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Fuzzy Multi-Criteria Optimization: Possibilistic
and Fuzzy/Stochastic Approaches

Masahiro Inuiguchi, Kosuke Kato, and Hideki Katagiri

Abstract In this chapter, we review fuzzy multi-criteria optimization focusing
on possibilistic treatments of objective functions with fuzzy coefficients and on
interactive fuzzy stochastic multiple objective programming approaches. In the first
part, treatments of objective functions with fuzzy coefficients dividing into single
objective function case and multiple objective function case. In single objective
function case, multi-criteria treatments, possibly and necessarily optimal solutions,
and minimax regret solutions are described showing the relations to multi-criteria
optimization. In multiple objective function case, possibly and necessarily efficient
solutions are investigated. Their properties and possible and necessary efficiency
tests are shown. As one of interactive fuzzy stochastic programming approaches,
multiple objective programming problems with fuzzy random parameters are
discussed. Possibilistic expectation and variance models are proposed through
incorporation of possibilistic and stochastic programming approaches. Interactive
algorithms for deriving a satisficing solution of a decision maker are shown.
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20.1 Introduction

In mathematical programming problems, parameters such as coefficients and right-
hand side values of constraints have been assumed to be given as real numbers.
However, in real world problems, there are cases that those parameters cannot
be given precisely by lack of knowledge or by uncertain nature of coefficients.
For example, rate of return of investment, demands for products, and so on are
known as uncertain parameters. Moreover, time for manual assembly operation and
the cost of a taxi ride can also be ambiguous and depend on the worker’s skill
and the degree of traffic congestion, respectively. Those uncertain parameters have
been treated as random variables so that the mathematical programming problems
become stochastic programming problems [85, 86].

To formulate a stochastic programming problem, we should estimate a proper
probability distribution which parameters obey. However, the estimation is not
always a simple task because of the following reasons: (1) historical data of some
parameters cannot be obtained easily especially when we face a new uncertain
variable, and (2) subjective probabilities cannot be specified easily when many
parameters exist. Moreover, even if we succeeded to estimate the probability
distribution from historical data, there is no guarantee that the current parameters
obey the distribution actually.

We may often come across that we can estimate the possible ranges of the
uncertain parameters. For example, we may find out a possible range of cost
of taxi ride through experience if we almost know the distance and the traffic
quantity. Then, it is conceivable that we represent the possible ranges by fuzzy
sets and formulate the mathematical programming problems as fuzzy programming
problems [10, 25, 31, 59, 66, 78, 80, 83, 85].

In this paper, we introduce approaches to mathematical programming problems
with fuzzy parameters dividing into two parts. In the first part, we review treatments
of objective functions with fuzzy coefficients dividing into single objective function
case and multiple objective function case. In both cases, the solutions are studied
first in problems with interval coefficients and then in the problems with fuzzy
coefficients.

In the single objective function case, we show that multi-criteria treatments
of an objective function with coefficients using lower and upper bounds do not
always produce good solutions. Then possibly and necessarily optimal solutions
are introduced. The relations of those solution concepts with solution concepts
in multi-criteria optimization are described. A necessarily optimal solution is the
most reasonable solution but it does not exist in many cases while a possibly
optimal solution always exists when the feasible region is bounded and nonempty
but it is only one of least reasonable solutions. Then minimax regret and maximin
achievement solutions are introduced as a possibly optimal solution minimizing
the deviation from the necessary optimality. Those solutions can be seen as robust
suboptimal solutions.

In the multiple objective function case, possibly and necessarily efficient solu-
tions are introduced as the extensions of possibly and necessarily optimal solutions.
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Because many efficient solutions exist usually in the conventional multiple objective
programming problem, it is highly possible that necessarily optimal solutions exist.
The properties of possibly and necessarily efficient solutions are investigated.
Moreover the possible and necessary efficient tests are described.

In the second part, we consider a case where a part of uncertain parameters can
be expressed by random variables but the other part can be expressed by fuzzy
numbers. In order to take into consideration not only fuzziness but also randomness
of the coefficients in objective functions, multiple objective programming problems
with fuzzy random coefficients are discussed. By incorporating possibilistic and
stochastic programming approaches, possibilistic expectation and variance models
are proposed. It is shown that multiple objective programming problems with fuzzy
random coefficients can be deterministic linear or nonlinear multiple objective
fractional programming problems. Interactive algorithms for deriving a satisficing
solution of a decision maker are provided.

20.2 Problem Statement and Preliminaries

Multiple objective linear programming (MOLP) problems can be written as

maximize .cT
1 x; cT

2 x; : : : ; cT
p x/T;

subject to aT
i x D bi; i D 1; 2; : : : ; m;

x � 0;

(20.1)

where ck D .ck1; ck2; : : : ; ckn/T, k D 1; 2; : : : ; p and ai D .ai1; ai2; : : : ; ain/T,
i D 1; 2; : : : ; m are constant vectors and bi, i D 1; 2; : : : ; m constants. x D
.x1; x2; : : : ; xn/T is the decision variable vector.

In MOLP problems, many solution concepts are considered (see [13]). In this
chapter, we describe only the following three solution concepts:

Complete optimality: A feasible solution Ox is said to be completely optimal if and
only if we have cT

k Ox � cT
k x, k D 1; 2; : : : ; p for all feasible solution x.

Efficiency: A feasible solution Ox is said to be efficient if and only if there is no
feasible solution x such that cT

k x � cT
k Ox, k D 1; 2; : : : ; p with at least one strict

inequality.
Weak efficiency: A feasible solution Ox is said to be weakly efficient if and only if

there is no feasible solution x such that cT
k x > cT

k Ox, k D 1; 2; : : : ; p.

In the conventional MOLP problem (20.1), the coefficients and right-hand side
values are assumed to be specified as real numbers. However, in the real world
applications, we may face situations where coefficients and right-hand side values
cannot be specified as real numbers by the lack of exact knowledge or by their
fluctuations. Even in those situations there are cases when ranges of possible val-
ues for coefficients and right-hand side values can be specified by experts’ vague
knowledge. In the first part of this paper, we assume that those ranges are expressed
by fuzzy sets and consider the MOLP problem with fuzzy coefficients. Because we
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focus on the treatments of objective functions with fuzzy coefficients, we assume
the constraints are crisp so that they do not include any fuzzy parameters. However,
the constraints with fuzzy parameters are often reduced to the crisp constraints in
fuzzy/possibilistic programming approaches [10, 25, 31].

MOLP problems with fuzzy numbers treated in the first part of this chapter can
be represented as

maximize .QcT
1 x; QcT

2 x; : : : ; QcT
p x/T;

subject to x 2 X;
(20.2)

where we define

X D fx 2 Rn j aT
i x D bi; i D 1; 2; : : : ; m; x � 0g: (20.3)

Qck D .Qck1; Qck2; : : : ; Qckn/T, k D 1; 2; : : : ; p is a vector of fuzzy coefficients. Qckj,
j D 1; 2; : : : ; n, k D 1; 2; : : : ; p are fuzzy numbers. A fuzzy number Qc is a fuzzy
set on a real line whose membership function �Qc W R ! Œ0; 1� satisfies (see, for
example, [11])

(i) Qc is normal, i.e., there exists r 2 R such that �Qc.r/ D 1.
(ii) �Qc is upper semi-continuous, i.e., the h-level set ŒQc�h D fr 2 R j �Qc.r/ � hg is

a closed set for any h 2 .0; 1�.
(iii) Qc is a convex fuzzy set. Namely, �Qc is a quasi-concave function, i.e., for any r1,

r2 2 R, for any � 2 Œ0; 1�, �Qc.�r1 C .1 � �/r2/ � min.�Qc.r1/; �Qc.r2//. In other
words, h-level set ŒQc�h is a convex set for any h 2 .0; 1�.

(iv) Qc is bounded, i.e., limr!C1 �Qc.r/ D limr!�1 �Qc.r/ D 0. In other words, the
h-level set ŒQc�h is bounded for any h 2 .0; 1�.

From (ii) to (iv), an h-level set ŒQc�h is a bounded closed interval for any h 2 .0; 1�

when Qc is a fuzzy number. L-R fuzzy numbers are often used in literature. An L-R
fuzzy number Qc is a fuzzy number defined by the following membership function:

�Qc.r/ D

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

L

�
cL � r

˛

�

; if r � cL and ˛ > 0;

1; if r 2 ŒcL; cR�;

R

�
r � cR

ˇ

�

; if r � cR and ˇ > 0;

0; otherwise;

(20.4)

where L and R W Œ0; C1/ ! Œ0; 1� are reference functions, i.e., L.0/ D R.0/ D 1,
limr!C1 L.r/ D limr!C1 R.r/ D 0 and L and R are upper semi-continuous non-
increasing functions. ˛ and ˇ are assumed to be non-negative.

An example of L-R fuzzy number Qc is illustrated in Fig. 20.1. As shown in
Fig. 20.1, cL and cR are lower and upper bounds of the core of Qc, i.e., Core.Qc/ D fr j
�Qc.r/ D 1g. ˛ and ˇ show the left and right spreads of Qc. Functions L and R specify
the left and right shapes. Using those parameters and functions, fuzzy number Qc is
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Fig. 20.1 L-R fuzzy number
Qc D .cL; cR; ˛; ˇ/LR

represented as Qc D .cL; cR; ˛; ˇ/LR. A membership degree �Qc.r/ of fuzzy coefficient
Qc shows the possibility degree of an event ‘the coefficient value is r’.

Problem (20.2) has fuzzy coefficients only in the objective functions. In Prob-
lem (20.2), we should calculate fuzzy linear function values QcT

k x, k D 1; 2; : : : ; p.
Those function values can be fuzzy quantities since the coefficients are fuzzy num-
bers. The extension principle [11] defines the fuzzy quantity of function values of
fuzzy numbers. Let g W Rq ! R be a function. A function value of .Qc1; Qc2; : : : ; Qcq/,
i.e., g.Qc1; Qc2; : : : ; Qcq/ is a fuzzy quantity QY with the following membership function:

�QY.y/ D

8
ˆ̂
<

ˆ̂
:

sup
rWg.r/Dy

min
�
�Qc1

.r1/; �Qc2
.r2/; : : : ; �Qcq.rq/

�
;

if 9r D .r1; r2; : : : ; rq/I g.r/ D y;

0; otherwise.

(20.5)

Since Qc is a vector of fuzzy numbers Qci whose h-level set is a bounded closed interval
for any h 2 .0; 1�, we have the following equation (see [11]) when g is a continuous
function;

Œ QY�h D g.ŒQa�h/; 8h 2 .0; 1�; (20.6)

where ŒQc�h D .ŒQc1�h; ŒQc2�h; : : : ; ŒQcq�h/. Note that ŒQcj�h is a closed interval since Qcj is
a fuzzy number. Equation (20.6) implies that h-level set of function value QY can be
obtained by interval calculations. Moreover, since g is continuous, from (20.6), we
know that Œ QY�h is also a closed interval and Œ QY�1 ¤ ;. Therefore, QY is also a fuzzy
number.

Let g.r/ D rTx, where we define r D .r1; r2; : : : ; rn/T. We obtain the fuzzy linear
function value QcT

k x as a fuzzy number g.Qck/. For x � 0, we have

ŒQcT
k x�h D

2

4
nX

jD1

cL
kj.h/xj;

nX

jD1

cR
kj.h/xj

3

5 ; 8h 2 .0; 1�; (20.7)

where cL
kj.h/ and cR

kj.h/ are lower and upper bounds of h-level set ŒQckj�h, i.e., cL
kj.h/ D

infŒQckj�h and cR
kj.h/ D supŒQckj�h. Note that when Qckj is an L-R fuzzy number .cL

kj; cR
kj;

�L
kj; �R

kj/LkjRkj , we have
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cL
kj.h/ D cL

kj � �L
kjL

.�1/
kj .h/; cR

kj.h/ D cR
kj C �R

kj R
.�1/
kj .h/; (20.8)

where L.�1/
kj and R.�1/

kj are pseudo-inverse functions of Lkj and Rkj defined by

L.�1/
kj .h/ D supfr j Lkj.r/ � hg and R.�1/

kj .h/ D supfr j Rkj.r/ � hg.

In Problem (20.2), each objective function value QcT
k x is obtained as a fuzzy

number. Minimizing a fuzzy number QcT
k x cannot be clearly understood. Therefore,

Problem (20.2) is an ill-posed problem. We should introduce an interpretation of
Problem (20.2) so that we can transform the problem to a well-posed problem.
Many interpretations have been proposed. In the first part of this paper, we describe
the interpretations from the viewpoint of optimization. For the other interpretations
from viewpoint of satisficing, see, for example, [10, 25].

Possibility and necessity measures of a fuzzy set QB under a fuzzy set QA are defined
as follows (see [12]):

˘QA. QB/ D sup
r

min.�QA.r/; �QB.r//; (20.9)

NQA. QB/ D inf
r

max.1 � �QA.r/; �QB.r//: (20.10)

Those possibility and necessity measures are depicted in Fig. 20.2.
When fuzzy sets QA and QB � Rq have upper semi-continuous membership func-

tions and QA is bounded, we have, for any h 2 .0; 1�,

˘QA. QB/ � h , Œ QA�h \ Œ QB�h ¤ ;; (20.11)

NQA. QB/ � h , . QA/1�h � Œ QB�h , cl. QA/1�h � Œ QB�h; (20.12)

where QA is said to be bounded when Œ QA�h is bounded for any h 2 .0; 1�. . QA/1�h is a
strong .1 � h/-level set of QA defined by . QA/1�h D fr j �QA.r/ > 1 � hg. In (20.11)
and (20.12), we may understand that the possibility measure shows to what extent QA
intersects with QB while the necessity measure shows to what extent QA is included in
QB. This interpretation is true even for other conjunction and implication functions T
and I.

Fig. 20.2 Possibility and
necessity measures

~ ~

~

~

~

~

~
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20.3 Single Objective Function Case

In this section, we treat Problem (20.2) with p D 1, i.e., single objective function
case. In the single objective function case, there are many approaches (see for
example, [15, 32, 40, 79, 90]). These approaches can be divided into two classes:
satisficing approach and optimizing approach. The satisficing approach use a goal,
the objective function value with which the decision maker is satisfied, while the
optimizing approach does not use such a goal but generalizes the optimality concept
to the case with uncertain coefficients. We describe the optimizing approaches to
Problem (20.2) with p D 1 in this section. We demonstrate that even in the single
objective function case, Problem (20.2) with p D 1 has a deep connection to multi-
criteria optimization.

When p D 1, Problem (20.2) is reduced to

maximize QcT
1 x;

subject to x 2 X:
(20.13)

20.3.1 Optimization of Upper and Lower Bounds

When fuzzy coefficients Qc1j, j D 1; 2; : : : ; n degenerate to intervals ŒcL
1j; cR

1j�, j D
1; 2; : : : ; n, Problem (20.13) becomes an interval programming problem. In this
case, Problem (20.13) is formulated as the following bi-objective linear program-
ming problem in many papers [15, 40, 79, 91]:

maximize
�

cL
1

Tx; cR
1

Tx
�T

;

subject to x 2 X;
(20.14)

where cL
1 D .cL

11; cL
12; : : : ; cL

1n/T and cR
1 D .cR

11; cR
12; : : : ; cR

1n/T.
The inequality relation between two interval A D ŒaL; aR� and B D ŒbL; bR� is

frequently defined by

A � B , aL � bL and aR � bR: (20.15)

Problem (20.14) would be understood as a problem inspired from this inequality
relation. Moreover, because Problem (20.14) maximizes the lower and upper bounds
of objective function value simultaneously, it can be also seen as a problem max-
imizing the worst objective function value and the best objective function value.
Namely, it is a model applied simultaneously the maximin criterion and the max-
imax criterion proposed for decision making under strict uncertainty. An efficient
solution to Problem (20.14) is considered as a reasonable solution in this approach.
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Extending this idea to general fuzzy coefficient case, we may have the following
linear programming (LP) problem with infinitely many objective functions [91]:

maximize

 
cL

1 .h/
Tx; 8h 2 .0; 1�

cR
1 .h/

Tx; 8h 2 .0; 1�

!

;

subject to x 2 X;

(20.16)

where cL
1 .h/ D .cL

11.h/; cL
12.h/; : : : ; cL

1n.h//T and cR
1 .h/ D .cR

11.h/; cR
12.h/; : : : ;

cR
1n.h//T.

This formulation is also related to the following inequality relation between fuzzy
numbers QA and QB (see [75, 91]):

QA � QB , aL.h/ � bL.h/ and aR.h/ � bR.h/; 8h 2 .0; 1�; (20.17)

where we define for h 2 .0; 1�, aL.h/ D infŒ QA�h, bL.h/ D infŒ QB�h, aR.h/ D supŒ QA�h
and bR.h/ D supŒ QB�h.

When all fuzzy coefficients Qc1j are assumed to be L-R fuzzy numbers .cL
1j; cR

1j;

�L
1j; �R

1j/LR with same left and right reference functions L and R such that L.1/ D
R.1/ D 0 and 8r 2 Œ0; 1/, L.r/ > 0, R.r/ > 0, the following LP problem with four
objective functions are considered:

maximize
�

cL
1

Tx; cR
1

Tx; .cL
1 � �L

1 /
Tx; .cR

1 C �R
1 /

Tx
�T

;

subject to x 2 X;
(20.18)

where cL
1 D .cL

11; cL
12; : : : ; cL

1n/T, cR
1 D .cR

11; cR
12; : : : ; cR

1n/T, �L
1 D .�L

11; �L
12; : : : ; �L

1n/T,
�R

1 D .�R
11; �R

12; : : : ; �R
1n/T.

The following theorem shows the equivalence between Problems (20.16) and
(20.18).

Theorem 1. The efficient solution set Effmany of Problem (20.16) coincides with the
efficient solution set Efffour of Problem (20.18).

Proof. Let x 62 Eff four. Then there exists Nx 2 X such that

cL
1

T Nx � cL
1

Tx; cR
1

T Nx � cR
1

Tx;

.cL
1 � �L

1 /
T Nx � .cL

1 � �L
1 /

Tx;

.cR
1 C �R

1 /
T Nx � .cR

1 C �R
1 /

Tx

.�/

with at least one strict inequality. For L-R fuzzy numbers .cL
1j; cR

1j; �L
1j; �R

1j/LR, as
in (20.8), we have

cL
1j.h/ D cL

1j � �L
1jL

.�1/.h/; cR
1j.h/ D cR

1j C �R
1jR

.�1/.h/;



20 Fuzzy Multi-Criteria Optimization: Possibilistic and Fuzzy/Stochastic Approaches 859

for any h 2 .0; 1�. From L.1/ D R.1/ D 0 and 8r 2 .0; 1�, L.r/ > 1 and R.r/ > 1,
we have 8h 2 .0; 1�, L.�1/.h/ 2 Œ0; 1� and R.�1/.h/ 2 Œ0; 1�. From .�/, we obtain

cL
1 .h/T Nx � cL

1 .h/Tx; cR
1 .h/T Nx � cR

1 .h/Tx; 8h 2 .0; 1� .��/

with at least one strict inequality. Then we obtain x 62 Eff many.
On the contrary, let x 62 Eff many. Then there exists Nx 2 X such that .��/ with

at least one strict inequality holds. Because .��/ holds, we have .�/. Then we
shall show that .�/ holds with at least one strict inequality. We can prove this
dividing into two cases: (a) 9Nh 2 .0; 1�, cL

1 .h/T Nx > cL
1 .h/Tx and (b) 9Nh 2 .0; 1�,

cR
1 .h/T Nx > cR

1 .h/Tx. In case (a), if L.�1/.Nh/ D 0, we obtain cL
1

T Nx > cL
1

Tx and this
directly implies that .�/ holds with at least one strict inequality. Then we assume
L.�1/.Nh/ ¤ 0 and cL

1

T Nx D cL
1

Tx. This and condition for (a) imply �L.�1/.Nh/.�L
1

T Nx/ >

�L.�1/.Nh/.�L
1

Tx/. Because we have L.�1/.Nh/ ¤ 0 and L.�1/.Nh/ 2 Œ0; 1�, we obtain

.cL
1 � �L

1 /
T Nx > .cL

1 � �L
1 /

Tx, i.e., .�/ holds with at least one strict inequality. In case
(b), we can prove in the same way. Then .�/ holds with at least one strict inequality,
i.e., x 62 Eff four. ut

In this approach, an efficient solution to the reduced multiple objective program-
ming problems is considered as a reasonable solution [15, 40, 79]. If the complete
optimal solution exists, it is considered as the best solution. Furukawa [15] proposed
an efficient enumeration method of efficient solutions of Problem (20.16).

The following example given in [33] shows the limitation of this approach.

Example 1. Consider the following LP problem with interval objective function:

maximize Œ1; 3�x1 C Œ1; 3�x2;

subject to 45x1 C 50x2 � 530;

50x1 C 45x2 � 515;

0 � x1 � 8; 0 � x2 � 8:

(20.19)

In this case, the following bi-objective problem corresponds to Problem (20.16):

maximize .x1 C x2; 3x1 C 3x2/T;

subject to 45x1 C 50x2 � 530;

50x1 C 45x2 � 515;

0 � x1 � 8; 0 � x2 � 8:

(20.20)

The efficient optimal solution to Problem (20.20) is unique it is .x1; x2/T D .4; 7/T.
In other words, .x1; x2/T D .4; 7/T is the complete optimal solution. This solution
on the feasible region is depicted in Fig. 20.3.

In Fig. 20.3, a box on c1-c2 coordinate shows all possible realizations of the
objective function coefficient vector. Area G1 shows the possible realizations of the
objective function coefficient vector to which solution .x1; x2/T D .4; 7/T is optimal.
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Fig. 20.3 Example 1

Similarly, Area G2 and G3 show the possible realizations of the objective function
coefficient vector to which solutions .x1; x2/T D .8; 2:55556/T and .x1; x2/T D
.2:8889; 8/T are optimal, respectively. Although solution .x1; x2/T D .4; 7/T is the
unique efficient solution to Problem (20.20), Area G1 is much smaller than Areas
G2 and G3. If all possible realizations of the objective function coefficient vector
are equally probable, the probability that .x1; x2/T D .4; 7/T is not the optimal
solution is rather high. From this point of view, the validity of selecting solution
.x1; x2/T D .4; 7/T may be controversial.

20.3.2 Possibly and Necessarily Optimal Solutions

Let S.c/ be a set of optimal solutions to an LP problem with objective function cTx,

maximize cTx;

subject to x 2 X:
(20.21)

Consider Problem (20.13) when Qc1j, j D 1; 2; : : : ; n degenerate to intervals ŒcL
1j; cR

1j�,
j D 1; 2; : : : ; n and define � D Qn

jD1ŒcL
1j; cR

1j� D f.c1; c2; : : : ; cn/T j cL
1j � cj �

cR
1j; j D 1; 2; : : : ; ng. Then we define the following two optimal solution sets:

˘S D
[

fS.c/ j c 2 � g ; (20.22)

NS D
\

fS.c/ j c 2 � g : (20.23)
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An element of ˘S is a solution optimal for at least one c D .c1; c2; : : : ; cn/T such
that cL

1j � cj � cR
1j, j D 1; 2; : : : ; n. Since ŒcL

1j; cR
1j�, j D 1; 2; : : : ; n show the

possible ranges of objective function coefficients c1j, j D 1; 2; : : : ; n, an element
of ˘S is called a “possibly optimal solution”. On the other hand, an element of
NS is a solution optimal for all c D .c1; c2; : : : ; cn/T such that cL

1j � cj � cR
1j,

j D 1; 2; : : : ; n and called a “necessarily optimal solution”. Solution set ˘S
was originally considered by Steuer [88] for a little different purpose while the
concept of solution set NS was proposed by Bitran [4] in the setting of MOLP
problems. Luhandjula [65] introduced those concepts into MOLP problem with
fuzzy objective function coefficients. However, his definition was a little different
from the one we described in what follows. Inuiguchi and Kume [30] and Inuiguchi
and Sakawa [34] connected those concepts to possibility theory [12, 98] and termed
˘S and NS ‘possibly optimal solution set’ and ‘necessarily optimal solution set’.

Consider the following MOLP problem:

maximize
�NcT

1 x; NcT
2 x; : : : ; NcT

q x
�T

;

subject to x 2 X;
(20.24)

where Ncj; j D 1; 2; : : : ; q are all extreme points of box set � D Qn
jD1ŒcL

1j; cR
1j�.

Accordingly, we have q D 2n when cL
1j < cR

1j, j D 1; 2; : : : ; n and q < 2n when
there exists at least one j 2 f1; 2; : : : ; ng such that cL

1j D cR
1j. We have NS � ˘S,

i.e., a necessarily optimal solution is a possibly optimal solution. The following the-
orem given by Inuiguchi and Kume [30] connects possibly and necessarily optimal
solutions to weakly efficient and completely optimal solutions, respectively.

Theorem 2. A solution is possibly optimal to Problem (20.13) with Qc1j D ŒcL
1j; cR

1j�,
j D 1; 2; : : : ; n if and only if it is weakly efficient to Problem (20.24). A solution is
necessarily optimal to Problem (20.13) when Qc1j D ŒcL

1j; cR
1j�, j D 1; 2; : : : ; n if and

only if it is completely optimal to Problem (20.24).

Proof. Suppose Ox is a weakly efficient solution to Problem (20.24). There are no
feasible solutions such that NcT

j x > NcT
j Ox, j D 1; 2; : : : ; q. As is well known in the

literature, there is a vector � D .�1; �2; : : : ; �q/T such that
Pq

jD1 �j D 1, �j � 0,
j D 1; 2; : : : ; q and Ox is an optimal solution to the following LP problem:

max
x2X

qX

jD1

�j NcT
j x: .�/

Thus, we have Ox 2 S
�Pq

jD1 �j Ncj

�
. By the definition of Ncj’s,

Pq
jD1 �j Ncj 2 � . Hence, Ox

is a possibly optimal solution to Problem (20.13) with Qc1j D ŒcL
1j; cR

1j�, j D 1; 2; : : : ; n.
Conversely, suppose Ox is a possibly optimal solution to Problem (20.13) with Qc1j D
ŒcL

1j; cR
1j�, j D 1; 2; : : : ; n, there is a vector c 2 � such that Ox 2 S.c/. By the definition

of cj’s, there is a vector � D .�1; �2; : : : ; �q/T such that
Pq

jD1 �j D 1, �j � 0,
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j D 1; 2; : : : ; q and c D Pq
jD1 �j Ncj. Thus, Ox is an optimal solution to the problem (�)

and from this fact, it is a weakly efficient solution to problem (20.24). Hence, the
first assertion is proved.

The second assertion can be proved similarly. ut
Possibly and necessarily optimal solutions are exemplified in the following

example.

Example 2. Let us consider the following LP problems with interval objective func-
tion:

maximize Œ2; 3�x1 C Œ1:5; 2:5�x2;

subject to 3x1 C 4x2 � 42;

3x1 C x2 � 24;

x1 � 0; 0 � x2 � 9:

(20.25)

For this problem, we obtain � D f.c1; c2/T j 2 � c1 � 3; 1:5 � c2 � 2:5g and
X D f.x1; x2/T j 3x1 C 4x2 � 42; 3x1 C x2 � 24; x1 � 0; 0 � x2 � 9g at .6; 6/T.
Consider solution .x1; x2/T D .6; 6/T and the normal cone to X at this solution, i.e.,
a set of vectors .c1; c2/T such that .x1 � 6; x2 � 6/T.c1; c2/ � 0. The normal cone to
X at .6; 6/T is obtained as

P..6; 6/T/ D ˚
.c1; c2/T j c1 � 3c2 � 0; 4c1 � 3c2 � 0

�
: (20.26)

As shown in Fig. 20.4, we obtain � � P..6; 6/T/. This implies that solution .6; 6/T

is optimal for all .c1; c2/T 2 � . Therefore, solution .6; 6/T is a necessarily optimal
solution.

On the other hand, when the objective function of Problem (20.25) is changed to

Œ1; 3�x1 C Œ1:5; 3�x2; (20.27)

Fig. 20.4 Problem (20.25)



20 Fuzzy Multi-Criteria Optimization: Possibilistic and Fuzzy/Stochastic Approaches 863

Fig. 20.5 Problem (20.25)
with the updated objective
function

� is updated to � D ˚
.c1; c2/T j 1 � c1 � 3; 1:5 � c2 � 3

�
. As shown in Fig. 20.5,

� � P..6; 6/T/ is no longer valid. In this case, � � P..2; 9/T/ [ P..6; 6/T/

is obtained and solutions on the line segment between .2; 9/T and .6; 6/T are all
possibly optimal solutions. As shown in this example, there are infinitely many
possibly optimal solutions. However, the number of possibly optimal basic solutions
(extreme points) is finite.

As shown in this example, a necessarily optimal solution does not exist in many
cases but if it exists it is the most reasonable solution. On the other hand, a possibly
optimal solution always exist whenever X is bounded and nonempty but it is often
non-unique. If a possibly optimal solution is unique, it is a necessarily optimal
solution. Moreover, as is conjectured from this example, we can prove the following
equivalences for a given x 2 X:

x 2 NS , � � P.x/; (20.28)

x 2 ˘S , � \ P.x/ ¤ ;; (20.29)

where P.x/ is the normal cone to X at solution x.
The possibly and necessarily optimal solutions are extended to the case where Qc1j,

j D 1; 2; : : : ; n are fuzzy numbers. In this case, the possible range �1 of coefficient
vectors c becomes a fuzzy set defined by the following membership function:

��1.c/ D min
jD1;2;:::;n

�Qc1j.cj/; (20.30)
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where c D .c1; c2; : : : ; cn/T and �Qc1j is the membership function of Qc1j. Accordingly
the possibility optimal solution set ˘S and the necessarily optimal solution set NS
become fuzzy sets defined by the following membership functions:

�˘S.x/ D sup
cW x2S.c/

�Qc1j.c/; (20.31)

�NS.x/ D inf
cW x62S.c/

1 � �Qc1j.c/; (20.32)

where �˘S and �NS are membership functions of the possibility optimal solution
set ˘S and the necessarily optimal solution set NS. Because Qc1j has membership
function, each solution x 2 X has possible optimality degree �˘S.x/ and nec-
essary optimality degree �NS.x/. Because Qc1j, j D 1; 2; : : : ; n are fuzzy numbers,
from (20.11) and (20.12), we have the following properties for any h 2 .0; 1�:

�˘S.x/ � h , 9c 2 Œ� �h; x 2 S.c/; (20.33)

�NS.x/ � h , 8c 2 .� /1�h; x 2 S.c/: (20.34)

As shown in those properties, the chance that a necessarily optimal solution exists
increases by defining Œ� �1 smaller. Especially, if we define � with a continuous
membership function such that Œ� �1 is a singleton composed of the most plausible
objective function coefficient vector and .� /0 shows the largest possible range, we
can analyze the degree of robust optimality of a solution x by �NS.x/.

Computation methods for the degree of possible optimality and the degree of
necessary optimality of a given feasible solution are investigated by Inuiguchi and
Sakawa [32]. They showed that the former can be done by solving an LP problem
while the latter by solving many LP problems. On the other hand, Steuer [88]
investigated enumeration methods of all possibly optimal basic solutions of Prob-
lem (20.13) when Qcj’s are closed intervals. Inuiguchi and Tanino [38] proposed an
enumeration method of all possibly optimal basic solutions of Problem (20.13) with
possible optimality degree �˘S.x/.

Remark 1. Consider a MOLP problem,

maximize
�
c1

Tx; c2
Tx; : : : ; cp

Tx
�T

;

subject to x 2 X;
(20.35)

and solve it by weighting method. If the weight w � 0 cannot be specified uniquely
but by a fuzzy set Qw, the possible and necessary optimalities are useful to find
candidate solutions.
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20.3.3 Minimax Regret Solutions and the Related
Solution Concepts

As seen in the previous subsection, a necessarily optimal solution is the most rea-
sonable solution to Problem (20.13) but its existence is not guaranteed. On the
other hand, possibly optimal solutions are the least reasonable solutions to Prob-
lem (20.13) but there are usually many possibly optimal solutions. Therefore, these
solution concepts are two extremes.

In this subsection, we consider intermediate solution concepts such that

1. the solution is a possibly optimal solution,
2. it coincides with the necessarily optimal solution when the necessarily optimal

solution exists, and
3. it minimizes the deviation from the necessary optimality, or it maximizes the

proximity to the necessity optimality.

For the sake of ease, we first consider cases where � is a crisp set. To measure the
deviation from the necessary optimality and the proximity to the necessity optimal-
ity, the following two functions R W X ! Œ0; 1/ and WA W X ! .�1; 1� have been
considered so far (see Inuiguchi and Kume [30], Inuiguchi and Sakawa [33, 35]):

R.x/ D max
c2�

max
y2X

cT .y � x/ ; WA.x/ D min
c2�

cTx

max
y2X

cTy
; (20.36)

where R.x/ is known as the maximum regret. R.x/ takes its minimum value zero if
and only if x is a necessarily optimal solution. On the other hand, WA.x/ shows the
worst achievement rate and is defined only when maxy2X cTy > 0. WA.x/ takes its
maximum value one if and only if x is a necessarily optimal solution.

Hence, we obtain the following programming problems:

minimize
x2X

R.x/; maximize
x2X

WA.x/: (20.37)

The former problem is the minimax regret problem and the latter problem is the
maximin achievement rate problem. Optimal solutions to those problems are called
‘a minimax regret solution’ and ‘a maximin achievement rate solution’, respectively.
The possible optimalities of minimax regret solutions and maximin achievement
rate solutions are proved by using Theorem 2 as shown in the following theorem
(Inuiguchi and Kume [30] and Inuiguchi and Sakawa [35]).

Theorem 3. Minimax regret solutions as well as maximin achievement rate solu-
tions are possibly optimal solutions to the problem (20.13).

Proof. We prove the possible optimality of a minimax regret solution because that
of a maximin achievement rate solution can be proved in the same way. Let Ox be
a minimax regret solution. Assume it does not a possibly optimal solution. Then
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it does not a weakly efficient solution to MOLP problem (20.24) from Theorem 2.
Thus, there exists a feasible solution x such that NcT

j x > NcT
j Ox; j D 1; 2; : : : ; q. Namely,

qX

jD1

�j NcT
j x >

qX

jD1

�j NcT
j Ox

holds for all � D .�1; �2; : : : ; �p/ such that
Pq

jD1 �j D 1 and �j � 0; j D
1; 2; : : : ; q. Since Ncj, j D 1; 2; : : : ; q are all extreme points of � , this inequality
can be rewritten as

cTx > cT Ox; for all c 2 �:

Thus we have

R.x/ D max
c2�

max
y2X

cT .y � x/ < max
c2�

max
y2X

cT .y � Ox/ D R.Ox/:

This contradicts the fact that Ox is a minimax regret solution. Hence, a minimax regret
solution is a possibly optimal solution. ut
Example 3. Consider Problem (20.19) again. The minimax regret solution is
obtained as point .5:34211; 5:50877/T in Fig. 20.3. As shown in Fig. 20.3, this solu-
tion is on the polygonal line segment composed of .2:8889; 8/T, .4; 7/T and
.8; 2:55556/T. The polygonal line segment shows the possibly optimal solution
set. Then we know that the minimax regret solution is a possibly optimal solution.
Moreover, from Fig. 20.3, we observe the solution .5:34211; 5:50877/T is located at
a well-balanced place on the polygonal line segment.

Now we consider cases where � is a fuzzy set. In this case, by the extension
principle, we define fuzzy regret Qr.x/ and fuzzy achievement rate eac.x/ for a feasible
solution x 2 X by the following membership functions:

�Qr.x/.r/ D sup

	

�� .c/
ˇ
ˇ
ˇ r D max

y2X
cT.y � x/




; (20.38)

�eac.x/.r/ D sup

	

�� .c/
ˇ
ˇ
ˇ r � max

y2X
cTy D cTx




: (20.39)

Moreover, we specify fuzzy goal Gr having an upper semi-continuous non-increasing
membership function �Gr W Œ0; C1/ ! Œ0; 1� such that �Gr .0/ D 1 on the regret,
and fuzzy goal Gac having an upper semi-continuous non-decreasing membership
function �Gac W .�1; 1� ! Œ0; 1� such that �Gac.1/ D 1 on the achievement rate.
Then, using necessity measure, the problem is formulated as

maximize
x2X

NQr.x/.Gr/; maximize
x2X

N Qac.x/.Gac/: (20.40)
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We note that optimal solutions to these problem can be seen as relaxations of
necessarily optimal solutions. Let us define two kinds of suboptimal solution sets to
LP problem (20.13) with objective function cTx as fuzzy sets Sdif .c/ and Srat.c/ by
the following membership functions:

�Sdif .c/.x/ D min

�

�X.x/; �Gr

�

max
y2X

cTy � cTx
��

; (20.41)

�Srat.c/.x/ D min

0

@�X.x/; �Gac

0

@
cTx

max
y2X

cTy

1

A

1

A ; (20.42)

where �X is the characteristic function of feasible region X, i.e., �X.x/ D 1 for
x 2 X and �X.x/ D 0 for x 62 X.

Based on these, we define two kinds of necessarily suboptimal solution sets NSdif

and NSrat by the following membership functions:

�NSdif .x/ D inf
c

max
�
1 � �� .c/; �Sdif .c/.x/

�
; (20.43)

�NSrat .x/ D inf
c

max
�
1 � �� .c/; �Srat.c/.x/

�
: (20.44)

We obtain �NSdif .x/ D NQr.x/.Gr/ and �NSrat .x/ D Neac.x/.Gr/ for x 2 X. Therefore,
problems in (20.40) are understood optimization problems of necessary suboptimal-
ity degrees.

The minimax regret problem was considered by Inuiguchi and Kume [30] and
Inuiguchi and Sakawa [33]. Inuiguchi and Sakawa [33] proposed a solution method
based on the relaxation procedure when all possibly optimal basic solutions are
known. Mausser and Laguna [71] proposed a mixed integer programming approach
to the minimax regret problem. Inuiguchi and Tanino [37] proposed a solution
approach based on outer approximation and cutting hyperplane. The maximin
achievement rate approach was proposed by Inuiguchi and Sakawa [35] and a
relaxation procedure for a maximin achievement rate solution was proposed when
all possibly optimal basic solutions are known. The necessarily suboptimal solution
set is originally proposed by Inuiguchi and Sakawa [36]. They treated the regret
case and proposed a solution algorithm based on the relaxation procedure and the
bisection method. Inuiguchi et al. [39] further investigated a solution algorithm for
both problems in (20.40). In those solution algorithms, the relaxation procedure
and bisection method converges at the same time. The reduced problems described
in this subsection are non-convex optimization problems. The recent global opti-
mization techniques [21] would work well for those problems. The minimax regret
solution concept is applied to discrete optimization problems [41] and MOLP
problems [76]. The minimax regret solution to a MOLP problem minimizes the
deviation from the complete optimality. The computational complexity of minimax
regret solution is investigated in [1].
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20.4 Multiple Objective Function Case

Now we describe the approaches to Problem (20.2) with p > 1, i.e., multiple
objective function case.

20.4.1 Possibly and Necessarily Efficient Solutions

The concepts of possibly and necessarily optimal solutions can be extended to
the case of multiple objective functions. In this case, the corresponding solution
concepts are possibly and necessarily efficient solutions.

Before giving the definitions of possibly and necessarily efficient solutions, we
define a set of efficient solutions, E.C/ to the following MOLP problem:

maximize .cT
1 x; cT

2 x; : : : ; cT
p x/T;

subject to x 2 X;
(20.45)

where we define p � n matrix C by C D .c1 c2 � � � cp/T.
First, we describe the case where Qckj, k D 1; 2; : : : ; p, j D 1; 2; : : : ; n degenerate

to intervals ŒcL
kj; cR

kj�, k D 1; 2; : : : ; p, j D 1; 2; : : : ; n and define � D Qp
kD1 �k

and �k D Qn
jD1ŒcL

kj; cR
kj� D f.c1; c2; : : : ; cn/T j cL

kj � cj � cR
kj; j D 1; 2; : : : ; ng,

k D 1; 2; : : : ; p. Namely, � is a box set of p � n matrices. Then, in the analogy, we
obtain the possibly efficient solution set ˘E and the necessarily efficient solution
set NE by

˘E D
[

fE.C/ j C 2 �g ; (20.46)

NE D
\

fE.C/ j C 2 �g : (20.47)

Elements of ˘E and NE are interpreted in the same way as those of ˘S and NS,
respectively. Namely, an element of ˘E is a solution efficient for at least one C 2 �.
Because � shows the possible range of objective function coefficient matrix, an
element of ˘E is called a “possibly efficient solution”. On the other hand, an
element of NE is a solution efficient for all C 2 � and called a “necessarily efficient
solution”.

Let K.C/ D fs j Cs � 0 and Cs ¤ 0g and R.C/ D fCTz j z > 0g. Namely, K.C/

shows the set of improving directions while R.C/ is the set of positively weighted
sum of objective coefficient vectors. Using K.C/ and R.C/, we define the following
sets:

K˘.�/ D
\

fK.C/ j C 2 �g; (20.48)

KN.�/ D
[

fK.C/ j C 2 �g; (20.49)
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R˘.�/ D fc j 9z > 0 9C 2 �; c D CTzg
D
[

fR.C/ j C 2 �g; (20.50)

RN.�/ D fc j 8C 2 � 9z > 0; c D CTzg
D
\

fR.C/ j C 2 �g: (20.51)

Let T.x/ be the tangent cone of feasible region X at point x 2 X, i.e., T.x/ D
clfr.y � x/ j y 2 X; r � 0g, where clK is the closure of a set K. Let P.x/ be the
normal cone of X at x 2 X, in other words, P.x/ D fc j cT.y � x/ � 0; 8y 2 Xg Dn
c
ˇ
ˇ
ˇ cTx D maxy2X cTy

o
.

Because the following equivalence for x 2 X is known in MOLP Problem (see,
for example, Steuer [89]):

x 2 E.C/ , .K.C/ [ f0g/ \ T.x/ D f0g; (20.52)

x 2 E.C/ , R.C/ \ P.x/ ¤ ;; (20.53)

Then, for x 2 X, we have

x 2 ˘E , .K˘.�/ [ f0g/ \ T.x/ D f0g; (20.54)

x 2 NE , .KN.�/ [ f0g/ \ T.x/ D f0g; (20.55)

x 2 ˘E , R˘.�/ \ P.x/ ¤ ;; (20.56)

RN.�/ \ P.x/ ¤ ; ) x 2 NE: (20.57)

Let ˚ be the subset of matrices of � having all elements of each column at the
upper bound or at the lower bound. Namely, C 2 ˚ implies C�j D L�j or C�j D U�j for
j D 1; 2; : : : ; p, where L D .cL

ij/, U D .cR
ij / and C�j is the j-th column of matrix C.

We have the following proposition (see Bitran [4]).

Proposition 1. We have the following equations:

KN.�/ D KN.˚/; (20.58)

NE D
\

fE.C/ j C 2 ˚g; (20.59)

RN.�/ D RN.˚/: (20.60)

Proof. We prove (20.58) and (20.59). Equation (20.60) is obtained from (20.59) in
a straightforward manner.

KN.˚/ � KN.�/ is obvious. Then we prove the reverse inclusion relation.
Assume s 2 KN.�/, Then there exists C 2 � such that Cs � 0 and Cs ¤ 0.
Consider NC defined by NC�j D L�j if sj < 0 and NC�j D U�j otherwise, for j D
1; 2; : : : ; p. Then NC 2 ˚ . We have NCs � Cs � 0 and NCs ¤ 0. This implies
s 2 K. NC/ � KN.˚/. Hence, KN.˚/ 	 KN.�/.



870 M. Inuiguchi et al.

Now let use prove (20.59). By definition, we have NE D TfE.C/ j C 2 �g �TfE.C/ j C 2 ˚g. Then we prove the reverse inclusion relation. Assume x 62 NE.
Thus, from (20.55), we have .KN.�/ [f0g/ \ T.x/ ¤ f0g. From (20.58), we obtain
.KN.˚/ [ f0g/ \ T.x/ ¤ f0g. Namely, x 62 E.C/ for some C 2 ˚ . Consequently,
x 62 TfE.C/ j C 2 ˚g. Hence, NE D TfE.C/ j C 2 �g 	 TfE.C/ j C 2 ˚g. ut

As is known in the literature, we have

P.x/ D T.x/� and T.x/ D P.x/�; (20.61)

where D� stands for the polar cone of a set D, i.e., D� D fy j xTy � 0; 8x 2 Dg.
We obtain the following proposition.

Lemma 1. The following are true:

8s 2 K.C/; 8y 2 R.C/I sTy > 0; (20.62)

�R.C/ � K.C/�; (20.63)

�R.C/ � intfsg�; 8s 2 K.C/: (20.64)

where intD is the interior of set D 
 Rn.

Proof. From definition, we obtain (20.62). Equations (20.63) and (20.64) are
obtained from (20.62) in a straight forward manner. ut

We obtain the following theorem (Inuiguchi [27]).

Theorem 4. If RN.�/ is not empty, we have

x 2 NE , RN.�/ \ P.x/ ¤ ;: (20.65)

Proof. We prove that RN.�/ \ P.x/ ¤ ; implies x 2 NE because the reverse
implication is obtained from (20.57).

Assume x 62 NE. Then, from (20.55) and 0 2 T.x/, KN.�/ \ T.x/ ¤ ;. Let
Os 2 KN.�/ \ T.x/. There exists C 2 � such that Os 2 K.C/ \ T.x/. Considering
fOsg� D fc 2 Rn j cTOs � 0g, we have

K.C/� � fOsg� and T.x/� � fOsg�:

From (20.61), the second inclusion relation implies P.x/ � fOsg�, i.e.,

8y 2 P.x/I OsTy � 0: .�/

On the other hand, from (20.63), we have �R.C/ � fOsg�. From Os 2 K.C/ and
(20.64), we obtain �R.C/ � intfOsg�. This means

8y 2 R.C/I OsTy > 0: .��/
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From .�/ and .��/, we find that fy j OsTy D 0g is a separating hyperplane of P.x/

and R.C/. Therefore, we obtain R.C/ \ P.x/ D ;. By definition of RN.�/, this
implies

RN.�/ \ P.x/ D ;:

Hence, we have RN.�/ \ P.x/ ¤ ; ) x 2 NE. ut
Let us consider the following set of objective function coefficients:

	.�/ D
\

f	 j 	 is a convex cone, and 8C 2 �; R.C/ \ 	 ¤ ;g (20.66)

When 	.�/ is not empty, from the definition, we have

x 2 NE , 	.�/ � P.x/: (20.67)

Let Uni D fc D .c1; c2; : : : ; cn/T j Pn
jD1 jcjj D 1g. We find the following strong

relations between RN.�/ and 	.�/:

• RN.�/ is empty if and only if 	.�/\Uni is neither an empty set nor a singleton.
• RN.�/ \ Uni is neither an empty set nor a singleton if and only if 	.�/ D ;.
• RN.�/\Uni is a singleton if and only if 	.�/\Uni is a singleton, and moreover

we have 	.�/ D RN.�/.

We note RN.�/ � R˘.�/ and 	.�/ � R˘.�/.
Moreover, comparing (20.65) and (20.67) with (20.29) and (20.28), respectively,

we found the following relations:

x 2 NE ,
	

x 2 ˘S with � D RN.�/; if RN.�/ ¤ ;;

x 2 NS with � D 	.�/; otherwise,
(20.68)

where we note that we apply possible and necessary optimality concepts even when
� is not a box set. Namely, when RN.�/ is not empty, the necessary efficiency
can be tested by the possible optimality with objective coefficient vector set RN.�/.
On the contrary, when RN.�/ is empty, the necessary efficiency can be tested by the
necessary optimality with objective coefficient vector set 	.�/. Moreover, cones
RN.�/ and 	.�/ can be replaced with bounded sets RN.�/ \ Uni and 	.�/ \
Uni, respectively. We may apply the techniques in single objective function case
including minimax regret solution concepts to multiple objective function case if
we obtain RN.�/ and 	.�/.

When Qckj, k D 1; 2; : : : ; p, j D 1; 2; : : : ; n degenerate to intervals ŒcL
kj; cR

kj�, k D
1; 2; : : : ; p, j D 1; 2; : : : ; n, possibility efficient solutions and necessarily efficient
solutions are illustrated in the following example.
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Fig. 20.6 An example of a
necessarily efficient solution

Example 4. Let us consider the following LP problem with multiple interval objec-
tive functions (Inuiguchi and Sakawa [34]):

maximize .Œ2; 3�x1 C Œ1:5; 2:5�x2; Œ3; 4�x1 C Œ0:5; 0:8�x2/T ;

subject to 3x1 C 4x2 � 42;

3x1 C x2 � 24;

x1 � 0; 0 � x2 � 9:

To this problem, from Fig. 20.6, we obtain

RN.�/ D fc j c D r1.3; 0:8/ C r2.3; 1:5/; r1 > 0; r2 > 0g;

while 	.�/ D ;. Consider a solution x D .x1; x2/T D .6; 6/T. The normal cone of
the feasible region at .6; 6/T is obtained as

P
�
.6; 6/T

� D fc j c D r1.2; 2:5/ C r2.3; 1/; r1 � 0; r2 � 0g:

We obtain RN.�/ \ P..6; 6/T/ ¤ ;. From Theorem 4, this implies that .6; 6/T is a
necessarily efficient solution. Moreover, any solution .x1; x2/T on the line segment
from .6; 6/T to .8; 0/T includes fk.3; 0:8/ j k � 0g 
 RN.�/ in its normal cone
P..x1; x2/T/, and therefore, it is also a necessarily efficient solution. Thus there are
many necessarily efficient solutions.

On the other hand, we obtain

R˘.�/ D fc j c D r1.2; 2:5/ C r2.4; 0:5/; r1 > 0; r2 > 0g;

and R˘.�/ \ P..6; 6/T/ ¤ ;. Thus, .6; 6/T is also a possibly efficient solution.
Moreover solutions on the line segment from .6; 6/T to .8; 0/T are all possibly
efficient solutions because we have R˘.�/ \ P..x1; x2/T/ ¤ ;. There are no
other possibly efficient solutions because other feasible solutions .x1; x2/T satisfy
R˘.�/ \ P..x1; x2/T/ D ;. Thus, in this example, we have ˘E D NE.
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Fig. 20.7 An example of a
non-necessarily efficient
solution

Next, let us consider the following LP problem with multiple interval objective
functions:

maximize .Œ1; 1:7�x1 C Œ1; 4�x2; Œ2:3; 3�x1 C Œ0:8; 3:5�x2/T ;

subject to 3x1 C 4x2 � 42;

3x1 C x2 � 24;

x1 � 0; 0 � x2 � 9:

For this problem, we obtain RN.�/ D ; while

	.�/ D fc j c D r1.2; 1/ C r2.2:3; 3:5/; r1 � 0; r2 � 0g:

Because the constraints are same as the previous problem, the normal cone of the
feasible region at .6; 6/T is same as P..6; 6/T/. As shown in Fig. 20.7, we have
	.�/ 6� P..6; 6/T/. Then .6; 6/T is not a necessarily efficient solution. However,
as shown in Fig. 20.7, we have 	.�/ \ P..6; 6/T/ ¤ ; and this implies R˘.�/ \
P..6; 6/T/ ¤ ;. Namely, .6; 6/T is a possibly optimal solution. In this case, we
obtain

R˘.�/ D fc j c D r1.1; 4/ C r2.3; 0:8/; r1 > 0; r2 > 0g:
Then solutions .x1; x2/ on the polygon passing .2; 9/T, .6; 6/T and .8; 0/T are all
possibly optimal solutions because they satisfy R˘.�/ \ P..x1; x2/T/ ¤ ;. No
other solutions are possibly optimal.

Finally, let us consider the following LP problem with multiple interval objective
functions:

maximize .Œ2:5; 3:5�x1 C Œ�1; 0:5�x2; Œ�2; �1�x1 C Œ�0:5; 1�x2/T ;

subject to 3x1 C 4x2 � 42;

3x1 C x2 � 24;

x1 � 0; 0 � x2 � 9:
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For this problem, we obtain RN.�/ D ; and 	.�/ D R2. Because P..x1; x2/T/ 

R2 for any .x1; x2/T 2 X, there is no necessarily optimal solution. Moreover, R˘.�/

D R2 and thus, all feasible solutions are possibly efficient.

The possibly efficient solution set ˘E and the necessarily efficient solution set
NE are extended to the case where � is fuzzy set. Namely, they are defined by the
following membership functions:

�˘E.x/ D sup
CWx2E.C/

��.C/; (20.69)

�NE.x/ D inf
CWx62E.C/

1 � ��.C/: (20.70)

Similar to possibly and necessarily optimal solution sets, we have

�˘E.x/ � h , 9C 2 Œ��h; x 2 E.C/; (20.71)

�NE.x/ � h , 8C 2 .�/1�h; x 2 E.C/; (20.72)

where Œ��h and .�/1�h are h-level set and strong .1 � h/-level set of �. From those
we have

Œ˘E�h D
[

fE.C/ j C 2 Œ��hg; (20.73)

ŒNE�h D
\

fE.C/ j C 2 .�/1�hg: (20.74)

Therefore, the h-level sets of possibly and necessarily efficient solution sets with
fuzzy objective function coefficients are treated almost in the same way as possibly
and necessarily efficient solution sets with interval objective function coefficients.

The examples of possibly and necessarily efficient solutions in fuzzy coefficient
case can be found in Inuiguchi and Sakawa [34].

Remark 2. By taking a positively weighted sum of objective functions of Prob-
lem (20.2), we obtain an LP problem with a single objective function. To this single
objective LP problem, we obtain possibly and necessarily optimal solution sets.
Let ˘S.w/ and NS.w/ be possibly and necessarily optimal solution sets of the
single objective LP problem with weight vector w, respectively. We have the fol-
lowing relations to possibly and necessarily efficient solution sets of Problem (20.2)
(see Inuiguchi [27]):

˘E D
[

w>0

˘S.w/; NE 	
[

w>0

NS.w/: (20.75)

Remark 3. Luhandjula [64] and Sakawa and Yano [81, 82] earlier defined similar
but different optimal and efficient solutions to Problems (20.13) and (20.2), respec-
tively. Those pioneering definitions are based on the inequality relations between
objective function values of solutions. However the interactions between objective
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function values are discarded. The omission of the interaction between fuzzy objec-
tive function values are not always reasonable as shown by Inuiguchi [26]. On the
other hand, Inuiguchi and Kume [29] proposed several extensions of efficient solu-
tions based on the extended dominance relations between solutions. They showed
the relations of the proposed extensions of efficient solutions including possibly and
necessarily efficient solutions.

20.4.2 Efficiency Test and Possible Efficiency Test

In this subsection, we describe a method to confirm the possible and necessary
efficiency of a given feasible solution. To confirm this, we solve mathematical pro-
gramming problems called Possible and necessary efficiency test problems. The test
problems are often investigated for given basic feasible solutions while Inuiguchi
and Sakawa [34] investigated the possible efficiency test problem of any feasible
solution.

First let us consider a basic feasible solution x0 2 X. Let CB and CN be the
submatrices of objective function coefficient matrix C corresponding to the basic
matrix B and the non-basic matrix N which are submatrices of A D .a1 a2 : : : am/T.
We define a vector function V W Rp�n ! Rp�.n�m/ by

V.C/ D V..CB CN// D CN � CBB�1N: (20.76)

Let JB and JN be the index sets of basic and non-basic variables, respectively, i.e.,
JB D fj j xj is a basic variableg and JN D fj j xj is a non-basic variableg. A solution
s satisfying the following system of linear inequalities shows an improvement
direction of objective function without violation of constraints from x0:

V.C/s � 0; V.C/s ¤ 0;

B�1
i� Ns � 0; i 2 D D fi j x0

i D 0; i 2 JBg;
s � 0;

(20.77)

where we note that D is an index set of basic variables which degenerate at x0.
Then D is empty if x0 is nondegenerate. Then the necessary and sufficient condition
that x0 is efficient solution with respect to objective function coefficient matrix C is
given by the inconsistency of (20.77) (see Evans and Steuer [14]).

Using Tucker’ theorem of alternatives [70], the inconsistency of (20.77) is
equivalent to the consistency of

V.C/Tt0 �
X

i2D

NT.B�1
i� /Tt1i � 0;

t0 > 0; t1i � 0; i 2 D;

(20.78)
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or equivalently,

CT
Nt0 � NTB�TCT

Bt0 �
X

i2D

NT.B�1
i� /Tt1i � 0;

t0 � 1; t1i � 0; i 2 D;

(20.79)

where 1 D .1; 1; : : : ; 1/T.
The necessary and sufficient conditions described above are applicable to basic

solutions. Now let us consider a feasible solution x0 which is not always a basic
solution. Because an efficient solution is a proper efficient solution [16], an optimal
solution to an LP problem with objective function uT

2 Cx for some u2 > 0 is
an efficient solution of Problem (20.45) and vice versa. Then, the necessary and
sufficient condition that x0 is efficient solution with respect to objective function
coefficient matrix C is given by the consistency of the following system of linear
inequalities [34]:

ATu0 � u1 D CTu2; x0Tu1 D 0; u1 � 0; u2 � 1: (20.80)

In Problem (20.2), the objective function coefficient matrix is not clearly given
by a matrix but by a set of matrices, � D fC j L � C � Ug. The necessary and
sufficient condition that x0 is possibly efficient solution to Problem (20.2) is given
by the consistency of the following system of linear inequalities [34]:

LTu2 � ATu0 � u1 � UTu2; x0Tu1 D 0; u1 � 0; u2 � 1: (20.81)

Moreover, if x0 is a basic solution, the necessary and sufficient condition that x0 is a
possibly efficient solution to Problem (20.2) is given also by the consistency of the
following system of linear inequalities [28]:

LT
Nt0 � NTB�Tt2 �

X

i2D

NT.B�1
i� /Tt1i � 0;

LBt0 � t2 � UBt0; t0 � 1; t1i � 0; i 2 D:

(20.82)

Inuiguchi and Kume [28] showed that, for i 2 D, the i-th row of CB can be fixed at
the i-th row of LB as we fixed CN at LN by the consideration of (20.77).

As shown above the possible efficiency of a given feasible solution can be
checked easily by the consistency of a system of linear inequalities.

Let us consider a case where the .k; j/-component ckj of C is given by L-R fuzzy
number Qckj D .cL

kj; cR
kj; �L

kj; �R
kj/LkjRkj . Define matrices with parameter h, 
L.h/ D

.�L
kjL

.�1/
kj .h// and 
R.h/ D .�R

kj R
.�1/
kj .h//. Then Œ��h is obtained by

Œ��h D fC j L � 
L.h/ � C � U C 
R.h/g: (20.83)
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Then, from (20.81), the degree of possible optimality of a given feasible solution x0

is obtained as (see Inuiguchi and Sakawa [32])

�˘E.x0/ D supfh 2 Œ0; 1� j 9u0; 9u1 � 0; 9u2 � 1I x0Tu1 D 0;

.L � 
L.h//Tu2 � ATu0 � u1 � .U C 
U.h//Tu2g (20.84)

For a fixed h, the conditions in the set of the right-hand side in (20.84) become a
system of linear inequalities. Then the supremum can be obtained approximately by
a bisection method of h 2 Œ0; 1� and LP for finding a solution satisfying the system
of linear inequalities.

Moreover, when x0 is a basic solution, from (20.82), we obtain

�˘E.x0/ D supfh 2 Œ0; 1� j 9t0 � 1; 9t1i � 0; i 2 D; 9t2I
.LT

N � 
L
N.h//t0 � NTB�Tt2 �

X

i2D

NT.B�1
i� /Tt1i � 0;

.LT
B � 
L

B.h//t0 � t2 � .UT
B C 
R

B.h//t0g;
(20.85)

where 
L
B and 
R

B are submatrices of 
L and 
R corresponding to basic variables
while 
L

N and 
R
N are submatrices of 
L and 
R corresponding to non-basic

variables. Similar to (20.84), for a fixed h, the conditions in the set of the right-hand
side in (20.85) become a system of linear inequalities. Then the supremum can be
obtained approximately by a bisection method of h 2 Œ0; 1� and LP for finding a
solution satisfying the system of linear inequalities.

As shown above, even in fuzzy coefficient case, the possible efficiency degree of
a given feasible solution can be calculated rather easily by a bisection method and
an LP technique.

20.4.3 Necessary Efficiency Test

The necessary efficiency test is much more difficult than the possible efficiency test.
Bitran [4] proposed an enumeration procedure for the necessary efficiency test of a
non-degenerate basic solution when � is a crisp set. In this paper, we describe the
implicit enumeration algorithm for the necessary efficiency test of a basic solution
based on (20.77) when � is a crisp set. The difference from the Bitran’s approach
is only that we have additional constraints B�1

i� Ns � 0, i 2 D D fi j x0
i D 0; i 2 JBg.

Because the necessary and sufficient condition for a basic feasible solution x0 to
be an efficient solution with respect to objective coefficient matrix C is given as the
inconsistency of (20.77), from Proposition 1, we check the inconsistency of (20.77)
for all C 2 ˚ � �. To do this, we consider the following non-linear programming
problem:
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maximize 1Ty;

subject to .CN � CBB�1N/s � y D 0;

B�1
i� Ns � 0; i 2 D D fi j x0

i D 0; i 2 JBg;
CN 2 fLN; UNg; CB 2 fLB; UBg;
s � 0; y � 0:

(20.86)

If the optimal value of Problem (20.86) is zero, the given basic solution x0 is a
necessarily optimal solution. Otherwise, x0 is not a necessarily optimal solution.

We obtain the following Proposition.

Proposition 2. In Problem (20.86), there is always an optimal solution
.C�

B; C�
N; s�; y�/ with C�

N D UN and CB
��i D UB�i, i 2 D.

Proof. It is trivial from s � 0 and B�1
i� Ns � 0, i 2 D. ut

From Proposition 2, some part of C D .CB CN/ can be fixed to solve
Problem (20.86). For each non-basic variable xj, let CB.j/ be the p � n matrix with
columns CB.j/�k defined by

CB.j/�k D
(

LB�k if k 62 D and B�1
k� N�j � 0;

UB�k if k 2 D or B�1
k� N�j < 0;

k 2 JB: (20.87)

We obviously have CB.j/B�1N�js � CBB�1N�js for LB � CB � UB and s � 0. We
have the following proposition.

Proposition 3. If Problem (20.86) has a feasible solution .C�
B; C�

N; s�; y�/ such that
1Ts� > 0 then the following problem with an arbitrary index set M1 � JB n D has a
feasible solution 1Ts > 0.

maximize 1Ty;

subject to
X

j2JN

 

UN�j �
X

k2D

UB�kB�1
k� N�j �

X

k2M1

CB�kB�1
k� N�j

�
X

k2JBn.M1[D/

CB.j/�kB�1
k� N�j

!

sj � y D 0;

B�1
i� N�jsj � 0; j 2 JN; i 2 D;

CB�k 2 fLB�k; UB�kg; k D 1; 2; : : : ; m1 such that k 62 D;

y � 0; sj � 0; j 2 JN:

(20.88)

Proof. We have UN�j � CN�j, j 2 JN and CB.j/�kB�1�k N�j � CB�kB�1�k N�j, j 2 JN,
CB�k 2 fLB�k; UB�kg. Moreover, for sj � 0 such that B�1

i� N�jsj � 0; j 2 JN; i 2 D,
we have UB�kB�1�k N�jsj � CB�kB�1�k N�jsj. Then the constraints of Problem (20.88) is a
relaxation of those of Problem (20.86). Hence, we obtain this proposition. ut
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This proposition enables us to apply an implicit enumeration algorithm. We
explain the procedure following Bitran’s explanation [4]. However, the description
in this paper is different from Bitran’s because Bitran proposed the method when
the basic solution is not degenerate.

Let w D jJB n Dj and JB n D D fk1; k2; : : : ; kwg. If w D 0, the necessary
efficiency can be checked by solving Problem (20.88) with M1 D ;. Then, we
assume w ¤ 0 in what follows. We consider M1 D fk1; k2; : : : ; km1g with m1 � kw.
For convenience, let P.x0; m1 D 0/ be Problem (20.88) with M1 D ;. Then the
implicit enumeration algorithm is described as follows.

Implicit Enumeration Algorithm [4]

Start by solving P.x0; m1 D 0/. If the optimal value is zero, terminate the algorithm
and x0 is necessarily efficient. Otherwise, let m1 D 1 and generate the following
two problems:

P.x0; m1 D 1; 1/ W maximize 1Ty;

subject to
X

j2JN

 

UN�j �
X

k2D

UB�kB�1
k� N�j � UB�k1

B�1
k1� N�j

�
wX

lD2

CB.j/�kl
B�1

kl� N�j

!

sj � y D 0;

B�1
i� N�jsj � 0; j 2 JN; i 2 D;

y � 0; sj � 0; j 2 JN:

and

P.x0; m1 D 1; 0/ W maximize 1Ty;

subject to
X

j2JN

 

UN�j �
X

k2D

UB�kB�1
k� N�j � LB�k1

B�1
k1� N�j

�
wX

lD2

CB.j/�kl
B�1

kl� N�j

!

sj � y D 0;

B�1
i� N�jsj � 0; j 2 JN; i 2 D;

y � 0; sj � 0; j 2 JN:

Where in the notation P.x0; m1 D 1; z/, z D 1 (z D 0) indicates that the column,
in CB corresponding to m1 D 1 has all its elements at the upper (lower) bound. If
the optimal value of P.x0; m1 D 1; 1/ is zero, by Proposition 3, there is no optimal
matrix CB in Problem (20.86), with 1Ty > 0 and having CB�k1

D UB�k1
. In this

case we do not need to consider any descendent of P.x0; m1 D 1; 1/ and the branch
is fathomed. If the optimal value of P.x0; m1 D 1; 1/ is positive we generate two
new problems P.x0; m1 D 2; 1; 1/ and P.x0; m1 D 2; 1; 0/. These two problems
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3 3 3 3

Fig. 20.8 Example of a tree generated by the implicit enumeration algorithm

are obtained by substituting UB�k2
and LB�k2

, respectively, for CB.j/�k2 in P.x0; m1 D
1; 1/. We proceed in the same way, i.e., branching on problems with optimal value
positive and fathoming those with optimal value zero until, we either conclude that
x0 is necessarily efficient or obtain a CB such that LB � CB � UB and the optimal
value of Problem (20.86) is positive. An example of a tree generated by the implicit
enumeration algorithm is given in Fig. 20.8. In this figure, P.x0; m1 D 2; 0; 1; 0/ is
the problem,

P.x0; m1 D 2; 0; 1; 0/ W maximize 1Ty;

subject to
X

j2JN

 

UN�j �
X

k2D

UB�kB�1
k� N�j � LB�k1

B�1
k1� N�j

� UB�k2
B�1

k2� N�j � LB�k3
B�1

k3� N�j

�
wX

lD4

CB.j/�kl
B�1

kl� N�j

1

A sj � y D 0;

B�1
i� N�jsj � 0; j 2 JN; i 2 D;

y � 0; sj � 0; j 2 JN:

The convergence of the algorithm, after solving a finite number of LP problems,
follows from Proposition 3 and the fact that the number of matrices CB that can
possibly be enumerated is finite.

The implicit enumeration algorithm may be terminated earlier when x0 is nec-
essarily efficient because we can fathom the branches only when the optimal value
is zero. As Ida [22] pointed out, we may build the implicit enumeration algorithm
which may be terminated earlier when x0 is not necessarily optimal. To this end, we
define

LCB.j/�k D
(

LB�k if k 62 D and B�1
k� N�j < 0;

UB�k if k 2 D or B�1
k� N�j � 0;

k 2 JB (20.89)
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and problem LP.x0; m1 D l; z1; z2; : : : ; zl/ as the problem P.x0; m1 D l; z1; z2; : : : ; zl/

with substitution of LCB.j/�k for CB.j/�k, where 0 � l � w and zi 2 f0; 1g, i D
1; 2; : : : ; l. We obtain the following proposition.

Proposition 4. If the optimal value of LP.x0; m1 D l; Nz1; Nz2; : : : ; Nzl/ is positive for
some Nzi 2 f0; 1g, i D 1; 2; : : : ; l, so is the optimal value of Q.x0; m1 D l C
1; Nz1; Nz2; : : : ; Nzl; zlC1/.

Proof. The proposition can be obtained easily. ut
From Proposition 4, at the each node of the tree generated by the implicit

enumeration, we solve Q.x0; m1 D l; Nz1; Nz2; : : : ; Nzl/ as well as P.x0; m1 D
l; Nz1; Nz2; : : : ; Nzl/. If the optimal value of Q.x0; m1 D l; Nz1; Nz2; : : : ; Nzl/ is positive,
from the applications of Proposition 4, we know the optimal value of Q.x0; m1 D
w; Nz1; Nz2; : : : ; Nzl; zlC1; : : : ; zw/ is positive for any zi 2 f0; 1g, i D l C 1; l C
2; : : : ; w. This implies that (20.77) is consistent with C 2 ˚ � � specified by
.Nz1; Nz2; : : : ; Nzl; zlC1; : : : ; zw/. Namely, we know that x0 is not necessarily efficient.
Therefore, if the optimal value of Q.x0; m1 D l; Nz1; Nz2; : : : ; Nzl/ is positive, we
terminate the algorithm with telling that x0 is not necessarily efficient.

An example of a tree generated by this extended enumeration algorithm is shown
in Fig. 20.9. While Fig. 20.8 illustrates a tree generated by the original enumeration
algorithm when x0 is necessarily efficient, Fig. 20.9 illustrates a tree generated by
the extended enumeration algorithm when x0 is not necessarily efficient. Even if
the optimal value of P.x0; m1 D l; Nz1; Nz2; : : : ; Nzl/ is zero, we do not terminate the

3 3

Fig. 20.9 Example of a tree generated by the extended implicit enumeration
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algorithm but fathom the subproblem. On the contrary, if the optimal value of
Q.x0; m1 D l; Nz1; Nz2; : : : ; Nzl/ is positive, we know that x0 is not necessarily efficient
and terminate the algorithm.

As Ida [22] proposed, we may build the implicit enumeration algorithm only with
solving Q.x0; m1 D l; Nz1; Nz2; : : : ; Nzl/. Moreover, Ida [22, 23] proposed a modification
of extreme ray generation method [7] suitable for the problem. In either way, the
necessary efficiency test requires a lot of computational cost. Recently, Hladík [20]
showed that the necessary efficiency test problem is co-NP-complete even for the
case of only one objective and Hladík [19] gives a necessary condition for necessary
efficiency which can solve easily. An overview of MOLP models with interval
coefficients is also done by Oliveira and Antunes [72]. The necessity efficiency
test of a given non-basic feasible solution can be done based on the consistency
of (20.80) for all C 2 ˚ � �. However, it is not easy to build an implicit
enumeration algorithm as we described above in basic feasible solution case because
we cannot easily obtain a proposition corresponding to Proposition 3. The necessity
efficiency test of a given basic feasible solution in fuzzy coefficient case can be
done by the introduction of a bisection method to the implicit enumeration method.
However, this becomes a complex algorithm. The studies on effective methods for
necessity efficiency tests in non-basic solution case as well as necessity efficiency
tests in fuzzy coefficient case are a part of future topics.

20.5 Interactive Fuzzy Stochastic Multiple Objective
Programming

One of the traditional tools for taking into consideration uncertainty of parame-
ters involved in mathematical programming problems is stochastic programming
[3, 9, 24], in which the coefficients in objective functions and/or constraints
are represented with random variables. Stochastic programming with multiple
objective functions were first introduced by Contini [8] as a goal programming
approach to multiobjective stochastic programming, and further studied by Stancu-
Minasian [86]. For deriving a compromise or satisficing solution for the DM in
multiobjective stochastic decision making situations, an interactive programming
method for multiobjective stochastic programming with Gaussian random variables
were first presented by Goicoecha et al. [18] as a natural extension of the so-
called STEP method [2] which is an interactive method for deterministic problems.
An interactive method for multiobjective stochastic programming with discrete
random variables, called STRANGE, was proposed by Teghem et al. [92] and
Słowiński and Teghem [84]. The subsequent works on interactive multiobjective
stochastic programming have been accumulated [57, 93, 94]. There seems to be no
explicit definitions of the extended Pareto optimality concepts for multiobjective
stochastic programming, until White [97] defined the Pareto optimal solutions for
the expectation optimization model and the variance minimization model. More
comprehensive discussions were provided by Stancu-Minasian [86] and Caballero
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et al. [6] through the introduction of extended Pareto optimal solution concepts
for the probability maximization model and the fractile criterion optimization
model. An overview of models and solution techniques for multiobjective stochastic
programming problems were summarized in the context of Stancu-Minasian [87].

When decision makers formulate stochastic programming problems as repre-
sentations of decision making situations, it is implicitly assumed that uncertain
parameters or coefficients involved in multiobjective programming problems can
be expressed as random variables. This means that the realized values of random
parameters under the occurrence of some event are assumed to be definitely
represented with real values. However, it is natural to consider that the possible
realized values of these random parameters are often only ambiguously known to the
experts. In this case, it may be more appropriate to interpret the experts’ ambiguous
understanding of the realized values of random parameters as fuzzy numbers.
From such a practical point of view, this subsection introduces multiobjective
linear programming problems where the coefficients of the objective function are
expressed as fuzzy random variables.

20.5.1 Fuzzy Random Variable

A fuzzy random variable was first introduced by Kwakernaak [58], and its math-
ematical basis was constructed by Puri and Ralescu [73]. An overview of the
developments of fuzzy random variables was found in the recent article of Gil
et al. [17].

In general, fuzzy random variables can be defined in an n dimensional Euclidian
space R

n [73]. From a practical viewpoint, as a special case of the definition by
Puri and Ralescu, following the definition by Wang and Zhang [96], we present the
definition of a fuzzy random variable in a single dimensional Euclidian space R.

Definition 1 (Fuzzy Random Variable). Let .˝;A; P/ be a probability space,
where ˝ is a sample space, A is a � -field and P is a probability measure. Let FN be

the set of all fuzzy numbers and B a Borel � -field of R. Then, a map QNC W ˝ ! FN

is called a fuzzy random variable if it holds that

n
.!; �/ 2 ˝ � R

ˇ
ˇ � 2 QNC˛.!/

o
2 A � B; 8˛ 2 Œ0; 1�; (20.90)

where QNC˛.!/ D
h QNC�̨.!/; QNCC̨.!/

i
D
n
� 2 R

ˇ
ˇ � QNC.!/

.�/ � ˛
o

is an ˛-level set of

the fuzzy number QNC.!/ for ! 2 ˝.

Intuitively, fuzzy random variables are considered to be random variables whose
realized values are not real values but fuzzy numbers or fuzzy sets.

In Definition 1, QNC.!/ is a fuzzy number corresponding to the realized value of

fuzzy random variable QNC under the occurrence of each elementary event ! in the
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sample space ˝. For each elementary event !, QNC�̨.!/ and QNCC̨.!/ are the left and

right end-points of the closed interval
h QNC�̨.!/; QNCC̨.!/

i
which is an ˛-level set of the

fuzzy number QNC.!/ characterized by the membership function � QNC.!/
.�/. Observe

that the values of QNC�̨.!/ and QNCC̨.!/ are real values which vary randomly due to the
random occurrence of elementary events !. With this observation in mind, realizing

that QNC�̨ and QNCC̨ can be regarded as random variables, it is evident that fuzzy random
variables can be viewed as an extension of ordinary random variables.

In general, if the sample space ˝ is uncountable, positive probabilities cannot be
always assigned to all the sets of events in the sample space due to the limitation that
the sum of the probabilities is equal to one. Realizing such situations, it is significant
to introduce the concept of � -field which is a set of subsets of the sample space.

To understand the concept of fuzzy random variables, consider discrete fuzzy
random variables. To be more specific, when a sample space ˝ is countable, the
discrete fuzzy random variable can be defined by setting the � -field A as the power
set 2˝ or some other smaller set, together with the probability measure P associated
with the probability mass function p satisfying

P.A/ D
X

!2A

p.!/; 8A 2 A:

Consider a simple example: Let a sample space be ˝ D f!1; !2; !3g, a � -field
A D 2˝ , and a probability measure P.A/ D P

!2A p.!/ for all A 2 A. Then,

Fig. 20.10 illustrates a discrete fuzzy random variable where fuzzy numbers QNC.!1/,
QNC.!2/ and QNC.!3/ are randomly realized at probabilities p.!1/, p.!2/ and p.!3/,
respectively, satisfying

P3
jD1 p.!j/ D 1.

τ   0

1

ω = ω1 ω = ω2 ω = ω3
μ     (τ)C

~−
(ω)

Fig. 20.10 Example of discrete fuzzy random variables
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20.5.2 Brief Survey of Fuzzy Random Multiple Objective
Programming

Studies on linear programming problems with fuzzy random variable coefficients,
called fuzzy random linear programming problems, were initiated by Wang and
Qiao [95] and Qiao et al. [74] as a so-called distribution problem of which goal
is to seek the probability distribution of the optimal solution and optimal value.
Optimization models of fuzzy random linear programming were first developed by
Luhandjula et al. [67, 69], and further studied by Liu [60, 61] and Rommelfanger
[77]. A brief survey of major fuzzy stochastic programming models including fuzzy
random programming was found in the paper by Luhandjula [68].

On the basis of possibility theory, Katagiri et al. firstly introduced possibilistic
programming approaches to fuzzy random linear programming problems [42, 44]
where only the right-hand side of an equality constraint involves a fuzzy ran-
dom variable, and considered more general cases where both sides of inequality
constraints involve fuzzy random variables [45]. They also tackled the problem
where the coefficients of the objective functions are fuzzy random variables [43].
Through the combination of a stochastic programming model and a possibilistic pro-
gramming model, Katagiri et al. introduced a possibilistic programming approach
to fuzzy random programming model [50] and proposed several multiobjective
fuzzy random programming models using different optimization criteria such as
possibility expectation optimization [46], possibility variance minimization [48],
possibility-based probability maximization [53] and possibility-based fractile opti-
mization [51].

Extensions to multiobjective 0-1 programming problems with fuzzy random
variables were provided by incorporating the branch-and-bound method into the
interactive methods [49].

Along this line, this section devotes to discussing the optimization models for
multiobjective fuzzy random programming problems where each of coefficients in
the objective functions are represented with fuzzy random variables.

20.5.3 Problem Formulation

Assuming that the coefficients of the objective functions are expressed as fuzzy ran-
dom variables, we consider a multiobjective fuzzy random programming problem

minimize z1.x/ D QNC1x
� � � � � �

minimize zk.x/ D QNCkx
subject to Ax � b; x � 0;

9
>>>=

>>>;

(20.91)
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where x is an n dimensional decision variable column vector, A is an m�n coefficient
matrix, b is an m dimensional column vector and QNCl D . QNCl1; : : : ; QNCln/; l D 1; : : : ; k
are n dimensional coefficient row vectors of fuzzy random variables.

For notational convenience, let F denote the feasible region of (20.91), namely

F , fx 2 R
n j Ax � b; x � 0g:

Considering a simple but practical fuzzy random variables satisfying the condi-

tions in Definition 1, suppose that each element QNClj of the vector QNCl D . QNCl1; : : : ; QNCln/

is a fuzzy random variable whose realized value is a fuzzy number QCljsl depending
on a scenario sl 2 f1; : : : ; Slg which occurs with a probability plsl , where
PSl

slD1 plsl D 1.
The sample space is defined as ˝ D f1; : : : ; Slg, and the corresponding � -field

is A D 2˝ . Unfortunately, however, if the shapes of QCljsl , sl D 1; : : : ; Sl are not
the same as shown in Fig. 20.10, it is quite difficult to calculate the fuzzy random
variable representing the objective function involving fuzzy random variables in
problem (20.91). Realizing such difficulty, Katagiri et al. [43, 46, 48, 49] considered
a discrete fuzzy random variable as an extended concept of the discrete random
variable. Along this line, in this section, we restrict ourselves to considering the
case where the realized values QCljsl , sl D 1; : : : ; Sl are triangular fuzzy numbers
with the membership function defined as

� QCljsl
.�/ D

8
ˆ̂
<̂

ˆ̂
:̂

max

	

1 � dljsl � �

ˇlj
; 0




if � � dljsl

max

	

1 � � � dljsl

�lj
; 0




if � > dljsl ;

(20.92)

where the value of dljsl varies depending on which scenario sl 2 f1; : : : ; Slg occurs,
and ˇlj and �lj are not random parameters but constants. Figure 20.11 illustrates an
example of the membership function � QCljsl

.�/. Formally, the membership function

of the fuzzy random variable QNClj is represented by

� QNClj
.�/ D

8
ˆ̂
<̂

ˆ̂
:̂

max

	

1 �
Ndlj � �

ˇlj
; 0




if � � Ndlj

max

	

1 � � � Ndlj

�lj
; 0




if � > Ndlj:

(20.93)

Through the Zadeh’s extension principle, each objective function QNClx is repre-
sented by a single fuzzy random variable of which realized value for scenario sl is a
triangular fuzzy number QClsl x characterized by the membership function
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τβ γ0

1

lj lj

μ     (τ )
C

dljsl

~
ljs l

Fig. 20.11 Example of the membership function �
QCljsl

Fig. 20.12 Example of the
membership function �

QClsl x

υ0

1

μ      (υ)
C     x
~
ls l

β x γ  xl d   xls l

l

� QClsl x
.
/ D

8
ˆ̂
<̂

ˆ̂
:̂

max

	

1 � dlsl x � 


ˇlx
; 0




if 
 � dlsl x

max

	

1 � 
 � dlsl x
� lx

; 0




if 
 > dlsl x;

(20.94)

where dlsl is an n dimensional column vector which is different from the other dlOsl ,
Osl 2 f1; : : : ; Slg, Osl 6D sl, and ˇl and � l are n dimensional constant column vectors.
Figure 20.12 illustrates an example of the membership function � QClsl x

.
/. Also for

the lth objective function QNClx, its membership function is formally expressed as

� QNClx
.
/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

max

(

1 �
Ndlx � 


ˇlx
; 0

)

if 
 � Ndlx

max

(

1 � 
 � Ndlx
� lx

; 0

)

if 
 > Ndlx:

(20.95)
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Considering the imprecise nature of human judgments, it is quite natural to
assume that the decision maker (DM) may have a fuzzy goal for each of the

objective functions zl.x/ D QNClx, and in a minimization problem, the DM specifies
the fuzzy goal such that “the objective function value should be substantially less
than or equal to some value.” Such a fuzzy goal can be quantified by eliciting the
corresponding membership functions through some interaction process from the
DM. In this subsection, for simplicity, the linear membership function expressed
as the following is assumed:

� QGl
.y/ D

8
ˆ̂
<̂

ˆ̂
:̂

0 if y > z0
l

y � z0
l

z1
l � z0

l

if z1
l � y � z0

l

1 if y < z1
l ;

(20.96)

where z0
l and z1

l are parameters determined by decision makers so as to represent the
DM’s degree of satisfaction of the objective function values

z0
l D max

sl2f1;:::;Slg
max

x 2 F

nX

jD1

dljsl xj; l D 1; : : : ; k;

z1
l D min

sl2f1;:::;Slg
min

x 2 F

nX

jD1

dljsl xj; l D 1; : : : ; k:

9
>>>>=

>>>>;

(20.97)

It should be noted here that z0
l and z1

l are obtained by solving linear programming
problems. Figure 20.13 illustrates an example of the membership function � QGl

of a

fuzzy goal QGl.
Recalling that the membership function is regarded as a possibility distribution,

the degree of possibility that the objective function value QNClsl x for a given scenario
sl 2 f1; : : : ; Slg attains the fuzzy goal QGl is expressed as

Fig. 20.13 Example of the
membership function of a
fuzzy goal

y0

1

l l

μ   (y)
G

01

~
l

z z
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Fig. 20.14 Degree of
possibility ˘

QClsl x
. QGl/

y0

1

l l

μ   (y)
G

01

~
l

(d   −β ) x
0

l

μ      (y)
C     x

d    xlsl

~
lsl

lsl

Π      ( G )
C     x
~

lsl
l

~

zz

˘ QClsl x
. QGl/ D sup

y
min

	

� QClsl x
.y/; � QGl

.y/




; l D 1; : : : ; k: (20.98)

Figure 20.14 illustrates the degree of possibility that the fuzzy goal QGl is fulfilled
under the possibility distribution � QClsl x.

A possibility measure is useful to a decision maker who observes decision
making situations from an optimistic point of view. However, when a decision
maker is pessimistic about the situation, it is reasonable to use a necessity measure
rather than a possibility measure. Then, the degree of necessity that the objective

function value QNClsl x for a given scenario sl 2 f1; : : : ; Slg attains the fuzzy goal QGl is
expressed as

N QClsl x
. QGl/ D inf

y
max

	

� QClsl x
.y/; 1 � � QGl

.y/




; l D 1; : : : ; k: (20.99)

Observing that the degrees of possibility vary randomly depending on which
scenario occurs, it should be noted here that conventional possibilistic programming
approaches cannot be directly applied to (20.91). With this observation in mind,
realizing that (20.91) involves not only fuzziness but also randomness, Katagiri et al.
considered fuzzy random decision making models such as possibilistic expectation
model [43, 46, 49] and possibilistic variance model [48] by incorporating the
possibility theory into stochastic programming models.

20.5.4 Possibilistic Expectation Model

One of the natural solution approaches to such decision making situations as
discussed in the previous subsection is to maximize expectation of the degree
of possibility and/or necessity. Katagiri et al. [43, 46, 49] introduced possibilistic
expectation models under the assumption that a DM intends to maximize the
expected degree of possibility and/or necessity that each of the original objective
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functions involving fuzzy random variable coefficients attains the fuzzy goals. On
the basis of possibilistic expectation models the original multiobjective fuzzy ran-
dom programming problem (20.91) can be reformulated as the following problem:

maximize E

�

˘ QNClx
. QGl/

�

; l 2 Lpos

maximize E

�

N QNClx
. QGl/

�

; l 2 Lnec

subject to x 2 F;

9
>>>>>>=

>>>>>>;

(20.100)

where EŒ�� denotes the expectation operator. Lpos and Lnec are index sets satisfying
Lpos [ Lnec D f1; 2; : : : ; kg and Lpos \ Lnec D ;.

When the triangular fuzzy random variable (20.94) and the linear fuzzy
goal (20.96) are given, the degree of possibility (20.98) is explicitly represented by

˘ QClsl x
. QGl/ D

nX

jD1

.ˇlj � dljsl/xj C z0
l

nX

jD1

ˇljxj � z1
l C z0

l

: (20.101)

On the other hand, the degree of necessity (20.99) is explicitly expressed as

N QClsl x
. QGl/ D

�
nX

jD1

dljsl xj C z0
l

nX

jD1

�ljxj � z1
l C z0

l

: (20.102)

Recalling that the occurrence probability of scenario sl is plsl , the expectation of
the degree of possibility or necessity is calculated as

E

�

˘ QNClx
. QGl/

�
4D

SlX

slD1

plsl˘ QClsl x
. QGl/ D

nX

jD1

0

@ˇlj �
SlX

slD1

plsl dljsl

1

A xj C z0
l

nX

jD1

ˇljxj � z1
l C z0

l

:

(20.103)

E

�

N QNClx
. QGl/

�
4D

SlX

slD1

plsl N QClsl x
. QGl/ D

�
nX

jD1

SlX

slD1

plsl dljsl xj C z0
l

nX

jD1

�ljxj � z1
l C z0

l

: (20.104)



20 Fuzzy Multi-Criteria Optimization: Possibilistic and Fuzzy/Stochastic Approaches 891

Let ZE
l .x/ denote

ZE
l .x/ D

8
ˆ̂
<̂

ˆ̂
:̂

E

�

˘ QNClx
. QGl/

�

if l 2 Lpos

E

�

N QNClx
. QGl/

�

if l 2 Lnec

(20.105)

To calculate a candidate for the satisficing solution which is also Pareto optimal,
in interactive multiobjective programming, the DM is asked to specify reference
levels OzE

l , l D 1; : : : ; k of the objective function values of (20.105), and it is called
the reference (expected possibility) levels. For the DM’s reference levels OzE

l ; l D
1; : : : ; k, an Pareto optimal solution, which is the nearest to a vector of the reference
levels or better than it if the reference levels are attainable in a sense of minimax, is
obtained by solving the minimax problem

minimize max
1�l�k

˚OzE
l � ZE

l .x/
�

subject to x 2 F:

9
=

;
(20.106)

Following the preceding discussion, we can now present an interactive algorithm
for deriving a satisficing solution for the DM from among the Pareto optimal
solution set.

20.5.4.1 Interactive Satisficing Method for the Possibilistic
Expectation Model

Step 1: Determine the linear membership functions � QGl
, l D 1; : : : ; k defined

as (20.96) by calculating z0
l and z1

l ; l D 1; : : : ; k.
Step 2: Set the initial reference levels at 1s, which can be viewed as the ideal values,

i.e., OzE
l D 1; l D 1; : : : ; k.

Step 3: For the current reference levels OzE
l , l D 1; : : : ; k, solve the minimax

problem (20.106).
Step 4: The DM is supplied with the corresponding Pareto optimal solution x�.

If the DM is satisfied with the current objective function values ZE
l .x�/; l D

1; : : : ; k, then stop the algorithm. Otherwise, ask the DM to update the reference
levels OzE

l , l D 1; : : : ; k by considering the current objective function values, and
return to step 3.

Here it should be stressed for the DM that any improvement of one expectation
of the degree of possibility can be achieved only at the expense of at least one of
other expected possibilities or expected necessities.



892 M. Inuiguchi et al.

20.5.5 Possibilistic Variance Model

As discussed in the previous subsection, the possibilistic expectation model would
be appropriate if the DM intends to simply maximize the expected degrees of
possibility without concerning about those fluctuations.

However, when the DM prefers to decrease the fluctuation of the objective
function values, the possibilistic expectation model is not relevant because some
scenario yielding a very low possibility of good performance may occur even with
a small probability.

To avoid such risk, from the risk-averse point of view, by minimizing the variance
of the degree of possibility under the constraints of feasibility together with the
conditions for the expected degrees of possibility, Katagiri et al. [48] considered
a possibilistic variance model for fuzzy random multiobjective programming
problems. Along this line, in this section, we consider the following problem as
a risk-aversion approach to the original problem (20.91):

minimize Var

�

˘ QNClx
. QGl/

�

; l 2 Lpos

minimize Var

�

N QNClx
. QGl/

�

; l 2 Lnec

subject to E

�

˘ QNClx
. QGl/

�

� �l; l 2 Lpos

E

�

N QNClx
. QGl/

�

� �l; l 2 Lnec

x 2 F;

9
>>>>>>>>>>>>>=

>>>>>>>>>>>>>;

(20.107)

where VarŒ�� denotes the variance operator, and �l; l D 1; : : : ; k are permissible
expectation levels for the expected degrees of possibility specified by the DM.

For notational convenience, let F.�/ be the feasible region of (20.107), namely

F.�/ ,
	

x 2 F
ˇ
ˇ E

�

˘ QNClx
. QGl/

�

� �l; l 2 Lpos; E

�

N QNClx
. QGl/

�

� �l; l 2 Lnec




:

Recalling (20.98) and (20.99), each of the objective functions in (20.107) is
calculated as

Var

�

˘ QNClx
. QGl/

�

D 1
0

@
nX

jD1

ˇljxj � z1
l C z0

l

1

A

2
Var

2

4
nX

jD1

Ndljxj

3

5
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D 1
0

@
nX

jD1

ˇljxj � z1
l C z0

l

1

A

2
xTVlx; (20.108)

Var

�

N QNClx
. QGl/

�

D 1
0

@
nX

jD1

�ljxj � z1
l C z0

l

1

A

2
Var

2

4
nX

jD1

Ndljxj

3

5

D 1
0

@
nX

jD1

�ljxj � z1
l C z0

l

1

A

2
xTVlx; (20.109)

where Vl is the variance-covariance matrix of Ndl expressed by

Vl D

2

6
6
6
4

vl
11 vl

12 � � � vl
1n

vl
21 vl

22 � � � vl
2n

:::
:::

: : :
:::

vl
n1 vl

n2 � � � vl
nn

3

7
7
7
5

; l D 1; : : : ; k;

and

vl
jj D VarŒNdlj� D

SlX

slD1

plslfdljslg2 �
8
<

:

SlX

slD1

plsl dljsl

9
=

;

2

; j D 1; : : : ; n;

vl
jr D CovŒNdlj; Ndlr� D EŒNdlj; Ndlr� � EŒNdlj�EŒNdlr�

D
SlX

slD1

plsl dljsl dlrsl �
SlX

slD1

plsl dljsl

SlX

slD1

plsl dlrsl ; j ¤ r; r D 1; : : : ; n:

Furthermore, from (20.103) and (20.104), the constraint of the expected degree

of possibility E

�

˘ QNClx
. QGl/

�

� �l and that of necessity E

�

N QNClx
. QGl/

�

� �l are

explicitly represented as
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nX

jD1

8
<

:

SlX

slD1

plsl dljsl � .1 � �l/ˇlj

9
=

;
xj � z0

l � �l.z
0
l � z1

l /: (20.110)

and

nX

jD1

8
<

:

SlX

slD1

plsl dljsl C �l�lj

9
=

;
xj � z0

l � �l.z
0
l � z1

l /: (20.111)

By substituting (20.109), (20.110) and (20.111) into (20.107), (20.107) is
equivalently transformed as

minimize 1
0

@
nX

jD1

ˇljxj � z1
l C z0

l

1

A

2 xTVlx; l 2 Lpos

minimize 1
0

@
nX

jD1

�ljxj � z1
l C z0

l

1

A

2 xTVlx; l 2 Lnec

subject to
nX

jD1

8
<

:

SlX

slD1

plsl dljsl � .1 � �l/ˇlj

9
=

;
xj � z0

l � �l.z
0
l � z1

l /; l 2 Lpos

nX

jD1

8
<

:

SlX

slD1

plsl dljsl C �l�lj

9
=

;
xj � z0

l � �l.z
0
l � z1

l /; l 2 Lnec

x 2 F:

9
>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>;

(20.112)

From the fact that it holds

nX

jD1

ˇljxj � z1
l C z0

l > 0;

nX

jD1

�ljxj � z1
l C z0

l > 0

and xTVlx � 0 due to the positive-semidefinite property of Vl, by computing the
square root of the objective functions of (20.112), (20.112) is equivalently rewritten
as
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minimize

p
xTVlx

nX

jD1

ˇljxj � z1
l C z0

l

; l 2 Lpos

minimize

p
xTVlx

nX

jD1

�ljxj � z1
l C z0

l

; l 2 Lnec

subject to
nX

jD1

8
<

:

SlX

slD1

plsl dljsl � .1 � �l/ˇlj

9
=

;
xj � z0

l � �l.z
0
l � z1

l /; l 2 Lpos

nX

jD1

8
<

:

SlX

slD1

plsl dljsl C �l�lj

9
=

;
xj � z0

l � �l.z
0
l � z1

l /; l 2 Lnec

x 2 F;

9
>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>;

(20.113)

where each of the objective functions represents the standard deviation of the degree
of possibility or necessity.

It should be noted here that the minimization of the variance is equivalent to the
minimization of the standard deviation.

To calculate a candidate for the satisficing solution, the DM is asked to specify
the reference levels OzD

l , i D 1; : : : ; k of the objective function values of (20.113).
Let ZD

l .x/ denote

ZD
l .x/ D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
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xTVlx

nX

jD1

ˇljxj � z1
l C z0

l

; l 2 Lpos

p
xTVlx

nX

jD1

�ljxj � z1
l C z0

l

; l 2 Lnec

Then, for the DM’s reference levels OzD
l , i D 1; : : : ; k, a (weakly) Pareto optimal

solution is obtained by solving the minimax problem

minimize max
1�l�k

n
ZD

l .x/ � OzD
l

o

subject to
nX

jD1

8
<

:

SlX
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plsl dljsl � .1 � �l/ˇlj

9
=

;
xj � z0

l � �l.z
0
l � z1

l /; l 2 Lpos

nX

jD1

8
<

:

SlX

slD1

plsl dljsl C �l�lj

9
=

;
xj � z0

l � �l.z
0
l � z1

l /; l 2 Lnec

x 2 F:

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

(20.114)
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For notational convenience, we introduce Nl.x/ and Dl.x/ such that

ZD
l .x/ � OzD

l ,
Nl.x/

Dl.x/
; (20.115)

where
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nX
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l ; 8l 2 Lnec:

Since the numerator Nl.x/ is a convex function and the denominator Dl.x/ is an
affine function, it follows that Nl.x/=Dl.x/ is a quasi-convex function. Using this
property, we can solve (20.114) by using the following extended Dinkelbach-type
algorithm [5]:

20.5.5.1 Extended Dinkelbach-Type Algorithm for Solving (20.114)

Step 1: Set r WD 0 and find a feasible solution xr 2 F.�/.
Step 2: For a qr calculated by

qr D max
1�l�k

	
Nl.xr/

Dl.xr/




;

find an optimal solution xc to the convex programming problem

minimize v

subject to
1

Dl.xr/
fDl.x/ � qrNl.x/g � v; l D 1; : : : ; k

nX
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x 2 F:

9
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>>>>>>>>>>>>>>>;

(20.116)
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Step 3: For a sufficiently small positive number ", if v < ", stop the algorithm.
Otherwise, set xr WD xc, r WD r C 1, and return to step 2.

Now we are ready to summarize an interactive algorithm for deriving a satisficing
solution for the DM from among the Pareto optimal solution set.

20.5.5.2 Interactive Satisficing Method for the Possibilistic
Variance Model

Step 1: Determine the linear membership functions � QGl
; l D 1; : : : ; k with z0

l and
z1

l ; l D 1; : : : ; k obtained by solving linear programming problems (20.97).
Step 2: Calculate the individual minima and maxima of ZE

l .x/, l D 1; : : : ; k.
Step 3: Ask the DM to specify the permissible levels �l, l D 1; : : : ; k taking into

account the individual minima and maxima obtained in step 2.
Step 4: Set the initial reference levels at 0s, which can be viewed as the ideal values,

i.e., OzD
l D 0; l D 1; : : : ; k.

Step 5: For the current reference levels OzD
l ; l D 1; : : : ; k, solve the minimax

problem (20.114) by using the extended Dinkelbach-type algorithm.
Step 6: The DM is supplied with the obtained Pareto optimal solution x�. If the DM

is satisfied with the current objective function values ZD
l .x�/, l D 1; : : : ; k, then

stop. Otherwise, ask the DM to update the reference levels OzD
l , l D 1; : : : ; k, and

return to step 5.

20.5.6 Recent Topics: Random Fuzzy Multiple Objective
Programming

When a random variable is used to express an uncertain parameter related to a
stochastic factor of real systems, it is implicitly assumed that there exists a single
random variable as a proper representation of the uncertain parameter. However,
in some cases, experts may consider that it is suitable to employ a set of random
variables, rather than a single one, in order to more precisely express the uncertain
parameter. In this case, depending on the degree to which experts convince that each
element (random variable) in the set is compatible with the uncertain parameter, it
would be quite natural to assign different values (different degrees of possibility) to
the elements in the set. For handling such real-world decision making situations, a
random fuzzy variable was introduced by Liu [62] and explicitly defined [63] as a
function from a possibility space to a collection of random variables.

Recently, by considering the experts’ ambiguous understanding of mean and
variance of random variables, Katagiri et al. [47] introduced a linear programming
problem where an objective function contains random fuzzy parameters and dis-
cussed the problem in the framework of random fuzzy variables. They focused on
the case where the mean of each random variable is represented with a fuzzy number
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and constructed a novel decision making model on the basis of possibility theory.
Their model was extended to a multiobjective case [52] where only the coefficients
of the objective functions are given as random fuzzy variables. A more general type
of random fuzzy programming problems, in which not only objective functions
but also constraints involve random fuzzy variables, was developed [56]. In these
models, it is shown that the original problems can be transformed into deterministic
nonlinear programming problems, and that the obtained deterministic problems
can be exactly solved using conventional nonlinear programming techniques under
some assumptions. These random fuzzy programming models are extended to other
decision making problems such as two-level (bilevel) programming problems [54]
and minimum spanning tree problems [55].
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functions. In: Słowiński, R. (ed.) Fuzzy Sets in Decision Analysis. Operations Research and
Statistics. Kluwer Academic Publishers, Boston (1998)

79. Rommelfanger, H., Hanuscheck, R., Wolf, J.: Linear programming with fuzzy objective.
Fuzzy Sets Syst. 29, 31–48 (1989)

80. Sakawa, M.: Fuzzy Sets and Interactive Multiobjective Optimization. Plenum Press,
New York (1993)

81. Sakawa, M., Yano, H.: Feasibility and Pareto optimality for multiobjective nonlinear pro-
gramming problems with fuzzy parameters. Fuzzy Sets Syst. 43, 1–15 (1991)

82. Sakawa, M., Takahashi, J., Yano, H.: Extended Pareto optimality concept for multiobjective
linear programming problems with fuzzy parameters and its properties. Electron. Commun.
Jpn. Part III-Fundam. Electron. Sci. 73, 1–9 (1990)
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