
Chapter 9

Barycentric subdivision

Barycentric subdivision has long been a useful tool in geometry
and topology. It is an operation that preserves topology and is well-behaved
combinatorially. In this chapter we will study a transformation of Brenti and
Welker that maps the f -vector of a complex to the f -vector of its barycentric
subdivision.

9.1 Barycentric subdivision of a finite cell complex

The term barycenter refers to the center of mass of a convex polytope, and
there is a straightforward notion of barycentric subdivision for convex poly-
topes which goes as follows. Place a vertex on the center of mass of each
face of the polytope and connect vertices that lie in a common face. This
“triangulates” the polytope in the sense that every face resulting from the
subdivision is a simplex.

a b a b
sd

Fig. 9.1 A cell complex and its barycentric subdivision.
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186 9 Barycentric subdivision

Ignoring geometry, we can define the barycentric subdivision combinato-
rially: the barycentric subdivision of Δ is the order complex of the poset of
nonempty faces ofΔ. See Figure 9.1. Let sd(Δ) denote this abstract simplicial
complex. Then the k-faces of the complex sd(Δ) are k-chains of nonempty
faces of Δ, sometimes called flags :

F1 <Δ F2 <Δ · · · <Δ Fk.

In particular, each nonempty face of Δ corresponds to a vertex of sd(Δ).
As with general order complexes, the barycentric subdivision is a flag

complex. Moreover, since face posets are ranked by dimension, sd(Δ) is the
order complex of a ranked poset, and hence balanced.

Our combinatorial definition of barycentric subdivision makes sense for any
cell complex Δ for which there is a well-defined face poset, though we need to
be a little careful about the topology. If there are cells ofΔ with identifications
on their boundary, i.e., a (k− 1)-dimensional cell with fewer than k vertices,
information can get lost. For example, in Figure 9.2 we see that the cell
complex on a circle with just one edge and one vertex has a contractible
barycentric subdivision. However, if no face has self-identifications on its
boundary, e.g., if Δ is a polytope or a boolean complex, then Δ and its
barycentric subdivision are homeomorphic.

cell complex Δ combinatorial subdivision topological subdivision

v

E

v

v
<

Δ
E

E

Fig. 9.2 Combinatorial barycentric subdivision can destroy topology if Δ has cells

with self-identifications.

There is a topological definition of barycentric subdivision that does not
have this problem. In a true cell complex, each cell “remembers where it
came from” in the sense that we know how its boundary is mapped onto
lower-dimensional cells. Thus, we can “unglue” the cell, deform the cell con-
tinuously into a geometric simplex, perform barycentric subdivision, and glue
the subdivided cell back with the original boundary map. Doing this for each
cell gives the topological definition of barycentric subdivision.

In all that follows, however, we will only consider the combinatorial defi-
nition.



9.2 The barycentric subdivision of a simplex 187

9.2 The barycentric subdivision of a simplex

We will now do a careful enumeration of the faces in the barycentric subdi-
vision of a simplex. We will denote a simplex on vertex set V by 2V = {F :
F ⊆ V }.

Let’s do small examples first.
If V = {1, 2}, 2V = {∅, {1}, {2}, {1, 2}} the barycentric subdivision is

drawn: . We can list the flags of 2V as:

empty face vertices edges
∅ {1} {1} ⊂ {1, 2}

{2} {2} ⊂ {1, 2}
{1, 2}

so f(sd(2V )) = (1, 3, 2) and h(sd(2V )) = (1, 1, 0).
If V = {1, 2, 3}, the barycentric subdivision of a triangle is

.

We color the vertices in the barycentric subdivision to recall the dimension
of the corresponding face in the original complex. (This gives a balanced
coloring to sd(Δ).) Listing the flags we find:

empty face vertices edges triangles

∅ {1} {1} ⊂ {1, 2} {1} ⊂ {1, 2} ⊂ {1, 2, 3}
{2} {1} ⊂ {1, 3} {1} ⊂ {1, 3} ⊂ {1, 2, 3}
{3} {2} ⊂ {1, 2} {2} ⊂ {1, 2} ⊂ {1, 2, 3}
{1, 2} {2} ⊂ {2, 3} {2} ⊂ {2, 3} ⊂ {1, 2, 3}
{1, 3} {3} ⊂ {1, 3} {3} ⊂ {1, 3} ⊂ {1, 2, 3}
{2, 3} {3} ⊂ {2, 3} {3} ⊂ {2, 3} ⊂ {1, 2, 3}
{1, 2, 3} {1} ⊂ {1, 2, 3}

{2} ⊂ {1, 2, 3}
{3} ⊂ {1, 2, 3}
{1, 2} ⊂ {1, 2, 3}
{1, 3} ⊂ {1, 2, 3}
{2, 3} ⊂ {1, 2, 3}

and so f(sd(2V )) = (1, 7, 12, 6) and h(sd(2V )) = (1, 4, 1, 0).
Before moving on to larger cases, it will be a good idea to refine our

bookkeeping. Notice that there is a lot of redundancy in counting flags, in
that for every flag
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S1 ⊂ S2 ⊂ · · · ⊂ Sk ⊂ {1, 2, . . . , n},

there is another flag
S1 ⊂ S2 ⊂ · · · ⊂ Sk,

of one dimension lower. Thus,

f(sd(2V ); t) = (1 + t)f(sd(∂2V ); t). (9.1)

That is, the faces of the barycentric subdivision of ∂2V are precisely those
flags that do not contain the interior of the simplex, i.e., the face V =
{1, 2, . . . , n}.

For example, the barycentric subdivision of the boundary of the triangle
is (combinatorially) a hexagon:

,

corresponding to the flags below:

empty face vertices edges

∅ {1} {1} ⊂ {1, 2}
{2} {1} ⊂ {1, 3}
{3} {2} ⊂ {1, 2}
{1, 2} {2} ⊂ {2, 3}
{1, 3} {3} ⊂ {1, 3}
{2, 3} {3} ⊂ {2, 3}

.

Thus f(sd(∂2V )) = (1, 6, 6). We see that

(1+ t)f(sd(∂2V ); t) = (1+ t)(1+6t+6t2) = 1+7t+12t2+6t3 = f(sd(2V ); t),

as expected.
Moreover, since

f(sd(∂2V ); t) = (1 + t)|V |−1h(sd(∂2V ); t/(1 + t)),

and
f(sd(2V ); t) = (1 + t)|V |h(sd(2V ); t/(1 + t)),

Equation (9.1) gives us

h(sd(∂2V ); t) = h(sd(2V ); t). (9.2)
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That is, the barycentric subdivision of the boundary of the simplex has the
same h-vector as the barycentric subdivision of the simplex itself. For sim-
plicity then (since we have to keep track of fewer flags) we will restrict our
attention to sd(∂2V ). Note that it is highly unusual that a simplicial complex
and its boundary be related in such a way. See Problem 9.1.

For the subdivided tetrahedron we draw the boundary only:

and we get f(sd(∂2V )) = (1, 14, 36, 24) and h(sd(∂2V )) = (1, 11, 11, 1). Thus
f(sd(2V )) = (1, 15, 50, 60, 24) and h(sd(2V )) = (1, 11, 11, 1, 0).

So what are the h-vectors we have computed so far?

(1, 1), (1, 4, 1), (1, 11, 11, 1), . . .

if we throw in the vector (1) at the beginning for the trivial simplex, we have
the first few rows of Table 1.3. We have Eulerian numbers!

Let us prove this connection by counting flags carefully. Throughout the
remainder of Section 9.2, we will fix a finite vertex set V and let Δ = sd(∂2V )
denote the barycentric subdivision of the boundary of the simplex with vertex
set V .

This first step in computing f(Δ) is to modify our bookkeeping. Since flags
are sequences of nested subsets, we can keep track only of the new additions.
That is, given

∅ ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Sk ⊂ {1, 2, . . . , n} = V,

let Ai = Si+1 − Si, as i ranges from 0 to k, with S0 = ∅ and Sk+1 =
{1, 2, . . . , n}. Instead of the original flag, we can record the tuple (A0, A1,
. . . , Ak). For example, if V = {1, 2, 3, 4, 5, 6, 7}, the flag

∅ ⊂ {3, 4} ⊂ {3, 4, 6, 7} ⊂ {1, 3, 4, 6, 7} ⊂ {1, 2, 3, 4, 6, 7} ⊂ V,
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becomes the tuple
({3, 4}, {6, 7}, {1}, {2}, {5}).

Even better, we can write
34|67|1|2|5,

if we agree to list the elements of each Ai in increasing order and drop the
curly braces and commas. This is a set composition!

We enumerated set compositions in our study of the braid arrangement
in Section 5.6. So the complex Σ(n) (associated with the braid arrangement
H(n)) is isomorphic to the barycentric subdivision of the boundary of a sim-
plex. If we restate Theorems 5.2 and 5.3, we have the following.

Theorem 9.1. The barycentric subdivision of the boundary of the simplex
2V , with |V | = n, has the following f - and h-polynomials:

f(sd(∂2V ); t) =
n−1∑

k=0

(k + 1)!S(n, k + 1)tk,

where S(n, k) is a Stirling number of the second kind, and

h(sd(∂2V ); t) =
n−1∑

k=0

〈
n

k

〉
tk,

where
〈
n
k

〉
is an Eulerian number. In other words, the Eulerian polynomial is

the h-polynomial of sd(∂2V ).

9.3 Brenti and Welker’s transformation

We will now use the ideas developed for the simplex to study f - and h-vectors
of sd(Δ), where Δ is any boolean complex. Recall from Section 8.3 that a
boolean complex is a cell complex in which each face is a simplex. A simplicial
complex is a boolean complex, but this family also includes complexes whose
faces are not uniquely determined by their vertex sets.

As a starting point, let us consider the boolean complex and its barycentric
subdivision given in Figure 9.3.

With the vertices of Δ labeled a, b, c, d, and the two edges between a and
b labeled E1 and E2, we have the following flags of faces in sd(Δ).
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a
b

c

d

E1

E2

a
b

c

d

sd

Fig. 9.3 A boolean complex and its barycentric subdivision.

empty face vertices edges triangles

∅
{a}
{b}
{c}
{d}
E1 {a} ⊂ E1

{b} ⊂ E1

E2 {a} ⊂ E2

{b} ⊂ E2

{b, c} {b} ⊂ {b, c}
{c} ⊂ {b, c}

{b, d} {b} ⊂ {b, d}
{d} ⊂ {b, d}

{c, d} {c} ⊂ {c, d}
{d} ⊂ {c, d}

{b, c, d} {b} ⊂ {b, c, d} {b} ⊂ {b, c} ⊂ {b, c, d}
{c} ⊂ {b, c, d} {b} ⊂ {b, d} ⊂ {b, c, d}
{d} ⊂ {b, c, d} {c} ⊂ {b, c} ⊂ {b, c, d}
{b, c} ⊂ {b, c, d} {c} ⊂ {c, d} ⊂ {b, c, d}
{b, d} ⊂ {b, c, d} {d} ⊂ {b, d} ⊂ {b, c, d}
{c, d} ⊂ {b, c, d} {d} ⊂ {c, d} ⊂ {b, c, d}

We have f(Δ) = (1, 4, 5, 1) and f(sd(Δ)) = (1, 10, 16, 6). The beautiful
result of Brenti and Welker gives us the means for computing f(sd(Δ)) as a
simple linear transformation of f(Δ), which will now derive.

Notice that we have grouped the faces of sd(Δ) according to the last face
Sk in the flag. Within each of these groups, we can identify the flags

S1 ⊂ S2 ⊂ · · · ⊂ Sk,
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with set compositions of Sk, i.e., let Ai = Si+1 −Si for i = 0, . . . , k− 1, with
S0 = ∅. Then the composition A = A0|A1| · · · |Ak−1 corresponds to the flag

A0 ⊂ (A0 ∪A1) ⊂ · · · ⊂ (A0 ∪A1 ∪ · · · ∪Ak−1).

For example, b|d|c denotes the flag {b} ⊂ {b, d} ⊂ {b, c, d} and bd|c denotes
the flag {b, d} ⊂ {b, c, d}.

We should be careful to first fix the flag we are working with, since, for
example, a|b could denote either the edge E1 or the edge E2. But once we
know which maximal face Sk the flag lives in, the set compositions of that
face are well defined.

For any fixed choice of face F of Δ, let Comp(F ) denote the set of
all set compositions A of the vertex set of F , i.e., all compositions A =
A0|A1| · · · |Ak−1 such that Ai ∩ Aj = ∅ and A0 ∪ · · · ∪ Ak−1 = F . These
compositions represent all the flags in sd(Δ) whose maximal element is F .
We denote by rk(A) = k − 1 the number of bars in A, i.e., the dimension of
the corresponding face of sd(Δ).

If |F | = j, then, as we saw in the case of the simplex, there are k!S(j, k) set
compositions of F with k parts. These are set compositions of rank rk(A) =
k − 1, and so ∑

A∈Comp(F )

t1+rk(A) =
∑

k≥0

k!S(j, k)tk.

Each face G ∈ sd(Δ) corresponds to a flag of faces of Δ, so summing over all
F in Δ, we have:

f(sd(Δ); t) =
∑

G∈sd(Δ)

t1+dimG,

=
∑

F∈Δ

∑

A∈Comp(F )

t1+rk(A),

=
∑

j≥0

fj(Δ) ·
∑

k≥0

k!S(j, k)tk,

=
∑

k≥0

⎛

⎝
∑

j≥0

fj(Δ)k!S(j, k)

⎞

⎠ tk.

Let us state a theorem.

Theorem 9.2. For any finite boolean complex Δ, with dimΔ = d − 1, the
f -vector of its barycentric subdivision is given by:

fk(sd(Δ)) =
∑

j≥0

fj(Δ)k!S(j, k).

We can also describe this transformation with a matrix. Let

Bd = [a!S(b, a)]0≤a,b≤d .
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Then, Theorem 9.2 says

f(sd(Δ)) = Bd f(Δ).

For example, with d = 3, we have

B3 =

⎛

⎜⎜⎝

1 0 0 0
0 1 1 1
0 0 2 6
0 0 0 6

⎞

⎟⎟⎠ .

Thus, for Δ as in Figure 9.3, we have

f(sd(Δ)) =

⎛

⎜⎜⎝

1 0 0 0
0 1 1 1
0 0 2 6
0 0 0 6

⎞

⎟⎟⎠

⎛

⎜⎜⎝

1
4
5
1

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1
10
16
6

⎞

⎟⎟⎠ ,

as desired.

9.4 The h-vector of sd(Δ) and j-Eulerian numbers

Recall from Section 8.8 now that the transformation from f -vector to h-vector
is given by the matrix

Hd =

[
(−1)a+b

(
d− b

a− b

)]

0≤a,b≤d

,

and the inverse transformation is

H−1
d =

[(
d− b

a− b

)]

0≤a,b≤d

.

That is,
h(Δ) = Hdf(Δ) and f(Δ) = H−1

d h(Δ).

Then we can compose these operations to write h(sd(Δ)) = Hd Bd f(Δ),
or

h(sd(Δ)) = Hd Bd H
−1
d h(Δ). (9.3)

Denote this transformation by

Ed = Hd Bd H
−1
d .

It turns out that this transformation is beautifully combinatorial. We see
some small examples in Table 9.1.
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Table 9.1 The barycenter transformation on h-vectors.

d Hd Bd H−1
d Ed

0 (1) (1) (1) (1)

1

(
1 0

−1 1

) (
1 0

0 1

) (
1 0

1 1

) (
1 0

0 1

)

2

⎛
⎝ 1 0 0

−2 1 0

1 −1 1

⎞
⎠

⎛
⎝ 1 0 0

0 1 1

0 0 2

⎞
⎠

⎛
⎝ 1 0 0

2 1 0

1 1 1

⎞
⎠

⎛
⎝ 1 0 0

1 2 1

0 0 1

⎞
⎠

3

⎛
⎜⎜⎝

1 0 0 0

−3 1 0 0

3 −2 1 0

−1 1 −1 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 0

0 1 1 1

0 0 2 6

0 0 0 6

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 0

3 1 0 0

3 2 1 0

1 1 1 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 0

4 4 2 1

1 2 4 4

0 0 0 1

⎞
⎟⎟⎠

4

⎛
⎜⎜⎜⎝

1 0 0 0 0

−4 1 0 0 0

6 −3 1 0 0

−4 3 −2 1 0

1 −1 1 −1 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0 0 0

0 1 1 1 1

0 0 2 6 14

0 0 0 6 36

0 0 0 0 24

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0 0 0

4 1 0 0 0

6 3 1 0 0

4 3 2 1 0

1 1 1 1 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0 0 0

11 8 4 2 1

11 14 16 14 11

1 2 4 8 11

0 0 0 0 1

⎞
⎟⎟⎟⎠

There are some tantalizing properties of the matrices in Table 9.1. Notice,
for example:

• the sum of all the entries in Ed is (d+ 1)!,
• the sum of the entries in each column of Ed is d!,
• the sum of the entries of row k of Ed, k = 1, . . . , d + 1, is the Eulerian

number
〈
d+1
k

〉
.

All of these properties and more will follow from the following theorem
due to Brenti and Welker.

First define the numbers
〈
n; j

k

〉
= |{w ∈ Sn : des(w) = k,w(1) = j}|,

as the j-Eulerian numbers. These numbers refine the usual Eulerian numbers
in the sense that

〈
n

k

〉
=

〈
n; 1

k

〉
+

〈
n; 2

k

〉
+ · · ·+

〈
n;n

k

〉
.

Similarly, define the j-Eulerian polynomials by



9.4 The h-vector of sd(Δ) and j-Eulerian numbers 195

Sn;j(t) =
∑

w∈Sn

w(1)=j

tdes(w) =
n−1∑

k=0

〈
n; j

k

〉
tk.

These are the generating functions for the columns of Ed. For future use, let
Sn;j = {w ∈ Sn : w(1) = j} denote the set of permutations beginning with j.

Theorem 9.3. Let Ed denote the barycenter transformation for h-vectors
h = (h0, . . . , hd). Then

Ed =

[〈
d+ 1; j

k

〉]

0≤k,j−1≤d

,

so that if h(t) = h(Δ; t), then

h(sd(Δ); t) =

d∑

j=0

hj(Δ)Sd+1;j+1(t).

We will now prove Theorem 9.3.
First, consider an entry Tr,s, 0 ≤ r, s ≤ d, of the matrix T = Bd H

−1
d . We

have:

Tr,s =

d∑

b=0

(
d− s

b− s

)
r!S(b, r) =

d∑

b=0

(
d− s

d− b

)
r!S(b, r).

Since this is a positive formula, it is not too hard to come up with a combi-
natorial interpretation for it. Let Tr,s denote the set of all set compositions
A = A0|A1| · · · |Ar of {1, 2, . . . , d+1} for which minA0 = s+1. To form such
a composition, we first choose d−b elements from among {s+2, . . . , d+1} to
put in A0 along with s+1. This can be done in

(
d−s
d−b

)
ways. To form A1| · · · |Ar

we need to create a set composition from the remaining b elements, and this
can be done in r!S(b, r) ways. See Figure 9.4.

1, 2, . . . , s, s + 1,

minA0

s + 2, . . . , d + 1

Choose d − b more for A0

Form A1| · · · |Ar from remaining b elements

Fig. 9.4 Forming an element of Tr,s.

Now let

Ts =
d⋃

r=0

Tr,s,



196 9 Barycentric subdivision

denote the set of all set compositions of {1, 2, . . . , d + 1} with minA0 =
s + 1. Further, let Ts(t) denote the generating function counting these set
compositions according to the number of bars,

Ts(t) =
∑

A∈Ts

trk(A) =

d∑

r=0

Tr,st
r.

In other words, Ts(t) is the generating function for column s of the matrix T .
But each set composition A = A0|A1| · · · |Ar can be mapped to a per-

mutation w = w(A) by removing bars and writing each block in increasing
order. Since minA0 = s+1, this means w(1) = s+1. That is, w ∈ Sd+1;s+1.
Further, Des(w) ⊆ D, where D = D(A) = {|A0|, |A0|+ |A1|, . . . , |A0|+ |A1|+
· · ·+ |Ar−1|}, i.e., there must be bars in A where there are descents in w. So
we can write

Ts(t) =
∑

A∈Ts

trk(A),

=
∑

J⊆{1,2,...,d}

∑

A∈Ts

D(A)=J

t|J|,

=
∑

J⊆{1,2,...,d}

∑

w∈Sd+1;s+1

D(w)⊆J

t|J|,

=
∑

w∈Sd+1;s+1

∑

Des(w)⊆J

t|J|,

=
∑

w∈Sd+1;s+1

tdes(w)(1 + t)d−des(w),

= (1 + t)dSd+1;s+1(t/(1 + t)).

Since Ts(t) encodes column s of Bd H
−1
d , the polynomial HdTs(t) =

Sd+1;s+1(t) encodes column s of Ed = Hd Bd H
−1
d . That is, the columns

of Ed are encoded by the j-Eulerian polynomials, which proves Theorem 9.3.

9.5 Gamma-nonnegativity of h(sd(Δ))

In Theorem 9.4, we will see that if h(Δ) is nonnegative, then the polynomial
h(sd(Δ); t) is real-rooted. Moreover, if h(Δ) is palindromic, then h(sd(Δ)) is
also palindromic. By Observation 4.2, this implies that h(sd(Δ); t) is gamma-
nonnegative as well. We can also prove this gamma-nonnegativity directly by
investigating the j-Eulerian polynomials closely, as we now show.
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First, we can observe that if w(1) = 1, there is never a descent in the first
position, while if w(1) = n there is always a descent in the first position. Hence
the distributions of descents in Sn;1 and Sn;n are the Eulerian distribution
for Sn−1, i.e.,

Sn;1(t) = Sn−1(t) and Sn;n(t) = tSn−1(t).

In general, if we track the effect of removing the letter j from the beginning
of a permutation in Sn;j , we get the following recurrence relation.

Observation 9.1 For any 1 ≤ j ≤ n,

Sn;j(t) = t

j−1∑

k=1

Sn−1;k(t) +

n−1∑

k=j

Sn−1;k(t).

Next, notice that there are some nice symmetries in the array of j-Eulerian
numbers. For example, recall the involution w0 : Sn → Sn that maps i to
n + 1 − i. This involution swaps descents for ascents, and if w(1) = j, then
w0w(1) = n+1−j. Hence, we have the following observation about symmetry.

Observation 9.2 For any n, j, we have the following symmetries of j-
Eulerian numbers: 〈

n; j

k

〉
=

〈
n;n+ 1− j

n− 1− k

〉
,

and
Sn;j(t) = tn−1Sn;n+1−j(1/t).

We now define the palindromic j-Eulerian polynomials by lumping to-
gether classes fixed by the involution w0, namely all permutations beginning
with either j or n+ 1− j:

Sn;j(t) =
∑

w∈Sn;j∪Sn;n+1−j

tdes(w).

Observe that

Sn;j(t) =

{
Sn;j(t) + Sn,n+1−j(t) if j 
= (n+ 1)/2, and

Sn;j(t) if j = (n+ 1)/2.

By the symmetry seen in Observation 9.2, the polynomials Sn;j(t) have
palindromic coefficients, and hence a gamma vector. Note the symmetry axis
for Sn;j(t) is at degree �n−1

2 �. If

Sn;j(t) =

�(n−1)/2�∑

i=0

γ
(n;j)
i ti(1 + t)n−1−2i,

let γ(n;j) = (γ
(n;j)
0 , γ

(n;j)
1 , . . . , γ

(n;j)
�(n−1)/2�) denote the corresponding gamma

vector.
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We will develop a recursive argument for why γ(n;j) is nonnegative for all
n and j. This recurrence depends on another family of gamma vectors, from
the following polynomials, defined for 1 ≤ j < (n+ 1)/2:

S′
n;j(t) = tSn;j(t) + Sn;n+1−j(t).

Note that these polynomials are also palindromic by Proposition 9.2, with
symmetry axis at degree �n/2�. Hence S′

n;j(t) has a gamma vector, which we
denote by

γ′(n,j) = (γ
′(n,j)
0 , γ

′(n,j)
1 , . . . , γ

′(n,j)
�n/2�).

Note, however, that the shifted center of symmetry means we expand using
the basis Γn for S′

n;j(t), as opposed to Γn−1 for Sn;j(t).
For example,

S5;1(t) = 10t+ 28t2 + 10t3 = 10t(1 + t)2 + 8t2,

so γ(5;1) = (0, 10, 8), while

S′
5;1(t) = 2t+ 22t2 + 22t3 + 2t4 = 2t(1 + t)3 + 16t2(1 + t),

so γ′(5;1) = (0, 2, 16).
Now by applying Observation 9.1 to these gamma vectors, we get the

following recurrences.

Proposition 9.1. We have the following recurrences for the γ(n;j) and γ′(n;j):

1. If j = (n+ 1)/2, then

γ(n;(n+1)/2) = γ′(n−1;1) + γ′(n−1;2) + · · ·+ γ′(n−1;(n−1)/2).

2. For j < (n+ 1)/2,

γ(n;j) = 2

j−1∑

k=1

γ′(n−1;k) +

�n/2�∑

k=j

γ(n−1;k),

and

γ′(n;j) =

j−1∑

k=1

γ′(n−1;k) + 2

�n/2�∑

k=j

(0, γ(n−1;k)),

where for γ = (γ0, γ1, . . .), (0, γ) = (0, γ0, γ1, . . .).

Since these gamma vectors are nonnegative for small n and the recurrences
are nonnegative, we get the following corollary.

Corollary 9.1. The polynomials Sn;j(t) and S′
n;j(t) are gamma-nonnegative.
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As of this writing it is an open problem to find a combinatorial interpre-
tation for the entries in γ(n;j) and γ′(n;j). We remark that valley-hopping
clearly does not apply.

Returning now to h(sd(Δ)), suppose that h(Δ) = (h0, h1, . . . , hd) is non-
negative, hi ≥ 0, and palindromic, hi = hd−i. Then applying the transforma-
tion Ed will give us gamma-nonnegativity.

For example, if d = 5 and h(Δ) = (h0, h1, h2, h3 = h2, h4 = h1, h5 = h0),
then

h(sd(Δ))t =

⎛

⎜⎜⎜⎜⎜⎜⎝

h0

27h0 + 18h1 + 12h2

92h0 + 102h1 + 108h2

92h0 + 102h1 + 108h2

27h0 + 18h1 + 12h2

h0

⎞

⎟⎟⎟⎟⎟⎟⎠
= h0

⎛

⎜⎜⎜⎜⎜⎜⎝

1
5
10
10
5
1

⎞

⎟⎟⎟⎟⎟⎟⎠

+ (22h0 + 18h1 + 12h2)

⎛

⎜⎜⎜⎜⎜⎜⎝

0
1
3
3
1
0

⎞

⎟⎟⎟⎟⎟⎟⎠
+ (16h0 + 48h1 + 72h2)

⎛

⎜⎜⎜⎜⎜⎜⎝

0
0
1
1
0
0

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Equivalently,

h(sd(Δ); t) = h0S6;1(t) + h1S6;2(t) + h2S6;3(t),

or

γ(sd(Δ)) = h0γ
(6;1) + h1γ

(6;2) + h2γ
(6;3),

= h0(1, 22, 16) + h1(0, 18, 48) + h2(0, 12, 72).

In general, we get the following result.

Corollary 9.2. If Δ is a boolean complex with a palindromic h-vector (h0, h1,
. . . , hd), then

h(sd(Δ); t) =

�d/2�∑

i=0

hiSd+1;i+1(t),

and

γ(sd(Δ)) =

�d/2�∑

i=0

hiγ
(d+1;i+1).

In particular, if hi ≥ 0 for all i, h(sd(Δ)) is gamma-nonnegative.

The h-vector of a sphere is always nonnegative (this is far from obvious—
see Chapter 10), and though we did not prove it, the Dehn-Sommerville
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relations can be applied to boolean complexes, not only simplicial complexes.
Thus if Δ is a triangulated sphere, Corollary 9.2 tells us h(sd(Δ)) is gamma-
nonnegative.

9.6 Real roots for barycentric subdivisions

Brenti and Welker asked whether h(sd(Δ); t) is log-concave or real-rooted.
This is not always so, but they show the following remarkable result. For
any polynomial h(t) = h0 + h1t+ · · ·+ hdt

d, define the sequences of complex

numbers {β(n)
i }n≥0 as (reciprocals of) the roots of the polynomial obtained

by n applications of Ed to h(t):

En
d h(t) =

d∏

i=1

(1− β
(n)
i t).

So if h(t) = h(Δ; t), then En
d h(t) = h(sdn(Δ); t) is the h-polynomial of the

nth barycentric subdivision of Δ.

Theorem 9.4 (Real roots). We have the following results for real rooted-
ness.

1. If h(t) = h0 + h1t + · · · + hdt
d is a nonnegative integer polynomial, then

h′(t) = Ed h(t) has only real roots.
2. For any d > 1, there are negative real numbers α2, . . . , αd−1 such that for

every (d−1)-dimensional boolean complex Δ, the sequence of complex roots

β
(n)
i associated with h(sdn(Δ); t) satisfies:

a. the numbers β
(n)
i , 1 ≤ i ≤ d, are real for n sufficiently large,

b. lim
n→∞

β
(n)
1 = 0,

c. lim
n→∞

β
(n)
i = αi for 2 ≤ i ≤ d− 1,

d. lim
n→∞

β
(n)
d = −∞.

Whoa! Part (1) says that if we have any nonnegative h-polynomial,
Ed h(t) is real-rooted. If h is palindromic, then Ed h(t) is palindromic and
real rooted, which by Observation 4.2 implies that it is log-concave and
gamma-nonnegative. We can prove part (1) with an interlacing argument for
j-Eulerian polynomials. See Problem 9.6.

Part (2) follows from (1) by some linear algebra on Ed. See Problem 9.7. In
short, the matrix Ed /d! has largest eigenvalue 1, with multiplicity one, and
we can take the corresponding eigenvector, e, to be nonnegative. Hence, there
is some n such that (Ed /d!)

nh(t) is close enough to e(t) that all its coefficients
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are positive. Part (1) then says that (Ed /d!)
n+1h(t) is both positive and real-

rooted. Furthermore, real-rootedness holds for all subsequent applications of
the transformation. We conclude e(t) is real-rooted, and we call these roots
α1 = 0, α2, . . . , αd−1. The details are outlined in Problem 9.8.

One of the morals of this theorem is that while the f - and h-vectors are
useful combinatorial tools, repeated barycentric subdivision “smooths out”
a lot of the subtlety. All that is retained is the Euler characteristic and the
dimension.

Notes

Nearly all the content in this chapter is drawn from either a 2008 paper of
Francesco Brenti and Volkmar Welker [35] or a paper from 2011 by Eran
Nevo, Bridget Tenner and the author [112]. Brenti and Welker’s result is also
studied and extended in the work of Emanuele Delucchi, Aaron Pixton, and
Lucas Sabalka [56], as well as in the work of Satoshi Murai and Nevo [109].

It is worth remarking that another paper by Brenti and Welker from 2009
also involves a linear transformation of h-polynomials with a combinatorial
description. See [36] and Chapter 7.

Problems

9.1. Find an example of a simplicial complex Δ for which f(sd(Δ)) =
(1, 15, 26, 12) and f(sd(∂Δ)) = (1, 11, 10).

9.2. Prove that the j-Eulerian polynomials, while not always palindromic,
are in fact unimodal.

9.3. Define a collection of polynomials f1, f2, . . . , fk, to be compatible if every
nonnegative linear combination of them,

c1f1 + c2f2 + · · ·+ ckfk,

with c1, . . . , ck ≥ 0, is real-rooted. (In particular each polynomial fi must be
real-rooted.)

Prove that if f1, f2, . . . , fk are pairwise compatible polynomials with pos-
itive leading coefficients, then the entire collection is compatible.

9.4. Prove that the j-Eulerian polynomials are real-rooted (and hence log-
concave and unimodal).

9.5. Show that Sn;j(t) and S′
n;j(t) are real-rooted.
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9.6. Prove Part 1 of Theorem 9.4.

9.7. Since Bd is triangular, we can read its eigenvalues: 1, 1, 2, 6, . . . , d!. Since
Ed is similar to Bd, it has the same eigenvalues. Define the normalized trans-
formations, Bd = Bd /d! and Ed = Ed /d!, so that they have largest eigen-
value 1.

By the Perron-Frobenius theorem, Ed has a fixed point. Compute this
fixed point for d = 1, . . . , 10.

9.8. Prove the rest of Theorem 9.4. In particular, show that the fixed point
e(t) has only nonpositive real roots αi as described in the theorem.
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