Chapter 14 Affine descents and the Steinberg torus (Supplemental)

14.1 Affine Weyl groups

In this section we outline some basic facts for affine Weyl groups, following standard notations. See Sections 4.3 and 4.6 of the book by James Humphreys for more details [92].

We now consider that Φ is an irreducible and *crystallographic* root system, i.e., $2\langle \alpha, \beta \rangle / \langle \beta, \beta \rangle$ is an integer for all roots α and β . These root systems are listed in Figure 11.4. The group $W = W(\Phi)$ is a finite Coxeter group, but there is an infinite Coxeter group associated with Φ as well, known as the *affine Weyl group*, and denoted W . This is the group generated by reflections $s_{\beta,k}$ through the affine hyperplanes

$$
H_{\beta,k} = \{\lambda \in V : \langle \lambda, \beta \rangle = k\},\
$$

where $\beta \in \Pi$ and $k \in \mathbb{Z}$.

Let Φ[∨] denote the set of *coroots*

$$
\beta^{\vee} := 2\beta/\langle \beta, \beta \rangle,
$$

with $\beta \in \Phi$. Composing two reflections $s_{\beta,k}$ corresponding to the same β corresponds to translation by a vector in $\mathbb{Z} \Phi^{\vee}$. Let $L = \mathbb{Z} \Phi^{\vee}$ denote this lattice of translations, a subgroup of W . The affine group W also contains the finite group W, generated by reflections across the hyperplanes $H_{\beta,0} = H_{\beta}$.

The crystallographic condition guarantees that W fixes L , and we can write \widetilde{W} as a semidirect product $L \rtimes W$. The product in the semidirect product is

$$
(\mu, w) \cdot (\mu', w') = (\mu + w(\mu'), ww').
$$

The geometric action of W on V extends both the action of W by linear reflections and the action of L by translations:

$$
(\mu, w) \cdot \lambda = \mu + w(\lambda),
$$

for $\mu \in \mathbb{Z} \Phi^{\vee}$, $w \in W$, and $\lambda \in V$.

Since Φ is irreducible, there is a unique maximum in its root poset, known $(\mu, w) \cdot \lambda = \mu + w(\lambda),$
for $\mu \in \mathbb{Z} \Phi^{\vee}$, $w \in W$, and $\lambda \in V$.
Since Φ is irreducible, there is a unique maximu
as the *highest root* and denoted $\tilde{\alpha}$. The group \widetilde{W} is generated by $\widetilde{S} = S \cup$
 \widetilde{W} is generated by $\widetilde{S} = S$ ${\rm for~ } \beta \atop {\rm as~ t} \S$
as t $(\mu, w) \cdot \lambda = \mu + w(\lambda),$
 $\mu \in \mathbb{Z} \Phi^{\vee}$, $w \in W$, and $\lambda \in V$.

Since Φ is irreducible, there is a unique maximum in its root poset, known

the *highest root* and denoted $\tilde{\alpha}$. The group \widetilde{W} is generated by Coxeter graphs/Dynkin diagrams are shown in Figure [14.1.](#page-2-0) The graph for W differs from that of W by the addition of one node. Geometrically, the new as the *highest root* and denoted $\tilde{\alpha}$. The group W is generated by $S = S \cup \{s_{\tilde{\alpha},1}\}\)$. The pair $(\widetilde{W}, \widetilde{S})$ is an irreducible Coxeter system. The corresponding Coxeter graphs/Dynkin diagrams are shown in Figu of simple roots for W , let us denote the nodes of the diagram by simple root is the *lowest root* $\alpha_0 = -\tilde{\alpha}$. If $\Delta = {\alpha_1, \ldots, \alpha_n}$ denotes the set Let $\tilde{\Sigma}$ denote the set of faces of the affine hyperplane arrangement
Let $\tilde{\Sigma}$ denote the set of faces of the affine hyperplane arrangement

$$
\widetilde{\Delta} = \{\alpha_0\} \cup \Delta = \{\alpha_0, \alpha_1, \dots, \alpha_n\}.
$$

set of faces of the affine hyperplan

$$
\widetilde{\mathcal{H}}(\Phi) = \{H_{\beta,k} : \beta \in \Phi, k \in \mathbb{Z}\}.
$$

 $10¹$

$$
\mathcal{H}(\Phi) = \{H_{\beta,k} : \beta \in \Phi, k \in \mathbb{Z}\}.
$$

By adding an empty face, $\widetilde{\Sigma}$ is a simplicial complex isomorphic to the Coxeter by adding an empty race, \angle is a simplicial complex isomorphic to the Coxeter complex for W. The maximal faces in this arrangement are called *alcoves* (as opposed to *chambers* in the finite case).
The *fundamental alc* opposed to *chambers* in the finite case).

The *fundamental alcove* is

$$
A_{\emptyset} = C_{\emptyset} \cap \{\lambda \in V : \langle \lambda, \widetilde{\alpha} \rangle < 1\},\
$$

where C_{\emptyset} is the fundamental chamber of the finite Coxeter arrangement. We can write the faces of the fundamental alcove as $\in V : \langle \lambda, \alpha \rangle < 1$,

er of the finite Coxeter arra

tal alcove as
 $\lambda, \widetilde{\alpha} \rangle < 1$ } if $\alpha_0 \notin J$,

the fundamental chamber of the finite Coxeter arra
\n
$$
A_J = \begin{cases} C_J \cap {\{\lambda \in V : \langle \lambda, \widetilde{\alpha} \rangle < 1 }\} & \text{if } \alpha_0 \notin J, \\ C_{J-\{\alpha_0\}} \cap {\{\lambda \in V : \langle \lambda, \widetilde{\alpha} \rangle = 1 }\} & \text{if } \alpha_0 \in J, \end{cases}
$$

where J is a proper subset of $\tilde{\Delta}$ and C_I is a face of the fundamental chamber as in Section 11.7.

In Figure [14.2](#page-3-0) we see the affine arrangement and faces of the fundamental alcove for A_2 . The same for C_2 is in Figure [14.3.](#page-4-0)

14.2 Faces of the affine Coxeter complex

The closure of the fundamental alcove is a fundamental domain for the action **14.2 Faces of the affine Coxeter c**
The closure of the fundamental alcove is a fun
of \widetilde{W} on V, and each face of $\widetilde{\Sigma}$ is of the form

$$
F = \mu + w \cdot A_J,
$$

where $\mu \in L$, $w \in W$, and J is a proper subset of $\tilde{\Lambda}$.

Fig. 14.1 The Dynkin diagrams for irreducible affine root systems.

z. 14.1 The Dynkin diagrams for irreducible affine root systems.
The vertices of $\widetilde{\Sigma}$ are of the form $\mu + w \cdot A_{\widetilde{\Delta} - {\{\alpha\}}}$ for some $\alpha \in \widetilde{\Delta}$. If we **Fig. 14.1** The Dynkin diagrams for irreducible affine root systems.
The vertices of $\widetilde{\Sigma}$ are of the form $\mu + w \cdot A_{\widetilde{\Delta} - {\{\alpha\}}}$ for some $\alpha \in \widetilde{\Delta}$. If we assign color α to all such vertices, we obtain a bala The vertices of $\tilde{\Sigma}$ are of the form μ +
assign color α to all such vertices, we obt
face $\mu + w \cdot A_J$ receiving color set $\tilde{\Delta} - J$. The vertices of $\tilde{\Sigma}$ are of the form $\mu + w \cdot A_{\tilde{\Delta} - {\{\alpha\}}}$ for some $\alpha \in \tilde{\Delta}$. If we assign color α to all such vertices, we obtain a balanced coloring of $\tilde{\Sigma}$, with face $\mu + w \cdot A_J$ receiving color set \tilde

Each face F has a canonical representation, in the sense that we can idenof μ is not surprising, since we can translate any face to a face in the neighborhood of the origin. The uniqueness of J follows from the fact that each face is in the orbit of a unique face of the closure of A_{\varnothing} . The finite group element w is unique up to right multiplication by the subgroup of W that fixes A_J . We can make the choice of w unique by declaring that, for any

planes and the fundamental alcove. (c) The faces of the fundamental alcove. **Fig. 14.2** The affine arrangement $\widetilde{\mathcal{H}}(A_2)$. (a) Positive (co)roots. (b) Affine hyper-
planes and the fundamental alcove. (c) The faces of the fundamental alcove.
 $\alpha \in \widetilde{\Delta}$, if $w(\alpha) < 0$, then $\alpha \in \widetilde{\Delta} - J$

the *affine descent set* of an element of the finite group W to be 0. then $\alpha \in \tilde{\Delta} - J$. Following
 $t \text{ set of an element of the finite}$
 $\widetilde{\text{Des}}(w) = {\alpha \in \tilde{\Delta} : w(\alpha) < 0},$

$$
\widetilde{\mathrm{Des}}(w) = \{ \alpha \in \widetilde{\Delta} : w(\alpha) < 0 \},
$$
\n
$$
= \begin{cases}\n\mathrm{Des}(w) & \text{if } w(\alpha_0) > 0, \\
\mathrm{Des}(w) \cup \{\alpha_0\} & \text{if } w(\alpha_0) < 0.\n\end{cases}
$$

Notice that since α_0 is a negative root, this means every element $w \in W$ has at least one affine descent, including the identity. We can state the uniqueness of the representation as follows. In $U \to U_0$ is a negative root, this means every element $w \in W$ has
least one affine descent, including the identity. We can state the uniqueness
the representation as follows.
In the case of type A_{n-1} , we will see

descent set of a permutation, i.e., the usual descent set along with a descent in zero if the last letter is larger than the first.

Fig. 14.0 The alme arrangement $h(0, 2)$. (a) Fositive coloots: $a_1 = \frac{1}{2}a_1$, $a_1 = \frac{1}{2}a_2$, $a_2' = \alpha_2$, $\beta' = \beta$. (b) Affine hyperplanes and the fundamental alcove. (c) The faces of the fundamental alcove. of the fundamental alcove.

 $F = \mu + w \cdot A_J,$

Proposition 14.1. *Each face* $F \in \tilde{\Sigma}$ *has a unique represer*
 $F = \mu + w \cdot A_J$,
with $\mu \in L$, $J \subset \tilde{\Delta}$, and $w \in W$ such that $\widetilde{\text{Des}}(w) \subseteq \tilde{\Delta} - J$.

By analogy with the usual Eulerian polynomial, it now makes sense to
fine the *affine Eulerian polynomial* to be the generating function for *affine*
lerian numbers. Let $\widehat{\text{des}}(w) = |\widetilde{\text{Des}}(w)|$, and write
 $\widetilde{W}(t) =$ define the *affine Eulerian polynomial* to be the generating function for *affine*

Eulerian numbers. Let $\widehat{\text{des}}(w) = |\widetilde{\text{Des}}(w)|$, and write
 $\widetilde{W}(t) = \sum_{k} \widehat{\text{des}}(w)$ *with* $\mu \in L$, $J \subset \tilde{\Delta}$, and $w \in W$ such that $\widetilde{Des}(w) \subseteq$
By analogy with the usual Eulerian polynomial,
define the *affine Eulerian polynomial* to be the gener
Eulerian numbers. Let $\widetilde{des}(w) = |\widetilde{Des}(w)|$, and wri

$$
\widetilde{W}(t) = \sum_{w \in W} t^{\widetilde{\text{des}}(w)}.
$$

Before we study this polynomial and its coefficients, let us first describe a structure for which it is the h-polynomial.

14.3 The Steinberg torus

The coroot lattice L acts on V by translations and fixes the affine hyperplane **14.3 The Steinberg torus**
The coroot lattice L acts on V by translations and fixes the affine hyperplane
arrangement $\widetilde{\mathcal{H}}$. Thus we can consider the set of L-orbits of faces of $\widetilde{\Sigma}$. The *Steinberg torus* is this quotient set of faces modulo translations, denoted by $\overline{\Sigma}$, i.e., translationsider the set of faces $\overline{\Sigma} = \frac{\tilde{\Sigma}}{L}$.

$$
\overline{\Sigma} = \widetilde{\Sigma}/L
$$

Geometrically, we can identify the Steinberg torus with a triangulation of the geometric torus V/L . This cell decomposition is not a simplicial complex, as different faces can share the same vertex set, but it is a boolean complex. $\Sigma = \Sigma/L$.
Geometrically, we can identify the Steinberg torus with a triangulation of the geometric torus V/L . This cell decomposition is not a simplicial complex, as different faces can share the same vertex set, but it inherit a balanced coloring for $\overline{\Sigma}$ as well.

The Steinberg torus is named for Robert Steinberg, who exploited the
us to help compute the length generating function for the affine Weyl group
7]. It was studied again (and named) by Kevin Dilks, John Stembridge,
d the torus to help compute the length generating function for the affine Weyl group [157]. It was studied again (and named) by Kevin Dilks, John Stembridge, and the author in 2009 [60]. The presentation here largely follows [60].

way to define the Steinberg torus is to identify opposite faces of the polytope

$$
P_{\Phi} = \{ \lambda \in V : -1 \le \langle \lambda, \beta \rangle \le 1 \text{ for all } \beta \in \Phi \}.
$$

This polytope is the union of the closures of the alcoves $w \cdot A_{\emptyset}$, with $w \in W$. A point λ on the boundary of P_{Φ} has $\langle \lambda, \beta \rangle = -1$ for some root β . We identify λ with $\lambda' = \lambda + \beta^{\vee}$ which satisfies $\langle \lambda', \beta \rangle = 1$ and also lies on the boundary. See Figure [14.4.](#page-5-0)

Fig. 14.4 The polytopes $P_{\mathbf{A}_2}$ and $P_{\mathbf{C}_2}$. The Steinberg tori are obtained by identifying points on the boundary.

From Proposition [14.1](#page-4-1) we see that we can abstractly identify the faces of Σ with the cosets of "quasi-parabolic" subgroups of W , i.e., for any proper points on the b
From Prope
 $\overline{\Sigma}$ with the co
subset $J \subset \widetilde{\Delta}$,

$$
L + w \cdot A_J \leftrightarrow wW_J = \{ wv : v \in \langle s_\alpha : \alpha \in J \rangle \}.
$$

As in Proposition [14.1,](#page-4-1) we can choose a unique minimal length representative 14.3 The Steinberg torus
 $L + w \cdot A_J \leftrightarrow \cdot$

As in Proposition 14.1, we can
 w such that $\widehat{\text{Des}}(w) \subseteq \widetilde{A} - J.$ **Proposition 14.1, we can choose a unique minimal length representative** w such that $\widetilde{Des}(w) \subseteq \widetilde{\Delta} - J$.
Proposition 14.2. *Every face* $F \in \overline{\Sigma}$ *has a unique* $J \subseteq \widetilde{\Delta}$ *and* $w \in W$ *such*

that **Proposition 14.2.** E
that
with $\widetilde{\mathrm{Des}}(w) \subseteq \widetilde{\Delta} - J$.

$$
F = L + w \cdot A_J,
$$

We call such subgroups W_J "quasi-parabolic" since although they are parabolic subgroups of W , they are not necessarily parabolic subgroups of W. Such a group is always a finite Coxeter group, however, and a subgroup of W.

Just as the model of set compositions can be used to encode faces of the type A_{n-1} Coxeter complex, there is a similar combinatorial model to encode faces of the type A_{n-1} Steinberg torus, developed by Marcelo Aguiar and the author [2]. See Figure [14.5.](#page-7-0)

Also noteworthy at this point is that, unlike for Coxeter complexes, the distinction between types B_n and C_n really matters. This is because the structure of the torus is intimately linked with the root system, not merely the group. When $n \geq 3$, the polytopes P_{Φ} have very different boundaries, despite having the same number of maximal cells. In particular, the polytope $P_{\mathbf{C}_3}$ is a cube, while the polytope $P_{\mathbf{B}_3}$ is a rhombic dodecahedron. The identifications taking place on their boundaries lead to a different triangulated torus. In fact $\overline{\Sigma}(\mathbf{C}_3)$ and $\overline{\Sigma}(\mathbf{B}_3)$ don't even have the same number of vertices (eight and ten, respectively).

We now turn to the f - and h -vectors of the Steinberg torus. To count faces we use a similar line of reasoning as in the case of the finite Coxeter complex to count W-orbits. First, define f_J to be the number of faces of Σ with color set J, ignoring the empty face. Ignoring the empty face simply omits the constant term from the f-polynomial. However, omitting $f_{\emptyset} = 1$ has the effect of making the corresponding h-polynomial palindromic. In general, while the Dehn-Sommerville relations for a torus are not palindromic, they can be made so by ignoring the empty face. This idea was generalized to other triangulated manifolds by Isabella Novik and Ed Swartz in 2009 [113]. effect of making the corresponding *h*-poly
ile the Dehn-Sommerville relations for a t
i be made so by ignoring the empty face
ner triangulated manifolds by Isabella Novi
Now, for any nonempty subset $\emptyset \neq J \subseteq \tilde{\Delta}$,

nifolds by Isabella Novik and E
\n
$$
\begin{aligned}\n\text{t}{y} &= |\{w \cdot A_{\tilde{\Delta}-J} : w \in W\}|, \\
&= |W/W_{\tilde{\Delta}-J}|, \\
&= |W|/|W_{\tilde{\Delta}-J}|, \\
&= |\{w \in W : \widetilde{\text{Des}}(w) \subseteq J\}|.\n\end{aligned}
$$

Fig. 14.5 The faces of the Steinberg torus $\overline{\Sigma}(A_2)$, with colors corresponding to
W-orbits. Note the identifications along the boundary.
Define h_J to be
 $h_J = |\{w \in W : \widetilde{\mathrm{Des}}(w) = J\}|,$ W-orbits. Note the identifications along the boundary.

Define h_J to be

$$
h_J = |\{w \in W : \widetilde{\mathrm{Des}}(w) = J\}|
$$

so that by inclusion-exclusion

$$
= |\{w \in W : \widetilde{\text{Des}}(w) = \lambda \text{ is } |w| \le \lambda \text{ so } h_J = \sum_{\emptyset \neq I \subseteq J} (-1)^{|J - I|} f_I.
$$

Now we can express the affine Eulerian polynomial as follows:

$$
h_J = \sum_{\emptyset \neq I \subseteq J} (-1)^{|J-I|} f_I.
$$

ss the affine Eulerian polynomial ε

$$
\widetilde{W}(t) = \sum_{w \in W} t^{\widetilde{\deg}(w)},
$$

$$
= \sum_{\emptyset \neq J \subseteq \widetilde{\Delta}} h_J t^{|J|},
$$

$$
= \sum_{\emptyset \neq I \subseteq J \subseteq \widetilde{\Delta}} (-1)^{|J-I|} f_I t^{|J|},
$$

$$
= \sum_{\emptyset \neq I \subseteq \widetilde{\Delta}} f_I t^{|I|} (1-t)^{n+1-|I|},
$$

Using our calculation for f_J from above, we can give the following expression for the affine Eulerian polynomial.

Proposition 14.3. *The affine Eulerian polynomial has the following expression,* Eulerian polynomial.
 14.3. The affine Eule
 $(t) = \sum t^{\widetilde{\operatorname{des}}(w)} = \sum t^{\widetilde{\operatorname{des}}(w)}$

$$
\widetilde{W}(t) = \sum_{w \in W} t^{\widetilde{\text{des}}(w)} = \sum_{\emptyset \neq I \subseteq \widetilde{\Delta}} \frac{|W|}{|W_{\widetilde{\Delta}-I}|} t^{|I|} (1-t)^{n+1-|I|}.
$$

Furthermore, we can see that

$$
\widetilde{W}(t) = (1-t)^{n+1} f(\overline{\Sigma} - \{\emptyset\}; t/(1-t)),
$$

= $h(\overline{\Sigma} - \{\emptyset\}; t).$

That is, the affine Eulerian polynomial is the h-polynomial of the Steinberg torus (ignoring the empty face).

14.4 Affine Eulerian numbers

We now describe the combinatorial definitions of affine descents and give some enumerative results, all of which are contained in [60]. Most generally, we can state the following fact. -

Theorem 14.1. *The affine Eulerian polynomial* W (t) *is gamma-nonnegative for all finite Weyl groups* W*.* can state the following fact.
 It is corem 14.1. The affine Eulerian polynomial $\widetilde{W}(t)$ is gamma-nonnegative
 It is known that $\widetilde{W}(t)$ is real-rooted in all cases except \widetilde{D}_n . See Section 3.5

of the paper of Carla Savage and Mirko Visontai [132].

*14.4.1 Type An[−]***1**

The highest root in \mathbf{A}_{n-1} is $\varepsilon_n-\varepsilon_1$, so $\alpha_0 = \varepsilon_1-\varepsilon_n$. Thus $w \cdot \alpha_0 < 0$ whenever $w(n) > w(1)$. Therefore i in \mathbf{A}_{n-1} is $\varepsilon_n - \varepsilon_1$, so $\alpha_0 = \varepsilon_1 - \varepsilon_n$. Thus w ·
nerefore
 $\widetilde{\text{Des}}(w) = \{0 \le i \le n-1 : w(i) > w(i+1)\},\$

$$
Des(w) = \{0 \le i \le n - 1 : w(i) > w(i + 1)\},\
$$

with $w(0) = w(n)$. These are better known as "cyclic descents" since we think of the permutation w wrapping around so that we compare $w(n)$ and $w(1)$. $\widetilde{\mathrm{Des}}(w) = \{0 \le i \le r$
with $w(0) = w(n)$. These are better k
of the permutation w wrapping arou
For example, $\widetilde{\mathrm{Des}}(25413) = \{0, 2, 3\}.$

In Table [14.1](#page-9-0) we see the affine Eulerian numbers of type A_{n-1} , i.e., the distribution of cyclic descents over the symmetric group.

$n\backslash k$			$\overline{2}$	3	4	5	6		8	
$\overline{2}$	$_{0}$	$\overline{2}$								
3	0	3	3							
4	θ	4	16							
5	θ	5	55	55	5					
6	0	6	156	396	156	6				
7	0		399	2114	2114	399				
8	0	8	960	9528	19328	9528	960	8		
9	0	9	2223	38637	140571	140571	38637	2223	9	

Table 14.1 The affine Eulerian numbers for A_{n-1} , $0 \le k \le n \le 9$.

Cyclic descents were studied by Jason Fulman for their connections to card shuffling ("riffle shuffles with a cut") in a 2000 paper [77] and also by the author in 2005 [115]. Both papers give simple arguments for the following
observation.
 Observation 14.1 For any $n \ge 2$,
 $\widetilde{A}_n(t) = (n + 1)tA_{n-1}(t)$, observation.

Observation 14.1 *For any* $n \geq 2$ *,*

$$
A_n(t) = (n+1)t A_{n-1}(t),
$$

where $A_{n-1}(t) = S_n(t)$ *is the classical Eulerian polynomial.*

Hence, $\widetilde{A}_n(t)$ is real-rooted and gamma-nonnegative from what we know in the classical case. Moreover, the following generating function is easily obtained.

Proposition 14.4. *We have the following exponential generating function for affine Eulerian polynomials:* We have the formularity $z + \sum \widetilde{A}_{n-1}(t)$

$$
z + \sum_{n\geq 2} \widetilde{A}_{n-1}(t) \frac{z^n}{n!} = \frac{z(1-t)}{1 - te^{z(1-t)}}.
$$

14.4.2 Type Bn

In type \mathbf{B}_n , the highest root is $\varepsilon_{n-1} + \varepsilon_n$, so $w \cdot \alpha_0 < 0$ if and only if $w(n-1) + w(n) > 0$. That is, we have a descent in 0 if $w(n-1) > -w(n)$. We have in this case, the highest
 $v(n) > 0$. Then this case,
 $\widetilde{\text{Des}}(w) = \begin{cases}$

$$
\widetilde{\mathrm{Des}}(w) = \begin{cases} \mathrm{Des}(w) & \text{if } w(n-1) < -w(n), \\ \mathrm{Des}(w) \cup \{\alpha_0\} & \text{if } w(n-1) > -w(n). \end{cases}
$$

For example, $Des(23\bar{4}5\bar{1}) = \{0, 3, 5\}.$

The type B_n affine Eulerian numbers are in Table [14.2.](#page-10-0)

$n\setminus$ κ			2		4	Ð.	6		8	9
$\overline{2}$	-0		4							
31	Ω	10	28	10						
4	- 0	24	168	168	24					
5	θ	54	904	1924	904	54				
6		116	4452	18472	18472	4452	116			
		242	20612	157294	288824	157294	20612	242		
		496.		91600 1227504		3841360 3841360	1227504	91600	496	
						0 1006 396112 8989576 45616432 75788308 45616432 8989576 396112				-1006

Table 14.2 The affine Eulerian numbers for B_n , $0 \le k \le n \le 9$.

The type B_n affine Eulerian polynomial has a nonnegative gamma vector
niniscent of the type D_n Eulerian polynomials.
oposition 14.5. For $n \ge 2$, we have
 $\widetilde{B}_n(t) = \sum \phi(u)(4t)^{pk(0u0)}(1+t)^{n+1-2pk(0u0)}$, reminiscent of the type D_n Eulerian polynomials.

Proposition 14.5. For $n \geq 2$, we have

$$
\widetilde{B}_n(t) = \sum_{u \in S_n} \phi(u) (4t)^{\mathrm{pk}(0u0)} (1+t)^{n+1-2\,\mathrm{pk}(0u0)},
$$

where

$$
\phi(u) = \begin{cases}\n1 & \text{if } u(n-2) > u(n-1) > u(n), \\
0 & \text{if } u(n-2) > u(n) > u(n-1), \\
1/2 & \text{otherwise.} \n\end{cases}
$$
\nhave the following generating function.
\n
$$
2 + 2tz + \sum \widetilde{B}_n(t) \frac{z^n}{n!} = \frac{2(1-t)(1-tze^{z(1-t)}}{1+t e^{2z(1-t)}}
$$

Moreover, we have the following generating function.

$$
2 + 2tz + \sum_{n \ge 2} \widetilde{B}_n(t) \frac{z^n}{n!} = \frac{2(1-t)(1-tze^{z(1-t)}}{1-te^{2z(1-t)}}.
$$

Savage and Visontai proved in 2015 that $\widetilde{B}_n(t)$ is real-rooted [132].

14.4.3 Type Cn

In type \mathbf{C}_n , the highest root is $2\varepsilon_n$, and so we have a descent in α_0 if and only if $w(n) > 0$. Thus, ighest root is $2\varepsilon_n$, and so we have a de
Thus,
 $\widetilde{\text{Des}}(w) = \{0 \le i \le n : w(i) > w(i+1)\},\$

$$
Des(w) = \{0 \le i \le n : w(i) > w(i+1)\},\
$$

 $\widetilde{\mathrm{Des}}(w) = \{0 \le i \le n : w(i) > w(i+1)\},$
with $w(0) = w(n+1) = 0$. For example, $\widetilde{\mathrm{Des}}(23\overline{4}5\overline{1}) = \{3, 5\}$. The type C_n affine Eulerian numbers are in Table [14.3.](#page-11-0)

$n\setminus$			2	3		Ð				9
2 ₁										
3		8	32	8						
4		16	176	176	16					
5	θ	32	832	2112	832	32				
6		64	3648	19328	19328	3648	64			
		0 1 2 8	15360	152448	309248	152448	15360	128		
		0 256		63232 1099008		3998464 3998464	1099008	63232	256	
9					0 512 257024 7479296 45175808 79969280 45175808 7479296 257024 512					

Table 14.3 The affine Eulerian numbers for C_n , $0 \le k \le n \le 9$.

The type C_n affine descent set can be thought of as a special kind of cyclic descent, and indeed we have the following connection with classical Eulerian polynomials. Just as with Observation [14.1](#page-9-1) this observation was proved both
by Fulman in [77] and the author in [115].
Observation 14.2 For any $n \ge 1$,
 $\tilde{C}_n(t) = 2^n t A_{n-1}(t)$. by Fulman in [77] and the author in [115].

Observation 14.2 *For any* $n \geq 1$ *,*

$$
\tilde{C}_n(t) = 2^n t A_{n-1}(t).
$$

From this observation it follows that $\widetilde{C}_n(t)$ is real-rooted and gammanonnegative. We can express its gamma vector in terms of the classical case.
Moreover, we have the following generating function.
Proposition 14.6. We have the following exponential generating function:
 $1 + \sum \tilde{C}_n(t) \frac$ Moreover, we have the following generating function.
 Proposition 14.6. We have the following exponention.
 $1 + \sum \widetilde{C}_n(t) \frac{z^n}{n!} = \frac{1 - t}{1 - t \cdot z^{2}(1 - t)}$

Proposition 14.6. *We have the following exponential generating function:*

$$
1 + \sum_{n \ge 1} \widetilde{C}_n(t) \frac{z^n}{n!} = \frac{1 - t}{1 - te^{2z(1 - t)}}.
$$

14.4.4 Type Dn

The highest root for \mathbf{D}_n is the same as the highest root in \mathbf{B}_n , with the same effect on combinatorial descents. We have an affine descent for an element $w \in D_n$ if $w(i) > w(i + 1)$ for $i = 1, \ldots, n - 1$ in the usual way, along with a descent at the beginning if $-w(1) > w(2)$, and another at the end if $w(n-1) > -w(n)$. For example, $\widehat{\text{Des}}(3\overline{4}2\overline{1}5) = \{0, -1, 1, 3\}$, since $w(1) >$ The highest root for \mathbf{D}_n is the same as the highest root in \mathbf{B}_n , with the same
effect on combinatorial descents. We have an affine descent for an element
 $w \in D_n$ if $w(i) > w(i + 1)$ for $i = 1, ..., n - 1$ in the usual w $w(2), w(-1) > w(2), w(3) > w(4), \text{ and } w(4) > -w(5).$ See Table [14.4.](#page-12-0)

The type D_n affine Eulerian polynomial has a nonnegative gamma vector as well.

$n\backslash k$ 0										9
	41 O	-16	80	80	16					
	$5\vert 0$	44	464	904	464	44				
		6 0 104		2568 8848	8848	2568	104			
					7 0 228 13192 79580 136560 79580		13192	228		
					8 0 480 63904 665568 1850528 1850528 665568			63904	480	
					9 0 988 296608 5232400 22833760 36169768 22833760 5232400 296608 988					

Table 14.4 The affine Eulerian numbers for D_n , $0 \le k \le n \le 9$.

Proposition 14.7. *For* $n \geq 4$ *, we have*

on 14.7. For
$$
n \ge 4
$$
, we have
\n
$$
\widetilde{D}_n(t) = \sum_{u \in S_n} \phi(u)\phi(\overleftarrow{u})(4t)^{pk(0u0)}(1+t)^{n+1-2pk(0u0)},
$$

where $\overleftarrow{u} = u(n) \cdots u(2)u(1)$ *, and* ϕ *is the same as in Proposition [14.5.](#page-10-1)* More*over, we have the following generating function:*

$$
u \in S_n
$$

= $u(n) \cdots u(2)u(1)$, and ϕ is the same as in Proposition 1.
have the following generating function:

$$
2 + 4t\frac{z^2}{2} + \sum_{n \ge 3} \widetilde{D}_n(t)\frac{z^n}{n!} = \frac{2(1-t)(1+tz^2 - 2tze^{z(1-t)})}{1-te^{2z(1-t)}}.
$$

We finish by remarking that the polynomial $\widetilde{D}_n(t)$ is the only case of an affine Eulerian polynomial for which real-rootedness is not proved.