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Chapter 5

Outlier Detection for Mass Spectrometric Data

HyungJun Cho and Soo-Heang Eo

Abstract

Mass spectrometry data are often generated from various biological or chemical experiments. However, 
due to technical reasons, outlying observations are often obtained, some of which may be extreme. 
Identifying the causes of outlying observations is important in the analysis of replicated MS data because 
elaborate pre-processing is essential in order to obtain successful analyses with reliable results, and because 
manual outlier detection is a time-consuming pre-processing step. It is natural to measure the variability 
of observations using standard deviation or interquartile range calculations, and in this work, these crite-
ria for identifying outliers are presented. However, the low replicability and the heterogeneity of vari-
ability are often obstacles to outlier detection. Therefore, quantile regression methods for identifying 
outliers with low replication are also presented. The procedures are illustrated with artificial and real 
examples, while a software program is introduced to demonstrate how to apply these procedures in the 
R environment system.

Key words Outlier detection, Data preprocessing, Standard deviation, Interquartile range, Quantile 
regression

1 Introduction

Mass spectrometry (MS) data are often generated from various 
biological or chemical experiments. Such large amounts of data are 
usually analyzed automatically in a computing process that consists 
of pre-processing, significance testing, classification, and cluster-
ing. Elaborate pre-processing is essential to obtain successful analy-
ses with reliable results. A key pre-processing step is the detection 
of outliers, which may have extreme values due to technical reasons 
[1]. Possible outlying observations need to be examined carefully, 
and then corrected for or eliminated if necessary. However, as the 
manual examination of all observations for outliers is time- 
consuming, possible outliers must be detected automatically.

An outlier is an observation that falls well above or well below the 
overall bulk of the data [2–4]. A natural approach to detect  outliers 
is to investigate the distribution of the observations and evaluate 
the outlying degrees of potential outliers. The investigation can 
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be conducted for each peptide because the distributions of obser-
vations of peptides may differ substantially. It is natural to mea-
sure the variability of observations for each peptide by calculating 
the standard deviation (SD) or interquartile range (IQR) of each 
sample [5].

The SD and IQR criteria may produce unreliable outcomes in 
the case of a few replicates. Furthermore, they are not applicable 
for duplicated samples. Another, perhaps naive, approach for 
detecting outliers statistically involves constructing lower and 
upper fences of differences between two samples for all peptides. A 
suspected outlier is then an observation whose value is either 
smaller than the lower fence or greater than the upper fence. 
However, this may generate a spurious result because variability is 
heterogeneous in high-throughput data generated even from MS 
experiments. Naive outlier detection methods such as these ignore 
the heterogeneity of variability, and may often miss true outliers at 
high levels and select false outliers at low levels. If a number of 
technical replicates for each peptide under the same biological con-
dition can be obtained in MS experiments, a search for outliers can 
be conducted for each peptide. However, only a small number of 
replicates are usually subjected to MS experiments due to the high 
cost of experiments and the limited supply of biological samples. 
Instead, a more elaborate approach for detecting outliers with low 
false-positive and false-negative rates in MS data is to utilize quan-
tile regression, which is especially useful when the number of tech-
nical replicates is small. The outlier detection procedures are 
illustrated in the next section, with artificial and real datasets in the 
R environment system.

2 Outlier Detection Methods

Suppose that there are n replicated samples and p peptides in an 
MS dataset. Then let xij be the i-th replicated observation for the 
j-th peptide from experiments under the same biological or experi-
mental condition, where i = 1, …, n and j = 1, …, p and let 
y xij ij= ( )log2 . Typically, n is small and p is very large in high- 
throughput data, i.e., p ≫ n. We introduce the standard deviation, 
interquartile range, and quantile regression approaches for identi-
fying outliers in this section.

The standard deviation describes the distance between the data 
and the mean, thus providing a measure of the variability of the 
data. The standard deviation s is defined as the square root of the 
sum of squared deviations divided by the sample size minus 1, i.e., 
s y y nii
= -( ) -( )å 2 1/ . The z-score for an observation is the 

number of standard deviations that it falls away from the mean. A 
positive z-score indicates the observation is above the mean, while 

2.1 Standard 
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a negative z-score indicates that the observation is below the mean. 
For sample data, an observation from a bell-shaped distribution is 
a potential outlier if its z-score < −3 or > +3. The z-score criterion 
for identifying outliers is summarized below:

 1. Compute the standard deviation, sj for each peptide j, and then 
z-score z y y sij ij j j= -( ) / , where y j  and sj are the sample 
mean and standard deviation, respectively.

 2. For each peptide j, observation yij is flagged as an outlier if 
z kij < -  or z kij > , where k = 2  or 3.

 3. This z-score criterion works well when the data follows a bell- 
shaped, normal distribution. Thus, the thresholds k = 2 and 3 
indicate that 95 and 99.7 % of the observations fall within 2 
and 3 SDs of the mean, respectively.

Grubbs et al. [6] developed a more elaborate procedure, where 
the threshold is more precise, and outliers are removed recursively. 
This is the Grubbs’ test, and its method for identifying outliers is 
summarized below:

 1. Compute the test statistic G y y sij i n ij j j= -= ¼max | | /, ,1 , where 
the sample mean is y j  and standard deviation is sj for peptide j.

 2. For each peptide j, observation yij is flagged as an outlier if 
G cij > , where c is the critical value (see Note 1).

 3. Remove the detected outlier, and then repeat steps 1–3 until 
no further outliers are detected.

If n = 2 , the statistic is always 1/ n ; thus, this test is appli-
cable for n > 2 . Grubbs’ test is based on the assumption of nor-
mality; therefore, one should first verify that the data could be 
reasonably approximated by a normal distribution before applying 
the test. Grubbs’ test detects one outlier at a time. This outlier is 
expunged from the dataset and the test is reiterated until no fur-
ther outliers are detected. However, multiple iterations change the 
probabilities of detection, and the test should not be used for sam-
ple sizes of six or less since it frequently tags most of the points as 
outliers [7].

The p-th percentile is a value such that p percentages of the obser-
vations fall at, or below, a certain value. Three useful percentiles are 
the quartiles. The first quartile Q1 is the 25th percentile, where the 
lowest 25 % of the data fall below it. The second quartile Q2 is the 
50th percentile, which is the median. The third quartile Q3 is 
the 75th percentile, and the highest 25 % of the data exists above it. 
The quartiles split the data into four parts, each containing quarter 
(25 %) of the observations. The interquartile range (IQR) is the 
distance between the third and first quartiles, i.e., IQR = -Q Q3 1 . 
An observation is declared an outlier if it is greater than 1.5 IQR 

2.2 Interquartile 
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below the first quartile or more than 1.5 IQR above the third 
quartile. Thus, the lower and upper fences for outliers are 
Q 1 1 5- . IQR  and Q 3 1 5+ . IQR  [8]. This IQR criterion for 
identifying outliers is summarized as follows:

 1. Compute the first and third quartiles, Q1j and Q3j, for each 
peptide j, and then its IQR: IQR j j jQ Q= -3 1 .

 2. For each peptide j, observation yij is flagged as an outlier if 
y Q kij j j< -1 IQR  or y Q kij j j> +3 IQR , where k = 1.5 or 3.

In this IQR criterion, a coefficient k determines the strictness 
of capturing outlying observations. Values of k = 1.5 or 3 are often 
used. A larger value of k selects outlying observations more 
conservatively.

The distribution of observations may not be symmetric about 
the median, but instead may be skewed to the left or the right, 
implying that the middle of the first and third quartiles is in fact 
not the median. Thus, the distance from the first quartile to the 
median is significantly different of that from the third quartile to 
the median. In this situation, IQR can be too large for one side and 
too small for the other.

As an alternative, the semi-interquartile range (SIQR) can be 
more effective. That is, the left and right SIQRs are used rather 
than IQR. This SIQR criterion for identifying outliers is summa-
rized as follows:

 1. Compute the first, second, and third quartiles, Q1j, Q2j, and 
Q3j, for each peptide j, and then its SIQR: SIQRjL = Q2j − Q1j 
and SIQRjU = Q3j − Q2j.

 2. For each peptide j, observation yij is flagged as an outlier if 
y Q kij j j< -1 2 SIQRL or y Q kij j j> +3 2 SIQRU , where k = 1.5 or 3.

The above IQR and SD criteria require for the data to follow a 
normal distribution, and for the sample sizes to be large enough 
(see Note 2). However, the assumptions may not be satisfied for 
some MS analyses, and in particular, the sample size is often small 
(see Note 3).

In duplicated experiments (n = 2), two observed values for each 
peptide should be theoretically identical, but are not identical in 
practice due to their variability; however, they should not differ 
substantially. The tolerance of the difference between the two 
observed values from the same condition is not constant because 
their variability is heterogeneous. The variability of high- 
throughput data depends on the intensity levels.

Lower and upper fences can be constructed for detecting 
 outliers using quantile regression in an M–A plot with M  
and A values in vertical and horizontal axes, respectively,  
where Mj is the difference between replicated samples for j  
and Aj is the average, i.e., M y y x xj j j j j= - = ( )1 2 2 1 2log /  and 

2.3 Quantile 
Regression 
Approaches
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A y y x xj j j j j= +( ) = ( ) ( )1 2 2 1 22 1 2/ / log  to detect the outliers 
accounting for the heterogeneity of variability [9]. By applying the 
regression, we compute the 0.25 and 0.75 quantile estimates, 
Q1(A) and Q3(A), of the differences, M, depending on the levels, A. 
Then we construct the lower and upper fences: Q A A1 1 5( ) - ( ). IQR  
and Q A A3 1 5( ) + ( ). IQR , where IQR A Q A Q A( ) = ( ) - ( )3 1 . 
To obtain quantile estimates that depend on the levels more flexi-
bly, nonlinear or nonparametric quantile regression can be utilized 
[10]. This quantile regression approach [1], called the OutlierD 
algorithm, is summarized as follows:

 1. Generate an M–A plot with M and A values in vertical and 
horizontal axes, respectively, where Mj is the difference 
between replicated samples for j and Aj is the average.

 2. Apply linear, nonlinear, or nonparametric regression and then 
compute the 0.25 and 0.75 quantile estimates, Q1(A) and 
Q3(A), of the differences, M, depending on the levels, A.

 3. Construct the lower and upper fences: Q A k A1 ( ) - ( )IQR  
and Q A k A3 ( ) + ( )IQR , where IQR A Q A Q A( ) = ( ) - ( )3 1  
and k = 1.5 or 3.

 4. Peptide j is claimed as containing an outlying observation if 
M Q A k Aj j j< ( ) - ( )1 IQR  or M Q A k Aj j j> ( ) + ( )3 IQR , 
where k = 1.5 or 3.

A larger value of k selects outliers more conservatively. In this 
approach, one of the two samples is outlying, but which one is not 
known.

In multiple experiments n ³( )2 , it is natural to search for out-
liers based on all observed values in a high-dimensional space. An 
outlier will be at a very large distance from the center of the distri-
bution of a peptide. The cutoffs of distances for classification of 
outliers depend on the degree of variability from the center. The 
degree of variability is dependent on intensity levels, and the center 
can be defined as a 45° line from the origin. More flexibly, the 
center can be obtained by principal component analysis (PCA) 
[11]. The first principal component (PC) becomes the center of 
each intensity level, i.e., a new axis for intensity levels. The experi-
ments are replicated under the same biological and technical con-
dition; hence, the first PC can explain most variations. It implies 
that it is enough to use the first PC practically. An outlier will be at 
a large distance from its projection. Following the notations for 
applying quantile regression, we can define the distance of peptide 
j to the projection as Mj and the length of the projection on the 
new axis as Aj. Then the first and third quantiles can be obtained 
by applying quantile regression on an M–A plot with M and A on 
the vertical and horizontal axes, respectively. The quantile regression 

Outlier Detection
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algorithm that uses this projection [7] is called the OutlierDM 
algorithm, and is summarized as follows:

 1. Shift the sample means to the origin (0, …, 0), i.e., y y yij ij i
* = - .

 2. Find the first PC vector v using principal component analysis 
(PCA) on the space of y1

*, …, yn*.
 3. Obtain the projection of a vector y j j njy y* * *= ¼( )1 ,, ,,  of each 

peptide j on v, where j p= ¼1, , .
 4. Compute the signed length, Aj, of the projection and the 

length, Mj of the difference between a vector of peptide j and 
the projection, where j p= ¼1, , .

 5. Obtain the first and third quantile values Q1(A) and Q3(A), on 
an M–A plot using a quantile regression approach. Then calcu-
late IQR A Q A Q A( ) = ( ) - ( )3 1 .

 6. Construct the lower and upper fences, 
LB IQRA Q A k A( ) = ( ) - ( )1 and  
UB IQRA Q A k A( ) = ( ) + ( )3 , where k = 1.5 or 3.

 7. Peptide j is claimed as containing one or more outlying obser-
vations if it is located above the upper fence or under the lower 
fence.

This projection quantile regression approach utilizes all of the 
multiple replicates simultaneously, and a high-dimensional prob-
lem reduces to two-dimensional one that can easily be solved. Note 
that the quantile regression approaches only determines whether 
each peptide contains one or more outliers, but not which observa-
tion is an outlier. A visual approach (see Note 4) is useful to iden-
tify which observation(s) of the selected peptide is (are) outlying, 
is illustrated in the next section.

3 Illustrations

In this section, we illustrate how to detect outliers in two cases 
with artificial and real examples by using an analysis written in R 
package OutlierDM [12] (see Note 5). The first case is illustrated 
with an artificial dataset to detect outlying samples for each pep-
tide, while the second case uses a real dataset to detect the peptides 
containing at least one outlying observation when the number of 
replicates is small.

The primary purpose of outlier detection in MS data is to deter-
mine which observations for each peptide are outlying. If the num-
ber of replicates is large enough (see Note 2), one of the SD and 
IQR criteria can seek out the outliers within each peptide. For 
illustration, an artificial data set with 200 peptides and 15 samples 
is generated [7]. This dataset (called “toy”) contains ten peptides, 

3.1 When the 
Number of Replicates 
Is Sufficiently Large
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and each of them has one outlying observation. This toy dataset 
can be called within the R package OutlierDM by using the 
 following commands:

> library(OutlierDM)
> data(toy)

To detect outlying observations using the Grubbs’ test with 
significance level 0.01, the function odm() of OutlierDM can be 
called as follows:

> fit = odm(x = toy, method = “grubbs”, alpha = 0.01)
> fit

These R commands create an object fit using the three input 
arguments, dataset used (x = toy), outlier detection method 
(method = “grubbs”), and significance level (alpha = 0.01), and 
then display a table consisting of dots (test statistics for the detected 
outliers) for the first six peptides as an output (Fig. 1).

In the output, the first column is the row number and the sec-
ond column indicates whether each peptide contains one or more 
outlying observations, shown as TRUE. Columns G1–G15 give 
the test statistics for the detected outliers, while the dots for non- 
outliers. To see all the peptides, the function output(fit) can be 
conducted in the R environment. In this example, 12 peptides 
were flagged as containing one or more outlying observations, two 
of which were flagged falsely. In the first six peptides shown, pep-
tide 3 found two outlying observations, but one of them was 
flagged falsely. The other five peptides detected all the outlying 
samples correctly. The detected outlier for each peptide can be 
shown graphically by the function oneplot():

> oneplot(fit, i = 1)

The object fit was generated from the function odm() and 
index “i” indicates the row number corresponding to a peptide. 
Figure 2 shows the dot plot of log2-transformed data points with 
one outlier (marked by an asterisk) detected by the Grubbs’ test 
with significance level 0.01 (see Note 4).

Fig. 1 Outlier detection using the Grubbs’ test for the first six peptides of the toy dataset; the test statistics are 
given for the detected outliers and the dots are given for non-outliers

Outlier Detection
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We would like to know which observations for each peptide are 
outlying, but for cases where the number of replicates is small 
(see Note 3). In these events, a quantile regression approach can be 
utilized to detect the peptides having at least one outlying observa-
tion. For illustration, we consider a real-life dataset obtained from 
three replicated LC/MS/MS experiments with 922 peptides (n = 3 
and p = 922). The details regarding the experiment can be found in 
refs. 1 and 7. This dataset can be called up by the following 
command:

> data(lcms3)

We first illustrate how to detect outliers under the duplicated 
experiment (n = 2). For instance, consider the first two replicates of 
the “lcms3” dataset and apply the OutlierD algorithm to the dupli-
cated data set:

> fit2 = odm(x = lcms3[,1:2], method = “pair”, k = 3)
> outliers(fit2)
> plot(fit2)

The argument method = “pair” is for the OutlierD algorithm 
and k = 3 is a threshold (i.e., a coefficient) used within IQR. Using 
the function outliers(fit2) generates the output shown in Fig. 3. In 
this output, the first column indicates the row numbers of the pep-
tides containing an outlier observation. The next columns consist 
of log2-transformed values (N1 and N2), A and M values, the first 
and third quartiles (Q1 and Q3), and lower and upper bounds (LB 
and UB), respectively. Figure 4 shows the M–A plot from the 
object fit2 and the superimposed lines separate outlying peptides 
from normally observed peptides.

Next, we use all the three replicates simultaneously to detect 
outliers (n = 3). The number of replicates is still small, so the SD 
and IQR criteria are not applicable. In this case, the OutlierDM 
algorithm is applied to the lcms3 dataset:

> fit3 = odm(lcms3, method = “proj”, k = 3)
> outliers(fit3)
> plot(fit3)

3.2 When 
the Number 
of Replicates Is Small

Fig. 2 Outlier detection using the Grubbs’ test for the first peptide of the toy 
dataset; the outlier is indicated as an asterisk
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The argument method = “proj” is for OutlierDM and k = 3 is 
again a threshold used by IQR. Using the function outliers(fit3) 
generates the output Fig. 5. In this output, the first column indicates 
the row numbers of the peptides containing an outlier observation. 
The next columns consist of log2-transformed values (N1, N2, and 
N3), A and M values, the first and third quartiles (Q1 and Q3), and 
lower and upper bounds (LB and UB), respectively. Figure 6 shows 
the M–A plot from the object fit3 and the superimposed lines sepa-
rate outlying peptides from normally observed peptides.

Fig. 3 A list of the outliers detected by the OutlierD algorithm for the lcms3 dataset
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Fig. 4 Outlier detection using the OutlierD algorithm in a linear quantile regres-
sion analysis for the first two replicates of the lcms3 dataset; the outliers are 
shown as red asterisks
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Fig. 5 A list of the outliers detected by the OutlierDM algorithm for the lcms3 dataset
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Fig. 6 Outlier detection using the OutlierDM algorithm in a linear quantile regression analysis on the lcms3 
dataset; the outliers are shown as red asterisks

HyungJun Cho and Soo-Heang Eo



101

After detecting the outlying peptides, their raw data points can 
be plotted to see which observations are furthest from the others 
using (see Note 4):

> oneplot(fit3, i = 18)

This generates the dot plot of the log2-transformed values for 
the 18th peptide, as shown in Fig. 7. It is seen that one observation 
is far from the other two for the 18th peptide.

4 Notes

 1. In Grubbs’ test, the critical value c is 
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 is a t-distribution with a degree of freedom n − 2 

and significance level α/2n.
 2. The standard deviation (SD) and IQR criteria are used to 

detect outliers for each peptide. These require a sample size 
greater than six: n > 6.

 3. The quantile regression approaches are used to detect peptides 
containing one or more outliers when a sample size is small, 
usually, n ≤ 6. They also work for a sample size of two (n = 2).

 4. After detecting peptides containing one or more outliers using 
a quantile regression approach, a visual analysis such as a dot 
plot can be used to reveal which observations are outlying for 
a selected peptide.

 5. A software program OutlierDM [7] based in the R environ-
ment system is available at http://www.r-project.org/
package=OutlierDM for conducting outlier detection.
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Fig. 7 A dot plot for the 18th peptide of the lcms3 dataset
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