ].  

   Pathophysiology and Effect on White 
Matter Tracts and Tractography 
  Pathology   can alter fi ber tracts by displacement, 
infi ltration and disruption. An early report by 
Holodny et al. showed infi ltration of the CST by 
an oligodendroglioma confi rmed intraoperatively 
[ 78 ], and others have also demonstrated apparent 
neoplastic infi ltration of white matter tracts by 
gliomas [ 50 ,  79 ]. Stadlbauer et al. [ 50 ], for exam-
ple, retrospectively studied 25 cases of grade II 
and III gliomas, correlating biopsy sites with 
 fi ber tracking   at different FA thresholds. 
Histopathology showed neoplastic infi ltration of 
visualized fi ber tracts in 9 of 25 cases with FA 
threshold at 0.2 or less while tracking at 0.25 or 
higher in these regions was not successful, 
pathology thus affecting performance of DTI FT. 

 DTI FT can show intact but displaced fi ber 
tracts, and should fail if tracts are disrupted [ 80 ]. 
Intact but infi ltrated fi bers can be tracked to an 
extent, but neoplastic infi ltration, edema and 
blood can have variable effects on successful 
tracking in this regard [ 80 ,  81 ]. If FA is unaf-
fected or only minimally decreased, displaced 
fi bers can usually still be tracked. Vasogenic 
edema may lead to a decrease in FA while leav-
ing underlying architecture more or less intact 
such that fi bers may still be followed through 
edematous regions, but one may have to adjust 
FA threshold to optimize tracking. Neoplastic 
infi ltration may alter not only FA but also fi ber 

  Fig. 14.10    Uncinate fasciculus (UF). Seed and inclusion 
ROIs in frontal lobe and anterior temporal lobe ( a ) were 
used to select the UF ( b ). For this patient with grade II 

infi ltrating astrocytoma, the UF passes through infi ltrating 
neoplasm ( c ). The same ROIs can be used with an occipi-
tal seed ROI as shown earlier for selecting IFOF and ILF       
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orientation and this may have a variable effect on 
tractography depending on the  neoplasm  . As dis-
cussed above, DTI FT can show different results 
depending on the quality of image data, software 
employed, and thresholds and ROIs chosen. 
Pathologic alteration adds another level of com-
plexity, and postoperative evaluation may show 
improvement in tract visualization [ 82 ]. 

 For these reasons, false positives and negatives 
can occur [ 83 ]. Inability to follow a particular tract 
with DTI FT does not necessarily indicate disrup-
tion, vasogenic edema and infi ltrating tumors can 
lead to interruption in tracking without pathologic 
disruption [ 17 ,  22 ,  84 ,  85 ]. Normal structures can 
interrupt tracking with standard techniques due to 
crossing fi bers [ 24 ]. On the other hand, DTI FT 
demonstration of interruption can be of use even 
when incorrect, if only to indicate that suffi cient 
pathologic interruption is present such that intra-
operative  mapping   becomes even more important 
[ 18 ]. Apparent vasogenic edema with mild 
decreased FA and preservation of appropriate ori-
entation and ability to track fi bers does not exclude 
neoplastic infi ltration [ 50 ]. Errant fi bers often 
occur and could mimic connectivity.  

   Pathophysiological Effects on Diffusion 
Properties: beyond Tractography 
  While   pathology may interfere with tractogra-
phy, potentially useful information may still be 
available from the microstructural information 
DTI provides. DTI metrics including trace or 
mean diffusivity, FA, and others are potentially 
helpful in the assessment of margins and degree 
of infi ltration, differential diagnosis of glioma 
versus defi ned lesions like metastases, glioma 
grading, prognosis, and treatment response moni-
toring [ 86 – 88 ]. A detailed review is beyond the 
scope of this chapter, but see reviews by Gupta 
et al. [ 47 ] and Cruz LC Jr et al. [ 81 ] as well as a 
wealth of references therein.    

    Conclusion 

 DTI with or without tractography (DTI FT) pro-
vides complementary information about impor-
tant subcortical structures for neurosurgical and 

radiotherapeutic planning, but DTI-FT has spe-
cial challenges for these applications, including 
the effects of pathophysiology and intraoperative 
procedures on fi ber pathways as well as the inte-
gration of DTI data with other modalities in neu-
ronavigation software. Though validation is 
improving, the technique is still a relatively 
young one and caution is still warranted in imple-
mentation [ 35 ,  83 ].     

   References 

    1.    Engel AK, Moll CK, Fried I, Ojemann GA. Invasive 
recordings from the human brain: clinical insights and 
beyond. Nat Rev Neurosci. 2005;6:35–47.  

    2.    Pouratian N, Cannestra AF, Bookheimer SY, Martin 
NA, Toga AW. Variability of intraoperative electro-
cortical stimulation mapping parameters across and 
within individuals. J Neurosurg. 2004;101:458–66.  

          3.    Berman JI, Berger MS, Chung SW, Nagarajan SS, 
Henry RG. Accuracy of diffusion tensor magnetic 
resonance imaging tractography assessed using intra-
operative subcortical stimulation mapping and mag-
netic source imaging. J Neurosurg. 2007;107:488–94.  

    4.    Berman J. Diffusion MR, tractography as a tool for 
surgical planning. Magn Reson Imaging Clin N Am. 
2009;17:205–14.  

    5.    Hagmann P, Jonasson L, Maeder P, Thiran JP, Wedeen 
VJ, Meuli R. Understanding diffusion MR imaging 
techniques: from scalar diffusion-weighted imaging 
to diffusion tensor imaging and beyond. 
Radiographics. 2006;26 Suppl 1:S205–23.  

    6.    Melhem ER, Mori S, Mukundan G, Kraut MA, 
Pomper MG, van Zijl PC. Diffusion tensor MR imag-
ing of the brain and white matter tractography. AJR 
Am J Roentgenol. 2002;178:3–16.  

   7.    Mori S, van Zijl PC. Fiber tracking: principles and 
strategies - a technical review. NMR Biomed. 2002;15:
468–80.  

   8.    Mukherjee P, Berman JI, Chung SW, Hess CP, Henry 
RG. Diffusion tensor MR imaging and fi ber 
 tractography: theoretic underpinnings. AJNR Am 
J Neuroradiol. 2008;29:632–41.  

        9.    Mukherjee P, Chung SW, Berman JI, Hess CP, Henry 
RG. Diffusion tensor MR imaging and fi ber tractogra-
phy: technical considerations. AJNR Am J Neuroradiol. 
2008;29:843–52.  

    10.    Yang E, Nucifora PG, Melhem ER. Diffusion MR 
imaging: basic principles. Neuroimaging Clin N Am. 
2011;21:1–25. vii.  

    11.   Duffau H. Introduction. Surgery of gliomas in eloquent 
areas: from brain hodotopy and plasticity to functional 
neurooncology. Neurosurg Focus 2010; 28: Intro  

    12.    Pouratian N, Bookheimer SY. The reliability of neu-
roanatomy as a predictor of eloquence: a review. 
Neurosurg Focus. 2010;28:E3.  

14 DTI in Neurosurgical Planning



306

      13.    Holodny AI, Ollenschleger MD, Liu WC, Schulder 
M, Kalnin AJ. Identifi cation of the corticospinal tracts 
achieved using blood-oxygen-level-dependent and 
diffusion functional MR imaging in patients with 
brain tumors. AJNR Am J Neuroradiol. 2001;22:
83–8.  

    14.    Smits M, Vernooij MW, Wielopolski PA, Vincent AJ, 
Houston GC, van der Lugt A. Incorporating func-
tional MR imaging into diffusion tensor tractography 
in the preoperative assessment of the corticospinal 
tract in patients with brain tumors. AJNR Am 
J Neuroradiol. 2007;28:1354–61.  

      15.    Kamada K, Sawamura Y, Takeuchi F, et al. Functional 
identifi cation of the primary motor area by corticospi-
nal tractography. Neurosurgery. 2005;56:98–109. dis-
cussion 198-109.  

     16.    Chen X, Weigel D, Ganslandt O, Buchfelder M, 
Nimsky C. Diffusion tensor imaging and white matter 
tractography in patients with brainstem lesions. Acta 
Neurochir (Wien). 2007;149:1117–31. discussion 1131.  

    17.    Laundre BJ, Jellison BJ, Badie B, Alexander AL, 
Field AS. Diffusion tensor imaging of the corticospi-
nal tract before and after mass resection as correlated 
with clinical motor fi ndings: preliminary data. AJNR 
Am J Neuroradiol. 2005;26:791–6.  

    18.    Mikuni N, Okada T, Enatsu R, et al. Clinical signifi -
cance of preoperative fi bre-tracking to preserve the 
affected pyramidal tracts during resection of brain 
tumours in patients with preoperative motor weak-
ness. J Neurol Neurosurg Psychiatry. 2007;78:
716–21.  

     19.    Nimsky C, Ganslandt O, Hastreiter P, et al. 
Preoperative and intraoperative diffusion tensor 
imaging- based fi ber tracking in glioma surgery. 
Neurosurgery. 2005;56:130–7. discussion 138.  

     20.    Nimsky C, Grummich P, Sorensen AG, Fahlbusch R, 
Ganslandt O. Visualization of the pyramidal tract in 
glioma surgery by integrating diffusion tensor imaging 
in functional neuronavigation. Zentralbl Neurochir. 
2005;66:133–41.  

     21.    Yamada K, Sakai K, Hoogenraad FG, et al. Multitensor 
tractography enables better depiction of motor path-
ways: initial clinical experience using diffusion- 
weighted MR imaging with standard b-value. AJNR 
Am J Neuroradiol. 2007;28:1668–73.  

      22.    Berman JI, Berger MS, Mukherjee P, Henry 
RG. Diffusion-tensor imaging-guided tracking of 
fi bers of the pyramidal tract combined with intraop-
erative cortical stimulation mapping in patients with 
gliomas. J Neurosurg. 2004;101:66–72.  

     23.    Kamada K, Todo T, Masutani Y, et al. Combined use 
of tractography-integrated functional neuronavigation 
and direct fi ber stimulation. J Neurosurg. 2005;102:
664–72.  

       24.    Mikuni N, Okada T, Nishida N, et al. Comparison 
between motor evoked potential recording and fi ber 
tracking for estimating pyramidal tracts near brain 
tumors. J Neurosurg. 2007;106:128–33.  

      25.    Gonzalez-Darder JM, Gonzalez-Lopez P, Talamantes 
F, et al. Multimodal navigation in the functional 

microsurgical resection of intrinsic brain tumors 
located in eloquent motor areas: role of tractography. 
Neurosurg Focus. 2010;28:E5.  

     26.    Mikuni N, Okada T, Enatsu R, et al. Clinical impact of 
integrated functional neuronavigation and subcortical 
electrical stimulation to preserve motor function dur-
ing resection of brain tumors. J Neurosurg. 2007;106:
593–8.  

      27.    Bello L, Gambini A, Castellano A, et al. Motor and 
language DTI Fiber Tracking combined with intraop-
erative subcortical mapping for surgical removal of 
gliomas. Neuroimage. 2008;39:369–82.  

   28.    Ulmer JL, Salvan CV, Mueller WM, et al. The role of 
diffusion tensor imaging in establishing the proximity 
of tumor borders to functional brain systems: implica-
tions for preoperative risk assessments and postopera-
tive outcomes. Technol Cancer Res Treat. 2004;3:
567–76.  

     29.    Romano A, Ferrante M, Cipriani V, et al. Role of mag-
netic resonance tractography in the preoperative plan-
ning and intraoperative assessment of patients with 
intra-axial brain tumours. Radiol Med. 2007;112:
906–20.  

    30.    Wu JS, Zhou LF, Tang WJ, et al. Clinical evaluation 
and follow-up outcome of diffusion tensor imaging- 
based functional neuronavigation: a prospective, con-
trolled study in patients with gliomas involving 
pyramidal tracts. Neurosurgery. 2007;61:935–48. dis-
cussion 948-939.  

    31.    Keles GE, Lundin DA, Lamborn KR, Chang EF, 
Ojemann G, Berger MS. Intraoperative subcortical 
stimulation mapping for hemispherical perirolandic 
gliomas located within or adjacent to the descending 
motor pathways: evaluation of morbidity and assess-
ment of functional outcome in 294 patients. 
J Neurosurg. 2004;100:369–75.  

     32.    Gil-Robles S, Duffau H. Surgical management of 
World Health Organization Grade II gliomas in elo-
quent areas: the necessity of preserving a margin around 
functional structures. Neurosurg Focus. 2010;28:E8.  

    33.    Kamada K, Houkin K, Takeuchi F, et al. Visualization 
of the eloquent motor system by integration of MEG, 
functional, and anisotropic diffusion-weighted MRI 
in functional neuronavigation. Surg Neurol. 
2003;59:352–61. discussion 361-352.  

    34.    Hofer S, Karaus A, Frahm J. Reconstruction and dis-
section of the entire human visual pathway using dif-
fusion tensor MRI. Front Neuroanat. 2010;4:15.  

       35.    Mandelstam SA. Challenges of the anatomy and dif-
fusion tensor tractography of the Meyer loop. AJNR 
Am J Neuroradiol. 2012;33:1204–10.  

    36.    Kamada K, Todo T, Morita A, et al. Functional moni-
toring for visual pathway using real-time visual 
evoked potentials and optic-radiation tractography. 
Neurosurgery. 2005;57:121–7. discussion 121-127.  

   37.    Kikuta K, Takagi Y, Nozaki K, et al. Early experience 
with 3-T magnetic resonance tractography in the sur-
gery of cerebral arteriovenous malformations in and 
around the visual pathway. Neurosurgery. 2006;58:
331–7. discussion 331-337.  

R.L. Wolf et al.



307

    38.    Powell HW, Parker GJ, Alexander DC, et al. MR trac-
tography predicts visual fi eld defects following tem-
poral lobe resection. Neurology. 2005;65:596–9.  

    39.    Kamada K, Todo T, Masutani Y, et al. Visualization of 
the frontotemporal language fi bers by tractography 
combined with functional magnetic resonance imag-
ing and magnetoencephalography. J Neurosurg. 
2007;106:90–8.  

     40.    Leclercq D, Duffau H, Delmaire C, et al. Comparison 
of diffusion tensor imaging tractography of language 
tracts and intraoperative subcortical stimulations. 
J Neurosurg. 2010;112:503–11.  

    41.    Henry RG, Berman JI, Nagarajan SS, Mukherjee P, 
Berger MS. Subcortical pathways serving cortical 
language sites: initial experience with diffusion tensor 
imaging fi ber tracking combined with intraoperative 
language mapping. Neuroimage. 2004;21:616–22.  

     42.    Zhao Y, Chen X, Wang F, et al. Integration of diffu-
sion tensor-based arcuate fasciculus fi bre navigation 
and intraoperative MRI into glioma surgery. J Clin 
Neurosci. 2012;19:255–61.  

    43.    Powell HW, Parker GJ, Alexander DC, et al. Imaging 
language pathways predicts postoperative naming 
defi cits. J Neurol Neurosurg Psychiatry. 2008;79:
327–30.  

    44.    Koga T, Maruyama K, Kamada K, et al. Outcomes of 
diffusion tensor tractography-integrated stereotactic 
radiosurgery. Int J Radiat Oncol Biol Phys. 2012;82:
799–802.  

    45.    Maruyama K, Kamada K, Shin M, et al. Optic radia-
tion tractography integrated into simulated treatment 
planning for Gamma Knife surgery. J Neurosurg. 
2007;107:721–6.  

    46.    Maruyama K, Kamada K, Ota T, et al. Tolerance of 
pyramidal tract to gamma knife radiosurgery based on 
diffusion-tensor tractography. Int J Radiat Oncol Biol 
Phys. 2008;70:1330–5.  

     47.    Gupta A, Shah A, Young RJ, Holodny AI. Imaging of 
brain tumors: functional magnetic resonance imaging 
and diffusion tensor imaging. Neuroimaging Clin N 
Am. 2010;20:379–400.  

    48.    Jena R, Price SJ, Baker C, et al. Diffusion tensor 
imaging: possible implications for radiotherapy treat-
ment planning of patients with high-grade glioma. 
Clin Oncol (R Coll Radiol). 2005;17:581–90.  

   49.    Krishnan AP, Asher IM, Davis D, Okunieff P, O’Dell 
WG. Evidence that MR diffusion tensor imaging 
(tractography) predicts the natural history of regional 
progression in patients irradiated conformally for pri-
mary brain tumors. Int J Radiat Oncol Biol Phys. 
2008;71:1553–62.  

       50.    Stadlbauer A, Nimsky C, Buslei R, et al. Diffusion ten-
sor imaging and optimized fi ber tracking in glioma 
patients: histopathologic evaluation of tumor-invaded 
white matter structures. Neuroimage. 2007;34:949–56.  

    51.    Brunenberg EJ, Platel B, Hofman PA, Ter Haar 
Romeny BM, Visser-Vandewalle V. Magnetic reso-
nance imaging techniques for visualization of the sub-
thalamic nucleus. J Neurosurg. 2011;115:971–84.  

    52.    Sedrak M, Gorgulho A, Bari A, et al. Diffusion tensor 
imaging (DTI) and colored fractional anisotropy (FA) 
mapping of the subthalamic nucleus (STN) and the 
globus pallidus interna (GPi). Acta Neurochir (Wien). 
2010;152:2079–84.  

    53.    Pouratian N, Zheng Z, Bari AA, Behnke E, Elias WJ, 
Desalles AA. Multi-institutional evaluation of deep 
brain stimulation targeting using probabilistic 
connectivity- based thalamic segmentation. 
J Neurosurg. 2011;115:995–1004.  

    54.    Barkhoudarian G, Klochkov T, Sedrak M, et al. A role 
of diffusion tensor imaging in movement disorder sur-
gery. Acta Neurochir (Wien). 2010;152:2089–95.  

    55.    Coenen VA, Madler B, Schiffbauer H, Urbach H, 
Allert N. Individual fi ber anatomy of the subthalamic 
region revealed with diffusion tensor imaging: a con-
cept to identify the deep brain stimulation target for 
tremor suppression. Neurosurgery. 2011;68:1069–75. 
discussion 1075-1066.  

    56.    Coenen VA, Allert N, Madler B. A role of diffusion 
tensor imaging fi ber tracking in deep brain stimula-
tion surgery: DBS of the dentato-rubro-thalamic tract 
(drt) for the treatment of therapy-refractory tremor. 
Acta Neurochir (Wien). 2011;153:1579–85. discus-
sion 1585.  

    57.    Henderson JM. “Connectomic surgery”: diffusion 
tensor imaging (DTI) tractography as a targeting 
modality for surgical modulation of neural networks. 
Front Integr Neurosci. 2012;6:15.  

    58.    Sedrak M, Gorgulho A, De Salles AF, et al. The role 
of modern imaging modalities on deep brain stimula-
tion targeting for mental illness. Acta Neurochir 
Suppl. 2008;101:3–7.  

    59.    Lakhan SE, Callaway E. Deep brain stimulation for 
obsessive-compulsive disorder and treatment- resistant 
depression: systematic review. BMC Res Notes. 
2010;3:60.  

    60.    Lujan JL, Chaturvedi A, Malone DA, Rezai AR, 
Machado AG, McIntyre CC. Axonal pathways linked 
to therapeutic and nontherapeutic outcomes during 
psychiatric deep brain stimulation. Hum Brain Mapp. 
2012;33:958–68.  

    61.    Grover PJ, Pereira EA, Green AL, et al. Deep brain 
stimulation for cluster headache. J Clin Neurosci. 
2009;16:861–6.  

    62.    Owen SL, Heath J, Kringelbach M, et al. Pre-operative 
DTI and probabilisitic tractography in four patients 
with deep brain stimulation for chronic pain. J Clin 
Neurosci. 2008;15:801–5.  

    63.    Jones DK. The effect of gradient sampling schemes on 
measures derived from diffusion tensor MRI: a Monte 
Carlo study. Magn Reson Med. 2004;51:807–15.  

    64.    Skare S, Andersson JL. On the effects of gating in dif-
fusion imaging of the brain using single shot 
EPI. Magn Reson Imaging. 2001;19:1125–8.  

    65.    Nucifora PG, Wu X, Melhem ER, Gur RE, Gur RC, 
Verma R. Automated diffusion tensor tractography: 
implementation and comparison to user-driven trac-
tography. Acad Radiol. 2012;19:622–9.  

14 DTI in Neurosurgical Planning



308

     66.    Burgel U, Madler B, Honey CR, Thron A, Gilsbach J, 
Coenen VA. Fiber tracking with distinct software 
tools results in a clear diversity in anatomical fi ber 
tract portrayal. Cent Eur Neurosurg. 2009;70:27–35.  

    67.    Hattingen E, Rathert J, Jurcoane A, et al. A stan-
dardised evaluation of pre-surgical imaging of the 
corticospinal tract: where to place the seed 
ROI. Neurosurg Rev. 2009;32:445–56.  

      68.    Young RJ, Brennan N, Fraser JF, Brennan 
C. Advanced imaging in brain tumor surgery. 
Neuroimaging Clin N Am. 2010;20:311–35.  

    69.    Bello L, Castellano A, Fava E, et al. Intraoperative 
use of diffusion tensor imaging fi ber tractography and 
subcortical mapping for resection of gliomas: techni-
cal considerations. Neurosurg Focus. 2010;28:E6.  

    70.    Rasmussen Jr IA, Lindseth F, Rygh OM, et al. 
Functional neuronavigation combined with intra- 
operative 3D ultrasound: initial experiences during 
surgical resections close to eloquent brain areas and 
future directions in automatic brain shift compensa-
tion of preoperative data. Acta Neurochir (Wien). 
2007;149:365–78.  

     71.    Nimsky C, Ganslandt O, Fahlbusch R. Implementation 
of fi ber tract navigation. Neurosurgery. 2006;58:ONS- 
292–303. discussion ONS-303–294.  

        72.    Aralasmak A, Ulmer JL, Kocak M, Salvan CV, Hillis 
AE, Yousem DM. Association, commissural, and pro-
jection pathways and their functional defi cit reported 
in literature. J Comput Assist Tomogr. 2006;30:
695–715.  

   73.    Mori S, Kaufmann WE, Davatzikos C, et al. Imaging 
cortical association tracts in the human brain using 
diffusion-tensor-based axonal tracking. Magn Reson 
Med. 2002;47:215–23.  

   74.    Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl 
PC, Mori S. Fiber tract-based atlas of human white 
matter anatomy. Radiology. 2004;230:77–87.  

    75.    Catani M, Howard RJ, Pajevic S, Jones DK. Virtual 
in vivo interactive dissection of white matter fasciculi 
in the human brain. Neuroimage. 2002;17:77–94.  

    76.    Mamata Y, Mamata H, Nabavi A, et al. Intraoperative 
diffusion imaging on a 0.5 Tesla interventional scan-
ner. J Magn Reson Imaging. 2001;13:115–9.  

    77.    Nimsky C, Ganslandt O, Hastreiter P, et al. 
Intraoperative diffusion-tensor MR imaging: shifting 
of white matter tracts during neurosurgical proce-
dures--initial experience. Radiology. 2005;234:
218–25.  

    78.    Holodny AI, Schwartz TH, Ollenschleger M, Liu WC, 
Schulder M. Tumor involvement of the corticospinal 
tract: diffusion magnetic resonance tractography with 
intraoperative correlation. J Neurosurg. 2001;95:1082.  

    79.    Talos IF, Zou KH, Kikinis R, Jolesz FA. Volumetric 
assessment of tumor infi ltration of adjacent white 
matter based on anatomic MRI and diffusion tensor 
tractography. Acad Radiol. 2007;14:431–6.  

     80.    Jellison BJ, Field AS, Medow J, Lazar M, Salamat 
MS, Alexander AL. Diffusion tensor imaging of cere-
bral white matter: a pictorial review of physics, fi ber 
tract anatomy, and tumor imaging patterns. AJNR Am 
J Neuroradiol. 2004;25:356–69.  

     81.    Hygino da Cruz LC, Jr VIG, Domingues RC. Diffusion 
MR imaging: an important tool in the assessment of 
brain tumors. Neuroimaging Clin N Am. 2011;21:
27–49. vii.  

    82.    Lazar M, Alexander AL, Thottakara PJ, Badie B, 
Field AS. White matter reorganization after surgical 
resection of brain tumors and vascular malformations. 
AJNR Am J Neuroradiol. 2006;27:1258–71.  

     83.    Johansen-Berg H, Behrens TE. Just pretty pictures? 
What diffusion tractography can add in clinical neuro-
science. Curr Opin Neurol. 2006;19:379–85.  

    84.    Kinoshita M, Yamada K, Hashimoto N, et al. Fiber- 
tracking does not accurately estimate size of fi ber 
bundle in pathological condition: initial neurosurgical 
experience using neuronavigation and subcortical 
white matter stimulation. Neuroimage. 2005;25:
424–9.  

    85.    Schonberg T, Pianka P, Hendler T, Pasternak O, Assaf 
Y. Characterization of displaced white matter by brain 
tumors using combined DTI and fMRI. Neuroimage. 
2006;30:1100–11.  

    86.    Lu S, Ahn D, Johnson G, Law M, Zagzag D, Grossman 
RI. Diffusion-tensor MR imaging of intracranial neo-
plasia and associated peritumoral edema: introduction 
of the tumor infi ltration index. Radiology. 
2004;232:221–8.  

   87.    Wang S, Kim S, Chawla S, et al. Differentiation 
between glioblastomas, solitary brain metastases, and 
primary cerebral lymphomas using diffusion tensor 
and dynamic susceptibility contrast-enhanced MR 
imaging. AJNR Am J Neuroradiol. 2011;32:507–14.  

    88.    Tsuchiya K, Fujikawa A, Nakajima M, Honya 
K. Differentiation between solitary brain metastasis 
and high-grade glioma by diffusion tensor imaging. 
Br J Radiol. 2005;78:533–7.      

R.L. Wolf et al.



309© Springer Science+Business Media New York 2016 
W. Van Hecke et al. (eds.), Diffusion Tensor Imaging, DOI 10.1007/978-1-4939-3118-7_15

      DTI in Diagnosis and Follow-Up 
of Brain Tumors       

     Frank     De     Belder      ,     Sophie     Van     Cauter     ,     Luc     van den   
  Hauwe     ,     Wim     Van     Hecke     ,     Louise     Emsell     ,     Maya     De   
  Belder     ,     Matthias     Spaepen     ,     Stefan     Sunaert     , 
and     Paul     M.     Parizel    

 15

            Learning Points 

•     Both DWI and DTI may have utility in the 
assessment of brain tumors.  

•   Surgical planning is currently the most useful 
clinical application of DTI in the context of 
 brain tumor neuroradiology  .  

•   DTI parameters such as apparent diffusion 
coeffi cient ( ADC)      and fractional anisotropy 
( FA)      may be useful to differentiate between 
mass lesions in the brain and different types of 
brain tumor.  

•   Methodological inconsistency and challenges 
associated with tumor delineation and DTI 
tractography limit the applicability of DTI for 
assessing patients in clinical practice.  

•   The most optimal use of DTI in the diagnosis, 
treatment, and follow-up of brain tumors 
should incorporate multiple imaging, surgical 
and clinical assessment strategies.     

    Introduction 

 Diffusion Tensor Imaging (DTI) maps the diffu-
sion process of water molecules in tissue. The 
technique is mainly used to visualize brain con-
nectivity and the relation between lesions such as 
brain tumors and the surrounding white matter 
tracts. DTI can also be used to characterize brain 
tumor microstructure, which makes it potentially 
useful in the differential diagnosis of mass lesions 
in the brain. For example,    apparent diffusion 
coeffi cient ( ADC)   derived from DWI or DTI may 
be used to differentiate an abscess with low 
ADC from a necrotic brain tumor and an epider-
moid from an arachnoid  cyst   with high ADC 
(Fig.  15.1 ), or to assess cell density and nucleus/
cytoplasma ratio which can be used to differentiate 
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tumors with high cellularity, such as lymphoma, 
from tumors with lower cellularity, such as gli-
oma. Other examples include the differentiation 
of tumor recurrence from pseudoprogression and 
vasogenic edema from tumor-infi ltrated edema, 
or to differentiate suckable (low fractional anisot-
ropy, FA) from non-suckable tumors (high FA) 
(e.g., pituitary adenoma versus meningioma) [ 1 ].

   In addition to standard DTI derived parame-
ters such as ADC (or mean diffusivity, MD) and 
FA, other indices have been proposed, which may 
provide additional complementary information 
when characterizing brain tumors, such as the 
FA tumor /FA normal appearing white matter  ratio, fi ber coher-
ence index, and tumor infi ltration index [ 2 ,  3 ]. 

 It is important to understand however that 
although the utility of DTI has been demon-
strated in clinical studies, there remains a wide 
range of fi ndings, which are sometimes contra-
dictory and which may be due to differences in 
methodology. This limits the clinical applicabil-
ity of such DTI fi ndings in individual patients. 
This topic is addressed in more detail in this 
chapter. Supplemented with illustrative case 
studies, the remainder of the chapter reviews the 
role of DTI in the differential diagnosis and fol-
low-up of brain tumors, and includes detailed 
sections on surgical planning, tumor grading, 
and characterizing posterior fossa tumors in 
children.  

  Fig. 15.1    Differentiation between arachnoid cyst and 
epidermoid cyst using DWI. A 19-year-old female patient 
( a – c ) and a 27-year-old male patient ( d – f ), each with a 
lesion located in the quadrigeminal cistern. Both lesions 
show a high signal intensity on T2-weighted images ( a ,  d ) 
and low signal intensity on T1-weighted images ( b ,  e ). 

The axial diffusion-weighted trace images ( b  = 1000) 
demonstrate no restricted diffusion in the 19-year-old 
female patient ( c ). The lesion was a histologically proven 
arachnoid cyst. In the 27-year-old male, the trace image 
( f ) showed restricted diffusion. He had a histologically 
proven epidermoid cyst       

 

F. De Belder et al.



311

    The Role of DWI and DTI 
in the Characterization 
and Differential Diagnosis of Mass 
Lesions in the Brain 

 Imaging fi ndings in brain tumors are frequently 
nonspecifi c on conventional MRI. Both low- 
grade (LGGs)  and   high-grade gliomas ( HGGs)  ,    
metastases, and lymphomas show variable high 
signal on FLAIR and T2-weighted images, and 
are hypo- to isointense on T1-weighted images, 
whilst all lesions may show some degree of 
enhancement on contrast-enhanced T1-weighted 
images. Also non-tumoral lesions, such as acute 
and subacute infarcts, tumefactive demyelinating 
lesions, abscesses, and hematomas may some-
times be diffi cult to differentiate. More advanced 
neuroimaging techniques such as DWI and DTI, 
in combination with MR spectroscopy and perfu-
sion and permeability MR imaging, may be help-
ful in obtaining a specifi c diagnosis. 

    Differentiating between Tumors, 
Cysts, and Abscesses 

  Abscess   pus is a creamy and viscous fl uid con-
taining infl ammatory cells, bacteria, mucoid pro-
teins, and cell debris. The high cellularity of pus 
represents the main biological parameter leading 
to a diminution of the extracellular space and to 
decreased diffusion. Ebisu et al. [ 4 ] were the fi rst 
to report on the difference in ADC value between 
abscess fl uid and  necrotic or cystic tumors  , and to 
highlight the capability of DWI to discriminate 
between these two types of mass lesions. Marked 
hyperintensity on DWI was observed in the 
abscess cavity, which was associated with an 
extremely low ADC (0.31 × 10 −3  mm 2 /s). 
Restricted diffusion might be characteristic but is 
not pathognomonic for abscesses, as low ADC 
values also may be found in brain metastases. 
Rare cases of glioblastoma multiforme ( GBM)      
that show restricted diffusion, i.e., hyperintense 
on trace DW images and hypointense on ADC 
maps, have been also reported in the literature 
[ 5 ]. The application of MR spectroscopy and MR 
perfusion may be helpful in these patients. 

Additionally, there are cases of cerebral abscess 
cavities showing hypointensity on DWI and high 
ADC values which overlapped with fi ndings of 
 neoplastic cysts  . The cause of increasing diffu-
sion in  abscess cysts   might be due to changes in 
pus composition and probably refl ects increasing 
pus liquefaction as a result of adequate antibiotic 
therapy [ 6 ]. 

 Conventional MRI does not allow an adequate 
differentiation between an abscess, a glioblas-
toma, and a solitary metastasis. The three entities 
generally present as rim-enhancing, central 
necrotic, expansive lesions with distinct perile-
sional edema. 

 At histopathological examination, the cystic 
parts of  glioblastoma and metastases   contain 
necrotic tumor tissue, while the enhancing rim on 
conventional MRI represents viable tumor cells. 
In a brain abscess, the cavity contains necrotic 
debris, neutrophils, and bacteria whereas the 
enhancing rim is a fi brous capsule formed by col-
lagen [ 7 ,  8 ]. The role of DWI in the differential 
diagnosis of tumoral lesions versus abscesses, 
with the ADC typically low in abscess cavities 
and high in tumor cysts, has been widely demon-
strated. However, high diffusivity similar to that 
found in necrotic tumors has been reported in 
abscesses. Brain tumors with infected or hemor-
rhagic material can show similar ADC in the cys-
tic core compared to brain abscesses. Several 
studies addressed the role of DTI in optimizing 
the differential diagnosis of tumoral from non- 
tumoral infectious lesions. 

 Although results vary greatly among different 
studies, the consistent fi ndings are reported 
regarding the FA values in the immediate 
  perilesional edema   of abscesses versus tumors. 
Elevated FA values are reported in the  perile-
sional edema of the   GBM and metastases [ 8 – 10 ]. 
In contrast, brain abscesses are associated with a 
lower FA in the peritumoral edematous zone. The 
elevated FA value in the immediate peritumoral 
edematous region of tumors is probably a result 
of a compressive effect, as well as gliosis. The 
gliotic response, an astrocytic reaction in 
response to any central nervous system injury, 
usually exists for a shorter duration in an abscess 
compared to a tumor. Consequently, the gliosis 
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may be in an earlier stage with more irregular 
glial fi bers, explaining the lower FA value. 

 Higher FA values in the core of abscesses 
compared to GBM and metastases are reported 
[ 10 ,  11 ]. The higher FA in the abscess cavity is 
postulated to refl ect a combination of cells, 
necrotic debris, viscosity, and macromolecules 
present in the pus due to upregulation of various 
adhesion surface molecules [ 8 ]. 

 Elevated FA values are also reported in the 
enhancing rim of  abscesses  , which probably 
refl ect the concentric layers of collagen fi bers 
that intermix with the neutrophils and macro-
phages [ 8 ,  12 ,  13 ]. 

 Although absolute FA values vary greatly 
among studies due to different acquisition 
schemes, fi eld strengths and processing meth-
ods, some guidelines can be deducted. FA values 
measured in the necrotic and solid enhancing 
parts of glioblastoma and metastases are typi-
cally lower than those in normal white matter. 
FA in the cystic cavity and enhancing rim of an 
abscess can be as high as values found in normal 
white matter. 

    Differentiating between    Epidermoid 
and Arachnoid Cysts 
  Epidermoid cysts   are slow-growing lesions 
derived from ectodermal tissue that are hypothe-
sized to have been inwardly displaced from the 
ectodermal surfaces during embryologic devel-
opment. These cysts represent 1–2 % of all intra-
cranial tumors, and occur typically as extra-axial 
lesions, most commonly in the cerebellopontine 
angle [ 14 ], fourth ventricle, parasellar region, 
and subarachnoid spaces of the basal cisterns. 
Less common locations include the middle cra-
nial fossa, the lateral ventricles [ 15 ], diploe, and 
the spinal canal [ 16 ].  Epidermoid cysts   that are 
exclusively intraparenchymal are very rare [ 17 ]. 
Most are asymptomatic but may occasionally 
result in mass effect, cranial neuropathy, or sei-
zure. Occasionally,  epidermoid cysts   rupture and 
may elicit a granulomatous meningitis [ 18 ]. Most 
epidermoid cysts are isointense to CSF, although 
close inspection often shows they are not pre-
cisely identical in signal intensity to CSF [ 18 ]. 
The differential diagnosis with  arachnoid cysts   is 

usually made with FLAIR and DWI [ 19 ]. 
Epidermoid cysts do not suppress completely on 
FLAIR images and show high signal intensity on 
DW images [ 18 – 21 ]. The usefulness of DWI in 
distinguishing epidermoid tumors from  arach-
noid cysts   was fi rst reported by Tsuruda et al. in 
1990. They showed that the ADC of epidermoid 
tumors is clearly lower than that of arachnoid 
cysts. Epidermoid cysts display much lower 
ADC values than the CSF, and little higher ADC 
values when compared with normal gray or white 
matter [ 21 ,  22 ]. So, whether the high signal on 
DW images in epidermoid cysts is due to diffu-
sion restriction or T2 shine-through remains con-
troversial [ 20 – 22 ]. Reduced ADC is not the only 
explanation of the  epidermoid cysts   bright signal 
intensity on the DW trace images [ 20 ]. The 
mechanisms of signal intensity generation in epi-
dermoid appear to be different in various 
sequences and the additive effect of diffusion 
anisotropy and T2 shine-through may be the 
cause for bright signal on DWI [ 22 ]. On expo-
nential DW images, epidermoid cysts have simi-
lar intensity with brain parenchyma showing that 
hyperintensity of these lesions on trace images is 
caused by increased T2 effect rather than the 
decrease in ADC values [ 23 ]. 

 The high signal intensity on DWI of epider-
moid tumors also serves as a useful feature for 
the detection of any residual tumor on postopera-
tive follow-up  examinations    (Fig.  15.2 ).

       Differentiating between    High-Grade 
Gliomas and Tumefactive 
Demyelinating Lesions 
 Tumefactive demyelinating lesions ( TDL)      are 
demyelinating lesions larger than 2 cm, often 
indistinguishable from high-grade gliomas with 
conventional MRI. Incorrect diagnosis leads to 
unnecessary treatment such as radiotherapy, 
which could exacerbate demyelinating disease. 
Conventional imaging features of TDL include a 
relative lack of mass effect, less substantial per-
ilesional edema, and open ring enhancement. 
These fi ndings were proven to be nonspecifi c 
[ 24 ]. Very few studies have focused on the role of 
DTI in the characterization of TDL [ 25 ,  26 ]. 
Intralesional elevated FA values in the peripheral 
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enhancing portions as well as in the central 
 portion have been reported to differentiate TDL 
from high-grade gliomas, although differences 
were very small (average FA: 0.07 versus 0.06) 
[ 25 ]. Therefore we conclude that quantitative 
DTI is not useful in the differential diagnosis of 
TDL and high-grade glioma in individual patients.   

    Characterizing Brain Tumors 

       Glioblastoma Multiforme 
versus Solitary  Metastasis   
 Intracranial metastases and glioblastoma are the 
most common intra-axial brain tumors in adults 

with gliomas representing 40 % of all primary 
brain tumors and brain metastases occurring in 
almost 15 % of all cancer patients [ 27 ]. In the 
typical setting of an oncological patient present-
ing with multiple lesions, the diagnosis of brain 
metastasis is straightforward using conventional 
MRI and clinical history. However, in the patient 
with unknown primary malignancies and a soli-
tary brain lesion, differentiation may often be dif-
fi cult. On conventional MR imaging, both HGGs 
and solitary metastasis display similar signal 
intensity characteristics and contrast enhance-
ment patterns [ 2 ,  28 – 30 ] and anatomical MRI is 
not able to accurately characterize the extent of 
tumor infi ltration. 

  Fig. 15.2    A 7 year old boy ( a – c ) and a 51-year-old 
woman ( d – f ) both presented with headache and fever. 
Contrast-enhanced CT (not shown) displayed a solitary 
ring-enhancing lesion in the brain. MRI was performed to 
further characterize the lesions. Gd-enhanced T1-weighted 
images ( a ,  d ) show smooth ring enhancement in the right 
temporal lobe lesion ( a ) and a slightly irregular ring 
enhancement in the deep frontal white matter of the left 

cerebral hemisphere ( d ). The axial diffusion-weighted 
trace images ( b  = 1000) show high signal intensity ( b ) 
with corresponding low signal on the ADC map ( c ) indic-
ative for restricted diffusion in the 7-year-old boy. 
Facilitated diffusion (low signal on DWI trace image ( e ), 
and high signal on ADC ( f )) is observed in the 51-year-old 
woman. Final diagnosis was bacterial abscess and necrotic 
solitary metastasis of a primary lung cancer       
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 Chiang et al. found the mean ADC values in 
contrast-enhancing areas of metastases to be sig-
nifi cantly higher than those in HGGs [ 31 ]. 
However, the ADC values for metastases and 
enhancing gliomas overlap and most studies in 
the literature have suggested that the tumoral 
ADC value is not useful for discriminating meta-
static tumors from HGGs [ 32 – 40 ]. HGGs and 
metastatic tumors often display heterogeneous 
signal intensity secondary to necrosis and sus-
ceptibility artifacts. As a result of this heteroge-
neity, DWI metrics obtained from the tumor can 
be imprecise or inaccurate [ 39 ]. 

 Most tumors are surrounded by a high T2 sig-
nal area indicative of vasogenic edema. In gen-
eral, the nonenhancing area of signal 
abnormalities that surrounds the enhancing tumor 
is referred to as peritumoral edema. In metastatic 
brain tumors or non-infi ltrative primary tumors 
such as meningioma, peritumoral edema is syn-
onymous with vasogenic edema. In HGGs, how-
ever, peritumoral edema is better referred to as 
“infi ltrative edema” because it represents vaso-
genic edema and infi ltrating tumor cells that 
invade newly formed or pre-existing blood ves-
sels and white matter tracts [ 39 ]. Therefore, the 
key to distinguishing between these two entities 
appears to lie in detecting the changes within the 
peritumoral area—that is, the area beyond the 
enhancing margin [ 39 ]. 

 Several studies have suggested that DTI can 
aid in the distinction of vasogenic edema sur-
rounding metastases from nonenhancing tumor 
infi ltration in gliomas [ 3 ,  10 ,  41 – 43 ]. A number 
of studies have demonstrated the utility of ADC 
in the peritumoral region for differentiating 
HGGs and solitary metastasis, and have found 
that the mean or minimum ADC values in peritu-
moral edema of metastases are signifi cantly 
higher than those in HGGs [ 31 ,  37 – 39 ,  44 ]. Other 
groups, however, believe that ADC measure-
ments in the peritumoral areas of GBM and 
metastasis cannot be used to distinguish between 
these groups, as a large overlap is often demon-
strated [ 34 ,  40 ]. 

 In metastasis, the peritumoral region does not 
contain infi ltrating tumor cells. FA values have 

been reported to be negatively correlated with 
cellular density and tumor infi ltration. In addition 
to FA, less commonly used scalar measures:  p ,  q , 
and  L  exist, which represent pure isotropic, aniso-
tropic diffusion, and the total magnitude of the 
diffusion tensor, respectively [ 42 ]. Wang et al. 
[ 45 ] argued that the integration of multiple mea-
sures would provide insights in tumor infi ltration. 
In several studies, Price et al. demonstrated that 
increased isotropic diffusion correlates with 
tumor  infi ltration    [ 43 ,  46 ]. The extent of the 
abnormality of pure isotropic diffusion was a pre-
dictor for tumor spread at the time of  progression    
[ 43 ] (Fig.  15.3 ).

       Glioblastoma Multiforme 
versus  Lymphoma      
 Primary central nervous system lymphoma 
( PCNSL)      is a manifestation of extranodal non- 
Hodgkin’s lymphoma, which accounts for 6 % of 
all intracranial malignant tumors. 90 % of 
PCNSLs are histologically diffuse large B-cell 
lymphomas, and the remaining 10 % are poorly 
characterized low-grade, Burkitt’s or T-cell lym-
phomas. An increase in the incidence of PCNSL 
has been reported both in immune-compromised 
and immune-competent individuals in the last 
decades, especially among the elderly [ 47 ]. The 
peak prevalence is between the fi fth and sixth 
decades of life. Histologically, PCNSLs are typi-
cally angiocentric tumors that form perivascular 
cuffs of tumor cells, which infi ltrate brain paren-
chyma either as individual diffusely infi ltrating 
cells or as a compact aggregates of tightly packed 
cells [ 48 ]. Because of their high degree of cellu-
larity, PCNSLs are frequently hyperattenuating 
to gray matter on CT and hypointense to gray and 
white matter on T2-wi. Usually these tumors 
show homogeneous and intense contrast enhance-
ment. Both tumors can primarily affect or sec-
ondarily extend across the corpus callosum with 
a characteristic butterfl y pattern of infi ltration 
[ 49 ] (Fig.  15.4 ).

   Differentiation between PCNSL and other pri-
mary brain tumors, such as GBM, can however 
sometimes be diffi cult or even impossible 
because conventional MR imaging fi ndings may 
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overlap [ 47 ]. Accurate preoperative differentia-
tion between these two tumor types is important. 
Primary therapy for HGGs/GBMs almost always 
includes neurosurgical resection, whereas 
PCNSL is managed primarily with chemotherapy 
or radiation therapy after stereotactic biopsy [ 47 ]. 

 PCNSLs are generally hyperintense to gray 
matter on trace DW images and isointense to 
hypointense on ADC maps, fi ndings consistent 
with restricted diffusion due to high cellularity 
[ 33 ,  35 ,  48 ]. In contrast, HGGs are generally 
hyperintense to gray matter on both trace DW 
images and ADC maps, fi ndings consistent with 
the so-called T2 shine-through phenomenon, 
rather than low diffusivity [ 48 ]. Guo et al. were 
the fi rst to publish quantitative data regarding 
water diffusivity (i.e., ADC values) in PCNSL 
and to correlate these values directly with the cel-
lularity of the tumor [ 48 ]. Strongly reduced ADC 
values have been described as being typical for 
PCNSL [ 33 ,  48 – 50 ]. However, rare cases of 

GBMs that show restricted diffusion, i.e., hyper-
intense on trace DW images and hypointense on 
ADC maps, have been reported in the literature 
[ 5 ]. The application of MR spectroscopy and MR 
perfusion may be helpful in these patients. In a 
series of PCNSLs and astrocytic tumors 
 infi ltrating the corpus callosum, Horger et al. 
observed lower (17 %) ADC values for both 
tumor types when compared to other previous 
studies. The lower ADCs in their cohort may be 
the result of mixed inhibition of water diffusivity 
caused by both tumor tissue and the underlying 
white  matter   fi bers of the corpus  callosum   [ 49 ] 
(Fig.  15.5 ).

        Meningiomas   
  Meningiomas   account for 30 % of all intracranial 
neoplasms, with up to 20 % of these lesions being 
atypical (WHO grade II) or anaplastic (WHO 
grade III) [ 51 ]. These are more aggressive tumors 
with high morbidity, mortality, and recurrence 
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  Fig. 15.3    Low-grade 
 glioma   in the midbrain of a 
28-year-old male. The axial 
Flair ( a ) demonstrates a 
diffuse infi ltrating tumor in 
the midbrain around the 
aqueduct. The lesion has a 
high T2-signal intensity. 
The color-coded FA map 
( b ) and measurements of 
FA and ADC calculated on 
a Siemens Leonardo 
(Erlangen) workstation 
values ( c ) in the tumor 
( red ) and NAWM ( green ) 
illustrating that 
FA tumor  < FA NAWM  and 
ADC tumor  > FA NAWM        
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rates. The incidence and prevalence of meningio-
mas are twice as high in women compared to 
men, and higher in middle-aged patients. Most 
meningiomas are benign, but some may cause 
edema in the adjacent brain parenchyma depend-
ing on their size, subtype, or hormone receptors 
present in the lesion. The edema surrounding 
meningiomas is purely vasogenic. In most cases 
diagnosis of meningioma is straightforward 
given their extra-axial location. In some cases it 
may be diffi cult to differentiate meningiomas 
from large intra-axial tumors. Most meningiomas 
are well organized, from which the organization 
may differ between subtypes. Meningiothelial 
meningiomas, the most common meningioma, 

consist of cells arranged in lobules or whorls. The 
fi broblastic  meningiomas   consist of spindle cells 
with nuclei arranged in fascicules or storiform 
pattern. Atypical and malignant meningiomas 
show discohesion of the tumor cells with loss of 
histologic structure. Distinctions in microstruc-
ture are refl ected on DTI in differing FA values, 
which appear to be helpful to differentiate fi bro-
blastic meningiomas from other benign subtypes 
[ 52 ] and atypical or malignant meningiomas 
from the benign ones [ 53 ]. Preoperative planning 
for  meningiomas   requires information about 
tumor location, size, and tumor consistency and 
in grade I meningioma, lesion consistency is an 
important factor determining surgical outcome. 

  Fig. 15.4     Primary central nervous system lymphoma 
(PCNSL)   characterized by DWI. A 54-year-old man with 
an expansile lesion within the splenium of the corpus cal-
losum. Low signal intensity on T1-weighted image ( a ) 
and intermediate signal intensity (almost isointense with 
cortical gray matter) on T2-weighted ( b ) and FLAIR ( c ) 
images. Moderate vasogenic edema can also be observed. 

After gadolinium injection, homogeneous and intense 
contrast enhancement is seen ( d ). The axial diffusion- 
weighted trace image ( b  = 1000) shows high signal inten-
sity ( e ) with corresponding low signal on the ADC map ( f ) 
indicative of restricted diffusion. The proposed diagnosis 
of PCNSL was confi rmed by stereotactic biopsy       
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For example, a hard consistency, as seen in fi bro-
blastic subtypes, makes the removal diffi cult 
[ 54 ], whereas soft tumors are suckable and there-
fore more easy to resect than hard tumors, espe-
cially if there is an encasement of nerves or blood 
vessels. This means they require a shorter operat-
ing time and have a better outcome than hard 
meningiomas. Conventional MRI is unable to 
differentiate subtypes and grades, based on signal 
intensity value on T1- and T2-weighted images. 
An elevated FA is observed in fi broblastic menin-
giomas compared to meningothelial meningio-
mas. Fibroblastic meningiomas present with a 
fascicular orientation of long spindle-shaped 
tumor cells with a high content of intracellular 
collagen and reticulin, which is believed to be 
responsible for the hard consistency of these 
tumors. Transitional meningiomas showed no 
differences with either type [ 45 ,  52 ,  54 ,  55 ]. 
Although literature reports concerning the added 
value of DTI in predicting meningioma consis-
tency are fairly consistent, studies regarding the 
differentiation of typical versus atypical and ana-

plastic meningiomas using DTI show substan-
tially less agreement [ 2 ,  53 ,  56 ]. Further studies 
are warranted to address this issue. Conventional 
MRI features with cystic changes, hemorrhage, 
ischemic necrosis, and extracranial extension 
through the skull are more indicative of rapid 
growth and thus of an aggressive nature, although 
this refl ects already advanced stages of  disease    
[ 1 ,  57 ] (Fig.  15.6 ).

        Posterior Fossa Tumors   in Children 
 Brain tumors are the most common solid tumors 
in children, with an estimated incidence between 
1 and 3 per 100,000. Whereas in infants most 
brain tumors are located at the supratentorial 
level, in children over the age of 4, infratentorial 
tumors are more frequent. Most common poste-
rior fossa tumors in children include  pilocytic 
astrocytoma (PA)  ,  medulloblastoma (MB)  ,  epen-
dymoma (EP)  , and brain stem glioma [ 58 ]. Other 
tumor types such as atypical teratoid–rhabdoid 
tumor, hemangioblastoma, schwannoma, and 
choroid plexus papilloma are less frequently 

  Fig. 15.5    ( a ) A 46-year-old male with a strong enhanc-
ing lesion in the left cerebellar hemisphere on the axial 
T1-weighted images. The lesion has a restricted diffusion 
with a very low ADC value as demonstrated on the trace 

images ( b ) and the ADC maps ( c ). The color-coded FA 
maps a low FA value of the lesion, which is a histological 
proven B-cell lymphoma ( d )       
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observed. Accurate preoperative diagnosis is 
important, because the most common tumors in 
this location and age group, benign PA and highly 
malignant MB, not only have different treatment 
approaches but also different natural histories 
and outcomes [ 59 ]. 

 DWI distinguishes tumor types and histologi-
cal grades, because higher-grade tumors have 
increasingly restricted diffusion (high signal 
intensity on DWI, low ADC values) [ 59 ,  60 ]. 
Kotsenas et al. were the fi rst to describe the high 
signal intensity of MB on DWI. They postulated 
that the densely packed tissue, the high cellular-
ity, and small  extracellular  space of MB restrict 
the extracellular diffusion of water protons, and 
that the high nuclear-to-cytoplasmic ratio of these 
tumor cells limits  intracellular  motion. The com-
bination of these factors leads to a marked 
increase in signal on DWI (Fig.  15.7 ). Indeed, 

MBs are highly cellular WHO grade IV neo-
plasms, with little cytoplasm and extracellular 
matrix (i.e., small extracellular spaces). On the 
other hand, PAs (WHO grade I) are paucicellular 
tumors with abundant extracellular spaces. EPs 
(classic and anaplastic, WHO grades II and III, 
respectively) are between these two ends of the 
cellularity spectrum [ 51 ]. The signifi cant differ-
ences in cellularity between these group of 
tumors—particularly between PAs and MBs—
indicate that these lesions could potentially be 
distinguished by DWI and their ADC values. 
Rumboldt et al. observed signifi cantly higher 
ADC values in PAs than in EPs and MBs, and 
EPs demonstrated higher ADC values than MBs 
[ 59 ]. They concluded that assessment of ADC 
values of enhancing solid tumor is a simple and 
reliable technique for preoperative differentia-
tion of cerebellar tumors in children [ 59 ]. These 

  Fig. 15.6    Midline meningothelial meningioma in the ante-
rior cranial fossa in a 61-year-old woman. A coronal TSE T2 
( a ) and Gadolinium-enhanced axial TSE T1 ( b ) demon-
strate a large well-circumscribed midline tumor, which dis-
plays the typical characteristics of a meningioma. 
Hematoxylin and eosin staining, original magnifi ca-
tion × 200, demonstrates the fascicular arrangement of the 
tumor cells ( d ). This more organized structure is refl ected in 
the axial color-coded FA map ( e ). A schematic representa-

tion of the FA map is shown in ( f ).  Green  indicates a pre-
dominantly anteroposterior direction of fi bers (as seen in the 
anterior and posterior quadrant of the lesion), whereas  red  
indicates fi bers with a predominantly left- right orientation 
(as seen in the left and right lateral quadrants of the tumor). 
A  blue  area, in the center of the tumor, indicates vertically 
oriented fi bers. The architecture of this tumor with high FA 
values can be displayed using diffusion tensor tractography 
( c ), which nicely illustrates the spoke-wheel pattern       
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observations were confi rmed by other group [ 61 , 
 62 ]. Other groups, however, observed overlap in 
ADC values between the different groups of 
tumors [ 60 ,  63 – 65 ]. Overlap was observed 
between the ADC values of the PAs and EPs, and 
the ADC values of EPs and MBs. There was, 
however, no overlap between the ADC values of 
PAs and MBs [ 66 ]. This overlap in ADC values 
between tumor types may be due to technical fac-
tors (especially in small, heterogeneous, calcifi ed 
or hemorrhagic lesions) but also likely refl ects 
true histologic variability [ 60 ]. Both MBs and 
EPs are heterogeneous tumors, and this heteroge-
neity presumably contributes to the possible over-
lap of their ADC values. MB consists of a classic 
type and four variants according to the latest 

WHO classifi cation [ 67 ]. Desmoplastic MB is 
one of these variants that has a more favorable 
prognosis compared to the classical 
MB. Remarkable fi nding in this subgroup is the 
lower ADC values due to the presence of dense 
reticulin fi ber networks within the extracellular 
space of the tumor [ 64 ,  68 ]. Rare cases of classic 
MB that show normal or even increased ADC val-
ues have been published; reticulin deposition was 
absent in these lesions [ 64 ]. Conversely, the large 
cell or anaplastic MB subtype which is associated 
with a high relapse risk and poor outcome may 
show increased ADC values since tumor cells are 
much larger when compared to classic MBs [ 68 , 
 69 ]. Similarly, EPs have two distinct types, pre-
sumably contributing to their heterogeneity.

  Fig. 15.7    Medulloblastoma characterized by DWI. An 
18-month-old boy presented with headaches, nausea, and 
vomiting, Sagittal and axial T1-weighted images before ( a , 
 c ) and after ( b ,  d ) Gd injection show a large tumor obstruct-
ing the fourth ventricle. Only very mild contrast enhance-
ment in the center of the tumor is observed. Obvious 

obstructive hydrocephalus with dilatation of the third ven-
tricle and temporal horns of the lateral ventricles and tran-
sependymal migration of CSF can be seen. The tumor is 
“bright” on the DW images ( e ), and “black” on the ADC 
maps ( f ), i.e., restricted diffusion. Final diagnosis after 
total resection was medulloblastoma, classic subtype       
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   DWI is also a valuable tool in early detection 
of metastatic disease and treatment monitoring of 
MB patients. DWI may show recurrent tumor 
and/or metastatic deposits that are not seen on 
contrast-enhanced MRI [ 68 ,  70 ]. DWI is more 
sensitive than contrast-enhanced MRI alone in 
the early diagnosis of recurrent disease. It should 
therefore be included in the follow-up of patients 
with MB, especially when gross total resection of 
the tumor could not be achieved.       

    Determination of Tumor Grade 

 Diffusely infi ltrating  gliomas   are the most com-
mon primary tumors of the brain in adults, rang-
ing from low grade (WHO grade II) to high grade 
(WHO grade III and IV). Grading is based on the 
histopathological fi ndings of the tumor, and dif-
ferentiation between  HGGs and LGGs   is impor-
tant for therapeutic planning, and assessing 
prognosis and response to therapy [ 71 ]. The pres-
ence of contrast enhancement on CT and conven-
tional MRI as a marker of tumor  angiogenesis   
has been an important criterion in predicting the 
malignancy of gliomas for many years. However, 
this is not a reliable fi nding since tumoral 
enhancement is mainly due to disruption of the 
blood brain barrier and not tumor angiogenesis 
[ 72 ]. Localized astrocytomas such as pilocytic 
astrocytoma (WHO grade I), subependymal giant 
cell astrocytoma (WHO grade I), and pleiomor-
phic xanthoastrocytoma (WHO grade II) typi-
cally show contrast enhancement. In a series by 
Kono et al., abnormal contrast enhancement was 
observed in 50 % of patients with diffuse astrocy-
toma grade II. Conversely, in a large series of 
supratentorial gliomas one third of the nonen-
hancing tumors proved to be malignant [ 73 ]. 
Other fi ndings in HGGs on conventional MRI 
include the presence of peritumoral edema, mass 
effect, tumor heterogeneity, central necrosis, and 
intratumoral hemorrhage [ 74 ]. 

 Previous reports have shown that the histo-
pathological grade of glial tumors is inversely 
correlated with ADC, with lower ADCs found in 
higher-grade tumors in comparison with lower- 
grade tumors [ 32 ,  35 ,  59 ,  74 ]. Regions with mini-

mum ADCs have been suggested to refl ect the 
highest tumor cell density, or the most prolifera-
tive portion of the tumor, within heterogeneous 
tumors. Recent studies have shown that mini-
mum ADCs may facilitate accurate grading of 
astrocytic tumors because regions exhibiting the 
minimum ADC correspond to the highest-grade 
glioma foci within heterogeneous tumors 
[ 74 – 76 ]. 

 The higher the tumor cellularity and grade are, 
the lower the  ADC   is because of decreased water 
diffusivity [ 31 ,  32 ]. However, other factors may 
be complicating this relationship: ADC increases 
with increased edema and increased edema is 
seen in high-grade tumors [ 71 ]. 

 Although the ADC is thought to be inversely 
correlated with tumor cellularity, and hence gli-
oma grade, its clinical effect remains limited 
because of substantial overlap in the regional 
ADCs between gliomas of differing grades [ 72 ]. 

 Several studies focused on the potential added 
value of FA in  grading   gliomas. However, the 
relationship between tumor cell density and FA is 
still controversial, as both positive and negative 
correlations between these parameters have been 
reported [ 52 ,  77 – 79 ] [ 80 ,  81 ]. An increased 
amount of cellular membranes and intracellular 
viscosity as well as relatively decreased extracel-
lular space in high-grade glioma compared to 
low-grade gliomas induces an increase in the 
extent of directionality of water diffusion, result-
ing in a relative increase in FA value. On the 
other hand, other structural factors than cell den-
sity affect the interpretation of FA (Fig.  15.3 ). 
For example, increased vascularity, edema, the 
presence of microcysts, and larger tumor cell 
sizes result in an overall decrease in FA. The lat-
ter features are listed in the World Health 
Organization (WHO) classifi cation in order to 
differentiate low- from high-grade gliomas [ 51 ]. 
Microscopically,  GBM   shows high cellularity, 
cellular and nuclear anaplasia, increased mitoses, 
microvascular proliferation, and necrosis, which 
are factors with mixed effects on FA. Altogether, 
the value of FA measurements in glioma grading 
remains controversial. In that view, recently 
developed imaging techniques have become of 
interest to address this issue of glioma grading. 
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Diffusion kurtosis imaging ( DKI)      is a relatively 
new MRI technique that has been developed as 
an extension of the DTI model.  DKI   provides 
additional parameters to the DTI model, which 
relate to the complexity of the biological environ-
ment determined by the cytoarchitecture, e.g., 
cell membranes, intracellular organelles, and the 
rapid exchange of protons between different cel-
lular compartments [ 55 ,  82 ,  83 ]. To date, two 
studies were published on the role of DKI in 
grading gliomas. In these studies, diffusion kur-
tosis parameters were assigned as potential bio-
markers for the grading of gliomas, this because 
of a better separation between high- and low- 
grade gliomas using kurtosis parameters com-
pared to conventional DTI and DWI parameters 
[ 84 ,  85 ].   

    Diffusion-Weighted Imaging 
in Surgical Planning 

    Determination of  Tumor Boundaries   

 In preoperative planning it is important for the 
surgeon to know the relationship between the 
tumor and the surrounding white matter tracts. To 
minimize the postoperative neurological defi cit, 
the surgeon needs to know the exact tumor 
boundaries. Jellison et al. [ 7 ,  8 ] described four 
major patterns in affected WM tracts, categorized 
on the basis of anisotropy and fi ber direction or 
orientation (Fig.  15.8 ). Pattern 1 (Figs.  15.8a  and 
 15.9 ) consists of normal or only slightly decreased 
FA with abnormal location resulting from tumor 
mass effect. This means that white matter tracts 

  Fig. 15.8    Potential 
patterns of WM fi ber tract 
alteration by cerebral 
neoplasms. ( a ) Displaced 
but intact white matter 
tracts resulting in a normal 
to slightly decreased FA in 
tumor boundaries of 
low-grade gliomas, 
anaplastic astrocytomas, 
and metastasis [ 7 ]. ( b ) 
Normally located white 
matter tracts in edematous 
white matter with 
decreased FA around 
metastasis. ( c ) Tumor- 
infi ltrated, but identifi able 
white matter tracts with 
decreased FA in tumor 
boundaries of anaplastic 
astrocytoma and 
glioblastoma. ( d ) Disrupted 
non-identifi able white 
matter tracts with 
decreased FA in tumor 
boundaries of anaplastic 
astrocytoma and 
glioblastoma       
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are intact and that they can be preserved during 
surgery. Pattern 2 (Figs.  15.8b  and  15.10 ) shows 
substantially decreased FA with a normal loca-
tion and direction. This pattern is observed in 
vasogenic edema surrounding tumors such as 
metastases of meningiomas. Pattern 3 (Figs. 
 15.8c  and  15.11 ) displays a substantially 
decreased FA with abnormal hues on directional 
color maps. This pattern can be identifi ed in a 
small number of infi ltrating gliomas in which the 
bulk mass effect appeared to be insuffi cient to 

account for the abnormal hues on directional 
maps. Jellison et al. [ 7 ] speculated that an infi l-
trating tumor disrupts the directional organiza-
tion of fi ber tracts to cause altered color patterns 
on directional maps. Pattern 4 (Figs.  15.8d  and 
 15.12 ) consists of isotropic (or near-isotropic) 
diffusion such that the tract cannot be identifi ed 
on directional color maps. This pattern is 
observed when a part of a tract is completely dis-
rupted by a tumor. Combinations of the above 
patterns may  occur  .

  Fig. 15.9    ( a ) A 32-year-old female with a low-grade gli-
oma in the left frontal lobe [ 7 ]. The color-coded FA map 
( b ) demonstrates the displacement of the fi bers of the cor-

ticospinal tract ( blue ;  yellow arrow ) compared to the nor-
mal appearing white matter (NAWM) of the right 
corticospinal tract ( c )       

  Fig. 15.10    ( a ) A 45-year-old male with a metastasis in 
the right frontal lobe [ 7 ]. The color-coded FA map ( b ) 
shows a decrease of FA value in the peritumoral edema 

represented by a less pronounced color ( yellow arrow ) as 
compared to the normal appearing white matter (NAWM) 
in the left frontal lobe ( c )       
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           Assessment of Tumor  Extension   

 Contrary to the fi ndings of previous studies [ 86 ], 
Stadnik et al. found no clear advantage of DWI 
in the evaluation of tumor extension [ 33 ]. This 
poor delineation between gliomas, edema, and 
normal white matter in DW images may be eas-
ily explained by the conjoined effect of T2 and 
ADC values as the different ADC values of 
white matter, gliomas, and edema are counter-
compensated by T2 values [ 33 ]. Therefore, ADC 

cannot depict peritumoral neoplastic cell infi l-
tration in HGGs [ 40 ,  87 ].  

    Determining the Ideal Site for  Biopsy   

 Regions of minimum ADC in glial tumors corre-
spond to the highest-grade foci in heterogeneous 
tumors. Measuring the lowest ADC within a 
tumor might aid in selecting an appropriate site 
for biopsy [ 39 ].   

  Fig. 15.11    ( a – c ) A 44-year-old male with a glioblastoma 
in the left frontal lobe, which infi ltrates the left arcuate 
fasciculus [ 7 ]. The color-coded FA map shows a color loss 
and abnormal color hues for the left arcuate fasciculus 

( yellow arrow ) as compared to the right one. The normal 
arcuate fasciculus is colored green due to the anteroposte-
rior alignment of the white matter tracts       

  Fig. 15.12    ( a – c ) A 76-year-old female with a glioblas-
toma in the left frontal lobe [ 7 ]. The color-coded FA maps 
demonstrate a complete disruption of the arcuate fascicu-

lus, represented by a complete loss of its green color ( yel-
low arrow ), compared to the right frontal lobe       
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    Monitoring Progression 
and Treatment Effects 

 The follow-up of patients with high-grade glio-
mas is routinely performed with serial MRI scans. 
However, the differentiation  between   therapy- 
induced infl ammatory reactions and early tumor 
relapse remains challenging as the radiological 
characteristics of both entities are similar [ 9 – 11 ]. 
Radiation injury may exhibit morphologic 
changes such as a “soap-bubble” pattern, but 
these morphologic changes are nonspecifi c. Both 
therapy-induced infl ammatory reactions and early 
tumor relapse can present as contrast-enhancing 
lesions with a variable degree of perilesional 
edema and mass effect. The inability to differenti-
ate tumor relapse from therapy- induced infl am-
mation is a commonly encountered problem in 
the therapy follow-up of high-grade glioma 
patients who are treated with the standard therapy, 
surgery,  and   radiochemotherapy, as well as 
patients treated using more innovative therapies 
such as anti-angiogenic therapy and immune ther-
apy [ 9 ,  88 ]. The ultimate diagnosis is more often 
the result of the clinical course, follow-up exams, 
and brain biopsy, more than conventional MRI 
alone. Multiparametric MRI sequences, such as 
MRI spectroscopy and MRI perfusion, are helpful 
to differentiate a recurrent tumor from treatment-
related changes. 

 Only limited and preliminary reports have 
been published on the role of DTI in the distinc-
tion between radiation-induced  injury and tumor 
recurrence   [ 89 ] [ 90 – 92 ]. The contribution of 
anisotropy measures remains to be explored. 
Studies which found FA to be a suitable marker 
for the follow-up of patients with high-grade gli-
omas showed results with only marginal statisti-
cal signifi cance in small patient samples [ 54 ] In 
practice, DTI is not very useful in the differentia-
tion of tumor recurrence  and   therapy-induced 
infl ammation, as cutoff values vary with different 
acquisition schemes. ADC measurements are 
easier to interpret both quantitatively and qualita-
tively [ 93 ]. Sundgren et al. [ 90 ]  found   ADC values 
in the  contrast-enhancing lesions   to be signifi -
cantly higher in the case of tumor recurrence than 

for non-recurrence. The ADC ratios in the white 
matter tracts in perilesional edema showed a 
trend towards higher values in treatment- related 
injury compared to in recurrent neoplasm. 
Assessment of ADC values and ADC ratios, in 
contrast-enhancing lesions, perilesional edema, 
and NAWM adjacent to the edema in the follow-
up of new contrast-enhancing lesions at the site 
of previously treated brain tumors, may be help-
ful to differentiate recurrent tumor from radiation 
necrosis (Fig.  15.13 ).

       Challenges Specifi c to Using DTI 
in the Diagnosis and Follow-Up 
of Brain  Tumors   

 DTI is readily available on most recent MRI 
scanners with powerful gradient coil systems. A 
routine based “DTI sequence” measuring diffu-
sion in 30 directions on a 3 T scanner requires an 
examination time of about 4–8 min. This short 
sequence provides all data for the calculation of 
DWI and DTI parameters. 

 The calculation of ADC and FA ratios and cor-
responding visualizations of tumor morphology 
on DTI is not straightforward and requires co-
registration with other complementary imaging 
data, such as anatomical images. The calculation 
of FA tumor /FA NAWM  and ADC tumor /ADC NAWM  ratios 
requires the delineation of contralateral normal 
appearing white  matter      (NAWM), as demon-
strated in Fig.  15.5 . This requires (typically) man-
ually outlining the tumor, NAWM, and edema, 
which is a time-consuming and challenging pro-
cess that relies primarily on subjective assessment 
of tumor borders. Moreover, because white mat-
ter adjacent to glioma generally contains different 
proportions of vasogenic edema and tumor infi l-
trations, it is diffi cult to defi ne an unbiased region 
of interest for valid grouped data analysis (see 
Chap.   9     for further information). This diffi culty is 
superimposed on the challenge of obtaining a 
pathological “gold standard,” because extensive 
biopsy of grossly intact white matter in tumors is 
ethically unacceptable (Fig.  15.14 ).
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  Fig. 15.13    Radionecrosis ( a – d ) versus a recurrent  high- 
grade glioma   ( e ,  f ). A 62-year-old female ( a – d ), with a 
ring-enhancing lesion in the left temporal lobe after resec-
tion and radiation therapy of a myoepithelioma on the 
axial T1-weighted images ( a ). rCBV maps show no ele-
vated rCBV ( b ). Diffusion-weighted imaging ( b  = 1000) 
shows no restricted diffusion on trace images ( c ) and 
ADC maps ( d ). Surgical resection and pathology proved it 

to be the sequelae of radiation therapy with radionecrosis. 
A 41-year-old female ( e – h ) with a ring-enhancing lesion 
in the left frontal lobe on the axial T1-weighted images ( e ) 
after surgical resection, radiotherapy, and chemotherapy. 
rCBV maps demonstrate elevated rCBV in the lesion. 
Diffusion-weighted imaging: trace images ( g ) and ADC 
maps ( h ) display restricted diffusion in the lesion, which 
was proved histologically to be a recurrent tumor       

  Fig. 15.14    Example of co-registration. Left frontal 
meningioma in a 71-year-old female. Axial gadolinium 
(Gd)-enhanced turbo spin echo (TSE) T1-weighted 
image ( a ) and precontrast fat-saturated fl uid-attenuated 
inversion recovery (FLAIR) images ( b ,  c ), illustrating 
the methodology of co-registration. On the Gd-enhanced 

T1-weighted image, the outline of the enhancing part of 
the tumor is drawn ( red line ;  a ). This contour has to be 
transferred to the fat-saturated FLAIR image ( b ) on 
which the outline of the peritumoral edema ( green line ) 
and NAWM on the contralateral side ( purple line ) is 
drawn ( c )       
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   DTI results are indicative for the differential 
diagnosis of brain tumors, and several studies 
have demonstrated statistical signifi cant differ-
ences between values extracted from DTI-based 
analyses of different types of brain tumor [ 10 ,  56 , 
 81 ]. However, signifi cant overlap between these 
values is commonly observed and fi ndings are 
not always consistent. This suggests that method-
ological issues may play a signifi cant role. For 
example, imaging parameters ( b -value, signal-to- 
noise ratio) could be critical determinants for the 
concentration of the tumor within the white mat-
ter [ 94 ], whilst inconsistent ROI delineation may 
introduce bias and inaccurate measurements. 
This lack of specifi city makes DTI less suitable 
to use as a single technique in the context of rou-
tine clinical diagnostic work-up of brain tumors. 
DTI data have to be interpreted in the context of 
complementary information from conventional 
MR images and other multiparametric techniques 
as MR perfusion (relative cerebral blood volume; 
rCBV) and MR spectroscopy. In combination 
with these techniques DTI demonstrates to be 
 helpful    (Fig.  15.15 ).

       Conclusion 

 This chapter has highlighted the utility and chal-
lenges associated with using DTI in the assess-
ment of brain tumors and how it can be used to 

improve surgical planning. Studies investigating 
the use of different DTI-derived parameters to dif-
ferentiate between different types of tumorous and 
non-tumorous lesions in the brain have yielded 
promising, but sometimes confl icting fi ndings. 
Differences in methodological strategies, a lack of 
standardization, and normative  values continue to 
confound the interpretation of DTI-based results, 
limiting its utility for assessing the individual 
patient. Further research using improved analysis 
and tractography techniques should help to over-
come some of these issues in the future.     
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            Learning Points 

•     Multiple sclerosis ( MS)   white matter (WM) 
lesions show increased mean diffusivity (MD) 
and decreased fractional anisotropy (FA), with 
the most severe abnormalities seen in nonen-
hancing T1-hypointense lesions. No clear-cut 
differences have been detected between 
enhancing and nonenhancing lesions. 
Increased MD may precede the development 
of MS lesions visible on conventional mag-
netic resonance imaging ( MRI)  .  

•   In MS,  DTI abnormalities   are detected in the 
normal-appearing WM, gray matter, optic 
nerves, and spinal cord.  

•   MS-related DTI abnormalities are more severe 
in patients with the progressive forms of the 

disease, correlate with clinical manifestations 
(locomotor disability and cognitive impair-
ment), and tend to worsen over time.  

•    Fiber tracking   based on DTI and voxel-based 
approaches for the defi nition of regional dis-
tribution of damage hold promise for the 
assessment of specifi c WM tracts, whose 
damage might be critical for the development 
of irreversible disability.  

•   The role of DTI in the diagnostic workup of 
patients with different demyelinating condi-
tions deserves further investigation.     

    Introduction 

 Multiple sclerosis (MS) is the most common 
chronic infl ammatory demyelinating disease 
affecting the  central nervous system (CNS)         of 
young adults in Western countries leading, in 
most cases, to severe and irreversible clinical dis-
ability. Due to its sensitivity in the detection of 
white matter ( WM)   lesions, conventional mag-
netic resonance imaging (MRI) has become a 
paraclinical tool central to the diagnosis of MS 
and to monitor its evolution. Despite this, the cor-
relation between patients’ clinical status and MRI 
measures is often weak to moderate.  Diffusion 
tensor (DT)         MRI is a quantitative technique with 
a higher specifi city toward the heterogeneous 
pathological substrates of MS than conventional 
MRI. Indeed, correlative MR/pathological studies 
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have shown that the main pathological correlates 
of diffusivity abnormalities in MS are demyelin-
ation and axonal loss [ 1 ,  2 ], which show a stron-
ger correlation with anisotropy than with 
diffusivity indices [ 1 ,  2 ]. 

 DTI has been widely applied to measure and 
grade MS burden not only within T2 white matter 
(WM) lesions but also in the normal-appearing 
WM (NAWM), gray matter (GM), optic nerve, 
and spinal cord of patients at different stages of 
the disease [ 3 ,  4 ]. Such an extensive application 
has markedly contributed to improving our 
understanding of the different pathophysiological 
substrates of the disease and the complexity of its 
clinical manifestations and evolution. 

 DTI has also been used to quantify CNS 
involvement in other demyelinating conditions, 
which may mimic MS, such as  neuromyelitis 
optica (NMO)      and  acute disseminated encepha-
lomyelitis (ADEM)        . After discussing the chal-
lenges specifi c to the use of DTI in MS and other 
demyelinating diseases, this chapter summarizes 
the main fi ndings derived from the application of 
DTI in these conditions and future possible 
developments of the technique.  

    Special Challenges of DTI 
in the Assessment of Demyelinating 
Diseases 

 The  application   of DTI for the study of patients 
with demyelinating conditions presents several 
challenges related to: (1) the defi nition of acqui-
sition protocols, both in terms of sequence setting 
and duration; (2) the selection of the most appro-
priate method for the analysis of the data; and (3) 
the interpretation of the results. 

    Setup of the Acquisition Protocol 

 Usually, MS patients can tolerate acquisition pro-
tocols with a relatively long duration, unless they 
are in an advanced and disabled stage of the dis-
ease. As a consequence, it is reasonable to use 
optimized DTI sequences (i.e., at least 30 
diffusion- weighted directions, b factor ≈ 1000, 

full brain coverage) [ 5 ,  6 ]. The duration of such 
an acquisition is about 10 min, during which the 
patient is requested to lie still. Sequences with 
longer acquisition times, which allow a more 
sophisticated analysis, can also be used. However, 
they are not advisable for all patients. Since the 
effect of demyelinating diseases on the myelin-
ated portions of the CNS is usually diffuse and 
unevenly distributed, imaging of the cervical 
cord and optic nerves using DTI is of interest for 
the clinician. Nevertheless, obtaining reliable 
DTI estimates from these structures is more chal-
lenging than for the brain. Both these structures 
are small and have a larger surface area to volume 
ratio than the brain. This leads to a decreased 
image quality from partial volume contamination 
from the  cerebrospinal fl uid (CSF)        . Moreover, 
DTI is prone to movement artifacts and this is a 
major issue especially in the study of the optic 
nerves which are mobile structures, and of the 
spinal cord, where image quality may be affected 
by cardiac pulsation and swallowing. Since an in- 
plane resolution of at least one square mm is rec-
ommended, the available single-shot  echo planar 
imaging (EPI)       technique   may not be adequate. It 
would be better to combine this acquisition 
scheme with methods for reducing the fi eld of 
view [ 7 ,  8 ], which allow an improved resolution 
with the same matrix and acquisition  time  , but 
avoiding problems of fold over. A multi-shot 
acquisition scheme can be considered an alterna-
tive strategy to achieve a better image resolution 
with less geometric distortions. However, these 
techniques require longer acquisition times and 
are prone to image ghosting, if not adequately 
corrected. To this end, other methods have been 
developed, which are not based on a Cartesian 
reading of the   k -space   and consider other trajec-
tories. One of these methods is the so-called 
 PROPELLER technique      [ 9 ] that acquires, at each 
diffusion preparation, a central strip, rotated from 
time to time at each excitation until the  k -space is 
entirely fi lled. The advantage of using 
PROPELLER sequences is that each segment can 
be translated into the  k -space to correct for varia-
tion of the phase. These techniques are now more 
readily available on clinical scanners and should 
be considered as a feasible alternative to standard 
single-shot methods.  
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    Analysis of DTI  Data   

 The main problems associated with the analysis 
of DTI data from patients with demyelinating 
conditions, both for the brain and spinal cord, are 
related to the presence of focal WM lesions and 
atrophy (Fig.  16.1 ). At present, one of the main 
obstacles to the development of DT tractography 
in vivo, and particularly in diseased states, is sec-
ondary to the strategy used in tracking when a 
fi ber tract enters a region of low fractional anisot-
ropy (FA). Low FA can be caused either by mul-

tiple crossing fi bers in the voxel of interest or by 
a lesion that damages the tissue. One possibility 
to overcome this problem is to decouple the use 
of DTI to segment fi ber tracts from its use to cal-
culate measures of tissue damage. To this end, 
tractography can be used to construct a probabil-
ity map of a tract of interest from healthy volun-
teer data and then apply such a map to patients 
scans to calculate DTI indexes of that tract (Fig. 
 16.2 ) [ 10 ]. For the construction of tract atlases 
and their application to single subject data, spa-
tial normalization strategies need to be imple-

  Fig. 16.1    An example of diffusion tensor imaging (DTI) 
tractography analysis (diffusion toolkit   http://trackvis.org/
dtk    ) of a healthy control (HC) ( left side ) and a patient with 
secondary progressive multiple sclerosis (MS) ( right 
side ). The B 0  image and fractional anisotropy (FA) map 
are shown in the  top part  of the fi gure. In the  middle part , 
the global reconstruction of all fi bers is shown. After the 
defi nition of a region of interest (ROI) for tracking the 
corpus callosum (CC) on the FA map, the reconstruction 

of the CC is shown at the  bottom . In the MS patient, sev-
eral periventricular lesions, causing a reduction of FA val-
ues, are visible on the B 0  image. Diffuse atrophy is also 
evident (enlargement of the ventricles and thinning of the 
CC on the midsagittal slice). The reconstruction of the CC 
shows the interruption of fi ber propagation due to the 
presence of low FA values in lesions. Parameters used for 
tractography: FA threshold = 0.15, angle threshold = 35°, 
propagation algorithm: FACT with spline fi lter applied       
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mented, so that morphological and positioning 
differences between subjects are corrected. The 
need for nonlinear deformation is  particularly   
important when compensating for differences 
caused by brain atrophy.

    Likewise, voxel-based analysis depends 
strongly on nonlinear registration methods and 
on their capability to produce an adequate over-
lap between subjects. However, the application 
of a nonlinear deformation introduces new 
issues related on how to use additional pieces of 
information on tract morphology in order to 
drive the registration. This is the consequence of 
an increased ability of this algorithm to com-
pensate for local morphological differences. It 
has been shown that the accuracy of registration 
is higher when the whole DTI acquisition set is 
used to drive the transformation. For instance, 
the use of six channels of tensor  components   

allows matching of the shape, magnitude, and 
orientation of local tensors between images bet-
ter than that of one channel of FA or one channel 
of T2-weighted image.  

    Interpretation of DTI Findings 

 The interpretation of DTI fi ndings is not straight-
forward. So far, the actual pathological features 
underlying diffusion abnormalities in MS are not 
completely understood. Some pieces of evidence 
suggest that the various, and often concomitant, 
 pathological abnormalities   occurring in MS (i.e., 
infl ammation, demyelination, axonal loss, 
Wallerian degeneration) can affect diffusivity 
and anisotropic characteristics of tissues in 
 opposing   ways, thereby complicating the inter-
pretation of DTI fi ndings [ 1 ,  2 ,  11 ].   

  Fig. 16.2    White matter (WM) tract probability maps 
obtained from a reference group of 24 healthy controls. 
Probability maps are superimposed on axial ( top row ), 
sagittal ( middle row ), and coronal ( bottom row ) sections 
of the fractional anisotropy (FA) atlas.  A  anterior,  I  infe-
rior,  L  left,  P  posterior,  R  right,  S  superior. Images are pre-

sented in neurologic convention. [Adapted from Preziosa 
P, Rocca MA, et al. (2011). “Intrinsic damage to the major 
white matter tracts in patients with different clinical phe-
notypes of multiple sclerosis: a voxelwise diffusion- tensor 
MR study.” Radiology 2011;260(2):541–50. With permis-
sion from The Radiological Society of North America]       
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    DTI Features of MS 

     Focal WM Lesions   

 DTI can contribute to grade the severity of dam-
age within focal MS lesions, which typically 
show increased mean diffusivity (MD) and 
decreased fractional anisotropy (FA). However, 
abnormalities of DTI indexes are highly hetero-
geneous among different T2 lesions [ 3 ,  4 ]. The 
more severe abnormalities are found in T1 
hypointense  lesions   (the so-called black holes) 
[ 12 – 14 ], which represent areas of irreversible tis-
sue disruption, gliosis, and axonal loss. 
Conversely, confl icting results have been reported 
when comparing fi ndings in gadolinium- 
enhancing vs. nonenhancing lesions [ 12 – 15 ], 
although most of the studies found lower FA val-
ues in enhancing lesions [ 14 ,  16 ]. These fi ndings 
suggest that DTI might grade intrinsic abnormal-
ities of acute lesions, which in turn are likely to 
refl ect different substrates, some of which are 
transient (e.g., edema, demyelination, and remy-
elination) and others, permanent (e.g., neurode-
generation and axonal loss). Moreover, a 
longitudinal study of enhancing MS lesions fol-
lowed up for 1–3 months [ 15 ] showed that MD 
values were increased in all lesions, but contin-
ued to increase during follow-up only in a sub-
group of them. This fi nding highlights the notion 
that contrast enhancement does not allow the dif-
ferentiation of acute MS lesions, which might be 
characterized by varying degrees of tissue 
disruption. 

 Compared to acute vascular neurological dis-
eases such as stroke, a restricted diffusion has 
been reported in only a few lesions in patients 
with ADEM and MS in the acute phase of lesion 
formation [ 17 – 19 ].  

     NAWM   

 Using different methods of analysis, increased 
MD and decreased FA have been consistently 
found in the NAWM of MS patients [ 3 ,  4 ], even 
before the formation of new focal lesions [ 20 ]. 
Such abnormalities can be detected from the 

earliest stages of the disease, also in patients 
with  clinically isolated syndrome (CIS)         sugges-
tive of MS [ 21 ,  22 ], and become more pro-
nounced with increasing disease duration and 
neurological impairment [ 3 ,  4 ]. NAWM dam-
age in MS patients is distributed but tends to be 
more severe in perilesional areas [ 23 ,  24 ] and at 
sites where MS lesions are typically located 
[ 14 ,  25 ]. 

 NAWM damage is only partially correlated 
with the extent of  T2 lesions   and the severity of 
intrinsic lesion damage [ 3 ], which suggests that 
diffusivity changes in NAWM are not entirely 
dependent on retrograde degeneration of axons 
transected in focal lesions, but they rather repre-
sent diffuse abnormalities beyond the resolution 
of conventional MRI. A study [ 26 ] correlated dif-
fusivity with perfusion fi ndings in the corpus cal-
losum of patients with relapsing-remitting (RR) 
 MS        . These results are more consistent with a pri-
mary ischemia than a secondary hypoperfusion 
due to Wallerian degeneration. These fi ndings 
suggest a potentially reversible substrate of tissue 
damage, related to vascular impairment, whereas 
hypometabolism from axonal degeneration 
would represent an advanced and irreversible 
condition. 

 DTI is also useful for assessing the evolution 
of MS damage over time [ 21 ,  27 ]. Changes of 
 DTI metrics   seem to be independent of the con-
comitant accumulation of focal lesions and 
reduction in brain volume [ 27 ]. Thus, the appli-
cation of  DTI   in monitoring the evolution of 
MS-related tissue damage over time looks prom-
ising for possible future trials of  neuroprotective 
therapies  .  

     GM   

 DTI abnormalities have been demonstrated also 
in the  GM      of MS patients [ 3 ,  4 ,  25 ,  28 ,  29 ]. They 
tend to be more pronounced in patients with the 
progressive forms of the disease [ 4 ,  29 ,  30 ], espe-
cially in those with secondary progressive (SP) 
MS [ 29 ]. In patients with SPMS and primary pro-
gressive (PP) MS [ 31 ,  32 ], as well as in those 
with RRMS [ 33 ] and CIS [ 34 ], such DTI abnor-
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malities worsen over time. The severity of GM 
damage has been correlated with the degree of 
cognitive impairment in mildly disabled RRMS 
patients [ 35 ] and has been found to predict accu-
mulation of disability over a 5-year period in 
patients with PPMS [ 32 ]. 

 Despite the presence of confl icting results, 
higher MD values have been detected in deep 
GM nuclei of MS patients, especially in the thal-
amus [ 36 ]. Such abnormalities are more pro-
nounced in SPMS than in RRMS patients [ 36 ]. In 
another study, average NAWM MD and FA tha-
lamic changes over 1 year follow-up were predic-
tors of clinical deterioration after 5 years in 
PPMS patients [ 37 ]. 

 Possible explanations for the observed 
changes in GM diffusivity include a retrograde 
degeneration of neurons caused by injury to WM 
fi ber tracks [ 38 ] and the presence of otherwise 
undetected MS lesions in the GM. These hypoth-
eses are supported by the observation that  GM      
damage is only partially correlated with the 
extent of focal WM lesions and the severity of 
their intrinsic damage [ 3 ,  4 ].  

    Cortical  Lesions   

 Pathologic and MRI studies have shown that  cor-
tical lesions (CLs)      are frequent in MS, especially 
in the progressive forms of the disease. Two DTI 
studies have demonstrated that, compared to 
patients’ GM, intracortical MS lesions have 
increased FA values [ 39 ,  40 ], which might refl ect 
an intralesional loss of dendrites, neuronal dam-
age, and activation of microglial cells. One of 
these studies [ 40 ] also found that quantifying CL 
damage using DTI can help to distinguish the dif-
ferent MS clinical phenotypes, particularly 
benign (B) MS from SPMS patients (Fig.  16.3 ).

        Optic Nerve      

 Early DTI studies of the optic nerve measured 
diffusivity in a few directions [ 41 ]. With the 
introduction of high-resolution fat- and CSF- 

suppressed zonal oblique multisection echo pla-
nar imaging (ZOOM-EPI) sequence [ 7 ,  42 ,  43 ], 
full DTI measurements from the optic nerve have 
been obtained. 

 It has been shown that in patients in the 
chronic phase following optic neuritis, MD of the 
diseased optic nerve is signifi cantly higher than 
in either the fellow eye or those from healthy 
individuals [ 42 ]. DTI abnormalities were found 
to be correlated with abnormal visual evoked 
potentials (VEPs) latencies [ 42 ], loss of visual 
acuity [ 42 ,  44 ], and retinal nerve fi ber layer thin-
ning at optic coherence tomography, particularly 
at high contrast and in nerves previously affected 
by optic neuritis [ 44 ]. A multiparametric MRI 
study showed that, 4 years after a unilateral optic 
neuritis, decreased optic nerve FA and volume 
are factors independently associated with visual 
dysfunction [ 45 ].  

     Spinal Cord      

 With the development of sophisticated MR 
receiver coils and fast imaging techniques, it has 
been possible to obtain more reliable imaging of 
the spinal cord, which also allows the acquisition 
of quantitative data, such as DTI. Clark et al. [ 46 ] 
found higher MD values in spinal cord lesions of 
MS patients than in spinal cord from healthy con-
trols. Abnormal DTI quantities from the cervical 
cord have been shown in patients with established 
MS [ 47 ,  48 ] and NMO [ 49 ] but not in those with 
CIS [ 50 ]. Cervical cord damage outside focal 
lesions is diffuse in SPMS, while it is more lim-
ited in BMS patients [ 51 ]. Several studies high-
lighted that brain and cord DTI metrics are 
independently associated with MS disability [ 27 , 
 48 ,  49 ], thus calling for an aggregate use of these 
measures to improve the understanding of dis-
ease progression. 

 One longitudinal study which obtained 
DTI from relapse-onset MS patients at base-
line and after a mean period of 2.4 years 
showed that baseline cord cross-sectional area 
and  FA      correlate with increased disability at 
follow-up [ 27 ].   
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    Novel Strategies of Analysis 

     Tractography   

 Thanks to the ability of DTI to depict anisotropic 
tissues [ 52 ] and to detect their intrinsic structural 
abnormalities, several approaches have been 
developed to investigate damage to selected WM 
tracts, with the ultimate goal of improving the 
correlation with clinical measures. DTI tractog-
raphy can be used to segment clinically eloquent 
WM pathways involved in different functions, 
such as the corticospinal tract (CST) [ 10 ,  53 – 55 ], 
the corpus callosum (CC) [ 56 ], optic radiations 
(OR) [ 57 ], and many others [ 22 ,  58 – 60 ]. In line 
with studies performed using histogram or 
regions-of-interest analysis, these studies have 
detected higher MD and lower FA of WM tracts 

in MS patients compared to healthy controls. 
Moreover, tract-derived DTI metrics correlate 
with several measures of locomotor disability 
and cognitive impairment [ 10 ,  22 ,  53 – 62 ]. For 
instance, MD and FA values of the CST corre-
lated with clinical measures of locomotor disabil-
ity or the pyramidal functional system score of 
the expanded disability status scale (EDSS) more 
than T2 lesion volume and the overall extent of 
diffusivity changes of the brain [ 53 – 55 ]. CIS 
patients with motor impairment had increased 
MD and T2 lesion volume in the CST compared 
to patients without pyramidal symptoms [ 10 ]. 

 Increased MD of the CC has been associated 
with MS cognitive dysfunction [ 54 ,  63 ]. 
Compared to cognitively unimpaired BMS 
patients, those with cognitive impairment had 
signifi cantly higher NAWM MD of the CC [ 56 ]. 
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  Fig. 16.3    Diffusion tensor imaging (DTI) values from 
cortical lesions (CLs), normal-appearing white matter 
(NAWM), and T2 lesions in multiple sclerosis (MS) 
patients with different disease clinical phenotypes and a 
group of healthy controls (HC). Compared to relapsing- 
remitting (RR) MS patients, those with secondary progres-
sive (SP) MS had a higher T2 lesion volume and a more 
severe damage to the cortex, NAWM, T2 lesions, and CLs. 
With the exception of CLs, damage to all these compart-

ments was similar in SPMS and benign (B) MS patients. 
Conversely, compared to SPMS, BMS patients had a lower 
fractional anisotropy (FA) and mean diffusivity (MD) of 
CLs. No difference was detected between RRMS and 
BMS patients. MD is expressed in units of mm 2 /s × 10 −3 , 
FA is dimensionless index. [Adapted from Filippi M, 
Preziosa P, et al. Microstructural MR imaging of cortical 
lesion in multiple sclerosis. Mult Scler. 2013;19(4):418–
26. With permission from Sage Publications]       
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By applying a random forest analysis to mea-
sures derived from DTI tractography, damage to 
“critical” WM tracts, such as the cingulum, was 
shown to contribute signifi cantly to the cognitive 
impairment of MS patients [ 62 ]. 

 Using DTI tractography of the ORs, one study 
showed that patients with optic neuritis had 
reduced connectivity values (as assessed by the 
number of reconstructed streamlines via tractog-
raphy) in both ORs compared to healthy controls, 
suggesting the occurrence of transsynaptic 
degeneration secondary to optic nerve damage 
[ 57 ]. In another study, OR DTI abnormalities 
correlated with retinal injury, assessed using opti-
cal coherence tomography, and visual impair-
ment [ 61 ]. 

 Advances in DTI and  tractography   have 
spurred the development of brain neuro- 
connectivity techniques, which defi ne and quan-
tify anatomical links between remote brain 
regions by axonal fi ber pathways [ 64 ]. The use of 
these approaches has revealed reduced network 
effi ciency in the WM structural networks of MS 
patients [ 65 ], including those at the earliest stages 
of the disease [ 66 ].  

    Voxel-Wise  Approaches   

 Voxel-wise approaches to the analysis of quanti-
tative MRI data, such as voxel-based morphom-
etry [ 67 ], hold promise for improving our ability 
to study the structural features of MS damage, 
since they assess the topographical distribution of 
brain damage at a voxel level. Despite voxel- 
based  MRI   studies of MS patients having mainly 
focused on measures of atrophy [ 68 ], this 
approach can also be used for the analysis of DTI 
data. A voxel-based study [ 69 ] showed that 
patients with RRMS and BMS differ in terms of 
topographical distribution of WM damage, while 
no between-group differences were found when 
the overall extent of WM diffusivity abnormali-
ties was assessed. 

 By combining tractography and voxel-based 
analysis, another study evaluated damage to sev-
eral WM tracts, in terms of focal lesions and 

NAWM, from the main clinical phenotypes of 
MS [ 22 ]. Compared to healthy controls, diffusiv-
ity abnormalities were found in PPMS and CIS 
patients. The progressive MS forms showed the 
most severe and distributed diffusivity abnormal-
ities, whereas BMS patients had only a limited 
WM damage. These fi ndings support the notion 
that the assessment of regional damage using 
DTI may be more rewarding than that of “global” 
brain damage in order to gain insight into the 
relation between clinical status and disease bur-
den in MS. 

  Tract-based spatial statistics (TBSS)      is a 
technique that allows voxel-wise analysis of 
multi- subject DTI data. Using such a tech-
nique, compared to healthy controls, MS 
patients had reduced FA values of several WM 
tracts, which were related to defi cits of specifi c 
cognitive domains [ 70 ,  71 ]. A  voxel-based 
method      has been developed to obtain estimates 
of WM tract volumes using DTI [ 72 ]: an index 
of volume change is derived from the differ-
ences between an FA atlas based on the 
 morphological characteristics of a reference 
population and an individual subject FA map. 
This approach has been successfully applied to 
assess the topographical distribution of age-
related WM volume changes in healthy sub-
jects [ 73 ] and may be helpful to improve our 
understanding of MS abnormalities.   

    Other Infl ammatory  Demyelinating 
Diseases   

     NMO      

 NMO is an infl ammatory demyelinating condi-
tion clinically characterized by optic neuritis and 
transverse myelitis and by the presence of a 
serum autoantibody (NMO-IgG) found to spe-
cifi cally target aquaporin-4 (AQP4). A DTI study 
revealed more severe cervical cord damage in 
NMO than in MS patients [ 49 ]. The assessment 
of brain NAWM and GM damage in NMO 
patients gave confl icting results: some authors 
found an isolated involvement of the GM [ 74 ], 
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while others described an involvement of several 
WM tracts [ 75 ], which was more severe in the 
ORs and CSTs [ 76 ].  

     ADEM      

 ADEM is classically defi ned as a monophasic 
dysimmune demyelinating disease, commonly 
affecting children, generally preceded by infec-
tions or vaccinations. A large effort has been 
invested in trying to defi ne MRI parameters that 
are able to differentiate MS from ADEM. Using 
DTI, no abnormalities of the normal-appearing 
brain tissue and spinal cord have been detected in 
 ADEM   patients after the acute phase of the dis-
ease [ 77 ], whereas mild DTI  abnormalities   of the 
basal ganglia have been described [ 78 ].   

    Conclusions 

 Conventional MRI is limited by its lack of speci-
fi city to the heterogeneous pathological substrates 
of infl ammatory and demyelinating diseases of 
the CNS. DTI has proved to be able to quantify 
the amount of intrinsic tissue damage of focal 
lesions and to detect more subtle abnormalities 
occurring in NAWM, GM, spinal cord, and optic 
nerve. DTI is contributing to improving the under-
standing of the mechanisms associated with the 
development of locomotor and cognitive impair-
ment in patients with MS as well as the heteroge-
neity of the disease clinical phenotypes. The role 
of DTI in the diagnostic workup of patients with 
different demyelinating conditions deserves fur-
ther and more extensive investigation. 

 Several approaches have been applied to ana-
lyze DTI data. Each of them has demonstrated 
the potential to provide useful pieces of informa-
tion to improve our understanding of MS patho-
physiology. However, the best acquisition and 
postprocessing strategies for MS studies remain a 
matter of debate, and the contribution of newer 
and more sophisticated DTI techniques in the 
study of demyelinating conditions needs to be 
evaluated further.     
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            Learning Points 

•     Diffusion-weighted imaging is useful in the 
early diagnosis of Creutzfeld–Jakob disease.  

•   Diffusion tensor imaging (DTI) reveals brain 
microstructural abnormalities associated with 
the most common neurodegenerative dement-
ing conditions.  

•   DTI studies in Alzheimer’s disease (AD) have 
consistently found white matter (WM) micro-
structural damage in temporal and frontal 
lobes, posterior cingulum, corpus callosum, 
superior longitudinal fasciculus, and uncinate 
fasciculus, with a posterior-to-anterior gradi-
ent of severity.  

•   Using DTI, WM abnormalities can be identi-
fi ed, which can be used to follow the progres-
sion from normal cognition to mild cognitive 
impairment (MCI) and from MCI to AD.  

•   Patterns of DTI abnormalities are likely to dis-
criminate between AD and other dementing 
conditions, such as frontotemporal lobar 
degeneration spectrum and dementia with 
Lewy bodies.     

    Introduction 

 Although a detailed clinical assessment remains 
the basis of the evaluation of a patient with sus-
pected dementia, current European [ 1 ,  2 ], UK 
((NICE) March [ 3 ]), and US [ 4 ] guidelines rec-
ommend that structural imaging should be used 
in the assessment of people with suspected 
dementia to exclude other cerebral pathologies 
and to help establish subtype diagnosis. In gen-
eral, the tendency is to move away from simply 
excluding other (brain) diseases, towards fi nding 
specifi c pointers to a diagnosis [ 5 ]. This approach 
is exemplifi ed by the formal incorporation of bio-
markers, including those from neuroimaging, in 
the most recent revisions of the diagnostic crite-
ria for Alzheimer’s disease ( AD)      [ 6 ,  7 ] and other 
neurodegenerative forms of dementia [ 8 – 10 ]. 
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 Recent years have also witnessed an impres-
sive advancement in the development of novel 
imaging approaches, which, with varying degrees 
of success, have improved our understanding of 
the pathophysiology of dementing conditions. 
These new techniques, which include diffusion- 
weighted (DWI) and diffusion tensor (DTI) 
imaging, are likely able to fi ll voids and improve 
our ability to diagnose, monitor and understand 
the pathophysiology of these diseases.  DWI      is 
commonly used in the diagnostic work up of rap-
idly progressive dementia cases, particularly 
when Creutzfeld–Jakob disease ( CJD)   is sus-
pected [ 1 ]. Although, at present, DTI does not 
have a role in the diagnosis, routine assessment, 
and monitoring of neurodegenerative dementia 
[ 1 ], signifi cant efforts are underway in order to 
achieve harmonization of both acquisition and 
post-processing procedures [ 11 ], which are likely 
to contribute to a dramatic change of the clinical 
scenario. This chapter provides an overview of 
the fi ndings obtained using DWI and DTI in 
patients with neurodegenerative dementing con-
ditions, which support a more extensive use of 
these techniques to study disease evolution and to 
monitor drug effi cacy in clinical trials.  

    Creutzfeldt–Jakob  Disease   

 CJD is a rapidly progressive  dementing syn-
drome     , eventually leading to death in a few 
months after disease onset [ 12 ]. Typically, the 
clinical presentation of the disease includes neu-
rological signs, such as  ataxia and myoclonus  . 
Most CJD cases are sporadic (sCJD), but some 
are genetically determined (familial CJD—fCJD) 
or transmitted through contaminated biological 
material. The pathogenesis of sCJD remains 
partly unknown, but it is believed that it is likely 
due to the conversion of normal prion protein—
whose physiologic function remains undeter-
mined—to proteinaceous infectious scrapie 
particles (PrP Sc ) that accumulate in and around 
neurons, leading to widespread neuronal degen-
eration [ 12 ,  13 ]. This pathologic process is mac-
roscopically described as spongiform degeneration 

of the brain. Variant CJD is believed to have 
occurred as a consequence of the epidemic of 
bovine spongiform encephalopathy in the UK. 

 Currently,  DWI   is more useful for the diagno-
sis of prion disease than for any other dementia 
[ 14 ,  15 ].  DWI      can show focal changes in CJD not 
yet apparent on fl uid-attenuated inversion recov-
ery (FLAIR) images (up to 20 % of cases) [ 14 , 
 15 ]. The better performance of DW MRI over 
FLAIR in the identifi cation of hyperintensities 
suggests that diffusion restriction is a crucial fea-
ture of CJD pathology, probably due to a process 
of  vacuolation   [ 16 ]. The combined presence of 
DWI and/or FLAIR hyperintensities has the 
highest sensitivity and specifi city for the diagno-
sis of sCJD (83–96 % sensitivity, 83–95 % speci-
fi city) [ 14 ,  15 ,  17 – 19 ]. The recently updated 
diagnostic criteria of sCJD include high signal 
abnormalities on DWI or FLAIR in the caudate 
nucleus and putamen or in at least two cortical 
regions as one of the supportive markers for a 
diagnosis of probable CJD, together with peri-
odic sharp wave complexes on the electroenceph-
alogram and 14-3-3 protein detection in the 
cerebrospinal fl uid [ 19 ]. 

 In  sCJD  , the most common patterns of DW 
MRI hyperintensities are neocortical, limbic 
and subcortical (54–68 % of cases), and neo-
cortical and limbic (24–27 % of cases) [ 14 ,  15 ]. 
No neocortical involvement is detected in 5–11 
% of patients with sCJD [ 14 ,  15 ]. In sCJD, cor-
tical areas most commonly involved are the cin-
gulate gyrus, superior and middle frontal gyrus, 
insula, precuneus, angular gyrus, and parahip-
pocampal gyrus, with a relative sparing of the 
precentral gyrus [ 15 ] (Fig.  17.1 ). In both sCJD 
and fCJD, striatal hyperintensity almost always 
shows an anterior-to-posterior gradient, with 
prevalent involvement of the caudate and rela-
tive sparing of the posterior putamen [ 15 ]. 
Thalamic alterations on DWI are usually bilat-
eral, involving the dorsomedial and posterior 
(pulvinar) regions [ 15 ]. The DWI hyperinten-
sity in subcortical regions almost invariably 
corresponds to a hypointensity on the apparent 
diffusion coeffi cient map, a fi nding which con-
fi rms a pattern of restricted diffusion (Fig.  17.1 )    
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[ 15 ]. In variant  CJD  , there is a selective involve-
ment of the medial and dorsal (pulvinar) tha-
lamic nuclei, leading to the so-called hockey 
stick sign [ 20 ].

   To our knowledge, only one study evaluated 
the relationship between DWI alterations and the 
severity of the clinical course in nine patients with 
sCJD [ 21 ], demonstrating that patients harboring 
hyperintensities in both the cortex and basal gan-
glia experience a signifi cantly shorter interval 
from disease onset to  akinetic mutism   than those 
with only cortical ribbon hyperintensity. 

  Cortical and basal ganglia degeneration   is an 
important feature of CJD pathology. On the con-
trary, only a very few studies investigated white 
matter (WM) involvement using DT MRI in 

these patients [ 22 ,  23 ]. One study, which assessed 
patients with the E200K familial variant of CJD 
[ 22 ], found a signifi cant decrease of  fractional 
anisotropy (FA)         of the corticospinal tract, inter-
nal capsule, external capsule, fornix, and poste-
rior thalamic radiation, which was correlated 
with disease duration. FA alterations of fCJD 
were mainly due to an increase of radial diffusiv-
ity [ 22 ], suggesting axonal damage presumably 
secondary to PrP Sc  propagation along WM path-
ways. A second DTI study in s CJD   patients did 
not fi nd WM abnormalities in the corpus callo-
sum and posterior limb of the internal capsule, 
but showed a signifi cant  mean diffusivity (MD)         
decrease in the caudate and pulvinar regions rela-
tive to healthy controls [ 23 ].  

  Fig. 17.1    Three common variations of sporadic 
Creutzfeldt–Jakob disease presentation on MRI. ( a ) 
Neocortical ( solid arrow ), limbic ( dashed arrow ), and sub-
cortical gray matter hyperintensities ( dotted arrow )    on dif-
fusion weighted imaging (DWI) and fl uid attenuated 
inversion recovery (FLAIR) scans. ( b ) Neocortical and lim-
bic cortex involvement. ( c ) Limbic and subcortical involve-
ment. Note that the DWI shows the hyperintensities much 

more than the corresponding FLAIR sequences, and that 
DWI hyperintensities often have corresponding apparent 
diffusion coeffi cient (ADC) hypointensity. ADC abnormal-
ities are most easily identifi ed in the basal ganglia. 
[Reprinted from Vitali, P., E. Maccagnano, et al. (2011). 
“Diffusion-weighted MRI hyperintensity patterns differen-
tiate CJD from other rapid dementias.” Neurology 76(20): 
1711–9. With permission from Wolters Kluwer Health.]       
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    Alzheimer’s  Disease   and Mild 
Cognitive Impairment 

 The earliest pathologic brain abnormalities asso-
ciated with AD develop years, if not decades, 
before the onset of the fi rst memory symptoms 
[ 24 ,  25 ]. Such alterations include misfolded pro-
teins aggregating into extracellular amyloid β 
plaques and intracellular neurofi brillary tangles, 
followed by infl ammatory damage, oxidation, 
excitotoxicity, and cell death in the  central ner-
vous system  . The prospect of experimental 
 treatment with the potential to slow or prevent 
AD progression has prompted an increased inter-
est in the identifi cation of individuals with AD 
early in the course of the disease, even at the mild 
cognitive impairment (MCI)    stage [ 6 ]. 

    DTI in AD and MCI Patients 

 The loss of cortical neurons in AD is invariably 
accompanied by axonal degeneration along  WM 
pathways  . DTI studies of AD have found consis-
tently increased MD and decreased FA compared 
with controls in several brain regions (Fig.  17.2 ), 
most notably in temporal and frontal lobes, pos-
terior cingulum, corpus callosum, superior longi-
tudinal fasciculus (SLF), and uncinate fasciculus 
[ 26 ,  27 ]. A posterior-to-anterior gradient in the 
severity of WM abnormalities has been observed, 
with posterior regions being affected more 
severely [ 26 ]. WM changes in AD generally fol-
low the anatomical pattern of cortical atrophy 
[ 26 ,  28 ], supporting the theory that  Wallerian 
degeneration      may account for WM involvement 
in this disease.

   The clinical relevance of DTI alterations in 
AD patients is refl ected by the association 
between decreased global cognition, as measured 
using the  Mini-Mental State Examination 
(MMSE)        , and reduced FA [ 29 – 41 ] or increased 
MD [ 30 ,  32 ,  33 ] values in at least one brain 
region. Signifi cant correlations between altered 
DTI metrics of temporo-parietal WM structures 
and neuropsychological measures of memory 
performance have also been reported by several 
studies [ 42 – 46 ]. In addition, a  number   of studies 

also showed that decreased FA in the frontal lobe 
correlates with poor performance at neuropsy-
chological assessment of executive functions of 
AD patients [ 35 ,  47 – 49 ], as well as with the 
severity of neuropsychiatric symptoms [ 50 ,  51 ]. 

 DTI studies have attempted to elucidate the 
earliest point at which diffusivity abnormalities 
can be detected by focusing on patients with 
amnestic MCI [ 28 ,  33 ,  35 ,  43 ,  46 ,  52 – 63 ]. Two 
recent  meta-analyses   showed that differences 
between amnestic MCI and controls parallel 
those between AD and controls, but fewer regions 
reached statistical signifi cance [ 26 ,  27 ], possibly 
because MCI consists of an heterogeneous group 
of individuals and there are no universally recog-
nized criteria to defi ne this condition. Corpus cal-
losum, cingulum, parahippocampal and frontal 
tracts were found to be affected in the prodromal 
stages of AD [ 28 ,  43 ,  54 ,  55 ,  59 ,  60 ,  63 ]. 
Interestingly, in patients with amnestic MCI, 
damage to the majority of WM tracts was not 
correlated with cortical atrophy [ 28 ], thus sug-
gesting that, in the early phases of the disease, 
WM abnormalities may refl ect a primary WM 
tract damage over and above  cortical pathology  . 
Similar fi ndings have been reported in cogni-
tively normal individuals who were later diag-
nosed with amnestic MCI at 2-year follow-up 
[ 64 ]. WM alterations at baseline in these subjects 
were predictive of subsequent cognitive decline, 
in the absence of signifi cant correlation with cor-
tical atrophy [ 64 ]. In addition, a number of stud-
ies [ 65 – 72 ] showed a similar pattern of WM 
damage in cognitively normal individuals with 
high risk for the development of AD (i.e., 
Apolipoprotein E4 genotype and/or positive fam-
ily history). Preclinical subjects with familial 
autosomal dominantly inherited AD also showed 
decreased WM integrity of the fornix and orbito-
frontal lobe [ 73 ]. Taking together, these studies 
suggest that microstructural WM changes may 
serve as a potential imaging marker of early 
AD-related brain damage. 

  DTI tractography   can improve the sensitivity 
and specifi city of diffusion measurements by 
localizing WM changes in specifi c neuronal 
pathways of MCI/ AD patients  . Diffusivity 
abnormalities have been shown in the splenium 
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of the corpus callosum, posterior cingulum and 
uncinate fasciculi [ 74 – 78 ] of AD patients. Only 
a few tractography studies have been carried out 
in amnestic MCI patients [ 79 – 82 ], and diffusion 
abnormalities of the posterior cingulum were 
found in these patients relatively to controls, but 
not to early AD patients [ 79 ]. In amnestic MCI, 
WM damage was found not only in the limbic 
pathways (i.e., fornix [ 82 ] and cingulum [ 81 ]), 
but also in the major cortico-cortical WM tracts 
subserving association cortices (i.e., the unci-
nate fasciculus, the inferior fronto-occipital 
 fasciculus, the inferior longitudinal fasciculus, 
the superior longitudinal fasciculus and the cor-
pus callosum) [ 80 ]. Recently, a novel method to 
analyze DTI data, called  anatomical connectiv-
ity mapping (ACM)        , has been proposed to 

assess abnormalities of structural brain connec-
tivity. ACM can be easily obtained by initiating 
diffusion tractography streamlines from all 
parenchymal voxels, and then counting the 
number of streamlines passing through each 
voxel of the brain. An exploratory study employ-
ing such an approach in patients with AD and 
amnestic MCI revealed that ACM provides 
information that is complementary to that 
offered by FA with increased sensitivity [ 83 ]. 
Additionally, an unexpected increase of ACM 
has been found in the putamen of AD (the only 
group under treatment with cholinesterase 
inhibitors) but not of MCI patients [ 83 ]. An 
intriguing explanation is that such an increase of 
ACM in AD patients might refl ect brain plastic-
ity driven by cholinesterase  inhibitors  .  

  Fig. 17.2    Diffusion tensor imaging (DTI) abnormalities 
in patients with Alzheimer’s disease (AD) compared with 
healthy controls. Tract-based spatial statistics color maps 
showing voxel-wise differences between patients and 
healthy controls are overlaid on a mean fractional anisot-
ropy (FA) skeleton. Voxels of increased mean diffusivity 
and decreased FA are shown in  red ; voxels of increased 
axial and radial diffusivity are shown in  yellow  and  blue , 

respectively. The results for mean, axial, and radial diffu-
sivity are shown at  p  < 0.05 corrected for multiple com-
parisons (family-wise error). Results from FA are shown 
at an uncorrected statistical threshold ( p  < 0.05) [Reprinted 
from Agosta F, Pievani M, et al. “White matter damage in 
Alzheimer disease and its relationship to gray matter atro-
phy.” Radiology 2011;258(3): 853–63. With permission 
from The Radiological Society of North America.]       
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     Diagnostic Accuracy   of DTI in AD 
and MCI Patients 

 For DTI to be useful in the clinical setting, one 
must be able to make inferences at the level of the 
individual rather than the group. Adding DTI 
measurements of the posterior cingulum to hip-
pocampal volume signifi cantly improves the 
accuracy in separating AD and amnestic MCI 
subjects from healthy controls (from 63 to 74 % 
in amnestic MCI, and from 78 to 91 % in AD) 
[ 55 ]. Diffusivity  abnormalities   of the left poste-
rior cingulum were able to distinguish subjects 
with amnestic MCI from those with non- amnestic 
MCI with an accuracy of 85 % [ 56 ]. In addition, 
hippocampal diffusivity measurements were 
found to be more sensitive than hippocampal vol-
ume in predicting conversion to AD in patients 
with amnestic MCI [ 33 ,  52 ,  53 ]. The severity of 
microstructural damage beyond the medial tem-
poral lobe was also associated with an increased 
short-term risk to develop AD in amnestic MCI 
patients [ 58 ]. A reduction of FA of the fornix has 
been recently proposed as an imaging sign that 
may be helpful in order to differentiate AD 
patients from normal controls with an accuracy 
of 75 %, as well as to predict conversion from 
normal cognitive status to amnestic MCI and 
from amnestic MCI to AD (with an accuracy of 
96 % and 92 %, respectively) [ 41 ]. An individual 
classifi cation of MCI cases using support vector 
machine analysis of DTI data allowed for an indi-
vidual classifi cation with an accuracy up to 91 % 
(healthy controls vs. MCI) and 98 % (stable vs. 
progressive MCI at 1 year) [ 57 ]. Furthermore, 
such an approach resulted in a highly accurate 
individual classifi cation of stable vs. progressive 
MCI at 1 year, regardless of the MCI subtype, 
indicating that it might become a tool for early 
detection of MCI subjects evolving to overt 
dementia [ 57 ].  

     Longitudinal DTI Studies   

 Longitudinal studies of fi ber tract injury in neu-
rodegenerative diseases are still scanty. Amnestic 
MCI subjects experience a signifi cant fractional 

anisotropy (FA) decline predominantly in the 
anterior corpus callosum after 13–16 months 
from a baseline scan [ 84 ]. More recently, longitu-
dinal changes of WM microstructural alterations 
in AD patients with and without treatment with 
galantamine, a cholinesterase inhibitor, were 
evaluated over a 12-month follow up [ 85 ]. 
 Galantamine   slowed the FA decrease of the pos-
terior body of the corpus callosum over a 6-month 
period compared to placebo, but this effect was 
not seen anymore after a 6-month open-label 
treatment of all AD patients [ 85 ]. A large-scale 
application of DTI in multicentre studies may 
help in the identifi cation of markers that are 
likely to provide sensitive outcome measures in 
clinical trials of patients with AD and MCI.  

     Novel Strategies   of Analysis 

 A correlation between the site of amyloid-β 
deposition in AD patients and the location of 
major brain hubs as defi ned by graph theoretical 
analysis of functional connectivity in healthy 
adults has been demonstrated [ 86 ]. These regions 
 include   the posterior cingulate cortex/precuneus, 
the inferior parietal lobule, and the medial frontal 
cortex, implying that the hubs are preferentially 
affected in the progression of AD. Using struc-
tural and DTI, abnormal topological properties 
were described also in the structural brain net-
works of patients with AD. In a study that used 
between-subject covariation in regional measures 
of cortical thickness to infer anatomical networks 
from a large structural MRI data set, global clus-
tering and path length were increased in patients 
with AD relative to controls [ 87 ]. This study also 
found a decreased centrality of the classical hubs, 
such as the temporal and parietal heteromodal 
cortices, and an increased centrality of unimodal 
association cortex, such as the lingual gyrus and 
lateral occipitotemporal gyrus, as well as paralim-
bic regions [ 87 ]. The global clustering coeffi cient 
and path length of MCI structural networks were 
found to be intermediate between the AD group 
and normal elderly people [ 88 ]. In addition, com-
pared with controls, AD and MCI patients 
retained their hub regions in the frontal lobe but 
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showed a loss of such regions in the temporal 
lobe [ 88 ]. Similar to functional MRI data, this 
study also revealed increased short-range inter-
regional correlations and disrupted long distance 
interregional correlations in MCI and AD [ 88 ]. 
An abnormal topological organization of large- 
scale WM networks was found in AD patients 
using DTI, with increased path length and 
decreased global effi ciency compared with con-
trols [ 89 ]. More importantly, WM connectivity 
patterns were associated with cognitive defi cits 
[ 89 ], implying that a  disturbed   communication 
between different brain regions is likely to be 
important in the cognitive  decline   typical of this 
condition.   

    Frontotemporal Lobar 
 Degeneration   

 Frontotemporal lobar degeneration (FTLD) rep-
resents the second most common early-onset 
neurodegenerative dementia after AD. FTLD is a 
clinically and pathologically heterogeneous 
spectrum of disorders, which encompasses dis-
tinct clinical syndromes: the  behavioral variant of 
frontotemporal dementia (bvFTD)         [ 10 ], and the 
language variant [ 9 ]. BvFTD presents with 
marked changes in personality and behavior [ 10 ], 
and, pathologically, is associated with all the 
three major FTLD pathologies, characterized by 
abnormal cellular inclusions containing either 
tau, TAR DNA-binding protein 43 (TDP-43), or 
fused-in-sarcoma protein [ 90 ]. In the language 
variant, known as  primary progressive aphasia 
(PPA)     , a prominent, isolated language defi cit is 
the dominant feature during the initial phase of 
the disease [ 91 ]. Distinct profi les of language 
impairment defi ne the three clinical  phenotypes   
of PPA [ 9 ]: the nonfl uent/ agrammatic   (for conve-
nience hereafter called nonfl uent), characterized 
by agrammatism in language production and 
effortful speech with motor speech defi cits; the 
semantic, characterized by progressive loss of 
knowledge about words and objects in the con-
text of relatively preserved fl uency of speech; and 
the logopenic, characterized by impaired naming 
and repetition in the context of spared syntactic 

and motor speech abilities. Clinicopathological 
series suggest that the majority of nonfl uent 
patients exhibit FTLD-tau or, less frequently, 
FTLD-TDP pathology, while most semantic 
cases have a TDP-43 proteinopathy [ 90 ]. AD is 
the most likely underlying pathology of the logo-
penic variant [ 92 ]. 

     DTI vs. Pathology and Genetic 
Background   in FTLD 

 In a single, pathology-proven bvFTD case, DTI 
detected decreased FA values in WM frontal 
regions, where histopathology revealed a typical 
frontal lobe degeneration of non-AD type [ 93 ]. 
Neuropathological [ 94 ,  95 ] and structural MRI 
[ 96 ] observations suggested that FTLD-tau may 
have a more severe involvement of WM than 
FTLD-TDP cases. In view of this, DTI metrics 
were recently evaluated in autopsy- or genetic- 
proven FTLD patients and showed a 96 % sensi-
tivity and 100 % specifi city in distinguishing 
between the two pathological variants [ 97 ]. This 
could prove to be clinically relevant, as potential 
disease-modifying treatments emerge that target 
tau or TDP-43. 

 Microtubule-associated protein tau (MAPT), 
progranulin (GRN), and C9orf72 mutations are 
the major genetic  causes   of autosomal dominant 
FTLD [ 98 ,  99 ]. Presymptomatic individuals with 
these mutations represent the ideal population to 
assess the initial alterations of FTLD. A DTI 
study performed in a small sample of subjects 
with GRN mutation revealed decreased FA of the 
left uncinate and left inferior occipitofrontal fas-
ciculi, with respect to non-carrier controls [ 100 ]. 
More recently, a larger sample of MAPT or GRN 
mutation carriers was found to have distributed 
pattern of reduced FA in frontotemporal WM 
tracts, in comparison with non-carriers [ 101 ].  

    DTI in  bvFTD   Patients 

 Using a regions of interest (ROI)-based approach, a 
study of bvFTD patients found DTI abnormalities 
of WM tracts passing through the frontal—anterior 
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cingulum, genu of the corpus callosum, anterior 
SLF—and temporal lobes—uncinate fasciculus 
and inferior longitudinal fasciculus (ILF) [ 102 ]. 
Voxel-based DTI studies in bvFTD patients 
found FA reduction in frontoparietal regions, 
which are likely to correspond to the SLF [ 103 , 
 104 ], and in frontal and temporal WM regions, 
including the anterior corpus callosum, anterior 
cingulum, and uncinate, bilaterally (Fig.  17.3 ) 
[ 75 ,  104 ]. Such fi ndings were confi rmed by a 
DTI tractography study, which disclosed a sig-
nifi cant FA decrease in all major association WM 
tracts (ILF, uncinate, and SLF) and genu of the 
corpus callosum, as well as a sparing of cortico-
spinal tracts and splenium of the corpus callosum 
[ 105 ]. The majority of studies also detected dif-
fusivity abnormalities in posterior WM regions, 
such as the posterior SLF and the posterior cingu-
lum [ 75 ,  102 ,  104 ]. Although bvFTD is typically 
associated with frontal and anterior temporal 
atrophy [ 106 ], patterns of atrophy are known to 
be heterogeneous in this condition [ 107 ]. In addi-
tion, even in the classic frontotemporal cases, the 
lateral and medial parietal lobes usually become 
affected later in the disease course [ 108 ]. It is 
therefore tempting to speculate that DTI metrics 
may be viewed as early markers of WM injury in 
 bvFTD   patients, which may result at a later stage 
in detectable volumetric abnormalities.

       DTI in PPA Patients 

 To date, only a few studies to date have investi-
gated the patterns of WM abnormalities in small 
samples of PPA patients using DTI. Most of 
these studies were performed in patients with 
the two major variants (i.e., nonfl uent and 
semantic)   . 

 Using ROI-based or tractography  DTI   to 
investigate the WM language tracts of these 
patients, it has been showed that the  nonfl uent   
variant is characterized by an involvement of all 
the left SLF components [ 102 ,  109 – 111 ] (Fig. 
 17.4 ). In contrast, the ventral tracts connecting 
the temporal lobe with the occipital and the orbi-
tofrontal cortices (i.e., the ILF and uncinate fas-

ciculi) were relatively spared [ 102 ,  109 ,  111 ]. 
Studies using a  voxel-wise approach   showed that 
nonfl uent patients have not only a damage to the 
fronto-parieto-temporal connections but also an 
involvement of the corpus callosum, cingulum 
bundle, external capsule, several regions of the 
prefrontal and orbitofrontal and parietotemporal 
WM, mainly in the left hemisphere [ 104 ,  112 , 
 113 ]. A recent  tract-based spatial statistics 
(TBSS)         study found a damage to portions of the 
ILF in nonfl uent patients [ 112 ].

   In the semantic variant, abnormalities of WM 
tract diffusivity were identifi ed in the major 
inferior and superior temporal connections of 
the left hemisphere, thus mirroring the severe 
 atrophy   affecting the same regions: the ILF, 
inferior-fronto- occipital fasciculus, and the 
uncinate fasciculus within the ventral stream, 
and the arcuate and the temporo-parietal com-
ponent of the SLF within the dorsal stream [ 102 , 
 104 ,  109 ,  112 ,  114 ,  115 ] (Fig.  17.4 ). Although 
tractography studies have suggested that the 
fronto-parietal connections are relatively spared 
in the semantic variant [ 109 ,  114 ], a fi nding 
which couples with the absence of syntactic 
defi cits in these patients, a few TBSS reports 
have shown an involvement of the left prefrontal 
and parieto-frontal WM contributing to the SLF 
and corona radiata [ 104 ,  112 ]. 

 DTI measures of the anterior corpus callo-
sum and left SLF differentiated bvFTD from 
nonfl uent cases, while the best predictors of 
semantic PPA compared with both bvFTD and 
nonfl uent cases were diffusivity abnormalities 
of the left uncinate and inferior longitudinal fas-
ciculus [ 104 ]. 

 Two studies so far applied DTI to patients 
with the  logopenic variant of PPA   [ 104 ,  109 ], 
showing the most  consistent   abnormalities in the 
left SLF temporoparietal component; abnormali-
ties were also detected in the left arcuate fascicu-
lus, other components of the left SLF and right 
temporoparietal SLF (Fig.  17.4 ). These fi ndings 
suggest that the logopenic variant is associated 
with damage to the WM tracts connecting regions 
important for sentence repetition and phonologi-
cal short-term memory [ 116 ].  
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    Differential Diagnosis: FTLD  vs. AD   

 DTI is increasingly being used to improve the 
diagnostic differentiation between FTLD and 
AD. When compared with AD, bvFTD is associ-
ated with greater reductions of FA in frontal 
regions (Fig.  17.3 ) [ 75 ], which suggests that WM 

injury is more prominent in bvFTD than in 
AD. One recent study combined cortical thick-
ness measurement and DTI to compare FTLD 
(both bvFTD and PPA) and AD patients, with 
autopsy- or cerebrospinal fl uid-confi rmed disease 
[ 117 ]. The direct comparison of the two groups 
showed a signifi cantly greater atrophy in inferior 

  Fig. 17.3    Rendered 
displays of diffusion tensor 
imaging (DTI) 
abnormalities in patients 
with the behavioral variant 
of frontotemporal dementia 
(bvFTD) or Alzheimer’s 
disease (AD) compared 
with cognitively normal 
subjects, as well as direct 
comparisons between 
bvFTD and AD: ( a ) 
reduced fractional 
anisotropy (warm colors); 
( b ) increased radial 
diffusivity (cool colors); 
( c ) increased axial 
diffusivity (cool colors) 
[Reprinted from Zhang, Y., 
N. Schuff, et al. “White 
matter damage in 
frontotemporal dementia 
and Alzheimer’s disease 
measured by diffusion 
MRI.” Brain 2009;132(Pt 
9): 2579–92. With 
permission from Oxford 
University Press.]       
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frontal, medial frontal and prefrontal cortical 
regions, and a reduced FA of the genu of the cor-
pus callosum, left inferior fronto-occipital fascic-
ulus, cingulum, uncinate and bilateral corona 
radiata in FTLD cases relative to AD [ 117 ]. 
Conversely, AD patients showed no areas of sig-
nifi cant reduction in cortical thickness or WM 
integrity relative to FTLD patients [ 117 ]. Another 
recent study compared DT MRI alterations and 

patterns of cortical atrophy between FTLD and 
AD patients, identifying a signifi cant area of 
reduced FA in the anterior corpus callosum of 
FTLD patients, as well as a signifi cantly more 
severe atrophy of the precuneus and  posterior cin-
gulate cortex in AD patients [ 118 ]. A combina-
tion of WM and cortical data provided a highly 
accurate  classifi cation   of these two conditions, 
with 87 % sensitivity and 83 % specifi city [ 118 ].   

  Fig. 17.4    Mean diffusivity (MD) values of healthy con-
trols, nonfl uent, semantic, and logopenic variants of primary 
progressive aphasia are shown on the probability maps for 
left superior longitudinal fasciculus (SLF), inferior longitu-
dinal fasciculus (ILF), uncinate fasciculus (UNC), overlaid 
on a standard Montreal Neurological Institute brain. Only 
voxels that are in common in at least 20 % of the subjects in 
each group were included in the probability maps.  Asterisks  

denote signifi cant difference relative to normal controls at 
 p  < 0.05. The chromatic scale represents average MD values 
ranging from lower ( violet- blue  ) to higher values ( yellow -
 red ). MD is measured in mm 2 /s × 10 −3  [Reprinted from 
Galantucci, S., M. C. Tartaglia, et al. White matter damage 
in primary progressive aphasias: a diffusion tensor tractog-
raphy study. Brain 2011;134(Pt 10): 3011–29. With permis-
sion from Oxford University Press.]       
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    Dementia with Lewy Bodies 

 Dementia with Lewy bodies ( DLB)   is the second 
most common form of neurodegenerative demen-
tia in elderly subjects [ 8 ]. Memory impairment is 
generally less severe in patients with DLB than in 
those with AD, whereas defi cits on tests of atten-
tion, executive function, and visuospatial ability 
can be prominent. In pathological studies, a dis-
tributed pattern of Lewy bodies has been observed 
in the neocortex, limbic structures, subcortical 
nuclei and brainstem of these patients [ 119 ,  120 ]. 

     DTI   in DLB Patients 

 Only a few studies investigated diffusivity altera-
tions in DLB patients [ 76 ,  121 – 127 ]. The com-
parison between DLB patients and controls using 
DTI resulted in controversial fi ndings, ranging 
from isolated damage to the ILF [ 123 ,  124 ], unci-
nate fasciculus [ 126 ] or parietal lobe [ 122 ] to a 
distributed pattern of  FA reduction   [ 121 ,  125 ]. 
The most consistent fi nding among studies was a 
decreased FA in the ILF [ 121 ,  123 ,  124 ], as well 
as reduced FA or increased MD in tracts of the 
parieto-occipital lobes [ 121 ,  122 ,  124 ,  125 ,  127 ], 
particularly the posterior  cingulum and precu-
neus   (Fig.  17.5a ). Damage to these regions, 
which are important for visual information pro-
cessing, may refl ect the prevalent impairment of 
visuospatial abilities, as well as the presence of 
visual hallucinations in these patients. One study 
[ 124 ] reported signifi cantly higher diffusivity of 
the ILF from patients with DLB experiencing 
visual hallucinations, in comparison with DLB 
patients who did not.

       Differential Diagnosis: DLB  vs. AD   

 Diffusivity abnormalities in the cortex of 
patients with AD are more distributed and 
severe than in those with DLB [ 122 ,  124 ]. 
Patients with AD experience an increased dif-

fusivity and a reduced cortical volume in the 
medial temporal lobe, posterior cingulate cor-
tex, precuneus, and temporoparietal association 
cortex compared to both healthy controls and 
patients with DLB [ 124 ]. The addition of diffu-
sivity values of the hippocampus and parahip-
pocampal gyrus to those of cortical volumes 
improves further the ability to distinguish AD 
patients from those with DLB [ 124 ]. 

 A reduction of FA in the uncinate fasciculus 
has been shown both in AD and DLB patients 
[ 76 ,  126 ], with additional more posterior dam-
age in patients with DLB [ 76 ]. A recent study 
[ 127 ] showed an involvement of the parieto-
occipital and temporal WM tracts both in DLB 
and AD, but a much greater ratio of posterior-to-
anterior suprathreshold voxels was found in 
DLB—6.5—when compared to AD—1.1 (Fig. 
 17.5 ) [ 127 ]. Similarly, the few other studies 
investigating WM damage in DLB showed a 
more posterior pattern of abnormalities in com-
parison to AD [ 122 ,  123 ], with a relative sparing 
of the structures of the temporal and frontal 
 lobes  , refl ecting the structural preservation of 
these areas in DLB [ 128 ].   

    Conclusions 

 DTI is a sensitive tool to detect WM abnormali-
ties in subjects with neurodegenerative dement-
ing conditions. Diffusivity seems to be impaired 
in several brain regions early in the disease pro-
cess; then, WM damage increases with disease 
severity. Since new disease-modifying therapies 
in AD and other neurodegenerative dementia will 
likely be most benefi cial before substantial neu-
ronal loss and clinical impairment have occurred, 
DTI holds promise as valuable tool for selecting 
candidates for clinical trials and as predictive 
markers of dementia progression in defi ned risk 
groups of patients. The reliability and reproduc-
ibility of DTI in a large-scale, multicenter setting 
in patients with these diseases warrant further 
investigation.     
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            Learning Points 

•     DTI is not used routinely in clinical practice 
owing to special challenges inherent to defi n-
ing psychopathology, the practical issues 
associated with scanning patients and the lack 
of sensitivity and specifi city of DTI measures. 
In the future, it could be used to inform inva-
sive neurosurgical treatments of psychiatric 
illness, such as deep brain stimulation.  

•   DTI is increasingly used as clinical research 
tool in psychiatry. It can be used to inform 

neurobiological models of  psychiatric   illness, 
such as those based on “connectivity.” DTI 
metrics can be used in combination with other 
neuroimaging data as potential biomarkers 
that may aid patient stratifi cation and improve 
treatment.  

•   DTI studies in psychiatry face a number of 
issues. Specifi cally, the categorical classifi ca-
tion of mental disorders is subjective and defi -
nitions are continually evolving. Clinical 
samples are therefore highly heterogeneous 
with regard to clinical history, psychiatric and 
medical comorbidity, active symptoms, and 
medication. Alcohol misuse may represent a 
signifi cant confound in studies of psychiatric 
populations.  

•   Scanning psychiatric patients presents some 
practical challenges, including obtaining 
informed consent, reduced compliance with 
procedures owing to anxiety or hyperactivity, 
and increased movement within the scanner 
compared to healthy subjects.  

•   DTI has been used to investigate a number of 
psychiatric disorders, including, but not lim-
ited to schizophrenia, mood, anxiety, person-
ality and neurodevelopmental disorders. 
Findings are largely nonspecifi c and suggest 
varying degrees of white matter microstruc-
tural abnormality in cortical and subcortical 
cognitive and limbic networks.     
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    Role of DTI in Psychiatry 

    Clinical Research 

 Presently, DTI is not used routinely in clinical psy-
chiatric practice. There are a number of reasons for 
this, which broadly relate to both the complex 
nature of defi ning psychopathology and the practi-
cal challenges associated with scanning patients 
with mental illness. These issues are discussed in 
more detail in the body of this chapter. Nevertheless, 
DTI does have an increasingly signifi cant role in 
psychiatry, and that is in the fi eld of clinical research. 

 Early  clinical   neuroimaging studies in psychia-
try used computed tomography (CT) and subse-
quently classical structural magnetic resonance 
imaging (MRI) (using T1, T2, and fl uid attenua-
tion inversion recovery—FLAIR—sequences) 
[ 1 ]. These studies have allowed us to better under-
stand the volumetric changes present in psychiat-
ric disorders such as schizophrenia, mood 
disorders (bipolar and unipolar disorders), anxiety 
disorders, addiction, personality disorders, autism, 
and attention defi cit hyperactivity disorder 
(ADHD). As an example,  in   schizophrenia, we 
now know from these neuroimaging studies that 
global brain volumes are decreased in patients 
compared to controls, even before the fi rst clinical 
episode [ 2 ,  3 ]. Regional volumes are also 
decreased, especially in the prefrontal cortex [ 4 ]. 
High-risk subjects are also a population of interest 
in these pathologies and are generally defi ned as 
healthy relatives of patients. They thus share some 
common genetic risk with the patients, but without 
the expression of the disease  per se  and without 
some confounding factors such as medication and 
number of episodes. Usually, these high-risk sub-
jects share most of the same features regarding 
brain volumes, though at a lower amplitude than 
patients [ 5 ]. However, although such computa-
tional morphometry based studies are useful, they 
are unable to provide information beyond total and 
regional white matter volume, density, and shape. 

  Functional   MRI has also provided insight into 
the mechanisms of psychiatric disorders, via the 
identifi cation of over- or under-active areas dur-
ing the completion of specifi c tasks in groups of 
patients [ 6 ]. 

 Strikingly, T1, T2, FLAIR, and fMRI studies 
point to crucial abnormalities of white matter in 
major psychiatric disorders. On  T1 scans  , total 
white matter volume has been found to be reduced 
in schizophrenia, whilst regional volumetric 
reduction (e.g., corpus callosum) has also been 
reported in schizophrenia and in other conditions 
such as bipolar disorder [ 7 ].  In   mood disorders, 
white matter hyperintensities observed on T2 and 
FLAIR are the most commonly reported abnor-
malities, especially in bipolar disorder and late-
life depression [ 1 ]. Altered functional connectivity 
between brain areas, as measured by inter-
regional BOLD levels correlations, has been 
reported in schizophrenia, bipolar disorder, and 
anxiety disorders, both during the completion of 
specifi c tasks and at rest [ 8 ]. Some authors believe 
that schizophrenia and even bipolar disorder can 
be conceptualized as “connectivity disorders.” 
   Schizophrenia, for example, is characterized by a 
global alteration in brain connectivity [ 9 ]. This 
could explain the widespread cognitive defi cits 
characteristic of the disorder. Neurobiological 
models of mood disorders assume compromised 
functional regulation of prefrontal-limbic con-
nectivity. As functional connectivity is obviously 
linked to structural connectivity, there is a need to 
precisely explore and characterize white matter 
in the context of psychiatric illness [ 10 ]. 

 This is why DTI has steadily gained impor-
tance as an investigative tool in psychiatric disor-
ders. Its unique ability to examine WM 
microstructure in vivo provides a means to build 
upon fi ndings from previous classical MR stud-
ies. When integrated with fi ndings from func-
tional neuroimaging studies and molecular 
biology, it can be used to  refi ne   neurobiological 
models of psychiatric disorders. A brief review of 
DTI fi ndings in selected psychiatric conditions is 
provided at the end of this chapter.  

    The Development of Imaging 
Biomarkers 

 The assessment of psychiatric disorders is cur-
rently based entirely on clinical evaluation, with-
out any possibility of laboratory tests. Diagnosis, 
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prediction of the transition to illness, course, and 
outcome of major psychiatric illnesses thus con-
tinue to be very challenging and remain diffi cult 
to predict using classical clinical instruments. 
The absence of an objective biomarker to assess 
the evolution and severity of the illnesses leads 
to mismanagement and increased burden [ 11 ]. 
There is therefore a strong need to develop bio-
markers of outcome to perform more personal-
ized healthcare plans. Recent studies have raised 
hopes of identifying possible biomarkers that are 
usable at an individual level [ 12 ]. The most 
promising predictive biomarkers include neuro-
imaging features such  as   white matter abnormal-
ities. The development and use of such 
biomarkers of prognosis may help to identify 
patients that should receive specifi c targeted 
interventions [ 13 ]. 

 One technique to achieve the development of 
individual neuroimaging biomarkers usable at 
the bedside is “ Machine learning  ” [ 14 ]. 
Techniques such as  support vector machines   have 
been developed in recent years and have already 
shown potential to classify patients with psychi-
atric disorders using neuroimaging data [ 15 – 17 ]. 
In such machine learning multivariate algorithms, 
the computer applies a specifi c mathematical 
method (e.g., support vector machine algorithms) 
to fi nd specifi c patterns in a “   learning dataset” 
(group information supplied to the computer) 
that form the basis of rules for distinguishing the 
MRI scans of different groups (e.g., patients from 
those of healthy controls). The computer then 
applies these rules to new datasets (e.g., for the 
automatic classifi cation of patients and healthy 
subjects within the sample). Therefore, a bio-
marker is constructed, with measurable metrics 
such as specifi city, sensitivity, positive and nega-
tive predictive values, and accuracy. 

 Proof-of-concept of such approaches in psy-
chiatry has already been demonstrated in schizo-
phrenia and autism. In 2005, Davatzikos and 
colleagues [ 18 ] applied such an automated classifi -
cation technique to T1 MRI scans from 69 patients 
with schizophrenia and 79 healthy controls. They 
achieved a classifi cation accuracy of 81 %. 

 Such techniques have also proven capable of 
predicting clinical outcome with MRI data in 

neuropsychiatric disorders in recent studies. 
Koutsouleris et al.  used   multivariate machine 
learning algorithms to predict disease transition 
in schizophrenia: using T1 MRI scans from at- 
risk subjects, they were able to predict transition 
to psychosis 4 years later, with an accuracy of 82 
% [ 16 ]. They performed this study with only 15 
subjects having a transition to psychosis and 18 
without such a transition. 

 In mood disorders, a recent study has high-
lighted the utility of such approaches to predict 
relapses. Farb et al. [ 19 ] recruited 16 remitted 
unipolar depressed patients who underwent fMRI 
while viewing sad and neutral fi lm clips. They 
used a receiver operating characteristic analysis 
to determine signal cutoffs for predicting relapse. 
Within the depressed group, relapse was pre-
dicted by medial prefrontal cortical activity and 
contraindicated by visual cortical activity with 
sensitivity and specifi city scores all above 80 %. 
This study clearly demonstrates the feasibility of 
discovering neuroimaging-based predictors of 
clinical outcome in mood disorders. It must be 
noted however that the sample size of this study 
was quite small. 

 A few studies have used DTI data as an entry 
point for such machine learning algorithms in 
psychiatry [ 20 ]. Such studies have achieved very 
high rates of accuracy, sensitivity, and specifi city 
[ 21 – 23 ] and are a promising application of DTI 
in future psychiatric research.  

    Planning Psychosurgical Procedures 

    Neurosurgical treatments of severe, intractable 
psychiatric disorders using procedures that 
destroy or disconnect brain tissue have a contro-
versial history and despite their reported effi cacy 
are not widely used. A major criticism of such 
procedures is that the pathways involved in 
psychiatric illness are ill defi ned and therefore 
reliable surgical targets are lacking, resulting 
in widely variable postsurgical outcomes. 
Nevertheless, four major techniques are in use, 
which are generally accepted as safe and effi ca-
cious: anterior cingulotomy, subcaudate tractotomy, 
limbic leucotomy, and anterior capsulotomy [ 24 ]. 
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All these procedures target the limbic territory 
and its connections. 

 Another promising surgical approach, partic-
ularly in the treatment of depression, is deep 
brain stimulation ( DBS)  .    This technique involves 
the targeted stimulation of brain tissue via an 
electrode in order to modulate neurotransmis-
sion. In the case of depression, improvements 
have been reported when using DBS to target the 
subcallosal cingulate, ventral striatum, and ante-
rior limb of the internal capsule (ALIC). The 
ALIC has also been targeted in obsessive-
compulsive disorder [ 25 ]. 

 Given the ability of DTI to virtually delineate 
major pathways, it can be used to investigate the 
connectivity profi le of ablation and electrode tar-
get sites in order to understand more about the 
biological basis of the therapeutic and unwanted 
effects associated with the procedures, and about 
the neural circuitry involved in different aspects 
of psychopathology. For example, recent DTI 
tractography studies have found that typical psy-
chosurgical lesion and  DBS   sites share similar 
fi ber bundles within various cortical and subcor-
tical circuits involving the prefrontal cortex and 
limbic networks, including, for example, the 
medial forebrain bundle and anterior thalamic 
radiation [ 26 – 28 ].    

 As the neurocircuitry of psychiatric disorders 
is unraveled, DTI could also be informative in 
guiding neurosurgical placement of the electrode 
in DBS (see Chap.   14    ) and for refi ning psycho-
surgical targets. Although presently such applica-
tions are very much in their infancy, in the future, 
DTI or advanced versions of the technique such 
as HARDI (see Chap.   21    ) may rejuvenate mod-
ern surgical interventions in psychiatry [ 29 ].   

    Special Challenges 
in the Application of DTI 
in Psychiatry 

 The application of DTI, and neuroimaging in 
general in psychiatry, is an exciting challenge. 
Nevertheless, specifi c caveats must be kept in 
mind, which are related to the current classifi ca-
tion systems in psychiatry and to the psychiatric 

condition  per se . These caveats are not all spe-
cifi c to DTI, but are generally common to all neu-
roimaging studies of patients in psychiatry. 

    Diagnosis and Patient Stratifi cation 
Presently Based on Clinical 
Assessment, Not Biomarkers 

 To date,    diagnoses in psychiatry are solely based 
on clinical assessment. The classifi cation and 
defi nition of the illnesses rely on guidelines and 
manuals approved by the psychiatry community 
such as the “Diagnostic and Statistical Manual of 
Mental Disorders” (DSM; current version DSM- 
V) of the  American Psychiatric Association   and 
the “International Statistical Classifi cation of 
Diseases and Related Health Problems” (ICD; 
current version ICD-10) of the World Health 
Organization. 

 These classifi cation systems defi ne a mental 
disorder based on a collection of clinical signs 
and symptoms (“a syndrome”) and their conse-
quences. As an example, the DSM-V defi nes a 
mental disorder as a syndrome that occurs in an 
individual, the consequences of which are clini-
cally signifi cant distress or disability, that must 
not be merely an expectable response to common 
stressors and losses or a culturally sanctioned 
response to a particular event, that refl ects an 
underlying psychobiological dysfunction and is 
not primarily a result of social deviance or con-
fl icts with society. Other accepted validity crite-
ria for psychiatric disorders include those 
established by Robins and Güze in 1970 that are 
a common clinical description, the exclusion of 
other disorders, longitudinal studies (for stability 
over time), familial studies, and laboratory tests. 

 These defi nitions and the classifi cation sys-
tems thus rely largely on statistical clustering of 
symptoms in individuals. No single pathophysi-
ological process is assumed for a disease defi ni-
tion such as in other medical fi elds. The 
“underlying psychobiological dysfunction” is 
vague and secondary, largely because psychiatry 
presently has no unitary pathophysiological 
model for most diseases (schizophrenia, bipolar 
disorder, autism etc.). 
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 The issue with such a situation is that neuro-
imaging and DTI studies currently investigate 
groups of patients based on clinical classifi ca-
tions only. As an example, when we compare a 
group of 30 patients with “schizophrenia” with 
“healthy controls,” one cannot know if the 30 
patients share a common underlying etiological 
mechanism or various physiopathological pro-
cesses. This may explain some false negatives 
(because of the inclusion of patients with hetero-
geneous neurobiology). This situation may also 
explain the heterogeneity of the results if differ-
ent groups studying the same “disease” have 
included non-comparable groups. Indeed, the 
DSM-V authors state that an inter-rater kappa for 
most diagnoses between 0.4 and 0.6 would be a 
realistic goal, and 0.2 and 0.4 would be accept-
able [ 30 ]. Therefore, one cannot assume that 
groups of patients with an identical diagnosis are 
similar between studies. 

 In addition, the stability of psychiatric diag-
noses over time is also open to debate. A very 
recent study explored this question in a cohort of 
470 fi rst-admission patients with psychotic dis-
orders who were systematically assessed at 
baseline and during a 10-year follow-up [ 31 ]. 
 Diagnoses   were based on best-estimate consen-
sus. In this report, 50.7 % of study participants’ 
diagnoses  changed  at some point during the 
study. Therefore, a study scanning patients with 
“fi rst-episode schizophrenia” may include 
patients with fi rst-episode schizophrenia, but 
also patients with other future diagnoses such as 
bipolar disorder. 

 Boundaries of diagnoses are also unclear. The 
distinction between schizophrenia and bipolar 
disorder has been debated since 1896, when Emil 
Kraepelin proposed that a fundamental dichot-
omy exists between those two diagnoses (the 
“Kraepelinian dichotomy”). The existence of 
mixed clinical forms (“schizoaffective disorders”), 
shared genetic vulnerability, diagnosis instability, 
and common risk factors have led several authors 
to consider those two illnesses as belonging to 
the same fundamental process [ 32 ,  33 ]. Some 
authors even include autism in this picture 
(Kanner, himself, fi rstly described autism as 
“early-onset schizophrenia”). 

 Finally, an additional layer of complexity 
comes from the variation in time of the diagnos-
tic criteria used. As an example, diagnoses in 
the DSM-III and DSM-IV are not strictly identi-
cal, and thus, studies using these different man-
uals cannot be directly compared. Some 
diagnoses disappear from the classifi cations, 
while others arise. 

 On the other hand,  neuroimaging   may help to 
better defi ne homogeneous and valid diagnostic 
groups, by identifying clear physiopathological 
processes involved. The initial goal of  the 
  DSM-V revision was indeed to defi ne illnesses 
by using the new knowledge stemming from bio-
logical, including neuroimaging studies. To 
achieve this goal, large studies comparing 
patients across diagnoses are recommended.  

    Psychiatric and Medical Comorbidity, 
including Alcohol 
and Substance Abuse  

 Heterogeneous results have been obtained in neu-
roimaging studies of psychiatric conditions. 
Several sources of heterogeneity can be identi-
fi ed. Amongst them, the  heterogeneity   of the 
clinical samples recruited is a crucial issue. One 
source of heterogeneity comes from the classifi -
cation systems used (see previous paragraph). 
But potential biases are specifi cally present in 
neuroimaging of patients with psychiatric ill-
nesses: comorbidity, heterogeneity of the illness, 
medication, impact of illness duration, and epi-
sodes and impact of symptoms. 

    Comorbidity 
 Patients  suffering   from a psychiatric illness often 
exhibit high rates of psychiatric and somatic 
comorbidities. In schizophrenia, anxiety and 
depressive symptoms are very common with an 
estimated prevalence of 29 % for PTSD and 23 % 
for OCD. Depression occurs in 50 % of patients 
with schizophrenia and 47 % also have a lifetime 
diagnosis of substance abuse [ 34 ]. In patients 
with bipolar disorder, substance use comorbidi-
ties are present in up to 72 % of patients, along 
with anxiety or multiple comorbidities [ 35 ]. 
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 For somatic conditions, cardiovascular dis-
eases are far more frequent than in general popu-
lation in patients with bipolar disorder [ 36 ]. In 
schizophrenia, most of the common medical con-
ditions are more frequent than in general vpopu-
lation [ 37 ]. The cause for this is unclear. Two 
hypotheses are proposed: fi rstly, there is a delay 
in diagnosis and lack in the care of somatic con-
ditions in patients with psychiatric illnesses. 
Secondly, some of these somatic conditions are 
inherent to the pathophysiology of psychiatric 
diseases [ 36 ]. 

 The very high rates of comorbidities in psy-
chiatric illnesses raise two challenges in DTI 
studies. First of all, the inclusion of patients with 
comorbidities may introduce a bias in the inter-
pretation of the results. The differences found 
between patients and controls may be caused by 
the psychiatric illness itself or by its comorbidity. 
As an example, DTI differences between patients 
with bipolar disorder and controls may be linked 
to alcohol use disorder in these patients. Indeed, 
even detoxifi ed subjects with alcohol use disor-
der exhibit DTI abnormalities [ 38 ], which are 
probably of larger magnitude than those of bipo-
lar disorder. Even somatic conditions such as dia-
betes may bias the DTI results [ 39 ]. One solution 
to this issue may be the inclusion of comorbidity- 
free patients in DTI studies. However, this 
approach introduces a sampling bias as most of 
the patients have comorbidities and therefore, 
comorbidity-free patients may not be representa-
tive of typical patient populations.  

    Heterogeneity of Illness 
 Another source  of   heterogeneity in the results of 
neuroimaging studies is the heterogeneity of the 
clinical samples, which probably confounds the 
observed results. The clinical characteristics of 
the patients studied are diverse, with, for exam-
ple, different forms of schizophrenia (with or 
without hallucinations etc.) or different subtypes 
of BD (e.g., types I and II, rapid cycling) and dif-
ferences in age at onset (early, intermediate, late). 
Unipolar depression is probably even more 
diverse. In anxiety disorders, PTSD may arise 
from various types of trauma. Some of these clin-
ical features such as the presence or absence of 

hallucinations in patients with schizophrenia 
have already been associated with specifi c DTI 
fi ndings [ 40 ]. 

 Illness duration, severity, number of episodes, 
and current symptoms may also vary between 
samples and are known to have an infl uence on 
DTI fi ndings in most conditions. 

 A last source of heterogeneity is the recruit-
ment mode. Patients recruited via the press, inpa-
tient or outpatient facilities differ on many 
demographic and clinical characteristics.  

    Medication 
 Another major confounding variable is psycho-
tropic medication. For major psychiatric illnesses 
such as schizophrenia, bipolar disorder, or severe 
unipolar disorder, virtually all patients are taking 
one, or more usually,  several   psychotropic medi-
cations such as antipsychotics, mood stabilizers, 
antidepressants, and benzodiazepines. All these 
psychotropic medications may affect brain struc-
ture. The most common example is the neuro-
trophic effect of lithium on grey matter volumes. 
There is presently a lack of knowledge regarding 
the effect of these medications on brain white 
matter, but current evidence suggests a limited 
impact on DTI variables [ 41 ]. 

 Similarly to the comorbidity issue, the recruit-
ment of medication-free patients, apart from 
being very diffi cult, may lead to sampling issues.   

    Special Considerations 
in the Scanner: The Effect of Motion, 
Active Symptoms, and Informed 
Consent 

 Another  source   of noise and bias that is crucial in 
DTI studies is the compliance of the patients to 
the instructions given by the scanning staff. More 
specifi cally, head motion is a major source of 
noise in most neuroimaging studies [ 42 ]. Patients 
are more prone to head motion than controls 
because of several factors including minor neuro-
logical signs associated with the disease itself, 
medication, motivation, and anxiety. In DTI, 
head motion is also a source of noise despite 
motion correction algorithms [ 43 ]. In movement 
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disorders, FA values have proven to be robust 
despite head motion, which is very encouraging 
for the psychiatric fi eld [ 44 ]. 

 Aside from motion, the nature of psychiatric 
symptoms that patients present with during 
 scanning may hinder optimal data acquisition. 
For example, depressed subjects may be less 
motivated to attend scanning sessions or suffer 
higher levels of anxiety. Manic or actively psy-
chotic individuals may be too restless or anxious 
to tolerate scanning. The resulting scans may 
suffer more motion artifacts or scanning may be 
terminated before the acquisition is complete. In 
all these cases, the most optimum results will be 
obtained by employing strategies to increase 
patient compliance with the scanning proce-
dures. It is therefore extremely important that 
staff scanning subjects with active psychiatric 
disorders pay special attention to ensuring that 
patients receive clear and complete instructions 
on the scanning procedure and what they can 
expect to experience whilst in the scanner. Along 
these same lines, it is vital that the nontherapeu-
tic investigation of psychiatric patients conforms 
to an ethical framework that takes into account 
the ability of the patient to provide informed 
consent [ 45 ].      

    DTI fi ndings in Psychiatric Disorders 

 Despite the inherent diffi culties in acquiring 
good comparative data in psychiatric popula-
tions, research in psychiatry has greatly benefi ted 
from neuroimaging. Earlier work using CT, MRI, 
and PET fundamentally altered the perception of 
psychiatric illness from an intangible, unquantifi -
able, functional disturbance without organic 
pathology, to a collection of disorders for which 
measurable neurological changes in brain struc-
ture and biochemical function could be identifi ed 
and visualized. With the ability to  investigate 
  white matter, DTI continues to advance our 
understanding of the nature of these structural 
changes. Since the advent of the technique, the 
role of white matter alterations as a core feature 
of mental illness pathophysiology has become 
apparent, and the concept of psychiatric disease 

arising from altered structural connectivity has 
been strengthened.  

    Which Fiber Bundles Are of Interest 
in Psychiatric Disorders? 

 DTI has been applied to the investigation of a 
number of psychiatric disorders to varying 
degrees and using a range of analysis methods to 
explore whole brain white matter, specifi c fi ber 
tracts, and tract subregions. The most commonly 
reported defi cits are found in frontal and  tempo-
ral   white matter and tracts that subserve the lim-
bic system. Such tracts include the various 
subregions of the corpus callosum (CC), cingu-
lum bundle (CB), superior (SLF) and inferior 
longitudinal fasciculi (ILF), thalamic radiations, 
and uncinate fasciculus (UF) [ 1 ,  46 ]. Impaired 
WM microstructure in these regions is hypothe-
sized to contribute to a breakdown in the regula-
tion of higher functions relating to cognition, 
emotion, and memory, which are typically com-
promised in psychiatric illness. Some ascending 
and descending fi ber systems such as the corona 
radiata, internal vcapsules, cerebral and cerebel-
lar peduncles feature more predominantly in neu-
rodevelopmental disorders such as autism and 
ADHD, and also in schizophrenia, and may 
underlie the psychomotor features of these 
illnesses. 

 Reported alterations are however by no means 
limited to these areas and neither are such fi nd-
ings universal. This likely refl ects the heteroge-
neity of both the clinical populations studied and 
the methodology employed to investigate them. 
Furthermore, several regions such as the WM of 
the medial temporal lobe and corpus callosum 
emerge consistently in meta-analyses of different 
disorders. This illustrates the lack of specifi city 
of DTI changes in psychiatric illnesses and may 
be refl ective of the considerable overlap in symp-
tomatology between them. In this context, DTI 
metrics in isolation cannot be used diagnostically 
but provide useful additional data in a multi-
modal framework incorporating for example, 
genetic, neuropsychological, psychosocial, and 
clinical measures.  
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    DTI Findings in Selected Psychiatric 
Disorders 

    Schizophrenia 

 Schizophrenia is a disorder of thought, percep-
tion, emotion, and behavior affecting an esti-
mated 1 % of the population. Patients may 
experience both “positive” symptoms, such as 
hallucinations, delusions, altered thoughts and 
feelings of being controlled, and “negative” 
symptoms characterized by withdrawal, fl attened 
affect, and anhedonia.    

 It is the most widely studied psychiatric disor-
der using DTI, with over 300 studies listed on 
PubMed at the time of writing (early 2015). 
There are few negative studies, with the majority 
reporting FA reductions in more than one brain 
region [ 47 ]. Although FA reduction in frontal and 
temporal WM appears most frequently reported, 
there are also reports of such decreases in pari-
etal, occipital, and even cerebellar white matter, 
suggesting widespread diffuse whole brain 
pathology, consistent with fi ndings of wide-
spread grey matter reductions and functional 
impairments detected using other imaging 
modalities [ 10 ]. A recent meta-analysis of DTI 
studies in schizophrenia described two distinct 
regions where FA was reduced consistently: one 
in the left perigenual WM of the frontal lobe and 
a second region, in the medial temporal lobe 
[ 48 ]. The authors postulate that these regions 
represent two distinct networks that are compro-
mised in schizophrenia, leading to a disconnec-
tion of important fronto-temporal grey matter 
functional areas.  

    Mood Disorders 

  The   next most widely investigated psychiatric 
conditions  are   major depressive disorder 
(   MDD)       and   bipolar disorder (BD)      .     Depression 
is   a common disorder affecting up to one in fi ve 
people in their lifetime. It is characterized by 
extended periods of low mood, sadness, anhedo-
nia, impaired concentration, altered sleep and 
appetite, feelings of guilt and worthlessness, and 

in severe cases, suicidal thoughts. Bipolar disor-
der is less common, affecting 1 % of the popula-
tion, and is characterized by alternating periods 
of severe depression and hypomania or mania. 
During (hypo) manic episodes, patients experi-
ence elevated mood, increased energy, reduced 
need for sleep, talk more quickly, may make 
unrealistic plans, overspend, engage in risky 
behavior, become irritable, aggressive, and abuse 
alcohol and drugs. Some patients may also expe-
rience psychosis, a state in which their perception 
of reality becomes distorted. In this context, 
symptoms of BD and schizophrenia overlap. It is 
interesting that DTI fi ndings in BD also parallel 
those in schizophrenia. However, FA reductions 
are less widely reported across the whole brain in 
BD and there are considerably more negatives 
studies. There are also some reports of regional 
FA increase [ 49 ]. Regionally, FA reductions tend 
to be found in frontal and temporal WM. Corpus 
callosum defi cits feature strongly, particularly 
anterior (genu) and posterior (splenium) projec-
tions [ 50 – 52 ].  FA reductions   also predominate in 
anatomically closely related tracts, such as por-
tions of the SLF, ILF, IFOF, posterior thalamic 
radiation, and cingulum [ 53 ]. Such regions are 
classically associated with emotional regulation, 
working memory, and facial processing; func-
tions that are impaired in BD. Interestingly, these 
regions, which emerged consistently in a meta-
analysis of 11 DTI studies [ 46 ], parallel the two 
regions identifi ed in the schizophrenia meta-anal-
ysis described above. 

 Findings in MDD are signifi cantly more het-
erogeneous and overlap considerably with 
changes identifi ed in BD. Strikingly, a recent 
meta-analysis [ 54 ] not only identifi ed FA defi -
cits in the callosal genu and body but also found 
them in precisely the same posterior WM region 
encompassing the right ILF, IFOF, and poste-
rior thalamic radiation, as the meta-analysis of 
DTI studies in BD and schizophrenia, all per-
formed by different authors [ 46 ,  48 ]. Findings 
diverge somewhat from BD and schizophrenia, 
where FA reductions in MDD are found in more 
dorsal regions of the PFC, compared to more 
ventral and perigenual PFC regions in BD and 
schizophrenia.  
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    Anxiety Disorders 

    Anxiety disorders are common, affecting one in 
ten people in their lifetime. They are character-
ized by both psychological effects, including 
increased worry, irritability, fear, and impaired 
sleep; and somatic complaints, such as dizziness, 
palpitations, trembling, sweating, rapid breath-
ing, and gastrointestinal disruption. Some anxiety 
disorders are a permanent and disruptive feature 
of a patient’s life such as   generalized anxiety 
disorder (GAD)      ,  obsessive-compulsive disor-
der (   OCD)         ,  and     posttraumatic stress disorder 
(PTSD)      . Other forms of anxiety disorder arise 
only in certain situations, which are typically 
stressful for the affected individual. For example, 
 panic disorder  is characterized by intense, iso-
lated “attacks” that come on quickly, and  pho-
bias , which give rise to feelings of anxiety and 
fear when the sufferer is exposed to something 
that is not usually dangerous, such as house spi-
ders or traveling by air. Neurobiological models 
of anxiety propose a disruption to key networks 
that modulate fear and attention and involve brain 
structures such as the medial prefrontal cortex, 
posterior cingulate cortex, insula, brain stem, hip-
pocampus, and amygdala [ 55 ]. The cingulum 
bundle is central to these networks and features 
prominently in DTI studies of anxiety. 

 Most types of anxiety disorder have been 
investigated using DTI, but studies are less 
numerous than in the schizophrenia and mood 
disorders. Two studies have investigated panic 
disorder. One ROI analysis of the anterior and 
posterior cingulum reported increased FA in this 
structure [ 56 ]. The other utilized a voxel-based 
approach and found FA decreases in the right 
IFOF, left callosal body, and left SLF [ 57 ]. 

 DTI studies of PTSD are limited and include 
investigations into the effect of childhood trauma 
measured during childhood and during adult-
hood, and also the effect of adult trauma. A meta- 
analysis of seven studies investigating 
trauma-exposed adults identifi ed FA decreases in 
nine clusters and increases in six clusters, which 
included different regions of the cingulum. 
Interestingly, volumetric reductions have also 
been commonly reported in this structure [ 58 ]. 

 The typical behaviors associated with OCD 
are hypothesized to refl ect cortical dysregulation 
of cortico-thalamo-striatal circuits including the 
orbitofrontal cortex, cingulate, and caudate [ 59 ]. 
Positive DTI fi ndings predominate, with FA 
changes, i.e., reductions and also increases 
reported in tracts associated with these regions, 
for example, in the cingulum bundle, internal 
capsule, anterior thalamic radiation, superior lon-
gitudinal fasciculus and inferior fronto-occipital 
fasciculus, as well as in the corpus callosum, 
frontal and parietal white matter [ 60 ,  61 ].  

    Personality Disorders 

    Personality disorders are common, and arise 
from the abnormal expression of certain charac-
ter traits that diverge from the sociocultural norm 
of the individual’s environment. Such traits 
include being overly suspicious, impulsive, 
overly emotional, and anxious. These traits may 
lead those with the disorder to engage in destruc-
tive and harmful behavior to themselves and/or 
others, and they may fi nd it diffi cult to function in 
healthy relationships and formal educational or 
employment settings. 

 Research using DTI to study personality dis-
orders is limited. Two studies report reduced 
FA in orbitofrontal WM [ 62 ,  63 ], whilst another 
reports no FA decrease in borderline personal-
ity disorder patients compared to a control 
group [ 64 ]. However, interpretation of these 
fi ndings is compromised by the inclusion of 
patients with different comorbid psychiatric 
conditions and analyses based on suboptimal 
DTI data. Only two studies have examined 
schizotypal personality disorder. The fi rst used 
an automated ROI analysis of the uncinate fas-
ciculus and cingulum bundle in DTI linescan 
data and found reduced FA in the uncinate only 
[ 65 ]. The second investigated a larger sample in 
a more elaborate analysis examining WM 
underlying Brodmann regions of the dorsolat-
eral PFC, cingulate gyrus, and temporal lobe, 
and found both FA reductions in  temporal WM 
and posterior cingulum and FA increase in the 
subgenual PFC [ 66 ].     
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    Neurodevelopmental Disorders 

 Neuroimaging studies in children have additional 
challenges beyond those described previously 
(see Chap.   13    ). Notably, the effect of age is likely 
to be an important confound in such studies. 
Given the different trajectories of white matter 
development both within and between typically 
developing children and children affected by psy-
chopathology, cross-sectional studies including 
different age groups limit comparability between 
studies and generalizability of fi ndings. In spite 
of such issues, DTI is providing data supporting 
dyconnectivity models of two key neurodevelop-
mental disorders.  

    Autism 

 Autism (autism spectrum disorder/ASD) is  a   per-
vasive neurodevelopmental disorder emerging in 
early childhood that is characterized by impaired 
social and communication skills, repetitive, ste-
reotyped behavior, and increased sensitivity to 
external stimuli. The dramatic increase in ASD 
diagnosis in recent years has been mirrored by an 
increase in neuroimaging research investigating 
the neurobiological basis of the condition. 
Studies employing active and resting state fMRI 
have demonstrated aberrant functional connec-
tivity in ASD, which may be driven by impaired 
structural connectivity, i.e., WM pathology [ 67 , 
 68 ]. However, DTI fi ndings have been heteroge-
neous with a particular lack of consensus on the 
location of FA and MD changes in ASD. Most 
studies have found FA to be reduced; however 
few studies have reported this reduction in the 
same region and other studies have failed to fi nd 
FA reductions in these regions [ 69 ]. A relatively 
large recent study including 39 young autistic 
children found widespread, minor FA reductions 
and MD increases in the order of 1–2 % com-
pared to 39 typically developing children [ 69 ]. 
Notably, this study used two different voxel- 
based approaches and found discrepancies in the 
level of statistical signifi cance in regions reported 
between the methods. The authors also identifi ed 
image artifacts in their data that may have con-

tributed to the results, which they discussed in the 
context of potential confounds in such DTI stud-
ies and to caution against the use of DTI metrics 
as a biomarker for single-subject diagnosis.     

    Attention Defi cit Hyperactivity 
Disorder 

 Attention Defi cit Hyperactivity Disorder 
( ADHD     )    is a neurodevelopmental, behavioral 
disorder affecting up to 5 % of school age chil-
dren, characterized by impaired attention and 
concentration with increased impulsivity and 
hyperactivity. One neurobiological theory pro-
poses that the disorder refl ects abnormal fronto-
striatal- cerebellar circuitry. Findings from DTI 
appear to support this model with several studies 
reporting both FA alterations in a range of tracts 
subserving these regions. For example, a meta- 
analysis including nine VBA studies of both 
pediatric and adult populations (173 ADHD 
patients and 169 healthy controls) identifi ed fi ve 
foci of altered FA within the callosal genu, ante-
rior corona radiate, internal capsule, and cerebel-
lar white matter [ 70 ]. ROI studies have also 
reported reduced anisotropy in overlapping 
regions, including the middle cerebellar peduncle 
[ 71 ], corticospinal tract [ 72 ], internal capsules, 
and corpus callosum [ 73 ,  74 ]. Anisotropy 
increases have also been reported in frontal and 
temporal white matter [ 75 ,  76 ]. Interestingly, one 
study of the basal ganglia did not fi nd group dif-
ferences in FA or MD, but found an increase in 
FA with age in the ADHD group that was absent 
in the controls, hinting at delayed WM develop-
ment that normalizes in adulthood [ 77 ]. Indeed, 
many cases of ADHD resolve with increasing 
maturity, whilst others persist into adulthood, 
which may refl ect different illness subtypes or 
pathophysiological mechanisms.   

    Alcohol Use Disorders 

    The harmful use of alcohol is widespread across 
the globe, with many Eastern European coun-
tries, Thailand, Korea, and Columbia reporting 
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prevalence rates of over 10 % in men (WHO). 
In the context of abuse and dependence, alcohol 
misuse is a common and signifi cant comorbid-
ity in psychiatric disorders [ 78 ]. The damaging 
effect of alcohol on the brain through acute 
cytotoxity and the sequelae of chronic overcon-
sumption is well documented [ 79 ]. One DTI 
ROI based study investigating the acute effects 
of wine consumption on different brain regions 
at 0.5, 1, 2, and 3 h following consumption 
reported signifi cant changes in ADC in the cere-
bral peduncles, thalamus and frontal WM, and 
in FA in frontal WM over time that may refl ect 
the development of cytotoxic edema and subse-
quent recovery [ 80 ]. Another voxel-based study 
investigating 14 adolescent binge drinkers 
(defi ned as drinking fi ve alcoholic beverages in 
one sitting) and equally matched controls 
reported widespread FA reductions that 
appeared to be dose dependent [ 81 ]. Studies of 
“uncomplicated alcoholics” have aimed to 
characterize long-term effects of chronic alco-
hol exposure and have reported regional FA 
reductions in anterior and superior association 
bundles and in the corpus callosum [ 82 ,  83 ]. 
One study investigating mesencephalic fi ber 
tracts in detoxifi ed subjects reported ADC 
increases and an 18 % reduction in recon-
structed tracts per unit volume between the 
midbrain and pons [ 38 ]. Alcohol therefore 
appears to impact upon DTI metrics, whether 
consumed in moderate or large amounts, and 
these effects are measurable in both acute and 
chronic phases of overuse, as well as in states of 
detoxifi cation. As such, alcohol use should be 
accounted for in DTI investigations and may 
represent an important confound in DTI studies 
of psychiatric disorders.    

 In summary, DTI is a valuable tool in the fi eld 
of psychiatry, particularly in clinical research. It 
is not without its limitations, and implementing 
the technique properly in psychiatric populations 
requires careful attention. In the future, concur-
rent advances in both neuroimaging and biologi-
cal psychiatry should converge with advances in 
allied disciplines in order to inform and improve 
clinical practice and the care of patients with psy-
chiatric disorders.     
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            Learning Points 

•     Challenges in the use of DTI in TBI.  
•   DTI as a diagnostic tool for severity of TBI.  
•   DTI as an outcome predictor.     

    Introduction 

 Traumatic brain injury (TBI) is defi ned as an 
alteration in brain function, or other evidence of 
brain pathology, caused by an external force [ 1 ]. 
TBI is considered a silent epidemic, giving rise to 
many new victims each year, and represents a 
substantial socioeconomic and health problem. 
Worldwide, the incidence of TBI continues to 
increase, and the WHO predicts that road traffi c 
incidents will be among the top three causes of 
death and disability by the year 2020. In Europe, 
approximately 2.5 million new cases of TBI are 
diagnosed each year. The epidemiology is, how-

ever, changing: in low and middle income coun-
tries, injuries are mainly caused by road traffi c 
incidents and involve vulnerable road users 
(pedestrians, cyclists), who are mostly young 
men. In higher income countries, injuries are 
more often caused by falls and involve older 
patients. These patients more frequently have 
comorbidities, and often take medication, includ-
ing  anticoagulants and platelet aggregation inhib-
itors  . Both comorbidity and medications may 
infl uence the disease process. TBI does not only 
affect the patient, but also has a direct impact on 
their families, relatives, caretakers, and social 
environment. The costs related to TBI are high, 
not only because of long-term hospitalization and 
rehabilitation but also because of indirect costs 
resulting from loss of productivity in previously 
healthy individuals due to mortality and disabil-
ity. The fi nancial burden for TBI is estimated at 
over 60 billion dollars a year in the USA [ 2 ]. 

 Despite its frequent occurrence and signifi cant 
personal and societal impact, our understanding 
of TBI is still limited. The injured brain is like a 
black box, from which it is diffi cult to extract 
information. Advanced MR Imaging, and in par-
ticular Diffusion Tensor Imaging (DTI), offers 
opportunities to investigate this black box, and to 
extract information that can be used to better 
characterize damage, track disease processes, 
and to establish a more accurate prognosis. 

 In the acute phase, structural brain damage is 
best assessed by  CT scanning  , as this is rapidly 
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available and can be performed quickly. This is 
important, as  rapid detection   and—if indicated—
prompt removal of an intracranial hematoma is 
one of the major principles upon which care for 
the TBI patient is based. CT scanning further per-
mits a broad characterization of TBI by the 
Marshall CT classifi cation [ 3 ]. This classifi cation 
offers a descriptive approach, which is important, 
as TBI is a very heterogeneous disease encom-
passing a broad range of pathologies [ 4 ]. The 
Rotterdam CT score was developed from a prog-
nostic perspective and combines different CT fea-
tures into a sum score. This score has been shown 
to be more strongly related to outcome than the 
Marshall CT classifi cation [ 5 ]. Prediction of out-
come, however, is better performed by combining 
different variables (clinical, radiological, and 
laboratory) into a multidimensional model. 

 TBI is a dynamic process, and pathology 
evolves over time. In patients with contusions, 
new lesions may develop in up to 16 % of cases 

and existing contusions may increase in size in 
up to 40 % of cases. This lesion progression 
mainly occurs within 6–9 h after injury [ 6 ]. 
Follow-up imaging is therefore essential. 

 The disadvantage of CT scanning is that it 
only captures limited information on the full 
extent of structural damage and does not provide 
any insight into function. Magnetic Resonance 
(MR) imaging can provide better insight into the 
extent and severity of  primary and secondary 
brain damage   (Fig.  19.1 ).

   Specifi c MRI sequences, i.e., susceptibility 
weighted imaging (SWI) and diffusion weighted 
imaging (DWI), are more sensitive for detecting 
structural changes in the brain, particularly 
smaller lesions, such as microhemorrhages, dif-
fuse axonal injury (DAI), and traumatic axonal 
injury (TAI) (Fig.  19.2 ) [ 7 ]. Diffusion tensor 
imaging (DTI) provides valuable additional 
information about white matter lesions and struc-
tural damage, and is therefore particularly suited 

  Fig. 19.1    TBI in  a   57-year-old man, injured in a car acci-
dent. GCS on admission was 11/15 Noncontrast CT of the 
brain upon admission ( a ) and MRI of the brain on day 7 
after the injury, including fat-saturated turbo FLAIR ( b ) 
and susceptibility weighted imaging (SWI) ( c ) were per-
formed. The coup side is indicated by a left parieto- occipital 
subgaleal hematoma and infi ltration of the subcutaneous 
fat ( arrow ). On the contre-coup side, there are hemor-
rhagic contusions in the right frontal and temporal lobes. 

In addition, there is a small right parietal subdural hema-
toma, but the midline structures are not displaced. The MRI 
scan on day 7 reveals hemorrhagic contusions in the right 
temporal and right frontal lobes, surrounded by edema. On 
the SWI scan, the hemorrhagic nature of these contre-coup 
contusions is clearly seen, and there is evidence of multiple 
other hemorrhagic foci in the brain parenchyma, as well as 
small amounts of intraventricular blood in the trigone and 
occipital horns of the lateral ventricles       
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to characterize the presence and degree of injury 
and understand pathophysiological mechanisms 
in neurotrauma.

   MR imaging can visualize abnormalities, con-
sistent with axonal injury in up to 30–50 % of 
patients, in whom CT showed no apparent struc-
tural damage (Fig.  19.3 ) [ 8 – 10 ]. It is important to 
detect such lesions since TAI is a major cause of 

cognitive impairment and disability after TBI and 
thus a determining factor for outcome [ 11 – 18 ]. 
For example, in mild TBI patients with impaired 
executive function, reduced FA values were seen 
in the dorsolateral prefrontal cortex ( DLPFC  ) 
[ 19 ]. A study by the NICER consortium demon-
strated that microstructural changes were observed 
up to 5 years after severe TBI [ 20 ].

  Fig. 19.2    TBI in a 19-year-old man, injured in a motor 
vehicle accident. The patient was admitted to the emer-
gency department with a GCS of 9/15. MR imaging was 
performed on day 7 ( a ,  d ), day 12 ( b ,  e ), and after 6 
months ( c ,  f ), using fat-saturated turbo FLAIR ( a ,  b ,  c ) 
and susceptibility weighted imaging (SWI) ( d ,  e ,  f ). The 
MRI scan on day 7 ( a ,  d ) reveals left frontal and bilateral 
capsulo-lenticular contusions, as well as intraventricular 
hemorrhage and multiple scattered hemorrhagic foci. A 

prominent susceptibility artifact in the right frontal region 
is caused by the ventricular shunt. Five days later, on day 
12, the parenchymal lesions are unchanged, but there is a 
slight decrease in the amount of intraventricular hemor-
rhage. After 6 months ( c ,  f ) the intracerebral lesions have 
regressed on the FLAIR image, but there remain multifo-
cal, punctate microhemorrhagic foci on the SWI sequence. 
In addition, a mild cortical atrophy has occurred       
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   This chapter will elaborate on the role of dif-
fusion tensor imaging in traumatic brain injury 
for research and clinical practice.  

    Role of DTI in  TBI   

    Pathophysiology 

 The pathophysiology of TBI is highly complex 
and involves multiple pathophysiologic pro-
cesses. Importantly, TBI should not be seen as 
an event, but as a progressive disease, in which 
further damage may occur over hours, days, 
weeks, months, or even years. Secondary dam-
age is preventable and potentially treatable. 
Detection, quantifi cation, and tracking of such 
secondary damage is thus of paramount impor-
tance. Secondary damage may include brain 
swelling due to vascular engorgement or brain 
edema, which may be  intracellular (cytotoxic)   
or  vasogenic (extracellular)  . Cerebral ischemia, 
considered one of the most common problems 
after TBI, can occur locally (in the penumbra of 
a contusion) or more generalized and may be 
exacerbated by systemic insults, such as low 
blood pressure or inadequate blood oxygen-
ation.  Traumatic axonal injury  , formerly consid-
ered a mechanical disruption of axons, has now 
been shown to result from metabolic failure of 

axonal transport mechanisms. Both hypo- and 
hypermetabolism may occur at different stages 
after injury. Disturbances of the mitochondrial 
transition pore are thought to be a main cause of 
mitochondrial failure after TBI. Infl ammatory 
cascades are activated, some of which may be 
protective, others—when in excess—detrimen-
tal. Much insight into these mechanisms can be 
gained from MR Imaging. DWI and apparent 
diffusion coeffi cient (ADC) mapping can pro-
vide information about ischemia and edema, 
whilst MR spectroscopy can provide insight into 
metabolic derangements.  

    DTI in Diagnosis,  Characterization  , 
and Classifi cation of TBI 

 DTI can provide important indirect information 
about neuronal integrity, continuity, and connec-
tivity of  neural pathways  , even when traditional 
MRI sequences appear normal. The diffusion 
tensor characterizes the magnitude of water dif-
fusion (ADC and mean diffusivity, MD), its 
directional nonuniformity (fractional anisot-
ropy, radial and axial diffusivity, FA, RD, AD), 
and its orientation (the tensor eigenvectors). The 
exact mechanisms of the nature of water diffu-
sion in both grey and white matter are not com-
pletely understood. However the organization of 

  Fig. 19.3    Mild TBI in a 
35-years-old patient who 
fell from the stairs, with 
GCS of 14/15 (E4M6V4) 
on admission. CT scan 
( a ) upon admission 
showed no intracranial 
abnormalities. MR 
imaging—gradient echo T2 
sequence—( b ) 6 weeks 
after initial injury shows 
remnants of subarachnoid 
hemorrhage in the left 
parieto-temporal lobe 
( arrow )       
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tissue structure including the presence of myelin, 
microtubules, and organelles, as well as the 
 contribution of  intra- and extracellular water   
(edema formation) play a signifi cant role. This 
is illustrated in a study by Newcombe et al. [ 21 ] 
in subjects with moderate to severe head injury 
where MRI was performed at a median of 32 h 
after injury. Results showed a decreased FA in 
the white matter, which was attributed predomi-
nantly to increased radial diffusivity, consistent 
with edema. 

 In 2012, Shenton et al. published a review of 
MRI and DTI focusing on mild traumatic brain 
injury. This article gives a good overview of stud-
ies performed on mild TBI, with all analyzed 
data showing some degree of subtle brain dam-
age in mild TBI. The authors noted a wide range 
of variability in DTI studies and diffi culties in 
data interpretation, due to the use of different 
scanning protocols and timings at DTI. 

 A meta-analysis of 28 studies by Aoki et al. 
[ 22 ] in mild TBI showed that the posterior part of 
the  corpus callosum   is more vulnerable to dam-
age compared to the anterior part. Compared to 
healthy volunteers, there was a signifi cant 
decrease in FA and increase in mean diffusivity 
in the corpus callosum in TBI patients. 

 In a study by Rutgers et al. [ 23 ] on 21 patients 
with mild TBI, in whom MRI was performed at 
an average of 5.5 months after injury, the  cerebral 
lobar white matter   showed regions with reduced 
FA values in almost 62 % of the study popula-
tion. Further decrease of FA was observed in 23.6 
% of the patients in the cingulum or the corpus 
callosum. Since abnormalities in the internal cap-
sule, fornix, brain stem, and cerebellum were not 
frequently seen in their case study of mild TBI, 
the authors suggest these lesions may be more 
associated with severe TBI. 

 Kraus et al. [ 24 ] performed a DTI study in 
 chronic traumatic brain injury   patients with mild, 
moderate, and severe injury. The study included a 
total of 20 patients with mild and 17 patients with 
moderate/severe TBI as well as 18 healthy con-
trols. DTI was performed at least 6 months after 
injury (average of 107 months after injury), using 
both whole brain analysis and region of interest 
analysis. Results showed an increased radial and 
axial diffusivity in patients with moderate and 

severe TBI in both whole brain and ROIs, indica-
tive of potential myelin and  axonal damage     . 

 Notably, differences in the effect of TBI sever-
ity on AD and RD may refl ect different underly-
ing pathophysiological mechanisms related to the 
degree of tissue injury. 

 Recently, Van der Eerden and the 
 Neuroimaging for Coma Emergence and 
Recovery (NICER)      consortium [ 25 ] published 
the results of a multicenter study investigating 
DTI changes in cardiac arrest and TBI patients, 
using 19 predetermined ROIs. They found a 
decrease in axial  diffusivity   in cardiac arrest 
patients and increase in radial diffusivity in 
severe TBI patients. In the cardiac arrest patients, 
abnormalities are mostly seen in the cerebral 
hemispheres. For the TBI patients the abnormali-
ties were found in both the central brain struc-
tures and cerebral hemispheres. The changes in 
axial diffusivity could be related to primary axo-
nal damage due to energy depletion caused by 
ischemia. It was hypothesized that the increase in 
radial diffusivity in TBI patients was related to 
myelin damage and edema. The moderate 
decrease in axial diffusivity suggests axonal 
damage due to direct impact at trauma or isch-
emic changes due to secondary mechanism 
caused by  intracranial lesions  . However, relating 
changes in the axial and radial diffusivities to 
specifi c microstructural features is fraught with 
challenges, particularly in the context of tissue 
injury. As a consequence, these hypotheses for 
the observed DTI changes remain tentative. 

 Kasahara et al. [ 26 ] performed DTI in healthy 
controls and patients with mild TBI and 
DAI. Decreased axonal and radial diffusivity was 
found in the DAI patients. In mild TBI patients, 
normal radial diffusivity and increased axial dif-
fusivity values were observed, indicating possi-
ble axonal abnormality.  

    DTI and Prognosis in TBI 

 DTI may also be used as a  prognostic predictor   in 
traumatic brain injury. 

 A DTI voxel-based analysis by Perlbarg et al. 
[ 27 ] investigating the prediction of 1-year out-
come in severe TBI showed no signifi cant ADC 
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differences between the favorable and unfavor-
able outcome groups. However, signifi cant 
changes were observed in the FA values between 
these two groups, with a decrease in the FA 
value in the unfavorable outcome group. 

 Tollard and colleagues [ 28 ] performed a study 
with DTI and magnetic resonance spectroscopy 
(MRS) for outcome prediction in severe trau-
matic brain injury. Forty-three patients with 
severe TBI and 15 control subjects underwent 
MRI with DTI and MRS sequences. The imaging 
was performed in the subacute phase after trauma 
(24 ± 11 days after injury). DTI was performed 
using symmetrical regions of interest (ROI) anal-
ysis in the left and right mesencephalon, tempo-
ral and occipital white matter, anterior and 
posterior centrum semiovale, and anterior and 
posterior part of the pons. 

 These regions were predetermined regardless 
of the presence of morphologic lesions. 

 The results revealed signifi cantly lower FA 
values in patients with unfavorable outcome (i.e., 
Glasgow Outcome Scale, GOS 1–3). Lower FA 
values were also seen in the temporal white mat-
ter and the centrum semiovale for patients with 
favorable outcome (i.e., GOS 4–5) compared to 
the control group. The authors suggest this may 
be because these lesions have no effect on the 
recovery of consciousness. 

 In this study, MRS was analyzed as single 
voxel spectroscopy in the posterior pons and 
axial chemical shift imaging (CSI) at the basal 
ganglia. Interestingly, using DTI and MRS sepa-
rately showed lower specifi city (85 % and 75 % 
respectively) and sensitivity (79 % and 75 % 
respectively) for predicting unfavorable outcome 
at 1-year post-injury, than combining the tech-
niques (97 % specifi city and 86 % sensitivity). 
This highlights the added value of combining 
DTI with other imaging modalities to improve its 
clinical utility.   

     Challenges   for the Use of DTI in TBI 

 DTI is well suited to provide information related 
to the continuity and connectivity of neuronal 
pathways. It can provide insight into micro-
structural changes, such as  fi ber disruption and 

axonal degeneration   after injury, and can poten-
tially serve as a prognostic factor and aid the 
surgeon and the treating physician in their 
decision-making. 

 Nevertheless, there are challenges, both in 
interpreting literature data and in conducting 
studies on patients following TBI. For example, 
despite broad interest, most reports on DTI in 
TBI have been restricted to relatively small case 
series, have included some selection bias, and 
have only rarely studied patients early after 
injury. Furthermore, the multiple assumptions 
that underpin the algorithms used in post- 
processing of DTI data are not always applicable. 
Practical challenges associated with conducting 
DTI studies in TBI populations include transpor-
tation, logistic issues concerning scanning, tim-
ing of DTI scanning, and standardization of data 
acquisition and analysis protocols. 

     Transportation and Scanning Issues   

 In the acute phase of TBI, transport and scan-
ning of a critically ill patient poses substantial 
logistical challenges. Transportation and scan-
ning is thwarted by the need for mechanical 
ventilation and continuous monitoring. Since 
these patients are treated on the intensive care 
unit, transportation itself may carry risks. For 
instance, the intra- hospital transportation of 
critically ill patients increases the risk for sig-
nifi cant adverse events, such as inadvertent 
hyperventilation or hypotension with limited 
options to intervene in case of problems [ 29 ]. In 
addition, installation of an ICU patient on a 
MRI scan is time consuming. Scanning time for 
a brain MRI, including DWI, SWI, and DTI, is 
also signifi cantly longer compared to a CT scan 
(45 min vs. 2 min). 

 A major cause for disruption of DTI analysis 
is motion artifacts, resulting in loss of signal. 
Correction of the motion artifacts however is 
complex, but feasible using various methods [ 30 ]. 

 Since TBI patients may have been operated 
on, any surgical material such as titanium clips, 
fi xation materials, hemoclips, and surgical sta-
ples can cause loss of signal and will affect DTI 
analysis.  
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    Timing of DTI  Scanning   

 Since we deal with an evolving pathology, it is 
important to determine when to perform a MRI 
scan after TBI. As explained earlier, TBI is a 
dynamic process and both primary and secondary 
brain damage will cause brain swelling. In the 
acute phase after TBI, DTI can be infl uenced by 
edema, which imitates fi ber disruption [ 23 ], and 
by large intracranial lesions. In the subacute 
phase, neuronal degeneration and infl ammatory 
reactions due to secondary brain damage are still 
ongoing. Valuable information can be missed by 
DTI scanning during  this   period.  

    Standardization of DTI Analysis—
Analyzing DTI 

 Two major approaches for analyzing DTI in TBI 
exist: (1) region of interest ( ROI  ) analysis and (2) 
whole  brain      ( WB  ) tractography. 

 In the region of interest approach, analyses are 
performed in predetermined regions, generally 
chosen within the  white matter   (because of inter-
est in axonal disruption and water content/diffu-
sion). This gives detailed analysis in these 
selected ROIs, but risks possibly missing areas of 
decreased FA values outside of these regions. 

 TBI is a very heterogeneous group and with 
WB tractography a more complete overview can 
be achieved. Nevertheless, artifacts such as large 
intracranial lesions, which can infl uence DTI 
analysis, may hinder this technique. In addition, 
specifi c regional information is lost by using 
whole brain tractography results. 

 It is the combination of all these challenges, i.e., 
problems due to transportation, timing in DTI scan-
ning, specialized software, and different methods 
in analysis, that make standardization of the anal-
ysis one of the most diffi cult issues to overcome 
when using TBI to assess traumatic brain injury.   

    Conclusion 

 DTI remains for now mostly a research tool. Even 
though various studies have yielded promising 
fi ndings, there are still diffi culties to overcome 

before DTI will be a standard scanning sequence 
in clinical practice for TBI. 

 Standardization is the most diffi cult issue in 
the use of DTI for TBI since analyzing DTI is 
complex. Furthermore, studies of larger numbers 
of patients and multicenter studies that incorpo-
rate DTI are needed to evaluate the relevance of 
DTI as a diagnostic and prognostic tool for TBI 
in the acute and chronic phase. Nevertheless, DTI 
holds great promise to better characterize dam-
age, track disease processes, and establish a more 
accurate prognosis in patients with TBI.     
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            Learning Points 

•     The fundamental limitations of the Diffusion 
Tensor (DTI) model have important implica-
tions for the interpretation of anisotropy as a 
marker of white matter integrity, and for appli-
cations such as diffusion-based tractography.  

•   Over the past decade, more advanced models 
have been developed to specifi cally address 
the limitations of the DTI model, many of 
which are based on the high angular resolu-
tion diffusion-weighted imaging (HARDI) 
data acquisition strategy.  

•   These HARDI-based approaches can be com-
bined with appropriate tracking algorithms to 
provide improved tractography results.  

•   HARDI data is characterized primarily by two 
parameters: the number of unique directions, 
and the  b -value. HARDI acquisition strategies 
are essentially identical in nature to the stan-
dard DTI acquisition, and differ only in that a 
larger number of unique diffusion-weighting 
gradient directions are used, potentially using 
a larger  b -value than would be considered 
optimal for DTI.  

•   In practice, the number of directions required 
for HARDI is diffi cult to ascertain exactly 
since increasing it will always improve results 
through increasing the overall SNR of the 
acquisition. The primary requirement of the 
angular sampling is to characterize the relevant 
features of the DW signal. In practice, the opti-
mal set of parameters will need to be deter-
mined empirically on a case-by-case basis, 
based on the intended HARDI reconstruction 
method and its particular requirements.  

•   HARDI-based reconstruction methods are 
now beginning to be used for clinical and neu-
roscientifi c investigations with extremely 
promising results.     

    Why We Need to Move Beyond DTI 

 The development of diffusion tensor imaging 
(DTI) and quantitative parameters derived from 
the diffusion tensor over the past two decades 
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was a pivotal moment in the fi eld of diffusion 
Magnetic Resonance Imaging (MRI). Although 
DTI is still the most commonly used model to 
relate the diffusion-weighted MRI signal to the 
underlying diffusion process, it is now widely 
acknowledged to be inadequate for this purpose. 
The limitations of the DTI model have important 
implications for the interpretation of anisotropy 
as a marker of white matter integrity and for 
applications such as diffusion-based tractogra-
phy. In this chapter we discuss the practical limi-
tations of the DTI model and review recent 
developments in the fi eld, many of which are 
based on the high angular resolution diffusion- 
weighted imaging (HARDI) data acquisition 
strategy. 

    Key Points About DTI 

 The physical basis of the DTI model is that if 
water molecules encounter highly oriented barri-
ers, then the distance they travel (from a given 
point for a given time) is on average greater along 
the structure than across the structure. This intro-
duces a dependence of the measured diffusion 
signal on the direction along which it is mea-
sured, a phenomenon commonly referred to as 
anisotropy [ 1 ]. The  diffusion tensor ellipsoid   is 
used to describe in three dimensions the degree 
of anisotropy within individual voxels, and the 
principal axes of this ellipsoid (or principal 
eigenvectors) represent the orientation of the 
constituent tissue. Scalar measures derived from 
the diffusion tensor—for example the  fractional   
anisotropy ( FA)   and mean diffusivity (MD)—are 
commonly used as measures of “tissue integrity.” 

The principal orientation of the tensor ellipsoid 
within each voxel is used as an estimate of the 
fi ber orientation, and forms the basis of many 
diffusion-based tractography methods [ 2 ,  3 ]. 

 The fundamental limitation of the DTI model 
is that the tensor framework assumes a single 
straight fi ber orientation within each imaging 
voxel, and is hence inadequate for the purpose of 
describing diffusion data within voxels contain-
ing complex fi ber confi gurations or multiple fi ber 
populations [ 1 – 4 ], an issue commonly referred to 
as the “crossing fi ber problem.” The so-called 
crossing fi ber problem refers to any confi guration 
of white matter fi bers within a given imaging 
voxel that is more complex than a single straight 
fi ber population, including fanning, bending, 
diverging and crossing fi bers [ 5 – 7 ], as illustrated 
in Fig.  20.1 . It is well known in the technical dif-
fusion MRI community that using DTI to model 
complex fi ber orientations results in an incorrect 
characterization of the constituent fi ber popula-
tions (e.g., [ 1 – 4 ,  7 – 11 ]), as illustrated in Fig. 
 20.2 . Given that diffusion-weighted data acquired 
on clinical scanners are typically limited to a spa-
tial resolution of 2–3 mm and the relatively small 
size of most white matter tracts, it is not surpris-
ing that the so-called “crossing fi ber problem” 
remains a signifi cant issue for DTI.

    The fact that the diffusion tensor is affected by 
the crossing fi ber problem has been known since 
its very invention [ 12 ]; however, it is only recently 
that the scale of this problem has been fully 
appreciated. Recent work demonstrates that mul-
tiple fi ber populations can be detected in over 90 
% of imaging voxels in the white matter [ 13 ]. 
The scale of this problem has obvious and pro-
found implications for both DTI-based tractogra-

  Fig. 20.1    The term “crossing fi bers” can refer to any sit-
uation where the fi ber orientation is not unique. This 
includes obvious cases where the voxel contains two fi ber 
bundles that cross or pass close to each other ( left ), but 

also voxels where the fi bers themselves are curved, such 
as curving or diverging confi gurations ( right ), or any com-
bination of these two ( middle )       
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phy techniques and DTI-derived measures used 
to assess tissue integrity. 

 The impact of crossing fi bers has important 
ramifi cations for the application of tractography 
in particular, as the DTI model provides incorrect 
fi ber orientation estimates in regions containing 
complex fi ber confi gurations (see Fig.  20.2 ) [ 1 ]. 
This has important practical implications, as the 
majority of white matter tracts will traverse 
regions with multiple fi ber orientations at some 
point along their path. Even a single incorrect ori-
entation estimate (or for that matter, even a rela-
tively small error in orientation estimation) will 
be enough to cause the algorithm to veer off- 
course or follow a completely unrelated tract, 
resulting in the delineation of false negative [ 13 , 
 14 ] or false positive delineation of white matter 
pathways [ 13 ,  15 ]. The severe limitations of 
using the diffusion tensor model for fi ber tractog-
raphy have consistently been reported in the neu-
rosurgical literature [ 16 – 20 ]. Of particular 
concern is that studies that have specifi cally 

investigated the feasibility of DTI-based tractog-
raphy for the purpose of visualizing tracts of neu-
rosurgical interest demonstrate that these methods 
result in systematically unreliable and clinically 
misleading tractography information [ 17 ,  19 ]. 

 The extent of the crossing fi ber problem 
means that caution also needs to be observed 
when interpreting DTI-derived diffusion indices 
such as  fractional   anisotropy ( FA  ), particularly if 
the intention is to use them as surrogate markers 
of white matter “integrity” [ 11 ,  21 – 23 ]. It is well 
known that FA values vary greatly over the white 
matter even in healthy controls where there is no 
known change in white matter integrity. Such 
variations are likely due to the presence of cross-
ing fi bers in different parts of the white matter 
leading to reductions in tensor-derived anisot-
ropy, as was originally suggested in the early DTI 
literature [ 24 ]. The profound confounding infl u-
ence of crossing fi bers on the interpretation of 
DTI-derived diffusion indices in the presence of 
pathology is demonstrated in clinical studies that 

  Fig. 20.2    A simple illustration of the effect of crossing 
fi bers in diffusion tensor imaging. The diffusion tensor 
model is a good fi t for voxels that contain a single fi ber 
orientation ( left  and  middle  columns), but fails to capture 
the orientation information when two distinct orientations 
are present ( right ); in this case, the major eigenvector will 

not in general be aligned with either of the populations 
present, and the anisotropy is also reduced. On the other 
hand, the DW signal itself ( bottom row ) clearly does con-
tain higher-order information in crossing fi ber voxels 
( bottom right ), which can be used to resolve the different 
fi ber orientations present       

 

20 High Angular Resolution Diffusion Imaging



386

have observed an  increase  in anisotropy in cases 
where the given pathology or condition would 
have been expected to result in a reduction in tis-
sue integrity [ 25 ]. The diffusion tensor model is 
increasingly recognized to be a gross 
 over- simplifi cation of the actual anatomy and the 
simplistic interpretation of DTI derived indices 
as a marker of white matter “integrity” is fraught 
with technical challenges [ 22 ,  23 ,  26 ]. As a con-
sequence, there is a growing interest in fi nding 
clinically feasible alternatives to DTI [ 27 ]. 

 Over the past decade, more advanced models 
have been developed to specifi cally address the 
limitations of the DTI model ([ 5 – 7 ], see reviews 
in [ 8 ]), many of which are now being used clini-
cally with promising results. In this section, we 
describe some of the concepts and theory behind 
approaches that are based on high angular resolu-
tion diffusion-weighted imaging (HARDI) data 
[ 4 ], developed specifi cally to provide more robust 
fi ber orientation estimates for applications such 
as diffusion tractography, and more recently to 
provide more biologically accurate measures of 
tissue microstructure or “integrity.”   

    HARDI Methods 

    What Is HARDI? 

 The term HARDI stands for  high angular resolu-
tion diffusion imaging , and was originally coined 
by Tuch et al. to refer to the particular acquisition 
strategy employed in their study, namely the use 
of dense sampling on the sphere using a single 
  b -value  , as illustrated in Fig.  20.3  [ 4 ]. Data 
acquired in such a way allow the thorough char-
acterization of the angular dependence on the 
DW signal, with no attempt at characterizing its 
radial ( b -value) dependence. For this reason, it is 
arguably the most effi cient acquisition strategy 
for the purpose of fi ber orientation estimation, 
and hence for tractography.

   The HARDI acquisition is essentially identi-
cal in nature to the standard DTI acquisition, and 
differs only in that a larger number of unique 
diffusion-weighting gradient directions are used, 
potentially using a larger  b -value than would be 
considered optimal for DTI. There is in fact no 
clear point at which an  acquisition strategy   

  Fig. 20.3    The motivation for HARDI is the need to cap-
ture all the features of the DW signal over the sphere. For 
example, the DW signal shown on the right clearly con-
tains angular features, and these features are key to resolv-
ing crossing fi bers. The idea behind HARDI is to sample 
the orientation space as densely and uniformly as is prac-

tical, using a suitable set of DW directions such as those 
shown on the  left . By measuring the DW signal along 
these orientations ( middle ), the DW signal can be recon-
structed by fi tting a surface ( right ), so that these features 
can be estimated accurately       
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becomes a HARDI sequence or vice-versa. For 
example, the current recommended minimum 
number of directions for robust DTI is 30 [ 28 ], 
while higher-order reconstruction methods have 
been applied to data acquired using as few as 20 
directions [ 29 ]. Nonetheless, a sequence will typ-
ically be considered HARDI if the number of 
directions is relatively large (>~40). 

 It is worth noting that HARDI is  not  in itself a 
method for estimating fi ber orientations; it refers 
specifi cally to the acquisition strategy. This can 
lead to confusion in the literature when authors 
claim to “perform a HARDI reconstruction”—
this statement is ambiguous since it makes no 
mention of the reconstruction method used: it is 
in fact perfectly possible to perform a DTI recon-
struction using HARDI data. Nonetheless, 
HARDI is the most common data acquisition 
strategy required for methods that aim to resolve 
crossing fi bers, and for this reason the term 
HARDI is often used to refer to more advanced 
higher-order methods.   

    Why HARDI? 

 The simplest and most intuitive approach to 
understanding HARDI is to consider the example 
shown in Fig.  20.2 , with two fi ber populations 
crossing within a voxel. In this example, it is easy 
to see that DTI provides a good characterization 
of each of the two fi ber populations separately, 
but fails when the two are combined. However, if 
we focus on the  DW signal   itself, it is clear that 

there is structure present in this case that the ten-
sor ellipsoid fails to capture. Indeed, the DW sig-
nal for the crossing fi ber case is to a very good 
approximation the sum of the DW signals that 
would be measured for each population indepen-
dently; even by eye, the two contributions can 
easily be appreciated in the combined DW signal. 
The aim of HARDI methods is essentially to sep-
arate out these two contributions, and thus to 
resolve crossing fi bers. For this to be possible, 
the relevant features of the DW signal need to be 
captured with suffi cient accuracy. This requires a 
larger number of DW directions than typically 
acquired in DTI, leading directly to the develop-
ment of HARDI approaches. 

 The problem of separating the two contribu-
tions can in essence be written out as a set of 
simultaneous equations:  M  DW measurements 
are acquired per voxel, and from these a set of  N  
model parameters need to be estimated. What 
these   N  parameters   represent is dependent on the 
particular reconstruction approach used: they 
might represent the orientations and volume frac-
tions of a fi xed number of potential fi ber popula-
tions, or the coeffi cients of a more continuous 
representation of the diffusion or fi ber confi gura-
tion, as illustrated in Fig.  20.4 . The latter is par-
ticularly advantageous from a mathematical 
perspective, since describing the orientation 
information using a continuous distribution 
allows the problem to be expressed and solved 
using extremely fast linear algebra techniques, 
with reconstruction times on the order of seconds 
for whole-brain datasets. Using a more explicit 

  Fig. 20.4    The simplest approach to modelling crossing 
fi bers in HARDI is to assume that the DW signals from 
the various fi ber populations add up to give the total mea-
sured DW signal for that voxel ( middle left ). Resolving 
these crossing fi bers is then a matter of fi nding the fi ber 
confi guration that best matches the observed data. One 
way to represent this confi guration is as a set of discrete 

orientations with associated volume fractions ( left ); this is 
approach used in multi-tensor fi tting methods. Another 
approach is to represent the fi ber confi guration as a con-
tinuous distribution, which can be approximated by a 
dense set of fi xed orientations and corresponding volume 
fractions ( right ); this is the approach used in spherical 
deconvolution methods       
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parametric representation (for example partial 
volume and orientation per fi ber population) does 
not lend itself to such convenient linear 
approaches, and will in general necessitate the 
use of more computationally expensive nonlinear 
optimization methods.

      Using HARDI to Resolve Crossing 
 Fibers   

 By far the most common application for HARDI 
methods is the estimation of the fi ber orientations 
for use in fi ber tracking. A number of methods 
are available to achieve this, but all are based on 
the same concept: each fi ber population (i.e., dis-
tinct orientation) adds its own contribution to the 
measured signal, so that the total measured signal 
is the sum of the contributions that would have 
been measured for each bundle in isolation. 

     Multi-Tensor Fitting   
 Based on this observation, the most obvious 
approach to resolving crossing fi bers is the  multi- 
tensor   approach: we assume the voxel contains 
two fi ber populations rather than one, with each 
population modeled using its own diffusion ten-
sor. In this case, the minimum additional infor-
mation required is the relative amounts of each 
fi ber population (i.e., their volume fractions) and 
their respective orientations. The problem is then 
one of estimating the set of parameters (volume 
fractions and orientations) that best fi t the mea-
sured data [ 4 ,  30 ]. 

 It turns out that this is not a simple problem to 
solve in practice due to the nonlinear formulation 
of the problem (a sum of exponentials), dictating 
the use of computationally expensive  nonlinear 
minimization methods  . In addition, the problem is 
generally ill-conditioned, due to the diffi culty of 
differentiating between changes in anisotropy and 
changes in volume fraction of the constituent fi ber 
populations 1 ; to get around this, most implementa-
tions enforce the condition that each diffusion ten-
sor be at least axially symmetric, and often hold all 

1   This is discussed in more detail in  the  “ constant anisot-
ropy ”  assumption  section below. 

their diffusivities constant (i.e., assume a fi xed 
mean diffusivity and anisotropy). Nonetheless, a 
number of methods are based on this general 
approach; some allow for larger numbers of fi ber 
populations, some include an isotropic “CSF” 
compartment, and some use advanced Bayesian 
Monte Carlo Markhov Chain (MCMC) sampling 
techniques to characterize the uncertainty about 
the parameters estimates [ 14 ,  30 – 32 ]. 

 The   Combined Hindered and Restricted 
Model of Diffusion  (CHARMED)   approach   is 
 strongly   related to the multi-tensor approach in 
that it also models each fi ber population indepen-
dently [ 33 ,  34 ]. However, it differs substantially 
in that it assumes a more biologically plausible 
model of restricted diffusion in cylinders to rep-
resent the DW signal from each fi ber populations, 
rather than a diffusion tensor model. It also 
includes an extracellular compartment, itself 
modeled by a diffusion tensor. One limitation is 
that it requires a more demanding multi-shell 
(i.e., multiple  b -values) HARDI data acquisition, 
leading to lengthier scan times. 

 One issue with these methods is that they 
somehow need to know how many fi ber popula-
tions to include in the model for each voxel. While 
a number of approaches have been proposed to do 
this [ 2 ,  14 ,  31 ], any errors in this number will 
inevitably lead to errors in the estimated parame-
ters. Most of these approaches are based on some 
statistical “goodness of fi t” measure, and this will 
in general lead to underestimation of the number 
of fi ber populations present, particularly in noisy 
data where any improvements in the model fi t will 
be overwhelmed by the noise. The result is that 
while the algorithm can be said to be “conserva-
tive” in that it only includes additional fi ber popu-
lations if there is good evidence that these are 
needed, it will inevitably fail to identify a signifi -
cant proportion of crossing fi ber voxels and there-
fore model them using the  single tensor model  , 
with all the limitations highlighted above.  

     Spherical Deconvolution   
 The multi-tensor approach can be extended by 
switching from a discrete representation (i.e., a 
small number of distinct fi ber populations) to a 
continuous representation of the fi ber orientation 
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information. One way to understand this is to 
imagine that rather than trying to estimate the 
volume fraction and orientation of each fi ber 
population, we are now going to model a large 
number of fi ber populations, each with a fi xed 
orientation. The problem now reduces to fi guring 
out the  volume fractions   of each of these. If we 
use a suffi ciently dense set of orientations that are 
uniformly distributed over the sphere, the infor-
mation can be represented as a distribution of 
volume fractions over the sphere, as illustrated in 
Fig.  20.4 . This distribution is commonly referred 
to as the fi ber orientation density function ( fODF  ) 
or simply the fi ber orientation distribution ( FOD  ). 

 Essentially, the FOD is a function defi ned over 
the sphere, which represents the amount of fi bers 
at any point on the  sphere   (i.e., aligned with the 
corresponding orientation). It is often displayed 
using  orientation plots   such as those shown in 
Fig.  20.5 , whereby the distance from the origin 
represents the “density” along the corresponding 
orientation. Distinct fi ber orientations can clearly 
be seen as distinct peaks in the FOD.

   The  advantages   of using such a distribution to 
represent the fi ber orientation information are 
threefold. First, it means that the relationship 
between the measured DW signal and the FOD is 
linear, allowing the use of much more effi cient 
reconstruction methods based on  linear algebra  . 
Second, there is no need to specify the number of 

directions that might be present in each voxel; the 
FOD is continuous, and distinct fi ber orientations 
will simply be refl ected as distinct peaks in the 
FOD. Finally, the FOD is suited to describing 
 fi ber confi gurations   containing a range of orien-
tations, such as for example bending or fanning 
fi bers; these are clearly not well characterized 
using a single orientation, as would be used in 
multi-tensor approaches. In these cases, the cor-
responding peak in the FOD will simply be 
broadened accordingly, as expected. Spherical 
deconvolution approaches are therefore more 
computationally effi cient, while providing a 
much more general description of the fi ber orien-
tation information. These provide estimates of 
the FOD that are suitable for  fi ber-tracking  , as 
illustrated for example in Fig.  20.6 .

   A number of different spherical deconvolution 
techniques have been proposed [ 10 ,  29 ,  36 – 39 ]. 
The most stable of these impose a non-negativity 
constraint to explicitly prevent or minimize nega-
tive fi ber density values, which are clearly non- 
physical; this has been shown to dramatically 
improve the robustness to noise of these methods 
[ 29 ,  37 ]. Some estimate the per- fi ber anisotropy   
on a per-voxel basis [ 36 ], other assume fi xed dif-
fusivity values [ 37 – 39 ], while others bypass the 
diffusion tensor model entirely and measure the 
actual per-fi ber DW signal profi le from the data 
themselves [ 10 ,  29 ].  

  Fig. 20.5    Fiber orientation distributions obtained from a 
healthy volunteer, estimated using constrained spherical 
deconvolution [ 29 ] as implemented in MRtrix [ 35 ]. These 
are shown as a coronal projection overlaid on the mean 
DWI image, with the corpus callosum clearly visible in 

the centre with fi bers running left–right ( red lobes ). Its 
lateral projections can be seen to cross through the fi bers 
of the corona radiata (running inferior–superior;  blue 
lobes ) and the superior longitudinal fasciculus (running 
anterior–posterior;  green lobes )       
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    The “Constant Anisotropy” Assumption 
 The overwhelming majority of multi-tensor fi t-
ting and spherical deconvolution techniques will 
make the assumption that all fi ber bundles can be 
described by diffusion tensors with the same 
intrinsic “constant anisotropy” (or at least axial 
symmetry) to reduce the complexity of the prob-
lem. At fi rst sight, this might seem to be a gross 
over-simplifi cation, particular to those steeped in 
the more traditional DTI framework, where 
tensor- derived metrics are often used as surrogate 
markers of white matter “integrity.” Since these 
new approaches assume fi xed values for these 
metrics over all white matter bundles, it is now 
impossible to estimate equivalent measures, 
let alone detect differences between them. 

 However, there are very good reasons to 
believe that this approximation holds in most, if 
not all cases. The assumption of fi xed anisotropy 
inherently implies that all observed anisotropy 
differences in the brain are due entirely to cross-

ing fi ber effects or other  partial volume effects      
(e.g., with CSF). This is in fact in line with the 
original DTI literature, where the large variations 
of anisotropy observed in healthy volunteers 
were attributed to differences in the coherence of 
fi ber tract directions [ 24 ]. The relationship 
between anisotropy (and more recently radial and 
axial diffusivities) and white matter “integrity” 
was suggested based on highly controlled single 
nerve experiments, where any confounding 
effects of crossing fi bers could explicitly be ruled 
out [ 40 – 44 ]. While these studies undeniably 
demonstrated changes in various  tensor-derived 
metrics   under different conditions (dysmyelin-
ation, axonal injury, changes in axonal diameter, 
etc.), these changes are dwarfed by the changes 
induced by the presence of crossing fi bers [ 1 ,  23 ]. 
Moreover, and more importantly, while changes 
in diffusivities and/or anisotropy can be observed 
in these experiments, they are not of a magnitude 
suffi cient to alter the results dramatically; as 

  Fig. 20.6    Whole-brain fi ber-   tracking results obtained 
from a healthy volunteer, generated using a probabilis-
tic fi ber tracking algorithm on orientations estimated 
using constrained spherical deconvolution [ 29 ] as 
implemented in MRtrix [ 35 ]. A 2 mm-thick section 
through the tracks is shown as a sagittal projection. 
Amongst other white matter tracts, the superior longitu-

dinal fasciculus can be seen running anterior–posterior 
( green ) and then down into temporal and parietal 
regions. Also visible are the uncinate fasciculus, con-
necting the temporal pole to the frontal lobes ( blue ), and 
the inferior fronto-occipital fasciculus running anterior–
posterior ( green ), connecting the frontal lobe to the 
occipital lobe       
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shown in previous studies, while moderate 
changes in the assumed anisotropy will affect the 
estimated volume fractions, they have almost no 
impact on the estimated fi ber orientations [ 10 ]. In 
fact, any pathology that would cause severe 
changes in the anisotropy of the per-fi ber DW 
signal would probably need to involve destruc-
tion of the axonal membrane, with a large 
increase in radial diffusivity and corresponding 
reduction in the DW signal; this will be inter-
preted by these models primarily as a dramatic 
decrease in volume fraction, an interpretation 
that is in fact fairly accurate given the pathology. 

 For this reason, this particular assumption is 
very commonly employed, and with great success. 
However, the implication is that genuine anisot-
ropy changes are at best extremely diffi cult to 
detect from  HARDI data   (given that they are 
essentially indistinguishable from partial volume 
effects), which essentially rules out the possibility 
of deriving equivalent markers of white matter 
“integrity”—at least using these approaches. 
Instead, the current trend is to focus on the esti-
mated partial volume fractions, since these seem 
to have the most dominant impact on the DW sig-
nal, and can be used as estimates of fi ber density—
a measure that, although different from the more 
common interpretation of “integrity,” is nonethe-
less clearly clinically very relevant [ 45 – 47 ].   

    Using HARDI to Characterize 
Diffusion 

 Another approach to the crossing fi ber problem is 
to take a step back and focus on characterizing the 
 diffusion process  itself, rather than the fi ber con-
fi guration directly. The motivation for such 
approaches is to avoid over-interpretation of the 
measured data. The relationship between the mea-
sured DW signal and the actual fi ber confi guration 
and associated tissue composition is obviously 
extremely complex: white matter is not made up of 
neatly arranged impermeable cylinders, but con-
tains a wide range of different cells of different 
sizes and shapes, each with their own internal 
microstructure. Clearly, the DW signal depends on 
a myriad of different factors, and any attempt at 

extracting specifi c microstructural information 
will inevitably require that assumptions and 
approximations be made. Rather than trying to do 
this, it might be best to characterize what we can, 
and avoid making any potentially invalid or unjus-
tifi ed assumptions. For this reason, a number of 
so-called   model - free  techniques      have been pro-
posed to characterize the diffusion process itself. 

      q -Space   and the  Spin Propagator   
 These methods are all in some way based on the 
theory of  q -space [ 48 ], which describes the rela-
tionship between the DW signal and the so-called 
  average    spin propagator  (also called the   spin dis-
placement probability density function   ). In sim-
ple terms, the spin propagator is a function 
describing the probability  P ( r | x ,Δ) that a water 
molecule initially at  x  has moved by displace-
ment  r  during the diffusion time Δ of the MR 
measurement. For free diffusion, this is simply a 
Gaussian distribution with standard deviation 
equal to the root mean square displacement of the 
water molecules (as per Chap.   3    ). For more com-
plex environments, the propagator will have a 
more complex shape, as illustrated in Fig.  20.7 . 
This makes no assumption about whether diffu-
sion is free or restricted: it simply characterizes 
the chances of molecules moving along a given 
direction by a given amount. In general, this will 
depend on the diffusion time Δ: with free diffu-
sion, the distances moved will increase with dif-
fusion time. However, in restricted geometries 
the maximum distance moved will clearly be dic-
tated by the size of the restricting compartment. 
The relationship between the  DW signal   and the 
spin propagator is relatively simple and not sub-
ject to any particular biological assumptions. 2  
Clearly, the diffusion propagator provides the 
most complete and accurate description of the 
diffusion process, and contains all the informa-
tion that can be extracted from diffusion MRI, 
which is the reason why a number of methods 
attempt to estimate it.

2   Although there are assumptions on the way data are 
acquired, as discussed in the section entitled  The narrow 
pulse approximation  below. 
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   According to  q -space, the DW signal is related 
to the spin propagator via a simple Fourier 
 transform. In practice, this means that to estimate 
the spin propagator along one dimension, a num-
ber of DW images need to be acquired, each with 
a different  q -value. 3  To get an accurate estimate, 
a suffi cient number of distinct  q -values need to 
be acquired, up to a suffi ciently large maximum 
 q -value to ensure near-complete nulling of the 
DW signal. These two requirements alone are 
diffi cult to achieve: for a full three-dimensional 
characterization of the spin propagator, the num-
ber of distinct   q -vectors   (and hence image vol-
umes) required is of the order of 1000 (approx. 
10 per image axis). These requirements also dic-
tate the use of very large gradients and/or long 
echo times (to achieve the very large maximum 
 q -values needed), leading to a reduction in  the 
  SNR. Clearly, the full characterization of the spin 
propagator is extremely challenging. 

3   The  q -value is a measure of the strength of the diffusion 
weighting, akin to the  b -value. It is given by  q  = ( γ /2π) δG , 
where  δ  and  G  are the DW gradient pulse duration and 
amplitude respectively, and  γ  is the magnetogyric ratio. 

 Nonetheless, this complete characterization is 
exactly what  Diffusion Spectrum Imaging  
(  DSI      ) aims  to   achieve [ 49 ]. To do this, 515 image 
volumes are acquired, each with a distinct 
 q- vector   with a maximum  b -value of 17,000 s/
mm 2 . This is clearly a much more demanding 
acquisition than can realistically be accommo-
dated in routine clinical imaging, and for this rea-
son much of the recent development in this area 
has been focused on obtaining relevant features 
of the spin propagator (namely the  diffusion ori-
entation density function ; dODF) using the much 
more clinically achievable HARDI acquisition.  

    The Diffusion Orientation Density 
Function ( dODF  ) 
 Essentially, the dODF is a simplifi ed version of 
the full spin propagator, which provides only the 
probability of a water molecule moving along a 
given direction; any information about how far it 
moved is discarded. This much more compact 
version of the spin propagator is obviously still 
suffi ciently informative, especially for the pur-
poses of resolving crossing fi bers, motivating the 
development of these HARDI-based methods. 

  Fig. 20.7    Illustration of the relationship between the 
fi ber confi guration ( left ), the average spin propagator 
( middle ), and the diffusion ODF ( right ). In a crossing fi ber 
voxel ( left ), water molecules will tend to diffuse more 
readily along the fi ber orientations than across them. This 
corresponds to a spin propagator with pronounced 
“ridges” along the fi ber orientations ( middle ). This is a 

full three-dimensional density function, the characteriza-
tion of which requires a vast amount of data. In contrast, 
the diffusion ODF ( right ) provides a more condensed ver-
sion of spin propagator, which essentially describes the 
probability of a water molecules moving along any given 
orientation. As expected, the peaks of the dODF point 
along the fi ber orientations       
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  Q - ball Imaging  ( QBI     ) was the fi rst method 
proposed to estimate the dODF [ 50 ]. It performs a 
 Funk – Radon Transform  on the HARDI data to 
map the DW signal per-voxel onto the  corresponding 
dODF. This has the advantage of being a linear 
operation, and was subsequently shown to be much 
more effi ciently and robustly implemented using 
spherical harmonics [ 51 ,  52 ]. More recently, 
 Constant Solid Angle Q - ball Imaging  ( CSA  -
 QBI     ) has been proposed to obtain a more  accurate  , 
sharper estimate of  the   dODF [ 53 ]. 

 Other techniques based on  q -space that have 
been proposed include the  Diffusion Orientation 
Transform  ( DOT     ), which provides a contour of 
the spin propagator evaluated at a particular value 
of the displacement—in other words, it provides 
the probability of a water molecule moving along 
any given direction by a fi xed distance [ 54 ]. 
Another early  technique   is  Persistent Angular 
Structure MRI  ( PAS-MRI     ), which evaluates an 
ODF from relatively modest data by imposing a 
maximum entropy constraint [ 55 ]. See Fig.  20.8  
for an illustration of the results obtained using 
three different dODF estimation methods.

       The  Narrow Pulse Approximation   
 The theory of  q -space does rely on one approxi-
mation: that the duration of the DW gradient 
pulses is negligible—in other words, the  DW gra-
dient pulses   can be considered to be infi nitesi-

mally narrow. More specifi cally, the distance 
moved by molecules during the application of 
each DW gradient pulse should be much smaller 
than the distance moved between the pulses. The 
idea is that each DW gradient pulse respectively 
“tags” and “untags” water  molecules   based on 
their current location, so that the only relevant 
quantity is their actual displacement between 
these two events. For this approximation to hold 
in white matter, water molecules should not be 
allowed to diffuse by any distance approaching 
the axonal diameter. Even if we assume an accept-
able distance to be 1 μm (which is already larger 
than many axons) and a diffusion coeffi cient of 
10 −3  mm 2 /s (which is smaller than would typically 
be assumed), the DW pulse duration would need 
to be less than 0.5 ms. To achieve any reasonable 
 b -value with such a short pulse duration would 
require gradients strengths and rise- times orders 
of magnitude larger than can be used in the clinic. 
In practice, the minimum DW pulse duration than 
can realistically be achieved on a human system is 
of the order of 10 ms. Clearly, the narrow pulse 
approximation cannot hold on a clinical system. 

 Thankfully, the impact of breaking this assump-
tion is actually relatively trivial for most clinical 
applications. While this does invalidate some of 
the quantitative estimates that might otherwise 
have been derived using these methods, it does not 
affect the overall angular structure of the spin 

  Fig. 20.8    An illustration of the results obtained using three 
different dODF estimation methods: Q-ball imaging (QBI; 
 left ), constant solid angle QBI (CSA-QBI;  middle ), and the 
diffusion orientation transform (DOT;  right ). These are dis-
played as coronal projections overlaid on the fractional 
anisotropy map, showing the well-known crossing of the 
lateral projections of the corpus callosum (left–right) with 

the corona radiata (inferior–superior) and the superior longi-
tudinal fasciculus (anterior–posterior) [Reprinted from 
Aganj I, Lenglet C, Sapiro G, Yacoub E, Ugurbil K, Harel 
N. Reconstruction of the orientation distribution function in 
single- and multiple-shell q-ball imaging within constant 
solid angle. Magn Reson Med. 2010 Aug;64(2):554–66. 
With permission from John Wiley & Sons.]       
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propagator [ 49 ]. In fact, some studies suggest that 
such long diffusion times might in fact be benefi -
cial when estimating the orientation and density of 
 fi ber bundles   [ 47 ,  56 ].    The failure to meet the nar-
row pulse approximation is therefore unlikely to 
have any detrimental impact, and indeed many 
successful techniques have been proposed that are 
based on  q -space, as described previously.  

   Extracting Useful Information 
from the dODF 
 Methods that aim to  characterize   the diffusion 
 propagator   have the advantage of being “model- 
free”: no assumptions are made with respect to 
the microstructure, and the only information pro-
vided is strictly based only the measurements 
themselves. While this may seem to be an attrac-
tive property, in practice this may actually cause 
problems when applied in  clinical and neurosci-
entifi c studies  . The reason for this is essentially 
the very reason that these methods are claimed to 
be advantageous: being model-free, the informa-
tion they do provide is not what most researchers 
are actually interested in. As a consequence, end- 
users will typically resort to ad-hoc methods to 
extract the information they need, in ways that 
are often demonstrably inferior and/or actually 
involve a model of some sort. 

 For instance, the extraction of fi ber orientations 
from the dODF is typically done by fi nding the 
peaks of the dODF. While this may initially seem 
sensible, it suffers from a number of limitations. 
First, the power to resolve closely aligned  fi ber ori-
entations   is typically reduced when using dODF-
based methods [ 6 ,  7 ,  57 – 59 ]. Second, this 
introduces a bias in the estimated orientations when 
the fi bers do not cross at 90° [ 59 ,  60 ]. Finally, peak-
fi nding inherently imposes a model on the form of 
the fi ber orientation distribution: it assumes that 
fi ber bundles are arranged in distinct bundles with 
discrete fi ber orientations. It explicitly does not 
allow for curvature or divergence within a voxel. 
While tensor-fi tting methods admittedly also suffer 
from this limitation, methods that recover the full 
fi ber ODF do not make any such assumption. 

 While newer  dODF   methods such as CSA- QBI 
and  DOT   do provide better resolving power than 
the original QBI approach, they still cannot provide 
better separation than model-based techniques, 

since the diffusion ODF is inevitably broader than 
the corresponding fi ber ODF—in other words, the 
diffusion ODF cannot be sharper than the fi ber 
confi guration from which it emanated. In fact, 
methods have been proposed to “sharpen” the dif-
fusion ODF to recover the fi ber ODF using a  spher-
ical deconvolution operation  , a process shown to be 
ultimately equivalent to the “standard” model-
based spherical deconvolution [ 58 ]. 

 Another potential benefi t of the dODF is to 
derive measures of  tissue microstructure  . However, 
there is relatively little on that topic in the litera-
ture to date. The main scalar index that has been 
extracted from the dODF is the generalized frac-
tional anisotropy ( GFA     ) index [ 50 ], which is 
essentially the standard deviation of the dODF 
relative to its RMS amplitude. Unfortunately, it 
has no clear biological interpretation, depends on 
the data acquisition parameters and technique used 
to reconstruct the dODF, and is also sensitive to 
the fi ber confi guration: the  GFA   is inherently 
lower in crossing fi ber regions, making it unsuit-
able as a measure of white matter “integrity.” To 
date, no readily interpretable metric has been pro-
posed that can be derived directly from the dODF 
to characterize white matter tissue. 

 For these reasons, while the  “model-free” 
nature   of these approaches does initially seem 
appealing, it is unclear how these advantages can 
actually be translated through to routine investiga-
tions. The diffusion ODF simply does not provide 
the information typically desired in routine stud-
ies, be it for fi ber-tracking or the characterization 
of white matter “integrity.” While there may be 
cases where the model-free nature of these meth-
ods is advantageous, in most cases the fi ber ODF 
is the information required, particularly for fi ber-
 tracking   applications—in which case it seems 
more appropriate to use the model- based tech-
niques introduced in the previous section.    

    HARDI in Practice 

    Data Acquisition 

 HARDI is characterized primarily by two param-
eters: the number of unique directions, and the 
  b -value  . The optimal values for both of these 
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parameters are diffi cult to ascertain in general, 
since different reconstruction methods will have 
different requirements. Nonetheless, it is generally 
acknowledged that higher  b -values ( b  = 2500–
3000 s/mm 2 ) allow better estimation of fi ber orien-
tations [ 9 ,  10 ]. While the DW images undeniably 
look much noisier at these  b -values, they actually 
exhibit near-optimal  contrast  in the angular 
domain, which is what is required to resolve the 
different contributions from the various fi ber 
orientations present (Fig.  20.9 ). Note however that 
good results can still be obtained using  b  = 1000 
s/mm 2  data, provided they are of suffi cient quality; 
indeed many HARDI studies have been published 
using  b -values in this range [ 14 ,  29 ,  30 ,  58 ].

   The number of directions required for HARDI 
is diffi cult to ascertain exactly since increasing it 
will always improve results through increasing 
the overall SNR of the acquisition. The primary 
requirement of the angular sampling is to charac-
terize the relevant features of the DW signal. At a 
 b -value of ~3000 s/mm 2 , it can be shown that 
these angular features can be adequately charac-
terized using a minimum of 45 directions [ 61 ]. In 
practice however, a larger number is generally 
recommended to increase the overall  SNR  , since 
most reconstruction methods will give poor 
results on such data at a typical spatial resolution 
of ~2 mm. There is clearly a trade-off between 
spatial resolution and angular resolution: increas-

ing either will increase the scan time, and increas-
ing the spatial resolution will also lower the SNR, 
potentially compromising the performance of the 
HARDI reconstruction. In practice, the optimal 
set of parameters will need to be determined 
empirically on a case-by-case basis, based on the 
intended HARDI reconstruction method and its 
particular requirements.  

    Clinical Applications 

 The advantages of using more advanced HARDI- 
based methods specifi cally developed to provide 
more robust estimates of the fi ber orientations are 
now being realized for applications such as diffu-
sion tractography, and more recently in the 
assessment of tissue microstructure. Despite the 
wealth of studies in the technical literature that 
focus on the validation of the various methods 
providing illustrative examples of white matter 
pathways in healthy volunteers, to date, there are 
comparatively few studies that have utilized 
HARDI-based methods for clinical applications. 
It is generally conceded that the lack of transla-
tion of HARDI-based methods to the clinical 
research setting has largely been due to software 
availability, technical expertise, and in some 
cases clinically impractical scans times. It may 
also be due to a lack of awareness of the full 

  Fig. 20.9    A simple illustration of the infl uence of  b -value 
on the measured DW data. Using low  b -values ( right ) pro-
vides little signal attenuation, and hence good SNR in the 
DW images. However, there is little contrast in angular 
domain: the DW signal is very smooth, making is diffi cult 
to make out the two fi ber orientations present in this exam-
ple. In contrast, the relevant features of the DW signal are 

much more clearly depicted at higher  b -values, and the 
presence of the multiple fi ber orientations is much more 
obvious, particularly when looking at the scaled-up version 
of the results ( bottom row ). However, this does come with a 
signifi cant reduction in the overall DW signal. In practice, 
the optimal  b -value is a compromise between angular con-
trast on the one hand, and signal to noise on the other       
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impact of the limitations of DTI, of the wide-
spread nature of crossing fi ber regions, or of the 
availability of clinically practical alternatives. In 
this next section, we describe some of the more 
recent work focussed specifi cally on clinical 
applications of HARDI-based techniques. 

   Targeted  Tractography   
for Neurosurgery 
 Development of white matter fi ber-tracking tech-
niques more than a decade ago represented an 
extraordinary achievement in neuroscience, with 
the potential to have huge impact on the diagno-
sis and treatment of  brain disorders  . From a neu-
rosurgical perspective in particular, targeted 
tractography was expected to become the ulti-
mate tool for surgical planning as it promised the 
ability to noninvasively map specifi c structural 
connections in the human brain in vivo in patients 
with brain lesions. Since its inception, there have 
been hundreds of studies presented in the  neuro-
surgical literature   demonstrating the potential for 
mapping white matter pathways that support elo-
quent function for the purposes of planning and 
navigation, see Chap.   21     for review. However, 
over 90 % of the tractography literature to date is 
based on DTI-based techniques despite its known 
practical limitations. There have also been more 
recent appeals by some members of the neurosur-
gical community to consider DTI-based fi ber- 
tracking techniques obsolete for the purpose of 
neurosurgical planning [ 27 ]. 

 Despite the lack of translation to the clinical 
setting, a number of studies in the neurosurgical 
literature have clearly demonstrated the advan-
tages of using various HARDI-based tractogra-
phy techniques (as opposed to DTI-based 
methods) specifi cally for delineating tracts of 
neurosurgical interest. An early HARDI-based 
tractography study comparing initial clinical 
experience using single tensor technique versus 
the multi-tensor approaches to depict the motor 
pathways, illustrated that although there were 
“perceived” advantages of using the single tensor 
 technique   (i.e., instantaneous calculation of trac-
tography maps), the multi-tensor appeared to 
offer better depiction of motor tracts from the 
face and tongue regions in over half of the 

patients studied [ 62 ] (Fig.  20.10 ). Whilst this 
early study highlights improved tractography 
results even with the earliest of HARDI-based 
techniques, there was inconsistency in the ability 
of the multi-tensor model to depict fi bers extend-
ing laterally to the face region. Yamada et al. [ 62 ] 
attributed this shortfall to the fact that the study 
relied on relatively low  b -value data of 1000 s/
mm 2 , and only 32 directions. Whilst the study 
may have benefi ted from the acquisition of higher 
quality data to improve fi ber orientations esti-
mates through increasing the overall SNR, it is 
likely that the failure of the multi-tensor tech-
nique may simply be because the model is lim-
ited to fi tting only two tensors in voxels through 
regions, such as the centrum semiovale, which 
are known to contain more than two fi ber 
populations.

   Berman [ 16 ] presented a more complete delin-
eation of the corticospinal pathways in a case 
used to demonstrate the potential capabilities of 
 q-ball tractography   for the purpose of neurosur-
gical navigation. Although this article was lim-
ited to the presentation of illustrative cases, it was 
clear that that the HARDI-based tractography 
method had the capacity to provide a more accu-
rate description of fi ber tracts through regions 
such as the centrum semiovale than that previ-
ously shown using single and multi-tensor based 
studies [ 19 ,  63 – 69 ]. The practical advantages of 
using HARDI-based methods for the delineation 
of the corticospinal pathways have recently been 
more systematically evidenced in the neurosur-
gery literature, in a study based on constrained 
spherical deconvolution (CSD) [ 10 ,  29 ]. The data 
presented demonstrated that the CSD-based trac-
tography technique, when directly compared to 
both deterministic and probabilistic DTI-based 
tractography techniques, consistently resulted in 
more biologically reliable tractography 
 information that provided improved estimates of 
safety margins which may be useful in neurosur-
gical procedures—see illustrative cases provided 
in Fig.  20.11  [ 70 ].

   It should be emphasized that the more accu-
rate representation of the corticospinal pathways 
using the CSD-based tractography  method   com-
pared to DTI-based tractography presented in 
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this study was consistent across a range of diffu-
sion acquisition schemes, and included DWI data 
typically considered optimal for both DTI- and 
CSD-based methods (Fig.  20.12 ) [ 71 ,  72 ]. 
Although the confi guration of tracks identifi ed by 
the CSD-based method appears to be better 
defi ned when using higher  b -value DWI data 
acquired using a higher number of diffusion 
directions (as expected—see above), it is clear 
from the data presented in this study that the 
application of this HARDI based model to the 
simpler diffusion acquisition schemes also results 
in a considerable improvement in tractography 
results, particularly in crossing fi ber regions (Fig. 
 20.12 ). While this study was confi ned to the 
investigation of the corticospinal pathways, it is 
likely that the results will apply to most fi ber 

tracts, given that such tracts will inevitably tra-
verse through voxels containing substantial con-
tributions from two of more fi ber populations at 
some point along their path.

   Over the past few years, HARDI-based trac-
tography has also been used to demonstrate 
improvements in the delineation of other func-
tionally important tracts including the optic radi-
ations and the arcuate fasciculus. Recent studies 
depicting  Meyer’s loop   of the optic radiation 
using HARDI data and a multi-tensor tractogra-
phy technique [ 73 ] demonstrate that, although 
there is biological variability in the distance from 
the temporal pole (TP) to Meyer’s loop (ML), 
multi-tensor tractography can achieve results that 
are more consistent with anatomical dissection 
studies [ 74 ] than previously reported [ 75 ]. These 

Transaxial view
of multi-tensor
tractography

3-dimensional
coronal view

Single-tensor Multi-tensor

  Fig. 20.10    Example of single tensor vs. multi-tensor 
tractography in a 58-year-old woman with glioblastoma 
multiforme. Note that the pyramidal fi bers of lesional side 
( right ) are not depicted using single-tensor tractography, 
whereas they are well shown by using multitensor tractog-
raphy. These fi bers are noted to have substantial anterior 
displacement [Reprinted from Yamada K, Sakai K, 

Hoogenraad FGC, Holthuizen R, Akazawa K, Ito H, et al. 
Multitensor Tractography Enables Better Depiction of 
Motor Pathways: Initial Clinical Experience Using 
Diffusion-Weighted MR Imaging with Standard b-Value. 
AJNR Am J Neuroradiol. 2007 Oct 1;28(9):1668–73. 
With permission from American Society of 
Neuroradiology]       
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fi ndings are important because it had been previ-
ously suggested that patients with a shorter 
TP-ML distance were at greater risk of a visual 
 fi eld   defi cit ( VFD  )  following   anterior temporal 
lobe resection ( ATLR  ), while the data  presented   
by Winston et al. suggests that there is no differ-
ence in TP-ML  distance   between patients devel-
oping a VFD and those who do not [ 73 ]. In fact, 
the direct comparison of visual fi eld defi cits prior 
to, and at 3 and 12 months post-surgery and the 
preoperative tractography data co-registration 
with the postoperative anatomical data in the 20 
ATLR patients studied suggest that the size of the 
resection and the degree of damage to ML is a 

more accurate marker, which could be used to 
better predict postoperative VFD. 

 Given the increasing demand for accurate neu-
rosurgical tractography information and the ever-
present challenges that complicate tractography 
in the neurosurgical setting (the variation in anat-
omy of individual patients, disease-related 
change, and the inevitable intraoperative shift of 
anatomy during neurosurgical procedures, to 
name just a few), it is imperative we continue to 
identify optimal strategies for targeted tractogra-
phy for the purpose of neurosurgical navigation in 
individual patients [ 76 ,  77 ]. Although HARDI- 
based techniques such as the so-called high defi -

  Fig. 20.11    Examples of CSD-based ( red ) vs. DTI-based 
( blue ) tractography results with segmented pathology 
volumes ( green ) overlaid on coronal T1-weighted images 
in a 49-year-old woman with a large left-sided temporo-
parietal AVM (Case A), and a 24-year-old woman with a 
right focal cortical dysplasia situated in the right poste-
rior frontal lobe (Case B). Note that the DTI-based trac-
tography results in Case A suggest a clear margin 
surrounding the lesion (i and ii), whereas the CSD-based 
tractography results indicate that lateral projections of 
the corticospinal pathway may be at risk (iii and iv). The 

DTI-based tractography results in Case B suggest that 
only the medial aspect of the lesion impinges on the cor-
ticospinal tracts (i and ii), whereas the CSD-based trac-
tography results suggest that the lesion is enveloped by 
medial and lateral projections of corticospinal fi bers (iii 
and iv) [Reprinted from Farquharson S, Tournier J-D, 
Calamante F, Fabinyi G, Schneider-Kolsky M, Jackson 
GD, et al. White matter fi ber tractography: why we need 
to move beyond DTI: Clinical article. Journal of 
Neurosurgery. 2013 Jun;118(6):1367–77. With permis-
sion from AANS]       

 

S. Farquharson and J.-D. Tournier



399

nition fi ber tracking method ( HDFT  ) (which 
combines  diffusion   spectrum imaging (DSI) [ 49 ] 
with generalized q-sampling  imaging   for estima-
tion of fi ber orientations [ 50 ]) are already being 
used to facilitate innovative neurosurgical appli-
cations [ 18 ], there is at present only anecdotal evi-
dence to support the use of one HARDI-based 
tractography approach over another. Despite the 
lack of more rigorous clinically based studies into 
the accuracy and reproducibility of these more 
advanced methods, it is clear from the current 
body of neurosurgical evidence that the advent of 

HARDI-based tractography methods represents 
signifi cant technical advancement that allows 
more biologically accurate delineation of white 
matter pathways than was previously achievable 
using DTI-based tractography techniques.  

   Assessment of Structural  Connectivity   
 One of the advantages of utilizing HARDI-based 
methods developed specifi cally to attain more 
robust fi ber orientation estimates is that it is now 
possible to perform more reliable tractography- 
based comparisons throughout the brain. One of 

  Fig. 20.12    Comparison of tractography results obtained 
using DTI combined with a deterministic algorithm and 
CSD combined with a probabilistic algorithm across a 
range of diffusion acquisition protocols that differed in the 
number of diffusion directions and  b -value used, as indi-
cated in the fi gure. Panel ( a ) shows coronal T1-weighted 
images overlaid with tractography results using DTI ( left 
column ) and CSD ( right column ) from a representative 
normal control subject. Panel ( b ) shows a coronal FA tem-
plate image overlaid with frequency maps representing 
the number of subjects (out of 12 control subjects) in 

whom tracks were identifi ed in any given voxel, using 
DTI ( left column ) and CSD ( right column ) (range 0–12). 
Note that CSD based tractography results in a consider-
able improvement in the delineation of corticospinal path-
ways even if using the most basic of diffusion acquisition 
schemes [Reprinted from Farquharson S, Tournier J-D, 
Calamante F, Fabinyi G, Schneider-Kolsky M, Jackson 
GD, et al. White matter fi ber tractography: why we need 
to move beyond DTI: Clinical article. Journal of 
Neurosurgery. 2013 Jun;118(6):1367–77. With permis-
sion from AANS]       
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the fi rst applications of HARDI-based fi ber 
 tracking to assess differences in structural con-
nectivity in a patient population was performed 
to investigate inter-hemispheric connections in 
patients with partial agenesis of the corpus cal-
losum ( pAgCC  ) [ 78 ]. This early study directly 
compared results from DTI and Q-ball imaging 
(QBI) reconstruction methods in six individuals 
with  pAgCC   and eight control subjects. The QBI 
data presented in this study revealed that individ-
uals with  pAgCC   had unexpectedly highly vari-
able callosal fi ber connectivity, which included 
many heterotopic tracts that were not seen in the 

healthy subjects. The DTI technique was only 
able to delineate a subset of these tracts due to its 
in ability to tract through crossing regions (Fig. 
 20.13 ). Although the authors concede that the 
small cohort of subjects studied with pAgCC pre-
cluded any generalization of results to this phe-
notypically heterogeneous population, the 
variability of these aberrant structural connec-
tions in these few subjects was thought to be 
clinically important because individuals with 
agenesis of the corpus callosum often present 
with a broad range of behavioral and neurocogni-
tive defi cits [ 78 ].

  Fig. 20.13    Comparison of DTI and QBI  tractography   
results in a control subject ( top ) and a subject with  partial   
agenesis of the Corpus Callosum  pAgCC   ( bottom ) using 
(1) DTI tractography performed on a DTI acquisition at 
 b  = 1000 s/mm 2  ( a ,  d ), (2) DTI tractography on a HARDI 
acquisition at  b  = 3000 s/mm 2  ( b ,  e ), and (3) QBI tractog-
raphy is shown for the same HARDI acquisition at 
 b  = 3000 s/mm 2  ( c ,  f ). Note that QBI tractography typi-
cally recovered more extensive fi bers for each tract than 

DTI in both subjects with pAgCC and controls [Reprinted 
from Wahl M, Strominger Z, Jeremy RJ, Barkovich AJ, 
Wakahiro M, Sherr EH, et al. Variability of Homotopic 
and Heterotopic Callosal Connectivity in Partial Agenesis 
of the Corpus Callosum: A 3 T Diffusion Tensor Imaging 
and Q-Ball Tractography Study. AJNR Am J Neuroradiol. 
2009 Feb 1;30(2):282–9. With permission from American 
Society of Neuroradiology]       
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   Recent connectivity studies using HARDI- 
based methods have identifi ed subtle differences 
in the healthy brain that may be critical to our 
understanding and interpretation of deviations 
from normal structural connectivity. One of the 
largest studies based on HARDI data investigated 
structural differences in 569 healthy twins [ 79 ]. 
This study utilized an orientation density func-
tion (ODF)-based tractography technique, to 
measure “fi ber density” (i.e. the volume of 
streamlines successfully generated with a region) 
as a marker of structural connectivity [ 79 ]. While 
the use of volume as a measure of connectivity is 
not without its confounds [ 26 ], the results sug-
gest that the proportions of fi bers intersecting the 
left and right hemispheres vary signifi cantly with 
age. In a further study by the same group, which 
aimed to defi ne the normal trajectory of struc-
tural connectivity from early adolescence to early 
adulthood, it was also observed that increases 
and decreases in densities across the maturing 
brain are not distributed evenly [ 80 ]: the  frontal 
cortex   had a disproportionate decrease in fi ber 
density whilst the temporal lobe showed an 
increase in  fi ber density   with age in healthy par-
ticipants aged of 12–30 years. 

 One of the  limitations   of current methods to 
assess structural connectivity using diffusion- 
weighted data, compared to traditional histopathol-
ogy, is that the spatial resolution achievable within 
a clinically feasible time frame is limited. A recent 
technical advance that may have important future 
applications is the development of a post-process-
ing technique known as Track Density Imaging 
(TDI) [ 81 ]. TDI is an approach that uses the spatial 
information from tractography streamlines to 
improve spatial resolution beyond that by which 
the data were originally acquired. The resultant 
super-resolution track density images reveal 
enhanced anatomical detail with high SNR allow-
ing direct visualization of sub-structures in regions 
such as the thalamus and cerebellar peduncles [ 81 ]. 

 The super resolution properties of TDI have 
recently been appreciated in a study of patients 
with Friedreich ataxia (FRDA) where TDI was 
performed to increase the resolution to 500 μm, 
four times the native imaging resolution [ 82 ]. 

The super resolution TDI tractography maps 
were used in conjunction with targeted tractogra-
phy maps to specifi cally enable visualization and 
assessment of cerebello-cerebral connections. 
The fi ndings from this interesting study go fur-
ther than previous diffusion tensor-based studies, 
which have been successful in identifying pri-
mary sites of white matter degeneration, to iden-
tify secondary sites of degeneration that involve a 
network of cortical and subcortical regions. The 
authors suggest that these fi ndings demonstrate 
that  FRDA pathology   extends beyond well- 
known primary sites of cerebellar and brainstem 
degeneration; and that such results provide an 
explanation for the non-motor symptoms seen in 
the disease, such as depression and cognitive dif-
fi culties (Fig.  20.14 ) [ 82 ].

      Assessment of Structural Integrity 
 Recent developments in the fi eld have emerged to 
allow group-wise whole-brain analysis of diffu-
sion data, in a manner robust to crossing fi bers. 
Apparent fi ber density ( AFD  ) is one such method, 
which uses the fi ber orientations distributions 
(FOD) computed using constrained spherical 
deconvolution (CSD) to identify tract-specifi c dif-
ferences in fi ber density [ 83 ]. This approach was 
applied in a recent study investigating HARDI 
data collected in patients with probable or defi nite 
motor neurone disease ( MND  ) and age matched 
controls [ 47 ]. The results of this study show a sig-
nifi cant decrease in AFD, specifi cally within vox-
els and orientations corresponding to the 
corticospinal tract (CST) and corpus callosal (CC) 
fi bers, in the group data of MND patients com-
pared to healthy control subjects—pathways that 
are known to be affected in upper motor neuron 
impairment (Fig.  20.15 ) [ 47 ]. The advantage of 
using this approach is the ability to identify not 
only the location, but also the orientation along 
which differences in fi ber density can be observed. 
Using the FOD as a measure of apparent fi ber 
density may prove to be a more accurate and read-
ily interpretable marker of tract “integrity” 
throughout the brain than DTI-derived measures 
of diffusion anisotropy, particularly in regions 
containing multiple fi ber populations, since the 
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fi ber density estimates for one tract are no longer 
confounded by the presence of other tracts that 
might be traversing the same region.

         Conclusion 

 The advent of HARDI-based methods specifi -
cally developed to provide more robust estimates 
of the fi ber orientations represents an exciting 

development in the fi eld of diffusion MRI. These 
methods are now beginning to be used for clinical 
and neuroscientifi c investigations with extremely 
promising results. Although further validation is 
necessary, it is clear that the development and 
application of HARDI-based methods have 
moved the fi eld one important step closer to one 
of the great challenges for the upcoming decade—
to noninvasively map the structural connectivity 
of the human brain.     

  Fig. 20.14    example of group-averaged track density 
images (TDI) super resolved to 500 μm from HARDI data 
acquired at 2 mm 3  in healthy controls and patients with 
Friedreich ataxia (FRDA). Note the visually evident dif-
ferences in structural connections from regions such as 
the anterior thalamic radiation ( a ), brain-stem and dentate 
nucleus ( b ), middle cerebellar peduncle ( c ) and cortico-

spinal tract ( d ) between patients with FRDA and control 
subjects [Reprinted from Zalesky A, Akhlaghi H, Corben 
LA, Bradshaw JL, Delatycki MB, Storey E, et al. 
Cerebello-cerebral connectivity defi cits in Friedreich 
ataxia. Brain Struct Funct. 2014; 219(3): 969–981. With 
permission from Springer-Verlag.]       
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  Fig. 20.15    example of Apparent Fiber Density (AFD) 
results of patients with motor neuron disease (MND) 
compared to health control subjects. Note that a signifi -
cant decrease in AFD was detected in MND patients 
within two distinct clusters: Cluster 1 extends from the 
lower brain stem to the internal capsule, and cluster 2 cor-
responds to corpus callosal fi bers connecting the left and 

right primary motor cortices [Reprinted from Raffelt D, 
Tournier J-D, Rose S, Ridgway GR, Henderson R, Crozier 
S, et al. Apparent Fiber Density: A novel measure for the 
analysis of diffusion-weighted magnetic resonance 
images. Neuroimage. 2012 Feb 15;59(4):3976–94. With 
permission from Elsevier.]       
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 Learning Points

•	 DKI extends the DTI model by quantifying 
the degree of non-Gaussian diffusion

•	 DKI is clinically feasible and relevant
•	 DKI is a mathematical model and, as such, the 

biophysical interpretation might be challenging

 Diffusion Concepts

As stated in Chap. 3, any type of molecule in a 
fluid (e.g., water) is in constant random motion 
agitated by thermal energy. Given a large collec-
tion of molecules in an environment without 
boundaries, molecules undergo a random walk 
consisting of independent steps with a change of 
direction after each collision with another mole-
cule. This motion is named after the botanist 

Robert Brown, who observed the everlasting jit-
tery motion of grains of pollen suspended in water 
under a microscope [1]. The Brownian motion 
was theoretically substantiated by Einstein [2]. 
He showed that the random motion of numerous 
molecules can mathematically be described by a 
displacement probability distribution function 
(PDF). This mathematical concept is briefly intro-
duced with a simple example (see Box 21.1).

 Free Diffusion

Einstein showed that the displacement of water 
molecules in an open body of water such as a 
glass of water can be described by a Gaussian 
probability distribution function [2]. In the 
absence of flow—so the water must be still—the 
Gaussian distribution will be centered around 
zero. The distribution has zero mean. In addition 
to the mean, a distribution has another important 
property or statistic: the standard deviation. The 
standard deviation is a measure of the width of 
the distribution. Its square is called the variance. 
If the mean displacement is zero, then the vari-
ance equals the mean squared displacement 〈x2〉, 
which is linked to the diffusion coefficient D and 
the diffusion time t by the Einstein equation:

 x nDt2 2= ,  (1)

with n the dimensionality of the diffusion. The 
higher the mobility of the water molecules or the 

J. Veraart, PhD (*)
iMinds-Vision Lab, Department of Physics,  
University of Antwerp, Universiteitsplein 1, 
2610, Antwerp, Belgium

Center for Biomedical Imaging, Department of 
Radiology, New York University School of Medicine, 
New York, USA
e-mail: Jelle.Veraart@uantwerpen.be

J. Sijbers, PhD
iMinds-Vision Lab, Department of Physics,  
University of Antwerp, Universiteitsplein 1, 
2610, Antwerp, Belgium

http://dx.doi.org/10.1007/978-1-4939-3118-7_3
mailto:Jelle.Veraart@uantwerpen.be


408

longer the diffusion time, the wider the Gaussian 
distribution—or the greater the average traveled 
distance will be.

 Hindered and Restricted Diffusion

Obviously a glass of water is a poor model to 
describe the diffusion in biological tissue. Given 
typical diffusion times in diffusion-weighted 
MRI—about 50–100 ms—free diffusion can 
only be expected in the cerebrospinal fluid in the 

large chambers of the ventricular system. 
However, biological tissues such as the brain 
white matter are highly heterogeneous media that 
consist of various individual compartments (e.g., 
intracellular, extracellular, neurons, glial cells, 
and axons) and barriers (e.g., cell membranes and 
myelin sheaths). Therefore, the random move-
ment of water molecules is hindered and/or 
restricted by compartmental boundaries and 
other molecular obstacles (see Fig. 21.2). There 
is no doubt that molecules’ mobility is reduced 
by their interactions with compartments and 

Fig. 21.1 (Left–Middle–Right) The probabilities of throwing n eyes with 1, 2, and 5 dice, respectively, are shown

Box 21.1 Displacement PDF

If a fair dice is thrown, then it can fall six 
ways. When counting the different outcomes 
of throwing that dice many times, one will 
observe that any outcome is equally probable. 
A visual representation might help to grasp 
that the probability of throwing one is equal to 
the probability of throwing two, three, four, 
five, or six. A bar plot showing the different 
counts divided by the total number of throws 
is given in Fig. 21.1. This graph shows for 
each possible outcome the probability of 
being thrown during a single experiment. The 
mathematical relation between the possible 
outcomes (discrete or continuous) and the 
respective probabilities is called the probabil-
ity distribution function (PDF). In case of a 
single dice, the PDF will be uniform because 
all outcomes are equally probable. Let us add 

another dice and repeat the experiment. Now, 
we count the sum of the eyes of both dice. 
Obviously, it is more likely to throw a seven 
than a two. Indeed, there are six combinations 
that will results in a seven, whereas only one 
combination gives two. All combinations are 
equally likely to be thrown. So, one might 
expect to count six times more sevens than 
twos. Hence, the PDF will no longer be uni-
form. Instead, it will be a bell-shaped distribu-
tion with its peak at seven. By adding more 
dice to the experiment, it will eventually 
become a Gaussian distribution. Knowing the 
PDF might be important as it allows predict-
ing the outcome of an experiment with some 
probability.

Similarly, rather than counting eyes on 
dice, one can also measure the distance trav-
eled by a molecule given a diffusion time.
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 barriers. However, diffusion is only termed 
restricted if molecules that are confined in a 
bounding structure, which they are not likely to 
leave, collide with this structural boundary dur-
ing the diffusion time. Typically, the diffusion of 
water molecules confined within the intra-axonal 
spaces is expected to be restricted. Indeed, given 
a diffusion time of 50 ms, a freely diffusing water 
molecule would displace on average 25 μm 
whereas the diameter of myelinated axons varies 
between 1 and 20 μm.

Like free diffusion, hindered diffusion can 
still be described by a Gaussian distribution. 
However, the width of the distribution will be 
smaller than one might expect based on proper-
ties of the tissue water itself. It is common to 
refer to the observed diffusion coefficient as the 
apparent diffusion coefficient (ADC; Dapp) to 
indicate that the diffusion coefficient strongly 
depends on interactions of the diffusing mole-
cules with the underlying microstructure, rather 
than on intrinsic diffusion properties [3]. 
Restricted diffusion, on the other hand, can no 
longer accurately be described by a Gaussian dis-
tribution [4–9]. Plotting the mean squared dis-
placement as a function of the diffusion time 

clearly indicates the difference between the dif-
ferent types of diffusion processes (see Fig. 21.3). 
In case of free and hindered diffusion, the mean 
squared displacement linearly increases with the 
diffusion time. The coefficient representing this 
linear relation is given by the diffusion coeffi-
cient, multiplied by 2n, with n the dimension. 

Fig. 21.2 Schematical 
representation of  
hindered (green) and 
restricted diffusion (red). 
The black circles represent 
impermeable boundaries
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Fig. 21.3 Mean squares displacements are shown as a 
function of the diffusion time for free (blue), hindered 
(green), and restricted (red) diffusion
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For free diffusion, the diffusion coefficient is 
larger than for hindered diffusion. Indeed, for 
the same diffusion time, hindered molecules 
will have displaced less than free diffusing mol-
ecules. For restricted diffusion, on the other 
hand, the mean squared displacement converges 
to an upper bound, which relates to the size of 
the bounding microstructure. Given the size of a 
typical diffusion- weighted MRI voxel (about 
2 × 2 ×2–3 × 3 × 3 mm3), the biological tissue 
within a voxel is expected to contain a mixture of 
hindered and restricted compartments [10, 11]. 
Therefore, the primary assumption made in diffu-
sion tensor imaging, i.e., Gaussian diffusion [12], 
does not hold in most voxels [13]. Hence, a more 
advanced diffusion model is required, that, apart 
from the diffusion coefficient, also describes the 
deviation from a Gaussian distribution. A distri-
bution’s deviation from a Gaussian distribution 
can be quantified by the excess kurtosis, hereaf-
ter shortened to kurtosis [14]. The knowledge of 
the kurtosis of the displacement distribution in 
addition to its variance improves the description 
of the underlying diffusion process [15]. In the 
next paragraph, the kurtosis of an arbitrary distri-
bution is briefly introduced.

 Kurtosis

The kurtosis K is a dimensionless statistical met-
ric that quantifies the deviation from Gaussianity 
of an arbitrary distribution. In Fig. 21.4, a num-
ber of distributions that have the same mean 
(which is zero) and variance (which is one), but 
different kurtosis are shown. Indeed, the 
(excess) kurtosis varies from −1.2 to 3. One can 
observe that the kurtosis is a measure of peaked-
ness or sharpness of an arbitrary distribution. 
Given that a Gaussian distribution has zero kur-
tosis, a positive kurtosis indicates that distribu-
tion is more peaked than a Gaussian distribution. 
In terms of diffusion, small displacements are 
more probable compared to hindered diffusion. A 
negative kurtosis, on the other hand, is less 
peaked than a Gaussian distribution. If the diffu-
sion is described by such a distribution, small 
displacements are less likely compared to 

Gaussian diffusion. For diffusion, a kurtosis of 
−3/7 is a practical minimum [15]. Such a distri-
bution would indicate fully restricted diffusion 
within spherical pores with the same radius. 
However, fully restricted diffusion is not 
expected in biological tissue. As stated previ-
ously, one rather expects the imaged volume to 
consist of a mixture of hindered and restricted 
compartments [10, 11]. Therefore, it is generally 
assumed that the kurtosis will only take positive 
values in diffusion- weighted MRI [16].

It is clear that the knowledge of the kurtosis 
definitely contributes to a more accurate descrip-
tion of the underlying diffusion process. In the 
next section, it will be explained how kurtosis 
parameters can be computed from diffusion- 
weighted MR images.

 Diffusion Kurtosis Coefficient

The natural logarithm of the diffusion weighted 
MR signal, S, can be approximated by an expan-
sion in terms of the b-value [15]:

log ( ) log ( ) ,S b S bD b D K» - +0
1

6
2 2

app app app  (2)

with S(0) the nondiffusion-weighted signal, Dapp 
the apparent diffusion coefficient and Kapp the 

Fig. 21.4 Distributions with varying kurtosis, but with 
the same mean and variance are shown
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apparent kurtosis coefficient. Note that the term 
apparent kurtosis coefficient is used in analogy to 
the apparent diffusion coefficient to indicate the 
dependency of the measured parameter to mea-
surement variables such as diffusion time. If dif-
fusion is assumed to be Gaussian, or equivalently, 
to have zero kurtosis, then the last term nullifies 
and the equation reduces to the basic DTI for-
mula [12]. Note that the additional kurtosis term 
depends on b squared. Hence, unlike Gaussian 
diffusion, the logtransformed diffusion-weighted 
signal will not decay linearly with the b-value 
(Fig. 21.5). Alternatively, one can say that the 
diffusion-weighted signal will decay non-mono- 
exponentially. Just as Dapp characterizes the diffu-
sion coefficient in the direction parallel to the 
orientation of diffusion sensitizing gradients, Kapp 
characterizes the diffusional kurtosis in the same 
direction.

 Diffusion Kurtosis Tensor

In the brain white matter, molecular diffusion is 
more likely to be hindered and restricted perpen-
dicular to the axonal fibers than parallel to them 
because of the geometry of the underlying micro-
structure [17, 18]. Therefore, the diffusion is 
anisotropic and, as such, the diffusion cannot be 
described adequately by a single diffusion and 

kurtosis coefficient. Indeed, to accurately model 
hindered diffusion, a three-dimensional (3D) 
Gaussian diffusion model that relies on a second 
order, symmetric diffusion tensor D, instead of 
the scalar Dapp, is needed [19]. This widely used 
diffusion tensor imaging (DTI) model has six 
degrees of freedom, describing the shape and ori-
entation of a 3D ellipsoid. Like the directional 
dependence of Dapp can be captured by a diffusion 
tensor, the directional dependence of Kapp can be 
represented by a tensor as well: the diffusion kur-
tosis tensor W [15, 20]. This fourth rank 3D ten-
sor, which is fully symmetric, has only 15 
components that are independent. The general-
ization of Eq. (2) to 3D results in:
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with g = [ , , ]g g gx y z  the applied diffusion gradi-
ent direction. One immediately recognizes the 
DTI model as being the first two terms on the 
right-hand side of Eq. (3) [19]. Fitting this model 
voxelwise to a set of diffusion MR images to esti-
mate D and W, and as such, directly quantifying 
the direction-dependent diffusion and kurtosis 
information, is called Diffusion Kurtosis Imaging 

Fig. 21.5 Following diffusion-weighted signals (left), as 
well as their log-transformation (right) are shown as a 
function of the b-value: measured values (red dots), DTI 
model (blue), and DKI model (green). Owing to the non- 
Gaussian diffusion the addition of the b2-term improves 

the accuracy of the fit. This is mainly noticeable at inter-
mediate b-values. At high b-values, severe approximation 
errors become dominant. Therefore, DKI is a low to inter-
mediate b-value technique
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[15, 21, 22]. The technique is a straightforward 
mathematical extension of DTI as the cumulant 
expansion framework overarches both models 
[23]. Given both diffusional tensors, the apparent 
diffusion and kurtosis coefficients along an arbi-
trary direction can be evaluated to study the dif-
fusion properties in any direction.

 Diffusion Kurtosis Parameters

In DTI, the principle axes of the ellipsoidally 
shaped diffusion tensor and their corresponding 
lengths are determined by the eigenvectors and 
eigenvalues of the diffusion tensor D [19]. The 
first eigenvalue equals the diffusivity along the 
main direction of diffusion, and is called axial 
diffusivity. The average of the second and third 
eigenvalue is called the radial diffusivity. The 
measure quantifies the average diffusivity in the 
equatorial plane, i.e., the plane perpendicular to 
the principal diffusion direction. The average of 
all three eigenvalues is the mean diffusivity. 
Another rotationally invariant scalar measure is 
the fractional anisotropy. It quantifies the degree 
of anisotropy of the apparent diffusion tensor 
[12]. On the one hand, DKI provides a more 
objective and accurate quantification of these 
scalar metrics in the sense that the dependence of 
the estimated diffusivity b-value is eliminated or 
at least strongly reduced [13]. On the other hand, 
it provides additional rotationally invariant 

 metrics of diffusional non-Gaussianity, comple-
mentary to the diffusion metric obtained with 
DTI [15].

The most commonly used kurtosis metrics are 
mean kurtosis, radial kurtosis, and axial kurtosis. 
The axial kurtosis is the evaluation of the appar-
ent kurtosis tensor along the principle diffusion 
direction [24]. The radial kurtosis is the average 
apparent kurtosis coefficient, measured in the 
equatorial plane [25], whereas the mean kurtosis 
is the overall average apparent diffusion kurtosis 
coefficient [20]. Furthermore, a kurtosis anisot-
ropy metric has been proposed [25]. The comple-
mentariness of the kurtosis and diffusion 
measures is indicated in the scatter plots of 
Fig. 21.6, which show the weak correlation 
between directional diffusion and kurtosis met-
rics, observed in the white matter of the healthy 
human brain (cf. [15]). This implies that two vox-
els with equal mean diffusivity not necessarily 
have the same mean kurtosis. As such, kurtosis 
measures provide additional information regard-
ing the underlying diffusion process. Typical val-
ues of the DKI metrics for the healthy human 
brain are presented by Lätt et al. [26]. The param-
eter maps are shown in Fig. 21.7. The diffusion 
kurtosis metrics are potentially more sensitive to 
local (microstructural) tissue properties [15]. 
Furthermore, it has been shown that the diffusion 
kurtosis metrics are less sensitive to certain con-
founding effects and thereby serve as a more 
robust biomarker. One study, for example, 

Fig. 21.6 Scatter plots show the correlation between 
(left) mean kurtosis and mean diffusivity, (middle) radial 
kurtosis and radial diffusivity, and (right) axial kurtosis 

and axial diffusivity. The corresponding metrics are only 
weakly correlated. The Spearman’s rank correlation coef-
ficients are −0.07, −0.65, and −0.13, respectively
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showed that the mean kurtosis in gray matter is 
altered substantially less by CSF contamination 
than either of the conventional DTI metrics [27].

 Diffusion Kurtosis Imaging: 
Acquisition

DKI is a straightforward extension of DTI in 
terms of data acquisition. Indeed, the same 
diffusion- weighted imaging sequences can be 
used to record the images. However, since the 
apparent diffusion tensor has 6 independent ele-
ments and the kurtosis tensor has 15 independent 
elements, the DKI model has a total of 21 inde-
pendent tensor parameters. As for DTI, the noise- 
free nondiffusion-weighted signal must be 
estimated as well. Hence, at least 22 diffusion- 
weighted images need to be acquired for DKI. 
Let us recall that for DTI only seven diffusion- 
weighted images were required. It can further be 
shown that there must be at least three distinct 
b-values, which only differ in the magnitude of 

the applied diffusion gradient. Typically, the 
highest b-value is somewhat higher than in DTI 
acquisitions. Indeed, the maximal b-value should 
be chosen carefully as it defines a trade-off 
between the accuracy and precision of diffusion 
parameter estimators. While for DTI diffusion- 
weighted images are typically acquired with 
rather low b-values, about 1000 s/mm2, some-
what stronger diffusion sensitizing gradients need 
to be applied for DKI as the quadratic term in the 
b-value needs to be apparent. It has been shown 
that b-values of about 2000 s/mm2 are sufficient 
to measure the degree of non-Gaussianity with an 
acceptable precision [21]. Nevertheless, several 
studies reported b-values up to 3000 s/mm2 and 
even more (e.g., [28, 29]). The assumption that 
the diffusion-weighted signal is monotonically 
decreasing with the b-value imposes an analytical 
upper bound on the maximal b-value [30]:

 b D Kmax / ( ).£ 3 app app  (4)

Indeed, as can be seen in Fig. 21.5, the DKI 
model has a global minimum at b = bmax. For 

Fig. 21.7 The main diffusion and kurtosis parameter 
maps, obtained from the healthy human brain, are shown. 
The range of the mean, axial and radial diffusivity is [0, 

3 × 10−3] mm2/s, while the range of the corresponding kur-
tosis metrics was [0, 1.5]. The anisotropy maps are 
bounded by [0, 1]
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larger b-values the diffusion-weighted signals 
predicted by the DKI model start increasing 
again. This is in disagreement with the assump-
tion that the diffusion-weighted signals keep 
decaying with increasing b-value. Therefore, the 
DKI model is only accurate in a limited b-value 
range. The upper bound of that range is difficult 
to determine. However, typical diffusion and kur-
tosis values, observed in the human brain, are 
Dapp ≈ 1 μm2/ms and Kapp ≈ 1. Those values justify 
the use of b-values up to 3000 s/mm2 for studies 
involving the human brain [21]. Given the lim-
ited maximal gradient magnitude, such b-values 
are often achieved by increasing the gradient 
duration. As the correctness of the DKI model 
relies on the short gradient pulse (SGP) condi-
tion, the use of high b-values will render the mea-
sured apparent kurtosis metrics more approximate 
[15]. Furthermore, high b-valued diffusion-
weighted images suffer from low signal-to-noise 
ratio (SNR) due to the severe signal attenuation. 
Since SNR has a direct impact on the precision of 
the diffusion quantification, the acquisition of 
diffusion MR images along more diffusion direc-
tions than strictly necessary is advisable. 
Although in theory only 15 distinct diffusion 
(gradient) directions are required [15], in prac-
tice, a minimum of 30 directions for each b-value 
is fairly common [21]. A wide range of DKI data 
acquisition protocols in line with these consider-
ations are possible. Depending on the set of diffu-
sion parameters one is interested in, a specific 
acquisition protocol (i.e. b-values and gradient 
directions) that is optimal in terms of highest 
achievable precision on the measurements of 
interest can be computed [25]. In Table 21.1, the 
minimal acquisition requirements for DKI are 
listed and compared to DTI.

 Diffusion Kurtosis Imaging: Post 
Processing

In general, data correction is the first step of the 
diffusion MR data post-processing pipeline. 
First, the relatively long acquisition times cause 
subject motion to become more probable, and, as 
such, neccessitate the alignment of all diffusion- 
weighted images before the model parameters 
are estimated [31]. Commonly, such a correction 
is applied by a single rigid transformation of the 
diffusion-weighted images to a single reference 
image, often a nondiffusion-weighted image. 
The use of a rigid transformation is motivated by 
the expected lack of scaling and shearing of the 
volumes, whereas translations and rotations are 
assumed to be global for brain imaging. However, 
note that other diffusion applications might 
require more complex motion correction strate-
gies. To preserve the orientation information 
captured in diffusion MR data, the diffusion gra-
dient directions need to be rotated accordingly 
[32]. Second, rapidly switching diffusion gradi-
ents will generate eddy currents in nearby con-
ductors. These currents will perturb the spatial 
encoding locally and, as such, the reconstructed 
diffusion- weighted image will be geometrically 
distorted [33]. The strength of the distortions—
stretch or compression of the image along the 
phase encoding direction—increases with the 
diffusion encoding amplitude. Although the 
effect of eddy currents can be minimized at the 
acquisition stage [34], residual distortions still 
need correction. A common strategy is to correct 
subject motion and eddy current distortions 
simultaneously by a global affine transforma-
tion. Recently, several techniques dedicated to 
motion/eddy current correction of high b-valued 
diffusion- weighted images have been presented 
[35, 36]. Such corrections need to be followed 
by signal modulation according to the volumet-
ric change [37, 38]. The signal modulation factor 
will be b-value dependent as the strength of the 
distortions depends on the magnitude of the 
diffusion- encoding gradient. Not correcting such 
a b-value dependent signal change will bias the 
kurtosis parameters [13, 39]. Nonetheless, the 
signal modulation step is widely ignored, partly 

Table 21.1 Minimal acquisition requirements for DTI 
and DKI

DTI DKI

Number of diffusion-weighted 
images

7 22

Number of b-values 2 3

b-value range (s/mm2) [0–1500] [0–3000]

Noncoplanar gradient 
directions

6 15
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motivated by a lack of this post-processing step 
in most software packages.

After data correction—and optional local 
smoothing to reduce the Gibbs phenomena—the 
DKI model parameters, i.e., the tensor elements, 
need to be estimated. The most popular strategies 
are nonlinear least squares (NLS), weighted lin-
ear least squares (WLLS), and linear least squares 
(LLS). Technical details on the implementation 
of these methods are provided in [40, 41]. It is 
important to grasp that not all estimation strate-
gies show the same performance in terms of 
accuracy and precision [37, 38, 41]. Typically, 
the WLLS estimator might be preferred to the 
other estimators [41]. First, within the class of 
linearized strategies, the WLLS estimator is defi-
nitely the better choice as it accounts for the sig-
nal dependency of the variance in the 
log-transformed diffusion-weighted data [42]. 
Therefore, the WLLS estimator will show higher 
precision than the LLS estimator. Second, the 
WLLS estimator is potentially very accurate, 
especially compared to the NLS estimator. 
Indeed, if Rician distributed diffusion-weighted 
MR data has a minimum SNR of two, then the 
WLLS estimator is unbiased, that is, the estima-
tor has no systematic estimation error [41]. Third, 
the WLLS estimator has a closed-form solution. 
Therefore, unlike the iterative NLS strategy, the 
WLLS estimator is computationally efficient and 
not prone to getting stuck in a local optimum. In 
practice, however, the SNR might drop below 2 
because of high b-values or high spatial resolu-
tions. In that case, the above-mentioned estima-
tors will show a systematic overestimation of the 
kurtosis parameters and, as such, one might pre-
fer using more advanced estimators that explic-
itly account for the actual MR data distribution 
[38, 39]. An overview of these estimators, their 
strengths, and limitations is beyond the scope of 
this introductory chapter.

As the diffusion of water molecules is a physi-
cal property of the tissue being measured, diffu-
sional tensor estimates must be physically and 
biologically meaningful. Unfortunately, in many 
cases, diffusion and kurtosis values might lie out-
side a physically acceptable range due to the 
presence of noise, imaging artifacts such as Gibbs 

ringing, or misalignment of the diffusion- 
weighted images [40]. It is well known that the 
diffusivity should be positive along all directions. 
This condition holds if the apparent diffusion ten-
sor is positive definite. In DTI, one often imposes 
the non-negative definiteness constraint on the 
diffusion tensor [43]. The same constraint can be 
imposed during a DKI analysis. In addition, two 
constraints on the apparent kurtosis coefficients 
might be imposed. First, while the theoretical 
lower bound on the kurtosis of a probability dis-
tribution is minus two, previous studies suggest 
that directional kurtoses should typically be 
 positive [16, 40]. Second, an upper bound on the 
kurtosis that depends on the maximal b-value, cf. 
Eq. (4), is often imposed during the estimation of 
the DKI parameters. 

 Diffusion Kurtosis Imaging: 
Applications

Despite DKI being a recently developed tech-
nique, an exponential growth of publications 
already suggests that DKI will become a new 
important imaging modality in detecting micro-
structural changes in human living tissue that are 
not revealed by the Gaussian DTI model. 
Preliminary, yet promising results have shown 
that DKI measures may be able to better differen-
tiate between high-grade and low-grade cerebral 
gliomas than DTI measures alone [44, 45]. 
Furthermore, clinical studies indicate that DKI 
has the potential to improve the early diagnosis 
of, or to gain more insight into pathologies such 
as Parkinson Disease [29, 46], attention-deficit 
hyperactivity disorder [47], temporal lobe epi-
lepsy [48], traumatic brain [49], Alzheimer’s dis-
ease [50], and cerebral infarction [51–53]. 
However, its potential use is not restricted to the 
brain. The greater relative contrast of kurtosis 
metrics for cancerous sextants also suggests the 
potential clinical advantage of incorporating 
DKI into liver and prostate MR imaging protocol 
[54, 55]. Additionally, one study has reported on 
the sensitivity of the DKI metrics to abnormali-
ties in the lung, i.e., within the bronchioles and 
bronchi, using hyperpolarized 3HE imaging [56]. 
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Furthermore, microstructural changes associated 
with human development and aging have been 
studied with DKI [57]. This study showed differ-
ent mean kurtosis patterns for different age 
ranges, indicating that DKI is able to detect 
changes in microstructural complexity in both 
gray and white matter. In complementary 
research, the practical utility of DKI for the 
(early) diagnosis of pathological changes has 
been studied using small animal imaging. For 
example, it has been shown that DKI improved 
the early detection of ischaemic lesions in a 
stroke model for rats, compared to DTI [28]. 
Moreover, DKI may help stratify heterogeneous 
diffusion-weighted MRI lesions for enhanced 
characterization of ischemic tissue injury [58]. 
Studies have also reported on the increased sensi-
tivity of kurtosis metrics to changes in the white 
and gray matter in rodent models of Huntington 
Disease [59, 60], Chronicle mild stress [61], 
Alzheimer’s disease [62], traumatic brain injury 
[63], and brain maturation [64]. It might be 
expected that many new potential applications of 
DKI will be revealed in the near future.

 Diffusion Kurtosis Imaging: 
Limitations

The potential risk of DKI—just as DTI—is the 
over-interpretation of observed changes in diffu-
sional measures. The kurtosis model arises sim-
ply from a mathematical expansion of the 
diffusion-weighted signal as a function of the 
b-value and, as such, does not involve any bio-
physical modeling [16, 65, 66]. From a change in 
kurtosis or diffusivity, one might only conclude 
that there is something in the tissue microstruc-
ture that is changing the way that molecules can 
diffuse. More specific inferences are not substan-
tiated without the justification of a biophysical 
model that helps to interpret the biophysical 
meaning of DKI metric changes. Recently, the 
two-tensor model has been studied to elucidate 
the underpinnings of DKI contrast [65, 67]. In 
that model, it is assumed that brain white matter 
consists of two non-exchanging compartments: 

an intra-axonal space, consisting of parallel 
impermeable cylindrical axons and an extra- 
axonal space. The diffusion in both compart-
ments is assumed to be anisotropic and Gaussian. 
The white matter model links the DKI metrics to 
microstructural properties such as the axonal 
water fraction and the tortuosity of the extra- 
axonal space. In another attempt to gain insight 
in the mathematical DKI model, the DKI infor-
mation was matched to the information extracted 
from the biophysical composite hindered and 
restricted model of diffusion (CHARMED)model 
[10, 11, 16]. In that model, the white matter is 
again assumed to be consisting of two 
 compartments: (a) a hindered extra-axonal space, 
and (b) one or more intra-axonal compartments 
modeled as impermeable cylinders showing 
restricted diffusion perpendicular to the fiber. 
The CHARMED model allows the description of 
the diffusion weighted-signals in terms of bio-
physical parameters such as extra- and intra-axo-
nal volume fractions and axonal diffusivities. It 
was shown that those biophysical parameters cor-
relate with the DKI parameters in areas of higher 
intra-voxel directional coherence, and as such, 
the CHARMED model might be used the get 
more insight into the meaning of the DKI param-
eters [16]. Those findings, however, only apply 
within the limits of the validity of both white 
matter models.
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   Glossary 

  Louise Emsell and Wim Van Hecke 

  The language of DTI is complex and sometimes 
ill-defi ned. The following glossary has been 
assembled by the editors based on a selection of 
key terms provided by the contributing authors to 
this book as a guide to understanding some key 
terms related to DTI. Please note that in the 
absence of standard terminology, some words or 
phrases may be defi ned differently in other 
sources.   

  Angular resolution    The power to unambigu-
ously resolve closely aligned directions, much 
like spatial resolution relates to the ability to 
resolve closely spaced points. May also be 
used to refer to the density of DW sampling 
over the sphere in a HARDI acquisition.   

  Anisotropic diffusion    Diffusion of atoms 
or molecules, which is dependent on 
 orientation—i.e., the rate of diffusion is dif-
ferent for different directions.   

  Apparent diffusion coeffi cient    The measured 
diffusion coeffi cient for water in a medium 
in which diffusion is not free as it is impeded 
by boundaries such as cellular structures. The 
water behaves more like a viscous fl uid with a 
lower diffusion coeffi cient.   

  Apparent fi ber density    A framework for the 
analysis of diffusion MRI data, which relies 
on estimates of the fi ber ODF as obtained 
from spherical deconvolution methods and 
interprets the amplitude of the fi ber ODF as 
approximately proportional to the density 
of the fi bers aligned with the corresponding 
direction.   

  Association fi bers    White matter connections 
between gyri within one hemisphere.   

  Atlas    A reference image constructed by coreg-
istering and averaging multiple scans in order 
to create a representation of the image charac-
teristics of a given study population. Atlases 
are used for image normalization. Standard 
atlases can be used to label regions-of- interest 
and to report research fi ndings in a common 
reference space.   

  Automated tractography    Tractography 
driven by atlases based on anatomical infor-
mation, and requiring no user annotation.   

  Axial diffusivity (or longitudinal diffusiv-
ity)    Equals the largest eigenvalue, and thus 
represents the ADC value along the main 
direction of diffusion. This is hypothesized to 
relate to the orientation of an axonal bundle in 
the tensor model.   

  Axial Kurtosis (AK, abbreviated form of  axial 
apparent kurtosis coeffi cient )    The apparent 
kurtosis coeffi cient, measured along the prin-
cipal direction of diffusion.   

  B0 (or B = 0)    A term used to informally refer 
to a non diffusion weighted image, acquired 
as part of a full diffusion weighted imaging 
dataset.   

   b -value    A measure of the strength of the 
applied diffusion-weighting, and a function of 
the sequence timings and DW gradient ampli-
tude. This is a generalization of the  q -value, 
valid under the assumption of free diffusion.   

  Cardiac-gating    Gating, or triggering the scan-
ner to acquire data only during specifi c phases 
in the cardiac cycle in which pulsation (and 
thus pulsation artifacts) is at a minimum   

  Cartesian    A common method of sampling 
 k -space using a rectilinear or raster trajectory.   
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  Chemical shift artifact    Different chemical 
species have different resonance frequencies. 
These differences lead to mismatches in the fre-
quency ( k -space) and spatial domain (image). 
For example, differences between water and fat 
molecules in the same physical location, mani-
fest as image artifacts characterized by bright 
or dark rims shifted relative to this location.   

  Combined Hindered and Restricted Model of 
Diffusion    A model for white matter as con-
sisting of hindered axonal compartments and 
a hindered extra-axonal compartment. Can be 
used to extract information from DWI data 
given multi-shell HARDI data.   

  Commissural fi bers    White matter connections 
between both hemispheres.   

  Constant solid angle Q-ball imaging    A 
method to estimate the diffusion ODF based 
on the theory of  q -space, which provides a 
more meaningful diffusion ODF than the orig-
inal QBI method.   

  Crossing fi bers    The situation whereby mul-
tiple white matter bundles cross, fan, bend, 
or kiss within a single voxel. Crossing fi bers 
present considerable challenges to DTI 
because it can only model a single principle 
direction of diffusion.   

  Deterministic tractography    Tractography 
based on the estimated average principal dif-
fusion orientation (or eigenvector), resulting 
in one streamline per seed point.   

  Diffusion orientation density function    A 
function on the sphere providing an estimate 
of the proportion of spins (e.g., water mol-
ecules) diffusing along any given orientation.   

  Diffusion orientation transform    A method to 
estimate a diffusion ODF-like measure, based 
on the theory of  q -space. The dODF differs in 
that it represents the proportion of spins (e.g., 
water molecules) that have diffused by a given 
absolute distance along any given orientation 
(rather than by any distance as it is typically 
defi ned).   

  Diffusion spectrum imaging    A method to 
estimate the per-voxel average spin propaga-
tor, based on the theory of  q -space. This is 
typically used to estimate the diffusion ODF 
by radial projection of the spin propagator.   

  Diffusion tensor (model)    A 3 × 3 symmetric 
tensor (six unique parameters) representing 

the diffusion process in each voxel of a DTI 
image. The diffusion tensor “evaluated” along 
any direction to obtain ADC values as repre-
sented by that tensor.   

  Directionally encoded color (DEC) 
maps    Maps that use RGB (red, green, blue) 
encoding to map directions. In DTI, red is 
typically associated with left-right, green with 
back-front and blue with bottom-top.   

  Displacement probability distribution 
 function    The mathematical function that 
expresses the probability that a molecule has 
displaced from point  a  to point  b  within a 
given period, i.e., the diffusion time.   

  Dual spin echo (DSE)    See twice-refocused 
spin echo   

  Echo planar imaging (EPI)    Rapid method of 
signal readout that acquires multiple lines of 
 k -space after a single excitation without any 
refocusing RF pulses during the readout.   

  Eddy current-induced distortions    Image dis-
tortions due to the presence of eddy currents. 
The image in usually warped in nonlinear 
fashion leading to skewing and shearing dis-
tortions that manifest as a bright rim around 
reconstructed images.   

  Eddy currents    Electrical currents in the con-
ducting materials in the scanner, induced by 
the changing magnetic fi eld, and especially the 
large and fast-switching diffusion- weighting 
gradients.   

  Eigendecomposition    The process of obtain-
ing eigenvectors and eigenvalues of a tensor. 
Computer science provides reliable algo-
rithms for this task.   

  Eigenvalues    The ADC values of the ten-
sor along the directions of the eigenvectors. 
They provide the complete information on the 
shape and size of a tensor, independently of its 
orientation.   

  Eigenvectors    A new set of customized axes for 
a tensor, aligned along its specifi c orientation. 
They provide the complete information on the 
orientation of a tensor, independently of its 
size and shape.   

  Fast Spin Echo (FSE)    An image acquisition 
sequence consisting of a single 90° excitation 
RF pulse followed by a train of 180° refocus-
ing RF pulses, often called a  Carr -Purcell    - 
Meiboom    - Gill  (CPMG) pulse train. A less 
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widely used alternative to EPI, for DTI. FSE 
is slower but more robust to off- resonance 
distortions.   

  Fat suppression    Nulling the signal from 
hydrogen atoms in fat to prevent chemical 
shift artifacts.   

  Fiber orientation density function    A func-
tion on the sphere providing an estimate of 
the amount of fi bers aligned along any given 
orientation.   

  Field map    A map quantifying the deviation of 
the magnetic fi eld from the desired B0-fi eld 
(off-resonance). Can be used for unwarping.   

  Fractional anisotropy (FA)    The standard 
deviation of the eigenvalues, divided by their 
root mean square. A measure of how much the 
eigenvalues differ, but carefully normalized 
so it becomes independent of their absolute 
magnitude. It quantifi es how much the tensor 
deviates from representing isotropic diffusion. 
It has a range between zero and one—from 
perfect isotropy to perfect anisotropy.   

  Free diffusion    Diffusion unimpeded by 
boundaries or obstacles, such as in the center 
of a glass of water.   

  Generalized fractional anisotropy    A metric 
to characterize a diffusion or fi ber ODF, given 
as the standard deviation of the ODF over its 
RMS value.   

  Geometric distortions    Distortions in the 
image, causing a mismatch between the image 
and the geometry or anatomy of the object 
being scanned.   

  Gibbs ringing    Steep intensity transitions in 
the image cannot be represented correctly in 
the  k -space domain, resulting in artifactual 
ringing in the image around this transition   

  Global tractography    A simultaneously global 
and local estimation of a pathway, driven by 
the data. Less affected by error propagation 
than classical deterministic or probabilistic 
approaches.   

  Grey matter    One of the major tissue classes 
in the brain, consisting of the neuronal bod-
ies (soma) and dendritic projections, as well 
as neuroglia.   

  HARDI    High angular resolution diffusion 
imaging—a general type of diffusion- weighted 
MRI acquisition, whereby a relatively large 

number of diffusion-sensitizing gradients are 
applied along a set of uniformly distributed 
directions.   

  Hardware phantoms    Physical phantoms that 
can be used to test the performance of diffu-
sion MRI acquisition as well as processing.   

  Hindered diffusion    Diffusion that is impeded 
by non-enclosing boundaries or obstacles, 
such that the rate of diffusion is reduced, but 
there is no limit on the maximum possible dis-
placement of an atom or molecule.   

  Histogram analysis (DTI)    A histogram is a 
frequency distribution that displays the num-
ber of voxels with a specifi c value of the dif-
fusion measure (e.g., FA) obtained within an 
ROI (e.g., brain mask). From this histogram, 
the mean, median, peak height, and peak loca-
tion can be extracted and compared statisti-
cally between groups.   

  In-plane motion    Subject motion in the plane 
parallel to the slice-orientation   

  Interleaved acquisition    Scan in which the 
slices are acquired in an interleaved fashion, 
e.g., fi rst all the odd slices are acquired and 
then all the even slices (1, 3, 5, … 2, 4, 6, …).   

  Inter-slice instabilities    A difference between 
the odd and even slices as a result of for 
example subject motion, during scanning of 
a single volume in an interleaved acquisition   

  Isotropic diffusion    Diffusion of atoms or 
molecules that is orientationally invariant—
i.e., the rate of diffusion is the same in every 
direction.   

   k -space    The spatial frequency spectrum of the 
MR image as acquired directly from the MRI 
scanner. A Fourier transform can be used to 
convert  k -space to an image.   

  Kurtosis    The kurtosis is a dimensionless sta-
tistical metric that quantifi es the deviation 
from Gaussianity of an arbitrary distribution.   

  Linear least squares (LLS)    A fi tting method 
that is fast but not very accurate. It is perfectly 
suited to generate maps for qualitative use 
though.   

  Mean diffusivity (MD)    The average of the 
three eigenvalues. Represents a rotationally 
invariant average ADC value for each voxel.   

  Mean Kurtosis (MK)    The average apparent 
kurtosis coeffi cient   
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  Multi-shell    Referring to a diffusion MRI 
acquisition with more than one non-zero 
 b -value.   

  Multi-shell HARDI    An extension of the 
HARDI acquisition consisting of multiple 
HARDI acquisitions (shells) each its distinct 
 b -value.   

  Multi-shot    Refers to the acquisition of MRI 
data whereby segments of  k -space are acquired 
with different excitations. In DTI, specialist 
multi-shot EPI techniques may reduce image 
artifacts at the expense of increased scan time 
and relatively complex post-processing.   

  Multi-tensor fi tting    A method for estimat-
ing the fi ber orientations and partial volume 
fractions, based on a model of white matter 
whereby each fi ber population is modeled by 
its own diffusion tensor.   

  Narrow pulse approximation    The main 
assumption for the theory of  q -space to be 
valid, whereby the duration of the DW gradi-
ent pulses is suffi ciently short that motion of 
the spins during that time can be neglected.   

  Nonlinear least squares (NLS)    A fi tting 
method that solves the correctly formulated 
fi tting problem in DTI. It requires a lot of 
computation time and resources though, and 
can still get stuck in local optima. The non-
linear search allows the incorporation of extra 
constraints, such as not allowing for tensors 
with negative eigenvalues.   

  Normalization (Image)    The process of bring-
ing images into a common reference space. 
See also, Registration.   

  Nyquist ghosting    A copy of the image (the 
‘ghost’) that is shifted by half a fi eld-of- view 
in the phase-encoding direction, due to a mis-
calibration in the acquisition of EPI images.   

  Parallel Imaging    A method of speeding up 
image acquisition and reducing off- resonance 
distortions in EPI by acquiring a reduced 
amount of  k -space. Common approaches 
include GRAPPA and SENSE.   

  Partial Fourier    A method of speeding up 
image acquisition by exploiting the symmetry 
of  k -space. In partial-fourier techniques, only 
the lower frequencies and half the higher fre-
quencies in  k -space are sampled.   

  Persistent Angular Structure MRI    A method 
for the estimation of the diffusion ODF, based 

on the theory of  q -space. Relies on the approx-
imation that all spins diffuse by the same fi xed 
distance, coupled with a maximum entropy 
constraint.   

  Phase    Fundamental property of the MRI 
signal, which is used in image generation. 
Unwanted/incorrect phase is the most com-
mon source of artifacts in EPI.   

  Physically implausible signals    Signals that 
could not exist physically, i.e., signals in the 
diffusion-weighted scans that are higher than 
in the corresponding voxels of image without, 
or with a lower, diffusion-weighting.   

  Principal eigenvector    The eigenvector associ-
ated to the largest eigenvalue. In voxels con-
taining a single coherent bundle of axons, the 
principal eigenvector indicates the local orien-
tation of the axon bundle.   

  Probabilistic tractography    Tractography 
based on random sampling of the distribu-
tion of the diffusion orientation in each voxel, 
resulting in a tract probability map.   

  Projection fi bers    White matter connections 
between the cortex and lower brain areas, as 
well as the spinal cord.   

  Propagation of uncertainty    Increased local-
ization error in a computed tract based on 
the error in the orientation estimation of each 
individual voxel.   

  Pulsation    Pulsation of the veins and ventri-
cles as a result of cardiac pulsation. A source 
of physiological image artifacts that may be 
ameliorated using cardiac-gating during data 
acquisition.   

  Q-ball imaging    A method to estimate the dif-
fusion ODF, based on the theory of  q -space. 
Relies on large  q -values (cf.  b -values) and the 
Funk-Radon transform to obtain an estimate 
of the radial projection of the average spin 
propagator from HARDI data.   

   q -space    A theory relating the DW signal mea-
sured over a range of different  q -values to the 
Fourier transform of the average spin propa-
gator. Forms the basis of all methods that esti-
mate the diffusion ODF, and valid under the 
narrow pulse approximation.   

  Quality assurance    Procedure to ensure and 
check data quality, including scanner perfor-
mance, inspection of the DWIs, tensor fi ts, 
and any subsequent processing.   
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   q -value,  q -vector    A measure of the strength 
of the applied diffusion-weighting, given as 
the product of the DW gradient pulse ampli-
tude and its duration. The  q -vector refers to 
the  q -value combined with the direction along 
which the corresponding DW gradient is 
applied.   

  Radial diffusivity (or transverse diffusiv-
ity)    Equals the average of the smallest two 
eigenvalues, and thus represents an average 
ADC for the directions perpendicular to the 
orientation of an axonal bundle.   

  Radial Kurtosis    The average apparent kurto-
sis coeffi cient, measured in the plane perpen-
dicular to the principal direction of diffusion.   

  Random walk    A path constructed of a series 
of steps of random deviation, i.e., each step 
is random and independent of previous steps; 
the location of the path at any time step cannot 
be defi nitively predicted but only statistically 
described.   

  Real-time prospective motion correction    The 
real-time adjustment of the scan parameters, 
including slice location and orientation, gradi-
ents, and readout to correct for subject motion.   

  Region-of-interest (ROI)    An a priori selected 
area for investigation, which may be defi ned 
manually or using an automated approach 
(e.g., based on atlas-labels or tractography).   

  Registration (Image)    The process whereby 
two images are brought into voxel level align-
ment. The target image is warped into the 
same “space” as the source or reference image 
based on different types of information in 
either or both images.   

  Residual    The difference between the measured 
data and the values evaluated from a model 
fi t to the data. A good fi t would result in the 
residuals containing all the measurement noise 
as well as outliers caused by various artifacts.   

  Restricted diffusion    Diffusion that is con-
strained by impermeable boundaries, such 
that the maximum possible displacement for 
a diffusing molecule has a strict limit in any 
direction, which impinges on the boundary.   

  Reverse polarity gradient method 
(RPGM)    Acquires EPI images with oppo-
site phase-encoding direction in order to per-
form image unwarping.   

  Robust estimation of tensors by outlier 
 rejection (RESTORE)    A nonlinear fi tting 
method that can handle outliers (by detecting 
and rejecting them). It requires, on average, 
triple the computation time as compared to 
NLS. Data redundancy is also a requirement 
in order for a robust outlier detection, whilst 
ensuring enough data to work with after the 
outlier rejection.   

  ROI    (see Region-of-Interest)   
  Rotationally invariant    tensor based scalar 

measures or properties that are independent of 
tensor orientation, and thus describe aspects 
of its size or shape. Rotationally invariant ten-
sor measures are typically calculated based on 
the eigenvalues.   

  Rotationally variant    Dependent or infl uenced 
by the orientation of the tensor/microstructure 
relative to the diffusion- weighting gradient.   

  Seed point    Single initiation point of tractog-
raphy in one voxel. Practically, many seed 
points may be generated, e.g., in a cross- 
sectional slice.   

  Self-diffusion coeffi cient    A measure of the 
freedom of movement of any single mol-
ecule of a certain substance, within the sub-
stance itself. The self-diffusion coeffi cient 
of water is about 2.2 × 10 −3  mm 2 /s at room 
temperature.   

  Shimming    Adapting the magnetic fi eld within 
the scanner to improve the fi eld homogeneity   

  Signal dropout    Artifacts where the signal is 
artifi cially low.   

  Signal-to-noise ratio (SNR)    The ratio between 
the measured signal and the background noise   

  Single-Shot    Refers to the acquisition of a 
whole 2D image in a single excitation. Single-
shot EPI allows a full DTI dataset to be 
acquired in a very short amount of time com-
pared to other approaches.   

  Slice dropout    Artifacts where the signal in the 
entire slice is artifi cially low.   

  Smoothing (in VBA)    The application of a 
(usually) Gaussian kernel to the image, which 
results in alteration of the voxel-wise metric 
values according to the full-width half maxi-
mum of the kernel (typically 3–8 mm). Used 
to increase signal-to-noise and reduce intra-
subject variability.   
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  Spherical deconvolution    A method to esti-
mate the fi ber ODF, based on the assumption 
of a canonical fi ber population with fi xed dif-
fusion properties.   

  Spin propagator    A function giving the prob-
ability that a spin (e.g., a water molecule) 
initially at position  x  0  will have move to  x  1  
during the diffusion time  τ , i.e.,  P ( x  1 | x  0 , τ ). 
Also referred to as the displacement prob-
ability density function. In diffusion MRI, the 
quantity measured is typically the  average  
spin propagator, the average probability that a 
spin chosen at random from within the voxel 
will have moved by a distance  r , i.e.,  P ( r | τ ).   

  Streamline    Virtual reconstruction of a single 
pathway through the diffusion fi eld.   

  Subject motion    Bulk motion of the imaged 
participant during scanning.   

  Susceptibility    The degree of magnetization in 
response to a magnetic fi eld. Susceptibility 
artifacts arise near the interfaces of matter 
with different magnetic susceptibility, e.g., air 
and tissue.   

  Susceptibility-induced distortions    Image dis-
tortions due to fi eld inhomogeneities that are 
especially present in EPI acquisitions   

  T2 shine-through    A term referring to the fact 
that a DWI (not normalized) represents par-
tially decayed T2 weighted signal. A high 
intensity in a DWI can thus also be caused by 
an originally high T2 intensity. To rule out this 
effect, DWIs should be normalized by a B0, or 
ADC maps should be used instead.   

  TBSS    (see Tract-based spatial statistics)   
  Template    A reference image constructed by 

coregistering and averaging multiple scans in 
order to create a representation of the image 
characteristics of a given study population. 
Templates are used for image normalization. 
Standard templates are often used to report 
research fi ndings.   

  Tensor residuals    The ‘residual’ of the 
diffusion- weighted signals after tensor esti-
mation, i.e., the absolute average difference 
between signal and fi t (see also, Residual).   

  Through-plane motion    Subject motion in the 
direction perpendicular to the slice-orientation   

  Trace    A measure of average diffusivity in a 
voxel, calculated by summing the three eigen-

values or the sum of the diagonal elements of 
the diffusion tensor.   

  Track Density Imaging    A method for the 
reconstruction of high-resolution images based 
on the results of whole-brain fi ber-tracking.   

  (Fiber) Tract    Reconstructed pathway on milli-
meter scale in DWMRI data using a computer 
algorithm. Often confused with anatomical 
term “white matter fi ber bundle.”   

  Tract-based spatial statistics    A popular type 
of voxel-based analysis that evaluates changes 
in a skeleton comprising a limited amount of 
white matter, in order to increase sensitivity 
by reducing registration error and partial vol-
ume effects.   

  Twice-refocused spin echo (TRSE)    Diffusion 
preparation with two 180° refocusing pulses, 
designed to cancel eddy-currents   

  Unwarping    Image processing methods to 
correct or reduce susceptibility-induced 
distortions.   

  VBA    (see Voxel-based analysis)   
  Voxel-based analysis (DTI)    An exploratory 

approach often used in group analysis to 
investigate voxel-wise alterations in DTI 
parameters in brain white matter. A VBA pipe-
line typically consists of an image normaliza-
tion step, a smoothing step and  statistics that 
control family-wise error. See also  TBSS .   

  Weighted linear least squares (WLLS)    A 
fi tting method that is still fast yet more accu-
rate than LLS. It accounts for the logarithmic 
transformation of the data (and the noise) 
up to some extent, but is confronted with a 
chicken-and-egg problem to tackle this issue.   

  Westin measures    A set of metrics that charac-
terize the geometric properties of the diffusion 
tensor, including linear ( C  l ), planar ( C  p ) and 
spherical ( C  s ) components.   

  White matter    One of the major tissue classes 
in the brain, consisting of tightly packed, pre-
dominantly myelinated neuronal axons and 
associated neuroglia that link functional areas 
of the central nervous system.   

  White matter bundle    Anatomical structure 
comprising ten thousands (and in some bun-
dles, millions) of axons connecting distant 
mainly grey matter brain regions. Although 
this term includes anatomical structures with 
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“tract” in their anatomical name, e.g., cortico-
spinal tract; it is not synonymous with virtu-
ally reconstructed “fi ber tracts” or tracks.   

  Whole-brain tractography    A tractography 
approach whereby streamlines are initiated 

locally in all voxels of the brain mask in 
order to reconstruct the entire image trac-
togram. May be confused with  Global trac-
tography , which is a different and unrelated 
technique.        
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  A 
  Abscess cysts  ,   311   
  ACM   . See  Anatomical connectivity mapping (ACM)  
  Acute disseminated encephalomyelitis (ADEM)  , 

  332   ,   339   
  AD   . See  Alzheimer’s disease (AD)   . See  Axial 

diffusivity (AD)  
  ADC   . See  Apparent diffusion coeffi cient (ADC)   . 

See  Diffusion tensor imaging (DTI)  
  ADEM   . See  Acute disseminated encephalomyelitis 

(ADEM)  
  ADHD   . See  Attention defi cit hyperactivity disorder 

(ADHD)  
  Affi ne registration  ,   187   
  Alzheimer’s disease (AD)   . See  Mild cognitive 

impairment (MCI)  
  American Psychiatric Association  ,   362   
  Anatomical connectivity mapping (ACM)  ,   347   
  Anatomy  ,   233   ,   260–270  

 2D  ,   233  
 3D 

 arcuate fasciculus  ,   265–269  
 cerebral peduncles  ,   268–270  
 cingulum  ,   260   ,   261  
 corpus callosum  ,   233   ,   260   ,   261  
 fornix  ,   260   ,   262  
 inferior fronto-occipital fasciculus  ,   263–265  
 inferior longitudinal fasciculus  ,   262   ,   263  
 superior fronto-occipital fasciculus  ,   265–269  
 superior longitudinal fasciculus  ,   265–269   

  Anisotropy 
 ADC maps  ,   44   ,   46  
 advantages  ,   43   
 complications  ,   41–43     
 DWIs  ,   43   ,   45  
 ellipsoid eccentricity  ,   69  
 FA  ,   69–70  
 gradient table  ,   43   ,   44   ,   46   

  Anterior temporal lobe resection (ATLR)  ,   396   
  Apparent diffusion coeffi cient (ADC)  ,   10   ,   34   ,   90   ,   309  

 advantages  ,   40–41   
  b -value  ,   40   
 hindered/restricted diffusion  ,   39   
 minimum requirements  ,   41   

  Apparent diffusion tensor 
 DTI theory  ,   47–48     
 motivation and implications  ,   46–47    

  Arachnoid cysts 
 epidermoid tumors  ,   312  
 FLAIR and DWI  ,   312  
 necrotic brain tumor  ,   309   

  Arcuate fasciculus  ,   266–269   
  Association fi bres  ,   205   
  Atlas-based tractography 

 defi nition  ,   221  
 ROIs  ,   219  
 rROIs  ,   221  
 TRACULA  ,   220   ,   222   

  ATLR   . See  Anterior temporal lobe resection (ATLR)  
  Attention defi cit hyperactivity disorder (ADHD)  ,   368   
  Automated tractography 

 atlas-based  ,   221–222  
 manual reconstruction  ,   221  
 white matter atlas  ,   221   

  Axial diffusivity (AD)  ,   68   ,   410  
 diffusion ellipsoid  ,   78  
 eigenvalues  ,   78  
 myelin and axonal density  ,   78   

  Axial FA map color coded  ,   224   
  Axial slices  ,   233–242   
  Axonal scale  ,   222     

 B 
  BD   . See  Bipolar disorder (BD)  
  Behavioral variant of frontotemporal dementia 

(BvFTD)  ,   349   
  Biological confounds  ,   80–81       

 complex tissue architecture  ,   80–81  
 crossing fi bres 

 AD and RD  ,   81  
 FA  ,   80   
 MD  ,   81   
 trace  ,   80–81  

 demographics  ,   80   
 timing  ,   80   

  Bipolar disorder (BD)  ,   366   
  Black holes  ,   335   

                         Index 
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  Brain analysis techniques 
 anatomical image  ,   157  
 voxels  ,   157   

  Brain tumors, DTI  ,   313–320  
 ADC  ,   309  
 characterization 

 glioblastoma multiforme  vs.  lymphoma  ,   314–315  
 meningiomas  ,   315–317  
 posterior fossa tumors  ,   317–320  
 solitary metastasis  vs.  glioblastoma multiforme  , 

  313–314  
 diagnosis and follow-up  ,   324–326  
 LGGs and HGGs  ,   311   

   b -Value 
 effect  ,   74    
 diffusion weighting  ,   31–33    

  BvFTD   . See  Behavioural variant of frontotemporal 
dementia (BvFTD)    

 C 
  Carr-Purcell-Meiboom-Gill (CPMG)  ,   116   
  Central nervous system (CNS)  ,   331   
  Cerebral peduncles  ,   268–270   
  Cerebrospinal fl uid (CSF)  ,   332   
  Challenges in TBI  ,   379  

 analyzing DTI 
 ROI  ,   379  
 WB  ,   379  

 fi ber disruption and axonal degeneration  ,   378  
 timing, DTI scanning  ,   379  
 transportation and scanning issues  ,   378   

  CHARMED   . See  Composite hindered and restricted 
model of diffusion (CHARMED)  

  Chemical shift artifact  ,   142–143   
  Children, DTI 

 brain development  ,   279  
 child-centered approach 

 SBN  ,   280  
 scanning equipment and protocol  ,   279   

  Cingulum bundle (CB)  ,   260   ,   261   
  CIS   . See  Clinically isolated syndrome (CIS)  
  CJD   . See  Creutzfeld–Jakob disease (CJD)  
  Clinical practice, DTI 

 children, DTI  ,   279   ,   280  
 data collection  ,   276  
 ethical considerations  ,   280  
 and research  ,   275–276   

  Clinically isolated syndrome (CIS)  ,   335   
  CLs   . See  Cortical lesions (CLs)  
  CNS   . See  Central nervous system (CNS)  
  Color-coded super-resolution TDI  ,   224   
  Color-coded track-density image (TDI)  ,   224   
  Commissural fi bres  ,   205   
  Compartment models  ,   222   
  Composite hindered and restricted model of diffusion 

(CHARMED) model  ,   386   ,   414   
  Connectivity 

 anatomically implausible  ,   222  
 defi nition  ,   222  

 DW-MRI  ,   222  
 foresight  ,   223   ,   224  
 hypothesized  ,   222  
 large-scale  ,   222  
 measurement  ,   222   ,   223  
 nonexisting  ,   223  
 quantify  ,   222  
 streamline/fi bre count  ,   223   ,   224  
 white matter  ,   222   

  Constant solid angle-QBI (CSA-QBI)  ,   391   
  Constrained spherical deconvolution (CSD)  ,   209   
  Coronal slices  ,   233   ,   243–251   
  Corpus callosum (CC)  ,   135   ,   233   ,   260   ,   261   
  Cortical lesions (CLs)  ,   336   
  Corticospinal (pyramidal) tract (CST) 

 cerebral peduncle  ,   298  
 HARDI  ,   299  
 motor function  ,   293  
 PLIC  ,   299  
 thalamocortical fi bers  ,   298   

  Creutzfeld–Jakob disease (CJD) 
 akinetic mutism  ,   345  
 ataxia and myoclonus  ,   344  
 cortical and basal ganglia degeneration  ,   345  
 dementing syndrome  ,   344  
 DWI  ,   344  
 FA  ,   345  
 MD  ,   345  
 neocortical, limbic and subcortical gray matter 

hyperintensities  ,   344   ,   345  
 sCJD  ,   344  
 vacuolation  ,   344   

  CSA-QBI   . See  Constant solid angle-QBI (CSA-QBI)  
  CSD  ,   222   
  CSF   . See  Cerebrospinal fl uid (CSF)  
  CSF contamination, diffusion metrics  ,   82–83    
  CST   . See  Corticospinal (pyramidal) tract (CST)    

 D 
  Data acquisition  ,   13–15   ,   232   
  Data preprocessing  ,   15   ,   233   
  Data requirements, tractography  ,   208   ,   209  

 b-value  ,   209–211  
 fi eld strength  ,   210   ,   211  
 gradient directions/signal averages  ,   209–212  
 resolution 

 anisotropic resolution  ,   209  
 crossing fi bre  ,   208  
 false positive tracking results  ,   208  
 low spatial resolution  ,   208  
 ROI placement  ,   208  
 tracking algorithms  ,   209  
 U-fi bres  ,   208  
 voxel  ,   208   

  DBS   . See  Deep brain stimulation (DBS)  
  Deep brain stimulation (DBS)  ,   362  

 DRT  ,   296  
 DTI data  ,   296  
 myoclonus dystonia  ,   296  
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 STN and GPi  ,   296  
 VIM  ,   296   

  Dementia 
 AD  ,   343   ,   346–349  
 CJD  ,   344–345  
 DWI  ,   344  
 FTLD  ,   349–352   

  Dementia with Lewy bodies (DLB) 
  vs . AD  ,   353  
 cingulum and precuneus  ,   353  
 DTI  ,   353  
 FA reduction  ,   353   ,   354   

  Demyelinating diseases  ,   332  
 acquisition protocol 

 CSF  ,   332  
 EPI technique  ,   332  
  k -space  ,   332  
 PROPELLER technique  ,   332  

 ADEM  ,   339  
 DTI data analysis  ,   333–334  
 NMO  ,   338–339  
 pathological abnormalities  ,   334   

  Dentate-rubral-thalamic tract (DRT)  ,   296   
  Deterministic tractography 

 corpus callosum  ,   206   ,   207  
 curvature threshold  ,   206   ,   207  
 FA, 206  ,   208  
 masking  ,   206  
 parameter values  ,   206  
 principal  ,   206  
 seed point  ,   206   ,   207   

  DICOM   . See  Digital information and communication in 
medicine (DICOM)  

  Diffusion kurtosis acquisition 
  b -value  ,   411  
 diffusion-weighted images  ,   411  
 DTI  ,   411  
 SGP  ,   412   

  Diffusion kurtosis applications 
 complementary research  ,   414  
 Gaussian DTI model  ,   413  
 high-grade and low-grade cerebral gliomas  ,   413  
 ischemic tissue injury  ,   414   

  Diffusion kurtosis imaging (DKI) 
 acquisition  ,   411–412   
 applications  ,   413–414   
 arbitrary distribution  ,   408  
 coeffi cient  ,   408–409   
 defi nition  ,   405   
 dimensionless statistical metric  ,   408  
 free diffusion  ,   405  
 hindered and restricted diffusion  ,   406–408   
 limitations 

 biophysical model  ,   414  
 CHARMED model  ,   414  
 white matter model  ,   414  

 parameters    (see  Kurtosis parameters )  
 PDF  ,   406  
 post processing    (see  Diffusion kurtosis 

processing )  

 three-dimensional (3D) Gaussian diffusion model  , 
  409   ,   410   

  Diffusion kurtosis processing 
 eddy currents  ,   412  
 encoding amplitude and gradient  ,   412  
 Gibbs ringing/misalignment  ,   413  
 LLS  ,   413  
 NLS  ,   413  
 subject motion  ,   412  
 water molecules  ,   413  
 WLLS  ,   413   

  Diffusion orientation density function (dODF) 
 clinical and neuroscientifi c studies  ,   392  
 CSA-QBI  ,   391  
 DOT  ,   391  
 fi ber orientations  ,   392  
 GFA  ,   392  
 model-free nature  ,   392  
 PAS-MRI  ,   391  
 QBI  ,   391  
 spherical deconvolution operation  ,   392  
 tissue microstructure  ,   392   

  Diffusion orientation transform (DOT)  ,   392   
  Diffusion spectrum imaging (DSI)  ,   390   
  Diffusion tensor (DT)  ,   331   
  Diffusion tensor imaging (DTI) 

 acute ischemia and brain lesions  ,   7  
 advanced concepts and techniques  ,   4   
 analysis strategies  ,   15   ,   16  
 analysis technique, role of  ,   83   
 anisotropic diffusion  ,   8  
 applications of  ,   11   ,   13  
 axonal architecture  ,   9   ,   11  
 challenges of interpretation  ,   79  
 clinical applications  ,   4   
 clinical MRI techniques  ,   8  
 in clinical practice  ,   17–18   
 complementary measures  ,   78–79  
 data acquisition  ,   13–15   
 data pre-processing  ,   15  
 decision schemes  ,   4–5   
 fi ber tracts, presurgical planning work-up  ,   13  
 geometric representation  ,   10   ,   12  
 heterogeneous microstructural environments  ,   9  
 improved directional contrast with  ,   8   ,   9  
 interpretation of  ,   16   ,   17  
 isotropic diffusion  ,   8  
 model limitations  ,   79–80   
 neurodevelopment/aging  ,   13  
 practical implementation  ,   3  
 prototypal DTI study pipeline  ,   13   ,   14  
 quantitative technique  ,   10–11   
 software packages  ,   4  
 strengths and limitations  ,   17   ,   18   
 tissue orientation, applied diffusion gradient  ,   9   ,   10   

  Diffusion tensor imaging fi ber tractography 
(DTI FT)  ,   292   

  Diffusion tensor information (DTI)  ,   192  
 standard templates  ,   193  
 templates  ,   193   
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  Diffusion-weighted imaging (DWI)  ,   344  
 EPI-DTI  ,   98  
 hardware limitations  ,   102  
 motion artifacts  ,   119  
 motion-induced phase error  ,   119  
 motion sensitivity  ,   117–120   
 MRI  ,   98  
 nonrigid phase errors  ,   119  
 parallel imaging  ,   120  
 reconstruction  ,   120  
 scan parameters  ,   95  
 susceptibility artifacts  ,   106   

  Diffusion-weighted MRI (DWMRI)  ,   205  
 measurements  ,   76   

  Diffusivity measurement 
 AD  ,   68  
 MD  ,   68  
 RD  ,   68  
 trace (Tr)  ,   67  
 Westin measures  ,   68    

  Digital information and communication in medicine 
(DICOM)  ,   282   

  Direction-encoded color (DEC) map  ,   130–131   
  DKI   . See  Diffusion Kurtosis imaging (DKI)  
  DLB   . See  Dementia with Lewy bodies (DLB)  
  dODF   . See  Diffusion orientation density function 

(dODF)  
  DOT   . See  Diffusion orientation transform (DOT)  
  Double spin-echo (DSE) pulse sequence  ,   123   
  DRT   . See  Dentate-rubral-thalamic tract (DRT)  
  DSI   . See  Diffusion spectrum imaging (DSI)  
  DT   . See  Diffusion tensor (DT)  
  DTI acquisition  ,   89–92   

 brain scan  ,   109  
 coil elements  ,   110  
 complex number  ,   92  
 description  ,   89  
 EPI  ,   93–95    
 gradient performance  ,   111  
  K-Space     (see  K-Space )  
 metal  ,   109  
 non-diffusion images  ,   108  
 parallel imaging/multi-shot regimes  ,   109  
 pediatric considerations  ,   124   
 phase angles  ,   93  
 PNS  ,   112  
 SENSE/ASSET scan  ,   110  
 signal magnitude  ,   92  
 speed  ,   120  
 Stejskal-Tanner diffusion-encoding    (see  

Stejskal-Tanner diffusion-encoding )  
 troubleshooting  ,   107   

  DTI data 
 artifacts  ,   133  
 diffusion MRI data  ,   127  
 diffusion protocols  ,   134  
 DWIs  ,   127   ,   131  
 eddy currents  ,   129  
 FA and MD  ,   134  
 guidelines  ,   129  

 image and k-space  ,   135  
 Image processing stage  ,   143  
 image registration  ,   132  
 interslice instabilities  ,   133  
 processing stages  ,   127  
 signal and slice dropouts  ,   144–145  
 table vibrations  ,   133  
 tensor estimation  ,   136   

  DTI fi ndings in psychiatric disorders  ,   366–369  
 anxiety disorders 

 GAD  ,   367  
 OCD  ,   367  
 PTSD  ,   367  

 limbic system, tracts  ,   365  
 mood disorders    (see  Mood disorders, DTI )  
 neurodevelopmental disorders 

 ADHD  ,   368  
 alcohol use disorders  ,   368   ,   369  
 autism, 368 

 personality disorders, 367 
 schizophrenia  ,   366  
 white matter  ,   365   

  DTI FT   . See  Diffusion tensor imaging fi ber tractography 
(DTI FT)  

  DTI-EPI diffusion gradients  ,   113   
  DTI method 

 analysis techniques and approaches  ,   156  
 axial slice  ,   156  
 brain analysis techniques  ,   157–158  
 brain regional level  ,   156  
 checklist  ,   170   ,   171  
 data analysis  ,   168  
 data processing  ,   170  
 data quality  ,   156   ,   168  
 DWI  ,   155  
 FA maps  ,   155  
 factors  ,   167   ,   168  
 guidelines  ,   167  
 memory game  ,   172  
 optimal analysis approach  ,   166  
 pipeline  ,   154  
 population 

 characteristics  ,   167–168  
 composition  ,   167  
 pathology  ,   168  

 purpose  ,   156  
 regional information  ,   158  
 software and hardware  ,   168  
 software packages  ,   170  
 stress  ,   170   

  DTI in TBI  ,   376  
 pathophysiology 

 intracellular (cytotoxic)  ,   376  
 traumatic axonal injury  ,   376  
 vasogenic (extracellular)  ,   376  

 prognostic predictor  ,   377   
  Dual spin-echo (DSE) diffusion imaging  , 

  113   ,   130   
  DWI   . See  Diffusion-weighted imaging (DWI)  
  DWIs number of, effect  ,   73       
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 E 
  Echo-planar imaging (EPI)  ,   331  

 advantages  ,   95  
  b-value   ,   97  
 Cartesian  ,   99  
 chemical shift artifacts  ,   99  
 DTI  ,   93  
 sequence  ,   232  
 source  ,   104  
 TE  ,   98   

  Eddy current correction  ,   123–124   
  Eddy currents  ,   233   
  Eigendecomposition  ,   51–52    
  Eigenvalues and eigenvectors 

 alternatives  ,   51   
 eigendecomposition  ,   51–52   
 in practice  ,   52–53    
 tensor elements  ,   50–51   

  Eloquent WM pathways  ,   293   ,   294  
 categorization  ,   293  
 cortical and subcortical structures  ,   292  
 DTI FT  ,   295  
 fi ber tracking method  ,   295  
 fMRI  ,   292  
 functional mapping  ,   295  
 IFOF and UF  ,   295  
 motor 

 central cerebral peduncle  ,   293  
 CST  ,   293  
 FA maps  ,   294  
 ISM  ,   293  
 Karnofsky scores  ,   294  
 MEP  ,   294  
 neoplasm  ,   294  
 SEP  ,   294  
 single and multi tensor approach  ,   293  
 SMA syndrome  ,   294  
 somatotopic mapping  ,   293  

 neuronavigation systems  ,   295  
 OR  ,   294  
 ROI  ,   292  
 SLF/AF  ,   294–295  
 susceptibility-related artifacts  ,   294  
 tractography  ,   294   ,   295   

  Ependymoma (EP)  ,   317   
  EPI   . See  Echo planar imaging (EPI)  
  Epidermoid cysts 

 DW trace images  ,   312  
 ectodermal tissue  ,   312  
 granulomatous meningitis  ,   312  
 intraparenchymal  ,   312   

  Extracellular region, hindered diffusion  ,   25     

 F 
  FA   . See  Fractional anisotropy (FA)  
  FACT   . See  Fiber assignment by continuous tracking 

(FACT)  
  FACT-algorithm  ,   231   
  Fast spin-echo (FSE)  ,   105   ,   116   

  Fat band  ,   142   
  Fat suppression method  ,   109   
  Fiber assignment by continuous tracking (FACT)  , 

  231   ,   297   
  Fiber count  ,   78   ,   223   ,   224   
  Fiber orientation distribution (FOD) 

 fi ber confi gurations  ,   387  
 fi ber-tracking  ,   387   ,   388  
 linear algebra  ,   387  
 sphere  ,   387   

  Fiber orientations estimation  ,   386–389       
 anisotropy assumption 

 fi ber effects  ,   388  
 HARDI data  ,   389  
 partial volume effects  ,   388  
 tensor-derived metrics  ,   388  

 multi-tensor fi tting    (see  Multi-tensor sensor 
approach )  

 spherical deconvolution    (see  Fibre orientations 
estimation: spherical deconvolution method )   

  Fiber tracking  ,   231  
 biopsy  ,   304  
 CC  ,   233  
 dependency  ,   232  
 fMRI  ,   292  
 fornix  ,   260  
 hemisphere dominance  ,   295  
 inferior longitudinal fasciculus  ,   262  
 navigation systems  ,   304  
 non-commutative property of  ,   211   ,   213  
 principle of  ,   232  
 property  ,   232  
 robust  ,   299  
 scalar and directional data  ,   297  
 suboptimal/failed  ,   297  
 tractography algorithm  ,   233   

  Field strength effect  ,   72–73   ,   210–211    
  Field-of-view (FOV)  ,   131   
  Fornix  ,   260   ,   262   
  Fractional anisotropy (FA)  ,   10   ,   184   ,   206   ,   245   ,   309   , 

  382   ,   383  
 DTI indices  ,   76  
 integrity  ,   77  
 macromolecules, organelles and membranes  ,   77  
 magnitude, anisotropic components  ,   69  
 maps of  ,   56   ,   57  
 regional anisotropy  ,   77  
 standard deviation, eigenvalues  ,   56  
 tissue microstructure  ,   70   

  Free diffusion   . See  Hindered diffusion  
  Frontotemporal lobar degeneration (FTLD)  ,   349   ,   350  

  vs . AD  ,   351–352  
 bvFTD  ,   349–350  
 DTI  vs . pathology and genetic background  ,   349  
 nonfl uent/agrammatism  ,   349  
 PPA 

 atrophy  ,   350  
 logopenic variant  ,   350  
 nonfl uent and semantic variants  ,   350  
 phenotypes  ,   349  
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 Frontotemporal lobar degeneration (FTLD) (cont.) 
 ROI-based/tractography DTI  ,   350  
 TBSS  ,   350  
 voxel-wise approach  ,   350   

  FSL BedpostX  ,   217–218   
  FSL fl irt  ,   233   
  Full width at half maximum (FWHM)  ,   195     

 G 
  GAD   . See  Generalized anxiety disorder (GAD)  
  Galantamine  ,   348   
  Gaussian kernel  ,   195   
  GBM   . See  Glioblastoma multiforme (GBM)  
  GCC   . See  Genus of the corpus callosum (GCC)  
  Generalized anxiety disorder (GAD)  ,   367   
  Generalized fractional anisotropy (GFA)  ,   392   
  Genus of the corpus callosum (GCC)  ,   43   
  GFA   . See  Generalized fractional anisotropy (GFA)  
  Ghosting  ,   99   
  Gibbs Ringing  ,   140–142   
  Gibbs ringing artifacts  ,   140   ,   141   
  Glioblastoma multiforme (GBM)  ,   311  

  vs.  lymphoma  ,   314–315  
 perilesional edema  ,   311  
  vs.  solitary metastasis  ,   313–314   

  Global tracking algorithm  ,   233   
  Global tractography  ,   223   
  Globus pallidus interna (GPi)  ,   296   
  GM   . See  Gray matter (GM)  
  GPi   . See  Globus pallidus interna (GPi)  
  Gray matter (GM)  ,   335   ,   336   
  Groups of methods operate in either  k -space 

(GRAPPA)  ,   120     

 H 
  HARDI   . See  High-angular resolution diffusion imaging 

(HARDI)  
  HDFT   . See  High defi nition fi ber tracking method 

(HDFT)  
  HGGs   . See  High-grade gliomas (HGGs)  
  High-angular resolution diffusion imaging (HARDI)  ,   13   , 

  221   ,   386–399                     
 acquisition strategy  ,   384  
 b-value  ,   384  
 connectivity    (see  Structural connectivity assessment )  
 crossing fi bers, resolve    (see  Fiber orientations 

estimation )  
 data acquisition 

 b-value  ,   392  
 SNR  ,   393  

 diffusion process characterise 
 dODF  ,   390–392      
 model-free techniques  ,   389  
 narrow pulse approximation  ,   391–392   
 q-space    (see  Spin propagator )  
 spin propagator  ,   389–390   

 diffusion tensor ellipsoid  ,   382  
 DW signal  ,   385  

 FA  ,   383  
 N parameters  ,   385  
 spin propagator 

 average  ,   389  
 DSI  ,   390  
 DW signal  ,   389  
 q-vectors  ,   390  
 spin displacement probability density 

function  ,   389  
 structural integrity AFD  ,   399  
 structural integrity MND  ,   399  
 tractography    (see  Tractography techniques )   

  High defi nition fi ber tracking method (HDFT)  ,   397   
  Higher order model tractography  ,   219   ,   221   
  High-fi eld scanners  ,   211   
  High-grade gliomas (HGGs)  ,   311   
  Hindered diffusion 

 ADC  ,   34  
 extracellular region  ,   25  
 Gaussian dispersion pattern  ,   34  
 restricted water inside and around boundaries  ,   25   ,   26  
 RMS displacement  ,   34  
 water molecules restricted inside cylindrical 

boundary  ,   26   ,   27   
  Hindered/restricted diffusion 

 biological tissues  ,   406  
 bounding microstructure  ,   408  
 Gaussian distribution  ,   407  
 ventricular system  ,   406   

  Histogram analysis 
 parameters  ,   158   

  Human resources  ,   285   ,   286  
 cost  ,   286  
 support staff  ,   285  
 time 

 acquisition  ,   285  
 analysis/off-line processing  ,   286  
 outsourcing  ,   286  
 preparation  ,   285  
 radiological reporting  ,   286     

 I 
  IFOF   . See  Inferior frontal occipital fasciculus (IFOF)  
  ILF   . See  Inferior longitudinal fasciculus (ILF)  
  Image acquisition, DTI parameters  ,   71–72   
  Image quality 

 artifacts  ,   75–76    
 noise  ,   74–75      

  Image registration techniques  ,   184   ,   278  
 global  ,   187  
 local deformation  ,   187  
 rigid-body transformation  ,   187   

  Implausible connections  ,   222   
  Inferior frontal-occipital fasciculus (IFOF)  , 

  263–265   ,    301   
  Inferior longitudinal fasciculus (ILF)  ,   2–265   ,   301    
  Inhomogeneities  ,   21   
  Interslice instabilities  ,   133   
  Intracellular region, restricted diffusion  ,   25   
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  Intraoperative navigation 
 color FA map  ,   297  
 fi ber tracts  ,   297   

  Intraoperative stimulation mapping (ISM)  ,   293   
  Inversion time  ,   143   
  ISM   . See  Intraoperative stimulation mapping (ISM)  
  Isotropic Gaussian smoothing kernel  ,   197     

 J 
  JHU atlas  ,   177     

 K 
  Karnofsky scores  ,   294   
   k -Space  ,   92   
  k-space trajectory  ,   137   
  Kurtosis parameters 

 axial diffusivity  ,   410  
 diffusion-weighted MR images  ,   408  
 eigenvectors and eigenvalues  ,   410  
 fractional anisotropy  ,   410  
 kurtosis metrics  ,   410  
 parameter maps  ,   410   ,   411  
 radial diffusivity  ,   410  
 scatter plots  ,   410     

 L 
  Linear least squares (LLS)  ,   413  

 ADC values  ,   59  
 single-step process  ,   58  
 sum of squared residuals  ,   58   

  Lipid suppression methods  ,   113   
  Lipid/fat suppression  ,   113   
  LLS   . See  Linear least squares (LLS)  
  Longitudinal fasciculus  ,   215   
  Low-grade glioma (LGGs)  ,   315   
  Low-intensity voxels  ,   212     

 M 
  Magnetic fi eld inhomogeneities  ,   113   
  Magnetic resonance imaging (MRI)  ,   25–30                

 free diffusion, water molecules  ,   24   
 hindered diffusion    (see  Hindered diffusion )  
 isotropic diffusion  ,   25  
 microstructural tissue properties 

 astrocytes  ,   28  
 cellular components, neural tissue  ,   27   ,   28  
 cellular structures  ,   26  
 grey and white matter contrast  ,   28   ,   29   
 microglia  ,   28  
 myelin sheath  ,   27  
 neurites  ,   27  
 neurons, building blocks  ,   27  
 oligodendrocyte cells  ,   28  
 optic nerve, healthy rat sliced  ,   29   ,   30  

 physical and mathematical theories  ,   24     ( see also 
  Pulsed gradient spin echo (PGSE) method )  

 random walk  ,   24  
 restricted diffusion  ,   25  
 sensitizing  ,   30   

  Major depressive disorder (MDD), 6  ,   36   
  Manual data quality assurance  ,   146   
  Mass lesions in brain 

 abscess  ,   311  
 epidermoid and arachnoid cysts  ,   312  
 FA values, abscesses  ,   312  
 glioblastoma and metastases  ,   311  
 high- grade gliomas and tumefactive demyelinating  , 

  312–313  
 necrotic or cystic tumors  ,   311  
 neoplastic cysts  ,   311  
 perilesional edema  ,   311   

  MD   . See  Mean diffusivity (MD)  
  MDD   . See  Major depressive disorder (MDD)  
  Mean diffusivity (MD)  ,   206   ,   345  

 axial and radial diffusivity  ,   55  
 description  ,   77  
 diagonal tensor elements  ,   56  
 diffusivity measures  ,   68  

 DTI metrics, stroke  ,   77  
 maturation  ,   78  

 rotationally invariant measures  ,   55  
 same rotation invariant MD  ,   56  

 water content differences  ,   78   
  Medulloblastoma (MB)  ,   317   
  Meningiomas  ,   315  

 factor  ,   316  
 spindle cells  ,   316   

  MEP   . See  Motor evoked potentials (MEP)  
  Mild cognitive impairment (MCI) 

 ACM  ,   347  
 central nervous system  ,   346  
 cholinesterase inhibition  ,   347  
 cortical pathology  ,   346  
 diagnostic accuracy  ,   348  
 DTI tractography  ,   346  
 longitudinal DTI studies  ,   348  
 meta-analyses  ,   346  
 MMSE  ,   346  
 novel strategies  ,   348–349  
 Wallerian degeneration  ,   346  
 WM pathways  ,   346   

  Mini-mental state examination (MMSE)  ,   346   
  MMSE   . See  Mini-mental state examination (MMSE)  
  Model-free techniques  ,   389   
  Monitoring treatment effects 

 ADC values  ,   324  
 contrast-enhancing lesions  ,   324  
 high-grade glioma  ,   325  
 injury and tumor recurrence  ,   324  
 radiochemotherapy  ,   324  
 therapy-induced infl ammatory reactions  ,   324   

  Mood disorders, DTI 
 BD, 6  ,   36  
 depression  ,   366  
 FA reductions  ,   366  
 MDD  ,   366   
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  Motor evoked potentials (MEP)  ,   294   
  MRI-HARDI-techniques  ,   292   
  MS   . See  Multiple sclerosis (MS)  
  Multichannel phased-array head-coils  ,   211   
  Multiple sclerosis (MS) 

 CLs  ,   336  
 CNS  ,   331  
 demyelinating diseases  ,   332   ,   334   ,   338–339  
 DT  ,   331  
 DTI abnormalities  ,   331  
 fi ber tracking  ,   331  
 focal WM lesions  ,   335  
 GM  ,   335–336  
 MRI  ,   331  
 NAWM  ,   335  
 NMO and ADEM  ,   2   ,   33  
 optical nerve  ,   336  
 spinal cord  ,   336  
 tractography  ,   337–338  
 voxel-based method  ,   338  
 WM  ,   331   

  Multi-shell dMRI 
 DKI  ,   70  
 tissue (compartment) model-based approaches  ,   71    

  Multi-tensor approach 
 CHARMED approach  ,   386  
 nonlinear minimization methods  ,   386  
 single tensor model  ,   386   

  Multi-tensor models  ,   209     

 N 
  Narrow pulse approximation 

 DW gradient pulses  ,   391  
 fi ber bundles  ,   392  
 tags and untags water molecules  ,   391   

  NAWM   . See  Normal appearing white matter (NAWM)  
  Nerve tracts  ,   231   
  Neurite orientation dispersion and density imaging 

(NODDI)  ,   71   
  Neurites 

 axons  ,   27  
 dendrites  ,   27   

  Neuroimaging for coma emergence and recovery 
(NICER)  ,   377   

  Neuroimaging informatics technology initiative 
(NIFTI)  ,   282   

  Neuromyelitis optica (NMO)  ,   332   ,   338–339   
  Neurosurgical planning, DTI  ,   296   ,   297  

 color FA and tractography maps  ,   292  
 cortical and subcortical mapping  ,   291  
 corticospinal (pyramidal) tract  ,   298   ,   299  
 DBS electrode placement  ,   296  
 eloquent WM pathways  ,   292–295  
 fi ber pathways  ,   291  
 HARDI  ,   291  
 ILF and IFOF  ,   301  
 image acquisition and postprocessing 

 atlas-based segmentation  ,   297  
 bone and paranasal sinus interfaces  ,   296  

 bulk and physiologic motion  ,   296  
 cardiac gating  ,   296  
 color FA maps and tractography  ,   297  
 FACT approach  ,   297  
 fat saturation techniques  ,   296  
 isotropic voxels  ,   296  
 neuroanatomy  ,   297  
 ROI  ,   297  

 intraoperative electrophysiologic mapping  ,   291  
 microstructural and macrostructural organization  ,   291  
 misregistration and intraoperative shift  ,   303  
 multimodal data  ,   297  
 pathophysiological effects, diffusion properties  ,   305  
 radiation damage  ,   295–296  
 radiotherapeutic planning  ,   291  
 SLF/AF  ,   300   ,   301  
 uncinate fasciculus  ,   301  
 white matter tracts and tractography  ,   304   ,   305   

  NICER   . See  Neuroimaging for coma emergence and 
recovery (NICER)  

  NIFTI   . See  Neuroimaging informatics technology 
initiative (NIFTI)  

  NLS   . See  Nonlinear least squares (NLS)  
  NMO   . See  Neuromyelitis optica (NMO)  
  NODDI   . See  Neurite orientation dispersion and density 

imaging (NODDI)  
  Nonexisting connections  ,   223   
  Nonlinear least squares (NLS)  ,   413  

 ADCs values  ,   60  
 MRI  ,   61  
 sum of squared residuals  ,   60   

  Normal-appearing white matter (NAWM)  ,   324  
 CIS  ,   335  
 DTI metrics  ,   335  
 neuroprotective therapies  ,   335  
 RRMS  ,   335  
 T2 lesions  ,   335   

  Number of signal averages (NSA)  ,   210   
  Nyquist ghosting  ,   140  

 correction methods  ,   139  
 image Processing Stage  ,   140  
 origin  ,   139     

 O 
  Obsessive-compulsive disorder (OCD)  ,   367   
  OCD   . See  Obsessive-compulsive disorder (OCD)  
  Online tracking result with scanner software  ,   224   ,   225   
  Optic nerve  ,   336   
  Optic radiations (OR)  ,   294   
  Optimal analysis approach  ,   166   
  OR   . See  Optic radiations (OR)  
  OR/AND/NOT  ,   212     

 P 
  PACS   . See  Picture archiving and communication system 

(PACS)  
  pAgCC   . See  Partial agenesis of the corpus callosum 

(pAgCC)  
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  Partial agenesis of the corpus callosum (pAgCC)  ,   398    
  Partial Fourier imaging 

  k-space   ,   123  
 TE and TR  ,   122   

  Partial volume effects (PVE)  ,   178   ,   278  
 defi nition  ,   82  
 DTI analysis  ,   82  
 spatial resolution  ,   82   

  PAS-MRI   . See  Persistent angular structure MRI 
(PAS-MRI)  

  Patient group 
 age 

 developmental phase  ,   277  
 senescent phase  ,   277–278  

 effect, brain structure 
 DTI parameters  ,   278  
 fi eld-map-based techniques  ,   278  
 frontal and temporal sinuses  ,   278  
 image registration techniques  ,   278  
 neuroimaging community  ,   278  
 PVE  ,   278  
 sclerosis  ,   278  

 effect, patient mobility  ,   279  
 patient compliance  ,   279  
 prodromal schizophrenia  ,   276   

  PCNSL   . See  Primary central nervous system lymphoma 
(PCNSL)  

  PDF   . See  Probability distribution function (PDF)  
  Peripheral nerve stimulation (PNS)  ,   103   ,   111–112   
  Persistent angular structure MRI (PAS-MRI)  ,   391   
  PGSE   . See  Pulsed gradient spin echo (PGSE) method  
  Picture archiving and communication system 

(PACS)  ,   282   
  Pilocytic astrocytoma (PA)  ,   317   
  Posttraumatic stress disorder (PTSD)  ,   367   
  PPA   . See  Primary progressive aphasia (PPA)  
  Primary central nervous system lymphoma (PCNSL)  , 

  314   ,   316   
  Primary progressive aphasia (PPA)  ,   349   
  Probabilistic tractography 

 automated atlas-based tractography  ,   219   ,   220  
 distribution, estimated possible orientations  ,   216   ,   217  
 mapping connections  ,   217  
 multiple tracts  ,   216   ,   217  
 propagate/accumulate  ,   215   

  Probability distribution function (PDF)  ,   406   
  Projection fi bres  ,   205   
  PROPELLER technique  ,   332   
  Protocol 

 data acquisition  ,   232  
 data preprocessing  ,   233  
 tracking algorithm  ,   233   

  Psychiatry, DTI  ,   360–365  
 application 

 diagnoses  ,   362   ,   363  
 neuroimaging  ,   363  
 scanner  ,   364   ,   365  

 biomarkers 
 learning dataset  ,   361  
 machine learning  ,   361  

 multivariate machine learning algorithms  ,   361  
 support vector machines  ,   361  
 white matter abnormalities  ,   361  

 clinical research 
 mood disorders  ,   360  
 MRI  ,   360  
 neuroimaging  ,   360  
 schizophrenia  ,   360  
 T1 scans  ,   360  

 comorbidity  ,   363  
 DBS  ,   362  
 DSM-V  ,   363  
 heterogeneity  ,   363   ,   364  
 illness  ,   360  
 neurobiological models  ,   360  
 psychosurgical procedures  ,   361   ,   362  
 psychotropic medication  ,   364   

  PTSD   . See  Posttraumatic stress disorder (PTSD)  
  Pulsation  ,   134–136   
  Pulsed gradient spin echo (PGSE) method 

 b-Value  ,   31–33   
 evolution of magnetisation magnetization  ,   31  
 evolution of magnetization  ,   33  
 Larmor precession, magnetic fi eld gradient  ,   31   ,   32  
 pulse sequence  ,   30   ,   31  
 signal  ,   34    
 Stejskal-Tanner equation  ,   30  
 Stejskal-Tanner sequence  ,   30   

  PVE   . See  Partial volume effects (PVE)    

 Q 
  Q-ball Imaging (QBI) 

 CSA  ,   391  
 pAgCC  ,   398  
 tractography  ,   398   

  QBI   . See  Q-ball Imaging (QBI)  
  Quality assurance (QA) 

 and control  ,   145  
 tests  ,   145   

  Quantifi cation in medical imaging  ,   67–70   
 ADC values  ,   67  
 advanced and automated tools  ,   65  
 anisotropy measures    (see  Anisotropy )  
 diffusivity measures    (see  Diffusivity measures )  
 dMRI data  ,   66  
 ellipsoid  ,   66  
 example parameter maps  ,   66   ,   69     ( see also   Multi-shell 

dMRI )  
 radiological diagnosis  ,   65     

 R 
  Radial diffusivity (RD)  ,   68   ,   410    . See   also  Axial 

diffusivity (AD)  
  Radiofrequency (RF) system  ,   103   
  Random Brownian motion  ,   222   
  RD   . See  Radial diffusivity (RD)  
  Readout-segmented EPI (RS-EPI)  ,   115   
  Reference regions of interest (rROIs)  ,   221   
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  Region of interest (ROI)  ,   158–160   ,    211    
 ADC  ,   176  
 axonal damage  ,   377  
 corpus callosum  ,   176  
 defi nition  ,   175  
 diffusion images  ,   178  
 FA and MD value  ,   178  
 FA map  ,   177  
 placement  ,   181  
 position and size  ,   175  
 potential myelin  ,   377  
 registration  ,   179  
 spatial normalization  ,   180  
 statistical analysis  ,   180  
 and volume  ,   292  
 voxel-based analysis  ,   176  
 white matter  ,   379   

  Region-specifi c analysis techniques 
 diffusion measurement  ,   158   

  Relapsing-remitting multiple sclerosis (RRMS)  ,   335   
  RESTORE   . See  Robust estimation of tensors by outlier 

rejection (RESTORE)  
  Restricted diffusion  ,   25   
  Reverse polarity gradient method  ,   138   
  Rigid-body transformation  ,   187   
  Robust estimation of tensors by outlier rejection 

(RESTORE) 
 data redundancy  ,   61  
 DTI model  ,   61  
 outliers  ,   61   

  ROI   . See  Region of interest (ROI)  
  ROI-drawing 

 cingulum bundle  ,   212   ,   216  
 FA  ,   208   ,   209   ,   214   
 guidelines  ,   215    
 spatial awareness and interpretation  ,   212  
 tracking procedures  ,   213  
 tract volume  ,   213   ,   214    

  RRMS   . See  Relapsing-remitting multiple sclerosis 
(RRMS)    

 S 
  Sagittal slices  ,   233   ,   252–259          
  SBN   . See  Scanner background noise (SBN)  
  Scan parameters  ,   103   
  Scanner background noise (SBN)  ,   280   
  Scanner resources  ,   280–285        

 hardware 
 gradient system  ,   281   
 magnetic fi eld strength  ,   280–281  
 peripheral equipment  ,   281  
 scanners  ,   281–282   

 software 
 data management  ,   282–283  
 data security  ,   282–283   
 data storage  ,   282  
 data transfer  ,   283  
 features  ,   284–285   
 licensing issues  ,   283  

 multimodal viewing and analysis  ,   285  
 version control  ,   283–284   

  Seed points  ,   206   ,   212   
  Self-diffusion coeffi cient 

 description  ,   37  
 diffusion weighting  ,   38  
 free diffusion  ,   38    
 minimum requirements  ,   39  
 Stejskal-Tanner equation  ,   38   

  SEP   . See  Somatosensory evoked potential (SEP)  
  SGP   . See  Short gradient pulse (SGP)  
  Shimming  ,   137   
  Short axis PROPELLER (SAP)  ,   115   
  Short gradient pulse (SGP)  ,   412   
  Signal-to-noise ratio (SNR)  ,   94   
  Single-seed ROI  ,   214  

  vs.  whole-brain tractography  ,   214   
  Slew rate  ,   281   
  SLF/AF   . See  Superior longitudinal/arcuate fasciculus 

(SLF/AF)  
  Slice-selection gradient reversal (SSGR) 

method  ,   143   
  SMA syndrome  ,   294   
  Smoothing  ,   183  

 axial FA slice  ,   195  
 in DTI  ,   197  
 DTI data sets  ,   196  
 FWHM  ,   195  
 Gaussian kernel  ,   195  
 parameter  ,   196   ,   199–200  
 parametric/nonparametric Statistics  ,   199  
 statistical analysis  ,   198–199   

  Somatosensory evoked potential (SEP)  ,   294   
  Spatial normalization  ,   180   
  Specifi c absorption rate (SAR)  ,   103   
  Spherical deconvolution method 

 advantages  ,   387  
 fi ber anisotropy  ,   387  
 FOD  ,   387  
 fODF  ,   387  
 orientation plots  ,   387  
 volume fractions  ,   387   

  Spinal cord  ,   336    
  Spin-echo echo-planar imaging (SE EPI)  ,   127   
  Squared intensity differences (SSD)  ,   188   
  Standard templates 

 advantages  ,   193   ,   195  
 healthy control group  ,   193  
 study-specifi c atlases  ,   193   

  Stejskal-Tanner diffusion-encoding 
 ADC  ,   90  
 cellular structure  ,   90  
 DWI and DTI  ,   90  
 elements  ,   91  
 HARDI  ,   90  
 3D sphere of diffusion  ,   90   

  Stejskal-Tanner equation  ,   30   
  Stejskal-Tanner sequence  ,   30   
  Stimulated echo (STE) diffusion  ,   113   
  STN   . See  Subthalamic nucleus (STN)  
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  Structural connectivity assessment 
 fi ber density  ,   399  
 FRDA pathology  ,   399  
 frontal cortex  ,   399  
 limitations  ,   399  
 pAgCC  ,   398   

  Subthalamic nucleus (STN)  ,   296   
  Superior fronto-occipital fasciculus (SFOF)  ,   265–269         
  Superior longitudinal/arcuate fasciculus (SLF/AF)  ,   294   , 

  300   ,   301   
  Superior longitudinal fasciculus (SLF)  ,   265–269       
  Surgical planning, DWI 

 biopsy determination  ,   323  
 brain tumor neuroradiology  ,   309  
 tumor boundaries  ,   321–323   
 tumor extension assessment  ,   323   

  Susceptibility-induced distortions  ,   136–139     

 T 
  TBI classifi cation 

 axial and radial diffusivity  ,   377  
 cerebral lobar white matter  ,   377  
 chronic traumatic brain injury  ,   377  
 corpus callosum  ,   377  
 intra- and extracellular water  ,   377  
 intracranial lesions  ,   377  
 neural pathways  ,   376   

  TBSS   . See  Tract-based spatial statistics (TBSS)  
  TDL   . See  Tumefactive demyelinating lesions (TDL)  
  Teem library  ,   233   
  Tensor elements 

 DWI and ADC values  ,   50  
 gradient directions  ,   50  
 off-diagonal elements  ,   49  
 in practice  ,   48–49     

  Tensor ellipsoids  ,   231   
  Tensor fi tting methods  ,   58–61     

 LLS    (see  Linear least squares (LLS) )  
 NLS    (see  Nonlinear least squares (NLS) )  
 RESTORE    (see  Robust estimation of tensors by 

outlier rejection (RESTORE) )  
 tensor estimation  ,   58  
 WLLS    (see  Weighted linear least squares (WLLS) )   

  Tensor glyphs  ,   53–55     
  Tensor-derived measures  ,   206   
  Termination criterion  ,   232   
  Therapeutic misconception  ,   280   
  Three-dimensional tract representation 

 anatomy  ,   233   ,   260–270  
 ROI  ,   233   

  Through-plane motion  ,   131   
  Total slice dropout  ,   144   
  Total variation (TV) approach  ,   142   
  Tracking  ,   231   
  Tracking algorithm  ,   23   
  Track-weighted imaging  ,   223   
  Tract density imaging  ,   223   
  Tract selection 

 logic combination  ,   212   ,   215  

 ROI-drawing  ,   212–218         
 ROIs  ,   211  
 seeding,     207   ,   211   ,   212   

  Tract-based spatial statistics (TBSS)  ,   38   ,   350   
  Tractography  ,   206  

 applications  ,   206  
 association fi bres  ,   205  
 ATLR  ,   396  
 automated  ,   221–222  
 blue voxel  ,   162  
 brain  ,   162   ,   394  
 color FA maps  ,   297  
 connecting dots  ,   161  
 corpus callosum  ,   163  
 CSD-based method  ,   394  
 CST, 94  ,   2  
 deterministic    (see  Deterministic tractography )  
 DTI  ,   161   ,   297  
 false positives and negatives  ,   206  
 green voxel  ,   161  
 HDFT  ,   397  
 higher order model  ,   219   ,   221  
 Meyer’s loop  ,   395  
 MRI and ROIs  ,   161  
 neoplasm  ,   305  
 neuropsychiatric problems  ,   296  
 neurosurgical literature  ,   394  
 noise and artifacts affect tract  ,   163  
 OR  ,   295  
 probabilistic  ,   215–219  
 projection fi bres  ,   205  
 q-ball tractography  ,   394  
 region specifi c analysis  ,   1   ,   63  
 ROIs  ,   162  
 routine clinical practice  ,   224   ,   225  
 segmented tract  ,   162  
 single and multi tensor technique  ,   394  
 software packages  ,   224  
 terminology  ,   162  
 training session  ,   214   ,   216  
 true anatomic and functional localization  ,   303  
 VFD  ,   396  
 white matter organisation  ,   205   

  Tractometry  ,   206   
  Tracts constrained by underlying anatomy (TRACULA)  , 

  220   ,   222   
  Traumatic brain injury (TBI)  ,   376–379   

 anticoagulants and platelet aggregation inhibitors  ,   373  
 challenges    (see  Challenges in TBI )  
 CT scanning  ,   373  
 diagnosis and characterization    (see  TBI classifi cation )  
 DLPFC  ,   375  
 primary and secondary brain damage  ,   374   
 rapid detection  ,   374  
 role, DTI    (see  DTI in TBI )   

  Tumefactive demyelinating lesions (TDL)  ,   312,      313   
  Tumor grade 

 ADC  ,   320  
 angiogenesis  ,   320  
 DKI  ,   321  
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 Tumor grade (cont.) 
 GBM  ,   320  
 gliomas  ,   320   
 HGGs and LGGs  ,   320   

  Two-dimensional tract representation 
 axial slices  ,   233–242           
 coronal slices  ,   233   ,   243–251          
 MITK-Diffusion  ,   232  
 sagittal slices  ,   233   ,   252–259            

 U 
  Unbiased tractography  ,   210   
  Uncinate fasciculus (UF)  ,   210   ,   212   ,   262–265   ,     301,      303      

 V 
  Ventral intermediate nucleus (VIM)  ,   296   
  VFD   . See  Visual fi eld defi cit (VFD)  
  VIM   . See  Ventral intermediate nucleus (VIM)  
  Visual fi eld defi cit (VFD)  ,   396   
  Voxel-based analysis (VBA)  ,   170   ,   195–197  

 advantages  ,   165  
 brain  ,   163   ,   187  
 Clinical Practice  ,   201  
 DTI 

 data  ,   189  
 metrics  ,   183  
 parameter image  ,   165  

 FA  ,   164  
 and MD Maps  ,   192  

 hybrid analysis methods  ,   165  
 image processing technique  ,   184  

 image registration techniques  ,   186  
 limitations  ,   165  
 pipeline  ,   164   ,   184   
 reference image  ,   186  
 scalar anatomical MRI information  ,   191  
 smoothing  ,   184     (see   also  Smoothing )  
 statistical analysis  ,   184  
 and TBSS  ,   200  
 tensor information  ,   191  
 tensor reorientation  ,   190   

  Voxel-based method  ,   338    
  Voxels  ,   231     

 W 
  Wallerian degeneration  ,   346   
  WB   . See  Whole brain (WB) tractography  
  Weighted linear least squares (WLLS)  ,   413  

 ADC values  ,   60  
 magnitudes, original data  ,   59  
 weights determination  ,   59   

  Westin measures  ,   68   ,   70   
  White matter anatomy 

 2D tract representation  ,   233  
 3D tract representation  ,   233   ,   260–269  
 DTI  ,   231   ,   232   
 protocol, White matter atlas  ,   221   ,   232    

  White matter hyperintensities (WMH)  ,   277   
  Whole-brain tractography  ,   212–214   ,     379     
  Whole-brain analysis methods  ,   167   
  WLLS   . See  Weighted linear least squares 

(WLLS)  
  WMH   . See  White matter hyperintensities (WMH)       
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