
Chapter 4

Gamma-nonnegativity

The binomial distribution is the first probability distribution a student
encounters. Among its many properties is the fact that it is palindromic
and unimodal. Many combinatorial distributions, including the Eulerian and
Narayana distributions, can be built out of copies of binomial distributions
that are shifted to have the same center of symmetry, and this fact has many
interesting consequences.

4.1 The idea of gamma-nonnegativity

We can observe that, for fixed n, the sequence of Eulerian numbers,
〈
n
k

〉
is

palindromic,
〈
n

k

〉
=

〈
n

n− 1− k

〉
, (4.1)

and unimodal :
〈
n

0

〉
≤

〈
n

1

〉
≤ · · · ≤

〈
n

�(n− 1)/2�
〉

≥ · · · ≥
〈

n

n− 1

〉
.

When there is no possibility for confusion, we will call a polynomial palin-
dromic or unimodal if its sequence of coefficients has the same property. So
we say the Eulerian polynomial Sn(t) is palindromic and unimodal.

The palindromicity is easy to explain combinatorially, as reversal of a
permutation swaps descents and ascents. This gives a bijection between the
set of permutations with k descents and permutations with k ascents, and
hence n− 1− k descents.

Unimodality is trickier, but both these properties follow from a property
that will be a major theme later in the book, called gamma-nonnegativity,
which we now explain.
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72 4 Gamma-nonnegativity

First, observe that the sequence of binomial coefficients
(
n
k

)
, with n fixed,

is palindromic and unimodal.
Loosely speaking, gamma-nonnegativity means a sequence of numbers can

be written as a sum of rows of Pascal’s triangle with the same center of
symmetry. For example, rows 5 and 6 of the Eulerian triangle (Table 1.3) can
be written as follows.

n = 5 :

1 26 66 26 1
1× (1 4 6 4 1)

22× (1 2 1)
16× (1)

n = 6 :

1 57 302 302 57 1
1× (1 5 10 10 5 1)

52× (1 3 3 1)
136× (1 1)

In terms of generating functions, gamma-nonnegativity means a polynomial
of degree n can be written as a sum of polynomials of the form tj(1+ t)n−2j .
In the case of the Eulerian polynomials for n = 5 and n = 6 we have

S5(t) = (1 + t)4 + 22t(1 + t)2 + 16t2,

S6(t) = (1 + t)5 + 52t(1 + t)3 + 136t2(1 + t).

The coefficients in expansions like the ones above make up what we call
the gamma vector. When these coefficients are nonnegative, we say the poly-
nomial itself is gamma-nonnegative.

4.2 Gamma-nonnegativity for Eulerian numbers

In this section we show the Eulerian polynomials are gamma-nonnegative, a
result first due to Foata and Schützenberger.

Theorem 4.1. For any n > 0, there exist nonnegative integers γn,j such that

Sn(t) =

�(n−1)/2�∑

j=0

γn,jt
j(1 + t)n−1−2j , (4.2)

i.e., the Eulerian polynomials are gamma-nonnegative.

We list the entries in the gamma vectors for the Eulerian polynomials in
Table 4.1.

There is a beautiful combinatorial proof of Theorem 4.1 given by Foata
and Strehl, based on an action we call “valley hopping” as illustrated in
Figure 4.1. Here we draw a permutation as a “mountain range,” so that
peaks and valleys form the upper and lower limits of the decreasing runs. By
convention, we have points at infinity on the far left and far right.
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Table 4.1 Entries of the gamma vector for the Eulerian polynomials, γn,j , 0 ≤ 2j <
n ≤ 10.

n\j 0 1 2 3 4
1 1
2 1
3 1 2
4 1 8
5 1 22 16
6 1 52 136
7 1 114 720 272
8 1 240 3072 3968
9 1 494 11616 34304 7936

10 1 1004 40776 230144 176896

∞
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Fig. 4.1 The mountain range view of the permutation w = 862741359.

Formally, given w = w(1) · · ·w(n) ∈ Sn, we say a letter w(i) is a peak if
w(i − 1) < w(i) > w(i + 1) and it is a valley if w(i − 1) > w(i) < w(i + 1).
Otherwise we say w(i) is free. Using the convention that w(0) = w(n+1) = ∞,
we see that w cannot begin or end with a peak.

We partition Sn into equivalence classes according to the following action
on free letters. If w(i) = j is free, then Hj(w) denotes the permutation
obtained by moving j directly across the adjacent valley(s) to the nearest
mountain slope of the same height. More precisely, we have the following.

• If w(i) = j lies on a downslope, i.e., w(i − 1) > w(i) > w(i + 1), we find
the smallest k > i such that w(k) < j < w(k + 1), and

Hj(w) = w(1) · · ·w(i− 1)w(i+ 1) · · ·w(k) j w(k + 1) · · ·w(n),
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• If w(i) = j lies on an upslope, i.e., w(i− 1) < w(i) < w(i+1), we find the
largest k < i such that w(k − 1) > j > w(k), and

Hj(w) = w(1) · · ·w(k − 1) j w(k) · · ·w(i− 1)w(i+ 1) · · ·w(n).

Clearly, if j, l are free letters, H2
j (w) = H2

l (w) = w and Hj(Hl(w)) =
Hl(Hj(w)). Thus, for any collection of free letters J = {j1, . . . , jk}, we can
define the operation HJ(w) = Hj1 · · ·Hjk(w). Also, observe that HJ(w) has
the same set of free letters as w.

Let Hop(w) denote the hop-equivalence class of w. Notice that every peak
of w is necessarily the larger element of a descent, for any u ∈ Hop(w), while
a valley is never the larger element of a descent. If a free letter lies on an
upslope of u it is not part of a descent, while if it is on a downslope it is the
larger element of a descent of u. Moreover, this property is independent of
the positions of the other free letters. If w has r peaks, it has r + 1 valleys,
and hence n− 1− 2r free letters. Thus, letting pk(w) denote the number of
peaks of w, we have:

∑

u∈Hop(w)

tdes(u) = tpk(w)(1 + t)n−1−2 pk(w). (4.3)

We can choose a canonical representative for each hop-equivalence class
by choosing to put each free letter on an upslope. These are precisely the
permutations for which pk(w) = des(w). We denote this set of representa-
tives by:

Ŝn = {w ∈ Sn : pk(w) = des(w)}.
Thus by summing (4.3) over all w ∈ Ŝn, we get:

Sn(t) =
∑

w∈̂Sn

tpk(w)(1 + t)n−1−2 pk(w).

Moreover, we can now give a combinatorial interpretation to the numbers
in Table 4.1.

Corollary 4.1. For any n, j,

γn,j = |{w ∈ Ŝn : des(w) = j}|.

With this interpretation in hand, it is not difficult to relate the Eulerian
polynomials to the generating function for the peak statistic. That is, define
the peak polynomials Pn(t) and peak numbers pn,k as follows:

Pn(t) =
∑

w∈Sn

tpk(w) =

�(n−1)/2�∑

k=0

pn,kt
k.
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Then we have

Sn(t) =
(1 + t)n−1

2n−1
Pn

(
4t

(1 + t)2

)
. (4.4)

Some peak numbers are included in Table 4.2.

Table 4.2 The peak numbers, pn,k, 0 ≤ 2k < n ≤ 10.

n\k 0 1 2 3 4
1 1
2 2
3 4 2
4 8 16
5 16 88 16
6 32 416 272
7 64 1824 2880 272
8 128 7680 24576 7936
9 256 31616 185856 137216 7936

10 512 128512 1304832 1841152 353792

Another consequence of Corollary 4.1 is seen when we specialize t = −1
in the Eulerian polynomial:

Sn(−1) =
∑

w∈̂Sn

(−1)pk(w)(1− 1)n−1−2 pk(w)

=

{
(−1)(n−1)/2γn,(n−1)/2 if n odd,

0 if n even.

But γn,(n−1)/2 (with n odd) is the number of permutations w such that

w(1) < w(2) > w(3) < · · · > w(2i− 1) < w(2i) > w(2i+ 1) < · · · .

These are known as up-down alternating permutations and the number of
such permutations is known as the Euler number, denoted En. This definition
makes sense for both even and odd values of n, and the sequence of Euler
numbers begins:

1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, . . . . (4.5)

Taking the limit as t → −1 in Theorem 1.6, we get an expression for
the exponential generating function for the odd-indexed Euler numbers, with
alternating plus and minus signs:
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S(−1, z)− 1 = z − 2
z3

3!
+ 16

z5

5!
− · · · ,

=
∑

k≥0

(−1)kE2k+1
z2k+1

(2k + 1)!
,

=
1− e−2z

1 + e−2z
= tanh z.

The sequence 1, 2, 16, 272, 7936, . . . is also known as the sequence of tangent
numbers. Problem 4.2 investigates other properties of Euler numbers.

4.3 Gamma-nonnegativity for Narayana numbers

We will now show the Narayana polynomials Cn(t) are gamma-nonnegative.
Hence, the sequence of Narayana numbers Nn,k, for fixed n, is symmetric
and unimodal. The reason for this is quite simple: Foata and Strehl’s valley-
hopping action described in Section 4.2 preserves the pattern 231. Hence,
if w ∈ Sn(231), the hop-equivalence class Hop(w) is composed entirely of
permutations avoiding 231.

Let’s make this argument rather more precise. Suppose w /∈ Sn(231), so
that there is a triple of indices i < j < k with w(k) < w(i) < w(j). Then
without loss of generality, we may assume w(j) is a peak. (Otherwise, there
is a peak w(j′) with i < j′ < j and w(j′) > w(j).) If neither w(i) nor w(k)
are free letters, then clearly all members of Hop(w) contain 231. But even if
w(i) or w(k) are free, the relative position of the letters w(i), w(j), w(k) is
preserved, since neither w(i) nor w(k) can hop past w(j). See Figure 4.2 for
an illustration.

w(j)

w(i)
w(k)

Fig. 4.2 Valley-hopping preserves the pattern 231.

Thus we have the following.

Theorem 4.2. For any n > 0, there exist nonnegative integers γ̂n,j such that

Cn(t) =

�n/2�∑

j=0

γ̂n,jt
j(1 + t)n−1−2j , (4.6)

i.e., the Narayana polynomials are gamma-nonnegative.
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Moreover, each hop class Hop(w) still has a unique representative for which
des(w) = pk(w), and so:

γ̂n,j = |{w ∈ Sn(231) : des(w) = pk(w) = j}|.

These numbers are listed in Table 4.3.

Table 4.3 The gamma numbers γ̂n,k for the Narayana distribution, 0 ≤ 2k <
n ≤ 10.

n\k 0 1 2 3 4
1 1
2 1
3 1 1
4 1 3
5 1 6 2
6 1 10 10
7 1 15 30 5
8 1 21 70 35
9 1 28 140 140 14

10 1 36 252 420 126

Of course, there is a similar connection with the peak generating function
for all 231-avoiding permutations. Let

Pn(231; t) =
∑

w∈Sn(231)

tpk(w).

Then we have

Cn(t) =
(1 + t)n−1

2n−1
Pn

(
231;

4t

(1 + t)2

)
. (4.7)

For reference we include in Table 4.4 the peak numbers for 231-avoiding
permutations.

4.4 Palindromicity, unimodality, and the gamma basis

We will now lay out the general definition and elementary consequences of
gamma-nonnegativity.

We say a polynomial h(t) is palindromic if its coefficients are the same
when read from left to right as from right to left. To be more precise, we
say h is palindromic for n if h(t) = tnh(1/t). Such an n is the sum of the
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Table 4.4 The number of 231-avoiding permutations in Sn with k of peaks, 0 ≤
2k < n ≤ 10.

n\k 0 1 2 3 4
1 1
2 2
3 4 1
4 8 6
5 16 24 2
6 32 80 20
7 64 240 120 5
8 128 672 560 70
9 256 1792 2240 560 14

10 512 4608 8064 3360 252

highest and lowest degrees of nonzero terms in h. In the simplest case, h has
a nonzero constant term, so n is the degree of h. Here, writing

h(t) = h0 + h1t+ · · ·+ hnt
n,

we have hi = hn−i for all i. If h has no constant term, n is greater than the
degree of h, e.g., h(t) = t2 + t3 is palindromic for n = 5.1

We say a polynomial is unimodal if its coefficients weakly increase then
weakly decrease, i.e., there is some k for which

h0 ≤ h1 ≤ · · · ≤ hk ≥ hk+1 ≥ · · · ≥ hn.

If h(t) is palindromic for n, unimodality means that h0 ≤ h1 ≤ · · · ≤ h�n/2�.
As a vector space, the set of polynomials palindromic for n has dimension

�n/2�+ 1. One natural basis for this vector space is

Σn =

{
{tj + tn−j}0≤j<n/2 if n is odd,

{tj + tn−j}0≤j<n/2 ∪ {tn/2} if n is even.

While Σn might be the standard basis for polynomials palindromic for n, we
will now discuss a more interesting basis that we call the “gamma basis,”
defined as follows:

Γn = {tj(1 + t)n−2j}0≤j≤n/2.

Notice that every member of Γn is palindromic and unimodal with the same
center of symmetry at n/2. Hence the nonnegative span of Γn contains only
palindromic and unimodal polynomials.

1 In the literature the term “symmetric” is sometimes used to describe what we
mean by “palindromic.” This is okay in some circumstances, but there is a more
common notion of “symmetric polynomial”—namely a polynomial that is fixed under
permutation of its variables—so we prefer the less ambiguous term. George Andrews
used another synonym for palindromic, “reciprocal polynomial,” in [8] and [9].
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If h(t) is palindromic for n, the sequence of its coefficients in Γn is called
the gamma vector of h, and the gamma polynomial γ(h; t) is the generating
function for the gamma vector. We have

h(t) = (1 + t)nγ(h; t/(1 + t)2) =
∑

0≤j≤n/2

γjt
j(1 + t)n−2j . (4.8)

We say h(t) is gamma-nonnegative if γ(h; t) has nonnegative coefficients.
For example, if

h(t) = 1 + 7t+ 15t2 + 15t3 + 7t4 + t5,

we can write

h(t) = (1 + t)5 + 2t(1 + t)3 − t2(1 + t),

and so

γ(h; t) = 1 + 2t− t2.

As a vector in the space of palindromic polynomials with basis Σ5, h is rep-
resented by (1, 7, 15), whereas γ = (1, 2,−1). We can see that palindromicity
and nonnegativity of h(t), and even unimodality, are not enough to guarantee
gamma-nonnegativity.

The product of two gamma-nonnegative polynomials is again gamma-
nonnegative, though the center of symmetry necessarily shifts. That is, if

g(t) =
∑

0≤i≤m/2

γit
i(1 + t)m−2i and h(t) =

∑

0≤j≤n/2

γ′
jt

j(1 + t)n−2j ,

then

g(t)h(t) =
∑

0≤k≤(m+n)/2

⎛

⎝
∑

i+j=k

γiγ
′
j

⎞

⎠ tk(1 + t)m+n−2k.

Thus the set of all gamma-nonnegative polynomials of bounded degree is
closed under multiplication. Moreover, we see that the gamma polynomial
for the product g(t)h(t) is the product of the gamma polynomial for g and
the gamma polynomial for h, i.e.,

γ(gh; t) = γ(g; t)γ(h; t).

We will record these observations for future reference.

Observation 4.1 If h is a polynomial in the nonnegative span of Γn, i.e.,
h(t) ∈ R≥0 Γn, then h is palindromic and unimodal, with center of symmetry
�n/2�. Moreover, if g(t) ∈ R≥0 Γm, then g(t)h(t) ∈ R≥0 Γm+n, and γ(gh; t) =
γ(g; t)γ(h; t).
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4.5 Computing the gamma vector

There are straightforward linear transformations that map a palindromic
polynomial h to its gamma vector, implicit in Equation (4.8).

Suppose h(t) is symmetric for n so that

h(t) = h0 + h1t+ · · ·+ h�n/2�t�n/2� + · · · ,

with hi = hn−i. By abuse of notation, let h = (h0, h1, . . . , h�n/2�) denote the
coefficients of this polynomial in the basis Σn, and let γ = (γ0, γ1, . . . , γ�n/2�)
be the corresponding gamma vector. We have the following change of basis
matrices:

G =

[
(−1)i−j

((
n− i− j

i− j

)
+

(
n− i− j − 1

i− j − 1

))]

0≤i,j≤n/2

,

and

S =

[(
n− 2j

i− j

)]

0≤i,j≤n/2

,

so that
Gh = γ and Sγ = h.

While the entries in S follow immediately from Equation 4.8, the entries
of G are harder to guess at. However, it is straightforward to check that S
and G are inverses of one another.

For example if n = 5,

G =

⎛

⎝
1 0 0

−5 1 0
5 −3 1

⎞

⎠ and S =

⎛

⎝
1 0 0
5 1 0

10 3 1

⎞

⎠ ,

so we see that in our example of h(t) = (1 + t5) + 7(t+ t4) + 15(t2 + t3),

Gh =

⎛

⎝
1 0 0

−5 1 0
5 −3 1

⎞

⎠

⎛

⎝
1
7
15

⎞

⎠ =

⎛

⎝
1
2

−1

⎞

⎠ = γ,

and

Sγ =

⎛

⎝
1 0 0
5 1 0
10 3 1

⎞

⎠

⎛

⎝
1
2

−1

⎞

⎠ =

⎛

⎝
1
7

15

⎞

⎠ = h.

As a word of caution, we note that the palindromicity degree n is needed
to recover h from γ. For example, the polynomial h(t) = 1 + 4t + 4t2 + t3

has γ(h; t) = 1+ t, but γ(t) = 1+ t is the γ-polynomial for a whole family of
symmetric polynomials, e.g.,
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(1 + t)2γ(t/(1 + t)2) = 1 + 3t+ t2,

(1 + t)3γ(t/(1 + t)2) = 1 + 4t+ 4t2 + t3,

(1 + t)4γ(t/(1 + t)2) = 1 + 5t+ 8t2 + 5t3 + t4,

...

A very different way to express γ(h; t) in terms of h(t) is with the following
identity of generating functions.

Proposition 4.1 (Zeilberger’s lemma). Suppose h(t) is palindromic for
n, with gamma polynomial γ(t). Then we have the following identity of power
series:

γ(z) =
h(zC(z)2)

C(z)n
, (4.9)

where C(z) = 1−√
1−4z
2z is the Catalan number generating function.

To see how the identity arises, we begin with h(t) = (1 + t)nγ(t/(1 + t)2).
Now setting z = t/(1 + t)2, we find

zt2 + (2z − 1)t+ z = 0.

Solving for t, we find

t =
1− 2z −√

(2z − 1)2 − 4z2

2z
,

= −1 +
1−√

1− 4z

2z
,

= −1 + C(z).

The Catalan generating function also satisfies C(z)− 1 = zC(z)2, and Equa-
tion (4.9) now follows. See Problem 4.5 for one use of Equation (4.9).

4.6 Real roots and log-concavity

We have emphasized the importance of the palindromicity and unimodality
implied by gamma-nonnegativity. There are at least two other related ideas
that have been studied: real-rootedness and log-concavity. While they are
somewhat ancillary to our main concern, we will briefly survey some of their
properties here.

Many interesting polynomial generating functions turn out to be real-
rooted, that is, these polynomials factor completely over the real numbers.
The Eulerian polynomials and the Narayana polynomials, for example, have
only real roots. (See Problems 4.6 and 4.7.) If a polynomial h(t) is palin-
dromic, then h is real-rooted if and only if γ(h; t) is real-rooted. Indeed, if a



82 4 Gamma-nonnegativity

is a real root of h with a /∈ {0,−1} (the cases of a ∈ {0,−1} are easily
considered) then 1/a is also a root of h by symmetry, and

γ(h; a/(1 + a)2) =
1

(1 + a)n
h(a) =

1

(1 + 1/a)n
h(1/a) = 0,

thus implying the real number a/(1 + a)2 is a (nonpositive) root of γ(h; t).
On the other hand, if b < 0 is a real root of γ(h; t), then both

a = −1 +
1 +

√
1− 4b

2b
and

1

a
= −1 +

1−√
1− 4b

2b

are roots of h(t). That no other roots exist follows by considering the degrees
of h(t) and γ(h; t).

It turns out that whenever a polynomial h(t) has nonnegative and palin-
dromic coefficients, having all real roots implies h(t) is gamma-nonnegative,
but not conversely. (Consider h(t) = 1 + 4t + 7t2 + 4t3 + t4. It has no real
roots, yet it has nonnegative γ-polynomial γ(h; t) = 1 + t2.) In particular,
nonnegative, palindromic, and real-rooted polynomials are unimodal.

To see why this is so, suppose h(t) has nonnegative and symmetric coef-
ficients, and all its roots are real. Then as mentioned earlier, its roots apart
from 0 and −1 come in reciprocal pairs, a, 1/a. Consider

(t− a)(t− 1/a) = (1 + t)2 − (2 + a+ 1/a)t.

If h(t) has nonnegative coefficients, then all its roots must be nonpositive. In
particular, a < 0, and dividing the positive quantity (a+ 1)2 by a shows

0 >
(a+ 1)2

a
= 2 + a+ 1/a.

Thus (t− a)(t− 1/a) is in the positive span of Γ2. Since h(t) can be written
as a product of powers of t (in Γ2), powers of (1+ t) (in Γ1), and terms of the
form (t− a)(t− 1/a), we have that h(t) is a product of gamma-nonnegative
polynomials. Since we noted in Observation 4.1 that such polynomials are
closed under multiplication, h(t) is gamma-nonnegative as well.

Let us collect these comments.

Observation 4.2 If h has palindromic coefficients, then h(t) is real-rooted
if and only if γ(h; t) has only real roots. Moreover, if the coefficients of h(t)
are nonnegative, then all the roots of h are nonpositive and γ(h; t) has non-
negative coefficients as well. Thus if h(t) is nonnegative, real-rooted, and
palindromic, then it is unimodal.

Another property related to real-rootedness and unimodality is log-
concavity. A sequence a1, . . . , an is said to be log-concave if

a2i ≥ ai−1ai+1 for all i = 2, . . . , n− 1.
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This immediately implies that the sequence is unimodal since if there is some
j such that aj−1 > aj < aj+1, then clearly a2j < aj−1aj+1. We will say a
polynomial is log-concave if its sequence of coefficients is log-concave.

Log-concavity is more robust than gamma-nonnegativity in the sense that
it applies perfectly well to sequences that are not palindromic, whereas the
gamma vector requires palindromicity to exist. Real-rootedness also implies
log-concavity (Problem 4.8), and hence unimodality, but not conversely. The
polynomial 1 + 4t+ 7t2 + 4t3 + t4 from before is log-concave, yet has no real
roots.

Log-concave sequences are closed under multiplication, i.e., if a1, a2, . . .
and b1, b2, . . . are log-concave, then so is a1b1, a2b2, . . .. However, they are
not closed under addition, e.g., (0, 0, 11, 0, 0) and (1, 4, 6, 4, 1) are both log-
concave (and gamma-nonnegative), yet their sum (1, 4, 17, 4, 1) is not log-
concave.

We collect these comments in another observation, to compare with Ob-
servations 4.1 and 4.2.

Observation 4.3 Suppose h(t) has nonnegative coefficients. If h(t) is real-
rooted, then h is log-concave. In particular, h is unimodal.

Notice, then, that if the goal is to prove unimodality of a polynomial h,
real-rootedness is more than sufficient. The relationships between these three
concepts: gamma-nonnegativity, log-concavity, and real-rootedness are shown
in Figure 4.3. The reader is asked to find a polynomial in each distinct region
of that Venn diagram in Problem 4.10.

real-rooted
gamma

-nonnegative
log-concave

Fig. 4.3 The relationship between the notions of gamma-nonnegativity, log-
concavity, and real-rootedness for palindromic polynomials with nonnegative
coefficients.
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4.7 Symmetric boolean decomposition

If f(P ; t) is the rank generating function of a poset P , the fact that f(P ; t)
is gamma-nonnegative might only be the enumerative shadow of a deeper
structural property of the poset itself, which we call symmetric boolean de-
composition. Loosely, it means that a poset can be partitioned into a number
of disjoint boolean algebras with the same center of symmetry around the
middle rank of P .

This is a stronger version of a property known as a symmetric chain de-
composition of a poset, which itself implies unimodality of the rank function
f(P ; t). The fact that a symmetric boolean decomposition implies a sym-
metric chain decomposition follows once we can show that every boolean
algebra has a symmetric chain decomposition. This is left to Problem 4.14.
See also Problem 4.13 for more properties and consequences of symmetric
chain decompositions.

Rather than giving a formal definition of symmetric boolean decomposi-
tion, let us see some examples. In Figure 4.4, posets (a) and (b) have sym-
metric boolean decompositions, while (c) and (d) do not.

(a) (b)

(c) (d)

Fig. 4.4 Posets with and without symmetric boolean decompositions.
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Formally, we say a poset P of rank n admits a symmetric boolean decom-
position if there is a collection {P1, . . . , Pk} of subposets of (P,≤) with the
following properties:

• Pi ∩ Pj = ∅ if i 
= j,
• P1 ∪ · · · ∪ Pk = P ,
• for each i = 1, . . . , k there is a number j, 0 ≤ j ≤ n/2, and a bijection

ρi : 2[n−2j] → Pi that takes cover relations to cover relations and sends
elements of rank r in 2[n−2j] to elements of rank j + r in P .

That is, each induced poset (Pi,≤) has 2n−2j elements (for some j) and
contains a copy of the boolean algebra 2[n−2j], plus possibly more relations.

For example, we can see in Figure 4.4 that poset (a) contains a copy
of 2{1,2,3} as a proper subposet, whereas in (b) the part of the partition
containing it has no unnecessary cover relations. Note also the delicacy of the
decomposition: the poset in (c) differs from (b) only in one cover relation.

We can also observe that just as gamma-nonnegative polynomials are
closed under multiplication, so too are posets with symmetric boolean de-
compositions. First, we define the product of two posets (P,≤P ) and (Q,≤Q)
to be the poset on the cartesian product P×Q with partial order (p, q) ≤P×Q

(p′, q′) if and only if p ≤P p′ and q ≤Q q′. Then it is a straightforward matter
to verify the following observation. This is left to the reader in Problem 4.16.

Observation 4.4 Suppose (P,≤P ) and (Q,≤Q) are posets with symmetric
boolean decompositions. Then (P × Q,≤P×Q) has a symmetric boolean de-
composition.

This result is illustrated in Figure 4.5.
Two interesting examples of posets with symmetric boolean decomposi-

tions are the shard intersection order and the lattice of noncrossing parti-
tions.

Theorem 4.3. The shard intersection order and the lattice of noncrossing
partitions admit symmetric boolean decompositions.

This result follows from the valley-hopping argument given in Section 4.2.
Indeed, the hop-equivalence classes are boolean intervals in the shard inter-
section order with the proper rank properties, i.e., their descents are dis-
tributed like tj(1 + t)n−2j . Since hop-equivalence preserves the pattern 231,
this gives a symmetric boolean decomposition for the shard intersection order
on 231-avoiders, which we showed is isomorphic to the lattice of noncrossing
partitions. How this works in S4 is shown in Figure 4.6.

Notes

Gamma-nonnegativity of the Eulerian polynomials was observed by Do-
minique Foata and Marcel-Paul Schützenberger in their 1970 book [70,
Théorème 5.6]. Foata and Volker Strehl [72] gave the result a combinatorial
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P = Q =

P × Q = =

Fig. 4.5 The product of two posets with a symmetric boolean decomposition has a
symmetric boolean decomposition.

proof very similar to the “valley-hopping” argument given here, which was
essentially rediscovered by Louis Shapiro, Wen Jin Woan, and Seyoum Getu
in 1983 [135]. In a 2008 paper, [31], Petter Brändén studies valley-hopping
(what he calls the “modified Foata-Strehl” action) on a large family of poly-
nomials that generalize the Eulerian polynomials and include the Narayana
polynomials. That the Narayana polynomials are gamma-nonnegative is also
implicit in the work of Rodica Simion and Daniel Ullman from 1991 [140].
See also Simion’s 1994 paper [138].

We also mention that George Andrews anticipated some of the ideas in
this section, proving in a 1975 paper [8] that a product of palindromic and
unimodal polynomials is again palindromic and unimodal. Further, he dis-
cussed the gamma polynomial and palindromic polynomials (what he called
“reciprocal polynomials”) in the larger context of quadratic transformations
in a 1985 paper [9].

More recent interest in gamma-nonnegativity was sparked by a 2005 pa-
per of Światos�law Gal [79]. This work showed certain questions in topology
could be resolved by demonstrating gamma-nonnegativity of combinatorial
invariants. Prior to Gal’s work, researchers had attacked such questions via
real-rootedness, but Gal showed that real-rootedness could fail yet gamma-
nonnegativity still holds. (This subject is discussed further in Chapter 10.)
Similar real-rootedness conjectures known as the Neggers and Stanley conjec-
tures were disproved around the same time by Petter Brändén [28] (Stanley)
and John Stembridge [158] (Neggers). Both Gal [79] and Brändén [29] showed
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Fig. 4.6 The symmetric boolean decomposition of the shard intersection order and
noncrossing partition lattice (in bold) induced by hop-equivalence classes. The Hasse
diagram is drawn left to right, and edges not needed for the decomposition are
omitted.
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gamma-nonnegativity could be a viable replacement for real-rootedness in
many of these contexts. See also the work of Victor Reiner and Volkmar
Welker [128].

Some nice surveys about log-concavity, unimodality, real-rootedness, and
gamma-nonnegativity include a 1989 paper by Richard Stanley [150], a 1994
paper by Francesco Brenti [33], and a 2014 survey by Brändén [32]. Only
Brändén’s discusses gamma-nonnegativity.

The idea of symmetric boolean decomposition first appears in Simion and
Ullman’s work on the lattice of noncrossing partitions, though they do not
state this explicitly [140]. However, a remark about such a decomposition
was later made by Simion [138, Proposition 3.4]. In 1999, while studying
a generalization of the lattice of noncrossing partitions, Patricia Hersh [90]
makes the definition of symmetric boolean decomposition explicit. More rec-
ently this book’s author demonstrated the symmetric boolean decomposition
of the shard intersection order [118].

Problems

4.1. Verify Equations (4.4) and (4.7).

4.2 (Alternating permutations). A permutation w is called alternating if

w(1) < w(2) > w(3) < · · · or w(1) > w(2) < w(3) > · · · .

In the first case, we say w is up-down alternating, while in the second case
we say w is down-up alternating.

1. Let En denote the set of up-down alternating permutations of [n], and let
E ′
n denote the set of down-up alternating permutations. Show |En| = |E ′

n|.
2. Let En denote the cardinality of either En or E ′

n, with E0 := 1. The first
few values of En are

1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, . . . .

Show that for n ≥ 1,

2En+1 =

n∑

k=0

(
n

k

)
EkEn−k.

3. Show that ∑

n≥0

En
zn

n!
= sec z + tan z.

Since sec z is an even function and tan z is an odd function, conclude that



4.7 Symmetric boolean decomposition 89

∑

n≥0

E2n
z2n

(2n)!
= sec z,

and
∑

n≥0

E2n+1
z2n+1

(2n+ 1)!
= tan z.

4.3. A permutation w ∈ Sn is called min-max if w−1(1) < w−1(n) and max-
min if w−1(n) < w−1(1). Let E↗

n denote the number of up-down alternating
permutations that are min-max permutations, and let E↖

n denote the number
of up-down alternating permutations that are max-min permutations.

Show that

E↗
n − E↖

n =

{
0 if n is odd,

En−2 if n is even.

4.4. The stack-sorting operator S is a recursively defined function on per-
mutations. If w is an empty permutation S(w) := w. If w is not empty and
maxw(i) = m, then write w = u·m·v for some (possibly empty) permutations
u and v. Then we define S(w) = S(u)S(v)m.

1. Compute S(389124576) and S(132549678).
2. Prove that S(w) = 12 · · ·n if and only if w is 231-avoiding. We call such a

permutation stack-sortable.
3. Show that S(w) = S(w′) if Hop(w) = Hop(w′), i.e., if w and w′ are in the

same valley-hopping equivalence class.
4. A permutation is called r-stack sortable if Sr(w) = 12 · · ·n. Show that

r-stack sortability is preserved by valley hopping, and conclude that
the Eulerian distribution on r-stack sortable permutations is gamma-
nonnegative, i.e.,

∑

w∈Sr
n

tdes(w) =
∑

j≥0

γr;n,jt
j(1 + t)n−1−2j ,

where Sr
n denotes the set of r-stack sortable elements in Sn, and γr;n,j =

|{w ∈ Sr
n : pk(w) = des(w) = j}|.

4.5. Let

hn(t) = (1 + t)(1 + t+ t2) · · · (1 + t+ · · ·+ tn−1) =

n∏

i=1

1− ti

1− t
,

and let γ(t) be the corresponding gamma polynomial. Note that hn(1) = n!.
What is γ(−1)?

4.6. Prove the Eulerian polynomials Sn(t) are real rooted.
Hint: Let An(t) = tSn(t) and show that An(t) has n real roots. We can

modify Equation (1.9) to write
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An+1(t) = t ((n+ 1)An(t) + (1− t)A′
n(t)) . (4.10)

If we suppose An(t) has n real roots, then we can use this recurrence to prove
Sn+1(t) = An+1(t)/t has n real roots as follows. Rolle’s theorem shows that
the roots of a polynomial f(t) and its derivative f ′(t) are “interlacing.” Show
that (n + 1)An(t) and (1 − t)A′

n(t) have interlacing roots, and use this to
show their sum has n real roots.

Moreover, show that the sequence of Eulerian polynomials forms a Sturm
sequence, i.e., the polynomials Sn(t) and Sn+1(t) have interlacing roots.

4.7. Let Nn(t) = tCn(t) denote the Narayana polynomial multiplied by a
power of t.

1. Prove the polynomials Nn(t) satisfy the following recurrence:

(n+ 1)Nn(t) = (2n− 1)(1 + t)Nn−1(t)− (n− 2)(1− t)2Nn−2(t). (4.11)

(A bijective proof would be best, but this can also be verified with gener-
ating functions using Equation (2.6).)

2. Use the recurrence in (4.11) to prove that the Narayana polynomials are
real-rooted and form a Sturm sequence.

4.8 (Real roots and log-concavity). The goal of this problem is to show
that a polynomial with positive coefficients and only real roots has log-
concave, and hence unimodal, coefficients.

1. Show that the sequence of binomial coefficients with n fixed,

(
n

0

)
,

(
n

1

)
, . . . ,

(
n

n

)
,

is log-concave, i.e., the polynomial (1 + t)n is log-concave.
2. Show that the sequence of binomial coefficients with k fixed,

(
k

k

)
,

(
k + 1

k

)
, . . . ,

is log-concave.
3. Prove that if a1, a2, . . . and b1, b2, . . . are log-concave, then the sequence

c1, c2, . . . defined by ck = akbk is log-concave.
4. Show that if a0, a1, . . . , an is a finite sequence of nonnegative numbers

and the sequence b0, b1, . . . given by bk = ak/
(
n
k

)
is log-concave, then

a0, a1, . . . , an is itself log-concave.
5. Let a0, a1, . . . , an be a sequence of nonnegative numbers such that f(t) =

a0 + a1t+ · · ·+ ant
n is real-rooted.
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a. Write ak =
(
n
k

)
bk. Show that

n−1∑

k=0

(
n− 1

k

)
bk+1t

k

is real-rooted. (Hint: it is a multiple of the derivative of f .)
b. Show that the polynomial

n∑

k=0

(
n

k

)
bn−kt

k

is real-rooted.
c. Use the operations indicated in parts 5a) and 5b) to show that for any

j = 1, . . . , n − 1, the polynomial bj−1 + 2bjt + bj+1t
2 is real-rooted.

Conclude that the sequence b0, b1, b2, . . . is log-concave. By part 4) this
proves that a real-rooted polynomial with nonnegative coefficients is
log-concave, and hence unimodal.

4.9. Prove that if f(t) and g(t) are nonnegative and log-concave, then their
product, f(t)g(t), is log-concave. Hint: first prove that if a0, a1, a2, . . . is a
nonnegative and log-concave sequence, then aiaj ≤ ai+1aj−1 for any i < j−1.

4.10. If a polynomial is real-rooted and palindromic then it is both gamma-
nonnegative and log-concave, as illustrated in Figure 4.3. Find examples of
polynomials with positive, palindromic integer coefficients that fit in the other
regions of that Venn diagram.

1. Find a polynomial that is gamma-nonnegative but not log-concave (and
hence not real-rooted).

2. Find a polynomial that is log-concave and palindromic but not gamma-
nonnegative (and hence not real-rooted).

3. Find a polynomial that is log-concave and gamma-nonnegative but not
real-rooted.

4.11 (Gamma-nonnegativity for involutions). An involution is a per-
mutation that is its own inverse: w = w−1. Show that the distribution of de-
scents for involutions, i.e., the Eulerian distribution for involutions, is gamma-
nonnegative. That is, show there exist nonnegative integers γj such that

∑

w=w−1∈Sn

tdes(w) =
∑

j≥0

γjt
j(1 + t)n−1−2j .

4.12 (Two-dimensional gamma-nonnegativity). Let

Sn(s, t) =
∑

w∈Sn

sdes(w
−1)tdes(w),
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i.e., the joint distribution of descents and inverse descents. Show that there
exist nonnegative integers γi,j such that

Sn(s, t) =
∑

i,j≥0

γi,j(st)
i(s+ t)j(1 + st)n−1−j−2i.

4.13 (Symmetric chain decomposition). A symmetric chain decompo-
sition of a finite ranked poset P with maximal rank n is a partition into
saturated chains

p0 <P p1 <P · · · <P pk,

such that ρ(p0)+ρ(pk) = n for each chain. (Recall a “saturated” chain is one
for which ρ(pi) + 1 = ρ(pi+1) for all i.)

1. Show that if P has a symmetric chain decomposition, then its rank func-
tion,

f(P ; t) =
∑

p∈P

tρ(p) =
∑

k≥0

fkt
k,

is symmetric and unimodal.
2. Let A ⊂ P be an antichain, i.e., a set of pairwise incomparable elements

of P . Show that |A| ≤ f�n/2�.
3. Show that the product of two chains has a symmetric chain decomposition.

That is, show P has a symmetric chain decomposition, where P = [k]× [l]
is the set of pairs (i, j) with 1 ≤ i ≤ k and 1 ≤ j ≤ l, ordered by
(i, j) ≤ (i′, j′) if and only if i ≤ i′ and j ≤ j′.

4. Show that if P and Q are posets with symmetric chain decompositions,
then their cartesian product P ×Q (with partial order (p, q) ≤P×Q (p′, q′)
if and only if p ≤P p′ and q ≤Q q′) has a symmetric chain decomposition.

4.14 (Sperner’s Theorem). Show that the boolean algebra 2[n], i.e., the set
of subsets of a finite set ordered by inclusion, has a symmetric chain decompo-
sition. (This implies that any poset with a symmetric boolean decomposition
inherits a symmetric chain decomposition.)

Conclude Sperner’s Theorem: any collection A of subsets of [n] such that
no subset contains another satisfies |A| ≤ (

n
�n/2�

)
.

4.15 (Lattice of divisors). The lattice of positive divisors of an integer
n, Λ(n), is the set of all integers d that divide n, ordered by divisibility. If
d = pm1

1 pm2
2 · · · pmk

k is the prime factorization of d, we define the degree of
d to be deg(d) = m1 + m2 + · · · + mk. The covers of Λ(n) are given by
multiplication by a single prime, d ≺ pid for some pi. Thus Λ(n) is ranked
by degree. Let fk(n) denote the number of divisors of n of degree k.

Show that the lattice of positive divisors of an integer n has a symmetric
chain decomposition, and conclude that any collection A of mutually indivis-
ible divisors of n (i.e., if a, b ∈ A, then neither a|b nor b|a) has cardinality at
most f�deg(n)/2�(n).
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4.16. Verify Observation 4.4, i.e., show that if posets P and Q have a sym-
metric boolean decomposition, then so does their cartesian product, P ×Q.

4.17 (Simion and Ullmann’s symmetric boolean decomposition). In
[140], Rodica Simion and Daniel Ullman gave a symmetric boolean decompo-
sition of NC(n) that is different from the one that follows from valley hopping.
Simion and Ullman provide a certain encoding of noncrossing partitions as
words on the alphabet {b, e, l, r}. Given a noncrossing partition π ∈ NC(n),
the encoding assigns a word w(π) = w = w1w2 · · ·wn−1 of length n − 1 as
follows:

wi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b if i and i+ 1 are in different blocks

and i is not the largest element in its block,

e if i and i+ 1 are in different blocks

and i+ 1 is not the smallest element in its block,

l if i and i+ 1 are in different blocks,

i is the largest element in its block,

and i+ 1 is the smallest element in its block,

r if i and i+ 1 are in the same block.

We call such a word the SU-word for π.
For example, if π = {{1, 2, 6}, {3}, {4, 5}}, we have its SU-word is w(π) =

rblre. LetB(w), E(w), L(w), R(w) denote the sets of positions in w containing
the letters b, e, l, and r, respectively. For example w = rblre has B(w) = {2},
E(w) = {5}, L(w) = {3}, and R(w) = {1, 4}.
1. Show n = |B(w)|+ |E(w)|+ |L(w)|+ |R(w)|+ 1.
2. Show π has rank equal to |B(w)|+ |R(w)|.
3. Show that |B(w)| = |E(w)| and that these sets give a valid matching on

[n] by having an open parenthesis at each b ∈ B(w) (beginning) and a
closed parenthesis at e+ 1 for each e in E(w) (ending).

4. Let π and π′ be noncrossing partitions with SU-words w and w′. Show
that if B(w) = B(w′), E(w) = E(w′), and R(w) ⊆ R(w′), then π ≤NC π′.

5. Use 5) to give a symmetric boolean decomposition of NC(n).
6. Show that this decomposition is different from the one inherited from the

decomposition of the shard intersection order restricted to 231-avoiding
permutations.
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