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Introduction

José Rui Figueira, Salvatore Greco, and Matthias Ehrgott

1 Ten Years of Success of Multiple Criteria Decision Analysis
and Reasons for This New Edition

After 10 years we present an updated revision of the collection of state-of-the-
art surveys on Multiple Criteria Decision Analysis (MCDA). This is a good
occasion to briefly comment on the latest advances in the domain. We believe
that in the last 10 years we have seen great progress of MCDA, from both a
theoretical point of view and a real-life application point of view. We have seen
the consolidation of the main “traditional” methodologies such as multiple attribute
utility theory, outranking methods, interactive multiobjective optimization, as well
as the growing success of new approaches such as Evolutionary Multiobjective
Optimization (EMO). The spectrum of applications has been constantly expanding
with particular emphasis on very complex problems such as industrial design or grid
optimization. Taking into account this evolution of the domain, we partly modified
the structure and the content of the book giving space to new methodologies (e.g.,
EMO or multi-criteria portfolio decision analysis for project selection) or splitting
chapters into several new ones (e.g., the chapter on multiobjective programming of
the previous edition that has now been substituted by three chapters, one on vector
and set optimization, one on continuous multiobjective, and one on multiobjective
combinatorial optimization). Moreover, all authors, sometimes with the help of
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a new colleague, have updated the contents of their contributions incorporating
the novelties of the last 10 years. Of course, many sophisticated technical details
that appear in the new edition of the book will sooner or later be destined to
be superseded by the incessant evolution of research and applications. We think,
however, that the basic principles as stated by the experts who prepared the different
chapters in the book will remain reference points for the years to come. Moreover,
we believe that the spirit with which experts on MCDA are working today, in these
so rich and fruitful years, will remain forever in this book. This spirit is strongly
related with the spirit with which, in the late 1960s and early 1970s of the last
century, the “pioneers” (many of who are among the many authors of the chapters
in this book) outlined the basic principles of MCDA with the genuine aim to give a
satisfactory answer to concrete real world problems for which the classical methods
of operations research were not able to find adequate answers. Therefore the basic
principles of the presented methodologies and their relationships with the MCDA
spirit are things that we recommend the reader to look for in each chapter. After
these words about the intuition that guided the revision of this book, let us enter “in
medias res”, coming back to the introduction of the first edition that was of course
also updated.

2 Human Reflection About Decision

Decision-making has inspired reflections of many thinkers since ancient times. The
great philosophers Aristotle, Plato, and Thomas Aquinas, to mention only a few,
discussed the capacity of humans to decide and in some manners claimed that this
possibility is what distinguishes humans from animals. To illustrate some important
aspects of decision-making, let us briefly quote two important thinkers, Ignatius of
Loyola (1491–1556) and Benjamin Franklin (1706–1790).

To consider, reckoning up, how many advantages and utilities follow for me from holding
the proposed office or benefice [: : :], and, to consider likewise, on the contrary, the
disadvantages and dangers which there are in having it. Doing the same in the second part,
that is, looking at the advantages and utilities there are in not having it, and likewise, on
the contrary, the disadvantages and dangers in not having the same. [: : :] After I have thus
discussed and reckoned up on all sides about the thing proposed, to look where reason more
inclines: and so, according to the greater inclination of reason, [: : :], deliberation should be
made on the thing proposed.

This fragment from the “Spiritual Exercises” of St. [14] has been taken from a
paper by Fortemps and Slowinski [12].

London, Sept 19, l772
Dear Sir,
In the affair of so much importance to you, wherein you ask my advice, I cannot, for want
of sufficient premises, advise you what to determine, but if you please I will tell you how.
[: : :], my way is to divide half a sheet of paper by a line into two columns; writing over the
one Pro, and over the other Con. [: : :] When I have thus got them all together in one view,
I endeavor to estimate their respective weights; and where I find two, one on each side, that
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seem equal, I strike them both out. If I find a reason pro equal to some two reasons con,
I strike out the three. If I judge some two reasons con, equal to three reasons pro, I strike
out the five; and thus proceeding I find at length where the balance lies; and if, after a day
or two of further consideration, nothing new that is of importance occurs on either side, I
come to a determination accordingly. [: : :] I have found great advantage from this kind of
equation, and what might be called moral or prudential algebra. Wishing sincerely that you
may determine for the best, I am ever, my dear friend, yours most affectionately.
B. Franklin

This letter from Benjamin Franklin to Joseph Prestly has been taken from a paper
by MacCrimmon [17].

What is interesting in the above two quotations is the fact that decision is strongly
related to the comparison of different points of view, some in favor and some against
a certain decision. This means that decision is intrinsically related to a plurality of
points of view, which can roughly be defined as criteria. Contrary to this very natural
observation, for many years the only way to state a decision problem was considered
to be the definition of a single criterion, which amalgamates the multidimensional
aspects of the decision situation into a single scale of measure. For example, even
today textbooks of operations research suggest to deal with a decision problem
as follows: To first define an objective function, i.e., a single point of view like
a comprehensive profit index (or a comprehensive cost index) representing the
preferability (or dis-preferability) of the considered actions and then to maximize
(minimize) this objective. This is a very reductive, and in some sense also unnatural,
way to look at a decision problem. Thus, for at least 40 years, a new way to look
at decision problems has more and more gained the attention of researchers and
practitioners. This is the approach considered by Loyola and Franklin, i.e., the
approach of explicitly taking into account the pros and the cons of a plurality of
points of view, in other words the domain of multiple criteria decision analysis.
Therefore, MCDA intuition is closely related to the way humans have always
been making decisions. Consequently, despite the diversity of MCDA approaches,
methods and techniques, the basic ingredients of MCDA are very simple: A finite
or infinite set of actions (alternatives, solutions, courses of action, : : :), at least
two criteria, and, obviously, at least one decision-maker (DM). Given these basic
elements, MCDA is an activity which helps making decisions mainly in terms of
choosing, ranking, or sorting the actions.

3 Technical Reflection About Decision: MCDA Researchers
Before MCDA

Of course, not only philosophers reasoned about decision. Many important tech-
nical aspects of MCDA are linked to classic works in economics, in particular,
welfare economics, utility theory, and voting-oriented social choice theory (see
[27]). Aggregating the opinion or the preferences of voters or individuals of a
community into collective or social preferences is quite similar a problem to
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devising comprehensive preferences of a decision-maker from a set of conflicting
criteria in MCDA [7].

Despite the importance of Ramon Llull’s (1232–1316) and Nicolaus Cusanus’
(1401–1464) concerns about and interests in this very topic, the origins of voting
systems are often attributed to Le Chevalier Jean-Charles de Borda (1733–1799)
and Marie Jean Antoine Nicolas de Caritat (1743–1794), Le Marquis de Condorcet.
However, Ramon Llull introduced the pairwise comparison concept before Con-
dorcet [13], while Nicolaus Cusanus introduced the scoring method about three and
a half centuries before Borda [26]. Furthermore, it should be noted that a letter
from Pliny the Younger (� AD 105) to Titus Aristo shows that he introduced
the ternary approval voting strategy and was interested in voting systems a long
time before Ramon Llull and Nicolaus Cusanus [18, Chapter 2]. Anyway, Borda’s
scoring method [4] has some similarities with current utility and value theories as
has Condorcet’s method [10] with the outranking approach of MCDA. In the same
line of concerns, i.e., the aggregation of individual preferences into collective ones,
Jeremy Bentham (1748–1832) introduced the utilitarian calculus to derive the total
utility for the society from the aggregation of the personal interests of the individuals
of a community [3]. Inspired by Bentham’s works, Francis Ysidro Edgeworth
(1845–1926), a utilitarian economist, was mainly concerned with the maximization
of the utility of the different competing agents in an economy. Edgeworth tried to
find the competitive equilibrium points for the different agents. He proposed to draw
indifference curves (lines of equal utility) for each agent and then derive the contract
curve, a curve that corresponds to the notion of the Pareto or efficient set [20]. Not
long afterward, Vilfredo Federico Damaso Pareto (1848–1923) gave the following
definition of ophelimity [utility] for the whole community [21].

We will say that the members of a collectivity enjoy maximum ophelimity in a certain
position when it is impossible to find a way of moving from that position very slightly
in such a manner that the ophelimity enjoyed by each of the individuals of that collectivity
increases or decreases. That is to say, any small displacement in departing from that position
necessarily has the effect of increasing the ophelimity which certain individuals enjoy, of
being agreeable to some, and disagreeable to others.

From this definition it is easy to derive the concept of dominance, which today is
one of the fundamental concepts in MCDA.

MCDA also benefits from the birth and development of game theory. Félix
Edouard Justin Emile Borel (1871–1956) and John von Neumann (1903–1957) are
considered the founders of game theory [5, 6, 19, 29]. Many concepts from this
discipline had a strong impact on the development of MCDA.

The concept of efficient point was first introduced in 1951 by Tjalling Koopmans
(1910–1985) in his paper “Analysis of production as an efficient combination of
activities” [15].

A possible point in the commodity space is called efficient whenever an increase in one of
its coordinates (the net output of one good) can be achieved only at the cost of a decrease
in some other coordinate (the net output of a good).
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In the same year (1951) Harold William Kuhn (born 1925) and Albert William
Tucker (1905–1995) introduced the concept of vector maximum problem [16]. In
the 1960s, basic MCDA concepts were explicitly considered for the first time. As
two examples we mention Charnes’ and Cooper’s works on goal programming [8]
and the proposition of ELECTRE methods by Roy [22]. The 1970s saw what is
conventionally considered the “official” starting point of MCDA, the conference on
“Multiple Criteria Decision Making” organized in 1972 by Cochrane and Zeleny
at Columbia University in South Carolina [9]. Since then MCDA has seen a
tremendous growth which continues today.

4 Reasons for This Collection of State-of-the-Art Surveys

The idea of MCDA is so natural and attractive that thousands of articles and
dozens of books have been devoted to the subject, with many scientific journals
regularly publishing articles about MCDA. To propose a new collection of state-
of-the-art surveys of MCDA in so rich a context may seem a rash enterprise.
Indeed, some objections come to mind. There are many and good handbooks and
reviews on the subject (to give an idea consider [1, 11, 24, 25, 28]). The main ideas
are well established for some years and one may question the contributions this
volume can provide. Moreover, the field is so large and comprises developments
so heterogeneous that it is almost hopeless to think that an exhaustive vision of the
research and practice of MCDA can be given.

We must confess that at the end of the work of editing this volume we agree with
the above remarks. However, we believe that a new and comprehensive collection
of state-of-the-art surveys on MCDA can be very useful. The main reasons which,
despite our original resistance, brought us to propose this book are the following:

1. Many of the existing handbooks and reviews are not too recent. Since MCDA is
a field which is developing very quickly this is an important reason.

2. Even though the field of research and application of MCDA is so large, there are
some main central themes around which MCDA research and applications have
been developed. Therefore our approach was to try to present the—at least in our
opinion—most important of these ideas.

With reference to the first point, we can say that we observed many theoretical
developments which changed MCDA over the last 20 years. We tried to consider
these changes as much as possible and in this perspective strong points of the book
are the following:

1. It presents the most up-to-date discussions on well-established methodologies
and theories such as outranking-based methods and MAUT.

2. The book also contains surveys of new, recently emerged fields such as conjoint
measurement, fuzzy preferences, fuzzy integrals, rough sets, and others.
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Following these points we drafted a list of topics and asked well-known
researchers to present them. We encouraged the authors to cooperate with the aim
to present different perspectives if topics had some overlap. We asked the authors
to present a comprehensive presentation of the most important aspects of the field
covered by their chapters, a simple yet concise style of exposition, and considerable
space devoted to bibliography and survey of relevant literature. We also requested a
sufficiently didactic presentation and a text that is useful for researchers in MCDA
as well as for people interested in real-life applications.

The importance of these requirements is also related to the specific way the
MCDA community looks at its research field. It can be summarized in the observa-
tion that there is a very strong and vital link between theoretical and methodological
developments on the one hand and real applications on the other hand. Thus, the
validity of theoretical and methodological developments can only be measured in
terms of the progress given to real-world practice. Moreover, interest of MCDA
to deal with concrete problems is related to the consideration of a sound theoretical
basis which ensures the correct application of the methodologies taken into account.

In fact, not only the chapters of our book but rather all MCDA contributions
should satisfy the requirements stated out above because they should be not too
“esoteric” and therefore understandable for students, theoretically well founded, and
applicable to some advantage in reality.

5 A Guided Tour of the Book

Of course, this book can be read from the first to the last page. However, we think
that this is not the only possibility and it may not even be the most interesting
possibility. In the following we propose a guided tour of the book suggesting some
reference points that are hopefully useful for the reader.

5.1 Part I: The History and Current State of MCDA

This part is important because MCDA is not just a collection of theories, method-
ologies, and techniques, but a specific perspective to deal with decision problems.
Losing this perspective, even the most rigorous theoretical developments and
applications of the most refined methodologies are at risk of being meaningless
because they miss an adequate consideration of the aims and of the role of MCDA.
We share this conviction with most MCDA researchers.

From this perspective it is important to have a clear vision of the origin of
the main basic concepts of the domain. For this reason, Murat Köksalan, Jyrki
Wallenius, and Stanley Zionts present the early history of MCDA and related
areas showing how many developments in the field were made by major contrib-
utors to operations research, management science, economics, and other areas.
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Then Bernard Roy discusses “pre-theoretical” assumptions of MCDA and gives
an overview of the field. Bernard Roy, besides making many important theoretical
contributions, engaged himself in thorough reflections on the meaning and the value
of MCDA, proposing some basic key concepts that are accepted throughout the
MCDA community.

5.2 Part II: Foundations of MCDA

This part of the book is related to a fundamental problem of MCDA, the repre-
sentation of preferences. Classically, for example in economics, it is supposed that
preference can be represented by a utility function assigning a numerical value to
each action such that the more preferable an action, the larger its numerical value.
Moreover, it is very often assumed that the comprehensive evaluation of an action
can be seen as the sum of its numerical values for the considered criteria. Let us
call this the classical model. It is very simple but not too realistic. Indeed, there
is a lot of research studying under which conditions the classical model holds.
These conditions are very often quite strict and it is not reasonable to assume
that they are satisfied in all real-world situations. Thus, other models relaxing the
conditions underlying the classical model have been proposed. This is a very rich
field of research, which is first of all important for those interested in the theoretical
aspects of MCDA. However, it is also of interest to readers engaged in applications
of MCDA. In fact, when we adopt a formal model it is necessary to know what
conditions are supposed to be satisfied by the preferences of the DM. In the two
chapters of this part, problems related to the representations of preferences are
discussed.

Stefano Moretti, Meltem Öztürk, and Alexis Tsoukiàs present a very exhaustive
review of preference modeling, starting from classical results but arriving at the
frontier of some challenging issues of scientific activity related to fuzzy logic and
non-classical logic.

Denis Bouyssou and Marc Pirlot discuss the axiomatic basis of the different
models to aggregate multiple criteria preferences. We believe that this chapter is
very important for the future of MCDA. Initially, the emphasis of MCDA research
was on proposal of new methods. But gradually the necessity to understand the basic
conditions underlying each method and its specific axiomatization became more and
more apparent. This is the first book on MCDA with so much space dedicated to the
subject of foundations of MCDA.

5.3 Part III: Outranking Methods

In this part of the book the class of outranking-based multiple criteria decision
methods is presented. Given what is known about the decision-maker’s preferences
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and given the quality of the performances of the actions and the nature of the
problem, an outranking relation is a binary relation S defined on the set of potential
actions A such that aSb if there are enough arguments to decide that a is at least
as good as b, whereas there is no essential argument to refute that statement
[23]. Methods which strictly apply this definition of outranking relation are the
ELECTRE methods. They are very important in many respects, not least historically,
since ELECTRE I was the first outranking method [2].

However, within the class of outranking methods we generally consider all
methods which are based on pairwise comparison of actions. Thus, another class of
very well-known multiple criteria methods, PROMETHEE methods, is considered
in this part of the book. Besides ELECTRE and PROMETHEE methods, many
other interesting MCDA methods are based on the pairwise comparison of actions.
José Figueira, Vincent Mousseau, and Bernard Roy present the ELECTRE methods;
Jean-Pierre Brans and Yves De Smet present the PROMETHEE methods; and Jean-
Marc Martel and Benedetto Matarazzo review the rich literature of other outranking
methods.

5.4 Part IV: Multi-attribute Utility and Value Theories

In this part of the book we consider multiple attribute utility theory (MAUT). This
MCDA approach tries to assign a utility value to each action. This utility is a real
number representing the preferability of the considered action. Very often the utility
is the sum of the marginal utilities that each criterion assigns to the considered
action. Thus, this approach very often coincides with what we called the classical
approach before. As we noted in commenting Part I, this approach is very simple
at first glance. It is often applied in real life, e.g., every time we aggregate some
indices by means of a weighted sum, we are applying this approach. Despite its
simplicity, the approach presents some technical problems. The first is related to the
axiomatic basis and the construction of marginal utility functions (i.e., the utility
functions relative to each single criterion), both in case of decision under certainty
and uncertainty. These problems are considered by James Dyer in a comprehensive
chapter about the fundamentals of this approach.

Yannis Siskos, Vangelis Grigoroudis, and Nikolaos Matsatsinis present the very
well-known UTA methods, which on the basis of the philosophy of the aggregation–
disaggregation approach and using linear programming build a MAUT model that
is as consistent as possible with the DM’s preferences expressed in actual previous
decisions or on a “training sample”. The philosophy of aggregation–disaggregation
can be summarized as follows: How is it possible to assess the decision-maker’s
preference model leading to exactly the same decision as the actual one or at least
the most “similar” decision?

Thomas Saaty presents a very well-known methodology to build utility functions,
the AHP (Analytic Hierarchy Process), and its more recent extension, the ANP
(Analytic Network Process). AHP is a theory of measurement that uses pairwise
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comparisons along with expert judgments to deal with the measurement of qualita-
tive or intangible criteria. The ANP is a general theory of relative measurement used
to derive composite priority ratio scales from individual ratio scales that represent
relative measurements of the influence of elements that interact with respect to
control criteria. The ANP captures the outcome of dependence and feedback within
and between clusters of elements. Therefore AHP with its dependence assumptions
on clusters and elements is a special case of the ANP.

Carlos Bana e Costa, Jean-Claude Vansnick, and Jean-Marie De Corte present
another MCDA methodology based on the additive utility model. This methodol-
ogy is MACBETH (Measuring Attractiveness by a Categorical Based Evaluation
Technique). It is an MCDA approach that requires only qualitative judgments about
differences of values of attractiveness of one action over another action to help an
individual or a group to quantify the relative preferability of different actions. In
simple words, the MACBETH approach tries to answer the following questions:
How can we build an interval scale of preferences on a set of actions without forcing
evaluators to produce direct numerical representations of their preferences? How
can we coherently aggregate these qualitative evaluations using an additive utility
model?

5.5 Part V: Non-classical MCDA Approaches

Many approaches have been proposed in MCDA besides outranking methods and
multi-attribute utility theory. In this part of the book we try to collect information
about some of the most interesting proposals. First, the question of uncertainty in
MCDA is considered. Theo Stewart and Ian Durbach discuss risk and uncertainty
in MCDA. It is necessary to distinguish between internal uncertainties (related to
decision-maker values and judgments) and external uncertainties (related to imper-
fect knowledge concerning consequences of actions). The latter, corresponding to
the most accepted interpretation of uncertainty in the specialized literature, has
been considered in the chapter. Four broad approaches for dealing with external
uncertainties are discussed. These are multi-attribute utility theory and some
extensions; stochastic dominance concepts, primarily in the context of pairwise
comparisons of alternatives; the use of surrogate risk measures such as additional
decision criteria; and the integration of MCDA and scenario planning.

Salvatore Greco, Benedetto Matarazzo, and Roman Słowiński present the deci-
sion rule approach to MCDA. This approach represents the preferences in terms of
“if : : :, then : : :” decision rules such as, for example, “if the maximum speed of car
x is at least 175 km/h and its price is at most $12000, then car x is comprehensively
at least medium”. This approach is related to rough set theory and to artificial
intelligence. Its main advantages are the following. The DM gives information in
the form of examples of decisions, which requires relatively low cognitive effort and
which is quite natural. The decision model is also expressed in a very natural way
by decision rules. This permits an absolute transparency of the methodology for the
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DM. Another interesting feature of the decision rule approach is its flexibility, since
any decision model can be expressed in terms of decision rules and, even better,
the decision rule model can be much more general than all other existing decision
models used in MCDA.

Michel Grabisch and Christophe Labreuche present the fuzzy integral approach
that is known in MCDA for the last two decades. In very simple words this
methodology permits a flexible modeling of the importance of criteria. Indeed, fuzzy
integrals are based on a capacity which assigns an importance to each subset of
criteria and not only to each single criterion. Thus, the importance of a given set of
criteria is not necessarily equal to the sum of the importance of the criteria from the
considered subset. Consequently, if the importance of the whole subset of criteria is
smaller than the sum of the importances of its individual criteria, then we observe
a redundancy between criteria, which in some way represents overlapping points
of view. On the other hand, if the importance of the whole subset of criteria is
larger than the sum of the importances of its members, then we observe a synergy
between criteria, the evaluations of which reinforce one another. On the basis of the
importance of criteria measured by means of a capacity, the criteria are aggregated
by means of specific fuzzy integrals, the most important of which are the Choquet
integral (for cardinal evaluations) and the Sugeno integral (for ordinal evaluations).

Helen Moshkovich, Alexander Mechitov, and David Olson present the verbal
decision methods MCDA. This is a class of methods originated from the work of one
of the MCDA pioneers, the late Oleg Larichev. The idea of verbal decision analysis
is to build a decision model using mostly qualitative information expressed in terms
of a language that is natural for the DM. Moreover, measurement of criteria and
preference elicitation should be psychologically valid. The methods, besides being
mathematically sound, should check the DM’s consistency and provide transparent
recommendations.

Most real-world decision problems take place in a complex environment where
conflicting systems of logic, uncertain, and imprecise knowledge, and possibly
vague preferences have to be considered. To face such complexity, preference
modeling requires the use of specific tools, techniques, and concepts which allow
the available information to be represented with the appropriate granularity. In this
perspective, fuzzy set theory has received a lot of attention in MCDA for a long time.
Didier Dubois and Patrice Perny try to provide a tentative assessment of the role of
fuzzy sets in decision analysis, taking a critical standpoint on the state-of-the-art, in
order to highlight the actual achievements and trying to better assess what is often
considered debatable by decision scientists observing the fuzzy decision analysis
literature.

5.6 Part VI: Multiobjective Optimization

The classical formulation of an operations research model is based on the maximiza-
tion or minimization of an objective function subject to some constraints. A very
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rich and powerful arsenal of methodologies and techniques has been developed and
continues to be developed within operations research. However, it is very difficult to
summarize all the points of view related to the desired results of the decision at hand
in only one objective function. Thus, it seems natural to consider a very general
formulation of decision problems where a set of objective functions representing
different criteria have to be “optimized”. To deal with these types of problems
requires not only to generalize the methodologies developed for classical single-
objective optimization problems, but also to introduce new methodologies and
techniques permitting to compare different objectives according to the preferences
of the DM. In this part of the book we tried to give adequate space to these two sides
of multiobjective programming problems.

Gabriele Eichfelder and Johannes Jahn discuss recent developments of vector
and set optimization. Based on the concept of a pre-order, optimal elements are
defined. In vector optimization, properties of optimal elements and existence results
are gained. Further, an introduction to vector optimization with a variable ordering
structure is given. In set optimization basic concepts are summed up.

Margaret Wiecek, Matthias Ehrgott, and Alexander Engau present their view of
the state-of-the-art in continuous multiobjective programming. After an introduction
they formulate the multiobjective program (MOP) and define the most important
solution concepts. They summarize properties of efficient and nondominated sets
and review optimality conditions and solution techniques for MOPs and approxi-
mation of efficient and nondominated sets. They discuss also specially structured
problems including linear, nonlinear, parametric, and bi-level MOPs, and finally
they present a perspective on future research directions.

Within the general field of multiobjective programming, research on combina-
torial optimization problems with multiple objectives has been particularly active.
Matthias Ehrgott, Xavier Gandibleux, and Anthony Przybylski review exact meth-
ods for multiobjective combinatorial optimization problems, covering extensions of
single objective algorithms to the multiobjective case, scalarization approaches, the
two-phase method and branch and bound algorithms.

Masahiro Inuiguchi, Kosuke Kato, and Hideki Katagiri review fuzzy multi-
criteria optimization focusing on possibilistic treatments of objective functions
with fuzzy coefficients and on interactive fuzzy stochastic multiple objective
programming approaches.

Dylan Jones and Mehrdad Tamiz present a review of the field of goal program-
ming describing the current range of goal programming variants and the range
of techniques that goal programming has been combined or integrated with is
discussed. A range of modern applications of goal programming are also given.

Kaisa Miettinen, Jussi Hakanen, and Dmitry Podkopaev give an overview of
interactive methods for solving multi-objective optimization problems. In interac-
tive methods, the decision-maker progressively provides preference information
so that her or his most satisfactory Pareto optimal solution can be found. The
basic features of several methods are introduced and some theoretical results are
provided. In addition, references to modifications and applications as well as to
other methods are indicated. As the role of the decision-maker is very important
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in interactive methods, methods presented are classified according to the type of
preference information that the decision-maker is assumed to provide.

Juergen Branke discusses relationships between MCDA and evolutionary multi-
objective optimization (EMO). EMO promises to efficiently generate an approx-
imate set of Pareto optimal solutions in a single optimization run. This allows
the decision-maker to select the most preferred solution from the generated set,
rather than having to specify preferences a priori. In recent years, there has
been a growing interest in combining the ideas of evolutionary multi-objective
optimization and MCDA. MCDA can be used before optimization, to specify partial
user preferences, after optimization, to help select the most preferred solution
from the set generated by the evolutionary algorithm, or be tightly integrated with
the evolutionary algorithm to guide the optimization towards the most preferred
solution. This chapter surveys the state-of-the-art of using preference information
within evolutionary multi-objective optimization

5.7 Part VII: Applications

It is apparent that the validity and success of all the developments of MCDA research
are measured by the number and quality of the decisions supported by MCDA
methodologies. Applications in this case discriminate between results that are really
interesting for MCDA and results that, even though beautiful and interesting for
economics, mathematics, psychology, or other scientific fields, are not interesting
for MCDA. The applications of MCDA in real-world problems are very numerous
and in very different fields. Therefore it was clear from the outset that it would be
impossible to cover all the fields of application of MCDA. We decided to select
some of the most significant areas.

Jaap Spronk, Ralph Steuer, and Constantin Zopounidis discuss the contributions
of MCDA in finance. A very valuable feature of their chapter is the focus
on justification of the multidimensional character of financial decisions and the
use of different MCDA methodologies to support them. The presentation of the
contributions of MCDA in finance permits to structure complex evaluation problems
in a scientific context and in a transparent and flexible way, with the introduction
of both quantitative (i.e., financial ratios) and qualitative criteria in the evaluation
process.

Carlos Henggeler Antunes, António Gomes Martins, and Carla Oliveira Hen-
riques present applications of MCDA in energy planning problems. In modern
technologically developed societies, decisions concerning energy planning must
be made in complex and sometimes ill-structured contexts, characterized by tech-
nological evolution, changes in market structures, and new societal concerns.
Decisions to be made by different agents (at utility companies, regulatory bodies,
and governments) must take into account several aspects of evaluation such as
technical, socio-economic, and environmental ones, at various levels of decision-
making (ranging from the operational to the strategic level) and with different time
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frames. Thus, energy planning problems inherently involve multiple, conflicting,
and incommensurate axes of evaluation. The chapter aims at examining to which
extent the use of MCDA in energy planning applications has been influenced
by those changes currently underway in the energy sector, in the overall socio-
economic context, and in particular to which extent it is adapted to the new needs
and structuring and modeling requirements.

João Clímaco, José Craveirinha, and Rita Girão-Silva present multiple criteria
decision analysis in telecommunication network planning and design. Decision
making processes in this field take place in an increasingly complex and turbulent
environment involving multiple and potentially conflicting options. Telecommu-
nication networks is not only an area where different socio-economic decisions
involving communication issues have to be made, but it is also an area where
technological issues are of paramount importance. This interaction between a
complex socio-economic environment and the extremely fast development of new
telecommunication technologies and services justifies the interest in using multiple
criteria evaluation in decision-making processes. The chapter presents a review of
contributions in these areas, with particular emphasis on network modernization
planning and routing problems and outlines an agenda of current and future research
trends and issues for MCDA in this area.

Giuseppe Munda addresses applications of MCDA in problems concerning sus-
tainable development. Sustainable development is strongly related to environmental
questions, i.e., sustainable development generalizes environmental management
taking into account not only an ecological but also socio-economic, technical, and
ethical perspectives. Ecological problems were among the first to be dealt with by
MCDA. Therefore there is a strong tradition in this field and many interesting stimuli
for MCDA research came from there. The extensive perspective of sustainable
development is very significant because it improves the quality of decisions
concerning the environment taking into account other criteria, which are not strictly
environmental but which strongly interact with it. In making sustainability policies
operational, basic questions to be answered are sustainability of what and whom? As
a consequence, sustainability issues are characterized by a high degree of conflict.
Therefore, in this context MCDA appears as an adequate approach.

Alec Morton, Jeff Keisler, and Ahti Salo consider multi-criteria portfolio analy-
sis. It spans several methods which typically employ MCDA to guide the selection
of a subset (i.e., portfolio) of available objects, with the aim of maximizing the
performance of the resulting portfolio with regard to multiple criteria, subject to the
requirement that the resources consumed by the selected portfolio do not exceed
their availability, and that it satisfies other relevant constraints as well. A survey of
the applications of portfolio decision analysis in several domains, such as allocation
of research and development expenditure, military procurement, prioritization of
healthcare projects, and environment and energy planning is also presented.
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5.8 Part VIII: MCDM Software

Application of an MCDA method requires such a considerable amount of compu-
tation that even the development of many MCDA methodologies without the use
of a specialized software is hardly imaginable. While software is an even more
important element in the application of MCDA methodologies, this does not mean
that to have a good software is sufficient to apply an MCDA methodology correctly.
Clearly, software is a tool and it should be used as a tool. Before using a software,
it is necessary to have a sound knowledge of the adopted methodology and of the
decision problem at hand.

After these remarks about cautious use of software, the problem is: What
software is available for MCDA? Heinz Roland Weistroffer and Yan Li present well-
known MCDA software packages. While there is certainly some MCDA software
available that is not present in the chapter, it can help the reader. He or she may not
only get suggestions of well-known software, but also information about aspects to
be taken into account when evaluating a software for adoption in an application.
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The History and Current State of MCDA



Chapter 1
An Early History of Multiple Criteria
Decision Making

Murat Köksalan, Jyrki Wallenius, and Stanley Zionts

Abstract This historical note is based on a plenary talk ‘A History of Early
Developments in Multiple Criteria Decision Making’, presented by Stanley Zionts
at the 21st International Conference on Multiple Criteria Decision Making held
in Jyväskylä, Finland, June 2011. It draws heavily on our book, Multiple Criteria
Decision Making: From Early History to the 21st Century, published by World
Scientific, Singapore, 2011 (Copyright © 2012 John Wiley & Sons, Ltd.) The note
summarizes major early developments and contributors of multiple criteria decision
making and closely related fields.

Keywords Decision making • History • Multiple criteria • Pareto-optimality •
Utility theory

1.1 Introduction

There are different ways in which a historical note could be organized. We have
chosen to organize our paper around prominent individuals, who have all contributed
significantly to the development of our field.
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The practice of decision making is as old as man. A story in the life of
King Solomon (1011–931 BC) was probably the first recorded instance of an
approach to a problem that might be considered a Multiple Criteria Decision Making
(MCDM) problem, actually a mediation or negotiation problem.1 Solomon was
purportedly an extremely wise man. His wisdom allegedly helped his kingdom
of Israel become extremely wealthy. Solomon reigned for 40 years. Among his
many accomplishments, King Solomon has been credited with constructing many
buildings, including the famous temple in Jerusalem.

A famous example of Solomon’s wisdom, reported in the bible, supposedly
occurred when two women came before Solomon to resolve a quarrel about which
was the true mother of a baby. One mother had her baby die during the night after
rolling over on the baby in her sleep and crushing it. Each claimed the surviving
child as her own. When Solomon suggested dividing the living child in two with
a sword, the true mother was revealed to him because she was willing to give up
her child to the lying woman, as heartbreaking a decision as it was. Solomon then
declared the woman who showed compassion to be the true mother and ruled to
give the baby to her. Although there is skepticism about the truth of the story, it is
an interesting example of negotiation and mediation/arbitration, a close relative of
MCDM.

1.2 Early Developments

Although we do not know when formal study of decision making began, it is
possible to trace the origins of decision analysis/utility theory and multiple objective
mathematical programming. The roots of the former are older than of the latter. The
roots of modern decision analysis/utility theory go back to the subjective expected
utility model because of Ramsey and de Finetti (early 1930s), the formal treatment
of utility by von Neumann and Morgenstern (1940s), and the early work on the
indifference contours by Edgeworth (1880s) and Samuelson (1940s), although many
other important early contributions can be identified. The work of Howard Raiffa,
Robert Schlaifer and Ron Howard in the 1950s was important to the development of
decision analysis in its present form. The developments of multiple objective math-
ematical programming were rather independent of decision analysis/utility theory.
Often the demarcating feature between decision analysis/utility theory and multiple
objective mathematical programming was that the former addressed problems under
uncertainty, the latter deterministic problems. An impetus to the development of
multiple objective mathematical programming was provided by linear programming
and goal programming in particular. Multiple objective mathematical programming

1Saul Gass, private communication.
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developed mainly during the 1970s. Characteristic of this development was certain
skepticism of explicit assessment of value or utility functions. The main focus was
on finding most preferred solutions, or generating an approximation to the entire
efficient frontier.

According to our book, the first known recorded work on MCDM (although not
using that name) was carried out by the famous American statesman Benjamin
Franklin. Even before Franklin’s times, Aristotle (384–322 BC), a famous Greek
philosopher and polymath, in Nicomachean Ethics defines ‘preferences’ as ‘rational
desires’. This might have been the first time where someone made the connection
between rational decision making and human desires (preferences).

1.2.1 Moral Algebra

Benjamin Franklin allegedly had a simple paper system for deciding what to do
regarding important issues, which he called ‘Moral Algebra’,2 Franklin explained
his procedure in a letter to a friend, Joseph Priestly. When trying to decide his
position on an important issue, he would write on one side of a sheet of a paper
the arguments in favour of the issue, and on the other side, the arguments against
it. He would then cross out arguments on each side of the paper of relatively equal
importance. When all the arguments on one side were crossed out, the side with
any arguments not crossed out was the position on the argument that he felt he
should support. Supposedly, Franklin used this in making important decisions. He
also talked about using weights in making decisions. His approach was clearly an
early MCDM approach.

Interestingly, Benjamin Franklin’s ‘moral algebra’ can be used for formal
argumentation theory in Artificial Intelligence (Stephen Toulmin, The Uses of
Argument, 1958). Moreover, it resurfaced formally as the ‘Even Swaps’ method
for making tradeoffs because of Hammond, Keeney and Raiffa (Harvard Business
Review, 1998).

1.2.2 Some Early Voting Results

The Marquis de Condorcet (whose name was Marie Jean Antoine Nicolas Caritat
1743–1794) produced several interesting results regarding holding fair elections.
One of them is known as Condorcet’s paradox, stating that majority preferences may

2Franklin began an autobiography in 1771 and continued in several spurts until 1788. His last
writings were of his activities as late as 1757. Interestingly enough, his autobiography was
published in French a year after his death as ‘Memoires De La Vie Privee’. It was later translated
into English as ‘The Private Life of the Late Benjamin Franklin, LL.D’.
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be intransitive, even though individual preferences are perfectly transitive. Another
was what became known as the Condorcet voting method, which he proposed
in 1785, for holding fair elections with more than two candidates. According to
Condorcet, if one person is to be elected from n candidates, then the person elected
would have to win in a head-to-head contest each of the other n-1 candidates.
Jean-Charles de Borda (1733–1799), a French mathematician and political scientist,
disagreed with Condorcet and simply advocated the use of summed rankings.3 De
Borda felt that Condorcet’s proposal was not working in practice, as it might not
generate a winner. De Borda proposed a system of ranking candidates by allocating
them points on the basis of their rank. Both Condorcet and de Borda have had a
considerable influence on the ‘outranking methods’ school of thought, which began
to develop during 1960s in France.

1.2.3 Pareto-Optimality

The economist Vilfredo Pareto (1848–1923) was probably the first researcher whose
work might formally be classified as MCDM.4 His main publications are Cours
d’économie politique (1896–1897) and Manual of Political Economy (1906).

In his 1906 publication, he made the famous observation that 20 % of the
population of Italy owned 80 % of the property. This was later generalized by Joseph
M. Juran as the Pareto principle (also termed the 80–20 rule). Pareto was the first
(or at least one of the first) to mathematically study the aggregation of conflicting
criteria into a single composite index. He was also the first to introduce the concept
of efficiency (which became known as Pareto-optimality), one of the key concepts
of economics, negotiation science and modern MCDM theory, irrespective of the
‘school of thought’. A Pareto-optimal allocation of resources is achieved when it is
not possible to make anyone better off without making at least one other person
worse off. The original suggestion was for the multiple person (or bargaining)
context, but it easily generalizes to single person, multiple criteria problems.

3De Borda spent most of his life as a military engineer and military marine officer. Five French
ships were named Borda in his honor. He also made great contributions to various measurement
systems.
4Pareto was born in Paris to an Italian father and French mother. He studied civil engineering and
worked as a civil engineer, first for the Italian railways and later for private industry. He began to
study economics and sociology in his mid forties. In 1923, shortly before his death, Pareto was
nominated to Mussolini’s government, but did not wish to serve.



1 An Early History of Multiple Criteria Decision Making 7

1.2.4 Indifference Curves and Edgeworth Box

Francis Edgeworth (1845–1926) developed the foundations of utility theory, intro-
ducing the notion of an indifference curve.5 Another major contribution, the
Edgeworth box, is a way of representing various distributions of resources. Edge-
worth described ‘the box’ in his famous book (although not in its currently presented
form): Mathematical Psychics: An essay on the application of mathematics to the
moral sciences (1881). Interestingly enough, in 1906, Pareto reworked Edgeworth’s
original presentation into the now-familiar box representation. Given some endow-
ment in an Edgeworth box, the contract curve is the set of Pareto efficient allocations
in a two-agent economy. Both Pareto’s and Edgeworth’s work has had a profound
effect on economics, negotiation science and modern MCDM.

Because of the importance of both Edgeworth and Pareto, the MCDM Society
began giving Edgeworth-Pareto awards in 1992 and has continued giving this award
since.

1.2.5 Set Theory, Number Theory

Georg Cantor (1845–1918) is known to be the inventor of set theory; he also
developed the concept of one-to-one correspondences or isomorphisms between
members of sets.6 He made substantial contributions to number theory, including
the concepts of different categories of infinity. Some of Cantor’s contributions are
the foundations of the mathematical concepts used in MCDM.

The MCDM Society, to acknowledge Cantor’s contributions, has been giving
Georg Cantor awards to leading MCDM scholars beginning in 1992. The authors
wish to thank Professor Theo Stewart, University of Cape Town, South Africa, for
his comments and suggestions on our paper.

5Edgeworth, born in Ireland, was a philosopher, politician, economist, statistician and barrister,
although he never practiced law or earned his living as a barrister. He was educated by private
tutors until he entered a university. He studied ancient and modern languages, and later economics
and mathematics. He became an influential person in the development of neoclassical economics.
He was the first to apply certain formal mathematical concepts to decision making.
6Cantor was a German mathematician who was born in St. Petersburg, Russia, and moved with
his family to Germany when he was 11 years old. He became an outstanding violinist. His PhD
thesis was on number theory. He took a position at the University of Halle, where he spent his
entire career, except for a brief early period teaching at a Berlin girl’s school. Although he became
a full professor at a young age of 34 years, his work was extremely controversial at the time. He
later became very highly regarded, and in 1904, the Royal Society of London awarded Cantor its
Sylvester medal, its highest award for work in mathematics for improving natural knowledge.
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1.3 Origins of Decision Analysis, Utility Theory

There have been many early developments in utility theory. We mention these,
together with the main contributors under several headings.

1.3.1 Economics as a Modern Science

In 1926, Ragnar Frisch (1895–1973), a Norwegian economist, published a seminal
article, ‘Sur un Problème D’économie Pure’, which proposed both ordinal and car-
dinal utility. He also wrote an article proposing that economics use the mathematical
tools used by sciences such as physics.7

Perhaps Frisch’s most relevant publication in MCDM was a paper published in
a rather obscure journal titled ‘Numerical Determination of a Quadratic Preference
Function for Use in Macroeconomic Programming’, Giornale Degli Economisti e
Annali Di Economica, 1961. In that paper and in a sequel one, Frisch developed
an interview technique to elicit a person’s utility (value) function. Ralph Keeney
and Howard Raiffa may have been unaware of Frisch’s paper while working on
their 1976 book. Frisch very much wanted to have his utility function elicitation
technique used by the Norwegian Parliament. Although he was quite close to a
senior Norwegian governmental minister, he was unable to assess the Parliament’s
utility function and have the government use his approach. Members of Parliament
did not wish to make their utility function explicit! A very current problem!

1.3.2 Expected Subjective Utility

Frank Ramsey (1903–1930) presented the first set of axioms for choices between
alternatives with uncertain outcomes, leading to an expected (subjective) utility
model in 1926.8 This work was published after his death as an essay ‘Truth and
Probability’ in 1931 (in The Foundations of Mathematics and Other Logical Essays,
Routledge and Kegan, London, 156–198.). At the same time, Bruno de Finetti
published his famous articles about the notion of subjective probability (B. de

7Frisch was a pioneer of economics as a modern science. Frisch’s research is very creative. As told
by former colleagues, when pursuing a new topic, he would seldom read about what others had
carried out. He felt that this would constrain him. Instead, being a religious man, when not being
able to solve a problem, he would isolate himself and pray. Frisch was awarded the first Nobel
Prize in Economic Sciences in 1969.
8Ramsey was born in Cambridge. He was a brilliant mathematician and philosopher, with an
interest in logic. It was John Maynard Keynes who urged him to work on problems of economics.
Ramsey died from a liver disease at the age of 26 years.
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Finetti: ‘Probabilism: A Critical Essay on the Theory of Probability and on the
Value of Science’, translation of 1931 article in Erkenntnis, Volume 31, September
1989). It seems that the two men never met, but essentially presented the same idea
at the same time. We cannot quote one without quoting the other. Both Ramsey’s
and de Finetti’s work are very important to the ‘multiattribute utility theory’ school,
spearheaded by Howard Raiffa and Ralph Keeney, and more broadly to decision
analysis.

The Decision Analysis Society of INFORMS (The Institute for Operations
Research and the Management Sciences) awards a medal in Ramsey’s name each
year.

1.3.3 Theory of Games

John von Neumann (1903–1957) and Oskar Morgenstern (1902–1977) developed
the mini-max theorem of game theory and the foundations of utility theory in their
monumental book, Theory of Games and Economic Behavior published originally
by Princeton University Press in 1944.9

John Nash (1928–2015) was responsible for many further developments in
game theory.10 His papers (for example, ‘Equilibrium Points in n-Person Games’,
(Proceedings of the National Academy of Sciences, 36, 48–49, 1950) and ‘The
Bargaining Problem’, Econometrica, 18, 155–162, 1950) have greatly influenced
modern economics and negotiation science.

1.3.4 Revealed Preferences

In 1938, in a paper titled ‘A note on the pure theory of consumer’s behavior’
published in Economica, Paul Samuelson (1915–2009) described the concept he
later called ‘revealed preference’. In this paper, Samuelson stated what has since

9Von Neumann was a Hungarian-American mathematician and is generally regarded as one of
the greatest mathematicians in modern history. He has contributed to many fields, including
mathematics, computer science and nuclear physics. He joined Princeton University in 1930, and,
with Albert Einstein and Kurt Gödel, formed the Institute for Advanced Studies there in 1933.

Morgenstern was born in Germany and grew up in Austria. His PhD was in political science,
but he later became a professor of economics. He later joined the faculty at Princeton, worked with
John von Neumann, carried out joint research and published their famous book on game theory.
10Nash received two degrees from Carnegie Institute of Technology and a PhD from Princeton.
He had a letter of recommendation from his advisor at Carnegie, Richard Duffin that consisted of
one sentence, ‘This man is a genius’. He was a schizophrenic prodigy. An Oscar winning film was
made about him, on the basis of the best-selling book by Sylvia Nassar ‘A Beautiful Mind’ (2001).
He was awarded the Nobel Prize in economics in 1994. Until his death in May 2015 in a taxicab
accident, Nash remained active in research in game theory.
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become known as the Weak Axiom of Revealed Preference by writing ‘ : : : if an
individual selects batch one over batch two, he does not at the same time select two
over one’. Ten years later, Samuelson described how one could use the revealed
preference relation to construct a set of indifference curves. The proof was for two
goods only and was largely graphical. Samuelson recognized that a general proof
for multiple goods was necessary, but never pursued it. The revealed preference
theory has over the years had a considerable impact on the theory of consumer
behaviour. In later years, it was subjected to numerous empirical tests, among others
by Anthony Koo in an Econometrica paper in 1963. The influence of the revealed
preference theory on modern MCDM may not be obvious; perhaps because many
MCDM scholars did not have a background in economics. However, it certainly did
influence single dimensional utility assessment theory and practice.11

1.3.5 Bounded Rationality

Against the mainstream economics, Herbert Simon (1916–2001) claimed that
decision making does not obey the postulates of the ‘rational man’. In a series of
articles and books starting in the 1940s, Simon wrote about decision making.12

Among other things, he developed a behavioral theory on the basis of limited or
bounded rationality (H. Simon: ‘A Behavioral Model of Rational Choice’, Quarterly
Journal of Economics, 1955.)

Simon claimed that humans do not solve problems by maximizing utility, but are
‘satisficers’, who set aspiration levels (that a solution must satisfy) when solving
problems. If humans are able to find a solution to a problem (or a small number of
solutions) that satisfies the stated aspiration levels, they accept the solution. If not,
they must relax (or weaken) their aspiration levels. On the other hand, if a set of
aspiration levels admits too many solutions, then the aspiration levels are tightened.
The process of setting aspiration levels, determining whether there are solution(s)
that satisfy them and resetting aspiration levels is repeated until a solution is found.
It has been suggested that the theory has normative as well as descriptive value.
Aspiration levels play a major role in modern MCDM techniques, for example in
goal programming and the methods based on the use of Wierzbicki’s Achievement

11Samuelson wrote a column for Newsweek magazine. One article included Samuelson’s most
quoted remark, and a favorite economics joke: ‘To prove that Wall Street is an early omen of
movements still to come in GNP, commentators quote economic studies alleging that market
downturns predicted four out of the last five recessions. That is an understatement. Wall Street
indexes predicted nine out of the last five recessions! And its mistakes were beauties’. http://online.
wsj.com/article/SB126072304261489561.html. Samuelson received the Nobel Prize in Economics
in 1970 for his many contributions to Neoclassical Economics.
12Allen Newell (1927–1992) and Herbert Simon are widely regarded as the fathers of Artificial
Intelligence, a field that has also influenced modern MCDM.

http://online.wsj.com/article/SB126072304261489561.html
http://online.wsj.com/article/SB126072304261489561.html
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Scalarizing Function (Lecture Notes in Economics and Mathematical Systems 177,
Springer, Berlin, 468–486, 1980). Simon was awarded the Nobel Prize in economics
in 1978.13

1.3.6 Social Choice and Individual Values

Kenneth Arrow’s impossibility theorem or paradox demonstrates that no voting
system can convert the preferences of individuals into a community-wide ranking,
while also meeting certain reasonable criteria with three or more discrete options to
choose from. These criteria are called unrestricted domain, nondictatorship, Pareto
efficiency and independence of irrelevant alternatives. Arrow presented the theorem
in his PhD thesis and published it in his 1951 book Social Choice and Individual
Values, Wiley & Sons. Arrow’s theorem has generated much research on how to
‘circumvent’ the original difficulty, by weakening one of the assumptions. Arrow
received the 1972 Nobel Prize in economics. The work of Amartya Sen is also
relevant for generalizing social choice theory. In fact, research in social choice
theory has inspired research in MCDM (for example, the book by Arrow, K. J.
and Raynaud, H., Social Choice and Multicriterion Decision-Making, The MIT
Press, Cambridge, MA, 1986) and in Artificial Intelligence (Computational Social
Choice). See also approval voting; a scheme devised by Steven Brams and Peter
Fishburn in 1978.

1.3.7 Theory of Value

Gerard Debreu published his classic book ‘Theory of Value: An Axiomatic Analysis
of Economic Equilibrium’ in 1959, and an influential paper ‘Topological Methods
in Cardinal Utility Theory’ in 1960. He was awarded the Nobel Prize in Economics
in 1983.

1.3.8 Games and Decisions

R. Duncan Luce (born 1925) and Howard Raiffa (born 1924) published a book,
Games and Decisions: Introduction and Critical Survey, Wiley & Sons, in 1957,

13Herbert Simon’s autobiography Models of My Life, Massachusetts Institute of Technology Press,
1996, contains an interesting discussion about how Bill Cooper and Herbert Simon (with Lee Bach
and Provost Smith) laid the foundations for the Graduate School of Industrial Administration at
Carnegie Mellon University. They regarded business education (at the time) as a ‘wasteland of
vocationalism that needed to be transformed into science-based professionalism, as medicine and
engineering : : : ’ As a curiosity, as a professor, Simon did not allow students to take notes; if they
did, they did not give him their full attention.
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which was a predecessor of modern decision theory. Shortly thereafter, Ron Howard
wrote a paper ‘Sequential Decision Processes’, with G. E. Kimball, in Notes on
Operations Research, in 1959. Jointly with James E. Matheson, Howard also wrote
‘Decision Analysis: Applied Decision Theory’, published in the Proceedings of the
Fourth International Conference on Operational Research, in 1966. In that article,
they supposedly used the term ‘decision analysis’ for the first time. Howard Raiffa
published two important books on decision analysis during the 1960s, the first with
Robert Schlaifer in 1961 (Applied Statistical Decision Theory), and the second in
1968 (Decision Analysis, Introductory Lectures on Choices under Uncertainty). The
latter extensively develops the decision tree approach. We must also mention the
unpublished RAND Memorandum from 1968 by Raiffa (H. Raiffa: ‘Preference for
multi-attributed alternatives’, RAND Memorandum, RM-5868-DOT/RC, Decem-
ber 1968), which elegantly connects axioms, preferences/values and the practice
of decision making. Raiffa’s memorandum spurred much research in multiattribute
utility (R. Keeney and H. Raiffa, Decisions with Multiple Objectives: Preferences
and Value Tradeoffs, Wiley, 1976).

R. D. Luce and J.W. Tukey’s paper (Simultaneous Conjoint Measurement: A
New Scale Type of Fundamental Measurement, Journal of Mathematical Psychol-
ogy, 1, 1–27, 1964) has become a popular ‘utility measurement’ technique, used in
particular in various marketing contexts.

1.3.9 Behavioral Decision Theory

Ward Edwards (1927–2005) is generally regarded as the father of behavioral deci-
sion research. He published two seminal articles, one in 1954 and the other in 1961,
establishing behavioral decision research as a new field. In his 1954 article ‘The
Theory of Decision Making’, Psychological Bulletin, Ward Edwards introduced
the expected utility model to psychologists and posed the sensible question: do
people actually behave as if they have a utility function? However, Edwards’ later
publication, ‘Behavioral decision theory’ in the Annual Review of Psychology,
1961, formally named the field. The paper discussed issues such as how people
make decisions and how people could improve decisions. For decades, behavioral
decision theory and normative research in decision analysis/MCDM would develop
separately. However, in recent years, it has increasingly been recognized that we
ought to have a better understanding as to how humans make decisions, to provide
better support to decision makers.

A book commemorating his contributions (J. W. Weiss and D. J. Weiss, 2009,
A Science of Decision Making: The Legacy of Ward Edwards, Oxford University
Press) includes papers by many of his former colleagues, as well as the two papers
described previously. For 41 years, Edwards hosted the annual Bayesian Research
Conference in California. Beginning in 2006, the conferences became the Edwards
Bayesian Research Conference.
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When addressing the critique of the ‘utility theory’, we should also include the
contributions of M. Allais. He presented the famous Allais paradox in 1953, as
a criticism to the ‘American school of thought’, where he showed that it is not
uncommon for humans to violate the axioms of rational choice. And these could not
be judged as errors. Allais paradox has spurred much research in behavioral decision
theory, among others by Amos Tversky and Daniel Kahneman, also a Nobel Prize
recipient in economics (2002).

1.3.10 Utility Theory

Another prolific contributor to utility theory was Peter Fishburn (born 1936). Peter
Fishburn made many fundamental contributions to the theory of social choice and
utility during his career. He wrote two well-known books in the 1960s: Decision and
Value Theory in 1964 and Utility Theory for Decision Making in 1970, summarizing
many of his earlier thoughts. Both books further advanced utility theory and helped
pave the way for multi-attribute utility theory.

1.3.11 The ‘Outranking Methods’

The ELECTRE methods comprise a family of MCDM methods that originated in
France during the mid-1960s. The acronym ELECTRE stands for ELimination Et
Choix Traduisant la REalité (ELimination and Choice Translating REality). The
method was first proposed by Bernard Roy (born 1934) and his colleagues at SEMA
(Société d’Economie et de Mathématiques Appliquées), a consulting company. A
team at SEMA was working on the multiple criteria problem of how firms chose
among possible new activities. They had encountered problems using weighted
sums. Bernard Roy, who had a background in graph theory, was called in as a
consultant, and the group developed the original ELECTRE method. As it was first
applied in 1965, the ELECTRE method was to help choose the best action(s) from
a given set of actions, but it was soon applied to problems of ranking and sorting as
well. The method became more widely known when a paper titled ‘La méthode
ELECTRE’ by Bernard Roy appeared in a French Operations Research journal
Revue d’Informatique et de Recherche Opérationelle, in 1968. It evolved into
ELECTRE I, and future versions of it are as follows: ELECTRE II, ELECTRE III,
ELECTRE IV, ELECTRE IS and ELECTRE TRI. Bernard Roy is widely recognized
as the father of the ELECTRE method, which was one of the earliest so called
‘outranking’ approaches. Many authors have since developed and used outranking
based approaches, both in collaboration with Bernard Roy and independently.
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1.4 Origins of Multiple Objective Mathematical
Programming

Multiple objective mathematical programming owes much to linear programming.
George Dantzig’s (1914–2005) contributions to linear programming are monumen-
tal. In 1947, George Dantzig proposed the simplex algorithm as an efficient method
for solving linear programming problems. He did this in the SCOOP program (Sci-
entific Computation of Optimum Programs), a US government research program.
The goal of the program was to make war-time operations more efficient. Leonid
Kantorovich (1912–1986), in the Soviet Union, had earlier proposed a similar
method for economic planning, but his contributions were unknown in the Western
World (Mathematical Methods of Organizing and Planning Production, 1939) until
after Dantzig published his first work. Kantorovich was awarded the Nobel Prize
in Economics in 1975; he was the only Soviet or Russian to be awarded the prize.
The development of the digital computer at roughly the same time made Dantzig’s
and Kantorovich’s contributions extremely important: it became possible to use
the simplex algorithm to solve real-world problems. Linear programming quickly
became popular in industry. Saul Gass’s popular textbook on Linear Programming,
first published by McGraw Hill in 1958, helped applications to become more
widespread. Important follow-up work was conducted by many researchers, for
example, Harold W. Kuhn (born 1925) and Albert W. Tucker (1905–1995) on
nonlinear programming. The Karush–Kuhn–Tucker conditions for optimality have
found widespread use in multiple objective mathematical programming.

1.4.1 Efficient Vectors

In the early 1950s, Tjalling C. Koopmans (1910–1985) extended Pareto’s work
introducing the notion of ‘efficient vectors’, in the context of a resource allocation
problem: ‘Analysis of Production as an Efficient Combination of Activities’, in
Activity Analysis of Production and Allocation, published by Physica Verlag in
1951. This was certainly a precursor of multiple objective mathematical program-
ming. He was awarded the Nobel Prize in Economics in 1975.

Arthur M. Geoffrion (born 1937) published two important articles in the late
1960s, laying the foundation for multiple objective mathematical programming
and the theory of vector maximization. The first was about solving bi-criteria
mathematical programs and was published in Operations Research in 1967. The
second paper developed the notion of ‘proper efficiency’. It was published in the
Journal of Mathematical Analysis and Applications in 1968.
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1.4.2 Goal Programming

In 1955, Abraham Charnes (1917–1992), William Cooper (1914–2012) and
R. O. Ferguson published an article ‘Optimal Estimation of Executive Compen-
sation by Linear Programming’ in Management Science that contained the essence
of goal programming, even though the name goal programming was not used in
print until the publication of Charnes and Cooper’s book: Management Models
and Industrial Applications of Linear Programming, in 1961. The idea of goal
programming was simple; it is related to Simon’s level of aspiration concept. Ask
the decision maker to specify target values for goals and formulate the problem as
one of minimizing the weighted deviations from those target values. Alternatively,
instead of weights, one could use a lexicographic (pre-emptive) model for the
goals. In the original version, all constraint and goal functions were assumed
linear. Hence, goal programming could be regarded as a generalization of linear
programming. Much of the early work in goal programming was practice driven.
Goal programming has had a great impact on research in multiple objective
mathematical programming. Although goal programming has been extended in
various directions, in the 1970s, it also served as an impetus to scholars to develop
interactive man–machine, multiobjective mathematical programming techniques.

At a conference organized by Mihajlo D. Mesarovic at then Case Institute of
Technology (now Case Western Reserve University) in 1963, Mesarovic presented
Abraham Charnes and William W. Cooper with a poem that he wrote:

Programming sticks upon the shoals
Of incommensurate multiple goals,
And where the tops are no one knows
When all our peaks become plateaus
The top is anything we think
When measuring makes the mountain shrink.
The upshot is, we cannot tailor
Policy by a single scalar,
Unless we know the priceless price
Of honor, justice, pride, and vice.
This means a crisis is arising
For simple-minded maximizing.

The poem was published in M. D. Mesarovic, Views on General Systems Theory,
John Wiley and Sons, 1964, p. 61.

1.4.3 Parametric Programming

Thomas L. Saaty (born 1926), published two papers with Saul Gass (born 1926) in
Operations Research dealing with a parametric objective function, one in 1954 and
the other in 1955. Their algorithm could be used for generating efficient solutions
by varying the weights of a composite (aggregate) value function, a popular early
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technique of MCDM. In the Saaty–Gass spirit, it was not uncommon in the
following decades to work with an additive, linear value function. It was, however,
soon realized that this technique could not be used to generate unsupported efficient
solutions. A quarter century later, Andrzej Wierzbicki presented his Achievement
Scalarizing Function, to remedy this problem.

Demonstrating the breadth of his interests, Saaty (with George Dantzig) pub-
lished a book Compact City, A Plan for a Liveable Urban Environment, in 1973. He
is the inventor, architect and primary theoretician of the analytic hierarchy process, a
widely used method of MCDM. The first publications on analytic hierarchy process
occurred in 1977.

1.4.4 Automatic Control

Several researchers addressed vector-valued criteria in automatic (or optimal)
control. One of the first was Lotfi Zadeh (born 1921). He wrote a short paper
‘Optimality and Non-Scalar-Valued Performance Criteria’, which he published in
IEEE Transactions on Automatic Control in 1963. Solutions in the Pareto optimal
set could be identified by solving a series of standard optimal control problems,
using a weighted sum of individual criteria of the controllers. Several of the early
MCDM scholars had a background in automatic control, clearly influencing their
thinking.

1.4.5 Restricted Bargaining

Stanley Zionts (born 1937) and Bruno Contini (born 1936) worked on a bargaining
model involving multiple criteria in mid-1960s. They published an article on their
work in Econometrica in 1968. After completing his doctorate at Carnegie Institute
of Technology, Zionts took a position with the Ford Foundation in India, where he
applied the bargaining model to a problem of the steel industry of India, representing
one of the early real-world applications of formal bargaining models.

1.5 Conclusion

In this paper, we have presented what we know and were able to glean from our
research about the early history of MCDM and related areas. Many developments
in the field were made by major contributors to operations research, management
science, economics and other areas. Quite a few of the early contributors were
awarded the Nobel Prize in Economic Sciences. The history of the field is important
because it identifies the ‘roots’ of our field. A saying attributed to Reverend Henry
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Ward Beecher, a nineteenth century clergyman, urges people to give their children
roots and wings. We have identified the roots of our field. The future will show
where the wings take us. As indicated previously, we have drawn material from
our book, Multiple Criteria Decision Making: From Early History to the 21st
Century, published by World Scientific, Singapore, 2011. We also wish to thank
those who commented on our book, this paper or the talk presented at the 21st
MCDM conference in Jyväskylä, Finland in June 2011. Our presentation here
continues through the 1960s. For more information, we urge readers to read our
book mentioned previously.



Chapter 2
Paradigms and Challenges

Bernard Roy

Abstract The purpose of this introductory part is to present an overall view of
what MCDA is today. In Sect. 2.1, I will attempt to bring answers to questions
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2.1 What Are the Expectations That Multicriteria Decision
Aiding (MCDA) Responds To?

The purpose of this introductory chapter is to present an overview of what MCDA
is today. Since the 60s, this discipline has produced, and it still produces, a great
number of theoretical as well as applied papers and books. The major part of them
will be presented in the following chapters of this book. It is important at the outset
to understand their specific contributions are in terms of enlarging the operations
research field and, more generally, to bringing light to decision making contexts.
That is why I shall begin this chapter by considering the three following questions:
what is reasonable to expect from MCDA? Why is decision aiding is more often
multicriteria than monocriterion? What are the main limitations to objectivity which
must be taken into account? The next section will be devoted to a brief presentation
of three basic concepts which can be viewed as initial and fundamental keys for
analyzing and structuring problem situations. In practice, it is very important to
draw attention to questions such as: what is the quality of the information which
can be obtained? What is the meaning of the data which are available or can be
elaborated? In Sect. 2.3, I shall examine how the existing models and procedures
take into account various types of answers to such questions which refer to a given
problem’s real world context.

Another difficulty in an MCDA context comes from the fact that comparisons
between potential actions must be made comprehensively, with respect to all
criteria. Various aggregation techniques which will be described in detail throughout
the successive chapters of this book have been proposed and used in order to
overcome this kind of difficulty. In Sect. 2.4, I shall present a general framework for
positioning the main operational approaches in which these aggregation techniques
come into play. Some more general philosophical considerations will complete this
introductory chapter.

2.1.1 What Is Reasonable to Expect from Decision
Aiding (DA)?

Decision aiding can be defined (see [63]) as follows: Decision aiding is the activity
of people using models (not necessarily completely formalized ones) to help to
obtain elements of responses to the questions asked by a stakeholder in a decision
process. These elements work towards clarifying the decision and usually towards
recommending, or simply favoring, a behavior that will increase the consistency
between the evolution of the process and this stakeholder’s objectives and value
system. In this definition, the word “recommending” is used to draw attention to
the fact that both analyst and decision maker are aware that the decision maker is
completely free to behave as he or she sees fit after the recommendation is made.
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This term is increasingly used in DA to replace “prescription”. The latter is,
in many cases, inappropriate (see [36, 60]) for designating what a team of analysts
accompanying a decision making process might achieve.

Thus defined, DA aims at establishing, on recognized scientific bases, with ref-
erence to working hypotheses, formulations of propositions (elements of responses
to questions, a presentation of satisfying solutions or possible compromises, : : :)
which are then submitted to the judgment of a decision maker and=or the various
actors involved in the decision making process. According to the case, DA can thus
reasonably contribute to:

• Analyzing the decision making context by identifying the actors, the various
possibilities of action, their consequences, and the stakes;

• Organizing and/or structuring how the decision making process will unfold, to
increase consistency between the values underlying the objectives and goals and
the final decision;

• Getting the actors to cooperate, by proposing keys to better mutual understanding
and a framework conducive to debate;

• Drawing up recommendations based on results from models and computational
procedures designed within the framework of a working hypothesis;

• Participating in the process to legitimate the final decision.

For a deeper understanding of the bases reviewed above, the reader can refer to
[13, 14, 20, 21, 42, 50, 61, 72, 74].

2.1.2 Why Is DA More Often Multicriteria
than Monocriterion?

Even when DA is provided for a single decision maker, it is rare for her or him to
have in mind a single clear criterion. Thus, when DA takes place in a multi-actor
decision making process, it is even rarer for there to be a priori a single, well-defined
criterion deemed acceptable by all actors to guide the process. This process is often
not very rational. Each actor plays a more or less well defined role which gives
priority to her or his own objectives and value system.

In both cases, it is necessary to take into consideration various points of view
dealing with, for example, finance, human resources, environmental aspects, delays,
security, quality, ethics, : : :. By considering each pertinent point of view separately,
independently from the others, it is generally possible to arrive at a clear and
common elicitation of preferences regarding the single point of view considered.
This naturally leads to associating a specific criterion to each pertinent point of
view. Each of these criteria is used to evaluate any potential action on an appropriate
qualitative or quantitative scale. In most cases, there is no obvious and acceptable
arithmetic rule which can keep account of these heterogeneous scales by substituting
a single scale based on a common unit for each of them (see Sect. 2.4 below).
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Such a scale, bringing a common unit into play, must be introduced a priori when
we want to avoid a multicriteria approach, i.e., when we prefer to choose what is
called a monocriterion approach. This choice, in many decision making contexts,
might:

• lead to wrongly neglecting certain aspects of realism;
• facilitate the setting up of equivalencies, the fictitious nature of which remains

invisible;
• tend to present features of one particular value system as objective.

On the contrary, a multicriteria approach contributes to avoiding such dan-
gers by:

• delimiting a broad spectrum of points of view liable to structure the decision
process with regard to the actors involved;

• constructing a family of criteria which preserves, for each of them, without
any fictitious conversion, the original concrete meaning of the corresponding
evaluations;

• facilitating debate on the respective role (weight, veto, aspiration level, rejection
level, : : :) that each criterion might be called upon to play during the decision
aiding process.

Additional considerations about relative advantages on monocriterion and multi-
criteria approaches can be found in [12, 15, 22, 58, 63].

2.1.3 Can MCDA Be Always Totally Objective?

In many cases, those who claim to shed light objectively on a decision in fact take
a stand—consciously or unconsciously—for an a priori position or for a prevailing
hypothesis which they then seek to justify. Arguments for making a decision are
thus put forward more in the spirit of advocacy than in that of an objective search
(see [4, 34]).

In what follows, we will only consider situations in which DA is motivated by a
strong desire for objectivity. Even in such situations, it is important to be sensitive
to the existence of some fundamental limitations on objectivity. Their origins lie in
the following facts:

(a) The borderline between what is and what is not feasible is often fuzzy in real
decision making contexts. Moreover, this borderline is frequently modified in
the light of what is found through the study itself.

(b) Even in cases for which DA is provided for a well-defined decision maker, his
or her preferences very seldom seem well-shaped. In and among areas of firm
convictions lie hazy zones of uncertainty, half held belief, or indeed conflicts
and contradictions. Such sources of ambiguity or arbitrariness concerning
preferences which are to be elicited and modeled are even more present when
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the decision maker (entity for whom or in the name of whom decision aiding is
provided for) is a mythical person, or when decision aiding is provided in a mul-
ticriteria context. We have to admit, therefore, that the study itself contributes
to eliminating questioning, solving conflicts, transforming contradictions and
destabilizing certain convictions. Any interaction and questioning between the
analyst and the decision maker, or any actors involved into the decision making
process, may have some an unpredictable or imperceptible effect.

(c) Much of the data is imprecise, uncertain or ill defined. Making data say more
than it actually means is a risk. Moreover, some data only reflects the value
system of a given individual.

(d) It is impossible to say that a decision is good or bad only by referring to a
mathematical model. The organizational, pedagogical and cultural aspects of the
entire decision-making process leading to a particular decision also contribute
to its quality and success.

Rather than dismissing or canceling the subjectivity which results from the limi-
tations of objectivity described above, decision aiding must make an objective place
for it. (For a pedagogical overview of MCDA approaches, see [60, 61, 66, 70, 72].)

2.2 Three Basic Concepts

From the beginning to the end of work in MCDA, three concepts usually play a
fundamental role for analyzing and structuring the decision aiding process in close
connection with the decision process itself. The presentation of these concepts in
the three following sub-sections is obviously succinct. It nevertheless aims to draw
attention to some important features.

2.2.1 Alternative, and More Generally, Potential Action

By potential action, we usually designate that which constitutes the object of the
decision, or that which decision aiding is directed towards. The concept of action
does not a priori incorporate any notion of feasibility, or possible implementation.
An action is qualified as potential when it is deemed possible to implement it, or
simply when it deserves some interest within the decision aiding process.

The concept of alternative corresponds to the particular case in which modeling
is such that two distinct potential actions can in no way be conjointly put into
operation. This mutual exclusion comes from a way of modeling which in a
comprehensive way tackles that which is the object of the decision, or that towards
which DA is directed. Many authors implicitly suppose that potential actions
are, by definition, mutually exclusive. Nevertheless, such an hypothesis is in no
way compulsory. In many real world decision aiding contexts, it can be more
appropriate to adopt another way of modeling such that several potential actions
can be implemented conjointly (see examples in [57, 63]).
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In all cases, A will denote the set of potential actions considered at a given stage
of the DA process. This set is not necessarily stable, i.e., it can evolve throughout the
decision aiding process. Such an evolution may come from the study’s environment,
but also from the study itself. The study may shed light on some aspects of the
problem, which could lead to revising some of the data and then, possibly, to
modifying the borderline between what is and what is not feasible.

By a, we will denote any potential action or alternative. When the number of
actions is finite (jAj D m) we shall let:

A D fa1; a2; : : : ; amg:

When modeling of actions can be done by referring to some variables x1; x2; : : :
it is possible to write:

a D .x1; x2; : : :/:

In such cases, A is generally defined by a set of analytic constraints which char-
acterize the borderline between what is feasible and is not feasible. Multiobjective
mathematical programming constitutes an important particular case of this type of
modeling (see [26] and Part VI).

In another type of modeling, the value of each variable xi .i D 1; 2; : : : ; n/
designates a possible score on an appropriate scale Xi built for evaluating actions
according to a specified point of view or criterion. In such cases, A can be viewed as
a subset of the Cartesian product X D Qn

iD1 Xi. This type of modeling is commonly
used in multiattribute utility theory (MAUT) (see Part IV). Let us observe that
this type of modeling necessitates some precautions: since each potential action
is identified with the n components of its evaluation, it loses all concrete identity;
in particular, two actions having the same evaluations x1; : : : ; xn are no longer
distinguishable.

More details and illustrations of the concepts and ways of modeling presented
above could be found in [63, Chap. 5], [90, Chap. 1], and [38].

2.2.2 Criterion and Family of Criteria

The reader, who is not yet familiar with some of the terms used in this subsection,
will find more precise definitions in [66, Chap. 1, Appendix 1, Glossary].

Let us remember that a criterion g is a tool constructed for evaluating and
comparing potential actions according to a point of view which must be (as far as
it is possible) well-defined. This evaluation must take into account, for each action
a, all the pertinent effects or attributes linked to the point of view considered. It is
denoted by g.a/ and called the performance of a according to this criterion.

Frequently, g.a/ is a real number, but in all cases, it is necessary to define
explicitly the set Xg of all the possible evaluations to which this criterion can lead.
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For allowing comparisons, it should be possible to define a complete order <g on
Xg: .<g;Xg/ is called the scale of criterion g. To be accepted by all stakeholders,
a criterion should not bring into play, in a way which might be determinant,
any aspects reflecting a value system that some of these stakeholders would find
necessary to reject. This implies in particular that the direction to which the
preferences increase along the scale (and more generally the complete order <g)
is not open to contest.

Elements x 2 Xg are called degrees or scores of the scale. Each degree can
be characterized by a number, a verbal statement or a pictogram. When in order
to compare two actions according to criterion g we compare the two degrees
used for evaluating their respective performances, it is important to analyze the
concrete meaning in terms of preferences covered by such degrees. This leads to
distinguishing various types of scales:

(a) Purely ordinal scale: Scale such that the gap between two degrees does not
have a clear meaning in terms of difference preferences; this is the case with:

– a verbal scale when nothing allows us to state that the pairs of consecutive
degrees reflect equal preference differences all along the scale;

– a numerical scale when nothing allows us to state that a given difference
y between two degrees reflects an invariant preference difference when we
move the pair of degrees considered along the scale.

This type of scale is often called a qualitative scale.
(b) Quantitative scale: Numerical scale whose degrees are defined by referring to a

clear, concrete defined quantity in a way that it gives meaning, on the one hand,
to the absence of quantity (degree 0), and on the other hand, to the existence
of a unit allowing us to interpret each degree as the addition of a given number
(integer or fractional) of such units. In such conditions, the ratio between two
degrees can receive a meaning which does not depend on the two particular
degrees considered; this is another way of defining quantitative scales which
are also called cardinal or ratio scales.

(c) Other types: In MCDA, we do not always work with scales belonging to one of
the above two extreme types (especially interval scales). The most interesting
intermediate types are presented in [43, Sect. 2] and [66].

In MCDA, it is essential to know which type of scale we are working with to
be sure of using its degrees in a meaningful way. According to the type of scales
considered, certain kinds of reasoning and arithmetical operations are significant in
terms of preference (see Chap. 3).

Moreover, the use of the degrees in a significant way must take the following fact
into account: the difference between two degrees that are sufficiently close together
may be non significant for justifying an indisputable preference in favor of one of
the two actions. This stems from the procedure used to position the two actions on
the scale considered. This procedure can appear insufficiently precise (with regard
to the complexity of the reality in question), or insufficiently reliable (with regard to
uncertainty concerning the future) for founding such an indisputable preference on
such a small difference. I will come back to this subject in the next section.
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In most cases, the first step of DA consists of building n criteria with n > 1 (see
Sect. 2.1.2 above). They constitute what we call the family F of criteria. In order
to be sure that F is able to play its role in the DA process correctly, i.e., in laying
the foundations for convictions, communicating concerning the latter, debating and
orienting the process towards the decision, and in contributing in some cases to
legitimating this decision, it is necessary to verify that:

• what is apprehended by each criterion is sufficiently intelligible for each
stakeholder;

• each criterion is perceived as a relevant instrument for comparing potential
actions on the scale associated with this criterion, without prejudging its relative
importance (importance that may vary considerably from one stakeholder to the
next);

• the n criteria considered all together satisfy some logical requirements (exhaus-
tiveness, cohesiveness, and non redundancy) which insure coherence of the
family (for more details, see [66, Chap. 1, Appendix 1, Glossary], [73]).

It is important to observe that none of the above requirements implies that the n
criteria of F must be independent. The concept of independence is very complex,
and if dependence is desirable, it is necessary to specify what type of independence
is needed. Multicriteria analysis has led to important distinctions between structural
independence, preferential independence, and utility independence (see [39, 56],
[63, Chap. 10], and [73, Chap. 2]).

Additional developments concerning this basic concept of criterion can be found
in [2, 3, 5, 6, 8, 69].

2.2.3 Problematic as a Way in Which DA May Be Envisaged

The word “problematic” is used here in the sense indicated by the heading. Other
expressions such as “statement”, “problem formulation” or “problem type” have
been used as substitutes, but in my view, they are inappropriate and may lead to
misunderstanding.

Let us underline first that DA must not be envisaged solely in the perspective
of solving a problem of choice. In some cases, DA consists only of elaborating
an appropriate set A of potential actions, building a suitable family F of criteria,
and determining, for all or some a 2 A, their performances sometimes completed
by additional information (possible values for discriminating thresholds, aspiration
and=or rejection levels, weights, : : :). For designating this manner of conceiving of
DA’s aim without seeking to elaborate any prescription, or recommendation, we use
the term description problematic often coded P:ı.

In MCDA, the word problematic refers to the way in which DA is envisaged. This
means that the problematic deals with answers to questions such as the following:
in what terms should we pose the problem?, what type of results should we try to
obtain?, how does the analyst see himself fitting into the decision process to aid in
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arriving at these results?, what kind of procedure seems the most appropriate for
guiding his investigation? In addition to P:ı, three other reference problematics are
currently used in practice. They can be briefly described as follows (for more details,
see [54], [63, Chap. 6]):

• The choice problematic (P:˛): The aid is oriented towards and relies on a
selection of a small number (as small as possible) of “good” actions in such
a way that a single alternative may finally be chosen; this does not mean that
the selection is necessarily oriented towards the determination of one or all the
actions of A which can be regarded as optimum; the selection procedure can
also, more modestly, be based on comparisons between actions so as to justify
the elimination of the greatest number of them, the subset N of those actions
which are selected (which can be viewed as a first choice) containing all the most
satisfying actions, which remain non comparable between one another.

• The sorting problematic (P:ˇ): The aid is oriented towards, and relies on an
assignment of each action to the one category deemed the most appropriate for
receiving it among a family of predefined categories. Categories are designed
a priori to receive actions which will be or might be processed in the same
way during the following step. For instance, a family of four categories can
be based on a comprehensive appreciation leading to distinguishing between:
actions for which implementation (1) is fully justified, (2) could be advised after
only minor modifications, (3) can only be advised after major modifications, (4)
is unadvisable. Let us observe that categories are not necessarily ordered as it is
the case in the above example.

• The ranking problematic (P:� ): The aid is oriented towards and relies on a
partial or complete ordering (pre-order) on A that may be considered as an
appropriate instrument for comparing actions pairwise. This pre-order is the
result of a classifying procedure allowing us to put together in classes actions
which can be judged as indifferent, and to rank these classes (some of them may
remain non-comparable).

The four problematics described above are not the only possible ones (see
[10, 12]). Whatever the problematic adopted, the result arrived at by exploiting
a given set of data through a single procedure is (except under unusual conditions)
not sufficient for founding a prescription or a recommendation (see Sect. 2.4 below).

2.3 How to Take into Account Imperfect Knowledge
and Ill-Determination?

DA cannot be correctly provided without trying to analyze and to take into account
reasons and factors which can be responsible for contingency, arbitrariness, and
ignorance in the way the problem is addressed and procedures implemented. In
addition to their subjective characteristics, these reasons and factors may take on
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various forms whose presence and=or importance greatly depends on the decision
making context considered. Their presence comes essentially from three sources
(for more details, see [17, 59, 70, 71]):

• Source ˛ (S:˛): The imprecise, uncertain and, more generally, poorly understood
or ill-defined nature of certain specific features or factual quantities or qualities
present in the problem.

• Source ˇ (S:ˇ): the conditions for implementing the decision taken; these will be
influenced by:

– The state of the context at the time the decision is implemented if it is a once-
and-for-all decision;

– The successive states of the context if the decision is sequential.

• Source � (S:� ): the fuzzy or incomplete, sometimes unstable and easily
influenced character of the system or systems of values to be taken into account;
these values involve, in particular, the system and most often the systems of
preferences which should prevail in order to evaluate the feasibility and relative
interest of diverse potential actions, by considering the conditions envisaged for
implementing these actions.

Once the problem is formulated, and during the entire decision aiding process,
special attention should be paid to the three sources. Their examination must
highlight what is imprecise, uncertain, unstable or ill determined. This can leads,
for instance:

• starting from S:˛, to delimiting a domain of reasonable instantiation values for
various data and parameters;

• from S:ˇ, to building a set of scenarios describing different possible future
contexts;

• from S:� , to eliciting a set of weight vectors; for this purpose, it is important
to remember that it makes no sense and is theoretically incorrect to specify
measures of relative importance for the criteria without considering the nature
of the overall evaluation model which will be used, i.e., without having defined
the type of mathematical aggregation rules (see next section) which allow us to
derive comprehensive preferences.

The DA process must clearly take into account all the results of this study. To
do so, many approaches (formalisms, models, methods, : : :) have been proposed.
A panorama of such approaches can be found in Chap. 12, and in [41, 82]. These
approaches rest upon various concepts, tools and theories; the main ones are:

• probability theory mainly used in MAUT (see Chap. 9), but also used in many
other approaches, particularly for building criteria when uncertainty can be
characterized by a probabilistic distribution;

• possibility theory [23, 24];
• multi-valued logic (see Chap. 4, [86]);
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• concept of discriminating thresholds and quasi or pseudo-criterion (see Chap. 3,
and for more details, [37, 76–78, 93]) mainly used in outranking methods (see
Chap. 5).

• concept of fuzzy binary relations [19, 25, 28, 29, 46, 55];
• rough sets theory (see Chap. 13);
• ordinal regression for MCDA (see [33]).

Regardless of the tools used for taking into account imperfect knowledge and
ill determination, the analyst must seek for obtaining robust solutions and/or robust
conclusions.

Solutions and conclusions are qualified as robust if their design takes account
of the existence of vague approximations and zones of ignorance, thus enabling
the DM to forestall any impacts that he or she may deem regrettable, for instance
when the goal of at is effectively reached is far short of expectations, or when the
properties the DM wanted to maintain are deteriorated.

For decision aiding to be truly useful, it must provide the decision maker with the
kinds of answers that will provide enough information enabling the decision maker
(according to his/her subjectivity) to reach a decision in a situation where there are
two conflicting risks:

• being poorly protected in the event of very poor performance relative to the
impacts that he/she deems regrettable;

• being in a position that leads the DM to abandon any hope of good, or even very
good, performance.

For more details, regarding tools that the analyst can use for obtaining robust
solutions and/or robust conclusions, and regarding also more generally robustness
concerns, the reader can see [1, 27, 35, 40, 52, 53, 64, 65, 68–71, 84, 91, 92].

Let us note that the analyst can make use of sensitivity analysis in the framework
of robustness concern. In [64, 65], the reader could find some comments on links
and differences between robustness analysis and sensitivity analysis (see also [84]).

2.4 An Operational Point of View

As soon as more than one criterion comes into play, a crucial question arises: how
can we take into account all criteria comprehensively in order to compare potential
actions between them? Let us consider two potential actions a and b characterized
by their respective performances on the n criteria considered. More often, a will
be better than b for some of the criteria, and b better than a for others. In such
cases, in comparing a and b, on what basis can we found a comprehensive judgment,
i.e., taking into account, in a comprehensive way, the n performances of a and the
n performances of b. This problem is usually called the aggregation problem. In
many of the chapters in this book, the reader will find a wide variety of solutions to
this fundamental problem. In the present introductory chapter, I shall present only
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a general framework for positioning the main operational approaches provided for
DA today (for more details on what the operational approach concept covers, see,
[63, Chap. 11] and [72]).

2.4.1 About Multicriteria Aggregation Procedures

Let us suppose that two potential actions characterized by their n performances are
shown to a respondent (for instance the DM) to elicit her or his preference, so that
he or she can say:

• “I prefer the first to the second or vice versa”;
• “I am indifferent about the two”;
• “I am unable to compare these two actions”.

What we call the preference system for the respondent refers to the results of such
comparisons, as they could be stated (for all pairs of actions) expressed in terms of:

Preference; indifference or incomparability

In certain cases, there may be information qualifying the intensity of preference.
Overall, assuming there is a rational, rigorous and stable (implicit or explicit)

procedure, capable of defining the totality of the respondent’s preference system in
the respondent’s mind, even before the outset of the decision-aiding process, is not
very realistic.

What is usually called preference model is, on the contrary, a well-defined model,
which produces results allowing the comparison of any pair of potential actions in
crisp or fuzzy terms denoting preference, indifference, or incomparability.

Above all, a preference model in DA must be a tool for delving deeper into,
exploring, interpreting, debating, and even arguing the subject.

It is not necessary (I even think it unrealistic) for the analyst to attempt to design
the model so that it becomes a representation, albeit simplified, of what is actually
happening in the respondent’s mind when he/she compares two actions.

The most frequently used decision aiding operational approaches make use of a
preference model that is based on a mathematical procedure called the multicriteria
aggregation procedure (MCAP). Let:

g1.a/; : : : ; gn.a/ and g1.b/; : : : ; gn.b/

denote the performances by which two potential actions a and b are characterized.
A MCAP is a procedure that produces a result allowing for the comparison of

both actions in a comprehensive way.
A MCAP brings into play:

• A logic of aggregation that takes account of the conditions under which compen-
sation between bad and good performances are accepted or refused.
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• Various inter-criterion and technical parameters (e.g., weights, scaling
constants, vetoes, aspiration levels, rejection levels). The specific role that each
criterion can play with respect to the others is defined by the numerical values
assigned to these parameters

Outside of the logic on which the MCAP is based, the inter-criterion and
technical parameters have no meaning: they have no real existence in the mind
of the decision maker. Thus, no true value that has to be approximated as well as
possible exists. Rather, the analyst must strive to assign an appropriate value to
each parameter so that the resulting preference model can become a useful tool for
decision aiding.

For more details on the above considerations, see [16, 44, 62, 73, 75, 85].
Methods which are based on a mathematically explicit MCAP come under one of

two types of operational approaches usually designated by the expressions approach
based on a synthesizing criterion and approach based on a synthesizing preference
relational system.

2.4.2 Approach Based on a Synthesizing Criterion

This approach is the most traditional. It can be characterized as follows: Formal
rules taking account of the n performances g1.a/; : : : ; gn.a/ are defined to assign
a well-defined degree (most often a numerical value v.a/) to each a 2 A on
an appropriate scale. The comparison between two actions is determined by their
respective positions on this scale.

The way the aggregation problem is addressed in this approach leads to defining a
complete pre-order on the set A. Most often, the formal rules consist in mathematical
formulas that lead to an explicit definition of a unique criterion synthesizing the n
criteria:

v.a/ D VŒgn.a/; : : : ; gn.a/�:

This is the case with MAVT, MAUT, SMART, TOPSIS, MACBETH, AHP, and
so on (see Chaps. 8–10). The complete preorder on A can also be obtained by the
use of a set of formal rules without any mathematically explicit expression of the
synthesizing criterion, which remains implicit (see [7, 8]). In any case, this approach
does not allow any incomparability.

Building a synthesizing criterion using such a multicriteria approach is not
equivalent to a monocriterion approach. The dangers of the monocriterion approach
have been presented above (see Sect. 2.1.2). Nevertheless, even if a multicriteria
approach based on a synthesizing criterion contributes to reducing these dangers, it
forces us to introduce a common scale (monetary scale, utility scale, : : :) on which
performances of each of the n criteria have to be evaluated. Moreover, with this
approach, imperfect knowledge and ill-determination (cf. Sect. 2.3 above) can be
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taken into account essentially through probability distribution, fuzzy numbers, or in
some cases through rough set theory but never through preference or indifference
thresholds.

2.4.3 The Operational Approach Based on a Synthesizing
Preference Relational System

As is the first, this second operational approach is based on a mathematically explicit
MCAP. A major difference with the preceding approach comes from the fact that
here the MCAP does not work on each potential action a separately from the others,
but it successively compares a to each of the other b 2 A.

In other words, the aggregation problem is no longer addressed in terms of
defining a complete preorder on A, it is now addressed in terms of pairwise
comparisons so as to design a synthesizing preference relational system. Taking
into account the n performances of a and the n performances of b, the role of the
MCAP is to give an answer to the question: what is the preference relation which can
be validated between a and b, and in some cases with what degree of credibility?
Mathematical rules, which lead to answering this question, are based on:

• various inter-criteria parameters, as in the first approach; but also, unlike the first
approach, on discriminating thresholds (see Sect. 2.3 above) and veto thresholds;

• a logic of aggregation which easily allows us to take into account (and this is
much more difficult with the approach based on a synthesizing criterion), on
one hand, some limitations to compensation, and on the other, no quantitative
performances.

The synthesizing preference relational system can be reduced to a single binary
relation, which can be crisp or fuzzy. But it can also bring into play more than
one binary relation. In all instances, the advantages of this second type of MCAP
relative to the first cause certain difficulties to arise when we consider the operational
approach based on such an MCAP. These difficulties stem from the fact that:

• pairwise comparisons can cause some intransitivities to appear;
• incomparability can be the most appropriate conclusion for comparing certain

pairs .a; b/;
• consequently, a synthesizing relational preference system is not a tool which is

immediately usable for elaborating a recommendation.

For these reasons, this second operational approach necessitates completing the
MCAP by a second procedure called exploitation procedure. This procedure is
conditioned by the problematic considered (see above Sect. 2.3).

This second operational approach has led to various methods, most of which are
covered by the label of outranking methods (mainly PROMETHEE and ELECTRE
methods). The second part of this book is devoted to them. Other works related to
this approach are presented in Part IV.
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2.4.4 About Other Operational Approaches

All the operational approaches which are based on a mathematically explicit MCAP
are not exactly in accordance with one of the two preceding approaches. Regarding
this subject, the reader can refer to [9, 18, 32, 45, 81].

Finally, let us mention the existence of operational approaches which are not
based on a mathematically explicit MCAP. In such approaches the analyst takes
account of the DM’s preference system by interacting with him or her.

This type of operational approaches (called interactive) is based on a formal
procedure organizing a dynamic sequence of questions that the DM (or his/her
representative) must answer.

The respondent is asked questions involving actions characterized by their
performance in the criteria space. Each question only refers to a small area in
the criteria space. The answers are given in terms of preference, indifference or
incomparability.

The procedure is designed so that, through trial-and-error, the respondent
progresses to the point of reaching one or several satisfying actions.

For more details on this kind of approach, see Chap. 22, [30, 47, 49], [73,
Chap. 7], [83, 87–90, 94, 96].

In any case, whatever the operational approach considered, there is a possible
confusion which should be avoided. Except under very unusual conditions, the
results arrived at by treating a set of data through any appropriate procedure
should not be confused with a well founded scientific recommendation. Repeated
calculations using different but equally realistic versions of the DA problem (sets of
data, scenarios, : : :) are generally necessary to elaborate a recommendation on the
basis of robust conclusions stemming from the multiple results thus obtained. The
statement of the proposals which make up the recommendation should be submitted
to the assessment and discernment of the decision maker and=or the actors involved
in the DA process (see [36, 48, 65–68, 84]).

2.5 Conclusion

The final objective of MCDA is, of course, to help managers to make “better”
decisions. But what is the meaning of better? This meaning depends, in part, on
the process by which the decision is made and implemented. This, combined with
limitations on objectivity described above (see Sect. 2.1.3), shows that we cannot
hope to prove scientifically, in a decision making context, that a given decision is
the best one. So, one cannot consider that, in every situation, the right selection,
the right assignment, the right ranking—all of which decision aiding strives to
discover, or to approach as closely as possible—exists somewhere. This implies
that the concepts, models and procedures presented in this book must not be viewed
as being conceived from the perspective of discovering, with a better or a worst
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good approximation, a pre-existing truth which could be universally accepted. They
have to be seen as keys capable of opening doors giving access to answers and/or
expectations as described in Sect. 2.1.1.

Designed and implemented in this manner, decision aiding based on appropriate
concepts, models and procedures can play a significant and beneficial role in guiding
a decision making process.

Above all, the purpose of MCDA is to enable us to enhance the degree of
conformity and consistency between the evolving decision-making process and the
value system and the objectives of the people involved in the process. For this
purpose, concepts, tools and procedures must be designed to help us make our way
on a road fraught with ambiguity, uncertainty and countless crossroads.

To achieve this goal, three non exclusive paths can be envisaged:

• the path of realism which leads to the quest for a description for discovering;
• the axiomatic path which is often associated with the quest for norms for

prescribing;
• the path of constructivism which goes hand in hand with the quest for a working

hypothesis for recommending.

(for more details on each of these paths, see [60]). In a DA process, it is important,
when following one or a combination of such paths, to shed light on:

• those aspects of reality which give meaning, value and order to facts;
• the influence exerted upon this reality by observing it, organizing it, provoking

within it certain forms of debate, or even having certain tools placed there.

Personally, I consider that the path of realism can only play a role in pro-
ducing certain descriptions of physical, institutional, socio-economic, financial
or psychological systems which form the decision making context. Insofar as
such descriptions are produced by other disciplines than DA strictly speaking,
the contribution of DA comes essentially, in my opinion, from the constructivism
path taken in conjunction with (observing certain precautions) the axiomatic path.
Interesting developments and other points of view can be found in [11, 13, 31, 33,
38, 42, 51, 79, 80, 95, 97–99].
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Chapter 3
Preference Modelling

Stefano Moretti, Meltem Öztürk, and Alexis Tsoukiàs

Abstract This chapter provides the reader with a presentation of preference mod-
elling fundamental notions as well as some recent results in this field. Preference
modelling is an inevitable step in a variety of fields: economy, sociology, psy-
chology, mathematical programming, even medicine, archaeology, and obviously
decision analysis. Our notation and some basic definitions, such as those of binary
relation, properties and ordered sets, are presented at the beginning of the chapter.
We start by discussing different reasons for constructing a preference model. We
then go through a number of issues that influence the construction of preference
models. Different formalisations besides classical logic such as fuzzy sets and non-
classical logics become necessary. We then present different types of preference
structures reflecting the behavior of a decision-maker: classical, extended and
valued ones. It is relevant to have a numerical representation of preferences:
functional representations, value functions. The concepts of thresholds and minimal
representation are also introduced in this section. We also deal with the problem
of how to extend a preference relation over a set A of “objects” to the set of
all subsets of A. In Sect. 3.9, we briefly explore the concept of deontic logic
(logic of preference) and other formalisms associated with “compact representation
of preferences” introduced for special purposes. We end the chapter with some
concluding remarks.
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3.1 Introduction

The purpose of this chapter is to present fundamental notions of preference
modelling as well as some recent results in this field. Basic references on this issue
can be considered: [5, 109, 112, 117, 157, 168, 229, 235, 239, 260, 265].

The chapter is organised as follows: The purpose for which formal models of
preference and more generally of objects comparison are studied, is introduced
in Sect. 3.2. In Sect. 3.3, we analyse the information used when such models are
established and introduce different sources and types of uncertainty. Our notation
and some basic definitions, such as those of binary relation, properties and ordered
sets, are presented in Sect. 3.4. Besides classical logic, different formalisms can be
used in order to establish a preference model, such as fuzzy sets and non-classical
logics. These are discussed in Sect. 3.5. In Sect. 3.6, we then present different
types of preference structures reflecting the behavior of a decision-maker: classical,
extended and valued ones. It appears relevant to have a numerical representation
of preferences: functional representations, value functions and intervals. These are
discussed in Sect. 3.7. The concepts of thresholds and minimal representation are
also introduced in this section. In Sect. 3.8, we present different approaches to the
analysis of the problem of how to extend a preference relation over a set A of
“objects” to the set of all subsets of A. Finally, after briefly exploring the concept of
deontic logic (logic of preference) and other related issued in Sect. 3.9, we end the
chapter with some concluding remarks.

3.2 Purpose

Preference modelling is an inevitable step in a variety of fields. Scientists build
models in order to better understand and to better represent a given situation; such
models may also be used for more or less operational purposes (see [51]). It is often
the case that it is necessary to compare objects in such models, basically in order to
either establish if there is an order between the objects or to establish whether such
objects are “near”. Objects can be everything, from candidates to time intervals,
from computer codes to medical patterns, from prospects (lotteries) to production
systems. This is the reason why preference modelling is used in a great variety of
fields such as economy [12–14, 80], sociology, psychology [60, 68, 71, 158, 159],
political science [22, 254], artificial intelligence [97], computer science [117, 252,
265], temporal logic (see [6]) and the interval satisfiability problem [131, 217]
mathematical programming [224, 225], electronic business, medicine and biology
[32, 62, 154, 162, 195], archaeology [148], and obviously decision analysis.

In this chapter, we are going to focus on preference modelling for decision aiding
purposes, although the results have a much wider validity.

Throughout this chapter, we consider the case of somebody (possibly a decision-
maker) who tries to compare objects taking into account different points of view.



3 Preference Modelling 45

We denote the set of alternatives A,1 to be labelled a; b; c; : : : and the set of points
of view J, labelled j D 1; 2; : : : ;m. In this framework, a data gj.a/ corresponds to
the evaluation of the alternative a from the point of view j 2 J.

As already mentioned, comparing two objects can be seen as looking for one of
the two following possible situations:

– object a is “before” object b, where “before” implies some kind of order between
a and b, such an order referring either to a direct preference (a is preferred to b)
or being induced from a measurement and its associated scale (a occurs before
b, a is longer, bigger, more reliable, than b);

– object a is “near” object b, where “near” can be considered either as indifference
(object a or object b will do equally well for some purpose), or as a similarity, or
again could be induced by a measurement (a occurs simultaneously with b, they
have the same length, weight, reliability).

The two above-mentioned “attitudes” (see [198]) are not exclusive. They just
stand to show what type of problems we focus on. From a decision aiding point of
view we traditionally focus on the first situation. Ordering relations is the natural
basis for solving ranking or choice problems. The second situation is traditionally
associated with problems where the aim is to be able to put together objects
sharing a common feature in order to form “homogeneous” classes or categories
(a classification problem).

The first case we focus on is the ordering relation: given the set A, establishing
how each element of A compares to each other element of A from a “preference”
point of view enables to obtain an order which might be used to make either a
choice on the set A (identify the best) or to rank the set A. Of course, we have to
consider whether it is possible to establish such an ordering relation and of what type
(certain, uncertain, strong, weak etc.) for all pairs of elements of A. We also have
to establish what “not preference” represents (indifference, incomparability etc.).
In the following sections (namely in Sect. 3.6), we are going to see that different
options are available, leading to different, so called, preference structures.

In the second case we focus on the “nearness” relation since the issue here is
to put together objects which ultimately are expected to be “near” (whatever the
concept of “near” might represent). In such a case, there is also the problem how
to consider objects which are “not near”. Typical situations in this case include the
problems of grouping, discriminating and assigning [143]. A further distinction in
such problems concerns the fact that the categories within which the objects might
be associated could already exist or not and the fact that such categories might be
ordered or not. Putting objects into non pre-existing non ordered categories is the
typical classification problem, conversely, assigning objects to pre-existing ordered
categories is known as the “sorting” problem [216, 221, 303].

It should be noted that although preference relations have been naturally associ-
ated to ranking and choice problem statements, such a separation can be argued.

1We can use the word action instead of alternative.
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For instance, there are sorting procedures (which can be seen as classification
problems) that use preference relations instead of “nearness” ones [181, 193, 297].
The reason is the following: in order to establish that two objects belong to the
same category we usually either try to check whether the two objects are “near” or
whether they are near a “typical” object of the category (see for instance [221]).
If, however, a category is described, not through its typical objects, but through its
boundaries, then, in order to establish if an object belongs to such a category it might
make sense to check whether such an object performs “better” than the “minimum”,
or “least” boundary of the category and that will introduce the use of a preference
relation.

In [198] it is claimed that decision aiding should not exclusively focus on
preference relations, but also on “nearness relations”, since quite often the problem
statement to work with in a problem formulation is that of classification (on the
existence of different problem statements and their meaning the reader is referred to
[83, 242, 245, 284]).

3.3 Nature of Information

As already mentioned, the purpose of our analysis is to present the literature
associated with objects comparison for either a preference or a nearness relation.
Nevertheless, such an operation is not always as intuitive as it might appear.
Building up a model from reality is always an abstraction (see [45]). This can always
be affected by the presence of uncertainty due to our imperfect knowledge of the
world, our limited capability of observation and/or discrimination, the inevitable
errors occurring in any human activity etc. [243]. We call such an uncertainty
exogenous. Besides, such an activity might generate uncertainty since it creates an
approximation of reality, thus concealing some features of reality. We call this an
endogenous uncertainty (see [267]).

As pointed out in [285], preference modelling can be seen as either the result of
direct comparison (asking a decision-maker to compare two objects and to establish
the relation between them) from which it might be possible to infer a numerical
representation, or as the result of the induction of a preference relation from the
knowledge of some “measures” associated to the compared objects.

In the first case, uncertainty can arise from the fact that the decision-maker might
not be able to clearly state a preference relation for any pair of actions. We do not
care why this may happen, we just consider the fact that the decision-maker may
reply when asked if “x is preferred to y”: yes, no, I do not know, yes and no, I am not
sure, it might be, it is more preference than indifference, but : : : etc. The problem
in such cases is how to take such replies into account when defining a model of
preferences.

In the second case, we may have different situations such as: incomplete
information (missing values for some objects), uncertain information (the value
of an object lies within an interval to which an uncertainty distribution might be
associated, but the precise value is unknown), ambiguous information (contradictory
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statements about the present state of an object). The problem here is how to
establish a preference model on the basis of such information and to what extent
the uncertainty associated with the original information will be propagated to the
model and how.

Such uncertainties can be handled through the use of various formalisms (see
Sect. 3.5 of this chapter). Two basic approaches can be distinguished (see also
[103]).

1. Handling uncertain information and statements. In such a case, we consider that
the concepts used in order to model preferences are well-known and that we
could possibly be able to establish a preference relation without any uncertainty,
but we consider this difficult to do in the present situation with the available
information. A typical example is the following: we know that x is preferred to
y if the price of x is lower than the price of y, but we know very little about the
prices of x and y. In such cases we might use an uncertainty distribution (classical
probability, ill-known probabilities, possibility distributions, see [69, 102, 109,
153]) in order to associate a numerical uncertainty with each statement.

2. Handling ambiguous concepts and linguistic variables. With such a perspective
we consider that sentences such as “x is preferred to y” are ill-defined, since
the concept of preference itself is ill-defined, independently from the available
information. A typical example is a sentence of the type: “the largest the
difference of price between x and y is, the strongest the preference is”. Here
we might know the prices of x and y perfectly, but the concept of preference
is defined through a continuous valuation. In such cases, we might use a multi-
valued logic such that any preferential sentence obtains a truth value representing
the “intensity of truth” of such a sentence. This should not be confused with the
concept of “preference intensity”, since such a concept is based on the idea of
“measuring” preferences (as we do with temperature or with weight) and there
is no “truth” dimension (see [165, 168, 234, 235]). On the other hand such a
subtle theoretical distinction can be transparent in most practical cases since often
happens that similar techniques are used under different approaches.

3.4 Notation and Basic Definitions

The notion of binary relation appears for the first time in De Morgan’s study [77]
and is defined as a set of ordered pairs in Peirce’s works [218–220]. Some of the
first work dedicated to the study of preference relations can be found in [104, 253]
(more in general the concept of models of arbitrary relations will be introduced
in [261, 262]). Throughout this chapter, we adopt Roubens’ and Vincke’s notation
[239].

Definition 4.1 (Binary Relation). Let A be a finite set of elements (a; b; c; : : : ; n),
a binary relation R on the set A is a subset of the cartesian product A � A, that is, a
set of ordered pairs (a; b) such that a and b are in A W R � A � A.
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For an ordered pair .a; b) which belongs to R, we indifferently use the notations:

.a; b/ 2 R or aRb or R.a; b/

Let R and T be two binary relations on the same set A. Some set operations are:

The Inclusion W R � T if aRb �! aTb
The Union W a.R [ T/b iff aRb or(inclusive) aTb
The Intersection W a.R \ T/b iff aRb and aTb
The Relative product W a.R:T/b iff 9c 2 A W aRc and cTb

.aR2b iff aR:Rb/

When such concepts apply we respectively denote (Ra), (Rs), ( OR) the asymmetric,
the symmetric and the complementary part of binary relation R:

aRab iff aRb and not.bRa/

aRsb iff aRb and bRa

a ORb iff not.aRb/ and not.bRa/

The complement (Rc), the converse (the dual)(R) and the co-dual (Rcd) of R are
respectively defined as follows:

aRcb iff not.aRb/

aRb iff bRa

aRcdb iff not.bRa/

The relation R is called

reflexive; if aRa; 8a 2 A
irreflexive; if aRca; 8a 2 A
symmetric; if aRb �! bRa; 8a; b 2 A
antisymmetric; if .aRb; bRa/ �! a D b; 8a; b 2 A
asymmetric; if aRb �! bRca; 8a; b 2 A
complete; if .aRb or bRa/; 8a ¤ b 2 A
strongly complete; if aRb or bRa; 8a; b 2 A
transitive; if .aRb; bRc/ �! aRc; 8a; b; c 2 A
negatively transitive; if .aRcb; bRcc/ �! aRcc; 8a; b; c 2 A
negatively transitive; if aRb �! .aRc or cRb/; 8a; b; c 2 A
semitransitive; if .aRb; bRc/ �! .aRd or dRc/; 8a; b; c; d 2 A
Ferrers relation; if .aRb; cRd/ �! .aRd or cRb/; 8a; b; c; d 2 A
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Fig. 3.1 Graphical
representation of R

a b

c d

Fig. 3.2 Matrix
representation of R

a b c d

a 0 1 0 0

b 0 0 1 1

c 1 0 0 1

d 0 1 0 0

The equivalence relation E associated with the relation R is a reflexive, symmetric
and transitive relation, defined by:

aEb iff 8a 2 A

�
aRc() bRc
cRa() cRb

A binary relation R may be represented by a direct graph .A;R/ where the nodes
represent the elements of A, and the arcs, the relation R. Another way to represent a
binary relation is to use a matrix MR; the element MR

ab of the matrix (the intersection
of the line associated to a and the column associated to b) is 1 if aRb and 0 if
not.aRb/.

Example 4.1. Let R be a binary relation defined on a set A, such that the
set A and the relation R are defined as follows: A D fa; b; c; dg and R D
f.a; b/; .b; d/; .b; c/; .c; a/; .c; d/; .d; b/g.

The graphical and matrix representation of R are given in Figs. 3.1 and 3.2.

3.5 Languages

Preference models are formal representations of comparisons of objects. As such
they have to be established through the use of a formal and abstract language
capturing both the structure of the world being described and the manipulations
of it. It seems natural to consider formal logic as such a language. However, as
already mentioned in the previous sections, the real world might be such that
classical formal logic might appear too rigid to allow the definition of useful and
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expressive models. For this purpose, in this section, we introduce some further
formalisms which extend the expressiveness of classical logic, while keeping most
of its calculus properties.

3.5.1 Classic Logic

The interested reader can use two references: [183, 279] as introductory books to the
use and the semantics of classical logic. All classic books mentioned in this chapter,
implicitly or explicitly use classical logic, since binary relations are just sets and the
calculus of sets is algebraically equivalent to truth calculus. Indeed the semantics of
logical formulas as established by Tarski [261, 262], show the equivalence between
membership of an element to a set and truth of the associate sentence.

Building a binary preference relation, a valuation of any proposition takes the
values {0, 1}:

�.aRb/ D 1 iff aRb is true

�.aRb/ D 0 iff aRb is false.

The reader will note that all notations introduced in the previous section are based
on the above concept. He/she should also note that when we write “a preference
relation P is a subset of A � A”, we introduce a formal structure where the universe
of discourse is A � A and P is the model of the sentence “x in relation P with y”,
that is, P is the set of all elements of A � A (ordered pairs of x and y) for which the
sentence is true.

The above semantic can be in sharp contrast with decision analysis experience.
For this purpose we will briefly introduce two more semantics: fuzzy sets and four-
valued logic.

3.5.2 Fuzzy Sets

In this section, we provide a survey of basic notions of fuzzy set theory. We present
definitions of connectives and several valued binary relation properties in order to
be able to use this theory in the field of decision analysis. Basic references for this
section include [102, 122, 258, 301].

Fuzzy sets were first introduced by Zadeh [298, 299]. The concept and the
associated logics were further developed by other researchers: [99, 133, 163, 164,
185, 186, 196, 201].

Fuzzy measures can be introduced for two different uses: either they can
represent a concept imprecisely known (although well defined) or a concept which
is vaguely perceived such as in the case of a linguistic variable. In the first case
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they represent possible values, while in the second they are better understood as a
continuous truth valuation (in the interval Œ0; 1�). To be more precise:

– in the first case we associate a possibility distribution (an ordinal distribution of
uncertainty) to classical logic formulas;

– in the second case we have a multi-valued logic where the semantics allow values
in the entire interval Œ0; 1�.

A fuzzy set can be associated either with the set of alternatives considered in a
decision aiding model (consider the case where objects are represented by fuzzy
numbers) or with the preference relations. In decision analysis we may consider
four possibilities2:

• Alternatives with crisp values and crisp preference relations
• Alternatives with crisp values and fuzzy preference relations
• Alternatives with fuzzy values and crisp preference relations (defuzzification,

[178] with gravity center, [295] with means interval)
• Alternatives with fuzzy values and fuzzy preference relations (possibility graphs,

[101]; four fuzzy dominance index, [240]); in this chapter we are going to focus
on fuzzy preference relations

In the following we introduce the definitions required for the rest of the chapter.

Definition 5.1 (Fuzzy Set). A fuzzy set (or a fuzzy subset) F on a set � is defined
by the result of an application:

�F W � �! Œ0; 1�

where 8x 2 �, �.x/ is the membership degree of x to F.

Definition 5.2 (Negation). A function n W Œ0; 1� �! Œ0; 1� is a negation if and only
if it is non-increasing and:

2Lets take an example: Imagine that we have to choose one car between two. We have to know the
performance of each car in order to establish the relation of preference:

• in the first case, the performance of each car is known and noted between 1 and 10 (p.car1/ D 8

and p.car2/ D 5); the relation of preference is known too (car1 is preferred to car2: car1Pcar2
(�.car1Pcar2/ D 1))

• in the second case, the performance of each car is known and noted between 1 and 10
(p.car1/ D 8 and p.car2/ D 7); we are not sur about the preference relation that is why
the relation of preference is fuzzy (�.car1Pcar2/ D 0:75)

• in the third case, the performance of each car is fuzzy (in this case the performances of each
car will be defined by fuzzy numbers; in this case we can use triangular or trapezoidal fuzzy
number to represent the performance); the relation of preference is crisp (car1 is preferred to
car2: car1Pcar2 (�.car1Pcar2/ D 1))

• in the fourth case, the performance of each car is fuzzy (in this case the performances of each
car will be defined by fuzzy numbers); the preference relation is also fuzzy ((�.car1Pcar2/ D
0:75))
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n.0/ D 1 and n.1/ D 0
If the negation n is strictly decreasing and continuous then it is called strict.
In the following we investigate the two basic classes of operators, the operators

for the intersection (triangular norms called t-norms) and the union (triangular
conorms called t-conorms or s-norms) of fuzzy sets:

Definition 5.3 (t-norm). A function T W Œ0; 1�2 �! Œ0; 1� is a triangular norm (t-
norm), if and only if it satisfies the four conditions:

Equivalence Condition: T.1; x/ D x 8x 2 Œ0; 1�
T is commutative: T.x; y/ D T.y; x/ 8x; y 2 Œ0; 1�
T is nondecreasing in both elements: T.x; y/ � T.u; v/ for all 0 � x � u � 1 and
0 � y � v � 1

T is associative: T.x;T.y; z// D T.T.x; y/; z/ 8x; y; z 2 Œ0; 1�
The function T defines a general class of intersection operators for fuzzy sets.

Definition 5.4 (t-conorm). A function S W Œ0; 1�2 �! Œ0; 1� is a (t-conorm), if and
only if it satisfies the four conditions:

Equivalence Condition: S.0; x/ D x 8x 2 Œ0; 1�
S is commutative: S.x; y/ D S.y; x/ 8x; y 2 Œ0; 1�
S is nondecreasing in both elements: S.x; y/ � S.u; v/ for all 0 � x � u � 1 and
0 � y � v � 1

S is associative: S.x; S.y; z// D S.S.x; y/; z/ 8x; y; z 2 Œ0; 1�
T-norms and t-conorms are related by duality. For suitable negation operators3

pairs of t-norms and t-conorms satisfy the generalisation of the De Morgan law:

Definition 5.5 (De Morgan Triplets ). Suppose that T is a t-norm, S is a t-conorm
and n is a strict negation. hT; S; ni is a De Morgan triple if and only if:

n.S.x; y// D T.n.x/; n.y//

Such a definition extends De Morgan’s law to the case of fuzzy sets. There exist
different proposed De Morgan triplets: [91, 100, 125, 251, 290, 294, 296].

The more frequent t-norms and t-conorms and negations are presented in
Table 3.1.

We make use of De Morgan’s triplet hT; S; ni in order to extend the definitions
of the operators and properties introduced above in crisp cases. First, we give the
definitions of the operators of implication IT and equivalence ET :

IT.x; y/ D supfz 2 Œ0; 1� W T.x; z/ � yg
ET.x; y/ D T.IT.x; y/; IT.y; x/

3A suitable one can be the complement operator defined: n.�.x// D 1� �.x/.
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Table 3.1 Principal t-norms, t-conorms and negations

Names t-Norms t-Conorms

Zadeh min.x; y/ max.x; y/

Probabilistic x � y x C y � xy

Lukasiewicz max.x C y � 1; 0/ min.x C y; 1/

Hamacher (� > 0) .xy/= .x C y C xy � .1� �/xy/=

.� C .1� �/.x C y � xy// .1� .1� �/xy/

Yager (p > 0) max.1� ..1� x/p C .1� y/p/1=p; 0/ min..xp C yp/1=p; 1/

Weber (� > �1) max..x C y � 1C �xy/=.1C �/; 0// min.x C y C �xy; 1/

Drastic x if y D 1 x if y D 0

y if x D 1 y if x D 0

0 if not 1 if not

Since preference modelling makes use of binary relations, we extend the
definitions of binary relation properties to the valued case. For the sake of simplicity
�.R.x; y// will be denoted R.x; y/: a valued binary relation R.x; y/ is (8a; b;
c; d 2 A)

reflexive; if R.a; a/ D 1
irreflexive; if R.a; a/ D 0
symmetric; if R.a; b/ D R.b; a/
T-antisymmetric; if a ¤ b �! T.R.a; b/;R.b; a// D 0
T-asymmetric; if T.R.a; b/;R.b; a// D 0
S-complete; if a ¤ b �! S.R.a; b/;R.b; a//D 1
S-strongly complete; if S.R.a; b/;R.b; a//D 1
T-transitive; if T.R.a; c/;R.c; b// � R.a; b/
negatively S-transitive; if R.a; b/ � S.R.a; c/;R.c; b//
T-S-semitransitive; if T.R.a; d/;R.d; b// � S.R.a; c/;R.c; b//
T-S-Ferrers relation; if T.R.a; b/;R.c; d// � S.R.a; d/;R.c; b//

Different instances of De Morgan triplets will provide different definitions for
each property.

The equivalence relation is one of the most-used relations in decision analysis
and is defined in fuzzy set theory as follows:

Definition 5.6 (Equivalence Relation). A function E W Œ0; 1�2 �! Œ0; 1� is an
equivalence if and only if it satisfies:

E.x; y/ D E.y; x/ 8 x; y 2 Œ0; 1�
E.0; 1/ D E.1; 0/ D 0
E.x; x/ D 1 8 x 2 Œ0; 1�
x � x0 � y0 � y H) E.x; y/ � E.x0; y0/
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In Sect. 3.6.3 and Chap. 10, some results obtained by the use of fuzzy set theory
are represented.

3.5.3 Four-Valued Logics

When we compare objects, it might be the case that it is not possible to establish
precisely whether a certain relation holds or not. The problem is that such a
hesitation can be due either to incomplete information (missing values, unknown
replies, unwillingness to reply etc.) or to contradictory information (conflicting
evaluation dimensions, conflicting reasons for and against the relation, inconsistent
replies etc.). For instance, consider the query “is Anaxagoras intelligent?” If you
know who Anaxagoras is you may reply “yes” (you came to know that he is a
Greek philosopher) or “no” (you discover he is a dog). But if you know nothing you
will reply “I do not know” due to your ignorance (on this particular issue). If on
the other hand you came to know both that Anaxagoras is a philosopher and a dog
you might again reply “I do not know”, not due to ignorance, but to inconsistent
information. Such different reasons for hesitation can be captured through four-
valued logics allowing for different truth values for four above-mentioned cases.
Such logics were first studied by Dubarle in 1963 (appeared in [98]) and introduced
in the literature in [26, 27]. Further literature on such logics can be found in
[9, 11, 33, 106, 119, 123, 160, 264, 268].

In the case of preference modelling, the use of such logics was first suggested
in [85, 266]. Such logics extend the semantics of classical logic through two
hypotheses:

– the complement of a first order formula does not necessarily coincide with its
negation;

– truth values are only partially ordered (in a bilattice), thus allowing the definition
of a boolean algebra on the set of truth values.

The result is that using such logics, it is possible to formally characterise
different states of hesitation when preferences are modelled (see [270, 271]).
Further more, using such a formalism, it becomes possible to generalise the
concordance/discordance principle (used in several decision aiding methods) as
shown in [274] and several characterisation problems can be solved (see for instance
[272]). More recently (see [10, 81, 124, 210, 211, 226, 275]) it has been suggested
to use the extension of such logics for continuous valuations.

3.6 Preference Structures

Definition 6.1 (Preference Structure). A preference structure is a collection of
binary relations defined on the set A and such that:
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– for each couple a, b in A; at least one relation is satisfied
– for each couple a, b in A; if one relation is satisfied, another one cannot be

satisfied.

In other terms a preference structure defines a partition4 of the set A � A. In
general it is recommended to have two other hypotheses with this definition (also
denoted as fundamental relational system of preferences):

• Each preference relation in a preference structure is uniquely characterised by its
properties (symmetry, transitivity, etc.).

• For each preference structure, there exists a unique relation from which the
different relations composing the preference structure can be deduced. Any
preference structure on the set A can thus be characterised by a unique binary
relation R in the sense that the collection of the binary relations are defined
through the combinations of the epistemic states of this characteristic relation.5

For instance aPb if and only if aRb and not bRa.

3.6.1 hP; Ii Structures

The most traditional preference model considers that the decision-maker confronted
with a pair of distinct elements of a set A, either:

– clearly prefers one element to the other, or
– does not express a preference among them.

The subset of ordered pairs .a; b/ belonging to A � A such that the statement “a
is preferred to b” is true, is called preference relation and is denoted by P.

The subset of pairs .a; b/ belonging to A�A such that the statement “a and b are
not preferred” is true, is called (in this case) indifference relation and is denoted by
I (I being considered the complement of P[P�1 with respect to A�A). We will see
later on in Sect. 3.6.2.2 that this relation can be further decomposed in indifference
and incomparability.

In the literature, there are two different ways of defining a specific preference
structure:

– the first defines it by the properties of the binary relations of the relation set;
– the second uses the properties of the characteristic relation. In the rest of the

section, we give definitions in both ways.

Definition 6.2 (h P, I i Structure). A h P, I i structure on the set A is a pair hP; Ii
of relations on A such that:

4To have a partition of the set A�A, the inverse of the asymmetric relation must be considered too.
5While several authors prefer using both of them, there are others for which one is sufficient. For
example Fishburn does not require the use of preference structures with a characteristic relation.
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• P is asymmetric,
• I is reflexive, symmetric.

The characteristic relation R of a hP; Ii structure can be defined as a combination of
the relations P and I as:

aRb iff a.P [ I/b (3.1)

In this case P and I can be defined from R as follows:

aPb iff aRb and bRca (3.2)

aIb iff aRb and bRa (3.3)

The construction of orders is of a particular interest, especially in decision
analysis since they allow an easy operational use of such preference structures. We
begin by representing the most elementary orders (weak order, complete order). In
order to define such structures we add properties to the relations P and I (namely
different forms of transitivity).

Definition 6.3 (Total Order). Let R be a binary relation on the set A, R being a
characteristic relation of h P, I i, the following definitions are equivalent:

(i) R is a total order.
(ii) R is reflexive, antisymmetric, complete and transitive

(iii)

8
<

:

I D f.a; a/;8a 2 Ag
P is transitive
P [ I is reflexive and complete

(iv)

8
<

:

P is transitive
P:I � P.or equivalently IP � P/
P [ I is reflexive and complete

With this relation, we have an indifference between any two objects only if they
are identical. The total order structure consists of an arrangement of objects from
the best one to the worst one without any ex aequo.

In the literature, one can find different terms associated with this structure: total
order, complete order, simple order or linear order.

Definition 6.4 (Weak Order). Let R be a binary relation on the set A, R being a
characteristic relation of hP; Ii, the following definitions are equivalent:

(i) R is a weak order
(ii) R is reflexive, complete and transitive

(iii)

8
<

:

I is transitive
P is transitive
P [ I is reflexive and complete
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This structure is also called complete preorder or total preorder. In this structure,
indifference is an equivalence relation. The associated order is indeed a total order
of the equivalence (indifference) classes of A.

These first two structures consider indifference (or absence of preference) as a
transitive relation. This is empirically falsifiable. Literature studies on the intransi-
tivity of indifference show this; undoubtedly the most famous is that of [179], which
gives the example of a cup of sweetened tea.6 Before him, [12, 107, 129, 142] and
[230] already suggested this phenomenon. For historical commentary on the subject,
see [118]. Relaxing the property of transitivity of indifference results in two well-
known structures: semi-orders and interval orders.

Definition 6.5 (Semiorder). Let R be a binary relation on the set A, R being a
characteristic relation of h P, I i, the following definitions are equivalent:

(i) R is a semiorder
(ii) R is reflexive, complete, Ferrers relation and semitransitive

(iii)

8
<

:

P:I:P � P
P2 \ I2 D ;
P [ I is reflexive and complete

(iv)

8
<

:

P:I:P � P
P2I � P .or equivalently IP2 � P/
P [ I is reflexive and complete

Definition 6.6 (Interval Order (IO)). Let R be a binary relation on the set A, R
being a characteristic relation of hP; Ii, the following definitions are equivalent:

(i) R is an interval order
(ii) R is reflexive, complete and Ferrers relation

(iii)

�
P:I:P � P
P [ I is reflexive and complete

A detailed study of this structure can be found in [112, 187, 229]. It is easy to see
that this structure generalises all the structures previously introduced.

Can we relax transitivity of preference? Although it might appear counterintu-
itive there is empirical evidence that such a situation can occur: [182, 276]. Similar
work can be found in: [3, 46, 48–50, 111, 113, 114, 286].

6One can be indifferent between a cup of tea with n milligrams of sugar and one with n C 1

milligrams of sugar, if one admits the transitivity of the indifference, after a certain step of
transitivity, one will have the indifference between a cup of tea with n milligram of sugar and
that with n C N milligram of sugar with N large enough, even if there is a very great difference of
taste between the two; which is contradictory with the concept of indifference.
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3.6.2 Extended Structures

The hP; Ii structures presented in the previous section neither take into account all
the decision-maker’s attitudes, nor all possible situations. In the literature, there are
several non exclusive ways to extend such structures:

– Using sophisticated numerical representations (such as n ordered points, trian-
gles, trapezoids, etc.);

– Introduction of several distinct preference relations representing (one or more)
hesitation(s) between preference and indifference or preference intensities;

– Introduction of one or more situations of incomparability.

3.6.2.1 Preference Relations on n Ordered Points

As we showed by the end of the previous section intervals may be used in
order to represent sophisticated preferences (for instance where the indifference
is not necessarily transitive). The use of intervals in order to take into account
imprecision and vagueness in handling preferences is well known in the literature,
but a general theory on how such models behave was lacking until recently. Öztürk
et al. [212] have generalized the concept of interval by introducing the notion of
n-point intervals where each object is represented by n ordered points (for more
details see also [208]). They provided an exhaustive study of two-point and three-
point intervals comparison and show the way to generalize such results to n-point
intervals. Their results may be interpreted in two ways:

• What are the all preference structures that can be defined using n-point interval
representations and satisfying some axioms?

• How to define all different ways to compare two objects represented by n-point
intervals in order to obtain a hP; Ii-preference structure?

Their approach is based on two notions that they called a relative position (intu-
itively showing how “far” is the actual position of the two intervals w.r.t. to complete
disjunction: one interval completely to the right of the other) and a component set
associated with each relative position (where all redundant information is discarded
and where the coding is done in a compact way).

Concerning the first point it turns out that the comparison of two-point intervals
allows to establish three different preference structures: two types of weak orders,
bi-weak order and interval order. The use of three-point intervals allows to establish
seven types of preference structures: three types of weak orders, three types of
bi-weak orders, three types of interval orders, one three-weak order, one split-
interval order, one triangle order and two types of intransitive preference structures.
In their paper they showed also the equivalence between the usual definitions of
such preferences structures, their numerical representation and the properties that
characterize them. Such results confirm the descriptive power of the framework
which allows to provide a complete characterization for preference structures that
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have never been studied before, as well as other structures well known in the
literature (for instance it is possible to interpret within the same framework triangle
orders and weak orders).

Concerning the second point they were also interested to the relation between n-
point intervals and fuzzy numbers. In order to interpret a fuzzy number as a n-point
interval one may alternatively consider ordinal fuzzy intervals as a family of ˛-cuts
of ordinary (i.e. with continuous membership function) fuzzy numbers or intervals;
the family of cuts correspond to a finite number of different values of threshold ˛.
Using such an approach they showed how to make use of their comparison rules
in order to compare fuzzy intervals and analyzed the link between their framework
and the four comparison indices introduced by Dubois and Prade [101] for fuzzy
intervals. Three of these correspond to strict preference relations obtained for two-
point intervals while the fourth is associated with a non-strict preference relation
that is an interval order. In a similar way, they investigated special fuzzy numbers
having only two non-zero levels of membership. Their comparison by means of
Dubois and Prade comparison indices corresponds to preference structures met in
the comparison of three-point intervals, namely three types of interval orders and
one type of weak order.

3.6.2.2 Several Preference Relations

One can wish to give more freedom to the decision-maker and allow more
detailed preference models, introducing one or more intermediate relations between
indifference and preference. Such relations might represent one or more zones of
ambiguity and/or uncertainty where it is difficult to make a distinction between
preference and indifference. Another way to interpret such “intermediate” relations
is to consider them as different “degrees of preference intensity”. From a technical
point of view these structures are similar and we are not going to further discuss such
semantics. We distinguish two cases: one where only one such intermediate relation
is introduced (usually called weak preference and denoted by Q), and another where
several such intermediate relations are introduced.

1. hP;Q; Ii preference structures. In such structures we introduce one more pref-
erence relation, denoted by Q which is an asymmetric and irreflexive binary
relation. The usual properties of preference structures hold. Usually such struc-
tures arise from the use of thresholds when objects with numerical values
are compared or, equivalently, when objects whose values are intervals are
compared. The reader who wants to have more information on thresholds can
go to Sect. 3.7.1, where all definitions and representation theorems are given.
hP;Q; Ii preference structures have been generally discussed in [283]. Two

cases are studied in the literature:

– PQI interval orders and semi-orders (for their characterisation see [273]). The
detection of such structures has been shown to be a polynomial problem (see
[200]).
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– double threshold orders (for their characterisation see [272, 283]) and more
precisely pseudo-orders (see [246, 247]).

One of the difficulties of such structures is that it is impossible to define P, Q
and I from a single characteristic relation R as is the case for other conventional
preference structures.

2. hP1; � � � ;Pni preference structures. Practically, such structures generalise the
previous situation where just one intermediate relation was considered. Again,
such structures arise when multiple thresholds are used in order to compare
numerical values of objects. The problem was first introduced in [74] and then
extensively studied in [89, 90, 238], see also [2, 88, 190, 278]. Typically such
structures concern the coherent representation of multiple interval orders. The
particular case of multiple semi-orders was studied in [86].

3.6.2.3 Incomparability

In the classical preference structures presented in the previous section, the decision-
maker is supposed to be able to compare all alternatives, the absence of preference
being considered indifference (we can have aPb, bPa or aIb). But certain situa-
tions, such as lack of information, uncertainty, ambiguity, multi-dimensional and
conflicting preferences, can create incomparability between alternatives. Within this
framework, the partial structures use a third symmetric and irreflexive relation J
(aJb () not.aPb/, not.bPa/, not.aIb/, not.aQb/, not.bQa/), called incompa-
rability, to deal with this kind of situation. To have a partial structure hP; I; Ji or
hP;Q; I; Ji, we add to the definitions of the preceding structures ( total order, weak
order, semi-order, interval order and pseudo-order), the relation of incomparability
(J ¤ ;); and we obtain respectively partial order, partial preorder (quasi-order),
partial semi-order, partial interval order and partial pseudo-order [239].

Definition 6.7 (Partial Order). Let R be a binary relation (R D P [ I) on the
set A, R being a characteristic relation of hP; I; Ji, the following definitions are
equivalent:

(i) R is a partial order.
(ii) R is reflexive, antisymmetric, transitive

(iii)

8
ˆ̂
<

ˆ̂
:

P is asymmetric, transitive
I is reflexive, symmetric
J is irreflexive and symmetric
I D f.a; a/;8a 2 Ag

Definition 6.8 (Quasi-Order). Let R be a binary relation (R D P[I) on the set A, R
being a characteristic relation of hP; I; Ji, the following definitions are equivalent:

(i) R is a quasi-order.
(ii) R is reflexive, transitive
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(iii)

8
ˆ̂
<

ˆ̂
:

P is asymmetric, transitive
I is reflexive, symmetric and transitive
J is irreflexive and symmetric
.P:I [ I:P/ � P

A fundamental result [104, 112] shows that every partial order (resp. partial
preorder) on a finite set can be obtained as an intersection of a finite number of
total orders (resp. total preorders, see [40]).

A further analysis of the concept of incomparability can be found in [270, 271].
In these papers it is shown that the number of preference relations that can
be introduced in a preference structure, so that it can be represented through a
characteristic binary relation, depends on the semantics of the language used for
modelling. In other terms, when classical logic is used in order to model preferences,
no more than three different relations can be established (if one characteristic
relation is used). The introduction of a four-valued logic allows to extend the
number of independently defined relations to 10, thus introducing different types
of incomparability (and hesitation) due to the different combination of positive
and negative reasons (see [274]). It is therefore possible, with such a language, to
consider an incomparability due to ignorance separately from one due to conflicting
information.

3.6.3 Valued Structures

In this section, we present situations where preferences between objets are defined
by a valued preference relation such that �.R.a; b/) represents either the intensity or
the credibility of the preference of a over b7 or the proportion of people who prefer
a to b or the number of times that a is preferred to b. In this section, we make use of
results cited in [122, 222]. To simplify the notation, the valued relation �.R.a; b/)
is denoted R.a; b/ in the rest of this section. We begin by giving a definition of a
valued relation:

Definition 6.9 (Valued Relation). A valued relation R on the set A is a mapping
from the cartesian product A � A onto a bounded subset of R, often the interval
[0,1].

Remark 6.1. A valued relation can be interpreted as a family of crisp nested rela-
tions. With such an interpretation, each ˛-cut level of a fuzzy relation corresponds
to a different crisp nested relation.

7This value can be given directly by the decision-maker or calculated by using different concepts,
such values (indices) are widely used in many MCDA methods such as ELECTRE, PROMETHEE
[56, 244].
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In this section, we show some results obtained by the use of fuzzy set theory as a
language which is capable to deal with uncertainty. The seminal paper by Orlovsky
[206] can be considered as the first attempt to use fuzzy set theory in preference
modelling. Roy in [241] will also make use of the concept of fuzzy relations in
trying to establish the nature of a pseudo-order. In his paper Orlovsky defines the
strict preference relation and the indifference relation with the use of Lukasiewicz
and min t-norms. After him, a number of researchers were interested in the use of
fuzzy sets in decision aiding, most of these works are published in the journal Fuzzy
Sets and Systems.

In the following we give some definitions of fuzzy ordered sets. We derive the
following definitions from the properties listed in Sect. 3.5.2:

Definition 6.10 (Fuzzy Total Order). A binary relation R on the set A, is a fuzzy
total order iff:

- R is antisymmetric, strongly complete and T-transitive

Definition 6.11 (Fuzzy Weak Order). A binary relation R on the set A is a fuzzy
weak order iff:

- R is strongly complete and transitive

Definition 6.12 (Fuzzy Semi-order). A binary relation R on the set A is a fuzzy
semi-order iff:

- R is strongly complete, a Ferrers relation and semitransitive

Definition 6.13 (Fuzzy Interval Order (IO)). A binary relation R on the set A is
a fuzzy interval order iff:

- R is a strongly complete Ferrers relation

Definition 6.14 (Fuzzy Partial Order). A binary relation R on the set A is a fuzzy
partial order iff:

- R is antisymmetric reflexive and T-transitive

Definition 6.15 (Fuzzy Partial Preorder). A binary relation R on the set A is a
fuzzy partial preorder iff:

- R is reflexive and T-transitive

All the above definitions are given in terms of the characteristic relation R. The
second step is to define valued preference relations (valued strict preference, valued
indifference and valued incomparability) in terms of the characteristic relation [120–
122, 207, 223]. For this, Eqs. (3.1)–(3.3) are interpreted in terms of fuzzy logical
operations:

P.a; b/ D TŒR.a; b/; nR.b; a/� (3.4)

I.a; b/ D TŒR.a; b/;R.b; a/� (3.5)



3 Preference Modelling 63

R.a; b/ D SŒP.a; b/; I.a; b/� (3.6)

However, it is impossible to obtain a result satisfying these three equations using
a De Morgan triplet. Alsina [7] and Fodor and Roubens [122] present this result as
an impossibility theorem that proves the non-existence of a single, consistent many-
valued logic as a logic of preference. A way to deal with this contradiction is to
consider some axioms to define hP; I; Ji. Fodor, Ovchinnikov, Roubens propose to
define three general axioms that they call Independence of Irrelevant Alternatives
(IA), Positive Association (PA), Symmetry (SY). With their axioms, the following
propositions hold:

Proposition 6.1 (Fuzzy Weak Order). If hP; Ii is a fuzzy weak order then:

– P is a fuzzy strict partial order
– I is a fuzzy similarity relation (reflexive, symmetric, transitive)

Proposition 6.2 (Fuzzy Semi-order). if hP; Ii is a fuzzy semi-order then:

– P is a fuzzy strict partial order
– I is not transitive

Proposition 6.3 (Fuzzy Interval Order (IO)). if hP; Ii is a fuzzy interval order
then:

– P is a fuzzy strict partial order
– I is not transitive

De Baets, Van de Walle and Kerre [75, 280, 281] define the valued preference
relations without considering a characteristic relation:

P is T-asymmetric (P \T P�1)= ;
I is reflexive and J is irreflexive (I.a; a/ D 1, J.a; a/ D 0 8a 2 A)

I and J are symmetric (I D I�1, J D J�1)

P \T I D ;, P \T J D ;, I \T J D ;
P [T P�1 [T I[T = A � A

With a continuous t-norm and without zero divisors, these properties are satisfied
only in crisp case. To deal with this problem, we have to consider a continuous t-
norm with zero divisor.

In multiple criteria decision aiding, we can make use of fuzzy sets in different
ways. One of these helps to construct a valued preference relation from the crisp
values of alternatives on each criteria. As an example we cite the work of Perny and
Roy [223]. They define a fuzzy outranking relation R from a real valued function �
defined on R�R, such that R.a; b/ D �.g.a/; g.b// verifies the following conditions
for all a; b in A:
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8y 2 X; �.x; y/ is a nondecreasing function of x (3.7)

8x 2 X; �.x; y/ is a nonincreasing function of y (3.8)

8z 2 X; �.z; z/ D 1 (3.9)

The resulting relation R is a fuzzy semi-order (i.e. reflexive, complete, semi-
transitive and Ferrers fuzzy relation). Roy [241] proposed in Electre III to define the
outranking relation R characterized by a function � for each criterion as follows:

�.x; y/ D p.x/� minfy� x; p.x/g
p.x/� minfy� x; q.x/g

where p.x/ and q.x/ are thresholds of the selected criteria.
We may work with alternatives representing some imprecision or ambiguity for

a criterion. In this case, we make use of fuzzy sets to define the evaluation of the
alternative related to the criterion. In the ordered pair fx; �a

j g, �a
j represents the

grade of membership of x for alternative a related to the criterion j. The fuzzy set
� is supposed to be normal (supx.�

a
j / D 1) and convex (8x; y; z 2 R, y 2 Œx; z�,

�a
j .y/ � minf�a

j .x/; �
a
j .z/g). The credibility of the preference of a over b is obtained

from the comparison of the fuzzy intervals (normal, convex fuzzy sets) of a and b
with some conditions:

– The method used should be sensitive to the specific range and shape of the grades
of membership.

– The method should be independent of the irrelevant alternatives.
– The method should satisfy transitivity.

Fodor and Roubens [122] propose the use of two procedures.
In the first one, the credibility of the preference of a over b for j is defined as the

possibility that a 	 b:

…j.a 	 b/ D
_

x�y

Œ�a
j .x/ ^ �b

j .y/� D supx�yŒmin.�a
j .x/; �

b
j .y//� (3.10)

The credibility as defined by (3.10) is a fuzzy interval order (…j is reflexive,
complete and a Ferrers relation) and

min.…j.a; b/;…j.b; a// D supxmin.�a
j .x/; �

b
j .x//

In the case of a symmetrical fuzzy interval (�a), the parameters of the fuzzy
interval can be defined in terms of the valuation gj.a/ and thresholds p.gj.a// and
q.gj.a//. Some examples using trapezoidal fuzzy numbers can be found in the work
of Fodor and Roubens.

The second procedure proposed by Fodor and Roubens makes use of the shapes
of membership functions, satisfies the three axioms cited at the beginning of the
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section (PA, SY and SY) and gives the credibility of preference and indifference as
follows:

Pj.a; b/ D Rd
j .a; b/ D 1 �…j.b 	 a/ D Nj.a > b/ (3.11)

Ij.a; b/ D minŒ…j.a 	 b/;…j.b 	 a/� (3.12)

where … (the possibility degree) and N (the necessity degree) are two dual
distributions of the possibility theory that are related to each other with the equality:
….A/ D 1�N.A/ (see [103] for an axiomatic definition of the theory of possibility).

3.7 Domains and Numerical Representations

In this section we present several results concerning the numerical representation
of the preference structures introduced in the previous section (see also [5]). This
is an important operational problem. Given a set A and a set of preference relations
holding between the elements of A, it is important to know whether such preferences
fit a precise preference structure admitting a numerical representation. If this is the
case, it is possible to replace the elements of A with their numerical values and then
work with these. Otherwise, when to the set A is already associated a numerical
representation (for instance a measure), it is important to test which preference
structure should be applied in order to faithfully interpret the decision-maker’s
preferences [285].

3.7.1 Representation Theorems

Theorem 7.1 (Total Order). Let R D hP; Ii be a reflexive relation on a finite set
A, the following definitions are equivalent:

(i) R is a total order structure (see Definition 6.3)

(ii) 9 g: A 7! R
C satisfying for 8a; b 2 A:

�
aPb iff g.a/ > g.b/
a ¤ b H) g.a/ ¤ g.b/

(iii) 9 g: A 7! R
C satisfying for 8a; b 2 A:

�
aRb iff g.a/ > g.b/
a ¤ b H) g.a/ ¤ g.b/

In the infinite not enumerable case, it can be impossible to find a numerical
representation of a total order. For a detailed discussion on the subject, see [25].
The necessary and sufficient conditions to have a numerical representation for a
total order are present in many works: [59, 79, 109, 168].

Theorem 7.2 (Weak Order). Let R D hP; Ii be a reflexive relation on a finite set
A, the following definitions are equivalent:
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(i) R is a weak order structure (see Definition 6.4)

(ii) 9 g: A 7! R
C satisfying for 8a; b 2 A:

�
aPb iff g.a/ > g.b/
aIb iff g.a/ D g.b/

(iii) 9 g: A 7! R
C satisfying for 8a; b 2 A: aRb iff g.a/ 	 g.b/

Remark 7.1. Numerical representations of preference structures are not unique. All
monotonic strictly increasing transformations of the function g can be interpreted as
equivalent numerical representations.8

Intransitivity of indifference or the appearance of intermediate hesitation rela-
tions is due to the use of thresholds that can be constant or dependent on the value
of the objects under comparison (in this case values of the threshold might obey
further coherence conditions).

Theorem 7.3 (Semi-order). Let R D hP; Ii be a binary relation on a finite set A,
the following definitions are equivalent:

(i) R is a semi-order structure (see Definition 6.5)
(ii) 9 g: A 7! R

C and a constant q 	 0 satisfying 8a; b 2 A:�
aPb iff g.a/ > g.b/C q
aIb iff jg.a/� g.bj � q

(iii) 9 g: A 7! R
C and a constant q 	 0 satisfying 8a; b 2 A:

aRb iff g.a/ 	 g.b/� q
(iv) 9 g: A 7! R

C and 9q W R 7! R
C satisfying 8a; b 2 A:�

aRb iff g.a/ 	 g.b/� q.g.b//
.g.a/ > g.b// �! .g.a/C q.g.a// 	 g.b/C q.g.b///

For the proofs of these theorems see [112, 169, 229, 253].
The threshold represents a quantity for which any difference smaller than this

one is not significant for the preference relation. As we can see, the threshold is not
necessarily constant, but if it is not, it must satisfy the inequality which defines a
coherence condition.

Here too, the representation of a semi-order is not unique and all monotonic
increasing transformations of g appear as admissible representations provided the
condition that the function q also obeys the same transformation.9

Theorem 7.4 (PI Interval Order). Let R D hP; Ii be a binary relation on a finite
set A, the following definitions are equivalent:

(i) R is an interval order structure (see Definition 6.6)

(ii) 9 g: A 7! R
C satisfying 8a; b 2 A:

8
<

:

aPb iff g.a/ > g.b/C q.b/

aIb iff
g.a/ � g.b/C q.b/
g.b/ � g.a/C q.a/

8The function g defines an ordinal scale for both structures.
9But in this case the scale defined by g is more complex than an ordinal scale.
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It should be noted that the main difference between an interval order and a semi-
order is the existence of a coherence condition on the value of the threshold. One can
further generalise the structure of interval order, by defining a threshold depending
on both of the two alternatives. As a result, the asymmetric part appears without
circuit: [1, 2, 4, 5, 84, 259]. For extensions on the use of thresholds see [116, 144,
189]. The special case where a “frontier” has to be explicitly considered instead of
threshold is discussed in [47]. For the extension of the numerical representation of
interval orders in the case A is infinite not denumerable see [35, 59, 64, 110, 197,
205].

We can now see the representation theorems concerning preference structures
allowing an intermediate preference relation (Q). Before that, let us mention that
numerical representations with thresholds are equivalent to numerical representa-
tions of intervals. It is sufficient to note that associating a value g.x/ and a strictly
positive value q.g.x// to each element x of A is equivalent to associating two values:
l.x/ D g.x/ (representing the left extreme of an interval) and r.x/ D g.x/C q.g.x//
(representing the right extreme of the interval to each x; obviously: r.x/ > l.x/
always holds).

Theorem 7.5 (PQI Interval Orders). Let R D hP;Q; Ii be a relation on a finite
set A, the following definitions are equivalent:

(i) R is a PQI interval Order
(ii) There exists a partial order L such that:

1) I D L [ R [ Id where Id D f.x; x/; x 2 Ag and R D L�1;
2) .P [ Q [ L/:P � P ; 3) P:.P [Q [ R/ � P ;
4) .P [ Q [ L/:Q � P [ Q [ L ; 5) Q:.P [ Q [ R/ � P [ Q [ R.

(iii) 9 l,r: A 7! R
C satisfying:

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

r.a/ 	 l.a/
aPb iff l.a/ > r.b/
aQb iff r.a/ > r.b/ 	 l.a/ 	 l.b/
aIb iff r.a/ 	 r.b/ 	 l.a/ or

r.b/ 	 r.a/ 	 l.a/ 	 l.b/

For proofs, further theory on the numerical representation and algorithmic issues
associated with such a structure see [199, 200, 273].

Theorem 7.6 (Double Threshold Order). Let R D hP;Q; Ii be a relation on a
finite set A, the following definitions are equivalent:

(i) R is a double Threshold Order (see [283])

(ii)

8
ˆ̂
<

ˆ̂
:

Q:I:Q � Q [ P
P:I:P � P
Q:I:P � P
P:Q�1:P � P
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(iii) 9 g,q,p: A 7! R
C satisfying:

8
<

:

aPb iff g.a/ > g.b/C p.b//
aQb iff g.b/C p.b/ 	 g.a/ > g.b/C q.b/
aIb iff g.b/C q.b/ > g.a/ > g.b/� q.a/

Theorem 7.7 (Pseudo-order). Let R D hP;Q; Ii be a relation on a finite set A, the
following definitions are equivalent:

(i) R is a pseudo-order

(ii)

8
ˆ̂
<

ˆ̂
:

is a double threshold order
h.P [Q/; Ii is a semi-order
hP; .Q [ I [ Q�1/iis a semi-order
P:I:Q � P

(iii)

8
<

:

is a double threshold order
g.a/ > g.b/() g.a/C q.a/ > g.b/C q.b/

g.a/C p.a/ > g.b/C p.b/

A pseudo-order is a particular case of double threshold order, such that the
thresholds fulfil a coherence condition. It should be noted however, that such a
coherence is not sufficient in order to obtain two constant thresholds. This is due to
different ways in which the two functions can be defined (see [90]). For the existence
of multiple constant thresholds see [86].

For partial structures of preference, the functional representations admit the
same formulas, but equivalences are replaced by implications. In the following, we
present a numerical representation of a partial order and a quasi-order examples:

Theorem 7.8 (Partial Order). If hP; I; Ji presents a partial order structure,then 9
g: A 7! R

C such that:

˚
aPb H) g.a/ > g.b/

Theorem 7.9 (Partial Weak Order). If hP; I; Ji presents a partial weak order
structure, then 9 g: A 7! R

C such that:

�
aPb H) g.a/ > g.b/
aIb H) g.a/ D g.b/

The detection of the dimension of a partial order10 is a NP hard problem
[89, 112].

Remark 7.2. In the preference modelling used in decision aiding, there exist two
different approaches: In the first one, the evaluations of alternatives are known (they
can be crisp or fuzzy) and we try to reach conclusions about the preferences between

10When it is a partial order of dimension 2, the detection can be made in a polynomial time.
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the alternatives. For the second one, the preferences between alternatives (pairwise
comparison) are given by an expert (or by a group of experts), and we try to define an
evaluation of the alternatives that can be useful. The first approach uses the inverse
implication of the equivalences presented above (for example for a total order we
have g.a/ > g.b/ �! aPb ); and the second one the other implication of it (for the
same example, we have aPb �! g.a/ > g.b/).

Remark 7.3. There is a body of research on the approximation of a preference
structure by another one; here we cite some studies on the research of a total order
with a minimum distance to a tournament (complete and antisymmetric relation):
[21, 23, 34, 63, 152, 188, 257].

3.7.2 Minimal Representation

In some decision aiding situations, the only available preferential information can
be the kind of preference relation holding between each pair of alternatives. In such
a case we can try to build a numerical representation of each alternative by choosing
a particular functional representation of the ordered set in question and associating
this with the known qualitative relations.

This section aims at studying some minimal or parsimonious representations of
ordered sets, which can be helpful for this kind of situation. Particularly, given a
countable set A and a preference relation R � A � A, we are interested to find a
numerical representation Of 2 F D ff W A 7! R; f homomorph to Rg, such that for
all x 2 A, Of is minimal.

3.7.2.1 Total Order, Weak Order

The way to build a minimal representation for a total order or a weak order is
obvious since the preference and the indifference relations are transitive: The idea is
to minimise the value of the difference g.a/�g.b/ for all a; b in A. To do this we can
define a unit k = mina;b2A.g.a/�g.b/) and the minimal evaluation m = mina2A.g.a/).
The algorithm will be:

• Choose any value for k and m , e.g. k D 1, m D 0;
• Find the alternative i which is dominated by all the other alternatives j in A and

evaluate it by g.i/ D m
• For all the alternatives l for which we have lIi, note g.l/ D g.i/
• Find the alternative i0 which is dominated by all the alternatives j0 in A � fig and

evaluate it by g.i0/ D mC k
• For all the alternatives l0 for which we have l0Ii0, note g.l0/ D g.i0/
• Stop when all the alternatives are evaluated
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3.7.2.2 Semi-order

The first study on the minimal representation of semi-orders was done in [228]
who proved its existence and proposed an algorithm to build it. One can find
more information about this in [87, 184, 198, 229]. varPirlot uses an equivalent
definition of the semi-order which uses a second positive constant: Total Semi-order:
A reflexive relation R D .P; I/ on a finite set A is a semi-order iff there exists a real
function g, defined on A, a non negative constant q and a positive constant " such
that 8a; b 2 A

�
aPb iff g.a/ > g.b/C qC "
aIb iff jg.a/� g.b/j � q

Such a triple (g, q, ") is called an " � representation of .P; I/. Any represen-
tation (g, q), as in the definition of semi-order given in Section 3.6.1, yields an
"-representation where

" D min.a;b/2P.g.a/� g.b/� q/

Let .A;R/ be an associated to the semi-order R D .P; I/, we denote G.q; "/ the
valued graph obtained by giving the value (qC") to the arcs P and (�q) to the arcs I.

Theorem 7.10. If R D .P; I/ is a semi-order on the finite set A, there exists an
"-representation with threshold q iff:

q

"
	 ˛ D maxCf jC \ Pj

jC \ Ij � jC \ Pj ; C circuit of (A, R)g

where jC\ Pj (resp. jC\ Ij), represents the number of arcs P (resp. I) in the circuit
C of the graph (A, R).

An algorithm to find a numerical representation of a semi-order is as follows:

• Choose any value for "k, e.g. " D 1;
• Choose a large enough value of q

"
(e.g. q

"
D jPj);

• Solve the maximal value path problem in the graph G.q; "/ (e.g. by using the
Bellman algorithm, see [176]).

Denote by gq;", the solution of the maximal path problem in G.q; "/; we have:

gq;" � g.a/8a 2 A

Example 7.1. We consider the example given by varPirlot and Vincke (see [229]):
Let S D .P; I/ be a semiorder on A D fa; b; cg defined by P D f.a; c/g.
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Fig. 3.3 Graphical
representation of the
semiorder

a

b

c
q e+

-q
-q

-q-q

Table 3.2 Various
"-representations with " D 1

a b c

q D 1 g1 D 1 2 1 0

q D 1 g2 D 1 9:5 8.5 7.5

q D 2:5 g3 D 1 3:5 1 0

q D 2:5 g4 D 1 10:5 8.5 7

q D 2:5 g5 D 1 3:5 2.5 0

The first inequality of Sect. 3.7.2.2 gives the following equations:

g.a/ 	 g.c/C qC "
g.a/ 	 g.b/� q

g.b/ 	 g.a/� q

g.b/ 	 g.c/� q

g.c/ 	 g.b/� q

Figure 3.3 shows the graphical representation of this semiorder.
As the non-trivial circuit C D f.a; c/; .c; b/; .b; a/g is �qC " (�qC " D .qC

"/ C .�q/ C .�q/), necessary and sufficient conditions for the existence of an "-
representation is q 	 ".

The Table 3.2 provides an example of possible numerical representation of this
semiorder:

Definition 7.1. A representation (g�; q�; ") is minimal in the set of all non-negative
"-representations (g; q; ") of a semiorder iff 8a 2 A g�.a/ � g.a/.

Theorem 7.11. The representation (gq�;"; q�; ") is minimal in the set of all "-
representations of a semiorder R.
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3.7.2.3 Interval Order

An interval can be represented by two real functions l and r on the finite set A which
satisfy:

.8a 2 A; l.a/ � r.a//11

Definition 7.2. A reflexive relation R D .P[ I/ on a finite set A is an interval order
iff there exists a pair of functions l; r W A �! RC and a positive constant " such that
8a; b 2 A

�
aPb iff l.a/ > r.b/C qC "
aIb iff l.a/ 	 r.b/ and l.b/ 	 r.a/

Such a triplet (l, r, ") is called an "-representation of the interval order P [ I.

Definition 7.3. The "-representation (l�; r�; ") of the interval order P[I is minimal
iff for any other "-representation (l; r; ") we have, 8a 2 A,

l�.a/ � l.a/

r�.a/ � r.a/

Theorem 7.12. For any interval order P[I, there exists a minimal "-representation
(l�; r�; "); the values of l� and r� are integral multiples of ".

3.7.2.4 PQI Interval Order

Ngo The and Tsoukiàs [199] have extended the results concerning the minimal
representation of interval orders to the case of PQI interval orders. After presenting
some real life examples which showed that it does not make sense to have a
minimal representation of a PQI interval orders, they studied the problem through
an instance of a PQI interval orders which is a separated PQI interval orders (it
corresponds to the presentation of the condition (ii) of Theorem 7.2 where the
indifference is separated into three relations, the identity, a partial order and its
inverse). They obtained a result enabling to order the endpoints of intervals using an
"-representation like in the case of interval orders and they proposed two algorithms:
the first one determining a general numerical representation (in O.n2/) and the
second one minimising the first one (in O.n/).

11One can imagine that l.a/ represents the evaluation of the alternative a (g.a/) which is the left
limit of the interval and r.a/ represents the value of (g.a/ C q.a/) which is the right limit of the
interval. One can remark that a semi-order is an interval order with a constant length.
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3.8 Extending Preferences to Sets

The problem of how to extend a preference relation over a set A of “objects”
(e.g., alternatives, opportunities, candidates, etc.) to the set of all subsets of A is a
very general problem inspired to many individual and collective decision making
situations. Consider, for instance, the comparison of the stability of groups in
coalition formation theory, or the ranking of likely sets of events in the axiomatic
analysis of subjective probability, or the evaluation of equity of sets of rights inside
a society, or the comparison of assets in portfolio analysis. In those situations, and
in many others, a ranking of the single elements of a (finite) universal set A is
not sufficient to compare the subsets of A. On the other hand, for many practical
problems, only the information about preferences among single objects is available.
Consequently, a central question is: how to derive a ranking over the set of all subsets
of A in a way that is “compatible” with the primitive ranking over the single elements
of A?

This question has been carried out in the tradition of the literature on extending an
order on a set A to its power set (denoted by 2A) with the objective to axiomatically
characterise families of ordinal preferences over subsets (see, for instance, [19, 20,
36, 38, 115, 128, 161, 171]). In this context, an order < on the power set 2A is
required to be an extension of a primitive order R on A. This means that the relative
ranking of any two singleton sets according to < must be the same as the relative
ranking of the corresponding alternatives according to R (i.e., for each a; b 2 A,
fag < fbg , aRb).

The interpretation of the properties used to characterise extensions is deeply
interconnected to the meaning that is attributed to sets. According to the survey
of [20], the main contributions from the literature on ranking sets of objects may
be grouped in three main classes of problems: (1) complete uncertainty, where a
decision-maker is asked to rank sets which are considered as formed by mutually
exclusive objects (i.e., only one object from a set will materialise), and taking into
account that he cannot influence the selection of an object from a set (see, for
instance, [19, 161, 203]); (2) opportunity sets, where sets contain again mutually
exclusive objects but, in this case, a decision maker compares sets taking into
account that he will be able to select a single element from a set (see, for example,
[38, 171, 231, 232]); (3) sets as final outcomes, where each set contains objects that
are assumed to materialise simultaneously (if that set is selected; for instance, see
[36, 115, 237]).

In order to better clarify the differences between these three classes of problems,
and to stress the importance of the nature of problems in the selection of intuitive
axioms, consider the following example. Let A D fa; bg be a universal set of
two alternatives. Suppose that a decision-maker prefers a over b. Then under the
complete uncertainty interpretation, it is reasonable to expect that the decision-
maker will prefer set fag to fa; bg, since the possibility that alternative b materialises
does exist if set fa; bg is selected. But under the interpretation of opportunity sets,
the two sets fag and fa; bg could be simply considered indifferent. Finally, under
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the interpretation of sets as final outcomes, if objects are goods, one could guess
that to have fa; bg is better, because the decision-maker will receive both b and
a. But the judgement depends on the nature of a and b and on possible effects of
incompatibility between the two objects.

Let R be a binary relation on the set A, being R the characteristic relation of a
preference structure hP; Ii. In the following, in order to rank the elements of 2A,
we use a binary relation < on the set 2A, being < the characteristic relation of a
preference structure h
;�i. For example, assume that a linear order R on the set
A is given. For each S 2 2A n f;g, we denote by max.S;R/ the best element of S
with respect to R such that max.S/Rb for each b 2 S, and by min.S;R/ the worst
element of S with respect to R such that bR min.S/ for each b 2 S. Perhaps the
two simplest extensions of R are the MAX extension and the MIN extension, which
are defined, respectively, as a binary relation <max on 2A such that .S <max T/ ,
.max.S/R max.T//, and as a binary relation <min on 2A such that .S <min T/ ,
.min.S/R min.T//, for each S;T 2 2A n f;g.

3.8.1 Complete Uncertainty

In this section we introduce some axioms used in the literature in order to
characterise extensions under complete uncertainty. In this context, a decision-
maker is assumed to face a decision problem of establishing a ranking over all
possible sets of outcomes, provided that the objects of a set are interpreted as
mutually exclusive outcomes, and a final outcome is selected at a later stage
according to a random procedure. As an example in this class, consider the problem
faced by a policy maker that must compare different public policies, where a public
policy may bring, after a certain period of time, to alternative (mutually exclusive)
outcomes, whose realisation may be influenced by unforeseen contingencies.

Historically, one of the most studied axioms for extensions in this class of
problems is the dominance property, that is referred to as the Gärdenfors principle
in [161], in recognition of the use of this axiom in [127]. This property requires that
adding an element which is better (worse) than all elements in a given set S 2 2A

according to a preference relation R on the universal set A, leads to a set that is better
(worse) than the original set according to preference relation < over 2A.

Definition 8.1 (Dominance, DOM). Let R be a binary relation on A. A binary
relation < on 2A satisfies the dominance property (with respect to R) iff for all
S 2 2A and for all a 2 A,

(i) ŒaPb for all b 2 S�) S [ fag 
 SI
(ii) ŒbPa for all b 2 S�) S 
 S [ fag:
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It is important to note that, if R on A is reflexive and antisymmetric and < on 2A is
reflexive and transitive, than the property of dominance for < (w.r.t. R) implies that
< is an extension of R (i.e., if aPb, then the DOM property implies that fag 
 fa; bg
and also fa; bg 
 fbg; so, by transitivity, fag 
 fbg).

Another important axiom which has extensively been used in the literature is the
independence property (introduced by Kannai and Peleg [161] with the name of
monotonicity axiom). It requires that if there exists a strict preference between two
sets S;T 2 2A and the same alternative a 2 A is added to both sets, then the ranking
between the two formed sets must exist (according to <) and cannot be reversed.

Definition 8.2 (Independence, IND). Let R be a binary relation on A. A binary
relation < on 2A satisfies the independence property (with respect to R) iff for all
S;T 2 2A, for all a 2 A n .S [ T/,

S 
 T ) .S [ fag/ < .T [ fag/:

The following theorem [161], says that if a reflexive and transitive relation < on 2A

satisfies DOM (i.e. < is an extension of R on A) and IND, then any set A 2 2A n f;g
is indifferent (with respect to <) to the set consisting of the best element and the
worst element in A (according to the primitive linear order R).

Theorem 8.1. Let R a linear order on A and let < be a reflexive and transitive
relation on 2A. If < satisfies DOM and IND (w.r.t. R), then

S ' fmax.S;R/;min.S;R/g

for all S 2 2A n f;g:
For a proof of this theorem see [20, 161]. Both DOM and IND are quite intuitive
properties for extensions when objects are mutually exclusive. Surprisingly, the
following proposition shows that DOM and IND properties are incompatible when
completeness of the ranking on the 2A is assumed (and jAj 	 6).

Theorem 8.2. Let R be a linear order on A, with jAj 	 6. There exists no total
preorder < on 2A which satisfies DOM and IND.

For a proof of this theorem see [20, 161]. Other (possibility or impossibility) results
can be obtained by modifying axioms IND and DOM [18, 39, 128], or weakening the
assumption that < is a total preorder on 2A [203, 213]. Many other extensions have
been proposed and axiomatically studied in the literature for problems under com-
plete uncertainty [20]. In particular, we refer to the lexi-max and lexi-min extensions
[36, 213], which are obtained, respectively, as the lexicographical generalizations of
the MAX and the MIN extensions, and the median-based extensions [203], where
the relative ranking of the median alternatives is used as the criterion for comparing
two sets.
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3.8.2 Opportunity Sets

For this family of problems, the elements in 2A are interpreted as sets of opportuni-
ties from which a decision-maker is allowed to select precisely one element. Note
that the substantial difference from the context of complete uncertainty is that for
opportunity sets the choice of an outcome from a set is left to the decision-maker,
whereas in the context of complete uncertainty the selection procedure is based on
a random device that cannot be influenced by the decision-maker. An example of
opportunity set is the set of consumption bundles that a consumer may afford given
his budget and the market price of goods in the bundle. Another example could be
the sets of candidates (e.g., corresponding to different parties) that are available to a
voter in a particular election [136].

In [171], a characterisation of the MAX extension <max for opportunity sets12

is provided. The axiom of extension robustness used in [171] requires that adding
to a set A 2 2A a set B 2 2A that is at most as good as A determines a set that is
indifferent to A.

Definition 8.3 (Extension Robustness, EXT ROB). A binary relation < on 2A

satisfies the extension robustness property if and only if for all S;T 2 2A,

S < T ) S � .S [ T/:

One of the main results in [171] is that a binary relation < on 2A satisfies the EXT
ROB property if and only if there exists a linear order R on A such that < coincides
with <max, the MAX extension on R.

The MAX extension has been subject to some criticism when used to compare
sets of opportunities. A certain branch of the economic literature, illustrated by the
contributions of [16, 37, 38, 105, 134, 135, 137, 167, 214] have attempted to define
rankings of opportunity sets without explicitly refer to the future choice behavior of
a decision-maker. The problem of ranking opportunity sets in this context amounts
to define what it means for a set of opportunities to offer more freedom of choice
than another. We do not enter here in the philosophical debate on the concept
of “freedom” (see, for instance, [136]) and how its definition may be related to
the nature of different constraints (physical, economical, legal, etc. [136, 147]).
Moreover, there is no unity in the opportunity sets literature about the notion of
freedom to be used for ranking opportunity sets. According to [24], different notions
of freedom have been proposed: freedom of choice per se, introduced by the seminal
article of Pattanaik and Xu [214], where the absence of preference information
means that a measure of freedom can only reflect quantitative aspects of opportunity
sets; freedom as autonomy, which keeps into account the autonomy of the decision-
makers in making choices and where the autonomy is defined according to the

12The MAX extension is also known, in the context of opportunity sets, as the indirect-utility
criterion, i.e. the criterion to rank sets is the best possible choice that can be made.
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independence of the choices of a decision-maker of his conditioning or of the will of
other decision-makers [156]; freedom as the valuation of exercise of choice, where
the significance of the choices is evaluated according to some notion of diversity or
similarity among alternatives (e.g., see [215, 236]); negative freedom, where ranking
is aimed to represent the measure of absence of coercion or oppression imposed by
other decision-makers on individual choices rather than any other constraints [282].

3.8.3 Sets as Final Outcomes

In this section, the problem of how to rank sets of elements that materialise
simultaneously is considered. For instance, consider the formation of coalitions
that should work jointly for a common goal, or the election of new members to
join an organisation, or many situations where matching problems arise. A standard
application of this kind of problems is the college admissions problem [126, 237],
where colleges need to rank sets of students based on their ranking of individual
applicants.

We start with the introduction of the fixed cardinality ranking approach [237],
where the number of elements in ranked sets is fixed a priori. For instance, in the
college admission problem, where the objective is to evaluate individual students for
the admissibility to the first class, colleges are assumed to have a fixed quota q 2 N

specifying the maximum number of students they can admit. Therefore, matching
analysis concentrates on the preferences of colleges over sets of students of size
q. In order to analyse this kind of problems, Roth [237] introduced the property of
responsiveness, which requires that if one element a in a set A is replaced by another
element b, then the ranking between the new set A n fag [ fbg and the original set
A is determined by the ranking between a and b according to R. In the following,
we denote by Aq the set of all subsets of A of cardinality q 2 f1; : : : ; jAjg, that is
Aq D fS 2 2A s.t. jSj D qg.
Definition 8.4 (Responsiveness, RESP). Let R be a binary relation on the set A.
A binary relation <q on Aq satisfies the responsiveness property on Aq (and with
respect to R) iff for all S 2 Aq, for all a 2 A and for all b 2 A n S we have that

�
ŒS <q .S n fag/[ fbg�, aRb

�
and

�
Œ.S n fag/[ fbg <q S�, bRa

�
:

Clearly, the RESP property is aimed at preventing complementarity effects. As
shown in [36], the RESP property was used to characterize13 the family of
lexicographic rank-ordered extensions, which generalise the idea of lexi-min and
lexi-max orderings.

13Together with another property called fixed-Cardinality neutrality, saying that the labelling of
the alternatives is irrelevant in establishing the ranking among sets of fixed cardinality q.
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Another simple way to generate rankings of sets as final results is to look for
a utility representation of the ranking over sets [108, 109, 235]. In particular, it
is interesting to study under which conditions an extension < of R is additively
representable [76, 109].

A still different approach was introduced by Fishburn [115], where the infor-
mation available to establish an extension is not only a primitive ranking on the
universal set A, but also a signed ordering on the “complements” of the alternatives
in A is available. Looking at A as a set of possible candidates for a committee,
for instance, the model based on signed ordering allows for the consideration of
comparisons like “it is more important to prevent a candidate a from being in the
committee than having candidate b in the committee”, or “leaving candidate a off
the committee is preferred to leaving b off the committee”, etc. Properties of signed
orderings and conditions for their extensions in this richer informational content are
presented in [115].

Recently, Moretti and Tsoukiàs [192] introduced a new class of orderings of sets
as final results, and they called the elements of this class Shapley extensions, for
their attitude to preserve the ranking provided by the Shapley value [191, 255] of
associated coalitional games. In general, Shapley extensions do not need to satisfy
the RESP property (even if an axiomatic characterization using this property on the
class of monotonic total preorders is provided in [192]) and therefore they can be
used to keep into account possible complementarity effects among objects.

3.8.4 An Overview to Related Theories

The problem of electing a committee is also well-studied in voting theory [54, 55,
166]. In such situations, voters face the problem to choose from a finite set A of
candidates a nonempty subset K of committee members. For a general discussion
on voting methods see, for example, [66, 175]. Here we focus on the aspects of
the problem which are directly related to the extension of preference of voters
over single candidates to subsets of candidates. Following an example illustrated
by Uckelman [277], suppose that a group of voters are invited to elect a committee
of three persons from the set of five candidates A D f1; 2; 3; 4; 5g. Now, suppose that
a voter believes that 1 and 2 are the best candidates: we may represent this fact with
a preference structure hP; Ii on A such that 1 I 2 P 3 I 4 I 5. Consequently, it could
be reasonable to assume that any committee containing one of them is better than
any committee with neither. In addition, suppose also that such a voter also believes
that 1 and 2 will fight if they are on the committee together (so, any committee with
both of them is worse than any committee with neither). Thus, the voter would rank
the committees in the following way:

f1; 3; 4g � f1; 3; 5g � f1; 4; 5g � f2; 3; 4g � f2; 3; 5g � f2; 4; 5g

 f3; 4; 5g 
 f1; 2; 3g � f1; 2; 4g � f1; 2; 5g: (3.13)
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Which criterion can be adopted to extend a characteristic relation R of the preference
structure hP; Ii on single candidates, in order to end up in a characteristic relation <
of the preference structure h
;�i on committees? Put in a more general way, how
to consider the fact that committee membership for one candidate is not necessarily
independent of the question of committee membership for some other candidate?
Several approaches have been proposed in literature to extend preference of voters.
In [55, 166], voters are assumed to rank committees according to their Hamming
distance from their top preferences, where the top preference of a voter is the
committee it most prefers. Let n be the number of voters and k � n be the number
of seats in the committee. A ballot is a binary k-vector, .p1; p2; : : : ; pk/, where pi

equals 0 or 1, for each i 2 f1; : : : ; kg. These binary vectors indicate the approval
or disapproval of each candidate by a voter. For instance, ordering candidates
increasingly, the committee f1; 3; 4g corresponds to the ballot .1; 0; 1; 1; 0/ (shortly,
10110). The Hamming distance d.p; q/ between two binary k-vectors p and q is
the number of components on which they differ. Note that the Hamming distance
between f1; 3; 4g and f2; 4; 5g is d.10110; 01011/ D 4, whereas the distance
between f1; 3; 4g and f1; 2; 3g is d.10110; 11100/ D 2. Consequently, the ordering
induced by the Hamming distance from f1; 3; 4g is f1; 3; 4g 
 f1; 2; 3g 
 f2; 3; 4g,
thus putting an optimal committee last and one least favoured committee in second
place, which does not represent the true ranking h
;�i introduced in (3.13).

In financial theory, the goal of portfolio management is to allocate resources and
budgets to a group of assets (e.g., stocks, projects, initiatives etc.) that maximise
the return and minimise the risk. Typically, the answer to the investment problem
is not the selection of the most preferred assets: a diversified portfolio will likely
have less risk than the weighted average risk of its constituent assets (see, for
instance, [250]). Therefore, the problem to extend preferences over single assets
to a preference over portfolios of assets is very important in practical investment
problems. Since the pioneering paper of Markowitz [180], where the classical model
of Mean-Variance optimisation has been developed, many different techniques for
portfolio management have been proposed in the area of multi-criteria analysis
[249, 302].

We conclude this section with a short introduction to some applications in
artificial intelligence which require the specification of preferences over sets of
information items that a computer should be able to process [82]. For instance, web
search engines are designed to retrieve information relative to a particular query
on the World Wide Web, presenting the retrieved information as a list of hits (e.g.,
web pages, images, media files, etc.). Since search engines operate according to
predefined algorithms or procedures, efficient methods to specify and compute the
relevance of sets of hits to a specified query are demanded.

In order to specify preferences of decision-makers on sets of items, one possibil-
ity is to assume that preferences are numerical and to use compact representation of
such valuations as, for instance, the bidding languages for combinatorial auctions
[202, 277]. An alternative approach is provided by ordinal preferences and methods
that have been introduced in literature for elicitation and compact representation
of ordinal preferences over combinatorial domains. A well-known language for
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eliciting and representing ordinal preferences over combinatorial domains is known
under the name of (Ceteris Paribus) CP-nets [43], which is tailored for representing
preference relations on the domain of each variable conditioned by the values of the
variables it depends on.

More recently, richer (and more sophisticated) approaches have been intro-
duced: TCP-nets [53], which extend CP-nets by allowing statements of conditional
importance between single variables; conditional preference theories [293], which
further extend TCP-nets; conditional importance networks (CI-nets) [44], that also
generalise TCP nets, with the further simplification that CI-nets do not include any
conditional preference statements on the values of the variables.

Specific solution for information retrieval problems have been also introduced.
A new language has been developed in [82], namely (Depth and Diversity) DD-
pref, that allows for set-based preference learning starting from the specification
of few examples in a numerical form and keeping into account possible effects of
interaction among single items. Effects of complementarity have been modelled in
[300] as a trading off “relevance” against “novelty” of information; or by measuring
the “marginal relevance” [61], with the objective to minimise redundancy in a set of
information items corresponding to a certain query.

3.9 Logic of Preferences

The increasing importance of preference modelling immediately interested people
from other disciplines, particularly logicians and philosophers. The strict relation
with deontic logic (see [8]) raised some questions such as:

– does a general logic exist where any preferences can be represented and used?
– if yes, what is the language and what are the axioms?
– is it possible, via this formalisation, to give a definition of bad or good as absolute

values?

It is clear that this attempt had a clear positivist and normative objective: to define
the one well-formed logic that people should follow when expressing preferences.
The first work on the subject is the one by Halldén [140], but it is Von Wright’s book
[288] that tries to give the first axiomatisation of a logic of preferences. Inspired by
this work some important contributions have been made [67, 68, 145, 146, 149,
233]. Influence of this idea can also be found in [155, 234], but in related fields
(statistics and value theory respectively). The discussion apparently was concluded
by von Wright [289], but Huber [150, 151] continued on later on Halldin [141] and
Widmeyer [291, 292] also worked on this.

The general idea can be presented as follows. At least two questions should be
clarified: preferences among what? How should preferences be understood? Von
Wright [288] argues that preferences can be distinguished as extrinsic and intrinsic.
The first ones are derived as a reason from a specific purpose, while the second
ones are self-referential to an actor expressing the preferences. In this sense intrinsic
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preferences are the expression of the actor’s system of values of the actor. Moreover,
preferences can be expressed for different things, the most general being (following
Von Wright) “states of affairs”. That is, the expression “a is preferred to b” should
be understood as the preference of a state (a world) where a occurs (whatever a
represents: sentences, objects, relations etc.) over a state where b occurs. On this
basis Von Wright expressed a theory based on five axioms:

AW1. 8x; y p.x; y/ ! :p.y; x/
AW2. 8x; y; z p.x; y/ ^ p.y; z/ ! p.x; z/
AW3. p.a; b/ � p.a ^ :b;:a ^ b/
AW4. p.a _ b; c/ � p.a ^ b ^ :c;:a ^ :b ^ c/ ^ p.a ^ :b ^ :c;:a ^ :b ^

c/ ^ p.:a ^ b ^ :c;:a ^ :b ^ c/
AW5. p.a; b/ � p.a ^ c; b ^ c/ ^ p.a ^ :c; b ^ :c/

The first two axioms are asymmetry and transitivity of the preference relation,
while the following three axioms face the problem of combinations of states of
affairs. The use of specific elements instead of the variables and quantifiers reflects
the fact that von Wright considered the axioms not as logical ones, but as “reasoning
principles”. This distinction has important consequences on the calculus level. In the
first two axioms, preference is considered as a binary relation (therefore the use of
a predicate), in the three “principles”, preference is a proposition. Von Wright does
not make this distinction directly, considering the expression aPb (p.a; b/ in our
notation) as a well-formed formulation of his logic. However, this does not change
the problem since the first two axioms are referred to the binary relation and the
others are not. The difference appears if one tries to introduce quantifications; in this
case the three principles appear to be weak. The problem with this axiomatisation is
that empirical observation of human behavior provides counterexamples of these
axioms. Moreover, from a philosophical point of view (following the normative
objective that this approach assumed), a logic of intrinsic preferences about general
states of affairs should allow to define what is good (the always preferred?) and
what is bad (the always not preferred?). But this axiomatisation fails to enable such
a definition.

Chisholm and Sosa [68] rejected axioms AW3 to AW5 and built an alternative
axiomatisation based on the concepts of “good” and “intrinsically better”. Their
idea is to postulate the concept of good and to axiomatise preferences consequently.
So a good state of affairs is one that is always preferred to its negation (p.a;:a/);
Chisholm and Sosa, use this definition only for its operational potential as they argue
that it does not capture the whole concept of “good”). In this case we have:

AS1. 8x; y p.x; y/ ! :p.y; x/
AS2. 8x; y; z :p.x; y/ ^ :p.y; z/ ! :p.x; z/
AS3. 8x; y :p.x;:x/ ^ :p.:x; x/ ^ :p.y;:y/ ^ :p.:y; y/ ! :p.y; x/ ^
:p.x; y/

AS4. 8x; y p.x; y/ ^ :p.y;:y/ ^ :p.:y; y/ ! p.x;:x/
AS5. 8x; y p.y;:x/ ^ :p.y;:y/ ^ :p.:y; y/ ! p.x;:x/
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Again in this axiomatisation there are counterexamples of the axioms. The
assumption of the concept of good can be argued as it allows circularities in the
definitions of preferences between combinations of states of affairs. This criticism
leaded Hansson [146] to consider only two fundamental, universally recognised
axioms:

AH1. 8x; y; z s.x; y/ ^ s.y; z/ ! s.x; z/
AH2. 8x; y s.x; y/ _ s.y; x/

where s is a “large preference relation” and two specific preference relations are
defined, p (strict preference) and i (indifference):

DH1. 8x; y p.x; y/ � s.x; y/ ^ :s.y; x/
DH2. 8x; y i.x; y/ � s.x; y/ ^ s.y; x/

He also introduces two more axioms, although he recognises their controversial
nature:

AH3. 8x; y; z s.x; y/ ^ s.x; z/ ! s.x; y _ z/
AH4. 8x; y; z s.x; z/ ^ s.y; z/ ! s.x _ y; z/

Von Wright in his reply [289], trying to argue for his theory, introduced a more
general frame to define intrinsic “holistic” preferences or as he called them “ceteris
paribus” preferences. In this approach he considers a set S of states where the
elements are the ones of A (n elements) and all the 2n combinations of these
elements. Given two states s and t (elementary or combinations of m states of S)
you have i (i D 2n�m) combinations Ci of the other states. You call an s-world any
state that holds when s holds. A combination Ci of states is also a state so you can
define it in the same way a Ci-world. Von Wright gives two definitions (strong and
weak) of preference:

1. (strong): s is preferred to t under the circumstances Ci iff every Ci-world that
is also an s-world and not a t-world is preferred to every Ci-world that is also
t-world and not s-world.

2. (weak): s is preferred to t under the circumstances Ci iff some Ci-world that is
an s-world is preferred to a Ci-world that is a t-world, but a Ci-world that is a
t-world that is preferred to a Ci-world that is an s-world does not exist.

Now s is “ceteris paribus” preferred to t iff it is preferred under all Ci. We leave
the discussion to the interested reader, but we point out that, with these definitions,
it is difficult to axiomatise both transitivity and complete comparability unless they
are assumed as necessary truths for “coherence” and “rationality” (see [289]).

It can be concluded that the philosophical discussion about preferences failed the
objective to give a unifying frame of generalised preference relations that could hold
for any kind of states, based on a well-defined axiomatisation (for an interesting
discussion see [194]). It is still difficult (if not impossible) to give a definition
of good or bad in absolute terms based on reasoning about preferences and the
properties of these relations are not unanimously accepted as axioms of preference
modelling. For more recent advances in deontic logic see [204].
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More recently, Von Wright’s ideas and the discussion about “logical representa-
tion of preferences” attracted attention again. This is due to problems found in the
field of Artificial Intelligence field due to essentially two reasons:

– the necessity to introduce some “preferential reasoning” (see [41, 42, 52, 94–
96, 170, 177, 256]);

– the large dimension of the sets to which such a reasoning might apply, thus
demanding a compact representation of preferences (see [28, 30, 31, 93, 172])

Even if these motivations may appear different, the link between them is
surprisingly strong as they use related languages. In fact, in both of these cases,
the idea is to propose a language allowing a succinct representation of the problem
without enumerating a prohibitive number of alternatives and being as close as
possible to the way that a decision maker expresses his preferences in a natural
language. The two common approaches consist on the use of the propositional logic
or a graphical language for the representation of preferences which may be given as
an ordinal data (generally a preorder) or as an utilitarian preferences.

Concerning the propositional logic, a survey may be found in [174]. In this field
some authors have been interested on the use of penalties or weighted bases with
propositional formulae (see [29, 65, 72, 78, 139, 209, 227, 248], among others)
others have proposed the use of distance between logical worlds (see [172, 173]).

Graphical languages have been proposed for qualitative and quantitative pref-
erences specially when the set of alternatives is defined as the cartesian product
of finite domains and when there are some interactions between criteria. Gen-
eralized additive decomposable (GAI) utility functions have been introduced by
Fishburn [109] in order to represent interaction between criteria by preserving
some decompasability of the model. One of the earliest studies to exploit separable
preferences in a graphical model is the extension of influence diagrams (see [263]),
then Bacchus and Grove [15] have introduced the GAI-nets, the first graphical
model based on conditional independence structure. The elicitation in GAI-nets
have been addressed in [57, 58, 132]. Another important research line is about CP-
nets which propose a qualitative graphical representation of preferences interpreting
conditional independence of preference statements under a ceteris paribus (all
else being equal) principle. The idea of using ceteris paribus principle is due to
Von Wright [288] and have became to be used by AI researches for 20 years,
firstly by Doyle [94, 95], and then others have been interested in different aspects
such as elicitation, consistency, computation of a result, : : : (for more details see
[43, 92, 130]).

3.10 Conclusion

We hope that this chapter on preference modelling, gave the non-specialist reader a
general idea of the field by providing a list of the most important references of a very
vast and technical literature. In this chapter, we have tried to present the necessary
technical support for the reader to understand the following chapters. One can note



84 S. Moretti et al.

that our survey does not interpret all the questions related to preference modelling.
Let us mention some of them:

– How to get and validate preference information [17, 287]
– The relation between preference modelling and the problem of meaningfulness

in measurement theory [235]
– Statistical analysis of preferential data [70, 138]
– Interrogations on the relations between preferences and the value system, and the

nature of these values [60, 73, 269, 288].
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Chapter 4
Conjoint Measurement Tools for MCDM

A Brief Introduction

Denis Bouyssou and Marc Pirlot

Abstract This paper offers a brief and nontechnical introduction to the use of
conjoint measurement in multiple criteria decision making. The emphasis is on the,
central, additive value function model. We outline its axiomatic foundations and
present various possible assessment techniques to implement it. Some extensions
of this model, e.g., nonadditive models or models tolerating intransitive preferences
are then briefly reviewed.

Keywords Conjoint measurement • Additive value function • Preference
modelling

4.1 Introduction and Motivation

Conjoint measurement is a set of tools and results first developed in Economics [63]
and Psychology [179] in the beginning of the 1960s. Its, ambitious, aim is to provide
measurement techniques that would be adapted to the needs of the Social Sciences
in which, most often, multiple dimensions have to be taken into account.

Soon after its development, people working in decision analysis realized that
the techniques of conjoint measurement could also be used as tools to structure
preferences [72, 209]. This is the subject of this paper which offers a brief and
nontechnical introduction to conjoint measurement models and their use in multiple
criteria decision making. More detailed treatments may be found in [87, 103, 155,
173, 259]. Advanced references include [81, 164, 261]. This text is a slightly updated
version of [42].
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4.1.1 Conjoint Measurement Models in Decision Theory

The starting point of most works in decision theory is a binary relation % on a set
A of objects. This binary relation is usually interpreted as an “at least as good as”
relation between alternative courses of action gathered in A.

Manipulating a binary relation can be quite cumbersome as soon as the set of
objects is large. Therefore, it is not surprising that many works have looked for
a numerical representation of the binary relation %. The most obvious numerical
representation amounts to associate a real number V.a/ to each object a 2 A in such
a way that the comparison between these numbers faithfully reflects the original
relation %. This leads to defining a real-valued function V on A, such that:

a % b, V.a/ 	 V.b/; (4.1)

for all a; b 2 A. When such a numerical representation is possible, one can use
V instead of % and, e.g., apply classical optimization techniques to find the most
preferred elements in A given %. We shall call such a function V a value function.

It should be clear that not all binary relations % may be represented by a value
function. Condition (4.1) imposes that % is complete (i.e., a % b or b % a, for all
a; b 2 A) and transitive (i.e., a % b and b % c imply a % c, for all a; b; c 2 A).
When A is finite or countably infinite, it is well-known [81, 164] that these two
conditions are, in fact, not only necessary but also sufficient to build a value function
satisfying (4.1).

Remark 1. The general case is more complex since (4.1) implies, for instance,
that there must be “enough” real numbers to distinguish objects that have to be
distinguished. The necessary and sufficient conditions for (4.1) can be found in
[81, 164]. An advanced treatment is [20]. Sufficient conditions that are well-adapted
to cases frequently encountered in Economics can be found in [61, 64]; see [53] for
a synthesis. 
It is vital to note that, when a value function satisfying (4.1) exists, it is by no
means unique. Taking any increasing function � on R, it is clear that � ı V gives
another acceptable value function. A moment of reflection will convince the reader
that only such transformations are acceptable and that if V and U are two real-valued
functions on A satisfying (4.1), they must be related by an increasing transformation.
In other words, a value function in the sense of (4.1) defines an ordinal scale.

Ordinal scales, although useful, do not allow the use of sophisticated assessment
procedures, i.e., of procedures that allow an analyst to assess the relation % through
a structured dialogue with the decision-maker. This is because the knowledge that
V.a/ 	 V.b/ is strictly equivalent to the knowledge of a % b and no inference can
be drawn from this assertion besides the use of transitivity.

It is therefore not surprising that much attention has been devoted to numerical
representations leading to more constrained scales. Many possible avenues have
been explored to do so. Among the most well-known, let us mention:
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• the possibility to compare probability distributions on the set A [81, 257]. If it
is required that, not only (4.1) holds but that the numbers attached to the
objects should be such that their expected values reflect the comparison of
probability distributions on the set of objects, a much more constrained numerical
representation clearly obtains,

• the introduction of “preference difference” comparisons of the type: the dif-
ference between a and b is larger than the difference between c and d, see
[63, 105, 159, 164, 202, 224, 247]. If it is required that, not only (4.1) holds, but
that the differences between numbers also reflect the comparisons of preference
differences, a more constrained numerical representation obtains.

When objects are evaluated according to several dimensions, i.e., when % is defined
on a product set, new possibilities emerge to obtain numerical representations that
would specialize (4.1). The purpose of conjoint measurement is to study such kinds
of models.

There are many situations in decision theory which call for the study of binary
relations defined on product sets. Among them let us mention, following [261]:

• Multiple criteria decision making using a preference relation comparing alterna-
tives evaluated on several attributes [22, 49, 51, 155, 206, 217, 259],

• Decision under uncertainty using a preference relation comparing alternatives
evaluated on several states of nature [92, 139, 221, 228, 260, 261],

• Consumer theory manipulating preference relations for bundles of several goods
[62],

• Intertemporal decision making using a preference relation between alternatives
evaluated at several moments in time [155, 160, 161],

• Inequality measurement comparing distributions of wealth across several indi-
viduals [5, 24, 25, 267].

The purpose of this paper is to give an introduction to the main models of conjoint
measurement useful in multiple criteria decision making. The results and concepts
that are presented may however be of interest in all of the afore-mentioned areas of
research.

Remark 2. Restricting ourselves to applications in multiple criteria decision making
will not allow us to cover every aspect of conjoint measurement. Among the most
important topics left aside, let us mention: the introduction of statistical elements
in conjoint measurement models [75, 142] and the test of conjoint measurement
models in experiments [149, 173, 178]. 

Given a binary relation % on a product set X D X1 � X2 � � � � � Xn, the theory
of conjoint measurement consists in finding conditions under which it is possible to
build a convenient numerical representation of % and to study the uniqueness of this
representation. The central model is the additive value function model in which:

x % y,
nX

iD1
vi.xi/ 	

nX

iD1
vi.yi/ (4.2)
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where vi are real-valued functions, called partial value functions, on the sets Xi and
it is understood that x D .x1; x2; : : : ; xn/ and y D .y1; y2; : : : ; yn/. Clearly if % has a
representation in model (4.2), taking any common increasing transformation of the
vi will not lead to another representation in model (4.2).

Specializations of this model in the above-mentioned areas give several central
models in decision theory:

• The Subjective Expected Utility model, in the case of decision-making under
uncertainty,

• The discounted utility model for dynamic decision making,
• Inequality measures à la Atkinson/Sen in the area of social welfare.

The axiomatic analysis of this model is now quite firmly established [63, 164,
261]; this model forms the basis of many decision analysis techniques [103, 155,
259, 261]. This is studied in Sects. 4.3 and 4.4 after we introduce our main notation
and definitions in Sect. 4.2.

Remark 3. One possible objection to the study of model (4.2) is that the choice of
an additive model seems arbitrary and restrictive. It should be observed here that
the functions vi will precisely be assessed so that additivity holds. Furthermore, the
use of a simple model may be seen as an advantage in view of the limitations of the
cognitive abilities of most human beings.

It is also useful to notice that this model can be reformulated so as to make
addition disappear. Indeed if there are partial value functions vi such that (4.2) holds,
it is clear that V D Pn

iD1 vi is a value function satisfying (4.1). Since V defines an
ordinal scale, taking the exponential of V leads to another valid value function W.
Clearly W has now a multiplicative form:

x % y, W.x/ D
nY

iD1
wi.xi/ 	 W.y/ D

nY

iD1
wi.yi/:

where wi.xi/ D evi.xi/.
The reader is referred to [70] for the study of situations in which V defines a

scale that is more constrained than an ordinal scale, e.g., because it is supposed to
reflect preference differences or because it allows to compute expected utilities. In
such cases, the additive form (4.2) is no more equivalent to the multiplicative form
considered above. 
In Sect. 4.5 we present a number of extensions of this model going from nonadditive
representations of transitive relations to model tolerating intransitive indifference
and, finally, nonadditive representations of nontransitive relations.

Remark 4. In this paper, we shall restrict our attention to the case in which
alternatives may be evaluated on the various attributes without risk or uncertainty.
Excellent overviews of these cases may be found in [155, 259]; recent references
include [181, 192]. 
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Before starting our study of conjoint measurement oriented towards MCDM,
it is worth recalling that conjoint measurement aims at establishing measurement
models in the Social Sciences. To many, the very notion of “measurement in the
Social Sciences” may appear contradictory. It may therefore be useful to briefly
consider how the notion of measurement can be modelled in Physics, an area in
which the notion of “measurement” seems to arise quite naturally, and to explain
how a “measurement model” may indeed be useful in order to structure preferences.

4.1.2 An Aside: Measuring Length

Physicists usually take measurement for granted and are not particularly concerned
with the technical and philosophical issues it raises (at least when they work within
the realm of Newtonian Physics). However, for a Social Scientist, these questions
are of utmost importance. It may thus help to have an idea of how things appear to
work in Physics before tackling more delicate cases.

Suppose that you are on a desert island and that you want to “measure” the length
of a collection of rigid straight rods. Note that we do not discuss here the “pre-
theoretical” intuition that “length” is a property of these rods that can be measured,
as opposed, say, to their softness or their beauty.

A first simple step in the construction of a measure of length is to place the
two rods side by side in such a way that one of their extremities is at the same
level (see Fig. 4.1). Two things may happen: either the upper extremities of the two
rods coincide or not. This seems to be the simplest way to devise an experimental
procedure leading to the discovery of which rod “has more length” than the other.

r

r r

s

s ∼ s

r s

Fig. 4.1 Comparing the length of two rods
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Technically, this leads to defining two binary relations
 and� on the set of rods in
the following way:

r 
 r0 when the extremity of r is higher than the extremity of r0;

r � r0 when the extremities of r and r0 are at the same level.

Clearly, if length is a quality of the rods that can be measured, it is expected that
these pairwise comparisons are somehow consistent, e.g.,

• if r 
 r0 and r0 
 r00, it should follow that r 
 r00,
• if r � r0 and r0 � r00, it should follow that r � r00,
• if r � r0 and r0 
 r00, it should follow that r 
 r00.

Although quite obvious, these consistency requirements are stringent. For instance,
the second and the third conditions are likely to be violated if the experimental
procedure involves some imprecision, e.g if two rods that slightly differ in length
are nevertheless judged “equally long”. They represent a form of idealization of
what could be a perfect experimental procedure.

With the binary relations 
 and � at hand, we are still rather far from a full-
blown measure of length. It is nevertheless possible to assign numbers to each of
the rods in such a way that the comparison of these numbers reflects what has been
obtained experimentally. When the consistency requirements mentioned above are
satisfied, it is indeed generally possible to build a real-valued function ˆ on the set
of rods that would satisfy:

r 
 r0 , ˆ.r/ > ˆ.r0/ and

r � r0 , ˆ.r/ D ˆ.r0/:

If the experiment is costly or difficult to perform, such a numerical assignment may
indeed be useful because it summarizes, once for all, what has been obtained in
experiments. Clearly there are many possible ways to assign numbers to rods in
this way. Up to this point, they are equally good for our purposes. The reader will
easily check that defining % as 
 or �, the function ˆ is noting else than a “value
function” for length: any increasing transformation may therefore be applied to ˆ.

The next major step towards the construction of a measure of length is the
realization that it is possible to form new rods by simply placing two or more rods
“in a row”, i.e., you may concatenate rods. From the point of view of length, it
seems obvious to expect this concatenation operation ı to be “commutative” (r ı s
has the same length as sır) and associative (.rıs/ıt has the same length as rı.sıt/).

You clearly want to be able to measure the length of these composite objects
and you can always include them in our experimental procedure outlined above
(see Fig. 4.2). Ideally, you would like your numerical assignment ˆ to be somehow
compatible with the concatenation operation: knowing the numbers assigned to two
rods, you want to be able to deduce the number assigned to their concatenation.
The most obvious way to achieve that is to require that the numerical assignment of
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Fig. 4.2 Comparing
the length of composite rods

r and s r and s

a composite object can be deduced by addition from the numerical assignments of
the objects composing it, i.e., that

ˆ.r ı r0/ D ˆ.r/Cˆ.r0/:

This clearly places many additional constraints on the results of your experiment.
An obvious one is that 
 and � should be compatible with the concatenation
operation ı, e.g.,

r 
 r0 and t � t0 should lead to r ı t 
 r0 ı t0:

These new constraints may or may not be satisfied. When they are, the usefulness
of the numerical assignmentˆ is even more apparent: a simple arithmetic operation
will allow us to infer the result of an experiment involving composite objects.

Let us take a simple example. Suppose that you have five rods r1; r2; : : : ; r5 and
that, because space is limited, you can only concatenate at most two rods and that not
all concatenations are possible. Let us suppose, for the moment, that you do not have
much technology available so that you may only experiment using different rods.
You may well collect the following information, using obvious notation exploiting
the transitivity of 
 which holds in this experiment,

r1 ı r5 
 r3 ı r4 
 r1 ı r2 
 r5 
 r4 
 r3 
 r2 
 r1:

Your problem is then to find a numerical assignment ˆ to rods such that using
an addition operation, you can infer the numerical assignment of composite
objects consistently with your observations. Let us consider the following three
assignments:
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ˆ ˆ0 ˆ00

r1 14 10 14

r2 15 91 16

r3 20 92 17

r4 21 93 18

r5 28 100 29

These three assignments are equally valid to reflect the comparisons of single rods.
Only the first and the third allow to capture the comparisons of composite objects
that were performed. Note that, going from ˆ to ˆ00 does not involve just changing
the “unit of measurement”: since ˆ.r1/ D ˆ00.r1/ this would imply that ˆ D ˆ00,
which is clearly false.

Such numerical assignments have limited usefulness. Indeed, it is tempting to use
them to predict the result of comparisons that we have not been able to perform. But
this turns out to be quite disappointing: using ˆ you would conclude that r2 ı r3 �
r1 ı r4 since ˆ.r2/Cˆ.r3/ D 15C 20 D 35 D ˆ.r1/Cˆ.r4/, but, using ˆ00, you
would conclude that r2 ı r3 
 r1 ı r4 sinceˆ00.r2/Cˆ00.r3/ D 16C 17 D 33 while
ˆ00.r1/Cˆ00.r4/ D 14C 18 D 32.

Intuitively, “measuring” calls for some kind of a standard (e.g., the “Mètre-
étalon” that can be found in the Bureau International des Poids et Mesures in Sèvres,
near Paris). This implies choosing an appropriate “standard” rod and being able to
prepare perfect copies of this standard rod (we say here “appropriate” because the
choice of a standard should be made in accordance with the lengths of the objects to
be measured: a tiny or a huge standard will not facilitate experiments). Let us call s0
the standard rod. Let us suppose that you have been able to prepare a large number
of perfect copies s1, s2; : : : of s0. We therefore have:

s0 � s1; s0 � s2; s0 � s3; : : :

Let us also agree that the length of s0 is 1. This is your, arbitrary, unit of length. How
can you use s0 and its perfect copies so as to determine unambiguously the length of
any other (simple or composite) object? Quite simply, you may prepare a “standard
sequence of length n”, S.n/ D s1 ı s2 ı : : : ı sn�1 ı sn, i.e., a composite object that
is made by concatenating n perfect copies of our standard rod s0. The length of a
standard sequence of length n is exactly n since we have concatenated n objects that
are perfect copies of the standard rod of length 1. Take any rod r and let us compare
r with several standard sequences of increasing length: S.1/, S.2/; : : :.

Two cases may arise. There may be a standard sequence S.k/ such that r � S.k/.
In that case, we know that the number ˆ.r/ assigned to r must be exactly k. This is
unlikely however. The most common situation is that we will find two consecutive
standard sequences S.k � 1/ and S.k/ such that r 
 S.k � 1/ and S.k/ 
 r (see
Fig. 4.3). This means that ˆ.r/ must be such that k � 1 < ˆ.r/ < k. We seem to
be in trouble here since, as before, ˆ.r/ is not exactly determined. How can you
proceed? This depends on your technology for preparing perfect copies.
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r S (k )

s1

s2

s3

s4

s5

s6

s7

s8

r S (7) ,S (8) r

7 < Φ( r) < 8

Fig. 4.3 Using standard sequences

Imagine that you are able to prepare perfect copies not only of the standard rod
but also of any object. You may then prepare several copies (r1, r2; : : :) of the rod
r. You can now compare a composite object made out of two perfect copies of r
with your standard sequences S.1/; S.2/; : : :. As before, you shall eventually arrive
at locating ˆ.r1 ı r2/ D 2ˆ.r/ within an interval of width 1. This means that the
interval of imprecision surrounding ˆ.r/ has been divided by two. Continuing this
process, considering longer and longer sequences of perfect copies of r, you will
keep on reducing the width of the interval containingˆ.r/. This means that you can
approximateˆ.r/ with any given level of precision. Mathematically, a unique value
for ˆ.r/ will be obtained using a simple argument.

Supposing that you are in position to prepare perfect copies of any object is
a strong technological requirement. When this is not possible, there still exists a
way out. Instead of preparing a perfect copy of r you may also try to increase
the granularity of your standard sequence. This means building an object t that
you would be able to replicate perfectly and such that concatenating t with one
of its perfect replicas gives an object that has exactly the length of the standard
object s0, i.e., ˆ.t/ D 1=2. Considering standard sequences based on t, you will be
able to increase by a factor 2 the precision with which we measure the length of r.
Repeating the process, i.e., subdividing t, will lead, as before, to a unique limiting
value for ˆ.r/.

The mathematical machinery underlying the measurement process informally
described above (called “extensive measurement”) rests on the theory of ordered
groups. It is beautifully described and illustrated in [164]. Although the underlying
principles are simple, we may expect complications to occur, e.g., when not all
concatenations are feasible, when there is some level (say the velocity of light if we
were to measure speed) that cannot be exceeded or when it comes to relate different
measures. See [164, 177, 212] for a detailed treatment.
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Clearly, this was an overly detailed and unnecessary complicated description
of how length could be measured. Since our aim is to eventually deal with
“measurement” in the Social Sciences, it may however be useful to keep the above
process in mind. Its basic ingredients are the following:

• well-behaved relations 
 and � allowing to compare objects,
• a concatenation operation ı allowing to consider composite objects,
• consistency requirements linking 
, � and ı,
• the ability to prepare perfect copies of some objects in order to build standard

sequences.

Basically, conjoint measurement is a quite ingenious way to perform related
measurement operations when no concatenation operation is available. This will
however require that objects can be evaluated along several dimensions. Before
explaining how this might work, it is worth explaining the context in which such
measurement might prove useful.

Remark 5. It is often asserted that “measurement is impossible in the Social Sci-
ences” precisely because the Social Scientist has no way to define a concatenation
operation. Indeed, it would seem hazardous to try to concatenate the intelligence of
two subjects or the pain of two patients (see [77, 138]). Under certain conditions, the
power of conjoint measurement will precisely be to provide a means to bypass this
absence of readily available concatenation operation when the objects are evaluated
on several dimensions.

Let us remark that, even when there seems to be a concatenation operation
readily available, it does not always fit the purposes of extensive measurement
[211]. Consider for instance an individual expressing preferences for the quantity
of the two goods he consumes. The objects therefore take the well structured form
of points in the positive orthant of R2. There seems to be an obvious concatenation
operation here: .x; y/ ı .z;w/ might simply be taken to be .xC y; zCw/. However a
fairly rational person, consuming pants and jackets, may indeed prefer .3; 0/ (three
pants and no jacket) to .0; 3/ (no pants and three jackets) but at the same time prefer
.3; 3/ to .6; 0/. This implies that these preferences cannot be explained by a measure
that would be additive with respect to the concatenation operation consisting in
adding the quantities of the two goods consumed. Indeed .3; 0/ 
 .0; 3/ implies
ˆ.3; 0/ > ˆ.0; 3/, which impliesˆ.3; 0/Cˆ.3; 0/ > ˆ.0; 3/Cˆ.3; 0/. Additivity
with respect to concatenation should then imply that .3; 0/ ı .3; 0/ 
 .0; 3/ ı .3; 0/,
that is .6; 0/ 
 .3; 3/. 

4.1.3 An Example: Even Swaps

The even swaps technique described and advocated in [155, 157, 209] is a simple
way to deal with decision problems involving several attributes that does not have
recourse to a formal representation of preferences, which will be the subject of
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Table 4.1 Evaluation of the
five offices on the five
attributes

a b c d e

Commute 45 25 20 25 30

Clients 50 80 70 85 75

Services A B C A C

Size 800 700 500 950 700

Cost 1850 1700 1500 1900 1750

conjoint measurement. Because this technique is simple and may be quite useful,
we describe it below using the same example as in [157]. This will also allow us to
illustrate the type of problems that are dealt with in decision analysis applications
of conjoint measurement.

Example 6 (Even Swaps Technique). A consultant considers renting a new office.
Five different locations have been identified after a careful consideration of many
possibilities, rejecting all those that do not meet a number of requirements.

His feeling is that five distinct characteristics, we shall say five attributes, of the
possible locations should enter into his decision: his daily commute time (expressed
in minutes), the ease of access for his clients (expressed as the percentage of his
present clients living close to the office), the level of services offered by the new
office (expressed on an ad hoc scale with three levels: A (all facilities available), B
(telephone and fax), C (no facilities)), the size of the office expressed in square feet,
and the monthly cost expressed in dollars.

The evaluation of the five offices is given in Table 4.1. The consultant has well-
defined preferences on each of these attributes, independently of what is happening
on the other attributes. His preference increases with the level of access for his
clients, the level of services of the office and its size. It decreases with commute
time and cost. This gives a first easy way to compare alternatives through the use of
dominance.

An alternative y is dominated by an alternative x if x is at least as good as y on
all attributes while being strictly better for at least one attribute. Clearly dominated
alternatives are not candidate for the final choice and may, thus, be dropped from
consideration. The reader will easily check that, on this example, alternative b
dominates alternative e: e and b have similar size but b is less expensive, involves a
shorter commute time, an easier access to clients and a better level of services. We
may therefore forget about alternative e. This is the only case of “pure dominance”
in our table. It is however easy to see that d is “close” to dominating a, the only
difference in favor of a being on the cost attribute ($50 per month). This is felt more
than compensated by the differences in favor of d on all other attributes: commute
time (20 min), client access (35 %) and size (150 ft2).

Dropping all alternatives that are not candidate for choice, this initial investiga-
tion allows us to reduce the problem to:
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b c d

Commute 25 20 25

Clients 80 70 85

Services B C A

Size 700 500 950

Cost 1700 1500 1900

A natural way to proceed is then to assess tradeoffs. Observe that all alternatives but
c have a common evaluation on commute time. We may therefore ask the consultant,
starting with office c, what gain on client access would compensate a loss of 5min
on commute time. We are looking for an alternative c0 that would be evaluated as
follows:

c c0

Commute 20 25
Clients 70 70 C ‹
Services C C

Size 500 500

Cost 1500 1500

and judged indifferent to c. Although this is not an easy question, it is clearly crucial
in order to structure preferences.

Remark 7. In this paper, we do not consider the possibility of lexicographic
preferences, in which such tradeoffs do not occur, see [83, 84, 204]. Lexicographic
preferences may also be combined with the possibility of “local” tradeoffs, see
[30, 88, 174]. 
Remark 8. Since tradeoffs questions may be difficult, it is wise to start with an
attribute requiring few assessments (in the example, all alternatives but one have
a common evaluation on commute time). Clearly this attribute should be traded
against one with an underlying “continuous” structure (cost, in the example). 

Suppose that the answer is that for ı D 8, it is reasonable to assume that c and
c0 would be indifferent. This means that the decision table can be reformulated as
follows:

b c0 d

Commute 25 25 25

Clients 80 78 85

Services B C A

Size 700 500 950

Cost 1700 1500 1900
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It is then apparent that all alternatives have a similar evaluation on the first
attribute which, therefore, is not useful to discriminate between alternatives and
may be forgotten. The reduced decision table is as follows:

b c0 d

Clients 80 78 85

Services B C A

Size 700 500 950

Cost 1700 1500 1900

There is no case of dominance in this reduced table. Therefore further simplification
calls for the assessment of new tradeoffs. Using cost as the reference attribute, we
then proceed to “neutralize” the service attribute. Starting with office c0, this means
asking for the increase in monthly cost that the consultant would just be prepared
to pay to go from level “C” of service to level “B”. Suppose that this increase is
roughly $250. This defines alternative c00. Similarly, starting with office d we ask
for the reduction of cost that would exactly compensate a reduction of services from
“A” to “B”. Suppose that the answer is $100 a month, which defines alternative d0.
The decision table is reshaped as:

b c00 d0

Clients 80 78 85

Services B B B
Size 700 500 950

Cost 1700 1750 1800

We may forget about the second attribute which does not discriminate any more
between alternatives. When this is done, it is apparent that c00 is dominated by b
and can be suppressed. Therefore, the decision table at this stage looks like the
following:

b d0

Clients 80 85

Size 700 950

Cost 1700 1800

Unfortunately, this table reveals no case of dominance. New tradeoffs have to be
assessed. We may now ask, starting with office b, what additional cost the consultant
would be ready to incur to increase its size by 250 ft2. Suppose that the rough answer
is $250 a month, which defines b0. We are now facing the following table:

b0 d0

Clients 80 85

Size 950 950

Cost 1950 1800
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Attribute size may now be dropped from consideration. But, when this is done, it
is clear that d0 dominates b0. Hence it seems obvious to recommend office d as the
final choice.

The above process is simple and looks quite obvious. If this works, why be
interested at all in “measurement” if the idea is to help someone to come up with a
decision?

First observe that in the above example, the set of alternatives was relatively
small. In many practical situations, the set of objects to compare is much larger than
the set of alternatives in our example. Using the even swaps technique could then
require a considerable number of difficult tradeoff questions. Furthermore, as the
output of the technique is not a preference model but just the recommendation of
an alternative in a given set, the appearance of new alternatives (e.g., because a new
office is for rent) would require starting a new round of questions. This is likely to
be highly frustrating. Finally, the informal even swaps technique may not be well
adapted to the, many, situations, in which the decision under study takes place in a
complex organizational environment. In such situations, having a formal model to
be able to communicate and to convince is an invaluable asset. Such a model will
furthermore allow to conduct extensive sensitivity analysis and, hence, to deal with
imprecision both in the evaluations of the objects to compare and in the answers to
difficult questions concerning tradeoffs.

This clearly leaves room for a more formal approach to structure preferences.
But where can “measurement” be involved in the process? It should be observed
that, beyond surface, there are many analogies between the even swaps process and
the measurement of length considered above.

First, note that, in both cases, objects are compared using binary relations. In the
measurement of length, the binary relation 
 reads “is longer than”. Here it reads
“is preferred to”. Similarly, the relation � reading before “has equal length” now
reads “is indifferent to”. We supposed in the measurement of length process that 

and � would nicely combine in experiments: if r 
 r0 and r0 � r00 then we should
observe that r 
 r00. Implicitly, a similar hypothesis was made in the even swaps
technique. To realize that this is the case, it is worth summarizing the main steps of
the argument.

We started with Table 4.1. Our overall recommendation was to rent office d.
This means that we have reasons to believe that d is preferred to all other potential
locations, i.e., d 
 a, d 
 b, d 
 c, and d 
 e. How did we arrive logically at such
a conclusion?

Based on the initial table, using dominance and quasi-dominance, we concluded
that b was preferable to e and that d was preferable to a. Using symbols, we have
b 
 e and d 
 a. After assessing some tradeoffs, we concluded, using dominance,
that b 
 c00. But remember, c00 was built so as to be indifferent to c0 and, in turn,
c0 was built so as to be indifferent to c. That is, we have c00 � c0 and c0 � c.
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Later, we built an alternative d0 that is indifferent to d (d � d0) and an alternative b0
that is indifferent to b (b � b0). We then concluded, using dominance, that d0 was
preferable to b0 (d0 
 b0). Hence, we know that:

d 
 a; b 
 e;

c00 � c0; c0 � c; b 
 c00;

d � d0; b � b0; d0 
 b0:

Using the consistency rules linking
 and� that we considered for the measurement
of length, it is easy to see that the last line implies d 
 b. Since b 
 e, this implies
d 
 e. It remains to show that d 
 c. But the second line leads to, combining
 and
�, b 
 c. Therefore d 
 b leads to d 
 c and we are home. Hence, we have used
the same properties for preference and indifference as the properties of “is longer
than” and “has equal length” that we hypothesized in the measurement of length.

Second it should be observed that expressing tradeoffs leads, indirectly, to
equating the “length” of “preference intervals” on different attributes. Indeed,
remember how c0 was constructed above: saying that c and c0 are indifferent more
or less amounts to saying that the interval Œ25; 20� on commute time has exactly the
same “length” as the interval Œ70; 78� on client access. Consider an alternative f that
would be identical to c except that it has a client access at 78%. We may again ask
which increase in client access would compensate a loss of 5min on commute time.
In a tabular form we are now comparing the following two alternatives:

f f 0

Commute 20 25

Clients 78 78C ı

Services C C

Size 500 500

Cost 1500 1500

Suppose that the answer is that for ı D 10, f and f 0 would be indifferent. This
means that the interval Œ25; 20� on commute time has exactly the same length as
the interval Œ78; 88� on client access. Now, we know that the preference intervals
Œ70; 78� and Œ78; 88� have the same “length”. Hence, tradeoffs provide a means to
equate two preference intervals on the same attribute. This brings us quite close to
the construction of standard sequences. This, we shall shortly do.

How does this information about the “length” of preference intervals relate to
judgements of preference or indifference? Exactly as in the even swaps technique.
You can use this measure of “length” modifying alternatives in such a way that they
only differ on a single attribute and then use a simple dominance argument.

Conjoint measurement techniques may roughly be seen as a formalization of
the even swaps technique that leads to building a numerical model of preferences
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much in the same way that we built a numerical model for length. This will require
assessment procedures that will rest on the same principles as the standard sequence
technique used for length. This process of “measuring preferences” is not an easy
one. It will however lead to a numerical model of preference that will not only allow
us to make a choice within a limited number of alternatives but that can serve as an
input of computerized optimization algorithms that will be able to deal with much
more complex cases.

4.2 Definitions and Notation

Before entering into the details of how conjoint measurement may work, a few
definitions and notation will be needed.

4.2.1 Binary Relations

A binary relation % on a set A is a subset of A � A. We write a % b instead of
.a; b/ 2 %. A binary relation % on A is said to be:

• reflexive if Œa % a�,
• complete if Œa % b or b % a�,
• symmetric if Œa % b�) Œb % a�,
• asymmetric if Œa % b�) ŒNotŒb % a��,
• transitive if Œa % b and b % c�) Œa % c�,
• negatively transitive if ŒNotŒ a % b � and NotŒ b % c � �) NotŒ a % c � ,

for all a; b; c 2 A.
The asymmetric (resp. symmetric) part of % is the binary relation 
 (resp. �)

on A defined letting, for all a; b 2 A, a 
 b , Œa % b and Not.b % a/� (resp.
a � b, Œa % b and b % a�). A similar convention will hold when % is subscripted
and/or superscripted.

A weak order (resp. an equivalence relation) is a complete and transitive (resp.
reflexive, symmetric and transitive) binary relation. For a detailed analysis of the
use of binary relation as tools for preference modelling we refer to [4, 81, 90, 205,
211, 213]. The weak order model underlies the examples that were presented in the
introduction. Indeed, the reader will easily prove the following.

Proposition 9. Let % be a weak order on A. Then:

• 
 is transitive,
• 
 is negatively transitive,
• � is transitive,
• Œa 
 b and b � c�) a 
 c,
• Œa � b and b 
 c�) a 
 c,

for all a; b; c 2 A.
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4.2.2 Binary Relations on Product Sets

In the sequel, we consider a set X D Qn
iD1 Xi with n 	 2. Elements x; y; z; : : : of X

will be interpreted as alternatives evaluated on a set N D f1; 2; : : : ; ng of attributes.
A typical binary relation on X is still denoted as %, interpreted as an “at least as good
as” preference relation between multi-attributed alternatives with � interpreted as
indifference and 
 as strict preference.

For any nonempty subset J of the set of attributes N, we denote by XJ (resp. X�J)
the set

Q
i2J Xi (resp.

Q
i…J Xi ). With customary abuse of notation, .xJ ; y�J/ will

denote the element w 2 X such that wi D xi if i 2 J and wi D yi otherwise. When
J D fig we shall simply write X�i and .xi; y�i/.

Remark 10. Throughout this paper, we shall work with a binary relation defined on
a product set. This setup conceals the important work that has to be done in practice
to make it useful:

• the structuring of objectives [3, 22, 23, 152–154, 200, 207],
• the definition of adequate attributes to measure the attainment of objectives [104,

122, 151, 156, 217, 258, 266],
• the definition of an adequate family of attributes [32, 155, 217, 218, 259],
• the modelling of uncertainty, imprecision and inaccurate determination [31, 49,

155, 215].

The importance of this “preliminary” work should not be forgotten in what
follows. 

4.2.3 Independence and Marginal Preferences

In conjoint measurement, one starts with a preference relation % on X. It is then
of vital importance to investigate how this information makes it possible to define
preference relations on attributes or subsets of attributes.

Let J � N be a nonempty set of attributes. We define the marginal relation %J

induced on XJ by % letting, for all xJ; yJ 2 XJ:

xJ%JyJ , .xJ; z�J/ % .yJ ; z�J/; for all z�J 2 X�J;

with asymmetric (resp. symmetric) part 
J (resp. �J). When J D fig, we often
abuse notation and write %i instead of %fig. Note that if % is reflexive (resp.
transitive), the same will be true for %J . This is clearly not true for completeness
however.
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Definition 11 (Independence). Consider a binary relation % on a set X D Qn
iD1 Xi

and let J � N be a nonempty subset of attributes. We say that % is independent for
J if, for all xJ; yJ 2 XJ ,

Œ.xJ ; z�J/ % .yJ; z�J/; for some z�J 2 X�J �) xJ%JyJ:

If % is independent for all nonempty subsets of N, we say that % is independent.
If % is independent for all subsets containing a single attribute, we say that % is
weakly independent.

In view of (4.2), it is clear that the additive value model will require that % is inde-
pendent. This crucial condition says that common evaluations on some attributes do
not influence preference. Whereas independence implies weak independence, it is
well-know that the converse is not true [261].

Remark 12. Under certain conditions, e.g., when X is adequately “rich”, it is not
necessary to test that a weak order % is independent for J, for all J � N in order to
know that % is independent, see [28, 113, 155]. This is often useful in practice. 
Remark 13. Weak independence is referred to as “weak separability” in [261];
in Sect. 4.5, we use “weak separability” (and “separability”) with a different
meaning. 
Remark 14. Independence, or at least weak independence, is an almost universally
accepted hypothesis in multiple criteria decision making. It cannot be overempha-
sized that it is easy to find examples in which it is inadequate.

If a meal is described by the two attributes, main course and wine, it is highly
likely that most gourmets will violate independence, preferring red wine with beef
and white wine with fish. Similarly, in a dynamic decision problem, a preference
for variety will often lead to violating independence: you may prefer Pizza to Steak,
but your preference for meals today (first attribute) and tomorrow (second attribute)
may well be such that (Pizza, Steak) preferred to (Pizza, Pizza), while (Steak, Pizza)
is preferred to (Steak, Steak).

Many authors [154, 217, 259] have argued that such failures of independence
were almost always due to a poor structuring of attributes (e.g., in our choice of
meal example above, preference for variety should be explicitly modelled). 

When % is a weakly independent weak order, marginal preferences are well-
behaved and combine so as to give meaning to the idea of dominance that we already
encountered. The proof of the following is left to the reader as an easy exercise.

Proposition 15. Let % be a weakly independent weak order on X D Qn
iD1 Xi.

Then:

• %i is a weak order on Xi,
• Œxi%iyi, for all i 2 N�) x % y,
• Œxi%iyi, for all i 2 N and xj
jyj for some j 2 N�) x 
 y,

for all x; y 2 X.
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4.3 The Additive Value Model in the “Rich” Case

The purpose of this section and the following is to present the conditions under
which a preference relation on a product set may be represented by the additive
value function model (4.2) and how such a model can be assessed. We begin here
with the case that most closely resembles the measurement of length described in
Sect. 4.1.2.

4.3.1 Outline of Theory

When the structure of X is supposed to be “adequately rich”, conjoint measurement
is a quite clever adaptation of the process that we described in Sect. 4.1.2 for the
measurement of length. What will be measured here are the “length” of preference
intervals on an attribute using a preference interval on another attribute as a standard.

4.3.1.1 The Case of Two Attributes

Consider first the two attribute case. Hence the relation % is defined on a set X D
X1�X2. Clearly, in view of (4.2), we need to suppose that % is an independent weak
order. Consider two levels x01; x

1
1 2 X1 on the first attribute such that x11
1x01, i.e., x11

is preferable to x01. This makes sense because, we supposed that % is independent.
Note also that we shall have to exclude the case in which all levels on the first
attribute would be indifferent in order to be able to find such levels.

Choose any x02 2 X2. The, arbitrarily chosen, element .x01; x
0
2/ 2 X will be our

“reference point”. The basic idea is to use this reference point and the “unit” on the
first attribute given by the reference preference interval Œx01; x

1
1� to build a standard

sequence on the preference intervals on the second attribute. Hence, we are looking
for an element x12 2 X2 that would be such that:

.x01; x
1
2/ � .x11; x02/: (4.3)

Clearly this will require the structure of X2 to be adequately “rich” so as to find
the level x12 2 X2 such that the reference preference interval on the first attribute
Œx01; x

1
1� is exactly matched by a preference interval of the same “length” on the

second attribute Œx02; x
1
2�. Technically, this calls for a solvability assumption or, more

restrictively, for the supposition that X2 has a (topological) structure that is close to
that of an interval of R and that % is “somehow” continuous.
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If such a level x12 can be found, model (4.2) implies:

v1.x
0
1/C v2.x12/ D v1.x11/C v2.x02/ so that

v2.x
1
2/ � v2.x02/ D v1.x11/� v1.x01/:

(4.4)

Let us fix the origin of measurement letting:

v1.x
0
1/ D v2.x02/ D 0;

and our unit of measurement letting:

v1.x
1
1/ D 1 so that v1.x

1
1/� v1.x01/ D 1:

Using (4.4), we therefore obtain v2.x12/ D 1. We have therefore found an interval
between levels on the second attribute (Œx02; x

1
2�) that exactly matches our reference

interval on the first attribute (Œx01; x
1
1�). We may proceed to build our standard

sequence on the second attribute (see Fig. 4.4) asking for levels x22; x
3
2; : : : such that:

.x01; x
2
2/ � .x11; x12/;

.x01; x
3
2/ � .x11; x22/;
: : :

.x01; x
k
2/ � .x11; xk�1

2 /:

Fig. 4.4 Building a standard
sequence on X2

x01

x02

X1

X2

x11

x12

x22

x32

x42

••

• •

••

••

•
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As above, using (4.2) leads to:

v2.x
2
2/ � v2.x12/ D v1.x11/� v1.x01/;

v2.x
3
2/ � v2.x22/ D v1.x11/� v1.x01/;

: : :

v2.x
k
2/ � v2.xk�1

2 / D v1.x11/� v1.x01/;

so that:

v2.x
2
2/ D 2; v2.x32/ D 3; : : : ; v2.xk

2/ D k:

This process of building a standard sequence of the second attribute therefore leads
to defining v2 on a number of, carefully, selected elements of X2.

Remember the standard sequence that we built for length in Sect. 4.1.2.
An implicit hypothesis was that the length of any rod could be exceeded by the
length of a composite object obtained by concatenating a sufficient number of
perfect copies of a standard rod. Such an hypothesis is called “Archimedean” since
it mimics the property of the real numbers saying that for any positive real numbers
x; y it is true that nx > y for some integer n, i.e., y, no matter how large, may
always be exceeded by taking any x, no matter how small, and adding it with itself
and repeating the operation a sufficient number of times. Clearly, we will need a
similar hypothesis here. Failing it, there might exist a level y2 2 X2 that will never
be “reached” by our standard sequence, i.e., such that y2
2xk

2, for k D 1; 2; : : :.
For measurement models in which this Archimedean condition is omitted, see
[197, 242].

Remark 16. At this point a good exercise for the reader is to figure out how we may
extend the standard sequence to cover levels of X2 that are “below” the reference
level x02. This should not be difficult.

Now that a standard sequence is built on the second attribute, we may use any part of
it to build a standard sequence on the first attribute. This will require finding levels
x21; x

3
1; : : : 2 X1 such that (see Fig. 4.5):

.x21; x
0
2/ � .x11; x12/;

.x31; x
0
2/ � .x21; x12/;
: : :

.xk
1; x

0
2/ � .xk�1

1 ; x12/:



118 D. Bouyssou and M. Pirlot

x0
1

x0
2

X1

X2

x1
1 x2

1 x3
1 x3

1

x1
2 ••

•

•

•

•

• •

Fig. 4.5 Building a standard sequence on X1

Using (4.2) leads to:

v1.x
2
1/ � v1.x11/ D v2.x12/� v2.x02/;

v1.x
3
1/ � v1.x21/ D v2.x12/� v2.x02/;

: : :

v1.x
k
1/ � v1.xk�1

1 / D v2.x12/� v2.x02/;
so that:

v1.x
2
1/ D 2; v1.x31/ D 3; : : : ; v1.xk

1/ D k:

As was the case for the second attribute, the construction of such a sequence will
require the structure of X1 to be adequately rich, which calls for a solvability
assumption. An Archimedean condition will also be needed in order to be sure that
all levels of X1 can be reached by the sequence.

We have defined a “grid” in X (see Fig. 4.6) and we have v1.xk
1/ D k and v2.xk

2/ D
k for all elements of this grid. Intuitively such numerical assignments seem to define
an adequate additive value function on the grid. We have to prove that this intuition
is correct. Let us first verify that, for all integers ˛; ˇ; �; ı:

˛ C ˇ D � C ı D 	) .x˛1 ; x
ˇ
2 / � .x�1 ; xı2/: (4.5)

When 	 D 1, (4.5) holds by construction because we have: .x01; x
1
2/ � .x11; x

0
2/.

When 	 D 2, we know that .x01; x
2
2/ � .x11; x12/ and .x21; x

0
2/ � .x11; x12/ and the claim

is proved using the transitivity of �.
Consider the 	 D 3 case. We have .x01; x

3
2/ � .x11; x

2
2/ and .x01; x

3
2/ � .x11; x

2
2/. It

remains to be shown that .x21; x
1
2/ � .x11; x22/ (see the dotted arc in Fig. 4.6). This does

not seem to follow from the previous conditions that we more or less explicitly used:
transitivity, independence, “richness”, Archimedean. Indeed, it does not. Hence, we
have to suppose that: .x21; x

0
2/ � .x01; x

2
2/ and .x01; x

1
2/ � .x11; x

0
2/ imply .x21; x

1
2/ �

.x11; x
2
2/. This condition, called the Thomsen condition, is clearly necessary for (4.2).

The above reasoning easily extends to all points on the grid, using weak ordering,
independence and the Thomsen condition. Hence, (4.5) holds on the grid.
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Fig. 4.6 The grid

It remains to show that:

	 D ˛ C ˇ > 	0 D � C ı) .x˛1 ; x
ˇ
2 / 
 .x�1 ; xı2/: (4.6)

Using transitivity, it is sufficient to show that (4.6) holds when 	 D 	0 C 1. By
construction, we know that .x11; x

0
2/ 
 .x01; x02/. Using independence this implies that

.x11; x
k
2/ 
 .x01; xk

2/. Using (4.5) we have .x11; x
k
2/ � .xkC1

1 ; x02/ and .x01; x
k
2/ � .xk

1; x
0
2/.

Therefore we have .xkC1
1 ; x02/ 
 .xk

1; x
0
2/, the desired conclusion.

Hence, we have built an additive value function of a suitably chosen grid
(see Fig. 4.7). The logic of the assessment procedure is then to assess more and
more points somehow considering more finely grained standard sequences. The
two techniques evoked for length may be used here depending on the underlying
structure of X. Going to the limit then unambiguously defines the functions v1
and v2. Clearly such v1 and v2 are intimately related. Once we have chosen an
arbitrary reference point .x01; x

0
2/ and a level x11 defining the unit of measurement, the

process just described entirely defines v1 and v2. It follows that the only possible
transformations that can be applied to v1 and v2 is to multiply both by the same
positive number ˛ and to add to both a, possibly different, constant. This is usually
summarized saying that v1 and v2 define interval scales with a common unit.

The above reasoning is a rough sketch of the proof of the existence of an additive
value function when n D 2, as well as a sketch of how it could be assessed. Careful
readers will want to refer to [81, 164, 261].

Remark 17. The measurement of length through standard sequences described
above leads to a scale that is unique once the unit of measurement is chosen. At this
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Fig. 4.7 The entire grid

point, a good exercise for the reader is to find an intuitive explanation to the fact that,
when measuring the “length” of preference intervals, the origin of measurement
becomes arbitrary. The analogy with the measurement of duration on the one hand
and dates, as given in a calendar, on the other hand should help. 
Remark 18. As was already the case with the even swaps technique, it is worth
emphasizing that this assessment technique makes no use of the vague notion of
the “importance” of the various attributes. The “importance” is captured here in the
lengths of the preference intervals on the various attributes.

A common but critical mistake is to confuse the additive value function
model (4.2) with a weighted average and to try to assess weights asking whether
an attribute is “more important” than another. This makes no sense. 

4.3.1.2 The Case of More Than Two Attributes

The good news is that the process is exactly the same when there are more than two
attributes. With one surprise: the Thomsen condition is no more needed to prove that
the standard sequences defined on each attribute lead to an adequate value function
on the grid. A heuristic explanation of this strange result is that, when n D 2, there is
no difference between independence and weak independence. This is no more true
when n 	 3 and assuming independence is much stronger than just assuming weak
independence.
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Fig. 4.8 The Thomsen
condition
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4.3.2 Statement of Results

We use below the “algebraic approach” [162, 164, 179]. A more restrictive approach
using a topological structure on X is given in [63, 81, 261]. We formalize below the
conditions informally introduced in the preceding section. The reader not interested
in the precise statement of the results or, better, having already written down his
own statement, may skip this section.

Definition 19 (Thomsen Condition). Let % be a binary relation on a set X D X1�
X2. It is said to satisfy the Thomsen condition if

.x1; x2/ � .y1; y2/ and .y1; z2/ � .z1; x2/) .x1; z2/ � .z1; y2/;

for all x1; y1; z1 2 X1 and all x2; y2; z2 2 X2.

Figure 4.8 shows how the Thomsen condition uses two “indifference curves”
(i.e., curves linking points that are indifferent) to place a constraint on a third one.
This was needed above to prove that an additive value function existed on our grid.
Remember that the Thomsen condition is only needed when n D 2; hence, we only
stated it in this case.

Definition 20 (Standard Sequences). A standard sequence on attribute i 2 N
is a set fak

i W ak
i 2 Xi; k 2 Kg where K is a set of consecutive integers

(positive or negative, finite or infinite) such that there are x�i; y�i 2 X�i satisfying
NotŒ x�i��iy�i � and .ak

i ; x�i/ � .akC1
i ; y�i/, for all k 2 K.

A standard sequence on attribute i 2 N is said to be strictly bounded if there are
bi; ci 2 Xi such that bi
2ak

i
2ci, for all k 2 K. It is then clear that, when model (4.2)
holds, any strictly bounded standard sequence must be finite.
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X1

X2

x•

z2

b1
a1c1

w•
y

• z•

z x

x y
⇒ there is a w such that x ∼ w

Fig. 4.9 Restricted Solvability on X1

Definition 21 (Archimedean). For all i 2 N, any strictly bounded standard
sequence on i 2 N is finite.

The following condition rules out the case in which a standard sequence cannot
be built because all levels are indifferent.

Definition 22 (Essentiality). Let % be a binary relation on a set X D X1�X2�� � ��
Xn. Attribute i 2 N is said to be essential if .xi; a�i/ 
 .yi; a�i/, for some xi; yi 2 Xi

and some a�i 2 X�i.

Definition 23 (Restricted Solvability). Let % be a binary relation on a set X D
X1 � X2 � � � � � Xn. Restricted solvability is said to hold with respect to attribute
i 2 N if, for all x 2 X, all z�i 2 X�i and all ai; bi 2 Xi, Œ.ai; z�i/ % x % .bi; z�i/�)
Œx � .ci; z�i/, for some ci 2 Xi�.

Remark 24. Restricted solvability is illustrated in Fig. 4.9 in the case where n D 2.
It says that, given any x 2 X, if it is possible find two levels ai; bi 2 Xi such that
when combined with a certain level z�i 2 X�i on the other attributes, .ai; z�i/ is
preferred to x and x is preferred to .bi; z�i/, it should be possible to find a level ci,
“in between” ai and bi, such that .ci; z�i/ is exactly indifferent to x.

A much stronger hypothesis is unrestricted solvability asserting that for all x 2 X
and all z�i 2 X�i, x � .ci; z�i/, for some ci 2 Xi. Its use leads however to much
simpler proofs [81, 110].

It is easy to imagine situations in which restricted solvability might hold while
unrestricted solvability would fail. Suppose, e.g., that a firm has to choose between
several investment projects, two attributes being the Net Present Value (NPV) of
the projects and their impact on the image of the firm in the public. Consider a
project consisting in investing in the software market. It has a reasonable NPV
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and no adverse consequences on the image of the firm. Consider another project
that could have dramatic consequences on the image of the firm, because it leads
to investing the market of cocaine. Unrestricted solvability would require that by
sufficiently increasing the NPV of the second project it would become indifferent to
the more standard project of investing in the software market. This is not required
by restricted solvability. 
We are now in position to state the central results concerning model (4.2). Proofs
may be found in [164, 263].

Theorem 25 (Additive Value Function When n D 2). Let % be a binary relation
on a set X D X1 � X2. If restricted solvability holds on all attributes and each
attribute is essential then % has a representation in model (4.2) if and only if % is
an independent weak order satisfying the Thomsen and the Archimedean conditions.

Furthermore in this representation, v1 and v2 are interval scales with a common
unit, i.e., if v1; v2 and w1;w2 are two pairs of functions satisfying (4.2), there are
real numbers ˛; ˇ1; ˇ2 with ˛ > 0 such that, for all x1 2 X1 and all x2 2 X2

v1.x1/ D ˛w1.x1/C ˇ1 and v2.x2/ D ˛w2.x2/C ˇ2:

When n 	 3 and at least three attributes are essential, the above result simplifies
in that the Thomsen condition can now be omitted.

Theorem 26 (Additive Value Function When n 	 3). Let % be a binary relation
on a set X D X1 � X2 � : : : � Xn with n 	 3. If restricted solvability holds on all
attributes and at least three attributes are essential then % has a representation in
model (4.2) if and only if % is an independent weak order satisfying the Archimedean
condition.

Furthermore in this representation v1, v2; : : : ; vn are interval scales with a
common unit.

Remark 27. As mentioned in introduction, the additive value model is central to
several fields in decision theory. It is therefore not surprising that much energy has
been devoted to analyze variants and refinements of the above results. Among the
most significant ones, let us mention:

• the study of cases in which solvability holds only on some or none of the
attributes [99, 109–112, 146, 147, 196],

• the study of the relation between the “algebraic approach” introduced above and
the topological one used in [63], see e.g., [150, 158, 261, 263].

The above results are only valid when X is the entire Cartesian product of the sets
Xi. Results in which X is a subset of the whole Cartesian product X1 � X2 � : : :�Xn

are not easy to obtain, see [56, 225] (the situation is “easier” in the special case of
homogeneous product sets, see [262, 265]).

In [34, 35, 255, 256] additive representations are obtained on the basis of twofold
ordered partitions of X. These primitives are less rich than a preference relation
of X. 
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4.3.3 Implementation: Standard Sequences and Beyond

We have already shown above how additive value functions can be assessed
using the standard sequence technique. It is worth recalling here some of the
characteristics of this assessment procedure:

• It requires the set Xi to be rich so that it is possible to find a preference interval on
Xi that will exactly match a preference interval on another attribute. This excludes
using such an assessment procedure when some of the sets Xi are discrete.

• It relies on indifference judgements which, a priori, are less firmly established
than preference judgements.

• It relies on judgements concerning fictitious alternatives which, a priori, are
harder to conceive than judgements concerning real alternatives.

• The various assessments are thoroughly intertwined and, e.g., an imprecision
on the assessment of x12, i.e., the endpoint of the first interval in the standard
sequence on X2 (see Fig. 4.4) will propagate to many assessed values.

• The assessment of tradeoffs may be plagued with cognitive biases, see [65, 246].

The assessment procedure based on standard sequences is therefore rather
demanding; this should be no surprise given the proximity between this form
of measurement and extensive measurement illustrated above on the case of
length. Hence, the assessment procedure based on standard sequences seems to
be seldom used in the practice of decision analysis [155, 259]. The literature on
the experimental assessment of additive value functions, see e.g., [246, 258, 266],
suggests that this assessment is a difficult task that may be affected by several
cognitive biases.

Many other simplified assessment procedures have been proposed that are less
firmly grounded in theory. In many of them, the assessment of the partial value
functions vi relies on direct comparison of preference differences without recourse
to an interval on another attribute used as a “meter stick”. We refer to [71] for a
theoretical analysis of these techniques. They are also studied in detail in [70].

These procedures include:

• direct rating techniques in which values of vi are directly assessed with reference
to two arbitrarily chosen points [73, 74],

• procedures based on bisection, the decision-maker being asked to assess a point
that is “half way” in terms of preference two reference points [259],

• procedures trying to build standard sequences on each attribute in terms of
“preference differences” [164, Chap. 4].

An excellent overview of these techniques may be found in [259].
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4.4 The Additive Value Model in the “Finite” Case

4.4.1 Outline of Theory

In this section, we suppose that % is a binary relation on a finite set X � X1 � X2
� � � ��Xn (contrary to the preceding section, dealing with subsets of product sets will
raise no difficulty here). The finiteness hypothesis clearly invalidates the standard
sequence mechanism used till now. On each attribute there will only be finitely
many “preference intervals” and exact matches between preference intervals will
only happen exceptionally, see [264].

Clearly, independence remains a necessary condition for model (4.2) as before.
Given the absence of structure of the set X, it is unlikely that this condition is
sufficient to ensure (4.2). The following example shows that this intuition is indeed
correct.

Example 28. Let X D X1 � X2 with X1 D fa; b; cg and X2 D fd; e; f g. Consider the
weak order on X such that, abusing notation in an obvious way,

ad 
 bd 
 ae 
 af 
 be 
 cd 
 ce 
 bf 
 cf :

It is easy to check that % is independent. Indeed, we may for instance check that:

ad 
 bd and ae 
 be and af 
 bf ;

ad 
 ae and bd 
 be and cd 
 ce:

This relation cannot however be represented in model (4.2) since:

af 
 be) v1.a/C v2.f / > v1.b/C v2.e/;
be 
 cd) v1.b/C v2.e/ > v1.c/C v2.d/;
ce 
 bf ) v1.c/C v2.e/ > v1.b/C v2.f /;
bd 
 ae) v1.b/C v2.d/ > v1.a/C v2.e/:

Summing the first two inequalities leads to:

v1.a/C v2.f / > v1.c/C v2.d/:

Summing the last two inequalities leads to:

v1.c/C v2.d/ > v1.a/C v2.f /;

a contradiction.
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Note that, since no indifference is involved, the Thomsen condition is trivially
satisfied. Although it is clearly necessary for model (4.2), adding it to independence
will therefore not solve the problem.

The conditions allowing to build an additive value model in the finite case were
investigated in [1, 2, 223]. Although the resulting conditions turn out to be complex,
the underlying idea is quite simple. It amounts to finding conditions under which a
system of linear inequalities has a solution.

Suppose that x 
 y. If model (4.2) holds, this implies that:

nX

iD1
vi.xi/ >

nX

iD1
vi.yi/: (4.7)

Similarly if x � y, we obtain:

nX

iD1
vi.xi/ D

nX

iD1
vi.yi/: (4.8)

The problem is then to find conditions on % such that the system of finitely many
equalities and inequalities (4.7) and (4.8) has a solution. This is a classical problem
in Linear Algebra [107].

Definition 29 (Relation Em). Let m be an integer 	 2. Let x1; x2; : : : ; xm; y1;
y2; : : : ; ym 2 X. We say that

.x1; x2; : : : ; xm/Em.y1; y2; : : : ; ym/

if, for all i 2 N, .x1i ; x
2
i ; : : : ; x

m
i / is a permutation of .y1i ; y

2
i ; : : : ; y

m
i /.

Suppose that .x1; x2; : : : ; xm/Em.y1; y2; : : : ; ym/ then model (4.2) implies that

mX

jD1

nX

iD1
vi.x

j
i/ D

mX

jD1

nX

iD1
vi.y

j
i/:

Therefore if xj % yj for j D 1; 2; : : : ;m � 1, it cannot be true that xm 
 ym. This
condition must hold for all m D 2; 3; : : :.
Definition 30 (Condition Cm). Let m be an integer 	 2. We say that condition Cm

holds if

Œxj % yj for j D 1; 2; : : : ;m � 1�) NotŒ xm 
 ym �

for all x1; x2; : : : ; xm; y1; y2; : : : ; ym 2 X such that

.x1; x2; : : : ; xm/Em.y1; y2; : : : ; ym/:
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Remark 31. It is not difficult to check that:

• CmC1 ) Cm,
• C2 ) % is independent,
• C3 ) % is transitive.


We already observed that Cm was implied by the existence of an additive

representation. The main result for the finite case states that requiring that % is
complete and that Cm holds for m D 2; 3; : : : is also sufficient. Proofs can be found
in [81, 164].

Theorem 32. Let % be a binary relation on a finite set X � X1�X2�� � ��Xn. There
are real-valued functions vi on Xi such that (4.2) holds if and only if % is complete
and satisfies Cm for m D 2; 3; : : :.
Remark 33. Contrary to the “rich” case considered in the preceding section, we
have here necessary and sufficient conditions for the additive value model (4.2).
However, it is important to notice that the above result uses a denumerable scheme
of conditions. It is shown in [224] that this denumerable scheme cannot be truncated:
for all m 	 2, there is a relation % on a finite set X such that Cm holds but violating
CmC1. This is studied in more detail in [180, 250, 268]. Therefore, no finite scheme
of axioms is sufficient to characterize model (4.2) for all finite sets X.

Given a finite set X of given cardinality, it is well-known that the denumerable
scheme of condition can be truncated. The precise relation between the cardinality
of X and the number of conditions needed raises difficult combinatorial questions
that are studied in [101, 102]. 
Remark 34. It is clear that, if a relation % has a representation in model (4.2) with
functions vi, it also has a representation using functions v0

i D ˛vi C ˇi with ˛ > 0.
Contrary to the rich case, the uniqueness of the functions vi is more complex as
shown by the following example.

Example 35. Let X D X1 � X2 with X1 D fa; b; cg and X2 D fd; eg. Consider the
weak order on X such that, abusing notation in an obvious way,

ad 
 bd 
 ae 
 cd 
 be 
 ce:

This relation has a representation in model (4.2) with

v1.a/ D 3; v1.b/ D 1; v1.c/ D 0; v2.d/ D 3; v2.e/ D 0:5:

An equally valid representation would be given taking v1.b/ D 2. Clearly this new
representation cannot be deduced from the original one applying a positive affine
transformation. 
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Remark 36. Theorem 32 has been extended to the case of an arbitrary set X in
[146, 147], see also [99, 105]. The resulting conditions are however quite complex.
This explains why we spent time on this “rich” case in the preceding section. 
Remark 37. The use of a denumerable scheme of conditions in Theorem 32 does
not facilitate the interpretation and the test of conditions. However it should be
noticed that, on a given set X, the test of the Cm conditions amounts to finding if
a system of finitely many linear inequalities has a solution. It is well-known that
Linear Programming techniques are quite efficient for such a task. 

4.4.2 Implementation: LP-Based Assessment

We show how to use LP techniques in order to assess an additive value model (4.2),
without supposing that the sets Xi are rich. For practical purposes, it is not restrictive
to assume that we are only interested in assessing a model for a limited range
on each Xi. We therefore assume that the sets Xi are bounded so that, using
independence, there is a worst value xi� and a most preferable value x�

i . Using the
uniqueness properties of model (4.2), we may always suppose, after an appropriate
normalization, that:

v1.x1�/ D v2.x2�/ D : : : D vn.xn�/ D 0 and (4.9)

nX

iD1
vi.x

�
i / D 1: (4.10)

Two main cases arise (see Figs. 4.10 and 4.11):

• attribute i 2 N is discrete so that the evaluation of any conceivable alternative on
this attribute belongs to a finite set. We suppose that Xi D fxi�; x1i ; x2i ; : : : ; x

ri
i ; x

�
i g.

We therefore have to assess ri C 1 values of vi,
• the attribute i 2 N has an underlying continuous structure. It is hardly restrictive

in practice to suppose that Xi � R, so that the evaluation of an alternative on this
attribute may take any value between xi� and x�

i . In this case, we may opt for
the assessment of a piecewise linear approximation of vi partitioning the set Xi

in ri C 1 intervals and supposing that vi is linear on each of these intervals. Note
that the approximation of vi can be made more precise simply by increasing the
number of these intervals.

With these conventions, the assessment of the model (4.2) amounts to giving a
value to

Pn
iD1.ri C 1/ unknowns. Clearly any judgment of preference linking x

and y translate into a linear inequality between these unknowns. Similarly any
judgment of indifference linking x and y translate into a linear equality. Linear
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Fig. 4.10 Value function
when Xi is discrete
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Fig. 4.11 Value function when Xi is continuous

Programming (LP) offers a powerful tool for testing whether such a system has
solutions. Therefore, an assessment procedure can be conceived on the following
basis:

• obtain judgments in terms of preference or indifference linking several alterna-
tives in X,

• convert these judgments into linear (in)equalities,
• test, using LP, whether this system has a solution.
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If the system has no solution then one may either propose a solution that will be
“as close as possible” from the information obtained, e.g., violating the minimum
number of (in)equalities or suggest the reconsideration of certain judgements. If the
system has a solution, one may explore the set of all solutions to this system
since they are all candidates for the establishment of model (4.2). These various
techniques depend on:

• the choice of the alternatives in X that are compared: they may be real or
fictitious, they may differ on a different number of attributes,

• the way to deal with the inconsistency of the system and to eventually propose
some judgments to be reconsidered,

• the way to explore the set of solutions of the system and to use this set as the
basis for deriving a prescription.

Linear programming offers of simple and versatile technique to assess additive
value functions. All restrictions generating linear constraints of the coefficient of the
value function can easily be accommodated. This idea has been often exploited, see
[22, 51]. We present below two techniques using it. It should be noticed that rather
different techniques have been proposed in the literature on Marketing [54, 133–
135, 140, 141, 148, 169, 170, 199].

4.4.2.1 UTA [145]

UTA (“UTilité Additive”, i.e., additive utility in French) is one of the oldest
techniques belonging to this family. It is supposed in UTA that there is a subset
Ref � X of reference alternatives that the decision-maker knows well either because
he/she has experienced them or because they have received particular attention.
The technique amounts to asking the DM to provide a weak order on Ref . Each
preference or indifference relation contained in this weak order is then translated
into a linear constraint:

• x � y gives an equality v.x/ � v.y/ D 0 and
• x 
 y gives an inequality v.x/ � v.y/ > 0,

where v.x/ and v.y/ can be expressed as a linear combination of the unknowns
as remarked earlier. Strict inequalities are then translated into large inequalities as
is usual in Linear Programming, i.e., v.x/ � v.y/ > 0 becomes v.x/ � v.y/ 	 	

where 	 > 0 is a very small positive number that should be chosen according to the
precision of the arithmetics used by the LP package.

The test of the existence of a solution to the system of linear constraints is
done via standard Goal Programming techniques [55] adding appropriate deviation
variables. In UTA, each equation v.x/ � v.y/ D 0 is translated into an equation
v.x/ � v.y/ C 
C

x � 
�
x C 
C

y � 
�
y D 0, where 
C

x ; 

�
x ; 


C
y and 
�

y are
nonnegative deviation variables. Similarly each inequality v.x/�v.y/ 	 	 is written
as v.x/�v.y/C
C

x �
�
x C
C

y �
�
y 	 	. It is clear that there will exist a solution to
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the original system of linear constraints if there is a solution of the LP in which all
deviation variables are zero. This can easily be tested using the objective function

Minimize Z D
X

x2Ref


C
x C 
�

x (4.11)

Two cases arise. If the optimal value of Z is 0, there is an additive value function
that represents the preference information. It should be observed that, except in
exceptional cases (e.g., if the preference information collected is identical to the
preference information collected with the standard sequence technique), there are
infinitely many such additive value functions [that are not related via a simple
change of origin and of unit, since we already fixed them through normaliza-
tion (4.9) and (4.10)]. The one given as the “optimal” one by the LP does not have a
special status since it is highly dependent upon the arbitrary choice of the objective
function; instead of minimizing the sum of the deviation variables, we could have
as well, and still preserving linearity, minimized the largest of these variables. The
whole polyhedron of feasible solutions of the original (in)equalities corresponds to
adequate additive value functions: we have a whole set V of additive value functions
representing the information collected on the set of reference alternatives Ref .

The size of V is clearly dependent upon the choice of the alternatives in Ref .
Using standard techniques in LP, several functions in V may be obtained, e.g., the
ones maximizing or minimizing, within V , vi.x�

i / for each attribute [145]. It is often
interesting to present them to the decision-maker in the pictorial form of Figs. 4.10
and 4.11.

If the optimal value of Z is strictly greater than 0, there is no additive value
function representing the preference information available. The solution given as
optimal (note that it is not guaranteed that this solution leads to the minimum
possible number of violations w.r.t. the information provided—this would require
solving an integer linear programme) is, in general, highly dependent upon the
choice of the objective function.

This absence of solution to the system might be due to several factors:

• The piecewise linear approximation of the vi for the “continuous” attributes may
be too rough. It is easy to test whether an increase in the number of linear
pieces on some of these attributes may lead to a nonempty set of additive value
functions.

• The information provided by the decision-maker may be of poor quality. It might
then be interesting to present to the decision-maker one additive value function
(e.g., one may present an average function after some post-optimality analysis) in
the pictorial form of Figs. 4.10 and 4.11 and to let him react to this information
either by modifying his/her initial judgments or even by letting him/her react
directly on the shape of the value functions. This is the solution implemented in
the well-known PREFCALC system [143].

• The preference provided by the decision-maker might be inconsistent with the
conditions implied by an additive value function. The system should then help
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locate these inconsistencies and allow the DM to think about them. Alternatively,
since many alternative attribute descriptions are possible, it may be worth
investigating whether a different definition of the various attributes may lead to a
preference model consistent with model (4.2). Several examples of such analysis
may be found in [154, 155, 259]

When the above techniques fail, the optimal solution of the LP, even if not
compatible with the information provided, may still be considered as an adequate
model. Again, since the objective function introduced above is somewhat arbitrary
and it is recommended in [145] to perform a post-optimality analysis, e.g., consid-
ering additive value functions that are “close” to the optimal solution through the
introduction of a linear constraint:

Z � Z� C ı;

where Z� is the optimal value of the objective function of the original LP and ı is a
“small” positive number. As above, the result of the analysis is a set V of additive
value functions defined by a set of linear constraints. A representative sample of
additive value functions within V may be obtained as above.

It should be noted that many possible variants of UTA can be conceived building
on the following comments. They include:

• the addition of monotonicity properties of the vi with respect to the underlying
continuous attributes,

• the addition of constraints on the shape of the marginal value functions vi, e.g.,
requiring them to be concave, convex or S-shaped,

• the addition of constraints linked to a possible indication of preference intensity
for the elements of Ref given by the DM, e.g., the difference between x and y is
larger than the difference between z and w.

For applications of UTA-like techniques, we refer to [19, 57, 66, 68, 137, 144,
186, 190, 230–232, 235–238, 240, 244, 245, 269–273]. Variants of the method are
considered in [26, 27, 29, 79, 131, 132, 136, 137, 229, 234, 239]. This method is
reviewed in [67, 233, 241].

4.4.2.2 MACBETH [10]

It is easy to see that (4.9) and (4.10) may equivalently be written as:

x % y,
nX

iD1
kiui.xi/ 	

nX

iD1
kiui.yi/; (4.12)

where

u1.x1�/ D u2.x2�/ D : : : un.xn�/ D 0; (4.13)



4 An Introduction to Conjoint Measurement 133

u1.x
�
1 / D u2.x

�
2 / D : : : un.x

�
n / D 1 and (4.14)

nX

iD1
ki D 1: (4.15)

With such an expression of an additive value function, it is tempting to break down
the assessment into two distinct parts: a value function ui is assessed on each
attribute and, then, scaling constants ki are assessed taking the shape of the value
functions ui as given. This is the path followed in MACBETH.

Remark 38. Again, note that we are speaking here of ki as scaling constants and
not as weights. As already mentioned weights that would reflect the “importance”
of attributes are irrelevant to assess the additive value function model. Notice that,
under (4.12)–(4.15) the ordering of the scaling constant ki is dependent upon the
choice of xi� and x�

i . Increasing the width of the interval Œxi�; x�
i � will lead to

increasing the value of the scaling constant ki. The value ki has, therefore, nothing
to do with the “importance” of attribute i. This point is unfortunately too often
forgotten when using a weighted average of some numerical attributes. In the
latter model, changing the units in which the attributes are measured should imply
changing the “weights” accordingly. 

The assessment procedure of the ui is conceived in such a way as to avoid
comparing alternatives differing on more than one attribute. In view of what was
said before concerning the standard sequence technique, this is clearly an advantage
of the technique. But can it be done? The trick here is that MACBETH asks for
judgments related to the difference between the desirability of alternatives and not
only judgments in terms of preference or indifference. Partial value functions ui are
approximated in a similar way than in UTA: for discrete attributes, each point on the
function is assessed, for continuous ones, a piecewise linear approximation is used.

MACBETH asks the DM to compare pairs of levels on each attribute. If no
difference is felt between these levels, they receive an identical partial value level.
If a difference is felt between xk

i and xr
i , MACBETH asks for a judgment qualifying

the strength of this difference. The method and the associated software propose three
different semantical categories:

Categories Description

C1 Weak

C2 Strong

C3 Extreme

with the possibility of using intermediate categories, i.e., between null and weak,
weak and strong, strong and extreme (giving a total of six distinct categories). This
information is then converted into linear inequations using the natural interpretation
that if the “difference” between the levels xk

i and xr
i has been judged larger than the
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“difference” between xk0

i and xr0

i then it should follow that ui.xk
i /�ui.xr

i / > ui.xk0

i /�
ui.xr0

i /. Technically the six distinct categories are delimited by thresholds that are
used in the establishment of the constraints of the LP. The software associated to
MACBETH offers the possibility to compare all pairs of levels on each attribute for
a total of .riC1/ri=2 comparisons. Using standard Goal Programming techniques, as
in UTA, the test of the compatibility of a partial value function with this information
is performed via the solution of a LP. If there is a partial value function compatible
with the information, a “central” function is proposed to the DM who has the
possibility to modify it. If not, the results of the LP are exploited in such a way
to propose modifications of the information that would make it consistent.

The assessment of the scaling constant ki is done using similar principles. The
DM is asked to compare the following .nC 2/ alternatives by pairs:

.x1�; x2�; : : : ; xn�/;

.x�
1 ; x2�; : : : ; xn�/;

.x1�; x�
2 ; : : : ; xn�/;

: : :

.x1�; x2�; : : : ; x�
n / and

.x�
1 ; x

�
2 ; : : : ; x

�
n /;

placing each pair in a category of difference. This information immediately
translates into a set of linear constraints on the ki. These constraints are processed
as before. It should be noticed that, once the partial value functions ui are assessed,
it is not necessary to use the levels xi� and x�

i to assess the ki since they may well
lead to alternatives that are too unrealistic. The authors of MACBETH suggest to
replace xi� by a “neutral” level which appears neither desirable nor undesirable and
x�

i by a “desirable” level that is judged satisfactory. Although this clearly impacts
the quality of the dialogue with the DM, this has no consequence on the underlying
technique used to process information.

We refer to [6–9, 11–15, 17, 18, 203] for applications of the MACBETH
technique. This method is also studied in detail in [16].

4.5 Extensions

The additive value model (4.2) is the central model for the application of conjoint
measurement techniques to decision analysis. In this section, we consider various
extensions to this model.
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4.5.1 Transitive Decomposable Models

The transitive decomposable model has been introduced in [164] as a natural
generalization of model (4.2). It amounts to replacing the addition operation by a
general function that is increasing in each of its arguments.

Definition 39 (Transitive Decomposable Model). Let % be a binary relation on a
set X D Qn

iD1 Xi. The transitive decomposable model holds if, for all i 2 N, there
is a real-valued function vi on Xi and a real-valued function g on

Qn
iD1 vi.Xi/ that is

increasing in all its arguments such that:

x % y, g.v1.x1/; : : : ; vn.xn// 	 g.v1.y1/; : : : ; vn.yn//; (4.16)

for all x; y 2 X.

An interesting point with this model is that it admits an intuitively appealing
simple characterization. The basic axiom for characterizing the above transitive
decomposable model is weak independence, which is clearly implied by (4.16). The
following theorem is proved in [164, Chap. 7].

Theorem 40. A preference relation % on a finite or countably infinite set X has a
representation in the transitive decomposable model iff % is a weakly independent
weak order.

Remark 41. This result can be extended to sets of arbitrary cardinality adding a,
necessary, condition implying that the weak order % has a numerical representation,
see [61, 64]. 
The weak point of such a model is that the function g is left unspecified so that
the model will be difficult to assess. Furthermore, the uniqueness results for vi

and g are clearly much less powerful than what we obtained with model (4.2),
see [164, Chap. 7]. Therefore, practical applications of this model generally imply
specifying the type of function g, possibly by verifying further conditions on the
preference relation that impose that g belongs to some parameterized family of
functions, e.g., some polynomial function of the vi. This is studied in detail in [164,
Chap. 7] and [21, 106, 176, 180, 198, 210, 251]. Since such models have, to the best
of our knowledge, never been used in decision analysis, we do not analyze them
further.

The structure of the decomposable model however suggests that assessment
techniques for this model could well come from Artificial Intelligence with its “rule
induction” machinery. Indeed the function g in model (4.16) may also be seen as a
set of “rules”. We refer to [123–126, 130] for a thorough study of the potentiality of
such an approach.

Remark 42. A simple extension of the decomposable model consists in simply
asking for a function g that would be nondecreasing in each of its arguments. The
following result is proved in [39] (see also [126]) (it can easily be extended to cover



136 D. Bouyssou and M. Pirlot

the case of an arbitrary set X, adding a, necessary, condition implying that % has a
numerical representation).

We say that % is weakly separable if, for all i 2 N and all xi; yi 2 Xi, it is never
true that .xi; z�i/ 
 .yi; z�i/ and .yi;w�i/ 
 .xi;w�i/, for some z�i;w�i 2 X�i.
Clearly this is a weakening of weak independence since it tolerates to have at the
same time .xi; z�i/ 
 .yi; z�i/ and .xi;w�i/ � .yi;w�i/.

Theorem 43. A preference relation % on a finite or countably infinite set X has a
representation in the weak decomposable model:

x % y, g.u1.x1/; : : : ; un.xn// 	 g.u1.y1/; : : : ; un.yn//

with g nondecreasing in all its arguments iff % is a weakly separable weak order.

A recent trend of research has tried to characterize special functional forms for g
in the weakly decomposable model, such as max, min or some more complex forms.
The main references include [50, 126, 128, 226, 243]. 
Remark 44. The use of “fuzzy integrals” as tools for aggregating criteria has
recently attracted much attention [69, 114–120, 182–185], the Choquet Integral and
the Sugeno integral being among the most popular. It should be strongly emphasized
that the very definition of these integrals requires to have at hand a weak order
on [n

iD1Xi, supposing w.l.o.g. that the sets Xi are disjoint. This is usually called
a “commensurability hypothesis”. Whereas this hypothesis is quite natural when
dealing with an homogeneous Cartesian product, as in decision under uncertainty
(see e.g., [261]), it is far less so in the area of multiple criteria decision making. A
neat conjoint measurement analysis of such models and their associated assessment
procedures is an open research question, see [121]. It has recently been solved for
the case of the Sugeno integral [52, 129]. 

4.5.2 Intransitive Indifference

Decomposable models form a large family of preferences though not large enough
to encompass all cases that may be encountered when asking subjects to express
preferences. A major restriction is that not all preferences may be assumed to be
weak orders. The example of the sequence of cups of coffee, each differing from
the previous one by an imperceptible quantity of sugar added [171], is famous; it
leads to the notions of semiorder and interval order [4, 82, 90, 171, 205], in which
indifference is not transitive, while strict preference is.

Ideally, taking intransitive indifference into account, we would want to arrive at
a generalization of (4.2) in which:

x � y, jV.x/� V.y/j � 	;
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x 
 y, V.x/ > V.y/C 	;

where 	 	 0 and V.x/ DPn
iD1 vi.xi/.

In the finite case, it is not difficult to extend the conditions presented in Sect. 4.4
to cover such a case. Indeed, we are still looking here for the solution to a system
of linear constraints. Although this seems to have never been done, it would not be
difficult to adapt the LP-based assessment techniques to this case.

On the contrary, extending the standard sequence technique of Sect. 4.3 is a
formidable challenge. Indeed, remember that these techniques crucially rest on
indifference judgments which lead to the determination of “perfect copies” of a
given preference interval. As soon as indifference is not supposed to be transitive,
“perfect copies” are not so perfect and much trouble is expected. We refer to
[108, 163, 167, 168, 172, 188, 189, 205, 248] for a study of these models.

Remark 45. Even if the analysis of such models proves difficult, it should be noted
that the semi-ordered version of the additive value model may be interpreted as
having a “built-in” sensitivity analysis via the introduction of the threshold 	.
Therefore, in practice, we may usefully view 	 not as a parameter to be assessed
but as a simple trick to avoid undue discrimination, because of the imprecision
inevitably involved in our assessment procedures, between close alternatives 
Remark 46. Clearly the above model can be generalized to cope with a possibly
non-constant threshold. The literature on the subject remains minimal however, see
[205]. 

4.5.3 Nontransitive Preferences

Many authors [187, 252] have argued that the reasonableness of supposing that
strict preference is transitive is not so strong when it comes to comparing objects
evaluated on several attributes. As soon as it is supposed that subjects may use
an “ordinal” strategy for comparing objects, examples inspired from the well-
known Condorcet paradox [220, 227] show that intransitivities will be difficult to
avoid. Indeed it is possible to observe predictable intransitivities of strict preference
in carefully controlled experiments [252]. There may therefore be a descriptive
interest to studying such models. When it comes to decision analysis, intransitive
preferences are often dismissed on two grounds:

• On a practical level, it is not easy to build a recommendation on the basis of a
binary relation in which
would not be transitive. Indeed, social choice theorists,
facing a similar problem, have devoted much effort to devising what could be
called reasonable procedures to deal with such preferences [60, 86, 165, 166,
191, 201, 222]. This literature does not lead, as was expected, to the emergence
of a single suitable procedure in all situations.



138 D. Bouyssou and M. Pirlot

• On a more conceptual level, many others have questioned the very rationality
of such preferences using some version of the famous “money pump” argument
[175, 208].

P.C. Fishburn has forcefully argued [97] that these arguments might not be as
decisive as they appear at first sight. Furthermore some MCDM techniques make
use of such intransitive models, most notably the so-called outranking methods
[33, 78, 80, 216, 253, 254]. Besides the intellectual challenge, there might therefore
be a real interest in studying such models.

A. Tversky [252] was one of the first to propose such a model generalizing (4.2),
known as the additive difference model, in which:

x % y,
nX

iD1
ˆi.ui.xi/ � ui.yi// 	 0 (4.17)

whereˆi are increasing and odd functions.
It is clear that (4.17) allows for intransitive % but implies its completeness.

Clearly, (4.17) implies that % is independent. This allows us to unambiguously
define marginal preferences %i. Although model (4.17) can accommodate intran-
sitive %, a consequence of the increasingness of the ˆi is that the marginal
preference relations %i are weak orders. This, in particular, excludes the possibility
of any perception threshold on each attribute which would lead to an intransitive
indifference relation on each attribute. Imposing that ˆi are nondecreasing instead
of being increasing allows for such a possibility. This gives rise to what is called the
“weak additive difference model” in [30].

As suggested in [30, 93, 95, 96, 255], the subtractivity requirement in (4.17) can
be relaxed. This leads to nontransitive additive conjoint measurement models in
which:

x % y,
nX

iD1
pi.xi; yi/ 	 0 (4.18)

where the pi are real-valued functions on X2i and may have several additional
properties (e.g., pi.xi; xi/ D 0, for all i 2 f1; 2; : : : ; ng and all xi 2 Xi).

This model is an obvious generalization of the (weak) additive difference model.
It allows for intransitive and incomplete preference relations % as well as for
intransitive and incomplete marginal preferences %i. An interesting specialization
of (4.18) obtains when pi are required to be skew symmetric i.e., such that pi.xi; yi/ D
�pi.yi; xi/. This skew symmetric nontransitive additive conjoint measurement
model implies that % is complete and independent.

An excellent overview of these nontransitive models is [97]. Several axiom
systems have been proposed to characterize them. P.C. Fishburn gave [93, 95, 96]
axioms for the skew symmetric version of (4.18) both in the finite and the infinite
case. Necessary and sufficient conditions for a nonstandard version of (4.18) are
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presented in [100]. Vind [255, 256] gives axioms for (4.18) with pi.xi; xi/ D 0 when
n 	 4. Bouyssou [30] gives necessary and sufficient conditions for (4.18) with and
without skew symmetry in the denumerable case when n D 2.

The additive difference model (4.17) was axiomatized in [98] in the infinite case
when n 	 3 and [30] gives necessary and sufficient conditions for the weak additive
difference model in the finite case when n D 2. Related studies of nontransitive
models include [58, 88, 174, 195]. The implications of these models for decision-
making under uncertainty were explored in [94] (for a different path to nontransitive
models for decision making under risk and/or uncertainty, see [89, 91]).

It should be noticed that even the weakest form of these models, i.e., (4.18)
without skew symmetry, involves an addition operation. Therefore it is unsurprising
that the axiomatic analysis of these models share some common features with the
additive value function model (4.2). Indeed, except in the special case in which
n D 2, this case relating more to ordinal than to conjoint measurement (see [36, 96]),
the various axiom systems that have been proposed involve either:

• a denumerable set of cancellation conditions in the finite case or,
• a finite number of cancellation conditions together with unnecessary structural

assumptions in the general case [these structural assumptions generally allow us
to obtain nice uniqueness results for (4.18): the functions pi are unique up to the
multiplication by a common positive constant].

A different path to the analysis of nontransitive conjoint measurement models
has recently been proposed in [37, 39, 40] and surveyed in [43]. In order to get a
feeling for these various models, it is useful to consider the various strategies that are
likely to be implemented when comparing objects differing on several dimensions
[59, 193, 194, 219, 249, 252].

Consider two alternatives x and y evaluated on a family of n attributes so that
x D .x1; x2; : : : ; xn/ and y D .y1; y2; : : : ; yn/.

A first strategy that can be used in order to decide whether or not it can be
said that “x is at least as good as y” consists in trying to measure the “worth” of
each alternative on each attribute and then to combine these evaluations adequately.
Giving up all idea of transitivity and completeness, this suggests a model in which:

x % y, F.u1.x1/; : : : ; un.xn/; u1.y1/; : : : ; un.yn// 	 0 (4.19)

where ui are real-valued functions on the Xi and F is a real-valued function
on

Qn
iD1 ui.Xi/

2. Additional properties on F, e.g., its nondecreasingness (resp.
nonincreasingness) in its first (resp. last) n arguments, will give rise to a variety
of models implementing this first strategy.

A second strategy relies on the idea of measuring “preference differences” sepa-
rately on each attribute and then combining these (positive or negative) differences
in order to know whether the aggregation of these differences leads to an advantage
for x over y. More formally, this suggests a model in which:

x % y, G.p1.x1; y1/; p2.x2; y2/; : : : ; pn.xn; yn// 	 0 (4.20)
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where pi are real-valued functions on X2i and G is a real-valued function onQn
iD1 pi.X2i /. Additional properties on G (e.g., its oddness or its nondecreasingness

in each of its arguments) or on pi (e.g., pi.xi; xi/ D 0 or pi.xi; yi/ D �pi.yi; xi/) will
give rise to a variety of models in line with the above strategy.

Of course these two strategies are not incompatible and one may well consider
using the “worth” of each alternative on each attribute to measure “preference
differences”. This suggests a model in which:

x % y, H.�1.u1.x1/; u1.y1//; : : : ; �n.un.xn/; un.yn/// 	 0 (4.21)

where ui are real-valued functions on Xi, �i are real-valued functions on ui.Xi/
2 and

H is a real-valued function on
Qn

iD1 �i.ui.Xi/
2/.

The use of general functional forms, instead of additive ones, greatly facilitate
the axiomatic analysis of these models. It mainly relies on the study of various kinds
of traces induced by the preference relation on coordinates and does not require a
detailed analysis of tradeoffs between attributes.

The price to pay for such an extension of the scope of conjoint measurement is
that the number of parameters that would be needed to assess such models is quite
high. Furthermore, none of them is likely to possess any remarkable uniqueness
properties. Therefore, although proofs are constructive, these results will not give
direct hints on how to devise assessment procedures. The general idea here is to
use numerical representations as guidelines to understand the consequences of a
limited number of cancellation conditions, without imposing any transitivity or
completeness requirement on the preference relation and any structural assumptions
on the set of objects. Such models have proved useful to:

• understand the ordinal character of some aggregation models proposed in the
literature [214, 216], known as the “outranking methods” (see [78, 80, 216] for
surveys) as shown in [38, 42, 44–46, 48, 127],

• understand the links between aggregation models aiming at enriching a domi-
nance relation and more traditional conjoint measurement approaches [39],

• to include in a classical conjoint measurement framework, noncompensatory
preferences in the sense of [30, 47, 76, 84, 85] as shown in [38, 41, 42, 44, 46,
127].
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Słowiński, R. (ed.) Fuzzy Sets in Decision Analysis, Operations Research and Statistics,
pp. 31–68. Kluwer, Boston (1998)

121. Grabisch, M., Labreuche, Ch., Vansnick, J.-C.: On the extension of pseudo-boolean functions
for the aggregation of interacting criteria. Eur. J. Oper. Res. 148(1), 28–47 (2003)

122. Grassin, N.: Constructing criteria population for the comparison of different options of high
voltage line routes. Eur. J. Oper. Res. 26, 42–47 (1886)
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126. Greco, S., Matarazzo, B., Słowiński, R.: Conjoint measurement and rough set approach for
multicriteria sorting problems in presence of ordinal criteria. In: Colorni, A., Paruccini, M.,
Roy, B. (eds.) A-MCD-A, Aide Multicritère à la Décision/Multiple. Criteria Decision Aid,
pp. 117–144. European Commission, Joint Research Centre, Luxembourg (2001)
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Chapter 5
ELECTRE Methods

José Rui Figueira, Vincent Mousseau, and Bernard Roy

Abstract Over the last three decades a large body of research in the field of
ELECTRE family methods appeared. This research has been conducted by several
researchers mainly in Europe. The purpose of this chapter is to present a survey of
the ELECTRE methods since their first appearance in mid-60s, when ELECTRE I
was proposed by Bernard Roy and his colleagues at SEMA consultancy company.
The chapter is organized in five sections. The first section presents a brief history
of ELECTRE methods. The second section is devoted to the main features of
ELECTRE methods. The third section describes the different ELECTRE methods
existing in the literature according to the three main problematics: choosing, ranking
and sorting. The fourth section presents the recent developments and future issues
on ELECTRE methods. Finally, the fifth section is devoted to the software and
applications. An extensive and up-to-date bibliography is also provided in the end
of this chapter.
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5.1 Introduction: A Brief History

How far back in history should we go to discover the origins of ELECTRE methods?
Some years ago B. Roy and D. Vanderpooten [133] published an article (“The
European School of MCDA: Emergence, Basic Features and Current Works”,
Journal of Multi-Criteria Decision Analysis) on this very topic. This introduction
is largely based on their paper, but additional material has been included to
define the origins more precisely and to look more deeply into the history of
ELECTRE methods. We have also benefited from an old, but nonetheless excellent,
bibliography containing a lot of references collated by Y. Siskos et al. [145].
The latter only covers the period 1966–1982, but contains many valuable references.

The origins of ELECTRE methods go back to 1965 at the European consultancy
company SEMA, which is still active today. At that time, a research team from
SEMA worked on a concrete, multiple criteria, real-world problem regarding
decisions dealing with the development of new activities in firms. For “solving”
this problem a general multiple criteria method, MARSAN (Méthode d’Analyse,
de Recherche, et de Sélection d’Activités Nouvelles) was built. The analysts used a
weighted-sum based technique included in the MARSAN method for the selection
of the new activities [67]. When using the method the engineers from SEMA noticed
serious drawbacks in the application of such a technique. B. Roy was thus consulted
and soon tried to find a new method to overcome the limitations of MARSAN.
The ELECTRE method for choosing the best action(s) from a given set of actions
was thus devised in 1965, and was later referred to as ELECTRE I (electre one).
In that same year (July, 1965) the new multiple criteria outranking method was
presented for the first time at a conference (les journées d’études sur les méthodes
de calcul dans les sciences de l’homme), in Rome (Italy). Nevertheless, the original
ideas of ELECTRE methods were first merely published as a research report in
1966, the notorious Note de Travail 49 de la SEMA [14]. Shortly after its appearance,
ELECTRE I was found to be successful when applied to a vast range of fields [22],
but the method did not become widely known until 1968 when it was published in
RIRO, la Revue d’Informatique et de Recherche Opérationnelle [102]. This article
presents a comprehensive description of ELECTRE and the foundations of the
outranking approach; the reader may also consult the graph theory book by B.
Roy [103]. The method has since evolved and given rise to an “unofficial” version,
ELECTRE Iv (electre one vee). This version took into account the notion of a veto
threshold. A further version known as ELECTRE IS (electre one esse) appeared
subsequently (see [130]) and was used for modeling situations in which the data
was imperfect (see below). This is the current version of ELECTRE methods for
choice problematic.

The acronym ELECTRE stands for [14, 108]: ELimination Et Choix Traduisant
la REalité (ELimination and Choice Expressing the REality), and was cited for
commercial reasons. At the time it seemed adequate and served well to promote
the new tool. Nevertheless, the developments in ELECTRE methods over the last
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three decades, the way in which we consider the tool today and the methodological
foundations of multiple criteria decision aiding have made the meaning of the
acronym unsatisfactory.

An atypical ELECTRE method was also created to deal with the problem of high-
way layout in the Ile de France region; it was called the meaningful compensation
method [15, 16, 29, 104, 124]. This approach was based on substitution rates. These
rates were ill-defined (stakeholders views about their values strongly differed), it
was only possible to fix a minimum and maximum value for each one. On such
basis a set of embedded fuzzy relations has been defined.

In the late 60s, a different real-world decision making situation arose in media
planning, concerning the definition of an advertising plan. For such a purpose
the question was: how to establish an adequate system of ranking for periodicals
(magazines, newspapers, . . . )? This led to the birth of ELECTRE II (electre two):
a method for dealing with the problem of ranking actions from the best option
to the worst [1, 51, 121, 122]. However, in a world where perfect knowledge is
rare, imperfect knowledge only could be taken into account in ELECTRE methods
through the use of probabilistic distributions and expected utility criterion. Clearly
more work needed to be done. Research in this area was still in its initial stages.
Another way to cope with uncertain, imprecision and ill-determination has been
introduced, the threshold approach [23, 57, 58, 134]. For more details and a
comprehensive treatment of this issue see [18, 109, 110]. Just a few years later a new
method for ranking actions was devised: ELECTRE III (electre three), [106, 135].
The main new ideas introduced by this method were the use of pseudo-criteria (see
[105]) and fuzzy binary outranking relations. Another ELECTRE method, known
as ELECTRE IV (electre four), arose from a new real-world problem related to
the Paris subway network [46, 53, 125, 126, 128]. It now became possible to rank
actions without using the relative criteria importance coefficients; this is the only
ELECTRE method which does not make use of such coefficients. In addition, the
new method was equipped with an embedded outranking relations framework.

Methods created up to this point were particularly designed to help decision
making in choosing and ranking actions. However, in the late 70s a new technique
of sorting actions into predefined and ordered categories was proposed i.e. the
trichotomy procedure [78, 79, 107]. This is a decision tree based approach. Several
years later, in order to help decision making in a large banking company which
faced to the problem of accepting or refusing credits requested by firms, a specific
method, ELECTRE A, was devised and applied in ten sectors of activity. This should
have remained confidential. One of the most recent sorting method, ELECTRE TRI
(electre tree), was greatly inspired by these earlier works. It removed everything
they had of specific given their context of application. Indeed, this new method is,
at the same time, both simpler and more general [160, 161]. Very recently, a new
ELECTRE sorting method was proposed, ELECTRE TRI-C [4], where categories
are defined by characteristic typical reference actions instead of boundary actions
as in the previous methods. Another extension allowing to define each category
through the definition of several characteristics reference actions per category can
be found in [5].
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ELECTRE methods are still evolving (see [42]). Section 5.4 presents recent
developments on the topic and avenues for future research.

5.2 Main Features of ELECTRE Methods

This section presents a set of key issues concerning ELECTRE methods: the context
in which they are relevant, modeling with an outranking relation, their structure, the
role of criteria, and how to account for imperfect knowledge.

5.2.1 In What Context Are ELECTRE Methods Relevant?

ELECTRE methods are relevant when facing decision situations with the following
characteristics (see, [112, 124, 138]).

1: The decision-maker (DM) wants to include in the model at least three criteria.
However, aggregation procedures are particularly adequate in situations when
decision models include more than five criteria (up to 12 or 13). Let gj, j D
1; : : : ; n denote a coherent family of criteria and let A denote the set of potential
actions; gj.a/ represents the performance of action a on criterion gj.

And, at least one of the following situations must be verified.

2: Actions are evaluated (for at least one criterion) on an ordinal scale (see [96])
or on a weakly interval scale (see [72]). These scales are not suitable for the
comparison of differences. Hence, it is difficult and=or artificial to define a
coding that makes sense in terms of preference differences of the ratios gj.a/�gj.b/

gj.c/�gj.d/
,

where a, b, c, and d are four different actions.
3: A strong heterogeneity related with the nature of the scales associated with

the criteria exists (e.g., environment impact, cost, aesthetics, duration, noise,
distance, security, . . . ). This makes it difficult to define a unique and common
scale that could be used to substitute the original ones.

4: Compensation of the loss on a given criterion by a gain on another one may
not be acceptable for the DM. Therefore, such situations require the use of
noncompensatory aggregation procedures (see Chap. 2).

5: For at least one criterion the following holds true: small differences of prefer-
ences must not be considered as significant. This requires the introduction of
discriminating (indifference and preference) thresholds (see Chap. 4).
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5.2.2 Modeling Preferences Using an Outranking Relation

Preferences in ELECTRE methods are modeled by using binary outranking rela-
tions, S, whose meaning is at least as good as. Considering two actions a and b,
four situations may occur:

• aSb and not bSa, i.e., a 
 b (a is preferred to b).
• bSa and not aSb, i.e., b 
 a (b is preferred to a).
• aSb and bSa, i.e., aIb (a is indifferent to b).
• Not aSb and not bSa, i.e., aRb (a is incomparable to b).

ELECTRE methods build one or several (crispy, fuzzy or embedded) outranking
relations.

Note that using outranking relations to model preferences introduces a new
preference relation, R, (incomparability). This relation is useful to account for
situations in which the DM and/or the analyst are not able to compare two actions.

The construction of an outranking relation is based on two major concepts:

1. Concordance. For an outranking aSb to be validated, a sufficient majority of
criteria should be in favor of this assertion.

2. Non-discordance. When the concordance condition holds, none of the criteria in
the minority should oppose too strongly to the assertion aSb.

These two conditions must be fulfilled for validating the assertion aSb.
Given a binary relation on set A, from the first procedure, is extremely helpful to

build a graph G D .V;U/, where V is the set of vertices and U the set of arcs. For
each action a 2 A we associate a vertex i 2 V and for each pair of actions .a; b/ 2 A
the arc .i; l/ exists if aSb. If there is no arc between vertices i and l, it means that a
and b are incomparable; if two reversal arcs exist, there is an indifference between
both a and b.

The outranking relation(s) is(are) not necessarily transitive. This requires an
exploitation procedure to derive from such relation(s) results that fit the problematic
(see Chap. 2).

Outranking relations may lead to preference intransitivities stemming from two
different situations: Condorcet effect and incomparabilities between actions.

5.2.3 Structure of ELECTRE Methods

ELECTRE methods comprise two main procedures:

• A multiple criteria aggregation procedure, allowing for the construction of one or
several outranking relation(s) aiming to compare in a comprehensive way each
pair of actions.

• An exploitation procedure that lead to produce results according to the nature of
problematic (choosing, ranking or sorting)
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Hence, each method is characterized by its construction and its exploitation
procedures. For more details the reader may consult the following references:
[81, 111, 112, 124, 154, 157].

5.2.4 About the Relative Importance of Criteria

The relative role attached to criteria in ELECTRE methods is defined by two distinct
sets of parameters: the relative importance coefficients and the veto thresholds.

The importance coefficients in ELECTRE methods refer to intrinsic “weights”.
For a given criterion the weight, wj, reflects its voting power when it contributes
to the majority which is in favor of an outranking. The weights do not depend
neither on the ranges nor the encoding of the scales. Let us point out that
these parameters cannot be interpreted as substitution rates as in compensatory
aggregation procedures AHP [136], MACBETH [11] and MAUT [64].

Veto thresholds express the power attributed to a given criterion to be against the
assertion “a outranks b”, when the difference of the performances between g.b/ and
g.a/ is greater than this threshold. Such a threshold can be constant along a scale or
it can also vary.

A large amount of works have been published on the topic of relative importance
of criteria. The following list is not exhaustive: [39, 74, 80, 98, 99, 129, 135, 142,
155].

It should be noticed that there are no true values for weights and veto thresholds.

5.2.5 Discriminating Thresholds

To take into account the imperfect character of the evaluation of actions and the
arbitrariness when building a family of criteria (see Chap. 2), ELECTRE methods
make use of discriminating (indifference and preference) thresholds. This leads to
the construction of a pseudo-criterion model for each criterion (see Chap. 3).

Discriminating thresholds account for the arbitrariness and the imperfect nature
of the performances, and are used for modeling situations in which the difference
between performances associated with two different actions on a given criterion may
either:

• Justify the preference in favor of one of the two actions (preference threshold,
pj).

• Be compatible with indifference between the two actions (indifference thresh-
olds, qj).

• Be interpreted as an hesitation between opting for a preference or an indifference
between the two actions.
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These thresholds (pj > qj > 0) can be constant or vary along the scale. When
they are variable we must distinguish between direct (the performance of the worst
action is taken into account) and inverse (when they are computed by using the best
performance).

How to assign values to such thresholds? There are several techniques which can
be used, some of them comes directly from the definition of threshold and other ask
for the concept of dispersion threshold (see Sect. 5.4.2).

A dispersion threshold allow us to take into account the concept of probable
value and the notion of optimistic and pessimistic values. It translates the plausible
difference, due to over or under-estimations, which affect the evaluation of a
consequence or of a performance level.

It should be noticed that there are no true values for thresholds. Therefore, the
values chosen to assign to the thresholds are the most convenient (the best adapted)
for expressing the imperfect character of the knowledge.

For more details about thresholds see, [3, 19, 108, 113, 115–117, 124].

5.3 A Short Description of ELECTRE Methods

A comprehensive treatment of ELECTRE methods may be found in the books
by B. Roy and D. Bouyssou [124] and Ph. Vincke [158]. Much of the theory
developed on this field is presented in these books. This theory, however, was
foreshadowed in earlier papers namely by B. Roy and his colleagues at SEMA and
later at LAMSADE (some of these papers were cited in the introduction). The books
[74, 108, 113, 138, 139] are also good references in the area. ELECTRE software
manuals also contain much material both on theoretical and pedagogical issues
[3, 51, 84, 130, 153, 161]. Finally, several other works deserve to be mentioned
because they include information concerning ELECTRE methods: [9, 20, 21, 24,
45, 60, 91, 99, 142].

In what follows we will only summarize the elementary concepts underlying
ELECTRE methods; details will be omitted. More sophisticated presentations can,
however, be found in the references cited above.

Description of methods is presented in problematic and chronological order.

5.3.1 Choice Problematic

Let us remind the purpose of choice problematic before presenting methods. The
objective of this problematic consists of aiding DMs in selecting a subset, as small
as possible of actions, in such a way that a single action may finally be chosen.

The order in which methods will be presented permit us to understand the
historical introduction of the two fundamental concepts in multiple criteria decision
aiding, veto thresholds and pseudo-criteria.
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5.3.1.1 ELECTRE I

The purpose underlying the description of this method is rather theoretical and
pedagogical. The method does not have a significant practical interest, given
the very nature of real-world applications, having usually a vast spectrum of
quantitative and qualitative elementary consequences, leading to the construction
of a contradictory and very heterogeneous set of criteria with both numerical and
ordinal scales associated with them. In addition, a certain degree of imprecision,
uncertainty or ill-determination is always attached to the knowledge collected from
real-world problems.

The method is very simple and it should be applied only when all the criteria have
been coded in numerical scales with identical ranges. This is a simplified version of
the original method. In such a situation we can assert that an action “a outranks b”
(that is, “a is at least as good as b”) denoted by aSb, only when two conditions hold.

Coding scales of criteria to get a new one with identical ranges is not a simple
activity; it cannot be easy to get this common scale. It is necessary that this coding
justifies the use of the max operator, introduced hereafter to model the discordance.
Otherwise, the use of this operator will not be completely justified. Thus, it is very
difficult to built identical numerical scales to compare actions and give a meaning
to the max operator. This justifies the introduction of ELECTRE Iv.

On the one hand, the strength of the concordant coalition must be powerful
enough to support the above assertion. By strength of the concordant coalition, we
mean the sum of the weights associated with the criteria forming such a coalition.
It can be defined by the following concordance index (assuming, for the sake of
formulae simplicity, that

P
j2J wj D 1):

c.aSb/ D
X

fj W gj.a/>gj.b/g
wj

(where fj W gj.a/ > gj.b/g is the set of indices for all the criteria belonging to the
concordant coalition with the outranking relation aSb).

In other words, the value of the concordance index must be greater than or equal
to a given concordance level, s, whose value generally falls within the range Œ0:5; 1�
minj2J wj�, i.e., c.aSb/ > s.

On the other hand, no discordance against the assertion “a is at least as good
as b” may occur. The discordance is measured by a discordance level defined as
follows:

d.aSb/ D max
fj W gj.a/<gj.b/g

n
gj.b/� gj.a/

o

This level measures in some way the power of the discordant coalition, meaning that
if its value surpasses a given level, v, the assertion is no longer valid. Discordant
coalition exerts no power whenever d.aSb/ 6 v.
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Both concordance and discordance indices have to be computed for every pair of
actions .a; b/ in the set A, where a ¤ b.

It is easy to see that such a computing procedure leads to a binary relation in
comprehensive terms (taking into account the whole set of criteria) on the set A.
Hence for each pair of actions .a; b/, only one of the preference situations mentioned
in Sect. 5.4.2 may occur.

This preference-indifference framework with the possibility to resort to incom-
parability, says nothing about how to select the best compromise action, or a subset
of actions the DM will focus his attention on. In the construction procedure of
ELECTRE I method only one outranking relation S is matter of fact.

The second procedure consists of exploiting this outranking relation in order
to identify a small as possible subset of actions, from which the best compromise
action could be selected. The identification of this small number justifies the removal
of the actions that do not belong to the kernel. The basic idea of the kernel concept
in ELECTRE methods is that all the actions that do not belong to the kernel are
outranked for at least one action in the kernel. Such a subset, OA, may be determined
with the help of the graph kernel concept, KG. The justification of the use of this
concept can be found in [124]. When the graph contains no direct cycles, there
exists always a single kernel; otherwise, the graph contains no kernels or several.
But, let us point out that a graph G may contain direct cycles. If that is the case,
a preprocessing step must take place where maximal direct cycles are reduced to
singleton elements, forming thus a partition on A. Let NA denote that partition. Each
class on NA D f NA1; NA2; : : :g is now composed of a set of (considered) equivalent
actions. When no cycle exists there is a unique kernel in the graph. It should be
noticed that a new preference relation, 
, is defined on NA:

NAp 
 NAq , 9a 2 NAp and 9b 2 NAq such that aSb for NAp ¤ NAq

In ELECTRE I all the actions which form a cycle are considered indifferent,
which may be, criticized. ELECTRE IS was designed to mitigate this inconvenient
(see Sect. 5.3.1.3). In addition, the way of comparing this subsets is also criticized.

5.3.1.2 ELECTRE Iv

The name ELECTRE Iv was an unofficial name created for designating ELECTRE
I with veto threshold [74]. This method is equipped with a different but extremely
useful tool. The new tool made possible for analysts and DMs to overcome the
difficulties related to the heterogeneity of scales. It is a generalization of the first
method. The discordance is taken in account through the concept of veto threshold.

The new tool introduced was the veto thresholds, vj, that can be attributed to
certain criteria gj belonging to F. The concept of veto threshold is related in some
way, to the definition of an upper bound beyond which the discordance about the
assertion “a outranks b” cannot surpass and allow an outranking (see Sect. 4.4).
In practice, the idea of threshold is, however, quite different from the idea of
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discordance level like in ELECTRE I. Indeed, while discordance level is related
to the scale of criterion gj in absolute terms for an action a from A, threshold veto is
related to the performance differences between gj.a/ and gj.b/.

In presence of qualitative criteria and if do not introduce a numerical coding
of the scale it is necessary to identify all minimal ordered pairs leading to a
discordance of the assertion aSb. Let us notice that this remark remains valid for all
the ELECTRE method presented hereafter. However, it is always possible to define
a way of coding the minimal ordered pairs that renders possible the application of
the formulae presented in this chapter.

In terms of structure and formulae, little changes occur when moving from
ELECTRE I to ELECTRE Iv. The only difference being the discordance condition,
now called no veto condition, which may be stated as follows:

gj.a/C vj.gj.a// > gj.b/; 8 j 2 J

where, vj.gj.a// is a variable threshold.
To validate the assertion “a outranks b” it is necessary that, among the minority

of criteria that are opposed to this assertion, none of them puts its veto.
ELECTRE Iv uses the same exploitation procedure as ELECTRE I, i.e., the way

of selecting the kernel and exploiting the graph is the identical in both ELECTRE I
and ELECTRE Iv.

But, this method is by no means complete; the problem of imperfect knowledge
remains.

ELECTRE Iv as well as ELECTRE I are obsolete.

5.3.1.3 ELECTRE IS

How general an ELECTRE method can be when applied to choice decision-making
problems? Is it possible to take into account simultaneously the heterogeneity
of criteria scales, and imperfect knowledge about real-world decision-making
situations? Previous theoretical research done on thresholds and semi-orders may,
however, illuminate the issue of inaccurate data and permit to build a more general
procedure, the so-called ELECTRE IS method.

One of the two majors novelties of ELECTRE IS is the use of pseudo-criteria
instead of true-criteria. This method is an extension of the previous one aiming
at taking into account a double objective: primarily the use of possible no nil
indifference and preference thresholds for certain criteria belonging to F and,
correlatively, a backing up (reinforcement) of the veto effect when the importance
of the concordant coalition decreases. Both concordance and no veto conditions
change. Let us present separately the formulae for each one of theses conditions.

 Concordance condition Let us start by building the following two indices sets:

1. concerning the coalition of criteria in which aSb

J S D
n
j 2 J W gj.a/C qj

�
gj.a/

�
> gj.b/

o
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2. concerning the coalition of criteria in which bQa

J Q D
n
j 2 J W gj.a/C qj

�
gj.a/

�
< gj.a/ 6 gj.b/C pj

�
gj.b/

�o

The concordance condition will be:

c.aSb/ D
X

j2J S

wj C
X

j2J Q

'jwj > s

where,

'j D gj.a/C pj
�
gj.a/

� � gj.b/

pj
�
gj.a/

� � qj
�
gj.a/

�

the coefficient 'j decreases linearly from 1 to 0, when gj describes the range
Œgj.a/C qj

�
gj.a/

�
; gj.a/C pj

�
gj.a/

�
�.

 no veto condition The no veto condition can be stated as follows:

gj.a/C vj
�
gj.a/

�
> gj.b/C qj

�
gj.b/

�
�j

where,

�j D 1 � c.aSb/� wj

1 � s � wj
; with 1 � s � wj ¤ 0

The second major novelty is related to the exploitation procedure, actions
belonging to a cycle are no longer considered as indifferent as in the previous
versions of ELECTRE for choice problems. Now, we take into account the concept
of degree of robustness of “a outranks b”. It is a reinforcement of veto effect and
allow us to build true classes of ex æquo (ties) and thus define an acycle graph over
these classes. In such conditions there is always a single kernel. For more details see
[3, 124].

5.3.2 Ranking Problematic

In ranking problematic we are concerned with the ranking of all the actions
belonging to a given set of actions from the best to the worst, possibly with ex æquo
(ties). There are three different ELECTRE methods to deal with this problematic.
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5.3.2.1 ELECTRE II

From an historical and pedagogical point of view it is interesting to present
ELECTRE II. This method was the first of ELECTRE methods especially designed
to deal with ranking problems.

Without going into further detail, it is important to point out that ELECTRE II
was the first method, to use a technique based on the construction of an embedded
outranking relations sequence.

The construction procedure is very closed to ELECTRE Iv, in the sense that it is
also a true-criteria based procedure. Hence, it is not surprising that no veto condition
remains the same, but it can be the defined (there are two possible values for the
veto thresholds according to the two different relations). However, concordance
condition is modified in order to take into account the notion of embedded
outranking relations. There are two embedded relations: a strong outranking relation
followed by a weak outranking relation. Both the strong and weak relations are
built thanks to the definition of two concordance levels, s1 > s2, where s1; s2 2
Œ0:5; 1�minj2J wj�. Now, the concordance condition with the assertion “a outranks
b” can be defined as follows:

c.aSb/ > sr and c.aSb/ > c.bSa/; for r D 1; 2

The exploitation procedure is a four-step algorithm:

1. Partitioning the set A. First, let us consider the relation S1 over A. In a similar
way like in ELECTRE I, this relation may define on A one or several cycles. If all
the actions belonging to each maximal cycle are grouped together into a single
class, a partition on A will be obtained. Let NA denote this partition. When each
class of NA is not a singleton, the actions belonging to that class will be considered
as ex æquo. For the purpose of comparison between elements of NA a preference
relation
1 will be used. This relation has the same meaning as the relation
 for
ELECTRE I.

2. Building a complete pre-order Z1 on NA. After obtaining NA, the procedure
identifies a subset B1 of classes of NA following the rule “no one else does
not prefer them” according to the relation 
1. After removing B1 from NA and
applying the same rule to NAnB1, a subset B2 will be found. The procedure iterates
in the same way till define the final partition on NA, fB1;B2; : : :g.

Now, on the basis of S1, we may define a rough version of the complete pre-
order Z1, while placing in the head of this pre-order and in an ex æquo position
all classes of B1, then those of B2 and so forth. In order to define Z1 in a more
accurate way, we examine if it is possible to refine this pre-order on the basis of
the relation S2. This refinement consists of using the information that brings this
less believable outranking to decide between the various classes of a subset Bp

when it contains several classes. This refinement of the rough version is obtained
while using S2 to define over Bp a complete pre-order that takes place between
Bp�1 and BpC1.
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3. Determining a complete pre-order Z2 on NA. The procedure to obtain this pre-order
is quite similar to the above one; only two modifications are needed:

 apply the rule “they are not preferred to any other” instead of “no other is
preferred to them”; let fB10

;B2
0

; : : :g denote the partition thus obtained;
 define the rough version of the complete pre-order Z2 by putting it in the queue

of this pre-order, and in an ex æquo position all classes of B1
0

, then those of
B2

0

and so forth.

4. Defining the partial pre-order Z. The partial pre-order Z is an intersection of Z1
and Z2, Z D Z1 \ Z2, is defined in the following way:

aZb , aZ1b and aZ2b:

5.3.2.2 ELECTRE III

ELECTRE III was designed to improve ELECTRE II and thus deal with inaccu-
rate, imprecise, uncertain or ill-determination of data. This purpose was actually
achieved, and ELECTRE III was applied with success during the last two decades
on a broad area of real-life applications.

In the current description of ELECTRE III we will omit several formulae details.
The novelty of this method is the introduction of pseudo-criteria instead of true-
criteria.

The construction of an outranking relation in ELECTRE III requires the def-
inition of a credibility index for the outranking relation aSb; let 
.aSb/ denote
this index. It is defined by using both the concordance index (as determined in
ELECTRE IS), c.aSb/, and a discordance index for each criterion gj in F, that is,
dj.aSb/.

The discordance of a criterion gj aims at taking into account the fact that this
criterion is more or less discordant with the assertion aSb. The discordance index
reaches its maximal value when criterion gj puts its veto to the outranking relation;
it is minimal when the criterion gj is not discordant with that relation. To define the
value of the discordance index on the intermediate zone, we simply admitted that
this value grows in proportion to the difference gj.b/�gj.a/. This index can now be
presented as follows:

dj.aSb/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

1 if gj.b/ > gj.a/C vj.gj.a//

0 if gj.b/ 6 gj.a/C pj.gj.a//

gj.b/�gj.a/�pj.gj.a//
vj.gj.a//�pj.gj.a//

; otherwise
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The credibility index is defined as follows,


.aSb/ D c.aSb/
nY

j2jD1
Tj.aSb/;

where Tj.aSb/ D 1�dj.aSb/
1�c.aSb if and only if dj.aSb/ > c.aSb/, and Tj.aSb/ D 1

otherwise.
Notice that, when dj.aSb/ D 1, it implies that 
.aSb/ D 0, since c.aSb/ < 1.
The definition of 
.aSb/ is thus based on the following main ideas:

(a) When there is no discordant criterion, the credibility of the outranking relation
is equal to the comprehensive concordance index.

(b) When a discordant criterion activates its veto power, the assertion is not credible
at all, thus the index is null.

(c) For the situations in which the comprehensive concordance index is strictly
lower than the discordance index on the discordant criterion, the credibility
index becomes lower than the comprehensive concordance index, because of
the opposition effect on this criterion.

(d) For the situations where the comprehensive credibility index is strictly greater
than the discordance index on the criterion, the credibility remains equal to the
comprehensive concordance index.

The index 
.aSb/ corresponds to the index c.aSb/ weakened by possible veto
effects.

A fist modification of the valued credibility outranking relation used in the
ELECTRE III and ELECTRE TRI was proposed in [82]. The modification requires
the implementation of the discordance concept. Such a modification is shown to
preserve the original discordance concept; the new outranking relation makes it
easier to solve inference programs (see Sect. 5.4).

Another modification was proposed by Roy and Słowiński [131] so as to take
into account two new effects, called reinforced preference and veto effects.

In ELECTRE III as well as in ELECTRE II, the partial pre-order Z is built as the
intersection of two complete pre-orders, Z1 and Z2, which are obtained according
to two variants of the same principle, both acting in an antagonistic way on the
floating actions. The partial pre-order Z1 is defined as a partition on the set A into
q ordered classes, NB1; : : : ; NBh; : : : ; NBq, where NB1 is the head-class in Z1. Each class
NBh is composed of ex æquo elements according to Z1. The complete pre-order Z2 is
determined in a similar way, where A is partitioned into u ordered classes, B

¯
1; : : : ;

B
¯

h; : : : ; B
¯

u, B
¯

u being the head-class. Each one of these classes is obtained as a final
distilled of a distillation procedure.

The procedure designed to compute Z1 starts (first distillation) by defining an
initial set D0 D A; it leads to the first final distilled NB1. After getting NBh, in the
distillation hC 1, the procedure sets D0 D An. NB1 [ : : : [ NBh/. According to Z1, the
actions in class NBh are, preferable to those of class NBhC1; for this reason, distillations
that lead to these classes will be called as descending (top-down).
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The procedure leading to Z2 is quite identic, but now the actions in NBhC1
are preferred to those in class NBh; these distillations will be called ascending
(bottom-up).

The partial pre-order Z will be computed as the intersection of Z1 and Z2.
A complete pre-order is finally suggested taking into account the partial pre-

orders and some additional considerations. The way the incomparabilities which
remain in the pre-order are treated is nevertheless subject to criticism.

5.3.2.3 ELECTRE IV

In Sect. 5.2.4 we pointed out the difficulty to define the relative importance
coefficients of criteria. However, in several circumstances we are not able, we do
not want, or we do not know how to assign a value to those coefficients. It does
not mean that we would be satisfied with the pre-order obtained, when applying
ELECTRE III with the same value for all the coefficients wj. Another approach
we could take would be determining a pre-order, which takes into account all the
pre-orders obtained from the application of several combinations of the weights.
Obviously, this situation will be unmanageable.

ELECTRE IV is also a procedure based on the construction of a set of embedded
outranking relations. There are five different relations, S1; : : : ; S5. The SrC1 relation
(r D 1; 2; 3; 4) accepts an outranking in a less credible circumstances than the
relation Sr. It means (while remaining on a merely ordinal basis) the assignment of
a value 
r for the credibility index 
.aSb/ to the assertion aSb. The chosen values
must be such that 
r > 
rC1. Furthermore, the movement from one credibility value

r to another 
rC1 must be perceived as a considerable loss.

The ELECTRE IV exploiting procedure is the same as in ELECTRE III.

5.3.3 Sorting Problematic

A set of categories must be a priori defined. The definition of a category is based
on the fact that it should be conceived a priori to receive actions, which will be
or might be processed in the same way (in the step that follows the assignment).
In sorting problematic, each action is considered independently from the others
in order to determine the categories to which it seems justified to assign it, by
means of comparisons to profiles (bounds, limits), norms or references. Results are
expressed using the absolute notion of “assigned” or “not assigned” to a category,
“similar” or “not similar” to a reference profile, “adequate” or “not adequate” to
some norms. The sorting problematic refers to absolute judgements. It consists of
assigning each action to one of the pre-defined categories which are defined by
norms or typical elements of the category. The assignment of an action a results from
the intrinsic evaluation of a on all criteria. From the norms defining the categories
(the assignment of a to a specific category does not influence the category, to which
another action b should be assigned).
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5.3.3.1 ELECTRE TRI

In ELECTRE TRI categories are ordered from the worst (C1) to the best (Ck).
Each category must be characterized by a lower and an upper profile. Let C D
fC1; : : : ;Ch; : : : ;Ckg denote the set of categories. The assignment of a given action
a to a certain category Ch results from the comparison of a to the profiles defining
the lower and upper limits of the categories; bh being the upper limit of category
Ch and the lower limit of category ChC1, for all h D 1; : : : ; k. for a given category
limit bh this comparison rely on the credibility of the assertions aSbh and bhSa. This
credibility index is defined as in ELECTRE III. In what follows, we will assume,
without any loss of generality, that preferences increase with the value on each
criterion.

After determine the credibility index, we should defining a �-cutting level of the
fuzzy relation in order to obtain a crisp outranking relation. The conversion of a
fuzzy relation into a crisp one, is done by the definition of a cutting level, called
�-cutting level. It can be defined as the credibility index smallest value compatible
with the assertion aSbh.

Now, the objective of the second procedure is to exploit the four binary relations
defined in Sect. 5.4.2. The role of this exploitation is to propose an assignment.
This assignment can be grounded on two well-known logics. The conjunctive logic
in which an action can be assigned to a category when its evaluations is, on each
criterion, at least as good as the lower limit of the category. The action is hence
assigned to the highest category fulfilling this condition. In the disjunctive logic,
if the action has, on at least on one criterion, an evaluation at least as good as the
lower limit of the category. The action is hence assigned to the highest category
fulfilling this condition. With this disjunctive rule, the assignment of an action is
generally higher than with the conjunctive rule. This is why the conjunctive rule
is usually interpreted as pessimistic while the disjunctive rule is interpreted as
optimistic. This interpretation (optimistic-pessimistic) can be permuted according
to the semantic attached to the outranking relation. When no incomparability occurs
in the comparison of an action a to the limits of categories, a is assigned to the
same category by the conjunctive and disjunctive rules. When a is assigned to
different categories by the conjunctive and disjunctive rules, a is incomparable to
all “intermediary” limits within the highest and lowest assignment categories.

ELECTRE TRI is a generalization of the two above mentioned rules. The
generalization is the following:

• in the conjunctive rule: replace, in the condition “on each criterion” by “on a
sufficient majority of criteria and in absence of veto”

• in the disjunctive rule: replace, the condition “on at least on one criterion” by “on
a sufficient minority of criteria and in absence of veto”

The two procedures can be stated as follows,

1. Pseudo-conjunctive rule. An action a will be assigned to the highest category Ch

such that aSbh�1.
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(a) Compare a successively with br, r D k � 1; k � 2; : : : ; 0.
(b) The limit bh is the first encountered profile such that aSbh. Assign a to

category ChC1.

2. Pseudo-disjunctive rule. An action a will be assigned to the lowest category Ch

such that bh 
 a.

(a) Compare a successively with br, r D 1; 2; : : : ; k � 1.
(b) The limit bh is the first encountered profile such that bh 
 a. Assign a to

category Ch.

5.3.3.2 ELECTRE TRI C and ELECTRE TRI nC

ELECTRE TRI C [4] is a new method for sorting problems designed for dealing
with decision aiding situations where each category from a completely ordered set
is defined by a single characteristic reference action. The characteristic reference
actions are co-constructed through an interactive process involving the analyst
and the decision maker. ELECTRE TRI C has been also conceived to verify a
set of natural structural requirements (conformity, homogeneity, monotonicity, and
stability). The method makes use of two joint assignment rules, where the result
is a range of categories for each action to be assigned. The two joint rules, called
descending rule and ascending rule, can be presented as follows:
Descending rule Choose a credibility level � 2 Œ0:5; 1�. Decrease h from .q C 1/
until the first value t, such that 
.a; bt/ > �:

(a) For t D q, select Cq as a possible category to assign action a.
(b) For 0 < t < q, if �.a; bt/ > �.a; btC1/, then select Ct as a possible category to

assign a; otherwise, select CtC1.
(c) For t D 0, select C1 as a possible category to assign a.

Ascending rule Choose a credibility level � 2 Œ0:5; 1�. Increase h from 0 until the
first value k, such that 
.bk; a/ > �:

(a) For k D 1, select C1 as a possible category to assign action a.
(b) For 1 < k < .q C 1/, if �.a; bk/ > �.a; bk�1/, then select Ck as a possible

category to assign a; otherwise, select Ck�1.
(c) For k D .qC 1/, select Cq as a possible category to assign a.

Each one of the two joint rules requires the selecting function �.a; bh/, which
allows to choose between the two consecutive categories where an action a can be
assigned to. The results appear in one of the following forms, and the decision maker
may choose:

1. A single category, when the two selected categories are the same;
2. One of the two selected categories, when such categories are consecutive;
3. One of the two selected categories or one of the intermediate categories, when

such categories are not consecutive.
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In [5], ELECTRE TRI C method was generalized to ELECTRE TRI nC method
where each category is defined by a set of several reference characteristic actions,
rather than one. This aspect is enriching the definition of each category and allows
to obtain more narrow ranges of categories to which an action can be assigned to,
than the ELECTRE TRI nC method. The joint assignments rules are similar to the
previous ones.

5.4 Recent Developments

Although, several decades past since the birth of the first ELECTRE method,
research on ELECTRE family method stills active today. Some of the recent
developments are shortly described in this section.

5.4.1 Robustness Concerns

When dealing with real-world decision problems, DMs and analysts are often facing
with several sources of imperfect knowledge regarding the available data. This leads
to the assignment of arbitrary values to certain “variables”. In addition, modeling
activity frequently requires to choose between some technical options, introducing
thus an additional source of arbitrariness to the problem. For these reasons, analysts
hesitate when assigning values to the preference parameters (weights, thresholds,
categories lower and upper limits, . . . ), and the technical parameters (discordance
and concordance indices, �-cutting level, . . . ) of ELECTRE methods.

In practice, it is frequent to define a reference system built from the assignment
of central values to these two types of parameters. Then, an exploitation procedure
should be applied in order to obtain outputs which are used to elaborate recom-
mendations. But, what about the meaningfulness of such recommendations? They
strongly depend on the set of central values attributed to the parameters. Should
the analyst analyze the influence of a variation of each parameter, considered
separately, on the results? And, then enumerate those parameters which lead to
a strong impact on the results when their values vary from the central positions.
This is a frequent way to proceed in classical operations research methods and
it is called sensitivity analysis [36, 62, 91, 94]. But, this kind of analyzes has
rather a theoretical interest than a practical one. Analysts are most often interested
in building recommendations which remain acceptable for a large range of the
parameters values. Such recommendations should be elaborated from what we call
the robust conclusions (Chap. 2, [114, 118, 119, 124]).

Definition 1. A conclusion, Cr , is said to be robust with respect to a domain,�, of
possible values for the preference and technical parameters, if there is no a particular
set of parameters, N! 2 �, which clearly invalidates the conclusion Cr.
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A robustness concern consists of all the possible ways that contribute to build
synthetic recommendations based on the robust conclusions.

Possible ways to deal with robustness concerns in ELECTRE methods are
illustrated, for example, in [2, 30, 31, 33, 135], Chaps. 8, 9, and 10 in [124].

5.4.2 Elicitation of Parameter Values

Implementing ELECTRE methods requires to determine values (or intervals of
variation) for the preference parameters.

Definition 2. A preference elicitation process proceeds through an interaction
between DMs and analysts in which DMs express information about their prefer-
ences within a specific aggregation procedure.

It is possible to distinguish among direct and indirect elicitation techniques.
The objective is not to find the true values of the parameters, but the most

adequate values to take into account the preferences, the wishes, or the willing of
the DM.

5.4.2.1 Direct Elicitation Techniques

In direct elicitation procedures DMs should provide information directly on the
values of the preference parameters. A major drawback of such techniques is that
it is difficult to understand the precise meaning of the assertions of the DMs. This
is why ELECTRE methods are usually implemented by using indirect elicitation
procedures [120].

5.4.2.2 Indirect Elicitation Techniques

Indirect elicitation techniques do not require from DMs to provide answers to
questions related to the values of the preference parameters. Two modes of
questioning can be considered:

1. The first consists of asking the DM as follows: for you, what are the most
important . . . , the least important . . . criteria? Can you make a ranking of them
(with possible ties) in a decreasing order of importance? According to your
ranking do you think that the variations of importance between two consecutive
criteria are approximately the same, whatever the rank of the two relevant
criteria? If not, can you compare the variations of importance? In order to
facilitate the dialogue with the DM, the criteria can be shown as a “pack of cards”
as it is the case of the SRF procedure [39].
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2. In the second mode of questioning several (realistic or fictitious) actions have
to be defined. They will serve as references so that the DM may express his/her
preferences. A set of reference actions will be shown to the decision maker. Each
one is characterized by its performance on each criterion. Then, we ask the DM
as follows: if the set does not suit you, you may alter it. Given a pair of actions
a and b, which one do you prefer? Once such a pairwise comparison has been
done, do you think that the intensity of preferences of a over b is stronger that
of c over d? In the case of ordered categories is defined, can you assign each
reference action to a category that you deem is the most important? DIVAPIME
[81] is a procedure that was designed for this second type of questioning.

Other techniques, designed from the second type of questioning are frequently
called aggregation-disaggregation procedures. Such techniques make use of the
disaggregation paradigm [59, 70]. They make use of optimization procedures to
determine (infer) the parameters values.

Recent developments concerning elicitation techniques have been proposed for
the ELECTRE TRI method. Inference procedures have been developed to elicit the
parameters values from assignment examples, i.e., an assignment that is imposed
by DMs on specific actions. It is possible to infer all the preference parameters
simultaneously [83]; we will refer to such a case by complete inference. The induced
mathematical programming model to be solved is, however, non-linear. Thus, its
resolution is computationally difficult for real-world problems. In such cases, it is
possible to infer a subset of parameters only (see Fig. 5.1):

• Concordant coalition parameters: weights and �-cutting level [86];
• Discordance related parameters: veto thresholds [32];
• Category limits [87].

ELECTRE TRI

Inferring from examples Direct elicitation

Partial inference Complete inference

Inferring weights Inferring category limitsInferring veto

Fig. 5.1 Inferring parameter values for ELECTRE TRI
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5.5 Software and Applications

This section is devoted to software, the Decision Deck project, and applications of
ELECTRE methods.

5.5.1 ELECTRE Software

The implementation of ELECTRE methods in real-world decision problems involv-
ing real DMs requires software packages. Some of them are widely used in large
firms and universities, in particular ELECTRE IS, ELECTRE III–IV, ELECTRE
TRI and IRIS. Among the software available at LAMSADE are (http://www.
lamsade.dauphine.fr/english/software.html):

1. ELECTRE IS is a generalization of ELECTRE I. It is an implementation of
ELECTRE IS described in Sect. 5.3.1. This software runs on a IBM-compatible
computer on Windows 98 and higher.

2. ELECTRE III–IV is a software which implements ELECTRE III and ELECTRE
IV methods described in Sect. 5.3.2. It runs on Windows 3.1, 95, 98, 2000,
Millennium and XP.

3. ELECTRE TRI is a multiple criteria decision aiding tool designed to deal with
sorting problems. This software implements ELECTRE TRI method described
in Sect. 5.3.3. The ELECTRE TRI software versions 2.x were developed with
the C++ programming language and runs on Microsoft Windows 3.1, 95, 98,
Me, 2000, XP and NT. This software integrates, ELECTRE TRI Assistant which
enables the user to define the weights indirectly, i.e., fixing the model parameters
by giving some assignment examples (corresponding to desired assignments
or past decisions). The weights are thus inferred through a certain form of
regression. Hence, ELECTRE TRI Assistant reduces the cognitive effort required
from the DM to elicit the preference parameters.

4. IRIS. Interactive Robustness analysis and parameters’ Inference for multiple
criteria sorting problems. This DSS has been built to support the assignment
of actions described by their evaluation on multiple criteria to a set of predefined
ordered categories, using a variant of ELECTRE TRI. Rather than demanding
precise values for the model’s parameters, IRIS allows to enter constraints on
these values, namely assignment examples that it tries to restore. When the
constraints are compatible with multiple assignments for the actions, IRIS infers
parameter values and allows to draw robust conclusions by indicating the range
of assignments (for each action) that do not contradict any constraint. If it is not
possible to fulfill all of the constraints, IRIS tells the user where is the source of
inconsistency. It was developed with Delphi Borland and runs on Windows 98,
Me, 2000, NT and XP.

5. SRF was designed to determine the relative importance coefficients for ELEC-
TRE family methods. It is based on a very simple procedure (the pack of cards

http://www.lamsade.dauphine.fr/english/software.html
http://www.lamsade.dauphine.fr/english/software.html
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technique created by J. Simos) and try to assess these coefficients by questioning
the DM in an indirect way (see Sect. 5.4.2.2). It was developed with the Delphi
Borland 3.0 and runs on Windows 98, Me, 2000 and XP.

The software ELECTRE IS, III–IV, TRI and TRI Assistant were developed under
a collaborative project between researchers from the Institute of Computing Science
of the Technical University of Poznan (Poland) and LAMSADE, Université Paris-
Dauphine (France), while IRIS and SRF result from a collaborative project between
researchers from LAMSADE and the Faculty of Economics of the University of
Coimbra/INESC-Coimbra (Portugal).

5.5.2 The Decision Deck Project

The Decision Deck project (www.decision-deck.org) aims at collaboratively devel-
oping Open Source software tools implementing Multiple Criteria Decision Aid
(MCDA). The Decision Deck software include the implementation of ELECTRE
methods. Its purpose is to provide effective tools for three types of users:

• practitioners who use MCDA tools to support actual decision makers involved in
real world decision problems;

• teachers who present MCDA methods in courses, for didactic purposes;
• researchers who want to test and compare methods or to develop new ones.

From a practical point of view, the Decision Deck project works on developing
multiple software resources that are able to interact. Consequently, several comple-
mentary efforts focusing on different aspects contribute to Decision Deck’s various
goals.

The project continues and expands the series of activities that have been pursued
by the Decision Deck Community, including:

• d2: a rich open source Java client offering several MCDA methods, namely
ELECTRE methods

• XMCDA: a standardized XML recommendation to represent objects and data
structures issued from the field of MCDA. Its main objective is to allow different
MCDA algorithms to interact and be easily callable;

• XMCDA web services: distributed open source computational MCDA resources,
namely ELECTRE methods

• d3: an open source rich internet application for XMCDA web services manage-
ment;

• diviz: an open source Java client and server for XMCDA web services composi-
tion, work flow management and deployment.

www.decision-deck.org
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All these efforts involve developments on at least one of the following research
topics of the Decision Deck project:

• global architecture of MCDA systems;
• implementations and developments of MCDA algorithms;
• data models and management of MCDA objects;
• decision process modeling and management;
• graphical user interface.

5.5.3 Applications

Since their first appearance ELECTRE methods were successful applied in many
areas.

1. Agriculture and Forest Management: [7, 35, 71, 132, 146, 148, 149]
2. Energy: [12, 13, 23, 47, 48, 63, 123, 144]
3. Environment and Water Management: [16, 48, 49, 52, 68, 69, 89, 90, 92, 97, 98,

100, 132, 137, 141, 142, 149, 150]
4. Finance: [6, 34, 54–56, 65, 73, 162–165]
5. Military: [10, 44, 159]
6. Project selection (call for tenders): [17, 25, 28, 76, 122, 156].
7. Transportation: [15, 16, 27, 46, 53, 85, 125–127, 134, 135]
8. Varia: [37, 38, 93, 95, 122, 147].

New applications of ELECTRE methods can be found for sorting cropping sys-
tems [7], land-use suitability assessment [61], greenhouse gases emission reduction
[48], risk zoning of an area subjected to mining-induced hazards [75], participatory
decision-making on the localization of waste-treatment plants [88], material selec-
tion of bipolar plates for polymer electrolyte membrane fuel cell [140], assisted
reproductive technology [43], promotion of social and economic development [8],
sustainable demolition waste management strategy [101], assessing the risk of nano-
materials [151], public transportation [66], and rationalising photovoltaic energy
investments [143].

5.6 Conclusion

Since their first appearance, in 1965 (see [14]), ELECTRE methods, on one side,
had a strong impact on the Operational Research community, mainly in Europe, and
led to the development of other outranking methods (see, for example, Chaps. 6
and 7), as well as other complementary multiple criteria methodologies. Most
importantly, the development of ELECTRE methods is strongly connected with the
birth of the European Working Group on Multiple Criteria Decision Aiding (www.
cs.put.poznan.pl/ewgmcda/). On the other side, ELECTRE methods experienced a
widespread and large use in real-world situations.

www.cs.put.poznan.pl/ewgmcda/
www.cs.put.poznan.pl/ewgmcda/
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Despite their almost four decades of existence, research stills active in this field.
We can also mention some of recent developments and avenues for future research in
ELECTRE methods: generalization of the concordance and non-discordance meth-
ods [152]; robustness analysis [30, 31, 33]; the concepts of possible and necessary
outranking [50], parameters elicitation techniques [83]; interaction between criteria
[41, 77], multiple DMs and social interaction [26]; strong features and weaknesses
of ELECTRE methods [40, 42].
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Chapter 6
PROMETHEE Methods

Jean-Pierre Brans and Yves De Smet

Abstract This paper gives an overview of the PROMETHEE-GAIA methodology
for MCDA. It starts with general comments on multicriteria problems, stressing that
a multicriteria problem cannot be treated without additional information related to
the preferences and the priorities of the decision-makers. The information requested
by PROMETHEE and GAIA is particularly clear and easy to define for both
decision-makers and analysts. It consists in a preference function associated to each
criterion as well as weights describing their relative importance. The PROMETHEE
I, the PROMETHEE II ranking, as well as the GAIA visual interactive module are
then presented. Additionally, comments about potential rank reversal occurrences
are provided. The two next sections are devoted to the PROMETHEE VI sensitivity
analysis procedure (human brain) and to the PROMETHEE V procedure for
multiple selection of alternatives under constraints. A sorting method based on
the PROMETHEE flow scores, called FlowSort, is described. An overview of the
PROMETHEE GDSS procedure for group decision making is then given. Finally
the D-Sight implementation of the PROMETHEE-GAIA methodology is presented.
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6.1 Preamble

This chapter is an updated version of [15]. Since 2005, a number of works have
been focused on the PROMETHEE and GAIA methods. We decided to include in
this paper some of these contributions and more specifically those regarding the
following papers:

• In 1996, W. De Keyser and P. Peeters [19] initially pointed out rank reversal
occurrences in the PROMETHEE I ranking. Recently, several authors analyzed
conditions under which these phenomena could potentially happen. Their main
results will be presented in Sect. 6.6;

• In his Ph.D. thesis [36], P. Nemery de Bellevaux proposed a sorting method
based on the PROMETHEE flow scores. This approach will be summarized in
Sect. 6.10;

• A new PROMETHEE and GAIA based software, called D-Sight, is now avail-
able. Section 6.12 will be dedicated to its description.

Of course, we cannot address all the contributions that have been proposed since
2005 [more than 40 new articles have been published in scientific journals since
2005 with one of their keywords corresponding to PROMETHEE (source: Science
Direct)]. Far from being exhaustive, we can cite applications to portfolio and stock
selection problems [1, 32, 46], to environmental issues [24, 26, 39, 44, 49], to energy
management [22, 31], to chemometrics [18, 38, 41, 50], to statistical distribution
selection [27] . . . Recent methodological extensions include the use of the Choquet
integral to model interactions between criteria [20], an extension of the Promethee
II method based on generalized fuzzy numbers [28], the use of PROMETHEE in
new classification methods [25, 40] . . . Finally, we would like to give prominence
to the latest comprehensive literature review realized by Behzadian et al. [4]. The
authors have listed more than 200 papers published in 100 different journals. The
applications fields cover finance, health care, logistics and transportation, hydrology
and water management, manufacturing and assembly . . .

B. Mareschal decided, for personal reasons, not to be a co-author of this revised
chapter. We respect his decision and thank him, once again, for his continuous
involvement in the development of the PROMETHEE and GAIA methodology.

6.2 History

The PROMETHEE I (partial ranking) and PROMETHEE II (complete ranking)
were developed by J.P. Brans and presented for the first time in 1982 at a conference
organized by R. Nadeau and M. Landry at the Université Laval, Québec, Canada
(L’Ingénierie de la Décision. Elaboration d’instruments d’Aide à la Décision). The
same year several applications using this methodology were already treated by
G. Davignon in the field of health care.
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A few years later J.P. Brans and B. Mareschal developed PROMETHEE III
(ranking based on intervals) and PROMETHEE IV (continuous case). The same
authors proposed in 1988 the visual interactive module GAIA which is providing a
marvellous graphical representation supporting the PROMETHEE methodology.

In 1992 and 1994, J.P. Brans and B. Mareschal further suggested two nice
extensions: PROMETHEE V (MCDA including segmentation constraints) and
PROMETHEE VI (representation of the human brain).

A considerable number of successful applications has been treated by the
PROMETHEE methodology in various fields such as Banking, Industrial Location,
Manpower planning, Water resources, Investments, Medicine, Chemistry, Health
care, Tourism, Ethics in OR, Dynamic management, . . . The success of the method-
ology is basically due to its mathematical properties and to its particular friendliness
of use.

6.3 Multicriteria Problems

Let us consider the following multicriteria problem:

maxfg1.a/; g2.a/; : : : ; gj.a/; : : : ; gk.a/ja 2 Ag; (6.1)

where A is a finite set of possible alternatives fa1; a2; : : : ai; : : : ; ang and
fg1.�/; g2.�/; : : : ; gj.�/; : : : gk.�/g a set of evaluation criteria. There is no objection
to consider some criteria to be maximized and the others to be minimized. The
expectation of the decision-maker is to identify an alternative optimizing all the
criteria.

Usually this is an ill-posed mathematical problem as there exists no alternative
optimizing all the criteria at the same time. However most (nearly all) human
problems have a multicriteria nature. According to our various human aspirations, it
makes no sense, and it is often not fair, to select a decision based on one evaluation
criterion only. In most of cases at least technological, economical, environmental,
social and educational criteria should always be taken into account. Multicriteria
problems are therefore extremely important and request an appropriate treatment.

If A is finite, the basic data of a multicriteria problem (6.1) consist of an
evaluation table (Table 6.1).

Let us consider as an example the problem of an individual purchasing a car. Of
course the price is important and it should be minimized. However it is clear that in
general individuals are not considering only the price. Not everybody is driving the
cheapest car! Most people would like to drive a luxury or sports car at the price of an
economy car. Indeed they consider many criteria such as price, reputation, comfort,
speed, reliability, consumption, . . . As there is no car optimizing all the criteria at
the same time, a compromise solution should be selected. Most decision problems
have such a multicriteria nature.
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Table 6.1 Evaluation table

a g1.�/ g2.�/ : : : gj.�/ : : : gk.�/
a1 g1.a1/ g2.a1/ : : : gj.a1/ : : : gk.a1/

a2 g1.a2/ g2.a2/ : : : gj.a2/ : : : gk.a2/
:
:
:

:
:
:

:
:
:

: : :
:
:
:

: : :
:
:
:

ai g1.ai/ g2.ai/ : : : gj.ai/ : : : gk.ai/

:
:
:

:
:
:

:
:
:

: : :
:
:
:

: : :
:
:
:

an g1.an/ g2.an/ : : : gj.an/ : : : gk.an/

The solution of a multicriteria problem depends not only on the basic data
included in the evaluation table but also on the decision-maker himself. All
individuals do not purchase the same car. There is no absolute best solution! The best
compromise solution also depends on the individual preferences of each decision-
maker, on the “brain” of each decision-maker.

Consequently, additional information representing these preferences is required
to provide the decision maker with useful decision aid.

The natural dominance relation associated to a multicriteria problem of type (6.1)
is defined as follows:

For each .a; b/ 2 A:
( 8j W gj.a/ 	 gj.b/

9k W gk.a/ > gk.b/
() aPb;

8j W gj.a/ D gj.b/ () aIb;
( 9s W gs.a/ > gs.b/

9r W gr.a/ < gr.b/
() aRb;

(6.2)

where P, I, and R respectively stand for preference, indifference and incomparabil-
ity. This definition is quite obvious. An alternative is better than another if it is at
least as good as the other on all criteria. If an alternative is better on a criterion s and
the other one better on criterion r, it is impossible to decide which is the best one
without additional information. Both alternatives are therefore incomparable!

Alternatives which are not dominated by any other are called efficient solutions.
Given an evaluation table for a particular multicriteria problem, most of the
alternatives (often all of them) are usually efficient. The dominance relation is very
poor on P and I. When an alternative is better on one criterion, the other is often
better on another criterion. Consequently incomparability holds for most pairwise
comparisons, so that it is impossible to decide without additional information. This
information can for example include:

• Trade-offs between the criteria;
• A value function aggregating all the criteria in a single function (utility function)

in order to obtain a single criterion problem for which an optimal solution exists;
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• Weights giving the relative importance of the criteria;
• Preferences associated to each pairwise comparison within each criterion;
• Thresholds fixing preference limits;
• . . .

Many multicriteria decision aid methods have been proposed. All these methods
start from the same evaluation table, but they vary according to the additional
information they request. The PROMETHEE methods require very clear additional
information, that is easily obtained and understood by both decision-makers and
analysts.

The purpose of all multicriteria methods is to enrich the dominance graph, i.e.
to reduce the number of incomparabilities (R). When a utility function is built,
the multicriteria problem is reduced to a single criterion problem for which an
optimal solution exists. This seems exaggerated because it relies on quite strong
assumptions (do we really make all our decisions based on a utility function defined
somewhere in our brains?) and it completely transforms the structure of the decision
problem. For this reason B. Roy proposed to build outranking relations including
only realistic enrichments of the dominance relation (see [42, 43]). In that case,
not all the incomparabilities are withdrawn but the information is reliable. The
PROMETHEE methods belong to the class of outranking methods.

In order to build an appropriate multicriteria method some requisites could be
considered:

Requisite 1: The amplitude of the deviations between the evaluations of the
alternatives within each criterion should be taken into account:

dj.a; b/ D gj.a/� gj.b/: (6.3)

This information can easily be calculated, but is not considered in the efficiency
theory. When these deviations are negligible the dominance relation can
possibly be enriched.

Requisite 2: As the evaluations gj.a/ of each criterion are expressed in their own
units, the scaling effects should be completely eliminated. It is not acceptable
to obtain conclusions depending on the scales in which the evaluations are
expressed. Unfortunately not all multicriteria procedures are respecting this
requisite!

Requisite 3: In the case of pairwise comparisons, an appropriate multicriteria
method should provide the following information:

a is preferred to bI
a and b are indifferent;
a and b are incomparable.

The purpose is of course to reduce as much as possible the number of
incomparabilities, but not when it is not realistic. Then the procedure may be
considered as fair. When, for a particular procedure, all the incomparabilities
are systematically withdrawn the provided information can be more disputable.
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Requisite 4: Different multicriteria methods request different additional informa-
tion and operate different calculation procedures so that the solutions they
propose can be different. It is therefore important to develop methods being
understandable by the decision-makers. “Black box” procedures should be
avoided.

Requisite 5: An appropriate procedure should not include technical parameters
having no significance for the decision-maker. Such parameters would again
induce “Black box” effects.

Requisite 6: An appropriate method should provide information on the conflicting
nature of the criteria.

Requisite 7: Most of the multicriteria methods are allocating weights of relative
importance of the criteria. These weights reflects a major part of the “brain”
of the decision-maker. It is not easy to fix them. Usually the decision-makers
strongly hesitate. An appropriate method should offer sensitivity tools to test
easily different sets of weights.

The PROMETHEE methods and the associated GAIA visual interactive module
are taking all these requisites into account. On the other hand some mathematical
properties that multicriteria problems possibly enjoy can also be considered. See
for instance [47]. Such properties related to the PROMETHEE methods have been
analyzed by [6] in a particularly interesting paper.

The next sections describe the PROMETHEE I and II rankings, the GAIA
methods, as well as the PROMETHEE V and VI extensions of the methodology. The
PROMETHEE III and IV extensions are not discussed here. Additional information
can be found in [16]. Several actual applications of the PROMETHEE methodology
are also mentioned in the list of references.

6.4 The PROMETHEE Preference Modelling Information

The PROMETHEE methods were designed to treat multicriteria problems of
type (6.1) and their associated evaluation table.

The additional information requested to run PROMETHEE is particularly clear
and understandable by both the analysts and the decision-makers. It consists of:

• Information between the criteria;
• Information within each criterion.

6.4.1 Information Between the Criteria

Table 6.2 should be completed, with the understanding that the set fwj; j D
1; 2; : : : ; kg represents weights of relative importance of the different criteria. These
weights are non-negative numbers, independent from the measurement units of
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Table 6.2 Weights of relative impor-
tance

g1.�/ g2.�/ : : : gj.�/ : : : gk.�/
w1 w2 : : : wj : : : wk

the criteria. The higher the weight, the more important the criterion. There is no
objection to consider normalized weights, so that:

kX

jD1
wj D 1: (6.4)

In the PROMETHEE software PROMCALC, DECISION LAB or D-Sight , the user
is allowed to introduce arbitrary numbers for the weights, making it easier to express
the relative importance of the criteria. These numbers are then divided by their sum
so that the weights are normalized automatically.

Assessing weights to the criteria is not straightforward. It involves the priorities
and perceptions of the decision-maker. The selection of the weights is his space of
freedom. PROMCALC, DECISION LAB and D-Sight include several sensitivity
tools to experience different set of weights in order to help to fix them.

6.4.2 Information Within the Criteria

PROMETHEE is not allocating an intrinsic absolute utility to each alternative,
neither globally, nor on each criterion. We strongly believe that the decision-makers
are not proceeding that way. The preference structure of PROMETHEE is based
on pairwise comparisons. In this case the deviation between the evaluations of
two alternatives on a particular criterion is considered. For small deviations, the
decision-maker will allocate a small preference to the best alternative and even
possibly no preference if he considers that this deviation is negligible. The larger
the deviation, the larger the preference. There is no objection to consider that these
preferences are real numbers varying between 0 and 1. This means that for each
criterion the decision-maker has in mind a function

Pj.a; b/ D Fj
�
dj.a; b/

� 8a; b 2 A; (6.5)

where:

dj.a; b/ D gj.a/� gj.b/ (6.6)

and for which:

0 � Pj.a; b/ � 1: (6.7)
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P (a,b)j

d (a,b)j

Fig. 6.1 Preference function

In case of a criterion to be maximized, this function is giving the preference of a over
b for observed deviations between their evaluations on criterion gj.�/. It should have
the following shape (see Fig. 6.1). The preferences equals 0 when the deviations are
negative.

The following property holds:

Pj.a; b/ > 0 ) Pj.b; a/ D 0: (6.8)

For criteria to be minimized, the preference function should be reversed or
alternatively given by:

Pj.a; b/ D Fj
��dj.a; b/

�
: (6.9)

We have called the pair fgj.�/;Pj.a; b/g the generalized criterion associated to
criterion gj.�/. Such a generalized criterion has to be defined for each criterion. In
order to facilitate the identification six types of particular preference functions have
been proposed (see Table 6.3). In each case 0, 1 or 2 parameters have to be defined,
their significance is clear:

q is a threshold of indifference;
p is a threshold of strict preference (Pj.a; b/ D 1);
s is an intermediate value between q and p:

The q indifference threshold is the largest deviation which is considered as
negligible by the decision maker, while the p preference threshold is the smallest
deviation which is considered as sufficient to generate a full preference.

The identification of a generalized criterion is then limited to the selection of the
appropriate parameters. It is an easy task.

The PROMCALC, DECISION LAB and D-Sight software are proposing these
six shapes only. As far as we know they have been satisfactory in most real-
world applications. However there is no objection to consider additional generalized
criteria.
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Table 6.3 Types of generalized criteria (P.d/: preference function)

Generalized criterion Definition Parameters to fix

P

d0

Criterion

P

d0

Criterion

q

P

d0

Criterion

p

P

d0

Criterion

pq

2

P

d0

Criterion

pq

P

d0

Criterion

s

P (d) =

{
0 d ≤ 0
1 d > 0

P (d) =

{
0 d ≤ q
1 d > q

P (d) =

⎧⎨
⎩

0 d ≤ 0
d
p

0 ≤ d ≤ p

1 d > p

P (d) =

{
0 d ≤ q
1
2 q < d ≤ p
1 d > p

P (d) =

⎧⎨
⎩

0 d ≤ q
d−q
p−q

q < d ≤ p

1 d > p

P (d) =

{
0 d ≤ 0

1 − e
− d2

2s2 d > 0

−

q

p

p, q

p, q

s

In case of type 5 a threshold of indifference q and a threshold of strict preference
p have to be selected.

In case of a Gaussian criterion (type 6) the preference function remains increas-
ing for all deviations and has no discontinuities, neither in its shape, nor in its
derivatives. A parameter s has to be selected, it defines the inflection point of the
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preference function. We then recommend to determine first a q and a p and to fix s
in between. If s is close to q the preferences will be reinforced for small deviations,
while close to p they will be softened.

As soon as the evaluation table fgj.�/g is given, and the weights wj and the
generalized criteria fgj.�/;Pj.a; b/g are defined for i D 1; 2; : : : ; n; j D 1; 2; : : : ; k,
the PROMETHEE procedure can be applied.

6.5 The PROMETHEE I and II Rankings

The PROMETHEE procedure is based on pairwise comparisons (cf. [7–14, 17, 33,
34]). Let us first define aggregated preference indices and outranking flows.

6.5.1 Aggregated Preference Indices

Let a; b 2 A, and let:
8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

.a; b/ D
kX

jD1
Pj.a; b/wj;

.b; a/ D
kX

jD1
Pj.b; a/wj:

(6.10)

.a; b/ is expressing with which degree a is preferred to b over all the criteria and
.b; a/ how b is preferred to a. In most of the cases there are criteria for which a
is better than b, and criteria for which b is better than a, consequently .a; b/ and
.b; a/ are usually positive. The following properties hold for all .a; b/ 2 A.

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

.a; a/ D 0;
0 � .a; b/ � 1;
0 � .b; a/ � 1;
0 � .a; b/C .b; a/ � 1:

(6.11)

It is clear that:
(
.a; b/ � 0 implies a weak global preference of a over b,

.a; b/ � 1 implies a strong global preference of a over b.
(6.12)

In addition, it is obvious that Pj.a; b/;Pj.b; a/; .a; b/ and .b; a/ are real numbers
(without units) completely independent of the scales of the criteria gj.:/.
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a

b

c

d

(a,b)π

(b,a)π

Fig. 6.2 Valued outranking graph

As soon as .a; b/ and .b; a/ are computed for each pair of alternatives of A, a
complete valued outranking graph, including two arcs between each pair of nodes,
is obtained (see Fig. 6.2).

6.5.2 Outranking Flows

Each alternative a is facing .n � 1/ other alternatives in A. Let us define the two
following outranking flows:

• the positive outranking flow:

�C.a/ D 1

n � 1
X

x2A

.a; x/; (6.13)

• the negative outranking flow:

��.a/ D 1

n � 1
X

x2A

.x; a/: (6.14)

The positive outranking flow expresses how an alternative a is outranking all the
others. It is its power, its outranking character. The higher �C.a/, the better the
alternative (see Fig. 6.3a).

The negative outranking flow expresses how an alternative a is outranked by all
the others. It is its weakness, its outranked character. The lower ��.a/ the better
the alternative (see Fig. 6.3b).
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a

a b

a

Fig. 6.3 The PROMETHEE outranking flows. (a) The �C.a/ outranking flow. (b) The ��.a/
outranking flow

6.5.3 The PROMETHEE I Partial Ranking

The PROMETHEE I partial ranking .PI; II;RI/ is obtained from the positive and
the negative outranking flows. Both flows do not usually induce the same rankings.
PROMETHEE I is their intersection.

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

aPIb iff

aIIb iff

aRIb iff

8
ˆ̂
<

ˆ̂
:

�C.a/ > �C.b/ and ��.a/ < ��.b/, or

�C.a/ D �C.b/ and ��.a/ < ��.b/, or

�C.a/ > �C.b/ and ��.a/ D ��.b/I
�C.a/ D �C.b/ and ��.a/ D ��.b/I

(
�C.a/ > �C.b/ and ��.a/ > ��.b/, or

�C.a/ < �C.b/ and ��.a/ < ��.b/I

(6.15)

where PI ; II;RI respectively stand for preference, indifference and incomparability.
When aPIb, a higher power of a is associated to a lower weakness of a with

regard to b. The information of both outranking flows is consistent and may
therefore be considered as sure.

When aIIb, both positive and negative flows are equal.
When aRIb, a higher power of one alternative is associated to a lower weakness of

the other. This often happens when a is good on a set of criteria on which b is weak
and reversely b is good on some other criteria on which a is weak. In such a case
the information provided by both flows is not consistent. It seems then reasonable
to be careful and to consider both alternatives as incomparable. The PROMETHEE
I ranking is prudent: it will not decide which action is best in such cases. It is up to
the decision-maker to take his responsibility.
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6.5.4 The PROMETHEE II Complete Ranking

PROMETHEE II consists of the .PII ; III/ complete ranking. It is often the case that
the decision-maker requests a complete ranking. The net outranking flow can then
be considered.

�.a/ D �C.a/� ��.a/: (6.16)

It is the balance between the positive and the negative outranking flows. The higher
the net flow, the better the alternative, so that:

(
aPIIb iff �.a/ > �.b/;

aIIIb iff �.a/ D �.b/:
(6.17)

When PROMETHEE II is considered, all the alternatives are comparable. No
incomparabilities remain, but the resulting information can be more disputable
because more information gets lost by considering the difference (6.16).

The following properties hold:
8
<̂

:̂

�1 � �.a/ � 1;
X

x2A

�.a/ D 0: (6.18)

When �.a/ > 0, a is more outranking all the alternatives on all the criteria, when
�.a/ < 0 it is more outranked.

In real-world applications, we recommend to both the analysts and the decision-
makers to consider both PROMETHEE I and PROMETHEE II. The complete
ranking is easy to use, but the analysis of the incomparabilities often helps to finalize
a proper decision.

As the net flow �.�/ provides a complete ranking, it may be compared with
a utility function. One advantage of �.�/ is that it is built on clear and simple
preference information (weights and preferences functions) and that it does rely
on comparative statements rather than absolute statements.

6.5.5 The Profiles of the Alternatives

According to the definition of the positive and the negative outranking flows (6.13)
and (6.14) and of the aggregated indices (6.10), we have:

�.a/ D �C.a/ � ��.a/ D 1

n � 1
kX

jD1

X

x2A

�
Pj.a; x/ � Pj.x; a/

�
wj: (6.19)
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Fig. 6.4 Profile of an alternative

Consequently,

�.a/ D
kX

jD1
�j.a/wj (6.20)

if

�j.a/ D 1

n � 1
X

x2A

�
Pj.a; x/� Pj.x; a/

�
: (6.21)

�j.a/ is the single criterion net flow obtained when only criterion gj.�/ is considered
(100 % of the total weight is allocated to that criterion). It expresses how an
alternative a is outranking .�j.a/ > 0/ or outranked .�j.a/ < 0/ by all the other
alternatives on criterion gj.�/ only.

The profile of an alternative consists of the set of all the single criterion net flows:
�j.a/, j D 1; 2; : : : ; k.

The profiles of the alternatives are particularly useful to appreciate their “qual-
ity” on the different criteria. It is extensively used by decision-makers to finalize
their appreciation (Fig. 6.4).

According to (6.20), we observe that the global net flow of an alternative is
the scalar product between the vector of the weights and the profile vector of this
alternative. This property will be extensively used when building up the GAIA
plane.

6.6 A Few Words About Rank Reversal

Pair-wise comparison methods, such as outranking methods, may suffer from the
well-known rank reversal problem: the relative positions of two alternatives may be
influenced by the presence of a third one. This phenomenon is not new and dates
back from the beginning of social choice theory (see for instance the condition about
irrelevant alternatives in the famous Arrow’s theorem [3]).
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A number of authors have already addressed this question in the context of
multicriteria methods (see for instance [5] for the Analytic Hierarchy Process or
[48] for ELECTRE methods). Let us stress that the debate is still very active and that
a number of articles have been proposed to answer these issues. In the context of the
PROMETHEE methods, W. De Keyser and P. Peeters [19] initially pointed out rank
reversal occurrences in the context of the PROMETHEE I ranking. Following these
observations, B. Mareschal et al. [35] and C. Verly et al. [45] have investigated
conditions under which rank reversal could potentially occur in the PROMETHEE
I and II rankings.

At first, it is important to stress that no unique definition of rank reversal exists.
Some authors analyze if the positions of two alternatives can be affected by:

• the presence of a non-discriminating criterion;
• a copy of an alternative;
• a dominated alternative;
• any given alternative;
• . . .

It is easy to prove that the PROMETHEE rankings will not be influenced by the
presence or the elimination of a non discriminating criterion while it may be affected
by copies of alternatives (see [45]). Furthermore, if a dominates b we will always
have �.a/ 	 �.b/ (whatever the other alternatives). No rank reversal could ever
happen in such a situation.

If we investigate rank reversal occurrences induced by the deletion of a third
alternative, we may come to the conclusion [35] that no rank reversal will occur in
the PROMETHEE II ranking between a and b if

j�.a/� �.b/j > 2

n � 1 (6.22)

A direct corollary of this result is that rank reversal occurrences may only happen
between alternatives which have close net flow scores. Additionally, C. Verly et al.
[45] used computer simulations on artificial data sets to show that these rank reversal
instances happened most of the time when the actual net flow differences were
much lower than the 2

n�1 threshold. This has led them to refine this bound. Finally,
they extended the previous result in the context of the PROMETHEE I ranking and
proved that no rank reversal will occur between a and b if the following conditions
are satisfied:

j�C.a/� �C.b/j > 1

n � 1 (6.23)

j��.a/� ��.b/j > 1

n � 1 (6.24)
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6.7 The GAIA Visual Interactive Module

Let us first consider the matrix M.n � k/ of the single criterion net flows of all the
alternatives as defined in (6.21) (Table 6.4).

6.7.1 The GAIA Plane

The information included in matrix M is more extensive than the one in the
evaluation Table 6.1, because the degrees of preference given by the generalized
criteria are taken into account in M. Moreover the gj.ai/ are expressed on their own
scale, while the �j.ai/ are dimensionless. In addition, let us observe, that M is not
depending on the weights of the criteria. Consequently the set of the n alternatives
can be represented as a cloud of n points in a k-dimensional space. According
to (6.18) this cloud is centered at the origin. As the number of criteria is usually
larger than two, it is impossible to obtain a clear view of the relative position of the
points with regard to the criteria. We therefore project the information included in
the k-dimensional space on a plane. Let us project not only the points representing
the alternatives but also the unit vectors of the coordinate-axes representing the
criteria.

The GAIA plane is the plane for which as much information as possible
is preserved after projection. According to the principal components analysis
technique it is defined by the two eigenvectors corresponding to the two largest
eigenvalues of the covariance matrix M0M of the single criterion net flows (Fig. 6.5).

Of course some information get lost after projection. The GAIA plane is a meta
model (a model of a model). Let ı be the quantity of information preserved:

ı D �1 C �2
Pk

jD1 �j

(6.25)

Table 6.4 Single criterion net flows

�1.�/ �2.�/ . . . �j.�/ . . . �k.�/
a1 �1.a1/ �2.a1/ . . . �j.a1/ . . . �k.a1/

a2 �1.a2/ �2.a2/ . . . �j.a2/ . . . �k.a2/
:
:
:

:
:
:

:
:
:

: : :
:
:
:

: : :
:
:
:

ai �1.ai/ �2.ai/ . . . �j.ai/ . . . �k.ai/

:
:
:

:
:
:

:
:
:

: : :
:
:
:

: : :
:
:
:

an �1.an/ �2.an/ . . . �j.an/ . . . �k.an/
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Fig. 6.5 Projection on the GAIA plane

where �1; �2; : : : ; �j; : : : ; �k is the set of the k eigenvalues of M0M ranked from the
highest to the lowest one.

In most applications we have treated so far ı was larger than 60 % and in many
cases larger than 80 %. This means that the information provided by the GAIA plane
is rather reliable. This information is quite rich, it helps to understand the structure
of a multicriteria problem. It is not often the case that ı is very small. When its value
is too low (say ı < 0:5) the GAIA plane becomes progressively useless.

6.7.2 Graphical Display of the Alternatives and of the Criteria

Let .A1;A2; : : : ;Ai; : : : ;An/ be the projections of the n points representing the
alternatives and let .C1;C2; : : : ;Cj; : : : ;Ck/ be the projections of the k unit vectors
of the coordinates axes of Rk representing the criteria. We then obtain a GAIA plane
of the following type: Then the following properties hold (see [14, 33]) provided
that ı is sufficiently high:

P 1: The longer a criterion axis in the GAIA plane, the more discriminating this
criterion.

P 2: Criteria expressing similar preferences are represented by axes oriented in
approximatively the same direction.

P 3: Criteria expressing conflicting preferences are oriented in opposite directions.
P 4: Criteria that are not related to each others in terms of preferences are

represented by orthogonal axes.
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Fig. 6.6 Alternatives and criteria in the GAIA plane

P 5: Similar alternatives are represented by points located close to each other.
P 6: Alternatives being good on a particular criterion are represented by points

located in the direction of the corresponding criterion axis.

On the example of Fig. 6.6, we observe:

• That the criteria g1.�/ and g3.�/ are expressing similar preferences and that the
alternatives a1 and a5 are rather good on these criteria.

• That the criteria g6.�/ and g4.�/ are also expressing similar preferences and that
the alternatives a2, a7, and a8 are rather good on them.

• That the criteria g2.�/ and g5.�/ are rather independent
• That the criteria g1.�/ and g3.�/ are strongly conflicting with the criteria g4.�/ and

g2.�/
• That the alternatives a1, a5 and a6 are rather good on the criteria g1.�/, g3.�/ and

g5.�/
• That the alternatives a2, a7 and a8 are rather good on the criteria g6.�/, g4.�/ and

g2.�/
• That the alternatives a3 and a4 are never good, never bad on all the criteria,
• . . .

Although the GAIA plane includes only a percentage ı of the total information, it
provides a powerful graphical visualisation tool for the analysis of a multicriteria
problem. The discriminating power of the criteria, the conflicting aspects, as well as
the “quality” of each alternative on the different criteria are becoming particularly
clear.
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6.7.3 The PROMETHEE Decision Stick. The PROMETHEE
Decision Axis

Let us now introduce the impact of the weights in the GAIA plane. The vector of
the weights is obviously also a vector of Rk. According to (6.20), the PROMETHEE
net flow of an alternative ai is the scalar product between the vector of its single
criterion net flows and the vector of the weights:

ai W .�1.ai/; �2.ai/; : : : ; �j.ai/; : : : ; �k.ai//;

w W .w1;w2; : : : ;wj; : : : ;wk/:
(6.26)

This also means that the PROMETHEE net flow of ai is the projection of the
vector of its single criterion net flows on w. Consequently, the relative positions
of the projections of all the alternatives on w provides the PROMETHEE II ranking.
Clearly the vector w plays a crucial role. It can be represented in the GAIA plane by
the projection of the unit vector of the weights. Let  be this projection, and let us
call  the PROMETHEE decision axis.

On the example of Fig. 6.7, the PROMETHEE ranking is: a4 
 a3 
 a2 

a1. A realistic view of this ranking is given in the GAIA plane although some
inconsistencies due to the projection can possibly occur.

w

a1

a2

a3
a4

Fig. 6.7 PROMETHEE II ranking. PROMETHEE decision axis and stick
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If all the weights are concentrated on one criterion, it is clear that the
PROMETHEE decision axis will coincide with the axis of this criterion in the GAIA
plane. Both axes are then the projection of a coordinate unit vector of Rk. When the
weights are distributed over all the criteria, the PROMETHEE decision axis appears
as a weighted resultant of all the criterion axes .C1;C2; : : : ;Cj; : : : ;Ck/.

If  is long, the PROMETHEE decision axis has a strong decision power and the
decision-maker is invited to select alternatives as far as possible in its direction.

If  is short, the PROMETHEE decision axis has no strong decision power. It
means, according to the weights, that the criteria are strongly conflicting and that
the selection of a good compromise is a hard problem.

When the weights are modified, the positions of the alternatives and of the criteria
remain unchanged in the GAIA plane. The weight vector appears as a decision
stick that the decision-maker can move according to his preferences in favour of
particular criteria. When a sensitivity analysis is applied by modifying the weights,
the PROMETHEE decision stick (w) and the PROMETHEE decision axis () are
moving in such a way that the consequences for decision-making are easily observed
in the GAIA plane (see Fig. 6.8).

Decision-making for multicriteria problems appears, thanks to this methodology,
as a piloting problem. Piloting the decision stick over the GAIA plane. The
PROMETHEE decision stick and the PROMETHEE decision axis provide a
strong sensitivity analysis tool. Before finalising a decision we recommend to the
decision-maker to simulate different weight distributions. In each case the situation
can easily be appreciated in the GAIA plane, the recommended alternatives are
located in the direction of the decision axis. As the alternatives and the criteria
remain unchanged when the PROMETHEE decision stick is moving, the sensitivity
analysis is particularly easy to manage. Piloting the decision stick is instantaneously
operated by the PROMCALC, DECISION LAB and D-Sight software. The process
is displayed graphically so that the results are easy to appreciate.

Fig. 6.8 Piloting the PROMETHEE decision stick
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6.8 The PROMETHEE VI Sensitivity Tool
(the “Human Brain”)

The PROMETHEE VI module provides the decision-maker with additional infor-
mation on his own personal view of his multicriteria problem. It allows to appreciate
whether the problem is hard or soft according to his personal opinion.

It is obvious that the distribution of the weights plays an important role in all
multicriteria problems. As soon as the weights are fixed, a final ranking is proposed
by PROMETHEE II. In most of the cases the decision-maker is hesitating to allocate
immediately precise values of the weights. His hesitation is due to several factors
such as indetermination, imprecision, uncertainty, lack of control, . . . on the real-
world situation.

However the decision-maker has usually in mind some order of magnitude on the
weights, so that, despite his hesitations, he is able to give some intervals including
their correct values. Let these intervals be:

w�
j � wj � wC

j ; j D 1; : : : ; k: (6.27)

Let us then consider the set of all the extreme points of the unit vectors associated
to all allowable weights. This set is limiting an area on the unit hypersphere in
R

k (Fig. 6.9). Let us project this area on the GAIA plane and let us call .HB/
(“Human Brain”) the obtained projection. Obviously (HB) is the area including all
the extreme points of the PROMETHEE decision axis () for all allowable weights.
Two particular situations can occur (Fig. 6.10):

GAIA Plane

π

w

δ

HB

Fig. 6.9 “Human Brain”
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δ GAIA Plane

HB

ba

HB

δ GAIA Plane

Fig. 6.10 Two types of decision problems. (a) Soft problem (S1). (b) Hard problem (S2)

S1: (HB) does not include the origin of the GAIA plane. In this case, when the
weights are modified, the PROMETHEE decision axis () remains globally
oriented in the same direction and all alternatives located in this direction are
good. The multicriteria problem is rather easy to solve, it is a soft problem.

S2: Reversely if (HB) is including the origin, the PROMETHEE decision axis ()
can take any orientation. In this case compromise solutions can be possibly
obtained in all directions. It is then actually difficult to make a final decision.
According to his preferences and his hesitations, the decision-maker is facing a
hard problem.

In most of the practical applications treated so far, the problems appeared to be
rather soft and not too hard. This means that most multicriteria problems offer at the
same time good compromises and bad solutions. PROMETHEE allows to select the
good ones.

6.9 PROMETHEE V: MCDA Under Constraints

PROMETHEE I and II are appropriate to select one alternative. However in some
applications a subset of alternatives must be identified, given a set of constraints.
PROMETHEE V is extending the PROMETHEE methods to that particular case
(see [11]).

Let fai; i D 1; 2; : : : ; ng be the set of possible alternatives and let us associate the
following boolean variables to them:

xi D
(
1 if ai is selected,

0 if not.
(6.28)
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The PROMETHEE V procedure consists of the two following steps:

Step 1: The multicriteria problem is first considered without constraints. The
PROMETHEE II ranking is obtained for which the net flows f�.ai/; i D
1; 2; : : : ; ng have been computed.

Step 2: The following f0; 1g linear program is then considered in order to take into
account the additional constraints (provided that they can be expressed linearly).

max

(
kX

iD1
�.ai/xi

)

(6.29)

nX

iD1
�p;ixi � ˇp p D 1; 2; : : : ;P (6.30)

xi 2 f0; 1g i D 1; 2; : : : ; n; (6.31)

where � holds for D, 	 or �, and where the �p;i are the coefficients of
the constraints. The coefficients of the objective function (6.29) are the net
outranking flows. The higher the net flow, the better the alternative. The purpose
of the f0; 1g linear program is to select alternatives collecting as much net flow
as possible and taking the constraints into account.

The constraints (6.30) can include cardinality, budget, return, investment, mar-
keting, . . . constraints. They can be related to all the alternatives or possibly to some
clusters.

After having solved the f0; 1g linear program, a subset of alternatives satisfying
the constraints and providing as much net flow as possible is obtained. Classical 0–1
linear programming procedures may be used.

The PROMCALC software includes this PROMETHEE V procedure.

6.10 FlowSort

Recently, a number of researchers have proposed ways to extend the PROMETHEE
methodology to sorting problems. Among them, we can cite PROMETHEE TRI
[21] or PROMSORT [2]. In what follows, we describe a limited version of the
FlowSort procedure developed by P. Nemery de Bellevaux in his Ph.D. thesis.
From our point of view, this method constitutes the most natural extension of
PROMETHEE to the sorting problematic.

The sorting problematic consists in partitioning a set of alternatives into subsets
with respect to pre-established norms [47]. One way to interpret this definition is to
assign a set of alternatives to predefined ordered groups (also called categories). For
instance, one may think about the following applications:
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• to assign a given patient to categories representing different disease grades
according to a set of symptoms;

• to assign a company to categories representing different business failure risk
levels according to financial criteria;

• . . .

Let Z1;Z2; : : : ;ZV denote the V different categories. These are assumed to be ranked
in order of preference: Z1 is better than Z2, Z2 is better than Z3, . . . Consequently,
Z1 is considered to be best category while ZV is the worst one. Let 
 represent the
preference order between the categories (Z1 
 Z2 
 : : : 
 ZV ). We assume that
each category Zh is characterized by two limit profiles: the upper profile rh and the
lower profile rhC1 (let us note that the lower profile of Zh corresponds to the upper
profile of ZhC1). Let R D fr1; : : : ; rVC1g be the set of profiles. These are assumed to
respect the following conditions:

Condition 1:

8ai 2 A W gj.rVC1/ � gj.ai/ � gj.r1/ 8j 2 f1; : : : ; qg (6.32)

Condition 2:

8rh; rl 2 Rjh < l W gj.rh/ 	 gj.rl/ 8j 2 f1; : : : ; qg (6.33)

Condition 3:

8rh; rl 2 Rjh < l W .rh; rl/ > 0 (6.34)

The first condition imposes that all the evaluations of the alternatives to be
assigned are lying between rVC1 and r1. As a natural consequence, no evaluation
can be better than the one of the upper profile of the best category or worse than
the lower profile of the worst category. Let us note that this condition is not
restrictive since r1 (respectively rVC1) can always be defined as the ideal point
of the problem (respectively the nadir point).

The two next conditions impose that some consistency should exist between the
order of the categories and the preferences between the limit profiles:

• the evaluation of the upper limit profile of a better category should be at least as
good as the evaluation of the upper profile of a worse category;

• the preference of the upper profile of a better category over the upper profile of a
worse category should always be strictly positive.

Let us consider an alternative ai 2 A to be sorted. The underlying idea of the
FlowSort procedure is to compare ai with respect to the elements of R by using the
PROMETHEE I or PROMETHEE II ranking. Let us define Ri D R

Sfaig (therefore
jRij D V C 2). For all x 2 Ri, the flow scores are computed as follows:
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�C
Ri
.x/ D 1

V C 1
X

y2Ri

.x; y/ (6.35)

��
Ri
.x/ D 1

V C 1
X

y2Ri

.y; x/ (6.36)

�Ri.x/ D �C
Ri
.x/ � ��

Ri
.x/ (6.37)

The ranking based on the positive and negative flow scores can lead to two
different situations:

Z�C.ai/ D Zh if �C
Ri
.rh/ 	 �C

Ri
.ai/ > �

C
Ri
.rhC1/ (6.38)

Z��.ai/ D Zl if ��
Ri
.rl/ < �

�
Ri
.ai/ � ��

Ri
.rlC1/ (6.39)

where Z�C.ai/ (respectively Z��.ai/) represents the assignment based on the
positive (respectively negative) flow score only. Nevertheless, the assignment rule
based on the PROMETHEE I ranking should integrate both of these aspects. As a
consequence, let b D minfh; lg be the index of the category corresponding to the
best assignment and let w D maxfh; lg be the index of the category corresponding
to the worst assignment. The first assignment rule will lead to conclude that ai is
assigned to the set of categories ŒZb; : : : ;Zw�. Of course, if w D b the assignment is
unique.

Alternatively, the decision maker could force the assignment to a unique category
by using a rule based on the net flow score:

Z�.ai/ D Zt if �Ri.rt/ 	 �Ri.ai/ > �Ri.rtC1/ (6.40)

As expected, the assignment procedures based on the PROMETHEE I and
PROMETHEE II rankings are consistent. More formally [36]:

8ai 2 A W Zb.ai/ � Zt.ai/ � Zw.ai/ (6.41)

In other words, the assignment based on the net flow score will always lead to a
category that is at least as good as (�) the worst category and no better than the best
category found by the first assignment rule.

These two assignment rules are the basics of FlowSort. Let us remind the
reader that this section only constitutes a limited presentation of the method. We
have to stress that a similar procedure exists when categories are represented by
central profiles (instead of limit profiles) and that FlowSort is not limited to the
PROMETHEE method [37] (even if the conditions imposed on the preference
structure are close to it). Finally, it is worth noting that a number of theoretical
properties have been analyzed to characterize the assignment rules. We refer the
interested reader to [36] for a detailed analysis.
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6.11 The PROMETHEE GDSS Procedure

The PROMETHEE Group Decision Support System has been developed to provide
decision aid to a group of decision-makers .DM1/; .DM2/; : : : ; .DMr/; : : : .DMR/

(see [29]). It has been designed to be used in a GDSS room including a PC, a printer
and a video projector for the facilitator, and R working stations for the DM’s. Each
working station includes room for a DM (and possibly a collaborator), a PC and
Tel/Fax so that the DM’s can possibly consult their business base. All the PC’s are
connected to the facilitator through a local network.

There is no objection to use the procedure in the framework of teleconference or
video conference systems. It this case the DM’s are not gathering in a GDSS room,
they directly talk together through the computer network.

One iteration of the PROMETHEE GDSS procedure consists in 11 steps grouped
in three phases:

• Phase I: Generation of alternatives and criteria
• Phase II: Individual evaluation by each DM
• Phase III: Global evaluation by the group

Feedback is possible after each iteration for conflict resolution until a final consen-
sus is reached.

6.11.1 Phase I: Generation of Alternatives and Criteria

Step 1: First contact Facilitator—DM’s The facilitator meets the DM’s together
or individually in order to enrich his knowledge of the problem. Usually this
step takes place in the business base of each DM prior to the GDSS room
session.

Step 2: Problem description in the GDSS room The facilitator describes the
computer infrastructure, the PROMETHEE methodology, and introduces the
problem.

Step 3: Generation of alternatives It is a computer step. Each DM implements
possible alternatives including their extended description. For instance
strategies, investments, locations, production schemes, marketing actions,
. . . depending on the problem.

Step 4: Stable set of alternatives All the proposed alternatives are collected and
displayed by the facilitator one by one on the video-screen, anonymously
or not. An open discussion takes place, alternatives are canceled, new ones
are proposed, combined ones are merged, until a stable set of n alternatives
.a1; a2; : : : ; ai; : : : ; an/ is reached. This brainstorming procedure is extremely
useful, it often generates alternatives that were unforeseen at the beginning.
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Step 5: Comments on the alternatives It is again a computer step. Each DM
implements his comments on all the alternatives. All these comments are
collected and displayed by the facilitator. Nothing gets lost. Complete minutes
can be printed at any time.

Step 6: Stable set of evaluation criteria The same procedure as for the alterna-
tives is applied to define a stable set of evaluation criteria .g1.�/; g2.�/; : : : ; gj.�/;
: : : gk.�//. Computer and open discussion activities are alternating. At the end
the frame of an evaluation table (Type Table 6.1) is obtained. This frame consists
in a .n � k/ matrix. This ends the first phase. Feedbacks are already possible to
be sure a stable set of alternatives and criteria is reached.

6.11.2 Phase II: Individual Evaluation by Each DM

Let us suppose that each DM has a decision power given by a non-negative weight
.!r; r D 1; 2; : : : ;R/ so that:

RX

rD1
!r D 1: (6.42)

Step 7: Individual evaluation tables The evaluation table .n � k/ has to be com-
pleted by each DM. Some evaluation values are introduced in advance by the
facilitator if there is an objective agreement on them (prices, volumes, budgets,
. . . ). If not each DM is allowed to introduce his own values. All the DM’s
implement the same .n � k/ matrix, if some of them are not interested in
particular criteria, they can simply allocate a zero weight to these criteria.

Step 8: Additional PROMETHEE information Each DM develops his own
PROMETHEE-GAIA analysis. Assistance is given by the facilitator to provide
the PROMETHEE additional information on the weights and the generalized
criteria.

Step 9: Individual PROMETHEE-GAIA analysis The PROMETHEE I and II
rankings, the profiles of the alternatives and the GAIA plane as well as the net
flow vector �r.�/ are instantaneously obtained, so that each DM gets his own
clear view of the problem.

6.11.3 Phase III: Global Evaluation by the Group

Step 10: Display of the individual investigations The rankings and the GAIA
plane of each DM are collected and displayed by the facilitator so that the
group of all DM’S is informed of the potential conflicts.
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Fig. 6.11 Conflict between
DM’s DM1

DM2

DM4

DM3

π

Step 11: Global evaluation The net flow vectors f�r.�/; r D 1; : : : ;Rg of all the
DM’s are collected by the facilitator and put in a .n � R/ matrix. It is a rather
small matrix which is easy to analyzed. Each criterion of this matrix expresses
the point of view of a particular DM.

Each of these criteria has a weight !r and an associated generalized criterion of
Type 3 (p D 2) so that the preferences allocated to the deviations between the �r

i .�/
values will be proportional to these deviations.

A global PROMETHEE II ranking and the associated GAIA plane are then com-
puted. As each criterion is representing a DM, the conflicts between them are clearly
visualized in the GAIA plane. See for example Fig. 6.11 where DM3 is strongly in
conflict with DM1, DM2 and DM4. The associated PROMETHEE decision axis ()
gives the direction in which to decide according to the weights allocated to the
DM’s. The alternatives (not represented on Fig. 6.11) to be considered are those in
the direction of  .

If the conflicts are too sensitive the following feedbacks could be considered:
Back to the weighting of the DM’s. Back to the individual evaluations. Back
to the set of criteria. Back to the set of alternatives. Back to the starting phase
and to include an additional stakeholder (“DM”) such as a social negotiator or a
government mediator.

The whole procedure is summarized in the following scheme (Fig. 6.12):

6.12 The D-Sight Software

D-Sight [23] is the third generation of PROMETHEE based software; it has
followed DECISION LAB 2000 and PROMCALC [12]. This application has been
developed by Quantin Hayez at the CoDE-SMG laboratory. His work has been
funded by the Walloon region under a First Spin-Off project supervised by
Yves De Smet. Bertrand Mareschal initially acted as a scientific adviser. The
software is available since February 2010 and despite the fact that it is quite
new, many universities worldwide have already started to use it for educational
and research purposes (http://www.d-sight.com/academic) [30]. Moreover, recent
industrial projects testify its successful application in the fields of tenders evaluation,
socio-economic assessment, infrastructure deployment . . . (http://www.d-sight.com/
case-studies).

http://www.d-sight.com/academic
http://www.d-sight.com/case-studies
http://www.d-sight.com/case-studies
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Fig. 6.12 Overview PROMETHEE GDSS procedure

D-Sight presents the same main functionalities as the preceding software (see
Fig. 6.13). It is based on visual interactive tools that help the decision makers to
better manage, understand and master their problems. The accustomed users of
the PROMETHEE and GAIA methods will rediscover traditional tools such as an
interactive GAIA plane, the PROMETHEE I and II rankings, the walking weights
or weight stability intervals tools, in a new interface based on a flexible tabs system.

Additionally, D-Sight offers new features such as:

• the possibility to group criteria into a multiple layers hierarchy;
• an improved representation of the GAIA plane based on the explicit projections

of the alternatives against the criteria or against the decision stick;
• a new representation of the PROMETHEE I ranking called the PROMETHEE

Diamond (see Fig. 6.14);
• the PROMETHEE VI sensitivity tool (also called the “decision maker’s brain”)

which was initially available in PROMCALC but not in Decision Lab 2000;
• the possibility to dynamically represent unicriterion net flow scores in a graph

and, as a consequence, to better assess the impact of intra-criterion parameters;
• . . .

The software can easily be interfaced with other systems or databases and supports
direct copy-paste with traditional applications. An automatic update procedure
allows the users to always work with the latest release of the software. Finally,
D-Sight offers a plugin system allowing the user to add features on the fly. These
plugins are developed independently from the core system. They are available to
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Fig. 6.13 Main functionalities of D-Sight

the user through an online plugin store accessible from D-Sight. With a single click,
they are fully integrated in the software. Both D-Sight and the plugins are developed
in Java. Some of the current available plugins are:

• a weights elicitation component based on an interactive tool;
• a module to geo-localize the alternatives in a complete interactive maps system

directly connected to the mcda results (see Fig. 6.14);
• an optimization tool based on the PROMETHEE V procedure;
• a multi-actors plugin allowing decentralized decision making, while taking into

account different stakeholders or scenarios;

Additional information about D-Sight can also be obtained on the website of the
CoDE-SMG spin-off: http://www.d-sight.com.

http://www.d-sight.com
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Fig. 6.14 D-Sight: geo-localization of the alternatives, PROMETHEE I diamond, comparisons of
profiles
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Chapter 7
Other Outranking Approaches

Jean-M. Martel and Benedetto Matarazzo

Abstract In this chapter, we shortly describe some outranking methods other
than ELECTRE and PROMETHEE. All these methods (QUALIFLEX, REGIME,
ORESTE, ARGUS, EVAMIX, TACTIC and MELCHIOR) propose definitions
and computations of particular binary relations, more or less linked to the basic
idea of the original ELECTRE methods. Beside them, we will also describe
other outranking methods (MAPPAC, PRAGMA, IDRA and PACMAN) that have
been developed in the framework of the Pairwise Criterion Comparison Approach
(PCCA) methodology, whose peculiar feature is to split the binary relations
construction phase in two steps: in the first one, each pair of actions is compared
with respect to two criteria a time; in the second step, all these partial preference
indices are aggregated in order to obtain the final binary relations. Finally, one
outranking method for stochastic data (the Martel and Zaras’ method) is presented,
based on the use of stochastic dominance relations between each pair of alternatives.

Keywords Multiple criteria decision analysis • Outranking methods • Pairwise
criteria comparison approach

7.1 Introduction

The outranking methods constitute one of the most fruitful approach in MCDA.
They main feature is to compare all feasible alternatives or actions by pair building
up some binary relations, crisp or fuzzy, and then to exploit in an appropriate
way these relations in order to obtain final recommendations. In this approach,
the ELECTRE family and PROMETHEE methods (see Chaps. 5 and 6 in this
book) are very well known; some interesting extensions of them have been recently
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proposed, and they have been applied in a lot of real life problems. But beside
them, there are also other outranking methods, interesting both from theoretical and
operational points of view. All these methods propose definitions and computations
of particular binary relations, more or less linked to the basic idea of the original
ELECTRE methods, i.e. taking explicitly into account the reasons in favor and
against an outranking relation (concordance-discordance analysis using appropriate
veto thresholds). Some of these methods, moreover, present also a peculiar way
to build up final recommendations, by exploiting the relations obtained in the
previous step. In this chapter, we shortly describe some outranking methods other
than ELECTRE and PROMETHEE. In Sect. 7.2, we present some outranking
methods dealing with different kind of data (QUALIFLEX, REGIME, ORESTE,
ARGUS, EVAMIX, TACTIC and MELCHIOR). Some of these methods are based
on concordance-discordanceanalysis between the rankings of alternatives according
to the considered criteria and the comprehensive ranking of them; others on
direct comparison of each pair of alternatives, more or less strictly linked to the
concordance-discordance analysis of ELECTRE type methods. In Sect. 7.4, some
outranking methods (MAPPAC, PRAGMA, IDRA and PACMAN) are described.
They have been developed in the framework of the Pairwise Criterion Comparison
Approach (PCCA) methodology. Its peculiar feature is to split the binary relations
construction phase in two steps: in the first one, each pair of actions is compared
with respect to two criteria a time, among those considered in the problem, and
partial preference indices are built up. In the second step, all these partial preference
indices are aggregated in order to obtain the global indices and binary relations.
An appropriated exploitation of these indices gives us the final recommendations.
Finally, in Sect. 7.5 one outranking method for stochastic data (the Martel and Zaras’
method) is presented. The main feature of this method is that the concordance-
discordance analysis is based on the use of stochastic dominance relations on the set
of feasible alternatives, comparing their cumulative distribution functions associated
with each criterion. Some short conclusions are sketched in final Section.

7.2 Other Outranking Methods

The available information, about decision maker’s (DM’s) preferences, is not
always of cardinal level; some times the evaluations of alternatives are ordinal
scales, especially in social sciences. These evaluations may take the form of
preorders. Several methods were been developed to aggregate this type of local
(marginal) evaluation in order to obtain a comprehensive comparison of alternatives.
For example, we can mention Borda, Condorcet, Copeland, Blin, Bowmam and
Colantoni, Kemeny and Snell, etc. (see [36]). Some methods that we will recall in
this Section drawn inspiration by some of them.

We present some outranking methods consistent with ordinal data, since they
do not need to convert ordinal information to cardinal values, as it is the case,
for example, in [20]. We will present some methods frequently mentioned in the
literature on MCDA, where the general idea of outranking is globally implemented:
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QUALIFLEX, REGIME, ORESTE, ARGUS, EVAMIX, TACTIC and MEL-
CHIOR. These methods are not too complex and do not introduce the mathematical
programming within their algorithm as it is the case, for example, in [7]. We present
also EVAMIX even if it has been developed for ordinal and cardinal evaluations.

7.2.1 QUALIFLEX

The starting point of QUALIFLEX [33, 34] was a generalization of Jacquet-
Lagrèze’s permutation method [13] (see also [1] for a recent paper on this method).

It is a metric procedure and it is based on the evaluation of all possible rankings
(permutations) of alternatives under consideration. Its mechanism of aggregation is
based on Kemeny and Snell’s rule.

This method is based on the comparison among the comprehensive ranking
of the alternatives and the evaluations of alternatives according to each criterion
from considered family F (impact matrix). These evaluations are ordinal and
take the form of complete preorders. For each permutation, one computes a
concordance/discordance index for each couple of alternatives, that reflects the
concordance and the discordance of their ranks and their evaluation preorders from
the impact matrix. This index is firstly computed at the level of single criterion, after
at a comprehensive level with respect to all possible rankings. One tries to identify
the permutation that maximizes the value of this index, i.e. the permutation whose
ranking best reflects (the best compromise between) the preorders according to each
criterion from F and the multi-criteria evaluation table.

The information concerning the coefficients of relative importance (weights) of
criteria may be explicitly known (cardinal evaluations) or expressed as a ranking
(for example a preorder). In this case, [33] has show that one can circumscribe the
exploration to extreme points (the vertices) of polyhedron formed by the feasible
weights.

Given the set of alternatives A, the concordance/discordance index for each
couple of alternatives .a; b/; a; b 2 A, at the level of preorder according to the
criterion gj 2 F and the ranking corresponding to the kth permutation is:

Ijk.a; b/ D
8
<

:

1 if there is concordance
0 if there is ex aequo
�1 if there is discordance.

There is concordance (discordance) if a and b are ranked (not ranked) in the
same order within the two preorders, and ex aequo if they have the same rank. The
concordance/discordance index between the preorder according to the criterion gj

and the ranking corresponding to the kth permutation is:

Ijk D
X

a;b2A

Ijk.a; b/:
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The comprehensive concordance/discordance index for the kth permutation is:

Ik D
X

j

jIjk.a; b/;

where j is the weight of criterion gj, j D 1; 2; : : : ; n: The number of permutations
k (Perk) is mŠ, where m D jAj. The best compromise corresponds to the permutation
that maximize Ik. If j are not explicitly known, but expressed by a ranking, then
the best compromise is the permutation that:

max
P.j/

Ik;

where P.j/ is the set of feasible weights

Example 1. Given 3 alternatives a1; a2; a3 2 A; 3 criteria g1; g2; g3 and the evalu-
ation table (see Table 7.1, where a rank number 1 indicates the best outcome, while
a rank 3 is assigned to the worst outcome with respect to each criterion), there are
3! possible permutations (comprehensive rankings):

Per1 W a1 > a2 > a3
Per2 W a2 > a1 > a3
Per3 W a2 > a3 > a1
Per4 W a3 > a2 > a1
Per5 W a3 > a1 > a2
Per6 W a1 > a3 > a2:

One index is computed for each pair .gj;Perk/, that, for our example, gives a total
of 18 concordance/discordance indices. For example for the pair .g1;Per1/, we have
for the criterion g1: a1 > a2, a2 � a3, a1 > a3, and for the Per1: a1 > a2, a1 > a3,
a2 > a3, that gives C1 for the couple (a1; a2), C1 for the couple (a1; a3) and 0 for
the couple (a2; a3). Thus, the value of the index I11 is equal to 2.

The concordance/discordance indices are given in the Table 7.2.
Concerning the weights, for example:

1. If the three criteria have the same importance, i.e. j D 1
3
, j D 1; 2; 3, then we

obtain that the maximum value of the index is 4
3

for the permutations Per1 and
Per6.

Table 7.1 Rank evaluation
of alternatives (impact
matrix)

Criterion

g1 g2 g3
Alternative a1 1 2 1

a2 2 1 3

a3 2 3 2
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Table 7.2 The concordance/
discordance indices

Criterion

g1 g2 g3
Permutation Per1 2 1 1

Per2 0 3 �1
Per3 �2 1 �3
Per4 �2 �1 �3
Per5 0 �3 1

Per6 2 �1 3

π1 = π2

π2 = π3π2 = π3

π1

π2

(1,0)

(0,1)

( 1
2 , 12 )

( 1
3 , 13 )

Fig. 7.1 Set of feasible weights

2. If we know that 1 	 2, 2 	 3 and j 	 0 for all j,
P

j j D 1; then 3 D
1 � 1 � 2 (see Fig. 7.1).

Then, to obtain the permutation that maximizes the index Ik, we must check for
the three vertices .1; 0/, ( 1

2
; 1
2
) and ( 1

3
; 1
3
) in the plane .1; 2/. The maximum value

of the index is equal to 2 for the permutations Per1 and Per6, for the weights (1,0,0).
The result of this method is a ranking of alternatives under consideration.

QUALIFLEX is based on comparison between the possible comprehensive rankings
(permutations) of alternatives and each preorder corresponding to their criteria eval-
uations, but no outranking relation is constructed. An important limitation of this
method concerns the fact that the number of permutations increases tremendously
with the number of alternatives. This problem may be solved. Ancot [2] formulated
this problem as a particular case of Quadratic Assignment Problem; this algorithm
is implemented in the software MICROQUALIFLEX .
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7.2.2 REGIME

The REGIME method [15, 16] can be viewed as an ordinal generalization of
pairwise comparison methods such as concordance analysis. The starting point of
this method is the concordance defined, roughly speaking, in the following way:

c.i; l/ D
X

j2 OCil

j;

where OCil is the concordance set, i.e. the set of criteria for which ai is at least as
good as al, ai and al 2 A, and j is the weight of criterion gj 2 F. The focus of this
method is on the sign of c.i; l/ � c.l; i/ for each pair of alternatives. If this sign is
positive, alternative ai is preferred to al; and the reverse if the sign is negative.

The first step of the REGIME method is the construction of the so-called regime
matrix. The regime matrix is formed by pairwise comparison of alternatives in the
multi-criteria evaluation table. Given a and b 2 A, for every criterion we check
whether a has a better rank than b, then on the corresponding place in the regime
matrix the numberC1 is noted, while if b is a better position than a, the number�1
is the result, and 0 in case of ex-aequo.

More explicitly, for each criterion gj; j D 1; 2; � � � ; n, we can defined an indicator
cil;j for each pair of alternatives (ai; al).

cil;j D
8
<

:

C1 if rij < rlj

0 if rij D rlj

�1 if rij > rlj;

where rij (rlj) is the rank of the alternative ai (al) according to criterion gj. When two
alternatives are compared on all criteria, it is possible to form a vector

cil D .cil;1; � � � ; cil;j; � � � ; cil;n/

that is called a regime and the regime matrix is formed of these regimes. These
regimes will be used to determine rank order of alternatives.

The concordance index, in favor of the alternative ai, is given by:

Cil D c.i; l/ � c.l; i/ D
X

j

jcil;j;

If the j are explicitly known, we can obtain a concordance matrix C D ŒCil�,
with zero on the main diagonal (Table 7.3).

One half of this matrix can be ignored, since Cil D �Cli.
In general the available information concerning the weights is not explicit (not

quantitative) and then it is not possible to compute the matrix C. If the available
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Table 7.3 Concordance
matrix

a1 � � � � � � � � � � � � � � � al � � � � � � am

a1
:
:
:

ai

:
:
:

am

2

6
6
6
6
6
6
6
6
6
6
4

0
:
:
:

:
:
:

� � � � � � � � � � � � � � � � � � Cil � � � � � �
:
:
:

:
:
: 0

3

7
7
7
7
7
7
7
7
7
7
5

Table 7.4 Rank evaluation
of alternatives (impact
matrix)

Criterion

g1 g2 g3 g4
Alternatives a1 3 1 1 2

a2 2 2 3 1

a3 1 3 2 3

Table 7.5 Regime matrix Criterion

g1 g2 g3 g4
Comparison (a1 ,a2) �1 C1 C1 �1

(a1 ,a3) �1 C1 C1 C1
(a2 ,a1) C1 �1 �1 C1
(a2 ,a3) �1 C1 �1 C1
(a3 ,a1) C1 �1 �1 �1
(a3 ,a2) C1 �1 C1 �1

information concerning the weights is ordinal, the sign of Cil may be determined
with certainty only for some regimes [32]. For others regimes a such unambiguous
result can not be obtained; such regime is called critical regime.

Example 2. We can illustrate this method on the basis of multi-criteria evaluation
table with three alternatives and four criteria (Table 7.4, [16]).

For this example, the regime matrix is presented in Table 7.5.

If we make the hypothesis that 1 D 2 D 3 D 4 D 1
4
, we find C12 D 0,

C13 > 0, C21 D 0, C23 D 0, C31 < 0 and C32 D 0. Thus a1 is preferred to a3, but
we can not conclude between a1 and a2, a2 and a3. If we know for example that:

2 	 4 	 3 	 1;
X

j

j D 1 and j 	 0;

then we find that C12 D � 1 + 2 + 3 � 4 	 0 in all cases, which means that,
on the basis of a pairwise comparison, a1 is preferred to a2. In a similar way it can
be shown that, given the same information on the weights, a1 is preferred to a3, and
that a2 is preferred to a3. Thus we arrive at a transitive rank order of alternatives.
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It is not possible to arrive at such definitive conclusions for all rankings of the
weights. If we assume that:

1 	 2 	 3 	 4;
X

j

j D 1 and j 	 0;

it is easy to see that from the first regime may result both positive and negative
values of some Cil. For example if � = (0.40, 0.30, 0.25, 0.05), C12 > 0, whereas
for � = (0.45, 0.30, 0.15, 0.10), C12 < 0. Therefore, the corresponding regime is
called a critical regime. The main idea of regime analysis is to circumvent these
difficulties by partitioning the set of feasible ordinal weights so that for each region
a final conclusion can be drawn about the sign of Cil.

Let the ordinal information available about the weights be:

1 	 2 	 3 	 4;
X

j

j D 1 and j 	 0:

The set of weights satisfying this information will be denoted as T. We have to
check, for all regimes cil, if cil may assume both positive and negative values,
given that  is an element of T. The total number of regimes to be examined
is 2n = 24 = 16. For our example, the number of critical regimes is equal to the
following four:

�1 C1 C1 �1
C1 �1 �1 C1
�1 C1 C1 C1
C1 �1 �1 �1

The number of critical regimes is even, since we known that if cil is also a critical
regime then cli =�cil is also critical. The subsets of T can be characterized by means
of the structure of the critical regimes. The four critical regimes of our example give
two critical equations:

f1.�/ D 1 � 2 � 3 C 4 D 0
f2.�/ D 1 � 2 � 3 � 4 D 0:

The following subsets of T can be distinguished by means of these equations:

T1 D T \ f� W f1.�/ > 0 and f2.�/ > 0g;
T2 D T \ f� W f1.�/ > 0 and f2.�/ < 0g;
T3 D T \ f� W f1.�/ < 0 and f2.�/ < 0g;
T4 D T \ f� W f1.�/ < 0 and f2.�/ > 0g:
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An examination of T1; : : : ;T4 reveals that T4 is empty, so that ultimately three
relevant subsets remain. The subsets T1;T2 and T3 are convex polyhedra, as it is
the case for the set T. The extreme points of these polyhedra can be determined
graphically in the case of four criteria. The extreme points for T are:

A W .1; 0; 0; 0/

B W
�
1

2
;
1

2
; 0; 0

�

C W
�
1

3
;
1

3
;
1

3
; 0

�

D W
�
1

4
;
1

4
;
1

4
;
1

4

�

In addition to these four points, the extreme points

E W
�
1

2
;
1

4
;
1

4
; 0

�

and

F W
�
1

2
;
1

6
;
1

6
;
1

6

�

are needed to characterize T1;T2 and T3. The characterization of T1;T2 and T3 by
means of the extreme points are for T1: A;B;E;F; for T2: B;D;E;F and for T3:
B;C;D;E.

Once the partitioning of the weight set has been achieved, for each subset of T
it is possible to indicate unambiguously the sign of Cil for each pair of alternatives.
Let �il be defined as follows:

�il D C1 if Cil > 0;

�il D �1 if Cil < 0:

Then a pairwise comparison matrix V can be constructed consisting of elements
equal to +1 or �1, and zeros on the main diagonal. A final ranking of alternatives
can be achieved on the basis of V.

For example, take an interior point of subset T1 (e.g. the centroid computed as the
mean of the extreme points). Determine the sign of Cil for all regimes occurring in
the regime matrix (Table 7.5). Thus we find for the pairwise comparison matrix V1:

V1 D
2

4
0 �1 �1
C1 0 �1
C1 C1 0

3

5
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On the basis of V1 we may conclude that a3 is preferred to a2 which in turn is
preferred to a1. For the two other subsets of weights we find:

V2 D
2

4
0 �1 C1
C1 0 �1
�1 C1 0

3

5 V3 D
2

4
0 C1 C1
�1 0 �1
�1 C1 0

3

5 :

The second pairwise comparison matrix does not give a definitive ranking of
alternatives, but on the basis of V3 we may conclude that a1 is preferred to a3 which
is again preferred to a2.

The relative size of subsets T1;T2 and T3 are not equal. If we assume that the
weights are uniformly distributed in T, the relative size of the subsets of T can
be interpreted as the correspondent probability that alternative ai is preferred to al.
Probabilities are then aggregated to produce an overall ranking of alternatives. The
relative sizes of the subsets can also be estimated using a random generator. This
is recommended if there are seven criteria or more, since the number of subsets
increases exponentially with the number of criteria [32].

The relevant subsets given an arbitrary number of criteria can be found in [16].
The REGIME method can be applied to mixed evaluations (ordinal and cardinal
criteria) without losing the information contained in the quantitative evaluation. This
requires a standardization of the quantitative evaluation. Israels and Keller [18] has
been proposed a variant of REGIME method where the incomparability is accepted.
The REGIME method is implemented in a system to support decision on a finite set
of alternatives DEFINITE [19].

7.2.3 ORESTE

ORESTE (Organisation Rangement Et Synthése de donées relationelles) (see [37,
38]) has been developed to deal with the situation where the alternatives are ranked
according to each criterion and the criteria themselves are ranked according to their
importance. In fact, the ORESTE method can deal with the following multi-criteria
problem. Let A be a finite set of alternatives ai, i D 1; 2; � � � ;m. The consequences
of the alternatives are analysed by a family F of n criteria. The relative importance
of the criteria is given by a preference structure on the set of criteria F, which can
be defined by a complete preorder S (the relation S D I [ P is strongly complete
and transitive, the indifference I is symmetric and the preference P is asymmetric).
For each criterion gj, j D 1; 2; � � � ; n, we consider a preference structure on the
set A, defined also by a complete preorder. The objective of the method is to find
a global preference structure on A which reflects the evaluation of alternatives on
each criterion and the preference structure among the criteria.
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The ORESTE method operates in three distinct phases:

First phase. Projection of the position-matrix.
Second phase. Ranking the projections.
Third phase. Aggregation of the global ranks.

We start from n complete preorders of the alternatives from A related to the n
criteria, (for each alternative is given a rank with respect to each criterion). Also for
each criterion is given a rank related to its position in the complete preorder among
the criteria. The mean rank discussed by Besson [5] is used. For example, if the
following preorder is given for the criteria g1Pg2Ig3Pg4, then r1 D 1, r2 D r3 D 2:5
and r4 D 4, where rj is the Besson-rank of criterion gj; idem for the alternatives,
rj.a/ is the average (Besson) rank of alternative a with respect to the criterion gj.
Given frj.a/, rjg, ORESTE tries to build a preference structure O D fI;P;Rg on A
such as:

• aiPal if ai is comprehensively preferred to al .Oil D 1;Oli D 0/,
• aiIal if ai is indifferent to al .Oil D Oli D 1/,
• aiRal if ai and al are comprehensively incomparable .Oil D Oli D 0/:
Projection Considering an arbitrary origin 0, a distance d.0; aj/ is defined with
the use of frj.a/; rjg such that d.0; aj/ < d.0; bj/ if aPjb, where aj D gj.a/ is the
evaluation of alternative a with respect to criterion gj. When ties occur, an additional
property is: if gjIgk and rj.a/ D rk.b/, then d.0; aj/ D d.0; bk/. For the author, the
“city-block” distance is adequate:

d.0; aj/ D ˛rj.a/C .1 � ˛/rj;

where ˛ stands for a suitable substitution rate (0 < ˛ < 1). The projection may be
performed in different ways [35, 38].

Example 3. Given 3 alternatives and 3 criteria (without ties), the complete preorders
of alternatives are: aP1bP1c, bP2cP2a and cP3aP3b, and for the criteria: g1Pg2Pg3.
This example may be visualized by a position matrix (Table 7.6).

Being r1 D 1, r2 D 2 , r3 D 3, the city-block distance for this example is given
in Table 7.7:

Table 7.6 Position-matrix 1 2 3

rj.:/ W
a

b

c

2

6
4

1 3 2

2 1 3

3 2 1

3

7
5

Table 7.7 City-block
distance

1 2 3

d.0; aj/ W
a

b

c

2

6
4

1 1C ˛ 1C 2˛

2C ˛ 2� ˛ 2

3� ˛ 3 3� 2˛

3

7
5
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Ranking Since it is the relative position of projections that is important and not
the exact value of d.0; aj), the projections will be ranked. To rank the projections,
a mean rank R.aj/ is assigned to a pair .a; gj) such that R.aj/ � R.bk/ if d.0; aj/ �
d.0; bk/. These ranks are called comprehensive ranks and are in the closed interval
Œ1;mn�. For our example R.a1/ < R.b2/ since 1 < 2 � ˛ (0 < ˛ < 1).

Aggregation For each alternative one computes the summation of their compre-
hensive ranks over the set of criteria. For an alternative a this yields the final
aggregation

R.a/ D
X

j

R.aj/:

For our example, if
1

3
< ˛ <

1

2
we obtain:

1 < 1C ˛ < 2 � ˛ < 1C 2˛ < 2 < 3 � 2˛ < 2C ˛
R.a1/ < R.b1/ < R.b2/ < R.c1/ < R.c2/ < R.c3/ < R.a2/
1 2 3 4 5 6 7

< 3 � ˛ < 3

< R.a3/ < R.b3/;
8 9

and therefore:

R.a/ D 16;R.b/ D 14;R.c/ D 15:

In the ORESTE method, the following index is also computed:

C.a; b/ D
X

jWaPjb

ŒR.bj/� R.aj/�:

It is easily shown that C.a; b/ � C.b; a/ D R.b/ � R.a/. Moreover, the maximum
value of R.b/� R.a/ equals n2.m � 1/.

For our example with 1
3
< ˛ < 1

2
, we obtain: C.c; b/ D 3, C.a; b/ D 2 and

C.a; c/ D 3. Thus, we may obtain the preference structure O D fI;P;Rg in such
way that if R.a/ � R.b/ then aIb or aPb or aRb, applying the following algorithm
(see flow chart of Fig. 7.2) where ˇ stands for an indifference level and � for an
incomparability level.

For our example with 1
3
< ˛ < 1

2
, we have C.c;b/

R.c/�R.b/ D 3, C.a;b/
R.a/�R.b/ D 1 and

C.a;c/
R.a/�R.c/ D 3. Thus, if ˇ D 1

18
D 1

n2.m�1/ and 1 � � � 3, we obtain bPa, aRc and
cRb.

These thresholds are interpreted in [35]. When � D 1, the outranking relation
is a semi-order, which becomes a weak order if ˇ D 0.
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YesR(b)−R(a)

n2(m−1)
≤ β

Yes

No

No

aIb

aPb
C(a,b)

R(b)−R(a)
≤ γ

aRb

Fig. 7.2 ORESTE flow chart

The global preference relation P built by ORESTE is transitive [35]. The axiom
known as the Pareto principle or citizen’s sovereignty holds if ˇ < 1

n.m�1/ , but the
axiom of independence of irrelevant alternatives is generally violated [38].

7.2.4 ARGUS

The ARGUS method [8, 42] uses qualitative values for representing the intensity
of preference on an ordinal scale. They express this intensity of preference between
two alternatives a; b 2 A by selecting one of the following qualitative relations:
indifference, small, moderate, strong or very strong preference. All evaluation on
the criteria are treated as evaluations on an ordinal scale, but the evaluations of
each alternative with respect to each criterion can be quantitative (interval or ratio
scale) or qualitative (ordinal scale). We must indicate if the criterion must be MIN
or MAX.

The way of obtaining the required information from the decision maker (DM)
to model his/her preference structure, depends on the scale of measurement of each
criterion. If the scale is ordinal, we may use the following possible values: very
poor, poor, average, good, very good. To model the preference structure of the DM
on this criterion, the DM must indicate his/her preference for each pair of values,
constructing a preference matrix (Table 7.8).
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Table 7.8 Preference matrix for a criterion with ordinal evaluation

gi.b/ Very poor Poor Average Good Very good

gi.a/ Very poor Indiff.

Poor Indiff.

Average Indiff.

Good Indiff.

Very good Indiff.

Table 7.9 Preference matrix for a criterion (Max) with evaluation
on a quantitative scale

gi.a/ � gi.b/ > 0 d D gi.a/� gi.b/ ı D gi.a/�gi.b/
gi.b/

Indifferent 0 � d < d1 0% � ı < ı1 %

Small preference d1 � d < d2 ı1 % � ı < ı2 %

Moderate preference d2 � d < d3 ı2 % � ı < ı3 %

Strong preference d3 � d < d4 ı3 % � ı < ı4 %

Very strong preference d4 � d ı4 % � ı

In fact the DM must fill only the lower triangle of this matrix. The number of rows
and columns of this matrix depends on the number of different values the ordinal
criterion can have. The preference of the DM on an interval scale criterion will
depend on d D gj.a/� gj.b/, while his/her preference on a ratio scale criterion will
depend either on d only or on d, gj.a/ and gj.b/. For example, if his/her preference
depends on d only, this means that only the absolute difference determines his/her
preference. The preference structure of the DM for an interval scale criterion can be
modeled by determining for which absolute difference d the DM is indifferent, for
which d he/she has a moderate preference, for which d he/she has a strong and for
which d he has a very strong preference. For a ratio scale criterion, he/she can also
consider the relative difference ı (see Table 7.9).

The following ordinal scale may be used to reflect the importance of a criterion:
not important, small, moderately, very and extremely important. The DM must
indicate for each criterion, by selecting a value from this ordinal scale, how
important the considered criterion is for him/her.

When the preference structure of the DM for each criterion is known as well as
the importance of each criterion, the comparison of two alternatives a and b with
respect to n criteria from F leads to a two-dimensional table (Table 7.10).

In a cell, fst stands for the number of criteria of a certain importance for which a
certain preference between the alternatives a and b occurs,

P
s

P
t fst D n.

In order to get one overall appreciation of the comparison between the alter-
natives a and b, the DM must rank all cells of Table 7.10 where gj.a/ > gj.b/.
A ranking in eight classes is proposed to DM. Through this ranking one dimensional
ordinal variable is created for each pair of alternatives. In fact there is a combined
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Table 7.10 Preference importance table for gj, a; b

Criteria Not Small Moderate Very Extremely
preference imp. imp. imp. imp. imp. wj

gj.a/ > gj.b/ Very strong f11 f12 f13 f14 f15 a

Strong f21 f22 f23 f24 f25 b

Moderate f31 f32 f33 f34 f35
:
:
:

Small f41 f42 f43 f44 f45
:
:
:

gj.a/ D gj.b/ No f51 f52 f53 f54 f55
:
:
:

gj.a/ < gj.b/ Small f61 f62 f63 f64 f65
:
:
:

Moderate f71 f72 f73 f74 f75
:
:
:

Strong f81 f82 f83 f84 f85 b

Very strong f91 f92 f93 f94 f95 a

Table 7.11 Combined
preferences with weights
importance

gj.a/ > gj.b/ gj.a/ < gj.b/

1 u1 D f15 �1 D f95
2 u2 D f14 C f25 �2 D f85 C f94
3 u3 D f13 C f24 C f45 �3 D f75 C f84 C f93
4 u4 D f12 C f23 C f34 C f45 �4 D f65 C f74 C f93 C f92
5 u5 D f11 C f22 C f33 C f44 �5 D f64 C f73 C f82 C f91
6 u6 D f21 C f32 C f43 �6 D f63 C f72 C f81
7 u7 D f31 C f42 �7 D f62 C f71
8 u8 D f41 �8 D f61

preference with respect to difference on evaluations and importance of weights
where gj.a/ > gj.b/ and where gj.a/ < gj.b/ (see Table 7.11).

The decision maker can alter this ranking (by moving a cell from one class
to another, by considering more or less classes) until it matches his/her personal
conception. Based on those two variables, uk and �k, an outranking (S), indifference
(I) or incomparability (R) relation between two alternatives is constructed:

if
hX

kD1
uk D

hX

kD1
vk for all h D 1; : : : ; 8; then aIb;

if
hX

kD1
uk 	

hX

kD1
vk for all h D 1; : : : ; 8; then aSb;

if
hX

kD1
uk �

hX

kD1
vk for all h D 1; : : : ; 8; then bSa;

in all other cases aRb.
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According to the basic idea of outranking, if alternative a is much better than
alternative b on one (or more) criteria and b is much better than a on other
criteria, there can be discordance between alternative b and alternative a, and
b will not outrank a. The DM must explicitly indicate for each criterion when
there is discordance between two evaluations on that particular criterion. For an
ordinal criterion he/she can indicate in the upper triangle of the preference matrix
(Table 7.8) when discordance occurs. For an interval or ratio criterion, the DM must
indicate from which difference (absolute or relative), between the evaluations of two
alternatives on that criterion, there is discordance.

Example 4. We have 4 alternatives, 4 criteria and the evaluation table (Table 7.12).
In this example, the criteria g1; g2; g3 are ordinal scales, and criterion g4 is an interval
scale to be minimized.

The following dominance relation can be observed from the data:
a4D a3, so that after deleting a3, the set of alternatives is A D fa1; a2; a4g. It is

necessary to make this pre-processing step.
The preference modeling of alternatives with respect to the criteria are given in

Tables 7.13, 7.14, and 7.15.

Table 7.12 Evaluation of
alternatives

g1 g2 g3 g4
a1 � ˚ � 13

a2 ˚ � � 10

a3 � � � 17

a4 C � � 17

˚ W verygoodI
C W goodI
� W acceptableI
� W moderate

Table 7.13 Criteria g1 and g3 (ordinal scales)

g2.b/ � � � C ˚
g2.a/ � Indifferent Discordance Discordance

� Moderate Indifferent Discordance

� Strong Moderate Indifferent

C Very strong Strong Moderate Indifferent

˚ Very strong Very strong Strong Small Indifferent

Table 7.14 Criterion g2 (ordinal scale)

g6.b/ � � � C ˚
g6.a/ � Indifferent Discordance

� Small Indifferent

� Moderate Small Indifferent

C Strong Moderate Small Indifferent

˚ Very strong Strong Moderate Small Indifferent
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Table 7.15 Criterion g4
(interval scale MIN)

Preference (a above b) d D gj.a/ > gj.b/

Indifferent 0 � d < 1

Small 1 � d < 3:5

Moderate 3:5 � d < 6

Strong 6 � d < 9

Very strong 9 � d < 1
Discordance d < �1

Table 7.16 Preference
structure of weights

Weight

Not important

Small important g1; g3
Moderately important g4
Very important g2
Extremely important

Table 7.17 Pairwise
comparison between a1
and a4

gj.a1/ > gj.a4/ gj.a1/ < gj.a4/

1 0 0

2 0 0

3 0 0

4 1 0

5 1 0

6 0 2

7 0 0

8 0 0

Fig. 7.3 Outranking graph

a1 a2

a4

The preference structure of weights of the criteria is given in Table 7.16.
Suppose that the ranking in eight classes of the combined preference with weight

of two alternatives presented in Table 7.11 is approved. Table 7.17 gives an example
of a pairwise comparison between a1 and a4.

The pairwise comparison of all pair of alternatives from A permits to construct
the following binary relations: a1Sa4, a1Ra2 and a2Sa4 (see Fig. 7.3).

The ARGUS method demands a relatively great effort from the DM to model
his/her preferences.
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7.2.5 EVAMIX

The EVAMIX (Evaluation Matrix) method [32, 45, 46] is a generalization of
concordance analysis in the case of mixed information on the evaluation of
alternatives on the judgment criteria. Thus a pairwise comparison is made for all
pairs of alternatives to determine the so called concordance and discordance indices.
The difference with standard concordance analysis is that separate indices are
constructed for the qualitative and quantitative criteria. The comprehensive ranking
of alternatives is the result of a combination of the concordance and discordance
indices for the qualitative and quantitative criteria.

The set of criteria in the multi-criteria evaluation table is divided into a set of
qualitative (ordinal) criteria O and a set of quantitative (cardinal) criteria C. It is
assumed that the differences between alternatives can be expressed by means of
two dominance measures: a dominance score ˛ii0 for the ordinal criteria, and a
dominance score aii0 for the cardinal criteria. These scores represent the degree to
which alternative ai dominates alternative ai0 . They have the following structure:

˛ii0 D f .eij; ei0j; j/; for all j 2 O,

aii0 D g.eij; ei0j; j/; for all j 2 C,

where ehj represents the evaluation of alternative ah on the criterion gj and j the
importance weight associated to this criterion (j > 0). These scores can be defined
as follows:

˛ii0 D
2

4
X

j2O

fjsgn.eij � ei0j/gc
3

5

1
c

;

where

sgn.eij � ei0j/ D
8
<

:

C1 if eij > ei0j

0 if eij D ei0j

�1 if eij < ei0j:

The symbol c denotes an arbitrary scaling parameter, for which any positive
odd value may be chosen, c D 1; 3; 5; : : :. In a similar manner, the quantitative
dominance measure can be made explicit:

aii0 D
2

4
X

j2C

fj.eij � ei0j/gc
3

5

1
c

:
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In order to be consistent, the same value for the scaling parameter c should be
used as in formula for ˛ii0 . It is assumed that the quantitative employed evaluation
eij have been standardized (0 � eij � 1). Evidently, all standardized scores should
have the same direction, i.e., a ‘higher’ score should (for instance) imply a ‘larger’
preference. It should be noted that the rankings eij .j 2 O/ of the qualitative
criteria also have to represent ‘the higher, the better’. Since ˛ii0 and aii0 will have
different measurement units, a standardization into the same unit is necessary. The
standardized dominance measures can be written as:

ıii0 D h.˛ii0/ and dii0 D h.aii0/;

where h represents a standardization function.
Let us assume that weights j have quantitative properties. The overall domi-

nance measure Dii0 for each pair of alternatives (ai, ai0) is:

Dii0 D oıii0 C cdii0 ;

where o =
P

j2O j and c =
P

j2C j . This overall dominance score reflects
the degree to which alternative ai dominates alternative ai0 for the given set of
criteria and the weights. The last step is to determine an appraisal score si for
each alternative. In general the measure Dii0 may be considered as function k of
the constituent appraisal scores, or:

Dii0 D k.si; si0/:

This expression represents a well-known pairwise comparison problem. Depend-
ing on the way function k is made explicit, the appraisal scores can be calculated.
The most important assumptions behind the EVAMIX method concern the definition
of the various functions. It is shown in [46], that at least three different techniques
can be distinguished which are based on different definitions of ıii0 , dii0 and Dii0 . The
most straightforward standardization is probably the additive interval technique. The
overall dominance measure Dii0 is defined as:

Dii0 D si

si C si0
;

which implies that Dii0 + Di0i = 1. To arrive at such overall dominance measures with
this additivity characteristic, the following standardization is used:

ıii0 D .˛ii0 � ˛�/
.˛C � ˛�/

and dii0 D .aii0 � a�/
.aC � a�/
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where ˛� (˛C) is the lowest (highest) qualitative dominance score of any pair of
alternatives (ai, ai0) and a� (aC) is the lowest (highest) quantitative dominance score
of any pair of alternatives (ai; ai0). The resulting appraisal score is:

si D
"
X

i0

Di0 i

Dii0

#�1
:

This expression means that the appraisal scores add up to unity, i.e.
P

i si D 1.
In the previous elaboration, quantitative weights j, j D 1; 2; : : : ; n, were

assumed. In some circumstances, only qualitative priority expressions can be given.
If only ordinal information is given, at least two different approaches may be
followed: an expected value approach (see [32, Appendix 4.I]) or a random weight
approach. The random weight approach implies that quantitative weights are created
by a random selection out an area defined by the extreme weight sets. These random
weights �j, j D 1; � � � ; n, have to fulfill the following conditions:

1. for each �j; �j0 ; !j � !j0 ) �j 	 �j0 ,
2.
P

j �j D 1,

where !j denotes a ranking number expressing a qualitative weight with “lower”
means “better”. For each set of metric weights �j, j D 1; � � � ; n, generated during
one run of the random number generator, a set of appraisal scores can be determined.
By repeating this procedure many times, a frequency matrix can be constructed.
Its element fri represents the number of times, alternative ai was placed in the
r-th position in the final ranking. A probability matrix with element pri can be
constructed, where:

pri D fri
P

i fri
:

So, pri represents the probability that ai will receive an r-th position. We can
make a comprehensive ranking of the alternatives in the following way:

ai D 1; if p1i is maximal,
ai0 D 2; if p1i C p2i0 is maximal and i

0 6D i;
ai00 D 3; if p1i C p2i0 C p3i00 is maximal and i

00 6D i
0 6D i;

and so forth.
The EVAMIX method is based on important assumptions: (1) the definition of

the various functions f , g, h and k; (2) the definition of the weights of the sets O and
C and (3) the additive relationship of the overall dominance measure.
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7.2.6 TACTIC

In the TACTIC method, proposed by Vansnick (see [6, 43]), the family of criteria F
is composed of true-criteria or quasi-criteria (criteria with an indifference threshold
qj > 0) gj; j D 1; : : : ; n; and the preference structures correspondent are .P; I/ or
.P; I;R/, where R is the incomparability relation, if no veto-threshold vj.�/, j 2 J D
f1; 2; � � � ; ng is considered or at least one vj is introduced respectively.

To each criterion gj 2 F an importance weight �j > 0 is associated, as in
the ELECTRE methods (see Chap. 4 in this book). To model the preferences, the
following subset of J is defined, 8a; b 2 A; a ¤ b:

JT.a; b/ D fj 2 | W gj.a/ > gj.b/C qjŒgj.b/�g;

where qjŒgj.b/� is the marginal indifference threshold as a function of the worst
evaluation between gj.a/ and gj.b/, and therefore in this case we have aPjb.

If in the set F only true criteria are considered, the statement aPb is true if and
only if the following concordance condition is satisfied:

X

j2JT .a;b/

�j > �
X

j2JT .b;a/

�j; i.e.

P
j2JT .a;b/

�j
P

j2JT .b;a/
�j
> � ifJT .b; a/ ¤ ;; (7.1)

where the coefficient � is called required concordance level (usually, 1 � � �P
j2I �j

minj2I �j
� 1) and the two summations represent the absolute importance of the

coalition of criteria in favor of a or b respectively.
If also some quasi-criterion is in the set F, in the preference structure

.P; I;R/ aPb is true if and only if both concordance condition (7.1) and the
following non-veto condition are satisfied:

8j 2 J ; gj.a/C vjŒgj.a/� 	 gj.b/; (7.2)

where vjŒgj.a/� is the marginal veto threshold.
If the condition (7.2) is not satisfied by at least one criterion from F, we have

aRb. On the other hand, we have aIb if and only if both pairs .a; b/ and .b; a/ do not
satisfy condition (7.1) and no veto situation arises.

We remark that if � D �� D
P

j2I �j

minj2I �j
� 1 , the condition (7.1) is equivalent to

the complete absence of criteria against the statement aPb, i.e. JT.b; a/ D ; (and
therefore in this case, (7.2) automatically holds). If qj D 0 for each criterion gj, the
relation P is transitive for � > ��. When � is decreasing from level ��, we can have
two types of intransitivity:

• aPb; bPc; aIc (or aRc),
• aPb; bPc; cPa:
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If in Eq. (7.1) � D 1, we obtain the basic concordance-discordance procedure of
Rochat type:

• for structures .P; I/ (see [40]),

aPb iff
X

j2JT .a;b/

�j >
X

j2JT .b;a/

�jI

aIb iff
X

j2JT .a;b/

�j D
X

j2JT .b;a/

�jI

• for structures .P; I;R/,

aPb iff
X

j2JT .a;b/

�j >
X

j2JT .b;a/

�j and

gj.b/� gj.a/ � vjŒgj.a/�;8j 2 J I
aIb iff

X

j2JT .a;b/

�j D
X

j2JT .b;a/

�j and

gj.b/� gj.a/ � vjŒgj.a/�;8j 2 J ; and

gj.a/� gj.b/ � vjŒgj.a/�;8j 2 J :

aRb iff non.aPb/; non.bPa/ and non.aIb/:

The main difference between the ELECTRE I and TACTIC preference modeling
is that the latter method is based on the binary relation aPb, while the former aims
to build up the outranking relation aSb, a; b 2 A. Moreover, the validation of the
preference relation is now based on a sufficiently large ratio between the importance
of criteria in favor and against the statement aPb. Roy and Bouyssou [40] show
that this second difference is actually just a formal one. They also remark that, as
a consequence of the peculiar characterization of the statement aPb, in TACTIC
method is difficult to split indifference and incomparability situations. No particular
exploitation procedure is suggested in TACTIC method.

7.2.7 MELCHIOR

In the MELCHIOR method [21], the basic information is a family F of pseudo-
criteria, i.e. criteria gj with an indifference threshold qj and a preference threshold
pj (pj > qj 	 0) such that, 8j 2 J and 8a; b 2 A:

• a is strictly preferred to b (aPjb) with respect to gj iff gj.a/ > gj.b/C pjŒ.gj.b/�,
• a is weakly preferred to b (aQjb) with respect to gj iff gj.b/CpjŒ.gj.b/� 	 gj.a/ >

gj.b/C qŒ.gj.b/�,
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• a and b are indifferent (aIjb) iff there is no strict or weak preference between
them.

No importance weights are attached to criteria, but a binary relation M is defined
on F such that giMgj means “criterion gi is as least as important as criterion gj”.
In order to state the comprehensive outranking relation aSb, the Author proposes to
“match” in a particular way the criteria in favor and the criteria against the latter
relation (concordance analysis) and to verify that no discordance situation exists,
i.e. no criterion gj from F exists such that gj.b/ > gj.a/C vj, where vj is a suitable
veto-threshold for criterion gj (absence of discordance). In this method, a criterion
gj 2 F is said to be in favor of the outranking relation aSb if one of the following
situations is verified:

• aPjb (marginal strict preference of a over b) (1st condition)
• aPjb or aQjb (marginal strict or weak preference of a over b) (2nd condition)
• gj.a/ > gj.b/ (3rd condition).

A criterion gj 2 F is said to be against the outranking relation aSb if one of the
following situations is verified:

• bPja (marginal strict preference of b over a) (1st condition)
• bPja or bQja (marginal strict or weak preference of b over a) (2nd condition)
• gj.b/ > gj.a/ (3rd condition).

The concordance analysis with respect to the outranking relation aSb, a; b 2 A,
is made by checking if the family of criteria G in favor of this relation “hides”
the family of criteria H that are against relation aSb. These subsets of criteria are
compared just using the binary relation M on F. A subset G of criteria is said to
“hide” a subset H of criteria (G;H � F, F \ G D ;) if, for each criterion gi from
H, there exists a criterion gj from G such that

• gjMgi (1st condition) or
• gjMgi or not(giMgj) (2nd condition),

where the same criterion gj from G is allowed to hide at most one criterion from H.
By choosing two suitable combinations (see [21]) of the above conditions,

the first stricter than the other, and verifying the concordance and the absence
of discordance, a strong and a weak comprehensive outranking relation can be
respectively built up. Then these relations are in turn exploited as in ELECTRE
IV method (see Chap. 5 in this book). We remark that the latter in fact coincides
with MELCHIOR if the same importance is assigned to each criterion.

We finally observe that in both TACTIC and MELCHIOR methods no possibility
of interaction among criteria (see Chap. in this book) is taken into consideration,
since the first one considers additive weights for the importance of each coalitions
of criteria and the last one just “matches” one to one criteria in favor and against the
comprehensive outranking relation aSb.
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7.3 Pairwise Criterion Comparison Approach (PCCA)

In this approach, after the evaluations of potential alternatives with respect to
different criteria, the phase of building up the outranking relations is split in two
different steps, making comparisons at first level (partial aggregation) with respect
to each subset of criteria Gk � F .jFj D m;Gk ¤ ;, jGj D k; k D 2; 3; � � � ;m � 1)
and then aggregating at the second level these partial results (global aggregation).

With respect to weighting, this way of aggregating preferences allows to take
into consideration the marginal substitution rate (trade-off) of each criterion from
subset Gk at the first step and the importance of each coalition of criteria Gk at
the second step, with the possibility to explicitly modeling the different meaning of
these “weights” and the eventual interaction among criteria from each Gk (see Chap.
in this book). Moreover, peculiar preference attitudes with respect to compensation,
indifference and veto relations may be usefully introduced at each step of preference
aggregation process; therefore, these particular options may be modelled at “local”
and global level, when the partial and aggregated preferences indices respectively
are built up.

For k D 2, (i.e. when two criteria a time are considered in the first phase of
aggregation), we speak of Pairwise Criterion Comparison Approach (PCCA) , that
is therefore a methodology in which first all the feasible actions are compared with
respect to pairs of criteria from F, and then all the partial information so obtained
are suitably aggregated.

Given a; b 2 A, in the Multiple Attribute Utility Theory (see Chap. 8 in this book)
the partial utility functions uiŒgi.a/�, i 2 J , are aggregated in different ways to
obtain the global utility u.a/ of each alternative and then the final recommendation.

In the outranking ELECTRE and PROMETHEE (see Chap. 5 in this book)
families methods, from the evaluations of each action with respect to each criterion
gi 2 F, some (crisp or fuzzy) marginal outranking or preference relations �i.a; b/
are built up as elementary indices, or relations, with respect each criterion i 2 J and
each (ordered) pair of actions .a; b/; then, using these marginal relations and other
inter-criteria information, a comprehensive outranking relation or index �.a; b/ is
obtained. In PCCA, in the first stage for each pair of actions .a; b/ a fuzzy binary
preference index ıij.a; b/, i; j 2 J , is built up as elementary index taking into
consideration two different criteria a time; then, by suitable aggregation of these
partial indices, a global index ı.a; b/ is obtained, expressing the comprehensive
fuzzy preference of a over b.

As in all the other outranking methods, the exploitation of the indices expressing
the comprehensive relation allows to obtain the recommendation for the decision
problem at hand.

The main reasons that suggest this two levels aggregation procedure are the
following:

• limited capacity of the human mind to compare a large number of elements at the
same time, taking into consideration numerous and often conflicting evaluations
simultaneously;
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• limited ability of the DM for assessing a lot of parameters concerning subjective
evaluations of general validity and considering all available information together.

Of course, this approach requires a larger number of computations and preference
information, but:

• it actually helps in understanding and it supports the entire decision making
process itself;

• it allows DM to use in an appropriate way all own preference information,
requiring weaker coherence conditions, and to obtain further information about
partial comparisons;

• it compares actions with respect to two criteria a time and then it is easier to set
appropriate parameters reflecting the partial comparison at hand;

• it offers greater flexibility in the preference modeling, allowing explicitly the
representation of specific preference framework and information DM wants to
use each time in the considered comparison;

• it allows useful extensions of some well-known basic concepts, like weighting,
compensation, dominance, indifference, incomparability, etc.

• it actually allows to model interaction between each couple of criteria (so called
2-level interaction), possibly the most important and really workable in an
effective way.

Therefore, in our opinion the PCCA satisfies the following principles, relevant
in any decision process, to build up realistic preference models and to obtain actual
recommendations:

• transparency, making some light in any phase of the “black box” process (about
the aggregation procedure in itself, the meaning of each parameter and index,
their exploitation, etc.);

• faithfulness, respecting accurately the DM’s preferences, without imposing too
axiomatic constraints;

• flexibility, accepting and using any kind of information the DM wants and is able
to give, neither more, nor less.

This means that DM will not be forced to “consistency” or “rationality”. In other
words, not too “external conditions” will be imposed to DM in expressing his/her
preferences, but all actual information will be used. So, for example, not transitive
trade-offs, wi;k, (different from wi;j � wj;k, where wr;s is the trade-off between criteria
gr and gs), and or not complete importance weights (to some criterion no weight
is associated) and also aggregated information (i.e., pooled importance weights,
reflecting the interaction among criteria of each coalition) will be accepted as input.

Roughly speaking, the PCCA aggregation procedure can be applied to a lot of
well-known compensatory or noncompensatory aggregation procedures resulting
in binary preference indices. For each j 2 J , let gj 2 F be an interval scale of
measurement (i.e., unique up to a positive linear transformation) and wj;wj 2 R

C,
be a suitable scale constant, called trade-off weight or constant substitution rate,
reflecting (in a compensatory aggregation procedure) the increase on criterion value
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gj necessary to compensate a unitary decrease on other reference criterion from F
in terms of global preference. In other words, wj is used to transform the scale gj for
normalizing and weighting the criteria values in order to compare units on different
criterion scales, for each gj 2 F. Often this normalization is made introducing two
parameters g�

j and g�j, j 2 J , (g�j < g�
j ), usually fixed a priori by DM according to

the specific decision problem at hand and related with the discrimination power of
the criterion scales. These parameters represent, in the DM’s view, respectively two
suitable “levels” on criterion gj to normalize its evaluations of feasible actions. For
example, g�j and g�

j can be respectively the “neutral” and the “excellent” level or the
minimum and maximum value that can be assumed on criterion gj in case of DM’s
increasing preference with gj; currently, g�j � minfgj.x/g and g�

j 	 maxfgj.x/g.
Therefore we can write wj D tj

g�

j �g�j
, where tj represent the marginal weight

(“importance”) of criterion gj after normalization of its scale.
Let consider the following subsets of J :

Ja>b D fj 2 J W gj.a/ > gj.b/g;
JaDb D fj 2 J W gj.a/ D gj.b/g;
Ja<b D fj 2 J W gj.a/ < gj.b/gI

In this way, each doubleton fa; bg � A determines a partition of J , (possible an
improper one, since some of the three subsets may be empty), whose elements are
the subsets of criteria for which there is preference of a over b, indifference of a and
b, preference of b over a, respectively.

Moreover, let be

Ja�b D fj 2 J W gj.a/ 	 gj.b/g;

i.e. the subset of criteria for which there is a weak preference of a over b.
Let us remember, for example, the following elementary indices:

m.a; b/ D jJa>bj (majority index);

�.a; b/ D
X

.j2Ja>b/

�j (Condorcet index);

where �j 2 R
C is the importance weight associated with criterion gj 2 F and

w.a; b/ D
X

.j2Ja�b/

wj�j.a; b/ .weighted difference/;

where�j.a; b/ D gj.a/� gj.b/ and all criteria are interval scales.
If we consider the subset of criteria G D fgi; gjg � F, indicating by fij any one of

the above indices, computed with respect to G, it is possible to derive thence a new
binary preference index ıij.a; b/, defined as follows:
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ıij.a; b/ D
(

fij.a;b/
fij.a;b/Cfij.b;a/

if fij.a; b/C fij.b; a/ > 0
1
2

if fij.a; b/C fij.b; a/ D 0
(7.3)

The following properties hold, 8.a; b/ 2 A2:

0 � ıij � 1 , ıij.a; b/C ıij.b; a/ D 1;
ıij.a; b/ D 1, a partially dominates b;
ıij.a; b/ D 0, b partially dominates a;

both being partial dominance relations defined with respect to the considered couple
of criteria fgi; gjg � F.

Therefore, the general index ıij.a; b/, obtained by the PCCA partial aggregation
procedure, indicates the credibility of the dominance of a over b with respect to
criteria gi and gj.

Let now �k, �k 2 R
C be the normalized weight used in a noncompensatory

aggregation procedure, called importance weight, associated with criterion gk 2 F,
indicating the intrinsic importance of each criterion, independently by its evaluation
scale. Then, we can aggregate the partial indices ıij.a; b/ computed with respect to
all the couples of different criteria gi and gj from F according to the PCCA logic,
considering also the normalized importance weight �ij (i.e.

P
i<j �ij D 1) of the

coalition (couple) of criteria gi and gj, i; j 2 J .
We obtain the following aggregated index :

ı.a; b/ D 1

n � 1
X

ij.i<j/

�ijıij.a; b/: (7.4)

If there is no interaction between any couple of criteria, additive weights can be
used in Eq. (7.4), i.e. �ij D �i C �j, otherwise �ij > �i C �j in case of positive
interaction (synergy) and �ij < �iC�j in case of negative interaction (redundancy).
The following properties hold, 8.a; b/ 2 A2:

0 � ı.a; b/ � 1; if and only if ı.a; b/C ı.b; a/ D 1;
ı.a; b/ D 1 if and only if a strictly dominates b,
ı.a; b/ D 0 if and only if b strictly dominates a

(see Sect. 7.3.1).
Therefore, the particular meanings (credibility of dominance) of the partial and

global indices ıij.a; b/ and ı.a; b/ respectively are results essentially linked to the
peculiar aggregation procedure of PCCA and not to the specific bicriteria index
considered each time.

In the framework of the PCCA methodology, different methods have been
proposed: MAPPAC, PRAGMA, IDRA, PACMAN, each one with its own features
to build up the correspondent outranking relations and indices.
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7.3.1 MAPPAC

We recall that a dominates b (aDb), a; b 2 A, with respect criteria from F if a is at
least as good as b for the considered criteria and is strictly preferred to b for at least
one criterion:

aDb, gi.a/ 	 gi.b/;8gi 2 F and 9 j 2 J W gj.a/ > gj.b/ :

We say that a weakly dominates b (aDwb) if a is at least as good as b for all the
criteria from F:

aDwb, gi.a/ 	 gi.b/;8 gi 2 F:

We say that a strictly dominates b (aDsb) iff gi.a/ 	 gi.a/, 8i 2 F, where at most
only one equality is valid. The binary relation Dw is a partial preorder (reflexive
and transitive), while D (and Ds) is a partial order (irreflexive, asymmetric and
transitive); the correspondent preference structures are partial order and strict partial
order respectively. Of course, Ds � D � Dw, aDb, bDwc) aDc and aDwb; bDc)
aDc;8a; b; c 2 A:

In PCCA, where a subset (couple) of criteria G D fgi; gjg � F, is considered
at the first level of aggregation, we say that a partially dominates b (aDijb), if the
relation of dominance is defined on G. We say that a is partially preferred or is
partially indifferent to b (aPijbj and aIijb respectively) if these relations hold with
respect to the set of criteria fgi; gjg.

We observe that

aDijb) aPijb;

and

aDijb;8i; j 2 J , aDsb) aDb) aPb;

if all criteria from F are true criteria.
In the MAPPAC method [30] the basic (or partial) indices ij.a; b/ can be

interpreted as credibility indices of the partial dominance aDijb, indicating also the
fuzzy degree of preference of a over b; the global index .a; b/, corresponding to
index ı.a; b/ defined in (7.4), can be interpreted as the credibility index of strict
dominance aDsb, i.e. as the fuzzy degree of comprehensive preference of a over b.

If all criteria from F are interval scales, recalling that �j.a; b/ D gj.a/ � gj.b/,
for each j 2 J and a; b 2 A, wj, is the trade-off weight and �j the (normalized)
importance weight of criterion gj, j 2 J , the axiomatic system of MAPPAC partial
indices can be summarized as follows (see Table 7.18) for each a; b 2 A:
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Table 7.18 Axiomatic system of MAPPAC basic indices

Binary Signs of Signs of Pair of signs of

ij.a; b/ relations �i.a; b/ ��j.a; b/ �i.a; b/C�j.a; b/ �i.a; b/; �j.a; b/

�0; 1Œ aPijb; bPija; aIijb < 0 R .C;�/; .�;C/
1
2

aIijb D 0 D 0 .0; 0/

1 aDijb � 0 > 0 .C;C/; .C; 0/; .0;C/
0 bDija � 0 < 0 .�;�/; .�; 0/; .0;�/

• The basic indices ij.a; b/ are functions only of the signs of the differences in
evaluations of a and b with respect to criteria gi and gj in case of concordant
evaluations, i.e. iff �i.a; b/�j.a; b/ 	 0. In this case,

aDijb, �i.a; b/C�j.a; b/ > 0

and

bDija, �i.a; b/C�j.a; b/ < 0

and then ij.a; b/ D 1 and ij.b; a/ D 0 in the first case, and ij.a; b/ D 0 and
ij.b; a/ D 1 in the second case.

• The basic indices ij.a; b/ are functions of the values of the differences in
evaluations of a and b with respect to criteria gi and gj and of trade-off weights
wi and wj in case of discordant evaluations, i.e. iff �i.a; b/�j.a; b/ < 0. In
this case, the indices ij.a; b/ and ij.b; a/ will be of a compensatory type,
lying in the interval �0; 1Œ, and they will indicate the fuzzy degree of preference
of a over b and of b over a respectively; if wi�i.a; b/ C wj�j.a; b/ D 0,
ij.a; b/ D ij.b; a/ D 1

2
.

• The global index .a; b/ is function of all the

�
m
2

�

basic indices ij.a; b/ and

of the importance weights �ij of all coalitions fgi; gjg of criteria. If there is no
interaction between criteria gi and gj, we have �ij D �i C �j . In case of strict
dominance aDsb or bDsa, .a; b/ D 1 and .b; a/ D 0, or .a; b/ D 0 and
.b; a/ D 1, respectively. Otherwise, .a; b/ and .b; a/ will lie in the interval
�0; 1Œ and they will indicate the fuzzy degree of comprehensive preference of a
over b and of b over a respectively.

Preference Indices We recall that wj�j.a; b/ D wj.gj.a/� gj.b//, j 2 J , a; b 2 A,
is the normalized weighted difference of evaluations of actions a and b with respect
to criterion gj.

If we assume fij.a; b/ D
X

h2fi;jg\Ja�b

wh�h.a; b/ in Eq. (7.3) we obtain the partial

index ij.a; b/ of MAPPAC, a; b 2 A, fgi; gjg � F (jFj 	 3). This index can also be
explicitly written as shown in Table 7.19.
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Table 7.19 Basic preferences indices

ij.a; b/ ij.b; a/

1 0 if gi.a/ > gi.b/

and gj.a/ > gj.b/

0 1 if gi.a/ < gi.b/

and gj.a/ < gj.b/

0.5 0.5 if gi.a/ D gi.b/

and gj.a/ D gj.b/
wi.gi.a/�gi.b//

wi.gi.a/�gi.b//Cwj.gj.b/�gj.a//
wj.gj.b/�gj.a//

wi.gj.a/�gi.b//Cwj.gj.b/�gj.a//
if gi.a/ > gi.b/

and gj.a/ � gj.b/

if gi.a/ D gi.b/

and gj.a/ < gj.b/
wj.gj.a/�gj.b//

wi.gi.b/�gi.a//Cwj.gj.a/�gj.b//
wi.gi.b/�gi.a//

wi.gi.b/�gi.a//Cwj.gj.a/�gj.b//
if gi.a/ � gi.b/

and gj.a/ > gj.b/

if gi.a/ < gi.b/

and gj.a/ D gj.b/

P

Aj

h
Ai

Bi

y Bj

x
I

k

0

i
j

πij (a, b ) = IQ πij (b, a ) = QJ

Ai = wigi(a)
Aj = wj gj (a)
Bi = wigi(b)
Bj = wj gj (a)
IJ = 1

JQ

Fig. 7.4 Geometrical interpretation of basic preferences indices

It is invariant to the admissible transformation of any gj 2 F, i.e. all the positive
affine transformations of the type g0

j.�/ D ˛gj C ˇ, with ˛ 2 R
C and ˇ 2 R,

being the criteria interval scales. It is the image of a valued binary relation, strictly
complete, transitive and ipsodual (i.e. ij.a; b/ D 1 � ij.b; a/) , that constitutes a
complete preorder on A, and it indicates the fuzzy partial preference intensity of a
over b.

The basic preference index ij.a; b/ may be immediately interpreted geometri-
cally by considering the partial profiles of the actions a and b with respect to criteria
gi and gj (see Fig. 7.4).
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Let us consider the following subsets of F:

GC.a; b/ D fgh 2 F W �h.a; b/ > 0g with jGC.a; b/j D p;

GD.a; b/ D fgh 2 F W �h.a; b/ D 0g with jGD.a; b/j D o;

G�.a; b/ D fgh 2 F W �h.a; b/ < 0g with jG�.a; b/j D n;

D1.a; b/ D f.gi; gj/ 2 F2; gi ¤ gj W aDijbg;
D0.a; b/ D f.gi; gj/ 2 F2; gi ¤ gj W bDijag:

Of course, GC.a; b/ [ GD.a; b/ [ G�.a; b/ D F and jFj D m D p C o C n;
.p; o; n 	 0). Since (see [31])
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�
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we can split all the

�
m
2

�

basic preference indices ij.a; b/ as follows:

�
m
2

�

D jD1.a; b/j C jDo.a; b/j C
�

o
2

�

C pn:

Thus, jD1.a; b/j D
�

m
2

�

if and only if p 	 m � 1 and n D 0 (i.e., �h.a; b/ 	 0

for each h 2 J , with at most only one equality), jD0.a; b/j D
�

m
2

�

if and only

if n 	 m � 1 and p D 0, jD1.a; b/j D jD0.a; b/j D 0 and ij.a; b/ D 1
2

for each
i; j 2 J if and only if o D m

2
(i.e., �h.a; b/ D 0 for each h 2 J ).

The global preference index .a; b/ is the sum of all the

�
m
2

�

; m > 2,

basic preference indices ij.a; b/, weighted each time by the normalized importance
weights �ij of the considered couple of criteria gi; gj:

.a; b/ D
X

ij.i<j/

ij.a; b/
�ij

ƒ
;

whereƒ D
X

ij.i<j/

�ij:
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If there is no interaction between each couple of criteria, we have �ij D �i C
�j 8i; j 2 J , where �h is the normalized importance weight of criterion gh, h D
1; 2 � � �m, and therefore:

.a; b/ D
X

ij.i<j/

ij.a; b/
�i C �j

m � 1 ; i; j 2 J ;

0

@
X

ij.i<j/

�
�i C �j

� D m � 1
1

A (7.5)

Therefore, in this case we can write .a; b/ as:

.a; b/ D PP.a; b/C P0.a; b/C NN.a; b/C NO.a; b/C OO.a; b/C PN.a; b/;
(7.6)

where:

PP.a; b/ D p � 1
m � 1

X

i2GC.a;b/

�iI

P0.a; b/ D 1

m � 1

2

4p
X

i2GD.a;b/

�i C o
X

i2GC.a;b/

�i

3

5 I

NN.a; b/ D NO.a; b/ D 0I

OO.a; b/ D 1

2

o � 1
m � 1

X

i2GD.a;b/

�iI

PN.a; b/ D
X

rs

rs.a; b/
�rC�s

m � 1 ; .gr; gs/ 2 GC.a; b/� G�.a; b/:

Let S.a; b/ D GC.a; b/[ GD.a; b/. We can write:

D1 D PP.a; b/C PO.a; b/

and, recalling Eq. (7.6),

SDD1 .a; b/COO.a; b/D 1

m � 1

2

4.pC o � 1/
X

i2S.a;b/

�i � 1
2
.o � 1/

X

i2GD.a;b/

�i

3

5:

We observe that:

(a) if GD.a; b/ D ; or jGD.a; b/j D 1; D1 .a; b/ D S.a; b/I
(b) if G�.a; b/ D ;; .a; b/ D S.a; b/I
(c) the index S.a; b/ is a linear combination of the crisp concordance index c.a; b/

of the ELECTRE methods (see Chap. 5 in this book) and the opposite of semi-
sum of the importance weights of criteria from set GD.a; b/; their coefficients
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are respectively given by the ratios between the number of criteria belonging to
the corresponding classes and the total number of criteria up to one unit (i.e., the
number of significant criteria for a comparisons by means of pairs of criteria);

(d) if jS.a; b/j 	 2, 1
2
� S.a; b/ � c.a; b/ � 1, and S.a; b/ D c.a; b/ D 1 if and

only if aDSb (but c.a; b/ D 1 does not imply S.a; b/ D 1);
(e) S.a; b/ D 0 if and only if jS.a; b/j < 2, and S.a; b/ D c.a; b/ D 0 if and only

if S.a; b/ D ; (but S.a; b/ D 0 does not imply c.a; b/ D 0);
(f) the compensatory component PN.a; b/ of .a; b/ (see Eq. (7.6)) may be

methodologically linked to the MAUT approach, in particular to the weighted
sum with constant marginal substitution rates (trade-off weights);

(g) if the number o of the criteria gh from F for which gh.a/ D gh.b/ changes
without modification in the sum of the relative importance weights of coalitions
GC.a; b/, GC.b; a/ and GD.a; b/, the value of the aggregate preference index
.a; b/ may vary, as a consequence of changing of its component PN.a; b/
value. More precisely:

– GC.a; b/ D ; and G�.a; b/ ¤ ; ) .a; b/ increases with o, i.e.
�o.a:b/ > 0,

– GC.a; b/ ¤ ; and G�.a; b/ D ; ) .a; b/ decreases with o, i.e.
�o.a:b/ < 0,

– lim
o!C1�o.a; b/ D 0;

– lim
o!C1.a; b/ D

X

i2GC.a;b/

�i C 1

2

X

i2GD.a;b/

�i (< 1 since GC.a; b/ � F),

– if the relative importance weights of GC.a; b/ and G�.a; b/ are equal, the
relation aIb is stable with respect to o;

– 8 o 	 1; p

pC n

X

i2S.a;b/

�i 	 1

2
) aPb stable with respect to o,

– if there is a perfect compensation between the normalized weighted differ-
ences in evaluations of opposite signs (i.e. neutral behavior of PN.a; b/),
�o.a; b/ > 0 Œ< 0�, n

P
i2S.a;b/ �i � p

P
i2S.a;b/ �i > 0 Œ< 0�; i.e. if and

only if n > Œ<� p,
– the aggregate preference index .a; b/ is an increasing function of p (i.e.
�p.a; b/ > 0) if .a; b/ < 1;

– lim
p!C1�p.a; b/ D 0;

– lim
p!C1.a; b/ D 1 � 1

2

X

i2G�.a;b/

�i.

Following the same principle of PCCA, it is possible to build up other partial
and global preference indices, based on a logic of noncompensatory aggregation
[29]. The common feature of all these indices is that they are based on bicriteria and
global indices, measuring respectively the credibility of partial dominance and of
strict dominance of a over b, a; b 2 A. So, for example, if no 2-level interaction
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occurs among considered criteria, let us consider the following two aggregated
indices:

 0.a; b/ D 1

m � 1

2

4.m � 1/
X

i2GC.a;b/

�i � .pC o � 1
2

/
X

i2GD.a;b/

�i

3

5 ;

�.a; b/ D 1

m � 1
X

i;jI.i<j/

2

4
X

.i;j/Wij.a;b/>0:5

.�i C �j/C 0:5
X

.i;j/Wij.a;b/D0:5
.�i C �j/

3

5 :

We can observe that index 0.a; b/ is totally noncompensatory and it is analogous
to the concordance indices of ELECTRE I and II methods. On the other hand, index
�.a; b/ is PCCA-totally noncompensatory (see [29]), depending on the “coalition
strength” of the subsets (couples of criteria) of G2 such that aPijb or aIijb. Both
these indices, like index .a; b/, are also functions of p, n, o.

Taking into account the above properties and the peculiar features of the basic
preference indices with respect to the dominance and compensation, MAPPAC
and—more generally—PCCA may be considered as an “intermediate” MCDA
methodology between the outranking (particularly ELECTRE) and MAUT
methods.

Indifference Modelling Since the evaluations of actions a and b with respect
to the couple of criteria gi; gj from F are compared each time to build up index
ij.a; b/, and recalling that �i.a; b/ �j.a; b/ > 0 means by definition active or
passive partial dominance of a over b (and then ij.a; b/ D 1 or 0 respectively),
it is useful to confine the dominance relation only if well founded situations will
occur. Therefore, in order to take into account the inevitable inaccuracies and
approximations in the actions evaluations, and in order to prevent small differences
between these evaluations from creating partial dominance relations or preference
intensities close to the maximum or minimum values, it is advisable to introduce
suitable indifference areas on the plane Ogi.a/gj.a/ in the neighborhood of point
I D .gi.a/ D gi.b/; gj.a/ D gj.b//.

These areas may be defined in various way, as functions of correspondent
indifference thresholds, one for each criterion considered (see [27]). The marginal
indifference threshold for criterion gj, denoted by qj, is not negative and unique for
every couple of distinct actions a; b 2 A (qj.a; b/ D qj.b; a/ 	 0;8a; b 2 A) and it
is a function of the evaluations of these actions according to the criterion considered:

qj.a; b/ D ˛j C ˇjjgj.a/C gj.b/

2
j; gj 2 F; ˛j; ˇj 	 0: (7.7)

The first parameter ˛j is expressed in the same scale of values as the criterion
gj, and qj is a linear function of the arithmetical mean of the evaluations of the
considered actions, being ˇj the constant of proportionality. Then, if ˇj D 0 or
˛j D 0, Eq. (7.7) supplies constant indifference thresholds, in absolute or relative
value respectively. It is therefore possible to define an indifference area IAij for
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I gi(a)

gj(a)

gj(b)+qj

gj(b)−qj

gi(b)+qigi(b)−qi

Fig. 7.5 Indifference areas: rectangular

I gi(a)

gj(a)

gj(b)+qj

gj(b)−qj

gi(b)+qigi(b)−qi

Fig. 7.6 Indifference areas: rhomboidal

each pair of actions a; b 2 A and criteria gi; gj 2 F as a function of the marginal
indifference thresholds (7.7). This area may assume various shapes, for example:

• rectangular, if ij.a; b/ D 1
2

for jgi.a/ � gi.b/j � qi.a; b/ and jgj.a/ � gj.b/j �
qj.a; b/ (see Fig. 7.5);

• rhomboidal, if ij.a; b/ D 1
2

for jgi.a/�gi.b/j
qi.a;b/

C jgj.a/�gj.b/j
qj.a;b/

� 1 (see Fig. 7.6);

• elliptical, if ij.a; b/ D 1
2

for .gi.a/�gi.b//2

q2i .a;b/
C .gj.a/�gj.b//2

q2j .a;b/
� 1 (see Fig. 7.7).

It also possible to introduce semi-rectangular, semi-rhomboidal and semi-
elliptical indifference areas, corresponding to the shadowed areas in Figs. 7.5, 7.6,
and 7.7 respectively, with the specific aim of eliminating the effect of partial
dominance only, adding each time the further conditions:

�
gi.b/ � gi.a/
gj.b/ � gj.a/

or

�
gi.a/ � gi.b/
gj.a/ � gj.b/:



256 J.-M. Martel and B. Matarazzo

Fig. 7.7 Indifference areas:
elliptical

I gi(a)

gj(a)

gj(b)+qj

gj(b)−qj

gi(b)+qigi(b)−qi

0 1 2 3 4 5 6
–2

–1

0

1

2

Finally, it is also possible to consider mixed indifference areas, as a suitable
combination of two or more of the cases considered above for each quadrant
centered in point I. We can then modeling indifference in a flexible way, by setting
different thresholds and/or shapes for each couple of criteria, according to the DM’s
preferential information.

Therefore, two separate indifference relations are obtained: strict indifference,
denoted by aIijb, iff ij.a; b/ D 1

2
as a result of definition given in Table 7.19; large

indifference, denoted by aI�
ij b, iff a vector q 	 0 is introduced, q D Œqj.a; b/�, j 2 J ,

and some of the corresponding above indifference area conditions are satisfied, and
thus ij.a; b/ D 1

2
is assumed.

Note that Iij is an equivalence relation, whereas the relation aI�
ij b is not

necessarily transitive.

Preference Structures Using the basic and global preference indices ij.a; b/ and
.a; b/ respectively, it is possible to immediately define the following correspondent
binary relations of partial and comprehensive indifference and preference relations
respectively, with the particular cases of dominance recalled above:

• Partial relations

ij.a; b/ D 0:5, aIijb;

0:5 < ij.a; b/ � 1, aPijb .ij.a; b/ D 1, aDijb/;

0 � ij.a; b/ < 0:5, bPija .ij.a; b/ D 0, bDija/:

• Comprehensive relations

.a; b/ D 0:5, aIb;

0:5 < .a; b/ � 1, aPb ..a; b/ D 1, aDb/;

0 � .a; b/ < 0:5, bPa ..a; b/ D 0, bDa/:
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π(b,a) 1 δ 1
2

1−δ 0

0 1−δ
1
2 δ 1 π(a,b)

bPδa aIδb aPδb

Fig. 7.8 Aggregated semiorder structure

π(b,a) 1 δ 1
21−δ 1− 0

0 1−δ1− 1
2 δ 1 π(a,b)

bPτa bQτa aIτb aQτb aPτb

Fig. 7.9 Aggregated pseudo-order structure

Both these structures constitute a complete preorder on A. We observe that, if no
indifference areas are introduced, will be ij.a; b/C ij.b; a/ D 1 for each i; j 2 J
and .a; b/ 2 A2 and therefore also .a; b/C .b; a/ D 1.

Of course, by means of the same indices, we can also build up some other
particular complete valued preference structures. For example, we may consider
the structure of semiorder, obtained by introducing a real parameter ı 2 Œ1=2; 1�,
which emphasizes the partial or global indifference relations (see Fig. 7.8).

In this case, the indifference relations are reflexive, symmetric and not transitive,
while the preference relations are transitive, non reflexive and asymmetric. We note
that if ı D 1

2
we obtain again a complete preorder with “punctual” indifference, i.e.

only for .a; b/ D .b; a/ D 1
2
, while if ı D 1, the binary preference relation is

empty. Alternatively, by introducing two real parameters ı and 	, 1
2
� ı < 	 � 1, it

is possible to build a complete two-valued preference structure, assuming that there
are two preference intensity levels, represented by the preference relations P� (strict
preference) and Q� (weak preference) (see Fig. 7.9).

In this case the relations of indifference and of weak preference are not transitive
and the preference model presents the properties of the well-known pseudo-order
structure (see [44]).

Conflict Analysis Besides the concept of discordant criterion and veto threshold
often used for building outranking relations, another interesting feature of PCCA
approach is the possibility to consider a peculiar conflict analysis, taking into
consideration the differences in evaluations of two actions with respect to each
couple of criteria. The main aims of this analysis are the following:
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• to explicitly define binary incomparability relations in presence of evaluations of
two actions a and b in strong contrast on two criteria gi and gj, in the preference
modeling phase (refusal to make a decision)

• to allow compensation only if differences in the conflicting evaluations are not
too large; otherwise, to use non compensatory basic indices (functions only of
importance weights), obtaining a partially compensatory approach (reduction of
compensation) (see [29]).

These aims can be reached by defining a suitable partial discordance index
dij.a; b/, i; j 2 J ; a; b 2 A, for each couple of criteria as a function of conflicting
evaluations and entropy of information, and comparing this one with correspondent
incomparability threshold rij, given by DM (see [27]). If we note by Rij the partial
incomparability relation with respect the couple of criteria gi and gj, we have:

dij.a; b/ 	 rij , aRijb; .a; b/ 2 A2; gi; gj 2 F:

Then, considering all the possible couples of distinct criteria gi, gj from F, we
have:

aRb, ŒaRijb for at least one couple i; j 2 J �:

This global incomparability relation R, symmetric but neither reflexive nor
transitive, arise if at least one partial incomparability relation holds with respect
to actions a and b.

The symmetric discordance index dij.a; b/, i; j 2 J , is defined as follows [26].

dij D jwi�i.a; b/C wj�j.b; a/j.1� 2jij.a; b/� 0:5j/:

It lies in Œ0; ti C tj� and reaches its maximum value only in case of maximum
effective discordance of evaluations of a and b with respect to gi and gj (i.e. gi.a/ D
g�

i , gj.a/ D gj� and gi.b/ D gi�; gj.b/ D g�
j or viceversa) and ti D tj (equal

normalized trade-off weights). Moreover, dij.a; b/ D 0 if �i.a; b/ D �j.b; a/ D 0

or in case of partial dominance (evaluation concordance). Therefore, it is possible to
set the incomparability thresholds rij according to the real preferential information
of DM about the different level of compensation for each couple of criteria gi and gj:

rij

8
ˆ̂
<

ˆ̂
:

D 0 completely non compensatory approach
Š 0 low compensation is allowed
Š ti C tj high compensation is allowed
> ti C tj totally compensatory approach.

The concepts introduced above therefore permit also a modelling by means of
the four binary relations I,P,Q,R, defined on A, which are exhaustive and mutually
exclusive and constitute a fundamental relational preference system.
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Exploitation Phase The results of the relational model in the form of fuzzy binary

relations obtained can be presented in the form of suitable

�
m
2

�

bicriteria n � n

(i.e. jAj � jAj ) square matrices: …ij D Œij.a; b/�, one for each couple of criteria
gi; gj from F, containing the partial preference indices, and one aggregated matrix
… D Œ.a; b/�, with the comprehensive preference indices, .a; b/ 2 A2.

The peculiar preference modeling flexibility of PCCA allows to respect accu-
rately the DM’s preference, without imposing too strong axiomatic constraints, and
accepting and using any kind of information the DM is able to give. Therefore, DM
is not forced to be “consistent”, “rational” or “complete”, but all information given
by DM is accepted and used, neither more, nor less. Consequently, with respect to
bi-criteria trade-offs wij, i; j 2 I, it is possible to use as input not transitive (i.e.
wijwjk D wi

wj

wj

wk
¤ wi

wk
D wik) or not complete (some wij not given by DM) trade-offs

for some pairs of criteria (and therefore the component ij.a; b/ of index .a; b/
correspondent to these criteria will be absent); and, with reference to importance
weights �j, j 2 J , the DM may assign non additive weights �ij to some couple of
criteria, modelling thus their interaction (i.e. weighting some index ij.a; b/ with a
weight different from �i C �j). In all these cases, the aggregate index .a; b/ will
be computed taking into account the peculiar information actually used as input.

The indices of preference intensity contained in the aggregated matrix … may,
among other things, permit in the exploitation phase the building of specific partial
or complete rankings of feasible actions as final prescription.

A first possible technique to build rankings can be based on the concept of
qualification of a feasible action, introduced by Roy (see [39]). But, in order to
take into consideration the most complete preference information given by the fuzzy
relations, we can sum the global preference indices referred to each feasible action
in comparison with others, obtaining its comprehensive preference index, aiming
to build up the partition of A into S equivalence classes C1;C2; � � � ;CS; S � n
(complete preorder), by means of a descending procedure (from the best action to
the worst) or by an ascending procedure (from the worst to the best).

In either case, the peculiar feature of these techniques is that at every step they
select the action(s) assigned to a certain position in the ranking considered and then
repeat the procedure with respect to the subset of the remaining actions, eliminating
at each iteration the action selected in the preceding one. Here is a brief description
of one of the possible techniques.

Computation of the comprehensive preference index, a 2 A:



.1/
C .a/ D

X

b2Anfag
.a; b/:

This will be:

0 � 
.1/C .a/ � n � 1; 8a 2 A:
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In particular we obtain:



.1/
C .a/ D n � 1 or 
.1/C .a/ D 0;

if and only if a strictly dominates, or is strictly dominated by, respectively, all the
remaining feasible actions. We then select the action(s) with the highest index 
.1/C .
This action, or these actions, will occupy the first place in the decreasing ranking,
forming class C1. Then, given A.1/ D AnC1, we repeat the procedure with reference
to the actions from this new subset, obtaining the indices:



.2/
C .a/ D

X

b2A.1/nfag
.a; b/; a 2 A.1/:

This iteration will make it possible to form class C2, and so on (descending
procedure).

The increasing solution may be obtained by calculating for each action a the
comprehensive index


.1/� .a/ D
X

b2Anfag
.b; a/;

and placing in the last class Cs the action(s) which present the highest value for
this index. We then proceed with the calculation of the indices 
.2/� .a/ related to the
subset A n Cs and so on.

This way to build the rankings is suggested in order to reduce the risk that an
action dominating or dominated by one or more feasible actions may assume a
strongly discriminatory role over these. A dominated action has a distorting effect
during the descending procedure, while a dominating action produces the same
effect during the ascending procedure.

A useful geometrical interpretation on omometric axes of the complete preorders
related to the actions considered each time in the k-th iteration may efficaciously
express the different rankings with the corresponding comprehensive intensities of
preference (see [27]). If the broken lines connecting the points representing the
comprehensive preferences of each action at all different iterations prove to be more
or less parallel, the relative comprehensive preferences tend to remain constant. On
the other hand, if these broken lines intersect one another, the ranking will present
inversion in terms of comprehensive preferences at the considered iterations.

Of course, in the building of all complete preorders it is possible to introduce
suitable global indifferent thresholds, to prevent small differences in the compre-
hensive indices considered at every iteration from assuming a discriminating role
(see [27]).

The building of preorders allows also to solve the choice problem. But it is
also possible to directly use in a lot of different way the information about strict
dominance (given by the comprehensive preference) indices to support DM in
choice problem.
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For example, let P.a; b/ D maxŒ.a; b/ � .b; a/; 0�, that is P.a; b/ D
TLŒ.a; b/; 1�.b; a/�, where TLŒ:; :� means Lukasiewicz t-norm. Choice is usually
based on the following scoring functions:

• non domination degree

�NDC.a; / D min
x2A
Œ1 � P.x; a/� D min

x2A
Pd.a; x/;

where Pd.�; �/ means ”dual”of P.�; �/;
• non dominance degree

�ND�.a; / D min
x2A
Œ1 � P.a; x/� D 1 �max

x2A
P.a; x/:

Let AUNDC D fa 2 A W �NDC.a; / D 1g (i.e. the subset of non-dominated
actions from A) and AUND� D fa 2 A W �ND�.; a/ D 1g (i.e. the subset of non-
dominating actions from A). Clearly, best action(s) will belong to set AUNDC and
worst action(s) to set AUND�. We observe that, if relation .a; b/ is transitive, AUNDC
and AUND� are non empty.

7.3.2 PRAGMA

The Preference RAnking Global frequencies in Multicriteria Analysis (PRAGMA)
[27–29] method is based on the peculiar PCCA aggregation logic (that is firstly
on pairwise comparisons by means of couples of distinct criteria, and then on the
aggregation of these partial results), and use the same data input and preferential
information of MAPPAC, of which it constitutes a useful complement and presents
the same flexibility in preference modeling. Moreover, it instrumentally uses the
MAPPAC basic preferences indices to compute its specific information to support
DM in his/her decision problem at hand. From the methodological point of view,
PRAGMA is neither a classical outranking neither a MAUT method. In fact, the
output of this approach are not binary outranking relations or scores. But, following
the aggregation procedure of PCCA, in the first and in the second phase partial and
global ranking frequencies are respectively built, one for each feasible action, and
these frequencies are then exploited to give DM a useful recommendation (partial
or complete preorders are the final output).

Partial and Global Frequencies Let the segment HiHj (see Fig. 7.10) be the
partial profile of action ah 2 A, where the points Hi and Hj have as ordinates
the weighted normalized evaluations of action ah with respect to criteria gi and gj

respectively, gi; gj 2 F.
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Hi

Ai Aj

Hj

i j

Fig. 7.10 Partial profile of action ah

i j

Ti

Rj

AjAi

Si Sj

Ri Tj

B D

C

partial broken line -1 RiBDTj
partial broken line -2 SiBCDSj
partial broken line -3 TiCRj

Fig. 7.11 Partial profiles and partial broken lines of ar, as, at

Considering all couples of criteria, it is possible to obtain

�
m
2

�

distinct partial

profiles of ah and we call global profile of ah the set of these

�
m
2

�

partial profiles.

We define as partial broken line-k, or partial broken line of level k of ah, k D
1; 2 � � � ; n the set of consecutive segments of its partial profiles, to which correspond,
for each point, k � 1 partial profiles (distinct or coinciding) of greater ordinate. If,
for example, it is A D far; as; atg , we obtain the partial profiles and partial broken
lines represented in Fig. 7.11.

We observe that the partial broken line-k, k D 1; 2 � � � ; n, coincides with the
partial profiles of ah; ah 2 A, if and only if ah is partially dominated by d actions
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and dominates the remaining ones and/or if p couples of actions from A (0 � p �
k � 1; d C p D k � 1) exist such that, for each couple, their partial profiles come
from opposite sides with respect to profile of ah, and they intersect this profile at the
same point.

Further, we define as global broken line-k or global broken lines of level k (k D
1; 2; � � � ; n) the set of

�
m
2

�

partial broken lines-k obtained by considering all the

couples of distinct criteria gi; gj 2 G. The global broken line-k coincides with the
global profiles of ah if and only if all the partial broken lines of level k, obtained by

considering each of the

�
m
2

�

couples of criteria, coincide with the corresponding

partial profiles of ah.
We define as the partial frequency of level k (k D 1; 2 � � � ; n) of ah, with

reference to the criteria gi and gj, the value of the orthogonal projection on the
straight line AiAj (given AiAj D 1) of the intersection of the partial profile of ah with
the corresponding partial broken line of level k. If we indicate this frequency as
f k
ij .ah/, it will be 0 � f k

ij .ah/ � 1, for all ah 2 A, k D 1; 2 � � � ; n. Thus, for example,
from the graphics in Fig. 7.12.

AiAj D 1I AiB D 0:3I BC D 0:1I
CD D 0:2I DAj D 0:4I

f .1/ij .ar/ D 0:3I f .2/ij .ar/ D 0:1I f .3/ij .ar/ D 0:6I
f .1/ij.as/ D 0:3I f .2/ij .as/ D 0:7I f .3/ij .as/ D 0

f .1/ij .at/ D 0:4I f .2/ij .at/ D 0:2I f .3/ij .at/ D 0:4

Fig. 7.12 Partial frequencies of ar , as, at



264 J.-M. Martel and B. Matarazzo

The partial frequencies may be represented in matrix form, obtaining
	m
2




square n � n matrices Fij, which is the matrix of the partial ranking frequencies:

Fij D Œf .k/ij .ah/�; ah 2 AI k D 1; 2 � � � ; nI i; j 2 I: (7.8)

The elements of the hth line of matrix (7.8) indicate in order the fractions of the
interval unitary .Ai;Aj/ for which the action ah is in the kth position (k D 1; 2 � � � ; n),
while the elements of the kth column of the same matrix indicate those fractions for
which the kth position (in the partial preference ranking considered) is assigned to
the actions a1; a2; � � � ; an, respectively. Obviously:

nX

kD1
f .k/ij .ah/ D 1; 8ah 2 A and

nX

hD1
f .k/ij .ah/ D 1 ; k D 1; 2; � � �n:

If f .k/ij .ah/ 2 f0; 1g, for all ah 2 A and k D 1; 2 � � � ; n, the partial profiles of all the
actions will be non intersecting and non-coinciding, and there will be no inversions
with respect to the preference relation in the two complete preference preorders with
respect to the criteria gi and gj, i.e. all actions from A partially dominate one another.

If v (v D 2; 3 � � � ; n) partial profiles are coinciding, the corresponding partial
broken lines-k must be built taking distinctly into account the coinciding profiles v
times (see [28]).

Let us then define global frequency of level k , (k D 1; 2 � � � ; n) of ah as the

weighted arithmetical mean of all the

�
m
2

�

partial frequencies of level k of ah,

obtained by considering all the couples of distinct criteria gi and gj. Therefore,
indicating this frequency by f .k/.ah/, we obtain, if no interaction between criteria
is considered (see Sect. 7.4.1):

f .k/.ah/ D
X

.i<j/i;j

f .k/ij .ah/
�i C �j

m � 1 ; ah 2 A; k D 1; 2 � � � ; n:

The linear combination of the matrices (7.8) with weights �iC�j

m�1 will therefore
give the square n � n matrix F D Œf k.ah/� (h D 1; 2; � � � ; n; k D 1; 2; � � � ; n), called
the global ranking frequency matrix. Its generic element f k.ah/ indicates the relative
frequency with which ah 2 A is present in the kth position (k D 1; 2; � � � ; n) in the
ranking obtained by considering all the criteria gj 2 F and the global profiles of all
the feasible actions. It will therefore be:

nX

kD1
f .k/.ah/ D 1;8ah 2 A and

nX

hD1
f .k/.ah/ D 1; k D 1; 2; � � � ; n:
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It is possible to calculate the partial frequencies f .k/ij .ah/ by means of an algorithm
which uses the indices ij.ah; ak/ of the MAPPAC method (see [28]). It is therefore
possible to consider marginal indifference thresholds and suitable indifference areas
also when the PRAGMA method is implemented. In other words, the indices
ij.ah; ak/ here instrumentally introduced, may be calculated in advance by using
all the techniques and the preference modeling flexibility adopted with reference to
the MAPPAC method (see Sect. 7.3.1).

Apart from these calculations, it is useful in any case to remember among others
some particular features of the ranking frequencies obtained by the PRAGMA
method:

1. The partial frequencies (and therefore also the global ones) of ah 2 A are
functions of the value of the normalized weighted differences between the
evaluations of ah and those of the remaining feasible actions with respect to the
criteria considered. The values of these weighted differences may be overlooked
only in the case of partial dominance (for partial frequencies) or strict dominance
(for global frequencies), active or passive, of the action ah.

2. If ah partially dominates n � k actions and it is partially dominated by the
remaining k � 1 actions, k D 1; 2 � � �n the result is f .k/ij .ah/ D 1, whatever the
values �i and �j.

3. If ah strictly dominates n � k actions and is strictly dominated by the remaining
k � 1 actions, k D 1; 2 � � � ; n, the result is f .k/.ah/ D 1, whatever the values of
the weights �j, j 2 J .

4. If f .k/.ah/ D 1, the action ah occupies the kth position, k D 1; 2 � � � ; n, in every
monocriterion ranking and ah is preceded and followed by the same subset of
actions in these rankings.

Therefore, the information obtained by means of analysis of the global fre-
quencies f .k/.ah/ is more complete and more accurate than that obtained from an
examination of all the distinct monocriterion rankings of the feasible actions, or
from a mixture of these.

Exploitation and Recommendation In order to support DM in the decision
problem at hand, it is often sufficient to analyze the elements of matrices Fij and/or
F. For example, a straightforward reading of the global frequencies of matrix F
could indicate which action(s) will finally be chosen. But the concise and accurate
information regarding the frequencies of ranks each action may occupy can be
extremely useful to build up final rankings.

If we want to obtain complete or partial rankings of the feasible actions in order
to build up comprehensive evaluations and recommendations, it is possible, for
example, to proceed in this way. Calculate for each action ah 2 A, the accumulated
frequencies of order k, k D 1; 2 � � � ; n, summing the first k elements of the hth row
of matrix F, that is:
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F.1/.ah/ D f .1/.ah/ and F.k/.ah/ D
kX

iD1
f .i/.ah/; k D 2; 3 � � � ; n:

Then establish the order q (q D 1; 2; � � � ; n � 1) of the frequencies which are
considered relevant to the building of the ranking, that is indicate to what order q and
the respective importance ˛k we intend to take into consideration the accumulated
frequencies Fk.ah/ for this purpose. The following comprehensive index is then
built:

Sq.ah/ D
qX

kD1
˛kF.k/.ah/; ah 2 AI 1 	 ˛1 	 ˛2 	 � � � 	 ˛q > 0: (7.9)

This gives the measure of the “strength” with which ah occupies the first q
positions in the aggregated ranking. This in practice will be 1 � q � n

2
, which

regards the first positions in the ranking; the coefficients ˛k indicate the relative
importance (not increasing with k) of accumulated frequence of order k. In the
first class C1 of the decreasing ranking will be placed the action(s) to which the
maximum value of S.q/.ah/ corresponds. In order to avoid ex aequo rankings, we
can proceed by selecting whichever actions have obtained an equal value of S.q/ on
the basis of the values of the indices S.qC1/ and, in the case of further equality, on
those of the indices S.qC2/ and so on. In this case ex aequo actions would be accepted
only if their corresponding indices S.i/ proved equal for i D q; qC 1; � � � ; n. If, on
the other hand, we desire to prevent small differences in the indices S.q/ from having
a discriminatory role in the building of the rankings, it is possible to consider global
indifference thresholds (see [27]).

If we place ˛k D 1, for all k, in Eq. (7.9), we do not emphasize the greater
importance of the global ranking frequencies of the first positions. On the other
hand, if we accept q D 1, we take into account only the global frequencies of the
first position for the purpose of building the rankings.

After building class C1, with reference to the subset of the remaining actions
A.1/ D A � C1, we calculate again the partial, global and accumulated frequencies
and the index (7.9), proceeding as above in order to build class C2, and so on. We
observe that at each iteration t the order qt, on the basis of the which the index S.qt/

from (7.9) is to be calculated, must be restated so that it is a non increasing whole
number and, taking into account the number jA.t/j of actions of the evaluation set,
so that at each iteration t the ratio qt

jA.t/j is as near as possible to the ratio q
n of the first

iteration (see [28]). In general, the rankings obtained are a function of the value of
the order q originally selected (see [27]).

If at each useful iteration F.k/.ar/ 	 F.k/.as/ for all k D 1; 2; : : : ; n and
F.k/.ar/ > F.k/.as/ for some k, or if

Pt
kD1ŒF.k/.ar/ � F.k/.as/� 	 0 for all

t D 1; 2; � � � ; n and F.k/.ar/ ¤ F.k/.as/ for some k, it is possible to speak of first
degree or second degree frequency dominance, respectively, of ar over as. In both
cases, if ˛1 > ˛2 > � � � > ˛q, ar will precede as in any of the rankings obtained,
whatever value may be chosen for q.
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Besides the partition of the actions of A into equivalence classes (complete
preorder) obtained with the descending procedure (or procedure from above)
described, it is also possible to build another complete preorder in the same way
using the ascending procedure (or procedure from below), that is selecting the
action(s) to be placed in the last, next to last, � � � and finally in the first equivalence
class.

In conclusion, it is possible to build a final ranking (partial preorder) of the
feasible actions, as the intersections of the two decreasing and increasing rankings
obtained by means of two separate procedures described. Using the PRAGMA
method for the building of rankings, it is possible not only to establish any implicit
incomparability deriving from the inversion of preferences in the preorders obtained
by means of the two separate procedures, but also in this case it is possible to
consider an explicit incomparability, obtained if the corresponding tests give a
positive result, during the preference modeling phase. Since, as we have said, the
PRAGMA method makes instrumental use of the basic preference indices, it is
possible to use once again the same discordance indices already introduced in the
MAPPAC method (see Sect. 7.3.1).

Besides these, moreover, it is also possible to consider other analogous dis-
cordance indices peculiar to the PRAGMA method, that is using the partial and
global ranking frequencies. Thus, for example, with respect to a couple or all
criteria simultaneously, a strengthening of the ranking frequencies of an action
ah, respectively partial or global, corresponding to the first and last positions in
the ranking, can reveal strongly discordant evaluations of ah by means of those
criteria. Therefore this kind of situation, suitably analyzed, could lead the DM to
reconsider the nature of ah; since actually, in the building phase of the rankings, this
situation may lead to a rapid choice of ah both in the descending and in the ascending
procedure, resulting in situations of conflictuality and implicit incomparability.

Software M&P (MAPPAC and PRAGMA) is a software to rank alternatives using
the methods previously described. It presents a lot of options in order to be very
flexible in the preference modeling, according to the PCCA philosophy. After
loading or writing a file concerning the decisional problem at hand, in the Edit
menu it is possible to set all the parameters required to compute the basic and global
preference indices or ranking frequencies, i.e. trade-off and importance weights etc..
Some classical statistical analyses on the alternatives evaluations are also allowed
(average values, standard deviations, correlations between criteria). The indifference
areas can be performed in the Calculation menu. For each couple of criteria, suitable
indifference thresholds and shapes can be defined. This option results in some non
punctual indifference relations, that can also be seen on useful graphics, showing the
indifference area and each pair of alternatives in the chosen plane Ogigj, gi,gj 2 F.
It is also possible to graphically represent the partial and global profiles and levels
of the considered alternatives. Going to Solutions menu, after setting other optional
parameters, we can firstly obtaining the (partial and global) preference matrices
(MAPPAC) and frequencies matrices (PRAGMA); then, exploiting these data,
the descending and ascending complete preorders and the final (partial) preorder
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(as their intersection) can be built up, respectively for MAPPAC and PRAGMA
methods. On interesting geometrical interpretation on omometric axes of the
complete preorders computation procedure, expresses with respect to each iteration
the different rankings with the corresponding global preference intensities of the
alternatives considered each time. This representation shows eventual inversion of
preferences (as intersection of the corresponding straight lines) due to the presence
of some strong dominance effect. Finally, it is possible to perform a suitable Conflict
analysis among the alternatives, by setting the parameters needed to compute the
bicriteria discordance indices and the incomparability relations, each time according
to the corresponding compensation level established by the DM. The indifference
and incomparability relations are also suitably presented in a geometrical way in the
bicriteria planes Ogigj, for each gi,gj 2 F, where the pairs of action are represented
using different colours for different binary relation.

7.3.3 IDRA

A new MCDA methodology in the framework of PCCA was presented by Greco
[12] in IDRA (Intercriteria Decision Rule Approach). Its main (and original)
features are: to use mixed utility function (i.e. in the decision process both trade-
off and importance intercriteria information are considered) and to allow bounded
consistency, i.e. no hard constraint is imposed to the satisfaction of some axiomatic
assumptions concerning intercriteria information obtained by DM. With respect to
the last point, in a MCDA perspective two different kinds of coherence should
be considered: the judgemental and the methodological. The first one concerns
the intercriteria information supplied by DM and there is no room for technical
judgement with respect to its internal coherence. The second one is related to the
exploitation of intercriteria information in order to obtain the final recommendation
and a coherence judgment based on some MCDA principles and axioms is
allowed. Therefore, according to the judgemental coherence principle, within the
IDRA method DM is allowed to give both trade-off and importance intercriteria
information, without checking its not imposed coherence.

Let gj W A ! R, 8j 2 J , an interval scale of measurement; a normalized value
chj of gj.ah/, ah 2 A, can be obtained by introducing two suitable parameters a.j/, a
minimum aspiration level, and b.j/, a maximum aspiration level, for each criterion
gj 2 F, with a.j/ � min gj.x/ and b.j/ 	 max gj.x/; by defining

chj D
(

gj.ah/�.aj/

b.j/�a.j/ if a.j/ < b.j/;

0 if a.j/ D b.j/:

In IDRA, as above emphasized, the compensatory approach and the noncompen-
satory approach are complementary, rather than alternative, aggregation procedures,
following the line coming out from some well known experiments carried out by
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Slovic [41] and others. The basic idea within IDRA is that matching (i.e. comparing
two actions by making the action that is superior on one criterion to be so inferior in
the other one that the previous advantage is canceled) is not a decision problem: it
is rather a questioning procedure for obtaining the intercriteria information called,
trade-off. On the contrary, choosing among equated (by matching) packing of
actions is a typical decision problems, as ranking and sorting. Therefore, if this
assumption is accepted, in each decision problem, like choice, there are two different
types of intercriteria information: trade-off, which can be derived from a matching,
and importance weights, linked to the intrinsic importance of each subset (also a
singleton) of criteria from F.

As a consequence, there is only one utility function UM, called mixed (see [12]),
because both trade-off .˛j/ and importance .�j/ weights are considered, j 2 J ; thus
for each ah 2 A:

UM.ah/ D
mX

jD1
�j˛jgj.ah/:

The bounded consistency hypothesis:

• for trade-off weights, wikwkj D wij; i; j; k 2 J , where, in general, wpq is the
tradeoff between the criteria gp and gq;

• for importance-weights, given G1;G2 � F,

– if G1 is more important than G2, then
X

gj2G1

�j >
X

gj2G2

�j;

– if G2 is more important than G1, then
X

gj2G1

�j <
X

gj2G2

�j;

– if G1 and G2 are equally important, then
X

gj2G1

�j D
X

gj2G2

�j:

Very often these requirements are not satisfied by the answers given by the
DM and the DM is said “incoherent”. But, as remarked by Greco [12], most of
these “inconsistencies” derive from the attempt to use information relative to partial
comparisons (i.e. with respect to only some criteria from F) for global comparisons
(i.e. where all the criteria from F are considered). In IDRA, the hypothesis of
bounded consistency means that the information obtained from DM with respect
to some criteria from F must be used only for comparisons with respect to the
same criteria, according to the principle of judgemental coherence. Therefore, every
above problem of intercriteria information consistency is “dissolved” in its origin.
In IDRA the framework of PCCA is used to implement the bounded consistency
hypothesis, considering therefore a couple of criteria at a time. We observe that, in
particular, no requirement of completeness of the relations “more important than”
and “equally important to” is assumed. As a consequence, for any couple of distinct
criteria gi; gj 2 F, one of the following intercriteria information can be obtained by
the DM:
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1. both the trade-off and the judgment about the relative importance of the criteria;
2. only the trade-off;
3. only the judgment about the relative importance of the criteria;
4. neither the trade-off nor the judgment about the relative importance of the

criteria.

Using this information, a basic preference index �
ij .a; b/ can be suitably defined

(see [12]). The index �
ij W A � A ! Œ0; 1� is the image of a valued binary

relation, complete and ipsodual, and constitutes a complete valued preference
structure (complete preorder) on set A. The index �

ij .a; b/ can be interpreted as the
probability that a is preferred to b, with respect to a mixed utility function in which
the trade-off and importance weights are randomly chosen in the set of intercriteria
information furnished by the DM. In IDRA, each piece of intercriteria information
concerning the trade-off or the relative importance of criteria can be considered a
“decision rule” (tradeoff-rule or importance-rule respectively), since it constitutes
a basis for an argumentation about the preference between the potential actions.
The DM is asked to give a non negative credibility-weight to each decision rule,
according to his/her judgment about the relevance of the corresponding pairwise
criterion comparisons in order to establish a global preference [12]. Therefore, from
the sum of the basic indices �

ij .a; b/, with respect all the considered couple of
criteria, weighted by the correspondent credibility-weights for the tradeoff-rule or
the importance-rule, the aggregated index .a; b/ is obtained, for each a; b 2 A. All
these aggregated indices can be then exploited using the same procedure proposed
for MAPPAC in order to obtain two complete preorders (decreasing and increasing
solutions); the intersection of these two rankings gives the final ranking (partial
preorder). The aggregated index of IDRA mainly differs from the analogous index
of MAPPAC in this point: in MAPPAC all (i.e. with respect to each couple of criteria
from F) basic indices are aggregated, while in IDRA only the elementary indices
corresponding to couples of criteria about which the DM has given decision rules
are aggregated (faithfulness principle). In IDRA there is a peculiar characteristic
distinction between:

1. intercriteria information which is not supplied by the DM (i.e. the DM does not
say anything about the relative importance between gi and gj);

2. intercriteria information by which the DM expresses his/her incapacity to say
what is the trade-off or the relative importance between gi and gj (i.e. the DM
says that he/she is not able to give this information).

In IDRA, in case 1. the comparison with respect to criteria gi and gj plays no
part; in case 2. the same comparison contributes to the aggregated index by means
of considering the corresponding basic index calculated taking into account all the
possible importance-weights as equally probable, according to the “principle of
insufficient reason” (so called Laplace criterion in the case of decision making under
uncertainty).
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7.3.4 PACMAN

A new DM-oriented approach to the concept of compensation in multicriteria
analysis has been introduced by Giarlotta [10, 11] in PACMAN (Passive and
Active Compensability Multicriteria ANalysis). The main feature of this approach
is that the notion of compensability is analyzed by taking into consideration two
criteria at a time, and distinguishing the compensating (or active) criterion from the
compensated (or passive) one. Separating active and passive effects of compensation
allows one to (1) point out a possible asymmetry of the notion of compensability,
and (2) introduce a suitable valued binary relation of compensated preference.

The concept of compensation has been widely studied in many papers [40, 43,
44]. The literature on this topic is mainly concentrated on the analysis of decision
methodologies, aggregation procedures and preference structures on the basis of
this concept. Therefore definition and usage of compensation have essentiality been
method-oriented, since this concept has been regarded as a theoretical device of
classification.

On the contrary, the notion of compensation examined in PACMAN, namely
compensability, is aimed at capturing the behavior of a decision maker towards
the possibility to compensate among criteria. In fact, this approach, intercriteria
compensability remains somehow “the possibility that an advantage on one criterion
can offset a disadvantage on another one”, but as it is determined by a DM and not
by a method. Therefore, being more or less compensatory is not regarded here as
the characteristic of a multicriteria methodology or of an aggregation procedure.
Instead, it is an intrinsic feature of a DM. In this sense, a DM-oriented usage of the
concept of compensation is introduced.

There are three steps in PACMAN:

• compensability analysis, the procedure aimed at modeling intercriteria relations
by means of compensability;

• evaluation of the degree of active and passive preference of an alternative over
another one by the construction (at several levels of aggregation) of binary
indices;

• determination of a binary relation of strict preference, weak preference, indif-
ference or incomparability for each couple of alternatives, on the basis of two
valued relations of compensated preference.

At each step of the procedure PACMAN requires a strict interaction between the
actors of the decision process. Therefore, also this approach allows application of
the principles of faithfulness (to the information provided by DM), transparency (at
each stage of the procedure) and flexibility (in preference modelization).

Compensability Analysis Let gj W A ! R be an interval scale of measurement,
representing the j-th criterion according to a non decreasing preference. For each j 2
J , let�j W A�A! R be the normalized difference function, defined by�j.a; b/ D
.gj.a/ � gj.b//=.ˇj � ˛j/, where ˛j and ˇj (˛j < ˇj) are respectively the minimum
and the maximum value that can be assumed on j 2 J .
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The aim of compensability analysis is to translate into numerical form the
definition of bicriteria compensability for each pair of criteria. This is done by
constructing, for each pair .i; j/ of criteria, the compensatory function CFiBj of i
over j, which evaluates the compensating effect of a positive normalized difference
�i on the active criterion i over a negative normalized difference �j on the passive
criterion j.

Since a proper and complete estimation of the compensatory effect for every
possible active and passive difference is too demanding in terms of amount and
preciseness of the related information provided by the DM, a fuzzy function CFiBj

is built. This function associates to any pair of normalized differences .�i; �j/ 2
�0; 1�� Œ�1; 0Œ a number in Œ0; 1�, which quantifies the degree of confidence that the
positive difference �i totally compensates the negative differences �j. Extending
the function in frontier by continuity, it is obtained a fuzzy compensatory function
CFiBj W Œ0; 1� � Œ�1; 0�! Œ0; 1�, which satisfies the following conditions:

Weak monotonicities

0 � �i1 � �i2 � 1 and � 1 � �j � 0) CFiBj.�i1 ; �j/ � CFiBj.�i2 ; �j/;

0 � �i � 1 and � 1 � �j1 � �j2 � 0) CFiBj.�i; �j1 ; / � CFiBj.�i; �j2 /:

Continuity CFiBj is continuous everywhere on Œ0; 1� � Œ�1; 0�:
The rationale underlying this kind of fuzzy modeling is to minimize the amount

of information required from the DM, without losing too much in content. The two
conditions stated above are very helpful in this sense. In fact, in order to assess
a compensatory function, the DM is asked to determine just the zones where the
degree of confidence expressed by CFiBj is maximum (usually equal to one) and
minimum (usually equal to zero). Using monotonicity and continuity, it is possible
to extend by linearization its definition to the whole domain Œ0; 1�� Œ�1; 0�, without
any further information. Some examples of compensatory functions are given in
Fig. 7.13. By definition, CFiBi � 0 for each i 2 J .
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Fig. 7.13 Some examples of compensatory functions
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The procedure for the construction of compensatory functions aims at simplify-
ing the DM’s task in providing meaningful information. On the other hand, this
procedure requires the DM to provide a large amount of information. In fact,
according to the PCCA philosophy, we estimate intercriteria compensability for
each couple of criteria. Moreover, we still distinguish their compensatory reaction
within the couple, according to whether they effect or endure compensation. This
results in the necessity of assessing a compensatory function for each ordered pair
of distinct criteria.

However, the large amount of information required by PACMAN allows one
to model the relationships between each couple of criteria in a rather faithful and
flexible way, according to the PCCA philosophy. Usually, an important criterion
is relevant both actively (i.e., contributing to preference) and passively (i.e.,
opposing to preference). Therefore for each criterion passive resistance and active
contribution are treated separately, being linked to the notions of, respectively,
preference threshold and veto threshold in the outranking approach [40]. For a
detailed description of the procedure used to construct compensatory functions, see
[11] (Fig. 7.13).

Preference Modeling In PACMAN preferences are modelled on the basis of
compensability analysis. This is accomplished in steps (2) and (3) of the procedure.

(2): Let gj 2 GC.a; b/, i.e., �j.a; b/ > 0. The positive difference �j.a; b/ has a
double effect:

• active, because it gives some contribution to the (possible) overall preference of
a over b (accept this global preference);

• passive, because it states a resistance to the (possible) overall preference of b
over a (reject this global preference).

Active contribution and passive resistance of a over b are evaluated for each
gj 2 GC.a; b/, computing the partial indices …C

j .a; b/ and …�
j .a; b/, respectively.

Successively, active and passive effects are separately aggregated, thus obtaining an
evaluation of the total strength of the arguments in favour of a preference of a over
b, and of those against a preference of b over a, respectively. Numerically, this is
done by computing the two binary global indices …C.a; b/ and …�.a; b/. Clearly,
the same evaluations are done for the pair .b; a/, first computing the partial indices
…C

j .b; a/ and …�
j .b; a/, and then the global indices…C.b; a/ and…�.b; a/.

The final output of this stage is a pair of global net indices ….a; b/ and ….b; a/
for each couple of alternatives a; b 2 A. These indices express the degree of
compensated preference of a over b and b over a, respectively. The index ….a; b/
is obtained from the values of the indices …C.a; b/ and …�.b; a/; similarly, the
index ….a; b/ is obtained from the values of the indices …C.b; a/ and …�.a; b/. A
formalization of the whole procedure can be found in [10].

(3) The last step of PACMAN is the construction of a fundamental system of
preferences (P, Q, I, R). The relation between the alternatives a and b is determined
from the values of the two global net indices ….a; b/ and….b; a/ (see Fig. 7.14).
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Fig. 7.14 Determination of a relation between the two alternatives a,b 2 A on the basis of the
values of global indices

One of the main interesting features of PACMAN is that intercriteria compens-
ability can be modelled with respect to the real scenarios, treating each pair of
criteria in a peculiar way. Complexity and length of the related decision process is
the price to pay for the attempt to satisfy the principles of faithfulness, transparency
and flexibility.

Implementations of PACMAN Recently, a formal notion of implementation [3]
has been provided for PACMAN. This general notion is designed with the aim
of allowing the decision aider a more transparent interaction with the decision
maker. The so-called regular implementations and their monotonicity properties
are examined. Particular emphasis is given to those regular implementations of
PACMAN which produce the lexicographic ordering as an output. This analysis
sheds some light on the underlying philosophy of PACMAN.

A Linear Implementation of PACMAN In a more recent paper [4], a simplified
implementation of PACMAN is proposed. This implementation consistently reduces
the overall complexity of the methodology by employing the so-called linear
compensatory functions.

Using Mathematicar, it is also developed a computer-aided graphical interface
that eases the interaction among the actors of the decision process at each stage of
PACMAN. Furthermore, this simplified version of PACMAN allows one to perform
a sensitivity analysis in the form of a nonlinear optimization problem.
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7.4 One Outranking Method for Stochastic Data

It frequently happens that we have to treat a decision context in which the
performance of the alternatives according to each criterion/attribute is subject to
various forms of imperfection of the available data. The form of imperfection that
interests us here concerns the uncertainty, in the sense of probability (statistic or
stochastic data). For example, frequently the decision maker calls upon several
experts in order to obtain judgments which then forms the basic data. Since each
alternative is not necessarily evaluated at the same level of anticipated performance
by all experts, each combination of ‘alternative-criterion’ leads to a distribution of
expert’s evaluation. This type of distributional evaluation is considered as stochastic
data.

Even if the multi-criteria analysis with stochastic data has so far been treated
nearly exclusively in the theory of the multi-attributes utility framework, the
outranking synthesis approach can be constituted an appropriate alternative. Some
multi-criteria aggregation procedures belonging to this second approach have been
developed specially to treat stochastic data. For example, we can mention the works
by [9, 22–25, 48]. The majority of these methods construct outranking relations as in
ELECTRE or PROMETHEE. In this chapter we have choose to present the Martel
and Zaras’ method that makes a link between the multi-attributes utility framework
and the outranking approach.

7.4.1 Martel and Zaras’ Method

We consider a multi-criteria problem which can be represented by the (A. A. E.)
model (Alternatives, Attributes/Criteria, Evaluators). The elements of this model
are as follows:

• A D fa1; a2; : : : ; amg representing the set of all potential alternatives;
• F D fX1;X2; : : : ;Xng representing the set of attributes/criteria, any attribute Xj

defined in the interval [x0j , x1j ], where x0j is the worst value obtained with the
attribute Xj and x1j is the best value; E D ff1; f2; � � � ; fng the set of evaluators, an
evaluator fj(xij) being a probability function associating to each alternative ai a
non-empty set of xij (a random variable) representing the evaluation of ai relative
to the attribute Xj.

In this method, it is assumed known the distributional evaluation of the alterna-
tives according to each attribute and the weight of the attributes.

These attributes (criteria) are defined such that a larger value is preferred to
a small value and that the probability functions are known. It is also assume
that the attribute set F obeys the additive independence condition. Huang, Kira
and Vertinsky (see [17]) showed in the case of the probability independence and
the additive multi-attributes utility function, that the necessary condition for the
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multi-attributes stochastic dominance is to verify stochastic dominance on the
level of each attribute. In practice, the essential characteristic of a multi-attributes
problem is that the attributes are conflicting. Consequently, the Multi-attributes
Stochastic Dominance relation results poor and useless to the DM. It seems to
be reasonable to weaken this unanimity condition and accept a majority attribute
condition.

Thus, Martel and Zaras’ method [24] uses the stochastic dominance to compare
the alternatives two by two, on each attribute. These comparisons are interpreted in
terms of partial preferences. Next, the outranking approach is used for constructing
outranking relations based on a concordance index and eventually on a discordance
index. With this approach, a majority attribute condition (concordance test) replaces
the unanimity condition of the classic dominance. Finally, these outranking relations
are used in order to construct the prescription according to a specific problem
statement.

Often, in order to conclude that alternative ai is preferred or is at least as good
as ai0 , with respect to the attribute Xj, it is unnecessary to make completely explicit
all the decision-maker’s partial preferences. In fact, it can be possible to conclude
on the basis of stochastic dominance conditions of first, second and third order (i.e.
FSD, SSD and TSD relations), for a class of increasing concave utility functions
with decreasing absolute risk aversion (i.e. DARA utility functions class). If the
decision-maker’s (partial) preference for each attribute Xj can be related by the
utility function Uj 2DARA, then his preference for the Fj(xij) distribution associated
with alternative ai for each attribute Xj will be:

gj.Fj.xij// D
Z x1j

x0j

Uj.xij/ dFj.xij/:

Theorem 1 [14]. If Fj(xij) FSD Fj(xi0j) or Fj(xij) SSD Fj(xi0j) or Fj(xij) TSD Fj(xi0j)
and Fj(xij) 	 Fj(xi0j), then gj(Fj(xij)) � gj(Fj(xi0j)) for all Uj 2 DARA, where Fj(xij)
and Fj(xi0j) represent cumulative distribution functions associated with ai and ai0

respectively.

This theorem allows to conclude clearly that ai is preferred to ai0 , with respect
to the attribute Xj. We refer the reader to Zaras (see [47]) to review the concept of
stochastic dominance.

In the MZ’s model, two situations are identified; clear situation, where the con-
ditions imposed by the theorem are verified (SDDFSD [ SDU [ TSD situations),
and unclear situation, where none of the three stochastic dominance is verified.
The value of the concordance index can be decomposed into two parts:

Explicable concordance, that corresponds to cases in which the expression of
the decision-maker’s preferences is trivial or clear.

CE.ai; ai0/ D
nX

jD1
jı

E
j .ai; ai0/;
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where

ıE
j .ai; ai0/ D

�
1 if Fj.xij/ SD Fj.xi0 j/

0 otherwise

and j is the weight of attribute Xj, with j 	 0 and
Pn

j j D 1.
Non-explicable concordance that corresponds to the potential value of the cases

in which the expression of the decision-maker’s preferences is unclear.

CNE.ai; ai0/ D
nX

jD1
jı

NE
j .ai; ai0/;

where

ıNE
j .ai; ai0/ D

8
<

:

1 if no Fj.xij/ SD Fj.xi0j/ and
no Fj.xi0j/ SD Fj.xij/

0 otherwise.

This second part of the concordance is only a potential value, as it is not certain
that for each of these attribute Fj(xij) will be preferred to Fj(xi0j).

In these cases, it may be useful to state a condition which tries to make explicit
the decision-maker’s value functions Uj(xij). If the condition

0 � p � CE.ai; ai0/ � CNE.ai; ai0/;

where p 2 Œ0:5; 1� is the concordance threshold, is fulfilled, then the explication of
the unclear cases leads to a value of the concordance index such that the concordance
test is satisfied for the proposition that “ai globally outranks ai0”. The objective is to
reduce as far as possible, without increasing the risk of erroneous conclusions, the
number of time where the Uj(xij) functions must be to make explicit. It is notably
in the case of unclear situation that [24] uses the probabilistic dominance, as a
complementary tool to the stochastic dominance, to build preference relationships.

A discordance index Dj.ai; a0
i/ for each attribute Xj may be eventually defined as

the ratio between of the difference of the means of the distributions of a0
i and ai and

the range of the scale (if it is justified by the scale level of distributional evaluation):

Dj.ai; ai0/ D
(

�.Fj.xi0 j//��.Fj.xij//

.x1i �x0i /
if Fj.xij/ SDj Fj.xi0j/

0 if Fj.xij/ not SDj Fj.xi0j/:

The difference between the average values of two distributions gives a good
indication of the difference in performance of the two compared alternatives. If this
difference is large enough in relation to the range of the scale, and SD is fulfilled
on attribute Xj, then the chances are large that ai is ‘dominated’ by ai0 . In this case,
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MZ assume a minimum level �j, called a veto threshold, of the discordance index
Dj.ai; ai0/; giving to a discordant attribute Xj the power of withdrawing all credibility
that ai globally outranks ai0 .

The discordance test is related to veto threshold �j for each attribute. The
concordance and discordance relations for the potential alternatives from A are
formulated in a classical manner:

For all .ai; ai0/ 2 A � A; .ai; ai0/ 2 Cp  ! C.ai; ai0/ 	 p

For all .ai; ai0/ 2 A � A; .ai; ai0/ 2 D�  ! 9j=Dj.ai; ai0/ 	 �j:

The outranking relations result from the intersection between the concordance
set and the complementary set of discordance set:

S.p; �j/ D Cp \ ND� D Cp n D�:

Therefore, like in ELECTRE I, we can conclude that aij globally outranks ai0 (aiSai0)
if and only if C.ai; ai0/ 	 p and Dj(ai, ai0/ < �j for all j. If we have no aiSai0 and no
ai0Sai, then ai and ai0 are incomparable, where S is a crisp outranking relation. On
the basis on the level of overlapping of the compared distributions, Martel et al. [25]
developed preference indices associated to the three types of stochastic dominance
and constructed the valued outranking relations.

Depending on whether one is dealing with a choice or a ranking problematic,
either the core of the graph of outranking relations is determined or the outranking
relations are exploited as in ELECTRE II, for example.

Example 5. Given 6 alternatives a1, a2, a3, a4, a5 and a6, 4 attributes X1, X2, X3 and
X4 and the stochastic dominance relation observed between each pair of alternatives
ai ¤ aj according to each attribute (Table 7.20).

It is assumed that the weights of the attributes are respectively 0.09, 0.55, 0.27
and 0.09. The explicable concordance indices were calculated and they are presented
in Table 7.21. The discordance indices are not considered in this example.

On the basis of the explicable concordance indices, we can build up the following
outranking relations for a concordance threshold p D 0:90: a1Sa4, a1Sa5, a1Sa6;
a2Sa3, a2Sa4, a2Sa5, a2Sa6; a3Sa5, a3Sa6; a4Sa5 and a6Sa5. It is possible to
construct the following partial pre-order graph (Fig. 7.15); within this graph, the
transitivity is respected.

In Table 7.20 we observe that the relation between a1 and a3 according to attribute
X4 is unclear since no F4(x14) SD F4(x34) and no F4(x34) SD F4(x14). If the decision-
maker can explicit U4(x) and if a1 is preferred to a3 according to this attribute, then
globally a1Sa3 with a concordance thresholds p D 0:90 since C.a1; a3/ D 0:91

(0.82 in Table 7.21C0:09 (the weight of X4)).
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Table 7.20 Table of observed stochastic dominances

X1 X2
a1 a2 a3 a4 a5 a6 a1 a2 a3 a4 a5 a6

a1 � � � � TSD � � FSD FSD FSD FSD FSD

a2 FSD � � � FSD � � � FSD FSD FSD FSD

a3 FSD FSD � SSD FSD FSD � � � FSD FSD FSD

a4 FSD FSD � � SSD FSD � � � � FSD �
a5 � � � � � � � � � � � �
a6 FSD FSD � � FSD � � � � � FSD �

X3 X4
a1 a2 a3 a4 a5 a6 a1 a2 a3 a4 a5 a6

a1 � � SSD SSD FSD FSD � FSD �a FSD FSD SSD

a2 FSD � SSD SSD FSD FSD � � FSD FSD FSD FSD

a3 � � � � FSD FSD �a � � FSD FSD FSD

a4 � � SSD � FSD FSD � � � � FSD FSD

a5 � � � � � � � � � � � �
a6 � � � � FSD � � � � � FSD �

a No a1SDa3 and no a3SDa1 according to X4

Table 7.21 Explicable
concordances indices

a1 a2 a3 a4 a5 a6
a1 � 0.64 0:82� 0.91 1 0.91

a2 0.36 � 0.91 0.91 1 0.91

a3 0:09� 0.09 � 0.73 1 1

a4 0.09 0.09 0.27 � 1 0.45

a5 0 0 0 0 � 0

a6 0.09 0.09 0 0.55 1 �

Fig. 7.15 Partial preorder

a1 a4

a2 a3

a5

a6
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7.5 Conclusions

In this chapter some outranking methods different from ELECTRE and
PROMETHEE family have been presented, able to manage different type of data
(ordinal, cardinal and stochastic). Their description proved again the richness and
flexibility of the outranking approach in preference modelling and in supporting
DM in a lot of decisional problem at hand. Some properties of these approaches are
common to all the outranking methods, others are peculiar features of some of them.
In the following we recall the main characteristics of the considered methods.

(a) The input of these methods are alternative evaluations that can be given in
the form of qualitative (ordinal scale), quantitative (with the particular case
of interval scales) or stochastic (probability distribution) data with respect to
all considered criteria. Sometimes also some technical parameters should be
supplied by DM as infracriterion information (indifference, preference, veto
thresholds).

(b) All these methods need as infracriterion information also the importance
weights in numerical terms. In some of them, just a particular order of criteria
is explicitly requested, and a random weight approach should be applied.

(c) The outranking methods within the PCCA approach need the elicitation of both
importance and trade-off weights, but the information concerning weights does
not need to respect completeness (i.e. all pairwise trade-off and/or importance
weights given) and transitivity with respect to trade off weights.

(d) In their first step, all these methods (apart from PRAGMA) give as results some
preference or outranking relations, crisp or fuzzy (preference relations and/or
indices).

(e) The preference structure associated with these methods is usually P, I, R,
obtained at global level (comprehensive evaluation). In the PCCA approach is
also possible to obtain the same binary relations with respect to each couple or
pair (gi, gj) of considered criteria (Pij, Iij, Rij).

(f) Usually the final recommendation (complete or partial preorder) is obtained
by the exploitation of the binary relations previously obtained. But in some
ordinal method the complete final preorder is directly obtained as a result of the
concordance-discordance analysis between different rankings.

Acknowledgements We are grateful to Prof. Silvia Angilella for her kind cooperation and great
help in the editing of this chapter.
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Chapter 8
Multiattribute Utility Theory (MAUT)

James S. Dyer

Abstract In this chapter, we provide a review of multiattribute utility theory.
We begin with a brief review of single-attribute preference theory, and explore
preference representations that measure a decision maker’s strength of preference
and her preferences for risky alternatives. We emphasize the distinction between
these two cases, and then explore the implications for multiattribute preference
models. We describe the multiattribute decision problem, and discuss the conditions
that allow a multiattribute preference function to be decomposed into additive and
multiplicative forms under conditions of certainty and risk. The relationships among
these distinct types of multiattribute preference functions are then explored, and
issues related to their assessment and applications are surveyed.

Keywords Multiattribute utility theory • Additive value functions • Preference
modeling

8.1 Introduction

In this chapter, we provide a review of multiattribute utility theory. As we shall
discuss, multiattribute preference theory would be a more general term for this topic
that covers several multiattribute models of choice. These models are based on alter-
nate sets of axioms that have implications for their assessment and use. We begin
with a brief review of single-attribute preference theory, and explore preference
representations that measure a decision maker’s preferences on an ordinal scale, her
strength of preference and her preferences for risky alternatives. We emphasize the
distinctions among these cases, and then explore their implications for multiattribute
preference theory.
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In order to differentiate between theories for preference based on the notions of
ordinal comparisons and strength of preference versus theories for risky choices, we
will use the term value function to refer to the former and utility function to refer to
the latter. This distinction was made by Keeney and Raiffa in 19761 and has been
generally adopted in the literature. Further, we will use the term preference model
or multiattribute preference model to include all of these cases.

We describe the multiattribute decision problem, and discuss the conditions
that allow a multiattribute preference function to be decomposed into additive
and multiplicative forms under conditions of certainty and risk. The relationships
between multiattribute preference functions under conditions of certainty and risk
are then explored, and issues related to their assessment and applications are
surveyed.

We do not address the important issue of selecting the attributes for a mul-
tiattribute decision problem, which may influence the choice of the appropriate
multiattribute preference model. This topic is explored in Keeney and Raiffa [32]
and in more detail in Keeney [30]. More recent discussions include the contributions
of Keeney and Gregory [31] and Butler et al. [6].

There are several important points related to the field of multi-criteria decision
analysis that we wish to make. First, multiattribute preference theory provides an
axiomatic foundation for choices involving multiple criteria. As a result, one can
examine these axioms and determine whether or not they are reasonable guides
to rational behavior. Most applications of the methods of multi-criteria decision
analysis are developed for individuals who are making decisions on behalf of others,
either as managers of publicly held corporations or as government officials making
decisions in the best interests of the public. In such cases, one should expect these
decision makers to use decision-making strategies that can be justified based on a
reasonable set of axioms, rather than some ad hoc approach to decision making that
will violate one or more of these axioms.

Often arguments are made that decision makers do not always make decisions
that are consistent with the rational axioms of decision theory. While this may be
true as a descriptive statement for individual decision making, it is much more
difficult to identify situations involving significant implications for other parties
where a cavalier disregard for normative theories of choice can be defended.

Second, multiattribute utility theory can be based on different sets of axioms
that are appropriate for use in different contexts. Specifically, the axioms that are
appropriate for risky choice do not have to be satisfied in order to use multiattribute
models of preference for cases that do not explicitly involve risk. Much of the work
on multiobjective mathematical programming, for example, does not require the
consideration of risk, and many applications of the Analytical Hierarchy Procedure
(AHP) are also developed in the context of certainty [40].

1The classic book Decisions with Multiple Objectives by R. L. Keeney and H. Raiffa was originally
published by Wiley in 1976. The Cambridge University Press version was published in 1993.
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The broad popularity of the award-winning book on multiattribute utility theory
by Keeney and Raiffa [32] emphasized the use of multiattribute preference models
based on the theories of von Neumann and Morgenstern [46], which rely on axioms
involving risk. As a result, this approach has become synonymous in the view of
many scholars with multiattribute preference theory. However, this theory is not
the appropriate one for decisions involving multiple objectives when risk is not a
consideration.2 Instead, the multiattribute preference theories for certainty are based
on ordinal comparisons of alternatives or on estimates of the strength of preference
between pairs of alternatives.

Third, many existing approaches to multi-criterion decision analysis can be
viewed as special cases or approximations to multiattribute preference models.
We shall make this case for the popular methods of goal programming and the
AHP as examples. By viewing these seeming disparate methods from this unifying
framework, it is possible to gain new insights into these methodologies, recognize
ways that these approaches might be sharpened or improved, and provide a basis
for evaluating whether their application will result in solutions that are justified by
a normative theory.

8.2 Preference Representations Under Certainty
and Under Risk

Preference theory studies the fundamental aspects of individual choice behavior,
such as how to identify and quantify an individual’s preferences over a set of
alternatives, and how to construct appropriate preference representation functions
for decision making. An important feature of preference theory is that it is based
on rigorous axioms which characterize an individual’s choice behavior. These
preference axioms are essential for establishing preference representation functions,
and provide the rationale for the quantitative analysis of preference.

The basic categories of preference studies can be divided into characterizations
of preferences under conditions of certainty or risk and over alternatives described
by a single attribute or by multiple attributes. In the following, we will begin with the
introduction of basic preference relations and then discuss preference representation
under certainty and under risk for the single attribute case. We shall refer to a
preference representation function under certainty as a value function, and to a
preference representation function under risk as a utility function.

2“The important addition since 1976 concerns value functions that address strength of preference
between pairs of consequences (see [4, 13]).” A quote from the Preface to the Cambridge
University Press Edition, R. L. Keeney and H. Raiffa, Decisions with Multiple Objectives,
Cambridge University Press, 1993.
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Preference theory is primarily concerned with properties of a binary preference
relation
 on a choice set X, where X could be a set of commodity bundles, decision
alternatives, or monetary gambles. For example, we might present an individual with
a pair of alternatives, say x and y (e.g., two cars) where x, y 2 X (e.g., the set of all
cars), and ask how they compare (e.g., do you prefer x or y?). If the individual says
that x is preferred to y, then we write x 
 y, where 
 means strict preference. If the
individual states that he or she is indifferent between x and y, then we represent
this preference as x� y. Alternatively, we can define � as the absence of strict
preference; that is, not x 
 y and not y 
 x. If it is not the case that y 
 x, then
we write x 
	 y, where 
	 represents a weak preference (or preference-indifference)

relation. We can also define 
	 as the union of strict preference 
 and indifference

�; that is, both x 
 y and x� y.
Preference studies begin with some basic assumptions (or axioms) of individual

choice behavior. First, it seems reasonable to assume that an individual can state
preference over a pair of alternatives without contradiction; that is, the individual
does not strictly prefer x to y and y to x simultaneously. This leads to the following
definition for preference asymmetry: preference is asymmetric if there is no pair x
and y in X such that x 
 y and y 
 x.

Asymmetry can be viewed as a criterion of preference consistency. Furthermore,
if an individual makes the judgment that x is preferred to y, then he or she should
be able to place any other alternative z somewhere on the ordinal scale determined
by the following: either better than y, or worse than x, or both. Formally, we define
negative transitivity by saying that preferences are negatively transitive if given x 

y in X and any third element z in X, it follows that either x 
 z or z 
 y, or both.

If the preference relation 
 is asymmetric and negatively transitive, then it is
called a weak order. The weak order assumption implies some desirable properties
of a preference ordering, and is a basic assumption in many preference studies. If
the preference relation
 is a weak order, then the associated indifference and weak
preference relationships are well behaved. The following statements summarize
some of the properties of some of these relationships.

If strict preference
 is a weak order, then

1. strict preference
 is transitive (if x 
 y and y 
 z, then x 
 z);
2. indifference � is transitive, reflexive (x� x for all x); and symmetric (x� y

implies y� x);
3. exactly one of x 
 y, y 
 x, x� y holds for each pair x and y; and
4. weak preference 
	 is transitive and complete (for a pair x and y, either x 
	 y or

y 
	 x).

Thus, an individual whose strict preference can be represented by a weak order
can rank all alternatives considered in a unique order. Further discussions of the
properties of binary preference relations are presented in Fishburn [18, Chap. 2],
Kreps [36, Chap. 2], and by Bouyssou and Pirlot in Chap. 4 of this volume.

http://dx.doi.org/10.1007/978-1-4939-3094-4_4
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8.2.1 Preference Functions for Certainty (Value Functions)

If strict preference 
 on X is a weak order and X is finite or denumerable, then

there exists a numeric representation of preference, a real-valued function
o
v on X

such that x 
 y if and only if
o
v.x/ >

o
v.y/, for all x and y in X [18]. Since

o
v is a

preference representation function under certainty, it is often called a value function
[32]. This value function is said to be order-preserving since the real numbers
o
v.x/;

o
v.y/, : : : ordered by > are consistent with the order of x, y, : : : under
. Thus,

any monotonic transformations of
o
v will also be order-preserving for this binary

preference relation. Since such a function only rank orders different outcomes, there

is no added meaning of the values of
o
v beyond the order that they imply.

Notice that we use the symbol “o” to indicate that
o
v is an ordinal function. While

the notion of an ordinal value function is very important for economic and decision
theories, such a function is seldom assessed in practice. For example, if we know
that preferences are monotonically increasing for some real-valued attribute x (e.g.,

more is better), then
o
v.x/ D x is valid ordinal preference function. Therefore, we

may choose an objective function of maximizing profits or minimizing costs, and be
comfortable assuming implicitly that these objective functions are order-preserving
preference functions for a decision maker. However, the notion of an ordinal value
function does become important when we speak of multiattribute value functions,
as we shall discuss.

In order to replicate the preferences of a decision maker with less ambiguity, we
may wish to consider a “strength of preference” notion that involves comparisons
of preference differences between pairs of alternatives. To do so, we need more
restrictive preference assumptions, including that of a weak order over prefer-
ences between exchanges of pairs of alternatives [35, Chap. 4]. We use the term
measurable value function for a value function that orders the differences in the
strength of preference between pairs of alternatives or, more simply, the “preference
differences” between the alternatives.

Once again, let X denote the set of all possible consequences in a decision
situation, with w, x, y, z, w’, x’, y’ 2 X; define X� as a nonempty subset of X �
X, and 
	

� as a binary relation on X�. We shall interpret wx 
	
� yz to mean that

the strength of preference for w over x is greater than or equal to the strength of
preference for y over z. The notation wx �� yz means both wx 
	

� yz and yz 
	
� wx,

and wx 
� yz means not yz 
	
� wx.

There are several alternative axiom systems for measurable value functions,
including the topological results of Debreu [11] and the algebraic development by
Scott and Suppes [44]. Some of these systems allow both “positive” and “negative”
preference differences and are called algebraic difference structures. For example,
the “degree of preference” for x over w would be “negative” if w is preferred to
x. Our development is based on an axiom system presented by Krantz et al. [[35],
Definition 4.1] that does not allow negative differences; hence it is called a positive
difference structure.
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This set of axioms includes several technical assumptions that have no significant
implications for behavior. However, a key axiom that does have an intuitive
interpretation in terms of preferences is the following one: If wx; xy;w0x0; x0y0 2 X�,
wx 
	

� w0x0, and xy
	
� x0y0, then wy 
	

� w0y0. That is, if the difference in the strength

of preference between w and x exceeds the difference between w0 and x0, and the
difference in the strength of preference between x and y exceeds the difference
between x0 and y0, then the difference in the strength of preference between w
and y must exceed the difference between w0 and y0. Some introspection should
convince most readers that this would typically be true for preference comparisons
of alternative pairs.

The axioms of Krantz et al. [35] imply that there exists a real-valued function v
on X such that, for all w, x, y, z 2 X, if w is preferred to x and y to z, then wx 
	

� yz

if and only if

v.w/ � v.x/ 	 v.y/� v.z/ (8.1)

Further, v is unique up to a positive linear transformation, so it is a cardinal function
(i.e., v provides an interval scale of measurement). That is, if v also satisfies (8.1),
then there are real numbers a > 0 and b such that v’(x)D av(x)C b for all x 2 X
([35], Theorem 4.1).

We define the binary preference relation 
	 on X from the binary relation 
	
� on

X� in the natural way by requiring wx 
	
� yx if and only if w 
	 y for all w, x, y 2 X.

Then from (8.1) it is clear that w 
	 y if and only if v.w/ 	 v.y/. Thus, v is a value

function on X and, by virtue of (8.1), it is a measurable value function.
The ideas of strength of preference and of measurable value functions are

important concepts that are often used implicitly in the implementation of pref-
erence theories in practice. Intuitively, it may be useful to think of a measurable
value function as the unique preference function in the case of certainty that
reveals the marginal value of additional units of the underlying commodity. For
example, we would expect that the measurable value function over wealth for most
individuals would be concave, since the first million dollars would be “worth” more
to the individual than the second million dollars, and so on. This notion would be
consistent with the traditional assumption in economics of diminishing marginal
returns to scale.

Further, the measurable value function can be assessed using questions for
subjects that do not require choices among lotteries, which may be artificial
distractions in cases where subjects are trying to choose among alternatives that do
not involve the consideration of risk. Examples of methods for assessing measurable
value functions would include the direct rating of alternatives on a cardinal scale,
or direct comparisons of preference differences. For a detailed discussion of these
approaches, see Farquhar and Keller [16], von Winterfeldt and Edwards [47], and
Kirkwood [34].
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In addition, subjects can be asked to make ratio comparisons of preference
differences. For example, they might be comparing automobiles relative to a “base
case”, say a Ford Taurus. Then, they could be asked to compare the improvement
in acceleration offered by a BMW over a Taurus to the improvement offered by
a Mercedes (relative to the same Taurus) in terms of a ratio. This ratio judgment
could be captured and analyzed using the tools of the AHP, and this provides a link
between measurable value functions and ratio judgments. This point has been made
on numerous occasions, and is worth further exploration (e.g., see [12, 29, 41]).

8.2.2 Preference Functions for Risky Choice
(Utility Functions)

We turn to preference representation for risky options, where the risky options are
defined as lotteries or gambles with outcomes that depend on the occurrence from
a set of mutually exclusive and exhaustive events. For example, a lottery could be
defined as the flip of a fair coin, with an outcome of $10 if heads occurs and an
outcome of $�2 if tails occurs.

Perhaps the most significant contribution to this area of concern was the for-
malization of expected utility theory by von Neumann and Morgenstern [46]. This
development has been refined by a number of researchers and is most commonly
presented in terms of three basic axioms [18].

Let P be a convex set of simple probability distributions or lotteries fp, q, r, : : : g
on a nonempty set X of outcomes. We shall use p, q and r to refer to probability
distributions and random variables interchangeably. For lotteries p, q, r in P and all
�, 0 <� < 1, the expected utility axioms are:

1. (Ordering)
 is a weak order;
2. (Independence) If p 
 q then .�pC .1 � �/ r/ 
 .�qC .1 � �/ r/ for all r in P;
3. (Continuity) If p 
 q 
 r then there exist some 0 < ˛ < 1 and 0 < ˇ < 1 such

that ˛pC .1 � ˛/ r 
 q 
 ˇpC .1 � ˇ/ r

The von Neumann–Morgenstern expected utility theory asserts that the above
axioms hold if and only if there exists a real-valued function u such that for all p, q
in P, p 
	 q if and only if

X

x2X

p.x/u.x/ 	
X

x2X

q.x/u.x/ (8.2)

Moreover, such a u is unique up to a positive linear transformation.
The expected utility model can also be used to characterize an individual’s risk

attitude [39], [32, Chap. 4]. If an individual’s utility function over a closed interval
is concave, linear, or convex, then the individual is risk averse, risk neutral, or risk
seeking, respectively.
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The von Neumann–Morgenstern theory of risky choice presumes that the
probabilities of the outcomes of lotteries are provided to the decision maker. Savage
[43] extended the theory of risky choice to allow for the simultaneous determination
of subjective probabilities for outcomes and for a utility function u defined over
those outcomes. Deduced probabilities in Savage’s model are personal or subjective
probabilities. The model itself is a subjective expected utility representation.

The assessment of von Neumann–Morgenstern utility functions will almost
always involve the introduction of risk in the form of simple lotteries. For a
discussion of these assessment approaches, see Keeney and Raiffa [32, Chap. 4],
von Winterfeldt and Edwards [47], and Anderson and Clemen [3].

As a normative theory, the expected utility model has played a major role in the
prescriptive analysis of decision problems. However, for descriptive purposes, the
assumptions of this theory have been challenged by empirical studies [28]. Some
of these empirical studies demonstrate that subjects may choose alternatives that
imply a violation of the independence axiom. One implication of the independence
axiom is that the expected utility model is “linear in probabilities.” For a discussion,
see Fishburn and Wakker [21]. A number of contributions have been made by
relaxing the independence axiom and developing some nonlinear utility models to
accommodate actual decision behavior [7, 20, 48].

8.2.3 Comment

Note that both the measurable value function v(x) and the von Neumann and
Morgenstern utility function u(x) are cardinal measures, unique up to a positive
linear transformation. However, the theory supporting the measurable function is
based on axioms involving preferences differences, and it is assessed based on
questions that rely on the idea of strength of preference. In contrast, the von
Neumann and Morgenstern utility function is based on axioms involving lotteries,
and it is assessed based on questions that typically involve lottery comparisons.

Suppose we find a subject and assess her measurable value function v(x) and her
utility function u(x) over the same attribute (e.g., over monetary outcomes). Would
these two functions be identical, except for measurement error? A quick reaction
might be that they would be identical, since they are each unique representations
of the subject’s preferences, up to a positive linear transformation. However, that
is not necessarily the case. Intuitively, a measurable value function v(x) may be
concave, indicating decreasing marginal value for the underlying attribute. However,
a utility function u(x) may be even more concave, since it will incorporate not only
feelings regarding the marginal value of the attribute, but also it may incorporate
psychological reactions to taking risks [14]. Empirical tests of this observation
are provided by Krzysztofowicz [37] and Keller [33] and generally support this
intuition. This is an important point, and one that we will emphasize again in the
context of multiattribute preference functions (see [13, 15, 27, 42]).
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8.3 Ordinal Multiattribute Preference Functions
for the Case of Certainty

A decision maker uses the appropriate preference function, v.x/ or v(x) in the case
of certainty or u(x) in the case of risk, to choose among available alternatives. The
major emphasis of the work on multiattribute utility theory has been on questions
involving conditions for the decomposition of a preference function into simple
polynomials, on methods for the assessment of these decomposed functions, and on
methods for obtaining sufficient information regarding the multiattribute preference
functions so that the evaluation can proceed without its explicit identification with
full precision.

Suppose that the alternatives defined for single attribute preference functions

are now considered to be vectors. That is, suppose that X D
nY

iD1
Xi where Xi

represents the performance of an alternative on attribute i. We will be interested
in conditions allowing the determination that .x1; : : : ; xn/ 
	 .y1; : : : ; yn/ if and only

if
o
v .x1; � � � ; xn/ 	 o

v .y1; � � � ; yn/ for example. Essentially, all that is required is the
assumption that the decision maker’s preferences are a weak order on the vectors of
attribute values.

In some cases, methods for multiattribute optimization do not need any additional
information regarding a multiattribute preference function, other than perhaps
invoking concavity to allow maximization. Geoffrion et al. [23] provide an example
of an early approach to multiattribute optimization that does proceed with only local
information regarding the implicit multiattribute preference function. Additional
conditions are needed to decompose the multiattribute preference function into
simple parts.

8.3.1 Preference Independence

The most common approach for evaluating multiattribute alternatives is to use
an additive representation. For simplicity, we will assume that there exist a most
preferred outcome x�

i and a least preferred outcome x0
i on each attribute iD 1 to n. In

the additive representation, a real value
o
v is assigned to each outcome .x1; � � � ; xn/ by

o
v .x1; � � � ; xn/ D

nX

iD1

o
vi .xi/ (8.3)
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where the
o
vi are single attribute value functions over Xi.3 When it is convenient,

we may choose the scaling
o
vi
�
x�

i

� D 1;
o
vi
�
x0i
� D 0; and write

o
v .x1; x2; : : : ; xn/ D

nX

iD1

o
�i

o
vi .xi/ where

nX

iD1

o
�i D 1.

If our interest is in simply rank-ordering the available alternatives then the key
condition for the additive form in (8.3) is mutual preference independence. Suppose
that we let I � f1; 2; : : : ; ng be a subset of the attribute indices, and define XI as the
subset of the attributes designated by the subscripts in I. Also, we let XI represent
the complementary subset of the n attributes. Then,

1. 1. XI is preference independent of XI if .wI;wI/ 
	 .xI;wI/ for any wI; xI 2 XI

and wI 2 XI implies .wI ; xI/ 
	 .xI ; xI/ for all xI 2 XI:

2. The attributes X1, : : : , Xn are mutually preference independent if for every subset
I � f1, : : : , ng the set XI of these attributes is preference independent of XI

When coupled with a solvability condition and some technical assumptions,
mutual preference independence implies the existence of an additive ordinal
multiattribute value function for n 	 3 attributes. Furthermore, this additive ordinal
value function is unique up to a positive linear transformation.

Attributes Xi and Xj are preference independent if the tradeoffs (substitution
rates) between Xi and Xj are independent of all other attributes. Mutual preference
independence requires that preference independence holds for all pairs Xi and Xj.
Essentially, mutual preference independence implies that the indifference curves for
any pair of attributes are unaffected by the fixed levels of the remaining attributes.
Debreu [11], Luce and Tukey [38], and Gorman [24] provide axiom systems and
analysis for the additive form (8.3).

An example may help to illustrate the idea of preference independence. Suppose
that a subject is attempting to evaluate automobiles based on the three criteria
of cost, horsepower, and appearance. Assume that the subject decides that her
preferences between two automobiles differing in cost and horsepower but with
identical values for appearance are as follows: ($24,000, 150 hp, ugly) 
 ($25,000,
170 hp, ugly). If the level of appearance does not affect the subject’s indifference
curve between cost and horsepower, then she will also prefer ($24,000, 150 hp,
beautiful) to ($25,000, 170 hp, beautiful), and will maintain the same preference
relation for any common value of appearance.

As a practical matter, it is only necessary for preference independence to hold for
the n-1 pairs of criteria involving the first criterion and the other n-1 criteria taken
one at a time. See Keeney and Raiffa [32, Chap. 3] for a discussion.

In Chap. 4 of this volume, Bouyssou and Pirlot provide an excellent discussion
of the additive ordinal value function which they present as the use of conjoint
measurement for multiple criteria decision making. In our development, we use

3Note that the
o
vi are called partial value functions by Bouyssou and Pirlot in Chap. 4 of this volume.

http://dx.doi.org/10.1007/978-1-4939-3094-4_4
http://dx.doi.org/10.1007/978-1-4939-3094-4_4
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the terminology ordinal additive value function instead in order to contrast this
preference representation with other additive and non-additive preference models.
We also use the term preference independence rather than simply independence to
distinguish this key assumption from other forms of independence conditions that
are appropriate for multiple criteria decision making in different contexts.

8.3.2 Assessment Methodologies

The additive ordinal value function would seem to be an attractive choice for
practical applications of multiattribute decision making. However, the resulting
additive function is, in general, difficult to assess. The problem arises because the

single attribute functions
o
vi cannot be assessed using the methods appropriate for

the single-attribute measurable value functions. Instead, these functions can only be
assessed through protocols that require tradeoffs between two attributes throughout
the process, and these protocols are therefore burdensome for the decision makers.
Further, the resulting additive function will only have an ordinal interpretation,
rather than providing a measure of the strength of preference.

Keeney and Raiffa [32, Chap. 3] illustrate two assessment procedures for ordinal
additive value functions. However, an example may be helpful to emphasize that the
resulting additive value function may only provide an ordinal ranking of alternatives,
since this important point is also a subtle one.

Suppose that an analyst is attempting to assess a preference function from a
decision maker on three attributes X, Y, and Z that are related in the mind of
the decision maker in a multiplicative form; that is, the decision maker’s true
preferences are represented by the product xyz where x, y, and z are attribute values.
Of course, the analyst is not aware of this multiplicative form, and is attempting to
develop an appropriate preference representation from the decision maker based on
a verbal assessment procedure. Further, suppose that there is no risk involved, so
the analyst would like to consider the use of an additive ordinal multiattribute value
function.

An example of a situation that might involve this type of a preference function
would be the ranking of oil exploration opportunities based on estimates of their oil
reserves. Suppose that the decision maker thinks that these reserves can be estimated
by multiplying the area (x) of the structure containing oil by its depth (y) to obtain
the volume of the structure, and then multiplying this volume by its rate of recovery
per volumetric unit (z). In practice, this is a simplification of the approach actually
used in many cases to estimate oil reserves.

This multiplication of the relevant parameters could be done explicitly in this
case, but this example should suggest that such a true preference structure could
occur naturally. For simplicity, and to avoid complications associated with units of
measurement, we will assume that XDYDZD [1,10], which might occur if the
analyst rescaled the actual units of measurement.
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The analyst does not know the true underlying preference model of the decision
maker, and so he might ask a series of questions to determine if mutual preference
independence holds in this case. Consider alternative 1, with x1D 2, y1D 3, and
z1D 4, versus alternative 2, with x2D 4, y2D 2, and z2D 4. The decision maker
would be asked to compare (2,3,4) with (4,2,4), and would reply that she prefers
alternative 2 (because 2 � 3 � 4 D 24 and 4 � 2 � 4 D 32, although these
calculations are unknown to the analyst). It is easy to see that alternative 2 would
remain preferred to alternative 1 for all common values of z1 and z2, so attributes X
and Y are preference independent of Z. Likewise, a similar set of questions would
reveal that X and Z are preference independent of Y, and Y and Z are preference
independent of X, so these three attributes are mutually preference independent.

Therefore, the analyst concludes that the preferences of the decision maker can
be represented by the ordinal additive multiattribute preference function

o
v .x; y; z/ D o

vx.x/C o
vy.y/C o

vz.z/

As we shall see, this is not a mistake even though the true preference function
is multiplicative, and the assessment procedure will construct the correct ordinal
additive function that will result in the same rank ordering of alternatives as the
multiplicative preference function.

For this example only, we will abuse the notation and let subscripts of the
attributes indicate the corresponding values of the single attribute functions. For

examples, we will let x0 indicate the value of attribute X such that
o
vx .x0/ D 0, and

let y1 indicate the value of attribute Y such that
o
vy .y1/ D 1, and so forth. Suppose

the analyst begins the assessment procedure by letting x0 D y0 D z0D 1, which is
allowable given the fact that the function is unique up to a linear transformation.

That is, the analyst scales
o
vx so that

o
vx .x0/ D o

vx.1/ D 0, and similarly scales
o
vy.1/ D o

vz.1/ D 0. Therefore, we would have

o
v .1; 1; 1/ D o

vx.1/C o
vy.1/C o

vz.1/ D 0C 0C 0 D 0:

The analyst then arbitrarily selects x1 D 2; that is, he sets
o
vx .x1/ D o

vx.2/ D 1;

which is also allowable by virtue of the scaling convention. Finally, the analyst
involves the decision maker, and asks her to specify a value y1 so that she is
indifferent between the alternative (2,1,1) and the alternative (1,y1,1). Based on her
true multiplicative preference model unknown to the analyst, if she is indifferent
between (2,1,1) and (1,y1,1) it must be the case that 2 � 1 � 1 D 1 � y1 � 1, so she
responds y1D 2 . Based on this response, the analyst sets

o
vy .y1/ D o

vy.2/ D 1.

This means that
o
v .2; 1; 1/ D o

vx.2/C o
vy.1/C o

vz.1/ D 1C 0C 0 D 1, and that
o
v .1; 2; 1/ D o

vx.1/C o
vy.2/C o

vz.1/ D 0C1C0 D 1, which verifies to the analyst that
the additive representation indicates that the decision maker is indifferent between

the alternatives (2,1,1) and (1,2,1). In addition, the analyst knows that
o
v .2; 2; 1/ D

o
vx.2/C o

vy.2/C o
vz.1/ D 1C 1C 0 D 2.
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Now, the analyst asks the decision maker to specify a value for x2 so that
she is indifferent between the alternatives (2,2,1) and (x2,1,1). This response will

determine the value of x2 such that
o
vx .x2/ D 2, because indifference between these

two alternatives will require
o
v .x2; 1; 1/ D o

vx .x2/C o
vy.1/C o

vz.1/ D 2C 0C 0 D 2
also.

Using her implicit multiplicative preference function for the alternative (2,2,1),
she obtains 2� 2� 1 D 4, and since indifference requires x2� 1� 1 D 4, she would

identify x2D 4, so
o
vx.4/ D 2. The reader should confirm that similar questions

would determine
o
vy.4/ D o

vz.4/ D 2, and that
o
vx.8/ D 3, and so forth. Continuing

in this fashion, and using similar questions to develop the assessments of
o
vy.y/

and
o
vz.z/, the analyst would develop graphs that would indicate

o
vx.x/D ln x/ln 2,

o
vy.y/D ln y/ln 2, and

o
vz.z/D ln z/ln 2, so that the ordinal additive multiattribute

value function would be given by the sum of the logs of the variables. Notice that this
ordinal value function is an order preserving transformation of the true underlying
preference representation of the decision maker, which was never revealed explicitly
to the analyst.

As this example illustrates, the assessment procedure will determine an additive
ordinal value function that may be an order preserving transformation of a true
preference relation that is not additive. The log function provides an example of
such a transformation for a multiplicative preference relation, but other non-additive
relationships may also be transformed to order preserving additive value functions.
See Krantz et al. [35] for a discussion of other such transformations.

This example also illustrates the fact that the assessment methods required
for accurately capturing an additive ordinal multiattribute value function may be
tedious, and will require tradeoffs involving two or more attributes. This same
point is made by Bouyssou and Pirlot in Chap. 4 of this volume. Thus, while
this approach could be used in practice, it would be desirable to have simpler
means of assessing the underlying preference functions. This can be accomplished
if some additional preference conditions are satisfied, but the requirement of mutual
preference independence will still be common to the preference models that are to
follow.

8.4 Cardinal Multiattribute Preference Functions
for the Case of Risk

When X D
nY

iD1
Xi in a von Neumann–Morgenstern utility model and the decision

maker’s preferences are consistent with some additional independence conditions,
then u(x1, x2, : : : , xn) can be decomposed into additive, multiplicative, and other
well-structured forms that simplify assessment. In comparison with other sections,
our coverage of this topic will be relatively brief since it is perhaps the most well
known multiattribute preference model.

http://dx.doi.org/10.1007/978-1-4939-3094-4_4
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8.4.1 Utility Independence

An attribute Xi is said to be utility independent of its complementary attributes if
preferences over lotteries with different levels of Xi do not depend on the fixed
levels of the remaining attributes. Attributes X1, X2, : : : , Xn are mutually utility
independent if all proper subsets of these attributes are utility independent of their
complementary subsets. Further, it can be shown that if these same attributes are
mutually preference independent, then they will also be mutually utility independent
if any pair of the attributes is utility independent of its complementary attributes
[32].

Returning to the automobile selection example, suppose that a decision maker is
considering using the attributes of cost, horsepower, and appearance as before, but
there is some uncertainty regarding some new environmental laws that may impact
the cost and the horsepower of a particular automobile. Further, assume that the
decision maker prefers more horsepower to less, lower costs and more attractive
automobiles. The current performance levels of one of the alternatives may be
($25,000, 170 hp, ugly), but if the legislation is passed a new device will have to
be fitted that will increase cost and decrease horsepower to ($25,700, 150 hp, ugly).
An alternative automobile might have possible outcomes of ($28,000, 200 hp, ugly)
and ($29,000, 175 hp, ugly) depending on this same legislation, which the decision
maker estimates will pass with probability 0.5.

Therefore, the decision maker may consider choices between lotteries such as the
one shown in Fig. 8.1. For example, the decision maker may prefer Auto 1 to Auto
2 because the risks associated with the cost and the horsepower for Auto 1 are more
acceptable to her than the risks associated with the cost and horsepower of Auto 2. If
the decision maker’s choices for these lotteries do not depend on common values of
the third attribute, then cost and horsepower are utility independent of appearance.

A multiattribute utility function u(x1, x2, : : : , xn) can have the multiplicative form

1C ku .x1; x2; : : : ; xn/ D
nY

iD1
Œ1C kkiui .xi/� (8.4)

($25700, 150 hp, ugly)

($25000, 170 hp, ugly)

0.5

0.5

pass

does not
pass

($29000, 175 hp, ugly)

($28000, 200 hp, ugly)

0.5

0.5

pass

does not
pass

Auto 1 Auto 2

Fig. 8.1 Choice between two lotteries
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if and only if the attributes X1, X2, : : : , Xn are mutually utility independent, where
ui is a single-attribute function over Xi scaled from 0 to 1, 0 � ki � 1 are positive
scaling constants, and k is an additional scaling constant. If the scaling constant k is
determined to be 0 through the appropriate assessment procedure, then (8.4) reduces
to the additive form

nX

iD1
kiui .xi/ (8.5)

where
nX

iD1
ki D 1.

8.4.2 Additive Independence

A majority of the applied work in multiattribute utility theory deals with the
case when the von Neumann–Morgenstern utility function is decomposed into the
additive form (8.5). Fishburn [17] has derived necessary and sufficient conditions for
a utility function to be additive. The key condition for additivity is the marginality
condition which states that the preferences for any lotteries p, q 2 P should depend
only on the marginal probabilities of the attribute values, and not on their joint
probability distributions.

Returning to the automobile example once again, for additivity to hold, the
decision maker must be indifferent between the two lotteries shown in Fig. 8.2, and
for all other permutations of the attribute values that maintain the same marginal
probabilities for each.

Notice that in either lottery, the marginal probability of receiving the most
preferred outcome or the least preferred outcome on each attribute is identical (0.5).
However, a decision maker may prefer the right-hand side lottery over the left-
hand side lottery if the decision maker wishes to avoid a 0.5 chance of the poor
outcome ($29,000, 150 hp, ugly) on all three attributes, or she may have the reverse

($29000, 150 hp, ugly)

($25000, 200 hp, nice)

0.5

0.5

pass

does not
pass

($29000, 200 hp, ugly)

($25000, 150 hp, nice)

0.5

0.5

pass

does not
pass

Auto 1 Auto 2

Fig. 8.2 Additive independence criterion for risk
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preference if she is willing to accept some risk in order to have a chance at the best
outcome on all three attributes. In either of the latter cases, utility independence
may still be satisfied, and a multiplicative decomposition of the multiattribute utility
function (8.4) may be appropriate.

Other independence conditions have been identified that lead to more complex
non-additive decompositions of a multiattribute utility function. These general
conditions are reviewed in Abbas and Bell [1].

8.4.3 Assessment Methodologies

The assessment of the multiplicative or additive form implied by the condition
of mutual utility independence is simplified by the fact that each of the single-
attribute utility functions may be assessed independently (more accurately, while
all of the other attributes are held constant at arbitrarily selected values), using
the well-known utility function assessment techniques suitable for single attribute
utility functions. In addition, the constants ki and k can be assessed using n
relatively simple tradeoff questions. See Keeney and Raiffa [32] or Kirkwood [34]
for additional details and examples.

8.5 Measurable Multiattribute Preference Functions
for the Case of Certainty

We have delayed the discussion of measurable multiattribute preference functions
until after the review of multiattribute utility theory because the latter may be more
familiar to the reader. If so, this transposition of a more natural order of presentation
may be helpful in providing the opportunity to discuss similarities between these
models of preference, and therefore to enhance an intuitive understanding of the
relationships among some important concepts.

Again let X denote the set of all possible consequences in a particular decision

problem. In the multiattribute problem X D
nY

iD1
Xi where Xi is the set of possible

consequences for the ith attribute. In this section, we use the letters w, x, y, and z to
indicate distinct elements of X. For example, w 2 X is represented by (w1, : : : , wn),
where wi is a level in the nonempty attribute set Xi for iD 1, : : : , n. Once again, we
let I � f1; 2; : : : ; ng be a subset of the attribute indices, define XI as the subset of the
attributes designated by the subscripts in I, and let XI represent the complementary
subset of the n attributes. We may write wD (wI , wI) or use the notation .wi;wi/ and
.xi;wi/ to denote two elements of X that differ only in the level of the ith attribute.
Finally, we also assume that the preference relation 
	 on X is a weak order.
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Next we introduce the notation necessary to define preferences based on strength
of preference between vector-valued outcomes. We let X� D fwxjw; x 2 Xg be a
nonempty subset of X �X, and
	

� denote a weak order on X�. Once again, we may

interpret wx
	
� yz to mean that the preference difference between w and x is greater

than the preference difference between y and z.
It seems reasonable to assume a relationship between 
	 on X and 
	

� on X�

as follows. Suppose the attributes X1, : : : , Xn are mutually preference independent.
These two orders are difference consistent if, for all wi; xi 2 Xi; .wi;wi/ 
	 .xi;wi/ if

and only if .wi;wi/ .xi
ı;wi/
	

� .xi;wi/ .xi
ı;wi/ for some xı

i 2 Xi and some wi 2 Xi;

and for any i 2 f1; : : : ; ng ; and if w� x then wy �� xy or yw �� yx or both for
any y 2 X: Loosely speaking, this means that if one multiattributed alternative is
preferred to another, then the preference difference between that alternative and
some common reference alternative

�
xı

i ;wi
�

will be larger than the preference
difference between the alternative that is not preferred and this reference alternative.

8.5.1 Weak Difference Independence

In this section we identify a condition that we refer to as weak difference indepen-
dence. This condition plays a role similar to the utility independence condition in
multiattribute utility theory. We show how this condition can be exploited to obtain
multiplicative and other nonadditive forms of the measurable multiattribute value
function.

Specifically, the subset of attributes XI is weak difference independent of XI if,
given any wI ; xI; yI; zI 2 XI and some wI 2 XI such that the subject’s judgments
regarding strength of preferences between pairs of multiattributed alternatives is
as follows: .wI;wI/ .xI;wI/
	

� .yI ;wI/ .zI ;wI/, then the decision maker will also

consider .wI;xI/ .xI; xI/
	
� .yI; xI/ .zI ; xI/ for any xI 2 XI . That is, the ordering of

preference differences depends only on the values of the attributes XI and not on the
fixed values of XI .

The attributes are mutually weak difference independent if all proper subsets of
these attributes are weak difference independent of their complementary subsets.
Further, it can be shown that if these same attributes are mutually preference
independent, then they will also be mutually weak difference independent if any pair
of the attributes is weak difference independent of its complementary attributes [13].

Notice the similarity of the definition of weak difference independence to that
of utility independence. In the latter case, preferences among lotteries depend only
on the values of the attributes XI and not on the fixed values of XI . In the case of
certainty, the same notion applies to preference differences. Therefore, it should
not be surprising that this condition leads to a decomposition of a measurable
value function that is identical to the one implied by utility independence for utility
functions.
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This intuition may be formalized as follows. A measurable multiattribute value

function
o
v(x1, x2, : : : , xn) on X can have the multiplicative form

1C �v.x/ D
Yn

iD1 Œ1C ��ivi .xi/� (8.6)

if and only if X1, : : : , Xn are mutually weak difference independent, where
o
vi is a

single-attribute measurable value function over Xi scaled from 0 to 1, the �i are
positive scaling constants, and � is an additional scaling constant. If the scaling
constant � is determined to be 0 through the appropriate assessment procedure, then
(8.6) reduces to the additive form

v.x/ D
Xn

iD1�ivi .xi/ (8.7)

where
nX

iD1
�i D 1. Therefore, we obtain either an additive or a multiplicative

measurable preference function that is based on notions of strength of preference.

8.5.2 Difference Independence

Finally, we are interested in the conditions that are required to ensure the existence
of an additive multiattribute measurable value function. Recall that mutual prefer-
ence independence guarantees the existence of an additive preference function for
the case of certainty that will provide an ordinal ranking of alternatives, but it may
not capture the underlying strength of preference of the decision maker. Further, the
appropriate assessment technique will require tradeoffs that simultaneously consider
two or more attributes as illustrated in Sect. 8.3.2.

Recall the example from Sect. 8.3.2 where the decision maker’s true preferences
were represented by the product of the attributes. If we were to ask the decision
maker to express her preferences for the first attribute while holding the other
attributes constant at some given values, she would respond in such a way that we
would obtain a linear function for each attribute, rather than the correct logarithmic
form. We would like to exclude this case, and be assured that the preference function
that also measures strength of preference is additive.

Perhaps this point is worth some elaboration. Recall that the true preferences of
the hypothetical decision maker introduced in Sect. 8.3.2 were consistent with the
multiplicative representation xyz. Suppose we set yD zD 1, and ask the decision
maker to consider the importance of changes in the attribute x while holding these
other attribute values constant. Considering the alternatives (1,1,1), (3,1,1), and
(5,1,1), she would indicate that the preference difference between (3,1,1) and (1,1,1)
would be the same as the preference difference between (5,1,1) and (3,1,1). This is
because her true preference relation gives 1�1�1 D 1, 3�1�1 D 3, 5�1�1 D 5,
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and the preference difference between (3,1,1) and (1,1,1) is 3-1D 2, which is also
the preference difference between (5,1,1) and (3,1,1). If the analyst is not aware
of the fact that this assessment approach cannot be used when only preference

independence is satisfied, he might mistakenly conclude that
o
v .x; y; z/ D xC yC z

rather than the appropriate logarithmic transformation that we obtained earlier in
Sect. 8.3.2.

The required condition for additivity that also provides a measurable preference
function is called difference independence. The attribute Xi is difference indepen-
dent of Xi if, for all wi; xi 2 Xi such that .wi;wi/ 
	 .xi;wi/ for some wi 2
Xi; .wi;wi/ .xi;wi/ � � .wi; xi/ .xi; xi/ for any xi 2 Xi: Intuitively, the preference
difference between two multiattributed alternatives differing only on one attribute
does not depend on the common values of the other attributes.

The attributes are mutually difference independent if all proper subsets of these
attributes are difference independent of their complementary subsets. Again, it can
be shown that if these same attributes are mutually preference independent, then
they will also be mutually difference independent if X1 is difference independent of
X1 [13]. For the case of n 	 3, mutual difference independence along with some
additional structural and technical conditions4 ensure that if wx, yz 2 X*, then wx

	

� yz if and only if

nX

iD1
�ivi .wi/ �

nX

iD1
�ivi .xi/ 	

nX

iD1
�ivi .yi/�

nX

iD1
�ivi .zi/ (8.8)

and x 
	 y if and only if

nX

iD1
�ivi .xi/ 	

nX

iD1
�ivi .yi/ (8.9)

where vi is a single-attribute measurable value function over Xi scaled from 0 to 1,

and
nX

iD1
�i D 1. Further, if vi

0, iD 1, : : : , n are n other functions with the same

properties, then there exist constants ˛ > 0; ˇ1; : : : ; ˇn such that vi
0 D ˛vi C ˇi;

i D 1; : : : ; n:
Result (8.9) is well known and follows immediately from the assumption that the

attributes are mutually preference independent (Sect. 8.3.1). The significant result

4Specifically, we assume restricted solvability from below, an Archimedian property, at least three
attributes are essential, and that the attributes are bounded from below. If n D 2, we assume that
the two attributes are preferentially independent of one another and that the Thomsen condition
is satisfied (see Krantz et al. [35] and the discussion by Bouyssou and Pirlot in Chap. 4 of this
volume).

http://dx.doi.org/10.1007/978-1-4939-3094-4_4
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is (8.8), which means that v .x1; x2; : : : ; xn/ D
nX

iD1
�ivi .xi/ also provides difference

measurement on X. Note that this latter result is obtained based on the observation
that any arbitrarily selected attribute is difference independent of its complementary
attributes.

8.5.3 Assessment Methodologies

Because the notion of a measurable multiattribute value function may not be familiar
to many readers, we will briefly consider methods for the assessment of them.
Further details and examples are provided by von Winterfeldt and Edwards [47],
and by Kirkwood [34].

8.5.3.1 Verification of the Independence Conditions

The first issue to be considered is the verification of the independence conditions.
Since methods for verifying mutual preference independence are discussed in
Keeney and Raiffa [32], we focus on the independence conditions involving
preference differences.

Difference consistency is so intuitively appealing that it could simply be assumed
to hold in most practical applications. The following procedure could be used to
verify difference independence. We determine w1; x1 2 X1 such that .w1;w1/ 
	
.x1;w1/ for some w1 2 X1. We then ask the decision maker to imagine that she is
in situation 1: She already has .x1;w1/ and she can exchange it for .w1;w1/. Next,
we arbitrarily choose x1 2 X1 and ask her to imagine situation 2: She already has
.x1; x1/, and she can exchange it for .w1; x1/. Would she prefer to make the exchange
in situation 1 or in situation 2, or is she indifferent between the two exchanges? If she
is indifferent between the two exchanges for several different values of w1; x1 2 X1
and w1; x1 2 X1 then we can conclude that X1 is difference independent of X1.

For example, suppose we ask the decision maker to consider exchanging a car
described by ($25,000, 150 hp, ugly) for a car described by ($25,000, 180 hp, ugly).
Next, we ask her to consider exchanging ($35,000, 150 hp, nice) for ($35,000, 180
hp, nice). Would the opportunity to exchange a car with 150 hp for one with 180 hp
be more important to the decision maker when the cost and appearance are $25,000
and ugly, or when they are $35,000 and nice? If the common values of these two
attributes do not affect her judgments of the importance of these exchanges, then
horsepower would be difference independent of cost and appearance.

Before using this procedure, we must ensure that the decision maker understands
that we are asking her to focus on the exchange rather than on the final outcomes. For
example, if she states that she prefers an exchange of $1,000,000 for $1,000,001 to
an exchange of $5 for $500, then she undoubtedly is not focusing on the substitution
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of one outcome for another, but she is focusing instead on the final outcome. Thus,
some training may be required before this approach to verification of difference
independence is attempted.

To verify weak difference independence, partition X into XI and XI , and choose
wI ; xI; yI; zI 2 XI and wI 2 XI so that .wI;wI/ 
 .xI ;wI/, .yI;wI/ 
 .zI ;wI/ and the
exchange of .xI;wI/ for .wI ;wI/ is preferred to the exchange of .zI;wI/ for .yI;wI/.
Then pick another value xI of XI and ask if the decision maker still prefers the
exchange of .xI ; xI/ for .wI ; xI/ to the exchange of .zI; xI/ for .yI; xI/. This must be
true if the subset XI is weakly difference independent of XI . If the decision maker’s
response is affirmative, we repeat the question for other quadruples of consequences
from XI with the values of the criteria in XI fixed at different levels. Continuing in
this manner and asking the decision maker to verbally rationalize her responses, the
analyst can either verify that XI is weakly difference independent of XI or discover
that the condition does not hold.

Note that for the multiplicative measurable value function, it would only be
necessary to verify weak difference independence for the special case of IDfi,jg,
where i and j indicate the subscripts of an arbitrarily chosen pair of alternatives. This
is true so long as the attributes are mutually preference independent.

For example, suppose we establish that the decision maker would prefer the
exchange of the car ($25,000, 150 hp, ugly) for the car ($27,000, 200 hp, ugly)
to the exchange of the car ($24,000, 130 hp, ugly) for the car ($25,000, 150 hp,
ugly). If this preference for the first exchange over the second exchange does not
depend on the common value of appearance, and if it also holds true for all other
combinations of the values of cost and horsepower, then cost and horsepower are
weak difference independent of appearance.

8.5.3.2 Assessment of the Measurable Value Functions

If difference independence or weak difference independence holds, each conditional

measurable value function
o
vi can be assessed while holding xi constant at any

arbitrary value (generally at xi
ı). With the additive value function that does not

provide difference measurement, this strategy cannot be used as illustrated above.
As a result, any of the approaches for assessing a single attribute measurable value
function referenced in Sect. 8.3.1 may be used, including the direct rating of attribute
values on an arbitrary scale (e.g., from 0 to 100), or direct estimates of preference
differences.

If the measurable value function is additive, the scaling constants may be
assessed using the same trade-off approach suggested for estimating the scaling
constants for the additive ordinal value function [32, Chap. 3]. For a discussion of
other approaches to the assessment of the scaling constants for the additive and
multiplicative cases, see also Dyer and Sarin [13].

Measurable multiattribute value functions may also be assessed using the ratio
judgments and tools provided by the AHP methodology, and used as a basis
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for relating the AHP to formal preference theories that are widely accepted by
economists and decision analysts. This point has been made by several authors,
notably Kamenetzky [29] and Dyer [12].

Perhaps the best discussion of this important point is provided by Salo and
Hamalainen [41]. As they observe, once a suitable range of performance [xı

i ,
x*

i ] has been defined for each attribute, the additive measurable value function
representation may be scaled so that the values v .xı/ D v

�
xı
1; : : : ; x

ı
n

�D 0
and v .x�/ D v

�
x�
1 ; : : : ; x

�
n

�D 1 are assigned to the worst and best conceivable
consequences, respectively. By also normalizing the component value functions
onto the [0,1] range, the additive representation can be written as

v.x/ D
nX

iD1
vi .xi/ D

nX

iD1

�
vi .xi/ � vi

�
xı

i

��

D
nX

iD1

�
vi
�
x�

i

�� vi
�
xı

i

�� vi .xi/ � vi
�
xı

i

�

vi
�
x�

i

� � vi
�
xı

i

� D
nX

iD1
wisi .xi/

where si(xi)D vi .xi/� vi
�
xı

i

�
=vi

�
x�

i

�� vi
�
xı

i

� 2 [0, 1] is the normalized score of x
on the ith attribute and wiD v

�
x�

i

� � v �xı
i

�
is the scaling constant or weight of the

ith attribute.
A careful evaluation of this representation leads Salo and Hamalainen to the

conclusion that pair wise comparisons in ratio estimation should be interpreted in
terms of ratios of value differences between pairs of underlying alternatives. This, in
turn, provides the link between traditional models of preference theory and the AHP,
and reveals that the latter can be an alternative assessment technique for measurable
multiattribute value functions (with some simple adjustments for normalization and
scaling).

8.5.4 Goal Programming and Measurable Multiattribute
Value Functions

Goal programming was originally proposed by Charnes et al. [10] as an ingenious
approach to developing a scheme for executive compensation. As noted by Charnes
and Cooper [9] in a review of the field, this approach to multiple objective
optimization did not receive significant attention until the mid-1960s. However,
during the past 40 years, we have witnessed a flood of professional articles
and books dealing with applications of this methodology (e.g. see Ignizio [25],
Trzaskalik and Michnik [45], Ignizio and Romero [26]).

This discussion is limited to the use of goal programming as a methodology for
solving problems with multiple, compensatory objectives. That is, we do not address
problems that do not allow tradeoffs among the objectives. These non-compensatory
models involve the use of the non-Archimedian, or “preemptive priority”, weights.
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An analysis of these models would be based on the theory of lexicographic orders,
summarized by Fishburn [19]. The conditions that would justify the use of a non-
compensatory model are very strict, and are unlikely to be met in a significant
number of real-world applications.

8.5.4.1 Goal Programming as an Approximation to Multiattribute
Preferences

Let us begin with a simple example. Suppose a manager has identified a problem
that can be formulated as a traditional mathematical programming problem with one
exception—there are two criterion functions, f1(x) and f2(x) where x 2 X is an n-
vector of controllable and uncontrollable variables, and the non-empty feasible set
X is defined by a set of constraints. For simplicity, and without loss of generality,
we assume that our choice of X ensures 0 � fi.x/ � 1; i D 1; 2.

To use goal programming, we ask the manager if she has any “goals” in mind for
the criteria. She replies that she would be happy if f1 .�/ were at least as large as b1,
but she does not feel strongly about increasing f1 .�/ beyond b1. However, she would
like for f2 .�/ to be somewhere between b2L and b2U. Finally, we ask her to assign
“weights” of relative importance to the deviations of f1 .�/ from b1, and of f2 .�/ from
b2L and b2U, respectively. After some thought, she responds with the weights w1, w2

and w3.
Now, we can immediately write down this problem as follows:

min
x2X

w1y�
1 C w2y�

2 C w3y
C
3

subject to f1.x/� yC
1 C y�

1 D b1
f2.x/ � yC

2 C y�
2 D b2L

f2.x/ � yC
3 C y�

3 D b2U

yC
i ; y

�
i 	 0; i D 1; 2; 3

(GP)

Notice that GP includes a “one-sided” formulation with respect to f1 .�/, and a “goal
interval” formulation with respect to f2 .�/.

Let us pause a moment to reflect on this formulation. First, notice that y�
1 D

b1 C yC
1 � f1.x/. Suppose we introduce the relationship f1.x/ � yC

12 D 0 as a new
constraint for GP. Since b1 is a constant, minimizing w1y�

1 is obviously equivalent
to minimizing w1

�
yC
1 � yC

12

�
.

Similarly, if we introduce the constraint f2.x/ � yC
22 D 0, minimizing w2y�

2

is equivalent to minimizing w2
�
yC
2 � yC

22

�
, and minimizing w3y

C
3 is equivalent

to minimizing w3
�
y�
3 C yC

22 � b2U
�
. The constant b2U is maintained in the last

expression in order to facilitate a graphical portrayal of the objective function as
we shall see. Combining the results and re-writing GP as a maximization problem,
we have the equivalent problem statement:
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max
x2X

w1
�
yC
12 � yC

1

�C w2
�
yC
22 � yC

2

�C w3
�
yC
22 C y�

3 � b2U
�

subject to f1.x/ � yC
1 C y�

1 D b1
f2.x/ � yC

2 C y�
2 D b2L

f2.x/ � yC
3 C y�

3 D b2U

f1.x/ � yC
12 D 0

f2.x/ � yC
22 D 0

yC
i ; y

�
i 	 0; i D 1; 2; 3

yC
12; y

C
22 	 0

(VA)

where the objective function may be interpreted as the sum of two piecewise linear
functions (e.g. see [8, pp. 351–355])

Figures 8.3 and 8.4 illustrate these two piecewise linear functions. Recall that
piecewise linear transformations are commonly used to transform additive separable
nonlinear programming problems into linear programming problems. The lines
labeled v1 .�/ and v2 .�/ in Figs. 8.3 and 8.4 respectively suggest nonlinear preference
functions that might be approximated by the bold piecewise linear functions.

Thus since VA is equivalent to GP, and VA may be viewed as a piecewise linear
approximation to an additive separable nonlinear objective function, we are led to
the conclusion that GP is an implicit approximation to the problem:

max
x2X

o
v1 .f1.x//C v2 .f2.x// (V)

And how do we interpret V? Since the choice of goals and goal intervals in
GP reflect the decision maker’s preferences and no uncertainty is involved in the

v

Fig. 8.3 Piecewise linear approximation of v1 .�/
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v

Fig. 8.4 Piecewise linear approximation of v2 .�/

decision, v1 .�/ and v2 .�/ are measurable functions, and their sum, v .f1 .�/ ; f2 .�// D
v1 .f1 .�//C v2 .f2 .�//, is an additive separable measurable value function.

Goal programming is generally applied to problems where risk is not explicitly
involved in the formulation. Therefore, the additive utility function theory developed
for risky choice is not relevant for these applications. Likewise, the ordinal additive
theories are not operational here because they require a simultaneous conjoint
scaling of the separable terms. Goal programming applications generally allow the
selection of each goal or goal interval independent of consideration of the values of
the other criteria. This practice implies the existence of a measurable additive utility
function under certainty.

This point has been made recently by Bordley and Kirkwood [5] in a general dis-
cussion of the relationship between goals and multiattribute preference models. Also
see Abbas and Matheson [2]. This perspective provides some insights regarding the
nature of goal programming, as well as some challenges. For example, how should
the piecewise linear approximations to the nonlinear value functions be selected
in order to minimize error? Geoffrion [22] provides some useful guidelines for
choosing “goals” or “goal intervals” for each criterion so that the piecewise linear
approximation to the implicit utility function provides the best fit.

One important implication of this point of view is that goal programming should
not be considered an ad hoc, heuristic approach to solving multiple objective
problems. Rather, the approach is based on a set of implicit, well-understood
assumptions from multiattribute preference theory. Goal programming formulations
should be either criticized or justified on the basis of these assumptions.
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8.6 The Relationships among the Multiattribute
Preference Functions

The necessary conditions for the additive and multiplicative measurable value
functions and risky utility functions, notably mutual preference independence, are
also necessary and sufficient for the ordinal additive value function that does
not provide difference measurement. Therefore, it is natural to investigate the
relationships among them. The following choice of scaling will be imposed. For

f D ı
v; v; or u, f is normalized by f .x1�; : : : ; xn

�/ D 1 and f .x1ı; : : : ; xn
ı/ D 0 and

fi(xi) is a conditional function on Xi scaled by fi
�
x�

i

� D 1 and fi
�
xı

i

� D 0. Finally,
o
�; � and k will be used as scaling constants for the ordinal and measurable value
functions and the utility function, respectively.

8.6.1 The Additive Functions

The relationships among the alternative developments of the additive forms of
real-valued functions on X follow immediately from their respective uniqueness
properties [13]. This may be summarized as follows. Assume n = 3 and X1, : : : , Xn

are mutually preference independent. Then

1. if X1, : : : , Xn are difference consistent and X1 is difference independent of X1
then

ı
v D v;

2. if there exists a utility function u on X and if preferences over lotteries on
X1, : : : , Xn depend only on their marginal probability distributions and not on

their joint probability distributions, then
ı
v D u.

3. if both 1 and 2 are satisfied,
ı
v D v D u

Note the implication of this result. In order for
ı
v D v D u for a single

decision maker, she must have preferences simultaneously consistent with mutual
preference independence, difference independence, and additive independence for
risky alternatives. Mutual preference independence will hold in all cases, but it
may be the case that difference independence and/or additive independence for
risky alternatives will not hold. Further, difference independence may hold for
the preferences of a decision maker, implying that an additive measurable value
function would provide a valid representation of her preferences, but additive
independence for risky alternatives may not be satisfied, implying that an additive
utility function would not be a valid representation of her preferences in decision
scenarios involving risk.
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8.6.2 The Multiplicative Functions

Throughout this section we assume that the following conditions are satisfied:

1. There are n = 3 attributes, and X1, : : : , Xn are mutually preference independent;
2. There exists a measurable value function v on X and X1 is weak difference

independent of X1, and
3. There exists a utility function u on X and X1 is utility independent of X1.

Suppose we have assessed the additive value function
ı
v and wish to obtain either

v or u. Then the following relationships will hold ([13], Theorem 5). Either

1. 1.
ı
v.x/ D v.x/ and

ı
vi .xi/ D vi .xi/, iD 1, : : : , n, or

2. 2.
ı
v.x/ ln .1C �/ D ln Œ1C �v.x/� and

ı
�i

ı
vi .xi/ ln .1C �/ D ln Œ1C ��ivi .xi/�,

iD 1, : : : , n.

Either

1. 1.
ı
v.x/ D u.x/ and

ı
vi .xi/ D ui .xi/, iD 1, : : : , n, or,

2. 2.
ı
v.x/ ln .1C k/ D ln Œ1C ku.x/� and

ı
�i

ı
vi .xi/ ln .1C k/ D ln Œ1C kkiui .xi/�,

i D 1; : : : ; n:
These relationships may be used to simplify the assessment of multiattribute

preference functions. For example, suppose we define xi
0 as the equal difference

point for attribute Xi if .xi
0; xi/ .xi

ı; xi/�� .xi
�; xi/ .xi

0; xi/ for any xi 2 Xi. Notice

that vi .xi
0/ D 1�

2 because of our choice of scaling. Given
ı
v, the assessment of xi

0

for any attribute Xi is enough to completely specify v, because if vi .xi
0/ D 1�

2 for

some i 2 f1; : : : ; ng then vD ı
v. Otherwise, 1C .1C �/

o
�i D 2.1C �/

o
�i

o
vi.x0

i/.

Finally, to derive u from
ı
v; find xi00 for some attribute Xi such that the decision

maker is indifferent between xi00 and an equal chance lottery between xi
� and xi

ı
with the other criteria held fixed. A parallel result to the above relationship between

ordinal and measurable value functions holds. Specifically, if
ı
vi .xi

00/ D 1�

2 for

some i 2 f1; : : : ; ng ;, then uD ı
v. Otherwise, 1C .1C k/

o
�i D 2.1C k/

o
�i

o
vi.x0

i/.
These results can also be used to derive v after u has been assessed, or vice versa.

For example, suppose u has been assessed using appropriate procedures. To obtain
v, we find the equal difference point xi

0 for some criterion Xi. The second result

above is used to obtain
ı
�i and

ı
vi for each criterion, and we can obtain v. In a similar

manner, u can be obtained from v after assessing xi00 for some criterion Xi.
Since the AHP can be interpreted as ratios of preference differences, this

relationship also allows the results from assessments based on the AHP to be
suitably transformed into multiattribute utility functions appropriate for use in risky
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situations. This completes the circle required to synthesize ordinal multiattribute
value functions, measurable multiattribute value functions, multiattribute utility
functions, and multiattribute functions based on ratio judgments. As a result, the
analyst is justified in choosing among a variety of assessment tools, and making
the appropriate adjustments in order to calibrate the results into a coherent and
theoretically sound representation of preferences.

8.7 Concluding Remarks

In this chapter, we have presented an informal discussion of “multiattribute utility
theory”. In fact, this discussion has emphasized that there is no single version of
multiattribute utility theory that is relevant to multicriteria decision analysis. Instead,
there are three distinct theories of multiattribute preference functions that may be
used to represent a decision maker’s preferences.

The ordinal additive multiattribute preference model requires the assumption of
mutual preference independence, and is appropriate for use in the case of certainty.
Most of the applications and methods of multicriteria decision analysis are presented
in the context of certainty, and so this would seem to be an appealing theory to
use for framing these approaches. However, as we have emphasized, the ordinal
additive multiattribute preference model requires assessment techniques that are
cumbersome in practice, and that force the decision maker to make explicit tradeoffs
between two or more criteria in the assessment of the value functions defined on the
individual criteria.

The measurable value functions also require the assumption of mutual preference
independence, along with the stronger assumptions of weak difference indepen-
dence or difference independence in order to obtain convenient decompositions
of the model that are easy to assess. The assessment of these preference models
is relatively easy, and they can be interpreted intuitively as providing a measure
of strength of preference. In addition, the ratio judgments of the AHP can be
interpreted as ratios of preference differences based on this theory, linking the AHP
methodology to traditional models of preference accepted in the decision analysis
and economics literatures.

Finally, multiattribute utility theory is an elegant and useful model of preference
suitable for applications involving risky choice. The brilliant work of Keeney and
Raiffa [32] has made this theory synonymous with multiple criterion decision
making, and the ordinal and measurable theories are often overlooked or ignored as
a result. In fact, these latter approaches may provide more attractive and appropriate
theories for many applications of multicriteria decision analysis.
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Chapter 9
UTA Methods

Yannis Siskos, Evangelos Grigoroudis, and Nikolaos F. Matsatsinis

Abstract UTA methods refer to the philosophy of assessing a set of value or utility
functions, assuming the axiomatic basis of MAUT and adopting the preference
disaggregation principle. UTA methodology uses linear programming techniques in
order to optimally infer additive value/utility functions, so that these functions are
as consistent as possible with the global decision-maker’s preferences (inference
principle). The main objective of this chapter is to analytically present the UTA
method and its variants and to summarize the progress made in this field. The his-
torical background and the philosophy of the aggregation-disaggregation approach
are firstly given. The detailed presentation of the basic UTA algorithm is presented,
including discussion on the stability and sensitivity analyses. Several variants of
the UTA method, which incorporate different forms of optimality criteria, are also
discussed. The implementation of the UTA methods is illustrated by a general
overview of UTA-based DSSs, as well as real-world decision-making applications.
Finally, several potential future research developments are discussed.
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9.1 Introduction

9.1.1 General Philosophy

In decision-making involving multiple criteria, the basic problem stated by analysts
and Decision-Makers (DMs) concerns the way that the final decision should be
made. In many cases, however, this problem is posed in the opposite way: assuming
that the decision is given, how is it possible to find the rational basis for the decision
being made? Or equivalently, how is it possible to assess the DM’s preference model
leading to exactly the same decision as the actual one or at least the most “similar”
decision? The philosophy of preference disaggregation in multicriteria analysis is
to assess/infer preference models from given preferential structures and to address
decision-aiding activities through operational models within the aforementioned
framework.

Under the term “multicriteria analysis” two basic approaches have been devel-
oped involving:

1. a set of methods or models enabling the aggregation of multiple evaluation
criteria to choose one or more actions from a set A, and

2. an activity of decision-aid to a well-defined DM (individual, organization, etc.).

In both cases, the set A of potential actions (or objectives, alternatives, decisions)
is analyzed in terms of multiple criteria in order to model all the possible impacts,
consequences or attributes related to the set A.

Roy [108] outlines a general modeling methodology of decision-making prob-
lems, which includes four modeling steps starting with the definition of the set A
and ending with the activity of decision-aid, as follows:

– Level 1: Object of the decision, including the definition of the set of potential
actions A and the determination of a problem statement on A.

– Level 2: Modeling of a consistent family of criteria assuming that these criteria
are non-decreasing value functions, exhaustive and non-redundant.

– Level 3: Development of a global preference model, to aggregate the marginal
preferences on the criteria.

– Level 4: Decision-aid or decision support, based on the results of level 3 and the
problem statement of level 1.

In level 1, Roy [108] distinguishes four reference problem statements, each of
which does not necessarily preclude the others. These problem statements can be
employed separately, or in a complementary way, in all phases of the decision-
making process. The four problem statement are the following:

– Problem statement ˛: Choosing one action from A (choice).
– Problem statement ˇ: Sorting the actions into predefined and preference ordered

categories.
– Problem statement � : Ranking the actions from the best one to the worst one

(ranking).
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– Problem statement ı: Describing the actions in terms of their performances on
the criteria (description).

In level 2, the modeling process must conclude with a consistent family of criteria
fg1; g2; : : : ; gng. Each criterion is a non-decreasing real valued function defined on
A, as follows:

gi W A! Œgi� ; g
�
i � � <=a! g.a/ 2 < (9.1)

where Œgi� ; g�
i � is the criterion evaluation scale, gi� and g�

i are the worst and the
best level of the i-th criterion respectively, gi.a/ is the evaluation or performance of
action a on the i-th criterion and g.a/ is the vector of performances of action a on
the n criteria.

From the above definitions, the following preferential situations can be deter-
mined:

�
gi.a/ > gi.b/, a 
 b .a is preferred to b/
gi.a/ D gi.b/, a � b .a is indifferent to b/

(9.2)

So, having a weak-order preference structure on a set of actions, the problem is to
adjust additive value or utility functions based on multiple criteria, in such a way that
the resulting structure would be as consistent as possible with the initial structure.
This principle underlies the disaggregation-aggregation approach presented in the
next section.

This chapter is devoted to UTA methods, which are regression based approaches
that have been developed as an alternative to multiattribute utility theory (MAUT).
UTA methods not only adopt the aggregation-disaggregation principles, but they
may also be considered as the main initiatives and the most representative examples
of preference disaggregation theory. Another, more recent example of the preference
disaggregation theory is the dominance-based rough set approach (DRSA) leading
to decision rule preference model via inductive learning (see Chap. 9.5 of this book).

9.1.2 The Disaggregation-Aggregation Paradigm

In the traditional aggregation paradigm, the criteria aggregation model is known
a priori, while the global preference is unknown. On the contrary, the philosophy
of disaggregation involves the inference of preference models from given global
preferences (Fig. 9.1).

The disaggregation-aggregation approach [56, 116, 128, 130] aims at analyzing
the behavior and the cognitive style of the DM. Special iterative interactive
procedures are used, where the components of the problem and the DM’s global
judgment policy are analyzed and then they are aggregated into a value system
(Fig. 9.2). The goal of this approach is to aid the DM to improve his/her knowledge
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Fig. 9.1 The aggregation and disaggregation paradigms in MCDA [57]

about the decision situation and his/her way of preferring that entails a consistent
decision to be achieved.

In order to use global preference given data, Jacquet-Lagrèze and Siskos [57]
note that the clarification of the DM’s global preference necessitates the use of a set
of reference actions AR. Usually, this set could be:

1. a set of past decision alternatives (AR: past actions),
2. a subset of decision actions, especially when A is large (AR � A),
3. a set of fictitious actions, consisting of performances on the criteria, which can be

easily judged by the DM to perform global comparisons (AR: fictitious actions).

In each of the above cases, the DM is asked to externalize and/or confirm
his/her global preferences on the set AR taking into account the performances of
the reference actions on all criteria.

9.1.3 Historical Background

The history of the disaggregation principle in multidimensional/multicriteria anal-
yses begins with the use of goal programming techniques, a special form of linear
programming structure, in assessing/inferring preference/aggregation models or in
developing linear or non-linear multidimensional regression analyses [118].

Charnes et al. [16] proposed a linear model of optimal estimation of executive
compensation by analyzing or disaggregating pairwise comparisons and given
measures (salaries); the model was estimated so that it could be as consistent as
possible with the data from the goal programming point of view.
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Fig. 9.2 The disaggregation-aggregation approach [127]. (a) The value system approach; (b) the
outranking relation approach; (c) the disaggregation-aggregation approach; (d) the multiobjective
optimization approach

Karst [65] minimized the sum of absolute deviations via goal programming in
linear regression with one variable, while Wagner [147] generalizes the Karst’s
model in the multiple regression case. Later Kelley [68] proposed a similar model
to minimize the Tchebycheff’s criterion in linear regression.

Srinivasan and Shocker [143] outlined the ORDREG ordinal regression model
to assess a linear value function by disaggregating pairwise judgments. Freed and
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Glover [34] proposed goal programming models to infer the weights of linear value
functions in the frame of discriminant analysis (problem statement ˇ).

The research on handling ordinal criteria began with the studies of Young
et al. [148], and Jacquet-Lagrèze and Siskos [55]. The latter research refers to the
presentation of the UTA method in the “Cahiers du LAMSADE” series and indicates
the actual initiation of the development of disaggregation methods. Both research
teams faced the same problem: to infer additive value functions by disaggregating
a ranking of reference alternatives. Young et al. [148] proposed alternating least
squares techniques, without ensuring, however, that the additive value function
is optimally consistent with the given ranking. In the case of the UTA method,
optimality is ensured through linear programming techniques.

9.2 The UTA Method

9.2.1 Principles and Notation

The UTA (UTilité Additive) method proposed by Jacquet-Lagrèze and Siskos [56]
aims at inferring one or more additive value functions from a given ranking on a
reference set AR. The method uses special linear programming techniques to assess
these functions so that the ranking(s) obtained through these functions on AR is (are)
as consistent as possible with the given one.

The criteria aggregation model in UTA is assumed to be an additive value
function of the following form [56]:

u.g/ D
nX

iD1
piui.gi/ (9.3)

subject to normalization constraints:

8
<̂

:̂

nX

iD1
pi D 1

ui.gi�/ D 0; ui.g�
i / D 1; 8i D 1; 2; : : : ; n

(9.4)

where ui; i D 1; 2; : : : ; n are non decreasing real valued functions, named marginal
value or utility functions, which are normalized between 0 and 1, and pi is the weight
of ui (Fig. 9.3).

Both the marginal and the global value functions have the monotonicity property
of the true criterion. For instance, in the case of the global value function the
following properties hold:

�
uŒg.a/� > uŒg.b/�, a 
 b (preference)
uŒg.a/� D uŒg.b/�, a � b (indifference)

(9.5)
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Fig. 9.3 The normalized marginal value function

The UTA method infers an unweighted form of the additive value function,
equivalent to the form defined from relations (9.3) and (9.4), as follows:

u.g/ D
nX

iD1
ui.gi/ (9.6)

subject to normalization constraints:

8
<̂

:̂

nX

iD1
ui.g

�
i / D 1

ui.gi�/ D 0; 8i D 1; 2; : : : ; n
(9.7)

Of course, the existence of such a preference model assumes the preferential
independence of the criteria for the DM [67], while other conditions for additivity
can be found in [32, 33].

9.2.2 Development of the UTA Method

On the basis of the additive model (9.6)–(9.7) and taking into account the preference
conditions (9.5), the value of each alternative a 2 AR may be written as:

u0Œg.a/� D
nX

iD1
uiŒgi.a/�C 
.a/ 8a 2 AR (9.8)

where 
.a/ is a potential error relative to u0Œg.a/�.
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Moreover, in order to estimate the corresponding marginal value functions in a
piecewise linear form, Jacquet-Lagrèze and Siskos [56] propose the use of linear
interpolation. For each criterion, the interval Œgi� ; g�

i � is cut into .˛i � 1/ equal
intervals, and thus the end points gj

i are given by the formula:

gj
i D gi� C j� 1

˛i � 1.g
�
i � gi�/ 8j D 1; 2; : : : ; ˛i (9.9)

The marginal value of an action a is approximated by a linear interpolation, and
thus, for gi.a/ 2 Œgj

i � gjC1
i �

uiŒgi.a/� D ui.g
j
i/C

gi.a/� gj
i

gjC1
i � gj

i

Œui.g
jC1
i /� ui.g

j
i/� (9.10)

The set of reference actions AR D fa1; a2; : : : ; amg is also “rearranged” in such
a way that a1 is the head of the ranking (best action) and am its tail (worst action).
Since the ranking has the form of a weak order R, for each pair of consecutive
actions .ak; akC1/ it holds either ak 
 akC1 (preference) or ak � akC1 (indifference).
Thus, if

�.ak; akC1/ D u0Œg.ak/� � u0Œg.akC1/� (9.11)

then one of the following holds:

�
�.ak; akC1/ 	 ı iff ak 
 akC1
�.ak; akC1/ D 0 iff ak � akC1

(9.12)

where ı is a small positive number so as to discriminate significantly two successive
equivalence classes of R.

Taking into account the hypothesis on monotonicity of preferences, the marginal
values ui.gi/ must satisfy the set of the following constraints:

ui.g
jC1
i /� ui.g

j
i/ 	 si 8j D 1; 2; : : : ; ˛i � 1; i D 1; 2; : : : ; n (9.13)

with si 	 0 being indifference thresholds defined on each criterion gi. Jacquet-
Lagrèze and Siskos [56] urge that it is not necessary to use these thresholds in the
UTA model .si D 0/, but they can be useful in order to avoid phenomena such as
ui.g

jC1
i / D ui.g

j
i/ when gjC1

i 
 gj
i.

The marginal value functions are finally estimated by means of the following
Linear Program (LP) with (9.6), (9.7), (9.12), (9.13) as constraints and with an
objective function depending on the 
.a/ and indicating the amount of total
deviation:
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8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

[min]F D
X

a2AR


.a/

subject to
�.ak; akC1/ 	 ı if ak 
 akC1
�.ak; akC1/ D 0 if ak � akC1

�

8k

ui.g
jC1
i / � ui.g

j
i/ 	 0 8i and j

nX

iD1
ui.g

�
i / D 1

ui.gi�/ D 0; ui.g
j
i/ 	 0; 
.a/ 	 0 8a 2 AR;8i and j

(9.14)

The stability analysis of the results provided by LP (9.14) is considered as a
post-optimality analysis problem. As Jacquet-Lagrèze and Siskos [56] note, if the
optimum F� D 0, the polyhedron of admissible solutions for ui.gi/ is not empty
and many value functions lead to a perfect representation of the weak order R. Even
when the optimal value F� is strictly positive, other solutions, less good for F, can
improve other satisfactory criteria, like Kendall’s � .

As shown in Fig. 9.4, the post-optimal solutions space is defined by the polyhe-
dron:

�
F � F� C k.F�/
all the constraints of LP (9.14)

(9.15)

where k.F�/ is a positive threshold which is a small proportion of F�.

Fig. 9.4 Post-optimality analysis [56]
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The algorithms which could be used to explore the polyhedron (9.15) are branch
and bound methods, like reverse simplex method [146], or techniques dealing with
the notion of the labyrinth in graph theory, such as Tarry’s method [15], or the
method of Manas and Nedoma [77]. Jacquet-Lagrèze and Siskos [56], in the original
UTA method, propose the partial exploration of polyhedron (9.15) by solving the
following LPs:

8
<

:

[min]ui.g�
i / and [max]ui.g�

i /

in 8i D 1; 2; : : : ; n
polyhedron (9.15)

(9.16)

The average of the previous LPs may be considered as the final solution of the
problem. In case of instability, a large variation of the provided solutions appears,
and this average solution is less representative. In any case, the solutions of the
above LPs give the internal variation of the weight of all criteria gi, and consequently
give an idea of the importance of these criteria in the DM’s preference system.

9.2.3 The UTASTAR Algorithm

The UTASTAR method [128] is an improved version of the original UTA model
presented in the previous section. In the original version of UTA [56], for each
packed action a 2 AR, a single error 
.a/ is introduced to be minimized. This error
function is not sufficient to minimize completely the dispersion of points all around
the monotone curve of Fig. 9.5. The problem is posed by points situated on the right
of the curve, from which it would be suitable to subtract an amount of value/utility
and not increase the values/utilities of the others.

In UTASTAR method, Siskos and Yannacopoulos [128] introduced a double
positive error function, so that formula (9.8) becomes:

u0Œg.a/� D
nX

iD1
uiŒgi.a/�� 
C.a/C 
�.a/ 8 a 2 AR (9.17)

where 
C and 
� are the underestimation and the overestimation error respectively.
Moreover, another important modification concerns the monotonicity constraints

of the criteria, which are taken into account through the transformations of the
variables:

wij D ui.g
jC1
i /� ui.g

j
i/ 	 0 8 i D 1; 2; : : : ; n and (9.18)

j D 1; 2; : : : ; ˛i � 1
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Fig. 9.5 Ordinal regression curve (ranking versus global value)

and thus, the monotonicity conditions (9.13) can be replaced by the non-negative
constraints for the variables wij (for si D 0).

Consequently, the UTASTAR algorithm may be summarized in the following
steps:

Step 1: Express the global value of reference actions uŒg.ak/�; k D 1; 2; : : : ;m, first
in terms of marginal values ui.gi/, and then in terms of variables wij according
to the formula (9.18), by means of the following expressions:

8
<̂

:̂

ui.g1i / D 0 8i D 1; 2; : : : ; n
ui.g

j
i/ D

j�1X

tD1
wit 8i D 1; 2; : : : ; n and j D 2; 3; : : : ; ˛i � 1 (9.19)

Step 2: Introduce two error functions 
C and 
� on AR by writing for each pair of
consecutive actions in the ranking the analytic expressions:

�.ak; akC1/ D uŒg.ak/� � 
C.ak/C 
�.ak/

�uŒg.akC1/�C 
C.akC1/� 
�.akC1/
(9.20)
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Step 3: Solve the LP:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

Œmin�z D
mX

kD1
Œ
C.ak/C 
�.ak/�

subject to
�.ak; akC1/ 	 ı if ak 
 akC1
�.ak; akC1/ D 0 if ak � akC1

�

8k

nX

iD1

˛i�1X

jD1
wij D 1

wij 	 0; 
C.ak/ 	 0; 
�.ak/ 	 0 8i; j; and k

(9.21)

with ı being a small positive number.
Step 4: Test the existence of multiple or near optimal solutions of the LP (9.21)

(stability analysis); in case of non uniqueness, find the mean additive value
function of those (near) optimal solutions which maximize the objective
functions:

ui.g
�
i / D

˛i�1X

jD1
wij 8i D 1; 2; : : : ; n (9.22)

on the polyhedron of the constraints of the LP (9.21) bounded by the new
constraint:

mX

kD1
Œ
C.˛k/C 
�.˛k/� � z� C " (9.23)

where z� is the optimal value of the LP in step 3 and " is a very small positive
number.

A comparison analysis between UTA and UTASTAR algorithms is presented in
[128] through a variety of experimental data. UTASTAR method has provided better
results concerning a number of comparison indicators, like:

1. The number of the necessary simplex iterations for arriving at the optimal
solution.

2. The Kendall’s � between the initial weak order and the one produced by the
estimated model.

3. The minimized criterion z (sum of errors) taken as the indicator of dispersion of
the observations.
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9.2.4 Robustness Analysis

UTA-based methods include robustness analysis to take account of the gap between
the DM’s “true” model and the model resulting from the disaggregation computa-
tional mechanism. Roy [109] considers robustness as an enabling tool for decision
analysts to resist the phenomena of approximations and ignorance zones. It should
be emphasized that robustness refers mainly to the decision model, in the light of
the assertion “robust models produce a fortiori robust results”.

However, robustness should also refer to the results and the decision support
activities (e.g. conclusions, argumentation). In UTA methods robustness uses LP as
the main inference mechanism. In this spirit, several UTA-type methods have been
developed such as UTA-GMS [39], GRIP [31], and RUTA [64] to provide the DM
with robust conclusions, Extreme Ranking Analysis [62] to determine the extreme
ranking positions taken by the actions, and finally the robustness measurement
control based on Monte Carlo sampling techniques (see [60, 61] for stochastic
ordinal regression; see [41] for entropy measurement control).

Additional developments of robustness analysis in the context of UTA-type
methods can be found in [17, 40, 63].

As presented in the previous section, in the UTA models, robustness refers
to the post/near-optimality analysis. In the context of preference disaggregation
approaches, Siskos and Grigoroudis [125] propose a general methodological frame-
work for applying robustness analysis (Fig. 9.6).

The assessment of the robustness measures may depend on the post-optimality
analysis results, and especially on the form and the extent of the polyhedron of
the LP (9.14) or the LP (9.21). In particular, the observed variance in the post-
optimality matrix indicates the degree of instability of the results. Following this
approach, Siskos and Grigoroudis [125] proposed an Average Stability Index (ASI)
based on the average of the normalized standard deviation of the estimated values
ui.g�

i / [42]. Instead of exploring only the extreme values ui.g�
i /, the post-optimality

analysis may investigate every value ui.g
j
i/ of each criterion. In this case, during

the post-optimality stage, T LPs are formulated and solved, which maximize and
minimize repeatedly ui.g

j
i/, and the ASI for the i-th criterion is assessed as follows:

ASI.i/ D 1 � 1

˛i � 1
˛i�1X

jD1

s

T
TP

kD1
.ujk

i /
2 �

�
TP

kD1
ujk

i

�2

T
˛i�1
p
˛i � 2

(9.24)

where T D 2
P

i.˛i � 1/ and ujk
i is the estimated value of ui.g

j
i/ in the k-th post-

optimality analysis LP (j D 1; 2; : : : ; ˛i).
The global robustness measure may be assessed as the average of the individual

ASI.i/ values. Since ASI measures are normalized in the interval Œ0; 1�, high levels
of robustness are achieved when ASI is close to 1. However, if the analyst is not
satisfied with the value of the ASI measures, several alternative rules of robustness



328 Y. Siskos et al.

Fig. 9.6 Robustness analysis
in preference disaggregation
approaches [125]

analysis may be applied, including new global preference judgments, enumeration
and management of the hyperpolyhedron vertices in post-optimality analysis, new
preference relations on the set A during the extrapolation phase, etc. (see [125] for
more details).

9.2.5 A Numerical Example

The implementation of the UTASTAR algorithm is illustrated by a practical example
taken from [128]. The problem concerns a DM who wishes to analyze the choice
of transportation means during the peak hours (home-work place). Suppose that the
DM is interested only in the following three criteria:

1. price (in monetary units),
2. time of journey (in minutes), and
3. comfort (possibility to have a seat).
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Table 9.1 Criteria values and ranking of the DM

Means of Ranking of the

transportation Price (�) Time (min) Comfort DM

RER 3 10 C 1

METRO (1) 4 20 CC 2

METRO (2) 2 20 0 2

BUS 6 40 0 3

TAXI 30 30 C C C 4

The evaluation in terms of the previous criteria is presented in Table 9.1, where
it should be noted that the following qualitative scale has been used for the comfort
criterion: 0 (no chance of seating), + (little chance of seating) ++ (great chance of
finding a seating place), and +++ (seat assured). Also, the last column of Table 9.1
shows the DM’s ranking with respect to the five alternative means of transportation.

The first step of UTASTAR, as presented in the previous section, consists of
making explicit the utilities of the five alternatives. For this reason the following
scales have been chosen:

Œg1�; g�
1 � D Œ30; 16; 2�

Œg2�; g�
2 � D Œ40; 30; 20; 10�

Œg3�; g�
3 � D Œ0;C;CC;CCC�

Using linear interpolation for the criterion according to formula (9.10), the value
of each alternative may be written as:

uŒg.RER/� D 0:07u1.16/C 0:93u1.2/C u2.10/C u3.C/
uŒg.METRO1/� D 0:14u1.16/C 0:86u1.2/C u2.20/C u3.CC/
uŒg.METRO2/� D u1.2/C u2.20/C u3.0/ D u1.2/C u2.20/
uŒg.BUS/� D 0:29u1.16/C 0:71u1.2/C u2.40/C u3.0/

D 0:29u1.16/C0:71u1.2/
uŒg.TAXI/� D u1.30/C u2.30/C u3.CCC/ D u2.30/C u3.CCC/

where the following normalization conditions for the marginal value functions have
been used: u1.30/ D u2.40/ D u3.0/ D 0.

Also, according to formula (9.19), the global value of the alternatives may be
expressed in terms of the variables wij:

uŒg.RER/� D w11 C 0:93w12 C w21 C w22 C w23 C w31

uŒg.METRO1/� D w11 C 0:86w12 C w21 C w22 C w31 C w32

uŒg.METRO2/� D w11 C w12 C w21 C w22
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Table 9.2 Marginal value
functions (initial solution)

Price Time Comfort

u1.30/ D 0:000 u2.40/ D 0:000 u3.0/ D 0:000

u1.16/ D 0:500 u2.30/ D 0:050 u3.C/ D 0:000

u1.2/ D 0:500 u2.20/ D 0:050 u3.CC/ D 0:000

u2.10/ D 0:100 u3.C C C/ D 0:400

uŒg.BUS/� D w11 C 0:71w12

uŒg.TAXI/� D w21 C w31 C w32 C w33

According to the second step of the UTASTAR algorithm, the following expressions
are written, for each pair of consecutive actions in the ranking:

�.RER, METRO1/ D 0:07w12 C w23 � w32 � 
C
RER C 
�

RER

C 
C
METRO1 � 
�

METRO1

�.METRO1, METRO2/ D �0:14w12 C w31 C w32 � 
C
METRO1

C 
�
METRO1 C 
C

METRO2 � 
�
METRO2

�.METRO2, BUS/ D 0:29w12 C w21 C w22

� 
C
METRO2 C 
�

METRO2 C 
C
BUS � 
�

BUS
�.BUS, TAXI/ D w11 C 0:71w12 � w21 � w31 � w32 � w33

� 
C
BUS C 
�

BUS C 
C
TAXI � 
�

TAXI

Based on the aforementioned expression, an LP according to (9.21) is formu-
lated, with ı D 0:05. An optimal solution is: w11 D 0:5, w21 D 0:05, w23 D 0:05,
w33 D 0:4 with Œmin�z D z� D 0. This solution corresponds to the marginal value
functions presented in Table 9.2 and produces a ranking which is consistent with the
DM’s initial weak order.

It should be emphasized that this solution is not unique. Through post-optimality
analysis (step 4), the UTASTAR algorithm searches for multiple optimal solutions,
or more generally, for near optimal solutions corresponding to error values between
z� and z� C 	. For this reason, the error objective should be transformed to a
constraint of the type (9.23).

In the presented numerical example, the initial LP has multiple optimal solutions,
since z� D 0. Thus, in the post-optimality analysis step, the algorithm searches
for more characteristic solutions, which maximize the expressions (9.22), i.e. the
weights of each criterion. Furthermore, in this particular case we have:

z� D 0() 
C.ak/ D 
�.ak/ D 0 8 k

so the error variables may be excluded from the LPs of the post-optimality analysis.
Table 9.3 presents the formulation of the LP that has to be solved during this step.
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Table 9.3 Linear programming formulation (post-optimality anal-
ysis)

w11 w12 w21 w22 w23 w31 w32 w33 RHS

0 0:07 0 0 1 0 �1 0 � 0.05

0 �0:14 0 0 0 1 1 0 = 0

0 0:29 1 1 0 0 0 0 � 0.05

1 0:71 �1 0 0 �1 �1 �1 � 0.05

1 1 1 1 1 1 1 1 = 1

1 1 0 0 0 0 0 0 Œmax�u1.g�

1 /

0 0 1 1 1 0 0 0 Œmax�u2.g
�

2 /

0 0 0 0 0 1 1 1 Œmax�u3.g
�

3 /

Table 9.4 Post-optimality analysis and final solution

w11 w12 w21 w22 w23 w31 w32 w33
Œmax�u1.g

�

1 / 0:7625 0:175 0 0 0:0375 0:025 0 0

Œmax�u2.g�

2 / 0:05 0 0 0:05 0:9 0 0 0

Œmax�u3.g
�

3 / 0:3562 0:175 0 0 0:0375 0:025 0 0:4063

Average 0:3896 0:1167 0 0:0167 0:3250 0:0167 0 0:1354

Table 9.5 Marginal value
functions (final solution)

Price Time Comfort

u1.30/ D 0:000 u2.40/ D 0:000 u3.0/ D 0:000

u1.16/ D 0:390 u2.30/ D 0:000 u3.C/ D 0:017

u1.2/ D 0:506 u2.20/ D 0:017 u3.CC/ D 0:017

u2.10/ D 0:342 u3.C C C/ D 0:152

The solutions obtained during post-optimality analysis are presented in Table 9.4.
The average of these three solutions is also calculated in the last row of Table 9.4.
This centroid is taken as a unique utility function, provided that it is considered as a
more representative solution of this particular problem.

This final solution corresponds to the marginal value functions presented in
Table 9.5. Also, the utilities for each alternative are calculated as follows:

uŒg.RER/� D 0:856
uŒg.METRO1/� D 0:523
uŒg.METRO2/� D 0:523
uŒg.BUS/� D 0:473
uŒg.TAXI/� D 0:152

where it is obvious that these values are consistent with the DM’s weak order.
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Fig. 9.7 Normalized marginal value functions

These marginal utilities may be normalized by dividing every value ui.g
j
i/ by

ui.g�
i /. In this case the additive utility can be written as:

u.g/ D 0:506u1.g1/C 0:342u2.g2/C 0:152u3.g3/

where the normalized marginal value functions are presented in Fig. 9.7.

9.3 Variants of the UTA Method

9.3.1 Alternative Optimality Criteria

Several variants of the UTA method have been developed, incorporating different
forms of global preference or different forms of optimality criteria used in the linear
programming formulation.

An extension of the UTA methods, where uŒg.a/� is inferred from pairwise
comparisons is proposed by Jacquet-Lagrèze and Siskos [56]. This subjective
preference obtained by pairwise judgments is most often not transitive, and thus,
the modified model may be written as in the following LP:
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ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

Œmin�F D
X

.a;b/Wa
b

�abzab C
X

.a;b/Wa	b

�abzba

subject to
nX

iD1
fuiŒgi.a/�� uiŒgi.b/�g C zab 	 0 if a 
 b

nX

iD1
fuiŒgi.a/�� uiŒgi.b/�g C zab � zba D 0 if a � b .) b � a/

ui.g
jC1
i / � ui.g

j
i/ 	 si 8i; j

nX

iD1
ui.g

�
i / D 1

ui.gi�/ D 0; ui.g
j
i/ 	 0; 8i; j

zab 	 0 8.a; b/ 2 R

(9.25)

�ab being a non negative weight reflecting a degree of confidence in the judgment
between a and b.

An alternative optimality criterion would be to minimize the number of violated
pairs of an order R provided by the DM in ranking R0 given by the model, which
is equivalent to maximize Kendall’s � between the two rankings. This extension is
given by the mixed integer LP (9.26), where �ab D 0 if uŒg.a/� � uŒg.b/� 	 ı for a
pair .a; b/ 2 R and the judgment is respected, otherwise �ab D 1 and the judgment
is violated. Thus, the objective function in this LP represents the number of violated
pairs in the overall preference aggregated by u.g/.

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

Œmin�F D
X

.a;b/2R

�ab , Œmax��.R;R0/

subject to
nX

iD1
fuiŒgi.a/�� uiŒgi.b/�g CM � �ab 	 ı 8.a; b/ 2 R

ui.g
jC1
i /� ui.g

j
i/ 	 si 8i; j

nX

iD1
ui.g

�
i / D 1

ui.gi�/ D 0; ui.g
j
i/ 	 0 8i; j

�˛b D 0 or 1 8.a; b/ 2 R

(9.26)

where M is a large number. Beuthe and Scannella [11] propose to handle separately
the preference and indifference judgments, and modify the previous LP using the
constraints:
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8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

nX

iD1
fuiŒgi.a/� � uiŒgi.b/�g CM � �ab 	 ı if a 
 b

nX

iD1
fuiŒgi.a/�� uiŒgi.b/�g CM � �ab 	 0

nX

iD1
fuiŒgi.a/�� uiŒgi.b/�g CM � �ba 	 0

9
>>>>=

>>>>;

if a � b

(9.27)

The assumption of monotonicity of preferences, in the context of separable
value functions, means that the marginal values are monotonic functions of the
criteria. This assumption, although widely used, is sometimes not applicable to real-
world situations. One way to deal with non-monotonic preferences is to divide the
range of the criteria into intervals, so that the preferences are monotonic in each
interval, and then treat each interval separately [67]. In the same spirit, Despotis and
Zopounidis [22] present a variation of the UTASTAR method for the assessment of
non-monotonic marginal value functions. In this model, the range if each criterion
is divided into two intervals (see also Fig. 9.8):

�
G1

i D fgi� D g1i ; g
2
i ; : : : ; g

pi
i D dig

G2
i D fdi D gpi

i ; g
piC1

i ; : : : ; gpiCqi
i D g�

i g
(9.28)

where di is the most desirable value of gi, and the parameters pi and qi are
determined according to the dispersion of the input data; of course it holds that
piCqi D ˛i. In this approach, the main modification concerns the assessment of the
decision variables wij of the LP (9.21). Hence, formula (9.19) becomes:

ui.g
j
i/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

j�1X

tD1
wit if 1 < j � pi

pi�1X

tD1
wit �

j�1X

tDpi

wit if pi < j � ˛i

(9.29)

without considering the conditions ui.g1i / D 0.
Another extension of the UTA methods refers to the intensity of the DM’s

preferences, similar to the context proposed in [143]. In this case, a series of
constraints may be added during the LP formulation. For example, if the preference
of alternative a over alternative b is stronger than the preference of b over c, then
the following condition may be written:

Œu0Œg.a/�� u0Œg.b/�� � Œu0Œg.b/� � u0Œg.c/�� 	 � (9.30)
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Fig. 9.8 A non-monotonic partial utility function [22]

where � > 0 is a measure of preference intensity and u0.g/ is given by formula (9.8).
Thus, using formula (9.11), the following constraint should be added in LP (9.14):

�.a; b/��.b; c/ 	 � (9.31)

In general, if the DM wishes to expand these preferences to the whole set of
alternatives, a minimum number of m � 2 constraints of type (9.34) is required.

Despotis and Zopounidis [22] consider the case where the DM ranks the
alternatives using an explicit overall index I. Thus, formula (9.12) may be replaced
by the following condition:

�.ak; akC1/ D Ik � IkC1 8k D 1; 2; : : : ;m � 1 (9.32)

Besides the succession of the alternatives in the preference ranking, these
constraints state that the difference of global value of any successive alternatives
in the ranking should be consistent with the difference of their evaluation on the
ratio scale.

In the same context, Oral and Kettani [103] propose the optimization of
lexicographic criteria without discretisation of criteria scales Gi, where a ratio scale
is used in order to express intensity of preferences.

Other variants of the UTA method concerning different forms of global prefer-
ence are mainly focused on:

– additional properties of the assessed value functions, like concavity [22];
– construction of fuzzy outranking relations based on multiple value functions

provided by UTA’s post-optimality analysis [117].

The dimensions of the aforementioned UTA models affect the computational
complexity of the formulated LPs. In most cases it is preferable to solve the dual
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Table 9.6 LP size of UTA models

LP model Constraints Variables

LP (9.14) m C
nX

iD1

.˛i � 1/ m C
nX

iD1

.˛i � 1/

LP (9.21) m 2m C
nX

iD1

.˛i � 1/

LP (9.25) 1C Œm.m � 1/=2�C
nX

iD1

.˛i � 1/ jPj C jIj C
nX

iD1

.˛i � 1/

LP (9.26) 1C Œm.m � 1/=2�C
nX

iD1

.˛i � 1/ Œm.m � 1/=2� C
nX

iD1

.˛i � 1/

LP due to the structure of these LPs [56]. Table 9.6 summarizes the size of all
LPs presented in the previous sections, where jPj and jIj denote the number of
preference and indifference relations respectively, considering all possible pairwise
comparisons in R. Also, it should be noted that LP (9.26) has m.m � 1/=2 binary
variables.

9.3.2 Meta-UTA Techniques

Other techniques, named meta-UTA, aimed at the improvement of the value function
with respect to near optimality analysis or to its exploitation for decision support.

Despotis et al. [23] propose to minimize the dispersion of errors (Tchebycheff
criterion) within the UTASTAR’s step 4 (see Sect. 9.2.3). In case of a strictly
positive error z�, the aim is to investigate the existence of near optimal solutions
of the LP (9.21) which give rankings R0 such that �.R0;R/ > �.R�;R/, with R�
being the ranking corresponding to the optimal value functions. The experience
with the model [21] confirms that apart from the total error z�, it is also the
dispersion of the individual errors that is crucial for �.R�;R/. Therefore, in the
proposed post-optimality analysis, the difference between the maximum .
max/ and
the minimum error is minimized. As far as the individual errors are non-negative,
this requirement can be satisfied by minimizing the maximum individual error (the
L1 norm) according to the following LP:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

Œmin�
max

subject to
all the constraints of LP (9.21)

mX

kD1
Œ
C.ak/C 
�.ak/� � z� C "


max � 
C.ak/ 	 0

max � 
�.ak/ 	 0

�

8k


max 	 0

(9.33)
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With the incorporation of the model (9.33) in UTASTAR, the value function
assessment process becomes a lexicographic optimization process. That is, the final
solution is obtained by minimizing successively the L1 and the L1 norms.

Another approach concerning meta-UTA techniques refers to the UTAMP
models. Beuthe and Scannella [9, 11] note that the values given to parameters s
and ı in the UTA and UTASTAR methods, respectively, influence the results as well
as the predictive quality of the models. Hence, in the framework of the research by
Srinivasan and Shocker [143], they look for optimal values of s and/or ı in the case
of positive errors .z� > 0/, as well as when UTA gives a sum of error equal to zero
.z� D 0/.

In the post-optimality analysis step of UTASTAR (see Sect. 9.2.3), UTAMP1
model maximizes ı, which is the minimum difference between the global value of
two consecutive reference actions. The name of the model denotes that, on the basis
of UTA, maximizing ı leads to better identification for the relations of preference
between actions.

Beuthe and Scannella [9] have also proposed to maximize the sum .ı C s/ in
order to stress not only the differences of utilities between actions, but also the
differences between values at successive bounds. This more general approach was
named UTAMP2. Note that s corresponds to the minimum of marginal value step
wij in the UTASTAR algorithm. Although the simple addition of these parameters
is legitimate since both of them are defined in the same value units, Beuthe and
Scannella [11] note that a weighted sum formula may also be considered.

The UTAMP models, as well as the UTASTAR method, are based on the
idea of centrality, although these approaches use a different interpretation of this
notion. Bous et al. [13] propose an alternative method where the final solution
is obtained by using an optimality criterion that directly implements the idea of
centrality. They propose the ACUTA method, which is based on the computation
of the analytic center of a polyhedron. In this approach, the product of the slack
variables of constraints (9.12)–(9.13), or equivalently the sum of their logarithms
is maximized. This non-linear objective function guarantees the uniqueness of the
provided solution.

9.3.3 Stochastic UTA Method

Within the framework of multicriteria decision-aid under uncertainty, Siskos [118]
developed a specific version of UTA (Stochastic UTA), in which the aggregation
model to infer from a reference ranking is an additive utility function of the form:

u.da/ D
nX

iD1

˛iX

jD1
da

i .g
j
i/ui.g

j
i/ (9.34)

subject to normalization constraints (9.7), where da
i is the distributional evaluation

of action a on the i-th criterion, da
i .g

j
i/ is the probability that the performance of
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Fig. 9.9 Distributional evaluation and marginal value function

action a on the i-th criterion is gj
i, ui.g

j
i/ is the marginal value of the performance gj

i,
da is the vector of distributional evaluations of action a, and u.da/and is the global
utility of action a (see also Fig. 9.9).

This global utility is of the von Neumann-Morgenstern form [66], in the case of
discrete gi, where:

˛iX

jD1
da

i .g
j
i/ D 1 (9.35)

Of course, the additive utility function (9.34) has the same properties as the value
function:

�
u.da/ > u.db/, a 
 b (preference)
u.da/ D u.db/, a � b (indifference)

(9.36)

Similarly to the cases of UTA and UTASTAR described in Sects. 9.2.2–9.2.3,
the stochastic UTA method disaggregates a ranking of reference actions [122]. The
algorithmic procedure could be expressed in the following way:

Step 1: Express the global expected utilities of reference actions u.d˛k/, k D
1; 2; : : : ;m, in terms of variables:

wij D ui.g
jC1
i / � ui.g

j
i/ 	 0 (9.37)

Step 2: Introduce two error functions 
C and 
� by writing the following expres-
sions for each pair of consecutive actions in the ranking:
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�.ak; akC1/ Du.dak/ � 
C.ak/C 
�.ak/

� u.dakC1 /C 
C.akC1/ � 
�.akC1/
(9.38)

Step 3: Solve the LP (9.21) by using formulae (9.37) and (9.38).
Step 4: Test the existence of multiple or near optimal solutions.

Of course, the ideas employed in all variants of the UTA method are also
applicable in the same way in the case of the stochastic UTA.

9.3.4 UTA-Type Sorting Methods

The extension of the UTA method in the case of a discriminant analysis model was
firstly discussed by Jacquet-Lagrèze and Siskos [56]. The aim is to infer u from
assignment examples in the context of problem statement ˇ [108]. In the presence
of two classes, if the model is without errors, the following inequalities must hold:

�
a 2 A1, uŒg.a/� 	 u0
a 2 A2, uŒg.a/� < u0

(9.39)

with u0 being the level of acceptance/rejection, which must be found in order to
distinguish the set of accepted actions called A1 and the set of rejected actions
called A2.

Introducing the error variables 
.a/, a 2 AR, the objective is to minimize the
sum of deviations from the threshold u0 for the ill classified actions (see Fig. 9.10).
Hence, u.g/ can be estimated by means of the LP:
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[min]F D
X

a2AR


.a/

subject to
nX

iD1
uiŒgi.a/�� u0 C 
.a/ 	 0 8 a 2 A1

nX

iD1
uiŒgi.a/�� u0 � 
.a/ � 0 8 a 2 A2

ui.g
jC1
i /� ui.g

j
i/ 	 si 8i and j

nX

iD1
ui.g

�
i / D 1

ui.gi�/ D 0; u0 	 0; ui.g
j
i/ 	 0; 
.a/ 	 0 8 a 2 AR;8 i and j

(9.40)

In the general case, the DM’s evaluation is expressed in terms of a classification
of the reference alternatives into homogenous ordinal groups A1 
 A2 
 : : : 
 Aq

(i.e. group A1 includes the most preferred alternatives, whereas group Aq includes
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Fig. 9.10 Distribution of the actions A1 and A2 on u.g/ [56]

the least preferred ones). Within this context, the assessed additive value model
will be consistent with the DM’s global judgment, if the following conditions are
satisfied:

8
<

:

uŒg.a/� 	 u1 8 a 2 A1
ul � uŒg.a/� < ul�1 8 a 2 Al .l D 2; 3; : : : ; q � 1/
uŒg.a/� < uq�1 8 a 2 Aq

(9.41)

where u1 > u2 > : : : > uq�1 are thresholds defined in the global value scale Œ0; 1�
to discriminate the groups, and ul is the lower bound of group Al.

This approach is named UTADIS method (UTilités Additives DIScriminantes)
and is presented by Devaud et al. [24] (see also [28, 53, 152, 158]). Similarly
to the UTASTAR method, two error variables are employed in the UTADIS
method to measure the differences between the model’s results and the predefined
classification of the reference alternatives. The additive value model is developed
to minimize these errors using a linear programming formulation of type (9.40). In
this case, the two types of errors are defined as follows:

1. 
C
k D maxf0; ul � uŒg.ak/�g 8ak 2 Al .l D 1; 2; : : : ; q � 1/ represents the error

associated with the violation of the lower bound ul of a group Al by an alternative
ak 2 Al,

2. 
�
k D maxf0; uŒg.ak/ � ul�1�g 8ak 2 Al.l D 2; 3; : : : ; q/ represents the

error associated with the violation of the upper bound ul�1 of a group Al by
an alternative ak 2 Al.

Recently, several new variants of the original UTADIS method have been
proposed (UTADIS I, II, III) to consider different optimality criteria during the
development of the additive value classification model [28, 152, 158]. The UTADIS
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I method considers both the minimization of the classification errors, as well as the
maximization of the distances of the correctly classified alternatives from the value
thresholds. The objective in the UTADIS II method is to minimize the number of
misclassified alternatives, whereas UTADIS III combines the minimization of the
misclassified alternatives with the maximization of the distances of the correctly
classified alternatives from the value thresholds.

In the same context, Zopounidis and Doumpos [155] proposed the MHDIS
method (Multi-group Hierarchical DIScrimination) extending the preference
disaggregation analysis framework of the UTADIS method in complex sort-
ing/classification problems involving multiple-groups. MHDIS addresses sorting
problems through a hierarchical (sequential) procedure starting by discriminating
group A1 from all the other groups fA2;A3; : : : ;Aqg, and then proceeding to the
discrimination between the alternatives belonging to the other groups. At each stage
of this sequential/hierarchical process, two additive value functions are developed
for the classification of the alternatives. Assuming that the classification of the
alternatives should be made into q ordered classes, A1 
 A2 
 � � � 
 Aq; 2.q � 1/
additive value functions are developed. These value functions have the following
additive form:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

ul.g/ D
nX

iD1
uli.gi/

u	l.g/ D
nX

iD1
u	li.gi/

(9.42)

where ul measures the value for the DM of a decision to assign an alternative into
group Al, whereas the u	l corresponds to the classification into the set of groups
A	l D fAlC1;AlC2; : : : ;Aqg and both functions are normalized in the interval Œ0; 1�.

The rules used to perform the classification of the alternatives have the following
form:

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

if u1.ak/ > u	1.ak/ then ak 2 A1
else if u2.ak/ > u	2.ak/ then ak 2 A2
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

else if uq�1.ak/ > u	.q�1/.ak/ then ak 2 Aq�1
else ak 2 Aq

(9.43)

The development of all value functions in the MHDIS method is performed
through the solution of three mathematical programming problems at each stage l of
the discrimination process l D 1; 2; : : : ; q� 1. Initially, an LP is solved to minimize
the magnitude of the classification errors (in distance terms similarly to the UTADIS
approach). Then, a mixed-integer LP is solved to minimize the total number of mis-
classifications among the misclassifications that occur after the solution of the initial
LP, while retaining the correct classifications. Finally, a second LP is solved to maxi-
mize the clarity of the classification obtained from the solutions of the previous LPs.
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9.3.5 Other Variants and Extensions

In all previous approaches, the value function was built in a one-step process by
formulating an LP that requires only the DM’s global preferences. In some cases,
however, it would be more appropriate to build such a function from a two-step
questioning process, by dissociating the construction of the marginal value functions
and the assessment of their respective scaling constants.

In the first step, the various marginal value functions are built outside the UTA
algorithm. These functions may be facilitated, for instance, by proposing specific
parametrical marginal value functions to the DM and asking him/her to choose
the one that matches his/her preferences on that specific criterion. Those functions
should be normalized according to (9.4) conditions. Generally, the approaches
applied in this construction step are:

(a) techniques based on MAUT theory [67, 70],
(b) the MACBETH method [3–5],
(c) the Quasi-UTA method [12], that uses “recursive exponential” marginal value

functions, and
(d) the MIIDAS system (see Sect. 9.4) that combines artificial intelligence and

visual procedures in order to extract the DM’s preferences [135].

In the second step, after the assessment of these value functions, the DM is asked
to give a global ranking of alternatives in a similar way as in the basic UTA method.
From this information, the problem may be formulated via an LP, in order to assess
only the weighting factors pi of the criteria (scaling constants of criteria). Through
this approach, initially named UTA II model [116], formula (9.11) becomes:

�.ak; akC1/ D
nX

iD1
pifuiŒgi.ak/� � uiŒgi.akC1/�g

�
C.ak/C 
�.ak/C 
C.akC1/� 
�.akC1/
(9.44)

and the LP (9.14) is modified as follows:
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(9.45)
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The main principles of the UTA methods are also applicable in the specific field
of multiobjective optimization, mainly in the field of linear programming with mul-
tiple objective functions. For instance, in the classical methods of Geoffrion et al.
[35] and Zionts and Wallenius [150], the weights of the linear combinations of the
objectives are inferred locally from trade-offs or pairwise judgments given by the
DM at each iteration of the methods. Thus, these methods exploit in a direct way
the DM’s value functions and seek the best compromise solution through successive
maximization of these assessed value functions.

Stewart [145] proposed a procedure of pruning the decision alternatives using
the UTA method. In this approach a sequence of alternatives is presented to the
DM, who places each new presented alternative in rank order relative to the earlier
alternatives evaluated. This ranking of elements in a subset of the decision space is
used to eliminate other alternatives from further consideration. In the same context,
Jacquet-Lagrèze et al. [58] developed a disaggregation method, similar to UTA,
to assess a whole value function of multiple objectives for linear programming
systems. This methodology enables to find compromise solutions and is mainly
based on the following steps:

1. Generation of a limited subset of feasible efficient solutions as representative as
possible of the efficient set.

2. Assessment of an additive value function using PREFCALC system (see
Sect. 9.4).

3. Optimization of the additive value function on the original set of feasible
alternatives.

Finally, Siskos and Despotis [123], in the context of UTA-based approaches
in multiobjective optimization problems, proposed the ADELAIS method. This
approach refers to an interactive method that uses UTA iteratively, in order to
optimize an additive value function within the feasible region defined on the basis
of the satisfaction levels and determined in each iteration.

9.3.6 Other Disaggregation Methods

The main principles of the aggregation-disaggregation approach may be combined
with outranking relation methods. The most important efforts concern the problem
of determining the values of several parameters when using these methods. The set
of these parameters is used to construct a preference model with which the DM
accepts as a working hypothesis in the decision-aid study. In several real-world
applications the assumption that the DM is able to give explicitly the values of each
parameter is not realistic.

In this framework, the ELECCALC system has been developed [69], which
estimates indirectly the parameters of the ELECTRE II method. The process is
based on the DM’s responses to questions of the system regarding his/her global
preferences.
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Furthermore, concerning problem statement ˇ, several approaches consist in
inferring the parameters of ELECTRE TRI through holistic information on DM’s
judgments. These approaches aim at substituting assignment examples for direct
elicitation of the model parameters. Usually, the values of these parameters are
inferred through a regression-type analysis on assignment examples.

Mousseau and Słowiński [99] propose an interactive aggregation-disaggregation
approach that infers ELECTRE TRI parameters simultaneously starting from
assignment examples. In this approach, the determination of the parameters’ values
(except the veto thresholds) that best restore the assignment examples is formulated
through a non-linear optimization program.

Several efforts have tried to overcome the limitations of the aforementioned
approach (computational difficulty, estimation of the veto threshold):

(a) Mousseau et al. [100, 101] consider the subproblem of the determination of the
weights only, assuming that the thresholds and category limits have been fixed.
This leads to formulate an LP (rather than non-linear in the global inference
model). Through experimental analysis, they show that this approach is able to
infer weights that restore in a stable way the assignment examples and it is also
able to identify possible inconsistencies in these assignment examples.

(b) Doumpos and Zopounidis [29] use linear programming formulations in order
to estimate all the parameters of the outranking relation classification model.
However, in this approach, the parameters are estimated sequentially rather than
through a global inference process. Thus, the proposed methodology does not
specify the optimal parameters of the outranking relation (i.e. the ones that lead
to a global minimum of the classification error). The results of this approach
(“reasonable” specification of the parameters) serve rather as a basis for a
thorough decision-aid process.

The problem of robustness and sensitivity analysis, through the extension of the
previous research efforts is discussed in [26]. They consider the case where the
DM can not provide exact values for the parameters of the ELECTRE TRI method,
due to uncertain, imprecise or inaccurately determined information, as well as from
lack of consensus among them. The proposed methodology combines the following
approaches:

1. The first approach infers the value of parameters from assignment examples
provided by the DM, as an elicitation aid.

2. The second approach considers a set of constraints on the parameter values
reflecting the imprecise information that the DM is able to provide.

In the context of UTA-based ordinal regression analysis [119], the MUSA
method has been developed in order to measure and analyze customer satisfaction
[42, 134]. The method is used for the assessment of a set of marginal satisfaction
functions in such a way that the global satisfaction criterion becomes as consistent
as possible with customer’s judgments. Thus, the main objective of the method is
the aggregation of individual judgments into a collective value function.
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The MUSA method assesses global and partial satisfaction functions Y� and X�
i

respectively, given customers’ ordinal judgments Y and Xi (for the i-th criterion).
The ordinal regression analysis equation has the following form:

OY� D
nX

iD1
biX

�
i � 
C C 
� (9.46)

where OY� is the estimation of the global value function Y�, n is the number of
criteria, bi is a positive weight of the i-th criterion, 
C and 
� are the overestimation
and the underestimation errors, respectively, and the value functions Y� and X�

i are
normalized in the interval [0,100]. In the MUSA method the notation of ordinal
regression analysis is adopted, where a criterion gi is considered as a monotone
variable Xi and a value function is denoted as X�

i .
Similarly to the UTASTAR algorithm, the following transformation equations

are used:

�
zm D y�mC1 � y�m for m D 1; 2; : : : ; ˛�1
wik D bix

�kC1
i for k D 1; 2; : : : ; ˛i�1 and i D 1; 2; : : : ; n (9.47)

where y�m is the value of the ym satisfaction level, x�k
i is the value of the x�

i
satisfaction level, and ˛ and ˛i are the number of global and partial satisfaction
levels.

According to the previous definitions and assumptions, the MUSA estimation
model can be written in an LP formulation, as follows:
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(9.48)

where M is the size of the customer sample, and xj
i and yj are the j-th level on which

variables Xi and Y are estimated (i.e. global and partial satisfaction judgments of the
j-th customer). The MUSA method includes also a post-optimality analysis stage,
similarly to step 4 of the UTASTAR algorithm.
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An analytical development of the method and the provided results is given in
[42], while the presentation of the MUSA DSS can be found in [43, 46].

The problem of building non-additive utility functions may also be considered in
the context of aggregation-disaggregation approach. A characteristic case refers to
positive interaction (synergy) or negative interaction among criteria (redundancy).
Two or more criteria are synergic (redundant) when their joint weight is more (less)
than the sum of the weights given to the criteria considered singularly.

In order to represent interaction among criteria, some specific formulations of
the utility functions expressed in terms of fuzzy integrals have been proposed [38,
81, 102]. In this context, Angilella et al. [2] propose a methodology that allows
the inclusion of additional information such as an interaction among criteria. The
method aims at searching a utility function representing the DM’s preferences, while
the resulting functional form is a specific fuzzy integral (Choquet integral). As a
result, the obtained weights may be interpreted as the “importance” of coalitions of
criteria, exploiting the potential interaction between criteria. The method can also
provide the marginal utility functions relative to each one of the considered criteria,
evaluated on a common scale, as a consequence of the implemented methodology.

Hurson and Siskos [49] present a synergy of three complementary techniques
to assess additive models on the whole criteria space. Their research includes a
revised MACBETH technique, the standard MAUT trade-off analysis, and UTA-
based methods for the assessment of both the marginal value functions, which
are piecewise linear, and the weighting factors. The approach also uses a set of
robustness measures and rules associated with MACBETH and UTA, in order to
manage multiple LP solutions and extract robust conclusions from them. Several
combinations of techniques are proposed which can facilitate the construction of
the additive representation of DM’s preferences. So, according to the properties of
the DM’s preferences and to the precise technical aspects of the decision-making
problem, the analyst can choose the adequate combination of methods. Very recently
Roy and Słowiński [110] presented a general framework to guide analysts and DMs
in choosing the “right method”.

The general scheme of the disaggregation philosophy is also employed in other
approaches, including rough sets [27, 105, 140, 149], machine learning [106], and
neural networks [76, 144]. All these approaches are used to infer some form of
decision model (a set of decision rules or a network) from given decision results
involving assignment examples, ordinal or measurable judgments.

9.4 Applications and UTA-Based DSS

The methods presented in the previous sections adopt the aggregation-
disaggregation approach. This approach constitutes a basis for the interaction
between the analyst and the DM, which includes:
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– the consistency between the assessed preference model and the a priori prefer-
ences of the DM,

– the assessed values (values, weights, utilities, . . . ), and
– the overall evaluation of potential actions (extrapolation output).

A general interaction scheme for this decision support process is given in
Fig. 9.11.

Several decision support systems (DSSs), based on the UTA model and its
variants, have been developed on the basis of disaggregation methods. These
systems include:

(a) The PREFCALC system [52] is a DSS for interactive assessment of preferences
using holistic judgments. The interactive process includes the classical aggre-
gation phase where the DM is asked to estimate directly the parameters of the
model (i.e. weights, trade-offs, etc.), as well as the disaggregation phase where
the DM is asked to express his/her holistic judgments (i.e. global preference
order on a subset of the alternatives) enabling an indirect estimation of the
parameters of the model.

(b) MINORA (Multicriteria Interactive Ordinal Regression Analysis) is a multi-
criteria interactive DSS with a wide spectrum of supported decision making
situations [130, 131]. The core of the system is based on the UTASTAR method
and it uses special interaction techniques in order to guide the DM to reach a
consistent preference system.

(c) MIIDAS (Multicriteria Interactive Intelligence Decision Aiding System) is an
interactive DSS that implements the extended UTA II method [135]. In the first
step of the decision-aid process, the system assess the DM’s value functions,
while in the next step, the system estimates the DM’s preference model from
his/her global preferences on a reference set of alternative actions. The system
uses Artificial Intelligence and Visual techniques in order to improve the user
interface and the interactive process with the DM.

(d) The UTA PLUS software [71] is an implementation of the UTA method,
which allows the user to modify interactively the marginal value functions
within limits set from a sensitivity analysis of the formulated ordinal regression
problem. During all these modifications, a friendly graphical interface helps the
DM to reach an accepted preference model.

(e) MUSTARD (Multicriteria Utility-based Stochastic Aid for Ranking Decisions)
is an interactive DSS developed by Beuthe and Scannella [10], which incorpo-
rates several variants of the UTA method. The system provides several visual
tools in order to structure the DM’s preferences to a specific problem (see also
[121]). The interactive process with the DM contains the following main steps:
problem structuring, preference questionnaire, optimization solver-parameter
computing, final results (full rankings and graphs).

(f) RUTA is a new UTA-based DSS proposed by Kadzinski et al. [64], which
allows DMs to additionally exteriorize new types of preference information in
terms of rank related statements (e.g. action a should be ranked in top 3, action
b should be placed in bottom 5, etc.).
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Fig. 9.11 Simplified decision support process based on disaggregation approach [57]
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UTA methods have also been used in several works for conflict resolution in
multi-actor decision situations [14, 54, 88]. In the same context, the MEDIATOR
system was developed [59, 114, 115], which is a negotiation support system based
on Evolutionary Systems Design (ESD) and database-centered implementation.
ESD visualizes negotiations as a collective process of searching for designing
a mutually acceptable solution. Participants are seen as playing a dynamical
difference game in which a coalition of players is formed, if it can achieve a set
of agreed upon goals. In MEDIATOR, negotiations are supported by consensus
seeking through exchange of information and, where consensus is incomplete, by
compromise. It assists in consensus seeking by aiding the players to build a group
joint problem representation of the negotiations-in effect, joint mappings from
control space to goal space (and through marginal utility functions) to utility space.
Individual marginal utility functions are estimated by applying the UTA method.
Players can arrive to a common coalition utility function through exchange of
information and negotiation until players’ marginal utility functions are identical.
In addition to exchanging information and negotiating to expand targets, players
can consider the use of axioms to contract the feasible region.

The UTA methods may be extended in the case of multiple DMs, taking into
account different input information (criteria values) and preferences for a group of
DMs. Two alternative approaches may be found in the literature [125]:

1. Application of the UTA/UTASTAR methods in order to optimally infer marginal
value functions of individual DMs; the approach enables each DM to analyze
his/her behavior according to the general framework of preference disaggrega-
tion.

2. Application of the UTA/UTASTAR methods in order to assess a set of collective
additive value functions; these value functions are as consistent as possible with
the preferences of the whole set of DMs, and thus, they are able to aggregate
individual value systems.

In the context of the first approach, Matsatsinis et al. [96] propose a general method-
ology for collective decision-making combining different MCDA approaches and
incorporating several criteria in order to measure the DMs’ satisfaction over the
aggregated rank-order of alternatives. Also, Matsatsinis and Delias [85] developed
a general multicriteria protocol for multi-agent negotiations based on the UTA II
method.

On the other hand, Siskos and Grigoroudis [125] propose the modification of the
UTASTAR algorithm in order to infer a collective preference system for a group of
DMs.

In the area of intelligent multicriteria DSSs, the MARKEX system has been
proposed by Siskos and Matsatsinis [126] and Matsatsinis and Siskos [89, 91].
The system includes the UTASTAR algorithm and is used for the new product
development process. It acts as a consultant for marketers, providing visual support
to enhance understanding and to overcome lack of expertise. The data bases of
the system are the results of consumer surveys, as well as financial information
of the enterprises involved in the decision-making process. The system’s model
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base encompasses statistical analysis, preference analysis, and brand choice models.
Figure 9.12 presents a general methodological flowchart of the system. Also,
MARKEX incorporates partial knowledge bases to support DMs in different stages
of the product development process. The system incorporates three partial expert
systems, functioning independently of each other. These expert systems use the
following knowledge bases for the:

– selection of data analysis method,
– selection of brand choice model, and
– evaluation of the financial status of enterprises.

Furthermore, an intelligent web-based DSS, named DIMITRA, has been devel-
oped by Matsatsinis and Siskos [90]. The system is a consumer survey-based DSS,
focusing on the decision-aid process for agricultural product development. Besides
the implementation of the UTASTAR method in the preference analysis module, the
DIMITRA system comprises several statistical analysis tools and consumer choice
models. The system provides visual support to the DM (agricultural cooperatives,
agribusiness firms, etc.) for several complex tasks, such as:

– evaluation of current and potential market shares,
– determination of the appropriate communication and penetration strategies,

based on consumer attitudes and beliefs,
– adjustment of the production according to product’s demand, and
– detection of the most promising markets.

In the same context, new research efforts have combined UTA-based DSSs with
intelligent agents’ technology. In general, the proposed methodologies engage the
UTA models in a multi-agent architecture in order to assess the DM’s preference
system. These research efforts include mainly the following:

(a) An intelligent agent-based DSS, focusing on the determination of product
penetration strategies has been developed [85, 93–95]. The system implements
an original consumer-based methodology, in which intelligent agents operate
in a functional and a structural level, simultaneously. Task, information and
interface agents are included in the functional level in order to coordinate,
collect necessary information and communicate with the DM. Likewise, the
structural level includes elementary agents based on a generic reusable archi-
tecture and complex agents which aim to the development of a dynamical agent
organization in a recursive way.

(b) A multi-agent architecture is proposed by Manouselis and Matsatsinis [80] for
modeling electronic consumer’s behavior. The implementation of the system
refers to electronic marketplaces and incorporates a step-by-step methodology
for intelligent systems analysis and design, used in the particular decision-aid
process. The system develops consumer behavioral models for the purchasing
and negotiation process adopting additional operational research tools and
techniques. The presented application refers to the case of Internet radio.
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Fig. 9.12 Methodological flowchart of MARKEX [89]
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(c) The AgentAllocator system [84] implements the UTA II method in the task
allocation problem. These problems are very common to any multi-agent system
in the context of Artificial Intelligence. The system is an intelligent agent DSS,
which allows the DM to model his/her preferences in order to reach and employ
the optimal allocation plan.

The need to combine data and knowledge in order to solve complex and
ill-structured decision problems is a major concern in the modern marketing-
management science. Matsatsinis [83] has proposed a DSS that implements the
UTASTAR algorithm along with rule-induction data mining techniques. The main
aim of the system is to derive and apply a set of rules that relate the global and
the marginal value functions. A comparison between the original and the rule-
based global values is used in the validity and stability analysis of the proposed
methodology.

Furthermore, in the area of financial management, a variety of UTA-based DSSs
has been developed, including mainly the following systems:

(a) The FINEVA system [159] is a multicriteria knowledge-based DSS developed
for the assessment of corporate performance and viability. The system imple-
ments multivariate statistical techniques (e.g. principal components analysis),
expert systems technology [92], and the UTASTAR method to provide inte-
grated support in evaluating the corporate performance.

(b) The FINCLAS system [153] is a multicriteria DSS developed to study financial
decision-making problems in which a classification (sorting) of the alternatives
is required. The present form of the system is devoted to corporate credit risk
assessment, and it can be used to develop classification models to assign a set of
firms into predefined credit risk classes. The analysis performed by the system
is based on the family of the UTADIS methods.

(c) The INVESTOR system [156] is developed to study problems related to
portfolio selection and management. The system implements the UTADIS
method, as well as goal programming techniques to support portfolio managers
and investors in their daily practice.

(d) The PREFDIS system [157] is a multicriteria DSS developed to address classi-
fication problems. The system implements a series of preference disaggregation
analysis techniques, namely the family of the UTADIS methods, in order to
develop an additive utility function to be used for classification purposes.

(e) The INTELLIGENT INVESTOR system [111, 112] is an intelligent system
which aims to support investment decision-making. The system integrates
MCDA methods (UTASTAR algorithm) and artificial intelligence technologies
(expert system), incorporating several portfolio management tools (Fundamen-
tal Analysis, Technical Analysis, and Market Psychology).

Also, as presented in Sect. 9.3.5, Siskos and Despotis [123] have developed
the ADELAIS system, which is designed to decision-aid in multiobjective linear
programming (MOLP) problems.
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Table 9.7 Indicative applications of the UTA methods

Field Scope References

Financial Venture capital evaluation [129]

management Portfolio selection [50, 51, 160]

and management

Business failure prediction [151, 154]

Business financing [131, 153, 159]

Country risk assessment [18, 104, 161]

Marketing Marketing of new products [141]

Marketing of agricultural [6, 8, 89–91, 94, 97, 126, 137]

products

Consumer behavior [7, 74, 75, 80, 83, 87, 132, 133]

Customer satisfaction [44, 45, 47, 98, 113, 124, 136]

Sales strategy problems [107, 120]

Management Project evaluation [12, 53]

(general) Environmental management [25, 48, 122]

Job evaluation [37, 142]

Healthcare & healthcare [30, 78, 79]

management

E-government [36, 138, 139]

Recommender systems [19, 73]

Other [1, 20, 72, 82, 86]

Over the past two decades UTA-based methods have been applied in several
real-world decision-making problems from the fields of financial management,
marketing, environmental management, as well as human resources management, as
presented in Table 9.7. These applications have provided insight on the applicability
of preference disaggregation analysis in addressing real-world decision problems
and its efficiency.

Finally, the following real-world application, with emphasis on the synergy
between UTA methods and other MCDA approaches, may be found in the
literature:

(a) Hurson et al. [51] present a case study regarding the portfolio selection problem
and the evaluation of stocks in the Athens stock exchange. The assessment of
the additive value model is done by combining MACBETH on a single criterion
level and MAUT for the determination of inter-criteria parameters.

(b) Siskos et al. [138, 139] propose a multicriteria methodology for e-government
benchmarking in Europe. The proposed assessment procedure is supported
by the MIIDAS DSS to visually determine the marginal value functions and
elicit the set of admissible weights using the UTA II method. Finally, a set of
complementary robustness analysis techniques is utilized to handle both the
robustness of the evaluation model and the extreme ranking positions of the
alternatives (i.e. countries).
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(c) Demesouka et al. [20] present S-UTASTAR (spatial UTASTAR), a robust
ordinal regression DSS for land-use suitability analyses. The S-UTASTAR is
applied in a raster-based case study to identify appropriate municipal solid waste
landfill sites. Moreover, the Stochastic Multiobjective Acceptability Analysis
(SMAA) is applied, based on a probability distribution of the additive model
parameters, to indicate the frequency that an alternative get the best ranks, aiding
this way the decision making process.

(d) Doumpos et al. [30] present a UTADIS-based methodology for monitoring
the postoperative behavior of patients that have received treatment for atrial
fibrillation (AF). The model classifies the patients in seven categories according
to their relapse risk, on the basis of seven criteria related to the AF type and
pathology conditions, the treatment received by the patients, and their medical
history. A two-stage robust multicriteria model development procedure is used
to minimize the number and magnitude of the misclassifications.

(e) Lakiotaki and Matsatsinis [73] analyze movie user profiles as a result of a multi-
criteria recommendation methodology, applied to real user data, in order to
reveal any hidden aspect of user behavior that would eventually improve current
system’s performance.

(f) Delias et al. [19] propose a recommendation approach to match the customized
needs of an organization against the existing technologies (innovative products
or services). The system is able to create a profile based on the organization’s
needs and preferences. This profile is used to guide a recommendation process,
according to which, available technologies are evaluated against the profile and
proposed to the organization in a descending order.

(g) Krassadaki et al. [72] propose a methodological framework based on a multicri-
teria clustering approach that identifies different assessment behaviors, in order
to adopt the most common student assessment policy.

9.5 Concluding Remarks and Future Research

The UTA methods presented in this chapter belong to the family of ordinal
regression analysis models aiming to assess a value system as a model of the
preferences of the DM. This assessment is implemented through an aggregation-
disaggregation process. With this process the analyst is able to infer an analytical
model of preferences, which is as consistent as possible with the DM’ preferences.
The acceptance of such a preference model is accomplished through a repetitive
interaction between the model and the DM. This approach contributes towards an
alternative reasoning for decision-aid (see Fig. 9.2).

Future research regarding UTA methods aims to explore further the potentials
of the preference disaggregation philosophy within the context of multicriteria
decision-aid. Jacquet-Lagrèze and Siskos [57] propose that potential research
developments may be focused on:
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(a) the inference of more sophisticated aggregation models by disaggregation, and
(b) the experimental evaluation of disaggregation procedures.

Finally, it would be interesting to explore the relationship of aggregation and
disaggregation procedures in terms of similarities and/or dissimilarities regarding
the evaluation results obtained by both approaches [57]. This will enable the
identification of the reasons and the conditions under which aggregation and
disaggregation procedures will lead to different or the same results.
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63. Kadziński, M., Greco, S., Słowiński, R.: Selection of a representative value function in robust
multiple criteria ranking and choice. Eur. J. Oper. Res. 217(3), 541–553 (2012)
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Chapter 10
The Analytic Hierarchy and Analytic Network
Processes for the Measurement of Intangible
Criteria and for Decision-Making

Thomas L. Saaty

Abstract The Analytic Hierarchy Process (AHP) and its generalization to depen-
dence and feedback, the Analytic Network Process (ANP), are theories of relative
measurement of intangible criteria. With this approach to relative measurement, a
scale of priorities is derived from pairwise comparison measurements only after
the elements to be measured are known. The ability to do pairwise comparisons
is our biological heritage and we need it to cope with a world where everything
is relative and constantly changing. In traditional measurement one has a scale
that one applies to measure any element that comes along that has the property
the scale is for, and elements are measured one by one, not by comparing them
with each other. In the AHP paired comparisons are made with judgments using
numerical values taken from the AHP absolute fundamental scale of 1–9. A scale
of relative values is derived from all these paired comparisons and it also belongs
to an absolute scale that is invariant under the identity transformation like the
system of real numbers. The AHP/ANP is useful for making multicriteria decisions
involving benefits, opportunities, costs and risks. The ideas are developed in stages
and illustrated with examples of real life decisions. The subject is transparent and
despite some mathematics, it is easy to understand why it is done the way it is along
the lines discussed here.
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10.1 Introduction

The purpose of decision-making is to help people make decisions according to
their own understanding. They would then feel that they really made the decision
themselves justified completely according to their individual or group values,
beliefs, and convictions even as one tries to make them understand these better.
Because decision-making is the most frequent activity of all people all the time, the
techniques used today to help people make better decisions should probably remain
closer to the biology and psychology of people than to the techniques conceived
and circulated at a certain time and that are likely to become obsolete, as all
knowledge does, even though decisions go on and on forever. This suggests that
methods offered to help make better decisions should be closer to being descriptive
and considerably transparent. They should also be able to capture standards and
describe decisions made normatively. Natural science, like decision-making, is
mostly descriptive and predictive to help us cope intelligently with a complex world.

Not long ago, people believed that the human mind is an unreliable instrument
for performing measurement and that the only meaningful measurement is obtained
on a physical scale like the meter and the kilogram invented by clever people who
care about precision and objective truth. They did not think how the measurements
came to have meaning for people and that this meaning depends on people’s purpose
each time they obtain a reading on that scale. In the winter, ice may be a source of
discomfort but an ice drink in the summer can be a refreshing source of comfort.
A number has no meaning except that assigned to it by someone. We may all agree
on the numerical value of a reading on a physical scale, but not on what exactly that
number means to each of us in practical terms. We tend to parrot abstractions that
define a number but often forget that numbers are meant to serve some need that
is inevitably subjective, which is ultimately more important for our survival. Thus
it is our subjective values that are essential for interpreting the readings obtained
through measurement. This interpretation depends on what one has in mind at
the time and different people may interpret the same reading differently for the
same situation depending on their goal. The reading may be called objective, but
the interpretation is predominantly subjective. In this sense subjectivity is important,
because without it objectivity has no intrinsic meaning. If the mind of an expert can
produce measurement close to what we obtain through measuring instruments, then
it has greater power than instruments to deal with a complexity for which we have no
way to measure. What we have to do is examine the possibility and validity of this
assumption as critically as we can. It turns out that when we have knowledge and
experience, our brains are very good measuring instruments. That does not mean
that we should discard what we use in science that enhances our understanding,
but rather we should use it to support and strengthen what we do directly with our
minds.

The subject of this chapter is the Analytic Hierarchy Process (AHP), the original
theory of prioritization that derives relative scales of absolute numbers known
as priorities from judgments expressed numerically on an absolute fundamental
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scale. It is also about a more general approach to decisions that is a generalization
of hierarchies to networks with depndence and feedback, the Analytic Network
Process (ANP). Both the AHP and ANP are descriptive approaches to decision-
making. The AHP/ANP evolved out of my experience at the Arms Control and
Disarmament Agency (ACDA) in the Department of State during the Kennedy and
Johnson years. ACDA negotiated arms agreements with the Soviets in Geneva. I
was invited to join ACDA, I think because of work I had done for the military
using Operations Research mathematics. I published on it and wrote the first
book on mathematical methods of operations research. At ACDA I supervised a
team of foremost internationally known scientists, economists and game theorists
(including four people who later won the Nobel Prize in economics: Aumann,
Debreu, Harsanyi and Selten) who advised ACDA on arms tradeoffs, but we had
some insurmountable difficulties in making lucid and usable recommendations
to our highly intelligent and experienced negotiators who were guided by strong
intuition deriving from long practice.

The basic problem is that we need to quantify intangibles of which there is nearly
an infinite number and we can only do it by making comparison in relative terms.
Even if everything were measurable, we would still need to compare the different
types of measurements on the different scales and determine how important they are
to us to make tradeoffs among them and reach a final answer. If we use tangibles and
their measurements we would need to reduce them to a common relative frame of
reference and then weight and combine them along with intangibles. Combining
priorities of measurable quantities with those of non-measurable qualities needs
ratio or even the stronger absolute scales, because we can then multiply and add
the outcomes particularly when there is interdependence among all the elements
involved in a decision.

The AHP is a theory of relative measurement on absolute scales of both tangible
and intangible criteria based both on the judgment of knowledgeable and expert
people and on existing measurements and statistics needed to make a decision. How
to measure intangibles is the main concern of the mathematics of the AHP. The AHP
has been mostly applied to multi-objective, multi-criteria and multiparty decisions
because decision-making has this diversity. To make tradeoffs among the many
intangible objectives and criteria, the judgments that are usually made in qualitative
terms are expressed numerically. To do this, rather than simply assign a score out
of a person’s memory that is hard to justify, one must make reciprocal pairwise
comparisons in a carefully designed scientific way. In the end, we must fit our entire
world experience into our system of priorities if we are going to understand it. The
AHP is based on four axioms: (1) reciprocal judgments, (2) homogeneous elements,
(3) hierarchic or feedback dependent structure, and (4) rank order expectations. The
synthesis of the AHP combines multidimensional scales of measurement into a
single “unidimensional” scale of priorities. Decisions are determined by a single
number for the best outcome or by a vector of priorities that gives a proportionate
ordering of the different possible outcomes to which one can then allocate resources
in an optimal way subject to both tangible and intangible constraints. We can also
combine the judgments obtained from a group when several people are involved
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in a decision. It is known that with the reciprocal condition, the geometric mean
is a necessary condition for combining individual judgments and that, contrary to
the impossibility of combining individual judgments into a social welfare function
when ordinals are used subject to certain conditions, with absolute judgments it is
possible to construct with the AHP such a social welfare function that satisfies these
conditions [9].

It is not idiosyncratic for one to believe that making a decision is more complex
than just listing all the factors, good and bad, that one can think of and then
plunge into numerical manipulations that surface a best outcome according to some
plausible way of analysis. Nor is it less idiosyncratic to confine the analysis of
decisions to risk and use risk aversion as a way to justify how to make a good
choice. For every decision there are positive and negative factors to consider,
usually interpreted psychologically in the form of benefits (gains) and opportunities
(potential gains), and costs (losses) and risks (potential losses). How to evaluate
a decision according to these merits (demerits) and how to combine them into a
single overall answer is not easy to do and is something that leaders in business
and government do qualitatively with the help of advisors to satisfy the broad
goals that they serve. Multicriteria decision-making needs to provide meaningful
quantitative assistance on this important, complex, and inevitable concern with its
many intangibles.

10.2 Pairwise Comparisons; Inconsistency
and the Principal Eigenvector

The psychologist Arthur Blumenthal writes in his book The Process of Cognition,
Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1977, that there are two types
of judgment: “Comparative judgment which is the identification of some relation
between two stimuli both present to the observer, and absolute judgment which
involves the relation between a single stimulus and some information held in short
term memory about some former comparison stimuli or about some previously
experienced measurement scale using which the observer rates the single stimulus.”

Comparative or relative judgment is made on pairs of elements to ensure
accuracy. In paired comparisons, the smaller or lesser element is used as the unit,
and the larger or greater element is estimated as a multiple of that unit with respect
to the common property or criterion for which the comparisons are made. In this
sense, measurement with many pairwise comparisons is made more scientifically
than by assigning numbers more or less arbitrarily through guessing. What is really
the scale to which such numbers belong so they can be operated on arithmetically
in a legitimate way? For example, one cannot simply add numbers that belong to an
ordinal or an interval scale. Because our brains are limited in size and the firings
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of their neurons are limited in intensity, it is clear that there is a limit to their
ability to compare the very small with the very large. It is precisely for this reason
that pairwise comparisons are made on elements or alternatives that are close or
homogeneous and the more separated they are, the more need there is to put them
in different groups and link these groups with a common element from one group
to an adjacent group of slightly greater or slightly smaller elements. One can then
compare the elements in each homogeneous group and then combine them through
appropriate use of the measurement of the elements (pivots) that are common to
consecutive groups.

We learn from making paired comparisons in the AHP that if A is 5 times larger
in size than B and B is 3 times larger in size than C, then A is 15 times larger in size
than C and thus we say that A dominates C 15 times. That is different from A having
5 dollars more than B and B having 3 dollars more than C implies that A has 8 dollars
more than C. Defining intensity along the arcs of a graph and raising the resulting
matrix of comparisons to powers measures the first kind of dominance precisely
and never the second. It has definite meaning and as we shall see, because of the
inconsistency inherent in making judgments, in the limit it is measured uniquely by
the principal eigenvector. There is a useful connection between what we do with
dominance priorities in the AHP and what is done with transition probabilities both
of which use matrix algebra to find their answers. Transitions between states are
multiplied and added. To compose the priorities of the alternatives of a decision with
respect to different criteria, it is also necessary that the priorities of the alternatives
with respect to each criterion be multiplied by the priority of that criterion and then
added over all the criteria.

Paired comparisons deal with comparative judgment. However, in conformity
with Blumenthal’s observation above, the AHP also provides a way to rate
alternatives one at a time to deal with absolute judgment. In absolute judgment
the criteria are first prioritized through comparisons and then for each criterion one
creates a scale of relative intensities possibly of widely ranging orders of magnitude.
The priorities of these intensities are again appropriately derived through paired
comparisons with respect to their criterion, and in the end the alternatives are
rated one at a time by assigning each one an idealized intensity for each criterion,
then weighting by the priorities of the criteria and adding to obtain their overall
rating priority [5]. Thus rating applies only to alternatives taken one at a time and
relies on standards (good or poor) in the memory of the decision maker to rate
the alternatives. It is useful when the number of alternatives is large and we want
to standardize our treatment of them. When alternatives are fundamentally new,
different and not fully understood, paired comparisons are essential because there
are no familiar and widely accepted standards on which they can be rated.

To derive priorities for criteria or attributes we either think of a need to be
satisfied, or of a property of alternatives that we already have. In either case when
there are several criteria we need to establish their priorities to select the best
alternative that meets all the requirements.
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Assume that one is given n stones, A1; � � � ;An, with known weights w1; � � � ; wn,
respectively, and suppose that a matrix of pairwise ratios is formed whose rows give
the ratios of the weights of each stone with respect to all others. We have:

A1 � � � An

A1
:::

An

2

6
4

w1=w1 � � � w1=wn
:::

:::

wn=w1 � � � wn=wn

3

7
5 :

To recover the vector w D .w1; : : : ;wn/ we introduce the system of equations:

Aw D

2

6
4

w1=w1 � � � w1=wn
:::

:::

wn=w1 � � � wn=wn

3

7
5

2

6
4

w1
:::

wn

3

7
5 D n

2

6
4

w1
:::

wn

3

7
5 D nw;

where A has been multiplied on the right by the vector of weights w. The result of
this multiplication is nw. To recover the scale from the matrix of ratios, one must
solve the problem Aw D nw or .A � nI/w D 0. This is a system of homogeneous
linear equations. It has a nontrivial solution if and only if the determinant of A � nI
vanishes, that is, n is an eigenvalue of A. Now A has unit rank since every row is a
constant multiple of the first row. As a result, all its eigenvalues except one are zero.
The sum of the eigenvalues of a matrix is equal to its trace, the sum of its diagonal
elements, and in this case the trace of A is equal to n. Thus n is an eigenvalue of
A, and one has a nontrivial solution. The solution consists of positive entries and is
unique to within a multiplicative constant.

To make w unique, we can normalize its entries by dividing by their sum. Thus,
given the comparison matrix, we can recover the scale. In this case, the solution is
any column of A normalized. Notice that in A the reciprocal property aji D 1=aij

holds; thus, also aii D 1. Another property of A is that it is consistent: its entries
satisfy the condition ajk D aik=aij. The entire matrix can be constructed from a set
of n elements that form a chain across the rows and columns of A.

In the general case, the precise value of wi=wj cannot be given, but instead only
an estimate of it as a judgment. For the moment, consider an estimate of these values
by an expert whose judgments are small perturbations of the coefficients wi=wj. This
implies small perturbations of the eigenvalues.

Let us for generality call A1; : : : ;An stimuli instead of stones. The quantified
judgments on pairs of stimuli Ai, Aj, are represented by an n-by-n matrix A0 D .aij/,
ij D 1; 2; : : : ; n. The entries aij are defined by the following entry rules.

Rule 1. If aij D a, then aji D 1=a; a > 0.
Rule 2. If Ai is judged to be of equal relative intensity to Aj then aij D 1, aji D 1; in

particular, aii D 1 for all i.
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Thus the matrix A0 has the form:

A0 D

0

B
B
B
@

1 a12 � � � a1n

1=a12 1 � � � a2n
:::

:::
:::

:::

1=a1n 1=a2n � � � 1

1

C
C
C
A
:

Having recorded the quantified judgments on pairs of stimuli (Ai;Aj) as numer-
ical entries aij in the matrix, the problem now is to assign to the n stimuli
A1;A2; : : : ;An a set of numerical weights that would “reflect the recorded judg-
ments.” In order to do that, the vaguely formulated problem must first be trans-
formed into a precise mathematical one. This essential, and apparently harmless,
step is the most crucial one in any problem that requires the representation of a real
life situation in terms of an abstract mathematical structure. It is particularly crucial
in the present problem where the representation involves a number of transitions
that are not immediately discernible. It appears, therefore, desirable in the present
problem to identify the major steps in the process of representation and to make each
step as explicit as possible to enable the potential user to form his own judgment as
to the meaning and value of the method in relation to his problem and his goal.

Why we must solve the principal eigenvalue problem in general has a simple
justification based on the idea of dominance among the elements represented by
the coefficients of the matrix. Dominance between two elements is obtained as the
normalized sum of path intensities defined by the numerical judgments assigned
to the arcs along a path. The overall dominance of an element is the sum of the
entries in its row given by Ae, e D .1; : : : ; 1/ when A is consistent because then
Ak D nk�1A. When A is inconsistent, we must consider paths of dominance of
all lengths between the two points. All the paths of a given length k are obtained
by raising the matrix to the power k. According to Cesaro summability, the limit
of the average or Cesaro sum limN!1 1=N

PN
kD0 Ake that represents the average

of all order dominance vectors up to N, is the same as the limit of the sequence
of the powers of the matrix i.e. .limk!1 Ak/e. Now we know from Perron theory
that the sequence Ak converges to a matrix all whose columns are identical and
are proportional to the principal right eigenvector of A. Thus .limk!1 Ak/e is also
proportional to the principal right eigenvector of A.

Without the theory of Perron, the proof (not given here but known in eigenvalue
theory) of how to go from Aw D nw to Aw D �maxw, is related to small perturbation
theory and the amount of inconsistency one allows. A modicum of inconsistency is
necessary to change our mind about old relations when we learn new things.

Another way to prove the necessity of the principal eigenvector is based on the
need for the invariance of priorities. No matter what method we use to derive the
weights, by using them to weight and add the entries in each row to determine
the dominance of the element represented in that row, we must get these priorities
back as proportional to the expression

Pn
jD1 aijwj i D 1; 2 � � �n, that is, we must

solve
Pn

jD1 aijwj D cwi; i D 1; 2 � � �n, because in the end they can be normalized.
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Otherwise
Pn

jD1 aijwj; i D 1; : : : ; n would yield another set of different weights and
they in turn can be used to form new expressions

Pn
jD1 aijwj; i D 1; 2 : : : n, and so

on ad infinitum violating the need to have priorities that are invariant, unless in any
case we solve the principal eigenvalue problem.

Our general problem takes the form:

A0w D

2

6
6
6
4

1 a12 � � � a1n

1=a12 1 � � � a2n
:::

:::
:::

:::

1=a1n 1=a2n � � � 1

3

7
7
7
5

2

6
6
6
4

w1
w2
:::

wn

3

7
7
7
5
D cw:

We now show that the perturbed eigenvalue from the consistent case is the
principal eigenvalue of A0. Our argument involves both left and right eigenvectors
of A0. Two vectors x D .x1; � � � ; xn/, y D .y1; � � � ; yn/ are orthogonal if their scalar
product x1y1 C � � � C xnyn is equal to zero. It is known that any left eigenvector
of a matrix corresponding to an eigenvalue is orthogonal to any right eigenvector
corresponding to a different eigenvalue. This property is known as bi-orthogonality
using which we can prove:

Theorem 1. For a given positive matrix A, the only positive vector w and only
positive constant c that satisfy Aw D cw, is a vector w that is a positive multiple of
the principal eigenvector of A, and the only such c is the principal eigenvalue of A.

Thus we see that both requirements of dominance and invariance lead us to the
principal right eigenvector. The problem now is how good is the estimate of w.
Notice that if w is obtained by solving this problem, the matrix whose entries are
wi=wj is a consistent matrix. It is a consistent estimate of the matrix A0. The matrix
itself need not be consistent. In fact, the entries of A0 need not even be transitive;
that is, A1 may be preferred to A2 and A2 to A3 but A3 may be preferred to A1. What
we would like is a measure of the error due to inconsistency. It turns out that A0 is
consistent if and only if �max D n and that we always have �max 	 n when we
solve the system of equations Aw D �maxw for a non-negative reciprocal matrix A
to obtain the priorities.

Thus the story is very different if the judgments are inconsistent, and as we said
before, we need to allow inconsistent judgments for good reasons. In sports, team
A beats team B, team B beats team C, but team C beats team A. How would we
admit such an occurrence in our attempt to explain the real world if we do not
allow inconsistency? So far we have legislated inconsistency, which is natural in
making judgments, by assuming axiomatically that it should not exist particularly
with regard to transitivity!

The priorities that we seek are concerned with the order to be captured from
dominance judgments involving all order transitivity. Thus the problem of deriving
unique priorities in decision-making by solving the principal eigenvalue problem
of A0 belongs to the field of mathematics known as order topology. In general
priorities are not obtainable directly by the many methods of metric topology
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involving minimization of a metric such as the method of least squares (LSM) which
determines a priority vector by minimizing the Frobenius norm of the difference
between A and a positive rank one reciprocal matrix Œyi=yj�:

min
y>0

nX

i;jD1

�

aij � yi

yj

�2
(10.1)

and the method of logarithmic least squares (LLSM) which determines a vector by
minimizing the Frobenius norm of Œlog.aijxj=xi/�:

min
x>0

nX

i;jD1



log aij � log

�
xi

xj

��2
: (10.2)

Metric methods not only ignore transitivity, but also yield a variety of different
answers thus violating the overall justification of the need for a single unique set of
priorities. There is however a connection between order and optimization.

Solving the principal eigenvalue problem to obtain priorities is equivalent to the
two problems of optimization that follow: Find wi, i D 1; � � � ; n which

1. maximize 1
n

Pn
iD1

Pn
jD1 aijwj=wi, or, in the simpler linear optimization setting,

2. maximize
Pn

jD1 wj
Pn

iD1 aij, obtained by multiplying the sum of each column j
by its corresponding wj and summing over j, subject to

Pn
iD1 wi D 1.

10.3 Stimulus Response and the Fundamental Scale

What numbers should we use when we only have qualitative judgments to express
our understanding in making pairwise comparisons of elements that are close
or homogeneous? We note that to be able to perceive and sense objects in the
environment our brains miniaturize them within our system of neurons so that
we have a proportional relationship between what we perceive and what is out
there. Without proportionality we cannot coordinate our thinking with our actions
with the accuracy needed to control the environment. Proportionality with respect
to a single stimulus requires that our response to a proportionately amplified or
attenuated stimulus we receive from a source should be proportional to what our
response would be to the original value of that stimulus. If w.s/ is our response to
a stimulus of magnitude s, then the foregoing gives rise to the functional equation
w.as/ D b w.s/. This equation can also be obtained as the necessary condition for
solving the Fredholm equation of the second kind:

Z b

a
K.s; t/w.t/dt D �maxw.s/
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obtained as the continuous generalization of the discrete formulation Aw D
�maxw.s/. The solution of this functional equation in the real domain is given by

w.s/ D Celog b log s
log a P

�
log s

log a

�

;

where P is a periodic function of period 1 and P.0/ D 1. One of the simplest such
examples with u D log a= log a is P.u/ D cos.2u/ for which P.0/ D 1 and from
which the logarithmic law of response to stimuli can be obtained as a first order
approximation as:

v.u/ D C1e
�ˇuP.u/ � C2 log sC C3

log ab D �ˇ; ˇ > 0. The expression on the right is the well-known Weber-
Fechner law of logarithmic response M D a log s C b, a ¤ 0 to a stimulus of
magnitude s. It belongs to an interval scale. The larger the stimulus, the larger a
change in it is needed for that change to be detectable. The ratio of successive just
noticeable differences (the well-known “jnd” in psychology) is equal to the ratio of
their corresponding successive stimuli values. Proportionality is maintained. Thus,
starting with a stimulus s0 successive magnitudes of the new stimuli take the form:

s1 D s0 C�s0 D s0 C �s0
s0

D s0.1C r/

s2 D s1 C�s1 D s0.1C r/2 � s0˛2

:::

sn D sn�1˛ D s0˛n.n D 0; 1; 2; : : :/:

We consider the responses to these stimuli to be measured on a ratio scale
.b D 0/. A typical response has the form Mi D a log˛i, i D 1; � � � ; n, or one after
another they have the form:

M1 D a log˛;M2 D 2a log˛; � � �Mn D na log˛:

We take the ratios Mi=M1; i D 1; � � � ; n of these responses in which the first is
the smallest and serves as the unit of comparison, thus obtaining the integer values
1; 2; � � � ; n of the fundamental scale of the AHP.

A person may not be schooled in the use of numbers but still have feelings,
judgment and understanding that enable him or her to make accurate comparisons
(equal, moderate, strong, very strong and extreme and compromises between these
intensities). Such judgments can be applied successfully to compare stimuli that are
not too disparate but homogeneous in magnitude. By homogeneous we mean that
they fall within specified bounds. The foregoing may be summarized to represent
the fundamental scale for paired comparisons shown in Table 10.1.
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Table 10.1 The fundamental scale of absolute numbers

Intensity of importance Definition Explanation

1 Equal importance Two activities contribute
equally to the objective

2 Weak

3 Moderate importance Experience and judgment
slightly favor one activity
over another

4 Moderate plus

5 Strong importance Experience and judgment

strongly favor one activity

over another

6 Strong plus

7 Very strong or An activity is favored very
demonstrated importance strongly over another; its

dominance demonstrated in
practice

8 Very, very strong

9 Extreme importance The evidence favoring one
activity over another is of
the highest possible order
of affirmation

Reciprocals If activity i has one of the A reasonable assumption

of above above nonzero numbers

assigned to it when compared

with activity j, then j

has the reciprocal value

when compared with i

Rationals Ratios arising from the scale If consistency were to be
forced by obtaining n
numerical values to span
the matrix

We know now that a judgment or comparison is the numerical representation of a
relationship between two elements that share a common parent. We also know that
the set of all such judgments can be represented in a square matrix in which the
set of elements is compared with itself. Each judgment represents the dominance of
an element in the column on the left over an element in the row on top. It reflects
the answers to two questions: which of the two elements is more important with
respect to a higher level criterion, and how strongly, using the 1–9 scale shown in
Table 10.1 for the element on the left over the element at the top of the matrix. If the
element on the left is less important than that on the top of the matrix, we enter the
reciprocal value in the corresponding position in the matrix. It is important to note
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that the lesser element is always used as the unit and the greater one is estimated as
a multiple of that unit. From all the paired comparisons we calculate the priorities
and exhibit them on the right of the matrix. For a set of n elements in a matrix one
needs n.n�1/=2 comparisons because there are n 1’s on the diagonal for comparing
elements with themselves and of the remaining judgments, half are reciprocals. Thus
we have .n2 � n/=2 judgments. In some problems one may elicit only the minimum
of n � 1 judgments.

In a judgment matrix A, instead of assigning two numbers wi and wj (that
generally we do not know), as one does with tangibles, and forming the ratio
wi=wj we assign a single number drawn from the fundamental scale of absolute
numbers shown in Table 10.1 to represent the ratio .wi=wj/=1 . It is a nearest
integer approximation to the ratio .wi=wj/=1. The ratio of two numbers from a ratio
scale (invariant under multiplication by a positive constant) is an absolute number
(invariant under the identity transformation). The derived scale will reveal what wi

and wi are.
This is a central fact about the relative measurement approach. It needs a

fundamental scale to express numerically the relative dominance relationship.
If one wishes to use actual measurements or use fractional values for judgments

one of course can. In the end one needs to justify with care what one does.

Remark 1. The reciprocal property plays an important role in combining the
judgments of several individuals to obtain a judgment for a group. Judgments must
be combined so that the reciprocal of the synthesized judgments must be equal to
the syntheses of the reciprocals of these judgments. It has been proved that the
geometric mean is the unique way to do that. If the individuals are experts, they my
not wish to combine their judgments but only their final outcome from a herarchy.
In that case one takes the geometric mean of the final outcomes. If the individuals
have different priorities of importance their judgments (final outcomes) are raised
to the power of their priorities and then the geometric mean is formed [5].

10.3.1 Validation Example

Here is an example (one of many) which shows that the scale works well on
homogeneous elements of a real life problem. A matrix of paired comparison
judgments is used to estimate relative drink consumption in the United States as
shown in Table 10.2. To make the comparisons, the types of drinks are listed on the
left and at the top, and judgment is made as to how strongly the consumption of a
drink on the left dominates that of a drink at the top. For example, when coffee
on the left is compared with wine at the top, it is thought that it is consumed
extremely more and a 9 is entered in the first row and second column position.
A 1=9 is automatically entered in the second row and first column position. If the
consumption of a drink on the left does not dominate that of a drink at the top, the
reciprocal value is entered. For example in comparing coffee and water in the first
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Table 10.2 Which drink is consumed more in the U.S.? An example of estimation using
judgments

Drink consumption in the U.S. Coffee Wine Tea Beer Sodas Milk Water

Coffee 1 9 5 2 1 1 1/2

Wine 1/9 1 1/3 1/9 1/9 1/9 1/9

Tea 1/5 2 1 1/3 1/4 1/3 1/9

Beer 1/2 9 3 1 1/2 1 1/3

Sodas 1 9 4 2 1 2 1/2

Milk 1 9 3 1 1/2 1 1/3

Water 2 9 9 3 2 3 1

The derived scale based on the judgments in the matrix is:

Coffee Wine Tea Beer Sodas Milk Water

0.177 0.019 0.042 0.116 0.190 0.129 0.327

with a consistency index of 0.022.

The actual consumption (from statistical sources) is:

0.180 0.010 0.040 0.120 0.180 0.140 0.330

row and eighth column position, water is consumed more than coffee slightly and a
1=2 is entered. Correspondingly, a value of 2 is entered in the eighth row and first
column position. At the bottom of Table 10.2, we see that the derived values and the
actual values are close.

10.3.2 Clustering and Homogeneity; Using Pivots to Extend
the Scale from 1–9 to 1–1

Most real life decisions are not widely separated in ranges of criteria (one or two)
because what is important to individuals or to groups to corporations and finally to
governments needs to meet their most essential requirements. Note that the priorities
in two adjacent categories would be sufficiently different, one being an order of
magnitude smaller than the other, that in the synthesis, the priorities of the elements
in the smaller set would ordinarily have little effect on the decision.

We note that our ability to make accurate comparisons of widely disparate objects
on a common property is limited. We cannot compare with any reliability the very
small with the very large. However, we can do it in stages by comparing objects
of relatively close magnitudes and gradually increase their sizes until we reach
the desired object of large size (see example later). In this process, we can think
of comparing several close or homogeneous objects for which we obtain a scale
of relative values, and then again pairwise compare the next set of larger objects
that includes for example the largest object from the previous already compared
collection, and then derive a scale for this second set. We then divide all the
measurements in the second set by the value of the common object and multiply
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Fig. 10.1 Comparisons according to volume

all the resulting values by the weight of the common element in the first set, thus
rendering the two sets to be measurable on the same scale and so on to a third
collection of the objects using a common object from the second set.

In Fig. 10.1 a cherry tomato is eventually and indirectly compared with a large
watermelon by first comparing it with a small tomato and a lime, the lime is then
used again in a second cluster with a grapefruit and a honey dew where we then
divide by the weight of the lime and then multiply by its weight in the first cluster,
and then use the honey dew again in a third cluster and so on. In the end we have a
comparison of the cherry tomato with the large watermelon and would accordingly
extended the scale from 1–9 to 1–721.

10.4 Hospice Decision

Westmoreland County Hospital in Western Pennsylvania, like hospitals in many
other counties around the United States, has been concerned with the costs of the
facilities and manpower involved in taking care of terminally ill patients. Normally
these patients do not need as much medical attention as do other patients. Those who
best utilize the limited resources in a hospital are patients who require the medical
attention of its specialists and advanced technology equipment, whose utilization
depends on the demand of patients admitted into the hospital. The terminally ill
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need medical attention only episodically. Most of the time, such patients need
psychological support. Such support is best given by the patient’s family, whose
members are able to supply the love and care the patients most need. For the
mental health of the patient, home therapy is a benefit. From the medical standpoint,
especially during a crisis, the hospital provides a greater benefit. Most patients
need the help of medical professionals only during a crisis. Some will also need
equipment and surgery. The planning association of the hospital wanted to develop
alternatives and to choose the best one considering various criteria from the
standpoint of the patient, the hospital, the community, and society at large.

In this problem, we need to consider the costs and benefits of the decision. Costs
include economic costs and all sorts of intangibles, such as inconvenience and pain.
Such disbenefits are not directly related to benefits as their mathematical inverses,
because patients infinitely prefer the benefits of good health to these intangible
disbenefits. To study the problem, one needs to deal with benefits and with costs
separately.

I met with representatives of the planning association for several hours to decide
on the best alternative. To make a decision by considering benefits and costs, one
must first answer the question: In this problem, do the benefits justify the costs?
If they do, then either the benefits are so much more important than the costs that
the decision is based simply on benefits, or the two are so close in value that both
the benefits and the costs should be considered. Then we use two hierarchies for
the purpose and make the choice by forming the ratio from them of the benefits
priority/costs priority for each alternative. One asks which is most beneficial in
the benefits hierarchy (Fig. 10.2) and which is most costly in the costs hierarchy
(Fig. 10.3).

If the benefits do not justify the costs, the costs alone determine the best
alternative, which is the least costly. In this example, we decided that both benefits
and costs had to be considered in separate hierarchies. In a risk problem, a third
hierarchy is used to determine the most desired alternative with respect to all three:
benefits, costs, and risks. In this problem, we assumed risk to be the same for all
contingencies.

The planning association thought the concepts of benefits and costs were too
general to enable it to make a decision. Thus, the planners and I further subdivided
each (benefits and costs) into detailed subcriteria to enable the group to develop
alternatives and to evaluate the finer distinctions the members perceived between
the three alternatives. The alternatives were to care for terminally ill patients at the
hospital, at home, or partly at the hospital and partly at home.

The two hierarchies are fairly clear and straightforward in their description. They
descend from the more general criteria in the second level to secondary subcriteria in
the third level and then to tertiary subcriteria in the fourth level on to the alternatives
at the bottom or fifth level. At the general criteria level, each of the hierarchies,
benefits or costs, involved three major interests. The decision should benefit the
recipient, the institution, and society, and their relative importance is the prime
determinant as to which outcome is more likely to be preferred. We located these
three elements on the second level of the benefits hierarchy. As the decision would
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Fig. 10.2 To choose the best hospice plan, one constructs a hierarchy modeling the benefits to the
patient, to the institution, and to society. This is the benefits hierarchy of two separate hierarchies

benefit each party differently and the importance of the benefits to each recipient
affects the outcome, the group thought that it was important to specify the types
of benefit for the recipient and the institution. Recipients want physical, psycho-
social and economic benefits, while the institution wants only psycho-social and
economic benefits. We located these benefits in the third level of the hierarchy.
Each of these in turn needed further decomposition into specific items in terms
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Fig. 10.3 To choose the best hospice plan, one constructs a hierarchy modeling the community,
institutional, and societal costs. This is the costs hierarchy of two separate hierarchies

of which the alternatives could be evaluated. For example, while the recipient
measures economic benefits in terms of reduced costs and improved productivity,
the institution needed the more specific measurements of reduced length of stay,
better utilization of resources, and increased financial support from the community.
There was no reason to decompose the societal benefits into a third level subcriteria,
hence societal benefits connects directly to the fourth level. The group considered
three models for the alternatives, and they are at the bottom (or fifth level in this
case) of the hierarchy: in Model 1, the hospital provided full care to the patients;
in Model 2, the family cares for the patient at home, and the hospital provides only
emergency treatment (no nurses go to the house); and in Model 3, the hospital and
the home share patient care (with visiting nurses going to the home).

In the costs hierarchy there were also three major interests in the second level
that would incur costs or pains: community, institution, and society. In this decision
the costs incurred by the patient were not included as a separate factor. Patient and
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family could be thought of as part of the community. We thought decomposition
was necessary only for institutional costs. We included five such costs in the third
level: capital costs, operating costs, education costs, bad debt costs, and recruitment
costs. Educational costs apply to educating the community and training the staff.
Recruitment costs apply to staff and volunteers. Since both the costs hierarchy
and the benefits hierarchy concern the same decision, they both have the same
alternatives in their bottom levels, even though the costs hierarchy has fewer levels.

As usual with the AHP, in both the costs and the benefits models, we compared
the criteria and subcriteria according to their relative importance with respect to
the parent element in the adjacent upper level. For example, in the first matrix
of comparisons of the three benefits criteria with respect to the goal of choosing
the best hospice alternative, recipient benefits are moderately more important than
institutional benefits and are assigned the absolute number 3 in the (1, 2) or first-
row second-column position. Three signifies three times more. The reciprocal value
is automatically entered in the (2, 1) position, where institutional benefits on the
left are compared with recipient benefits at the top. Similarly a 5, corresponding to
strong dominance or importance, is assigned to recipient benefits over social benefits
in the (1, 3) position, and a 3, corresponding to moderate dominance, is assigned to
institutional benefits over social benefits in the (2, 3) position with corresponding
reciprocals in the transpose positions of the matrix.

Remark 2. In order to give the reader familiarity with the AHP without too much
theory, we have delayed discussion of the measurement of the inconsistency and
random inconsistency and of the ratio C.R. of the inconsistency of a given matrix
and the corresponding random inconsistency to a later section. However, we have
indicated the C.R. corresponding to each matrix immediately under that matrix
(Table 10.3).

Judgments in a matrix may not be consistent. In eliciting judgments, one makes
redundant comparisons to improve the validity of the answer, given that respondents
may be uncertain or may make poor judgments in comparing some of the elements.
Redundancy gives rise to multiple comparisons of an element with other elements
and hence to numerical inconsistencies. For example, where we compare recipient
benefits with institutional benefits and with societal benefits, we have the respective
judgments 3 and 5. Now if x D 3y and x D 5z then 3y D 5z or y D 5=3z. If
the judges were consistent, institutional benefits would be assigned the value 5/3

Table 10.3 The entries in this matrix respond to the question: which criterion is more important
with respect to choosing the best hospice alternative and how strongly?

Choosing best hospice Recipient benefits Institutional benefits Social benefits Priorities

Recipient benefits 1 3 5 0.64

Institutional benefits 1/3 1 3 0.26

Social benefits 1/5 1/3 1 0.11

C.R. D 0.033
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instead of the 3 given in the matrix. Thus the judgments are inconsistent. In fact, we
are not sure which judgments are the accurate ones and which are the cause of the
inconsistency. Inconsistency is inherent in the judgment process. Inconsistency may
be considered a tolerable error in measurement only when it is of a lower order of
magnitude (10 %) than the actual measurement itself; otherwise the inconsistency
would bias the result by a sizable error comparable to or exceeding the actual
measurement itself.

When the judgments are inconsistent, the decision-maker may not know where
the greatest inconsistency is. The AHP can show one by one in sequential order
which judgments are the most inconsistent, and suggests the value that best
improves consistency. However, this recommendation may not necessarily lead to
a more accurate set of priorities that correspond to some underlying preference of
the decision-maker. Greater consistency does not imply greater accuracy and one
should go about improving consistency (if one can, given the available knowledge)
by making slight changes compatible with one’s understanding. If one cannot reach
an acceptable level of consistency, one should gather more information or reexamine
the framework of the hierarchy. For a 3-by-3 matrix this ratio should be about 5 %,
for a 4-by-4 matrix about 8 %, and for larger matrices, about 10 %.

The process is repeated in all the matrices by asking the appropriate dominance
or importance question. For example, for the matrix comparing the subcriteria of
the parent criterion institutional benefits (Table 10.4), psycho-social benefits are
regarded as very strongly more important than economic benefits, and 7 is entered
in the (1, 2) position and 1/7 in the (2, 1) position.

In comparing the three models for patient care, we asked members of the
planning association which model they preferred with respect to each of the covering
or parent secondary criteria in level 3 or with respect to the tertiary criteria in level
4. For example, for the subcriterion direct care (located on the left-most branch in
the benefits hierarchy), we obtained a matrix of paired comparisons (Table 10.5)
in which Model 1 is preferred over Models 2 and 3 by 5 and 3 respectively and
Model 3 is preferred by 3 over Model 2. The group first made all the comparisons
using semantic terms for the fundamental scale and then translated them to the
corresponding numbers.

For the costs hierarchy, I again illustrate with three matrices. First the group
compared the three major cost criteria and provided judgments in response to the
question: which criterion is a more important determinant of the cost of a hospice
model (Table 10.6)?

Table 10.4 The entries in this matrix respond to the question:
which subcriterion yields the greater benefit with respect to
institutional benefits and how strongly?

Institutional benefits Psycho-social Economic Priorities

Psycho-social 1 7 0.875

Economic 1/7 1 0.125

C.R. D 0.000
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Table 10.5 The entries in this matrix respond to the question: which model
yields the greater benefit with respect to direct care and how strongly?

Direct care of patient Model I Model II Model III Priorities

Model I unit team 1 5 3 0.64

Model II mixed/home care 1/5 1 1/3 0.10

Model III case management 1/3 3 1 0.26

C.R. D 0.033

Table 10.6 The entries in this matrix respond to the question: which criterion is a
greater determinant of cost with respect to the care method and how strongly?

Choosing best hospice (costs) Community Institutional Societal Priorities

Community costs 1 1/5 1 0.14

Institutional costs 5 1 5 0.71

Societal costs 1 1/5 1 0.14

C.R. D 0.000

Table 10.7 The entries in this matrix respond to the question: which criterion incurs greater
institutional costs and how strongly?

Institutional costs Capital Operating Education Bad debt Recruitment Priorities

Capital 1 1/7 1/4 1/7 1 0.05

Operating 7 1 9 4 5 0.57

Education 4 1/9 1 1/2 1 0.01

Bad debt 7 1/4 2 1 3 0.21

Recruitment 1 1/5 1 1/3 1 0.07

C.R. D 0.08

Table 10.8 The entries in this matrix respond to the question: which model incurs
greater cost with respect to institutional costs for recruiting staff and how strongly?

Institutional costs for recruiting staff Model I Model II Model III Priorities

Model I unit team 1 5 3 0.64

Model II mixed/home care 1/5 1 1/3 0.10

Model III case management 1/3 3 1 0.26

C.R. D 0.000

The group then compared the subcriteria under institutional costs and obtained
the importance matrix shown in Table 10.7.

Finally, we compared the three models to find out which incurs the highest cost
for each criterion or subcriterion. Table 10.8 shows the results of comparing them
with respect to the costs of recruiting staff.

As shown in Table 10.9 we divided the benefits by the costs priorities for each
alternative to obtain the best alternative, Model 3, that with the largest value for the
ratio.
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Table 10.9 Synthesis (P = Priorities, M = Model)

Distributive mode Ideal mode

P M 1 M 2 M 3 M 1 M 2 M 3

Benefits

Direct care of patient 0:02 0:64 0:10 0:26 1:00 0:16 0:41

Palliative care 0:14 0:64 0:10 0:26 1:00 0:16 0:41

Volunteer support 0:02 0:09 0:17 0:74 0:12 0:23 1:00

Networking in families 0:06 0:46 0:22 0:32 1:00 0:48 0:70

Relief of post death stress 0:12 0:30 0:08 0:62 0:48 0:13 1:00

Emotional support of family and patient 0:21 0:30 0:08 0:62 0:48 0:13 1:00

Alleviation of guilt 0:03 0:30 0:08 0:62 0:48 0:13 1:00

Reduced economic costs for patient 0:01 0:12 0:65 0:23 0:18 1:00 0:35

Improved productivity 0:03 0:12 0:27 0:61 0:20 0:44 1:00

Publicity and public relations 0:19 0:63 0:08 0:29 1:00 0:13 0:46

Volunteer recruitment 0:03 0:64 0:10 0:26 1:00 0:16 0:41

Professional recruitment and support 0:06 0:65 0:23 0:12 1:00 0:35 0:18

Reduced length of stay 0:01 0:26 0:10 0:64 0:41 0:41 1:00

Better utilization of resources 0:02 0:09 0:22 0:69 0:13 0:13 1:00

Increased monetary support 0:06 0:73 0:08 0:19 1:00 1:00 0:26

Death as a social issue 0:02 0:20 0:20 0:60 0:33 0:33 1:00

Rehumanization of institutions 0:08 0:24 0:14 0:62 0:39 0:23 1:00

Synthesis (taken from original AHP
without approximations)

0:428 0:121 0:451 0:424 0:123 0:453

Costs

Community costs 0:14 0:33 0:33 0:33 1:00 1:00 1:00

Institutional capital costs 0:03 0:76 0:09 0:15 1:00 0:12 0:20

Institutional operating costs 0:40 0:73 0:08 0:19 1:00 0:11 0:26

Institutional costs for educating the
community

0:01 0:65 0:24 0:11 1:00 0:37 0:17

Institutional costs for training staff 0:06 0:56 0:32 0:12 1:00 0:57 0:21

Institutional bad debt 0:15 0:60 0:20 0:20 1:00 0:33 0:33

Institutional costs of recruiting staff 0:05 0:66 0:17 0:17 1:00 0:26 0:26

Institutional costs of recruiting volunteers 0:01 0:60 0:20 0:20 1:00 0:33 0:33

Societal costs 0:15 0:33 0:33 0:33 1:00 1:00 1:00

Synthesis (taken from original AHP
without approximations)

0:583 0:192 0:224 0:523 0:229 0:249

Benefit/cost ratio 0:734 0:630 2:013 0:811 0:537 1:819

Table 10.9 shows two ways or modes of synthesizing the local priorities of
the alternatives using the global priorities of their parent criteria: The distributive
mode and the ideal mode. In the distributive mode, the weights of the alternatives
sum to one. It is used when there is dependence among the alternatives and a unit
priority is distributed among them. The ideal mode is used to obtain the single best
alternative regardless of what other alternatives there are. In the ideal mode, the
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local priorities of the alternatives under each criterion are divided by the largest
value among them. This is done for each criterion; for each criterion one alternative
becomes an ideal with value one. In both modes, the local priorities are weighted
by the global priorities of the parent criteria and synthesized and the benefit-to-cost
ratios formed. In Table 10.9 we rounded off the numbers to two decimal places.
Unfortunately, that causes substantial difference from the actual results obtained in
the AHP calculations. We request that the reader accept this as an illustration.

When the criteria priorities do not depend on the values of the alternatives
with regard to those criteria, we need to derive their priorities by comparing them
pairwise with each other with respect to higher-level criteria orgoal. It is a process
of trading off one unit of one criterion against a unit of another, an ideal alternative
from one against an ideal alternative from another. To determine the ideal, the
alternatives are divided by the largest value among them for each criterion. In that
case, the process of weighting and adding assigns each of the remaining alternatives
a value that is proportionate to the value 1 given to the highest rated alternative. In
this way the alternatives are weighted by the priorities of the criteria and summed
to obtain the weights of the alternatives. This is the ideal mode of the AHP.

The distributive mode is essential for synthesizing the weights of alternatives
with respect to tangible criteria with the same scale of measurement into a single
criterion for that scale and then they are treated as intangibles and compared pair-
wise and combined with other intangibles with the ideal mode. The dominant mode
of synthesis in the AHP where the criteria are independent from the alternatives
is the ideal mode. The standard mode for synthesizing in the ANP where criteria
depend on alternatives and also alternatives may depend on other alternatives is the
distributive mode.

In this case, both modes lead to the same outcome for hospice, which is Model 3.
As we shall see below, we need both modes to deal with the effect of adding
(or deleting) alternatives on an already ranked set. The priorities of the alternatives
in the benefits hierarchy belong to an absolute scale of relative numbers and the
priorities of the alternatives in the costs hierarchy also belong to another absolute
scale of relative numbers. These two relative scales cannot be arbitrarily combined.
Later we provide another way to combine them. In this exercise they were assumed
to be commensurate and were combined in the traditional way by forming benefit to
cost ratios. To derive the answer we divide the benefits priority of each alternative
by its costs priority. We then choose the alternative with the largest of these ratios.

Model 3 has the largest benefit to cost ratio in both the distributive and ideal
modes, and the hospital selected it for treating terminal patients. This need not
always be the case. In this case, there is dependence of the personnel resources
allocated to the three models because some of these resources would be shifted
based on the decision. Therefore the distributive mode is the appropriate method of
synthesis. If the alternatives were sufficiently distinct with no dependence in their
definition, the ideal mode would be the way to synthesize.

I also performed marginal analysis to determine where the hospital should
allocate additional resources for the greatest marginal return. To perform marginal
analysis, I first ordered the alternatives by increasing cost priorities and then formed
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the benefit-to-cost ratios corresponding to the smallest cost, followed by the ratios
of the differences of successive benefits to differences in costs. If this difference
in benefits is negative, the new alternative is dropped from consideration and the
process continued. The alternative with the largest ratio is then chosen. For the costs
and corresponding benefits from the synthesis rows in Table 10.9 one obtains:

• Benefits: 0.12, 0.45, 0.43;
• Costs: 0.20, 0.21, 0.59;
• Ratios: 0:12=0:20 D 0:60; .0:45 � 0:12/=.0:21 � 0:20/ D 33; .0:43 �
0:45/=.0:59� 0:21/ D �0:051:
The third alternative is not a contender for resources because its marginal return

is negative. The second alternative is the best. In fact, in addition to adopting the
third model, the hospital management chose the second model of hospice care for
further development.

10.5 Rating Alternatives One at a Time in the AHP:
Absolute Measurement

The AHP has a second way to derive priorities known as absolute measurement.
It involves making paired comparisons but the criteria just above the alternatives,
known as the covering criteria, are assigned intensities that vary in number and type.
For example they can simply be: high, medium and low; or they can be: excellent,
very good, good, average, poor and very poor; or for experience: more than 15 years,
between 10 and 15, between 5 and 10 and less than 5 and so on. These intensities
themselves are also compared pairwise to obtain their priorities as to importance,
and they are then put in ideal form by dividing by the largest value. Finally each
alternative is assigned an intensity, along with its accompanying priority, for each
criterion. This process of assigning intensities is called rating the alternatives. The
priority of each intensity is weighted by the priority of its criterion and summed over
the weighted intensities for each alternative to obtain that alternative’s final rating
that also belongs to a ratio scale. It is often necessary to have categories of ratings for
alternatives that are widely disparate so that one can rate the alternatives correctly.
Ratings are useful when standards are established with which the alternatives must
comply. They are also useful when the number of alternatives n is very large to
perform pairwise comparisons on them for each criterion. In this case if the number
of criteria is c, the number of rating operations in rating the alternatives is cn,
whereas doing all the pairwise judgments involves cn.n � 1/=2 comparisons. Here
is an example of absolute measurement.
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College
(0.203) 1.000

High School
(0.052) 0.258

None
(0.022) 0.111

Exceptional
(0.098) 1.000

A Lot
(0.050) 0.511

Average
(0.020) 0.204

None
(0.008) 0.081

Good
(0.100) 1.000

Poor
(0.012) 0.125

Outstanding

Dependability
.4347

Education
.2774

GOAL

Experience
.1755

Quality
.1123

(0.182) 1.000

Above Average
(0.114) 0.627

Average
(0.070) 0.382

Below Average
(0.042) 0.232

Unsatisfactory
(0.027) 0.149

Fig. 10.4 Employee evaluation hierarchy

Table 10.10 Ranking intensities

Outstanding
Above
average Average

Below
average Unsatisfactory Priorities

Outstanding 1.0 2.0 3.0 4.0 5.0 0.419

Above average 1/2 1.0 2.0 3.0 4.0 0.263

Average 1/3 1/2 1.0 2.0 3.0 0.160

Below average 1/4 1/3 1/2 1.0 2.0 0.097

Unsatisfactory 1/5 1/4 1/3 1/2 1.0 0.062

Inconsistency ratio D 0.015

10.5.1 Evaluating Employees for Salary Raises

Employees are evaluated for raises. The criteria are Dependability, Education,
Experience, and Quality. Each criterion is subdivided into intensities, standards, or
discrimination categories as shown in Fig. 10.4. Priorities are set for the criteria
by comparing them in pairs. The intensities are then pairwise compared according
to importance with respect to their parent criterion (example as in Table 10.10).
Their priorities are often divided by the largest intensity for each criterion (second
column of priorities in Fig. 10.4) particularly useful in preserving the ranks of
the alternatives from the addition or deletion of other alternatives. Finally, each
individual is rated in Table 10.11 by assigning the intensity rating that applies to
him or her under each criterion and adding. The score is obtained by weighting
the intensities by the priority of their criteria and then summing over the criteria to
derive a total score for each individual. This approach can be used whenever it is
possible to set priorities for intensities of the criteria, which is usually possible when
sufficient experience with a given operation has been accumulated. The raises can
be made in proportion to the normalized values on the right.
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Table 10.11 Ranking alternatives

Education Experience Quality

Dependability 0.2774 0.1775 0.1123 Total Norm

1. Adams, V. Outstanding College Excep. Good 1.000 0.245

2. Becker, L. Average College Average Good 0.592 0.145

3. Hayat, F. Average College A Lot Good 0.645 0.158

4. Kesselman, S. Above average HighSchool None Poor 0.373 0.091

5. O’Shea, K. Average College Average Poor 0.493 0.121

6. Petres, T. Average College None Good 0.570 0.140

7. Tobias, K. Average None A Lot Poor 0.407 0.100

One needs to choose the intensities widely enough by putting them in different
order-of-magnitude categories in which the elements can be compared with the
fundamental scale, and then combine the categories with pivots as in the cherry with
watermelon example. Any alternative can be appropriately rated and receives its
correct final value no matter how large or how small. When rating widely contrasting
alternatives and the rating of an alternative is exceedingly small with respect to a
certain criterion, a zero value can be assigned to that alternative.

In ratings, adding new alternatives has no effect on the rank of existing
alternatives. In paired comparisons the alternatives depend on each other and a new
alternative can affect the relative ranks of existing alternatives. Using the ideal mode
each time a new alternative is added prevents rank reversal with respect to irrelevant
alternatives. However, if it is done only the first time and new alternatives are only
compared with the first ideal so their values go above that ideal (more than one
when necessary) there can be no rank reversal. It is clear that when alternatives are
independent they can be rated one at a time and there would be no rank reversal. But
even with independence, how many other alternatives of the same kind (sometimes
also of a different kind) there are, can affect their rank. However, the number of
alternatives cannot be used as a criterion for rating because it implies dependence
of an alternative on how many others there are and a fortiori on their presence.

10.6 Paired Comparisons Imply Dependence

In most multicriteria decision problems the criteria are assumed independent
of the alternatives and the alternatives independent of other alternatives. Paired
comparisons imply dependence of a different kind. The common understanding
is that when alternatives depend on each other it is according to their function
like the electric industry depending on the coal industry for its output. In paired
comparisons, the importance assigned to an alternative depends on what other



388 T.L. Saaty

alternatives it is compared with and how many there are. This is dependence not
according to function but according to structure. This dependence happens even
when the alternatives may be independent of each other according to function.
Independence means that the rank of an alternative does not depend on what other
alternatives there are and how many of them there may be. The situation with
pairwise comparisons is that it automatically implies structural dependence. When
a new alternative is added or an old one deleted the ranks of the other alternatives
relative to each other may change. However one can preserve rank from adding
new but irrelevant alternatives by creating an ideal alternative each time alternatives
are added or deleted, or preserve it from any new alternative by simply idealizing
the first time but never after and only comparing new alternatives with the first
ideal and allowing the priority value of the new alternative to exceed one. Rating
alternatives one at a time with appropriate and exhaustive orders of intensities for
each criterion always preserves rank from structural effects, but is not always the
best way to prioritize alternatives that may depend on the number and quality of
other alternatives.

As we increase the number of copies of an alternative, it often loses (or
conversely increases) its importance. For example, if gold, which is important, were
to increase in quantity to fill the universe, it could lose its importance. No new
criterion is added and no judgment is changed but only the quantity of gold. Relative
measurement takes quantity into consideration. We often need to consider this kind
of dependence known as structural dependence. When we add more alternatives, the
ranks among old ones may change and what was preferred to another now because of
the presence of new ones may no longer be preferred to the other. Another example
is that of a company that sells cars A and B. Car B is better than car A but it costs
more to make. It is more desirable all around for people to buy car B but they buy
A because it is cheaper. The company advertises that it is going to make car C that
is similar to B but much more expensive. People are now observed more and more
to buy car B. The company never makes car C. This is a real life example from
marketing. However, in some decision problems we may want to treat by fiat the
alternatives of a decision as completely independent both in property and in number
and quality and want to preserve the ranks of existing alternatives when new ones
are added or old ones deleted. The AHP allows for both these possibilities. Actually,
change in rank in the presence of relevant alternatives is a fact of our world. It is also
a fact that when the number of irrelevant alternatives is very large, they can cause
rank to change. Viruses are irrelevant in most decisions but they can eventually
cause the death of all decision makers and make mockery of the decisions they
thought were so important. In essence reality is much more interdependent than we
have allowed for in our limited ways of thinking. Admittedly there are times when
we wish to preserve rank no matter what the situation may be. We need to allow for
both in our decision theories and not take the simple way out by always assuming
independence.
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10.7 When Is a Positive Reciprocal Matrix Consistent?

In light of the foregoing, for the validity of the vector of priorities to describe
response, we need greater redundancy and therefore also a large number of com-
parisons. Because of the reciprocal relation, in all we need n.n� 1/=2 comparisons.
An expert may provide .n � 1/ comparisons to fill one row or a spanning tree from
which the matrix is consistent and the priorities are easily obtained. Let us relate
the psychological idea of the consistency of judgments and its measurement to a
central concept in matrix theory and also to the size of our channel capacity to
process information. Let A D Œaij� be an n-by-n positive reciprocal matrix, so all
aii D 1 and aij D 1=aji for all i; j D 1; � � � ; n. Let w D Œwi� be the principal right
eigenvector of A, let D D diag.w1; : : : ;wn/ be the n-by-n diagonal matrix whose
main diagonal entries are the entries of w, and set E D D�1AD D Œaijwj=wi� D Œ"ij�.
Then E is similar to A and is a positive reciprocal matrix since "ji D .ajiwi=wj/ D
.aijwj=wi/

�1 D 1="ij. Moreover, all the row sums of E are equal to the principal
eigenvalue of A:

nX

jD1
"ij D

X

j

aijwj

wi
D ŒAw�i

wi
D �maxwi

wi
D �max:

The computation

n�max D
nX

iD1
.

nX

jD1
"ij/ D

nX

iD1
"ii C

nX

i;jD1 i¤j

."ij C "ji/

D nC
nX

i;jD1 i¤j

."ij C "�1
ij /

	 nC .n2 � n/ D n2

reveals that �max 	 n. Moreover, since .xC 1/=x 	 2 for all x > 0, with equality if
and only if x D 1, we see that �max D n if and only if all "ij D 1, which is equivalent
to having all aij D wi=wj.

The foregoing arguments show that a positive reciprocal matrix A has �max 	
n, with equality if and only if A is consistent. When A is consistent we have
Ak D nk�1A. As our measure of deviation of A from consistency, we choose the
consistency index

� D �max � n

n � 1 :

We have seen that � 	 0 and � D 0 if and only if A is consistent. We can
say that as � ! 0, aij ! wi=wj, or "ij D aij.wj=wi/ ! 1. These two desirable
properties explain the term “n” in the numerator of �; what about the term “n � 1”
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Table 10.12 Random index

Order 1 2 3 4 5 6 7 8 9 10

R.I. 0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49

in the denominator? Since trace .A/ D n is the sum of all the eigenvalues of A, if
we denote the eigenvalues of A that are different from �max by �2; � � � ; �n�1, we see
that n D �maxCPn

iD2 �i; so n��max DPn
iD2 �i and � D �.1=.n� 1//Pn

iD2 �i is
the average of the non-principal eigenvalues of A.

In order to get some feel for what the consistency index might be telling us
about a positive n-by-n reciprocal matrix A, consider the following simulation:
choose the entries of A above the main diagonal at random from the 17 values
f1=9; 1=8; � � � ; 1; 2; � � � ; 8; 9g. Then fill in the entries of A below the diagonal by
taking reciprocals. Put ones down the main diagonal and compute the consistency
index. Do this many thousands of times and take the average, which we call
the random index. Table 10.12 shows the values obtained from one set of such
simulations and also their first order differences, for matrices of size 1; 2; � � � ; 10.

A plot of the first two rows of Table 10.12 shows the asymptotic nature of
random inconsistency. We also have shown that one should not compare more
than about seven elements because increase in inconsistency is so small that it
becomes difficult to perceive the ensuing small changes in the judgments needed
to improve consistency [8]. In passing we note that there are several algorithms to
change judgment to improve consistency, the best known among them is the gradient
method of Patrick Harker [2, 3].

For a given positive reciprocal matrix A D Œaij� and a given pair of distinct indices
k > l, define A.t/ D Œaij.t/� by akl.t/ � akl C t, alk.t/ � .akl C t/�1, and aij.t/ � aij

for all i ¤ k, j ¤ l , so A.0/ D A. Let �max.t/ denote the Perron eigenvalue of A.t/
for all t in a neighborhood of t D 0 that is small enough to ensure that all entries
of the reciprocal matrix A.t/ are positive there. Finally, let v D Œvi� be the unique
positive eigenvector of the positive matrix AT that is normalized so that vT w D 1.
Then a classical perturbation formula tells us that

d�max.t/

daji

ˇ
ˇ
ˇ
ˇ
tD0
D vTA0.0/w

vTw
D vTA0.0/w D vkwl � 1

a2kl

vlwk:

We conclude that

@�max

@aij
D viwj � a2ijvjwi; i; j D 1; � � � ; n:

Because we are operating within the set of positive reciprocal matrices,
@�max=@aji D �@�max=@aij for all i and j. Thus, to identify an entry of A whose
adjustment within the class of reciprocal matrices would result in the largest rate of
change in �max we should examine the n.n� 1/=2 values fviwj � a2jivjwig; i > j and
select (any) one of largest absolute value.
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10.8 In the Analytic Hierarchy Process Additive
Composition Is Necessary

Sometimes people have assigned criteria different weights when they are measured
in the same unit. Others have used different ways of synthesis than multiplying and
adding. An example should clarify what we must do. Synthesis in the AHP involves
weighting the priorities of elements compared with respect to an element in the next
higher level, called a parent element, by the priority of that element and adding over
all such parents for each element in the lower level. Consider the example of two
criteria C1 and C2 and three alternatives A1, A2 and A3 measured in the same scale
such as dollars. If the criteria are each assigned the value 1, then the weighting and
adding process produces the correct dollar value as in Table 10.13.

However, it does not give the correct outcome if the weights of the criteria are
normalized, with each criterion having a weight of 0.5. Once the criteria are given in
relative terms, so must the alternatives also be given in relative terms. A criterion that
measures values in pennies cannot be as important as another measured in thousands
of dollars. In this case, the only meaningful importance of a criterion is the ratio of
the total money for the alternatives under it to the total money for the alternatives
under both criteria. By using these weights for the criteria, rather than 0.5 and 0.5,
one obtains the correct final relative values for the alternatives.

What is the relative importance of each criterion? Normalization indicates
relative importance. Relative values require that criteria be examined as to their
relative importance with respect to each other. What is the relative importance
of a criterion, or what numbers should the criteria be assigned that reflect their
relative importance? Weighting each criterion by the proportion of the resource
under it, as shown in Table 10.14, and multiplying and adding as in the additive
synthesis of the AHP, we get the same correct answer. For criterion C1 we have
.200C 300C 500/=Œ.200C 300C 500/C .150C 50C 100/�D 1000=1300 and for
criterion C2 we have .150C 50C 100/=Œ.200C 300C 500/C .150C 50C 100/�D
300=1300. Here the criteria are automatically in normalized form, and their weights
sum to one. We see that when the criteria are normalized, the alternatives must
also be normalized to get the right answer. For example, if we look in Table 10.13
we have 350/1300 for the priority of alternative A1. Now if we simply weight
and add the values for alternative A1 in Table 10.14 we get for its final value

Table 10.13 Calculating returns arithmetically

Criterion C1 Criterion C2
unnormalized unnormalized Weighted sum Normalized or

Alternatives weight D 1.0 weight D 1.0 unnormalized relative values

A1 200 150 350 350/1300 D 0.269

A2 300 50 350 350/1300 D 0.269

A3 500 100 600 600/1300 D 0.462

Column totals 1000 300 1300 1
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Table 10.14 Normalized criteria weights and normalized alternative weights from mea-
surements in the same scale (additive synthesis)

Criterion C1 Criterion C2
normalized weight normalized weight

Alternatives D 1000/1300 D 0.7692 D 300/1300 D 0.2308 Weighted sum

A1 200/1000 150/300 350/1300 = 0.2692

A2 300/1000 50/300 350/1300 = 0.2692

A3 500/1000 100/300 600/1300 = 0.4615

.200=1000/.1000=1300/C .150=300/.300=1300/ D 350=1300. It is clear that if
the priorities of the alternatives are not normalized one does not get the desired
outcome.

We have seen in this example that in order to obtain the correct final relative
values for the alternatives when measurements on a measurement scale are given,
it is essential that the priorities of the criteria be derived from the priorities of the
alternatives. Thus when the criteria depend on the alternatives we need to normalize
the values of the alternatives to obtain the final result. This procedure is known as
the distributive mode of the AHP. It is also used in case of functional dependence
of the alternatives on the alternatives and of the criteria on the alternatives. The
AHP is a special case of the Analytic Network Process. The dominant mode of
synthesis in the ANP with all its interdependencies is the distributive mode. The
ANP automatically assigns the criteria the correct weights, if one only uses the
normalized values of the alternatives under each criterion and also the normalized
values for each alternative under all the criteria without any special attention to
weighting the criteria.

10.9 Benefits, Opportunities, Costs and Risks

In many decision problems four kinds of concerns or merits are considered: benefits,
opportunities, costs and risks, which we abbreviate as BOCR. The first two are
advantageous and hence are positive and the second two are disadvantageous and are
therefore negative [6, 7]. Later we show how to determine the relative importance
of each of the BOCR.

There are two ways to combine BOCR priorities. The first is the traditional
one (used by economists) in which one does not need the relative importance of
the BOCR by simply forming their ratio BO=CR for each alternative obtained
from a separate hierarchy for each of the four BOCR merits and selecting that
alternative with the largest ratio. It is known as the ratio outcome. The second
derives corresponding normalized weights b, o, c, and r obtained respectively by
rating the best alternative (one at a time) for each of the BOCR with respect to
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strategic criteria illustrated with an example later. One then forms for the four values
of each alternative the expression

bBC oO � cC � rR:

The first way is a tradeoff between a unit of BO against a unit of CR, a unit of
the desirable against a unit of the undesirable. It may be advisable, for example,
that if the costs are considered to be negligibly smaller than the benefits to use only
the benefits for the best alternative of a decision and not form the ratio and vice
versa. The second way simply subtracts the sum of the weighted undesirables from
the sum of the weighted desirables to give the total gain or loss. It can give rise
to negative priorities and when applied to measurements in dollars, for example,
where the weights b, o, c, and r are the same, gives back the correct answer. We
have seen examples in which numbers or differences of numbers are made so small
that one faces the classical problem of dividing by zero or comparing things whose
measurements are near zero.

Two other formulas have been considered and set aside. They are bB C oO C
c=CC r=R, and bBCoOCc.1�C/C r.1�R/. The first with only bBCc=C makes
the benefits determine the outcome when the cost is very high, which is counter
intuitive. The second is always positive and is equal to bBCoO�cC� rRC .cC r/,
and adds a constant to the subtractive formula bBC oO � cC � rR.

Note that there is no advantage in using the weights b, o, c and r in the formula
BO=CR because we would be multiplying the result for each alternative by the same
constant bo=cr. Because all values lie between zero and one, we have from the series
expansions of the exponential and logarithmic functions the approximation:

bBoO

cCrR
D exp.log bBC log oO � log cC � log rR/

D 1C .log bBC log oO � log cC � log rR/C : : :
� 1C .bB� 1/C .oO� 1/� .cC � 1/� .rR � 1/
D 1C bBC oO � cC � rR:

Because one is added to the overall value of each alternative we can eliminate it.
The approximate result is that the ratio formula is similar to the total formula with
equal weights assumed for the B, O, C, R.

10.10 On the Admission of China to the World
Trade Organization

This section was taken from an analysis done in 2000 carried out before the US
Congress acted favorably on China joining the WTO and was hand-delivered to
many of the members of the committee including its Chairperson. Since 1986, China
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had been attempting to join the multilateral trade system, the General Agreement on
Tariffs and Trade (GATT) and, its successor, the World Trade Organization (WTO).
According to the rules of the 135-member nations of WTO, a candidate member
must reach a trade agreement with any existing member country that wishes to trade
with it. By the time this analysis was done, China signed bilateral agreements with
30 countries—including the US (November 1999)—out of 37 members that had
requested a trade deal with it [6].

As part of its negotiation deal with the US, China asked the US to remove its
annual review of China’s Normal Trade Relations (NTR) status, until 1998 called
Most Favored Nation (MFN) status. In March 2000, President Clinton sent a bill to
Congress requesting a Permanent Normal Trade Relations (PNTR) status for China.
The analysis was done and copies sent to leaders and some members in both houses
of Congress before the House of Representatives voted on the bill, May 24, 2000.
The decision by the US Congress on China’s trade-relations status will have an
influence on US interests, in both direct and indirect ways. Direct impacts include
changes in economic, security and political relations between the two countries as
the trade deal is actualized. Indirect impacts will occur when China becomes a WTO
member and adheres to WTO rules and principles. China has said that it would join
the WTO only if the US gives it Permanent Normal Trade Relations status.

It is likely that Congress will consider four options. The least likely is that the US
will deny China both PNTR and annual extension of NTR status. The other three
options are:

1. Passage of a clean PNTR bill: Congress grants China Permanent Normal
Trade Relations status with no conditions attached. This option would allow
implementation of the November 1999 WTO trade deal between China and the
Clinton administration. China would also carry out other WTO principles and
trade conditions.

2. Amendment of the current NTR status bill: This option would give China the
same trade position as other countries and disassociate trade from other issues.
As a supplement, a separate bill may be enacted to address other matters, such as
human rights, labor rights, and environmental issues.

3. Annual extension of NTR status: Congress extends China’s Normal Trade
Relations status for one more year, and, thus, maintains the status quo.

The conclusion of the study is that the best alternative is granting China PNTR
status. China was granted that status by the US Congress, possibly influenced by
this analysis.

Our analysis involves four steps. First, we prioritize the criteria in each of
the benefits, costs, opportunities and risks hierarchies with respect to the goal.
Figure 10.5 shows the resulting prioritization of these criteria. The alternatives and
their priorities are shown under each criterion both in the distributive and in the ideal
modes. The ideal priorities of the alternatives were used appropriately to synthesize
their final values beneath each hierachy.
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Benefits Synthesis (Ideal): PNTR 1.00 Amend NTR 0.51 Annual Extension 0.21

Opportunities Synthesis (Ideal): PNTR 1 Amend NTR 0.43 Annual Extension 0.13 

Costs Synthesis (which is more costly, Ideal): PNTR 0.31 Amend NTR 0.50 Annual Extension 0.87

Risks Synthesis (more risky, Ideal): PNTR 0.54 Amend NTR 0.53 Annual Extension 0.58

PNTR:0.59(1)

Amend NTR:0.28(0.47)

Annual Extension:0.13(0.22)

Increased US Exports to China
0.44

PNTR:0.58(1)

Amend NTR:0.31(0.53)

Annual Extension:0.11(0.19)

Improved Rule of Law
Intellectual Property Rights,

Improved Investment Environment
0.26

PNTR:0.65(1)

Amend NTR:0.23(0.53)

Annual Extension:0.12(0.19)

China's Promise to Respect
Anti-Dumping and

Section 201 Provisions
0.18

PNTR:0.54(1)

Amend NTR:0.30(0.55)

Amend NTR:0.30(0.30)

Increased Employment in US
0.07

PNTR:0.58(1)

Amend NTR:0.31(0.53)

Annual Extension:0.11(0.19)

Benefits to Lower Income
 Consumers

0.05

Benefits to  US (0.25)

PNTR:0.65 (1)

Amend NTR:0.23 (0.35)

Annual Extension:0.12 (0.18)

Improve
US-Sino Relations

0.55

PNTR:0.57 (1)

Amend NTR:0.33 (0.58)

Annual Extension:0.10 (0.18)

Promote Democracy
0.23

PNTR:0.57 (1)

Amend NTR:0.29 (0.51)

Annual Extension:0.14 (0.25)

Improve Environment
0.14

PNTR:0.54 (1)

Amend NTR:0.30 (0.44)

Annual Extension:0.16 (0.20)

Improve Human and Labor Rights
0.08

Opportunities for US (0.20)

PNTR                  : 0.59
Amend NTR        : 0.36
Annual Extension: 0.05

Loss of Trade as
Leverage over Other Issues

0.43

PNTR                  : 0.09
Amend NTR        : 0.29
Annual Extension: 0.62

US-China Conflict
0.25

PNTR                  : 0.09
Amend NTR        : 0.28
Annual Extension: 0.63

China Violating Regional Stability
0.25

PNTR                  : 0.09
Amend NTR        : 0.24
Annual Extension: 0.67

China's Reform Retreat
0.07

Risks for US (0.24)

PNTR                   :0.10 (0.17)
Amned NTR         :0.30 (0.5)
Annual Extension :0.60 (1)

Loss of US Access
to China's Market

0.83

PNTR                   :0.57 (1)
Amned NTR         :0.29 (0.50)
Annual Extension :0.14 (0.25)

Workers in Some Sectors
of US Economy May Lose Jobs

0.17

Costs to US (0.31)

Fig. 10.5 Hierarchies for rating benefits, costs, opportunities, and risks

The priorities shown in Fig. 10.5 were derived from judgments that compared the
elements involved in pairs. For readers to estimate the original pairwise judgments
(not shown here) one forms the ratio of the corresponding two priorities shown,
leave them as they are, or take the closest whole number, or its reciprocal if it is less
than 1.0.

The idealized values are shown in parentheses after the original distributive
priorities obtained from the eigenvector. The ideal values are obtained by dividing
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Table 10.15 Priority ratings for the merits: benefits, costs, opportunities, and risks

Benefits Opportunities Costs Risks

Economic (0.56) Growth (0.19) High Medium Very low Very low

Equity (0.37) Medium Low High Low

Security (0.32) Regional (0.03) Low Medium Medium High

Non-proliferation (0.08) Medium High Medium High

Threat to US (0.21) High High Very high Very high

Political (0.12) Constituencies (0.1) High Medium Very high High

American values (0.02) Very low Low Low Medium

Priorities 0.25 0.20 0.31 0.24

Intensities: very high (0.42), high (0.26), medium (0.16), low (0.1), very low (0.06)

Factors for Evaluating
the Decision

Economic : 0.56
-Growth (0.33)
-Equity (0.67)

Security : 0.32
-Regional Security (0.09)
-Non-Proliferation (0.24)
-Threat to US (0.67)

Political : 0.12
-Domestic Constituencies (0.80)
-American values (0.20)

Fig. 10.6 Prioritizing the strategic criteria to be used in rating the BOCR

each of the distributive priorities by the largest one among them. For the Costs
and Risks structures, the question is framed as to which is the most costly or risky
alternative. That is, the most costly alternative ends up with the highest priority.

It is likely that, in a particular decision, the benefits, costs, opportunities and
risks (BOCR) are not equally important, so we must also prioritize them. This is
shown in Table 10.15. The priorities for the economic, security and political factors
themselves were established as shown in Fig. 10.6 and used to rate the importance of
the top ideal alternative for each of the benefits, costs, opportunities and risks from
Table 10.15. Finally, we used the priorities of the latter to combine the synthesized
priorities of the alternatives in the four hierarchies, using both formulas BO=CR and
bBC oO � cC � rR to obtain their final ranking, as shown in Table 10.11.

How to derive the priority shown next to the goal of each of the four hierarchies
in Fig. 10.5 is outlined in Table 10.15. We rated each of the four merits: benefits,
costs, opportunities and risks of the dominant PNTR alternative, as it happens to
be in this case, in terms of intensities for each assessment criterion. The intensities,
Very High, High, Medium, Low, and Very Low were themselves prioritized in the
usual pairwise comparison matrix to determine their priorities. We then assigned
the appropriate intensity for each merit on all assessment criteria. The outcome is as
found in the bottom row of Table 10.15.

We are now able to obtain the overall priorities of the three major decision
alternatives, given in the last two columns of Table 10.16. We see in bold that PNTR
is the dominant alternative either way we synthesize as in the last two columns.
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Table 10.16 Four methods of synthesizing BOCR using the ideal mode

Benefits Opportunities Costs Risks bB C oO
Alternatives (0.25) (0.20) (0.31) (0.24) BO=CR �cC � rR

PNTR 1 1 0.31 0.54 5.97 0.22
Amend NTR 0.51 0.43 0.50 0.53 0.83 �0:07
Annual Exten. 0.21 0.13 0.87 0.58 0.05 �0:33

We have laid the basic foundation with hierarchies for what we need to deal with
networks involving interdependencies. Let us now turn to that subject.

10.11 The Analytic Network Process

To simplify and deal with complexity, people who work in decision-making
use mostly very simple hierarchic structures consisting of a goal, criteria, and
alternatives. Yet, not only are decisions obtained from a simple hierarchy of three
levels different from those obtained from a multilevel hierarchy, but also decisions
obtained from a network can be significantly different from those obtained from
a multilevel hierarchy. We cannot collapse complexity artificially into a simplistic
structure of two levels, criteria and alternatives, and hope to capture the outcome
of interactions in the form of highly condensed judgments that correctly reflect all
that goes on in the world. For 30 years we have worked with people to decompose
these judgments through more elaborate structures to organize our reasoning and
calculations in sophisticated but simple ways to serve our understanding of the
complexity around us. Experience indicates that it is not very difficult to do this
although it takes more time and effort, but not too much more. We have consulted
and lectured on this subject in many countries: extensively in the US, in Brazil,
Chile, the Czech Republic, Turkey, Poland, Indonesia, Switzerland, and soon in
England and in China. There seems to be worldwide interest in decisions with
dependence and feedback. My book on this subject has been translated to two
languages Russian and Chinese. Indeed, we must use feedback networks to arrive at
the kind of decisions needed to cope with the future.

Many decision problems cannot be structured hierarchically because they involve
the interaction and dependence of higher-level elements in a hierarchy on lower-
level elements. Not only does the importance of the criteria determine the impor-
tance of the alternatives as in a hierarchy, but also the importance of the alternatives
themselves determines the importance of the criteria. Two elephants chosen for work
should have powerful trunks. One of them is slightly stronger but has only one ear.
Strength alone would lead one to choose the strong but less attractive elephant unless
the criteria of strength and attractiveness are evaluated in terms of the elephants,
and strength receives a smaller value, and appearance a larger value because both
elephants are strong. Feedback also enables us to factor the future into the present
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Linear Hierarchy

component,
cluster
(Level)

element

A loop indicates that each
element depends only on itself.

Goal

Subcriteria

Criteria

Alternatives

Feedback Network with Components having
Inner and Outer Dependence among Their Elements

C4

C1

C2

C3

Feedback

Loop in a component indicates inner dependence of the elements in that component
with respect to a common property.

Arc from component
C4 to C2 indicates the
outer dependence of the
elements in C2 on the
elements in C4 with respect
to a common property.

Fig. 10.7 How a hierarchy compares to a network

to determine what we have to do to attain a desired future. The Analytic Network
Process is a generalization of the Analytic Hierarchy Process. The basic structures
are networks. Priorities are established in the same way they are in the AHP using
pairwise comparisons and judgments.

The feedback structure does not have the top-to-bottom form of a hierarchy but
looks more like a network, with cycles connecting its components of elements,
which we can no longer call levels, and with loops that connect a component to
itself (see Fig. 10.7). It also has sources and sinks. A source node is an origin
of paths of influence (importance) and never a destination of such paths. A sink
node is a destination of paths of influence and never an origin of such paths. A full
network can include source nodes; intermediate nodes that fall on paths from source
nodes, lie on cycles, or fall on paths to sink nodes; and finally sink nodes. Some
networks can contain only source and sink nodes. Still others can include only
source and cycle nodes or cycle and sink nodes or only cycle nodes. A decision
problem involving feedback arises often in practice. It can take on the form of any
of the networks just described. The challenge is to determine the priorities of the
elements in the network and in particular the alternatives of the decision and to
justify the validity of the outcome. Because feedback involves cycles, and cycling
is an infinite process, the operations needed to derive the priorities become more
demanding than is familiar with hierarchies.

To obtain the overall dependence of elements such as the criteria, one proceeds as
follows: Construct a zero-one matrix of criteria against criteria using the number one
to signify dependence of one criterion on another, and zero otherwise. A criterion
need not depend on itself as an industry, for example, may not use its own output.
For each column of this matrix, construct a pairwise comparison matrix only for the
dependent criteria, derive an eigenvector, and augment it with zeros for the excluded
criteria. If a column is all zeros, then assign a zero vector to represent the priorities.
The question in the comparison would be: For a given criterion, which of two criteria
depends more on that criterion with respect to the goal or with respect to a higher-
order controlling criterion?

In Fig. 10.7, a view is shown of a hierarchy and a network. A hierarchy is
comprised of a goal, levels of elements and connections between the elements.
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These connections go only to elements in lower levels. A network has clusters of
elements, with the elements being connected to elements in another cluster (outer
dependence) or the same cluster (inner dependence). A hierarchy is a special case
of a network with connections going only in one direction. In a view of a hierarchy,
such as that shown in Fig. 10.7, the levels in the hierarchy correspond to clusters
in a network. One example of inner dependence in a component consisting of a
father mother and baby is whom does the baby depend on more for its survival,
its mother or itself. The baby depends more on its mother than on itself. Again
suppose one makes advertising by newspaper and by television. It is clear that the
two influence each other because the newspaper writers watch television and need
to make their message unique in some way, and vice versa. If we think about it
carefully everything can be seen to influence everything including itself according
to many criteria. The world is far more interdependent than we know how to deal
with using our existing ways of thinking and acting. We know it but how to deal
with it. The ANP appears to be a plausible logical way to deal with dependence.

The priorities derived from pairwise comparison matrices are entered as parts
of the columns of a supermatrix. The supermatrix represents the influence priority
of an element on the left of the matrix on an element at the top of the matrix.
A supermatrix along with an example of one of its general entry matrices is shown

The Supermatrix of a Network

C1 C2 CN

e11e12 e1n1
e21e22 e2n2

eN1eN2 eNnN

W11 W12 W1N

W21 W22 W2N

WN1 WN2 WNN

W =

C1

C2

CN
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e12

e1n1

e21
e22

e2n2

eN1
eN2

e
NuN

Wi1 Wi1 Wi1

Wij =

(j1) (j2) (jnj)

(j1) (j2) (jnj)
Wi2 Wi2 Wi2

Wini
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Wini

(j1) (j2) (jnj)

W ij Component of Supermatrix

Fig. 10.8 The supermatrix of a network and detail of a component in it
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0 0 0 0

0 0 0

0

0

0

0 0

0

0

0
0

0

0

W21

W=

Wn-1,n-2

0 Wn,n-1 I

W32

0

C1

C2

CN

e11

e1n1

e21

e2n2

eN1

eNnN

C1 C2 CN-2 CN-1 CN

e11 e1n1
e21 e2n2

eN1 eNnN
e(N-2)1 e(N-2)nN-2

e(N-1)1 e(N-1)nN-1

Wn,n-1 Wn-1,n-2 W32W21 Wn,n-1Wn-1,n-2 W32 Wn,n-1 Wn-1,n-2 Wn,n-1 I

0
0

0

0
0

0

0
0

0

0
0

0

0
0

0

Wk=

Wn,n-1 Wn-1,n-2 W32W21 Wn,n-1Wn-1,n-2 W32 Wn,n-1 Wn-1,n-2 Wn,n-1 I

0
0

0

0
0

0

0
0

0

0
0

0

0
0

0

.... ....

Supermatrix to nth Power Gives Hierarchical
Synthesis

for k>n-1

Fig. 10.9 The supermatrix of a hierarchy with the resulting limit matrix corresponding to
hierarchical composition
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in Fig. 10.8. The component Ci in the supermatrix includes all the priority vectors
derived for nodes that are “parent” nodes in the Ci cluster. Figure 10.9 gives the
supermatrix of a hierarchy along with the kth power that yields the principle of
hierarchic composition in its .k; 1/ position.

Hierarchic composition yields multilinear forms that are of course nonlinear and
have the form

X

i1;��� ;ip
xi1
1 xi2

2 � � � xip
p

where ij indicates the jth level of the hierarchy and the xj is the priority of an
element in that level. The richer the structure of a hierarchy in breadth and depth, the
more elaborate are the multilinear forms derived from it. There seems to be a good
opportunity to investigate the relationship obtained by composition to covariant
tensors and their algebraic properties. Powers of a variable allow for the possibility
that the variable is repeated in the composition. Multilinear forms are related to
polynomials and these by the Stone-Weierstrass theorem can be used to approximate
arbitrarily close to continuous functions. Such functions may be assumed to underlie
the representations of complex events in a decision. In this manner, mathematics and
the apparent complicated use of numbers in decision-making can be related in a way
that one can understand.

More concretely we have the covariant tensor

wh
i D

Nh�1;��� ;N1X

i2;��� ;ih�1D1
wh�1

i1;i2 � � �w2ih�2;ih�1
w1ih�1

i1 � i

for the priority of the ith element in the hth level of the hierarchy. The composite
vector Wh for the entire hth level is represented by the vector with covariant tensorial
components. Similarly, the left eigenvector approach to a hierarchy gives rise to a
vector with contravariant tensor components.

The classical problem of relating space (geometry) and time to subjective thought
can perhaps be examined by showing that the functions of mathematical analysis
(and hence also the laws of physics) are derivable as truncated series from the above
tensors by composition in an appropriate hierarchy. The foregoing is reminiscent of
the theorem in dimensional analysis that any physical variable is proportional to the
product of powers of primary variables.

Multilinear forms are obviously nonlinear and are a powerful building stone to
go from linearity to non-linearity through the use of complex structures (hierarchies
and networks) and enable us to deal with the world according to our deepest ways
of understanding and judgment.

In the ANP we look for steady state priorities from a limit supermatrix. To obtain
the limit we must raise the matrix to powers. The reason for that is that to capture
overall influence (dominance) one must consider all transitivities of different length.
These are each represented by the corresponding power of the supermatrix. For
each such matrix, the influence of an element on all others is obtained by taking
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the sum of its corresponding row. If we do that for all the elements, we obtain a
vector of influence from that matrix. The sum of all such vectors gives the overall
influence. Cesaro summability tells us that it is sufficient to obtain the outcome from
the limiting power of the supermatrix.

The outcome of the ANP is nonlinear and rather complex. We know, from a
theorem due to J.J. Sylvester that when the multiplicity of each eigenvalue of a
matrix W is equal to one that an entire function f .x/ (power series expansion of f .x/
converges for all finite values of x) with x replaced by W, is given by

f .W/ D
nX

iD1
f .�i/Z.�i/;

Z.�i/ D
Q

j¤i.�jI � A/
Q

j¤i.�j � �i/
;

nX

iD1
Z.�i/ D 1; Z.�i/Z.�j/ D 0; Z2.�i/ D Z.�i/;

where I and 0 are the identity and null matrices respectively.
A similar expression is also available when some or all of the eigenvalues have

multiplicities greater than one. We can easily see that if, as we need in our case,
f .W/ D Wk, then f .�i/ D �k

i and as k ! 1 the only terms that give a finite
nonzero value are those for which the modulus of �i is equal to one.

The fact that W is stochastic ensures this because

max
nX

jD1
aij 	

nX

jD1
aij

wj

wi
D �max for max wi

min
nX

jD1
aij �

nX

jD1
aij

wj

wi
D �max for min wi

Thus for a row stochastic matrix we have

1 D min
nX

jD1
aij � �max � max

nX

jD1
aij D 1;

and �max D 1. See this author’s 2001 book on the ANP [4], and also the manual
for the ANP software [5]. Here are two examples that illustrate the validity of the
supermatrix as a general framework for prioritization. The first as a generalization
of hierarchies that gives back hierarchic answers, and the second as a method of
computation and synthesis that carries the burden of computation with the user
mostly providing judgments.
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Goal
Satisfaction with School

Learning

School
A

School
C

School
B

Friends School
Life

Vocational
Training

College
Prep.

Music
Classes

a

School
life

Vocational
training

College
preparation

Music
classes

A B C

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0.45 0.77 0.25 0.69 1 0 0
0.09 0.06 0.50 0.09 0 1 0
0.46 0.17 0.25 0.22 0 0 1

School
life

Vocational
training

College
preparation

Music
classes

A B C

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0.45 0.77 0.25 0.69 1 0 0
0.09 0.06 0.50 0.09 0 1 0

Goal Learning Friends

Goal 0 0 0
Learning 0 0 0
Friends 0 0 0

School life 0 0 0
Vocational training 0 0 0
College preparation 0 0 0

Music classes 0 0 0
Alternative A 0.3676 0.16 0.33
Alternative B 0.3781 0.59 0.33
Alternative C 0.2543 0.25 0.34

Goal Learning Friends

Goal 0 0 0
Learning 0.32 0 0
Friends 0.14 0 0

School life 0.03 0 0
Vocational training 0.13 0 0
College preparation 0.24 0 0

Music classes 0.14 0 0
Alternative A 0 0.16 0.33
Alternative B 0 0.59 0.33
Alternative C 0 0.25 0.34 0.46 0.17 0.25 0.22 0 0 1

The School Hierarchy as Supermatrix

Limiting Supermatrix & Hierarchic Composition

b

Fig. 10.10 (a) School choice hierarchy composition. (b) Supermatrix of school choice hierarchy
gives same results as hierarchic composition

10.11.1 The Classic AHP School Example as an ANP Model

We show in Fig. 10.10a, b above, the hierarchy, and its corresponding supermatrix,
and its limit supermatrix to obtain the priorities of three schools involved in a
decision to choose one for the author’s son. They are precisely what one obtains
by hierarchic composition using the AHP. Figure 10.10a shows the priorities of
the criteria with respect to the goal and those of the alternatives with respect to
each criterion. There is an identity submatrix for the alternatives with respect to
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the alternatives in the lower right hand part of the matrix, because each alternative
depends on itself. The level of alternatives in a hierarchy is a sink cluster of nodes
that absorbs priorities but does not pass them on. This calls for using an identity
submatrix for them in the supermatrix. The last three entries of column one of
Fig. 10.10b give the overall priorities of the alternatives with respect to the goal.

10.11.2 Criteria Weights Automatically Derived
from Supermatrix

Let us revisit the example we gave earlier in Table 10.13 of three alternatives and
two criteria measured in the same unit. We use interdependence to determine what
overall weight the criteria should have without computing the relative sum of the
alternatives under each criterion to the total. Since we are dealing with tangibles
we normalize each column to obtain the priorities for the alternatives under each
criterion. We also normalize each row to obtain the priorities of the criteria with
respect to each alternative. We enter these in a supermatrix as shown in Table 10.17;
there is no need to weight the supermatrix because it is already column stochastic,
so we can raise it to limiting powers right away and obtain the supermatrix in
Table 10.18 in which, in this case it turns out that, all the columns are identical.

Table 10.17 The
supermatrix

Alternatives Criteria

A1 A2 A3 C1 C2
Alternatives A1 0.000 0.000 0.000 0.200 0.500

A2 0.000 0.000 0.000 0.300 0.167

A3 0.000 0.000 0.000 0.500 0.333

Criteria C1 0.571 0.857 0.833 0.000 0.000

C2 0.429 0.143 0.167 0.000 0.000

Table 10.18 The limit
supermatrix

Alternatives Criteria

A1 A2 A3 C1 C2
Alternatives A1 0.135 0.135 0.135 0.135 0.135

A2 0.135 0.135 0.135 0.135 0.135

A3 0.231 0.231 0.231 0.231 0.231

Criteria C1 0.385 0.385 0.385 0.385 0.385

C2 0.115 0.115 0.115 0.115 0.115
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10.12 Two Examples of Estimating Market Share: The ANP
with a Single Benefits Control Criterion

A market share estimation model is structured as a network of clusters and nodes.
The object is to determine the relative market share of competitors in a particular
business, or endeavor, by considering what affects market share in that business
and introducing them as clusters, nodes and influence links in a network. No actual
statistics are used in these examples, but only judgments by experts about relative
influence. The decision alternatives are the competitors and the synthesized results
are their relative dominance. The relative dominance results can then be compared
against some outside measure such as dollars. If dollar income is the measure being
used, the incomes of the competitors must be normalized to get it in terms of relative
market share.

The clusters might include customers, service, economics, advertising, and
quality of goods. The customers cluster might then include nodes for the age
groups of the people that buy from the business: teenagers, 20–33 year olds, 34–
55 year olds, 55–70 year olds, and over 70. The advertising cluster might include
newspapers, TV, Radio, and Fliers. After all the nodes are created start by picking a
node and linking it to the other nodes in the model that influence it. The “children”
nodes will then be pairwise compared with respect to that node as a “parent” node.
An arrow will automatically appear going from the cluster the parent node is in to
the cluster with its children nodes. When a node is linked to nodes in its own cluster,
the arrow becomes a loop on that cluster and we say there is inner dependence.

The linked nodes in a given cluster are pairwise compared for their influence on
the node they are linked from (the parent node) to determine the priority of their
influence on the parent node. Comparisons are made as to which is more important
to the parent node in capturing “market share”. These priorities are then entered in
the supermatrix.

The clusters are also pairwise compared to establish their importance with respect
to each cluster they are linked from, and the resulting matrix of numbers is used to
weight the components of the original unweighted supermatrix to give the weighted
supermatrix. This matrix is then raised to powers until it converges to give the limit
supermatrix. The relative values for the companies are obtained from the columns
of the limit supermatrix that in this case, with the help of Cesaro summability, are
reduced in the software to be all the same. Normalizing these numbers yields the
relative market share.

If comparison data in terms of sales in dollars, or number of members, or some
other known measures are available, one can use their relative values to validate
the outcome. The AHP/ANP has a compatibility metric to determine how close the
ANP result is to the known measure. It involves taking the Hadamard product of the
matrix of ratios of the ANP outcome and the transform of the matrix of ratios of the
actual outcome summing all the coefficients and dividing by n2. The requirement is
that the value should be close to 1 and certainly not much more than 1.1.
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1 Alternatives

1 Walmart 2 KMart 3 Target

5 Merchandise

2 Quality 3 Variety1 Low Cost

3 Locations

2 Suburban1 Urban 3 Rural

2 Advertising

4 Direct Mall2 Print Media1 TV 3 Radio

6 Characteristics of Store

1 Lighting 2 Organization 3 Cleaniness

4 Employees 5 Parking

4 Customer Groups

1 White Collar 2 Blue Collar

3 Families 4 Teenagers

Fig. 10.11 The clusters and nodes of a model to estimate the relative market share of Walmart,
Kmart and Target

We will give two examples of market share estimation showing details of the
process in the first example and showing only the models and results in the second.

10.12.1 Example 1: Estimating the Relative Market Share
of Walmart, Kmart and Target

The network for the ANP model shown in Fig. 10.11 describes quite well the
influences that determine the market share of these companies. We will not use
space in this chapter to describe the clusters and their nodes in greater detail.

10.12.1.1 The Unweighted Supermatrix

The unweighted supermatrix is constructed from the priorities derived from the
different pairwise comparisons. The nodes, grouped by the clusters they belong
to, are the labels of the rows and columns of the supermatrix. The column for a
node a contains the priorities of the nodes that have been pairwise compared with
respect to a. The supermatrix for the network in Fig. 10.11 is shown in Table 10.19.
In Tables 10.19, 10.20, and 10.21 the following abbreviations have been used:

• Al—Alternatives, WM—Walmart, KM—KMart, Ta—Target;
• Ad—Advertising, TV, PM—Print Media, Ra—Radio, DM—Direct Mail;
• Lo—Location, Ur—Urban, Su—Suburban, Ru—Rural;
• CG—Customer Groups, WC—White Collar, BC—Blue Collar, Fa—Families,

Te—Teenagers;
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Table 10.19 The unweighted supermatrix

1 Al 2 Ad 3 Lo

1 WM 2 KM 3 Ta 1 TV 2 PM 3 Ra 4 DM 1 Ur 2 Su 3 Ru

1 Al 1 WM 0.000 0.833 0.833 0.687 0.540 0.634 0.661 0.614 0.652 0.683

2 KM 0.750 0.000 0.167 0.186 0.297 0.174 0.208 0.268 0.235 0.200

3 Ta 0.250 0.167 0.000 0.127 0.163 0.192 0.131 0.117 0.113 0.117

2 Ad 1 TV 0.553 0.176 0.188 0.000 0.000 0.000 0.000 0.288 0.543 0.558

2 PM 0.202 0.349 0.428 0.750 0.000 0.800 0.000 0.381 0.231 0.175

3 Ra 0.062 0.056 0.055 0.000 0.000 0.000 0.000 0.059 0.053 0.048

4 DM 0.183 0.420 0.330 0.250 0.000 0.200 0.000 0.273 0.173 0.219

3 Lo 1 Ur 0.114 0.084 0.086 0.443 0.126 0.080 0.099 0.000 0.000 0.000

2 Su 0.405 0.444 0.628 0.387 0.416 0.609 0.537 0.000 0.000 0.000

3 Ru 0.481 0.472 0.285 0.169 0.458 0.311 0.364 0.000 0.000 0.000

4 CG 1 WC 0.141 0.114 0.208 0.165 0.155 0.116 0.120 0.078 0.198 0.092

2 BC 0.217 0.214 0.117 0.165 0.155 0.198 0.203 0.223 0.116 0.224

3 Fa 0.579 0.623 0.620 0.621 0.646 0.641 0.635 0.656 0.641 0.645

4 Te 0.063 0.049 0.055 0.048 0.043 0.045 0.041 0.043 0.045 0.038

5 Me 1 LC 0.362 0.333 0.168 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 Qu 0.261 0.140 0.484 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 Va 0.377 0.528 0.349 0.000 0.000 0.000 0.000 0.000 0.000 0.000

6 CS 1 Li 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 Or 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 Cl 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4 Em 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

5 Pa 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(continued)

• Me—Merchandise, LC—Low Cost, Qu—Quality, Va—Variety;
• CS—Characteristics of Store, Li—Lighting, Or—Organization, Cl—Cleanliness,

Em—Employees, Pa—Parking.

10.12.1.2 The Cluster Matrix

The clusters themselves must be compared to establish their relative importance
and use it to weight the supermatrix to make it column stochastic. A cluster impacts
another cluster when it is linked from it, that is, when at least one node in the source
cluster is linked to nodes in the target cluster. The clusters linked from the source
cluster are pairwise compared for the importance of their impact on it with respect
to market share, resulting in the column of priorities for that cluster in the cluster
matrix. The process is repeated for each cluster in the network to obtain the matrix
shown in Table 10.20. An interpretation of the priorities in the first column is that
Merchandise (0.442) and Locations (0.276) have the most impact on Alternatives,
the three competitors.
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Table 10.19 (continued)

4 CG 5 Me 6 CS

1 WC 2 BC 3 Fa 4 Te 1 LC 2 Qu 3 Va 1 Li 2 Or 3 Cl 4 Em 5 Pa

1 Al 1 WM 0.637 0.661 0.630 0.691 0.661 0.614 0.648 0.667 0.655 0.570 0.644 0.558

2 KM 0.105 0.208 0.218 0.149 0.208 0.117 0.122 0.111 0.095 0.097 0.085 0.122

3 Ta 0.258 0.131 0.151 0.160 0.131 0.268 0.230 0.222 0.250 0.333 0.271 0.320

2 Ad 1 TV 0.323 0.510 0.508 0.634 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 PM 0.214 0.221 0.270 0.170 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 Ra 0.059 0.063 0.049 0.096 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4 DM 0.404 0.206 0.173 0.100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 Lo 1 Ur 0.167 0.094 0.096 0.109 0.268 0.105 0.094 0.100 0.091 0.091 0.111 0.067

2 Su 0.833 0.280 0.308 0.309 0.117 0.605 0.627 0.433 0.455 0.455 0.444 0.293

3 Ru 0.000 0.627 0.596 0.582 0.614 0.291 0.280 0.466 0.455 0.455 0.444 0.641

4 CG 1 WC 0.000 0.000 0.279 0.085 0.051 0.222 0.165 0.383 0.187 0.242 0.165 0.000

2 BC 0.000 0.000 0.649 0.177 0.112 0.159 0.165 0.383 0.187 0.208 0.165 0.000

3 Fa 0.857 0.857 0.000 0.737 0.618 0.566 0.621 0.185 0.583 0.494 0.621 0.000

4 Te 0.143 0.143 0.072 0.000 0.219 0.053 0.048 0.048 0.043 0.056 0.048 0.000

5 Me 1 LC 0.000 0.000 0.000 0.000 0.000 0.800 0.800 0.000 0.000 0.000 0.000 0.000

2 Quality 0.000 0.000 0.000 0.000 0.750 0.000 0.200 0.000 0.000 0.000 0.000 0.000

3 Variety 0.000 0.000 0.000 0.000 0.250 0.200 0.000 0.000 1.000 0.000 0.000 0.000

6 CS 1 Li 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.169 0.121 0.000 0.250

2 Or 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.251 0.000 0.575 0.200 0.750

3 Cl 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.673 0.469 0.000 0.800 0.000

4 Em 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.308 0.304 0.000 0.000

5 Pa 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.075 0.055 0.000 0.000 0.000

10.12.1.3 The Weighted Supermatrix

The weighted supermatrix shown in Table 10.21 is obtained by multiplying each
entry in a block of the component at the top of the supermatrix by the priority
of influence of the component on the left from the cluster matrix in Table 10.20.
For example, the first entry, 0.137, in Table 10.20 is used to multiply each of the
nine entries in the block (Alternatives, Alternatives) in the unweighted supermatrix
shown in Table 10.19. This gives the entries for the (Alternatives, Alternatives)
component in the weighted supermatrix of Table 10.21. Each column in the
weighted supermatrix has a sum of 1, and thus the matrix is stochastic.

The limit supermatrix is not shown here to save space. It is obtained from the
weighted supermatrix by raising it to powers until it converges so that all columns
are identical. From the top part of the first column of the limit supermatrix we get
the priorities we seek and normalize. We show what they are in Table 10.22.
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Table 10.20 The cluster matrix

1. Al 2. Ad 3. Li 4. CG 5. Me 6. CG

1. Alternatives (Al) 0:137 0:174 0:094 0:057 0:049 0:037

2. Advertising (Ad) 0:091 0:220 0:280 0:234 0:000 0:000

3. Locations (Li) 0:276 0:176 0:000 0:169 0:102 0:112

4. Customer groups (CG) 0:054 0:429 0:627 0:540 0:252 0:441

5. Merchandise (Me) 0:442 0:000 0:000 0:000 0:596 0:316

6. Characteristics of store (CS) 0:000 0:000 0:000 0:000 0:000 0:094

Table 10.21 The weighted supermatrix

1 Al 2 Ad 3 Lo

1 WM 2 KM 3 Ta 1 TV 2 PM 3 Ra 4 DM 1 Ur 2 Su 3 Ru

1 Al 1 WM 0:000 0:114 0:114 0:120 0:121 0:110 0:148 0:058 0:061 0:064

2 KM 0:103 0:000 0:023 0:033 0:066 0:030 0:047 0:025 0:022 0:019

3 Ta 0:034 0:023 0:000 0:022 0:037 0:033 0:029 0:011 0:011 0:011

2 Ad 1 TV 0:050 0:016 0:017 0:000 0:000 0:000 0:000 0:080 0:152 0:156

2 PM 0:018 0:032 0:039 0:165 0:000 0:176 0:000 0:106 0:064 0:049

3 Ra 0:006 0:005 0:005 0:000 0:000 0:000 0:000 0:016 0:015 0:014

4 DM 0:017 0:038 0:030 0:055 0:000 0:044 0:000 0:076 0:048 0:061

3 Lo 1 Ur 0:031 0:023 0:024 0:078 0:028 0:014 0:022 0:000 0:000 0:000

2 Su 0:112 0:123 0:174 0:068 0:094 0:107 0:121 0:000 0:000 0:000

3 Ru 0:133 0:130 0:079 0:030 0:103 0:055 0:082 0:000 0:000 0:000

4 CG 1 WC 0:008 0:006 0:011 0:071 0:086 0:050 0:066 0:049 0:124 0:058

2 BC 0:012 0:011 0:006 0:071 0:086 0:085 0:112 0:140 0:073 0:141

3 Fa 0:031 0:033 0:033 0:267 0:356 0:275 0:350 0:411 0:402 0:404

4 Te 0:003 0:003 0:003 0:021 0:024 0:019 0:023 0:027 0:028 0:024

5 Me 1 LC 0:160 0:147 0:074 0:000 0:000 0:000 0:000 0:000 0:000 0:000

2 Qu 0:115 0:062 0:214 0:000 0:000 0:000 0:000 0:000 0:000 0:000

3 Va 0:166 0:233 0:154 0:000 0:000 0:000 0:000 0:000 0:000 0:000

6 CS 1 Li 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000

2 Or 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000

3 Cl 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000

4 Em 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000

5 Pa 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000

(continued)
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Table 10.21 (continued)

4 CG 5 Me 6 CS

1 WC 2 BC 3 Fa 4 Te 1 LC 2 Qu 3 Va 1 Li 2 Or 3 Cl 4 Em 5 Pa

1 Al 1 WM 0:036 0:038 0:036 0:040 0:033 0:030 0:032 0:036 0:024 0:031 0:035 0:086

2 KM 0:006 0:012 0:012 0:009 0:010 0:006 0:006 0:006 0:004 0:005 0:005 0:019

3 Ta 0:015 0:007 0:009 0:009 0:006 0:013 0:011 0:012 0:009 0:018 0:015 0:049

2 Ad 1 TV 0:076 0:119 0:119 0:148 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000

2 PM 0:050 0:052 0:063 0:040 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000

3 Ra 0:014 0:015 0:012 0:023 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000

4 DM 0:095 0:048 0:040 0:023 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000

3 Lo 1 Ur 0:028 0:016 0:016 0:018 0:027 0:011 0:010 0:016 0:010 0:015 0:018 0:031

2 Su 0:141 0:047 0:052 0:052 0:012 0:062 0:064 0:071 0:051 0:074 0:073 0:135

3 Ru 0:000 0:106 0:101 0:098 0:063 0:030 0:029 0:076 0:051 0:074 0:073 0:295

4 CG 1 WC 0:000 0:000 0:151 0:046 0:013 0:056 0:042 0:247 0:082 0:156 0:107 0:000

2 BC 0:000 0:000 0:350 0:096 0:028 0:040 0:042 0:247 0:082 0:134 0:107 0:000

3 Fa 0:463 0:463 0:000 0:398 0:156 0:143 0:157 0:119 0:257 0:318 0:400 0:000

4 Te 0:077 0:077 0:039 0:000 0:055 0:013 0:012 0:031 0:019 0:036 0:031 0:000

5 Me 1 LC 0:000 0:000 0:000 0:000 0:000 0:477 0:477 0:000 0:000 0:000 0:000 0:000

2 Qu 0:000 0:000 0:000 0:000 0:447 0:000 0:119 0:000 0:000 0:000 0:000 0:000

3 Va 0:000 0:000 0:000 0:000 0:149 0:119 0:000 0:000 0:316 0:000 0:000 0:000

6 CS 1 Li 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:016 0:017 0:000 0:097

2 Or 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:035 0:000 0:079 0:027 0:290

3 Cl 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:092 0:044 0:000 0:110 0:000

4 Em 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:029 0:042 0:000 0:000

5 Pa 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:010 0:005 0:000 0:000 0:000

Table 10.22 The synthesized results for the alternatives

Values Normalized Actual market
from limit Actual values values from share as dollar

Alternatives supermatrix July 13, 1998 supermatrix sales normalized

Walmart 0.057 58 billion $ 0.599 54.8

KMart 0.024 27.5 billion $ 0.248 25.9

Target 0.015 20.3 billion $ 0.254 19.2

10.12.1.4 Synthesized Results from the Limit Supermatrix

The relative market share of the alternatives Walmart, Kmart and Target from the
limit supermatrix are: 0.057, 0.024 and 0.015. When normalized they are 0.599,
0.248 and 0.154.

The relative market share values obtained from the model were compared with
the actual sales values by computing the compatibility index. The Compatibility
Index, illustrated in the next example, is used to determine how close two sets of
numbers from a ratio scale or an absolute scale are to each other. We form the matrix
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of ratios of each set and multiply element-wise one matrix by the transpose of the
other (the Hadamard product), add all the entries of the resulting matrix and divide
the outcome by n2, where n is the order of the matrix which is the number of entries
in each vector. The outcome should not exceed the value of 1.1. In this example the
result is equal to 1.016 and falls below 1.1 and therefore is an acceptable outcome.

10.12.2 Example 2: US Athletic Footwear Market in 2000

My student Maria Lagasca has studied the US Athletic Footwear market. That
market has seen tremendous growth over the years. Not only are these products used
for specific athletic purposes but also they have been used as casual wear because
of its ability to provide comfort and agility to consumers. Interest in the industry
has grown to a large extent because of advances in research and development for
durable yet comfortable materials. The industry is also considered as one of the
heaviest advertisers based on a study made last year along with other industries
such as apparel, beer/wine/liquor, computers and electronics. The study illustrated
in Fig. 10.12 aims at estimating the market share using the ANP with the aid of
SuperDecisions software. The estimates are then compared against the actual market
share of various manufacturers in the year 2000. As the industry is fragmented (with
many players holding fewer shares of the market), the other manufacturers have
been lumped under the “Others” category as they are considered as homogeneous
given the factors used in the analysis.

10.12.2.1 Clusters and Elements (Nodes)

1. Alternatives (brands competing against each other in the market)

(a) Nike—Nike as an alternative brand for athletic footwear.
(b) Reebok—Reebok as an alternative brand for athletic footwear.

1 Alternatives

3 Marketing2 Merchandise

4 Others

1 Nike 2 Reebok 3 Adidas Others

1 Frequency 3 Creativity

5 Event Sponsorships4 Brand Equity

2 Celebrity Endorsements

1 Number of Retail Locations 2 Store Design Layout 3 Distribution

5 Market Segments served

4 Product Flexability2 Quality1 Style 3 Price

Fig. 10.12 The clusters and nodes of a model to estimate the relative market share of footware
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(c) Adidas—Adidas as an alternative brand for athletic footwear.
(d) Others—Other alternative brands (And1, Skechers, New Balance, Timber-

land, etc.) for athletic footwear.

2. Merchandise (affects each brand and each brand affects the type of merchandis-
ing strategy)

(a) Style—the ability of a manufacturer to immediately respond to customers
tastes and needs or create demand by introducing new products to the market.

(b) Quality—Quality includes the reliability / durability of products including
the ability to withstand pressure and frequent use.

(c) Price—defined as value for money.
(d) Product Flexibility—Ability of the product to substitute for other footwear,

i.e. Running shoes can be used for casual wear and other purposes.
(e) Market Segments Served—Ability of the manufacturer to cover various

target segments through their different product lines, i.e. men, women,
children, basketball players, soccer players, etc.

3. Marketing (Marketing affects each of the brands and each brand affects the type
of marketing strategy)

(a) Frequency—Frequency of advertising regardless of media.
(b) Celebrity Endorsements—Endorsement by a well-known popular sports

celebrity.
(c) Creativity—Creativity of marketing advertisements regardless of length.
(d) Brand Equity—Ability to create brand awareness and recognition among

various segments of the market.
(e) Event Sponsorships—a marketing tool to advertise and create awareness for

brand.

4. Others (Other factors affect the brand and each brand affects the type of strategy
for these factors; also the Marketing strategy affects these factors)

(a) Number of retail locations—The number and the coverage of retail locations
across the United States.

(b) Store design and layout—includes placement and effective layout of mer-
chandise vis-à-vis competitors.

(c) Distribution—shelf space and coverage of merchandise across the United
States. Includes relationships with distributors and even with own distribu-
tion chain.

Comparisons were done based on information gathered for each individual
manufacturer. Advertising was determined due to factors such as each manufac-
turer’s relative selling, general, and administrative expenses from their annual
reports. Advertisements (mostly in print) were also viewed and use of celebrity
endorsements in the same period were also assessed relative to each brand to
measure creativity as well as frequency. Brand equity was measured on more
intuitive terms i.e. Nike’s Swoosh logo is considered as one of the most recognized
logos and brands, which gave them an advantage over the other brands.
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Other factors, such as the number of retail locations, were assessed by counting
the total number of such locations (from individual websites). Store layout and
distribution information were gathered from the websites as well to assess the
relative effectiveness of each factor. For instance, Reebok and Adidas, have fewer
individual stores than Nike (Factory outlets and Niketown) and tend to be distributed
in department stores or sporting goods stores facing more competition from other
brands because of less exclusivity.

In terms of merchandise, prices are relatively the same for all brands although
some like Adidas and Reebok may seem to be higher than other brands because of
quality. Nike and other athletic footwear products tend to be more flexible in terms
of how consumers use the products i.e. their basketball shoes are often substituted
for casual wear and running shoes, which leads to a broader target segment. Also,
Nike and the other brands seem to serve broader market segments specifically
women and children. Their line extensions, e.g. Michael Jordan for men, have been
extended to children.

As more and more people substitute athletic footwear for everyday use, Nike and
the other brands seem to be stronger in catering to this need, thereby leading to more
market share.

Table 10.23 gives the actual and the estimated market share for each brand. They
are surprisingly close. This example was done as a take-home exercise. In this case
the compatibility index obtained from the study is 1.001428, which is very good.
We would be glad to provide the interested reader with at least a dozen such market
share examples often worked out in class in about 1 hour without prior preparation or
looking at numbers. They all have such close outcomes, because students, interested
and familiar with the example, provided the judgments.

We now look at full blown decisions involving BOCR. First we give an outline
of the steps recommended in applying the ANP.

10.13 Outline of the Steps of the ANP

1. Describe the decision problem in detail including its objectives, criteria and
subcriteria, actors and their objectives and the possible outcomes of that
decision. Give details of influences that determine how that decision may
come out.

2. Determine the control criteria and subcriteria in the four control hierarchies
one each for the benefits, opportunities, costs and risks of that decision and
obtain their priorities from paired comparisons matrices. If a control criterion
or subcriterion has a global priority of 3% or less, you may carefully consider
eliminating it from further consideration. The software automatically deals only
with those criteria or subcriteria that have subnets under them. For benefits
and opportunities, ask what gives the most benefits or presents the greatest
opportunity to influence fulfillment of that control criterion. For costs and risks,
ask what incurs the most cost or faces the greatest risk. Sometimes (very rarely),
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Table 10.23 Footwear actual statistics and model results along with the compatibility index

Alternatives A1 A2 A3 A4

Actual 39.200 15:100 10:900 34:800

market share

Estimated 40.670 15:040 11:330 32:970

market share
from ANP model

Pairwise comparison matrix from actual market share data

A1 1 2:596026 3:59633 1:12643678

A2 0.385204082 1 1:385321 0:43390805

A3 0.278061224 0:721854 1 0:31321839

A4 0.887755102 2:304636 3:192661 1

Transpose of comparison matrix from estimated market share

A1 1 0:369806 0:278584 0:81067126

A2 2.70412234 1 0:753324 2:19215426

A3 3.589585172 1:327449 1 2:90997352

A4 1.233545648 0:456172 0:343646 1

Result of Hadamard (element-wise) multiplication of previous two matrices

A1 A2 A3 A4 Row sums

A1 1 0:960026 1:001879 0:91316992 3:875075

A2 1.041638963 1 1:043596 0:95119337 4:036429

A3 0.998124448 0:958225 1 0:91145722 3:867807

A4 1.095086442 1:051311 1:097144 1 4:243542

SUM D 16:02285

Number of alternatives: n D 4

Compatibility index D (SUM/n2) D 1.001428

the comparisons are made simply in terms of benefits, opportunities, costs, and
risks in the aggregate without using control criteria and subcriteria.

3. Determine the most general network of clusters (or components) and their ele-
ments that applies to all the control criteria. To better organize the development
of the model as well as you can, number and arrange the clusters and their
elements in a convenient way (perhaps in a column). Use the identical label to
represent the same cluster and the same elements for all the control criteria.

4. For each control criterion or subcriterion, determine the clusters of the general
feedback system with their elements and connect them according to their outer
and inner dependence influences. An arrow is drawn from a cluster to any
cluster whose elements influence it.

5. Determine the approach you want to follow in the analysis of each cluster or
element, influencing (the preferred approach) other clusters and elements with
respect to a criterion, or being influenced by other clusters and elements. The
sense (being influenced or influencing) must apply to all the criteria for the four
control hierarchies for the entire decision.
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6. For each control criterion, construct the supermatrix by laying out the clusters
in the order they are numbered and all the elements in each cluster both
vertically on the left and horizontally at the top. Enter in the appropriate
position the priorities derived from the paired comparisons as subcolumns of
the corresponding column of the supermatrix.

7. Perform paired comparisons on the elements within the clusters themselves
according to their influence on each element in another cluster they are
connected to (outer dependence) or on elements in their own cluster (inner
dependence). In making comparisons, you must always have a criterion in
mind. Comparisons of elements according to which element influences a given
element more and how strongly more than another element it is compared with
are made with a control criterion or subcriterion of the control hierarchy in
mind.

8. Perform paired comparisons on the clusters as they influence each cluster to
which they are connected with respect to the given control criterion. The derived
weights are used to weight the elements of the corresponding column blocks
of the supermatrix. Assign a zero when there is no influence. Thus obtain the
weighted column stochastic supermatrix.

9. Compute the limit priorities of the stochastic supermatrix according to whether
it is irreducible (primitive or imprimitive [cyclic]) or it is reducible with one
being a simple or a multiple root and whether the system is cyclic or not. Two
kinds of outcomes are possible. In the first all the columns of the matrix are
identical and each gives the relative priorities of the elements from which the
priorities of the elements in each cluster are normalized to one. In the second
the limit cycles in blocks and the different limits are summed and averaged
and again normalized to one for each cluster. Although the priority vectors are
entered in the supermatrix in normalized form, the limit priorities are put in
idealized form because the control criteria do not depend on the alternatives.

10. Synthesize the limiting priorities by weighting each idealized limit vector by
the weight of its control criterion and adding the resulting vectors for each of
the four merits: Benefits (B), Opportunities (O), Costs (C) and Risks (R). There
are now four vectors, one for each of the four merits. An answer involving ratio
values of the merits is obtained by forming the ratio BO/CR for each alternative
from the four vectors. The alternative with the largest ratio is chosen for some
decisions. Companies and individuals with limited resources often prefer this
type of synthesis.

11. Determine strategic criteria and their priorities to rate the top ranked (ideal)
alternative for each of the four merits one at a time. The synthesized ideals for
all the control criteria under each merit may result in an ideal whose priority
is less than one for that merit. Only an alternative that is ideal for all the
control criteria under a merit receives the value one after synthesis for that
merit. Normalize the four ratings thus obtained and use them to calculate the
overall synthesis of the four vectors. For each alternative, subtract the sum
of the weighted costs and risks from the sum of the weighted benefits and
opportunities.
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12. Perform sensitivity analysis on the final outcome. Sensitivity analysis is con-
cerned with “what if” kind of question to see if the final answer is stable to
changes in the inputs whether judgments or priorities. Of special interest is to
see if these changes change the order of the alternatives. How significant the
change is can be measured with the Compatibility Index of the original outcome
and each new outcome.

10.14 Complex Decisions with Dependence and Feedback

With the China example for hierarchies and with the market share examples it is
now easier to deal with complex decisions involving networks. For each of the
four BOCR merits we have criteria (and subcriteria where relevant) called control
criteria that are prioritized under that merit through paired comparisons. For each of
the control criteria we create a network of influences with respect to that control
criterion as we did in the market share examples. We obtain the ideal outcome
ranking for each control criterion and then synthesize these outcomes by weighting
by the importance of the control criteria for each merit. We then rate the top
alternative under each merit to obtain the weights b,o,c and r for the BOCR and
use them to synthesize and obtain the final weights for the alternatives using the two
formulas BO/CR and more importantly, bBC oO � cC � rR. Let us sketch out an
example using as little space as possible.

10.14.1 The National Missile Defense Example

Not long ago, the United States government faced the crucial decision of whether or
not to commit itself to the deployment of a National Missile Defense (NMD) system.
Many experts in politics, the military, and academia had expressed different views
regarding this decision. The most important rationale behind supporters of the NMD
system was protecting the U.S. from potential threats said to come from countries
such as North Korea, Iran and Iraq. According to the Central Intelligence Agency,
North Korea’s Taepo Dong long-range missile tests were successful, and it has been
developing a second generation capable of reaching the U.S. Iran also tested its
medium-range missile Shahab-3 in July 2000. Opponents expressed doubts about
the technical feasibility, high costs (estimated at $60 billion), political damage,
possible arms race, and the exacerbation of foreign relations. The idea for the
deployment of a ballistic missile defense system has been around since the late
1960s but the current plan for NMD originated with President Reagan’s Strategic
Defense Initiative (SDI) in the 1980s. SDI investigated technologies for destroying
incoming missiles. The controversies surrounding the project were intensified with
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Fig. 10.13 Hierarchy for rating benefits, opportunities, costs and risks

the National Missile Defense Act of 1996, introduced by Senator Sam Nunn (D-GA)
in June 25, 1996. The bill required Congress to make a decision on whether the U.S.
should deploy the NMD system by 2000. The bill also targeted the end of 2003 as
the time for the U.S. to be capable of deploying NMD.

The ANP was applied to analyze this decision. It was done in the usual three steps
of the ANP process: (1) the BOCR merits and their control criteria and subcriteria
prioritized with respect to each merit, (2) the network of influence for each control
criterion from which priorities for the alternatives are derived as in the market
share examples and then synthesized using the weights of the control criteria for
each merit and finally, (3) the use of strategic criteria as in Fig. 10.13 to rate the
merits one at a time as in Table 10.24 through their top alternative and use the
resulting normalized ratings as priorities to weight and combine the priorities of
each alternative with respect to the four merits to get the final answer.

On February 21, 2002 this author gave a half-day presentation on the subject
to the National Defense University in Washington. In December 2002, President
George W. Bush and his advisors decided to build the NMD. This study may
have had no influence on the decision but still 2 years earlier (September 2000)
it had arrived at the same decision produced by this analysis. The alternatives we
considered for this analysis are: Deploy NMD, Global defense, R&D, Termination
of the NMD program. Complete analysis of this example is given in the author’s
book on the ANP published in 2001. There were 23 criteria under the BOCR merits,
including economic, terrorism, technological progress and everything else people
were thinking about as important to develop or not to develop the NMD. After
prioritization they were reduced to nine control criteria for all four merits. Each
criterion was treated in a very similar way to the single market share examples
(essentially economic benefits). Table 10.25 gives the final outcome. Here we see
that the two formulas give the same outcome to deploy as the best alternative. The
conclusion of this analysis is that pursuing the deployment of NMD is the best
alternative. Sensitivity analysis indicates that the final ranks of the alternatives might
change, but such change requires making extreme assumptions on the priorities of
BOCR and of their corresponding control criteria.
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Table 10.24 Priority ratings for the merits: benefits, opportunities, costs and risks

Benefits Opportunities Costs Risks

World Adversary Very Medium High Very
peace countries high low

Security Very Very Very Very
dilemma low low high low

Terrorism Medium Very low High High

Human Technological High High Low Very
well-being advancement low

Market Medium High Very Very

creation low low

International Military High High Medium Very
politics relations low

Diplomatic Low Low Low Very
relations high

Priorities b D 0:264 o D 0:185 c D 0:361 r D 0:190

Very high (0.419), High (0.263), Medium (0.160), Low (0.097), Very low (0.061)

Table 10.25 Overall syntheses of the alternatives

BO=CR bB C oO � cC � rR

(from unweighted (from weighted
columns in columns in

Alternatives Table 10.24) Normalized Table 10.24 Unitizeda

Deploy 2.504 0.493 0.111 1.891

Global 1.921 0.379 0.059 1.000

R&D 0.560 0.110 �0:108 �1:830
Terminate 0.090 0.018 �0:278 �4:736

aUnitized means to divide each number in the column by the number with the
smallest absolute value (it is recommended that one not unitize when such a
number is close to zero)

10.15 Synthesis of Individual Judgments
into a Representative Group Judgment

Kenneth Arrow’s Impossibility Theorem, for which he received the Nobel Prize in
1972, stated that it was not possible to find a representative group judgment from the
judgments of individuals using ordinal preferences. However, if one allows cardinal
preferences, and uses the geometric mean to combine individual judgments as we do
in the AHP, it is possible. Aczél and Saaty [1] proved, in a paper co-authored with
Janos Aczél, that the unique way to combine reciprocal individual judgments into a
corresponding reciprocal group judgment is by using their geometric mean. Arrow
proved in his impossibility theorem, using ordinal preferences (either A is preferred
to B or it is not), that there does not exist a social welfare function that satisfies all
four conditions listed in Fig. 10.14, at once. We showed in [9], in a journal of which
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Likes
Dislikes

No Individual’s
PreferencesAll preferences

Arrow’s 4
Conditions

Unrestricted Domain
(All individual orderings of a set of
alternatives must be considered)

Pareto Optimality
(If all individuals agree on what they prefer
 so must the group)

Independence from
Irrelevant Alternatives
(If all individuals agree on what they do not
 prefer so must the group)

Non-dictatorship
(All individuals cannot agree with all the
 preferences of a single individual)

Fig. 10.14 Arrow’s four conditions

Arrow is an editor, that with cardinal intensities of preference and the geometric
mean to combine the individual judgments into a representative group judgment, a
social welfare function exists that satisfies these four conditions. Thus we have a
possibility theorem that won the Herbert Simon Award from the Chinese Academy
of Sciences in 2011.

10.16 Conclusions

Numerous other examples along with the software Super Decisions for the ANP
can be obtained from www.superdecisions.com. We hope that the reader now has a
good idea as to how to use the AHP/ANP in making a complex decision. The AHP
and ANP have found application in practice by many companies and governments.
My book Decision Making for Leaders is now in nearly ten languages. Another
policy study was done regarding whether the US should go to war with Iraq directly
or through the UN, in September 2002. The analysis found that the US should go
with the UN with priority more than double those of going alone or of going with a
coalition. There is also the ongoing Middle East conflict. An ANP analysis showed
that the best option is for Israel and the US to help the Palestinians both set up a state
and in particular achieve a viable economy. My forthcoming book The Encyclicon
has about 100 summarized examples of applications of the ANP. A list of more than
a thousand references until the early 1990s on the AHP appears in [3].
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Chapter 11
On the Mathematical Foundations
of MACBETH

Carlos A. Bana e Costa, Jean-Marie De Corte, and Jean-Claude Vansnick

Abstract MACBETH (Measuring Attractiveness by a Categorical Based Evalu-
ation Technique) is a multicriteria decision analysis approach that requires only
qualitative judgements about differences of value to help an individual or a group
quantify the relative attractiveness of options. This chapter presents a new up-to-date
survey of the mathematical foundations of MACBETH. Reference is also made to
real-world applications and an extensive bibliography, spanning back to the early
1990s, is provided.

Keywords MACBETH • Questioning procedure • Qualitative judgements •
Judgmental inconsistency • Cardinal value measurement • Interaction

11.1 Introduction

Let X (with #X D n 	 2) be a finite set of elements (alternatives, choice options,
courses of action) that an individual or a group, J, wants to compare in terms of their
relative attractiveness (desirability, value).

Ordinal value scales (defined on X) are quantitative representations of prefer-
ences that reflect, numerically, the order of attractiveness of the elements of X
for J. The construction of an ordinal value scale is a straightforward process,
provided that J is able to rank the elements of X by order of attractiveness—either
directly or through pairwise comparisons of the elements to determine their relative
attractiveness. Once the ranking is defined, one needs only to assign a real number
v.x/ to each element x of X, in such a way that:
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1. v.x/ D v.y/ if and only if J judges the elements x and y to be equally attractive;
2. v.x/ > v.y/ if and only if J judges x to be more attractive than y.

The problem, however, is that, in a multiple criteria decision analysis, conclu-
sions based on a additive value model may be quantitatively meaningless, because
“to be quantitatively meaningful a statement should be unaffected by admissible
transformations of all the quantities involved” [126, p. 91]. A necessary condition
is that each value scale should be unique up to a positive affine transformation (an
interval scale), as it is with a value difference scale. A value difference scale (defined
on X) is a quantitative representation of preferences that is used to reflect, not only
the order of attractiveness of the elements of X for J, but also the differences of
their relative attractiveness, or in other words, the strength of J’s preferences for
one element over another. Unfortunately, the construction of an interval value scale
is usually a difficult task.

Both numerical and non-numerical techniques have been proposed and used to
build a value difference scale (hereafter, simply called a value scale)—see [113]
for a survey. Examples of numerical techniques are direct rating and difference
methods—see descriptions in [63, 195, 197]. They require J to be able to produce,
either directly or indirectly, numerical representations of his or her strengths of
preferences, which can be a difficult cognitive task—see [114]. Non-numerical
techniques based on indifference judgements, such as the bisection method (also
described by the same authors), force J to compare his or her strengths of prefer-
ences between two pairs of elements of X, therefore involving at least three different
elements in each judgement. This requires J to perform an intensive cognitive task
and is prone to be substantively meaningless—“substantive meaningfulness (. . . )
requires that the qualitative relations (. . . ) being modelled should be unambiguously
understood by the decision maker” [126, p. 91].

The aforementioned difficulties inspired the development of MACBETH
“Measuring Attractiveness by a Categorical Based Evaluation Technique”. The
original research on the MACBETH approach was carried out in the early 1990s—
see [6, 22, 27]—as a response to the following question:

How can a value scale be built on X, both in a qualitatively and quantitatively meaningful
way, without forcing J to produce direct numerical representations of preferences and
involving only two elements of X for each judgement required from J?

Using MACBETH, J is asked to provide preferential information about two
elements of X at a time, firstly by giving a judgement as to their relative attrac-
tiveness (ordinal judgement) and secondly, if the two elements are not deemed to
be equally attractive, by expressing a qualitative judgement about the difference
of attractiveness between the most attractive of the two elements and the other.
Moreover, to ease the judgemental process, six semantic categories of difference
of attractiveness, “very weak”, “weak”, “moderate”, “strong”, “very strong” or
“extreme”, or a succession of these (in case hesitation or disagreement arises)
are offered to J as possible answers. This is somewhat in line with similar ideas
previously proposed by Saaty [178] in a ratio measurement framework, or by
Freeling [125] and Belton [62] in difference value measurement. By pairwise



11 On the Mathematical Foundations of MACBETH 423

comparing the elements of X a matrix of qualitative judgements is filled in, with
either only a few pairs of elements, or with all of them (in which case n � .n � 1/=2
comparisons would be made by J).

A brief review of the previous research on MACBETH is offered in Sect. 11.2,
together with the evolution of its software’s development. It shows that, on a
technical level, MACBETH has evolved through the course of theoretical research
and also through its extension to the multicriteria value measurement framework
in numerous practical applications (see Sect. 11.10). Its essential characteristics,
however, have never changed—see [57].

Section 11.3 through 11.9 of this chapter present an up-to-date survey of the
mathematical foundations of MACBETH. Section 11.3 describes the two MAC-
BETH modes of questioning mentioned above (both involving only two elements
at a time) used to acquire preferential information from J, as well as the types
of information that can be deduced from each of them. The subsequent sections
are devoted to an up-to-date rigorous survey of the mathematical foundations of
MACBETH. Section 11.4 addresses the numerical representation of those different
types of information. These numerical representations are only possible if J’s
responses satisfy certain rational working hypotheses. Section 11.5 deals with the
“consistency/inconsistency” of the preferential information gathered from J and
Sect. 11.6 explores the practical problem of testing the consistency of preferential
information. How should an inconsistency be dealt with? The answer to this ques-
tion is the subject of Sect. 11.7. Sections 11.8 and 11.9 present what MACBETH
proposes to J once the preference information provided by J is consistent. Finally,
Sect. 11.10 lists several real-world applications of multicriteria value analysis in
which the MACBETH approach was used.

This chapter will use the following notation:

• J is an evaluator, either a individual or group.
• X (with #X D n 	 2) is a finite set of elements (alternatives, choice options,

courses of action) that J wants to compare in terms of their relative attractiveness
(desirability, value).

• �att.x; y/ is the “difference of attractiveness between x and y for J”, where x and
y are elements of X such that x is more attractive than y for J.

• �att.x; y/ 
 �att.z;w/ means that �att.x; y/ is greater than �att .z;w/.
• � is an empty set.
• R is the set of real numbers.
• RC D fx 2 R j x 	 0g.
• R

� D R n f0g.
• R

�C D RC n f0g.
• Z is the set of integer numbers.
• N is the set of non-negative integer numbers.
• N

� D N n f0g.
• Ns;t D fs; sC 1; : : : ; tg D fx 2 N j s � x � tg where s; t 2 N; and s < t.
• The transpose of a matrix A will be denoted by tA.
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11.2 Previous Research and Software Evolution

In order to build an interval (value) scale based on the qualitative judgements of
difference of attractiveness formulated by J, it is necessary that the six MACBETH
categories “very weak”, “weak”, “moderate”, “strong”, “very strong” or “extreme”
be represented by non-overlapping (disjoint) intervals of real numbers. The basic
idea underlying the initial development of MACBETH was that the limits of these
intervals should not be arbitrarily fixed a priori, but determined simultaneously with
numerical value scores for the elements of X. Research was then conducted on how
to test for the existence of such intervals and how to propose numerical values for the
elements of X and for the limits of the intervals—see [6, Chap. IV]. This gave rise to
the formulation of a chain of four linear programs—see [22–25]—that, implemented
in GAMS, were used in the first real-world applications of MACBETH as a decision
aiding tool to derive value scores and criteria weights in the framework of an
additive aggregation model—see [27, 30, 76, 77]. Theoretical research conducted
at the same time, and first presented in 1994 at the 11th International Conference on
MCDM, demonstrated the equivalence of the approach by constant thresholds and
the approach by measurement conditions—see [28].

The first MACBETH software was developed in 1994. In it, the objective func-
tion used in the GAMS implementation to determine a value scale was modified, on
the basis of a simple principle—see [30, 31]—that makes it possible, for simple
cases, to determine the scale “by hand” [57]. However, complete procedures to
address and manage all cases of inconsistency were not available at that time.
Therefore, the software offered its users the possibility of obtaining a compromise
scale in the case of inconsistency. This initial software was used in several real world
applications—see, for example, [14, 24, 29, 32, 33, 35, 103]. However, it had several
important limitations:

1. The determination of suggestions was still heuristic and did not guarantee the
minimal number of changes necessary to achieve consistency;

2. It was not possible for the evaluator to hesitate between several semantic
categories when expressing judgements. It, therefore, did not enable one to
facilitate the management of group judgemental disagreements;

3. It forced the evaluator to first provide all of the judgements before it could run
any procedure. Consequently, judgemental inconsistency could only be detected
for a full matrix of judgements. As a result, suggestions of changes to resolve
inconsistency could only then be discussed, a restriction that did not lend itself
to good interaction.

Subsequent theoretical research was therefore concentrated on resolving these
problems. Results reported in [95, 159], allowing inconsistencies to be dealt with
in a mathematically sound manner, were the turning point in the search for a more
interactive formulation. Indeed, it was then possible to implement a procedure that
automatically detects “inconsistency”, even for an incomplete matrix of judge-
ments, in a new software called M-MACBETH—see www.m-macbeth.com and

www.m-macbeth.com
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[45]—which has been used to produce some of the figures in this paper. The
objective of abandoning the suggestion of a compromise scale could also finally
be achieved, since the origin of the inconsistency could now be found (detection
of elementary incompatible systems) and explained to J. M-MACBETH finds
the minimal number of necessary changes and, for any number of changes not
greater than five, suggests all of the possible ways in which the inconsistency can
be resolved. Furthermore, it is able to provide suggestions of multiple category
changes, where a “k categories change” is considered to be equivalent to k “1
category changes”.

Real-world applications in the specific context of bid evaluation (see references
in Sect. 11.10) inspired research regarding the concepts of “robustness” [95] and
sensitivity [10], the results of which were then included in the software, together
with the possibility of addressing potential imprecision (uncertainty) associated with
impacts of options, incorporating reference levels for one criterion at any time, and
graphically representing comparisons of options on any two groups of criteria [57].
These issues are out of the scope of the present chapter and they are not also included
in the version of the software, limited to scoring and weighting, embedded into the
HIVIEW3 software in 2003—see [82] and www.catalyze.co.uk.

11.3 Types of Preferential Information

11.3.1 Type 1 Information

Type 1 information refers to preferential information obtained from J by means of
Questioning Procedure 1.
Let x and y be two different elements of X.

Questioning Procedure 1. A first question (Q1) is asked of J:
Q1: Is one of the two elements more attractive than the other?
J’s response (R1) can be: “Yes”, or “No”, or “I don’t know”.
If R1 = “Yes”, a second question (Q2) is asked:
Q2: Which of the two elements is the most attractive?

The responses to Questioning Procedure 1 for several pairs of elements of X
enable the construction of three binary relations on X:

P D f.x; y/ 2 X � X W x is more attractive than yg
I D f.x; y/ 2 X � X W x is not more attractive than y and y is not

more attractive than x; or x D yg
‹ D f.x; y/ 2 X � X W x and y are not comparable in terms of their

attractivenessg.
P is asymmetric, I is reflexive and symmetric, and ‹ is irreflexive and symmetric.

Note that ‹ D X � X n .I [ P [ P�1/; with P�1 D f.x; y/ 2 X � X j yPxg.

www.catalyze.co.uk


426 C.A. Bana e Costa et al.

Definition 1. Type 1 information about X is a structure fP; I; ‹g where P, I and
‹ are disjoint relations on X, P is asymmetric, I is reflexive and symmetric, and
‹ D X � X n .I [ P [ P�1/.

11.3.2 Type 1+2 Information

Suppose that type 1 information fP; I; ‹g about X is available.

Questioning Procedure 2. The following question (Q3) is asked, for all .x; y/ 2 P:
Q3: How do you judge the difference of attractiveness between x and y?
J’s response (R3) would be provided in the form “ds” (where d1; d2; : : : ; dQ

(Q 2 N n f0; 1g) are semantic categories of difference of attractiveness defined
so that, if i < j, the difference of attractiveness di is weaker than the difference of
attractiveness dj) or in the more general form (possibility of hesitation) “ds to dt”,
with s � t (the response “I don’t know” is assimilated to the response “d1 to dQ”).

Remark 1. When Q D 6 and d1 D very weak, d2 D weak, d3 D moderate, d4 D
strong, d5 D very strong, d6 D extreme, Questioning Procedure 1 is the mode of
interaction used in the MACBETH approach and its M-MACBETH software.

R3 responses give rise to relations Cst .s; t 2 N; 1 � s � t � Q/ where Cst D
f.x; y/ 2 P j �att.x; y/ is “ds to dt”g. They enable the construction of an asymmetric
relation on P : f..x; y/; .z;w// 2 P � P j 9 i; j; s; t 2 N with 1 � i � j < s � t�Q;
.x; y/ 2 Cst; .z;w/ 2 Cijg. Hereafter, Css will simply be referred to as Cs.

Definition 2. Type 1+2 information about X is a structure fP; I; ‹; Peg where
fP; I; ‹g is type 1 information about X and Pe is an asymmetric relation on P, the
meaning of which is “.x; y/Pe.z;w/ when �att.x; y/ 
 �att.z;w/”.

11.4 Numerical Representation of the Preferential
Information

11.4.1 Type 1 Scale

Suppose that type 1 information fP; I; ‹g about X is available.

Definition 3. A type 1 scale on X relative to fP; Ig is a function � W X ! R

satisfying Condition 1.

Condition 1 8 x; y 2 X; ŒxPy) �.x/ > �.y/� and ŒxIy) �.x/ D �.y/�:
Let Sc1.X;P; I/ D f� W X ! R j � is a type 1 scale on X relative to fP; Igg.

When X, P and I are well determined, Sc1.X;P; I/ will be noted Sc1.
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When ‹ D � and Sc1.X;P; I/ 6D �, each element of Sc1.X;P; I/ is an ordinal
scale on X.

11.4.2 Type 1+2 Scale

Suppose that type 1+2 information fP; I; ‹;Peg about X is available.

Definition 4. A type 1+2 scale on X relative to fP; I; ‹;Peg is a function� W X ! R

satisfying Conditions 1 and 2.

Condition 2 8 x; y; z;w 2 X, Œ.x; y/Pe.z;w/) �.x/� �.y/ > �.z/ � �.w/�:
Let Sc1C2.X;P; I;Pe/ D f� W X ! R j � is a type 1+2 scale on X relative

to fP; I;Pegg. When X, P, I and Pe are well determined, Sc1C2.X;P; I;Pe/ will be
noted Sc1C2.

11.5 Consistency: Inconsistency

Definition 5. Type 1 information fP; I; ‹g about X is

• consistent when Sc1.X;P; I/ 6D �
• inconsistent when Sc1.X;P; I/ D �.

Definition 6. Type 1C2 information fP; I; ‹;Peg about X is

• consistent when Sc1C2.X;P; I;Pe/ 6D �
• inconsistent when Sc1C2.X;P; I;Pe/ D �.

When Sc1C2.X;P; I;Pe/ D �, one can have Sc1.X;P; I/ D � or Sc1.X; P; I/ 6D�.
In the first case, the message “no ranking” will appear in M-MACBETH; it occurs
namely when J declares, in regards to elements x, y and z of X, that ŒxIy; yIz and xPz�
or ŒxPy; yPz and zPx�. In the second case, the message “inconsistent judgement” will
appear in M-MACBETH.

Although this is the only difference between the types of inconsistency intro-
duced in M-MACBETH, it is interesting to mention, from a theoretical perspective,
that one could further distinguish two sub-types of inconsistency (sub-type a and
sub-type b) when Sc1C2.X;P; I;Pe/ D � and Sc1.X;P; I/ 6D �.

Sub-type a inconsistency arises when there is a conflict between type 1 infor-
mation and Pe that makes the simultaneous satisfaction of conditions 1 and 2
impossible. These kinds of conflicts are found essentially in four types of situations;
namely when x; y; z 2 X exist such that

Œ xPy; yPz; xPz and .y; z/Pe.x; z/ �

or Œ xPy; yPz; xPz and .x; y/Pe.x; z/ �
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Fig. 11.1 Example of
sub-type b inconsistency

P

P

C1

C3

C2

y

w

zx

C2

or Œ xIy; yPz; xPz and .x; z/Pe.y; z/ �

or Œ xIy; zPy; zPx and .z; x/Pe.z; y/ �:

Sub-type b inconsistency arises when there is no conflict between type 1
information and Pe but at least one conflict exists inside Pe that makes satisfying
Condition 2 impossible. An example of this type of conflict is (see Fig. 11.1):

xPy; xPw; yPz;wPz; xPz; yPw

.x; y/ 2 C1; .y; z/ 2 C2

.x;w/ 2 C3; .w; z/ 2 C2:

In such a case, Condition 2 cannot be respected, because one should have

�
�.x/ � �.w/ > �.y/� �.z/ .1/
�.w/ � �.z/ > �.x/ � �.y/ .2/

which is impossible.
On the other hand, it is easily shown that the following two systems are

compatible, that is, there is no conflict between type 1 information and Pe:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

�.x/� �.w/ > �.y/� �.z/
�.x/� �.y/ > 0
�.x/� �.w/ > 0
�.x/� �.z/ > 0
�.y/� �.z/ > 0
�.w/ � �.z/ > 0
�.y/� �.w/ > 0

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

�.w/ � �.z/ > �.x/ � �.y/
�.x/ � �.y/ > 0
�.x/ � �.w/ > 0
�.x/ � �.z/ > 0
�.y/� �.z/ > 0
�.w/ � �.z/ > 0
�.y/� �.w/ > 0

For a detailed study of inconsistency, see [95].
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11.6 Consistency Test for Preferential Information

11.6.1 Testing Procedures

Suppose that X D fa1; a2; : : : ; ang.
During the interactive questioning process conducted with J, each time that a

new judgement is obtained, the consistency of all the responses already provided is
tested. This consistency test begins with a pre-test aimed at detecting the (potential)
presence of cycles within the relation P and, if no such cycle exists, making a
permutation of the elements of X in such a way that, in the matrix of judgements,
all of the cells P or Cij will be located above the main diagonal.

When there is no cycle in P, the consistency of type 1 information fP; I; ‹g is
tested as follows:

• If ‹ 6D �, a linear program named LP-test1 is used;
• if ‹ D �, rather than linear programming, a method named DIR-test1 is

used, which has the advantage of being easily associated with a very simple
visualization of an eventual ranking within the matrix of judgements.

When fP; I; ‹g is consistent, the consistency of type 1+2 information fP; I; ‹;Peg
is tested with the help of a linear program named LP
-test1C2.

11.6.2 Pre-test of the Preferential Information

The pre-test of the preferential information is based on Property 1. (Evident because
#X is finite.)

Property 1. Let X� � X; if8 x 2 X�; 9 y 2 X� such that xPy, then 9 x1; x2; : : : ; xp 2
X� such that x1Px2P : : :PxpPx1 (cycle).

The pre-test consists of seeking a permutation ' W N1;n ! N1;n such that

8 i; j 2 N1;n; Œ i > j) a'.i/.notP/a'.j/ �:

The permutation of the elements of X is made by the algorithm PRETEST, that
detects cycles within P and sorts the elements(s) of X.
PRETEST:

1. s n;
2. among a1; a2; : : : ; as find ai which is not preferred over any other:

if ai exists, go to 3.;
if not, return FALSE (Sc1 D �, according to Property 1); finish.
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3. permute ai and as;
4. s s � 1:

if s D 1, return TRUE; finish.
If not, go to 2.

11.6.3 Consistency Test for Type 1 Information

Suppose that PRETEST detected no cycle within P and that the elements of X were
renumbered as follows (to avoid the introduction of a permutation in the notation):

8 i; j 2 N1;n; Œ i > j) ai.notP/aj �:

11.6.3.1 Consistency Test for Incomplete .‹ 6D ¥/ Type 1 Information

Consider the linear program LP-test1 with variables x1; x2; : : : ; xn:

min x1
subject to
xi � xj 	 dmin 8 .ai; aj/ 2 P
xi � xj D 0 8 .ai; aj/ 2 I with i 6D j
xi 	 0 8 i 2 N1;n

where dmin is a positive constant, and the variables x1; x2; : : : ; xn represent the
numbers �.a1/; �.a2/; : : : ; �.an/ that should satisfy Condition 1 so that � is a type
1 scale.

The objective function min x1 of LP-test1 is obviously arbitrary. It is trivial that
Sc1 6D � , LP-test1 is feasible.

11.6.3.2 Consistency Test for Complete .‹ D ¥/ Type 1 Information

When ‹ D � and the elements of X have been renumbered (after the application
of PRETEST), another simple test (DIR-test1) allows one to verify if P [ I is a
complete preorder on X. DIR-test1 is based on Proposition 1 (Proved in [95]).

Proposition 1. If Œ 8 i; j 2 N1;n with i < j, .ai; aj/ 2 P [ I � then P[ I
is a complete preorder on X if and only if 8 i; j 2 N1;n with i < j W


aiPaj )
� 8 s � i;8 t 	 j; asPat

9 s W i � s � j� 1 and asPasC1

�

:
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Proposition 1 means that when the “P cases” of the matrix of judgements forms
a “staircase”, a ranking exists such that each step of the “staircase” rests, at least
partly, on the principal diagonal of the matrix.

11.6.4 Consistency Test for Type 1+2 Information

It would be possible to test the consistency of type 1+2 information with a linear
program based on Conditions 1 and 2. However, the more efficient linear program
LP-test1C2, which includes “thresholds conditions” equivalent to Conditions 1
and 2, is used instead. LP-test1C2 is based on Lemma 1 (Proved in [95]).

Lemma 1. Let � W X ! R: � satisfies Conditions 1 and 2 if and only if there exist
Q “thresholds” 0 < 
1 < 
2 < : : : < 
Q that satisfy Conditions 3, 4 and 5.

Condition 3 8 .x; y/ 2 I; �.x/ D �.y/.
Condition 4 8 i; j 2 N1;Q with i � j; 8 .x; y/ 2 Cij; 
i < �.x/� �.y/.
Condition 5 8 i; j 2 N1;Q�1 with i � j; 8 .x; y/ 2 Cij; �.x/� �.y/ < 
jC1.

Program LP-test1C2 has variables x1.D �.a1//; : : : ; xn.D �.an//; 
1; : : : ; 
Q:

min x1
subject to
xp � xr D 0 8 .ap; ar/ 2 I with p < r

j C dmin � xp � xr 8 i; j 2 N1;Q with i � j; 8 .ap; ar/ 2 Cij

xp � xr � 
jC1 � dmin 8 i; j 2 N1;Q�1 with i � j; 8 .ap; ar/ 2 Cij

dmin � 
1

i�1 C dmin � 
i 8 i 2 N2;Q

xi 	 0 8 i 2 N1;n


i 	 0 8 i 2 N1;Q

Taking into account Lemma 1, it is trivial that Sc1C2 6D � if and only if the linear
program LP-test1C2, which is based on Conditions 3–5, is feasible.

11.7 Dealing with Inconsistency

When a type 1+2 information fP; I; ‹;Peg about X is inconsistent, it is convenient
to be able to show J systems of constraints that render his or her judgements
inconsistent and modifications of these judgements that would render LP
-test1C2
feasible.
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11.7.1 Systems of Incompatible Constraints

Suppose that LP-test1C2 is not feasible or, in other words, that the following system
is incompatible (variables x1.D �.a1//; : : : ; xn.D �.an//, 
1; : : : ; 
Q nonnegative):

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

xp � xr D 0 8 .ap; ar/ 2 I with p < r .t1/

i < xp � xr 8 i; j 2 N1;Q with i � j; 8 .ap; ar/ 2 Cij .t2/
xp � xr < 
jC1 8 i; j 2 N1;Q�1 with i � j; 8 .ap; ar/ 2 Cij .t3/
0 < 
1 .t4/

i�1 < 
i 8 i 2 N2;Q .t5/

Conventions:

• R
m�n is the set of the real matrices with m lines and n columns.

• Matrix M 2 R
m�n is “non-zero” (M 6D 0) if at least one of its elements is not

null.
• Matrix M 2 R

m�n is positive or null (M 	 0) if all of its elements are positive or
null.

The system of incompatible constraints can be written in the matrix format as
follows:

8
ˆ̂
<

ˆ̂
:

C � Z > 0 (by grouping constraints (t2))
D � Z > 0 (by grouping constraints (t3))
E � Z > 0 (by grouping constraints (t4) and (t5))
B � Z D 0 (by grouping constraints (t1))

where

Z D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

x1
x2
:::

xn


1

2
:::


Q

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

C 2 R
p1�.nCQ/(where p1 is the number of constraints (t2))

D 2 R
p2�.nCQ/(where p2 is the number of constraints (t3))

E 2 R
p3�.nCQ/(where p3 is the number of constraints (t4) and (t5))

B 2 R
r�.nCQ/(where r is the number of constraints (t1))
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Note: if r D 0, one could consider that B D 0 2 R
1�.nCQ/ without losing

generality.

Let A be the matrix

2

4
C
D
E

3

5 2 R
p�.nCQ/ .p D p1 C p2 C p3/. The system of

incompatible constraints can be written more simply as

S

�
A � Z > 0 (by grouping constraints (t2), (t3), (t4) and (t5))
B � Z D 0 (by grouping constraints (t1)).

In order to detect incompatibilities between the constraints (t1), (t2), (t3), (t4)
and (t5) and propose eventual corrections, we apply Proposition 2 (Proved in
[95]), which is a corollary of Mangasarian’s [150] version of the Theorem of the
Alternative.

Proposition 2. The system S fA � Z > 0IB � Z D 0g admits a solution Z 2
R
.nCQ/�1 or there exists Y 2 R

p�1;V;W 2 R
r�1 with Y 6D 0;Y 	 0;V 	 0;W 	 0

such that tA � Y Ct B � .V �W/ D 0 and 8i 2 N1;r; Vi �Wi D 0 but never both.

The interest of Proposition 2 is that vectors Y;V and W have positive or null
components, thus making it compatible with linear programming (see Sects. 11.7.3
and 11.7.4)

11.7.2 Example 1

Suppose that X D fa1; a2; a3; a4g and that J has formulated the following judge-
ments:

• P D f.a1; a2/; .a1; a3/; .a2; a3/; .a3; a4/g
• .a1; a2/ 2 C1; .a1; a3/ 2 C4; .a2; a3/ 2 C2; .a3; a4/ 2 C2.

Suppose that J also judges that a2Pa4 and that .a2; a4/ 2 C3. LP-test1 is
feasible: the judgements are compatible with a ranking. LP-test1C2 is not feasible:
the software informs J that his or her judgements are “inconsistent”.

Suppose now that J confirms his or her judgements. One must then have:


1 < x1 � x2 .1/ x1 � x2 < 
2 .2/ 0 < 
1 .11/


2 < x2 � x3 .3/ x2 � x3 < 
3 .4/ 
1 < 
2 .12/


2 < x3 � x4 .5/ x3 � x4 < 
3 .6/ 
2 < 
3 .13/


3 < x2 � x4 .7/ x2 � x4 < 
4 .8/ 
3 < 
4 .14/


4 < x1 � x3 .9/ x1 � x3 < 
5 .10/ 
4 < 
5 .15/

5 < 
6 .16/

or, in matrix format (which one can denote as A � Z > 0):
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0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1 �1 0 0 �1 0 0 0 0 0

�1 1 0 0 0 1 0 0 0 0

0 1 �1 0 0 �1 0 0 0 0

0 �1 1 0 0 0 1 0 0 0

0 0 1 �1 0 �1 0 0 0 0

0 0 �1 1 0 0 1 0 0 0

0 1 0 �1 0 0 �1 0 0 0

0 �1 0 1 0 0 0 1 0 0

1 0 �1 0 0 0 0 �1 0 0

�1 0 1 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 �1 1 0 0 0 0

0 0 0 0 0 �1 1 0 0 0

0 0 0 0 0 0 �1 1 0 0

0 0 0 0 0 0 0 �1 1 0

0 0 0 0 0 0 0 0 �1 1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

�

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

x1
x2
x3
x4

1


2

3

4


5

6

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

> 0

Since it is known, according to Proposition 2, that the system has no solution,
there necessarily exists Y 2 R

16�1.Y 6D 0;Y 	 0/ such that tA�Y D 0. Thus, positive
or null (but not all null) real numbers y1; y2; : : : ; y16 exist such that

P16
iD1 yi � ColiD 0

(where Coli is the column i of the matrix tA).
In this simple example, one can see that it is enough to make y2 D y5 D y8 D

y9 D 1 and y1 D y3 D y4 D y6 D y7 D y10 D y11 D y12 D y13 D y14 D y15 D
y16 D 0:

1 �

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

�1
1

0

0

0

1

0

0

0

0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

„ ƒ‚ …
Col2

C1 �

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

0

0

1

�1
0

�1
0

0

0

0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

„ ƒ‚ …
Col5

C1 �

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

0

�1
0

1

0

0

0

1

0

0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

„ ƒ‚ …
Col8

C1 �

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

0

�1
0

0

0

0

�1
0

0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

„ ƒ‚ …
Col9

D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

0

0

0

0

0

0

0

0

0

0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

These four vectors correspond to the four constraints (2), (5), (8) and (9) above:


4 > x2 � x4 .8/
x1 � x3 > 
4 .9/

�

) x1 � x3 > x2 � x4 (*)
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Fig. 11.2 Example of
incompatibility between (*)
and (**)

Diff.

strong moderatea1 - a3 a2 - a4>

a3 - a4 a1 - a2>weak very weak

Diff.Couples Couples


2 > x1 � x2 .2/
x3 � x4 > 
2 .5/

�

) x3 � x4 > x1 � x2 (**)

(*) and (**) bring to the contradiction x1�x4 > x1�x4. The incompatibility between
(*) and (**) is presented in M-MACBETH as shown in Fig. 11.2.

Note that the problem disappears if

.a1; a3/ 2 C3 instead of C4 ((*) disappears)
or .a2; a4/ 2 C4 instead of C3 ((*) disappears)
or .a3; a4/ 2 C1 instead of C2 ((**) disappears)
or .a1; a2/ 2 C2 instead of C1 ((**) disappears):

Note also that the inconsistency would not be eliminated for any modification of
the judgement “.a2; a3/ 2 C2”.

If J confirms the judgement “.a2; a4/ 2 C3”, M-MACBETH calculates the
different possibilities (four in example 1) that J can follow to make his or her
judgements consistent with a “minimal” number of changes of category (one in
Example 1). (We will specify in Sect. 11.7.4 the meaning of this notion).

In M-MACBETH, the “suggestions” of changes are presented (graphically) in
the matrix of judgements. They are:

• to replace the judgement .a1; a3/ 2 C4 with the judgement .a1; a3/ 2 C3
• or to replace the judgement .a2; a4/ 2 C3 with the judgement .a2; a4/ 2 C4
• or to replace the judgement .a3; a4/ 2 C2 with the judgement .a3; a4/ 2 C1
• or to replace the judgement .a1; a2/ 2 C1 with the judgement .a1; a2/ 2 C2.

11.7.3 Identifying Constraints which Cause Inconsistency

Let us detail the various stages of our search for “suggestions”. The first step
consists of determining the constraints (t1), (t2) and (t3) which are “the origin of
the incompatibilities” present in the system

S

�
A � Z > 0
B � Z D 0 (see Sect. 11.7.1)

We consider that a constraint is “at the origin of an incompatibility” when it is
part of a system S0 that
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• is a “sub-system” of S,
• is incompatible,
• does not contain any incompatible “sub-system”.

Mathematically, this idea can be represented by Definition 7.

Definition 7. An incompatible elementary system (SEI) is a system

S0
�

A0 � Z > 0
B0 � Z D 0

such that

1. A0 2 R
p0�.nCQ/ is a sub-matrix of A, and B0 2 R

r0�.nCQ/ is a sub-matrix of B;
2. S0 is incompatible;

3. If

8
<

:

A00 2 R
p00�.nCQ/ is a sub-matrix of A0;

B00 2 R
r00�.nCQ/ is a sub-matrix of B0;

p00 C r00 < p0 C r0
then

�
A00 � Z > 0
B00 � Z D 0 is compatible.

However, our goal is not to determine all the SEI that could be extracted from the
constraints using LP
-test1C2. We just want to find all of the judgements of the type
.as; at/ 2 Cij that “generate” an incompatibility. In Sect. 11.7.4.3, we will explain
how we use these judgements.

We know that an inconsistency occurs when the system

S

�
A � Z > 0
B � Z D 0

is incompatible; that is, 9Y 2 R
p and V;W 2 R

r such that

8
ˆ̂
<

ˆ̂
:

tA � Y Ct B � .V �W/ D 0
Y 	 0; V 	 0; W 	 0
8 i 2 N1;r; Vi �Wi D 0
9 i0 2 N1;p such that Yi0 6D 0

In such a case, if i0 � p1Cp2, where p1 is the number of constraints (t2) and p2 is
the number of constraints (t3) (see Sect. 11.7.1), a constraint of the type xs � xt < 
j

or xs � xt > 
j will correspond to S.
Consider, then, the system (with i � p1 C p2):

Syst-Yi

�
tA � Y Ct B � .V �W/ D 0
Yi D 1

If Syst-Yi is compatible, for one of its solutions it corresponds to a system of
incompatible constraints (t1), (t2), (t3), (t4) and (t5) where at least one constraint
(that which corresponds to Yi D 1) is of the type xs � xt < 
j or xs � xt > 
j and is
part of a SEI. If Syst-Yi is incompatible, the constraint that corresponds to Yi is not
part of any SEI.
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To find all of the constraints (t2) and (t3) which are part of a SEI, it is sufficient
to study the compatibility of all of the systems Syst-Yi, for i D 1; 2; : : : ; p1 C p2.

We will proceed in a similar way, using the systems Syst-Vi and Syst-Wi, to find
all of the constraints (t1) which are part of a SEI:

Syst-Vi

8
<

:

tA � Y Ct B � .V �W/ D 0
Wi D 0
Vi D 1

and

Syst-Wi

8
<

:

tA � Y Ct B � .V �W/ D 0
Vi D 0
Wi D 1

It is not necessary to examine all of the systems Syst-Yi, Syst-Vi and Syst-Wi:

• If Syst-Yi is compatible and has the solution Y;V;W, then

– 8 j > i such that Yj 6D 0, Syst-Yi is compatible;
– 8 j 2 N1;r such that Vj 6D 0, Syst-Vi is compatible;
– 8 j 2 N1;r such that Wj 6D 0, Syst-Wi is compatible.

• If Syst-Vi is compatible and has the solution Y;V;W, then

– 8 j > i such that Vj 6D 0, Syst-Vi is compatible;
– 8 j 2 N1;r such that Wj 6D 0, Syst-Wi is compatible.

• If Syst-Wi is compatible and has the solution Y;V;W, then

– 8 j > i such that Wj 6D 0, Syst-Wi is compatible.

It is for this reason that a “witness-vector” T 2 N
p1Cp2C2�r must be used, initially

null, updated as follows:

• For any solution Y;V;W of a system Syst-Yi, Syst-Vi or Syst-Wi do

– 8 j 2 N1;p1Cp2 ; Œ Yj 6D 0) Tj D 1 �
– 8 j 2 N1;r; Œ Vj 6D 0) Tp1Cp2Cj D 1 �
– and Œ Wj 6D 0) Tp1Cp2CrCj D 1 �.
To find the interesting pairs, the compatibility of at most p1 C p2 C 2r systems

should be studied. The general algorithm to seek equations (t1) and inequalities (t2)
and (t3) that are part of a SEI is the following:

• T D .0; 0; : : : ; 0/
• for i D 1; 2; : : : ; p1 C p2 do:

– Ti D 0,
– then if Syst-Yi compatible and Y;V;W solution of Syst-Yi

then update T
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• for i D 1; 2; : : : ; r do:

– if Tp1Cp2Ci D 0,
– then if Syst-Vi compatible and Y;V;W solution of Syst-Vi

then update T

• for i D 1; 2; : : : ; r do:

– if Tp1Cp2CrCi D 0,
– then if Syst-Wi compatible and Y;V;W solution of Syst-Wi

then update T.

In this way one obtains the set of all of the equations and inequalities that make
up the SEI.

11.7.4 Augmentation: Reduction in a Judgement
with p Categories

11.7.4.1 Preliminaries

Notation:

• Judgement .x; y/ 2 Cij will be represented by element .x; y; i; j/ of X�X�N1;Q�
N1;Q.

• Judgement .x; y/ 2 I will be represented by element .x; y; 0; 0/ of X�X�N�N.

Definition 8. A reduction in judgement .s; t; i; j/ with p categories .1 � p � QC i/
is the replacement of this judgement

• by the judgement .s; t; i � p; i� p/ if i 	 p
• by the judgement .t; s; p � i; p � i/ if i < p.

Definition 9. An augmentation of the judgement .s; t; i; j/ with p categories .1 �
p � Q� j/ is the replacement of this judgement by the judgement .s; t; jC p; jC p/.

Definition 10. A change of judgement .s; t; i; j/ with p categories is an augmenta-
tion or a reduction of the judgement with p categories.

Comment: It is evident that one obtains the same final judgement as a result of
“1 reduction of a judgement with p categories” or the “p successive reductions of a
category of 1 judgement”.

Convention: A “change in judgement .s; t; i; j/ with p categories” will be
represented by .s; t; i; j; p/ 2 X � X � N1;Q � N1;Q � Z (augmentation if p > 0,
reduction if p < 0).
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11.7.4.2 Exploitation of the Constraints of SEI

Let us recall from end of Sect. 11.7.3 (T is the “witness-vector”) that

• if Ti > 0, it has a corresponding constraint (t2) or (t3) or (t1) that is part of an
SEI;

• if Ti D 0, it has no corresponding constraint that is part of an SEI.

These variables, then, provide us with an indication as to the future “modifi-
cation” to be made to the judgements associated with these constraints. Indeed,
suppose that Ti > 0:

(a) if 1 � i � p1, a constraint 
u < xs � xt which is part of an SEI corresponds to
variable Ti; if a change in its judgement .s; t; : : : ; : : :/ can help to eliminate the
SEI, it ensures that it will be a “reduction” (evident).

(b) if p1 C 1 � i � p1 C p2, a constraint xs � xt < 
u which is part of an SEI
corresponds to variable Ti; if a change in its judgement .s; t; : : : ; : : :/ can help
to eliminate the SEI, it ensures that it will be an “augmentation” (evident).

(c) if p1 C p2 C 1 � i � p1 C p2 C r, a constraint xs � xt D 0 which is part of an
SEI corresponds to variable Ti; if a change in its judgement .s; t; 0; 0/ can help
to eliminate the SEI, it ensures that it will be a “reduction”.

(d) if p1Cp2CrC1 � i � p1Cp2C2r, a constraint xs�xt D 0which is part of an
SEI corresponds to variable Ti; if a change in its judgement .s; t; 0; 0/ can help
to eliminate the SEI, it ensures that it will be an “augmentation” (proof similar
to that of (c)).

Proof of (c):
Being h D i � .p1 C p2/, one knows (by the definition of Ti) that 9 Y 2

R
p; 9 V;W 2 R

r with Y 	 0; V 	 0; W 	 0; Y 6D 0; Vh 6D 0 and Wh D 0

such that t.A0/ � Y Ct .B0/ � .V �W/ D 0 or, if one notes LineBj the jth line of B0,

t.A0/ � Y C tLineBh � Vh C
rX

jD1

j6Dh

tLineBj � Vj �
rX

jD1

j6Dh

tLineBj �Wj D 0

(because Wh D 0).

The corresponding SEI

�
A0 � Z > 0
B0 � Z D 0 can be written

8
<

:

A0 � Z > 0
xs � xt D 0
B00 � Z D 0;

where B00 D
2

6
6
6
6
6
6
6
6
6
4

LineB1
:::

LineBh�1
LineBhC1

:::

LineBr

3

7
7
7
7
7
7
7
7
7
5

(the matrix B0 without line LineBh).
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If one considers an “augmentation” of judgement .s; t; 0; 0/, the constraint
xs � xt D 0 would be replaced by the constraint xs � xt > 0. The new system8
<

:

A0 � Z > 0
xs � xt > 0

B00 � Z D 0
can be written

�
A00 � Z > 0
B00 � Z D 0; where A00 D


A0

LineBh

�

(the matrix A0

“augmented” with line LineBh).
The system is still incompatible; indeed, if one poses

• Y 0 D .Y1;Y2; : : : ;Yp;Vh/ 2 N
pC1

• V 0 D .V1; : : : ;Vh�1;VhC1; : : : ;Vr/ 2 N
r�1

• W 0 D .W1; : : : ;Wh�1;WhC1; : : : ;Wr/ 2 N
r�1:

t.A0/ � Y C tLineBh � Vh C
rX

jD1

j6Dh

tLineBj � Vj �
rX

jD1

j6Dh

tLineBj �Wj D 0

can be written: t.A00/ � Y 0 Ct .B00/ � .V 0 � W 0/ D 0, where Y 0 6D 0 (since Y 6D 0),
which proves the incompatibility of the system.

Each “suggestion” of a potential change .Ti D 1/ of a judgement .s; t; : : : ; : : :/
can thus be stored in a vector S of N4 where

S1 D s

S2 D t

S3 D
8
<

:

1 if 9 i 2 N1;p1 [ Np1Cp2C1;p1Cp2Cr such that Ti D 1
(reduction)

0 otherwise

S4 D
8
<

:

1 if 9 i 2 Np1C1;p1Cp2 [Np1Cp2CrC1;p1Cp2C2r such that
Ti D 1 (augmentation)

0 otherwise

We will denote by PreSugg the set of these “pre-suggestions”. In the case of
example 1 (see Sect. 11.7.3) one has

PreSugg D f.a1; a3; 1; 0/; .a3; a4; 1; 0/; .a1; a2; 0; 1/; .a2; a4; 0; 1/g:

11.7.4.3 Search for Suggestions

Definition 11. Changing judgements by m categories is any set Modifm of the
form Modifm D f.s1; t1; i1; j1; p1/; .s2; t2; i2; j2; p2/; : : : ; .su; tu; iu; ju; pu/ j8v 2
N1;u; .sv; tv; iv; jv; pv/ is a change of judgement .sv; tv; iv; jv/ with pv categoriesg
such that

Pu
vD1 jpvj D m
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Within Example 1, f.a1; a2; 1; 1; 2/; .a3; a4; 2; 2;�1/g is a “change of judge-
ments with 3 categories”, which consists of

• to replace the judgement .a1; a2/ 2 C1 with the judgement .a1; a2/ 2 C3
(augmentation of 2 categories)

• to replace the judgement .a3; a4/ 2 C2 with the judgement .a3; a4/ 2 C1
(reduction of 1 category)

Notation: the set of “judgement changes with m categories” which renders the
judgements consistent will be denoted by Suggm.

Within Example 1,

• f.a1; a2; 1; 1; 2/; .a3; a4; 2; 2;�1/g 2 Sugg3
• f.a1; a3; 4; 4;�1/g, f.a3; a4; 2; 2;�1/g, f.a1; a2; 1; 1; 1/g and f.a2; a4; 3; 3; 1/g 2

Sugg1,

these are the 4 changes suggested in Sect. 11.7.3.
Once the PreSugg group is determined, the third step is to:

• determine the “minimum number of changes” (some possibly successive) neces-
sary to render the judgements consistent;

• determine all of the combinations of such “minimal” changes.

More rigorously, this means

• find m0 D min fm 2 N
�jSuggm 6D ;g

• clarify Suggm

In Example 1, we have already seen that m0 D 1 (since Sugg1 6D ;).
We will proceed as follows for all cases of inconsistency (see Fig. 11.3).

Fig. 11.3 Procedure for all
cases of inconsistency i = 1

find the Suggi

Suggi = φ

m0 = i

i = i + 1

no

yes
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At each step i,

• the set of all “judgement changes of i categories”, built on the basis of element
PreSugg are considered;

• for each of the elements in this group:

– carry out the modifications included in the selected item;
– test the consistency of the new matrix of judgements; if it is consistent, store

the element in Suggi;
– restore the matrix to the initial judgements.

It is worth mentioning that we consider the possibility of changing a judgement
by several categories.

This algorithm is always convergent since one can always give consistent
judgements in a finite number of changes.

We emphasize that in practice, the cases of inconsistency that require more than
2 “changes of 1 category” are almost non-existent. The main reason being that any
change in judgement that generates an inconsistency is immediately announced to
J, who must then confirm or cancel his or her judgement.

This procedure allows one to avoid

• coarse errors of distraction (by cancelling the judgement);
• the “accumulation” of inconsistencies since, if J confirms his or her judgement,

suggestions of changes that will eliminate the inconsistency are made.

11.7.5 Example 2

Suppose that X D fa1; a2; a3; a4g and that J has formulated the following consistent
judgements:

• P D f.a1; a2/; .a1; a3/; .a2; a3/; .a3; a4/g
• .a1; a2/ 2 C1; .a1; a3/ 2 C4; .a2; a3/ 2 C2; .a3; a4/ 2 C3

Suppose that J adds that a2Pa4 and that .a2; a4/ 2 C3: M-MACBETH informs J that
his or her judgements are “inconsistent”.

If J confirms the judgement .a2; a4/ 2 C3, M-MACBETH will display the
message: “Inconsistent judgements: MACBETH has found 6 ways to render the
judgements matrix consistent with 2 category changes.”

This time, it will be necessary to make at least 2 “changes of 1 category” to
render the judgements consistent; there are 6 distinct combinations of such changes.
Each of these 6 suggestions is presented graphically (see Fig. 11.4) within the table
of judgements, accompanied by SEI which, moreover, shows why the suggestions
made eliminate this incompatibility: Fig. 11.4 presents the first of six suggestions.
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Fig. 11.4 Suggestion of change to resolve inconsistency

11.8 The MACBETH Scale

11.8.1 Definition of the MACBETH Scale

Suppose that Sc1C2 6D � and a1.P [ I/a2 : : : an�1.P [ I/an. The linear program
LP-MACBETH with variables x1; : : : ; xn; 
1; : : : ; 
Q is therefore feasible:

min x1
subject to
xp � xr D 0 8 .ap; ar/ 2 I with p < r .t1/

i C 1

2
� xp � xr 8 i; j 2 N1;Q with i � j;8.ap; ar/ 2 Cij .t2’/

xp � xr � 
jC1 � 1
2
8 i; j 2 N1;Q�1 with i � j;8.ap; ar/ 2 Cij .t3’/


1 D 1
2

.t4’/

i�1 C 1 � 
i 8 i 2 N2;Q .t5’/
xi 	 0 8 i 2 N1;n

i 	 0 8 i 2 N1;Q

Definition 12. Any function EchMac W X ! R such that8 i 2 N1;n; EchMac.ai/ D
x�

i —where .x�
1 ; : : : ; x

�
n / is an optimal solution of LP-MACBETH—is called a basic

MACBETH scale.

Definition 13. 8 a 2 R
�C;8 b 2 R with .a; b/ 6D .1; 0/; a � EchMac C b is a

transformed MACBETH scale.
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Fig. 11.5 Matrix of judgements and basic MACBETH scale

11.8.2 Discussing the Uniqueness of the Basic
MACBETH Scale

Nothing guarantees that a LP-MACBETH optimal solution is unique. For example,
consider the matrix of judgements and the basic MACBETH scale shown is
Fig. 11.5.

One can verify that,8 x 2 Œ6; 7�; .8; x; 5; 2; 1; 0/ is still an optimal solution of LP-
MACBETH. Thus, a basic MACBETH scale is not necessarily unique. As long as
the MACBETH scale is interpreted as a technical aid whose purpose is to provide the
foundation for a discussion with J, this does not constitute a true problem. However,
we have observed that in practice decision makers often adopt the MACBETH scale
as the final scale. It is, therefore, convenient to guarantee the uniqueness of the
MACBETH scale. This is obtained technically, as follows (where Smac is the group
of the constraints of LP-MACBETH):

Step (1) solution of LP-MACBETH

! optimal solution x1; x2; : : : ; xn

! �.a1/ D x1; �.an/ D xn D 0 (remark: �.a1/ is unique)

Step (2) for i D 2 to n � 1

to solve max xi under

�
Smac

x1 D �.a1/; : : : ; xi�1 D �.ai�1/
! optimal solution x1; x2; : : : ; xn

! xmax D xi

to solve min xi under

�
Smac

x1 D �.a1/; : : : ; xi�1 D �.ai�1/
! optimal solution x1; x2; : : : ; xn

! xmin D xi

�.ai/ D xminC xmax

2
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Thus,

• to calculate �.a2/, the variable x1 is “fixed” to the value �.a1/, the minimum and
maximum values of x2 are calculated and the average of the two results is taken
as the value of �.a2/;

• to calculate �.a3/, the variable x1 is “fixed” to the value of �.a1/, the variable
x2 is “fixed” to the value of �.a2/, the minimum and maximum values of x3 are
calculated and the average of the two values is taken as the value of �.a3/;

• etc.

This method guarantees that �.a1/; �.a2/; : : : �.an/ are unique for a given
preferential information fP; I; ‹ D �;Peg. It permits us to speak of “the” basic
MACBETH scale, instead of “one” MACBETH scale.

11.8.3 Presentation of the MACBETH Scale

The MACBETH scale that corresponds to fP; I; ‹ D �;Peg consistent information
is represented in two ways in M-MACBETH: a table and a “thermometer”. In
the example in Fig. 11.6, the transformed MACBETH scale represented in the
thermometer was obtained by imposing the values of the elements d and c as 100
and 0 respectively.

Fig. 11.6 Representations of the MACBETH scale
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Even though the values attributed to c and d are fixed, in general an infinite
number of scales that satisfy Conditions 1 and 2 exist. It is, thus, necessary to allow
J to, should he or she want to, modify the values suggested. This is the subject of
the Sect. 11.9.

11.8.4 Determining by Hand the Basic MACBETH Scale

In the case of small matrices of judgements, the basic MACBETH scale can be
determined by hand.

Let us firstly present two alternative and equivalent formulations of the linear
program LP-MACBETH (see Sect. 11.8.1): LP-MACBETH2008 [50] and LP-
MACBETH2011 [55, 57].

1. LP-MACBETH2008 with variables x1; � � � ; xn, 
1; � � � ; 
Q

min .x1 � xn/

s. t. xp � xr D 0 8.ap; ar/ 2 I with p < r (t1)


i C 1

2
� xp � xr

8i; j 2 N1;Q with i � j;
8.ap; ar/ 2 Cij

(t02)

xp � xr � 
jC1 � 1
2

8i; j 2 N1;Q�1 with i � j;
8.ap; ar/ 2 Cij

(t03)


1 D 1

2
(t04)


i�1 C 1 � 
i 8i 2 N2;Q (t05)

xn D 0 (t6)

xi 	 0 8i 2 N1;n


i 	 0 8i 2 N1;Q

2. LP-MACBETH2011 with variables x1; � � � ; xn

min .x1 � xn/

s. t. xp � xr D 0 8.ap; ar/ 2 I with p < r (t1)

xn D 0 (t6)

xp � xr 	 i
8i; j 2 N1;Q with i � j;

8.ap; ar/ 2 Cij
(t7)
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xp � xr 	 xk � xm C i� j0
8i; j; i0; j0 2 N1;Q with

i � j; i0 � j0 and
i > j0;8.ap; ar/ 2 Cij;

8.ak; am/ 2 Ci0 ;j0

(t8)

xi 	 0 8i 2 N1;n

Indeed, it is easy to prove that :

�9
1; � � � ; 
Q such that .x1; � � � ; xn/ is solution of .t1/; .t02/; .t03/; .t04/;
.t05/ and .t06/

�

if and only if
Œ.x1; � � � ; xn/ is solution of .t1/; .t6/; .t7/; and .ts/�

If Œ8i; j 2 N1;Qwithi < j;Cij D ;� (i.e., there is no hesitation between two
categories for any of the judgements elicited), the constraints (t7) and (t8) can be
written simply as:

8.ap; ar/ 2 Ciand8.ak; am/ 2 Ci0 with0 � i < i0 � Q W
xp � xr 	 xk � xm C i � i0 (t9)

Consider the consistent matrix of judgements (with n D 5 and Q D 6) in
Fig. 11.7. On the basis of constraint (t9), the corresponding basic MACBETH scale
can be determined by hand as follows:

As x5 D 0 [constraint (t6)], one only needs to determine the four “elementary
differences”

x1 � x2;x2 � x3;x3 � x4andx4 � x5:

• 8.ai; aiC1/ 2 C1withi 2 f1; 2; 3; 4g; takexi � xiC1 D 1
Here: x3 � x4 D 1

Fig. 11.7 Consistent matrix of MACBETH qualitative judgements with no hesitation
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• 8i; j 2 f1; 2; 3; 4; 5g with i < j and j � i 	 2, calculate the difference xi � xj

whenever it is possible.
Here, i.e. for the matrix in Fig. 11.7 no difference xi�xj with i < j and j�i 	 2

can be calculated at this stage.
• If constraint (t9) is not respected, modify the values of the elementary differences

xi � xiC1.
Here, the constraint is obviously respected at this stage.

• 8.ai; aiC1/ 2 C2 with i 2 f1; 2; 3; 4g, take xi � xiC1 D ˛1 C 1 where ˛1 D
maxfxi � xjji < jand.ai; aj/ 2 C1g.

Here, ˛1 D 1 and we take : x1 � x2 D 2 and x4 � x5 D 2.
• 8i; j 2 f1; 2; 3; 4; 5g with i < j and j � i 	 2, calculate the difference xi � xj

whenever it is possible.
Here, we have: x3 � x5 D .x3 � x4/C .x4 � x5/ D 3.

• If constraint (t9) is not respected, modify the values of the elementary differences
xi � xiC1.

Here, the constraint is respected at this stage.
• 8.ai; aiC1/ 2 C3 with i 2 f1; 2; 3; 4g, take xi � xiC1 D ˛2 C 1 where ˛2 D

maxfxi � xjji < jand.ai; aj/ 2 C2g.
Here, ˛2 D 3 and we take : x2 � x3 D 4.

• 8i; j 2 f1; 2; 3; 4; 5g with i < j and j � i 	 2, calculate the difference xi � xj

whenever it is possible.
Here;wehave W x1 � x3 D .x1 � x2/C .x2 � x3/ D 6

x1 � x4 D .x1 � x2/C .x2 � x3/C .x3 � x4/ D 7
x1 � x5 D .x1 � x2/C .x2 � x3/C .x3 � x4/C .x4

�x5/ D 9
x2 � x4 D .x2 � x3/C .x3 � x4/ D 5
x2 � x5 D .x2 � x3/C .x3 � x4/C .x4 � x5/ D 7
x3 � x5 D .x3 � x4/C .x4 � x5/ D 3:

• If constraint (t9) is not respected, modify the values of the elementary differences
xi � xiC1.

As can be observed in Fig. 11.8, there is a problem here: as .a2; a5/ 2 C5 and
.a1; a4/ 2 C4, one must have x2 � x5 	 x1 � x4 C 1 that is .x2 � x3/ C .x3 �
x4/ C .x4 � x5/ 	 .x1 � x2/ C .x2 � x3/ C .x3 � x4/ C 1. So, in terms of the

Fig. 11.8 First attempt to obtain the basic MACBETH scale
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elementary differences .x1� x2/, .x2� x3/, .x3� x4/ and .x4� x5/, one must have
.x4�x5/ 	 .x1�x2/C1. which implies, in our case : .x4�x5/ 	 3 and one takes
the smallest possible value, that is x4 � x5 D 3, and consequently x3 � x5 D 4.

• 8.ai; aiC1/ 2 C3 with i 2 f1; 2; 3; 4g, take xi � xiC1 D ˛�
2 C 1 where ˛�

2 D
maxfxi � xjji < jand.ai; aj/ 2 C2g.

Here, ˛�
2 D 4 and one takes : x2 � x3 D 5.

• 8i; j 2 f1; 2; 3; 4; 5g with i < j and j � i 	 2, calculate the difference xi � xj

whenever it is possible.

Here;wehave Wx1 � x3 D .x1 � x2/C .x2 � x3/ D 7
x1 � x4 D .x1 � x2/C .x2 � x3/C .x3 � x4/ D 8

x1 � x5 D .x1 � x2/C .x2 � x3/C .x3 � x4/C .x4
�x5/ D 11

x2 � x4 D .x2 � x3/C .x3 � x4/ D 6
x2 � x5 D .x2 � x3/C .x3 � x4/C .x4 � x5/ D 9
x3 � x5 D .x3 � x4/C .x4 � x5/ D 4:

As all the elementary differences are determined and the constraint (t9) is
respected (see Fig. 11.9), the basic MACBETH scale can be obtained:

x5 D 0
x4 D x5 C .x4 � x5/ D 3
x3 D x4 C .x3 � x4/ D 4
x2 D x3 C .x2 � x3/ D 9
x1 D x2 C .x1 � x2/ D 11:

Fig. 11.9 Second attempt to obtain the basic MACBETH scale
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11.9 Discussion About a Scale

Suppose that, in the example in Fig. 11.6, J considers that the element a is badly
positioned when compared to elements c and d and therefore J wants to redefine the
value of a. It is then interesting to show J the limits within which the value of a can
vary without violating the preferential information provided by J. Let us suppose in
this section that we have a type 1+2 information about X which is consistent and
that ‹ D �.

Let �0 be a particular scale of Sc1C2, L and H be two fixed elements of X with
HPL (H more attractive than L) and a be an element of X (not indifferent to L and
not indifferent to H) that J would like to have repositioned.

Let

• Sc.�0;H;L/ D f� 2 Sc1C2 j �.H/ D �0.H/ and �.L/ D �0.L/g (scales for which
values associated with H and L have been fixed)

• Sc.�0;Oa/ D f� 2 Sc1C2 j 8 y 2 X with y not indifferent to a: �.y/ D �0.y/g
(scales for which the values of all of the elements of X except a and its eventual
equals have been fixed).

We call free interval associated to interval a :

#

inf
�2Sc.�0;H;L/

�.a/; sup
�2Sc.�0;H;L/

�.a/

"

We call dependent interval associated to interval a :

#

inf
�2Sc.�0;Oa/

�.a/; sup
�2Sc.�0;Oa/

�.a/

"

In the example in Fig. 11.6, if one selects a, two intervals are presented to J (see
Fig. 11.10) which should be interpreted as follows:

8 � 2 Sc1C2 ; Œ �.c/ D 0; �.d/ D 100 �) 66:69 � �.a/ � 99:98:
8 � 2 Sc1C2 ; Œ �.c/ D 0; �.d/ D 100; �.e/ D 36:36; �.b/ D 27:27 �

) 72:74 � �.a/ � 90:9:

The closed intervals (in the example Œ66:69; 99:98� and Œ72:74; 90:9�) that have
been chosen to present to J are not the precise free and dependent intervals
associated to a (which, by definition, are open); however, by taking a precision of
0:01 into account, they can be regarded as the “greatest” closed intervals included
in the free and dependent intervals.

M-MACBETH permits the movement of element a with the mouse but, obvi-
ously, only inside of the dependent interval associated to a.
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Fig. 11.10 “Greatest” closed
intervals included in the free
and dependent intervals 99.98

66.69

72.74

90.90

100.00

81.82a

e

b

c

27.27

0.00

36.36

d

If J wants to give element a a value that is outside of the dependent interval
(but still inside the free interval), the software points out that the values of the other
elements must be modified. If J confirms the new value of a, a new MACBETH
scale is calculated, taking into account the additional constraint that fix the new
value of a.

The (“closed”) free interval is calculated by integer linear programming. The
(“closed”) dependent interval could be also calculated in the same manner. However,
M-MACBETH computes it by “direct” calculation formulas which make the
determination of these intervals extremely fast—for details, see [95].

11.10 MACBETH and MCDA

The MACBETH approach and the M-MACBETH software have been used to build
value functions and scoring and weighting scales, in the process of developing
multicriteria decision aid models, in particular many simple additive value models.



452 C.A. Bana e Costa et al.

In this framework, the MACBETH weighting procedure is presented in detail in
[57]. A classification of applications of MACBETH reported in the literature is
presented hereafter (further references to applications reported in Portuguese can
be found in [58]).

Agriculture, Manufacturing & Services: Finance: [19, 20, 42, 49, 70, 72, 73, 78,
105, 116–119, 134, 185];
Information systems: [57, 124, 188];
Performance measurement: [64–67, 69, 71, 83, 88, 101, 107, 108, 127–129, 138,
142–145, 151, 189, 192];
Production & service planning: [2, 3, 29, 36, 79, 89, 90, 131, 139, 157, 171, 172,
174, 179];
Quality management: [12, 56, 80, 81, 112];
R&D project selection: [96];
Risk management: [84, 121, 161];
Strategy & resource allocation: [37, 38, 170];
Supply chain and logistics: [97–99, 133, 140, 141, 165, 183, 198];

Energy: Project prioritization and selection: [50, 100];
Technology choice: [60, 61, 75, 110, 111, 115, 120, 155, 156, 196];

Environment: Landscape management: [186, 190];
Climate change: [58, 85];
Risk management: [13, 51, 87, 135, 166, 184];
Sustainable development: [154, 176];
Water resource management: [4, 5, 39, 46];

Medical: [91–94, 148, 153, 158, 162–164, 175, 182];
Military: [15, 21, 136, 137, 146, 147, 191];
Public Sector: Conflict analysis and management: [8, 41, 68, 102, 177, 187];

Education: [1, 86];
Procurement: [7, 9, 11, 43, 57] [14, 15, 18, 24, 33, 40, 48, 50, 149, 173];
Project prioritization & resource allocation: [16, 26, 30, 32, 35, 47, 76, 77, 152,
167–169, 180, 181, 193];
Strategic planning & development: [34, 44, 52, 53, 59, 130, 160, 194];

Others: Human resource management: [17, 54, 103, 104, 106, 109, 122, 123, 132,
146, 147, 191];
Job selection: [10];
Sports: [74].
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Chapter 12
Dealing with Uncertainties in MCDA

Theodor J. Stewart and Ian Durbach

Abstract This chapter presents various approaches to incorporating formal
modelling of risks and uncertainties into multi-criteria decision analysis, in a
theoretically valid but also operationally meaningful manner. We consider both
internal uncertainties (in the formulation and modelling of the decision problem),
and external uncertainties arising from exogenous factors, but with greater attention
paid to the latter. After a broad discussion on the meaning of uncertainty, we
first review approaches to sensitivity analysis, which is particularly, although not
exclusively, relevant to internal uncertainties. We discuss the role, but also some
limitations, of representing uncertainties in formal probabilistic structures, linked
also to concepts of expected (multi-attribute) utility theory. Such probability/utility
approaches may be used in explicitly identifying a most preferred solution, or
simply to eliminate certain courses of action when stochastically dominated (in
various senses) by others. In some contexts it may be useful to view minimization
of various risk measures as additional criteria in more standard MCDA models,
and we comment on advantages and disadvantages of such approaches. Finally
we discuss the integration of MCDA with scenario planning, in order to deal
with deeper uncertainties (not easily if at all representable by probability models),
particularly in a strategic planning context. The emphasis throughout is on the
practice of MCDA rather than on esoteric theoretical results.
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12.1 What is Uncertainty?

The term uncertainty can have many different meanings. The Chambers Dictionary
(1998 edition) defines “uncertain” as not definitely known or decided; subject
to doubt or question. Klir and Folger [61] quote six different definitions for
“uncertainty” from Webster’s Dictionary. In the context of practical applications in
multicriteria decision analysis, however, the definition given by Zimmermann [109]
would appear to be particularly appropriate. With minor editing, this is as follows:

Uncertainty implies that in a certain situation a person does not possess the information
which quantitatively and qualitatively is appropriate to describe, prescribe or predict
deterministically and numerically a system, its behaviour or other characteristics.

At a most fundamental level, uncertainty relates to a state of the human mind,
i.e. lack of complete knowledge about something. Many writers also use the term
“risk”, although the definition of the term varies widely. Some earlier work tended to
apply the term “risk” to situations in which probabilities on outcomes are (to a large
extent) known objectively (cf. [39, p. 389], [76] for some reference to this view).
More recently, the concept of risk has come to refer primarily to the desirability or
otherwise of uncertain outcomes, in addition to simple lack of knowledge. Thus,
for example, [34] refers to risk as “a chance of something bad happening”, and in
fact separates uncertainty (alternatives with several possible outcome values) from
the fundamental concept of risk as a bad outcome. Sarin and Weber [87] state that
“judgements about riskiness depend on both the probability and the magnitude of
adverse effects” (our emphasis), while [54] also discuss the psychological aspects
of establishing a preference order on risks.

For the most part in this chapter, we shall make use of the value-neutral term
“uncertainty”, referring to “risk” only when direct preference orderings of the
uncertainty per se are relevant (for example, in Sect. 12.5). It is interesting to note in
passing that while the thrust of the present discussion is to give consideration to the
effects of uncertainty on MCDA, there has also been work on applying multicriteria
concepts to the measurement of risk for other purposes, as for example in credit risk
assessment ([28], who make use of a rough sets approach).

A number of authors (e.g. [35, 109]) have attempted to categorize types or
sources of uncertainty in the context of decision making. French [35], for example,
identifies no less than ten different sources of uncertainty which may arise in model
building for decision aid, which he classifies into three groups referring broadly to
uncertainties in the modelling (or problem structuring) process, in the use of models
for exploring trends and options, and in interpreting results. The common theme
underlying such categorizations, as well as those of other authors, such as Friend
[37] and Levary and Wan [68], is the need at very least distinguish between internal
uncertainty, relating to the process of problem structuring and analysis, and external
uncertainty, regarding the nature of the environment and thereby the consequences
of a particular course of action which may be outside of the control of the decision
maker. Let us briefly examine each of these broad categories of uncertainty.
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12.1.1 Internal Uncertainty

This refers to both the structure of the model adopted and the judgmental inputs
required by those models, and can take on many forms, some of which are
resolvable and others which are not. Resolvable uncertainties relate to imprecision
or ambiguity of meaning—for example, what exactly may be meant by a criterion
such as “quality of life”? Less easily resolvable problems may arise when different
stakeholders generate different sets of criteria which are not easily reconciled; or
perceive alternatives in such different ways that they differ fundamentally on how
they contribute to the same criterion.

Imprecisions in human judgments, whether these relate to specifications of
preferences or values (for example importance weights in many models), or to
assessments of consequences of actions, have under certain circumstances been
modelled by fuzzy set (see, for example, Chaps. 4 and 5 of Klir and Folger [61])
and related approaches (such as the use of rough sets as described by Greco et
al. [41–43]. From the point of view of practical decision aid, such models of
imprecision add complexity to an already complex process, and the result may
often be a loss of transparency to the decision maker, contrary to the ethos of
MCDA. For this reason, the view espoused here is that internal uncertainties should
ideally be resolved as far as is possible by better structuring of the problem (cf.
[11, Chap. 3]) and/or by appropriate sensitivity and robustness analysis where not
resolvable, which will further be discussed in Sect. 12.2. The evidential reasoning
(ER) approach described by Xu [102], to which we shall refer again at the end of
Sect. 12.3, does provide a more formal model for integrating imprecise preference
information that cannot fully be resolved.

12.1.2 External Uncertainty

This refers to lack of knowledge about the consequences of a particular choice.
Friend [37] and French [35] both recognize a further distinction between uncertainty
about the environment and uncertainty about related decision areas, as described
below.

• Uncertainty about the environment represents concern about issues outside the
control of the decision maker. Such uncertainty may be a consequence of a lack of
understanding or knowledge (in this sense it is similar to uncertainty about related
decision areas) or it may derive from the randomness inherent in processes (for
example the chance of equipment failure, or the level of the stock market). For
example, the success of an investment in new production facilities may rest on
the size of the potential market, which may depend in part on the price at which
the good will be sold, which itself depends on factors such as the cost of raw
materials and labour costs. A decision about whether or not to invest in the new
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facilities must take all of these factors into account. This kind of uncertainty may
be best handled by responses of a technical nature such as market research, or
forecasting.

• Uncertainty about related decision areas reflects concern about how the decision
under consideration relates to other, interconnected decisions. For example,
suppose a company which supplies components to computer manufacturers is
looking to invest in a management information system. They would like their
system to be able to communicate directly with that of their principal customers;
however, at least one of these customers may be planning to install a new system
in the near future. This customer’s decision could preclude certain of the options
open to the supplier and would certainly have an impact on the attractiveness
of options. The appropriate response to uncertainty of this kind may be to
expand the decision area to incorporate interconnected decisions, or possibly to
collaborate or negotiate with other decision makers.

Under many circumstances, both internal and external uncertainties can be
treated in much the same manner, for example by appropriate sensitivity analyses
post hoc. In other words, the approach might be to make use of a crisp deterministic
MCDA methodology, and to subject the results and conclusions to extensive
sensitivity studies. Indeed, we would assert that such sensitivity studies should
routinely be part of any MCDA application, and some approaches are discussed
in Sect. 12.2.

Where uncertainties are of sufficient magnitude and importance to be modelled
explicitly as part of the MCDA methodology, however, the modelling approaches
for internal and external uncertainties may often become qualitatively different in
nature. It seems, therefore, that the treatment of the two types of uncertainty should
preferably be discussed in separate papers or chapters. In order to provide focus for
the present paper, our attention will be focussed primarily, apart from Sect. 12.2,
on consideration of the external uncertainties as defined above. Without in any
way minimizing the importance of dealing with internal uncertainties, our choice
of the problem of external uncertainties as the theme for this chapter is in part due
to the present authors’ practical experience, which suggests that it is the external
uncertainties which are often of sufficient magnitude and importance to require more
explicit modelling. The present chapter complements in many ways the survey paper
by Durbach and Stewart [32] which does include more on internal uncertainties
and the behavioural models of uncertainty and risk perception. (It should perhaps
be acknowledged that there is also some inevitable overlap between Durbach and
Stewart [32] and the current chapter, but the thrusts are still distinct.)

Admittedly, the boundary between external uncertainty and imprecision is,
well, fuzzy! To this extent, some of the material in this chapter is appropriate to
internal uncertainties as well, while some methods formulated to deal with human
imprecision might equally well be useful in dealing with external uncertainties. We
leave it to the reader to decide where this may be true. We do not attempt here a
comprehensive review of literature related primarily to internal uncertainties, but
the interested reader may wish to consult some of the following references:
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• Fuzzy set approaches: [22, 23, 61, 104]; some discussion may also be found
in [32];

• Rough set approaches: [41–44].

Our approach is pragmatic in intention, motivated by practical needs of real-
world decision analysis. In particular, the fundamental philosophical point of
departure is a belief in the over-riding need for transparency in any MCDA:
it is vitally and critically important that any approaches to MCDA are fully
understandable to all participants in the process. Elegant mathematical models
which are inaccessible to such participants are of very little practical value.

Within the context of the opening discussion, let us now define a notational
framework within which to consider MCDA under uncertainty (primarily “external
uncertainty” as defined earlier). Let X be the set of actions or decision alternatives.
When there is no uncertainty about the outcomes, there exists a one-to-one
correspondence between elements of X and consequences in terms of the criteria,
and X may written as the product space

Qn
iD1 Xi, where Xi is the set of evaluations

with respect to criterion i. In other words, any x 2 X may be viewed as an
n-dimensional vector with elements xi 2 Xi, where xi represents the evaluation of x
with respect to the criterion i.

Under uncertainty, however, the one-to-one correspondence between actions and
evaluations or consequences breaks down. It may be possible to postulate or to
conceptualize an ultimate set of consequences Z1.x/; : : : ;Zn.x/ corresponding to
each of the criteria, but at decision time there will still exist many possible values
for each Zi.x/. For ease of notation, we shall use Z.x/ to indicate the vector of Zi.x/
values.

In some cases, it may be possible and useful to structure Zi.x/ (or Z.x/) in the
form Zi.x; �/ (or Z.x; �)), where � 2 „ fully characterizes the external conditions,
sometimes termed the “states of nature”, and „ represents the set of all possible
states of nature. The assumption is then that once � (the state of nature) is established
or revealed, then the consequences in terms of each criterion will also be known. We
observe, however, that even „ might not be fully known or understood at decision
time, and that „ could possibly depend upon the action x (although, for ease of
notation, we shall not show this explicitly).

The question to be addressed in this chapter is that of constructing some
form of (possibly partial) preference ordering on X, when the consequences are
incompletely known or understood in the sense described in the previous paragraph.

As indicated earlier, one approach may be initially to ignore the uncertainty, and
to conduct the analysis on the basis of a nominal set of consequences z1; z2; : : : ; zn

chosen to be representative of the possible Zi.x/, followed by extensive sensitivity
analysis which takes into account the range of uncertainty in each Zi.x/. Under many
circumstances this may be adequate. Care needs to be exercised in undertaking
sensitivity analyses, however, as simple “one-at-a-time” variations in unknown
parameter values may fail to identify effects of higher order interactions. Some of
the complications inherent in undertaking properly validated sensitivity analyses,
and suggestions as to how these may be addressed, are discussed by Rios Insua
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[83], Parnell et al. [81], and Saltelli [86]. Section 12.2 describes some practical
approaches for managing such sensitivity studies.

In the remainder of this chapter, the focus will be on situations in which the
ranges of uncertainty are too substantial to be handled purely by sensitivity analysis.
In Sect. 12.3 we discuss the use of probability models and related methods to
represent the uncertainties formally, emphasizing particularly the comprehensively
axiomatized approach of multiattribute utility theory. The potential for relaxing the
needs to specify complete utility functions are addressed in Sect. 12.4, which leads
naturally to the use of pairwise comparison models for MCDA. In many practical
situations, decision maker preferences for various types of risk (magnitude and
impact of the uncertainties) may be modelled by defining explicit risk-avoidance
criteria, and these are discussed in Sect. 12.5. Finally, links between MCDA and
scenario planning for dealing with uncertainties are presented in Sect. 12.6, before
concluding with some general implications for practice.

12.2 Sensitivity Analysis and Related Methods

For the purposes of this section, we postulate the existence of an “evaluation
function” �.Z.x; �/; �/, which indicates a degree of satisfaction associated with
the outcome of the decision. In this formulation:

• The function �.Z.x; �/; �/ could be a utility, a distance from a desired outcome,
etc.;

• The factors � and � represent respectively the external influences (incompletely
known, and outside of the decision makers’ control) on consequences of the
decision, and the internal uncertainties as to how these consequences should be
evaluated in terms of decision maker goals (e.g. importance weights, tradeoffs).

The aim of sensitivity analysis is typically to identify potentially optimal
solutions amongst uncertainty ranges in � (external) and � (internal). Sensitivity
analysis is aimed at providing insights into:

1. whether the outcome of the decision model changes as � and/or � take on
different values within the stated bounds. For simplicity of presentation here,
we shall assume a choice problematique i.e. the selection of a single preferred
alternative;

2. the values of � and � for which each alternative may be deemed to be the best.

Sensitivity analysis is most appropriately applied when the uncertainties are essen-
tially subjective in nature, i.e. either internal uncertainties (�) or situations in which
the state is already determined (not subject to future random fluctuations) but still
unknown. For ease of presentation we shall denote the combination of subjective
uncertainties in state (typically state probabilities) and internal uncertainties by
 D .�; �/, and assume that there are no other external random influences. In this
case, we shall express the evaluation function simply as �.Z.x/;  /.
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If the decision maker has provided a precise specification of elements of  , sen-
sitivity analysis involves varying away from these specified values and examining
the impact on results. This can be done in an ad hoc fashion, although a preferable
approach is to use one of the many well-known methods for systematically exploring
the space of possible preference parameters (see the review in [52]). Many of the so-
called “interactive” or “progressive articulation of preferences” methods (e.g. [42]
and especially [92]) may also be useful as tools for sensitivity analysis.

If no precise specification of  can be given, alternative forms of sensitivity
analysis are provided by inverse-preference and preference disaggregation models.
(Interval-based decision models [75] may also be used, but fall outside the scope of
the aims of present section.) Inverse preference models typically work by providing
information about the volume and types of values for  (if any) that would lead to
the selection of each alternative. Effectively, instead of asking ‘which alternative is
best given a particular  ?’, one asks for example ‘what ranges of or possible values
for  would result in a particular alternative being considered the best?’. Partial
or total ignorance about possible values for  is incorporated through appropriate
probability distributions defined over these inputs.

One such inverse-preference method is stochastic multi-criteria acceptability
analysis (SMAA). The original SMAA method [66] analysed the combinations of
attribute weights (internal uncertainties) that result in each of a set of prospective
alternatives being selected when using an additive utility function. Subsequently a
number of variants have been developed. These differ in terms of the preference
model used and the type of information that is imprecisely known, but are all
based upon Monte Carlo simulation from distributions which indicate the extent
of the uncertainty in  . For example, SMAA variants are available for value
functions [64, 66], outranking [50], reference point methods [29, 67], and prospect
theory [65] methods. Several probabilistic AHP models [7, 69] also use Monte
Carlo simulation to randomly generate pairwise evaluations from the distributions
specified by decision makers, in similar fashion to SMAA.

For illustration, the process described here relates to uncertain importance weight
information, but can readily be extended to other subjective uncertainties. SMAA
in this context is based on simulating a large number of random weight vectors
from a probability distribution defined over the weight space and observing the
proportion and distinguishing features of weight vectors which result in each
alternative obtaining a particular rank r (usually the “best” rank, r D 1). Other
uncertain evaluations, e.g. partial value assessments in value function methods,
are also conventionally treated in SMAA using probability distributions, with each
simulation run drawing values at random from these distributions. Adapting SMAA
models to use other uncertainty formats, however, is generally straightforward [30].
In any case, in order to illustrate the process for uncertain weights, let the set of
(randomly generated) weight vectors that result in alternative ai obtaining rank r
be denoted by Wr

i . SMAA is based on an analysis of these sets of weights using a
number of descriptive measures, the most important of which are:

Acceptability indices The rank-r acceptability index br
i measures the proportion

of all simulation runs i.e. weight vectors, that make alternative ai obtain
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rank r. A cumulative form of the acceptability index called the k-best ranks
acceptability index is defined as Bk

i D
Pk

rD1 br
i and measures the proportion of

all weight vectors for which alternative ai appears anywhere in the best k ranks.
Central weight vectors The central weight vector wc

i is defined as the center of
gravity of the favourable weight space W1

i . It gives a concise description of
the “typical” preferences supporting the selection of a particular alternative ai,
and in practice is computed from the empirical (element-wise) averages of all
weight vectors supporting the selection of ai as the best alternative.

Ranges on favourable weights These simply indicate the minima and maxima of
the observed favourable weights supporting alternative ai.

Preference disaggregation models also aim to provide information on conditions
under which one or more alternatives may be preferred to others, particularly with
regard to internal uncertainty. These models typically use a set of global preference
statements to infer the parameters of a preference model before applying that model
to a larger set of alternatives to arrive at a choice or ranking or classification. In
the original UTA method (see [53]), the breakpoints of piecewise linear marginal
value functions are estimated by a linear program whose main elements are the
constraints U.a/ > U.b/ () a 
 b and U.a/ D U.b/ () a � b, along
with some technical constraints (e.g. imposing montonicity and a zero-point). Of
course, more than one set of value functions may be compatible with the specified
global preference statements. The robust ordinal regression approach [46] addresses
this issue by providing “necessary” preference relations indicating support from all
compatible value functions, and “possible” preference relations indicating support
from at least one compatible value function. A linear programming model is
constructed to determine whether a given alternative a is possibly or necessarily
preferred to an alternative b in the light of available preference information.

In addition, preference statements can be in the form of ranking preference
differences as well as alternatives, and value functions are not constrained to be
piecewise linear. A number of extensions of the basic robust ordinal regression
approach have been made to accommodate sorting problems [45], nonadditive
functions [4], and outranking methods [47].

This section on sensitivity analysis has focussed on subjective and particularly
internal uncertainties. We shall now, for the remainder of the chapter focus on
external uncertainties.

12.3 Probabilistic Models and Expected Utility

The most thoroughly axiomatized mathematical treatment of uncertainty is that of
probability theory, and possibly extensions such as Dempster-Shafer theory [88].
The application of probability concepts requires the specification of a (multivariate)
probability distribution on Z.x/ for each action x, so that in effect the decision
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requires a comparison of probability distributions (sometimes called “lotteries” in
this context). Let Px.z/ denote the probability distribution function on Z.x/, i.e.:

Px.z/ D PrŒZ1.x/ � z1;Z2.x/ � z2; : : : ;Zn.x/ � zn�:

Define Px
i .zi/ as the corresponding marginal probability distribution function for

Zi.x/.
Where uncertainties are structured in terms of “states of nature”, the probability

distributions may be defined on the � (rather than on the Z.x/ directly). In some
situations, the probability distribution on � may be independent of the action which
would make the application of probability models much more tractable, but this will
not necessarily always be the case.

A possibility at this stage is to construct a deterministic MCDA model based only
on expectations, and to subject the results to some form of (possibly interactive)
sensitivity analysis, such as described in the previous section, guided by the
known distributional properties. Examples of this are in the PROTRADE method
described by Goicoechea et al. [39, Chap. 7], dealing with an interactive method
for multiobjective mathematical programming problems, and in the stochastic
extensions to outranking proposed by Mareschal [72].

Although simulations reported in [31] suggest that simple expectation models
can often return similar results to models taking the full ranges of outcomes
into account, this conclusion clearly cannot be generalized to all situations. Mul-
tiattribute utility theory (MAUT) extends the concept of expectation to include
explicit modelling of risk preferences, i.e. of the magnitudes of dispersion that
may occur. MAUT is discussed by Dyer in Chap. 8 of this volume, and also
more comprehensively in the now classic texts of Keeney and Raiffa [57] and von
Winterfeldt and Edwards [97]. In essence, MAUT seeks to construct a “utility
function” U.Z/, such that for any two actions x and y in X, x % y if and only
if EŒU.Z.x//� 	 EŒU.Z.y//�, where expectations are taken with respect to the
probability distributions on Z.x/ and on Z.y/ respectively.

Practically, the construction of the global utility function U.Z/ starts with the
construction of partial or marginal utility functions individually for each attribute,
say ui.Zi/, satisfying the expected utility hypothesis for variations in Zi only. The
axioms underlying the existence of such marginal utility functions and the methods
for their construction are well-known from univariate decision analysis (see, for
example, Chap. 8, or [40, Chap. 6]). It is well-established that these axioms are not
descriptively valid, in the sense that decision makers do systematically violate them
(see, for example, the various paradoxes described by Kahneman and Tversky [56],
or in the text of Bazerman [9]). Attempts have been made to extend the utility
models to account for observed behaviour (see, for example, [78] for a review
of such extensions in the multicriteria context). Nevertheless, as we have argued
elsewhere (e.g.,[11, Sect. 4.3.1]), descriptive failures do not lessen the value of the
simpler axiomatically based theory of MAUT as a coherent discipline within which
to construct preferences in a simple, transparent and yet defensible manner.
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The real challenge relates to the aggregation of the ui.Zi/ into a U.Z/ still
satisfying the expected utility hypothesis for the multivariate outcomes. The two
simplest forms of aggregation are the additive and multiplicative, which we shall
now briefly review (although a full description can be found in Chap. 8).

Additive aggregation. In this case, we define:

U.Z/ D
nX

iD1
kiui.Zi/: (12.1)

This model is only justifiable if the criteria are additively independent, i.e.
if preferences between the multivariate lotteries depend only on the marginal
probability distributions. That this is not an entirely trivial assumption may
be seen by considering two-dimensional lotteries (n D 2) in which there
are only two possible outcomes on each criterion, denoted by z0i and z1i for
i D 1; 2. Suppose that z1i 
 z0i . Then without loss of generality, the partial
utility functions can be standardized such that u1.z01/ D u2.z02/ D 0 and
u1.z11/ D u2.z12/ D 1. Consider then a choice between two lotteries defined
as follows:

• The lottery giving equal chances on .z01 I z02/ and .z11 I z12/; and
• The lottery giving equal chances on .z01 I z12/ and .z11 I z02/.

We note that both lotteries give the same marginal distributions on each Zi,
i.e. equal chances on each of z0i and on z1i for each i. It is easily verified
that with additive aggregation defined by (12.1), both of these lotteries yield
an expected utility of .k1 C k2/=2. The additive model thus suggests that the
decision maker should always be indifferent between these two lotteries. There
seems, however, to be no compelling axiomatic reason for forcing indifference
between the above two options. Where there is some measure of compensation
between the criteria (in the sense that good performance on one can compensate
for poorer outcomes on the other), the second option may be preferred as it
ensures that one always gets some benefit (a form of multivariate risk aversion).
On the other hand, if there is need to ensure equity between the criteria (if they
represent benefits to conflicting social groups, for example), then the first lottery
(in which loss or gain is always shared equally) may be preferred.

Multiplicative aggregation. Now we define U.Z/ such that:

1C kU.Z/ D
nY

iD1
Œ1C kkiui.Zi/� (12.2)

where the multivariate risk aversion k parameter satisfies:

1C k D
nY

iD1
Œ1C kki� (12.3)
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Use of the multiplicative model requires that the condition of mutual utility
independence be satisfied. A subset of criteria, say C � f1; 2; : : : ; ng is said to
be utility independent of its complement NC D f1; 2; : : : ; ng n C, if preferences
for lotteries involving only Zi for i 2 C for fixed values of Zi for i 2 NC
are independent of these fixed values. The criteria are said to be mutually
utility independent if every subset of the criteria is utility independent of its
complement.

In principle, however, there are no compelling reasons why criteria should
necessarily be mutually utility independent, and in fact it can be difficult in practice
to verify that the condition holds. Good problem structuring for MCDA would seek
to ensure preferential independence of some form between criteria (for example,
such that trade-offs between pairs of criteria are independent of outcomes on other
criteria), but mutual utility independence is a stronger assumption and more elusive
concept than simple preferential independence.

Models based on weaker preference assumptions have been developed, such as
the multilinear model given by:

U.Z/ D
nX

iD1
kiui.Zi/C

nX

iD1

X

i<j�n

kijui.Zi/uj.Zj/

C : : :C k12:::nu1.Z1/u2.Z2/ : : : un.Zn/ (12.4)

The large number of parameters which have to fitted to decision maker preferences
is prohibitive in most real world applications. Even the multiplicative model is far
from trivial to apply in practice. Its construction involves the following steps:

• Assessment of the partial utilities ui.Zi/ by standard single attribute lottery
procedures.

• Parameter estimation: The multiplicative model includes n C 1 parameters
which have in principle to be estimated, although in the light of (12.3), only n
independent parameters need estimation. Estimates thus require at least n pref-
erence statements concerning hypothetical choices to be made by the decision
maker. Some of these can be based on deterministic trade-off assessments, but at
least one of the hypothetical choices must involve consideration of preferences
between multivariate lotteries.

In exploring the literature, it is difficult to find many reported applications
even of the multiplicative model, let alone the multilinear model. Some of the
practical complications of properly implementing these models are illustrated by
Rosqvist [85] and Yilmaz [105].

Such difficulties of implementation raise the question as to how sensitive the
results of analysis may be to the use of the additive model (12.1) instead of the
more theoretically justifiable aggregation models given by (12.2) or (12.4). We have
seen earlier that situations can be constructed in which the additive model may
generate misleading results. But how serious is this in practice? Construction of
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the additive model requires much less demanding inputs from the decision maker,
and it may be that the resultant robustness or stability of the model will compensate
for biases introduced by use of the simpler model. In [89] a number of simulation
studies are reported in which the effects are studied of using the additive aggregation
model when “true preferences” follow a multiplicative aggregation model. Details
may be found in the cited reference, but in essence it appeared that the errors
introduced by using the additive model were generally small for realistic ranges
of problem settings. The errors were in any case substantially smaller than those
introduced by incorrect modelling of the partial utility functions (such as by over-
linearization of the partial functions which appears to be a frequent but erroneous
simplification). Related work [90] has also demonstrated that more fundamental
violations of preferential independence may also introduce substantial errors.

Concerns about the validity of the fundamental axiomatic foundations of utility
theory, even for single criterion problems, have led other writers to formulate alter-
native models to circumvent these. From the standpoint of prescriptive decision aid,
a particular concern is that several utility techniques for eliciting the marginal value
functions ui.zi/ (e.g. certainty-equivalence and probability-equivalence methods)
assume that the axioms of EUT hold during the elicitation process [17], even though
these axioms are known not to be descriptively valid. Utility function assessments
based on elicited responses from decision makers who do not follow EUT may
thus be systematically biased. Importantly, this concern for the validity of estimated
marginal utility functions relates to observed or descriptive behaviour, and is thus
independent of any debate around the desirability of the axioms in a normative
decision aiding sense. Wakker and Deneffe [98] propose an alternative assessment
method—the gamble trade-off method—that does not depend on the actual prob-
ability values, and is thus robust to the kinds of probability transformations that
decision makers often use. These procedures are extended in [1, 16] to allow for
the assessment of both non-expected utility and probability weighting functions,
and in [3] to allow the full assessment of the prospect theory utility function
i.e. one that is defined over the whole domain of losses and gains. A number of
authors [15, 78, 106] have reviewed generalizations to utility theory and developed
procedures for the decomposition of multi-attribute non-expected utility functions,
while others (e.g. [13, 103]) relax the demands of probability theory by invoking
concepts from Dempster-Shafer theory of evidence.

Unfortunately, these generalizations tend often to make the models even more
complex and thus less transparent to decision makers, further aggravating difficulties
of implementation. Our overall conclusion is thus that in the practical application of
expected utility theory to decision making under uncertainty, the use of the additive
aggregation model is likely to be adequate in a many settings. The imprecisions and
uncertainties involved in constructing the partial utilities, which need in any case to
be addressed by careful sensitivity analysis, are likely to outweigh any distinctions
between the additive and multiplicative models. In fact, given that marginal utility
functions based on preferences between hypothetical lotteries may generally not
differ markedly from deterministic value functions based on relative strengths of
preference (e.g. [97, Chap. 10]), we conjecture that even the first step of the model
construction could be based on the latter (e.g. by use of the SMART methodology,
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[97, Sect. 8.2]). Some recent evidence in support of this view has been provided
by Abdellaoui et al. [2]. Nevertheless, situations may arise when simplified utility
models are simply inadequate, and some of the other models discussed below may
need to be considered.

12.4 Pairwise Comparisons

As indicated in the previous section, the requirements of fitting a complete utility
function can be extremely demanding both for the decision maker (in providing
the necessary judgemental inputs) and for the analysts (in identifying complete
multivariate distributions). We have seen how the assumption of a simple additive
model may substantially reduce these demands without serious penalty in many
practical situations. Nevertheless, other attempts at avoiding the construction of the
full utility model have been made.

Even for single criterion models, the construction and validation of the complete
utility model may be seen as too burdensome. Quite early work recognized,
however, that it may often not be necessary to construct the full utility function
in order to confirm whether one alternative is preferred to another. The conclusions
may be derived from the concepts of stochastic dominance introduced by Hadar
and Russell [48], and extended (to include third order stochastic dominance) by
Whitmore [101].

For purposes of defining stochastic dominance, suppose for the moment that
there is only one criterion which we shall denote by Z.x/ (i.e. unsubscripted).
Then let Px.z/ be the (univariate) probability distribution function of Z.x/, i.e.:
Px.z/ D PrŒZ.x/ � z�. With some abuse of notation, we shall use Px (without
argument) to denote the probability distribution described by the function Px.z/.
Suppose also that values for Z.x/ are bounded between zL and zU .

Three degrees of stochastic dominance may then be defined as follows.

First degree stochastic dominance (FSD): Px stochastically dominates Py in the first
degree if and only Px.z/ � Py.z/ for all z 2 ŒzL; zU� [48].

Second degree stochastic dominance (SSD): Px stochastically dominates Py in the
second degree if and only:

Z �

zL
Px.z/dz �

Z �

zL
Py.z/dz

for all � 2 ŒzL; zU� [48].
Third degree stochastic dominance (TSD): Px stochastically dominates Py in the

third degree if and only EŒZ.x/� 	 EŒZ.y/� and:

Z �

zL

Z �

zL
Px.z/dzd� �

Z �

zL

Z z

zL
Py.z/dzd�

for all � 2 ŒzL; zU� [101].



480 T.J. Stewart and I. Durbach

In this single-criterion case, the standard axioms of expected utility theory imply
the existence of a utility function u.z/ such that x 
 y if and only if:

Z zU

zL
u.z/dPx.z >

Z zU

zL
u.z/dPy.z/:

Without having explicitly to identify the utility function, however, considerations of
stochastic dominance allow us to conclude the following [8]:

1. If Px stochastically dominates Py in the first degree (Px FSD Py), then x 
 y
provided that u.z/ is an increasing function of z (which can be generally be
assumed to be true in practical problems).

2. If Px SSD Py, then x 
 y provided that u.z/ is a concave increasing function of z
(i.e. the decision maker is risk averse).

3. If Px TSD Py, then x 
 y provided that u.z/ is a concave increasing function of
z with positive third derivative (corresponding to a risk averse decision maker
exhibiting decreasing absolute risk aversion).

The potential importance of the above results lies in the claim which has been
made that in practice some form of stochastic dominance may hold between many
pairs of probability distributions. In other words, we may often be able to make
pairwise comparisons between alternatives according to a particular criterion on
the basis of stochastic dominance considerations, without needing to establish the
partial value function for comparison of lotteries. In fact, we may often argue that
FSD provides a strict pairwise preference, while SSD and TSD provide weaker
forms of pairwise preference. Only in the absence of any stochastic dominance
would we be unable to determine a preference without obtaining much stronger
preference information from the decision maker.

Many of the more recent developments in this area have focussed on the
problem of continuous optimization under stochastic dominance constraints (see, for
example, [27]), often in the context of (single-criterion) portfolio optimization [84].
However, for discrete decision problems the existence of pairwise preferences
at the level of a single criterion under uncertainty suggests that some form of
outranking approach may be appropriate to aggregation across multiple criteria
under uncertainty. A number of approaches [24, 26, 33, 71, 74] compare distributions
by constructing a matrix Pj whose entries Pj

ik denote the probability that alternative
ai is superior to alternative ak on criterion cj i.e. PrŒZij 	 Zkj�. The models differ with
respect to the subsequent exploitation of the probabilities. Dendrou et al. [26] and
Liu et al. [71] both aggregate the Pj

ik using a weighted sum over attributes to arrive
at a global index for each pairwise comparison Pik. Fan et al. [33] compute joint
probabilities associated with each of 2J possible permutations of binary indicators
denoting (attribute-specific) outranking between a pair of alternatives. Each of these
is taken as evidence in favour of the ‘superiority’, ‘inferiority’, or ‘indifference’
of ai relative to ak, based on a comparison with a user-defined threshold. A
further algorithm is required to exploit the results. Martel [74] incorporate more
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sophisticated outranking concepts such as indifference and preference thresholds,
but subsequent aggregation and exploitation proceeds in a similar fashion to
ELECTRE III. D’Avignon and Vincke [24] compute stochastic “preference indices”
measuring the degree of preference for one lottery over another in terms of one
criterion, to be aggregated according to an outranking philosophy. Their preference
indices may not be easily interpretable by many decision makers however, and
perhaps with this problem in mind, [73] (but see also [5]) suggested an alternative
outranking approach in which preferences according to individual criteria were
established as far as possible by stochastic dominance considerations.

Martel and Zaras found it useful to introduce two forms of concordance
index, which they term “explicable” and “non-explicable”. For the “explicable”
concordance, x is judged at least as good as y according to criterion i if Px

i
stochastically dominates Py

i at first, second or third degrees. This can be quite a
strong assumption, as the preference assumption under TSD requires decreasing
absolute risk aversion. The “non-explicable” concordance arises if neither of Px

i
or Py

i stochastically dominates the other. The authors concede that in this case
it is not certain that x is at least as good as y, but they do combine the two
indices under certain conditions. The discordance when comparing x to y is only
non-zero in their model if Py

i FSD Px
i . The extensions of Azondékon and Martel

[5], Nowak [80], and Zhang et al. [108] are largely concerned with constructing
more fine-grained indices of stochastic dominance. Dominance-based methods have
also been extended to make use of other data types, notably fuzzy numbers, and
possibilistic and evidentiary evaluations [12, 20, 107]. These initially transform
uncertain quantities so that they assume some of the properties of probability
distributions before applying standard dominance concepts. Notably, this allows for
the possibility of using several different data types in the same decision problem.

Although the implementation of many of the dominance-based approaches
remain untested, they may have potential as an approach to dealing with uncertainty
in MCDA using quite minimal preference information from the decision maker. This
might at least be valuable for a first-pass screening of alternatives. Two problems
may, however, limit wide applicability, especially in the MCDA context:

• Strong independence assumptions are implicitly made: The approach is based
entirely on the marginal distributions of the elements of Z.x/. This would only
be valid if these elements (i.e. the criteria) were stochastically independent, or
if the decision maker’s preferences were additively independent in the sense of
Keeney and Raiffa [57]. Either assumption would need to be carefully justified.

• Strong risk aversion assumptions are made: As indicated above, the method
as proposed bases concordance measures on risk aversion and on decreasing
absolute risk aversion. Especially the latter assumption may not always be easy
to verify. The method can be weakened by basing concordance either only on
FSD or on FSD and SSD, but this may not generate such useful results.

There is clear scope for further research aimed at addressing the above problems.
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12.5 Risk Measures as Surrogate Criteria

In this and the next sections, we move to more pragmatic approaches to dealing with
uncertainty in the multicriteria context.

One obvious modelling approach is to view avoidance of risks as decision criteria
in their own right. For example, the standard Markowitz portfolio theory (cf. [54])
represents a risky single-criterion objective (monetary reward) in terms of what are
effectively two non-stochastic measures, namely expectation and standard deviation
of returns. In this sense a single criterion decision problem under uncertainty is
structured as a deterministic bi-criterion decision problem. The extension to risk
components for each of number of fundamental criteria is obvious (see, for example,
[76, p. 104], in the context of AHP).

There has, in fact, been a considerable literature on the topic of measuring risk
for purposes of decision analysis, much of it motivated by the descriptive failures of
expected utility theory. Papers by Sarin and Weber [87], Jia and Dyer [54], and
Krokhmal et al. [63] contain many useful references. This literature is virtually
entirely devoted to the single criterion case (typically financial returns), but it is
worth recalling some of the key results with a view to extending the approaches to
the multicriteria case.

The common theme has been that of developing axiomatic foundations for
representation of psychological perceptions of risk (including consideration of
importance and impact in addition to simple uncertainty), often based on some form
of utility model. For example, Bell [10] considers situations in which, if a decision
maker switches from preferring one (typically more risky) lottery to another as
his/her wealth increases, then he/she never switches back to preference for the first
as wealth further increases. This he terms the “one-switch” rule for risk preferences,
and demonstrates that if the decision maker is decreasingly risk averse, obeys the
one switch rule, and approaches risk neutrality as total wealth tends to infinity, then
the utility as a function of wealth w must take on the form w � be�cw for some
positive parameters b and c. Taking expectations results in an additive aggregation
of two criteria, namely:

• The expectation of wealth (to be maximized); and
• The expectation of be�cw (to be minimized), which can be viewed as a measure

of risk.

Sarin and Weber [87] and Jia and Dyer [54] provide arguments for general
moments of the distribution of returns (including but not restricted to variance)
and/or expectations of terms such as be�cw, as measures of risk. While these may
be useful as descriptive measures of risk behaviour, from the point of view of
practical decision aid the use of variances to measure risk has been criticised for
its symmetric treatment of gains are losses as well as its “ineffective” treatment of
low-probability events [63]. It also seems doubtful whether a decision maker would
be able to interpret anything but variance (or standard deviation) for purposes of
providing necessary preference information (to establish tradeoffs, relative weights,
goals, etc.).
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More recent attention has focussed on a number of “downside” risk measures
which consider only the impact of negative events. These include the semi-
variance EŒ.X � EŒX�/2jX < EŒX��, which measures the risk associated with
obtaining a below-average performance and has been extended to an expected
regret measure [25] using an arbitrary threshold t rather than mean performance
i.e. EŒ.X � t/2jX < t�. Two further measures of risk can be obtained by either
defining an a priori desired probability level and assessing the associated quantile
of performance (often referred to as ‘variance-at-risk’ in financial applications),
or by defining an a priori target and assessing the probability of this target not
being met. The use of quantiles (and, by extension, probabilities) for single-attribute
risk modelling has been criticised, however, for (a) not accounting for extreme
losses beyond the specified cut-off, (b) non-convexity, implying that the risk of a
portfolio of alternatives may exceed the sum of the risks of its constituents, and (c)
discontinuity with respect to the specified probability level [63]. The implications
of these criticisms for MCDA have yet to be established, but it seems clear that the
use of any more complex risk measures designed in response to these criticisms—in
particular, ‘conditional variance-at-risk’ measuring expected losses conditional on
losses exceeding a specified quantile—runs the risk of placing unrealistic demands
on the decision maker’s ability to assess inputs and interpret outputs. Limited
empirical and simulation work which we have undertaken in the context of fisheries
management [91] suggested that perceptions of risk of fishery collapse might be
modelled better by probabilities of achieving one or more goals (in that case, periods
of time before a collapse of the fishery). One advantage of such measures is that
they might be much more easily interpreted by decision makers for purposes of
expressing preferences or value judgements.

Given the apparent modelling success in representing preferences for single
criterion problems under uncertainty by a simple additive aggregation of expected
return and one or more risk measures (such as variance), there seems to be merit in
exploring the extension of these results to the general multicriteria problem under
uncertainty. In other words, each criterion (not necessarily financial) for which
there exists substantial uncertainties might be restructured in terms of two separate
criteria, viz. expected return and a measure of risk. Many of the above results
produce an axiomatic justification for an additive aggregation of expected return
and risk, so that these sub-criteria would be preferentially independent under the
same axiomatic assumptions.

In spite of how obvious such multicriteria extensions might be, there seems to
be little reference in the literature to explicit multicriteria modelling in which each
criterion subject to uncertainty is decomposed into subcriteria representing expected
return and risk. It is our experience, however, that various risk-avoidance criteria
arise almost naturally during the structuring phase of decision modelling, so that in
practice risk avoidance criteria may in fact be more common than is apparent from
the literature.

Kirkwood [59] has shown that evaluating alternatives by
Pn

iD1Œwiui.eŒZi�/ �
wR

i 

2
i � with “risk weights” defined by wR

i D .1=2/wiu00
i .EŒZi�/ can lead to close

approximations of expected utility under the important conditions that the Zi be
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normally distributed and the underlying utility functions “do not deviate too much
from linear”. Other results [31], however, suggest that under strongly non-linear
preferences this model can perform poorly.

Some of the few explicit references to multicriteria modelling in terms of a risk-
return decomposition appear in the context of goal programming. For example, [6]
expresses a stochastic multicriteria problem in terms of goals on combinations of
risks and returns which are then solved by goal programming, but he does not
separate out the risk and return components which may have led to a simpler model
structure. Korhonen [62] develops a multicriteria model for financial management,
in which a number of different financial performance measures are used as criteria,
some of which have a risk interpretation. Details of the solution procedure are not
given, but the formulation clearly lends itself to a goal programming structure.

A somewhat earlier paper by Keown and Taylor [58] describes an integer goal
programming model for capital budgeting, which can be viewed (together with the
STRANGE method of Teghem et al. [94]) as an extension of chance-constrained
stochastic programming [see, for example, 14]. Keown and Taylor define goals in
terms of desired probability levels, which may generically be expressed in the form:

Pr Œg.Z/ � ˇ� 	 ˛

where g.Z/ is some performance function based on the unknown attribute values,
ˇ the desired level of performance, and ˛ a desired probability of achieving such
performance. By using normal approximations, however, Keown and Taylor reduce
the probability goal to one expressed in terms of a combination of mean and
standard deviation which is subsequently treated in a standard goal programming
manner. This suggests opportunity for research into investigation of generalized
goal programming models which deal directly with deviations from both the desired
performance levels (b, above) and the desired probability levels (˛, above).

Some work on fuzzy multiobjective programming (e.g. [22, 23]) can be viewed in
a similar manner, in the sense that a degree of anticipated level of goal achievement,
measured in a fuzzy membership sense, may be interpreted as a risk measure.

Despite the attractiveness of using a single fixed target for each criteria, [21] show
that this implies that an equivalent utility function formulation cannot be guaranteed.
In order for such an equivalence to exist, the target must be probabilistic—an
alternative formulation of the expected utility model is to assume a decision maker
who has only two different utility levels depending on whether an uncertain target is
met or not. The ‘target-oriented’ decision maker assesses probabilities p.x/ that the
target is achieved given an attribute performance of x, rather than a utility function
u.x/. Bordley and Kirkwood [19] argue that in some circumstances this may be a
“more intuitively appealing task”, and extend the single-attribute results in [21] to
show that for each multi-linear (or multiplicative or additive) utility function, there is
an equivalent multi-linear (or multiplicative or additive) target-oriented formulation.
In fact both the variance-based and probability-based goal programming models can
be shown to be special cases of the target-oriented preference model [19].



12 Dealing with Uncertainties in MCDA 485

More generally, the structuring of MCDA problems under uncertainty in terms
of expected value and risk sub-criteria for each main criterion does have the
advantage of being relatively simple and transparent to users. Such an approach
appears to be easily integrated into any of the main MCDA methodologies, namely
value measurement, outranking and goal programming/reference point methods. As
indicated earlier, however, a decidedly open research question relates to the manner
in which risk is most appropriately measured for this purpose.

A further practical issue is the extent to which the necessary independence
properties can be verified. In other words, to what extent can “risk” on one criterion
be measured and assessed without taking into consideration ranges of uncertainties
on the other criteria. Once again, this offers much scope for further research.

12.6 Scenario Planning and MCDA

Scenario planning ([96], but see also [36] for the decision support context) was
developed as a technique for facilitating the process of identifying uncertain and
uncontrollable factors which may impact on the consequences of decisions in the
strategic management context. Scenario analysis has been widely accepted as an
important component of strategic planning, and it is thus somewhat surprising how
little appears to have been written concerning links between MCDA and scenario
planning. A discussion of the link between scenario planning and decision making
is provided by Harries [49], but does not place this in an MCDA framework. Some
multiobjective mathematical programming models, for example [70], do include
some scenario concepts in an MCDM framework, but these scenarios tend to focus
on technical and easily quantified components such as demands, rather than the
richer “strategic conversation” espoused by van der Heiden. A broader review of
the interrelationships between scenario planning and MCDA is given by Stewart
et al. [93].

One of the problems which arise in discussing scenarios is the lack of clear and
agreed definitions of what is meant by a “scenario”. Stewart et al. [93] identified at
least four distinctly different concepts which were summarized as follows:

Shell Scenario Planning Approach: This approach is well-documented by Van der
Heijden [96]. The emphasis is on constructing a coherent story of the future
context against which the consequences of policies or strategies will be worked
out. The intention of having alternative scenarios is primarily seen to be that of
providing the basis for a “strategic conversation” concerning pros and cons of
strategic decision options. The scenario relates to external events against which
policies are compared and evaluated. It has been stressed in this approach that
policy options do not form part of the scenario.

Scenarios for exploring uncertainty: Scenarios may be used to explore how differ-
ent uncertainties may play out, i.e. to explore a range of possible outcomes:
see, e.g., [99]. In some senses this use of scenarios is similar to that within
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the Shell scenario planning context described above. The key difference is that
there are no identified strategies needing to be evaluated against them. One
simply explores possible futures, maybe to stimulate thinking about whether a
change in strategy is necessary or whether there are opportunities that might
be capitalized upon. Government Foresight studies are a good example of
such a use: precursors to subsequent development and deliberation of specific
strategies.

Scenarios for advocacy or political argument: This approach is allied to the previ-
ous two, but policy decisions or directions which are either being advocated or
opposed are now explicitly integrated into the scenario, in order to emphasize
plausible consequences of the policy directions. The purpose in producing the
scenario is to create a story which highlights either the benefits or dangers
of following one or other policy. Hughes [51] refers to utopian or dystopian
perspectives being embedded in such uses of scenarios. The scenarios devel-
oped for South African political futures at a workshop involving a number of
significant players during 1991/1992 are often held up as an example of this
use of scenarios (and suggested as a major driver in the relatively peaceful
transition which followed).1 Even the names chosen to describe the scenarios
(“ostrich”, “lame duck”, “Icarus” and “flight of the flamingos”) were chosen to
evoke strong emotive responses. However significant these scenarios were in
influencing the direction of negotiations in South Africa, they did not involve
any analytical comparison of policy options . . . the “flight of the flamingos” was
embraced as self-evidently the only desirable future.

Representative sample of future states: This is a more technical approach. Future
states are conceptualized in terms of a multivariate probability distribution on
the state space. It is, however, recognized that the complete distribution
may never be fully identified, and may in any case be too mathematically
complicated to permit clear analysis of management options. For this reason,
analysis will be based on a small number of representative outcomes in the
sample space, but designed for good coverage as in experimental design, rather
than selected randomly or because they seem “interesting”.

The primary goal of scenario planning, at least in the first three perspectives
above, is in the first instance to provide a structured “conversation” to sensitize
decision makers to external and uncontrollable uncertainties, and to develop a shared
understanding of such uncertainties. The approach is, however, naturally extended to
the more analytical process of designing, evaluating and selecting courses of action
on the basis of robustness to these uncertainties, which suggests close parallels with
MCDA (as discussed, for example, by Goodwin and Wright [40]). We shall explore
these parallels shortly.

Scenarios are meant to represent fairly extreme futures than can still be viewed
as plausible. As to what constitutes sufficiently “extreme” would depend on the

1For a detailed description, see Global Business Network, paper accessed on 4 Jan 2011 from
http://www.generonconsulting.com/publications/papers/pdfs/MontFleur.pdf.

http://www.generonconsulting.com/publications/papers/pdfs/Mont Fleur.pdf
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facilitator, as in a very real sense, there will always be a possible future more
extreme (and thus with greater potential impact on the consequences of decisions)
than any which is incorporated into formal scenarios.

Van der Heijden suggests five principles which should guide scenario
construction:

• At least two scenarios are required to reflect uncertainty, but more than four has
proved (in his experience) to be impractical;

• Each scenario must be plausible, meaning that it can be seen to evolve in a logical
manner from the past and present;

• Each scenario must be internally consistent;
• Scenarios must be relevant to the client’s concerns and they must provide a

useful, comprehensive and challenging framework against which the client can
develop and test strategies and action plans;

• The scenarios must produce a novel perspective on the issues of concern to the
client.

Once scenarios are constructed, they may be used to explore and to evaluate
alternative strategies for the organization. Most proponents of scenario planning
seem to avoid formal evaluation and analysis procedures, preferring to leave the
selection of strategy to informed judgement. For example, [96] (pp. 232–235)
rejects “traditional rationalistic decision analysis” as an approach which seeks to
find a “right answer”. This, however, represents are rather limited and technocratic
perception of decision analysis, contrary to the constructive and learning view
espoused by most in the MCDA field. The constructivist perspective is discussed at
a number of places by Belton and Stewart [11] (see particularly Chaps. 3, 4 and 11),
where it is argued that the underlying axioms are not meant to suggest a “right
answer”, but to provide a coherent discipline within which to construct preferences
and strategies. Within such a view, the aims of scenario planning and MCDA share
many commonalities, suggesting the potential for substantial synergies in seeking
to integrate MCDA and scenario planning. On the one hand, MCDA can enrich the
evaluation process in scenario planning, while the scenario planning approach can
contribute to deeper understanding of the effects of external uncertainties in MCDA.

Various authors have hinted at the concept of scenarios in MCDA. These include,
for example, [55, 60], although this is largely in the context of a two state stochastic
programming model; [100], also in a stochastic programming context; [76], Sect. 3,
who refer to “states of nature”; [95] in the context of multiple objective linear
programming; [70, 77] in the context of power systems planning. These authors do
not in general refer directly to the philosophical basis of scenario planning, however,
and in some cases at least, the models are structured to suggest that the scenarios or
states of nature constitute a complete sample space (see later).

Pomerol [82] is one of the few to discuss scenario planning in the context of
decision theory or decision analysis, but without substantive link to MCDA. He
does however warn (page 199) of the danger that what might appear to be a robust
choice of action (perhaps through unstructured and unsupported use of scenarios)
may in fact be an illusion resulting from the fact that some events have simply
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been ignored. Such a danger suggests another perspective on the potential for two-
way synergistic advantage between scenario planning and formal decision analysis:
not only may scenario planning provide a means of dealing with uncertainties in
MCDA, but decision analysis might contribute to avoiding of illusions of robustness
or control in decision making. In the latter context, MCDA might contribute to the
choice of scenarios as well as to the formal analysis of alternative courses of action.

Perhaps the closest formal link between MCDA and scenario planning is given
in Chap. 14 of Goodwin and Wright [40], which we sought to extend in [93]. In the
remainder of this section, we outline these later extensions. Suppose that a set of p
scenarios indexed as r D 1; 2; : : : ; p have been identified for purposes of evaluating
alternatives. Let us then define zir.x/ (expressed by a lower case letter to emphasize
that this is no longer viewed as a random variable) as the consequence of action
x in terms of criterion i, under the conditions defined by scenario r. As before,
zr.x/ will represent the corresponding vector of consequences. We assume for each
criterion i and scenario r that preferences are monotonically increasing with values
of zir.x/, but we do not by any means imply that preferences are linear in the zr.x/.
All that can be inferred is that an alternative x, say, is preferred to alternative y (say)
according to criterion i under the assumptions of scenario r if and only if zir.x/ >
zir.y/. If the scenarios are sufficiently rich to characterize the effects of uncertainties,
then each alternative x will to the same degree be sufficiently characterized by the
2-dimensional (n � p) array of performance measures zir.x/ .

For the remainder of this section, we shall assume that the action space is finite,
i.e. X D fx1; x2; : : : ; xqg, say. For this case, Goodwin and Wright [40] propose a
three stage process based on a value function model:

1. Create an additive (multiattribute) value function model for the n criteria, sayPn
iD1 wivi.zi/, where the partial value functions vi.zi/ are defined over the range

of zir.x/ values occurring across all scenarios.
2. For each alternative x and scenario r, calculate Vr.x/ DPi

iD1 wivi.zir.x//.
3. Display the p� q table of Vr.x/ values to the decision maker for a final selection,

although Goodwin and Wright do not discuss modes of decision support for this
final choice (implying that perceive it to be a relatively straightforward cognitive
task, which we find difficult to accept in general).

A critical assumption in the above approach is that of a scenario-independent
value function, i.e. that value trade-offs between criteria are the same under
all scenarios, which again we find far from self-evidently true in general. See
for example [18] for a discussion on the dangers of assuming overly strong
independence between scenarios.

Montibeller et al. [79] discuss practical problems which do arise in comparison of
outcomes for all alternative-scenario combinations on a single basis. They proposed
application of multiattribute value theory within each scenario, but accepting, for
example, that weights associated with different criteria may, and quite typically
do vary between scenarios. Their approach provides an evaluation of alternatives
separately for each scenario, but they do not seek formal aggregation across
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Table 12.1 Description of
consequences for the simple
example

Scen. S1 Scen. S2
Alternative Crit. C1 Crit. C2 Crit. C1 Crit. C2
x1 0 0 1 1

x2 1 0 0 1

scenarios. Rather, they seek to identify alternatives which are robust across scenarios
in some sense.

The following example, which is a slight extension of that discussed in Sect. 12.3,
illustrates the difficulties in selecting between alternatives on the basis of the table
of Vr.x/ values. In particular, it demonstrates that “robustness” across scenarios is
not necessarily either well-defined or desirable when defined mainly in terms of
variability in the Vr.x/ values.

Example: We have two alternatives (x1 and x2), two criteria (C1 and C2), two
scenarios (S1 and S2) and two possible outcomes (expressed as 0 or 1) on each
criterion. Consequences for each action and scenario in terms of each criterion
are given in Table 12.1.
The important distinction between the two alternatives is that x1 results in
equal performance on both criteria under either scenario, while x2 results in
diametrically opposing performances on the two criteria under either scenario.
As discussed in Sect. 12.3, there is no fundamental reason why one alternative
should be preferred to the other. Concerns for equity between criteria would
favour x1, while an acceptance that good performance on one criterion might
compensate for poorer outcomes on the other criterion might favour choice
of x2. A complete MAUT analysis would resolve the conflicts, but it is not clear
that simpler aggregation methodologies would capture the relevant preferences.
In the context of this example, any methodology should in its structure allow
keep the door open to accept either x1 or x2 depending on the specific decision
preferences which unfold.
Without loss of generality, the marginal value functions for each of the two
criteria can be defined such that vi.0/ D 0 and vi.1/ D 1 for both criteria. For
the Goodwin-Wright approach, the Vr.x/ table becomes:

Scenarios

Alternative S1 S2
x1 0 1

x2 w1 w2

This representation tends to obscure equity issues, and conventional robustness
considerations seem likely to bias evaluation towards a form of risk aversion
which would favour x2.

There is a clear recognition that preference aggregation needs to be carried out
across both the criteria and scenarios [40, 70, 77]. The view espoused by Stewart
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et al. [93] is that in a scenario-based MCDA structure, alternatives do fundamentally
need to be evaluated and compared in terms of all p � q performance measures
identified earlier. In other words, at some point attention needs to be given to how
well an alternative performs in terms of each criterion under the conditions of each
scenario. In [93], we make this recognition explicit by reference to each criterion-
scenario combination as a metacriterion. Each metacriterion represents a dimension
on which preferences can and need to be formed and stated. In the above simple
example, there are thus 4 metacriteria, corresponding to the last four columns of
Table 12.1. Assuming that there is no alternative that is simultaneously best in terms
of all p � q metacriteria, any decision made will reflect a balance between better
performance on some metacriteria and lesser performance on others, i.e. there is an
inevitable tradeoff between performances on each metacriterion, even if this may
sometimes be difficult to express explicitly.

The scenario-based MCDA is thus equivalent to a standard multicriteria problem
with p � q criteria (which we have termed metacriteria. In principle, any technique
of MCDA could be applied to this metacriterion structure, but we illustrate the
approach in terms of a value function methodology. Provided that the metacriteria
are preferentially independent, standard results [e.g., 57, Chap. 5] imply that the
alternatives may be ordered on the basis of an additive value function which can
here be expressed in the form:

V.x/ D
nX

iD1

pX

rD1
wirvir.zir.x// (12.5)

where according to our structure, separate partial value functions need to be
established for each criterion-scenario combination. This approach is illustrated
below for our previous simple example.

Example (Continued). We can without loss of generality scale each marginal value
function such that vir.0/ D 0 and vir.1/ D 1. Thus V.x1/ D w12 C w22 and
V.x2/ D w11 C w22, so that x1 is preferred to x2 if and only if w12 > w11, and
vice versa (with indifference if w12 D w11).
Consider how the assessment of w12 and w11 might now proceed. We have that
performance on criterion 2 is independent of action within each scenario, so
that the performance on criterion 2 becomes a defining feature of the scenarios.
The question to the decision maker is thus whether good performance on
criterion 1 is more important in scenario 1 (characterized by poor outcomes on
criterion 2 irrespective of action taken) or in scenario 2 (characterized by good
outcomes on criterion 2). When inter-criterion compensation is beneficial, the
first is more important; under concerns for equity, the second is more important.
The necessity for such value judgements regarding compensation and equity
concerns are clearly surfaced directly by the proposed methodology.

More generally, consider how metacriterion weights may be established. Swing-
weighting is an established procedure for weight elicitation, but we need to
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recognize that the number of metacriteria will typically be too large to perform all
swing-weighting comparisons simultaneously. Some form of hierarchical assess-
ment may be needed, and two potential approaches may be recognized:

Approach 1. • For each scenario r, compare the importance swings for each of the
n criteria within this scenario, giving estimates of the ratios wir=wkr for all pairs
of criteria i; k;

• Then for one or two of the more important criteria, compare the relative
importance of the swings for these criteria across each of the p scenarios.

Approach 2. • For each criterion i, compare the importance swings of criterion i
within each of the p scenarios, giving estimates of the ratios wir=wis for all pairs
of scenarios r; s;

• Then for one or two selected scenarios, compare the relative importance of the
swings for each of the n criteria.

Neither approach differentiates in essence between the evaluation of importance
of metacriteria within scenarios (comparisons of the initial criteria in a standard
MCDA approach), or between scenarios (comparisons of scenarios). The distinction
between the approaches is a matter of the timing of the comparisons during the
analytical process. At this stage, we have not formed any clear conclusions as
to which approach is preferable, which should form the topic of future empirical
research. In the above simple example, however, either approach would recognize
that w2r D 0 for both scenarios (a zero swing having zero importance), leaving just
the comparison of w11 and w12 to be undertaken, as indicated in the example (with
the implied focus on importance of equity versus compensation).

12.7 Implications for Practice

It should be evident from the preceding discussion that there still remains consider-
able scope for research into the treatment of substantive external uncertainties within
an MCDA framework. It is hoped that such research will lead to ever-improved
methodologies. Nevertheless, for the practitioner, certain guidelines can be given at
the present time. These may be summarized as follows.

1. There is always a role for systematic sensitivity analysis for moderate levels of
uncertainty, especially internal uncertainties, but care needs to be taken to avoid
simple “one-at-a-time” variations in assumptions, as such an approach may miss
interacting effects.

2. For those working within a value or utility function framework, the expectation
of a simple additive value function can generate quite useful insights for the
decision maker, provided that due attention is given to the shape (changing
marginal values) of the function (cf. Stewart [89]). On the other hand, complete
multiplicative or multilinear multiattribute utility functions may be difficult to
implement correctly.
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3. With any MCDA approach, there may be value and some theoretical justification
in decomposing those criteria for which there is substantial uncertainty regarding
outcomes, into two subcriteria of expected value and a risk measure respectively.
An open question remains as to whether variance or standard deviation (which
are conventionally used in this context) are the most appropriate risk measures
for all problem types.

4. The integration of MCDA and scenario planning appears to be a potentially
powerful tool, and may be particularly transparent to many decision makers.
The approach is relevant to any methodology of MCDA. There do, nevertheless,
remain some open questions, especially as regards the number of scenarios to be
used and the means by which they are constructed or selected.
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Chapter 13
Decision Rule Approach

Salvatore Greco, Benedetto Matarazzo, and Roman Słowiński

Abstract In this chapter we present the methodology of Multiple-Criteria Decision
Aiding (MCDA) based on preference modelling in terms of “if. . . , then . . . ” decision
rules. The basic assumption of the decision rule approach is that the decision maker
(DM) accepts to give preference information in terms of examples of decisions
and looks for simple rules justifying her decisions. An important advantage of this
approach is the possibility of handling inconsistencies in the preference information,
resulting from hesitations of the DM. The proposed methodology is based on the
elementary, natural and rational principle of dominance. It says that if action x is
at least as good as action y on each criterion from a considered family, then x is
also comprehensively at least as good as y. The set of decision rules constituting
the preference model is induced from the preference information using a knowledge
discovery technique properly adapted in order to handle the dominance principle.
The mathematical basis of the decision rule approach to MCDA is the Dominance-
based Rough Set Approach (DRSA) developed by the authors. We present some
basic applications of this approach, starting from multiple-criteria classification
problems, and then going through decision under uncertainty, hierarchical decision
making, classification problems with partially missing information, problems with
imprecise information modelled by fuzzy sets, until multiple-criteria choice and
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ranking problems, and some classical problems of operations research. All these
applications are illustrated by didactic examples whose aim is to show in an easy
way how DRSA can be used in various contexts of MCDA.

Keywords Rough set • Dominance-based Rough Set Approach • Rough approx-
imations • Decision rules

13.1 Introduction

Multiple-criteria decision support aims at giving the decision maker (DM) a recom-
mendation [82] in terms of the best action(s) (choice), or in terms of the assignment
of actions to pre-defined and preference-ordered classes (classification, called also
sorting), or in terms of the ranking of actions from the best to the worst (ranking).
None of these recommendations can be elaborated before the DM provides some
preference information. Based on this preference information, a preference model
of the DM is constructed with the aim of getting a recommendation satisfying the
DM’s preferences.

Two major preference models have been used until now in multiple criteria
decision analysis: Multi-Attribute Utility Theory (MAUT; see [17, 69]) and the
outranking approach [18, 81]. These models require specific preference information,
more or less directly related to the model parameters. For example, the DM is
often asked for pairwise comparisons of actions from which one can assess the
substitution rates for a MAUT model or the importance weights for an outranking
model (see [19, 73]). This kind of preference information seems to be close to
the natural reasoning of the DM. She is typically more confident exercising her
decisions than explaining them. The transformation of this information into MAUT
or outranking models seems, however, less evident. According to Slovic [84],
people make decisions by searching for rules which provide good justification of
their choices. So, after getting the preference information in terms of exemplary
decisions, it would be natural to use this information for building the preference
model in terms of “if . . . , then . . . ” decision rules. Examples of such rules are the
following:

• “if maximum speed of car x is at least 175 km/h and its price is at most $12,000,
then car x is comprehensively at least medium”,

• “if car x is at least weakly preferred to car y with respect to acceleration and the
price of car x is no more than slightly worse than that of car y, then car x is at
least as good as car y”.

The rules induced from exemplary decisions represent a preference attitude of the
DM and enable her understanding of the reasons of her preference. The acceptance
of these rules by the DM justifies, in turn, their use for decision support. This
is concordant with the principle of posterior rationality by March [72] and with
aggregation-disaggregation logic by Jacquet-Lagrèze [67].
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The set of decision rules accepted by the DM can be applied to a set of potential
actions in order to obtain either an assignment of actions to classes (sorting)
or specific preference relations in the set of actions (choice and ranking). From
exploitation of these results, a suitable recommendation can be obtained to support
the DM in the decision problem at hand.

So, the preference model in the form of decision rules induced from examples
fulfils both representation and recommendation tasks (see [82]).

The induction of rules from examples is a typical approach of artificial intelli-
gence. This explains our interest in rough set theory [76, 77, 80, 85] which proved to
be a useful tool for analysis of vague description of decision situations [78, 86]. The
aim of rough set analysis is the explanation of the dependence between the values
of some decision attributes, playing the role of “dependent variables”, by means of
the values of other condition attributes, playing the role of “independent variables”.
For example, in a diagnostic context, data about the presence of some diseases are
given by decision attributes, while data about symptoms are given by condition
attributes. An important advantage of the rough set approach is that it can deal
with partly inconsistent examples, i.e. objects indiscernible by condition attributes
but discernible by decision attributes (for example, cases where the presence of
different diseases is associated with the presence of the same symptoms). Moreover,
it provides useful information about the role of particular attributes and their subsets,
and prepares the ground for representation of knowledge hidden in the data by
means of “if . . . , then . . . ” decision rules, relating values of some condition attributes
with values of decision attributes (for example “if symptom A and B are present, then
there is disease X”).

For a long time, however, the use of the rough set approach and, in general,
of data mining techniques, has been restricted to classification problems where
the preference order of evaluations is not considered. Typical examples of such
problems come from medical diagnostics. In this context, symptom A is not better
or worse than symptom B, or disease X is not preferable to disease Y: It is thus
sufficient to consider A as different from B, and X as different from Y: There
are, however, situations, where discernibility is not sufficient to handle all relevant
information. Consider, for example, two firms, ˛ and ˇ, evaluated for assessment
of bankruptcy risk by a set of criteria including the “debt ratio” (total debt/total
assets). If firm ˛ has a low value of the debt ratio while firm ˇ has a high value of
the debt ratio, then, within data mining and classical rough set theory, ˛ is different
(discernible) from ˇ with respect to the considered attribute (debt ratio). However,
from the viewpoint of preference analysis and, say, bankruptcy risk evaluation, the
debt ratio of ˛ is not simply different from the debt ratio of ˇ but, clearly, the former
is better than the latter.

The basic principle of the classical rough set approach and data mining tech-
niques is the following “indiscernibility principle”: if x is indiscernible with y, i.e. x
has the same characteristics as y, then x should belong to the same class as y; if not,
there is an inconsistency between x and y. According to this principle, if a patient
has symptom A and disease X while another patient has symptom B and disease Y,
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there is not any inconsistency and one can draw a simple conclusion that symptom
A is associated with disease X, while symptom B is associated with disease Y:

In multiple-criteria decision analysis, “indiscernibility principle” is not sufficient
to convey all relevant semantics of the available information. Consider again the
above two firms: ˛ having a low value of debt ratio and ˇ having a high value of the
debt ratio. Suppose that evaluations of these firms on other attributes (profitability
indices, quality of managers, market competitive situation, etc.) are equal. Suppose,
moreover, that firm ˛ has been assigned by a DM to a class of higher risk than
firm ˇ. According to the indiscernibility principle, one can say that ˛ and ˇ are
discernible, and it follows that low debt ratio is associated with high risk while high
debt ratio is associated with low risk. This is contradictory, of course. The reason is
that, within multiple-criteria decision analysis, the “indiscernibility principle” has
to be substituted by the following “dominance principle”: if x dominates y, i.e. x
is at least as good as y with respect to all considered criteria, then x should belong
to a class not worse than the class of y; if not, there is an inconsistency between x
and y. Applying the dominance principle to ˛ and ˇ, one can state an inconsistency
between the values of their debt ratio and the assessed risk of their bankruptcy,
which leads to a paradoxical conclusion that the lower the debt ratio the higher the
risk of bankruptcy.

For this reason, Greco et al. ([28, 32, 34, 35, 38, 49, 90]; for an elementary
introduction see [37]; for some detailed survey see [91–94]) have proposed an
extension of rough set theory based on the dominance principle, which permits
to deal with MCDA problems. This innovation is mainly based on substitution of
the indiscernibility relation by a dominance relation in the rough approximation of
decision classes (sorting) or preference relations (choice and ranking). An important
consequence of this fact is a possibility of inferring from exemplary decisions the
preference model in terms of decision rules being logical statements of the type
“if. . . , then. . . ”. The separation of certain and doubtful knowledge about the DM’s
preferences is done by distinction of different kinds of decision rules, depending
whether they are induced from examples consistent with the dominance principle or
from examples inconsistent with the dominance principle. The latter rules are very
important, because they represent situations of hesitation in the DM’s expression of
preferences.

This is to say that, using a properly modified technique of artificial intelligence,
one can construct a preference model in form of decision rules, by induction from
exemplary decisions. Such a preference model has some interesting properties: it is
expressed in a natural language without using any complex analytical formulation,
its interpretation is straightforward and does not depend on technical parameters,
often it uses only a subset of the considered attributes in each rule, and, finally, it
can represent situations of hesitation, typical for a real expression of preferences.
The decision rule preference model is therefore a new approach to MCDA, which
becomes a strong alternative for MAUT and outranking approaches.

Indeed building any MCDA preference models requires information about
aggregation of multi-attribute characteristics of actions. This information has to
be provided by the DM, possibly assisted by an analyst. This information is often



13 Decision Rule Approach 501

processed in a way which is not clear for the DM, such that (s)he cannot see what are
the exact relations between the provided information and the final recommendation.
Consequently, very often the decision model is perceived by the DM as a black
box whose result has to be accepted because the analyst’s authority guarantees that
the result is right. In this context, the aspiration of the DM to find good reasons to
make decision is frustrated and rises the need for a more transparent methodology in
which the relation between the original information and the final recommendation
is clearly shown. Such a transparent methodology searched for has been called glass
box [57] and we shall show that this is the main advantage of the preference model
in form of decision rules induced on the basis of the rough set theory based on the
dominance principle.

In this chapter, we present the Dominance-based Rough Set Approach (DRSA)
to multiple-criteria decision problems, starting from multiple-criteria classification
problems, and then going through decision under uncertainty, hierarchical decision
making, classification problems with partially missing information, problems with
imprecise information modelled by fuzzy sets, until multiple-criteria choice and
ranking problems, and some classical problems of operations research.

13.2 Dominance-Based Rough Set Approach (DRSA)

13.2.1 Data Table

For the sake of a didactic exposition, we introduce the main ideas of DRSA (for a
detailed exposition see [51]) through a very simple example. Let us suppose that
students of a technical college are evaluated taking into account their marks in
Mathematics, Physics and Literature. Let us suppose that one is interested in finding
some general rules for a comprehensive evaluation of the students. These general
rules can be inferred from some previous examples of decisions, i.e. comprehensive
evaluations of students made in the past. Let us consider the examples presented in
Table 13.1.

Table 13.1 Data table
presenting examples of
comprehensive evaluations of
students

Comprehensive
Student Mathematics Physics Literature evaluation

S1 Good Medium Bad Bad

S2 Medium Medium Bad Medium

S3 Medium Medium Medium Medium

S4 Good Good Medium Good

S5 Good Medium Good Good

S6 Good Good Good Good

S7 Bad Bad Bad Bad

S8 Bad Bad Medium Bad
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Each application of the DRSA is based on a data table having the form of
Table 13.1. In general, a data table can be described as follows. Each row of
the table corresponds to an object. In multiple-criteria decision analysis objects
are usually called actions. In the considered example, the objects (actions) are
students. Each column of the table corresponds to an attribute, i.e. to a different
type of information. In our example, the attributes are: Mathematics, Physics,
Literature, Comprehensive evaluation. Each cell of this table indicates an evaluation
(quantitative or qualitative) of the object placed in the corresponding row by means
of the attribute in the corresponding column. In the above example, the evaluation
is a mark of the considered student in a given course (Mathematics, Physics,
Literature) or in the Comprehensive evaluation.

Therefore, formally, a data table is the 4-tuple S D< U;Q;V; f >, where U is a
finite set of objects (universe), Q D fq1; q2; : : : ; qmg is a finite set of attributes, Vq

is the domain (value set) of attribute q, V D S
q2Q Vq and f W U � Q! V is a total

function such that f .x; q/ 2 Vq for each q 2 Q; x 2 U, called information function.
In our example, U D {S1,S2,S3,S4,S5,S6,S7,S8}, Q D {Mathematics, Physics,

Literature, Comprehensive evaluation}, VMathematics D VPhysics D VLiterature D
VComprehensive_evaluation D V D fBad;Medium;Goodg, the information function
f W U � Q ! V can be rebuilt from Table 13.1 such that, for example, f (S1,Math.)
D Good, f (S1,Phys.)D Medium, f (S1,Lit.)D Bad and so on.

Let us remark that the domain of each attribute is monotonically ordered
according to preference. In multiple-criteria decision analysis, such an attribute is
called criterion. As one can see in Table 13.1, Good is better than Medium and
Medium is better than Bad. In general, this fact can be formally expressed as follows.
Let �q be a weak preference relation on U with reference to criterion q 2 Q, such
that x �q y means “x is at least as good as y with respect to criterion q”. Suppose
that �q is a complete preorder, i.e. a strongly complete (which means that for each
x; y 2 U, at least one of x �q y and y �q x is verified, and thus x and y are
always comparable with respect to criterion q) and transitive binary relation. In the
following we shall denote by
q the asymmetric part of�q and by�q, its symmetric
part. The meaning of x 
q y is “x is preferred to y with respect to criterion q” and
the meaning of x �q y is “x is indifferent to y with respect to criterion q”. For
example, in Table 13.1, we see that, with respect to Mathematics, S1, being Good, is
preferred to S2, being Medium, which is denoted by S1
MathematicsS2. Analogously,
with respect to Physics, S1, being Medium, is indifferent to S2, being also Medium,
which is denoted by S1�PhysicsS2.

The attributes from Q are divided in two sets, C and D with C ¤ ;; D ¤ ;;
C \ D D ; and C [ D D Q. The attributes from C are called condition attributes,
while the attributes from D are called decision attributes. This distinction is made
with the aim of explaining the evaluations on D using the evaluations on C. Very
often D D fdg and then its evaluations are considered in terms of a classification
of objects from U. The case in which there are more than one decision attribute,
i.e. D D fd1; : : : ; dpg, is also very interesting because it is related to decisions
with multiple decision makers, DM1; : : : ;DMp, expressing different classifications
corresponding to particular decision attributes, i.e. d1 represents classification of
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DM1; : : : ; dp represents classification of DMp. For the sake of simplicity, in the
following, we shall consider the case of a single decision attribute, i.e. D D fdg.
More formally, let Cl D fClt; t 2 f1; : : : ; ngg, be a classification of U, such that
each x 2 U belongs to one and only one class Clt 2 Cl. In the above example,
the set of condition attributes is C D {Mathematics, Physics, Literature} and the
decision attribute is dDComprehensive evaluation. In this case, the aim is to explain
evaluation on d, using evaluations on C. Consequently, the classification is referred
to the comprehensive evaluation, Cl D fCl1;Cl2;Cl3g, Cl1 D{Bad students} D
{S1,S7,S8}, Cl2 D {Medium students} D {S2,S3} and Cl3 D {Good students} D
{S4,S5,S6}.

We assume that, for all r; s 2 f1; : : : ; ng, such that r > s, each element of Clr
is preferred to each element of Cls. More formally, if � is a comprehensive weak
preference relation on U, i.e. x � y means: “x is at least as good as y” for any
x; y 2 U, then it is supposed that

Œx 2 Clr; y 2 Cls; r > s�) x 
 y

where x 
 y means x � y and not y � x.
In our example, each element of Cl2 is preferred to each element of Cl1 (each

Medium student is better than each Bad student) and each element of Cl3 is preferred
to each element of Cl2 (each Good student is better than each Medium student).

13.2.2 Dominance Principle

A natural question with respect to Table 13.1 arises: what classification patterns
can be induced from the data table? They represent knowledge which may be
useful for explanation of a policy of comprehensive evaluation and for prediction
of future decisions. In this sense, it is a preference model of a DM who made
the comprehensive evaluations and provided the exemplary decisions. Knowledge
discovery from Table 13.1 will respect the following dominance principle: given
x; y 2 U, if x is at least as good as y with respect to all criteria from a subset P � C,
then x should have a comprehensive evaluation at least as good as y. If this is not the
case, the reasons for that may be as follows:

(1) some aspects relevant to the comprehensive evaluation are ignored, i.e. some
significant criteria are missing in subset P, or

(2) given the evaluations of students on criteria from P, the DM hesitates with the
comprehensive evaluation.

The following two examples drawn from Table 13.1 explain reasons (1) and (2).
Example 1, relative to reason (1). Let us consider students S1 and S3 with respect
to their evaluations on Mathematics and Physics. Remark that student S1 is not
worse than S3, in both Mathematics and Physics, however, S1 is comprehensively
evaluated as Bad, while S3 is comprehensively evaluated as Medium. This con-
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tradicts the dominance principle with respect to Mathematics and Physics. This
inconsistency with the dominance principle is solved by taking into account the
Literature, which gives advantage to S3 (whose evaluation is Medium) over S1
(whose evaluation is Bad). Thus, considering Mathematics, Physics and Literature,
S1 does not dominate S3, i.e. it is no more true that S1 has an evaluation at least
as good as S3 on all considered criteria (Mathematics, Physics and Literature). In
consequence, after including the Literature in the set of criteria, the dominance
principle is no more contradicted. In other words, the evaluation on Literature
is necessary to avoid contradiction with the dominance principle while giving
comprehensive evaluation to S1 and S3.
Example 2, relative to reason (2). Let us consider students S1 and S2 with respect to
evaluations on Mathematics, Physics and Literature. Student S1 is not worse than S2
with respect to all the considered criteria, however, S1 is comprehensively evaluated
as Bad while S2 is comprehensively evaluated as Medium. This contradicts the
dominance principle. This inconsistency with the dominance principle cannot
be solved by taking into account one criterion more, because all the available
information has been used. In consequence, given all the available information, the
comprehensive evaluation of S1 and S2 contradicts the dominance principle. This
contradiction may be interpreted as a hesitation of the DM.

DRSA permits to detect all the inconsistencies with the dominance principle
following from hesitations, but this is not the sole interesting feature. The main
advantage of DRSA is its capacity of discovering certain and doubtful knowledge
from the data table, that is a preference model which has also its certain and
doubtful part; the certain part is inferred from decision examples consistent with
the dominance principle, while the doubtful part is inferred from decision examples
inconsistent with the dominance principle. The preference model is useful for both
explanation of past decisions and recommendation for new decisions.

13.2.3 Decision Rules

To have a first idea of the multiple-criteria decision analysis performed with DRSA,
let us take into account the following example relative to Table 13.1. Consider
student S3 with comprehensive evaluation Medium and the set of students classified
as at least Medium, that is Medium or Good. Taking into account all three criteria—
Mathematics, Physics and Literature—the comprehensive evaluation of S3 is not
inconsistent with the dominance principle. Indeed, in Table 13.1 there is no other
student dominated by S3 and having a better comprehensive evaluation. Remark,
however, that less than three criteria are sufficient to ensure the consistency. In fact,
the evaluations on Mathematics and Literature are sufficient for the comprehensive
evaluation of S3 consistent with the dominance principle. Further reduction of
criteria (to Mathematics or Literature only) makes the comprehensive evaluation
of S3 inconsistent. For example, considering only Mathematics, we can see that S1
dominates S3, but it has a worse comprehensive evaluation. Therefore, {Mathemat-



13 Decision Rule Approach 505

ics, Literature} is a minimal set of criteria ensuring the consistent evaluation of S3.
In other words, one can induce from Table 13.1 a minimal conclusion that each
student having not worse evaluations than S3, has also a not worse comprehensive
evaluation; this conclusion creates the following decision rule:

� W “if Mathematics	Medium and Literature	Medium,
then the comprehensive evaluation is at least Medium
(that is Medium or Good)”.

It is interesting to remark that this decision rule, possibly useful as an element
of a preference model, is a result of search of a boundary line between consistency
and inconsistency with the dominance principle. In general, we can say that the
preference model, and all the decision analysis using DRSA, can be seen as a search
of this boundary line between consistency and inconsistency.

13.2.4 Rough Approximations

Let us continue the presentation of the most important concepts relative to DRSA.
As it was told before, the considered objects are evaluated by criteria from set

C from one side, and by the comprehensive decision d from the other side. Using
the dominance relation with respect to d, we can define unions of classes relative
to a particular dominated or dominating class—these unions of classes are called
upward and downward unions of classes, defined, respectively, as:

Cl�t D
[

s�t

Cls; Cl�t D
[

s�t

Cls:

Observe Cl�1 D Cl�n D U, Cl�n D Cln and Cl�1 D Cl1.
In the above example, Cl�1 =Cl1 [ Cl2 [ Cl3 D{students comprehensively Bad,

Medium or Good}D{all students in Table 13.1 }, Cl�2 =Cl2 [ Cl3 D{students
comprehensively Medium or Good}D{S2,S3,S4,S5,S6} and Cl�3 D Cl3 D{students
comprehensively Good}D{S4,S5,S6}.

On the other hand, using the dominance relation with respect to criteria from set
C, we can define sets of objects dominating or dominated by a particular object. It
is said that object x P-dominates object y with respect to P � C (denotation xDPy)
if x �q y for all q 2 P. For example, in Table 13.1, S1 dominates S3 with respect
to P D{Mathematics, Physics} because S1�MathematicsS3 and S1�PhysicsS3. Since
the intersection of complete preorders is a partial preorder and �q is a complete
preorder for each q 2 P, and DP D T

q2P

q, then the dominance relation DP is a

partial preorder. Given P � C and x 2 U, let

DC
P .x/ D fy 2 U W yDPxg;

D�
P .x/ D fy 2 U W xDPyg
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represent, so-called, P�dominating set and P�dominated set with respect to x;
respectively. For example in Table 13.1, for P D{Mathematics, Physics},

DC
fMathematics;Physicsg ( S1) = {S1,S4,S5,S6},

D�
fMathematics;Physicsg ( S1) = {S1,S2,S3,S5,S7,S8}.

Given a set of criteria P � C, an object x 2 U creates an inconsistency with the
dominance principle with respect to the upward union of classes Cl�t , t D 2; : : : ; n,
if one of the following conditions holds:

(1) x belongs to class Clt or better but it is P-dominated by an object y belonging to
a class worse than Clt, i.e. x 2 Cl�t but DC

P .x/ \ Cl�t�1 ¤ ; (for example,
considering P D {Mathematics, Physics} and the upward union of classes
composed of students comprehensively evaluated as “at least Medium”, student
x D S3 creates an inconsistency with the dominance principle: in fact x D S3
belongs to the class of Medium students, but there is another student y D S1,
P-dominating x and belonging to the class of Bad students, that is to a worse
class),

(2) x belongs to a worse class than Clt but it P-dominates an object y belonging to
class Clt or better, i.e. x … Cl�t but D�

P .x/ \ Cl�t ¤ ; (consider the example
from point (1), but taking x D S1 and y D S3).

If for a given set of criteria P � C, the assignment of x 2 U to Cl�t , t D 2; : : : ; n,
creates an inconsistency with the dominance principle, we say that x belongs to Cl�t
with some ambiguity. Thus, x belongs to Cl�t without any ambiguity with respect to
P � C, if x 2 Cl�t and there is no inconsistency with the dominance principle. This
means that all objects P-dominating x belong to Cl�t , i.e. DC

P .x/ � Cl�t .
Furthermore, x possibly belongs to Cl�t with respect to P � C if one of the

following conditions holds:

– according to decision attribute d, x belongs to Cl�t (in the example from point
(1) above, this is the case of x D S3 which, taking into account criteria from
P D {Mathematics, Physics}, could belong to Cl�2 , i.e. to the set of student
comprehensively evaluated as “at least Medium”),

– according to decision attribute d, x does not belong to Cl�t but it is inconsistent
in the sense of the dominance principle with an object y belonging to Cl�t (in
the example from point (1) above, this is the case of x D S1 which, taking into
account criteria from P D {Mathematics, Physics}, could belong to Cl�2 , even if
S1 is comprehensively evaluated as Bad).

In terms of ambiguity, x possibly belongs to Cl�t with respect to P � C, if x
belongs to Cl�t with or without any ambiguity. Due to reflexivity of the dominance
relation DP, conditions (1) and (2) can be summarized as follows: x possibly belongs
to class Clt or better, with respect to P � C, if among the objects P-dominated by x
there is an object y belonging to class Clt or better, i.e. D�

P .x/\ Cl�t ¤ ;.
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In DRSA, the sets to be approximated are upward and downward unions of
classes and the items (granules of knowledge) used for this approximation are
P-dominating and P-dominated sets.

The P-lower and the P-upper approximation of upward union Cl�t ; t 2
f1; : : : ; ng, with respect to P � C (denotation P.Cl�t / and P.Cl�t /, respectively),
are defined as:

P.Cl�t / D fx 2 U W DC
P .x/ � Cl�t g;

P.Cl�t / D
[

x2Cl�t

DC
P .x/ D fx 2 U W D�

P .x/ \ Cl�t ¤ ;g:

Let us comment the above definitions. The P-lower approximation of an upward
union Cl�t , P.Cl�t /, is composed of all objects x from the universe such that all
objects y having at least the same evaluations on all the considered criteria from
P also belong to class Clt or better. Thus, one can say that if an object y has at
least as good evaluations on criteria from P as object x belonging to P.Cl�t /, then,
certainly, y belongs to class Clt or better. Therefore, taking into account all decision
examples from the considered data table (exemplary decisions), one can conclude
that the evaluations on criteria from P � C of an object x belonging to P.Cl�t / create
a partial profile (partial, because P � C), such that for an object y it is sufficient
to dominate this partial profile in order to belong to class Clt or better. This is the
case of above decision rule .�/, using the partial profile built on criteria from P D
{Mathematics, Literature}; this profile corresponds to x D S3, which belongs to
P.Cl�2 /. The assignment of a decision rule is true for all objects from the considered
data table, but it can also be used by induction for objects that are not in U. Indeed,
it is rather natural to admit such a working hypothesis that, if for a new object z,
its evaluations on criteria from P are not worse than the evaluations of x, then z
should be assigned to class Clt or better. This is because we can consider the data
table as a record of experience of the DM. Thus, if according to the experience of
the DM—i.e. according to the data table at hand—all objects having evaluations on
criteria from P not worse than x are assigned to class Clt or better, then the simplest
classification strategy following from the previous experience is to assign any other
object z, having evaluations on criteria from P not worse than x, to class Clt or better.

Let us come back to Table 13.1. Given P D {Mathematics, Physics}, P.Cl�3 / D
P.Cl�2 /D {S4,S6} and P.Cl�1 /D {all the students}. Precisely, given the information
provided by evaluations on Mathematics and Physics, S4 and S6 belong to P.Cl�3 /,
the P-lower approximation of the union of (at least) Good students, because there is
no other student having at least the same evaluations on Mathematics and Physics
and belonging to a class comprehensively worse. This is not the case of student S5,
even if she belongs to the class of students comprehensively evaluated as Good.
Indeed, S5 does not belong to P-lower approximation of (at least) Good students
because there is another student, S1, having not worse evaluations (in this case,
exactly the same) on Mathematics and Physics and, nevertheless, not belonging to
the class of (at least) Good students. The fact that S4 and S6 belong to P.Cl�3 /
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permits to conclude that, according to the information given by Table 13.1, an
evaluation (at least) Good in Mathematics and (at least) Good in Physics is enough
to assign a student to the union of (at least) Good students.

The P-upper approximation of an upward union Cl�t , P.Cl�t /, is composed of
all objects x from the universe which, in comparison with an object y belonging to
union Cl�t , have at least the same evaluations on all the considered criteria from P.
In other words, the P-upper approximation of an upward union Cl�t , P.Cl�t /, is
composed of all objects x from the universe, whose evaluations on criteria from P
are not worse than evaluations of at least one other object y belonging to class Clt
or better. Thus, one can say that, if an object z has not worse evaluations on criteria
from P than an object x belonging to P.Cl�t /, then z possibly belongs to class Clt or
better. Therefore, taking into account all decision examples from the considered data
table, one can conclude that the evaluations of an object x belonging to P.Cl�t /, on
criteria from P, create a partial profile, such that an object z dominating this profile
possibly belongs to class Clt or better. This conclusion is true for all objects from
the considered data table, but it can also be used by induction for objects that are
not in U. Indeed, it is again natural to admit such a working hypothesis that, if for a
new object z, its evaluations on criteria from P are not worse than the evaluations of
x, then z could be assigned to class Clt or better.

Coming back to our example, one can see that, given P D {Mathematics,
Literature}, P.Cl�3 / D {S4,S5,S6}, P.Cl�2 / D {S1,S2,S3,S4,S5,S6} and P.Cl�1 / D
{all the students}. Precisely, given the information provided by the comprehensive
evaluation, S1 is not (at least) Medium student, i.e. S1 does not belong to union
Cl�2 . However, S1 belongs to P.Cl�2 /, the upper approximation of the union of at
least Medium students, because there is another student, S2, having at most the
same evaluations on Mathematics and Literature (i.e. S2 is dominated by S1) and
belonging to the set of students comprehensively evaluated as at least Medium.

Analogously, the P-lower and the P-upper approximation of downward union
Cl�t , t 2 f1; : : : ; ng, with respect to P � C (denotation P.Cl�t / and P.Cl�t /,
respectively), are defined as:

P.Cl�t / D fx 2 U W D�
P .x/ � Cl�t g;

P.Cl�t / D
[

x2Cl�t

D�
P .x/ D fx 2 U W DC

P .x/ \ Cl�t ¤ ;g:

The P-lower and P-upper approximation of Cl�t have analogous interpretation of
the P-lower and P-upper approximation of Cl�t .

13.2.5 Properties of Rough Approximations

The P-lower and P-upper approximations defined as above satisfy the following
properties for all t 2 f1; : : : ; ng and for any P � C:
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P.Cl�t / � Cl�t � P.Cl�t /; P.Cl�t / � Cl�t � P.Cl�t /:

This property means that all the objects belonging to Cl�t without any ambiguity
belong also to Cl�t , and all the objects from Cl�t are among the objects that belong
to Cl�t with some possible ambiguity. With respect to Table 13.1, one can see that,
given P D CD {Mathematics, Physics, Literature} and the union of at least Medium
students, Cl�2 , we have:

P.Cl�2 / D {S3,S4,S5,S6},

Cl�2 ={S2,S3,S4,S5,S6},

P.Cl�2 /={S1,S2,S3,S4,S5,S6}.

Let us observe that all objects belonging to P.Cl�2 / are from Cl�2 . However, S2
from Cl�2 does not belong to P.Cl�2 / because comprehensive evaluation of S2 is
inconsistent with comprehensive evaluation of S1 (classified as Bad) in the sense
of the dominance principle. This inconsistency creates an ambiguity because S1
dominates S2 on criteria from P and, nevertheless, S1 has been classified worse
than S2. Let us also observe that all objects belonging to Cl�2 , belong also to P.Cl�2 /.
However, S1 from P.Cl�2 / does not belong to Cl�2 because, basing on the available
information, it only possibly belongs to Cl�2 due to the above ambiguity with S2.

The above examples point out that the differences between Cl�2 and P.Cl�2 /
from one side, and between P.Cl�2 / and Cl�2 from the other side, are related to the
inconsistency (or ambiguity) of information. This observation can be generalized:
the set difference between upper and lower approximation is composed of objects,
whose assignment to the considered upward union Cl�t or downward union Cl�t
is ambiguous, that is inconsistent, with the dominance principle. This justifies the
following definition. The P-boundaries (P-doubtful regions) of Cl�t and Cl�t are
defined as:

BnP.Cl�t / D P.Cl�t / � P.Cl�t /; BnP.Cl�t / D P.Cl�t /� P.Cl�t /:

In the above example, we have: BnP.Cl�2 / D P.Cl�2 / � P.Cl�2 / D {S1,S2};
indeed, the ambiguity of S1 and S2 with respect to Cl�2 was already explained.

The P-lower and P-upper approximations satisfy the following specific comple-
mentarity properties:

P.Cl�t / D U � P.Cl�t�1/; t D 2; : : : ; n;
P.Cl�t / D U � P.Cl�tC1/; t D 1; : : : ; n � 1;

P.Cl�t / D U � P.Cl�t�1/; t D 2; : : : ; n;
P.Cl�t / D U � P.Cl�tC1/; t D 1; : : : ; n � 1:
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The first expression above has the following interpretation: if object x belongs
without any ambiguity to class Clt or better, it is impossible that it could belong,
even with some ambiguity, to class Clt�1 or worse, i.e. P.Cl�t / D U � P.Cl�t�1/.
Let us consider the set of at least Medium students, i.e. Cl�2 , and the set of (at
most) Bad students, i.e. Cl�1 . The above complementarity property means that a
student is at least Medium without any ambiguity if and only if, basing on available
information, it is impossible that she could be comprehensively evaluated as Bad,
even with some ambiguity. According to this definition, if we consider P D C D
{Mathematics, Physics, Literature}, we have: P.Cl�2 /D {S3,S4,S5,S6} and P.Cl�1 /
D {S1,S2,S7,S8}, thus, P.Cl�2 / D U � P.Cl�1 /.

Due to the complementarity property, BnP.Cl�t / D BnP.Cl�t�1/; for t D 2; : : : ; n;
which means that if x belongs with ambiguity to class Clt or better, it also belongs
with ambiguity to class Clt�1 or worse. In our example, BnP.Cl�2 / D BnP.Cl�1 / D
{S1,S2}. In simple words, this can be expressed as follows: the students, whose
assignment to at least Medium class is ambiguous, are the same as students, whose
assignment to at most Bad class is also ambiguous.

A very important property related to the value of information is the following
monotonicity of rough approximations with respect to the considered set of
attributes: given R � P � C,

R.Cl�t / � P.Cl�t /; R.Cl�t / � P.Cl�t /

R.Cl�t / � P.Cl�t /; R.Cl�t / � P.Cl�t /

BnR.Cl�t / � BnP.Cl�t /; BnR.Cl�t / � BnP.Cl�t /:

This property has the following interpretation. When the considered information
is augmented, then the ambiguity decreases or, at least, does not increase. This
means that, if object x is ambiguous with respect to a set of criteria R, then with
respect to another set of criteria P � R the same object x may become non-
ambiguous, because the new information conveyed by criteria from P � R may
remove this ambiguity. Let us consider the assignment of student S5, in our example,
to the union Cl�3 of (at least) Good students. If PD {Physics}, then S5 is ambiguous
and does not belong to P.Cl�3 /. Indeed, S5 creates an ambiguity with students S1,
S2 and S3 that are evaluated at least as good as S5 with respect to Physics and,
nevertheless, their comprehensive evaluation is worse than S5. If we augment the
available information by evaluation on Mathematics, considering therefore P D
{Physics, Mathematics}, then S5 is still ambiguous and does not belong to P.Cl�3 /.
In this case, however, the set of students ambiguous with S5 is reduced to S1 only.
Finally, if P D {Physics, Mathematics, Literature}, then S5 is no more ambiguous
in comparison with other students and thus S5 belongs to P.Cl�3 /.
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13.2.6 Quality of Approximation, Reducts and Core

The ratio

�P.Cl/ D
jU � . S

t2f2;:::;ng
BnP.Cl�t //j

jUj D

D
jU � . S

t2f1;:::;n�1g
BnP.Cl�t //j

jUj
defines the quality of approximation of the classification Cl by means of criteria
from set P � C, or, briefly, quality of classification, where j � j means cardinality of
a set. This ratio expresses the proportion of all P-correctly classified objects, i.e. all
the non-ambiguous objects, to all the objects in the data table. Let us calculate this
ratio for Table 13.1; taking PD {Mathematics, Physics}, we have

P.Cl�2 / D {S4,S6}, P.Cl�3 / D {S4,S6}, P.Cl�2 /={S1,S2,S3,S4,S5,S6},

P.Cl�3 /={S1,S4,S5,S6}, P.Cl�1 / D {S7,S8}, P.Cl�2 /={S2,S3,S7,S8},

P.Cl�1 /={S1,S2,S3,S5,S7,S8}, P.Cl�2 ={S1,S2,S3,S5,S7,S8}.

This means that

BnP.Cl�2 /={S1,S2,S3,S5}, BnP.Cl�3 /={S1,S5},

BnP.Cl�1 /={S1,S2,S3,S5}, BnP.Cl�2 /={S1,S5}.

Thus, the quality of classification with respect to Cl and criteria from set P is

�P.Cl/ D jU � .BnP.Cl�2 / [ BnP.Cl�3 //j
jUj D

D jU � .BnP.Cl�1 /[ BnP.Cl�2 //j
jUj D jfS4; S6; S7; S8gjjUj D 4

8
:

Due to the above monotonicity property, for all R;P � C the following
implication is true

R � P) �R.Cl/ � �P.Cl/:

This property is illustrated for Table 13.1 by the results of calculation presented in
Table 13.2.

Every minimal subset of criteria P � C such that �P.Cl/ D �C.Cl/ is called
a reduct of C with respect to Cl and is denoted by REDCl(P). �P.Cl/ D �C.Cl/
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Table 13.2 Quality of classification and Shapley value for classification Cl and set
of criteria P

Set of Ambiguous Non-ambiguous Quality of Shapley
criteria P objects objects classification value

{Mathematics} S1,S2,S3,S4,S5,S6 S7,S8 0:25 0.167

{Physics} S1,S2,S3,S5 S4,S6,S7,S8 0:5 0.292

{Literature} S1,S2,S3,S4,S7,S8 S5,S6 0:25 0.292

{Mathematics, S1,S2,S3,S5 S4,S6,S7,S8 0:5 �0:375
Physics}

{Mathematics, S1,S2 S3,S4,S5,S6,S7,S8 0:75 0.125
Literature}

{Physics, S1,S2 S3,S4,S5,S6,S7,S8 0:75 �0:125
Literature}

{Mathematics, S1,S2 S3,S4,S5,S6,S7,S8 0:75 �0:125
Physics,
Literature}

means that, if P is a reduct, then no object which is non-ambiguous with respect to
C, is ambiguous with respect to P. In other words, reducing the information from
the set of all criteria C to the subset P, no new ambiguity arises. The condition
�P.Cl/ D �C.Cl/ is not sufficient for declaring P a reduct. The other important
condition in the definition of reduct is the minimality. Supposing that P is a reduct,
minimality means that, for any q 2 P; �P�fqg.Cl/ < �C.Cl/. Therefore, the reducts
are all the subsets P � C which keep the same number of ambiguous objects as C,
and such that removing any criterion from P one creates new ambiguous objects.

Looking at the results presented in Table 13.2, one can conclude that in our
example there are two reducts: RED1

Cl={Mathematics, Literature} and RED2
Cl D

{Physics, Literature}.
A data table may have more than one reduct. The intersection of all the reducts

is known as the core, denoted by CORECl. In our example, the core is

CORECl D RED1
Cl \RED2

Cl D
{Mathematics, Literature}\{Physics, Literature}={Literature}.

The criteria from the core are indispensable for keeping the quality of classi-
fication at the level attained for set C. Other criteria from different reducts are
exchangeable, in the sense that they can substitute each other and their joint presence
is not necessary to keep the quality of classification at the level attained for set C.
The criteria which do not appear in any reduct are superfluous and they have no
influence on the quality of approximation of the classification. In our example, the
criterion of Literature is indispensable because, for all P � C such that Literature
does not belong to P, we have �P.Cl/ < �C.Cl/ D 0:75. This means that removing
a core criterion from C creates new ambiguous objects. For the monotonicity of
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rough approximations with respect to the considered set of attributes, these new
ambiguous objects will be present in all the subsets of criteria P which do not
include the core criterion. One can see in Table 13.2 that S3 and S5 are ambiguous
objects for all the subsets of criteria not including Literature. This is not the case
for other criteria belonging to the reducts. In our example, Mathematics and Physics
are exchangeable, so it is sufficient that one of them stays with Literature in order to
keep the number of ambiguous objects unchanged. This means that the information
supplied by the core criteria cannot be substituted by the information supplied by
other criteria.

13.2.7 Importance and Interaction Among Criteria

In [26, 42], the information about the quality of classification with respect to
all subsets of the considered set of criteria was analysed in view of finding the
relative importance and the interaction among criteria. The main idea is based on
observation that the quality of classification with respect to all subsets of criteria is
a fuzzy measure with the property of Choquet capacity [10]. Such a measure can
be used to calculate some specific indices introduced in cooperative game theory
(for example the Shapley value [83]) and in the fuzzy measure theory ([24, 74];
see also [25]). Using the quality of classification from Table 13.2, the Shapley value
indicating the importance of particular criteria is equal to 0.167 for Mathematics and
to 0.292 for Physics and Literature. Therefore, Physics and Literature are quite more
important than Mathematics. The Shapley interaction index for pairs of criteria is
equal, respectively, to �0:375 for Mathematics and Physics, 0.125 for Mathematics
and Literature, and �0:125 for Physics and Literature. It follows that there is a
redundancy of information between Mathematics and Physics, and between Physics
and Literature, while there is a synergy of information between Mathematics and
Literature.

Such a type of analysis can be conducted also on the decision rules in order
to determine the importance of each condition and the interaction among different
conditions in the considered rules [47]. Let us consider again the rule

� W “if Mathematics	Medium and Literature	Medium,
then the comprehensive evaluation is at least Medium”.

Consider now the two following rules having only one of the two conditions with
the same conclusion:

�’: “if Mathematics	Medium,
then the comprehensive evaluation is at least Medium”,

�”: “if Literature	Medium,
then the comprehensive evaluation is at least Medium”.

In Table 13.1, rule � is always verified, while rule �’ is verified in 5 on 6 cases
(the one counterexample is student S1) and rule �” is verified in 4 on 5 cases
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(the one counterexample is student S8). Thus, the credibility of rule � is 1, while
the credibility of rules �’ and �” is 5

6
and 4

5
, respectively. This means that in rule

� the importance of condition “Mathematics	Medium” is 5
6

and the importance
of condition “Literature	Medium” is 4

5
. Moreover, there is a negative interaction

between the two conditions which can be measured as the difference between the
credibility of rule � on one side and the sum of the credibility of rules �’ and �”
on the other side, that is 1 � 5

6
� 4

5
� �0:63. This means that the general tendency

is such that students at least Medium, who are at least Medium in Mathematics,
are also at least Medium in Literature. Observe that the sign of interaction among
criteria can be different at the global level of the whole decision table and at the local
level of a specific decision rule. In the case considered, Mathematics and Literature
present a positive synergy at the global level, measured by the Shapley value equal
to 0.125 (see Table 13.2), while at the local level of the decision rule �, there is a
negative interaction between conditions concerning the same criteria (�0:63). Let us
remark that the core of this analysis is the same as the analysis of the importance and
interaction among criteria based on the quality of classification, that is the Shapley
value and the Shapley interaction indices.

13.3 Variable Consistency Dominance-Based Rough Set
Approach (VC-DRSA)

The definitions of rough approximations introduced in Sect. 13.2 are based on
a strict application of the dominance principle. However, when defining non-
ambiguous objects, it is reasonable to accept a limited proportion of negative
examples, particularly for large data tables. Such extended version of DRSA is
called Variable-Consistency DRSA model (VC-DRSA) [46]. It is presented below.

For any P � C, we say that x 2 U belongs to Cl�t without any ambiguity at
consistency level l2(0, 1], if x 2 Cl�t and at least l�100 % of all objects y 2 U
dominating x with respect to P also belong to Cl�t , i.e.

ˇ
ˇDC

P .x/\ Cl�t
ˇ
ˇ

ˇ
ˇDC

P .x/
ˇ
ˇ

	 l:

For example, student S3 in Table 13.1 does not belong to P-lower approximation
of the union of at least Medium students, where P D {Mathematics, Physics},
because there is student S1 who is at least as good as S3 both in Mathematics and
Physics but comprehensively evaluated as Bad. Anyway, if we fix l � 5

6
, then S3

belongs to P-lower approximation of the union of at least Medium students, because
there are no more counterexamples than .1 � l/�100 % of all students being not
worse than S3 on Mathematics and Physics.
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The level l is called consistency level because it controls the degree of consistency
between objects qualified as belonging to Cl�t without any ambiguity. In other
words, if l < 1, then at most (1–l/�100 % of all objects y 2 U dominating x with
respect to P do not belong to Cl�t and thus contradict the inclusion of x in Cl�t .

Analogously, for any P � C we say that x 2 U belongs to Cl�t without any
ambiguity at consistency level l2(0, 1], if x 2 Cl�t and at least l�100 % of all the
objects y 2 U dominated by x with respect to P also belong to Cl�t , i.e.

ˇ
ˇD�

P .x/ \ Cl�t
ˇ
ˇ

ˇ
ˇD�

P .x/
ˇ
ˇ

	 l:

For example, student S1 in Table 13.1 does not belong to P-lower approximation
of the union of at most Bad students, where P D {Physics, Literature}, because
there is student S2 who is at most as good as S1 both on Physics and Literature, but
comprehensively evaluated as Medium. Anyway, if we fix l � 2

3
, then S3 belongs to

P-lower approximation of the union of at most Bad students, because there are no
more counterexamples than .1 � l/�100 % of all students being not better than S1
on Physics and Literature.

The concept of non-ambiguous objects at some consistency level l leads naturally
to the definition of P-lower approximations of the unions of classes Cl�t and Cl�t ,
respectively:

Pl.Cl�t / D fx 2 Cl�t W
ˇ
ˇDC

P .x/ \ Cl�t
ˇ
ˇ

ˇ
ˇDC

P .x/
ˇ
ˇ

	 lg

Pl.Cl�t / D fx 2 Cl�t W
ˇ
ˇD�

P .x/\ Cl�t
ˇ
ˇ

ˇ
ˇD�

P .x/
ˇ
ˇ

	 lg:

Given P � C and consistency levell, we can define the P-upper approximations

of Cl�t and Cl�t , denoted by P
l
.Cl�t / and P

l
.Cl�t /, respectively, by complementation

of Pl.Cl�t�1/ and Pl.Cl�tC1/ with respect to U:

P
l
.Cl�t / D U � Pl.Cl�t�1/; P

l
.Cl�t / D U � Pl.Cl�tC1/:

P
l
.Cl�t / can be interpreted as a set of all the objects belonging to Cl�t , possibly

ambiguous at consistency level l. Analogously, P
l
.Cl�t / can be interpreted as a

set of all the objects belonging to Cl�t , possibly ambiguous at consistency level
l. The P-boundaries (P-doubtful regions) of Cl�t and Cl�t at consistency level l are
defined as:

Bnl
P.Cl�t / D P

l
.Cl�t /� Pl.Cl�t /;

Bnl
P.Cl�t / D P

l
.Cl�t / � Pl.Cl�t /; t D 1; : : : ; n:
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The variable consistency model of the dominance-based rough set approach
provides some degree of flexibility in assigning objects to lower and upper
approximations of the unions of decision classes. The following property can be
easily proved: for 0 < l0 < l � 1 and t D 2; : : : ; n,

Pl.Cl�t / � Pl0.Cl�t / and P
l0
.Cl�t / � P

l
.Cl�t /:

The variable consistency model is inspired by the variable precision model
proposed by Ziarko [102, 103] within the classical, indiscernibility-based rough set
approach. An extensive study of variable consistency rough set approaches has been
made in [101], and all probabilistic rough set approaches have been summarized
in [100].

13.4 Induction of Decision Rules from Rough
Approximations of Upward and Downward Unions
of Decision Classes

13.4.1 A Syntax of Decision Rules Involving Dominance
with Respect to Partial Profiles

The end result of DRSA is a representation of the information contained in the
considered data table in terms of simple “if. . . , then. . . ” decision rules. Considering
Table 13.1, one can induce, for example, the following decision rules (within
parentheses there are symbols of students supporting the corresponding rule):

Rule (1): “if the evaluations in Physics and Literature are at least Medium, then the
student is comprehensively at least Medium” (S3,S4,S5,S6)

Rule (2): “if the evaluation in Physics is at most Medium and the evaluation in
Literature is at most Bad, then the student is comprehensively at most Medium”
(S1,S2,S7)
or

Rule (3): “if the evaluation in Physics is at least Medium and the evaluation in
Literature is at most Bad, then the student is comprehensively Bad or Medium
(due to ambiguity of information)” (S1,S2).

In fact, the decision rules are not induced directly from the data table but from
lower and upper approximations of upward and downward unions of decision
classes. For a given upward or downward union of classes, Cl�t or Cl�s , the decision
rules induced under a hypothesis that objects belonging to P.Cl�t / or P.Cl�s / are
positive (i.e. must be covered by the induced rules) and all the others negative (i.e.
must not be covered by the induced rules), suggest an assignment to “class Clt or
better”, or to “class Cls or worse”, respectively. For example, Rule (1) is based on
the observation that student S3 belongs to P.Cl�2 /, while Rule (2) is based on the
observation that S1 belongs to P.Cl�2 /, where P D {Physics, Literature}.
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On the other hand, the decision rules induced under a hypothesis that, for s < t,
objects belonging to the intersection P.Cl�s /\P.Cl�t / are positive and all the others
negative, are suggesting an assignment to some classes between Cls and Clt. For
example, Rule (3) is based on the observation that students S1 and S2 belong to
P.Cl�1 /\ P.Cl�2 /.

Generally speaking, in case of preference-ordered data it is meaningful to
consider the following five types of decision rules:

(1) certain D�-decision rules, providing lower profile descriptions for objects
belonging to union Cl�t without ambiguity: “if xq1 �q1 rq1 and xq2 �q2 rq2

and . . . xqp �qp rqp, then x 2 Cl�t ”, where for each wq; zq 2 Vq, “wq �q zq

”means “wq is at least as good as zq”; this is the case of Rule (1) which can be
re- written as

if xPhysics �PhysicsMedium and

xLiterature �LiteratureMedium, then x belongs to Cl�2 ;

(2) possible D�-decision rules, providing lower profile descriptions for objects
belonging to union Cl�t with or without any ambiguity: “if xq1 �q1 rq1 and
xq2 �q2 rq2 and . . . xqp �qp rqp, then x possibly belongs to Cl�t ”; this is the case
of the following

Rule (4): “if the evaluation in Physics is at least Medium, then the student
could be comprehensively at least Medium” (S1,S2,S3,S4,S5,S6).

Let us remark that the conclusion of Rule (4), “the student could be
comprehensively at least Medium” should be read as “it is not completely
certain that the student is Bad, so it is possible that she is at least Medium”.
Rule (4) can also be re-written as

if xPhysics �PhysicsMedium, then x possibly belongs to Cl�2 ;

(3) certain D�-decision rules, providing upper profile descriptions for objects
belonging to union Cl�t without ambiguity: “if xq1�q1rq1 and xq2�q2rq2 and
. . . xqp�qprqp; then x 2 Cl�t , where for each wq; zq 2 Vq, “wq�qzq” means “wq

is at most as good as zq”; this is the case of Rule (2) which can be re- written as

if xPhysics�PhysicsMedium and xLiterature�Literature Bad,

then x belongs to Cl�2 ;

(4) possible D�-decision rules, providing upper profile descriptions for objects
belonging to union Cl�t with or without any ambiguity: “if xq1�q1rq1 and
xq2�q2rq2 and . . . xqp�qprqp; then x possibly belongs to Cl�t ”, this is the case
of the following

Rule (5): “if the evaluation in Literature is at most Bad, then the student
could be comprehensively at most Medium” (S1,S2,S7).
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Let us remark that the conclusion of Rule (5) “the student could be
comprehensively at most Medium” should be read as “it is not completely
certain that the student is Good, so it is possible that she is at most Medium”.
Rule (5) can also be re-written as

if xLiterature�LiteratureBad,

then x possibly belongs to Cl�2 ;

(5) approximate D��-decision rules, providing simultaneously lower and upper
profile descriptions for objects belonging to classes Cls [ ClsC1 [ : : : [ Clt,
without possibility of discerning to which class: “if xq1 �q1 rq1 and . . .
xqk�qkrqk and xqkC1�qkC1rqkC1 and . . . xqp�qprqp, then x 2 Cls [ ClsC1 [
: : : [ Clt”; this is the case of Rule (3) which can be re-written as

if xPhysics �PhysicsMedium andxLiterature�Literature Bad,

then x belongs to Cl1 or Cl2.

In the left hand side of a D��-decision rule we can have “xq �q rq” and
“xq�qr0

q”, where rq 	 r0
q, for the same q 2 C. Moreover, if rq D r0

q, the two
conditions boil down to “xq �qrq”, where for each wq; zq 2 Vq, “wq �q zq”
means “wq is indifferent to zq”.

The rules of type (1) and (3) represent certain knowledge induced from the data
table, while the rules of type (2), (4) represent possible knowledge, and rules of type
(5) represent doubtful knowledge.

The rules of type (1) and (3) are exact, if they do not cover negative examples,
and they are probabilistic otherwise. In the latter case, each rule is characterized by
a confidence ratio, representing the probability that an object matching the left hand
side (LHS) of the rule matches also its right hand side (RHS). Probabilistic rules
are concordant with the VC-DRSA model presented above. To give an example,
consider the following probabilistic D�-decision rules and D�-decision rules
obtained from Table 13.1 (within parentheses, the symbols of students supporting
the corresponding rule but not concordant with its RHS are underlined):

Rule (6): “if the evaluation in Mathematics is at least Good, then the student is
comprehensively at least Good in 75 % of cases (confidence)”, (S1,S4,S5,S6),

Rule (7): “if the evaluation in Physics is at most Medium, then the student is at most
Medium in 83.3 % of cases (confidence)”, (S1,S2,S3,S5,S7,S8).

Let us remark that the probabilistic decision rules are very useful when large
data tables are considered. In large data tables, an ambiguity typically exists and
prevents finding some very strong patterns because the certain decision rules are
contradicted by the ambiguous examples. Probabilistic decision rules, permitting a
limited number of counterexamples, may represent these strong patterns.



13 Decision Rule Approach 519

Since a decision rule is a kind of implication, by a minimal rule we understand
such an implication that there is no other implication with the antecedent (the LHS
of the rule) of at least the same weakness (in other words, a rule using a subset of its
elementary conditions and/or weaker elementary conditions) and the consequent
(the RHS of the rule) of at least the same strength (in other words, a D� or a
D�-decision rule assigning objects to the same union or sub-union of classes, or a
D��-decision rule assigning objects to the same or larger set of classes). Consider,
for example, the following decision rules which both are true for objects from
Table 13.1:

Rule (A): “if the evaluation in Mathematics, Physics and Literature is at least Good,
then the student is comprehensively at least Medium” (S6)

Rule (B): “if the evaluation in Mathematics is at least Good and the evaluation in
Literature is at least Medium, then the student is comprehensively at least Good”
(S4,S5,S6).

Comparison of decision rules (A) and (B) shows that rule (A) is not minimal
indeed:

(1) rule (B) has weaker conditions than rule (A) because rule (A) has conditions on
all three criteria, while rule (B) has conditions on Mathematics and Literature
only; moreover, rule (A) has a stronger requirement than rule (B) with respect
to Literature (at least Good instead of at least Medium), while the requirement
with respect to Mathematics is not weaker (both rules require an evaluation at
least Good);

(2) rule (B) has a stronger conclusion than rule (A) because “comprehensively at
least Good” is more precise than “comprehensively at least Medium”.

A set of decision rules is complete if it is able to cover all objects from the
data table in such a way that consistent objects are re-classified to their original
classes and inconsistent objects are classified to clusters of classes referring to
this inconsistency. An example of a complete set of decision rules induced from
Table 13.1 is given below (between parentheses there are symbols of students
supporting the considered rule):

Rule (˛/: “if the evaluation in Mathematics and Physics is at most Bad, then the
student is comprehensively at most Bad”, (S7,S8);

Rule (ˇ/: “if the evaluation in Physics and Literature is at most Medium, then the
student is comprehensively at most Medium”, (S1,S2, S3,S7,S8);

Rule (�/: “if the evaluation in Mathematics and Physics is at most Medium, then
the student is comprehensively at most Medium”, (S2,S3,S7,S8);

Rule (ı/: “if the evaluation in Physics and Literature is at least Medium, then the
student is comprehensively at least Medium”, (S3,S4, S5,S6);

Rule ("/: “if the evaluation in Physics is at least Good and the evaluation in
Literature is at least Medium, then the student is comprehensively at least
Good”, (S4,S6);
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Rule (�/: “if the evaluation in Physics is at least Medium and the evaluation in
Literature is at least Good, then the student is comprehensively at least Good”,
(S5,S6);

Rule (�/: “if the evaluation in Physics is at least Medium and the evaluation in
Literature is at most Bad, then the student is comprehensively Bad or Medium
(due to ambiguity of information)”, (S1,S2).

13.4.2 Different Strategies of Decision Rule Induction

We call minimal each set of decision rules that is complete and non-redundant, i.e.
exclusion of any rule from this set makes it non-complete. Remark that our set of
decision rules, (˛/–(�/, presented at the end of Sect. 4.1 is not minimal. Indeed, one
can remove rule (�/ and the remaining set of rules is still complete and minimal;
elimination of any other rule does not permit a proper reclassification of at least one
student from Table 13.1.

One of three induction strategies can be adopted to obtain a set of decision
rules [95]:

• minimal description, i.e. generation of a minimal set of rules,
• exhaustive description, i.e. generation of all rules for a given data table,
• characteristic description, i.e. generation of a set of “strong” rules covering

relatively many objects each, however, all together not necessarily all objects
from U.

Let us also remark that, contrary to traditional rule induction in machine learning,
within DRSA the domains of the considered criteria need not to be discretized,
because the syntax of dominance-based rules makes them much less specific than
the traditional rules with elementary conditions of the type “attributeDvalue”. This
is particularly true for the minimal description strategy of induction because, in
the case of exhaustive description, the number of all rules may also augment
exponentially with the number of different evaluations on particular criteria. Specific
algorithms for induction of decision rules consistent with the dominance principle
have been proposed in [3, 4, 45, 48, 98].

13.4.3 Application of Decision Rules

A set of decision rule can be seen as a preference model and used to support future
decisions. Let us suppose that two new students, S9 and S10, not considered in above
Table 13.1, are to be evaluated comprehensively. Evaluations of these students in
Mathematics, Physics and Literature are given in Table 13.3.

Using decision rules proposed within DRSA, different types of preference
models can be considered. In general, one can consider the following models:
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Table 13.3 Evaluations of
new students

Student Mathematics Physics Literature

S9 Medium Good Good

S10 Bad Bad Good

(1) preference model composed of D�-decision rules only,
(2) preference model composed of D�-decision rules only,
(3) preference model composed of D�-decision rules, D��decision rules and

D���decision rules.

In case of model (1), when applying D��decision rules to object x, it is
possible that x either matches LHS of at least one decision rule or does not match
LHS of any decision rule. Let us consider a preference model composed of three
D��decision rules: rule .ı/, rule ."/ and rule .�/ presented at the end of Sect. 4.1.
One can see that S9 matches the LHS of all three rules while S10 does not match
the LHS of any of the three rules.

According to rule .ı/, S9 is comprehensively at least Medium. According to rules
."/ and rule .�/, S9 is comprehensively at least Good. Thus, it is reasonable to assign
S9 to the class of Good students. In general, in the case of at least one matching of
D��decision rules, it is reasonable to conclude that x belongs to class Clt, being the
lowest class of the upward union Cl�t , where Cl�t is the upward union resulting from
intersection of all RHS of rules matching x. Precisely, if x matches LHS of rules �1,
�2,. . . ,�u, whose RHS are x 2 Cl�t1, x 2 Cl�t2,. . . , x 2 Cl�tu , respectively, then x is

assigned to class Clt, where Cl�t D
uT

iD1
Cl�ti or, equivalently, t D maxft1; t2; : : : ; tug.

Since S10 does not match any D��decision rules, decision rule among rule
.ı/, rule ."/ and rule .�/, it is reasonable to conclude that S10 is neither at least
Medium nor at least Good. Therefore, S10 is classified as comprehensively Bad.
The idea behind is that the induced D��decision rules are considered as arguments
for assignment of new objects to classes Clt, where t > 1. Therefore, if there is
no D��decision rules matching a new object x, there is no argument to assign x to
Clt with t > 1; it remains to conclude that x belongs to Cl1, i.e. to the worst class.
In general, in the case of no matching of D��decision rules, it is concluded that x
belongs to Cl1, i.e. to the worst class, since no rule with RHS suggesting a better
classification of x is matching this object.

Now, let us consider model (2) composed of D��decision rules only. Let us
assume that it is composed of three rules: rule .˛/, rule .ˇ/ and rule .�/ from
Sect. 4.1. One can see that S9 does not match the LHS of any rule while S10 matches
the LHS of rule .˛/ and rule .�/. Since S9 does not match any decision rule from
the considered preference model, it is reasonable to conclude that S9 is neither
at most Medium nor at most Bad. Therefore, S9 is classified as comprehensively
Good. In general, in the case of no matching of D��decision rules, it is concluded
that x belongs to the best class Cln because no rule with RHS suggesting a worse
classification of x is matching this object.
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Table 13.4 Evaluations of
new students

Student Mathematics Physics Literature

S11 Bad Medium Good

S12 Bad Medium Bad

According to rule .˛/, S10 is comprehensively at most Bad, while, according to
rule .�/, S10 is comprehensively at most Medium. Thus, it is reasonable to assign
S10 to the class of Bad students. In general, in the case of at least one matching of
D��decision rules, it is reasonable to conclude that x belongs to class Clz, being
the highest class of the downward union Cl�z resulting from intersection of all RHS
of rules matching x. Precisely, if x matches the LHS of rules �1, �2,. . . ,�v , whose
RHS are x 2 Cl�t1, x 2 Cl�t2 ,. . . , x 2 Cl�tv , respectively, then x is assigned to class Clz,

where Cl�z D
vT

iD1
Cl�ti or, equivalently, z D minft1; t2; : : : ; tvg.

In model (3), D��decision rules, D��decision rules and D���decision rules
are used. For example, let us consider a preference model composed of five rules:
rule (˛/, rule (�/, rule (ı/, rule (�/ and rule .�/ from Sect. 4.1, and suppose that
two new students, S11 and S12, are to be evaluated comprehensively. Evaluations
of these students in Mathematics, Physics and Literature are given in Table 13.4.

S11 matches the LHS of D��decision rule .�/ and of two D��decision rules,
.ı/ and .�/. Thus, on the basis of rule .�/, S11 is at most Medium, while according
to rule .ı/, S11 is at least Medium, and according to rule .�/, S11 is at least Good. In
other words, rule .�/ suggests that S11 is comprehensively at most Medium, while
rules (ı/ and (�/ suggest that S11 is comprehensively at least Good. This means
that there is an ambiguity in the comprehensive evaluation of S11 by rule .�/ from
one side, and rules .ı/ and .�/ from the other side. In this situation the classes
Medium and Good fix the range of the ambiguous classification and it is reasonable
to conclude that student S11 is comprehensively Medium or Good. In general, for
this kind of preference model, the final assignment of an object x matching both,
D��decision rules ��

1 , ��
2 ; : : : ; �

�
u , whose RHS are x 2 Cl�t1, x 2 Cl�t2,. . . , x 2 Cl�tu ,

and D��decision rules ��
1 , ��

2 ,. . . ,��
v , whose RHS are x 2 Cl�z1, x 2 Cl�z2,. . . , x 2

Cl�zv , is made to the union of all classes between Clt and Clz, i.e. to Clt[CltC1[. . . Clz
if t � z, or to Clz [ ClzC1[. . . Clt if t 	 z, such that t D maxft1; t2; : : : ; tug and
z D minfz1; z2; : : : ; zvg. Remark that if only D�-decision rules or only D�-decision
rules are matching x, then the above union boils down to a single class, Clt or Clz,
respectively.

S12 matches the LHS of D�-decision rule .�/ and of D��-decision rule .�/.
Thus, on the basis of rule .�/, S12 is at most Medium, while according to rule .�/,
S12 is Bad or Medium, without possibility of discerning to which one of the two
classes it must be assigned. In this situation, it is reasonable to conclude that student
S12 is comprehensively Bad or Medium. In general, for this kind of preference
model, the final assignment of an object x is made as follows. Let us suppose that x
matches, on one hand, D��decision rules ��

1 , ��
2 ,. . . ,��

u , whose RHS are x 2 Cl�t1,
x 2 Cl�t2,. . . , x 2 Cl�tu , and D��decision rules ��

1 , ��
2 ,. . . ,��

v , whose RHS are
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x 2 Cl�z1, x 2 Cl�z2,. . . , x 2 Cl�zv , and, on the other hand, D���decision rules
���
1 , ���

2 ,. . . ,���
w , whose RHS are x 2 Cl�a1\Cl�b1, x 2 Cl�a2\Cl�b2, . . . , x 2

Cl�aw \Cl�bw, ai � bi for all i D 1; 2; : : : ;w. Then, let t D maxft1; t2; : : : ; tug,
z D minfz1; z2; : : : ; zvg, k D minfa1; a2; : : : ; awg and h D maxfb1; b2; : : : ; bwg.
Now, define A and B as follows:

A D
�

Clt [CltC1[ : : :Clz if t � z
Clz [ClzC1[ : : :Clt if t > z

; B D Clk [ ClkC1 [ : : :Clh:

Finally, x is assigned to A [ B.
A new classification procedure for dominance-based probabilistic decision rules

coming from VC-DRSA model has been proposed in [1].

13.4.4 Decision Trees: An Alternative to Decision Rules

The dominance-based rough approximations can also serve to induce decision trees
representing knowledge discovered from preference-ordered data. Several forms
of decision trees, useful for representation of classification patterns, have been
proposed by Giove et al. [23]. One of these trees, representing knowledge discovered
from Table 13.1, is presented in Fig. 13.1.

The decision tree presented in Fig. 13.1 can be interpreted as follows. The root
(node 1) of the tree is a test node. The test formulates the following question with
respect to all the students: “is the evaluation in Mathematics at least Medium?”. The
root has two child nodes (nodes 2 and 3). The right child node (node 2) concerns

Fig. 13.1 Decision tree representing knowledge included from Table 13.1
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the students who passed the test, i.e. all the students being at least Medium in
Mathematics (S1,S2,S3,S4,S5,S6), while the left child node (node 3) concerns the
students who did not pass the test, i.e. all the students being worse than Medium
in Mathematics (S7,S8). According to node 2, 83.3 % of students being at least
Medium in Mathematics are comprehensively at least Medium (S2,S3,S4,S5,S6);
moreover, 50 % of students being at least Medium in Mathematics are comprehen-
sively at least Good (S4,S5,S6). According to node 3, 100 % of students being worse
than Medium in Mathematics are comprehensively at most Bad (S7,S8). Node 3 says
also that the students having an evaluation worse than Medium in Mathematics are
comprehensively at most Medium in 100 %. Let us observe that the information
that students are at most Medium in 100 % of cases is redundant with respect to
the information that the same students are at most Bad in 100 % of cases, because a
student at most Bad is of course also at most Medium. Node 4 is the second test node.
The test formulates the following question with respect to the students who passed
the first test: “is the evaluation in Literature at least Medium?”. The right node
5 concerns all the students being at least Medium in Mathematics and Literature
(S3,S4,S5,S6); 100 % of these students are comprehensively at least Medium
(S3,S4,S5,S6) and 75 % of them are at least Good (S4,S5,S6). The left node 6,
in turn, concerns all the students being at least Medium in Mathematics and worse
than Medium in Literature (S1,S2); 50 % of these students are comprehensively at
most Bad (S1) and 100 % of them are at most Medium (S1,S2).

Let us show how decision tree classifies new objects. Consider the above decision
tree and students S9 and S10 from Table 13.3. As evaluation of S9 in Mathematics
is Medium, according to the test node from the root of the tree, we can conclude
that S9 is comprehensively at least Medium with credibilityD83.3 % and at least
Good with credibilityD50 %. Furthermore, as evaluation of S9 in Literature is
Good, according to the second test node, the student is for sure comprehensively at
least Medium (credibilityD100 %) and at least Good with credibilityD75 %. With
respect to student S10, the decision tree says that she is for sure comprehensively
Bad (credibilityD100 %). Let us remark the great transparency of the classification
decision provided by the decision tree: indeed it explains in detail how the
comprehensive evaluation is reached and what is the impact of particular elementary
conditions on the confidence of classification.

13.5 Extensions of DRSA

13.5.1 DRSA with Joint Consideration of Dominance,
Indiscernibility and Similarity Relations

Very often in data tables describing realistic decision problems, there are data
referring to a preference order (criteria) and data not referring to any specific
preference order (attributes).
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Table 13.5 Information
table of the illustrative
example

Attributes
Warehouse A1 A2 A3 A4
C1 High 700 A Profit

C2 High 420 A Loss

C3 Medium 500 B Profit

C4 Medium 555 B Loss

C5 Low 400 A Loss

C6 Low 100 B Loss

The following example illustrates the point. In Table 13.5, six companies are
described by means of four attributes:

• A1, capacity of management,
• A2, number of employees,
• A3, localization,
• A4, company profit or loss.

The objective is to induce decision rules explaining profit or loss on the basis of
attributes A1, A2 and A3. Let us observe that

• attribute A1 is a criterion, because the evaluation with respect to the capacity of
management is preferentially ordered (high is better than medium, and medium
is better than low);

• attribute A2 is a quantitative attribute, because the values of the number of
employees are not preferentially ordered (neither the high number of employees
is in general better than the small number, nor the inverse); for quantitative
attributes it is reasonable to use a similarity relation, which, in general, is a binary
relation, only reflexive and neither transitive nor symmetric; for example, with
respect to the data from Table 13.5, similarity between companies can be defined
as follows: company a is similar to company b with respect to the attribute
“number of employees” if

jnumber of employees of a � number of employees of bj
number of employees of b

� 10%I

Let us remark that C3 is similar to C4 because j500�555j
555

� 10%, while C4 is

not similar to C3 because j555�500j
500

> 10%: This shows how similarity relation
may not satisfy symmetry. Let us suppose now that there is another company,
C7, having 530 employees. Then, C4 is similar to C7 because j555�530j

530
� 10%

and C7 is similar to C3 because j530�500j
500

� 10%. However, we have already
verified that C4 is not similar to C3. This shows how similarity may not satisfy
transitivity;
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• attribute A3 is a qualitative attribute, because there is no preference order between
different types of localization: two companies are indiscernible with respect to
localization if they have the same localization;

• decision classes defined by attribute A4 are preferentially ordered (obviously,
profit is better than loss).

Let us remark that indiscernibility is the typical binary relation considered within
the classical rough set approach (CRSA) while an extension of rough sets to the
similarity relation has been proposed by Słowiński and Vanderpooten [87, 88] (for
a fuzzy extension of this approach see [27, 41]). Greco et al. [29, 33] proposed
an extension of DRSA to deal with data table like Table 13.5, where preference,
indiscernibility and similarity are to be considered jointly. Applying this approach
to Table 13.5, several decision rules can be induced; the following set of decision
rules covers all the examples (within parentheses there are symbols of companies
supporting the corresponding decision rule):

Rule (1): “if capacity of management is medium, then the company makes profit or
loss”, (C3,C4),

Rule (2): “if capacity of management is (at least) high and the number of employ-
ees is similar to 700, then the company makes profit”, (C1),

Rule (3): “if capacity of management is (at most) low, then the company makes
loss”, (C5,C6),

Rule (4): “if the number of employees is similar to 420, then the company makes
loss”, (C2,C5).

13.5.2 DRSA and Interval Orders

In the previous sections we considered precise evaluations of objects on particular
criteria and precise assignment of each object to one class. In practice, however,
due to imprecise measurement, random variation of some parameters, unstable
perception or incomplete definition of decision classes and preference scales of
criteria, the evaluations and/or assignment may not be univocal. This was not the
case in our example considered above; however, it is realistic to ask how DRSA
should change in order to handle Table 13.1 augmented by students S13, S14 and
S15 presented in Table 13.6.

Table 13.6 Students with interval evaluations

Comprehensive
Student Mathematics Physics Literature evaluation

S13 Medium-Good Medium Bad-Medium Bad

S14 Medium Good Medium Medium-Good

S15 Medium-Good Medium-Good Medium Medium-Good
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This adaptation of DRSA has been considered in [15, 16]. Its basic idea consists
in approximation of an interval order of the comprehensive evaluation by means
of interval orders on particular criteria; the key concept of this approximation is a
specially defined dominance relation.

13.5.3 Fuzzy DRSA: Rough Approximations
by Means of Fuzzy Dominance Relations

The concept of dominance can be refined by introducing gradedness through the
use of fuzzy sets in the sense of semantics expressing preferences for pairs of
objects (for a detailed presentation of fuzzy preferences see [20]; see also [75]). The
gradedness introduced by the use of fuzzy sets refines the classic crisp preference
structures. The idea is the following. Let us consider the problem of classifying some
enterprises according to their profitability. Let us suppose that the DM decides that
the enterprises should be classified according to their ROI (Return On Investment).
More precisely, she considers that enterprise x with ROI not smaller than 12 %
should be assigned to the class of profitable enterprises Cl�2 and, otherwise, it should
be assigned to the class of non profitable enterprises Cl�1 . Now, consider enterprise
a with ROI equal to 12 % and enterprise b with ROI equal to 11.9 %. The difference
between the ROI of a and b is very small, however, it is enough to make a radically
different assignment of these two enterprises. This example shows that it would be
more reasonable to consider a smooth transition from Cl�1 to Cl�2 . Such a transition
can be controlled by a graded credibility Cl�2 .x/, telling to what degree enterprise x
belongs to Cl�2 , defined as follows:

Cl�2 .x/ D
8
<

:

0 if ROI.x/ < 10%
.ROI.x/� 10%/=2 if 10% � ROI.x/ < 12%
1 if ROI.x/ 	 12%

The correlative credibility that enterprise x belongs to Cl�1 can be defined as:
Cl�1 .x/ D 1–Cl�2 .x/.

According to the above definition, we get Cl�2 .a/D 1 and Cl�2 .b/D 0.95, which
means that a is for sure a profitable enterprise while b is profitable with a credibility
of 95 %. Thus, the small difference between ROI(a/ and ROI(b/ does not lead to
radically different classification of the two enterprises with respect to profitability.

The above reasoning about a smooth transition from truth to falsity of an
inclusion relation can be applied to the dominance relation considered in the rough
approximations. In Sect. 13.3, the dominance relation xDPy has been declared true if
evaluations of object x on all criteria from set P are not worse than those of object y.
Continuing our example of classification with respect to profitability, let us consider
among criteria the percentage growth of the sales, denoted by GS. Let us also define
the weak preference relation �GS with respect GS as

(1) x �GS y, GS.x/ 	 GS.y/:
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(1) can be read as “enterprise x is at least as good as y with respect to GS if and only
if GS of x is greater than or equal to GS of y”. Considering two enterprises, a
and b, one can remark that if the difference between GS.a/ and GS.b/ is small,
for example GS.a/ D 12% and GS.b/ D 12:1%, then definition (1) is too
restrictive; in this situation it is hard to say that enterprise b is definitely better
than enterprise a. It is thus realistic to assume an indifference threshold q > 0

on criterion GS, so that the following definition would replace (1)

(2) x �GS y, GS.x/ 	 GS.y/� q:

(2) can be read as “enterprise x is at least as good as y with respect to GS if and
only if GS of x is greater than or equal to GS of y decreased by an indifference
threshold q”. For example, if q D 1%, then enterprise a is indifferent to
enterprise b. Definition (2) is not yet completely satisfactory. Let us consider
enterprises c and d such that GS.c/ D 13% and GS.d/ D 13:1%. Using (2)
with q D 1% we have to conclude that a �GS c while non a �GS d. This
is counterintuitive because the difference between GS.c/ and GS.d/ is very
small and one would expect a similar result of comparison of c and d with
a. Therefore, the following reformulation of the definition of weak preference
�GS seems reasonable:

(3) “x is at least as good as y with a credibility �GS .x; y/”

where

�GS .x; y/ D

8
<̂

:̂

0 if GS.x/ < GS.y/� p
p�.GS.y/�GS.x//

p�q if � p � GS.x/� GS.y/ < �q

1 if GS.x/ 	 GS.y/� q

and p is a preference threshold such that p > q.
(3) has the following interpretation:

– it is completely true .�GS .x; y/ D 1/ that enterprise x is at least as good as y
with respect to GS under the same condition as (2);

– it is completely false .�GS .x; y/ D 0/ that enterprise x is at least as good as
y with respect to GS when GS.x/ is smaller than GS.y/ by at least p;

– between the two extremes .0 <�GS .x; y/ < 1/, the credibility that enterprise
x is at least as good as y with respect to GS increases linearly with the
opposite of the difference GS.y/–GS.x/.

Applying (3) with qD 1 % and pD 2 % to enterprises a, c, and d described above,
one gets �GS .a; c/ D 1 and �GS .a; d/ D 0:9. Thus, considering comparison of c
and d with a on GS, the small difference between GS.c/ and GS.d/ does not give as
radically different results as before.
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In [35, 39, 40, 52], DRSA was extended by using in two different ways fuzzy
dominance relation. These extensions of the rough approximation into the fuzzy
context maintain the same desirable properties of the crisp rough approximation
of preference-ordered decision classes. These generalizations follow the traditional
line of using fuzzy logical connectives in definitions of lower and upper approx-
imation. In fact, there is no rule for the choice of the “right” connective, so this
choice is always arbitrary to a certain extent. For this reason, in [54], a new fuzzy
rough approximation was proposed. It avoids the use of fuzzy connectives, such
as T-norm, T-conorm and fuzzy implication, which extend “and”, “or” and “if . . . ,
then . . . ” operators within fuzzy logic (see, for example, [20]), but at the price of
introducing a certain degree of subjectivity related to the choice of one or another
of their functional form. The proposed approach solves this problem because it is
based on the ordinal properties of fuzzy membership functions only.

13.5.4 DRSA with Missing Values: Multiple-Criteria
Classification Problem with Missing Values

In practical applications, the data table is often incomplete because some data
are missing. For example, let us consider the profiles of students presented in
Table 13.7, where “*” means that the considered evaluation is missing (for example
students S16 and S17 have not yet passed the examination in Literature and Physics,
respectively).

An extension of DRSA enabling the analysis of incomplete data tables has been
proposed in [31, 36]. In this extension it is assumed that the dominance relation
between two objects is a directional statement, where a subject object is compared
to a referent object having no missing values on considered criteria. With respect to
Table 13.7, one can say that, taking into account all the criteria,

(1) subject S17 dominates referent S18: in fact, referent S18 has no missing value;
(2) it is unknown if subject S18 dominates referent S17: in fact, referent S17 has

no evaluation in Physics.

From (1) we can derive the following decision rule: “if a student is at least
Medium in Mathematics, Physics and Literature, then the student is comprehen-
sively at least Medium”. This rule can be simplified into one of the following rules:
“if a student is at least Medium in Physics, then the student is comprehensively at
least Medium” or “if a student is at least Medium in Literature, then the student is
comprehensively at least Medium”.

Table 13.7 Example of
missing values in the
evaluation of students

Comprehensive
Student Mathematics Physics Literature evaluation

S16 Medium Bad � Bad

S17 Medium � Good Good

S18 Medium Medium Medium Medium
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Table 13.8 Substitution of
missing values in the
evaluation of students

Comprehensive
Student Mathematics Physics Literature evaluation

S16A Medium Bad Bad Bad

S16B Medium Bad Medium Bad

S16C Medium Bad Good Bad

S17A Medium Bad Good Good

S17B Medium Medium Good Good

S17C Medium Good Good Good

S18 Medium Medium Medium Medium

The advantage of this approach is that the rules induced from the rough
approximations defined according to the extended dominance relation are robust,
i.e. each rule is supported by at least one object with no missing value on the criteria
represented in the condition part of the rule. To better understand this feature, let us
compare the above approach with another approach suggested to deal with missing
values [70, 71]. In the latter it is proposed to substitute an object having a missing
value by a set of objects obtained by putting all possible evaluations in the place of
the missing value. Thus, from Table 13.7 one would obtain the following Table 13.8.

From Table 13.8, one can induce the rule: “if a student is at least Medium in
Physics and at least Good in Literature, then the student is comprehensively at least
Good”. However, this rule is not robust because in the original Table 13.7, no student
has such a profile.

DRSA extended to deal with missing values maintains all good characteristics
of the dominance-based rough set approach and boils down to the latter when
there are no missing values. This approach can also be used to deal with decision
table in which dominance, similarity and indiscernibility must be considered jointly
with respect to criteria and attributes. Another extension of DRSA for dealing with
imprecise or missing evaluations of objects, and imprecise assignments of objects
to classes, has been presented in [16].

13.5.5 DRSA for Decision Under Uncertainty

In [44] we opened a new avenue for applications of the rough set concept to analysis
of preference-ordered data. We considered the classical problem of decision under
uncertainty extending DRSA by using stochastic dominance. In a risky context, an
act A stochastically dominates an act B if, for all possible levels k of gain or loss, the
probability of obtaining an outcome at least as good as k with A is not smaller than
with B. In this context we have an ambiguity if an act A stochastically dominates
an act B, but, nevertheless, B has a comprehensive evaluation better than A. On this
basis, it is possible to restate all the concepts of DRSA and adapt this approach to
preference analysis under risk and uncertainty. We considered the case of traditional
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additive probability distribution over the set of future states of the world; however,
the model is rich enough to handle non-additive probability distributions and even
qualitative ordinal distributions. The rough set approach gives a representation of
DM’s preferences under uncertainty in terms of “if. . . , then. . . ” decision rules
induced from rough approximations of sets of exemplary decisions (preference-
ordered classification of acts described in terms of outcomes in uncertain states of
the world). This extension is interesting with respect to MCDA from two different
viewpoints:

(1) each decision under uncertainty can be viewed as a multicriteria decision, where
the criteria are the outcomes in different states of the world;

(2) DRSA adapted to decision under uncertainty can be applied to deal with
multicriteria decision under uncertainty, i.e. decision problem where in each
future state of the world the outcomes are expressed in terms of a set of criteria
(see [17, 96]).

13.5.6 DRSA for Hierarchical Structure of Attributes
and Criteria

In many real life situations, the process of decision-making is decomposable into
sub-problems; this decomposition may either follow from a natural hierarchical
structure of the evaluation or from a need of simplification of a complex decision
problem. These situations are referred to hierarchical decision problems. The
structure of a hierarchical decision problem has the form of a tree whose nodes
are attributes and criteria describing objects. An example structure of a hierarchical
classification problem is shown in Fig. 13.2. The cars are sorted into three classes:
acceptable, hardly acceptable and non-acceptable, on the basis of three criteria
(Price, Max speed, Fuel consumption) and two regular attributes (Colour and
Country of production); one of criteria—Fuel consumption—is further composed
of four sub-criteria.

In [15], hierarchical decision problems are considered where the decision is made
in a finite number of steps due to hierarchical structure of regular attributes and
criteria. The proposed methodology is based on decision rule preference model
induced from examples of hierarchical decisions made by the DM on a set of
reference objects. To deal with inconsistencies appearing in decision examples,
DRSA has been adapted to hierarchical classification problems. In these problems,
the main difficulty consists in propagation of inconsistencies along the tree, i.e.
taking into account at each node of the tree the inconsistent information coming
from lower level nodes. In the proposed methodology, the inconsistencies are
propagated from the bottom to the top of the tree in the form of subsets of possible
attribute values instead of single values. In the case of hierarchical criteria, these
subsets are intervals of possible criterion values. Subsets of possible values may also
appear in leafs of the tree, i.e. in evaluations of objects by the lowest-level attributes
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Fig. 13.2 The hierarchy of attributes and criteria for a car classification problem

and criteria. To deal with multiple values of attributes in description of objects the
classical rough set approach has been adapted adequately. Interval evaluations of
objects on particular criteria can be handled by DRSA extended to interval orders
(see point 5.2).

13.6 DRSA for Multiple-Criteria Choice and Ranking

DRSA can also be applied to multiple-criteria choice and ranking problems.
However, there is a basic difference between classification problems from one side
and choice and ranking from the other side. To give a didactic example, consider a
set of companies A for evaluation of a risk of failure, taking into account the debt
ratio criterion. To assess the risk of failure of company x, we will not compare the
debt ratio of x with the debt ratio of all the other companies from A. The comparison
will be made with respect to a fixed risk threshold on the debt ratio criterion. Indeed,
the debt ratio of x can be the highest of all companies from A and, nevertheless,
x can be classified as a low risk company if its debt ratio is below the fixed risk
threshold. Consider, in turn, the situation, in which we must choose the lowest risk
company from A or we want to rank the companies from A from the less risky to
the most risky one. In this situation, the comparison of the debt ratio of x with a
fixed risk threshold is not useful and, instead, a pairwise comparison of the debt
ratio of x with the debt ratio of all other companies in A is relevant for the choice
or ranking. Thus, in general, while classification is based on absolute evaluation of
objects (e.g. comparison of the debt ratio with the fixed risk threshold), choice and
ranking refer to relative evaluation, by means of pairwise comparisons of objects
(e.g. comparisons of the debt ratio of pairs of companies).
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The necessity of pairwise comparisons of objects in multiple-criteria choice and
ranking problems requires some further extensions of DRSA. Simply speaking,
in this context we are interested in the approximation of a binary relation, cor-
responding to a comprehensive preference relation, using other binary relations,
corresponding to marginal preference relations on particular criteria, for pairs of
objects. In the above example, we would approximate the binary relation “from the
viewpoint of the risk of failure, company x is comprehensively preferred to company
y” using binary relations on the debt ratio criterion, like “the debt ratio of x is much
better than that of y” or “the debt ratio of x is weakly better than that of y”, and
so on.

Technically, the modification of DRSA necessary to approach the problems of
choice and ranking are twofold:

(1) pairwise comparison table (PCT) is considered instead of the simple data
table [32]: PCT is a decision table whose rows represent pairs of objects for
which multiple-criteria evaluations and a comprehensive preference relation are
known;

(2) dominance principle is considered for pairwise comparisons instead of simple
objects: if object x is preferred to y at least as strongly as w is preferred to z
on all the considered criteria, then x must be comprehensively preferred to y at
least as strongly as w is comprehensively preferred to z.

The application of DRSA to the choice or ranking problems proceeds as follows.
First, the DM gives some examples of pairwise comparisons with respect to some
reference objects, for example a complete ranking from the best to the worst of a
limited number of objects—well known to the DM. From this set of examples, a
preference model in terms of “if . . . , then. . . ” decision rules is induced. These rules
are applied to a larger set of objects. A proper exploitation of the results so obtained
gives a final recommendation for the decision problem at hand. Below, we present
more formally and in greater detail this methodology.

13.6.1 Pairwise Comparison Table (PCT) as a Preference
Information and a Learning Sample

Let A be the set of objects for the decision problem at hand. Let us also consider a
set of reference objects B � A on which the DM is expressing her preferences by
pairwise comparisons. Let us represent the comprehensive preference by a function
P W A � A! R. In general, for each x; y 2 A,

• if P.x; y/ > 0, then P.x; y/ can be interpreted as a degree to which x is evaluated
better than y,

• if P.x; y/ < 0, then P.x; y) can be interpreted as a degree to which x is evaluated
worse than y,

• if P.x; y/ D 0, then x is evaluated equivalent to y.
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The semantic value of preference P can be different. We remember two possible
interpretations:

(1) P.x; y/ represents a degree of outranking of x over y, i.e. P.x; y/ is the credibility
of the proposition “x is at least as good as y”;

(2) P.x; y/ represents a degree of net preference of x over y, i.e. P.x; y/ is the
strength with which x is preferred to y.

In case (1), P.x; y/ measures the strength of arguments in favor of x and against
y, while P.y; x/ measures the arguments in favor of y and against x. Thus, there is
no relation between values of P.x; y/ and P.y; x/. In case (2), P.x; y/ synthesizes
arguments in favor of x and against y together with arguments in favor of y and
against x. P.y; x/ has a symmetric interpretation and the relation P.x; y/ D �P.y; x/
is expected.

Let us suppose that objects from set A are evaluated by a consistent family of n
criteria gi W A! R, i D 1; 2; : : : ; n, such that, for each object x 2 A, gi.x/ represents
the evaluation of x with respect to criterion gi. Using the terms of the rough set
approach, the family of criteria constitutes the set C of condition attributes. With
respect to each criterion gi 2 C one can consider a particular preference function
Pi W R � R ! R, such that for all x; y 2 A, PiŒgi.x/; gi.y/� for criterion gi has an
interpretation analogous to comprehensive preference relation P.x; y/, i.e.

• if PiŒgi.x/; gi.y/� > 0, then PiŒgi.x/; gi.y/� is a degree to which x is better than y
on criterion gi,

• if PiŒgi.x/; gi.y/� < 0, then PiŒgi.x/; gi.y/� is a degree to which x is worse than y
on criterion gi,

• if PiŒgi.x/; gi.y/� D 0, then x is equivalent to y on criterion gi.

Let us suppose that the DM expresses her preferences with respect to pairs .x; y/
from E � B � B; jEj D e. These preferences are represented in an e � .m C 1/
Pairwise Comparison Table SPCT . The m rows correspond to the pairs from E. For
each .x; y/ 2 E in the corresponding row, the first n columns include information
about preferences PiŒgi.x/; gi.y/� on particular criteria from set C, while the last,
.mC 1/� th column represents the comprehensive preference P.x; y/.

13.6.2 Multigraded Dominance

Given subset P � C .P ¤ ;/ of criteria and pairs of objects .x; y/; .w; z/ 2 A � A,
the pair .x; y/ is said to P-dominate the pair .w; z/ (denotation .x; y/DP.w; z//, if
PiŒgi.x/; gi.y/� > PiŒgi.w/; gi.z/� for all gi 2 P, i.e. if x is preferred to y at least as
strongly as w is preferred to z with respect to each criterion gi 2 P. Let us remark
that the dominance relation DP is a partial preorder on A � A; as, in general, it
involves different grades of preference on particular criteria, it is called multigraded
dominance relation.
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Given P � C and .x; y/ 2 E, we define:

• a set of pairs of objects P�dominating .x; y/, called P�dominating set,
DC

P .x; y/ D f.w; z/ 2 E W .w; z/DP.x; y/g,
• a set of pairs of objects P�dominated by .x; y/, called P�dominated set,

D�
P .x; y/ D f.w; z/ 2 E W .x; y/DP.w; z/g.

The P�dominating sets and the P�dominated sets defined on E for considered
pairs of reference objects from E are “granules of knowledge” that can be used to
express P�lower and P�upper approximations of set B

�
k D f.x; y/ 2 E W P.x; y/ 	

kg, corresponding to comprehensive preference of degree at least k, and set B�
k D

f.x; y/ 2 E W P.x; y/ � kg, corresponding to comprehensive preference of degree at
most k, respectively:

P.B�
k / D f.x; y/ 2 E W DC

P .x; y/ � B�
k g;

P.B�
k / D

[

.x;y/2B�

k

DC
P .x; y/ D f.x; y/ 2 E W D�

P .x; y/\ B�
k ¤ ;g;

P.B�
k / D f.x; y/ 2 E W D�

P .x; y/ � B�
k g;

P.B�
k / D

[

.x;y/2B�

k

D�
P .x; y/ D f.x; y/ 2 E W DC

P .x; y/\ B�
k ¤ ;g:

The set difference between P�lower and P�upper approximations of sets B�
k

and B�
k contains all the ambiguous pairs .x; y/:

BnP.B
�
k / D P.B�

k /� P.B�
k /; BnP.B

�
k / D P.B�

k / � P.B�
k /;

The above rough approximations of B�
k and B�

k satisfy properties analogous to
the rough approximations of upward and downward unions of classes Cl�t and Cl�t ;
precisely, these are:

• inclusion: P.B�
k / � B�

k � P.B�
k /; P.B�

k / � B�
k � P.B�

k /;
• complementarity:

P.B�
k / D E � P.B�

k � 1/; P.B�
k / D E � P.B�

k � 1/;
P.B�

k / D E � P.B�
k C 1/; P.B�

k / D E � P.B�
k C 1/;

where B>k D E � B�
k and B<k D E � B�

k and the rough approximation of B>k
and B<k are analogous to those of B�

k and B�
k , for example, P.B>k / D f.x; y/ 2 E W

DC
P .x; y/ � B>k g;

• monotonicity: for each R;P � C, such that R � P,
R.B�

k / � P.B�
k /; R.B�

k / � P.B�
k /;

R.B�
k / � P.B�

k /; R.B�
k / � P.B�

k /:

The concepts of the quality of approximation, reducts and core can be extended
also to the approximation of the comprehensive preference relation by multigraded
dominance relations. In particular, the coefficient
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�P D
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ˇE �

S

k
BnP
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ˇ
ˇ
ˇ
ˇ

jEj D

ˇ
ˇ
ˇ
ˇE �

S

k
BnP

�
B�

k

�
ˇ
ˇ
ˇ
ˇ

jEj :

defines the quality of approximation of comprehensive preference P.x; y/ by criteria
from P � C. It expresses the ratio of all pairs .x; y/ 2 E whose degree of preference
of x over y is correctly assessed using set P of criteria, to all the pairs of objects
contained in E. Each minimal subset P � C, such that �P D �C , is called reduct of
C (denoted by REDSPCT /. Let us remark that SPCT can have more than one reduct.
The intersection of all reducts is called the core (denoted by CORESPCT /.

It is also possible to use the Variable Consistency Model on SPCT ([89]; see also
[22]) relaxing the definitions of P�lower approximations of graded comprehensive
preference relations represented by sets B�

k and B�
k , such that some pairs in

P�dominated or P�dominating sets belong to the opposite relation but at least
l�100 % of pairs belong to the correct one. Then, the definition of P�lower
approximations of B�

k and B�
k with respect to set P � C of criteria boils down to:

Pl
�
B�

k

� D
(

.x; y/ 2 E W
ˇ
ˇDC

P .x; y//\ B�
k

ˇ
ˇ

ˇ
ˇDC

P .x; y/
ˇ
ˇ

	 l

)

;

Pl
�
B�

k

� D
(

.x; y/ 2 E W
ˇ
ˇD�

P .x; y//\ B�
k

ˇ
ˇ

ˇ
ˇD�

P .x; y/
ˇ
ˇ

	 l

)

:

13.6.3 Induction of Decision Rules from Rough
Approximations of Graded Preference Relations

Using the rough approximations of sets B�
k and B�

k , that is rough approximations
of comprehensive preference relation P.x; y/ of degree at least or at most k,
respectively, it is possible to induce a generalized description of the preference
information contained in a given SPCT in terms of decision rules with a special
syntax. We are considering decision rules of the following types:

(1) D��decision rules:

if Pi1Œgi1.x/; gi1.y/� 	 ki1 and : : : PirŒgir.x/; gir.y/� 	 kir;

then P.x; y/ 	 k

where fgi1; : : : ; girg � C; for example: “if car x is much better than y
with respect to maximum speed and at least weakly better with respect to
acceleration, then x is comprehensively better than y”; these rules are supported
by pairs of objects from the P�lower approximation of sets B�

k only;
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(2) D��decision rules:

if Pi1Œgi1.x/; gi1.y/� � ki1 and : : : PirŒgir.x/; gir.y/� � kir;

then P.x; y/ � k

where fgi1; : : : ; girg � C; for example: “if car x is much worse than y
with respect to price and weakly worse with respect to comfort, then x is
comprehensively worse than y”; these rules are supported by pairs of objects
from the P�lower approximation of sets B�

k only;
(3) D���decision rules:

if Pi1Œgi1.x/; gi1.y/� 	 ki1 and : : : PirŒgir.x/; gir.y/� 	 kir and

Pj1Œgj1.x/; gj1.y/� � kj1 and : : :PjsŒgjs.x/; gjs.y/� � kjs;

then h � P.x; y/ � k

where fgi1; : : : ; girg; fgj1; : : : ; gjsg � C; for example: “if car x is much worse
than y with respect to price and much better with respect to comfort, then x is
indifferent or better than y, and there is not enough information to distinguish
between the two situations”; these rules are supported by pairs of objects from
the intersection of the P�upper approximation of sets B�

k and B�
h .h < k/ only.

13.6.4 Use of Decision Rules for Decision Support

The decision rules induced from rough approximations of sets B�
k and B�

k for a given
SPCT , describe the comprehensive preference relations P.x; y/ either exactly .D�
and D��decision rules/ or approximately .D���decision rules/. A set of these
rules covering all pairs of SPCT represent a preference model of the DM who gave
the pairwise comparison of reference objects. Application of these decision rules on
a new subset M � A of objects induces a specific preference structure on M.

For simplicity, in the following we consider the case where P.x; y/ is interpreted
as outranking and assumes two values only: P.x; y/ D 1, which means that x is at
least as good as y, and P.x; y/ D �1, which means that x is not at least as good as
y. In the following P.x; y/ D 1 will be denoted by xSy and P.x; y/ D �1 will be
denoted by xScy.

In fact, any pair of objects .u; v/ 2 M �M can match the decision rules in one of
four ways:

• at least one D��decision rule and neither D� nor D���decision rules,
• at least one D��decision rule and neither D� nor D���decision rules,
• at least one D��decision rule and at least one D��decision rule, or at least

D���decision rules,
• no decision rule.
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These four ways correspond to the following four situations of outranking,
respectively:

• uSv and not uScv, that is true outranking (denoted by uSTv),
• uScv and not uSv, that is false outranking (denoted by uSFv),
• uSv and uScv, that is contradictory outranking (denoted by uSKv),
• not uSv and not uScv, that is unknown outranking (denoted by uSUv).

The four above situations, which together constitute the so-called four-valued
outranking [30], have been introduced to underline the presence and absence of
positive and negative reasons for the outranking. Moreover, they make it possible to
distinguish contradictory situations from unknown ones.

A final recommendation (choice or ranking) can be obtained upon a suitable
exploitation of this structure, i.e. of the presence and the absence of outranking
S and Sc on M. A possible exploitation procedure consists in calculating a specific
score, called Net Flow Score, for each object x 2 M:

Snf .x/ D SCC.x/� SC�.x/C S�C.x/ � S��.x/;

where

SCC.x/ D
card(fy 2 M: there is at least one decision rule which affirms xSyg),
SC�.x/ D
card(fy 2 M: there is at least one decision rule which affirms ySxg),
S�C.x/ D
card(fy 2 M: there is at least one decision rule which affirms yScxg),
S��.x/ D
card(fy 2 M: there is at least one decision rule which affirms xScyg).

The recommendation in ranking problems consists of the total preorder deter-
mined by Snf .x/ on M; in choice problems, it consists of the object(s) x� 2 M, such
that Snf .x�/ D max

x2M
fSnf .x/g.

The above procedure has been characterized with reference to a number of
desirable properties in [30, 99, 100].

13.6.5 Illustrative Example

Let us suppose that a company managing a chain of warehouses wants to buy some
new warehouses. To choose the best proposals or to rank them all, the managers
of the company decide to analyze first the characteristics of eight warehouses
already owned by the company (reference objects). This analysis should give some
indications for the choice and ranking of the new proposals. Eight warehouses
belonging to the company have been evaluated by three following criteria: capacity
of the sales staff .g1/, perceived quality of goods .g2/ and high traffic location (g3/.
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Table 13.9 Decision table
with reference objects

Warehouse g1 g2 g3 d (ROE %)

1 good medium good 10:35

2 good sufficient good 4:58

3 medium medium good 5:15

4 sufficient medium medium �5
5 sufficient medium medium 2:42

6 sufficient sufficient good 2:98

7 good medium good 15

8 good sufficient good �1:55

The domains (scales) of these attributes are presently composed of three preference-
ordered echelons: V1 D V2 D V3 D fsufficient;medium; goodg. The decision
attribute .d/ indicates the profitability of warehouses, expressed by the Return On
Equity (ROE) ratio (in %). Table 13.9 presents a decision table with the considered
reference objects.

With respect to the set of criteria C D fg1; g2; g3g, the following numerical
representation is used for criterion gi; i D 1; 2; 3: gi.x/ D 1 if x is sufficient,
gi.x/ D 2 if x is medium, gi.x/ D 3 if x is good.

The degree of preferences with respect to pairs of actions are defined as
PiŒ.x/; gi.y/� D gi.x/� gi.y/; i D 1; 2; 3; and they are coded as follows:

PiŒgi.x/; gi.y/� D �2, PiŒgi.y/; gi.x/� D 2,
which means that “x is worse than y” and
“y is better than x”,
PiŒgi.x/; gi.y/� D �1, PiŒgi.y/; gi.x/� D 1,
which means that “x is weakly worse than y” or
“y is weakly better than x”,
PiŒgi.x/; gi.y/� D PiŒgi.y/; gi.x/� D 0,
which means that “x is equivalent to y”.

Using the decision attribute, the comprehensive outranking relation was build as
follows: warehouse x is at least as good as warehouse y with respect to profitability
.P.x; y/ D 1, xSy/ if

ROE.x/ 	 ROE.y/� 2%:

Otherwise, i.e. if ROE.x/ < ROE.y/ � 2%, warehouse x is not at least as good
as warehouse y with respect to profitability .P.x; y/ D �1, xScy/.

The pairwise comparisons of reference objects are gathered SPCT . In Table 13.10,
there is a small fragment of SPCT .

The rough set analysis of the SPCT leads to the conclusion that the set of decision
examples on reference objects is inconsistent. The quality of approximation of S and
Sc by all criteria from set C is equal to 0.44. Moreover, REDSPCT D CORESPCT D
fg1; g2; g3g; this means that no criterion is superfluous.
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Table 13.10 A fragment of SPCT

Pair.x; y/ of
warehouses P1Œg1.x/; g1.y/� P2Œg2.x/; g2.y/� P3Œg3.x/; g3.y/� S or Sc

(1,2) 0 1 0 S

(4,7) �2 0 �1 Sc

(6,3) �1 �1 0 Sc

. . . . . . . . . . . . . . .

The C-lower approximations and the C-upper approximations of S and Sc,
obtained by means of multigraded dominance relations, are as follows:

C .S/ Df.1; 2/; .1; 4/; .1; 5/; .1; 6/; .1; 8/; .3; 2/; .3; 4/; .3; 5/; .3; 6/;
.3; 8/; .7; 2/; .7; 4/; .7; 5/; .7; 6/; .7; 8/g;

C .Sc/ Df.2; 1/; .2; 7/; .4; 1/; .4; 3/; .4; 7/; .5; 1/; .5; 3/; .5; 7/; .6; 1/;
.6; 3/; .6; 7/; .8; 1/; .8; 7/g:

All the remaining 36 pairs of reference objects belong to the C�boundaries of S
an Sc, i.e. BnC.S/ D BnC.Sc/.

The following minimal D��decision rules and D��decision rules can be
induced from lower approximations of S and Sc, respectively (within parentheses
there are the pairs of objects supporting the corresponding rules):

if P1Œg1.x/; g1.y/� 	 1 and P2Œg2.x/; g2.y/� 	 1; then xSyI
..1; 6/; .3; 6/; .7; 6//;

if P2Œg2.x/; g2.y/� 	 1 and P3Œg3.x/; g3.y/� 	 0; then xSyI
..1; 2/; .1; 6/; .1; 8/; .3; 2/; .3; 6/; .3; 8/; .7; 2/; .7; 6/; .7; 8//;

if P2Œg2.x/; g2.y/� 	 0 and P3Œg3.x/; g3.y/� 	 1; then xSyI
..1; 4/; .1; 5/; .3; 4/; .3; 5/; .7; 4/; .7; 5//;

if P1Œg1.x/; g1.y/� � �1 and P2Œg2.x/; g2.y/� � �1; then xScyI
..6; 1/; .6; 3/; .6; 7//;

if P2Œg2.x/; g2.y/� � 0 and P3Œg3.x/; g3.y/� � �1; then xScyI
..4; 1/; .4; 3/; .4; 7/; .5; 1/; .5; 3/; .5; 7//;

if P1Œg1.x/; g1.y/� � 0 and P2Œg2.x/; g2.y/� � �1; and
P3Œg3.x/; g3.y/� � 0 then xScyI
..2; 1/; .2; 7/; .6; 1/; .6; 3/; .6; 7/; .8; 1/; .8; 7//:

Moreover, it was possible to induce five minimal D���decision rules from the
boundary of approximation of S and Sc:

if P2Œg2.x/; g2.y/� � 0 and P2Œg2.x/; g2.y/� 	 0
(i.e. P2Œg2.x/; g2.y/� D 0/ and P3Œg3.x/; g3.y/� � 0
and P3Œg3.x/; g3.y/� 	 0 (i.e. P3Œg3.x/; g3.y/� D 0/; then xSy or xScyI
..1; 1/; .1; 3/; .1; 7/; .2; 2/; .2; 6/; .2; 8/; .3; 1/; .3; 3/; .3; 7/; .4; 4/;

.4; 5/; .5; 4/; .5; 5/; .6; 2/; .6; 6/; .6; 8/; .7; 1/; .7; 3/; .7; 7/;
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Table 13.11 Ranking of warehouses for sale by decision rules and the
Net Flow Score procedure

Warehouse g1 g2 g3 Net Flow Score Ranking

1’ good sufficient medium 1 5

2’ sufficient good good 11 1

3’ sufficient medium sufficient �8 8

4’ sufficient good sufficient 0 6

5’ sufficient sufficient medium �4 7

6’ sufficient good good 11 1

7’ medium sufficient sufficient �11 9

8’ medium medium medium 7 3

9’ medium good sufficient 4 4

10’ medium sufficient sufficient �11 9

.8; 2/; .8; 6/; .8; 8//;

if P2Œg2.x/; g2.y/� � 1 and P3Œg3.x/; g3.y/� 	 1; then xSy or xScyI
..2; 4/; .2; 5/; .6; 4/; .6; 5/; .8; 4/; .8; 5//;

if P2Œg2.x/; g2.y/� 	 1 and P3Œg3.x/; g3.y/� � �1; then xSy or xScyI
..4; 2/; .4; 6/; .4; 8/; .5; 2/; .5; 6/; .5; 8//;

if P1Œg1.x/; g1.y/� 	 1 and P2Œg2.x/; g2.y/� � 0;
and P3Œg3.x/; g3.y/� � 0 then xSy or xScyI
..1; 3/; .2; 3/; .2; 6/; .7; 3/; .8; 3/; .8; 6//;

if P1Œg1.x/; g1.y/� 	 1 and P2Œg2.x/; g2.y/� � �1; then xSy or xScyI
..2; 3/; .2; 4/; .2; 5/; .8; 3/; .8; 4/; .8; 5//:

Using all above decision rules and the Net Flow Score exploitation procedure
on ten other warehouses proposed for sale, the managers obtained the result
presented in Table 13.11. The dominance-based rough set approach gives a clear
recommendation:

• for the choice problem it suggests to select warehouse 2’ and 6’, having
maximum score (11),

• for the ranking problem it suggests the ranking presented in the last column of
Table 13.11, as follows:

.20; 60/! .80/! .90/! .10/! .40/! .50/! .30/! .70; 100/

13.6.6 Fuzzy Preferences

Let us consider the case where the preferences PiŒgi.x/; gi.y/� with respect to each
criterion gi 2 C, as well as the comprehensive preference P.x; y/, can assume
values from a finite set. For example, given x; y 2 A, the preferences PiŒgi.x/; gi.y/�



542 S. Greco et al.

and P.x; y/ can assume the following qualitatively ordinal values: x is much better
than y, x is better than y, x is equivalent to y, x is worse than y, x is much worse
than y. Let us suppose, moreover, that each possible value of PiŒgi.x/; gi.y/� and
P.x; y/ is fuzzy in the sense that it is true at some level of credibility between 0
and 100 %, e.g. “x is better than y on criterion gi with credibility 75 %”, or “x
is comprehensively worse than y with credibility 80 %”. Greco et al. [35] proved
that the fuzzy comprehensive preference P.x; y/ can be approximated by means
of fuzzy preferences PiŒgi.x/; gi.y/� after translating the dominance-based rough
approximations of SPCT defined for the crisp case, by means of fuzzy operators.

13.6.7 Preferences Without Degree of Preferences

The values of PiŒgi.x/; gi.y/� considered in the dominance-based rough approxima-
tion of SPCT represent a degree (strength) of preference. It is possible, however, that
in some cases, the concept of degree of preference with respect to some criteria is
meaningless for a DM. In these cases, there does not exist a function PiŒgi.x/; gi.y/�
expressing how much x is better than y with respect to criterion gi and, on the
contrary, we can directly deal with values gi.x/ and gi.y/ only. For example let us
consider the car decision problem and four cars x; y;w; z with the maximum speed
of 210 km/h, 180 km/h, 150 km/h and 140 km/h, respectively. Even if the concept
of degree of preference is meaningless, it is possible to say that with respect to the
maximum speed, x is preferred to z at least as much as y is preferred to w. On the
basis of this observation, Greco et al. [35] proved that comprehensive preference
P.x; y/ can be approximated by means of criteria with only ordinal scales, for which
the concept of degree of preference is meaningless. An example of decision rules
obtained in this situation is the following:

“if car x has a maximum speed of at least 180km/h while car y has a maximum
speed of at most 140km/h and the comfort of car x is at least good while the
comfort of car y is at most medium, then car x is at least as good as car y”.

13.7 DRSA and Operations Research Problems

DRSA is also a useful instrument in the toolbox of Operations Research (OR).
DRSA has been applied to the following OR problems:

(1) interactive multiobjective optimization (IMO-DRSA) [57];
(2) interactive evolutionary multiobjective optimization under risk and uncertainty

[60];
(3) decision under uncertainty and time preference [59].
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13.7.1 DRSA to Interactive Multiobjective Optimization
(IMO-DRSA)

DRSA to interactive multiobjective optimization (IMO-DRSA) [57] permits to deal
with many optimization problems considered within OR (ranging from inventory
management to scheduling, passing through portfolio management) in a way which
is very much oriented towards interaction with the users. In fact, in IMO-DRSA
a sample of representative solutions to a multiobjective optimization problem is
presented to the DM who is asked to indicate a subset of relatively “good” solutions
in the sample. Applying DRSA to the sample of representative solutions classified
into “good” and “others” by the DM, a set of decision rules is induced in the
form: “if objective fi1 .x/ 	 ˛i1 and : : : fip.x/ 	 ˛ip , then x is a good solution”.
The DM selects the rule that in his/her opinion is the most representative of his/her
preferences and the constraints coming from that rule are joined to the previous
set of constraints imposed on the Pareto optimal set, in order to focus on a part
interesting from the point of view of DM’s preferences in the next iteration. For
example, if the DM selects the rule “if objective fi1 .x/ 	 ˛i1 and : : : fip.x/ 	 ˛ip ,
then x is a good solution”, then the constraints fi1 .x/ 	 ˛i1 and : : : fip.x/ 	 ˛ip are
joined to the set of constraints of the multiobjective optimization problem, such that
the new set of constraints implies a Pareto optimal set being the subset of the original
Pareto optimal set. This subset satisfies the requirements of the selected rule, so that
it is composed of solutions that are at this stage considered as relatively good by the
DM. The procedure continues iteratively until the DM is satisfied with one solution
from the current sample - this is the most preferred solution.

13.7.2 DRSA to Interactive Evolutionary Multiobjective
Optimization

Very often real life optimization problems are so complex that exact meth-
ods fail to find an optimal solution. In these cases some heuristics have to be
applied. Within multiobjective optimization, Evolutionary Multiobjective Opti-
mization (EMO) appeared to be particularly efficient; see, e.g., [11, 12]. The
underlying reasoning behind the EMO search of an approximation of the Pareto
optimal frontier is that, in the absence of any preference information, all Pareto
optimal solutions have to be considered equivalent. On the other hand, if the DM
(alternatively called user) is involved in the multiobjective optimization process,
then the preference information provided by the DM can be used to focus the
search on the most preferred part of the Pareto optimal frontier. This idea stands
behind Interactive Multiobjective Optimization (IMO) methods proposed long
time before EMO has emerged. Recently, it became clear that merging the IMO
and EMO methodologies should be beneficial for the multiobjective optimization
process [8]. Several approaches have been presented in this context; see, e.g.,
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[7, 9, 11, 13, 14, 21, 66, 68, 79]. The methodology of interactive EMO based on
DRSA [60, 62], involves application of decision rules, which are induced from
easily elicited preference information by DRSA, according to two general schemes,
called DRSA-EMO and DRSA-EMO-PCT. This aim is to focus the search of the
Pareto optimal frontier on the most preferred region. More specifically, DRSA is
used for structuring preference information obtained through interaction with the
user, and then a set of decision rules representing user’s preferences is induced from
this information. These rules are used to rank solutions in the current population
of EMO, which has an impact on the selection and crossover. Within interactive
EMO, one can also apply DRSA for decision under uncertainty. This permits to
take into account robustness concerns in the multiobjective optimization. In fact,
two methods of robust optimization methods combining DRSA and interactive
EMO have been proposed: DARWIN [60] (Dominance-based rough set Approach
to handling Robust Winning solutions in INteractive multiobjective optimization)
and DARWIN-PCT [62] (DARWIN using Pairwise Comparison Tables). DARWIN
and DARWIN-PCT can be considered as two specific instances of DRSA-EMO and
DRSA-EMO-PCT, respectively.

13.7.3 DRSA to Decision Under Uncertainty and Time
Preference

DRSA can also be applied to preference modeling for decision under uncer-
tainty with consequences distributed over time, using the idea of time-stochastic
dominance, i.e. putting together the concept of time dominance and stochastic
dominance [59]. Preference information provided by the DM is a set of decision
examples specifying the quality of some chosen acts, i.e. assigning these acts to
preference-ordered classes. The resulting preference model expressed in terms of
“if. . . , then. . . ” decision rules is much more intelligible than any utility function.
Moreover, it permits to handle inconsistent preference information. Let us observe
that the approach handles an additive probability distribution as well as a non-
additive probability, and even a qualitative ordinal probability. Furthermore, in
case the elements of sets of possible probability values and of time epochs were
very numerous (in real life applications they are very often infinite), it would
be enough to consider a subset of the most significant probability values (e.g.,
0; 0:1; 0:2; : : : ; 0:9; 1) and a subset of the most significant epochs (e.g., each month).
Applying DRSA to decision under uncertainty and time preference we get decision
rules of the type:

“if the cumulated outcome at t1 is at least 50 with a probability of .5, and the
cumulated outcome at t2 is at least 300 with a probability of .7, then act a is (at
least) good”,

or
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“if the cumulated outcome at t1 is at most 100 with a probability of .25, and the
cumulated outcome at t2 is at most 150 with a probability of .8, then act a is (at most)
medium”.

This method can be extended on the case of pairwise comparisons [61] obtaining
rules whose syntax is:

“if the difference between the cumulated outcome of act a and act b is not smaller
than 50 at t1 with a probability of .6, and not smaller than 300 at t2 with a probability
of .4, then act a is at least weakly preferred to act b”.

The above methodology can be very useful for dealing with many OR problems
where uncertainty of outcomes and their distribution over the time play a fundamen-
tal role, such as portfolio selection, scheduling with time-resource interactions and
inventory management. Indeed, putting together the decision rules produced by this
methodology with IMO-DRSA and DRSA applied to EMO, provides an important
tool for dealing with even more OR problems. An example of a recent application of
this methodology to typical OR problems, which are inventory control and portfolio
selection, can be found in [64, 65], respectively.

13.8 Conclusions

The content of this chapter shows that the “decision rule approach to MCDA” has
been possible due to the multi-layered development of the Dominance-based Rough
Set Approach.

Some remarks relative to comparison of DRSA with other MCDA methodologies
will be useful to fully appreciate the decision rule approach:

(1) for multiple criteria sorting problems, a set of DRSA decision rules is equivalent
to a general utility function, simply increasing with respect to each criterion,
with a set of thresholds corresponding to frontiers between preference-ordered
decision classes [43, 49]; more generally, for multicriteria decision problems,
using a utility function is equivalent to adopt a set of DRSA decision rules;
these rules have a specific syntax when the utility function assumes specific
formulations (for example an associative operator) [55];

(2) for multiple-criteria choice and ranking problems, a set of DRSA decision rules
is equivalent to a general conjoint measurement model (see [6]), non-additive
and non-transitive, proposed by Bouyssou and Pirlot ([5]; see also [50]);

(3) decision rules obtained by DRSA are more general than Sugeno integral ([97];
see also [25]), considered to be the most general max-min ordinal aggregator; in
fact, Sugeno integral is equivalent to a set of single-graded decision rules where
evaluations with respect to conditions and conclusion of a rule are of the same
degree, for example,

�1 W “if Mathematics	Medium and Literature	Medium,
then the comprehensive evaluation is at least Medium”,
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is a single-grade decision rule, while a rule following from DRSA,

�2 W “if Physics	Good and Literature	Medium,
then the comprehensive evaluation is at least Good”

is not a single-graded decision rule; this means that if in the set of decision
rules there is at least one rule which is not single graded, then the DM’s
preferences cannot be represented by the Sugeno integral; for example, if DM’s
preferences are represented by a set of decision rules containing rule �2, then
these preferences cannot be represented by the Sugeno integral [43, 55];

(4) preferences modelled by outranking methods from ELECTRE family can be
represented by a set of specific DRSA decision rules based on PCT [50, 53].

The main features of DRSA can be summarized as follows:

• preference information necessary to deal with a multiple-criteria decision prob-
lem is asked to the DM in terms of exemplary decisions;

• rough set analysis of preference information supplies some useful elements of
knowledge about the decision situation; these are: the relevance of attributes
and/or criteria, information about their interaction (from quality of approxima-
tion and its analysis using fuzzy measures theory), minimal subsets of attributes
or criteria (reducts) conveying the relevant knowledge contained in the exemplary
decisions, the set of the non-reducible attributes or criteria (core);

• preference model induced from the preference information is expressed in a
natural and comprehensible language of “if . . . , then. . . ” decision rules, fulfilling
the postulate of transparency and interpretability of preference models in decision
support; each decision rule can be clearly identified with those parts of the
preference information (decision examples) which support the rule; the rules
inform the DM about the relationships between conditions and decisions; in
this way, the rules permit traceability of the decision support process and give
understandable justifications for the decision to be made, so that the resulting
preference model constituted for the DM a glass box;

• heterogeneous information (qualitative and quantitative, preference-ordered or
not, crisp and fuzzy evaluations, and ordinal and cardinal scales of preferences,
with a hierarchical structure and with missing values) can be processed within
DRSA, while classical MCDA methods consider only quantitative ordered
evaluations with rare exceptions,

• decision rule preference model resulting from the rough set approach is more
general than all existing models of conjoint measurement due to its capacity of
handling inconsistent preferences;

• apart from their clear meaning, the decision rules are characterized by some
interestingness measures, among which Bayesian confirmation measures seem to
be the most appropriate, as shown in the studies [56, 63]. These interestingness
measures can be also used to generalize the concept of rough approximations
[58];
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• proposed methodology is based on elementary concepts and mathematical tools
(sets and set operations, binary relations), without recourse to any algebraic
or analytical structures; the main idea is very natural and the key concept of
dominance relation is even objective.

There is no doubt that the use of the decision rule model and the capacity
of handling inconsistent preference information with DRSA opened a fascinating
research field to MCDA and moved it towards artificial intelligence, knowledge
discovery, data analytics and preference learning.
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36. Greco, S., Matarazzo, B., Słowiński, R.: Dealing with missing data in rough set analy-
sis of multi-attribute and multi-criteria decision problems. In: Zanakis, S., Doukidis, G.,
Zopounidis, C. (eds.) Decision Making: Recent Developments and Worldwide Applications,
pp. 295–316. Kluwer, Dordrecht (2000)
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85. Słowiński, R.: Intelligent Decision Support. Handbook of Applications and Advances of the

Rough Sets Theory. Kluwer, Dordrecht (1992)
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92. Słowiński, R., Greco, S., Matarazzo, B.: Rough sets in decision making. In: Meyers, R.A.
(ed.) Encyclopedia of Complexity and Systems Science, pp. 7753–7786. Springer, New York
(2009)
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Chapter 14
Fuzzy Measures and Integrals in MCDA

Michel Grabisch and Christophe Labreuche

Abstract This chapter aims at a unified presentation of various methods of MCDA
based on fuzzy measures (capacity) and fuzzy integrals, essentially the Choquet
and Sugeno integral. A first section sets the position of the problem of multicriteria
decision making, and describes the various possible scales of measurement (cardinal
unipolar and bipolar, and ordinal). Then a whole section is devoted to each case in
detail: after introducing necessary concepts, the methodology is described, and the
problem of the practical identification of fuzzy measures is given. The important
concept of interaction between criteria, central in this chapter, is explained in detail.
It is shown how it leads to k-additive fuzzy measures. The case of bipolar scales
leads to the general model based on bi-capacities, encompassing usual models based
on capacities. A general definition of interaction for bipolar scales is introduced.
The case of ordinal scales leads to the use of Sugeno integral, and its symmetrized
version when one considers symmetric ordinal scales. A practical methodology for
the identification of fuzzy measures in this context is given.

Keywords Choquet integral • Fuzzy measure • Interaction • Bi-capacities

14.1 Introduction

MultiCriteria Decision Aid (MCDA) aims at modeling the preferences of a Decision
Maker (DM) over alternatives described by several points of view, which are
denoted by X1; : : : ;Xn. An alternative is characterized by a value w.r.t. each point
of view and is thus identified with a point in the Cartesian product X of the points
of view: X D X1 � � � � � Xn. We denote by N WD f1; : : : ; ng the index set of points

M. Grabisch (�)
Paris School of Economics, Université Paris I - Panthéon-Sorbonne, 106-112, Bd de l’Hôpital,
75013 Paris, France
e-mail: michel.grabisch@univ-paris1.fr

C. Labreuche
Thales Research & Technology, 1 avenue Augustin Fresnel, 91767 Palaiseau Cedex, France
e-mail: christophe.labreuche@thalesgroup.com

© Springer Science+Business Media New York 2016
S. Greco et al. (eds.), Multiple Criteria Decision Analysis, International Series
in Operations Research & Management Science 233,
DOI 10.1007/978-1-4939-3094-4_14

553

mailto:michel.grabisch@univ-paris1.fr
mailto:christophe.labreuche@thalesgroup.com


554 M. Grabisch and C. Labreuche

of view. The preference relation of the DM over alternatives is denoted by �. For
x; y 2 X, “x � y” means that the DM prefers alternative x to y. The symmetric and
asymmetric parts of � are denoted by 
 and � respectively.

The main concern in practice is to come up with the knowledge of � on
X � X from a relatively small amount of questions asked to the DM on �. The
information provided by the DM can be composed of examples of comparisons
between alternatives, which gives � on a subset of X � X, as well as more
qualitative judgments, whose modelling is more complex, and depends on the kind
of representation of�we choose. In general, we look for a numerical representation
[68] u W X ! R such that:

8x; y 2 X ; x � y , u.x/ 	 u.y/: (14.1)

It is classical to write u in the following way [63]:

u.x/ D F .u1.x1/; : : : ; un.xn// 8x 2 X; (14.2)

where the ui’s W Xi ! R are called the utility functions (also called value functions)
and F W Rn ! R is an aggregation function. A result by Krantz et al. gives
the axioms that characterize the representation of � by (14.2) [68]. As it will be
detailed in Sect. 14.2.1, the weak separability axiom is the key axiom that justifies
the construction of utility functions, that is partial preference relations over the
points of view, from the overall preference relation �. A criterion is defined as a
preference relation �i over one point of view Xi. Thus a criterion is the association
of one point of view Xi with its related utility function ui.

In practice, we restrict ourself to a family F of aggregation functions (param-
eterized by some coefficients). The justification of the use of a special family is
based on an axiomatic approach. The axioms that characterize the family should be
in accordance with the problem in consideration and the behaviour of the decision
maker. The DM has then to provide the needed information to set the parameters
of the model. The more restrictive the family is, the less representative it is, but the
less information the DM shall give.

The most classical functions used to aggregate the criteria are the weighted sums
F.u1; : : : ; un/ D Pn

iD1 ˛i ui. As an aggregation operator, they are characterized by
an independence axiom [63, 122]. This property implies some limitations in the
way the weighted sum can model typical decision behaviours. To make this more
precise, let us consider the example of two criteria having the same importance, an
example which we will consider in more details in Sect. 14.3.5. We are interested in
the following four alternatives: x is bad in both criteria, y is bad in the first criterion
but good at the second one, z is good in the first criterion but bad in the second
one, and t is good in both. Clearly x � t and the DM is equally satisfied by y
and z since the two criteria have the same importance. However, the comparison of
y; z with x and t leads to several cases. First, the DM may say that x � y � z � t,
where�means indifference. This depicts a DM who is intolerant, since both criteria
have to be satisfied in order to get a satisfactory alternative. In the opposite way,
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the DM may think that x � y � z � t, which depicts a tolerant DM, since only
one criterion has to be satisfactory in order to get a satisfactory alternative. Finally,
we may have all intermediate cases, where x � y � z � t. An important fact is
that, due to additivity, the weighted sum is unable to distinguish among all these
cases, in particular, all decision behaviours related to tolerance or intolerance are
missed. These phenomena are called interaction between criteria. They encompass
also other phenomena such as veto. We will show in this chapter that the notions of
capacity and fuzzy integrals enable to model previous phenomena.

The construction of the utility functions and the determination of the parameters
of the aggregation function are often carried out in two separate steps. The utility
functions are generally set up first, that is without the knowledge of the precise
aggregation function F within F . However, the utility functions have no intrinsic
meaning to the DM and shall be determined from questions regarding only the
overall preference relation �. It is not assumed that the DM can isolate attributes
and give information directly on ui. This point is generally not considered in the
literature. The main reason is probably that due to the use of a weighted sum
as an aggregation function, the independence assumption (preferential or cardinal
independence) makes it possible in some sense to separate each attribute and thus
construct the utility functions directly. This becomes far more complicated when this
assumption is removed. Besides, these approaches are not relevant from a theoretical
standpoint. To our knowledge, the only approach that addresses this problem with
the use of a weighted sum is the so-called MACBETH approach designed by Bana
e Costa and Vansnick [2–4]. A generalization of this approach to more complex
aggregation operators has been proposed by Grabisch et al. [54] and Mayag et al.
[93]. These approaches are considered in this chapter.

The determination of the utility function is not concerned only with measurement
considerations. The main difficulty is to ensure commensurability between criteria.
Commensurateness means that one shall be able to compare any element of one
point of view with any element of any other point of view. This is inter-criteria
comparability:

For xi 2 Xi and xj 2 Xj, we have ui.xi/ � uj.xj/ iff xi is considered at least as good as xj by
the DM.

Commensurateness implies the existence of a preference relation over
Sn

iD1 Xi.
This assumption, considered by Modave and Grabisch [97], is very strong. Taking
a simple example involving two criteria (for instance consumption and maximal
speed), this amounts to know whether the DM prefers a consumption of 5 L/100 km
to a maximum speed of 200 km/h. This does not generally make sense to the DM,
so that he or she is not generally able to make this comparison directly.

In Sects. 14.3 and 14.4 we push the previous method one step further by con-
sidering on top of intra-criteria information some natural inter-criteria information
to determine the aggregation functions as well. We will show that the requirements
induced by measurement considerations naturally imply the use of fuzzy integrals
as aggregation operators. In Sect. 14.5, we deal with the case of ordinal information.
It will be seen that this induces difficulties, so that the previous construction no more
applies.



556 M. Grabisch and C. Labreuche

14.2 Measurement Theoretic Foundations

As explained in the introduction, we focus on a model called decomposable given
by Eq. (14.2), involving an aggregation function F W Rn �! R, and utility functions
ui W Xi �! R, i D 1; : : : ; n.

In this section we will give some considerations coming from measurement
theory as well as more practical considerations coming from the MACBETH
approach around this kind of model. This will help us in giving a firm theoretical
basis to our construction.

14.2.1 Basic Notions of Measurement, Scales

This section is based on [68, 107], to which the reader is referred for more details.
The fundamental aim of measurement theory is to build homomorphisms f

between a relational structure A coming from observation, and a relational structure
B based on real numbers (or more generally, some totally ordered set). Doing so,
we get a numerical representation of our observation. A scale (of measurement) is
the triplet .A;B; f /. If no ambiguity occurs, f alone denotes the scale.

A simple example is when A D .A;�/, where � is a binary relation expressing
e.g. the preference of the DM on some set A, and B is simply .R;	/. As usual, �
and 
 denote respectively the symmetric and asymmetric parts of �, and A=� is
the set of equivalence classes of � (when defined). This measurement problem is
called ordinal measurement. The homomorphism satisfies the following condition

(Ord[A]) a � b iff f .a/ � f .b/; 8a; b 2 A.

Obviously, f is not unique since any strictly increasing transform � ı f of f is also
a homomorphism. Generally speaking, the set of functions � W R �! R such that
� ı f remains a homomorphism is called the set of admissible transformations.

Types of scale are defined by their set of admissible transformations. The most
common ones are:

 ordinal scales, where the set of admissible transformations are all strictly
increasing functions. Examples: scale of hardness, of earthquakes intensity.

 interval scales, where all �.t/ D ˛t C ˇ, ˛ > 0 are admissible (positive affine
transformations). Example: temperature in Celsius.

 ratio scales, where the admissible transformations are of the form �.t/ D ˛t,
˛ > 0. Examples: temperature in Kelvin, mass.

Thus, our condition (Ord[A]) defines an ordinal scale. The conditions under which
such a f exists are well known. A necessary condition is that � is a weak order
(reflexive, complete, transitive). A second condition (and then both are necessary
and sufficient) is that A=� contains a countable order-dense subset (this is known
as the Birkhoff-Milgram theorem, we do not enter further into details).
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An ordinal scale is rather poor, and does not really permit to handle numbers,
since usual arithmetic operations are not invariant under admissible transformations.
It would be better to build an interval scale in the above sense. This is related to
the difference measurement problem: in this case, A D .A;��/, where �� is a
quaternary relation. The meaning of ab �� st is the following: the difference of
intensity (e.g. of preference) between a and b is larger than the difference of intensity
between s and t. Then, the homomorphism f should satisfy:

ab �� st, f .a/ � f .b/ 	 f .s/ � f .t/: (14.3)

It is shown that under several conditions on A, such a function f exists, and that it
defines an interval scale. Thus the ratio f .a/�f .b/

f .s/�f .t/ is meaningful (invariant under any
admissible transformation).

Based on this remark, we express the interval scale condition under a form which
is suitable for our purpose.

(Inter[A]). 8a; b; s; t 2 A such that a 
 b and s 
 t, we have

f .a/� f .b/

f .s/� f .t/
DW k.a; b; s; t/ ; k.a; b; s; t/ 2 RC

if and only if the difference of satisfaction degree that the DM feels between a and b is
k.a; b; s; t/ times as large as the difference of satisfaction between s and t.

The conditions of existence of f amounts to verify the following condition.

(C-Inter[A]). 8a; b; s; t; u; v 2 A such that a 
 b, s 
 t and u 
 v,

k.a; b; s; t/� k.s; t; u; v/ D k.a; b; u; v/:

We end this section by addressing the case where A is a product space, as for
X D X1�� � ��Xn. Conditions for an ordinal representation by u W X �! R are given
by the Birkhoff-Milgram theorem. However, we are interested in a decomposable
form of u (see (14.2)). If F is one-to-one in each place, then necessarily � satisfies
substitutability:

.xi; z�i/ � .yi; z�i/, .xi; z
0�i/ � .yi; z

0�i/; 8x; y; z; z0 2 X: (14.4)

Notation z D .xA; y�A/ means that z is defined by zi D xi if i 2 A, else zi D yi

(hence, �A stands for N n A). This property implies the existence of equivalence
relations �i on each Xi. If F is strictly increasing, then � has to be replaced by �
in (14.4) (this is called weak separability), and relations�i are obtained on each Xi.

Reciprocally, substitutability (or weak separability) and the conditions of the
Birkhoff-Milgram theorem lead to an ordinal representation: hence, u is unique up
to a strictly increasing function.
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This result remains of theoretical interest, since not verifiable in practice, and
moreover, it does not lead to an interval scale. The MACBETH methodology will
serve as a basis for such a construction, whose essence is briefly addressed below.
Before that, some words on unipolar and bipolar scales are in order.

14.2.2 Bipolar and Unipolar Scales

Let us view scales under a different point of view. Let .A;�/ be a relational system,
and f a scale, which is supposed to be numerical, without loss of generality. It may
exists in A a particular element or level e, called neutral level, such that if a 
 e,
then a is considered as “good”, while if e 
 a, then a is considered as “bad” for the
DM. We may choose for convenience f such that f .e/ D 0.

Such a neutral level exists whenever relation � corresponds to two opposite
notions of common language. For example, this is the case when � means “more
attractive than”, “better than”, etc., whose pairs of opposite notions are respectively
“attractiveness/repulsiveness”, and “good/bad”. By contrast, relations as “more
prioritary than”, “more allowed than”, “belongs more to category C than” do not
clearly exhibit a neutral level.

A scale is said to be bipolar if A contains such a neutral level. A unipolar scale
has no neutral level, but has a least level, i.e. an element or level a0 in A such that
a � a0 for all a 2 A. We may for convenience choose f so that f .a0/ D 0.

A scale has a greatest element if there exists an element or level a1 2 A such that
a1 � a, for all a 2 A. We say that a unipolar scale is bounded if it has a greatest
level. A bipolar scale is bounded if it has a least and a greatest level (since there is
an inherent symmetry in bipolar scales, the existence of a greatest level implies the
existence of a least level).

Taking our previous examples, the relations “more attractive than”, “better
than”, “more prioritary than” may not be bounded, while “more allowed than” and
“belongs more to category C than” are clearly bounded, the greatest levels being
respectively “fully authorized” and “fully belongs to C”.

Typically, f maps on R (resp. RC) when the scale is unbounded bipolar (resp.
unipolar). In the case of bounded scales, f maps respectively to a closed interval
centered on 0, and an interval such as Œ0; ˇ�.

It is convenient to denote by 1l the neutral level of a bipolar scale, or the least
level of a unipolar scale. We denote by O the greatest level when it exists, and by
�O the least level of a bipolar scale.

When the scale is unbounded, it may be convenient to introduce another
particular level, called the satisfactory level. We may also use O to denote the
satisfactory level. This level is considered as good and completely satisfactory if
the DM could obtain it, even if more attractive elements could exist in A (due to
unboundness). The existence of such a level has been the main argument of H.
Simon in his theory of satisficing bounded rationality [114], and a fundamental
assumption in the MACBETH methodology, as described in next section. For
convenience, we may fix f .O/ D 1. If in addition the scale is bipolar, the same
considerations lead to a level also denoted �O (unsatisfactory level).
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Finally, let us remark that there is no direct relation between unipolar/bipolar
scales and the types of scales given in Sect. 14.2.1 (interval, ratio, etc.). For example,
the temperature scales are clearly unipolar with a least level (at least in the physical
sense), but may be of the ratio type (in Kelvin) or of the interval type (in Celsius,
Fahrenheit). However, the neutral level of a bipolar scale clearly plays the role of
the zero in a ratio scale, since it cannot be shifted.

14.2.3 Construction of the Measurement Scales and Absolute
References Levels

The MACBETH methodology [2–4], described in Chap. 10, permits to build interval
scales from a questionnaire. We limit ourselves here to necessary notions.

We consider A a finite set on which the decision maker is able to express some
preference (the finiteness assumption is necessary for the method. If A is infinite,
then a finite subset QA of representative objects should be chosen). The decision
maker is asked for any pair .a; b/ 2 A2:

1. Is a more attractive than b?
2. If yes, is the difference of attractivity between a and b very weak, weak, moderate,

strong, very strong, or extreme?

The first question concerns ordinal measurement: we are looking for a function f W
A �! R satisfying condition (Ord[A]). The second question is related to difference
measurement. The six ordered categories very weak,. . . ,extreme define a quaternary
relation on A, as defined in Sect. 14.2.1. MACBETH is able to test in a simple way
if f as in (14.3) exists, and if yes, produces such a function, unique up to a positive
affine transformation. In summary, we get an interval scale satisfying conditions
(Inter[A]) and (C-Inter[A]).

As explained in Sect. 14.2.2, we may have a unipolar or a bipolar scale, in which
case a 1l level exists. It is convenient to choose f such that f .1l/ D 0. If several sets
A1; : : : ;An are involved, then commensurability between the scales f1; : : : ; fn may
be required, as it will be seen later.

We say that scales fi; fj are commensurate if fi.ai/ D fj.aj/means that the DM has
the same intensity of attractiveness (or satisfaction, etc.) for ai and aj. A set of scales
is commensurate if any pair is commensurate. Under the assumption that all fi’s are
interval scales, it is sufficient to find two levels on each Ai, i D 1; : : : ; n for which
the DM feels an equal satisfaction for all i (they are in a sense absolute levels), and
to impose equality of the scales for those levels.

Obviously, the levels 1li of each Ai have an identical absolute meaning, provided
the Ai’s are either all bipolar or all unipolar, but not mixed. We fix fi.1li/ D 0,
i D 1; : : : ; n.
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The second absolute levels could be the levels Oi (satisfactory levels in case of
unbounded scales, and greatest elements otherwise). As suggested in Sect. 14.2.2,
we may fix fi.Oi/ D 1, i D 1; : : : ; n.

The same considerations apply to the absolute levels �Oi.
To conclude this section, let us stress the fact that the underlying assumptions on

which MACBETH (and hence, the method presented here) is based is that the DM
is able to deliver information concerning difference measurement, and that the DM
is able to exhibit on A two elements or levels with an absolute meaning, denoted 1l
and O, the precise meaning of them being dependent on the type of scale. We adopt
throughout the paper the convention that

f .1l/ D 0; f .O/ D 1: (14.5)

14.3 Unipolar Scales

We address in this section the construction of our model in the case of unipolar
scales. As explained in Sect. 14.2, we have on each Xi two absolute levels 1li and Oi

given by the DM.

14.3.1 Notion of Interaction: A Motivating Example

To introduce more precisely the idea of interaction and show some flaws of
the weighted sum, let us give an example. The director of a university decides
on students who are applying for graduate studies in management where some
prerequisites from school are required. Students are indeed evaluated according to
mathematics (M), statistics (S) and language skills (L). All the marks with respect
to the scores are given on the same scale from 0 to 20. These three criteria serve
as a basis for a preselection of the candidates. The best candidates have then an
interview with a jury of members of the university to assess their motivation in
studying in management. The applicants have generally speaking a strong scientific
background so that mathematics and statistics have a big importance to the director.
However, he does not wish to favor too much students that have a scientific profile
with some flaws in languages. Besides, mathematics and statistics are in some sense
redundant, since, usually, students good at mathematics are also good at statistics.
As a consequence, for students good in mathematics, the director prefers a student
good at languages to one good at statistics. Consider the following student A

Mathematics (M) Statistics (S) Languages (L)

Student A 16 13 7
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Student A is highly penalized by his performance in languages. Hence, the director
would prefer a student (with the same mark in mathematics) that is a little bit better
in languages even if the student would be a little bit worse in statistics. This means
that the director prefers the following student to A

Mathematics (M) Statistics (S) Languages (L)

Student B 16 11 9

We have thus

A � B (14.6)

Consider now a student that has a weakness in mathematics. In this case, since the
applicants are supposed to have strong scientific skills, a student good in statistics
is now preferred to one good in languages. Consider the following two students

Mathematics (M) Statistics (S) Languages (L)

Student C 6 13 7

Student D 6 11 9

Following above arguments, C is preferred to D even though C has poor language
skills.

C 
 D (14.7)

Satisfying (14.6) and (14.7) at the same time leads to the following requirement

F.16; 13; 7/ > F.16; 11; 9/ and F.6; 13; 7/ < F.6; 11; 9/:

No weighted sum can model such preferences since (14.6) implies that languages
is more important than statistics whereas (14.7) tells exactly the contrary. There is
an inversion of preferences between (14.6) and (14.7) in the sense that the relative
importance of languages compared to statistics depends on the satisfaction level in
mathematics. This behaviour is a typical example of interaction between criteria.

14.3.2 Capacities and Choquet Integral

The natural generalization of giving weights on criteria is to assign weights on
coalitions (i.e. groups, subsets) of criteria. This can be achieved by introducing
particular functions on P.N/, called fuzzy measures or capacities. We recall that
N WD f1; : : : ; ng is the index set of criteria.
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A fuzzy measure [118] or capacity [11] is a set function � W 2N ! R satisfying

(FMa) A � B) �.A/ � �.B/,
(FMb) �.;/ D 0,
(FMc) �.N/ D 1.

We denote by M the set of capacities. Property (FMa) is called monotonicity of
the capacity. In MCDA, �.A/ is interpreted as the overall assessment of the binary
alternative .1A; 0�A/. A set function satisfying only (FMb) is called a game or a
non-monotonic fuzzy measure.

The conjugate �� of a capacity � is defined by ��.S/ D �.N/ � �.N n S/. The
capacity is said to be additive if �.A [ B/ D �.A/C �.B/, whenever A \ B D ;,
while it is said to be symmetric if �.A/ depends only on jAj.

The set of set functions on N is homomorphic to the set of pseudo-Boolean
functions f W f0; 1gn ! R. More precisely, if we define for any set A � N the
vector ıA 2 f0; 1gn by ıA.i/ D 1 if i 2 A and 0 otherwise, then for any set function
� we can define its associated pseudo-Boolean function f by f .ıA/ WD �.A/ for all
A � N, and reciprocally.

Several possible extensions of f on R
nC can be defined. The first one called multi-

linear extension [61, 63] takes the form

M�.a/ D
X

A�N

m.A/ �
Y

i2A

ai ; 8a D .a1; : : : ; an/ 2 R
nC (14.8)

where m.A/ corresponds to the Möbius transform (see e.g. [108]) of �, associated
to f , which is defined by

m.A/ D
X

B�A

.�1/jAnBj�.B/:

Reciprocally, � can be recovered from the Möbius transform by

�.A/ D
X

B�A

m.B/:

The second extension called Lovász extension is defined by

C�.a/ D
X

A�N

m.A/ �
^

i2A

ai ; 8a 2 R
nC (14.9)

where m is the Möbius transform of �, and ^ is the min operator. Later, we will also
use the notation _ to denote the max operator. This expression corresponds to the
Choquet integral [11]. An equivalent expression in terms of the capacity � is

C�.a/ D a�.1/ �.N/C
nX

iD2

�
a�.i/ � a�.i�1/

�
� .f�.i/; � � � ; �.n/g/ ; (14.10)
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where � is a permutation on N such that a�.1/ � a�.2/ � � � � � a�.n/. Note that the
Choquet integral is also well-defined w.r.t. set functions which are games.

When the capacity is additive, the Choquet integral reduces to a weighted sum.
We say that a; b 2 R

nC are comonotone if ai < aj ) bi � bj for any i; j 2 N.
In other words, a; b are comonotone if they belong to �� WD fa 2 R

nC j a�.1/ �
a�.2/ � � � � � a�.n/g for the same permutation � . Thus, it is clear from (14.10)
that for comonotone a; b we have C�.a C b/ D C�.a/ C C�.b/. This property,
called comonotonic additivity, is characteristic of the Choquet integral, as shown
by Schmeidler [111].

For other properties and characterizations of the Choquet integral, we refer the
reader to survey papers [16, 85, 103], and also to Sect. 14.3.4.

Taking F as the Choquet integral, let us see whether it exists some capacity �
such that C� is able to model relation (14.6) and (14.7). The modeling of (14.6)
implies that 2�.M;S/ > �.M/C 1, while (14.7) gives 2�.S/ > �.S;L/. There is
no contradiction between previous two inequalities, hence the Choquet integral can
model the preferences of the DM.

14.3.3 Construction of Utility Functions

14.3.3.1 Difficulty of the Construction of Utility Functions

In order to construct the utility functions, the DM is only supposed to provide
information regarding options in X (in particular, part of the binary relation �
and the quaternary relation �� on X). However, in practice, a utility function ui is
often constructed by the DM, by isolating attribute Xi and asking questions directly
regarding the preference of the DM on the set Xi (independently on the values on
the other attributes). This practice is justified only when

.xi; t�i/.yi; t�i/ �? .zi; t�i/.wi; t�i/

() .xi; s�i/.yi; s�i/ �? .zi; s�i/.wi; s�i/

for all xi; yi; zi;wi 2 Xi and all t�i; s�i 2 X�i. This condition is called weak difference
independence [24]. Note that it contains the weak separability (see Sect. 14.1) as
particular case when zi D ti.

Proposition 1 (Corollary 2 in [24] Applied to Theorem 6.3 in [63]). Assume that
n 	 2. �? satisfies weak difference independence for all i 2 N and is representable
by a function u if and only if there exists a capacity� and utility functions u1; : : : ; un

such that u is the multi-linear value model u.x/ D M�.u1.x1/; : : : ; un.xn// for all
x 2 X.
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From this result, the Choquet integral does not fulfill the weak difference indepen-
dent property. Hence the construction of the utility functions through the Choquet
integral is not an easy task.

14.3.3.2 General Method for Building Utility Functions

Let us describe now a general method to construct the utility functions ui without
the prior knowledge of F [54, 77]. The utility functions shall be determined through
questions regarding elements of X. Following the MACBETH approach [2–4], the
subset Xci (for i 2 N) of X will serve as a basis for the determination of ui:

Xci D f.xi; 1l�i/ ; xi 2 Xig :

We apply the MACBETH methodology to each set Xci, which amounts to satisfy
conditions (Ord[Xci]), (Inter[Xci]), (C-Inter[Xci]). This gives the numerical rep-
resentation uXci of Xci. It is uniquely determined if (14.5) is applied. Since 1li is a
least level of Xi, the utility function ui is non-negative.

For .xi; 1l�i/ 2 Xci, one has by (14.2) and (14.5), since uXci.xi; 1l�i/ corresponds
to the overall utility of the act .xi; 1l�i/:

uXci .xi; 1l�i/ D F .ui.xi/; u�i.1l�i// D F .ui.xi/; 0�i/ :

Assume that the family F of aggregation functions satisfies

9˛i 2 R
�C ; F .ai; 0�i/ D ˛i ai for all ai 2 RC: (14.11)

Since uXci .Oi; 1l�i/ D F .1i; 0�i/ D ˛i, we get for any xi 2 Xi:

ui.xi/ D F .ui.xi/; 0�i/

F .1i; 0�i/
D uXci .xi; 1l�i/

uXci .Oi; 1l�i/
: (14.12)

This shows that if all aggregation functions belonging to F satisfy (14.11) then ui

can be determined by (14.12) from cardinal information related to Xci.
Note that we do not need to assume weak separability, thanks to (14.11).
Considering the case of the Choquet integral, it is easy to see that whenever

� .fig/ > 0 for any i 2 N, condition (14.11) is fulfilled so that the utility functions
can be constructed with F being equal to the Choquet integral w.r.t. capacities
satisfying previous condition.
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14.3.3.3 Construction of Utility Functions Without
any Commensurability Assumption

The approach described in the previous section assumes that the DM provides on
each attribute the two elements 1li and Oi. When this is not possible, an alternative
method is proposed in [73] without any assumption about commensurability among
criteria.

The main idea of Labreuche [73] is now summarized. Commensurateness
between the criteria is required for the Choquet integral since this aggregation
function is based on a ranking of the values of the criteria. Yet, the Choquet integral
is a piecewise weighted sum function, in which the weights of the criteria are the
same whenever the criteria are ranked in the same order. Considering two criteria
i and k, the weight of criterion i depends on the relative values of criteria i and k.
This means that, if the value of criterion k varies and the other criteria are fixed, then
one may observe that the weight of criterion i suddenly changes when the value of
criterion k is equal to that of criterion i (see also Sect. 14.3.4.3 and Fig. 14.1). From
this remark, it is possible to construct, from an element of attribute i, an element
of attribute k that is commensurate to the previous element. This construction does
not work if the weight of criterion i does not depend on criterion k. If this holds
for any value on the other criteria, one can show that this implies that the criteria
i and k are independent. Applying this construction to any pair i; k of criteria, one
obtains a partition of the set of criteria. In each set, the criteria interact one with
another, and it is thus possible to construct vectors of values on the attributes that
are commensurate. There is complete independence between the criteria of any two
sets in this partition. Hence one cannot ensure commensurability between two sets
in the partition. But this is not a problem since the Choquet integral is additive
between groups of criteria that are independent.

Within each partition, one can construct two vectors of commensurate elements
denoted by 1l and O respectively. Then the utility functions are obtained by applying
the approach of Sect. 14.3.3.2 on 1l and O.

14.3.4 Justification of the Use of the Choquet Integral

We now review the major characterizations of the Choquet integral.

14.3.4.1 Justification Through Information on the Binary Alternatives

We show that if we consider natural information that allow the modeling of
interaction between criteria on top of information regarding Xci, the Choquet
integral comes up as a natural aggregation function. The justification of the use
of the Choquet integral does not come from a pure axiomatic approach but rather
from some reasonable information asked to the DM.
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The information regarding the aggregation of the criteria can be limited to
alternatives whose scores on criteria are either 1li or Oi. This leads to defining the
following set:

Xef0;1g WD f.OA; 1l�A/ ; A � Ng ;

called the set of binary alternatives. The application of the MACBETH methodol-
ogy leads to the interval scale uXe

f0;1g
, which requires the satisfaction of conditions

(Ord[Xef0;1g]), (Inter[Xef0;1g]), and (C-Inter[Xef0;1g]). Applying (14.5) to this
scale, it becomes uniquely determined:

uXe
f0;1g

.1lN/ D 0; uXe
f0;1g

.ON/ D 1: (14.13)

The second condition in (14.13) says that an alternative which is completely
satisfactory on each criteria should be completely satisfactory, and similarly for the
first condition.

From uXe
f0;1g

, it is natural to define a capacity � by, for all A � N, �.A/ WD
uXe

f0;1g
.OA; 1l�A/. Consequently, we write u as follows:

u .x/ D F� .u1.x1/; : : : ; un.xn// ; (14.14)

where F� is the aggregation function that depends on � in a way that is not known
for the moment.

The ui’s correspond to interval scales, whose admissible transformations are the
positive affine transformations (see Sect. 14.2.1). Hence, one could change all ui’s
in ˛ui C ˇ, for any ˛ > 0 and ˇ 2 R, without any change in the model. On the
other hand, �.A/ corresponds in fact to the difference of the satisfaction degrees
between the alternatives .OA; 1l�A/ and 1lN . Applying this to A D ;, the value � .;/
shall always be equal to zero, whatever the interval scale attached to Xef0;1g may be.
Hence, � corresponds to a ratio scale, and can be replaced by ��, with � 2 RC,
since these are the admissible transformations for ratio scales. Hence one shall have
[77]:

(Meas-Inter) The preference relation � and the ratio u.x/�u.y/
u.z/�u.t/ for x; y; z; t 2 Xci

(for all i 2 N) and for x; y; z; t 2 Xef0;1g shall not be changed if all the ui’s are
changed into ˛ui C ˇ with ˛ > 0 and ˇ 2 R, and � is changed into �� with
� 2 RC.

From this property and idempotency of F� (i.e. F�.ˇ; : : : ; ˇ/ D ˇ for all ˇ 2 R)
[27], one can show the following two properties [77]

Properly Weighted (PW): If � satisfies conditions (FMb) and (FMc), then F� .1A; 0�A/ D
�.A/, 8A � N.

Stability for the admissible Positive Linear transformations (weak SPL): If � satisfies
conditions (FMb) and (FMc), then for all A � N, ˛ > 0, and ˇ 2 R,

F� ..˛ C ˇ/A; ˇ�A/ D ˛F� .1A; 0�A/C ˇ
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Since F� aggregates satisfaction scales, it is natural to assume that x 7! F�.x/ is
increasing.

Increasingness (In): If � satisfies conditions (FMa) and (FMb), then 8x; x0 2 R
n,

xi � x0

i 8i 2 N ) F�.x/ � F�.x
0/

Measurement considerations yield linearity of the mapping � 7! F�.x/ [77].

Linearity w.r.t. the Measure (LM): If � satisfies condition (FMb), then for all x 2 R
n and

�; ı 2 R,

F��Cı�0 .x/ D �F�.x/C ıF�0 .x/:

The following result can be shown.

Theorem 1 (Theorem 1 in [77]). F� satisfies (LM), (In), (PW) and (weak SPL) if
and only if F� � C� in R

n.

We have seen that the measurement conditions we have on ui and uXe
f0;1g

lead nat-
urally to axioms (LM), (In), (PW) and (weak SPL). There is only one aggregation
function that satisfies these axioms, namely the Choquet integral w.r.t. �.

Let us remark that Theorem 1 is a weak version of an axiomatic characterization
obtained by Marichal [85].

14.3.4.2 Axiomatization of the Choquet Integral as an Aggregation
Function

We already presented in the previous section an extension of the axiomatic
characterization by Marichal [85]. The first axiomatization of the Choquet integral is
due to Schmeidler [111]. An aggregation function F W Rn ! R is a Choquet integral
iff F.1; : : : ; 1/ D 1, F is monotone, and F satisfies to comonotone additivity (see
Sect. 14.3.2). Two other properties can also be used. F is said to be horizontally
min-additive (originally called horizontally additive) [5] if for all t 2 R and all
c 2 R

F.t/ D F.t ^ c/C F.t � .t ^ c//:

F is said to be horizontally max-additive [13] if for all t 2 R and all c 2 R

F.t/ D F.t _ c/C F.t � .t _ c//:

These two properties are particular cases of the comonotone additivity as the two
options t ^ c and t � .t ^ c/ (resp. t _ c and t � .t _ c/), which sum up to x,
are comonotone. The three previous properties are shown to be equivalent [13].
Hence, in the axiomatic characterization by Schmeidler, comonotone additivity can
be replaced by horizontally min-additivity or horizontally max-additivity.
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14.3.4.3 Axiomatizations of the Choquet Integral with Utility Functions

There are very few axiomatization of the Choquet integral with the utility functions.
The first one is done in the context of Decision Under Uncertainty, i.e. when u1 D
� � � D un DW ' and X1 D � � � D Xn DW Y, by Couceiro and Marichal [14]. Without
loss of generality assume that Œ0; 1� � Y. According to [14], there exists �, ' and
A � N such that u.x/ D Cv.'.x1/; : : : ; '.xn// and u.1A; 0�A/ 6D u.0; : : : ; 0/ iff
u is comonotonically modular (i.e. u.x/ C u.x0/ D u.x ^ x0/ C u.x _ x0/ for all
x; x0 2 X that are comonotone) and u is weakly homogeneous (i.e. there exists a non-
decreasing function ' W Y ! R with '.0/ D 0 such that u.rA; 0�A/� u.0; : : : ; 0/ D
'.r/.u.1A; 0�A/� u.0; : : : ; 0// for all r 2 Y and all A � N).

An axiomatization of the overall utility function u described by both the utility
functions u1; : : : ; un and the Choquet integral (see (14.2)) is proposed in [75]
without any assumption on the commensurability between the criteria. Up to date,
this is the only axiomatization of the Choquet integral in the context of MCDA. We
assume that u is known on X. In this chapter, we only describe the main axiom. The
example presented in Sect. 14.3.1 to motivate the interest of the Choquet integral
in MCDA, is based on the idea that the relative weight between two criteria is
conditional on a third one being good or bad (see also Sect. 14.4.1). The importance
of criterion i at an alternative x 2 X is proportional to the partial derivative @u

@xi
.x/.

Translating comonotone additivity in terms of importance, the importance of a
criterion depends on the relative ordering of the criteria, but not on the precise values
on the criteria. Consider the importance of criterion i. Let us fix xi. If we vary the
value of an attribute k 6D i, the weight of criterion i will take only two values (see
Fig. 14.1): (1) when attribute k is ranked below attribute i, and (2) when the opposite
holds.

Commensurateness Through Interaction (CTI): Let i; k 2 N with i 6D k. We have the
alternative:

(i) Either for all xi 2 Xi, there exists x?k 2 Xk and X�i;k � X�i;k non empty, such that

for all x�i;k 2 X�i;k, the function xk 7! @U.x/
@xi

is not constant. More precisely, for all
x�i;k 2 X�i;k, there exists c0; c1 2 R with c0 6D c1 such that

8xk < x�

k

@U

@xi
.xi; xk; x�i;k/ D c0 (14.15)

Fig. 14.1 The two values
that xk 7! @U

@xi
.x/ can take

∂U
∂xi

(x)

xk

x∗
k

c0

c1
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8xk > x�

k

@U

@xi
.xi; xk; x�i;k/ D c1 (14.16)

Moreover, for all x�i;k 2 X�i;k n X�i;k, the function xk 7! @U.x/
@xi

is constant.

(ii) Or for all xi 2 Xi and all x�i;k 2 X�i;k, the function xk 7! @U.x/
@xi

is constant.

In this axiom, the element x�
k satisfies uk.x�

k / D ui.xi/ and is thus commensurate
to xi. This holds only in condition (i). It is shown that this holds only when there is
some interaction between criteria i and k [75].

14.3.5 Shapley Value and Interaction Index

By construction, the capacity � expresses the score of binary alternatives. Since
there are 2n such alternatives, it may be difficult to analyse or explain the behaviour
of the decision maker through the values taken by �.

A first question of interest is: “What is the importance of a given criterion for the
decision?”. We may say that a criterion i is important if whenever added to some
coalition A of criteria, the score of .OA[i; 1l�.A[i// is significantly larger than the
score of .OA; 1l�A/. Hence, an importance index should compute an average value
�i of the quantity �.A [ i/ � �.A/ for all A � N n i. A second requirement is that
the sum of importance indices for all criteria should be a constant, say 1. Lastly,
the importance index should not depend on the numbering of the criteria. Strangely
enough, these three requirements plus a linearity assumption, which imposes that
the average �i is a weighted arithmetic mean, suffices to determine uniquely the
importance index, known as the Shapley importance index [112]

��.i/ WD
X

K�Nni

.n� k � 1/ŠkŠ
nŠ

�
�.K [ i/� �.K/� (14.17)

with k WD jKj. We omit the superscript if no ambiguity occurs. The Shapley value
is the vector .�.1/; : : : ; �.n//. As said above, we have

Pn
iD1 �.i/ D �.N/ D 1.

Another fundamental property is that �.i/ D �.fig/ if � is additive.
We have shown by an example in Sect. 14.3.1 that interaction may occur among

criteria, and that the Choquet integral was able to deal with situations where
interaction occurs. We define this notion more precisely. Let us consider for
simplicity 2 criteria and the following alternatives (see Fig. 14.2):

 x D .1l1; 1l2/
 y D .O1; 1l2/
 z D .1l1;O2/

 t D .O1;O2/
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Crit.1

Crit.2

1l1 O1

1l2

O2

x

z

a b c

y

t

Crit.1

Crit.2

1l1 O1

1l2

O2

x

z

y

t

Crit.1

Crit.2

1l1 O1

1l2

O2

x

z

y

t

Fig. 14.2 Different cases of interaction: complementary criteria (a), substitutive criteria (b),
independent criteria (c)

Clearly, t is more attractive than x, but preferences over other pairs may depend
on the decision maker. Due to monotonicity (FMa), we can range from the two
extremal following situations (recall that �.f1; 2g/ D 1 and �.;/ D 0):

extremal situation 1 (lower bound): we put �.f1g/ D �.f2g/ D 0, which is
equivalent to the preferences x � y � z (Fig. 14.2a) (strictly speaking, �.fig/
cannot attain the value 0: see Sect. 14.3.3). This means that for the DM, both
criteria have to be satisfactory in order to get a satisfactory alternative, the
satisfaction of only one criterion being useless. We say that the criteria are
complementary.

extremal situation 2 (upper bound): we put �.f1g/ D �.f2g/ D 1, which is
equivalent to the preferences y � z � t (Fig. 14.2b). This means that for
the DM, the satisfaction of one of the two criteria is sufficient to have a
satisfactory alternative, satisfying both being useless. We say that the criteria
are substitutive.

Clearly, in these two situations, the criteria are not independent, in the sense that
the satisfaction of one of them acts on the usefulness of the other in order to get a
satisfactory object (necessary in the first case, useless in the second). We say that
there is some interaction between the criteria.

A situation without interaction is such that the satisfaction of each criterion
brings its own contribution to the overall satisfaction, hence:

�.f1; 2g/ D �.f1g/C �.f2g/ (14.18)

(additivity) (see Fig. 14.2c). In the first situation, �.f1; 2g/ > �.f1g/ C �.f2g/,
while the reverse inequality holds in the second situation. This suggests that the
interaction I12 between criteria 1 and 2 should be defined as:

I�12 WD �.f1; 2g/� �.f1g/� �.f2g/C �.;/: (14.19)
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This is simply the difference between binary alternatives on the diagonal (where
there is strict dominance) and on the anti-diagonal (where no dominance relation
exists). The interaction is positive when criteria are complementary, while it is
negative when they are substitutive. This is consistent with intuition considering
that when criteria are complementary, they have no value by themselves, but put
together they become important for the DM.

In the case of more than two criteria, the definition of interaction follows the
same idea as with the Shapley index, in the sense that all coalitions of N have to be
taken into account. The following definition has been first proposed by Murofushi
and Soneda [102], for a pair of criteria i; j:

I�ij WD
X

K�Nnfi;jg

.n � k � 2/ŠkŠ
.n � 1/Š

�
�.K [ fi; jg/� �.K [ fig/�

�.K [ fjg/C �.K/�; (14.20)

The definition of this index has been extended to any coalition ; ¤ A � N of
criteria by Grabisch [33]:

I�.A/ WD
X

K�NnA

.n � k � jAj/ŠkŠ
.n � jAj C 1/Š

X

L�A

.�1/jAj�jLj�.K [ L/;8A � N;A ¤ ;:

(14.21)
We have Iij D I.fi; jg/. When A D fig, I.fig/ coincides with the Shapley index �.i/.
It is easy to see that when the fuzzy measure is additive, we have I.A/ D 0 for
all A such that jAj > 1. Also Iij > 0 (resp. < 0;D 0) for complementary (resp.
substitutive, non-interactive) criteria.

The definition can be extended to A D ;, just putting
P

L�A.�1/jAj�jLj
�.K [ L/ D �.K/. Hence I defines a set function I W P.N/ �! R. Properties of
this set function has been studied and related to the Möbius transform [17, 50].
In particular, it is possible to recover � if I is given for each A � N, which
means that the interaction index can be viewed as a particular transform of a
fuzzy measure, which is invertible, as the Möbius transform. Also, I has been
characterized axiomatically by Grabisch and Roubens [48], in a way similar to the
Shapley index.

Another important property is that the interaction index can be obtained recur-
sively from the Shapley importance index, by considering sub-problems with less
criteria [48]. For I�ij , the relation writes:

I�ij D ��
Œij�
.Œij�/ � ��Nni.j/� ��Nnj.i/; (14.22)
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where Œij� stands for an artificial criterion (i and j taken together), �Œij� W P..N n
fi; jg/ [ fŒij�g/ �! Œ0; 1�, with �Œij�.A/ WD �.A [ fi; jg/ if A 3 Œij�, and �.A/ else,
and �Nni is the restriction of � to N n i.

14.3.6 k-Additive Measures

14.3.6.1 Definition of the k-Additive Measures

Although we have shown that our construction is able to model in a clear way
interaction, this has to be paid by an exponential complexity, since the number of
binary alternatives is 2n. There exists a way to cope with complexity by defining
sub-families of fuzzy measures, which require less than 2n coefficients to be defined.
The first such family which has been defined is the one of decomposable measures
[20, 125], which includes the well-known class of �-measures proposed by Sugeno
[118]. These fuzzy measures are defined by a kind of density function, and thus
need only n � 1 coefficients. However, they have a very limited ability to represent
interaction since e.g. Iij has the same sign for all i; j.

A second family is given by the concept of k-additive measure, which is detailed
in this section.

Definition 1 ([33]). Let k 2 f1; : : : ; n � 1g. A fuzzy measure � is said to be k-
additive if I.A/ D 0 whenever jAj > k, and there exists some A � N with jAj D k
such that I.A/ ¤ 0.

The set of k-additive capacities is denoted by Mk. From the properties of interaction
cited in Sect. 14.3.5, a 1-additive measure is simply an additive measure, hence
the name. Also, since � is completely determined by the values of I on P.N/, a
k-additive measure is determined by 1 C n C �n

2

� C : : : C �n
k

�
parameters, among

which 2 are not free.
The 2-additive measure, which needs only n.nC1/

2
� 1 parameters, permits to

model interaction between pair of criteria, which is in general sufficient in practice
(it is in fact fairly difficult to have a clear understanding of interaction among more
than two criteria).

The Choquet integral can be expressed using I instead of � in a very instructive
way when the measure is 2-additive [32]:

C�.a1; : : : ; an/ D
X

Iij>0

.ai ^ aj/Iij C
X

Iij<0

.ai _ aj/jIijj

C
nX

iD1
ai.�i � 1

2

X

j¤i

jIijj/; 8a 2 Œ0; 1�n; (14.23)
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for all .a1; : : : ; an/ 2 R
nC, with the property that �i � 1

2

P
j¤i jIijj 	 0 for all i. It can

be seen that the Choquet integral for 2-additive measures is the sum of a conjunctive,
a disjunctive and an additive part, corresponding respectively to positive interaction
indices, negative interaction indices, and the Shapley value. Equation (14.23) shows
clearly the disjunctive and conjunctive effects of negative and positive interaction
between criteria, which has been explained in Sect. 14.3.5. It is important to notice
that, due to the normalization

Pn
iD1 �i D 1, (14.23) is a convex combination

of disjunctions, conjunctions, and a linear part. Hence, as illustrated in [35] in a
graphical way, the Choquet integral is the convex closure of all conjunctions and all
disjunctions of pair of criteria, and of all dictators (single criteria).

Before ending this section, we mention a third family of fuzzy measures intro-
duced by Miranda and Grabisch, the p-symmetric fuzzy measures [96]. The idea is to
generalize symmetric fuzzy measures (see Sect. 14.3.2), by considering a partition
fA1; : : : ;Apg of N into subsets of indifference: taking elements in A1; : : : ;Ap, the
value of � does not depend on the particular elements which are chosen in each Ai,
but only on their number. Hence a symmetric measure corresponds to a 1-symmetric
measure (i.e. the partition is N itself). The number of parameters needed to define a
p-symmetric measure is

Qp
iD1.jAij C 1/� 2.

14.3.6.2 Axiomatic Characterization of the Choquet Integral w.r.t.
2-Additive Measures

For a 2-additive capacity, one can construct the capacity from a subset of Xef0;1g (see
Sect. 14.3.4.1), restricted to the binary alternatives that take the satisfactory level O
on at most two criteria:

XeTwo
f0;1g WD fa;g [ fai ; i 2 Ng [ fai;j ; fi; jg � Ng;

where a; WD .1lN/, ai D .Oi; 1l�i/ and ai;j WD .Ofi;jg; 1l�fi;jg/. The DM is asked to
provide strict preference B and indifference � over XeTwo

f0;1g. Moreover, we define a

natural non-strict ordering�M between elements of XeTwo
f0;1g due to the monotonicity

conditions. For .x; y/ 2 f.ai; a0/; i 2 Ng[f.aij; ai/; i; j 2 N; i ¤ jg, x �M y if neither
x B y nor x � y. We write x � y if there is a strict path of the union of B, � and
�M (i.e. the strict path shall use B at least once) between x and y. Moreover, we
denote by � the non-strict cycles of the union of B, � and �M. Relation � (resp.
�) is indifference (resp. strict preference) that can be deduced from B, � and �M .

Theorem 2 ([93]). The preferential information fB;�g is representable by a 2-
additive Choquet integral on XeTwo

f0;1g if and only if the following conditions are
satisfied:

1 the union of B, � and �M contains no strict cycle;
2 Monotonicity of Preferential Information (MOPI). For all fi; j; kg � N, we have

the following property
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ai;j � api;j

ai;k � api;k

pi;j ¤ pi;k

9
=

;
) Œnot.al � a;/; l 2 fi; j; kg n fpi;j; pi;kg�

where pi;j D i or j, and pi;k D i or k.

Roughly speaking, the MOPI property says that when the two indifferences in
the left hand side hold, the criterion not appearing alone in the left hand side (i.e.
criterion fi; j; kg n fpi;j; pi;kg) does not count, and thus shall not be strictly preferred
to zero.

14.3.7 Final Recommendation and Identification of Capacities

We assume here that the utility functions ui are known (See Sect. 14.3.4). So, we
focus in this section on the determination of the capacity.

The DM is usually not interested in all options in X. We denote by Y � X the
set of alternatives of interest for the DM. The goal of decision aid is to propose a
recommendation regarding the options in Y.

14.3.7.1 Preferential Information

In order to give a recommendation to the DM, some preferential information is
asked to the DM. Many types of preferential information (PI) are considered in the
literature [1, 55, 65, 71]. In practice, it turns out that the most meaningful PI for the
DM is composed of comparisons of options. For the sake of simplicity, we assume
thus that the PI is composed of a partial order D over RN . For a; b 2 R

N , relation
a D b means that the DM finds a at least as good as b. We denote by Mk.D/ the
set of (k-additive) fuzzy measures in Mk that satisfy the PI D:

Mk.D/ D
n
� 2Mk ;8a; b 2 R

N a D b ) C�.a/ 	 C�.b/
o
:

The set Mk.D/ is a polytope. It may be the case that Mk.D/ D ;, which means
that the PI cannot be represented by a Choquet integral. We say in this case that the
PI is inconsistent. An algorithm based on mixed-integer linear programming can be
used to identify the elements of the PI that can be modified or removed in order to
restore consistency, together with an associated explanation [83].
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14.3.7.2 Identification of a Capacity, and Associated Recommendation

Most of the elicitation methods based on the Choquet integral consist in selecting
one particular capacity in Mk.D/ (fulfilling the PI) that maximizes some functional,
and then make the recommendations to the DM regarding the comparison of the
options in Y or the assessment of the options in Y.

The capacity is chosen as a (the) solution to an optimization problem

max
�2Mk.D/

GD.�/

where GD is a function depending on D to be maximized [55]. Functional GD can
be the entropy [65], the opposite of the variance [65] or a linearized entropy [71].

As remarked by Marichal and Roubens in [88], when the DM states that a D b,
he or she generally means that a is significantly preferred to b. If the overall utilities
of the two alternatives a and b are almost the same, it will probably not represent
the DM’s intention. Hence, among all elements of Mk.D/, one should prefer the
ones with the highest margin. This leaded Marichal and Roubens to introducing a
positive coefficient 	 in the right-hand side of constraints, and to maximize 	:

Maximize 	
under the constraints � 2 Mk, 	 � 0, and a D b ) C�.a/ � C�.b/C ".

This is a linear programming problem. It is a simplified version of a linear method
proposed by Marichal and Roubens [88].

When one is interested in a 2-additive capacity, there exists also an extension of
the MACBETH approach [90–92]. Following and extending Sect. 14.3.6.2, the idea
is to ask the DM to compare the elements of XeTwo

f0;1g, and also to provide information

regarding intensities of preferences between pairs of elements of XeTwo
f0;1g. Compared

to the traditional MACBETH approach, the difficulty is to include constraints related
to the specificity of the 2-additive Choquet integral. An original interactive approach
is to propose recommendations when the PI is inconsistent [92].

Other learning methods have been tried, principally using quadratic program-
ming (see e.g. Grabisch [31, 49]), heuristics (see e.g. Ishii and Sugeno [62], Mori
and Murofushi [99] and Grabisch [30]), genetic algorithms (see in particular Wang
[123], Kwon and Sugeno [69], Combarro and Miranda [12], Grabisch [37], Verkeyn
et al. [121]), self-organizing feature maps (see Soria-Frisch [117]), and particle
swarm optimization (see Wang [124]). An overview on the subject can also be found
in reference [119].

14.3.7.3 Robust Preference Relations

The major difficulty the facilitator faces is that there usually does not exist a single
capacity that fulfills his PI, i.e. Mk.D/ is in practice far from being reduced to a
point. The approaches presented in the previous section are not quite satisfactory for
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the DM since he does not usually understand what maximizing the functional really
means. The use of a maximization problem introduces some additional information
that does not come from the DM.

The facilitator shall rather stick strictly to what the DM says and add no further
information. One then looks for a robust way to recommend some comparisons
among the options from the preferential information [110]. The concept of necessity
preference relation has been recently introduced for robust quantitative multi-
criteria decision models [59, 60]. It has been applied to the Choquet integral in
[1]. An option x 2 X is necessarily preferred to another option y 2 X (denoted by
x %N y) according to the necessity preference relation, if the first option is preferred
to the second one according to all models that fulfill the PI provided by the DM.
More precisely, x %N y iff [1]:

8� 2Mk.D/ C�.u1.x1/; : : : ; un.xn// 	 C�.u1.y1/; : : : ; un.yn//: (14.24)

This necessity preference relation is usually incomplete, unless the model is
completely specified from the preferential information of the DM [72]. Note
that (14.24) can be easily extended to the case where the utility functions are not
precisely set [84].

14.3.7.4 Explanation of the Recommendation

Providing convincing explanations to accompany recommendations is a key issue
in decision-aiding. Indeed, explaining the recommended choice(s) to the decision-
maker is crucial to improve the acceptance of the recommendation [10, 64, 94], but
also sometimes to allow the decision-maker to justify in turn the decision against
other stakeholders. In the context of decision models such as the Choquet integral,
the problem is made very difficult since the quantitative models are not designed to
be easily explainable.

There are a few works which aim at generating an explanation of the outcome
of a quantitative multi-criteria decision model [10, 64, 70, 74, 98]. Note that two
of these references consider a Choquet integral and the other ones focus on the
weighted sum. The three references [10, 64, 98] use the same idea. It consists in
selecting the k (where k is a parameter) criteria that have the largest contribution
to the overall utility. This approach suffers some limitations as there is no formal
justification of the arguments that are selected, and the textual explanation does not
mention the importance of criteria.

The idea of references [70, 74] is that, due to the complexity of explaining a
preference model based on utility theory, several explanation reasonings (argumen-
tation schema) are necessary to cover all cases—ranging from situations where the
prescription is trivial to situations where the prescription is much tighter. A subset
of criteria can be selected for the explanation if these criteria are decisive in some
sense depending on the explanation reasoning.
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14.4 Bipolar Scales

We address now the construction of the model in the case of bipolar scales. As
explained in Sect. 14.2, we have on each Xi one neutral level 1li and another absolute
level Oi given by the DM.

14.4.1 A Motivating Example

Let us go a little deeper in the example described in Sect. 14.3.1. We have seen
in Sect. 14.3.1 that for students good in mathematics, the director prefers someone
good at languages to one good at statistics. In other words, when the mark with
respect to mathematics is good, the director thinks that languages is more important
than statistics. This leads to the following rule

(R1): For a student good at mathematics (M), L is more important than S.

The comparison between students A and B in Sect. 14.3.1 are governed by this rule.
Let us consider now another set of students. Consider the following students E and F

Mathematics (M) Statistics (S) Languages (L)

Student E 14 16 7

Student F 14 15 8

According to rule (R1), the director prefers student F to E

E � F (14.25)

As justified in Sect. 14.3.1, when the score w.r.t. mathematics is bad, a student
good in statistics is now preferred to one good in languages. More precisely, we
have the following statement

(R2): For a student bad in mathematics M, S is more important than L.

Consider the following two students

Mathematics (M) Statistics (S) Languages (L)

Student G 9 16 7

Student H 9 15 8
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Following rule (R2), G is preferred to H even though G is very bad in languages.

G 
 H (14.26)

Relations (14.25) and (14.26) look similar to (14.6) and (14.7). However, we
will see that they exhibit a weakness of the Choquet integral. Let us indeed try to
model (14.25) and (14.26) with the help of the Choquet integral. We have C�.E/ D
7C 7� .fM;Sg/C 2� .fSg/ and C�.F/ D 8C 6� .fM;Sg/C � .fSg/. This shows
that (14.25) is equivalent to

� .fM;Sg/C � .fSg/ < 1:

Similarly, relation (14.26) is equivalent to � .fM;Sg/ C � .fSg/ > 1, which
contradicts previous inequality. Hence, the Choquet integral cannot model (14.25)
and (14.26).

It is no surprise that the Choquet integral cannot model both (R1) and (R2).
This is due to the fact that the Choquet integral satisfies comonotonic additivity (see
Sect. 14.3.2). In our example, the marks of the four students E, F, G and H are
ranked in the same way: languages is the worst score, mathematics is the second
best score, and statistics is the best score. Those four students are comonotonic. The
Choquet integral is able to model rules of the following type:

(R1’): If M is the best satisfied criteria, L is more important than S.

(R2’): If M is the worst satisfied criteria, S is more important than L.

On the other hand, rules (R1) and (R2) make a reference to absolute values
(good/bad in mathematics). The Choquet integral does not allow to model this
type of property. The Choquet integral fails to represent the expertise that makes
an explicit reference to an absolute value. This happens quite often in applications.

Let us study the meaning of the reference point used in rules (R1) and (R2). In
our example, the satisfaction level is either rather good (good in mathematics) or
rather bad (bad in mathematics). This makes an implicit reference to a neutral level
that is neither good nor bad. This suggests to construct criteria on ratio scales. In
such scales, the zero element is the neutral element. It has an absolute meaning and
cannot be shifted. Values above this level are attractive (good) whereas values below
the zero level are repulsive (bad).

14.4.2 The Symmetric Choquet Integral and Cumulative
Prospect Theory

14.4.2.1 Definitions

Let f W N �! R be a real-valued function, and let us denote by f C.i/ WD f .i/ _ 0,
8i 2 N, and f � WD .�f /C the positive and negative parts of f .
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The symmetric Choquet integral [15] (also called the Šipoš integral [115]) of f
w.r.t. � is defined by:

LC�.f / WD C�.f C/� C�.f �/:

This differs from the usual definition of Choquet integral for real-valued functions,
sometimes called asymmetric Choquet integral [15], which is

C�.f / WD C�.f C/ � C��.f �/

where �� is the conjugate of � (see Sect. 14.3.2). The Cumulative Prospect Theory
model [120] generalizes these definitions, by considering different capacities for the
positive and negative parts of the integrand.

CPT�1;�2 .f / WD C�1.f C/ � C�2.f �/:

14.4.2.2 Application to the Example

Let us go back to the example of Sect. 14.4.1. In this example, value 10 for the marks
seems to be the appropriate neutral value. Hence, in order to transform the regular
marks given in the interval Œ0; 20� to a ratio scale, it is enough to subtract 10 to each
mark yielding the mark 10 to the zero level. This gives:

Mathematics (M) Statistics (S) Languages (L)

Student E0 4 6 �3
Student F0 4 5 �2
Student G0 �1 6 �3
Student H0 �1 5 �2

Modeling our example with the Šipoš integral, a straightforward calculation
shows that (14.25) is equivalent to � .fSg/ < � .fLg/ whereas relation (14.26) is
equivalent to � .fSg/ > � .fLg/, which contradicts previous inequality. Hence, the
Šipoš integral is not able to model both (14.25) and (14.26).

Trying now the representation of our example with the CPT model, it is easy
to see that (14.25) is equivalent to �1 .fSg/ < �2 .fLg/, and relation (14.26) is
equivalent to �1 .fSg/ > �2 .fLg/. Therefore, the CPT model too fails to model
both (14.25) and (14.26).
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14.4.3 Bi-capacities and the Corresponding Integral

The Choquet, Šipoš and CPT models are limited by the fact that they are constructed
on the notion of capacity. The idea is thus to generalize the notion of capacity.
Such generalizations have first been introduced in the context of game theory. The
concept of ternary voting games has recently been defined by D. Felsenthal and M.
Machover as a generalization of binary voting games [26]. Binary voting games
model the result of a vote when some voters are in favor of the bill and the other
voters are against [113]. The main limitation of such games is that they cannot
represent decision rules in which abstention is an alternative option to the usual yes
and no opinions. This leaded D. Felsenthal and M. Machover to introduce ternary
voting games [26]. These voting games can be represented by a function v with two
arguments, one for the yes voters and the other one for the no voters. This concept
of ternary voting game has been generalized by Bilbao et al. in [6], yielding the
definition of bi-cooperative game. Let

Q.N/ D f.A;B/ 2 P.N/ � P.N/ j A \ B D ;g :

A bi-cooperative game is a function � W Q.N/ ! R satisfying �.;;;/ D 0. In the
context of game theory, the first argument A in �.A;B/ is called the defender part
(positive contributors), and the second argument B in �.A;B/ is called the defeater
part (negative contributors).

This generalization has recently been rediscovered independently by the authors
in the context of MCDA [44, 80]. A bi-capacity is a function � W Q.N/ ! R

satisfying

(BFMa) A � A0) �.A;B/ � �.A0;B/,
(BFMb) B � B0) �.A;B/ 	 �.A;B0/,
(BFMc) �.;;;/ D 0,
(BFMd) �.N;;/ D 1, �.;;N/ D �1
Conditions (BFMa) and (BFMb) together define monotonic bi-capacities. Bi-
capacities are special cases of bi-cooperative games. In MCDA, �.A;B/ is inter-
preted as the overall assessment of the ternary alternative

�
1A;�1B; 0�.A[B/

�
.

Thanks to that interpretation, the first argument A in �.A;B/ is called the positive
part, and the second argument B in �.A;B/ is called the negative part.

The conjugate or dual �� of a bi-capacity � can be defined by ��.S;T/ D
��.T; S/ for all .S;T/ 2 Q.N/ [76, 78]. In the context of Game Theory, it means that
the defenders and the defeaters are switched, and the abstentionists are untouched.
This definition of dual bi-capacity coincides with that proposed in [26] for ternary
voting games.

A bi-capacity � is of the CPT type if it can be written �.A;B/ D �1.A/� �2.B/,
for all .A;B/ 2 Q.N/, where �1; �2 are capacities. If �1 D �2, we say that the
bi-capacity is symmetric. If �1 and �2 are additive, then � is said to be additive.
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A similar concept has also been introduced by S. Greco et al. leading to the
concept of bipolar capacity [57]. A bipolar capacity is a function � W Q.N/ !
Œ0; 1� � Œ0; 1� with �.A;B/ DW ��C.A;B/; ��.A;B/

�
such that

 If A � A0 and B � B0 then �C.A;B/ 	 �C.A0;B0/ and ��.A;B/ � ��.A0;B0/.
 ��.A;;/ D 0, �C.;;A/ D 0 for any A � N.
 �.N;;/ D .1; 0/ and �.;;N/ D .0; 1/.
�C.A;B/ can be interpreted as the importance of coalition A of criteria in the
presence of B for the positive part. ��.A;B/ can be interpreted as the importance
of coalition B of criteria in the presence of A for the negative part.

The Choquet integral w.r.t. a bi-capacity � proposed in [44, 47] is now given. For
any a 2 R

n,

BC�.a/ WD C�NC
.jaj/

where �NC.C/ WD �
�
C \ NC;C \ N��, NC D fi 2 N j ai 	 0g, N� WD N n NC,

and jaj stands for .ja1j; : : : ; janj/. Note that �NC is a non-monotonic capacity.
The Choquet integral w.r.t. a bipolar capacity can also be defined [57]. For a 2

R
n, let � be a permutation on N such that

ˇ
ˇa�.1/

ˇ
ˇ � � � � � ˇˇa�.n/

ˇ
ˇ : (14.27)

Let

AC
i WD

˚
�.j/ ; j 2 fi; : : : ; ng such that a�.j/ 	 0

�

A�
i WD

˚
�.j/ ; j 2 fi; : : : ; ng such that a�.j/ < 0

�

and

CC.aI �/ DPi2N

	
aC
�.i/ � aC

�.i�1/


�C �AC

i ;A
�
i

�

C�.aI �/ DPi2N

	
a�
�.i/ � a�

�.i�1/


�� �AC

i ;A
�
i

�

where a�.0/ WD 0 and for a 2 R we set aC D max.a; 0/ and a� D .�a/C. Finally
the Choquet integral w.r.t. � is defined by

C.aI �/ WD CC.aI �/� C�.aI �/:

For a 2 R
n for which several permutations � satisfy (14.27), it is easy to see that the

previous expression depends on the choice of the permutation. This is not the case
of the usual Choquet integral or the Choquet integral w.r.t. a bi-capacity. Enforcing
that the results are the same for all permutations satisfying (14.27), we obtain the
following constraints on the bipolar capacity:

8.A;B/ 2 Q.N/ ; �C.A;B/� ��.;;B/ D �C.A;;/� ��.A;B/:
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It can be shown then that the bipolar capacity � reduces exactly to a bi-capacity �
defined by Grabisch and Labreuche [47]

�.A;B/ WD �C.A;B/� ��.;;B/:

One has indeed �C.A;B/ D �.A;B/ � �.;;B/ and ��.A;B/ D �.A;;/ � �.A;B/.
Moreover, it can be shown that the Choquet integral w.r.t. � is equal to BC� . As
a consequence, the concept of bipolar capacity reduces to bi-capacities when the
Choquet integral is used. For this reason, we will consider only bi-capacities from
now on. Note however that the concept of bipolar capacities has some interests in
itself for other domains than MCDA.

The concept of bi-capacities is now applied to the example of Sect. 14.4.2.2.
Let us try to model (14.25) and (14.26) with the extension of the Choquet integral

to bi-capacities. We have BC�.4; 6;�3/ D C�NC
.4; 6; 3/ D 3� .fM;S;Lg/ C

� .fM;Sg/ C 2� .fSg/ D 3� .fM;Sg ; fLg/ C � .fM;Sg ;;/ C 2� .fSg ;;/ and
BC�.4; 5;�2/ D 2� .fM;Sg ; fLg/ C 2� .fM;Sg ;;/ C � .fSg ;;/. Hence (14.25)
is equivalent to

� .fM;Sg ;;/ � � .fM;Sg ; fLg/ > � .fSg ;;/

Similarly, relation (14.26) is equivalent to

� .fSg ; fLg/ > 0:

There is no contradiction between these two inequalities. Therefore, BC� is able to
model the example. This aggregation operator models the expertise that makes an
explicit reference to an absolute value.

14.4.4 Representation of the Motivating Example

We would like to stress that bi-capacities cannot account for all decision behaviours
involving bipolar scales. To illustrate this, let us change the scores of E0 and F0 as
follows.

Mathematics (M) Statistics (S) Languages (L)

Student E00 2 6 �4
Student F00 2 5 �3

It is easy to check that maintaining E00 � F00 is equivalent to

� .fSg ; fLg/ < 0;
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a contradiction with G0 
 H0. The fact is that with E00;F00, the score on mathematics
is now too weak with respect to the score on languages. Hence E00 should be
preferred to F00 since the latter one is better in statistics. Hence the Choquet integral
w.r.t. a bi-capacity fails to represent (R1) and (R2) in general [81].

One may seek for a more general model than bi-capacity able to represent rules
(R1) and (R2). Such a model, that can be described by an aggregation function F W
R

n ! R, must be continuous and non-decreasing. It should also be piecewise linear
as a natural generalization of the Choquet integral. As a matter of fact, there does
not exist any aggregation function satisfying both the previous three conditions and
rules (R1) and (R2) [81]. To formalize Axioms (R1) and (R2), criteria Mathematics,
Languages and Statistics are denoted by i, jC and j� respectively. More precisely,
the following result holds.

Proposition 2 ([81]). Assume that F W Rn ! R is continuous, non-decreasing and
piecewise linear. Let ˆC � ff 2 R

n ; fi 	 0g, ˆ� � ff 2 R
n ; fi � 0g such

that F is linear in ˆC and in ˆ�. If there exists a nonempty open set B � R
2 and

f�fi;jC;j�g 2 R
n�3 such that

ˆC \ˆ� � f.0i; gjC ; gj� ; f�fi;jC;j�g/ ; 8.gjC ; gj�/ 2 Bg

then rules (R1) and (R2) cannot be represented by F in the two domainsˆC and in
ˆ� (i.e., criterion jC is more important than criterion j� in ˆC, and criterion jC is
less important than criterion j� in ˆ�).

This proposition proves that if, for two neighbor domainsˆC and ˆ� such that the
value of criterion i can be arbitrarily small independently of criteria jC and j� in
both ˆC and ˆ�, then rules (R1) and (R2) cannot be satisfied in both ˆC and ˆ�.
This explains why bi-capacities cannot represent both E00 � F00 and G0 
 H0. In
short, rules (R1) and (R2) cannot be satisfied if criterion i is the one closest to the
neutral level among criteria i; jC; j�.

One cannot gain a lot by extending bi-capacities to more complex models.
Actually, bi-capacities enable to represent the following rules.

(R1”): If the value w.r.t. criterion i is attractive (> 0), and i is not the closest to the neutral
level among criteria i; jC; j�, then criterion jC is more important than criterion j�.

(R2”): If the value w.r.t. criterion i is repulsive (< 0), and i is not the closest to the neutral
level among criteria i; jC; j�, then criterion jC is less important than criterion j�.

One can interpret this restriction in the following way. When criterion i has the
closest value to the neutral level among criteria i, jC and j�, the distinction between
i being attractive or repulsive is not so meaningful to the DM and shall be removed
from rules (R1) and (R2).
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14.4.5 General Method for Building Utility Functions

Let us now describe a general method to construct the utility functions ui without the
prior knowledge of F. It is possible to extend the method described in Sect. 14.3.3 in
a straightforward way. Due to the existence of a neutral level, utility functions can
now take positive and negative values. Hence assumption (14.11) is replaced by the
following one:

9˛i 2 R
�C ; F .ai; 0�i/ D ˛i ai for all ai 2 R: (14.28)

Then the utility function can be derived from (14.12). It has been shown in [54] that
the Šipoš integral satisfies (14.28). However, this condition is too restrictive since
the usual Choquet does not fulfill it [54]. As a consequence, we are looking for a
more general method.

Since the neutral level has a central position, the idea is to process separately
elements which are “above” the neutral level (attractive part), and “below” it
(repulsive part). Doing so, we may avoid difficulties due to some asymmetry
between attractive and repulsive parts [44, 80]. The positive part of the utility
function of Xi will be based on the two absolute levels 1li and Oi, while the negative
part is based on the absolute levels 1li and �Oi, as defined in Sect. 14.2.3.

Generalizing (14.5), we set

ui.1li/ D 0 ; ui.Oi/ D 1 and ui.�Oi/ D �1: (14.29)

The two values 1 and�1 are opposite to express the symmetry between Oi and�Oi.
The construction of the positive and negative parts of the utility function ui is

performed through the MACBETH methodology from the following two sets XcCi
and Xc�i :

Xci̇ D
˚
.xi; 1l�i/ ; xi 2 Xi̇

�
;

where XC
i D fxi 2 Xi ; .xi; 1l�i/ � 1lNg and X�

i D fxi 2 Xi ; .xi; 1l�i/ � 1lNg.
Interval scales u

XcC

i
; uXc�

i
are obtained for i D 1; : : : ; n, provided conditions

(Ord[XcCi ]), (Inter[XcCi ]), (C-Inter[XcCi ]), (Ord[Xc�i ]), (Inter[Xc�i ]), and
(C-Inter[Xc�i ]) are satisfied for i D 1; : : : ; n. Now the scales are uniquely
determined if one applies (14.5) to all positive scales, and the symmetric condition

uXc�

i
.1lN/ D 0 and uXc�

i
.�Oi; 1l�i/ D �1: (14.30)

to all negative scales. Like for interval scales, one has for xi 2 Xi̇

u
Xc˙

i
.xi; 1l�i/ D F .ui.xi/; 0�i/ :
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The assumption on the family F becomes

9˛i̇ 2 R
�C ; F .ai; 0�i/ D ˛i̇ ai for all ai 2 R˙: (14.31)

Hence by (14.29), one has for any xi 2 Xi̇ :

ui.xi/ D F .ui.xi/; 0�i/

F .˙1i; 0�i/
D

u
Xc˙

i
.xi; 1l�i/

u
Xc˙

i
.˙Oi; 1l�i/

: (14.32)

Hence, under assumption (14.31), the positive and negative parts of the utility
functions can be constructed in two separate steps by (14.32) from cardinal
information related to Xci̇ .

It can be shown that the Choquet integral, Šipoš integral, the CPT model and the
generalized Choquet integral fulfills (14.31).

14.4.6 Justification of the Use of the Generalized Choquet
Integral

14.4.6.1 Required Information

For any i 2 N, the utility function ui is built from u
XcC

i
and uXc�

i
like in Sect. 14.4.5.

Inter-criteria information is a generalization of the set Xef0;1g. The three reference
levels �Oi, 1li and Oi are now used to build the set of ternary alternatives:

Xef�1;0;1g WD
˚�
OA;�OB; 1l�.A[B/

�
; .A;B/ 2 Q.N/

�
:

Let uXe
f�1;0;1g

be a numerical representation of Xef�1;0;1g. In the previous set, three
special points can be exhibited: ON , 1lN and �ON . Thanks to commensurability
between the Oi levels, between the 1li levels and between the �Oi levels, it is natural
to set

uXe
f�1;0;1g

.�ON/ D �1 ; uXe
f�1;0;1g

.1lN/ D 0 and uXe
f�1;0;1g

.ON/ D 1: (14.33)

Relation uXe
f�1;0;1g

.ON/ D 1 means that the alternative which is satisfactory on all
attributes is also satisfactory. Relation uXe

f�1;0;1g
.1lN/ D 0 means that the alternative

which is neutral on all attributes is also neutral. Finally, relation uXe
f�1;0;1g

.�ON/ D
�1 means that the alternative which is unsatisfactory on all attributes is also
unsatisfactory. Since there are only two degrees of freedom in a scale of difference,
one of these three points must be removed for the practical construction of the scale.
We decide to remove the act �Oi. Let Xe�f�1;0;1g WD Xef�1;0;1g n f�ONg.

The numerical representation uXe�

f�1;0;1g
on Xe�f�1;0;1g is ensured by

(Ord[Xe�f�1;0;1g]), (Inter[Xe�f�1;0;1g]), (C-Inter[Xe�f�1;0;1g]) and the last two
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conditions in (14.33). uXe�

f�1;0;1g
is uniquely determined by previous requirements.

In summary

uXe
f�1;0;1g

�
OA;�OB; 1l�.A[B/

�

D
(

uXe�

f�1;0;1g

�
OA;�OB; 1l�.A[B/

�
if .A;B/ 6D .;;N/

�1 otherwise

14.4.6.2 Measurement Conditions

uXe
f�1;0;1g

can be described by a bi-capacity � defined by: �.A;B/ WD
uXe

f0;1g
.OA;�OB; 1l�.A[B//. Consequently, it is natural to write u as follows:

u .x/ D F� .u1.x1/; : : : ; un.xn// ; (14.34)

where F� is the aggregation function.
We introduce the following axioms.

(Bi-LM): For any bi-capacities �; �0 on Q.N/ satisfying (BFMc), for all x 2 R
n and

�; ı 2 R,

F��Cı�0 .x/ D �F�.x/C ıF�0 .x/

(Bi-In): For any bi-capacity � on Q.N/ satisfying (BFMa), (BFMb) and (BFMc), 8x;
x0 2 R

n,

xi � x0

i ; 8i 2 N ) F�.x/ � F� .x
0/

(Bi-PW): For any bi-capacity � satisfying (BFMa), (BFMb), (BFMc), F� .1A;�1A0 ; 0�A[A0 / D
�.A;A0/, 8.A;A0/ 2 Q.N/.
(Bi-weak SPLC): For any bi-capacity v on Q.N/ satisfying (BFMa), (BFMb), (BFMc),
for all A;C � N, ˛ > 0, and ˇ � 0,

F� ..˛ C ˇ/A; ˇ�A/ D ˛Fv .1A; 0�A/C ˇv.N;;/:

These axioms are basically deduced from the measurement conditions on u
Xc˙

i

and �. This is done exactly as in Sect. 14.3.4.1 [44, 80].
For A � N, consider the following application …A W Rn ! R

n defined by
.…A.x//i D xi if i 2 A and �xi otherwise. By (Bi-PW), �.B;B0/ corresponds to the
point .1B;�1B0 ; 0.B[B0//. Define …A ı �.B;B0/ as the term of the bi-capacity asso-
ciated to the point …A.1B;�1B0; 0�B[B0/ D .1.B\A/[.B0nA/;�1.BnA/[.B0\A/; 0�B[B0/.
Hence we set

…A ı �.B;B0/ WD � �.B \ A/[ .B0 n A/; .B n A/[ .B0 \ A/
�
:
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By symmetry arguments, it is reasonable to have F…Aı� .…A.x// being equal to
F�.x/.

(Bi-Sym): For any � W Q.N/ ! R satisfying (BFMc), we have for all A � N

F�.x/ D F…Aı� .…A.x// :

We have the following result.

Theorem 3 (Theorem 1 in [80]). fF�g� satisfies (Bi-LM), (Bi-In), (Bi-PW), (Bi-
weak SPLC) and (Bi-Sym) if and only if for any � W Q.N/! R satisfying (BFMa),
(BFMb), (BFMc) and (BFMd), and for any a 2 R

n,

F�.a/ D BC�.a/:

The measurement conditions we have on ui and uXe
f�1;0;1g

lead to axioms (Bi-LM),
(Bi-In), (Bi-PW), (Bi-weak SPLC) and (Bi-Sym). The Choquet integral w.r.t a bi-
capacity � is the only aggregation operator satisfying the previous set of axioms.
So the generalized Choquet integral comes up very naturally when one works with
information related to a bi-capacity.

14.4.7 Shapley Value and Interaction Index

As for capacities, due to the complexity of the bi-capacity model, involving 3n

coefficients, it is important in practice to be able to analyze a bi-capacity in terms of
decision behaviours, namely importance of criteria and interaction among them.

We address first the importance index �i.v/ for a bi-capacity v. Unlike capacities
where we have previously seen that we come up quite easily to a unique definition,
many definitions seem suitable for bi-capacities (see [7, 26, 46, 66, 79]). Note that
the last two proposals are identical. Cooperative Game Theory is a good approach to
select the most appropriate definition. In this setting, the bi-capacity v is interpreted
as a bi-cooperative game. More precisely, in the context of cost sharing problems,
v.A;B/ is the stand alone price of serving agents in A [ B when A have decided to
contribute positively to the game and B have decided to contribute negatively to the
game [82]. Unlike usual games, where at the end all players join the grand coalition,
it is not assumed here that all players have decided to be positive contributors. We
denote by S the set of players that have decided to be positive contributors, and by
T the set of players that have decided to be negative contributors. The remaining
players N n .S[T/ have chosen not to participate to the game. As a result, the share
of the total cost among the players depends on the bi-coalition .S;T/. We denote by
'

S;T
i .v/ the payoff allotted to player i. This share is uniquely obtained by extending

the requirements characterizing the Shapley value, and by adding a monotonicity
requirement [82]
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'
S;T
i .v/ D

X

K�.S[T/nfig

kŠ.sC t � k � 1/Š
.sC t/Š

� Œv.S \ .K [ fig/;T \ .K [ fig//� v.S \ K;T \ K/�:

From this expression, the payoff for positive contributors (i.e., players in S) is non-
negative, the payoff for negative contributors (i.e., players in T) is non-positive, and
the payoff for the remaining players is zero. The idea is thus to define the importance

of criterion i relatively to bi-coalition .S;T/ as �S;T
i .v/ D

ˇ
ˇ
ˇ'

S;T
i .v/

ˇ
ˇ
ˇ in order to obtain

non-negative values. One can then define the mean importance of criterion i as the
average value of �S;T

i .v/ over all bi-coalitions .S;T/ such that S [ T D N [79]:

�i.v/ D 1

2n�1
X

S�N ; i2S

�
S;NnS
i .v/

D
X

.A;B/2Q.Nnfig/

.aC b/Š.n� a � b � 1/Š
2aCb nŠ

� .v.A [ fig;B/� v.A;B [ fig//

This value turns out to be exactly the average weight of criterion i in the bipolar
Choquet integral [66, 79].

The interaction index Iij.v/ can be obtained from the importance indices by using
the recursive axiom of [48]:

Iij.v/ D
X

.A;B/2Q.Nnfig/

.aC b/Š.n� a � b � 2/Š
2aCb .n � 1/Š �

	
ı

A;B
fi;jg;;.v/ � ıA;B

;;fi;jg.v/



where ıA;B
fi;jg;;.v/ D v.A [ fi; jg;B/ � v.A [ fig;B/ � v.A [ fjg;B/ C v.A;B/ and

ı
A;B
;;fi;jg.v/ D v.A;B[fi; jg/�v.A;B[fig/�v.A;B[fjg/Cv.A;B/. The interaction

index Iij.v/ can be interpreted in terms of the variation of the mean weight of
criterion i in the bipolar Choquet integral when criterion j varies [66].

14.4.8 Particular Models

As for capacities, one is interested in particular sub-models of bi-capacities to
reduce the number of parameters. We only give references in this section.

The Möbius transform of bi-capacities has been defined in [46]. An alternative
definition—called bipolar Möbius transform—has been proposed by Fujimoto and
Murofushi [28] and Fujimoto et al. [29]. A linear transform relates these two
proposals [28]. The concept of a k-additive bi-capacity is derived from the Möbius
transform [46]. A similar definition can also be obtained from bipolar Möbius
transform [29].
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Let us now turn to another interesting particular model. As noted in Sect. 14.4.1,
in most MCDA problems with sign-dependent decision strategies, the bipolar nature
is not generally compulsory on all criteria. Let us denote by P � N the set of criteria
for which the DM’s behavior is clearly of bipolar nature. In the example given in
Sect. 14.4.1, P is reduced to criterion Mathematics. The approach proposed in [67]
is to allow more degrees of freedom on the criteria P compared to the remaining
criteria N n P that do not need bipolarity. This is done by enforcing some symmetry
conditions on the criteria NnP, which state that the interaction between positive and
negative values vanishes for these criteria. Several sub-models can be constructed:
partially CPT bi-capacities (ranging from usual bi-capacities to the CPT model),
partially symmetric bi-capacities (ranging from usual bi-capacities to the Sipos
integral), and partially asymmetric bi-capacities (ranging from usual bi-capacities
to capacities) [67].

Finally, the concept of p-symmetry, as well as decomposable capacities, has also
been generalized to bi-capacities [43, 95].

14.4.9 Identification of Bi-capacities

For a 2 R
n fixed, the mapping � 7! BC�.a/ is linear. Therefore, the methods

described in Sect. 14.3.7 for the determination of a capacity can be extended with
no change to the case of bi-capacities. In particular, this enables the determination of
� with a quadratic method from a set of alternatives with the associated scores, and
with a linear method from a set of comparisons between alternatives. The constraints
on the bi-capacity are composed of conditions (BFMa), (BFMb), (BFMc) and
(BFMd).

However, we are faced here to another difficulty. A bi-capacity contains 3n

unknowns which makes its determination quite delicate. As an example, with 5
criteria, a capacity has 25 D 32 coefficients whereas a bi-capacity holds 35 D 243

coefficients. Ten well-chosen learning examples are generally enough to determine
a capacity with 5 criteria. It would require maybe 80 learning examples to determine
a bi-capacity with 5 criteria. This is obviously beyond what a human being could
stand.

The way out to this problem is to reduce the complexity of the model. The first
idea is to restrict to sub-classes of bi-capacities, such as the k-additive bi-capacities
described above. For instance, there are 2 n2 � 3 D 47 unknowns for a 2-additive
bi-capacity with 5 criteria. Other approaches are also possible.

14.5 Ordinal Scales

14.5.1 Introduction

So far, we have supposed that the quantities we deal with (score, utilities, . . . )
are defined on some numerical scale, either an interval or a ratio scale, let us say
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a cardinal scale. In practical applications, most of the time it is not possible to
have directly cardinal information, but merely ordinal information. The MACBETH
methodology we presented in Sect. 14.2.3 is a well-founded means to produce
cardinal information from ordinal information. In some situations, this method
may not apply, the decision maker being not able to give the required amount of
information or being not consistent. In such a case, there is nothing left but to use
the ordinal information as such, coping with the poor structure behind ordinal scales.
We try in this section to define a framework, point out the difficulties, give the known
axiomatizations and indicate the main tools to handle ordinal scales in the viewpoint
of capacities.

In the sequel, ordinal scales are denoted by L or similar, and are supposed to be
finite totally ordered sets, with top and bottom denoted 1l and O.

Since ordinal scales forbid the use of usual arithmetic operations (see
Sect. 14.2.1), minimum (^) and maximum (_) become the main operations. Hence,
decision models are more or less limited to combinations of these operations.
We call Boolean polynomials expressions P.a1; : : : ; an/ involving n variables and
coefficients valued in L, linked by^ or_ in an arbitrary combination of parentheses,
e.g. ..˛^a1/_ .a2^ .ˇ_a3///^a4. An important result by Marichal [87] says that
the Sugeno integral w.r.t. a capacity coincides with the class of Boolean polynomials
such that P.O;O; : : : ;O/ D O, P.1l; 1l; : : : ; 1l/ D 1l, and P is non-decreasing w.r.t.
each variable. Since these conditions are natural in decision making, this shows
that the Sugeno integral plays a central role when scales are ordinal, and the whole
section is devoted to it.

Before entering into details, we wish to underline the fact that however, this is not
the only way to deal with ordinal information. Roubens has proposed a methodology
based on the Choquet integral (which has far better properties than the Sugeno
integral, as we will show), where scores of an alternative on criteria are related
to the number of times this alternative is better or worse than the others on the same
criteria [109].

Let us begin by pinpointing fundamental difficulties linked to the ordinal
context.

 finiteness of scales: sticking to a decomposable model of the type (14.2), the
function F is now defined from Ln to L. Clearly it is impossible that F be strictly
increasing due to the finiteness of L. A solution may be to map F on L0, with
jL0j > jLj. A systematic study of this point has been given in [40, 42], giving
rise to algorithms building the scale L0 and the aggregation function F, given a
preference profile. On the other hand, most measurement theoretic results are
based on a solvability condition and Archimedean axioms, which cannot hold on
a finite set.

 ordinal nature: the Sugeno integral, even defined as a function from R
n to R,

can never be strictly increasing, and large domains of indifference exist. Hence,
the decomposable model cannot satisfy weak separability (see Sect. 14.2.1).
Specifically, Marichal [87] has shown that the Sugeno integral satisfies weak sep-
arability if and only if there is a dictator criterion. However, any Sugeno integral
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induces a preference relation � which satisfies directional weak separability,
defined by:

.xi; z�i/ 
 .yi; z�i/) .xi; z
0�i/ � .yi; z

0�i/; 8x; y; z; z0 2 X:

This weaker condition ensures that no preference reversal occurs.
 construction of utility functions ui: since on ordinal scales arithmetical opera-

tions are not permitted, the method described in Sects. 14.3.3 and 14.4.5 cannot
be applied directly. The ordinal counterpart of the multiplication being the
minimum operator .^/, Eq. (14.11) becomes:

F .ai;O�i/ D ˛i ^ ai:

The term ˛i acts as a saturation level, hiding all utilities ai larger than ˛i. Hence
relation (14.11) cannot be satisfied and the previous method cannot be applied
to build the utility functions. As a consequence, to avoid this problem most of
works done in this area suppose that the attributes are defined on a common scale
L, although this is not in general a realistic assumption.

However, Grabisch et al. [52] have proposed a practical method to build
a model based on the symmetric Sugeno integral (see Sect. 14.5.3) from a
preference profile, which is able to build the utility functions and the capacity.
Also, Greco et al. [58] have shown from a theoretical standpoint that it is possible
to build utility functions in a Sugeno integral model (see Sect. 14.5.4).

14.5.2 The Sugeno Integral

We consider a capacity � on N taking its value in L, with �.;/ D O and �.N/ D 1l.
Let a WD .a1; : : : ; an/ be a vector of scores in Ln. The Sugeno integral of a w.r.t. �
is defined by Sugeno [118]:

S�.a/ WD
n_

iD1
Œa�.i/ ^ �.A�.i//�; (14.35)

where � is a permutation on N so that a�.1/ � a�.2/ � � � � � a�.n/, and A�.i/ WD
f�.i/; : : : ; �.n/g. One can notice the similarity with the Choquet integral. Taking
L D Œ0; 1�, Choquet and Sugeno integrals coincide when either the capacity or the
integrand is 0-1 valued, specifically:

S�.1A; 0�A/ D �.A/ D C�.1A; 0�A/; 8A � N

S�.a/ D C�.a/ 8a 2 Œ0; 1�n iff �.A/ 2 f0; 1g 8A � N:
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We refer the reader to survey papers [22, 103] and to [86, 87] for properties of the
Sugeno integral, especially in a decision making perspective. We mention that in the
context of decision under uncertainty, an axiomatic construction similar to the one
of Savage has been done by Dubois et al. [21, 23].

As said in the introduction, making decision with the Sugeno integral has some
drawbacks, which are clearly put into light with the following results [86, 101]. Let
� be a weak order (complete, reflexive, transitive) on Œ0; 1�n, and for a; b 2 Œ0; 1�n,
denote a 	 b if ai 	 bi for all i 2 N, and a > b if a 	 b and ai > bi for some i 2 N,
and a � b if ai > bi for all i 2 N. We say that � satisfies monotonicity if a 	 b
implies a � b, the strong Pareto condition if a > b implies a 
 b, and the weak
Pareto condition if a� b implies a 
 b. Then the following holds.

Proposition 3. Let � be a capacity on N, and �� the weak order induced by the
Sugeno integral S�.

(i) �� always satisfies monotonicity.
(ii) �� satisfies the weak Pareto condition iff � is 0-1 valued.

(iii) �� never satisfies the strong Pareto condition.

Note that the Choquet integral always satisfies the weak Pareto condition, and the
strong one iff � is strictly monotone.

Since arithmetic operations cannot be used with ordinal scales, our definitions of
importance and interaction indices cannot work, and alternatives must be sought.
Grabisch [34] has proposed definitions which more or less keep mathematical
properties of the original Shapley value and interaction index. However, these
indices, especially the interaction index, do not seem to convey the meaning they
are supposed to have.

14.5.3 Symmetric Ordinal Scales and the Symmetric
Sugeno Integral

This section introduces bipolar ordinal scales, i.e. ordinal scales with a central
neutral level, and a symmetry around it, and is based on [36, 38, 39]. The aim is
to have a structure similar to cardinal bipolar scales, so as to build a counterpart of
the CPT model, using a Sugeno integral for the “positive” part (above the neutral
level), and another one for the “negative” part (below the neutral level):

OCPT�1;�2 .a/ WD S�1.aC/� S�2.a�/

(“O” stands for “ordinal”) where aC WD a _ 0, a� WD .�a/C, and � is a suitable
difference operator. We will show that this task is not easy.

Let us call LC some ordinal scale, and define L WD LC [ L�, where L� is a
reversed copy of LC, i.e. for any a; b 2 LC, we have a � b iff �b � �a, where
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�a;�b are the copies of a; b in L�. We want to endow L with operations �;�

satisfying (among possible other conditions):

(C1) �;� coincide with _;^ respectively on LC
(C2) �a is the symmetric of a, i.e. a �.�a/ D O.

Hence we may extend to L what exists on LC (e.g. the Sugeno integral), and a
difference operation could be defined. The problem is that conditions (C1) and (C2)
imply that � would be non-associative in general. Take O < a < b and consider the
expression .�b/� b � a. Depending on the place of parentheses, the result differs
since ..�b/� b/� a D O� a D a, but .�b/�.b � a/ D .�b/� b D O.

It can be shown that the best solution (i.e. associative on the largest domain) for
� is given by:

a � b WD
8
<

:

�.jaj _ jbj/ if b ¤ �a and jaj _ jbj D �a or D �b
O if b D �a
jaj _ jbj else.

(14.36)

Except for the case b D �a, a � b equals the absolutely larger one of the two
elements a and b.

The extension of ^, viewed as the counterpart of multiplication, is simply done
on the principle that the rule of sign should hold: �.a � b/ D .�a/� b, 8a; b 2 L.
It leads to an associative operator, defined by:

a � b WD
� �.jaj ^ jbj/ if sign a ¤ sign b
jaj ^ jbj else.

(14.37)

Based on these definitions, the OCPT model writes:

OCPT�1;�2.a/ WD S�1.aC/�.�S�2.a�//:

When �1 D �2 DW �, we get the symmetric Sugeno integral, denoted LS�.
Going a step further, it is possible to define the Sugeno integral w.r.t. bi-

capacities, following the same way as with the Choquet integral. One can show that,
defining BS�.a/ WD S�NC

.jaj/, with same notations as in Sect. 14.4.3 and replacing
in the definition of Sugeno integral _;^ by �;�, the expression is [45] (see also
Greco et al. [57] for a similar definition):

S�.a/ Dh
n
�

iD1

h
ja�.i/j� �.A�.i/ \ NC;A�.i/ \ N�/

i
i; (14.38)

where � is a permutation on N so that ja�.1/j � � � � � ja�.n/j, NC WD fi 2
N j ai 	 Og, N� WD N n NC, and the expression h n

�
iD1

bii is a shorthand for

.
n
�

iD1
bC

i /�.�
n
�

iD1
b�

i /. It can be shown that if � is of the CPT type, one recovers

the OCPT model.
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Lastly, we mention Denneberg and Grabisch, who have proposed a general
formulation of the Sugeno integral on arbitrary bipolar spaces [18].

14.5.4 A Model of Decision Based on the Sugeno Integral

We present in this section an axiomatization of a decision model based on the
Sugeno integral, obtained independently by Bouyssou and Marchant [8, 9], and
by Słowiński et al. [116] (see also Greco et al. [58]), the latter work giving also
a connection with decision based rules, while the former gives a connection with
noncompensatory sorting models.

We partition X into nonempty r categories C1; : : : ;Cr, each category containing
alternatives which are considered as indifferent for the decision maker, ranked in
such a way that the desirability of a category increases with its label, i.e., C1 contains
the less preferred objects, while Cr contains the most preferred ones. We introduce
the notation C�k DSr

iDk Ck.
We say that the partition fC1; : : : ;Crg is representable by a Sugeno integral if

there exist utility functions ui W Xi ! RC, 8i 2 N, real numbers 0 < �1 < � � � < �r ,
and a capacity � (not necessarily normalized) such that, for all x 2 X,

x 2 C�k , S�.u1.x1/; : : : ; un.xn// > �k:

Theorem 4 ([9, 116]). A partition fC1; : : : ;Crg is representable by a Sugeno
integral if and only if it satisfies for all i 2 N

.xi; a�i/ 2 C�k

and
.yi; b�i/ 2 C�`

9
=

;
)
8
<

:

.xi; b�i/ 2 C�`
or

.zi; a�i/ 2 C�k

for all k; ` 2 f2; : : : ; rg with ` � k, all xi; yi; zi 2 Xi, and all a�i; b�i 2 X�i.

Bouyssou and Marchant proved that the above Sugeno integral model is equiva-
lent to a noncompensatory model (i.e., a partition of X is representable by a Sugeno
integral if and only if it is representable by a noncompensatory model). We say
that a partition fC1; : : : ;Crg is representable by a noncompensatory model if there
exist subsets Ar

i � � � � � A2i � Xi for all i 2 N, upwards collections of subsets
(i.e., collections F satisfying the property: if A 2 F and A � B, then B 2 F )
F r � � � � � F2 � 2N , such that

x 2 C�k , fi 2 N j xi 2 Ak
i g 2 F k:

The interpretation of the model goes as follows: Ak
i contains all elements of Xi which

are judged “satisfactory at the level k”. In order for an alternative to belong to a
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category at least k, it is necessary that its evaluations are judged satisfactory at level
k on a subset of attributes which is judged sufficiently important for level k (as
indicated by F k).

Lastly, we mention that Greco, Słowiński et al. [56, 116] proved that the Sugeno
integral model can be equivalently represented by a set of particular decision rules
of the following form:

If ui1.xi1 / 	 ` and � � � and uiq.xiq/ 	 `; then x 2 C�`

with fi1; : : : ; iqg � N, ` 2 f2; : : : ; rg, the ui’s are utility functions as before, and the
rules must satisfy the two following properties:

 For each x 2 C`, there exists a rule implying that x 2 C�` and no rule implying
x 2 C�k with k > `;

 If a rule with level ` is satisfied, the same rules with levels k < ` must also be
satisfied.

This result shows that a decision model by a set of rules can be more general than a
Sugeno integral model.

14.5.5 The Lexicographic Sugeno Integral

In the whole section, we consider that utility functions are the identity function, i.e.,
we compare directly scores of alternatives, denoted by the vectors f ; g; : : : on Ln.

The weaknesses of the Sugeno integral, as pointed out in Proposition 3, can
be overcome if one uses a lexicographic approach. Indeed, it is well known that
the lexicographic approach can refine preorders produced by some aggregation
function, like the minimum. We elaborate on this point. For two vectors f ; g, the
lexicographic order is defined as follows:

f �l g, Œf D g or fj < gj; j D minfi j fi ¤ gig�:

Next, the leximin and leximax [100] are defined as follows:

f �lmin g, .f.1/; : : : ; f.n// �l .g.1/; : : : ; g.n//

f �lmax g, .f.n/; : : : ; f.1// �l .g.n/; : : : ; g.1//;

with f.1/ � f.2/ � � � � � f.n/, and similarly for g. The leximin and leximax satisfy
the strong Pareto condition, and hence the weak Pareto condition and monotonicity.
Moreover, f and g are indifferent for the leximin and leximax if and only if the
reordered vectors are identical. Hence, f is indifferent to any of its permuted ver-
sions. More importantly, the leximim (resp., leximax) refines the minimum (resp.,
maximum), in the sense that it has less pairs of indifferent alternatives and agrees
with the strict order given by the minimum (resp., maximum).
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We present now a refinement of the order induced by the Sugeno integral, due to
Dubois and Fargier [19] and Fargier and Sabbadin [25]. For some positive integer
m, let us consider elements of .Lm/n, where L is a finite scale, i.e., vectors whose
components are themselves vectors of Lm (in other words, these are n�m matrices).
We define on them the maxmin order relation as follows. For any u; v 2 .Lm/n

u �maxmin v, n
max
iD1

m
min
jD1 uij � n

max
iD1

m
min
jD1 vij:

It is a complete preorder, and we can define similarly�minmax. Let us consider now a
complete preorder D on vectors of Lm. It is then possible to apply the definitions of
leximin and leximax to matrices of .Lm/n, since rows can be rearranged in increasing
or decreasing order. We denote these complete preorders on .Lm/n by �lmin.D/ and
�lmax.D/. Then�lmax.lmin/ is a refinement of�maxmin, and�lmin.lmax/ is a refinement
of �minmax.

Two matrices u; v of .Lm/n are indifferent by �lmax.lmin/ or �lmin.lmax/ if and
only if the rows of u are those of v, up to a permutation of the rows, and up to a
permutation of the elements in each row. For example, with n D 4 and m D 3:

2

6
6
4

1 2 3

1 5 2

2 3 4

2 5 4

3

7
7
5

2

6
6
4

4 3 2

2 4 5

2 3 1

2 5 1

3

7
7
5

these two matrices are indifferent for �lmax.lmin/ and �lmin.lmax/.
There is a particular case of interest. Let us take m D 2, and consider a

capacity �. Then the Sugeno integral can be expressed as a maxmin order relation
as follows: defining the matrix Mf ;� WD ..�; �.fi j fi 	 �g/�2L/, it is easy to check
that

S�.f / � S�.g/, Mf ;� �maxmin Mg;�:

Hence, by previous results, �lmax.lmin/ is a lexicographic refinement of the Sugeno
integral.

For a given capacity �, two acts are indifferent if and only if the matrices are
the same up to permutations as explained above. This amounts to say that the
decumulative functions �.f 	 �/; �.g 	 �/ are identical.

It is known from Moulin [100] that the leximin and leximax can be coded by
a sum, provided that acts are defined on some finite scale L WD fl0; l1; : : : ; lmg.
For example, the leximax is recovered by performing the transformation �.lk/ WD
.n C 1/k for any lk 2 L. Then f �lmax g if and only if

Pn
iD1 �.fi/ �

Pn
iD1 �.gi/.

This is because n�.lk/ < �.lkC1/, for all k. Using this procedure, it is shown in
[19] that the �lmax.lmin/ ordering amounts to compare acts by a Choquet integral
w.r.t. � (up to a transformation of the scale). This proves that �lmax.lmin/ always
satisfies monotonicity and the weak Pareto condition, and satisfies the strong Pareto
condition if and only if � is strictly monotone.
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Another approach has been proposed by Murofushi [101], see also a discussion
and a comparison of various approaches in [41].

14.5.6 Identification of Capacities

In situations where utility functions are known, the problem of the identification of
capacities when the model is a Sugeno integral (or OCPT, bipolar Sugeno integral)
in an ordinal context, or even when L D Œ0; 1� or Œ�1; 1�, appears to be rather
different from the case of the Choquet integral. The main reason is that we are
not able to write the identification problem as a minimization problem stricto sensu
(see Sect. 14.3.7), since the notion of difference between values, hence of error, is
not defined in a way which is suitable on an ordinal scale, to say nothing about
“squared errors” and “average values”.

Even if we take L as a real interval, which permits to define a squared error
criterion as for the Choquet integral, the minimization problem obtained is not
easy to solve, since it involves non-linear, non-differentiable operations _;^;�;�.
In such cases, only meta-heuristic methods can be used, as genetic algorithms,
simulated annealing, etc. There exist some works in this direction, although most
of the time used for the Choquet integral, which is questionable [37, 123].

What can be done without error criterion to minimize? The second option, also
used for the Choquet integral (see Sect. 14.3.7), is to find capacities which enable
the representation of the preference of the DM over a set of alternatives of interest
by the Sugeno integral (or OCPT,. . . ). A detailed study of this problem has been
done by Rico et al. [106] for the Sugeno integral. We mention also the work of
Greco et al. based on decision rules, which can be found in Chap. 12 of this book
(see also [56]).

14.6 Concluding Remarks

This chapter has tried to give a unified presentation of MCDA methods based on
fuzzy integrals. It has shown that the concepts of capacity and bi-capacity naturally
arise as overall utility of binary and ternary alternatives, and that the Choquet
integral appears to be the unique solution for aggregating criteria, under a set of
natural axioms.

This methodology has been applied in various fields of MCDA from a long time,
particularly in subjective evaluation, and seems to receive more and more attention.
Following the pioneering works of Sugeno [118], many researchers in the eighties
in Japan have applied in practical problems the Sugeno integral, for example to
opinion poll [104], and later the Choquet integral (see a summary of main works in
[49]). More recent applications can be found in [37, 51], see also [53, 89, 105].
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Chapter 15
Verbal Decision Analysis

Helen Moshkovich, Alexander Mechitov, and David Olson

Abstract Verbal Decision Analysis is a new methodological approach for the
construction of decision methods with multiple criteria. The approach is based
on cognitive psychology, applied mathematics, and computer science. Problems of
eliciting exact quantitative estimations from the decision makers may be overcome
by using preferential information from the decision makers in the ordinal form (e.g.,
“more preferable”, “less preferable”,. . . ). This type of judgments is known to be
much more stable and consistent. Ways of how to obtain and use ordinal judgments
for alternatives’ evaluation on multiple criteria are discussed. The family of decision
methods based on the approach is described.

Keywords Decision analysis • Multiple criteria • Ordinal judgments •
Preference elicitation • ZAPROS • ORCLASS

15.1 Introduction

Decisions involving multiple criteria should be based upon human decision maker
preference. Unstructured problems present humans with challenges when trade-offs
exist among available alternatives. A key feature of this problem domain is human
cognitive limitations. Scientific validity is challenged by multiple criteria methods
that ask too much in the way of model input. For instance, the accuracy of trade-offs
in criteria using vastly different scales called for in lottery trade-offs can be quite
challenging and the reliability of weights calculated on the basis of such input can
be dubious. At its best, such inputs (and similar inputs used by other multiple choice
methods) may be unreliable and unstable.
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Humans psychologically are more capable of expressing ordinal relationships
than cardinal data. Verbal Decision Analysis methods were developed with the
primary motivation of basing analysis on the most reliable human input available.
Larichev [24] identified admissible in terms of reliability and accuracy as: ordering
alternatives with respect to value, qualitative comparison of two estimates on two
criteria scales, and qualitative comparison of probabilities of two alternatives. Other
inputs typically used in multiple criteria analysis were rated as complex or only
admissible for small dimensions. Verbal Decision Analysis (VDA) is based on such
reliable and valid input data expressing human preference.

15.1.1 Features of Unstructured Decision Problems

According to Simon [55], decision problems may be divided into three main groups:
(1) well-structured problems, (2) ill-structured problems, and (3) unstructured
problems.

Well-structured problems are problems where the essential dependencies
between parameters are known and may be expressed in a formal way. Problems of
this class are being rather successfully solved by operations management methods.

Ill-structured or mixed problems have both qualitative and quantitative elements,
but unknown and undefined problem elements tend to dominate these tasks.
Problems in this class are rather diversified and methods from different areas may
be used to work with them including “cost-benefit” analysis, as well as multiple
criteria decision making and multiple criteria decision aids.

Unstructured problems are the problems with mostly qualitative parameters with
no objective model for their aggregation. We can see examples of such tasks in
policy making and strategic planning in different fields, as well as in personal
decisions. These problems are in the area of multicriteria decision aids but require
some special considerations in the methods used.

Larichev and Moshkovich [30, 31] proposed the following list of general features
for the unstructured problems:

 the problems in this class are unique in the sense that each problem is new to the
decision maker and has characteristics not previously experienced;

 parameters (criteria) in these problems are mostly qualitative in nature, most
often formulated in a natural language;

 in many cases evaluations of alternatives against these parameters may be
obtained only from experts (or the decision maker him/her self);

 an overall evaluation of alternatives’ quality may be obtained only through
subjective preferences of the decision maker.
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Human judgment is the basic source of information in unstructured problems.
Being interested in the result, the decision maker would like to control the whole
process, including selection of experts and formation of the decision rule(s). Verbal
Decision Analysis (VDA) was proposed as a framework for the unstructured
problems [31].

15.2 Main Principles of Verbal Decision Analysis

The role of decision making methods applied to unstructured problems should be
to help the decision maker to structure the problem (form a set of alternatives
and elaborate a set of relevant criteria) and work out a consistent policy for
evaluating/comparing multiple criteria alternatives.

As human judgment is the central source of information in unstructured prob-
lems, the proposed methods should consider the constraints of the human informa-
tion processing system as well as the psychological validity of input data in decision
analysis. This requires that the methods should: (1) use language for problem
description that is natural to the decision maker; (2) implement psychologically
valid measurement of criteria and psychologically valid preference elicitation
procedures; (3) incorporate means for consistency check of the decision maker’s
information; (4) be “transparent” to the decision maker and provide explanations of
the result.

Verbal Decision Analysis is oriented on construction of a set of methods for
different types of decision tasks within the stated framework.

15.2.1 Natural Language of a Problem Description

Verbal Decision Analysis tries to structure a decision problem by using the natural
language commonly used by a decision maker and other parties participating in the
decision process [27]. The goal of problem structuring is to define alternatives and
the primary criteria to be used for evaluation.

In unstructured practical decision tasks most decisions involve qualitative criteria
with no natural numerical equivalents [24, 31].

People are known to be poor at estimating and comparing objects that are close
in value. It is reasonable for qualitative as well as for originally quantitatively
measured criteria to have scales with several distinct levels, possibly differentiated
in words and examples [16, 18, 62]. For example, experts were found to have much
closer estimates of applicants over separate criteria using scales with a small number
of verbal estimates than when using a 1–10 quality scale [44].

Verbal descriptions over criteria scale levels instead of numerical values, not
only allow the decision maker to be more confident in his(her) own evaluations,
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but also should lead to information from experts that is more stable. Therefore,
Verbal Decision Analysis uses scales with verbal descriptions of criteria levels for
unstructured problems.

15.2.2 Psychological Basis for Decision Rules Elaboration

The measurements discussed in the previous section may be referred to as primary
measurements. These primary measurements structure the problem to allow con-
struction of a decision rule for overall evaluation and/or comparison of alternatives.
Construction of the decision rule for unstructured problems includes elicitation of
the decision maker’s preferences as there are almost no objective dependencies
between decision criteria.

The complexity involved in eliciting preference information from human subjects
has been widely recognized. The process of eliciting necessary information for such
decisions is one of the major challenges facing the field [17, 23, 24, 56].

The limitations in human ability to evaluate and to compare multiple criteria
options can lead to inconsistencies in human judgments [51, 59] or to application
of simplified rules that do not consider essential aspects of the options under
consideration [28, 43, 48].

It is important to understand what types of input information are reliable.
Larichev [24] attempted to collect and classify all elementary operations in informa-
tion processing used in normative decision-making. Twenty-three operations were
defined and analyzed from the perspective of their complexity for human subjects.
The study concluded that quantitative evaluation and comparison of different objects
was much more difficult for subjects than conducting the same operations through
qualitative ordinal expression of preference.

The following operations were found admissible on the basis of the known
research results [31]:

 rank ordering of criteria importance;
 qualitative comparison of attribute values for one criterion or two criteria;
 qualitative evaluation of probabilities.

Experiments in [13] demonstrated that people can somewhat consistently com-
pare attribute values against three criteria if they are helped with the presentation
of those. The main idea was that first, subjects compared attribute values against all
possible combinations against two criteria. This information about their preferences
was used to color code more and less preferable parts of each combination. The
results are preliminary and require additional prove to be considered admissible.

Some other operations are expected to be admissible although not enough
research has been obtained to date to be sure of admissibility.

Qualitative judgments are preferable for the majority of operations. Therefore,
Verbal Decision Analysis uses ordinal (cardinal) judgments as compared to interval
data.
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15.2.3 Theoretical Basis for Decision Rules Elaboration

Ordinal comparisons are always the first practical step in preference elicitation
procedures in multiple criteria analysis. Rather often, scaling procedures follow this
step (resulting in quantitative values for all elements of the model). There are ways
to analyze the decision on the basis of ordinal judgments, sometimes leading to
the preferred decision without resort to numbers [2, 20, 21, 31]. Possible types of
available ordinal preference information can be grouped as follows:

 rank ordering of separate levels upon criterion scales (ordinal scales);
 rank ordering of criteria upon their importance;
 pairwise comparison of real alternatives;
 ordinal tradeoffs: pairwise comparison of hypothetical alternatives differing in

estimates of only two criteria.

Ordinal Scales are used in the rule of dominance (Pareto Principle). This rule
states that one alternative is more preferable than another if it has criterion levels
that are not less preferable on all attributes and is more preferable on at least one.
This rule does not utilize criterion importance and is not necessarily connected with
an additive form of a value function but it requires preferential independence of each
separate criterion from all other criteria.

Rank Ordering of Criteria upon Importance does not provide any decision rule
by itself. In combination with ordinal scales and lexicographical criterion ranking,
the rule for selection of the best alternative may be as follows: first select alternatives
with the best possible level upon the most important criterion. From the resulting
subset select alternatives with the best possible level upon the next important
criterion and so on. This rule is based on the assumption that in the criterion ranking
one attribute is more important than all the other attributes, which follow it in the
ranking. This preemptive rule does not necessarily imply the additive value function,
but has the obvious drawback of its non-compensatory nature, and is theoretically
unpopular.

Pairwise Comparison of real alternatives may be directly used in some methods
(see, e.g. [22]). In general this information by itself will lead to the solution (if you
compare all pairs of alternatives then you can construct a complete rank order of
alternatives). But the whole area of multiple criteria decision analysis has evolved
from the notion that this task is too difficult for the decision maker. This approach is
mostly used in multiple criteria mathematical programming (in which there is not a
finite number of alternatives for consideration). Still this information is considered
to be highly unstable [24, 59].

Ordinal Tradeoffs [30] exploit the idea of tradeoffs widely used in decision
analysis for deriving criterion weights, but is carried out in a verbal (ordinal) form
for each pair of criteria and for all possible criterion levels. To find the tradeoff we
have to ask the decision maker to consider two criteria and choose which he(she)
prefers to sacrifice to some lower level of attainment. When levels are changed from
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the best to the worst attribute level, this corresponds to the questions in the “swing”
procedure for criterion weights [8, 62], but does not require quantitative estimation
of the preference.

The use of such tradeoffs is valid if there is preferential independence of pairs of
criteria from all other criteria. Two of these preference elicitation methods provide
the safest basis for preference identification: ordinal criterion scales and ordinal
tradeoffs.

15.2.4 Consistency Check of Decision Maker’s Information

Valid implementation of both ordinal criterion scales and ordinal tradeoffs requires
preferential independence of one or two criteria (for all practical purposes if there
is pairwise criterion independence, there exists an additive value function and it is
reasonable to conclude that any group of criteria is independent from the rest—see
[63]). In addition, in many practical cases the decision rule would require transitivity
of preferences. It is necessary to check for these conditions for the method to
be valid.

The use of preferential independence conditions stems from the desire to con-
struct an efficient decision rule from relatively weak information about the decision
maker’s preferences. On the other hand complete checking for this condition will
require an exhaustive number of comparisons. Therefore it is reasonable to carry
out a partial check of the independence condition over pairs of alternatives [30, 31].
First all necessary tradeoff comparisons are carried out with all criterion levels
except those being considered held at their most preferable level. Then, the same
tradeoffs are carried out with all other criteria held at their least preferable level.
If preferences are the same in both cases, those two criteria are considered to be
preferentially independent from all other criteria.

This check is considered to be profound as the change in criterion levels is the
most drastic (from the best to the worst) and stability of preferences under those
conditions is good evidence of independence.

In case of dependency Verbal Decision Analysis recommends trying to reformu-
late the problem: group some criteria if they seem to be dependent, or decompose
some criteria if their dependence seems to have a root in some essential characteris-
tic combining several others that should be considered separately (see [31] for more
details).

To be able to check for consistency of the information elicited (for ordinal
information in the form of transitivity of preferences), Verbal Decision Analysis
applies “closed procedures” where subsequent questions can be used to check
information over all previous questions. For instance, if we ask the decision maker
to compare A and B, then B and C, it’s a good idea to ask the decision maker to
compare A and C as well. If A is preferred to B, B is preferred to C, and A is
preferred to C, then everything is consistent. If C is preferred to A, the preferences
are intransitive. Within our approach, transitivity of preferences is assumed, so the
decision maker is asked to reconsider comparisons from which intransitivity arises.
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15.2.5 Explanation of the Analysis Result

The last but not the least requirement for Verbal Decision Analysis is to demonstrate
the results of the analysis to the decision maker in a way that connects the problem
structure and the elicited information with the resulting recommended alternative or
alternatives.

It should be possible for the decision maker to see how information provided by
him(her) lead to the result obtained. This is a necessary condition for the decision
maker to rely on the result and to have the necessary information for re-analysis in
case the result does not seem plausible. Methods based on Verbal Decision Analysis
principles provide the ability to give explanations due to their logical and valid
elicitation and their use of qualitative information.

In the next two sections methods based on these principles are presented for
two important decision problems: rank ordering of multiple criteria alternatives and
ordinal classification/sorting [66] of multiple criteria alternatives.

15.3 Decision Methods for Multiple Criteria
Alternatives’ Ranking

15.3.1 Problem Formulation

The problems of ranking alternatives evaluated against a set of criteria are wide
spread in real life. There are many decision aiding methods oriented on the solution
of these problems [19, 31, 50, 52].

Within the Verbal Decision Analysis framework, we consider an unstructured
problem where there is a number of alternatives with mostly qualitative characteris-
tics evaluated by human experts. The task is to elaborate a subjective decision rule
able to establish at least a partial order on the set of alternatives.

Alternatives are evaluated against a set of criteria with verbal formulations of
quality grades along their scales.

Formal presentation of the problem under consideration is as follows:
Given:

1. There is a set of n criteria for evaluation of alternatives.
2. Xi is a finite set of possible verbal values on the scale of criterion i D 1; : : : ; n,

where jXij D ni.
3. X DQn

iD1 Xi is a set of all possible vectors in the space of n criteria.
4. A D fa1; : : : ; ai; : : : ; amg � X is a subset of vectors from X describing real

alternatives.

Required: to rank order alternatives from the set A on the basis of the decision-
maker’s preferences.
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We will use the following notations for relationships between alternatives:

 �i is the weak preference relationship with respect to criterion i: for a; b 2
A; a �i b means a is at least as good as b with respect to criterion i;

 
i is the strict preference relationship with respect to criterion i: a; b 2 A; a 
i b
iff a �i b and not b �i a;

 �i is the indifference relationship with respect to criterion i: a; b 2 A, a �i b iff
a �i b and b �i a;

 � is the weak preference relationship: for a; b 2 A, a � b means a is at least as
good as b;

 
 is the strict preference relationship: a; b 2 A, a 
 b iff a � b and not b � a;
 � is the indifference relationship with respect to criterion i: a; b 2 A, a � b iff

a � b and b � a.

A good example of such a problem is selection of applicants for an interview
for a faculty position [44]. A variant of a set of criteria with simple ordinal scales
for evaluation of an applicant for a position in Management Information Systems is
presented in Table 15.1.

There are two major types of the stated problems. The classical VDA approach
assumes that the set of alternatives is big or we may have different sets of alternatives
to rank order over time. In this case the idea is to construct a decision rule in the

Table 15.1 Criteria for
applicant evaluation

Criteria Scale

A. Ability to teach our students A1. Above average

A2. Average

A3. Below average

B. Ability to teach SA&D and
DBMS

B1. Above average

B2. Average

B3. Below average

C. Evaluation of completed
research and scholarship

C1. Above average

C2. Average

C3. Below average

D. Potential in publications D1. Above average

D2. Average

D3. Below average

E. Potential leadership in research E1. Above average

E2. Average

E3. Below average

F. Match of research interests F1. Above average

F2. Average

F3. Below average
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criteria space X and then use it on any set of real alternatives A. Methods ZAPROS-
LM [31] and ZAPROS III [25] are oriented on this type of problem.

The second type of problem deals with a relatively small number of alternatives
in a unique task. In this case the process is oriented on limited information needed
to resolve the current situation. Methods STEP-ZAPROS [45] and UniCombos [1]
are devoted to these problems. In the following sections we will discuss the main
ideas of each method.

15.3.2 The Joint Ordinal Scale: Method ZAPROS-LM

Methods ZAPROS and ZAPROS-LM [30, 31] are based on the implementation
of ordinal verbal scales and ordinal tradeoffs on the scales of criterion pairs near
two reference situations. The goal is the construction of the Joint Ordinal Scale
for all criteria. The name ZAPROS is the abbreviation of Russian words: Closed
Procedures near Reference Situations.

The first step in any decision analysis is to form the set of alternatives, form the
set of criteria, and to evaluate alternatives against criteria. As we have decided to use
only ordinal judgments for comparison of alternatives, the first step in this direction
is to elaborate ordinal scales.

Formally, ordering criterion values along one criterion scale requires the decision
maker to select the preferred alternative out of two hypothetical vectors from X
differing in values with respect to one criterion (with all other values being at the
same level).

This information allows formation of a strict preference relation 
i for each
criterion i D 1; : : : ; n.

Ordinal scales allow pairwise comparison of real alternatives according to the
rule of dominance.

Definition 1. Alternative a is not less preferable than alternative b, if for each
criterion i alternative a is not less preferable than alternative b (a �i b for
i D 1; : : : ; n).

The next level of preference elicitation is based on comparison in an ordinal form
of combinations of values with respect to two criteria.

To carry out such a task we need to ask a decision maker questions of the kind:
“what do you prefer: to have this (better) level with respect to criterion i and that
(inferior) level with respect to criterion j, or this (better) level for criterion j and that
(inferior) level for criterion i if all other criteria are at the same level?”

Possible responses in this case are: more preferable, less preferable or equally
preferable [30].

The decision-maker may be asked to make these “ordinal tradeoffs” for each pair
of criteria and for each pair of possible values in their scales.

The same information may be obtained with far fewer questions by comparing
two hypothetical vectors from X differing in values with respect to two criteria (with
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Table 15.2 Comparison of hypothetical alternatives

Criteria Alternative 1 Alternative 2

A. Ability to teach our students Above average A1 Above average A1

B. Ability to teach SA&D and DBMS Above average B1 Above average B1

C. Evaluation of completed research and scholarship Above average C1 Above average C1

D. Potential in publications Average D2 Above average D1
E. Potential leadership in research Above average E1 Above average E1

F. Match of research interests Above average F1 Below average F3
Possible answers

1. Alt.1 is more preferable than Alt.2

2. Alt.1 and Alt.2 are equally preferable

3. Alt.1 is less preferable than Alt.2

all other values being at the same level). Still the number of the comparisons for all
possible combinations of criterion values may be quite large.

ZAPROS [30, 31] uses only part of this information for the construction of
the Joint Ordinal Scale (JOS). The decision-maker is asked to compare pairs of
hypothetical vectors from Y � X, each vector with the best possible values for all
criteria but one. The number of these vectors is not large jYj DPn

iD1.ni � 1/C 1.
The goal is to construct a complete rank ordering of all vectors from Y on the

basis of the decision maker’s preferences. An example of a possible preference
elicitation question is presented in Table 15.2.

Definition 2. Joint Ordinal Scale (JOS) is a complete rank order of vectors from
Y, where Y is a subset of vectors from X with all the best values but one. Complete
rank order means that for each x; y � Y x 
 y or y 
 x or x � y.

If the comparisons do not violate transitivity of preferences, we are able to
construct a complete rank order of the vectors from Y on the basis of this
information, forming the Joint Ordinal Scale. An example of the JOS for the
applicants’ problem is presented in Table 15.3 with the JOS rank for the most
preferred vector marked as 1.

Construction of the Joint Ordinal Scale provides a simple rule for comparison of
multi-attribute alternatives. The correctness of rule 3 in case of pairwise preferential
independence of criteria was proven in [30]. The crucial difference between the rule
of dominance and this rule is that we are able now to compare criterion values with
respect to different criteria.

Definition 3. Alternative a is not less preferable than alternative b, if for each
criterion value of a there may be found a not more preferable unique criterion value
of alternative b.

There is an easy way to implement this rule, introduced and proven correct in
[45]. Let us substitute a criterion value in each alternative by the corresponding
rank in the Joint Ordinal Scale (JOS.a/). Then rearrange them in the ascending
order (from the most preferred to the least preferred one), so that
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Table 15.3 An example of a joint ordinal scale

Equal criterion values Rank in JOS Corresponding vector(s)

A1,B1,C1,D1,E1,F1 1 A1B1C1D1E1F1

C2, E2 2 A1B1C2D1E1F1

A1B1C1D1E2F1

A2, D2, F2 3 A2B1C1D1E1F1

A1B1C1D2E1F1

A1B1C1D1E1F2

B2 4 A1B2C1D1E1F1

B3, E3, F3 5 A1B3C1D1E1F1

A1B1C1D1E3F1

A1B1C1D1E1F3

A3, C3, D3 6 A3B1C1D1E1F1

A1B1C3D1E1F1

A1B1C1D3E1F1

JOS1.a/ � JOS2.a/ � : : : � JOSn.a/:

Then the following rule for comparison of two alternatives may be presented.

Definition 4. Alternative a is not less preferable than alternative b if for each
i D 1; : : : ; n JOSi.a/ � JOSi.b/.

Let use our Joint Ordinal Scale presented in Table 15.3 to compare the following
two applicants, incomparable on the basis of the dominance rule:

a D .A1;B2;C1;D1;E1;F2/

and

b D .A1;B1;C1;D2;E2;F1/:

Let substitute each criterion value in alternatives a and b with corresponding
rank from the JOS. We’ll get for a vector (1,4,1,1,1,3) and for b vector (1,1,1,3,2,1).
When rearranged in an ascending order, the following two vectors can be easily
compared:

JOS.a/ D .1; 1; 1; 1; 3; 4/

and

JOS.b/ D .1; 1; 1; 1; 2; 3/:

It is clear now that alternative b is preferred to alternative a.



616 H. Moshkovich et al.

ZAPROS suggests using Joint Ordinal Scale for pairwise comparison of alterna-
tives from A, thus constructing a partial order on this set.

The construction and implementation of Joint Ordinal Scale, as stated above,
is based on two assumptions: transitivity of the decision maker’s preferences and
preferential independence of pairs of criteria (the last condition leads to an additive
value function in the decision maker’s preferences [30, 31]). This is the basis for the
correctness of rule 4.

For the decision method to be valid within the paradigm of Verbal Decision
Analysis it should provide means for verification of underlying assumptions.
ZAPROS provides these means as follows.

15.3.2.1 Verification of the Structure of the Decision Maker’s Preferences

When comparing vectors from Y (for JOS construction) the decision maker can give
contradictory responses. In the problem under consideration these responses may be
determined as violations of transitivity in the constructed preference relation.

Possible responses of the decision maker in comparison of hypothetical vectors
yi and yj from Y (see Table 15.2) reflect the binary relation of strict preference (
)
or indifference (�) between these two alternatives. The following conditions should
be met as a result of the decision maker’s responses:

if yi 
 yj and yj 
 or � yk then yi 
 yk

if yi � yj and yj � yk then yi � yk

if yi � yj and yj 
 yk then yi 
 yk.
These conditions are checked in the process of preference elicitation, the

intransitive pairs are presented to the decision maker for reconsideration.
The procedure for transitivity verification is described in details in [30, 31], is

implemented in a corresponding computerized system and was used in a number of
different tasks [31, 35, 44].

The next assumption necessary to check is the pairwise preferential indepen-
dence of criteria.

Definition 5. Criteria i and j are preferentially independent from the other criteria,
if preference between vectors with equal values with respect to all criteria but i and
j, does not depend on the values of equal components.

As it is impossible to carry out preference elicitation for all possible combina-
tions of equal values, it was proposed to check preferential independence for pairs
of criteria near two very different “reference situations”. One variant is based on all
the best values for equal components (used in the construction of JOS). The second
with the worst possible values for equal components.

If the decision maker’s preferences among criterion values are the same when
elicited using these two different points, then it is assumed the criteria are
preferentially independent.

Although this check is not comprehensive, the preferential stability when using
essentially different criterion values as the “reference” point suggests it would hold
with the intermediate levels as well [31].
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15.3.3 Joint Scale for Quality Variation: ZAPROS III

The construction of the Joint Ordinal Scale (see Sect. 15.3.2), only a relatively small
number of comparisons are carried out, limited to vectors with all the best criterion
values but one.

In general, the decision-maker may be asked to compare any two hypothetical
vectors from X differing in values with respect to two criteria (with all other values
being at the same level).

Larichev [25] proposed just that in a method called ZAPROS III . The method
requires comparing all criterion values for all pairs of criteria and using this
information for comparison of real alternatives.

ZAPROS III introduces a notion of Quality Variation (QV) which is the result of
changing one value on the scale of one criterion (e.g., from Average ability to teach
our students to Below Average level).

The decision maker is to compare all possible QVs for each pair of criteria
with the assumption that all other criterion values are at the same level (reference
situation). The number of QVs for each scale is ni.ni�1/=2, where ni is the number
of values on the criterion scale.

Once all comparisons for two criteria are carried out all QVs for them are rank
ordered forming the Joint Scale for Quality Variation (JSQV). For example, let
assume that the JSQV for the first two criteria in applicants’ evaluation example
are as follows (we will use A1A2 to show changing value from A1 to A2):

A1A2 
 B1B2 
 A1A3 
 B1B3 
 A2A3 
 B2B3:

It is proposed to carry out these comparisons at two reference situations (as in
ZAPROS): with all the best and all the worst values with respect to other criteria.
If the comparisons provide the same JSQV, these criteria are considered to be
preferentially independent.

Let look at a simple example for three criteria: A, B, and C. Suppose JSQV for
criteria A & B, B & C, and A & C are as follows:

A1A2 
 B1B2 
 A1A3 
 B1B3 
 A2A3 
 B2B3:

C1C2 
 B1B2 
 B1B3 
 C1C3 
 B2B3 
 C2C3:

C1C2 
 A1A2 
 A1A3 
 C1C3 
 A2A3 
 C2C3:
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Table 15.4 Ranks for JSQV

Pair C1C2 A1A2 B1B2 A1A3 B1B3 C1C3 A2A3 B2B3 C2C3

Rank 1 2 3 4 5 6 7 8 9

If we combine all this information together the JSQV is:

C1C2 
 A1A2 
 B1B2 
 A1A3 
 B1B3 
 C1C3 
 A2A3


 B2B3 
 C2C3:

If in the process violations of transitivity of preferences are discovered, they are
presented to the decision maker, and resolved.

Each QV for each criterion gets a rank (e.g., C1C2 has rank 1, A1A2 has rank 2,
etc.). The resulting JSQV ranks are presented in Table 15.4.

These ranks may be used to compare alternatives. In ZAPROS III [25] it is
proposed to present each real alternative as a combination of JSQV ranks. This is
not always possible. For example, in alternative a=(A3,B1,C2) it is not clear if A3
should be presented as A1A3 or A2A3. In ZAPROS we have only information on
A1A2 and A1A3. We do not have information on A2A3 and so there is no question
about the rank to use. With JSQV we need to differentiate these two cases.

To overcome this, ranks describing two alternatives at the same time should be
used. In this case the following rule for comparison is correct:

Definition 6. Alternative a is not less preferable than alternative b if for each
i D 1; : : : ; n JSQVi.a/ � JSQVi.b/.

Let demonstrate this rule for alternatives:

a D .A3;B1;C2/

and

b D .A2;B2;C1/:

For criterion A the change is from A2 to A3, so we change A3 in alternative a to
rank 7 (see Table 15.4 for A2A3) and A2 in alternative b to rank 0; for criterion B
change is from B1 to B2, so we change B2 to rank 3 and B1 to rank 0; for criterion
C change is from C1 to C2, so we change C2 to rank 1 and C1 for rank 0. As a result
alternative a is presented as vector (7,0,1) or JSQV(a)D (0,1,7), and alternative b is
presented as a vector (0,3,0) or JSQV(b)D (0,0,3). Vector (0,0,3) dominates vector
(0,1,7), so alternative b is preferred to alternative a.

Some pairs of real alternatives may still be incomparable. In ZAPROS III it is
proposed to sequentially select non-dominated nuclei (analogous to ZAPROS [30]).
Alternatives from the first nucleus are assigned rank 1. An alternative has a rank r if
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it is dominated by an alternative ranked r�1 and itself dominates alternative ranked
rC1. As a result some alternatives can have a “fuzzy” rank (e.g., 5–7).

While constructing JSQV the number of required comparisons by the decision
maker may be quite large. It is reasonable to use this approach for relatively small
problems (small number of criteria and small number of possible criterion values)
with a relatively large number of real alternatives.

In [45] the authors proposed to use additional comparisons only after applying
Joint Ordinal Scale for comparison of real alternatives. The goal is to elicit only
information necessary to compare alternatives left incomparable after that. The
process is iterative (as needed), that is why it was named STEP-ZAPROS and is
described in the next section.

15.3.4 Goal Oriented Process for Quality Variations:
STEP-ZAPROS

This approach views the general application of ordinal preferences for comparison
of real alternatives as a three-step procedure:

1. use rule of dominance to compare real alternatives on the basis of ordinal scales.
If required decision accuracy is obtained, stop here

2. construct Joint Ordinal Scale and use it to compare real alternatives. If required
decision accuracy is obtained, stop here

3. use additional ordinal tradeoffs to compare real alternatives as necessary. Use
restructuring procedures if the necessary accuracy is not achieved.

Additional comparisons are carried out only when necessary and only the
necessary comparisons are carried out. Thus, the procedure is oriented on efficient
acquisition of necessary information when small number of real alternatives needs
to be compared.

When comparing real alternatives using Joint Ordinal Scale, alternatives are
presented through JOS ranks: JOS(a) and JOS(b) (see Sect. 15.3.2). If alternatives
a and b have been left incomparable it means we have at least two ranks such that
JOSi.a/ < JOSi.b/ while JOSj.a/ > JOSj.b/. These ranks represent some criterion
values in JOS.

The idea is to form two vectors from X different in values with respect to only
two criteria (with all the best values with respect to all other criteria). Different
criterion values represent the “contradicting” ranks in JOS(a) and JOS(b).

Let our JOS.a/ D .1; 1; 1; 2; 3; 3/ and JOS.b/ D .1; 1; 1; 1; 1; 5/. They are
incomparable according to JOS as rank 5 is less preferable than rank 2 or 3. If,
for example, rank 5 is more preferable than ranks 3 and 3 together, then alternative
b would be preferable to alternative a.

Rank 3 is presented in the JOS (see Table 15.3) by corresponding criterion
values A2, D2, and F2. Rank 5 corresponds to criterion values B3, E3, and F3.
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Table 15.5 Effectiveness of STEP-ZAPROS

Parameters

Number of criteria 5 5 5 5 7 7 7 7

Number of criterion values 3 3 5 5 3 3 5 5

Number of alternatives 30 50 30 50 30 50 30 50

% of compared alternatives 76 76 73 74 63 64 56 59

Additional comparisons 14 17 63 96 21 30 86 141

It allows formation of the following vectors, representing combination of ranks
(3,3) and (1,5) and differing in only two criterion values: (A1,B1,C1,D2,E1,F2) and
(A1,B1,C1,D1, E1,F3). Comparison of these two vectors will compare D1D2 with
F2F3 (see Sect. 15.3.3).

If the second vector is preferred to the first one then alternative b is preferred to
alternative a. If not, the alternatives may be left incomparable.

As the comparison of such specially formed vectors reflects comparison of pairs
of ranks in the Joint Ordinal Scale, it is referred to as Paired Joint Ordinal Scale
(PJOS) and allows the following rule for comparison of real alternatives:

Definition 7. Alternative a is not less preferable than alternative b if for each pair
of criterion values (ai; aj) of alternative a there exists a pair of values (bk; bl) of
alternative b such that PJOS(ai; aj)� PJOS(bk; bl).

The proof of the correctness of the rule in case of an additive value function is
given in [45].

Preferential independence of criteria is checked while constructing the Joint
Ordinal Scale (see Sect. 15.3.2). Transitivity of preferences at the third step is
checked only partially in the process of comparisons (as we have previous infor-
mation on preferences among some of pairs of JOS ranks). It is technically possible
to carry out auxiliary comparisons (as in ZAPROS) to ensure transitive closure. It
can be applied as necessary at the discretion of the consultant.

To demonstrate the potential of these three steps, simulation results were
presented in [45]. Partial information for different problem sizes is presented in
Table 15.5.

Data show that (1) the number of real alternatives does not influence the
efficiency of the procedure very much; (2) the number of criteria to some extent
influences overall comparability of alternatives; (3) the number of criterion values
has a crucial influence on the number of additional comparisons carried out in the
third step.

Overall the data show that method ZAPROS is most efficient for tasks where
number of criteria is relatively small and number of alternatives for comparison is
relatively large.
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15.3.5 Working in the Space of Real Alternatives: UniCombos

UniCombos [1] is a computerized system which is based on the ideas of the
described VDA methods but it has three major differences:

 the approach assumes that we need to rank order only small number of real
alternatives;

 a decision maker can consistently compare alternatives’ values differing against
more than two criteria;

 the ability of the decision maker to compare complex combinations of alterna-
tives’ values is helped by means to visualize those values.

The first statement leads to an opportunity to elicit only limited preferential
information from the decision maker pertaining only to the comparison of real
alternatives while the other two allow much higher level of comparability among
the real alternatives.

As Step-ZAPROS, UniCombos assumes three steps in the process. The first
step, as in all VDA methods is connected with comparison of alternatives’ values
on one criterion, resulting in ordinal scales and the dominance rule for pairwise
comparison. If the rank ordering is not achieved, the second step is to compare
all alternatives’ values against two criteria (the so called “dyads”). It is the same as
constructing JSQV in ZAPROS III but the comparisons are limited to combinations,
present among the alternatives and necessary to compare real alternatives.

As an interactive system, the UniCombos checks the comparability of the
alternatives after each additional piece of preferential information is obtained. It will
stop as soon as all alternatives are compared and/or the best alternative is found.

Once all possible pairs of alternatives’ values are compared but there are still
incomparable alternatives in the set, the system will present the decision maker with
the so-called, “tryads” of alternatives’ values—values different against three criteria.
The application of the step is based on the relatively positive feedback about stability
of subjects’ preferences from am experiment described in [13]. The main conclusion
was that the decision maker will be consistent if presented with the “tryads” in a
way which incorporates previous information on preferability of “dyads”. Let us
illustrate the process using the following simple example.

Let assume we have two alternatives for comparison a D .A3;B1;C1/ and b D
.A2;B2;C2/. We already made the comparison of “dyads” which resulted in the
comparisons presented as JSQV ranks in Table 15.4. Using the ranks to re-write
these alternatives we obtain JSQV.a/ D .0; 0; 7/ while JSQV.b/ D .0; 1; 3/. There
is no dominance in the vectors, so alternatives are left incomparable using “dyads”.

To overcome this incomparability the decision maker is presented with a “tryad”
of values for comparison. In this case it will be presentation of the alternatives a
and b (as we have only three criteria in the problem). The peculiarity of UniCombos
is how it presents these values. The main idea is that we divide alternatives’ values
into two groups: one combines a pair of values of alternative a which is known to
be more preferable than the pair of values in alternative b and present this part in
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Table 15.6 Presentation of a “tryad” to the decision maker

Alternative a Alternative b

Ability to teach is below average Ability to teach is average

Ability to teach DBMS is above average Ability to teach DBMS is average

Completed research is above average Completed research is average

a lighter color. The value left is less preferable and is presented in a darker color.
As a result each alternative is presented as a combination two parts—lighter and
darker—to make it easier for the decision maker to carry out the comparison.

Table 15.6 shows an example where boldfaced test presents less preferable
(darker) part of the “tryad”.

There are several ways how these two alternatives may be presented: e.g., A2B2

 A3B1 but C1 
 C2 (presented) or A2C2 
 A3C1 but B1 
 B2, and so on. The
system uses this quality to present the decision maker with the same two alternatives
in different ways to check the consistency of the comparison.

UniCombos is able to continue the process technically with any number of
alternatives’ values (4 or 5) until the desired comparability of alternatives is
achieved. The system was used in [61] for the selection of a construction contract.
There were three alternatives and seven criteria involved. The demo of the system is
accessible at http://iva.isa.ru.

15.4 Decision Methods for Multiple Criteria Alternatives’
Classification

Along with multiple criteria choice/ranking problems, people may face multiple
criteria classification problems [66]. Rather a large number of classification tasks in
business applications may be viewed as tasks with classes which reflect the levels of
the same property. Evaluating creditworthiness of clients is rather often measured
on an ordinal level as, e.g., “excellent”, “good”, “acceptable”, or “poor” [4]. Articles
submitted to the journals in the majority of cases are divided into four groups:
“accepted”, “accepted with minor revisions”, “may be accepted after revision and
additional review”, “rejected” [31]. Applicants for a job are divided into accepted
and rejected, but sometimes there may be also a pool of applicants left for further
analysis as they may be accepted in some circumstances [3, 57]. Buildings of the
“old town” are divided into the ones of high, average or low historical value [60].

Multiple criteria problems with ordinal criterion scales and ordinal decision
classes were named problems of ordinal classification (ORCLASS)[29].

http://iva.isa.ru
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15.4.1 Problem Formulation

Formal presentation of the problem under consideration is close to the one in
Sect. 15.3.1 as we use criteria scales with finite set of verbal values and analyze
the criterion space. Thus items 1–4 are the same while item 5 and what is required
in the problem differ.

Given:

1. There is a set of n criteria for evaluation of alternatives.
2. Xi is a finite set of possible verbal values on the scale of criterion i D 1; : : : ; n,

where jXij D ni.
3. X DQn

iD1 Xi is a set of all possible vectors in the space of n criteria.
4. A D fa1; : : : ; ai; : : : ; amg � X is a subset of vectors from X describing real

alternatives
5. C D fC1; : : : ;Ci; : : : ;Ckg is a set of decision classes.

Required: distribute alternatives from A among decision classes C on the basis of
the decision-maker’s preferences.

For example, the applicants’ problem presented in Table 15.1 may be viewed as
a classification problem if we need to divide all applicants into three classes: (1)
accepted for an interview, (2) left for further consideration, (3) rejected.

We will use the same notation for preferences as in Sect. 15.3.1. In addition,
notation C(a) means class for alternative a, e.g., C(a)=C2 means alternative a
belongs to the second class.

15.4.2 An Ordinal Classification Approach: ORCLASS

As in ZAPROS the VDA framework assumes ordinal criterion scales establishing
a dominance relationship among vectors from X (see Definition 1). In ordinal
classification there is an ordinal relationship among decision classes as well. This
means that alternatives from class C1 are preferred to alternatives in class C2 and so
on. The least preferable alternatives are presented in class Ck. As a result alternatives
with “better” qualities (criterion values) should be placed in a “better” class.

These ordinal qualities allow formation of an effective decision maker’s prefer-
ence elicitation approach [26, 29, 31, 33, 38–41].

The decision maker is presented with vectors from X and asked directly to define
an appropriate decision class. The cognitive validity of this form of preference
elicitation was thoroughly investigated and found admissible [28, 32].

It is possible to present the decision maker with all possible vectors from X
to construct a universal classification rule in the criterion space. However, it is
impractical even for relatively small problem sizes. The ordinal nature of criterion
scales and decision classes allows formulation of a strict preference relation: if
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vector x is placed in a better class than vector y, then vector x is more preferable
than vector y.

Definition 8. For any vectors x; y 2 X where C.x/ D Ci and C.y/ D Cj if i < j
then x 
 y.

As a result we can formulate a condition for a non-contradictory classification
of vectors x and y: if vector x dominates vector y and is placed into ith class, then
vector y should be placed into a class not more preferable than the ith class.

Definition 9. For any vectors x; y 2 X if y is dominated by x .x 
 y/ and C.x/ D Ci,
then C.y/ D Cj where j 	 i.

Using this quality we can introduce a notion of expansion by dominance [29].

Definition 10. If vector x 2 X is assigned class Ci by a decision maker, then for all
y 2 X such that x 
 y possible classes are Cj where j 	 i. For all y 2 X such that
y 
 x possible classes are Cj where j � i.

Each classification of a vector from X by a decision maker limits possible classes
for all dominating it and dominated by it vectors from X. Let mark as G.x/ D
fl; lC 1; l C 2; ::;mg a subset of classes admissible at this moment for vector x. In
the beginning G.x/ for each x 2 X contains all possible classes from 1 to k. When
the number of admissible classes for the x becomes equal to one, a unique class is
assigned to x.

Using expansion by dominance we can obtain classification for some vectors
from X not presented to the decision maker (there are some results [29, 31, 33, 38]
showing that between 50 and 75 % of vectors may be classified indirectly using this
rule).

In addition, there is a simple way to discover possible errors in the decision
maker’s classifications: if an assigned class is outside the admissible range, there
is a contradiction in the ordinal classification. Contradictory classifications may be
presented to the decision maker for reconsideration.

For more details on the procedure see [29, 31].
The efficiency of the indirect classification of vectors from set X depends on

the vectors presented to the decision maker as well as on the class assigned [29,
31]. Ideally, we would like to present the decision maker with as few questions as
possible and still be able to construct a complete classification of vectors from set
X. Different heuristic approaches were proposed to deal with this problem, based
on the desire to find the most “informative” vectors to be presented to the decision
maker for classification.

15.4.3 Effectiveness of Preference Elicitation

The first approach was proposed in ORCLASS [31] and is based on the maximum
“informativeness” of unclassified vectors from X . Each class is presented by its
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“center”: average of criterion values of vectors already in the class. For each
unclassified vector x for each its admissible class i from G.x/ “similarity” measure
pi.x/ is calculated. The “similarity” measure evaluates how probable the class is
for this vector. To calculate pi, the normalized distance between the vector x and
the center of the class is calculated. Also, for each admissible class the number of
indirectly classified vectors gi.x/ if x is assigned class Ci is evaluated.

Informativeness F.x/ for vector x is calculated as sum of products of probability
by the number of indirectly classified vectors for all admissible classes:

F.x/ D
X

pi.x/gi.x/:

The vector with the largest “informativeness” value is selected for classification by
the decision maker. After the decision maker classifies this vector, the expansion
by dominance is carried out and informativeness of all vectors is recalculated. The
approach favors vectors from X which define approximately equal number of other
vectors by indirect classification in case of any of the admissible classes.

Simulations show high effectiveness of the procedure with only 5–15 % of all
vectors from X necessary to be classified by the decision maker [31]. The drawback
of the approach is its high computational complexity.

Another approach was proposed in [33]. It is based on a maxmin principle. For
each unclassified vector the minimum number of indirectly classified vectors in
case of admissible classes is defined and the vector with the maximum number is
selected for classification by the decision maker. The computational complexity of
the approach is a bit lower than in the previous case.

Another algorithm called CYCLE was presented in [38]. The idea is to construct
“chains” of vectors between vectors x and y which belong to different classes. The
“chain” is constructed sequentially by changing one criterion value in vector x by
one level until we obtain criterion values of vector y. Then the most “informative”
vector is searched only in the chain, thus essentially lowering the computational
complexity of the algorithm. The process is dynamic and searches for the “longest”
chain between two vectors.

The effectiveness of the approach was compared to the algorithms of monotone
function decoding and appeared much more effective for smaller problems and
simpler borders while being somewhat less effective in more complex cases.

15.4.4 Class Boundaries

Ordinal classification allows not only a convenient method of preference elicitation,
but also an efficient way to present the final classification of set X.

Let assume we have a classification of set X into classes C. We will view Ci as a
subset of vectors from X, assigned to the ith class.
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Two special groups of vectors may be differentiated among them: lower border
of the class LBi and the upper border UBi. Upper border includes all non-dominated
vectors in the class, while lower border includes all non-dominating vectors in this
class.

These two borders accurately represent the ith class: we can classify any other
vector as belonging to class Ci if its criterion values are between values of vectors
from LBi and UBi.

Let us look at vector C(x)=Ci which is not in the upper or lower border of the
class. It means there is a vector y 2 UBi for which y 
 x, thus C.y/ � C.x/.
Analogously there is object z 2 LBi for which x 
 z. Thus C.x/ 	 C.z/. But
C.y/ D C.z/ D Ci. This leads to C.x/ D Ci.

Borders summarize classification rules. If we know classification of vectors in the
class borders only, it would be enough to classify any vector from set X [29, 31, 33].
That is why, heuristic methods are oriented on finding potential “border vectors” for
presentation to the decision maker.

15.4.5 Real Alternatives Classification: SAC and CLARA

In cases when it is necessary to classify a relatively small number of alternatives
only once (not to construct a classification rule in the criteria space) a modified
approach may be used to decrease the number of vectors the decision maker has
to classify. Method SAC (Subset of Alternatives Classification) [37] and CLARA
(Classification of Real Alternatives) [60] are designed for this type of a problem.

In the SAC method the principle of evaluating “informativeness” is the same as
in ORCLASS (see Sect. 15.4.3) but only the indirectly classified real alternatives
are taken into account (not all alternatives from the set X). This makes the process
less complex. Another difference is that in SAC you can evaluate “relative infor-
mativeness” of a vector in the form of F.x/=Œ.1C v=F.x/� where v is the variance
in the number of indirectly classified alternatives. The variance is dependent on the
number of classes and the number of criteria. The recommended values are between
2.2 and 3.5. If v is equal to zero, the informativeness is calculated the same as in
ORCLASS.

Method CLARA is also oriented on classification of real alternatives but selection
of alternatives to be presented to the decision maker for classification is based on
the CYCLE approach (see Sect. 15.4.3). The algorithm is based on dichotomy of
alternatives’ chains, beginning with the longest one. For example, let us consider we
have only two classes. We know that real alternative A1B1C2D1 belongs to class
C1 and real alternative A3B3C3D1 belongs to class C2. We construct a “chain” of
dominating real alternatives between these two alternatives, e.g.,

A1B1C2D1 
 A2B1C2D1 
 A2B2C2D1 
 A3B2C2D1 
 A3B3C3D1
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If there are no other real alternatives to form any other chains in this case, the
alternative to be presented to the decision maker is A2B2C2D1 because it is in the
middle of the chain (the best candidate for the “border between two classes). There
may be several chains we can form: if we have real alternative A1B2C2D1, another
chain of alternatives is

A1B1C2D1 
 A1B2C2D1 
 A2B2C2D1 
 A3B2C2D1 
 A3B3C3D1

In this case the chains are of the same length and produce the same alternative
for classification.

15.4.6 Hierarchical Ordinal Classification

Verbal Decision Analysis is a powerful approach which produces transparent
methods and processes attractive to the decision makers. On another hand the
majority of applications of these methods concentrate on small size problems. For
examples, two cases—application of ORCLASS to marketing decisions in a small
firm [14] as well as application of ZAPROS III to the rank ordering of ways to
diagnose Alzheimer’s Disease [58] both used just three criteria in alternatives’
evaluation. Applications dealing with high number of criteria are usually presented
as a hierarchy of criteria.

Method CLARA [53] and computerized system VERBA [47] directly address the
possibility and sometimes necessity to use a hierarchy of criteria in real applications.
Ordinal classification is a logical way of constructing such hierarchies. As we have
ordinal verbal scales for criteria, they may be viewed as decision classes for criteria
of a lower level.

Let return to our applicants’ evaluation example in Table 15.1. We can present
the problem using only three criteria instead of six: “ability to teach”, “ability for
research”, “match of research interests” with scales “above average”, “average”,
and “below average”. We can use ordinal classification approach to combine all
possible value combinations for two criteria “ability to teach students” and “ability
to teach SA&D and DBMS” into the three “decision classes” of “ability to teach”:
“above average”, “average”, and “below average”. Criterion “ability for research”
is a combination of three low level criteria: “evaluation of complete research”,
“potential in publications”, and “potential leadership in research”. This way we can
solve two small ORCLASS problems and then solve a small ZAPROS problem,
making the process less exhausting and more attractive to the decision maker.

Method CLARA used two-level hierarchy of criteria to construct a classification
rule in the criterion space for evaluating investment risk in construction projects
[53]. They had six final decision classes, with six criteria at the highest level with
3–4 criterion values. Each of these criteria was a combination of 3–4 criteria at the
lower level. The problem of this size can be solved only by a hierarchy.
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System VERBA is an attempt to combine all these VDA approaches in one place.
It allows decomposition of any problems into a hierarchy of subproblems and a
flexible implementation of ordinal classification and/or rank ordering of alternatives
(ZAPROS style) for any subproblem or its parts. All preferential information is
stored, checked for transitivity and may be used at any time for any type of a
problem. Partial illustration of the system may be found in [47].

15.5 Place of Verbal Decision Analysis in MCDA

The decision maker is the central figure in decision making based on multiple
criteria. Elicitation of the decision makers’ preferences should take into account
peculiarities of human behavior in the decision processes. This is the central goal of
Verbal Decision Analysis.

Like outranking methods (e.g., ELECTRE, PROMETHEE) VDA provides out-
ranking relationships among multiple criteria alternatives. At the same time, VDA is
designed to elicit a sound preference relationship that can be applied to future cases
while outranking methods are intended to compare a given set of alternatives. VDA
is more oriented on tasks with rather large number of alternatives while number
of criteria is usually relatively small. Outranking methods deal mostly with reverse
cases.

VDA bases its outranking on axiomatic relationships, to include direct assess-
ment, dominance, transitivity, and preferential independence. Outranking methods
use weights as well as other parameters, which serve an operational purpose but also
introduce heuristics and possible intransitivity of preferences. VDA is based on the
same principles as multi-attribute utility theory (MAUT), but is oriented on using
the verbal form of preference elicitation and on evaluation of alternative decisions
without resort to numbers. That is why we consider that VDA is oriented on the
same tasks as MAUT and will be compared in a more detail to this approach to
multiple criteria decision making.

15.5.1 Multi Attribute Utility Theory and Verbal Decision
Analysis Methods

The central part of MAUT concentrates on deriving numeric scores for criterion
values and relative criterion weights which are combined in an overall evaluation of
an alternative’s value.

There are a number of methods and procedures for eliciting criterion weights
and scores. Some of these methods are based on sound theory, while others use
simplified heuristic approaches.
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Experiments show that different techniques may lead to different weights [5, 54],
but in modeling situations varying criterion weights often does not change the result
thus leading to the conclusion that equal weights work sufficiently well [7, 9].
However, the situation may not be the same for real decision tasks when differences
between alternatives are small. Slight differences in weights can lead to reversals in
the ranking of alternatives [34, 35, 64].

Two approaches (MAUT and VDA) were applied to the same decision making
problems [12, 27, 36]. Positive and negative features of each approach were
analyzed, the circumstances under which one or the other would be favored were
examined.

Three groups of criteria for comparison were considered: methodological,
institutional and personal [12, 27].

Methodological criteria characterize an approach from the following perspec-
tives:

 measurements of alternatives with respect to criteria;
 consideration of alternatives;
 complexity reduction;
 quality of output;
 cognitive burden.

Measurements. VDA uses verbal scales, while MAUT is oriented on obtaining
numerical values.

People use verbal communication much more readily than quantitative commu-
nication. Words are perceived as more flexible and less precise, and therefore seem
better suited to describe vague opinions. Erev and Cohen stated that “ forcing people
to give numerical expressions for vague situations where they can only distinguish
between a few levels of probability may result in misleading assessments” [10].

But there are positive factors in utilization of quantitative information: people
attach a degree of precision, authority and confidence to numerical statements that
they do not ordinarily associate with verbal statements, and it is possible to use
quantitative methods of information processing.

The experiments made over many years by Prof. T. Wallsten and his colleagues
demonstrated no essential differences in the accuracy of evaluations [6, 10], but
there was essential difference in the number of preference reversals. The frequency
of reversals was significantly decreased when using the verbal mode [15].

The two methods differ considerably in whether they force consideration of
alternatives. If the best alternative is not found by using “verbal” comparisons, VDA
seeks to form another alternative that has not previously been considered (generating
new knowledge) by acknowledging the fact that there is no best alternative among
presented. VDA assumes that if it is not possible to find better alternative on an
ordinal level, there is either no satisfactory alternative or alternatives are too close
in quality to differentiate between them.

The numerical approach does not force thorough consideration of alternatives, as
it is capable to evaluate even very small differences among alternatives. It is always
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possible to find the best alternative in this case. The question is if the result is reliable
enough.

Complexity. VDA diminishes complexity of judgments required from the deci-
sion maker as it concentrates only on essential differences. The MAUT method
requires very exact (numerical) comparisons of differences among criteria and/or
alternatives in majority of cases.

Quality of output. MAUT provides overall utility value for each alternative. This
makes it possible to not only identify the best alternative but also to define the
difference in utility between alternatives. This means that the output of MAUT
methods is rich enough to give the decision-maker the basis for detailed evaluation
and comparison of any set of alternatives.

VDA attempts to construct a binary relation between alternatives which may
lead to incomparable alternatives, but assures that comparisons are based on sound
information elicitation.

Cognitive burden. A goal of all decision methods is reducing the confusing effect
of ambiguity in preferences. Methods deal with this phenomenon in very different
ways. VDA alters ambiguity and corresponding compensations into levels (rather
than exact numbers).

MAUT attempts to estimate the exact amount of uncertainty. The payoff is that
the analysis can derive a single estimate of uncertainty to go with the single estimate
of utility.

Institutional criteria include: the ease of using the approach within organizations,
and consequences of cultural differences.

Both MAUT and VDA can be considered improvements over confounding cost-
benefit analysis based upon data with little hope of shared acceptance. Achieving
greater clarity does, to some extent, provide improved communication within
organizations. However, the information upon which MAUT develops utility is of
suspect reliability.

The VDA approach uses more direct communication and active groups are used
to assign the verbal quality grades on criteria scales. The VDA approach does
not require the decision-maker or expert to have previous knowledge in decision
methods. On the other hand, MAUT findings can be presented graphically and
provide sensitivity analysis because of its numerical basis.

Some cultural differences may influence the applicability of different approaches.
Americans tend to use numerical evaluations more often than in some other
countries (e.g., Russia). American analysts are usually required “to put a price tag
on goods not traded in any market place” [11]. That is not always the case in Europe.

Personal criteria include: the educational level required of decision-makers to
use methods; and how the professional habits of analysts influence the selection of
an approach.

The practical experience and intellectual ability of the decision-maker are
presuppositions for the utilization of any analytical technique. MAUT requires more
detailed trade-off balancing, calling for deeper ability to compare pairs of criteria
performances. VDA is designed to focus on more general concepts.
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Training in decision analysis helps decision-makers to understand and accept
the MAUT approach. VDA methods do not require any special knowledge in
decision analysis on the part of the decision-maker. The VDA approach is especially
useful when a decision is made under new circumstances or in conditions of high
ambiguity.

Comparison: The MAUT approach has a strong mathematical basis. MAUT
provides a strong justification of the type of utility function used for aggregation
of single-attribute utilities over criteria. Different kinds of independence conditions
can be assumed [19]. In the case of criteria dependence, a nonlinear form quite
different from the simple additive linear model is available. The involvement
of the decision-maker is needed to elaborate a utility function. But after this is
accomplished, it is possible to compare many alternatives. Should a new alternative
appear, no additional decision-maker efforts are needed. Possible inaccuracy in the
measurements could be compensated for by sensitivity analysis.

Conversely, the questions posed to decision-makers have no psychological
justification. Some questions could be very difficult for humans to completely
understand. Decision-makers require special training or orientation in order for
MAUT methods to be used. Possible human errors in evaluating model parameters
are not considered. Sensitivity analysis is recommended to evaluate stability of the
result.

Verbal Decision Analysis has both psychological and mathematical basis. In all
stages of the method natural language is used to describe concepts and information
gathered relating to preference. Preferential criteria independence is checked. If
criteria are dependent, we may try to transform the verbal description of a problem to
obtain independence [31]. For example, sometimes criteria (or their scales) may be
too detailed (not necessary information) or too general (not possible to differentiate).
In these cases introducing two or three more detailed criteria instead of one too
general for evaluation or collapsing a couple of criteria into one on a more general
level may lead to preferential independence. In addition VDA has special procedures
for the identification of contradictions in the information provided by the decision-
maker.

Conversely, there are some cases when incomparability (due to lack of reliable
information) does not guarantee identification of one best alternative. There may
be more than one alternative ranked at the best level. The decision rule might not
be decisive enough in cases when a decision must be reached quickly. There is no
guarantee that experts could find a better alternative after formulation of directions
for improvements of existing alternatives.
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15.5.2 Practical Value of the Verbal Decision
Analysis Approach

VDA has positive features of:

 Using psychologically valid preference input;
 Providing checks for input consistency;
 Implementing mathematically sound rules.

VDA was used in a number of applications for different types of decision
problems. ZAPROS (and its variations) was used in R&D planning [30, 31],
applicants’ selection [44], job selection [34, 35], and pipeline selection [12, 27, 36].

R&D planning problem was connected with a state agency financing different
research projects. Number of applications for funding was around several thousand
each year, approximately 70 % of them were awarded required (or reduced) funding.
The decisions were to be made rather quickly after the deadline for applications
(couple of months). To be able to cope with this level of complexity, it was decided
to construct a decision rule in the criterion space and apply it to alternatives’
descriptions against the criteria which were obtained through experts. ZAPROS was
used to construct Joint Ordinal Scale in the criterion space which was used to form
ordered groups of alternatives (for sequential distribution of funds). The number of
criteria ranged from 5 to 7 for different subgroups of projects.

The task of applicants selection was implemented in one of the American
universities where there could be more than 100 applicants for a faculty position
[44]. Six criteria with three level (verbal) scales were used to construct the Joint
Ordinal Scale to be used to select s subset of better applicants for further analysis
and an interview. The department chair was the decision maker in this case.

Pipeline selection was a somewhat different type of problem where there were
relatively small number of very complicated alternatives: possible routes for a new
gas pipeline. Modified variant of ZAPROS was used to elicit preferences from the
decision maker in this case and use it to analyze the quality of presented alternatives.
All alternatives were found out to be not good enough for implementation. The
analysis was directed towards “redefining” the problem through a more detailed
and/or less detailed criteria and formation of a new “adjusted” alternative acceptable
for the authorities.

Tamanini et al. [58] applied ZAPROS III to rank order tools in of Alzheimer’s
disease diagnosis. In this work, preferences were obtained through questionnaires
from experts and postmortem patient diagnosis. The study enabled identification
of tests that would more quickly detect patients with Alzheimer’s disease. Usti-
novichius et al. [61] used UniCombos [1] to compare construction contracts using
seven criteria for three real alternatives. ZAPROS-LM was used in rank ordering
real retailer commercialization decisions in Brazil based on discussions and analysis
with key managers [49]. Mendes et al. [42] demonstrated use of VDA in the
design of mobile television application, applying ZAPROS to the characteristics
of prototypes based on user experience and intentions.
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The ordinal classification approach was used for R&D planning and journals’
evaluation, as well as for job selection [31, 39]. In addition, this approach was found
to be very useful in the area of knowledge base construction for expert systems and is
often used in medical diagnostics [26, 33, 40, 41, 46]. Yevseyeva et al. [65] applied
a SAC like method for neuropsychology patient diagnosis. CLARA was used in
several applications concerned with decision making in the area of construction
[53, 60]. Gomes et al. [14] applied ORCLASS to marketing decisions for a small
business in Brazil engaged in the distribution of dental products.

15.6 Conclusion

MCDA is an applied science. The primary goal of research in MCDA is to
develop tools to help people to make more reasonable decisions. In many cases the
development of such tools requires combination of knowledge derived from such
areas as applied mathematics, cognitive psychology, and organizational behavior.
Verbal Decision Analysis is an example of such a combination. It is based on
valid mathematical principles, takes into account peculiarities of human information
processing system, and places the decision process within the organizational
environment of the decision making.

This chapter has reviewed the basic underpinnings of Verbal Decision Anal-
ysis. They were demonstrated with early VDA methods, such as ZAPROS and
ORCLASS, and their later modifications, such as ZAPROS III, UniCombos,
CLARA, VERBA, and others. There is active research in further development of
VDA methods, both in Russia, the home of VDA, and in the Americas. A number of
published applications to real decision problems were discussed here, demonstrating
the maturity of VDA.
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Chapter 16
A Review of Fuzzy Sets in Decision Sciences:
Achievements, Limitations and Perspectives

Didier Dubois and Patrice Perny

Abstract We try to provide a tentative assessment of the role of fuzzy sets
in decision analysis. We discuss membership functions, aggregation operations,
linguistic variables, fuzzy intervals and valued preference relations. The importance
of the notion of bipolarity and the potential of qualitative evaluation methods are
also pointed out. We take a critical standpoint on the state of the art, in order to
highlight the actual achievements and try to better assess what is often considered
debatable by decision scientists observing the fuzzy decision analysis literature.

Keywords Decision • Qualitative value scales • Aggregation • Linguistic
variables • Preference relations • Fuzzy intervals • Ranking methods

16.1 Introduction

The idea of using fuzzy sets in decision sciences is not surprising since decision
analysis is a field where human-originated information is pervasive. The seminal
paper in this area was written by Bellman and Zadeh [9] in 1970, highlighting the
role of fuzzy set connectives in criteria aggregation. That pioneering paper makes
three main points:

1. Membership functions can be viewed as a variant of utility functions or rescaled
objective functions, and optimized as such.

2. Combining membership functions, especially using the minimum, can be one
approach to criteria aggregation.

3. Multiple-stage decision-making problems based on the minimum aggregation
connective can then be stated and solved by means of dynamic programming.
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This view was taken over by Tanaka et al. [115] and Zimmermann [132] who
developed popular multicriteria linear optimisation techniques in the seventies. The
idea is that constraints are soft and can be viewed as criteria. Then any linear
programming problem becomes a max-min fuzzy linear programming problem.

Other ingredients of fuzzy set theory like fuzzy ordering relations, linguistic
variables and fuzzy intervals have played a major role in the diffusion of fuzzy
set ideas in decision sciences. We can especially point out the following:

1. Gradual or valued preference relations (stemming from Zadeh’s fuzzy orderings
[127]) further studied by Orlovsky [94], Fodor and Roubens [63], Van De Walle
et al. [119], Díaz et al. [34, 36], and others [12]. This notion was applied to
outranking methods for multicriteria decision-making.

2. Many other aggregation operations are used so as to refine the multicriteria
aggregation technique of Bellman and Zadeh: t-norms and conorms, symmetric
sums, uninorms, leximin, Sugeno and Choquet integrals etc. This trend is testified
by three recent books (Beliakov et al. [8], Torra and Narukawa [116], Grabisch
et al. [74]).

3. Fuzzy interval computations so as to cope with uncertainty in numerical aggre-
gation schemes. Especially, extensions of the weighted average with uncertain
weights [98, 125].

4. Fuzzy interval comparison techniques enable the best option in a set of alterna-
tives with fuzzy interval ratings to be selected [124].

5. Linguistic variables [128] are supposed to model human originated information,
so as to get decision methods closer to the user cognition [78].

What has been the contribution of fuzzy sets to decision sciences? Following
the terminology of the original Bellman-Zadeh paper, fuzzy decision analysis
(FDA) is supposed to take place in a “fuzzy environment”, in contrast with
probabilistic decision analysis, taking place “under uncertainty”. But, what is a
fuzzy environment? It seems that many authors take it an environment where the
major source of information is linguistic, so that linguistic variables are used, which
does not correspond to Bellman and Zadeh’s proposal. One should nevertheless not
oppose “fuzzy environment” to “uncertain environment”: the former in fact often
means “using fuzzy sets”, while the latter refers to an actual decision situation: there
is epistemic uncertainty due to missing information, not always related to linguistic
imprecision.

Actually, for many decision theory specialists, it is not clear that fuzzy sets have
ever led to a new decision paradigm. Indeed, some have argued that either such
techniques already existed under a different terminology, or that fuzzy decision
methods are but fuzzifications of standard decision techniques. More precisely,

• Fuzzy optimization following Bellman and Zadeh [9], Tanaka et al. [115]
and Zimmermann [132] comes down to max-min bottleneck optimization. But
bottleneck optimisation and maximin decisions already existed independently of
fuzzy sets.
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• In many cases, fuzzy sets have just been added to existing techniques (fuzzy AHP
methods, fuzzy weighted averages, fuzzy extensions of ELECTRE-style Multiple
Criteria Decision Making (MCDM) methods) with no clear benefits (especially
when fuzzy information is changed into precise numbers at the preprocessing
level, via defuzzification, which can be observed sometimes).

• Fuzzy preference modelling is an extension of standard preference modelling and
must be compared to probabilistic or measurement-based preference modeling.

In fact, contrary to what is often claimed in FDA papers, it is not always the case
that adding fuzzy sets to an existing method improves it in a significant way. It does
needs to be articulated by convincing arguments, based on sufficient knowledge of
state-of-the-art existing techniques.

To make a real contribution one must show that the new technique

• either addresses in a correct way an issue not previously handled by existing
methods: e.g., criterion dependence using Choquet integral.

• or proposes a new setting for expressing decision problems more in line with the
information provided by users: for instance using qualitative information instead
of numerical.

• or yet possesses a convincing rationale (e.g., why such an aggregation method?
why model uncertainty by a fuzzy set?) and a sound formal setting amenable to
some axiomatization.

• in any case, is amenable to a validation procedure.

Unfortunately, it is not always clear that any such contribution appears in many
proposals and published papers on FDA. The validation step, especially, seems to be
neglected. It is not enough to propose a choice recipe illustrated on a single example.

This position paper takes a skeptical viewpoint on the fuzzy decision literature,
so as to help laying bare what is its actual contribution. Given the large literature
available there is no point to providing a complete survey. However we shall try
to study various ways fuzzy sets were instilled in decision methods, and provide a
tentative assessment of the cogency of such proposals. More specifically, we shall
first deal with membership functions viewed as evaluating utility, and discuss the
underlying scaling problem in Sect. 16.2. We also consider the issue of linguistic
variables. In Sect. 16.3 we consider valued preference relations and their possible
meanings, and, in Sect. 16.4, how they have been used in outranking methods
for multicriteria decision-making. Then, in Sect. 16.5, it is the contribution of
aggregation operations in multifactorial evaluation that is analysed, focusing on the
refinement of qualitative scales and the issue of bipolar preference. Section 16.6
deals with the role of fuzzy intervals in sensitivity analysis for decision evaluation,
focusing on fuzzy weighted averages, and fuzzy extensions of Saaty’s Analytic
Hierarchical Process method. Finally, Sect. 16.7 outlines a classification of fuzzy
interval ranking methods, driven by the possible interpretations of the membership
functions, in connection with interval orderings and stochastic dominance.
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16.2 Membership Functions in Decision-Making

First we discuss the role played by membership functions in decision techniques.
Then we consider the use of membership grades and linguistic terms for rating the
worth of decisions and evaluating pairwise preference.

16.2.1 Membership Functions and Truth Sets
in Decision Analysis

A membership function is, like sets in general, an abstract notion, a mathematical
tool. It only introduces grades in the abstract Boolean notion of set-membership.
So, using the terminology of membership functions in a decision problem does not
necessarily enrich its significance. In order to figure out the contribution of fuzzy
sets, one must always declare what a given membership function accounts for in a
given problem or context. Indeed, there is not a unique semantic interpretation of
membership functions. Several ones have been laid bare [49] and can be found in
the literature:

• A measure of similarity to prototypes of a linguistic concept (then membership
degrees are related to distance); this is used when linguistic terms are modeled
by membership functions, and naturally obtained as an output of fuzzy clustering
methods (Ruspini [110]).

• A possibility distribution [130] representing our incomplete knowledge of a
parameter, state of nature, etc., that we cannot control. Possibility distributions
can be numerical or qualitative [50]. In the numerical case, such a membership
function can encode a family of probability functions (see [39] for a survey).

• A numerical encoding of a preference relation over feasible options, similar
to a utility or an objective function. This is really the idea at the core of the
Bellman-Zadeh paradigm of decision-making in a fuzzy environment. In decision
problems, membership functions introduce grades in the traditionally Boolean
notion of feasibility. In the latter case, a membership function models a fuzzy
constraint [54, 129]. A degree of feasibility differs from the degree of attainment
of a non-imperative goal.

In the scope of decision under uncertainty, membership functions offer an
alternative to both probability distributions and utility functions, especially when
only qualitative value scales are used. But these two interpretations of membership
functions should not be confused nor should we use one for the other in problems
involving both fuzzy constraints and uncertainty [54].

Then the originality of the fuzzy approach may lie:

• either in its capacity to translate linguistic terms into quantitative ones in a
flexible way;

• or to explicitly account for the lack of information, avoiding the questionable use
of unique, often uniform probability distributions [39];
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• or in its set-theoretic view of numerical functions. Viewing a utility function as
a fuzzy set, a wider range of aggregation operations becomes available, some
of which generalize the standard weighted average, some of which generalize
logical connectives.

However, not only must a membership function be interpreted in the practical
context under concern, the scale in which membership degrees lie must also be
well-understood and its expressive power made clear.

16.2.2 Truth-Sets as Value Scales: The Meaning of End-Points

The often totally ordered set of truth-values, we shall denote by .L;	/, is also an
abstract construct. Interpretive assumptions must be laid bare if it is used as a value
scale for a decision problem. The first issue concerns the meaning of the end-points
of the scale; and whether a mid-point in the scale exists and has any meaning. Let
us denote by 0 the least element in L and by 1 the greatest element. Let us define a
mid-point of L as an element e 2 L such that

1. 9��; �C 2 L; �� < e < �C;
2. there is an order-reversing bijection n W L! L such that n.1/ D 0I n.e/ D e (n is

a strong negation function such that if � < e, then n.�/ > e).

Three kinds of scales can be considered depending on the existence and the meaning
of these landmark points [52]:

• Negative unipolar scales: then, 0 has a totally negative flavour while 1 has a
neutral flavour. For instance, a possibility distribution, a measure of loss.

• Positive unipolar scales: 0 has a neutral flavour while 1 has a fully positive
flavour. For instance degrees of necessity, a measure of gain.

• Bipolar scales: when 1 has a totally positive flavour while 0 has a totally negative
flavour. Then, contrary to the two other cases, the scale contains a mid-point e
that has a neutral flavour and that plays the role of a boundary between positive
and negative values.

For instance, the unit interval viewed as a probability scale is bipolar since
0 means impossible, 1 means certain and 1=2 indicates a balance between the
probable and the improbable (however the role of 1=2 becomes less obvious when
there are more than two alternatives involved). The membership scale of a fuzzy
set is in principle bipolar, insofar as 1=2 represents the cross-over point between
membership and non-membership. However if a membership function is used as a
possibility distribution as suggested by Zadeh [130], the scale becomes negative
unipolar since then while 0 means impossible, 1 only means possible, which is
neutral. The dual scale of necessity degrees in possibility theory [50] is on the
contrary positive unipolar, since the top value of L expresses full certainty while the
bottom represents full uncertainty, hence neutral. In these latter cases, the midpoint,
even if it exists, plays no role in the representation.
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Finally, if membership grades express preference, the degree of satisfaction
of a goal is often bipolar (in order to express satisfaction, indifference and
dissatisfaction) [73]. However, another approach is to use two separate unipolar
scales, one to express the degree of feasibility of a solution (it is a negative unipolar
scale ranging from not feasible to feasible), one to express the attractiveness of
solutions (a positive unipolar scale ranging from indifference to full satisfaction).
More generally, loss functions map to negative unipolar scales, while gain functions
map to positive unipolar scales. Gains and losses can be separately handled as in
cumulative prospect theory [118].

This information about landmark points in the scale captures ideas of good or bad
in the absolute. A simple preference relation cannot express this kind of knowledge:
ranking solutions to a decision problem from the best to the worst without making
the meaning of the value scale explicit, nothing prevents the best solution found
from being judged rather bad, or on the contrary the worst solution from being
somewhat good.

The choice of landmark points also has strong impact on the proper choice of
aggregation operations (t-norms, co-norms, uninorms) [51]. Especially landmark
points in the scale are either neutral or absorbing elements of such aggregation
operations.

16.2.3 Truth-Sets as Value Scales: Quantitative or Qualitative?

The second issue pertains to the expressive power of grades in a scale L and has to
do with its algebraic richness. One can first decide if an infinite scale makes sense
or not. It clearly makes sense when representing preference about a continuous
measurable attribute. Then, the reader is referred to the important literature on
measurement theory (see [82] and Chap. 16 in [17]) whose aim is to represent
preference relations by means of numerical value functions. According to this
literature, there are three well-known kinds of continuous value scales

• Ordinal scales: The numerical values are defined up to a monotone increasing
transformation. Only the ordering on L matters. It makes no sense to add degrees
in such scales.

• Interval scales: The numerical values are defined up to a positive affine trans-
formation (� 2 L 7! a� C b; a > 0). Interestingly, in decision theory the
most popular kind of value scales are interval scales. On such scales, only the
difference of ratings makes sense. But they cannot express the idea of good and
bad (they are neither bipolar nor even unipolar) since the value 0 plays no specific
role, and these scales can be unbounded.

• Ratio scales: The numerical values are defined up to a positive linear transforma-
tion a�; a > 0. On such scales, only the quotient of two ratings makes sense. This
kind of scale is often unipolar positive as the bottom value 0 lies at the bottom of
the scale.
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Another option is to go for a finite, or classificatory scale: L D f0 < �1 < �2
< � � � < �m D 1g where elements of the scale are not numerical but are labels
of classes forming a totally ordered set. In the following we shall also speak of
a qualitative scale. It underlies the assumption that the values in the scale are
significantly distinct from one another (hence they cannot be too numerous): in
particular, the value �i is significantly better that �i�1. Each value may have a
precise meaning in the context of the application. For instance, it may correspond
to a linguistic term, that people understand in the specific context. Or, each value
can be encoded as an integer, and refers to a precise reference case (like in the
classification of earthquakes), with a full-fledged description of its main features.
This kind of scale is often neglected both in usual measurement theory and in fuzzy
set theory. Yet a qualitative scale is more expressive than a simple ordering relation
because of the presence of absolute landmarks that can have a positive, negative or
neutral flavour.

Clearly the nature of the scale also affects the kind of aggregation function that
can be used to merge degrees. An aggregation operation � on an ordinal scale must
satisfy an ordinal invariance property such as the following:

a � b > c � d () '.a/ � '.b/ > '.c/ � '.d/

for all monotonic increasing transformations ' of an ordinal scale L. See [74, Chap.
8], on this problem. Basically only operations based on maximum and minimum
remain meaningful on such scales. Averaging operations then make no sense.

More often than not in decision problems, people are asked to express their
preferences by ticking a value on a continuous line segment. Then such values are
handled as if they were genuine real numbers, computing averages or variances. This
kind of technique is nearly as debatable as asking someone to explicitly provide a
real number expressing preference. All we can assume is that the corresponding
scale is an ordinal scale. In particular, there is a problem of commensurateness
between scales used by several individuals: the same numerical value provided by
two individuals may fail to bear the same meaning. On the other hand qualitative
scales can better handle this problem: landmark values correspond to classes of
situations that can be identically understood by several individuals and may be
compared across several criteria. A small qualitative scale is cognitively easier to
grasp than a continuous value scale and has thus more chance to be consensual.

In summary there is a whole literature on numerical utility theory that should
be exploited if fuzzy set decision researchers wish to justify the use of numerical
membership grades in decision techniques. From this point of view, calling a utility
function a membership function is not a contribution. Yet, fuzzy set theory offers a
framework to think of aggregation connectives in a broader perspective than the
usual weighted averaging schemes. But there is no reason to move away from
the measurement tradition of standard decision analysis. Fuzzy set tools should
essentially enrich it. A few researchers tried to address the issue of membership
function measurement (Türksen and Bilgic [117], Marchant [37, 86, 87]), but this
problem should be further investigated.



644 D. Dubois and P. Perny

16.2.4 From Numerical to Fuzzy Value Scales

Being aware that precise numerical techniques in decision evaluation problems are
questionable, because they assume more information than what can actually be
supplied by individuals, many works have been published that claim to circumvent
this difficulty by means of fuzzy set-related tools. The rationale often goes as
follows: If a precise value in the real line provided by an expert is often ill-known, it
can be more faithfully represented by an interval or a fuzzy interval. Moreover, the
elements in a qualitative scale may encode linguistic value judgments, which can be
modeled via linguistic variables [128].

16.2.4.1 Evaluations by Pairs of Values

When an individual ticks a value in a value scale or expresses a subjective opinion
by means of a number x, it sounds natural to admit that this value has limited
precision. The unit interval is far too refined to faithfully interpret subjective
value judgments. It is tempting to use an interval Œa; b� in order to describe this
imprecision. However, it is not clear that this approach takes into account the ordinal
nature of the numerical encoding of the value judgment. It is natural to think that
the width of an interval reflects the amount of imprecision of this interval. However
in an ordinal scale, width of intervals make no sense: if Œa; b� D Œc; d�, in general
Œ'.a/; '.b/� ¤ Œ'.c/; '.d/� for a monotonic scale transformation '. So the use of
interval-valued ratings presupposes an assumption on the nature of the value scale,
which must be more expressive than an ordinal scale, for instance an interval scale. It
must be equipped with some kind of metric. Justifying it may again rely on suitable
(e.g., preference difference) measurement techniques. Moving from an interval to a
fuzzy interval with a view to cope with the uncertainty of the interval boundaries,
one is not better off, since on an ordinal scale, the shape of the membership function
is meaningless: there is no such thing as a triangular fuzzy number on an ordinal
scale.

Some authors use pairs of values .�; �/ 2 Œ0; 1�2 with � C � � 1 following
Atanassov’s convention [4]. Not only the latter encoding looks problematic in the
light of the above considerations,1 but this representation technique is moreover
ambiguous: it is not clear whether this pair of values corresponds to more informa-
tion or less information than a single value [53]:

1. Using an uncertainty semantics, it expresses less information than point values
because it encodes an ill-known value � 2 Œ�; 1 � ��. Then the uncertainty

1Indeed, the addition �C � is questionable on an ordinal scale. One may replace �C � � 1 by
� � n.�/, for a strong negation on L, but then � � n.�/ implies '.�/ � '.n.�// while we need
'.�/ � n.'.�/.
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interval representation is more explicit. Moreover, the aggregation operations
proposed by Atanassov are fully compatible with the interval-extension of
pointwise aggregation operations [33].

2. Or it expresses more information than point values: then � is the strength
in favour of a decision, � in disfavour of this decision. This is a unipolar
bivariate convention that fits argumentation semantics, and departs from the
Savagean utility theory tradition. However it is not clear that researchers adopting
Atanassov convention refer to pioneering works, like Cumulative Prospect
Theory [118] (CPT), when adopting this kind of bipolar view. This setting is
also more information-demanding than using single evaluations, so that it does
not address at all the concerns raised by the debatable richness assumption of
numerical ratings.

The proper choice of a semantics of Atanassov style value pairs affects the way
information will be processed [53]:

1. The standard injection L ! L2 is not the same: � 7! .�; 1 � �/ in the interval
case, � 7! .�; 0/ for a positive unipolar scale in the bipolar case (then the non-
trivial pairs add negative information to single positive evaluations).

2. Under the uncertainty semantics, you need to apply interval analysis methods to
see the impact of uncertainty on the global evaluation (insofar as the numerical
scale is meaningful).

3. Under the argumentation semantics, you may first separately aggregate positive
and negative information by appropriate (possibly distinct) methods and then
aggregate the results as done in CPT.

16.2.4.2 Linguistic vs. Numerical Scales

Quite a number of papers on FDA have been published in the last 15 years or so, with
the aim of exploiting linguistic information provided by decision-makers. Namely
a criterion is viewed as mapping decisions on a finite linguistic term set forming
a qualitative scale. A number of authors then consider a criterion as a linguistic
variable after Zadeh [128], namely they represent fuzzy linguistic terms in the value
scale as fuzzy intervals, that form a fuzzy partition of the unit interval. Contrary to
the free use of any value on a numerical scale surrounded by imprecision in the form
of a fuzzy interval, the linguistic approach only uses a finite set of prescribed fuzzy
intervals, and the decision-maker uses them as ratings. More often than not the unit
interval, taken as a value scale, is shared into overlapping intervals of equal length
that form the supports of the fuzzy intervals. It corresponds here to what Zadeh
calls a granulation of the unit interval [131]. One advantage of this framework is
that criteria aggregations can be modelled by means of fuzzy if-then rules that can
be processed using any fuzzy inference method (like in fuzzy control). However this
approach is debatable for a number of reasons:
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• It is not clear that the granular scale thus used is qualitative any more since each
linguistic term is viewed as a fuzzy interval on some numerical scale. If the scale
is in fact ordinal, sharing this scale into fuzzy intervals with the same shape
clearly makes no sense. Such linguistic scales are thus either not qualitative or
meaningless.

• Arithmetic aggregation operations that do not make sense on the underlying
numerical scale will not make more sense when applied to fuzzy intervals.

• Combining fuzzy intervals from a partition (crisp or fuzzy) generally does not
yield elements of the partition. One has to resort to some form of linguistic
approximation in order to construct a closed operation on the linguistic scale.
But if this operation is abstracted from a numerical one, properties of the latter
(for instance associativity) will be often lost (see [47]).

• If moreover one applies fuzzy control interpolation methods to build an
aggregation function (using the standard Mamdani fuzzification-inference -
defuzzification scheme), what is constructed is a numerical function which
highly depends, for instance, on the choice of a defuzzification method.

In fact, linguistic variables proposed by Zadeh are meaningful if the underlying
numerical scale corresponds to an objective measurable attribute, like height,
temperature, etc. A linguistic variable on an abstract numerical scale is all the more
meaningless because, prior to the membership function measurement problems
that are already present on measurable attributes, the question of how to make
sense of ratings on this abstract scale is to be solved first. So this trend leads to
debatable techniques that are neither more meaningful nor more robust to a change
of numerical encoding (of the linguistic values) than purely numerical techniques
(see the last chapter of [16] for a detailed critique of this line of works).

Besides, due to the above difficulties, there have been some attempts at directly
using linguistic labels, like the 2-tuple linguistic representation [77]. The 2-tuple
method handles pairs .i; 
/ where i denotes the rank of label �i 2 L in a finite
qualitative scale and 
 2 Œ�0:5; 0:5/. The purpose is to easily go from a numerical
value x lying between 0 and n to a symbolic one in L by means of the integer closest
to x, interpreting �i 2 L as x D i C 
 2 Œ0; n�. Then any numerical aggregation
function � can be applied to the qualitative scale L: �i��j D �k where i� j D kC
 .
In this view, 
 is a numerical value expressing the precision of the translation from
the original result to the linguistic scale.

This kind of so-called linguistic approaches are as quantitative as any standard
number-crunching method. It just uses a standard rounding technique as a linguistic
approximation tool, for the sake of practical convenience. It no longer accounts for
the imprecision of linguistic evaluations. Moreover the idea that a qualitative scale
should be mapped to a sequence of adjacent integers is debatable. First one must
justify the choice of equally distributed integers. Then, one must study how the
ranking of decisions obtained by aggregation of partial ratings on the integer scale
depends on the choice of the monotonic mapping L ! N encoding the linguistic
values.
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16.3 The Two Meanings of Fuzzy Preference Relations

An important stream of works was triggered by the book by Fodor and Roubens
[63], that extend preference modelling to the gradual situation [12, 27, 34, 36, 119].
In classical preference modelling, an outranking relation provided by a decision-
maker is decomposed into strict preference, indifference and incomparability
components in order to be used. Fuzzy preference relations are valued extensions of
relations expressing preference, i.e., of variants of ordering or preordering relations
[17, Chap. 2]. There is no point discussing the current state of this literature in detail
here (see Fodor and De Baets [62] for a recent survey). However most existing
works in this vein develop mathematical aspects of fuzzy relations, not so much
its connection to actual preference data. This is probably due to the fact that the
meaning of membership grades to fuzzy relations is not so often discussed.

16.3.1 Unipolar vs. Bipolar Fuzzy Relations

The notion of fuzzy ordering originated in Zadeh’s early paper [127] has been
improved and extensively studied in recent years (Bodenhofer et al. [12]). A fuzzy
relation on a set S is just a mapping R W S � S ! Œ0; 1� (or to any totally
ordered scale). One assumption that pervades the fuzzy relational setting is not
often emphasized: a fuzzy relation makes sense only if it is meaningful to compare
R.x; y/ to R.z;w/ for 4-tuples of acts .x; y; z;w/, that is, in the scope of preference
modelling, to decide whether x is preferred (or not) to y in the same way or not as
z is preferred to w. A fuzzy preference relation should thus be viewed as the result
of a measurement procedure reflecting the expected or observed properties of crisp
quaternary relations Q.x; y; z;w/ that should be specified by the decision-maker (see
Fodor [61] for preliminary investigations).

In this case one may argue that R.x; y/ reflects the intensity of the preference of x
over y. Nevertheless, the mathematical properties of R will again be dictated by the
meaning of the extreme values of the preference scale, namely when R.x; y/ D 0 or
1. If the unit interval is viewed as a bipolar scale, then R.x; y/ D 1 means full strict
preference of x over y, and is equivalent to R.y; x/ D 0, which expresses full negative
preference. It suggests indifference be modelled by R.x; y/ D R.x; y/ D 1=2, and
more generally the property

R.x; y/C R.y; x/ D 1

is naturally assumed. This property generalizes completeness, and R.x; y/ >

1=2 expresses a degree of strict preference. Antisymmetry then reads R.x; y/ D
1=2 H) x D y. These are reciprocal (or tournament) relations that do not fit
with the usual encoding of reflexive crisp relations, and exclude incomparability.
Indeed, in the usual convention of the crisp case, reflexivity reads R.x; x/ D 1,
while incomparability reads R.x; y/ D R.y; x/ D 0.
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In order to stick to the latter convention, the unit interval must then be viewed as
a negative unipolar scale, with neutral upper end, and the preference status between
x and y cannot be judged without checking the pair .R.x; y/;R.y; x//. In this case,
R.x; y/ evaluates weak preference, and completeness means:

max.R.x; y/;R.y; x// D 1;
while indifference is modelled by R.x; y/ D R.y; x/ D 1. On the contrary,
R.x; y/ D R.y; x/ D 0 captures incomparability. In other words, this convention
allows the direct extension of usual preference relations to valued ones on a unipolar
scale where 1 has a neutral flavour. Conventions of usual outranking relations are
retrieved when restricting to Boolean values. The expression of antisymmetry must
be handled with care in connection to the underlying similarity relation on the
preference scale, as shown by Bodenhofer [11].

16.3.2 Fuzzy Strict Preference Relations

The definition of fuzzy preference relations is often driven by the need of some
desirable mathematical properties of preference relations (e.g. completeness, asym-
metry, transitivity) but sometimes, the initial meaning of valuations is forgotten in
the construction. Hence, the way fuzzy binary relations are handled in decision
procedures is not always meaningful with respect to the nature of the initial
preference information. For example, the definition of a strict preference relation
P from a large preference relation R has received much attention in the literature
(see e.g. [63, 97, 101]) is often based on the following equation:

P.x; y/ D T.R.x; y/; 1 � R.y; x// (16.1)

where T is a t-norm. For instance, it is well known that if R is min-transitive, i.e. for
all x; y; z we have R.x; y/ 	 minfR.x; z/;R.z; y/g, and T is the Łukasiewicz t-norm
defined by T.x; y/ D maxfxC y� 1; 0g then P is also min-transitive. This argument
is used by several authors to justify the definition of valued strict preference by
Eq. (16.1) with the Łukasiewicz t-norm for T (see e.g. [97]). This leads to the
following definition of strict preference: P.x; y/ D maxfR.x; y/ � R.y; x/; 0g which
is necessarily asymmetric, i.e. either P.x; y/ D 0 or P.y; x/ D 0. Obviously,
this definition is not adequate when R takes its values in an ordinal scale. For
example, consider x; y; z;w such that R.x; y/ D 1;R.z;w/ D 0:8;R.y; x/ D 0:7

and R.w; z/ D 0:4, we have P.x; y/ D 0:3 < P.z;w/ D 0:4. However, if the R
valuation is expressed on an ordinal scale, the only relevant information provided
by its numerical representation is that R.x; y/ > R.z;w/ > R.y; x/ > R.w; z/.
Hence another admissible numerical representation would be R.x; y/ D 1;R.z;w/ D
0:64;R.y; x/ D 0:49 and R.w; z/ D 0:16, which gives a rank-reversal in valuations
since now P.x; y/ D 0:51 > P.z;w/ D 0:48. Therefore, such a definition of P is not
meaningful when membership in R is valued on an ordinal scale.
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Interestingly enough, although it is commonly believed that using minimum for
conjunction is natural to handle ordinal valuations, the choice of min or nilpotent
minimum for T in Eq. 16.1 does not solve the problem either. The nilpotent
minimum [81, 102] min.x; y/ returns min.x; y/ if x > 1 � y and 0 otherwise. It
has properties similar to Łukasiewicz t-norm in the sense that its induced material
implication of the form 1 � min.x; 1 � y/ is also its residuation x ! y D 1 if
x � y and max.1 � x; y/ otherwise. Yet, for example, if R.x; y/ D 1;R.z;w/ D
0:8;R.y; x/ D 0:5 and R.w; z/ D 0:4 we have P.x; y/ D 0:5 < P.z;w/ D 0:6

whereas with R.x; y/ D 1;R.z;w/ D 0:64;R.y; x/ D 0:25 and R.w; z/ D 0:16 we
get now P.x; y/ D 0:75 > P.z;w/ D 0:64. Other definitions such as

P.x; y/ D
�

R.x; y/ if R.x; y/ > R.y; x/
0 otherwise

proposed in [95] would better fit to ordinal membership values. Quite surprisingly,
this construction is less frequent than (16.1), probably because it induces disconti-
nuities in the definition of strict preferences.

16.3.3 Fuzzy Preference Relations Expressing Uncertainty

The above type of fuzzy relations presupposes that objects to be compared are
known precisely enough to allow for a precise quantification of preference intensity.
However there is another possible explanation of why preference relations should
be valued, and this is when the objects to be compared are ill-known even if the
preference between them remains crisp. Then R.x; y/ reflects the likelihood of a
crisp weak preference x � y. Under this interpretation, some valued relations
directly refer to probability. Probability of preference is naturally encoded by valued
tournament relations [26], letting

R.x; y/ D Prob.x 
 y/C 1

2
Prob.x � y/;

where x � y () x � y and x � y, which implies R.x; y/ C R.y; x/ D 1.
Uncertainty about preference can be defined by a probability distribution P over
possible preference relations, i.e., Ti � S � S with x �i y () .x; y/ 2 Ti and
P.Ti/ D pi; i D 1; : : : ;N. Then

R.x; y/ D
X

iWx
iy

pi C
X

iWx	iy

1

2
pi:

More details can be found in [28]. This comes close to the setting of voting theory,
historically the first suggested framework for interpreting (what people thought
could be understood as) fuzzy relations [10].
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This approach also applies when the merit of alternatives x and y can be
quantified on a numerical scale and represented by a probability distribution on
this scale. Then, R.x; y/ D P.u.x/ > u.y//, where u W S ! R is a utility
function. Calling such valued tournament relations fuzzy can be misleading in the
probabilistic setting, unless one considers that fuzzy just means gradual. However,
what is gradual here is the likelihood of preference, the latter remaining a crisp
notion, as opposed to the case when shades of preference are taken into account.
Only when modelling preference intensity does a valued relation fully deserve to be
called fuzzy.

Other uncertainty theories can be used as well to quantify uncertain preference,
including possibility theory, i.e., R.x; y/ D ….x � y/ is the degree of possibility
of preference. It is such that max.R.x; y/;R.y; x// D 1 since max.….x � y/;
….y � x// D 1 in possibility theory. In this case again, the underlying scale
for R.x; y/ is negative unipolar, which does correspond to similar conventions
as the gradual extension of outranking relations outlined above. However, in the
possibilistic uncertainty setting, 1 � R.x; y/ D N.y 
 x/ corresponds to the degree
of certainty of a strict preference. This kind of valued relations is closely akin to
interval orderings [106] and the comparison of fuzzy intervals is discussed later on
in this paper.

It is clear that when defining transitivity and extracting a ranking of elements
from a fuzzy preference relation, the above considerations play a crucial role.
According to whether valued relations refer to preference intensity or likelihood of
strict preference, whether the value scale is bipolar or not, transitivity will take very
different forms (e.g., compare cycle transitivity [26, 28] and usual fuzzy relation
transitivity). Also the procedures for choosing best elements in the sense of a valued
preference relation [80] should depend on the nature of the value scale and on the
way preference degrees are interpreted.

16.3.4 Transitivity and Arrow’s Theorem

Arrow’s theorem [3] shows the impossibility of aggregating n preference relations
R1; : : : ;Rn into a complete preference weak-order R while respecting some desirable
conditions. Any relation Ri can be seen as an individual ranking of candidates in a
multi-agent decision problem. Alternatively relation Ri can be seen as a ranking
of alternatives in a multicriteria problem. Hence Arrow’s theorem has a significant
impact both in the context of voting and in multicriteria analysis. The result admits
several versions, but the standard conditions at the origin of the impossibility result
are universality (every n-tuple of preference orders is admissible), unanimity (x
must be preferred to y when the n preference relations unanimously support this
assertion), independence (preference between two alternatives only depend on their
relative position in the n preference relations), transitivity and completeness (the
result of the aggregation must be a complete weak-order) and non-dictatorship
(for all i there exists an input profile (R1; : : : ;Rn) such that Ri ¤ R). After the
publication of this result, various attempts to escape Arrow’s framework in order to
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solve ordinal aggregation problems have been proposed in the literature on Social
Choice. The reader is referred to [113] for a survey on the main impossibility results
obtained in Social Choice Theory. There are several reasons that can explain these
negative results. One of the main arguments given is that the preference information
contained in the n preference orders Ri, i D 1; : : : ; n is too poor to properly solve
conflicts in the aggregation process. If we use richer structures, we can hope to
escape Arrow’s framework. Another argument is that the overall preference must be
a weak order, which is a strong constraint. Resorting to fuzzy relations either in the
description of individual preferences or in the expression of the overall preferences
resulting from the aggregation process can be seen as possible ways of introducing
more flexibility and escaping Arrow’s framework. We briefly discuss below these
two options.

An example of positive aggregation result obtained with fuzzy relations is due to
Ovchinnikov [96]. The idea is to relax the transitivity and completeness axiom of
overall preferences by admitting fuzzy preference orders as possible results of the
aggregation. More precisely, the overall preference relation must be a fuzzy binary
relation satisfying a T-transitivity condition, defined for any t-norm T as follows:

R.x; y/ 	 T.R.x; z/;R.z; y// (16.2)

In his paper, Ovchinnikov suggests resorting to the Łukasiewicz t-norm and define
the transitivity of the fuzzy social preference R obtained by aggregation of individual
preferences Ri. This amounts to defining transitivity as follows: R.x; y/ 	 R.x; z/C
R.z; y/ � 1. Under this relaxed transitivity constraint, he shows that Arrow’s
impossibility result does not hold anymore: a “transitive” social ordering can be
obtained from any profile .R1; : : : ;Rn/ of crisp relations while preserving all usual
desirable properties in the aggregation (universality, independence, unanimity, non-
dictatorship). Suppose indeed we want to aggregate the preferences of n voters. For
all pair .x; y/ of candidates, we define Ri.x; y/ D 1 if agent i prefers x to y and
Ri.x; y/ D 0 otherwise. Hence we can define the collective fuzzy preference relation
by R.x; y/ D 1=n

Pn
iD1 Ri.x; y/. Since individual preferences are transitive we have

Ri.x; y/ 	 Ri.x; z/ C Ri.z; y/ � 1 for all x; y; z and all i D 1; : : : ; n and therefore
R.x; y/ 	 R.x; z/C R.z; y/� 1 by addition. However, this apparently positive result
is misleading: it turns out that the transitivity condition used is so weak that is not
incompatible with Condorcet cycles, as shown in the following example.

Example 1. Consider a decision problem with 3 candidates fa; b; cg and assume
that n D 3p for some positive integer p and consider a preference profile with the
following relation:

p voters have preferences aRibRic,
p voters have preferences bRicRia,
p voters have preferences cRiaRib.

We obtain: R.a; b/ D 2=3;R.b; c/ D 2=3 and R.c; a/ D 2=3 but also R.b; a/ D
1=3;R.c; b/ D 1=3 and R.a; c/ D 1=3 a typical cyclic preference with respect to



652 D. Dubois and P. Perny

majority. We remark indeed that the ˛-cut of R with ˛ D 1=2 includes a directed
cycle; this is usually considered as a typical problematic situation in which majority
is not decisive. It does not permit us to designate a winner nor to rank the candidates.
Yet, such a relation is “transitive” since R.x; y/ 	 R.x; z/CR.z; y/� 1 holds for any
triple of alternatives.

This example shows that this notion of transitivity used for fuzzy relations is so
weak that it subsumes Condorcet effects (usual observed as cyclic preferences). This
weakening of transitivity does not provide any real practical solution to the problem
raised by Arrow’s theorem.

Besides, several authors have considered a stronger version of T-transitivity
called min-transitivity (T D min) for fuzzy social preferences [6, 7, 59]. This
condition is more significant because any ˛-cut of a min-transitive relation is a
transitive relation. Hence, being able to construct min-transitive social preferences
should be a way of getting partial orders for social preference. Unfortunately the
results obtained under the min-transitivity constraint are largely negative: either
there exists a dictator or an oligarchy that concentrate all the decisive power.
This shows that considering social fuzzy preferences does not help that much in
overcoming problems related to ordinal aggregation and Arrow’s theorem.

Another attempt to incorporate fuzzy preferences in these problems is to let
individuals express richer preferences with valued relations, so as to take pref-
erence intensities into account. For example, let us assume that one-dimensional
preferences are defined from individual utility functions ui, for any dimension i by
Ri.x; y/ D ui.x/ � ui.y/. By construction we have Ri.x; y/C Ri.y; z/ D Ri.x; z/ for
all i. Hence if R.x; y/ is defined as a weighted average of preference indices Ri.x; y/
then we get R.x; y/C R.y; z/ D R.x; z/ and therefore minfR.x; y/;R.y; z/g � R.x; z/
for all x; y; z. Hence we get a min transitive relation by weighted aggregation.
Unfortunately this cannot be seen as an original solution to the aggregation problem
because, in this case, the transitivity of social preferences directly derives from the

existence of an additive utility function defined by an average u.x/ D
Pn

iD1 ui.x/
n . We

have indeed, by construction, R.x; y/ D u.x/ � u.y/ and the fuzzy relation R is just
another presentation of a classical additive utility model.

16.4 Fuzzy Outranking Relations in Multicriteria
Decision Problems

We briefly review here some basic techniques used to construct fuzzy binary
outranking relations from ratings according to various criteria. We will then discuss
their use to derive recommendations. For the sake of illustration, we consider a
multicriteria decision problem characterized by a finite set X of alternatives and
f1; : : : ; fn, n objective functions (modelling criteria) to be maximized. Any solution
x 2 X is characterized by a vector .x1; : : : ; xn/ where xi D fi.x/ is a value measuring
the attractiveness of x with respect to criterion i.
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16.4.1 Fuzzy Concordance Relations

The standard definition of a rating function consists in stating that x is strictly
preferred to y with respect to criterion i (denoted by xPiy) as soon xi > yi. When
xi D yi, alternatives x and y are seen as indifferent (denoted by xIiy) with respect
to criterion i. However, in most cases, small differences of performance are not
sufficient to justify a strict preference and it is commonly assumed that differences
of evaluations that remain below a given threshold qi are not characteristic of a
strict preference. Hence a more general model is often used in which xPiy as soon
as xi � yi > qi and xIiy whenever jxi � yij � qi. Threshold qi is named the
indifference threshold, it is positive but not necessarily constant and may vary along
the criterion axis, making structure .Ii;Pi/ an interval-order [68, 103]. It is used to
partition the set of pairs of alternatives for a given i into two sets of pairs, pairs
concordant with strict preference and pairs concordant with indifference. However
the precise definition of such a threshold is difficult, especially on continuous
criterion scales, because it imposes to define a crisp separation on a continuum
of situations characterized by more or less important preference differences. The
introduction of fuzzy sets here allows a more cautious construction, enabling a
gradual transition from indifference to strict preference. More precisely three fuzzy
preferences relations are constructed for every criterion i 2 f1; : : : ; ng:

strict preference: Pi.x; y/ D ti.xi; yi/

weak preference: Si.x; y/ D 1 � ti.yi; xi/

indifference: Ii.x; y/ D 1 �maxfti.x; y/; ti.y; x/g
(16.3)

where ti is a function from R
2 to Œ0; 1�, non-decreasing of the first argument and

non-increasing of the second argument, such that ti.x; x/ D 0. Within the interval
Œq�

i ; q
C
i � of admissible values for qi, any difference of type xi � yi corresponds to

some hesitation between indifference and strict preference. Outside this interval it is
expected that ti.xi; yi/ D 0 when xi � yi � q�

i and ti.xi; yi/ D 1 when xi � yi 	 qC
i .

Such a construction appears for example in the Promethee method for Pi [18] and
in Electre methods [109] for Si and in various variants [63, 100, 102] under the
following form:

ti.x; y/ D

8
<̂

:̂

1 if xi � yi > qC
i

xi�yi�q�

i

qC

i �q�

i

if q�
i < xi � yi � qC

i

0 if xi � yi � q�
i

(16.4)

Then an overall fuzzy relation CP (resp. CI ;CS) can be obtained by aggregation
of one-dimensional preference relations Pi (resp. Ii; Si). More precisely CP.x; y/ D
 .P1.x; y/; : : : ;Pn.x; y// where  is an aggregation function defined from Œ0; 1�n to
Œ0; 1�. A standard choice for  is the weighted sum but other aggregation functions
could be considered as well, including median and other order-statistics, quasi-
arithmetic means, ordered weighted averages, Choquet or Sugeno integrals [74].
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Relation CP gives, for every pair of alternatives .x; y/, the degree to which the
criteria support the preference judgement xPy. Other constructions in the same spirit
have also been proposed, with some variations, for instance in Electre III [107] and
Mappac methods [89]. The main advantage of all these constructions is that fuzzy
preference indices resulting from the aggregation process continuously depend on
rating values for individual criteria. Hence slight variations of these values cannot
entail drastic changes in preference judgements.

One of the key questions with this approach concerns the choice of function  
to aggregate fuzzy relations Pi. This choice is rarely justified in methodological
papers. In particular, in Electre-like methods, Pi is presented as a credibility index
with an ordinal semantics. An inequality of type Pi.x; y/ > Pi.z; y/ only relies on
the fact that xi > zi and another inequality of type Pi.x; y/ > Pi.z;w/ only relies
on the fact that xi � yi > zi � wi. Hence the valuation scale used for fuzzy relations
Pi should be interpreted ordinally, Pi being fuzzy because it represents a nested
family of semi-orders, in which every ˛-cut of Pi corresponds to a given value of qi

within Œq�
i ; q

C
i �. Hence any strictly increasing automorphism � of the unit interval

should preserve the information contained in fuzzy relations Pi. However, under
such assumptions, one should not choose a weighted sum for  because we would
no longer be able to derive meaningful conclusions from fuzzy relation CP resulting
from the aggregation of relations Pi, as shown in the following example:

Example 2. Consider a decision problem with two alternatives fa; bg and three
criteria leading to the following one-dimensional preference relations:

P1 D
�
0 0

0:4 0

�

P2 D
�
0 0

0:6 0

�

P3 D
�
0 0:8

0 0

�

CP D P1 C P2 C P3
3

D
�

0 0:27

0:33 0

�

If CP is defined by a weighted sum as above, then we get CP.a; b/ D 0:27 <

CP.b; a/ D 0:33 and therefore it seems natural to conclude that b is preferred to
a because the preference of b over a is better supported in the family of criteria
considered. However, if we apply a transformation of the valuation scale �.x/ D x2,
which seems to preserve fuzzy relations seen as nested family of fuzzy orders, we
get the following relations P0

i.x; y/ D �.Pi.x; y// and their average CP0 :

P0
1 D

�
0 0

0:16 0

�

P0
2 D

�
0 0

0:36 0

�

P0
3 D

�
0 0:64

0 0

�

CP0 D P0
1 C P0

2 C P0
3

3
D
�

0 0:21

0:17 0

�

Hence we obtain CP0.a; b/ D 0:21 > 0:17 D CP0.b; a/ and now it seems natural to
conclude that a is preferred to b because a gets more support.
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This example of preference reversal shows that the weighted sum is not so
natural to aggregate fuzzy relations defined from criteria since the final decision
may depend of the particular valuation scale we have used for grading preferences.
One may wonder if a median or any other order statistics compatible with an ordinal
scale (even Sugeno integrals) would not be better in place of the (weighted) average
at this stage. Moreover, this example shows that functions ti used in the construction
of relations Pi and Ii [see Eq. (16.3)] cannot be chosen independently of each other
because they actually are used as a tool to map to a common scale the differences of
performances observed on various criteria.

16.4.2 Fuzzy Discordance Relations and the Veto Principle

Preference aggregation methods are largely inspired by voting theory. As the notion
of concordance relation recalled above refers to the notion of weighted majority,
the notion of veto is also present in several multicriteria aggregation procedures
to limit the possibility of compensating pros and cons in the comparison of two
alternatives having conflicting profiles. For example, in Electre methods [109], the
idea of providing every criterion with a right of veto is implemented through the use
of veto thresholds. To any criterion i is assigned a veto threshold vi which is defined
as the largest difference of type yi� xi that is compatible with the overall preference
xPy. Formally, we have:

9i 2 f1; : : : ; ng W yi � xi > vi ) not.xPy/

When veto thresholds are used, we can penalise alternatives presenting good but
irregular profiles in favour of average but well-balanced profiles. We can also favour
good alternatives presenting at least one top-level quality. Moreover, we can clearly
distinguish between the situation where x and y have more or less the same scores
on all criteria (indifference) and the situation where each has enough advantage on
one criterion to veto the other (incomparability due to the presence of conflicting
criteria).

A veto threshold vi is not necessarily constant, it can vary along the criterion axis,
just as the indifference threshold. It can also be set to infinity when the criterion is
not sufficiently critical to have a veto. As for indifference thresholds, assigning a
proper value to a veto threshold is quite difficult because it has a drastic impact on
overall preferences. It is easier to obtain an interval Œv�

i ; v
C
i � of values in which the

difference yi�xi becomes gradually more discordant with preference xPy as it grows
from v�

i to vC
i . In this respect, fuzzy sets and fuzzy relations are quite useful because

they allow the definition of gradual transitions from non-veto to veto situations,
from absence of conflict to presence of conflict. For example, in the Electre III
method [107], gradual transitions are modelled by discordance indices defined, for
any criterion i 2 f1; : : : ; ng, as follows:
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di.x; y/ D

8
<̂

:̂

1 if xi � yi > v
C
i

xi�yi�v�

i

v
C

i �v�

i

if v�
i < xi � yi � vC

i

0 if xi � yi � v�
i

(16.5)

Note that this is just an example since any strictly increasing �-transformed of di

such that �.0/ D 0 and �.1/ D 1 would model the same nested family of relations.
To be consistent with the definition of preference Pi given in (16.3) it is necessary
to have v�

i 	 qC
i so that criterion i cannot be discordant with preference xPy if it is

not fully concordant with yPx (i.e. di.x; y/ > 0 implies ti.y; x/ D 1).
Then, to measure the strength of discordance in the set of criteria, an overall

discordance index with respect to preference P is defined by:

DP.x; y/ D 1 �
nY

iD1
.1 � di.x; y//

wi (16.6)

where wi are positive weights that can be used to take into account the importance of
criteria when rejecting a preference. The main desirable property of this construction
is that DP.x; y/ D 1 as soon as one criterion (at least) vetoes the preference xPy.
This could be achieved by a t-conorm as well, that could be used in place of the dual
geometric mean in (16.6). On the other hand, DP.x; y/ must be non-decreasing with
respect to discordance indices di.x; y/ defined by (16.5). This discordance index can
be used to define an overall fuzzy preference as follows:

P.x; y/ D T.CP.x; y/; 1 �DP.x; y// (16.7)

where T is a t-norm allowing to translate numerically the “concordance and non-
discordance principle” stating that x is preferred to y if and only if the set of
concordant criteria is strong enough and there is no discordant criterion. Standard
choices for T are continuous t-norms, in particular the product t-norm (used in
Electre III) and the minimum.

Here also, the important property resulting from Eqs. (16.4)–(16.7) is that P.x; y/
is a continuous function of rating values xi and yi for i D 1; : : : ; n non-decreasing
with the xi’s and non-increasing with the yi’s. The advantage of fuzziness here is
to avoid prior truncation of information by enabling graded preferences instead
of reducing preference analysis to all or nothing judgements. On the other hand,
the definition of proper valuation scales for fuzzy concordance and discordance
relations is not completely clear. Just as for concordance relations (see Example 2)
the definition of an overall discordance relation DP from fuzzy relations di in
Eq. (16.6) assumes that values di.x; y/,i D 1; : : : ; n are expressed on a common
absolute scale measuring strength of discordance. Moreover, the aggregation of
values CP.x; y/ and DP.x; y/ to define P.x; y/ also requires some commensurability
assumption between concordance and discordance indices, an assumption that could
be questioned. One cannot indeed define properly CP values independently of DP
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values due to their interaction in the definition of P. This point is generally not
discussed precisely in papers introducing preference models based on concordance
and non-discordance concepts and needs further investigation.

16.4.3 Choosing, Ranking and Sorting with Fuzzy
Preference Relations

Fuzzy preference relations provide a graded information on preference or similari-
ties between alternatives of a decision problems. They are quite useful to discrim-
inate alternatives and derive recommendations in choice or ranking problems, but
also in preference-based supervised classification problems. We mention now some
examples showing how fuzzy preference relations can be used advantageously to
support decision making in multicriteria decision aid. More details can be found in
[63, 64, 80].

Choice Problems Choice problems consist in determining, within a set of alter-
natives, a subset, as small as possible, of best elements. The advantage of fuzzy
preferences is to improve discrimination possibilities in defining such a set. For
example a standard way of performing a selection from a fuzzy pairwise preference
or weak-preference matrix R is to define the non-domination score of any alternative
x in X, according to Orlovski as follows [94]:

ND.x;X;R/ D 1 �max
y2X

maxfR.y; x/� R.x; y/; 0g (16.8)

ND can be seen as the membership function of the fuzzy set of non-dominated
elements in X and defines a nested family of sets corresponding to increasing levels
of requirement. Let us illustrate its use in multicriteria choice problems.

Example 3. Let us consider a choice problem on X D fx; y; zg with three criteria
f1; 2; 3g of equal importance, and the performance table given below. If we define
relation Pi using function ti as defined in (16.3)–(16.4) we get the following CP

relation:

Criterion i x y z q�
i qC

i

1 15 10 5 1 5

2 6 14 10 1 5

3 10 7 13 1 5

CP D P1 C P2 C P3
3

D
0

@
0 0:49 0:33

0:33 0 0:58

0:42 0:33 0

1

A

If we use a standard crisp preference relation like x 
 y iff CP.x; y/ > CP.y; x/
(relative majority), we get a cyclic preference relation which is not very helpful to
make a selection. On the contrary, if we compute a fuzzy set from ND scores, we get:
ND.x;X;CP/ D 0:91, ND.y;X;CP/ D 0:84, ND.z;X;CP/ D 0:75. Looking at the
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˛-cuts of the fuzzy set of non-dominated elements we can say that the result of the
choice problem is either fxg, fx; yg, fx; y; zg depending on the number of alternatives
needed or on level of confidence required to accept a candidate.

This example shows that fuzzy relations provide better discrimination possibil-
ities. However, the price to pay is that valued preferences need to be expressed
on an absolute numerical scale to allow the computation of ND as above, which
requires more information than just seeing a fuzzy relation as the set of its ˛-
cuts. Note that score ND is only given here for illustration and many other scores
defined from a preference matrix R have been proposed in the literature. In any
case, the score s.x;X;R/ of x in X with respect to relation R must be defined as a
non-decreasing function of indices R.x; y/; y 2 X and a non-increasing function of
indices R.y; x/; y 2 X, for more details see e.g. [64].

Ranking Problems Ranking problems consist in defining a partial or total weak-
order on alternatives representing their relative values. It is used in recommender
systems to provide the user with the k most relevant items. It is also a possible
answer to choice problems in which the number of alternatives to be selected is
fixed to a given k. Ranking is also natural when items or tasks must be ordered in a
waiting line before being processed.

The non-domination score ND defined in (16.8) is not really appropriate to
derive a ranking. Although it can be used to separate top elements from dominated
elements, it does not really help in discriminating lower elements. For instance, for
a matrix encoding the crisp order a 
 b 
 c 
 d we have ND.a; fa; b; c; dg/ D 1

but ND.y; fa; b; c; dg/ D 0 for all y in fb; c; dg. For this reason, ranking on the
basis of ND is usually performed by an iterated choice sequence. The first iteration
consists in setting Y1 D X and defining the first equivalence class of the ranking by
X1 D ND.Y1/ D arg maxx2XND.x;Y1/; then the iteration is performed by setting
YiC1 D Yi n Xi and XiC1 D ND.YiC1/ until no alternative remains unranked. This
ranking procedure seems natural. However it hides some unexpected properties that
make it questionable as illustrated by the following example:

Example 4. Let us consider a choice problem on X D fa; b; c; dg with six criteria
f1; : : : ; 6g. The performance table, indifference thresholds and criteria weights are
given below. If we define relation Pi using function ti as defined in (16.3)–(16.4) we
get the following CP relation:

Criterion i a b c d q�
i qC

i wi

1 15 0 10 5 0 1 0:20

2 0 15 5 10 0 1 0:20

3 15 10 5 0 0 1 0:28

4 0 10 5 15 0 1 0:16

5 5 0 15 10 0 1 0:12

6 5 0 10 15 0 1 0:04

CP D
6X

iD1
wiPi D

0

B
B
@

0:00 0:64 0:48 0:48

0:36 0:00 0:64 0:48

0:52 0:36 0:00 0:60

0:52 0:52 0:40 0:00

1

C
C
A
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Hence a is the most preferred element with non-domination score ND.a; fa; b;
c; dg;CP/ D 0:96. Then, after removing a, we get b as second best element with
ND.b; fb; c; dg;CP/ D 0:96, then c and finally d yielding the following ordering:
a 
 b 
 c 
 d. Now, if we increase the grade of c on criterion 1 from 10 to 20, then
matrix CP is only impacted on row 3 column 1 where we get 0.44 instead of 0.04. If
we apply again the ranking by iterated choices on the modified matrix, we get first d
with ND.d; fa; b; c; dg;CP/ D 0:8 then, after removing d we get b; c indifferent and
finally a which gives d 
 b � c 
 a. We can remark that initially we had c 
 d and
now we have d 
 c. The position of c in the final ranking decreased while one of its
grades increases. This non-monotonicity of the ranking procedure is a bad property
that illustrates the difficulties that may occur in designing ranking procedures from
choice functions. This problem is quite general and could be observed with other
scoring functions. Fortunately, some scoring functions do not need to be recomputed
within iterated choice sequences and are easier to incorporate in ranking procedure.
This is the case, for instance, of the net flow ranking method that consists in directly
using score s.x;X;R/ D P

y2X R.x; y/ �Py2X R.y; x/ as an overall performance
index. This is the option chosen in the Promethee method [18].

Another possibility to build a ranking or at least a partial order is to construct
from R a fuzzy relation Z which is min-transitive, i.e. Z.x; z/ 	 minfZ.x; y/;Z.y; z/g.
The advantage of such a fuzzy relation is that its ˛-cuts form a nested family of
partial orders corresponding to more discriminating relations as the cutting level
increases. Such min-transitive relations can be obtained by constructing covering
relations or transitive closures from the initial relation R. Here are some examples
using relation P defined from R by P.x; y/ D maxfR.x; y/� R.y; x/; 0g:
• transitive closure: Z.x; y/ D maxfP�.x; y/ � P�.y; x/; 0g where P� is the

transitive closure2 of P
• forward covering: Z.x; y/ D minz2Y minf1 � P.y; z/C P.x; z/; 1g
• backward covering: Z.x; y/ D minz2Y minf1 � P.z; x/C P.z; y/; 1g
for more details see e.g. [64].

Sorting Problems Preference-based sorting problems consist in assigning the
alternatives to predefined categories on the basis of their intrinsic qualities. Sorting
procedures are usually based on the comparison of the alternatives with respect to
reference points. These reference points represent either the (lower or upper) frontier
of a preference class, or typical examples of the category under consideration. So,
preference-based sorting procedures can be seen as supervised classification meth-
ods making use of preference or indifference relations to assign the alternatives to
categories. Several examples of such procedures have been proposed in multicriteria
decision analysis, see e.g. [75, 76, 88, 100, 108, 112].

Fuzzy preferences are quite useful also in this area because they allow the
definition of fuzzy categories that partially overlap each other, thus leaving room

2For more details on the computation of the max-min closure of a fuzzy relation see [38].
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for hesitation or ambiguity in the assignment. This offers a quite natural descriptive
possibility. Between two typical alternatives from two distinct categories there is
indeed a continuum of less typical intermediary situations, and deciding whether an
alternative should belong to one category or the other is often difficult. Let us give
some very simple examples of procedures using fuzzy preference and indifference
relations to define membership functions characterizing categories:

• The case of ordered categories: assume that a sequence of reference points
r1; : : : ; rq (ri 2 R

n) has been defined in the space of criteria such that rkC1
i � rk

i >

qi for all criteria i and categories k (qi is the indifference threshold) so as to define
frontiers between ordered categories. For example, we can define category Ck as
the set of alternatives that are preferred to rk but not preferred to rkC1 one can
define membership to categories by�Ck.x/ D minfP.x; rk/; 1�P.x; rkC1/gwhich
is a direct translation through a standard multivalued logic of the definition of the
category.

• The case of non-ordered categories: assume that q sets of reference points
R1; : : : ;Rq have been defined in the space of criteria, Rk representing typical
elements of category Ck. Then if Ck represents the category of elements that are
indifferent to some element of Rk one can define membership to categories by
�Ck .x/ D maxy2RkfI.x; y/g where I is a fuzzy indifference relation constructed
from rating values. For example I may be a concordance relation CI as previously
defined. The max operation can be replaced by a t-co-norm so as to enable some
reinforcement when an alternative x is indifferent to several reference points in
the same set Rk.

Membership functions �Ck.x/ can be cut at a given threshold to obtain a crisp
(but possibly ambiguous) assignment of alternatives to categories. Alternatively,
any solution x can be assigned to the most likely category, i.e. the category that
maximizes�Ck .x/ over all possible k. Further details on these methods are available
in [100].

16.5 Fuzzy Connectives for Decision Evaluation
in the Qualitative Setting

Fuzzy sets connectives have triggered a considerable development of aggregation
operators for decision evaluation [8, 74, 116]. It was the pioneering Bellman-
Zadeh’s paper that popularized a non-compensatory operation (the minimum), in
place of averaging, for aggregation processes in multi-objective problems. Yet, this
mode of aggregation had been already extensively used since the 1940s in non-
cooperative game theory, and more recently in bottleneck optimisation. However,
Bellman-Zadeh’s proposal has sometimes been misunderstood, as to its actual
role. In fact this non-compensatory approach also pioneered later developments
in the literature on soft constraint satisfaction methods [54]. In particular, the
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non-compensatory max-min approach and its refinements stands in opposition to
the traditional optimisation literature where constraints are crisp, as well as to
the systematic use of averages and their extensions for aggregating criteria. The
framework of aggregation operations takes a very general view that subsumes the
two traditions. Rather than providing another survey of aggregation operations that
are already documented in the above-cited recent books, we discuss the issue of
qualitative approaches that can be developed in the light of current developments so
as to overcome the above critique of linguistic scales in Sect. 2.4.2.

16.5.1 Aggregation Operations: Qualitative or Quantitative

The nature of the value scale employed for rating the worth of decisions dictates
whether an aggregation operation is legitimate or not. Should we use a qualitative
or a quantitative approach? There are pros and cons. We are faced with a modeling
dilemma.

Using quantitative scales, we dispose of a very rich framework:

• We can account for very refined aggregation attitudes, especially trade-off,
compensation and dependence between criteria

• A very fine-grained ranking of alternatives can be obtained.
• The aggregation technique can be learned from data.
• However, numerical preference data are not typically what decision-makers

provide.

Qualitative approaches (ordinal or qualitative scales) may look more anthropo-
morphic. Indeed, contrary to what classical decision theory suggests, people can
make decisions in the face of several criteria, sometimes without numerical utility
nor criteria importance assessments (see the works by Gigerenzer [70], for instance).
However it is well-known that people make little sense of refined absolute value
scales (not more than seven levels). More precisely, in a qualitative setting:

• We are closer to the information humans can actually supply.
• We can nevertheless model preference dependence using graphical models (see

the recent literature on CP-nets [15]).
• Making small qualitative scales commensurate with each other is easier.
• But the choice of aggregation operations is very limited (it ranges from impossi-

bility theorems in the ordinal case, to only min and max and their combinations
in the qualitative case).

• Finite value scales induce a strong lack of discrimination: the set of potential
decisions will be clustered into as many groups of indifferent alternatives as the
number of levels in the absolute scale.

• It is not clear how to handle qualitative bipolar information (pros and cons).
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In fact there are discrete t-norms other than minimum on finite scales. The main
alternative is Łukasiewicz discrete t-norm, that is a truncated sum. This choice
underlies assumptions on the meaning of a qualitative scale L D f�0; �1; : : : ; �ng,
1. Like with the 2-tuple method, L is mapped to the integers: �i D i. In particular,
�i is understood as being i times stronger than �1.

2. There is a saturation effect that creates counterintuitive ties when aggregating
objective functions in this setting.

So this approach is not really qualitative, and not very attractive altogether at the
practical level. In fact it is important to better lay bare the meaning of a qualitative
value scale, and point out the assumptions motivating the restriction of aggregation
operations to min and max. Using a qualitative scale, two effects can be observed:

1. Negligibility effect: Steps in the evaluation scale are far away from each other.
It implies a strong focus on the most likely states of nature, on the most impor-
tant criteria. This is what implies a lack of compensation between attributes.
For instance, aggregating five ratings by the minimum, min.5; 5; 5; 5; 1/ <

min.2; 2; 2; 2; 2/: many 5’s cannot compensate for a 1 and beat as many 2’s.
2. Drowning effect: There is no comparison of the number of equally satisfied

attributes. The rating vector .5; 5; 5; 5; 1/ is worth the same as .1; 1; 1; 1; 1/ if
compared by means of the min operation. It means that we refrain from counting.

It is clear that focusing on important criteria is something expected from human
behavior [70]. However the equivalence between .5; 5; 5; 5; 1/ and .1; 1; 1; 1; 1/
is much more debatable and conflicts with the intuition, be it because the latter
Pareto-dominates the former. The main idea to improve the efficiency of qualitative
aggregation operations is to preserve the negligibility effect, while allowing for
counting. Note that if we build a preference relation on the set of alternatives rated
on an absolute scale L on the basis of pairwise comparisons made by the decision-
maker, one may get chains of strictly preferred alternatives with length m >j L j.
So, humans discriminate better on pairwise comparisons than using absolute value
scales.

16.5.2 Refinements of Qualitative Aggregation Operations

Let V be a set of alternatives, and assume a unique finite value scale L for rating n
criteria, L being small enough to ensure commensurability. At one extreme, one
may consider the smallest possible value scale L D f0; 1g. So each alternative
is modelled by a Boolean vector Eu D .u1; u2; : : : ; un/ 2 f0; 1gn. Let � denote
the overall preference relation over f0; 1gn, supposed to be a weak order. Suppose
without loss of generality that criteria are ranked in the order of their relative
importance (criterion i as at least as important as criterion i C 1). Three principles
for a qualitative aggregation operations should be respected for the aggregation to
be rational in a pairwise comparison
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1. Focus effect: If one alternative satisfies the most important criterion where the
ratings of the two alternatives differ then it should be preferred. Formally it reads
as follows: given two vectors of ratings Eu and Ev, if ui D vi; i D 1; : : : ; k � 1, and
uk D 1; vk D 0, where criterion k is strictly more important than criterion kC 1,
then Eu 
 Ev

2. Compatibility with strict Pareto-dominance (CSPD): If an alternative satisfies
only a subset of criteria satisfied by another then the latter should be preferred.

3. Restricted compensation: If an alternative satisfies a number of equally impor-
tant criteria greater than the number of criteria of the same importance satisfied
by another alternative, on the most important criteria where some ratings differ,
the former alternative should be preferred.

Strict Pareto-Dominance is defined for any value scale as Eu >P Ev if and only if
8i D 1; : : : n; ui 	 vi and 9j; uj > vj. Then the CSPD principle reads:

Eu >P Ev implies Eu 
 Ev:

Clearly, the basic aggregation operations min and max violate strict Pareto-
Dominance. Indeed we may have miniD1;:::;n ui D miniD1;:::;n vi while Eu >P Ev. In
fact, in the finite case, there is no strictly increasing function f W Ln ! L. So
any aggregation function on a finite scale will violate strict Pareto-Dominance.
But just applying the latter to Ln, the obtained partial order on V contains chains
Ev1 >P Ev2 >P � � � >P Evm much longer that the numbers of elements in the value
scale. Given that we take the negligibility effect for granted, the approach to mend
these basic operations is thus not to change them, but to refine them. Two known
methods recover Pareto-dominance by refining the min-ordering (see [43] for a
bibliography):

• Discrimin: Eu >dmin Ev if and only if miniWui¤vi ui > miniWui¤vi vi

• Leximin: Rank Eu and Ev in increasing order: let Eu
 D .u
.1/ � u
.2/ � � � � � u
.n//
and Ev� D .v�.1/ � v�.2/ � � � � � v�.n// 2 Ln, then Eu >lmin Ev if and only if
9k;8i < k; u
.i/ D v�.i/ and u
.k/ > v�.k/

The Discrimin method deletes vector positions that bear equal values in Eu and Ev
prior to comparing the remaining components. The leximin method is similar but
it cancel pairs of equal entries, one from each vector, regardless of their positions.
Similar refinements of the maximum operation, say Discrimax and Leximax can be
defined.

Clearly, Eu >P Ev implies Eu >dmin Ev which implies Eu >lmin Ev. So by constructing
a preference relation that refines a qualitative aggregation operation, we recover a
good behavior of the aggregation process without needing a more refined absolute
scale.
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The minimum and the maximum aggregation operations can be extended so as
to account for criteria importance. Consider a weight distribution E that evaluates
the priority of criteria, with maxi D 1. Consider the order-reversing map �.�i/ D
�m�i on a scale with mC 1 steps. The following extensions of the minimum and the
maximum are now well-known:

• Prioritized Maximum: P max.Eu/ D maxiD1;:::n min.i; ui/ Here P max.Eu/ is
high as soon as there is an important criterion with high satisfaction rating.

• Prioritized Minimum: P min.Eu/ D miniD1;:::n max.�.i/; ui/ Here P min.Eu/ is
high as soon as all important criteria get high satisfaction ratings.

• Sugeno Integral: S�;u.f / D max�i2L min.�i; �.U�i// where U�i D fi; ui 	 �ig
and � W 2S 7! L ranks groups of criteria.

In the last aggregation scheme, �.A/ is the priority degree of the group of criteria
A � f1; : : : ; ng. It is a capacity, i.e., if A � B then �.A/ � �.B/. When � is a pos-
sibility (resp. necessity) measure, i.e., �.A/ D maxi2A �.fig/ (resp. mini62A �.�.fig/)
then the Prioritized Maximum P max (resp. Minimum P min) operation is retrieved.
These operations have been used in decision under uncertainty (as a substitute to
expected utility [57]) and for criteria aggregation with finite value scales [105].

The leximin and leximax operations can be extended in order to refine P max and
P min. The idea is as follows (Fargier and Sabbadin [60]). Given a totally ordered
set .�;D/ the leximin and leximax relations>lmin and>lmax compare vectors in�n,
based on comparing values using the relation D. Call these techniques Leximax(D),
Leximin(D). For the leximin and leximax comparison of utility vectors, we use
� D L and DD	.

Iterating this scheme allows for a comparison of matrices with entries in L.
Namely let H D Œhi;j� be such a matrix, � D Ln. The Leximax(�lmin) relation
(where DD�lmin) can be used for comparing the rows Hj� of the matrix:

F �lmax.lmin/ G,
� 8j;F.j/� �lmin G.j/� or
9i s.t. 8j > i;F.j/� �lmin G.j/� and F.i/� 
lmin G.i/�

where H.i/� D ith row of H, reordered increasingly. It takes the minimum on elements
inside the rows, and the leximax across rows. To compute this ordering, we must
shuffle the entries of each matrix so as to rank values on each line in increasing
order, and rows top-down in decreasing lexicographic order. Then compare the two
matrices lexicographically, first the top rows, then, if equal, the second top rows,
etc.

Example 5. : Consider the comparison of the two matrices.

F D
7 3 4 8 5
6 3 7 4 9
5 6 3 7 7

G D
8 3 3 5 9
3 7 3 8 4
7 3 8 5 5
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It is clear that maxi minj fi;j D maxi minj gi;j. Reordering increasingly inside
lines:

F0 D
3 4 5 7 8

3 4 6 7 9

3 5 6 7 7

G0 D
3 3 5 8 9

3 3 4 7 8

3 5 5 7 8

Then rows are rearranged reordered top down in the sense of leximax. It is clear
that (see bold face entries):

3 5 6 7 7
3 4 6 7 9

3 4 5 7 8


lmax.lmin/

3 5 5 7 8
3 3 5 8 9

3 3 4 7 8

The Leximax(�lmin) relation is a (very discriminative) complete and transi-
tive relation. Two matrices are equally preferred if and only if they have the
same coefficients up to an increasing reordering inside rows and a decreasing
reordering of columns. It refines the maximin comparison of matrices based on
computing maxi minj hi;j. Likewise we can define Leximin(�lmin), Leximax(�lmax);
Leximin(�lmax).

These notions are instrumental to refine the prioritized maximum and minimum.
In the prioritized case, alternatives Eu are encoded in the form of n � 2 matrices
Fu D Œfij� with fi1 D i and fi2 D ui; i D 1; : : : ; n: It is then clear that P max.Eu/ D
maxiD1;n minjD1;2 fij. Hence P max is refined by the Leximax.Leximin.	// proce-
dure:

P max.Eu/ > P max.Ev/ H) Fu 
lmax.�lmin/ Fv:

The prioritized minimum can be similarly refined applying Leximin(�lmax) to
matrices Fu D Œfij� with fi1 D n.i/ and fi2 D ui. It is easy to verify that the
Leximin(�lmax) and Leximax(�lmin) obey the three principles of Focus Effect, Strict
Pareto-Dominance, and Restricted Compensation.

The same kind of trick can be applied to refine the ordering induced by Sugeno
integrals. But the choice of the matrix encoding alternatives depends on the form
chosen for expressing this aggregation operation. For instance, using the form
proposed above, you can choose fi1 D �i; fi2 D �.U�i/. This choice is not the
best one, as shown in [41]. Moreover, part of the lack of discrimination is due to
the capacity � itself that estimates the importance of groups of criteria. In order to
refine the capacity � one idea is to generalize the leximax refinement of possibility
measures [55]. To this end, it is useful to consider the so-called “Qualitative”
Moebius transform [72] of � :

�#.A/ D �.A/ if �.A/ > max
B¨A

�.B/

D 0 otherwise.
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It is such that �.A/ D maxE�A �#.E/, that is �# contain the minimal amount of
information to recover � . It is clear that if � is a possibility measure, then �#.E/ > 0
only if E is a singleton, i.e., �# is a possibility distribution. The extension of the
leximax refinement of possibility measures to capacities � is then just obtained by
comparing the sets f�#.E/;E � Ag and f�#.E/;E � Bg for two groups of criteria A
and B, using leximax. More details on these issues can be found in [41, 42].

An interesting question is to define counterparts to discrimin and leximin
procedures for any (monotonic) aggregation operation f W L2 ! L on qualitative
scales. The refinement question also makes sense for continuous scales (see [83]).

16.5.3 Numerical Encoding of Qualitative
Aggregation Functions

Additive encodings of the leximax and leximin procedures have existed for a long
time in the optimisation literature, when the number of alternatives to be compared
or the evaluation scale is finite (such an encoding is not possible in the continuous
case). A mapping � W L ! Œ0; 1�, where L D f0 < �1 < �2 < � � � < �m D 1g, is
said to be n-super-increasing if and only if �.�i/ > n�.�i�1/;8i D 2;m. We also
assume �.0/ D 0 and �.�m/ D 1. Mapping � is also called big-stepped. It is clear
that for any such mapping,

max
iD1;:::n ui > max

iD1;:::n vi implies
X

iD1;:::n
�.ui/ >

X

iD1;:::n
�.vi/

e.g., �.�i/ D ki�m for k > n achieves this goal. The worst case is when

max.0; 0; : : : ; 0; �i/ > max.�i�1; : : : ; �i�1/:

This is a numerical representation of the leximax ordering:

Property: Eu 
lmax Ev if and only if
P

iD1;:::n �.ui/ >
P

iD1;:::n �.vi/:

Now consider the big-stepped mapping  .�i/ D 1�k�i

1�k�m ; k > n. Again it holds that:

min
iD1;:::n ui > min

iD1;:::n vi implies
X

iD1;:::n
 .ui/ >

X

iD1;:::n
 .vi/

And it offers a numerical representation of the leximin ordering.
Property: Eu 
lmin Ev if and only if

P
iD1;:::n  .ui/ >

P
iD1;:::n  .vi/:

These representation results have been extended to the above refinements of the
prioritized maximum and minimum [60] by means of weighted averages
involving super-increasing sequences of numerical values. For instance, there
exists a weighted average, say AVC.Eu/, representing �lmax.�lmin/ and thus
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refining P max. Namely consider a super-increasing transformation � of the
scale L such that:

max
i

min.i; ui/ > max
i

min.i; vi/ H)
X

iD1;:::n
�.i/ ��.ui/ >

X

iD1;:::n
�.i/ ��.vi/:

The worst case is when:

max.min.�j; �j/; 0; : : : ; 0/>max.min.�j; �j�1/;min.1L; �j�1/; : : : ;min.1L; �j�1//:

Hence the sufficient condition:

8j 2 f0; : : : ;m � 1g; �.�j/
2 > .nC 1/�.�j�1/ � �.1L/

The following result then holds:

Eu 
lmax.lmin/ Ev if and only if
X

iD1;:::n
�.i/�.ui/ >

X

iD1;:::n
�.i/�.vi/:

The values �.i/; i D 1; : : : ; n can be normalized in such a way as to satisfyPn
iD1 �.i/ D 1 so that we do use a weighted average to represent
lmax.lmin/.
The same kind of refinement by mapping to a numerical scale can be considered

for Sugeno integrals. The idea is to use a Choquet integral. However, in order to get
a minimally redundant expression of Sugeno integral, it can be put in the following
form:

S� .Eu/ D maxA�N min.�#.A/;mini2A ui/;

where �#.A/ is the above defined qualitative Moebius transform. We can use a super-
increasing transformation of �# into a mass function m# W 2S 7! Œ0; 1� W m#.E/ D
�.�#.E// in the sense of Shafer [114], such that

P
E�C m#.E/ D 1. The above

leximax refinement of the ranking induced by � can then be represented by means
of the belief function Bel.A/ DP

E�A m#.E/. When � is a possibility measure, the
refining belief function is a probability measure. The Sugeno integral can then be
refined by a Choquet integral of the form (see [41, 42] for details):

Chlsug
# .Eu/ D

X

A�S

m#.A/ �min
s2A

�.ui/:

The lessons drawn from this line of study is that the discrimination power of
qualitative aggregation methods (which in some sense are the off-springs of the
Bellman-Zadeh decision framework) can be drastically increased by lexicographic
refinement techniques that respect the qualitative nature of the preference informa-
tion as well as the focus effect on most important issues observed in human decision
behavior. Moreover these refinement techniques bring us back to standard numerical
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aggregation methods, that, through the use of super-increasing transformations,
are robust (because qualitative in essence) contrary to many number crunching-
preference aggregation methods.

16.5.4 Bipolarity in Qualitative Evaluation Processes

Cumulative Prospect Theory, due to Tversky and Kahneman [118] was motivated
by the empirical finding that people, when making decisions, do not perceive the
worth of gains and losses in the same way. This approach assesses the importance
of positive affects and negative affects of decisions separately, by means of
two monotonic set functions gC.AC/, g�.A�/, which respectively evaluate the
importance of the set of criteria AC where the alternatives a score favorably, and
the importance of the set of criteria A� where they score unfavorably. For instance,
one can separately compute the expected utility of the losses and of the gains,
using different utility functions. Then they suggest to compute the so-called net
predisposition N.a/ D gC.AC/ � g�.A�/ of each decision a in order to rank-order
them in terms of preference. This view is at odds with classical decision theory
where there is no distinction between gains and losses. Couched in terms of fuzzy
sets, the CPT approach, which relies on the idea of bipolar information, is akin
to a form of independence between membership and non-membership grades in the
spirit of Atanassov [4]. However, decision works inspired by the misleadingly called
intuitionistic fuzzy sets never make the connection with CPT.

This line of thought, was recently extended to the case where positive and
negative affects are not independent (see [73]):

• Using bi-capacities on a bipolar scale in the form of functions N.a/ D g.AC;A�/
monotonic in the first place, antimonotonic with the second one.

• So-called bipolar capacities N.a/ D .gC.AC;A�/; g�.AC;A�// living on bivari-
ate unipolar scales, keeping the positive and the negative evaluations separate.

An interesting question is then how to evaluate decisions from qualitative bipolar
information, namely how to extend the min and max rules if there are both positive
and negative arguments? This question was recently discussed by the first author
with colleagues [13, 58]. In the proposed simplified setting, a set of Boolean criteria
.C/ is used, each of which has a polarity p D C (positive) or � (negative).
Such criteria are called affects. For instance, when buying a house, the presence
of a garden is a positive affect; the location of the house in a noisy or dangerous
environment is a negative affect. Each affect is supposed to possess an importance
level in a qualitative scale L. The focus effect is assumed in the sense that the order
of magnitude of the importance of a group A of affects with a prescribed polarity is
the one of the most important affect, in the group (�.A/ D maxx2A i is a possibility
measure).
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Preference between two alternatives a and b is then achieved by comparing the
pairs (….A�/, ….AC/) and (….B�/, ….BC/), evaluating separately positive and
negative affects of a (respectively AC D fi; p.i/ D C; ui D 1g and A� D fi; p.i/ D
�; ui D 1g), based on the relative importance of these affects. The most natural rule
that comes to mind is called the Bipolar Possibility Relation. The principle at work
(that plays the role of computing the net predisposition in the qualitative setting) is:
Comparability of positive and negative affects: When comparing Boolean vectors
Eu and Ev, a negative affect against Eu (resp. against Ev) is a positive argument pro Ev
(resp. pro Eu).

Along with the way groups of affects are weighted, the decision-maker is
supposed to focus on the most important affect regardless of its polarity. The
following decision rule follows [58]:

a �Biposs b () max.….AC/;….B�// 	 max.….BC/;….A�//

The relation �Biposs is complete, but only its strict part is transitive. This relation
collapses to the Bellman-Zadeh minimum aggregation rule if all affects are negative
and to the maximum rule if all affects are positive (which also has something
to do with Atanassov connectives). This is similar to the CPT approach where:
a > b () gC.AC/ C g�.B�/ > gC.BC/ C g�.A�/, the possibilistic rule
being obtained by changingC into max. This decision rule is sound and cognitively
plausible but it is too rough as it creates too many indifference situations.

Refinements of this decision rule can be based on an idea originally due to B.
Franklin: canceling arguments of equal importance for Ea or against Eb, by arguments
for b or against a until we find a difference on each side. This leads to a complete and
transitive refinement of �Biposs. Let AC

� D fi 2 AC; i D �g be the arguments for a
with strength �. (resp. A�

� the arguments against a with strength �.). The following
decision rule checks the positive and negative affects for each element of a pair (a; b)
of alternatives top-down in terms of importance:

a �Lexi b () 9� 2 L such that

(
8ˇ > �; jAC

ˇ j � jA�̌j D jBC
ˇ j � jB�̌j

and jAC
� j � jA�

� j > jBC
� j � jB�

� j:

It focuses on the maximal level of importance when there are more arguments for
one than for the other (using the comparability postulate). This rule generalizes
Gigerenzer’s “take the best” heuristic [70] and can be encoded in the CPT
framework using super-increasing transformations. It has been empirically tested,
and proves to be the one people often use when making decisions according to
several criteria when subject to the focus effect [13].
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16.6 Uncertainty Handling in Decision Evaluation
Using Fuzzy Intervals

Fuzzy intervals have been widely used in FDA so as to account for the fact that
subjective evaluations are imprecise. In many cases, it comes down to applying
the extension principle to existing evaluation tools: weighted averages or expected
utilities using fuzzy interval weights [125], fuzzy extensions of Saaty’s Analytical
Hierarchical Process [85], and other numerical or relational MCDM techniques (like
TOPSIS, PROMETHEE, ELECTRE, etc. [67]). Many of these techniques, in their
original formulations are ad hoc, or even debatable (see [16] for a critique of many
of them). So their fuzzy-valued extensions are often liable of the same defects.

The problem with fuzzy set methods extending existing ones is that more often
than not the proposed handling of fuzzy intervals is itself ad hoc or so approximate
that the benefit of the fuzzification is lost. Moreover the thrust of fuzzy interval
analysis is to provide information about the uncertainty pervading the results of
the decision process. Some authors make an unjustified use of defuzzification that
erases all information of this type. For instance the decision-maker is asked for
some figures in the form of fuzzy intervals so as to account for the difficulty to
provide precise ratings, and then these ratings are defuzzified right away. Or the
fuzzy intervals are propagated through the decision process but the final results
are defuzzified in order to make the final decision ranking step easier. In such
procedures, it is not clear why fuzzy intervals were used. The uncertainty pervading
the ratings should play a role in the final decision-making process, namely to warn
the decision maker when information is not sufficient for justifying a clear ranking
of alternatives.

In this section we discuss two examples where fuzzy intervals have been
extensively used, but where some intrinsic technical or computational difficulties
need to be properly addressed in decision evaluation techniques: fuzzy weighted
averages and fuzzy AHP methods.

16.6.1 Fuzzy Weighted Averages

An obvious way of introducing fuzzy sets in classical aggregation techniques is to
assume that local evaluations are ill-known and represented by fuzzy intervals. The
question is then how to aggregate fuzzy evaluations and how to provide a ranking of
alternatives. Fuzzy weighted averages are a good example of such a problem, that
dates back to Baas and Kwakernaak [5]. There have been numerous papers on fuzzy
weighted averages since then (see [56] for a bibliography before 2000 and [125] for
a recent survey). The key technique involved here is fuzzy interval analysis [56].
Two important points need to be stressed, that are not always acknowledged:
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• Computing arithmetic expressions with fuzzy intervals cannot always be done by
means of plain fuzzy arithmetics (that is, combining partial results obtained by
means of the four operations).

• Before considering a fuzzy interval approach, one must understand how to solve
the problem with plain intervals.

The first point is actually a corollary of the second one. In particular the name
“fuzzy number” seems to have misled many authors who seem not to realize that
what is often called a fuzzy number is a generalized (gradual) interval. For instance
some authors have tried to equip fuzzy addition with a group structure, which is
already lost for intervals. Many expect the defuzzification of fuzzy intervals to yield
a precise number, while stripping a fuzzy set from its fuzziness naturally yields a
set. These points are discussed at length in [66] where a genuine fuzzy extension of
a number (a gradual number) is suggested, such that a fuzzy interval is a standard
interval of such gradual numbers. In this paper we systematically use the name fuzzy
interval to remove all ambiguity.

As a consequence, fuzzy interval analysis inherits all difficulties encountered
when computing with intervals [91]. In particular if a given ill-known quantity
appears several times in some arithmetic expression, one must be very careful to
observe that substituting this quantity with the same interval in several places does
not preserve the constraint stating that behind this interval lies the same quantity. For
instance, if x 2 Œa; b�, then Œa; b�� Œa; b� ¤ 0, while x�x D 0 regardless of the value
of x. More generally, interval analysis (hence fuzzy interval analysis) requires an
optimization problem to be solved. Computing fuzzy weighted averages has more
to do with constraint propagation than with the arithmetics of fuzzy intervals.

The difficulty is already present with imprecise (interval) weights. The problem
of computing interval-valued averages can be posed in two ways:

1. Maximise and minimise
Pn

iD1 xi�wiPn
iD1 wi

under the constraints: wi 2 Œai; bi� �
Œ0;C1/; xi 2 Œci; di�; i D 1; : : : ; nI

2. Maximise and minimise
Pn

iD1 xi � pi under the constraints: pi 2 Œui; vi� �
Œ0; 1�; xi 2 Œci; di�; i D 1; : : : ; n;Pn

iD1 pi D 1:
The two problems yield different results if the same intervals Œui; vi� D Œai; bi�

are used. In both cases, the maximal (resp. minimal) solution is attained for xi D
di (resp. xi D ci). In the second problem, one issue is: what does normalization
mean when only intervals .Œu1; v1�; Œu2; v2� : : : ; Œun; vn�/ are available? It is clear that
the sum of these intervals is an interval, hence never equal to 1. One way out is
to view a vector of interval weights as a set of standard normalized vectors Ep D
.p1; p2 : : : ; pn/.

Specific conditions must be satisfied if all bounds are to be reachable by such
weight vectors, that is 8i D 1 : : : n; 9.p1; p2 : : : ; pn/ 2Qn

iD1Œui; vi� such that pi D ui

and another such vector such that pi D vi. The question is completely solved by
de Campos et al. [30] in the case of imprecise probability weights. Necessary and
sufficient conditions are (the second one implies the first one)
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1.
Pn

iD1 ui � 1 �Pn
iD1 vi (non-emptiness)

2. ui CPj¤i vj 	 1; vi CPj¤i uj � 1 (attainability).

Attainability ensures a form of arc-consistency (optimally short intervals Œui; vi� for
the probabilities pi) in the terminology of constraint satisfaction. It also comes down
to the coherence condition of Walley [121] for probability bounds. Updating the
bounds of the intervals Œui; vi� so that this condition be satisfied can be viewed as a
form of normalization.

A fast method has been proposed a long time ago, to solve the second problem,
with explicit expressions whose computation is linear in the number of arguments
[44]. Now the first problem can be connected to the second one by comparing the
intervals

Iw D f
Pn

iD1 xi � wi
Pn

iD1 wi
;wi 2 Œai; bi�g D f

nX

iD1
xi � pi; pi D wi

Pn
iD1 wi

;wi 2 Œai; bi�g

and

Ip D f
nX

iD1
xi � pi; pi 2 Œ ai

ai CPj¤i bj
;

bi

bi CPj¤i aj
�;

nX

iD1
pi D 1g:

That the bounds of these intervals are attainable for normalized vectors
.p1; p2 : : : ; pn/ is established in [123]. However as pointed out in [99] (and contrary
to what is suggested in the previous version of this paper [40]) the latter interval
strictly contains the former one, except if n D 2. From a geometrical point of view,
the problem is to study the relative position of the sets of probability vectors

W D f. w1
Pn

iD1 wi
; : : : ;

wn
Pn

iD1 wi
/;wi 2 Œai; bi�; i D 1; : : : ; ng

and

WN D f.p1; : : : ; pn/ W pi 2 Œ ai

ai CPj¤i bj
;

bi

bi CPj¤i aj
�; i D 1; : : : ; n;

nX

iD1
pi D 1g:

For n D 2 these sets are equal to the segment f.p; 1 � p/ W p 2 Œ a1
a1Cb2

; b1
b1Ca2

�g.
Consider the case n > 2 and for simplicity we assume ai > 0;8i. It can be observed
that the polyhedra W and WN both lie in the hyperplane H D fEp D .p1; : : : ; pn/ WPn

iD1 pi D 1g of normalized vectors, but no facet of one is parallel to a facet of the
other. Let P D fEp 2 H W pi 	 0; i D 1; : : : ; ng be the positive part of H, that is, the
set of probability assignments in H. More precisely, WN is the intersection between
P and the Cartesian product �iD1;:::;nŒ ai

aiCPj¤i bj
; bi

biCPj¤i aj
� [98].
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Fig. 16.1 Interval-weighted
average vs. interval convex
sum

p1 = 1 p2 = 1

p3 = 1

Each pair of parallel facets of WN is of the form pi D p, where p D ai
aiCPj¤i bj

and p D bi
biCPj¤i aj

; they are also parallel to the facet of P such that pi D 0, and

this for i D 1; : : : ; n. In contrast, W is obtained by homothetic projection of the
Cartesian product�iD1;:::;nŒai; bi� on P. The vertices of this polyhedron lie inside the
facets of WN as shown in [99], so that both WN and W have the same marginal
projections of the form Œ ai

aiCPj¤i bj
; bi

biCPj¤i aj
�. Moreover, each edge of W is the

homothetic projection of one edge of the hyper-rectangle �iD1;:::;nŒai; bi� and lies
in the same hyperplane as one axis of the referential, hence on a line containing the
vertex of P on that axis. The set W is defined via constraints of the form pi

pj
D wi

wj
,

while WN is generated from bounds on individual pi. This type of representation is
common in the area of imprecise probabilities [121], where credal sets of the form
WN are obtained by constraints on the probabilities of elementary events [30] while
those of the form W are obtained by constraining conditional probabilities.

For instance consider the case where n D 3 pictured by Fig. 16.1 [99], where P is
an equilateral triangle in bold line with vertices .1; 0; 0/; .0; 1; 0/; .0; 0; 1/. The set
W of renormalized weights is a hexagon whose sides are obtained by lines (dotted
on the figure) drawn from the vertices of the triangle (two per vertex). It is clear that
WN is the smallest hexagon, with opposite edges parallel to the edges of the triangle
P, containing W (in continuous thin lines in the figure). In the fuzzy case, we get
fuzzy subsets of P consisting of nested hexagons.

It should be clear from [99] and the above discussion that the vertices of W are
generally not the same as the vertices of WN . As a consequence, the intervals

X D f
Pn

iD1 xi � wi
Pn

iD1 wi
;wi 2 Œai; bi�; i D 1; : : : ; ng
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and

XN D f
nX

iD1
xi � pi; pi 2 Œ ai

ai CPj¤i bj
;

bi

bi CPj¤i aj
�; i D 1; : : : ; n;

nX

iD1
pi D 1g

have little chance to be equal because their bounds are attained on vertices of W and
WN respectively. And as W �WN it follows that, in general, X � XN .

A consequence of this finding of Pavlačka [99] is that in multicriteria decision-
making based on fuzzy weighted averages, constraining ill-known normalized
vectors and normalizing ill-known weights will give different results. Note that in
the precise case, one may indifferently compute a convex sum of ratings according to
the various criteria either using normalized weight vectors or using a weighted sum
with suitable non-normalized weight vectors. As the results without normalization
will be proportional to the results using a normalized vector, this choice of method is
immaterial for determining the ranking of available options. However in the interval-
valued case (let alone in the fuzzy case) there is no guarantee that the rankings of
options will be the same with the two approaches, respectively using intervals X
and XN for comparing the options, as they rely on imprecision polyhedra having
different vertices. All we know is that X will be strictly included in XN . Even worse,
there is generally no way of having the polyhedron of normalized vectors induced
by unnormalized interval weights equal to a polyhedron induced by suitable ranges
of imprecision bearing on components of a normalized weight vector, due to the
general incompatibility of their respective configurations.

This dilemma is very problematic when applying fuzzy weighted averages to
multicriteria decision analysis. Namely, how to model the imprecision on the
weights bearing on each criterion? Usually a weighted average is defined as a
convex sum of ratings. Should we elicit imprecision on normalized weight vectors
and compute a fuzzy convex sum? or elicit imprecision on un-normalized weights
and compute the image of the fuzzy weights via a rational fraction as done by most
authors since Baas and Kwakernaak [5] proposed it?

The natural way out of this dilemma may come from the following consider-
ations. Note that the two intervals X1 and X2 (likewise XN

1 and XN
2 ) evaluating

two options 1 and 2 do not constrain independent quantities: Each assignment of
weights wi in Œai; bi� determines single values, one in X1 and one in X2, that are
linked to each other. So the final ranking of options based on (fuzzy) interval global
ratings cannot be achieved by applying any (fuzzy) interval ranking method to one
of the sets of ill-known ratings Xk or XN

k . The interval ratings obtained for each
option are not independent. A natural ranking criterion is then the following: If one
option is better than another one for each assignment of weights in their ranges,
then the former option is better than the latter. Note that this ranking criterion yields
results that the renormalization procedure will leave unchanged: with this criterion,
comparing X1 and X2, or XN

1 and XN
2 , would give the same results . This fact pleads

in favor of extending, to intervals or fuzzy intervals, the whole decision procedure at
once, including the aggregation and the ranking steps, so as to take the interactivity
between the fuzzy global evaluation intervals into account.
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In the case of fuzzy weight vectors, the above reasoning must be applied to
˛-cuts of the fuzzy intervals involved. It should be clear that a fuzzy weight vector
EQp D .Qp1; Qp2 : : : ; Qpn/ should be actually viewed as a fuzzy set of normalized weight
vectors Ep, where attainability conditions are met for all interval weight vectors
..Qp1/˛; .Qp2/˛ : : : ; .Qpn/˛/ formed by cuts. The degree of membership of Ep in EQp is
equal to minn

iD1 �Qpi.pi/.
The above problems have been also considered more recently by scholars dealing

with type 2 fuzzy sets for calculating (fuzzy-valued) centroids, for instance [79, 84],
but these authors do not seem to rely on existing results in fuzzy interval analysis
and sometimes reinvent their own terminology. Extensions of such calculations to
Choquet integrals with fuzzy-valued importance weights for groups of criteria are
more difficult to carry out, as the issue of ranking intervals Œci; di�, let alone fuzzy
intervals, must be addressed within the calculation [90].

16.6.2 Fuzzy Extensions of the Analytical Hierarchy Process

A number of multicriteria decision-making methods have been extended so as to
deal with fuzzy data. Here we confine ourself to the case of Saaty’s Analytical
Hierarchy Process [111]. Numerous fuzzy versions of Saaty’s methods have been
proposed (since Van Laaroven and Pedrycz, [120], see the bibliography in [56]).
Many such proposals seem to pose and solve questionable fuzzy equations, as we
shall argue.

The principle of the AHP method relies on the following ideal situation

• The pairwise relative preference of n items (alternatives, criteria) is modelled by
a n � n consistent preference matrix A, where each coefficient aij is supposed to
reflect how many more times item i is preferred to item j:

• A consistent preference matrix is one that is reciprocal in the sense that
8i; j; aij D 1=aji and product-transitive (8i; j; k; aij D aik � akj).

• Then its largest eigenvalue is � D n and there exists a corresponding eigenvector
Ep D .p1; p2 : : : ; pn/ with 8i; j; aij D pi

pj
, yielding relative importance weights.

Even if widely used, this method is controversial and has been criticised by MCDM
scholars as being ill-founded at the measurement level, and having paradoxical
lacks of intuitive invariance properties (the scale used is absolute, with no degree
of freedom, see [16], for instance). Moreover in practice, pairwise comparison data
do not provide consistent matrices. Typically, the decision-maker provides, for each
pair .i; j/, a value vij 2 f2; : : : 9g if i is preferred to j vij times, vij D 1 if there
is indifference. The matrix A with coefficients aij D vij; aji D 1=aij if vij 	 1 is
then built. Generally, product transitivity is not empirically achieved. A preference
matrix A is considered all the more consistent as the largest eigenvalue of A is close
to n.
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Asking for precise values vij is debatable, because these coefficients are arguably
imprecisely known.3 So many researchers have considered fuzzy valued pairwise
comparison data. The fuzzification of Saaty’s AHP has consisted to extend the
computation scheme of Saaty with fuzzy intervals. However this task turned out
to be difficult for several reasons.

• Replacing a consistent preference matrix by a fuzzy-valued preference matrix
loses the properties of the former. The reciprocal condition Qaij D 1=Qaji no longer
implies Qaij � Qaji D 1, nor can the product transitivity property hold for all entries
of the fuzzy matrix in the form Qaij D Qaik � Qakj when Qaij are fuzzy intervals.

• Fuzzy eigenvalues or vectors of fuzzy-valued matrices are hard to define in a
rigorous way: writing the usual equation AEp D �Ep replacing vector and matrix
entries by fuzzy intervals leads to overconstrained equations.

• It is tempting to solve the problems with each interval-matrix defined from ˛-cuts
.Qaij/˛ D Œaij

˛
; aij˛� of the fuzzy coefficients, as done by Csutora and Buckley [25]

for instance. These authors suggest to solve the eigenvalue problem for the two
extreme preference matrices with respective coefficients aij

˛
and aij˛, with the

view to find an interval-valued eigenvalue. However these boundary matrices are
not even reciprocal since if Qaij D 1=Qaji, aij

˛
D 1=aji˛ , not 1=aji

˛
. So the meaning

of normalized weights computed from these boundary matrices is totally unclear.

The bottom-line is that the natural extension of a simple crisp equation ax D b
(let alone an eigenvalue problem) is not necessarily a fuzzy equation of the form
QaQx D Qb where fuzzy intervals are substituted to real numbers and equality of
membership functions on each side is required:

• The first equation ax D b refers to a constraint to be satisfied by a model referring
to a certain reality.

• But fuzzy intervals Qa; Qx; Qb only represent knowledge about actual values a; x; b
• Even if ax D b is taken for granted, it is not clear why the knowledge about ax

should be equated to the knowledge about b (pieces of knowledge Qa; and Qb may
derive from independent sources). The objective constraint ax D b only enforces
a consistency condition QaQx \ Qb ¤ ;.

• If indeed a fuzzy set Qx is found such that QaQx D Qb, it does not follow that the actual
quantities a; x; b verify ax D b. Moreover, equation QaQx D Qb may fail to have
solutions.

Recently, Ramik and Korviny [104] proposed to compute the degree of consis-
tency of a fuzzy preference matrix QA whose entries are triangular fuzzy intervals Qaij

and Qaji with respective supports and modes:

• for Qaij: Œaij; aij� and aM
ij ;

• for Qaji: Œ1=aij; 1=aij� and 1=aM
ij

3In fact, one may even consider that the very question of determining how many more times a
criterion is important than another one is meaningless.
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Their consistency degree is defined as the minimal distance between QA and a fuzzy
consistent matrix QX understood as a so-called ratio matrix with coefficients of the
form Qxij D QxiQxj

, where Qxi is a triangular fuzzy interval with mode xM
i , and the

normalisation condition
Pn

iD1 xM
i D 1 is assumed. The distance d. QA; QX/ used is a

scalar distance between the vectors formed by the three parameters of the triangular
fuzzy intervals, chosen such that the solution of the problem can be analytically
obtained in agreement with the geometric mean method of computation of weights,
already used in Van Laaroven and Pedrycz [120]. Fuzzy weights Qxi are thus obtained.

Let alone the fact that the formulation of the problem is partially ad hoc due to
triangular approximation of inverses of triangular fuzzy intervals, and due to the
choice of the normalisation condition (see the previous subsection), this approach
also suffers from the above epistemological flaw consisting in considering a fuzzy
interval as a simple substitute to a precise number, whereby a direct extension
of the standard method consists just in replacing numbers by fuzzy intervals and
running a similar computation as in the precise case. In particular the distance
d. QA; QX/ arguably evaluates an informational proximity between epistemic states
(states of knowledge) about preference matrices, and says little about the scalar
distance between the underlying precise ones.

Instead of viewing fuzzy interval preference matrices as fuzzy substitutes to
precise ones, one may on the contrary acknowledge fuzzy pairwise preference data
as imprecise knowledge about regular preference information. The fuzzy interval
preference matrix is then seen as constraining an ill-known precise consistent
comparison matrix. Inconsistencies in comparison data are thus explicitly explained
by the imprecise nature of human-originated information. Such a constraint-based
view of fuzzy AHP has been explained by Ohnishi and colleagues [93].

Namely consider a fuzzy matrix QA with entries Qaij D 1=Qaji and Qaii D 1 and denote
by �ij the membership function of Qaij. The relevance of a consistent preference
matrix A to the user preference data described by QA can be evaluated without
approximation as

�QA.A/ D min
i;jWi<j

�ij.aij/:

A given normal weight vector Ep D .p1; p2 : : : ; pn/ satisfies the fuzzy preference
matrix QA to degree �.Ep/ D mini<j �ij.

pi
pj
/. The degree of consistency of the

preference data is

Cons. QA/ D sup�.Ep/ D sup
EpWaijD pi

pj
;8i;jWi<j

�QA.A/:

The best induced weight vectors are the Pareto maximal elements among fEp; �.Ep/ D
Cons. QA/g. The reader is referred to [93] for details. It is interesting to contrast
this methodology, where the problem can be posed without approximation, and
the otherwise elegant one by Ramik and Korviny [104]. In their method, the fuzzy
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matrix QX can be viewed as an approximation of the imprecise information matrix
QA such that Cons. QX/ D 1 in the sense of Ohnishi et al. (the core matrix XM is
consistent in the sense of Saaty by construction). But the constraint-based approach
seems to be more respectful of the original imprecise preference data, that can be
directly exploited.

The constrained-based approach does not solve the difficulties linked to the
critiques addressed to Saaty’s method, but its interpretation is much clearer than
its direct fuzzification, in the sense that it does not require a new theory of fuzzy
eigenvalues, nor does it pose fuzzy interval equations with a debatable meaning.
It makes sense if it is taken for granted that human preference can be ideally
modelled by consistent preferences matrices in the sense of Saaty. The constraint-
based approach outlined above only tries to cope with the problem of inconsistency
of human judgments by acknowledging their lack of precision.

16.7 Comparing Fuzzy Intervals: A Constructive Setting

There is an enormous literature on fuzzy interval ranking methods, but very few
attempts at proposing a rational approach to the definition of ranking criteria. This
section tries to suggest one possible approach towards a systematic classification of
ranking indices and fuzzy relations induced by the comparison of fuzzy intervals.
The issue of ranking objects rated by fuzzy intervals should be discussed in the
perspective of decision under uncertainty. The connection between the ranking of
fuzzy intervals and fuzzy preference relations should be emphasized. There are
many ranking methods surveyed elsewhere [56, 124]. Here we suggest a unifying
principle: such ranking methods should be directly based on probabilistic notions of
dominance (see Chap. 8 in [17]) or their possibilistic counterparts on the one hand,
and interval orders [68, 103] on the other hand.

While many ranking methods have been proposed (and still are), most of the time
they are derived on an ad hoc basis: an often clever index is proposed, sometimes
for triangular fuzzy intervals only, and its merits are tested on a few examples.
Systematic comparison studies are not so numerous (except for Bortolan and Degani
[14], Lee [22], for instance). Moreover these comparison are based on intuitive
feelings of what a good ranking method should do, tested on a few examples
and counterexamples. There is a lack of first principles for devising well-founded
techniques. However Wang and Kerre [124] proposed an interesting set of axioms
that any preference relation � between fuzzy intervals Qa; Qb: should satisfy. For
instance:

• Reflexivity: Qa � Qa.
• Certainty of dominance: If Qa \ Qb D ; then Qa 
 Qb or Qb 
 Qa.
• Consistency with fuzzy interval addition: Qa � Qb implies QaC Qc � QbC Qc
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Dubois et al. [56] also classified existing methods distinguishing between:

1. scalar indices (based on defuzzification understood by the replacement of a fuzzy
interval by a representative number);

2. goal-based indices: computing the degree of attainment of a fuzzy goal by each
fuzzy interval, which bears some similarity to the expected utility approach,
understanding a fuzzy goal as a utility function;

3. relational indices: based on computing to what extent a fuzzy interval dominates
another. In this case, some methods are based on metric considerations (those
based on computing possibility and necessity of dominance), and others are
based on computing areas limited by the membership functions of the fuzzy
intervals to be compared.

Another view of the comparison of fuzzy intervals can exploit links between fuzzy
intervals and other settings: possibility, probability theories and interval orders. This
kind of idea can be found in some previous papers in the literature, but it has never
been systematically explored. Yet, it might provide a systematic way to produce
comparison indices and classifying them. In this section, we outline such a research
program.

16.7.1 Four Views of Fuzzy Intervals

A fuzzy interval Qa, like any fuzzy set is defined by a membership function �Qa.
This fuzzy set is normalized (9x 2 R; �Qa.x/ D 1) and its cuts are bounded closed
intervals. Let us denote by Œa; a� its core and Œa�; a�� its support.

Like any fuzzy set it needs to be cast inside an interpretive setting in order to be
usefully exploited. To our knowledge there are four existing views of fuzzy intervals
understood as a representation of uncertainty

1. Metric possibility distributions: in this case the membership function of Qa is
viewed as a possibility distribution x, following the suggestion of Zadeh [130].
A fuzzy interval represent gradual incomplete information about some ill-known
precise quantity x: x.r/ is all the greater as r 2 R is close to a totally possible
value. Moreover, we consider the interval Œ0; 1� as a similarity scale and the
membership function as a rescaling of the distance between elements on the real
line.

2. One point-coverage functions of nested random intervals: In this case, a fuzzy
interval Qa is induced by the Lebesgue measure ` on Œ0; 1�; and the cut multi-
mapping with range in the set of closed intervals of the real line I.R/:

Œ0; 1�! R W ˛ 7! Qa˛ 2 I.R/:

Then x.u/ D `.f˛; x 2 Qa˛g/. This view comes from the fact that a numerical
necessity measure is a special case of belief functions and a possibility distribu-
tion is the one-point coverage of a random set [71]. In this case, the membership
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function of Qa is viewed as the contour function of a consonant continuous belief
function. This line has been followed by Dubois and Prade [46] and Chanas and
colleagues [19]. The latter also envisaged a more general framework in the form
of random intervals limited by two random variables Px � Rx with disjoint support,
such that x.u/ D Prob.Px � u � Rx/. Then the nestedness property is lost and the
possibility distribution thus obtained is no longer equivalent to the knowledge of
the two random variables: they lead to a belief function on the real line in the
sense of Smets [122]

3. Families of probability functions: As formally a possibility measure is a special
case of belief function, and a belief function is a special case of (coherent) lower
probability in the sense of Walley [121], a fuzzy interval Qa also encodes a special
family of probability measures

PQa D fP W P.Qa˛/ 	 1 � ˛; ˛ 2 Œ0; 1�g:

Namely it can be shown that for fuzzy intervals Qa, ….A/ D supfP.A/;P 2 PQag
for all measurable subsets A of the real line. This approach proposed by Dubois
and Prade [48] was studied in the general case by De Cooman and Aeyels [31]. It
is clear that it allows probabilistic inequalities to be interpreted in terms of fuzzy
intervals (with cuts symmetric around the mean for Chebychev’s inequality [39]).

4. Intervals bounded by gradual numbers: This is a more recent view advocated
by Fortin et al. [66]. The idea is to view a fuzzy interval as a regular interval
of functions. To this end, the interval component of the fuzzy interval must be
disentangled from its fuzzy (or gradual) component. A gradual number Mr is a
mapping from the positive unit interval to the reals: ˛ 2 .0; 1� 7! r˛ 2 R. For
instance, the mid-point of a fuzzy interval Qa with cuts Œa˛; a˛� is a gradual number
Ma˛ D a˛Ca˛

2
. It is clear that a fuzzy interval can be viewed as an interval of gradual

numbers lower bounded by a˛ and upper-bounded by a˛ . Gradual numbers inside
the fuzzy interval Qa can be generated by selecting a number inside each cut of Qa.
In fact, they are the selection functions of the cut-mapping. Although the idea
of using a pair of functions to represent a fuzzy interval is not new (e.g., the
so-called L-R fuzzy numbers, that enable closed forms of arithmetic operations
on fuzzy intervals to be derived in terms of inverses of shape functions L and R
[56]), the key novelty here is to treat a fuzzy interval as a regular one.

What is clear from the above classification is that ranking fuzzy intervals should be
related to techniques for ranking intervals or for ranking random quantities. There
are well-known methods for comparing intervals, namely

1. Interval orders: Œa; b� >IO Œc; d� if and only if a > d (Fishburn [68], Pirlot and
Vincke [103]). Note that, interpreting intervals as possibility distributions Œa; b�
and Œc; d�, respectively restricting ill-known quantities x and y, the statement
Œa; b� >IO Œc; d� can be interpreted as by means of the necessity degree as
N.x> y/ D 1, given that .x; y/ 2 Œa; b� � Œc; d�. Likewise, ….x > y/ D 1 if
and only if b > c.
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2. Interval lattice extension of the usual ordering: If we extend the maximum and
minimum operations on the real line to intervals, it yields

max.Œa; b�; Œc; d�/ D fz D max.x; y/ W x 2 Œa; b�; y 2 Œc; d�g
D Œmax.a; c/;max.b; d/�

and likewise min.Œa; b�; Œc; d�/D Œmin.a; c/;min.b; d/�. The set of closed inter-
vals equipped with min and max forms a lattice, and the canonical ordering in
this lattice is

Œa; b� 	lat Œc; d� () max.Œa; b�; Œc; d�/ D Œa; b�
() min.Œa; b�; Œc; d�/ D Œc; d� () a 	 c and b 	 d:

3. Subjective approach: this is Hurwicz criterion that uses a coefficient of optimism
� 2 Œ0; 1� for describing the attitude of the decision-maker. Intervals can be
compared via a selection of precise substitutes to intervals:

Œa; b� 	� Œc; d� () �aC .1 � �/b 	 �cC .1 � �/d:

It is clear that Œa; b� >IO Œc; d� implies Œa; b� 	lat Œc; d�, which is equivalent to 8� 2
Œ0; 1�; Œa; b� 	� Œc; d�.

There are also well-known methods for comparing random variables

1. 1st Order Stochastic Dominance: x 	SD y if and only if 8�;P.x 	 �/ 	 P.y	 �/
([17] Chap. 8)

2. Probabilistic preference relations: R.x; y/ D P.x 	 y/ (e.g., x > y if and only if
R.x; y/ > ˛ > 0:5) [26].

3. Scalar substitutes: Comparing x and y by their expectations, more generally the
expectation of their utilities u.x/ and u.y/.

For independent random variables, P.x 	 y/ D 1 implies x 	SD y, which is
equivalent to

R
u.t/dPx.t/ 	

R
u.t/dPy.t/ for any monotonic increasing utility

functions u. For monotonically related random variables with joint distribution
function min.Fx.r/;Fy.r0// it is clear that P.x 	 y/ D 1 expresses 1st order
stochastic dominance exactly.

16.7.2 Constructing Fuzzy Interval Ranking Methods

According to the chosen interpretation of fuzzy intervals, the above methods for
comparing intervals and probabilities can be extended, possibly conjointly and thus
define well-founded ranking techniques for fuzzy intervals. So doing, a number of
existing ranking methods can be retrieved, and make sense in a particular setting.
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16.7.2.1 Metric Approach

If fuzzy intervals are viewed as mere possibility distributions x D �Qa and y D
�Qb, it is natural to exploit counterparts to probabilistic ranking techniques, turning
probability measures into possibility and necessity measures. One gets methods that
are well-known:

1. Interval lattice extension of stochastic dominance: Clearly there are two cumula-
tive distributions one can derive from a continuous fuzzy interval:

• the upper distribution F�.�/ D ….x � �/ D �Qa.�/ if � � a and 1 otherwise;
• the lower distribution F�.�/ D N.x � �/ D 1 � �Qa.�/ if � 	 a and 0

otherwise;

Then, we can

• either combine stochastic dominance and interval ordering:

Qa 	IO Qb () 8�;N.x 	 �/ 	 ….y 	 �/;

which is a very demanding criterion that basically requires that b � a and
1 � �Qa.�/ 	 �Qb.�/;8� 2 Œb; a�

• or combine stochastic dominance and the lattice interval ordering:

Qa 	lat Qb () 8�;….x 	 �/ 	 ….y 	 �/ and N.x 	 �/ 	 N.y 	 �/:

It comes down to comparing cuts of Qa and Qb using the lattice interval ordering
or yet the well-known comparison method via the extended minimum or
maximum Qa 	Qc Qb if and only if emax.Qa; Qb/ D Qa (oremin.Qa; Qb/ D Qb/

2. Counterparts of expected utility: compute the possibility and the necessity of
reaching a fuzzy goal G using possibility and necessity of fuzzy events. In this
case, the membership function �G represents a preference profile that stands for
a utility function, and special cases of Sugeno integrals can be computed:

• The degree of possibility of reaching the goal:

…Qa.G/ D sup
�

min.�Qa.�/; �G.�//:

• The degree of necessity of reaching the goal:

NQa.G/ D inf
�

max.1 � �Qa.�/; �G.�//:

These criteria are possibilistic counterparts of expected utility functions (opti-
mistic and pessimistic, respectively). They have been axiomatized as such by
Dubois et al. [57]. When �G is an increasing function, one can compare fuzzy
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intervals �Qa and �Qb by comparing pairs .NQa.G/;…Qa.G// and .NQb.G/;…Qb.G//
using interval ordering techniques. This approach systematizes the one of Chen
[23].

3. Possibilistic valued relations: compute valued preference relations obtained as
the degrees of possibility or necessity that x, restricted by Qa, is greater than
y restricted by Qb. For instance the index of certainty of dominance R.x; y/ D
N.x	 y/ D 1 � supv>u min.x.u/; y.v//. This line of thought goes back the
seventies [5] and was systematized by Dubois and Prade [45]. It extends interval
orderings [106] since N.x 	 y/ D 1 � inff˛ W Qa˛ >IO Qb˛g.

16.7.2.2 Random Interval Approach

One may wish to probabilize interval ranking methods, interpreting a fuzzy interval
as a nested random interval. For instance, one may use the valued relation approach
to comparing random numbers, extended to intervals:

1. The random interval order yields a valued relation of the form: RIO.Qa; Qb/ D
Prob.Qa˛ 	IO Qbˇ/; this kind of approach has been especially proposed by Chanas
and colleagues [20, 21]. The randomized form of the canonical lattice interval
extension of the usual order of reals > reads: RC.Qa; Qb/ D Prob.Qa˛ 	lat Qbˇ/; both
expressions presuppose some assumption be made regarding the dependence
structure between the parameters ˛ and ˇ viewed as random variables on the
unit interval.

2. The probabilistic version of the subjective approach leads to the following valued
relation that depends on the coefficient of optimism: R�.Qa; Qb/ D Prob.�a˛C
.1 � �/a˛ 	 �a˛ C .1 � �/b˛/
One may also generalize stochastic dominance to random intervals [1]. To this

end, we must notice that Prob.a˛ � �/ D …Qa.x � �/ and Prob.a˛ � �/ D
NQa.x� �/. Hence we get the same approach as in the ordinal case when we compare
any among Prob.a˛ � �/ or Prob.a˛ � �/ to any of Prob.b˛ � �/ or Prob.b˛ � �/:
One gets a special case of stochastic dominance between belief functions studied by
Denoeux [32].

Finally one may also compute the average interval using the Aumann integral:
E.Qa/ D R 10 Qa˛ [92], and compare E.Qa/ and E.Qb/ using interval comparison methods.
For instance, the Hurwicz method then coincides with the subjective approach of de
Campos and Gonzales [29] and subsumes Yager’s [126] and Fortemps and Roubens
[65] techniques.

16.7.2.3 Imprecise Probability Approach

Viewing fuzzy intervals as families of probability measures yields techniques close
to the random set approach [24]:
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• The extension of 1st Order Stochastic Dominance to fuzzy intervals remains
the same since …Qa.x � �/ (resp. NQa.x � �/) is also the upper (resp. lower)
probability of the event “x � �” in the sense of the probability family P˛ .

• Comparing upper and lower expected values of x and y, namely E�.Qa/ D R 1
0

a˛d˛

and E�.Qa/ D
R 1
0

a˛d˛ comes down to comparing mean intervals since E.Qa/ D
ŒE�.Qa/;E�.Qa/� [46].

• One may also construct interval- valued preference relations obtained as upper

and lower probabilities of dominance:

(
R�.x; y/DP�.x 	 y/;

R�.x; y/DP�.x 	 y/:
and exploit them.

A different interval-valued quantity that is relevant in this context is ŒE�.Qa� Qb/;
E�.Qa� Qb/� to be compared to 0. In imprecise probability theory, comparing lower
expectations of x and y is not equivalent to comparing the lower expectation to
x � y to 0, generally more details can be found in [35].

16.7.2.4 Gradual Number Approach

Viewing fuzzy intervals as intervals of gradual numbers, we first need a method for
comparing gradual numbers: again three natural techniques come to mind [2]. They
extend the comparison of random variables to some extent, because the inverse of a
cumulative distribution function is a special case of gradual number:

1. Levelwise comparison: Mr 	 Ms if and only if 8˛; r˛ 	 s˛ . It is clear that this
definition reduces to 1st order stochastic dominance when the gradual number is
the inverse of a distribution function.

2. Area comparison method:

Mr >S Ms()
Z 1

0

max.0; r˛ � s˛/d˛ >
Z 1

0

max.0; s˛ � r˛/d˛:

3. Comparing defuzzified values: the natural way of defuzzifying a gradual number
is to compute the number m.Mr/ D R 1

0
r˛d˛. This expression reduces to standard

expectation using inverses of distribution functions. And clearly Mr >S Ms ()
m.Mr/ > m.Ms/.
The connection between gradual numbers and the dominance index P.x > y/ is

worth exploring. In fact, under suitable dependence assumptions, P.x > y/ is related
to the Lebesgue measure `.f˛; r˛ 	 s˛g/.

On this ground one can compare fuzzy intervals Qa and Qb, viewed as genuine

intervals of functions ŒMa; Ma� and ŒMb; Mb� limited by gradual numbers, where Ma˛ D a˛
and Ma˛ D a˛ , so that Qa D fMr W Ma � Mr � Ma:g One retrieves some ranking methods
already found by the above previous approaches:

• Lattice interval extension of >: Qa 	lat Qb if and only if Qa 	 Qb and Qa 	 Qb.
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• Stochastic dominance with subjective approach: Qa 	� Qb if and only if �MaC.1��/
Ma 	 �MbC .1 � �/Mb:

• Subjective approach by comparing expectations: Qa 	� Qb if and only if
R 1
0
.�a˛ C

.1 � �/a˛/d˛ 	
R 1
0 .�b˛ C .1 � �/b˛/d˛.

Note that Qa 	IO Qb reads Ma 	 Mb, which is equivalent to the comparison of the interval
supports of the corresponding fuzzy intervals.

This typology only aims at emphasizing the impact of attaching an interpretation
to fuzzy intervals on the search for ranking methods. It can serve as a tool for
constructing well-founded ranking methods for fuzzy intervals and to study their
properties.

16.8 Conclusion

The use of fuzzy sets in decision analysis remains somewhat debatable so long
as proposals for using fuzzy intervals, fuzzy preference relations, linguistic value
scales are not better positioned in the stream of current research in measurement
theory [82] and decision sciences [17, 67]. There does not seem to exist a niche for
an isolated theory of fuzzy decision-making. However the use of fuzzy sets may
focus the attention of scholars of traditional decision theory on some issues that
were not otherwise considered, like encompassing averaging approaches to criteria
aggregation and soft constraint satisfaction, a non-probabilistic view of gradual
preference in relational approaches, a refined handling of incomplete information,
and a well-founded basis for qualitative approaches to evaluation.

Several messages result from the above analysis of the literature:

• Fuzzy set theory offers a bridge between numerical approaches and qualitative
approaches to decision analysis, but:

1. The use of linguistic variables encoded by fuzzy intervals does not always
make a numerical method more qualitative or meaningful.

2. Replacing numerical values by fuzzy intervals rather corresponds to a kind of
sensitivity analysis, not to a move toward the qualitative.

3. The right question is: how to faithfully encode qualitative techniques on
numerical scales, rather than using linguistic terms to extend already existing
ad hoc numerical techniques.

• There is a strong need to develop original fuzzy set-based approaches to
multicriteria decision analysis that are not a rehashing of existing techniques with
ad hoc fuzzy interval computations.

• Fuzzy set theory and its mathematical environment (aggregation operations,
graded preference modeling, and fuzzy interval analysis) provide a general
framework to pose decision problems in a more open-minded way, towards a
unification of existing techniques.
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Open questions remain, such as:

• Refine any qualitative aggregation function using discri-schemes or lexi-schemes
• Computational methods for finding discrimin-leximin solutions to fuzzy opti-

mization problems.
• Devise a behavioral axiomatization of new aggregation operations in the scope

of MCDM, decision under uncertainty and fuzzy voting methods
• Develop a general axiomatic framework for ranking fuzzy intervals based on first

principles.
• Study the impact of semantics of fuzzy preference relations (probabilistic,

possibilistic, distance-based,.) on how they should be exploited for ranking
purposes.

• Provide a unified framework for fuzzy choice functions [69].
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98. Pavlačka, O.: Modeling uncertain variables of the weighted average operation by fuzzy

vectors. Inf. Sci. 181, 4969–4992 (2011)
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Chapter 17
Vector and Set Optimization

Gabriele Eichfelder and Johannes Jahn

Abstract This chapter is devoted to recent developments in vector and set
optimization. Based on the concept of a pre-order optimal elements are defined.
In vector optimization properties of optimal elements and existence results are
gained. Further, an introduction to vector optimization with a variable ordering
structure is given. In set optimization basic concepts are summed up.

Keywords Vector optimization • Set optimization • Existence results • Variable
ordering structure

17.1 Introduction

In vector optimization one investigates optimal elements of a set in a, in generally
pre-ordered, space. The problem of determining these optimal elements, if they exist
at all, is called a vector optimization problem. Problems of this type can be found not
only in mathematics but also in engineering and economics. There, these problems
are also called multiobjective (or multi criteria or Pareto) optimization problems
or one speaks of multi criteria decision making. Vector optimization problems
arise, for example, in functional analysis (the Hahn-Banach theorem, the Bishop-
Phelps lemma, Ekeland’s variational principle), statistics (Bayes solutions, theory
of tests, minimal covariance matrices), approximation theory (location theory,
simultaneous approximation, solution of boundary value problems) and cooperative
game theory (cooperative n player differential games and, as a special case, optimal
control problems). In the last decades vector optimization has been extended to
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problems with set-valued maps. This field, called set optimization, has important
applications to variational inequalities and optimization problems with multivalued
data. Recently, also vector optimization problems with the space equipped with
a variable ordering structure instead of a pre-order have gained interest, as such
problems arise for instance in medical image registration or portfolio optimization.

In the applied sciences F.Y. Edgeworth [19] (1881) and V. Pareto [39] (1906)
were probably the first who introduced an optimality concept for vector optimiza-
tion problems. Both have given the standard optimality notion in multiobjective
optimization. Therefore, optimal points are called Edgeworth-Pareto optimal points
in the modern special literature.

We give a brief historical sketch of the early works of Edgeworth and Pareto.
Edgeworth introduces notions in his book [19] on page 20: “Let P, the utility of

X, one party,D F.x y/, and …, the utility of Y, the other party,D ˆ.x y/”. Then he
writes on page 21: “It is required to find a point .x y/ such that, in whatever direction
we take an infinitely small step, P and … do not increase together, but that, while
one increases, the other decreases”. Hence, Edgeworth presents the definition of a
minimal solution, compare Definition 8, for the special case of Y D R

2 partially
ordered by the natural ordering, i.e. for two objectives f1 W S ! R and f2 W S ! R

and with K D R
2C.

In the English translation of Pareto’s book [39] one finds on page 261: “We
will say that the members of a collectivity enjoy maximum ophelimity in a certain
position when it is impossible to find a way of moving from that position very
slightly in such a manner that the ophelimity enjoyed by each of the individuals
of that collectivity increases or decreases. That is to say, any small displacement in
departing from that position necessarily has the effect of increasing the ophelimity
which certain individuals enjoy, and decreasing that which others enjoy, of being
agreeable to some and disagreeable to others”. The concept of “ophelimity” used by
Pareto, is explained on page 111: “In our Cours we proposed to designate economic
utility by the word ophelimity, which some other authors have since adopted”, and
it is written on page 112: “For an individual, the ophelimity of a certain quantity of
a thing, added to another known quantity (it can be equal to zero) which he already
possesses, is the pleasure which this quantity affords him”. In our modern terms
“ophelimity” can be identified with an objective function and so, the definition of a
minimal solution given in Definition 8 actually describes what Pareto explained.

These citations show that the works of Edgeworth and Pareto concerning vector
optimization are very close together and, therefore, it makes sense to speak of
Edgeworth-Pareto optimality as proposed by Stadler [44]. It is historically not
correct that optimal points are called Pareto optimal points as it is done in various
papers.

In mathematics this branch of optimization has started with a paper of H.W. Kuhn
and A.W. Tucker [34]. Since about the end of the 1960s research is intensively made
in vector optimization.

In the following sections we first recall the concepts of a pre-order and a partial
order of a set which naturally induce the notion of minimal and maximal elements
for vector and set optimization problems. In Sect. 17.3, we present different
optimality notions such as minimal, weakly minimal, strongly minimal and properly
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minimal elements in a pre-ordered linear space and discuss the relations among
these notions. We further give conditions guaranteeing the existence of minimal,
weakly minimal and properly minimal elements in linear spaces and we present an
engineering application in magnetic resonance systems. This section concludes with
an introduction to vector optimization with a variable ordering structure. Finally,
in Sect. 17.4, we discuss set optimization problems and different approaches for
defining optimal elements in set optimization.

17.2 Pre- and Partial Orders

Minimizing a scalar valued function f W X ! R on some set X, two objective
function values are compared by saying f .x/ is better than f .y/ if f .x/ � f .y/. In
vector optimization problems, i.e. in optimization problems with a vector-valued
objective function, and even more general in set optimization problems, i.e. in
optimization problems with a set-valued objective function, we need relations for
comparing several vectors or even sets. For that, let us recall some concepts from
the theory of ordered sets [42].

Definition 1. Let Q be an arbitrary nonempty set with a binary relation �. Let
A; B; D 2 Q be arbitrarily chosen. The binary relation � is said to be

(i) reflexive if A � A.
(ii) transitive if A � B and B � D imply A � D.

(iii) symmetric if A � B implies B � A.
(iv) antisymmetric if A � B and B � A imply A D B.

Definition 2. The binary relation � is said to be

(i) a pre-order if it is reflexive and transitive.
(ii) a partial order if it is reflexive, transitive and antisymmetric or in other words,

if it is a pre-order that is antisymmetric.
(iii) an equivalence relation if it is reflexive, transitive and symmetric.

When the relation� is a pre-order/a partial order, we say that Q is a pre-ordered/par-
tially ordered set.

It is important to note that in a pre-ordered set two arbitrary elements cannot be
compared, in general, in terms of the pre-order.

Throughout this section let Y be an arbitrary real linear space. For Q D Y we
say that the pre-order is compatible with the linear structure of the space if it is
compatible with addition, i.e. for x; y;w; z 2 Y and x � y; w � z we obtain xCw �
y C z, and compatible with multiplication with a nonnegative real number, i.e. for
x; y 2 Y, ˛ 2 RC and x � y we obtain ˛x � ˛y. For introducing this definition in a
more general setting we need the power set of Y,

P.Y/ WD fA � Y j A is nonemptyg :
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Notice that the power set P.Y/ of Y is a conlinear space introduced by Hamel [26].
In a conlinear space addition and multiplication with a nonnegative real number are
defined but in contrast to the properties of a linear space the second distributive law
is not required.

Definition 3. Suppose that Q is a subset of the power set P.Y/. We say that the
binary relation � is

(i) compatible with the addition if A � B and D � E imply AC D � B C E for
all A;B;D;E 2 Q.

(ii) compatible with the multiplication with a nonnegative real number if A � B
implies �A � �B for all scalars � 	 0 and all A;B 2 Q.

(iii) compatible with the conlinear structure of P.Y/ if it is compatible with both
the addition and the multiplication with a nonnegative real number.

By setting Q WD ffyg j y 2 Yg � P.Y/, Definition 3 includes as a special case
the compatibility of a pre-order with the linear structure of the space Y as discussed
above.

The connection between a pre-order (a partial order) in a linear space and a
(pointed) convex cone is given in the following theorem.

Theorem 1. Let Y be a real linear space.

(a) If � is a pre-order which is compatible with the addition and the multiplication
with a nonnegative real number, then the set

K WD fy 2 Y j 0Y � yg
is a convex cone. If, in addition, � is antisymmetric, i.e. � is a partial order,
then K is pointed, i.e. K \ .�K/ D f0Yg.

(b) If K is a convex cone, then the binary relation

�KWD f.x; y/ 2 Y � Y j y � x 2 Kg
is a pre-order on Y which is compatible with the addition and the multiplication
with a nonnegative real number. If, in addition, K is pointed, then�K is a partial
order.

If the convex cone K introduces some pre-order we speak of an ordering cone.
Let us consider some examples illustrating the above concepts.

Example 1.

(a) Let Y be the linear space of all n � n real symmetric matrices. Then the pointed
convex cone S nC of all positive semidefinite matrices introduces a partial order
on Y.

(b) Let K � Y be an ordering cone. For Q DP.Y/ we define a binary relation by
the following: Let A;B 2P.Y/ be arbitrarily chosen sets. Then

A 4s B W() �8 a 2 A 9 b 2 B W a �K b
�

and
�8 b 2 B 9 a 2 A W a �K b

�
:
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This relation is called set less or KNY order relation 4s and has been
independently introduced by Young [50] and Nishnianidze [38]. It has been
presented by Kuroiwa [35] in a slightly modified form. This relation is a pre-
order and compatible with the conlinear structure of the space.

Based on a pre-order we can define minimal and maximal elements of some
set Q.

Definition 4. Let Q be a pre-ordered set. Let A be a nonempty subset of Q, T 2 Q
and NA 2 A . We say that

(i) NA is a minimal element of A if A � NA for some A 2 A implies NA � A.
(ii) NA is a maximal element of A if NA � A for some A 2 A implies A � NA.

(iii) T is a lower bound of A if T � A for all A 2 A .
(iv) T is an upper bound of A if A � T for all A 2 A .

When the binary relation � is a partial order, NA is a minimal element of A if
A 6� NA for all A 2 A , A ¤ NA, and NA is a maximal element of A if NA 6� A for all
A 2 A , A ¤ NA. If K � Y denotes a pointed convex cone that introduces a partial
order in Y we thus have that some element Ny 2 A is a minimal element of A � Y if

.fNyg � K/\ A D fNyg : (17.1)

Minimal elements are also known as Edgeworth-Pareto-minimal or efficient ele-
ments and will be discussed more detailed in the following section together with
variations of this definition. Similar, some element Ny 2 A is a maximal element of
A � Y if

.fNyg C K/\ A D fNyg : (17.2)

Moreover, Ny 2 Y is a lower bound of A if A � fNyg C K and an upper bound if
A � fNyg � K.

Let min A and max A denote the sets of minimal elements and maximal elements
of A w.r.t. the partial order �K , i.e.

min A D fNa 2 A j A \ .fNag � K/ D fNagg ;
max A D fNa 2 A j A \ .fNag C K/ D fNagg :

We end this section with the definition of a chain and the famous Zorn’s lemma,
which is the most important result which provides a sufficient condition for the
existence of a minimal element of a set, see Sect. 17.3.2.

Definition 5. Let Q be a pre-ordered set.

(i) A;B 2 Q are said to be comparable if either A � B or B � A holds.
(ii) A nonempty subset A of Q is called a chain if any pair A; B 2 A is

comparable.
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Lemma 1 (Zorn’s Lemma). Every pre-ordered set, in which every chain has an
upper (lower) bound, contains at least one maximal (minimal) element.

17.3 Vector Optimization

In this section we discuss more detailed optimality notions in vector optimization.
We also give conditions guaranteeing the existence of (weakly, properly) minimal
elements in a linear space. Further, we present an application in medical engineer-
ing, the field design of a magnetic resonance system. The section concludes with an
introduction to vector optimization with a variable ordering structure: instead of a
pre-ordered space, there, a relation is defined on the space which is in general not
transitive, not antisymmetric and also not compatible with the linear structure of the
space.

17.3.1 Optimality Concepts

In the following, let Y denote a real linear space that is pre-ordered by some convex
cone K � Y and let A denote some nonempty subset of Y. In general, one is mainly
interested in minimal and maximal elements of the set A, but in certain situations it
also makes sense to study variants of these concepts. For instance weakly minimal
elements are often of interest in theoretical examinations whereas properly minimal
elements are sometimes more of interest for applications.

Part (i) and (ii) in the definition below coincide with Definition 4(i) and (ii) in
the case of Q a linear space and a pre-order given by the convex cone K.

Definition 6.

(i) An element Ny 2 A is called a minimal element of the set A, if

.fNyg � K/ \ A � fNyg C K : (17.3)

(ii) An element Ny 2 A is called a maximal element of the set A, if

.fNyg C K/\ A � fNyg � K : (17.4)

(iii) An element Ny 2 A is called a strongly minimal element of the set A, if

A � fNyg C K : (17.5)

(iv) Let K have a nonempty algebraic interior, i.e. corK 6D ;. An element Ny 2 A is
called a weakly minimal element of the set A, if

.fNyg � corK/ \ A D ; : (17.6)
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If the ordering cone K is pointed, then the inclusions (17.3) and (17.4) can be
replaced by (17.1) and (17.2), respectively. Of course, corresponding concepts as
strongly maximal and weakly maximal can be defined analogously. Since every
maximal element of A is also minimal w.r.t the pre-order induced by the convex
cone �K, without loss of generality it is sufficient to study the minimality notion.
In terms of lattice theory a strongly minimal element of a set A is also called zero
element of A. It is a lower bound of the considered set, compare Definition 4(iii).
As this notion is very restrictive it is often not applicable in practice. Notice that
the notions “minimal” and “weakly minimal” are closely related. Take an arbitrary
weakly minimal element Ny 2 A of the set A, that is .fNyg � cor.K// \ A D ;. The
set OK WD cor.K/ [ f0Yg is a convex cone and it induces another pre-order in Y.
Consequently, Ny is also a minimal element of the set A with respect to the pre-order
induced by OK. Figures 17.1 and 17.2a illustrate the different optimality notions.

Fig. 17.1 (a) Minimal element Nx and maximal element Ny of a set A. (b) Strongly minimal element
Ny of a set A

Fig. 17.2 (a) Weakly minimal element Ny of a set A. (b) Properly minimal element Ny of a set A
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Example 2.

(a) Let Y be the real linear space of functionals defined on a real linear space X and
pre-ordered by a pointwise order. Moreover, let A denote the subset of Y which
consists of all sublinear functionals on X. Then the algebraic dual space X0 is
the set of all minimal elements of A. This is proved in [31, Lemma 3.7] and is a
key for the proof of the basic version of the Hahn-Banach theorem.

(b) Let X and Y be pre-ordered linear spaces with the ordering cones KX and KY ,
and let T W X ! Y be a given linear map. We assume that there is a q 2 Y so
that the set A WD fx 2 KX j T.x/ C q 2 KYg is nonempty. Then an abstract
complementary problem leads to the problem of finding a minimal element of
the set A. For further details we refer to [10, 17]. Obviously, if q 2 KY , then 0X

is a strongly minimal element of the set A.

The next lemma gives relations between the different optimality concepts.

Lemma 2.

(a) Every strongly minimal element of the set A is also a minimal element of A.
(b) Let K have a nonempty algebraic interior and K ¤ Y. Then every minimal

element of the set A is also a weakly minimal element of the set A.

Proof.

(a) It holds A � fNyg C K for any strongly minimal element Ny of A. Thus

.fNyg � K/ \ A � A � fNyg C K :

(b) The assumption K ¤ Y implies .�cor.K//\K D ;. Therefore, for an arbitrary
minimal element Ny of A it follows

; D .fNyg � cor.K//\ .fNyg C K/

D .fNyg � cor.K//\ .fNyg � K/\ A

D .fNyg � cor.K// \ A

which means that Ny is also a weakly minimal element of A.

In general, the converse statement of Lemma 2 is not true. This fact is illus-
trated by

Example 3. Let Y D R
2 and let a partial order be induced by the cone K D R

2C.
Consider the set A D Œ0; 1� � Œ0; 1�. The unique minimal element is 0R2 while all
elements of the set f.y1; y2/ 2 A j y1 D 0 _ y2 D 0g are weakly minimal elements.
Note that 0R2 is also a strongly minimal element.

Minimal elements are a subset of the (algebraic) boundary @A of the set A.

Lemma 3. Let K be nontrivial and pointed. Then every minimal element of the set
A is an element of the algebraic boundary @A of A.



17 Vector and Set Optimization 703

Proof. Assume Ny is a minimal element of A but Ny 2 cor.A/. Then for any k 2 Knf0Yg
there exists some � > 0with Ny�� k 2 A. Then Ny�� k 2 A\.fNyg�K/ in contradiction
to Ny a minimal element.

The following lemma, compare [45], indicates that the minimal elements of a set
A and the minimal elements of the set A C K where K denotes the ordering cone
are closely related. This result is of interest for further theoretical examinations, for
instance regarding duality results. Especially if the set ACK is convex while the set
A is not convex, the consideration of AC K instead of A is advantageous, e.g. when
necessary linear scalarization results as given in [31, Theorems 5.11, 5.13] should
be applied.

Lemma 4.

(a) If the ordering cone K is pointed, then every minimal element of the set AC K
is also a minimal element of the set A.

(b) Every minimal element of the set A is also a minimal element of the set AC K.

Proof.

(a) Let Ny 2 AC K be an arbitrary minimal element of the set AC K. If we assume
that Ny … A, then there is an element y ¤ Ny with y 2 A and Ny 2 fyg C K.
Consequently, we get y 2 .fNyg�K/\ .ACK/which contradicts the assumption
that Ny is a minimal element of the set AC K. Hence, we obtain Ny 2 A � AC K
and, therefore, Ny is also a minimal element of the set A.

(b) Take an arbitrary minimal element Ny 2 A of the set A, and choose any y 2
.fNyg�K/\.ACK/. Then there are elements a 2 A and k 2 K so that y D aCk.
Consequently, we obtain a D y� k 2 fNyg �K, and since Ny is a minimal element
of the set A, we conclude a 2 fNyg C K. But then we get also y 2 fNyg C K. This
completes the proof.

If the cone K has a nonempty algebraic interior, the statement of Lemma 4 is also
true if we replace minimal by weakly minimal [31, Lemma 4.13].

Another refinement of the minimality notion is helpful from a theoretical point
of view. These optima are called properly minimal. Until now there are various
types of concepts of proper minimality. The notion of proper minimality (or proper
efficiency) was first introduced by Kuhn–Tucker [34] and modified by Geoffrion
[25], and later it was formulated in a more general framework (Benson–Morin [3],
Borwein [7], Vogel [45], Wendell–Lee [46], Wierzbicki [48], Hartley [27], Benson
[2], Borwein [8], Nieuwenhuis [37], Henig [28], and Zhuang [53]). We present here
a definition introduced by Borwein [7] and Vogel [45]. For a collection of other
definitions of proper minimality see for instance [31, p. 113f].

Recall that the contingent cone (or Bouligand tangent cone) T.A; Ny/ to a subset
A of a real normed space .Y; k � k/ in Ny 2 cl.A/ is the set of all tangents h which
are defined as follows: An element h 2 Y is called a tangent to A in Ny, if there
are a sequence .yn/n2N of elements yn 2 A and a sequence .�n/n2N of positive real
numbers �n so that
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Ny D lim
n!1 yn and h D lim

n!1�n.yn � Ny/ :

Here, cl.A/ denotes the closure of A.

Definition 7. Let .Y; k � k/ be a real normed space. An element Ny 2 A is called a
properly minimal element of the set A, if Ny is a minimal element of the set A and
the zero element 0Y is a minimal element of the contingent cone T.A C K; Ny/ (see
Fig. 17.2b).

It is evident that a properly minimal element of a set A is also a minimal element
of A.

Example 4. Let Y be the Euclidean space R
2 and let a partial order be induced by

the cone K D R
2C. Consider A D f.y1; y2/ 2 R

2 j y21Cy22 � 1g. Then all elements of

the set f.y1; y2/ 2 R
2 j y1 2 Œ�1; 0�; y2 D �

q
1 � y21g are minimal elements of A.

The set of all properly elements of A reads as f.y1; y2/ 2 R
2 j y1 2 .�1; 0/; y2 D

�
q
1 � y21g.

The optimality concepts for subsets of a real linear space naturally induce
concepts of optimal solutions for vector optimization problems. Let X and Y be
real linear spaces, and let K, as before, be a convex cone in Y. Furthermore, let S
be a nonempty subset of X, and let f W S ! Y be a given map. Then the vector
optimization problem

min
x2S

f .x/ (VOP)

is to be interpreted in the following way: Determine a (weakly, strongly, properly)
minimal solution Nx 2 S which is defined as the inverse image of a (weakly, strongly,
properly) minimal element f .Nx/ of the image set f .S/ D ff .x/ 2 Y j x 2 Sg.
Definition 8. An element Nx 2 S is called a (weakly, strongly, properly) minimal
solution of problem (VOP) w.r.t. the pre-order induced by K, if f .Nx/ is a (weakly,
strongly, properly) minimal element of the image set f .S/ w.r.t. the pre-order
induced by K.

For Y D R
m partially ordered by the natural ordering, i.e. K D R

mC, we call
(VOP) also a multiobjective optimization problem, as the m objectives fi W S ! R,
i D 1; : : : ;m, are minimized simultaneously. A minimal solution, then also called
Edgeworth-Pareto optimal, compare page 696, is thus a point Nx 2 S such that there
exists no other x 2 S with

fi.x/ � fi.Nx/ for all i D 1; : : : ;m;

and

fj.x/ < fj.Nx/ for at least one j 2 f1; : : : ;mg :
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Example 5. Let X D R
2 and Y be the Euclidean space R2 and let a partial order be

induced by the cone K D R
2C. Consider the constraint set

S WD f.x1; x2/ 2 R
2 j x21 � x2 � 0; x1 C 2x2 � 3 � 0g

and the vector function f W S! R
2 with

f .x1; x2/ D
� �x1

x1 C x22

�

for all .x1; x2/ 2 S :

The point
�
3
2
; 57
16

�
is the only maximal element of T WD f .S/, and the set of all

minimal elements of T reads

n
.y1; y2/ 2 R

2 j y1 2
h
�1; 1

2

3
p
2
i

and y2 D �y1 C y41
o
:

The set of all minimal solutions of the vector optimization problem minx2S f .x/ is
given as

n
.x1; x2/ 2 R

2 j x1 2
h
�1
2

3
p
2; 1

i
and x2 D x21

o

(see Fig. 17.3).

17.3.2 Existence Results

In this subsection we give assumptions which guarantee that at least one optimal
element of a subset of a pre-ordered linear space exists. These investigations will be

4
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1

−2 −1 1 −1 1 200 x1 y1
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minimal
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T

maximal
element of T

TS

Fig. 17.3 Minimal and maximal elements of T D f .S/



706 G. Eichfelder and J. Jahn

Fig. 17.4 Section Ay of a
set A

done for the minimality, the properly minimality and the weakly minimality notion.
Strongly minimal elements are not considered because this optimality notion is too
restrictive.

In order to get existence results under weak assumptions on a set we introduce
the following

Definition 9. Let A be a nonempty subset of a pre-ordered linear space Y where
the pre-order is introduced by a convex cone K � Y. If for some y 2 Y the set
Ay D .fyg � K/\ A is nonempty, Ay is called a section of the set A (see Fig. 17.4).

The assertion of the following lemma is evident.

Lemma 5. Let A be a nonempty subset of a pre-ordered linear space Y with an
ordering cone K.

(a) Every minimal element of a section of the set A is also a minimal element of the
set A.

(b) If cor.K/ ¤ ;, then every weakly minimal element of a section of the set A is
also a weakly minimal element of the set A.

It is important to remark that for the notion of proper minimality a similar
statement is not true in general. We begin now with a discussion of existence results
for the notion of minimal elements. The following existence result is a consequence
of Zorn’s lemma (Lemma 1). Recall that an ordering cone in a real topological linear
space is called Daniell if every decreasing net (i.e. i � j ) yj �K yi) which has a
lower bound converges to its infimum. And a real topological linear space Y with an
ordering cone K is called boundedly order complete, if every bounded decreasing
net has an infimum.

Theorem 2. Let Y be a topological linear space which is pre-ordered by a closed
ordering cone K. Then we have:

(a) If the set A has a closed section which has a lower bound and the ordering cone
K is Daniell, then there is at least one minimal element of the set A.

(b) If the set A has a closed and bounded section and the ordering cone K is Daniell
and boundedly order complete, then there is at least one minimal element of the
set A.

(c) If the set A has a compact section, then there is at least one minimal element of
the set A.
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Proof. Let Ay (for some y 2 Y) be an appropriate section of the set A. If we show that
every chain in the section Ay has a lower bound, then by Zorn’s lemma (Lemma 1) Ay

has at least one minimal element which is, by Lemma 5(a), also a minimal element
of the set A.

Let faigi2I be any chain in the section Ay. Let F denote the set of all finite
subsets of I which are pre-ordered with respect to the inclusion relation. Then for
every F 2 F the minimum

yF WD min fai j i 2 Fg

exists and belongs to Ay. Consequently, .yF/F2F is a decreasing net in Ay. Next, we
consider several cases.

(a) Ay is assumed to have a lower bound so that .yF/F2F has an infimum. Since Ay

is closed and K is Daniell, .yF/F2F converges to its infimum which belongs to
Ay. This implies that any chain in Ay has a lower bound.

(b) Since Ay is bounded and K is boundedly order complete, the net .yF/F2F has
an infimum. The ordering cone K is Daniell and, therefore, .yF/F2F converges
to its infimum. And since Ay is closed, this infimum belongs to Ay. Hence, any
chain in Ay has a lower bound.

(c) Now, Ay is assumed to be compact. The family of compact subsets Aai (i 2 I)
has the finite intersection property, i.e., every finite subfamily has a nonempty
intersection. Since Ay is compact, the family of subsets Aai (i 2 I) has a
nonempty intersection (see Dunford–Schwartz [18, p. 17]), that is, there is an
element

Oy 2
\

i2I

Aai D
\

i2I

.faig � K/\ Ay :

Hence, Oy is a lower bound of the subset faigi2I and belongs to Ay. Consequently,
any chain in Ay has a lower bound.

Notice that the preceding theorem remains valid, if “section” is replaced by the
set itself. Theorem 2 as well as the following example is due to Borwein [10], but
Theorem 2(c) was first proved by Vogel [45] and Theorem 2(a) can essentially be
found, without proof, in a survey article of Penot [40].

Example 6. We consider again the problem formulated in Example 2(b). Let X and
Y be pre-ordered topological linear spaces with the closed ordering cones KX and KY

where KX is also assumed to be Daniell. Moreover, let T W X ! Y be a continuous
linear map and let q 2 Y be given so that the set A WD fx 2 KX j T.x/C q 2 KYg is
nonempty. Clearly the set A is closed and has a lower bound (namely 0X). Then by
Theorem 2(a) the set A has at least one minimal element.
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For the next existence result we need the so-called James theorem [33].

Theorem 3 (James Theorem). Let A be a nonempty bounded and weakly closed
subset of a real quasi-complete locally convex space Y. If every continuous linear
functional l 2 Y� (with Y� the topological dual space of Y) attains its supremum on
A, then A is weakly compact.

Using this theorem together with Theorem 2(c) we obtain the following result
due to Borwein [10].

Theorem 4. Let A be a nonempty subset of a real locally convex space Y.

(a) If A is weakly compact, then for every closed convex cone K in Y the set A has
at least one minimal element with respect to the pre-order induced by K.

(b) In addition, let Y be quasi-complete (for instance, let Y be a Banach space). If
A is bounded and weakly closed and for every closed convex cone K in Y the
set A has at least one minimal element with respect to the pre-order induced by
K, then A is weakly compact.

Proof.

(a) Every closed convex cone K is also weakly closed [31, Lemma 3.24]. Since A
is weakly compact, there is a compact section of A. Then, by Theorem 2(c), A
has at least one minimal element with respect to the pre-order induced by K.

(b) It is evident that the functional 0Y� attains its supremum on the set A. Therefore,
take an arbitrary continuous linear functional l 2 Y�nf0Y�g (if it exists) and
define the set K WD fy 2 Y j l.y/ � 0g which is a closed convex cone. Let
Ny 2 A be a minimal element of the set A with respect to the pre-order induced
by K, i.e.

.fNyg � K/\ A � fNyg C K : (17.7)

Since

fNyg � K D fy 2 Y j l.y/ 	 l.Ny/g

and

fNyg C K D fy 2 Y j l.y/ � l.Ny/g ;

the inclusion (17.7) is equivalent to the implication

y 2 A; l.y/ 	 l.Ny/ H) l.y/ D l.Ny/ :

This implication can also be written as

l.Ny/ 	 l.y/ for all y 2 A :
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This means that the functional l attains its supremum on A at Ny. Then by the
James theorem (Theorem 3) the set A is weakly compact.

The preceding theorem shows that the weak compactness assumption on a set
plays an important role for the existence of minimal elements.

Next, we study existence theorems which follow from scalarization results,
compare [30]. Recall that a nonempty subset A of a real normed space .Y; k � k/
is called proximinal, if every y 2 Y has at least one best approximation from A, that
is, for every y 2 Y there is an Ny 2 A with

ky � Nyk � ky � ak for all a 2 A :

Any nonempty weakly closed subset of a real reflexive Banach space is proximinal
[31, Corollary 3.35]. A functional f W A ! R with A a nonempty subset of a linear
space pre-ordered by K is called strongly monotonically increasing on A, if for every
Ny 2 A

y 2 .fNyg � K/\ A; y 6D Ny H) f .y/ < f .Ny/ :

If cor.K/ 6D ;, then f is called strictly monotonically increasing, if for every Ny 2 A

y 2 .fNyg � cor.K//\ A H) f .y/ < f .Ny/ :

Theorem 5. Assume that either assumption (a) or assumption (b) below holds:

(a) Let A be a nonempty subset of a partially ordered normed space .Y; k � kY/ with
a pointed ordering cone K, and let Y be the topological dual space of a real
normed space .Z; k � kZ/. Moreover, for some y 2 Y let a weak*-closed section
Ay be given.

(b) Let A be a nonempty subset of a partially ordered reflexive Banach space .Y; k �
kY / with a pointed ordering cone K. Furthermore, for some y 2 Y let a weakly
closed section Ay be given.

If, in addition, the section Ay has a lower bound Oy 2 Y, i.e. Ay � fOyg C K, and the
norm k � kY is strongly monotonically increasing on K, then the set A has at least
one minimal element.

Proof. Let the assumptions of (a) be satisfied. Take any z 2 Z� n Ay D Y n Ay and
any a 2 Ay. Since every closed ball in Z� D Y is weak*-compact, the set

Ay \ fw 2 Y j kwkY � kakYg

is weak*-compact as well. Notice that the functional mapping from Y to R given by
w 7! kz�wkY is weakly* lower semicontinuous. Thus the section Ay is proximinal.
On the other hand, if the assumption (b) is satisfied, then the section Ay is proximinal
as well. Consequently, there is an Ny 2 Ay with
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kNy � OykY � ka � OykY for all a 2 Ay : (17.8)

The norm k�kY is strongly monotonically increasing on K and because of Ay�fOyg �
K the functional k � �OykY is strongly monotonically increasing on Ay, compare [31,
Theorem 5.15(b)].

Next we show that Ny is a minimal element of Ay. Assume this is not the case. Then
there is an element a 2 .fNyg�K/\Ay with a 6D Ny. This implies ka� OykY < kNy� OykY

in contradiction to (17.8).
Finally, an application of Lemma 5(a) completes the proof.

Example 7. Let A be a nonempty subset of a pre-ordered Hilbert space .Y; h:; :i/
with an ordering cone KY . Then the norm on Y is strongly monotonically increasing
on KY if and only if KY � K�

Y with K�
Y D fy� 2 Y� j y�.y/ 	 0 for all y 2 KYg the

dual cone of KY [41, 47]. Thus, if the ordering cone KY has the property KY � K�
Y

and A has a weakly closed section bounded from below, then A has at least one
minimal element.

For the minimality notion a scalarization result concerning positive linear
functionals leads to an existence theorem which is contained in Theorem 4(a). But
for the proper minimality notion such a scalarization result is helpful. We recall the
important Krein-Rutman theorem. For a proof see [9, p. 425] or [31, Theorem 3.38].

Theorem 6 (Krein-Rutman Theorem). In a real separable normed space .Y; k�k/
with a closed pointed convex cone K � Y the quasi-interior

K#
Y� WD fy� 2 Y� j y�.y/ > 0 for all y 2 K n f0Ygg

of the topological dual cone is nonempty.

Theorem 7. Let A be a weakly compact subset of a partially ordered separable
normed space .Y; k � k/ with a closed pointed ordering cone K. Then there exists at
least one properly minimal element Ny 2 A.

Proof. According to the Krein-Rutman theorem, Theorem 6, the quasi-interior of
the topological dual cone is nonempty. Then every continuous linear functional
which belongs to that quasi-interior attains its infimum on the weakly compact set
A. So there exist some Ny 2 A and some l 2 K#

Y� with

l.Ny/ � l.y/ for all y 2 A : (17.9)

As l 2 K#
Y� , l is strongly monotonically increasing on A. First we assume Ny is not a

minimal element of A. Then there is an element a 2 .fNyg �K/\ A with a 6D Ny. This
implies l.a/ < l.Ny/ which is a contradiction to (17.9). Thus Ny is a minimal element
of A and it remains to show that 0Y is a minimal element of the contingent cone
T.AC K; Ny/.

Take any tangent h 2 T.ACK; Ny/. Then there are a sequence .yn/n2N of elements
in A C K and a sequence .�n/n2N of positive real numbers with Ny D limn!1 yn
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and h D limn!1 �n.yn � Ny/. The linear functional l is continuous and, therefore,
we get l.Ny/ D limn!1 l.yn/. Since the functional l is also strongly monotonically
increasing on Y, the inequality (17.9) implies

l.Ny/ � l.y/ for all y 2 AC K :

Then it follows

l.h/ D lim
n!1 l.�n.yn � Ny// D lim

n!1�n.l.yn/ � l.Ny// 	 0 :

Hence we obtain

l.0Y/ D 0 � l.h/ for all h 2 T.AC K; Ny/ :

With the same arguments as before we conclude that 0Y is a minimal element of
T.AC K; Ny/. This completes the proof.

A further existence theorem for properly minimal elements is given by

Theorem 8. Assume that either assumption (a) or assumption (b) below holds:

(a) Let A be a nonempty subset of a partially ordered normed space .Y; k � kY/ with
a pointed ordering cone K which has a nonempty algebraic interior, and let Y
be the topological dual space of a real normed space .Z; k � kZ/. Moreover, let
the set A be weak*-closed.

(b) Let A be a nonempty subset of a partially ordered reflexive Banach space .Y; k �
kY / with a pointed ordering cone K which has a nonempty algebraic interior.
Furthermore, let the set A be weakly closed.

If, in addition, there is an Oy 2 Y with A � fOyg C cor.K/ and the norm k � kY is
strongly monotonically increasing on K, then the set A has at least one properly
minimal element.

Proof. The proof is similar to that of Theorem 5. Since the norm k � kY is strongly
monotonically increasing on K and A � fOyg � cor.K/ we get with the same
arguments that there is some Ny 2 A with

kNy � OykY � ky � OykY for all y 2 A (17.10)

and that Ny is a minimal element of A. It remains to show that 0Y is a minimal element
of T.AC K; Ny/.

Since the norm k � kY is assumed to be strongly monotonically increasing on K,
we obtain from (17.10)

kNy � OykY � ky � OykY � kyC k � OykY for all y 2 A and all k 2 K :
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This results in

kNy � OykY � ky � OykY for all y 2 AC K : (17.11)

It is evident that the functional k � �OykY is both convex and continuous in the
topology generated by the norm k � kY . Then, see for instance [31, Theorem 3.48],
the inequality (17.11) implies

kNy � OykY � kNy � OyC hkY for all h 2 T.AC K; Ny/ : (17.12)

With T WD T.A C K; Ny/ \ .fOy � Nyg C K/ the inequality (17.12) is also true for all
h 2 T, i.e.

k0Y � .Oy � Ny/kY � kh � .Oy � Ny/kY for all h 2 T

and k � �.Oy� Ny/kY is because of T � fOy� Nyg � K strongly monotonically increasing
on T. With the same arguments as in Theorem 5 0Y is a minimal element of T.

Next we assume that 0Y is not a minimal element of the contingent cone T.AC
K; Ny/. Then there is an element y 2 .�K/ \ T.A C K; Ny/ with y 6D 0Y . Since A �
fOygCcor.K/ and Ny 2 A, there is a � > 0 with NyC� y 2 fOygCK or �y 2 fOy� NygCK.
Consequently, we get

�y 2 .�K/\ T.AC K; Ny/ \ .fOy � Nyg C K/

and therefore, we have �y 2 .�K/\T which contradicts the fact that 0Y is a minimal
element of the set T. Hence, 0Y is a minimal element of the contingent cone T.AC
K; Ny/ and the assertion is obvious.

Example 8. Let A be a nonempty subset of a partially ordered Hilbert space
.Y; h:; :i/ with an ordering cone KY which has a nonempty algebraic interior and
for which KY � K�

Y (compare Example 7). If A is weakly closed and there is an
Oy 2 Y with A � fOyg C cor.KY/, then the set A has at least one properly minimal
element.

Finally, we turn our attention to the weak minimality notion. Using Lemma 2(b)
we can easily extend the existence theorems for minimal elements to weakly
minimal elements, if we assume additionally that the ordering cone K � Y does
not equal Y and that it has a nonempty algebraic interior. This is one possibility
in order to get existence results for the weak minimality notion. In the following
theorems we use directly appropriate scalarization results for this optimality notion.

Theorem 9. Let A be a nonempty subset of a pre-ordered locally convex space Y
with a closed ordering cone KY ¤ Y which has a nonempty algebraic interior. If
A has a weakly compact section, then the set A has at least one weakly minimal
element.

Proof. Applying a separation theorem we get that, since the ordering cone KY is
closed and does not equal Y, there is at least one continuous linear functional l 2
K�

Y nf0Y�g with K�
Y D fy� 2 Y� j y�.y/ 	 0 for all y 2 KYg. This functional attains



17 Vector and Set Optimization 713

its infimum on a weakly compact section of A, i.e. there is some Ny 2 A and some
y 2 Y with

l.Ny/ � l.a/ for all a 2 Ay : (17.13)

Assume Ny is not a weakly minimal element of Ay. Then there is some a 2 .fNyg �
cor.K//\Ay, and as l is strictly monotonically increasing on Ay due to l 2 K�

Y nf0Yg
we get l.a/ < l.Ny/ in contradiction to (17.13). Thus Ny is a weakly minimal element
of Ay and because of Lemma 5(b) also of A.

Notice that Theorem 9 could also be proved using Theorem 4(a) and Lemma 2(b).

Theorem 10. Assume that either assumption (a) or assumption (b) below holds:

(a) Let A be a nonempty subset of a pre-ordered normed space .Y; k � kY / with
an ordering cone K which has a nonempty algebraic interior, and let Y be the
topological dual space of a real normed space .Z; k � kZ/. Moreover, for some
y 2 Y let a weak*-closed section Ay be given.

(b) Let A be a nonempty subset of a pre-ordered reflexive Banach space .Y; k � kY /

with an ordering cone K which has a nonempty algebraic interior. Furthermore,
for some y 2 Y let a weakly closed section Ay be given.

If, in addition, the section Ay has a lower bound Oy 2 Y, i.e. Ay � fOyg C K, and the
norm k � kY is strictly monotonically increasing on K, then the set A has at least one
weakly minimal element.

Proof. The proof is similar to that of Theorem 5.

Example 9. Let A be a nonempty subset of L1.˝/, the linear space of all
(equivalence classes of) essentially bounded functions f W ˝ ! R (; 6D ˝ � R

n)
with the norm k � kL1.˝/ given by

kfkL1.˝/ WD ess supx2˝fjf .x/jg for all f 2 L1.˝/ :

The ordering cone KL1.˝/ is defined as

KL1.˝/ WD ff 2 L1.˝/ j f .x/ 	 0 almost everywhere on ˝g :

It has a nonempty topological interior and it is weak* Daniell. We show that if the set
A has a weak*-closed section bounded from below, then A has at least one weakly
minimal element:

If we consider the linear space L1.˝/ as the topological dual space of L1.˝/,
then the assertion follows from Theorem 10, if we show that the norm k � kL1.˝/ is
strictly monotonically increasing on the ordering cone KL1.˝/. It is evident that

int.KL1.˝// D ff 2L1.˝/jthere is an ˛>0 with

f .x/	˛ almost everywhere on ˝g ¤ ; :
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As KL1.˝/ is convex with a nonempty topological interior, int.KL1.˝// equals the
algebraic interior of KL1.˝/. Take any functions f ; g 2 KL1.˝/ with f 2 fgg �
int.KL1.˝//. Then we have g � f 2 int.KL1.˝// which implies that there is an
˛ > 0 with

g.x/� f .x/ 	 ˛ almost everywhere on ˝

and

g.x/ 	 ˛ C f .x/ almost everywhere on ˝ :

Consequently, we get

ess supx2˝ fg.x/g 	 ˛ C ess supx2˝ ff .x/g

and

kgkL1.˝/ > kfkL1.˝/ :

Hence, the norm k � kL1.˝/ is strictly monotonically increasing on KL1.˝/.

We conclude this section with the Bishop-Phelps lemma [6], which is a special
type of an existence result for maximal elements. First we recall that in a real normed
space .Y; k � kY / for an arbitrary continuous linear functional l 2 Y� and an arbitrary
� 2 .0; 1/ the cone

C.l; �/ WD fy 2 Y j �kykY � l.y/g

is called Bishop-Phelps cone. Notice that this cone is convex and pointed and,
therefore, it can be used as an ordering cone in the space Y.

Lemma 6 (Bishop-Phelps Lemma). Let A be a nonempty closed subset of a real
Banach space .Y; k �kY /, and let a continuous linear functional l 2 Y� be given with
klkY� D 1 and supy2A l.y/ <1. Then for every y 2 A and every � 2 .0; 1/ there is
a maximal element Ny 2 fyg C C.l; �/ of the set A with respect to the Bishop-Phelps
ordering cone C.l; �/.

For the proof we refer to [6] as well as to [29, p. 164].

17.3.3 Application: Field Design of a Magnetic
Resonance System

In this subsection we discuss a vector optimization problem of the type (VOP) which
is of importance in magnetic resonance systems in medical engineering. Magnetic
resonance (MR) systems are significant devices in medical engineering which may
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produce images of soft tissue of the human body with high resolution and good
contrast. Among others, it is a useful device for cancer diagnosis. The images are
physically generated by the use of three types of magnetic fields: the main field, the
gradient field and the radio frequency (RF) field, compare [43].

MR uses the spin of the atomic nuclei in a human body and it is the hydrogen
proton whose magnetic characteristics are used to generate images. One does not
consider only one spin but a collection of spins in a voxel being a small volume
element. Without an external magnetic field the spins in this voxel are randomly
oriented and because of their superposition their effects vanish (see Fig. 17.5a).
By using the main field which is generated by super-conducting magnets, the spin
magnets align in parallel or anti-parallel to the field (see Fig. 17.5b). There is a
small majority of up spins in contrast to down spins and this difference leads to a
very weak magnetization of the voxel. The spin magnet behaves like a magnetic top
used by children; this is called the spin precession (see Fig. 17.6).

With an additional RF pulse the magnetization flips. This stimulation with an
RF pulse leads to magnetic resonances in the body. In order to get the slices that
give us the images, we use a so-called gradient field with the effect that outside the
defined slice the nuclear spins are not affected by the RF pulse. The obtained voxel
information in a slice can then be used for the construction of MR images via a
two-dimensional Fourier transform. A possible MR image of a human head is given
in Fig. 17.7.

There are various optimization problems in the context of the improvement of
the quality of MR images. We restrict ourselves to the description of the following
bicriterial optimization problem, i.e. we consider a vector optimization problem as

Fig. 17.5 (a) Arbitrary spins.
(b) Parallel and anti-parallel
aligned spins

Fig. 17.6 Spin precession
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Fig. 17.7 A so-called sagittal
T1 MP-RAGE image taken
up by the 3 tesla system
MAGNETOM Skyra
produced by Siemens AG.
With kind permission of
Siemens AG Healthcare
sector

presented in (VOP) with Y D R
2 the Euclidean space. This problem was already

considered by Bijick (Schneider), Diehl and Renz [4, 5]. We assume that in the
image space a partial order is introduced by the cone K D R

2C. For good MR images
it is important to improve the homogeneity of the RF field for specific slices. Here
we assume that the MR system uses n 2 N antennas. The complex design variables
x1; : : : ; xn 2 C are the so-called scattering variables. Thus we choose X D C

n. For
a slice with p 2 N voxels let Hx

k`; Hy
k` 2 C (for k 2 f1; : : : ; pg and ` 2 f1; : : : ; ng)

denote the cartesian components of the RF field of the k-th antenna in the `-th voxel,
if we work with a current of amplitude 1 ampere and phase 0. Then the objective
function f1, which is a standard deviation, reads as follows

f1.x/ WD

s

1
p�1

pP

kD1

�

H�
k .x/H

�
k .x/ �

pP

kD1
wkH�

k .x/H
�
k .x/

�2

pP

kD1
wkH�

k .x/H
�
k .x/

for all x 2 C
n with

H�
k .x/ WD

1

2

nX

`D1
x`.Hx

kl � i Hy
kl/ for all x 2 C

n and k 2 f1; : : : ; pg

(here i denotes the imaginary unit and the overline means the conjugate complex
number). Moreover, we would like to reduce the specific absorption rate (SAR)
which is the RF energy absorbed per time unit and kilogram. Global energy
absorption in the entire body is an important value for establishing safety thresholds.
If m > 0 denotes the mass of the patient and M 2 R

.n;n/ denotes the so-called
scattering matrix, then the second objective function f2 is given by
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f2.x/ WD 1

2m
x>.I �M>M/x for all x 2 C

n

where I denotes the .n; n/ identity matrix. f2 describes the global SAR.
The constraints of this bicriterial problem describing the set S in (VOP) are given

by upper bounds for the warming of the tissue within every voxel. The HUGO
body model which is a typical human body model based on anatomical data of
the Visible Human Projectr, has more than 380,000 voxels which means that this
bicriterial optimization problem has more than 380,000 constraints. A discussion of
these constraints cannot be done in detail in this text. Using the so-called modified
Polak method [31, Algorithm 12.1] one obtains an approximation of the image set
of the set of minimal solutions of this large-scale bicriterial problem. The numerical
results qualitatively illustrated in Fig. 17.8 are obtained by Bijick (Schneider,
University of Erlangen-Nürnberg, Erlangen, 2010, private communication). These
results are better than the realized parameters in an ordinary MR system which uses
a symmetric excitation pulse.

Notice in Fig. 17.8 that the global SAR measured in w
kg is considered per time

unit which may be very short because one considers only short RF pulses.

17.3.4 Vector Optimization with a Variable Ordering Structure

In vector optimization one assumes in general, as we have seen in the subsections
above, that a pre-order is given by some nontrivial convex cone K in the considered
space Y. But already in 1974 in one of the first publications [51] related to the
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Fig. 17.8 Qualitative illustration of the image points of minimal solutions and the image point of
the standard excitation pulse
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definition of optimal elements in vector optimization also the idea of variable
ordering structures was given: to each element of the space a cone of dominated
(or preferred) directions is defined and thus the ordering structure is given by a set-
valued map. In [51] a candidate element was defined to be nondominated if it is
not dominated by any other reference element w.r.t. the corresponding cone of this
other element. Later, also another notion of optimal elements in the case of a variable
ordering structure was introduced [11–13]: a candidate element is called a minimal
(or nondominated-like) element if it is not dominated by any other reference element
w.r.t. the cone of the candidate element.

Recently there is an increasing interest in such variable ordering structures
motivated by several applications for instance in medical image registration [21, 23]
or in portfolio optimization [1, 20]. For a study of such vector optimization problems
with a variable ordering structure it is important to differentiate between the two
mentioned optimality concepts as well as to examine the relation between the
concepts. In view of applications it is also important to formulate characterizations
of optimal elements by scalarizations for allowing numerical calculations.

In the following we assume Y to be a real topological linear space and A to be a
nonempty subset of Y. Let D W Y � Y be a set-valued map with D.y/ a pointed con-
vex cone for all y 2 Y and let D.A/ WDSy2A D.y/ denote the image of A under D .

Based on the cone-valued map D one can define two different relations: for
y; Ny 2 Y we define

y �1 Ny if Ny 2 fyg CD.y/ (17.14)

and

y �2 Ny if Ny 2 fyg CD.Ny/ : (17.15)

We speak here of a variable ordering (structure), given by the ordering map D ,
despite the binary relations given above are in general not transitive nor compatible
with the linear structure of the space, to express that the pre-order given by a cone in
most vector optimization problems in the literature is replaced by a relation defined
by D .

Relation (17.14) implies the concept of nondominated elements defined in
[51, 52]. We also state the definitions of weakly and strongly nondominated
elements which can easily be derived from the original definition of nondominated
elements.

Definition 10.

(a) An element Ny 2 A is a nondominated element of A w.r.t. the ordering map D if
there is no y 2 A n fNyg such that Ny 2 fyg CD.y/, i.e., y 6�1 Ny for all y 2 A n fNyg.

(b) An element Ny 2 A is a strongly nondominated element of A w.r.t. the ordering
map D if Ny 2 fyg �D.y/ for all y 2 A.
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(c) Let D.y/ have a nonempty interior, i.e. int(D.y// ¤ ;, for all y 2 A. An element
Ny 2 A is a weakly nondominated element of A w.r.t. the ordering map D if there
is no y 2 A such that Ny 2 fyg C int.D.y//.

Example 10. Let Y D R
2, the cone-valued map D W R2 � R

2 be defined by

D.y1; y2/ WD
�

cone convf.y1; y2/; .1; 0/g if .y1; y2/ 2 R
2C; y2 ¤ 0;

R
2C otherwise;

and

A WD f.y1; y2/ 2 R
2 j y1 	 0; y2 	 0; y2 	 1 � y1g :

Here cone and conv denote the conic hull and the convex hull, respectively. Then
D.y1; y2/ � R

2C for all .y1; y2/ 2 R
2 and one can check that f.y1; y2/ 2 A j y1Cy2 D

1g is the set of all nondominated elements of A w.r.t. D and that all elements of the
set f.y1; y2/ 2 A j y1 C y2 D 1 _ y1 D 0 _ y2 D 0g are weakly nondominated
elements of A w.r.t. D .

In Definition 10 the cone D.y/ D fd 2 Y j y C d is dominated by yg [ f0Yg
can be seen as the set of dominated directions for each element y 2 Y. Note that
when D.y/ � K, where K is a pointed convex cone, and the space Y is partially
ordered by K, the concepts of nondominated, strongly nondominated and weakly
nondominated elements w.r.t. the ordering map D reduce to the classical concepts of
minimal, strongly minimal and weakly minimal elements w.r.t. the cone K, compare
Definition 6. Strongly nondominated is a stronger concept than nondominatedness,
as it is not only demanded that Ny 2 fyg C .Y n fD.y/g/ for all y 2 A n fNyg, but even
Ny 2 fyg �D.y/ for all y 2 A n fNyg for Ny being strongly nondominated w.r.t. D . This
can be interpreted as the requirement of being far away from being dominated.

The second relation, relation (17.15), leads to the concept of minimal, also called
nondominated-like, elements [11–13].

Definition 11.

(a) An element Ny 2 A is a minimal element of A w.r.t. the ordering map D if there
is no y 2 A n fNyg such that Ny 2 fyg CD.Ny/, i.e., y 6�2 Ny for all y 2 A n fNyg.

(b) An element Ny 2 A is a strongly minimal element of A w.r.t. the ordering map D
if A � fNyg CD.Ny/:

(c) Let int(D.y// ¤ ; for all y 2 A. An element Ny 2 A is a weakly minimal element
of A w.r.t. the ordering map D if there is no y 2 A such that Ny 2 fygC int.D.Ny//.

For an illustration of both optimality notions see Fig. 17.9.
The concepts of strongly minimal and strongly nondominated elements w.r.t. an

ordering map D are illustrated in the following example.
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Fig. 17.9 The element Ny 2 A is a minimal element of A w.r.t. the ordering map D whereas Ny is not
a nondominated element of A w.r.t. the ordering map D because of Ny 2 fy0g C D.y0/ n f0Y g, cf.
[21, 23]

Example 11. Let Y D R
2, the cone-valued map D W R2 � R

2 be defined by

D.y1; y2/ WD
�
R
2C if y2 D 0;

cone convf.jy1j; jy2j/; .1; 0/g otherwise;

and

A WD f.y1; y2/ 2 R
2 j y1 � y2 � 2y1g :

One can check that .0; 0/ 2 A is a strongly minimal and also a strongly
nondominated element of A w.r.t. D .

Regarding the notion of minimal elements, the cone D.y/ for some y 2 Y can be
viewed as the set of preferred directions: D.y/ WD fd 2 Y j y � d is preferred to
yg [ f0Yg. Observe that Ny is a minimal element of some set A � Y w.r.t. D if and
only if it is a minimal element of the set A with Y partially ordered by K WD D.Ny/.

Replacing D by QD with QD.y/ WD �D.y/ for all y 2 Y in the Definitions 10
and 11, we obtain corresponding concepts of (weakly, strongly) max-nondominated
and maximal elements of a set A w.r.t. the ordering map D .

The following example illustrates that the concepts of nondominated and of
minimal elements w.r.t. an ordering map D are not directly related.

Example 12. Let Y D R
2, the cone-valued map D1 W R2 � R

2 be defined by

D1.y1; y2/ WD
�

cone convf.�1; 1/; .0; 1/g if y2 	 0;
R
2C otherwise;

and

A WD f.y1; y2/ 2 R
2 j y21 C y22 � 1g :
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Then .�1; 0/ is a nondominated but not a minimal element of A w.r.t. D1.
Considering instead the cone-valued map D2 W R2 � R

2 defined by

D2.y1; y2/ WD
�

cone convf.1;�1/; .1; 0/g if y2 	 0;
R
2C otherwise;

then .0;�1/ is a minimal but not a nondominated element of A w.r.t. D2.
Considering instead the cone-valued map D3 W R2 � R

2 defined by

D3.y1; y2/ WD
8
<

:

R
2C if y 2 R

2 n f.0;�1/; .�1; 0/g;
f.z1; z2/ 2 R

2 j z1 � 0; z2 	 0g if y D .0;�1/;
f.z1; z2/ 2 R

2 j z1 	 0; z2 � 0g if y D .�1; 0/;

then all elements of the set f.y1; y2/ 2 R
2 j y21 C y22 D 1; y1 � 0; y2 � 0g are

minimal elements of A w.r.t. D but there is no nondominated element of the set A
w.r.t. D .

The two optimality concepts are only related under strong assumptions on D :

Lemma 7.

(a) If D.y/ � D.Ny/ for all y 2 A for some minimal element Ny of A w.r.t. D , then Ny
is also a nondominated element of A w.r.t. D .

(b) If D.Ny/ � D.y/ for all y 2 A for some nondominated element Ny of A w.r.t. D ,
then Ny is also a minimal element of A w.r.t. D .

Besides considering optimal elements of a set, all concepts apply also for a
vector optimization problem with the image space equipped with a variable ordering
structure, analogously to Definition 8.

Many properties of minimal elements in a partially ordered space are still valid
for optimal elements w.r.t. a variable ordering, whereas others, see for instance
Lemma 10, hold in general only under additional assumptions. For both optimality
concepts, for minimal and for nondominated elements w.r.t. an ordering map D ,
and for the related concepts of strongly and weakly optimal elements, we can easily
derive the following properties.

Lemma 8.

(a) Any strongly nondominated element of A w.r.t. D is also a nondominated
element of A w.r.t. D . Any strongly minimal element of A w.r.t. the ordering
map D is also a minimal element of A w.r.t. D .

(b) If D.A/ is pointed, then there is at most one strongly nondominated element of
A w.r.t. D .

(c) Let int.D.y// ¤ ; for all y 2 A. Any nondominated element of A w.r.t. D is also
a weakly nondominated element of A w.r.t. D . Any minimal element of A w.r.t.
D is also a weakly minimal element of A w.r.t. D .
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(d) If Ny is a strongly nondominated element of A w.r.t. D , then the set of minimal
elements of A w.r.t. D is empty or equals fNyg. If D.A/ is pointed, then Ny is the
unique minimal element of A w.r.t. D .

(e) If Ny 2 A is a strongly minimal element of A w.r.t. D and if D.Ny/ � D.y/ for all
y 2 A, then Ny is also a strongly nondominated element of A w.r.t. D .

Proof.

(a) Let Ny be a strongly nondominated element of A w.r.t. D . Then Ny 2 fygCD.y/ for
some y 2 A together with Ny 2 fyg �D.y/ implies that Ny� y 2 D.y/\ .�D.y//
and due to the pointedness of D.y/ we obtain Ny D y. The same for a strongly
minimal element of A w.r.t. D .

(b) Let Ny be a strongly nondominated element of A w.r.t. D . If D.A/ is pointed,
then Ny � y 2 �D.y/ � �D.A/ implies Ny � y 62 D.A/ for all y 2 A n fNyg, i.e.
y 62 fNyg�D.Ny/ for all y 2 AnfNyg and thus no other element of A can be strongly
nondominated w.r.t. D .

(c) Follows directly from the definitions.
(d) As Ny is a strongly nondominated element of A w.r.t. D it holds for all y 2 AnfNyg

Ny 2 fyg �D.y/ (17.16)

and hence, y cannot be a minimal element of A w.r.t. D . Next, assume there
exists y 2 A such that y 2 fNyg �D.Ny/. Together with (17.16) we conclude

y � Ny 2 D.y/ \ .�D.Ny// � D.A/\ .�D.A// :

If D.A/ is pointed then y D Ny and thus Ny is a minimal element of A w.r.t. D .
(e) As Ny is a strongly minimal element of A w.r.t. D it holds under the assumptions

here that Ny 2 fyg � D.Ny/ � fyg � D.y/ for all y 2 A and hence Ny is a strongly
nondominated element of A w.r.t. D .

A well-known result is that the minimal elements of a set in a partially ordered
space are a subset of the boundary of that set, see Lemma 3. The result remains true
for variable ordering structures.

Lemma 9.

(a) (i) Let int.D.y// 6D ; for all y 2 Y. If Ny 2 A is a weakly minimal element of
the set A w.r.t. the ordering map D , then Ny 2 @A.

(ii) If Ny 2 A is a minimal element of the set A w.r.t. the ordering map D and
D.Ny/ 6D f0Yg, then Ny 2 @A.

(b) (i) If
T

y2A int.D.y// 6D ; and Ny 2 A is a weakly nondominated element of the
set A w.r.t. the ordering map D , then Ny 2 @A.

(ii) If
T

y2A D.y/ 6D f0Yg and Ny 2 A is a nondominated element of the set A
w.r.t. the ordering map D , then Ny 2 @A.

Proof.
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(a) (i) If Ny 2 int.A/ then for any d 2 int.D.Ny// there exists some � > 0 with
Ny � �d 2 A. Then

Ny � �d 2 A \ .fNyg � int.D.Ny///

in contradiction to Ny a weakly minimal element of A w.r.t. D .
(ii) Similar to (i) but choose d 2 D.Ny/ n f0Yg.

(b) Similar to (a)(i): if Ny 2 int.A/ then choosing d 2 Ty2A int.D.y// there exists
� > 0 such that

Ny � � d 2 A \ .fNyg � int.D.Ny � � d///

in contradiction to Ny a weakly nondominated element of A w.r.t. D .

(ii) Similar to (b )(i), but choose d 2
	T

y2A D.y/


n f0Yg.

The following example demonstrates that we need for instance in (b)(i) in
Lemma 9 an assumption like

\

y2A

int.D.y// 6D ; : (17.17)

Example 13. For the set A D Œ1; 3� � Œ1; 3� � R
2 and the ordering map D W R2 �

R
2,

D.y/ WD
�
R
2C for all y 2 R

2 with y1 	 2;
f.z1; z2/ 2 R

2 j z1 � 0; z2 	 0g else,

the point Ny D .2; 2/ is a weakly nondominated element of A w.r.t. D but Ny 62 @A.

In vector optimization in a pre-ordered space ordered by some convex cone K
one often considers the set AC K instead of the set A, cf. Lemma 4. The advantage
may be that AC K is convex while the set A is not. Further more, the set AC K is
interesting for considering dual problems. That also applies to vector optimization
problems with a variable ordering structure [21] and thus we also study the relation
of the optimal elements of some set A and of the set

M WD
[

y2A

fyg CD.y/ (17.18)

w.r.t. the ordering map D .
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Lemma 10. Let M be defined as in (17.18).

(a) (i) If Ny 2 A is a minimal element of the set M w.r.t. D , then it is also a minimal
element of the set A w.r.t. D .

(ii) If Ny 2 A is a minimal element of the set A w.r.t. D and if D.y/ � D.Ny/ for
all y 2 A, then Ny is also a minimal element of the set M w.r.t. D .

(b) (i) If Ny 2 M is a nondominated element of the set M w.r.t. D , then Ny 2 A and Ny
is also a nondominated element of the set A w.r.t. D .

(ii) If Ny 2 A is a nondominated element of the set A w.r.t. D , and if

D.yC d/ � D.y/ for all y 2 A and for all d 2 D.y/ ; (17.19)

then Ny is a nondominated element of M w.r.t. D .

Proof.

(a) The first implication (i) follows from A � M. Next we assume for (ii) that Ny is
a minimal element of A but not of M w.r.t. D , i.e. there exists some y 2 A and
dy 2 D.y/nf0Yg with yCdy 2 fNyg�.D.Ny/nf0Yg/. As D.Ny/ is a pointed convex
cone and D.y/ � D.Ny/ this implies

y 2 fNyg � .D.y/ n f0Yg/� .D.Ny/ n f0Yg/
� fNyg � .D.Ny/ n f0Yg/� .D.Ny/ n f0Yg/
� fNyg � .D.Ny/ n f0Yg/ ;

in contradiction to Ny a minimal element of A w.r.t. D .
(b) (i) If Ny 2 MnA then Ny 2 fygC.D.y/nf0Yg/ for some y 2 A � M in contradiction

to Ny a nondominated element of M w.r.t. D . Thus Ny 2 A. Due to A � M, Ny is
then also a nondominated element of A w.r.t. D . Next we assume for (ii) that
Ny is a nondominated element of A w.r.t. D but not of M, i.e. there exists some
y 2 A and dy 2 D.y/ n f0Yg with Ny 2 fyC dyg C .D.yC dy/ n f0Yg/: As D.y/
is a pointed convex cone and D.yC dy/ � D.y/ this implies

Ny 2 fyg C .D.y/ n f0Yg/C .D.yC dy/ n f0Yg/
� fyg C .D.y/ n f0Yg/C .D.y/ n f0Yg/
� fyg C .D.y/ n f0Yg/ ;

in contradiction to Ny a nondominated element of A w.r.t. D .

The condition (17.19) can be replaced by D.y C d/ C D.y/ � D.y/ for all
y 2 Y and all d 2 D.y/ and corresponds to the property of transitivity of the binary
relation, cf. [14], as this implies: If y1 is dominated by y2 [in the sense of (17.14)],
i.e. y1 2 fy2g C D.y2/, and if y2 is dominated by y3, i.e. y2 2 fy3g C D.y3/, then
y1 2 fy2g C D.y2/ � fy3g C D.y3/, i.e. y1 is dominated by y3. A variable ordering
structure satisfying the condition (17.19) and defining a transitive relation �1 is
given in the following example.
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Example 14. Define the cone-valued map D W R2 � R
2 by

D.y1; y2/ WD
8
<

:

f.r cos'; r sin '/ j r 	 0; ' 2 Œ0; =8�g if y1 	 =2;
f.r cos'; r sin '/ j r 	 0; ' 2 Œ0; 

2
C 

8
� y1�g if y1 2 .=8; =2/;

R
2C if y1 � =8:

Then D depends only on y1 and for y1 	 Ny1 for some y; Ny 2 R
2 we conclude

D.y/ � D.Ny/. As for any y 2 R
2 and any d 2 D.y/ we have d1 	 0 and thus

y1 C d1 	 y1 we conclude that (17.19) is satisfied and �1 is transitive.

In general only the cones D.y/ for y 2 A are of interest for modeling a decision
making problem. Thus we have the freedom of setting D.y/ WD f0Yg for all y 2
Y n A. This allows us to make the assumption (17.19) dispensable for the result in
Lemma 10(b):

Lemma 11. Let D W Y � Y be given with D.y/ D f0Yg for all y 2 Y n A and let M
be defined as in (17.18). Then an element Ny 2 Y is a nondominated element of the
set A w.r.t. D if and only if it is a nondominated element of the set M w.r.t. D .

Proof. First assume Ny is a nondominated element of the set A w.r.t. D . If it is not
also nondominated of M w.r.t. D , then there exist some y 2 A and some d 2 D.y/
such that

Ny 2 fyC dg CD.yC d/ n f0Yg with yC d 62 A : (17.20)

Thus y C d 2 M n A and D.y C d/ D f0Yg in contradiction to (17.20). The other
implication follows from Lemma 10(b)(i).

Next, we give some scalarization results for (weakly) nondominated and minimal
elements w.r.t. a variable ordering structure. Scalarization means the replacement
of the vector optimization problem by a scalar-valued optimization problem.
A basic scalarization technique in vector optimization is based on continuous linear
functionals l from the topological dual space Y�, compare for instance the proof of
Theorem 7. Then one examines the scalar-valued optimization problems

min
y2A

l.y/ :

In finite dimensions, Y D R
m, this scalarization is also well known as weighted sum

approach, and the components li 2 R, i D 1; : : : ;m, are then denoted as weights. We
get the following sufficient conditions for optimal elements w.r.t. a variable ordering
[21, 24]:

Theorem 11. Let Ny 2 A.

(a) (i) If for some l 2 .D.Ny//�

l.Ny/ < l.y/ for all y 2 A n fNyg ;
then Ny is a minimal element of A w.r.t. the ordering map D .
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(ii) If for some l 2 .D.Ny//#

l.Ny/ � l.y/ for all y 2 A ;

then Ny is a minimal element of A w.r.t. the ordering map D .
(iii) Let int.D.y// 6D ; for all y 2 A. If for some l 2 .D.Ny//� n f0Y�g

l.Ny/ � l.y/ for all y 2 A ;

then Ny is a weakly minimal element of A w.r.t. the ordering map D .
(b) (i) If for some l 2 .D.A//�

l.Ny/ < l.y/ for all y 2 A n fNyg ;

then Ny is a nondominated element of A w.r.t. the ordering map D .
(ii) If for some l 2 .D.A//#

l.Ny/ � l.y/ for all y 2 A ;

then Ny is a nondominated element of A w.r.t. the ordering map D .
(iii) Let int.D.y// 6D ; for all y 2 A and let D.A/ be convex. If for some

l 2 .D.A//� n f0Y�g

l.Ny/ � l.y/ for all y 2 A ;

then Ny is a weakly nondominated element of A w.r.t. the ordering map D .

Proof.

(a) (i) If Ny is not a minimal element of A w.r.t. D , then Ny � y 2 D.Ny/ n f0Yg for
some y 2 A and as l 2 .D.Ny//� this implies l.Ny/ 	 l.y/ in contradiction to
the assumption.

(ii) If Ny � y 2 D.Ny/ n f0Yg for any y 2 A then we get by l 2 .D.Ny//# that
l.Ny/ > l.y/, in contradiction to the assumption.

(iii) If Ny�y 2 int.D.Ny// for any y 2 A then l 2 .D.Ny//�nf0Y�g implies, compare
[31, Lemma 3.21], l.Ny/ > l.y/, in contradiction to the assumption.

(b) (i) If Ny is not a nondominated element of A w.r.t. D , then Ny� y 2 D.y/ n f0Yg
for some y 2 A. As l 2 .D.A//� also l 2 .D.y//� and thus l.Ny/ 	 l.y/ in
contradiction to the assumption.

(ii) If Ny�y 2 D.y/nf0Yg for any y 2 A then l 2 .D.A//# and thus l 2 .D.y//#
implies l.Ny/ > l.y/, in contradiction to the assumption.

(iii) If Ny � y 2 int.D.Ny// for any y 2 A then l 2 .D.A//� n f0Y�g and thus
l 2 .D.y//� n f0Y�g implies l.Ny/ > l.y/ using again [31, Lemma 3.21], in
contradiction to the assumption.
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Because of .D.A//� � .D.Ny//� and .D.A//# � .D.Ny//# for any Ny 2 A it suffices
in (a) to consider functionals l in .D.A//� and in .D.A//#, respectively. A necessary
condition for the quasi-interior of the dual cone of a convex cone to be nonempty
is the pointedness of the cone [31, Lemma 1.27]. This shows the limitation of the
above results if the variable ordering structure varies too much, i.e., if D.A/ is no
longer a pointed cone. Then the quasi-interior of the dual cone .D.A//# is empty and
the above characterizations can no longer be applied. For that reason also nonlinear
scalarization have to be considered, compare [20, 22, 23].

Under the additional assumption that A is a convex set also necessary conditions
for weakly optimal elements and hence also for optimal elements w.r.t. a variable
ordering can be formulated with the help of linear functionals.

Theorem 12. Let A be convex and let int.D.y// 6D ; for all y 2 A.

(a) For any weakly minimal element Ny 2 A of A w.r.t. the ordering map D there
exists some l 2 .D.Ny//� n f0Y�g with

l.Ny/ � l.y/ for all y 2 A :

(b) Set

OD WD
\

y2A

D.y/

and let int. OD/ be nonempty. For any weakly nondominated element Ny 2 A of A
w.r.t. the ordering map D there exists some l 2 OD� n f0Y�g with

l.Ny/ � l.y/ for all y 2 A :

Proof.

(a) Since Ny is a weakly minimal element of A w.r.t. the ordering map D the
intersection of the sets fNyg � int.D.Ny// and A is empty. Applying a separation
theorem there exists a continuous linear functional l 2 Y� n f0Y�g and a real
number ˛ with

l.Ny � d/ � ˛ � l.y/ for all d 2 D.Ny/ and for all y 2 A :

As D.Ny/ is a cone we conclude l.d/ 	 0 for all d 2 D.Ny/ and thus l 2 .D.Ny//� n
f0Y�g, and due to 0Y 2 D.Ny/ we obtain l.Ny/ � l.y/ for all y 2 A.

(b) Since Ny 2 A is a weakly nondominated element of A w.r.t. the ordering map D it
holds Ny 62 fyg C int.D.y// for all y 2 A and thus Ny 62 fyg C int. OD/ for all y 2 A.
Then .fNyg� int. OD//\A D ; and again with a separation theorem this results in
l.Ny/ � l.y/ for all y 2 A for some l 2 OD� n f0Y�g:
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The necessary condition for weakly nondominated elements w.r.t. the ordering
map D is very weak if the cones D.y/ for y 2 A vary too much, because then the
cone OD is very small (or even trivial) and the dual cone is very large.

Example 15. Let Y 2 R
2 and let D and A be defined as in Example 13. The unique

nondominated element w.r.t. D is .2; 1/ and all the elements of the set

f.2; t/ 2 R
2 j t 2 Œ1; 3�g [ f.t; 1/ 2 R

2 j t 2 Œ1; 3�g
are weakly nondominated w.r.t. D . Further, D.A/ D f.z1; z2/ 2 R

2 j z2 	 0g
and thus .D.A//� D f.z1; z2/ 2 R

2 j z1 D 0; z2 	 0g, i.e. .D.A//# D ;.
Let l 2 .D.A//� n f0Y�g be arbitrarily chosen, i.e. l1 D 0, l2 > 0, and
consider the scalar-valued optimization problem miny2A l>y. Then all elements of
the set f.t; 1/ 2 R

2 j t 2 Œ1; 3�g are minimal solutions and hence are weakly
nondominated elements of A w.r.t. D according to Theorem 11(b)(iii). All the
other weakly nondominated elements w.r.t. D cannot be found by the sufficient
condition. Because of int. OD/ D ;, the necessary condition of Theorem 12(b) cannot
be applied.

17.4 Set Optimization

Now we introduce set optimization problems as special vector optimization prob-
lems. Various optimality concepts are discussed for these problems.

In this section let S be a nonempty set, let Y be a real linear space, let K � Y
be a convex cone which defines a partial ordering �WD�K and let F W S � Y be a
set-valued map. Then we consider the set optimization problem

min
x2S

F.x/ : (SOP)

Up to now many authors have used a vector approach for the formulation of
optimality notions for this problem. First, we discuss this approach and then we
present a more suitable set approach.

17.4.1 Vector Approach

In this subsection we give a short overview on some concepts of optimal solutions
of problem (SOP) based on a vector approach. For simplicity we assume in this
subsection that the convex cone K is pointed. Then, similar to minimal solutions of
a vector optimization problem, see Definition 8, we can say that a pair .Nx; Ny/ with
Nx 2 S and Ny 2 F.Nx/ is a minimizer of (SOP) if

F.S/\ .fNyg � .Knf0Yg// D ;
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for F.S/ WD Sx2S F.x/, which means that Ny 2 min F.S/. In general only one element
does not imply that the whole set F.Nx/ is in a certain sense minimal with respect to
all sets F.x/ with x 2 S.

Another optimality notion has been recently introduced in [15, Definition 1.3].
An element Nx 2 S is called a feeble (multifunction) minimal point of problem
(SOP) if

9 Ny 2 F.Nx/ W F.SnfNxg/\ .fNyg � .Knf0Yg// D ; :

The equality means that Ny is not dominated by any arbitrary point in the set F.SnfNxg/.
It is not required that the element Ny is a minimal element of the set F.Nx/. Obviously,
this optimality notion is even weaker than the concept of a minimizer because the
set F.Nx/ is not considered in the definition. The following simple example illustrates
possible difficulties with this notion.

Example 16. For S WD f1; 2; 3g consider F.1/ D f1g, F.2/ D f2g, F.3/ D Œ1; 3�

and K WD RC. It is evident that Nx D 3 (with Ny D 1) is a feeble minimal point
of problem (SOP), although F.1/ would be the “better” set because F.2/;F.3/ �
F.1/C K.

A variation of this feeble notion is given in [15, Definition 1.3] in the following
way: An element Nx 2 S is called a (multifunction) minimum point of problem
(SOP) if

F.SnfNxg/\ .fyg � .Knf0Yg// D ; for all y 2 F.Nx/ :

This condition is equivalent to the equality

F.SnfNxg/\ .F.Nx/� .Knf0Yg// D ; ;

which means that the set F.Nx/ is not dominated by any set F.x/ with x 2 S; x ¤ Nx.
The next example shows that this optimality notion is too strong in set optimization.

Example 17. For S WD f1; 2g consider for arbitrary real numbers a; b; c; d with
�1 < a < b < 1 and �1 < c < d < 1 the intervals F.1/ D Œa; b� and
F.2/ D Œc; d�, and set K WD RC. In this case Nx D 1 is a minimum point of problem
.SOP/ if and only if

F.2/\ .F.1/� .Knf0g// D ; ;

which means that Œc; d� \ .�1; b/ D ; or b � c. So, this is a very strong
requirement.

Variants of the discussed notions have also been mentioned in [49, p. 10], where
the nondomination concept is again used for different optimality notions (but notice
that the utilized solution concept in [49] uses the set less relation of interval analysis,
which is covered by the unified set approach).
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17.4.2 Set Approach

Although the concept of a minimizer is of mathematical interest, it cannot often
be used in practice. In order to avoid this drawback it is necessary to work with
practically relevant order relations for sets. In Example 1(b) the set less order
relation 4s has been already defined for the comparison of sets. In interval analysis
there are even more order relations in use, like the certainly less 4c or the possibly
less 4p relations (see [16]), i.e. for arbitrary nonempty sets A;B � Y one defines

A 4c B W() .A D B/ or .A ¤ B;8 a 2 A 8 b 2 B W a � b/

and

A 4p B W() .9 a 2 A 9 b 2 B W a � b/ :

From a practical point of view the order relation 4s seems to be more appropriate
in applications. In the case of order intervals the order relations 4s and 4c are
described by a pre-order of the minimal and maximal elements of these intervals.
But for general nonempty sets A and B, which possess minimal elements and
maximal elements, this property may not be fulfilled. Figure 17.10 illustrates two
sets A;B 2 P.Y/ with A 4s B and the properties max A � max B � K but
max B 6� max A C K. This means that there may be elements b 2 max B and
a 2 max A which are not comparable with respect to the pre-order�.

In order to avoid this drawback we discuss new concepts involving the minimal
and maximal elements of a set. This leads to various definitions of “minmax less”
order relations. In the following let

M WD fA 2P.Y/ j min A and max A are nonemptyg:

B

b

B−K

maxB

A

a

A+K

K

0Y

Fig. 17.10 Illustration of two sets A and B with A 4s B, and a 2 max A and b 2 max B with
a 6� b and b 6� a
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B maxB

maxB−K

minB−K

minB
A

minA

maxA

minA+K

maxA+K
K

0Y

Fig. 17.11 Illustration of two sets A;B 2 M with A 4m B

B maxB

minB

A

minA

maxA
K

0Y

Fig. 17.12 Illustration of two sets A;B 2 M with A 4mc B

Definition 12. Let A;B 2M be arbitrarily chosen sets. Then the minmax less order
relation 4m is defined by

A 4m B W() min A 4s min B and max A 4s max B

(the subscript m stands for minmax).

Figure 17.11 illustrates the minmax less order relation.
Our second new order relation is defined as follows.

Definition 13. Let A;B 2M be arbitrarily chosen sets. Then the minmax certainly
less order relation 4mc is defined by

A 4mc B W() .A D B/ or .A ¤ B;min A 4c min B and max A 4c max B/:

(the subscript mc stands for minmax certainly).

Figure 17.12 illustrates this order relation.
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Our third new order relation is defined as follows.

Definition 14. Let A;B 2M be arbitrarily chosen sets. Then the minmax certainly
nondominated order relation 4mn is defined by

A 4mn B W() .A D B/ or .A ¤ B;max A 4s min B/:

(the subscript mn stands for minmax nondominated).

Remark 1. When Y D R, the order relation 4mn reduces to the order relation for
unequal intervals given in [36, p. 9].

To illustrate the order relation 4mn let us consider two teams A and B of football
players. If the best ones of B play not better than the worse ones of A, then one could
say that A is better than B w.r.t. the order relation 4mn.

With the following proposition we compare the afore-mentioned order relations.

Proposition 1 (Comparing Known and New Order Relations). Let A; B 2 M
with A ¤ B be arbitrarily given. Suppose that A and B have the quasi domination
property, i.e. min AC K D AC K and max A � K D A � K. Then

(i) A 4c B) A 4mc B) A 4m B) A 4s B.
(ii) A 4c B) A 4mn B) A 4m B.

(iii) A 4mn B does not always imply A 4mc B and A 4mc B does not always imply
A 4mn B.

Proof.

(i) “A 4c B ) A 4mc B”: By the definition, A 4c B and A ¤ B mean B�A � K.
As min A, max A are subsets of A and min B, max B are subsets of B, it is
immediate that min B �min A � K and max B �max A � K being equivalent
to the inequality A 4mc B.

“A 4mc B ) A 4m B”: By the definition, A 4mc B and A ¤ B imply
min B � min A � K and max B � max A � K. Then for any amin 2 min A,
bmin 2 min B, amax 2 max A and bmax 2 max B we have amin � bmin and
amax � bmax. Therefore, min B � min ACK, min A � min B�K and max B �
max AC K, max A � max B � K, being equivalent to the inequality A 4m B.

“A 4m B ) A 4s B”: It is simple to see that the inequality A 4m B implies
that

min A � min B � K and min B � min AC K D AC K

and

max A � max B � K D B � K and max B � max AC K:
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Therefore, we have

min B � AC K and max A � B � K;

which leads to

BC K D min BC K � AC K and A � K D max A � K � B � K:

Consequently, we have

B � AC K and A � B � K

being equivalent to the inequality A 4s B.
(ii) “A 4c B) A 4mn B”: By the definition, A 4c B and A ¤ B imply B�A � K.

Then for any amax 2 max A and bmin 2 min B we have amax � bmin. Therefore,
max A � min B � K and min B � max A C K, i.e. max A 4s min B being
equivalent to the inequality A 4mn B.

“A 4mn B ) A 4m B”: By the definitions of the order relations 4mn and
4s, A 4mn B and A ¤ B imply max A � min B � K and min B � max AC K.
As the sets A and B satisfy the quasi domination property, we have

min A � A � A � K D max A � K � .min B � K/� K D min B � K

and

min B � max AC K � AC K D min AC K

which imply min A 4s min B. Analogously,

max A � min B � K � B � K D max B � K

and

max B � B � BC K D min BC K � .max AC K/C K D max AC K

which imply max A 4s max B. These two relations imply that A 4m B.
(iii) See the following Example 18.

We illustrate the relations in Proposition 1 by some examples. We also show that
the implications in this proposition are strict, i.e. the converse implications do not
hold.
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Example 18. Let Y D R
2, K D R

2C and consider the sets

A1 D f.x; y/ j x2 C y2 � 1g
A2 D f.x; y/ j .x � 1/2 C .y � 1/2 � 1g
A3 D f.x; y/ j .x � 1/2 C y2 � 1g
A4 D f.x; y/ j .x � 1/2 C .y � 1/2 � 1; x2 C y2 	 1g
A5 D convf.�2; 0/; .�3;�1/; .0;�2/g
A6 D convf.4; 2/; .0; 2/; .4;�2g

(see Fig. 17.13).
One can check that

A1 4mc A2 but A1 64mn A2; A1 64c A2;

A1 4m A3 but A1 64mn A3 and A1 64mc A3;

A1 4mn A4 but A1 64c A4

and

A5 4mn A6 but A5 64mc A6

(A5 64mc A6 because .�3;�1/ 2 min A5, .4;�2/ 2 min A6 but .4;�2/ 6	 .�3;�1/
which means that min A5 64c min A6).

Figure 17.10 illustrates that the minmax less relation 4m is stronger than the set
less relation 4s.

1

2

−1

−2

−1−2 21 3 4−3 x

y

A1

A2

A3

A5

A6

Fig. 17.13 Illustration of the sets A1, A2, A3, A5 and A6 in Example 18
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Now we assume that the power set P.Y/ or its subset M is equipped with order
relations considered in this chapter, except the order relation 4p. Observing that
these order relations are pre-orders, we discuss a unifying approach for problem
.SOP/ w.r.t. these various order relations.

Let us begin with the concepts of optimal solutions w.r.t. the pre-order 4.

Definition 15. Suppose that F is a set-valued map from S to .Q;4/ and let Nx 2 S.

(i) Nx is an optimal solution of .SOP/ w.r.t. the pre-order 4 iff

F.x/ 4 F.Nx/ for some x 2 S) F.Nx/ 4 F.x/:

(ii) Nx is a strongly optimal solution of .SOP/ w.r.t. the pre-order 4 iff

F.Nx/ 4 F.x/ for all x 2 S:

Now, let us consider the case, if F takes values on P.Y/. We will use the
following notations. Namely, let .Q;4/ D . NN ;4�/ with the pre-order 4�, where
the subscript � is one of s; c; m; mc; mn, and sets under consideration belong to

NN D
�
P.Y/ if � is s; c
M if � is m; mc; mn:

Remark 2. If 4 is a partial order, i.e. it is anti-symmetric, then Nx is an optimal
solution of .SOP/ if and only if

F.x/ 4 F.Nx/ for some x 2 S) F.Nx/ D F.x/:

Finally we establish the existence of optimal solutions to the set optimization
problem. A proof of this result is given in [32, Theorem 5.1].

Theorem 13. Suppose that S is compact, F take values on Q and is semicontinuous
w.r.t. the pre-order 4 on S. Then the problem .SOP/ has an optimal solution w.r.t.
the pre-order 4.
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Chapter 18
Continuous Multiobjective Programming

Margaret M. Wiecek, Matthias Ehrgott, and Alexander Engau

Abstract We present our view of the state of the art in continuous multiobjective
programming. After an introduction we formulate the multiobjective program
(MOP) and define the most important solution concepts in Sect. 18.2. In Sect. 18.3
we summarize properties of efficient and nondominated sets. Optimality conditions
are reviewed in Sect. 18.4. The main part of the chapter consists of Sects. 18.5
and 18.6 that deal with solution techniques for MOPs and approximation of efficient
and nondominated sets. In Sect. 18.7 we discuss specially-structured problems
including linear, nonlinear, parametric, and bilevel MOPs. In Sect. 18.8 we present
our perspective on future research directions.

Keywords Multiobjective programming • Efficient solution • Pareto point
• Nondominated solution • Scalarization • Approximation • Representation
• Parametric programming • Bilevel programming

18.1 Introduction

Multiobjective programming is a part of mathematical programming dealing with
decision problems characterized by multiple and conflicting objective functions
that are to be optimized over a feasible set of decisions. Such problems, referred
to as multiobjective programs (MOPs), are commonly encountered in many areas
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of human activity including engineering, management, and others. Throughout
the chapter we understand multiobjective programming as pertaining to situations
where feasible alternatives are available implicitly, through constraints in the form
of mathematical functions. An optimization problem (typically a mathematical
program) has to be solved to explicitly find those alternatives of interest to a decision
maker. Decision problems with multiple criteria and explicitly available alternatives
are treated within multicriteria decision analysis (MCDA). This view constitutes
the difference between multiobjective programming and MCDA which complement
each other within multicriteria decision-making (MCDM).

In the last 60 years, a great deal of theoretical, methodological and applied
studies have been undertaken in the area of multiobjective programming. This
chapter presents a review of the theory and methodology of finite-dimensional
MOPs over continuous Euclidean domains; the more general settings of vector
or set-valued optimization and the more specific focus on combinatorial problems
are treated separately in Chapters 17 and 19 in this book. The content of our
review is based on the understanding that the primary (although not necessarily
the ultimate) goal of multiobjective programming is to seek solutions of MOPs.
Consequently, exact methods suitable for finding these solutions are considered the
most fundamental tools for dealing with MOPs and therefore given special attention.
Heuristic methods or metaheuristics are not included in this chapter but covered in
Chapter 23 in this book. The selection of a preferred solution of the MOP performed
by the decision maker can be considered the ultimate goal of MCDM. However, the
modeling of decision maker preferences is outside the scope of this chapter and
belongs to the domain of MCDA.

Similar to the first edition of this volume, we begin this chapter by providing
a theoretical foundation of multiobjective programming in Sects. 18.2–18.4. In
Sect. 18.2, we define MOPs and relevant solution concepts based on binary relations
and cones, that are now extended to the notions of more general domination
structures and variable cones. Sects. 18.3 and 18.4 contain an updated summary of
properties of the solution sets and conditions for efficiency, respectively. The sub-
sequent sections focus on methodological aspects of multiobjective programming
and have seen major revisions to accurately reflect some new developments in the
field. In Sect. 18.5, numerous methods for generating individual elements or subsets
of the solution sets of MOPs are collected including scalarization approaches and
nonscalarizing methods. The latter include methods based on different optimality
concepts in the Euclidean vector space, algorithms borrowed from nonlinear
programming, and set-oriented methods that have been designed specifically for
MOPs. Sects. 18.6 on approximation techniques has been extended as well and now
also addresses representation and measures of its quality. Sects. 18.7 on specially
structured problems includes updated overviews of linear and nonlinear MOPs
followed by new results for parametric and bilevel MOPs. The chapter is concluded
in Sect. 18.8 with our view of current and future research directions.

We point out that contributions are not always presented chronologically but
rather with respect to the order implied by the content of this chapter and with
respect to their level of generality. Due to their scope, some articles could be referred
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to in two or more sections of this chapter. Based on our judgment, we typically refer
to them once in the section that we find the most relevant.

18.2 Problem Formulation and Solution Concepts

Let Rn and R
p be Euclidean vector spaces referred to as the decision space and

the objective space. Let X � R
n be a feasible set and let f be a vector-valued

objective function f W Rn ! R
p composed of p real-valued objective functions,

f D .f1; : : : ; fp/, where fk W Rn ! R for k D 1; : : : ; p. A multiobjective program
(MOP) is given by

min .f1.x/; : : : ; fp.x//

subject to x 2X: (18.1)

Throughout this chapter we refer to problem (18.1) as the MOP. When p D 2 the
problem is referred to as the biobjective program (BOP). We usually assume that
the set X is given implicitly in the form of constraints, i.e., X WD fx 2 S � R

n W
gj.x/ � 0; j D 1; : : : ; lI hj.x/ D 0; j D 1; : : : ;mg for some given set S. A feasible
solution x 2 X is evaluated by p objective functions producing the outcome f .x/. We
define the set of all attainable outcomes or criterion vectors for all feasible solutions
in the objective space, Y WD f .X/ � R

p. We use bd Y, int Y, ri Y, and cl Y to denote
the boundary, interior, relative interior, and closure of Y. Furthermore cone Y and
conv Y denote the conical and convex hulls of Y.

Occasionally, we will deal with a special case of the MOP with the feasible set
defined by X0 WD fx 2 S0 � R

n W gj.x/ � 0; j D 1; : : : ; lg: This MOP only with
inequality constraints will be referred to as the MOP0.

18.2.1 Partial Orders and Pareto Optimality

The symbol “min” in the MOP is generally understood as finding optimal or
preferred outcomes in Y and their pre-images in X. Let y1 
 y2 denote that an
outcome y1 is preferred to an outcome y2 and let y1 � y2 denote preference of y1

over y2 or indifference between y1 and y2. Given a binary relation R, we say that an
outcome y1 is preferred (or indifferent) to an outcome y2 with respect to this relation
if and only if y1 is in relation with y2, i.e., y1 �R y2 if and only if y1Ry2.

The following notation is used. Let R
p be a Euclidean vector space and

y; y0 2 R
p.

• y < y0 denotes yk < y0
k for all k D 1; : : : ; p.

• y 5 y0 denotes yk � y0
k for all k D 1; : : : ; p.

• y � y0 denotes y 5 y0 but y ¤ y0.
• Let Rp

= WD fy 2 R
p W y = 0g. The sets Rp

�;R
p
> are defined accordingly.
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Due to the lack of a canonical order of vectors in R
p, the notion of optimality

allows for some flexibility. Three ordering relations commonly chosen are the Pareto
relation denoted as Par, the lexicographic relation denoted as lex, and the max-
ordering relation denoted as MO.

Definition 1. Let Rp be a Euclidean vector space and y1; y2 2 R
p.

 y1 �Par y2 if and only if y1 5 y2.
 y1 �lex y2 if and only if y1 D y2 or there is some k; 1 � k � p, such that

y1i D y2i ; i D 1; : : : ; k � 1 and y1k < y2k .
 y1 �MO y2 if and only if maxkD1;:::;p y1k � maxkD1;:::;p y2k :

In Definition 1, only �lex is a total order whereas �Pareto and �MO are partial
orders in R

p. The most commonly used ordering relation in multiobjective program-
ming is the Pareto relation for which the corresponding solutions in the decision
space are called Pareto optimal or efficient. The definition of three variations of
efficient solutions is given below.

Definition 2. Consider the MOP. A point x 2 X is called

• a weakly efficient solution if there is no x0 2 X such that f .x0/ < f .x/;
• an efficient solution if there is no x0 2 X such that f .x0/ � f .x/;
• a strictly efficient solution if there is no x0 2 X, x0 ¤ x, such that f .x0/ 5 f .x/.

We shall denote the weakly efficient solutions, efficient solutions, and strictly
efficient solutions by XwE;XE;XsE, respectively, and we shall call their images weak
Pareto points and Pareto points, respectively. The latter are denoted by YwN ;YN .
Note that strictly efficient solutions correspond to unique efficient solutions, and
therefore they do not have a counterpart in the objective space. For many of the
solution approaches presented in Sect. 18.5, statements of the form “If Ox 2 X is a
unique optimal solution of the approach then Ox 2 X is an efficient solution” are
presented. Uniqueness of a solution actually implies that Ox is strictly efficient for the
MOP.

18.2.2 Cones and Nondominated Outcomes

More general preference and indifference relations between outcomes result from
partial orders that are described by a binary relation R defined on Y. To derive a
definition for a class of preferences between outcomes, we consider cones. A set
C � R

p is a cone, if ˛y 2 C whenever y 2 C and 0 � ˛ 2 R. Given a cone C,
we say that an outcome y1 dominates (is preferred to) an outcome y2 with respect to
this cone, y1 
C y2, if and only if y2 � y1 2 C n f0g, or equivalently, if there exists
a direction d 2 C; d ¤ 0 W y2 D y1 C d: Then y1 �C y2 if y1 
C y2 or y1 D y2. We
observe that the set C D R

p
= is the cone that is associated with the Pareto relation in

Definition 1, and in this context it is therefore also referred to as the Pareto cone.
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Given a cone C, we can also define a relation RC on R
p by y1RCy2 if and only

if y2 � y1 2 C: This relation is compatible with addition and scalar multiplication
(i.e., y1Ry2 implies .y1 C z/R.y2 C z/ for all z 2 R

p and y1Ry2 implies ˛y1R˛y2

for all 0 < ˛ 2 R). Conversely, given a relation R on R
p we can define a set CR as

CR WD fd 2 R
p W d D y2 � y1 and y1Ry2g, see Ehrgott [114]. If R is compatible

with scalar multiplication and 0 2 CR then CR is a cone; (if 0 … CR then CR [ f0g
is a cone). If R is compatible with addition then d 2 CR and d D y2 � y1 imply
that y1Ry2. Theorem 1 summarizes these relationships between binary relations and
cones. Note that a reflexive, antisymmetric, and transitive binary relation is a partial
order on R

p.

Theorem 1. 1. Let R be a binary relation on R
p which is compatible with addition.

Then 0 2 CR if and only if R is reflexive; CR is pointed (i.e., C \ .�C/ D f0g) if
and only if R is antisymmetric; CR is convex if and only if R is transitive.

2. Let C be a cone. Then RC is reflexive if and only if 0 2 C; RC is antisymmetric if
and only if C is pointed; RC is transitive if and only if C is convex.

Thus some binary relations and cones are equivalent concepts, and we can define
a notion of nondominated solutions for MOPs (Yu [407]).

Definition 3. Let C � R
p be a cone and Y � R

p. Then y 2 Y is called a
nondominated outcome of the MOP if

 there does not exist y1 2 Y and d 2 C; d ¤ 0 W y D y1 C d, or equivalently,
 .y � C/\ Y D fyg:

We shall denote the set of all nondominated outcomes of the MOP by N.X; f ; C/
or N.Y; C/. One typically assumes that the cone C is proper (i.e., f0g ¤ C ¤ R

p)
and pointed. The pre-images of the nondominated outcomes are called efficient
solutions and are denoted by E.X; f ; C/. We recall that for the Pareto cone R

p
=,

we also simply write XE for E.X; f ;Rp
=/, and YN for N.Y;Rp

=/. We also define
weakly nondominated solutions in the objective space, the pre-images of which in
the decision space are called weakly efficient.

Definition 4. Let C � R
p be a cone and Y � R

p. Then y 2 Y is called a weakly
nondominated outcome of the MOP if .y � int C/\ Y D ;.

We state some basic properties of nondominated sets, see Sawaragi et al. [321].

Theorem 2. Let Y;Y1;Y2 be subsets of Rp, C, C1 and C2 be cones in R
p.

 If 0 2 C then N.Y; C/ � N.Y C C; C/. If, additionally, C is pointed and convex
then the inclusion becomes an equality.

 N.Y; C/ � bd.Y/.
 N.Y1 C Y2; C/ � N.Y1; C/C N.Y2; C/.
 N.˛Y; C/ D ˛N.Y; C/ for 0 � ˛ 2 R.
 If C1 � C2 then N.Y; C2/ � N.Y; C1/.
 N.Y; C1 [ C2/ D N.Y; C1/\ N.Y; C2/.
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The following results relate efficient and nondominated points with respect to a
convex polyhedral cone C to efficient and Pareto points.

Theorem 3. Let C be a convex polyhedral cone represented by fd 2 R
p W Ld = 0g

where L is a q � p matrix. Then

1. [379] E.X; f ; C/ � E.X;Lf ;Rq
=/.

2. [204] LŒN.Y; C/� � N.LŒY�;Rq
=/.

The effect of general linear transformations on the efficient and nondominated set
is investigated by Cambini et al. [69]. The nondominated set is examined with
respect to a class of nonpolyhedral cones by Engau and Wiecek [134]. Properties of
efficient sets for collections of MOPs are studied by Gardenghi et al. [163, 164]. The
collections include a variety of configurations incorporating separable or composite
objective functions, local or global variables, and linking variables modeling
interacting MOPs.

18.2.3 Domination Sets and Variable Cones

Nondominated solutions are also defined with respect to more general domination
sets and structures. Given an outcome y 2 Y, Yu [406–409] introduces domination
sets D.y/ D fd 2 R

p W y 
 y C dg where each element d 2 D.y/ is called a
dominated direction or domination factor. Nondominated outcomes then depend on
the collection D D fD.y/ W y 2 Yg of these sets that for different outcomes y can
also be different and form what is called a (variable) domination structure.

Definition 5. Let D D fD.y/ � R
pg be a domination structure for Y � R

p. Then
y 2 Y is called a nondominated outcome of the MOP with respect to D if

 there does not exist y1 2 Y and d1 2 D.y1/; d1 ¤ 0 W y D yC d, or equivalently,
 Y \Sy12Y

�
y � D.y1/

� � fyg.
If each D.y/ is defined using an underlying binary relation that is reflexive,

antisymmetric, and transitive then each D.y/ is a pointed convex cone and D is
also called a variable ordering relation by Huang et al. [203] or a variable cone by
Engau [131]. Moreover, for relations that are compatible with addition, a direction
d is dominated if and only if the reversed direction �d is preferred. In this case,
Definition 5 can equivalently be stated in terms of a preference structure P using
sets P.y/ D fd 2 R

p W yCd 
 yg. This is not true for general domination structures,
however, and Definitions 5 and 6 are different in general.

Definition 6. Let P D fP.y/ � R
pg be a preference structure for Y � R

p. Then
y 2 Y is called a nondominated outcome of the MOP with respect to P if

 there does not exist y1 2 Y and d 2 D.y/; d ¤ 0 W y1 D yC d, or equivalently,
 Y \ .yC D.y// � fyg.
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Yu and Leitmann [410] and Bergstresser et al. [45, 46] consider domination
and preference structures using convex sets rather than convex cones. Lin [250]
provides a comparison of the defined optimality concepts and Chew [77] proposes a
reformulation for general vector spaces. Takeda and Nishida [355] introduce fuzzy
domination structures for MOP while Hazen and Morin [192, 193] Hazen [191]
study optimality conditions for MOP with a nonconical order. Many of these earlier
results are collected in the monograph by Yu [409]. The extension of dominance
sets from Euclidean to more general vector spaces is also considered by Weidner
[377, 378] who later studies scalarization approaches to MOPs with preferences
modeled by parameter-depending sets [380, 381]. Chen and Yang [74] also relate a
variable domination structure to a nonlinear scalarization for MOP, Chen et al. [75]
examine variable dominations structures for set-valued optimization problems, and
Ceng and Huang [71] establish a series of existence theorems for generalized vector
variational inequalities with a variable ordering relation. Wu [396] further examines
the relevance of convex cones for a solution concept in fuzzy MOP.

Baatar and Wiecek [17] develop the structure of domination for the equitability
preference (cf. Sect. 18.5.2.4) and show that the underlying domination structure is
variable and consists of certain polyhedral cones that depend upon the location of an
outcome y in certain sectors of the outcome space. Mut and Wiecek [283] generalize
this structure with other convex polyhedral cones. Other examples of preference
models based on variable cones are reviewed by Wiecek [387] and further studied
by Engau [131] who also addresses several practical limitations of constant cones
for the disambiguitation of desirable tradeoffs. Most recently, Eichfelder [128, 129]
and Eichfelder and Ha [130] derive several further results including Fermat and
Lagrange multiplier rules that are motivated from two specific applications of
variable ordering structures in medical image registration and intensity modulated
radiation therapy.

18.2.4 Local, Proper, and Approximate Solutions

All the classes of solutions defined above are global solutions. However, we also
define local solutions of the MOP. A point x 2 X is called a locally efficient
solution of the MOP if there exists a neighborhood N.x/ such that there is no
x0 2 N.x/ \ X such that f .x0/ � f .x/. Similarly, all other classes of local solutions
in the decision space and the objective space can be defined. In this chapter, all
solutions of optimization problems are global unless stated otherwise.

Additionally, the following authors define properly efficient solutions: Kuhn
and Tucker [242], Klinger [228], Geoffrion [167], Borwein [55], Benson [28],
Wierzbicki [390] and Henig [196]. Borwein and Zhuang define super efficient
solutions [57, 58].

Definition 7. A point Ox 2 X is called a properly efficient solution of the MOP0
in the sense of Kuhn-Tucker if Ox 2 XE and if there does not exist a d 2 R

n such
that rfk.Ox/Td � 0 for all k D 1; : : : ; p with a strict inequality for some k and
rgj.Ox/Td � 0 for all j 2 I.Ox/ D fj W gj.Ox/ D 0g.
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Definition 8. A point Ox 2 X is called a properly efficient solution of the MOP in
the sense of Geoffrion if Ox 2 XE and if there exists M > 0 such that for each
k D 1; : : : ; p and each x 2 X satisfying fk.x/ < fk.Ox/ there exists an l ¤ k with
fl.x/ > fl.Ox/ and .fk.Ox/� fk.x//=.fl.x/� fl.Ox// � M.

The sets of all properly efficient solutions and properly nondominated outcomes
(in the sense of Geoffrion) are denoted by XpE and YpN , respectively. Approximate
efficient solutions are initially defined by Kutateladze [243] and later by Loridan
[255] in the following way.

Definition 9. Let 	 2 R
p
�. A point Ox 2 X is called an 	-efficient solution of the

MOP if there is no x0 2 X such that f .x0/ � f .Ox/ � 	.
Letting E.X; f ; C; 	/ and N.Y; C; 	/ denote the 	-efficient solution in decision

and outcome space, respectively, Engau and Wiecek [133] generalize Theorem 3
for approximate solutions.

Theorem 4. Let C be a convex polyhedral cone represented by fd 2 R
p W Ld = 0g

where L is a q � p matrix. Let 	 2 R
p
=, b D L" 2 R

q and R
q
=b WD fz 2 R

q W z = bg.
Then

1. E.X; f ; C; 	/ � E.X;Lf ;Rq
=b/;

2. LŒN.Y; C; 	/� � N.LŒY�;Rq
=b/.

Other types of approximate efficient solutions are defined by White [384]. Later,
Gutiérrez et al. [184] show that many of these definitions can be seen as particular
instances of their more general definition [182], in terms of certain coradiant subsets
of the underlying ordering cone.

Similarly, weakly 	-efficient solutions and strictly 	-efficient solutions and their
images can be defined. Let yI

k WD minffk.x/ W x 2 Xg be the (global) minimum of
fk.x/; k D 1; : : : ; p. The point yI 2 R

p; yI D .yI
1; : : : ; y

I
p/ is called the ideal point for

the MOP. A point yU where yU
k WD minffk.x/ W x 2 Xg � 	k; k D 1; : : : ; p, where the

components of 	 D .	1; : : : ; 	p/ 2 R
p are small positive numbers, is called a utopia

point for the MOP. Furthermore, the point yN with yN
k WD maxffk.x/ W x 2 XEg is

called the nadir point for the MOP. For each x 2 XE it holds: yU < yI � f .x/ � yN .
We shall assume that yI < yN for the MOP.

18.3 Properties of the Solution Sets

In this section we discuss properties of the nondominated and efficient sets including
existence, stability, convexity, and connectedness of the solution sets N.Y; C/ and
E.X; f ; C/ of the MOP. Here we assume that C is a pointed, closed, convex cone. We
first consider existence of nondominated points and efficient solutions.
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Theorem 5 ([56]). Let Y ¤ ; and suppose there exists a y0 2 Y such that Y0 D
.y0 � C/\ Y is compact. Then N.Y; C/ ¤ ;.

An earlier result by Corley requires Y to be C-semicompact, i.e., every open cover
fY n.y� �cl C/ W y� 2 Y; � 2 T g of Y, where T is an index set, has a finite subcover.

Theorem 6 ([86]). If Y ¤ ; and Y is C-semicompact then N.Y; C/ ¤ ;.

Corollary 1 ([189]). If Y ¤ ; and Y is C-compact (i.e., (y� C/\ Y is compact for
all y 2 Y) then N.Y; C/ ¤ ;.

Sawaragi et al. [321] also give necessary and sufficient conditions for N.Y; C/
to be nonempty for the case of a nonempty, closed, convex set Y. Essentially,
the existence of nondominated points can be guaranteed under some compactness
assumption. Consistently, the existence of efficient solutions can be guaranteed
under appropriate continuity assumptions on the objective functions and compact-
ness assumptions on X. The function f W Rn ! R

p is said to be C-semicontinuous if
the pre-image of y � cl C is a closed subset of Rn for all y in R

p:

Theorem 7. Let ; ¤ X � R
n be a compact set and assume f W Rn ! R

p is
C-semicontinuous. Then E.X; f ; C/ ¤ ;.

A review of existence results for nondominated and efficient sets is provided by
Sonntag and Zǎlinescu [346].

Stability of MOPs is studied, among others, in the following context. Let y 2 Y
be a feasible solution. If y is dominated then there exists a y0 2 Y; y0 ¤ y, such that
y0 
C y. The question arises whether y0 is nondominated. In this case, N.Y; C/ is
called externally stable. Note that the external stability condition can also be written
as Y � N.Y; C/C C.

Theorem 8 ([321]). Let C be a pointed, closed, convex cone and let Y ¤ ; be a
C-compact set. Then N.Y; C/ is externally stable.

In addition, Sawaragi et al. [321] prove that the necessary and sufficient
conditions for existence of nondominated points for nonempty, closed, convex sets
Y are also necessary and sufficient for external stability of N.Y; C/ in that case.

We now state some relationships between the various nondominated and efficient
sets. From Definitions 2 and 8 it is clear that XpE � XE � XwE and XsE � XE, and
therefore YpN � YN � YwN . Again, for convex sets a stronger result holds. Hartley
[189] proves that if Y is C-closed (Y C C is closed) and C-convex (Y C C is convex)
then YpN � YN � cl YpN and that equality holds if Y is polyhedral. The C-convexity
condition on Y is satisfied if, e.g., the set X is convex and the objective functions fk
are convex. Therefore it makes sense to define the convex MOP.

If all the objective functions fk; k D 1; : : : ; p of the MOP are convex and the
feasible set X is convex then the problem is called convex MOP. The outcome set Y
of the convex MOP is Rp

=-convex, i.e., Y C R
p
= is a convex set.

The last property of the efficient and the nondominated sets that we discuss is
connectedness.
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Theorem 9 ([376]). Assume that f1; : : : ; fp are continuous and that X satisfies one
of the following conditions.

1. X � R
n is a compact, convex set.

2. X is a closed, convex set and for all y 2 Y;X.y/ WD fx 2 X W f .x/ 5 yg is
compact.

Then the following statements hold:

1. If fk W Rn ! R are quasiconvex on X for k D 1; : : : ; p then XwE is connected.
2. If fk W Rn ! R are strongly quasiconvex on X for k D 1; : : : ; p then XE is

connected.

Warburton [376] also gives examples showing that XE may be disconnected if X
is compact and convex but fk only quasiconvex, and that XE (respectively XwE) may
be disconnected if X.y/ is not compact for some y.

Because convex functions are continuous and the image of a connected set under
a continuous function is connected, it follows immediately that the sets YwN and YN

are connected under the assumptions stated in Theorem 9, if the objective functions
fk; k D 1; : : : ; p are continuous. However, connectedness of YN can also be proved
under more general assumptions.

Theorem 10 ([284]). Let C be a closed, convex, nonempty cone that does not
contain a nontrivial subspace of Rp and let Y be a closed, convex, and C-compact
set. Then N.Y; C/ is connected.

In the remaining sections we will mainly consider nondominance and efficiency
with respect to the Pareto cone, i.e., C D R

p
=: Thus, throughout the rest of the

chapter, efficiency is meant for the MOP (18.1) in the sense of Definition 2.

18.4 Conditions for Efficiency

Conditions for efficiency are powerful theoretical tools for determining whether a
feasible point is efficient. Denote the set of indices of active inequality constraints
at Ox 2 X by I.Ox/ D fj 2 f1; : : : ; lg W gj.Ox/ D 0g (compare Definition 7).

18.4.1 First Order Conditions

Assume that the objective functions fk; k D 1; : : : ; p; and the constraint functions
gj; j D 1; : : : ; lI hj; j D 1; : : : ;m of the MOP are continuously differentiable.

Theorem 11. Fritz-John necessary conditions for efficiency [90]. If Ox is efficient
then there exist vectors w 2 R

p
=, u 2 R

l
=, and v 2 R

m; .w; u; v/ ¤ 0 such that
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pX

kD1
wkrfk.Ox/C

lX

jD1
ujrgj.Ox/C

mX

jD1
vjrhj.Ox/ D 0

ujgj.Ox/ D 0 for all j D 1; : : : ; l:

Kuhn-Tucker type conditions for efficiency have also been studied for MOP0.

Definition 10. The MOP0 is said to satisfy the Kuhn-Tucker constraint qualification
at Ox 2 X0 if for any d 2 R

n such that rgj.Ox/Td � 0 for all j 2 I.Ox/, there exist a
continuously differentiable function a W Œ0; 1� ! R

n and a real scalar ˛ > 0 such
that a.0/ D Ox; g.a.ˇ// 5 0 for all ˇ 2 Œ0; 1� and a0.0/ D ˛d.

Theorem 12. Kuhn-Tucker necessary conditions for efficiency [276]. Let the Kuhn-
Tucker constraint qualification hold at Ox 2 X0. If Ox is efficient for the MOP0 then there
exist vectors w 2 R

p
� and u 2 R

l
= such that

pX

kD1
wkrfk.Ox/C

lX

jD1
ujrgj.Ox/ D 0

ujgj.Ox/ D 0 for all j D 1; : : : ; l:

The feasible points of MOP0 satisfying the Kuhn-Tucker necessary conditions
are called the critical points of this problem.

Theorem 13. Kuhn-Tucker necessary conditions for proper efficiency [242, 321].
If Ox 2 X0 is properly efficient (in the sense of Kuhn-Tucker) for the MOP0 then there
exist vectors w 2 R

p
> and u 2 R

l
= such that

pX

kD1
wkrfk.Ox/C

lX

jD1
ujrgj.Ox/ D 0

ujgj.Ox/ D 0 for all j D 1; : : : ; l:

If the Kuhn-Tucker constraint qualification is satisfied at a point Ox 2 X0 then the
condition in Theorem 13 is also necessary for Ox to be properly efficient in the sense
of Geoffrion for the MOP0, as shown by Sawaragi et al. [321].

Theorem 14. Kuhn-Tucker sufficient conditions for proper efficiency [242, 276,
321]. Let the MOP0 be convex and let Ox 2 X0. If there exist vectors w 2 R

p
> and

u 2 R
l
= such that

pX

kD1
wkrfk.Ox/C

lX

jD1
ujrgj.Ox/ D 0
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ujgj.Ox/ D 0 for all j D 1; : : : ; l
then Ox is properly efficient in the sense of Kuhn-Tucker for the MOP0.

18.4.2 Second Order Conditions

Various types of second-order conditions for efficiency have been developed. For
this type of conditions it is usually assumed that the objective functions fk; k D
1; : : : ; p and the constraint functions gj; j D 1; : : : ; lI hj; j D 1; : : : ;m of the MOP
are twice continuously differentiable.

Several necessary and sufficient second-order conditions for the MOP are
developed by Wang [375]. Cambini et al. [67] establish second order conditions
for MOPs with general convex cones while Cambini [66] develops second order
conditions for MOPs with the Pareto cone. Aghezzaf [4] and Aghezzaf and Hachimi
[5] develop second-order necessary conditions for the MOP0. Additional works
include Bolintinéanu and El Maghri [54], Bigi and Castellani [49], Jiménez and
Novo [215], and Gutiérrez et al. [183].

18.5 Generation of the Solution Sets

There are two general classes of approaches to generating solution sets of MOPs:
scalarization methods and nonscalarizing methods. These approaches convert the
MOP into a single objective program (SOP), a sequence of SOPs, or another MOP.
Under some assumptions solution sets of these new programs yield solutions of the
original problem. Scalarization methods explicitly employ a scalarizing function to
accomplish the conversion while nonscalarizing methods use other means. Solving
the SOP typically yields one solution of the MOP so that a repetitive solution scheme
is needed to obtain a subset of solutions of the MOP. Among the nonscalarizing
approaches there are methods using other optimality concepts in R

p than Pareto,
descent and homotopy methods transferred from nonlinear programming, and a new
class of set-oriented methods.

18.5.1 Scalarization Methods

The traditional approach to solving MOPs is by scalarization which involves
formulating an MOP-related SOP by means of a real-valued scalarizing function
typically being a function of the objective functions of the MOP, auxiliary scalar
or vector variables, and/or scalar or vector parameters. Sometimes the feasible set
of the MOP is additionally restricted by new constraint functions related to the
objective functions of the MOP and/or the new variables introduced.
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In this section we review the most well-known scalarization techniques and list
related results on the generation of various classes of solutions of the MOP.

18.5.1.1 The Weighted-Sum Approach

In the weighted-sum approach a weighted sum of the objective functions is
minimized:

min
pX

kD1
�kfk.x/

subject to x 2 X;

(18.2)

where � 2 R
p
�.

Theorem 15 ([167]).

1. Let � 2 R
p
�. If Ox 2 X is an optimal solution of problem (18.2) then Ox 2 XwE. If

Ox 2 X is a unique optimal solution of problem (18.2) then Ox 2 XE.
2. Let � 2 R

p
>. If Ox 2 X is an optimal solution of problem (18.2) then Ox 2 XpE.

3. Let the MOP be convex. A point Ox 2 X is an optimal solution of problem (18.2)
for some � 2 R

p
> if and only if Ox 2 XpE.

18.5.1.2 The Weighted t-th Power Approach

In the weighted t-th power approach a weighted sum of the objective functions taken
to the power of t is minimized:

min
pX

kD1
�k.fk.x//

t

subject to x 2 X;

(18.3)

where � 2 R
p
> and t > 0.

Theorem 16 ([385]). Let � 2 R
p
>.

1. For all t > 0, if Ox 2 X is an optimal solution of problem (18.3) then Ox 2 XE.
2. If a point Ox 2 X is efficient then there exists a Ot > 0 such that for every t 	 Ot, the

point Ox an optimal solution of problem (18.3).
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Under certain conditions, applying the t-th power to the objective functions of
nonconvex MOPs may convexify the set YN C R

p
= so that the weighting approach

can be successfully applied to generate efficient solutions of these MOPs (Li [247]).

18.5.1.3 The Weighted Quadratic Approach

In the weighted quadratic approach a quadratic function of the objective functions
is minimized:

min f .x/TQf .x/C qTf .x/

subject to x 2 X;
(18.4)

where Q is a p � p matrix and q is a vector in R
p.

Theorem 17 ([367]). Under conditions of quadratic Lagrangian duality, if Ox 2 X
is efficient then there exist a symmetric p � p matrix Q and a vector q 2 R

p such
that Ox is an optimal solution of problem (18.4).

More recently, results of quadratic scalarizations have been investigated by Fliege
[145] who also shows which parameter sets can be used to recover all solutions of
an MOP where the ordering in the image space is induced by an arbitrary convex
cone.

18.5.1.4 The Guddat et al. Approach

Let x0 be an arbitrary feasible point for the MOP. Consider the following problem:

min
pX

kD1
�kfk.x/

subject to fk.x/ � fk.x
0/; k D 1; : : : ; p

x 2 X

(18.5)

where � 2 R
p
�.

Theorem 18 ([175]). Let � 2 R
p
>. A point x0 2 X is an optimal solution of problem

(18.5) if and only if x0 2 XE.

In [175], this result is also generalized for scalarizations in the form of problem
(18.5) with an objective function being strictly increasing on R

p (cf. Definition 12).
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18.5.1.5 The ©-Constraint Approach

In the "-constraint method one objective function is retained as a scalar-valued
objective while all the other objective functions generate new constraints. The k-th
"-constraint problem is formulated as:

min fk.x/

subject to fi.x/ � "i; i D 1; : : : ; pI i ¤ k

x 2 X:

(18.6)

Let "�k 2 R
p�1; "�k D ."1; : : : ; "k�1; "kC1; : : : ; "p/: Let the set ‰ D f" 2

R
p W Problem (18.6) is feasible for "�k D ."1; : : : ; "k�1; "kC1; : : : ; "p/ for all

k D 1; : : : ; pg.
Theorem 19 ([72]).

1. If, for some k; k 2 f1; : : : ; pg, there exists "�k 2 R
p�1 such that Ox is an optimal

solution of problem (18.6) then Ox 2 XwE.
2. If, for some k; k 2 f1; : : : ; pg, there exists "�k 2 R

p�1 such that Ox is a unique
optimal solution of problem (18.6) then Ox 2 XE.

3. A point Ox 2 X is efficient if and only if there exists " 2 ‰ such that Ox is an
optimal solution of problem (18.6) for every k D 1; : : : ; p and with fi.Ox/ D "i; i D
1; : : : ; p; i ¤ k.

The method of proper equality constraints is a modification of the "-constraint
method in which the constraints with the right-hand side parameters "i are equalities
(Lin [249]).

18.5.1.6 The Improved ©-Constraint Approach

The "-constraint approach has numerical disadvantages when applied to problems
with a specific structure, in particular discrete multiobjective problems, see Ehrgott
and Ryan [119]. The improved constraint approach tries to overcome those difficul-
ties using the following two scalarizations:

min fk.x/�
X

i¤k

�ili

subject to fi.x/C li � "i; i D 1; : : : ; pI i ¤ k

li 	 0; i D 1; : : : ; pI i ¤ k

x 2 X;

(18.7)
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and

min fk.x/C
X

i¤k

�ili

subject to fi.x/� li � "i; i D 1; : : : ; pI i ¤ k

li 	 0; i D 1; : : : ; pI i ¤ k

x 2 X; (18.8)

where weights �i 	 0; i ¤ k. Here li; i ¤ k are slack variables for the inequality
constraints in problem (18.6). Problem (18.7) with all weights �i D 0 corresponds
to the original "-constraint problem (18.6). In problem (18.8), the "-constraints
of problem (18.6) are allowed to be violated and the violation is penalized in the
objective function.

Theorem 20 ([118]).

1. Let � 2 R
p
>. If .Ox; Ol/ is an optimal solution of problem (18.7) then Ox 2 XE.

2. Let � 2 R
p
>. If .Ox; Ol/ is an optimal solution of problem (18.7) with Ol > 0 then

Ox 2 XpE.
3. If Ox 2 XpE then, for every k 2 f1; : : : ; pg, there exist "; Ol; and � 2 R

p
> such that

.Ox; Ol/ is an optimal solution of problem (18.7).
4. Let � 2 R

p
>. If .Ox; Ol/ is an optimal solution of problem (18.8) with Ol > 0 then

Ox 2 XpE.
5. If Ox 2 XpE then, for every k 2 f1; : : : ; pg, there exist "; Ol; and �k with �k

i > 0

for all i ¤ k such that .Ox; Ol/ is an optimal solution of problem (18.8) for all
� 2 R

p�1; � = �k.

18.5.1.7 The Penalty Function Approach

Meng et al. [269] use penalty terms for the objective functions of the MOP and for
the constraints of the MOP0. The scalarized MOP assumes the form:

min
pX

kD1
�k maxffk.x/�M; 0g2

subject to x 2 X;

(18.9)

where � 2 R
p
>, M is a scalar such that M < fk.x0/; k D 1; : : : ; p; and x0 2 X. The

scalarized MOP0 becomes:

min
pX

kD1
�k maxffk.x/ �M; 0g2 CM2

pX

kD1
maxfgj.x/; 0g

subject to x 2 S0;
(18.10)

where � 2 R
p
>, M < 0 and such that M < fk.Ox/; k D 1; : : : ; p; and Ox 2 X.
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Theorem 21 ([269]).

1. If x0 is an optimal solution of problem (18.9) then x0 2 XE for the MOP.
2. Let Ox be an optimal solution of problem (18.10). If Ox is a feasible solution of the

MOP0 then x0 2 XE for the MOP0.

Exact penalty terms and the weighted-sum approach are used by Bernau [47].

18.5.1.8 The Benson Approach

Benson [27] introduces an auxiliary vector variable l 2 R
p and uses a known

feasible point x0 in the following scalarization:

max
pX

kD1
lk

subject to fk.x/C lk D fk.x
0/; k D 1; : : : ; p

l = 0

x 2 X:

(18.11)

Not only can this approach find an efficient solution but it can also check whether
the available point x0 is efficient.

Theorem 22 ([27]).

1. The point x0 2 X is efficient if and only if the optimal objective value of problem
(18.11) is equal to zero.

2. If .Ox; Ol/ is an optimal solution of problem (18.11) with a positive optimal objective
value then Ox 2 XE.

3. Let the MOP be convex. If no finite optimal objective value of problem (18.11)
exists then XpE D ;.

Earlier, Charnes and Cooper [73] have proposed problem (18.11) and proved part
1 of Theorem 22.

18.5.1.9 Reference Point Approaches

The family of reference point approaches includes a variety of methods in which
a feasible or infeasible reference point in the objective space is used. A reference
point in the objective space, r 2 R

p, is typically a vector of satisfactory or desirable
criterion values referred to as aspiration levels, rk; k D 1; : : : ; p. However, it may
also be a vector representing a currently available outcome or a worst outcome.
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Distance-Function-Based Approaches These methods employ a distance func-
tion, typically based on a norm, to measure the distance between a utopia (or ideal)
point and the points in the Pareto set. Let d W Rp � R

p ! R� denote a distance
function. The generic problem is formulated as:

min d.f .x/; r/

subject to x 2 X;
(18.12)

where r 2 R
p is a reference point.

Under suitable assumptions satisfied by the distance function, problem (18.12)
yields efficient solutions which in this case are often called compromise solutions.
Let d be a distance function derived from a norm, i.e., d.y1; y2/ D jjy1 � y2jj for
some norm jj � jj W Rp ! R�.

Definition 11. 1. A norm k � k W Rp ! R� is called monotonically increasing
if ky1k � ky2k holds for all y1; y2 2 R

p with jy1k j � jy2kj; k D 1; : : : ; p and
ky1k < ky2k holds if jy1kj < jy2k j; k D 1; : : : ; p:

2. A norm k � k is called strictly monotonically increasing, if ky1k < ky2k holds for
all y1; y2 2 R

p with jy1k j � jy2k j; k D 1; : : : ; p and jy1k j ¤ jy2kj for some k.

Theorem 23 ([114]).

1. Let k � k W Rp ! R� be monotonically increasing and assume r D yI:

 If Ox is an optimal solution of problem (18.12) then Ox 2 XwE.
 If Ox is a unique optimal solution of problem (18.12) then Ox 2 XE.

2. Let k�k be strictly monotonically increasing and assume r D yI : If Ox is an optimal
solution of problem (18.12) then Ox 2 XE.

The norms studied in the literature include the family of weighted lp-norms for
1 � p � 1 (Yu [405], Zeleny [415], Bowman [59]), a family of norms proposed by
Gearhart [165], composite norms (Bárdossy et al. [22], Jeyakumar and Yano [214])
and oblique norms (Schandl et al. [327]).

Among the lp-norms, the weighted l1-norm (also known as the Chebyshev
or Tchebycheff norm) has been extensively studied. Since it produces all weakly
efficient solutions of convex and nonconvex MOPs, it has been modified to ensure
that efficient rather than weakly efficient solutions are found. The modified norms
include the augmented l1-norm (Steuer and Choo [351], Steuer [348]) and the
modified l1-norm (Kaliszewski [219]).

Scalarizations based on more general distance functions such as gauges have
also been considered and proved to generate weakly efficient or properly efficient
solutions for convex and nonconvex MOPs (Klamroth et al. [227]). Since these
approaches implicitly use not only the utopia point but also gauge-related directions,
they are discussed later. Together with some other gauge-based approaches in
Section 18.5.1.11.
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The Achievement Function Approach A certain class of real-valued functions
sr W Rp ! R, referred to as achievement functions, is used to scalarize the MOP.
The scalarized problem is given by

min sr.f .x//

subject to x 2 X:
(18.13)

Similar to distance functions discussed above, certain properties of achievement
functions guarantee that problem (18.13) yields (weakly) efficient solutions.

Definition 12. An achievement function sr W Rp ! R is said to be

1. increasing if for y1; y2 2 R
p, y1 5 y2 then sr.y1/ � sr.y2/,

2. strictly increasing if for y1; y2 2 R
p, y1 < y2 then sr.y1/ < sr.y2/,

3. strongly increasing if for y1; y2 2 R
p, y1 � y2 then sr.y1/ < sr.y2/.

Theorem 24 ([391, 392]).

1. Let an achievement function sr be increasing. If Ox 2 X is a unique optimal
solution of problem (18.13) then Ox 2 XE.

2. Let an achievement function sr be strictly increasing. If Ox 2 X is an optimal
solution of problem (18.13) then Ox 2 XwE.

3. Let an achievement function sr be strongly increasing. If Ox 2 X is an optimal
solution of problem (18.13) then Ox 2 XE.

Among many achievement functions satisfying the above properties we mention
the strictly increasing function

sr.y/ D max
kD1;:::;pf�k.yk � rk/g

and the strongly increasing functions

sr.y/ D max
kD1;:::;pf�k.yk � rk/g C �1

pX

kD1
�k.yk � rk/

sr.y/ D �ky � rk2 C �2k.y � r/Ck2;

where r 2 R
p; � 2 R

p
> is a vector of positive weights, �1 > 0 is sufficiently small,

�2 > 1 is a penalty parameter, and .y� r/C is a vector with components maxf0; yk�
rkg (Wierzbicki [391, 392]).

The Weighted Geometric Mean Approach Consider the weighted geometric
mean of the differences between the nadir point yN and the objective functions with
the weights in the exponents
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max …
p
kD1.y

N
k � fk.x//

�k

subject to fk.x/ � yN
k ; k D 1; : : : ; p

x 2 X;

(18.14)

where � 2 R
p
>. Let the MOP be convex. According to Lootsma et al. [254], an

optimal solution of problem (18.14) is efficient.

Goal Programming In (GP) one is interested in achieving a desirable goal or
target established for the objective functions of the MOP. The vector of these goals
produces a reference point in the objective space and therefore goal programming
can be viewed as a variation of the reference point approaches. Let r 2 R

p be a goal.
The general formulation of GP is

min a.ı�; ıC/

subject to fk.x/C ı�
k � ıC

k D rk; k D 1; : : : ; p
x 2 X;

(18.15)

where ı�; ıC 2 R
p are variables representing negative and positive deviations from

the goal r, and a.ı�; ıC/ is an achievement function.
A real-valued achievement function, a W Rp � R

p ! R, is typically defined as
the weighted sum of deviations (weighted or non-preemptive GP) or the maximum
deviation from among the weighted deviations (l1-GP). Solving problem (18.15)
with this function results in minimizing all deviations simultaneously. A vector-
valued achievement function, a W Rp � R

p ! R
L, is associated with L priority

levels to which the objective functions are assigned, and results in a new GP-related
MOP typically solved with the lexicographic approach based on the priority ranking
(see Sect. 18.5.2.1). In this case the deviations are minimized sequentially and the
technique is known as lexicographic GP. Jones and Tamiz [217] and Chapter 21
of this book provide recent bibliographies of GP while Romero [313] presents a
general achievement function including the weighted, maximum and lexicographic
functions as special cases.

Whether an optimal solution of problem (18.15) is efficient for the MOP depends
on the achievement function a and the goal r. In fact, when solving problem
(18.15) non-Pareto criterion vectors f .Ox/ are quite common. Tamiz and Jones [356]
develop tests for efficiency and methods to restore efficiency in case problem (18.15)
produces a solution Ox that is not efficient.

Dependent on the type of goals (i.e., whether over- and/or underachievement of rk

is penalized, or only values outside a certain interval are penalized) one can define
a subset of the objective space G WD fy 2 R

p W yk 	 rk; k 2 K1I yk � rk; k 2
K2I yk D rk; k 2 K3I yk 2 Œrl

k; r
u
k �; k 2 K4g, where K1 [ K2 [K3 [ K4 D f1; : : : ; pg;

and interpret goal programming as finding a feasible solution x that is in or close to
G (Steuer [348]). In this way, G can be understood as a reference set for the MOP.
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The Reference Set Approach The concept of a reference point has been general-
ized by some authors. Michalowski and Szapiro [275] use two reference points to
search the Pareto set of multiobjective linear programs. Skulimowski [342] studies
the notion of a reference set. Simple examples of reference sets include the sets r�C
or .r1 � C/ \ .r2 C C/ for r2 
C r1, where r; r1; r2 are reference points and C is a
closed, convex, and pointed cone. Under suitable conditions, a solution to the MOP
obtained by means of minimizing the distance from a reference set is nondominated.
Cases in which a reference set can be reduced to a reference point are also examined
in [342].

18.5.1.10 Direction-Based Approaches

This group of scalarizing approaches employs a reference point r 2 R
p, a direction

in the objective space along which a search is performed, and a real variable ˛
measuring the progress along the direction.

The Roy Approach Perhaps the first approach of that kind has been proposed by
Roy [315, p. 242] which (slightly reformulated) can be written as

max ˛

subject to fk.x/C ˛e � rk; k D 1; : : : ; p
x 2 X;

(18.16)

where e 2 R
p is a vector of ones and determines the fixed direction of search.

Depending on the choice of the reference point r the approach finds a (weakly)
efficient solution.

The Goal-Attainment Approach Given a (feasible or infeasible) goal vector r and
a direction d � 0 along which the search is performed the goal-attainment approach
is formulated as

max ˛

subject to fk.x/� ˛dk � rk; k D 1; : : : ; p
x 2 X;

(18.17)

and produces a weakly efficient point (Gembicki and Haimes [166]).

The Pascoletti and Serafini Approach This is a more general approach with an
unrestricted search direction d 2 R

p and an auxiliary vector variable l 2 R
p:

max ˛

subject to fk.x/ � ˛dk C lk D rk; k D 1; : : : ; p (18.18)

l = 0

x 2 X:
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Theorem 25 ([295]).

1. If . Ǫ ; Ox; Ol/ is a finite optimal solution of problem (18.18) then Ox 2 XwE.
2. If . Ǫ ; Ox; Ol/ is a unique finite optimal solution of problem (18.18) then Ox 2 XE.

The Reference Direction Approach Independently of [166], Korhonen and Wal-
lenius [230] propose an approach analogous to the goal-attainment method and refer
to it as a generalized goal programming model. With the inclusion of nonnegative
slack variables they arrive at problem (18.18) with a feasible reference point r 2 Y
and a search direction d � 0. Additionally, to move on the Pareto set they
parametrize the reference point r or the search direction d, and obtain:

max ˛

subject to fk.x/� ˛.dk C ˛1�dk/C lk D .rk C ˛2�rk/; k D 1; : : : ; p
l = 0

x 2 X;

(18.19)

where �d D Œ�d1; : : : ; �dp� and �r D Œ�r1; : : : ; �rp� are auxiliary vectors used
for the parametrization with the parameters ˛1 	 0 and ˛2 	 0. The vector �r is
called the reference direction and problem (18.19) is called the reference direction
approach (see also [222, 231]).

The Modified Pascoletti and Serafini Approach Since a solution to problem
(18.18) may not be finite, the following modification has been developed:

lex max .˛; klkp/

subject to fk.x/� ˛dk C lk D rk; k D 1; : : : ; p
l = 0

x 2 X:

(18.20)

Theorem 26 ([328]). Let r 2 YCR
p
=; d 2 R

p nRp
= and 1 � p � 1. Then problem

(18.20) has a finite optimal solution . Ǫ ; Ox; Ol/ where Ox 2 XE:

The Normal Boundary Intersection Approach The approach by Das and Dennis
[92] is motivated by the interest in obtaining an evenly distributed set of Pareto
solutions. Let yI be the ideal point and let ˆ be the p � p matrix the k-th column of
which is given by f .xk/�yI , where xk is a global minimizer of the objective function
fk; k D 1; : : : ; p. The set of points in R

p that are convex combinations of f .xk/ � yI ,
i.e., fˆ� W � 2 R

p
�;
Pp

kD1 �k D 1g, is referred to as the convex hull of the individual
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global minima of the objective functions (CHIM). Let a search direction be given
by the unit normal, denoted by �, to the CHIM pointing toward the origin. Consider
the following SOP:

max ˛

subject to f .x/ � ˛� �ˆ� D yI

x 2 X:

(18.21)

When the approach is iteratively applied to convex MOPs with evenly distributed
coefficients �k of the convex combination, the authors claim and demonstrate by
examples that an evenly distributed set of Pareto solutions is produced. However,
the efficiency of the optimal solutions of problem (18.21) is not guaranteed.
A scalarization using the CHIM and a direction normal to it is developed by Ismail-
Yahaya and Messac [208]. Using the concept of goal attainment of Gembicki [166],
Shukla [340] modifies problem (18.21) to guarantee that its optimal solution is
weakly efficient for the MOP.

18.5.1.11 Gauge-Based Approaches

Assume without loss of generality that 0 2 Y C R
p
=. Let B be a polytope in R

p

containing the origin in its interior and let y 2 R
p. The polyhedral gauge � W Rp !

R of y is defined as �.y/ D minf˛ 	 0 W y 2 ˛Bg: The vectors defined by the
extreme points of the unit ball B of � are called fundamental vectors and are denoted
by �.

Gauges are used to measure the distance in the objective space either in the
interior or the exterior of the outcome set. The former leads to the inner scalarization
while the latter is related to the outer scalarization.

The Inner Gauge-Based Approach Consider the gauge problem

max �.y/

subject to y D f .x/

y 2 Y \ .�Rp
=/:

(18.22)

Theorem 27 ([227]). Let the set Y be strictly intRp
=-convex, i.e., Y C intRp

= is
strictly convex. If Ox is an optimal solution of problem (18.22) then Ox 2 XpE:

The Outer Gauge-Based Approach Let B be the unit ball of a polyhedral gauge
� such that the fundamental vectors �1; : : : ; � t of B \ .�Rp

=/ satisfy Y \ .�Rp
=/ �

fy 5 0 W y =
Pt

iD1 �i�
i;
Pt

iD1 �i D 1; �i 	 0g and consider the problem
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max ˛

subject to ˛� i � f .x/ = 0; i D 1; : : : ; t
˛ 	 0
x 2 X:

(18.23)

Theorem 28 ([227]). Let the set Y be strictly intRp
=-convex. If . Ǫ ; Ox/ is an optimal

solution of problem (18.23) then Ox 2 XpE:

A combination of each of the gauge-based approaches together with the weighted
l1 norm method results in two other approaches generating weakly efficient
solutions of nonconvex MOPs (Klamroth et al. [227]).

18.5.1.12 Composite and Other Approaches

In order to achieve certain properties of scalarizations, some authors develop
composite approaches involving a combination of methods. The hybrid method is
composed of the weighted sum and the 	-constraint approaches (Wendell and Li
[383]). More generally, an increasing scalarizing function can be combined with
constraints on some or all objective functions (Soland [344]). Dual approaches
include the "-constraint approach coupled with Lagrangian duality (Chankong
and Haimes [72]) or generalized Lagrangian duality (TenHuisen and Wiecek
[358, 359]).

A very general scalarization method using continuous functionals has been
proposed by Gerth and Weidner [168] and Ester and Tröltzsch [136]. (Weakly,
properly) nondominated points of (nonconvex) MOPs are characterized through the
existence of functionals with certain properties.

18.5.2 Approaches Based on Non-Pareto Optimality

In contrast to scalarizing approaches discussed in Sect. 18.5.1, methods using other
optimality concepts first replace the Pareto relation with another suitable relation.
Even that they may then scalarize the MOP that is now governed by the new relation,
they can be seen as nonscalarizing methods because they do not explicitly employ
a scalarizing function. In effect, there are usually strong links to efficiency. In the
following sections we summarize these approaches.

18.5.2.1 The Lexicographic Approach

The lexicographic approach makes use of the lexicographic relation and assumes
a ranking of the objective functions according to their importance. Let  be a
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permutation of f1; : : : ; pg and assume that f.k/ is more important than f.kC1/,
k D 1; : : : ; p� 1: Let f  W Rn ! R

p be .f.1/; : : : ; f.p//: The lexicographic problem
is formulated as

lex min f .x/

subject to x 2 X:
(18.24)

A feasible solution Ox 2 X is said to be optimal for problem (18.24) if there is no
x 2 X such that f .x/ 
lex f .Ox/. Optimal solutions of problem (18.24) are called
lexicographically optimal. This problem is solved as follows. Let X0 D X and define
recursively Xk WD fOx 2 Xk�1 W f.k/.Ox/ D min f.k/.x/; x 2 Xk�1g for k D 1; : : : ; p.

Theorem 29. Let  be a permutation of f1; : : : ; pg.
1. If Xk D fOxg is a singleton then Ox is an optimal solution of problem (18.24) and
Ox 2 XE.

2. All elements of Xp are optimal solutions of problem (18.24) and Xp � XE:

Note that the inclusion
S
 Xp � XE is usually strict.

18.5.2.2 The Max-Ordering Approach

The max-ordering approach makes use of the max-ordering relation and does only
consider the objective function fk which has the highest (worst) value. The max-
ordering problem is formulated as

min max
kD1;:::;p fk.x/

subject to x 2 X:
(18.25)

A feasible solution Ox 2 X is said to be optimal for problem (18.25) if there is no
x 2 X such that f .x/ 
MO f .Ox/. Optimal solutions of problem (18.25) are called
max-ordering optimal.

An optimal solution of problem (18.25) is weakly efficient. Furthermore, if XE ¤
; and problem (18.25) has an optimal solution then there exists an optimal solution
of problem (18.25) which is efficient, and consequently a unique optimal solution
of problem (18.25) is efficient.

It is possible to include a weight vector � 2 R
p
� so that the weighted max-

ordering problem becomes

min max
kD1;:::;p �kfk.x/

subject to x 2 X:
(18.26)
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Theorem 30 ([239]). Let Y � R
p
>.

1. Let � 2 R
p
�. If Ox 2 X is an optimal solution of problem (18.26) then Ox 2 XwE.

2. If Ox 2 XwE there exists a � 2 R
p
> such that Ox is an optimal solution of problem

(18.26)

A result similar to Theorem 30 can be proved for efficient solutions when an
additional SOP to minimize

Pp
kD1 fk.x/ subject to �kfk.x/ � y�, where y� is the

optimal value of problem (18.26), is solved.
The max-ordering approach plays an important role in robust optimization, where

each objective function fk is interpreted as the objective for making a decision in a
scenario k, see Kouvelis and Yu [239].

18.5.2.3 The Lexicographic Max-Ordering Approach

The idea of the max-ordering approach can be extended to consider the second
worst, third worst, etc., objective. That means, for x 2 X one reorders the
components of f .x/ in nonincreasing order. For y 2 R

p let‚.y/ D .�1.y/; : : : ; �p.y//
be a permutation of y such that �1.y/ 	 : : : 	 �p.y/: The lexicographic max-
ordering approach then seeks to lexicographically minimize ‚.f .x// over the
feasible set X. This corresponds to seeking preferred outcomes according to the
lexicographic max-ordering relation y1 �lex�MO y2 if and only if �.y1/ �lex �.y2/.

It is easy to see that an optimal solution of the lexicographic max-ordering
problem is also an optimal solution of the max-ordering problem and efficient for the
MOP, which strengthens the corresponding result for the max-ordering approach.
When a weight vector � 2 R

p
> is introduced (again assuming that Y � R

p
>), the

problem becomes

lex min
�
�1�1.f .x//; : : : ; �p�p.f .x//

�

subject to x 2 X:
(18.27)

Theorem 31 ([113]). A point Ox 2 X is efficient if and only if there exists a � 2 R
p
>

such that Ox is an optimal solution of (18.27).

For problems with a special structure further results can be obtained. For convex
problems, Behringer [25] shows that problem (18.27) can be solved through solving
a sequence of max-ordering problems. A solution of problem (18.27) is also called
a nucleolar solution by Marchi and Oviedo [262]. Ehrgott and Skriver [120] give an
algorithm for the bicriteria discrete case and Sankaran [320] provides one for the
convex case.
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18.5.2.4 The Equitability Approach

The concept of equitability was first known as the generalized Lorenz dominance
[264] and its formalization in the context of multiobjective programming is
accomplished by Kostreva and Ogryczak [233] and Kostreva et al. [238]. This
concept is applicable if the objective functions are measured on a common scale
(or normalized to a common scale).

While the Pareto preference assumes a binary relation between outcome vectors
that is reflexive, transitive and strictly monotone (y � 	ei is preferred to y for 	 > 0
and k D 1; : : : ; p, where ei 2 R

p is the i-th unit vector), equitability makes two
further assumptions. It is assumed that there is indifference between y and y0 if there
is a permutation  such that y0 D .y.1/; : : : ; y.p//. The second assumption is the
Pigou-Dalton principle of transfers: Let y 2 R

p and yk0 > yk00 then y � 	ek0 C
	ek00 is preferred to y for 0 < 	 < yk0 � yk00 . A preference relation �equi satisfying
these assumptions is derived from a variable domination structure as mentioned in
Sect. 18.2.3.

In order to obtain equitably efficient solutions of the MOP one proceeds as
follows. For y 2 R

p let ‚.y/ D .�1.y/; : : : ; �p.y// be as in Sect. 18.5.2.3. Next,
using this vector of ordered outcomes define the cumulative ordered outcome vector
N‚.y/ D . N�1.y/; : : : ; N�p.y//; where

N�k.y/ D
kX

iD1
�i.y/:

The equitability preference can then be defined by y1 �equi y2 if and only if
N‚.y1/ �

R
p
=

N‚.y2/. An equitable MOP can be written as

min
� N�1.f .x//; : : : ; N�p.f .x//

�

subject to x 2 X:
(18.28)

The relationship between equitably efficient solutions and efficient solutions is
provided by the following theorem.

Theorem 32. An efficient solution of problem (18.28) is an equitably efficient
solution of the MOP.

To generate equitably efficient solutions, scalarization using strictly convex
functions can be applied. Kostreva and Ogryczak [233] show that any optimal
solution of minx2X

Pp
kD1 s.fk.x//, where s W R ! R is strictly convex and

increasing, is equitably efficient. Ogryczak and his co-authors apply the equitability
approach to portfolio optimization [291], location [290, 294], telecommunication
[293], and second order stochastic dominance [292].
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18.5.3 Descent Methods

Descent methods are well established tools of nonlinear programming for comput-
ing optimal solutions to SOPs. During the last decade researchers have undertaken
efforts to develop descent methods for solving MOPs. The methods compute
points satisfying the Kuhn-Tucker conditions for efficiency without making use
of scalarizing approaches. Their performance, being supported with convergence
proofs, mimics the performance of their counterparts in nonlinear programming.

Fliege and Svaiter [147] seem to be the first to propose a steepest descent
algorithm for unconstrained MOPs and a feasible descent method, as an extension
of Zoutendijk’s method of feasible directions, for the constrained case. The steepest
descent direction is derived from the gradient of the objective functions of the MOP.
Graña Drummond and Svaiter [106] extend this method for the unconstrained case
with convex cones. Both of these methods are later used to prove convergence in the
steepest descent algorithm by Bento et al. [43] that uses Armijo’s rule to generate
a well-defined sequence of iterates that, under suitable assumptions, converges to
a critical point of the MOP. Vieira et al. [373] combine the method of Fliege and
Svaiter [147] with a new golden section line search algorithm that converges to a
point at which the necessary first-order KT conditions for efficient solutions of the
MOP are satisfied. Other steepest descent methods include the Multiple-Gradient
Descent Algorithm (MGDA) by Désidéri [104], and the more recent method by
Chuong and Yao [80].

A projected gradient methods is developed by Graña Drummond and Iusem [105]
for convex and nonconvex MOPs with convex cones generalizing the Pareto cone.
Fukuda and Graña Drummond [153] later extend the results in this earlier paper by
showing that every sequence of iterates converges to a weakly efficient point for
MOP, under suitable assumptions. Meantime, Fliege et al. [149] present Newton’s
method for unconstrained MOPs. An auxiliary quadratic MOP, that carries the
gradient and Hessian information of the objective functions of the MOP, is solved
with the max-ordering approach. Its solution provides the Newton direction along
which the search is performed. Recently, Fukuda and Graña Drummond [154]
propose an inexact projected gradient method for constrained MOPs as an extension
of the algorithms in [105] and [153].

18.5.4 Set-Oriented Methods

In mathematical programming, the concept of an optimization algorithm has relied
on the computation of a series of iterates (or points) converging to an optimal
solution of the mathematical program. Many years ago this concept was carried over
to multiobjective programming giving rise to numerous scalarization approaches.
The context of multiobjective programming and the desire to capture the solution
set have motivated researchers to come up with algorithms working iteratively on
sets rather than points.
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Set-oriented methods have been designed specifically for MOPs. In contrast to
all previously presented approaches, they find a solution set of the MOP without
using scalarizing functions or other optimality concepts. They are developed with
the philosophy of solving the MOP by capturing part of or the whole solution set
rather than approximating it or sequentially computing its individual points. They
resemble approximation methods reviewed in Sect. 18.6 because they provide a set
representing or approximating the true solution set. However, since they originate
from global optimization they have been placed in its own category of methods.

18.5.4.1 The Balance and Level Set Approaches

Galperin [160] introduces the balance set approach. The approach is based on sets
of points with a bounded deviation from global minima of the individual objective
functions. For k D 1; : : : ; p define the sets

Xk.�/ WD fx 2 X W fk.x/� yI
k � �kg: (18.29)

Then � 2 R
p is called a balance point if the intersection \p

kD1Xk.�/ ¤ ; but
for any �0; �0 � �, the intersection \p

kD1Xk.�
0/ D ;. The set of all balance points

for the MOP is called the balance set denoted by ‡ . Galperin and Wiecek [161]
demonstrate the applicability of this approach on example problems. Ehrgott et al.
[121] show that the balance set is equal to the Pareto set translated by the ideal point:
‡ D YN � yI:

It is possible to require all �k to be equal to one another in (18.29). The smallest
� 2 R such that the intersection \p

kD1Xk.�/ ¤ ; is then called the balance
number which, according to Ehrgott and Galperin [116], can be found by solving
the problem

min max
kD1;:::;p .fk.x/ � yI

k/

subject to x 2 X:
(18.30)

The definition of balance number can be extended to include weights, i.e., �k D
��k in (18.29). For positive weights � 2 R

P
> the smallest � with the nonempty

intersection of Xk.�/ (called the apportioned balance number �.�/) can again be
computed via a min-max problem. Ehrgott [115] compares the sets ‡ and f�.�/� WPp

kD1 �k D 1; � 2 R
p
>g and gives conditions for them being equal.

The balance space approach is closely related to the level set approach. The level
set of objective function fk with respect to Nx 2 X is

Lk�.Nx/ WD fx 2 X W fk.x/ � fk.Nx/g;
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the strict level set is

Lk
<.Nx/ WD fx 2 X W fk.x/ < fk.Nx/g;

and the level curve is

LkD.x/ WD fx 2 X W fk.x/ D fk.Nx/g:

Therefore the sets Xk.�/ used in the balance space approach are level sets of fk
with respect to levels yI

kC�k. The main result on level sets is the following theorem.

Theorem 33 ([121]).

1. A point Ox 2 X is weakly efficient if and only if \p
kD1Lk

<.Ox/ D ;:
2. A point Ox 2 X is efficient if and only if \p

kD1Lk�.Ox/ D \p
kD1LkD.Ox/:

3. A point Ox 2 X is strictly efficient if and only if \p
kD1Lk�.Ox/ D fOxg:

This geometric characterization of efficiency can be exploited when dealing with
problems that have a geometric structure, e.g., location problems as in Ehrgott et al.
[122].

18.5.4.2 The –-Efficiency Approach

Let f	�g be a sequence in R
p with lim�!1 	� D 0. Lemaire [244] introduces a

notion of a sequence of auxiliary MOPs converging to the original MOP and studies
properties of the sequence of 	� -efficient sets of these problems with respect to the
efficient set XE of the original problem. In particular, he shows that every weakly
efficient point of the MOP can be obtained as a limit of a sequence of 	� -efficient
points of the auxiliary problems.

18.5.4.3 Continuation Methods

Continuation (homotopy or path-following) methods had originally been developed
for computing approximate solutions of a system of parameterized nonlinear
equations. They have been applied for solving a variety of nonlinear SOPs and
later MOPs.

Guddat et al. [175] introduce these methods to multiobjective programming.
They reduce the weighted-sum scalarization of the MOP (being a multiparametric
problem due to p weights) to a sequence of one-parametric SOPs and develop theory
and algorithms of a continuation approach for computing Karush-Kuhn-Tucker
(KKT) points of the SOPs that are efficient for the MOP. Similar work with different
scalarization approaches is continued by Guddat et al. [176]. Rakowska et al. [308,
309] solve the weighted-sum scalarization of a biobjective structural optimization
problem by tracing its efficient set using a software package HOMPACK containing
several homotopy curve tracking algorithms.
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An in-depth study of continuation methods in multiobjective programming is
provided by Hillermeier [198]. Taking up the viewpoint of differential geometry,
he develops a generalized, multidimensional continuation (homotopy) method for
MOPs that is based on the characterization of Pareto optimal points as KKT
points of the SOPs. The solutions to the KKT system with decisions, objectives,
and weights as variables are viewed as the elements of the null space of the
associated nonlinear mapping, that under certain assumptions can be characterized
as a submanifold of dimension p � 1. Its local parametrization by means of a
graph representation via the tangent-normal space splitting can be exploited for
the development of numerical procedures that allow the local exploration of this
manifold and its solutions for the MOP.

A path-following algorithm for computing critical points of box-constrained
nonconvex MOPs is designed by Miglierina et al. [278]. The authors prove that
the limit points of the solutions of a dynamical system associated with the MOP are
the critical points of the MOP.

18.5.4.4 Covering Methods

Covering methods belong to another class of set-oriented methods developed during
the last decade. They include techniques based on stochastic principles, subdivision
algorithms of the initial feasible set of the MOP, or continuation methods also called
recover techniques.

Schäfler et al. [326] develop a stochastic covering algorithm for unconstrained
MOPs. They use the gradients of the objective functions to formulate a quadratic
SOP that implies a function whose zeros fulfill the Kuhn-Tucker conditions for
efficiency and therefore identify efficient points. The function yields a stochastic
differential equation whose numerical solution leads to a numerical cover of all or a
large number of efficient points.

Covering methods with subdivision techniques globally solve MOPs that do not
possess any specific structure or properties. These techniques start with a compact
subset of the feasible set of the MOP and generate outer approximations of the
efficient set that create a tight box-cover of this set. In effect, the efficient set is
covered with n-dimensional small boxes. In practice, however, these methods are
restricted to moderate dimensions of the feasible space. Dellnitz et al. [102] make
use of the differential equation of Schäfler et al. [326] but keep their approach
deterministic. The discretized differential equation yields a discrete dynamical
system that possesses the efficient set as an attractor. An application of subdivision
techniques results in three covering algorithms for unconstrained MOPs. Jahn [211]
combines a subdivision technique of Dellnitz et al. [102] with a search strategy
to come up with a multiobjective search algorithm with subdivision technique
(MOSAST) for constrained MOPs.

The covering method of Schütze et al. [331] uses a local generalized continuation
algorithm. Starting with a collection of n-dimensional boxes where every box
contains at least one point satisfying the Kuhn-Tucker conditions for efficiency,
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the algorithm successively extends the collection by new boxes that also contain
points satisfying these conditions. An overview of covering methods is recently
provided by Schütze et al. [333].

18.6 Approximation of the Pareto Set

It is of interest to design methods for obtaining a complete description of the Pareto
and efficient sets since solving MOPs is understood as finding these sets. An exact
description might be available analytically as a closed-form formula, numerically as
a set of points, or in a mixed form as a parameterized set of points.

Unfortunately, for a majority of MOPs it is not easy to obtain an exact description
of the Pareto set that typically includes an infinite number of points. Even when it
is theoretically possible to find these points exactly, this may be computationally
challenging and expensive and is therefore usually abandoned. For some other
problems finding elements of the Pareto set is even impossible due to the numerical
complexity of the resulting optimization problems.

Since the exact solution set is very often not attainable, an approximated
description of this set becomes an appealing alternative. Approximating approaches
have been developed for the following purposes: to represent the Pareto set when
this set is numerically available (linear or convex MOPs); to approximate the Pareto
set when some but not all Pareto points are numerically available (nonlinear MOPs);
and to approximate the Pareto set when Pareto points are not numerically available
(computationally expensive MOPs).

For any MOP, the approximation requires less effort and often may be accurate
enough to play the role of the solution set. Additionally, if the approximation
represents this set in a simplified, structured, and understandable way, it may
effectively support the decision-maker.

Even though we refer to all following methods as approximation, we distinguish
between discrete representations (collections of points) of the Pareto set and
approximated Pareto sets that use some sort of approximating structure in addition to
the original points. Discrete representations present a finite number of solutions that
are available explicitly, whereas approximations do not limit the number of solutions
that are only implicitly available through an approximating structure. Additionally,
all the points in a discrete representation are optimal for the MOP; this is not
necessarily true for the points inferred from an approximated Pareto set.

We refer to Ruzika and Wiecek [317] for a review of exact representation and
approximation methods, and a discussion of their quality and measures for evaluat-
ing it. In this chapter, we specifically focus on quality measures for representation
approaches.
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18.6.1 Quality Measures for Representations

Within the past 15 years, many authors have suggested quality measures for
providing a “good” representation of the Pareto set. The meaning of “good”, here,
is ambiguous because no definite consensus has been reached in the mathematical
and operations research community on what qualities a good representation of the
Pareto set should possess. In this section, we present a brief review of the measures
proposed in the literature. We use the symbols YN and XE to denote the actually
computed Pareto set YN and efficient set XE, respectively. For a detailed survey on
this subject we refer to Faulkenberg and Wiecek [142].

The measures can be sorted into three main groups as suggested by Sayin [323]:
measures of cardinality, coverage, and spacing. Cardinality refers to the number of
points in a representation. In general, one desires enough points to fully represent the
outcome set Y. Measures of coverage seek to ensure that all regions of the outcome
set are represented, that is, no portion of the outcome set should be neglected.
Measures of spacing quantify the distance between points in the representation.
Typically, a representation is expected to have uniform, or equidistant, spacing,
so that all portions of the outcome set are represented to an equal degree. In
some papers, measures are defined for arbitrary sets. In these cases, we present the
measures in the context of the Pareto set.

18.6.1.1 Measures of Cardinality

Measures of cardinality count the number of efficient (or Pareto) points in the
representation. Clearly, two straightforward candidates for measures of cardinality
are the size of the generated Pareto set, jYN j, and the size of the generated
efficient set, jXEj. Van Veldhuizen [371] proposes the former measure as “overall
nondominated vector generation”, while Sayin [323] proposes the latter. In this
group we also have the measure proposed by Wu and Azarm [397] called the
“number of distinct choices”. This measure is similar to the previous two but takes
additional preferences into account: Pareto outcomes within a certain distance of
each other are counted as a single point.

Since the cardinality of a discrete representation of the Pareto set is easily
controlled, this category of measures is less critical than the following two.
In general, the cardinality of a representation should be minimized while still
maintaining good coverage and spacing.

18.6.1.2 Measures of Coverage

Measures of coverage face the challenge of trying to assess an unknown set because,
in general, the true Pareto set is unknown a priori. However, one has to ensure
that no region of YN is neglected. Because of this, the coverage of a discrete
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representation is typically maximized, and unless otherwise noted, the following
measures should be maximized as well.

Czyżak and Jaszkiewicz [89] introduce the measure “D1”, that is defined as a
weighted average of the distances between a point in YN and the closest point in
the representation, and the measure “D2”, that is defined as the largest weighted
distance between a point in YN and the closest point in the representation. Since
these distances should be as small as possible, both of these measures should be
minimized.

Zitzler and Thiele [424] propose the “S-measure” to determine the size of
the region dominated by YN . Each point y 2 YN dominates a (hyper)cube with
one corner at y and another at ymax where ymax D .f max

1 ; : : : ; f max
p / and f max

i D
maxx2X fi.x/. Thus, the region dominated by YN is found by taking the union of
these cubes for all y 2 YN . The value of the S-measure is the volume of this union.
Zitzler [423] also defines a measure called “M3” to determine the overall range of
the representation which is calculated as an average of the ranges of the objective
functions.

Sayin [323] suggests the measure “coverage” which determines the maximum
distance, 	, between a point in YN and its closest neighbor in the representation.
Because it is expected that every point in YN be represented in the discrete
representation, this measure is minimized rather than maximized.

Wu and Azarm [397] introduce three measures, “overall Pareto spread,” “ith

Pareto spread,” and “hyperarea difference.” The first two measures calculate the
range of the entire representation and of each individual criterion, respectively. The
third measure is a slight variation on the S-measure of Zitzler and Thiele [424] and
calculates the difference (in terms of volume) between the portions of the objective
space which are dominated by the true Pareto set and a given representation of the
Pareto set.

Meng et al. [268] propose a measure of coverage called “extension”.
Let fy1; : : : ; ypg be a set of reference outcomes where yi D .L1; : : : ;Li�1;
Ui;LiC1; : : : ;Lp/ and Ui D maxx2XE fi.x/ and Li D minx2XE fi.x/. The extension
measures an average distance between the points in YN and the reference outcomes.
A small value of the extension is preferred to a larger value because the latter could
indicate that the representation is mainly in the center of the true Pareto set with the
outskirts being neglected.

Zitzler et al. [425] suggest a measure of the “outer diameter” of a discrete
representation which measures the maximum weighted range over all the objective
functions.

18.6.1.3 Measures of Spacing

A discrete representation of the Pareto set with equally-spaced Pareto points is
desired so that each region of the true Pareto set is represented to an equal degree.
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However, having equidistant Pareto points does not guarantee a good coverage as
well, so measures of spacing should always be used in conjunction with a coverage
measure.

Schott [330] proposes a measure for bicriteria problems called “spacing” which
takes the standard deviation of the distances between nearest-neighbor points and
for which small values are desired. Zitzler [423] proposes the “M2” measure that
calculates the average cardinality of the set of points in YN whose distance from
each other is greater than a fixed value. This measure gives a sense of the number of
redundancies that are contained in YN .

Sayin [323] proposes the measure “uniformity” which is defined as the minimum
distance between any two distinct points in YN . A measure called “cluster”, which
measures the average size of a redundant cluster of points (with respect to a
parameter) in YN , is suggested by Wu and Azarm [397]. Messac and Mattson
[272] present a measure of spacing called “evenness”. For each point y in YN ,
two (hyper)spheres are constructed: the smallest and the largest spheres that can be
formed between y and any other point in the set such that no other points are within
the spheres. The evenness is calculated as the ratio between the standard deviation
and the mean of the set of minimum and maximum diameters for each point in YN .

A measure called “uniformity” inspired by wavelet analysis is developed by
Meng et al. [268] for comparing two different representations of YN . Collette and
Siarry [85] define two different spacing measures for bicriteria problems: “spacing”,
which is a modification of Schott’s measure [330], and the “hole relative size”
measure that gives the ratio of the largest gap between two adjacent points to an
average gap in YN .

18.6.1.4 Hybrid Measures

Several authors propose measures which overlap the above three categories. Deb
et al. [99] suggest the “�- measure” for bicriteria problems which takes into account
both the spacing between generated Pareto points and the coverage of the true Pareto
set by the generated representation. This measure calculates the distance between
each point and its nearest neighbors (a spacing-type measure) as well as the distance
between the individual objective minima and their respective single nearest neighbor
(a coverage-type measure).

Leung and Wang [245] suggest the “U-measure” which measures both coverage
and spacing, similar to Deb’s measure [99]. This measure calculates the average
deviation from the ideal point so that a small U-measure indicates a representation
that is close to equidistant and covers the entire Pareto set.

Ideas from the field of information theory are used by Farhang-Mehr and Azarm
[141] who introduce a measure called “entropy” that assesses all three of the quality
categories: cardinality, coverage, and spacing. A high entropy value is desired
because a set with high entropy maximizes coverage and minimizes redundancies
for a given cardinality.
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Bozkurt et al. [60] introduce a so-called “integrated preference functional” mea-
sure to evaluate the quality of a finite approximate solution set for the MOP, that is
based on the weighted Tchebycheff norm as the underlying value function. Although
computationally restricted to BOPs, this measure can be extended conceptually to
the case of more than two objectives.

18.6.2 Representation and Approximation Approaches

Representation and approximation approaches typically employ an iterative method
to produce points or objects approximating the Pareto set. A majority of approaches
employ a scalarization technique as an integrated component of the resulting
algorithm. The scalarization is used to generate Pareto points that either become
the representation or are used to construct other approximating objects such as
polyhedral sets and functions, curves, and rectangles.

Discrete representation approaches produce point-wise approximations of the
Pareto set. Some researchers have also integrated quality measures into algorithms
for generating discrete representations that meet a prespecified quality criterion.

18.6.2.1 Representation for BOPs

Approaches for biobjective programs (BOPs) are proposed by Jahn and Merkel
[212] who use the "-constraint scalarization and a tunneling technique, by Helbig
[195] who discretizes the convex hull if individual minima of the objective functions
and uses the max-ordering method, and by Zhang and Gao [417] who use the
weighted-Chebyshev scalarization to find a new Pareto point in the direction
perpendicular to the weight vector used for the generation of the current point
and with a predefined step length to take care of spacing. Faulkenberg and
Wiecek [143] develop two methods for generating discrete representations with
equidistant points for BOPs with solution sets determined by convex, polyhedral
cones. The Constraint Controlled-Spacing method is based on the "-constraint
method with an additional constraint to control the spacing of generated points.
The Bilevel Controlled-Spacing method has a bilevel structure with the lower-level
generating the nondominated points and the upper-level controlling the spacing, and
is extended to MOPs. A homotopy-based approach is proposed by Pereyra [300] for
unconstrained BIPs. The approach makes use of the Newton’s method to solve the
Kuhn-Tucker necessary conditions for efficiency. A nonlinear constraint is added to
yield equally spaced Pareto points. The approach is extended to the constrained case
by Pereyra et al. [301].
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18.6.2.2 Representation for MOPs

As early as in 1980 filtering techniques were proposed to produce discrete repre-
sentative subsets of the outcome sets of MOPs. Steuer and Harris [352] suggest
using a forward and reverse interactive filtering scheme to produce a representative
subset of the Pareto extreme points for linear MOPs. For the same class of problems,
Morse [281] proposes a filtering method involving cluster analysis for reducing
redundancy in the Pareto sets, with redundancy measuring the decision maker’s
indifference between two Pareto points. Mattson et al. [267] develop a Smart Pareto
filter to produce representations with good cardinality and complete coverage which
emphasize areas with high tradeoffs more than areas with low or insignificant
tradeoffs.

Representation by means of a finite set of elements is studied by Nefedov [285]
with special attention given to convergence of the set approximating the Pareto set.
Armann [15] develops a method for choosing parameters in the hybrid weighted-
sum and "-constraint scalarization for general MOPs. Given the desired number of
points in the representation, an integer program is solved to determine the values
of " to be used in the hybrid scalarization so that in the resulting representation,
the distance between neighboring points is maximized. Helbig [194] presents an
approach to approximate the nondominated set of general MOPs with convex cones.

A global shooting procedure to find a representation of the Pareto set for
problems with compact outcome sets is proposed by Benson and Sayin [41] while
an approach producing representative subsets of the Pareto set for linear MOPs is
introduced by Sayin [323]. A method based on an interior point algorithm for convex
quadratic MOPs is given by Fliege and Heseler [146]. Churkina [81] proposes a
target-level method using an infinite set of reference points and the l1-norm.

Sayin [325] develops a method for linear MOPs to produce a representation with
a given target coverage value or the maximum coverage possible given a target
cardinality when the set of efficient faces is known a priori.

Buchanan and Gardiner [62] perform a comparative study of two versions of
the weighted Chebyshev method [351], one using the ideal point as a reference
point and the other using the nadir point. When choosing weights from the uniform
distribution, discrete representations produced using the nadir outcome as the
reference point have better coverage than those produced with the ideal point.

Messac and Mattson [271] show that the earlier developed method of Physical
Programming [270] can generate well spaced Pareto points. Messac et al. [273] and
Messac and Mattson [272] develop the Normal Constraint method for producing
representations with good coverage. Shao and Ehrgott [334] combine the global
shooting procedure of Benson and Sayin [41] and the Normal Boundary Intersection
method [92] to produce a revised Normal Boundary Intersection method for linear
MOPs. The advantages of Physical Programming [270], the Normal Boundary
Intersection [92] and Normal Constraint [272, 273] methods are combined by
Utyuzhnikov et al. [370] to produce well distributed Pareto points for nonconvex
MOPs. A filtering procedure excludes local Pareto points from the obtained
representation.
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A variation of the "-constraint method for general MOPs is used by Fu and
Diwekar [152]. Changing the parameter " in a pseudo-random manner, they produce
representations that have more complete coverage than those produced by the
traditional method of using uniformly spaced " values. Kim and de Weck [225]
propose the Adaptive Weighted-Sum method that is able to generate Pareto points
in nonconvex regions, thus improving the coverage of the weighted-sum method as
well as making it applicable to nonconvex MOPs.

Masin and Bukchin [266] present the Diversity Maximization Approach to
produce representations with good coverage for general MOPs. At each iteration,
the most diverse outcome, that is defined as the one that maximizes the minimum
coordinate-wise distance between the new point and all the points already in the
representation, is added to the representation. Although this method is applicable to
general MOPs, it is recommended predominantly for mixed-integer and combinato-
rial problems.

Stochastic search algorithms based on (additive) "-dominance are developed by
Schütze et al. [332]. They construct "-representations of the Pareto set and derive
bounds on the representation quality and cardinality.

For MOPs with bounded and connected Pareto sets, Müller-Gritschneder et al.
[282] introduce the concept of the ith criterion tradeoff limit as the set of those
Pareto points for which a deterioration of the ith objective does not lead to an
improvement in the other criteria. The boundary of the Pareto set is then defined
as the union of the criterion limit. The authors use the goal attainment scalarization
[166] and construct a Pareto set representation in p successive steps. Starting with p
individual global minima in the first step, in the successive steps, a representation of
the Pareto set for each combination of the objective functions i D 1; i D 2; : : : ; p;
is computed and the union of the successive representations is taken.

Eichfelder [126] seems to be the first author to attempt to control the spacing of
generated nondominated points. Her method is based on the Pascoletti and Serafini
scalarization [295], making it applicable to general MOPs and notions of optimality
defined by general cones. She derives sensitivity information in a neighborhood at
a nondominated point and uses this information to determine input parameters for
the scalarization so that the produced nondominated point is a prespecified distance
from the previous point.

The coverage and spacing defined by Sayin [323] motivate Karasakal and
Köksalan [223] to develop a method for producing discrete representations of the
Pareto set for general MOPs, and Leyffer [246] who presents a bilevel optimization
method to maximize the coverage of a discrete representation of the Pareto set of
convex MOPs. The latter is also applied to nonconvex problems.

Kamenev [221] constructs a representation for the augmented set of outcomes,
YCR

p
=, referred to as the Edgeworth-Pareto hull (EPH), for general MOPs. In every

iteration of the algorithm, a new sample of points in the feasible set X are generated
and mapped into the objective space. An outcome having the largest distance
to the closest point in the current representation is added to the representation.
Convergence of the method is established.

Daskilewicz and German [93] first sample the Pareto set to obtain its point-wise
representation and then map the points into a p-dimensional barycentric coordinate
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system. Each coordinate of a point is calculated based on the nondomination level
of that point with respect to p � 1 objectives.

18.6.2.3 Polyhedral Approximation

Approaches producing polyhedral approximations first generate Pareto points using
a scalarization method and then construct approximating polyhedral sets or func-
tions.

For BOPs, the generated Pareto points are connected with line segments. For
convex BOPs, Cohon [83] and Poliščuk [306] develop similar inner approximations
while Cohon et al. [84], Fruhwirth et al. [151], Yang and Goh [400], and Siem et al.
[341] propose sandwich approximations composed of inner and outer approxima-
tions.

Approaches for linear MOPs are proposed by Voinalovich [374], whose method
yields a system of linear inequalities as an outer approximation, by Solanki et al.
[345], who extends the sandwich approach of Cohon et al. [84], and by Benson
[37], whose algorithm produces the Pareto set exactly.

Craft et al. [88] introduce a sandwich algorithm for convex MOPs that is similar
to the sandwich algorithms of Solanki et al. [345] and Klamroth et al. [227] and is
accompanied by a closed-form algebraic solution to the problem of finding distances
between the inner and outer approximation. The algorithm is applied to intensity-
modulated radiation therapy inverse planning problems.

Motivated by a beam intensity optimization problem in radiotherapy treatment
planning, Shao and Ehrgott [335] come up with an approximation version of
Benson’s algorithm [37], while Ehrgott et al. [124] extend this algorithm to convex
MOPs. Both algorithms provide sandwich approximations. In [335] and [125], the
same authors develop two additional dual variants of Benson’s algorithm [37] for
the dual linear MOP.

Rennen et al. [310] enhance the sandwich algorithms of Solanki et al. [345],
Klamroth et al. [227], and Craft et al. [88] to approximate the Pareto set of convex
MOPs. They also extend the results of Siem et al. [341] to MOPs and show that
by using transformation functions the sandwich algorithms can also be applied
to nonconvex MOPs. More recently, Bokrantz and Forsgren [52] present another
sandwich algorithm for convex MOPs which retains the quality of the algorithm by
Rennen et al. [310] but achieves a more attractive ratio between the computational
effort and the number of objectives.

Chernykh [76] approximates the EPH of the convex set Y in the form of
a system of linear inequalities. A cone-based approach for general MOPs is
proposed by Kaliszewski [220]. Kostreva et al. [237] develop a method using
simplices, which is applicable to MOPs with discontinuous objective functions or
a disconnected feasible set. A brief outline of an approach based on the normal-
boundary intersection technique is offered by Das [91].

Schandl et al. [328] and Klamroth et al. [227] base their approaches on polyhedral
distance functions that are constructed successively during the execution of the
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algorithm and utilize both to evaluate the quality of the approximation and to
generate additional Pareto points. Norms and gauges are used for convex MOPs
while nonconvex functions are used for nonconvex MOPs. The approximation itself
is used to define a problem-dependent distance function and is independent of
objective function scaling. In Klamroth et al. [227], inner and outer approximation
approaches are proposed for convex and nonconvex MOPs and in all cases the
approximation improves where it is currently the worst, a unique property among
the approximation approaches.

Similar to Klamroth et al. [227], the methods by Gourion and Luc [173, 174] also
achieve an outer approximation for nonconvex MOPs by so-called free disposal
nonconvex polyhedra. The main distinction of their new method resides in the
possible variation of direction in which the approximation is performed, and in its
convergence for both efficient and weakly efficient sets.

Adaptive and nonadaptive methods have been developed for the polyhedral
approximation of the EPH. In the former, at each iteration the approximation is
refined and new approximation directions are computed. In the latter, a collection
of approximation directions are assumed a priori. These types of methods are fully
developed for convex MOPs by Lotov et al. [258] who include mathematical details
and offer the visualization of the multidimensional Pareto set as the Pareto sets
of two-dimensional slices (decision maps) of the EPH. Lotov et al. [257] apply
these ideas also to nonconvex MOPs. Adaptive methods are proposed by Berezkin
et al. [44] who use the union of a finite number of cones attached at Pareto points
and contained in the (nonconvex) EPH for its approximation. Their methods are
supported with a statistical estimation of the approximation quality. Additional
properties of the polyhedral approximation with respect to the number of facets of
approximating polyhedra are provided by Efremov and Kamenev [112]. Continuing
in this direction, Lotov and Maiskaya [256] develop nonadaptive methods using
coverings on the direction sphere.

Hartikainen et al. [186–188] propose the concept of an inherently nondomi-
nated set, i.e., a set all of whose points are Pareto. They construct a polyhedral
approximation of the Pareto set as a subcomplex of a Delaunay triangulation of an
initial finite set of Pareto points. The approximation is inherently nondominated and
available as a solution set of a mixed-integer MOP that plays the role of a surrogate
problem for the original computationally expensive nonconvex MOP. Based on the
global analysis theory of Smale [343], Lovison [259] introduces a complementary
approach also using simplicial complexes to approximate the efficient set (rather
than the Pareto set) of nonconvex MOPs. A quadratic convergence result is included.
In a follow-up paper [260], Lovison develops a globally convergent approximation
algorithm for BOPs.

18.6.2.4 Nonlinear Approximation

This group of methods includes approaches producing quadratic, cubic, and other
approximations.
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For BOPs, Wiecek et al. [389] use piecewise quadratic approximating functions
while Payne et al. [298] and Polak [305] use cubic functions to interpolate the Pareto
set. Other structures used for approximation purposes include rectangles (Payne
and Polak [297] and Payne [296]) and the hyper-ellipse (Li et al. [248]). Each
of these nonlinear functions may provide a closed-form approximating formula.
Fernández and Tóth [144] make use of the "-constraint "-method and construct an
outer approximation of the efficient set of BOPs.

For linear MOPs, Gorissen and den Hertog [172] propose an inner approxi-
mation in the form of an arbitrary degree polynomial. They treat the 	-constraint
scalarization of the original MOP as an uncertain SOP and apply adjustable robust
optimization of Ben-Tal et al. [26]. Approximation of the weakly efficient set
of convex MOPs by means of a convergent sequence of scalarizing functions is
proposed by Luc et al. [261]. For linear MOPs the approach yields the entire set
of weakly efficient solutions. For MOPs, Martin et al. [265] first apply a random
search to generate a discrete approximation of the Pareto set and then use a
regression method to fit a linear or quadratic surface through the earlier generated
points. The method is customized for nonconvex problems with disconnected
Pareto sets. Haanpää [185] approximates the Pareto set of nonconvex MOPs with
a vector valued-function constructed by means of the ideal point and a scalar-valued
surrogate function satisfying certain conditions. Radial basis functions, kriging
functions, or regression functions can be used as the surrogate.

18.7 Specially Structured Problems

Many solution techniques for solving general MOPs can be modified or further
improved to exploit known problem characteristics or special structures. This
section gives an overview of such methods for linear, nonlinear, parametric, and
bilevel MOPs.

18.7.1 Multiobjective Linear Programming

A multiobjective linear program (MOLP) is the following problem:

min Cx

subject to Ax D b

x = 0;

(18.31)
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where C is a p � n objective function matrix, A is an l � n constraint matrix, and
b 2 R

l. It is usually assumed that the rows of A are linearly independent. For ease of
exposition we shall assume that X is bounded, therefore compact. In consequence
Y is also a compact polyhedron. Throughout this section we do not discuss issues
arising from degeneracy which is important for simplex type algorithms to solve
MOLPs. Degeneracy is addressed in some of the papers referred to in Sect. 18.7.1.1.

In this section, we review methods for finding efficient solutions of MOLPs
of type (18.31). Because problem (18.31) is a special case of a convex MOP, all
efficient solutions can be found by the weighted-sum scalarization. For � 2 R

p
�, let

LP(�) denote the linear program minf�TCx W Ax D b; x = 0g.
Theorem 34 ([207]). Ox 2 XE if and only if Ox is an optimal solution of LP(�) for
some � 2 R

p
>.

In view of Geoffrion’s Theorem 15, Theorem 34 implies that XE D XpE for
MOLPs. The polyhedral structure of X and Y allows a more thorough investigation
of the efficient and Pareto sets. Fruhwirth and Mekelburg [150] present a detailed
analysis of the structure of YN for the case of p D 3 criteria. Let F be a face of X. If
F � XE, it is called an efficient face. F is called a maximal efficient face if it is an
efficient face and for all faces F0 such that F � F0, F0 is not an efficient face.

Theorem 35. 1. XE D X if and only if there exists x0 2 ri X such that x0 2 XE.
Otherwise XE � bd X and XE D [j2JFj, where Fj are maximal efficient faces
and J is a finite index set.

2. Let F be a face of X. F is an efficient face if and only if there exists Ox 2 ri F such
that Ox 2 XE.

3. Let F be a face of X and F D convfx1; : : : ; xqg. Then F � XE if and only if
fx1; : : : ; xqg � XE.

4. For each maximal efficient face Fi there is a subset ƒi � f� 2 R
p
> W

Pp
kD1 �k D

1g such that all x 2 Fi are optimal for LP(�) for all � 2 ƒi.

The decomposition of the weight space indicated in the last point of Theorem 35
can be further elaborated. Let ƒ WD f� 2 R

P
> W

Pp
iD1 �i D 1g denote the set of

weights. Theorem 34 suggests a decomposition ofƒ into subsets, such that for each
� in a subset LP(�) has the same optimal solutions. Such a partition can be attempted
with respect to efficient bases (see Sect. 18.7.1.1) of the MOLP or with respect
to extreme points of XE or YN . Some of the simplex based algorithms mentioned
below use such decompositions. The main results for weight set decomposition
with respect to extreme points of YN are summarized in the following theorem. We
assume that Y is of dimension p.

Theorem 36 ([42]). Let fy1; : : : ; yqg be the Pareto extreme points of Y andƒ.y/ D
f� 2 R

p W �Ty � �Ty0 for all y0 2 Yg. Then the following statements hold.

1. ƒ � [q
iD1Œƒ.yi/\ƒ�:

2. intƒ.yi/ ¤ ;, ƒ \ intƒ.yi/ D int.ƒ \ƒ.yi// ¤ ;:
3. If � 2 ƒ\ intƒ.yi/ then yi is a unique optimal solution of the problem minf�Ty W

y 2 Yg:
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4. Œƒ \ intƒ.yi/� \ Œƒ \ƒ.yj/� D ; and therefore ƒ \ ƒ.yi/ ¤ ƒ \ ƒ.yj/ when
i ¤ j:

5. If F is a proper face of Y and Ny; y� 2 ri F then ƒ.Ny/ D ƒ.y�/.

Due to Theorem 34, any MOLP can in principle be solved using parametric linear
programming. However, simplex, interior point, and objective-space methods have
also been developed to deal with MOLPs directly.

18.7.1.1 Multicriteria Simplex Methods

Some notation is first needed to explain multicriteria simplex algorithms.

 An extreme point (zero dimensional face) of X that is efficient is called efficient
extreme point.

 A basis B of (18.31) (an index set of l linearly independent columns of A) is
called efficient basis if there exists a � 2 R

p
> such that B is an optimal basis of

LP(�).
 Let B be a basis and N WD f1; : : : ; ng n B. Let CB and CN be the columns of

C indexed by B and N, respectively. AB;AN ; xB and xN are defined accordingly.
Then NC D C � CBA�1

B A is called the reduced cost matrix with respect to B. NCB

and NCN are defined analogously to CB and CN .
 Let B be an efficient basis. A variable xj is called efficient nonbasic variable if

there exists a � 2 R
p
> such that �T NCN = 0 and �T Ncj D 0, where Ncj is the jth

column of NC, j 2 N.
 Let B be an efficient basis and xj be an efficient nonbasic variable. A feasible

pivot from B with xj as entering variable is called an efficient pivot.

If B is a basis then .xB; xN/ with xN D 0 and xB D A�1
B b is a basic solution, and

it is a basic feasible solution if additionally xB = 0. A basic feasible solution is an
extreme point of X.

Theorem 37. 1. If XE ¤ ; then there exists an efficient extreme point.
2. Let B be an efficient basis. Then .xB; 0/ 2 XE.
3. Let x 2 X be an efficient extreme point. Then there exists an efficient basis B such

that x is a basic feasible solution for B.
4. Let B be an efficient basis and xj be an efficient nonbasic variable. Then any

efficient pivot leads to an efficient basis.

Multicriteria Simplex algorithms proceed in three phases. First, an auxiliary
single objective LP minfeTz W Ax C z D bI x; z = 0g is solved to check feasibility
(assuming, without loss of generality, b = 0). X ¤ ; if and only if the optimal value
of this LP is 0. If X ¤ ;, in Phase 2 an initial efficient extreme point is found or the
algorithm stops with the conclusion that XE D ;. Finally in Phase 3, efficient pivots
are performed to explore all efficient extreme points or efficient bases.
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Theorem 38. Tests for efficient nonbasic variables. Let B be an efficient basis and
NC be the reduced cost matrix with respect to B. Let j 2 N. Let e be the vector of all
ones and let I be the identity matrix of appropriate dimension.

1. [138] Consider the LP minfeTz W � NCNy C Ncjı C Iz D 0I y; ı; z = 0g. xj is an
efficient nonbasic variable if and only if the optimal objective value of this LP is
zero.

2. [206] Consider a subset J � N and the LP minfeTz W � NCNy C NCJı C Iz D
eI y; ı; v = 0g. Each variable xj; j 2 J, is efficient if and only if this LP has an
optimal solution.

3. [109] Variable xj is efficient if and only if there is a solution .Oz; Oy/ of the linear
system NCT

N.zC e/� y D 0I z; y = 0 with Oyj D 0:
4. [422] Variable xj is efficient if and only if the LP fmin 0Tz WPi¤j

NCkizi 	 NCkj; k D
1; : : : ; pI z = 0g is infeasible.

Theorem 39. Finding an efficient (extreme) point.

1. [108] Let x0 2 X and consider the LP fmax eTz W Cx � Iz D Cx0IAx D bI x;
z = 0g. If .Ox; Oz/ is an optimal solution of this LP then Ox 2 XE. If the LP is
unbounded XE D ;.

2. [29] Let x0 2 X. If the LP fmin�zT Cx0 C uTb W zTC � uTA C wT D �eTCIw;
z = 0g has no optimal solution then XE D ;. Otherwise let .Oz; Ou; Ow/ be an optimal
solution. Then an optimal extreme point of the LP fmax.OzC e/T Cx W x 2 Xg is an
efficient extreme point of the MOLP.

Algorithms based on the simplex method are proposed by Armand and Malivert
[13, 14], Evans and Steuer [138], Ecker and Kouada [109, 111], Isermann [206],
Gal [158], Philip [302, 303], Schönfeld [329], Strijbosch [353], Yu and Zeleny
[411, 412], and Zeleny [416]. Some numerical experiments for an implementation of
Steuer’s [348] multicriteria simplex method (called ADBASE [350]) on randomly
generated problems are available in [349, 388]. Ehrgott et al. [123] use the weighted-
sum scalarization of MOLPs (Theorem 34) and single objective duality to generalize
the single objective primal-dual simplex algorithm for the multiobjective case. An
improved method specifically for biobjective network flow problems is also given
by Eusébio et al. [137].

In order to determine the whole efficient set, it is necessary to find subsets of
efficient extreme points, the convex hulls of which determine maximal efficient
faces. This process can be considered an additional phase of the multicriteria
simplex method. Approaches that follow this strategy can be considered bottom
up, as they build efficient faces starting from faces of dimension 0 (extreme points).

Sayin [322] proposes a top-down approach instead. Consider an MOLP, where
X is given in the form X D fx 2 R

n W NAx 5 Nbg, i.e., the nonnegativity constraints
are included in NA. Let M D f1; : : : ; n C lg denote the set of indices of constraints
and M WD fJ W J � Mg: Then each J 2M represents a face F.J/ of X, jJ1j � jJ2j
implies dim F.J1/ 	 dim F.J2/, and J1 � J2 implies F.J2/ � F.J1/. She solves the



18 Continuous Multiobjective Programming 783

LP (18.32) to check whether or not a face is efficient. For J 2 M; let NAJ and NbJ

denote submatrices (subvectors) of NA and Nb containing only rows with indices in J.

max eTCx � eTCy

subject to NAx 5 Nb
NAy 5 Nb
NAJy D NbJ

� CxC Cy 5 0:

(18.32)

Theorem 40 ([322]).

1. F.J/ is a proper face of X if and only if the LP (18.32) is feasible.
2. F.J/ is an efficient proper face of X if and only if the optimal objective value of

the LP (18.32) is 0.

In conjunction with the first statement (1) of Theorem 35 it is now shown that
there are subsets E s of Ms WD fJ 2M W jJj D sg such that XE D [nCl

sD0 [J2Es F.J/:
Sayin’s algorithm checks whether J D ;, i.e., whether X D XE, and then proceeds to
larger sets J, i.e., faces of smaller and smaller dimension. In this process, supersets
of sets already checked can be eliminated (as they correspond to subsets of faces
already classified as efficient or nonefficient).

18.7.1.2 Interior Point Methods

Interior point methods are not easy to adapt for MOLPs since they construct a
sequence of points that converges to a single point on the boundary of X. Thus
most interior point methods proposed in the literature are of an interactive nature,
see, e.g., Arbel [12], Aghezzaf and Ouaderhman [6], and the references therein.

Abhyankar et al. [1] propose a method of centers of polytopes to find a
nondominated point of Y. Assume that Y D fy W Gy = Hg, where H 2 R

p,
is bounded and full dimensional and given in the form Y D fGT

s x 	 Hs; s D
1; : : : ; q1g; where Gs denotes the s-th row of G. Let C be a polyhedral cone given
in the form C D fd 2 R

p W Ld = 0g D fd W LT
s d 	 0; s D 1; : : : ; q2g; where Ls

denotes the s-th row of L. Starting from y0 2 int Y, a sequence of points fy�g � int Y
is constructed so that y� ! Oy 2 N.Y; C/. In this sequence, y�C1 is the center of
a polytope Y� WD .y� � C/ \ Y: Therefore y�C1 can be determined as a unique
maximizer of the potential function

fY� .y/ WD
q1X

sD1
ln.GT

s y �Hs/C
q2X

sD1
.LT

s y� � LT
s y/
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by solving

q1X

sD1

GT
s

GT
s y �Hs

�
q2X

sD1

LT
s

LT
s ys � LT

s y
D 0:

Theorem 41 ([1]). Every subsequence of fy�g converges to some point Oy 2
N.Y; C/.

Abhyankar et al. [1] also construct an approximation of a portion of the non-
dominated faces of Y by constructing a sequence of algebraic surfaces (ellipsoids)
f QY�g that approaches a part of N.Y; C/. In this way, they are able to parameterize the
nondominated set.

To obtain a description of XE they consider the polar cone of C, C� WD fd 2
R

nd D Pq
iD1 �iv

i; �i 	 0g and the cone of increasing directions C> D fd 2 R
n W

.CV/d 	 0g, where C is the objective function matrix, and CV D .Cv1; : : : ;Cvq/

and vi; : : : ; vq are the generators of C�. Then the methodology above can be applied
to X with cone C>.

The question whether the entire efficient set of an MOLP can be found using
interior point methods has only recently been answered in the affirmative. Blanco
et al. [51] accomplish this with a semidefinite programming approach. They derive
a polynomial system of inequalities, which encodes the efficient set, and obtain the
following result relying on the theory of moment matrices.

Theorem 42. The entire set of efficient extreme points of an MOLP is encoded in
the set of optimal solutions of a semidefinite program.

This theorem implies that all efficient extreme points can be computed using interior
point methods. Since the size of the semidefinite program is not polynomial in
the input size of the MOLP, this theorem does not imply that the semidefinite
programming approach to MOLP is computationally efficient.

18.7.1.3 Objective Space Methods

Objective space methods for solving MOLPs are based on the assumption that
the dimension of the objective space is typically smaller than the dimension of
the decision space and therefore the number of Pareto extreme points of the set
Y WD fy 2 R

p W y D Cx for some x 2 Xg D CŒX� to examine should be smaller than
the number of efficient extreme points of the set X.

Dauer and Liu [97] propose a simplex-like method performed at those extreme
points of X that correspond to the extreme points of Y. Let NC D Œ NCB; NCN � be
the reduced cost matrix associated with an extreme point x 2 X. Define the cone
spanned by the columns of NCN as cone NCN WD fd 2 R

p W d D P
j2N �j Ncj; �j 	 0g.

A frame of cone NCN is a minimal collection of vectors selected from among the
columns of NCN that determine this cone.
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Theorem 43 ([97]). Let y D Cx be an extreme point of Y and let NC be the reduced
cost matrix associated with the extreme point x 2 X. Let Ej be the edge of X
determined by a column Ncj in NCN. The image of Ej under C is contained in an edge
of Y if and only if Ncj is in a frame of the cone NCN.

Dauer and Saleh [98] develop an algebraic representation of Y D fy 2 R
p W

Gy = Hg and propose an algorithm to construct this set. Additionally, they develop
an algebraic representation of a polyhedral set QY that has the same Pareto structure as
that of Y and that has no extreme points that are not Pareto. In this way, any method
designed for finding all vertices of convex polyhedral sets becomes suitable to find
the set of Pareto extreme points of Y. However, they also propose an algorithm
using a single objective linear program in R

pC1, the set of optimal basic solutions of
which corresponds to the set of extreme points of QY (and to the set of Pareto extreme
points of Y). Dauer [94] presents an improved version of the algorithm of Dauer and
Liu [97] to generate the set of all Pareto extreme points and edges of Y. He gives
special attention to degenerate extreme points and the collapsing effect that reduces
the number of extreme points of X that are necessary to analyze in order to fully
determine the structure of Y. Almost a parallel effort to represent the set Y in terms
of a set of inequalities is undertaken by White [386]. Yan et al. [399] also give an
algorithm for finding all of the solutions of an MOLP by suitable representation of
the structure of the solution set.

Dauer and Gallagher [96] develop an algorithm called MEF for determining
high-dimensional maximal Pareto faces of Y. Algorithm MEF requires as input a
nonredundant system of linear inequalities representing Y (or QY).

Theorem 44 ([96]).

1. If FX is a maximal efficient face of X then CŒFX � WD fy 2 R
p W y D Cx for some

y 2 FXg is a maximal Pareto face of Y.
2. If FY is a maximal Pareto face of Y then C�1ŒFY � \ X WD fx 2 R

n W Cx 2 FYg is
a maximal efficient face of X.

Theorem 45 ([96]). Let Y D fy 2 R
p W Gy = Hg and Gk be the k-th row of the

matrix G. Let F be a nonempty face of Y and let I.F/ denote the set of indices of the
active constraints defining F (i.e., I.F/ D fi W Giy D Hi for all y 2 Fg). Then

1. F � YN if and only if
P

j2I.F/ �jGj > 0 for some collection of scalars �j 	 0; j 2
I.F/.

2. F is a maximal Pareto face of dimension p � jI.F/j if and only if

(a) there exist scalars �j 	 0, j 2 I.F/; such that
P

j2I.F/ �jGj > 0 and
(b)

P
j2I.F/ �jGj � 0 for every J ¤ I.F/ and every collection of scalars �j 	

0; j 2 J.

The work of Benson follows on the work of Dauer et al. He describes the outcome
set-based algorithm in [37]. Its purpose is to generate all efficient extreme points of
YN . Let NY WD fy 2 R

p W Cx 5 y 5 Oyg, where Oy is such that yk < Oyk; k D 1; : : : ; p
for all y 2 Y D CŒX�. Then NYN D YN . The method starts by finding a simplex S0
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containing NY and its vertices. S0 is given by S0 WD fy 2 R
p W y � Oy; ˇ � eTyg, where

ˇ D minfeTy W y 2 NYg: Given S� , an extreme point y� of S� is chosen that is not
contained in NY . Then w� is chosen as a unique point on the boundary of NY on the line
segment connecting an interior point y0 of Y with y� . Now, S�C1 can be obtained by

S�C1 D S� \ fy 2 R
p W .u� /Ty � bTv� g

where u� ; v� 2 R
p are such that F� D fy 2 NY W .u� /Ty D bTv�g is a face of

Y containing w� . The computation of the extreme points of S�C1 completes the
iteration.

Theorem 46 ([37]). The outcome set-based algorithm is finite and at termination
SK D NY, where K is the number of iterations.

All Pareto extreme points of Y are found by eliminating from the extreme points
of NY those for which yk D Oyk for some k. Benson [35] shows that also all weak
Pareto extreme points of Y are found. In [36], Benson combines the algorithm with
a simplicial partitioning technique, which makes the computation of the extreme
points of S�C1 more efficient. Ehrgott et al. [125] employ results of Heyde and Löhne
[197] from a geometric duality theory for MOLPs and develop a dual variant of
Benson’s algorithm [37].

A new approach to determining maximal efficient faces in MOLPs is also
described by Pourkarimi et al. [307], who decide between efficiency and weak
efficiency of faces using relative interior points that are computed from a sequence
of generated points that are affinely independent.

MOLPs make up a class of problems for which the computation of efficient
(extreme) points is very well developed. Despite the availability of many effective
algorithms for MOLPs, only few of them can compute all efficient extreme points
without supplementary information on the weight vector �, which conveniently
eliminates the task of choosing that vector. The multicriteria simplex methods
provide information on the weight vectors as a byproduct, while the outer approx-
imation method of Benson [37], its improved version by Ehrgott et al. [125],
the primal-dual simplex algorithm by Ehrgott et al. [123], and the semidefinite
programming approach by [51] treat the weights as variables and integrate their
computation with the computation of efficient points.

18.7.2 Nonlinear MOPs

In this section we review results on some classes of MOPs with nonlinear objective
functions including piecewise linear, quadratic and polynomial, and fractional
functions.
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18.7.2.1 MOPs with Piecewise Linear Objectives

MOPs with piecewise linear objective functions are not much studied. Achary [2]
develops a simplex-type method to enumerate all efficient solutions of a biobjective
transportation problem. Nickel and Wiecek [286] propose an approach in which
the task of finding efficient solutions of the original problem is replaced by tasks
of finding efficient solutions of simpler subproblems starting with subsets of the
highest dimension. More recently, Yang and Yen [401] investigate the structure of
the Pareto solution set of a piecewise linear MOP in a normed space and describe
it as union of finitely many semiclosed polyhedra. Similar structural results are
derived by Zhen and Yang [420, 421] for a polyhedral ordering cone, including
a bounded weak sharp minimum property for the problems that satisfy a cone-
convexity assumption, and by Fang et al. [140] for both continuous and more general
discontinuous cases. The sensitivity of piecewise linear parametric MOPs is also
studied by Fang and Yang [139]. Extending the approach developed by Thuan and
Luc [366] for linear MOPs to the convex piecewise linear case, these authors prove
that the efficient and weakly efficient sets satisfy similar structural properties and
are locally represented by finite unions of polyhedra whose vertices and recession
directions are smooth functions of the parameter, under some suitable smoothness
assumptions.

18.7.2.2 Quadratic MOPs

MOPs with quadratic functions have been of interest to many authors. Uncon-
strained quadratic MOPs with strictly convex objective functions are analyzed by
Beato-Moreno et al. [23]. They obtain an explicit characterization of the efficient
set for the biobjective case and show that the p-objective case can be reduced to the
.p�1/-objective case. The set of weakly efficient solutions of quadratic MOPs with
convex objective functions is examined by Beato-Moreno et al. [24]. A method to
produce an analytic description of the efficient set of linearly constrained convex
quadratic MOPs is proposed by Goh and Yang [171]. The stability of quadratic
MOPs is addressed by Badra and Maaty [18], and by Hirschberger [199] who shows
that in the convex quadratic case, there exist an efficient “compromise” arc that
connects any two efficient points and lies completely in the set of efficient points.
This author also describes a method to construct such an arc computationally.

Quadratic MOPs with fuzzy parameters and decision variables in objective and
constraints are studied by Saad [318], and by Ammar [9, 10] who shows that the
efficient solutions can be found using fuzzy scalarization problems as demonstrated
for a fuzzy portfolio problem with convex quadratic objectives [8]. Moosavian et
al. [280] apply sequential quadratic programming to nonlinear MOPs and apply
their new methodology to water management and optimal annual scheduling of
power generation in hydropower plants, using the Analytic Hierarchy Process as
underlying decision support system. Another application is described by Rhode and
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Weber [311] who formulate an economic vector optimization problem that contains
one quadratic and several linear objective functions and discuss ways to solve such
problems.

Some researchers also relate quadratic MOPs to linear complementarity prob-
lems (LCPs). Kostreva and Wiecek [234] demonstrate and Isac et al. [205] exploit
equivalence between the LCP and a nonconvex quadratic MOP with linear con-
straints. Later, Kostreva and Yang [235] use the same equivalence to convert LCP
into an equivalent MOP and a minimax optimization problem, for which they use
global optimality conditions to achieve certain (un)solvability conditions for the
original LCP. Generalized linear complementarity problems are related to MOPs by
Ebiefung [107] and Bhatia and Gupta [48]. Korhonen and Yu [231] also use a linear
complementarity approach to MOPs with one quadratic and several linear objective
functions.

18.7.2.3 Polynomial MOPs

MOPs with polynomial objective and constraint functions are studied by Kostreva
et al. [236] who use the Benson approach to develop a method for finding efficient
solutions of those problems. The resulting SOP is solved with a continuation
method. Stanimirović and Stanimirović [347] describe an implementation of sev-
eral scalarization methods for solving polynomial MOPs in Mathematica®. The
chosen methods include weighting, "-constraints, lexicographic orders, and goal
programming, among others, and techniques for the verification of Pareto optimality
including the method by Benson.

18.7.2.4 Fractional MOPs

Multiobjective fractional problems (MOFPs), objective functions of which are frac-
tional functions, have been extensively studied and this review covers only a small
part of available articles. A survey on biobjective problems in this class is given
by Cambini et al. [68]. If numerators and denominators of the objective functions
of MOFPs are affine functions, the problems are referred to as multiobjective
linear fractional programs (MOLFPs). Kornbluth and Steuer [232] and Benson [30]
develop a simplex-based procedure to find weakly efficient vertices of MOLFPs.
Gupta [180] relates efficient points of these problems to efficient points of an MOLP
and to efficient points of a number of biobjective linear programs. Connectedness
of the weakly efficient set of MOLFPs is examined by Choo and Atkins [79].
Scalarizations have also been applied by Metev and Gueorguieva [274] to generate
weakly efficient solutions of MOLFPs. An algorithm to find all efficient solutions of
MOLFPs with zero-one variables is proposed by Gupta [179] while MOLFPs with
integer variables are examined by Gupta and Malhotra [181] and, more recently,
by Sharma [336]. Conditions for efficiency for MOLFPs with convex constraints
are developed by Gulati and Islam [177, 178]. An interactive method for computing
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nondominated and finding preferred solutions using the "-constrained scalarization
is presented in Costa [87]. If numerators and denominators of the objective functions
are nonlinear functions, the problems are referred to as multiobjective nonlinear
fractional programs. For these problems, conditions for the existence of efficient
solutions are developed by Kaul and Lyall [224], while Fritz-John and Kuhn-Tucker
type conditions for efficiency are proposed by Gulati and Ahmad [3]. In addition,
in the last few years a plethora of specialized optimality conditions for these
problems with objectives that satisfy one of many generalized convexity notions
have been published by, among a good gross of other authors, Long [253], Zalmai
and Zhang [413], Gao and Rong [162], Niculescu [287], and Chinchuluun et al. [78].
Unfortunately, hardly any of these papers present solution techniques and relevant
examples or applications so that we do not summarize these contributions here but
refer the reader to the extensive list of references collected by Engau [132].

Among numerous new articles that have appeared since then, one of the more
recent trends is the increased focus on MOFP duality that includes the papers by
Mishra et al. [279] and Zalmai and Zhang [414] for nonsmooth semi-infinite MOFP,
by Suneja and Kohli [354], and by Ying [404] on higher-order symmetric duality.
Another trend is the adoption of approximate solution concepts: new papers that
address notions of and conditions for (weak) 	-efficiency for MOFP are Kim et
al. [226] and Verma [372]. New sufficiency results are provided by Sharma and
Ahmed [337]. Finally, Liu et al. [252] introduce generalized definitions of the
Lagrangean function and its saddle points for a class of multiobjective fractional
optimal control problems.

18.7.3 Parametric Multiobjective Programming

There are two general ways of introducing parameters into MOPs. Parameters
can be introduced into the original MOP to parametrize the feasible set or the
objective functions, or the MOP is scalarized which yields a parametrized SOP.
These two directions significantly differ from each other. In the former, one obtains
a parametric family of solution sets and in the latter the solution set of the original
problem is parametrized.

18.7.3.1 Parametric MOPs

We consider a family of parametric MOPs formulated as

min .f1.x; �/; : : : ; fp.x; �//

subject to x 2 X.�/ � R
n;

(18.33)

where � 2 R
s is a parameter vector and the set X is a set-valued mapping from R

s

to R
n.
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The first studies on parametrization of MOPs go back to the works of Bitran
[50] and Benson [31] on linear MOPs with parametrized objective functions. A
series of theoretical results follows. A variety of findings are provided by Sawaragi
et al. [321] in which stability results for problems with parametric feasible sets,
objective functions, and domination structures are obtained. Studies on continuity
and closedness of multifunctions are performed by Penot and Sterna-Karwat [299].
A review of stability and sensitivity results is given by Tanino and Kuk [357].
Sensitivity of efficient solutions and Pareto outcomes is also examined by Balbas
et al. [19] for MOPs with parametric objective and constraint functions.

The theoretical studies have been accompanied by few recent applied papers.
Unconstrained MOPs with a scalar parameter in the objective functions are studied
by Witting [393], Dellnitz and Witting [101], and Witting et al. [395]. When
varying the parameter, the authors obtain a family of solution sets and develop
methods to compute paths within this family. The methods make use of the Kuhn-
Tucker conditions for efficiency which are parametric and therefore solved with a
continuation method or calculus of variations.

Parametric MOPs are applied by Witting et al. [394] to mechatronic systems
where a scalar parameter plays the role of time. Ross et al. [314] work on a low-earth
orbiting satellite case study that provides several contexts for parametric MOPs:
changes in the objective vector, in priorities among the objectives, in a scalarization
function, and in the number of decision makers.

18.7.3.2 Parametrization of the Scalarized MOP

The first reference on the parametrization of the scalarized MOP seems to be the
book by Guddat et al. [175]. The authors propose interactive methods based on
the scalarization of the MOP with the weighted-sum and "-constraint methods
simultaneously and also based on the parametrization of the scalarization parameters
(cf. Sect. 18.5.4.3).

Jin and Sendhoff [216] construct a collection of test MOPs in which the
objectives are scalarized and the scalarizing weights change.

Buryak and Insarov [63] develop a model of a system whose state is determined
by direct and indirect parameters, and a parametric optimization method for solving
it. Direct parameters change freely within a feasible set while indirect parameters
depend upon the direct parameters (due to a functional relationship or statistical
dependencies of a known type). A vector of objective functions characterizes the
effectiveness of the system goal to choose values of direct parameters so that the
obtained objective values are acceptable by the decision maker.

Enkhbat et al. [135] study weighted-sum scalarizations of linear and convex
MOPs with linear parametric weights, and apply algorithms available in the
literature to this class of problems.

Romanko et al. [312] explore relationships between MOPs and their weighted-
sum and "-constraint scalarization which they treat as single objective parametric
programs. For three-objective problems with linear, quadratic, and second-order
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conic objectives, they develop parametric (single objective) optimization algorithms
to compute the efficient set of the MOP. They also provide closed-form descriptions
of the Pareto sets.

18.7.4 Bilevel Multiobjective Programming

Bilevel MOPs (BLMOPs) constitute a special class of constrained MOPs whose fea-
sible set consists of solutions to another MOP. Bilevel problems exhibit a two-level
structure. In the upper-level problem, optimal values of upper-level optimization
variables, which become parameters for the lower-level problem, are determined
so as to minimize the upper-level vector objective. In the lower-level problem, its
vector objective is minimized with respect to the lower-level optimization variables
under the given parameters. In other words, the set of feasible points of the upper-
level problem is given by the solution set of the lower-level parametric optimization
problem, while the solutions of the lower-level problem influence the upper-level
objective values.

With a scalar-valued objective function on each level, the problem is referred
to as a bilevel single-objective program (BLSOP). Such problems have been
researched for a few decades and many solution methods have been proposed for
their various formulations; see the monographs by Bard [21] and Dempe [103], and
also the multiple-author books [277, 338] for in-depth tutorials and reviews on this
subject. Despite this vast research effort, BLSOPs remain challenging even today if
they fall in the class of global optimization problems.

In BLSOP, the upper-level decision maker (leader) cannot restrict the lower-level
decision maker (follower) as long as the latter makes a decision that is feasible for
the former. In effect, one can consider two approaches to the lower-level decision
maker’s behavior with respect to the upper-level decision maker [103, 338]. The
first is to assume that the follower cooperates with the leader and makes a decision
that also optimizes the latter’s objective function. The second approach assumes
a conservative strategy under which there is no cooperation between the decision
makers. These approaches are often referred to as the optimistic (cooperative)
and pessimistic (noncooperative) option, respectively. In a big majority of the
reviewed papers, the authors assume the optimistic option while in some papers
this assumption is not explicitly made but still used.

18.7.4.1 Relationships between Bilevel Single Objective
and Multiobjective Programming

Exploiting MOPs for solving BLSOPs seems to be the earliest research activity con-
necting multiobjective and bilevel programming. In the nineteen eighties researchers
tried to establish a link between a linear BLSOP and a related linear biobjective
program. A relationship of this kind is first investigated by Bard [20], and then
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continued by Ünlü [369], Clark and Westerberg [82], Candler [70], Wen and Hsu
[382], and Haurie et al. [190]. Marcotte and Savard [263] establish that the bilevel
optimality and the efficiency with respect to the upper and lower objective functions
are different concepts [263].

Fülop [155] is the first to observe that more than two objective functions are
needed in a multiobjective formulation equivalent to a BLSOP. He establishes the
equivalence between linear BLSOPs and the optimization over the solution set of a
related linear MOP. This direction of research is successfully continued by Glackin
[169] and Glackin et al. [170] who propose an algorithm for solving linear BLSOPs
using linear MOPs.

Fliege and Vicente [148] reformulate an original, unconstrained nonlinear
BLSOP problem into a four-objective MOP and outline a reformulation for con-
strained problems. Ivanenko and Plyasunov [209, 210] continue the reformulation
efforts in more general directions using a parametric perturbation function of the
lower-level problem and the Karush-Kuhn-Tucker conditions for optimality for the
convex lower-level problem. Independently of [170], Pieume et al. [304] extend
the result in [155] to BLSOPs with nonlinear upper-level objective functions and
constraints. For unconstrained nonlinear BLSOPs, they modify the result in [148]
which reduces solving the overall BLSOP to solving two four-objective MOPs and
taking the intersection of their solution sets.

Sakawa and Nishizaki [319] argue that a cooperative BLSOP is equivalent to the
biobjective program whose vector-valued objective function involves the objective
function of the leader and that of the follower, and propose solution methods based
on fuzzy programming.

18.7.4.2 Theory of Bilevel Multiobjective Programming

Introducing multiple objective functions to a bilevel problem poses not only
technical but also conceptual challenges. With multiple objective functions at the
lower level, one can no longer assume that there exists a unique solution to
the lower-level problem. A common approach is to assume that the efficient set
of the lower-level MOP becomes the set of optimal solutions for the lower level.
The different formulations resulting from the leader’s anticipations of the follower’s
actions are analyzed by Nishizaki and Sakawa [289], Nie [288], and Sakawa and
Nishizaki [319].

Let Xu � R
nu and Xl.xu/ � R

nl for all xu 2 Xu, and let X D fx D .xu; xl/ W xu 2
Xu; xl 2 Xl.xu/g � R

n, where n D nu C nl. An optimistic bilevel multiobjective
program (BLMOP) has the form

min
xu;xl

f u.xu; xl/

subject to xl 2 E.Xl.x
u/; f l.xu;: /;R

pl
=/

xu 2 Xu;

(18.34)
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where f u W X ! R
pu is the vector of upper-level objective functions andf l W X ! R

pl

is the vector of lower-level objective functions. The notation Xl.xu/ reflects that the
feasible set Xl of the lower-level problem depends on the upper-level decision xu.
One may consider a more general formulation in which the upper-level feasible set
Xu depends on the lower-level decision xl. If the functions f u and f l are scalar-valued,
then problem (18.34) reduces to a BLSOP.

The derivation of new optimality conditions for different classes of BLMOPs has
been an important research direction. Ye and Zhu [403] study optimality conditions
for MOPs with variational inequality constraints and apply their results to BLMOPs.
Zhang et al. [418] formulate a class of fuzzy linear BLMOPs and derive optimality
conditions for them. Problems with a single objective at the upper level and multiple
objective functions at the lower level are studied by Nie [288] who proposes new
solution concepts for the overall problem including a risk solution, a conservative
solution, and mean-optimal solution. For the convex case on the lower level, that
level’s problem is scalarized with the weighted-sum method and then replaced by
the KKT conditions of the scalarized problem. Necessary and sufficient optimality
conditions for the three types of solutions are derived. Dell’Aere [100] derives
optimality conditions for BLMOPs with a convex, equality-constrained lower-level
problem and also performs a sensitivity analysis for this class. Jahn and Schaller
[213] present two types of optimality conditions for a general class of BLMOPs
in infinite dimensions with objective spaces partially ordered by pointed convex
cones and under differentiability conditions: one using the Lagrange multiplier rule
generalized for this class and the other using the contingent cone. However, the
conditions give only partial characterizations of the solutions and cannot be used
for the development of solution methods. Necessary conditions for efficiency for
bilevel problems with multiple objectives only at the upper level are derived by Ye
[402] who, under certain assumptions, replaces the lower-level SOP with its KKT
optimality conditions. Zhang et al. [419] present necessary conditions for efficiency
for multistage bilevel problems with multiple objectives at the upper level and a
stage-dependent lower-level SOP. The solution of each SOP at the current stage
depends on the solutions of the SOP and the upper-level MOP in the previous stage.

Some researchers link BLMOPs with SOPs or MOPs. Gadhi and Dember [156]
establish an equivalence between a bilevel problem with multiple objectives only at
the upper level and a single-level SOP, and derive necessary conditions for efficiency
for the original problem. Eichfelder [127] shows that the feasible set of the upper-
level problem of a general BLMOP can be expressed as a set of efficient solutions
of an MOP. Ruuska et al. [316] provide sufficient conditions to reduce a BLMOP to
an MOP.

A result on the nonemptiness of the solution set is established by Calvete and
Galé [64] for linear bilevel problems with multiple objectives only at the upper
level.
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18.7.4.3 Methodology for Bilevel Multiobjective Programming

Methods for solving BLMOPs depend on the class of considered problems and
the solution goal. The class may include linear or convex problems while the goal
results from the paradigm resolving the multiobjective nature of the problem. In
multiobjective programming, one is typically interested in finding the entire solution
set of the MOP while in MCDM often only a particular element of this set, which
optimizes decision maker’s preferences, is sought. The latter often makes use of
interactive MCDM methods that interchangeably navigate through the solution set
and elicit preferences from the decision maker in order to arrive at a preferred
solution. Following this distinction, methods for solving BLMOPs can generally
be classified as methods aiming at the computation of the entire (or part of) solution
set and methods supporting MCDM. Due to the scope of this chapter interactive
methods requiring active involvement of a decision-maker are not discussed.

Some authors have proposed solution approaches to specially structured prob-
lems. The class of problems that had first been considered is related to performing
the decision stage of MCDM during which a decision maker’s utility function is
optimized over the efficient set for the purpose of finding a preferred solution.
In particular, optimization over the solution set for linear MOPs is extensively
studied by Benson and his co-authors in a series of papers [32–34, 38–40] and
also by Bolintinéanu [53], Ecker and Song [110], Dauer and Fosnaugh [95], Sayin
[324], Thach [360], Horst and Thoai [201], Thi et al. [361–363], Jorge [218], Horst
et al. [202], Thoai [365], and others, with a review provided by Yamamoto [398].
Optimization over the efficient set of nonlinear MOPs is studied by An et al. [11],
Horst and Thoai [200], Thoai [364], Tuy and Hoai-Phuong [368], and others. More
recently, Leyffer [246] and Faulkenberg and Wiecek [143] present bilevel methods
to optimize a quality measure of a discrete representation of the solution set of
single-level convex MOPs. Reasoning in the opposite direction, Liu [251] starts with
a nonlinear BLSOP and transforms it into the problem of maximizing a function
over the solution set of a related parametric linear MOP.

Based on the presented optimality conditions for BLMOPs with convex
lower-level problems, Dell’Aere [100] develops solution algorithms of both
subdivision and recovering type. An algorithm for bilevel problems with indefinite
quadratic objective functions and polyhedral feasible sets is proposed by Arora and
Arora [16].

Calvete and Gale [64] and Alves et al. [7] independently work on the same class
of bilevel linear problems with multiple objectives only at the upper level. The
former propose a solution approach using scalarizations of the upper-level problem
such as the weighted-sum method, the "-constraint method, and Benson’s method,
which results in solving a BLSOP, and show that applying the weighted-sum method
does not guarantee finding the entire solution set to the overall problem. The latter
reformulate the original problem into a linear MOP with mixed 0 � 1 variables and
offer a characterization of the Pareto set in the biobjective case. Calvete and Gale
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[65] later work on bilevel problems with multiple linear objectives only at the lower
level and polyhedral feasible sets, and reformulate this problem to an SOP with a
nonconvex feasible set.

For noncooperative and cooperative linear BLMOPs, Sakawa and Nishizaki
[319] propose solution methods based on scalarizations with a utility function or
an achievement function, and based on fuzzy programming.

Krüger et al. [240] solve more general bilevel problems in the context of
applications for mechatronic systems. Their bilevel problem has multiple MOPs
on the lower level and an MOP on the upper level. Each lower-level MOP has only
its own variables while the upper-level MOP has its own variable but parametrically
depends on the lower-level efficient sets.

Algorithms proposed by Jahn and Schaller [213] and Eichfelder [127] seem
to be the only global solvers for general nonconvex BLMOPs. In [213], the
lower-level problem is parametrized by a scalar parameter varying in an interval.
For an arbitrary value of the parameter, a search algorithm equipped with the
subdivision technique MOSAST is applied to find a representation of the lower-
level solution set. The Graef-Younes method is then used to collect solutions on
the upper level and determine the solution set of the overall problem. Eichfelder’s
algorithm [127] is suitable for solving bilevel problems with two objectives at each
level and a scalar decision variable at the upper-level problem. The Pascoletti-
Serafini scalarization approach (18.18) and an adaptive parameter control based on
a sensitivity analysis are used to generate solution points of the lower-level problem.
For several discretizations of the upper-level variable, lower-level solution sets are
approximated and unified into a set being a representation of the feasible set of the
upper-level problem over which this problem is solved.

18.8 Current and Future Research Directions

The rapid development of optimization techniques and computational power over
the last decades has made it possible to solve many MOPs of practically relevant
size in reasonable time. At the same time we observe an increasing awareness of
decision makers and analysts that it is necessary to incorporate multiple objectives
in decision processes. Thus in the future we expect to see a growing number of new
real-world applications of multiobjective programming.

In the last ten years, many application areas have already adopted a multi-
objective modeling and solution paradigm. Küfer et al. [241] describe a linear
MOP formulation of the radiation therapy planning problem. These models can
have thousands of variables and tens of thousands of constraints; nevertheless an
approximation of (a part of) the efficient set can be computed effectively. Ehrgott
and Ryan [119] solve bicriteria set partitioning problems with a few hundred
constraints and many thousands of variables for an application in airline crew
scheduling. As a reaction to the recent economic and financial crisis, Gaganis et
al. [157] reevaluate previous decision aid techniques and investigate the use of new
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criteria addressing the macroeconomic, institutional and regulatory environment in
addition to basic characteristics of the banking and financial sector. Bruggemann
and Patil [61] attempt to remedy the complexity of today’s data-centric world
by bridging between multiobjective programming and environmental and ecolog-
ical statistics with applications to watersheds, biomanipulation, and engineering
systems. Interestingly, Köhn [229] highlights the emerging use of multiobjective
programming with modern applications in quantitative psychology, while Shoval et
al. [339] associate Pareto optimality with evolution.

From this perspective we believe that the following are valuable directions of
future research.

18.8.1 Research on Set-Oriented Methods

The advent of set-oriented methods rooted in stochastic principles or global
optimization complements the earlier development of metaheuristics that are also
set-oriented but based on different principles. Metaheuristics have provided the
multiobjective programming community with algorithmic schemes having two
important properties: (1) the schemes are very effective for problems on which
exact algorithms fail; (2) the schemes are relatively easily adaptable to many
special problems. At present, evolutionary techniques constitute probably the most
successful approach to solving MOPs in practice and we expect this trend to
continue. In particular, hybrid algorithms combining evolutionary approaches with
principles of exact algorithms give promise of computational improvements [333].
However, the set-oriented methods have emerged as a viable alternative and we
expect that these new methods will better establish themselves as a non-traditional
optimization tool or working in concert with metaheuristics.

18.8.2 Theoretical and Methodological Studies Motivated
by Mathematical and Real-Life Applications

Areas such as bilevel programming or robust optimization give opportunities to
develop MOPs whose solutions are associated with the solutions of the optimization
problems in those areas. While the synergy between bilevel programming and MOPs
is addressed in this study, connections between robust optimization and MOPs have
already been developed in the literature but are yet to be reviewed. We believe
that other mathematical applications will come to light in the future. For real-life
applications, there is no “one size fits all” methodology for MOPs. A method that
works well in theory can fail in practice and one that works well on some problem
may not be suitable for another one. So MOP methodology will increasingly be
studied in problem contexts.
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18.8.3 Applications in New Areas

Disciplines and research areas such as sustainable development, financial engi-
neering, quality control, engineering design, processing and manufacturing of new
materials, astronomy and medicine will continue to provide new opportunities for
challenging applications of multiobjective programming.

18.8.4 Integration of Multiobjective Programming
with Multicriteria Decision Analysis (MCDA)

In the current multicriteria decision-making (MCDM) methodology, multiobjective
programming methods and MCDA methods are often seen as two ends of a
spectrum. However, current applications indicate that both paradigms are needed
in order for MCDM to succeed. In a majority of applications there is an objective
stage, where multiobjective programming techniques are appropriate, and there is
a subjective stage, where human judgment and preferences modeled within MCDA
come into play. At this stage the formal mathematical approach is likely to be less
effective and human factors-oriented strategies are needed to guide the decision
maker. In any case, human participation will never be eliminated from the decision
process but will be given stronger support by MCDM methodologies.

18.9 Conclusion

In this chapter we summarized the state of the art in continuous multiobjective
programming. Our main attention has been devoted to optimality concepts, opti-
mality conditions, solution techniques and approximations of the solution sets
for general and specially structured MOPs. We recognize that the content of
this chapter is subjective, as we excluded many facets of the subject such as
duality and sensitivity, other stability results, variational inequalities, generalized
convexity, nonsmoothness, Arrow-Barankin-Blackwell theorems, results for more
general problems in vector spaces, other special classes of problems, etc. The topics
of this chapter as well as other related topics have been discussed in other sources
such as Ehrgott and Gandibleux [117], Engau [132], Gal et al. [159], and some other
chapters in this book.
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346. Sonntag, Y., Zǎlinescu, C.: Comparison of existence results for efficient points. J. Optim.
Theory Appl. 105(1), 161–188 (2000)
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Chapter 19
Exact Methods for Multi-Objective
Combinatorial Optimisation

Matthias Ehrgott, Xavier Gandibleux, and Anthony Przybylski

Abstract In this chapter we consider multi-objective optimisation problems with
a combinatorial structure. Such problems have a discrete feasible set and can be
formulated as integer (usually binary) optimisation problems with multiple (integer
valued) objectives. We focus on a review of exact methods to solve such problems.
First, we provide definitions of the most important classes of solutions and explore
properties of such problems and their solution sets. Then we discuss the most
common approaches to solve multi-objective combinatorial optimisation problems.
These approaches include extensions of single objective algorithms, scalarisation
methods, the two-phase method and multi-objective branch and bound. For each of
the approaches we provide references to specific algorithms found in the literature.
We end the chapter with a description of some other algorithmic approaches for
MOCO problems and conclusions suggesting directions for future research.

Keywords Multi-objective optimisation • Combinatorial optimisation • Exact
methods • Scalarisation • Branch and bound • Two-phase method

19.1 Introduction

In this section we provide basic definitions and notations for multi-objective
combinatorial optimisation (MOCO) problems, including definitions of efficient
solutions and non-dominated points. We discuss the theoretical background of
multi-objective combinatorial optimisation. We recall results from computational
complexity, highlighting that MOCO problems are almost always NP-hard and
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#P-hard. Moreover, for many problems, instances with an exponential number of
non-dominated points exist. We mention results on the (non)-connectedness of
efficient solutions. We also give an outlook on the rest of the chapter.

19.1.1 Definitions

Formally, a multi-objective combinatorial optimisation problem can be written as a
linear integer programme with multiple objectives

minfz.x/ D Cx W Ax D b; x 2 f0; 1gng; (19.1)

where x 2 f0; 1gn is a (column) vector of n binary variables xj; j D 1; : : : ; n; C 2
Z

p�n contains the rows ck of coefficients of p linear objective functions zk.x/ D
ckx; k D 1; : : : ; p and A 2 Z

m�n; b 2 Z
m describe m constraints aix D bi; i D

1; : : : ;m; where ai; i D 1; : : : ;m are m row vectors from Z
n. The constraints define

combinatorial structures such as paths, trees, or cycles in a network or partitions of
a set, etc. and it will be convenient to assume that all coefficients, i.e. all entries of
A; b; and C, are integers.

In order to define what solving MOCO problem (19.1) means, we define orders
of vectors in R

p. We use the notations 5;�; and < to define componentwise orders
in Definition 1.

Definition 1. Let y1; y2 2 R
p. We write

• y1 5 y2 if y1k 5 y2k for k D 1; : : : ; p;
• y1 � y2 if y1 5 y2 but y1 ¤ y2 and
• y1 < y2 if y1k < y2k for k D 1; : : : ; p.

According to the componentwise orders, we define R
p
= WD fy 2 R

p W y = 0g as
the non-negative orthant in R

p, and analogously R
p
� and R

p
>:

The set X D fx 2 f0; 1gn W Ax D bg is called feasible set in decision space R
n

and Y WD z.X/ D fCx W x 2 Xg is the feasible set in objective space R
p. The set

of points conv.Y/ C R
p
=, sometimes called the Edgeworth-Pareto hull of Y, is very

important. Figure 19.1 illustrates the feasible set Y of a MOCO problem with two
objectives as a finite set of circles and its Edgeworth-Pareto hull conv.Y/CR

p
= as a

shaded area.
Individual minimisers of the p objective functions zk.x/, for k D 1; : : : ; p, i.e.

feasible solutions Ox 2 X such that zk.Ox/ 5 zk.x/ for all x 2 X for some k 2 f1; : : : ; pg
do only minimise a single objective function and do not provide any control over
the values of the other p� 1 objectives if they are not unique, see Fig. 19.2a. In that
case their objective function vectors may differ in values zi.Ox/ for i ¤ k. It is clear
(see Fig. 19.2a) that a point combining the minimal values for all objectives, called
the ideal point and denoted yI , i.e. .1; 1/T in Fig. 19.2a, does usually not belong
to Y or even conv.Y/ C R

p
=. Hence an ideal feasible solution xI 2 X such that

zk.xI/ 5 zk.x/ for all x 2 X and all k D 1; : : : ; p does in general not exist.
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Fig. 19.2 (a) Individual and lexicographic minima. (b) (Weakly) non-dominated points

The ambiguity in considering individual optima is avoided by turning to lexi-
cographic optima, i.e. feasible solutions Ox such that z.Ox/ 5lex z.x/ for all x 2 X,
and more generally, z.Ox/ 5lex z.x/ for all x 2 X and some permutation z D
.z.1/; : : : ; z.p// of the components of the vector valued function z D .z1; : : : ; zp/.
The lexicographic order is defined in Definition 2.
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Definition 2. Let y1; y2 2 R
p. We write z.Ox/ <lex z.x/ (y1 is lexicographically

smaller than y2 with respect to permutation ) if there is some k 2 f1; : : : ; pg such
that y1.i/ D y2.i/ for i D 1; : : : k � 1 and y1.k/ < y2.k/. Hence z.Ox/ 5lex z.x/ if either
z.Ox/ <lex z.x/ or z.Ox/ D z.x/

Figure 19.2a shows non-unique individual minima for z1 and z2 (filled circles).
Among those, Oy1 D .1; 8/T and Oy2 D .7; 1/T are lexicographically minimal for the
permutation of objectives .z1; z2/ and .z2; z1/, respectively.

While individual and lexicographic optima refer to total (pre)orders on R
p, multi-

objective optimisation is based on the concept of efficiency or Pareto optimality. It is
defined using partial (pre)orders based on the componentwise comparison of vectors
in Definition 1.

Definition 3. A feasible solution Ox 2 X belongs to the set of weakly efficient
solutions XwE if there is no x 2 X with z.x/ < z.Ox/. In that case, z.Ox/ is called weakly
non-dominated. We denote YwN WD z.XwN/ the set of all weakly non-dominated
points. Feasible solution Ox 2 XE, the set of efficient solutions, if there is no feasible
x with z.x/ � z.Ox/. The objective vector z.Ox/ of an efficient solution is called non-
dominated point and YN WD z.XE/ is the set of all non-dominated points.

Definition 4 provides two further definitions of efficiency, that only play a limited
role in multi-objective combinatorial optimisation.

Definition 4. Feasible solution Ox 2 X is called strictly efficient if there is no x 2 X
such that z.x/ 5 z.Ox/: It is called properly efficient if it is efficient and there exists
a real number M > 0 such that for every i 2 f1; : : : ; pg and x 2 X such that
zi.x/ < zi.Ox/ there exists some j 2 f1; : : : ; pg n fig such that zj.Ox/ < zj.x/ and
.zi.Ox/ � zi.x//=.zj.x/ � zj.Ox// 5 M.

Strict efficiency of Ox implies that the pre-image z�1.z.Ox// is a singleton. In
single objective combinatorial optimisation, this corresponds to unique optimisers
and is rarely considered. Proper efficiency on the other hand relates to bounded
trade-offs between the objectives. While this is an important issue in continuous
non-linear multi-objective optimisation (see Chap. 18), in our setting we assume that
Y � Z

p and differences between objective values are therefore integers, implying
that all efficient solutions are properly efficient. The following distinction between
supported and non-supported efficient solutions is, on the other hand, crucial in
multi-objective combinatorial optimisation.

Definition 5. An efficient solution is supported if there is some � 2 R
p
> such that

�TCOx 5 �TCx for all x 2 X. In case COx is an extreme point of conv.Y/ C R
p
= it

is an extreme efficient solution and COx is an extreme non-dominated point. We let
XSE1 be the set of extreme efficient solutions and let XSE2 denote the set of supported
efficient solutions such that COx is in the relative interior of a face of conv.Y/CR

p
=.

All supported efficient solutions are XSE D XSE1 [ XSE2. Finally, XNE D XE n XSE is
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Fig. 19.3 (a) Extreme non-dominated point for �T D .1; 1/. (b) Supported non-dominated point
in the relative interior of a face for �T D .2; 1/

the set of non-supported efficient solutions, i.e. efficient solutions Ox such that COx is
in interior of conv.Y/CR

p
=. The counterparts of XSE and XNE in objective space are

called the sets of (non-)supported non-dominated points YSN and YNN , respectively.
Analogously, YSN1 and YSN2 denote the sets of non-dominated extreme points of Y
and supported non-dominated points that are not extreme points of Y, respectively.

It is very easy to construct small examples that show that even the bi-objective
shortest path, spanning tree, and assignment problems have non-supported efficient
solutions. In our small example, Fig. 19.2b shows (weakly) non-dominated points
as filled circles. Note that .1; 9/T ; .6; 3/T and .9; 1/T are weakly non-dominated but
not non-dominated. Moreover, .5; 3/T and .6; 2/T are non-supported non-dominated
points. Figures 19.3a,b illustrate supported non-dominated points. Figure 19.3a
shows that .3; 4/T is an extreme non-dominated point and Fig. 19.3b that .2; 6/T is
a supported non-dominated point in the relative interior of a face of conv.Y/CR

p
=.

Following [38] we call x1; x2 2 XE equivalent if Cx1 D Cx2. A complete set of
efficient solution is a set OX � XE such that for all y 2 YN there is some x 2 OX with
z.x/ D y. A minimal complete set contains no equivalent solutions, the maximal
complete set XE contains all equivalent solutions. We can now speak about, e.g.
a minimal complete set of extreme efficient solutions. This classification allows
to precisely describe what is to be understood by statements that some algorithm
“solves” a certain MOCO problem. We shall always understand solving a MOCO
problem as finding all non-dominated points and for each y 2 YND one x such that
Cx D y, i.e. finding a minimal complete set of efficient solutions.
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19.1.2 Computational Complexity

The most striking feature concerning computational complexity in the sense of worst
case performance of algorithms is that MOCO problems are hard in the conventional
notions of computational complexity. We formally define the decision problem
related to optimisation problem (19.1) as: “Given d 2 Z

p, does there exist x 2 X
such that Cx 5 d?” and the associated counting problem as: “Given d 2 Z

p, how
many x 2 X satisfy Cx 5 b?” Apart from these questions we are also interested
in knowing how many efficient solutions (non-dominated points) may exist in the
worst case. General upper bounds on the cardinality of YN (for MOCO problems in
the presence of both sum and bottleneck objectives) are given by Stanojević [91]
and earlier, lower bounds on jYN j have been derived in [32].

Obviously, the multi-objective version of any NP-hard single objective com-
binatorial optimisation problem is also NP-hard. Another source of NP-hardness
of MOCO problem (19.1) derives from the NP-hardness of so-called resource-
constrained single objective combinatorial optimisation problems. These are prob-
lems that ask for the minimisation of a single linear function c1x over feasible set X
subject to the additional constraint c2x 5 d. Since the decision and counting prob-
lems associated with a resource-constrained combinatorial optimisation problem are
identical to those of bi-objective combinatorial optimisation problems, hardness
results for the resource constrained problems imply hardness results for the bi-
objective problems.

It is well known that if A is a totally unimodular matrix, then the polyhedron
conv.X/ has only integer extreme points. Hence, in the single objective case,
(19.1) can be solved by linear programming. The presence of non-supported non-
dominated points makes the total unimodularity property much less useful in the
multi-objective case. However, Kouvelis and Carlson [48] show for the bi-objective
case, that if the variables of (19.1) are separable, i.e. x D .x1; x2/ such that
ckx D ckxk for k D 1; 2 and A is totally unimodular, then the set of non-supported
efficient solutions is empty. Hence, in this case, (19.1) can be solved by (parametric)
linear programming methods.

Specifically addressing MOCO problems, we first consider a binary optimisation
problem without any constraints. Ehrgott [25] uses a parsimonious transformation to
the binary knapsack problem, which is known to be NP-complete and #P-complete
[42, 102], to show that the most basic MOCO problem, called the unconstrained
MOCO problem, is hard.

Theorem 1. The unconstrained bi-objective combinatorial optimisation problem

min

(
nX

iD1
ck

i xi for k D 1; 2 W xi 2 f0; 1g for i D 1; : : : ; n
)

(19.2)

is NP-hard and #P-hard. Moreover, there is an instance of (19.2) that has an
exponential number of non-dominated points.
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For the latter part of this theorem, it is sufficient to set ck
i WD .�1/k2i�1 to see

that Y D YN , because the cost coefficients are simply binary representations of the
positive and negative values of integers 1; : : : ; 2n�1. This is a common feature of
many of the instances constructed to show that the number of non-dominated points
can be exponential in the worst case. As a consequence, all the non-dominated points
of such instances lie on a straight line in objective space defined by a constant sum
of both objectives. The more interesting question of whether the number of extreme
non-dominated points, i.e. jYSN1j, can be exponential in the size of an instance has
not been investigated widely. The existence of instances with an exponential number
of non-dominated point is called intractability of the MOCO problem.

Although intractability results imply that even YSN can be exponential in the size
of a problem instance, numerical tests reveal that the number of non-dominated
points is often “small”, in particular in real world applications. This has been
observed by Raith and Ehrgott [75] and Müller-Hannemann and Weihe [60] for
randomly generated and real world instances of the shortest path problem and
by Przybylski et al. [71] for randomly generated instances of the bi-objective
assignment problem. This evidence suggests that the numerical values of objective
function coefficients in C play an important role just as does the combinatorial
structure of the instance.

We summarise other complexity results in Table 19.1.
Despite these mainly negative results, Blanco and Puerto [8] have shown that

encoding the entire set of non-dominated solutions of a multi-objective integer
programming problem in a short sum of rational functions is polynomially doable,
when the dimension of the decision space is fixed.

Table 19.1 Complexity results for MOCO problems

MOCO problem Result Reference

Bi-objective shortest path NP-hard [89]

jYSN j is exponential [38]

Bi-objective integer minimum cost flow jYSN1j is exponential [81]

Bi-objective minimum spanning tree NP-hard [10]

jYSN j is exponential [37]

jYSN1j D O.jE j2/ [83]

jYNN j is exponential [82]

Bi-objective global minimum cut jYN j D O.jV j7/ [1]

Bi-objective assignment NP-hard [89]

#P-hard [61]

Bi-objective search problem on a line NP-hard [66]

jYN j is exponential [66]

Bi-objective unform matroid NP-complete [23]
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19.1.3 Connectedness of Efficient Solutions

One approach to design algorithms to solve MOCO problems is the idea of local
search. In local search, a neighbourhood of a feasible solution is defined, i.e. for
x 2 X, N.x/ is a subset of X, so that each solution in N.x/ can be obtained from x by a
certain “move”. Such a move can be, e.g. the exchange of an edge of a spanning tree
by another edge of the underlying graph or the basis exchange of a pivot operation
in the simplex algorithm. It is then possible to define a graph E G D .V ;E /; called
the efficiency graph in [28] and the adjacency graph in [82], the vertices of which
are the efficient solutions of a MOCO problem and the edges of which are defined
by Œx1; x2� 2 E if and only if x2 2 N.x1/ and x1 2 N.x2/. If the adjacency graph of
an instance of a MOCO problem is connected, it is then possible to find all efficient
solutions of the MOCO problem by a local search procedure. The set XE is called
connected, if the corresponding efficiency graph is connected. Ehrgott and Klamroth
[28] show the first result concerning the (non)connectedness of the set of efficient
solutions of a MOCO problem.

Theorem 2. The adjacency graph of the set XE of an instance of the bi-objective
shortest path and bi-objective minimum spanning tree problem is not connected in
general.

Ruzika [82] notes that this result also holds for the adjacency graph of weakly
efficient solutions XwE. Furthermore, Ruzika [82] demonstrates that the number and
cardinality of the connected components of the adjacency graph can be exponential.
Przybylski et al. [69] modify the example used in [28] to show that the efficiency
graph of the bi-objective integer minimum cost flow problem need not be connected.
Ruzika [82] also proves non-connectedness results for the bi-objective binary
knapsack problem with uniform weights and cardinality constraint, the binary
multiple choice knapsack problem with equal weights, the unconstrained MOCO
problem (19.2) and the bi-objective assignment problem.

Very few positive results concerning the connectedness of efficient solutions are
known. They are generally obtained for very specific instances. For example it is
clear that the adjacency graph of efficient solutions of a multi-objective minimum
spanning tree problem on a graph that contains exactly one cycle is connected.
Gorski et al. [36] prove the connectedness of the efficient solutions for a class of
two-dimensional knapsack problems with binary weights.

19.1.4 Bounds and Bound Sets

The success of exact algorithms to solve combinatorial optimisation problems often
depends on the availability of good lower and upper bounds, i.e. scalars l and u
such that l 5 z� 5 u, where z� is the optimal value of the optimisation problem.
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Fig. 19.4 (a) A lower bound set. (b) An upper bound set defined by feasible points

Straightforward generalisations of lower and upper bounds are given by the ideal
and nadir points yI and yN . They are defined in Eqs. (19.3) and (19.4),

yI
k WD minfyk W y 2 YgIk D 1; : : : ; pI (19.3)

yN
k WD maxfyk W y 2 YNgIk D 1; : : : ; p: (19.4)

The ideal and nadir point are tight lower and upper bounds on the values of any
non-dominated point, i.e. there is no y 2 YN that dominates yI nor that is dominated
by yN , yet for each k D 1; : : : ; p there exists some y 2 YN such that yk D yI

k and
some y 2 YN such that yk D yN

k . However, in general neither the ideal nor the nadir
point are feasible and can hence be “far away” from the non-dominated set. Note
that in Fig. 19.4a the ideal point yI D .1; 1/T and the nadir point yN D .7; 8/T:

To overcome this drawback it is necessary to combine the notion of a set of non-
dominated points with the idea of bounds, leading to the definition of bound sets.
A first definition of lower and upper bound sets L and U is given in [99]. A (different)
definition for the bi-objective case is due to [26]. Using only part of the conditions
of [26], Delort and Spanjaard [20] propose a third definition. Here, we formally
give the definition of [27]. Note that a set S � R

p is called R
p
=-closed, respectively

R
p
=-bounded if SC R

p
= is closed, respectively if there exists some Os 2 R

p such that
S � OsCR

p
=, see [27].

Definition 6. • A lower bound set L is a R
p
=-closed, Rp

=-bounded set such that

YN � LC R
p
= and L �

	
LC R

p
=




N
.
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• An upper bound set U is a Rp
=-closed, Rp

=-bounded set such that YN is contained

in cl
h	

U C R
p
=


ci
and U �

	
U C R

p
=




N
, where c indicates the complement of

a set in R
p.

Definition 6 implies that neither L nor U contain points dominated by other points
from the same set. Moreover, this definition says that the objective vectors of any
set of feasible solutions, filtered by dominance, define an upper bound set. In the
single objective case the definitions reduce to the usual definitions of lower and
upper bound, and in particular encompass the idea of the incumbent best known
solution providing an upper bound. Moreover, it preserves the condition that L D U
implies L D U D YN .

An important lower bound set is defined by the non-dominated set of the convex
hull of (supported) non-dominated points, L D .conv.YSN//N , a set that is sometimes
called the non-dominated frontier of MOCO problem (19.1). This is in fact the
tightest possible R

p
=-convex lower bound set. In Fig. 19.4a this will be the union

of the two line segments connecting .1; 8/T ; .3; 4/T and .7; 1/T .
Figure 19.4a shows a lower bound set consisting of three line segments that

could represent the non-dominated set of the (multi-objective) linear programming
relaxation of a MOCO problem (19.1). Figure 19.4b illustrates how six feasible
points U D f.1; 9/T; .3; 6/T ; .4; 5/T ; .6; 2/T ; .9; 1/Tg define an upper bound set.
In this way, any multi-objective relaxation of MOCO problem (19.1) defines a
lower bound set and any set of feasible points (filtered by dominance) defines an
upper bound set, preserving this important property from single objective branch
and bound. The arguably simplest and most often used lower bound set is L D fyIg,
i.e the set consisting of the ideal point yI defined as in (19.3). Similarly, an upper
bound set can be obtained by the anti-ideal point yAI with yAI

k WD maxfckx W x 2 Xg
or the nadir point yN (see Eq. (19.4)) consisting of the worst objective values over
the efficient set. Note that the nadir point is hard to compute for p = 3, even for
linear problems, see [31].

19.1.5 Outlook

In what follows, we discuss exact solution approaches proposed in the literature
to solve multi-objective versions of combinatorial optimisation problems. This
material is presented in four sections. In Sect. 19.2 we consider algorithms for
single objective combinatorial problems that can be extended to solve their multi-
objective counterparts. Two prime examples are labelling algorithms for the shortest
path problem and the greedy algorithm. In Sect. 19.3 the topic of scalarisation
is discussed, which plays a role in Sect. 19.4, where we discuss approaches that
rely heavily on the repeated solution of single objective combinatorial optimisation
problems. Such approaches are particularly beneficial if polynomial time algorithms
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are available for the single objective problem. We present an outline of the two-
phase method [97] and review two-phase algorithms from the literature. More
general approaches, that do not revert to repeatedly solve single objective versions of
the problem under consideration have been proposed for general MOCO problems.
In Sect. 19.5 we address the principle of branch and bound algorithms and we
conclude the survey with a review of other exact solution methods. The chapter
concludes with a brief discussion and suggestions for further research.

19.2 Extending Single Objective Algorithms

In this section, we shall discuss algorithms to solve multi-objective combinatorial
optimisation problems for which efficient polynomial time algorithms exist to
solve their single objective versions, and for which it is possible to extend these
algorithms to deal with the multi-objective versions. The prime examples are the
multi-objective shortest path and spanning tree problems.

19.2.1 Labelling Algorithms

Let G D .V ;A / be a directed graph defined by node set V and arc set A with p
arc costs ck

ij; k D 1; : : : ; p on arcs .i; j/ 2 A . The single-source single-sink multi-
objective shortest path problem is to find a minimal complete set of efficient paths
from an origin node s to a destination node t. The single-source variant finds a
complete set of efficient paths from origin s to all other nodes of G , and the all-pairs
version efficient paths between all pairs of origins and destinations.

In the single objective case p D 1, label setting algorithms, such as Dijkstra’s
algorithm [22], or label correcting algorithms, such as Bellman’s algorithm [5], are
well known polynomial time algorithms.

Multi-objective labelling algorithms rely on the following fact. Assuming that
all ck

ij = 0, let Pst be an efficient path from s to t. Then any subpath Puv from
u to v, where u and v are nodes on Pst, is an efficient path from u to v. Notice
that, on the other hand, concatenations of efficient paths need not be efficient. This
principle of optimality shows that the multi-objective shortest path problem is an
example of multi-objective dynamic programming and implies that generalisations
of both Dijkstra’s and Bellman’s algorithms are possible. Such algorithms have
vector valued labels and therefore, due to the partial orders used, need to maintain
sets of non-dominated labels at each node rather than single labels.

For a label setting algorithm, lists of permanent and temporary labels are stored
and it is necessary to ensure that a permanent label defines an efficient path from
s to the labelled node. This can be done by selecting the lexicographically smallest
label from the temporary list to become permanent. A label setting algorithm then
follows the same steps as in the single objective case, only that newly created labels
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need to be compared with label sets. New labels dominating existing labels lead to
the deletion of those dominated labels. An existing label dominating a new label
results in the new label being discarded, otherwise the new label is added to the
label list. An interesting feature of the multi-objective shortest path problem is that,
in contrast to the single objective one, it is not possible to terminate a multi-objective
label setting algorithm once the destination node t has been reached, since further
unprocessed temporary labels at nodes in V n fs; tg may lead to the detection of
more efficient paths from s to t, another effect of the partial order. Nevertheless, any
label at t can serve as an upper bound and temporary labels at any intermediate node
dominated by such an upper bound can be eliminated.

Just as in the single objective case, label setting algorithms fail if negative arc
lengths are permitted. In the multi-objective case the following situations may occur:
If there is a cycle C with

P
.i;j/2C cij � 0 there is no efficient path; if there is a

cycle C with
P

.i;j/2C ck
ij < 0 and

P
.i;j/2C cl

ij > 0 for some k and some l ¤ k
there are infinitely many efficient paths as every pass of the cycle reduces one
objective and increases another thereby creating one more efficient path every time.
In the presence of negative arc lengths label correcting algorithms are necessary.
Once again, one proceeds with processing the labels as in the single objective case,
keeping in mind that all newly created labels need to be compared with existing
label sets so that all dominated labels can be eliminated. In each iteration either a
single label or a set of labels is processed and extended along an arc (arcs) out of the
node where the label(s) reside. Of course, no label is permanent until termination
of the algorithm. For details on a variety of multi-objective shortest path problems
including pseudocode and numerical results the reader is referred to [75]. Another
review of multi-objective shortest path algorithms is provided in [95]. Paixão and
Santos [65] report on a computational study of a variety of labelling algorithms for
the multi-objective shortest path problem. Newer labelling algorithms can be found
for example in [39, 84, 87, 88].

More generally than algorithms for shortest path problems, dynamic program-
ming can be generalised to multiple objective problems along the same lines as
labelling algorithms, see for example [17, 99]. Rong and Figueira [80] use dynamic
programming to solve bi-objective binary knapsack problems.

19.2.2 Greedy Algorithms

Another problem that we discuss is the multi-objective spanning tree problem.
Given a graph G D .V ;E / with edge set E and edge costs ck

ij; k D 1; : : : ; p for all
edges Œi; j� 2 E its aim is to find efficient spanning trees of G , i.e. spanning trees the
cost vectors of which are non-dominated. The following theorem is the foundation
for greedy algorithms that generalise Prim’s [68] and Kruskal’s [49] algorithms.

Theorem 3 ([37]). Let T be an efficient spanning tree of G . The following asser-
tions hold.
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1. Let e 2 E .T/ be an edge of T. Let .V .T1/;E .T1// and .V .T2/;E .T2// be the two
connected components of T n feg. Let C.e/ WD ff D Œi; j� 2 E W i 2 V .T1/; j 2
V .T2/g be the cut defined by deleting e. Then c.e/ 2 minfc.f / W f 2 C.e/g.

2. Let f 2 E n E .T/ and let P.f / be the unique path in T connecting the end nodes
of f . Then c.f / � c.e/ does not hold for any e 2 P.f /:

The first statement of Theorem 3 shows that starting from a single node and
adding efficient edges between nodes already included and nodes not yet included
in the tree will eventually construct all efficient trees. Notice that several such edges
might exist, and hence in every iteration there will be a set of efficient partial
trees. As in the multi-objective shortest path problem adding edges to an efficient
partial tree does not necessarily lead to another efficient partial tree, but also adding
efficient edges to a dominated partial tree may yield an efficient partial tree. It is
therefore necessary to filter out dominated trees at termination of the algorithm.
In a similar way, the second statement provides a justification for a Kruskal-like
algorithm efficient spanning tree problem, see [14] for an adaptation to the multi-
objective case.

Since spanning trees are examples of matroid bases, the above extends to multi-
objective matroid optimisation and the greedy algorithm. A result by Serafini [89]
shows that efficient matroid bases can be found by the greedy algorithm working
with a topological order of the cost vectors of the elements. Let M D .E ;I /

be a matroid and cj 2 R
p be the cost vectors of elements ej 2 E . Recall that the

componentwise order 5 is a partial order. A topological order of the elements of E
is a total order � such that cj 5 cj0 implies ej � ej0 .

Theorem 4 ([89]). Let B be an efficient matroid base. Then there exists a topolog-
ical order of the elements of E such that the greedy algorithm applied to this order
yields B.

Notice that Theorem 4 provides a necessary, but not a sufficient condition.
Greedy algorithms have also been developed in [36] to solve three-objective

unconstrained combinatorial optimisation problems in polynomial time.

19.3 Scalarisation

The idea of scalarisation is to convert a multi-objective optimisation problem to
a (parameterised) single objective problem that is solved repeatedly with different
parameter values. We are interested in the following desirable properties of scalari-
sations [103]. Correctness requires that an optimal solution of the scalarised problem
is (at least weakly) efficient. A scalarisation method is complete, if all efficient
solutions can be found by solving a scalarised problem with appropriately chosen
parameters. For computability it is important that the scalarisation is not harder
than the single objective version of the MOCO problem. This relates to theoretical
computational complexity as well as computation time in practice. Furthermore,
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Fig. 19.5 (a) The weighted sum scalarisation. (b) The "-constraint scalarisation

Fig. 19.6 The Chebychev
scalarisation
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since MOCO problem (19.1) has linear constraints and objectives, the scalarisation
should have a linear formulation.

The scalarisation techniques that are most often applied in MOCO, illustrated in
Figs. 19.5a,b and 19.6, are the weighted sum method (Fig. 19.5a)

min
˚
�Tz.x/ W x 2 X

�
; (19.5)

the "-constraint method (Fig. 19.5b)

min fzl.x/ W zk.x/ � "k; k ¤ l; x 2 Xg ; (19.6)
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Table 19.2 Properties of
popular scalarisation methods

Scalarisation Correct Complete Computable Linear

Weighted sum + – + +

"-Constraint + + – +

Chebychev + + – +

and the weighted Chebychev method (Fig. 19.6)

min

�

max
kD1;:::;p �k.zk.x/ � yI

k/ W x 2 X

�

: (19.7)

In Table 19.2 we summarise the properties of the methods listed in
Eqs. (19.5)–(19.7).

All three scalarised problems clearly have a linear formulation (with integer
variables, of course). They do also all compute (weakly) efficient solutions, see, e.g.
[25] for proofs. As for completeness, it follows from the definition of non-supported
non-dominated points, that the weighted sum scalarisation cannot compute any non-
supported efficient solution. On the other hand, both the "-constraint scalarisation
and the Chebychev scalarisation can be tuned to find all efficient solutions. For
proofs we do again refer the reader to, e.g. [25]. In terms of computability, we have
seen before that the weighted sum scalarisation (19.5) does maintain the structure of
the single objective variant of MOCO problem (19.1), it is therefore solvable with
the same computational effort. On the other hand, the "-constraint method (19.6)
and the (linearised version of the) Chebychev scalarisation (19.7) both include
bounds on objective function values. Such additional constraints usually make
single objective versions of MOCO problem (19.1) harder to solve, because they
destroy the structure of the problem which is exploited in efficient algorithms for
their solution by adding knapsack type constraints.

In [24] it has been shown that all three scalarisations (and several others) are
special cases of the more general formulation

min
x2X

(
p

max
kD1 Œ�k.ckx � �k/�C

pX

kD1
Œ�k.ckx � �k/� W ckx 5 "k; k D 1; : : : ; p

)

; (19.8)

where � and � denote (non-negative) weight vectors in R
p, � 2 R

p is a reference
point and scalars "k represent bounds on objective function values. To see this, set
�k D 0; �k D 0 and "k D M for all k D 1; : : : ; p and sufficiently large M to
obtain the weighted sum problem (19.5); �k D 0 for k D 1; : : : ; p, �l D 1; �k D
0 for all k ¤ l, "l D M and �k D 0 for all k D 1; : : : ; p for the "-constraint
scalarisation (19.6); and finally � D yI ; � D 0, "k D M for all k D 1; : : : ; p for the
Chebychev scalarisation (19.7). With regard to the general scalarisation in Eq. (19.8)
we cite the following result.



832 M. Ehrgott et al.

Theorem 5 ([24]). 1. The general scalarisation (19.8) is correct, complete, and
NP-hard.
2. An optimal solution of the Lagrangean dual of the linearised general scalarisa-

tion is a supported efficient solution of the MOCO problem (19.1).

Theorem 5 shows that the general scalarisation will be difficult to solve and
that solving it by Lagrangian relaxation is not useful to obtain non-supported
non-dominated points. Moreover, Table 19.2 indicates that complete scalarisations
are not computable, whereas computable ones are not complete. To resolve this
dilemma, one may ask whether it is possible to come up with a compromise, that
is a scalarisation that falls somewhere between the weighted sum scalarisation and
the "-constraint/Chebychev scalarisation, combining their strengths and eliminating
their weaknesses. This is indeed possible with the elastic constraint scalarisation.
This scalarisation is derived from the "-constraint scalarisation, but allows the
constraints on objective function values to be violated, with the violation penalised
in the objective function. Formally, the elastic constraint scalarisation is defined as
in Eq. (19.9),

min

8
<

:
clxC

X

k¤l

�kwk W ckxC vk � wk D "k; k ¤ lI x 2 XI vk;wk 	 0; k ¤ l

9
=

;
:

(19.9)

The constraints on objective values in the "-constraint scalarisation are turned
into equality constraints by means of slack and surplus variables vk and wk. Positive
values of wk indicate constraint violations in the "-constraint scalarisation and are
penalised with a contribution of penalty parameter �k in the objective function.
Figure 19.7a,b compare these two scalarisations. Figure 19.7a repeats Fig. 19.5b,
where the vertical line indicates a hard constraint on z1.x/ 5 5:5 and the arrow
indicates minimisation of z2. The optimal point is indicated by a filled circle.
Figure 19.7b shows that points to the right of the vertical line are feasible in the
elastic constraint scalarisation, with lighter shading indicating greater violation of
the limit of " on z2. To the right of the vertical line, for every feasible point of
the MOCO problem, an arrow indicates the objective value of the same point in
Eq. (19.9). Note that the optimal point for Eq. (19.9) in this example is now to
the right of the vertical line. Theorem 6 summarises the properties of the elastic
constraint scalarisation.

Theorem 6 ([30]). The method of elastic constraints is correct and complete. It
contains the weighted sum and "-constraint method as special cases.

For a proof of the first part we refer to [30]. The second part follows by setting
first "k < minx2Xckx for k ¤ l. Then vk D 0 for all feasible solutions x 2 X
and hence wk D ckx � "k and the problem reduces to the weighted sum problem.
Secondly, we can set �k D M for a sufficiently large number M. Then any feasible
point with yk > "k will contribute so much penalty to the objective function of elastic
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Fig. 19.7 (a) The "-constraint scalarisation. (b) The elastic constraint scalarisation

constraint scalarisation (19.9) that it is not optimal. Hence scalarisations (19.9)
and (19.6) will have the same set of optimal solutions.

Although the elastic constraint scalarisation (19.9) is NP-hard, it is often solvable
in reasonable time in practice because it respects problem structure better than the
"-constraints of Eq. (19.6). It limits the damage done by adding hard "-constraints
to the model. A successful implementation of the method for an application to
bi-objective set partitioning problems has been reported in [29].

When solving a MOCO problem using scalarisation, bearing in mind that the
scalarised combinatorial optimisation problems may be hard to solve, it is of interest
to know how many scalarised problems need to be solved in order to find a minimal
complete set of efficient solutions. Theorem 7 summarises the results in this regard.

Theorem 7. 1. In the case p D 2, the number of scalarised single objective
problems to be solved in order to determine YN is bounded by 2jYN j � 1 [11, 77].
In case the "-constraint scalarisation is used, this bound is jYN j C 1 [51].

2. In the case p D 3 the bound is 3jYN j � 2 and 2jYN j � 1 for the "-constraint

scalarisation [15]. For p > 3 the general bound is O
	
jYN jb p

2 c



, [46].

We note that general scalarisation algorithms to solve MOCO problems often
make use of scalarisations that use resource constrained single objective problems
of the form

minfg.f .x// W f .x/ 5 u; x 2 Xg; (19.10)

where g W R ! R is a strongly increasing function, see [46] for a general scheme
and the references in Sect. 19.3.1 for specific examples of such algorithms. These
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Table 19.3 Algorithms based on scalarisation

MOCO problem Scalarisation Reference

BO binary LP Weighted sum with "-constraints [11]

BO knapsack, capacitated network routing Weighted Chebychev [77]

TO multidimensional knapsack Lexicographic "-constraint [51]

Generic Weighted sum with "-constraints [46]

TO three-dimensional knapsack General scalarisation [15]

BO integer minimum cost flow (*) "-constraint [33]

BO knapsack Lexicographic weighted Chebychev [85]

BO multidimensional knapsack Weighted sum with constraints [93]

TO three-dimensional knapsack Lexicographic "-constraint [62]

MO knapsack, shortest path, spanning tree Lexicographic "-constraint [53]

MO three-dimensional knapsack, assignment Lexicographic "-constraint [63]

MO TSP TO knapsack, assignment Lexicographic "-constraint [44]

BO knapsack Augmented weighted Chebychev [16]

MO integer LP Single objective with constraints [47]

BO, TO multidimensional knapsack Augmented "-constraint [56]

BO set partitioning (*) Elastic constraint [29], [94]

BO TSP with profits (*) "-constraint [6]

algorithms work with an upper bound set that is updated throughout the algorithm.
They end as soon as it is guaranteed that all non-dominated points have been found.

19.3.1 Scalarisation Algorithms from the Literature

In this section we present a tabular overview of scalarisation algorithms for MOCO
problems. Most of these algorithms are generic, in the sense that they can be applied
to any multi-objective integer programming problem. Hence Table 19.3 presents the
type of scalarisation applied, for which MOCO problem the algorithm has been
tested, and the references. If the algorithm has been specifically developed for a
particular MOCO problem, this is denoted by (*) appearing behind the problem.

19.4 The Two-Phase Method

If it is not possible to adapt a single objective algorithm to the multi-objective case
directly, then it is desirable to use the single objective algorithm to solve single
objective instances of the multi-objective problem (repeatedly) to obtain some effi-
cient solutions. This is in particular true for problems for which the single objective
counterpart is solvable in polynomial time. In this section we consider algorithms
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for such multi-objective optimisation problems. Considering the hardness of even
the “simplest” bi-objective combinatorial optimisation problems as discussed in
Sect. 19.1.1, this indicates that there is benefit in solving the single objective version
as a subproblem even if that has to be done often, so that the polynomial time
algorithms can be exploited as much as possible. We shall describe the two phase
method, originally proposed by Ulungu and Teghem [97], as a general algorithmic
framework to solve multi-objective combinatorial optimisation problems in a way
that relies heavily on the use of fast algorithms for single objective optimisation. A
detailed exposition of the method can be found in [74].

19.4.1 The Two Phase Method for Two Objectives

We first explain the two phase method for MOCO problems with two objectives. In
Phase 1 at least a (minimal) complete set of extreme efficient solutions XSE1 is found.
This is typically done starting from two lexicographically optimal solutions. The
dichotomic method then recursively calculates a weight vector �T D .�1; �2/ 2 R

2
>

as a normal to the line connecting two currently known non-dominated points yl

and yr with yl
1 < yr

1 (and therefore yl
2 > yr

2 according to Eq. (19.11) and solving a
weighted sum problem minf�TCx W x 2 Xg; where

� WD .yl
2 � yr

2; y
r
1 � yl

1/: (19.11)

In Fig. 19.8a, lexicographic minima .1; 8/T and .7; 1/T are identified and define
�T D .8 � 1; 7 � 1/ D .7; 6/. The corresponding weighted sum problem yields
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Fig. 19.8 (a) Lexicographically optimal points. (b) The first weighted sum problem
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Fig. 19.9 Phase 1 of the two
phase method
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non-dominated point .3; 4/T (Fig. 19.8b) and allows dividing the problem in two:
The first weighted sum problem with �T D .8 � 4; 3 � 1/ D .4; 2/ looks for
new non-dominated extreme points between .1; 8/T and .3; 4/T . The second with
�T D .4� 1; 7� 3/ D .3; 4/ is used to explore the area between .3; 4/T and .7; 1/T .
Neither finds any further non-dominated extreme points in the example. The first,
however, may or may not find supported (but non-extreme) non-dominated point
.2; 6/T , depending on the solver (Fig. 19.9).

This dichotomic scheme has been independently described by Cohon [13], Aneja
and Nair [2] and Dial [21]. Alternatively, it is possible to apply a parametric scheme,
which starts with one of the lexicographically optimal points, say for permutation
.z1; z2/ of the objective functions, and then moves to further extreme non-dominated
points by systematically increasing the weight of the second objective function in
the weighted sum problem. This scheme is usually applied, if the single objective
version of MOCO problem (19.1) can be solved by linear programming. In this
case a parametric version of the simplex algorithm to solve bi-objective linear
programmes is applied, see, e.g. [75] and references therein for further details. Since
we assume that all objective function values are integer, lexicographically optimal
solutions can be found by solving two single objective problems, as Przybylski
et al. [71] have observed. First, weighted sum problem minf�TCx W x 2 Xg is
solved with �T D .1; 0/. Since an optimal solution of this problem may be weakly
efficient, resulting in weakly non-dominated point y1 the weighted sum problem is
then resolved with �T D .y12C1; 1/ to either confirm that y1 is the lexicographically
optimal point or to replace it by the true lexicographically optimal point.

In Phase 2 any other non-dominated points are determined, in particular non-
supported non-dominated points YNN . After Phase 1 it is possible to restrict the
search for non-dominated points to triangles defined by consecutive non-dominated
extreme points, see Fig. 19.10a. In the literature, several methods have been
proposed to achieve that. Neighbourhood search as suggested, e.g. in [52, 86] is
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Fig. 19.10 (a) The triangles where non-supported non-dominated points may be located.
(b) Ranking non-supported non-dominated points

in general wrong, because efficient solutions are in general not connected via a
neighbourhood structure, see Sect. 19.1.3. One can apply constraints to restrict
objective values to triangles and modify those constraints as further points are
discovered. However, the computational effort may be high, in particular because
problems tend to get harder when adding further (knapsack type) constraints, see
Sect. 19.1.2. This idea is therefore contrary to the spirit of the two phase method.
Variable fixing strategies as suggested by Ulungu and Teghem [97] can be a
reasonable alternative. However, currently the best performing two phase algorithms
are those that exploit a ranking algorithm that generates solutions of single objective
(weighted sum) problems in order of their objective value (Fig. 19.10b). The ranking
method has been successfully applied for a number of bi-objective problems,
namely bi-objective assignment [71], multi-modal assignment [67], spanning tree
[92], shortest path [75], integer network flow [76], and binary knapsack [40]. It is
important to note that for all these problems efficient ranking algorithms to find r-
best solutions of the single objective version of the problem are available, references
to which can be found in the original papers.

The ranking algorithm is applied to weighted sum problems corresponding to
each triangle (see Fig. 19.10b). Let � 2 R

2
> be a weight vector defined as the normal

to the line connecting two consecutive non-dominated extreme points, e.g. �T D
.4; 2/ (left triangle) and �T D .3; 4/ (right triangle) in Fig. 19.10b. The ranking
algorithm then finds second, third, etc. best solutions for the problem of minimising
�TCx, in increasing order of objective values for �TCx as shown in Fig. 19.10b.
The two non-dominated extreme points defining the triangle (and � according to
Eq. (19.11)) define optimal values for this problem.

This process stops at the latest once a solution, the (weighted sum) objective
function value of which is worse than that of the third corner of the triangle, is found.
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In Fig. 19.10b, with �T D .3; 4/ the algorithm finds .6; 2/T with objective 26, then
.5; 3/T with objective value 27. Both points are non-dominated. The 4th best point
is .6; 3/T , which is dominated by both previous points. The algorithm can now be
stopped, because any further point would also be dominated. This indicates that
the enumeration of solutions can be stopped even before the ranking algorithm has
identified a feasible solution outside the triangle.

In order to facilitate this, upper bounds on the weighted sum objective value of
any efficient solution in the triangle can be derived. Let fxi W 0 5 i 5 qg be feasible
solutions with z.xi/ 2 �.x0; xq/, the triangle defined by z.x0/ and z.xq/, sorted by
increasing value of z1, where z.x0/ and z.xq/ are two consecutive non-dominated
extreme points of conv.Y/. Let

ˇ0 WD q�1
max
iD0 f�1z1.x

iC1/C �2z2.xi/g; (19.12)

ˇ1 WD max

�
q�1
max
iD1 f�

1z1.xi/C �2z2.xi/g;

q
max
iD0 f�

1.z1.xi/ � 1/C �2.z2.xi�1/ � 1/g
�

; (19.13)

ˇ2 WD q
max
iD0 f�

1.z1.xi/ � 1/C �2.z2.xi�1/ � 1/g: (19.14)

Then ˇ0 = ˇ1 = ˇ2 are upper bounds for the weighted sum objective value of
any non-dominated point in �.x0; xq/. The ranking process can be stopped as soon
as bound ˇj is reached. The use of ˇ0 and ˇ1 from Eqs. (19.12) and (19.13) allows
the computation of the maximal complete set, whereas ˇ2 guarantees a minimal
complete set only. Notice that these bounds will be improved every time a new
efficient solution is found. In Fig. 19.10b, the initial bound ˇ2 using Eq. (19.14)
with fy0 D .3; 4/T ; y1 D .7; 1/Tg is 30, but once .6; 2/T is found this improves to
27 and with .5; 3/T also discovered to 24. Clearly no additional feasible point in the
triangle can be better than that bound.

The two phase method involves the solution of enumeration problems. In order
to find a maximal complete set one must, of course, enumerate all optimal solutions
of minx2X �

TCx for all weighted sum problems solved in Phase 1 and enumerate all
x 2 XNE with Cx D y 2 YND for all non-supported non-dominated points y. But
even in order to compute a minimal complete set enumeration is necessary to find
XSE2. There can indeed be many optimal solutions of minx2X �

TCx that are non-
extreme and not equivalent to one another (see, e.g. points .1; 8/T ; .2; 6/T ; .3; 4/T in
Fig. 19.8a).

As an example of an effective implementation of a two phase method, Przybylski
et al.[71] have developed a two phase algorithm for the bi-objective assignment
problem using the Hungarian method [50] to solve weighted sum assignment prob-
lems, an enumeration algorithm by Fukuda and Matsui [35] to enumerate all optimal
solutions of these problems, and a ranking algorithm for (non-optimal) solutions
of minx2X �

TCx by Chegireddy and Hamacher [12]. The algorithm outperformed a
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two phase method using variable fixing, a two phase method using a heuristic to
find good feasible solution before Phase 2, general exact MOCO algorithms, and
CPLEX using constraints on objectives. An explanation for the good performance
of the method is given by the distribution of objective function values for randomly
generated instances.

19.4.2 The Two Phase Method for Three Objectives

Extending the two phase method to three objectives is not trivial. In Phase 1, a
weight vector defines the normal to a plane. While three non-dominated points
are sufficient to calculate such a weight vector, there may be up to six different
lexicographically optimal points, so it is unclear which points to choose for
calculating weights to start with. Moreover, even if the minimisers of the three
objective functions are unique (and therefore there are only three lexcicographically
optimal solutions), the normal to the plane defined by three non-dominated points
may not be positive. In this case no further non-dominated points would be
calculated, see an example presented in [72].

Hence, a direct generalisation of the two phase method already fails with the
initialisation. Two generalisations of Phase 1 have been proposed by Przybylski et
al. [72] and Özpeynirci and Köksalan [64]. We present the ideas of [72], where Phase
1 relies on decomposition of the simplex of all non-negative normalised weights

W0 WD
(

� 2 R
p
> W �p D 1 �

p�1X

kD1
�k

)

(19.15)

into subsets

W0.y/ WD f� 2 W0 W �Ty 5 �tY 0 for all y0 2 Yg (19.16)

of W0 consisting of all weight vectors � such that y is a point minimising �Ty over
Y. It turns out that y is a non-dominated extreme point if and only if W0.y/ has
dimension p � 1. This allows us to define adjacency of non-dominated extreme
points as follows. Non-dominated extreme points y1 and y2 are adjacent if and only
if W0.y1/ \W0.y2/ is a polytope of dimension p � 2, which then makes it possible
to derive the optimality condition of Theorem 8.

Theorem 8 ([72]). If S is a set of supported non-dominated points then

YSN1 � S() W0 D
[

y2S

W0.y/: (19.17)
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The results above lead to a new Phase 1 algorithm. Let S be a set of supported
non-dominated points. Let W0

p .y/ D f� 2 W0 W �Ty 5 �Ty� for all y� 2 Sg. Then
W0.y/ � W0

p .y/ for all y 2 S and W0 D S
y2S W0

p .y/. The algorithm initialises S
with the lexicographically optimal points. While S is not empty it chooses Oy 2 S,
computes W0

p .Oy/ and investigates all facets F of W0
p .Oy/ defined by �T Oy D �Ty0 for

y0 2 S to determine whether F is also a facet of W0.Oy/. If Oy minimises �Ty for all
� 2 F then Oy and y0 are adjacent and F is the common face of W0.Oy/ and W0.y0/. If
there are y� 2 Y and � 2 F such that �Ty� < �Ty then W0.Oy/ is a proper subset of
W0

p .Oy/, y� is added to S and W0
p .Oy/ is updated.

At the end of Phase 1, all non-dominated extreme points of Y and a complete
set of extreme efficient solutions are known. Any other supported efficient solutions
must be optimal solutions to weighted sum problems with � belonging to 0- and
1-dimensional faces of some W0.y/ of some non-dominated extreme point y. To
find these, for each y 2 YSN1, we find all optimal solutions of weighted sum
problems (19.5) defined firstly by weight vectors � that are extreme points of W0.y/
which are not located on the boundary of W0, and secondly by weight vectors �
located in the interior of edges of W0.y/ the extreme points of which belong to the
boundary of W0.

To find non-supported non-dominated points one can once again employ a
ranking algorithm for weighted sum problems, where � is chosen to be a normal
to a facet defining hyperplane of conv.Y/ C R

p
=. Note that this is analogous to the

bi-objective case. The difficult part in the completion of the Phase 2 algorithm is
the computation of good upper bounds and the selection of weights in a way that
keeps the ranking of solutions as limited as possible. Here the difficulty arises from
the fact that unlike in the case of two objectives, the area where non-supported non-
dominated points can be found does not decompose into disjoint subsets, see also
Sect. 19.1.4. Details about Phase 2 for multi-objective combinatorial optimisation
problems can be found in [73], where its generalisation to more than three objectives
via a recursive scheme is also discussed.

Numerical results in [70] show that the method outperforms three general
methods to solve MOCO problems by a factor of up to 1000 on the three objective
assignment problem. The biggest advantage of the two phase method is that it
respects problem structure, thereby enabling to use efficient algorithms for single
objective problems as much as possible.

19.4.3 Two-Phase Algorithms from the Literature

Two-phase algorithms from the literature are summarised in Table 19.4. We list the
MOCO problem for which the algorithm has been designed, the methods used for
Phases 1 and 2, and the reference.
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Table 19.4 Two-phase algorithms

MOCO problem Phase 1 approach Phase 2 approach Reference

Bi-objective integer network
flow

Parametric Local search [52]

Bi-objective integer network
flow

Parametric Local search [86]

Bi-objective integer network
flow

Parametric Ranking [76]

Bi-objective assignment Dichotomic Variable fixing [97]

Bi-objective assignment Dichotomic Variable fixing [96]

Bi-objective assignment Dichotomic Ranking [71]

Three-objective assignment Dichotomic Ranking [72, 73]

Bi-objective multimodal
assignment

Dichotomic Ranking [67]

Bi-objective spanning tree Dichotomic Ranking, branch and bound [92]

Bi-objective shortest path Parametric Label correcting [59]

Bi-objective shortest path Dichotomic Label correcting, label setting [75]
Parametric Ranking

Bi-objective knapsack Dichotomic Branch and bound [101]

Bi-objective knapsack Dichotomic Ranking [40]

Three-objective knapsack Dichotomic Ranking [40]

19.5 Multi-Objective Branch and Bound

Branch and bound is a standard method to solve single objective combinatorial opti-
misation problems and is contained in any textbook on combinatorial optimisation.
In order to apply it to multi-objective combinatorial optimisation problems, we need
to define the branching and the bounding parts of the algorithm. Branching refers to
the method used to partition the feasible set of a combinatorial optimisation problem
into two or more disjoint subsets that define new subproblems. Bounding refers to
the computation of lower and upper bounds (bound sets), see Sect. 19.1.4, and their
use to eliminate subproblems from further consideration. Apart from branching and
bounding, a strategy to select the next subproblem for evaluation is required. We
address these questions based on contributions to the MOCO literature in turn.

19.5.1 Branching and Node Selection

The branching strategy concerns only the feasible set of the problem, hence there
is no difference in partitioning the feasible set of a subproblem between the single
and multiple objective cases. Nevertheless, the rules used to decide the branching
may involve the objective function coefficients. Several authors propose branching
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strategies for the multi-objective binary knapsack problem

max

8
<

:

0

@
nX

jD1
c1j xj; : : : ;

nX

jD1
cp

j xj

1

A W
nX

jD1
wjxj 5 !; x 2 f0; 1gp

9
=

;
; (19.18)

where ck
j and wj are non-negative integer numbers. For p D 1, algorithms often

use the rank of a variable according to decreasing value-to-weight ratio cj=wj. They
define the branching strategy by setting variables with small rank equal to one and
those with high rank equal to 0, see [43].

In the multi-objective case, Ulungu and Teghem [98] propose to consider the rank
rk

j of each item j according to ratio ck
j =wj for k 2 f1; : : : ; pg, and to order the items

by decreasing value of the sum of the ranks
P

kD1;:::;p rk
j . Bazgan et al. [3] use an

order obtained from the decreasing sum of ratios
P

kD1;:::;p ck
j =wj, increasing worst

rank maxkD1;:::;p rk
j and best rank minkD1;:::;p rk

j . Jorge [40] proposes orders respecting
the dominance relation between vectors of ratios .c1j =wj; : : : ; c

p
j =wj/. Jorge [40]

also proposes to count for each item j the number of items jdom.j/j dominating
it, ordering items by increasing value of jdom.j/j. Finally, Jorge [40] suggests to
order items according increasing rank following a principle from evolutionary multi-
objective algorithms, see [18]. The choice of order has a considerable impact on
solution times, as [40] demonstrates.

Other branching strategies that are popular in single objective branch and bound
methods require the evaluation of (relaxed) solutions of subproblems (such as
computing the fractionality of variables in the LP relaxation of a binary optimisation
problem) and have not yet been modified for the use in multi-objective branch and
bound algorithms.

Typical node selection strategies follow a depth-first or breadth-first principle and
can be adapted to multi-objective branch and bound without changes. In fact, most
published algorithms follow a depth-first strategy. More elaborate methods, such as
best-first strategies on the other hand require adaptations such as the comparison
of bound sets, and the difficulties this raises have so far prevented researchers to
implement such strategies.

19.5.2 Bounding and Fathoming Nodes

Multi-objective branch and bound algorithms from the literature maintain a set of
(feasible) points that defines an upper bound set U and the algorithms terminate
as soon as U D YN . U can be initialised as f.1; : : : ;1/g or by a set of feasible
solutions that are obtained by heuristic methods. The upper bound set is updated
any time a new feasible solution is found. For each subproblem, or node of the
branch and bound tree, a lower bound set L for the set YN of non-dominated points
of the subproblem is computed.
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A node of the branch and bound tree can be fathomed if

1. The subproblem has an empty feasible set (infeasibility);
2. The non-dominated set YN of the subproblem belongs to L (optimality);
3. For every l 2 L there exists some u 2 U such that u 5 l (dominance).

Notice that fathoming a subproblem by optimality is often only practically
possible if L consists of a single feasible point. The general condition YN � L
is, however, very difficult to verify. Indeed, because L is generally a continuous
set, whereas U is a discrete set of points, fathoming a node by dominance (or even
optimality) is not trivial. Several researchers have proposed methods for the practical
application of the dominance test. Przybylski et al. [73] describe a method which,
for a given (feasible) upper bound set U computes a set of points D.U/ such that
the condition that the non-dominated set lies between the lower and upper bound
set can be written in a way that is easier to use algorithmically, see Fig. 19.11a,b for
illustrations of D.U/.

Proposition 1. Let L and Ube upper bound sets for YN. Then

	
LC R

p
=



n �U C R

p
>

� D
	

LC R
p
=



\ [u2D.U/

	
u �R

p
=



: (19.19)

Then, all points in L are weakly dominated by points in U if and only if all
points in D.U/ are not dominated by any points in L. This rule for fathoming by
dominance is illustrated in Fig. 19.11a. In the case that all y 2 Y are integer vectors,
the fathoming rule can be improved, as shown in Fig. 19.11b, for details we have to
refer to [73, 90].

Sourd and Spanjaard [90] reformulate the dominance condition via strictly
monotone functions h W Rp ! R, i.e. y1 < y2 implies h.y1/ < h.y2/: If a strictly
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Fig. 19.11 (a) The node can be fathomed by dominance. (b) The node can be fathomed by
dominance assuming Y � Z

p
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monotone function h is such that h.l/ = 0 for all l 2 L and h.u/ 5 0 for all u 2 U
then h.y/ = 0 for all y 2 YN . Sourd and Spanjaard [90] provide classes of functions
h for the case that LCR

p
= is a polyhedron and p D 2.

19.5.3 Multi-Objective Branch and Bound Algorithms
from the Literature

In this section, we provide a tabular summary of multi-objective branch and bound
algorithm from the literature. For each algorithm in Table 19.5, we first mention
the MOCO problem to which the algorithm is applied, where BO stands for bi-
objective, TO for three-objective and MO for multi-objective. Then we provide
specifications for the algorithm, namely lower and upper bound sets used, the
branching and node selection strategies and the method used to find new feasible
solutions. Finally, we list the reference. Note that the column headings refer to
minimisation problems, so the interpretation of lower and upper bound set is
reversed for problems that are formulated with maximisation objectives.

19.6 Conclusion

In this chapter we have summarised exact algorithmic approaches for solving
multi-objective combinatorial optimisation problems. We have focused on general
algorithmic schemes of increasing complexity. Starting from dynamic programming
and greedy schemes, we also considered scalarisation and general algorithms
based on scalarisation and the two-phase method as a specific technique for
multi-objective optimisation. Finally, we covered multi-objective branch and bound
algorithms. We do not claim that the surveys in any of these sections are exhaustive,
since new algorithms appear all the time, and researchers in diverse fields are
today involved in the development of new algorithms. A lot of algorithms are also
being developed specifically for particular MOCO problems. We just mention [57]
for an adaptation of the concept of the core of a knapsack problem to the bi-
objective case and [79] for non-additive multi-objective shortest path problems.
Furthermore, new general algorithmic ideas begin to make an appearance in multi-
objective combinatorial optimisation. Jozefowiez et al. [41] combine an "-constraint
method with branch-and-cut to solve the bi-objective covering tour problem.
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Table 19.5 Multi-objective branch and bound algorithms

MOCO
problem

Upper
bound

Lower
bound Branching

Node
selection

Feasible
solutions Reference

MO binary Incumbent
set

Utopia point Variable
fixing

Depth-first Variable
fixing

[45]

BO knapsack Incumbent
set

Utopia point Variable
fixing

Depth-first Variable
fixing

[98]

BO knapsack Adaptation of [98] restricted to triangles [101]

BO spanning
tree

Incumbent
set

Utopia point Edge
fixing

Depth-first At leaves [78]

BO spanning
tree

Incumbent
set

Convex
relaxation

Edge
fixing

Depth-first Convex
relaxation
at nodes

[90]

MO knapsack Incumbent
set

Ideal point
LP
relaxation

Variable
fixing

Depth-first At leaves [34]

TO knapsack Incumbent
set

Utopia point Variable
fixing

Depth-first At leaves [40]

TO knapsack Incumbent
set

Convex
relaxation

Variable
fixing

Lexicographic
order of 5
criteria

Part of
UB

[40]

BO
assignment

Adaptation of [90] restricted to triangles [19]

BO flow shop No details No details No details Depth-first No details [58]

BO mixed
integer

Incumbent
set

Ideal point
of LP
relaxation

Variable
fixing

Depth-first LP at
leaves

[54, 55]

BO mixed
integer

Extended
incumbent
set

LP
relaxation

Variable
fixing

Depth-first LP at
leaves

[100]

Recently, researchers are developing algorithms that use (single objective) integer
programming solvers as a black box. These approaches exploit the tremendous
advantages that have been made in single objective combinatorial optimisation
algorithms and solvers, see [9] for one such method. Also, new methodologies
using tools from algebraic geometry emerge, see [7]. We have not touched at all
on the vast field of heuristic and metaheuristic algorithms for MOCO problems,
or the increasing interest that approximation algorithms received, see e.g. [4] and
references therein. All of these established research directions and newly emerging
areas offer plenty open questions for future research.
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Chapter 20
Fuzzy Multi-Criteria Optimization: Possibilistic
and Fuzzy/Stochastic Approaches
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Abstract In this chapter, we review fuzzy multi-criteria optimization focusing
on possibilistic treatments of objective functions with fuzzy coefficients and on
interactive fuzzy stochastic multiple objective programming approaches. In the first
part, treatments of objective functions with fuzzy coefficients dividing into single
objective function case and multiple objective function case. In single objective
function case, multi-criteria treatments, possibly and necessarily optimal solutions,
and minimax regret solutions are described showing the relations to multi-criteria
optimization. In multiple objective function case, possibly and necessarily efficient
solutions are investigated. Their properties and possible and necessary efficiency
tests are shown. As one of interactive fuzzy stochastic programming approaches,
multiple objective programming problems with fuzzy random parameters are
discussed. Possibilistic expectation and variance models are proposed through
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20.1 Introduction

In mathematical programming problems, parameters such as coefficients and right-
hand side values of constraints have been assumed to be given as real numbers.
However, in real world problems, there are cases that those parameters cannot
be given precisely by lack of knowledge or by uncertain nature of coefficients.
For example, rate of return of investment, demands for products, and so on are
known as uncertain parameters. Moreover, time for manual assembly operation and
the cost of a taxi ride can also be ambiguous and depend on the worker’s skill
and the degree of traffic congestion, respectively. Those uncertain parameters have
been treated as random variables so that the mathematical programming problems
become stochastic programming problems [85, 86].

To formulate a stochastic programming problem, we should estimate a proper
probability distribution which parameters obey. However, the estimation is not
always a simple task because of the following reasons: (1) historical data of some
parameters cannot be obtained easily especially when we face a new uncertain
variable, and (2) subjective probabilities cannot be specified easily when many
parameters exist. Moreover, even if we succeeded to estimate the probability
distribution from historical data, there is no guarantee that the current parameters
obey the distribution actually.

We may often come across that we can estimate the possible ranges of the
uncertain parameters. For example, we may find out a possible range of cost
of taxi ride through experience if we almost know the distance and the traffic
quantity. Then, it is conceivable that we represent the possible ranges by fuzzy
sets and formulate the mathematical programming problems as fuzzy programming
problems [10, 25, 31, 59, 66, 78, 80, 83, 85].

In this paper, we introduce approaches to mathematical programming problems
with fuzzy parameters dividing into two parts. In the first part, we review treatments
of objective functions with fuzzy coefficients dividing into single objective function
case and multiple objective function case. In both cases, the solutions are studied
first in problems with interval coefficients and then in the problems with fuzzy
coefficients.

In the single objective function case, we show that multi-criteria treatments
of an objective function with coefficients using lower and upper bounds do not
always produce good solutions. Then possibly and necessarily optimal solutions
are introduced. The relations of those solution concepts with solution concepts
in multi-criteria optimization are described. A necessarily optimal solution is the
most reasonable solution but it does not exist in many cases while a possibly
optimal solution always exists when the feasible region is bounded and nonempty
but it is only one of least reasonable solutions. Then minimax regret and maximin
achievement solutions are introduced as a possibly optimal solution minimizing
the deviation from the necessary optimality. Those solutions can be seen as robust
suboptimal solutions.

In the multiple objective function case, possibly and necessarily efficient solu-
tions are introduced as the extensions of possibly and necessarily optimal solutions.
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Because many efficient solutions exist usually in the conventional multiple objective
programming problem, it is highly possible that necessarily optimal solutions exist.
The properties of possibly and necessarily efficient solutions are investigated.
Moreover the possible and necessary efficient tests are described.

In the second part, we consider a case where a part of uncertain parameters can
be expressed by random variables but the other part can be expressed by fuzzy
numbers. In order to take into consideration not only fuzziness but also randomness
of the coefficients in objective functions, multiple objective programming problems
with fuzzy random coefficients are discussed. By incorporating possibilistic and
stochastic programming approaches, possibilistic expectation and variance models
are proposed. It is shown that multiple objective programming problems with fuzzy
random coefficients can be deterministic linear or nonlinear multiple objective
fractional programming problems. Interactive algorithms for deriving a satisficing
solution of a decision maker are provided.

20.2 Problem Statement and Preliminaries

Multiple objective linear programming (MOLP) problems can be written as

maximize .cT
1x; cT

2x; : : : ; cT
p x/T;

subject to aT
i x D bi; i D 1; 2; : : : ;m;

x 	 0;
(20.1)

where ck D .ck1; ck2; : : : ; ckn/
T, k D 1; 2; : : : ; p and ai D .ai1; ai2; : : : ; ain/

T,
i D 1; 2; : : : ;m are constant vectors and bi, i D 1; 2; : : : ;m constants. x D
.x1; x2; : : : ; xn/

T is the decision variable vector.
In MOLP problems, many solution concepts are considered (see [13]). In this

chapter, we describe only the following three solution concepts:

Complete optimality: A feasible solution Ox is said to be completely optimal if and
only if we have cT

k Ox 	 cT
k x, k D 1; 2; : : : ; p for all feasible solution x.

Efficiency: A feasible solution Ox is said to be efficient if and only if there is no
feasible solution x such that cT

k x 	 cT
k Ox, k D 1; 2; : : : ; p with at least one strict

inequality.
Weak efficiency: A feasible solution Ox is said to be weakly efficient if and only if

there is no feasible solution x such that cT
k x > cT

k Ox, k D 1; 2; : : : ; p.

In the conventional MOLP problem (20.1), the coefficients and right-hand side
values are assumed to be specified as real numbers. However, in the real world
applications, we may face situations where coefficients and right-hand side values
cannot be specified as real numbers by the lack of exact knowledge or by their
fluctuations. Even in those situations there are cases when ranges of possible val-
ues for coefficients and right-hand side values can be specified by experts’ vague
knowledge. In the first part of this paper, we assume that those ranges are expressed
by fuzzy sets and consider the MOLP problem with fuzzy coefficients. Because we
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focus on the treatments of objective functions with fuzzy coefficients, we assume
the constraints are crisp so that they do not include any fuzzy parameters. However,
the constraints with fuzzy parameters are often reduced to the crisp constraints in
fuzzy/possibilistic programming approaches [10, 25, 31].

MOLP problems with fuzzy numbers treated in the first part of this chapter can
be represented as

maximize .QcT
1x; QcT

2x; : : : ; QcT
p x/T;

subject to x 2 X;
(20.2)

where we define

X D fx 2 Rn j aT
i x D bi; i D 1; 2; : : : ;m; x 	 0g: (20.3)

Qck D .Qck1; Qck2; : : : ; Qckn/
T, k D 1; 2; : : : ; p is a vector of fuzzy coefficients. Qckj,

j D 1; 2; : : : ; n, k D 1; 2; : : : ; p are fuzzy numbers. A fuzzy number Qc is a fuzzy
set on a real line whose membership function �Qc W R ! Œ0; 1� satisfies (see, for
example, [11])

(i) Qc is normal, i.e., there exists r 2 R such that �Qc.r/ D 1.
(ii) �Qc is upper semi-continuous, i.e., the h-level set ŒQc�h D fr 2 R j �Qc.r/ 	 hg is

a closed set for any h 2 .0; 1�.
(iii) Qc is a convex fuzzy set. Namely, �Qc is a quasi-concave function, i.e., for any r1,

r2 2 R, for any � 2 Œ0; 1�, �Qc.�r1C .1��/r2/ 	 min.�Qc.r1/; �Qc.r2//. In other
words, h-level set ŒQc�h is a convex set for any h 2 .0; 1�.

(iv) Qc is bounded, i.e., limr!C1�Qc.r/ D limr!�1 �Qc.r/ D 0. In other words, the
h-level set ŒQc�h is bounded for any h 2 .0; 1�.

From (ii) to (iv), an h-level set ŒQc�h is a bounded closed interval for any h 2 .0; 1�
when Qc is a fuzzy number. L-R fuzzy numbers are often used in literature. An L-R
fuzzy number Qc is a fuzzy number defined by the following membership function:

�Qc.r/ D

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

L

�
cL � r

˛

�

; if r � cL and ˛ > 0;

1; if r 2 ŒcL; cR�;

R

�
r � cR

ˇ

�

; if r 	 cR and ˇ > 0;

0; otherwise;

(20.4)

where L and R W Œ0;C1/ ! Œ0; 1� are reference functions, i.e., L.0/ D R.0/ D 1,
limr!C1 L.r/ D limr!C1 R.r/ D 0 and L and R are upper semi-continuous non-
increasing functions. ˛ and ˇ are assumed to be non-negative.

An example of L-R fuzzy number Qc is illustrated in Fig. 20.1. As shown in
Fig. 20.1, cL and cR are lower and upper bounds of the core of Qc, i.e., Core.Qc/ D fr j
�Qc.r/ D 1g. ˛ and ˇ show the left and right spreads of Qc. Functions L and R specify
the left and right shapes. Using those parameters and functions, fuzzy number Qc is
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Fig. 20.1 L-R fuzzy number
Qc D .cL; cR; ˛; ˇ/LR

represented as Qc D .cL; cR; ˛; ˇ/LR. A membership degree�Qc.r/ of fuzzy coefficient
Qc shows the possibility degree of an event ‘the coefficient value is r’.

Problem (20.2) has fuzzy coefficients only in the objective functions. In Prob-
lem (20.2), we should calculate fuzzy linear function values QcT

k x, k D 1; 2; : : : ; p.
Those function values can be fuzzy quantities since the coefficients are fuzzy num-
bers. The extension principle [11] defines the fuzzy quantity of function values of
fuzzy numbers. Let g W Rq ! R be a function. A function value of .Qc1; Qc2; : : : ; Qcq/,
i.e., g.Qc1; Qc2; : : : ; Qcq/ is a fuzzy quantity QY with the following membership function:

�QY .y/ D

8
ˆ̂
<

ˆ̂
:

sup
rWg.r/Dy

min
�
�Qc1 .r1/; �Qc2 .r2/; : : : ; �Qcq.rq/

�
;

if 9r D .r1; r2; : : : ; rq/I g.r/ D y;
0; otherwise.

(20.5)

Since Qc is a vector of fuzzy numbers Qci whose h-level set is a bounded closed interval
for any h 2 .0; 1�, we have the following equation (see [11]) when g is a continuous
function;

Œ QY�h D g.ŒQa�h/; 8h 2 .0; 1�; (20.6)

where ŒQc�h D .ŒQc1�h; ŒQc2�h; : : : ; ŒQcq�h/. Note that ŒQcj�h is a closed interval since Qcj is
a fuzzy number. Equation (20.6) implies that h-level set of function value QY can be
obtained by interval calculations. Moreover, since g is continuous, from (20.6), we
know that Œ QY�h is also a closed interval and Œ QY�1 ¤ ;. Therefore, QY is also a fuzzy
number.

Let g.r/ D rTx, where we define r D .r1; r2; : : : ; rn/
T. We obtain the fuzzy linear

function value QcT
k x as a fuzzy number g.Qck/. For x 	 0, we have

ŒQcT
k x�h D

2

4
nX

jD1
cL

kj.h/xj;

nX

jD1
cR

kj.h/xj

3

5 ; 8h 2 .0; 1�; (20.7)

where cL
kj.h/ and cR

kj.h/ are lower and upper bounds of h-level set ŒQckj�h, i.e., cL
kj.h/ D

infŒQckj�h and cR
kj.h/ D supŒQckj�h. Note that when Qckj is an L-R fuzzy number .cL

kj; c
R
kj;

�L
kj; �

R
kj/LkjRkj , we have
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cL
kj.h/ D cL

kj � �L
kjL

.�1/
kj .h/; cR

kj.h/ D cR
kj C �R

kj R
.�1/
kj .h/; (20.8)

where L.�1/kj and R.�1/kj are pseudo-inverse functions of Lkj and Rkj defined by

L.�1/kj .h/ D supfr j Lkj.r/ 	 hg and R.�1/kj .h/ D supfr j Rkj.r/ 	 hg.
In Problem (20.2), each objective function value QcT

k x is obtained as a fuzzy
number. Minimizing a fuzzy number QcT

k x cannot be clearly understood. Therefore,
Problem (20.2) is an ill-posed problem. We should introduce an interpretation of
Problem (20.2) so that we can transform the problem to a well-posed problem.
Many interpretations have been proposed. In the first part of this paper, we describe
the interpretations from the viewpoint of optimization. For the other interpretations
from viewpoint of satisficing, see, for example, [10, 25].

Possibility and necessity measures of a fuzzy set QB under a fuzzy set QA are defined
as follows (see [12]):

˘QA. QB/ D sup
r

min.�QA.r/; �QB.r//; (20.9)

NQA. QB/ D inf
r

max.1 � �QA.r/; �QB.r//: (20.10)

Those possibility and necessity measures are depicted in Fig. 20.2.
When fuzzy sets QA and QB � Rq have upper semi-continuous membership func-

tions and QA is bounded, we have, for any h 2 .0; 1�,

˘QA. QB/ 	 h, Œ QA�h \ Œ QB�h ¤ ;; (20.11)

NQA. QB/ 	 h, . QA/1�h � Œ QB�h , cl. QA/1�h � Œ QB�h; (20.12)

where QA is said to be bounded when Œ QA�h is bounded for any h 2 .0; 1�. . QA/1�h is a
strong .1 � h/-level set of QA defined by . QA/1�h D fr j �QA.r/ > 1 � hg. In (20.11)
and (20.12), we may understand that the possibility measure shows to what extent QA
intersects with QB while the necessity measure shows to what extent QA is included in
QB. This interpretation is true even for other conjunction and implication functions T
and I.

Fig. 20.2 Possibility and
necessity measures

~ ~

~

~

~

~

~
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20.3 Single Objective Function Case

In this section, we treat Problem (20.2) with p D 1, i.e., single objective function
case. In the single objective function case, there are many approaches (see for
example, [15, 32, 40, 79, 90]). These approaches can be divided into two classes:
satisficing approach and optimizing approach. The satisficing approach use a goal,
the objective function value with which the decision maker is satisfied, while the
optimizing approach does not use such a goal but generalizes the optimality concept
to the case with uncertain coefficients. We describe the optimizing approaches to
Problem (20.2) with p D 1 in this section. We demonstrate that even in the single
objective function case, Problem (20.2) with p D 1 has a deep connection to multi-
criteria optimization.

When p D 1, Problem (20.2) is reduced to

maximize QcT
1x;

subject to x 2 X:
(20.13)

20.3.1 Optimization of Upper and Lower Bounds

When fuzzy coefficients Qc1j, j D 1; 2; : : : ; n degenerate to intervals ŒcL
1j; c

R
1j�, j D

1; 2; : : : ; n, Problem (20.13) becomes an interval programming problem. In this
case, Problem (20.13) is formulated as the following bi-objective linear program-
ming problem in many papers [15, 40, 79, 91]:

maximize
	

cL
1

Tx; cR
1

Tx

T
;

subject to x 2 X;
(20.14)

where cL
1 D .cL

11; c
L
12; : : : ; c

L
1n/

T and cR
1 D .cR

11; c
R
12; : : : ; c

R
1n/

T.
The inequality relation between two interval A D ŒaL; aR� and B D ŒbL; bR� is

frequently defined by

A 	 B, aL 	 bL and aR 	 bR: (20.15)

Problem (20.14) would be understood as a problem inspired from this inequality
relation. Moreover, because Problem (20.14) maximizes the lower and upper bounds
of objective function value simultaneously, it can be also seen as a problem max-
imizing the worst objective function value and the best objective function value.
Namely, it is a model applied simultaneously the maximin criterion and the max-
imax criterion proposed for decision making under strict uncertainty. An efficient
solution to Problem (20.14) is considered as a reasonable solution in this approach.
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Extending this idea to general fuzzy coefficient case, we may have the following
linear programming (LP) problem with infinitely many objective functions [91]:

maximize

 
cL
1 .h/

Tx; 8h 2 .0; 1�
cR
1 .h/

Tx; 8h 2 .0; 1�

!

;

subject to x 2 X;

(20.16)

where cL
1 .h/ D .cL

11.h/; c
L
12.h/; : : : ; c

L
1n.h//

T and cR
1 .h/ D .cR

11.h/; c
R
12.h/; : : : ;

cR
1n.h//

T.
This formulation is also related to the following inequality relation between fuzzy

numbers QA and QB (see [75, 91]):

QA 	 QB, aL.h/ 	 bL.h/ and aR.h/ 	 bR.h/; 8h 2 .0; 1�; (20.17)

where we define for h 2 .0; 1�, aL.h/ D infŒ QA�h, bL.h/ D infŒ QB�h, aR.h/ D supŒ QA�h
and bR.h/ D supŒ QB�h.

When all fuzzy coefficients Qc1j are assumed to be L-R fuzzy numbers .cL
1j; c

R
1j;

�L
1j; �

R
1j/LR with same left and right reference functions L and R such that L.1/ D

R.1/ D 0 and 8r 2 Œ0; 1/, L.r/ > 0, R.r/ > 0, the following LP problem with four
objective functions are considered:

maximize
	

cL
1

Tx; cR
1

Tx; .cL
1 � �L

1 /
Tx; .cR

1 C �R
1 /

Tx

T
;

subject to x 2 X;
(20.18)

where cL
1 D .cL

11; c
L
12; : : : ; c

L
1n/

T, cR
1 D .cR

11; c
R
12; : : : ; c

R
1n/

T, �L
1 D .�L

11; �
L
12; : : : ; �

L
1n/

T,
�R
1 D .�R

11; �
R
12; : : : ; �

R
1n/

T.
The following theorem shows the equivalence between Problems (20.16) and

(20.18).

Theorem 1. The efficient solution set Effmany of Problem (20.16) coincides with the
efficient solution set Efffour of Problem (20.18).

Proof. Let x 62 Eff four. Then there exists Nx 2 X such that

cL
1

T Nx 	 cL
1

Tx; cR
1

T Nx 	 cR
1

Tx;
.cL
1 � �L

1 /
T Nx 	 .cL

1 � �L
1 /

Tx;
.cR
1 C �R

1 /
T Nx 	 .cR

1 C �R
1 /

Tx

.�/

with at least one strict inequality. For L-R fuzzy numbers .cL
1j; c

R
1j; �

L
1j; �

R
1j/LR, as

in (20.8), we have

cL
1j.h/ D cL

1j � �L
1jL

.�1/.h/; cR
1j.h/ D cR

1j C �R
1jR

.�1/.h/;
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for any h 2 .0; 1�. From L.1/ D R.1/ D 0 and 8r 2 .0; 1�, L.r/ > 1 and R.r/ > 1,
we have 8h 2 .0; 1�, L.�1/.h/ 2 Œ0; 1� and R.�1/.h/ 2 Œ0; 1�. From .�/, we obtain

cL
1 .h/

T Nx 	 cL
1 .h/

Tx; cR
1 .h/

T Nx 	 cR
1 .h/

Tx; 8h 2 .0; 1� .��/

with at least one strict inequality. Then we obtain x 62 Eff many.
On the contrary, let x 62 Eff many. Then there exists Nx 2 X such that .��/ with

at least one strict inequality holds. Because .��/ holds, we have .�/. Then we
shall show that .�/ holds with at least one strict inequality. We can prove this
dividing into two cases: (a) 9Nh 2 .0; 1�, cL

1 .h/
T Nx > cL

1 .h/
Tx and (b) 9Nh 2 .0; 1�,

cR
1 .h/

T Nx > cR
1 .h/

Tx. In case (a), if L.�1/.Nh/ D 0, we obtain cL
1

T Nx > cL
1

Tx and this
directly implies that .�/ holds with at least one strict inequality. Then we assume
L.�1/.Nh/ ¤ 0 and cL

1

T Nx D cL
1

Tx. This and condition for (a) imply�L.�1/.Nh/.�L
1

T Nx/ >
�L.�1/.Nh/.�L

1

Tx/. Because we have L.�1/.Nh/ ¤ 0 and L.�1/.Nh/ 2 Œ0; 1�, we obtain

.cL
1 � �L

1 /
T Nx > .cL

1 � �L
1 /

Tx, i.e., .�/ holds with at least one strict inequality. In case
(b), we can prove in the same way. Then .�/ holds with at least one strict inequality,
i.e., x 62 Eff four. ut

In this approach, an efficient solution to the reduced multiple objective program-
ming problems is considered as a reasonable solution [15, 40, 79]. If the complete
optimal solution exists, it is considered as the best solution. Furukawa [15] proposed
an efficient enumeration method of efficient solutions of Problem (20.16).

The following example given in [33] shows the limitation of this approach.

Example 1. Consider the following LP problem with interval objective function:

maximize Œ1; 3�x1 C Œ1; 3�x2;
subject to 45x1 C 50x2 � 530;

50x1 C 45x2 � 515;
0 � x1 � 8; 0 � x2 � 8:

(20.19)

In this case, the following bi-objective problem corresponds to Problem (20.16):

maximize .x1 C x2; 3x1 C 3x2/T;
subject to 45x1 C 50x2 � 530;

50x1 C 45x2 � 515;
0 � x1 � 8; 0 � x2 � 8:

(20.20)

The efficient optimal solution to Problem (20.20) is unique it is .x1; x2/T D .4; 7/T.
In other words, .x1; x2/T D .4; 7/T is the complete optimal solution. This solution
on the feasible region is depicted in Fig. 20.3.

In Fig. 20.3, a box on c1-c2 coordinate shows all possible realizations of the
objective function coefficient vector. Area G1 shows the possible realizations of the
objective function coefficient vector to which solution .x1; x2/T D .4; 7/T is optimal.
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Fig. 20.3 Example 1

Similarly, Area G2 and G3 show the possible realizations of the objective function
coefficient vector to which solutions .x1; x2/T D .8; 2:55556/T and .x1; x2/T D
.2:8889; 8/T are optimal, respectively. Although solution .x1; x2/T D .4; 7/T is the
unique efficient solution to Problem (20.20), Area G1 is much smaller than Areas
G2 and G3. If all possible realizations of the objective function coefficient vector
are equally probable, the probability that .x1; x2/T D .4; 7/T is not the optimal
solution is rather high. From this point of view, the validity of selecting solution
.x1; x2/T D .4; 7/T may be controversial.

20.3.2 Possibly and Necessarily Optimal Solutions

Let S.c/ be a set of optimal solutions to an LP problem with objective function cTx,

maximize cTx;
subject to x 2 X:

(20.21)

Consider Problem (20.13) when Qc1j, j D 1; 2; : : : ; n degenerate to intervals ŒcL
1j; c

R
1j�,

j D 1; 2; : : : ; n and define � D Qn
jD1ŒcL

1j; c
R
1j� D f.c1; c2; : : : ; cn/

T j cL
1j � cj �

cR
1j; j D 1; 2; : : : ; ng. Then we define the following two optimal solution sets:

˘S D
[
fS.c/ j c 2 � g ; (20.22)

NS D
\
fS.c/ j c 2 � g : (20.23)
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An element of ˘S is a solution optimal for at least one c D .c1; c2; : : : ; cn/
T such

that cL
1j � cj � cR

1j, j D 1; 2; : : : ; n. Since ŒcL
1j; c

R
1j�, j D 1; 2; : : : ; n show the

possible ranges of objective function coefficients c1j, j D 1; 2; : : : ; n, an element
of ˘S is called a “possibly optimal solution”. On the other hand, an element of
NS is a solution optimal for all c D .c1; c2; : : : ; cn/

T such that cL
1j � cj � cR

1j,
j D 1; 2; : : : ; n and called a “necessarily optimal solution”. Solution set ˘S
was originally considered by Steuer [88] for a little different purpose while the
concept of solution set NS was proposed by Bitran [4] in the setting of MOLP
problems. Luhandjula [65] introduced those concepts into MOLP problem with
fuzzy objective function coefficients. However, his definition was a little different
from the one we described in what follows. Inuiguchi and Kume [30] and Inuiguchi
and Sakawa [34] connected those concepts to possibility theory [12, 98] and termed
˘S and NS ‘possibly optimal solution set’ and ‘necessarily optimal solution set’.

Consider the following MOLP problem:

maximize
�NcT
1x; NcT

2x; : : : ; NcT
q x
�T
;

subject to x 2 X;
(20.24)

where Ncj; j D 1; 2; : : : ; q are all extreme points of box set � D Qn
jD1ŒcL

1j; c
R
1j�.

Accordingly, we have q D 2n when cL
1j < cR

1j, j D 1; 2; : : : ; n and q < 2n when
there exists at least one j 2 f1; 2; : : : ; ng such that cL

1j D cR
1j. We have NS � ˘S,

i.e., a necessarily optimal solution is a possibly optimal solution. The following the-
orem given by Inuiguchi and Kume [30] connects possibly and necessarily optimal
solutions to weakly efficient and completely optimal solutions, respectively.

Theorem 2. A solution is possibly optimal to Problem (20.13) with Qc1j D ŒcL
1j; c

R
1j�,

j D 1; 2; : : : ; n if and only if it is weakly efficient to Problem (20.24). A solution is
necessarily optimal to Problem (20.13) when Qc1j D ŒcL

1j; c
R
1j�, j D 1; 2; : : : ; n if and

only if it is completely optimal to Problem (20.24).

Proof. Suppose Ox is a weakly efficient solution to Problem (20.24). There are no
feasible solutions such that NcT

j x > NcT
j Ox, j D 1; 2; : : : ; q. As is well known in the

literature, there is a vector � D .�1; �2; : : : ; �q/
T such that

Pq
jD1 �j D 1, �j 	 0,

j D 1; 2; : : : ; q and Ox is an optimal solution to the following LP problem:

max
x2X

qX

jD1
�j NcT

j x: .�/

Thus, we have Ox 2 S
	Pq

jD1 �j Ncj



. By the definition of Ncj’s,

Pq
jD1 �j Ncj 2 � . Hence, Ox

is a possibly optimal solution to Problem (20.13) with Qc1j D ŒcL
1j; c

R
1j�, j D 1; 2; : : : ; n.

Conversely, suppose Ox is a possibly optimal solution to Problem (20.13) with Qc1j D
ŒcL
1j; c

R
1j�, j D 1; 2; : : : ; n, there is a vector c 2 � such that Ox 2 S.c/. By the definition

of cj’s, there is a vector � D .�1; �2; : : : ; �q/
T such that

Pq
jD1 �j D 1, �j 	 0,
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j D 1; 2; : : : ; q and c DPq
jD1 �j Ncj. Thus, Ox is an optimal solution to the problem (�)

and from this fact, it is a weakly efficient solution to problem (20.24). Hence, the
first assertion is proved.

The second assertion can be proved similarly. ut
Possibly and necessarily optimal solutions are exemplified in the following

example.

Example 2. Let us consider the following LP problems with interval objective func-
tion:

maximize Œ2; 3�x1 C Œ1:5; 2:5�x2;
subject to 3x1 C 4x2 � 42;

3x1 C x2 � 24;
x1 	 0; 0 � x2 � 9:

(20.25)

For this problem, we obtain � D f.c1; c2/T j 2 � c1 � 3; 1:5 � c2 � 2:5g and
X D f.x1; x2/T j 3x1 C 4x2 � 42; 3x1 C x2 � 24; x1 	 0; 0 � x2 � 9g at .6; 6/T.
Consider solution .x1; x2/T D .6; 6/T and the normal cone to X at this solution, i.e.,
a set of vectors .c1; c2/T such that .x1 � 6; x2 � 6/T.c1; c2/ � 0. The normal cone to
X at .6; 6/T is obtained as

P..6; 6/T/ D ˚.c1; c2/T j c1 � 3c2 � 0; 4c1 � 3c2 	 0
�
: (20.26)

As shown in Fig. 20.4, we obtain � � P..6; 6/T/. This implies that solution .6; 6/T

is optimal for all .c1; c2/T 2 � . Therefore, solution .6; 6/T is a necessarily optimal
solution.

On the other hand, when the objective function of Problem (20.25) is changed to

Œ1; 3�x1 C Œ1:5; 3�x2; (20.27)

Fig. 20.4 Problem (20.25)
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Fig. 20.5 Problem (20.25)
with the updated objective
function

� is updated to � D ˚.c1; c2/T j 1 � c1 � 3; 1:5 � c2 � 3
�
. As shown in Fig. 20.5,

� � P..6; 6/T/ is no longer valid. In this case, � � P..2; 9/T/ [ P..6; 6/T/
is obtained and solutions on the line segment between .2; 9/T and .6; 6/T are all
possibly optimal solutions. As shown in this example, there are infinitely many
possibly optimal solutions. However, the number of possibly optimal basic solutions
(extreme points) is finite.

As shown in this example, a necessarily optimal solution does not exist in many
cases but if it exists it is the most reasonable solution. On the other hand, a possibly
optimal solution always exist whenever X is bounded and nonempty but it is often
non-unique. If a possibly optimal solution is unique, it is a necessarily optimal
solution. Moreover, as is conjectured from this example, we can prove the following
equivalences for a given x 2 X:

x 2 NS, � � P.x/; (20.28)

x 2 ˘S, � \ P.x/ ¤ ;; (20.29)

where P.x/ is the normal cone to X at solution x.
The possibly and necessarily optimal solutions are extended to the case where Qc1j,

j D 1; 2; : : : ; n are fuzzy numbers. In this case, the possible range �1 of coefficient
vectors c becomes a fuzzy set defined by the following membership function:

��1.c/ D min
jD1;2;:::;n�Qc1j.cj/; (20.30)
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where c D .c1; c2; : : : ; cn/
T and �Qc1j is the membership function of Qc1j. Accordingly

the possibility optimal solution set ˘S and the necessarily optimal solution set NS
become fuzzy sets defined by the following membership functions:

�˘S.x/ D sup
cW x2S.c/

�Qc1j.c/; (20.31)

�NS.x/ D inf
cW x62S.c/

1 � �Qc1j.c/; (20.32)

where �˘S and �NS are membership functions of the possibility optimal solution
set ˘S and the necessarily optimal solution set NS. Because Qc1j has membership
function, each solution x 2 X has possible optimality degree �˘S.x/ and nec-
essary optimality degree �NS.x/. Because Qc1j, j D 1; 2; : : : ; n are fuzzy numbers,
from (20.11) and (20.12), we have the following properties for any h 2 .0; 1�:

�˘S.x/ 	 h, 9c 2 Œ� �h; x 2 S.c/; (20.33)

�NS.x/ 	 h, 8c 2 .� /1�h; x 2 S.c/: (20.34)

As shown in those properties, the chance that a necessarily optimal solution exists
increases by defining Œ� �1 smaller. Especially, if we define � with a continuous
membership function such that Œ� �1 is a singleton composed of the most plausible
objective function coefficient vector and .� /0 shows the largest possible range, we
can analyze the degree of robust optimality of a solution x by �NS.x/.

Computation methods for the degree of possible optimality and the degree of
necessary optimality of a given feasible solution are investigated by Inuiguchi and
Sakawa [32]. They showed that the former can be done by solving an LP problem
while the latter by solving many LP problems. On the other hand, Steuer [88]
investigated enumeration methods of all possibly optimal basic solutions of Prob-
lem (20.13) when Qcj’s are closed intervals. Inuiguchi and Tanino [38] proposed an
enumeration method of all possibly optimal basic solutions of Problem (20.13) with
possible optimality degree �˘S.x/.

Remark 1. Consider a MOLP problem,

maximize
�
c1Tx; c2Tx; : : : ; cp

Tx
�T
;

subject to x 2 X;
(20.35)

and solve it by weighting method. If the weight w 	 0 cannot be specified uniquely
but by a fuzzy set Qw, the possible and necessary optimalities are useful to find
candidate solutions.
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20.3.3 Minimax Regret Solutions and the Related
Solution Concepts

As seen in the previous subsection, a necessarily optimal solution is the most rea-
sonable solution to Problem (20.13) but its existence is not guaranteed. On the
other hand, possibly optimal solutions are the least reasonable solutions to Prob-
lem (20.13) but there are usually many possibly optimal solutions. Therefore, these
solution concepts are two extremes.

In this subsection, we consider intermediate solution concepts such that

1. the solution is a possibly optimal solution,
2. it coincides with the necessarily optimal solution when the necessarily optimal

solution exists, and
3. it minimizes the deviation from the necessary optimality, or it maximizes the

proximity to the necessity optimality.

For the sake of ease, we first consider cases where � is a crisp set. To measure the
deviation from the necessary optimality and the proximity to the necessity optimal-
ity, the following two functions R W X ! Œ0;1/ and WA W X ! .�1; 1� have been
considered so far (see Inuiguchi and Kume [30], Inuiguchi and Sakawa [33, 35]):

R.x/ D max
c2� max

y2X
cT .y � x/ ; WA.x/ D min

c2�
cTx

max
y2X

cTy
; (20.36)

where R.x/ is known as the maximum regret. R.x/ takes its minimum value zero if
and only if x is a necessarily optimal solution. On the other hand, WA.x/ shows the
worst achievement rate and is defined only when maxy2X cTy > 0. WA.x/ takes its
maximum value one if and only if x is a necessarily optimal solution.

Hence, we obtain the following programming problems:

minimize
x2X

R.x/; maximize
x2X

WA.x/: (20.37)

The former problem is the minimax regret problem and the latter problem is the
maximin achievement rate problem. Optimal solutions to those problems are called
‘a minimax regret solution’ and ‘a maximin achievement rate solution’, respectively.
The possible optimalities of minimax regret solutions and maximin achievement
rate solutions are proved by using Theorem 2 as shown in the following theorem
(Inuiguchi and Kume [30] and Inuiguchi and Sakawa [35]).

Theorem 3. Minimax regret solutions as well as maximin achievement rate solu-
tions are possibly optimal solutions to the problem (20.13).

Proof. We prove the possible optimality of a minimax regret solution because that
of a maximin achievement rate solution can be proved in the same way. Let Ox be
a minimax regret solution. Assume it does not a possibly optimal solution. Then
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it does not a weakly efficient solution to MOLP problem (20.24) from Theorem 2.
Thus, there exists a feasible solution x such that NcT

j x > NcT
j Ox; j D 1; 2; : : : ; q. Namely,

qX

jD1
�j NcT

j x >
qX

jD1
�j NcT

j Ox

holds for all � D .�1; �2; : : : ; �p/ such that
Pq

jD1 �j D 1 and �j 	 0; j D
1; 2; : : : ; q. Since Ncj, j D 1; 2; : : : ; q are all extreme points of � , this inequality
can be rewritten as

cTx > cT Ox; for all c 2 �:

Thus we have

R.x/ D max
c2� max

y2X
cT .y � x/ < max

c2� max
y2X

cT .y � Ox/ D R.Ox/:

This contradicts the fact that Ox is a minimax regret solution. Hence, a minimax regret
solution is a possibly optimal solution. ut
Example 3. Consider Problem (20.19) again. The minimax regret solution is
obtained as point .5:34211; 5:50877/T in Fig. 20.3. As shown in Fig. 20.3, this solu-
tion is on the polygonal line segment composed of .2:8889; 8/T, .4; 7/T and
.8; 2:55556/T. The polygonal line segment shows the possibly optimal solution
set. Then we know that the minimax regret solution is a possibly optimal solution.
Moreover, from Fig. 20.3, we observe the solution .5:34211; 5:50877/T is located at
a well-balanced place on the polygonal line segment.

Now we consider cases where � is a fuzzy set. In this case, by the extension
principle, we define fuzzy regret Qr.x/ and fuzzy achievement rate eac.x/ for a feasible
solution x 2 X by the following membership functions:

�Qr.x/.r/ D sup

�

�� .c/
ˇ
ˇ
ˇ r D max

y2X
cT.y � x/

�

; (20.38)

�eac.x/.r/ D sup

�

�� .c/
ˇ
ˇ
ˇ r �max

y2X
cTy D cTx

�

: (20.39)

Moreover, we specify fuzzy goal Gr having an upper semi-continuous non-increasing
membership function �Gr W Œ0;C1/ ! Œ0; 1� such that �Gr .0/ D 1 on the regret,
and fuzzy goal Gac having an upper semi-continuous non-decreasing membership
function �Gac W .�1; 1� ! Œ0; 1� such that �Gac.1/ D 1 on the achievement rate.
Then, using necessity measure, the problem is formulated as

maximize
x2X

NQr.x/.Gr/; maximize
x2X

N Qac.x/.Gac/: (20.40)
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We note that optimal solutions to these problem can be seen as relaxations of
necessarily optimal solutions. Let us define two kinds of suboptimal solution sets to
LP problem (20.13) with objective function cTx as fuzzy sets Sdif .c/ and Srat.c/ by
the following membership functions:

�Sdif .c/.x/ D min

�

�X.x/; �Gr

�

max
y2X

cTy � cTx
��

; (20.41)

�Srat.c/.x/ D min

0

@�X.x/; �Gac

0

@ cTx

max
y2X

cTy

1

A

1

A ; (20.42)

where �X is the characteristic function of feasible region X, i.e., �X.x/ D 1 for
x 2 X and �X.x/ D 0 for x 62 X.

Based on these, we define two kinds of necessarily suboptimal solution sets NSdif

and NSrat by the following membership functions:

�NSdif .x/ D inf
c

max
�
1 � �� .c/; �Sdif .c/.x/

�
; (20.43)

�NSrat .x/ D inf
c

max
�
1 � �� .c/; �Srat.c/.x/

�
: (20.44)

We obtain �NSdif .x/ D NQr.x/.Gr/ and �NSrat .x/ D Neac.x/.Gr/ for x 2 X. Therefore,
problems in (20.40) are understood optimization problems of necessary suboptimal-
ity degrees.

The minimax regret problem was considered by Inuiguchi and Kume [30] and
Inuiguchi and Sakawa [33]. Inuiguchi and Sakawa [33] proposed a solution method
based on the relaxation procedure when all possibly optimal basic solutions are
known. Mausser and Laguna [71] proposed a mixed integer programming approach
to the minimax regret problem. Inuiguchi and Tanino [37] proposed a solution
approach based on outer approximation and cutting hyperplane. The maximin
achievement rate approach was proposed by Inuiguchi and Sakawa [35] and a
relaxation procedure for a maximin achievement rate solution was proposed when
all possibly optimal basic solutions are known. The necessarily suboptimal solution
set is originally proposed by Inuiguchi and Sakawa [36]. They treated the regret
case and proposed a solution algorithm based on the relaxation procedure and the
bisection method. Inuiguchi et al. [39] further investigated a solution algorithm for
both problems in (20.40). In those solution algorithms, the relaxation procedure
and bisection method converges at the same time. The reduced problems described
in this subsection are non-convex optimization problems. The recent global opti-
mization techniques [21] would work well for those problems. The minimax regret
solution concept is applied to discrete optimization problems [41] and MOLP
problems [76]. The minimax regret solution to a MOLP problem minimizes the
deviation from the complete optimality. The computational complexity of minimax
regret solution is investigated in [1].
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20.4 Multiple Objective Function Case

Now we describe the approaches to Problem (20.2) with p > 1, i.e., multiple
objective function case.

20.4.1 Possibly and Necessarily Efficient Solutions

The concepts of possibly and necessarily optimal solutions can be extended to
the case of multiple objective functions. In this case, the corresponding solution
concepts are possibly and necessarily efficient solutions.

Before giving the definitions of possibly and necessarily efficient solutions, we
define a set of efficient solutions, E.C/ to the following MOLP problem:

maximize .cT
1x; cT

2x; : : : ; cT
p x/T;

subject to x 2 X;
(20.45)

where we define p � n matrix C by C D .c1 c2 � � � cp/
T.

First, we describe the case where Qckj, k D 1; 2; : : : ; p, j D 1; 2; : : : ; n degenerate
to intervals ŒcL

kj; c
R
kj�, k D 1; 2; : : : ; p, j D 1; 2; : : : ; n and define � D Qp

kD1 �k

and �k D Qn
jD1ŒcL

kj; c
R
kj� D f.c1; c2; : : : ; cn/

T j cL
kj � cj � cR

kj; j D 1; 2; : : : ; ng,
k D 1; 2; : : : ; p. Namely,� is a box set of p � n matrices. Then, in the analogy, we
obtain the possibly efficient solution set ˘E and the necessarily efficient solution
set NE by

˘E D
[
fE.C/ j C 2 �g ; (20.46)

NE D
\
fE.C/ j C 2 �g : (20.47)

Elements of ˘E and NE are interpreted in the same way as those of ˘S and NS,
respectively. Namely, an element of˘E is a solution efficient for at least one C2�.
Because � shows the possible range of objective function coefficient matrix, an
element of ˘E is called a “possibly efficient solution”. On the other hand, an
element of NE is a solution efficient for all C 2 � and called a “necessarily efficient
solution”.

Let K.C/ D fs j Cs 	 0 and Cs ¤ 0g and R.C/ D fCTz j z > 0g. Namely, K.C/
shows the set of improving directions while R.C/ is the set of positively weighted
sum of objective coefficient vectors. Using K.C/ and R.C/, we define the following
sets:

K˘.�/ D
\
fK.C/ j C 2 �g; (20.48)

KN.�/ D
[
fK.C/ j C 2 �g; (20.49)
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R˘.�/ D fc j 9z > 0 9C 2 �; c D CTzg
D
[
fR.C/ j C 2 �g; (20.50)

RN.�/ D fc j 8C 2 � 9z > 0; c D CTzg
D
\
fR.C/ j C 2 �g: (20.51)

Let T.x/ be the tangent cone of feasible region X at point x 2 X, i.e., T.x/ D
clfr.y � x/ j y 2 X; r 	 0g, where clK is the closure of a set K. Let P.x/ be the
normal cone of X at x 2 X, in other words, P.x/ D fc j cT.y � x/ � 0; 8y 2 Xg Dn
c
ˇ
ˇ
ˇ cTx D maxy2X cTy

o
.

Because the following equivalence for x 2 X is known in MOLP Problem (see,
for example, Steuer [89]):

x 2 E.C/, .K.C/[ f0g/\ T.x/ D f0g; (20.52)

x 2 E.C/, R.C/\ P.x/ ¤ ;; (20.53)

Then, for x 2 X, we have

x 2 ˘E , .K˘.�/ [ f0g/\ T.x/ D f0g; (20.54)

x 2 NE , .KN.�/ [ f0g/\ T.x/ D f0g; (20.55)

x 2 ˘E , R˘.�/ \ P.x/ ¤ ;; (20.56)

RN.�/ \ P.x/ ¤ ; ) x 2 NE: (20.57)

Let ˚ be the subset of matrices of � having all elements of each column at the
upper bound or at the lower bound. Namely, C 2 ˚ implies C�j D L�j or C�j D U�j for
j D 1; 2; : : : ; p, where L D .cL

ij/, U D .cR
ij / and C�j is the j-th column of matrix C.

We have the following proposition (see Bitran [4]).

Proposition 1. We have the following equations:

KN.�/ D KN.˚/; (20.58)

NE D
\
fE.C/ j C 2 ˚g; (20.59)

RN.�/ D RN.˚/: (20.60)

Proof. We prove (20.58) and (20.59). Equation (20.60) is obtained from (20.59) in
a straightforward manner.

KN.˚/ � KN.�/ is obvious. Then we prove the reverse inclusion relation.
Assume s 2 KN.�/, Then there exists C 2 � such that Cs 	 0 and Cs ¤ 0.
Consider NC defined by NC�j D L�j if sj < 0 and NC�j D U�j otherwise, for j D
1; 2; : : : ; p. Then NC 2 ˚ . We have NCs 	 Cs 	 0 and NCs ¤ 0. This implies
s 2 K. NC/ � KN.˚/. Hence, KN.˚/ � KN.�/.
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Now let use prove (20.59). By definition, we have NE D TfE.C/ j C 2 �g �TfE.C/ j C 2 ˚g. Then we prove the reverse inclusion relation. Assume x 62 NE.
Thus, from (20.55), we have .KN.�/[f0g/\T.x/ ¤ f0g. From (20.58), we obtain
.KN.˚/ [ f0g/ \ T.x/ ¤ f0g. Namely, x 62 E.C/ for some C 2 ˚ . Consequently,
x 62 TfE.C/ j C 2 ˚g. Hence, NE DTfE.C/ j C 2 �g �TfE.C/ j C 2 ˚g. ut

As is known in the literature, we have

P.x/ D T.x/� and T.x/ D P.x/�; (20.61)

where D� stands for the polar cone of a set D, i.e., D� D fy j xTy � 0;8x 2 Dg.
We obtain the following proposition.

Lemma 1. The following are true:

8s 2 K.C/; 8y 2 R.C/I sTy > 0; (20.62)

�R.C/ � K.C/�; (20.63)

�R.C/ � intfsg�; 8s 2 K.C/: (20.64)

where intD is the interior of set D � Rn.

Proof. From definition, we obtain (20.62). Equations (20.63) and (20.64) are
obtained from (20.62) in a straight forward manner. ut

We obtain the following theorem (Inuiguchi [27]).

Theorem 4. If RN.�/ is not empty, we have

x 2 NE, RN.�/ \ P.x/ ¤ ;: (20.65)

Proof. We prove that RN.�/ \ P.x/ ¤ ; implies x 2 NE because the reverse
implication is obtained from (20.57).

Assume x 62 NE. Then, from (20.55) and 0 2 T.x/, KN.�/ \ T.x/ ¤ ;. Let
Os 2 KN.�/ \ T.x/. There exists C 2 � such that Os 2 K.C/ \ T.x/. Considering
fOsg� D fc 2 Rn j cTOs � 0g, we have

K.C/� � fOsg� and T.x/� � fOsg�:

From (20.61), the second inclusion relation implies P.x/ � fOsg�, i.e.,

8y 2 P.x/I OsTy � 0: .�/

On the other hand, from (20.63), we have �R.C/ � fOsg�. From Os 2 K.C/ and
(20.64), we obtain �R.C/ � intfOsg�. This means

8y 2 R.C/I OsTy > 0: .��/
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From .�/ and .��/, we find that fy j OsTy D 0g is a separating hyperplane of P.x/
and R.C/. Therefore, we obtain R.C/ \ P.x/ D ;. By definition of RN.�/, this
implies

RN.�/ \ P.x/ D ;:

Hence, we have RN.�/ \ P.x/ ¤ ; ) x 2 NE. ut
Let us consider the following set of objective function coefficients:

�.�/ D
\
f� j � is a convex cone, and 8C 2 �; R.C/\� ¤ ;g (20.66)

When �.�/ is not empty, from the definition, we have

x 2 NE, �.�/ � P.x/: (20.67)

Let Uni D fc D .c1; c2; : : : ; cn/
T jPn

jD1 jcjj D 1g. We find the following strong
relations between RN.�/ and�.�/:

• RN.�/ is empty if and only if�.�/\Uni is neither an empty set nor a singleton.
• RN.�/ \ Uni is neither an empty set nor a singleton if and only if �.�/ D ;.
• RN.�/\Uni is a singleton if and only if�.�/\Uni is a singleton, and moreover

we have �.�/ D RN.�/.

We note RN.�/ � R˘.�/ and �.�/ � R˘.�/.
Moreover, comparing (20.65) and (20.67) with (20.29) and (20.28), respectively,

we found the following relations:

x 2 NE,
�

x 2 ˘S with � D RN.�/; if RN.�/ ¤ ;;
x 2 NS with � D �.�/; otherwise,

(20.68)

where we note that we apply possible and necessary optimality concepts even when
� is not a box set. Namely, when RN.�/ is not empty, the necessary efficiency
can be tested by the possible optimality with objective coefficient vector set RN.�/.
On the contrary, when RN.�/ is empty, the necessary efficiency can be tested by the
necessary optimality with objective coefficient vector set �.�/. Moreover, cones
RN.�/ and �.�/ can be replaced with bounded sets RN.�/ \ Uni and �.�/ \
Uni, respectively. We may apply the techniques in single objective function case
including minimax regret solution concepts to multiple objective function case if
we obtain RN.�/ and�.�/.

When Qckj, k D 1; 2; : : : ; p, j D 1; 2; : : : ; n degenerate to intervals ŒcL
kj; c

R
kj�, k D

1; 2; : : : ; p, j D 1; 2; : : : ; n, possibility efficient solutions and necessarily efficient
solutions are illustrated in the following example.
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Fig. 20.6 An example of a
necessarily efficient solution

Example 4. Let us consider the following LP problem with multiple interval objec-
tive functions (Inuiguchi and Sakawa [34]):

maximize .Œ2; 3�x1 C Œ1:5; 2:5�x2; Œ3; 4�x1 C Œ0:5; 0:8�x2/T ;
subject to 3x1 C 4x2 � 42;

3x1 C x2 � 24;
x1 	 0; 0 � x2 � 9:

To this problem, from Fig. 20.6, we obtain

RN.�/ D fc j c D r1.3; 0:8/C r2.3; 1:5/; r1 > 0; r2 > 0g;

while �.�/ D ;. Consider a solution x D .x1; x2/T D .6; 6/T. The normal cone of
the feasible region at .6; 6/T is obtained as

P
�
.6; 6/T

� D fc j c D r1.2; 2:5/C r2.3; 1/; r1 	 0; r2 	 0g:

We obtain RN.�/ \ P..6; 6/T/ ¤ ;. From Theorem 4, this implies that .6; 6/T is a
necessarily efficient solution. Moreover, any solution .x1; x2/T on the line segment
from .6; 6/T to .8; 0/T includes fk.3; 0:8/ j k 	 0g � RN.�/ in its normal cone
P..x1; x2/T/, and therefore, it is also a necessarily efficient solution. Thus there are
many necessarily efficient solutions.

On the other hand, we obtain

R˘.�/ D fc j c D r1.2; 2:5/C r2.4; 0:5/; r1 > 0; r2 > 0g;

and R˘.�/ \ P..6; 6/T/ ¤ ;. Thus, .6; 6/T is also a possibly efficient solution.
Moreover solutions on the line segment from .6; 6/T to .8; 0/T are all possibly
efficient solutions because we have R˘.�/ \ P..x1; x2/T/ ¤ ;. There are no
other possibly efficient solutions because other feasible solutions .x1; x2/T satisfy
R˘.�/ \ P..x1; x2/T/ D ;. Thus, in this example, we have ˘E D NE.
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Fig. 20.7 An example of a
non-necessarily efficient
solution

Next, let us consider the following LP problem with multiple interval objective
functions:

maximize .Œ1; 1:7�x1 C Œ1; 4�x2; Œ2:3; 3�x1 C Œ0:8; 3:5�x2/T ;
subject to 3x1 C 4x2 � 42;

3x1 C x2 � 24;
x1 	 0; 0 � x2 � 9:

For this problem, we obtain RN.�/ D ; while

�.�/ D fc j c D r1.2; 1/C r2.2:3; 3:5/; r1 	 0; r2 	 0g:

Because the constraints are same as the previous problem, the normal cone of the
feasible region at .6; 6/T is same as P..6; 6/T/. As shown in Fig. 20.7, we have
�.�/ 6� P..6; 6/T/. Then .6; 6/T is not a necessarily efficient solution. However,
as shown in Fig. 20.7, we have �.�/ \ P..6; 6/T/ ¤ ; and this implies R˘.�/ \
P..6; 6/T/ ¤ ;. Namely, .6; 6/T is a possibly optimal solution. In this case, we
obtain

R˘.�/ D fc j c D r1.1; 4/C r2.3; 0:8/; r1 > 0; r2 > 0g:
Then solutions .x1; x2/ on the polygon passing .2; 9/T, .6; 6/T and .8; 0/T are all
possibly optimal solutions because they satisfy R˘.�/ \ P..x1; x2/T/ ¤ ;. No
other solutions are possibly optimal.

Finally, let us consider the following LP problem with multiple interval objective
functions:

maximize .Œ2:5; 3:5�x1 C Œ�1; 0:5�x2; Œ�2;�1�x1 C Œ�0:5; 1�x2/T ;
subject to 3x1 C 4x2 � 42;

3x1 C x2 � 24;
x1 	 0; 0 � x2 � 9:
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For this problem, we obtain RN.�/ D ; and �.�/ D R2. Because P..x1; x2/T/ �
R2 for any .x1; x2/T 2 X, there is no necessarily optimal solution. Moreover, R˘.�/
D R2 and thus, all feasible solutions are possibly efficient.

The possibly efficient solution set ˘E and the necessarily efficient solution set
NE are extended to the case where � is fuzzy set. Namely, they are defined by the
following membership functions:

�˘E.x/ D sup
CWx2E.C/

��.C/; (20.69)

�NE.x/ D inf
CWx 62E.C/

1 � ��.C/: (20.70)

Similar to possibly and necessarily optimal solution sets, we have

�˘E.x/ 	 h, 9C 2 Œ��h; x 2 E.C/; (20.71)

�NE.x/ 	 h, 8C 2 .�/1�h; x 2 E.C/; (20.72)

where Œ��h and .�/1�h are h-level set and strong .1� h/-level set of�. From those
we have

Œ˘E�h D
[
fE.C/ j C 2 Œ��hg; (20.73)

ŒNE�h D
\
fE.C/ j C 2 .�/1�hg: (20.74)

Therefore, the h-level sets of possibly and necessarily efficient solution sets with
fuzzy objective function coefficients are treated almost in the same way as possibly
and necessarily efficient solution sets with interval objective function coefficients.

The examples of possibly and necessarily efficient solutions in fuzzy coefficient
case can be found in Inuiguchi and Sakawa [34].

Remark 2. By taking a positively weighted sum of objective functions of Prob-
lem (20.2), we obtain an LP problem with a single objective function. To this single
objective LP problem, we obtain possibly and necessarily optimal solution sets.
Let ˘S.w/ and NS.w/ be possibly and necessarily optimal solution sets of the
single objective LP problem with weight vector w, respectively. We have the fol-
lowing relations to possibly and necessarily efficient solution sets of Problem (20.2)
(see Inuiguchi [27]):

˘E D
[

w>0

˘S.w/; NE �
[

w>0

NS.w/: (20.75)

Remark 3. Luhandjula [64] and Sakawa and Yano [81, 82] earlier defined similar
but different optimal and efficient solutions to Problems (20.13) and (20.2), respec-
tively. Those pioneering definitions are based on the inequality relations between
objective function values of solutions. However the interactions between objective
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function values are discarded. The omission of the interaction between fuzzy objec-
tive function values are not always reasonable as shown by Inuiguchi [26]. On the
other hand, Inuiguchi and Kume [29] proposed several extensions of efficient solu-
tions based on the extended dominance relations between solutions. They showed
the relations of the proposed extensions of efficient solutions including possibly and
necessarily efficient solutions.

20.4.2 Efficiency Test and Possible Efficiency Test

In this subsection, we describe a method to confirm the possible and necessary
efficiency of a given feasible solution. To confirm this, we solve mathematical pro-
gramming problems called Possible and necessary efficiency test problems. The test
problems are often investigated for given basic feasible solutions while Inuiguchi
and Sakawa [34] investigated the possible efficiency test problem of any feasible
solution.

First let us consider a basic feasible solution x0 2 X. Let CB and CN be the
submatrices of objective function coefficient matrix C corresponding to the basic
matrix B and the non-basic matrix N which are submatrices of A D .a1 a2 : : : am/

T.
We define a vector function V W Rp�n ! Rp�.n�m/ by

V.C/ D V..CB CN// D CN � CBB�1N: (20.76)

Let JB and JN be the index sets of basic and non-basic variables, respectively, i.e.,
JB D fj j xj is a basic variableg and JN D fj j xj is a non-basic variableg. A solution
s satisfying the following system of linear inequalities shows an improvement
direction of objective function without violation of constraints from x0:

V.C/s 	 0; V.C/s ¤ 0;
B�1

i� Ns � 0; i 2 D D fi j x0i D 0; i 2 JBg;
s 	 0;

(20.77)

where we note that D is an index set of basic variables which degenerate at x0.
Then D is empty if x0 is nondegenerate. Then the necessary and sufficient condition
that x0 is efficient solution with respect to objective function coefficient matrix C is
given by the inconsistency of (20.77) (see Evans and Steuer [14]).

Using Tucker’ theorem of alternatives [70], the inconsistency of (20.77) is
equivalent to the consistency of

V.C/Tt0 �
X

i2D

NT.B�1
i� /Tt1i � 0;

t0 > 0; t1i 	 0; i 2 D;
(20.78)
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or equivalently,

CT
Nt0 � NTB�TCT

Bt0 �
X

i2D

NT.B�1
i� /Tt1i � 0;

t0 	 1; t1i 	 0; i 2 D;
(20.79)

where 1 D .1; 1; : : : ; 1/T.
The necessary and sufficient conditions described above are applicable to basic

solutions. Now let us consider a feasible solution x0 which is not always a basic
solution. Because an efficient solution is a proper efficient solution [16], an optimal
solution to an LP problem with objective function uT

2Cx for some u2 > 0 is
an efficient solution of Problem (20.45) and vice versa. Then, the necessary and
sufficient condition that x0 is efficient solution with respect to objective function
coefficient matrix C is given by the consistency of the following system of linear
inequalities [34]:

ATu0 � u1 D CTu2; x0Tu1 D 0; u1 	 0; u2 	 1: (20.80)

In Problem (20.2), the objective function coefficient matrix is not clearly given
by a matrix but by a set of matrices, � D fC j L � C � Ug. The necessary and
sufficient condition that x0 is possibly efficient solution to Problem (20.2) is given
by the consistency of the following system of linear inequalities [34]:

LTu2 � ATu0 � u1 � UTu2; x0Tu1 D 0; u1 	 0; u2 	 1: (20.81)

Moreover, if x0 is a basic solution, the necessary and sufficient condition that x0 is a
possibly efficient solution to Problem (20.2) is given also by the consistency of the
following system of linear inequalities [28]:

LT
Nt0 � NTB�Tt2 �

X

i2D

NT.B�1
i� /Tt1i � 0;

LBt0 � t2 � UBt0; t0 	 1; t1i 	 0; i 2 D:
(20.82)

Inuiguchi and Kume [28] showed that, for i 2 D, the i-th row of CB can be fixed at
the i-th row of LB as we fixed CN at LN by the consideration of (20.77).

As shown above the possible efficiency of a given feasible solution can be
checked easily by the consistency of a system of linear inequalities.

Let us consider a case where the .k; j/-component ckj of C is given by L-R fuzzy
number Qckj D .cL

kj; c
R
kj; �

L
kj; �

R
kj/LkjRkj . Define matrices with parameter h, #L.h/ D

.�L
kjL

.�1/
kj .h// and#R.h/ D .�R

kj R
.�1/
kj .h//. Then Œ��h is obtained by

Œ��h D fC j L �#L.h/ � C � U C#R.h/g: (20.83)
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Then, from (20.81), the degree of possible optimality of a given feasible solution x0

is obtained as (see Inuiguchi and Sakawa [32])

�˘E.x0/ D supfh 2 Œ0; 1� j 9u0; 9u1 	 0; 9u2 	 1I x0Tu1 D 0;
.L �#L.h//Tu2 � ATu0 � u1 � .U C#U.h//Tu2g (20.84)

For a fixed h, the conditions in the set of the right-hand side in (20.84) become a
system of linear inequalities. Then the supremum can be obtained approximately by
a bisection method of h 2 Œ0; 1� and LP for finding a solution satisfying the system
of linear inequalities.

Moreover, when x0 is a basic solution, from (20.82), we obtain

�˘E.x0/ D supfh 2 Œ0; 1� j 9t0 	 1; 9t1i 	 0; i 2 D; 9t2I
.LT

N �#L
N.h//t0 � NTB�Tt2 �

X

i2D

NT.B�1
i� /Tt1i � 0;

.LT
B �#L

B.h//t0 � t2 � .UT
B C#R

B.h//t0g;
(20.85)

where #L
B and #R

B are submatrices of #L and #R corresponding to basic variables
while #L

N and #R
N are submatrices of #L and #R corresponding to non-basic

variables. Similar to (20.84), for a fixed h, the conditions in the set of the right-hand
side in (20.85) become a system of linear inequalities. Then the supremum can be
obtained approximately by a bisection method of h 2 Œ0; 1� and LP for finding a
solution satisfying the system of linear inequalities.

As shown above, even in fuzzy coefficient case, the possible efficiency degree of
a given feasible solution can be calculated rather easily by a bisection method and
an LP technique.

20.4.3 Necessary Efficiency Test

The necessary efficiency test is much more difficult than the possible efficiency test.
Bitran [4] proposed an enumeration procedure for the necessary efficiency test of a
non-degenerate basic solution when � is a crisp set. In this paper, we describe the
implicit enumeration algorithm for the necessary efficiency test of a basic solution
based on (20.77) when � is a crisp set. The difference from the Bitran’s approach
is only that we have additional constraints B�1

i� Ns � 0, i 2 D D fi j x0i D 0; i 2 JBg.
Because the necessary and sufficient condition for a basic feasible solution x0 to

be an efficient solution with respect to objective coefficient matrix C is given as the
inconsistency of (20.77), from Proposition 1, we check the inconsistency of (20.77)
for all C 2 ˚ � �. To do this, we consider the following non-linear programming
problem:
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maximize 1Ty;
subject to .CN � CBB�1N/s � y D 0;

B�1
i� Ns � 0; i 2 D D fi j x0i D 0; i 2 JBg;

CN 2 fLN; UNg; CB 2 fLB; UBg;
s 	 0; y 	 0:

(20.86)

If the optimal value of Problem (20.86) is zero, the given basic solution x0 is a
necessarily optimal solution. Otherwise, x0 is not a necessarily optimal solution.

We obtain the following Proposition.

Proposition 2. In Problem (20.86), there is always an optimal solution
.C�

B;C
�
N; s

�; y�/ with C�
N D UN and CB

��i D UB�i, i 2 D.

Proof. It is trivial from s 	 0 and B�1
i� Ns � 0, i 2 D. ut

From Proposition 2, some part of C D .CB CN/ can be fixed to solve
Problem (20.86). For each non-basic variable xj, let CB.j/ be the p � n matrix with
columns CB.j/�k defined by

CB.j/�k D
(

LB�k if k 62 D and B�1
k� N�j 	 0;

UB�k if k 2 D or B�1
k� N�j < 0;

k 2 JB: (20.87)

We obviously have CB.j/B�1N�js � CBB�1N�js for LB � CB � UB and s 	 0. We
have the following proposition.

Proposition 3. If Problem (20.86) has a feasible solution .C�
B;C

�
N; s

�; y�/ such that
1Ts� > 0 then the following problem with an arbitrary index set M1 � JB nD has a
feasible solution 1Ts > 0.

maximize 1Ty;

subject to
X

j2JN

 

UN�j �
X

k2D

UB�kB�1
k� N�j �

X

k2M1

CB �kB�1
k� N�j

�
X

k2JBn.M1[D/

CB.j/�kB�1
k� N�j

!

sj � y D 0;

B�1
i� N�jsj � 0; j 2 JN; i 2 D;

CB�k 2 fLB�k; UB�kg; k D 1; 2; : : : ;m1 such that k 62 D;
y 	 0; sj 	 0; j 2 JN:

(20.88)

Proof. We have UN�j 	 CN�j, j 2 JN and CB.j/�kB�1�k N�j � CB�kB�1�k N�j, j 2 JN,
CB�k 2 fLB�k; UB�kg. Moreover, for sj 	 0 such that B�1

i� N�jsj � 0; j 2 JN; i 2 D,
we have UB�kB�1�k N�jsj � CB�kB�1�k N�jsj. Then the constraints of Problem (20.88) is a
relaxation of those of Problem (20.86). Hence, we obtain this proposition. ut
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This proposition enables us to apply an implicit enumeration algorithm. We
explain the procedure following Bitran’s explanation [4]. However, the description
in this paper is different from Bitran’s because Bitran proposed the method when
the basic solution is not degenerate.

Let w D jJB n Dj and JB n D D fk1; k2; : : : ; kwg. If w D 0, the necessary
efficiency can be checked by solving Problem (20.88) with M1 D ;. Then, we
assume w ¤ 0 in what follows. We consider M1 D fk1; k2; : : : ; km1g with m1 � kw.
For convenience, let P.x0;m1 D 0/ be Problem (20.88) with M1 D ;. Then the
implicit enumeration algorithm is described as follows.

Implicit Enumeration Algorithm [4]

Start by solving P.x0;m1 D 0/. If the optimal value is zero, terminate the algorithm
and x0 is necessarily efficient. Otherwise, let m1 D 1 and generate the following
two problems:

P.x0;m1 D 1; 1/ W maximize 1Ty;

subject to
X

j2JN

 

UN�j �
X

k2D

UB�kB�1
k� N�j �UB�k1B

�1
k1� N�j

�
wX

lD2
CB.j/�kl

B�1
kl� N�j

!

sj � y D 0;

B�1
i� N�jsj � 0; j 2 JN; i 2 D;

y 	 0; sj 	 0; j 2 JN:

and

P.x0;m1 D 1; 0/ W maximize 1Ty;

subject to
X

j2JN

 

UN�j �
X

k2D

UB�kB�1
k� N�j � LB�k1B

�1
k1� N�j

�
wX

lD2
CB.j/�kl

B�1
kl� N�j

!

sj � y D 0;

B�1
i� N�jsj � 0; j 2 JN; i 2 D;

y 	 0; sj 	 0; j 2 JN:

Where in the notation P.x0;m1 D 1; z/, z D 1 (z D 0) indicates that the column,
in CB corresponding to m1 D 1 has all its elements at the upper (lower) bound. If
the optimal value of P.x0;m1 D 1; 1/ is zero, by Proposition 3, there is no optimal
matrix CB in Problem (20.86), with 1Ty > 0 and having CB�k1 D UB�k1 . In this
case we do not need to consider any descendent of P.x0;m1 D 1; 1/ and the branch
is fathomed. If the optimal value of P.x0;m1 D 1; 1/ is positive we generate two
new problems P.x0;m1 D 2; 1; 1/ and P.x0;m1 D 2; 1; 0/. These two problems
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3 3 3 3

Fig. 20.8 Example of a tree generated by the implicit enumeration algorithm

are obtained by substituting UB�k2 and LB�k2 , respectively, for CB.j/�k2 in P.x0;m1 D
1; 1/. We proceed in the same way, i.e., branching on problems with optimal value
positive and fathoming those with optimal value zero until, we either conclude that
x0 is necessarily efficient or obtain a CB such that LB � CB � UB and the optimal
value of Problem (20.86) is positive. An example of a tree generated by the implicit
enumeration algorithm is given in Fig. 20.8. In this figure, P.x0;m1 D 2; 0; 1; 0/ is
the problem,

P.x0;m1 D 2; 0; 1; 0/ W maximize 1Ty;

subject to
X

j2JN

 

UN�j �
X

k2D

UB�kB�1
k� N�j � LB�k1B

�1
k1� N�j

� UB�k2B�1
k2� N�j � LB�k3B�1

k3� N�j

�
wX

lD4
CB.j/�kl

B�1
kl� N�j

1

A sj � y D 0;

B�1
i� N�jsj � 0; j 2 JN; i 2 D;

y 	 0; sj 	 0; j 2 JN:

The convergence of the algorithm, after solving a finite number of LP problems,
follows from Proposition 3 and the fact that the number of matrices CB that can
possibly be enumerated is finite.

The implicit enumeration algorithm may be terminated earlier when x0 is nec-
essarily efficient because we can fathom the branches only when the optimal value
is zero. As Ida [22] pointed out, we may build the implicit enumeration algorithm
which may be terminated earlier when x0 is not necessarily optimal. To this end, we
define

LCB.j/�k D
(

LB�k if k 62 D and B�1
k� N�j < 0;

UB�k if k 2 D or B�1
k� N�j 	 0;

k 2 JB (20.89)
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and problem LP.x0;m1 D l; z1; z2; : : : ; zl/ as the problem P.x0;m1 D l; z1; z2; : : : ; zl/

with substitution of LCB.j/�k for CB.j/�k, where 0 � l � w and zi 2 f0; 1g, i D
1; 2; : : : ; l. We obtain the following proposition.

Proposition 4. If the optimal value of LP.x0;m1 D l; Nz1; Nz2; : : : ; Nzl/ is positive for
some Nzi 2 f0; 1g, i D 1; 2; : : : ; l, so is the optimal value of Q.x0;m1 D l C
1; Nz1; Nz2; : : : ; Nzl; zlC1/.

Proof. The proposition can be obtained easily. ut
From Proposition 4, at the each node of the tree generated by the implicit

enumeration, we solve Q.x0;m1 D l; Nz1; Nz2; : : : ; Nzl/ as well as P.x0;m1 D
l; Nz1; Nz2; : : : ; Nzl/. If the optimal value of Q.x0;m1 D l; Nz1; Nz2; : : : ; Nzl/ is positive,
from the applications of Proposition 4, we know the optimal value of Q.x0;m1 D
w; Nz1; Nz2; : : : ; Nzl; zlC1; : : : ; zw/ is positive for any zi 2 f0; 1g, i D l C 1; l C
2; : : : ;w. This implies that (20.77) is consistent with C 2 ˚ � � specified by
.Nz1; Nz2; : : : ; Nzl; zlC1; : : : ; zw/. Namely, we know that x0 is not necessarily efficient.
Therefore, if the optimal value of Q.x0;m1 D l; Nz1; Nz2; : : : ; Nzl/ is positive, we
terminate the algorithm with telling that x0 is not necessarily efficient.

An example of a tree generated by this extended enumeration algorithm is shown
in Fig. 20.9. While Fig. 20.8 illustrates a tree generated by the original enumeration
algorithm when x0 is necessarily efficient, Fig. 20.9 illustrates a tree generated by
the extended enumeration algorithm when x0 is not necessarily efficient. Even if
the optimal value of P.x0;m1 D l; Nz1; Nz2; : : : ; Nzl/ is zero, we do not terminate the

3 3

Fig. 20.9 Example of a tree generated by the extended implicit enumeration
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algorithm but fathom the subproblem. On the contrary, if the optimal value of
Q.x0;m1 D l; Nz1; Nz2; : : : ; Nzl/ is positive, we know that x0 is not necessarily efficient
and terminate the algorithm.

As Ida [22] proposed, we may build the implicit enumeration algorithm only with
solving Q.x0;m1 D l; Nz1; Nz2; : : : ; Nzl/. Moreover, Ida [22, 23] proposed a modification
of extreme ray generation method [7] suitable for the problem. In either way, the
necessary efficiency test requires a lot of computational cost. Recently, Hladík [20]
showed that the necessary efficiency test problem is co-NP-complete even for the
case of only one objective and Hladík [19] gives a necessary condition for necessary
efficiency which can solve easily. An overview of MOLP models with interval
coefficients is also done by Oliveira and Antunes [72]. The necessity efficiency
test of a given non-basic feasible solution can be done based on the consistency
of (20.80) for all C 2 ˚ � �. However, it is not easy to build an implicit
enumeration algorithm as we described above in basic feasible solution case because
we cannot easily obtain a proposition corresponding to Proposition 3. The necessity
efficiency test of a given basic feasible solution in fuzzy coefficient case can be
done by the introduction of a bisection method to the implicit enumeration method.
However, this becomes a complex algorithm. The studies on effective methods for
necessity efficiency tests in non-basic solution case as well as necessity efficiency
tests in fuzzy coefficient case are a part of future topics.

20.5 Interactive Fuzzy Stochastic Multiple Objective
Programming

One of the traditional tools for taking into consideration uncertainty of parame-
ters involved in mathematical programming problems is stochastic programming
[3, 9, 24], in which the coefficients in objective functions and/or constraints
are represented with random variables. Stochastic programming with multiple
objective functions were first introduced by Contini [8] as a goal programming
approach to multiobjective stochastic programming, and further studied by Stancu-
Minasian [86]. For deriving a compromise or satisficing solution for the DM in
multiobjective stochastic decision making situations, an interactive programming
method for multiobjective stochastic programming with Gaussian random variables
were first presented by Goicoecha et al. [18] as a natural extension of the so-
called STEP method [2] which is an interactive method for deterministic problems.
An interactive method for multiobjective stochastic programming with discrete
random variables, called STRANGE, was proposed by Teghem et al. [92] and
Słowiński and Teghem [84]. The subsequent works on interactive multiobjective
stochastic programming have been accumulated [57, 93, 94]. There seems to be no
explicit definitions of the extended Pareto optimality concepts for multiobjective
stochastic programming, until White [97] defined the Pareto optimal solutions for
the expectation optimization model and the variance minimization model. More
comprehensive discussions were provided by Stancu-Minasian [86] and Caballero
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et al. [6] through the introduction of extended Pareto optimal solution concepts
for the probability maximization model and the fractile criterion optimization
model. An overview of models and solution techniques for multiobjective stochastic
programming problems were summarized in the context of Stancu-Minasian [87].

When decision makers formulate stochastic programming problems as repre-
sentations of decision making situations, it is implicitly assumed that uncertain
parameters or coefficients involved in multiobjective programming problems can
be expressed as random variables. This means that the realized values of random
parameters under the occurrence of some event are assumed to be definitely
represented with real values. However, it is natural to consider that the possible
realized values of these random parameters are often only ambiguously known to the
experts. In this case, it may be more appropriate to interpret the experts’ ambiguous
understanding of the realized values of random parameters as fuzzy numbers.
From such a practical point of view, this subsection introduces multiobjective
linear programming problems where the coefficients of the objective function are
expressed as fuzzy random variables.

20.5.1 Fuzzy Random Variable

A fuzzy random variable was first introduced by Kwakernaak [58], and its math-
ematical basis was constructed by Puri and Ralescu [73]. An overview of the
developments of fuzzy random variables was found in the recent article of Gil
et al. [17].

In general, fuzzy random variables can be defined in an n dimensional Euclidian
space R

n [73]. From a practical viewpoint, as a special case of the definition by
Puri and Ralescu, following the definition by Wang and Zhang [96], we present the
definition of a fuzzy random variable in a single dimensional Euclidian space R.

Definition 1 (Fuzzy Random Variable). Let .˝;A;P/ be a probability space,
where˝ is a sample space, A is a 
-field and P is a probability measure. Let FN be

the set of all fuzzy numbers and B a Borel 
-field of R. Then, a map QNC W ˝ ! FN

is called a fuzzy random variable if it holds that

n
.!; �/ 2 ˝ � R

ˇ
ˇ � 2 QNC˛.!/

o
2 A �B; 8˛ 2 Œ0; 1�; (20.90)

where QNC˛.!/ D
h QNC�̨.!/; QNCC̨.!/

i
D
n
� 2 R

ˇ
ˇ � QNC.!/.�/ 	 ˛

o
is an ˛-level set of

the fuzzy number QNC.!/ for ! 2 ˝ .

Intuitively, fuzzy random variables are considered to be random variables whose
realized values are not real values but fuzzy numbers or fuzzy sets.

In Definition 1, QNC.!/ is a fuzzy number corresponding to the realized value of

fuzzy random variable QNC under the occurrence of each elementary event ! in the
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sample space ˝ . For each elementary event !, QNC�̨.!/ and QNCC̨.!/ are the left and

right end-points of the closed interval
h QNC�̨.!/; QNCC̨.!/

i
which is an ˛-level set of the

fuzzy number QNC.!/ characterized by the membership function � QNC.!/.�/. Observe

that the values of QNC�̨.!/ and QNCC̨.!/ are real values which vary randomly due to the
random occurrence of elementary events!. With this observation in mind, realizing

that QNC�̨ and QNCC̨ can be regarded as random variables, it is evident that fuzzy random
variables can be viewed as an extension of ordinary random variables.

In general, if the sample space˝ is uncountable, positive probabilities cannot be
always assigned to all the sets of events in the sample space due to the limitation that
the sum of the probabilities is equal to one. Realizing such situations, it is significant
to introduce the concept of 
-field which is a set of subsets of the sample space.

To understand the concept of fuzzy random variables, consider discrete fuzzy
random variables. To be more specific, when a sample space ˝ is countable, the
discrete fuzzy random variable can be defined by setting the 
-field A as the power
set 2˝ or some other smaller set, together with the probability measure P associated
with the probability mass function p satisfying

P.A/ D
X

!2A

p.!/; 8A 2 A:

Consider a simple example: Let a sample space be ˝ D f!1; !2; !3g, a 
-field
A D 2˝ , and a probability measure P.A/ D P

!2A p.!/ for all A 2 A. Then,

Fig. 20.10 illustrates a discrete fuzzy random variable where fuzzy numbers QNC.!1/,QNC.!2/ and QNC.!3/ are randomly realized at probabilities p.!1/, p.!2/ and p.!3/,
respectively, satisfying

P3
jD1 p.!j/ D 1.

τ   0

1

ω = ω1 ω = ω2 ω = ω3
μ     (τ)C

~−
(ω)

Fig. 20.10 Example of discrete fuzzy random variables
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20.5.2 Brief Survey of Fuzzy Random Multiple Objective
Programming

Studies on linear programming problems with fuzzy random variable coefficients,
called fuzzy random linear programming problems, were initiated by Wang and
Qiao [95] and Qiao et al. [74] as a so-called distribution problem of which goal
is to seek the probability distribution of the optimal solution and optimal value.
Optimization models of fuzzy random linear programming were first developed by
Luhandjula et al. [67, 69], and further studied by Liu [60, 61] and Rommelfanger
[77]. A brief survey of major fuzzy stochastic programming models including fuzzy
random programming was found in the paper by Luhandjula [68].

On the basis of possibility theory, Katagiri et al. firstly introduced possibilistic
programming approaches to fuzzy random linear programming problems [42, 44]
where only the right-hand side of an equality constraint involves a fuzzy ran-
dom variable, and considered more general cases where both sides of inequality
constraints involve fuzzy random variables [45]. They also tackled the problem
where the coefficients of the objective functions are fuzzy random variables [43].
Through the combination of a stochastic programming model and a possibilistic pro-
gramming model, Katagiri et al. introduced a possibilistic programming approach
to fuzzy random programming model [50] and proposed several multiobjective
fuzzy random programming models using different optimization criteria such as
possibility expectation optimization [46], possibility variance minimization [48],
possibility-based probability maximization [53] and possibility-based fractile opti-
mization [51].

Extensions to multiobjective 0-1 programming problems with fuzzy random
variables were provided by incorporating the branch-and-bound method into the
interactive methods [49].

Along this line, this section devotes to discussing the optimization models for
multiobjective fuzzy random programming problems where each of coefficients in
the objective functions are represented with fuzzy random variables.

20.5.3 Problem Formulation

Assuming that the coefficients of the objective functions are expressed as fuzzy ran-
dom variables, we consider a multiobjective fuzzy random programming problem

minimize z1.x/ D QNC1x
� � � � � �

minimize zk.x/ D QNCkx
subject to Ax � b; x 	 0;

9
>>>=

>>>;

(20.91)
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where x is an n dimensional decision variable column vector, A is an m�n coefficient
matrix, b is an m dimensional column vector and QNCl D . QNCl1; : : : ;

QNCln/; l D 1; : : : ; k
are n dimensional coefficient row vectors of fuzzy random variables.

For notational convenience, let F denote the feasible region of (20.91), namely

F , fx 2 R
n j Ax � b; x 	 0g:

Considering a simple but practical fuzzy random variables satisfying the condi-

tions in Definition 1, suppose that each element QNClj of the vector QNCl D . QNCl1; : : : ;
QNCln/

is a fuzzy random variable whose realized value is a fuzzy number QCljsl depending
on a scenario sl 2 f1; : : : ; Slg which occurs with a probability plsl , where
PSl

slD1 plsl D 1.
The sample space is defined as ˝ D f1; : : : ; Slg, and the corresponding 
-field

is A D 2˝ . Unfortunately, however, if the shapes of QCljsl , sl D 1; : : : ; Sl are not
the same as shown in Fig. 20.10, it is quite difficult to calculate the fuzzy random
variable representing the objective function involving fuzzy random variables in
problem (20.91). Realizing such difficulty, Katagiri et al. [43, 46, 48, 49] considered
a discrete fuzzy random variable as an extended concept of the discrete random
variable. Along this line, in this section, we restrict ourselves to considering the
case where the realized values QCljsl , sl D 1; : : : ; Sl are triangular fuzzy numbers
with the membership function defined as

� QCljsl
.�/ D

8
ˆ̂
<̂

ˆ̂
:̂

max

�

1 � dljsl � �
ˇlj

; 0

�

if � � dljsl

max

�

1 � � � dljsl

�lj
; 0

�

if � > dljsl ;

(20.92)

where the value of dljsl varies depending on which scenario sl 2 f1; : : : ; Slg occurs,
and ˇlj and �lj are not random parameters but constants. Figure 20.11 illustrates an
example of the membership function � QCljsl

.�/. Formally, the membership function

of the fuzzy random variable QNClj is represented by

� QNClj
.�/ D

8
ˆ̂
<̂

ˆ̂
:̂

max

�

1 �
Ndlj � �
ˇlj

; 0

�

if � � Ndlj

max

�

1 � � �
Ndlj

�lj
; 0

�

if � > Ndlj:

(20.93)

Through the Zadeh’s extension principle, each objective function QNClx is repre-
sented by a single fuzzy random variable of which realized value for scenario sl is a
triangular fuzzy number QClsl x characterized by the membership function
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τβ γ0

1

lj lj

μ     (τ )
C

dljsl

~
ljs l

Fig. 20.11 Example of the membership function �QCljsl

Fig. 20.12 Example of the
membership function � QClsl x

υ0

1

μ      (υ)
C     x
~
ls l

β x γ  xl d   xls l

l

� QClslx
.$/ D

8
ˆ̂
<̂

ˆ̂
:̂

max

�

1 � dlsl x � $
ˇlx

; 0

�

if $ � dlslx

max

�

1 � $ � dlslx
� lx

; 0

�

if $ > dlslx;

(20.94)

where dlsl is an n dimensional column vector which is different from the other dlOsl ,Osl 2 f1; : : : ; Slg, Osl 6D sl, and ˇl and � l are n dimensional constant column vectors.
Figure 20.12 illustrates an example of the membership function � QClsl x

.$/. Also for

the lth objective function QNClx, its membership function is formally expressed as

� QNClx
.$/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

max

(

1 �
Ndlx � $

ˇlx
; 0

)

if $ � Ndlx

max

(

1 � $ �
Ndlx

� lx
; 0

)

if $ > Ndlx:

(20.95)
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Considering the imprecise nature of human judgments, it is quite natural to
assume that the decision maker (DM) may have a fuzzy goal for each of the

objective functions zl.x/ D QNClx, and in a minimization problem, the DM specifies
the fuzzy goal such that “the objective function value should be substantially less
than or equal to some value.” Such a fuzzy goal can be quantified by eliciting the
corresponding membership functions through some interaction process from the
DM. In this subsection, for simplicity, the linear membership function expressed
as the following is assumed:

� QGl
.y/ D

8
ˆ̂
<̂

ˆ̂
:̂

0 if y > z0l
y � z0l
z1l � z0l

if z1l � y � z0l

1 if y < z1l ;

(20.96)

where z0l and z1l are parameters determined by decision makers so as to represent the
DM’s degree of satisfaction of the objective function values

z0l D max
sl2f1;:::;Slg

max
x 2 F

nX

jD1
dljsl xj; l D 1; : : : ; k;

z1l D min
sl2f1;:::;Slg

min
x 2 F

nX

jD1
dljsl xj; l D 1; : : : ; k:

9
>>>>=

>>>>;

(20.97)

It should be noted here that z0l and z1l are obtained by solving linear programming
problems. Figure 20.13 illustrates an example of the membership function � QGl

of a

fuzzy goal QGl.
Recalling that the membership function is regarded as a possibility distribution,

the degree of possibility that the objective function value QNClslx for a given scenario
sl 2 f1; : : : ; Slg attains the fuzzy goal QGl is expressed as

Fig. 20.13 Example of the
membership function of a
fuzzy goal
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l l
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G

01

~
l

z z
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Fig. 20.14 Degree of
possibility ˘ QClsl x

. QGl/
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1

l l

μ   (y)
G

01

~
l

(d   −β ) x
0

l

μ      (y)
C     x

d    xlsl

~
lsl

lsl

Π      ( G )
C     x
~

lsl
l

~

zz

˘ QClslx
. QGl/ D sup

y
min

�

� QClslx
.y/; � QGl

.y/

�

; l D 1; : : : ; k: (20.98)

Figure 20.14 illustrates the degree of possibility that the fuzzy goal QGl is fulfilled
under the possibility distribution � QClslx.

A possibility measure is useful to a decision maker who observes decision
making situations from an optimistic point of view. However, when a decision
maker is pessimistic about the situation, it is reasonable to use a necessity measure
rather than a possibility measure. Then, the degree of necessity that the objective

function value QNClslx for a given scenario sl 2 f1; : : : ; Slg attains the fuzzy goal QGl is
expressed as

N QClslx
. QGl/ D inf

y
max

�

� QClsl x
.y/; 1 � � QGl

.y/

�

; l D 1; : : : ; k: (20.99)

Observing that the degrees of possibility vary randomly depending on which
scenario occurs, it should be noted here that conventional possibilistic programming
approaches cannot be directly applied to (20.91). With this observation in mind,
realizing that (20.91) involves not only fuzziness but also randomness, Katagiri et al.
considered fuzzy random decision making models such as possibilistic expectation
model [43, 46, 49] and possibilistic variance model [48] by incorporating the
possibility theory into stochastic programming models.

20.5.4 Possibilistic Expectation Model

One of the natural solution approaches to such decision making situations as
discussed in the previous subsection is to maximize expectation of the degree
of possibility and/or necessity. Katagiri et al. [43, 46, 49] introduced possibilistic
expectation models under the assumption that a DM intends to maximize the
expected degree of possibility and/or necessity that each of the original objective
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functions involving fuzzy random variable coefficients attains the fuzzy goals. On
the basis of possibilistic expectation models the original multiobjective fuzzy ran-
dom programming problem (20.91) can be reformulated as the following problem:

maximize E



˘ QNClx
. QGl/

�

; l 2 Lpos

maximize E



N QNClx
. QGl/

�

; l 2 Lnec

subject to x 2 F;

9
>>>>>>=

>>>>>>;

(20.100)

where EŒ�� denotes the expectation operator. Lpos and Lnec are index sets satisfying
Lpos [Lnec D f1; 2; : : : ; kg and Lpos \Lnec D ;.

When the triangular fuzzy random variable (20.94) and the linear fuzzy
goal (20.96) are given, the degree of possibility (20.98) is explicitly represented by

˘ QClsl x
. QGl/ D

nX

jD1
.ˇlj � dljsl/xj C z0l

nX

jD1
ˇljxj � z1l C z0l

: (20.101)

On the other hand, the degree of necessity (20.99) is explicitly expressed as

N QClsl x
. QGl/ D

�
nX

jD1
dljsl xj C z0l

nX

jD1
�ljxj � z1l C z0l

: (20.102)

Recalling that the occurrence probability of scenario sl is plsl , the expectation of
the degree of possibility or necessity is calculated as

E



˘ QNClx
. QGl/

�
4D

SlX

slD1
plsl˘ QClslx

. QGl/ D

nX

jD1

0

@ˇlj �
SlX

slD1
plsl dljsl

1

A xj C z0l

nX

jD1
ˇljxj � z1l C z0l

:

(20.103)

E



N QNClx
. QGl/

�
4D

SlX

slD1
plslN QClslx

. QGl/ D
�

nX

jD1

SlX

slD1
plsldljsl xj C z0l

nX

jD1
�ljxj � z1l C z0l

: (20.104)
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Let ZE
l .x/ denote

ZE
l .x/ D

8
ˆ̂
<̂

ˆ̂
:̂

E



˘ QNClx
. QGl/

�

if l 2 Lpos

E



N QNClx
. QGl/

�

if l 2 Lnec

(20.105)

To calculate a candidate for the satisficing solution which is also Pareto optimal,
in interactive multiobjective programming, the DM is asked to specify reference
levels OzE

l , l D 1; : : : ; k of the objective function values of (20.105), and it is called
the reference (expected possibility) levels. For the DM’s reference levels OzE

l ; l D
1; : : : ; k, an Pareto optimal solution, which is the nearest to a vector of the reference
levels or better than it if the reference levels are attainable in a sense of minimax, is
obtained by solving the minimax problem

minimize max
1�l�k

˚OzE
l � ZE

l .x/
�

subject to x 2 F:

9
=

;
(20.106)

Following the preceding discussion, we can now present an interactive algorithm
for deriving a satisficing solution for the DM from among the Pareto optimal
solution set.

20.5.4.1 Interactive Satisficing Method for the Possibilistic
Expectation Model

Step 1: Determine the linear membership functions � QGl
, l D 1; : : : ; k defined

as (20.96) by calculating z0l and z1l ; l D 1; : : : ; k.
Step 2: Set the initial reference levels at 1s, which can be viewed as the ideal values,

i.e., OzE
l D 1; l D 1; : : : ; k.

Step 3: For the current reference levels OzE
l , l D 1; : : : ; k, solve the minimax

problem (20.106).
Step 4: The DM is supplied with the corresponding Pareto optimal solution x�.

If the DM is satisfied with the current objective function values ZE
l .x

�/; l D
1; : : : ; k, then stop the algorithm. Otherwise, ask the DM to update the reference
levels OzE

l , l D 1; : : : ; k by considering the current objective function values, and
return to step 3.

Here it should be stressed for the DM that any improvement of one expectation
of the degree of possibility can be achieved only at the expense of at least one of
other expected possibilities or expected necessities.
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20.5.5 Possibilistic Variance Model

As discussed in the previous subsection, the possibilistic expectation model would
be appropriate if the DM intends to simply maximize the expected degrees of
possibility without concerning about those fluctuations.

However, when the DM prefers to decrease the fluctuation of the objective
function values, the possibilistic expectation model is not relevant because some
scenario yielding a very low possibility of good performance may occur even with
a small probability.

To avoid such risk, from the risk-averse point of view, by minimizing the variance
of the degree of possibility under the constraints of feasibility together with the
conditions for the expected degrees of possibility, Katagiri et al. [48] considered
a possibilistic variance model for fuzzy random multiobjective programming
problems. Along this line, in this section, we consider the following problem as
a risk-aversion approach to the original problem (20.91):

minimize Var



˘ QNClx
. QGl/

�

; l 2 Lpos

minimize Var



N QNClx
. QGl/

�

; l 2 Lnec

subject to E



˘ QNClx
. QGl/

�

	 �l; l 2 Lpos

E



N QNClx
. QGl/

�

	 �l; l 2 Lnec

x 2 F;

9
>>>>>>>>>>>>>=

>>>>>>>>>>>>>;

(20.107)

where VarŒ�� denotes the variance operator, and �l; l D 1; : : : ; k are permissible
expectation levels for the expected degrees of possibility specified by the DM.

For notational convenience, let F.�/ be the feasible region of (20.107), namely

F.�/ ,
�

x 2 F
ˇ
ˇ E



˘ QNClx
. QGl/

�

	 �l; l 2 Lpos; E



N QNClx
. QGl/

�

	 �l; l 2 Lnec

�

:

Recalling (20.98) and (20.99), each of the objective functions in (20.107) is
calculated as

Var



˘ QNClx
. QGl/

�

D 1
0

@
nX

jD1
ˇljxj � z1l C z0l

1

A

2
Var

2

4
nX

jD1
Ndljxj

3

5
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D 1
0

@
nX

jD1
ˇljxj � z1l C z0l

1

A

2
xTVlx; (20.108)

Var



N QNClx
. QGl/

�

D 1
0

@
nX

jD1
�ljxj � z1l C z0l

1

A

2
Var

2

4
nX

jD1
Ndljxj

3

5

D 1
0

@
nX

jD1
�ljxj � z1l C z0l

1

A

2
xTVlx; (20.109)

where Vl is the variance-covariance matrix of Ndl expressed by

Vl D

2

6
6
6
4

vl
11 v

l
12 � � � vl

1n

vl
21 v

l
22 � � � vl

2n
:::

:::
: : :

:::

vl
n1 v

l
n2 � � � vl

nn

3

7
7
7
5
; l D 1; : : : ; k;

and

vl
jj D VarŒNdlj� D

SlX

slD1
plslfdljslg2 �

8
<

:

SlX

slD1
plsldljsl

9
=

;

2

; j D 1; : : : ; n;

vl
jr D CovŒNdlj; Ndlr� D EŒNdlj; Ndlr� � EŒNdlj�EŒNdlr�

D
SlX

slD1
plsl dljsldlrsl �

SlX

slD1
plsldljsl

SlX

slD1
plsl dlrsl ; j ¤ r; r D 1; : : : ; n:

Furthermore, from (20.103) and (20.104), the constraint of the expected degree

of possibility E



˘ QNClx
. QGl/

�

	 �l and that of necessity E



N QNClx
. QGl/

�

	 �l are

explicitly represented as
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nX

jD1

8
<

:

SlX

slD1
plsldljsl � .1 � �l/ˇlj

9
=

;
xj � z0l � �l.z

0
l � z1l /: (20.110)

and

nX

jD1

8
<

:

SlX

slD1
plsl dljsl C �l�lj

9
=

;
xj � z0l � �l.z

0
l � z1l /: (20.111)

By substituting (20.109), (20.110) and (20.111) into (20.107), (20.107) is
equivalently transformed as

minimize 10

@
nX

jD1
ˇljxj � z1l C z0l

1

A

2 xTVlx; l 2 Lpos

minimize 10

@
nX

jD1
�ljxj � z1l C z0l

1

A

2 xTVlx; l 2 Lnec

subject to
nX

jD1

8
<

:

SlX

slD1
plsldljsl � .1 � �l/ˇlj

9
=

;
xj � z0l � �l.z

0
l � z1l /; l 2 Lpos

nX

jD1

8
<

:

SlX

slD1
plsldljsl C �l�lj

9
=

;
xj � z0l � �l.z

0
l � z1l /; l 2 Lnec

x 2 F:

9
>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>;

(20.112)

From the fact that it holds

nX

jD1
ˇljxj � z1l C z0l > 0;

nX

jD1
�ljxj � z1l C z0l > 0

and xTVlx 	 0 due to the positive-semidefinite property of Vl, by computing the
square root of the objective functions of (20.112), (20.112) is equivalently rewritten
as
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minimize

p
xTVlx

nX

jD1
ˇljxj � z1l C z0l

; l 2 Lpos

minimize

p
xTVlx

nX

jD1
�ljxj � z1l C z0l

; l 2 Lnec

subject to
nX

jD1

8
<

:

SlX

slD1
plsldljsl � .1 � �l/ˇlj

9
=

;
xj � z0l � �l.z

0
l � z1l /; l 2 Lpos

nX

jD1

8
<

:

SlX

slD1
plsldljsl C �l�lj

9
=

;
xj � z0l � �l.z

0
l � z1l /; l 2 Lnec

x 2 F;

9
>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>;

(20.113)

where each of the objective functions represents the standard deviation of the degree
of possibility or necessity.

It should be noted here that the minimization of the variance is equivalent to the
minimization of the standard deviation.

To calculate a candidate for the satisficing solution, the DM is asked to specify
the reference levels OzD

l , i D 1; : : : ; k of the objective function values of (20.113).
Let ZD

l .x/ denote

ZD
l .x/ D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

p
xTVlx

nX

jD1
ˇljxj � z1l C z0l

; l 2 Lpos

p
xTVlx

nX

jD1
�ljxj � z1l C z0l

; l 2 Lnec

Then, for the DM’s reference levels OzD
l , i D 1; : : : ; k, a (weakly) Pareto optimal

solution is obtained by solving the minimax problem

minimize max
1�l�k

n
ZD

l .x/ � OzD
l

o

subject to
nX

jD1

8
<

:

SlX

slD1
plsldljsl � .1 � �l/ˇlj

9
=

;
xj � z0l � �l.z

0
l � z1l /; l 2 Lpos

nX

jD1

8
<

:

SlX

slD1
plsldljsl C �l�lj

9
=

;
xj � z0l � �l.z

0
l � z1l /; l 2 Lnec

x 2 F:

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

(20.114)
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For notational convenience, we introduce Nl.x/ and Dl.x/ such that

ZD
l .x/ � OzD

l ,
Nl.x/
Dl.x/

; (20.115)

where

Nl.x/ D

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

p
xTVlx � OzD

l

0

@
nX

jD1
ˇljxj � z1l C z0l

1

A ; 8l 2 Lpos

p
xTVlx � OzD

l

0

@
nX

jD1
�ljxj � z1l C z0l

1

A ; 8l 2 Lnec

Dl.x/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

nX

jD1
ˇljxj � z1l C z0l ; 8l 2 Lpos

nX

jD1
�ljxj � z1l C z0l ; 8l 2 Lnec:

Since the numerator Nl.x/ is a convex function and the denominator Dl.x/ is an
affine function, it follows that Nl.x/=Dl.x/ is a quasi-convex function. Using this
property, we can solve (20.114) by using the following extended Dinkelbach-type
algorithm [5]:

20.5.5.1 Extended Dinkelbach-Type Algorithm for Solving (20.114)

Step 1: Set r WD 0 and find a feasible solution xr 2 F.�/.
Step 2: For a qr calculated by

qr D max
1�l�k

�
Nl.xr/

Dl.xr/

�

;

find an optimal solution xc to the convex programming problem

minimize v

subject to
1

Dl.xr/
fDl.x/ � qrNl.x/g � v; l D 1; : : : ; k

nX

jD1

8
<

:

SlX

slD1
plsl dljsl � .1 � �l/ˇlj

9
=

;
xj � z0l � �l.z

0
l � z1l /; l 2 Lpos

nX

jD1

8
<

:

SlX

slD1
plsl dljsl C �l�lj

9
=

;
xj � z0l � �l.z

0
l � z1l /; l 2 Lnec

x 2 F:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

(20.116)
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Step 3: For a sufficiently small positive number ", if v < ", stop the algorithm.
Otherwise, set xr WD xc, r WD rC 1, and return to step 2.

Now we are ready to summarize an interactive algorithm for deriving a satisficing
solution for the DM from among the Pareto optimal solution set.

20.5.5.2 Interactive Satisficing Method for the Possibilistic
Variance Model

Step 1: Determine the linear membership functions � QGl
; l D 1; : : : ; k with z0l and

z1l ; l D 1; : : : ; k obtained by solving linear programming problems (20.97).
Step 2: Calculate the individual minima and maxima of ZE

l .x/, l D 1; : : : ; k.
Step 3: Ask the DM to specify the permissible levels �l, l D 1; : : : ; k taking into

account the individual minima and maxima obtained in step 2.
Step 4: Set the initial reference levels at 0s, which can be viewed as the ideal values,

i.e., OzD
l D 0; l D 1; : : : ; k.

Step 5: For the current reference levels OzD
l ; l D 1; : : : ; k, solve the minimax

problem (20.114) by using the extended Dinkelbach-type algorithm.
Step 6: The DM is supplied with the obtained Pareto optimal solution x�. If the DM

is satisfied with the current objective function values ZD
l .x

�/, l D 1; : : : ; k, then
stop. Otherwise, ask the DM to update the reference levels OzD

l , l D 1; : : : ; k, and
return to step 5.

20.5.6 Recent Topics: Random Fuzzy Multiple Objective
Programming

When a random variable is used to express an uncertain parameter related to a
stochastic factor of real systems, it is implicitly assumed that there exists a single
random variable as a proper representation of the uncertain parameter. However,
in some cases, experts may consider that it is suitable to employ a set of random
variables, rather than a single one, in order to more precisely express the uncertain
parameter. In this case, depending on the degree to which experts convince that each
element (random variable) in the set is compatible with the uncertain parameter, it
would be quite natural to assign different values (different degrees of possibility) to
the elements in the set. For handling such real-world decision making situations, a
random fuzzy variable was introduced by Liu [62] and explicitly defined [63] as a
function from a possibility space to a collection of random variables.

Recently, by considering the experts’ ambiguous understanding of mean and
variance of random variables, Katagiri et al. [47] introduced a linear programming
problem where an objective function contains random fuzzy parameters and dis-
cussed the problem in the framework of random fuzzy variables. They focused on
the case where the mean of each random variable is represented with a fuzzy number
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and constructed a novel decision making model on the basis of possibility theory.
Their model was extended to a multiobjective case [52] where only the coefficients
of the objective functions are given as random fuzzy variables. A more general type
of random fuzzy programming problems, in which not only objective functions
but also constraints involve random fuzzy variables, was developed [56]. In these
models, it is shown that the original problems can be transformed into deterministic
nonlinear programming problems, and that the obtained deterministic problems
can be exactly solved using conventional nonlinear programming techniques under
some assumptions. These random fuzzy programming models are extended to other
decision making problems such as two-level (bilevel) programming problems [54]
and minimum spanning tree problems [55].
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Chapter 21
A Review of Goal Programming

Dylan Jones and Mehrdad Tamiz

Abstract The field of goal programming is continuing to develop at a rapid
pace. New variants of the goal programming model are being introduced into the
literature and existing variants combined together to form a more comprehensive
and flexible modelling structure. Goal programming is also being applied to wide
a range of modern applications and is increasingly being used in combination with
other techniques from operations research and artificial intelligence to enhance its
modelling flexibility. This paper presents a review of the field of goal programming
focussing on recent developments. The current range of goal programming variants
is described. The range of techniques that goal programming has been combined or
integrated with is discussed. A range of modern applications of goal programming
are given and conclusions are drawn.

Keywords Goal programming • Bibliography

21.1 Introduction

Goal programming is a technique within the field of multi-criteria decision making
(MCDM) primarily based around the Simon [118] philosophy of reaching a set of
multiple goals as closely as possible. The earliest goal programming formulation
was introduced by Charnes et al. [30], in the context of executive compensation. At
this point the term ‘goal programming’ was not used and the model was seen as an
adaptation of linear programming. A more formal theory of goal programming is
given by Charnes and Cooper [27]. Books by Lee [81], Ignizio [63], Romero [108]
and Ignizio and Cavalier [65], have helped shape the direction and development
of goal programming. A recent book by Jones and Tamiz [75] gives a detailed
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explanation of goal programming from a practical modelling perspective. This
paper gives an overview of the field of goal programming focussing on recent
developments and applications.

The remainder of this paper is divided into four sections. Section 21.2 details the
goal programming variants and gives key references for each variant. Section 21.3
examines goal programming as part of a mixed modelling framework and gives
references for each technique that goal programming has been combined or
integrated with. Section 21.4 gives references for some recent applications of goal
programming. Finally, Sect. 21.5 draws conclusions.

21.2 Goal Programming Variants

The field of goal programming can be categorised into a number of variants. Jones
and Tamiz [75] draw the distinction between ‘Distance-metric based variants’ who
differ in the way they compare deviations from amongst the set of goals and
‘Decision Variable and Goal based variants’ which differ in the way they define the
decision variables or calculate individual deviations from goals. Sections 21.2.1–
21.2.6 detail the distance-metric based-variants and Sects. 21.2.7–21.2.10 detail
the decision-variable and goal based variants. It is important to note that a goal
programme can be a combination of many types of variants. For example, an
non-linear integer lexicographic goal programme [15], or a fuzzy weighted goal
programme [135].

21.2.1 Lexicographic Goal Programming

Lexicographic goal programming is a key variant used when the decision maker
has a natural priority ordering of the goals. It enjoyed prominence in the early goal
programming literature, with [125] recording 75 % of goal programming models
using the lexicographic form. Books by Lee [81], Ignizio [63], Ignizio and Cavalier
[65], and Schniederjans [114], all have a strong emphasis on the lexicographic
variant. The lexicographic variant is used when the decision maker has a natural
ordering of goals into a number of priority levels in mind or when they do not wish
to make direct trade-offs between goals for political or ethical reasons.

The algebraic formulation of a lexicographic goal programme with the number
of priority levels defined as L with corresponding index l D 1; : : : ;L is given below.
Each priority level is a function of a subset of unwanted deviational variables which

we define as hl

	
n; p



. This leads to the following formulation:

Lex Min a D
h
h1
	

n; p


; h2

	
n; p



; : : : ; hL

	
n; p


i

Subject to:
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fq .x/C nq � pq D bq q D 1; : : :Q

x 2 F

nq; pq 	 0 q D 1; : : : ;Q

Where each hl.n; p/ contains a number of unwanted deviational variables. The exact
nature of hl.n; p/ depends on the nature of the goal programme to be formulated, but
if we assume that it is linear and separable then it will assume the form:

hl.n; p/ D
QX

qD1

 
ul

qnq

kq
C vl

qpq

kq

!

Where ul
q is the preferential weight associated with the minimisation of nq in the

l’th priority level. vl
q is the preferential weight associated with the minimisation of

pq in the l’th priority level. kq is the normalisation constant of the q’ th goal, further
explained in Sect. 21.2.2 below.

The lexicographic structure has been criticised by some authors on the grounds
of its incompatibility with utility function theory [96]. However Romero [108]
points out its practicality in modelling situations where the decision maker has a
pre-defined ordering of the goals in mind. Furthermore, Tamiz et al. [126, 127]
explore the relationship between lexicographic ordering and utility functions and
conclude that the non-compensatory lexicographic model can be appropriate when
modelling some real-life decisions. Therefore, whilst it is true that lexicographic
goal programming will not be appropriate for every multi-objective situation, it can
be seen that there is a class of situations in which it proves to be an effective an
appropriate decision aiding tool.

21.2.2 Weighted Goal Programming

The weighted goal programme variant is covered in details in books by Romero
[108] and Jones and Tamiz [75]. It is recorded by Jones and Tamiz [74] as account-
ing for 41 % of goal programming articles in the period 1990–2000. Assuming
linearity of the achievement function, the linear weighted goal programme can be
represented by the following formulation:

Min a D
QX

qD1

�
uqnq

kq
C vqpq

kq

�



906 D. Jones and M. Tamiz

Subject to:

fq .x/C nq � pq D bq q D 1; : : :Q

x 2 F

nq; pq 	 0 q D 1; : : : ;Q

With the variable definitions identical to those introduced for the lexicographic
goal programming variant in Sect. 21.2.1 above, except that the preference weights
uq and vq are no longer indexed by priority level. This model allows for trade-offs
between goals to be investigated by varying the preference weights. Major issues
in using the weighted variant have included the choice of normalisation weight kq.
Romero [108] and Jones and Tamiz [75] both give descriptions of possible choices
of normalising weights. The setting the preferential weights is another issue with
[70] suggesting a weight sensitivity algorithm to overcome difficulties associated
with weight setting.

21.2.3 Chebyshev Goal Programming

The Chebyshev (or MinMax) goal programming variant is proposed by Flavell
[49] and explained by Jones and Tamiz [75]. It differs from the lexicographic and
weighted variants in that it has an underlying Chebyshev (L1) distance metric
rather than a Manhattan (L1) one. This has the effect of ensuring a balance between
the satisfaction of the goals rather than just concentrating on optimisation. This
means that the Chebyshev variant should be relevant to a large number of application
areas, especially those with multiple decision makers each of whom has a preference
to their own subset of goals that they regard as most important. However, surveys of
the literature (e.g. Jones and Tamiz [74]) find little practical use of the Chebyshev
goal programming variant.

If we let � be the maximal deviation from amongst the set of goals then the
Chebyshev goal programming has the following algebraic format:

Min a D �

Subject to:

fq .x/C nq � pq D bq q D 1; : : :Q

uqnq

kq
C vqpq

kq
� � q D 1; : : :Q
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x 2 F

nq; pq 	 0 q D 1; : : : ;Q; � 	 0

A case study of the use of the Chebyshev variant is given by Ignizio [64] in the
context of maintenance planning.

21.2.4 Extended Goal Programming

The extended Lexicographic goal programming (ELGP) is introduced by Romero
[109] with the purpose of providing a general framework which covers and
allows the combination of the most common goal programming variants. It is
also encompasses several other distance-based MCDM techniques. This work is
further extended by Romero [110] who provides a more generalised form of the
achievement function and by Arenas et al. [5] who extend the framework to include
fuzzy models (detailed in Sect. 21.2.7).

The ELGP model is given in its general algebraic form as:

Min a D

2

6
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Subject to:

˛l
�
ul

in
l
i C vl

ip
l
i

� � �l l D 1; : : : ;L
fi.x/C ni � pi D bi i D 1; : : : ; q
ni; pi 	 0 i D 1; : : : ; q

Where, in common with the notation introduced in Sects. 21.2.1–21.2.3, unwanted
deviations are given a positive weight and deviations which are not desired to be
minimised in a given priority level are given a zero weight in the achievement
function. The parameter notation ul

i, vl
i, �l now contains an extra superscript l which

refers to the priority level.
The ELGP formulation allows for the inclusion and combination of the lexico-

graphic, weighted, and Chebyshev goal programming as detailed in Sects. 21.2.1–
21.2.3 above. The balance between optimisation (efficiency) and balance (equity)
can be controlled at each priority level through the parameter ˛l which can be varied
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between complete emphasis on optimisation (˛ D 0) and complete emphasis on
balance (˛ D 1). The ELGP framework is therefore a comprehensive tool for the
inclusion of all relevant types of underlying philosophies into the goal programming
framework.

21.2.5 Meta Goal Programming

The Meta goal programming framework is proposed by Rodriguez et al. [107]
as a means of allowing the decision maker more flexibility in expressing their
preferences by means of setting meta-goals. These can be thought of as secondary
goals derived from the original set of goals. They can be achieved by means of a
lexicographic or a weighted structure as deemed appropriate by the decision maker.
The three types of meta-goals proposed are:

Type 1: A meta-goal relating to the percentage sum of unwanted deviations
Type 2: A meta-goal relating to the maximum percentage deviation
Type 3: A meta-goal relating to the percentage of unachieved goals.

Considering these three types of meta-goals from the perspective of underlying
distance metrics allows for an understanding of the philosophy of this method. The
type 1 meta-goal has an L1 underlying metric whereas the type 2 meta goal has
an L1 underlying metric. The type 3 meta-goal has an L0 underlying metric of
the type sometimes found in classification models, with a binary value of 1 if the
goal is satisfied and 0 otherwise. Thus the meta-goal programming framework is
valuable in allowing decision maker(s) to explore their preference structure without
having to commit beforehand to a specific distance metric or philosophy. The meta-
goal programming framework is extended to include an interactive methodology by
Caballero et al. [18] and is used in a collaborative manufacturing context by Lin
et al. [89].

21.2.6 Multi-Choice Goal Programming

A recently proposed variant is multi-choice goal programming [23]. A modification
is given by Chang [24] which results in a more computationally efficient model
termed revised multi-choice goal programming. Multi-choice goal programming
has since been applied to problems arising in the fields of supplier selection [84,
88]; product planning [83]; and supply chain management marketing [104]. Multi-
Choice goal programming allows the decision maker to specify a set of multiple
target values for each goal from which they wish to see deviations minimised.
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21.2.7 Fuzzy Goal Programming

The fuzzy goal programming variant is becoming increasingly popular within the
field of goal programming. This variant utilises fuzzy set theory [138] to deal with
a level of imprecision in the goal programming model. This imprecision normally
relates to the goal target values (bq) but could also relate to other aspects of the goal
programme such as the priority structure. The early fuzzy goal programming models
used both Chebyshev [61, 100] and weighted [61, 128] distance metrics. Yaghoobi
et al. [135] give a recent framework for the weighted variant. There are various
possibilities for measuring the fuzziness around the target goals, each of which
leads to a different fuzzy membership function. These functions model the drop
in dissatisfaction from a state of total satisfaction (where the membership function
takes the value 1) to a state of total dissatisfaction (where the membership function
takes the value 0). There are many possible fuzzy membership functions, with the
most common forms being ‘left-sided’, ‘right sided’, ‘triangular’, and ‘trapezoidal’
which are algebraically defined in Jones and Tamiz [75]. Some recent applications of
fuzzy goal programming are given by Amiri and Salehi-Sadaghiani [4] to optimise
multi-response problems and [78] for assembly line balancing.

21.2.8 Goal Programming with Non-standard Preferences

The standard goal programming model assumes a per unit penalty (termed uq or
vq in Sects. 21.2.2 and 21.2.3) for every unit of unwanted deviation from the target
value. These lead to a linear relationship between the magnitude of the unwanted
deviation and the penalty imposed. However, a linear relationship is not sufficient
to adequately represent the decision maker’s preference structure in many real-
life applications. Hence a number of ‘non-standard’ penalty structures have been
proposed in order to improve the flexibility and scope of goal programming. The first
proposed method is termed interval goal programming [26]. This method keeps a
linear per-unit penalty but relaxes the condition that a single goal target value should
be specified. Instead the decision maker chooses an interval which is satisfactory and
penalise deviations from either end of this interval. The next development is that of
a penalty functions approach that allows an increasing per-unit penalty at distances
further out from the goal. This is first proposed by Charnes et al. [29] in the context
of resource allocation for a marine environmental problem. Further developments on
penalty function modelling are found in [19] the context of water resource planning
and [108] who gives description of the underlying theory.

The next developments allowed a complete range of preference functions to
be modelled. Martel and Aouni [94] provide the first global preference change
framework with their adaptation of the discrete multi-criteria method [13] to the goal
programming format. This framework is valuable in providing linkages between the
discrete Multi-Criteria approaches and goal programming. Jones and Tamiz [73]
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provide a more computationally efficient framework that breaks the non-standard
preferences down to a series of four basic preference changes. Chang [22] proposes
a model that is efficient at handling ‘penalty function’ type changes and is similar
to the [19] model.

21.2.9 Integer and Binary Goal Programming

A (mixed) integer goal programme occurs when one or more of the decision or
deviational variables are restricted to take an integer value. A (mixed) binary goal
programme is a special case of integer goal programming where all the integer
variables are restricted to take the vales of zero or one. Any other variant of goal
programming listed in Sect. 21.2 can also be an integer or a binary goal programme,
e.g. an integer lexicographic goal programme.

Most of the modelling methodologies and solution challenges associated with
single objective integer programming (see Williams [134]) also apply to integer
goal programming. Integer and binary goal programmes are of particular use when
formulating many practical problems that have both logical conditions and multiple,
conflicting goals. Typical application areas include multi-objective shortest path,
assignment, logistics, network flow, spanning tree, travelling salesperson, knapsack,
scheduling, location, and set covering problems [45]. Recent applications of integer
and binary goal programming are given by Oddoye et al. [102] in the context of
healthcare planning; Caballero et al. [15] in the context of sawmill planning and
Chen and Su [33] in the context of logistics planning.

21.2.10 Non-linear and Fractional Goal Programming

A goal programme where one or more constraints, goals, or the achievement
function is non-linear is termed a non-linear goal programme. Any of the other
goal programming variants listed in Sect. 21.2 could be non-linear, e.g. a non-linear
extended goal programme. Non-linear goal programmes can be solved in similar
ways to single objective non-linear programmes. Solution methods employed
include exact methods and modern heuristic methods. Recent applications involving
exact methods include [90] who present a mixed integer non-linear weighted goal
programme for supermarket planning and [43] who present a non-linear goal
programming model for an oil blending problem.

Recent application using heuristic methods as a solution tool include [85] who
presents a weighted non-linear model for transportation planning that is solved using
genetic algorithms and [15] who present a non-linear integer lexicographic model
for sawmill planning that is solved using a scatter-based tabu search method.

A fractional goal programming is a special case of a non-linear goal programme
with one or more goals of the form:
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fq .x/
gq .x/

C nq � pq D bq

Where gq .x/ is a generic function of the decision variables. This type of goal
programme is mentioned by Romero [108] as arising in the fields of financial
planning, production planning, and engineering. This variant also occurs in some
goal programming based methods for deriving weighting vectors from pairwise
comparison matrices [41]. Fasakhodi et al. [48] give a recent use of fractional goal
programming in water resource planning.

21.3 Goal Programming as Part of a Mixed-Modelling
Framework

The complexity of modern Operational Research studies is leading to the require-
ment to combine techniques in order to gain a more effective means of modelling the
real-life situation. This has lead to an increase in goal programming being used as
part of mixed-modelling strategies. This section looks at some of the most common
cases of the integration and combination of goal programming with techniques
from the wider fields of Multi-Criteria Decision Making, Operational Research, and
Artificial Intelligence.

21.3.1 Goal Programming as a Statistical Tool

The most frequent use of goal programming is as a decision making tool where the
goals correspond to a range of diverse, conflicting criteria. However, the situation
where the target levels correspond to a measured value on a single criterion
presents a different type of goal programming model. The xj values now represent
coefficients of an equation corresponding to the other criteria and the (weighted)
achievement function aims to provide a best possible fit to the set of observed
target values by minimising the sum of deviations from the target values. The
technological (aij) coefficients now represent the score of the i’th observation on
the j’th criteria. This leads to the base model:

Min a D
qX

iD1
.uini C vipi/
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Subject to

mX

jD1
aijxj C ni � pi D bi i D 1; : : : ; q

x 2 F

xj free j D 1; : : : ;m ni; pi 	 0 i D 1; : : : ; q

This model leads to goal programming becoming a useful tool for the fields of
statistics and of data mining. The above equation is in fact a least-absolute value
(LAV) regression model, which is based on the L1 distance metric. This is used as an
alternative to the standard least-squares regression model which has an underlying
L2 distance metric. This has the advantage of being less influenced by outlying
observations. The other advantage gained by using this type of mathematical
programming based model is that it is more flexible in that it requires fewer
assumptions than standard least-squares regression. It is also more flexible in that it
allows extra constraints on the combinations of the xij values and weighting of the
observations according to their importance to the decision maker. The original goal
programming model of Charnes et al. [30] was this type of model for calculating
executive compensation packages, and took advantage of the ability to add extra
constraints to ensure implementable results. A further significant application of
goal programming as a regression tool is given by Charnes et al. [32] in the
context of corporate policy planning. The theory and statistical properties of the
goal programming based L1 regression are detailed in Sueyoshi [122].

Recent applications of goal programming as a regression tool are given by
Bhattacharya [12] who takes advantage of the fewer assumptions required in order
to provide improved pre-harvest forecasts in an agricultural planning model. Da
Silva et al. [37] use the technique for forestry management. They conclude that goal
programming produces similar results to least squares regression.

Other recent uses of goal programming in relation to statistical methods include
its use to model user preferences in small area statistics [115]; the use of fuzzy
goal programming to optimise multi-response problems [4]; and a weighted goal
programming model to optimize multiresponse-multivariate surfaces in complex
experiments [62].

21.3.2 Goal Programming and Other Distance-Metric
Based Approaches

The distance metric based approaches in multi-criteria decision making are defined
as those techniques that minimise a function of the distance between the desired
and achieved solutions. The desired solution could be a decision maker set of
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Table 21.1 Distance metrics used in MCDM distance-based techniques

Technique Distance metrics used Nature of bq

Weighted goal programming L1 Decision maker set target values
Chebyshev goal programming L1 Decision maker set target values
Compromise programming Set of L1, : : : , Lp, : : : , L1 Ideal values
Reference point method L1 followed by L1 Decision maker set reference

values

goals for each objective or it could be the ideal point. The principal distance-metric
based approaches are goal programming, compromise programming [139], and the
reference-point method [133].

The key difference between the distance-metric techniques is mainly that of
underlying philosophy and distance metric used. The measure of distance can be
summarised by the L� set of distance metrics which have the following algebraic
form:

Min L� D
2

4
QX

qD1

 ˇ
ˇfq.x/� bq

ˇ
ˇ

kq

!�3

5

1
�

�

Table 21.1 gives the distance metrics used by the major distance-metric based
techniques:

Romero et al. [111] investigate linkages between the distance metric based
techniques. They show that the compromise programming with the L1 distance
metric is equivalent to a weighted goal programme with the target values set at
ideal levels. Also, the compromise programming with the L1 distance metric is
equivalent to a Chebyshev goal programme with the target values set at ideal levels.
It is noted that the original formulation of compromise programming is intended
to use a (compromise) set of distance metrics between � D 1 and � D 1 to
give a scale of solutions between ruthless optimisation and balance. In fact, many
applications just concentrate in practice on these two end-points of the compromise
set, in which case there is a strong connection between the process of compromise
programme and the process of solving weighted and Chebyshev goal programmes
with optimistic target values. The other distance metric sometime used is � D 2

which corresponds to a non-linear (quadratic) goal programme with optimistic target
values. These theoretical linkages led to the development of the extended goal
programming framework [110] as described in Sect. 21.4.3, which encompasses
both techniques.

A further linkage is given between the reference point method and goal pro-
gramming. The reference point method is shown to be able to set into a goal
programming framework as an initial Chebyshev goal programme followed by an
L1 Pareto restoration phase by Romero et al. [111] and Ogryczak [103].
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21.3.3 Goal Programming and Pairwise Comparison
Techniques

The most well-known pairwise comparison technique is the Analytical Hierarchy
Process (AHP) [112]. The synergy between goal programming and the AHP can
take two forms, which are outlined separately below.

21.3.3.1 Using the AHP to Determine Goal Programming
Preferential Weights

There exists a natural combination whereby the AHP can be used to elicit a
set of preferential weights for a weighted or Chebyshev goal programme. This
methodology was first used by Gass [55] in the context of military planning. It
has since been applied to variety of application areas including recently in project
selection [76], transportation resource allocation [132], healthcare [86], and energy
planning [36]. Mahmoud et al. [92] combine multi-choice goal programming and
the AHP in the context of quality management. Jones [70] gives an algorithm for
weight sensitivity in goal programming that can incorporate pairwise comparison
information in order to define the limits of the sensitivity analysis.

21.3.3.2 Using Goal Programming as a Technique to Derive
the Weighting Vector in AHP

The other major combination of AHP and goal programming can be viewed of
as a reverse of the first combination. In this case, goal programming is used as
an alternative method for deriving the AHP weights rather than the other way
around. The standard means of deriving AHP weights is the Eigenvector method,
as detailed by Saaty [112]. However there has been a lot of discussion in the
literature about the advantages and disadvantages of the eigenvalue methods and
other methods have been proposed for deriving the weighting vector from the
pairwise comparison matrix [113]. These include the logarithmic weighted goal
programming approach of Bryson [14] and the Chebyshev goal programming
approach of Despotis [41]. Jones and Mardle [72] give a generic distance-metric
framework that encompasses the works of Bryson and Despotis. A methodology for
producing interval weighting vectors from interval pairwise comparisons is given by
Wang [130]. Gong et al. [58] present a methodology that encompasses intuitionistic
fuzzy preference relations.
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21.3.4 Goal Programming and Other Multi-Criteria Decision
Analysis Techniques

Goal programming is traditionally regarded as an a priori multi-criteria decision
making technique. That is, all the preference information is specified by the decision
making prior to solving the model. However, there are studies either combine the
goal programme with one of the other two major classes of Multi-Criteria Decision
Analysis techniques—interactive and a posteriori methods—or modify the goal
programme into one of these two classes. These are detailed below.

21.3.4.1 Goal Programming and Interactive Methods

There have been several works that look at the formal intersection of interactive
techniques with goal programming dating back to Dyer [44]. Gardiner and Steuer
[54] classify the principal interactive methods from the wider field of MCDM into
a unified framework. Tamiz and Jones [123] present an interactive method for
weighted and lexicographic goal programmes and discuss the design of interactive
methods for goal programming.

There are also specialist formal interactive goal programming methods for
several variants. Caballero et al. [18] give an interactive meta-goal programming
approach. Interactive methods are particularly used in the fuzzy goal programming
variant, with [6] in the context of bi-level programming; [87, 116] in the context
of supply chain management; and [1] in the context of transportation being recent
examples. In addition, there are many articles which use goal programming in an
iterative or repeated manner, sometimes within a larger multi-technique modelling
and solution system. This leads to a more informal, but nevertheless effective, form
of interactive use of goal programming. Recent examples of this type of interaction
include within a land use planning decision and support system [66] and within a
environmental management tool to identify best available techniques [95].

21.3.4.2 Goal Programming and A Posteriori Techniques

The a posteriori techniques in MCDM are concerned with generating Pareto
Efficient solutions before eliciting the decision maker(s) preferences. This could
either be by classical methods, as detailed by Steuer [119] or by evolutionary
methods [40]. The major use of these techniques for goal programming relate to
the topic of Pareto Efficiency detection and restoration. These allow points on, or
a portion of, the Efficient set that dominates a goal programming solution that is
Pareto Inefficient to be generated. The first algorithms for this purpose are given
by Hannan [60] and Romero [108] which can be applied to the lexicographic
and weighted variants. Tamiz and Jones [124] develop a model that detects and
restore Pareto Efficiency in accordance with the decision makers preferences.
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This is extended to the integer and binary goal programming variants by Tamiz et al.
[128]. Romero et al. [111] and Ogryczak [103] provide detection and restoration
methods for the Chebyshev variant. Caballero and Hernandez [16] deal with the
detection and restoration of fractional goal programmes. Most recently, Larbani and
Aouni [80] develop a general purpose detection and restoration methodology for
goal programming.

Goal programming and efficient set generation solutions to a model can also be
generated by the same computer package and compared. An example of this is given
by the MOPEN package [17].

21.3.4.3 Goal Programming and Discrete Choice/Outranking Methods

The discrete choice and outranking methods are used to choose between or provide
a ranking of a discrete number of alternative solutions in the presence of multiple
criteria. Although there is potential for combination with goal programming there
are not as yet many examples in the literature. One possible combination is to use an
outranking method to provide preference information for a goal programme. Martel
and Aouni [94] use the Promethee method for this purpose. Another possibility
is to use the discrete choice method to choose between or the outranking method
to rank a number of goal programme solutions produced by different weighting
schemes or variants. Perez Gladish et al. [106] apply this methodology to a
mutual fund portfolio selection problem using the ELECTRE I method as the
outranking technique. Most recently Yilmaz and Dagdeviren [137] combine the
fuzzy Promethee method with binary lexicographic goal programming in order to
model an equipment selection decision process.

21.3.5 Goal Programming and Computing/Artificial
Intelligence Techniques

21.3.5.1 Goal Programming and Pattern Recognition

Pattern recognition models classify a set of observations into a number of groups
based on their characteristics. The most common situation and easily analyzable
is the two-group classification problem where items have to be classified into one
of two distinct groups by consideration of a number of attributes of the item. Two
group classification models arise in fields such as finance (creditworthy of non-
creditworthy), medicine (benign or malignant), and defence (friendly or hostile).
A related field is that of discriminant analysis, which concentrates on the values
and nature of the factors used to discriminate the different classes. Normally, a
training set of observations whose class and attributes are known is available in
order to train or form the model in its classification. An overview of different
methods used to solve pattern classification models is given by Zhai et al. [140].
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The use of mathematical programming techniques for pattern classification is
described by Baek and Ignizio [9]. Freed and Glover [51, 52] describe and analyze
the use of linear and goal programming methods for pattern classification and
discriminant analysis [98] give a goal programming model that uses a piecewise
linear discriminant line for the purposes of classification. Nakayama et al. [99]
examine the use of goal programming to assist the support vector machine (SVM)
approach to pattern classification [71] give a framework for modelling two group
pattern classification and discriminant analysis using different goal programming
variants. Most recently, Pendharkar and Troutt [105] propose a weighted goal
programming model to assist in DEA-based dimensionality reduction for a class
of classification problems.

21.3.5.2 Goal Programming and Fuzzy Logic

The major combination between the [138] theory of fuzzy numbers and goal
programming is that of the fuzzy goal programming variant, which is detailed
in Sect. 21.2.7. However, there is also benefit to be gained from combining goal
programming with the wider field of fuzzy logic in order to configure decision
maker systems that can both process fuzzy information and make satisficing
decisions based on the outcome of the fuzzy logic process. A recent example
of this combination is found in Famuyiwa et al. [47] who use fuzzy logic to
identify and classify potential suppliers in the supplier selection problem and goal
programming to subsequently choose suppliers according to the manufacturer’s
preferences. Similarly, Nepal et al. [101] use a combination of fuzzy logic and the
Chebyshev goal programming variant for a quality design problem.

21.3.5.3 Goal Programming and Meta Heuristic Methods

Meta-Heuristic methods allow for solution of goal programming models which are
too complex to be solved by conventional exact methods. A selection of uses of
popular meta-heuristics used to solve goal programmes is given below.

• Genetic Algorithms: Ghoseiri and Ghannadpour [56] in the context of vehicle
routing); Wang and Chang [131] in the context of network topology design;
Leung [85] in the context of transportation planning; and Stewart et al. [121]
in the context of land use planning. Mishra et al. [97] combine concepts from
genetic algorithms and simulated annealing to solve a fuzzy goal programming
model relating to machine-tool selection and operation allocation.

• Simulated Annealing: Baykasoglu [11] presents a general method for solving
lexicographic goal programmes using simulated annealing. Mishra et al. [97]
combine concepts from genetic algorithms and simulated annealing to solve a
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fuzzy goal programming model relating to machine-tool selection and operation
allocation. Zolfaghari et al. [141] use simulated annealing to solve a goal
programme for to the multi-period task assignment model.

• Tabu Search: Yang and Feng [136] present a tabu search approach to solve a
stochastic goal programme related to solid transportation.

• Ant Colony Optimisation: Chan and Swarnkar [21] use ant colony optimisation
to solve a fuzzy goal programme for machine-tool selection and operation
allocation.

• Artificial Immune Systems: Chan et al. [20] use a combination of artificial
immune systems and goal programming for a e-procurement design model.

• Scatter Search: Caballero et al. [15] use a multiple-objective adaptation of a
scatter search heuristic to solve a non-linear integer goal programme related to
sawmill planning.

21.3.6 Goal Programming and Data Envelopment Analysis

The technique of data-envelopment analysis originated from two of the three authors
of goal programming. In 1978 Charnes et al. [31] gave the first DEA formulation,
with the purpose of measuring the efficiency of decision making units. Glover and
Sueyoshi [57] describe DEA as having its roots in the goal programming [27, 30]
and fractional programming [28] work of Charnes and Cooper.

The similarities between DEA and goal programming are well documented.
The technical details of the mathematical similarities between the weighted goal
programming and additive DEA techniques are given in Cooper [34] and the
historical context of the two techniques given by Glover and Sueyoshi [57]. The
philosophical differences between the two techniques are also emphasised by
Cooper [34], who states the goal programming is primarily a planning technique
whereas DEA is primarily a control and evaluation technique.

Given the different purposes of the two techniques, there is potential benefit
in their combination to form integrated planning and control systems. A recent
example is given by Dharmapala et al. [42] in the context of academic salary
planning. Goal programming is used as a planning tool to set the average salaries
and then DEA is used as a measurement tool to set the merit payments for indi-
vidual staff. An integrated GP/DEA approach with both planning and performance
measurement aspects is given in the context of transportation planning by Sheth
et al. [117]. Another possibility is to use DEA to first eliminate some inefficient
units before using goal programming as a selection tool amongst the efficient units.
This approach is applied by Ekinci [46] in the context of supplier selection. Lam and
Bai [79] use a goal programming model in order to minimise deviations from the
means of both inputs and outputs in the DEA model. Stewart [120] develops a goal
programming model that extends the DEA analysis to include managerial goals.
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21.4 Application of Goal Programming

Goal programming has been used extensively to solve classical models arising in
Operational Research and a range of applications from a wide variety of fields.
A non-exhaustive list includes recent goal programming versions, applications, or
combinations from the following fields:

Agricultural Planning Babic and Peric [8] use weighted and lexicographic goal
programming models to determine optimal livestock food blends. Manzano-
Agugliaro and Canero-Leon [93] present a weighted goal programme to model
economic and environmental effects for intensive agriculture. Fleskens and de
Graaff [50] compare a number of goal programming variants for olive orchard
management.

Business Management Garcia et al. [53] compare weighted, Chebyshev, and
extended goal programming models for ranking firms. Stewart [120] uses goal
programming to provide a benchmarking analysis that includes managerial goals.

Defence Lee et al. [82] use a combinations of the AHP and weighted goal
programming to solve a weapons selection problem.

Energy Planning Cowan et al. [36] combine the AHP and goal programming in
order to explore the impact of technology development and adoption for sustainable
hydroelectric power and storage technologies.

Engineering de Oliveira and Saramago [39] contrast goal programming with other
multi-criteria methods for two engineering problems.

Facility Location Kanoun et al. [77] present a weighted goal programming with
non-standard preference functions for emergency services location.

Finance Abdelaziz et al. [2] present a stochastic goal programming model for
portfolio selection. Ballestero et al. [10] present a stochastic goal programming
model to select portfolios with fuzzy beta values.

Forecasting Coshall and Charlesworth [35] present a lexicographic goal pro-
gramme for tourism forecasting.

Forestry Lundstrom et al. [91] present a quadratic goal programming model
for Boreal forest management. Gonzalez-Pachon and Romero [59] present an
extended goal programming model that assists in achieving a consensus in a forestry
management problem.

HealthCare Adan et al. [3] present a weighted goal programming model for
surgery scheduling. Oddoye et al. [102] present a combine of simulation and
weighted binary goal programming to plan resources on a medical assessment unit.
Jerbi and Kamoun [67] combine simulation and weighted goal programming to
devise a schedule for outpatient appointments at a hospital.
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Human Resource Management de Andres et al. [38] present an extended goal
programming model for performance appraisal.

Manufacturing Kara et al. [78] present a fuzzy binary goal programming for
assembly line balancing. Arunraj and Maiti [7] present a lexicographic goal
programme for risk-based maintenance with a case study in a chemical plant.

Marketing Jha et al. [68] use a lexicographic goal programme for multi-project
media planning.

Supply chain management Liao and Kao [88] combine a fuzzy TOPSIS method
and multi-choice goal programming to model a supplier selection model. Lotfi et al.
[90] use goal programming to plan supermarket space allocation and inventory
policy. Jolai et al. [69] combine TOPSIS and weighted goal programming for a
multi-product, multi-supplier selection problem.

Tourism Tsai et al. [129] use a combination of binary goal programming, the
analytical network process (ANP), and activity based costing (ABC) to aid decision
making in the hotel industry.

Transportation Ghoseiri and Ghannadpour [56] combine goal programming and
genetic algorithms to solve a multiple objective vehicle routing problem. Chang and
Lee [25] apply goal programming to an airport selection process.

21.5 Conclusions

It can be seen from the review presented in this paper that goal programming
is a active and growing technique. The number of variants of goal programming
continues to increase and there is a growing awareness that variants can be
combined in order to increase modelling flexibility. There is also a growing body of
literature concerning the combination of integration of goal programming with other
techniques from multi-criteria decision making, operational research, computing
and artificial intelligence techniques. The purpose of these combinations could
be to increase the modelling power of goal programming; to allow solution of ill
structured or difficult to solve goal programmes; or to encompass a new application
area that requires a mix of techniques. Goal programming remains a very applied
technique with a range of modelling application papers detailed in Sect. 21.4 giving
evidence of this fact.

References

1. Abd El-Wahed, W.F., Lee, S.M.: Interactive fuzzy goal programming for multi-objective
transportation problems. Omega-Int. J. Manag. Sci. 34, 158–166 (2006)

2. Abdelaziz, F.B., El Fayedh, R., Rao, A.: A discrete stochastic goal program for portfolio
selection: the case of United Arab Emirates Equity Market. INFOR 47, 5–13 (2009)



21 A Review of Goal Programming 921

3. Adan, I., Bekkers, J., Dellaert, N., Jeunet, J., Vissers, J.: Improving operational effectiveness
of tactical master plans for emergency and elective patients under stochastic demand and
capacitated resources. Eur. J. Oper. Res. 213, 290–308 (2011)

4. Amiri, M., Salehi-Sadaghiani, J.: A methodology for optimizing statistical multi-response
problems using fuzzy goal programming. Scientia Iranica 15, 389–397 (2008)

5. Arenas, M., Bilbao, A., Perez, B., Rodriguez, M.V.: Fuzzy extended lexicographic goal
programming. In: LopezDiaz, M., Gil, M.A., Grzegorzewski, P., Hryniewicz, O., Lawry, J.
(eds.) Soft Methodology and Random Information Systems, Advances in Soft Computing,
pp. 543–550. Springer, Berlin (2004)

6. Arora, S.R., Gupta, R.: Interactive fuzzy goal programming approach for bilevel programming
problem. Eur. J. Oper. Res. 194, 368–376 (2008)

7. Arunraj, N.S., Maiti, J.: Risk-based maintenance policy selection using AHP and goal
programming. Saf. Sci. 48, 238–247 (2010)

8. Babic, Z., Peric, T.: Optimization of livestock feed blend by use of goal programming. Int. J.
Prod. Econ. 130, 218–223 (2011)

9. Baek, W., Ignizio, J.P.: Pattern-classification via linear-programming. Comput. Ind. Eng. 25,
393–396 (1993)

10. Ballestero, E., Perez-Gladish, B., Arenas-Parra, M., Bilbao-Terol, A.: Selecting portfo-
lios given multiple Eurostoxx-based uncertainty scenarios: a stochastic goal programming
approach from fuzzy betas. INFOR 47, 59–70 (2009)

11. Baykasoglu, A.: Preemptive goal programming using simulated annealing. Eng. Optim. 37,
49–63 (2005)

12. Bhattacharya, A.: A goal programming approach for developing pre-harvest forecasts of crop
yield. J. Oper. Res. Soc. 57, 1014–1017 (2006)

13. Brans, J.P., Vincke, P., Mareschal, B.: A preference ranking organization method. Manag. Sci.
31, 647–656 (1985)

14. Bryson, N.: A goal programming method for generating priority vectors. J. Oper. Res. Soc.
46, 641–648 (1995)

15. Caballero, R., Gomez, T., Molina, J., Fosado, O., Leon, M.A., Garofal, M., Saavedra, B.:
Sawing planning using a multicriteria approach. J. Ind. Manag. Optim. 8, 303–317 (2009)

16. Caballero, R., Hernandez, M.: Restoration of efficiency in a goal programming problem with
linear fractional criteria. Eur. J. Oper. Res. 172, 31–39 (2006)

17. Caballero, R., Luque, M., Molina, J., Ruiz, F.: MOPEN: a computational package for linear
multiobjective and goal programming problems. Decis. Support Syst. 41, 160–175 (2005)

18. Caballero, R., Ruiz, F., Uria, M.V., Romero, C.: Interactive meta-goal programming. Eur. J.
Oper. Res. 175, 135–154 (2006)

19. Can, E.K., Houck, M.H.: Real time reservoir operations by goal programming. J. Water
Resour. Plan. Manag. 110, 297–309 (1984)

20. Chan, F.T.S., Shukla, M., Tiwari, M.K., Shankar, R., Choy, K.L.: B2B multi-attribute
e-procurement: an artificial immune system based goal programming approach. Int. J. Prod.
Res. 49, 321–341 (2011)

21. Chan, F.T.S., Swarnkar, R.: Ant colony optimization approach to a fuzzy goal programming
model for a machine tool selection and operation allocation problem in an FMS. Robot.
Comput-Integr. Manuf. 22, 353–362 (2006)

22. Chang, C.T.: Mixed binary interval goal programming. J. Oper. Res. Soc. 57, 469–473 (2006)
23. Chang, C.T.: Multi-choice goal programming. Omega-Int. J. Manag. Sci. 35, 389–396 (2007)
24. Chang, C.T.: Revised multi-choice goal programming. Appl. Math. Model. 32, 2587–2595

(2008)
25. Chang, Y.C., Lee, N.: A multi-objective goal programming airport selection model for low-

cost carriers’ networks. Transp. Res. E-Logist. Transp. Rev. 46, 709–718 (2010)
26. Charnes, A., Collomb, B.: Optimal economic stabilization policy: linear goal-interval pro-

gramming models. Socioecon. Plann. Sci. 6, 431–435 (1972)
27. Charnes, A., Cooper, W.W.: Management Models and Industrial Applications of Linear

Programming. Wiley, New York (1961)



922 D. Jones and M. Tamiz

28. Charnes, A., Cooper, W.W.: Programming with linear fractional functionals. Nav. Res. Logist.
Q. 9, 181–186 (1961)

29. Charnes, A., Cooper, W.W., Harrald, J., Karwan, K., Wallace, W.: A goal interval program-
ming model for resource allocation in a marine environmental protection problem. J. Environ.
Econ. Manag. 3, 347–362 (1976)

30. Charnes, A., Cooper, W.W., Ferguson, R.: Optimal estimation of executive compensation by
linear programming. Manag. Sci. 1, 138–151 (1955)

31. Charnes, A., Cooper, W.W., Rhodes, E.: Measuring the efficiency of decision making units.
Eur. J. Oper. Res. 2, 429–444 (1978)

32. Charnes, A., Cooper, W.W., Sueyoshi, T.: A goal programming constrained regression review
of the Bell system breakup. Manag. Sci. 34, 1–26 (1988)

33. Chen, K.H., Su, C.T.: Activity assigning of fourth party logistics by particle swarm
optimization-based preemptive fuzzy integer goal programming. Expert Syst. Appl. 37,
3630–3637 (2010)

34. Cooper, W.W.: Origins, uses of, and relations between goal programming and data envelop-
ment analysis. J. Multi-Criteria Decis. Anal. 15, 3–11 (2005)

35. Coshall, J.T., Charlesworth, R.: A management orientated approach to combination forecast-
ing of tourism demand. Tour. Manage. 32, 759–776 (2010)

36. Cowan, K., Daim, T., Anderson, T.: Exploring the impact of technology development
and adoption for sustainable hydroelectric power and storage technologies in the Pacific
Northwest United States. Energy 35, 4771–4779 (2010)

37. Da Silva, L.M.S., Rodriguez, L.C.E., Caixeta, J.V., Bauch, S.C.: Fitting a taper function to
minimize the sum of absolute deviations. Scientia Agricola 63, 460–470 (2006)

38. de Andres, R., Garcia-Lapresta, J.L., Gonzalez-Pachon, J.: Performance appraisal based on
distance function methods. Eur. J. Oper. Res. 207, 1599–1607 (2010)

39. de Oliveira, L.S., Saramago, S.F.P.: Multiobjective optimization techniques applied to
engineering problems. J. Brazilian Soc. Mech. Sci. Eng. 32, 94–105 (2010)

40. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, New York
(2001)

41. Despotis, D.K.: Fractional minmax goal programming: a unified approach to priority
estimation and preference analysis in MCDM. J. Oper. Res. Soc. 47, 989–999 (1996)

42. Dharmapala, P.S., Ghosh, J.B., Saber, H.M.: Market- and merit-based adjustment of faculty
salaries. Asia-Pacific J. Oper. Res. 24, 1–19 (2007)

43. Dua, R., Bhandari, N., Kumar, V.: Multi-criteria optimization for obtaining efficiently blended
transformer oils. IEEE Trans. Dielectr. Electr. Insul. 15, 879–887 (2008)

44. Dyer, J.S.: Interactive goal programming. Manag. Sci. 19, 62–70 (1973)
45. Ehrgott, M., Gandibleux, X.: Multiobjective combinatorial optimization—theory, methodol-

ogy, and applications. In: Ehrgott, M., Gandibleux, X. (eds.) Multi-Criteria Optimization—
State of the Art Annotated Bibliographic Surveys, pp. 369–444. Kluwer Academic Publishers,
Boston (2002)

46. Ekinci, Y.: Demand assignment: a DEA and goal programming approach. In: Demiralp, M.,
Udriste, C., Bognar, G., Soni, R., Nassar, H. (eds.) Applied Mathematics for Science and
Engineering, pp. 394–397. World Scientific and Engineering Acad and Soc, Athens (2007)

47. Famuyiwa, O., Monplaisir, L., Nepal, B.: An integrated fuzzy-goal-programming-based
framework for selecting suppliers in strategic alliance formation. Int. J. Prod. Econ. 113,
862–875 (2008)

48. Fasakhodi, A.A., Nouri, S.H., Amini, M.: Water resources sustainability and optimal cropping
pattern in farming systems; a multi-objective fractional goal programming approach. Water
Resour. Manag. 24, 4639–4657 (2010)

49. Flavell, R.B.: A new goal programming formulation. Omega 4, 731–732 (1976)
50. Fleskens, L., de Graaff, J.: Conserving natural resources in olive orchards on sloping land:

alternative goal programming approaches towards effective design of cross-compliance and
agri-environmental measures. Agr. Syst. 103, 521–534 (2010)



21 A Review of Goal Programming 923

51. Freed, N., Glover, F.: Simple but powerful goal programming-models for discriminant
problems. Eur. J. Oper. Res. 7, 44–60 (1981)

52. Freed, N., Glover, F.: Resolving certain difficulties and improving the classification power of
LP discriminant-analysis formulations. Decis. Sci. 17, 589–595 (1986)

53. Garcia, F., Guijarro, F., Moya, I.: A goal programming approach to estimating performance
weights for ranking firms. Comput. Oper. Res. 37, 1597–1609 (2010)

54. Gardiner, L., Steuer, R.: Unified interactive multiple objective programming. Eur. J. Oper.
Res. 74, 391–406 (1994)

55. Gass, S.I.: The setting of weights in linear goal-programming problems. Comput. Oper. Res.
14, 227–229 (1987)

56. Ghoseiri, K., Ghannadpour, S.F.: Multi-objective vehicle routing problem with time windows
using goal programming and genetic algorithm. Appl. Soft Comput. 10, 1096–1107 (2010)

57. Glover, F., Sueyoshi, T.: Contributions of Professor William W Cooper in operations research
and management science. Eur. J. Oper. Res. 197, 1–16 (2009)

58. Gong, Z.W., Li, L.S., Forrest, J., Zhao, Y.: The optimal priority models of the intuitionistic
fuzzy preference relation and their application in selecting industries with higher meteorolog-
ical sensitivity. Expert Syst. Appl. 38, 4394–4402 (2011)

59. Gonzalez-Pachon, J., Romero, C.: The design of socially optimal decisions in a consensus
scenario. Omega-Int. J. Manag. Sci. 39, 179–185 (2011)

60. Hannan, E.L.: Nondominance in goal programming. INFOR 18, 300–309 (1980)
61. Hannan, E.L.: On fuzzy goal programming. Decis. Sci. 12, 522–531 (1981)
62. Hejazi, T.H., Bashiri, M., Noghondarian, K., Atkinson, C.: Multiresponse optimization with

consideration of probabilistic covariates. Qual. Reliab. Eng. Int. 27, 437–449 (2010)
63. Ignizio, J.P.: Goal Programming and Extensions. Lexington Books, Lexington (1976)
64. Ignizio, J.P.: Optimal maintenance headcount allocation: an application of Chebyshev goal

programming. Int. J. Prod. Res. 42, 201–210 (2004)
65. Ignizio, J.P., Cavalier, T.: Linear Programming. Prentice-Hall, Upper Saddle River (1994)
66. Janssen, R., van Herwijnen, M., Stewart, T.J., Aerts, J.C.J.H.: Multiobjective decision support

for land-use planning. Environ. Plann. B-Plann. Des. 35, 740–756 (2008)
67. Jerbi, B., Kamoun, H.: Multiobjective study to implement outpatient appointment system at

Hedi Chaker Hospital. Simul. Model. Pract. Theory 19, 1363–1370 (2011)
68. Jha, P.C., Aggarwal, R., Gupta, A.: Optimal media planning for multi-products in segmented

market. Appl. Math. Comput. 217, 6802–6818 (2011)
69. Jolai, F., Yazdian, S.A., Shahanaghi, K., Khojasteh, M.A.: Integrating fuzzy TOPSIS and

multi-period goal programming for purchasing multiple products from multiple suppliers. J.
Purch. Supply Manag. 17, 42–53 (2011)

70. Jones, D.F.: A practical weight sensitivity algorithm for goal and multiple objective program-
ming. Eur. J. Oper. Res. 213, 238–245 (2011)

71. Jones, D.F., Collins, A., Hand, C.: A classification model based on goal programming with
non-standard preference functions with application to prediction of cinema-going behaviour.
Eur. J. Oper. Res. 177, 515–524 (2007)

72. Jones, D.F., Mardle, S.J.: A distance-metric methodology for the derivation of weights from
a pairwise comparison matrix. J. Oper. Res. Soc. 55, 869–875 (2004)

73. Jones, D.F., Tamiz, M.: Improving the flexibility of goal programming via preference
modelling techniques. Omega 23, 41–48 (1995)

74. Jones, D.F., Tamiz, M.: Goal Programming in the period 1990–2000. In: Ehrgott, M.,
Gandibleux, X. (eds.) Multi-Criteria Optimization: State of the art Annotated Bibliographic
Surveys, pp. 129–170. Kluwer, Dordrecht (2002)

75. Jones, D.F., Tamiz, M.: Practical Goal Programming. Springer Books, New York (2010)
76. Kahraman, C., Buyukozkan, G.: A combined fuzzy AHP and fuzzy goal programming

approach for effective six-sigma project selection. J. Multiple-Valued Log. Soft Comput. 14,
599–615 (2008)

77. Kanoun, I., Chabchoub, H., Aouni, B.: Goal programming model for fire and emergency
service facilities site selection. INFOR 48, 143–153 (2010)



924 D. Jones and M. Tamiz

78. Kara, Y., Gokcen, H., Atasagun, Y.: Balancing parallel assembly lines with precise and fuzzy
goals. Int. J. Prod. Res. 48, 1685–1703 (2010)

79. Lam, K.F., Bai, F.: Minimizing deviations of input and output weights from their means in
data envelopment analysis. Comput. Ind. Eng. 60, 527–533 (2011)

80. Larbani, M., Aouni, B.: A new approach for generating efficient solutions within the goal
programming model. J. Oper. Res. Soc. 62, 173–181 (2011)

81. Lee, S.M.: Goal Programming for Decision Analysis. Auerbach, Philadelphia (1972)
82. Lee, J., Kang, S.H., Rosenberger, J., Kim, S.B.: A hybrid approach of goal programming for

weapon systems selection. Comput. Ind. Eng. 58, 521–527 (2010)
83. Lee, A.H.I., Kang, H.Y., Yang, C.Y., Lin, C.Y.: An evaluation framework for product planning

using FANP, QFD and multi-choice goal programming. Int. J. Prod. Res. 48, 3977–3997
(2010)

84. Lee, A.H.I., Kang, H.Y., Chang, C.T.: Fuzzy multiple goal programming applied to TFT-LCD
supplier selection by downstream manufacturers. Expert Syst. Appl. 36, 6318–6325 (2009)

85. Leung, S.C.H.: A non-linear goal programming model and solution method for the multi-
objective trip distribution problem in transportation engineering. Optim. Eng. 8, 277–298
(2007)

86. Li, X., Beullens, P., Jones, D., Tamiz, M.: An integrated queuing and multi-objective bed
allocation model with application to a hospital in China. J. Oper. Res. Soc. 60, 330–338
(2009)

87. Liang, T.F.: Applying fuzzy goal programming to production/transportation planning deci-
sions in a supply chain. Int. J. Syst. Sci. 38, 293–304 (2007)

88. Liao, C.N., Kao, H.P.: An integrated fuzzy TOPSIS and MCGP approach to supplier selection
in supply chain management. Expert Syst. Appl. 38, 10803–10811 (2011)

89. Lin, H.W., Nagalingam, S.V., Lin, G.C.I.: An interactive meta-goal programming-based
decision analysis methodology to support collaborative manufacturing. Robot. Comput-
Integr. Manuf. 25, 135–154 (2009)

90. Lotfi, M.M., Rabbani, M., Ghaderi, S.F.: A weighted goal programming approach for
replenishment planning and space allocation in a supermarket. J. Oper. Res. Soc. 62,
1128–1137 (2011)

91. Lundstrom, J., Ohman, K., Perhans, K., Ronnqvist, M., Gustafsson, L.: Cost-effective age
structure and geographical distribution of boreal forest reserves. J. Appl. Ecol. 48, 133–142
(2011)

92. Mahmoud, H.B., Ketata, R., Ben Romdhane, T., Ben Ahmed, S.: A multiobjective-
optimization approach for a piloted quality-management system: a comparison of two
approaches for a case study. Comput. Ind. 62, 460–466 (2011)

93. Manzano-Agugliaro, F., Canero-Leon, R.: Economics and environmental analysis of Mediter-
ranean greenhouse crops. African J. Agric. Res. 5, 3009–3016 (2010)

94. Martel, J.M., Aouni, B.: Incorporating the decision-makers preferences in the goal-
programming model. J. Oper. Res. Soc. 41, 1121–1132 (1990)

95. Mavrotas, G., Georgopoulou, E., Mirasgedis, S., Sarafidis, Y., Lalas, D., Hontou, V., Gakis,
N.: Multi-objective combinatorial optimisation for selecting best available techniques (Bat)
in the industrial sector: the COMBAT tool. J. Oper. Res. Soc. 60, 906–920 (2009)

96. Min, H., Storbeck, J.: On the origin and persistence of misconceptions in goal programming.
J. Oper. Res. Soc. 42, 301–312 (1991)

97. Mishra, S., Prakash, N., Tiwari, M.K., Lashkari, R.S.: A fuzzy goal-programming model
of machine-tool selection and operation allocation problem in FMS: a quick converging
simulated annealing-based approach. Int. J. Prod. Res. 44, 43–76 (2006)

98. Nakayama, H., Kagaku, N.: Pattern classification by linear goal programming and its
extensions. J. Glob. Optim. 12, 111–126 (1998)

99. Nakayama, H., Yun, Y.B., Asada, T., Yoon, M.: MOP/GP models for machine learning. Eur.
J. Oper. Res. 166, 756–768 (2005)

100. Narasimhan, R.: Goal programming in a fuzzy environment. Decis. Sci. 11, 325–336 (1980)



21 A Review of Goal Programming 925

101. Nepal, B., Monplaisir, L., Singh, N.: A methodology for integrating design for quality in
modular product design. J. Eng. Des. 17, 387–409 (2006)

102. Oddoye, J.P., Tamiz, M., Jones, D.F., Schmidt, P.: Combining simulation and goal program-
ming for healthcare planning in a medical assessment unit. Eur. J. Oper. Res. 193, 250–261
(2009)

103. Ogryczak, W.: On goal programming formulations of the reference point method. J. Oper.
Res. Soc. 52, 691–698 (2001)

104. Paksoy, T., Chang, C.T.: Revised multi-choice goal programming for multi-period, multi-
stage inventory controlled supply chain model with popup stores in Guerrilla marketing. Appl.
Math. Model. 34, 3586–3598 (2010)

105. Pendharkar, P.C., Troutt, M.D.: DEA based dimensionality reduction for classification
problems satisfying strict non-satiety assumption. Eur. J. Oper. Res. 212, 155–163 (2011)

106. Perez Gladish, B., Jones, D.F., Tamiz, M., Bilbao Terol, A.: An interactive three stage model
for mutual fund portfolio selection. Omega-Int. J. Manag. Sci. 35, 75–88 (2007)

107. Rodriguez, M.V., Caballero, R., Ruiz, F., Romero, C.: Meta-goal Programming. Eur. J. Oper.
Res. 136, 422–429 (2002)

108. Romero, C.: A Handbook of Critical Issues in Goal Programming. Pergamon Press, Oxford
(1991)

109. Romero, C.: Extended lexicographic goal programming: a unifying approach. Omega 29,
63–71 (2001)

110. Romero, C.: A general structure of achievement function for a goal programming model. Eur.
J. Oper. Res. 153, 675–686 (2004)

111. Romero, C., Tamiz, M., Jones, D.F.: Goal programming, compromise programming and
reference point method formulations: linkages and utility interpretations. J. Oper. Res. Soc.
49(9), 986–991 (1998)

112. Saaty, T.L.: The Analytical Hierarchy Process. McGraw-Hill, New York (1981)
113. Saaty, T.L., Hu, G.: Ranking by eigenvector versus other methods in the analytic hierarchy

process. Appl. Math. Lett. 11, 121–125 (1998)
114. Schniederjans, M.J.: Goal Programming, Methodology and Applications. Kluwer, Boston

(1995)
115. Sedeno-Noda, A., Gonzalez-Davila, E., Gonzalez-Martin, C., Gonzalez-Yanes, A.: Preemp-

tive benchmarking problem: an approach for official statistics in small areas. Eur. J. Oper.
Res. 196, 360–369 (2009)

116. Selim, H., Ozkarahan, I.: A supply chain distribution network design model: an interactive
fuzzy goal programming-based solution approach. Int. J. Adv. Manuf. Technol. 36, 401–418
(2008)

117. Sheth, C., Triantis, K., Teodorovic, D.: Performance evaluation of bus routes: a provider and
passenger perspective. Transp. Res. E-Logist. Transp. Rev. 43, 453–478 (2007)

118. Simon, H.A.: Models of Man. Wiley, New York (1955)
119. Steuer, R.E.: Multiple Criteria Optimization: Theory Computation and Application. Wiley,

New York (1986)
120. Stewart, T.J.: Goal directed benchmarking for organizational efficiency. Omega-Int. J. Manag.

Sci. 38, 534–539 (2010)
121. Stewart, T.J., Janssen, R., van Herwijnen, M.: A genetic algorithm approach to multiobjective

land use planning. Comput. Oper. Res. 31, 2293–2313 (2004)
122. Sueyoshi, T.: Least absolute value estimation. J. Oper. Res. Soc. Japan 40, 261–275 (1997)
123. Tamiz, M., Jones, D.F.: Interactive frameworks for investigation of goal programming models:

theory and practice. J. Multicriteria Decis. Anal. 6, 52–60 (1997)
124. Tamiz, M., Jones, D.F.: Goal programming and Pareto efficiency. J. Inf. Optim. Sci. 17,

291–307 (1996)
125. Tamiz, M., Jones, D.F., El-Darzi, E.: A review of goal programming and its applications. Ann.

Oper. Res. 58, 39–53 (1995)
126. Tamiz, M., Mirrazavi, S.K., Jones, D.F.: Extensions of Pareto efficiency analysis to integer

goal programming. Omega-Int. J. Manag. Sci. 27, 179–188 (1999)



926 D. Jones and M. Tamiz

127. Tamiz, M., Jones, D.F., Romero, C.: Goal programming for decision making: an overview of
the current state-of-the-art. Eur. J. Oper. Res. 111, 569–581 (1998)

128. Tiwari, R.N., Dhahmar, S., Rao, J.R.: Fuzzy goal programming: an additive model. Fuzzy
Set. Syst. 24, 27–34 (1987)

129. Tsai, W.H., Hsu, J.L., Chen, C.H., Lin, W.R., Chen, S.P.: An integrated approach for selecting
corporate social responsibility programs and costs evaluation in the international tourist hotel.
Int. J. Hosp. Manag. 29, 385–396 (2010)

130. Wang, Y.M.: A goal programming method for obtaining interval weights from an interval
comparison matrix. Eur. J. Oper. Res. 177, 458–471 (2007)

131. Wang, C.S., Chang, C.T.: Integrated genetic algorithm and goal programming for network
topology design problem with multiple objectives and multiple criteria. IEEE-ACM Trans.
Netw. 16, 680–690 (2008)

132. Wey, W.M., Wu, K.Y.: Using ANP priorities with goal programming in resource allocation in
transportation. Math. Comput. Model. 46, 985–1000 (2007)

133. Wierzbicki, A.P.: A mathematical basis for satisficing decision making. Math. Model. 3,
391–405 (1982)

134. Williams, H.P.: Logic and Integer Programming. Springer, New York (2009)
135. Yaghoobi, M.A., Jones, D.F., Tamiz, M.: Weighted additive models for solving fuzzy goal

programming problems. Asia-Pacific J. Oper. Res. 25, 715–733 (2008)
136. Yang, L.X., Feng, Y.: A bicriteria solid transportation problem with fixed charge under

stochastic environment. Appl. Math. Model. 31, 2668–2683 (2007)
137. Yilmaz, B., Dagdeviren, M.: A combined approach for equipment selection: F-PROMETHEE

method and zero–one goal programming. Expert Syst. Appl. 38, 11641–11650 (2011)
138. Zadeh, L.A.: Fuzzy sets. Inf. Control. 8, 338–353 (1965)
139. Zeleny, M.: Multi Criteria Decision Making. McGraw Hill, New York (1982)
140. Zhai, J.H., Zhang, S.F., Wang, X.Z.: An overview of pattern classification methodologies.

Proc. 2006 Int. Conf. Mach. Learn. Cybern. 1–7, 3222–3227 (2006)
141. Zolfaghari, S., Jaber, M.Y., Hamoudi, H.: A goal programming approach for a multi-period

task assignment problem. INFOR 42, 299–309 (2004)



Chapter 22
Interactive Nonlinear Multiobjective
Optimization Methods

Kaisa Miettinen, Jussi Hakanen, and Dmitry Podkopaev

Abstract An overview of interactive methods for solving nonlinear multiobjective
optimization problems is given. In interactive methods, the decision maker progres-
sively provides preference information so that the her or his most satisfactory Pareto
optimal solution can be found. The basic features of several methods are introduced
and some theoretical results are provided. In addition, references to modifications
and applications as well as to other methods are indicated. As the role of the decision
maker is very important in interactive methods, methods presented are classified
according to the type of preference information that the decision maker is assumed
to provide.

Keywords Multiple criteria decision making • Multiple objectives • Nonlinear
optimization • Interactive methods • Pareto optimality

22.1 Introduction

Nonlinear multiobjective optimization means multiple criteria decision making
involving nonlinear functions of (continuous) decision variables. In these problems,
the best possible compromise, that is, Pareto optimal solution, is to be found from
an infinite number of alternatives represented by decision variables restricted by
constraint functions. Thus, enumerating the solutions is impossible.
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Solving multiobjective optimization problems usually requires the participation
of a human decision maker who is supposed to have insight into the problem and
who can express preference relations between alternative solutions or objective
functions. Multiobjective optimization methods can be divided into four classes
according to the role of the decision maker in the solution process. If the decision
maker is not involved, we use methods where no articulation of preference
information is used, in other words, no-preference methods. If the decision maker
expresses preference information after the solution process, we speak about a
posteriori methods whereas a priori methods require articulation of preference
information before the solution process. The most extensive class is interactive
methods, where the decision maker specifies preference information progressively
during the solution process. Here we concentrate on this last-mentioned class and
introduce several examples of interactive methods.

In the literature, interactive methods have proven useful for various reasons. They
have been found efficient from both computational and cognitive points of view.
Because the decision maker directs the solution process with one’s preferences,
only those Pareto optimal solutions that are interesting to her or him need to be
calculated. This means savings in computational cost when compared to a situation
where a big set of Pareto optimal solutions should be calculated. On the other hand,
the amount of new information generated per iteration is limited and, in this way,
the decision maker does not need to compare too many solutions at a time. An
important advantage of interactive methods is learning. Once the decision maker
has provided preferences, (s)he can see from the Pareto optimal solutions generated,
how attainable or feasible the preferences were. In this way, the decision maker
gains insight about the problem. (S)he learns about the interdependencies between
the objective functions and also about one’s own preferences. The decision maker
can also change her or his mind after the learning, if so desired.

Many real-world phenomena behave in a nonlinear way. Besides, linear problems
can always be solved using methods created for nonlinear problems but not vice
versa. For these reasons, we here devote ourselves to nonlinear problems. We
assume that all the information involved is deterministic and that we have a single
decision maker.

In this presentation we concentrate on general-purpose interactive methods and,
thus, methods tailored for some particular problem type are not included. In recent
years, interactive approaches have been developed in the field of evolutionary
multiobjective optimization (see, for example, [14]), but we do not consider them
here. The literature survey of years since 2000 has been limited to journal articles.
We describe in more detail methods that have published applications.
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22.2 Concepts

Let us begin by introducing several concepts and definitions. We study multiobjec-
tive optimization problems of the form

minimize ff1.x/; f2.x/; : : : ; fk.x/g
subject to x 2 S

(22.1)

involving k .	 2/ objective functions or objectives fi W Rn ! R that we
want to minimize simultaneously. The decision (variable) vectors x belong to the
(nonempty) feasible region S � Rn. The feasible region is formed by constraint
functions but we do not fix them here.

We denote the image of the feasible region by Z � Rk and call it a feasible
objective region. Objective (function) values form objective vectors z D f.x/ D
.f1.x/; f2.x/; : : : ; fk.x//T . Note that if fi is to be maximized, it is equivalent to
minimize �fi.

We call a multiobjective optimization problem convex if all the objective
functions and the feasible region are convex. On the other hand, the problem
is nondifferentiable if at least one of the objective or the constraint functions
is nondifferentiable. (Here nondifferentiability means that the function is not
necessarily continuously differentiable but that it is locally Lipschitz continuous.)

We assume that the objective functions are at least partly conflicting and possibly
incommensurable. This means that it is not possible to find a single solution that
would optimize all the objectives simultaneously. As the definition of optimality
we employ Pareto optimality. An objective vector is Pareto optimal (or noninferior
or efficient or nondominated) if none of its components can be improved without
deterioration to at least one of the other components. More formally, we have the
following definition.

Definition 1. A decision vector x� 2 S is (globally) Pareto optimal if there does
not exist another decision vector x 2 S such that fi.x/ � fi.x�/ for all i D 1; : : : ; k
and fj.x/ < fj.x�/ for at least one index j.

An objective vector z� 2 Z is Pareto optimal if there does not exist another vector
z 2 Z such that zi � z�

i for all i D 1; : : : ; k and zj < z�
j for at least one index j; or

equivalently, z� is Pareto optimal if the decision vector corresponding to it is Pareto
optimal.

Local Pareto optimality is defined in a small neighborhood of x� 2 S. Naturally,
any globally Pareto optimal solution is locally Pareto optimal. The converse is valid,
for example, for convex multiobjective optimization problems; see [21, 139], among
others.

For the sake of brevity, we usually speak about Pareto optimality in the sequel.
In practice, however, we only have locally Pareto optimal solutions computationally
available, unless some additional requirement, such as convexity, is fulfilled or
unless we have global solvers available.
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A Pareto optimal set consists of (an infinite number of) Pareto optimal solutions.
In interactive methods, we usually move around the Pareto optimal set and forget
the other solutions. However, one should remember that this limitation may have
weaknesses. Namely, the real Pareto optimal set may remain unknown. This may be
the case if an objective function is only an approximation of an unknown function
or if not all the objective functions involved are explicitly expressed.

Moving from one Pareto optimal solution to another necessitates trading off. To
be more specific, a trade-off reflects the ratio of change in the values of the objective
functions concerning the increment of one objective function that occurs when the
value of some other objective function decreases (see, for example, [23, 139]).

For any two solutions equally preferable to the decision maker there is a trade-off
involving a certain increment in the value of one objective function that the decision
maker is willing to tolerate in exchange for a certain amount of decrement in some
other objective function while the preferences of the two solutions remain the same.
This is called the marginal rate of substitution (see, for example, [139] for further
details and properties).

Usually, one of the objective functions is selected as a reference function when
trade-offs and marginal rates of substitution are treated. The pairwise trade-offs and
the marginal rates of substitution are generated with respect to it.

Sometimes Pareto optimal sets are not enough but we need wider or smaller
sets: weakly and properly Pareto optimal sets, respectively. An objective vector is
weakly Pareto optimal if there does not exist any other objective vector for which
all the components are smaller. Weakly Pareto optimal solutions are sometimes
computationally easier to generate than Pareto optimal solutions. Thus, they have
relevance from a technical point of view. On the other hand, a vector is properly
Pareto optimal if unbounded trade-offs are not allowed. For a collection of different
definitions of proper Pareto optimality, see, for example, [139].

Multiobjective optimization problems are usually solved by scalarization which
means that the problem is converted into one or a family of single (scalar)
objective optimization problems. This produces a new scalarized problem with
a real-valued objective function, possibly depending on some parameters. The
resulting new problem must be solved with a single objective optimization method
which is appropriate to the characteristics of the problem in question (taking into
account, for example, differentiability and convexity). When scalarization is done
properly, it can be guaranteed that the solution obtained is Pareto optimal to the
original multiobjective optimization problems. For further details see, for example,
[139, 210].

Interactive methods differ from each other by the way the problem is transformed
into a single objective optimization problem, by the form in which information is
provided by the decision maker and by the form in which information is given to
the decision maker at each iteration of the solution process.
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One way of inquiring the decision maker’s opinions is to ask for satisfactory or
desirable objective function values. They are called aspiration levels and denoted
by Nzi, i D 1; : : : ; k. They form a vector Nz 2 Rk to be called a reference point.

The ranges of the objective functions in the set of Pareto optimal solutions give
valuable information to the decision maker about the possibilities and restrictions of
the problem (assuming the objective functions are bounded over S). The components
of the ideal objective vector z? 2 Rk are the individual optima of the objective
functions. This vector represents the lower bounds of the Pareto optimal set. (In
nonconvex problems, we need a global solver for minimizing the k functions.) Note
that we sometimes need a vector that its strictly better than the ideal objective vector.
This vector is called a utopian objective vector and denoted by z??.

The upper bounds of the Pareto optimal set, that is, the components of a
nadir objective vector znad, are much more difficult to obtain. Actually, there is
no constructive method for calculating the nadir objective vector for nonlinear
problems. However, a rough estimate can be obtained by keeping in mind the
solutions where each objective function attains its lowest value and calculating
the values of the other objectives. The highest value obtained for each objective
can be selected as the estimated component of znad. This approach was originally
proposed in [9] and later named as a pay-off table method. Some approaches for
estimating the nadir objective vector for nonlinear multiobjective optimization are
summarized in [139]. Examples of latest approaches include [37, 38].

It is sometimes assumed that the decision maker makes decisions on the basis
of an underlying value function U W Rk ! R representing her or his preferences
among the objective vectors [93]. Even though value functions are seldom explicitly
known, they have been important in the development of multiobjective optimization
methods and as a theoretical background. Thus, the value function is sometimes
presumed to be known implicitly.

The value function is usually assumed to be strongly decreasing. In other words,
the preferences of the decision maker are assumed to increase if the value of one
objective function decreases while all the other objective values remain unchanged.
In brief, we can say that less is preferred to more. In that case, the maximal solution
of U is assured to be Pareto optimal. Note that regardless of the existence of a value
function, in what follows, we shall assume that lower objective function values are
preferred to higher, that is, less is preferred to more by the decision maker.

An alternative to the idea of maximizing some value function is satisficing
decision making [210]. In this approach, the decision maker tries to achieve certain
aspirations. If the aspirations are achieved, the solution is called a satisficing
solution.

22.3 Introduction to Interactive Methods

A large variety of methods has been developed for solving multiobjective optimiza-
tion problems. We can say that none of them is generally superior to all the others.
As mentioned earlier, we apply here the classification of the methods into four
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classes according to the participation of the decision maker in the solution process.
This classification was originally suggested in [79] and it was followed later, for
example, in [139].

While we discuss interactive methods, we divide them into ad hoc and non ad
hoc methods (based on value functions) as suggested in [228]. Even if one knew the
decision maker’s value function, one would not exactly know how to respond to the
questions posed by an ad hoc method. On the other hand, in non ad hoc methods,
the responses can be determined or at least confidently simulated based on a value
function.

Before describing the methods, we mention several references for further
information. This presentation is mainly based on [139]. Concepts and methods
for multiobjective optimization are also treated in [16, 23, 43, 44, 79, 132, 200, 210,
223, 227, 232, 246, 250, 275].

Interactive multiobjective optimization methods, in particular, are collected in
[155, 181, 211, 247, 259]. Furthermore, methods with applications to large-scale
systems and industry are presented in [65, 220, 236].

We shall not discuss non-interactive methods here. However, we mention some
of such methods by name and give references for further information. Examples
of no-preference methods are the method of the global criterion [274, 277] and the
multiobjective proximal bundle method [145]. From among a posteriori methods
we mention the weighting method [56, 276], the "-constraint method [64] and
the hybrid method [31, 258] as well as the method of weighted metrics [277]
and the achievement scalarizing function approach [261–263, 265]. Multiobjective
evolutionary algorithms are also a posteriori in nature, see, for example, [14, 36]
and references therein. A priori methods include the value function method [93],
the lexicographic ordering [52] and the goal programming [24, 25, 81, 198, 199].

In what follows, we concentrate on interactive methods. In interactive methods,
a solution pattern is formed and repeated several times. After every iteration, some
information is given to the decision maker and (s)he is asked to answer some
questions or to provide some other type of information. In this way, only a part of
the Pareto optimal solutions has to be generated and evaluated, and the decision
maker can specify and correct her or his preferences and selections during the
solution process when (s)he gets to know the problem better. Thus, the decision
maker does not need to have any global preference structure. Further information
about the topics treated here can be found in [139, 155].

An interactive method typically contains the following main steps: (1) initialize
(for example, calculate ideal and nadir objective vectors and show them to the deci-
sion maker), (2) generate a Pareto optimal starting point (some neutral compromise
solution or solution given by the decision maker) and show it to the decision maker,
(3) ask for preference information from the decision maker (for example, aspiration
levels or number of new solutions to be generated, depending on the method in
question), (4) generate new Pareto optimal solution(s) according to the preferences
and show it/them and possibly some other information about the problem to the
decision maker, (5) if several solutions were generated, ask the decision maker to
select the best solution so far, and (6) stop, if the decision maker wants to. Otherwise,
go to step (3).
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Three main stopping criteria can be identified in interactive methods. In the
best situation, the decision maker finds a desirable solution and wants to stop.
Alternatively, the decision maker gets tired and stops or some algorithmic stopping
rule is fulfilled. In the last-mentioned case, one must check that the decision maker
agrees to stop.

As a matter of fact, as stated in [155], solving a multiobjective optimization
problem with an interactive method can be regarded as a constructive process
where, while learning, the decision maker builds a conviction of what is possible
(that is, what kind of solutions are available and attainable) and confronting this
knowledge with her or his preferences that also evolve. Based on this understanding,
in interactive methods we should pay attention to psychological convergence,
rather than to mathematical convergence (like, for example, optimizing some value
function).

Sometimes, two different phases can be identified in interactive solution pro-
cesses: learning phase and decision phase [155]. In the learning phase, the decision
maker learns about the problem and gains understanding of what kind of solutions
are attainable whereas the most preferred solution is found in the decision phase in
the region identified in the first phase. Naturally, the two phases can also be used
iteratively.

In what follows, we present several interactive methods. The idea is to describe
a collection of methods based on different approaches. In addition, plenty of
references are included. Note that although all the calculations take place in the
decision variable space, we mostly speak about the corresponding objective vectors
and refer to both as solutions since the space is apparent from the context.

When presenting the methods we apply the classification given in [129, 205]
according to the type of preference information that the methods utilize. This is
an important aspect because a reliable and an understandable way of extracting
preference information from the decision maker is essential for the success of
applying interactive methods. The decision maker must feel being in control and
must understand the questions posed. Otherwise, the answers cannot be relied on in
the solution process. It is also important to pay attention to the cognitive load set on
the decision maker, as discussed in [115]. Applying the method should not set too
much cognitive load on the decision maker.

In the first class, the decision maker specifies aspiration levels (in other words,
a reference point) representing desirable objective function values. In the second
class, the decision maker provides a classification indicating which of the objective
function values should be improved, maintained at the current value or allowed
to impair. One should note that providing aspiration levels and a classification are
closely related as justified in [150]. From classification information one can derive
a reference point but not vice versa. The third class is devoted to methods where the
decision maker compares different solutions and chooses a solution among several
ones. The fourth class involves marginal rates of substitution referring to the amount
of decrement in the value of one objective function that compensates to the decision
maker an infinitesimal increment in the value of another objective function while the
values of other objective functions remain unaltered. In addition to the four classes
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given in [129, 205], we consider a fifth class devoted to navigation based methods
where the decision maker moves around in the set of Pareto optimal solutions in real
time and controls the direction of movement in different ways.

22.4 Methods Using Aspiration Levels

What is common to the methods in this section is a reference point consisting
of desirable aspiration levels. With a reference point, the decision maker can
conveniently express one’s desires without any cognitive mapping as (s)he gives
objective function values and obtains objective function values generated by the
method. Some of the methods in this section utilize other types of preference
information as well but the reference point is an integral element of each method.

22.4.1 Reference Point Method

The reference point method [260, 261, 263] is based on vectors formed of reasonable
or desirable aspiration levels. These reference points are used to derive scalarizing
functions having minimal values at weakly, properly or Pareto optimal solutions.

No specific assumptions are set in this method. The idea is to direct the search
by changing the reference point Nzh (at iteration h) in the spirit of satisficing decision
making rather than optimizing any value function. It is important that reference
points are intuitive and easy for the decision maker to specify and their consistency
is not an essential requirement.

Note that specifying a reference point can be considered as a way of classifying
the objective functions. If the aspiration level is lower than the current objective
value, that objective function is currently unacceptable, and if the aspiration level
is equal to or higher than the current objective value, that function is acceptable.
The difference here is that the reference point can be infeasible in every component.
Naturally, trading off is unavoidable in moving from one Pareto optimal solution to
another and it is impossible to get a solution where all objective values are better
than in the previous Pareto optimal solution but different solutions can be obtained
with different approaches.

Scalarizing functions used in the reference point method are so-called achieve-
ment (scalarizing) functions and the method relies on their properties. We can define
so-called order representing and order approximating achievement functions.

An example of a scalarized problem with an order representing achievement
function is

minimize max
iD1;:::;kŒwi.fi.x/� Nzh

i / �

subject to x 2 S;
(22.2)
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where w is some fixed positive weighting vector. An example of a scalarized
problem with an order-approximating achievement function is

minimize max
iD1;:::;kŒwi.fi.x/� Nzh

i / �C �
kX

iD1
wi.fi.x/� Nzh

i /

subject to x 2 S;

(22.3)

where w is as above and � > 0.

Theorem 1. If the achievement function is order-representing, then its solution
is weakly Pareto optimal. If the function is order-approximating, then its solution
is Pareto optimal and the solution is properly Pareto optimal if the function is
also strongly increasing. Any (weakly) Pareto optimal solution can be found if the
achievement function is order representing. Finally, any properly Pareto optimal
solution can be found if the function is order-approximating.

The reference point method is very simple. Before the solution process starts,
some information is given to the decision maker about the problem. If possible, the
ideal objective vector and the (approximated) nadir objective vector are presented.
Another possibility is to minimize and maximize the objective functions individ-
ually in the feasible region (if it is bounded). Naturally, the maximized objective
function values do not typically represent components of the nadir objective vector
but they can give some information to the decision maker in any case.

The basic steps of the reference point algorithm are the following:

1. Select the achievement function. Present information about the problem to the
decision maker. Set h D 1.

2. Ask the decision maker to specify a reference point Nzh 2 Rk.
3. Minimize the achievement function and obtain a (weakly, properly or) Pareto

optimal solution zh. Present it to the decision maker.
4. Calculate a number of k other (weakly, properly or) Pareto optimal solutions

with perturbed reference points Nz.i/ D Nzh C dhei, where dh D kNzh � zhk and ei

is the ith unit vector for i D 1; : : : ; k.
5. Present the alternatives to the decision maker. If (s)he finds one of the k C 1

solutions satisfactory, stop. Otherwise, ask the decision maker to specify a new
reference point NzhC1. Set h D hC 1 and go to step 3.

The idea in perturbing the reference point in step 4 is that the decision maker
gets a better conception of the possible solutions around the current solution. If the
reference point is far from the Pareto optimal set, the decision maker gets a wider
description of the Pareto optimal set and if the reference point is near the Pareto
optimal set, then a finer description of the Pareto optimal set is given.

In this method, the decision maker has to specify aspiration levels and compare
objective vectors. The decision maker is free to change her or his mind during
the process and can direct the solution process without being forced to understand
complicated concepts and their meaning. On the other hand, the method does not
necessarily help the decision maker to find more satisfactory solutions.
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The reference point method is an ad hoc method because a reference point cannot
directly be defined based on a value function. On the other hand, alternatives are
easy to compare whenever a value function is known.

Let us mention that a software family called DIDAS (Dynamic Interactive
Decision Analysis and Support) has been developed on the basis of the reference
point ideas of Wierzbicki. It is described, for example, in [267].

Applications and modifications of the reference point method are provided in
[11, 62, 159, 186, 187, 215, 217, 219, 231, 245, 248, 249, 264, 266].

22.4.2 GUESS Method

The GUESS method is also called a naïve method [18]. The method is related to the
reference point method.

It is assumed that a global ideal objective vector z? and a global nadir objective
vector znad are available. The structure of the method is very simple: the decision
maker specifies a reference point (or a guess) Nzh and a Pareto optimal solution is
generated which is somehow closest to the reference point. Then the decision maker
specifies a new reference point and so on.

The general idea is to maximize the minimum weighted deviation from the nadir
objective vector. The problem to be solved is

maximize min
iD1;:::;k


znad

i � fi.x/

znad
i � Nzh

i

�

subject to x 2 S:
(22.4)

Notice that the aspiration levels have to be strictly lower than the components of the
nadir objective vector.

Theorem 2. The solution of (22.4) is weakly Pareto optimal and any Pareto optimal
solution can be found.

The GUESS algorithm has five basic steps.

1. Calculate z? and znad and present them to the decision maker. Set h D 1.
2. Let the decision maker specify upper or lower bounds to the objective functions

if (s)he so desires. Update the problem, if necessary.
3. Ask the decision maker to specify a reference point Nzh between z? and znad.
4. Solve (22.4) and present the solution to the decision maker.
5. If the decision maker is satisfied, stop. Otherwise, set h D hC1 and go to step 2.

In step 2, upper or lower bounds mean adding constraints to the problem (22.4),
but the ideal or the nadir objective vectors are not affected. The only stopping rule is
the satisfaction of the decision maker. No guidance is given to the decision maker in
setting new aspiration levels. This is typical of many reference point based methods.
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The GUESS method is simple to use and no consistency of the preference
information provided is required. The only information required from the decision
maker is a reference point and possible upper and lower bounds, which are optional.
Note that inappropriate lower bounds may lead to solutions that are not weakly
Pareto optimal. Unfortunately, the GUESS method relies heavily on the availability
of the nadir objective vector, which is usually only an estimation.

The GUESS method is an ad hoc method. The existence of a value function
would not help in specifying reference points or bounds for the objective functions.
The method has been compared to several other interactive methods in [17, 20, 33]
and it has performed surprisingly well. The reasons may be its simplicity and
flexibility. One can say that decision makers seem to prefer solution methods where
they can feel that they are in control.

22.4.3 Light Beam Search

The light beam search [83, 84] employs tools of multiattribute decision analysis
(see, for example, [250]) together with reference point ideas. The basic setting is
identical to the reference point method. The problem to be solved is

minimize max
iD1;:::;kŒwi.fi.x/� Nzh

i / �C �
kX

iD1
.fi.x/� Nzh

i /

subject to x 2 S;

(22.5)

where w is a weighting vector, Nzh is the current reference point and � > 0.

Theorem 3. The solution of (22.5) is properly Pareto optimal and any properly
Pareto optimal solution can be found.

The reference point is here assumed to be infeasible, that is, unattainable. It
is also assumed that the objective and the constraint functions are continuously
differentiable and that the objective functions are bounded over S. Furthermore,
none of the objective functions is allowed to be more important than all the others
together.

In the light beam search, the decision maker directs the search by specifying
reference points. In addition, other solutions in the neighbourhood of the current
solution are displayed. Thus, the idea is identical to that of the reference point
method. The main difference is in the way the alternatives are generated. The
motivation is to avoid comparing too similar alternatives or alternatives that are
indifferent to the decision maker. To achieve this goal, concepts of ELECTRE
methods (developed for handling with discrete problems in multiattribute decision
analysis) are utilized (see, for example, [202]).

It is not always possible for the decision maker to distinguish between different
alternatives. This means that there is an interval where indifference prevails. For this
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reason, the decision maker is asked to provide indifference thresholds for each
objective function. The line between indifference and preference does not have to be
sharp, either. The hesitation between indifference and preference can be expressed
by preference thresholds. Finally, a veto threshold prevents a good performance in
some objectives from compensating for poor values on some other objectives.

In the light beam search, outranking relations are established between alterna-
tives. An objective vector z1 is said to outrank z2 if z1 is at least as good as z2.
The idea is to generate k new alternative objective vectors such that they outrank
the current solution. In particular, incomparable or indifferent alternatives are not
shown to the decision maker. The alternatives to be shown are called characteristic
neighbours. The neighbours are determined by projecting the gradient of one
objective function at a time onto the linear approximation of those constraints that
are active in the current solution.

We can now outline the light beam algorithm.

1. If the decision maker can specify the best and the worst values for each objective
function, denote them by z? and znad, respectively. Alternatively, calculate z? and
znad. Set h D 1 and Nzh D z?. Initialize the set of saved solutions as B D ;.
Ask the decision maker to specify an indifference threshold for each objective. If
desired, (s)he can also specify preference and veto thresholds.

2. Calculate current Pareto optimal solution zh by solving (22.5).
3. Present zh to the decision maker. Calculate k Pareto optimal characteristic

neighbours of zh and present them as well to the decision maker. If the decision
maker wants to see alternatives between any two of the k C 1 alternatives
displayed, set their difference as a search direction, take different steps in this
direction and project them onto the Pareto optimal set before showing them to
the decision maker. If the decision maker wants to save zh, set B D B [ fzhg.

4. If the decision maker wants to revise the thresholds, save them, set zh D zhC1,
h D h C 1 and go then to step 3. If the decision maker wants to give another
reference point, denote it by NzhC1, set h D hC 1 and go to step 2. If the decision
maker wants to select one of the alternatives or one solution in B as a current
solution, set it as zhC1, set h D hC 1 and go to step 3. If one of the alternatives
is satisfactory, stop.

The option of saving desirable solutions in the set B increases the flexibility of
the method. A similar option could be added to many other methods as well.

The name of the method comes from the idea of projecting a focused beam of
light from the reference point onto the Pareto optimal set. The lighted part of the
Pareto optimal set changes if the location of the spotlight, that is, the reference point
or the point of interest in the Pareto optimal set are changed.

In the light beam search, the decision maker specifies reference points, compares
alternatives and affects the set of alternatives in different ways. Specifying different
thresholds may be demanding for the decision maker. Note, however, that the
thresholds are not constant but can be altered at any time. The developers of the
method point out that it may be computationally rather demanding to find the exact
characteristic neighbours in a general case. It is, however, noteworthy that the
neighbours can be generated in parallel.
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The light beam search is an ad hoc method because a value function could not
directly determine new reference points. It could, however, be used in comparing
alternatives. Remember that the thresholds are important here and they must come
from the decision maker.

A modification of the method is described in [264].

22.4.4 Other Methods Using Aspiration Levels

Many interactive methods of the class of methods using aspiration levels originate
from the goal programming approach because the interpretation of a goal and a ref-
erence point are closely related. Examples of such methods include [133, 162, 185,
218, 237, 255]. Methods adopting a fuzzy approach to setting aspiration levels have
been proposed in [75, 77, 160, 209]. Some other aspiration level based interactive
methods can be found in [13, 34, 61, 70, 97, 124, 182, 235, 238, 254, 256, 257].

22.5 Methods Using Classification

With a classification, the decision maker can express what kind of changes should
be made to the current Pareto optimal solution to get a more desirable solution.
Classification reminds the decision maker of the fact that it is not possible to improve
all objective values of a Pareto optimal objective vector but impairment in some
objective(s) must be allowed. The methods presented in this section utilize different
numbers of classes. Some of the methods involve preference information other than
classification but classification is the core element in all of them.

22.5.1 Step Method

The step method (STEM) [9] is one of the first interactive methods developed for
multiobjective optimization problems. Here we describe an extension for nonlinear
problems according to [46] and [210], pp. 268–269.

STEM is based on the classification of the objective functions at the current
iteration at zh D f.xh/. It is assumed that the decision maker can indicate both
functions that have acceptable values and those whose values are too high, that is,
functions that are unacceptable. Then the decision maker is supposed to give up a
little in the value(s) of some acceptable objective function(s) fi (denoted by i 2 I>)
in order to improve the values of some unacceptable objective functions fi (denoted
by i 2 I<) (here I> [ I< D f1; : : : ; kg). To be more specific, the decision maker is
asked to specify upper bounds "h

i > fi.xh/ for the functions in I>.
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The only requirement in the method is that the objective functions are bounded
over S because distances are measured to the (global) ideal objective vector. The
first problem to be solved is

minimize max
iD1;:::;k

"
ei

Pk
jD1 ej

.fi.x/� z?i /

#

subject to x 2 S;

(22.6)

where ei D 1
z?i

znad
i �z?i
znad

i
as suggested in [46], or ei D znad

i �z?i

max
�

jznad
i j;jz?i j

� as suggested

in [247].

Theorem 4. The solution of (22.6) is weakly Pareto optimal. The problem has at
least one Pareto optimal solution.

After the decision maker has classified the objective functions, the feasible region
is restricted according to the information of the decision maker. The weights of the
relaxed objective functions are set equal to zero, that is ei D 0 for i 2 I>. Then a
new distance minimization problem

minimize max
iD1;:::;k

"
ei

Pk
jD1 ej

.fi.x/� z?i /

#

subject to fi.x/ � "h
i for all i 2 I>;

fi.x/ � fi.xh/ for all i 2 I<;
x 2 S

(22.7)

is solved.
The basic phases of the STEM algorithm are the following:

1. Calculate z? and znad and the weighting coefficients. Set h D 1. Solve (22.6).
Denote the solution by zh 2 Z.

2. Ask the decision maker to classify the objective functions at zh into I> and I<.
If the latter class is empty, stop. Otherwise, ask the decision maker to specify
relaxed upper bounds "h

i for i 2 I>.
3. Solve (22.7) and denote the solution by zhC1 2 Z. Set h D hC1 and go to step 2.

The solution process continues until the decision maker does not want to change
any component of the current objective vector. If the decision maker is not satisfied
with any of the components, then the procedure must also be stopped.

In STEM, the decision maker is moving from one weakly Pareto optimal solution
to another. The idea of classification is quite simple for her or him. However, it
may be difficult to estimate appropriate amounts of increment that would allow
the desired amount of improvement in those functions whose values should be
decreased.
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STEM is an ad hoc method because the existence of a value function would not
help in the classification process.

Applications and modifications of STEM are given in [6, 23, 35, 79, 86].

22.5.2 Satisficing Trade-Off Method

The satisficing trade-off method (STOM) [174, 176] utilizes classification and
reference points. As its name suggests, STOM is based on satisficing decision
making. The decision maker is asked to classify the objective functions at the
current solution zh D f.xh/ into three classes: the unacceptable objective functions
whose values should be improved (I<), the acceptable objective functions whose
values may increase (I>) and the acceptable objective functions whose values are
acceptable as they are (denoted by ID) (such that I< [ I> [ ID D f1; : : : ; kg).

The decision maker only has to specify aspiration levels for the functions in
I<. The aspiration levels (that is, upper bounds) for the functions in I> can be
derived using so-called automatic trade-off. In addition, the aspiration levels for
the functions in ID are set equal to fi.xh/. All the three kinds of aspiration levels
form a reference point Nzh.

Different scalarizing functions can be used in STOM. One alternative is to solve
the scalarized problem

minimize max
iD1;:::;k


fi.x/ � z??i

Nzh
i � z??i

�

subject to x 2 S;
(22.8)

where the reference point must be strictly worse in each component than the utopian
objective vector.

Theorem 5. The solution of (22.8) is weakly Pareto optimal and any Pareto optimal
solution can be found.

If weakly Pareto optimal solutions are to be avoided, the scalarized problem to
be solved is

minimize max
iD1;:::;k


fi.x/� z??i

Nzh
i � z??i

�

C �
kX

iD1

fi.x/

Nzh
i � z??i

subject to x 2 S;

(22.9)

where � > 0 is some sufficiently small scalar.

Theorem 6. The solution of (22.9) is properly Pareto optimal and any properly
Pareto optimal solution can be found.
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Here the utopian objective vector must be known globally. However, if some
objective function fj is not bounded from below on S, then some small scalar value
can be used as z??j .

Assuming all the functions involved are differentiable, the scalarizing functions
can be written in a differentiable form by introducing a scalar variable ˛ to be
optimized and setting it as an upper bound for each function in the max-term. Under
certain assumptions, trade-off rate information can be obtained from the Karush-
Kuhn-Tucker multipliers connected to the solution of this formulation. In automatic
trade-off, upper bounds for the functions in I> are derived with the help of this
trade-off information.

Let us now describe the STOM algorithm.

1. Select the scalarizing function. Calculate z??. Set h D 1.
2. Ask the decision maker to specify a reference point Nzh 2 Rk such that Nzh

i > z??i
for every i D 1; : : : ; k.

3. Minimize the scalarizing function used. Denote the solution by zh. Present it to
the decision maker.

4. Ask the decision maker to classify the objective functions. If I< D ;, stop.
Otherwise, ask the decision maker to specify new aspiration levels NzhC1

i for
I 2 I<. Set NzhC1

i D zh
i for i 2 ID.

5. Use automatic trade-off to obtain new levels (upper bounds) NzhC1
i for the

functions in I>. Set h D hC 1 and go to step 3.

The decision maker can modify the levels calculated based on trade-off rate
information if they are not agreeable. On the other hand, the decision maker
can specify those upper bounds herself or himself, if so desired. If trade-off
rate information is not available, for example, in a case when the functions are
nondifferentiable, STOM is almost the same as the GUESS method. The only
difference is the scalarizing function used.

There is no need to repeat comments mentioned in connection with STEM and
the GUESS method. In all of them, the role of the decision maker is easy to
understand. STOM requires even less input from the decision maker if automatic
trade-off is used.

As said before, in practice, classifying the objective functions into three classes
and specifying the amounts of increment and decrement for their values is a subset
of specifying a new reference point. A new reference point is implicitly formed.

STOM is an ad hoc method like all the other classification based methods.
However, one must remember that the aim of the method is particularly in satisficing
rather than optimizing some value function.

Modifications and applications of STOM are described in [96, 158, 168–176,
178–180, 189, 253].
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22.5.3 Reference Direction Method

In the classification based reference direction (RD) method [183, 184], a current
objective vector zh is presented to the decision maker at iteration h, and (s)he is
asked to specify a reference point Nzh consisting of desired levels for the objective
functions. However, as the idea is to move around the weakly Pareto optimal set,
some objective functions must be allowed to increase in order to attain lower values
for some other objectives.

As mentioned earlier, specifying a reference point is equivalent to an implicit
classification indicating those objective functions whose values should be decreased
till they reach some acceptable aspiration level, those whose values are satisfactory
at the moment, and those whose values are allowed to increase to some upper bound.
We denote again these three classes by I<, ID and I>, respectively. Furthermore,
we denote the components of the reference point corresponding to I> by "h

i
(at iteration h) because they represent upper bounds.

Here, steps are taken in the reference direction Nzh � zh and the decision maker
specifies a priori the number of steps to be taken, that is, the number of solutions
to be generated. The idea is to move step by step as long as the decision maker
wants to. In this way, extra computation is avoided when only those alternatives are
calculated that the decision maker wants to see.

Alternatives are generated along the reference direction by solving the problem

minimize max
i2I<


fi.x/ � zh

i

zh
i � Nzh

i

�

subject to fi.x/ � "h
i C ˛.zh

i � "h
i / for all i 2 I>;

fi.x/ � zh
i for all i 2 ID;

x 2 S;

(22.10)

where 0 � ˛ < 1 is the step-size in the reference direction, Nzh
i < zh

i for i 2 I< and
"h

i > zh
i for i 2 I>.

Theorem 7. The solution of (22.10) is weakly Pareto optimal for every 0 � ˛ < 1

and any Pareto optimal solution can be found.

The steps of the RD algorithm are the following:

1. Find a starting solution z1 and show it to the decision maker. Set h D 1.
2. If the decision maker does not want to decrease any component of zh, stop.

Otherwise, ask the decision maker to specify Nzh, where some of the components
are lower and some higher or equal when compared to those of zh. If there are no
higher values, set P D r D 1 and go to step 3. Otherwise, ask the decision maker
to specify the maximum number of alternatives P (s)he wants to see. Set r D 1.

3. Set ˛ D 1 � r=P. Solve (22.10) and get zh.r/. Set r D rC 1.
4. Show zh.r/ to the decision maker. If (s)he is satisfied, stop. If r � P and the

decision maker wants to see another solution, go to step 3. Otherwise, if r > P
or the decision maker wants to change the reference point, set zhC1 D zh.r/,
h D hC 1 and go to step 2.
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The RD method does not require artificial or complicated information from the
decision maker; only reference points and the number of intermediate solutions
are used. Some decision makers may appreciate the fact that they are not asked
to compare several alternatives but only to decide whether another alternative is to
be generated or not.

The decision maker must a priori determine the number of steps to be taken, and
then intermediate solutions are calculated one by one as long as the decision maker
wants to. This has both positive and negative sides. On one hand, it is computation-
ally efficient since it may be unnecessary to calculate all the intermediate solutions.
On the other hand, the number of steps to be taken cannot be changed.

The RD method is an ad hoc method because a value function would not help
in specifying reference points or the numbers of steps to be taken. It could not
even help in selecting the most preferred alternative. Here one must decide for one
solution at a time whether to calculate new alternative solutions or not. If the new
alternative happens to be less preferred than its predecessor, one cannot return to the
previous solution.

Applications and modifications of the RD method are described in [60, 148].

22.5.4 NIMBUS Method

The NIMBUS method was originally presented in [139, 145, 148] but here
we describe the so-called synchronous version introduced in [151]. Originally,
NIMBUS was particularly directed for nondifferentiable problems but nowadays it
is a general interactive multiobjective optimization method for nonlinear problems.

NIMBUS offers flexible ways of performing interactive consideration of the
problem and determining the preferences of the decision maker during the solution
process. Classification is used as the means of interaction between the decision
maker and the algorithm. In addition, the decision maker can ask for intermediate
Pareto optimal solutions to be generated between any two Pareto optimal solutions.

In the classification, the decision maker can easily indicate what kind of
improvements are desirable and what kind of impairments are tolerable. Opposedite
to the classification based methods introduced so far, NIMBUS has five classes
available. The decision maker examines at every iteration h the current objective
vector zh and divides the objective functions into up to five classes according to how
the current solution should be changed to get a more desirable solution. The classes
are functions fi whose values

• should be decreased (i 2 I<),
• should be decreased till an aspiration level Nzh

i < zh
i (i 2 I�),

• are satisfactory at the moment (i 2 ID),
• are allowed to increase till an upper bound "h

i > zh
i (i 2 I>), and

• are allowed to change freely (i 2 I˘),

where I< [ I� ¤ ; and I> [ I˘ ¤ ;.
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In addition to the classification, the decision maker is asked to specify the aspira-
tion levels and the upper bounds if the second and the fourth class, respectively, are
used. The difference between the classes I< and I� is that the functions in I< are to
be minimized as far as possible but the functions in I� only as far as the aspiration
level.

As mentioned, NIMBUS has more classes than STEM, STOM or the RD method.
This means that the decision maker has more freedom and flexibility in specifying
the desired changes in the objective values. Note that not all of the classes have
to be used. The availability of the class I˘ means that some functions can be left
unclassified for a while to be able to follow how their values change while the others
are classified.

After the classification information has been obtained, a scalarized problem is
solved and the Pareto optimal solution Oxh obtained reflects the desires of the decision
maker as well as possible. In this way, the decision maker can learn about the
attainability of her or his preferences. In the synchronous version of NIMBUS [151],
the idea is to provide to the decision maker up to four slightly different Pareto
optimal solutions based on the same preference information. The decision maker
can decide how many solutions (s)he wants to see and compare. In this way, the
decision maker can learn more about what kind of solutions are available in the area
of the Pareto optimal set that (s)he is interested in.

After the classification, up to four scalarized problems are solved. The one that
follows the classification information closest is

minimize max
i2I<
j2I�

"
fi.x/� z?i
znad

i � z??i

;
fj.x/ � Nzj

znad
j � z??j

#

C �
kX

iD1

fi.x/

znad
i � z??i

subject to fi.x/ � fi.xh/ for all i 2 I< [ I� [ ID;
fi.x/ � "i for all i 2 I�;
x 2 S;

(22.11)

where a so-called augmentation coefficient � > 0 is a relatively small scalar, and z?i
for i 2 I< are components of the ideal objective vector. The weighting coefficients
1=.znad

j � z??j / involving components of the nadir and the utopian objective vectors,
respectively, have proven to facilitate capturing the preferences of the decision
maker well. They also increase computational efficiency [154].

The other three problems are based on a reference point. As mentioned in
Sect. 22.1, one can derive a reference point from classification information. If the
decision maker has provided aspiration levels and upper bounds, they are directly
used as components of the reference point. Similarly it is straightforward to use the
current objective function value of the class ID. In the class I<, the component
of the ideal objective vector is used in the reference point and in the class I˘,
the component of the nadir objective vector is used. In this way, we can get
a k-dimensional reference point and can solve reference point based scalarized
problems. In the synchronous NIMBUS, the problems (22.4) of GUESS, (22.3) of
the reference point method and (22.8) of the STOM method are used.
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Theorem 8. The solution of (22.11) is Pareto optimal.

The decision maker can also ask for intermediate solutions between any two
Pareto optimal solutions xh and Oxh to be generated. This means that we calculate a
search direction dh D Oxh�xh and provide more solutions by taking steps of different
sizes in this direction. In other words, we generate P � 1 new vectors f.xh C tjdh/,
j D 2; : : : ;P � 1, where tj D j�1

P�1 . Their Pareto optimal counterparts [by setting
each of the new vectors at a time as a reference point for (22.3)] are presented to the
decision maker, who then selects the most satisfying solution among the alternatives.

The NIMBUS algorithm is given below. The solution process stops if the decision
maker does not want to improve any objective function value or is not willing to
impair any objective function value.

We denote the set of saved solutions by A. At the beginning, we set A D ;.
The starting point of the solution process can come from the decision maker or
it can be some neutral compromise [265] between the objectives. The nadir and
utopian objective vectors must be calculated or estimated before starting the solution
process.

The main steps of the synchronous NIMBUS algorithm are the following.

1. Generate a Pareto optimal starting point.
2. Ask the decision maker to classify the objective functions at the current solution

and to specify the aspiration levels and upper bounds if they are needed.
3. Ask the decision maker to select the maximum number of different solutions to

be generated (between one and four) and solve as many problems (listed above).
4. Present the different new solutions obtained to the decision maker.
5. If the decision maker wants to save one or more of the new solutions to A, include

it/them to A.
6. If the decision maker does not want to see intermediate solutions between any

two solutions, go to step 8. Otherwise, ask the decision maker to select the two
solutions from among the new solutions or the solutions in A. Ask the number of
the intermediate solutions from the decision maker.

7. Generate the desired number of intermediate solutions and project them to the
Pareto optimal set. Go to step 4.

8. Ask the decision maker to choose the most preferred one among the new and/or
the intermediate solutions or the solutions in A. Denote it as the current solution.
If the decision maker wants to continue, go to step 2. Otherwise, stop.

In NIMBUS, the decision maker is free to explore the Pareto optimal set, to
learn and also to change her or his mind if necessary. The selection of the most
preferred alternative from a given set is also possible but not necessary. The decision
maker can also eliminate undesirable solutions from further consideration. Unlike
some other classification based methods, NIMBUS does not depend entirely on
how well the decision maker manages in the classification. It is important that
the classification is not irreversible. If the solution obtained is not satisfactory,
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the decision maker can go back to the previous solution or explore intermediate
solutions. The method aims at being flexible and the decision maker can select to
what extent (s)he exploits the versatile possibilities available. The method does not
introduce too massive calculations, either.

Being a classification based method, NIMBUS is ad hoc in nature. A value
function could only be used to compare different alternatives.

An implementation of NIMBUS is available on the Internet. This WWW-
NIMBUS system is at the disposal of every academic Internet user at http://nimbus.
mit.jyu.fi/. Positive sides of a WWW implementation are that the latest version
of the system is always available and the user saves the trouble of installing the
software. The operating system used or compilers available set no restrictions
because all that is needed is a WWW browser. Furthermore, WWW provides a
graphical user interface with possibilities for visualizing the classification phase,
alternative solutions etc. The system contains both a nondifferentiable local solver
and a global solver (genetic algorithm). For details, see [147, 149, 151]. The first
version of WWW-NIMBUS was implemented in 1995. Then, it was a pioneering
interactive optimization system on the Internet.

There is also an implementation of NIMBUS in the Windows/Linux operating
systems called IND-NIMBUS [82, 140]. It can be connected to different simulation
and modelling tools like Matlab and GAMS. Several local and global single
objective optimization methods and their hybrids are available. It is also possible
to utilize, for example, the optimization methods of GAMS. IND-NIMBUS has
different tools for supporting graphical comparison of selected solutions and it
also contains implementations of the Pareto Navigator method and the NAUTILUS
method (see Sects. 22.8.2 and 22.6.2, respectively).

Applications and modifications of the NIMBUS method can be found in [47, 66–
68, 71, 72, 117, 118, 141, 145, 146, 148, 150, 152, 153, 157, 206, 214, 222].

22.5.5 Other Methods Using Classification

Interactive physical programming is an interactive method developed for trade-off
analysis and decision making in multidisciplinary optimization [240]. It is based
on a physical programming approach to produce Pareto optimal solutions [136].
A second order approximation of the Pareto optimal set at the current Pareto
optimal solution is produced and the decision maker is able to generate solutions
in the approximation obeying her or his classification. However, this necessitates
differentiability assumptions. A modification can be found in [76].

Some other classification based methods can be found in [7, 92, 138].

http://nimbus.mit.jyu.fi/
http://nimbus.mit.jyu.fi/
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22.6 Methods Where Solutions Are Compared

In this section we present some methods where the decision maker is assumed to
compare Pareto optimal solutions and select one of them. Thus, the decision maker
is not assumed to provide much information but the cognitive load related to the
comparison naturally depends on the number of alternatives to be considered.

22.6.1 Chebyshev Method

The Chebyshev method was originally called the Tchebycheff method. It was
proposed in [223], pp. 419–450 and [226] and refined in [224] and it is also
known by the name interactive weighted Tchebycheff procedure. The idea in this
weighting vector set reduction method is to develop a sequence of progressively
smaller subsets of the Pareto optimal set until a final solution is located.

This method does not have too many assumptions. All that is assumed is
that the objective functions are bounded (from below) over S. To start with, a
(global) utopian objective vector z?? is established. Then the distance from the
utopian objective vector to the feasible objective region is minimized by solving
the scalarized problem

lex minimize max
iD1;:::;k

�
wh

i .fi.x/� z??i /
�
;

kX

iD1
.fi.x/� z??i /

subject to x 2 S:

(22.12)

The notation above means that if the min-max problem does not have a unique
solution, the sum term is minimized subject to the obtained solutions.

Theorem 9. The solution of (22.12) is Pareto optimal and any Pareto optimal
solution can be found.

In the Chebyshev method, different Pareto optimal solutions are generated by
altering the weighting vector wh. At each iteration h, the weighting vector set Wh D
fwh 2 Rk j lhi < wh

i < uh
i ;
Pk

iD1 wh
i D 1g is reduced to WhC1, where WhC1 � Wh.

At the first iteration, a sample of the whole Pareto optimal set is generated by solving
(22.12) with well dispersed weighting vectors from W D W1 (with l1i D 0 and
u1i D 1). The space Wh is reduced by tightening the upper and the lower bounds for
the weights.

Let zh be the objective vector that the decision maker chooses from the sample
at the iteration h and let wh be the corresponding weighting vector in the problem.
Now a concentrated group of weighting vectors centred around wh is formed. In this
way, a sample of Pareto optimal solutions centred around zh is obtained.
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Before the solution process starts, the decision maker must set the number of
alternative solutions P to be compared at each iteration and the number of iterations
to be taken itn. We can now present the main features of the Chebyshev algorithm.

1. Set the set size P and a tentative number of iterations itn. Set l1i D 0 and u1i D 1
for all i D 1; : : : ; k. Construct z??. Set h D 1.

2. Form the weighting vector set Wh and generate 2P dispersed weighting vectors
wh 2 Wh.

3. Solve (22.12) for each of the 2P weighting vectors.
4. Present the P most different of the resulting objective vectors to the decision

maker and let her or him choose the most preferred among them.
5. If h D itn, stop.
6. Reduce Wh to get for WhC1, set h D hC 1 and go to step 2.

The problem (22.12) is solved more that P times so that solutions very close to
each other do not have to be presented to the decision maker. On the other hand,
the predetermined number of iterations is not necessarily conclusive. The decision
maker can stop iterating when (s)he obtains a satisfactory solution or continue the
solution process longer if necessary.

In this method, the decision maker is only asked to compare Pareto optimal
objective vectors. The number of these alternatives and the number of objective
functions affect the easiness of the comparison. The personal capabilities of the
decision maker are also important. Note that some consistency is required from the
decision maker because the discarded parts of the weighting vector space cannot be
restored.

It must be mentioned that a great deal of calculation is needed in the method.
That is why it may not be applicable for large and complex problems. However,
parallel computing can be utilized when generating the alternatives.

The Chebyshev method is a non ad hoc method. It is easy to compare the
alternative solutions with the help of a value function.

Applications and modifications of the Chebyshev method are given in [1, 88, 95,
128, 189, 196, 212, 225, 234, 269].

22.6.2 NAUTILUS Method

The NAUTILUS method, introduced in [156], has a different philosophy from many
other interactive methods. It is based on the assumptions that past experiences
affect the hopes of decision makers and that people do not react symmetrically
to gains and losses. This is derived from the prospect theory of [87]. Typically,
interactive multiobjective optimization methods move around the set of Pareto
optimal solutions according to the preference of the decision maker and (s)he
must trade-off, that is, give up in some objective functions in order to enable
improvement in some others to get from one Pareto optimal solution to another.
But according to the prospect theory, the decision makers may have difficulties in
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allowing impairment: the decision maker may get anchored in the vicinity of the
starting point and the solution process may even be prematurely terminated.

The NAUTILUS method is different from most interactive methods because it
does not generate Pareto optimal solutions at every iteration. Instead, the solution
process starts from the nadir objective vector representing bad values for all
objective functions. In this way, the decision maker can attain improvement in each
objective function without any trading-off and can simply indicate how much each
of the objectives should be improved. It has also been observed that the decision
maker may be more satisfied with a given solution if the previous one was very
undesirable, and this lays the foundation of the NAUTILUS method.

The method utilizes the scalarized problem (22.3) of the reference point method
but unlike other methods utilizing this problem where weights are kept unaltered
during the whole process and their purpose is mainly to normalize different ranges
of objectives, in NAUTILUS the weights have a different role as proposed in [127].
In NAUTILUS, the weights are varied to get different Pareto optimal solutions and
some preference information is included in the weights. As mentioned earlier, the
optimal solution of problem (22.3) is assured to be Pareto optimal for any reference
point (see, for example, [139]).

As said, the NAUTILUS method starts from the nadir objective vector and at
every iteration the decision maker gets a solution where all objective function values
improve from the previous iteration. Thus, only the solution of the last iteration is
Pareto optimal. To get started, the decision maker is asked to give the number of
iterations (s)he plans to carry out, denoted by itn. This is an initial estimate and can
be changed at any time.

As before, we denote by zh the objective vector corresponding to the iteration
h. We set z0 D znad. Therefore, z0 (except in trivial problems) is not Pareto
optimal. Furthermore, we denote by ith the number of iterations left (including
iteration h). Thus, it1 D itn. At each iteration, the range of reachable values
that each objective function can have without impairment in any other objective
function (in this and further iterations) will shrink. Lower and upper bounds on
these reachable values will be calculated when possible. For iteration h, we denote
by zh;lo D .zh;lo

1 ; : : : ; zh;lo
k /T and zh;up D .zh;up

1 ; : : : ; zh;up
k /T these lower and upper

bounds, respectively. Initially, z1;lo D z? and z1;up D znad. This information can be
regarded as an actualization of the pay-off table (see, for example, [139]) (indicating
new ideal and nadir values) at each iteration, thus informing the decision maker of
what values are achievable for each objective function.

For iteration h � 1, the objective vector zh�1 D .zh�1
1 ; : : : ; zh�1

k /T is shown
to the decision maker, who has two possibilities to provide her or his preference
information:

1. Ranking the objective functions according to the relative importance of improv-
ing current objective function values. Here the decision maker is not asked to
give any global preference ranking of the objectives, but the local importance of
improving each of the current objective function values. (S)he is asked to assign
objective functions to classes in an increasing order of importance for improving
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the corresponding objective value zh�1
i . With this information the k objective

functions can be allocated into index sets Jr which represent the importance
levels r D 1; : : : ; s, where 1 � s � k. If r < t, then improving objective function
values in Jr is less important than improving objective function values in Jt. Each
objective function can belong to only one index set, but several objectives can be
in the same index set Jr. We then set

wh
i D

1

r.znad
i � z??i /

for all i 2 Jr; r D 1; : : : ; s: (22.13)

2. Answering the question: Assuming you have one hundred points available,
how would you distribute them among the current objective values so that the
more points you allocate, the more improvement on the corresponding current
objective value is desired? If the decision maker gives ph

i points to the objective
function fi, we set �qh

i D ph
i =100 and

wh
i D

1

�qh
i .z

nad
i � z??i /

for all i D 1; : : : ; k: (22.14)

We set Nzh D zh�1, and wi D wh
i (i D 1; : : : ; k), as defined in (22.13) or (22.14),

depending on the way the decision maker specifies the preference information and
solve the scalarized problem (22.3). Let us denote by xh the Pareto optimal decision
vector obtained and set fh D f.xh/. Then, at the next iteration we take a step from
the current solution towards fh and show to the decision maker

zh D ith � 1
ith

zh�1 C 1

ith
fh: (22.15)

As mentioned, if h is the last iteration, then ith D 1 and zh D fh is the final Pareto
optimal objective vector while xh is the final solution in the decision space. But if
h is not the last iteration, then zh can even be an infeasible vector in the objective
space. Nevertheless, it has the following properties:

Theorem 10. At any iteration h, components of zh are all better than the corre-
sponding components of zh�1.

It is important to point out that although zh is not a Pareto optimal objective
vector of problem (22.1) (if h is not the last iteration), and it may even be infeasible
for this problem, it is assured to either be in the feasible objective set Z for problem
(22.1) or there is some Pareto optimal objective vector where each objective function
has a better value. On the other hand, each objective vector zh produced has better
objective function values than the corresponding values in all previous iterations.
In addition, at each iteration, a part of the Pareto optimal set is eliminated from
consideration in the sense that it is not reachable unless a step backwards is taken.

Vectors zh;lo providing bounds for the objective values that can be attained at the
next iteration can be calculated by solving k problems of the "-constraint method so
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that each objective function is optimized in turn and the upper bounds for the other
objective functions are taken from the corresponding components of zh�1.

Thus, the attainable values of zh are bound in the following way:

zh
i 2 Œzh;lo

i ; zh�1
i � .i D 1; : : : ; k/:

By denoting zh;up D zh�1, we have

zh
i 2 Œzh;lo

i ; zh;up
i � .i D 1; : : : ; k/: (22.16)

Depending on the computational cost of solving the k problems of the
"-constraint method, it must be evaluated whether these bounds are worth to be
calculated at each iteration. If this is regarded to be too time-consuming, calculating
the bounds can be skipped.

In addition, a measure of the closeness of the current vector to the Pareto optimal
set can be shown to the decision maker. This allows the decision maker to determine
whether the approach rhythm to the Pareto optimal set is appropriate or whether it is
too fast or too slow. The decision maker can affect this by adjusting the number of
iterations still to be taken. Given the information available, the decision maker may
take a step backwards if (s)he does not like the new solution generated or the bounds
and/or change the number of remaining iterations. In the latter case, we assign a new
value to ith. In the former case, the decision maker can either:

• continue with old preference information. A new solution is obtained by consid-
ering a smaller step size starting from the previous solution (for example, a half
of the former step size), or

• provide new preference information. Then a new iteration step is taken, starting
from zh�1.

To get started, the ideal and the nadir objective vectors must be calculated or
estimated. Then, an overview of the NAUTILUS algorithm can be summarized as
follows.

1. Ask the decision maker to give the number of iterations, itn. Set h D 1, z0 D
f1;up D znad, f1;lo D z? and it1 D itn.

2. Ask the decision maker to provide preference information in either of the two
ways and calculate weights wh

i (i D 1; : : : ; k).
3. Set the reference point and the weights and solve problem (22.3) to get xh and

the corresponding fh.
4. Calculate zh according to (22.15).
5. Given zh, find fhC1;lo by solving k "-constraint problems. Furthermore, set

fhC1;up D zh. Calculate the distance to the Pareto optimal set.
6. Show the current objective values zh

i (i D 1; : : : ; k), together with the additional
information Œf hC1;lo

i ; f hC1;up
i � .i D 1; : : : ; k/ and the distance to the decision

maker.
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7. Set a new value for ith if the decision maker wants to change the number of
remaining iterations.

8. Ask the decision maker whether (s)he wants to take a step backwards. If so, go
to step 10. Otherwise, continue.

9. If ith D 1, stop with the last solution xh and fh as the final solution. Otherwise,
set ithC1 D ith � 1 and h D h C 1. If the decision maker wants to give new
preference information, go to step 1. Alternatively, the decision maker can take a
new step in the same direction (using the preference information of the previous
iteration). Then, set fh D fh�1, and go to step 4.

10. Ask the decision maker whether (s)he would like to provide new preference
information starting from zh�1. If so, go to step 2. Alternatively, the decision
maker can take a shorter step with the same preference information given in
step 2. Then, set zh D 1

2
zh C 1

2
zh�1 and go to step 5.

The algorithm looks more complicated than it actually is. There are many steps
to provide to the decision maker different options of how to continue the solution
process. A good user interface plays an important role in making the options
available intuitive.

The NAUTILUS method has been located in this class of methods because
the decision maker must compare at each iteration the solution generated to the
solution of the previous iteration and decide whether to proceed or to go backwards.
Naturally, preference information indicating how important it is to improve each of
the objective functions from their current levels is also needed.

NAUTILUS is ad hoc in nature because all preference information needed cannot
be obtained from a value function.

A modification of the NAUTILUS method is presented in [213].

22.6.3 Other Methods Where Solutions Are Compared

Methods where the decision maker is asked to compare different solutions have
been developed rather recently. Such methods targeted at nonlinear problems can be
found in [26, 89, 91, 102, 121, 130, 131].

22.7 Methods Using Marginal Rates of Substitution

In this section we present methods that utilize preference information in the form
of marginal rates of substitution or desirability of trade-off information provided.
These methods are included here because they have played a role in the history of
developing interactive methods. They aim at some sort of mathematical convergence
in optimizing an estimated value function rather than psychological convergence. It
is important that the decision maker understands well the concepts used in these
methods to be able to apply them.
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22.7.1 Interactive Surrogate Worth Trade-Off Method

The interactive surrogate worth trade-off (ISWT) method is introduced in [22] and
[23], pp. 371–379. The ISWT method utilizes the scalarized "-constraint problem
where one of the objective functions is minimized subject to upper bounds on all
the other objectives:

minimize f`.x/
subject to fj.x/ � "j for all j D 1; : : : ; k; j ¤ `;

x 2 S;
(22.17)

where ` 2 f1; : : : ; kg and "j are upper bounds for the other objectives.

Theorem 11. The solution of (22.17) is weakly Pareto optimal. The decision vector
x� 2 S is Pareto optimal if and only if it solves (22.17) for every ` D 1; : : : ; k,
where "j D fj.x�/ for j D 1; : : : ; k, j ¤ `. A unique solution is Pareto optimal for
any upper bounds.

The idea of the ISWT method is to maximize an approximation of an underlying
value function. A search direction is determined based on the opinions of the
decision maker concerning trade-off rates at the current solution. The step-size to be
taken in the search direction is determined by solving several "-constraint problems
and asking the decision maker to select the most satisfactory solution.

It is assumed that the underlying value function exists and is implicitly known to
the decision maker. In addition, it must be continuously differentiable and strongly
decreasing. Furthermore, the objective and the constraint functions must be twice
continuously differentiable and the feasible region has to be compact. Finally, it
is assumed that the Pareto optimality of the solutions of the "-constraint problem
is guaranteed and that trade-off rate information is available in the Karush-Kuhn-
Tucker (KKT) multipliers related to the "-constraint problem.

Changes in objective function values between a reference function f` and all the
other objectives are compared. For each i D 1; : : : ; k, i ¤ `, the decision maker
must answer the following question: Let an objective vector zh be given. If the value
of f` is decreased by �h

i units, then the value of fi is increased by one unit (or vice
versa) and the other objective values remain unaltered. How desirable do you find
this trade-off?

The response of the decision maker indicating the degree of preference is called
a surrogate worth value. According to [22, 23] the response must be an integer
between 10 and �10 whereas it is suggested in [242] to use integers from 2 to �2.

The gradient of the underlying value function is then estimated with the help
of the surrogate worth values. This gives a search direction with a steepest ascent
for the value function. Several different steps are taken in the search direction and
the decision maker must select the most satisfactory of them. In practice, the upper
bounds of the "-constraint problem are revised based on surrogate worth values with
different step-sizes.
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The main features of the ISWT algorithm can be presented with four steps.

1. Select f` to be minimized and give upper bounds to the other objective functions.
Set h D 1.

2. Solve (22.17) to get a solution zh. Trade-off rate information is obtained from the
KKT multipliers.

3. Ask the decision maker for the surrogate worth values at zh.
4. If some stopping criterion is satisfied, stop. Otherwise, update the upper bounds

with the help of the answers obtained in step 3 and solve several "-constraint
problems. Let the decision maker choose the most preferred alternative zhC1 and
set h D hC 1. Go to step 3.

As far as stopping criteria are concerned, one can always stop when the decision
maker wants to do so. A common stopping criterion is the situation where all the
surrogate worth values equal zero. One more criterion is the case when the decision
maker wants to proceed only in an infeasible direction.

In the ISWT method, the decision maker is asked to specify surrogate worth
values and compare Pareto optimal alternatives. It may be difficult for the decision
maker to provide consistent surrogate worth values throughout the decision process.
In addition, if there is a large number of objective functions, the decision maker has
to specify a lot of surrogate worth values at each iteration. On the other hand, the
easiness of the comparison of alternatives depends on the number of objectives and
on the personal abilities of the decision maker.

The ISWT method can be regarded as a non ad hoc method. The sign of the
surrogate worth values can be judged by comparing trade-off rates with marginal
rates of substitution (obtainable from the value function). Furthermore, when
comparing alternatives, it is easy to select the one with the highest value function
value.

Modification of the ISWT method are presented in [23, 27, 49, 63, 69].

22.7.2 Geoffrion-Dyer-Feinberg Method

In the Geoffrion-Dyer-Feinberg (GDF) method proposed in [57], the basic idea is
related to that of the ISWT method. In both the methods, the underlying (implicitly
known) value function is approximated and maximized. In the GDF method, the
approximation is based on marginal rates of substitution.

It is assumed that an underlying value function exists, is implicitly known to the
decision maker and is strongly decreasing with respect to the reference function f`.
In addition, the corresponding value function with decision variables as variables
must be continuously differentiable and concave on S. Furthermore, the objective
functions have to be continuously differentiable and the feasible region S must be
compact and convex.
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Let xh be the current solution. We can obtain a local linear approximation for
the gradient of the value function with the help of marginal rates of substitution mh

i
involving a reference function f` and the other functions fi. Based on this information
we solve the problem

maximize

� kX

iD1
�mh

irxfi.xh/

�T

y

subject to y 2 S;

(22.18)

where y 2 Rn is the variable. Let us denote the solution by yh. Then, the search
direction is dh D yh � xh.

The following problem is to find a step-size. The decision maker can be
offered objective vectors where steps of different sizes are taken in the search
direction starting from the current solution. Unfortunately, these alternatives are not
necessarily Pareto optimal.

Now we can present the GDF algorithm.

1. Ask the decision maker to select f`. Set h D 1.
2. Ask the decision maker to specify marginal rates of substitution between f` and

the other objectives at the current solution zh.
3. Solve (22.18). Set the search direction dh. If dh D 0, stop.
4. Determine with the help of the decision maker the appropriate step-size th to be

taken in dh. Denote the corresponding solution by zhC1 D f.xh C thdh/.
5. Set h D hC 1. If the decision maker wants to continue, go to step 2. Otherwise,

stop.

In the GDF method, the decision maker has to specify marginal rates of
substitution and select the most preferred solution from a set of alternatives. The
theoretical foundation of the method is convincing but the practical side is not as
promising. At each iteration the decision maker has to determine k � 1 marginal
rates of substitution in a consistent and correct way. On the other hand, it is obvious
that in practice the task of selection becomes more difficult for the decision maker
as the number of objective functions increases. Another drawback is that not all the
solutions presented to the decision maker are necessarily Pareto optimal. They can
naturally be projected onto the Pareto optimal set but this necessitates extra effort.

The GDF method is a non ad hoc method. The marginal rates of substitution and
selections can be done with the help of value function information. Note that if the
underlying value function is linear, the marginal rates of substitution are constant
and only one iteration is needed.

Applications and modifications of the GDF method are described in [3, 40, 42,
51, 53, 73, 79, 85, 143, 144, 167, 190, 201, 207, 223, 268].
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22.7.3 Other Methods Using Marginal Rates of Substitution

Although preference information about relative importance of different objectives
in one form or another is utilized in many interactive methods, there are very few
methods where the desirable marginal rates of substitute are the main preference
information. Such methods are presented in [123, 134, 271].

22.8 Navigation Methods

By navigation we refer to methods where new Pareto optimal solution candidates
are generated in a real-time imitating fashion along directions that are derived
from the information the decision maker has specified. In this way, the decision
maker can learn about the interdependencies among the objective functions. The
decision maker can either continue the movement along the current direction or
change the direction, that is, one’s preferences. Increased interest has been devoted
to navigation based methods in the literature in recent years. In these methods, the
user interface plays a very important role in enabling the navigation.

22.8.1 Reference Direction Approach

The reference direction approach [104, 109] is also known by the name visual
interactive approach. It contains ideas from, for example, the GDF method and
the reference point method. However, more information is provided to the decision
maker.

In reference point based methods, a reference point is projected onto the Pareto
optimal set by optimizing an achievement function. Here a whole so-called reference
direction is projected onto the Pareto optimal set. It is a vector from the current
solution zh to the reference point Nzh. In practice, steps of different sizes are taken
along the reference direction and projected. The idea is to plot the objective function
values on a computer screen as value paths. The decision maker can move the cursor
back and forth and see the corresponding numerical values at each solution.

Solutions along the reference direction are generated by solving the scalarized
problem

minimize max
i2I


fi.x/� Nzh

i

wi

�

subject to Nzh D zh C tdhC1;
x 2 S;

(22.19)
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where I D fi j wi > 0g � f1; : : : ; kg and t has different discrete nonnegative
values. The weighting vector can be, for example, the reference point specified by
the decision maker.

Theorem 12. The solution of (22.19) is weakly Pareto optimal.

The algorithm of the reference direction approach is as follows.

1. Find an arbitrary objective vector z1. Set h D 1.
2. Ask the decision maker to specify a reference point Nzh 2 Rk and set dhC1 D
Nzh � zh.

3. Find the set ZhC1 of weakly Pareto optimal solutions with different values of t in
(22.19).

4. Ask the decision maker to select the most preferred solution zhC1 in ZhC1.
5. If zh ¤ zhC1, set h D h C 1 and go to step 2. Otherwise, check the optimality

conditions. If the conditions are satisfied, stop. Otherwise, set h D hC 1 and set
dhC1 to be a search direction identified by the optimality checking procedure. Go
to step 3.

Checking the optimality conditions in step 5 is the most complicated part of the
algorithm. Thus far, no specific assumptions have been set on the value function.
However, we can check the optimality of zhC1 if the cone containing all the feasible
directions has a finite number of generators. We must then assume that an underlying
value function exists and is pseudoconcave on Z. In addition, S must be convex and
compact and the constraint functions must be differentiable.

The role of the decision maker is similar in the reference point method and
in the reference direction approach: specifying reference points and selecting the
most preferred alternative. But by providing similar reference point information,
in the reference direction approach, the decision maker can explore a wider part
of the weakly Pareto optimal set. This possibility brings the task of comparing the
alternatives.

The performance of the method depends greatly on how well the decision maker
manages to specify the reference directions that lead to more satisfactory solutions.
The consistency of the decision maker’s answers is not important and it is not
checked in the algorithm.

The reference direction approach can be characterized as an ad hoc method as
the other reference point based methods. The aim is to support the decision maker
in getting to know the problem better.

A dynamic user interface to the reference direction approach and its adaptation
to generalized goal programming is introduced in [111]. This method for linear
multiobjective optimization problems is called the Pareto race and the software
system implementing the Pareto race is called VIG (Visual Interactive Goal
programming) [113, 114].

Applications and modifications of the reference direction approach are described
in [10, 103–108, 110].
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22.8.2 Pareto Navigator Method

Pareto Navigator is an interactive method utilizing a polyhedral approximation of
the Pareto optimal set for convex problems [48]. Pareto Navigator consists of two
phases, namely an initialization phase, where the decision maker is not involved and
a navigation phase. In a initialization phase, a relatively small set of Pareto optimal
objective vectors is assumed to be available to form a polyhedral approximation
of the Pareto optimal set in the objective space. These objective vectors can be
computed, for example, by using some a posteriori approach.

Pareto Navigator has been developed especially for the learning phase of interac-
tive solution processes introduced in Sect. 22.3 and for computationally expensive
problems where objective function and/or constraint function value evaluations may
be time-consuming because the problem is, for example, simulation-based. In these
problems, computing Pareto optimal solutions can take a lot of time. For this reason,
besides the original (computationally expensive) problem, an approximation is used
to enable fast computations so that the decision maker does not need to wait for new
solutions being generated based on her or his preferences.

In Pareto Navigator the decision maker is not involved in the part of the solution
process where the set of objective vectors representing the Pareto optimal set
is generated. Once the approximation has been created based on the objective
vectors available, the original problem is not solved (in the navigation phase).
When the navigation phase starts, the decision maker can navigate dynamically
in the approximated Pareto optimal set in real time since approximated Pareto
optimal solutions can be produced by solving linear programming problems that
are computationally inexpensive.

Whenever the decision maker has found an interesting approximated Pareto opti-
mal solution, the corresponding solution to the original problem can be generated
by solving problem (22.3) with the approximated solution as a reference point. This
can be seen as projecting the approximated solution to the Pareto optimal set of
the original problem. However, this step may take time as the original problem is
computationally expensive.

As mentioned, the multiobjective optimization problem is assumed to be convex,
that is, the objective functions and the feasible region must be convex. The algorithm
of Pareto Navigator is as follows.

1. Compute first a polyhedral approximation of the Pareto optimal set in the
objective space based on a small set of Pareto optimal objective vectors. Use the
extreme values present in this set to approximate the ideal and nadir objective
vectors. Ask the decision maker to select a starting point for navigation (for
example, one of the Pareto optimal objective vectors available).

2. Show the objective values of the current solution to the decision maker and ask
her or him whether a preferred solution has been found. If yes, go to step 6.
Otherwise, continue.
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3. Ask the decision maker whether (s)he would like to proceed to some other
direction. If the decision maker does not want to change the direction, go to
step 5.

4. Ask the decision maker to specify how the current solution should be improved
by giving aspiration levels for the objectives. To aid her or him, show the ideal
and the nadir objective vectors. Based on the resulting reference point Nz and the
current solution zc, set a search direction.

5. Ask the decision maker to indicate a speed of movement, that is, a step size ˛ > 0
to the direction specified. Generate approximated Pareto optimal solutions in the
direction specified by using a reference point based approach for each step in the
direction starting from the current solution zc. Once an approximated solution
is produced, it is instantly shown to the decision maker. New approximated
solutions are produced to the direction specified until the decision maker stops
the movement. Then go to step 2.

6. Once the decision maker has found a satisfactory solution, stop. Project the
approximated Pareto optimal solution to the actual Pareto optimal set and show
the resulting solution to the decision maker.

The search direction is based on decision maker’s preferences and there are
different ways of defining a direction where to move on the approximation. In Pareto
Navigator, the direction is specified by d D Nz�zc. The approximated Pareto optimal
solutions are then computed by solving problems of the form

minimize max
iD1;:::;k wi .zi � Nzi.˛//

subject to Az � b;
(22.20)

where Nz.˛/ D zc C ˛d is the reference point depending on the step parameter
˛ > 0 (being varied) to the direction d and wi, i D 1; : : : ; k, are the scaling
coefficients. The scaling coefficient can be set as one divided by the difference of
the estimated nadir and ideal objective values. The linear constraints of problem
(22.20) form a convex hull for a set of Pareto optimal solutions used to form the
polyhedral approximation and, in practice, the reference point Nz.˛/ is projected to
the nondominated facets of the convex hull.

The objective function of problem (22.20) is nonlinear with respect to z but can
be linearized by adding a new real variable � 2 R replacing the max term. The
resulting problem is then linear with respect to a new variable z0 D .�; z/T . Due
to linearity, approximated Pareto optimal solutions can be produced and shown to
the decision maker in real time by shifting the reference point along the direction
d by increasing the value of ˛. At any point, the decision maker is able to find the
closest actual Pareto optimal solution for any approximated Pareto optimal solution.
However, as said, this can be time consuming.

Because the decision maker must specify desirable objective function values, this
method is ad hoc by nature.

During the navigation, the approximated solutions are shown to the decision
maker by presenting the approximated values as a continuous path (value path) for
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each objective function separately (bar charts can be used as well). Pareto Navigator
is implemented in the IND-NIMBUS system [140] and the graphical user interface
development is described in [241].

22.8.3 Pareto Navigation Method

The Pareto Navigation method developed in [163] assumes the convexity of all
objective functions and a convex feasible region. Similar to the Pareto Navigator
method, the idea is to enable a fast generation of new solutions in the navigation
phase. Thus, the method starts with formulating a surrogate problem based on
a set of pre-computed Pareto optimal decision vectors fx.1/; : : : ; x.m/g. The most
preferred solution is sought among their convex hull

X D
8
<

:

mX

jD1
vjx.j/ W

mX

jD1
vj D 1; vj 	 0 for all j D 1; : : : ;m

9
=

;
:

This allows replacing the feasible region of the original problem with the set of
convex combination coefficients v1; : : : ; vm in the definition of X .

The current state of the navigation process is represented by the current Pareto
optimal solution xh and the vector of current upper bounds b 2 Rk on objective
function values. Using the surrogate problem with these bounds as additional
constraints, the ideal objective vector is calculated and the nadir objective vector
is estimated via a pay-off table. They define ranges of objective function values
for Pareto optimal solutions. These ranges together with the current solution are
displayed in a radar chart also known as a spider-web chart.

By moving sliders on the radar chart with the mouse, the decision maker can
provide two types of preference information: upper bounds on objective values
and a desired value (aspiration level) of any objective function. Changes made by
the decision maker are immediately reflected in the current state of the navigation
process and shown in the radar chart. Setting the upper bounds influences the
objective function ranges as described above. Setting the value of any objective
function fi� to a desired value � yields updating the current solution with the solution
of the following problem
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minimize max
iD1;:::;k;

i 6Di�

yi � fi.xh/

subject to y D f

 
mP

jD1
vjx.j/

!

C s;

yi � bi; i D 1; : : : ; k;
yi� D �;
mP

jD1
vj D 1;

v and s are non-negative:

By using the two above-described mechanisms of expressing preferences the
decision maker explores the set of Pareto optimal solutions of the surrogate problem
until a most preferred or satisfactory solution is found. Because the decision maker
must provide upper bounds and aspiration levels, the method is ad hoc by nature.

The method has been developed and implemented for intensity modulated
radiation therapy treatment planning. Therefore, in addition to the radar chart,
some application-specific information about the current solution (treatment plan)
is displayed. Nevertheless, there are no obstacles of adapting the method elsewhere
when the multiobjective optimization problem is convex and the convex hull of some
finite set of pre-calculated Pareto optimal solutions may serve as a good enough
approximation of the Pareto optimal set.

22.8.4 Other Navigation Methods

Other navigation based methods developed for nonlinear multiobjective optimiza-
tion problems and implemented as software tools include [125, 127]. A collection of
methods and software for solving multiobjective linear optimization problems [4, 5]
can also be mentioned for they can be partly extended to nonlinear problems.

22.9 Other Interactive Methods

The number of interactive methods developed for multiobjective optimization is
large. So far, we have given several examples of them. Let us next mention
references to some more methods based on miscellaneous ideas: [8, 28–30, 39,
45, 50, 54, 55, 78, 90, 94, 98, 101, 119, 120, 122, 135, 161, 165, 166, 177, 191–
194, 203, 204, 208, 216, 220, 221, 227, 229, 230, 233, 239, 252, 270, 272, 273].
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22.10 Comparing the Methods

None of the many multiobjective optimization methods can be claimed to be
superior to the others in every aspect. One can say that selecting a multiobjective
optimization method is a problem with multiple objectives itself. The properties
of the problem and the capabilities and the desires of the decision maker have to
be charted before a solution method can be chosen. Some methods may suit some
problems and some decision makers better than some others.

A decision tree is provided in [139] for easing the method selection. The tree is
based on theoretical facts concerning the assumptions on the problem to be solved
and the preferences of the decision maker. Further aspects to be taken into account
when evaluating and selecting methods are collected, for example, in [12, 58, 74,
80, 139, 232, 243, 244].

In addition to theoretical properties, practical applicability, in particular, plays
an important role in the selection of an appropriate method. The difficulty is that
practical applicability is hard to determine without experience.

Some comparisons of the methods have been reported in the literature. They have
been carried out with respect to a variety of criteria and under varied circumstances.
Instead of a human decision maker one can sometimes employ value functions in
the comparisons. Unfortunately, replacing the decision maker with a value function
does not fully reflect the real usefulness of the methods. One of the problems is that
value functions cannot really help in testing ad hoc methods.

Tests with human decision makers are described in [15, 17, 19, 20, 32, 33, 41,
112, 137, 188, 251] while tests with value functions are reported in [2, 59, 164, 195].
Finally, comparisons based on intuition are provided in [46, 99, 100, 116, 134, 138,
189, 197, 211, 247, 250].

22.11 Conclusions

We have outlined several interactive methods for solving nonlinear multiobjective
optimization problems and indicated references to many more. One of the chal-
lenges in this area is spreading the word about the existing methods to those who
solve real-world problems. Another challenge is to develop methods that support
the decision maker even better. User-friendliness cannot be overestimated because
interactive methods must be able to correspond to the characteristics of the decision
maker. Specific methods for different areas of application that take into account the
characteristics of the problems are also important.

An alternative to creating new methods is to use different methods in different
phases of the solution process. This hybridization means that the positive features
of various methods can be exploited to their best advantage in appropriate phases.
In this way, it may also be possible to overcome some of the weaknesses of the
methods. Ways to enable changing the type of preference information specified,
that is, the method used during the solution process are presented in [129, 205].
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The decision maker can be supported by using visual illustrations and further
development of such tools is essential. For instance, one may visualize (parts of) the
Pareto optimal set and, for example, use 3D slices of the feasible objective region
(see [125, 126], among others) and other tools. On the other hand, one can illustrate
sets of alternatives by means of bar charts, value paths, spider-web charts and petal
diagrams etc. For more details see, for example, [139] and references therein as well
as [142] for a more detailed survey.
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83. Jaszkiewicz, A., Slowiński, R.: The light beam search – outranking based interactive pro-

cedure for multiple-objective mathematical programming. In: Pardalos, P.M., Siskos, Y.,
Zopounidis, C. (eds.) Advances in Multicriteria Analysis, pp. 129–146. Kluwer, Dordrecht
(1995)

http://ind-nimbus.it.jyu.fi/


968 K. Miettinen et al.
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Chapter 23
MCDA and Multiobjective Evolutionary
Algorithms

Juergen Branke

Abstract Evolutionary multiobjective optimization promises to efficiently generate
a representative set of Pareto optimal solutions in a single optimization run. This
allows the decision maker to select the most preferred solution from the generated
set, rather than having to specify preferences a priori. In recent years, there has
been a growing interest in combining the ideas of evolutionary multiobjective
optimization and MCDA. MCDA can be used before optimization, to specify partial
user preferences, after optimization, to help select the most preferred solution
from the set generated by the evolutionary algorithm, or be tightly integrated with
the evolutionary algorithm to guide the optimization towards the most preferred
solution. This chapter surveys the state of the art of using preference information
within evolutionary multiobjective optimization.

Keywords Evolutionary algorithms • Interactive multiobjective optimization

23.1 Introduction

Single objective Evolutionary Algorithms (EAs) are general purpose optimization
heuristics inspired by natural evolution. Because they make very few assumptions
about the optimization problem (for example, they do not require that the objective
function is differentiable and can work with almost arbitrary constraints), they are
recognized as very versatile and powerful tool for complex optimization problems
that can not be solved with exact methods. They are successfully used in industry
on a wide variety of complex optimization problems including, for example,
scheduling, transportation, or engineering design.

For multi-objective problems, they have an additional appeal. Because they
maintain a population of candidate solutions throughout the optimization process,
they are able to simultaneously search for a set of solutions in a single run. In other
words, they are able to search for a representative set of Pareto-optimal solutions,
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approximating the true Pareto set, in a single run. As multi-objective evolutionary
algorithms (MOEAs) usually don’t require preference information from the user,
they are often called “a posteriori” methods: The user reveals his/her preferences
only after optimization, by picking a solution from the set. Being presented with
a set of Pareto-optimal solutions to choose from is very appealing for many
decision makers, and MOEAs have become one of the most active research areas
in evolutionary computation.

In the beginning, the MOEA community has developed more or less inde-
pendently from the “classical” MCDM community. Only in recent years, most
notably with the initiation of regular Dagstuhl workshops,1 has it been recognized
that MOEAs and MCDM have a lot to offer to each other, and subsequently the
communities have grown together. Promising possibilities for combining MOEA
and MCDM techniques include:

1. Use an MOEA to generate an approximation of the Pareto frontier, but then use
an MCDM technique to help the decision maker (DM) to select the best solution
from this approximation set. While the latter step may be almost trivial in the
case of two objectives (which was the focus of the MOEA community in the
early years), an MCDM support may be very useful in case of more objectives.

2. Start by eliciting partial or approximate user preferences, and use this informa-
tion to narrow down the search of the MOEA. That is, rather than searching
for an approximation of the entire Pareto frontier, the search is focused on what
is believed to be the most interesting region for the DM, consistent with the
provided preference information.

3. Interleaving the use of MOEA and MCDM techniques. The MOEA is run for a
few generations, then MCDA techniques are used to elicit some user preferences,
which can then in turn be used to guide the next few generations of the MOEA,
before the next preference information is elicited.

In this chapter, after an introduction to MOEAs, the different possible combina-
tions between MOEA and MCDA will be discussed. Throughout this chapter, unless
specified otherwise we will assume minimization of objectives.

23.2 Multiobjective Evolutionary Algorithms

Evolutionary algorithms (EAs) are general purpose optimization heuristics inspired
by natural evolution, in particular Darwin’s principle of “survival of the fittest”. Due
to the inspiration from biology, many biological metaphors are used to describe EAs.

Starting with a set of candidate solutions (population), in each iteration (genera-
tion), the better solutions are selected (parents) and used to generate new solutions
(offspring). For generating offspring, two operators are usually used: Crossover

1http://www.dagstuhl.de.

http://www.dagstuhl.de
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Fig. 23.1 Basic loop of an
evolutionary algorithm

Population

ParentsOffspring

Selection

Crossover & Mutation

In
se

rti
on

Generation

recombines the information of two parents in a new way, while mutation introduces
small random modifications to a solution. These offspring are then inserted into
the population, replacing some of the weaker solutions (individuals) so that the
overall population size remains the same. By iteratively selecting the better solutions
and using them to create new candidates, the population evolves, and the solutions
become better and better adapted to the optimization problem at hand, just like in
nature, where the individuals become better and better adapted to their environment
through evolution. Darwin’s principle of survival of the fittest is used twice: Good
solutions are preferred when selecting the parents used to generate offspring, and
only good solutions survive from one generation to the next. For an illustration,
see Fig. 23.1.

To design an evolutionary algorithm for a particular optimization problem, not
much is needed. One has to define the search space, i.e., the description of a
solution and the constraints; an objective function that evaluates the quality of a
solution (usually called fitness function in EA parlance), and the search operators
crossover and mutation. Note that there are almost no restrictions in defining
these components. In particular, the objective function can be an arbitrary black
box and does not have to be continuous or differentiable. This makes EAs, as
many other metaheuristics such as tabu search or simulated annealing, a very
versatile tool that can be successfully used in domains where exact optimization
methods are not applicable. Different to many other metaheuristics, EAs work
with a population of solutions, rather than moving from one solution to the next.
This not only helps avoiding getting stuck in local optima, it also introduces a
new neighborhood structure defined by the crossover. For a good introduction to
evolutionary algorithms, the reader is referred to [32].

From the point of view of multi-objective optimization, the most important aspect
is that EAs work with a population of solutions. This makes it possible to use them to
generate a set of solutions in one run, such as an approximation to the Pareto optimal
set. This is much more efficient than generating an approximation of the Pareto set
by running an algorithm multiple times, with different weights for the objectives
or different constraint settings. This ability to search for a representative set of
Pareto optimal solutions is appealing to many researchers and practitioners, and has
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made MOEAs one of the most active research areas in evolutionary computation.
The number of publications in this area has soared over the past 10–15 years, and
a comprehensive repository of MOEA publications maintained by Carlos Coello-
Coello listed more than 6800 papers by April 2012 (http://delta.cs.cinvestav.mx/~
ccoello/EMOO).

All that needs to be changed when moving from a single objective EA to a multi
objective EA is the selection process and how individuals in the population are
ranked. If there is only one objective, individuals are naturally ranked according
to this objective, and it is clear which individuals are the best and should be selected
as parents or survive to the next generation. In case of multiple objectives, it is
still necessary to rank the individuals, but it is no longer obvious how to do this,
and many different ranking schemes have been developed. In the remainder of this
chapter, we will first describe the most widely used MOEA, the Non-dominated
Sorting GA (NSGA-II), and then briefly describe two more recent developments
that work on different principles. The section concludes with a brief discussion
of interactive evolutionary algorithms which bear many similarities to interactive
multi-objective evolutionary algorithms.

23.2.1 Non-dominated Sorting Genetic Algorithm (NSGA-II)

The non-dominated sorting genetic algorithm (NSGA-II) [29] is probably one of
the most popular and widely used MOEA. It is based on the idea that a good
approximation to the Pareto front is characterized by

1. a small distance of the solutions to the true Pareto front,
2. a wide range of solutions, i.e., an approximation of the extreme values, and
3. a good distribution of solutions, i.e., an even spread along the Pareto frontier.

So, NSGA-II tries to rank individuals according to how much they contribute to
the above goals, ordering the goals in the above sequence. Because the true Pareto
front is generally not known (otherwise, optimization would not be needed), the
distance to the true Pareto frontier can not be measured. Instead NSGA-II computes
a proxy measure by a method called the non-dominance ranking. For this ranking,
the procedure first determines all non-dominated solutions and assigns them to the
first (best) class. Then, it iteratively removes these solutions from the population,
again determines all non-dominated solutions, and assigns them to the next best
class, until the population is empty. An example of this classification can be seen
in Fig. 23.2.

Within a class, the algorithm gives the highest rank to the extreme solutions
in any objective in order to maintain a wide range of solutions according to the
second of the above goals. Finally, the aim of an even distribution of solutions is
followed by using the so-called crowding distance to generate a full order of the
individuals. The crowding distance is the sum of differences between an individual’s
left and right neighbor, in each objective, where large distances are preferred.

http://delta.cs.cinvestav.mx/~ccoello/EMOO
http://delta.cs.cinvestav.mx/~ccoello/EMOO


23 MCDA and Multiobjective Evolutionary Algorithms 981

Objective 1

O
bj

ec
tiv

e 
2

Class 1

Class 3

Class 2

Class 4
A

B

C

D

E

F

G

H

J

K

L

I

Fig. 23.2 Non-dominated sorting of solutions as in NSGA-II

In the example in Fig. 23.2, individual E is preferred over individual C because
of a higher crowding distance. The overall order of individuals in Fig. 23.2 is
thus .A;F/;E;D;B;C; .G; I/;H; .J;K/;L, with parentheses indicating equivalence
classes which may be ordered randomly.

Another popular MOEA that follows a similar idea of using a combination of
proxy criteria to rank individuals is the Strength Pareto Evolutionary Algorithm
(SPEA) [75].

23.2.2 Indicator-Based MOEAs

NSGA-II and SPEA-II are using several proxy criteria to determine the quality of an
approximation to the Pareto frontier, and combine them in lexicographic order. More
recently, researchers have defined single (unary) criteria to determine the quality of
a set of solutions, and use an individual’s marginal contribution to this criterion
for ranking. That is, an individual is evaluated by the loss of performance in this
criterion if the individual would be removed.

The most widely accepted criterion for the quality of an approximation set
is the hypervolume. It measures the volume of the dominated portion of the
objective space, bounded by a reference point, see Fig. 23.3. Individuals can then
be ranked according to their marginal contribution to the hypervolume. If HV.P/
is the hypervolume of population P, the marginal HV of individual i would be
calculated as MHV.i/ D HV.P/ � HV.P n fig/, where individuals with larger
MHV are preferred. In the example of Fig. 23.3, solution B has the largest marginal
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Fig. 23.3 Example for
(marginal) Hypervolume Reference point p

A

B

C

D

hypervolume and would be ranked first. This is the idea behind the S-MOEA [33]
or IBEA [74]. Note that the HV depends on the location of the reference point
which is not uniquely defined, and that it is expensive to calculate in higher-
dimensional objective spaces [13]. Other unary criteria that have been used are
epsilon-dominance [74] and marginal utility [8].

23.2.3 Multiobjective Evolutionary Algorithm Based
on Decomposition (MOEA/D)

The multiobjective evolutionary algorithm based on decomposition (MOEA/D) [73]
decomposes a multiobjective optimization problem into a number of single objective
optimization sub-problems equal to the population size, e.g., by defining different
weight vectors for a linear combination of objectives or different achievement
scalarizing functions. But rather than solving these sub-problems independently,
the idea is to solve them simultaneously, and allow the different search processes to
influence each other. In short, the population comprises of the best solution found
so far for each of the sub-problems. In every generation, a new offspring is created
for each sub-problem by randomly selecting two parents from the sub-problem’s
neighbourhood, performing crossover and mutation, and re-inserting the individual
into the population. The new individual replaces all individuals in the population
for which it is better with respect to the corresponding sub-problem. In effect, this
means mating is restricted to among individuals from the same region of the non-
dominated frontier, and diversity in the population is maintained implicitly by the
definition of the different sub-problems. It may be challenging to define appropriate
sub-problems without any knowledge of the Pareto frontier.
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23.2.4 Interactive Evolutionary Algorithms

Interactive EAs are single-objective EAs where the evaluation is entirely based on
human judgement, for example when the aesthetics of a design is optimized [53].
It is up to the user to evaluate and rank solutions during the run, and this ranking
is then used for selection. Human fatigue is a crucial factor in such algorithms, as
the number of solutions usually looked at by EAs may become very large. Thus,
various approaches based on approximate modeling (e.g., with a function learned
from evaluation examples) of the DM’s preferences have been proposed in this field,
see, e.g., [64]. The evolutionary algorithm tries to predict a DM’s answers using
this model, and asks the DM to evaluate only some of the new solutions. There
are apparent similarities of this field to interactive multi-objective optimization. In
both cases we are looking for solutions being the best from the point of view of
subjective preferences. Thus, an interactive evolutionary algorithm could be directly
applied to a multi-objective problem, simply asking the DM to evaluate presented
solutions. However, in multi-objective optimization, we assume to at least know
the criteria that form the basis for the evaluation of a solution, and that these can
be computed. Only how these objectives are combined to the overall utility of a
solution is subjective. In other words, in a multi-objective problem, user evaluation
is only necessary to compare mutually non-dominated solutions.

23.3 MCDM to Support the Selection from a Set
of Solutions Generated by an MOEA

An MOEA is usually designed to find a representative set of the entire Pareto-
optimal frontier. In the case of more than two objectives, however, there may be
very many Pareto optimal solutions, and it may not be easy for a DM to identify
the most preferred one. Thus it is natural to use MCDA techniques to help the DM
select a solution from the set generated by the MOEA (see, e.g., [45]). This is just
a straightforward application of one method after the other, so methodologically
there is not much to say about this. Compared to a truly interactive optimization, the
advantage is that the representative set of the efficient frontier is pre-computed, so
the interaction can be very fast. Also, over the entire process, the DM is only shown
solutions that are mutually non-dominating and hopefully close to the true Pareto
front. On the other hand, the user can not go beyond the solutions generated by the
EA in the first place, e.g., asking for a refined resolution in the most interesting area.

23.4 Integrating User Preferences in MOEA

While it may be impractical for a DM to completely specify his or her preferences
before any alternatives are known (and turn the multi-objective problem into an
single-objective problem), it makes sense to assume that the DMs have at least a
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rough idea about their preferences. The methods discussed in this section aim at
integrating such imprecise knowledge into the EMO approach, biasing the search
towards solutions that are considered as relevant by the DM. The goal is no longer
to generate a good approximation to all Pareto optimal solutions, but a small set
of solutions that contains the DM’s preferred solution with the highest probability.
This may yield three important advantages:

1. Instead of a diverse set of solutions, many of them clearly irrelevant to the DM,
a search bias based on the DM’s partial preferences will provide a more suitable
sample of all Pareto optimal alternatives. It could either be a smaller set of only
the most relevant solutions, or offer a more fine-grained resolution of the relevant
parts of the Pareto frontier.

2. By focusing the search onto the relevant part of the search space, we expect the
optimization algorithm to find these solutions more quickly.

3. As the number of objectives increases, it becomes more and more difficult
to identify the complete Pareto optimal frontier. This is partly because of
the increasing number of Pareto optimal solutions, but also because with an
increasing number of objectives, almost all solutions become non-dominated,
rendering dominance as selection criterion useless. Partial user preferences re-
introduce the necessary selection pressure.

The literature contains quite a few techniques to incorporate full or partial
preference information into MOEAs, and previous surveys on this topic include
[15, 17, 61]. This section is partially based on [5]. In the following, we classify
the different approaches based on the type of partial preference information they
ask from the DM, namely objective scaling (Sect. 23.4.1), constraints (Sect. 23.4.2),
a goal or reference point (Sect. 23.4.3), trade-off information (Sect. 23.4.4), a
weight function over the objective space (Sect. 23.4.5), a distribution of possible
utility functions (Sect. 23.4.6), outranking relations (Sect. 23.4.7) and direct solution
rankings (Sect. 23.4.8).

Note that many of the approaches in this section were originally designed as two-
step procedure: The DM is asked to reveal some information on their preferences,
then the MOEA is run to identify an appropriate subset of solutions. But from there,
it is only a small step to a truly interactive procedure that alternates between the
elicitation of user preferences and MOEA steps. So, in this chapter we will not
distinguish between MOEAs that take into account partial user preferences and
truly interactive approaches, but will point out when the algorithm was described
as interactive in the paper. One advantage of interactive methods may be that when
the DM controls the search process, he/she gets more involved in the process, learns
about potential alternatives, and is eventually more confident about the final choice.
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23.4.1 Scaling

One of the often claimed advantages of MOEAs is that they do not require an a priori
specification of user preferences because they generate a good approximation of the
whole Pareto front, allowing the DM to pick his/her preferred solution afterwards.
However, the whole Pareto optimal front may contain very many alternatives, in
which case MOEAs can only hope to find a representative subset of all Pareto
optimal solutions. Therefore, most basic EMO approaches attempt to generate a
uniform distribution of representatives along the Pareto front. For this goal, they
rely on distance information in the objective space, be it in the crowding distance
of NSGA-II, the calculation of the hypervolume in IBEA or the definition of
a neighborhood in MOEA/D. Thus, what is considered uniform depends on the
scaling of the objectives. This is illustrated in Fig. 23.4. The left panel (a) shows
an evenly distributed set of solutions along the Pareto front. Scaling the second
objective by a factor of 100 (e.g., using centimeters instead of meters as unit), leads
to a bias of the distribution and more solutions along the front parallel to the axis of
the second objective (right panel). Note that depending on the shape of the front, this
means that there is a bias towards objective 1 (as in the convex front in Fig. 23.4), or
objective 2 (if the front is concave). So, the user-defined scaling is actually a usually
ignored form of user preference specification necessary also for MOEAs.

Many current implementations of MOEAs (e.g., NSGA-II and SPEA) scale
objectives based on the solutions currently in the population (see, e.g., [23, p. 248]).
While this results in nice visualizations if the front is plotted with a 1:1 ratio, and
relieves the DM from specifying a scaling, it assumes that ranges of values covered
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Fig. 23.4 Influence of scaling on the distribution of solutions along the Pareto front as generated
by MOEAs. On the left figure (a), the front is plotted with a 1:1 ratio. On the right figure (b),
the y-axis has been scaled by a factor of 100
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by the Pareto front in each objective are equally important. Whether this assumption
is justified certainly depends strongly on the application and the DM’s preferences.

The sensitivity of most MOEAs to the scaling of the objectives also allows to
introduce preferences explicitly by scaling objectives. Deb [24] was the first to make
use of this idea by allowing to scale objectives linearly. As a result, distances in
an objective that is scaled up appear greater, and most MOEAs would then rank
individuals higher which are in regions of the Pareto frontier that are parallel to
the scaled-up objective. However, a linear scaling of the objectives does not allow
to focus on a compromise region (for equal scaling of the objectives, the effect of
scaling cancels out).

Branke and Deb [6] refined the mechanism of [24] with a better control of
the region based on trade-offs rather than objectives. Basically, scaling is done
relative to a hyperplane, rather than to individual objectives. The DM defines the
hyperplane in objective space, and the distribution of solutions is biased towards
areas of the Pareto front that are parallel of the hyperplane. The extent of the bias
can be controlled by a separate parameter.

Trautmann and Mehnen [68] suggest to use non-linear desirability functions for
scaling. A desirability function maps the values of each objective to the interval
Œ0; 1�, describing the desirability of an objective function value, independently for
each objective. If the desirability function is monotonic, Trautmann and Mehnen
[68] suggests sigmoid functions. The MOEA is then applied to the space of
desirability values. The non-dominance relations are not changed by a monotonic
transformation, meaning the algorithm will still converge to the Pareto frontier, only
the distribution of solutions along the frontier will change. The MOEA will focus
on areas along the Pareto frontier where the desirability function has the largest
gradient. This idea is studied in more detail in [69], where it is shown that the
approach also produces sensible results when the regions of largest gradient lie
completely outside or inside the Pareto frontier.

23.4.2 Constraints

Often, the DM can formulate preferences in the form of constraints, for example
“Criterion 1 should be less than ˇ”. Handling constraints is a well-researched
topic in evolutionary algorithms in general, and most of the techniques carry over
to MOEAs in a straightforward manner. One of the simplest and most common
techniques is probably to rank infeasible solutions according to their degree of
infeasibility, and inferior to all feasible solutions [22, 51]. A detailed discussion
of constraint handling techniques is out of the scope of this chapter. Instead, the
interested reader is referred to [16] for a general survey on constraint handling
techniques, and [23], Chapter 7, for a survey with focus on MOEA techniques.
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23.4.3 Providing a Reference Point

Perhaps the most widely used way to provide preference information is a reference
point, a technique that has a long tradition in multi-criteria decision making, see,
e.g., [71, 72] and also Chap. 22 in this book. A reference point consists of aspiration
levels reflecting desirable values for the objective function, i.e., a target the user
is hoping for. Such an information can then be used in different ways to focus the
search.

The use of a reference point to guide the MOEA has first been proposed by
Fonseca and Fleming [38]. The basic idea there is to give a higher priority to
objectives in which the goal is not fulfilled. Thus, when deciding whether a solution
x is preferred over a solution y or not, first, only the objectives in which solution x
does not satisfy the goal are considered, and x is preferred to y if it dominates y on
these objectives. If x is equal to y in all these objectives, or if x satisfies the goal in
all objectives, x is preferred over y either if y does not fulfill some of the objectives
fulfilled by x, or if x dominates y on the objectives fulfilled by x. More formally,
this can be stated as follows. Let r denote the reference point, and let there be m
objectives without loss of generality sorted such that x fulfills objectives kC 1 : : :m
but not objectives 1 : : : k, i.e.

fi.x/ > ri 8i D 1 : : : k (23.1)

fi.x/ � ri 8i D kC 1 : : :m: (23.2)

Then, x is preferred to y if and only if

x 
1:::k y_
x D1:::k y ^ Œ.9l 2 ŒkC 1 : : : n� W fl.y/ > rk/ _ .x 
kC1:::n y/� (23.3)

with x 
i:::j y meaning that solution x dominates solution y on objectives i to j
(i.e., for minimization problems as considered here, fk.x/ � fk.y/8k D i : : : j with
at least one strict inequality). A slightly extended version that allows the decision
maker to additionally assign priorities to objectives has been published in [39]. This
publication also contains the proof that the proposed preference relation is transitive.
Figure 23.5 visualizes what part of the Pareto front remains preferred depending on
whether the reference point is reachable (a) or not (b). If the goal has been set
so ambitious that there is no solution which can reach the goal in even a single
objective, the goal has no effect on search, and simply the whole Pareto front is
approximated.

Deb [21] proposed a simpler variant that just ignores improvements over a goal
value by replacing a solution’s objective value fi.x/ with maxffi.x/; rig. If the goal
vector r is outside the feasible range, the method is almost identical to the definition
in [38]. However, if the goal can be reached, the approach from [21] will lose its
selection pressure and basically stop search as soon as the reference point has been
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Fig. 23.5 Part of the Pareto optimal front that remains optimal with a given reference point r and
the preference relation from [38]. The left panel (a) shows a reachable reference point, while the
right panel (b) shows an unreachable one

found, i.e., return a solution which is not Pareto optimal. On the other hand, the
approach by Fonseca and Fleming [38] keeps improving beyond the reference point.
The goal-programming idea has been extended in [23] to allow for reference regions
in addition to reference points.

Tan et al. [65] proposed another ranking scheme which in a first stage prefers
individuals fulfilling all criteria, and ranks those individuals according to standard
non-dominance sorting. Among the remaining solutions, solution x dominates
solution y if and only if x dominates y with respect to the objectives in which x
does not fulfill the goal (as in [38]), or if jx� rj 
 jy� rj. The latter corresponds to
a “mirroring” of the objective vector along the axis of the fulfilled criteria. This may
lead to some strange effects, such as non-transitivity of the preference relation (x is
preferred to y, and y to z, but x and z are considered equal). Also, it seems odd to
“penalize” solutions for largely exceeding a goal. What is more interesting in [65] is
the suggestion on how to account for multiple reference points, connected with AND
and OR operations. The idea here is to rank the solutions independently with respect
to all reference points. Then, rankings are combined as follows. If two reference
points are connected by an AND operator, the rank of the solution is the maximum
of the ranks according to the individual reference points. If the operator is an OR,
the rank of the solution is the minimum of the ranks according to the individual
reference points. This idea of combining the information of several reference points
can naturally be combined with other preference relations using a reference point.
The paper also presents a way to prioritize objectives by introducing additional
goals. In effect, however, the prioritization is equivalent to the one proposed in [39].

Deb and Sundar [28, 30] replace the crowding distance calculation in NSGA-
II by the distance to the reference point, where solutions with a smaller distance
are preferred. More specifically, solutions with the same non-dominated rank are
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sorted with respect to their distance to the reference point. To control the extent of
obtained solutions, all solutions having a distance of 	 or less between them are
grouped. Only one randomly picked solution from each group is retained, while all
other group members are assigned a large rank to discourage their use. As [39, 65],
this approach is able to improve beyond a reference point within the feasible
region, because the non-dominated sorting keeps driving the population to the Pareto
optimal front. Also, as [65], it can handle multiple reference points simultaneously.
With the parameter 	, it is possible to explicitly influence the diversity of solutions
returned. Whether this extra parameter is an advantage or a burden may depend on
the application.

A reference-point based modification of dominance where solutions fulfilling
all goals and solutions fulfilling none of the goals are preferred over solutions
fulfilling only some of the goals has been proposed in [58]. This, again, drives
the search beyond the reference point if it is feasible, but it can obviously lead
to situations where a solution which is dominated (fulfilling none of the goals) is
actually preferred over the solution that dominates it (fulfilling some of the goals).
More interesting in this paper is perhaps the way of interaction with the user. While
the DM is not satisfied, in each round he/she can either set a completely new
reference point, or select one of the evolved solutions and the new reference point is
automatically determined as a linear combination of the old reference point and the
selected solution. The representative set of non-dominated solutions shown to the
user are the extreme solutions in each objective plus some representative solutions
resulting from a clustering procedure.

Another modification of dominance based on a reference point is the
r-dominance proposed by Said et al. [63]. Similar to [28, 30], the Euclidean
distance to the reference point is taken into account as criterion in addition to
the normal dominance. But rather than modifying the crowding distance calculation
as in [28], the dominance relation is modified. Consider a pair of solutions x and
y incomparable in the sense of Pareto dominance. Let d.x; y/ define the Euclidean
distance between two solutions x and y, and dmax and dmin be the maximum and
minimum distance of any solution in the population to the reference point g. If the
normalized difference between their distances to the reference point, d.y;g/�d.x;g/

dmax�dmin
,

is larger than some threshold ı, then the solution x closer to the reference point is
said to r-dominate the solution y further away. The idea is integrated into NSGA-II
simply by using r-dominance instead of the normal Pareto dominance in the non-
dominated ranking procedure. The parameter ı allows the DM to influence the
spread of the solutions along the Pareto frontier, with smaller ı generally leading
to a smaller area covered. The authors note that focusing the search towards a
reference point may lead to a loss of diversity and premature convergence. Said
et al. [63] thus propose to linearly decrease ı over the run. An empirical comparison
with g-dominance [58], R-NSGA-II [28] and PBEA [66] shows that r-dominance
converges better and/or allows a better influence on the spread of solutions obtained.
As many others, the approach allows the simultaneous consideration of multiple
reference points.
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Yet another modification of the dominance relation is proposed by Jaimes
et al. [47], where the normal Pareto dominance is used if the two solutions to
be compared are close to the reference point (in terms of the notation above,
d.x; g/ < .dmin C ı/ ^ d.y; g/ < .dmin C ı/). If one of the two solutions has
a larger distance to the reference point, they are simply compared based on their
distance to the reference point, with shorter distance preferred. As [63], [47] makes
the observation that a very strong focus on the preference information (small ı) may
lead to premature convergence.

Thiele et al. [66] integrate reference point information into the Indicator-Based
Evolutionary Algorithm. It relies on the 	-indicator that measures the minimal
distance by which an individual needs to be improved in each objective to become
non-dominated (or can be worsened before it becomes dominated). This indicator is
weighted by means of an achievement scalarizing function based on a user specified
reference point, giving solutions closer to the reference point a higher weight. This
idea is somewhat related to the use of weight distributions in the objective space
discussed in Sect. 23.4.5. The paper demonstrates that this allows to focus the search
on the area around the specified reference point, and find interesting solutions faster.

The classical MCDM literature also includes some approaches where, in addition
to a reference point, some further indicators are used to generate a set of alternative
solutions. These include the reference direction method [56] and light beam
search [48]. Recently, these methods have also been adopted into MOEAs.

In brief, the reference direction method allows the user to specify a starting point
and a reference point, with the difference of the two defining the reference direction.
Then, several points on this vector are used to define a set of achievement scalarizing
functions, and each of these is used to search for a point on the Pareto optimal
frontier. In [26], an MOEA is used to search for all these points simultaneously.
For this purpose, the NSGA-II ranking mechanism has been modified to focus the
search accordingly.

The light beam search also uses a reference direction, and additionally asks the
user for some thresholds which are then used so find some possibly interesting
neighboring solutions around the (according to the reference direction) most
preferred solution. Deb and Kumar [27] use an MOEA to simultaneously search for
a number of solutions in the neighborhood of the solution defined by the reference
direction. This is achieved by first identifying the “most preferred” or “middle”
solution using an achievement scalarizing function based on the reference point.
Then, a modified crowding distance calculation is used to focus the search on
those solutions which are not worse by more than the allowed threshold in all the
objectives.

Summarizing, the first approach proposed in [38] still seems to be a good way
to include reference point information. While in most approaches the part of the
Pareto optimal front considered as relevant depends on the reference point and
the shape and location of the Pareto optimal front, in [28] the desired spread of
solutions in the vicinity of the Pareto optimal solution closest to the reference point
is specified explicitly. A number of approaches such as [28, 63, 65] allow to consider
several reference points simultaneously. In [63], the focus on the reference point is
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gradually increased over the run in order to maintain diversity and avoid getting
stuck in local optima. The MOEAs based on the reference direction and light beam
search [26, 27] allow the user to specify additional information that influences the
focus of the search and the set of solutions returned.

23.4.4 Limiting Possible Trade-Offs

If the user has no idea about what kind of solutions may be reachable, it may be
easier to specify suitable trade-offs, i.e., how much gain in one objective is necessary
to balance the loss in the other.

In the guided MOEA proposed by Branke et al. [7], the user is allowed to
specify preferences in the form of maximally acceptable trade-offs like “one unit
improvement in objective i is worth at most aji units in objective j”. The basic idea
is to modify the dominance criterion accordingly, so that it reflects the specified
maximally acceptable trade-offs. A solution x is now preferred to a non-dominated
solution y if the gain in the objective where y is better does not outweigh the loss in
the other objective, see Fig. 23.6 for an example. The region dominated by a solution
is adjusted by changing the slope of the boundaries according to the specified
maximal and minimal trade-offs. In this example, solution A is now dominated by
solution B, because the loss in objective 2 is too big to justify the improvement in
objective 1. On the other hand, solutions D and C are still mutually non-dominated.

Fig. 23.6 Effect of the
modified dominance scheme
used by G-MOEA
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This idea can be implemented by a simple transformation of the objectives: It is
sufficient to replace the original objectives with two auxiliary objectives�1 and�2

and use these together with the standard dominance principle, where

�1.x/ D f1.x/C a12f2.x/

�2.x/ D a21f1.x/C f2.x/

Because the transformation is so simple, the guided dominance scheme can
be easily incorporated into standard MOEAs based on dominance, and it does
not change the complexity nor the inner workings of the algorithm. However, an
extension of this simple idea to more than two dimensions is not straightforward.

A very similar effect to the above guided MOEA is achieved in [44], where
maximal and minimal trade-offs are not elicited explicitly, but derived from pairwise
comparisons of solutions. This approach leads to identical dominance regions, but
requires the solution of up to two linear programs whenever the dominance relation
between two solutions is determined. On the other hand, it naturally extends to many
dimensions. Because it uses a different way to elicit user preferences, it will be
discussed in more detail in Sect. 23.4.8.

Another approach trying to restrict the possible trade-offs by using a different
notion of Pareto dominance (“proper” Pareto dominance in this case), has been
proposed in [12].

The idea proposed by Yin and Sendhoff [52] is to aggregate the different
objectives into one objective via weighted summation, but to vary the weights
gradually over time during the optimization. For two objectives, it is suggested
to set w1.t/ D j sin.2t=F/j and w2.t/ D 1 � w1.t/, where t is the generation
counter and F is a parameter to influence the oscillation period. The range of
weights used in this process can be easily restricted to reflect the preferences of
the DM by specifying a maximal and minimal weight wmax

1 and wmin
1 , setting

w1.t/ D wmin
1 C.wmax

1 �wmin
1 / �.sin.2t=F/C1/=2 and adjusting w2 accordingly.

The effect is a population moving along the Pareto front, covering the part of the
front which is optimal with respect to the range of possible weight values. Because
the population will not converge but keep oscillating along the front, it is necessary
to collect all non-dominated solutions found in an external archive. Note also the
slight difference in effect to restricting the maximal and minimal trade-off as do the
other approaches in this section. While the other approaches enforce these trade-offs
locally, on a one-to-one comparison, the dynamic weighting modifies the global
fitness function. Therefore, the approach runs into problems if the Pareto front is
concave, because a small weight change would require the population to make a big
“jump”.
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23.4.5 Weighting the Objective Space

Zitzler et al. [76] allow the DM to define a weight distribution over the objective
space, giving a higher weight to more preferred regions. This information can then
be incorporated in the MOEA by biasing selection towards individuals in areas of
the objective space which have been assigned a higher weight. In [76], Zitzler et al.
integrate this sort of information into the indicator-based EAs (cf. Sect. 23.2.2), with
the aim to find a set of solutions that optimize the weighted hypervolume. Friedrich
et al. [41] integrates the weight distribution into other MOEAs such as NSGA-II by
modifying the crowding distance and SPEA-2.

The challenge is probably to facilitate the specification of a weighting of the
entire objective space. While this may be relatively simple in 2D, it seems not clear
whether a DM can specify such a weighting easily in more than two dimensions. In
[76], three different weighting schemes are proposed that could serve as prototypes:
a weight distribution which favors extremal solutions, a weight distribution which
favors one objective over the other (but still keeping the best solution with respect to
the less important objective), and a weight distribution based on a reference point,
which generates a ridge-like function through the reference point parallel to the
diagonal. A way to derive a weighting function based on a reference front and a
desired density of solutions on that front has been proposed in [2]. Auger et al. [1]
look into efficient sampling techniques to estimate the weighted hypervolume.

23.4.6 Specifying a Distribution over Utility Functions

Branke et al. [8] use the “expected utility” as indicator in an indicator-based EA
(cf. Sect. 23.2.2), i.e., a solution is evaluated by the expected loss in utility if this
solution would be absent from the population. To calculate the expected utility, it
is assumed that the DM has a linear utility function of the form u.x/ D �f1.x/ C
.1 � �/f2.x/, and � is unknown but follows a uniform distribution over Œ0; 1�. The
expected marginal utility (EMU) of a solution x is then the utility difference between
the best and second best solution, integrated over all utility functions where solution
x is best:

EMU.x/ D
Z 1

�D0
maxf0;min

y
fu.y/� u.x/ggd� (23.4)

While the expected marginal utility can be calculated exactly in the case of two
objectives, numerical integration is required for more objectives. Without preference
information, the result of using this indicator is a natural focus of the search on
so-called “knees”, i.e., convex regions with strong curvature. In these regions,
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Fig. 23.7 Marginal
contribution calculated
according to expected utility
result in a concentration of
the individuals in knee areas

Fig. 23.8 Resulting
distribution of individuals
with the marginal expected
utility approach and a linearly
decreasing probability
distribution for �
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an improvement in either objectives requires a significant worsening of the other
objective, and such solutions are often preferred by DMs [20]. An example of
the resulting distribution of individuals along a Pareto front with a single knee is
shown in Fig. 23.7. Additional explicit user preferences can be taken into account
by allowing the user to specify the probability distribution for � [5], an example for
the resulting biased front is provided in Fig. 23.8. Obviously, any distribution over
any space of utility functions could be considered with this approach.
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23.4.7 Approaches Based on Outranking Relations

The method by Cvetkovic and Parmee [19] assigns each criterion a weight wi, and
additionally requires a minimum level for dominance � , which corresponds to the
concordance criterion of the ELECTRE method [36]. Accordingly, the following
weighted dominance criterion is used as dominance relation in the MOEA.

x 
w y,
X

iWfi.x/�fi.y/

wi 	 �:

To facilitate specification of the required weights, they suggest a method to turn
fuzzy preferences into specific quantitative weights. However, since for every
criterion the dominance scheme only considers whether one solution is better than
another solution, and not by how much it is better, this approach allows only a very
coarse guidance and is difficult to control.

Rekiek et al. [62], Coelho et al. [18], and Parreiras et al. [59] use preference
flow according to PROMETHEE II [11] to rank solutions. NOSGA, proposed in
[34] and further developed as NOSGA-II in [35], uses a similar mechanism to the
non-dominance sorting in NSGA-II, but rather than identifying the non-dominated
solutions in each step, it places all the solutions that are not strictly outranked into
the same rank. Among the solutions with the same rank, for each solution i, the
number Wi of solutions weakly outranking i and the number Fi of solutions with a
better preference flow than i are determined, and solutions with a low sum Wi C Fi

are preferred.
The challenge with all methods based on outranking is to set appropriate

parameters. MCDA techniques such as ELECTRE [36] and PROMETHEE [11] may
help set those values.

23.4.8 Approaches Based on Solution Comparison

Perhaps the easiest form of providing preference information is to specify which
of two solutions would be preferable. In this case, the DM can compare all aspects
of the two solutions and make a holistic judgement. Of course, the number of such
comparisons a DM can make is limited, while optimization usually needs to rank
very many solutions. Thus, such information is only useful if it can somehow be
generalized to compare solutions other than the ones for which the DM provided
explicit preference information. The approaches in this subsection all ask the DM
to rank solutions. Sometimes this means comparing just two solutions, sometimes
more. Sometimes a full ranking is required, sometimes only the best or worst
solution have to be identified. The way this information is used differs quite
substantially. This section is structured according to the underlying algorithmic
principle, whether it calculates a most representative value function, works with
a set of compatible value functions, or is based on some other principle.
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23.4.8.1 Determining a Representative Value Function

The approaches in this subsection use the elicited preference information to derive
a single value function to approximate user preferences. Value functions can
have different complexity, ranging from simple linear functions to non-parametric
approaches such as artificial neural networks or support vector machines. Most
approaches simply use the derived value function for ranking individuals, sometimes
as secondary criterion after non-dominance, but other uses can also be found.

Phelps and Köksalan [60] proposed an interactive evolutionary algorithm that
periodically asks the DM to rank pairs of solutions. Assuming linear value functions
(actually, the objectives are modified before the optimization to the squared distance
to a reference value, which effectively results in ellipsoidal iso-utility curves), these
preferences are turned into constraints for possible weights. For example, if solution
x is preferred over y, it is clear that

nX

kD1
wk.fk.x/� fk.y// < 0: (23.5)

The method determines the most discriminative weight vector compatible with
the preference information. Most discriminative here means the weight vector that
maximizes the minimum value difference over all pairs of solutions ranked by
the DM.

Denote with A the set that contains all the pairs of solutions .a;b/ which have
been ranked by the DM as a is preferred over b. Then, the following linear program
(LP) identifies the most discriminative value function.

max 	

s.t.
nX

kD1
wk.fk.y/� fk.x// > 	 8.x; y/ 2 A (23.6)

nX

kD1
wk D 1; wk 	 0:

The resulting weight vector is then used for ranking individuals in the evolution-
ary algorithm that works as a single objective evolutionary algorithm between user
interactions. If the LP is overconstrained and no feasible solution is found, the oldest
preference information is discarded.

A very similar idea is used in [3], but instead of an LP, a second evolutionary
algorithm is used to determine a compatible linear value function. The two EAs
are run in alternating fashion: first, both populations (solutions and weights) are
initialized, then the DM is asked to rank the solutions. After that, the population
of weights is evolved for some generations to produce a weighting which is most
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compatible with the user ranking. Then, this weighting is used to evolve the
solutions for some generations, and the process repeats.

Deb et al. [31] derive a polynomial value function model. The user is shown a
set of (five in the paper) solutions and asked to (at least partially) rank them. Then,
similar to the approach by Phelps and Köksalan [60], the most discriminative value
function is determined. However, where [60] uses a linear value function model [31]
uses a polynomial value function model of the form

V.x/ D
nY

iD1
Si.x/ D

nY

iD1

0

@
nX

jD1
Œkijfj.x/C ki.nC1/�

1

A ; (23.7)

with n being the number of objectives and kij the parameters that need to be chosen
appropriately. Fitting the value function model to the specified preferences involves
solving the following optimization problem (assuming maximization of objectives):

max 	

s:t: S.x/ 	 0 8x (23.8)

V.x/� V.y/ 	 	 8.x; y/ 2 A (23.9)

kij 	 0 (23.10)

where A is again the set that contains all the pairs of solutions .a;b/ which have
been ranked by the DM as a is preferred over b. Inequalities (23.8) and (23.10)
aim to ensure the value function is monotonically increasing, Inequality (23.9)
ensures compatibility with preference information. With a slight modification,
also equivalence relationships could be modeled. Note that the above is a non-
linear optimization problem, and the authors propose to use sequential quadratic
programming to solve it.

Once a most discriminative value function has been identified, this information
is used in the MOEA’s ranking of individuals. Basically, the objective space is
separated into two areas: All individuals with an estimated value (according to the
approximated value function) better than the solution ranked second by the DM
are assumed to dominate all the solutions with an estimated value worse than the
solution ranked second. This is visualized in Fig. 23.9. If B was the solution ranked
second in the last interaction with the DM and the curve represents the iso-utility
line of all solutions with equivalent value according to the most discriminative value
function, then all solutions above this curve are assumed to dominate all solutions
below this curve. If both solutions lie either above or below the curve, they are
compared based on the usual Pareto dominance.

The authors additionally use the approximated value function to perform a local
single-objective optimization starting with the solution ranked best by the DM. If
this local improvement step is not able to improve the solution’s value by at least
a certain margin, it is concluded that the algorithm has found the most preferred
solution and the optimization is stopped.
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Fig. 23.9 Example for dominated region in the approach from [31]. Maximization of objectives
is assumed. The curve represents all solutions equivalent to B according to the approximated
value function. All solutions with an estimated value better than B (above the curve) dominate
all solutions with an estimated value worse than B (below the curve). The grey areas indicate the
areas dominated by solutions A and C, respectively

Todd and Sen [67] use artificial neural networks to represent the DM’s value
function. Periodically, they present the DM with a set of solutions and ask for a
score between 0 and 1. The set of solutions is chosen such that they represent a
broad variety regarding the approximated value function, in particular, the estimated
best and worst individual of the population are always included. Information from
several user interactions is accumulated after normalizing preference scores.

Another model that allows to represent complex value functions are support
vector machines (SVM). SVMs have the additional advantage of being able to
trade-off model accuracy and model complexity. Battiti and Passerini [4] use SVMs
in the setting of an interactive MOEA, more specifically NSGA-II. Periodically, the
DM is presented with a set of solutions and asked to (at least partially) rank them.
This information is then used to train the SVM, with cross-validation employed to
select an appropriate kernel. The derived approximate value function is then used
to replace the crowding distance in NSGA-II by sorting individuals in the same
non-dominance rank based on their value according to the learned value function.

The solutions shown to the DM during interaction are the best according to the
approximated value function, or randomly selected non-dominated solutions in
the first step. The paper examines the influence of the number of solutions shown to
the DM (assuming full ranking) and the number of interactions with the DM. The
results suggest that a relatively large number of solutions need to be ranked for the
SVM to learn a useful value function (around 10–20), but only two interactions with
the DM seem sufficient to come very close to results that would have been obtained
had the DM’s true value function been known from the beginning. The authors
recommend to not start interaction until the MOEA has found a reasonable coverage
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of the entire Pareto frontier, which somewhat defeats the purpose of narrowing
down the search early on. In [14], the approach’s robustness to incorrect (noisy)
DM preferences is examined and it is shown that the algorithm can cope well with
noise, in particular if the number of solutions ranked by the DM is large.

23.4.8.2 Determining a Set of Compatible Value Functions

Rather than deriving a single value function, Jaszkiewicz [50] notes that there may
be several value function compatible with the specified user preferences and samples
the preference function used in each generation from the set of preference functions
(in this case linear weightings are assumed). The proposed approach is based on
the Pareto memetic algorithm (PMA) [49] and uses the value function also for local
search. In the interactive version, preference information from pairwise comparisons
of solutions is used to reduce the set of possible weight vectors.

Greenwood et al. [44] suggested an imprecise value function approach which
considers all compatible linear value functions simultaneously. The procedure
asks the user to rank a few alternatives, and from this derives constraints for the
weightings of the objectives consistent with the given ordering. Then, these are used
to check whether there is a feasible linear weighting such that solution x would be
preferred to solution y.

Let A denote the set of all pairs of solutions .x; y/ ranked by the DM, and x
preferred to y. Then, to compare any two solutions u and v, simultaneously all
linearly weighted additive utility functions are considered which are consistent with
the ordering on the initially ranked solutions. A preference of u over v is inferred
if u is preferred to v for all such utility functions. A linear program (LP) is used to
search for a utility function where u is not preferred to v.

min Z D
nX

kD1
wk.fk.u/ � fk.v// (23.11)

nX

kD1
wk.fk.x/� fk.y// < 0 8.x; y/ 2 A (23.12)

nX

kD1
wk D 1; wk 	 0:

If the LP returns a solution value Z > 0, it can be concluded that there is no linear
combination of objectives consistent with inequality (23.12) such that u would be
preferable, and therefore v is preferred over u independent of the weight vector.
If the LP can find a linear combination with Z < 0, it only means that v is not
necessarily preferred to u. To test whether u is preferred to v, one has to solve
another LP and fail to find a linear combination of objectives such that v would be
preferable. Overall, the method requires to solve 1 or 2 LPs for each pair of solutions
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in the population. Also, it needs special mechanisms to make sure that the allowed
weight space does not become empty, i.e., that the user ranking is consistent with at
least one possible linear weight assignment. The authors suggest to use a mechanism
from [70] which removes a minimal set of the DM’s preference statements to make
the weight space non-empty.

Although developed independently and with a different motivation, the guided
MOEA discussed in Sect. 23.4.4 leads to the same preference relation as the impre-
cise value function approach above. The differences are in the way the maximally
acceptable trade-offs are derived (specified directly by the DM in the guided MOEA,
and inferred from a ranking of solutions in [44]), and in the different implementation
(a simple transformation of objectives in guided MOEA, and the solving of
many LPs in the imprecise value function approach). While the guided MOEA is
more elegant and computationally efficient for two objectives, the imprecise value
function approach works independent of the number of objectives.

In [57], the value function model is only implicit. Under the assumption of quasi-
concave value functions, specified preferences between solutions can be generalized
to preference cones [57]. For a simple 2D example, see Fig. 23.10. If the DM
specified that solutions B and C are both preferable over A, it can be concluded
that all solutions in the cone’s polyhedron (light grey area, i.e., solutions B;C;F)
would be preferred over the vertex of the cone (solution A) which in turn would
be preferred over all solutions under the cone (dark grey area, solution D). Thus,
of the 10 possible pairwise relationships between the 5 solutions, the information
about 2 pairwise relationships in this example allowed to derive another five (A 
 D;
B 
 D;C 
 D;F 
 D;F 
 A). Identifying a solution’s location relative to the cone
requires solving two linear programming problems.
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Fig. 23.10 Visualization of the preference cone in 2D, assuming quasi concave utility function
and maximization of objectives



23 MCDA and Multiobjective Evolutionary Algorithms 1001

This idea is used by Fowler et al. [40] to partially rank the non-dominated
solutions in an MOEA. The DM is asked to consider a set of six solutions and
specify the best and worst. From this information, six preference cones are derived
(five 2-point cones involving the best and any of the other solutions, and one
6-point preference cone specifying that five solutions are better than the worst).
All generated cones are kept throughout the optimization run, even if the solutions
defining the cone are deleted from the population. The solutions shown to the DM
are selected from the set of non-dominated solutions that can not already be ranked
with the existing cones.

Another approach that uses the entire set of compatible linear utility functions
is the one based on expected marginal utility [8]. But since it asks the user for a
probability distribution over weights rather than deriving the compatible weights
from pairwise comparisons, it is described in Sect. 23.4.6.

Branke et al. [9, 10] proposed a framework called NEMO (Necessary preference
enhanced Evolutionary Multiobjective Optimizer). It also uses pairwise compar-
isons of solutions to learn user preferences. Similar to the imprecise value function
approach by Greenwood et al. [44], it simultaneously considers the set of all value
functions compatible with the elicited preference information. But rather than being
restricted to linear value functions, it allows for piecewise-linear [10] or general
monotonic additive [9, 10] value functions. This is possible because it is based on
robust ordinal regression [43], a method that has recently been introduced into multi-
criteria ranking [37]. It can take into account a preference ranking of solutions, such
as “x is preferred over y”, but also intensities of preferences, such as “x is preferred
over y more than w over z”.

A solution x is necessarily preferred over solution y, if it is preferred according
to all value functions compatible with the elicited preference information. As in
[44], whether one solution is necessarily preferred over another can be detected
by solving two linear programs. The main difference is that the variables are not
weights, but values of characteristic points of marginal value functions. NEMO
replaces the use of the dominance relation in the non-dominance sorting step of
NSGA-II by the necessary preference relation. Additionally, it computes a most
representative utility function that it uses for scaling in the crowding distance
calculation. Note that when no preference information is provided, NEMO reduces
to the standard NSGA-II.

23.4.8.3 Other Algorithmic Principles

Karahan and Köksalan [54] propose the Territory Defining Evolutionary Algorithm
(TDEA), where new individuals are only allowed to enter the archive or survive,
if they do not fall into the “territory” of already existing solutions. The territory
is an incomparable region around an individual defined by the maximum absolute
distance over all objectives, see Fig. 23.11. The territory mechanism replaces other
crowding or diversity preservation mechanisms in MOEA. By choosing � small
in regions of high relevance for the DM, the MOEA will keep and subsequently
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Fig. 23.11 Solutions (black points) and territories (squares) with different sizes as used in [54].
Regions with smaller territories will maintain a higher density of solutions

also generate more Pareto-optimal solutions in those regions. The mechanism thus
effectively biases the distribution of solutions along the Pareto front. In [55],
an interactive preference elicitation based on TDEA is proposed. The approach
iteratively narrows down a “preferred region”, defined as a range of weight vectors
for calculating the Tchebycheff distance to an ideal point. It starts with a pre-
specified territory size �0 and considers the entire weight range as equally preferred.
Then, in each iteration, the user is asked to identify the most preferred solution from
a representative sample of solutions found so far. The weight vector minimizing the
Tchebycheff distance of this solution to the ideal point is then taken as the center
of the new preferred weight range, the interval width and � used in this interval are
decreased exponentially over time. As a result, the resolution becomes increasingly
fine-grained in the areas around solutions identified as most interesting by the DM.
The method assumes knowledge of the ideal point, it is not clear how sensitive the
method is to imprecise knowledge of the ideal point.

Gong et al. [42] also ask the DM to identify the best out of a representative
set of non-dominated solutions (they use 10 candidate solutions in their paper).
This information is then integrated into MOEA/D. Recall that MOEA/D works
by simultaneously solving a diverse set of single-objective problems with different
weight vectors (cf. Sect. 23.2.3). Once the user has specified their most preferred
solution, a region of interest is defined around this solution, and some weight vectors
outside that region are re-positioned inside the region of interest. That way, the
search increasingly focuses around the solutions preferred by the DM.
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23.5 Summary and Open Research Questions

If a single solution is to be selected in a multi-objective optimization problem, at
some point during the process, the DM has to reveal his/her preferences. Specifying
these preferences a priori, i.e., before alternatives are known, often means to ask too
much of the DM. On the other hand, searching for all non-dominated solutions, as
most MOEA do, may result in a waste of optimization efforts to find solutions that
are clearly unacceptable to the DM.

This chapter overviewed intermediate approaches, that ask for partial preference
information from the DM a priori or interactively, and then focus the search to those
regions of the Pareto optimal front that seem most interesting to the DM. That way,
it is possible to provide a larger number of relevant solutions more quickly.

Table 23.1 summarizes some aspects of some of the most prominent approaches.
It lists the information required from the DM (Information), the part of the MOEA
modified (Modification), and whether the result is a bounded region of the Pareto

Table 23.1 Comparison of some selected approaches to incorporate partial user preferences

Name Information Modification Influence

Constraints [16] Constraint Miscellaneous Region

Preference-based EA [66] Reference point Quality indicator Distribution

Preference relation [38] Reference point Dominance Region

Reference point based
EMO [30]

Reference point Crowding dist. Region

r-Dominance [63] Reference point,
threshold

Dominance Region

Light beam search based
EMO, [27]

Reference direction
thresholds

Crowding dist. Region

Guided MOEA [7] Maximal/minimal
trade-off

Objectives Region

Weighted integration [76] Weighting of objective
space

Quality indicator Distribution

Marginal expected
utility [8]

Value fct. probability
distribution

Crowding dist. Distribution

Desirability Functions [69] Scaling function Objectives Distribution

Biased crowding [6] Desired trade-off Crowding dist. Distribution

Territory defining EA [54] Convergence Schedule Replacement Distribution

Interactive MOEA/D [42] Best of set Weight vectors Distribution

Cone dominance [40] Best and worst from
set

Dominance Region

Imprecise value function
[44]

Pairwise comparisons Dominance Region

NEMO [10] Pairwise comparisons Dominance and
crowding distance

Region and
distribution

Progressively interactive
EMO [31]

Ranking of set Dominance Region

Brain-computer EMO [4] Ranking of set Crowding distance Distribution
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optimal front or a biased distribution (Influence). What method is most appropriate
certainly depends on the application (e.g., whether the Pareto front is convex or
concave, or whether the DM has a good conception of what is reachable) and on the
kind of information the DM feels comfortable to provide.

Integrating preference information with MOEAs is still a relatively young
research area with ample opportunities for future work. Many of the ideas can
be combined, allowing the DM to provide preference information in different
ways. For example, it would be straightforward to combine a reference point based
approach which leads to sharp boundaries of the area in objective space considered
as interesting with a marginal contribution approach which alters the distribution
within this area. As a first step in this direction, Deb and Chaudhuri [25] proposed an
interactive decision support system called I-MODE that implements an interactive
procedure built over a number of existing EMO and classical decision making
methods. The main idea of the procedure is to allow the DM to interactively focus
on interesting region(s) of the Pareto front. The DM has options to use several tools
for generation of potentially Pareto optimal solutions concentrated in the desired
regions. For example, he/she may use weighted sum approach, utility function based
approach, Tchebycheff function approach or trade-off information. Note that the
preference information may be used to define a number of interesting regions. For
example, the DM may define a number of reference (aspiration) points defining
different regions. The preference information is then used by an EMO to generate
new solutions in (hopefully) interesting regions.

A big obstacle for progress is the current lack of comparative studies. The
problem of course is that when DMs are involved, a comparison is much more
difficult than if it were a fully automated system. What is needed is an automated
DM that behaves similar to a human DM, which would allow reproducible and very
extensive empirical comparisons.

The handling of noise, be it noisy objective evaluations or noisy preference
information, is another topic that requires more attention. Hughes [46] is an early
paper specifically addressing noisy objective function values. The main idea to cope
with the noise is to rank individuals by the sum of probabilities of being dominated
by any other individual. To take preferences into account, the paper proposes a kind
of weighting of the domination probabilities.

Finally, while almost all approaches surveyed in this chapter assume a single DM,
the interaction with groups of DMs would be another worthwhile research direction.
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Chapter 24
Multicriteria Decision Aid/Analysis in Finance

Jaap Spronk, Ralph E. Steuer, and Constantin Zopounidis

Abstract Over the past decades the complexity of financial decisions has increased
rapidly, thus highlighting the importance of developing and implementing sophis-
ticated and efficient quantitative analysis techniques for supporting and aiding
financial decision making. Multicriteria decision aid (MCDA), an advanced branch
of operations research, provides financial decision makers and analysts with a
wide range of methodologies well-suited for the complexity of modern financial
decision making. The aim of this chapter is to provide an in-depth presentation of
the contributions of MCDA in finance focusing on the methods used, applications,
computation, and directions for future research.

Keywords Multicriteria decision aid • Finance • Portfolio theory • Multiple
criteria optimization • Outranking relations • Preference disaggregation analysis

24.1 Introduction

Over the past decades, the globalization of financial markets, the intensification of
competition among organizations, and the rapid social and technological changes
that have taken place have only led to increasing uncertainty and instability in
the business and financial environment. Within this more recent context, both the
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importance of financial decision making and the complexity of the process by which
financial decision making is carried out have increased. This is clearly evident by
the variety and volume of new financial products and services that have appeared on
the scene.

In this new era of financial reality, researchers and practitioners acknowledge
the requirement to address financial decision-making problems through integrated
and realistic approaches utilizing sophisticated analytical techniques. In this way,
the connections between financial theory, the tools of operations research, and
mathematical modelling have become more entwined. Techniques from the fields of
optimization, forecasting, decision support systems, MCDA, fuzzy logic, stochastic
processes, simulation, etc. are now commonly considered valuable tools for finan-
cial decision making.

The use of mathematics and operations research in finance got its start in the
1950s with the introduction of Markowitz’s portfolio theory [131, 133]. Since
then, in addition to portfolio selection and management, operations research has
contributed to financial decision making problems in other areas including venture
capital investments, bankruptcy prediction, financial planning, corporate mergers
and acquisitions, country risk assessment, etc. These contributions are not limited
to academic research; they are now often found in daily practice.

Within the field of operations research, MCDA has evolved over the last three
decades into one of its pillar disciplines. The development of MCDA is based
upon the common finding that a sole objective, goal, criterion, or point of view
is rarely used to make real-world decisions. In response, MCDA is devoted to
the development of appropriate methodologies to support and aid decision makers
across ranges of situations in which multiple conflicting decision factors (objectives,
goals, criteria, etc.) are to be considered simultaneously.

The methodological framework of MCDA is well-suited to the growing com-
plexities encountered in financial decision making. While there have been in finance
MCDA stirrings going back 20–30 years, the topic of MCDA, as can be seen from
the bulk of the references, really hasn’t come into its own until recently (see [215]
for a recent survey of the literature). As for early stirrings, we have, for example,
Bhaskar [22] in which microeconomic theory was criticized for largely pursuing
a single criterion approach arguing that things like profit maximization are too
naive to meet the evolving decision-making demands in many financial areas. Also,
in another paper [23], the unavoidable presence of multiple objectives in capital
budgeting was noted and the necessity for developing ways to deal with the unique
challenges posed by multiple criteria was stressed. It is upon what has taken place
since these early roots, and on what are today promising directions in MCDA in
finance, that this contribution is focused.

Such observations and findings have motivated researchers to explore the poten-
tials of MCDA in addressing financial decision-making problems. The objective of
this chapter is to provide a state-of-the-art comprehensive review of the research
made up to date on this issue. Section 24.2 presents discussions to justify the
presence of MCDA in financial decision making. Section 24.3, focuses on MCDA
in resource allocation problems (continuous problems) as in the field of portfolio
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management. Section 24.4, presents the contribution of MCDA methodologies
in supporting financial decisions that require the evaluation of a discrete set of
alternatives (firms, countries, stocks, investment projects, etc.). Finally, Sect. 24.5
concludes the chapter and discusses possible future research directions on the
implementation of multicriteria analysis in financial institutions and firms.

24.2 Financial Decision Making

Financial-economic decision problems come in great variety. Individuals are
involved in decisions concerning their future pensions, the financing of their homes,
and investments in mutual funds. Firms, financial institutions, and advisors are
involved in cross-country mergers, complicated swap contracts, and mortgage-
backed securities, to name just a few.

Despite the variety, such decisions have much in common. Maybe “money”
comes first to mind, but there are typically other factors that suggest that financial-
economic problems should most appropriately be treated as multiple criteria
decision problems in general: multiple actors, multiple policy constraints, and
multiple sources of risk (see e.g., Spronk and Hallerbach [177], and Hallerbach and
Spronk [79, 80], Martel and Zopounidis [134], Zopounidis [202], and Steuer and
Na [182]).

Two other common elements in financial decisions are that their outcomes are
distributed over time and uncertainty, and thus involve risk. A further factor is
that most decisions are made consciously, with a clear and constant drive to make
“good”, “better” or even “optimal” decisions. In this drive to improve on financial
decisions, we stumble across an area of tension between decision making in practice
on the one hand and the potential contributions of finance theory and decision tools
on the other. Although the bulk of financial theory is of a descriptive nature, thus
focusing on the “average” or “representative” decision maker, we observe a large
willingness to apply financial theory in actual decision-making. At the same time,
knowledge about decision tools that can be applied in a specific decision situation, is
limited. Clearly, there is need of a framework that can provide guidance in applying
financial theory, decision tools, and common sense to solving financial problems.

24.2.1 Issues, Concepts, and Principles

Finance is a sub field of economics distinguished by both its focus and its methodology.
The primary focus of finance is the workings of the capital markets and the supply and
the pricing of capital assets. The methodology of finance is the use of close substitutes to
price financial contracts and instruments. This methodology is applied to value instruments
whose characteristics extend across time and whose payoffs depend upon the resolution of
uncertainty. (Ross [158], p. 1)
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The field of finance is concerned with decisions with respect to the efficient
allocation of scarce capital resources over competing alternatives. The allocation
is efficient when the alternative with the highest value is chosen. Current value is
viewed as the (present) value of claims on future cash flows. Hence we can say that
financial decisions involve the valuation of future, and hence uncertain or “risky,”
cash flow streams. Cash flow stream X is valued by comparing it with cash flow
streams {A,. . . ,Z} that are traded on financial markets. When a traded cash flow
stream Y has been identified that is a substitute for X, then their values must be
the same. After all, when introducing X to the market, it cannot be distinguished
value-wise from Y. Accepting the efficient market hypothesis (stipulating that all
available information is fully and immediately incorporated in market prices), the
market price of Y equals the value of Y, and hence the value of X. This explains the
crucial role of financial markets.

The valuation of future cash flow streams is a key issue in finance. The process of
valuation must be preceded by evaluation: without analyzing the characteristics of a
cash flow stream, no potential substitute can be identified. Since it is uncertain what
the future will bring, the analysis of the risk characteristics will be predominant.
Moreover, as time passes, the current value must be protected against influences
that may erode its value. This in turn implies the need for risk management. There
are basically three areas of financial decisions:

1. Capital budgeting: to what portfolio of real investment projects should a firm
commit its capital? The central issues here are how to evaluate investment
opportunities, how to distinguish profitable from non-profitable projects and how
to choose between competing projects.

2. Corporate financing: this encompasses the capital structure policy and dividend
policy and addresses questions as: how should the firm finance its activities?
What securities should the firm issue or what financial contracts should the firm
engage in? What part of the firm’s earnings should be paid as cash dividends and
what part reinvested in the firm? How should the firm’s solvency and liquidity
be maintained?

3. Financial investment: this is the mirror image of the previous decision area and
involves choosing a portfolio of financial securities with the objective to change
the consumption pattern over time.

In each of these decision areas the financial key issues of valuation, risk analysis
and risk management, and performance evaluation can be recognized, and from the
above several financial concepts emerge: financial markets, efficient allocation and
market value. In approaching the financial decision areas, some financial principles
or maxims are formulated. The first is self-interested behavior: economic subjects
are driven by non-satiation (“greed”). This ensures the goal of value maximization.
Prices are based on financial markets, and under the efficient market hypothesis,
prices of securities coincide with their value. Value has time and risk dimensions.
With regard to the former, time preference is assumed (a dollar today is preferred
to a dollar tomorrow). With respect to the latter, risk aversion is assumed (a safe
dollar is preferred to a risky dollar). Overall risk may be reduced by diversification:
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combining risky assets or cash flow streams may be beneficial. In one way or
another, the trade-off between expected return and risk that is imposed by market
participants on the evaluation of risky ventures will translate into a risk-return trade-
off that is offered by investment opportunities in the market.

Since value has time and risk aspects, the question arises about what mechanisms
can be invoked to incorporate these dimensions in the valuation process. There
are basically two mechanisms. The first is the arbitrage mechanism. Value is
derived from the presumption that there do not exist arbitrage opportunities. This
no-arbitrage condition excludes sure profits at no cost and implies that perfect
substitutes have the same value. This is the law of one price, one of the very few laws
in financial economics. It is a strong mechanism, requiring very few assumptions
on market subjects, only non-satiation. Examples of valuation models built on no-
arbitrage are the Arbitrage Pricing Theory for primary financial assets and the
Option Pricing Theory for derivative securities. The second is the equilibrium
mechanism. In this case value is derived from the market clearing condition that
demand equals supply. The latter mechanism is much weaker than the former: the
exclusion of arbitrage opportunities is a necessary but by no means a sufficient
condition for market equilibrium. In addition to non-satiation also assumptions
must be made regarding the risk attitudes of all market participants. Examples of
equilibrium-based models are the Capital Asset Pricing Model and its variants.
Below we discuss the differences between the two valuation approaches in more
detail. It suffices to remark that it is still a big step from the principles to solving
actual decision problems.

24.2.2 Focus of Financial Research

An alternative, albeit almost circular, definition of finance is provided by Jarrow
[101, p. 1].

Finance theory (. . . ) includes those models most often associated with financial economics.
(. . . ) ŒA� practical definition of financial economics is found in those topics that appear
with some regularity in such publications as Journal of Finance, Journal of Financial
and Quantitative Analysis, Journal of Financial Economics, and Journal of Banking and
Finance.

Browsing through back volumes of these journals and comparing them to the
more recent ones reveals a blatant development in nature and focus. In early days
of finance, the papers were descriptive in a narrative way and in the main focused
on financial instruments and institutions. Finance as a decision science emerged in
the early 1950s, when Markowitz [130, 131] studied the portfolio selection decision
and launched what now is known as “modern portfolio theory.” In the 1960s and
the early 1970s, many financial economic decision problems were approached by
operational research techniques; see for example Ashford et al. [8] and McInnes
and Carleton [138] for an overview. However, since then, this type of research has
became more and more absorbed by the operations research community and in their
journals.
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But what direction did finance take? Over the last 25 years mathematical models
have replaced the verbal models and finance has founded itself firmly in a neo-
classical micro-economic tradition. Over this period we observe a shift to research
that is descriptive in a sophisticated econometrical way and that focuses on the
statistical characteristics of (mainly well-developed) financial markets where a host
of financial instruments is traded. Bollerslev [27, p. 41], aptly describes this shift as
follows.

A cursory look at the traditional econometrics journals (. . . ) severely underestimates the
scope of the field [of financial econometrics], as many of the important econometric
advances are now also published in the premier finance journals - the Journal of Finance,
the Journal of Financial Economics, and the Review of Financial Studies – as well as a host
of other empirically oriented finance journals.

The host of reported research addresses the behavior of financial market prices.
The study of the pricing of primary securities is interesting for its own right, but it
is also relevant for the pricing of derivative securities. Indeed, the description of the
pricing of primary assets and the development of tools for pricing derivative assets
mark the success story of modern finance.

The body of descriptive finance theory has grown enormously. According to
modern definitions of the field of finance, the descriptive nature is even predominant.

The core of finance theory is the study of the behavior of economic agents in allocating
and deploying their resources, both spatially and across time, in an uncertain environment.
(Merton [140], p. 7)

Compared to Ross’ [158] definition cited earlier, the focus is purely positive. The
question arises to what extent the insights gained from descriptive finance—how
sophisticated they may be from a mathematical, statistical or econometric point of
view—can serve as guidelines for financial decisions in practice. Almost 30 years
ago, in the preface of their book The Theory of Finance, Eugene Fama and Merton
Miller defended their omission of detailed examples, purporting to show how to
apply the theory to real-world decision problems, as

(. . . ) a reflection of our belief that the potential contribution of the theory of finance to the
decision-making process, although substantial, is still essentially indirect. The theory can
often help expose the inconsistencies in existing procedures; it can help keep the really
critical questions from getting lost in the inevitable maze of technical detail; and it can
help prevent the too easy, unthinking acceptance of either the old clichs or new fads. But
the theory of finance has not yet been brought, and perhaps never will be, to the cookbook
stage. (Fama and Miller [65], p. viii)

Careful inspection of current finance texts reveals that in this respect not much
has changed. However, pure finance theory and foolproof financial recipes are two
extremes of a continuum. The latter cookbook stage will never be achieved, of
course, and in all realism and wisdom this alchemic goal should not be sought for.
But what we dearly miss is an extensive body of research that bridges the apparent
gap between the extremes: research that shows how to solve real-world financial
decision problems without violating insights offered by pure finance theory on the
one hand and without neglecting the peculiarities of the specific decision problem
on the other.
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On another matter, the role of assumptions in modelling is to simplify the real
world in order to make it tractable. In this respect the art of modelling is to make
assumptions where they most contribute to the model’s tractability and at the same
time detract from the realism of the model as little as possible. The considerations
in this trade-off are fundamentally different for positive (descriptive) models on
the one hand and conditional-normative models on the other. In the next section we
elaborate further on the distinctions between the two types of modelling as concerns
the role of assumptions.

24.2.3 Descriptive vs. Conditional-Normative Modelling

In a positive or descriptive model simplified assumptions are made in order to
obtain a testable implication of the model. The validity of the model is evaluated
according to the inability to reject the model’s implications at some level of
significance. So validity is of an empirical nature, solely judged by the implications
of the model. Consider the example of an equilibrium asset-pricing model. As a
starting point, assumptions are made with respect to the preferences of an imaginary
investor and the risk-return characteristics of the investment opportunities. These
assumptions are sufficiently strong to allow solving the portfolio optimization
problem. Next a homogeneity condition is imposed: all investors in the market
possess the same information and share the same expectations. This allows focusing
on “a representative investor”. Finally the equilibrium market clearing condition is
imposed: all available assets (supply) must be incorporated in the portfolio of the
representative investor (demand). The first order conditions of portfolio optimality
then stipulate the trade-off between risk and expected return that is required by the
investor. Because of the market clearing, the assets offer the same trade-off. Hence a
market-wide relationship between risk and return is established and this relationship
is the object of empirical testing. As long as the pricing relationship is not falsified
the model is accepted, irrespective of whether the necessary assumptions are
realistic or not. When the model is falsified, deduction may help to amend the
assumptions where after the same procedure is followed. This hypothetic-deductive
cycle ends when the model is no longer falsified by the empirical data at hand.

In a conditional-normative model, simplifying assumptions are also made in
order to obtain a tractable model. These assumptions relate to the preferences of
the decision maker and to the representation of the set of choice alternatives. The
object of the conditional-normative modelling is not to infer a testable implication
but to obtain a decision rule. This derived decision rule is valid and can normatively
be applied conditional on the fact that the decision maker satisfies the underlying
assumptions; cf. Keynes [110].

In order to support decisions in finance, obviously both the preferences of
the decision maker and the characteristics of the choice alternatives should be
understood and related to each other. Unfortunately, the host of financial-economic
modelling is of a positive nature and focuses on the “average” decision maker
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instead of addressing the particular (typically non-average) decision maker. The
assumptions underlying financial theory at best describe “average individuals” and
“average decision situations” and hence are not suited to describe specific individual
decision problems. The assumptions made to simplify the decision situation often
completely redefine the particular problem at hand. The real world is replaced
by an over-simplified model-world. As a consequence, not the initial problem is
solved but a synthesized and redefined problem that is not even recognized by the
decision maker himself. The over-simplified model becomes a Procrustes bed for
the financial decision maker who seeks advice.

For example, it is assumed that a decision maker has complete information
and that this information can be molded into easily manipulated probability
distributions. Even worse, positive knowledge and descriptive theories that by
definition reflect the outcomes of decisions made by some representative decision
maker are used to prescribe what actions to take in a specific decision situation.
For example, equilibrium asset pricing theories predict the effects of decisions and
actions of many individuals on the formation of prices in financial markets. Under
the homogeneity condition the collection of investors is reduced to the representative
investor. When the pricing implications of the model are simply used to guide actual
investment behavior, then the decision maker is forced into the straitjacket of this
representative investor.

Unfortunately we observe that conditional-normative financial modelling is only
regarded as a starting point for descriptive modelling and is not pursued for its own
sake. After almost 20 years, Hastie’s [83] lament has not lost its poignancy.

In American business today, particularly in the field of finance, what is needed are
approximate answers to the precise problem rather than precise answers to the approximate
problem.

Apart from the positive modelling of financial markets as described above,
there is one other field in finance in which the achievements of applied modelling are
apparent: option pricing theory, the set of models that enable the pricing of derivative
securities and all kinds of contingent claims. Indeed, the option pricing formulas
developed by Black and Scholes [25] and Merton [139] mark a huge success in the
history of financial modelling. Contingent claims analysis made a flying start, and

. . . . when judged by its ability to explain the empirical data, option pricing theory is the
most successful theory not only in finance, but in all of economics. (Ross [158], p. 24)
Given a theory that works so well, the best empirical work will be to use it as a tool rather
than to test it. (Ross [158], p. 23)

Indeed, modern-day derivatives trading would be unthinkable without the deci-
sion support of an impressive coherent toolbox for analyzing the risk characteristics
of derivatives and for pricing them in a consistent way. Compared to this framework,
the models and theories developed and tested for primary assets look pale. What is
the reason for the success of derivatives research?

For an explanation we turn to the principal tool used in option pricing theory:
no-arbitrage valuation. By definition derivative securities derive their value from
primary underlying assets. Under some mild assumptions, a dynamic trading
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strategy can be designed in which the derivative security is exactly replicated with
a portfolio of the primary security and risk-free bonds. Under the no-arbitrage
condition, the current value of the derivative security and the replicating portfolio
should be identical. Looking from another perspective, a suitably chosen hedge
combination of the derivative and the underlying security produces a risk-free
position. On this position the risk-free rate must be earned, otherwise there exist
arbitrage opportunities. Since the position is risk free, risk attitudes and risk aversion
do not enter the story. Therefore a derivative security will have the same value
in a market environment with risk neutral investors as in a market with risk
averse investors. This in turn implies that a derivative can be priced under the
assumption that investors are risk neutral. As a consequence, no assumptions are
required on preferences (other than non-satiation), utility functions, the degree of
risk aversion, and risk premia. Thus, option pricing theory can escape from the
burden of modelling of preference structures. Instead, research attention shifts to
analyzing price dynamics on financial markets. An additional reason for the success
in derivatives research is that the analytical and mathematical techniques are similar
to those used in the physical sciences (see for example Derman [44]).

Of course, even in derivatives modelling some assumptions are required. This
introduces model risk. When the functional relationships stipulated in the model are
wrong, or when relevant input parameters of the model are incorrectly estimated, the
model produces the wrong value and the wrong risk profile of the derivative. To an
increasing degree, financial institutions are aware that great losses can be incurred
because of model risk. Especially in risk management and derivatives trading model
risk is a hot item (see Derman [43]). This spurred Merton to ventilate this warning.

At times, the mathematics of the models become too interesting and we lose sight of the
models’ ultimate purpose. The mathematics of the models is precise, but the models are
not, being only approximations to the complex, real world. Their accuracy as a useful
approximation to that world varies considerably across time and place. The practitioner
should therefore apply the models only tentatively, assessing their limitations carefully in
each application. (Merton [140], p. 14)

Ironically this quote was taken just after the very successful launch of Long Term
Capital Management (LTCM), the hedge fund of which Merton and Myron Scholes
were the founding partners. In 1998, LTCM collapsed and model risk played a very
important role in this debacle.

Summarizing we draw the conclusion that successful applied financial modelling
does exist, and blossoms in the field of derivatives. Here also the validity of the
assumptions is crucial, this in contrast to positive modelling. However, in the field
of derivatives with replicating strategies and arbitrage-based valuation, the concept
of “absence of risk” is well defined and no preference assumptions are needed in
the modelling process. For modelling decisions regarding the underlying primary
assets, in contrast, assumptions on the decision maker’s preferences and on the
“risk” attached to the outcomes of the choice alternatives are indispensable. For
these types of financial problems, the host of simplifying assumptions that are made
in the descriptive modelling framework invalidate the use of the model in a specific
decision situation. Thus we face the following challenge: how can we retain the
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conceptual foundation of the financial-economic framework and still provide sound
advice that can be applied in multifarious practice? As a first step we will sketch the
relationship between decision sciences and financial decision-making.

24.2.4 Decision Support for Financial Decisions

Over the last 50 years or so, the financial discipline has shown continuously
rapid and profound changes, both in theory and in practice. Many disciplines
have been affected by globalization, deregulation, privatization, computerization,
and communication technologies. Hardly any field has been influenced as much
as finance. After the mainly institutional and even somewhat ad hoc approaches
before the 1950s, Markowitz [130, 131] has opened new avenues by formalizing
and quantifying the concept of “risk”. In the decades that followed, a lot of attention
was paid to the functioning of financial markets and the pricing of financial assets
including options. The year 1973 gave birth to the first official market in options
(CBOE) and to crucial option pricing formulas that have become famous quite
fast (Black-Scholes and Cox-Ross-Rubinstein, see Hull [90]), both in theory and
practice. At that time, financial decision problems were structured by (a) listing a
number of mutually exclusive decision alternatives, (b) describing them by their
(estimated) future cash flows, including an estimation of their stochastic variation
and later on including the effect of optional decisions, and (c) valuing them by using
the market models describing financial markets.

In the 1970s, 1980s and 1990s, the financial world saw enormous growth in
derivative products, both in terms of variety and in terms of market volumes. Finan-
cial institutions have learned to work with complex financial products. Academia
has contributed by developing many pricing models, notably for derivatives. Also,
one can say that financial theory has been rewritten in the light of contingent claims
(“optional decisions”) and will soon be further reshaped by giving more attention to
game elements in financial decisions. The rapid development of the use of complex
financial products has certainly not been without accidents. This has led regulators
to demand more precise evaluations and the reporting of financial positions (cf. e.g.,
the emergence of the Value-at-Risk concept, see Jorion [107]).

In addition to the analysis of financial risk, the structured management of
financial risk has come to the forefront. In their textbook, Bodie and Merton
[26] describe the threefold tasks of the financial discipline as Valuation, Risk
Management, and Optimization. We would like to amend the threefold tasks of
financial management to Valuation, Risk Management, and Decision Making. The
reason is that financial decision problems often have to be solved in dynamic
environments where information is not always complete, different stakeholders with
possibly conflicting goals and constraints play a role and clear-cut optimization
problems cannot always be obtained (and solved).

At the same time, many efforts from the decision-making disciplines are
misdirected. For instance, some approaches fail to give room for the inherent
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complexity of the decision procedure given the decision maker’s specific context.
Other approaches concentrate on the beauties of a particular decision method
without doing full justice to the peculiarities of the decision context. Aside from
being partial in this respect, useful principles and insights offered by financial-
economic theory are often not integrated in the decision modelling. It is therefore
no surprise that one can observe in practice unstructured ad hoc approaches as well
as complex approaches that severely restrict the decision process.

24.2.5 Relevance of MCDA for Financial Decisions

The central issue in financial economics is the efficient allocation of scarce capital
and resources over alternative uses. The allocation (and redistribution) of capital
takes place on financial markets and is termed “efficient” when market value is
maximized. Just as water will flow to the lowest point, capital will flow to uses that
offer the highest return. Therefore it seems that the criterion for guiding financial
decisions is one-dimensional: maximize market value or maximize future return.

From a financial-economic perspective, the goal of the firm, for example, is very
much single objective. Management should maximize the firm’s contribution to
the financial wealth of its shareholders. Also the shareholders are considered to
be myopic. Their only objective is to maximize their single-dimensional financial
wealth. The link between the shareholders and the firm is footed in law. Shareholders
are the owners of the firm. They possess the property rights of the firm and are thus
entitled to decide what the firm should aim for, which according to homogeneity is
supposed to be the same for all shareholders, i.e., maximize the firm’s contribution
to the financial wealth of the shareholders. The firm can accomplish this by engaging
in investment projects with positive net present value. This is the neo-classical view
on the role of the firm and on the relationship between the firm and its shareholders
in a capitalist society. Figure 24.1 depicts a simplified graphical representation of
this line of thought.

It is important to note that this position is embedded in a much larger framework
of stylized thinking in among others economics (general equilibrium framework)
and law (property rights theory and limited liability of shareholders). Until today,
this view is seen as an ideal by many; see for example Jensen [102]. Presently,
however, the societal impact of the firm and its governance structure is a growing
topic of debate. Here we will show that also in finance there are many roads leading
to Rome, or rather to the designation MCDA. Whether one belongs to the camp
of Jensen or to the camp of those advocating socially responsible entrepreneurship,
one has to deal with multiple criteria.

There is a series of situations in which the firm chooses (or has to take account of)
a multiplicity of objectives and (policy) constraints. An overview of these situations
is depicted in Fig. 24.2. One issue is who decides on the objective(s) of the firm.
If there is a multiplicity of parties who may decide what the firm is aiming for,
one generally encounters a multitude of goals, constraints and considerations that—
more often than not—will be at least partially conflictive. A clear example is the
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Fig. 24.1 The neo-classical view on the objective of the firm

conflicting objectives arising from agency problems (Jensen and Meckling [103]).
This means that many decision problems include multiple criteria and multiple
actors (viz. group decision making, negotiation theory, see Box 3 in Fig. 24.2).
Sometimes, all those who decide on what the firm should aim for agree upon exactly
the same objective(s). In fact, this is what neo-classical financial theory assumes
when adopting shareholder value maximization (Box 1 in Fig. 24.2). In practice,
there are many firms that explicitly strive for a multiplicity of goals, which naturally
leads to decision problems with multiple criteria (Box 2 in Fig. 24.2).

However, although these firms do explicitly state to take account of multiple
objectives, there are still very few of these firms that make use of tools provided by
the MCDA literature. In most cases firms maximize one objective subject to (policy)
constraints on the other objectives. As such there is nothing wrong with such a
procedure as long as the location of these policy constraints is chosen correctly. In
practice, however, one often observes that there is no discussion at all about the
location of the policy constraints. Moreover, there is often no idea about the trade-
offs between the location of the various constraints and the objective function that
is maximized. In our opinion, multiple criteria decision methodologies may help
decision makers to gain better insights in the trade-offs they are confronted with.

Now let us get back to the case in which the owner(s)/shareholders do have only
one objective in mind: wealth maximization. Although this is by definition the most
prominent candidate for single criteria decision-making, we will argue that even
in this case there are many circumstances in which the formulation as a multiple
criteria decision problem is opportune.

In order to contribute maximally to the wealth of its shareholders, an individual
firm should maximize the value of its shares. The value of these shares is determined
on the financial markets by the forces of demand and supply. Shares represent
claims on the future residual cash flows of the firm (and also on a usually very
limited right on corporate control). In the view of the financial markets, the value
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of such a claim is determined relative to the claims of other firms that are traded
on these markets. The financial markets’ perception of the quality of these cash
flow claims is crucial for the valuation of the shares. Translated to the management
of the individual firm, the aim is not only to maximize the quality of the future
residual cash flows of the firm but also to properly communicate all news about
these cash flows to the financial markets. Only by the disclosure of such information
can informational asymmetries be resolved and the fair market value of a cash
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flow claim be determined. In evaluating the possible consequences of its decision
alternatives, management should estimate the effects on the uncertain (future) cash
flows followed by an estimation of the financial markets’ valuation of these effects.
Then (and only then) the decision rule of management is very simple: choose the
decision alternative that generates the highest estimated market value.

The first problem that might arise while following the above prescription is that
residual claims cannot always be defined because of “gaming effects” (see Fig. 24.2,
Box 2). In other words, the future cash flows of the firm do not only depend on the
present and future decisions of the firm’s management, but also on the present and
future decisions of other parties. An obvious example is the situation of oligopolistic
markets in which the decisions of the competitors may strongly influence each
other. Similar situations may arise with other external stakeholders such as powerful
clients, powerful suppliers, and powerful financiers. Games may also arise within
the firm, for instance between management and certain key production factors. The
problem with game situations is that their effect on a firm’s future cash flows caused
by other parties involved cannot be treated in the form of simple constraints or as
cost factors in cash flow calculations. MCDA may help to solve this problem by
formulating multi-dimensional profiles of the consequences of the firm’s decision
alternatives. In these profiles, the effects on parties other than the firm are also
included. These multi-dimensional profiles are the keys to open the complete
MCDA toolbox.

A second problem in dealing with the single-objective wealth maximization
problems is that the quality of information concerning the firm’s future cash
flows under different decision alternatives is far from complete. In addition, the
available information may be biased or flawed. One way to approach the incomplete
information problem is suggested by Spronk and Hallerbach [177]. In their multi-
factorial approach, different sources of uncertainty should be identified after which
the exposures of the cash flows to these risk sources are estimated. The estimated
exposures can next be included in a multi-criteria decision method. In the case
that the available information is not conclusive, different “views” on the future
cash flows may develop. Next each of these views can be adopted as representing
a different dimension of the decision problem. The resulting multi-dimensional
decision problem can then be handled by using MCDA (see Fig. 24.2, Box 2).

A third potential problem in wealth maximization is that the financial markets
do not always provide relevant pricing signals to evaluate the wealth effects of the
firm’s decisions, for example, because of market inefficiencies. This means that the
firm may want to include attributes in addition to the market’s signals in order to
measure the riskiness and wealth effects of its decisions.

24.2.6 A Multicriteria Framework for Financial Decisions

In our view it, is the role of financial modelling to support financial decision making,
as described in Hallerbach and Spronk [81], to build pointed models that take into
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account the peculiarities of the precise problem. The goal here is to bridge the gaps
between decision-making disciplines, the discipline of financial economics, and the
need for adequate decision support.

24.2.6.1 Principles

This framework is built on the principle that assumptions should be made where
they help the modelling process the most and hurt the particular decision problem
the least.1 We call this the Principle of Low Fat Modelling. When addressing a
decision situation, make use of all available information, but do not make unrealistic
assumptions with respect to the availability of information. Do not make unrealistic
assumptions that disqualify the decision context at hand. There should be ample
room to incorporate idiosyncrasies of the decision context within the problem
formulation, thus recognizing that the actual (non-average) decision maker is often
very different from the “representative” decision maker. The preferences of the
decision maker may not be explicitly available and may not even be known in detail
by the decision maker himself. The uncertainty a decision maker faces with respect
to the potential outcomes of his decisions may not be readily represented by means
of a tractable statistical distribution. In many real-life cases, uncertainty can only be
described in imprecise terms and available information is far from complete. And
when the preferences of the decision maker are confronted with the characteristics
of the decision alternatives, the conditional-normative nature of derived decision
rules and advice should be accepted.

A second principle underlying our framework is the Principle of Eclecticism. One
should borrow all the concepts and insights from modern financial theory that help
to make better financial decisions. Financial theory can provide rich descriptions of
uncertainty and risk. Examples are the multi-factor representation of risk in which
the risk attached to the choice alternatives is conditioned on underlying factors such
as the contingent claims approach in which the decision outcomes are conditioned
on the opportunity to adjust or revise decisions in the future or game theory in
which the outcomes are also conditioned on potential (conflicting) decisions made
by other parties. But it is not the availability of theoretical insights that determines
their application; it depends on the specific decision context at hand.

By restricting one thinking to a prechoosen set of problem characteristics, there is
obviously more “to be seen” but at the same time it is possible to make observation
errors, and maybe more worrisome, the problem and its context may be changing
over time. This calls for the Principle of Permanent Learning, which stresses the
process nature of decision making in which both the representation of the problem
and the problem itself can change over time. Therefore, there is a permanent

1The underlying assumptions must be validated and the effectiveness and efficiency of the actions
taken must be evaluated systematically. The latter calls for a sophisticated performance evaluation
process that explicitly acknowledges the role of learning.
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need to critically evaluate the problem formulation, the decisions made and their
performance. Obviously, decision making and performance evaluation are two key
elements in the decision-making process. As argued in Spronk and Vermeulen [178],
performance evaluation of decisions should be structured such that the original
idiosyncrasies of the problem (i.e., at the time the decision is made) are fully taken
into account at the moment of evaluation, (i.e., ex post). By doing so, one increases
the chance of learning from errors and misspecifications in the past.

24.2.6.2 Allocation Decisions

Financial decisions are allocation decisions, in which both time and uncertainty
(and thus risk) play a crucial role. In order to support decisions in finance, both the
preferences of the decision maker and the characteristics of the choice alternatives
should be adequately understood and related to each other. A distinction can be
made between “pure” financial decisions in which cash flows and market values
steer the decision and “mixed” financial decisions in which other criteria are also
considered. In financial theory, financial decisions are considered to be pure. In
practice, most decisions are mixed. Hallerbach and Spronk [80] show that many
financial decisions are mixed and thus should be treated as multiple criteria decision
problems.

The solution of pure financial decisions requires the analysis, valuation, and
management of risky cash flow streams and risky assets. The solution of mixed
financial problems involves, in addition, the analysis of other effects. This implies
that, in order to describe the effects of mixed decisions, multi-dimensional impact
profiles should be used (cf. Spronk and Hallerbach [177]). The use of multi-
dimensional impact profiles naturally opens the door to MCDA. Another distinction
that can be made is between the financial decisions of individuals on one hand the
financial decisions of companies and institutions on the other. The reason for the
distinction results from the different ways in which decision makers steer the solu-
tions. Individual decisions are guided by individual preferences (e.g., as described
by utility functions), whereas the decisions of corporations and institutions are often
guided by some aggregate objective (e.g., maximization of market value).

24.2.6.3 Uncertainty and Risk2

In each of the types of financial decisions just described, the effects are distributed
over future time periods and are uncertain. In order to evaluate these possible effects,
available information should be used to develop a “picture” of these effects and
their likelihood. In some settings there is complete information but more often
information is incomplete. In our framework, we use multi-dimensional risk profiles

2This section draws heavily on a part of Hallerbach and Spronk [79].
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for modelling uncertainty and risk. This is another reason why multicriteria decision
analysis is opportune when solving financial decision problems. Two questions play
a crucial role:

1. Where does the uncertainty stem from or, in other words, what are the sources of
risk?

2. When and how can this uncertainty be changed?

The answer to the first question leads to the decomposition of uncertainty.
This involves attributing the inherent risk (potential variability in the outcomes)
to the variability in several underlying state variables or factors. We can thus
view the outcomes as being generated by the factors. Conversely, the stochastic
outcomes are conditioned on these factors. The degree in which fluctuations in the
factors propagate into fluctuations in the outcomes can be measured by response
coefficients. These sensitivity coefficients can then be interpreted as exposures to
the underlying risk factors and together they constitute the multi-dimensional risk
profile of a decision alternative.

The answer to the second question leads to three prototypes of decision problems:

(1) The decision maker makes and implements a final decision and waits for its
outcome. This outcome will depend on the evolution of external factors, beyond
the decision maker’s control.

(2) The decision maker makes and implements a decision and observes the evo-
lution of external factors (which are still beyond the decision maker’s control).
However, depending on the value of these factors, the decision maker may make
and implement additional decisions. For example, a decision maker may decide
to produce some amount of a new and spectacular software package and then,
depending on market reaction, he may decide to stop, decrease, or increase
production.

(3) As in (2), but the decision maker is not the sole player and thus has to take
account of the potential impact of decisions made by others sometime in the
future (where the other(s) are of course confronted with a similar type of
decision problem). The interaction between the various players in the field gives
rise to dynamic game situations.

24.2.6.4 A Bird’s-Eye View of the Framework

In Fig. 24.3, a bird’s-eye view of the framework is presented. The framework inte-
grates several elements in a process-oriented approach towards financial decisions.
The left side of Fig. 24.3 represents the elements that lead to decisions, represented
by the Resolution/Conclusion box at the lower left hand side. As mentioned above,
performance evaluation (shown at the lower right hand side of the figure) is an
integral part of the decision-making process. However, in this article we do not
pay further attention to performance evaluation or to the feedback leading from
performance evaluation to other elements of the decision-making process.
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Financial decision problems will often be put as allocation problems. At this
stage, it is important to determine whether the problem is a mixed or pure financial
problem. Also, one should know who decides and which objectives are to be served
by the decisions.

In the next step, the problem is defined more precisely. Many factors play a role
here. For instance, the degree of upfront structure in the problem definition, the
similarity with other problems, time and commitment from the decision makers,
availability of time, similarity to problems known in theory and so on. In this stage,
the insights from financial theory often have to be supplemented (or even amended)
by insights from other disciplines and by the discipline of common sense. The
problem formulation can thus be seen as a theoretical description (we use the label
“local theory”) of the problem.

After the problem formulation, data have to be collected, evaluated and some-
times transformed into estimates. These data are then used as inputs for the
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formalization of the problem description. The structure of the problem, together
with the quality and availability of the data determines what tools can be used and
in which way. As explained above, the use of multi-dimensional impact profiles
almost naturally leads to the use of multicriteria decision analysis.

24.2.6.5 The Framework and Modern Financial Theory

In our framework we try to borrow all concepts and insights from modern financial
theory that help to make better financial decisions. Financial theory provides rich
and powerful tools for describing uncertainty and risk. Examples are the multi-factor
representation of risk, which leads to multi-dimensional impact profiles that can be
integrated within multicriteria decision analysis. A very important contribution of
financial theory is the contingent claims approach in which the decision outcomes
are conditioned on the opportunity to adjust or revise decisions in the future. This
comes together with financial markets where contingent claims are being traded in
volume. This brings us to the role of financial markets as instruments to trade risks,
to redistribute risks, and even to decrease or eliminate risk. We believe and hope
that contingent claims thinking will also be used in other domains than finance. In
the first place because of what it adds when describing decision problems. Secondly,
new markets may emerge in which also non-financial risks can be handled in a better
way.

In addition to helping to better describe decision problems, financial theory
provides a number of crucial insights. The most obvious (which is clearly not limited
to financial economics) is probably the concept of “best alternative opportunity”
thinking. Whenever making an evaluation of decision alternatives, one should take
into account that the decision maker may have alternative opportunities (often but
not exclusively provided by markets), the best of which sets a benchmark for the
evaluation of the decision alternatives considered.

Other concepts are the efficient market hypothesis and the no-arbitrage condition.
These point both to the fact that in competitive environments, it is not obvious that
one can outsmart all the others. So if you find ways to make easy money, you
should at least try to answer the question why you have been so lucky and how
the environment will react.

24.3 MCDA in Portfolio Decision-Making Theory

We now turn our attention to the area of finance known as portfolio theory. In
portfolio theory, we study the attributes of collections of securities called portfolios
and how investors make judgements based upon these attributes. The problem that
characterizes this area is the problem of portfolio selection.



1030 J. Spronk et al.

Formulated as an optimization problem, this problem has been studied exten-
sively. Thousands of papers have been written on it. A feel for many of these
papers can be gained by scanning the references contained in Elton et al. [63]. As
far as mainstream finance is concerned, the problem is only two-dimensional, able
to address only tradeoffs between risk (typically measured by standard deviation)
and return. To more realistically model the problem and be better prepared for
a future which will only be more complicated, we now discuss issues involved
in generalizing portfolio selection to include criteria beyond standard deviation
and return, such as liquidity, dividend yield, sustainability, and so forth. See, for
example, Lo et al. [123], Ehrgott et al. [62], Ben Abdelaziz et al. [1], Ballestero
et al. [13], and Xidonas at al. [192]. In this way, MCDA in the form of multiple
criteria optimization enters the picture. While the word “multiple” includes two,
we will generally use it for more than two. We now explore the possibilities of
multiple objectives in portfolio selection and discuss the effects of recognizing
multiple criteria on the traditional assumptions and practice of portfolio selection
in finance.

For this, we are organized as follows. In Sect. 24.3.1 we introduce the risk-return
problem of portfolio selection, and in Sect. 24.3.2 we demonstrate the problem in
a multiple criteria optimization framework. In Sect. 24.3.3 we discuss two variants
of the portfolio selection model, and in Sect. 24.3.4 we discuss the bullet-shaped
feasible regions that so often accompany portfolio selection problems. In the
context of some key assumptions, in Sect. 24.3.5 we discuss the sensitivity of the
nondominated set to changes in various factors, and in Sect. 24.3.6 we update the
assumptions in accordance with the indicated presence of additional criteria. In
Sect. 24.3.7 we talk about how to deal with resulting nondominated surfaces, and
in Sect. 24.3.8 we report on the idea that the “modern portfolio analysis” of today
can be viewed as the projection onto the risk-return plane of the real multiple
criteria portfolio selection problem in higher dimensional space. In Sect. 24.3.9 we
comment on future directions.

24.3.1 Portfolio Selection Problem

In finance, due to Markowitz [131–133], we have the canonical problem of portfolio
selection as follows. Assume

(a) n securities
(b) a sum of money to be invested
(c) beginning of a holding period
(d) end of a holding period.

Let x D .x1; : : : ; xn/ be a portfolio where the xi are weights that specify the
proportions of the sum to be invested in the different securities at the beginning
of the holding period. For security i, let ri be the random variable for the percent
return realized on security i between the beginning of the holding period and the
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end of the holding period. Then for rp, the random variable for the percent return
realized on a portfolio between the beginning of the holding period and the end, we
have

rp D
nX

iD1
rixi

Unfortunately, it is not possible to know at the beginning of the holding period the
value to be achieved by rp at the end of the holding period. However, it is assumed
that at the beginning of the holding period we have in our possession all expected
values Efrig, variances 
ii, and covariances 
ij for the n securities.

Since rp is not deterministic and an investor would presumably wish to protect
against low values of rp from turning out to be the case, the approach considered
prudent in portfolio selection is to seek a portfolio solution that produces a high
expected value of rp and a low standard deviation of rp. Using the Efrig, 
ii and 
ij,
the expected value of rp is given by

Efrpg D
nX

iD1
Efrigxi (24.1)

and the standard deviation of rp is given by


frpg D
v
u
u
t

nX

iD1

nX

jD1
xi
ijxj (24.2)

As for constraints, there is always the full investment constraint

nX

iD1
xi D 1 (24.3)

Depending on the version of the problem, there may be additional constraints
such as

`i � xi � �i for all i (24.4)

which are very common.
The way (24.1)–(24.4) is solved is as follows. First compute the set of all of the

model’s “nondominated” combinations of expected return and standard deviation.
Then, after examining the set, which portrays as a non-negatively sloped concave
curve, the investor selects the nondominated combination that he or she feels strikes
the best balance between expected return and standard deviation.

With Efrpg to be maximized and 
frpg to be minimized, (24.1)–(24.4) is a
multiple objective program. Although the power of multiple criteria optimization is
generally not necessary with two-objective programs (they can often be addressed
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with single criterion techniques), the theory of multiple criteria optimization,
however, is necessary when wishing to generalize portfolio selection, as we do, to
take into account additional criteria.

24.3.2 Background on Multicriteria Optimization

In multiple criteria optimization, to handle both maximization and minimization
objectives, we have

max or min ff1.x/ D z1g (MC)

:::

max or min ffk.x/ D zkg
s:t: x 2 S

where x 2 R
n, k is the number of objectives, and zi is a criterion value. In multiple

criteria optimization, we have the feasible region in two different spaces. One is
S � R

n in decision space and the other is Z � R
k in criterion space. Let z 2 R

k.
Then criterion vector z 2 Z if and only if there exists an x 2 S such that z D
.f1.x/; : : : ; fk.x//. In this way, Z is the set of all images of the x 2 S.

Criterion vectors in Z are either nondominated or dominated, and points in S are
either efficient or inefficient. Let JC D f i j fi.x/ is to be maximizedg and J� D fj j
fj.x/ is to be minimizedg. Then we have

Definition 1. Assume (MC). Then Nz 2 Z is a nondominated criterion vector if and
only if there does not exist another z 2 Z such that (i) zi 	 Nzi for all i 2 JC, and
zj � Nzj for all j 2 J�, and (ii) zi > Nzi or zj < Nzj for at least one i 2 JC or j 2 J�.
Otherwise, Nz 2 Z is dominated.

The set of all nondominated criterion vectors is designated N and is called the
nondominated set.

Definition 2. Let Nx 2 S. Then Nx is efficient in (MC) if and only if its criterion vector
Nz D .f1.Nx/; : : : ; fk.Nx// is nondominated, that is, if and only if Nz 2 N. Otherwise, Nx is
inefficient.

The set of all efficient points is designated E and is called the efficient set. Note
the distinction with regard to terminology. While nondominance is a criterion
space concept, in multiple criteria optimization, efficiency is only a decision space
concept.

To define optimality in a multiple criteria optimization problem, let U W Rk ! R

be the decision maker’s utility function. Then, any zo 2 Z that maximizes U over
Z is an optimal criterion vector, and any xo 2 S such that .f1.xo/; : : : ; fk.xo// D
zo is an optimal solution. We are interested in the efficient and nondominated
sets because if U is such that more-is-better-than-less for each zi, i 2 JC, and



24 Multicriteria Decision Aid/Analysis in Finance 1033

less-is-better-than-more for each zj, j 2 J�, then any zo optimal criterion vector
is such that zo 2 N, and any feasible inverse image xo is such that xo 2 E. The
significance of this is that to find an optimal criterion vector zo, it is only necessary
to find a best point in N. After a zo has been found, it is only necessary to obtain
an xo 2 S inverse image to know what to implement to achieve the k simultaneous
performances specified by the values in zo.

Although N in portfolio selection is a portion of the surface of Z 2 R
k, locating

the best solution in N, when k > 2, is generally a non-trivial task because of the
size of N. As a result, a large part of the field of multiple criteria optimization
is concerned with procedures for computing or sampling N to locate an optimal
or near-optimal solution, where a near-optimal solution is close enough to being
optimal to terminate the decision process.

Within this framework, (24.1)–(24.4) can now be expressed in the form of a
bi-objective multiple criteria optimization problem

min f
v
u
u
t

nX

iD1

nX

jD1
xi
ijxj D z1g (MC-O)

max f
nX

iD1
Efrigxi D z2g

s:t:
nX

iD1
xi D 1

`i � xi � �i for all i

24.3.3 Two Model Variants

Two model variants of (24.1)–(24.4) have evolved as classics. One is the unrestricted
model

min f
v
u
u
t

nX

iD1

nX

jD1
xi
ijxj D z1g (MC-U)

max f
nX

iD1
Efrigxi D z2g

s:t:
nX

iD1
xi D 1

all xi unrestricted
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meaning that there are no constraints beyond the full investment constraint in the
model. The other is the variable-restricted model

min f
v
u
u
t

nX

iD1

nX

jD1
xi
ijxj D z1g (MC-B)

max f
nX

iD1
Efrigxi D z2g

s:t:
nX

iD1
xi D 1

`i � xi � �i for all i

in which lower and upper bounds exist on the xi. In the unrestricted model there are
no lower limits on the weights, meaning that unlimited short selling is permitted. To
illustrate, let x3 D �0:2. This says the following to an investor. Borrow a position in
security 3 to the extent of 20 % of the initial sum to be invested and then sell. With
the extra 20 % and the initial sum, invest it in accordance with the other xi.

The unrestricted model is a favorite in teaching because of its elegant mathemat-
ical properties. For example, as long as the covariance matrix

† D

2

6
6
6
4


11 
12 � � � 
1n


21 
22
:::

:::


n1 � � � 
nn

3

7
7
7
5

is nonsingular, every imaginable piece of information about the model appears to be
analytically derivable in closed form (for instance see Roll [157]).

The variable-restricted model, despite requiring mathematical programming
(typically some form of quadratic programming) because of the extra constraints,
is the favorite in practice. For instance, in the US, short selling is prohibited by law
in the $11 trillion mutual fund business. It is also prohibited in the management
of pension assets. And even in hedge funds where short selling is almost standard,
it is all but impossible to imagine any situation in which there wouldn’t be limits.
A question is, when trying to locate an optimal solution, how much difference might
there be between the two models?

24.3.4 Bullet-Shaped Feasible Regions

When looking through the portfolio chapters of almost any university investments
text, it is hard to miss seeing graphs of bullet-shaped regions, often with dots in
them, with standard deviation on the horizontal axis and expected return on the
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Fig. 24.4 Feasible regions Z of (MC-U) and (MC-B) for the same eight securities

vertical. When unbounded as in Fig. 24.4 (top), these are graphs of the feasible
region Z of (MC-U) in criterion space. When bounded as in Fig. 24.4 (bottom),
these are graphs of the feasible region Z of (MC-B) in criterion space. The dots
are typically the criterion vectors .
frig;Efrig/ of individual securities.

To see why a feasible region Z of (MC-U) is bullet-shaped and unbounded,
consider securities A and B in Fig. 24.5. The unbounded line sweeping through A
and B, which is a hyperbola, is the set of criterion vectors of all two-stock portfolios
resulting from all linear combinations of A and B whose weights sum to one. In
detail, all points on the hyperbola strictly between A and B correspond to weights
xa > 0 and xb > 0; all points on the hyperbola above and to the right of A correspond
to weights xa > 1 and xb < 0; and all points on the hyperbola below and to the right
of B correspond to weights xa < 0 and xb > 1. The degree of “bow” toward the
vertical axis of the hyperbola is a function of the correlation coefficient �ab between
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A

C
B

Fig. 24.5 Unbounded bullet-shaped feasible region Z created by securities A, B and C

A and B. This is seen by looking at the components of the .
frabg;Efrabg/ criterion
vector of any two-stock portfolio which are given by


frabg D
q

aax2a C 2�ab
a
bxaxb C 
bbx2b

and

Efrabg D Efragxa C Efrbgxb

in which 
frag D p
aa and 
frbg D p
bb .
Through B and C in Fig. 24.5 there is another hyperbola. Since through any point

on the hyperbola through A and B and any point on the hyperbola through B and C
there is yet another hyperbola, feasible region Z fills in and takes on its bullet shape
whose leftmost boundary is, in the case of (MC-U), a single hyperbola.

With regard to the feasible region Z of (MC-B), the hyperbolic lines through the
criterion vectors of any two financial products are not unbounded. In every case,
they end at some point because of the bounds on the variables. While still filling
in to create a bullet-shaped Z, the leftmost boundary, instead of being formed by a
single hyperbola, is in general formed by segments from several hyperbolas. The
rightmost boundary, instead of being unbounded, takes on a “scalloped” effect as in
Fig. 24.4 (bottom).

Because standard deviation is to be minimized and expected return is to be
maximized, we look to the “northwest” of Z for the nondominated set. This causes
the nondominated set to be the upper portion of the leftmost boundary (the portion
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that is non-negatively sloped). In finance, it is called the “efficient frontier.” Here,
because of our interests in portfolio analysis with multiple criteria, we prefer to call
it the “nondominated frontier.”

24.3.5 Assumptions and Nondominated Sensitivities

The assumptions surrounding the use of (MC-U) and (MC-B) and theories based
upon them in finance are largely as follows.

(a) There are many investors, each small, none of which can affect prices.
(b) There are no taxes.
(c) There are no transactions costs.
(d) Each investor’s asset universe is all publicly traded securities.
(e) All investors are rational mean-variance optimizers.
(f) All investors have utility functions whose indifference curves are convex-to-the-

origin.
(g) All investors share the same expected returns, variances, and covariances about

the future. This is called homogeneous expectations.
(h) All investors have the same single holding period.
(i) Each security is infinitely divisible.

We now discuss the sensitivity of the nondominated frontier to factors that have
implications about the appropriateness of this set of the assumptions. Sensitivity is
measured by noting what happens to the nondominated frontier as the parameter
associated with a given factor changes. We start by looking at the sensitivity of
the nondominated frontier to changes in an upper bound common to all investment
proportion weights. Then we discuss the likely sensitivities of the nondominated
frontier to changes in other things such as dividend yield, a liquidity measure, a
social responsibility attribute, and so forth. The computer work required for testing
such sensitivities is outlined in the following procedure.

1. Start the construction of what is recognized in multiple criteria optimization as
an 	-constraint program by converting the expected return objective in (MC-U)
and (MC-B) to a 	 constraint with right-hand side 	.

2. Set the factor parameter to its starting value.
3. Set 	 to its starting value.
4. Solve the 	-constraint program and take the square root of the outputted variance

to form the nondominated point .
frpg;Efrpg/.
5. If 	 has reached its ending value, go to Step 6. Otherwise, increment 	 and go to

Step 4.
6. Connect on a graph all of the nondominated points obtained from the current

value of the factor parameter to achieve a portrayal of the nondominated frontier
of this factor parameter value. If the factor parameter has reached its ending
value, stop. Otherwise increment the factor parameter and go to Step 3.
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For the procedure, the 	-constraint program is

min f
nX

iD1

nX

jD1
xi
ijxj D 
2frpgg (Eps-1)

s.t.
nX

iD1
Efrigxi 	 	

nX

iD1
xi D 1

`i � xi � � for all i

and to obtain results for the sensitivity of the nondominated frontier due to changes
in the upper bound �, let us consider a problem in which n D 20; ` D �0:05 to
permit mild short selling; and � is set in turn to 1:00; 0:15; 0:10 to generate three
frontiers. Running 25 different 	 values (experimenter’s choice) for each �-value,
the three nondominated frontiers of Fig. 24.6 result. The topmost frontier is for
� D 1:00, the middle frontier is for � D 0:15, and the bottommost frontier is for
� D 0:10.

As seen in Fig. 24.6, the nondominated frontier undergoes major changes as we
step through the three values of �. Hence there is considerable sensitivity to the
value of �. Since, in the spirit of diversification, investors would presumably prefer
smaller values of � to larger values as long as portfolio performance is not seriously
deteriorated in other respects, we can see that an examination of the tradeoffs among
risk, return, and� are involved before a final decision can be made. Since an investor
would probably have no way of knowing in advance his or her optimal value of �
without reference to its effects on risk and return,� conceivably could be a criterion
to be optimized, too.

Using the same procedure, other experiments (results not shown) could be
conducted. For example, if we wished to test the sensitivity of the nondominated
frontier to changes in expected dividend yield, we would then work with the
following 	-constraint program

min f
nX

iD1

nX

jD1
xi
ijxj D 
2frpgg (Eps-2)

s.t.
nX

iD1
Efrigxi 	 	

nX

iD1
Efdigxi 	 ı
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Fig. 24.6 Nondominated frontiers as a function of changes in the value of upper bound
parameter �

nX

iD1
xi D 1

`i � xi � �i for all i

where di is the random variable for the dividend yield realized on security i between
the beginning and end of the holding period and ı is the minimum dividend yield
requirement parameter value to be changed in turn as � was in (Eps-1) to test for
different nondominated frontiers. A similar formulation could be set up for social
responsibility.

For both dividend yield and social responsibility we can probably expect to see
nondominated frontier sensitivities along the lines of that for �. If this is indeed
the case, this would signal that dividends and social responsibility could also be
criteria. With �, we now see how it is easy to have more criteria than two in
investing. Whereas the assumptions at the beginning of this section assume a two-
criterion world, we are led to see new things by virtue of these experiments. One is
that the assumption about risk and return being the only criteria is certainly under
seige. Another is that, in the company of �, dividends, and social responsibility, the
last of which can be highly subjective, individualism should be given more play.
By individualism, no investor’s criteria, opinions, or assessments need conform to
those of another. In conflict with the assumption about homogeneous expectations,
individualism allows an investor to have differing opinions about any security’s



1040 J. Spronk et al.

expected return, risk profile, liquidity, dividend outlook, social responsibility quo-
tient, and so forth. At the portfolio level, for example, individualism allows investors
to possess different lists of criteria, have differing objective functions for even the
same criteria, work from different asset universes, and enforce different attitudes
about the nature of short selling. Therefore, with different lists of criteria, different
objective functions, and different sets of constraints, all investors would not face
the same feasible region with the same nondominated set. Each would have his
or her own portfolio problem with its own optimal solution. The benefit of this
enlarged outlook would be that portfolio theory would then not only have to focus
on explaining equilibrium solutions, but on customized solutions as well.

24.3.6 Expanded Formulations and New Assumptions

Generally, in multiple criteria, we distinguish a constraint from an objective as
follows. If when modelling we realize that we can not easily fix a right-hand side
value without knowing how other output measures turn out, then we are probably
looking at an objective. With this in mind, a list of possible extra objectives in
portfolio selection could be

max ff3.x/ D dividend yieldg
min ff4.x/ D maximum investment proportion weightg
max ff5.x/ D social responsibilityg
max ff6.x/ D liquidityg
max ff7.x/ D momentumg
max ff8.x/ D investment in R&Dg

While one can imagine more exotic criteria, all of the above at least have the
simplicity that they can be modelled linearly.

Updating to take a new look at portfolio selection, the following is proposed as
a more appropriate set of assumptions with which to now approach the study of
portfolio theory.

(a) There are many investors, each small, none of which can affect prices.
(b) There are no taxes.
(c) There are no transactions costs.
(d) An investor’s asset universe can be any subset of all publicly traded securities.
(e) Investors may possess any mix of three or more objectives.
(f) All investors have utility functions whose indifference curves are convex-to-the-

origin.
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(g) Heterogeneity of expectations is the rule. That is, investors can have widely
different forecasts and assessments about any security attribute including
expected returns, variances, covariances, expected dividends, and so forth.

(h) Short selling is allowed but to only some limited extent.

The first three assumptions remain the same as they are nice to retain in that
they establish benchmarks against which some of the world’s imperfections can
be measured. The assumption about convex-to-the-origin utility function contours
is also retained as we see no compelling difficulty with it at the present time, but all
the rest have either been modified or deleted.

24.3.7 Nondominated Surfaces

Let k be the number of criteria in a given portfolio selection model. Then the
nondominated set of current-day finance that exists as a frontier in R

2 is a surface
in R

k. The simplest case with a surface is with three criteria. The question is, how
to solve? This is not a trivial question. Perhaps, to get a feel for the nondominated
surface, the method that might first come to mind would be to solve repetitively the
following 	-constraint program

min f
nX

iD1

nX

jD1
xi
ijxj D 
2frpgg

s.t.
nX

iD1
Efrigxi 	 	e

nX

iD1
Efligxi 	 	l

nX

iD1
xi D 1

`i � xi � �i for all i

where for sake of variety liquidity is the third criterion. We use 	e and 	l to
distinguish between the 	’s for expected return and liquidity. However, this approach
involves many optimizations. If one might normally characterize a nondominated
frontier with 50 points, up to a thousand points might be needed with a non-
dominated surface to achieve about the same degree of representation density.
Some references to help appreciate this might include Qi et al. [153], Şakar and
Köksalan[164], and Mavrotas [137].
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Instead of looking at the problem in 	-constraint terms, another approach is to
look at it (since it contains three objectives) in tri-criterion form as follows

min f
v
u
u
t

nX

iD1

nX

jD1
xi
ijxj D z1g

max f
nX

iD1
Efrigxi D z2g

max f
nX

iD1
Efligxi D z3g

s:t:
nX

iD1
xi D 1

`i � xi � �i for all i

and then try to compute the whole nondominated surface exactly by multi-
parametric quadratic programming. Whereas a nondominated frontier was shown
earlier to be piecewise hyperbolic, a nondominated surface is platelet-wise or patch-
wise hyperboloidic. One can think of the back of a turtle. This is new material and,
as of this writing, the first paper on this is by Hirschberger et al. [84].

24.3.8 Idea of a Projection

In traditional risk-return finance there is the “market portfolio”. By theory, the
market portfolio contains every security in proportion to its market capitalization,
is anticipated to be somewhere in the midst of the nondominated frontier, and is
supposed to be everyone’s optimal portfolio when not including the risk-free asset.
Since the market portfolio is impractical, indices like the S&P 500 are used as
surrogates. But empirically, the surrogates, which should be essentially as desirable
as the market portfolio, have always been found to be quite below the nondominated
frontier, in fact so below that this cannot be explained by chance variation. Whereas
this is an anomaly in conventional risk-return finance, this is exactly what we would
expect in multiple criteria finance.

To take a glimpse at the logic why, consider the following. In a risk-return
portfolio problem, let us assume that the feasible region Z is the ellipse in Fig. 24.7.
Here, the nondominated frontier is the portion of the boundary of the ellipse in the
second quadrant emanating from the center of the ellipse. Similarly, in a k-criterion
portfolio problem (with k � 2 objectives beyond risk and return), let us assume that
the feasible region is an ellipsoid in k-space. Here, the nondominated surface is the
portion of the surface of the ellipsoid in a similar orthant emanating from the center
of the ellipsoid.
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Fig. 24.7 An ellipsoidal feasible region projected onto two-dimensional risk-return space

Now assume that the market portfolio, which by theory is nondominated, is in
the middle of the nondominated set. Then, when k D 2, the market portfolio would
be at z2 on the ellipse. However, if (1) there is a third objective, (2) the feasible
region is ellipsoidal in three-space, and (3) the market portfolio is in the middle
of the nondominated surface in R

3, then the market portfolio would project onto
risk-return space at z3. If (1) there is a fourth objective, (2) the feasible region
is ellipsoidal in four-space, and (3) the market portfolio is in the middle of the
nondominated surface in R

4, then the market portfolio would project onto risk-
return space at z4. With five objectives under the same conditions, the market
portfolio would project onto risk-return space at z5, and so forth, becoming deeper
and deeper.

Consequently, it can be viewed that the “modern portfolio theory” of today is
only a first-order approximation—a projection onto the risk-return plane of the real
multiple criteria problem from higher dimensional criterion space.

24.3.9 Further Research in MCDA in Portfolio Analysis

So far we have only talked about extending the canonical model in the direction
of multiple criteria. In addition to multiple criteria, we also find intriguing for
future research the areas of special variable treatments and alternative risk measures.
By special variable treatments, we mean conditions on the variables such as the
following:

(a) No fewer than a given number of securities, and no more than a given number
of securities, can be in a portfolio (either long or short).

(b) No more than a given number of securities can be sold short.
(c) If a stock is in a portfolio, then its weight must be in market cap proportion to

the weights of all other stocks in the portfolio.
(d) No more than a given proportion of a portfolio can be involved in stocks sold

short.
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(e) Some or all of the xi are semi-continuous. When an xi is semi-continuous, xi is
either zero or in a given interval Œa; b�; a > 0.

(f) No more than a given number of stocks may have a given upper bound. For
instance, at most one stock (but which one is not known beforehand) may
constitute as much as 10% of a portfolio, with all other stocks having an upper
bound of 5%.

While some of these can be modelled with auxiliary 0–1 variables as in Xidonas and
Mavrotas [190], others may be best approached by evolutionary-style procedures as
in Anagnostopoulos and Mamanis [4]. Having at one’s disposal well-researched
methods for dealing with special variable treatments would extend the power of our
new look at portfolio analysis.

By alternative risk measures, we are thinking of measures like mean absolute
deviation (MAD) as broached by Konno and Yamazaki [116] and conditional value
at risk (CVaR) as integrated into a financial study such as by Şakar and Köksalan
[164]. Finally, it may be that multiple criteria and behavioral finance (see Shefrin
[168]) reinforce one another as both areas see more going on in investing than the
traditional.

24.4 MCDA in Discrete Financial Decision-Making Problems

Several financial decision-making problems require the evaluation of a finite
set of alternatives A D fa1; a2; : : : ; amg, which may involve firms, investment
projects, stocks, credit applications, etc. These types of problems are referred to
as “discrete” problems. The outcome of the evaluation process may have different
forms, which are referred to as “problematics” [162]: (1) problematic ˛: Choosing
one or more alternatives, (2) problematic ˇ: Sorting the alternatives in pre-defined
ordered categories, (3) problematic � : Ranking the alternatives from the best to
the worst ones, and (4) problematic ı: Describing the alternatives in terms of their
performance on the criteria. The selection of an investment project is a typical
example of a financial decision-making problem where problematic ˛ (choice)
is applicable. The prediction of business failure is an example of problematic ˇ
(classification of firms as healthy or failed), the comparative evaluation and ranking
of stocks according to their financial and stock market performance is an example
of problematic � , whereas the description of the financial characteristics of a set of
firms is a good example of problematic ı.

In all cases, the evaluation process involves the aggregation of all decision criteria
F D fg1; g2; : : : ; gng. The aggregation process can be performed in many different
ways depending on the form of the criteria aggregation model. Three main forms of
aggregation models can be distinguished: (1) outranking relations (relational form),
(2) utility functions (functional form), (3) decision rules (symbolic form). In order
to make sure that the aggregation model is developed in accordance to the decision
maker’s judgment policy, some preferential information must be specified, such



24 Multicriteria Decision Aid/Analysis in Finance 1045

as the relative importance of the criteria. This information can be obtained either
through direct procedures in which a decision analyst elicits it directly from the
decision maker, or through indirect procedures in which the decision maker provides
representative decision examples, which are used to infer the preferential parameters
consistent with the decision maker’s global evaluations. The latter approach is
known in the MCDA field as “preference disaggregation analysis” [99, 100].

The subsequent subsections in this part of the chapter present several MCDA
discrete evaluation approaches which are suitable for addressing financial decision-
making problems. The presentation is organized in terms of the criteria aggregation
model employed by each approach (outranking relations, utility functions, decision
rules).

24.4.1 Outranking Relations

The foundations of the outranking relations theory have been set by Bernard Roy
during the late 1960s through the development of the ELECTRE family of methods
(ELimination Et Choix Traduisant la REalité; [160]). Since then, they have been
widely used by MCDA researchers in several problem contexts.

An outranking relation is a binary relation that enables the decision maker to
assess the strength of the outranking character of an alternative ai over an alternative
aj. This strength increases if there are enough arguments (coalition of the criteria)
to confirm that ai is at least as good as aj, while there is no strong evidence to refuse
this statement.

Outranking relations techniques operate into two stages. The first stage involves
the development of an outranking relation among the considered alternatives, while
the second stage involves the exploitation of the developed outranking relation
to choose the best alternatives (problematic ˛), to sort them into homogenous
groups (problematic ˇ), or to rank them from the most to the least preferred ones
(problematic � ).

Some of the most widely known outranking relations methods include the family
of the ELECTRE methods [161] and the family of the PROMETHEE methods [28].
These methods are briefly discussed below. A detailed presentation of all outranking
methods can be found in the books of Roy and Bouyssou [163] and Vincke [186].

ELECTRE Methods The family of ELECTRE methods was initially introduced
by Roy [160], through the development of the ELECTRE I method, the first method
to employ the outranking relation concept. Since then, several extensions have been
proposed, including ELECTRE II, III, IV, IS and TRI [161]. These methods address
different types of problems, including choice (ELECTRE I, IS), ranking (ELECTRE
II, III, IV) and sorting/classification (ELECTRE TRI).

Given a set of alternatives A D fa1; a2; : : : amg any of the above ELECTRE
methods can be employed depending on the objective of the analysis (choice,
ranking, sorting/classification). Despite their differences, all the ELECTRE
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methods are based on the identification of the strength of affirmations of the form
Q D“alternative ai is at least as good as alternative aj”. The specification of this
strength requires the consideration of the arguments that support Q as well as the
consideration of the arguments that are against it. The strength of the arguments
that support Q is analyzed through the “concordance test”. The measure used to
assess this strength is the global concordance index C.ai; aj/ 2 Œ0; 1�. The closer is
C to unity, the higher is the strength of the arguments that support the affirmation Q.
The concordance index is estimated as the weighted average of partial concordance
indices defined for each criterion:

C.ai; aj/ D
nX

kD1
wkck.gik � gjk/

where wk is the weight of criterion gk (
P

wk D 1, wk 	 0) and ck.gik � gjk/ is the
partial concordance index defined as a function of the difference gik�gjk between the
performance of ai and aj on criterion gk. The partial concordance index measures
the strength of the affirmation Qk D“ai is at least as good as aj on the basis of
criterion gk”. The partial index is normalized in the interval Œ0; 1�, with values close
to 1 indicating that Qk is true and values close to 0 indicating that Qk is false.

Except for assessing the strength of the arguments that support the affirmation
Q, the strength of the arguments against Q is also assessed. This is performed
through the “discordance test”, which leads to the calculation of the discordance
index Dk.gik � gjk/ for each criterion gk. The higher is the discordance index the
more significant is the opposition of a criterion on the validity of Q.

The concordance C and the discordance indices Dk are combined to construct the
final outranking relation. The way that this combination is performed, as well as the
way that the results are employed to choose, rank, or sort the alternatives depends
on the specific ELECTRE method that is used. Details on these issues can be found
in the works of Roy [161, 162] as well as in the book of Roy and Bouyssou [163].

PROMETHEE Methods The development of the PROMETHEE family of
methods (Preference Ranking Organization METHhod of Enrichment Evaluations)
began in the mid 1980s with the work of Brans and Vincke [28] on the
PROMETHEE I and II methods.

The PROMETHEE method leads to the development of an outranking relation
that can be used to choose the best alternatives (PROMETHEE I) or to rank the
alternatives from the most preferred to the least preferred ones (PROMETHEE II).
For a given set of alternatives A, the evaluation process in PROMETHEE involves
pairwise comparisons .ai; aj/ to determine the preference index .ai; aj/ measuring
the degree of preference for ai over aj, as follows:

.ai; aj/ D
nX

kD1
wkPk.gik � gjk/ 2 Œ0; 1�
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The higher is the preference index (closer to unity) the higher is the strength of
the preference for ai over aj. The calculation of the preference index depends on
the specification of the criteria weights wk (

P
wk D 1, wk 	 0) and the criteria

preference function P1; : : : ;Pn. The criteria preference functions are increasing
functions of the difference gik � gjk between the performances of ai and aj on
criterion gk. The preference functions are normalized between 0 and 1, with higher
values indicating stronger preference for ai over aj in terms of criterion gk. Brans and
Vincke [28] proposed six specific types of criteria preference functions (generalized
criteria) which seem sufficient in practice.

On the basis of all pairwise comparisons for m alternatives, two overall per-
formance measures can be defined. The first is the leaving flow �C.ai/ D
1

m�1
P

j .ai; aj/ which indicates the strength of preference for ai over all other

alternatives in A. In a similar way, the entering flow ��.ai/ D 1
m�1

P
j .aj; ai/

is also defined to measure the weaknesses of ai compared to all other alternatives.
On the basis of these measures the procedures of PROMETHEE I and II are

employed to rank the alternatives [28]. PROMETHEE I builds a partial ranking
(with incomparabilities) through the combination of the rankings defined from
the leaving and entering flows. On the other hand, PROMETHEE II provides a
complete ranking on the basis of the net flow index �.ai/ D �C.ai/ � ��.ai/,
which constitutes an overall index of the performance of the alternatives.

24.4.2 Utility Functions-Based Approaches

Multiattribute utility theory (MAUT; [109]) extends the traditional utility theory to
the multi-dimensional case. The objective of MAUT is to model and represent the
decision maker’s preferential system into a utility/value function U.ai/. The utility
function is defined on the criteria space, such that:

U.ai/ > U.aj/, ai 
 aj (ai is preferred to aj) (24.5)

U.ai/ D U.aj/, ai � aj (ai is indifferent to aj) (24.6)

The most commonly used form of utility function is the additive one:

U.ai/ D w1u1.gi1/C w2u2.gi2/C : : :C wnun.gin/ (24.7)

where, u1; u2; : : : ; un are the marginal utility functions corresponding the evaluation
criteria. Each marginal utility function uk.gk/ defines the utility/value of the
alternatives for each individual criterion gk. The constants w1;w2; : : : ;wn represent
the criteria trade-offs that the decision maker is willing to take.
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A detailed description of the methodological framework underlying MAUT and
its applications is presented in the book of Keeney and Raiffa [109].

Generally, the process for developing an additive utility function is based on
the cooperation between the decision analyst and the decision maker. This process
involves the specification of the criteria trade-offs and the form of the marginal
utility functions. The specification of these parameters is performed through
interactive procedures, such as the midpoint value technique [109]. The realization
of such interactive procedures is often facilitated by the use of multicriteria decision
support systems, such as the MACBETH system [16].

However, the implementation of such interactive procedures in practice can be
cumbersome, mainly because it is rather time consuming and it depends on the
willingness of the decision maker to provide the required information and the ability
of the decision analyst to elicit it efficiently. The preference disaggregation approach
of MCDA (PDA; [99, 100]) provides a methodological framework for coping with
this problem. PDA refers to the analysis (disaggregation) of the global preferences
(judgement policy) of the decision maker in order to identify the criteria aggregation
model that underlies the preference result (ranking or classification/sorting). In
PDA, the parameters of the decision model are estimated through the analysis of
the decision maker’s overall preference on some reference alternatives A0, which
may include either examples of past decisions or a small subset of the alternatives
under consideration. The decision maker is asked to provide some examples
regarding the evaluation of the reference alternatives according to his decision
policy (global preferences). Then, using regression-based techniques the global
preference model is estimated so that the decision maker’s global evaluation is
reproduced as consistently as possible by the model. A comprehensive bibliography
on preference disaggregation methods can be found in Jacquet-Lagrèze and Siskos
[99, 100], whereas some recent trends are discussed in [170].

PDA methods are particularly useful in addressing financial decision-making
problems [203]. The repetitive character of financial decisions and the requirement
for real-time decision support are two features of financial decisions which are
consistent with the PDA framework. Thus, several PDA methods have been
extensively used in addressing financial decision problems, mainly in cases where
a ranking or sorting/classification of the alternatives is required. The following
subsections provide a brief description of some representative PDA methods which
have been used in financial problems.

UTA Method The UTA method (UTilités Additives; [98]) is an ordinal regression
method developed to address ranking problems. The objective of the method is
to develop an additive utility function which is as consistent as possible with the
decision maker’s judgment policy. The input to the method involves a pre-order of
a set of reference alternatives A0 . The developed utility model is assumed to be
consistent with the decision maker’s judgment policy if it is able to reproduce the
given pre-order of the reference alternatives as consistently as possible.
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In developing the utility model to meet this requirement, there are two types of
possible errors which may occur [171]): (1) the under-estimation error when the
developed model assigns a reference alternative to a lower (better) rank than the one
specified in the given pre-order (the alternative is under-estimated by the decision
maker), and (2) the over-estimation error when the developed model assigns a
reference alternative to a higher (worse) rank than the one specified in the given
pre-order (the alternative is over-estimated by the decision maker). The objective
of the model development process is to minimize the sum of these errors. This is
performed through linear programming techniques [98].

UTADIS Method The UTADIS method (UTilités Additives DIScriminantes; [54,
97]) is a variant of the UTA method, developed for classification problems. Similarly
to the UTA method, the decision maker is asked to provide a classification of a set
of reference alternatives A0 into ordered categories C1;C2; : : : ;Cq defined such that
C1 
 C2 
 � � � 
 Cq (i.e., group C1 includes the most preferred alternatives,
whereas group Cq includes the least preferred ones). Within this context, the
developed additive utility model will be consistent with the decision maker’s global
judgment if tk < U.ai/ < tk�1 for any alternative ai that belongs in category Ck,
where t0 D 1 > t1 > t2 > : : : > tq�1 > 0 D tq are thresholds that discriminate
the groups. Similarly, to the UTA method, the under-estimation and over-estimation
errors are also used in the UTADIS method to measure the differences between the
model’s results and the predefined classification of the reference alternatives. In this
case, the two types of errors are defined as follows: (1) the under-estimation error

C

i D maxf0; t` � U.ai/g, 8 ai 2 C`; ` D 1; 2; : : : ; q � 1, (2) the over-estimation
error 
�

i D maxf0;U.ai/ � t`�1g, 8 ai 2 C`; ` D 2; 3; : : : ; q. The additive
utility model is developed to minimize these errors using a linear programming
formulation [54].

Several variants of the original UTADIS method have been proposed (UTADIS I,
II, III) to consider different optimality criteria during the development of the additive
utility classification model [54, 205]. Other recent extensions can be found in [50,
55, 73, 74, 115].

MHDIS Method The MHDIS method (Multi-group Hie-rarchical DIScrimination
[209]) extends the PDA framework of the UTADIS method in complex sort-
ing/classification problems involving multiple groups. MHDIS addresses sorting
problems through a hierarchical procedure, in which the groups are distinguished
progressively, starting by discriminating group C1 (most preferred alternatives) from
all the other groups fC2;C3; : : : ;Cqg, and then proceeding to the discrimination
between the alternatives belonging to the other groups. At each stage of this
sequential/hierarchical process two additive utility functions are developed for the
classification of the alternatives. Assuming that the classification of the alternatives
should be made into q ordered classes C1 
 C2 
 � � � 
 Cq, 2.q � 1/ additive
utility functions U` and U	` are developed. The function U` measures the utility
for the decision maker of a decision to assign an alternative into group C`, whereas
the second function U	` corresponds to the classification into the set of groups
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C	` D fC`C1;C`C2; : : : ;Cqg. The rules used to perform the classification of the
alternatives are the following:

If U1.ai/ > U	1.ai/ then ai 2 C1
Else if U2.ai/ > U	2.ai/ then ai 2 C2

...........................
Else if Uq�1.ai/ > U	.q�1/.ai/ then ai 2 Cq�1

Else ai 2 Cq

9
>>>>>=

>>>>>;

(24.8)

The fitting of the decision model on the reference data is performed through
a combination of linear and mix-integer programming formulation, which take
into account the number of classification errors introduced by the model, as well
as the robustness of the model’s recommendations. A detailed description of the
model optimization process in the MHDIS method can be found in Zopounidis and
Doumpos [209].

24.4.3 Decision Rule Models: Rough Set Theory

Pawlak [151] introduced rough set theory as a tool to describe dependencies
between attributes, to evaluate the significance of attributes and to deal with
inconsistent data. The rough set approach assumes that every alternative is described
by two types of attributes: condition and decision attributes. Condition attributes
are those used to describe the characteristics of the alternatives (e.g., criteria),
whereas the decision attributes define a one or multiple decision recommendations
(usually expressed in a classification scheme). Alternatives that have the same
description in terms of the condition attributes are considered to be indiscernible.
The indiscernibility relation constitutes the main basis of the rough set theory. Any
set of alternatives, which can be obtained through a union of some indiscernible
alternatives is considered to be crisp otherwise it is a rough set. The existence of
rough sets in a decision problem is due to imprecise, vague or inconsistent data. The
rough set approach enables the identification of such cases, without requiring their
elimination, which may actually lead to loss of useful information. Furthermore, it
enables the discovery of important subsets of attributes as well as attributes that can
be ignored without affecting the quality of the model’s recommendations.

The rough set approach assumes a symbolic decision model expressed in the
form of a set of “IF : : : THEN : : :” rules. Decision rules can be consistent if they
include only one recommendation in their conclusion part, or approximate if their
conclusion involves a disjunction of elementary decisions that describe rough sets.

This traditional framework of the rough set theory, has been extended towards
the development of a new preference modelling framework within MCDA [71, 72].
The main novelty of the new rough set approach concerns the possibility of handling
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criteria, i.e., attributes with preference ordered domains, and preference ordered
groups. Within this context the rough approximations are defined according to the
dominance relation, instead of the indiscernibility relation used. The decision rules
derived from these approximations constitute a preference model.

24.4.4 Applications in Financial Decisions

MCDA discrete evaluation methods are well suited for the study of several
financial decision-making problems. The diversified nature of the factors (evaluation
criteria) that affect financial decisions, the complexity of the financial, business and
economic environments, the subjective nature of many financial decisions, are only
some of the features of financial decisions which are in accordance with the MCDA
modelling framework. This section reviews the up-to-date applications of MCDA
discrete evaluation methods in some typical financial decision making contexts.

Bankruptcy and Credit Risk Assessment The assessment of bankruptcy and
credit risk have been major research fields in finance for the last decades. The
recent credit crisis that started from USA has highlighted once again the importance
of these issues in a worldwide economic and business context. Bankruptcy risk is
derived by the failure of a firm to meet its debt obligations to its creditors, thus
leading the firm either to liquidation (discontinuity of the firm’s operations) or
to a reorganization program [204]. The concept of credit risk is similar to that
of bankruptcy risk, in the sense that in both cases the likelihood that a debtor
(firm, organization or individual) will not be able to meet its debt obligations to
its creditors, is a key issue in the analysis. However, while bankruptcy is generally
associated with legislative procedures, credit risk is a more general concept that
takes into account any failure of a debtor to meet his/her debt obligations on the basis
of a pre-specified payment schedule. In both bankruptcy and credit risk assessment,
decision models are developed to classify firms or individuals into predefined groups
(problematic ˇ), e.g., classification of firms as bankrupt/non-bankrupt, or as high
credit risk firms/low credit risk firms. Such models are widely used by financial
institutions for credit granting decisions, loan pricing, credit portfolio risk analysis,
and investment planning.

Statistical and econometric techniques (discriminant analysis, logit and probit
analysis, etc.) have been widely used for developing bankruptcy prediction and
credit risk models. Over the past couple of decades, however, new methodologies
have attracted the interest of researchers and practitioners, including MCDA
techniques [47, 146, 204].

Bankruptcy prediction and credit scoring models are fitted on historical default
data. In that sense, the model construction process is mostly involved with the identi-
fication of powerful (statistical) patterns that explain past defaults and bankruptcies,
which can also be used for handling future cases. However, there are a number
of features that make MCDA methods particularly useful. First, every bankruptcy
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Table 24.1 Applications of MCDA approaches in bankruptcy and credit risk assessment

Approaches Methods Studies

Multiattribute utility theory AHP [96, 179–181]
MACBETH [17]

Outranking relations ELECTRE [20, 46, 57, 88, 111]
Other [6, 89, 197]

Preference disaggregation UTA [198, 201]
UTADIS [51, 206–208]
MHDIS [52, 61, 148]
Other [31, 68, 76, 117, 121, 122, 180, 194]

Rough set theory [32, 48, 70, 174, 176]

prediction and credit scoring model provides a risk rating, which is purely ordinal
(e.g., the ratings of major rating agencies such as Moody’s, Standard & Poor’s,
and Fitch). This is in accordance with the standard ordinal classification setting
in MCDA. Furthermore, the attributes describing the performance and viability
of corporate entities, organization, or individual clients (e.g., financial ratios) are
not some arbitrary statistical predictor variables. Instead, their use in a predic-
tion/decision model should be made in way that has clear economic and business
relevance, not only in a general context, but also in the specific application setting
of a particular country, region, business sector, or financial institution. Incorporating
expert knowledge of senior credit risk analysts and policy makers into statistical
models is not a straightforward process. On the other hand, MCDA methods provide
this possibility, thus enhancing the model calibration process with information that
is crucial for the successful use of the model in practice.

A representative list of the MCDA evaluation approaches applied in bankruptcy
and credit risk assessment is presented in Table 24.1.

Portfolio Selection and Management Portfolio selection and management
involves the construction of a portfolio of securities (stocks, bonds, treasury bills,
mutual funds, etc.) that maximizes the investor’s utility. This problem can be
realized as a two stage process [92, 93, 192]: (1) the evaluation of the available
assets to select the ones that best meet the investor’s preferences, (2) specification
of the amount of capital to be invested in each of the assets selected in the first
stage. The implementation of these two stages in the traditional portfolio theory is
based on the mean-variance approach introduced by Markowitz [131, 133].

Nevertheless, numerous studies have emphasized the multi-dimensional aspects
of portfolio selection and management [29, 177, 183, 195]. Section 24.3 discussed
this issue in a comprehensive manner in the context of portfolio optimization under
multiple objectives. Except for the optimization phase, one could also consider
the asset selection phase or even the process of selecting the most suitable capital
allocation strategy among multiple Pareto efficient portfolios. The asset selection
phase is most useful for large-scale portfolio problems with too many assets. In such
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Table 24.2 Applications of MCDA approaches in portfolio selection and manage-
ment

Approaches Methods Studies

Multiattribute utility AHP [77, 120, 165, 167]
theory MACBETH [14, 15, 124]

Other [3, 12, 36, 49, 64, 105, 155]

Outranking relations ELECTRE [91–93, 113, 135, 136, 184, 191]
PROMETHEE [2, 78, 112, 136]
Other [69, 85]

Preference UTA [92, 93, 166, 200, 212]
disaggregation UTADIS [10, 210, 214]

MHDIS [58]

Rough set theory [106]

cases, investors often employ screening rules to select the assets that best suit their
investment policy and have the best future growth prospects. Such rules are usually
based on technical analysis and a careful examination of fundamental variables
and factors. MCDA is well-suited in this context enabling the investor to combine
multiple criteria related to the prospects of each investment option and its suitability
to the investor’s policy. The portfolio optimization process is then performed on a
limited number of assets selected through a multicriteria evaluation and screening
process. However, as demonstrated in Sect. 24.4, the optimization phase leads to a
set of suitable portfolios (Pareto efficient portfolios), among which an investor must
select the most suitable one. This can be achieved directly through the multiobjective
optimization process, which may lead to a single efficient portfolio (the one that
best meets the investor’s policy), or through a multicriteria portfolio evaluation
process implemented after a small number of representative efficient portfolios has
been constructed. In the latter case, discrete MCDA methods can be employed
to evaluate the performance of the selected efficient portfolios under multiple
investment criteria.

Table 24.2 summarizes several studies involving the application of MCDA
evaluations methods in portfolio selection and management, covering both the asset
selection and the portfolio selection stages.

Corporate Performance Evaluation The evaluation of the performance of cor-
porate entities and organizations is an important activity for their management
and shareholders as well as for investors and policy makers. Such an evaluation
provides the management and the shareholders with a tool to assess the strength and
weakness of the firm as well as its competitive advantages over its competitors, thus
providing guidance on the choice of the measures that need to be taken to overcome
the existing problems. Investors (institutional and individual) are interested in the
assessment of corporate performance for guidance to their investment decisions,
while policy makers may use such an assessment to identify the existing problems in
the business environment and take measures that will ensure a sustainable economic
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Table 24.3 Applications of MCDA approaches in the assessment of corporate performance

Approaches Methods Studies

Multiattribute utility theory AHP [9, 11, 119, 142]
Other methods [45, 67, 193]

Outranking relations ELECTRE [24, 37, 66, 94]
PROMETHEE [11, 18, 37, 56, 108, 126–128]

[129, 147, 196]

Preference disaggregation UTA [75, 173, 211, 213]
UTADIS [34, 66, 95, 141, 187]

growth and social stability. The performance of a firm or an organization is clearly
multi-dimensional, since it is affected by a variety of factors of different nature, such
as: (1) financial factors indicating the financial position of the firm/organization,
(2) strategic factors of qualitative nature that define the internal operation of the
firm and its relation to its customers and the market (organization, management,
market trend, etc. [198], (3) economic factors that define the economic and business
environment. The aggregation of all these factors into a global evaluation index
is a subjective process that depends on the decision maker’s values and judgment
policy. This is in accordance with the MCDA paradigm, thus leading several
operational researchers to the investigation of the capabilities that MCDA methods
provide in supporting decision maker’s in making decisions regarding the evaluation
of corporate performance. An indicative list of studies on this topic is given in
Table 24.3.

Investment Appraisal In most cases the choice of investment projects is an
important strategic decision for every firm, public or private, large or small.
Therefore, the process of an investment decision should be conveniently modelled.
In general, the investment decision process consists of four main stages: perception,
formulation, evaluation, and choice. The financial theory intervenes only in the
stages of evaluation and choice based on traditional financial criteria such as the
payback period, the accounting rate of return, the net present value, the internal
rate of return, the discounted payback method, etc. [35]. This approach, however,
entails some shortcomings such as the difficulty in aggregating the conflicting
results of each criterion and the elimination of important qualitative variables from
the analysis [202]. MCDA, on the other hand, contributes in a very original way to
the investment decision process, supporting all stages of the investment process.
Concerning the stages of perception and formulation, MCDA contributes to the
identification of possible actions (investment opportunities) and to the definition of
a set of potential actions (possible variants, each variant constituting an investment
project in competition with others). Concerning the stages of evaluation and
choice, MCDA supports the introduction in the analysis of both quantitative and
qualitative criteria. Criteria such as the urgency of the project, the coherence of the
objectives of the projects with those of the general policy of the firm, the social and
environmental aspects should be taken into careful consideration. Therefore, MCDA
contributes through the identification of the best investment projects according to the
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Table 24.4 Applications of MCDA approaches in investment appraisal

Approaches Methods Studies

Multiattribute utility theory AHP [7, 114, 159]
Other [33, 40, 64, 82, 104, 152]

Outranking relations ELECTRE [30, 41]
PROMETHEE [118, 125, 154, 188]
ORESTE [41]

Preference disaggregation UTA [21, 169]
UTADIS [97]

Table 24.5 Applications of MCDA approaches in other financial decision-
making problems

Topic Methodology Studies

Venture capital Conjoint analysis [143, 156]
UTA [172, 199]
MAUT [19, 87]

Country risk MAUT [86, 185]
UTA [5, 39]
UTADIS [5, 59, 205]
MHDIS [53, 59, 60]
Other [38, 42, 144, 145]

Mergers and acquisitions UTADIS, MHDIS [149, 150]
Rough sets [175]
Other [189]

problematic chosen, the satisfactory resolution of the conflicts between the criteria,
the determination of the relative importance of the criteria in the decision-making
process, and the revealing of the investors’ preferences and system of values. These
attractive features have been the main motivation for the use of MCDA methods in
investment appraisal in several real-world cases. A representative list of studies in
presented in Table 24.4.

Other Financial Decision Problems Except for the above financial decision-
making problems, discrete MCDA evaluation methods are also applicable in
several other fields of finance. Table 24.5 list some additional applications of
MCDA methods in other financial problems, including venture capital, country risk
assessment and the prediction of corporate mergers and acquisitions. In venture
capital investment decisions, MCDA methods are used to evaluate firms that seek
venture capital financing, and identify the factors that drive such financing decisions.
In country risk assessment, MCDA methods are used to developed models that
aggregate the appropriate economic, financial and socio-political factors, to support
the evaluation of the creditworthiness and the future prospects of the countries.
Finally, in corporate mergers and acquisitions MCDA methods are used to assess
the likelihood that a firm will be merged or acquired on the basis of financial
information (financial ratios) and strategic factors.
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24.5 Conclusions and Future Perspectives

This chapter discussed the contribution of MCDA in financial decision-making
problems, focusing on the justification of the multi-dimensional character of
financial decisions and the use of different MCDA methodologies to support them.

Overall, the main advantages that the MCDA paradigm provides in financial
decision making, could be summarized in the following aspects [202]: (1) the
possibility of structuring complex evaluation problems, (2) the introduction of both
quantitative and qualitative criteria in the evaluation process, (3) the transparency
in the evaluation, allowing good argumentation in financial decisions, and (4) the
introduction of sophisticated, flexible and realistic scientific methods in the financial
decision-making process.

In conclusion, MCDA methods seem to have a promising future in the field
of financial management, because they offer a highly methodological and realistic
framework to decision problems. Nevertheless, their success in practice depends
heavily on the development of computerized multicriteria decision support systems.
Financial institutions as well as firms acknowledge the multi-dimensional nature
of financial decision problems [23]. Nevertheless, they often use optimization or
statistical approaches to address their financial problems, since optimization and
statistical software packages are easily available in relatively low cost, even though
many of these software packages are not specifically designed for financial decision-
making problems. Consequently, the use of MCDA methods to support real time
financial decision making, calls upon the development of integrated user-friendly
multicriteria decision support systems that will be specifically designed to address
financial problems. Examples of such systems are the CGX system [181], the
BANKS system [128], the BANKADVISER system [126], the INVEX system
[188], the FINEVA system [213], the FINCLAS system [206], the INVESTOR
system [210], etc. The development and promotion of such systems is a key issue in
the successful application of MCDA methods in finance.
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Chapter 25
Multi-Objective Optimization
and Multi-Criteria Analysis Models
and Methods for Problems in the Energy Sector

Carlos Henggeler Antunes and Carla Oliveira Henriques

Abstract The energy sector has been a fertile ground for the application of
operational research (OR) models and methods (Antunes and Martins, OR Models
for Energy Policy, Planning and Management, Annals of Operational Research,
vols. 120/121, 2003). Even though different concerns have been present in OR
models to assess the merit of potential solutions for a broad range of problems
arising in the energy sector, the use of multi-objective optimization (MOO) and
multi-criteria analysis (MCA) approaches is more recent, dating back from mid-
late 1970s. The need to consider explicitly multiple uses of water resource systems
or environmental aspects in energy planning provided the main motivation for
the use of MOO and MCA models and methods with a special evidence in
scientific literature since the 1980s. The increasing need to account for sustainability
issues, which is inherently a multi-criteria concept, in planning and operational
decisions, the changes in the organization of energy markets, the conflicting views
of several stakeholders, the prevalent uncertainty associated with energy models,
have made MOO and MCA approaches indispensable to deal with complex and
challenging problems in the energy sector. This paper aims at providing an overview
of MOO and MCA models and methods in a vast range of energy problems,
namely in the electricity sector, which updates and extends the one in Diakoulaki
et al. (In J. Figueira, S. Greco, M. Ehrgott (Eds.). Multiple Criteria Decision
Analysis – State of the Art Surveys. International Series in Operations Research and

C.H. Antunes (�)
Department of Electrical and Computer Engineering, Faculty of Sciences and Technology,
Polo II, University of Coimbra, 3030-290 Coimbra, Portugal

INESC Coimbra, Rua Antero de Quental 199, 3000-033 Coimbra, Portugal
e-mail: ch@deec.uc.pt

C.O. Henriques
ISCAC, Polytechnic Institute of Coimbra, Quinto Agrícola, Bencanto, 3040-316 Coimbra,
Portugal

INESC Coímbra, Rua Antero Quental 199, 3000-033 Coímbra, Portugal
e-mail: coliv@inescc.pt

© Springer Science+Business Media New York 2016
S. Greco et al. (eds.), Multiple Criteria Decision Analysis, International Series
in Operations Research & Management Science 233,
DOI 10.1007/978-1-4939-3094-4_25

1067

mailto:ch@deec.uc.pt
mailto:coliv@inescc.pt


1068 C.H. Antunes and C.O. Henriques

Management Science, vol. 78, pp. 859–897, Springer, New York, 2005). Broadly,
models and methods dealing with multi-objective mathematical programming and
a priori explicitly known discrete alternatives are distinguished and some of the
main types of problems are stated. The main conclusion is that MOO and MCA
approaches are essential for a thorough analysis of energy problems at different
decision levels, from strategic to operational, and with different timeframes.

Keywords Multi-objective optimization • Multi-criteria decision analysis
• Energy sector

25.1 Introduction

The capability of reliable provision of energy to meet a vast range of needs
and requirements in residential, services/commerce, agriculture, industrial and
transportation sectors, is one of the most distinctive features of modern developed
societies. From supplying power and heat to production systems to satisfying
heating, cooling, lighting, and mobility needs, energy is pervasive in everyday life.
Until mid 1970s, when an energy crisis occurred caused by the peaking of oil
demand in major industrial nations and embargoes from producer countries, energy
planning was almost exclusively driven by cost minimization models subject to
demand satisfaction and technology constraints. This paradigm, in which per capita
energy consumption was an index of a nation’s prosperity, started to change due
to the energy crises in the 1970s (in the aftermath of the Yom Kippur war and the
Iranian revolution) and also the growing concerns regarding environmental impacts
associated with the energy life-cycle from extraction, including the depletion of
fossil resources, to end-use. Therefore, the merits of energy plans and policies could
not be judged by considering just economic costs, but other evaluation aspects
such as reliability of supply, environmental impacts, source diversification, etc.,
should be explicitly taken into account to address energy problems in a societal
perspective. Although issues other than economic costs were often present at the
outset of some studies, usually those concerns were then amalgamated into an
overall cost dimension by monetizing, for instance, environmental impacts and
energy losses, rather than operationalizing those multiple, incommensurate and
conflicting evaluation axes as expressing distinct perspectives of the merits of
courses of action.

In this context, multi-objective optimization (MOO) and multi-criteria analysis
(MCA) models and methods naturally gained an increasing relevance and accep-
tance in the appraisal of energy technologies and policies in a vast range of energy
planning problems at different decision levels (strategic, tactical, operational) and
timeframes (from long-term planning to near real-time control). The recognized
need and advantages of explicitly using multiple objectives/criteria not just provided
a value-added in exploring a larger range of possible decisions embodying different
trade-offs between the competing axes of evaluation but also enabled a richer critical
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analysis of potential solutions. Furthermore, this modeling and methodological
framework made possible to include in a coherent manner in the decision process
the preferences and interests of multiple stakeholders, in order to increase solution
acceptance, and the several sources of uncertainty at stake, in order to obtain more
robust recommendations.

Two major trends may be identified, which have a strong impact of MOO/MCA
research and practice on the energy sector: the increasing awareness of the need to
ensure sustainable development, in which energy provision plays a key role, and the
trend for liberalization and market deregulation, at least in some industry segments.
The concern of sustainable provision of energy meeting the present needs without
compromising the ability of future generations to meet their needs is inescapable in
the development of decision support models in the energy sector. Sustainability is
inherently a multi-criteria concept, which makes MOO/MCA approaches indispens-
able to deal with the complex and challenging problems arising in the energy sector.
The exploitation of energy resources must be balanced with the threats of climate
change, mitigation of impacts on human health and natural ecosystems, assessment
of geo-political risks, etc., also recognizing the uncertainty, the long-term and
possible large-scale effects of today’s energy decisions. Technologies that promote
sustainable energy include renewable energy sources, such as hydroelectricity, solar
energy, wind energy, wave power, geothermal energy, and tidal power, and also those
designed to improve energy efficiency. Besides the important investments at stake
in several energy decisions, these embody also complex and controversial issues
related to global (for instance, pollution knows no border) and inter-generational
(for instance, a power plant will operate during the next 40 years) effects for
which the MOO/MCA tool bag offers the methodological instruments to reach
balanced decisions due to their ability to combine powerful models and methods
with subjective judgments and perspectives of reality.

For many years companies in the energy industry were generally vertically inte-
grated, although at different degrees, i.e. owning generation plants, transmission and
distribution networks, and customer access equipment including billing services.
Most of these companies were, and still are in several cases, state-owned with
the aim of protecting public interests in face of the essential nature of provision
of energy, namely gas and electricity. Energy markets began to be shaped with
the privatization of electric power systems in the early 1980s in some South-
American countries and in UK in the early 1990s with the privatization of the
electricity supply industry. The main aim of deregulation, whether involving or
not privatization, was encouraging competition in many areas to curb economic
inefficiencies associated with the operation of energy monopolies. In general, in
the (more or less concentrated) wholesale electricity markets competing generators
offer their electricity production to retailing companies, which then sell it to clients.
In the retail markets end-use clients are able to select their supplier from competing
retailing companies (although annual customer switching rates among European
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Union member states are, in general, well below 20 % by volume). A very important
issue here is that end-users do not see the possibly highly variable wholesale prices
and therefore do not have incentives to reduce their consumption at peaking prices
by shifting it to periods of lower prices. Models and methods to address end-
users’ demand response to reduce peak demand and energy bill are currently a
challenging research area in which MOO/MCA models and methods are being used.
The technological improvements enabling small-scale production of electricity is
also expected to introduce further changes in the industry, since the prosumer
(i.e., simultaneously producer and consumer) will expectedly be able to manage
demand, have a local micro/mini generation facility (e.g., a small wind turbine or
photovoltaic panels), store energy in static batteries or in an electric vehicle, and buy
from or sell electricity back to the grid. Therefore, new and challenging decision
contexts emerge at different energy industry levels, which should balance economic
efficiency, environmental concerns, social interests, and technological issues.

The first historical applications of MOO/MCA in energy planning date back
to the late 1970s, namely concerning power generation expansion planning or
the choice of sites for nuclear and fossil-fired generation plants. As the relevance
of MOO/MCA models was recognized, a vast amount of literature reported new
models, algorithmic approaches and real-world applications to several problems,
also witnessing the need to take duly into account problem structuring techniques to
shape problems to be tackled and dealing with uncertainty with the aim to obtain
robust conclusions [81, 107, 124]. Greening and Bernow [107] even advocated
the implementation of several multi-criteria methods in an integrated assessment
framework for the design of coordinated energy and environmental policies.

This paper aims at providing an overview of MOO/MCA approaches in a vast
range of energy problems, which updates and extends the one in Diakoulaki et al.
[81]. Broadly, models and methods dealing with multi-objective optimization mod-
els and multi-criteria decision analysis are distinguished. In MOO, mathematical
programming models are developed consisting of multiple objective functions to
be optimized in a feasible region defined by a set of constraints, with different
types of decision variables (binary, integer, continuous, etc.). In MCA a limited
number of courses of action (alternatives) are, in general, explicitly known a
priori to be evaluated according to multiple evaluation criteria, possibly organized
as a hierarchical criterion tree, and the performances of the alternatives may
be qualitatively and/or quantitatively expressed using different types of scales
(ratio, interval, etc.) thus leading to a bi-dimensional impact matrix (alternatives
vs. criteria). The most frequent types of problems reported in the literature are
mentioned, briefly stating the structure of models and methods to tackle them. Due
to the vastness of literature on this topic, which cannot be exhaustively reviewed,
this chapter makes a selection of papers appearing in international journals in the
twenty-first century, mostly in the areas of operational research and energy, with
the main goal of providing selected references for a variety of problems, modeling
and methodological approaches and also displaying general trends as perceived
by the domains being covered and methods being used. The main conclusion is
that MOO/MCA approaches are essential for a thorough analysis of a vast range
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of problems in the energy sector at different decision levels and with different
timeframes in order to generate usable recommendations that balance multiple,
conflicting and incommensurate evaluation aspects.

25.2 Multi-Objective Optimization Models and Methods
for Energy Planning

This section addresses MOO models and methods to deal with a large variety of
energy problems at different organizational levels and timeframes. Problems are
briefly described, the main characteristics of mathematical models are pointed out,
and the methods to compute non-dominated solutions are mentioned. It would
be a value-added to ascertain the real-world nature of applications. However,
papers almost exclusively focus on model formulation and algorithmic approaches.
Therefore, these contributions do not generally convey the significance, subtleties
and richness of important details that contribute for the success or failure of true real-
world studies, from which lessons could be learned for similar decision situations.
Nevertheless, these papers play an important role as experimentation frameworks of
models and algorithms in realistic (if not real) settings thus contributing to illustrate
the potential advantages offered by MOO approaches in hard problems (due to the
dimension, non-linear and often combinatorial nature of the search space). In this
context, it is worthwhile to mention that MOO has been considered a relevant topic
to be included in the undergraduate electric power engineering curriculum [120].

The focus is herein placed on power systems planning problems, which may be
broadly categorized according to the analysis timeframe and the type of decisions
to be made. A common distinction is made between long-term/strategic, operational
and short-term problems (see Table 25.1).

Table 25.1 Categories of planning problems in power systems according to the organi-
zational level and timeframe

Planning Typical timeframe Examples of decisions to be made

Long-term/strategic Several years-decades Generation expansion planning
Transmission facility expansion
Siting of new power plants
Energy-environment-economy models
Market design

Operational Months-years Generation scheduling
Transmission scheduling
Reactive power planning

Short-term Hours-days-weeks Unit commitment
Power flow
Demand-side management
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25.2.1 Power Generation Expansion Planning
and Operation Planning

Power generation capacity expansion planning was one of the first problems to be
addressed using MOO, initially as an extension of single objective cost minimization
models. As environmental issues gained an increasing attention, models began
to include them as explicit objective functions rather than encompassing them
in an overall cost function by using, for instance, monetized pollutant emissions
associated with power generation. In these problems the aim is, in general, iden-
tifying the amount of power to be installed (number and type of generating units,
that is primary energy source and energy conversion technology, sometimes also
involving siting decisions) and output (energy to be produced by new and already
installed units) throughout a planning period, in general of a few decades. With
the development of renewable energy resources, technologies for power generation
expansion involve coal units, large scale and small hydro units, conventional and
combined cycle natural gas units, nuclear plants, wind farms, geothermal units,
photovoltaic units, etc.

The objective functions include the minimization of the total expansion cost
(or just production costs), the minimization of pollutant emissions (SO2, CO2,
NOx, etc.), the minimization of a surrogate for environmental impacts (an eco-
nomic indicator obtained by monetizing the pollutant emissions, a ton-equivalent
indicator or an aggregate dimensionless indicator), the maximization of the system
reliability/safety, the minimization of outage cost, the minimization of radioactive
wastes produced, the minimization of the external energy dependence of the country,
the minimization of a potential technical risk/damage indicator, the minimization
of option portfolio investment risk, the minimization of fuel price risks, and the
maximization of employment at national or regional level.

The constraints mainly express generation capacity lower/upper bounds, min-
imum load requirements, satisfaction of forecasted demand including a reserve
margin, resource availability, technology restrictions due to technical or political
reasons (e.g., the amount of nuclear power allowed to be installed), domestic fuel
quotas, energy security (as a surrogate for diversification of the energy supply),
committed power limits, budgetary limitations, operational availability of generat-
ing units, rate of growth of the addition of new capacity, transmission constraints
due to generation units placement, coal/gas production and transportation capacities,
need to account for multiple water uses and capacity in hydro reservoirs, pumping
capacities.

Multiple-use hydroelectric systems, and in particular multi-reservoir cascaded
systems, impose additional issues to be considered, either as objective functions or
constraints, such as competition of different operators on the same basin (scheduling
of reservoirs) and balancing energy and non-energy uses, including dam safety,
discharges and spills, flood protection and control, agriculture irrigation, industrial
and domestic water supply, navigation, dilution of pollutants and heated effluents,
recreation, ecological sustainability and protection of species, etc.
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Pollutant emissions materialize either expressed as constraints in physical quanti-
ties (tons), in general reflecting (national or international) legislation, or (surrogate)
environmental objective functions consisting in aggregate indicators penalizing the
installed capacity and the energy output.

Besides considering conventional and renewable supply-side options, some mod-
els adopt a broader perspective of integrated resource planning by also including
demand-side options in the planning process. Demand-side options, resulting from
demand-side management programs aimed at operating over end-use loads to shape
the load diagram in such a way that peaks are flattened and valleys are filled, such
as direct load control activities, may be modeled as an equivalent-generating group
with associated operational constraints of capacity and time of operation (in general,
just allowed to operate during demand peaks).

The first models proposed in literature were multiple objective linear program-
ming (MOLP) models, thus disregarding the discrete nature of generation units used
for power expansion. In some cases, the continuous solutions were then subject to a
“discretization” phase using typical capacities of units available for expansion. This
issue was then taken into account at the outset by using multiple objective mixed-
integer linear programming (MOMILP) models. Non-linear relationships, such as
reliability metrics, were often converted into linear expressions by using some kind
of linearization technique.

The algorithmic approaches to tackle generation capacity expansion planning
models are very diversified and in some way denote the trend from “classical”
MOO approaches, both generating methods to characterize as exhaustively as
possible the non-dominated solution set and interactive methods using the prefer-
ence information expressed by decision makers/planners to guide and reduce the
scope of the search, to multi-objective meta-heuristics and, in particular, multi-
objective genetic/evolutionary algorithms. The use of MOMILP models led to the
development of MOO algorithms based on branch-and-bound or cutting planes, in
general aimed at characterizing the whole non-dominated solution set. In general,
in “classical” approaches a single non-dominated solution is generated through
the optimization of a surrogate scalar(izing) function that temporarily aggregates
the original multiple objectives also including preference information parameters,
in such a way that the optimal solution to this function is non-dominated to the
MOO model. Population-based meta-heuristics (genetic/evolutionary algorithms—
GA/EA, particle swarm optimization—PSO, differential evolution—DE, etc.) are
often justified, besides the combinatorial complexity of the problems, on the
grounds that using a population of solutions that expectedly converge to the true
non-dominated front (which is generally unknown) is more efficient than resorting
to the optimization of scalarizing functions.

Having in mind the exploitation of results in practice, interactive methods are
well suited to support decision makers (DM) in selecting a final recommendation, or
even a set of non-dominated solutions for additional scrutiny. This is accomplished
through a feedback process consisting in the computation of a compromise solution
between the competing objectives and a dialogue stage in which the DM’s input
on this solution is used to modify the scalarizing function to be used in the next
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computation phase or to guide the search through an adequate change of the meta-
heuristics parameters according to that preference information.

Several sources of uncertainty are at stake in these power generation expansion
planning models, namely concerning demand growth, primary energy prices,
inflows to hydro reservoirs, etc., and even regulations. The uncertainty associated
with the model coefficients is usually modeled through stochastic coefficients or,
in fewer cases, fuzzy sets, and models are then tackled by means of stochastic
or fuzzy programming. Also, scenarios to which a probability distribution is
assigned are sometimes used, those embodying sets of plausible instantiations of
uncertain model elements, such as the ones mentioned above. The paradigm of
robust solutions is also used, in the sense that the variation in objective functions,
and even constraints, is within acceptable ranges for uncertain model coefficients
and parameters, thus displaying a certain degree of “immunity” of solutions to
“moderate” changes in the inputs. Since these types of prior incorporation of
uncertainty in the mathematical model leads, in general, to a significant additional
computational burden in obtaining solutions, uncertainty may be also tackled by
performing (a posteriori) sensitivity analysis of selected compromise solutions.

Generation capacity expansion planning models should take into account the
deregulation/liberalization and privatization trends underway, namely in the elec-
tricity and gas industries. Therefore, models developed for centrally planned
contexts are not adequate whenever the generation segment is operating under a
market setting, although this may assume very distinct configurations even keeping
some characteristics of the traditional vertical organization. In some way the prob-
lem shifts from cost minimization to profit maximization (market revenues minus
operational costs) in the perspective of the private generation company competing
with similar companies for market share, although very dependent on forms of
market or contracts. Therefore, some approaches based on market equilibrium
have been proposed, in which each player attempts to maximize its own profits.
Some form of central planning authority generally assesses the individual company
proposals accounting for keeping overall market efficiency, system reliability levels,
and transmission network requirements. It should be noticed that the conjecture of
competition among generation companies driving prices down did not materialize
in many cases.

Some works are briefly reviewed below, highlighting the characteristics of the
model and the method used to compute non-dominated solutions.

Soloveitchick et al. [253] present an MOLP model for setting up the marginal
abatement cost in the long run, considering the minimization of generation costs
and emissions. Constraints refer to available capacity, including at peak conditions,
and satisfaction of instantaneous power demand.

Antunes et al. [21] present an MOMILP model considering as objective functions
the total expansion cost, the environmental impact associated with the installed
power capacity and the environmental impact associated with the energy output. It
takes into account the modular expansion capacity values of supply-side options as
well as Demand Side Management (DSM) as an option in the planning process.
Constraints are related to the reliability of the supply system, the availability
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of the generating units, the capacity of equivalent DSM generating group, the
total capacity installed throughout the planning period, the pollutant emissions
and the available capacity modules for expansion for each generating technology.
Decision variables refer to the power to be installed and energy output of generating
technologies considered for additions (gas, simple and combined cycle, coal and
DSM unit) and those existing at the beginning of the planning period (coal and
oil). An interactive MOMILP approach to compute supported and unsupported non-
dominated solutions is proposed.

Meza et al. [184] present a long-term MOLP model considering the minimization
of total (investment and operation) costs, environmental impact, imported fuel and
fuel price risks to decide the location of the planned generation units in a multi-
period planning horizon. The Analytic Hierarchy Process (AHP) is used after the
non-dominated solutions to the MOLP model are computed.

Kannan et al. [149] use the well-known elitist non-dominated sorting genetic
algorithm (NSGA-II) to deal with MOO models to minimize cost and a sum of
normalized constraint violations, and to minimize investment cost and outage cost.
A 6-year planning horizon and five types of candidate generation units are con-
sidered. Murugan et al. [193] use NSGA-II in transmission constrained generation
expansion planning, in which objective functions are the same as in Kannan et al.
[149] but transmission related constraints are treated as hard constraints.

Meza et al. [185] propose an MOO mixed-integer bilinear model to determine the
number and capacity of new generating units (conventional steam units, coal units,
combined cycle modules, nuclear plants, gas turbines, wind farms, and geothermal
and hydro units), number of new circuits required in the network to accommodate
new generation, the voltage phase angle at each node, and the amount of required
imported fuel for a single-period generation expansion plan. An EA is used to
obtain the non-dominated front and AHP is then used to select the best alternative
according to the DM’s preferences. A limited sensitivity analysis phase is performed
to account for fuel price scenarios.

In several models the problems of power generation and transmission network
planning are coordinated. Unsihuay-Vila et al. [273] describe an MOO multi-area
and multistage model to long-term expansion planning of integrated generation
and transmission corridors. The objective functions are total cost (investments and
operational costs, investment costs in DSM programs, investment and operation
of carbon capture technologies), life-cycle Greenhouse Gas (GHG) emissions
and electricity generation mix diversification. Constraints include supply/demand
balance of electricity, bounds on energy supply, DSM programs, transmission
lines, lifetime of the infrastructures, carbon capture technology projects, and
energy diversification. The carbon abatement policy under the Clean Development
Mechanism (CDM) within the European Union Greenhouse Gas Emission Trading
Scheme is considered. A compromise approach based on weights and Manhattan
and Tchebycheff metrics is used to obtain non-dominated solutions.

Aghaei et al. [9] present a multi-period MOMILP model for generation expan-
sion planning including renewable energy sources (RES). The objective functions
are the minimization of overall costs, emissions, energy consumption and portfolio
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investment risk, and the maximization of system reliability (which is converted into
a set of linear expressions). The method to obtain non-dominated solutions is based
on hybrid augmented-weighted "-constraint and lexicographic optimization. In a
final stage, fuzzy decision techniques are used to select the most preferred solution
based on the DM’s goals. A 6-year planning horizon and seven types of candidate
generation units are considered.

Planning of distributed energy resources (DER)/dispersed generation (DG) is
closely coupled with distribution network planning whenever power injection points
are in this network. DER play a key role in addressing energy and environmental
challenges, but also require important investments and may bring about technical
and reliability issues. DER located near consumption points contribute to reduce
power flow in lines, which is also dependent on time coincidence of generation
with demand, leading to better voltage profile (quality of service) and lower losses.
The possibility of working in an islanded mode is also relevant for the Distribution
System Operator (DSO). The DER developer aims at maximizing the energy
traded, within technical operation limits. From a societal standpoint renewable DER
provide a cleaner energy supply than fossil-fuel energy generation and contribute to
mitigate foreign energy dependency. Alarcon-Rodriguez et al. [15] offer a review of
MO planning of DER.

Carpinelli et al. [50] present a methodology aimed at finding the best
development plan for the system, which considers the management of risks and
uncertainties. The problem of optimal sizing and siting DG is formulated as
a constrained non-differentiable MOO model to maximize some power quality
indicators (including voltage quality and harmonic distortion) and minimize costs
(including investment and energy losses). A so-called double trade-off procedure is
used, which consists in first obtaining a wide range of DG siting and sizing solutions
for the scenarios considered (for instance, associated with different wind speed at
possible locations) by means of an "-constraint method and then identifying the
most robust solutions.

Celli et al. [60] present an MOO model for the siting and sizing of DG resources
into distribution networks. The methodology offers the exploitation of trade-offs
between network upgrading cost, power losses cost, energy not supplied cost, and
cost of energy required by the customers served. Non-dominated solutions are
obtained using a GA and an "-constrained method.

Ochoa et al. [207] present an approach to locate and sizing DG in distribution
networks and then computing a multi-dimensional performance index for each
configuration considering a wide range of operational and security issues. This index
may be used to shape the nature of the contract between the utility and the DG.
A similar work is described in Singh and Verma [250] to size and locate DG in
distribution systems with different load models based on a performance index and
using a GA to derive solutions. The main issue is demonstrating that load models can
significantly affect the optimal location and sizing of DG resources in distribution
systems.

Wang and Singh [284] use an improved PSO algorithm to compute non-
dominated solutions to a multi-source hybrid power generation system including
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wind turbines, photovoltaic panels, and storage batteries, considering cost,
reliability, and emissions objective functions. Different sources of uncertainty
are taken into account by means of probabilistic methods, which are associated with
equipment failures, wind speed, solar insolation, and stochastic generation/load
variations.

Katsigiannis et al. [150] study a small autonomous hybrid power system includ-
ing renewable and conventional power sources, as well as energy storage (lead-acid
batteries and hydrogen storage), for which an MOO model is developed considering
as an economic objective the minimization of energy costs and as an environmental
objective the minimization of the total GHG emissions during the system lifetime.
The computation of GHG emissions is based on life cycle analysis of each system
component. NSGA-II coupled with a local search procedure is used to obtain non-
dominated solutions.

El-Zonkoly [90] describes an MO index-based approach to optimally determine
the size and location of DG units in distribution system considering different load
models, including the representation of protection device requirements. A range
of technical issues such as active and reactive power losses of the system, voltage
profile, line loading and the power injected into the grid are accounted for in the
objective functions.

Niknam et al. [204] present an MOO model for placement and sizing of RES
(photovoltaic, wind turbines and fuel cell units) electricity generators. The objective
functions are total costs, deviation of the bus voltage, power losses and emissions.
Constraints consider voltage limits, number and size of renewable electricity
generators due to budgetary restrictions. Solutions are computed using a honey bee
mating optimization algorithm.

Zangeneh et al. [297] develop a fuzzy MOO model to determine the optimal
size, location and technology of DG units in distribution systems. The objective
functions are the profit of a distribution company selling the DG output power to
its customers (including cost, revenue and marginal revenue terms), a weighted
sum of technical violation risk (of over/under node voltage, line and transformer
overloading, and short circuit capacity), and the amount of pollutant emissions
(accounting for CO2, NOx, SO2, CO and PM10). Constraints refer to maximum
installed DG capacity at each node and power flow. The forecasted load, electricity
market price and parameters related to the DG technologies are uncertain and
modeled using fuzzy sets.

Arnette and Zobel [24] develop an MOLP model to determine the optimal mix
of RES (wind, photovoltaic, biomass) and existing fossil fuel facilities on a regional
basis. The objective functions are total (capital, fixed O&M, variable O&M) cost
and emissions. Constraints include biomass availability, biomass as a percentage of
total fuel generation, electricity demand, and budgetary restrictions. Solutions are
obtained by means of weighting techniques and a min-max approach.

Soroudi and Afrasiab [254] propose a stochastic dynamic MOO model for
integration of DG in distribution networks, considering the minimization of tech-
nical constraint dissatisfaction, costs and environmental emissions, to determine
the optimal location, size and timing of investment for both DG units and network



1078 C.H. Antunes and C.O. Henriques

elements. The uncertainties of load, electricity price and wind power generation are
taken into account using scenarios. A binary PSO algorithm is used to compute
non-dominated solutions and a fuzzy satisfying method is applied to select the best
solution considering the planner’s preferences.

Hybrid (i.e. combining several sources) renewable energy systems have been
increasingly used as a sustainable and reliable power supply option for stand-
alone applications, especially in remote areas. A review of MOO models using
evolutionary algorithms devoted to stand-alone systems is presented in Fadaee and
Radzi [93], including placement, sizing, operation, design, planning and control
decisions.

Dufo-López et al. [87] apply the Strength Pareto Evolutionary Algorithm (SPEA)
to the MOO model of a stand-alone photovoltaic-wind-diesel system with battery
storage. The objective functions are energy costs and the equivalent CO2 life cycle
emissions, subject to load satisfaction. Solutions display different combinations of
energy conversion technologies and operating schedule during the year.

Operational problems arising at generation level are also tackled using MOO
models. A method to design the power-pressure mapping at fossil fuel power plants
is presented by Garduno-Ramirez and Lee [99] by defining an MOO problem that
is developed as a supervisory set-point scheduler. A nonlinear goal programming
method is used to compute a single solution from the set of non-dominated solutions
based on the assignment of relative preference values to the objective functions,
encompassing a diversity of operating scenarios. Heo et al. [118] then addressed
this problem of establishing the set points for controllers in fossil fuel plants by
using variations of PSO, including an evolutionary PSO. Later, Heo and Lee [117]
present a multi-agent methodology to derive an MOO model that is then tackled by a
PSO algorithm to define the set points (for steam pressure and reheater/superheater
steam temperatures) in control loops for a large oil-fired power plant, which should
be mapped with the changing load demand and satisfy the conflicting requirements
in plant operation.

Another important topic in power systems for which MOO models are relevant
deals with maintenance scheduling problems. Yare et al. [295] use a modified dis-
crete PSO algorithm to derive preventive maintenance schedules of generating units
for economical and reliable operation of a power system, while satisfying system
load demand and crew constraints. Jin et al. [139] propose an MOO model to design
and operate a wind DG system, involving the determination of equipment sizing,
siting, and maintenance schedules in order to minimize system cost (consisting in
capital, operations, maintenance, downtime losses, and environmental penalty costs)
and maximize turbine reliability. Power intermittency (due to wind speed) and load
uncertainty are taken into account and an MO GA is used to compute non-dominated
solutions for the equipment siting, sizing, and maintenance intervals.

The economic and environmental challenges associated with nuclear energy are
also addressed. Zhang et al. [300] carry out an economic/environmental analysis
of power generation expansion in Japan taking into account the Fukushima nuclear
accident, which obliged the Japanese government to review its nuclear power policy.
The objective functions are total net present value cost and CO2 emissions, subject
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to supply–demand balance, fuel, installed capacity, budgetary, and environmental
constraints, and considering nuclear power scenarios (actively anti-nuclear, pas-
sively negative towards nuclear, conservative towards nuclear, and active nuclear
expansion).

25.2.2 Transmission and Distribution Network Planning

The network infrastructure (both transmission and distribution) plays a critical
role in providing energy to consumers. When utilities were vertically integrated,
thus owning transmission network and generation assets, the planning process was
generally integrated. Being the sole provider of services along the whole industry
chain, utilities had complete data and forecasting capability about demand and
its evolution. The complete knowledge about decisions concerning the installation
of new generation units or the retirement of existing ones enabled also a more
controlled planning of the transmission network. Since nowadays generation and
transmission are usually separated by means of functional unbundling or com-
pany split, and due to competition in electricity generation, transmission network
planning is a more complex task. This may lead to sub-optimal decisions from
a societal perspective since, for instance, a lower rate of transmission expansion
can impair investments in new generation to serve increasing load. Moreover,
since the “owner of power” is likely to change between generation and delivering
to loads, transmission flows in liberalized markets impose further transmission
network planning challenges. A reliable and efficient network infrastructure is
essential to ensure competitive wholesale and retail segments of the market,
which requires adequate planning models and methods. These (namely gas and
electricity) network infrastructures have natural monopoly characteristics, which in
turn imposes suitable access mechanisms and, in general, regulatory frameworks
able to take duly into account the overall societal perspective.

Focusing on power networks, the transmission network has a central position
in system operations and wholesale markets. This network is generally managed
by a Transmission Network Operator (TNO) that is responsible for planning,
namely regarding infrastructure expansion and technological modernization, and
operation to offer efficient, reliable, and nondiscriminatory service. In several
countries, namely due to the network extension, regional operators exist, thus
requiring further coordination. Transmission network planning models are aimed
at determining the location, the size and the time frame of the installation of new
circuit additions to supply the forecasted load throughout the planning period,
considering economic, environmental, technical and quality of service objectives
subject to operating constraints given existing network configuration and gen-
eration units. Aspects generally contemplated either as objective functions or
constraints are: economic—construction/reinforcement costs, equipment (trans-
former stations, protection devices, etc.) upgrade costs, congestion costs, energy
losses costs, regional or national economic growth induced by projects, facili-
tating competitive wholesale markets; environmental—impacts of line corridors,
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effects on location of power plants, need to account for remote disperse renew-
able generation; technical—network topology, inter-control area flows, reliability
standards associated with thermal, voltage and stability requirements; quality of ser-
vice indicators—system/customer average interruption frequency/duration indices,
momentary average interruption frequency index; public health—population expo-
sure to electromagnetic fields.

Distribution networks carry electric energy from transmission networks to
customers. Distribution Network Operators (DNOs) are generally organized on a
geographical basis and should provide a reliable operation complying with technical
and quality of service parameters, taking into account the dynamics of end-use loads
at different time frames. The network distribution planning should also support
the operation of electricity market by enabling non-discriminatory access to the
network. The introduction of dispersed renewable generation, sometimes at the dis-
tribution network level, is changing the distribution network planning process since
this now needs to accommodate not just traditional and new loads (for instance,
the electric vehicle) but also micro- and mini-generation facilities. The ongoing
evolution to smart grids, offering the technological basis using sophisticated
Information and Communication Technologies (ICT) techniques to accommodate
responsive demand, storage, and local generation, creates new challenges regarding
distribution network planning in a more dynamic stance taking into account the
integrated management of supply and demand resources.

A set of representative works is briefly reviewed below, underlining the charac-
teristics of the model and the methods used to compute non-dominated solutions.

Bhowmick et al. [39] consider the minimization of the substation and feeder costs
and the interruption costs as linear objective functions. Constraints refer to network
radial characteristics, load satisfaction, power flow and interruption duration.

Ramirez-Rosado and Bernal-Agustin [230] present an MOO approach based
on an EA to maximize network reliability and minimize the distribution system
expansion costs. A non-linear mixed integer model provides the sizing and location
of future (reserve and operation) feeders and substations.

Chung et al. [72] consider investment cost, reliability and environmental impact
as objective functions. A GA is developed to compute possible planning schemes.
This step is followed by a fuzzy decision analysis method to select a final solution.

Carvalho and Ferreira [55] study the trade-off of backup-circuit investment
decisions and the cost of energy not supplied in distribution network planning,
taking into account reliability issues.

Ramirez-Rosado and Dominguez-Navarro [231, 232] present an MO Tabu
Search approach to solve a fuzzy model for optimal planning of distribution
networks considering three objective functions: minimization of fuzzy economic
cost, maximization of fuzzy reliability, and maximization of solution robustness.
The size and location of reserve feeders and substations for maximizing the level of
reliability at the lowest economic cost, for a given level of robustness, is determined.

Braga and Saraiva [42] present a multi-year dynamic transmission expansion
planning MOO model, considering as objective functions the investment costs,
operation costs, and expected energy not supplied. An interactive approach is used
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starting from a non-dominated solution that is computed by specifying aspiration
levels for two of those objectives and using simulated annealing to deal with the
integer nature of investment decisions. The DM can then change the aspiration
levels and obtain new solutions. Once an expansion plan is accepted, the algorithm
computes long-term marginal costs, reflecting both investment and operation costs,
which are more stable than short-term ones and inherently address the revenue
reconciliation problem in short-term approaches.

Carrano et al. [52] present an MOO approach for providing decision support
to electrical distribution network evolution planning, considering two objective
functions to be minimized: an aggregate (installation and energy losses) cost and a
system failure index. An MO GA is used with a problem-specific variable encoding
scheme and mutation and crossover operators.

Mendoza et al. [181] apply NSGA and SPEA (with a fuzzy c-means clustering
algorithm) approaches to an MOO model for designing power distribution networks.
The objective functions consist in minimizing the total costs and maximizing the
reliability, subject to technical constraints.

Carrano et al. [51] develop an immune-based EA for the electric distribution
network expansion problem under uncertainty in the evolution of node loads.
A Monte-Carlo simulation of the future load conditions is performed to evaluate
solutions within a set of possible scenarios. A dominance analysis is then carried out
to compare the candidate solutions, considering as objectives the infeasibility rate,
the nominal cost, the mean cost and the fault cost. The design outcome is a network
that has a satisfactory behavior under the considered scenarios, thus leading to
networks displaying more robust performances under load evolution uncertainties.

Harrison et al. [113] present an MO optimal power flow model to simulate how
(the UK scheme) incentives to DG developers and DNO affect their choice of DG
capacity within the limits of the existing network. Costs, benefits and tradeoffs
associated with DG in terms of connection, losses and network deferral are explored
to assess whether incentives encourage both parties to make DG connections.

Hazra and Sinha [115] present a non-linear model for congestion management
in transmission networks by generation rescheduling and/or load shedding of par-
ticipating generators and loads considering two objective functions: minimization
of overload and cost of operation. An MO PSO approach is used to derive the non-
dominated front.

Maghouli et al. [174] develop a multi-stage transmission expansion methodology
using a mixed integer MOO framework with internal scenario analysis. The
objective functions are total social cost, maximum regret (robustness criterion), and
maximum adjustment cost (flexibility criterion). Uncertainties are considered by
defining a number of scenarios. NSGA II is used to obtain the non-dominated front
and fuzzy sets are applied to obtain the most preferred solution.

Soroudi et al. [255] present a long-term dynamic MOO model for distribution
network planning involving determining the optimal sizing, placement and timing
of investments on DG units and network reinforcements over the planning period.
The objective functions are the benefits of DNO and DG operators. Uncertainty of
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loads, electricity prices and wind turbine power generation is dealt with using the
point estimation method. A two-stage heuristic method is used to solve the model.

Zhao et al. [301] develop a market simulation-based method to assess the
economical attractiveness of different generation technologies to shape future
scenarios of generation expansion. An MOO model for transmission expansion
planning is proposed to select transmission expansion plans that are flexible given
the uncertainties of generation expansion, system load, and other market variables,
namely concerning the impacts of distributed generation.

Ganguly et al. [98] develop an MOO model for electrical distribution systems
planning to determine the optimal feeder routes and branch conductor sizes. The
objective functions are the total cost associated with network failure (non-delivered
energy, cost of repair, customer damage cost due to interruptions) and economic
costs (installation of new facilities, capacity expansion, maintenance, cost of energy
losses). Constraints include power demand and supply balance, limits on power
flows in substation and feeder branches, upper and lower limits for the node
voltages, and network radiality. An MO dynamic programming algorithm based on
weighted aggregation is used to compute non-dominated solutions.

Gitizadeh et al. [102] present an MOO model for multistage distribution network
expansion planning model considering DG. The objective functions are investment
and operations costs and energy not supplied (reliability index). Constraints include
power flow equations, distribution transformers capacities, feeders and branches
capacities, distributed generation resources capacities, voltage limits, and radial
structure of the network. A hybrid PSO and shuffled frog-leaping algorithm is used
to compute solutions.

Tant et al. [261] propose an MOO method to assess the trade-offs between
three objective functions—voltage regulation, peak power reduction, and annual
cost—to study the potential of using battery energy storage systems in the public
low-voltage distribution network with the aim of deferring upgrades needed to
increase the penetration of photovoltaic generation systems. Results are related with
dimensioning decisions of the battery (considering different technologies, such as
lithium-ion and lead-acid) and the inverter.

The installation of flexible ac transmission systems (FACTS) in existing trans-
mission networks can be used to improve the transmission system load margin and
reduce the network expansion cost. Ara et al. [22] present a mixed-integer nonlinear
MOO model to determine the location of FACTS shunt-series controllers (phase-
shifting transformer, hybrid flow controller, and unified power-flow controller). The
objective functions are the total fuel cost, power losses, and system loadability with
and without minimum cost of FACTS installation. The "-constraint technique is used
to obtain non-dominated solutions. Chang [63] develop an MOO model to determine
which buses need static var compensators (SVC), considering the maximization of
load margin and the minimization of SVC installation cost. The model is then solved
using a fitness sharing MO PSO algorithm to obtain the non-dominated front, under
each contingency with high risk index.

The growth in the penetration of (especially large scale) wind farms in power
systems leads to the need of considering its impacts on transmission network
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expansion planning. For this purpose Moeini-Aghtaie et al. [188] propose an
MOO model considering as objective functions the investment cost, risk cost and
congestion cost. A combination of Monte Carlo simulation and Point Estimation
Method is used to capture the effects of network uncertainties. NSGA II is used to
compute the non-dominated front and a fuzzy decision making approach based on
the DM’s preferences is used for selecting the final solution.

Fuel cells are environmentally clean, can operate with low noise levels, and
can provide energy in a controlled way with high efficiency. Niknam et al. [204]
present an MO fuzzy self-adaptive PSO-EA to solve an operational management
problem considering fuel cell power plants in the distribution network. The objective
functions to be minimized are total electrical energy losses, total electrical energy
cost, total pollutant emissions, and deviation of bus voltages.

The reconfiguration of distribution feeders, which are generally operated in a
radial structure, is done by the DSO during normal or emergency operational plan-
ning. Network reconfiguration is carried out by changing the status of sectionalizing
(normally closed) switches and tie line (normally open) switches, thus leading
to combinatorial problems. Decisions about the status of those switches should
be evaluated by means of objective functions such as line losses, load balancing,
voltage drop and number of switching actions.

Hsiao and Chien [130] develop a constrained non-differentiable MOO model
for the feeder reconfiguration problem to reduce power loss, increase system
security and improve power quality, subject to operational constraints. The objective
functions are formulated as fuzzy sets to capture their imprecise nature and an EA
approach is then used.

Huang [133] proposes a fuzzy network for MO service restoration of distribution
systems in which the multiple objective functions are combined into a weighted-sum
function with weights derived using AHP. Fuzzy cause-effect networks are built to
represent the knowledge and the inference scheme elicited from operators’ needs,
as well as heuristic rules expressed in imprecise linguistic terms.

Lin et al. [168] present an immune algorithm for determining switching oper-
ations to achieve loss minimization and loading balance among feeders and
main transformers. An interactive best-compromise method is applied to solve
the distribution-feeder reconfiguration providing quantitative measures to aid the
decision-making process.

Hsiao [129] uses an MO EA approach for distribution feeder reconfiguration
considering the minimization of power losses and switching operations, and the
maximization of voltage quality and service reliability. An interactive fuzzy algo-
rithm is used to obtain a compromise solution based on the operator’s judgments.

Hong and Ho [125] present a fuzzy MO model dealt with a genetic algorithm to
determine the configuration of a radial distribution system, taking normal condition
and contingencies (faults) into account. Minimization of the active losses is central
when the system operates in a normal condition, while voltage drop should be
minimized when a fault occurs.
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Prasad et al. [228] propose a fuzzy mutated GA for reconfiguration of radial
distribution systems considering the minimization of power loss and a voltage
deviation index. The algorithm guarantees the radial property of the network without
islanding any load point.

Das [79] presents an algorithm for radial network reconfiguration based on
heuristic rules and a fuzzy MO approach. The objective functions to be optimized
involve load balancing among the feeders, real power loss, deviation of nodes
voltage, and branch current constraint violation. Fuzzy sets are used to deal with
the imprecise nature of these objectives and heuristic rules are incorporated for
minimizing the number of tie-switch operations.

Ahuja et al. [13] propose an MOO model for distribution system reconfiguration,
which is solved using a hybrid algorithm based on artificial immune systems and ant
colony optimization. The search space is explored by means of the hyper-mutation
operator that perturbs existing antibodies to produce new ones to obtain solutions to
restore the distribution system under contingency situations. The objective functions
are real losses, transformer load balancing, and voltage deviation.

Savier and Das [242] present a model to allocate power losses to consumers
connected to radial distribution networks before and after network reconfiguration
in a deregulated environment. The network reconfiguration algorithm is based on a
fuzzy MO approach using the max-min principle. The objective functions are related
with real power loss reduction, node voltage deviation, and absolute value of branch
currents.

Falaghi et al. [94] present a method for sectionalizing switches placement in
distribution networks with DG sources. The objective functions are the maximiza-
tion of reliability and the minimization of sectionalizing switches cost. A fuzzy
membership function is defined for each term in the objective functions. The
relocation of existing switches and operational constraints concerning distribution
networks and DG during post-fault service restoration are considered. The fuzzy
MOO model is dealt with an ant colony optimization approach.

Mendoza et al. [182] propose an MO GA approach for power distribution
network reconfiguration considering as objective functions power system losses and
reliability indices.

Yin and Lu [296] present a distribution network feeder operation MOO model
considering network efficiency balance, switching and reliability costs. The annual
feeder load curve is divided into multi-periods of load levels and the feeder
configurations for different load levels in annual operation planning are optimized.
A binary PSO search is used to determine the feeder switching schedule.

Bernardon et al. [36] propose a fuzzy MOO model to minimize power losses
and maximize reliability (number of interrupted customers) in distribution network
reconfiguration, considering sub-transmission systems. Constraints refer to the
radial characteristics of the network, and limits for the current magnitude in network
elements and voltage magnitude in network nodes. A heuristic search procedure is
used based on the branch-exchange strategy to design configurations that are then
evaluated by the Bellman-Zadeh approach.
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Gupta et al. [111] present an MOO model for the reconfiguration of radial
distribution systems in a fuzzy framework, which is dealt with an adaptive GA.
The genetic operators are adapted with the help of graph theory to generate
feasible individuals. The objective functions are the minimization of real power
loss, node voltage constraint violation, branch current constraint violation, and
number of switching operations, subject to the network radial structure with all
nodes energized.

Santos et al. [240] present a formulation for system reconfiguration in large-
scale distribution networks. Problems are modeled using a node-depth encoding,
a technique for tree encoding instead of a graph chain representation to network
design, for which operators are easier to implement and adapt to different problems.
An MO EA based on sub-population tables is then used to explore the constrained
search space, considering objective functions related to power losses, number
of switching operations, network loading, substation loading, voltage ratio and
aggregation function.

Singh and Misra [249] present an MO feeder reconfiguration model usable in
different tariff structures to minimize the overall cost of MW, MVAr and MVA
intakes of an in-house distribution system. Different load types and tariff structures
are simulated to conclude that load type is a major factor in reconfiguration and
cannot be represented by constant load models.

Tsai and Hsu [268] use Gray Correlation Analysis to integrate the objective
functions and provide a relative measure to a particular switching plan associated
with a chromosome in an EA framework without any prior knowledge of the system
under reconfiguration. The objective functions are the system real power losses,
the estimated maximum percentage voltage drop in the system, the load balancing
index, and the total number of switching actions during feeder reconfiguration.

Niknam et al. [206] propose a stochastic MOO model for distribution feeder
reconfiguration, considering as objectives functions total power losses, voltage
deviation and total cost. Uncertainties associated with wind power generation and
active and reactive load are explicitly considered. The methodology consists, in the
first stage, of a roulette wheel mechanism in combination with Weibull/Gaussian
probability distribution function of wind/load forecast variations for random sce-
nario generation in which the stochastic problem is converted into deterministic
scenarios. In the second stage, a modified MOO PSO is implemented for each
deterministic scenario.

Sardou et al. [241] propose a modified shuffled frog-leaping algorithm to derive
the optimal placement of manual and automatic switches in distribution systems.
The objective functions are the minimization of the customer interruption cost
and switches’ investment and maintenance cost. Customer types, customers load
patterns, and different time-varying loading rates are considered besides network
branch failure rates, restoration time and repair time.

Gu and Zhong [108] develop a network reconfiguration approach based on a
two-layer unit-restarting framework for the power system restoration process, i.e.
network-layer unit restarting and plant-layer unit restarting. An MOO model is
based on this two-layer framework, in which the network-layer unit restarting,
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the plant-layer unit restarting and the restoration of important loads are separately
considered with their own models and solving algorithms. A lexicographic method
is then used to solve the MOO model by coordinating the solution search processes
of the three sub-problems to determine the restarting sequence of all units and
restoration of the important loads.

Guedes et al. [109] develop a heuristic based on a branch-and-bound implicit
enumeration scheme to minimize the total power loss and the maximum current
of electrical radial networks, in the reconfiguration of an electrical radial network.
Pareto dominance is used for pruning the search tree.

The likelihood of fault occurrence and the size of the area affected by a fault
in the network have augmented due to increasing demand, the size and complexity
of power distribution systems. Therefore, the fast restoration of the power supply
to the unaffected out-of-service areas is an important issue to sustain customer
satisfaction and revenue level. Mao and Miu [177] develop a non-differentiable
MOO model for switch placement to form self-supported areas after fault isolation
aimed at improving system reliability for radial distribution systems with DG
under fault conditions, also considering customer priority. Graph-based algorithms
incorporating direct load control are developed to locate switches.

Kumar et al. [158] present an NSGA-II based approach for solving the service
restoration problem in an electric power distribution system. The objective functions
are the minimization of out-of-service area, the number of manually controlled
switch operations, the number of remotely controlled switch operations, and losses.
Constraints are related to radial network structure, bus voltage limits, feeder line
current limits, and customer priority.

Cossi et al. [74] develop an MO mixed-integer non-linear programming model
(MINLP) for primary distribution network planning problem. The objective func-
tions are the expansion and operation costs and the system reliability costs in
contingency events. Reliability costs result from the non-supplied energy due to
repairing and switching operations in the distribution network to isolate and to
redistribute loads in the affected sections by permanent faults. An MO reactive
Tabu Search algorithm is used based on dominance to obtain the Pareto optimal
frontier. The problem of placement of sectionalizing (automatic or manual) switches
to restore the distribution network and to reduce non-supplied energy costs when
permanent faults occur in the network is solved simultaneously with the network
expansion planning problem using a GA.

Competitive electricity markets require the consideration of additional technical
issues in network expansion planning. Louie and Strunz [170] develop a hierarchical
MOO approach to address the economic market objective of an independent system
operator in competitive electricity markets while considering secondary objectives,
which are locally optimized, through coordinated control of network devices such
as phase shifting transformers and series FACTS. The secondary objective is a wide-
area impact index assessing the effects of parallel flow over multiple lines in a
region.

Xu et al. [292] present a model to expand the transmission network in open-
access schemes. The method starts with a candidate pool of feasible expansion plans
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and the selection of the best candidates is carried out through MOO integrating the
market operation and planning in a deregulated system. The objective functions
are the total expansion investment, the generation cost and the profit prospect of
the expanded transmission lines, which is based on the MW-mile pricing method
to allocate costs based on actual system usage. Human intervention is required in
both stages to take into account practical engineering and management concerns.
Reliability criteria intervene before an expansion plan is adopted.

The evolution to smart grids imposes several challenging problems regarding
the integration of significant levels of distributed renewable generation (with their
characteristics of higher variability and, in some cases, non-dispatchability in
comparison with convention thermal plants), storage options (also taking into
account the dissemination of electric vehicles) and demand responsive energy
management systems. Brown et al. [46] propose a model to determine potential
locations for adding interties between feeders in a radial distribution system to
improve the reliability in the islanded mode of operation. The objective functions are
cost and a reliability measure associated with feeder addition. Constraints are related
to budget allowed, improving reliability beyond the base case, voltage lower and
upper bounds at buses, and loading on the lines. An empirical equation incorporating
the capacity factors of renewable generation is used to model the power output of
the distributed sources. An MO GA is used to compute non-dominated solutions.

The guarantee of asset performance is a leading goal for electric power network
managers. Ascertaining the optimal balance between preventive and corrective
maintenance is of utmost importance for achieving that goal, being necessary
pondering life-cycle and maintenance costs as well as constraints imposed by
demand and regulators. Hilber et al. [122] develop an MOO model with this
aim, including customer interruption cost and network operator’s (preventive and
corrective) maintenance costs. An evolutionary PSO approach is proposed to
compute solutions.

Yang et al. [294] present an MO EA to minimize the overall substation cost
and maximizing reliability in electric power distribution networks. The scheduling
of substation preventive maintenance provides different trade-offs between these
objective functions. Decision-varying Markov models relating the deterioration
process with maintenance operations are developed to predict the availability of
individual components then enabling to identify critical components and evaluate
the overall substation reliability.

Yang and Chang [293] present an integrated methodology to compute preventive
maintenance schedules to optimize overall cost and reliability consisting of three
functional modules to model the stochastic deterioration process of individual com-
ponent with a continuous-time Markov model, evaluate the reliability of a composite
power system taking into account the configuration and failure dependence of the
system, and compute compromise solutions using a Pareto-based MO EA.

Power quality in distribution systems generally decline due to an increase in
nonlinear loads. Hong and Huang [126] present an interactive MO nonlinear pro-
gramming approach based on GA to passive filter planning. Short-circuit capacity
of the point of common coupling and the individual bus loads are modeled with
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fuzzy sets. The objective functions to be minimized are the harmonic voltages and
the filter cost, subject to satisfying the harmonic standard and harmonic power flow
equations.

25.2.3 Reactive Power Planning and Voltage Regulation

Consumer loads impose active and reactive power demand. Active (real) power is
converted into “useful” energy, such as light or heat. Inductive reactive power that
is imposed, for instance, to generate the magnetic field of asynchronous electric
machines, must be compensated. This can be achieved by installing capacitor
banks in order to guarantee an efficient delivery of active power to loads, releasing
system capacity, reducing system losses, and improving bus voltage profile, thus
promoting economic and operational/quality of service benefits. The reactive power
compensation planning (also referred to as VAr planning) problem involves deter-
mining the location and size of capacitors, which provide locally reactive power,
to be installed in electrical distribution networks, which are generally operated in a
radial structure. This is a non-linear problem with binary and continuous variables.
Objective functions generally express investment, installation, and operation and
maintenance costs, power losses, economical operating conditions, system security
margin (line overloads due to excessive power flow), voltage deviation from the
ideal voltage at buses and quality of service indicators. More recent methods to deal
with this problem are based on meta-heuristics to cope with its combinatorial nature,
namely population based approaches devoted to MOO models.

Hsiao and Chien [131] deal with the optimal capacitor allocation problem
considering as objective functions investment cost, operating efficiency, system
security and service quality. An interactive trade-off algorithm is used based on
the "-constraint technique and the DM’s preferences on system operating policies
to obtain a compromise non-dominated solution.

Augugliaro et al. [26] deal with the problem of optimal control of shunt capacitor
banks under load tap changers located at HV/MV substations coupled with optimal
control of tie-switches and capacitor banks on the feeders of a large radially operated
meshed distribution system. The objective functions are the minimization of power
losses and the flattening of the voltage profile. An MO heuristic strategy based on
fuzzy sets is used.

Pires et al. [223] present a non-linear mixed integer MOO model considering
capacitor installation cost and active power losses as objective functions to eval-
uate the quality of solutions the capacitor location problem in radial distribution
networks. Solutions are obtained using a Tabu Search approach. A similar model
is dealt with in Antunes et al. [20] using an MO simulated annealing approach
based on the non-dominance relation and some form of aggregation of the objective
functions to compute the acceptance probability function.

Li et al. [166] propose an integer-coded MO GA using non-dominance for
reactive power compensation planning, considering both intact and contingent
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operating states, to solve the siting problem of the installation of new devices and the
operational problem of preventive transformer taps and the controller characteristics
of dynamic compensation devices. The objective functions are the voltage deviation
from the ideal setting and the cost associated with the installation and use of reactive
power compensation devices.

Ma et al. [171] deal with a real-time power voltage control problem. Control
devices such as capacitors and on-load tap changers, as well as load shedding are
modeled as discrete control variables. The objective functions are the deviation
of instant voltage at buses and number of operations of control devices and load
shedding. An MO jump gene EA is used to obtain widespread control solutions that
are then analyzed using the Simple Multi-attribute Rating Technique (SMART).

Malekpour and Niknam [175] present an MOO model for the Volt/VAr control
problem in distribution systems with high wind power penetration. A probabilistic
load flow approach using the point estimate method is employed to model the
uncertainty in load demands and electrical power generation of wind farms. The
objective functions are electrical energy costs generated by fuel cell power plants,
wind farms and distribution companies, total electrical energy losses, and emissions.
Constraints refer to balanced distribution power flow equations, renewable sources
active and reactive power, distribution line active power flow limits, transformer
taps, capacitors reactive power, power factor, and bus voltage magnitude at each load
level. A modified Frog Leaping Algorithm is used to achieve the optimal values for
active and reactive power of wind farms and fuel cell power plants, reactive power
of capacitors and transformers tap positions for the next day ahead. The objective
functions are fuzzified and a max-min approach is used to compute solutions.

Segura et al. [244] formulate the capacitor placement problem as an MOO
model including economic and technical aspects. The quadratic minimization of
the voltage harmonic distortion produced by the harmonic currents drawn by non-
linear loads is also considered, besides cost and losses functions. The real capacitor
lifetime issue is dealt with using a resonance index and an aging model of capacitor
dielectric insulation under a non-sinusoidal waveform scenario.

Alonso et al. [16] present an MOO model for reactive power planning in
networks with wind power generation. The aim is aiding power system operators
to determine the optimal placement to locate wind farms and FACTS devices as
well as the amount of reactive power to be injected into the network. The objective
functions are voltage stability, active power losses, and investment costs of the
VAr injection sources. Constraints refer to power flow equations, power generation
from fixed speed and variable speed wind turbines, voltage limits at buses, limits
of the loadability factor, limits of variable speed generators, limits of static VAr
compensators, and physical restrictions in the wind farm connection point. An MO
GA is used to obtain non-dominated solutions.

Niknam et al. [200] propose a stochastic nonlinear mixed-integer MOO model
for daily voltage/VAr control including hydro turbine, fuel cell, wind turbine, and
photovoltaic power plants. The objective functions to be minimized are electrical
energy losses, voltage deviations, total electrical energy costs, and total emissions
of renewable energy sources and grid. The uncertainty associated with hourly
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load, wind power, and solar irradiance forecasts are modeled in a scenario-
based stochastic framework to convert the stochastic MOO model into a series of
equivalent deterministic models. An EA is used to solve these models, including a
mutation scheme to enhance the global searching ability and mitigate the premature
convergence.

Especially in lengthy rural electric power distribution systems, automatic voltage
regulators (AVR), which are auto-transformers with individual taps on windings,
may be installed at a substation or along distribution lines aimed at providing
customers with steady voltage independent of how much power is drawn from the
line. AVR compensate voltage drops through distribution lines to reduce energy
losses thus improving energy quality. Chang and Yang [64] develop an MOO
model for planning series compensation devices, series voltage restorer and fault
current limiter, for power quality improvement in distribution systems, involving
a composite set of fuzzy performance indices comprising the cost expenditure of
installed series compensation devices, voltage boosts across sensitive loads and
overall voltage improvement. A Tabu Search approach is used to obtain solutions
and robustness is taken into account considering preselected internal faults, external
faults and simultaneous disturbances.

Mendoza et al. [183] present an MOO approach to define the optimal location
of AVR in electric distribution networks, considering the total power losses and the
voltage drop in the system as the objectives to be optimized. A micro GA is used to
compute Pareto optimal solutions and offering the DM a set of possible (trade-off)
solutions.

Souza and de Almeida [256] use SPEA-2 to determine the installation of AVR
banks and capacitors in radial distribution feeders to reduce losses and improve the
network voltage profile. Expert knowledge is taken into account via fuzzy logic in
order to reduce the search space.

Wang et al. [285] use a PSO approach for improving the dynamic voltage security
of a power system, involving continuous and discrete control variables. The aim
of the optimal coordinated preventive control is formulated as a non-linear MOO
model to optimize the terminal voltage, the output power of each generator and
the tap position of each on-load tap changer so as to keep the voltage secure along
the trajectory of a quasi-steady-state time-domain simulation when contingencies in
generation facilities or transmission line occur.

Niknam et al. [202] propose an MOO model to determine the location of AVR
in distribution systems with DG. The objective functions are electricity generation
costs, electrical losses in the distribution system and the voltage deviations.
Constraints refer to active power constraints of DG units, AVR’s tap position, and
bus voltage magnitude. An algorithm based on a modified teaching-learning EA is
used to obtain Pareto optimal solutions.

A vast range of operational problems is at stake in power systems, such as load
frequency control and harmonic distortion, which should be addressed considering
multiple objectives to assess the merits of solutions. Darvishi et al. [78] use a
fuzzy MO model to optimize the power factor and total harmonic distortion, while
limiting selective harmonic distortion, in the framework of an active filter based
power quality scheme. A differential evolution approach is used to obtain solutions.
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25.2.4 Unit Commitment and Dispatch Problems

Broadly, the unit commitment problem consists in scheduling generating power
plants to be on, off, or in stand-by mode, within a planning period to meet demand
load. When the power system is vertically integrated, unit commitment is carried
out by the utility in a centralized manner and the objective function is minimizing
overall costs (the generation cost function is generally approximated as a quadratic
function of the power output) subject to meeting demand and reserve margins. When
generation is under competition, a generation company must decide locally the unit
commitment plan in order to maximize its profit taking into account established
power contracts and the energy it estimates it may sell in a competitive (spot) market
according to price forecasts. Technical constraints such as capacity constraints,
stable operating levels, minimum time period the unit is up and/or down, or
maximum rate of ramping up or down should be included in mathematical models.
Economic dispatch problems consist in determining the optimal combination of
power output of online generating power plants to minimize the total fuel cost
while satisfying load demand and operational constraints. Since load demand
can vary swiftly, dispatch should be able to react and adapt while guaranteeing
adequate cost or profit levels, considering technical issues such as voltage control,
congestion, transmission losses, line overloading, voltage profile, deviations of
technical indicators from standard values. Also, particular market structures should
be taken into account. While a generation company in a competitive environment
intends to maximize profits, entities such as an independent system operator aims at
maximizing social welfare, and these perspectives should be reconciled in decision
aid models. Economic-environmental dispatch generally leads to MOO models
in which cost minimization, or profit maximization, and environmental impact
minimization (namely harmful emissions originated at fossil-fuel power plants) are
explicitly considered. Hobbs et al. [123] investigate the implications of a deregulated
market on unit commitment models.

Some works are briefly outlined below, including the main characteristics of the
model and the methods used to obtain non-dominated solutions.

Dhillon et al. [80] present a fuzzy MOO model to determine the generation
schedule of a short-range hydrothermal problem, considering the minimization of
cost, NOx emissions, SO2 emissions, CO2 emissions, and variance of generation
mismatch. Statistical uncertainties in the thermal generation cost, NOx, SO2 and
CO2 emission curves and power demand, are captured as random variables.
A weighting approach is used to exploit the trade-offs between these objectives.
Fuzzy sets are then used to assist the system operator to choose the weights to obtain
the operating point that maximizes the overall satisfaction.

Abido [1] formulates the environmental/economic power dispatch problem as
a nonlinear constrained model. An NSGA approach is used to compute the non-
dominated frontier and fuzzy sets then extract a “best compromise” solution from
the trade-off curve.
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Brar et al. [44] consider cost and emission objectives in a thermal power dispatch
problem to allocate the electricity demand among the committed generating units,
subject to physical and technological constraints. A “best compromise” solution is
obtained by searching for the optimal weighting pattern (the one that attains the
maximum satisfaction level of the objective membership functions) using a GA.

Centeno et al. [61] develop a weighted mixed integer goal programming model
to deal with the problem of converting an energy schedule into a power schedule,
respecting the reserve schedule as well as technical constraints. Goals are associated
with the unit’s energy schedule, total energy scheduled, unit’s positive reserve
schedule, total cost for the company, and smoothness of power changes. The con-
straints are related to the linearization of energy costs, limits for power generation
and reserve, reserve limits intervals, ramp rates, and security limits.

An EA is presented in Tsay [269] to solve the economical operation of a
cogeneration system under emission constraints. The objective functions are the
minimization of cost and several types of emissions. The cost model includes
fuel cost and tie-line energy. The emissions considered are CO2, SOx, and NOx,
which are derived as a function of fuel enthalpy. The constraints include fuel mix,
operational constraints, and emissions. The steam output, fuel mix, and power
generation are computed considering the time-of-use dispatch between cogeneration
systems and utility companies.

Bath et al. [29] present an interactive fuzzy satisfying weighting method to decide
the generation schedule considering explicitly statistical uncertainties in the system
production cost data, pollutant emission data and load demand. The objectives are
the operating cost, NOx emissions and risk due to the variance of active and reactive
power generation mismatch. The Hooke-Jeeves’ algorithm and evolutionary search
techniques are used to generate the “best” solution in the framework of an interactive
approach.

Abido [2] discusses the potential and effectiveness of different Pareto-based MO
EA for solving a constrained non-linear MOO environmental-economic electric
power dispatch problem. A hierarchical clustering algorithm is used to provide the
power system operator with a representative and manageable Pareto optimal set.
A fuzzy set based approach is developed to identify one of those solutions as the
best compromise one.

Bath et al. [30] present a mixed stochastic-fuzzy MOO approach to decide the
generation schedule of committed thermal stations, considering the minimization
of fuel cost, gaseous pollutant emission, variance of active and reactive generation
mismatch, and a voltage deviation to avoid violation of active power-line flow
limits. Statistical uncertainties are taken into account in the thermal generation cost,
gaseous emission curves, active and reactive power demand, and voltage magnitude
at each bus. The Hooke-Jeeve method is used to generate non-dominated solutions
within minimum and maximum limits of power generation and then a min-max
technique is used to select the optimal solution interactively.

Agrawal et al. [12] present a fuzzy clustering-based PSO approach to solve the
constrained environmental-economic dispatch problem with conflicting objectives.
The algorithm is endowed with several features to preserve non-dominated solutions
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found along the search process, to direct the particles towards less explored regions
of the Pareto front, and to avoid entrapment into local optima. It also incorporates
a fuzzy feedback mechanism to determine a compromise solution. The objective
functions are the minimization of fuel cost and emissions, subject to power balance
(total power generated must satisfy total demand and account for transmission
losses), generation capacity and transmission line loading limits.

Borghetti et al. [41] present a short-term scheduling procedure in two stages:
a day-ahead scheduler for the optimization of DG production during the following
day and an intra-day scheduler that every 15 min adjusts the scheduling in order
to take into account the operation requirements and constraints of the distribution
network. The intra-day scheduler solves a non-linear mixed integer MOO problem,
in which the objective functions are the minimization of the voltage deviations with
respect to the rated value, dispatchable DG production deviations with respect to the
set points calculated by the day-ahead scheduler, and network losses.

Pourmousavi et al. [227] present a PSO approach to find real-time optimal
energy management solutions for a stand-alone hybrid wind-microturbine (MT)
energy system, requiring the capability to make rapid and robust plans regarding
the dispatch of electrical power produced by generation assets. The objective
functions are the cost of generated electricity, the MT operational efficiency, and
environmental emissions.

Vahidinasab and Jadid [274] develop an MOO model for joint eco-
nomic/environmental dispatch in energy markets. The objective functions are the
(quadratic) cost of generators and pollutant emissions. Constraints include power
(generation, demand and losses) balance, power generation limits, and line flow
upper bounds. An "-constraint technique is used to compute the non-dominated front
and fuzzy sets identify a compromise solution. Vahidinasab and Jadid [276] present
a stochastic MOO model for self-scheduling of a power producer participating
in the day-ahead joint energy and reserves markets. The objective functions are
expected profit and (SO2 and NOx) emissions when committing its generation of
thermal units. Constraints consider supplying energy and ancillary services in the
spot market, ramp rate restrictions, and minimum up/down time. Uncertainties
associated with price forecasting and forced outage of generating units are modeled
as scenarios using a combined fuzzy c-mean/Monte-Carlo simulation approach to
convert the problem into a deterministic mixed-integer optimization problem. Each
deterministic scenario is then tackled using an "-constraint method. Schedules may
be used by the power producers to decide on emission quota arbitrage opportunities
and strategic bidding to the energy and reserve market.

Zhihuan et al. [302] incorporate the concept of robust solution into an MOO
reactive power dispatch model to take into account uncertain load perturbations
during system operation. The aim is searching for solutions that are immune to
parameter drifts and load changes using information of load increase directions to
promote the stability of optimal solutions in face of load perturbations. NSGA-II is
used to search for robust non-dominated solutions regarding perturbations, which
are more practical in reactive power optimization of real-time operation systems.
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Catalão and Mendes [56] propose an MOO approach to solve the profit-based
short-term thermal scheduling problem with environmental concerns under compet-
itive and environmentally constrained market conditions. The objective functions
are the minimization of emissions and the maximization of profits.

Bayon et al. [31] develop an analytical solution for the environmental-economic
dispatch optimization problem obtaining the Pareto optimal set under different
loading conditions. The objective functions are the minimization of fuel costs and
NOx emissions. Constraints refer to power balance (total power generated must
supply total load demand and transmission losses) and unit capacity constraints.

Chandrasekaran and Simon [62] propose a fuzzy artificial bee colony (ABC)
algorithm for solving the MO unit commitment problem. The objective functions are
fuel cost, emissions and system reliability level. The binary coded ABC algorithm
finds the on/off status of the generating units whereas the economic dispatch is
solved using the real coded ABC. The fuzzy membership design variables are tuned
using the real coded ABC, thus not requiring expert information.

Guo et al. [110] present an MOO dispatch model considering the integration
of wind power. The objective functions are generation (wind turbines and coal-
fired) cost, reserve capacity and the environmental emissions. Constraints refer to
power output and load demand balance, upper and lower limits of power output,
maximum climbing rate and back-up capacity supported by coal-fired generators.
An approach based on a coordination degree combined with a satisfaction degree
is used to transform the problem into a single-objective one (optimal generation
dispatch), which is then solved using PSO.

Niknam and Doagou-Mojarrad [201] introduce an adaptive ™-PSO algorithm
for the MO economic-emission dispatch. The algorithm is based on the phase
angle vector to generate solutions faster than in the original PSO and evolutionary
methods. New mutation and inertia weight factors adjustment techniques are used.

Niknam et al. [202] develop a stochastic MOO model for operation and manage-
ment of electrical energy, hydrogen production and thermal load supplement by fuel
cell power plants in distribution systems, taking into account uncertainty associated
with load demand, price of natural gas, fuel cost for residential loads, electricity
purchasing/selling tariffs, hydrogen selling price, operation, and maintenance costs.
The objective functions are active power losses, emissions and total (fuel cell
power plant and grid) cost. Constraints refer to power flow equations, line limits,
active power generation, bus voltage, and ramp rate. A so-called teacher-learning
algorithm is proposed to integrate the operation management of fuel cell power
plants and the configuration of the system.

Aghaei et al. [11] present a nonlinear MOO dynamic economic emission dispatch
model including wind turbines. The objective functions are expected total electrical
energy costs and emissions. Constraints represent power balance equation, trans-
mission network losses, up and down ramp rate limits, generation limits, spinning
reserve requirements and wind power generation. A scenario-based stochastic
programming framework is used to model the random nature of load demand and
wind forecast errors. The stochastic problem is transformed into an equivalent deter-
ministic scenario-based nonlinear, non-smooth, and non-differentiable problem,



25 Multi-Objective Optimization and Multi-Criteria Analysis Models. . . 1095

which is tackled using a PSO approach with a self-adaptive probabilistic mutation
strategy. A similar model is presented by Bahmani-Firouzi et al. [27] using a PSO
algorithm with a fuzzy adaptive technique and self-adaptive learning strategy for
velocity updating.

Fazlollahi and Maréchal [96] propose an MOO model for process design
and energy integration for sizing and operation optimization of poly-generation
technologies, including biomass resources. The objective functions are investment
cost, operating cost including incomes, and CO2 emissions. Constraints consider
heat balance, CO2 emissions and electricity balance. MO EA and mixed integer LP
approaches are used to obtain solutions.

Micro-grids encompass generation, loads and power flows as a sub-system gen-
erally operating in a grid-connected mode (i.e., power can be imported or exported
from and to the main grid) allowing for local control of DG and thereby reducing
or eliminating the need for central dispatch. In disturbance or fault conditions, the
micro-grid can be isolated (islanded) from the distribution system to keep quality of
service locally. Chaouachi et al. [65] develop a generalized formulation for energy
management of a micro-grid using artificial intelligence techniques coupled with an
MOLP model. The objective functions are the minimization of operation costs and
the environmental impact, taking into account the future availability of renewable
energy and load demand that is predicted using an artificial neural network ensemble
(24 h ahead photovoltaic generation and 1 h ahead wind power generation, and
load demand). Uncertainties regarding the overall micro-grid operation and the
forecasted parameters are considered.

Moghaddam et al. [189] present an MOO model for operation management in
micro-grids. The objective functions are operating costs and pollutant emissions,
including CO2, SO2 and NOx. Constraints deal with power balance, active power
generation capacity, and battery limits. The micro-grid includes DG sources such
as micro-turbines, fuel cells, photovoltaic units, wind turbine and batteries. An MO
adaptive PSO is used to compute solutions to a nonlinear MOO model, including a
chaotic local search mechanism and a fuzzy self-adaptive structure.

Sanseverino et al. [239] use the output of data mining tools, as loads and
generation production forecasting models, to determine the generator scheduling
by identifying optimal real and reactive power dispatch among distributed energy
resources in micro-grids, including storage units. The objective functions consist in
the minimization of the energy losses, production (fuel) costs, and CO2 emissions.
Constraints refer to DG power output taking into account the required power
reserves and voltage drop at network buses. Solutions are obtained using NSGA-
II within an execution monitoring and replanning approach to capture uncertainty
associated with weather conditions and loads profiles. The controller allows moni-
toring the execution of the scheduling plan, interrupting the monitoring to input new
information and repairing the plan under execution every time interval.

Niknam et al. [203] develop a stochastic mixed integer nonlinear and non-
differentiable MOO model for micro-grid operation, considering cost and emissions
as the objective functions. Constraints refer to power balance, active power limits
of units, spinning reserve requirements, and charge/discharge rate of storage
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devices. Uncertainties associated with load demand, power output of wind and
photovoltaic units and market prices are modeled using a scenario-based stochastic
programming. An MO teaching–learning EA is used to characterize the Pareto
optimal front.

Optimal power flow is an important problem in (steady-state) power system
analysis due to operational security concerns and savings potential. A power flow
analysis provides the magnitude and phase angle of the voltage at each bus, and the
real and reactive power flowing in each line of the network. Therefore, power flow
analysis is instrumental for several problems in power systems. The determination of
the optimal power flow (OPF) may be based on nonlinear MOO models to establish
the optimal settings of control variables for minimizing the cost of generation,
emissions, transmission losses and voltage and power flow deviations. Nangia et al.
[195] present an OPF model with three objectives: cost of generation, system
transmission loss and pollution. Solutions to the power system operation problem
are obtained by minimizing the Euclidean distance to the ideal point.

Rosehart et al. [236] develop OPF techniques based on MOO to optimize
active and reactive power dispatch while maximizing voltage security in power
systems. Interior point methods coupled with goal programming and linearly
combined objective functions are used to obtain non-dominated solutions. The
effects of minimizing operating costs, minimizing reactive power generation, and/or
maximizing loading margins are compared to suggest possible ways of costing
voltage security in power systems.

Amorim et al. [19] present an MO EA for OPF to deal with a large-scale non-
convex constrained nonlinear model with continuous and discrete variables. The
objective functions are associated with the violated inequality constraints associated
with physical and operational aspects. The MO EA is based on Pareto optimality and
uses a diversity-preserving mechanism to overcome premature convergence. Fuzzy
set theory is then used to identify the best compromise solutions.

Bhattacharya and Roy [37] present a heuristic technique called gravitational
search algorithm, which is inspired by swarm behavior and based on the Newton’s
law of gravity and mass interactions, to solve the MO OPF problem. The objective
functions are minimization of fuel cost, active power losses, and voltage deviation.

Niknam et al. [205] present a PSO approach for the MO OPF problem,
considering cost, losses, voltage stability, and emission impacts as the objective
functions. A fuzzy decision-based mechanism is used to select the best compromise
solution from the Pareto optimal set. The algorithm uses chaos queues and self-
adaptive concepts to adjust the PSO parameters.

25.2.5 Load Management

Demand-side resources have been used by utilities with the main goals of achieving
cost reduction and operational benefits (such as reducing peak power demand,
improving reliability, increasing load factor, or reducing losses), which maintain
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their potential attractiveness even in an unbundled electricity industry. Appropriate
power curtailment actions impose changes on the regular working cycles of loads
to reduce peak demand without compromising the quality of the energy services
provided, either by interrupting loads through direct load control or voluntary load
shedding, shifting their operation cycles to other time periods or changing operating
settings (such a thermostats). These types of demand-side actions have attracted
further attention mainly due to the volatility and spikes of wholesale electricity
prices and reliability concerns (transmission congestion and generation shortfalls).
Loads that provide energy services whose quality is not substantially affected by
short duration supply interruptions (for instance, thermostatic loads such as electric
water heaters and air conditioners in the residential sector) are adequate targets
for these actions. The goal is to design and select adequate load management
actions, considering a comprehensive set of objectives of different nature (economic,
technical, comfort, quality of services) and different players in the power industry.
In a progressively deregulated market, these actions are an opportunity for a
retailer facing volatile wholesale prices and fixed, over a certain time period,
retail prices. A distribution utility (which owns and manages the distribution
network) is generally interested in decreasing peak demand at primary substation
and transformer stations levels due to capacity constraints, reliability concerns, or
efficiency improvement through loss reduction. Impacts on spinning reserve and
reliability may also be taken into account. The reduction of power demand may also
be appropriate due to costs associated with a specific demand level, where profits
may substantially decrease because average wholesale prices are much higher than
retail prices in a certain period. Peak reduction enables both the distribution utility
and the retailer to have a better capability of continuously exploring the differences
between purchasing and selling prices in order to increase profits. However, since
the energy service provided by loads under control is changed, possibly postponed
or even not provided at all, when load management actions are implemented,
attention should be paid to discomfort caused to customers so that those actions
become also interesting for them, namely due to the ensuing reduction in their
electricity bill. Therefore, multiple incommensurate and conflicting objectives of
economical, technical and quality of service nature are at stake in the design and
selection of load management actions. Some of the aspects mentioned above are
modeled as hard or soft constraints (by establishing thresholds whose violation is
included into a penalty function).

Some works are briefly reviewed below, highlighting the characteristics of the
model and the methods proposed.

Jorge et al. [140] compute non-dominated control strategies for load management
that minimize peak demand, maximize the utility profit associated with the energy
services delivered by the controlled loads, and maximize quality of service subject
to constraints of maximum number of loads allowed to violate a comfort threshold.
An interactive procedure based on the STEM method is used.

Gomes et al. [104] consider an MO model for minimizing peak power demand at
different load aggregation levels (sub-station and power transformers, thus enabling
the model to be used in different scenarios of power systems structure and by
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different entities), maximizing profits (which depend on the amount of electricity
sold and the time of day/season/year), minimizing the loss factor, and minimizing
discomfort caused to consumers (maximum continuous time interval and a state
variable controlled by loads is over or under a pre-specified threshold). An MO EA
is used to derive load shedding patterns to be applied to groups of loads. This model
has been then dealt with an interactive MO EA for the identification and selection
of direct load control actions (population individuals), including a progressive
articulation of the DM’s preferences by changing aspiration or reservation levels
used in fitness assessment, as well as adaptive operators [105]. The demand imposed
by loads when subject to control actions is assessed using physically-based load
models.

Manjure and Makram [176] consider the minimization of costs, which are
associated with re-dispatching generation or curtailing interruptible loads, and the
maximization of the security margin in the event of a generation shortage.

Pedrasa et al. [218] use a binary PSO algorithm to schedule diverse interruptible
loads over a given period. The objective functions are minimizing the total payment
and the frequency of interruptions imposed upon the loads, while satisfying a system
requirement of total hourly curtailments and operational constraints of interruptible
loads.

Hong et al. [127] investigate the demand response achieved by an energy
management system in a smart home environment to obtain the optimal temperature
scheduling for air-conditioning according to the day-ahead electricity price and out-
door temperature forecasts. Since these are predicted 24 h in advance, the predicted
retail electricity prices and temperatures are modeled using fuzzy sets. An immune
clonal selection approach is used to determine the day-ahead 24 h temperature
schedule for air-conditioning to minimize electricity costs and maximize comfort.

Shahnia et al. [246] present a peak load management system in low-voltage
distribution networks. An MOO model is used to select the loads to be controlled
in order to minimize peak load and maximize customer satisfaction. Low-cost
controllers with low-bandwidth two-way communication are installed in costumers’
premises and at distribution transformers to implement solutions online.

Hong and Wei [128] determine the percentage of load allowed to be shedded
and parameters including the number of stages and delayed time for the under-
frequency relay. A hierarchical GA is employed to minimize the amount of load
shedded and maximize the lowest swing frequency caused by a disturbance. An
autonomous system with diesel generators and wind-power generators is employed
to illustrate the method.

Recently, MOO models have been used for the design of energy management
systems for (pure or hybrid) electric vehicles (EV), also encompassing energy and
power management problems in multi-source EV. Zhang and Liu [299] present
an energy control strategy for parallel hybrid electric vehicles using fuzzy multi-
objective optimization. The objective functions are the overall vehicle fuel economy
and emissions, by converting the electric energy consumed by the electric motor into
equivalent fuel consumption. A minimum average weighted deviation method is
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used to compute the non-dominated solution set, considering variations in emission
requirement in different districts, accounting for the battery state of charge within
its operation range.

Chen et al. [69] develop a fuzzy logic controller to manage the energy distribution
for a hybrid EV, in which an MO EA is used to optimize the fuzzy membership
function according to known fuzzy control rules.

Buildings account for about 40 % of overall energy consumption and several
countries and supra-national institutions, e.g. the European Union, have produced
specific regulations for improving energy efficiency in buildings, regarding the
building envelope and equipment (e.g., solar thermal for hot water). Evins et al.
[92] develop an MOO framework that is applied to the outputs of Standard
Assessment Procedure, involving all energy calculations for building regulations
compliance and Code for Sustainable Homes ratings for domestic buildings in the
UK, considering as objective functions carbon emissions (which is based on the
percentage improvement of the Dwelling Emission Rate over the Target Emission
Rate) and costs (construction costs plus energy costs). Constraints refer to limits on
over-heating and roof area. NSGA-II is used to compute non-dominated solutions.

Asadi et al. [25] present a mixed-integer MOO to optimize the retrofit cost,
energy savings and the thermal comfort of a residential building. The decision
space is defined by the combination of alternative materials for the external walls
insulation and roof insulation, different window types, and installation of solar
collectors in an existing building. The objective functions are retrofit cost, energy
savings and thermal comfort (using the predicted mean vote metric). A weighted
Tchebycheff metric is used to compute non-dominated solutions. Combined cooling
heating and power (CCHP) systems have revealed to be economical, energy-
efficient and environmental friendly, even more than conventional cogeneration
plants, enabling the utilization of waste heat (in cooling, space heating and hot
water). These systems may range from large-scale applications such as in industry
and commercial buildings to small-scale systems. Wu et al. [289] deal with a mixed-
integer non-linear programming MOO model to optimize the operation of a micro
CCHP system (gas engine and adsorption chiller, and auxiliary devices such as gas
boiler, heat pump and electric chiller) under different load conditions. The objective
functions are the energy saving ratio and cost saving ratio, subject to equipment and
energy balance constraints.

25.2.6 Energy-Economy Planning Models

The study of the interactions between the economy (at national or regional levels),
the energy sector and the corresponding impacts on the environment inherently
involves multiple axes of evaluation of distinct policies. In general, MOO models
for this purpose are developed based on input–output analysis (IOA) or general
equilibrium models (GEM). The analytical framework of IOA enables to model
the interactions between the whole economy and the energy sector, thus identifying
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the energy required for the provision of goods and services in an economy and
also quantifying the corresponding pollutant emissions. GEM include interrelated
markets and represent the (sub-)systems (energy, environment, economy) and the
dynamic mechanisms of agent’s behavior to compute the competitive market
equilibrium and determine the optimal balance for energy demand/supply and
emissions/abatement.

Hsu and Chou [132] suggest an MOLP approach integrated with IOA to evaluate
the impact of energy conservation policy on the cost of reducing CO2 emissions
and undertaking industrial adjustment in Taiwan. An inter-temporal CO2 reduction
model, consisting of two objective equations (maximization of the Gross Domestic
Product (GDP) and the minimization of CO2 emissions) and 1340 constraint
equations, is constructed to simulate alternative scenarios consisting of Case I (no
constraint on CO2 emissions), Case II (per capita CO2 emissions at Taiwan year
2000 levels), Case III (Case II emission levels with energy conservation), and Case
IV (Case II emission levels with energy conservation plus improved electricity
efficiency). Constraints include inter-temporal inter-industry constraints, water
resource constraints, labor constraints for each industry and industrial expansion
constraints.

Chen [68] employs an MOLP model combined with an IOA model to determine
the trade-off between GDP growth and CO2 emissions on Taiwan’s economy. The
author derives non-inferior solutions by using the ‘center-point’ method.

Oliveira and Antunes [209] also propose an economy-energy-environment plan-
ning model based on IOA whose objective functions are private consumption,
employment level, CO2 emissions and the self-production of electricity. Constraints
refer to balance of payments, gross-added value, production capacity, bounds
on exports and imports, public deficit, storage capacity and security stocks for
hydrocarbons. Solutions to this MOLP model were obtained using the STEM
method. An interactive approach to tackle uncertainty and imprecision associated
with the coefficients of this type of models is presented in Borges and Antunes
[40], where some of the coefficients are triangular fuzzy numbers. Interactive
techniques are used to perform the decomposition of the parametric (weight)
diagram into indifference solutions corresponding to basic non-dominated solutions.
Three objective functions are considered which enable to graphically display
the decomposition of the parametric diagram: energy imports, self-production of
electricity and CO2 emissions. Oliveira and Antunes [210] develop an MOLP model
based on an IOA considering the minimization of acidification potential and energy
imports, and the maximization of GDP, employment, and self-power generation.
Constraints refer to a large set of economic indicators, gross fixed capital formation,
trade balance, production capacity, stock changes, public deficit, storage capacity
and security stocks, and several pollutant emissions. Non-dominated solutions are
obtained using an interactive procedure based on a min-max scalarizing function
associated with reference points that are displaced according the DM’s preferences
expressed through average annual growth rates. The structure of this model has been
then updated in several directions including capturing the MOLP model coefficients
through intervals, considering as objective functions the GDP, employment, global
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warming potential and energy imports [211, 212]. This model enables to provide
information regarding the robustness of non-dominated solutions (that is, solutions
that attain desired levels for the objective functions across a set of plausible
scenarios) and also a more optimistic or pessimistic stance by the DM. With the
introduction of (direct and indirect) employment multipliers, this IOA structure has
been used to extend the interval MOLP to assess the trade-offs between economic
growth (GDP), social welfare (employment), and electricity generation based on
renewable energy sources [213].

Cristóbal [76] suggest an IOA MOLP model combined with goal programming
to assess the economic goals—the level of output must be as close as possible to
the level of the year 2005; Social goals—labour requirements must be as close as
possible to the level of the year 2005; energy goals—coal requirements must be
reduced by 5 %; environmental goals—and total emissions of GHGs and wastes
emissions must be reduced by 10 %. Solutions are obtained by considering the
minimization of the total deviations from the goals.

Wu and Xu [290] propose a system dynamics and fuzzy MOO integrated support
model to predict energy consumption and CO2 emissions for a world heritage area.
The objective functions are the increase of GDP per capita, energy consumption, and
CO2 emissions, subject to minimum GDP growth rate, investment for energy sav-
ings and CO2 emission reduction, energy intensity, and carbon intensity. A simple
weighted sum scheme is used to obtain solutions (policy suggestions).

Pérez-Fortes et al. [219] develop an MO MILP model for design and operation
of bio-based supply chains that use locally available biomass to generate electricity
(through a gasification technology). The objective functions express economic,
environmental and social concerns. Decisions are related to location and capacity
of technologies, connectivity between the supply entities, biomass storage periods,
matter transportation and biomass utilization.

Aki et al. [14] study the introduction of an integrated energy service system in an
urban area, which supplies electricity, gas, cooling, and heating to consumers. CO2

emissions, energy pricing and economic impact on the consumers are considered
under several scenarios using linear programming models

25.2.7 Energy Markets

The liberalization of energy markets is aimed at increasing overall efficiency
through the introduction of competition in some of the industry branches, namely
generation and retailing. The underlying idea is that by enhancing efficiency and
productivity gains, lower energy (namely electricity) prices and lower production
costs are achieved. This trend of energy markets should go in line with security of
supply (by minimizing risks and overall impacts of supply disruptions, diversifying
energy sources including renewables and energy efficiency), competitive energy
systems (to minimize energy costs for consumers and industry thus contributing
to social policies and economic competitiveness), and environmental protection



1102 C.H. Antunes and C.O. Henriques

(thus minimizing the impacts of energy generation and use on populations and
ecosystems). Issues such as the internalization of external costs to the environment
into energy prices, in accordance with the polluter pays principle, are also at stake
in designing market-based mechanisms balancing multiple objectives, such as taxes
or tradable emission permits.

Niimura and Nakashima [199] analyze the trade-offs between different objectives
of power system operation and the influence of policies such as environmental
impact minimization on deregulated electricity trade, using a fuzzy interactive MOO
procedure to reach a coordinated solution.

Kaleta et al. [147] present a stochastic short-term planning model for supporting
decisions of small energy suppliers (price takers). The objective functions modeling
the generator attitude towards risk are the mean return, the mean loss, the mean
semi-deviation below the mean return, the worst return realization and the condi-
tional value-at-risk. The technical constraints lead to a mixed integer LP model.
The uncertainty associated with market prices is modeled using a set of scenarios
with assigned probabilities. Solutions are computed using an interactive approach
based on aspiration/reservation levels and achievement scalarizing functions.

Milano et al. [186] propose a technique for representing system security in the
operation of decentralized electricity markets, with special emphasis on voltage
stability. An MOO model considers the maximization of the social benefit and
the distance to maximum loading conditions, which is dealt with an interior point
method to solve the optimal power flow problem. Elastic and inelastic demand
conditions are considered. It is shown that system security can be improved
yielding better market conditions through increased transaction levels and improved
locational marginal prices throughout the system.

Amjady et al. [18] develop an MOO model for day-ahead joint market clearing.
The objective functions include augmented generation offer cost and security
indices (overload index, voltage drop index, and voltage stability margin). System
uncertainties including generating units and branches contingencies and load
uncertainty are explicitly considered in the stochastic market clearing scheme. The
solution methodology consists of two stages: a roulette wheel mechanism and
Monte Carlo simulation for random adaptive 24 h scenario generation wherein the
stochastic MO market clearing procedure is converted into deterministic scenarios.
For each scenario, an MO method based on the "-constraint technique is used for
provision of spinning and non-spinning reserve as well as energy.

Dukpa et al. [88] propose a strategy for wind electric generators employing an
energy storage device for participating in the day-ahead unit commitment process.
The objective functions are the maximization of returns from the market considering
the best forecast and the minimization of risks considering the forecast uncertainties.
Risk in the participation strategy is quantified by computing expected energy not
served. The MO mixed integer LP model is transformed into a fuzzy optimization
model. Energy storage enables to shift wind energy produced during hours with low
marginal prices to hours with higher marginal prices by appropriately storing and
releasing it and maintain an energy reserve similar to spinning reserve to minimize
the risk of the optimal participation schedule.
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Farahani et al. [95] propose an MOO model for reactive power market clearing
with the presence of plug-in hybrid EVs, considering as objective functions the
total payment function to the vehicles and generators for their reactive power
compensation and total grid losses. An MO PSO approach is used and the “best”
compromise solution is chosen based on preferences revealed in face of non-
dominated solutions using a fuzzy approach.

Aghaei et al. [10] present an MOO model for electricity market clearing,
considering both voltage and dynamic security aspects. The objective functions
are offer cost of energy and reserves, corrected transient energy margin, and
voltage stability margin. Constraints are related to AC power flow constraints and
operation limits of units, security and reserve requirements. Solutions are computed
combining a lexicographic approach and an augmented "-constraint technique.

Khazali et al. [155] use a fuzzy MOO approach for clearing the reactive power
market. The objective functions are the total payment function, voltage stability and
the voltage deviation of the network buses, for which membership functions are
specified and a single goal attainment function is tackled using a fuzzy adaptive
PSO to determine the amount of reactive power provided by each generator and the
reactive compensation devices including adjustment tap settings of transformers.
The reactive power compensation devices are assumed to compete in an integrated
market with the generators and then a separate reactive power market is proposed.

Reddy et al. [234] also address the reactive power price clearing considering
voltage stability using an MOO approach. The objective functions are the minimiza-
tion of total payment and transmission losses, and the maximization of a voltage
enhancement index and the load served. Constraints refer to nodal power balance,
generator reactive power restrictions, determination of market clearing prices,
reactive power capability limits of generators, and security (voltage, thermal limits,
transformer tap settings). The SPEA and an MO PSO are used to obtain results in
base and stressed cases with constant and voltage dependent load modeling.

Vahidinasab and Jadid [275] present a bilevel model, in which the upper-level
sub-problem maximizes the individual supplier pay-off and the lower-level sub-
problem solves the Independent System Operator’s market clearing problem. The
objective functions are social welfare and pollutant emissions, subject to power flow
equations as well as generator, security and power transfer limits. The algorithm
used to solve the ISO’s MO optimal power flow is based on the "-constraint
technique.

25.3 Energy Planning Decisions with Discrete Alternatives

MCDA methods become increasingly popular in energy decision-making due to
their capability to deal with complex decision processes, in face of multiple
and conflicting evaluation criteria, different stakeholders with different views and
preferences, several sources of uncertainty and distinct time frames. Literature
reviews with specific focuses on the use of MCDA in energy problems have
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been reported. Hobbs and Meier [124] provide a wide review of MCDM methods
and energy-environment applications. Keefer et al. [153] offer a perspective on
trends and developments regarding decision analysis applications. Greening and
Bernow [107] describe a modeling framework incorporating developments in
integrated assessment of energy and environmental issues, and suggest a strategy
for developing a set of coordinated policies from varying levels of information
about policy attributes and DM’s preferences. Pohekar and Ramachandran [224]
review the application of various MCDM methods in the framework of sustainable
energy planning. Kiker et al. [156] suggest recommendations for applying MCDA
techniques in environmental projects. Polatidis et al. [226] develop a methodological
framework to provide insights regarding the suitability of multi-criteria techniques
in the context of renewable energy planning. Jebaraj and Iniyan [138] review
emerging issues related to energy modeling. Wei et al. [287] analyze energy models
developed by various international organizations, focusing on modeling approaches
and structures, as well as their typical applications. Zhou et al. [303] update a
previous study on decision analysis in energy and environmental modeling. Løken
[169] provide an overview of some of the most relevant MCDA methods proposed
in the literature. Higgs et al. [121] outline alternative methodologies that involve
the use of information technology methods in enabling a possible consensus to
be reached between participatory groups on decisions that may affect their local
environment. Wang et al. [283] review methods in different stages of MCDM
processes for sustainable energy planning. Kowalski et al. [158] combine the use
of scenario building and participatory MCDA in the context of renewable energy
from a methodological point of view. Behzadian et al. [34] suggest a classification
scheme and provide a comprehensive literature review to uncover, classify, and
interpret research studies based on PROMETHEE methodologies and applications.
Carrera and Mack [53] review the process of sustainability assessment of energy
technologies using expert judgments to rate energy technologies on a set of social
indicators that were generated in a discursive procedure. Huang et al. [134] review
environmental applications of MCDA. Abu-Taha [3] presents a review of MCDA
in the area of renewable energy, revealing that AHP has been the most used of
all MCDM methodologies. Bhattacharyya [38] reviews methodologies for off grid
electrification projects. Scott et al. [243] review works dealing with problems
arising in the bioenergy sector. Behzadian et al. [35] conduct a survey to offer a
taxonomy of the research on TOPSIS applications and methodologies in energy
management, having concluded that most concentrate on evaluating and selecting
energy generation technologies as well as assessing energy system performance.
Doukas [84] explores different linguistic representation and computational MCDA
models that are or can be applied to energy policy support, concluding that MCDA
methodologies with direct computation on linguistic variables can aid the design
of energy policy frameworks, by bridging the gap between energy policy makers
thinking, reasoning, representation and computing. Herva and Roca [119] review
the advantages of combining complementary environmental evaluation tools and
the applicability of multi-criteria analysis in decision support, explicitly considering
energy decision-making applications. Mirakyan and Guio [187] present a review
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of methods and tools for integrated energy planning in cities and territories,
concluding that the purpose of MCDA methodologies is not just required to define
the “right” energy plan but rather to support the understanding of the multi-criteria
complex situation that supports interactive planning and learning, helping people to
systematically consider, articulate and apply value judgments.

This section is devoted to review MCDA models and methods dealing with
energy decision-making with the aim of analyzing the main trends of method-
ological approaches and specific domains of application. The articles reviewed
address different energy supply systems, such as renewable energy systems (e.g.
photovoltaic, wind, hydrogen, biomass, biogas, geothermal and biofuels) and con-
ventional technologies (e.g. natural gas, coal, fuel, large hydro and nuclear power),
and different sorts of energy decision-making applications: comparison of power
generation technologies, evaluation of energy plans and policies, selection of energy
projects, siting decisions, evaluation of energy efficiency measures either in tech-
nology replacement or in building refurbishment, etc. Criteria usually considered
to evaluate the merit of different alternatives in energy decision-making problems
are included in the main broad categories: technical, economic, environmental and
social.

25.3.1 Comparison of Power Generation Technologies

The aim of these problems is mainly focused on the appraisal of available primary
energy source and technological options, for conventional technologies and/or
renewable energy technologies. The main energy focus of these studies remains
on electricity generation using conventional sources but with renewable electricity
generation and hydrogen gaining increasing attention (see Table 25.2).

25.3.2 Energy Plans and Policies

The energy decision-making problems framed in this category are concerned with
the choices faced by energy planners or regulators at the national, regional or local
level seeking to identify the most desired one among alternative scenarios, energy
policies and strategies for the future. The main purpose is to guide the formulation
and development of energy policies taking into account the public debate on energy
policy, energy conservation strategies and energy resource allocation issues, involv-
ing concerns with renewable sources, hydrogen and bioenergy (see Table 25.3).
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ić

an
d

A
fg

an
[3

3]

E
le

ct
ri

ci
ty

ge
ne

ra
ti

on
Fo

rm
ul

at
io

n
of

su
st

ai
na

bl
e

te
ch

no
lo

gi
ca

le
ne

rg
y

pr
io

ri
ti

es

Te
ch

no
lo

gi
es

Pu
bl

ic
ut

il
it

y,
in

de
pe

nd
en

t
po

w
er

pr
od

uc
er

s,
fin

an
ci

ng
or

ga
ni

za
ti

on
s,

re
se

ar
ch

er
s

an
d

ac
ad

em
ic

s,
go

ve
rn

m
en

ta
l

m
an

ag
er

s,
re

gu
la

to
ry

au
th

or
it

y,
tr

an
sm

is
si

on
sy

st
em

op
er

at
or

,C
en

te
r

fo
r

R
en

ew
ab

le
E

ne
rg

y
So

ur
ce

s

O
W

A
Fu

zz
y—

li
ng

ui
st

ic
ap

pr
oa

ch
N

at
io

na
l—

G
re

ec
e

D
ou

ka
s

et
al

.
[8

5]



25 Multi-Objective Optimization and Multi-Criteria Analysis Models. . . 1109

E
le

ct
ri

ci
ty

ge
ne

ra
ti

on
R

an
ki

ng
of

po
w

er
ex

pa
ns

io
n

al
te

rn
at

iv
es

E
xp

an
si

on
al

te
rn

at
iv

es
n.

a.
M

A
V

T
R

ob
us

tn
es

s,
se

ns
it

iv
it

y
an

al
ys

is
an

d
sc

en
ar

io
s

N
at

io
na

l—
So

ut
h

A
fr

ic
a

H
ei

nr
ic

h
et

al
.

[1
16

]

E
le

ct
ri

ci
ty

ge
ne

ra
ti

on
E

va
lu

at
io

n
of

al
te

rn
at

iv
e

fu
el

s
fo

r
el

ec
tr

ic
it

y
ge

ne
ra

ti
on

E
ne

rg
y

so
ur

ce
s

n.
a.

A
N

P
Sc

en
ar

io
ba

se
d

N
at

io
na

l—
T

ur
ke

y
K

ön
e

an
d

B
ük

e
[1

57
].

E
le

ct
ri

ci
ty

ge
ne

ra
ti

on
E

va
lu

at
io

n
of

hy
br

id
en

er
gy

sy
st

em
s

Te
ch

no
lo

gi
es

n.
a.

SA
W

—
ge

ne
ra

l
in

de
x

of
su

st
ai

na
bi

li
ty

St
oc

ha
st

ic
ap

pr
oa

ch
N

ot
sp

ec
ifi

ed
—

B
el

gi
um

an
d

Po
rt

ug
al

A
fg

an
an

d
C

ar
va

lh
o

[5
]

E
le

ct
ri

ci
ty

ge
ne

ra
ti

on
Te

ch
no

lo
gi

ca
l,

ec
on

om
ic

an
d

su
st

ai
na

bi
li

ty
ev

al
ua

ti
on

of
po

w
er

pl
an

ts

Te
ch

no
lo

gi
es

n.
a.

A
H

P
Se

ns
it

iv
it

y
an

al
ys

is
N

ot
sp

ec
ifi

ed
—

G
re

ec
e

C
ha

tz
im

ou
ra

ti
di

s
an

d
Pi

la
va

ch
i

[6
7]

E
le

ct
ri

ci
ty

ge
ne

ra
ti

on
E

va
lu

at
io

n
of

th
e

su
st

ai
na

bi
li

ty
of

cu
rr

en
t

an
d

fu
tu

re
el

ec
tr

ic
it

y
su

pp
ly

op
ti

on
s

Te
ch

no
lo

gi
es

85
em

pl
oy

ee
s

of
th

e
A

xp
o

G
ro

up
SA

W
—

“s
us

ta
in

ab
il

it
y

in
de

x”

Se
ns

it
iv

it
y

an
al

ys
is

an
d

sc
en

ar
io

s
L

oc
al

ut
il

it
y

co
m

pa
ny

—
Sw

it
ze

rl
an

d

R
ot

h
et

al
.[

23
7]

E
le

ct
ri

ci
ty

ge
ne

ra
ti

on
—

hy
dr

og
en

an
d

na
tu

ra
lg

as

E
va

lu
at

io
n

of
ni

ne
ty

pe
s

of
el

ec
tr

ic
al

en
er

gy
ge

ne
ra

ti
on

op
ti

on
s

Te
ch

no
lo

gi
es

n.
a.

A
H

P
Sc

en
ar

io
ba

se
d

n.
a.

Pi
la

va
ch

ie
ta

l.
[2

22
]

E
le

ct
ri

ci
ty

ge
ne

ra
ti

on
A

na
ly

si
s

to
pr

io
ri

ti
ze

in
ve

st
m

en
tp

or
tf

ol
io

s
in

ca
pa

ci
ty

ex
pa

ns
io

n
an

d
en

er
gy

se
cu

ri
ty

Te
ch

no
lo

gi
es

n.
a.

M
A

V
T

Se
ns

it
iv

it
y

an
al

ys
is

an
d

sc
en

ar
io

s
N

at
io

na
l—

M
ex

ic
o

M
ar

ti
ne

z
et

al
.

[1
78

]

(c
on

ti
nu

ed
)



1110 C.H. Antunes and C.O. Henriques

T
ab

le
25

.2
(c

on
ti

nu
ed

)

E
ne

rg
y

fo
cu

s
Sc

op
e

A
lt

er
na

tiv
es

St
ak

eh
ol

de
rs

M
C

D
A

m
et

ho
d

U
nc

er
ta

in
ty

A
pp

li
ca

ti
on

-o
ri

gi
n

R
ef

er
en

ce
s

E
le

ct
ri

ci
ty

ge
ne

ra
ti

on
C

ho
os

in
g

th
e

m
os

t
su

st
ai

na
bl

e
el

ec
tr

ic
it

y
pr

od
uc

ti
on

te
ch

no
lo

gi
es

Te
ch

no
lo

gi
es

n.
a.

T
O

PS
IS

Se
ns

it
iv

it
y

an
al

ys
is

an
d

sc
en

ar
io

s
N

ot
sp

ec
ifi

ed
—

L
it

ua
ni

a
St

re
im

ik
ie

ne
et

al
.[

25
8]

E
le

ct
ri

ci
ty

ge
ne

ra
ti

on
E

va
lu

at
io

n
of

di
ff

er
en

t
el

ec
tr

ic
it

y
pr

od
uc

ti
on

sc
en

ar
io

s

Sc
en

ar
io

s
A

gr
ou

p
of

ex
pe

rt
s

an
d

ac
ad

em
ic

s
w

it
h

ba
ck

gr
ou

nd
in

ec
on

om
ic

s,
en

gi
ne

er
in

g
an

d
en

vi
ro

nm
en

t

SA
W

Se
ns

it
iv

it
y

an
al

ys
is

N
at

io
na

l—
Po

rt
ug

al
R

ib
ei

ro
et

al
.

[2
35

]

H
yd

ro
ge

n
E

xp
lo

ri
ng

th
e

co
m

m
er

ci
al

iz
at

io
n

of
fu

tu
re

hy
dr

og
en

fu
el

pr
oc

es
so

r
te

ch
no

lo
gi

es

Te
ch

no
lo

gi
es

Pa
ir

w
is

e
co

m
pa

ri
so

ns
w

er
e

ba
se

d
on

li
te

ra
tu

re
st

ud
ie

s
an

d
th

e
ex

pe
rt

op
in

io
n

of
th

es
e

au
th

or
s

A
H

P
Se

ns
it

iv
it

y
an

al
ys

is
an

d
sc

en
ar

io
s

N
at

io
na

l—
U

SA
W

in
eb

ra
ke

a
an

d
C

re
sw

ic
k

[2
88

]

H
yd

ro
ge

n
A

ss
es

sm
en

t
of

hy
dr

og
en

sy
st

em
s

Te
ch

no
lo

gi
es

n.
a.

SA
W

—
su

st
ai

na
bi

li
ty

in
de

x

Sc
en

ar
io

ba
se

d
n.

a.
A

fg
an

et
al

.
[7

]

H
yd

ro
ge

n
E

st
ab

li
sh

in
g

a
st

ra
te

gi
c

hy
dr

og
en

en
er

gy
te

ch
no

lo
gy

ro
ad

m
ap

Te
ch

no
lo

gi
es

n.
a.

Fu
zz

y
A

H
P

Fu
zz

y
te

ch
ni

qu
es

N
at

io
na

l—
K

or
ea

L
ee

et
al

.
[1

63
]

H
yd

ro
ge

n
E

st
ab

li
sh

in
g

a
st

ra
te

gi
c

lo
ng

-t
er

m
st

ra
te

gi
c

en
er

gy
te

ch
no

lo
gy

ro
ad

m
ap

fo
r

hy
dr

og
en

en
er

gy
te

ch
no

lo
gi

es

Te
ch

no
lo

gi
es

E
ig

ht
ex

pe
rt

s
w

ho
ha

ve
be

en
ca

rr
yi

ng
ou

t
th

e
de

ve
lo

pm
en

t
of

en
er

gy
te

ch
no

lo
gi

es
an

d
en

er
gy

po
li

cy
ov

er
10

an
d

15
ye

ar
s

Fu
zz

y
A

H
P

an
d

D
E

A
Fu

zz
y

te
ch

ni
qu

es
N

at
io

na
l—

K
or

ea
L

ee
et

al
.

[1
64

]



25 Multi-Objective Optimization and Multi-Criteria Analysis Models. . . 1111

E
ne

rg
y

in
ge

ne
ra

l
E

va
lu

at
io

n
of

al
te

rn
at

iv
e

en
er

gy
so

ur
ce

s
fo

r
th

e
co

un
tr

y

E
ne

rg
y

so
ur

ce
s

Pr
iv

at
e

en
te

rp
ri

se
,

un
iv

er
si

ti
es

,
as

so
ci

at
io

ns
,

go
ve

rn
m

en
t

an
d

re
se

ar
ch

as
so

ci
at

io
ns

,
ot

he
r

co
un

tr
ie

s,
th

e
pu

bl
ic

A
N

P
n.

a.
N

at
io

na
l—

T
ur

ke
y

U
lu

ta
s

[2
72

]

E
ne

rg
y

in
ge

ne
ra

l
E

va
lu

at
io

n
an

d
se

le
ct

io
n

of
cu

rr
en

t
en

er
gy

re
so

ur
ce

s
in

a
se

le
ct

ed
in

du
st

ry

E
ne

rg
y

so
ur

ce
s

n.
a.

A
N

P
Se

ns
it

iv
it

y
an

al
ys

is
N

at
io

na
l—

T
ur

ke
y

Ö
nü

te
ta

l.
[2

14
]

B
io

en
er

gy
A

ss
es

sm
en

t
of

bi
oe

ne
rg

y
sy

st
em

s
Te

ch
no

lo
gi

es
B

io
m

as
s

fe
ed

st
oc

k
pr

od
uc

er
s

an
d

su
pp

li
er

s;
he

at
,

el
ec

tr
ic

it
y

an
d

bi
of

ue
l

pr
oj

ec
td

ev
el

op
er

s,
ut

il
it

ie
s

an
d

tr
an

sp
or

t
fu

el
su

pp
li

er
s,

an
d

en
d-

us
er

s;
th

e
fin

an
ci

al
co

m
m

un
it

y;
te

ch
no

lo
gy

pr
ov

id
er

s

M
ul

ti
-c

ri
te

ri
on

de
ci

si
on

an
al

ys
is

fr
am

ew
or

k
an

d
de

ci
si

on
-

co
nf

er
en

ci
ng

ap
pr

oa
ch

Se
ns

it
iv

it
y

an
al

ys
is

an
d

N
U

SA
P

N
at

io
na

l—
U

K
E

lg
ha

li
et

al
.

[8
9]

B
io

m
as

s
R

an
ki

ng
di

ff
er

en
t

bi
om

as
s

fe
ed

st
oc

k-
ba

se
d

pe
ll

et
s

Sc
en

ar
io

s
E

xp
er

ts
in

th
is

fie
ld

,
an

d
pe

ll
et

m
an

uf
ac

tu
re

rs
an

d
us

er
s

PR
O

M
E

T
H

E
E

Se
ns

it
iv

it
y

an
al

ys
is

an
d

sc
en

ar
io

s
N

at
io

na
l—

C
an

ad
a

Su
lt

an
a

an
d

K
um

ar
[2

59
]



1112 C.H. Antunes and C.O. Henriques

T
ab

le
25

.3
St

ud
ie

s
gr

ou
pe

d
in

en
er

gy
pl

an
s

an
d

po
li

ci
es

pr
ob

le
m

s

E
ne

rg
y

fo
cu

s
Sc

op
e

A
lt

er
na

tiv
es

St
ak

eh
ol

de
rs

M
C

D
A

m
et

ho
d

U
nc

er
ta

in
ty

A
pp

li
ca

ti
on

-o
ri

gi
n

R
ef

er
en

ce
s

R
E

S-
E

hy
dr

op
ow

er
an

d
ge

ot
he

rm
al

en
er

gy

Fr
am

ew
or

k
pl

an
fo

r
th

e
us

e
of

hy
dr

op
ow

er
an

d
ge

ot
he

rm
al

en
er

gy

E
ne

rg
y

so
ur

ce
s

N
at

io
na

lE
ne

rg
y

A
ut

ho
ri

ty
,I

ns
ti

tu
te

of
N

at
ur

al
H

is
to

ry
an

d
th

e
N

at
ur

e
C

on
se

rv
at

io
n

A
ge

nc
y,

E
nv

ir
on

m
en

ta
l

A
ss

oc
ia

ti
on

an
d

th
e

Ic
el

an
di

c
To

ur
in

g
A

ss
oc

ia
ti

on
,a

s
w

el
la

s
th

e
fo

ur
w

or
kg

ro
up

ch
ai

rp
er

so
ns

A
H

P
n.

a.
N

at
io

na
l—

Ic
el

an
d

T
hó

rh
al

ls
dó

tt
ir

[2
64

]

R
E

S-
E

D
et

er
m

in
in

g
th

e
ac

hi
ev

ab
le

pe
ne

tr
at

io
n

of
re

ne
w

ab
le

en
er

gy
so

ur
ce

s
in

to
an

in
su

la
r

sy
st

em
fo

r
th

e
pu

rp
os

e
of

el
ec

tr
ic

it
y

ge
ne

ra
ti

on

Sc
en

ar
io

s
L

oc
al

au
th

or
it

ie
s

an
d

pr
iv

at
e

ac
to

rs
th

at
w

er
e

pa
rt

of
th

e
pr

oj
ec

t

E
L

E
C

T
R

E
II

I
Se

ns
it

iv
it

y
an

al
ys

is
L

oc
al

—
K

ar
pa

th
os

an
d

K
as

so
s,

G
re

ec
e

Pa
pa

do
po

ul
os

an
d

K
ar

ag
ia

nn
id

is
[2

16
]

R
E

S
A

ss
es

sm
en

to
f

an
ac

ti
on

pl
an

fo
r

th
e

di
ff

us
io

n
of

re
ne

w
ab

le
en

er
gy

te
ch

no
lo

gi
es

at
re

gi
on

al
sc

al
e

Te
ch

no
lo

gi
es

/
ac

ti
on

s
n.

a.
E

L
E

C
T

R
E

II
I

Sc
en

ar
io

ba
se

d
L

oc
al

—
Sa

rd
in

ia
,

It
al

y
B

ec
ca

li
et

al
.

[3
2]

R
E

S
D

es
ig

n
of

re
ne

w
ab

le
en

er
gy

pr
om

ot
io

n
po

li
ci

es

R
en

ew
ab

le
en

er
gy

te
ch

no
lo

gy

R
en

ew
ab

le
en

er
gy

te
ch

no
lo

gy
PR

O
M

E
T

H
E

E
Fu

zz
y

te
ch

ni
qu

es
N

at
io

na
l—

A
us

tr
ia

M
ad

le
ne

r
an

d
St

ag
l[

17
3]



25 Multi-Objective Optimization and Multi-Criteria Analysis Models. . . 1113

R
E

S
A

ss
es

si
ng

th
e

re
ne

w
ab

le
en

er
gy

pr
od

uc
er

s’
op

er
at

io
na

l
en

vi
ro

nm
en

t

E
U

—
ac

ce
ss

io
n

m
em

be
r

st
at

es

n.
a.

O
W

A
n.

a.
T

ra
ns

na
ti

on
al

—
fo

ur
te

en
E

U
—

ac
ce

ss
io

n
M

em
be

r
St

at
es

Pa
tl

it
zi

an
as

et
al

.[
21

7]

R
E

S
C

om
bi

ne
d

us
e

of
sc

en
ar

io
bu

il
di

ng
an

d
pa

rt
ic

ip
at

or
y

m
ul

ti
-c

ri
te

ri
a

an
al

ys
is

in
th

e
co

nt
ex

to
f

re
ne

w
ab

le
en

er
gy

fr
om

a
m

et
ho

do
lo

gi
ca

l
po

in
to

f
vi

ew

Sc
en

ar
io

s
N

at
io

na
l

(G
ov

er
nm

en
ta

l
bo

di
es

,
pr

iv
at

e
fir

m
s,

Po
w

er
di

st
ri

bu
te

rs
,N

G
O

S,
R

es
ea

rc
h

In
st

it
ut

es
)

an
d

L
oc

al
(l

oc
al

en
er

gy
ex

pe
rt

s,
re

gi
on

al
an

d
na

ti
on

al
en

er
gy

ex
pe

rt
s,

m
ay

or
s

an
d

de
pu

ty
m

ay
or

s,
ci

ti
ze

ns
)

PR
O

M
E

T
H

E
E

an
d

PM
C

A
Sc

en
ar

io
ba

se
d

N
at

io
na

la
nd

L
oc

al
—

A
us

tr
ia

K
ow

al
sk

i
et

al
.[

15
8]

R
E

S
E

st
ab

li
sh

m
en

to
f

st
ra

te
gi

es
ne

ed
ed

to
re

ac
h,

in
th

e
lo

ng
te

rm
,a

n
en

er
gy

sy
st

em
m

or
e

su
st

ai
na

bl
e

St
ra

te
gi

es
N

in
e

ex
pe

rt
s

fr
om

U
ni

ve
rs

it
y,

E
ne

rg
y

A
dm

in
is

tr
at

io
n,

Pr
ov

in
ci

al
E

ne
rg

y
A

ge
nc

y,
E

le
ct

ri
ca

l
di

st
ri

bu
ti

on
C

om
pa

ny
,

A
nd

al
us

ia
n

E
ne

rg
y

A
ge

nc
y,

A
nd

al
us

ia
n

In
st

it
ut

e
of

R
en

ew
ab

le
s,

A
nd

al
us

ia
n

D
ev

el
op

m
en

tI
ns

ti
tu

te
an

d
E

co
lo

gi
st

A
ss

oc
ia

ti
on

s

PR
O

M
E

T
H

E
E

n.
a.

L
oc

al
—

Ja
én

Pr
ov

in
ce

,S
pa

in
Te

rr
ad

os
et

al
.[

26
3]

(c
on

ti
nu

ed
)



1114 C.H. Antunes and C.O. Henriques

T
ab

le
25

.3
(c

on
ti

nu
ed

)

E
ne

rg
y

fo
cu

s
Sc

op
e

A
lt

er
na

tiv
es

St
ak

eh
ol

de
rs

M
C

D
A

m
et

ho
d

U
nc

er
ta

in
ty

A
pp

li
ca

ti
on

-o
ri

gi
n

R
ef

er
en

ce
s

R
E

S
Su

st
ai

na
bl

e
en

er
gy

pl
an

ni
ng

on
an

is
la

nd
E

ne
rg

y
po

li
cy

al
te

rn
at

iv
es

L
oc

al
au

th
or

it
ie

s;
po

te
nt

ia
li

nv
es

to
rs

;
lo

ca
lc

om
m

un
it

ie
s;

ac
ad

em
ic

in
st

it
ut

io
ns

;
en

vi
ro

nm
en

ta
l

gr
ou

ps
;

go
ve

rn
m

en
ts

an
d

E
ur

op
ea

n
U

ni
on

PR
O

M
E

T
H

E
E

I/
II

n.
a.

L
oc

al
—

C
re

te
T

so
ut

so
s

et
al

.[
27

0]

R
E

S
D

et
er

m
in

in
g

th
e

be
st

re
ne

w
ab

le
en

er
gy

al
te

rn
at

iv
e

an
d

se
le

ct
io

n
am

on
g

al
te

rn
at

iv
e

en
er

gy
pr

od
uc

ti
on

si
te

s

Te
ch

no
lo

gy
an

d
po

ss
ib

le
lo

ca
ti

on
s

T
hr

ee
R

E
S

ex
pe

rt
s

V
IK

O
R

-A
H

P
Fu

zz
y

te
ch

ni
qu

es
L

oc
al

—
Is

ta
nb

ul
K

ay
a

an
d

K
ah

ra
m

an
[1

51
]

R
E

S
A

ss
es

sm
en

t
of

re
ne

w
ab

le
en

er
gy

so
ur

ce
s

w
it

h
po

li
cy

an
d

te
ch

no
lo

gy
co

nc
er

ns

E
ne

rg
y

so
ur

ce
s

E
xp

er
ts

in
Ta

iw
an

w
ho

ar
e

fa
m

il
ia

r
w

it
h

th
e

st
at

us
qu

o
de

ve
lo

pm
en

to
f

re
ne

w
ab

le
en

er
gy

te
ch

no
lo

gi
es

,t
he

m
ar

ke
tc

on
di

ti
on

s,
an

d
th

e
re

ne
w

ab
le

en
er

gy
po

li
cy

Fu
zz

y
A

H
P

Fu
zz

y
te

ch
ni

qu
es

N
at

io
na

l—
Ta

iw
an

Sh
en

et
al

.
[2

47
]

R
E

S
A

n
as

se
ss

m
en

t
of

th
e

E
U

re
ne

w
ab

le
en

er
gy

ta
rg

et
s

an
d

su
pp

or
ti

ng
po

li
ci

es

Sc
en

ar
io

s
n.

a.
E

ne
rg

y
an

d
C

li
m

at
e

Po
li

cy
In

te
ra

ct
io

ns
(E

C
PI

)
D

ec
is

io
n

Su
pp

or
tT

oo
l

n.
a.

T
ra

ns
na

ti
on

al
-E

U
O

ik
on

om
ou

et
al

.[
20

8]



25 Multi-Objective Optimization and Multi-Criteria Analysis Models. . . 1115

E
le

ct
ri

ci
ty

ge
ne

ra
ti

on
Se

le
ct

,d
efi

ne
an

d
ap

pl
y

a
se

to
f

su
st

ai
na

bi
li

ty
in

di
ca

to
rs

fo
r

th
e

en
er

gy
sy

st
em

as
se

ss
m

en
t

E
ne

rg
y

so
ur

ce
s

n.
a.

SA
W

—
ge

ne
ra

l
in

de
x

of
su

st
ai

na
bi

li
ty

St
an

da
rd

de
vi

at
io

ns
w

hi
ch

ar
e

m
ea

su
ri

ng
un

ce
rt

ai
nt

y
of

w
ei

gh
t-

es
ti

m
at

io
n

ar
e

ta
ke

n
in

to
a

co
ns

id
er

at
io

n

L
oc

al
—

a
sm

al
l

is
la

nd
no

ts
pe

ci
fie

d
A

fg
an

et
al

.
[6

]

E
le

ct
ri

ci
ty

ge
ne

ra
ti

on
A

ss
es

sm
en

t
of

va
ri

ou
s

en
er

gy
po

li
ci

es
fo

r
po

w
er

al
te

rn
at

iv
es

E
ne

rg
y

so
ur

ce
s

E
xp

er
t’

s
gr

ou
p

m
os

tl
y

co
m

po
se

d
of

ac
ad

em
ic

ia
ns

Fu
zz

y-
A

H
P

C
ha

ng
’s

M
od

el
Fu

zz
y

te
ch

ni
qu

es
N

at
io

na
l—

T
ur

ke
y

Ta
li

nl
ie

ta
l.

[2
60

]

E
le

ct
ri

ci
ty

ge
ne

ra
ti

on
E

ne
rg

y
pl

an
ni

ng
de

ci
si

on
-m

ak
in

g
pr

ob
le

m

E
ne

rg
y

so
ur

ce
s

E
ne

rg
y

pl
an

ni
ng

ex
pe

rt
s

A
H

P/
T

O
PS

IS
Se

ns
it

iv
it

y
an

al
ys

is
an

d
fu

zz
y

sy
nt

he
ti

c
ex

te
nt

va
lu

es

N
at

io
na

l—
T

ur
ke

y
K

ay
a

an
d

K
ah

ra
m

an
[1

52
]

E
le

ct
ri

ci
ty

ge
ne

ra
ti

on
R

ec
om

m
en

d
fu

tu
re

en
er

gy
so

ur
ce

s,
ta

ki
ng

in
to

co
ns

id
er

at
io

n
w

at
er

co
ns

um
pt

io
n

an
d

th
e

po
ss

ib
il

it
y

of
de

sa
li

na
ti

on
of

se
a

w
at

er

E
ne

rg
y

so
ur

ce
s

n.
a.

E
L

E
C

T
R

E
II

I
Se

ns
it

iv
it

y
an

al
ys

is
L

oc
al

—
Y

or
ks

hi
re

an
d

th
e

H
um

be
r

re
gi

on
in

th
e

U
K

H
un

te
ta

l.
[1

35
]

(c
on

ti
nu

ed
)



1116 C.H. Antunes and C.O. Henriques

T
ab

le
25

.3
(c

on
ti

nu
ed

)

E
ne

rg
y

fo
cu

s
Sc

op
e

A
lt

er
na

tiv
es

St
ak

eh
ol

de
rs

M
C

D
A

m
et

ho
d

U
nc

er
ta

in
ty

A
pp

li
ca

ti
on

-o
ri

gi
n

R
ef

er
en

ce
s

H
yd

ro
ge

n
A

ss
es

sm
en

t
of

th
e

en
vi

ro
nm

en
ta

l,
so

ci
al

an
d

ec
on

om
ic

su
st

ai
na

bi
li

ty
of

si
x

po
ss

ib
le

fu
tu

re
hy

dr
og

en
en

er
gy

sy
st

em
s

Sc
en

ar
io

s
U

K
hy

dr
og

en
-r

el
at

ed
or

ga
ni

sa
ti

on
s

(H
2N

et
,

L
on

do
n

H
yd

ro
ge

n
Pa

rt
ne

rs
hi

p
an

d
th

e
L

ow
C

ar
bo

n
V

eh
ic

le
Pa

rt
ne

rs
hi

p)
,e

ns
ur

in
g

re
pr

es
en

ta
ti

on
fr

om
hy

dr
og

en
pr

od
uc

ti
on

,
di

st
ri

bu
ti

on
an

d
en

d-
us

e
in

du
st

ri
es

as
w

el
la

s
re

le
va

nt
po

li
cy

an
d

ci
vi

ls
oc

ie
ty

st
ak

eh
ol

de
rs

M
C

M
Se

ns
it

iv
it

y
an

al
ys

is
N

at
io

na
l—

U
K

M
cD

ow
al

l
an

d
E

am
es

[1
80

]

H
yd

ro
ge

n
A

na
ly

si
s

of
th

e
po

te
nt

ia
lo

f
K

or
ea

to
be

co
m

pe
ti

tiv
e

in
de

ve
lo

pm
en

t
of

hy
dr

og
en

en
er

gy
te

ch
no

lo
gy

N
at

io
ns

n.
a.

A
H

P
Sc

en
ar

io
ba

se
d

N
at

io
na

l—
K

or
ea

L
ee

et
al

.
[1

61
]

H
yd

ro
ge

n
A

ss
es

sm
en

t
of

na
ti

on
al

co
m

pe
ti

tiv
en

es
s

in
th

e
hy

dr
og

en
te

ch
no

lo
gy

se
ct

or

N
at

io
ns

K
or

ea
’s

M
E

ST
an

d
M

K
E

Fu
zz

y
A

H
P

Sc
en

ar
io

ba
se

d
an

d
fu

zz
y

an
d

in
te

rv
al

pr
og

ra
m

m
in

g
te

ch
ni

qu
es

N
at

io
na

l—
K

or
ea

L
ee

et
al

.
[1

65
]

H
yd

ro
ge

n
M

ea
su

ri
ng

th
e

re
la

tiv
e

ef
fic

ie
nc

y
of

th
e

R
&

D
pe

rf
or

m
an

ce
in

th
e

na
ti

on
al

hy
dr

og
en

en
er

gy
te

ch
no

lo
gy

de
ve

lo
pm

en
t

N
at

io
ns

51
ex

pe
rt

s
fr

om
th

e
ac

ad
em

ic
,

go
ve

rn
m

en
t,

in
du

st
ri

al
,a

nd
re

se
ar

ch
se

ct
or

s

Fu
zz

y
A

H
P

an
d

D
E

A
Fu

zz
y

te
ch

ni
qu

es
N

at
io

na
l—

K
or

ea
L

ee
et

al
.

[1
62

]



25 Multi-Objective Optimization and Multi-Criteria Analysis Models. . . 1117

B
io

m
as

s
A

ss
es

sm
en

t
of

a
ra

ng
e

of
po

ss
ib

il
it

ie
s

fo
r

pe
re

nn
ia

l
en

er
gy

cr
op

s
co

nv
er

si
on

E
ne

rg
y

cr
op

s
E

xp
er

ts
C

ap
ab

il
it

y
in

de
x—

w
ei

gh
te

d
su

m

Se
ns

it
iv

it
y

an
al

ys
is

,
M

on
te

C
ar

lo
si

m
ul

at
io

ns
an

d
ja

ck
-k

ni
fin

g
te

ch
ni

qu
es

L
oc

al
—

Y
or

ks
hi

re
an

d
th

e
H

um
be

r
R

eg
io

n
in

N
or

th
er

n
U

K

Te
ne

re
ll

i,
an

d
C

ar
ve

r
[2

62
]

E
ne

rg
y

in
ge

ne
ra

l
Su

st
ai

na
bl

e
de

ve
lo

pm
en

t
of

ru
ra

l
en

er
gy

an
d

it
s

ap
pr

ai
si

ng
sy

st
em

in
C

hi
na

D
if

fe
re

nt
ar

ea
s

an
d

pe
ri

od
s

n.
a.

A
H

P
n.

a.
L

oc
al

—
Ji

nh
u,

Sh
ey

an
g,

Ta
ix

in
g,

Su
in

in
g,

W
uj

in
an

d
W

ux
ia

n
C

ou
nt

ie
s

in
Ji

an
gs

u
Pr

ov
in

ce
of

C
hi

na

X
ia

oh
ua

an
d

Z
he

nm
in

[2
91

]

E
ne

rg
y

in
ge

ne
ra

l
D

efi
ni

ng
na

ti
on

al
pr

io
ri

ti
es

fo
r

gr
ee

nh
ou

se
ga

se
s

em
is

si
on

s
re

du
ct

io
n

in
th

e
en

er
gy

se
ct

or

C
O

2

re
du

ct
io

n
m

ea
su

re
s

M
in

is
tr

y
fo

r
D

ev
el

op
m

en
t,

M
in

is
tr

y
fo

r
E

nv
ir

on
m

en
t,

Ph
ys

ic
al

Pl
an

ni
ng

an
d

Pu
bl

ic
W

or
ks

,M
in

is
tr

y
fo

r
T

ra
ns

po
rt

,M
in

is
tr

y
fo

r
A

gr
ic

ul
tu

re
,

M
in

is
tr

y
fo

r
N

at
io

na
l

E
co

no
m

y,
M

in
is

tr
y

of
Fi

na
nc

e,
Pu

bl
ic

Po
w

er
C

or
po

ra
ti

on
,P

ub
li

c
G

as
E

nt
er

pr
is

e,
O

il
D

is
ti

ll
er

ie
s

of
G

re
ec

e,
O

rg
an

is
at

io
n

of
U

rb
an

T
ra

ns
po

rt
fo

r
A

th
en

s,
C

or
po

ra
ti

on
of

M
an

uf
ac

tu
re

rs
of

So
la

r
Sy

st
em

s,
C

en
tr

e
fo

r
R

en
ew

ab
le

E
ne

rg
y

So
ur

ce
s

E
L

E
C

T
R

E
T

R
I

Se
ns

it
iv

it
y

an
al

ys
is

N
at

io
na

l—
G

re
ec

e
G

eo
rg

op
ou

lo
u

et
al

.[
10

0]

(c
on

ti
nu

ed
)



1118 C.H. Antunes and C.O. Henriques

T
ab

le
25

.3
(c

on
ti

nu
ed

)

E
ne

rg
y

fo
cu

s
Sc

op
e

A
lt

er
na

tiv
es

St
ak

eh
ol

de
rs

M
C

D
A

m
et

ho
d

U
nc

er
ta

in
ty

A
pp

li
ca

ti
on

-o
ri

gi
n

R
ef

er
en

ce
s

E
ne

rg
y

in
ge

ne
ra

l
Pr

io
ri

ti
za

ti
on

pr
oc

es
s

of
Po

li
cy

in
st

ru
m

en
ts

fo
r

pr
om

ot
in

g
en

er
gy

co
ns

er
va

ti
on

Po
li

cy
in

st
ru

m
en

ts
M

an
ag

er
of

th
e

R
U

E
D

iv
is

io
n

at
th

e
N

E
R

C
A

H
P

n.
a.

N
at

io
na

l—
Jo

rd
an

K
ab

la
n

[1
44

]

E
ne

rg
y

in
ge

ne
ra

l
E

va
lu

at
io

n
of

su
st

ai
na

bi
li

ty
sc

en
ar

io
s

Sc
en

ar
io

s
n.

a.
SA

W
Fu

zz
y

se
ts

sy
nt

he
si

s
te

ch
ni

qu
e

L
oc

al
—

B
el

gr
ad

e
Jo

va
no

vi
c

et
al

.[
14

1]

E
ne

rg
y

in
ge

ne
ra

l
Su

st
ai

na
bi

li
ty

as
se

ss
m

en
t

at
th

e
m

ac
ro

sc
al

e

Y
ea

rs
U

N
ex

pe
rt

;N
at

io
na

l
ex

pe
rt

s—
st

at
is

ti
ci

an
s,

re
se

ar
ch

er
s,

m
em

be
rs

of
na

ti
on

al
go

ve
rn

m
en

ts
,

an
d

re
pr

es
en

ta
tiv

es
fr

om
E

ur
op

ea
n

C
om

m
is

si
on

se
rv

ic
es

;
O

E
C

D
W

or
ki

ng
G

ro
up

on
E

nv
ir

on
m

en
ta

l
In

fo
rm

at
io

n
an

d
O

ut
lo

ok
s;

St
ak

eh
ol

de
rs

in
A

us
tr

ia
—

fe
de

ra
l

m
in

is
tr

ie
s,

re
pr

es
en

ta
tiv

es
fr

om
th

e
st

at
e

(L
än

de
r)

an
d

di
st

ri
ct

le
ve

ls
,s

oc
ia

l
pa

rt
ne

rs
,d

if
fe

re
nt

in
te

re
st

gr
ou

ps
an

d
N

G
O

s

N
A

IA
D

E
Se

ns
it

iv
it

y
an

al
ys

is
an

d
fu

zz
y

or
st

oc
ha

st
ic

te
ch

ni
qu

es

N
at

io
na

l—
A

us
tr

ia
Sh

m
el

ev
an

d
R

od
rí

gu
ez

-
L

ab
aj

os
[2

48
]



25 Multi-Objective Optimization and Multi-Criteria Analysis Models. . . 1119

E
ne

rg
y

in
ge

ne
ra

l
M

ea
su

re
m

en
t

of
th

e
su

st
ai

na
bi

li
ty

of
an

ur
ba

n
en

er
gy

sy
st

em

Sc
en

ar
io

s
E

xp
er

ts
A

dd
it

iv
e

sy
nt

he
si

si
ng

fu
nc

ti
on

Fu
zz

y
se

ts
of

sy
nt

he
si

s
te

ch
ni

qu
e

L
oc

al
—

B
el

gr
ad

e,
Se

rb
ia

Jo
va

no
vi

c
et

al
.[

14
2]

E
ne

rg
y

in
ge

ne
ra

l
A

ss
es

sm
en

t
of

si
x

po
li

cy
m

ea
su

re
s

or
sc

en
ar

io
s

re
la

ti
ng

to
re

si
de

nt
ia

lh
ea

ti
ng

en
er

gy
an

d
do

m
es

ti
c

el
ec

tr
ic

it
y

co
ns

um
pt

io
n

Sc
en

ar
io

s
n.

a.
N

A
IA

D
E

Se
ns

it
iv

it
y

an
al

ys
is

an
d

sc
en

ar
io

s
L

oc
al

—
Ir

is
h

ci
ty

re
gi

on
B

ro
w

ne
et

al
.

[4
7]

E
ne

rg
y

in
ge

ne
ra

l
Se

le
ct

io
n

am
on

g
en

er
gy

po
li

ci
es

E
ne

rg
y

so
ur

ce
s

n.
a.

Fu
zz

y
A

H
P

Fu
zz

y
te

ch
ni

qu
es

N
at

io
na

l—
T

ur
ke

y
K

ah
ra

m
an

an
d

K
ay

a
[1

45
]

E
ne

rg
y

in
ge

ne
ra

l
T

hi
s

pa
pe

r
pr

es
en

ts
a

st
ud

y
on

th
e

op
ti

on
s

fo
r

en
er

gy
an

d
ca

rb
on

de
ve

lo
pm

en
t

fo
r

th
e

ci
ty

of
B

an
gk

ok

E
ne

rg
y

po
li

ci
es

an
d

in
te

rv
en

ti
on

s

Te
am

m
em

be
rs

M
A

V
T

an
d

A
H

P
n.

a.
L

oc
al

—
B

an
gk

ok
,

T
ha

il
an

d
Ph

du
ng

si
lp

[2
20

]

E
ne

rg
y

in
ge

ne
ra

l
A

tr
an

sd
is

ci
pl

in
ar

y
pr

oc
es

s
to

ad
dr

es
s

th
e

fu
tu

re
en

er
gy

sy
st

em

Sc
en

ar
io

s
N

in
e

ho
us

eh
ol

ds
th

at
re

pr
es

en
te

d
th

e
di

ff
er

en
t

co
m

bi
na

ti
on

s
of

bu
il

di
ng

ty
pe

an
d

he
at

in
g

sy
st

em
,a

sm
al

ll
oc

al
in

du
st

ry
an

d
a

re
pr

es
en

ta
tiv

e
fr

om
th

e
lo

ca
l

bu
si

ne
ss

as
so

ci
at

io
n

A
H

P,
st

ak
eh

ol
de

r-
ba

se
d

M
C

A

Sc
en

ar
io

ba
se

d
L

oc
al

—
U

rn
äs

ch
,

Sw
it

ze
rl

an
d

T
ru

tn
ev

yt
e

et
al

.[
26

6]

(c
on

ti
nu

ed
)



1120 C.H. Antunes and C.O. Henriques

T
ab

le
25

.3
(c

on
ti

nu
ed

)

E
ne

rg
y

fo
cu

s
Sc

op
e

A
lt

er
na

tiv
es

St
ak

eh
ol

de
rs

M
C

D
A

m
et

ho
d

U
nc

er
ta

in
ty

A
pp

li
ca

ti
on

-o
ri

gi
n

R
ef

er
en

ce
s

E
ne

rg
y

in
ge

ne
ra

l
E

nv
ir

on
m

en
ta

l
pe

rf
or

m
an

ce
ev

al
ua

ti
on

of
B

ei
ji

ng
’s

en
er

gy
us

e
pl

an
ni

ng

Sc
en

ar
io

s
A

gr
ou

p
of

de
ci

si
on

-m
ak

er
s

co
m

po
se

d
of

sc
ie

nt
is

ts
,u

rb
an

pl
an

ni
ng

en
gi

ne
er

s,
go

ve
rn

m
en

t
of

fic
ia

ls
an

d
ot

he
r

sp
ec

ia
li

st
s

A
H

P
an

d
Fu

zz
y

ex
te

nt
an

al
ys

is
Fu

zz
y

te
ch

ni
qu

es
L

oc
al

—
B

ei
ji

ng
,

C
hi

na
[2

85
,2

86
]

E
ne

rg
y

in
ge

ne
ra

l
E

ne
rg

y
re

so
ur

ce
pl

an
ni

ng
ac

tiv
it

ie
s

E
ne

rg
y

so
ur

ce
s

In
du

st
ry

re
pr

es
en

ta
tiv

es
,

en
vi

ro
nm

en
ta

li
st

s,
lo

ca
lr

es
id

en
ts

,
ac

ad
em

ic
ia

ns
,p

ub
li

c
au

th
or

it
ie

s

A
H

P
n.

a.
L

oc
al

—
A

yd
in

,
T

ur
ke

y
E

ro
la

nd
K

ıl
kı

s
[9

1]

E
ne

rg
y

in
ge

ne
ra

l
L

in
ki

ng
vi

si
on

s
w

it
h

qu
an

ti
ta

tiv
e

re
so

ur
ce

al
lo

ca
ti

on
sc

en
ar

io
s

w
hi

ch
sh

ow
di

ff
er

en
t

op
ti

on
s

in
im

pl
em

en
ti

ng
th

e
vi

si
on

s

Sc
en

ar
io

s
E

ne
rg

y
co

ns
um

er
s,

ex
pe

rt
s,

re
pr

es
en

ta
tiv

es
fr

om
ac

ad
em

ia
an

d
th

e
en

er
gy

in
du

st
ry

M
A

V
T

Sc
en

ar
io

ba
se

d
L

oc
al

—
U

rn
äs

ch
,

Sw
it

ze
rl

an
d

T
ru

tn
ev

yt
e

et
al

.[
26

7]

N
at

ur
al

ga
s

Se
le

ct
in

g
op

ti
m

al
en

er
ge

ti
c

sc
en

ar
io

Sc
en

ar
io

s
n.

a.
N

A
IA

D
E

Se
ns

it
iv

it
y

an
al

ys
is

N
at

io
na

l—
R

om
an

ia
D

in
ca

et
al

.
[8

3]



25 Multi-Objective Optimization and Multi-Criteria Analysis Models. . . 1121

25.3.3 Selection of Energy Projects

Project selection is a typical multi-criteria decision situation: in face of a consid-
erable number of projects the DM is asked to identify the most attractive subset
of alternatives. The majority of these projects is focused on renewable energy
investments for electricity generation (see Table 25.4).

25.3.4 Siting Decisions

Another common situation in energy decision-making studies refers to location
problems. Most applications concerning the location of facilities focus on the
siting of new wind farms and hydro and thermal power plants, in some cases also
complemented with choices regarding operational parameters (see Table 25.5).

25.3.5 Energy Efficiency

Energy efficiency studies mainly consider the evaluation and sorting of energy
efficiency measures and programs either in technology replacement or building
refurbishment. Also, attention is paid to the identification of the relevant barriers
to energy efficiency and their importance in several contexts (domestic, industry
clusters, etc.) (see Table 25.6).

25.3.6 Miscellaneous

This miscellaneous category includes rather unique and specialized areas which
could not be included in any of the above alternative classifications: carbon capture
and storage (CCS), cooking technologies, transportation and heating systems,
trigeneration systems, thermal technologies, heat pumps, natural gas pipeline,
production processes, domestic hot water production, DSM, and micro grids (see
Table 25.7).

25.3.7 The Choice of Criteria

A wide range of criteria is considered for the design of optimal energy systems
configurations [215]. The evaluation criteria in energy decision-making problems
can act as a driving force for the discussion on sustainable energy systems
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development [283]. A holistic approach is required for the development of energy
systems that can help solving broader problems associated with the essential
linkages between the energy systems, the environment and the socio-economic
development. Thus, the consideration of evaluation criteria and methods that can
perform a thorough assessment of the energy decisions at stake is a prerequisite
for selecting the best course of action (or a subset of alternatives for further
screening), ranking the alternatives or assigning them to categories of merit, also
informing DMs about their integrated performance and monitoring their impacts
on the environment and the socio-economic context. The diversity of problems,
evaluation criteria, stakeholders and methodological approaches considered in this
fast-growing field highlights the importance of problem structuring methods, which
are aimed at rising out a set of interests, preferences and concerns of the relevant
stakeholders and their relations of power (Neves et al. [196, 197]; Coelho et al. [73]).

The main criteria used in energy decision-making studies are briefly reviewed
and classified into technical, economic, environmental and social aspects, which are
summarized in Fig. 25.1.

25.3.8 Technical Criteria

Adaptability—represents the technology’s potential to be adapted to the country’s
conditions for energy production. Depending on the approach considered it can be
measured in qualitative or quantitative units [17, 70, 86, 158, 160, 214, 272].

Availability—evaluates whether the energy resource is readily available [17, 67,
71, 75, 91, 137, 160, 198, 214, 247, 258, 260, 272]. An average availability factor
is based on typical load factors. Availability can also indicate the amount of time
a unit can be used for electricity and/or steam production [83, 114]. Due to the
intermittent nature of renewable energy, some studies imply that the stability of
electricity output is critical for the development of renewable energy. Depending on
the indicator used, it can be measured in qualitative or quantitative units.

Continuity and predictability—reflects the technology’s ability to maintain stable
the energy generated without being affected by external factors. This criterion is
important to know if the technology operates continuously and confidently. It is
usually measured in qualitative units [32, 86, 145, 146, 214, 225, 263, 265].

Diversity—this criterion is understood as diversity of installed power, calculated
according to the Shannone-Wiener Index [235], diversity of energy production mix
[248, 266], diversity of technologies [158, 180] or diversity of supply [70, 135, 173].
Depending on the indicator it can be measured in quantitative or qualitative units.

Efficiency—refers to how much useful energy can be obtained from an energy
source. The efficiency coefficient is the ratio of the output energy to the input energy,
which is used to evaluate energy systems. It is usually measured in quantitative units
[4–6, 8, 33, 48, 67, 77, 86, 86, 135, 137, 141–143, 148, 151, 152, 172, 178, 194, 221,
222, 259, 260, 263, 271, 285].
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Exergy efficiency—also known as the second-law efficiency or rational efficiency,
computes the efficiency of a process taking the second law of thermodynamics into
account. Exergy is the energy that is available to be used. The evaluation of CHP
(CCHP) systems is often performed using this criterion [83, 151, 152, 229, 282]. It
is usually measured in quantitative units.

Feasibility—measures the confidence of the implementation of the energy policy.
The number of times the policy has been tested successfully can be taken into
account as a decision parameter. This criterion can be considered in diverse
categories and, depending on the indicators considered, it can be measured in
qualitative or quantitative units [103, 145, 146, 180, 198].

Local technical know-how—includes an evaluation which is based on a qual-
itative comparison between the complexity of the technology considered and the
capacity of local actors to ensure an appropriate operating support for its installation
and maintenance [32, 48, 71, 103, 145, 146, 263].

Maturity of the technology—represents the technology’s maturity rate as well as
its penetration percentage in the international market [32, 57–59, 86, 86, 91, 103,
160, 178, 225, 247, 259, 260, 263, 282]. It may be also perceived as technological
advantage [158]. The following stages can be considered: (1) technologies that are
only tested in laboratory; (2) technologies that are only performed in pilot plants,
where the demonstrative goal is linked to the experimental one, referring to the
operating and technical conditions; (3) technologies that could be still improved; and
(4) consolidated technologies, which are close to reaching the theoretical efficiency
limits. It is usually measured in qualitative units. In Mavrotas et al. [179] the
maturity criterion refers to the maturity of the certification procedure.

Peak load response—reflects the technology-specific ability to respond promptly
to large temporal variations in demand. This capability is particularly attractive in
view of market liberalization. Base-load technologies and those renewables that
strongly depend on climatic conditions are not suitable in this context and have
very low score. It is usually measured in qualitative units [17, 82, 135, 216, 258].

Production Capacity—refers to the availability of a fuel as a feedstock for a given
alternative to the installed or new generation capacity. Alternatives that have large
feedstock reserves and greater generation capacity are better [49, 59, 67, 75, 97,
160, 163, 164, 191, 260, 271, 288]. Depending on the indicator it can be measured
in qualitative or quantitative units.

Reliability—evaluates the capacity of a device or system to perform as designed,
the resistance to failure, the ability to perform a required function under stated
conditions for a specified period of time, or the ability of failure without catastrophic
consequences. It may be applied to technologies or even to energy policies.
Technology may have been only tested in laboratory or only performed in pilot
plants, it can be still improved or it is consolidated. It is usually measured in
qualitative units [32, 70, 83, 91, 137, 145, 146, 160, 179, 197, 225, 245, 252, 271].

Risk—evaluates the safety of the implementation of an energy policy or the risks
of a major disaster [103, 145, 146, 160, 245, 260]. Depending on the indicator it can
be measured in qualitative or quantitative units.
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Robustness/Durability—measures robustness based on the materials’ fatigue life
and reliability. It is usually measured in qualitative units [23, 77, 91, 180, 225, 259].

Security—evaluates the security of the supply system, the reduction of energy
dependence or fuel imports, reflecting mostly geopolitical factors that may affect the
continuous availability of non-renewable energy carriers from their origin. Secure
energy supplies are essential to maintaining economic activity and to providing
reliable energy services to the society [47, 48, 67, 82, 86, 157, 158, 173, 180,
197, 208, 235, 245, 247, 258, 266, 267, 270]. Depending on the indicator it can
be measured in qualitative or quantitative units. It is also considered as an economic
criterion.

Technical spin-off —refers to the development of other analogous technology
[163, 164]. It was used in the hydrogen context and it is measured in qualitative
units.

Other specific technical criteria—these are criteria directly related to the type of
energy source under analysis and specifically considered in a particular study, for
instance: deficit of electric power in a problem of electric power system expansion
planning [280]; multiplicative effects on the local technology for the prioritization of
energy projects [103]; peak power, range, vehicle operation and performance start-
up time and transient response for the assessment of the future hydrogen fueling
systems for transportation [288]; topography in the choice of location of a wind
observation station [23]; the satisfaction of energy demand for decision support in
energy conservation promotion [144]; nutrition value of food for the evaluation of
cooking energy alternatives [225]; the suitability of a potential site for the energy
resource [265]; lock-in and deliverability for assessment of the role of CCS [245];
orography and climate conditions for a siting problem [54]; the technological status
of hydrogen energy measured by the number of SCI papers, the number of patents
and the number of proceedings [161, 165]; the technological infrastructure of the
hydrogen technology [161, 162, 165]; the co-generation ratio for the appraisal
of a heating system modernization [191]; reduction of capacity costs for sorting
actions for energy efficiency promotion [197]; the ratio of consumption of primary
energy to the demand, and the control and regulation property for the assessment
of the trigeneration systems [282]; planning and monitoring needs for bioenergy
[48]; temperature and solar capacity factor for the assessment of concentrated solar
thermal technologies [57]; energy intensity for the appraisal of an energy system
[141, 142]; micro-siting of WEGs and WEG functions for the strategic selection
of wind farms [160]; reserve capacity requirement, island mode, connected mode or
connected island mode, and condensing mode operation for energy systems analysis
of renewable integration [215]; conventional fuel savings for sustainable energy
planning [270]; utilization rate of material and thickness of active material for the
comparative assessment of thin-film photovoltaic production processes [58]; time
to repair for the selection of space heating systems in an industrial building [70];
deployment of renewable energy systems in case of the assessment of EU renewable
energy targets [208]; service conditions and operation factor for improving energy
efficiency in an industrial motor system [252]; effectiveness for the assessment
of pollution abatement measures [278]; structure of energy use and industry for
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environmental performance of energy use planning [285, 286]; wind characteristics
for a problem of wind farm land suitability indexing [17]; accessibility for the
selection of a thermal power plant location [71]; expected loss of energy and
loss of load probability in the case of sustainability and reliability assessment of
micro-grids [229]; bulk density, deposit formation, lower heating value and storage
time before degradation in the case of biomass pellets assessment [259]; growing
degree days, slope, soil wetness, annual rainfall, soil texture, soil pH, soil depth and
slope for agro-energy spatial modeling [262]; proximity to sea and to heat demand
for an application to the UK energy sector [135]; the rate of dispatchable power,
considering the ratio between the sum of installed power of coal, CCGT, dam hydro
power plants, and all the installed power for the evaluation of future scenarios for
the power generation sector [235].

It may be concluded that regarding the technical criteria, the efficiency criterion
is the most used in the energy applications herein reviewed (being present in 32
papers out of the 104 papers considered). The highest concern with efficiency
is attained in the framework of power generation studies, followed by energy
efficiency and energy plans (see Fig. 25.2). Technology maturity and security are the
next most important criteria: security concerns have a higher participation in studies
in energy plans and policies, followed by power generation technologies, siting
decisions and energy projects; technology maturity aspects have a higher presence
in energy project decisions, energy studies, and energy plans and policies studies.
Availability criteria are taken into account mostly in energy project decisions and
siting decisions. Reliability has its highest expression in miscellaneous energy
studies, energy project decisions and energy efficiency studies. Production capacity
is more relevant in siting and energy project decisions.

25.3.9 Economic Criteria

25.3.9.1 Costs

Externality costs—are costs imposed on society and environment but not accounted
for by the producers and consumers of energy, and therefore generally not included
in market prices. This criterion is measured in quantitative units [66, 67, 180, 215,
229, 258, 265].

Fuel cost—refers to the provision of raw materials necessary (e.g. coal or natural
gas for conventional thermal plants or uranium for nuclear power plants) for the
operation of the energy supply system. Fuel costs may include extraction or mining,
transportation and possible fuel processing to be used in a power plant. Fuel costs
may vary considerably in different time periods and geographies as a result of
several reasons, including demand, production and political matters. Fuel cost is
excluded from operation and maintenance cost when both are selected to perform
the evaluations [7, 67, 70, 82, 83, 86, 86, 135, 137, 141–143, 157, 190, 214, 221,
222, 229, 235, 258, 260, 265–267, 272, 280, 288].
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Fig. 25.2 Technical criteria. M miscellaneous, EE energy efficiency, SD siting decisions, EP
energy projects, EPP energy plans and policies, PGT power generation technologies

Infrastructure costs—may include additional investments in transmission net-
work required by each scenario [235], investment in grid connections [258] or
investment in infrastructures as a whole [71, 135, 235, 245, 288].

Investment cost—may include the purchase of mechanical equipment, techno-
logical installations, construction of roads and connections to the national grid,
engineering services, drilling and other incidental construction work. Nuclear and
coal-fired units are characterized by high investment costs and low operating
costs while gas-fired generation is characterized by lower capital costs and higher
operating costs. Investment cost is the most used economic criterion to evaluate
energy systems [4–6, 23, 33, 46, 49, 57–59, 67, 70, 71, 75, 77, 82, 83, 86, 86, 91,
100, 135, 137, 141–143, 145, 146, 151, 152, 157, 158, 160, 164, 167, 190, 214, 216,
220–222, 225, 229, 235, 245, 247, 251, 252, 258, 260, 265–267, 270, 272, 280–282,
288].



25 Multi-Objective Optimization and Multi-Criteria Analysis Models. . . 1137

Operation and maintenance (O&M) costs—include wages and the funds spent
for energy, products and services, and preventive and corrective maintenance works.
The operation and maintenance costs may be divided into fixed and variable costs
[7, 46, 49, 57, 59, 67, 70, 75, 77, 82, 83, 100, 137, 141, 143, 151, 152, 157, 158,
160, 214, 216, 220, 222, 225, 229, 235, 245, 258, 260, 265–267, 270–272, 281].
This criterion is usually measured in quantitative units.

Production costs—This criterion is important and useful for assessing how com-
mercially competitive the system is compared with other production technologies
[4, 5, 7, 8, 33, 57, 197, 215, 221, 259, 271, 278, 282].

25.3.9.2 Economic Performance

Economic impact—refers to the capacity of the energy project or policy of
promoting local/regional/national economic development [48, 71, 114, 137, 144,
148, 158, 163, 164, 173, 198, 247], or the impact on the dynamics of the national
industry and local income [97, 235], or even the impact on GDP or GNP [6, 237,
248]. Depending on the indicators used, it can be measured in a qualitative scale or
in quantitative units, respectively.

Economic viability—this criterion evaluates the proposed energy policy/project
namely using the following economic appraisal techniques [46, 89, 103, 173, 180,
194, 233]:

• Net Present Value (NPV)—defined as the total present value of a time series
of cash flows. It is a well-known method for the appraisal of long-term energy
projects and it measures the excess or shortfall of cash flows, in present value
terms, once financing charges are met. NPV is often used to assess the feasibility
of an energy project by an investor [106, 145, 146, 191, 216, 251, 252, 282].

• Internal Rate of Return (IRR)—is the discount rate that makes the net present
value of all cash flows from a particular project equal to zero. The higher a
project’s IRR, the more desirable it is to undertake the project [112, 145, 146,
179, 252, 282].

• Cost-Benefit Analysis (CBA)—prior to erecting a new power plant or taking on
a new energy project, a CBA should be conducted as a means of evaluating all of
the potential costs and revenues that may be generated if the project is completed.
The outcome of this analysis will determine whether the project is financially
viable or if another project should be pursued 145, 146].

• Payback period—refers to the period of time required for the return on an
investment to “repay” the sum of the original investment. It intuitively measures
how long a project takes to “pay for itself”, shorter payback periods being
obviously preferable to longer payback periods to investors. Although primarily
a financial term, the concept of a payback period is occasionally extended to
energy payback period, i.e. the period of time over which the energy savings of
a project equal the amount of energy expended since project inception [86, 86,
251, 252].
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Useful life—refers to the number of years the power plant can operate before the
equipment needs to be replaced. Generally, the energy system timelife follows the
“bathtub curve” [49, 75, 197, 222].

Other specific economic criteria—Other political, fiscal, legal, and commercial
criteria include: availability of funds, compatibility with the national energy policy
objectives, political acceptance, geopolitical issues, legal framework, commercial
aspects, market size, energy price stability, duration of preparation and implemen-
tation phases for the evaluation of different energy policy implementations, energy
saved [17, 32, 46, 47, 70, 71, 75, 89, 100, 103, 106, 112, 143, 145, 146, 158, 160–
165, 167, 173, 178, 180, 191, 194, 197, 208, 214, 217, 220, 225, 237, 247, 248, 251,
252, 260, 263, 271, 272, 277, 288].

The investment cost criterion is the most used regarding all types of criteria
considered (see Fig. 25.3). When taken into account, the presence of this criterion
in each energy decision problem ranges from 76 % in miscellaneous energy studies
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Fig. 25.3 Economic criteria
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to 33 % in energy project studies. O&M costs are the next most important economic
criterion, followed by fuel cost. While O&M costs have a highest participation
in studies framed in miscellaneous energy applications (with focus on heating
systems), followed by studies grouped in power generation technologies and
energy plans and policies, the fuel cost criterion has a highest presence in power
generation technology comparisons. Economic viability concerns are taken into
account mainly in energy projects and energy efficiency decisions. Economic impact
criteria have its highest expression in energy siting decisions and in energy projects.
Production costs are present in miscellaneous energy applications, appraisal of
power generation technologies and energy efficiency problems.

25.3.10 Environmental Criteria

25.3.10.1 Local Impacts

Acidification and eutrophication—refers to the acidification potential and to the acid
rain (sulfuric and nitric acid created from the binding of the sulfur dioxide and
nitrogen with water in the atmosphere) and the contribution of the deposition of
nitrogen-containing compounds to eutrophication (excess nutrient enrichment) of
terrestrial and marine ecosystems [83, 214, 272].

CH4 emissions—methane is another important organic compound released
during biomass burning because of its carbon content. Methane emissions largely
depend on the burning method, decreasing with increasing combustion efficiency
[157, 259].

CO2 emissions—CO2 is mainly released through conventional energy systems
and contributes to the GHG effect leading to global warming. Indicators consider
either a direct contribution for the increase (in case of fuel combustion) or the
reduction (in case of RES generation) of this pollutant. The computation of
emissions may be based on lifecycle assessment techniques. This criterion is usually
measured in quantitative units [4–8, 33, 49, 59, 66, 75, 82, 89, 97, 100, 135, 141–
143, 151, 152, 157, 158, 180, 191, 197, 208, 215, 216, 220–222, 229, 235, 247, 248,
263, 270, 282, 285, 286, 291].

Effects on natural environment—mainly refers to the potential risk to ecosystems
caused by energy policies and strategies [17, 46, 49, 57, 59, 71, 83, 86, 86, 91, 112,
114, 144, 148, 151, 173, 178, 191, 197, 198, 214, 221, 233, 237, 245, 248, 260,
264, 271, 272, 288, 291]. It may include impacts on air, water and soil quality [158,
281], reflect human toxicity, fresh water eco-toxicity potential, marine eco-toxicity
potential (MAETP) and terrestrial eco-toxicity potential [77], as well as ecological
footprint [47]. Depending on the indicators considered, it can be either evaluated in
qualitative or quantitative terms.
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Land use—the land required by power plants is a matter of concern for their
evaluation, since different energy systems may have different land use impacts for
the same output level [4, 32, 48, 54, 66, 71, 97, 114, 135, 145, 146, 151, 152, 173,
247, 248, 288, 291].

Local pollutants—it includes the emissions of pollutants with local and regional
impacts not previously mentioned (e.g. non-methane volatile organic compounds,
ash emission and carbon monoxide, smell) [32, 48, 57, 66, 103, 135, 137, 145, 146,
158, 173, 225, 280, 282, 288].

Noise—refers to the noise impact caused in neighbor areas by new infrastruc-
tures, such as wind parks. It is usually measured in a qualitative scale [17, 49, 57,
59, 77, 97, 103, 151, 158, 173, 233, 235, 263, 271, 282].

NOx emissions—contribute to air pollution, acid deposition and climate change.
Reacting with organic chemicals, NOx can form a wide variety of toxic products that
may damage health. This criterion is usually measured in quantitative units [5, 6, 33,
47, 66, 82, 100, 141–143, 151, 152, 157, 197, 220, 222, 229, 247, 259, 263, 282,
285, 286, 288].

Particulate matters (PM)—are the primary cause for the rise of mortality and
morbidity in the vicinity of power plants and it is mainly released by coal/lignite and
oil as well as biomass and photovoltaic power plants (during cell manufacturing,
which is accounted for in lifecycle assessment studies). The risk for human
health depends on size, distribution, microstructure and chemical composition
of particulates released into the atmosphere [66, 135, 158, 197, 266, 267, 285,
286, 288].

Photochemical ozone creation potential—Photochemical pollution is formed
from emissions of nitrogen oxides and volatile organic compounds and carbon
monoxide in the presence of sunlight [83, 135, 158].

Radioactivity—small amounts of radioactivity are released to the atmosphere
from both coal-fired and nuclear power stations. In the case of coal combustion,
small quantities of uranium, radium and thorium present in the coal produce various
levels of radioactive fly ash. Nuclear power stations and reprocessing plants also
release small quantities of radioactive gases [66].

SO2 and SOx emissions—sulfur emissions into the atmosphere in the form of
SO2 and SO3 derive from the burning of fossil fuels or even wood, straw, alfalfa,
switchgrass or poultry litter. These emissions are main contributors to acidification
and are responsible for serious damage to human health and ecosystems [6, 33, 47,
66, 82, 100, 135, 157, 158, 197, 220, 229, 259, 263, 285, 286].

Visual impact—reflects the visual nuisance that may be created by the estab-
lishment of a wind turbine in a specific area or by the construction of new power
plants upon the sightseeing. The landscape of the different sites, the distance from
the nearest observer, the type and size of plants to be installed and the possibility
to integrate them with their surroundings are considered when evaluating the
alternatives. It is usually measured in a qualitative scale [54, 59, 77, 97, 112, 114,
151, 158, 233, 235, 237, 263, 264, 266, 267].

Wastes—relate to damages on the quality of the environment and it may
include wastes that are related to secondary products by fumes treatment or water
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processing, and solid wastes. The evaluation of this criterion may include the type
and quantity of emissions, and costs associated with waste treatments [6, 103, 112,
145, 146, 173, 237, 248, 260].

25.3.10.2 Global Impacts

Climate change/GWP/GHG emissions—refers to the GHG emissions or carbon
footprint [32, 47, 71, 83, 86, 86, 91, 172, 190, 214, 237, 258, 266, 267, 272, 288].

Resource depletion—relates to the cumulated energy input and material input
throughout the project or energy policy lifetime [6, 33, 83, 91, 148, 158, 173, 191,
215, 220, 237, 248].

Sustainability of energy resource—is a measure of feedstock supply availability
over a long period of time (40–70 years), in amounts sufficient for supplying large
market penetration of a given technology/energy source alternative. Alternatives
associated with renewable resources are better scored since they allow savings of
finite energy resources [32, 59, 71, 91, 144, 178, 215, 247, 248, 265, 288, 291].

The most used environmental criterion is CO2 emissions. The highest concern
with this criterion is attained in the framework of the studies grouped in energy
plans and policies followed by power generation studies (see Fig. 25.4). Effects
on natural environment are the next most important environmental criteria, having
a high presence in energy siting decisions, energy efficiency, power generation
technologies and energy plans and policies. NOx emissions are broadly taken into
account, namely in energy plans and policies studies, power generation technolo-
gies, and energy efficiency studies. Land use is also an important evaluation concern,
having its highest expression in siting decisions, energy plans and policies and
energy projects studies. Climate change is a global assessment criterion considered
in power generation technologies and energy plans and policies studies. While SO2

emissions are mostly present in energy plans and policies studies, local pollutants,
noise and visual impacts criteria appear mostly in siting decision studies. Resource
depletion and sustainability of energy resources are considered in about 10 % of
studies.

25.3.11 Social Criteria

25.3.11.1 Health Impacts

Human health—refers to health hazards caused by the different energy sources.
Relative hazards to human health due to various sources can be compared using the
concept of expected years-of-life lost. Depending on the indicator considered, this
criterion can be measured in qualitative or quantitative units [46, 77, 157, 173, 220,
235, 237, 288].
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Fig. 25.4 Environmental criteria

25.3.11.2 Risks

Food safety—is a qualitative indicator generally used for assessing the risks of
utilizing bio-fuels on food supply safety and food prices. This criterion is very
relevant as the increased use of bio-fuels in the transportation sector causes
important problems related with the increase of food prices [258].

Safety—represents the risk of fatal accidents or injuries according to the fre-
quency of occurrence of an accident in the past and the number of fatalities or
injuries involved. Severe accidents perceived in the future represent a qualitative
assessment of risk [66, 137, 141–143, 225, 237, 258, 260, 282, 288].



25 Multi-Objective Optimization and Multi-Criteria Analysis Models. . . 1143

25.3.11.3 Development

Job creation—evaluates energy policies by taking into account their impacts on
direct, indirect or induced employment, either with local or national implications. It
can be measured in quantitative or qualitative units [6–8, 32, 33, 47, 48, 66, 71, 86,
86, 100, 106, 112, 135, 145, 146, 151, 152, 158, 173, 197, 217, 220, 235, 247, 258,
263, 266, 267, 285, 286].

Regional development—expresses the progress induced in the less developed
regions of a country by the deployment of new technologies or energy plans [71,
86, 86, 217, 270].

Social impacts—refers to the (either positive or negative) effects produced by the
implementation of the energy project to the community [114, 135, 137, 173, 197,
198, 214, 215, 220, 237, 245, 248, 270, 272, 285, 286].

25.3.11.4 Acceptability

Acceptability to the user—depends on attributes such as usability, reliability,
efficiency of use and comfort, among others [23, 70, 103, 148, 225, 259, 271,
282, 285, 286, 291]. It can also represent the refueling convenience, a measure
of consumer access to a given fuel through the development of adequate refueling
stations. Alternatives that have an existing network of fueling options are better
[190, 288]. It is usually measured in a qualitative scale.

Social acceptability—refers to enhancement of consensus among social partners.
It takes into account opinions related to the energy systems by the local population.
It is extremely important since the opinion of the population and pressure groups
may heavily influence the amount of time needed to complete an energy project. It
is measured in a qualitative scale [59, 66, 77, 89, 91, 103, 145, 146, 151, 152, 158,
160, 180, 217, 220, 245, 258, 260, 270, 278].

Other social criteria—are generally directly related to the kind of energy source
under analysis and specifically considered in a particular study, for instance: human
resources dedicated to research and development activities [161, 162, 165]; social
components of risks [237]; educational potential [198]; share of household income
spent on fuel and electricity; working hours per energy produced [141–143]; cultural
heritage [264]; environmental protection level [167]; educational supportive actions
for RES in order to increase the energy market competitiveness and the energy
environmental awareness [217]; amount of capital per kWh produced in the lifetime
and the number of entities created per kWh produced in lifetime for assessing a
diversity and vitality indicator [6].
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Fig. 25.5 Social criteria

Job creation is the most used social criteria. The highest concern with this
criterion is attained in the framework of the studies grouped in energy plans and
policies, followed by energy project studies (see Fig. 25.5). Social acceptability is
the next most important social criteria with a high participation in energy plans and
policies studies and energy project studies. Social impacts are mostly considered
in energy efficiency studies. Acceptability to the users is an assessment criterion
considered in miscellaneous energy studies and energy efficiency studies. Safety
concerns are also important being taken into account in more than 10 % of the
papers reviewed.
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Fig. 25.6 MCDA methods used in energy decision-making studies

Fig. 25.7 MCDA methods used in each type of energy application (number of papers)

25.3.12 MCDA Methods

MCDA methods are classified into five main groups as shown in Fig. 25.6: Value
and utility theory approaches, outranking approaches, AHP/ANP approaches and
other approaches not fitting into the previous groups. The most popular MCDA
methods used in energy decision-making studies herein reviewed are also illustrated
in Fig. 25.6.

The value and utility theory approaches or function-based methods that are more
frequently used include:

• Simple Additive Weighting (SAW), in which the global value of each alternative
is equal to the sum of the products of the criterion weight and attribute data.
This method is the second most used one, being mainly considered in power
generation technology comparisons (see Fig. 25.7), and typically refers to a
general index of sustainability—Afgan and Carvalho [4, 5]; Pilavachi et al. [221];
Afgan et al. [7, 8]; Begić and Afgan [33]; Roth et al. [237].
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• Multiple Attribute Utility Theory (MAUT) [154], which allows DMs to consider
their preferences in the form of multiple attribute utility functions, is mostly used
to capture the uncertainty relating to the outcomes of alternatives rather than the
uncertainty relating to attribute values. In our review it is only used in energy
efficiency studies [251].

• The Multiple Attribute Value Theory (MAVT), a special case of MAUT where
there is no uncertainty in the consequences of the alternatives, is mainly used in
power generation technology comparisons, in particular to rank power expansion
alternatives [116] or to prioritize investment portfolios in capacity expansion
and energy security [178]. It is also applied in energy plans and policies, more
specifically in the study of the options for energy and carbon development for a
city [220] and to reconcile visions in quantitative resource allocation scenarios
[267] (see Fig. 25.7).

• The Simple Multi-Attribute Rated Technique (SMART) [279] is mentioned as an
appropriate MCDA technique for renewable energy planning in Polatidis et al.
[226], although no reports were found in scientific literature of the use of this
methodology in the framework of energy decision-making.

• The Ordered Weighted Average (OWA), which can combine non-weighted and
weighted linguistic information, has been used in the formulation of sustainable
technological energy priorities [86], the assessment of renewable energy produc-
ers’ operational environment [217], and to derive a wind farm land suitability
index and classification using Geographical Information Systems [17].

The outranking approaches include:

• The ELECTRE (elimination and choice translating reality) family of methods
[238], namely ELECTRE III, ELECTRE TRI and ELECTRE IS methods are
frequently used in energy decision-making. ELECTRE III has been mainly
used in energy plans and policies studies for the ranking of renewable energy
resources [32, 216] and recommending future energy sources [135], and also in
miscellaneous energy studies in the context of the appraisal of heating systems
[191], production processes [58] and pollution control [278]. ELECTRE TRI,
which assigns alternatives to predefined ordered categories of merit has been used
for the assessment of agricultural biogas plants [172], the definition of national
priorities for GHG emissions reduction in the energy sector [100], the selection
of wind energy projects [179], the appraisal of energy-efficiency initiatives [197],
and the assessment of risk in natural gas pipelines [46]. ELECTRE IS, which is
devoted to choice problems including a robustness analysis of results, has been
used to select among energy projects in farming fields in a region [114].

• The several versions of the PROMETHEE, Preference Ranking Organization
Method for Enrichment Evaluation [43], has been mainly used in energy plans
and policies concerning the design of renewable energy policies [158, 173] and
sustainable energy planning [263, 270]. It has also been used in the comparison of
power generation technologies [82, 265] and ranking the performance of different
biomass feedstock-based pellets [259], and in miscellaneous energy studies, such
as in the appraisal of cooking energy sources [225], thermal technologies [57]
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and public transportation vehicles [190]. PROMETHEE II for performing a
complete ranking of all actions has been used in the evaluation of sustainable
technologies for electricity generation [86], sustainable energy planning on an
island [270], energy exploitation schemes of a low temperature geothermal field
[106], assessment of renewable energy projects [112], determining induction
motors replacement schemes [252], and evaluation of heating systems [101].
In the fuzzy PROMETHEE method the performance of each scenario in each
criterion is introduced as a fuzzy number [106]. PROMETHEE is the third most
used method considered in the papers herein analyzed (see Fig. 25.7).

ANP has been applied on power generation technology studies, in particular
in the evaluation of alternative fuels for electricity generation [157], and energy
sources for a country [272] and a particular industry [214].

Several applications of AHP in combination with other methods have been
reported in the literature. Tzeng et al. [271] apply AHP to determine the rela-
tive weighting of the evaluation criteria and use TOPSIS to determine the best
compromise alternative fuel mode for public transportation. Jaber et al. [137] use
the fuzzy sets and AHP to perform the evaluation of conventional and renewable
energy sources for space heating in the household sector. Wang et al. [282] combine
fuzzy sets with AHP to assess trigeneration systems. Kahraman et al. [146] and
Kahraman and Kaya [145] used the modified Fuzzy AHP method developed by
Zeng et al. [298] by including simplified fuzzy operations and similar steps to
classical AHP for selecting renewable energy alternatives and energy policy options.
Kaya and Kahraman [151] and Cristóbal [75] propose the integrated VIKOR-AHP
methodology for the selection of energy policies and production sites and to select a
renewable energy project, in which the criterion weights are determined by pairwise
comparison matrices of AHP. Shen et al. [247] combine AHP and fuzzy set theory
to aid in measuring the ambiguity and uncertainty in the DM’s judgments to assess
the 3E goals and renewable energy sources regulated by the Renewable Energy
Development Bill. Talinli et al. [260] and Choudhary and Shankar [71] consider
priority weights derived from linguistic comparison terms and their equivalent
triangular fuzzy numbers for assessing the energy policies and selecting optimal
locations for thermal power plants. Wang et al. [285, 286] use AHP and fuzzy
analysis to determine the environmental performance of urban energy use plans.
Al-Yahyai et al. [17] use an AHP-OWA within a GIS environment.

TOPSIS—Technique for Order Preference by Similarity to Ideal Solution [136]
applications have mostly focused on the evaluation and selection of energy genera-
tion methods and technologies as well as energy systems performance. Tzeng et al.
[271] apply TOPSIS to determine the best compromise alternative fuel mode for
public transportation. Kaya and Kahraman [152] propose a modified fuzzy TOPSIS
for the selection of the best energy technology alternative. Choudhary and Shankar
[71] use it to rank the alternative locations of thermal power plants. Streimikiene
et al. [258] apply TOPSIS for choosing the most sustainable electricity production
technologies.
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NAIADE—Novel Approach to Imprecise Assessment and Decision Environ-
ment [192] applications to energy decision-making studies are focused on the
assessment of scenarios. Cavallaro and Ciraolo [59] use it to make a preliminary
assessment of the feasibility of installing wind energy turbines on an island site.
Dinca et al. [83] apply NAIADE to select the best energy scenario. Buchholz et al.
[48] review four multi-criteria tools, including NAIADE, for analyzing their suit-
ability to assess sustainability of bioenergy systems with a special focus on multiple
stakeholders. Shmelev and Rodríguez-Labajos [248] make a dynamic analysis of
sustainability at the macro-scale considering long-term, medium-term and short-
term plans. Browne et al. [47] use NAIADE to assess policy measures or scenarios
relating to residential heating energy and domestic electricity consumption.

VIKOR [281] has been used in applications ranging from the assessment of
energy sources to energy projects and siting decision evaluations. Tzeng et al. [271]
use it to determine the best compromise alternative fuel mode for public transporta-
tion. Kaya and Kahraman [151] suggest a modified fuzzy VIKOR methodology to
make a selection among alternative renewable energy options and production sites.
Cristóbal [75] use VIKOR in the selection of a renewable energy project within a
Renewable Energy Plan launched by a government. Vučijak et al. [281] apply it to
site selection and plant technical and operational parameters decisions, based on the
effects of the hydro power plants on the indicators defining the ecological status of
the affected water body.

Burton and Hubacek [49] apply MACBETH—Measuring Attractiveness by a
Categorical Based Evaluation TecHnique [28] to assess whether small scale or large
scale approaches to renewable energy provision are best placed to help meet the
targets set in the Energy White Paper for the UK at the lowest social, economic and
environmental costs.

McDowall and Eames [180] describe the application of Multi-criteria Map-
ping (MCM) [257], combining participatory scenario development, to provide an
integrated and transparent assessment of the environmental, social and economic
sustainability of possible future hydrogen energy systems for the UK.

Participatory multi-criteria analysis (PMCA) is used by Kowalski et al. [158] to
overcome some of the problems of monetary valuation and account for the multiple
dimensions and long-term nature of sustainable development, in a participatory
process for appraising future energy systems, considering the complexity of socio-
economic and biophysical systems featuring high uncertainty, conflicting objectives,
different forms of data and information, multiple interests and perspectives.

25.3.13 Uncertainty Treatment

Due to the lack, inconsistency or imprecision of data and the subjectivity or
vagueness of human judgments, the processing of all the different types and sources
of uncertainty is required to provide results in which the DM can have confidence.
The difficulty of providing exact numerical values for the criteria, making precise
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evaluations and translating human reasoning into a qualitative/quantitative scale has
been largely recognized [84]. Therefore, most of the input data and parameters
required by the methods cannot be given precisely. Data associated with the
performance of the alternatives according to multiple criteria, namely those of a
more subjective nature, and parameters, such as weights whether or not understood
as criterion importance coefficients, may be expressed in some methods by linguistic
terms. Human judgments on qualitative attributes are always subjective and thus
inherently imprecise.

Sensitivity analysis is the most popular uncertainty handling technique found in
the studies herein reviewed. Sensitivity analysis investigates the model response to
different types of variation in the input information, including raw data, technical
parameters conveying preferences, and additional assumptions. Several flavors of
sensitivity analysis are combined with the MCDA methods previously mentioned.
In most applications sensitivity analysis is based on a “one at time” approach by
considering changes in the results due to variations in a single parameter. Sensitivity
analysis may be conducted by considering:

• the computation of the intervals of the weights of the fundamental criteria with
the NAIADE method [59, 83, 248];

• whether there are other preferences or weights affecting the overall ordering of
the options [89];

• the variation between optimistic and pessimistic scores [180];
• the range of weights within which the dominant alternative remains stable in the

framework of the MACBETH method [49];
• the change of weights regarding the costs, benefits and risks dimensions with the

ANP method [214];
• the assignment of various criterion weighting schemes to accommodate a range

of perspectives combined with the PROMETHEE method [82, 190, 224, 259],
MAVT [116, 178]; the MAUT method [251]; AHP [54, 66, 67, 70, 146, 148,
167, 288]; AHP and TOPSIS [71, 151, 152]; PROMETHEE II [112, 252]; SAW
[97, 229, 235, 237, 262]; and TOPSIS [258];

• the modification of the (indifference, preference) thresholds in ELECTRE III [58,
103, 135, 216, 278] and ELECTRE TRI [46, 100];

• a study of the degree of robustness for each outranking situation in ELECTRE IS
[114].

In methods based on value and utility theory approaches, the treatment of uncer-
tainty is mainly held by using sensitivity analysis and/or stochastic distributions.
Moreover, sensitivity analysis is the most used technique in outranking methods
and the second most used technique in AHP.

Fuzzy sets and fuzzy logic are also used to address uncertainty in MCDA.
The use of fuzzy logic techniques has allowed developing a quantitative approach
using a qualitative representation, so it has been capable of simultaneously handling
numerical data and linguistic knowledge expression. Fuzzy techniques are mostly
used with the AHP method (see Fig. 25.8).
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Scenario based analysis is the second most frequent uncertainty handling tech-
nique, being mainly used in outranking methods. In scenario planning a limited
number of scenarios is constructed to analyze likely or relevant projections of the
future.

Robustness analysis, which is generally defined as the determination of the
degree to which a solution is affected, in terms of any attribute, by unknown
parameters or changing assumptions, has gained an increased attention in MCDA.
Flavors of robustness analysis are mainly used in outranking methods, mainly with
PROMETHEE.

25.4 Conclusions

The energy sector is of outstanding importance for the satisfaction of societal
needs, providing directly or indirectly the fundamental requirements for almost all
activities in modern societies. The application of models and methods of operational
research has contributed to effective decision support in several problems arising
in the energy sector. Until mid 1970s models for energy planning were mainly
based on an overall cost minimization perspective subject to demand satisfaction
and technology constraints. Nowadays, energy planning models, from strategic
long-term to operational short-term ones, are mostly based on multi-objective
optimization and multi-criteria decision analysis approaches, thus recognizing the
need to encompass multiple, conflicting and incommensurate aspects of evaluation
of the merits of distinct courses of action pertaining to economy, environment,
reliability, quality of service, etc. These models not just capture in a more realistic
manner the complexity of these problems, but also provide a value-added in
exploring a variety of possible decisions representing different trade-offs between
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the competing objectives/criteria thus enabling a more comprehensive analysis
of potential solutions also including in the decision process the preferences and
interests of stakeholders.

The quest for sustainability, namely concerning renewable energy resources,
technological advancements, new market designs, the significance of investments,
etc., make problems in the energy sector important challenges, for which MOO
and MCDA possess the right tools to be offered to planners and decision makers
(governments, regulators, utilities, consumers, interest groups) for a thorough
analysis and balanced recommendations. Therefore, it is expected that the energy
sector will remain one of the most active and exciting areas of application of
MOO/MCDA models and methods, with an enriching cross-fertilization between
challenging problems and innovative models and methods.
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Chapter 26
Multicriteria Analysis in Telecommunication
Network Planning and Design: A Survey

João Clímaco, José Craveirinha, and Rita Girão-Silva

Abstract The interaction between a complex socio-economic environment and
the extremely fast pace of development of new telecommunication technologies
and services justifies the interest of multicriteria evaluation in decision making
processes associated with several phases of network planning and design. Based
on an overview of current and foreseen evolutions in telecommunication network
technologies and services we begin by identifying and discussing challenges and
issues concerning the use of multicriteria analysis in telecommunication network
planning and design problems. Next we present a review of contributions on these
areas, with particular emphasis on routing and network design models. We will also
outline an agenda of current and future research trends and issues in this application
area of multicriteria modelling.

Keywords Telecommunication planning and design • Multicriteria analysis

26.1 Motivation

Telecommunication systems and network technologies and the associated services
have been and are in a process of very rapid evolution. Major changes in telecom-
munication system technologies and service offerings are currently underway. The
evolution of telecommunication networks is a process of paramount importance
not only because of the large investments required but also due to its significant
impacts on the economic activities and on the society as a whole. The development
of these networks gives rise to a variety of complex multidimensional problems.
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Therefore, the interaction between a complex socio-economic environment and the
extremely fast pace of development of new telecommunication technologies and
services justify the interest of multicriteria evaluation in decision making processes
associated with several phases of network planning and design. In the present work
a state of the art review on this subject is done.

In the second section of this study an overview of major historical evolutions,
current and foreseen major developments in telecommunication network technolo-
gies and services, is presented. Section 26.3 discusses general issues concerning
the use of multicriteria analysis (MA) in telecommunication network planning and
design. Section 26.4 is dedicated to a comprehensive discussion of applications of
multicriteria analysis to telecommunication network planning and design problems.
The first part (Sect. 26.4.1) is dedicated to a survey on routing models, an area where
there has been a very great increase in contributions using some form of multicriteria
based modelling. Section 26.4.2 deals with network planning and design models and
Sect. 26.4.3 is focused on studies that present multicriteria evaluation approaches
focusing on socio-economic evolutions associated with specific telecommunication
issues. Of course it should be noted that there is no sharp frontier between
Sects. 26.4.1 and 26.4.2 and that network design includes implicitly or explicitly
some routing sub-model.

It must be remarked that we decided, in Sect. 26.4.1, to describe in more
detail, as compared to other models, a recent multicriteria routing model dedicated
to optical WDM networks, developed by our research group, as an example of
the potentialities of multicriteria decision aiding approaches, to deal with new
challenges in telecommunication routing problems. This is in fact an area in
which there has been a very significant increase in terms of interest both from the
Operations Research (OR) and from the engineering community as reflected in an
increasing number of contributions. Also some aspects of two bicriteria shortest
path Quality of Service (QoS) routing models will be analysed in more detail
to draw attention to some methodological issues related to the calculation and
selection of non-dominated solutions in an automated decision environment. In our
opinion these models typify well cases in which the use of multicriteria (in this
chapter used as synonymous with multiple objective) mathematical programming
models is justified. Applications of multiattribute approaches mostly used in socio-
economic evolution models associated with specific telecommunication issues, are
just outlined because, in technical terms, they are not much different from their
application in other areas and for lack of space for a thorough discussion.

26.2 Overview of Current Evolutions in Telecommunication
Networks and Services

26.2.1 Major Technological Evolutions

For better understanding the decisive impact of network evolutions in the emergence
of a significant number of new sets of problems of network planning and design,
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involving multiple objectives and constraints, we now present an overview of the
major trends and factors underlying past, current and future evolutions.

Firstly, from an historical perspective, it can be said that major telecommu-
nication network evolutions have been centred on and around two major modes
of information transfer: circuit switching (typical of classical telephone networks)
and packet switching (typical of Internet). In circuit switching when a call is
generated the network routing mechanisms seek to find an available path (with
the required bandwidth) from origin to destination and when that path (usually
designated as route) is found then it is seized (in terms of the corresponding
resources needed for each call) for the duration of the call; if no path is found
in the required conditions the call is lost. In packet switching, the information
to be transmitted is divided into packets (carrying the information about their
origin and destination) of variable size that are routed through an available path
and may suffer delays in the intermediate nodes. The development of the TCP/IP
(Transmission Control Protocol/Internet Protocol) protocol suite enabled the very
rapid expansion of the Internet in the 1980s, strongly accelerated in the 1990s
through the release by the European Laboratory CERN (European Organization
for Nuclear Research), in 1993, of the basic Web technologies. As for the public
telephone networks they rapidly evolved from the 1980s through the development
of ISDNs (Integrated Services Digital Networks) enabling the convergence on the
same network of different types of services. The extremely rapid expansion of the
demand for data services and for new and more bandwidth “greedy” services, soon
required the development of technologies enabling to implement the concept of
broadband ISDNs (B-ISDNs), mainly based during the 1990s, on the information
transfer technology, ATM (Asynchronous Transfer Mode). ATM sought to take
advantage of the inherent merits of packet-switching (namely the flexibility in terms
of management of available bandwidth, when transporting large amounts of data)
and circuit-switching (in terms of the provision of interactive real-time connection-
oriented services with guaranteed QoS requirements). Since the early 2000 ATM
has been rapidly abandoned in parallel with the emergence of multiservice Internet
based technologies enabling the implementation of connection-oriented services
and advanced QoS routing mechanisms. Among such technologies we should refer
to IntServ (Integrated Services), DiffServ (Differentiated Services) and especially to
MPLS (Multiprotocol Label Switching) and GMPLS (Generalised MPLS). A fun-
damental reason for the increasing success of Internet as a basic communication
transfer platform is the fact that it enables a high percentage of the capabilities of an
“ideal network” at a very low relative cost, as analysed in [125].

At the level of the transport infrastructure (underlying transmission networks)
these trends were supported and have stimulated the development of optical
networks capable of making the most of the large bandwidths associated with the
very low wavelengths that may be carried by optical fibres. In particular WDM
(Wavelength Division Multiplexing), enabling the simultaneous transport of several
high capacity signals in each fiber, and DWDM (Dense WDM), using tens of
wavelengths on each fiber, with extremely large information rates and increased
traffic carrying flexibility, especially when associated with the introduction of
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wavelength conversion in the network nodes, permitted to take further advantage
of the very large economies of scale provided by optical networks. All these
developments led to the concept of intelligent optical network. As an example of
the new services provided by these networks we could mention [89]: intelligent
ultra-high bandwidth (lines at 2.5, 10 and 40 Gb/s provisioned from the customer
equipment or from a centralised centre, including service protection mechanisms
for failure situations), dynamic trunking (allowing to establish optical channels
between equipments with the desired bandwidth and during the required time)
and Gigabit Ethernet. Regarding transmission technologies (also known as carrier
technologies) based on optical fibres besides the currently dominant SONET/SDH
(Synchronous Optical Network/Synchronous Digital Hierarchy) systems a new
carrier technology, Carrier Ethernet, is spreading as a cost-effective and functionally
advanced alternative (see e.g. [228]).

Also rapid evolutions in digital radio communication technologies enabled an
extremely rapid expansion in wireless and mobile networks with new or enhanced
service functionalities. This was mainly driven by an increasing demand for
mobile data services including Internet access, so that the total number of mobile
subscribers tends to overtake the number of fixed lines on a world level. Related
developments in hardware/microelectronics made the coexistence of multiple and
heterogeneous access techniques possible, leading to the development of hetero-
geneous wireless networks (see e.g. [23]). As for the next generation wireless
networks, a recent report by Wu et al. [279] describes a vision on the future networks
over the next decade, focusing on the potential for new business opportunities
and on the need for an increase in the network performance, so as to handle the
current growth expectations in terms of energy efficiency, capacity, throughput and
deployment.

More recently the development of 4G (fourth generation) systems compliant
with IMT-Advanced (International Mobile Telecommunications Advanced) stan-
dards should provide mobile broadband solutions to different mobile devices in a
comprehensive and secure IP-based network. 4G networks should be interoperable
with existing wireless standards and offer global roaming across multiple networks.
A wide range of services is expected, including bandwidth-consuming applications
like HD (High Definition) broadcast, video calls and mobile TV. 4G should also
provide a higher reliability and a significant improvement in performance and
QoS. These advanced mobile services should be supported by networks that are
increasingly packet-based.

In the last decade telecommunication networks have been subject to an extremely
rapid evolution that is the result of the combination of two major forces: traffic
growth and a very fast pace of technological advances.

As for traffic growth this is both quantitative and qualitative that is involving
increases in traffic volumes in response to broad socio-economic developments and
also related to the demand for new services, more bandwidth demanding, as these
become available through technological evolution or simply perceived as desirable
by groups of customers. In this respect it should be stressed the extremely rapid
increase in Internet traffic that has occurred in very recent years (for instance in
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early 2000, the annual increase rates were 60–80 %—apud [89]). At the same
time the increase in the number of subscribers of broadband services and wireless
networks has grown at average rates of 60 % and 25 %, respectively. More recent
figures of the United States (US) wireless subscriber connections show an increase
by almost 3 times of the number of subscribers in the last decade, with a current
wireless penetration value of 102.4 % and a total of 29.7 % of US households having
wireless-only systems [74].

The strong interactions between those two driving forces and socio-economic
factors should be stressed. A relevant example is the fact that the explosive growth of
Internet enabled the rapid development of the so-called electronic commerce, as an
increasingly important business practice, with very strong impact on economy and
society as a whole. The impacts of telecommunication network developments in the
structure, management and organisational culture of the companies in association
with the present days globalisation, are also obvious. Overall it can be said that
there is a strong correlation between the technological development and expansion
of telecommunication networks and economic and social evolutions. Secondly, at
the market level, the steady transition from regulatory monopolies to liberalisation
led to fierce competition among operators and service providers both at the level of
national networks and local access networks. All these evolutions are multifaceted
and prone to conflicts and contradictions, an example being the tensions between
the recent drive for big mergers and acquisitions between operators and the antitrust
policies of the regulatory bodies (Federal Trade Commission and Federal Commu-
nications Commission in the US and the EU Competition Directorate). Needless
to say that there are strong social interactions associated with the development of
new network technologies simultaneously in terms of strictly human interactions,
in terms of the relationships between humans and all types of organisations and in
terms of the intra and inter-organisational relations. The detailed analysis of these
trends and interactions is naturally out of the scope of this study.

In a simplified manner it can be said that the factors mentioned above, favoured
the development of technologies and network architectures capable of satisfying
increasing traffic volumes and more sophisticated services, at the lowest possible
cost (per basic information unit that can be carried with a certain QoS satisfaction
degree).

From the previous analysis the following great trends in future telecommunica-
tion network technological evolutions can be put forward:

• the convergence of Internet wired transport infrastructure towards an intelligent
optical network;

• the evolution of 4G wireless network in the direction of an all IP multiservice
converged network;

• the increasing relevance of multidimensional QoS issues in the new technological
platforms.

Since the last trend plays a decisive role in the interest in developing multicriteria
decision analysis (MCDA) models we will analyse it in more detail.
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26.2.2 Increasing Relevance of QoS Issues in the New
Technological Platforms

The simplicity of the IP that provides the basic end-to-end data delivery service
in the existing Internet, based on a “best effort” (BE) service concept, lacks a
mechanism capable of guaranteeing the multiple QoS requirements of the new type
of applications, namely multimedia applications. This led to the introduction of new
functionalities in the next generation Internet, namely the IntServ and the DiffServ
mechanisms, providing certain QoS guarantees concerning the transport of traffic
of different types (for an overview see [185]). Also the MPLS technology contains
QoS mechanisms that enable different QoS parameter levels to be guaranteed on
separate LSPs—Label Switched Paths (or network “tunnels”) as well as functions of
network load balancing (through traffic engineering operations) and fast rerouting
under failure. All these developments pave the way to a new, high performance
multiservice Internet corresponding to the concept of QoS based packet network
proposed in [89].

On the other hand the Universal Mobile Telecommunications System (UMTS)
platform provides mechanisms of QoS support for 3G (third generation) and
4G wireless networks. These mechanisms are based on a QoS architecture that
uses several traffic classes intended for different types of applications where each
class corresponds to applications with similar statistical behaviour and similar QoS
requirements. This and other developments are creating the technical conditions for
the full interoperability of these networks and its convergence towards an all IP
network, as discussed above.

All these innovations and technological trends put in evidence the increasing
relevance of the issues related to the definition and assessment of multidimensional
QoS parameters and the associated network control mechanisms. These issues have
important reflexes in the type and nature of many new problems of network planning
and design, namely concerning routing methods and the choice of alternative
network architectures. The natural inclusion in the OR models associated with such
problems of multiple, eventually conflicting objectives and various types of con-
straints, technical and socio-economic, lays the ground for the potential advantage
of the introduction of MA methods. In fact, and concerning the type of problems
that need to be addressed, the demand for new services, the rapid traffic growth and
the extremely rapid technological evolution have led to the multiplication of new
types of problems of routing, network planning and design (as it will become clear
in the next sections) in many of which there is a potential advantage in considering
explicitly several criteria. Also, and with respect to the nature of many of such
new problems, it is important to address the multidimensional character of the
problems, together with the consideration of relevant technical and socio-economic
constraints. This necessity becomes more apparent if one takes into account the
increasing importance of the QoS issues (of a multidimensional nature) related to the
development of new services and the rapid evolution of the technological platforms.
Finally, the importance, in various decision problems, of the inclusion of negotiation
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processes involving various decision agents (in complex cases the customer, the
end service provider and the network operator) and the uncertainty associated with
many objective functions (OFs, in short) and constraint parameters, makes it clear
the interest in considering MA approaches in this context.

26.3 Multicriteria Analysis in Telecommunication Network
Planning and Design

From the last section, it is clear that decision making processes related to telecom-
munication networks take place in an ever increasing complex and turbulent
environment characterised by a fast pace of technological evolution, drastic changes
in available services, market structures and societal expectations, involving multiple
and potentially conflicting options. This is obviously an area where different socio-
economic decisions involving communication issues have to be made, but it is also a
case where technological issues are of paramount importance as it is recognised, for
instance, by Nurminen [205]: “(. . . ) The network engineering process starts with a
set of requirements or planning goals. Typical requirements deal with issues like
functionality, cost, reliability, maintainability, and expandability. Often there are
case specific additional requirements such as location of the maintenance personnel,
access to the sites, company policies, etc. In practice the requirements are often
obscure. (. . . )”. Nurminen, who has collaborated in the development of network
planning mathematical models for Nokia, recognises the limitations of single
criterion models. However he emphasises the difficulties in the tuning of parameters
in mathematical programming models and also draws attention to the fact that this
aspect becomes more difficult to tackle when multiple objective formulations are
used, since the procedures of preference aggregation by the decision maker(s), or
DM(s), imply, in general, the definition of specific parameters, such as, for example,
the fixation of some kind of “weights”. This difficulty does not justify less interest
in multicriteria modelling but must be taken into account.

In many situations the mathematical models for decision support, in this area,
become more realistic if different evaluation aspects are explicitly considered by
building a consistent set of criteria (or objectives) rather than aggregating them a
priori in a single economic indicator. In fact, multicriteria models explicitly address
different concerns that are at stake so that DMs may grasp the conflicting nature of
the criteria and the compromises to be made in order to identify satisfactory solu-
tions. In a context involving multiple and conflicting criteria, the concept of optimal
solution gives place to the concept of non-dominated solutions set, that is feasible
solutions for which no improvement in any criterion is possible without sacrificing
on at least one of the other criteria. In general, multicriteria approaches look for
the identification of one or more non-dominated, or approximately non-dominated,
satisfactory solutions. Of course, the choice of the approach or method to aggregate
the preferences is also multicriteria in nature. Beyond the problem mentioned above
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concerning the fixation of parameters, it must be taken into account whether or not
there is a possibility of using interactive procedures especially in relation to the
speed of calculation. In fact, the procedure can not be interactive if the calculations
in each interaction are too slow. Also, in many telecommunication network decision
problems, no more than a few seconds (sometimes less) are available for finding
the solution to be implemented, equally situations in which interactive procedures
cannot be applied. As we will see later on, when presenting a concrete example,
the simplicity of the questions the DM has to answer in the phase of preference
aggregation, is crucial. Cognitive as well as technical aspects are at stake that may
compromise, in many cases, the quality of the selected solutions.

Concerning methodological aspects it is clear that many routing models are based
on multicriteria shortest path models, as it will be analysed in Sect. 26.4.1. In this
respect we would like to refer to the paper by Tarapata [259], which presents a
review on selected multicriteria (multiobjective) shortest path (MOSP) problems
and resolution methods. It also provides an analysis of the complexity of the
resolution algorithms, ways of adapting classical algorithms, in particular using fast
implementations of Dijkstra’s algorithm and a presentation of properties of MOSP
problems formulated as mathematical programming problems, including com-
parative performance analysis experiments with different resolution approaches.
A recent review of the literature on multicriteria path and tree problems, namely
multicriteria minimum spanning tree problems, including an in-depth discussion on
exact algorithms and their foundations and an outline of important applications, is
presented in [53]. Also examples of applications of multiobjective combinatorial
optimisation illustrating how this type of approach provides more realistic mod-
elling and potential benefits, including reference to examples in telecommunication
routing are in [87].

Another aspect in which there are compromises to be made, concerns the type of
implementations to be executed with respect to single criterion problems that have to
be solved in each step of a multicriteria approach. This question is not exclusive of
multicriteria models but it is more critical in this case than in single criterion models,
since the programs with the single criterion implementations are run several times.
Let us examine what is at stake: in many situations the mathematical programming
models to be used have a network structure. In many of these cases there are
very efficient specific algorithms for solving them, sometimes exact resolution
procedures, other times heuristics. In this respect, the remarkable development of
metaheuristics in recent years has to be noted.

Many optimisation problems in the field of telecommunications, are charac-
terised by their large size and the presence of multiple, conflicting objectives.
Solving these problems exactly may be difficult or infeasible either as a result of
their combinatorial complexity or due to computational limitations in the context
of a given application. Therefore, heuristics and metaheuristics are often required
for their solution in an acceptable time, especially when on-line methods (and
in particular, real-time methods) are at stake. A state-of-the-art in multiobjective
metaheuristics at the beginning of the last decade is in [135]. More recent reviews
can be found in [88, 256, 257]. In [88], an overview over approximation methods
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in multiobjective combinatorial optimisation is provided. A summary of “classi-
cal” metaheuristics and a focus on recent approaches, where metaheuristics are
hybridised and/or combined with exact methods, are presented in that reference. In
[256], a unified view of metaheuristics is provided. A background on metaheuristics
and the implementation of algorithms to solve complex optimisation problems
across a diverse range of applications, including routing, are presented in that
reference. In [257], the focus is on open research lines related to non-evolutionary
metaheuristics, hybrid multiobjective metaheuristics, parallel multiobjective optimi-
sation, and multiobjective optimisation under uncertainty.

A particular case of metaheuristics are the evolutionary algorithms, which have
been extensively used to solve multiobjective optimisation problems in the field
of telecommunications. A state-of-the-art in multiobjective evolutionary algorithms
(MOEA) at the beginning of the last decade is in [268]. More recent reviews can be
found in [59, 60], where the features of MOEAs are presented, the aim being to find
good solutions for high-dimensional real-world design applications. State-of-the-art
research results and applications to different practical problems are presented.

The question is that the very rapid development of modern telecommunication
networks makes it advisable, in many situations, to use generic algorithms, often less
efficient but more robust concerning its applicability when there are technological
shifts, in order to avoid heavy implementation overheads for each specific new case.

It is also important to discuss in broad terms which multicriteria model is
more adequate to each situation. Up till now we have talked about mathematical
programming models that may be linear, non-linear and additionally may have, or
not, a special structure. In counterpoint other type of models that we will designate
as multiattribute models have been developed. While multicriteria mathematical
programming models assume the set of feasible alternatives is defined implicitly
through the introduction of constraints, in multiattribute models a finite and small
set of alternatives is defined explicitly. These alternatives are analysed taking into
account multiple criteria. This type of models allows a more detailed evaluation of
the considered alternatives, without computational explosion, but in most situations
it implies a very reductive point of view when considering telecommunication
planning and design. In fact, the explicit definition of a small set of alternatives
is a hard task and not realistic in many cases. As we will see later on, in
some circumstances the complementary utilisation of both types of models can be
advisable. It is out of the scope of this paper to enter in details on the approaches
that are available to analyse multicriteria models since it is a matter of study in
other chapters of this book. In a few words concerning multiattribute models there
is the so-called American School where, to support the evaluation of a discrete
set of alternatives, a multiattribute utility function, linear or not (depending on
the approaches) is built [138]. The Analytical Hierarchy Process (AHP) can be
viewed as a special branch of the American School where a hierarchy of interrelated
decision levels is identified [239–241]. On the other hand, the so-called French
School is based on the introduction of partial orders, i.e. outranking relations
are considered. No more complete comparability of alternatives and transitivity
are obtained. As an example of the French School approaches we can refer to
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ELECTRE methods [235]. Depending on the situation the purpose is to select the
most preferred alternative, to rank the alternatives or to classify the alternatives in
groups. They are less demanding than the American School approaches, namely in
terms of fixing parameters, however the results are less conclusive regarding the
aggregation of the DM preferences.

Concerning the approaches dedicated to multicriteria mathematical program-
ming models attention should be paid to the dimension of the real problems to deal
with and, many times, the necessity of a rapid execution, for the reasons discussed
above. In this respect one should put in relief, from the bibliography concerning
telecommunication applications: the use of interactive approaches dedicated to
multicriteria linear programming models; the use of methaheuristics for analysing
integer and mixed-integer programming models; and the use of approaches based
on the resolution of shortest and k-shortest path problems in the context of routing
models. It should be noted that network multicriteria shortest path models are
the only ones for which sufficiently rapid exact algorithms are available, either to
generate the whole or part of the non-dominated solution set, or to study the problem
in an interactive manner.

Last but not least, the uncertainties in various instances of the models, are also
a key issue in telecommunication planning and design. The uncertainty associated
with the representation of traffic flows offered to the network is of major importance
in many models. Such representation is a twofold task: the use of adequate stochastic
models (these are often mere approximations) for representing the traffic flows
as required by the model and the obtainment of estimates of the probabilistic
parameters that are needed in the stochastic sub-models. Also the uncertainties
and/or imprecisions associated with other parameters of the OR model of different
origins, from data collection to preference aggregation modelling (see [39]) are a
relevant issue in this context.

As it is well known, multicriteria approaches allow in these circumstances to
identify the set of criteria related to the stable part of the DMs’ preferences, leaving
to later analysis further aggregation of their preferences. In many situations, the
output of the MA is not a solution but some satisfactory solutions according to the
model used. So, an a posteriori analysis studying in more detail (namely, taking into
account characteristics not included in the model) those solutions may be advisable.
Furthermore, in some situations (as, for instance, in strategic planning) the analysis
may not lead to a prescription but just to a clarification of the decision situation.
This attitude dealing with the problems may help to reduce the gap between models
and real world problems.

A generic analysis of the reasons why there are potential advantages in con-
sidering explicitly multiple points of view in the evaluation of telecommunication
planning and management problems and of major factors to be taken into account
in the use of multicriteria approaches is in [50].
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Wierzbicki [275] shows how MA in telecommunications can be seen from the
point of view of knowledge creation theory. After reviewing a method called creative
space used for integrating various approaches to knowledge creation, a discussion
on how this type of approach can be useful in supporting new technology creation
by constructing specialised “creative environments” is presented.

In the next sections of this chapter a schematic review and discussion of works
using multicriteria models, published in the context of planning and design of
telecommunication networks, is presented. Also a discussion of future trends in
these areas will be outlined. Special attention will be paid to the section concerning
routing models (in Sect. 26.4.1) since, as it was seen in the previous section, this
is an area that raises great challenges having in mind the introduction of new
technologies and services, of a multidimensional character, since beyond costs
various dimensions associated with QoS are involved. An historical perspective
about the way in which various dimensions were treated in different models and
proposals to consider explicitly more than one criterion in situations of static
routing and of dynamic routing, will be presented. In this context, and from a
methodological point of view, exact algorithms for the calculation of shortest
paths in single criterion and multicriteria situations as well as heuristics, will be
mentioned. Secondly, a reference to studies on strategic planning of the evolution
of telecommunication networks, using multicriteria linear programming models
and interactive methodologies of analysis (Sect. 26.4.2), will be made. A model
that intends to evaluate the introduction of new basic services in the local access
network, in face of some of the remarkable technological developments previously
discussed, is reviewed. It is also briefly outlined an expansion planning model,
concerning the cellular phone system in a Brasilian state, based on a multiattribute
approach. Next, a reference to several studies focusing on problems which may be
grouped in the area of operational planning (in the context of Sect. 26.4.2), will be
made. In particular: a link frequency assignment problem, a power management
policy problem in wireless communication, an Internet caches placement problem,
an hub location problem dedicated to rural area telecommunication networks taking
advantage of new technologies and a frequency allocation problem in mobile
telephone networks. Very different models were used in these applications, however
all of them belong to the category of multicriteria mathematical programming.

Finally, some socio-economic application models related to telecommunication
issues are reported. Namely: several strategic studies concerning electronic com-
merce decisions and a study of quality concerning the provided telecommunication
services. In all these situations multiattribute models were used. Furthermore,
some studies concerning the complementarity/substitution between travelling and
telecommuting are referred to, namely studies where multicriteria network equilib-
rium modelling is proposed in several situations.
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26.4 Review and Discussion of Applications of MA
to Telecommunication Network Planning

26.4.1 Routing Models

26.4.1.1 Background Concepts

Routing is a key functionality in any communication network and has a decisive
impact on network performance (in terms of traffic carried and supplied grade
of service (GoS) for end-to-end connections) and cost. Routing is essentially
concerned with the definition and selection of a path or set of paths from an
originating to a terminating node (assuming the network functional topology
is represented by a graph), seeking to optimise certain objective(s) and satisfy
certain technical-economic constraint(s). The routing problems have different nature
and multiple formulations, depending fundamentally on the mode of information
transfer, the type of service(s) associated with the routed “calls”, the level of
representation of the network (typically two levels are considered: the physical or
transmission network and the logical or functional network), and the features of the
routing paradigm (for example whether it is static or time varying according to traffic
fluctuations or network conditions). The term “call” is taken here in its broadest
sense, as an end-to-end service request with certain requirements that must be met
by the path (or route) along which that call is routed. Examples are a telephone
call, a video call, a data packet stream or an end-to-end wavelength assignment
(in an optical network). In the broader context of the planning and design activities
routing is a fundamental network functionality that may be considered as an integral
part of the network operational planning decision process, strongly related to other
planning instances, namely network structure design (involving topological design
and capacity facility calculation) and traffic network management. At a lower level
of the network functionalities routing is intimately related to the entities that actually
implement its working in a real network, entities usually designated as routing
protocols, critically interrelated with the technological requirements. Two examples,
for the Internet, are the OSPF (Open Shortest Path First) protocol and the BGP
(Border Gateway Protocol). These aspects and interdependencies are a decisive
factor in the formulation of the routing problems from the OR perspective. An
overview of some of these issues and possible modelling and resolution approaches
can be seen in [180].

When formulating routing problems it is useful to model networks as teletraffic
networks the specification of which includes the following elements: (1) a graph
.V ;L / defining the network topology where the nodes (in V ) may represent
switches, exchanges (groups of switches interconnected in a certain manner) or
routers, and the edges (or links in L ) represent transmission facilities with a certain
capacity; (2) the capacities of the arcs, that are usually expressed in terms of
bandwidth (in bit/s) or equivalent number of certain basic transmission channels
(for example in multiples of 64 kb/s channels); (3) the node-to-node traffic flows
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that may be modelled in general as marked point processes (e.g. a marked Poisson
process, see [62]), which enable a representation of the instants of arrivals, call
durations and associated bandwidth requirements in the links; (4) the used routing
principle(s), that is, the basic features of the network routing function (for example,
whether it is static or dynamic or whether a maximal number of links per path was
prescribed). Here we consider the term routing method as a particular specification
of certain routing principle(s), including the algorithm or set of rules which are
used to perform the path computation and path selection for every traffic flow or
connection request, at a given time, having in mind to get the objective function
value(s) as good as possible and satisfy certain constraint(s)—associated with
the underlying routing principle(s) and possible additional constraint(s) reflecting
bounds on other objective(s) or requirement(s) inherent to the method. It must
be emphasised that the specification of the objective(s) and constraint(s) depends
strongly on the nature of the network and services (in various technical instances)
and on the rationale of the routing method. The procedure/algorithm of path
computation and route selection is normally designated as routing algorithm and
is a key element of the routing method. At a lower level of specification routing
is described through what we designate as routing technique, a technical entity that
actually enables the implementation of a routing method in a given real network with
a given technology and architecture and assuming a particular structure of available
information. A routing technique is typically implemented through standardised
routing protocols, critically dependent on the features of the concrete technological
platform, such as the OSPF for Internet.

A detailed analysis on background concepts useful to the development of OR
based routing models is in [58] in the context of a review on multicriteria routing
models. An extensive analysis of basic routing models and a presentation of key OR
approaches in this area, namely network flow-programming approaches can be seen
in [217]. Wang et al. present an overview on routing optimisation procedures for
Internet, analysed from a traffic engineering perspective in [271].

26.4.1.2 Review of Multiple Criteria Routing Approaches

QoS Routing Models

The extremely rapid pace of technological evolution and the increase in the demand
for new communication services lead to the necessity of multiservice network
functionalities dealing with multiple, heterogeneous QoS dimensions. This trend
(discussed in Sect. 26.2) led to a new routing paradigm in telecommunication
networks designated as QoS routing. This type of routing involves the selection
of a chain of network resources along a feasible path satisfying certain requirements
(dependent on traffic features associated with service types) and seeking to optimise
some relevant metric(s) such as delay, cost, number of edges of a path or loss
probability. Therefore, in this context, routing algorithms need to consider distinct
metrics [160].
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In commonly used approaches the path calculation problem is formulated as a
shortest path problem with a single OF, corresponding either to a single metric or to
a function encompassing different metrics, while QoS requirements are incorporated
into these models by means of additional constraints. This is the usually proposed
approach for QoS routing problems, generally designated as constrained-based QoS
routing. This type of routing problems is particularly relevant in the new Internet
technologies, namely MPLS, as explained in Sect. 26.2, and in some ATM routing
protocols.

A well known approach in multicriteria model analysis consists of transforming
the OFs into constraints, except one of them which is then optimised. In adequate
conditions the obtained solution will necessarily be non-dominated, concerning
the original multicriteria model; furthermore by varying the second member of
the constraints it is possible to obtain different non-dominated solutions (see [253]).
In this sense constrained-based QoS routing models can be envisaged as a first
tentative of MA. On the other hand, the necessity of determining the solution to be
implemented in the network in a very short time (usually a few seconds or even less,
depending on several factors) makes that the most common approach is to develop
heuristics that include classical algorithms for shortest path computations.

In [45] an overview of the majority of QoS routing procedures up to 1998, is
presented. A report on the state of art on QoS routing up to 1999 is presented
in [264]. A comprehensive review on constrained-based routing is provided in
[152, 153]. The latter authors recognise that QoS routing requires that multiple
parameters, related to current network state, have to be frequently updated and
the corresponding information has to be distributed throughout the network. Hence
the creation of routing protocols capable of efficiently computing the required paths
and processing and distributing that dynamically varying information, is still an
open issue that needs further investigation. In these circumstances they opted for
a review of methods dedicated to this type of problem where the network state
is temporarily static. In the same study several exact algorithms and heuristics
dedicated to the multiple-constrained path (MCP), to the multiple-constrained
optimal path (MCOP) and to the restricted shortest path (RSP) problems, are
discussed. In the MCP problem, the aim is to obtain path(s) which satisfy constraints
on all metrics while in MCOP and RSP (this is a particular case of the former with
one constraint alone) problems there is an OF to be optimised.

Kant et al. [136] describe an extensive study on the impact of various QoS routing
heuristics typically MCOP or shortest path tree procedures, considering various
metrics as path calculation objectives/constraints and compares their results in terms
of various network metrics, through an integrated analytic toolset.

The reference list includes several models on variants of QoS routing problems
and various resolution procedures. Namely: [122, 127] (focusing on the RSP
problem); [78] (dealing with the MCP problem through an heuristic with tunable
accuracy, based on a k-shortest path algorithm) and [267] (proposing a procedure
for dealing with the MCP and the MCOP problems, also based on a k-shortest path
algorithm); a similar type of problems is tackled in [30], using a heuristic based
on a k-shortest path algorithm; Reeves and Salama [227] propose a distributed
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implementation of a heuristic for a delay-constrained least cost path problem (a
specific MCOP problem); [224] (presenting and comparing several algorithms for
the MCP problem); [46] (proposing two heuristics for the MCP problem, based
on Dijkstra and Bellman-Ford algorithms); [147, 148] (proposing a heuristic for
the MCOP problem based on modified versions of Dijkstra algorithm); [172]
(developing an exact algorithm for finding k-shortest paths satisfying multiple
constraints); [8] (dealing with the CSP—Constrained Shortest Path problem);
[37, 124] (proposing a dual algorithm for the CSP problem); [283, 285] (both dealing
with heuristics for the MCP problems).

An in depth analysis of complexity issues of the MCP problem, stating that
the problem is NP-complete but not strong NP-complete and presenting reasons
explaining why in most practical instances of the problem, concerning communica-
tion network applications, exact solutions can be achieved is in [150]. The former
related work in [154] presents a study on performance evaluation of MCP and
RSP algorithms based on complexity analysis and simulation results. Also for the
MCP problema, Kuipers and van Mieghem [151] apply the concept of dominance
as an efficient search-space reduction technique and evaluate the advantages of
using this technique via a simulation study. A comparison study, focused on exact
algorithms and heuristics of specific type, for the MCOP routing problem is shown
in [155]. Avallone et al. [21] presents a comparison of algorithms for the MCOP
problem, based on simulations. In this reference the authors propose a routing
scheme that tries to maximise the throughput (or minimise the blocking), which
are typical goals in traffic engineering algorithms, while trying to satisfy the users’
QoS requirements. This combination of objectives considering both the perspective
of the service providers and the perspective of the service users in an integrated
manner, is also studied in [20], where simulation results are presented.

Cui et al. [76] propose a simulated annealing metaheuristic using Dijkstra’s
algorithm, for solving MCP routing problems, and analyse its computational
complexity and scalability in simulated networks.

Various papers focusing on particular applications of QoS routing models are
also included in the references.

In this category we included a QoS inter-domain routing model for a high
speed wide area network (WAN) given in [144], solved with a heuristic approach.
Applications of QoS routing approaches to classical integrated service networks
are in [113, 120, 177, 178]. Models of this type for Internet are quite numerous,
particularly having in mind their interest in the DiffServ, IntServ and MPLS
technological platforms as shown in [93, 99, 219].

An application of a QoS routing model in an ATM network, focused on a problem
with multiple constraints, is in [222]. Applications to MPLS networks are in [27]
where an overview in this specific application area is presented.

Rocha et al. [232] describe an evolutionary algorithm seeking to optimise the
link costs (in the context of an OSPF routing protocol) from the point of view of
network performance, assuming a MCOP base formulation.

A QoS routing procedure involving multiple constraints (MCP type problem) and
using a fuzzy system based routing technique is described in [288].
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Also other papers dealing with specific application models involving problems
of this type are included in the bibliography, namely: [27] (presenting an overview
of application models for MPLS networks); [77] (focusing on an application to
ATM networks); [78, 93] (dealing with applications to Internet routing); [113, 120,
177, 178] (showing applications to routing protocols for traffic with bandwidth
guarantees in integrated services networks); [219, 269] (making an analysis of
various formulations and mathematical properties of the MCP problem with respect
to the metrics more relevant to QoS routing).

Several routing methods require the calculation of several paths simultaneously,
leading to a class of routing problems designated as multipath routing problems.
Examples arise in routing models with reliability requirements or resilient routing
in which an active path and a back-up path, to be used in the event of failure, are to be
computed simultaneously for each pair of origin-destination nodes (which may be
referred to as point-to-point multipath routing) and in multicast routing where a set
of paths has to be calculated from an originating node to a set of destination nodes—
point-to-multipoint routing (for example in the case of distributional services
supplied by a certain service provider) or interconnecting a sub-set of the network
nodes—multipoint-to-multipoint routing (for example in teleconferencing services
in Internet). If all the network nodes have to be interconnected the associated
multicast routing problem, which may be designated as broadcast routing, can be
formulated as a spanning tree problem. If the set of destination nodes is a proper sub-
set of the set of network nodes, the multicast routing problem can be formulated as
a Steiner tree problem where the destination nodes and the originating node are the
terminal nodes.

In [149] a QoS routing procedure for a constrained multicast routing problem is
presented. It involves the simultaneous selection of paths from a source node to mul-
tiple destination nodes dealing with applications to routing problems in integrated
services packet networks. In [250] an algorithm for a multicast constrained problem
is described and its performance is analysed through simulation. A multicast routing
procedure involving the calculation of multiple trees is in [223]. In [5], a multicast
QoS routing model for wireless networks is described. It is based on the calculation
of trees satisfying multiple constraints, using a heuristic combining features of
genetic algorithms and competitive learning. A multipath routing model where the
load of a traffic flow between an originating node and a terminating node can be
divided by a set of feasible paths—a routing procedure usually designated as traffic
splitting—considering several criteria namely concerning the required bandwidth,
for application to Internet, is in [100].

Wu et al. [278] propose a multiple-constraint multicast routing heuristic based
on a genetic algorithm and compare its application with three single-constrained
Steiner tree heuristics. Other QoS-constrained multicast routing heuristics are
presented in [168] and in [47] which takes available bandwidth as the prime metric,
considering the constraints of the surplus energy of the node, delay and delay jitter.
Hou et al. [129] describes a QoS multicast routing model with multiple constraints
using a genetic algorithm.
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Seok et al. [244] address a dynamic version of this problem with a hop-count
constraint where the routing requests of traffic arrive one-by-one; it is formulated
as a mixed-integer programming problem and a new heuristic for its resolution is
proposed. A similar problem is treated in [42] by using a modified Bellman-Ford
algorithm, so that the proposed routing method builds a multicast tree, where a
node is added to the existing multicast tree without re-routing and satisfying QoS
constraints. Other QoS-constrained multicast routing heuristics for dynamic variants
of this problem are presented in [169].

Zhu et al. [290] present a heuristic for constructing minimum-cost multicast
trees with delay constraints. The same type of problem is addressed in [214] with
a formulation that handles two variants of the network cost optimisation goal:
minimising the total bandwidth utilisation of the tree and another minimising the
maximal link cost. The problem is solved by a heuristic.

Alrabiah and Znati [4] describe three heuristics based on shortest path calcu-
lations, for dealing with this type of problem and analyse their complexity and
compare their results in terms of the tree costs. Another heuristic for the same
problem is proposed in [98].

The paper [271] describes a heuristic for a multipath constrained routing problem
involving the calculation of two shortest link-disjoint paths, for protection purposes.
Another multipath constrained routing problem is addressed in [48] for application
to MPLS.

In [2], a specific QoS routing model for robust routing design in MPLS networks
is described, considering a point-to-point two-path calculation problem and two
network performance metrics obtained with and without failures in the links; a
mixed-integer linear programming formulation is used.

In [171] a multipath QoS routing model for ad-hoc wireless networks considering
four criteria and presenting a resolution procedure based on fuzzy set theory and
evolutionary computing, is described.

Special attention should be drawn to some cases where the concerns which lead
to this type of approaches, are relevant to MA. In [273] an exact RSP algorithm,
designated as constrained Bellman-Ford (CBF), is proposed. This enables, for
example, to obtain successive shortest paths between a pair of nodes for different
values of the right hand-side constraint on the delay, hence obtaining non-dominated
solutions. That author proposes an exact algorithm dedicated to the RSP problem.
The bicriteria nature of this proposal is clear and we could put in evidence that the
bicriteria shortest path problem approach in [52] could perform a similar study in a
much more efficient manner.

We would also like to draw attention to the fact that the principles underlying
the bicriteria routing approach described in [16] based on a specific k-shortest path
algorithm and on the introduction of preference thresholds in the OF space have
clear relations with the principles underlying the algorithm in [134] focused on the
MCP problem and with other algorithms intended to improve some aspects of that
algorithm.

Consider now approaches based on Lagrangian decomposition, where, for
example, one intends to calculate the minimal cost path subject to a delay constraint.
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The costs and delays on the links are combined linearly and hence the shortest
path, regarding the obtained OF, is calculated. Kuipers et al. [153] recognise that
a key issue in such approaches is the way in which the appropriate multipliers are
determined when delay and cost are combined, since this obviously conditions the
solution that is obtained. It is a question of the same type that arises in the definition
of weights when in MA one intends to optimise a weighted sum of OFs. Note that
in bicriteria shortest path problems, there may exist unsupported non-dominated
solutions. In the example above nothing guarantees that the obtained solution is
optimal for the original RSP problem. Approaches where one seeks to close the gap
between the optimal solution and the solution obtained from a linear combination
by using k-shortest path algorithms are referred to. Also approaches for calculating
unsupported non-dominated solutions based on k-shortest path algorithms can be
developed.

Other multidimensional approaches, where there is an a priori articulation of
preferences in the path selection, taking as basis bandwidth, delay and hop count,
could be mentioned [153]. Relevant examples are the widest-shortest and the
shortest-widest path approaches. Examples of such approaches can be seen in
[177, 178, 210], [269] (in this case the purpose is to calculate the shortest path
in terms of delay, with maximal minimal arc bandwidth; note that the minimal
bandwidth of all arcs of the path is usually known as bottleneck bandwidth), [212]
and [267] (presenting a heuristic approach based on an utility function, as an
alternative to the widest-shortest path model for routing “elastic1 traffic flows” in
Internet).

Sobrinho [249] seeks to treat in an unified form several QoS routing related path
computation problems (including connectivity, shortest path, widest path, most-
reliable path, widest-shortest path and most-reliable shortest path problems) by
using an algebra of weights (hence treating in an articulated manner the aggregation
of preferences) and also enabling to take into account a specific requirement of
the routing procedure implementation in the Internet. As an application of this
approach a variant of the Dijkstra algorithm which guarantees the satisfaction of
that requirement, is constructed.

Riedl [230] describes a genetic algorithm for calculating paths seeking to
minimise the sum of the delays in the links and the inverse of the bottleneck
bandwidth, for application in MPLS networks. Riedl and Schupke [231] describe
a routing optimisation approach considering one or two metrics, enabling to include
concave metrics and multipath routing through equal cost paths. The model seeks
to minimise the maximum link utilisation (MLU) in the network by adjusting
delays and capacities of the links. A linear combination of the two link metrics is
considered in the two metric case and a heuristic solution is proposed for application
to large networks as an alternative to a mixed-integer programming formulation.
Also note that this type of approach is a particular form of the “weight setting

1An elastic traffic flow has a rate that can adapt to the available network capacity.
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problem”, a NP hard problem originally addressed in [99] for application to OSPF
routing protocols, if we identify the weights as the individual link metrics.

Mitra et al. [203] develop a network revenue maximisation model in which
pricing and routing (with traffic splitting) are jointly calculated and show that link
shadow costs provide the basis for selecting optimal prices and routing policies.
The resulting concave programming formulation with constraints is solved by a
Lagrangian method and it enables selecting the solution which optimises the revenue
while guaranteeing the minimum traffic splitting so that it may be very useful in a
bicriteria optimisation context.

Explicitly Multicriteria Routing Models

Let us now consider the cases in which the modelling is more explicitly multicriteria.
We think there are potential advantages in considering many routing problems in
modern telecommunication networks explicitly as multiple criteria problems. This
type of modelling is potentially advantageous although one cannot ignore that, in
many situations, the solution to be implemented has to be obtained in a limited time
that may range from a very small fraction of a second (typically tens of ms) to a
few seconds. This practical limitation implies the impossibility of using interactive
methods in many cases, hence leading to the necessity of implementing automatic
path calculation procedures. The exception is in static routing problems, in transport
networks where transmission routes are maintained for large time periods or in some
form of periodic dynamic routing models where the input parameters are estimated
in advance (for example, node-to-node traffic intensities in different time periods),
cases in which an interactive procedure could be used to select the routes (for every
node pair) to be stored in routing tables assigned to every node. This explains the
predominance of methods where there is an a priori articulation of preferences. It
should be noted that, even in these cases, there are advantages in considering explicit
multicriteria modelling hence rendering the mechanisms of preference aggregation
transparent. In this manner, several aspects, namely cost and QoS parameters such
as blocking probability, delay or bandwidth, can be addressed explicitly by the
mathematical models, part as OFs and the remainder as constraints, seeking to
reflect in a more realistic manner the underlying engineering problem.

There is still a different type of multicriteria model, which deserves a reference.
In many types of telecommunication networks there is a mechanism, closely
associated with the routing function that is usually designated as admission control.
This mechanism involves a decision on whether or not each call/packet is accepted,
as a function of certain call characteristics (e.g. associated type of service, tariff
system and QoS requirements) and, possibly, network working conditions (this is
typical of dynamic routing methods that include admission control mechanisms).
The underlying objective of this mechanism is to maximise the operator revenue
while satisfying the QoS guarantees for every customer class.

Very early papers on multiobjective models in telecommunication networks
focused on flow control models were [82, 83, 86]. Douligeris [82, 83] describes
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a multiobjective flow control model in a multiclass packet traffic network with
queueing mechanisms where each class has a performance objective. The used
formulation is a non-linear multiobjective optimisation problem, involving as
criteria throughput and average delay, that is transformed in a linear multicriteria
program, solved by standard techniques. Also in [86], a problem of optimisation
of a multiserver two-class packet queueing model is dealt with by considering
a bi-objective Nash game formulation. In this context each class of packets, in
competition with the other class, seeks to minimise its own cost function (average
delay or blocking probability).

The game theoretic approach to routing in Internet in [22] considers that users
may determine individually the routes for flows they control, each with several
objectives, giving rise to a non-cooperative multicriteria game. The existence and
uniqueness of Nash equilibria for this type of problem are analysed in various
conditions and the model is applied to pricing.

In classical B-ISDN and in broadband multimedia networks in general, admis-
sion control is also a relevant issue, since the supplied QoS guarantees are directly
related to the obtained revenue, via the tariff (or “charging”) system (a compre-
hensive analysis and discussion on charging models for multiservice networks is
in [251]). Brown et al. [41] address an admission control problem in broadband
multiservice networks, modelled as a specific semi-Markov decision process that
might be considered as a first tentative stochastic multicriteria approach. In this
approach the objective is to maximise the total revenue rate of ongoing calls
while satisfying the QoS guarantees of all carried calls. The resolution approach
is based on a reinforcement learning technique. The solutions are compared with
simple heuristic admission control solutions, by using a simulation model for a test
communication system with two types of traffic sources.

Concerning multicriteria approaches for flow control calculation, Hassanein et al.
[126] describe a multipoint-to-point flow control multiobjective optimisation model
with three criteria: overall network throughput, fairness amongst sources in terms of
carried rates and fairness amongst groups of sources. The OFs are of quadratic type
and the minimisation of a weighted sum of the three functions is used for finding
non-dominated solutions.

Bezruk et al. [36] give a highlight of a generic multicriteria optimisation
formulation as a network design tool and of the type of compromise solutions it
may supply in the case of flow control calculation in a packet switched network.

On the other hand, as it will be seen in the cases that we are describing
next in more detail, it is possible to conciliate the automatic path calculation and
selection with some flexibility in the form of preference aggregation. This enables
the grasping of the compromises among different objectives, taking into account
certain QoS requirements, by treating in a consistent manner the comparison among
distinct routing possibilities in the context of a certain routing principle.

Following this methodological framework an explicitly multiobjective routing
model for telecommunication networks was firstly (as far as we know) presented
by Antunes et al. [16]. In this approach a static routing problem (that is a routing
problem where the OF(s) coefficients are constant values) is formulated as a
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bi-objective shortest path problem. The model can be adapted to different metrics
associated with different types of services. An algorithmic approach was developed
to deal with this problem which computes non-dominated paths based on the
optimisation of weighted sums of the multiple OFs, based on a very efficient
k-shortest path algorithm in [188]. QoS requirements are represented in the model
through ‘soft constraints’ (that is constraints not directly incorporated in the
mathematical formulation) in terms of ‘acceptable’ and ‘requested’ values for each
of those metrics. Note that since the routing problem is modelled as a multiple
objective shortest path problem without side constraints, no metrics other than the
ones considered as objectives are represented in this model. This limitation could
be surpassed, but in such case it should be necessary to check whether each new
calculated path, respects the side constraints. The resolution approach proposed in
[16] is inspired by the one presented in [233], in the framework of a procedure
enabling to search interactively non-dominated supported and unsupported shortest
paths in the bicriteria case. It should be stressed that the node-to-node routing
plans are supposed to run in an automatic manner, in the framework of a routing
control network mechanism. The procedure satisfies this requirement integrating
the use of a k-shortest path algorithm [188] (likewise in [233]) together with new
devices designated by soft constraints. To sum up, in this approach a specialised
automatic algorithm was developed to obtain non-dominated solutions, which takes
into account the specific aspects of a routing problem in a multiservice environment.
Note that updating the thresholds regarding the soft constraints related to QoS
requirements, according to the evolution of the network state, is a very simple and
clear procedure in operational terms.

To understand the main features of this type of approach, used in various forms
in a number of contributions referred to later, an illustrative example of its working
is presented, based on Fig. 26.1, considering as metrics cost and delay.

Firstly the vertex solutions, which optimise each OF separately, are computed,
by solving two shortest path problems using Dijkstra’s algorithm. This yields infor-
mation regarding the value range of each OF over the non-dominated solution set.
QoS requirements for each of those metrics are specified by means of the thresholds
concerning a requested value (aspiration level) and an acceptable value (reservation
level). The addition of this type of soft constraints (that is, constraints not directly
incorporated into the mathematical formulation) defines priority regions, in which
non-dominated solutions are searched. Region A is a first priority region where both
requested values are satisfied. Regions B1 and B2 are second priority regions where
only one of the requested values is met and the acceptable value for the other metric
is also guaranteed. A further distinction can be made between these second priority
regions by establishing a preference order on the OFs. For instance, stating that cost
is more important than delay, would give preference to region B1. Region C is a
third priority (or fourth if B1 and B2 have different priorities) region in which only
acceptable values for both metrics are fulfilled. For the example in Fig. 26.1 the first
solution found within (first priority) region A (solution 3) is selected. Note that any
solution in the first priority region dominates any solution in region C. Of course, in
other situations, solutions within second priority regions B1 and B2 could be found
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Fig. 26.1 Priority regions and example in [16]

first. These solutions should be stored but not reported until the first priority region
is entirely searched (i.e. when the constant cost line of the OF used in the k-shortest
path problem passes through point X). If there are no non-dominated solutions
within region A, the search proceeds to second priority regions. The previously
computed solutions in regions B1 and B2, if any, are now reconsidered. In the
example, solutions 5, 6 and 8 are found within second priority regions. In general,
it is (again) possible to obtain solutions in the third priority region (C) before all
second regions (B1, B2) are searched. Again these solutions are stored and reported
only when regions B are completely searched without finding any non-dominated
solutions within them. If the algorithm proceeds to this point it means that no paths
exist satisfying at least one of the requested QoS values (aspiration levels) and only
acceptable values (reservation levels) can be met. Beyond point Y even acceptable
values for QoS requirements cannot be met. In this case a possible relaxation in
the acceptable value thresholds would have to be considered. In fact non-dominated
solutions may possibly exist outside the priority regions (such as solutions 4 and 7),
which could be used as “last chance” routes.

The use of the capability of this type of model incorporating preference
thresholds is strongly dependent on the application environment, in terms of
network technological constraints (with repercussion on the teletraffic network
model) and capabilities, as well as on QoS requirements, types of traffic flows
and characteristics of provided services. For example, in conventional NB-ISDN
(Narrow Band ISDN), only constraints concerning “acceptable” levels of GoS need
to be considered, which should follow standard ITU recommendations. On the other
hand, in ATM and multiservice IP networks, namely based on IntServ, DiffServ and
especially MPLS platforms, where traffic sources of quite different nature and a
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multiplicity of requirements may occur, the connection-oriented services allow the
user to indicate the communication needs during the connection set-up phase and the
network may tailor the transfer properties of the connection to specific user needs.
This gives rise, in particular, to the concept of traffic contract or SLA (Service Level
Agreement) with its inherent flexibility in terms of resource management. In this
framework both types of (soft) constraints, concerning “acceptable” and “requested”
values become significant. In this context, it must be noted that the (possible)
occurrence of non-dominated paths which lead to a better value than the one
“requested” by the user raises questions regarding their admissibility as outcomes
of the algorithm, since they correspond to an overutilisation (albeit temporary) of
network resources. This type of questions, which does not bring any further algorith-
mic or computational complexity to the proposed approach, nevertheless requires
further analysis, which will be necessarily dependent on the network features. So,
an important point put forward in this paper is to draw attention to the potential
advantages in the application of MA to routing problems in multiservice networks
and to provide an efficient algorithmic approach for resolving the problem with
the consideration of relevant ‘soft’ constraints/preference thresholds, in addition to
normal ‘hard’ constraints.

Many other multicriteria routing models have been developed since [16] that are
based either directly or in terms of auxiliary resolution procedures in multicriteria
shortest path algorithms. Having in mind the importance of this type of procedure
we would like to refer to reviews in this area or papers of methodological nature
referring to applications in telecommunication network design.

Granat and Wierzbicki [119] present an overview of MA techniques applied to
the design of telecommunication networks and outline how a special model for
interactive MA can be adapted for this purpose.

The work [58] presents an overview on papers concerning multicriteria routing
models and describes a bi-level optimisation multicriteria routing model that may
be applied to ATM or to IP/MPLS with QoS constraints. In this model the first
level OFs are path cost and number of arcs and the second level OFs are bottleneck
bandwidth and path average delay. The model is solved exactly by calculating the
non-dominated solutions concerning the first level functions, which are “filtered” by
using bounds defined through the second level OFs.

The paper [276] presents a conceptual framework for the development of multi-
criteria QoS routing approaches in IP networks. After a critical analysis of the use
of the weighted sum aggregation of criteria as a basic method for multiple criteria
decision making in a general context and in the context of routing in communication
networks, the authors analyse, in depth, the features of routing approaches that may
be considered consistently multicriteria and describe an illustrative routing model
recurring to achievement functions in the context of a reference point approach.

Another important type of networks where multicriteria routing models have
been proposed is multiservice networks supporting multimedia applications. The
utilisation of a QoS routing principle, as mentioned above, involves the selection of
paths satisfying multiple constraints of a technical nature and which seek to optimise
some relevant metric(s). This is naturally a sub-area of multicriteria routing where
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there is very great potential interest/advantage in the use of multicriteria shortest
path based models.

A multiple objective flow-oriented optimisation model for this type of routing
problem, intended for application to networks supporting multimedia applications,
namely video services, was presented by Pornavalai et al. [220]. The OFs to be
minimised are the number of links of the path (usually designated as hop-count),
z.1/, and a cost z.2/ that is obtained by considering that the cost of a call using
a link aij is the inverse of its available bandwidth, bij. The first OF is intended
to minimise the number of resources used by a call while the second seeks to
minimise the impact of the acceptance of a call by choosing ‘least loaded’ paths.
As for the constraints, they are expressed by bounds on the minimum available
bandwidth (bound BWM), on the delay—sum of the delays dij on the links aij of the
path—(bound DMM), and on the delay jitter (bound JM). This corresponds to the
formulation of a bi-objective constrained shortest path problem (P1C) obtained by
adding to the classical bicriteria shortest path formulation minfz.1/; z.2/g, the three
constraints:

min
aij2p

˚
bij
� 	 BWM

X

aij2p

dij � DMM (26.1)

X

aij2p

Jij � JM

where Jij is the delay jitter on the link aij of path p. The OF coefficients are

c.1/ij D xij (with xij D 1 if the aij link is used in the path and xij D 0 otherwise)

and c.2/ij D 1
bij

. The constraint coefficients dij and Jij are calculated from stochastic
models representing the queueing and jitter mechanisms associated with the link
transmission functions, for each type of traffic flow. In some applications, such as
video traffic in an ATM network using a specific queueing mechanism it is possible
to transform the constraint (26.1) into a constraint on the number of links of the path.
In [220] the resolution approach to this problem is a heuristic based on the Dijkstra
shortest path (SP) algorithm. The heuristic is rule-based and has two phases: route
metric selection (i.e. selection of the OF that it seeks to optimise in each iteration)
and route composition rule (where SPs from the origin to intermediate nodes in
terms of one metric are concatenated with SPs from those nodes to the destination).
For each selected routing metric and composition rule if the SP or the composed
path do not satisfy the constraints the heuristic will retry a new route metric and/or
new composition rules until a feasible route is found or all routes are exhausted.
In spite of its capability in supplying feasible solutions in short times (in networks
with hundreds of nodes and average node degree of 4) it doesn’t guarantee that the
obtained solutions are non-dominated.
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This type of routing problem was tackled in [55] by using an exact algorithmic
approach for calculating the whole set of non-dominated paths of P1C. This
approach is based on the bi-objective shortest path algorithm by Clímaco and
Martins [52] and on the MPS algorithm in [188], used for calculating k-shortest
paths with respect to the convex combination of z.1/ and z.2/. In this approach it
was necessary to adapt a ranking algorithm for generating the set of non-dominated
paths. It might be expected that a labelling algorithm would be a better approach.
However it was shown by the authors that the ranking algorithmic approach has
better performance as a result of explicit consideration of the constraints in the bi-
objective problem. This approach was applied to a problem of video traffic routing
on ATM networks, by constructing random networks and networks based on the
US inter-city spatial topology. In this particular application study it was shown that,
although the used OFs were not strongly conflicting, there was a significant number
of problems with 2, 3 and 4 non-dominated solutions. Also the algorithm, proposed
in [55], enabled the calculation of the whole set of non-dominated solutions in
networks with up to 3000 nodes and average degree of 4, in short processing
times and modest memory requirements, up to certain bounds on the acceptable
delay. This makes this algorithm attractive in many realistic problems, namely in
more modern types of network platforms enabling the establishment of routes with
guaranteed QoS levels in terms of bandwidth, delay or jitter.

An interactive procedure based on a reference point approach, for resolving a
multiobjective routing problem is presented on [118]. The MA issue of selecting
and ordering the solutions obtained in the context of a multicriteria shortest path
routing model, taking into account that the route selection has to be performed in
an automated manner, is addressed in [56]. A first approach to this problem based
on the use of a k-shortest path algorithm and preference thresholds (leading to the
specification of priority regions) defined in the OF space, is put forward. Later, in
[57] an evolution of this method that is based on a reference point approach, using
an algorithm to minimise a weighted Chebyshev distance to reference points defined
in each priority region, is proposed and applied to a bi-objective video traffic routing
problem with multiple constraints.

The authors in [34] propose a multiobjective shortest path model with constraints
for calculating packet stream routes in an autonomous area of Internet considering
OFs of min-sum and max-min type. In [35] a multiobjective routing model for the
Internet using a multiobjective shortest path formulation is described; the model
uses as path metrics total average delay, hop-count and residual bandwidth and it is
solved by an exact algorithm that calculates the set of non-dominated solutions for
connections from one node to all the other nodes and a selection procedure based
on a weighted Chebyshev distance to the ideal point.

Yuan [284] describes a bi-objective optimisation model for multipath routing
using traffic splitting, for application to the Internet. It assumes all paths are
calculated from a single objective shortest path model (implemented in practice
through an OSPF routing protocol) where the weights have to be optimised in
order to obtain compromise solutions to a network optimisation bi-objective model.
This type of routing method is known as ‘robust OSPF routing’. The two OFs of
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this model are traffic load balancing functions in full-operational and arc failure
scenarios. The search for non-dominated solutions is a heuristic that uses a hash
function and a diversification technique. Note that the associated single optimisation
problem of calculation of the weights (cost coefficients of the arcs) such that the
shortest paths obtained with those coefficients optimise some network cost function,
assuming the traffic is split evenly among those shortest paths is known as ‘weight
setting problem’—a NP hard problem originally addressed in [99].

Another paper focusing on a multiobjective formulation of the weight setting
problem of link state protocols is [252]. An evolutionary metaheuristic is used for
seeking approximate non-dominated solutions.

Komolafe and Sventek [146] address the problem of optimisation of the RSVP
(Resource Reservation Protocol) routing protocol for Internet in terms of its timing
parameters seeking to simultaneously optimise four network performance metrics,
for various network traffic conditions. An evolutionary algorithm is used to seek
approximate non-dominated solutions and an application study with a network
simulator is described.

The authors in [3] present a study on the evolution of routing models used in the
context of a sequence of releases of a network planning tool, including a bi-objective
protection routing model. This model describes a trade-off between route length and
disjointness of primary and back-up paths to be used in the event of failures.

Craveirinha et al. [68] describes a stochastic bicriteria approach for restorable
QoS routing in MPLS networks, enabling to incorporate the most probable network
failure states (including multiple failures) in the calculation of the active and
protection paths by considering network “performability” measures. An exact
resolution method is also put forward for the model assuming the link failure
probabilities are known.

Concerning multipath routing models, Lee et al. [162] present a comparison on
multipath routing algorithms for MPLS networks, with traffic splitting, that select
candidate paths using multiple criteria.

In [216] an ant colony algorithmic approach, for dealing with a multiobjective
multicast routing problem with four objectives, in a packet network, is presented.
Donoso et al. [81] describe a multiobjective model for multicast routing the aim
of which is to minimise the total delay and the total number of links. A heuristic
combined with an evolutionary algorithm is proposed for obtaining approximate
solutions.

A multiobjective multicast routing model in wireless networks is in [238] where
a genetic algorithm, efficient in large networks, is used for obtaining approximate
solutions.

A bicriteria multicast routing model for multipoint-to-multipoint virtual connec-
tions in transport networks where the metrics to be optimised are load cost and the
number of arcs, is presented in [194] in the form of a bicriteria Steiner tree problem.
A heuristic procedure based on a bicriteria spanning tree algorithm is proposed
for solving the problem and its performance is analysed. An improvement of this
bicriteria Steiner tree heuristic is shown in [187] together with extensive tests using
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the Steiner-Lib for comparison with the optimal values of each of the two OFs and
for showing the effectiveness of the heuristic.

Talavera et al. [255] describe a multicriteria multicast routing model considering
the formulation of a three criteria Steiner tree problem where the criteria to be
optimised are MLU, tree cost and average link delay. The authors use as resolution
tools four different MOEAs and compare their results in a network dynamic
environment.

Cui et al. [75] describes a multiobjective optimisation model for multicast
routing where an evolutionary algorithmic approach is proposed for calculating non-
dominated solutions, and analyses its performance.

In [70] a procedure, based on the strength Pareto evolutionary algorithm (SPEA)
aimed at solving a multiobjective multicast routing problem, is presented. The used
formulation seeks to optimise simultaneously the cost of the tree, the maximal end-
to-end delay, the average delay and the maximal link utilisation. The authors in [80,
197] present a multicast multiobjective model with traffic splitting, for application to
MPLS networks which considers as OFs hop-count, total bandwidth consumption,
maximal link utilisation, and the total end-to-end delay; the basis of the resolution
approach uses a non-linear aggregated function of these four functions.

The authors in [94] present an overview on multiobjective multicast routing
models and put forward a classification of publications in this area. The paper
also describes an evolutionary algorithmic approach for obtaining the set of non-
dominated solutions which is based on a SPEA procedure and shows experimental
results for models with up to 11 objectives.

Meyerson et al. [198] analyses mathematical properties of a bicriteria Steiner
tree problem the aim of which is to minimise the sum of the edge costs concerning
one metric and the sum of source-sink distances in terms of an unrelated second
metric. A specialised heuristic is proposed for obtaining solutions. Its application to
multicast routing is also addressed.

Craveirinha et al. [69] presents a bicriteria minimum spanning tree routing model
aimed at calculating and selecting non-dominated spanning trees for broadcasting
messages or defining overlay networks over a MPLS network structure. The OFs of
the model are the total load balancing cost and an average upper delay bound on
the arcs of the spanning tree. An exact procedure is used for calculating supported
non-dominated solutions and one of such solutions is selected by a method based
on the approach in [57]. The network performance of the bicriteria model is also
experimentally analysed.

The authors in [288] presents a bi-objective routing model in a context where the
demand in the network is given by a set of offered traffic matrices and considering a
weighted sum of the average and worst case network performance values under the
given matrices. The trade-offs between these two criteria are analysed in case-study
MPLS networks using OSPF based routing.

In [112], on-line algorithms for routing and bandwidth allocation which simul-
taneously try to maximise the throughput and assure fairness in the treatment of the
communication sessions, are proposed.
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Nace and Pioro [204] present a tutorial on the application of max-min fairness in
routing optimisation in particular in relation to lexicographic optimisation models.
Resolution algorithms for convex max-min optimisation are presented as well as
their application in routing in communication networks.

Ogryczak et al. [206] describe lexicographic optimisation models using a max-
min fairness principle for bandwidth resource allocation in a data network. Several
algorithms for solving convex and non-convex models of this type are analysed.
In a subsequent paper, [207] the authors tackle the problem of telecommunications
network design with the objective of maximising service data flows and providing
fair treatment of all services. Again a max-min fairness principle is used to formulate
the resource allocation scheme. A lexicographic resolution approach is considered.

Pióro et al. [218] presents an analysis of the application of the max-min fairness
principle to the design of telecommunication networks, using a lexicographic
optimisation approach. An application of this type of formulation to a routing
method for elastic traffic, is also presented.

Ogryczak et al. [208] develops a multicriteria model enabling equitable optimi-
sation as an alternative to lexicographic optimisation, for dealing with bandwidth
resource allocation in IP networks. This approach is applied to routing elastic traffic
and a reference point procedure is developed as a resolution method.

A multicriteria routing model for wireless networks that seeks to obtain routes
which minimise total energy consumption, latency and bit error rate simultaneously,
is presented and its performance analysed in [182, 184]. The model uses a
normalised weighted additive utility function to obtain non-dominated solutions and
application results are presented. Marwaha et al. [195] presents a multiobjective
routing approach for certain types of wireless networks, namely mobile ad-hoc
networks. The model seeks to deal with the uncertainties of the routing model by
using a fuzzy cost function of the different metrics and an evolutionary algorithm
for tackling the corresponding routing optimisation problem.

A multiobjective routing model in wireless sensor networks (WSN) involving
mobile agent routing, which also uses evolutionary algorithmic approaches, can be
seen in [226]. In [181] a framework for routing in WSN that is adaptive, constraint-
based, multiobjective and which is also solely dependent on localised knowledge, is
proposed.

Malakooti et al. [183] propose a multicriteria routing method for satellite based
Internet communications considering as criteria to be optimised the total packet
latency to destination, the total processing time at a given node, the average delay
jitter, and the packet loss failure. A weighted additive function of the criteria is used
for seeking solutions.

Guerriero et al. [121] develop a bicriteria routing model for mobile ad-hoc
networks where two OFs are to be minimised: energy consumption and link stability.
A bicriteria CSP formulation is described and solutions are obtained through a
convex combination of the two functions. A heuristic solution is developed taking
into account the dynamic nature of the model and the distributed routing control.

Petrowski et al. [215] propose a method designated as “Russian doll method”
based on the definition of a set of nested boxes in the criteria space and use a
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Chebyshev metric to identify a so-called “most preferred” non-dominated vector.
The method was applied to a multicriteria routing model for mobile ad-hoc networks
considering two criteria: average packet delay and transmission error rate and it is
tested by simulation.

Shafigh and Niyati [246] apply a learning automata procedure for finding a
heuristic solution to a multicriteria routing problem in WSNs. A multicriteria
dynamic routing model for data transport in WSNs, is shown in [171]. It considers
three criteria associated with sensor-node properties and uses a heuristic procedure
for adaptive tree reconfiguration.

Long et al. [173] describe a satellite routing model using as criteria average
packet delay, residual link bandwidth and packet loss rate, and use a heuristic swarm
intelligence type technique for obtaining solutions, namely a “beehive algorithm”
inspired in the behaviour of bees. The results are compared with the ones from a
basic heuristic designated as “prior order algorithm”.

Roy and Das [236] present a multiobjective multicast routing model, for wireless
networks, considering as criteria end-to-end delay, bandwidth guarantee and resid-
ual bandwidth utilisation. A genetic algorithm is developed as a resolution approach.
This heuristic is used as the basis for a routing protocol in [237] and its performance
is analysed through network simulation.

In [29] a bicriteria routing model for IP networks is described, aiming at
optimising load balancing and average delay. A Non-Sorting Genetic Algorithm
(NSGA) is used for seeking Pareto solutions.

Levin and Nuiriakhmetov [165] address a multiobjective multicast problem in
Wi-Fi networks considering a multicriteria Steiner tree formulation where four
criteria, namely total cost, total edge length, overall throughput (capacity) and
estimate of QoS are to be optimised. A heuristic based on node clustering and a
minimum spanning tree algorithm is used as resolution approach.

Xu and Qu [280] present a multiobjective multicast routing model, considering
four objective functions in the associated multicriteria Steiner tree formulation (cost,
maximal end-to-end delay, average delay in the tree, maximal link utilisation) and
use a hybrid metaheuristic as a solution method: an Evolutionary Multiobjective
Simulated Annealing procedure due to [170].

Minhas et al. [199] present a routing model seeking to optimise simultaneously
lifetime and source-to-sink delay in WSNs by recurring to a fuzzy multiobjective
optimisation approach.

Another specific type of routing models where multicriteria approaches have
been proposed is dynamic routing. The advantages of using a dynamic routing
principle, in telecommunication networks, are well known (see e.g. [18]). The
essential feature of dynamic routing is the dependence of routing decisions on
measurable network parameters such as number of channels occupied in a link,
proportion of unaccepted connections (blocking probability), packet delays, esti-
mated traffic offered, or events (e.g. whether a connection request is successful
or not) hence reflecting, in one way or another, the network working conditions.
This implies that selected end-to-end routes may vary in time, seeking to take
advantage of the evolving network working conditions, with the aim of achieving,
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at any given time period, the best possible value(s) of some network performance
criterion (or criteria). The impact of dynamic routing in network performance is
particularly relevant in situations with highly variable traffic intensities, overload
and failure conditions by enabling an effective response of the routing system to
adverse network working states. The dynamic routing methods with this adaptive
nature are usually designated as adaptive routing methods. A classical review and
an overview on dynamic routing are in [17, 18, 61] where the advantages of dynamic
routing methods concerning network performance and cost are clearly shown.

Some of the most challenging routing optimisation models may be designated as
network-wide optimisation routing models and are characterised by the considera-
tion of OF(s) formulated at a global network level and depending explicitly on all
connection requests/flows present in the networks (a typical example is the expected
total network revenue, expressed in terms of the means of all end-to-end flows).
In contrast a more common type of models can be considered as flow-oriented
optimisation models, in which the OF(s) are formulated at flow level, that is for any
given node-to-node flow offered to the network (a typical example is the average
delay experienced along the chosen route by the packets of a given flow).

Craveirinha et al. [65] describe a two-level hierarchical multicriteria routing
model with traffic splitting for MPLS networks assuming that the required band-
width is divided by two disjoint paths. It includes as first level OFs the sum of the
“load balancing” costs of the two paths and the sum of the number of arcs of the
two paths whereas the second level functions are the minimal bottleneck bandwidth
and the maximal average delay of the two paths. An exact algorithm finds the non-
dominated solutions of the first level OFs and the second level functions are used to
“filter” one of those solutions according to acceptable bounds.

In [201] a bi-objective network-wide optimisation routing model for MPLS
networks with two traffic classes (QoS and BE traffic), is proposed, using a
lexicographic optimisation formulation. The problem is solved by a two-step
heuristic approach based on multicommodity flow programming algorithms.

Having in mind to explore the potential advantages of a multiple objective
routing principle of the type analysed in [16] and the inherent benefits of dynamic
routing, Craveirinha et al. [63] propose and describe the essential features of a
multiple objective dynamic routing method (designated as MODR) of periodic type
where the selected node-to-node routes for all traffic flows change periodically
as a function of estimates of certain network QoS related parameters, obtained
from measurements in the network. In its initial formulation, for circuit-switched
networks, it also uses a principle of alternative routing, that is any call of traffic flow
f from node i to node j may attempt the routes (corresponding to loopless paths
from i to j in the network graph): r1.f /; r2.f /; � � � ; rO.f /, in this order. The first
of these paths with at least one free capacity unit (usually designated as channel
or ‘circuit’, corresponding to the minimal arc capacity necessary to carry a call
of flow f ) in every arc and satisfying other possible requirements of the routing
method, is the one which will be used by the call. If none of those O routes satisfies
this condition, the call is lost, and the associated probability is designated as the
(marginal) blocking probability for flow f or call congestion. The traffic flows were
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modelled as independent Poisson processes. In alternative dynamic routing methods
the ordered route sets that may be used by calls of any traffic flow may vary in time in
order to adapt the routing patterns to network conditions so that the ‘best’ possible
network performance is obtained, under certain criterion (or criteria). In general
these methods, when correctly designed, are the most efficient routing methods that
may be used in this type of networks. MODR uses two metrics for path calculation
purposes: blocking probability and implied costs, which define a specific form of a
bi-objective shortest path problem. The implied cost of a link is an exact measure
of the impact associated with the acceptance of a call in that link. This important
mathematical concept was initially proposed by Kelly [139], for modelling routing
problems in loss networks (that is in networks where calls are subject to a non-null
blocking probability). It can be defined as the expected value (taking into account
the revenue associated with the carried calls) of the increase in calls lost on all routes
of all traffic flows which use a certain link, resulting from the acceptance of a call
in that link. The method in [63] uses O D 2: the first attempted route (r1.f /) is the
direct arc from i to j whenever it exists; the second choice route [alternative route,
r2.f /] has a maximum number D of links and is obtained from a modified version of
the algorithmic approach in [16]. This new version of the algorithm (designated as
MMRA—Modified Multiobjective Routing Algorithm), adapted to MODR, enables
to select non-dominated paths, in the higher priority regions of the OF space. The
priority region boundaries associated with soft constraints (required and acceptable
values of the two metrics) are calculated as a function of periodic updates of the cost
coefficients. In this model, in some situations, dominated solutions calculated in the
first priority region(s) may be interesting for selection in some practical situations,
leading to a change in the original procedure (for details see [63]). Examples in
[63, 190], illustrative of the application of this bi-objective model to a fully-meshed
circuit-switched network with telephone type traffic, show that path implied cost
and blocking probability may be conflicting objectives in many practical network
conditions, especially in cases of global or local traffic overload.

In [190] it is put in evidence an instability problem in the path calculation model
presented in the previous paper [63] when that model is used directly to obtain the
set of routes for every node-to-node traffic flow, in the context of a network-wide
optimisation model. This instability is expressed by the fact that the paths calculated
by the algorithm MMRA for all traffic flows, in each path updating period, tend to
oscillate among a few sets of solutions. A preliminary analytical model showed that
solution sets may be obtained by MMRA which lead to poor network performance
from the point of view of two global network performance criteria: network mean
blocking probability Bm (that is the mean blocking probability for a call offered to
the network) and maximal node-to-node blocking probability, BM . It is also shown
experimentally that the minimisation of the implied cost of the paths (z.1/) tends
to minimise Bm while the minimisation of the blocking probabilities of the paths
(z.2/) tends to minimise BM . That instability problem is a new “bi-objective” case
of a known instability in single objective adaptive routing models, of particular
relevance in packet-switched data networks (see e.g. [33]). To overcome this
instability problem, associated with the great complexity of the routing model, the
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main requirement of a heuristic procedure is the capability of selecting “good”
compromise solutions (set of routes for all traffic flows in every path updating
period), from the point of view of the two mentioned global network performance
criteria. Note that even a single objective formulation of the adaptive alternative
routing problem is NP-complete in the strong sense (also in the degenerated case
where O D 1, i.e. no alternative route is provided), which is an indication of
computational intractability even for near-optimal solutions. Martins [189] present
a complete analytical model for the network routing problem in [190], enabling
to make it explicit the mentioned instability problem and calculate, through the
resolution of a system of non-linear teletraffic equations, the two global network
performance values, for given traffic intensities and link capacities. This leads to a
bi-objective dynamic alternative routing problem, formulated at the network level.
A heuristic for resolving this problem was developed in the report [189], enabling
to obtain good compromise solutions with respect to Bm and BM, at every path
updating period (heuristic for synchronous path selection), hence overcoming the
mentioned instability problem. To show the effectiveness of the proposed approach,
results from the MODR method (using this heuristic) are compared, for some test
networks, with a reference dynamic routing method (RTNR or Real-Time Network
Routing, developed by AT&T—see [17]), by recurring to a discrete event simulation
platform.

Martins et al. [191] describe a heuristic based on a bi-objective shortest path
model, for solving the multiobjective network-wide optimisation model in [190],
and compare the resulting network performance with reference single objective
dynamic routing methods. In [192] an extension of the previous model to mul-
tiservice networks (equivalent to multirate loss traffic networks) involving the
specification of a bi-level hierarchical multiobjective routing optimisation model,
is presented. This model includes OFs defined at network and service levels
(including fairness objectives) and the performance of the developed heuristic is
again compared with reference single objective dynamic routing, seeking to put in
evidence potential advantages of multicriteria approaches in this area. A systematic
analysis of the complexity and uncertainty issues involved in the multiobjective
routing model is in [191] and the way they were dealt with in the proposed
heuristic solution method, is presented in [64]. A modified and simplified version
of the heuristic dynamic routing method for multiservice networks in [192]—
very demanding in computational terms—is presented in [193], aimed at solving
the same complex multiobjective network-wide optimisation model with much
less computational resources (and similar performance) in the context of carrier
IP/MPLS networks.

A different type of multiobjective network-wide optimisation model in terms of
the nature of the used OFs is in [145] that proposes a routing model for multiservice
networks with three OFs related to path cost, bandwidth utilisation in the arcs
and a target arc utilisation, expressed in terms of bandwidth. The model is solved
by an evolutionary algorithm. In [229] a bi-objective routing model for private
circuit routing in the Internet, where the OFs are the packet delay and a traffic
load balancing function, is proposed. The author in [90] presents a three-objective
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routing optimisation model for MPLS networks, considering multipath routing
(corresponding to bandwidth splitting for each offered flow), proposing a mixed-
integer formulation. Two of the OFs are analogous to the ones of the previous article
and the third one aims at minimising the total number of used LSPs. The resolution
approach uses an evolutionary algorithm and the results are compared with the
results of another resolution procedure. Related papers, focusing on the same type
of routing model are [91, 92]. In the paper [211] a genetic algorithm approach for
dealing with multiobjective routing problems of generic type as well as a number of
application results, are presented.

Another multiobjective network-wide optimisation routing model for MPLS
networks considering multiple QoS traffic classes is proposed in [263]. This model
is focused on the optimisation of admission control and routing performance and
uses an auxiliary queueing model for estimating the average packet delay in the
model. A lexicographic optimisation approach is used.

A discussion of key methodological issues raised by multiobjective routing mod-
els in MPLS networks is put forward in [66]. This reference also presents a proposal
of a hierarchical multiobjective network-wide routing optimisation framework for
networks with multiple service classes, including auxiliary approximate stochastic
models for representing the traffic flows.

Girão-Silva et al. [107] describe a hierarchical multiobjective routing model in
MPLS networks with two service classes, namely QoS and BE services. A bi-level
network-wide optimisation model with fairness objectives for the different service
classes is presented (in the framework of the approach in [66]) and a heuristic
resolution method is proposed and tested in a reference network. The theoretical
foundations of a resolution approach for this type of model, based on the use of a
bicriteria shortest path sub-model using implied costs and blocking probabilities, are
described in [67]. This is achieved through the proposal of a definition of ‘marginal
implied costs’ in two-class service multirate loss networks, by extending earlier
work on implied costs in [139, 200].

A meta-heuristic resolution approach for this model, namely a simulated anneal-
ing procedure and a tabu search procedure, are developed and tested in [108].
Girão-Silva et al. [109] describe a specialised heuristic based on a Pareto archive
for solving that very complex routing model [107] and tests its performance by
comparison with the previous heuristic approach. Also a dynamic version of the
routing model is considered and its network performance tested via a discrete event
stochastic simulator.

A multiple objective routing model for a stochastic network representing a large
processing facility is approached in [141]. The nodes of the network correspond
to finite capacity queues of different types (e.g. M=G=1=m, GI=G=1=m). The
possibility of reattempts is considered and the arrival processes from the source
nodes are renewal processes. The functions to be optimised are the average sojourn
times for all customer types and the total routing costs and are often conflicting
objectives. It should be noted, as mentioned by the authors, that this type of
model, although having originally a formulation for manufacturing facilities, could
be adapted to telecommunication networks, namely packed switched networks.
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The proposed mathematical formulation is a multiple objective multicommodity
integer programming problem with constraints. A heuristic is developed for solving
the problem, based on the calculation of k-shortest paths, enabling to find an
approximation to the non-dominated solution set.

The papers [128, 243] present a bi-objective routing model for MPLS networks
that uses a lexicographic type formulation, considering as OFs the arc utilisation
and the number of arcs per path. A two-step heuristic procedure based on a
multicommodity flow approach is used for solving this problem.

A specific new routing problem in MPLS networks concerning “book ahead
guaranteed services” (or BAG in short), modelled as a multicriteria decision
problem, is approached in [260]. This problem is focused on the calculation ahead of
time (with respect to the instant of generation of the actual call) of two paths, at the
request of a user, with certain QoS guarantees. For example, the user may request
the network administrator through a web-page sign-up of his/her access, at a future
time, of the use of a supercomputer, with bandwidth and survivability guarantees in
the event of failures. A pair of arc-disjoint paths (the first for the actual connection
and the second to be activated in the event of failures) satisfying certain bandwidth
constraints has to be calculated. The considered objectives are: to maximise the
residual capacity in the network for other types of services (designated as “best
effort services”, such as e-mail or www), to minimise the routing costs of the BAG
traffic, to minimise a penalty associated with the rejection of BAG service requests,
and to maximise the revenue from accepted BAG demands. The proposed problem
resolution is based on the aggregation of the four OFs and uses a heuristic to solve
the resulting integer-linear programming problem.

A multiple objective routing model for B-ISDN (based on ATM), using a
fuzzy optimisation approach, was presented by Aboelela and Douligeris [1]. The
fuzzy programming model is focused on maximising the minimum membership
function of all traffic class delays (corresponding to different service types) and the
minimum membership function of the link utilisation factor of all network links. The
efficiency and applicability of the approach are studied, under different network load
conditions, by calculating several performance measures and comparing their values
with the ones obtained from single objective models. The author discusses and
recommends a hybrid resolution approach that combines the “generalised network
model” that has been successfully applied to large zero-one integer programming
problems [111] with the fuzzy programming technique.

The papers [174–176] deal with multicriteria routing models using heuristic
approaches based on the concept of learning automata in fuzzy environments and
present experimental results in communication networks by considering a model
with two criteria concerning quality and price.

Anandalingam and Nam [6] propose a game theoretic approach to deal with
a dynamic alternative routing problem in international circuit-switched networks,
considering the cooperative and non-cooperative cases. In the non-cooperative case
it is assumed that each player (corresponding to a given country involved in the
network routing design) selects a routing strategy which optimises his/her payoff
given the strategies chosen by the others and he/she equally assumes that the other
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players will attempt to use strategies which optimise their payoffs, where the payoff
objectives of each player are expressed in terms of the minimisation of the cost
of adding more links (with the required capacities) in his own part of the global
network. This problem is modelled as a bi-level integer linear programming problem
characterised by a player who works as “leader” and makes the initial decision
(by minimising his/her own cost function) and then the other players, or “followers”,
seek to minimise their own cost function given the leader’s decision. The leader
has to pay a certain fraction of the link costs of a part of the network, jointly
owned. Several application examples, where approximate solutions to the model
are obtained from the branch-and-bound algorithm by Bard and Moore [28], are
discussed. The major conclusions stress the great cost savings in global networks
(an example is presented for a network interconnecting US, Japan and Hong-Kong),
for all the involved players, obtained from the dynamic routing solutions, both in the
cooperation and in the non-cooperation cases; this is a result of the distribution of
the peak traffic loads of one country by the idle parts of the routes in other countries
by making the most of the country different times.

An important type of routing problems in transport networks concerns routing in
WDM optical networks. This type of problem, that may have multiple formulations,
is usually designated in its most general form as the route and wavelength
assignment problem (RWA in short). RWA refers to a type of routing problem that
has become very important in optical networks, especially with the emergence of
OXCs (Optical Cross-Connects), and is focused on the calculation of lightpaths
(fixed bandwidth connection between two nodes via a succession of optical fibres).
It can be decomposed in two inter-related sub-problems. Given an optical network,
the arcs of which correspond to bundles of optical fibres each one with a number
of available wavelengths, and the demand for node-to-node optical connections,
the first sub-problem, or ‘routing problem’, involves the determination of the path
(topological path) along which the connection should be established; the second
sub-problem involves the assignment of wavelengths for every connection, on each
arc of the selected path. RWA has multiple formulations depending on the nature
of the traffic offered (optical connections), objectives (for example: to maximise the
number of established connections for a fixed number of available wavelengths or
to minimise the number of required wavelengths for a given set of requests) and
technical constraints. An overview of basic concepts and formulations in this area
of routing can be seen in [19]. A review of approaches for solving more common
formulations of the RWA problem was presented in [286].

A multiobjective model for routing and provisioning in WDM networks is
presented in [140]. The model considers a fixed budget, and a primary objective
is the minimisation of a regret function concerning the amount of over and
underprovisioning related to the uncertainty in the demand forecast. A secondary
objective is the minimisation of the equipment cost. The proposed resolution
approach of this lexicographic type formulation is a two-phase heuristic using
mixed-integer linear programs.

Hua et al. [130] address the RWA problem considering multiple network
optimisation objectives, namely profit and path length.
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Huiban and Mateus [131] describe a model of virtual topology design and
routing in optical WDM networks in terms of a multiobjective mixed-integer linear
programming. The optimisation criteria are the number of used wavelengths and the
maximum link load of lightpaths, and the resolution uses an 	-constraint method.

Crichigno et al. [71] develop a multiobjective routing model for WDM networks
considering a multiobjective mixed-integer linear programming formulation. The
optimisation criteria are the aggregated throughput, the resource consumption and
the MLU, and the resolution procedure is an 	-constraint method. The network
performance results are compared with those from single objective formulations.
The same routing model is analysed in [72, 73].

A multiple-objective approach, based on genetic algorithms, is proposed in the
report [289] for dealing with a specific routing problem in WDM optical networks.
The problem is a particular version of the RWA problem and is modelled as a
three objective integer linear programming problem and the resolution approach
is a genetic algorithm using a Pareto ranking technique.

Leesutthipornchai et al. [163] describe a multiobjective RWA problem in WDM
networks with static RWA where the OFs are the number of accepted communi-
cation requests and the number of required wavelength channels. It uses a genetic
algorithm for solution calculation and compares the results with those from classical
methods. The same type of problem was also tackled in [164] with a particular
version of the SPEA.

Markovic and Acimovic-Raspopovic [186] address a routing problem in WDM
networks modelled as a multicriteria shortest path problem where the criteria are
the number of links, the number of free wavelengths and the blocking probability.
Solutions are obtained with a shortest path algorithm applied to the weighted sum
of the criteria.

To finalise this section we review in some detail a recent paper made by our
research group, as an example of the potentialities of new multicriteria decision
aiding approaches to deal with new challenges in telecommunication routing
problems. The chosen paper is [117].

The routing problem in WDM networks involves multiple objectives and con-
straints. In this paper we propose a bicriteria routing model associated with the
dynamic lightpath establishment (DLE) problem with incremental traffic in a WDM
network. The model is intended for possible application in large WDM networks,
with multiple wavelengths per fibre and multifibres per link. In order to enhance the
range of application of the model, various types of nodes, with complete wavelength
conversion capability, limited range conversion, or no wavelength capability, were
considered. Furthermore, a mixture of bidirectional symmetric and unidirectional
optical connections, the latter being in small percentage, characteristics often found
in real optical networks, were considered.

Another important feature of the model is that the solution to the bicriteria routing
optimisation problem should be calculated and selected in a short time and in an
automated manner. Having in mind these factors and especially the incremental
nature of the traffic offered, a flow-oriented optimisation formulation for the
topological lightpath establishment (TLE) bicriteria problem was considered, that
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is, the bicriteria routing problem is formulated for each node-to-node connection
request at a time and the wavelength assignment problem is solved separately, using
an heuristic, after the TLE problem.

The candidate solutions to the topological RWA bicriteria model are topological
paths which are non-dominated solutions to the following problem:

�
minp2DT c.p/
minp2DT h.p/

where the set of admissible solutions, DT , is composed of all the topological paths
from the source to the destination node which correspond to viable lightpaths, that
is, lightpaths with the same arcs as p and with a free and usable wavelength in every
arc. The topological paths in these conditions (elements of DT ) are designated as
viable topological paths, for the given origin-destination nodes. For obtaining DT ,
the free wavelengths in each arc will have to be identified first taking into account
the wavelength conservation specified capabilities, and then the set of viable paths
for each pair of origin-destination nodes becomes implicitly defined.

The first objective function, c.p/ is related to the bandwidth usage in the links of
the path p and is expressed in the inverse of the available bandwidth in the links:

c.p/ D
X

l2p

1

bT
l

; p 2 D

where D is the set of topological paths from the source to the destination node
and bT

l is the total available capacity in link l, in terms of available wavelengths.
This criterion seeks a balanced distribution of traffic throughout the network, hence
favouring the increase in the total traffic carried and in the associated expected
revenue.

The second objective function is simply the number of arcs of the path, h.p/. The
minimisation of h.p/ seeks to prevent the use of an excessive number of fibres in
a connection, hence favouring global efficiency in the use of network resources as
well as the reliability of optical connections.

The proposed resolution problem approach combines the use of a k-shortest
path algorithm with preference thresholds identifying preference regions in the
OFs space, in order to identify “good” non-dominated solutions. The final choice
solution, if several non-dominated solutions belonging to the same preference region
were calculated, is chosen automatically by minimising the Chebyshev distance to
a reference point (which changes with the preference region under analysis), as
proposed in [57].

Having obtained a non-dominated topological path, a heuristic procedure based
on a path specific wavelength bottleneck bandwidth is then used to assign wave-
lengths to be used along the chosen topological lightpath.

The performance of the bicriteria model was analysed by comparing it with
the resolution using separately the two single criterion approaches corresponding
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to each of the criteria used in the bicriteria approach (BC). The BC approach
resulted in lower global blocking and less bandwidth than the solution using just
the first criterion. The solution using just the second criterion uses less bandwidth
than the BC approach because it leads to a significant lower number of successful
connections. Although the BC approach uses more CPU time per request, its
performance was nevertheless quite good, especially in the case of the more sparse
network used in the experiences.

An extensive experimental study [247], using reference optical networks, analy-
ses the network performance of the model in [117], by considering several important
network performance metrics. The results of the bicriteria model are compared with
the results from the associated single criterion optimisation models, in terms of
network performance metrics. Gomes et al. [116] describe the extension of the
model in [117] to protection routing in WDM networks, where two topological
disjoint lightpaths are selected simultaneously (the active path and the protection
path) to guarantee the continuity of the end-to-end optical connection in the event
of failure in the active path. The network performance of the protection routing
model in [116] was extensively tested and compared with single criterion models in
[248] by performing a study similar to the one in [247].

26.4.2 Network Planning and Design

Telecommunication networks have been subject to continuing and extremely rapid
technical innovations and to permanently evolving modes of communication. Also,
in parallel, there is a significant increase in the demand for new services. It becomes
more and more attractive for the telecommunication operating companies to offer
the customers new ranges of new services, having in mind to take economic
advantages of the new technology platforms and to respond to the customers’ needs.

Operational planning designates a wide area of planning activities focused on
the short term network design such as location, interconnection and dimensioning
of transmission equipments and other facilities such as switching units, routers or
traffic concentrators. In specific problems of this type there have been proposals of
multicriteria modelling. Next we review papers in these areas.

In general, most network planning models try to express different aspects of the
associated complex optimisation problems in currency units in order to encompass
them in a unique economic OF. These telecommunication network planning models
lack to capture explicitly the different and conflicting aspects arising in evaluating
network modernisation policies. In fact, these problems are multidimensional in
nature. Multicriteria models, taking explicitly into account economic, technological
and social aspects (many times incommensurable) enable the DMs to grasp the
conflicting nature of the objectives and the compromises to be made in order to
select a satisfactory solution.

In particular, strategic planning is focused on the development and evaluation of
scenarios of qualitative and quantitative network growth over a medium/long term
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period having in mind traffic increase, introduction of new technologies and services
and the company economic objectives. This is a type of problem which involves a
multiplicity of factors, some of which cannot be directly represented by an economic
indicator. This particular area of network planning practically disappeared from the
literature in more recent years because of the extremely fast pace of technological
evolution on the one hand and the liberalisation in all areas of telecommunication
operation, service provisioning and maintenance, on the other hand. These factors
led to an environment where classic strategic planning tools don’t have a role to play
in practice except in the few cases where national or regional monopoly operators
persist.

In the present socio-economic context the new telecommunication and infor-
mation technologies are of paramount importance. Several trends are evident in
recent rapid changes in telecommunication networks and services, which may be
enlightened in terms of functional types of networks, in terms of the services offered
and the underlying basic technologies. The evolution and growth of these networks
and services pose difficult problems of forecasting planning and decision making.
This stems from technological factors (namely the possibility of using alternative
technologies for certain types of services and the difficulties in terms of stan-
dardisation) and socio-economic factors (the difficulty in foreseeing the associated
economic constraints and potential benefits). In addition, the development of these
networks gives rise to a variety of options and conflicts involving the government
and the operators’ policies. For example, policy makers must decide whether (and
up to which extent) the potential economic and social benefits associated with
these new networks justify the public support to their extensive capital costs. It
is also clear that telecommunications, both at national and international levels
have important impacts regarding the economic growth, the apparent reduction of
geographical distances, social welfare and political options.

In [10, 13], the authors propose a multicriteria linear programming approach
dedicated to the evaluation of the modernisation planning of telecommunication
networks. These papers address an important strategic modernisation problem: the
planning of the evolution of subscribers’ lines in terms of classes of service offerings
and basic technologies. An extension of this model was done in [12]. It concerns
the possibility of evaluating the modernisation plans in terms of particular regional
environments.

The original model is based on a state transition diagram the nodes of which
characterise a subscriber line in terms of service offerings and supporting technolo-
gies, considering both the transition of lines to a more sophisticated state and the
installation of new lines directly in any state. Five cash flows are defined concerning:
(1) capital costs; (2) salvage value after dismantling a line; (3) annual operational
and maintenance charges; (4) annual revenue of a line at a given year; (5) final value
of a line at the end of the planning period. From these cash-flows an OF (to be
maximised) quantifying the NPV (net present value) of network modernisation is
defined. An external dependence function (to be minimised) quantifies the imported
components associated with the investment costs and operational and maintenance
charges. A “quality of service” function is defined in this model as the “degree of
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modernisation” associated with the “desirability” of new services and corresponds
to the third OF (to be maximised). Finally, the model considers four main categories
of constraints: upper bound on the cost and charges, degree of current satisfaction
of the estimated demand, degree of penetration of the supporting technologies and
continuity (line conservation) constraints. The policy of the telecommunication
operator may also be reflected in the model through the inclusion of techno-
economic constraints imposing upper bounds on the number of new lines of each
technology to be installed at each year of the planning period.

Examples of application of this model using various sets of data may also be seen
in [10, 13]. An extension of this model incorporating sensitivity analysis enabling to
deal (in a systematic manner) with the inaccuracy of the OF coefficients, is in [14].

It must be stressed that since this was an outline seminal work in multiple
objective modelling of strategic modernisation planning of telecommunication
networks, the analysed model is naturally incomplete, subject to updates and
modifications and its practical utilisation would certainly require additional infor-
mation from telecommunication operators and major network equipment suppliers.
This information—which we think is difficult to gather and has a high degree of
uncertainty, having in mind the very rapid changes in technical, economic and
social factors—would enable to tackle new challenges and opportunities associated
with concrete scenarios of network evolution as perceived by network planners
and managers. In fact, by modifying the state transition diagram (namely through
the consideration of new nodes and arcs) or by including new objectives and/or
constraints, or changing those in the model, other aspects, which might require
consideration by the DMs, may be easily incorporated in the model without
jeopardising its basic philosophy. So, this multicriteria model is sufficiently flexible,
namely enabling to incorporate new evaluating criteria, which might become
important in the assessment of network modernisation strategies in new contexts.

In [10] the interactive MA is based on the TRIMAP approach [49]. TRIMAP is
an interactive calculation tool the aim of which is to aid the DM in the progressive
and selective learning of the set of non-dominated solutions. It combines three main
components: decomposition of the weighting space, introduction of constraints on
the OF space and introduction of constraints on the weighting space. One important
innovative feature of TRIMAP is that it enables the introduction of additional
constraints on the OF values to be translated into the weighting space. The weighting
space is used in TRIMAP mainly as a valuable means for collecting and presenting
the information. In TRIMAP phases of computation alternate with phases of
dialogue with the DM, this mainly in terms of the OF values, allowing a progressive
and selective learning of the non-dominated solutions. In each computation phase
a scalar problem consisting of a weighted sum of the OFs is solved with the main
purpose of performing a progressive filling of the weighting space. In each step the
DM will be called to decide whether or not the study of solutions corresponding
to not yet searched regions of the weighting space is of interest. In this way
it is intended to prevent the exhaustive search in regions with close OF values,
situation found very often in real case studies. The underlying principle is to narrow
progressively the scope of the search, using the knowledge accumulated in the
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previous interactions. The interactive process only ends when the DM considers
to have gathered “sufficient knowledge” about the set of non-dominated solutions,
which enables him/her to make a decision. This method uses an interface that offers
the DM a flexible and user-friendly Human-computer interaction the use of which
is easy and intuitive and enhances his/her capabilities of information processing and
decision making.

The experience of the authors of Antunes et al. [10] with implementations and
applications of different interactive multicriteria linear programming methods led
to the conclusion that there is no simple method better than all the others in all
circumstances [49]. This methodological posture led to the development of a flexible
integrated computer package [11]: a method base, which seeks to take advantage of
the combination of different types of interactive multicriteria linear programming
methods. The basic principle of this integrated model is “to support interactively the
DM in the progressive narrowing of the scope of the search, using the knowledge
accumulated in the previous interactions. As more knowledge about the problem
is gathered in each interaction, the preference system of the DM progressively
evolves, thus making the DM to reflect upon his previously stated indications, or
even to revise his preferences” [11, p. 343]. It is assumed that, in the process, the
DM, beyond gathering knowledge, will gain new insights into the problem under
analysis, which may be used for specifying new preferences and search directions.
The method base main goal is therefore to support the DM in the task of exploring
the problem and expressing his/her preferences by making the DM able, at each
step, to reinforce or weaken his/her current convictions. The DM is considered a
central and active element of this method base: the stopping criterion is the DM’s
“satisfaction” and not the verification of a convergence condition on any implicit
utility function. The main purpose was to create a flexible decision aid tool able to
respect the underlying characteristics of the methods and facilitate their combination
by guaranteeing a consistent transfer of usable information. This computer package
is called TOMMIX [11] and integrates the STEM method, the Zionts-Wallenius
method, the TRIMAP, the Interval Criterion Weights method, and the Pareto Race.
In [13] the application of this package to the problem of modernisation planning of
telecommunication networks, introduced above, is exemplified and discussed.

In [14], the flexibility of the proposed approach is enlarged by showing the way in
which sensitivity analysis can be associated with the model. Interactive sensitivity
analysis techniques concerning changes in the coefficients of the three OFs and
the right hand side of the constraints, as well as the possibility of introducing new
constraints, are proposed and discussed.

Finally, it must be mentioned the extension of TOMMIX to more than three
OFs, leading to the development of SOMMIX [54]. This package can be of great
interest in telecommunication strategic planning in those cases where the explicit
consideration of more than three OFs is advisable.

Later, in [15], the authors extended the type of analysis mentioned above to other
strategic telecommunication planning problems, namely regarding the evolution
paths towards the deployment of technologies capable of providing broadband
services in a residential and small business setting.



1208 J. Clímaco et al.

The emergence of new services based on broadband access technologies is
recognised as an essential driver to generate additional revenues and support a long-
term growth and financial strength of operators. Several factors are at stake, with
many inter-related influences, such as the rapid pace of technical innovations, the
development of multifaceted modes of communication and the changing market
structures (even in local access networks). Therefore, the model described above
has been extended as an attempt to exploit new avenues for studying the evolution
policies towards broadband services [15]. The OFs considered in the extended
model are: (1) the minimisation of the NPV of the total evolution cost; (2) the
maximisation of the near-term service capability; (3) the maximisation of the
compatibility with the embedded base of subscriber’s equipment. Three main
categories of constraints have been considered: (1) upper bound on cost and charges;
(2) degree of satisfaction of the estimated demand; (3) degree of penetration of the
supporting technologies.

As it is said in [15], the proposed approach required a great effort of data
collection regarding the construction of the coefficients in the OFs and constraints.
Hence the reliability of the analysis results is clearly questionable taking into
account all types of uncertainties and imprecisions associated with estimates of the
demand for services, investment, operational and maintenance cost and so on, as
previously mentioned.

The study of approaches and methods suitable for tackling the inherent uncer-
tainty and imprecision of the input information required by this and other types of
planning models, such as interval programming, stochastic programming and fuzzy
programming approaches, is a quite relevant research issue. A certainly difficult,
but decisive question, is trying to identify which approaches are more suitable for a
specific model, dedicated to a particular problem, in a given decision environment.
Naturally these questions and challenges are common to most of the problematic
areas discussed in this study.

In any case we think the discussed multiple objective mathematical programming
approach is of interest to grasp certain compromises to be made and discover
trends in this type of problem, which can be helpful to network operators to
make decisions concerning the upgrade and expansion of access networks. The
experiments displayed in the study [15], were carried out in the framework of an
outline study more concerned with showing the usefulness of the multiple objective
model rather than putting forward “prescriptive” conclusions. More experimentation
with updated and more accurate data would be required, in particular involving
sensitivity and robustness analysis on the model parameters and assumptions.
Furthermore, in many cases, this type of studies could be complemented, at a lower
level of analysis, with the screening of distinct alternatives to aid in making some
“intermediate” decisions. Again multiple evaluation aspects are at stake. A possible
approach to be developed would be to consider an impact matrix stating the level
of performance of each potential course of action in terms of the evaluation criteria
considered in this context, leading to a discrete alternative multiattribute decision
model. This could be tackled by using several methods proposed in the scientific
literature. An example of such approach is the possible consideration of the choice
between Hybrid Fibre Coaxial (HFC) or Fibre To The Curb (FTTC) architectures
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using as evaluation criteria (among other significant possibilities): support for full
service installation strategy, installed first cost, operations savings, fit to embedded
plant, and evolutionary potential.

In the paper [25], the authors deal with a real world multicriteria decision aiding
problem regarding the strategic study of the expansion of cellular telephony systems.
The original problem concerns the determination of the municipalities of a Brasilian
State in which a given mobile operator should expand its network. Economic factors
(including budget limitations, costs, return of investments) as well as a significant
number of technical factors (such as ease of installation and QoS parameters) are
considered in the model attributes or criteria.

The authors pay particular attention to the phase of structuring the problem
[234], i.e. the identification of the decision problem under study enabling to
build a multiattribute model. Cognitive maps imported from psychology, were
used in this task of organising and synthesising the points of view of the various
actors. Although the integration of structuring methods with multicriteria evaluation
approaches, following, for instance, the lines defended in [31], is an important
practical issue it is beyond the scope of this paper. The analysis of the obtained
multiattribute model is carried out using an additive value function approach to
evaluate the alternatives. In order to build the criteria and to assess the scaling
constants (weights), the methodology MACBETH [24] was used.

Flores and Cegla [96] present a bicriteria optimisation model for network
topology design given the locations of the nodes, considering as objectives the
cost of the links and the network reliability. It uses a SPEA as a metaheuristic
resolution approach. The same problem is solved in [97] by a genetic algorithm
“Non Dominated Sorting Genetic Algorithm” and the results compared with those
obtained with the SPEA procedure.

Kumar [156] describes a bicriteria constrained network topological design
problem where the OFs to be optimised are network delay and cost subject to
satisfaction of reliability and flow constraints. The approach to the calculation of
solutions is made through an evolutionary algorithm. A similar type of problem
is addressed in [26] but using a self-similar stochastic modelling of the traffic.
A MOEA solution approach is compared with a deterministic heuristic based on
branch exchange.

A bicriteria model for topological, capacity and routing design of WANs seeking
to minimise the total average delay per packet and the leasing cost of channels is
in [114]. A branch and bound based method using bounds in one of the OFs is
used to search for exact solutions. An extension of this model, considering external
time-varying traffic arriving at network nodes, is described in [115].

Glaß et al. [110] develop a model for combined optimisation of topology and
routing and use a MOEA for obtaining solutions to the formulated problem.

Wierzbicki [274] presents a multicriteria modelling approach for a problem
concerning the placement of Internet caches. The underlying generic technical
objective is to contribute to increase the network efficiency and the goal is to
minimise the overall flow or the average packet delay. The problem of general
cache location is formulated as a MILP (Multicriteria Integer Linear Programming
Problem) and is reformulated using a reference point approach. Also the sensitivity
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of the model solutions to simplifications of the problem, is studied. Finally, simple
greedy heuristic resolution approaches are tested for some medium size network
topologies.

Setämaa-Kärkkäinen et al. [245] describe a bi-objective optimisation model in
which the objective is to schedule data transmission to be as fast and as cheap as
possible, in a wireless mobile network. A fast heuristic solution (having in mind
the practical limitations of the application) is proposed and the results are compared
with exact solutions from a weighted sum approach.

Papagianni et al. [213] discuss the application of particle swarm multiobjective
optimisation heuristics to location and capacity design problems. The obtained
results are compared with those from corresponding evolutionary algorithms.

Tiourine et al. [262] propose search algorithms for the problem of link frequency
assignment, that has great relevance in its application to wireless networks, satellite
communications, television and radio broadcast networks. The model proposed
in this paper is in some sense a bi-objective combinatorial model. In fact it
proposes a lexicographic sequence of two OFs. The principal objective consists in
minimising interference and a secondary objective is the minimisation of the used
radio spectrum. When optimising the latter objective it is assumed that a zero value
of interference was obtained by solving the former optimisation problem. This study
was included in CALMA (Combinatorial Algorithms for Military Applications)
project, part of the long term European Cooperation Programme on Defence. Some
local search approaches were considered such as tabu search, simulated annealing
and variable-depth search, paying particular attention to the development of problem
specific neighbourhood functions, as well as to the presentation and discussion of
computational experiences.

A bicriteria optimisation model for an antenna arrangement problem where the
OFs are the maximisation of the cover area and the minimisation of the cost of
the antenna, with various transmission constraints is discussed in [272]. A parallel
genetic algorithm is proposed and its results are compared with other genetic
algorithms.

Levin and Petukhov [166, 167] address a multicriteria client assignment problem
in wireless networks where the number of connected users, the reliability of the
connection and three transmission quality metrics are to be maximised. A heuristic
procedure is developed for finding solutions.

Brown [40] proposes the application of reinforcement learning methods to a
packet wireless communication channel related problem. The addressed problem
involves the search for a satisfactory power management policy considering simul-
taneously two criteria: trying to maximise the radio communication revenue and to
decrease the battery usage. This problem is modelled as a Markov Decision Process,
where the generated traffic is modelled as the traffic from an ON/OFF source and
rewards are assigned to packets carried in each direction (between the mobile and
the base station). Other technical elements of the communication system are also
incorporated in the model in a simplified manner. This problem can be approached
as a stochastic shortest path problem, introducing some simplifications that enable
the reduction of the dimension and complexity of the state space.



26 MA in Telecommunication Network Planning and Design: A Survey 1211

Chan et al. [43] present a multicriteria model for transmission resource man-
agement in mobile transmission networks in which the transmission power and
transmission rate control, are to be optimised. A multiobjective genetic algorithm
is used and its solution is compared with those from a single optimisation model.

Charilas et al. [44] describe a multiattribute model for selection of the most
efficient and suitable access networks to meet the QoS requirements in heteroge-
neous wireless networks. A fuzzy AHP and an ELECTRE method are used for the
evaluation of alternatives.

26.4.3 Models Studying Interactions Between
Telecommunication Evolution and Socio-Economic
Issues

The use of multiattribute models in telecommunications planning and design, as
far as we know, has been mainly proposed for application in models studying
interactions between telecommunication evolution and socio-economic issues, as
analysed next.

In [84], the authors show the way in which a customer can use the AHP (a survey
on AHP can be seen in [143]) to choose a telecommunication company and/or
particular services that are the best for satisfying his/her needs in terms of QoS
or to decide between two telecommunication services providers. Raisinghani [225]
studies multicriteria approaches for supporting strategic decisions on electronic
commerce (e-commerce) based on AHP and ANP (Analytic Network Process).
Remember that ANP is a generalisation of the AHP decision aiding methodology,
where hierarchies are replaced by networks enabling the modelling of feedback
loops (see [242]). The authors also discuss the possible advantages of this method-
ology, as a MCDA modelling approach, in the context of e-commerce.

Many more papers propose the use of AHP/ANP alone or combined with other
approaches. Next we refer to some of these papers.

Andrew et al. [7] deal with the selection of communication technology for a
rural telecommunication planning problem, considering uncertainty and multiple
criteria. The AHP method is used. Also for rural telecommunication infrastructure
technology selection [102, 103] propose the use of the ANP.

The prioritisation of a portfolio of Information and Communication Technologies
(ICT) infrastructure projects is proposed in [9] by using the real options analysis
together with AHP to evaluate ICT business alternatives and telecommunication
investments analysis. Fialho et al. [95] propose a new level based approach, to
prioritise telecommunications R&D projects, inspired in AHP principles. In [123],
AHP is used in the prioritisation and selection of intellectual capital for the mobile
telecommunication industry.

Giokas and Pentzaropoulos [106] propose the combined use of AHP and Data
Envelopment Analysis (DEA) in order to rank the Organisation for Economic
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Co-operation and Development (OECD) member states in the area of telecommuni-
cations.

Isiklar and Buyukozkan [133] evaluate mobile phone alternatives. AHP is applied
to determine the relative weights of evaluation criteria and an extension of the
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is applied
to rank the mobile phone alternatives. Khademi-Zare et al. [142] also propose a
combined use of TOPSIS and AHP. In this case, Fuzzy-QFD (Quality Function
Deployment), TOPSIS and Fuzzy-QFD AHP are used. The model seeks to obtain a
rank of strategic actions concerning mobile cellular technologies.

Kuo and Chen [157] deal with the selection of mobile value-added services based
on a fuzzy synthetic evaluation and using AHP to evaluate the performance of
mobile value-added services system operators.

Pramod and Banwet [221] evaluate the performance of an Indian telecommuni-
cation service supply chain using ANP analysis.

An application of AHP to socio-economic problems dealing with the vendor
selection of a telecommunication system is reported in [258]. The developed model
takes into account a double conflict related to multiple criteria and multiple DMs.
The authors emphasise the feasibility of this application of AHP and its potential
capability to reduce the time taken to select a vendor.

Thizy et al. [261] study how to support the decisions concerning investment
in capital intensive telecommunication projects. A decision support system (DSS)
combining a mathematical programming approach and AHP is proposed. The AHP
is used for quantification of qualitative managerial judgement in regard to the
relative value of projects through a two stage process.

Fuzzy versions of the AHP method are widely used: [44] deal with the selection
of the most efficient and suitable access wireless network to meet the QoS
requirements, using a fuzzy version of AHP and ELECTRE methods; [85] propose
the use of a fuzzy version of the AHP for the evaluation of service quality on WAP
(Wireless Application Protocol) service in wireless networks; [132] use a fuzzy
AHP approach looking for “Always Best Connected” (ABC) users dedicated to
WLAN (Wireless Local Area Network) and cellular networks; in [282] a fuzzy
AHP methodology is used to evaluate four 3G licensing policies in Taiwan. In
[101], PATTERN (Planning Assistance Through Technical Evaluation of Relevance
Number) and fuzzy AHP are used in the context of Taiwan’s virtual mobiles
operators service planning.

On the other hand, different multiattribute approaches and some mathematical
programming decision support tools have also been used in some applications.
Namely: [79] study risk extreme events in investment plans for expansion of a
telecommunications network using multiobjective decision trees; [104] propose a
multicriteria approach that integrates technical concerns with perceptual consid-
erations in the construction of tailor-made multimedia communication protocols;
[105] propose a performance evaluation model for aiding a project manager of
a telecommunication system operator in Brazil. It is a multicriteria constructivist
decision support tool dedicated to the approval of outsourced service providers.
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Keeney [137] discusses the issues concerning how to build a value model in the
context of decision processes in telecommunication management. Special attention
is paid to the identification and structuring of objectives both in qualitative and
quantitative terms, including the use of utility functions.

Kyrylov and Bonanni [158] develop a strategy simulation game for analysing
the telecommunications industry, using the agent-based technology. Also by using
a simulation game, the same authors [159] propose a multicriteria optimisation of
budgeting decisions by telecommunication service providers.

Lee et al. [161] develop a specific multicriteria decision support mathematical
programming model for dealing with the definition of a “hub-structure”, that is the
selection of a number of “nucleus cities”, in the context of a rural network planning
process and present an application example for the State of Nebraska. The approach
is a “compromise programming” technique [281, 287].

The aim of the study [179] is a DEA-based comparison of two hybrid multicri-
teria decision making (MCDM) approaches to evaluate the mobile phone options
with respect to user’s preferences.

Ondrus et al. [209] develop a simple multiactor, multicriteria approach to support
mobile technology selection. Several multicriteria methods are considered, and the
proposed approach is exemplified using the method ELECTRE I.

Sylla et al. [254] present a hybrid method for the multicriteria evaluation and
selection of network technologies. It combines a web of system performance—
WOSP (a cross-disciplinary information network systems performance tool based
on general systems theory [32]) with a quantitative evaluation and selection
multiattribute approach—QESM, based on the definition of problem requirements
and the degree to which the alternatives meet those requirements. The method aims
to choose among alternative ATM technologies.

Wojewnik and Szapiro [277] propose a new bi-reference procedure for interactive
multicriteria optimisation with fuzzy coefficients and present an application on
pricing for telecommunication services.

26.5 Future Trends

Now we will seek to give an outline of possible research trends in some areas of
network planning and design, where challenges and opportunities for MA may arise.
For simplifying this presentation, of a prospective nature, we will take as basis,
application areas (or sub-areas) identified in the previous section, although one must
be aware that new problematic areas are likely to emerge where MA may play a
significant role in relation with some decision problems. The trends concerning the
areas of network planning and design and models studying interactions between
telecommunication evolution and socio-economic issues were aggregated in a
common topic having in mind their strong interrelation.
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26.5.1 Routing Models

From an OR methodological perspective major issues/challenges concerning rout-
ing models may be summarised in the next paragraphs in relation to the scope of
our chapter. We may consider that ‘QoS routing’, viewed in its broadest sense as
explained after, is the dominant paradigm concerning the development of routing
models in IP-based networks. We would like to note here that, from our perspective,
‘QoS routing’ in its broadest sense includes not only the standard QoS routing
formulations—as described in [152, 153, 160] and analysed from a teletraffic
engineering or protocol implementation perspective in many RFCs (Request for
Comments) reports and articles—but also all routing models that are explicitly
multicriteria, as discussed in Sect. 26.4.1.

Firstly there is the need for investigating new implementations of exact algo-
rithms for various MCOP problems in the context of QoS routing models having in
mind to obtain better trade-offs in terms of exactness of the solution/computational
efficiency for a given application model. Note that this issue is also very relevant
in multicriteria shortest path based routing models the resolution of which involves
shortest path or k-shortest path calculations. This is particularly important in cases in
which there is no feasible optimal solution and the algorithm takes excessive time
to detect such condition or if the memory requirements are a practical constraint.
This is normally the case for networks of large dimension/connectivity and this
type of limitations is critically related to the so called ‘scalability’ of the OR-based
routing model, a concern usually found when we discuss a protocol implementation
associated with a given algorithm. Concerning the complexity of exact algorithms,
although classical NP-completeness analysis is naturally important, it must be
stressed that this is a worst-case analysis and in some cases it may not be the key
factor for choosing an algorithm in a certain application environment. As noted in
[153], worst-case complexity and execution time can be quite different in different
application environments and this is particularly relevant in classical QoS routing
algorithms as well as in many multicriteria routing methods. An analysis of network
features which lead to worst-case conditions in QoS routing procedures is addressed
in [265]. Regarding the application of exact single criterion QoS routing algorithms,
this work and also [266] conclude that worst-case conditions are very unlikely to
occur. We would like to note that this conclusion agrees with our own experience
in the development of exact resolution procedures, based on the utilisation of
the extremely efficient (in practice in almost all the application experiments we
considered) k-shortest path algorithm [188] in the context of multicriteria shortest
path models. An example of this may be seen in [50].

Concerning the choice of metrics/cost functions adequate to a given application
and other modelling aspects, this is an issue which requires a truly interdisciplinary
work combining the analysis of traffic engineering and OR factors. In terms of OR
this concern has obvious implications in the optimisation problem formulation, its
complexity and the resolution approach.
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The treatment of fairness issues also becomes increasingly relevant, namely when
offered traffic flows with quite different intensities, different required bandwidths
and/or belonging to different QoS classes of service compete for the network
resources. In particular the optimisation of performance metrics at global network
level or for QoS flows (i.e. those which have QoS guarantees) may deteriorate
excessively the QoS of small intensity “best effort” flows. Examples of OR based
approaches for IP/MPLS dealing with this issue were mentioned in Sect. 26.4.1: for
instance [218] (considering max-min fairness principles) and [66, 207, 208], in the
context of a multiobjective hierarchical optimisation model combined with max-min
fairness at global network level and service class level.

The treatment of inaccuracy and uncertainty is an important and often difficult
issue in the context of a routing model since these aspects may have a strong impact
on the values of network performance metrics. Except in very simple static models
(for example models based on the number of arcs alone) the arc costs usually reflect
some link state dependent feature. This leads to an intrinsic inaccuracy taking into
account that the related information is not, in practice, conveyed instantaneously
to the nodes and/or is subject to estimation errors. Furthermore in a very common
type of approach—dynamic flow-oriented optimisation models (for which routing
calculation is performed for each node-to-node flow separately)—an important
issue is the potential for routing instability since the successive updates of routing
solutions for individual flows may originate network performance degradation, as
studied in the context of packet networks in [33, Chap. 5] and also outlined in [196].
This instability phenomena also may arise in the solution generation process of
certain network-wide optimisation models in which the OFs of the model depend
explicitly on all network flows. Concerning uncertainty, this has to do with the
intrinsic stochastic nature of the demand—and this issue should be tackled in some
form in models that take explicitly into account the relation of traffic patterns
in the network with the routing decisions. Examples of the way in which this
issue may be tackled can be seen in the methodological frameworks for network-
wide routing optimisation proposed in [66, 202]. In general we may consider that
stochastic representations of traffic flows are more realistic but tend to introduce
a heavy burden in terms of the numerical computation, which may lead to model
intractability in networks with greater dimension.

Another relevant issue that deserves further investigation is the representation
of the system of preferences, namely in automated routing procedures for which
an interactive selection of solutions is not possible. Overviews with methodological
discussions and case studies can be seen in [58, 66]. Also the paper [276] mentioned
above analyses, in depth, this issue in the context of multicriteria routing in IP-
based networks and describes an illustrative model tackling this issue by recurring
to achievement functions in the context of a reference point approach.

Many types of routing methods require the calculation of several paths simulta-
neously, a general class of routing problems that may be designated as multipath
routing problems. In particular multicast routing involves the calculation of a set of
paths from an originating node to multiple destination nodes which involves in OR
terms, the calculation of “minimum” (single criterion or multicriteria) Steiner trees.
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Needless to say that these are research areas where many open problems, challenges
and issues can be foreseen having in mind the great complexity of the associated
combinatorial problems and taking into account the increasing multiplicity of new
technological platforms, network architectures (two examples are MPLS over WDM
and IP/MPLS over Carrier Ethernet) and service requirements.

Furthermore the development of heuristics and metaheuristics dedicated to the
resolution of multicriteria routing models in IP-based networks is an area of
increasing relevance and that is also expected to grow very quickly in a near
future. This has to do with various factors, now briefly analysed. Firstly although
many classic QoS routing problems which are NP-complete have exact resolution
approaches these may easily become intractable in networks of greater dimension.
Secondly, in many cases, the addition of constraints may significantly complicate the
original formulations. Thirdly there are many other routing optimisation problems
that are NP-hard in the strong sense for which there are no exact resolution methods
with execution times compatible with the applications. This is especially relevant
in dynamic routing with short routing update periods and in on-line (non real-time)
routing. Finally this is an area where, in many routing models there is a confluence
of one or several ‘complicating factors’ in the sense described by Jones et al. [135]:
large number of variables (in particular in integer and mixed-integer formulations),
non-linear OFs/constraints, the inclusion of stochasticity in the model formulation
and non-standard utility functions, as in many multicriteria approaches (see [51]).
These factors combined with the very rapid increase in computing power and the
advances in metaheuristic techniques have fostered the increasing importance of
these approaches in the solution of many routing models as noted in Sect. 26.4.

Regarding new application environments with great number of challenges and
opportunities for the development of multicriteria routing approaches in the near
future, we could point out:

• routing models for wireless and heterogeneous networks (these are networks
where an end-to-end connection may use different technological solutions and
has to transverse several networks or routing domains with distinct technical
features);

• routing methods for overlay networks (a type of virtual transport network which
interconnects a sub-set of nodes of a given underlying communication network)
[270];

• routing models for Carrier Ethernet networks (a new, fast evolving, type of
transport/switching networks based on high speed Ethernet frame transport
which enable the implementation of advanced QoS routing schemes for unicast,
multicast or broadcast connections) [228] or for MPLS—Transport Profile
(MPLS-TP) networks.

We think that, from the interleaving between the aforementioned methodological
aspects and the new technologic related application environments, a quite signifi-
cant number of opportunities and challenges for the development of multicriteria
approaches in this expanding and multifaceted area of application of OR methods
and techniques, will arise.
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26.5.2 Network Planning and Design and Models Studying
Interactions Between Telecommunication Evolution
and Socio-Economic Issues

Concerning these two quite interrelated topics the following points can be explored.
Firstly the study and development of new types of models (concerning new

planning and design problems and different decision processes) and of new variants
of models previously presented is a natural trend, having in mind the effects on the
planning processes of the great turbulence of the socio-economic environment and
the rapid market changes in interaction with an extremely fast technological evo-
lution, as previously discussed. Regarding the problem and modelling frameworks
it can be said, in general, that economic, social and technologic factors not only
directly condition their form but also influence the perception of the DMs vis a vis
the problems and the associated models, namely concerning the relative significance
and importance of criteria or constraints.

In the particular case of modernisation planning of the access networks, the
trend for the introduction of broadband services (requiring in many premises optical
fibre directly to the customer) a type of problem in which different technological
architectures can be used, a preliminary level of decision analysis for screening
distinct alternatives, seems worth considering. This level of analysis might be
concerned with the evaluation, under different performance criteria (for example,
based on upgrade cost, operator revenue, response to estimated demand and user
satisfaction in different technical instances) of various technologies and associated
architectures available to the operator in a given market scenario.

Furthermore, mathematical programming approaches can be used to help the
identification of more detailed multiattribute models, enabling a deeper analysis of
the problem under study. It must be remarked that we believe in the complimentary
use of both types of approaches. Last but not least, we emphasise a point regarding
the modelling uncertainty, which requires particular attention in the future.

Other telecommunication applications with strong socio-economic implications
deserve further investment in multicriteria modelling, in order to enable a more
realistic evaluation of their impacts. As an example, we can refer to e-commerce
and e-learning.

Operational planning involves certainly a vast number of problems some of
which have already been treated, using multicriteria analysis models, as in the
studies referred to in Sect. 26.4.2. It is expectable that, in the future, some other
problems in this area will be prone to treatment in a multicriteria framework,
especially having in mind the very rapid and multifaceted technological evolutions
previously identified (in their major aspects) and their interactions with complex and
fast changing economic and social trends. An example of such research challenges
concerns cell partitioning and frequency allocation problems in the context of
the very complex planning process of mobile cellular networks. Bourjolly et al.
[38] present an overview of the application of OR-based decision support tools in
this area. In particular the authors draw attention to the fact that cell partitioning
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(a decision process that has in mind to enable to use several times the available
frequencies hence increasing the network capacity) addresses two conflicting issues,
namely covered area and capacity (involving, in essence, a choice between a
smaller number of larger cells versus a larger number of smaller cells). As for the
frequency allocation problem, it involves the assignment of a certain number of
radio frequencies to each cell, according to some “optimality” criteria and satisfying
various technical constraints. In this type of problem several OFs can be considered
such as discussed by those authors (namely the number of frequencies used, the
frequency span and two types of signal interference, all to be minimised). It will
also be expected that new and complex problems of transmission design have been
and will continue to be fostered in the expanding area of sensor networks, WSNs
and heterogeneous networks, an area in which multicriteria approaches have been
drawing increasing attention.

Acknowledgements This work was financially supported by programme COMPETE of the
EC Community Support Framework III and cosponsored by the EC fund FEDER and national
funds (Portuguese Foundation for Science and Technology under project grants FCT–PTDC/EEA-
TEL/101884/2008, FCT–PEst-C/EEI/UI0308/2011 and FCT–PEst-OE/EEI/UI308/2014).

References

1. Aboelela, E., Douligeris, C.: Fuzzy generalized network approach for solving an optimization
model for routing in B-ISDN. Telecommun. Syst. 12, 237–263 (1999)

2. Agrawal, G., Huang, D., Medhi, D.: Network protection design for MPLS networks. In:
Proceedings of the 5th International Workshop on Design of Reliable Communication
Networks (DRCN 2005), Naples (2005)

3. Akkanen, J., Nurminen, J.K.: Case study of the evolution of routing algorithms in a network
planning tool. J. Syst. Softw. 58(3), 181–198 (2001)

4. Alrabiah, T., Znati, T.: Delay-constrained, low-cost multicast routing in multimedia networks.
J. Parallel Distrib. Comput. 61(9), 1307–1336 (2001)

5. Al-Sharhan, S., Gueaieb, W.: A fast hybrid algorithm for multicast routing in wireless
networks. Int. J. Artif. Intell. Tools 16(1), 45–68 (2007)

6. Anandalingam, G., Nam, K.: Conflict and cooperation in designing international telecommu-
nication networks. J. Oper. Res. Soc. 48, 600–611 (1997)

7. Andrew, T.N., Rahoo, P., Nepal, T.: Enhancing the selection of communication technology for
rural telecommunications: an analytic hierarchy process model. Int. J. Comput. Syst. Signals
6(2), 26–34 (2005)

8. Aneja, Y.P., Nair, K.P.K.: The constrained shortest path problem. Nav. Res. Logist. Q. 25,
549–555 (1978)

9. Angelou, G., Economides, A.A.: A compound real option and AHP methodology for
evaluating ICT business alternatives. Telematics Inform. 26(4), 353–374 (2009)

10. Antunes, C.H., Clímaco, J., Craveirinha, J.: A multiple objective linear programming
approach to the modernization of telecommunication networks, in teletraffic and data-traffic:
socioeconomic aspects. In: Jensen, A., Iversen, B. (eds.) Proceedings of the 13th International
Teletraffic Congress (ITC13), Copenhagen. North-Holland Studies in Telecommunications,
vol. 17, pp. 369–374. North-Holland, Amsterdam (1991)

11. Antunes, C.H., Alves, M.J., Silva, A.L., Clímaco, J.: An integrated MOLP method base
package: a guided tour of TOMMIX. Comput. Oper. Res. 19(7), 609–625 (1992)



26 MA in Telecommunication Network Planning and Design: A Survey 1219

12. Antunes, C.H., Clímaco, J., Craveirinha, J.: On multicriteria decision making approaches
concerning strategic new telecommunication planning. In: Matsuda, T., Lesourne, J., Takahar,
Y. (eds.) Proceedings of the International Conference on Economics Management and
Information Technology, The Japanese Society of Management Information, pp. 95–98
(1992)

13. Antunes, C.H., Craveirinha, J., Clímaco, J.: A multiple criteria model for new telecommuni-
cation service planning. Eur. J. Oper. Res. 71(3), 341–352 (1993)

14. Antunes, C.H., Craveirinha, J., Clímaco, J.: A flexible MOLP approach to the modernization
of telecommunication networks incorporating sensitivity analysis. In: Labetoulle, J., Roberts,
J.W. (eds.) Proceedings of the 14th International Teletraffic Congress on Advances in
Teletraffic Science and Engineering (ITC14), pp. 1425–1434. Elsevier, Amsterdam (1994)

15. Antunes, C.H., Craveirinha, J., Clímaco, J.: Planning the evolution to broadband access
networks: a multicriteria approach. Eur. J. Oper. Res. 109(2), 530–540 (1998)

16. Antunes, C.H., Clímaco, J., Craveirinha, J., Barrico, C.: Multiple objective routing in
integrated communication networks. In: Smith, D., Key, P. (eds.) Proceedings of the 16th
International Teletraffic Congress (ITC16) – Teletraffic Engineering in a Competitive World,
Edinburgh, pp. 1291–1300. Elsevier, Amsterdam (1999)

17. Ash, G.R.: Dynamic Routing in Telecommunications Networks, 1st edn. McGraw-Hill, New
York (1998)

18. Ash, G.R., Chemouil, P.: 20 years of dynamic routing in circuit-switched networks: looking
backward to the future. Glob. Commun. Newsl. 8(10), 1–4 (2004). http://www.comsoc.org/
gcn/back-issues

19. Assi, C., Shami, A., Ali, M.A., Kurtz, R., Guo, D.: Optical networking and real-time
provisioning: an integrated vision for the next-generation Internet. IEEE Netw. 15(4), 36–45
(2001)

20. Avallone, S., Ventre, G.: Q-BATE: a QoS constraint-based traffic engineering routing
algorithm. In: Proceedings of the 2nd Conference on Next Generation Internet Design and
Engineering (NGI’06), pp. 94–101 (2006)

21. Avallone, S., Kuipers, F., Ventre, G., van Mieghem, P.: Dynamic routing in QoS-aware
traffic engineered networks. In: Kloos, C.D., Marin, A., Larrabeiti, D. (eds.) EUNICE 2005:
Networks and Applications Towards a Ubiquitously Connected World, pp. 45–58. Springer,
Berlin (2005)

22. Azouzi, R.E., Altman, E.: Constrained traffic equilibrium in routing. IEEE Trans. Autom.
Control 48(9), 1656–1660 (2003)

23. Badia, L., Miozzo, M., Rossi, M., Zorzi, M.: Routing schemes in heterogeneous wireless
networks based on access advertisement and backward utilities for QoS support. IEEE
Commun. Mag. 45(2), 67–73 (2007)

24. Bana e Costa, C.A., Vansnick, J.C.: MACBETH: an interactive path towards the construction
of cardinal value functions. Int. Trans. Oper. Res. 1(4), 489–500 (1994)

25. Bana e Costa, C.A., Ensslin, L., Zanella, I.J.: A real-world MCDA application in cellular
telephony systems. In: Stewart, T.J., van den Honert, R.C. (eds.) Trends in Multicriteria Deci-
sion Making. Lecture Notes in Economics and Mathematical Systems, vol. 465, pp. 412–423.
Springer, Berlin (1998)

26. Banerjee, N., Kumar, R.: Multiobjective network design for realistic traffic models. In:
Proceedings of the 9th Annual Genetic and Evolutionary Computation Conference (GECCO
‘07), London, England, pp. 1904–1911 (2007)

27. Banerjee, A., Drake, J., Lang, J.P., Turner, B., Kompella, K., Rekhter, Y.: Generalized
multiprotocol label switching: an overview of routing and management enhancements. IEEE
Commun. Mag. 39(1), 144–150 (2001)

28. Bard, J.F., Moore, J.T.: A branch and bound algorithm for the bilevel programming problem.
SIAM J. Sci. Stat. Comput. 11(2), 281–292 (1990)

29. Baruani, J.A., Bagula, A.B., Muchanga, A.: On routing IP traffic using single- and multi-
objective genetic optimization. In: Proceedings of the Southern African Telecommunications
Networks and Applications Conference (SATNAC2006), Cape Town (2006)

http://www.comsoc.org/gcn/back-issues
http://www.comsoc.org/gcn/back-issues


1220 J. Clímaco et al.

30. Bellabas, A., Molnar, M., Lahoud, S.: Heuristics for the multicriteria routing problem. In:
Proceedings of the Mosharaka International Conference on Communications Computers and
Applications, Amman, Jordan (2009)

31. Belton, V., Ackermann, F., Shepherd, I.: Integrated support from problem structuring through
to alternative evaluation using COPE and V.I.S.A. J. Multi-Criteria Decis. Anal. 6(3), 115–130
(1997)

32. Bertalanffy, L.V.: General System Theory: Foundations, Development, Applications (Revised
Edition). George Braziller, New York (1969)

33. Bertsekas, D., Gallager, R.: Data Networks, 2nd edn. Prentice-Hall, Englewood Cliffs, NJ
(1992)

34. Beugnies, F., Gandibleux, X.: Multiobjective routing in IP networks. In: 7th PM2O Workshop
(Programmation Mathématique Multi-Objectifs), Valenciennes (2003)

35. Beugnies, F., Gandibleux, X.: A multi-objective routing procedure for IP networks. In:
Proceedings of the 18th International Conference on Multiple Criteria Decision Making
(MCDM 2006), Chania (2006)

36. Bezruk, V., Svid, I., Korsun, I.: Methods of multicriteria optimization in telecommunication
networks planning and controlling. In: Proceedings of the International Conference on Mod-
ern Problems of Radio Engineering, Telecommunications, and Computer Science (TCSET
2006), Lviv-Slavsko, pp. 381–383 (2006)

37. Blokh, D., Gutin, G.: An approximate algorithm for combinatorial optimization problems
with two parameters. Aust. J. Comb. 14, 157–164 (1996)

38. Bourjolly, J., Déjoie, L., Dioume, K., Lominy, M.: Frequency allocation in cellular phone
networks: an OR success story. OR/MS Today 28(2), 41–44 (2001)

39. Bouyssou, D.: Building criteria: a prerequisite for MCDA. In: Bana e Costa, C.A. (ed.)
Readings in Multiple Criteria Decision Aid, pp. 58–80. Springer, Berlin (1990)

40. Brown, T.X.: Low power wireless communication via reinforcement learning. In: Solla, S.A.,
Leen, T.K., Müller, K.R. (eds.) Advances in Neural Information Processing Systems, vol. 12,
pp. 893–899. MIT Press, Cambridge (2000)

41. Brown, T.X., Tong, H., Singh, S.: Optimizing admission control while ensuring quality of
service in multimedia networks via reinforcement learning. In: Kearns, M.S., Cohn, D.A.,
Solla, S.A. (eds.) Advances in Neural Information Processing Systems, vol. 11, pp. 982–988.
MIT Press, Cambridge (1999)

42. Chakraborty, D., Chakraborty, G., Shiratori, N.: A dynamic multicast routing satisfying
multiple QoS constraints. Int. J. Netw. Manag. 13, 321–335 (2003)

43. Chan, T.M., Kwong, S., Man, K.F.: Multiobjective resource optimization in mobile com-
munication network. In: Proceedings of the 29th Annual Conference of the IEEE Industrial
Electronics Society (IECON’03), vol. 3, pp. 2029–2034 (2003)

44. Charilas, D.E., Markaki, O.I., Psarras, J., Constantinou, P.: Application of fuzzy AHP and
ELECTRE to network selection. In: Proceedings of MOBILIGHT 2009 – Mobile Lightweight
Wireless Systems. Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, vol. 13, pp. 63–73. Springer, Berlin (2009)

45. Chen, S., Nahrstedt, K.: An overview of quality of service routing for next-generation high-
speed networks: problems and solutions. IEEE Netw. 12(6), 64–79 (1998)

46. Chen, S., Nahrstedt, K.: On finding multi-constrained paths. In: Proceedings of the IEEE
International Conference on Communications (ICC’98), Atlanta, GA, vol. 2, pp. 874–879
(1998)

47. Chen, N., Li, L., Dong, W.: Multicast routing algorithm of multiple QoS based on widest-
bandwidth. J. Syst. Eng. Electron. 17(3), 642–647 (2006)

48. Cho, H.Y., Lee, J.Y., Kim, B.C.: Multi-path constraint-based routing algorithms for MPLS
traffic engineering. In: Proceedings of the IEEE International Conference on Communications
(ICC 2003), Anchorage, AK, pp. 1963–1967 (2003)

49. Clímaco, J., Antunes, C.H.: Implementation of a user friendly software package – a guided
tour of TRIMAP. Math. Comput. Model. 12(10/11), 1299–1309 (1989)



26 MA in Telecommunication Network Planning and Design: A Survey 1221

50. Clímaco, J.C.N., Craveirinha, J.M.F.: How and why to consider explicitly multiple points of
view in the evaluation of telecommunication planning and management problems. In: Putnik,
G., Gunasekaran, A. (eds.) Proceedings of Business Excellence I Conference – Performance
Measures, Benchmarking and Best Practices in New Economy, Guimarães, pp. 73–78 (2003)

51. Clímaco, J.C.N., Craveirinha, J.M.F.: Multicriteria analysis in telecommunication network
planning and design – problems and issues. In: Figueira, J., Greco, S., Ehrgott, M. (eds.)
Multiple Criteria Decision Analysis: State of the Art Surveys. International Series in
Operations Research & Management Science, vol. 78, pp. 899–951. Springer, New York
(2005)

52. Clímaco, J.C.N., Martins, E.Q.V.: A bicriterion shortest path algorithm. Eur. J. Oper. Res.
11(4), 399–404 (1982)

53. Clímaco, J.C.N., Pascoal, M.M.B.: Multicriteria path and tree problems: discussion on exact
algorithms and applications. Int. Trans. Oper. Res. 19(1–2), 63–98 (2012)

54. Clímaco, J., Antunes, C.H., Alves, M.J.: From TRIMAP to SOMMIX – building effective
interactive MOLP computational tools. In: Fandel, G., Gal, T. (eds.) Proceedings of the XII
International Conference on Multiple Criteria Decision Making. Lecture Notes in Economics
and Mathematical Systems, vol. 448, pp. 285–296. Springer, Berlin (1997)

55. Clímaco, J.C.N., Craveirinha, J.M.F., Pascoal, M.M.B.: A bicriterion approach for routing
problems in multimedia networks. Networks 41(4), 206–220 (2003)

56. Clímaco, J.C.N., Craveirinha, J.M.F., Pascoal, M.M.B.: Routing calculation in multimedia:
a procedure based on a bicriteria model. In: Neittaanmäki, P., Rossi, T., Korotov, S., Oñate,
E., Périaux, J., Knörzer, D. (eds.) Proceedings of the European Congress on Computational
Methods in Applied Sciences and Engineering (ECCOMAS 2004), Jyväskylä (2004)

57. Clímaco, J.C.N., Craveirinha, J.M.F., Pascoal, M.M.B.: An automated reference point-like
approach for multicriteria shortest path problems. J. Syst. Sci. Syst. Eng. 15(3), 314–329
(2006)

58. Clímaco, J.C.N., Craveirinha, J.M.F., Pascoal, M.M.B.: Multicriteria routing models in
telecommunication networks – overview and a case study. In: Shi, Y., Olson, D.L., Stam,
A. (eds.) Advances in Multiple Criteria Decision Making and Human Systems Management:
Knowledge and Wisdom, pp. 17–46. IOS Press, Amsterdam (2007)

59. Coello Coello, C.A., Lamont, G.B.: Applications of Multi-Objective Evolutionary Algo-
rithms. Advances in Natural Computation, vol. 1. World Scientific, Singapore (2004)

60. Coello Coello, C.A., Lamont, G.B., van Veldhuizen, D.A.: Evolutionary Algorithms for Solv-
ing Multi-Objective Problems, 2nd edn. Genetic and Evolutionary Computation. Springer,
Berlin (2007)

61. Conte, M.: Dynamic Routing in Broadband Networks. Broadband Networks and Services.
Kluwer Academic Publishers, Boston (2003)

62. Cox, D.R., Isham, V.: Point Processes. Monographs on Statistics and Applied Probability,
vol. 12. Chapman and Hall/CRC, Boca Raton (1980)

63. Craveirinha, J., Martins, L., Gomes, T., Antunes, C.H., Clímaco, J.N.: A new multiple
objective dynamic routing method using implied costs. J. Telecommun. Inf. Technol. 3, 50–59
(2003)

64. Craveirinha, J., Martins, L., Clímaco, J.: Dealing with complexity in a multiobjective dynamic
routing model for multiservice networks – a heuristic approach. In: Proceedings of the 15th
Mini-EURO Conference on Managing Uncertainty in Decision Support Models (MUDSM
2004), Coimbra (2004)

65. Craveirinha, J.M.F., Clímaco, J.C.N., Pascoal, M.M.B., Martins, L.M.R.A.: Traffic splitting
in MPLS networks – a hierarchical multicriteria approach. J. Telecommun. Inf. Technol. 4,
3–10 (2007)

66. Craveirinha, J., Girão-Silva, R., Clímaco, J.: A meta-model for multiobjective routing in
MPLS networks. Cent. Eur. J. Oper. Res. 16(1), 79–105 (2008)



1222 J. Clímaco et al.

67. Craveirinha, J., Girão-Silva, R., Clímaco, J., Martins, L.: A hierarchical multiobjective routing
model for MPLS networks with two service classes. In: Korytowski, A., Malanowski, K.,
Mitkowski, W., Szymkat, M. (eds.) Revised Selected Papers of the 23rd IFIP TC7 Conference
on System Modeling and Optimization, Cracow, Poland, 23–27 July 2007. IFIP Advances in
Information and Communication Technology, vol. 312, pp. 196–219. Springer, Berlin (2009)

68. Craveirinha, J., Gomes, T., Pascoal, M., Clímaco, J.: A stochastic bi-criteria approach for
restorable QoS routing in MPLS. In: Proceedings of the 10th International Conference on
Telecommunication Systems, Modeling and Analysis (ICTSM 2011), Prague (2011)

69. Craveirinha, J., Clímaco, J., Martins, L., Silva, C.G., Ferreira, N.: A bi-criteria minimum
spanning tree routing model for MPLS/overlay networks. Telecommun. Syst. 52(1), 203–215
(2013)

70. Crichigno, J., Barán, B.: Multiobjective multicast routing algorithm for traffic engineering.
In: Proceedings of 13th IEEE International Conference on Computer and Communication
Networks (ICCCN’04), Chicago, pp. 301–306 (2004)

71. Crichigno, J., Xie, C., Shu, W., Wu, M.Y., Ghani, N.: A multi-objective approach for
throughput optimization and traffic engineering in WDM networks. In: Proceedings of the
43rd IEEE Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA,
pp. 1043–1047 (2009)

72. Crichigno, J., Khoury, J., Shu, W., Wu, M.Y., Ghani, N.: Dynamic routing optimization
in WDM networks. In: Proceedings of the IEEE Global Communications Conference
(Globecom 2010), Miami, FL (2010)

73. Crichigno, J., Shu, W., Wu, M.Y.: Throughput optimization and traffic engineering in
WDM networks considering multiple metrics. In: Proceedings of the IEEE International
Communications Conference (ICC 2010) – Communications: Accelerating Growth and
Development, Cape Town (2010)

74. CTIA – The Wireless Association: U.S. wireless quick facts. http://www.ctia.org/advocacy/
research/index.cfm/aid/10323; http://www.ctia.org/your-wireless-life/how-wireless-works/
wireless-quick-facts (2015). Accessed 11 Sept 2015

75. Cui, X., Lin, C., Wei, Y.: A multiobjective model for QoS multicast routing based on genetic
algorithm. In: Proceedings of the 2003 International Conference on Computer Networks and
Mobile Computing (ICCNMC’03), pp. 49–53 (2003)

76. Cui, Y., Xu, K., Wu, J., Yu, Z., Zhao, Y.: Multi-constrained routing based on simulated anneal-
ing. In: Proceedings of the IEEE International Conference on Communications (ICC’03),
vol. 3, pp. 1718–1722 (2003)

77. de Neve, H., van Mieghem, P.: A multiple quality of service routing algorithm for PNNI. In:
Proceedings of the IEEE ATM Workshop, Fairfax, VA, pp. 324–328 (1998)

78. de Neve, H., van Mieghem, P.: TAMCRA: a tunable accuracy multiple constraints routing
algorithm. Comput. Commun. 23(7), 667–679 (2000)

79. Dillon, R., Haimes, Y.Y.: Risk of extreme events via multiobjective decision trees: application
to telecommunications. IEEE Transactions on Systems, Man IEEE Trans. Syst. Man Cybern.
Syst. Hum. 26(2), 262–271 (1996)

80. Donoso, Y., Fabregat, R., Marzo, J.L.: A multi-objective optimization scheme for multicast
routing: a multitree approach. Telecommun. Syst. 27(2–4), 229–251 (2004)

81. Donoso, Y., Pérez, A., Ardila, C., Fabregat, R.: Optimizing multiple objectives on multicast
networks using memetic algorithms. GESTS Int. Trans. Comput. Sci. Eng. 20(1), 192–204
(2005)

82. Douligeris, C.: Multiobjective telecommunication networks flow control. In: Proceedings of
Southeastcon’91, Williamsburg, VA, vol. 2, pp. 647–651 (1991)

83. Douligeris, C.: Multiobjective flow control in telecommunication networks. In: Proceedings
of IEEE INFOCOM’92, Florence, pp. 303–312 (1992)

84. Douligeris, C., Pereira, I.: A telecommunications quality study using the analytic hierarchy
process. IEEE J. Sel. Areas Commun. [Special Issue on Quality of Telecommunications
Services, Networks and Products, Bowick JW, Asatani K, Hoberg W, Malec H, Stockman
S (eds.)] 12(2), 241–250 (1994)

http://www.ctia.org/advocacy/research/index.cfm/aid/10323
http://www.ctia.org/advocacy/research/index.cfm/aid/10323
http://www.ctia.org/your-wireless-life/how-wireless-works/wireless-quick-facts
http://www.ctia.org/your-wireless-life/how-wireless-works/wireless-quick-facts


26 MA in Telecommunication Network Planning and Design: A Survey 1223

85. Du, Y., Zhou, W., Chen, B., Song, J.: A QoE based evaluation of service quality on WAP in
wireless network. In: Proceedings of WiCom ‘09 – 5th International Conference on Wireless
Communications, Networking and Mobile Computing, Beijing (2009)

86. Economides, A.A., Silvester, J.A.: Multi-objective routing in integrated services networks:
A game theory approach. In: Proceedings of INFOCOM’91 - 10th Annual Joint Conference
of the IEEE Computer and Communications Societies “Networking in the 90’s”, Bal Harbour,
FL, vol. 3, pp. 1220–1227 (1991)

87. Ehrgott, M.: Multiobjective (combinatorial) optimisation – some thoughts on applications. In:
Barichard, V., Ehrgott, M., Gandibleux, X., T’Kindt, V. (eds.) Multiobjective Programming
and Goal Programming. Lecture Notes in Economics and Mathematical Systems, vol. 618,
pp. 267–282. Springer, Berlin (2009)

88. Ehrgott, M., Gandibleux, X.: Hybrid metaheuristics for multi-objective combinatorial opti-
mization. In: Blum, C., Blesa Aguilera, M.J., Roli, A., Sampels, M. (eds.) Hybrid Meta-
heuristics: An Emerging Approach to Optimization. Studies in Computational Intelligence,
vol. 114, pp. 221–259. Springer, Berlin (2008)

89. El-Sayed, M., Jaffe, J.: A view of telecommunications network evolution. IEEE Commun.
Mag. 40(12), 74–81 (2002)

90. Erbas, S.C.: Utilizing evolutionary algorithms for multiobjective problems in traffic engi-
neering. In: Ben-Ameur, W., Petrowski, A. (eds.) Proceedings of the International Networks
Optimization Conference (INOC 2003), pp. 207–212. Institut National des Télécommunica-
tions, Evry/Paris (2003)

91. Erbas, S.C., Erbas, C.: A multiobjective off-line routing model for MPLS networks. In:
Charzinski, J., Lehnert, R., Tran-Gia, P. (eds.) Proceedings of the 18th International Teletraffic
Congress (ITC-18), pp. 471–480. Elsevier, Amsterdam, Berlin (2003)

92. Erbas, S.C., Mathar, R.: An off-line traffic engineering model for MPLS networks. In: Bakshi,
B., Stiller, B. (eds.) Proceedings of the 27th Annual IEEE Conference on Local Computer
Networks (27th LCN), Tampa, FL, pp. 166–174. IEEE Computer Society (2002)

93. Ergün, F., Sinha, R.K., Zhang, L.: QoS routing with performance-dependent costs. In: Sidi,
M., Katzela, I., Shavitt, Y. (eds.) Proceedings of 19th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM 2000), Tel Aviv, vol. 1, pp. 137–146.
IEEE Computer and Communications Societies (2000)

94. Fabregat, R., Donoso, Y., Baran, B., Solano, F., Marzo, J.L.: Multi-objective optimization
scheme for multicast flows: a survey, a model and a MOEA solution. In: Proceedings of the
3rd International IFIP/ACM Latin American Conference on Networking (LANC’05), Cali,
pp. 73–86 (2005)

95. Fialho, J., Godinho, P., Costa, J.P., Afonso, R., Regalado, J.G.: A level-based approach to
prioritize telecommunications R&D. J. Telecommun. Inf. Technol. 4, 40–46 (2008)

96. Flores, S.D., Cegla, B.B.: Multiobjective network design optimisation using parallel evolu-
tionary algorithms. In: Proceedings of XXVII Conferencia Latinoamericana de Informática
(CLEI’01), Mérida, Venezuela (2001)

97. Flores, S.D., Cegla, B.B., Cáceres, D.B.: Telecommunication network design with parallel
multi-objective evolutionary algorithms. In: Proceedings of the 2003 IFIP/ACM Latin
America Conference on “Towards a Latin American Agenda for Network Research”, La Paz,
pp. 1–11 (2003)

98. Forsati, R., Mahdavi, M., Haghighat, A.T., Ghariniyat, A.: An efficient algorithm for
bandwidth-delay constrained least cost multicast routing. In: Proceedings of the 21st Cana-
dian Conference on Electrical and Computer Engineering (CCECE 2008), Niagara Falls, ON,
pp. 1641–1646 (2008)

99. Fortz, B., Thorup, M.: Internet traffic engineering by optimizing OSPF weights. In: Sidi, M.,
Katzela, I., Shavitt, Y. (eds.) Proceedings of the 19th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM 2000), Tel Aviv, vol. 2, pp. 519–528.
IEEE Computer and Communications Societies (2000)

100. Fournié, L., Hong, D., Randriamasy, S.: Distributed multi-path and multi-objective routing
for network operation and dimensioning. In: Proceedings of the 2nd EuroNGI Conference on
Next Generation Internet Design and Engineering (NGI2006), Valencia (2006)



1224 J. Clímaco et al.

101. Fu, G.L., Yang, C., Tzeng, G.H.: A multicriteria analysis on the strategies to open Taiwan’s
mobile virtual network operators services. Int. J. Inf. Technol. Decis. Mak. 6(1), 85–112
(2007)

102. Gasiea, Y., Emsley, M., Mikhailov, L.: On the applicability of the analytic network process
to rural telecommunications infrastructure technology selection. In: Proceedings of the
International Symposium on the Analytic Hierarchy Process (ISAHP) (2009)

103. Gasiea, Y., Emsley, M., Mikhailov, L.: Rural telecommunications infrastructure selection
using the analytic network process. J. Telecommun. Inf. Technol. 2, 28–42 (2010)

104. Ghinea, G., Magoulas, G.D., Siamitros, C.: Multicriteria decision making for enhanced
perception-based multimedia communication. IEEE Transactions on IEEE Trans. Syst. Man
Cybern. Syst. Hum. 35(6), 855–866 (2005)

105. Giffhorn, E., Ensslin, L., Ensslin, S.R., Vianna, W.B.: Proposal of a multicriteria performance
evaluation for outsourced project providers. In: PMA Conference – Theory and Practice in
Performance Measurement, New Zealand (2009)

106. Giokas, D.I., Pentzaropoulos, G.C.: Efficiency ranking of the OECD member states in the
area of telecommunications: a composite AHP/DEA study. Telecommun. Policy 32(9–10),
672–685 (2008)

107. Girão-Silva, R., Craveirinha, J., Clímaco, J.: Hierarchical multiobjective routing in multipro-
tocol label switching networks with two service classes – a heuristic solution. Int. Trans. Oper.
Res. 16(3), 275–305 (2009)

108. Girão-Silva, R., Craveirinha, J., Clímaco, J.: Hierarchical multiobjective routing in MPLS
networks with two service classes – a meta-heuristic solution. J. Telecommun. Inf. Technol.
3, 20–37 (2009)

109. Girão-Silva, R., Craveirinha, J., Clímaco, J.: Hierarchical multiobjective routing model in
multiprotocol label switching networks with two service classes – a Pareto archive strategy.
Eng. Optim. 44(5), 613–635 (2012)

110. Glaß, M., Lukasiewycz, M., Wanka, R., Haubelt, C., Teich, J.: Multi-objective routing and
topology optimization in networked embedded systems. In: Najjar, W.A., Blume, H. (eds.)
Proceedings of the International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (IC-SAMOS 2008), Samos, pp. 74–81 (2008)

111. Glover, F., Mulvey, J.M.: Equivalence of the 0–1 integer programming problem to discrete
generalized and pure networks. Oper. Res. 28(3), 829–836 (1980)

112. Goel, A., Meyerson, A., Plotkin, S.: Combining fairness with throughput: online routing with
multiple objectives. J. Comput. Syst. Sci. 63(1), 62–79 (2001)

113. Goel, A., Ramakrishnan, K.G., Kataria, D., Logothetis, D.: Efficient computation of delay-
sensitive routes from one source to all destinations. In: Sengupta, B., Bauer, F., Cavendish,
D. (eds.) Proceedings of the 20th Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM 2001), Anchorage, AK, vol. 2, pp. 854–858. IEEE
Computer and Communications Societies (2001)

114. Gola, M., Kasprzak, A.: The two-criteria topological design problem in WAN with delay
constraint: an algorithm and computational results. In: Kumar, V., Gavrilova, M.L., Tan,
C.J.K., L’Ecuyer, P. (eds.) Proceedings of the International Conference on Computational
Science and Its Applications (ICCSA 2003), Montreal. Lecture Notes in Computer Science,
vol. 2667, pp. 971–972. Springer, New York (2003)

115. Gola, M., Kasprzak, A.: Topology design problem with combined cost criterion and time
varying traffic in wide area networks. In: Proceedings of the 17th IMACS World Congress on
Scientific Computation, Applied Mathematics and Simulation, Paris (2005)

116. Gomes, T., Craveirinha, J., Clímaco, J., Simões, C.: A bi-objective model for routing and
wavelength assignment in resilient WDM networks. In: Martorell, S., Guedes Soares, C.,
Barnett, J. (eds.) Safety, Reliability and Risk Analysis: Theory, Methods and Applications:
Proceedings of the European Safety and Reliability Conference (ESREL 2008), and 17th
SRA-Europe, Valencia, vol. 4, pp. 2627–2634 (2008)

117. Gomes, T., Craveirinha, J., Clímaco, J., Simões, C.: A bicriteria routing model for multi-fibre
WDM networks. Photon Netw. Commun. 18(3), 287–299 (2009)



26 MA in Telecommunication Network Planning and Design: A Survey 1225

118. Granat, J., Guerriero, F.: The interactive analysis of the multicriteria shortest path problem by
the reference point method. Eur. J. Oper. Res. 151(1), 103–118 (2003)

119. Granat, J., Wierzbicki, A.P.: Multicriteria analysis in telecommunications. In: Proceedings of
the 37th Hawaii International Conference on System Sciences (2004)

120. Guérin, R.A., Orda, A.: Networks with advance reservations: the routing perspective. In: Sidi,
M., Katzela, I., Shavitt, Y. (eds.) Proceedings of the 19th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM 2000), Tel Aviv, vol. 1, pp. 118–127.
IEEE Computer and Communications Societies (2000)

121. Guerriero, F., Rango, F.D., Marano, S., Bruno, E.: A biobjective optimization model for
routing in mobile ad hoc networks. Appl. Math. Model. 33(3), 1493–1512 (2009)

122. Guo, L., Matta, I.: Search space reduction in QoS routing. Comput. Netw. 41(1), 73–88 (2003)
123. Han, D., Han, I.: Prioritization and selection of intellectual capital measurement indicators

using analytic hierarchy process for the mobile telecommunications industry. Expert Syst.
Appl. 26(4), 519–527 (2004)

124. Handler, G.Y., Zang, I.: A dual algorithm for the constrained shortest path problem. Networks
10(4), 293–309 (1980)

125. Handley, M.: Why the internet only just works. Br. Telecom Technol. J. 24(3), 119–129 (2006)
126. Hassanein, H., Weng, X., Aboelfotoh, H.: Multi-objective optimization based flow control in

multipoint-to-point communication. In: Proceedings of the IEEE Workshop on End-to-End
Service Differentiation, EESD2003, Phoenix, AZ (2003)

127. Hassin, R.: Approximation schemes for the restricted shortest path problem. Math. Oper. Res.
17(1), 36–42 (1992)

128. Haßlinger, G., Schnitter, S.: Optimized traffic load distribution in MPLS networks. In: Anan-
dalingam, G., Raghavan, S. (eds.) Telecommunications Network Design and Management,
pp. 125–141. Kluwer Academic Publishers, Boston (2003)

129. Hou, H.F., Li, F., Wang, H.Y.: QoS multicast routing algorithm with multiple constraints based
on GA. In: Proceedings of the International Conference on Machine Learning and Cybernetics
(ICMLC 2008), Kunming, pp. 1374–1378 (2008)

130. Hua, Q., Jihong, Z., Zengzhi, L.: Multi-objective routing and wavelength assignment method
in WDM networks. In: Yoo, S.J.B., Cheung, K.W., Chung, Y.C., Li, G. (eds.) Proceedings
of SPIE, Bellingham,WA. Network Architectures, Management, and Applications, vol. 5282,
pp. 695–702 (2003)

131. Huiban, G., Mateus, G.R.: A multiobjective approach of the virtual topology design and rout-
ing problem in WDM networks. In: Proceedings of the 12th IEEE International Conference
on Telecommunications (ICT), Cape Town (2005)

132. Isaksson, L., Fiedler, M.: Seamless connectivity in WLAN and cellular networks with multi
criteria decision making. In: Proceedings of the 3rd EuroNGI Conference on Next Generation
Internet Networks (NGI 2007), Trondheim, pp. 56–63 (2007)

133. Isiklar, G., Buyukozkan, G.: Using a multi-criteria decision making approach to evaluate
mobile phone alternatives. Comput. Stand. Interfaces 29(2), 265–274 (2007)

134. Jaffe, J.M.: Algorithms for finding paths with multiple constraints. Networks 14(1), 95–116
(1984)

135. Jones, D.F., Mirrazavi, S.K., Tamiz, M.: Multi-objective meta-heuristics: an overview of the
current state-of-the-art. Eur. J. Oper. Res. 137(1), 1–9 (2002)

136. Kant, L., Manousakis, K., McAuley, A., Graff, C.: Network design approaches and tradeoffs
in QoS route selection with diverse objectives and constraints. In: Proceedings of the IEEE
Military Communications Conference (IEEE MILCOM 2008) (2008)

137. Keeney, R.L.: Modeling values for telecommunications management. IEEE Trans. Eng.
Manag. 48(3), 370–379 (2001)

138. Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Trade-
offs. Cambridge University Press, Cambridge (1993)

139. Kelly, F.P.: Routing in circuit-switched networks: optimization, shadow prices and decentral-
ization. Adv. Appl. Probab. 20(1), 112–144 (1988)



1226 J. Clímaco et al.

140. Kennington, J., Lewis, K., Olinick, E., Ortynski, A., Spiride, G.: Robust solutions for the
DWDM routing and provisioning problem: models and algorithms. Opt. Netw. Mag. 4(2),
74–84 (2003)

141. Kerbache, L., Smith, J.M.: Multi-objective routing within large scale facilities using open
finite queueing networks. Eur. J. Oper. Res. 121(1), 105–123 (2000)

142. Khademi-Zare, H., Zarei, M., Sadeghieh, A., Owlia, M.S.: Ranking the strategic actions of
Iran mobile cellular telecommunication using two models of fuzzy QFD. Telecommun. Policy
34, 747–759 (2010)

143. Kim, J., Chang, K.K., Byunggon, Y.: A survey study on the relative importance of intranet
functions: using the analytic hierarchy process. In: Fourth International Decision Sciences
Institute Conference, Sydney (1997)

144. Kim, S.H., Lim, K., Kim, C.: A scalable QoS-based inter-domain routing scheme in a high
speed wide area network. Comput. Commun. 21, 390–399 (1998)

145. Knowles, J., Oates, M., Corne, D.: Advanced multi-objective evolutionary algorithms applied
to two problems in telecommunications. BT Technol. J. 18(4), 51–65 (2000)

146. Komolafe, O., Sventek, J.: RSVP performance evaluation using multi-objective evolutionary
optimisation. In: Proceedings of the 24th Annual Joint Conference of the IEEE Computer and
Communications Societies (IEEE Infocom 2005), Miami, FL, vol. 4, pp. 2447–2457 (2005)

147. Korkmaz, T., Krunz, M.: Multi-constrained optimal path selection. In: Sengupta, B., Bauer, F.,
Cavendish, D. (eds.) Proceedings of the 20th Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM 2001), Anchorage, AK, vol. 2, pp. 834–843.
IEEE Computer and Communications Societies, (2001)

148. Korkmaz, T., Krunz, M.: A randomized algorithm for finding a path subject to multiple QoS
constraints. Comput. Netw. 36(2–3), 251–268 (2001)

149. Kuipers, F., van Mieghem, P.: MAMCRA: a constrained-based multicast routing algorithm.
Comput. Commun. 25(8), 802–811 (2002)

150. Kuipers, F.A., van Mieghem, P.: Conditions that impact the complexity of QoS routing.
IEEE/ACM Trans. Netw. 13(4), 717–730 (2005)

151. Kuipers, F.A., van Mieghem, P.: Non-dominance in QoS routing: an implementational
perspective. IEEE Commun. Lett. 9(3), 267–269 (2005)

152. Kuipers, F., van Mieghem, P., Korkmaz, T., Krunz, M.: An overview of constraint-based path
selection algorithms for QoS routing. IEEE Commun. Mag. 40(12), 50–55 (2002)

153. Kuipers, F.A., Korkmaz, T., Krunz, M., van Mieghem, P.: A review of constraint-based routing
algorithms. Technical Report, Technical University Delft (2002)

154. Kuipers, F.A., Korkmaz, T., Krunz, M., van Mieghem, P.: Performance evaluation of
constraint-based path selection algorithms. IEEE Netw. 18(5), 16–23 (2004)

155. Kuipers, F., Orda, A., Raz, D., van Mieghem, P.: A comparison of exact and 	-approximation
algorithms for constrained routing. In: Proceedings of Networking 2006 - Fifth IFIP
Networking Conference, Coimbra, Portugal (2006)

156. Kumar, R.: Multicriteria network design using distributed evolutionary algorithm. In:
Pinkston, T.M., Prasanna, V.K. (eds.) Proceedings of the 10th International Conference on
High Performance Computing (HiPC 2003), Hyderabad. Lecture Notes in Computer Science,
vol. 2913/2003, pp. 343–352. Springer, New York (2003)

157. Kuo, Y.F., Chen, P.C.: Selection of mobile value-added services for system operators using
fuzzy synthetic evaluation. Expert Syst. Appl. 30(4), 612–620 (2006)

158. Kyrylov, V., Bonanni, C.: Modeling decision making by telecommunications services
providers in a strategy market game. In: Proceedings of the 2004 Applied Telecommuni-
cations Symposium (ATS’04), Arlington, VA (2004)

159. Kyrylov, V., Bonanni, C.: Multi-criteria optimisation of budgeting decisions by telecommu-
nication service providers in a simulation game. Int. J. Manag. Decis. Mak. 7(2–3), 201–215
(2006)

160. Lee, W.C., Hluchyj, M.G., Humblet, P.A.: Routing subject to quality of service constraints in
integrated communication networks. IEEE Netw. 9(4), 46–55 (1995)



26 MA in Telecommunication Network Planning and Design: A Survey 1227

161. Lee, H., Shi, Y., Nazem, S.M., Kang, S.Y., Park, T.H., Sohn, M.H.: Multicriteria hub decision
making for rural area telecommunication networks. Eur. J. Oper. Res. 133, 483–495 (2001)

162. Lee, K., Toguyeni, A., Noce, A., Rahmani, A.: Comparison of multipath algorithms for
load balancing in a MPLS network. In: Kim, C. (ed.) Proceedings of the International
Conference on Information Networking – Convergence in Broadband and Mobile Networking
(ICOIN2005), Jeju Island, Korea. Lecture Notes in Computer Science, vol. 3391/2005,
pp. 463–470. Springer, Berlin (2005)

163. Leesutthipornchai, P., Wattanapongsakorn, N., Charnsripinyo, C.: Multi-objective design for
routing wavelength assignment in WDM networks. In: Proceedings of the 3rd International
Conference on New Trends in Information and Service Science (NISS 2009), Beijing,
pp. 1315–1320 (2009)

164. Leesutthipornchai, P., Charnsripinyo, C., Wattanapongsakorn, N.: Solving multi-objective
routing and wavelength assignment in WDM network using hybrid evolutionary computation
approach. Comput. Commun. 33(18), 2246–2259 (2010)

165. Levin, M.S., Nuiriakhmetov, R.I.: Multicriteria Steiner tree problem for communication
network. Inf. Process. 9(3), 199–209 (2009)

166. Levin, M.S., Petukhov, M.V.: Connection of users with a telecommunications network:
multicriteria assignment problem. J. Commun. Technol. Electron. 55(12), 1532–1541 (2010)

167. Levin, M.S., Petukhov, M.V.: Multicriteria assignment problem (Selection of access points).
In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds.) Trends in Applied
Intelligent Systems. Lecture Notes in Computer Science, vol. 6097, pp. 277–287. Springer,
Berlin (2010)

168. Li, L., Li, C.: A QoS-guaranteed multicast routing protocol. Comput. Commun. 27(1), 59–69
(2004)

169. Li, L., Li, C.: A QoS multicast routing protocol for dynamic group. Inf. Sci. 169, 113–130
(2005)

170. Li, H., Landa-Silva, D.: Evolutionary multi-objective simulated annealing with adaptive and
competitive search direction. In: Proceedings of the 2008 IEEE Congress on Evolutionary
Computation (CEC 2008), IEEE World Congress on Computational Intelligence, Hong Kong,
pp. 3311–3318 (2008)

171. Li, Q., Beaver, J., Amer, A., Chrysanthis, P.K., Labrinidis, A., Santhanakrishnan, G.: Multi-
criteria routing in wireless sensor-based pervasive environments. J. Pervasive Comput.
Commun. 1(4), 313–326 (2005)

172. Liu, G., Ramakrishnan, K.G.: A*Prune: an algorithm for finding k shortest paths subject to
multiple constraints. In: Sengupta, B., Bauer, F., Cavendish, D. (eds.) Proceedings of the 20th
Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM
2001), Anchorage, AK, vol. 2, pp. 743–749. IEEE Computer and Communications Societies
(2001)

173. Long, F., Sun, F., Yang, Z.: A novel routing algorithm based on multi-objective optimization
for satellite networks. J. Netw. 6(2), 238–246 (2011)
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Chapter 27
Multiple Criteria Decision Analysis
and Sustainable Development

Giuseppe Munda

Abstract Sustainable development is a multidimensional concept, including socio-
economic, ecological, technical and ethical perspectives. In making sustainability
policies operational, basic questions to be answered are sustainability of what and
whom? As a consequence, sustainability issues are characterised by a high degree of
conflict. The main objective of this chapter is to show that multiple-criteria decision
analysis is an adequate approach for dealing with sustainability conflicts at both
micro and macro levels of analysis. To achieve this objective, lessons, learned from
both theoretical arguments and empirical experience, are reviewed. Guidelines of
“good practice” are suggested too.

Keywords Sustainable development • Economics • Complex systems • Incom-
mensurability • Social choice • Social multi-criteria evaluation

27.1 The Concept of Sustainable Development
and the Incommensurability Principle

In the 1980s, the awareness of actual and potential conflicts between economic
growth and the environment led to the concept of “sustainable development”.
Since then, all governments have declared, and still claim, their willingness to
pursue economic growth under the flag of sustainable development although often
development and sustainability are contradictory terms. The concept of sustainable
development has wide appeal, partly because it does not set economic growth and
environmental preservation in sharp opposition. Rather, sustainable development
carries the ideal of a harmonisation or simultaneous realisation of economic
growth and environmental concerns. For example, Barbier [8, p. 103] writes
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that sustainable development implies: “to maximise simultaneously1 the biological
system goals (genetic diversity, resilience, biological productivity), economic system
goals (satisfaction of basic needs, enhancement of equity, increasing useful goods
and services), and social system goals (cultural diversity, institutional sustainability,
social justice, participation)”. This definition correctly points out that sustainable
development is a multidimensional concept, but as our everyday life teaches us,
it is generally impossible to maximise different objectives at the same time, and as
formalised by multi-criteria decision analysis, compromise solutions must be found.

Let us try to clarify some fundamental points of the concept of “sustainable
development”. In economics by “development” is meant “the set of changes in the
economical, social, institutional and political structure needed to implement the
transition from a pre-capitalistic economy based on agriculture, to an industrial
capitalistic economy” [17]. Such a definition of development has two main charac-
teristics:

• The changes needed are not only quantitative (like the growth of gross domestic
product), but qualitative too (social, institutional and political).

• There is only a possible model of development, i.e. the one of western indus-
trialised countries. This implies that the concept of development is viewed as a
process of cultural fusion toward the best knowledge, the best set of values, the
best organisation and the best set of technologies.

Adding the term “sustainable” to the “set of changes” (the first point) means
adding an ethical dimension to development. The issue of distributional equity, both
within the same generation (intra-generational equity, e.g. the North–South conflict)
and between different generations (inter-generational equity) becomes crucial [78].
Going further, a legitimate question could be raised: sustainable development of
what and whom? [3]. Norgaard [92, p. 11] writes: “consumers want consumption
sustained, workers want jobs sustained. Capitalists and socialists have their “isms”,
while aristocrats and technocrats have their “cracies””.

Martinez-Alier and O’Connor [71] have proposed the concept of ecological
distribution to synthesise sustainability conflicts. The concept of ecological dis-
tribution refers to the social, spatial, and temporal asymmetries or inequalities in
the use by humans of environmental resources and services. Thus, the territorial
asymmetries between SO2 emissions and the burdens of acid rain are an example
of spatial ecological distribution. The inter-generational inequalities between the
benefits of nuclear energy and the burdens of radioactive waste are an example
of temporal ecological distribution. In the USA, “environmental racism”, meaning
locating polluting industries or toxic waste disposal sites in areas where poor people
live, is an example of social ecological distribution. We can then conclude that
sustainability management and planning is essentially a conflict analysis.

The second characteristic of the term “development” refers to the western
industrialized production system as symbol of any successful development process.

1Emphasis added to the original.
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However, serious environmental problem may stem from this vision. For example,
according to actual social values in western countries, to have a car per two/three
persons could be considered a reasonable objective in less developed countries. This
would imply a number of cars ten times greater than the existent one, with possible
consequences on global warming, reserves of petroleum, loss of agricultural land
and noise. The contradiction between the terms “development” and “sustainable”
may not be reconcilable unless other models of development are considered.

This is proposed by the so-called co-evolutionary paradigm. According to this
view of social evolution, borrowed from biology [32], there is a constant and
active interaction of the organisms with their environment. Organisms are not
simply the results but they are also the causes of their own environments [50, 92].
Economic development can be viewed as a process of adaptation to a changing
environment while itself being a source of environmental change. In real world
societies, “people survive to a large extent as members of groups. Group success
depends on culture: the system of values, beliefs, artefacts, and art forms which
sustain social organisation and rationalise action. Values and beliefs which fit
the ecosystem survive and multiply; less fit ones eventually disappear. And thus
cultural traits are selected much like genetic traits. At the same time, cultural values
and beliefs influence how people interact with their ecosystem and apply selective
pressure on species. Not only have people and their environment coevolved, but
social systems and environmental systems have coevolved” [92, p. 41]. From the
co-evolutionary paradigm the following lessons can be learned:

(1) A priori, different models of co-evolution are possible, and then no unique
optimal development path exists. The spatial dimension is a key feature of
sustainable development.

(2) In environmental management local knowledge and expertise (being the result
of a long co-evolutionary process) sometimes are more useful than experts’
opinions. Social participation is then essential for successful sustainability
policies.

Taking sustainability seriously into account creates a need for the inclusion of
the physical appraisal of the environmental impacts on the socio-economic system
too. As shown in Fig. 27.1, systemic approaches to sustainability issues consider
the relationships between three systems: the economic system, the human system
and the natural system [96]. The economic system includes the economic activities
of humans, such as production, exchange and consumption. Given the scarcity
phenomenon, such a system is efficiency oriented. The human system comprises
all activities of human beings on our planet. It includes the spheres of biological
human elements, of inspiration, of aesthetics, of social conflict, and of morality
which constitute the frame of human life. Since it is clear that the economic system
does not constitute the entire human system, one may assume that the economic
system is a subsystem of the human system. Finally, the natural system includes
both the human system and the economic system.

The previous discussion can be summarized by using the philosophical concept
of weak comparability [70, 93]. From a philosophical perspective, it is possible
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Fig. 27.1 A systemic vision of sustainability issues

to distinguish between the concepts of strong comparability (there exists a single
comparative term by which all different actions can be ranked) implying strong
commensurability (a common measure of the various consequences of an action
based on a cardinal scale of measurement) or weak commensurability (a common
measure based on an ordinal scale of measurement), and weak comparability
(irreducible value conflict is unavoidable but compatible with rational choice
employing, for example, multi-criteria evaluation).

In terms of formal logic, the difference between strong and weak comparability,
and one defence of weak comparability, can be expressed in terms of Geach’s
distinction between attributive and predicative adjectives [46]. An adjective A is
predicative if it passes the two following logical tests:

(1) if x is AY, then x is A and x is Y;
(2) if x is AY and all Y’s are Z’s, then x is AZ.

Adjectives that fail such tests are attributive. Geach claims that “good” is an
attributive adjective. In many of its uses it clearly fails (2): “X is a good economist,
all economists are persons, and therefore X is a good person” is an invalid argument.
The fact that a comparative holds in one range of objects does not entail that it holds
in the wider range. Given a claim that “X is better than Y” a proper response is “X
is better what than Y?” Similar points can be made about the adjective “valuable”
and “is more valuable than”. If evaluative adjectives like “good” and “valuable” are
attributive in standard uses, it follows that their comparative forms have a limited
range. That does not however preclude the possibility of rational choices between
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objects that do not fall into the range of a single comparative. Weak comparability
is compatible with the existence of such limited ranges.

It is in terms of such descriptions that evaluation takes place. A location is
not evaluated as good or bad as such, but rather, as good, bad, beautiful or
ugly in relation to different descriptions. It can be at one and the same time a
“good W” and a “bad X”, a “beautiful Y” and an “ugly Z”. The use of these
value terms in such contexts is attributive, not predicative. Evaluation of objects
relative to different descriptions invokes not just different practices and perspectives,
but also the different criteria and standards for evaluation associated with these.
It presupposes value-pluralism. An appeal to different standards often results in
conflicting appraisal of an object: as noted above, an object can have considerable
worth as a U, V, and W, but little as an X, Y and Z.

In conclusion, weak comparability implies incommensurability i.e. there is an
irreducible value conflict when deciding what common comparative term should be
used to rank alternative actions. It is possible to further distinguish the concepts of
social incommensurability and technical incommensurability [79, 81].

Social incommensurability refers to the existence of a multiplicity of legitimate
values in society, and to deal with it, there is a need to consider the public par-
ticipation issue. Any social decision problem is characterised by conflicts between
competing values and interests and different groups and communities that represent
them. In sustainability policies, biodiversity goals, landscape objectives, the direct
services of different environments as resources and sinks, the historical and cultural
meanings that places have for communities, the recreational options environments
provide are a source of conflict [62]. Choosing any particular operational definition
for value and its corresponding valuation technique involves making a decision
about what is important and real. Distributional issues play a central role. Any policy
option always implies winners and losers, thus it is important to check if a policy
option seems preferable just because some dimensions (e.g. the environmental) or
some social groups (e.g. the lower income groups) are not taken into account.

As a tool for conflict management, multi-criteria evaluation has demonstrated
its usefulness in many sustainability policy and management problems in various
geographical and cultural contexts (see e.g. [12, 13, 22, 42, 45, 57, 61, 73, 84, 90,
95, 101, 104, 117, 119, 123, 138]). The main point of force is the fact that the use
of various evaluation criteria has a direct translation in terms of plurality of values
used in the evaluation exercise. From this point of view, multiple-criteria decision
analysis can be considered as a tool for implementing political democracy.

When dealing with sustainability issues neither an economic reductionism nor
an ecological one is possible. Since in general, economic sustainability has an
ecological cost and ecological sustainability has an economic cost, an integrative
framework such as multi-criteria evaluation is needed for tackling sustainability
issues properly. Technical incommensurability comes from the multidimensional
nature of sustainability issues. One should note that the construction of a descriptive
model of a real-world system depends on very strong assumptions about (1) the
purpose of this construction, e.g. to evaluate the sustainability of a given city,
(2) the scale of analysis, e.g. a block inside a city, the administrative unit constituting
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a Commune or the whole metropolitan area and (3) the set of dimensions, objectives
and criteria used for the evaluation process. A reductionist approach for building
a descriptive model can be defined as the use of just one measurable indicator
(e.g. the monetary city product per person), one dimension (e.g. economic), one
scale of analysis (e.g. the Commune), one objective (e.g. the maximisation of
economic efficiency) and one time horizon. If one wants to avoid reductionism, there
is a clear need to take into account incommensurable dimensions using different
scientific languages coming from different legitimate representations of the same
system [47–49]. This is what Neurath [89] called the need for an “orchestration of
sciences”.

The use of a multi-criteria framework is a very efficient tool to implement a
multi/inter-disciplinary approach. When experts involved have various backgrounds
in the beginning, the communication process is always very difficult; however it is
astonishing to realize that when a multi-criterion framework is used, immediately
a common language is created. This virtue of multi-criterion approaches has been
corroborated in a great number of real-world case studies tackled by means of a
variety of methods (see e.g., [11] who mainly uses MAUT approaches; [61] who
builds on the DEFINITE software; [72] building on ELECTRE methods; [74] using
AHP; [33] by means of NAIADE; [121] who use SMART). In terms of inter-
disciplinarity, the issue is to find agreement on the set of criteria to be used; in
terms of multi-disciplinarity, the issue is to propose and compute an appropriate
criterion score. The efficiency of the interaction process can greatly increase and its
effectiveness too.2

From this brief discussion the following conclusions can be drawn:

1. A proper evaluation of sustainability options needs to deal with a plurality of
legitimate values and interests found in a society. From a societal point of view,
economic optimization cannot be the only evaluation criterion. As is well known,
not all goods have a market price, or this price is often too low (market failures).
Environmental and distributional consequences (intra/inter-generational and for
non-humans) must also be taken into account. In this framework multi-criteria
evaluation is a very consistent approach.

2. If from a sustainability point of view, it is accepted that society as a whole has
an indefinite lifespan, a much longer time horizon than is normally used on the
market is required. A contradiction then arises: politicians usually have a very
short time horizon (often 4–5 years depending on the electoral system) and this
has the effect that sustainability is rarely among their priorities (thereby causing
a government failure (for an overview of different perspectives on the role of
governments in the economic sphere see e.g. [18]). For this reason evaluation
of public projects should take into account the entire “civil society” (including

2Here I refer to the idea of orchestration of sciences as a combination of multi/inter-disciplinarity.
Multi-disciplinarity: each expert takes her/his part. Inter-disciplinarity: methodological choices are
discussed across the disciplines.
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ethical concerns about future generations) and not only mythical benevolent
policy-makers.

In the rest of this chapter, I will first analyse the role of multi-criteria decision
analysis at a macroeconomic level, in particular with reference to the issue of
construction and aggregation of sustainability assessment indicators and indexes.
Then, I will discuss the use of multi-criteria techniques at a project level, for
sustainability management and planning. At both levels, particular emphasis will
be put on topics such as the role of problem structuring, the quality of the social
process and the meaning of mathematical properties.

27.2 Measuring Sustainability: The Issue of Sustainability
Assessment Indexes

From an economic point of view, traditionally Gross Domestic Product (GDP)
has been considered as the best performance indicator for measuring national
economy and welfare. But if resource depletion and degradation are factored into
economic trends, what emerges is a radically different picture from the one depicted
by conventional methods. In environmental terms, the GDP measure is plainly
defective because:

1. no account is taken of environmental destruction or degradation;
2. natural resources as such are valued at zero;
3. repair and remedial expenditure such as pollution abatement measures, health

care, etc., are counted as positive contribution to GDP inasmuch as they involve
expenditures of economic goods and services.

In recent years, a growing stock of literature has been written on this topic and
at the institutional level this debate has also invested the OECD and the European
Commission, which devoted a number of recent conferences to the issue of well-
being or happiness in the framework of “Measuring Progress”. The purpose of
“green accounting” is to provide information on the sustainability of the economy
but there is no settled doctrine on how to combine different and sometimes
contradictory indicators and indexes in a way immediately useful for policy (in
the sense that GDP or other macroeconomic statistics have been useful for policy)
[38]. The expression “Taking nature into account” (much used both in the UN
system and in the European Union) hides the tension between money valuation, and
appraisal through physical indicators and indexes (which themselves might show
contradictory trends). So far, the elementary question of whether the European
economy is moving towards sustainability or away from sustainability cannot be
answered with consensus on the indicators and the integrative framework to be used
(see e.g. [9, 23, 34, 59, 60, 78, 87, 98]).

A point of scientific controversy present in the contemporary debate is on the
use of monetary or physical indexes. Examples of monetary indexes are Daly and
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Cobb [26] ISEW (Index of Sustainable Economic Welfare), Pearce and Atkinson
[97] Weak Sustainability Index, the so-called El Serafy approach [136]. Examples
of physical indexes are HANPP (Human Appropriation of Net Primary Production)
[131], the Ecological Footprint [133], MIPS (Material Input Per unit of Service)
[116].

Although these approaches may look different, they all have some common
characteristics:

1. The subcomponents needed for the building the aggregate index are ad hoc.
No clear justification is given why e.g. diet enters in the computation of the
ecological footprint and the generation of waste does not.

2. All the indexes are based on the assumptions that a common measurement rod
needs to be established for aggregation purposes (money, energy, space, and so
on). This creates the need of making very strong assumptions on conversion
coefficients to be used and on compensability allowed (i.e. till which point
better economical performances may cause environmental destruction or social
exclusion?). The mathematical aggregation convention behind an index thus
needs an explicit and well thought formulation.

3. The policy objective is often not clear. Inter-country or inter-city comparisons
are a different policy objective than managing a particular country or city
sustainability. Moreover, aggregate indexes are somewhat confusing, if one
wishes to derive policy suggestions. For example, by looking at ISEW, we could
know that indeed a country has a worst sustainability performance than the one
pictured by standard GDP, but so what? ISEW being so aggregated does not
supply any clear information of the cause of this bad performance and thus
is useless for policy-making (while conventional GDP is at least giving clear
information on the economic performance). The same applies to the ecological
footprint, which sometimes can even give misleading policy suggestions (giving
that diet is used, a more energy intensive agriculture might reduce the ecological
footprint of e.g. a city, but in reality its environmental performance would be
much worst!) or to the weak sustainability index (which is nothing but the
classical golden rule of growth theory, where environmental physical destruction
is never considered—above all if it is externalised outside the national borders).

4. All these approaches belong to the more general family of composite indicators
and as a consequence, the assumptions used for their construction are common
to them all.

Let’s discuss this fourth point more in depth. Composite indicators3 are very
common in fields such as economic and business statistics and a variety of policy
domains such as industrial competitiveness, sustainable development, globalisation
and innovation. The proliferation of this kind of indicators is a clear symptom

3Composite indicators are indeed synthetic indexes, thus the two terms can be considered
synonymous; here I use the term composite indicator since is the standard one in OECD/EC
terminology [88].
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of their political importance and operational relevance in decision-making; many
international organizations propose their use in search of evidence based policy
[88, 114]. From a formal point of view, a composite indicator is an aggregate of all
dimensions, objectives, individual indicators and variables used for its construction.
This implies that what defines a composite indicator is the set of properties
underlying its aggregation convention. Although various functional forms for the
underlying aggregation rules of a composite indicator have been developed in the
literature, in the standard practice, a composite indicator is very often constructed
by using a weighted linear aggregation rule applied to a set of variables. A typical
composite indicator, I, is built as follows:

I D
NX

iD1
wixi (27.1)

where xi is a normalised variable and wi a weight attached to xi, with
NX

iD1
wi D 1

and 0 � wi � 1, i D 1; 2; : : : ;N. The main technical (i.e., without considering how
variables have been selected) steps needed for its construction are two:

1. Standardisation of the variables to allow comparison without scale effect,
2. Weighted summation of these variables.

The standardisation step is a very delicate one. Main sources of a somewhat
arbitrary assessment here are [88]:

• Normalisation technique used for the different measurement units dealt with.
• Scale adjustment used, for example population or GDP of each country consid-

ered.
• Common measurement unit used (money, energy, space and so on).

Let’s first discuss the issue of linear aggregation of the variables chosen. As
it is well known, the aggregation of several variables implies taking a position
on the fundamental issue of compensability. The use of weights with intensity of
preference originates compensatory aggregation conventions and gives the meaning
of trade-offs to the weights. On the contrary, the use of weights with ordinal variable
scores originates non-compensatory aggregation procedures and gives the weights
the meaning of importance coefficients ([64, 99, 102, 129]; see also Chaps. 4 and 7
of this book).

Now the question arises: in their standard use weights in composite indicators
are trade-offs or importance coefficients? “Variables which are aggregated in a
composite indicator have first to be weighted – all variables may be given equal
weights or they may be given differing weights which reflect the significance,
reliability or other characteristics of the underlying data. The weights given to
different variables heavily influence the outcomes of the composite indicator. The
rank of a country on a given scale can easily change with alternative weighting
systems. : : : Greater weight should be given to components which are considered

http://dx.doi.org/10.1007/978-1-4939-3094-4_4
http://dx.doi.org/10.1007/978-1-4939-3094-4_7
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to be more significant in the context of the particular composite indicator” [94, p.
10]. The concept of a weight used by OECD can be then classified as symmetrical
importance, that is “ : : : if we have two non-equal numbers to construct a vector in
R2, then it is preferable to place the greatest number in the position corresponding
to the most important criterion.” [99, p. 241].

Clearly, the mathematical convention underlying the additive aggregation model
is a completely compensatory one. This means that in the weighted summation case,
the substitution rates are equal to the weights of the variables up to a multiplicative
coefficient. As a consequence, the estimation of weights is equivalent to that of
substitution rates: the questions to be asked are in terms of “gain with respect to one
variable allowing to compensate loss with respect to another” and NOT in terms
of “symmetrical importance” of variables [16]. As a consequence in composite
indicators, a theoretical inconsistency exists between the way weights are actually
used and what their real theoretical meaning is.4

It is obvious that the aggregation convention used for composite indicators deal
with the classical conflictual situation tackled in multi-criteria evaluation. Thus,
the use of a multi-criterion framework for composite indicators in general and
for sustainability indexes in particular is relevant and desirable [2, 35, 38, 80, 85,
128]. However, as made clear in this book, the so-called “multi-criterion problem”
can be solved by means of a variety of mathematical approaches, all of them
correct. This situation is due to Arrow’s impossibility theorem [5], which proves
that it is impossible to develop a “perfect” multi-criterion aggregation convention.
This implies that it is desirable to have mathematical algorithms that may be
recommended on some theoretical and empirical grounds. To deal with this problem,
two main approaches can be distinguished.

1. The attempt of looking for a complete set of formal properties5 that can be
attributed to a specific method (e.g., [6, 130]).

2. The attempt to check under which specific circumstances each method could be
more useful than others, i.e. the search of the right method for the right problem

4One should note that this inconsistency is present in the majority of the environmental impact
assessment studies too. In fact it is a common practice to aggregate environmental impact indicators
by means of a linear rule and to attach weights to them according to the relative importance
idea. Moreover, the use of a linear aggregation procedure implies that among the different
ecosystem aspects there are not phenomena of synergy or conflict. This appears to be quite an
unrealistic assumption for environmental impact assessment studies [39]. For example, “laboratory
experiments made clear that the combined impact of the acidifying substances SO2, NOX, NH3 and
O3 on plant growth is substantially more severe that the (linear) addition of the impacts of each of
these substances alone would be.” [31].
5Often this search for clear properties characterizing an algorithm is indicated as the axiomatic
approach. However, one should note that properties or assumptions are NOT axioms. As perfectly
synthesized by Saari [[110], p. 110] “Many, if not most, results in this area are merely properties
that happen to uniquely identify a particular procedure. But unless these properties can be used to
construct, or be identified with all properties of the procedure (such as in the development of utility
functions in the individual choice literature), they are not building blocks and they most surely
are not axioms: they are properties that just happen to identify but not characterize, a procedure.
As an example, the two properties (1) Finnish-American heritage (2) a particular DNA structure,
uniquely identify me, but they most surely do not characterize me”.
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(e.g., see [56] for a general approach, and [113] for a discussion in the context of
environmental problems).

Next section gives an example of the first approach in the framework of
sustainability composite indicators. Section 27.6 will deal with the second approach
in the framework of multi-criteria evaluation of sustainability policies at a micro-
level.

27.3 A Defensible Setting for Sustainability
Composite Indicators

As discussed in the previous section, in the framework of sustainability composite
indicators there is a need for a theoretical guarantee that weights are used with the
meaning of “symmetrical importance”. As a consequence, complete compensability
should be avoided. This implies that variables have to be used with an ordinal
meaning. This is not a problem since no loss of information is implied [6]. Moreover,
given that often the measurement of variables is rough, it seems even desirable to
use indicator scores with an ordinal meaning. Given that there is a consensus in the
literature that the Condorcet’ theory of voting is non-compensatory while Borda’s
one is fully compensatory, a first conclusion is that when one wishes to have weights
as importance coefficients, there is a need for a Condorcet approach6 while a Borda’s
one is desirable when weights are meaningful in the form of trade-offs [28, 75].

6Arrow and Raynaud [[6], pp. 77–78] arrive at the conclusion that a Condorcet aggregation
algorithm has always to be preferred in a multi-criterion framework. On the complete opposite side
one can find Saari [108–110]. His main criticism against Condorcet based approaches are based
on two arguments: (1) if one wants to preserve relationships among pairs (e.g., to impose a side
constraint to protect some relationship-balanced gender for candidates in a public concourse) then
it is impossible to use pair-wise voting rules, a Borda count should be used necessarily. However,
it is important to note that, although desirable in some cases, to preserve a relationship among
pairs implies the loss of neutrality; this is not desirable on general grounds. (2) The individual
rationality property (i.e. transitivity) has necessarily to be weakened if one wishes to adopt a
Condorcet based voting rule. The underlying assumption of this definition is the identification
of human rationality with consistency, and this can be criticized from many points of view. Simon
[118] notes that humans have at their disposal neither the facts nor the consistent structure of values
nor the reasoning power needed to apply the principles of utility theory. In microeconomics, where
the assumption that an economic agent is always a utility maximize is a fundamental one, it is
generally admitted that this behavioural assumption has a predictive meaning and not a descriptive
one (see Friedman [37] for the most forceful defence of this non-descriptive meaning of the axioms
of ordinal utility theory). As firstly noted by Luce [68], a down-to-earth preference modelling
should imply the use of indifference and preference thresholds; this implies exactly the loss of
the transitivity property of at least the indifference relation. A corroboration of this criticism in
the framework of social choice can be found in Kelsey (1986), where it is stated that because of
social choice problems, an individual with multiple objectives may find it impossible to construct
a transitive ordering. Recent analyses of the concept of rational agent can also be found in Bykvist
[19] and Sugden [124].
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A problem inherent to the Condorcet consistent family of algorithms is the presence
of cycles. The probability  (N, M) of obtain a cycle with N countries (regions,
cities, etc.) and M individual indicators increases with N as well as the number
of indicators. With many countries and individual indicators, cycles occur with an
extremely high frequency. As a consequence, the ranking procedure used has to deal
with the cycle issue properly.

Let’s then discuss the cycle issue. A cycle breaking rule normally needs some
arbitrary choice such as to delete the cycle with the lowest support. Now the
question is: Is it possible to tackle the cycle issue in a more general way? Condorcet
himself was aware of the problem of cycles in his approach; he built examples to
explain it and he got close to find a consistent rule able to rank any number of
alternatives when cycles are present. However, attempts to fully understand this part
of Condorcet’s voting theory came to a conclusions like “ : : : the general rules for
the case of any number of candidates as given by Condorcet are stated so briefly
as to be hardly intelligible : : : and as no examples are given it is quite hopeless to
find out what Condorcet meant” (E.J. Nanson as quoted in [14, p. 175]). Or “The
obscurity and self-contradiction are without any parallel, so far as our experience
of mathematical works extends : : : no amount of examples can convey an adequate
impression of the evils” ([125, p. 352] as cited by Young [134, p. 1234]).

Attempts of clarifying, fully understanding and axiomatizing Condorcet’s
approach for solving cycles have been mainly done by Kemeny [65] who made
the first intelligible description of the Condorcet approach, and by Young and
Levenglick [135] who gave the clearest exposition and a complete axiomatisation.
For this reason we can call this approach the Condorcet–Kemeny–Young–
Levenglick (henceforth C-K-Y-L) ranking procedure.

Arrow and Raynaud [6, p. 77] also arrive at the conclusion that the highest
feasible ambition for an aggregation algorithm building a multi-criterion ranking
is to be Condorcet. These authors discard what they call the Kemeny’s method, on
the grounds that preference reversal phenomena may occur inside this approach
[6, p. 96]. However, although the so-called Arrow-Raynaud’s method does not
present rank reversal, it is not applicable if cycles exist. Since in the context where
composite indicators are built, cycles are very probable to occur, here the only
solution is to choose the C-K-Y-L ranking procedure, thus accepting that rank
reversals might appear.7 The acceptance of rank reversals phenomena implies that
the famous axiom of independence of irrelevant alternatives of Arrow’s theorem
is not respected. Anyway, Young [134, p. 1241] claims that the C-K-Y-L ranking
procedure is the “only plausible ranking procedure that is locally stable”. Where
local stability means that the ranking of alternatives does not change if only an
interval of the full ranking is considered.

7Anyway a Condorcet consistent rule always presents smaller probabilities of the occurrence of
a rank reversal in comparison with any Borda consistent rule. This is again a strong argument in
favour of a Condorcet’s approach in this framework.
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The adaptation of C-K-Y-L ranking procedure to the case of composite indicators
is very simple. The maximum likelihood ranking of countries (regions, cities, etc.)
is the ranking supported by the maximum number of individual indicators for each
pair-wise comparison, summed over all pairs of countries considered.

Formally, a simple ranking algorithm of sustainability composite indicators,
based on these concepts, can be the following [83].

Given a set of individual indicators GDfgmg, mD 1, 2, : : : , M, and a finite set
ADfang, nD 1, 2, : : : , N of countries (cities or regions), let’s assume that the
evaluation of each country an with respect to an individual indicator gm (i.e. the
indicator score or variable) is based on an interval or ratio scale of measurement.
For simplicity of exposition, let’s assume that a higher value of an individual
indicator is preferred to a lower one (the higher, the better), that is:

�
aj P ak () gm

�
aj
�
> gm .ak/

aj I ak () gm
�
aj
� D gm .ak/

(27.2)

Where, P and I indicate a preference and an indifference relation respectively, both
fulfilling the transitive property.

Let’s also assume the existence of a set of individual indicator weights derived
as importance coefficients. The mathematical problem to be dealt with is then how
to use this available information to rank in a complete pre-order (i.e. without any
incomparability relation) all the countries from the best to the worst one.

The mathematical aggregation convention can be divided into two main steps:

1. Pair-wise comparison of countries according to the whole set of individual
indicators used.

2. Ranking of countries in a complete pre-order.

For carrying out the pair-wise comparison of countries the following axiomatic
system is needed (adapted from Arrow and Raynaud [6, pp. 81–82]).

Axiom 1: Diversity Each individual indicator is a total order on the finite set A of
countries to be ranked, and there is no restriction on the individual indicators; they
can be any total order on A.

Axiom 2: Symmetry Since individual indicators have incommensurable scales, the
only preference information they provide is the ordinal pair-wise preferences they
contain.8

8In our case, this axiom is needed since the intensity of preference of individual indicators is
not considered to be useful preference information given that compensability has to be avoided
and weights have to be symmetrical importance coefficients. Moreover, thanks to this axiom, a
normalisation step is not needed. This reduces the sources of uncertainty and imprecise assessment.
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Axiom 3: Positive Responsiveness The degree of preference between two countries
a and b is a strictly increasing function of the number and weights of individual
indicators that rank a before b.9

Thanks to these three axioms a N �N matrix, E, called outranking matrix [6,
106] can be built. Any generic element of E: ejk, j¤ k is the result of the pair-wise
comparison, according to all the M individual indicators, between countries j and k.
Such a global pair-wise comparison is obtained by means of Eq. (27.3).

ejk D
MX

mD1

�

wm
�
Pjk
�C 1

2
wm
�
Ijk
�
�

(27.3)

where wm(Pjk) and wm(Ijk) are the weights of individual indicators presenting a
preference and an indifference relation respectively. It clearly holds

ejk C ekj D 1: (27.4)

All the N(N – 1) pair-wise comparisons compose the outranking matrix E. Call R the
set of all N! possible complete rankings of alternatives, RDfrsg, sD 1, 2, : : : , N!.
For each rs, compute the corresponding score �s as the summation of ejk over all the
�

N
2

�

pairs j, k of alternatives, i.e.

�s D
X

ejk: (27.5)

where j ¤ k; s D 1; 2; : : :NŠ and ejk 2 rs

The final ranking (r*) is the one which maximises Eq. (27.6), which is:

r� () �� D max
X

ejk where ejk 2 R: (27.6)

Other formal properties of the C-K-Y-L ranking procedure are the following [135]:

• Neutrality: it does not depend on the name of any country, all countries are
equally treated.

9In social choice terms then the anonymity property (i.e. equal treatment of all individual indica-
tors) is broken. Indeed, given that full decisiveness yields to dictatorship, Arrow’s impossibility
theorem forces us to make a trade-off between decisiveness (an alternative has to be chosen or a
ranking has to be made) and anonymity. In our case the loss of anonymity in favour of decisiveness
is even a positive property. In general, it is essential that no individual indicator weight is more
than 50 % of the total weight; otherwise the aggregation procedure would become lexicographic
in nature, and the indicator would become a dictator in Arrow’s term.
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• Unanimity (sometimes called Pareto Optimality): if all individual indicators
prefer country a to country b than b should not be chosen.

• Monotonicity: if country a is chosen in any pair-wise comparison and only the
individual indicator scores (i.e. the variables) of a are improved, then a should be
still the winning country.

• Reinforcement: if the set A of countries is ranked by two subsets G1 and G2

of the individual indicator set G, such that the ranking is the same for both
G1 and G2, then G1 [ G2 D G should still supply the same ranking. This
general consistency requirement is very important in the framework of composite
indicators, since one may wish to apply the individual indicators belonging to
each single dimension first and then pool them in the general model.

At this point a question arises: does the application of a formally correct
mathematical aggregation procedure always guarantee the quality of the results
obtained? This problem is tackled in the next section.

27.4 Warning! Not Always Rankings Have to Be Trusted : : :

Let’s now take into consideration an illustrative example regarding four cities, two
belonging to highly industrialized Countries (Amsterdam and New York) and two
belonging to transitional economies (Budapest and Moscow) [80]. The indicators
used are typical of the literature on urban sustainability (see e.g. [10, 20]). The
profiles (i.e. the score of each city according to each indicator) of these four cities
are the ones described in Table 27.1.

Several techniques can be used to standardise variables [94, 111]. However,
although each normalisation technique entails different absolute values, the ranking

Table 27.1 Impact matrix for the four chosen cities according to the selected indicators

Matrix type Impact Case study Alternatives
Criteria Budapest Moscow Amsterdam New York

Houses owned (%) 50.5 40.2 2.2 10.3
Residential density (pers. /hectare) 123.3 225.2 152.1 72
Use of private car (%) 31.1 10 60 32.5
Mean travel time to work (minutes) 40 62 22 36.5
Solid waste generated per capita (t./year) 0.2 0.29 0.4 0.61
City product per person (US$/year) 4750 5100 28,251 30,952
Income disparity (Q5/Q!) 9.19 7.61 5.25 14.81
Households below poverty line (%) 36.6 15 20.5 16.3
Crime rate per 1000 (theft) 39.4 4.3 144.05 56.7
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Table 27.2 Normalised
impact matrix

100 78.674 0 16.770
66.515 0 47.72 100
57.8 100 0 55
55 0 100 63.75
100 78.05 51.22 0
0 1.335 89.691 100
58.787 75.314 100 0
0 100 74.538 93.982
74.884 100 0 62.505

Table 27.3 Outranking
matrix of the four cities
according to the nine
indicators

Budapest Moscow Amsterdam New York

Budapest 0 4 4 5
Moscow 5 0 5 6
Amsterdam 5 4 0 3
New York 4 3 6 0

provided remains constant. In our example, the “distance from the best and worst
performers” technique is applied, where positioning is in relation to the global
maximum and minimum and the index takes values between 0 (laggard) and 100
(leader):

100

�
actual value � minimum value

maximum value � minimum value

�

(27.7)

By applying Eq. (27.7) to the values contained in Table 27.2, the results presented
in Table 27.3 are obtained. By applying Eq. (27.1) to the values contained in
Table 27.3, the following results are obtained:

BudapestD 512.986
MoscowD 533.373
AmsterdamD 463.169
New YorkD 492.052

Thus the final ranking presents Amsterdam in the bottom position (worst than all
the other cities considered), Moscow is in the top position, Budapest ranks second
and New York ranks third. As a first reaction one might think that these somewhat
surprising results are due to the use of the linear aggregation rule. Let’s then apply
the algorithm illustrated from Eqs. (27.2) to (27.6) to the impact matrix showed in
Table 27.1.

The outranking matrix E is the one showed in Table 27.3.
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The 24 possible rankings and the corresponding scores �s are the following:

B A D C 31 C B D A 27
B D C A 31 D B A C 27
A B D C 30 D C B A 27
B D A C 30 A C B D 26
B C A D 29 A D C B 26
B A C D 28 D A B C 26
B C D A 28 D C A B 26
C B A D 28 D A C B 25
D B C A 28 C A D B 24
A B C D 27 C D B A 24
A D B C 27 A C D B 23
C A B D 27 C D A B 23

Where A is Budapest, B is Moscow, C is Amsterdam and D is New York.
Also in this case Moscow is clearly in the top position. New York is surely

better than Amsterdam. The position of Budapest with respect to both New York
and Amsterdam is not well defined.

Let’s look at Table 27.1 again. The nine indicators used seem reasonable; they
indeed belong to three dimensions, i.e. economical, social and environmental,
considered essential in any sustainability assessment. Let’s then try to understand to
which dimension each single indicator belongs. Roughly the following classification
may be made:

Economic dimension

1. City product per person

Environmental dimension

2. Use of private car
3. Solid waste generated per capita

Social dimension

4. Houses owned
5. Residential density
6. Mean travel time to work
7. Income disparity
8. Households below poverty line
9. Crime rate

Clearly the social dimension is receiving implicitly a much bigger weight than
any other dimension (considering that six indicators over nine belong to this
dimension). A reasonable decision might be to consider the three dimensions
equally important. This would imply to give the same weight to each dimension
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Table 27.4 Weighted
outranking matrix

Budapest Moscow Amsterdam New York

Budapest 0 0.3 0.4 0.4
Moscow 0.7 0 0.5 0.6
Amsterdam 0.6 0.5 0 0.3
New York 0.6 0.4 0.7 0

considered and finally to split this weight among the indicators. That is, each
dimension has a weight of 0.333; then the economic indicator has a weight of 0.333,
the two environmental indicators have a weight of 0.1666 each, and each one of the
six social indicators receives a weight equal to 0.0555. As one can see, if dimensions
are considered, weighting indicators by means of importance coefficients is crucial.

Let’s now see if this weighting exercise provokes any change in the final ranking.
The new outranking matrix is the one presented in Table 27.4.

The 24 possible rankings and the new corresponding scores �s are the following
(where A is Budapest, B is Moscow, C is Amsterdam and D is New York):

B D C A 3, 6 B C A D 2, 9
D B C A 3, 5 C B A D 2, 9
D C B A 3, 5 A B D C 2, 9
B D A C 3, 5 B A C D 2, 8
D B A C 3, 4 A D B C 2, 8
B A D C 3, 3 A D C B 2, 8
B C D A 3, 2 C D A B 2, 7
C B D A 3, 2 C A B D 2, 6
D C A B 3, 2 C A D B 2, 5
C D B A 3, 1 A B C D 2, 5
D A B C 3, 1 A C B D 2, 5
D A C B 3, 1 A C D B 2, 4

As one can see, Moscow is still on the top position, but this time Budapest is on
the bottom one. New York scores again better than Amsterdam.

Concluding, we can state that an advantage of this algorithm is to highlight the
fact that rankings are not always robust, even if no parameter is changed. This type
of lack of robustness is completely ignored by the linear aggregation rule. Moreover,
the use of weights as importance coefficients can change the problem modelling
significantly. However one has to note that the improvement of the mathematical
aggregation procedure does not change the results spectacularly. The structuring
process, and in this case above all, the input information used for the indicator scores
determine clearly the ranking. Garbage in, garbage out phenomena are almost
impossible to avoid.

At this point a general question needs to be answered: From where are multi-
criteria results coming from and what they mean? The results obtained depend on:
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1. quality of the information available (in our case for example the data concerning
Amsterdam on the use of private cars and on criminality are suspiciously high,
while criminality in Moscow or residential density in New York are suspiciously
low),

2. indicators chosen (i.e. which representation of reality we are using, e.g. whose
interests we are taken into account),

3. Direction of each indicator (i.e. the bigger the better or vice versa, e.g. in our
example, it has been used the principle that house owners should be maximized,
but this could be quite disputable and culturally dependent),

4. relative importance of these indicators (indicated by the weighting factor
attached),

5. ranking method used.

All these uncertainties have to be taken into account when we state that an
evaluation is made. Points from 1 to 4 clearly concern the way a given assessment
exercise is structured; this implies that the quality of the aggregation convention
is an important step to guarantee consistency between the assumptions used and
the ranking obtained; but the overall quality of a multi-criteria study depends
crucially on the way this mathematical model is embedded in the social, political
and technical structuring process. This is the reason why in multi-criteria decision
aid (MCDA) it is claimed that what is really important is the “decision process” and
not the final solution [105, 106].

However, while it is clear what this means in terms of single-person decisions,
how can we deal with the issue of a social process? To answer this question will be
the aim of the next section.

27.5 The Issue of the “Quality of the Social
Decision Processes”

In empirical evaluations of public projects and public provided goods, multi-
criteria decision analysis seems to be an adequate policy tool since it allows
taking into account a wide range of assessment criteria (e.g. environmental impact,
distributional equity, and so on) and not simply profit maximisation, as a private
economic agent would do. However, the management of a policy process involves
many layers and kinds of decisions, and requires the construction of a dialogue
process among many stakeholders, individual and collective, formal and informal,
local and not.

In general, these concerns have not been considered very relevant by scientific
research in the past (where the basic implicit assumption was that time was an
infinite resource). On the other hand, the new nature of the policy problems faced in
this third millennium (e.g., the mad cow, genetic modified organisms, : : : ), implies
that very often when using science for policy-making, long term consequences
may exist and scientists and policy-makers are confronting issues where, “facts
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are uncertain, values in dispute, stakes high and decisions urgent” [40, 41]. In this
case, scientists cannot provide any useful input without interacting with the rest
of society and the rest of the society cannot perform any sound decision making
without interacting with the scientists. That is, the question on “how to improve the
quality of a social decision process” must be put, quite quickly, on the agenda of
“scientists”, “decision makers” and indeed the whole society.

An outcome of this discussion is that the political and social framework must
find a place in multi-criteria decision analysis. An effective policy exercise should
consider not merely the measurable and contrastable dimensions of the simple parts
of the system, that even if complicated may be technically simulated (technical
incommensurability). To be realistic it should also deal with the higher dimensions
of the system. Those dimensions in which power relations, hidden interests, social
participation, cultural constraints, and other “soft” values, become relevant, and
unavoidable variables that heavily, but not deterministically, affect the possible
outcomes of the strategies to be adopted (social incommensurability).

At this point in the discussion, one question arises, who is making the decisions?
Some critics of multi-criteria evaluation say that in principle, in cost-benefit
analysis, votes expressed on the market by the whole population can be taken into
account (of course with the condition that the distribution of income is accepted
as a means to allocate votes).10 On the contrary, multi-criteria evaluation can be
based on the priorities and preferences of some decision-makers only (we could say
that the way these decision-makers have reached their position is accepted as a way
to allocate the right to express these priorities). This criticism may be correct if a
“technocratic approach” is taken, where the analyst constructs the problem relying
only upon experts’ inputs (by experts meaning those who know the “technicalities”
of a given problem).

For the formation of contemporary public policies, it is hard to imagine any
viable alternative to extended peer communities [24, 30, 40, 41, 51, 53–55, 63]. They
are already being created, in increasing numbers, either when the authorities cannot
see a way forward, or know that without a broad base of consensus, no policies can
succeed. They all have one important element in common: they assess the quality
of policy proposals, including the scientific and technical component. And their
verdicts all have some degree of moral force and hence political influence. Here the
quality is not merely in the verification, but also in the creation; as local people
can imagine solutions and reformulate problems in ways that the accredited experts,
with the best will in the world, do not find natural [21].

This need of incorporating the general public into the policy processes has been
more and more recognized by the multi-criteria community. Science for policy
implies a responsibility of the scientists towards the whole society and not just
towards a mythical decision-maker. The classical schematised relationship decision-
maker/analyst is indeed embedded in a social framework, which is of a crucial

10One should note that indeed cost-benefit analysis can be easily criticised both from the
distributive and environmental points of view (see e.g., [77, 120]). However I prefer not to deal
with this issue here.
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importance in the case of sustainability management and planning. Banville et al.
[7] offers a very well structured and convincing argumentation on the need to extend
Roy’s concept of Multiple Criteria decision Aid by incorporating the notion of
stakeholder [extension called “Participative Multi-criteria Evaluation” (PMCE) or
“Stakeholder Multi-Criteria Decision Aid” (SMCDA)].

However, in my opinion, participation is a necessary condition but not a sufficient
one, since the scientific team cannot simply accept uncritically the inputs of a
participatory process. The main justifications of this statement are the following:

a) In a focus group, powerful stakeholders may influence deeply all the others.
b) Some stakeholders might not desire or be able to participate, but ethically the

scientific team should not ignore them.
c) The notion of stakeholder only recognises relevant organised groups; this is the

reason why the term “social actor” seems preferable to me.
d) Focus groups are never meant to be a representative sample of population. As a

consequence, they can be a useful instrument to improve the knowledge of the
scientific team of the institutional and social dimensions of the problem at hand,
but never a way for deriving consistent conclusions on social preferences.

e) Since decision-makers search for legitimacy11 of the decisions taken, it is
extremely important that public participation or scientific studies do not become
instruments of political de-responsibility. The deontological principles of the
scientific team and policy-makers are essential for assuring the quality of
the evaluation process. Social participation does not imply that scientists and
decision-makers have no responsibility of policy actions defended and eventually
taken.

Synthesising these arguments we can say that a participatory policy process can
always be conditioned by heavy value judgements such as, have all the social actors
the same importance (i.e. weight)? Should a socially desirable ranking be obtained
on the grounds of the majority principle? Should some veto power be conceded to
the minorities? Are income distribution effects important? And so on.

One of the most interesting research directions in the field of public economics
is the attempt to introduce political constraints, interest groups and collusion effects
explicitly (see e.g. [67]). In this context, transparency becomes an essential feature
of public policy processes [122]. Social Multi-Criteria Evaluation (SMCE) has been
explicitly designed to enhance transparency; the main idea being that results of an
evaluation exercise depends on the way a given policy problem is represented and
thus the assumptions used, the interests and values considered have to be made clear
[79, 81].

A clear example of these considerations can be found in the determination of
criterion weights. Can we have an elicitation of weights from all the social actors
involved to be used in the evaluation process? As we know in society there are
different legitimate values and points of view. This creates social pressure for taking

11On the issue of legitimacy see also Roy and Damart [107].
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into account various policy dimensions, e.g. economic, social and environmental.12

These dimensions are then translated by analysts into objectives and criteria. At this
point a question arises who should attach criterion weights and how? To answer
this question we have to accept a basic assumption: to attach weights to different
criteria implies to give weights to different groups in society. This assumption has
the following main consequences:

1. In social decision processes, weights cannot be derived as inputs coming from
participatory techniques. This is technically very difficult (e.g., which elicitation
method has to be used? Which statistical index is a good synthesis of the results
obtained? Do average values of weights have meaning at all?), pragmatically not
desirable (since strong conflicts among the various social actors are very probable
to occur) and even ethically unacceptable (at least if a Kantian position is taken).
A plurality of ethical principles seems the only consistent way to derive weights
in a social framework.

2. Ethical judgements are unavoidable components of the evaluation exercise.
These judgements always influence heavily the results. Let’s imagine the extreme
case where a development project in the Amazon forest will affect an indigenous
community with little contact with other civilizations yet. Would it be ethically
more correct to invite them in a focus group : : : or ethically compulsory to take
into account the consequences of the project for their survival? As a consequence,
transparency on the assumptions used is essential.

3. Weights in SMCE are clearly meaningful only as importance coefficients and not
as trade-off (since different ethical positions leads to different ideas on criterion
importance). This also implies that the aggregation conventions used should be
non-compensatory mathematical algorithms. Non-compensability implies that
minorities represented by criteria with smaller weights can still be very influent.
This is for example clear in the use of the discordance index in the ELECTRE
methods [105, 106].

4. Sensitivity and robustness analysis have a complete different meaning with
respect to the case of single person and technical decisions [112, 115]. In
fact in the case of SMCE, weights derive only from a few clear cut ethical
positions. This means that sensitivity or robustness analysis have to check the
consequences on the final ranking of only these positions and not of all the
possible combinations of weights. Sensitivity and robustness analysis are then
a way to improve transparency.13

12By dimension, here I mean the highest hierarchical level of analysis which indicates the scope of
objectives and criteria.
13On this point I disagree with Kleijnen [66], who claims that “modellers should try to develop
robust models”, in the sense that models should not be very sensitive to modellers’ assumptions.
Some ethical positions might be very different and thus lead to different rankings of the policy
options. What is essential in a social framework is then transparency on these assumptions.
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Fig. 27.2 The ideal problem structuring in SMCE

In a social multi-criteria evaluation framework, the pitfalls of the technocratic
approach can be overtaken by applying different methods of sociological research
(see Fig. 27.2). For example, “institutional analysis”, performed mainly on histor-
ical, legislative and administrative documents, can provide a map of the relevant
social actors. By means of focus groups it is possible to have an idea of people’s
desires and it is then possible to develop a set of policy options. Main limitations
of the focus group technique are that they are not supposed to be a representative
sample of the population and that sometimes people are not willing to participate
or to state publicly what they really think (above all in small towns and villages).
For this reason anonymous questionnaires and personal interviews are an essential
part of the participatory process (for practical examples of participative and social
multi-criteria evaluation see e.g., [4, 29, 43, 44, 52, 91, 103, 126]).

The selection of evaluation criteria has to be also based on what it is learned
through the participation process. However, at this stage a problem generally
arises: the evaluation criteria should come directly from the public participation
process or they should be “translated” by the research team? I think that the rough
material collected during interviews and focus groups could be used as a source
of inspiration but the technical formulation of criteria having properties such as
“non-redundancy”, “legibility” and so on (see [15]) is a clear job of the researchers.
Of course in this step, subjectivity is unavoidable, for this reason a widespread
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information campaign on the assumptions and conclusions of the study including
local people, regional and national authorities, international scientists and even
children at school is, in my opinion, highly recommendable.

Finally one has to note that policy evaluation is not a one-shot activity. On the
contrary, it takes place as a learning process which is usually highly dynamic, so
that judgements regarding the political relevance of items, alternatives or impacts
may present sudden changes, hence requiring a policy analysis to be flexible and
adaptive in nature. This is the reason why evaluation processes have a cyclic nature.
By this is meant the possible adaptation of elements of the evaluation process due
to continuous feedback loops among the various steps and consultations among the
actors involved.

At this stage a question arises: which is the role of mathematical aggregation
procedures in a social evaluation process of sustainability policies? In this frame-
work, of course mathematical aggregation conventions play an important role, i.e.
to assure that the rankings obtained are consistent with the information and the
assumptions used along the structuring process. Next section then discusses the
technical properties considered desirable for a multi-criteria algorithm to assure
such a consistency.

27.6 The Issue of Consistency in Multi-Criteria Evaluation
of Sustainability Policies

An issue, that makes multi-criterion aggregation conventions intrinsically complex,
is the fact they are formal, descriptive and normative models simultaneously [76].
As a consequence, the properties of an approach have to be evaluated at least
in the light of these three dimensions. Musgrave [86] in the framework of the
debate on the maximisation assumption in microeconomics, made a very useful
classification of the assumptions used in economic theory. He makes a distinction
among negligibility assumptions, domain assumptions and heuristic assumptions.
The first type is required to simplify and focus on the essence of the phenomena
studied. The second type of assumptions is needed when applying a theory to
specify the domain of applicability. The third type is needed either when a theory
cannot be directly tested or when the essential assumptions give rise to such a
complex model that successive approximation is required. One might see this last
type of assumptions as the sake of learning about limits to the relationship between
understandable implications and complexity.

In this section, by using these categories, I try to isolate some main properties that
may be considered desirable for a discrete multi-criteria method in the framework
of sustainability policies. Of course in another framework, e.g. stock exchange
investments, these properties can easily be irrelevant or even undesirable.

When an economic/environmental integration has to be dealt with, a fundamental
issue is the one of compensability. As we already saw, compensability refers to
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the existence of trade-offs, i.e. the possibility of offsetting a disadvantage on some
criteria by a sufficiently large advantage on another criterion, whereas smaller
advantages would not do the same. Thus a preference relation is non-compensatory
if no trade-off occurs and is compensatory otherwise. The use of weights with
intensity of preference originates compensatory multi-criteria methods and gives
the meaning of trade-offs to the weights. On the contrary, the use of weights with
ordinal criterion scores originates non-compensatory aggregation procedures and
gives the weights the meaning of importance coefficients.

Mathematical compensability plays an important role in the implementation of
the so-called “weak and strong sustainability concepts”. Weak sustainability has
been theorised mainly by those economists who have a quite optimistic view of
technological progress and economic growth. They generally recognise that even if
the production technologies of an economy can potentially yield increases in output
commensurate with increases in inputs, overall output will be constrained by limited
supplies of resources (growth theory with exhaustible resources). But these limits
can be overcome by technological progress: if the rate of technological progress
is high enough to offset the decline in the per capita quantity of natural resource
services available, output per worker can rise indefinitely. A stronger statement
is the following: even in the absence of any technological progress exhaustible
resources do not pose a fundamental problem if reproducible man-made capital is
sufficiently substitutable for natural resources [27]. Pearce and Atkinson [97] state
that an economy is sustainable, if it saves more than the combined depreciation of
natural and man-made capital. “We can pass on less environment so long as we
offset this loss by increasing the stock of roads and machinery, or other man-made
(physical) capital. Alternatively, we can have fewer roads and factories so long as
we compensate by having more wetlands or mixed woodlands or more education”
[127, p. 56].

From an ecological perspective, the expansion of the economic subsystem is
limited by the size of the overall finite global ecosystem, by its dependence on
the life support sustained by intricate ecological connections which are more
easily disrupted as the scale of the economic subsystem grows relative to the
overall system. This calls for a different concept of sustainability, that of strong
sustainability, according to which certain sorts of natural capital are deemed critical
and not readily substitutable by man-made capital [9]. Human expansion, with the
associated exploitation and disposal of waste and pollutants, not only affects the
natural environment as such, but also the level and composition of environmentally
produced goods and services required to sustain society. Thus, the economic
subsystem will be limited by the impacts of its own actions on the environment [36].

Unlimited growth cannot take place in a physically limited planet. Technology
is, obviously, an important tool for a development truly sustainable but should not
be mystified. The scale of human activities has a maximum expansion possibility
defined either by the regenerative or absorptive capacity of the ecosystem. Strong
sustainability implies that certain sorts of natural capital are deemed critical and
not readily substitutable by man-made capital; it is clear that if one wants to
operationalize strong sustainability, there is a clear need to use non-compensatory
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multi-criterion algorithms. Another argument in favour of non-compensatory algo-
rithm is given by the desirability, in the framework of social decisions, that criterion
weights can be attached in the form of importance coefficients and not as trade-
offs. Clear examples of non-compensatory methods are the ELECTRE methods (see
Chap. 4 of this book and [105, 106]) and the Condorcet type algorithm described in
Sect. 27.3 of this chapter.

Another important desirable property is the possibility of dealing with mixed
criterion scores. It has been argued that the presence of qualitative information in
evaluation problems concerning socio-economic and physical planning is a rule,
rather than an exception [90]. Thus, the idea of technical incommensurability
implies that there is a clear need for methods that are able to take into account
information of a “mixed” type (both qualitative and quantitative criterion scores).
For simplicity, I refer to qualitative information as information measured on a
nominal or ordinal scale, and to quantitative information as information measured
on an interval or ratio scale. Examples of multi-criteria methods able to deal with
mixed criterion scores are REGIME [58] and EVAMIX [132].

Moreover, ideally, this information should be precise, certain, exhaustive and
unequivocal. But in reality, it is often necessary to use information which does not
have those characteristics so that one has to face the uncertainty of a stochastic
and/or fuzzy nature present in the data.

If it is impossible to establish exactly the future state of the system studied, a
stochastic uncertainty exists, this type of uncertainty is well known in decision
theory and economics, where it is called “decisions under risk”. Applications of
this concept in a multi-criteria framework can be found in D’Avignon and Vincke
[25], Martel and Zaras [69], and Rietveld [100] among others.

Another framing of uncertainty, called fuzzy uncertainty, focuses on the ambigu-
ity of information in the sense that the uncertainty does not concern the occurrence
of an event but the event itself, which cannot be described unambiguously. This
situation is very common in human systems. These systems are complex systems
characterised by subjectivity, incompleteness and imprecision. Zadeh [137] writes:
“as the complexity of a system increases, our ability to make a precise and yet
significant statement about its behaviour diminishes until a threshold is reached
beyond which precision and significance (or relevance) become almost mutually
exclusive characteristics” (incompatibility principle). Fuzzy set theory is a mathe-
matical theory for modelling situations, in which traditional modelling languages
which are dichotomous in character and unambiguous in their description cannot be
used. For a survey of multi-criteria approaches able to deal with fuzzy uncertainty
see Part IV of this book and Munda [82]. In conclusion, multi-criteria methods able
to tackle consistently the widest types of mixed information and different sources of
uncertainty should be considered as desirable ones.

Another desirable property for mathematical aggregation procedures in the
framework of sustainability decisions is simplicity, i.e. the use of a few parameters as
possible. While in the context of multi-criteria decision aid, parameters helping the
decision-maker to elicitate her/his preferences are desirable, in a social context there
is the risk that their presence increases arbitrariness and reduces transparency. I think

http://dx.doi.org/10.1007/978-1-4939-3094-4_4
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that in this second context the only exogenous parameters desirable are weights and,
if absolutely necessary, indifference and preference thresholds.

Finally, in a policy framework, to have a ranking of all the different courses of
actions is better than to select just one alternative. This mainly because in this way
social compromises are easier (the second or the third alternative in the ranking
may minimise opposition much more than the first one). Technically speaking
this implies that multi-criteria methods able to deal with the ” decision problem
formulation have to be preferred and that dominated alternatives cannot be excluded
a priori.

Concluding, we can summarise a set of desirable properties for choosing an
appropriate method for dealing with sustainability decision problems, as follows.

Descriptive domain assumptions:

• Mixed information on criterion scores should be tackled in the form of ordinal,
crisp, stochastic and fuzzy criterion scores.

Normative domain assumptions:

• Simplicity is desirable and means the use of as less ad hoc parameters as possible.
• The most useful result for policy-making is a complete ranking of alternatives.
• Weights are meaningful only as importance coefficients and not as trade-offs.
• Complete compensability is not desirable.

Heuristic descriptive assumptions:

• When not all intensities of preference are meaningful, indifference and prefer-
ence thresholds are useful exogenous parameters.

• Dominated alternatives have to be considered.

Finally one should note that these selection properties can be applied only to
methods who achieve a set of minimum formal requirements, the main important
being the following.

Formal domain assumptions:

• Unanimity.
• Monotonicity.
• Neutrality.

Negligibility formal assumptions:

• Anonymity.

27.7 Conclusion

When science is used for policy making, an appropriate management of decisions
implies including the multiplicity of participants and perspectives. This also implies
the impossibility of reducing all dimensions to a single unity of measure. “The issue
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is not whether it is only the marketplace that can determine value, for economists
have long debated other means of valuation; our concern is with the assumption
that in any dialogue, all valuations or “numeraires” should be reducible to a single
one-dimension standard” [41, p. 198]. It is noteworthy that this call for citizen
participation and transparency, when science is used for policy making, is more
and more supported institutionally inside the European Union, where perhaps the
most significant examples are the White Paper on Governance and the Directive on
Strategic Environmental Impact Assessment.

Multi-criteria evaluation supplies a powerful framework for the implementation
of the incommensurability principle. In fact it accomplishes the goals of being
inter/multi-disciplinary (with respect to the research team), participatory (with
respect to the local community) and transparent (since all criteria are presented
in their original form without any transformations in money, energy or whatever
common measurement rod). As a consequence multi-criteria evaluation looks as an
adequate assessment framework for (micro and macro) sustainability policies.

However, one should remember that we are in a second best world. A useful
analogy here is with Flatland, the classic Victorian science fiction and social parody
[1]. There, the inhabitants of spaces with more dimensions had a richer awareness
of themselves, and also could see beyond and through the consciousness of the
simpler creatures inhabiting fewer dimensions. At this stage it is not unfair to reveal
the dénouement of the story, namely that the Sphere of three-dimensional space
showed himself to be just another Flatlander at heart, when he angrily refused to
accept the reality of higher dimensions of being.
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Chapter 28
Multicriteria Portfolio Decision Analysis
for Project Selection

Alec Morton, Jeffrey M. Keisler, and Ahti Salo

Abstract Multicriteria Portfolio Analysis spans several methods which typically
build on MCDA to guide the selection of a subset (i.e., portfolio) of available
objects, with the aim of maximising the performance of the resulting portfolio with
regard to multiple criteria, subject to the requirement that the resources consumed
by the portfolio does not exceed the availability of resources and, moreover, satisfies
other relevant constraints as well. In this chapter, we present a formal model of this
selection problem and describe how this model can present both challenges (e.g.
portfolio value may, due to the interactions of elements, depend on project-level
decisions in complex and non-additive ways) and opportunities (e.g. triage rules can
be used to focus elicitation on projects which are critical for value assessment). We
also survey the application of Portfolio Decision Analysis in several domains, such
as allocation of R&D expenditure, military procurement, prioritisation of healthcare
projects, and environment and energy planning, and conclude by outlining possible
future research directions.

Keywords Project selection • Portfolio selection • Portfolio management • Mul-
ticriteria decision analysis

28.1 Introduction

Essentially all organizations are faced with the problem of choosing what activities
to pursue. This is true of, for example, a high technology or pharmaceutical
company, or public sector funder deciding what science to invest in; a Ministry
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of Defence deciding what equipment to procure; a hospital, insurance fund or
health authority deciding what treatments to provide; a local council deciding on
what services to provide, and how they are to be spacially distributed; a public
authority seeking to distribute a budget for the maintenance of infrastructure;
an IT department deciding what systems projects to initiate; or an international
collaboration deciding what projects to pursue together.

Such problems are often multicriteria or multiobjective. This may be because
the organisation’s goals are themselves contested and the appropriate balance has
to be negotiated between different stakeholders. Alternatively, it may be because
while the organisation has, nominally, a single fundamental objective, such as
profitability, the actions on the table are so far removed from this ultimate goal that
tracing through the impacts of choices on this goal is not practical, and so decision
makers (DMs) rely on assessments of proxies for that goal. Examples of such a
situation might be upstream drug development, where detailed market modelling
is not possible and so DMs rely on criteria such as unmet need, or allocation of
a maintenance budget to roads, where typically the aim is to maintain the road
network at a given quality level, rather than to minimise accidents or journey times
per se.

These decision problems share a common structure. In all cases, the requirement
is to choose a subset of items—a portfolio—from a choice set. This can be con-
trasted with typical situation in the textbook presentation of multicriteria decision
analysis, which we call “single choice”, where the DM has to choose a single item
(action, option, alternative) from a set (such as a house, car or toaster to purchase).
The distinction between portfolio and single choice has a long history and has
been described by White [172] as the distinction between explicitly and implicitly
defined alternatives, and by Roy [148] as the distinction between the globalised and
fragmented concept of an action.

The relationship between these two problems can be conceptualised in various
ways. One conceptualisation is to view portfolio choice as a generalisation of the
single choice problem: in the single choice problem, the only available portfolios are
those containing single items. In this sense, the portfolio choice problem is primary
and the single choice problem secondary. From another point of view, the single
choice problem is the more fundamental concept: portfolio choice can be seen as a
single choice problem, subject to the interpretation that the set from which items are
to be selected is a combinatorial set of portfolios. Indeed, some approaches deal with
the portfolio nature of choice effectively by restructuring portfolio choice as a single
choice problem and by screening the combinatorial set to identify a manageable
subset of feasible or attractive portfolios which can then be considered explicitly.
The Analysis of Interconnected Decision Areas (AIDA) method [46, 47] and the
strategy table device [68, 158] are examples of this sort of approach.

The problem of portfolio choice also seems reminiscent of the “sorting problema-
tique” [148, 177] where the DM classifies objects as belonging to a member of a set
of ordered classes (“excellent” , “good” , “poor” , etc), except that the classification
is a binary one, into “accept” and “reject”. Sorting differs, however, from portfolio
choice in that in sorting there does not have to be a sense in which objects can
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be joined together or concatenated. Consequently from a sorting point of view,
membership of the “accept” or “reject” class is typically determined by whether
an object is better or worse than a reference object which lies on the boundary
between two classes, rather than by the total cost of the accepted objects, which,
from a sorting point of view, is not a meaningful concept.

The problem of portfolio choice can be approached by a common set of
approaches. Elsewhere we have called these approaches which seek “to help DMs
make informed selections from a discrete set of alternatives through mathematical
modeling that accounts for relevant constraints, preferences, and uncertainties”,
Portfolio Decision Analysis [151]. Although relatively neglected in the academic
decision analysis literature (although see [91, 92]), Portfolio Decision Analysis
accounts for a significant proportion of commercial decision analysis consulting
[93]. Moreover, the label “Portfolio Decision Analysis” is a useful blanket term
which serves to draw together different formal approaches to the management of
portfolios of activity in different domains, underscoring key similarities.

The focus of the current chapter will be on approaches to Portfolio Decision
Analysis in which there is explicit recognition of the multicriteria nature of the
decision problem: we will call such approaches, Multicriteria Portfolio Decision
Analysis or MCPDA. Although our own background is in Multiattribute Value and
Utility Theory based methods, we aim, in keeping with the integrative spirit of
the volume of which this chapter is a part, to cover and discuss approaches to
MCPDA based on a broad range of methods. It should also be noted that many
practitioner texts in this area also propose atheoretic scoring methods for project
selection, although as this literature is not indexed, a systematic review does not
seem possible. Readers are referred to other chapters in the current book for further
technical details on the methods referred to. In this chapter, we have four main
aims: firstly, to describe a framework for MCPDA; secondly, to draw attention to
key modelling challenges and solutions; thirdly, to review practice in a number of
different application domains; and fourthly, to conclude and point the way forward
for further research in this area. We devote Sects. 28.2–28.5 to each of these aims
respectively.

28.2 A Formal Framework for MCPDA

In this section we present a formal framework for MCPDA. The underlying theory
of MCPDA is not very well developed and the main relevant reference we are
aware of is [51], which the presentation of this chapter follows. However, we use
ordinal rather than cardinal independence conditions (as these are easier to state
and are more familiar), which give rise to a slightly different representation. We
begin our formal development with a model of the portfolio space. It is normally
most convenient to consider this space as a subset of f0; 1gm, with the 0–1 entries
representing m binary decisions to do a project or not. Normally that subset will
be defined by a constraint set, and normally that subset will include a resource
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constraint of the form c.x/ � B which will have an especial significance as will
become clear in the next section. In any case, we will denote the portfolio space
as X, denote a typical member as x D .x1; : : : ; xi; : : : ; xm/ and denote the index set
f1; : : : ;mg as M.

We suppose that there is a vector valued function g.�/ which maps each choice
of projects into a m � n-dimensional space. The normal interpretation of g is that
associated with each decision about each project there is a set of scores which
depend on whether a project has been chosen or not: this interpretation requires that
g.x/ D .g1.x1/; : : : ; gm.xm// where g1.�/; : : : ; gm.�/ are scoring functions associated
with each decision which we will assume in the ensuing. Often in applications, the
same scales will be used for all projects, and we will make that assumption here
(although see [50] for an example where different scales are used for different types
of projects). For example, a scoring system for scientific projects might include
scales representing market size, innovativeness, and fit with company mission. We
will denote the index set of criteria N D f1; : : : ; j; : : : ; ng. For a particular project i
we will call the space of vectors of project scores Yi D

Y

j2N

Yj with typical member

as yi=.y1; : : : ; yj; : : : ; yn/. We will call the set of possible vectors of portfolio scores

Y D
Y

i2M

Yi, with typical member as y=.y1; : : : ; yi; : : : ; ym/.

We introduce a preference relation %Y over Y. Note that this preference relation
is defined not just over possible portfolios of projects as they currently exist, but
portfolios of counterfactual projects which do not in fact exist. For example, suppose
that project 1 scores five on innovation and seven on strategic fit, and project 2 scores
three on innovation and four on strategic fit. A counterfactual version of project 1
scores six on innovation and three on strategic fit. The preference model supposes
that I can say how I feel about: the actual project 1 by itself, the actual project 2
by itself, the counterfactual project 1 by itself, the actual project 1 together with the
actual project 2, and the counterfactual project 1 together with the actual project 2.

There are various forms which our preferences over this space might take but
following [51], our approach will be to impose certain independence conditions on
%Y . We shall think of independence in two parts: between-project independence
and within-project independence. For a given set I � N we write YI D

Y

i2I

Yi and

YM=I D
Y

i2M=I

Yi , denote typical elements yI and yM=I respectively and use the

notation .yI; yM=I/ to denote the vector y which has corresponding entries equal to
those of yI for all i 2 I and yM=I for all i 2 M=I. Our definition of between-project
independence reads as follows.

Definition 1. If a preference ordering %Y has the following property that for some
I � M, for all PyI and RyI 2 YI and PyM=I 2 YM=I

.PyI ; PyM=I/ %Y .RyI ; PyM=I/ H) .PyI ; yM=I/ %Y .RyI ; yM=I/8yM=I 2 YM=I (28.1)
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then it is said to be between-project independent for I and if this condition holds
for all I � M, it will be said to be between-project independent over M.

Subject to suitable auxiliary assumptions (weak ordering, restricted solvability,
Archimedeanness and essentiality, as well as technical conditions which may be
required in particular cases, for example when m D 2 or Z has uncountable
cardinality), it is well-known that between-project independence over M allows us

to write the value functions for portfolios of projects as u.y/ D
mP

iD1
ui.yi/. However,

we also require some way to evaluate the projects. We can do this by defining partial
preference orderings %i by Py %i Ry iff .Pyi; yN=fig/ %Y .Ryi; yN=fig/ 8yN=fig 2 YN=fig: As
should be evident, the partial preference ordering is represented by ui.yi/:

We now impose another condition on preferences (see [101, 130] for a use of this
principle). To do this, we have to define an indifference relation: say that Py �Y Ry
iff Py %Y Ry and Ry %Y Py. This new assumption is an anonymity assumption: for
any permutation 
 on the set M, .y1; : : : ; ym/ �Y .y
.1/; : : : ; y
.m//. This condition
embodies an idea that all that matters in the evaluation of the project is the scores:
other attributes (names, sponsors, etc) do not influence preferences. It also follows
that each %i can be represented the same partial value functions so we can drop the
index on ui.�/ and write them all as u�.�/.

Now for the final move, for a given set J � N we write YJ D
Y

j2J

Yj and

YN=J D
Y

j2N=J

Yj , denote typical elements yJ and yN=J respectively and use the

notation .yJ; yN=J/ to denote the vector y which has corresponding entries equal to
those of yJ for all j 2 J and yN=J for all j 2 N=J. We now define a within-project
independence condition:

Definition 2. If a partial preference ordering %i has the following property that for
some J � N, for all PyJ and RyJ 2 YJ and PyN=J 2 YN=J

.PyJ ; PyN=J/ %i .RyJ; PyN=J/ H) .PyJ ; yN=J/ %i .RyJ; yN=J/8yN=J 2 YN=J (28.2)

then it is said to be within-project independent for J and if this condition holds
for all J � N, it will be said to be within-project independent over N.

Again, subject to suitable auxiliary conditions, if within-project independence
holds, the partial preference ordering %i can be represented by a value function of

the form
nP

jD1
uj.yi

j/. Suppose within-project independence holds for all i. We know

from the above that u�.�/ is also a value function representing the partial preference
ordering %i and so there must be a monotonically increasing transformation �:

�

 
nP

jD1
uj.yi

j/

!

D u�.yi/ and hence we have a value function for the portfolio u.y/ D
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mP

iD1
�

 
nP

jD1
uj.yi

j/

!

. Note that this result (in contrast to that of Golabi et al. [51]) does

not imply that the value function is additive across both projects and criteria: for
example, in the two criteria case, preferences represented by the value function
y11y

1
2Cy21y

2
2 with the yi

js strictly positive, would respect both the between- and within-
project independence axioms. It should also be noted that while if the auxiliary
conditions hold at the between-project level there is no guarantee that they will hold
at the within-project level (e.g. solvability may hold between projects but fail within
projects). Indeed, if independence at the between-project level does not hold, the
project-level partial preference ordering will not be complete and so not only can no
additive value function exist, but no representation is possible at all.

A surprising feature of the literature is that other than [51, 101], essentially no
authors seem to have taken on the task of axiomatising MCPDA models specifically
for an exception see [101]. Thus, while the normative theory underpinning multi-
criteria single choice has grown enormously since the early 1980s, the normative
theory of MCPDA has been essentially stagnant. We hope that the remainder of this
chapter will make clear some of the differences between the portfolio choice and
single choice paradigm and will suggest to the interested reader possible directions
for theoretic development.

28.3 Modelling Challenges

In this section, we discuss generic issues and process choices in the course of
MCPDA modelling. We will organise the section under two headings: structuring
the model, and exploring the portfolio space. In order to organise the discussion
we will ask you to imagine that you (plus perhaps, families and/or partners) are
confronted with the problem of furnishing a the living room of a new flat, where
you will stay for a period of, say 18 months. The size of the budget for furnishing
is not clear, but there is around £500. Borrowing money is not practically possible
and the items you purchase have no salvage value after your lease runs out.

28.3.1 Structuring

The first stage in OR interventions is that of problem structuring. In the case of an
MCDA model, we immediately face a dilemma, as there are two elements to be
structured: the criteria and the alternatives (in the portfolio setting, the projects).
Which does one do first? Keeney [83] has argued persuasively for “value-focussed
thinking”—getting clear about values, in quite detailed and operational terms (for
example, defining value scales and assessing tradeoffs) before thinking about the
construction of alternatives to deliver these values. Thus in our example we might
think about what you want to achieve through furnishing the flat (e.g. it is to be
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a place where you can work, relax, entertain guests, or store excess possessions?).
This theme is echoed in the portfolio literature, where value-focussed thinking has
been an influential and popular concept: e.g. Bordley [18] cites a situation where
R&D scientists generate low value projects, reflecting “the fact that sometimes
a scientist’s main input about corporate priorities came from press releases”.
Nevertheless, there are cases where the projects may simply be given as part of
the problem description, and so “alternative-focussed thinking” makes more sense.
Examples which come to mind might be the allocation of fishing rights to applicants
[160], or the choice of locations for army recruitment centres [10].

Without prejudice, we discuss structuring projects first of all. In general, an
aim in MCPDA—as in decision analysis in general—is to come up with “creative,
doable alternatives” [117]. One downside in encouraging idea generation, however,
is that there may be too many alternatives generated to actually assess. A common
prescription in the literature is to use some form of shortlisting—for example
by using a screening model for a first pass and then more detailed economic or
optimisation model to assess consequences in detail [13]. A second approach is
to design some way to combine smaller projects into “package projects” (either
making use of existing Problem Structuring Methods [11, 127] or customised
approaches [9]) and assess these packages. In the flat furnishing example, for
instance, you might choose to combine a dining table and chairs into a single item,
although it would be possible to prioritise the table and chairs separately. This
can have several advantages: the numbers of items which have to be evaluated
is reduced, saving judgemental effort, packages can be constructed so that they
are similar in size, thus avoiding scope insensitivity [92, 131] problems at the
assessment phase, and it may be possible to construct packages such that the number
of interactions between packages is minimised. The drawback is that good projects
may be “hidden” within poor packages.

Montibeller et al. [128] observe that in situations where there may be natural
groupings or “areas” for projects, analysts face a choice between establishing
the areas first and using those areas to structure idea generation (how might
one want to furnish the kitchen? how might one want to furnish the dining
room?) on the one hand; and generating projects and then grouping them (as
“kitchen projects”, “dining room projects”, etc), on the other. They observe that this
distinction is similar to that between top-down and bottom-up structuring in criteria
hierarchies, and between value- and alternative-focussed thinking in the generation
of alternatives. This seems plausible: one would expect that these different methods
would lead to different option sets (for example if one structures idea generation by
asking for possible purchases in either the kitchen or the dining room, DMs may be
less likely to generate a coat rack for the hallway which connects the two).

It is common in MCDA approaches to assume that the modelling plays no formal
role in generating options. An interesting case where this assumption is relaxed
is in the model of Souder and Mandakovic [113, 114], who propose a model for
coordinating project selection in an organisational setting where subdepartments
provide possible projects and the centre acts as DM. They observe that it is possible
to think of this problem through mathematical programming decomposition, and
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propose a scheme whereby the centre passes information about preference to
subdepartments and subdepartments respond by providing new, improved plans.

A complication which arises in MCPDA, but which is not present in single choice
decision analysis applications, is that projects may interact [17, 43, 45, 152]. The
standard classification of interactions is into:

• resource actions, where there are savings or additional costs from doing two (or
more) projects simultaneously (e.g. it costs less to purchase a dining table and
chairs as a set than to purchase them separately);

• technical interactions, where one project cannot be done without first doing
another project, or alternatively, doing one project makes doing another impossi-
ble (for example, we may have space for the large refrigerator with icemaker or
the smaller one without, but cannot accommodate both); and

• benefit interactions, where doing two (or more) projects together is worth more,
or less than the sum of benefits of doing each project individually (we value
the wide-screen television more when we have a sofa from which to watch it in
comfort).

Modelling these interactions can require considerable ingenuity, e.g. [55, 56].
In some cases there may be some underlying model which can be used to define
interactions automatically—for example [122] provide a model of road prioritisation
in which the road degradation process is explicitly modelled through a Markov
chain. In this case a difficulty is that the underlying model has to be incorporated
into the PDA model, which may give rise to a problem which is computationally
difficult to solve. On the other hand, direct judgemental assessment of interactions
is also possible, perhaps through a device such as a cross-impact grid: an obvious
drawback of this approach is asking a DM to explicitly assess whether an interaction
exists and its sign for every pair of projects could represent a substantial judgemental
burden. For this reason, [142] advocate deliberately not assessing interactions on the
grounds that most of them will be not relevant to the decision, and those which are
significant can be taken into account outside of the model.

In contrast to the formal model of the last section, some criteria may be at
the level of the portfolio rather than at level of the individual project. A common
example of such a portfolio-level criterion is “balance” [27, 28, 44, 78]. Often, it
is felt that where there are groupings of projects such that it is desirable that a final
allocation be balanced in the sense that there are not “too many” projects of one type
or another. This feeling may come from a number of sources. It may, for instance,
reflect an urge to diversify for the sake of robustness; on the other hand, it may
by underpinned by a principle of “fairness” in resource allocation. Because it is
often unclear exactly why balance is desirable, often it goes unmodelled, and is
handled informally; alternatively, sometimes balance constraints are implemented
within a model, in order to ensure that at least a certain number (or certain monetary
value) of projects of a certain type are included in a portfolio [51]. Perhaps the most
sophisticated approach to balance is that of Stewart [159], who models a concern for
balance as a family of separate criteria which minimise deviation from some given
distribution of manpower across project categories.
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A related portfolio level concern is portfolio risk in situations where project
success is probabilistic. In particular, if the success or failure of projects are
correlated, it may be desirable to include a project in a portfolio if it is a good
hedge against the risk associated with other projects. Seen through this lens, even
in a setting where the aim is to maximise wealth, there may be multiple criteria in
the sense that one cares both about the expected value and also about the risk. This
idea features prominently in the theory of financial portfolios, most notably in the
celebrated Markowitz mean-variance model. However, other measures of risk other
than the variance are possible, and a rich class of models is available to capture and
model this sort of concern [57, 59].

28.3.2 Exploring

Once the model elements have been defined, there follows a phase of exploration,
where the DM and analyst work together to understand the DM’s preferences
and how they relate to the set of possible portfolios. The precise nature of this
exploration will depend on the multicriteria method used. In the Multi-Attribute
Value Theory modelling framework, for example, the analyst would take the
DM through specific valuation and weighting questions designed construct partial
value functions and aggregate them into a common value measure. Once this has
been done, the problem has been effectively reduced to a single objective value
maximisation problem—although of course one may want to go back to elicited
weights and values subsequently in a sensitivity analysis phase. On the other hand,
in a multiobjective programming setting, exploration may involve the generation of
all non-dominated portfolios.

We do not intend in this section to describe the various MCDA methods which
might be applied to the problem of portfolio choice, although this is a popular area of
application and so it is probably true to say that every significant MCDA method has
been applied to portfolio choice at some time or another (see the literature review in
the following section). However, we do outline and comment on a few salient and
generic ideas which seem to be popular and which can be used within the context of
any MCDA method.

A first popular idea is that of bubble charts [17, 32, 95]. These methods are
predominantly used in the context of models where there are at least two dimensions
of value and a single cost dimension. The idea in these charts is to present the
possible projects in the bicriteria space, representing a particular project by a
circle, the size of which reflects the investment cost associated with the project—
see Fig. 28.1 for a possible bubble chart for the flat furnishing example, with the
various possible purchases scored on two dimensions, comfort and aesthetics. These
displays seem to be found useful by DMs as a way of understanding more deeply
the available alternatives. However, the displays themselves embed significant
assumptions, most notably that there is a single criterion score associated with a
project, which may not be the case if there are interactions or balance constraints.
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Fig. 28.1 Bubble chart for the flat furnishing example

A second popular idea is that of triage. This idea exploits the observation
that even if one has incomplete information about the DM’s preferences, it may
be possible to “decide” a subset of projects. Projects which are contained in all
members of the set of portfolios which are optimal with respect to some value
function compatible with preference information expressed by the DM, can be
decide positively; those which contained in no members of that set of portfolios
can be decided negatively. Thus, with even limited, incomplete information about
preference, it should be possible to narrow the space of investigation and concentrate
attention on a small number of critical projects where analysis can really make a
difference. This idea has been investigated in simulation studies by Keisler [84]
(see also [85]) and forms the basis of the RPM-Decisions software described in
[102, 103]. In Fig. 28.2, we show an example of the core index display from the
RPM software for the flat furnishing problem. With no information about weights,
it is not possible to say definitively what the optimal portfolio is, as there are two
possibilities: however, both possible optimal portfolios contain the first and second
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Fig. 28.2 Core index display for the flat furnishing example

bookshelves, the radio, the pot plant and the coffee table; neither of them contain
the television; and the DVD player, dining table and sofa are each contained in one
and one only of the two.

Another way to explore the portfolio space is to use a cost-benefit display
of the type built into the Equity [142] and PROBE [110] software, which is
applicable where there is single dimensional budget constraint c.x/ � B , and
cardinally measurable values have been assessed. From a mathematical standpoint,
this display can be viewed as the Pareto front of a bicriterion problem which
chooses non-dominated portfolios which maximise value and minimise cost; from
a practical point of view it has the interpretation as the cumulative value obtained
from implementing the optimal portfolio at some given level of spend, with linear
interpolations between the discrete levels. In the simplest case, where criterion and
value functions are linear, value increments associated with projects are unique and
well-defined and the display can be generated by dividing benefit by cost for each
project and proceeding down the resulting ranking, cumulating benefit and cost
[91]. In more complicated environments, it may be necessary to solve a sequence of
optimisation problems to generate this display. The Pareto front display for the flat
furnishing example is shown in Fig. 28.3, assuming that the aesthetics and comfort
scores can be combined with equal weights.
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28.4 Application Domains

In this section, we study four application domains: Research and Development
(R&D) project selection; military planning and procurement; commissioning health
services; and environment and energy planning. These application domains are not
exhaustive. Nevertheless, they give a good general idea of the sorts of problems to
which MCPDA has been applied, and the sorts of methods which have been used.

28.4.1 R&D Project Selection

Technical innovation is one of the engines of growth for both firms and nations in
advanced economies. However, undertaking Research and Development (R&D) to
support innovation is expensive and outcomes are hard to forecast, sometimes even
hard to characterise. It should therefore come as no surprise that the OR community
has been extremely active in developing solutions for R&D prioritisation. Indeed
R&D management is easily the preeminent application area for portfolio and
project selection models, and over several decades a vast literature dealing with
this problem has accumulated (reviewed in [27, 32, 36, 63, 116, 153, 157]). Some
of these models are mono-criterion in nature, typically in private sector settings
where money provides a natural objective. Such models typically focus on the mod-
elling of technical and production uncertainties about project delivery and market
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uncertainties about a project’s ability to generate revenues. However, importantly for
this chapter, there are several multicriteria models which have been proposed. It is
important to realise that the term R&D covers a large number of different activities,
and that the reasons for advocating multicriteria methods may be quite different
depending on the purpose and context of the R&D in question. For example,
in a government-sponsored programme of fundamental science, projects may have
quite different outcomes (e.g. a Science and Engineering research council may
fund projects which contribute to energy, healthcare, environmental improvement,
transport. . . ), and so (even if benefits could be accurately projected) there may be no
single natural metric of value on which to compare projects. Further, the government
sponsors of such a programme may have policy objectives, such as sponsoring
interdisciplinarity, which reflect a philosophical view of the nature of the innovation
process, rather than relating to specific benefits. Private sector R&D managers who
have a nominal single financial objective, on the other hand, may be so far from the
delivery to the customer that this objective does not meaningfully guide operational
choices. This could be because the projects to be considered are in the very early
phases of development and detailed market modelling is not possible, or it could be
because projects are instrumental in nature, and are intended to contribute to, for
example, internal operational objectives rather than generating revenues.

The literature on R&D prioritisation—even multicriteria R&D prioritisation—
is vast and practically impossible to review completely. The simplest form of
multicriteria approach is the scoring model [16, 25, 33, 38, 58, 65, 129], where
projects are scored on a number of different dimensions using some form of attribute
scale, then scores are weighted and combined, either additively or using some more
complicated formula, to give an overall metric of value. Such models go back
decades—for example as far back 1957, Rubinstein [149] discusses criteria for the
evaluation and control of R&D projects, as well as then-current practice. However,
despite (or perhaps more accurately, because of) their simplicity, scoring approaches
are very much alive today [32]. While such models are likely to be useful as a tool
for structuring reflection relative to holistic judgement, they are often developed and
applied in apparent ignorance of the most basic decision analysis principles. As a
result, it is very unclear what assumptions are being made about preferences and
what the numbers (e.g. criteria weights) DMs are expected to provide mean. Such
models may therefore produce a number which may guide decision making—but
without DMs being forced to think as clearly as they could have been.

However, the use of multicriteria models is by no means limited to scoring
models. Since the 1970s, practically all major multicriteria approaches have at some
time between applied in connection with R&D prioritisation: indeed, typically a few
years after a new multicriteria approach has been proposed it surfaces in the R&D
project and portfolio selection context.

Considering first what one might think of as decision analysis or related
methodologies, the early 80s were notable for several prominent applications using
the then-new Multiattribute Utility Theory (MAUT) [50, 51], although certain
scoring models proposed earlier do show awareness of decision theoretic principles
and so might be considered proto-decision analyses [25, 58]. Of related interest
are the applications of Keefer [80] and Keefer and Kirkwood [81] which seek to
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support resource allocation using a MAUT frame—although these do not constitute
portfolio selection models, as utility functions are assessed directly on levels of
investment with no intervening concept of a discrete project as a vehicle by which
money is transformed into value. From the mid-1980s one starts to see the Analytic
Hierarchy Process (AHP) and subsequently the Analytic Network Process (ANP)
emerge as a competitor to MAUT [99, 118, 165] and a popular extension seems
to be to combine the AHP with fuzzy numbers [69, 71]. Of particular interest in
this area is the work by Lockett and Stratford [109] which uses both MAUT and
AHP, and seeks to compare both approaches; also [135] describes an application
of a technique called the Judgmental Analysis System (JAS), which like the AHP
uses pairwise comparison data, but finds scores using geometric least squares rather
than eigenvalue decomposition. Outranking approaches have been less prominently
applied in this domain, but examples of applications using outranking principles do
exist [36, 138], and it should also be noted that R&D prioritisation is a prominent
running example in the book of Roy [148] which is the central text on outranking
methods.

A difficulty with the use of decision analysis methods in the domain of R&D
project prioritisation—and indeed of prioritisation generally—is that one has to
capture the possibility of selecting more than one project and that projects may
interact, at least through their consumption of a shared resource. A simple and
popular way to model this shared resource consumption is to divide value scores by
money for a “bang for the buck” index [32, 142]. A variant on this idea is to use some
sort of efficiency analysis approach such as DEA [74, 107, 138], but careless use of
DEA methods can be misleading for the reasons laid out in [19]. An alternative way
to deal with shared resource consumption is to take the outputs from a MAUT or
AHP model, and use these as coefficients in an optimisation model e.g [51, 99], in
which the shared resource limit is modelled as a constraint. This has the advantage
that other interactions can be modelled in the same framework. However, significant
ingenuity may be required to incorporate the non-linear value functions which arise
from the decision analysis modelling into an optimisation model [111, 119]. Using
value scores within the context of an optimisation model seems a peculiar thing to
do, however, partly for technical reasons—it is not clear whether solutions to the
optimisation problem will be invariant with respect to permissible transformations
of the utility scale [146]—but also because, since the decision recommendation will
be based on a mono-criterion model, there is no natural way for the decision maker
to contemplate the impact of value uncertainty on his decision.

In the light of the difficulty of articulating how the decision analysis part of
the problem relates to the underlying optimisation problem, it should come as
no surprise, therefore, that contemporaneously and to some extent in parallel,
researchers have explored the application of various multiobjective optimisation
based approaches in the R&D prioritisation context. Initially, one sees enthusiasm
for (weighted) goal programming [87, 89, 120, 164], and latterly for exotic versions
of goal programming, such as the stochastic version proposed in [12]. In one
of the very few papers which bridges the divide between decision analysis and
optimisation methods, [111] explore preemptive goal programming, compromise
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programming, and a minsum model which minimises the weighted sum of attribute
distances from an ideal point. Ringuest and Graves [145] question the use of goal
programming and advocate instead exact multiobjective optimisation methods, but
they use a multiobjective linear programming framework which does not capture
project indivisibility. Czajkowski and Jones [34] do capture indivisibilities, but
the researchers restrict themselves to finding the supported efficient solutions of
a rather small bicriteria problem. In general, modelling indivisible projects in an
optimisation framework, raises difficulties with the combinatorial explosion in the
number of efficient solutions. This can be dealt with through interactive methods
[64, 159]; through the use of multiobjective metaheuristics [24, 39], or through some
combination of both [161]. The flexibility of the metaheuristic approach can be seen
in [61] where a multicriteria combined portfolio selection and manpower planning
model is studied and solved, and in [60] which deals with a stochastic bicriteria
version of the same problem. Moreover, recently the RPM approach [102], which
blends decision analysis and optimisation methods and concepts, has been deployed
in the R&D/innovation context, both at the level of prioritisation of specific projects
[104], as well as at the level of prioritisation of research themes or topics [21, 170].

As noted above, the R&D prioritisation literature cannot be faulted for the
absence of advanced analytic methods. However, a theme which recurs in the R&D
prioritisation literature is—despite several detailed and published applications of
implemented systems—that the advanced methods proposed in the literature are
not finding widespread application in field settings [100, 155, 157]. The available
empirical evidence on this point is rather out of date, and it could be that
recent developments in organisational data and IT systems render these concerns
obsolete. Nevertheless, if one believes such concerns have validity, a common
prescription is that analytic methods should either be less technically complex (at
least insofar as technical complexity imposes judgemental demands on DMs), and
that there should be a renewed focus on the processual aspects of providing decision
support, the institutional context of analysis, and the factors which drive successful
institutionalisation [132, 142].

28.4.2 Military Planning and Procurement

Military planning and procurement decisions have been an important application
area for MCPDA, in the light of the strategic importance of these decisions, the
difficulty in characterising benefits, and the large sums of money involved. For
this discussion, we draw heavily from the work of Burk and Parnell [23]. They
describe and reference many military portfolio decision analyses, and note the
following distinguishing characteristics as compared with other portfolio decisions:
Legal constraints on the decisions and the decision process; strong political players;
hostile adversaries; and complex systems. In addition, military portfolios involve
non-financial resources and therefore may have multiple resource constraints. Fur-
thermore, it may require considerable effort to define objectives that in essence make
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tradeoffs for unknown decision makers in hypothetical situations such as future
battle conditions. Identifying and weighing the objectives in military portfolios is
often a matter of discovery because they involve scenarios that have not occurred.

Burk and Parnell [23] identify military portfolio problems involving decisions
about: “system acquisition, logistics, personnel management, training, maintenance,
communications” and “weapon systems, types of forces, installations”. Other
portfolios in the literature involve forces, land use, infrastructure (e.g.[22]), system
elements, arms transfers [156], and capabilities [37, 106]. Military portfolios may
be defined in terms of assets to be procured or deployed, and portfolio elements may
be distinguished in terms of location, asset type, and function.

Burk and Parnell [23] describe cases where stakeholders with different significant
power bases have strong and sometimes conflicting preferences which makes the
construction of value functions challenging. An extreme example might be one in
which resources must be allocated across Navy, Army and Air Force assets, with
senior leaders from each branch differing in their views of what is most important.
Even within a single military service, there may be widely divergent views about
the correct way forward: [141] describes how decision conferencing was used to
develop value models for different stakeholders and to explore the implications of
these value models for decisions about assets to be included in a major naval craft
design.

Nevertheless, although stakeholders and their advisors may differ in their view of
what drives value, unity of command means that there is one fundamental objective
(force preparedness for national defence and the fulfilment of international obliga-
tions). However, because views about the best way to achieve this objective differ,
and more importantly, because the military (at least in liberal democracies) is subject
to strong political oversight, effective MCPDA processes have to include sensitivity
analysis of results to assumptions about weights, and processes that are transparent
and allow for clear explanation of the rationale behind recommendations.

Many of the objectives are derived from mission objectives, which are typically
defined in formal documents and require operationalisation to a level where they can
be applied to guide choice between particular types of equipment. Additional objec-
tives include cost, safety, environmental impact, public acceptance (particularly in
the case where decisions involve the use of specific sites for military purposes) and,
higher level objectives than those of the mission, e.g., international relations [49].

Methods used for value modeling in military MCPDA include MultiAttribute
Value and Utility theory, often within a Value-Focussed Thinking [83] framework;
in some cases, the large scale of national efforts means that it is reasonable to assume
that values are essentially linear, while in other cases, e.g., readiness of a particular
unit, utility can easily be non-linear in some attributes—once force is overwhelming,
there is limited additional benefit in investing further resources. Kangaspunta et al.
[77] describe an approach to the selection of portfolios of weapons systems in a
context where the underlying performances are generated by a combat simulator.
The Analytic Hierarchy Process has also been used, e.g., for project selection [54].
When military portfolio decisions are meant to build preparedness for complex
futures, scenario-based methods are often used [73, 79]. Some analyses are largely
about determining project-level value measures for ranking and prioritisation of
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investments. However, many of the primary operations research methods originated
in military applications, and so it is not surprising that other problems involve
sophisticated mathematical optimisation, in settings where a very large number
of decisions must be coordinated, e.g., personnel manpower assignment [26, 94],
within a structured, stable and well-understood system, e.g. [48].

28.4.3 Commissioning Health Services

Broadly speaking, healthcare provision in developed countries takes one of two
forms. Either healthcare is provided by insurance companies (e.g. Germany, the
Netherlands), or it is provided by government, and funded out of general taxation
(e.g. the UK, Italy, Canada). In both cases, there are opportunities for multicriteria
analysis to help with the policy process (see [35] for two case studies of SMART
to assist with health policy agenda-setting in the Netherlands), but in the latter case
there is a particularly acute need as delivery organisations are effectively instruments
of government, but their mandates are not articulated at a level of detail adequate to
guide concrete choices about investment. It is on this latter case that we focus on in
this section.

In order to provide support decision making in publicly funded healthcare
systems, various multicriteria portfolio methods have been developed and proposed.
Generally these proponents of these methods are reacting to a health economic
orthodoxy in which prioritisation in health is considered to be a more-or-less a
technical exercise in maximising health, with health measured through Quality-
Adjusted Life Years or QALY [41, 52]. (A QALY is essentially a measure of time-
integrated quality of life.) While the sophistication which has gone into refining
these health metrics is considerable—health state measurement and valuation has
become a small industry—for some, they miss the point. For one thing, for local
decision makers, who are tasked with comparing alternative investments, building a
full-blown health economic model may simply not be practical, and so multicriteria
methods offer the opportunity to bring a greater degree of order to the prioritisation
process without excessive cost [154]. For another, insofar as healthcare prioritisation
depends critically on judgement, it has to involve deliberation by decision makers
and dialogue with key stakeholders [35, 67]. As key value judgements are either
hidden within the construction of the QALY, or ignored, in the view of these critics,
the QALY is inadequate as a guide to priority setting, and hence the need for
multicriteria methods.

As in the R&D management setting, many organisations have independently
developed scoring rules which meet the need to provide some sort of orderly
approach to prioritisation but which cannot be located in any particular theoretic
tradition. As these scoring rules tend to be documented, if at all, in the grey literature
and in non-peer reviewed publications, locating them can be quite challenging.
Fortunately, [134, 154] review some of these approaches, going back to the last
century (and [154] also provide a model which has been used by the Argyll and
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Clyde Health Board in Scotland). More recently, however, there has been a greater
interest in formal multicriteria approaches, particularly in the Program Budgeting
and Marginal Analysis (PBMA) community. PBMA (e.g. [20, 124, 168]) is a
structured approach to decision making about investment and disinvestment in
healthcare, which involves identifying current patterns of resource use (program
budgeting), and then identifying opportunities for investment and disinvestment
(marginal analysis). Despite apparent success, indeed even popularity (a 2001
review [123] identified 78 applications of PBMA in 59 organisations), PBMA does
not incorporate in its original form a formalised (or indeed even explicit) benefit
metric, although some studies have used multiple criteria in an atheoretic way
[125]. Recognising this limitation, [139] in Canada and [173, 174] and colleagues
in England have conducted applications in the PBMA tradition but which also
draw explicitly on MCDA literature (specifically the Multi-Attribute Value and
Utility traditions)—for example in [139] a formal swing weighting approach was
used. Airoldi and Morton [1] and Airoldi et al. [2] also describe case studies
of a method for prioritisation which draws heavily on the decision conferencing
approach of Phillips and Bana e Costa [142], which seems to be the first instance
of a MCPA method, formally identified as such, being used in this setting. In a
separate development, a team of researcher/practitioners associated with the World
Health Organisation have also become advocates for multicriteria methods [6]. In
their approach, policy makers are presented with pairs of multiattributed healthcare
interventions and attribute weights are derived by fitting a logistic regression model.
Case studies of this approach in Ghana and Nepal are presented in [7, 8, 75].

In terms of the methods used in this area, it should be noted that (certainly
compared to R&D management and military) the methods seem to be relatively
simple. The focus tends to be on valuing projects rather than valuing the portfolio as
a whole ([1, 2] are exceptions). Although, there seems to be an emerging consensus
that dividing value scores by costs and thus generating an efficiency ranking makes
sense in an environment where one is concerned about resource use [175], the
methods which are used to generate the value scores are predominantly single
choice methods, which can give rise to misleading conclusions [31, 130]. There is no
formal attention given to inter-project interdependencies, although there may well
be interdependencies at the cost, benefit and value levels, or to balance concerns, for
example between different diseases or subpopulations.

28.4.4 Environment and Energy Planning

In environmental planning and in energy planning (in which environmental con-
siderations loom large, e.g.[53]), MCPDA has a natural place. MCDA is relevant
because there are often non-financial impacts of importance to society in general
and to different stakeholder groups, as demonstrated by the wealth of applications
[5, 14, 70, 143, 176]. PDA is relevant in the environmental context because impacts
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of decisions have impact across numerous distinct portions of a larger ecosystem;
and in energy because discrete units necessarily combine to form a larger energy
delivery system.

There is such a variety of environmental applications (see [90]) that we do not
aim here for any kind of comprehensive review. We instead give a flavor of the
applications of MCPDA in this context, the commonly used attributes and resources
as well as the range of stakeholders as they relate to these different portfolios, and
the methods used and type of results generated.

Energy-related portfolio decisions most often involve discrete physical assets
or types of assets to acquire, develop or deploy. These include: Acquisition of
generation assets in a fleet or region, e.g., a mix of nuclear plants, coal plants,
and wind turbines [147]; selection of generation sources for a particular user,
e.g., a self-sufficient energy supply for a military installation [96]; selection of
sources of a particular type such as hydropower [162] and technology investments
as discussed elsewhere in Sect. 28.4.1. These are typically business decisions taken
within regulatory constraints, or government funding decisions primarily (though
not exclusively) viewed through an economic lens. Energy policy may also involve
a set of decisions involving non-economic considerations, e.g. [76].

A common approach to project selection is to use MCDA to value essentially
independent projects, while the portfolio aspect involves allocating funds across
the projects. Applications include technology development or acquisition portfolios
within for a single area (e.g., Solar energy, [51]) or across areas of renewable energy
technologies [140] or other types of green technologies, e.g, [73]. Likewise, sets of
possible remediation efforts [105] can treated as project portfolios. Another related
problem is site selection, e.g., selecting a number of sites for the disposal or storage
of industrial [136] or even nuclear [82] waste.

Some environmental portfolios have a spatial aspect. Land use problems (e.g.,
[29]), can be formulated as a portfolio of activities (uses) to which a set of regions
(resources) is assigned; alternatively, the regions themselves can be the portfolio and
their value can be a function of their dispositions (as suggested in [86]). Similarly,
a region may contain a portfolio of habitats [163], ecosystems [108, 144] or species
[40, 126] to be protected. Because areas on a map can be divided in arbitrarily many
ways, environmental impacts of actions and policy can be viewed evaluated in terms
of their effects on arrays of sub-regions, although such problems are not usually
formulated explicitly as portfolio valuation or optimisation. Water management
actions may also be considered at a portfolio level, with interactions between
elements due to hydrology [30]. When geography is a constraint on portfolio
formation, geographic information systems (GIS) are commonly used, and efforts
to combine MCDA and GIS have been quite successful [112] in facilitating the
decision process and valuing alternatives. A challenge for use of GIS in portfolio
decisions is the incorporation of mathematical optimisation methods [98] with
clearly defined decision variables that connect with the rich GIS representation of a
situation.

Other applications involve management of environmental and resources, e.g.,
mining and agriculture [115, 121]. A sophisticated example of this class is described
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in [88] that considers a portfolio of forest areas to be planted, allowed to grow, and
finally harvested.

Other portfolios are organized by levers controlled by different types of decision
makers. Sets of laws and regulations can be treated as a portfolio, e.g., the fuel-
economy portfolio [15]. Because laws are hard to describe as mathematical decision
variables within a well-defined space, optimisation methods are difficult to apply,
but evaluating a given set of portfolio alternatives using MCDA is practical.
Business decision makers often consider portfolios of business units [72], portfolios
of products [97], and portfolios of product design specifications [137]. These
decision classes have been considered in the environmental context in some cases
using project selection methods (e.g., choosing a point from the efficient frontier)
along with MCDA, while in other cases analysis have used MCDA tools such as the
balanced scorecard to evaluate alternative strategies [167].

In environmental MCPDA, there are many possible stakeholders [166]: nation
states have an interest in levels of pollution; the whole of humanity (of today and
of the future) and the natural ecosystem have a stake in whether there is global
climate change. Communities have an interest in the local environmental effects,
both positive and negative, of both industrial development and environmental
remediation and protection; a special case of this is when the local residents are
indigenous peoples and the activities are introduced by outside players. Regulators,
governments and governmental organisations may represent these interests in their
role as public representatives or bring interests of their own. Environmental groups
may have concerns about particular ecosystems, species, regions or habitats, while
individuals may be concerned about health, recreation, and even property values.
Businesses have an interest in pursuing activities with economic benefits, as well
as maintaining those benefits that arise from healthy environments (e.g., fishing),
as well as in limiting the costs of compliance with environmental regulation.
Energy portfolios involve similar sets of stakeholders, e.g., energy producers, energy
consumers, and society at large.

In some cases, the criteria used in environmental decision models are hierarchical
and first divided into health/safety, economic value, and ecological considerations,
and then into more detailed considerations, e.g., types of emissions [171]. Criteria
used in MCPDA for environmental applications tend to be similar to those used in
non-portfolio MCDA. An exception is equity/fairness which naturally arises as a
concern when a number of separate entities are affected, e.g.[169].

Energy criteria include cost and profit, of course, and also capacity, quality of
power, local footprint and pollution from both generation (particularly CO2) and
from obtaining fuel. Risk is often an issue (e.g. [3, 66]); in energy, some of the
aggregate risk may be considered in a similar manner to that of financial portfolios
(e.g., mean-variance models [4]). In environmental portfolios, outcomes of concern
are mostly downsides to be avoided, either degradation or disaster, and cumulative
risk and impact may be of concern.

Methods used in environmental problems tend to be quite participative. GIS
tools, mentioned above, are prominent because of their usefulness in visualisation
and their ability to make issues clear to varied audiences. Other stakeholder sensitive
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methods, e.g., PROMETHEE (for example as in [62]), and iterative methods, e.g.,
MCRID [133], are common in facilitating a decision process, while MAUT has
also been used in studies supporting government bodies (e.g. [42]). While in energy
portfolios, optimisation is common, in environmental portfolios, analysis is used
either for simpler prioritisation and ranking, or for evaluation of a set of alternative
strategies.

28.5 Conclusion and Directions for Future Research

In this chapter we have outlined what we see as some key themes in the use
of multicriteria methods for the selection of portfolios of discrete projects. In
Sect. 28.2, we presented a formal framework for MCPDA, based on the contribution
of Golabi et al. [51]. In Sect. 28.3 we have described some of the main modelling
challenges and opportunities which arise in applying multicriteria methods in the
context of portfolio and project selection. In Sect. 28.4, we contextualised the
discussion by surveying particular application domains.

We will conclude this chapter by discussing what we see as possible directions
for future research, which draws on material we have presented in the introductory
chapter of our book [150], and to which we refer the reader for more details. Our
guiding philosophy is that as the selection of project portfolios is intrinsically a
strategic issue, attention to technical modelling must go hand in hand with attention
to social process. We group our discussion under three headings: extending MCPDA
theory, methods and tools; expanding the MCPDA knowledge base; and embedding
MCPDA in organizational decision making, which roughly echo the themes of
Sects. 28.2–28.4 respectively.

• Extending MCPDA theory, methods and tools. As well as being a fruitful area
for applications, MCPDA also offers a rich field for theoretic development. As
we tried to lay out in Sect. 28.2, the fundamental axiomatics of which underlie
MCPDA remains underdeveloped. Moreover, the design of software tools and
algorithms also raises theoretic challenges. Insofar as the implied optimisation
model underlying MCPDA is a knapsack problem, it is computationally hard
in the deepest sense, and in the multicriteria environment, this is compounded
by the difficulty of specifying completely the objective function. Moreover, in
an environment where much of the analysis happens “on the fly” in workshops
or in meetings with clients, algorithmic speed may be of critical importance.
Therefore, there is a real role for mathematical and computational development
in the mainstream of the OR tradition to support the advancement of MCPDA.

• Expanding the MCPDA knowledge base. In Sect. 28.3 we discussed the pro-
cess of modelling in MCPDA, outlining some of the tools which have been
proposed and found widespread use. Yet understanding of how best to structure
and manage decision processes requires drawing on knowledge beyond the
boundaries of what might be traditionally thought of as OR. One of the most



1290 A. Morton et al.

obvious linkages is to behavioural decision theory, which is profoundly relevant
to questions of how best to elicit preference judgements and display information.
And insofar as MCPDA is intended to support planning processes, many of the
other organisational sciences (such as organisational development) have much to
offer in terms of helping design better ways to structure and organise decision
workshops.

• Embedding MCPDA in organizational decision making. One of the key lessons
from Sect. 28.4, which dealt with application domains, is the extent to which
practice varies and to which organisational context and sectoral matters. Indeed,
contextualisation and customisation of MCPDA methods to particular settings
can give rise to interesting modelling challenges: for example, some approaches
to MCPDA may be purposely designed to reflect the information flows and hier-
archical structure of the client organisation; others may reflect data limitations
and preferred cognitive styles and professional backgrounds of individuals in a
particular industry. Hence, the development of usable MCPDA tools can itself be
seen as research into the characteristic features of portfolio decisions in a variety
of different contexts.

Acknowledgements Thanks to Eeva Vilkkumaa and Juuso Liesiö for their help in generating
Figs. 28.1 and 28.2.
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Chapter 29
Multiple Criteria Decision Analysis Software

H. Roland Weistroffer and Yan Li

Abstract We provide an updated overview of the state of multiple criteria decision
support software. Many methods and approaches have been proposed in the
literature to handle multiple criteria decision analysis, and there is an abundance
of software that implements or supports many of these approaches. Our review is
structured around several decision considerations when searching for appropriate
available software.

Keywords Multiple criteria decision analysis software • Decision support
 Software package

29.1 Introduction

Multiple criteria decision models generally do not possess a mathematically well-
defined optimum solution and thus the best the decision maker (DM) can do is to
find a satisfactory compromise solution from among the efficient (non-dominated)
solutions. Unless an explicit utility function representing the preferences of the DM
is known a priori, interactive solution techniques are most appropriate to identify the
preferred solution or perhaps a manageable set of desirable compromise solutions.

An abundance of multiple criteria decision analysis (MCDA) methods have
been proposed in the literature, most of which require substantial amounts of
computation. Many software packages have been developed to implement all or
parts of these methods. This MCDA software covers various stages of the decision
making process, from problem exploration and structuring to ascertaining the DM’s
preferences and identifying a most preferred compromise solution. Many business
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users, however, find it difficult to identify and choose an appropriate software
package for their specific problem situation. The primary objective of this chapter
is to provide an overview of commercially or otherwise readily available MCDA
software and to offer users a practical guide on selecting the appropriate tools for
their decision problems at hand.

In the following section, we summarize and categorize available MCDA software
based on various decision-problem considerations. Such considerations include the
type and characteristics of the decision problem to be resolved, the decision context,
and the technology platform required by the software. In Sect. 29.3 of this chapter
we then present more detailed reviews of each software package in alphabetical
order. Finally, in Sect. 29.4, we offer some concluding observations.

29.2 General Overview of Available MCDA Software

Decision analysis software can assist DMs at various stages of the decision-making
process, including problem exploration and formulation, identification of decision
alternatives and solution constraints, structuring of preferences, and tradeoff judg-
ments. Many commercially available, general decision analysis software packages
have been included in biennial decision analysis software surveys in OR/MS Today,
the first one published in 1993 [9]. The 2012 survey [53] included 47 decision
analysis packages, some of which can be considered MCDA software and are also
covered in our chapter. While specifically focusing on MCDA software, our review
includes not only commercially marketed packages, but also software that has been
developed at academic institutions for research purposes and is made available to
the broader community, usually free of charge or for a nominal fee. Commercial
packages may sell for hundreds or even thousands of dollars (though some vendors
give educational discounts) and usually have dedicated websites and sophisticated
marketing literature and may come with training courses and technical support.
Software developed not-for-profit by academics usually comes without support and
may have only limited documentation.

In order to provide some practical support for choosing the most appropriate
software for a specific decision situation, we present a summary of MCDA
software covered in this chapter, structured around the following considerations: the
characteristics of the decision problem (viz. finite set of alternatives versus infinite
options that can be defined by mathematical functions), the MCDA method(s)
implemented by the software, the type of decision problem (viz. single DM versus
group decision making), and the technology platform(s) supported by the software.

29.2.1 MADA Versus MOO Software

The first selection consideration is based on the characteristics of the decision
problem formulation. MCDA normally involves the DM to choose a solution from
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the set of available alternatives, which can be finite or infinite [23]. Thus, MCDA
problems can be roughly divided into two main types, viz. multiple attribute
decision analysis (MADA) problems and multiple objective optimization (MOO)
problems. In MADA problems, the DM must choose from among a finite number of
explicitly identified alternatives, characterized by multiple attributes, where these
attributes define the decision criteria. An example would be buying a new car
and choosing among the various models available, characterized by attributes such
as size, engine power, price, fuel consumption, etc. In contrast, MOO deals with
problems where the alternatives are only implicitly known. In MOO problems,
the decision criteria are expressed in the form of mathematical objective func-
tions that are to be optimized. The argument vectors of the objective functions
constitute the decision variables and can take on an infinite number of values
within certain constraints. An example would be developing a new engine for
an automobile manufacturer, where the decision criteria may include things like
maximum power, fuel consumption, cost, etc., described by functions of the decision
variables such as displacement capacity, compression rate, material used, etc.
MOO models may involve linear or nonlinear objective functions and constraints,
and may have continuous or integer decision variables. MOO software typically
implements various optimization algorithms, such as linear programming, non-
linear programming, generic algorithms, meta-heuristics, etc. Table 29.1 categorizes
the reviewed software packages according to these two types of problems.

29.2.2 MCDA Methods Implemented

The second selection consideration is the MCDA method implemented by the
software. Corresponding to the two types of MCDA problem formulations, methods
can be categorized into multiple criteria design methods and multiple criteria
evaluation methods [13].

Multiple criteria design methods are intended to solve MOO problems, some-
times also referred to as multiple criteria design problems or continuous multiple
criteria problems. A very large number of optimization methods of this type have
been proposed, where each individual method is designed to solve a specific or a
more generic type of MOO problem. Different MOO software generally implements
different MOO methods.

Multiple criteria evaluation methods are intended to solve MADA problems,
sometimes also called multi-criteria evaluation or selection problems. Brief descrip-
tions of multiple criteria evaluation methods implemented by the software surveyed
in this chapter are given in Table 29.2. More detailed descriptions of many of these
methods can be found in earlier chapters in this book.

Table 29.3 shows which software packages implement methods from Table 29.2.
Not all software packages explicitly state the method(s) employed, and often this
information needs to be derived from their technical description. Some software
packages implement multiple methods and are listed multiple times in Table 29.3.
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Table 29.4 Software with group decision support capabilities

Package
Specific
GDSS

General
and
group Specific version/add-in module

1000Minds
p

Accord
p

Decision
Explorer®

p

Decision
Lab/Visual
PROMETHEE

p

D-Sight
p

Requires multi-actor plug-in
Equity3

p
Requires Catalyze Decision Conferencing
Services

Expert Choice
p

Web-based Version
HIPRE 3C p

Group-Link Version
HIVIEW3

p
Requires Catalyze Decision Conferencing
Services

Logical Decision
p

LDW for Group Version
MindDecider

p
Group Version

OnBalance
p

Prism GDSS
p

TransparentChoice
p

WINGDSS
p

29.2.3 Group Decision Support

Group decision-making is a central concern in organizational settings since many
important decisions are taken collectively by groups of people. The complexity of
MCDA is greatly increased in the group setting. MCDA group decision support
involves not only problem definition, criteria identification and prioritization, and
individual preference elicitation, but also requires aggregating different individual
preferences on a given set of alternatives into group judgments [38]. Table 29.4 lists
software packages that provide group decision support capabilities. Some of the
software packages are specific group decision support systems (GDSS), while others
support both individual and group decision-making. Also, some of the packages
provide group decision support only in specific versions or add-on modules.

29.2.4 Platform Supported

The computing environment supported by a software package is an important soft-
ware selection criterion. If the desired software does not run on the user’s currently
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available platform, extra updating costs may have to be taken into consideration.
Also, some users may prefer a web-based application rather than a standalone
package, while others may not want to host the data on a server and prefer a desktop
version. One of the surveyed packages offers a software-as-a-service (SaaS) version.
Some mobile-based MCDA applications are available, though they are not included
in this survey, as currently these applications seem to be primarily intended for
making personal decisions only. In the future, more mobile applications may be
developed. Table 29.5 presents a summary of platforms supported by the surveyed
software packages. Most MCDA packages were developed for Microsoft Windows
based personal computers. Several software packages, mostly MOO software, are
Microsoft Excel add-ons or Matlab solvers. There are some software packages
exclusively implemented as web applications, and some with a web application
version. There is also software implemented as plug-ins, or subroutine libraries.
Two of the reviewed software packages are in fact subsystems of other packages.
One software package requires a desktop client and a MySQL server. There is also
an open source software package available.

29.3 Software Review

29.3.1 1000Minds

http://www.1000minds.com. 1000Minds implements the PAPRIKA (Potentially All
Pairwise RanKings of all possible Alternatives) method [32], which involves the
DM performing pair-wise value rankings of undominated pairs of alternatives.
PAPRIKA keeps the number of such rankings needed to a minimum by identi-
fying and eliminating implicitly ranked undominated pairs. 1000Minds prompts
users, depending on what they want to do, to follow a simple six-step MCDM
process: criteria selection (qualitative or quantitative), alternatives input (optional),
pairwise ranking, preference values (derived by 1000Minds), ranked alternatives,
and alternatives selection (including value-for-money analysis). Customized group
decision-making processes involving potentially large numbers of participants can
be created based on six decision activities provided by 1000Minds: decision surveys,
online voting, alternatives entry, ranking surveys, categorization surveys, and
ranking comparisons. The software supports an unlimited number of alternatives
and a maximum of 30 decision criteria. 1000Minds is Internet based, with its servers
housed in the USA and New Zealand. A 21-day trial use is available through the
website and the software is available for free for unfunded research and study.
A 1000Minds software development kit is also available as either a .Net class library
or via web services.

http://www.1000minds.com
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29.3.2 4eMka2/jMAF

http://idss.cs.put.poznan.pl/site/70.html. 4eMka2 is an implementation of the
dominance-based rough sets approach (DRSA) [29, 30]. DRSA extends original
rough set theory in the MCDM domain to model and exploit DMs preferences
in terms of decision rules, with specific considerations of the characteristics
of different types of multiple criteria problems. 4eMka2 system is specifically
designed for solving multiple criteria sorting problems, by combining rough set
theory with dominance relation to describe rough approximation of decision
classes. Decision rules are extracted from a set of already classified examples
(prepared by the user), and decision rules are represented in natural language as a
set of “if : : : then : : : ” statements. The system includes features like data validation,
qualitative estimation of the ability of criteria and attributes to approximate the
classification of objects, finding the core of criteria and attribute, inducing decision
rules using the DOMLEM (minimal cover set of rules) and ALLRULES algorithms,
and applying decision rules to reclassify objects with known decisions and to
classify new objects. There is no a priori constraint imposed on the size of the
decision problems. Rather, the size is said to depend on available memory and
affordable computation time. 4eMka2 is Win32-based and free for download.
4eMKa2 is now outdated and has been replaced by jMAF, a Java application based
on Eclipse Rich Client Platform UI.

29.3.3 ACADEA

ACADEA is a multi-objective optimization system for performance review of indi-
vidual faculty in a university [1]. The system considers the aggregate performance of
an academic department using the result of individual faculty member evaluations.
Objectives are operationalized into criteria in the areas of research output, teaching
output, external service, internal service and cost. Data envelopment analysis (DEA)
approach is incorporated in the optimization model for efficiency measurement.
Implemented as a spreadsheet add-on, the system can be used as an academic policy
aid.

29.3.4 Accord

http://www.robustdecisions.com. Accord software is a decision support tool that
helps individuals and groups make better decisions with uncertainty. The software
integrates three main technologies: Taguchi’s method of robust design, product
design process, and Bayesian team support (BTS), among which BTS is a patented
approach to decision support and the foundation for Accord. BTS is based on

http://idss.cs.put.poznan.pl/site/70.html
http://www.robustdecisions.com
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Bayesian decision theory [51, 67]. Given a decision problem, the theory prescribes
an optimal decision choice to select the alternative that maximizes the subjective
expected utility. BTS extends Bayesian decision theory to integrate the “subjective
expectances” from multiple DMs in a group decision-making situation. BTS also
incorporates Bayesian methods with expert-based methods to support the decision-
making process. BTS includes the following Bayesian analysis methods: subjective
expected utility, marginal value of information, and probability of being best
(combining preferences from multiple DMs’ evaluations). The interface of the
software includes four main features: (1) a belief map to provide belief modeling,
(2) alternative comparison, (3) criteria used to compare alternatives, and (4) collab-
oration management of team members. Accord is offered in standalone, enterprise
and SaaS versions. Thirty-days free trial is available.

29.3.5 Analytica Optimizer

http://www.lumina.com. Analytica is a family of decision support software that
helps people visually create, analyze, and communicate decision models. Its
underlying technologies are influence diagrams (visual representation of all essen-
tial elements of a decision problem in the form of decisions, uncertainties, and
objectives) and Monte Carlo simulation (to evaluate risk and uncertainty). Analytica
Optimizer, the highest edition level of Analytica, provides MOO support through its
sublicensed solver engines from Frontline Systems.1 It automatically distinguishes
linear programming, quadratic programming or general non-linear programming
optimization and seamlessly integrates optimization with all of other Analytica’s
core features. The optimization engines in Analytica Optimizer have various limits
on the number of variables and constraints. For continuous linear programming
and quadratic programming problems, there is a limit of 8000 variables and 8000
constraints. For integer or mixed-integer linear or quadratic programming, there is a
limit of 2000 variables and 2000 constraints. For general non-linear problems, there
is a limit of 500 variables and constraints. Add-on engines can be purchased to
eliminate aforementioned limits on problem sizes. Anlytica optimizer is Windows
based and is available for a free 30-day trial.

29.3.6 APOGEE

http://www.stat-design.com/Software/Apogee.html. Apogee is the statistical anal-
ysis, allocation and optimization engine for Triptych (see Sect. 29.3.59). Apogee
works with mathematical functions YD f(X) created in Excel workbooks, where

1http://www.solver.com/about.htm.

http://www.lumina.com
http://www.stat-design.com/Software/Apogee.html
http://www.solver.com/about.htm
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X is a statistical variable (as a parameter) and Y is a mathematical function
of the parameters (as a response). Apogee then provides statistical capabilities,
including sensitivity analysis, Monte Carol Analysis, Allocation, and MOO, for
assessing and improving the variation of the responses. Genetic algorithm approach
is implemented to provide multi-objective, nonlinear, and global optimization.
Unique to this tool is that the optimization approach allows X parameter uncertainty
information to be included in the formulation and allows the Y response to be
optimized for the mean, standard deviation, and/or probability of non-compliance
(PNC) of multiple responses. A 10-day free trial is available.

29.3.7 BENSOLVE

http://ito.mathematik.uni-halle.de/~loehne/index_en_dl.php. BENSOLVE [39] is a
free multi-objective linear programming (MOLP) solver in MatLab. It implements
Benson’s algorithm to solve linear vector optimization problems. The latest version,
BENSOLVE-1.1, is available for free download.

29.3.8 Criterium Decision Plus (CDP)

http://www.infoharvest.com/ihroot/index.asp. CDP is a Windows-based visual mul-
tiple criteria decision support tool by InfoHarvest Inc. It supports both SMART
[25] and AHP [61] methodology. Uncertainty is supported through graphical
representation of uniform, triangular, normal, lognormal, and custom distributions
for input attributes. CDP models can also be used directly in the freely available
Ecosystem management Decision Support (EMDS) system for spatial MCDA
decision-making, though CDP still has to be purchased separately. Version CDP
3.0 can support up to 200 alternatives and 500 blocks in total. To accommodate
a greater number of alternatives, the Weighted Decision Object 3.0 (WDObj) that
encapsulates the capability of CDP in an ActiveX (COM) object can be incorporated
into the applications. A free CDP 3.0 student version, with all features but restricted
model size, is downloadable from the vendor’s website. CDP is compatible with
Windows 95 to Windows 7, but Windows Vista is not supported.

29.3.9 DecideIT

http://www.preference.nu/site_en/decideit.php. DecideIT is marketed by Preference
AB and is designed to integrate various procedures for handling vague and
imprecise information in a complex decision situation and probabilistic decision
analysis. Originated from MAUT, the tool utilizes the DELTA method [16, 17]

http://ito.mathematik.uni-halle.de/~loehne/index_en_dl.php
http://www.infoharvest.com/ihroot/index.asp
http://www.preference.nu/site_en/decideit.php
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to evaluate decision problems using weight, probability and utility intervals, and
qualitative comparisons for criteria, alternatives and consequences. It provides
decision trees and influence diagrams (transformed into a corresponding decision
tree after evaluation) with criteria hierarchies to model users’ decision architecture.
Imprecise probabilities and utility value statements are captured through GUI, and
results are graphically presented in various ways, e.g., as pair-wise comparison
of alternatives. It also provides a graphical overview of the preference ordering
among consequences and critical elements of a decision problem. The vendor also
claims that “DecideIT provide means for analyzing decisions involving multiple
and conflicting objectives and several stakeholders with differing views on the
objectives.” DecideIT supports 15 alternatives at the root level, 512 consequences
per alternative, 1023 nodes per alternative, and 99 decision criteria. The software
runs on Windows XP or Windows 7, with Java runtime environment and minimal
512 MB RAM. A trial version of DecideIT is available.

29.3.10 Decision Explorer®

http://www.banxia.com/dexplore. Decision Explorer® by Banxia Software is a
Windows-based tool for managing qualitative information that surrounds complex
or uncertain situations. The basic technique employed is cognitive mapping, a
technique founded on the theory of personal constructs [36]. Decision Explorer® can
facilitate group discussion and understanding by means of its visual development of
problem issues. In addition to a number of tools to draw cognitive maps, the software
provides a large number of analytical tools that assist in evaluating the similarities
and differences of sets and in developing and analyzing clusters of information
about the problem. The standard licenses are limited to 8000 concepts in its model
sizes. The website provides a tutorial, case study, demonstration downloads, and a
bibliography of material related to the software or the cognitive mapping method.

29.3.11 Decision Desktop Software (d2)/Diviz

http://www.decision-deck.org/d2/index.html. Decision Desktop Software, or d2, is
a rich open source Java software containing several MCDA methods. It was the
first software developed by the Decision Deck project, an effort to collabora-
tively develop open source multiple criteria decision aid software. The d2 allows
decentralized evaluations from several experts, whose evaluation results can then
be analyzed by a coordinator. Several MCDA methods and utilities plug-ins are
bundled within the platform, including IRIS (see Sect. 29.3.31), Rubis, VIP (see
Sect. 29.3.55), UTADISGMS and GRIP, and Weighted Sum. The d2 requires a
local desktop installation of a client (Java 5 JRE is required) and uses a database
to store application data on the server side (version 4.1.x or higher MySQL server is

http://www.banxia.com/dexplore
http://www.decision-deck.org/d2/index.html
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required). Decision Desktop is currently in a frozen development state due to a lack
of developers. Another software under development by the same group is Diviz,
currently used by students and researchers from around 15 universities in Europe.
Diviz considers MCDA methods as sequences of more elementary algorithms,
which can be rebuilt in the software as algorithmic workflows. Currently, there
are about 100 algorithmic components available, ranging from outranking methods
to value-based methods. The list of components can be viewed at http://www.
decision-deck.org/diviz/webServices.html. A java-based Diviz client (which runs
on Windows, Linux, or Mac) is required on the user’s end. Calculations are done on
servers located in France and Luxembourg.

29.3.12 Decision Lab 2000/Visual PROMETHEE

Decision Lab 2000 is an interactive decision support system [28] based on the
outranking methods PROMETHEE [7, 8] and GAIA [5]. Sensitivity analyses
are generated by using techniques of walking weights, intervals of stability, and
the graphical axis of decision, displayed by the GAIA method. The software is
also suitable for group decision support, providing profiles of actions and multi-
scenario comparisons. The methodology used here requires fewer comparisons
from the decision maker than the AHP method; it permits the user to define his
own measurement scale. The original download link from its original developer
and distributor, Visual Decision Inc. is no longer active. However, a new version
of the software, Visual PROMETHEE beta is available for download (http://
www.promethee-gaia.net/softwareF.html).Visual PROMETHEE is a Windows (XP,
Vista, 7) application. Visual PROMETHEE also includes a PROMap GIS feature
that is integrated with Google Maps. Internet connection is required to use the GIS
PROMap feature.

29.3.13 DPL 8

http://www.syncopation.com. DPL 8 is a family of software products for decision
and risk analysis. Decision modeling is provided through influence diagrams and
decision trees. A typical decision tree includes a decision node to model decision
alternatives, a chance node to model decision options, and a value node to model
decision goals. After running the model, the decision analysis result is presented
in the form of a policy tree. In case of a continuous chance node, a Monte Carlo
simulation feature can be used to analyze a continuous model. The DPL 8 family
includes Direct, Professional, Enterprise, and Portfolio, versions. The entry-level
Direct version is a pure Excel add-in, while the other versions offer both an
add-in interface and a standalone application interface. While there is no limit
to the number of alternatives within a decision model, there is a limit of 1024

http://www.decision-deck.org/diviz/webServices.html
http://www.decision-deck.org/diviz/webServices.html
http://www.promethee-gaia.net/softwareF.html
http://www.promethee-gaia.net/softwareF.html
http://www.syncopation.com
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attributes for the decision criteria. DPL uses a standard Windows (XP or later)
environment. Minimum storage requirement is 25MB of hard disk space, or 70MB
for a full installation with all documentations. A demo is available for DPL 8 Direct
and Professional. Discounted academic licenses are available for the Direct and
Professional versions.

29.3.14 D-Sight

http://www.d-sight.com. D-Sight is relatively new MCDA software based on the
PROMETHEE GAIA and utility-based methods. The evaluation criteria are orga-
nized through criteria hierarchy trees. The DM’s preferences can be modeled
through either pair-wise comparisons (PROMETHEE) or utility functions. After the
specification of evaluation criteria and preferences, the software ranks and scores
the alternatives. D-Sight software solutions are now using scoring scales between 0
and 100. However, D-Sight Desktop offers a PROMETHEE plug-in that displays
scores using the �1 C1 PROMETHEE scale. A projection of alternatives and
criteria (the GAIA plane) allows evaluation of how the alternatives perform with
respect to the different criteria as well as how the criteria act as differentiators for
alternatives. D-Sight is available as a desktop version or as a Web application. For
the desktop version, additional functions can be obtained through D-Sight’s plug-
ins, such as Maps (free), multi-users plug-in (for group decision making), weights
elicitation, and sub-set optimization. The D-Sight Web is a collaborative decision-
making platform managing online projects in which people have specific roles, such
as project managers, experts, etc. For the desktop version, a Windows-based Java
Runtime version 6 or later, and 30MB free disk space are required. Special rates
for academics are available, as well as a free 14-day trial version. A permanent free
version of D-Sight Web is offered, which is thus not limited in time, but limited to
one user account and one project at any time.

29.3.15 ELECTRE III-IV

http://www.lamsade.dauphine.fr/spip.php?article241. ELECTRE III aggregates par-
tial preferences into a fuzzy outranking relation [27, 58]. ELECTRE IV builds
several non-fuzzy outranking relations when criteria cannot be weighted. Two
complete preorderings are obtained through a “distillation” procedure, either from
the fuzzy outranking relation of ELECTRE III, or from the non-fuzzy outranking
relations provided by ELECTRE IV. The intersection of these preorderings indicates
the most reliable global preferences. A demo version of ELECTRE III-IV is
available for download. ELECTRE III-IV runs on Windows.

http://www.d-sight.com
http://www.lamsade.dauphine.fr/spip.php?article241
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29.3.16 ELECTRE IS

http://www.lamsade.dauphine.fr/spip.php?article238. ELECTRE IS represents an
evolution of the ELECTRE I method [59] and enables the use of pseudo-criteria
(criteria with thresholds). Given a finite set of alternatives evaluated on a consistent
family of criteria, ELECTRE IS supports the user in the decision process of
selecting one alternative or a subset of alternatives. The method consists of two
parts: construction of one crisp outranking for modeling the DM’s preferences, and
exploitation of the graph corresponding to this relation. The subset searched is the
kernel of the graph.

29.3.17 ELECTRE TRI

http://www.lamsade.dauphine.fr/spip.php?article244. ELECTRE TRI is a multiple
criteria decision-aiding tool designed to deal with sorting problems. This software
implements the ELECTRE TRI method that provides two different procedures
(pessimistic or optimistic) to assign a finite set of actions to a set of categories
corresponding to predefined guidelines [48]. ELECTRE TRI Assistant reduces
the cognitive effort required from the DM to elicit the preference parameters by
enabling weights to be inferred through a form of regression.

29.3.18 Equity3

http://www.catalyze.co.uk/?id=229. Equity3 is a PC-based MCDA tool originally
developed by Catalyze Ltd in association with LSE Enterprise (London School of
Economics and Political Science). It aims at helping DMs obtain better value-for-
money from their portfolio decisions. Decision models in Equity3 are mostly built to
aid the allocation of monetary resources to an investment portfolio. Building on the
same methodological framework as HIVIEW3 (see Sect. 29.3.27), Equity3 includes
five main model building stages, which are model construction, scoring, setting pref-
erences, analyzing models, and recommendations. However, the model construction
stage in Equity3 is quite different from HIVIEW3: it groups the portfolio of options
into logical towers in the model structure. Detailed portfolio analysis in Equity 3
includes efficiency frontiers, affordability and trade-off analysis. Equity3 supports
qualitative criteria and group decision making in the same manner as HIVIEW3.
A 20 days free trial version is available for download. Educational licensing is also
available, but support needs to be purchased separately.

http://www.lamsade.dauphine.fr/spip.php?article238
http://www.lamsade.dauphine.fr/spip.php?article244
http://www.catalyze.co.uk/?id=229
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29.3.19 ESY

ESY (evaluation subsystem) [52] employs the multi-attribute value theory model
to help decision makers make more rational decisions and promote consistency in
their decision making throughout all phases of a nuclear emergency. ESY provides
decision support not only in the evaluation, but also in the formulation and appraisal
of the decision strategies. It is one of the three distinct subsystems in RODOS (real-
time online decision support system) architecture (http://www.rodos.fzk.de). Several
other systems that evaluate strategies in nuclear emergencies are also provided,
ranging from rule-based systems to those using multi-attribute value and utility
theory.

29.3.20 Expert Choice

http://www.expertchoice.com. Expert Choice (EC) software employs AHP as its
core methodology. EC products include Expert Choice Desktop, the web-based
ComparionTM Suite for group decision-making, and Expert Choice Inside for
application integration. EC desktop versions have been used for decision analysis
for more than 20 years. In addition to hierarchies of alternatives, the desktop version
also offers a rating template library of best practice ratings scales, portfolio scenarios
to visualize different scenarios on the efficient frontier, 3D plotting to see results
in more meaningful ways, and support for Microsoft project integration and Oracle
database interfaces. ComparionTM is a collaborative application for DMs supporting
five decision processes: (1) defining goals, (2) structuring decisions, (3) assigning
roles, (4) collaborating, and (5) choosing among options. A 10-day free trial version
of ComparionTM is available.

29.3.21 FGM

http://www.ccas.ru/mmes/mmeda/soft/first.htm. FGM is MCDM software for visu-
alizing the Pareto frontier in decision problems with multiple objectives. FGM
employs the Feasible Goals Method to explore all possible results of all feasible
decisions [42] and the Interactive Decision Maps technique to display various
decision maps. It supports both linear optimization algorithms (mostly based on
approximation of multi-dimensional convex bodies by polytopes) and non-linear
optimization algorithms (based on stochastic covering of bodies by systems of
simple figures). FGM 3.1 supports a maximum of 100 decision variables, 5 decision
criteria, and 300 non-zero elements in a decision model. FGM-based applications
can be coded in C language for PCs in the Windows environment and workstations
in the Unix environment. Demo software is available for download, as well as a

http://www.rodos.fzk.de
http://www.expertchoice.com
http://www.ccas.ru/mmes/mmeda/soft/first.htm
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Java-based web-application of the FGM demo. The same research group respon-
sible for FGM also provides reasonable-goal-method-based (RGM-based) MCDA
software, discussed in Sects. 29.3.53 and 29.3.65.

29.3.22 FuzzME

http://fuzzme.wz.cz. FuzzMe (Fuzzy Models of Multiple-Criteria Evaluation) is
a tool for creating fuzzy models of multiple-criteria evaluation and decision-
making. It was developed at the Faculty of Science at Palacký University Olomouc.
Both quantitative and qualitative criteria are supported. For the aggregation of
partial evaluations, different methods can be used, such as fuzzy weighted average,
fuzzy ordered weighted average, or fuzzy Choquet integral [72]. FuzzME runs
on Windows but requires the .NET framework. A demo version is available for
download.

29.3.23 GeNIe & SMILE

http://genie.sis.pitt.edu. GeNIe & Smile is a decision-theoretic modeling system
developed by the Decision Systems Laboratory at the University of Pittsburgh. The
system provides a general-purpose modeling environment, SMILE (Structural Mod-
eling, Inference, and Learning Engine), which is a fully portable library of CCC
classes that implements decision-theoretic methods [22]. SMILE.NET is available
with .NET framework, which can be used to create web-based applications. In
addition, GeNIe, a Windows-based graphic click-and-drop interface for SMILE, is
available to develop decision-theoretic models. The GeNIe & Smile system includes
MADM-related modeling languages, such as multiple decision nodes, multiple
utility nodes, and multiple attribute utility nodes. GeNIe, SMILE, and its wrappers,
are available free of charge for any use.

29.3.24 GUIMOO

http://guimoo.gforge.inria.fr. GUIMOO (Graphical User Interface for Multi
Objective Optimization) is free software for analyzing results in MOO problems. It
provides visualization of approximative Pareto frontiers and metrics for quantitative
and qualitative performance evaluation, including S-metric, R-metric, size of the
dominated space, coverage of the two sets and converge differences, etc. The
latest release, GUIMOO-0.4-3 is developed in CCC in a Win32 desktop-based
environment.

http://fuzzme.wz.cz
http://genie.sis.pitt.edu
http://guimoo.gforge.inria.fr
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29.3.25 HIPRE 3C

http://www.sal.tkk.fi/en/resources/downloadables/hipre3. HIPRE 3C is a software
family that includes HIPRE 3C (for desktop use), HIPRE 3C Group Link (for
group decision support), and Web-HIPRE. HIPRE 3C is decision support software
integrating AHP (Analytic Hierarchy Process) and SMART (Simple Multiattribute
Rating Technique), which can be run separately or be combined in one. HIPRE 3C
provides a visual and customizable graphical interface for structuring, prioritization,
and analysis of complex decision problems. HIPRE 3C demo is restricted to run
models with a maximum of three levels with three elements at each level. The
full version of HIPRE 3C can support up to 50 elements with up to 20 levels.
HIPRE 3C Group Link is group decision support software that combines individual
prioritizations (through AHP) into an interval AHP model called preferences
programming model [64]. HIPRE 3C Group Link allows group members to
combine AHP models, after individual AHP prioritizations are captured with HIPRE
3C. Web-HIPRE is a web-version of the HIPRE 3C (http://www.hipre.hut.fi). It
is a java-applet and provides a global platform for individual and group decision
support.

29.3.26 HiPriority

http://www.quartzstar.com. HiPriority is designed to find best portfolio solutions,
i.e. best subsets of alternatives subject to resource constraints. Weights are assigned
to criteria and alternatives, and the software allows specifying dependencies
between alternatives, as well as specifying mutually exclusive alternatives.
HiPriority provides modeling of the consequences of interactions between options,
such as multiple buffers to see the effects of forcing options in or out of a solution
portfolio. To visualize benefit/cost ratios, the package creates simple value trees of
cost elements together with their corresponding benefits, where cost is defined
as any scarce resource. Miniature graphical views of the models are used as
navigational tools. HiPriority is desktop-based and currently free to download
as charity-ware.

29.3.27 HIVIEW3

http://www.catalyze.co.uk/?id=230. HIVIEW3 is a PC-based multiple criteria deci-
sion modeling tool original developed by Catalyze Ltd in association with LSE
Enterprise (London School of Economics and Political Science). Hiview3 facilitates
the building of decision models through choosing between mutually exclusive
options. A complex decision modeling process is broken down into five simple

http://www.sal.tkk.fi/en/resources/downloadables/hipre3
http://www.hipre.hut.fi
http://www.quartzstar.com
http://www.catalyze.co.uk/?id=230
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management stages. In stage 1, the outline of a model is constructed as a value
tree structure and the options are defined; in stage 2, each of the action options
is scored against the criteria set up in the outlined model; in stage 3, DMs set
preferences on the relative importance of different aspects of the model; in stage
4, the model is analyzed; and lastly, recommendations are presented in stage 5.
One unique feature of HIVIEW3 is its support for both quantitative and qualitative
criteria, and weight assessments. The support for qualitative criteria is implemented
through the inclusion of MACBETH methodology, and is designed to work equally
in a workshop or back office environment. In addition, HIVIEW3 also supports
group decision-making through Catalyze decision conferencing services. A 20 days
free trial version is available for download. Educational licensing is also available,
but support needs to be purchased separately.

29.3.28 IDS Multicriteria Assessor (IDS Version 2.1)

http://www.e-ids.co.uk. IDS Multicriteria Assessor supports multi-attribute decision
analysis based on the Evidence Reasoning (ER) approach, a decision method for
dealing with uncertainties in multi-attribute decision analysis (MADA) problems of
both quantitative and qualitative natures [76]. Based on utility theory and Dempster-
Shafer theory of evidence [18, 69], the ER approach uses a belief decision matrix
(a generalized decision matrix with attributes assessed using a belief structure)
[77] to systematically model MADA decision problems under different types of
uncertainties, such as objectivity, randomness, and incompleteness. A free demo
version that supports ten attributes is available for download, as well as various
price options for academic, professional and enterprise versions.

29.3.29 IND-NIMBUS

http://ind-nimbus.it.jyu.fi. IND-NIMBUS is an interactive multi-objective optimiza-
tion system for solving continuous, nonlinear problems with conflicting objectives
subject to equality and inequality constraints. It employs the NIMBUS [45]
(Nondifferentiable Interactive Multiobjective Bundle-based Optimization System)
method based on a classification of the objective functions. In NIMBUS, the user
is asked to express preferences by classifying the objective functions at the current
Pareto optimal solution into up to five classes according to how the current solution
should be improved. The classes are functions to be improved, to be improved till
some aspiration level, satisfactory at the moment, allowed to impair till some bound,
and allowed to change freely. New Pareto optimal solutions are then generated by
solving single-objective sub-problems created based on the preference information.
Connections for using some commercial solvers have also been developed. While
there is no theoretic restriction on problem size, IND-NIMBUS in practice can

http://www.e-ids.co.uk
http://ind-nimbus.it.jyu.fi
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handle problems with less than ten objectives. IND-NIMBUS is desktop-based and
can be connected with different simulator or modeling tools, such as Matlab. IND-
NIMBUS can be used on the Windows and Linux platforms. It is commercial but
free for academic testing purposes. Based on the same NIMBUS method, WWW-
NIMBUS (http://nimbus.it.jyu.fi) is a free web-based version for academic teaching
and research purposes.

29.3.30 INPRE and ComPAIRS

http://www.sal.tkk.fi/en/resources/downloadables/inpre.These two decision support
tools are early implementations of techniques based on the imprecise preference
statements in hierarchical weighting [63]. INPRE analyzes interval preference
statements in the Analytic Hierarchy Process (AHP), while ComPAIRS works with
similar statements in value tree analysis. The underlying methodology is similar to
the one described in HIPRE 3C (Sect. 29.3.25).

29.3.31 IRIS

http://www.uc.pt/feuc/ldias/software/iris. IRIS (Interactive Robustness analysis and
parameters’ Inference for multicriteria Sorting problems) is a DSS for sorting a
set of actions (alternatives, projects, candidates) into predefined ordered categories,
according to their evaluations (performances) on multiple criteria [21]. Application
examples would be sorting funding requests according to merit categories, such as
very good, good, fair, or not eligible, or sorting loan applicants into categories such
as accept, require more collateral, or reject. IRIS uses a pessimistic concordance-
only variant of the ELECTRE TRI method [19]. Rather than demanding precise
values for the ELECTRE TRI parameters, IRIS allows one to enter constraints on
these values. It adds a module to identify the source of inconsistency among the
constraints when it is not possible to satisfy all of them at the same time, according to
a method described by Mousseau et al. [47]. On the other hand, if the constraints are
compatible with multiple assignments for the actions, IRIS allows drawing robust
conclusions by indicating the range of assignments (for each action) that do not
contradict any constraint. The software supports up to thousands of alternatives and
up to 12 decision criteria. IRIS is windows-based and a demo version with limited
problem sizes is available for download. IRIS is no longer actively supported, and
an open source free alternative to IRIS is available as a plug-in for Decision Desktop
(d2) software (see Sect. 29.3.11).

http://nimbus.it.jyu.fi
http://www.sal.tkk.fi/en/resources/downloadables/inpre
http://www.uc.pt/feuc/ldias/software/iris
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29.3.32 iMOLPe

http://www.uc.pt/en/org/inescc/products/molp_setup_limited. iMOLPe (Interactive
Multi-Objective Linear Programming explorer) is an interactive software package
to deal with linear programming problems with multiple objective functions, which
includes scalarizing processes for computing efficient solutions based on weighted-
sums, reference points and constraints on objective function values; distinct solution
search strategies and visualization of results obtained with the TRIMAP method;
and STEM, ICW and Pareto Race interactive methods. The downloadable version
is limited to 6 objective functions, 100 decision variables and 100 functional
constraints.

29.3.33 interalg

http://openopt.org/interalg. interalg (interval algorithm) is a free solver for multi-
objective optimization with specifiable accuracy, possibly with categorical variables
and general logical constraints. It uses an interval analysis based method and runs on
Windows, Linux, or Mac. The software was initially released in March 2011, written
in Python and NumPy. interalg includes a wide range of MOO functionalities,
including searching for minima or maxima of non-linear problems, searching for
global extrema of nonlinear problems with some discrete variables, searching full
cover of Pareto front, and solution of non-linear equations. The software can handle
some problems with hundreds of variables, though for some problems it may take
too long to get a solution with the required accuracy.

29.3.34 iSight

http://www.3ds.com/products/simulia/portfolio/isight-simulia-execution-engine/
isight-see-portfolio. Originally developed by Engineous Software, iSight is software
for process integration and design optimization. It provides users with a suite
of tools for creating simulation process flows to automatically exploit design
alternatives and identify optimal performance parameters, taking advantage of
its state-of-art multi-objective genetic algorithm approaches. In 2007, Engineous
Software was acquired and iSight became a part of the Dassault Systèmes’
SIMULIA brand product suite.

http://www.uc.pt/en/org/inescc/products/molp_setup_limited
http://openopt.org/interalg
http://www.3ds.com/products/simulia/portfolio/isight-simulia-execution-engine/isight-see-portfolio
http://www.3ds.com/products/simulia/portfolio/isight-simulia-execution-engine/isight-see-portfolio
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29.3.35 JAMM

http://idss.cs.put.poznan.pl/site/jamm.html. JAMM is designed to solve multi-
criteria classification problems. Like 4eMka2 described in Sect. 29.3.2, JAMM
is a family of software developed by the Laboratory of Intelligent Decision Support
Systems (IDSS) at Poznań University of Technology to solve MCDM problems
based on rough sets approach. The MCDM classification problem concerns the
assignment of objects (alternatives) evaluated by a set of criteria to one of pre-
defined and non-ordered decision classes, which is different from the sort problem
in 4eMka2 where the decision classes are preference-ordered. The features in
JAMM include: computation of rough approximations, induction of decision rules
using DomLem and DomApriori (a complete set of rules), reduction of data
table, classification of new examples, and data validation. It is Windows-based
and available for free download. Based on communications with the software
developers, JAMM is being replaced by jRank, a Java command-line application.

29.3.36 Logical Decisions

http://www.logicaldecisions.com. Logical Decisions for Windows (LDW) is deci-
sion support software for structuring and analyzing MADM problems. Based on
MAUT, LDW offers five methods for assessing weights in value judgments, ranging
from the smarter method, through tradeoff method, to AHP. The user interface is
considered a significant attraction, with a graphical, point and click way to adjust
weights. The results can be displayed in various ways, and one can compare pairs of
alternatives to see their major differences. Interactive graphical sensitivity analysis
displays are available. Logical Decisions offer a windows-based single user version
(LDW for Windows), a group version (LDW for groups), and a portfolio version
(LDW Portfolio). A 30 days free trial version of LDW is available and a free
student version is also available with the book Value-Added Decision Making for
Managers [11].

29.3.37 MakeItRational

http://makeitrational.com. MakeItRational organizes the process of multi-criteria
evaluation by breaking it up into multiple judgments. MakeItRational is based
on AHP and supports pair-wise comparisons of criteria. Evaluation results are
represented in four types of charts: alternatives ranking, alternatives comparison,
criteria weights, and sensitivity analysis. Desktop versions of MakeItRational are
offered for Windows and Mac, as is an on-line version. A free demo version, which
doesn’t allow saving data, is available.

http://idss.cs.put.poznan.pl/site/jamm.html
http://www.logicaldecisions.com
http://makeitrational.com
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29.3.38 Markex (Market Expert)

http://www.ergasya.tuc.gr/software.html. Markex [44] is a multi-criteria decision
support system for analyzing consumer behavior and market shares. The system
uses consumer-based methodology [70] to support various stages in the product
development process. The database of consumer survey results is analyzed to build
different models for forecasting, data analysis, multi-criteria analysis, and branch
choice. Specifically, Markex applies UTASTAR, an improved algorithm based on
original UTA method, to model the multi-criteria consumer preferences. In addition,
Markex employs three partial expert systems to support financial evaluation of the
involved enterprises, selection of brand choice models, and selection of data analysis
models. The software system is Windows-based, though the speed of the computer
is critical in the solution of linear programs, calculation of utilities in the UTASTAR
model, and representation of different models.

29.3.39 MindDecider

http://www.minddecider.com. MindDecider uses the concepts of mind mapping,
MCDA, and AHP. A simple graphic interface allows fast click menu options to
access decision constructs and then drag-and-drop onto a project canvas. User
preferences can be modeled through utility functions and pair-wise comparisons.
Uncertainty can be incorporated using fuzzy calculations feature. MindDecider
is Windows-based and offers a personal version and a team version. Currently,
the commercial version of MindDecider works only on the Microsoft.NET 2.0
framework. Mono versions for MaxOS and Android exist as beta versions. Users
need 512MB free RAM space and up to 64MB free hard disk space to run
MindDecider. Demo versions are available.

29.3.40 MINORA

http://www.ergasya.tuc.gr/software.html. MINORA (Multicriteria Interactive Ordi-
nal Regression) [71] is an interactive decision support system based on the UTA
method [34]. The interaction takes the form of an analysis of inconsistencies
between the decision maker’s rankings and those derived from utility measures.
The method stops when an acceptable compromise is determined. The result is an
additive utility function, which is used to rank the set of alternatives.

http://www.ergasya.tuc.gr/software.html
http://www.minddecider.com
http://www.ergasya.tuc.gr/software.html
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29.3.41 M-MACBETH and WISED

http://www.m-macbeth.com/en/m-home.html. M-MACBETH software deploys the
MACBETH (Measuring Attractiveness by a Categorical Based Evaluation Tech-
nique) method, which is an interactive approach that requires only qualitative
judgments about differences of values to help DMs quantify the relative attrac-
tiveness of options [2]. The user’s qualitative preference judgment is captured
through an interactive questioning procedure that compares two elements at a
time. Judgmental disagreement or hesitation is also allowed. Using mathematical
programming, the consistency of judgment is automatically verified and a numerical
scale is generated based on seven semantic categories: no, very weak, weak,
moderate, strong, very strong, and extreme difference of attractiveness. Weighting
scales for decision criteria are generated in a similar manner, and an overall score for
each option is calculated by weighted sum. The software provides some powerful
tools like sensitivity analysis, structuring criteria in a value tree, robustness analyses
of the final ranking, and profile comparison. M-MACBETH is desktop-based, with
a minimum of 800� 600px screen resolution running on a PC with Windows 2000
or earlier. A free demo version with a feature restriction of five criteria/options is
available for download. Licensing options range from academic, to professional,
and corporate versions with different pricing. An online tool called WISED is
available as a new implementation of the MACBETH methodology with added
online collaboration (both for evaluators and for the suppliers/representatives of the
options under evaluation). It has a user-friendly layout, which makes it easier to
undertake the tasks of scoring and weighting. WISED is available online as software
as a service (SaaS) or installed on a companies’ server.

29.3.42 modeFrontier

http://www.esteco.com/home/mode_frontier/mode_frontier.html. The name mode-
Frontier is in reference to the Pareto frontier, providing a boundary for “best”
solutions. modeFrontier is multi-objective optimization software that allows easy
coupling to any computer aided engineering (CAE) tool. The algorithms used in
modeFrontier include linear and non-linear multi-objective optimization, Hurwicz
algorithm [33], and Savage method [66]. The software also includes a MORDO
(Multiobjective Robust Design Optimization) module [60] to support robust design
analysis to check system sensitivity to any variation of the input parameters. MADA
methods, including Hurwica, Savage, and soon with AHP, are also supported.
According to the developers, the software supports hundreds of design alternatives
and dozens of decision criteria. modeFrontier supports both Windows and Linux
environments.

http://www.m-macbeth.com/en/m-home.html
http://www.esteco.com/home/mode_frontier/mode_frontier.html
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29.3.43 MOIRA and MOIRA Plus

MOIRA (MOdel-Based Computerized System for Management Support to Identify
Optimal Remedial Strategies for Restoring Radionuclide Contaminated Aquatic
Ecosystems and Drainage Areas) is a project financed by the European Commission.
Both MOIRA DSS [56] and MOIRA-PLUS [46] are designed to help DMs to
select countermeasure strategies for different kinds of aquatic ecosystems and
contamination scenarios. Both systems include an evaluation module based on
an additive multi-attribute value model to assess different alternatives. The utility
assessment methods, probability equivalent method (PE) and certainty equivalent
method (CE) [26], are implemented jointly to assess component value functions.
The evaluation module also provides multi-parametric sensitivity analyses with
respect to both weights and value. MOIRA-PLUS includes some functionality
improvements based on the testing and assessment of MOIRA in various project.
The improvements include prediction for the migration of heavy metals and
improved software interfaces. Both versions are windows-based.

29.3.44 NAIADE

http://www.aiaccproject.org/meetings/Trieste_02/trieste_cd/Software/Software.
htm. NAIADE (Novel Approach to Imprecise Assessment and Decision
Environments) is a discrete multi-criteria method [49] which provides an impact or
evaluation matrix that may include either crisp, stochastic, or fuzzy measurements
of the performance of an alternative with respect to an evaluation criterion.
A peculiarity of NAIADE is the use of conflict analysis procedures integrated
with the multi-criteria results. NAIADE can give rankings of the alternatives with
respect to the evaluation criteria (leading to a technical compromise solution),
indications of the distance of the positions of the various interest groups (possibly
leading to convergence of interests or to coalition formation), and rankings of the
alternatives with respect to the actors’ impacts or preferences (leading to a social
compromise solution). NAIADE runs on Windows-based systems.

29.3.45 OnBalance

http://www.quartzstar.com. OnBalance is based on a simple weighting approach:
each decision option is scored against each decision criterion, and each decision
criterion is given a weight. It then computes an overall weight for each option.
Multiple hierarchies, called trees, using different weights, can be created to allow
for different perspectives. Thus the approach appears to be similar to AHP, but no
information is given as to how the overall weights are calculated. The package

http://www.aiaccproject.org/meetings/Trieste_02/trieste_cd/Software/Software.htm
http://www.aiaccproject.org/meetings/Trieste_02/trieste_cd/Software/Software.htm
http://www.quartzstar.com
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is designed to be easy to use by anyone, without much technical understanding.
The interface of OnBalance is specifically designed for group decision-making
and weight sets feature can be created to capture multiple stakeholders’ different
opinions. The current version OnBalance3 is free to download as charity-ware.
OnBalance is desktop-based.

29.3.46 Optimus

http://www.sigmetrix.com/optimus.htm. Optimus is process integration and design
optimization software, bundling a collection of design exploration and optimiza-
tion methods. A single main window graphical user interface provides all the
functionality. The numerical simulation methods of Optimus are based on gradient-
based local algorithms or genetic global algorithms, both for single or multiple
objectives with continuous and/or discrete design variables. Optimus includes
mechanical variation effects in multi-objective performance optimization, multi-
physics simulation and optimization, design robustness optimization, and manu-
facturing cost optimization. Optimus is desktop-based and a demo is available by
request.

29.3.47 ParadisEO-MOEO

http://paradiseo.gforge.inria.fr. ParadisEO is a software framework for metaheuris-
tics, and the MOEO (metaheuristics for multiobjective optimization) module imple-
ments evolutionary multi-objective optimization techniques [10, 37]. It is white-box,
object-oriented, CCC, portable across both Unix-like and Windows systems.
ParadisEO is based on Evolving Objects (EO), a template-based ANSI-CCC
compliant evolutionary computation library. There is conceptually no restriction on
problem size, however, classical Pareto-based metaheuristics usually solve problems
with up to five objectives. As an open source framework, ParadisEO is compatible
with Windows, Unix-like, and MacOS environments. It also supports parallel
and distributed architectures. The related source code is maintained and regularly
updated by the developers.

29.3.48 Pareto Front Viewer

http://www.ccas.ru/mmes/mmeda/soft/third.htm. Pareto Front Viewer (PFV) [40]
is software for interactive Pareto frontier visualization for nonlinear models in
the case of two to eight criteria. PFV can be combined with any Pareto frontier
approximation technique. PFV is windows-based and a demo version (PFV 1.2), as
well as the Manual, is downloadable. The demo version is restricted to 5 criteria and
1000 criteria points.

http://www.sigmetrix.com/optimus.htm
http://paradiseo.gforge.inria.fr
http://www.ccas.ru/mmes/mmeda/soft/third.htm
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29.3.49 Prime Decisions

http://www.sal.tkk.fi/en/resources/downloadables/prime. PRIME Decisions [62]
emphasizes its ability to use incomplete preference information. It relies on the
PRIME method that uses interval valued ratio statements of preference. These lead
to linear constraints for a series of linear programming problems. Solving the linear
programs leads to dominance structures. There is an “elicitation tour” to guide
the decision maker. Because of the large number of linear programs that must be
solved, the approach is best suited to problems with relatively few non-dominated
alternatives. The software runs on Windows platform and is downloadable for
academic use.

29.3.50 Priority Mapper

http://www.infoharvest.com/ihroot/gis/index.asp.Priority Mapper is an extension of
ESRI’s ArcMap, which integrates priority analysis with geographical information
systems (GIS). It is targeted at managers and executives to realistically prioritize
actions related to geographically distributed assets and resources. The output is
in the form of visual representations of the prioritizations and recommended
alternatives. The target operating platform is Windows. Due to a bug in Microsoft’s
installer for SQL, the beta launch of Priority Mapper was delayed.

29.3.51 Prism’s Group Decision Support System

http://www.prismdecision.com/solutions/decision-support. Prism’s Group Decision
Support System provides group multi-criteria decision support. The software is
based on a simple weighted criteria scoring approach for MCDA problems. After
developing a set of possible solutions and agreeing to a set of decision criteria, the
group members weigh each criterion using a pair-wise comparison analysis. The
criteria weights, solution set, and criteria set consist of a multiple criteria decision
matrix. The group members assess each solution against each criterion and vote on
a 1 to 9 scale. In case of disagreement, a revote is taken after group discussion. After
all cells are voted, the raw worth (sum of the 1 to 9 votes) and the weighted worth
for each solution are displayed.

http://www.sal.tkk.fi/en/resources/downloadables/prime
http://www.infoharvest.com/ihroot/gis/index.asp
http://www.prismdecision.com/solutions/decision-support
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29.3.52 PROBE

PROBE (Portfolio Robustness Evaluation) is a decision support system developed
to aid a decision-maker in the task of selecting a robust portfolio of projects in
the presence of limited resources, multiple criteria, different project interactions,
and several types of uncertainty [43]. PROBE identifies all efficient portfolios,
either convex or non-convex, depicts them in a cost versus benefit graph within
a given portfolio cost range, and allows performing in-depth interactive analysis
of the robustness of selecting a proposed portfolio. PROBE integrates two main
architectural components: a multi-criteria decision analysis component and a port-
folio decision analysis component. The multi-criteria component allows the user to
structure the benefit criteria in the form of a value tree, input data for the costs of the
projects and their benefit scores on each bottom-level criterion of the value tree, and
weights for the criteria at each level of the value tree. A hierarchical value model is
used for aggregation evaluation. The portfolio component uses optimization to find
all the efficient portfolios for the given project costs and aggregated benefit value
scores for a user-defined portfolio cost range. The modeling of uncertainty is also
supported.

29.3.53 RGDB

http://www.ccas.ru/mmes/mmeda/rgdb/index.htm. RGDB (Reasonable Goal for
Database) is a prototype version of a Web application server that can support
easy selection of large databases for preferred items, such as preferable goods
and services, suspicious data, efficient investment strategies, etc. It is a Web
implementation of the RGM/IDM (Reasonable Goals Method/Interactive Decision
Maps) technique [41] using Java applets. From the same research group as FGM
(see Sect. 29.3.21), RGM uses IDM to support the identification of goals. However,
the identified goals might not be feasible, and thus a reasonable goal is identified
and feasible decisions (based on users’ preferences) that are in line with the goal are
selected. When applying RGM for databases, users can select preferable rows from
thousands or even millions of rows by simply clicking a preferable criterion point
(a preferable goal) on a picture and then receiving one or more rows that are in line
with the identified goal. The prototype RGDB server supports up to 5 attributes and
up to 2000 alternatives. Five different versions of the applet are available: (1) the
simplest applet for beginners, (2) the applet for negotiation support, (3) the applet
with an additional matrix of decision maps, (4) the applet for negotiation support
with matrix of decision maps, and (5) the applet with a structured procedure of
Pareto frontier exploration. Internet Explorer and Java 1.3 are needed to use the
RGDB application server.

http://www.ccas.ru/mmes/mmeda/rgdb/index.htm
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29.3.54 RICH Decisions

http://www.rich.tkk.fi/index.html. RICH Decisions is a web-based free decision
support software based on the RICH (Rank Inclusion in Criteria Hierarchies)
method [65] which admits incomplete ordinal preference information in hierarchical
weighting models. It allows the DM to state such preference information by
specifying pairs of two sets, possibly of different size, of which the first consists
of attributes and the second of importance rankings that are attained by the
attributes in the first set (e.g., a set of three attributes of which one has the
highest importance ranking, or a singleton set consisting of one attribute which
is the second or third most important). Taken together, these pairs define the set
of feasible attribute weights. RICH Decisions has a graphical user interface for
structuring alternatives and attributes in both flat and multi-level value trees. Scores
can be elicited by assessing all alternatives with regard to a given attribute or
by assessing a given alternative across all attributes. Based on the elicited score
and weight information, RICH Decisions derives decision recommendations by
checking dominance relations and by applying decision rules. Results such as value
intervals and dominance relations are shown graphically. The software supports
up to 29 alternatives. The computations can be time-consuming if there are more
than ten attributes. RICH Decisions is a Java-applet, which requires a Java-enabled
browser. For security reasons, only models can be saved on the server.

29.3.55 Rubis (Plug-in)

http://www.decision-deck.org/d2/plugins.html. Developed as a plug-in for Decision
Desktop Software/d2 (see Sect. 29.3.11), Rubis, a bipolar-valued concordance based
decision aiding method [4], is a progressive decision aiding tool to help a DM
determine a single best decision alternative. The methodology focuses on pair-wise
comparison of alternatives, which lead to the bipolar-value outranking digraph.

29.3.56 SANNA 2009

http://nb.vse.cz/~jablon/sanna.htm. SANNA 2009 is a Excel add-in for multi-
criteria decision support. It is freeware that contains a support tool for estimation
of weights using several methods including pair-wise comparisons and incor-
porates basic MCDA methods including WSA, TOPSIS, ELECTRE I and III,
PROMETHEE I and II, ORESTE, and MAPPAC. It can solve problems up to 180
alternatives and 50 criteria.

http://www.rich.tkk.fi/index.html
http://www.decision-deck.org/d2/plugins.html
http://nb.vse.cz/~jablon/sanna.htm
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29.3.57 MC-SDSS for ArcGIS

http://arcscripts.esri.com/details.asp?dbid=16980.MC-SDSS (multiple criteria spa-
tial decision support system) is a .NET extension of ArcGIS desktop to solve
optimization tasks (based on spatial data) using SAW (simple additive weighting)
and TOPSIS (technique for order preference by similarity to ideal solution) scoring
methods.

29.3.58 SOLVEX

http://www.ccas.ru/pma/product.htm. SOLVEX is a Fortran library of more than
20 numerical algorithms for solving unconstrained, nonlinear constrained, global
minimization, and multi-criteria optimization problems [55]. The MOO algorithms
cover additive convolution, Chebyshev convolution, goal programming, and epsilon
approximation. Two versions, SOLVEX Windows and SOLVEX DOC are available
for download.

29.3.59 TransparentChoice

http://www.transparentchoice.com. TransparentChoice is a Web-based application
for collaborative decision-making, based on AHP. The software is built for providing
the following “must-have” features for AHP: intuitive way to build and visualize
hierarchy; option to reduce the number of pairwise comparisons; consistency check-
ing of pairwise comparison results and resolving inconsistencies; collaborative
decision making and voting; and sensitivity analysis. In TransparentChoice, each
decision starts by creating a project for a specific decision goal, followed by
defining alternatives, criteria, and custom scales. The collaboration is supported
through the User Tab, allowing multiple users’ decision inputs. Once all decision
inputs (alternatives, criteria, and scales) are captured, each user is can evaluate
each alternative using pairwise comparison, and collective votes are organized by
reviewing input with assigned voting strengths to individuals and groups. The results
for final decision are presented in graphic format, including criteria priorities and
alternatives ranking. A free 30-day trial version is available.

29.3.60 Triptych

http://www.stat-design.com/Software/Triptych.html. Triptych is an Excel-based
tool suite that asserts to capture the voice of customers and translate it to design

http://arcscripts.esri.com/details.asp?dbid=16980
http://www.ccas.ru/pma/product.htm
http://www.transparentchoice.com
http://www.stat-design.com/Software/Triptych.html
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requirements in product development. The software includes different worksheets
implementing different MCDA methods, among which are AHP, Pugh, TOPSIS
(Technique for Order Preference by Similarity to Ideal Solution), and the SDI
Method. The AHP worksheet can support an AHP matrix with up to 200� 200
item and includes a Consistency evaluation. The TOPSIS worksheet can support a
TOPSIS matrix with up to 200 criteria and 200 options. The Pugh, TOPSIS, and SDI
Method worksheets can support a matrix with up to 200 criteria and 200 options.
Both qualitative and quantitative options are supported in the TOPSIS worksheet.
A 10-day free trial is available.

29.3.61 TRIMAP

http://www.inescc.pt/ingles/produtos.php. TRIMAP [14] is an interactive approach
that explores the Pareto optimal set for three-criterion linear programming models.
The aim is to aid the decision maker in eliminating parts of the Pareto optimal solu-
tion set that are judged to be of less value. The limitation to three objectives permits
graphical displays that facilitate the decision maker’s information processing. The
procedure does not converge to a particular solution, but the decision maker can stop
the process when sufficient information has been learned about the Pareto optimal
solutions. A demo is available.

29.3.62 UTA Plus

http://www.lamsade.dauphine.fr/spip.php?rubrique69. UTA Plus is the latest Win-
dows implementation of the UTA method, originally proposed in 1982 [34]. The
method can be used to solve multi-criteria choice and ranking problems on a finite
set of alternatives. It constructs an additive utility function from a weak preference
order defined by the user on a subset of reference alternatives. Constructing the
utility function, based on a principle of ordinal regression, requires solving a small
LP-problem. The software proposes marginal utility functions in piece-wise linear
form based on the given weak order, and then allows the user to interactively modify
the marginal utility functions, helped by a graphical user interface. Software and
user manual are available for download.

29.3.63 Very Good Choice

http://www.verygoodchoice-addin.com. Very Good Choice (VGC) is an excel add-
in for supporting both multi-alternative ranking and sorting problems. Based on
the ELECTRE family of outranking methods, VGC allows users to determine

http://www.inescc.pt/ingles/produtos.php
http://www.lamsade.dauphine.fr/spip.php?rubrique69
http://www.verygoodchoice-addin.com
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alternatives and qualitative criteria and weights, and then score the alternatives.
Ranked alternatives, including non-distinguishable alternatives (alternatives with
the same rank), are presented in an ordered table. All the data about the decision
process can be stored in an XML format. A free version is available for download.

29.3.64 VIP Analysis

http://www.uc.pt/en/feuc/ldias/software/vipa. VIP (Variable Interdependent Param-
eters) Analysis [20] was proposed to support the selection of the most preferred
alternative from a list, considering the impacts of each alternative on multiple
evaluation criteria. While the approach uses a basic additive aggregation value
function, it permits the decision maker to provide imprecise parameters for the
criteria importance (scaling weights). In the authors’ words, they propose “a
methodology of analysis based on the progressive reduction of the number of
alternatives, introducing a concept of tolerance that lets the decision makers use
some of the approaches in a more flexible manner.” Several output options exist
depending on the size of the problem and the nature of the input data (including
value range, maximum regret for each alternative, and dominance relations). The
software supports a thousand alternatives and up to 49 criteria. The Windows-based
software is distributed for free upon request. A tutorial is available for download.

29.3.65 Visual Market/2

http://www.ccas.ru/mmes/mmeda/soft/second.htm. Visual Market/2 is a Windows-
based implementation of the RGM/IDM technique for visualization of large
databases (including GIS), similar to RGDB (Sect. 29.3.52). In addition to returning
a small number of items that correspond to the identified goal, auxiliary data filtering
and pseudo-decision trees are also provided. The software supports a maximum of
12,000 alternatives and up to 7 decision criteria. It was developed for Windows XP;
a new version for Windows 7 and Windows 8 is under development. A demo of
Visual Market/2 version 2.1 and a manual are available for download.

29.3.66 VISA

http://www.visadecisions.com. VISA (Visual Interactive Sensitivity Analysis) is
based on an approach described Belton and Stewart [3]. Applying a linear, multi-
attribute value function, it has been available in a Windows version since 1994,
emphasizing a friendly graphical interface for adjusting the criteria hierarchy and
other components of the model. For example, an interactive value tree can be

http://www.uc.pt/en/feuc/ldias/software/vipa
http://www.ccas.ru/mmes/mmeda/soft/second.htm
http://www.visadecisions.com
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structured to show all criteria on the main decision. Users can interactively provide
input of weights and scores using bar charts, thermometer scales, or numerical
input. The weights and scores can be adjusted by dragging the computer mouse,
and the effects can be seen immediately on several output windows. VISA version
8 is available as Standard (a stand-alone desktop application), Education (Windows
stand-alone campus license and free 3 month student licenses), and Multi-user.
A 30-day free trial is also available.

29.3.67 VisualUTA

http://idss.cs.put.poznan.pl/site/visualuta.html. VisualUTA is developed by LDSS
(Laboratory of Intelligent Decision Support Systems) at Poznan University of
Technology, Poland, the same developer as for 4wMka2 (Sect. 29.3.2) and JAMM
(Sect. 29.3.35). It is the first implementation of the UTA-GMS method [31] for
multiple criteria ranking of alternatives. The method is interactive, with progressive
pair-wise comparisons. The software is free for downloading.

29.3.68 WINGDSS

http://www.oplab.sztaki.hu/wingdss_en.htm. WINGDSS [15] is a group decision
support system for multiple attribute problems. WINGDSS provides a final score for
every alternative and thus a complete ranking. Voting powers are assigned to each
decision maker for each criterion. Both subjective and factual criteria can be used.
Sensitivity analysis permits studying the effect of the variations of parameters such
as individual preferences, voting powers, and scores. It includes an attribute tree
editor, data from the editor, and dynamic linkage to external databases. WINGDSS
is Windows-based.

29.3.69 WINPRE

http://www.sal.tkk.fi/en/resources/downloadables/winpre. WINPRE [64] is a
MCDA tool available from the Systems Analysis Laboratory in Finland, the
group that also offers PRIME Decisions (Sect. 29.3.49) and HIPRE 3C family
(Sect. 29.3.25). WINPRE relies on a method called PAIRS (Preference Assessment
by Imprecise Ratio Statements) that permits the decision maker to state a range of
numbers to indicate preferences among alternatives. These preference statements
result in linear constraints that lead to a feasible region for each criterion that is
consistent with the decision maker’s judgments. The software is available free for
academic use.

http://idss.cs.put.poznan.pl/site/visualuta.html
http://www.oplab.sztaki.hu/wingdss_en.htm
http://www.sal.tkk.fi/en/resources/downloadables/winpre
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29.4 Concluding Remarks

Increases in computing power have been at the heart of the substantial growths in
applications of MCDA [74]. In 2005, Weistroffer et al. provided a comprehensive
survey of MCDA software, but many of the software packages presented in that
survey have been discontinued or are no longer supported. More recently, Poles
et al. [54] reviewed MOO software available since 1999, focusing on the tools and
features that advisable MOO software should contain. An early empirical evaluation
of five MCDA software packages and a comparison of their usefulness to a basic
spreadsheet package was conducted by Zapatero et al. [78]. Taking a different angle,
Seixedo and Tereso [68] constructed an AHP-based MCDA software application for
selecting MCDA software and presented the MCDA tools using a similar approach
to Weistroffer et al. [75]. Mustajoki and Marttunen [50] recently did a comparison
of some MCDA software with a specific focus on applicability to environmental
impact assessment.

An updated review of the current state of MCDA software provides insights of
not only what has been improved or not changed in MCDA software application
development, but also what will be interesting for the future. Several findings
from the previous software review Weistroffer et al. [75] are still valid. First, a
large majority of commercially marketed packages deal primarily with MADM
problem models and use relatively simple algorithmic approaches. For example,
many commercial software packages adopt MAUT and/or AHP methods, where
AHP and SMART are frequently implemented together. Second, the large variety
of sophisticated MCDM methods proposed in the literature have mostly been
implemented only on an ad hoc basis to solve a specific problem situation, or as
experimental software to demonstrate the salient features of the proposed method.
There are still relatively few commercial MOO software packages, though many
MOO methods have been proposed in the literature. The available MOO commercial
packages are mostly either integrated solver engines (e.g. Analytica Optimizer), or
integrated in application-specific software solutions (e.g. iSight, modeFrontier).

Changes in MCDA software are also evident. First, MCDA has begun to
penetrate many new areas of research and applications. For example, MCDA
methods have been applied in new engineering applications, such as ESY for
nuclear emergencies and iSight in 3D simulation design. Another example is
spatial planning and management, where MCDA software packages are designed
for integration with GIS, such as MC-SDSS for ArcGIS, Priority Mapper, and
Visual PROMETHEE PROMap, and engineering applications. Second, MCDA
software solutions have moved towards web-based and service-oriented platforms,
facilitated by increasing computing power and improved Internet technology.
Third, it is interesting to see MCDA applications, such as ParadisEO-MOEO and
Decision Lab 2000, that have adopted an open source philosophy, an approach that
has already become a major part of general, mainstream information technology
development. Open architecture provides greater opportunities for implementation
of state-of-the-art MCDA methods and continuous software enhancements by open
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source developers. It also allows the flexibility to adapt specific MCDA methods
for particular business problems. However, the learning curves for open source
solutions are quite steep and open source development may require sophisticated
understanding of MCDA principles and methods. Nevertheless, we expect to
see more open source initiatives in MCDA software development in the future.
Another area for potentially more future MCDA software development is mobile
MCDA applications. Currently, MCDA mobile applications seem to be designed
only for personal decision-making. We did not include these in our survey, but
some examples of such applications include Mobile Decision Maker by Broad
Research Software (http://mobiledecisionmaker.com), decision buddy (http://www.
decisionbuddyapp.com), and Decisionaker by lemonway (http://www.lemonway.
com/index.php/products/14-ios-application/58-decisionaker-support-page).
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31. Greco, S., Mousseau, V., Słowiński, R.: Ordinal regression revisited: multiple criteria ranking
using a set of additive value functions. Eur. J. Oper. Res. 191(2), 416–436 (2008)

32. Hansen, P., Ombler, F.: A new method for scoring additive multi-attribute value models using
pairwise rankings of alternatives. J. Multi-Criteria Decis. Anal. 15(3–4), 87–107 (2008)

33. Hurwicz, L.: Optimality criteria for decision making under ignorance. Cowles Commission
Discussion Paper, Statistics 370 (1951)

34. Jacquet-Lagrèze, E., Siskos, J.: Assessing a set of additive utility functions for multicriteria
decision-making: the UTA method. Eur. J. Oper. Res. 10(2), 151–164 (1982)

35. Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives. Wiley, New York (1976)
36. Kelly, G.: The Psychology of Personal Constructs. Norton, New York (1955)
37. Liefooghe, A., Basseur, M., Jourdan, L., Talbi, E.-G.: ParadisEO-MOEO: a framework for

evolutionary multi-objective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu,
T., Murata, T. (eds.) Evolutionary Multi-Criterion Optimization, Vol 4403 of Lecure Notes in
Computer Science, pp. 386–400. Springer, Berlin (2007)

38. Limayem, M., DeSanctis, G.: Providing decisional guidance for multicriteria decision making
in groups. Inf. Syst. Res. 11(4), 386–401 (2000)

39. Löhne, A.: Vector Optimization with Infimum and Supremum. Springer, Berlin (2011)
40. Lotov, A.V., Berezkin, V.E., Kamenev, G.K.: Approximation and visualization of the Pareto

frontier for non-convex multi-criteria problems. Dokl. Math. 66(2), 260–262 (2002)
41. Lotov, A.V., Bushenkov, V.A., Chernov, A.V., Gusev, D.V., Kamenev, G.K.: INTERNET, GIS,

and interactive decision maps. J. Geogr. Inf. Decis. Anal. 1(2), 118–149 (1997)



1340 H.R. Weistroffer and Y. Li

42. Lotov, A.V., Bushenkov, V.A., Kamenev, G.K.: Feasible Goals Method – Search for Smart
Decisions. Computing Centre RAS, Moscow (2001)

43. Lourenço, J.C., Morton, A., Bana e Costa, C.A.: PROBE – a multicriteria decision support
system for portfolio robustness evaluation. Decis. Support Syst. 54(1), 534–555 (2012)

44. Matsatsinis, N.F., Siskos, Y.: MARKEX: an intelligent decision support system for product
development decisions. Eur. J. Oper. Res. 113(2), 336–354 (1999)

45. Miettinen, K., Mäkelä, M.M.: Synchronous approach in interactive multiobjective optimiza-
tion. Eur. J. Oper. Res. 170(3), 909–922 (2006)

46. Monte, L., Brittain, J.E., Gallego, E., Håkanson, L., Hofman, D., Jiménez, A.: MOIRA-
PLUS: a decision support system for the management of complex fresh water ecosystems
contaminated by radionuclides and heavy metals. Comput. Geosci. 35(5), 880–896 (2009)

47. Mousseau, V., Figueira, J., Dias, L., Gomes da Silva, C., Clímaco, J.: Resolving inconsistencies
among constraints on the parameters of an MCDA model. Eur. J. Oper. Res. 147(1), 72–93
(2003)

48. Mousseau, V., Slowinski, R., Zielniewicz, P.: A user-oriented implementation of the
ELECTRE-TRI method integrating preference elicitation support. Comput. Oper. Res.
27(7–8), 757–777 (2000)

49. Munda, G.: Multicriteria Evaluation in a Fuzzy Environment. Physica-Verlag, Heidelberg
(1995)

50. Mustajoki, J., Marttunen, M.: Comparison of multi-criteria decision analytical software –
searching for ideas for developing a new EIA-specific multi-criteria software. IMPERIA
Project Report, University of Jyväskylä, Finland (2013)

51. Newman, J.W.: Management Applications of Decision Theory. Harper & Row, New York
(1971)

52. Papamichail, K.N., French, S.: Decision support in nuclear emergencies. J. Hazard. Mater.
71(1–3), 321–342 (2000)

53. Patchak, W.M.: Software survey: decision analysis. OR/MS Today 39(5), 39–49 (2012)
54. Poles, S., Vassileva, M., Sasaki, D.: Multiobjective optimization software. In: Branke, J., Deb,

K., Miettinen, K., Słowinski, R. (eds.) Multiobjective Optimization. pp. 329–348. Springer,
Berlin (2008)

55. Potapov, M.A., Kabanov, P.N.: SOLVEX – system for solving nonlinear, global and multicri-
teria problems. In: Proceedings 3rd IFIP WG-7.6 Working Conference on Optimization-Based
Computer-Aided Modelling and Design, Prague, pp. 343–347 (1995)

56. Ríos Insua, D., Gallego, E., Mateos, A., Ríos-Insua, S.: MOIRA: a decision support system for
decision making on aquatic ecosystems contaminated by radioactive fallout. Ann. Oper. Res.
95(1), 341–364 (2000)

57. Roy, B.: How outranking relation helps multiple criteria decision making. In: Cochrane, J.,
Zeleny, M. (eds.) Topics in Multiple Criteria Decision Making, pp. 179–201. University of
South Carolina Press, Columbia (1973)

58. Roy, B.: ELECTRE III: Un algorithme de classements fondé sur une représentation floue
des préférences en présence de critères multiples. Cahiers du Centre d’Etudes de Recherche
Opérationnelle (Belgique) 20(1), 3–24 (1978)

59. Roy, B.: The outranking approach and the foundations of ELECTRE methods. Theor. Decis.
31(1), 49–73 (1991)

60. Parashar, S., Clarich, A., Geremia, P., Otani, A.: Reverse Multi-Objective Robust Design
Optimization (R-MORDO) using chaos collocation based robustness quantification for engine
calibration. In: 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, Fort
Worth, p. 9038 (2010)

61. Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)
62. Salo, A., Hämäläinen, R.P.: Preference ratio in multiattribute evaluation (PRIME) –elicitation

and decision procedures under incomplete information. IEEE Trans. Syst. Man Cybern. Part A
31(6), 533–545 (2001)

63. Salo, A., Hämäläinen, R.P.: Processing interval judgments in the analytic hierarchy process.
In: Goicocchea, A., Duckstein, L., Zionts, S. (eds.) Multiple Criteria Decision Making, pp.
359–371. Springer, New York (1991)



29 Multiple Criteria Decision Analysis Software 1341

64. Salo, A., Hämäläinen, R.P.: Preference programming through approximate ratio comparisons.
Eur. J. Oper. Res. 82(3), 458–475 (1995)

65. Salo, A., Punkka, A.: Rank inclusion in criteria hierarchies. Eur. J. Oper. Res. 163(2), 338–356
(2005)

66. Savage, L.J.: The theory of statistical decision. J. Am. Stat. Assoc. 46(253), 55–67 (1951)
67. Savage, L.J.: Foundations of Statistics, 2nd edn. Dover, New York (1972)
68. Seixedo, C., Tereso, A.: A multicriteria decision aid software application for selecting MCDM

software using AHP. In: Proceedings of the 2nd International Conference on Engineering
Optimization, Lisbon (2010)

69. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)
70. Siskos, Y., Matsatsinis, N.F.: A DSS for market analysis and new product design. J. Decis.

Syst. 2(1), 35–63 (1993)
71. Siskos, Y., Spyridakos, A., Yannacopoulos, D.: MINORA: a multicriteria decision aiding

system for discrete alternatives. J. Inf. Sci. Technol. 2(2), 136–149 (1993)
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