
Chapter 1

Eulerian numbers

The first interesting array of numbers a typical mathematics student
encounters is Pascal’s triangle, shown in Table 1.1. It has many beautiful
properties, some of which we will review shortly. One of the main points
of this chapter is to argue that the array of Eulerian numbers is just as
interesting as Pascal’s triangle.

Table 1.1 Pascal’s triangle of binomial coefficients
(
n
k

)
, 0 ≤ k ≤ n ≤ 9.

n\k 0 1 2 3 4 5 6 7 8 9
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
9 1 9 36 84 126 126 84 36 9 1

1.1 Binomial coefficients

It is likely that a reader of this book is already familiar with binomial co-
efficients, but we will review this material to establish our point of view for
future material. The approach we will take is to define

(
n
k

)
to be a combina-

torial quantity: namely, the number of k-element subsets of an n-element set.
Therefore

(
n
k

)
= 0 if n < 0, k < 0, or k > n. (And if we aren’t clear what a
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4 1 Eulerian numbers

set with a nonintegral number of elements is, we should probably set
(
n
k

)
= 0

unless k and n are integers.) It is immediate from this definition that these
numbers have the following symmetry:

(
n

k

)
=

(
n

n− k

)
,

by the fact that a subset of an n-element set and its complement are in bijec-
tion. Further, by considering the fact that a k-element subset S of {1, 2, . . . , n}
either has:

• n ∈ S, in which case S−{n} is a (k−1)-element subset of {1, 2, . . . , n−1},
or

• n /∈ S, in which case S itself is a k-element subset of {1, 2, . . . , n− 1},
we get Pascal’s recurrence.

Theorem 1.1 (Pascal’s recurrence). For any n ≥ 1, k ≥ 0,

(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

We can get an explicit formula for
(
n
k

)
by counting orderings of k-element

subsets two different ways. On the one hand, we can choose a k-element
subset in

(
n
k

)
ways, then order the elements in k! ways. On the other hand,

we can order k of n things in

n(n− 1) · · · (n− k + 1) =
n!

(n− k)!

ways, since we have n choices for the first element, n − 1 choices for the
second, and so on. We get

k!

(
n

k

)
=

n!

(n− k)!
,

or (
n

k

)
=

n!

k!(n− k)!
.

We call the numbers
(
n
k

)
binomial coefficients because of the following

theorem.

Theorem 1.2 (Binomial theorem). For n ≥ 0,

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k. (1.1)

This famous result can be proved by induction using Pascal’s recur-
rence, but a combinatorial argument can be given by counting subsets of
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{1, 2, . . . , n} according to cardinality. On the left-hand side, we consider each
of the numbers i in {1, 2, . . . , n} independently as being members of a subset
S (with weight x) or not (with weight y), so that

(x+ y)n =
∑

S⊆{1,2,...,n}
x|S|yn−|S|.

On the right-hand side, we see the coefficient of xkyn−k is the number of
k-element subsets, or

(
n
k

)
.

We can think of the binomial theorem as giving combinatorial meaning
to an algebraic quantity, or we can think of the binomial theorem as a way
of encoding combinatorial information algebraically. This idea is elaborated
upon in the next section.

1.2 Generating functions

A generating function is an algebraic tool for encoding combinatorial data.
For a sequence of numbers a0, a1, . . . the ordinary generating function is the
series

∑

k≥0

akt
k = a0 + a1t+ a2t

2 + · · ·+ akt
k + · · · ,

while the exponential generating function is the series

∑

k≥0

ak
tk

k!
= a0 + a1t+ a2

t2

2
+ a3

t3

6
+ · · · .

For example, the geometric series

1

1− t
= 1 + t+ t2 + · · · , (1.2)

can be considered the generating function for the sequence 1, 1, 1, . . ., while

et = 1 + t+
t2

2
+

t3

6
+ · · · ,

is its exponential generating function.
Generating functions can encode finite sequences as well. For example,

the binomial theorem tells us for fixed n, (1 + t)n is the ordinary generating
function for the binomial coefficients

(
n
k

)
.

While we think of generating functions as algebraic encodings of combina-
torial data (a “clothesline on which the sequence hangs,” in Herbert Wilf’s
words [166]), we can also manipulate generating functions as analytic func-
tions. For example, if we differentiate Equation (1.2) n times, we get
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n!

(1− t)n+1
=

∑

k≥0

k(k − 1) · · · (k − n+ 1)tk−n,

and so after dividing by n! we have another generating function for the bino-
mial coefficients, this time taken column-wise in Pascal’s triangle (Table 1.1):

ti

(1− t)n+1
=

∑

k≥0

(
k + n− i

n

)
tk. (1.3)

1.3 Classical Eulerian numbers

Let us now meet the Eulerian numbers. As with binomial coefficients, our
starting point is a combinatorial definition.

For a given positive integer n, the symmetric group Sn is the set of all
permutations of [n] := {1, 2, . . . , n}, i.e., bijections w : [n] → [n]. We will
usually write permutations in one-line notation: w = w(1)w(2) · · ·w(n), so a
typical element of S7 is w = 3125647.

For any permutation w ∈ Sn, we define a descent to be a position i such
that w(i) > w(i+ 1), and we denote by Des(w) the set of descents of w,

Des(w) = {i : w(i) > w(i+ 1)}.

We let des(w) denote the number of descents of w, i.e.,

des(w) = |Des(w)| = |{i : w(i) > w(i+ 1)}|. (1.4)

For example, if w = 3125647, then there are descents in position 1 (since
3 > 1) and in position 5 (since 6 > 4). Hence, des(w) = 2. The permutation
12 · · ·n is the only permutation with no descents, while its reversal, n · · · 21,
has the maximal number, with n− 1.

We define the Eulerian numbers, denoted
〈
n
k

〉
, to be the number of per-

mutations in Sn with k descents, i.e.,

〈
n

k

〉
= |{w ∈ Sn : des(w) = k}|. (1.5)

For example, we see from Table 1.2 there are 11 permutations in S4 with
two descents. Hence,

〈
4
2

〉
= 11.

Table 1.3 shows the Eulerian numbers
〈
n
k

〉
, with 1 ≤ k ≤ n ≤ 10.

The reader should be careful not to confuse the triangle of Eulerian num-
bers with the sequence of Euler numbers : 1, 1, 2, 5, 16, 61, 272, 1385, 7936, . . .,
though there is a connection. See the discussion at the end of Section 4.2 and
Problem 4.2.
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Table 1.2 The permutations in S4 grouped according to descent number.

des(w) = 0 des(w) = 1 des(w) = 2 des(w) = 3
1234 1243 3421 4321

1324 4231
1342 2431
1423 3241
2134 4312
2314 4132
2341 1432
2413 3142
3124 4213
3412 2143
4123 3214

Table 1.3 The Eulerian numbers
〈
n
k

〉
, 0 ≤ k < n ≤ 10.

n\k 0 1 2 3 4 5 6 7 8 9
1 1
2 1 1
3 1 4 1
4 1 11 11 1
5 1 26 66 26 1
6 1 57 302 302 57 1
7 1 120 1191 2416 1191 120 1
8 1 247 4293 15619 15619 4293 247 1
9 1 502 14608 88234 156190 88234 14608 502 1

10 1 1013 47840 455192 1310354 1310354 455192 47840 1013 1

The function

des :
⋃

n≥1

Sn → {0, 1, 2, 3, . . .}

is an example of a permutation statistic, a function from the set of permu-
tations to the integers. Other well-known permutation statistics include the
number of inversions (discussed in Section 5.1) and the number of cycles.
When we count permutations according to a particular permutation statis-
tic, this gives rise to the distribution of the statistic. Any statistic whose
distribution gives the numbers

〈
n
k

〉
is called an Eulerian statistic.

Besides des, there are many other Eulerian permutation statistics. For
example, it is easy to see the equivalence of des and the number of ascents
defined by

asc(w) = |{i : w(i) < w(i+ 1)}| = |[n− 1]−Des(w)|.
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However, proving that two statistics are equidistributed is not always so easy.
For example, the number of excedances of a permutation, defined as

exc(w) = |{i : w(i) > i}|, (1.6)

is an Eulerian statistic. While exc ranges from 0 to n − 1, its relationship
with des is disguised. But this disguise can be lifted with a bijection from
Sn to itself that maps descents to excedances, known as the “transformation
fondamentale” of Dominique Foata and Marcel-Paul Schützenberger [70]. The
reader is invited to study this bijection, along with other manifestations of
the Eulerian numbers, in the problems at the end of the chapter. For now,
we will stick to the definition of Eulerian numbers in terms of des.

We can use the descent definition of Eulerian numbers to prove a Pascal-
like linear recurrence as follows. Notice that if w is in Sn with k descents,
then deleting n from w results in a permutation in Sn−1 with k or k − 1
descents. Conversely, we can form permutations of n with k descents from
permutations of n− 1 with k or k − 1 descents by inserting n.

To be precise, suppose v is a permutation in Sn−1 with k − 1 descents.
Then inserting n at the far left of v or in an ascent position of v creates a
permutation w ∈ Sn with k descents. There are n− 1− (k− 1) = n− k such
positions.

Similarly, if v ∈ Sn−1 already has k descents, then inserting n in a descent
position of v or at the far right gives a permutation w ∈ Sn with k descents.
There are k + 1 such positions.

We have the following result.

Theorem 1.3 (The linear recurrence). For any k and n > 0,

〈
n

k

〉
= (n− k)

〈
n− 1

k − 1

〉
+ (k + 1)

〈
n− 1

k

〉
. (1.7)

For example, with n = 4, k = 1, we have:

123 132 213 231 312

4123 1423 1243 1342 1324 2413 2134 2341 2314 3412 3124

and so
〈
4
1

〉
= 3

〈
3
0

〉
+ 2

〈
3
1

〉
.

We can use the recurrence in Equation (1.7) to think of the triangle
of Eulerian numbers as an edge-weighted version of Pascal’s triangle. See
Figure 1.1.
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1

1 1

1 4 1

1 11 11 1

1 26 66 26 1

1 57 302 302 57 1

1 1

1 2 2 1

1 3 2 2 3 1

1 4 2 3 3 2 4 1

1 5 2 4 3 3 4 2 5 1

Fig. 1.1 Generating Eulerian numbers via the recurrence relation.

1.4 Eulerian polynomials

For fixed n, we define the nth Eulerian polynomial as the generating function
for the Eulerian numbers

〈
n
k

〉
as follows:

Sn(t) =
∑

w∈Sn

tdes(w) =

n−1∑

k=0

〈
n

k

〉
tk. (1.8)

For example, S1(t) = 1, S2(t) = 1 + t, S3(t) = 1 + 4t + t2, and S4(t) =
1 + 11t+ 11t2 + t3. We will define S0(t) = 1 for convenience.

An immediate consequence of Theorem 1.3 is an identity that relates the
Eulerian polynomial Sn+1(t) to Sn(t) and its derivative.

Since Sn(t) =
∑n−1

k=0

〈
n
k

〉
tk, we have S′

n(t) =
∑n−1

k=1 k
〈
n
k

〉
tk−1. Thus,

(1 + nt)Sn(t) = (1 + nt)

n−1∑

k=0

〈
n

k

〉
tk,

=

n−1∑

k=0

〈
n

k

〉
tk +

n∑

k=1

n

〈
n

k − 1

〉
tk,

and

t(1− t)S′
n(t) = (t− t2)

n−1∑

k=1

k

〈
n

k

〉
tk−1,

=
n−1∑

k=1

k

〈
n

k

〉
tk −

n−1∑

k=1

(k − 1)

〈
n

k − 1

〉
tk.
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Adding these four sums, we get that the coefficient of tk in (1 + nt)Sn(t)
+t(1− t)S′

n(t) is:

(n+ 1− k)

〈
n

k − 1

〉
+ (k + 1)

〈
n

k

〉
,

which, by Theorem 1.3, equals
〈
n+1
k

〉
. Thus, we have the following result.

Theorem 1.4 (Linear polynomial recurrence). For any n ≥ 0,

Sn+1(t) = (1 + nt)Sn(t) + t(1− t)S′
n(t). (1.9)

1.5 Two important identities

As it is equivalent to the numeric recurrence, Theorem 1.4 does not give any
new combinatorial insight into Eulerian numbers. However, sometimes having
a combinatorial identity rephrased like this allows us to perform algebraic and
analytic operations freely, and these operations can uncover new combinato-
rial information that we may not have guessed at otherwise. This approach
to combinatorial identities is sometimes referred to as “manipulatorics” since
it often boils down to formal manipulations of formulas. While it might not
be as satisfying as a direct combinatorial explanation, it is nonetheless an im-
portant skill to have as a practitioner of the combinatorial arts. Sometimes
it may be the only way we know how to prove a combinatorial identity.

In general, our preference for this book will be to give direct combinatorial
explanations, but in some cases the manipulatorics approach is simpler, or
allows for more elegant statements of results. As practice, let us now do
some manipulatorics, starting with Theorem 1.4 and finishing with a truly
interesting result known as Worpitzky’s identity (Corollary 1.2). We ask for
a combinatorial proof of Worpitzky’s identity in Problem 1.13.

For n ≥ 0, define the function

sn(t) = (1− t)n+1
∑

k≥0

(k + 1)ntk.

Then s0 = 1 and it is straightforward to verify the identity

sn+1(t) = (1 + nt)sn(t) + t(1− t)s′n(t).

Thus, sn(t) = Sn(t), and we have the following corollary, which we refer to
as the Carlitz identity.

Corollary 1.1 (The Carlitz identity). For any n ≥ 0,

Sn(t)

(1− t)n+1
=

∑

k≥0

(k + 1)ntk. (1.10)
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But using the definition of Sn(t) we have

Sn(t)

(1− t)n+1
=

n−1∑

i=0

〈
n

i

〉(
ti

(1− t)n+1

)
,

and recalling the expression for ti/(1− t)n+1 in Equation (1.3), we find:

Sn(t)

(1− t)n+1
=

n−1∑

i=0

〈
n

i

〉∑

k≥0

(
k + n− i

n

)
tk,

=
∑

k≥0

(
n−1∑

i=0

〈
n

i

〉(
k + n− i

n

))

tk.

By comparing with the formula in Equation (1.10) we get the following
wonderful identity.

Corollary 1.2 (Worpitzky’s identity). For any n ≥ 0,

(k + 1)n =

n−1∑

i=0

〈
n

i

〉(
k + n− i

n

)
.

For example, with k = 3, n = 5, we get:

45 =

〈
5

0

〉(
8

5

)
+

〈
5

1

〉(
7

5

)
+

〈
5

2

〉(
6

5

)
+

〈
5

3

〉(
5

5

)
,

= 1 · 56 + 26 · 21 + 66 · 6 + 26 · 1,
= 1024.

Using Worpitzky’s identity repeatedly, with k ≥ 0, gives us explicit for-
mulas for the Eulerian numbers:

〈
n

0

〉
= 1,

〈
n

1

〉
= 2n − (n+ 1),

〈
n

2

〉
= 3n −

〈
n

1

〉(
n+ 1

n

)
−
(
n+ 2

n

)
,

= 3n − 2n(n+ 1) + (n+ 1)2 −
(
n+ 2

n

)
,

= 3n − 2n(n+ 1) +

(
n+ 1

n− 1

)
,

...

Continuing in this way, we find the following formula.
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Corollary 1.3 (Alternating sum formula). The Eulerian numbers have
the following formula for any n ≥ 1, k ≥ 0:

〈
n

k

〉
= (k + 1)n − kn

(
n+ 1

n

)
+ (k − 1)n

(
n+ 1

n− 1

)
− . . .,

. . .+ (−1)k
(

n+ 1

n+ 1− k

)
,

=
k∑

i=0

(−1)i(k + 1− i)n
(

n+ 1

n+ 1− i

)
,

=

k∑

i=0

(−1)i(k + 1− i)n
(
n+ 1

i

)
. (1.11)

1.6 Exponential generating function

We finish the chapter with a mixture of bijective combinatorics and ma-
nipulatorics to derive the exponential generating function for the Eulerian
polynomials.

We begin with a simple, elegant way to generate permutations recursively.
Recall that in deriving the linear recurrence in Theorem 1.3, we carefully
examined how inserting a new largest number into a permutation affected
descent numbers. This time, to form a permutation of n, we first choose which
subset of the elements {1, 2, . . . , n − 1} go to the left of n, which elements
go to the right, and permute independently on the left and on the right. See
Figure 1.2.

The number of descents in any permutation is one more than the sum of
the descents to the left of n and the descents to the right of n. Let i denote
the number of elements to the left of n. Then

7

1

3

6

5

9

4

8

2

Choose i elements

and permute them

with distribution

Si(t)

Permute the other

n− 1− i elements

with distribution

Sn−1−i(t)

Fig. 1.2 The idea behind Equation (1.12).
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Si(t) · t · Sn−1−i(t)

is the generating function for descents of permutations with these same
elements to the left of n. Of course, if there is nothing to the right of n,
i.e., if i = n− 1, then we simply get the number of descents to the left of n.
Summing over all i, we have the following quadratic recurrence for Eulerian
polynomials.

Theorem 1.5 (Quadratic polynomial recurrence). For any n > 0,

Sn(t) = Sn−1(t) + t

n−2∑

i=0

(
n− 1

i

)
Si(t)Sn−1−i(t). (1.12)

The recurrence in Equation (1.12) now leads to a way to find an expression
for the exponential generating function

S(t, z) :=
∑

n≥0

Sn(t)
zn

n!
=

∑

n,k≥0

〈
n

k

〉
tk
zn

n!
.

Indeed, (1.12) gives:

d

dz
S(t, z) =

∑

n≥1

Sn(t)
zn−1

(n− 1)!
,

=
∑

n≥1

Sn−1(t)
zn−1

(n− 1)!
+ t

∑

n≥1

n−2∑

i=0

(
n− 1

i

)
Si(t)Sn−1−i(t)

zn−1

(n− 1)!
,

= S(t, z) + t
∑

n≥1

n−2∑

i=0

Si(t)
zi

i!
· Sn−1−i(t)

zn−1−i

(n− 1− i)!
,

= S(t, z) + tS(t, z)(S(t, z)− 1)).

Solving the differential equation

f ′(z) = tf2(z) + (1− t)f(z),

with initial condition f(0) = 1 gives us the following result, originally due to
Euler.

Theorem 1.6 (Exponential generating function). We have

S(t, z) =
t− 1

t− ez(t−1)
. (1.13)

Those who don’t want to rely on solving a differential equation to derive
this formula are encouraged to see Problem 1.15.
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Notes

The reader looking for more details about the generating function approach
to enumerative combinatorics would do well to read Richard Stanley’s classic
work [154] and Herbert Wilf’s book [166]. The book by Philippe Flajolet and
Robert Sedgewick [66] focuses on analytic methods for extracting information
from generating functions, and part A gives a nice perspective on symbolic
methods for constructing generating functions. An earlier book that also
contains a wealth of information about the use of generating functions in
combinatorial enumeration is John Riordan’s book [130].

The Eulerian numbers appear in a chapter of Euler’s textbook on differ-
ential calculus [64, Part II, Caput VII, pp. 389–390]. In this chapter, Euler
essentially sets himself the task of solving the differential equation for the
exponential generating function we have in Equation (1.13), and when ex-
panding its series, he finds the Eulerian numbers, and mentions the alter-
nating sum formula given in Equation (1.11). Dominique Foata has a lovely
survey in which he explains Euler’s motivation and derivation [68]. Leonard
Carlitz and his collaborators studied Eulerian numbers and their generaliza-
tions in several papers in the 20th century, e.g., [38, 39, 41, 43, 44], while
Foata and Marcel-Paul Schützenberger wrote a then-comprehensive treat-
ment of Eulerian numbers from a combinatorial point of view in [70]. From
the 1980s onward, the number of scholarly articles on Eulerian numbers and
their generalizations is too numerous to attempt to catalogue.

Most of the results in this chapter can be traced back to Carlitz or Riordan,
though the Carlitz identity in Corollary 1.1 was known to Euler. We refer to it
as the Carlitz identity because of a generalization of the identity obtained by
Carlitz in 1975 [40], though even this generalization predates Carlitz—it can
be found in Percy MacMahon’s textbook from 1915/16 [106]. According to
Carlitz [38], Worpitzky’s identity (Corollary 1.2) dates from an 1883 paper by
Julius Worpitzky [168], though Don Knuth [96, pp. 36] attributes the identity
to an 1867 publication of Chinese mathematician Li Shan-Lan, and remarks
that special cases for n ≤ 5 were known to Yoshisuke Matsunaga of Japan,
who died in 1744.

Problems

1.1. A composition of n is an ordered list of positive integers whose sum is n,
denoted α = (α1, . . . , αk). Show that the number of compositions of n with
k parts is

(
n−1
k−1

)
.

1.2. How many compositions α of n have the following properties?

1. α has parts of size 1 and 2 only, e.g., for n = 9, (2, 1, 1, 2, 2, 1) is acceptable,
but not (1, 2, 3, 1, 2).
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2. α has only odd parts, e.g., for n = 9, (3, 1, 5) is acceptable, but not
(1, 2, 1, 5).

3. α has all its parts greater than 1, except possibly the last entry, e.g., for
n = 9, (3, 4, 2) and (3, 3, 2, 1) are acceptable, but not (3, 3, 1, 2).

1.3. Show that the Fibonacci numbers satisfy the following identity:

fn =
∑

k≥0

(
n− k

k

)
. (1.14)

This can be quickly verified with Pascal’s recurrence and careful bookkeeping,
but see if you can find a combinatorial argument using one of the sets of
compositions in Problem 1.2.

1.4. For n ≥ 1, let φn = fn/fn−1, where fn is the nth Fibonacci number.
Using the Fibonacci recurrence, find a recurrence for φn and use it to compute
the limit:

φ = lim
n→∞φn.

The number φ is sometimes called the golden ratio.

1.5. Let f(z) denote the ordinary generating function for the Fibonacci num-
bers, i.e.,

f(z) = 1 + z + 2z2 + 3z3 + 5z4 + 8z5 + · · · =
∑

k≥0

fkz
k,

with f0 = f1 = 1 and fn = fn−1 + fn−2 for n ≥ 2.

1. Write f(z) as

f(z) =
1

q(z)
,

where q(z) is a quadratic polynomial. Hint: use the recurrence for the
Fibonacci numbers to find an identity for f(z) of the form f(z)q(z) = 1.

2. Use the expression found in part 1 to give a “manipulatorics” proof of
Equation (1.14).

3. Factor q(z) from part 1 as q(z) = (1− αz)(1− βz), then find numbers A
and B so that

f(z) =
A

1− αz
+

B

1− βz
.

4. Use part 3 to show

fn =
φn+1 − φ

n+1

√
5

,

where φ is the golden ratio found in Problem 1.4 and φ is the other root
of the polynomial x2 − x− 1.
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1.6. Show that the following permutation statistics are Eulerian.

1. The number of ascents of a permutation w, asc(w) = {i : w(i) < w(i+1)},
e.g., asc(1374265) = 3.

2. The number of (maximal, increasing) runs of a permutation, denoted
runs(w), where a maximal increasing run is a substring w(i) < w(i+1) <
· · · < w(i+ r) such that w(i− 1) is not smaller than w(i) and w(i+ r) is
not smaller than w(i+ r + 1). For example, runs(1374265) = 4.

3. The number of readings of a permutation, denoted read(w). This is the
number of times one must scan the one-line notation of w from left to right
to find the numbers 1, 2, . . . , n in order. For example with w = 1374265
we read through four times:

times read 1 3 7 4 2 6 5

1 1 2
2 3 4 5
3 6
4 7

so read(1374265) = 4.

1.7. Show that the number of excedances, exc(w) = {i : w(i) > i}, is Eule-
rian.

1.8. An inversion sequence of length n is a vector

s = (s1, . . . , sn),

such that 0 ≤ si ≤ i − 1. Show that counting inversion sequences according
to ascents (with asc(s) = {i : si < si+1} as with permutations) gives rise
to the Eulerian distribution, e.g., if n = 3, the inversion sequences and their
ascent numbers are:

s asc(s)

(0, 0, 0) 0
(0, 0, 1) 1
(0, 0, 2) 1
(0, 1, 0) 1
(0, 1, 1) 1
(0, 1, 2) 2

.

1.9. An increasing binary tree of size n is a rooted, planar tree with n inter-
nal nodes (internal means not a leaf) such that each internal node has two
children: a left child and a right child. Further, the internal nodes are labeled
with 1, 2, . . . , n so that any path from the root to a leaf follows increasing
labels. Show that counting the number of increasing binary trees of size n
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according to how many internal nodes are left children gives the Eulerian dis-
tribution. For example, with n = 3, we have following trees, whose internal
left children are highlighted:

1

2

3

1

2

3

1

2 3

1

2

3

1

3 2

1

2

3
.

1.10. For any n and k = 0, 1, . . . , n − 1, let Rn,k denote the set of points
(x1, . . . , xn) in the unit cube whose sum is between k and k + 1, i.e.,

k ≤ x1 + · · ·+ xn ≤ k + 1,

with 0 ≤ xi ≤ 1. What is the volume of Rn,k?

1.11. The number of cyclic descents of a permutation w ∈ Sn is the num-
ber of ordinary descents, plus one if w(n) > w(1). We denote this statistic
by cdes(w). For example, cdes(31524) = 3 and cdes(43152) = 3, whereas
des(31524) = 2 and des(43152) = 3. Show that

∑

w∈Sn

tcdes(w) = ntSn−1(t).

1.12. Give a bijective proof that

〈
n

1

〉
= 2n − n− 1.

1.13. Give a bijective proof of Worpitzky’s identity:

(k + 1)n =

n−1∑

i=0

〈
n

i

〉(
k + n− i

n

)
.

Hint: interpret the left-hand side as counting the set of all integer vectors
(a1, a2, . . . , an), with 0 ≤ ai ≤ k, and try to group these according to permu-
tations of n by rearranging the sequence in weakly increasing order.

1.14. Give a combinatorial proof of the Carlitz identity in (1.10):

Sn(t)

(1− t)n+1
=

∑

k≥0

(k + 1)ntk.



18 1 Eulerian numbers

Hint: try the method of “balls in boxes” as follows. Clearly (k + 1)n is the
number of ways to place n distinct (labeled) balls into k + 1 boxes. Try to
partition the ways to put the balls into boxes according to permutations of
n, and show that for a fixed permutation w in Sn, the generating function
for arrangements of ball boxes that correspond to w is:

tdes(w)

(1− t)n+1
.

1.15. Use the Carlitz identity (Equation (1.10)) to derive Equation (1.13).
Hint: start with ∑

n≥0

Sn(t)

(1− t)n+1

zn

n!
.
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