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Birkhäuser Advanced Texts Basler Lehrbücher
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Foreword

The Eulerian numbers
〈
n
k

〉
were originally defined by Euler in a noncom-

binatorial way. MacMahon proved an identity which shows that
〈
n
k

〉
is the

number of permutations of 1, 2, . . . , n with k descents, though he was ap-
parently unaware of Euler’s work. It was not until 1953 that Carlitz and
Riordan showed explicitly that

〈
n
k

〉
, as defined by Euler, has this elegant

combinatorial interpretation. Who could believe that such a simple concept
would have a deep and rich theory, with close connections to a vast number
of other subjects? For instance, Eulerian numbers are intimately connected
with counting the carries in the usual addition algorithm for positive integers!
Eulerian numbers and their generalizations arise naturally in such areas as
partially ordered sets, hyperplane arrangements, Coxeter groups, simplicial
complexes and convex polytopes, mostly in connection with some of the most
interesting examples.

Kyle Petersen has done a masterful job of organizing for the first time the
bewildering variety of material on Eulerian numbers. He carefully develops
all the necessary background information, so the text will be accessible to
beginning graduate students and even advanced undergraduates. Readers of
this book will certainly learn a lot of beautiful combinatorics. In addition,
many readers will undoubtedly be enticed into pursuing further the numerous
areas mentioned above connected with Eulerian numbers. It is exciting to see
to what an extent the seedlings planted by Euler, MacMahon, and Carlitz-
Riordan have borne fruit.

Cambridge, MA, USA Richard Stanley
June 2015
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Preface

Leonhard Euler introduced the numbers that are at the heart of this book in
1755. His motivation seems to have been to obtain a formula for the alter-
nating sums of powers (1n − 2n + 3n − · · · ) in a manner analogous to what
Jacques Bernoulli had done for the unsigned sums of powers. The connec-
tion with Bernoulli numbers motivated work of Julius Worpitzky in 1883 and
Georg Frobenius in 1910. In the mid-twentieth century Leonard Carlitz wrote
many papers surrounding Eulerian numbers and their use in number theory.
We will discuss almost none of these topics in this book.

Rather, our starting point comes from later work of Carlitz and his collabo-
rators, who began to study the Eulerian numbers as combinatorial quantities,
following in the vein of late 19th and early 20th century combinatorialists like
Simon Newcomb and Percy MacMahon. As explained by John Riordan in his
1958 textbook, a wonderful way to encounter the Eulerian numbers is as the
answer to Simon Newcomb’s problem:

. . . a deck of cards of arbitrary specification is dealt out into a single pile so long
as cards are in rising order, with like cards counted as rising, and a new pile is
started whenever a non-rising card appears; with all possible arrangements of
the deck, in how many ways do k piles appear?

If there are no ties among the cards (if we order the suits as well as the
face values of the cards, say), then we can consider the deck of cards as a
permutation, and the stacks correspond to maximal increasing runs in the
permutation. The Eulerian numbers count the number of permutations of
fixed size with a given number of increasing runs.

This book is not the first book written on the topic of Eulerian num-
bers. Dominique Foata and Marcel-Paul Schützenberger wrote “Théorie
géométrique des polynômes eulériens” in 1970. This wonderful book collected
and expanded upon many of the ideas surrounding the combinatorics of Eu-
lerian numbers. Despite the title, there is little geometry (in the usual sense)
in the book of Foata and Schützenberger. As they themselves explain, the ti-
tle of their book comes from the fact that they use “propriétés géométriques

ix



x Preface

(combinatoires) des permutations” to obtain their results. For them, “geo-
metric” was synonymous with “combinatorial,” which in this case meant a
visual, almost tactile understanding of permutations and transformations of
permutations.

In the decades since that book, geometry, in the usual sense, has most
definitely entered the story of Eulerian numbers. For example, we now know
how the Eulerian numbers arise in problems of counting integer points in
polytopes, computing volumes of slices of a cube, and counting faces of sim-
plicial complexes. Moreover, the Eulerian numbers can be understood in a
larger context of finite reflection groups, known as Coxeter groups, where the
geometry of hyperplane arrangements plays a major role.

To get a taste of the form some of these connections take, consider the
following 1-dimensional simplicial complex:

•

••

•

• •

It has one empty face, six vertices, and six edges. We can record this informa-
tion in its f -vector, (1, 6, 6), or f -polynomial, 1 + 6t+6t2. Next we’ll rewrite
the f -vector in another basis, as a linear combination of rows of Pascal’s
triangle (right justified):

(1, 6, 6)

1× (1, 2, 1)
4× (1, 1)
1× (1)

The coefficients of this expansion we will put into the h-vector, (1, 4, 1), or
h-polynomial, 1 + 4t+ t2.

Now let’s do something completely different. List out all permutations of
{1, 2, 3} and count their descents, i.e., the number of positions i such that
w(i) > w(i + 1):

w des(w)

123 0
132 1
213 1
231 1
312 1
321 2

If we record the number of permutations with zero, one, and two descents in a
vector, we get (1, 4, 1). The polynomial with these coefficients is known as the
Eulerian polynomial S3(t) = 1+ 4t+ t2, which we observe is the same as the



Preface xi

h-polynomial of the hexagon above. This is not a coincidence! Moreover, that
hexagon can be interpreted as the Coxeter complex of the symmetric group
S3. A big part of this book seeks to generalize and explain this example.

Another thing that was probably not apparent in 1970 but has since come
to the forefront of this subject is that the Eulerian numbers have close cousins
known as the Narayana numbers. These are named after Tadepalli Venkata
Narayana, who described these numbers in a 1959 paper by counting certain
types of lattice paths. The Narayana numbers possess many of the same prop-
erties as the Eulerian numbers and have many of the same geometric connec-
tions. Just as with Eulerian numbers, we can obtain the Narayana numbers
by counting permutations according to descents. Here we only consider a
certain subset of “pattern-avoiding” permutations that are in bijection with
the paths studied by Narayana. The cardinality of this subset is given by the
Catalan numbers. These numbers are ubiquitous in combinatorial mathemat-
ics. In fact, Richard Stanley has a book with a catalogue of objects counted
by the Catalan numbers that includes over two hundred distinct entries!

This book has fourteen chapters split into three parts. Chapter 1 is a brief
introduction to the classical Eulerian numbers from a modern, combinato-
rial point of view. Chapter 2 introduces the Catalan numbers and Narayana
numbers, including a few different combinatorial models counted by these
numbers. Chapter 3 discusses partially ordered sets, a topic that is central to
modern enumerative combinatorics, and one that will be important for later
chapters. Chapter 4 discusses a strong sort of symmetry property possessed
by both the Eulerian numbers and the Narayana numbers. The first real
connection to geometry comes in Chapter 5, where we discuss the geometric
underpinnings for many of the later chapters. Chapter 6 is a brief diver-
sion into refined enumeration and q-analogues for the Eulerian and Narayana
numbers.

Part 2 consists of Chapters 8 and 9, with a supplementary Chapter 10*.
In Chapter 8 we discuss some background from combinatorial topology, in-
cluding simplicial complexes and the Dehn-Sommerville relations. Chapter 9
studies in detail how Eulerian numbers arise when counting faces of simplicial
complexes.

Part 3 consists of Chapter 11, Chapter 12, and two supplementary chap-
ters: 13* and 14*. Chapter 11 provides some background on Coxeter groups
and discusses how there exist analogues of Eulerian numbers associated with
any finite reflection group. Chapter 11 shows how the Narayana numbers can
be similarly generalized to Coxeter groups. There are four supplementary
Chapters sprinkled throughout the book, covering special topics. These are
Chapters 7*, 10*, 13*, and 14*.

The book is primarily intended for a graduate student of combinatorics, or
perhaps even an advanced undergraduate. Chapters 1–6, for example, would
make for a good one-semester topics in combinatorics course. Very little in
the way of background is assumed, particularly in the first four chapters.



xii Preface

Notes and literature references are included at the end of each chapter, along
with some relevant problems to work on. Hints and solutions for the problems
are given at the end of the book.

The writing style is meant to be expository. Rather than a “Definition-
Theorem-Proof” format, I lean towards a more narrative style of writing. My
hope is to focus on two main questions:

What is the truth? and Why is it true?

(Hyman Bass once told me that in any human endeavor these are the only
two questions that matter.) In some cases answering these questions calls
for a completely rigorous proof, but in others I find that a clearly explained
“proof by generic example” does a better job of conveying the heart of the
matter.

Finally, let me say this book represents my taste and knowledge in alge-
braic and enumerative combinatorics, omitting many interesting topics that
can be related to Eulerian numbers (connections with number theory, topics
in the statistics of permutations and words, theory of symmetric and qua-
sisymmetric functions, juggling (!), card shuffling (!), and more). For me the
Eulerian and Narayana numbers provide an interesting way to learn about
various overlapping topics in modern combinatorial mathematics. I hope that
this book can serve as an introduction to a circle of ideas that has been grow-
ing for the past few decades. Students can get a glimpse at recent develop-
ments while learning more general combinatorial techniques in a motivated
way. For those in the research community, I hope the book can serve as a
reference, by collecting many of these results in one place. I certainly look
forward to having a copy on my shelf.

Chicago, IL, USA Kyle Petersen
June 2015
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Part I

Combinatorics



Chapter 1

Eulerian numbers

The first interesting array of numbers a typical mathematics student
encounters is Pascal’s triangle, shown in Table 1.1. It has many beautiful
properties, some of which we will review shortly. One of the main points
of this chapter is to argue that the array of Eulerian numbers is just as
interesting as Pascal’s triangle.

Table 1.1 Pascal’s triangle of binomial coefficients
(
n
k

)
, 0 ≤ k ≤ n ≤ 9.

n\k 0 1 2 3 4 5 6 7 8 9
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
9 1 9 36 84 126 126 84 36 9 1

1.1 Binomial coefficients

It is likely that a reader of this book is already familiar with binomial co-
efficients, but we will review this material to establish our point of view for
future material. The approach we will take is to define

(
n
k

)
to be a combina-

torial quantity: namely, the number of k-element subsets of an n-element set.
Therefore

(
n
k

)
= 0 if n < 0, k < 0, or k > n. (And if we aren’t clear what a

© Springer Science+Business Media New York 2015
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4 1 Eulerian numbers

set with a nonintegral number of elements is, we should probably set
(
n
k

)
= 0

unless k and n are integers.) It is immediate from this definition that these
numbers have the following symmetry:

(
n

k

)
=

(
n

n− k

)
,

by the fact that a subset of an n-element set and its complement are in bijec-
tion. Further, by considering the fact that a k-element subset S of {1, 2, . . . , n}
either has:

• n ∈ S, in which case S−{n} is a (k−1)-element subset of {1, 2, . . . , n−1},
or

• n /∈ S, in which case S itself is a k-element subset of {1, 2, . . . , n− 1},
we get Pascal’s recurrence.

Theorem 1.1 (Pascal’s recurrence). For any n ≥ 1, k ≥ 0,

(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

We can get an explicit formula for
(
n
k

)
by counting orderings of k-element

subsets two different ways. On the one hand, we can choose a k-element
subset in

(
n
k

)
ways, then order the elements in k! ways. On the other hand,

we can order k of n things in

n(n− 1) · · · (n− k + 1) =
n!

(n− k)!

ways, since we have n choices for the first element, n − 1 choices for the
second, and so on. We get

k!

(
n

k

)
=

n!

(n− k)!
,

or (
n

k

)
=

n!

k!(n− k)!
.

We call the numbers
(
n
k

)
binomial coefficients because of the following

theorem.

Theorem 1.2 (Binomial theorem). For n ≥ 0,

(x+ y)n =

n∑

k=0

(
n

k

)
xkyn−k. (1.1)

This famous result can be proved by induction using Pascal’s recur-
rence, but a combinatorial argument can be given by counting subsets of
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{1, 2, . . . , n} according to cardinality. On the left-hand side, we consider each
of the numbers i in {1, 2, . . . , n} independently as being members of a subset
S (with weight x) or not (with weight y), so that

(x+ y)n =
∑

S⊆{1,2,...,n}
x|S|yn−|S|.

On the right-hand side, we see the coefficient of xkyn−k is the number of
k-element subsets, or

(
n
k

)
.

We can think of the binomial theorem as giving combinatorial meaning
to an algebraic quantity, or we can think of the binomial theorem as a way
of encoding combinatorial information algebraically. This idea is elaborated
upon in the next section.

1.2 Generating functions

A generating function is an algebraic tool for encoding combinatorial data.
For a sequence of numbers a0, a1, . . . the ordinary generating function is the
series

∑

k≥0

akt
k = a0 + a1t+ a2t

2 + · · ·+ akt
k + · · · ,

while the exponential generating function is the series

∑

k≥0

ak
tk

k!
= a0 + a1t+ a2

t2

2
+ a3

t3

6
+ · · · .

For example, the geometric series

1

1− t
= 1 + t+ t2 + · · · , (1.2)

can be considered the generating function for the sequence 1, 1, 1, . . ., while

et = 1 + t+
t2

2
+

t3

6
+ · · · ,

is its exponential generating function.
Generating functions can encode finite sequences as well. For example,

the binomial theorem tells us for fixed n, (1 + t)n is the ordinary generating
function for the binomial coefficients

(
n
k

)
.

While we think of generating functions as algebraic encodings of combina-
torial data (a “clothesline on which the sequence hangs,” in Herbert Wilf’s
words [166]), we can also manipulate generating functions as analytic func-
tions. For example, if we differentiate Equation (1.2) n times, we get
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n!

(1 − t)n+1
=
∑

k≥0

k(k − 1) · · · (k − n+ 1)tk−n,

and so after dividing by n! we have another generating function for the bino-
mial coefficients, this time taken column-wise in Pascal’s triangle (Table 1.1):

ti

(1 − t)n+1
=
∑

k≥0

(
k + n− i

n

)
tk. (1.3)

1.3 Classical Eulerian numbers

Let us now meet the Eulerian numbers. As with binomial coefficients, our
starting point is a combinatorial definition.

For a given positive integer n, the symmetric group Sn is the set of all
permutations of [n] := {1, 2, . . . , n}, i.e., bijections w : [n] → [n]. We will
usually write permutations in one-line notation: w = w(1)w(2) · · ·w(n), so a
typical element of S7 is w = 3125647.

For any permutation w ∈ Sn, we define a descent to be a position i such
that w(i) > w(i + 1), and we denote by Des(w) the set of descents of w,

Des(w) = {i : w(i) > w(i + 1)}.

We let des(w) denote the number of descents of w, i.e.,

des(w) = |Des(w)| = |{i : w(i) > w(i + 1)}|. (1.4)

For example, if w = 3125647, then there are descents in position 1 (since
3 > 1) and in position 5 (since 6 > 4). Hence, des(w) = 2. The permutation
12 · · ·n is the only permutation with no descents, while its reversal, n · · · 21,
has the maximal number, with n− 1.

We define the Eulerian numbers, denoted
〈
n
k

〉
, to be the number of per-

mutations in Sn with k descents, i.e.,

〈
n

k

〉
= |{w ∈ Sn : des(w) = k}|. (1.5)

For example, we see from Table 1.2 there are 11 permutations in S4 with
two descents. Hence,

〈
4
2

〉
= 11.

Table 1.3 shows the Eulerian numbers
〈
n
k

〉
, with 1 ≤ k ≤ n ≤ 10.

The reader should be careful not to confuse the triangle of Eulerian num-
bers with the sequence of Euler numbers : 1, 1, 2, 5, 16, 61, 272, 1385, 7936, . . .,
though there is a connection. See the discussion at the end of Section 4.2 and
Problem 4.2.
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Table 1.2 The permutations in S4 grouped according to descent number.

des(w) = 0 des(w) = 1 des(w) = 2 des(w) = 3
1234 1243 3421 4321

1324 4231
1342 2431
1423 3241
2134 4312
2314 4132
2341 1432
2413 3142
3124 4213
3412 2143
4123 3214

Table 1.3 The Eulerian numbers
〈
n
k

〉
, 0 ≤ k < n ≤ 10.

n\k 0 1 2 3 4 5 6 7 8 9
1 1
2 1 1
3 1 4 1
4 1 11 11 1
5 1 26 66 26 1
6 1 57 302 302 57 1
7 1 120 1191 2416 1191 120 1
8 1 247 4293 15619 15619 4293 247 1
9 1 502 14608 88234 156190 88234 14608 502 1

10 1 1013 47840 455192 1310354 1310354 455192 47840 1013 1

The function

des :
⋃

n≥1

Sn → {0, 1, 2, 3, . . .}

is an example of a permutation statistic, a function from the set of permu-
tations to the integers. Other well-known permutation statistics include the
number of inversions (discussed in Section 5.1) and the number of cycles.
When we count permutations according to a particular permutation statis-
tic, this gives rise to the distribution of the statistic. Any statistic whose
distribution gives the numbers

〈
n
k

〉
is called an Eulerian statistic.

Besides des, there are many other Eulerian permutation statistics. For
example, it is easy to see the equivalence of des and the number of ascents
defined by

asc(w) = |{i : w(i) < w(i + 1)}| = |[n− 1]−Des(w)|.
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However, proving that two statistics are equidistributed is not always so easy.
For example, the number of excedances of a permutation, defined as

exc(w) = |{i : w(i) > i}|, (1.6)

is an Eulerian statistic. While exc ranges from 0 to n − 1, its relationship
with des is disguised. But this disguise can be lifted with a bijection from
Sn to itself that maps descents to excedances, known as the “transformation
fondamentale” of Dominique Foata and Marcel-Paul Schützenberger [70]. The
reader is invited to study this bijection, along with other manifestations of
the Eulerian numbers, in the problems at the end of the chapter. For now,
we will stick to the definition of Eulerian numbers in terms of des.

We can use the descent definition of Eulerian numbers to prove a Pascal-
like linear recurrence as follows. Notice that if w is in Sn with k descents,
then deleting n from w results in a permutation in Sn−1 with k or k − 1
descents. Conversely, we can form permutations of n with k descents from
permutations of n− 1 with k or k − 1 descents by inserting n.

To be precise, suppose v is a permutation in Sn−1 with k − 1 descents.
Then inserting n at the far left of v or in an ascent position of v creates a
permutation w ∈ Sn with k descents. There are n− 1− (k− 1) = n− k such
positions.

Similarly, if v ∈ Sn−1 already has k descents, then inserting n in a descent
position of v or at the far right gives a permutation w ∈ Sn with k descents.
There are k + 1 such positions.

We have the following result.

Theorem 1.3 (The linear recurrence). For any k and n > 0,

〈
n

k

〉
= (n− k)

〈
n− 1

k − 1

〉
+ (k + 1)

〈
n− 1

k

〉
. (1.7)

For example, with n = 4, k = 1, we have:

123 132 213 231 312

4123 1423 1243 1342 1324 2413 2134 2341 2314 3412 3124

and so
〈
4
1

〉
= 3
〈
3
0

〉
+ 2
〈
3
1

〉
.

We can use the recurrence in Equation (1.7) to think of the triangle
of Eulerian numbers as an edge-weighted version of Pascal’s triangle. See
Figure 1.1.
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1

1 1

1 4 1

1 11 11 1

1 26 66 26 1

1 57 302 302 57 1

1 1

1 2 2 1

1 3 2 2 3 1

1 4 2 3 3 2 4 1

1 5 2 4 3 3 4 2 5 1

Fig. 1.1 Generating Eulerian numbers via the recurrence relation.

1.4 Eulerian polynomials

For fixed n, we define the nth Eulerian polynomial as the generating function
for the Eulerian numbers

〈
n
k

〉
as follows:

Sn(t) =
∑

w∈Sn

tdes(w) =

n−1∑

k=0

〈
n

k

〉
tk. (1.8)

For example, S1(t) = 1, S2(t) = 1 + t, S3(t) = 1 + 4t + t2, and S4(t) =
1 + 11t+ 11t2 + t3. We will define S0(t) = 1 for convenience.

An immediate consequence of Theorem 1.3 is an identity that relates the
Eulerian polynomial Sn+1(t) to Sn(t) and its derivative.

Since Sn(t) =
∑n−1

k=0

〈
n
k

〉
tk, we have S′

n(t) =
∑n−1

k=1 k
〈
n
k

〉
tk−1. Thus,

(1 + nt)Sn(t) = (1 + nt)

n−1∑

k=0

〈
n

k

〉
tk,

=

n−1∑

k=0

〈
n

k

〉
tk +

n∑

k=1

n

〈
n

k − 1

〉
tk,

and

t(1− t)S′
n(t) = (t− t2)

n−1∑

k=1

k

〈
n

k

〉
tk−1,

=

n−1∑

k=1

k

〈
n

k

〉
tk −

n−1∑

k=1

(k − 1)

〈
n

k − 1

〉
tk.
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Adding these four sums, we get that the coefficient of tk in (1 + nt)Sn(t)
+t(1− t)S′

n(t) is:

(n+ 1− k)

〈
n

k − 1

〉
+ (k + 1)

〈
n

k

〉
,

which, by Theorem 1.3, equals
〈
n+1
k

〉
. Thus, we have the following result.

Theorem 1.4 (Linear polynomial recurrence). For any n ≥ 0,

Sn+1(t) = (1 + nt)Sn(t) + t(1 − t)S′
n(t). (1.9)

1.5 Two important identities

As it is equivalent to the numeric recurrence, Theorem 1.4 does not give any
new combinatorial insight into Eulerian numbers. However, sometimes having
a combinatorial identity rephrased like this allows us to perform algebraic and
analytic operations freely, and these operations can uncover new combinato-
rial information that we may not have guessed at otherwise. This approach
to combinatorial identities is sometimes referred to as “manipulatorics” since
it often boils down to formal manipulations of formulas. While it might not
be as satisfying as a direct combinatorial explanation, it is nonetheless an im-
portant skill to have as a practitioner of the combinatorial arts. Sometimes
it may be the only way we know how to prove a combinatorial identity.

In general, our preference for this book will be to give direct combinatorial
explanations, but in some cases the manipulatorics approach is simpler, or
allows for more elegant statements of results. As practice, let us now do
some manipulatorics, starting with Theorem 1.4 and finishing with a truly
interesting result known as Worpitzky’s identity (Corollary 1.2). We ask for
a combinatorial proof of Worpitzky’s identity in Problem 1.13.

For n ≥ 0, define the function

sn(t) = (1− t)n+1
∑

k≥0

(k + 1)ntk.

Then s0 = 1 and it is straightforward to verify the identity

sn+1(t) = (1 + nt)sn(t) + t(1 − t)s′n(t).

Thus, sn(t) = Sn(t), and we have the following corollary, which we refer to
as the Carlitz identity.

Corollary 1.1 (The Carlitz identity). For any n ≥ 0,

Sn(t)

(1− t)n+1
=
∑

k≥0

(k + 1)ntk. (1.10)
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But using the definition of Sn(t) we have

Sn(t)

(1− t)n+1
=

n−1∑

i=0

〈
n

i

〉(
ti

(1 − t)n+1

)
,

and recalling the expression for ti/(1− t)n+1 in Equation (1.3), we find:

Sn(t)

(1− t)n+1
=

n−1∑

i=0

〈
n

i

〉∑

k≥0

(
k + n− i

n

)
tk,

=
∑

k≥0

(
n−1∑

i=0

〈
n

i

〉(
k + n− i

n

))

tk.

By comparing with the formula in Equation (1.10) we get the following
wonderful identity.

Corollary 1.2 (Worpitzky’s identity). For any n ≥ 0,

(k + 1)n =
n−1∑

i=0

〈
n

i

〉(
k + n− i

n

)
.

For example, with k = 3, n = 5, we get:

45 =

〈
5

0

〉(
8

5

)
+

〈
5

1

〉(
7

5

)
+

〈
5

2

〉(
6

5

)
+

〈
5

3

〉(
5

5

)
,

= 1 · 56 + 26 · 21 + 66 · 6 + 26 · 1,
= 1024.

Using Worpitzky’s identity repeatedly, with k ≥ 0, gives us explicit for-
mulas for the Eulerian numbers:

〈
n

0

〉
= 1,

〈
n

1

〉
= 2n − (n+ 1),

〈
n

2

〉
= 3n −

〈
n

1

〉(
n+ 1

n

)
−
(
n+ 2

n

)
,

= 3n − 2n(n+ 1) + (n+ 1)2 −
(
n+ 2

n

)
,

= 3n − 2n(n+ 1) +

(
n+ 1

n− 1

)
,

...

Continuing in this way, we find the following formula.
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Corollary 1.3 (Alternating sum formula). The Eulerian numbers have
the following formula for any n ≥ 1, k ≥ 0:

〈
n

k

〉
= (k + 1)n − kn

(
n+ 1

n

)
+ (k − 1)n

(
n+ 1

n− 1

)
− . . .,

. . .+ (−1)k
(

n+ 1

n+ 1− k

)
,

=
k∑

i=0

(−1)i(k + 1− i)n
(

n+ 1

n+ 1− i

)
,

=

k∑

i=0

(−1)i(k + 1− i)n
(
n+ 1

i

)
. (1.11)

1.6 Exponential generating function

We finish the chapter with a mixture of bijective combinatorics and ma-
nipulatorics to derive the exponential generating function for the Eulerian
polynomials.

We begin with a simple, elegant way to generate permutations recursively.
Recall that in deriving the linear recurrence in Theorem 1.3, we carefully
examined how inserting a new largest number into a permutation affected
descent numbers. This time, to form a permutation of n, we first choose which
subset of the elements {1, 2, . . . , n − 1} go to the left of n, which elements
go to the right, and permute independently on the left and on the right. See
Figure 1.2.

The number of descents in any permutation is one more than the sum of
the descents to the left of n and the descents to the right of n. Let i denote
the number of elements to the left of n. Then

7

1

3

6

5

9

4

8

2

Choose i elements

and permute them

with distribution

Si(t)

Permute the other

n − 1 − i elements

with distribution

Sn−1−i(t)

Fig. 1.2 The idea behind Equation (1.12).
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Si(t) · t · Sn−1−i(t)

is the generating function for descents of permutations with these same
elements to the left of n. Of course, if there is nothing to the right of n,
i.e., if i = n− 1, then we simply get the number of descents to the left of n.
Summing over all i, we have the following quadratic recurrence for Eulerian
polynomials.

Theorem 1.5 (Quadratic polynomial recurrence). For any n > 0,

Sn(t) = Sn−1(t) + t

n−2∑

i=0

(
n− 1

i

)
Si(t)Sn−1−i(t). (1.12)

The recurrence in Equation (1.12) now leads to a way to find an expression
for the exponential generating function

S(t, z) :=
∑

n≥0

Sn(t)
zn

n!
=
∑

n,k≥0

〈
n

k

〉
tk
zn

n!
.

Indeed, (1.12) gives:

d

dz
S(t, z) =

∑

n≥1

Sn(t)
zn−1

(n− 1)!
,

=
∑

n≥1

Sn−1(t)
zn−1

(n− 1)!
+ t
∑

n≥1

n−2∑

i=0

(
n− 1

i

)
Si(t)Sn−1−i(t)

zn−1

(n− 1)!
,

= S(t, z) + t
∑

n≥1

n−2∑

i=0

Si(t)
zi

i!
· Sn−1−i(t)

zn−1−i

(n− 1− i)!
,

= S(t, z) + tS(t, z)(S(t, z)− 1)).

Solving the differential equation

f ′(z) = tf2(z) + (1− t)f(z),

with initial condition f(0) = 1 gives us the following result, originally due to
Euler.

Theorem 1.6 (Exponential generating function). We have

S(t, z) =
t− 1

t− ez(t−1)
. (1.13)

Those who don’t want to rely on solving a differential equation to derive
this formula are encouraged to see Problem 1.15.
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Notes

The reader looking for more details about the generating function approach
to enumerative combinatorics would do well to read Richard Stanley’s classic
work [154] and Herbert Wilf’s book [166]. The book by Philippe Flajolet and
Robert Sedgewick [66] focuses on analytic methods for extracting information
from generating functions, and part A gives a nice perspective on symbolic
methods for constructing generating functions. An earlier book that also
contains a wealth of information about the use of generating functions in
combinatorial enumeration is John Riordan’s book [130].

The Eulerian numbers appear in a chapter of Euler’s textbook on differ-
ential calculus [64, Part II, Caput VII, pp. 389–390]. In this chapter, Euler
essentially sets himself the task of solving the differential equation for the
exponential generating function we have in Equation (1.13), and when ex-
panding its series, he finds the Eulerian numbers, and mentions the alter-
nating sum formula given in Equation (1.11). Dominique Foata has a lovely
survey in which he explains Euler’s motivation and derivation [68]. Leonard
Carlitz and his collaborators studied Eulerian numbers and their generaliza-
tions in several papers in the 20th century, e.g., [38, 39, 41, 43, 44], while
Foata and Marcel-Paul Schützenberger wrote a then-comprehensive treat-
ment of Eulerian numbers from a combinatorial point of view in [70]. From
the 1980s onward, the number of scholarly articles on Eulerian numbers and
their generalizations is too numerous to attempt to catalogue.

Most of the results in this chapter can be traced back to Carlitz or Riordan,
though the Carlitz identity in Corollary 1.1 was known to Euler. We refer to it
as the Carlitz identity because of a generalization of the identity obtained by
Carlitz in 1975 [40], though even this generalization predates Carlitz—it can
be found in Percy MacMahon’s textbook from 1915/16 [106]. According to
Carlitz [38], Worpitzky’s identity (Corollary 1.2) dates from an 1883 paper by
Julius Worpitzky [168], though Don Knuth [96, pp. 36] attributes the identity
to an 1867 publication of Chinese mathematician Li Shan-Lan, and remarks
that special cases for n ≤ 5 were known to Yoshisuke Matsunaga of Japan,
who died in 1744.

Problems

1.1. A composition of n is an ordered list of positive integers whose sum is n,
denoted α = (α1, . . . , αk). Show that the number of compositions of n with
k parts is

(
n−1
k−1

)
.

1.2. How many compositions α of n have the following properties?

1. α has parts of size 1 and 2 only, e.g., for n = 9, (2, 1, 1, 2, 2, 1) is acceptable,
but not (1, 2, 3, 1, 2).
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2. α has only odd parts, e.g., for n = 9, (3, 1, 5) is acceptable, but not
(1, 2, 1, 5).

3. α has all its parts greater than 1, except possibly the last entry, e.g., for
n = 9, (3, 4, 2) and (3, 3, 2, 1) are acceptable, but not (3, 3, 1, 2).

1.3. Show that the Fibonacci numbers satisfy the following identity:

fn =
∑

k≥0

(
n− k

k

)
. (1.14)

This can be quickly verified with Pascal’s recurrence and careful bookkeeping,
but see if you can find a combinatorial argument using one of the sets of
compositions in Problem 1.2.

1.4. For n ≥ 1, let φn = fn/fn−1, where fn is the nth Fibonacci number.
Using the Fibonacci recurrence, find a recurrence for φn and use it to compute
the limit:

φ = lim
n→∞

φn.

The number φ is sometimes called the golden ratio.

1.5. Let f(z) denote the ordinary generating function for the Fibonacci num-
bers, i.e.,

f(z) = 1 + z + 2z2 + 3z3 + 5z4 + 8z5 + · · · =
∑

k≥0

fkz
k,

with f0 = f1 = 1 and fn = fn−1 + fn−2 for n ≥ 2.

1. Write f(z) as

f(z) =
1

q(z)
,

where q(z) is a quadratic polynomial. Hint: use the recurrence for the
Fibonacci numbers to find an identity for f(z) of the form f(z)q(z) = 1.

2. Use the expression found in part 1 to give a “manipulatorics” proof of
Equation (1.14).

3. Factor q(z) from part 1 as q(z) = (1 − αz)(1 − βz), then find numbers A
and B so that

f(z) =
A

1− αz
+

B

1− βz
.

4. Use part 3 to show

fn =
φn+1 − φ

n+1

√
5

,

where φ is the golden ratio found in Problem 1.4 and φ is the other root
of the polynomial x2 − x− 1.
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1.6. Show that the following permutation statistics are Eulerian.

1. The number of ascents of a permutation w, asc(w) = {i : w(i) < w(i+1)},
e.g., asc(1374265) = 3.

2. The number of (maximal, increasing) runs of a permutation, denoted
runs(w), where a maximal increasing run is a substring w(i) < w(i+1) <
· · · < w(i + r) such that w(i − 1) is not smaller than w(i) and w(i + r) is
not smaller than w(i + r + 1). For example, runs(1374265) = 4.

3. The number of readings of a permutation, denoted read(w). This is the
number of times one must scan the one-line notation of w from left to right
to find the numbers 1, 2, . . . , n in order. For example with w = 1374265
we read through four times:

times read 1 3 7 4 2 6 5

1 1 2
2 3 4 5
3 6
4 7

so read(1374265) = 4.

1.7. Show that the number of excedances, exc(w) = {i : w(i) > i}, is Eule-
rian.

1.8. An inversion sequence of length n is a vector

s = (s1, . . . , sn),

such that 0 ≤ si ≤ i − 1. Show that counting inversion sequences according
to ascents (with asc(s) = {i : si < si+1} as with permutations) gives rise
to the Eulerian distribution, e.g., if n = 3, the inversion sequences and their
ascent numbers are:

s asc(s)

(0, 0, 0) 0
(0, 0, 1) 1
(0, 0, 2) 1
(0, 1, 0) 1
(0, 1, 1) 1
(0, 1, 2) 2

.

1.9. An increasing binary tree of size n is a rooted, planar tree with n inter-
nal nodes (internal means not a leaf) such that each internal node has two
children: a left child and a right child. Further, the internal nodes are labeled
with 1, 2, . . . , n so that any path from the root to a leaf follows increasing
labels. Show that counting the number of increasing binary trees of size n
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according to how many internal nodes are left children gives the Eulerian dis-
tribution. For example, with n = 3, we have following trees, whose internal
left children are highlighted:

1

2

3

1

2

3

1

2 3

1

2

3

1

3 2

1

2

3
.

1.10. For any n and k = 0, 1, . . . , n − 1, let Rn,k denote the set of points
(x1, . . . , xn) in the unit cube whose sum is between k and k + 1, i.e.,

k ≤ x1 + · · ·+ xn ≤ k + 1,

with 0 ≤ xi ≤ 1. What is the volume of Rn,k?

1.11. The number of cyclic descents of a permutation w ∈ Sn is the num-
ber of ordinary descents, plus one if w(n) > w(1). We denote this statistic
by cdes(w). For example, cdes(31524) = 3 and cdes(43152) = 3, whereas
des(31524) = 2 and des(43152) = 3. Show that

∑

w∈Sn

tcdes(w) = ntSn−1(t).

1.12. Give a bijective proof that

〈
n

1

〉
= 2n − n− 1.

1.13. Give a bijective proof of Worpitzky’s identity:

(k + 1)n =

n−1∑

i=0

〈
n

i

〉(
k + n− i

n

)
.

Hint: interpret the left-hand side as counting the set of all integer vectors
(a1, a2, . . . , an), with 0 ≤ ai ≤ k, and try to group these according to permu-
tations of n by rearranging the sequence in weakly increasing order.

1.14. Give a combinatorial proof of the Carlitz identity in (1.10):

Sn(t)

(1− t)n+1
=
∑

k≥0

(k + 1)ntk.
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Hint: try the method of “balls in boxes” as follows. Clearly (k + 1)n is the
number of ways to place n distinct (labeled) balls into k + 1 boxes. Try to
partition the ways to put the balls into boxes according to permutations of
n, and show that for a fixed permutation w in Sn, the generating function
for arrangements of ball boxes that correspond to w is:

tdes(w)

(1− t)n+1
.

1.15. Use the Carlitz identity (Equation (1.10)) to derive Equation (1.13).
Hint: start with ∑

n≥0

Sn(t)

(1− t)n+1

zn

n!
.



Chapter 2

Narayana numbers

While the sequence of Fibonacci numbers entered the public imagi-
nation a long time ago, it can be argued that the sequence introduced in this
chapter is of greater importance in combinatorics today. Here we will study
the Catalan numbers,

1, 1, 2, 5, 14, 42, 429, 1430, 4862, 16796, 58786, . . . ,

and a triangle of numbers that refine the Catalan numbers, known as the
Narayana numbers. Throughout the book, the Narayana numbers will be
shown to possess the same (or nearly the same) properties as the Eulerian
numbers.

2.1 Catalan numbers

The Catalan numbers are denoted Cn, n ≥ 0, and are given by the explicit
formula Cn = 1

n+1

(
2n
n

)
. The sequence of Catalan numbers is among the most

famous sequences in mathematics. One reason for the ubiquity of the Cata-
lan numbers may be that they satisfy the following quadratic, convolutive
recurrence for n ≥ 1:

Cn =

n−1∑

i=0

CiCn−1−i, (2.1)

and this numeric recurrence is a shadow of natural structural recurrences
possessed by many families of combinatorial objects.

© Springer Science+Business Media New York 2015
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From (2.1), we can derive the generating function:

C(z) =
∑

n≥0

Cnz
n,

as follows.

C(z) =
∑

n≥0

Cnz
n

= 1 + z
∑

n≥1

n−1∑

i=0

Ciz
iCn−1−iz

n−1−i

= 1 + zC(z)2.

Therefore,

zC(z)2 − C(z) + 1 = 0,

and we get

C(z) =
1−
√
1− 4z

2z
. (2.2)

We mention the Catalan numbers because they enumerate an important
subset of permutations that we will now describe. Counting these permuta-
tions according to descents gives rise to the array of Narayana numbers, a
distribution that has many of the same properties as the Eulerian distribu-
tion.

2.2 Pattern-avoiding permutations

The permutations we will study in this chapter are 231-avoiding permu-
tations. These are permutations w such that there is no triple of indices
i < j < k such that w(k) < w(i) < w(j). That is, the letters w(i), w(j), and
w(k) are not in the same relative positions as 2, 3, and 1. If a permutation
w contains such a triple, we say w contains the pattern 231; otherwise, we
say w avoids the pattern 231. For example, the permutation 53412 contains
the pattern 231 since w(4) < w(2) < w(3) (or since w(5) < w(2) < w(3)),
whereas the permutation 32154 avoids 231. The notion of pattern avoidance
is easy to understand visually when we draw the graph of a permutation as
an array of dots on a square grid. See Figure 2.1.

Let Sn(231) denote the set of permutations in Sn avoiding the pattern
231. The 231-avoiding permutations, for n ≤ 5, are listed in Table 2.1.
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1

1

2

2

3

3

1

1

2

2

3

3

4

4

5

5

Fig. 2.1 The permutation 53412 contains the pattern 231 in several ways. Two
occurrences of the pattern are indicated with dashed line boxes.

Table 2.1 The 231-avoiding permutations of n with k descents, 0 ≤ k < n ≤ 5.

n\k 0 1 2 3 4

1 1
2 12 21
3 123 213 321

132
312

4 1234 2134 3214 4321
1324 2143
3124 1432
1243 4213
1423 4132
4123 4312

5 12345 21345 32145 43215 54321
13245 21435 32154
31245 14325 21543
12435 42135 15432
14235 41325 53214
41235 43125 52143
12354 21354 51432
12534 13254 54213
15234 31254 54132
51234 12543 54312

21534
15324
15243
15423
52134
51324
53124
51243
51423
54123
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We will now show that the 231-avoiding permutations obey a structural
recurrence compatible with the numeric recurrence in (2.1). For the moment,
let cn = |Sn(231)| and define c0 = 1 for convenience. We will show that for
n ≥ 1:

cn =

n−1∑

i=0

cicn−1−i,

and hence cn = Cn for all n.
First of all, suppose u is a permutation in Si(231) and v is a permutation

of {i + 1, . . . , n− 1} that avoids 231. Then since every letter of u is smaller
than every letter of v, the permutation

w = u(1) · · ·u(i)n v(1) · · · v(n− 1− i),

formed by inserting n between u and v, is a 231-avoiding permutation. There
are ci choices for u and cn−1−i choices for v, so summing over all i, we have

n−1∑

i=0

cicn−1−i ≤ cn.

On the other hand, suppose w ∈ Sn is 231-avoiding, with w(i+1) = n. Let
u = w(1) · · ·w(i) denote the word to the left of n, and let v = w(i+2) · · ·w(n)
denote the word to the right of n. Clearly both of these words must avoid
the pattern 231. Further, if there was a letter a in u that was greater than a
letter b in v, then there would be a 231 pattern formed by the letters a, n, b
in w. Hence, every letter of u must be smaller than every letter of v. In other
words, u ∈ Si(231) and v is a permutation of {i + 1, . . . , n − 1} that avoids
231. This shows

cn ≤
n−1∑

i=0

cicn−1−i,

and so in light of our earlier discussion, the two quantities must equal each
other:

cn =

n−1∑

i=0

cicn−1−i.

Since the cn satisfy the same recurrence as the Catalan numbers with
the same initial values, cn = Cn, and we have the following combinatorial
characterization of Catalan numbers. (The first of many, as we will discover
later in the chapter.)

Theorem 2.1. For n ≥ 1,

|Sn(231)| = Cn.

While showing that |Sn(231)| = Cn recursively is fine, one would like to
also have a direct combinatorial proof, e.g., by showing (n+1)|Sn(231)| =

(
2n
n

)
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via a bijection. This is left to Problem 2.2, though we will do something
similar in Section 2.4 for another set of objects counted by Catalan numbers.

Before moving on, we remark that there is nothing particularly interesting
about the pattern 231 for Theorem 2.1. It is possible to exhibit bijections
between the set Sn(231) and the set Sn(p), where p ∈ {123, 132, 213, 312, 321}
is any pattern of length three. See Problem 2.1.

2.3 Narayana numbers

Similarly to how we defined the Eulerian numbers, we define the Narayana
number Nn,k to be the number of permutations in Sn(231) with k descents:

Nn,k = |{w ∈ Sn(231) : des(w) = k}|.

We have the Narayana numbers shown in Table 2.2.

Table 2.2 The Narayana numbers Nn,k, 0 ≤ k < n ≤ 10.

n\k 0 1 2 3 4 5 6 7 8 9
1 1
2 1 1
3 1 3 1
4 1 6 6 1
5 1 10 20 10 1
6 1 15 50 50 15 1
7 1 21 105 175 105 21 1
8 1 28 196 490 490 196 28 1
9 1 36 336 1176 1764 1176 336 36 1

10 1 45 540 2520 5292 5292 2520 540 45 1

We will show in Section 2.4 that the Narayana numbers are given by the
formula

Nn,k =
1

k + 1

(
n

k

)(
n− 1

k

)
. (2.3)

It is easily shown that this formula is equivalent to

Nn,k = det

⎛

⎝

(
n−1
k

) (
n

k+1

)

(
n
k

) (
n+1
k+1

)

⎞

⎠ =

(
n− 1

k

)(
n+ 1

k + 1

)
−
(
n

k

)(
n

k + 1

)
,

and therefore we can extract the triangle of Narayana numbers as 2×2 minors
of Pascal’s triangle. See Figure 2.2.
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1 6 15 20 15 6 1

1 5 10 10 5 1

1 4 6 4 1

1 3 3 1

1 2 1

1 1

1

1

1 1

1 3 1

1 6 6 1

1 10 20 10 1

15 50 50 15 11

Fig. 2.2 The triangle of Narayana numbers obtained as determinants.

We will see that the generating function for Narayana numbers (with n
fixed) obeys a refined Catalan recurrence. Define

Cn(t) =
∑

w∈Sn(231)

tdes(w) =

n−1∑

k=0

Nn,kt
k,

with C0(t) := 1. We will refer to Cn(t) as the Narayana polynomial.
If we follow the recursive argument that led to Theorem 2.1 while keeping

track of descents, we will get a recurrence for the Narayana polynomials that
refines (2.1). In that proof was an implicit bijection between elements w ∈
Sn(231) and pairs (u, v) with u ∈ Si(231) (for some i) and v a permutation
of {i+ 1, . . . , n− 1} that avoids 231. Namely, we can write

w = u(1) · · ·u(i)n v(1) · · · v(n− 1− i),

as shown in Figure 2.3.
Since the number of descents of w is one more than the number of descents

in u plus the number of descents in v, we get

∑

w∈Sn(231)
w(i+1)=n

tdes(w) = tCi(t)Cn−1−i(t). (2.4)

Of course if i = n− 1 then v is the empty word and the number of descents
of w equals only the number of descents of u. This contributes a Cn−1(t)
term to the distribution, and then summing (2.4) over all i < n− 1 gives the
following result, which is similar to Theorem 1.5 for Eulerian polynomials.
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5

2

1

4

3

9

6

8

7Permute the elements

{1, . . . , i}
while avoiding 231

with distribution

Ci(t)

Permute the elements

{i + 1, . . . , n − 1}
while avoiding 231

with distribution

Cn−1−i(t)

Fig. 2.3 The idea behind Equation (2.5).

Theorem 2.2. For n ≥ 1,

Cn(t) = Cn−1(t) + t

n−2∑

i=0

Ci(t)Cn−1−i(t). (2.5)

Now that we have the recurrence from Theorem 2.2 it is a straightforward
matter to construct the generating function for the Narayana polynomials,

C(t, z) :=
∑

n≥0

Cn(t)z
n.

We have:

C(t, z) =
∑

n≥0

Cn(t)z
n,

= 1 +
∑

n≥1

[

Cn−1(t) + t

n−2∑

i=0

Ci(t)Cn−1−i(t)

]

zn,

= 1 + z
∑

n≥1

Cn−1z
n−1 + tz

∑

n≥1

n−2∑

i=0

Ci(t)z
iCn−1−i(t)z

n−1−i,

= 1 + zC(t, z) + tzC(t, z)(C(t, z)− 1).

From this we can conclude that C(t, z) satisfies:

tzC(t, z)2 − (1 + z(t− 1))C(t, z) + 1 = 0.

Solving for C(t, z) gives:

C(t, z) =
1 + z(t− 1)−

√
1− 2z(t+ 1) + z2(t− 1)2

2tz
. (2.6)
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The 231-avoiding permutations are one combinatorial interpretation for
the Catalan numbers, but there are many, many others. (See the notes at
the end of the chapter.) There are three others that we will introduce and
discuss now, with more deferred to the problems at the end of the chapter.

2.4 Dyck paths

A Dyck path of length 2n is a lattice path from (0, 0) to (n, n) consisting
of n horizontal steps “East” from (i, j) to (i + 1, j) and n vertical steps
“North” from (i, j) to (i, j + 1), such that all points on the path satisfy
i ≤ j, i.e., the path, when drawn in the cartesian plane, lies on or above the
line y = x. We can either draw the picture of the path or write the list of
steps the path follows as a word on the set {N,E}. For example, the path
p = NNENNEEENENNNEEE would be drawn as in Figure 2.4.

•

•

• •

•

• • • •

• •

•

•

• • • •

y = x

Fig. 2.4 One of the 4862 paths in Dyck(8).

Let Dyck(n) denote the set of Dyck paths of length 2n. A peak of a Dyck
path p is a point (i, j) such that (i, j − 1) and (i + 1, j) are on p as well.
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Similarly, a valley of p is a point (i, j) such that (i− 1, j) and (i, j+1) are on
p. In other words, a peak corresponds to a North step followed immediately by
an East step, while a valley corresponds to an East step followed immediately
by a North step. The number of peaks of p is denoted pk(p) and the number of
valleys is val(p). For example, the path of Figure 2.4 has four peaks, pk(p) =
4, and three valleys, val(p) = 3. It is easy to see that for p ∈ Dyck(n),
1 ≤ pk(p) ≤ n, while 0 ≤ val(p) = pk(p) − 1 ≤ n − 1. The Dyck paths for
n ≤ 4 are shown in Table 2.3, grouped according to the number of peaks in
the path.

At the end of this section we will provide a bijection between Dyck paths
and 231-avoiding permutations, but first we will give bijective proofs that
there are Catalan-many Dyck paths and that counting Dyck paths according
to the number of peaks gives rise to the Narayana numbers.

2.4.1 Counting all Dyck paths

The Catalan number Cn can be written as a difference of two binomial coef-
ficients:

Cn =
1

n+ 1

(
2n

n

)
=

(
2n

n

)
−
(

2n

n− 1

)
.

Notice that there are a total of
(
2n
n

)
lattice paths from (0, 0) to (n, n) since we

have 2n steps and exactly n of them must be N steps. Similarly, we can think
of
(

2n
n−1

)
as counting the paths from (0, 0) to (n+1, n−1). Thus to give a direct

combinatorial proof that |Dyck(n)| = Cn, we will write
(
2n
n

)
= Cn +

(
2n
n−1

)

and describe a bijection

{
lattice paths from
(0, 0) to (n, n)

}
←→ Dyck(n)

⋃{ lattice paths from
(0, 0) to (n+ 1, n− 1)

}
.

The idea here is called the reflection principle. Let p be a path from (0, 0)
to (n, n). If p never passes below the line y = x, it is a Dyck path. If it does
go below this line, say the reflection point of p is the first time the path hits
the line y = x−1. The reflection of p, r(p), is the path obtained by swapping
E for N on every step after the reflection point. For example, if

p = NNEEE|NNENEEENNEN,

then
r(p) = NNEEE|EENENNNEENE,

is its reflection. The vertical bar here is used to mark the reflection point.
In terms of words on {N,E}, this is simply the first time, in reading from
left to right, that we have more letters E than N . This example is drawn in
Figure 2.5.
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Table 2.3 The paths in Dyck(n), n ≤ 4, grouped by number of peaks, k.

n\k 1 2 3 4

1
•
• •

2

•
•
• • •

•
• •

• •

3

•
•
•
• • • •

•
•
• •

• • •

•
• •

• •
• •

•
• •

•
• • •

•
•
• • •

• •

4

•
•
•
•
• • • • •

•
•
•
• •

• • • •

•
•
• •

• •
• • •

•
• •

• •
• •

• •

•
•
• •

•
• • • •

•
• •

•
• •

• • •

•
•
•
• • •

• • •

•
• •

• •
•
• • •

•
• •

•
•
• • • •

•
•
• •

• • •
• •

•
•
• • •

•
• • •

•
• •

•
• • •

• •

•
•
•
• • • •

• •

•
•
• • •

• •
• •
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•

•

• • •

•

• •

• • • •

•

• •

•

reflection point

y = x

Fig. 2.5 The reflection of a lattice path.

The reflection map is easily reversed (the reflection point is well defined
for both sets of paths), so the paths from (0, 0) to (n, n) that go below the
line y = x are in bijection with all the paths from (0, 0) to (n+1, n−1). This
shows

|Dyck(n)| =
(
2n

n

)
−
(

2n

n− 1

)
= Cn,

as desired.

2.4.2 Counting Dyck paths by peaks

Earlier we claimed the Narayana numbers are given by

Nn,k =
1

k + 1

(
n

k

)(
n− 1

k

)
.

We will now show that

|{p ∈ Dyck(n) : pk(p) = k + 1}| = 1

k + 1

(
n

k

)(
n− 1

k

)
.

We will subsequently show that

|{p ∈ Dyck(n) : pk(p) = k + 1}| = |{w ∈ Sn(231) : des(w) = k}|,

justifying the formula for the Narayana numbers.
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Our goal will be to show

(k + 1)|{p ∈ Dyck(n) : pk(p) = k + 1}| =
(
n

k

)(
n− 1

k

)
.

To do so, we will exhibit a certain set P of
(
n
k

)(
n−1
k

)
lattice paths and show

that it can be partitioned into equivalence classes. We will then show each
equivalence class has k + 1 elements and contains exactly one path that
corresponds to a Dyck path with k + 1 peaks.

Define P to be the set of lattice paths from (0,−1) to (n, n) that begin
with a North step, end with an East step, and have exactly k + 1 peaks,
or k valleys. Each such path can be reconstructed from the coordinates of
its valleys: (x1, y1), (x2, y2), . . . , (xk, yk). There are

(
n
k

)
ways to choose the

vertical coordinates: 0 ≤ y1 < y2 < · · · < yk ≤ n−1 in such a path, and
(
n−1
k

)

ways to choose the horizontal coordinates: 1 ≤ x1 < x2 < · · · < xk ≤ n− 1.
Hence |P| =

(
n
k

)(
n−1
k

)
. See Figure 2.6.

•

•

•

• • • •
(x1, y1)

•

• •
(x2, y2)

• • •
(x3, y3)

•

• •
(x4, y4)

• •
y = x

last minimum valley

Fig. 2.6 A path from (0,−1) to (n, n) with initial North step, final East step, and
k valleys. Here n = 8, k = 4.
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On the other hand, we can also characterize a path in P by a sequence of
k+1 valley-less paths. In Figure 2.6, these valley-less paths are NNNEEE,
NNE, NEE, NNE, and NE and we can write

p = (NNNEEE)(NEE)(NNE) • (NNE)(NE).

An important marker in our path (indicated in the word with a •) will be
the rightmost valley (xi, yi) for which yi − xi < 0 is minimized. In terms of
the {N,E}-word for the path, this is the rightmost position where the letters
E most outnumber the letters N . If there are always more letters N than E,
we put the marker on the far left.

We will now lump together these lattice paths into equivalence classes
given by cyclically permuting the valley-less paths. Let [p] denote the class
of p. To continue our example,

[p] =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(NNNEEE)(NEE)(NNE) • (NNE)(NE)
(NE)(NNNEEE)(NEE)(NNE) • (NNE)
•(NNE)(NE)(NNNEEE)(NEE)(NNE)
(NNE) • (NNE)(NE)(NNNEEE)(NEE)
(NEE)(NNE) • (NNE)(NE)(NNNEEE)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

Notice that the marker gets cyclically permuted along with the valley-
less paths. (This is because the path from the marker onward always has
more letters N than E when reading from left to right.) Hence, the marker
uniquely identifies the cyclic permutation of p and the class [p] must contain
k+1 distinct paths. Moreover, there is always one path that has the marker
on the far left. This path has all its valleys satisfying yi − xi ≥ 0, and hence
(if we ignore the initial North step) it is a Dyck path. The cyclic action is
shown in pictures in Figure 2.7.

Hence, we can conclude

(k + 1)|{p ∈ Dyck(n) : pk(p) = k + 1}| = |P|,

=

(
n

k

)(
n− 1

k

)
,

as desired.

2.4.3 A bijection with 231-avoiding permutations

We can construct a playful bijection between Dyck paths and 231-avoiding
permutations as follows. First draw a permutation as an array of nonattacking
rooks on a chessboard, i.e., if w(i) = j, put a rook in column i (from left to
right), row j (from bottom to top). Then shade in all squares on the board
that either contain a rook, or are weakly to the left and weakly above a



32 2 Narayana numbers

Dyck path p equivalence class [Np]
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Fig. 2.7 An equivalence relation on lattice paths for n = 4, k + 1 = 3 peaks.

square with a rook. The boundary of the shaded region is a path that stays
below or on the line y = x, so it is the mirror image of a Dyck path. Let
ψ : Sn(231)→ Dyck(n) denote this bijection. See Figure 2.8.

The pre-image of a path p is constructed as follows. First, draw the mirror-
image of path p, and place rooks, from right to left, in the lowest unoccupied
row that is above the path, as shown in Figure 2.9.

From this construction, we can see that each peak of the path p (where
we placed the corner rooks in ψ−1) corresponds to a maximal decreasing
run w(i) > w(i + 1) > · · · > w(j) of ψ−1(p) = w. The number of maximal
decreasing runs is necessarily n− des(w), and so we have the following.
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Fig. 2.8 Constructing a Dyck path from a 231-avoiding permutation.

Proposition 2.1. For any w ∈ Sn(231), the bijection ψ satisfies

des(w) = n− 1− val(p) = n− pk(p).

Hence,

|{w ∈ Sn(231) : des(w) = k}| = |{p ∈ Dyck(n) : pk(p) = val(p)+1 = k+1.}|.

This justifies the formula for the Narayana numbers Nn,k = 1
k+1

(
n
k

)(
n−1
k

)
.

We finish the chapter with brief discussion of two other popular combina-
torial models counted by the Narayana numbers.
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Fig. 2.9 Constructing a 231-avoiding permutation from a Dyck path.

2.5 Planar binary trees

A planar binary tree is a rooted tree such that every interior node has pre-
cisely two successors. If there are n internal nodes, this means there are n+1
leaves. Let PB(n) denote the number of planar binary trees with n internal
nodes. Table 2.4 shows the planar binary trees with at most n = 4 internal
nodes, grouped according to the number of left-pointing leaves.

The planar binary trees are combinatorial representations for ways to eval-
uate an associative product of n+1 elements. For example, if n = 2, we have
((xy)z) and (x(yz)) as the two possible ways to evaluate the product xyz,
and these would correspond to the following trees:

x y z

and

x y z

;
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Table 2.4 Planar binary trees grouped according to the number of left-pointing
leaves.

n\k 1 2 3 4

1

2

3

4
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where we labeled the leaves by x, y, z to indicate the natural bijection. As a
larger example,

v w x y z

←→ (v((w(xy))z)):

Planar binary trees can be shown to satisfy the Catalan recurrence (see
Problem 2.3), but one can also give a direct bijection with 231-avoiding per-
mutations that takes left-pointing leaves to descents, as suggested by the
example in Figure 2.10.

Proof of the following proposition is deferred to Problem 2.4.

Proposition 2.2. There is a bijection between PB(n) and Sn(231) such that
planar binary trees with k+1 left-pointing leaves are mapped to 231-avoiding
permutations with k descents.

In other words, the Narayana numbers count planar binary trees according
to left-pointing leaves:

Nn,k = |{τ ∈ PB(n) : τ has k + 1 left-pointing leaves}|.

2.6 Noncrossing partitions

A noncrossing partition π = {R1, R2, . . . , Rk}, is a set partition of [n], such
that if {a, c} ⊆ Ri and {b, d} ⊆ Rj , with 1 ≤ a < b < c < d ≤ n, then i = j.
That is, two pairs of numbers from distinct blocks cannot be interleaved. Let
NC(n) denote the set of all noncrossing partitions of [n]. We will often draw
partitions as graphs with vertex set [n], e.g.,

1 2 3 4 5

= {{1, 5}, {2}, {3, 4}} ∈ NC(5),

1 2 3 4 5

= {{1, 3}, {2, 5}, {4}} ∈ NC(5).

Notice how the notion of a “crossing” manifests itself visually in these di-
agrams. So that our pictures are canonical, we will only have arcs between
consecutive elements in the blocks of the partition. For example, if i < j < k
are in the same block, we would draw
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1 3
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1
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521439687

Fig. 2.10 A correspondence between planar binary trees and 231-avoiding permu-
tations.

· · · i · · · j · · · k · · ·
;

but not

· · · i · · · j · · · k · · · .

Table 2.5 shows all the noncrossing partitions on at most 4 elements,
grouped according to the number of blocks.
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Table 2.5 Noncrossing partitions on up to four elements, grouped according to num-
ber of blocks.

n\k 1 2 3 4

1 1

2

1 2
1 2

3

1 2 3 1 2 3 1 2 3

1 2 3

1 2 3

4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4
1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4
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We can define a bijection φ : Sn(231)→ NC(n) by mapping the decreasing
runs of a permutation to blocks in a partition. See Figure 2.11.

9

7

1

3

2

6

4

5

8

1

2

3

4

5

6

7

8

9

φ

Fig. 2.11 The decreasing runs of a 231-avoiding permutation form a noncrossing
partition.

Moreover, we can see that the number of decreasing runs of w, i.e., the
number of blocks in π, is n− des(w).

Proposition 2.3. For any w ∈ Sn(231), the bijection φ satisfies

des(w) = n− |φ(w)|.

Hence,

|{w ∈ Sn(231) : des(w) = k}| = |{π ∈ NC(n) : |π| = n− k}|.

In other words, the Narayana numbers count noncrossing partitions by the
number of blocks:

Nn,k = |{π ∈ NC(n) : |π| = n− k}|.

Verification of this claim is left to Problem 2.5.

Notes

Despite the name, it seems that it was Euler who first studied the Cata-
lan numbers, which he defined as the number of ways to triangulate a con-
vex polygon. (See Problem 2.6.) There is correspondence between Euler and
Christian Goldbach from the middle of the 18th century that shows Euler
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knew the formula for the Catalan number generating function given in (2.2).
Johann Segner was the first to publish a paper about these numbers, in which
he proves the recurrence relation from (2.1). The Catalan numbers are named
for Eugène Charles Catalan, a 19th century mathematician who wrote several
papers about what he knew as the “Segner numbers.” It was Catalan who
proved that Cn =

(
2n
n

)
−
(

2n
n−1

)
.

Many famous mathematicians have studied the Catalan numbers, in many
different guises. One can find more than two hundred different combinato-
rial interpretations for Catalan numbers in a book of Richard Stanley, with
historical notes by Igor Pak [155]. See also [153, Problem 6.19].

The Narayana numbers are named for Tadepalli Narayana, who wrote
several papers on them in the mid-twentieth century, including [110]. In this
paper he essentially counts Dyck paths according to the number of peaks.
Our method of counting Dyck paths can be found in the work of Robert
Sulanke from 1993 [160].

Problems

2.1. Suppose p is any pattern of length three, i.e., p ∈ {123, 132, 213, 231,
312, 321}. Show that the Catalan numbers count the permutations of length
n that avoid p.

2.2. Find a bijective proof of the fact that

(n+ 1)Cn =

(
2n

n

)
.

2.3. Let bn = |PB(n)| denote the number of planar binary trees with n
internal nodes. Show that bn = Cn by describing a structural recurrence on
the trees that yields the numeric recurrence

bn =

n−1∑

i=0

bibn−1−i,

with b0 := 1.

2.4. Prove Proposition 2.2. That is, construct a bijection between PB(n)
and Sn(231) such that trees with k + 1 left-pointing leaves are mapped to
231-avoiding permutations with k descents.

2.5. Prove Proposition 2.3. That is, show that the map φ suggested in Fig-
ure 2.11 is indeed a bijection from Sn(231) to NC(n) that takes decreasing
runs to blocks of a noncrossing partition.
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2.6 (Triangulations). Show that Cn counts the number of dissections of a
convex (n+2)-gon into n triangles, using only lines from vertices to vertices.
For example, when n = 3 there are five such triangulations of a pentagon:

.

2.7 (Nonnesting partitions). Show that Cn counts the number of nonnest-
ing partitions of [n]. A nonnesting partition is a set partition π = {R1, . . . , Rk}
such that if {a, d} ⊆ Ri and {b, c} ⊆ Rj with a < b < c < d, then Ri = Rj .
Here are the fourteen nonnesting partitions of {1, 2, 3, 4}:

1 2 3 4
;

1 2 3 4
;

1 2 3 4
;

1 2 3 4
;

1 2 3 4
;

1 2 3 4
;

1 2 3 4
;

1 2 3 4
;

1 2 3 4
;

1 2 3 4
;

1 2 3 4
;

1 2 3 4
;

1 2 3 4
;

1 2 3 4
:

Hint: Create a bijection between noncrossing and nonnesting partitions. Con-
clude that counting nonnesting partitions by number of blocks gives the
Narayana numbers.

2.8 (Noncrossing matchings, balanced parenthesizations). Show that
Cn counts the number of noncrossing matchings on [2n]. A noncrossing
matching is a noncrossing partition with all the blocks having size two. For
example, here are the five noncrossing matchings on {1, 2, 3, 4, 5, 6}:

1 2 3 4 5 6
;

1 2 3 4 5 6
;

1 2 3 4 5 6
;

1 2 3 4 5 6
;

1 2 3 4 5 6
:
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The noncrossing matchings can also be thought of as n pairs of parentheses,
by mapping the beginning of an arc to a left parenthesis, “(”, and mapping
the end of an arc to a right parenthesis, “)”. The five matchings above would
then be:

()()(), ()(()), (())(), (()()), ((())).

A string of n pairs of parentheses that never has more right parentheses than
left when reading from left to right is called a balanced parenthesization.

Refined counting: Describe a statistic for noncrossing matchings so that
the distribution of this statistic gives the Narayana numbers.

2.9 (Standard Young tableaux). Show that Cn counts the number of 2
by n standard Young tableaux. A Young tableau is a two dimensional array
of numbers that increases across rows and down columns. A standard Young
tableau contains all distinct integers, from 1 to the number of entries. The
fourteen 2 by 4 tableaux are:

1 2 3 4
5 6 7 8

; 1 2 3 5
4 6 7 8

; 1 2 4 5
3 6 7 8

; 1 2 3 6
4 5 7 8

;

1 3 4 5
2 6 7 8

; 1 2 5 6
3 4 7 8

; 1 2 3 7
4 5 6 8

; 1 2 4 6
3 5 7 8

;

1 3 4 6
2 5 7 8

; 1 3 5 6
2 4 7 8

; 1 2 4 7
3 5 6 8

; 1 3 4 7
2 5 6 8

;

1 2 5 7
3 4 6 8

; 1 3 5 7
2 4 6 8

:

Refined counting: Describe a statistic for Young tableaux so that the dis-
tribution of this statistic gives the Narayana numbers.

2.10 (Motzkin paths). A Motzkin path of length n is a lattice path from
(0, 0) to (n, n) that never passes below the line y = 0 and uses only “up”
steps from (i, j) to (i + 1, j + 1), “down” steps from (i, j) to (i + 1, j − 1),
and “horizontal” steps from (i, j) to (i+1, j). For example, here are the nine
Motzkin paths of length four:
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H H H H

U D H H H U D H H H U D

U H D H U H H D H U H D

U D U D U U D D

(Note that Motzkin paths that contain no horizontal steps are in bijection
with Dyck paths.) Let Mn denote the number of Motzkin paths of length n,
with M0 = 1. Here are the first few values of Mn, sometimes called Motzkin
numbers :

1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, . . . .

Let M(z) =
∑

n≥0 Mnz
n. Show that

M(z) =
1− z −

√
1− 2z − 3z2

2z2
.

Hint: each Motzkin path is built from a Dyck path by inserting horizontal
steps between the steps of the Dyck path. Use this fact to show

M(z) =
1

1− z
C

(
z2

(1− z)2

)
,

where C(z) is the Catalan generating function. The formula for M(z) now
follows from Equation (2.2).

2.11. Show that the Motzkin numberMn also counts the number of noncross-
ing partial matchings of [n]. In other words, Mn is the number of noncrossing
partitions of [n] for which the blocks have size one or two.

2.12 (Schröder paths). A Schröder path of size n is a lattice path from
(0, 0) to (n, n) that never passes below the line y = x and uses only steps
“North” from (i, j) to (i, j+1), “East” from (i, j) to (i+1, j) and “Northeast”
from (i, j) to (i + 1, j + 1). For example, here are the six Schröder paths of
size 2:
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(Note that Schröder paths with no northeast steps are Dyck paths.) Let Rn

denote the number of Schröder paths of size n, with R0 = 1. We call the
number Rn a Schröder number. Here are the first few values for Rn:

1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098, . . . .

Let R(z) =
∑

n≥0 Rnz
n. Show that

R(z) =
1− z −

√
1− 6z + z2

2z
.

Hint: Just as with Motzkin paths, each Schröder path can be built from a
Dyck path by inserting northeast steps between the steps of the Dyck path.
Use this fact to show

R(z) =
1

1− z
C

(
z

(1 − z)2

)
,

where C(z) is the Catalan generating function. The formula then follows from
Equation (2.2).

2.13 (Small Schröder numbers). Show the Schröder numbers (apart from
R0 = 1) are always even. You can do this by manipulating the generating
function in Problem 2.12, but try to explain it combinatorially. Hint: find
a bijection between the Schröder paths with a peak on the line y = x + 1
and those without. The number of Schröder paths with no peak on the line
y = x + 1 are called small Schröder numbers, denoted rn. Here are the first
few values of the small Schröder numbers:

1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, . . . .

Given that r0 = 1 and rn = Rn/2 for n ≥ 1, use the generating function
found in Problem 2.12 to conclude that

∑

n≥0

rnz
n =

1+ z −
√
1− 6z + z2

4z
.
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2.14. Show that the small Schröder numbers rn count the number of valid
parenthesizations of n+ 1 symbols with at most n− 1 pairs of parentheses.
Parentheses around the entire expression are not allowed, and each pair of
parentheses must enclose at least two sub-expressions. For example, here are
the eleven parenthesizations of four symbols:

((wx)y)z (w(xy))z (wx)(yz) w((xy)z) w(x(yz))

(wx)yz (wxy)z w(xy)z w(xyz) wx(yz)

wxyz

Can you interpret these parenthesizations in terms of planar rooted trees of
some kind?



Chapter 3

Partially ordered sets

Apples and oranges. Sometimes things are incomparable. For breakfast, I
like granola better than gruel. I like it even better when my granola has fresh
fruit on top. I also like a nice omelette better than gruel. But on any given
day I cannot say whether I would prefer granola (with or without fruit) or
an omelette. I am only able to partially order my favorite breakfast foods:

gruel

granola

granola and fruit

omelette

.

Partially ordered sets are extremely important in algebraic and enumer-
ative combinatorics, and we study and use them throughout the rest of the
book.

3.1 Basic definitions and terminology

Informally, a partially ordered set P , commonly referred to as a poset for
short, is a collection of objects with a notion of “less than” and “greater
than” but for which some objects may be incomparable. To be precise, a
poset is a pair (P,≤P ), such that the relation ≤P is:

© Springer Science+Business Media New York 2015
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• transitive, i.e., if a ≤P b and b ≤P c, then a ≤P c,
• reflexive, i.e., a ≤P a, and
• antisymmetric, i.e., if a ≤P b and b ≤P a, then a = b.

While there are good reasons to study infinite partially ordered sets (espe-
cially in algebraic combinatorics), for our purposes it will suffice to assume
that P is a finite set.

A cover relation in a poset P is a pair x 	= y such that if x ≤P z ≤P y, then
either x = z or y = z. Because of transitivity, a partial order is completely
determined by its cover relations. Thus a common aid for visualization is the
Hasse diagram of P . This is a directed graph whose nodes are elements of
P , with directed edges for the cover relations. For example, in Figure 3.1
we see the Hasse diagram for the collection of subsets of {1, 2, 3} ordered by
inclusion. Here, the edges are directed upwards.

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Fig. 3.1 The poset P = 2{1,2,3}.

We will often discuss collections of subsets of a finite set. If S is a finite set,
we write 2S to denote the poset of subsets of S, ordered by inclusion. This
poset is an example of a lattice. A lattice L is a poset in which every pair
of elements x and y has a uniquely defined least upper bound and greatest
lower bound, denoted as follows:

• (least upper bound) x ∨ y = min{z ∈ L : x ≤L z, y ≤L z},
• (greatest lower bound) x ∧ y = max{z ∈ L : z ≤L x, z ≤L y}.
For example, poset P below is a lattice, while Q is not:

P =

•
•

• •
•
; Q =

•
•

•

•
•

•
:
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Lattice theory is a broad subject with many consequences. Many of the posets
discussed in this book are lattices. While we will mention this property when
it exists, we will not often exploit the consequences of this fact.

An order ideal Q in a poset P is a sub-poset of P such that if x ∈ Q and
y ≤P x, then y ∈ Q (and y ≤Q x). Notice that an order ideal is determined
by its maximal elements. A principal order ideal is an order ideal with a
unique maximum. The principal order ideal determined by an element x in
P is the sub-poset of all elements in P that are less than or equal to x. In
Figure 3.2 we see a poset P with two different order ideals highlighted.

•

•

•

•

•

•

•

•

•

••

••

•• ••

•

•

••

••

••

a

b

c

a) order ideal

•

•

•

•

•

•

•

•

•

••

••

•••

••

••

••

••

••

••

••

••

b) principal order ideal

•

•

•

•

•

•

•

•

•

••

••

••

c) chain

•

•

•

•

•

•

•

•

•

•• ••• ••

d) antichain

Fig. 3.2 A poset P with various subposets highlighted.

A chain in P is a set of elements in P such that every two elements are
comparable. This is also sometimes called a total order or a linear ordering.
An antichain in P is a subset A such that no two elements in A are compa-
rable in P . The maximal elements in an order ideal form an antichain. See
Figure 3.2.

A poset P is ranked if there is a function ρ : P → {0, 1, 2, . . .} such that
ρ(a) = 0 if a is a minimal element of P , and ρ(b) = ρ(a) + 1 if a <P b is a
cover relation. For such a function to be well defined, it must be the case that
all paths from a point c to a point d in the Hasse diagram traverse the same
number of edges. For example, if a poset has the following Hasse diagram
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•
c

•
•d •

•
.

we cannot define a rank function because there is a path of length two from c
to d and another path of length three. Similarly, the poset P in Figure 3.2 is
not ranked, since both a and b are P -minimal elements below element c, but
the paths from a to c and from b to c have different lengths. On the other
hand, the example of Figure 3.1 has a natural rank function given by the
cardinality of the subset.

If a poset P has a rank function, then it is quite natural to define the rank
generating function,

f(P ; t) =
∑

a∈P

tρ(a).

Most of the posets encountered in this book will be ranked, and their rank
generating functions often have interesting interpretations. For example, if
S is a finite set and P = 2S, the rank generating function is given by the
binomial theorem:

f(2S; t) =
∑

A⊆S

t|A| = (1 + t)|S|.

3.2 Labeled posets and P -partitions

Suppose now that P is a partial ordering on {1, 2, . . . , n}. We will say the
poset is labeled by {1, 2, . . . , n}. When discussing elements of P we will use
≤P for the partial order, ≤Z for the usual integer ordering on elements of P .
For example, suppose

P =

3

1 2

4

.

Then 3 <P 4 and 3 <Z 4, while 3 <P 2 and 2 <Z 3.
More generally, we could consider a poset P in terms of its Hasse diagram,

and consider labeling the nodes with members of any set. (To take the silly
example from the start of this chapter, we could use the set { gruel, granola,
granola with fruit, omelette } as our labeling set.) For the purposes of this
book, we will usually label a poset P of cardinality n with the numbers
1, 2, . . . , n.
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A P -partition is a function from P to the positive integers, a : P →
{1, 2, 3, . . .}, such that:

• a is order preserving, i.e., a(i) ≤ a(j) if i ≤P j, and moreover,
• a(i) < a(j) if i ≤P j and i ≥Z j.

Let A(P ) denote the set of all P -partitions.
Continuing with the example above, we can characterize the P -partitions

as follows:

A

⎛

⎜
⎝

3

1 2

4
⎞

⎟
⎠ = {a(1) > a(3) < a(2) ≤ a(4)}.

We can think of permutations as totally ordered chains, with cover rela-
tions w(i) <w w(i + 1). The set of linear extensions of a poset P , denoted
L(P ), is the set of all permutations w such that i <P j implies i <w j. For
example,

L

⎛

⎜
⎝

3

1 2

4
⎞

⎟
⎠ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
3

1

2

4

,

3

2

1

4

,

3

2

4

1
⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= {3124, 3214, 3241}.

One of the key observations about P -partitions is that the set of all
P -partitions splits into the disjoint union of the w-partitions for all linear
extensions w of P .

Lemma 3.1 (Fundamental lemma of P -partitions). For any finite poset
P on {1, 2, . . . , n},

A(P ) =
⋃

w∈L(P )

A(w),

and the union is disjoint.

This lemma is straightforward to verify by induction on the number of
pairs of incomparable elements in P . Suppose i <Z j is an incomparable pair
of P . In linearizing, we can put i before j, in which case a(i) ≤ a(j), or put i
after j, in which case a(i) > a(j). Let’s carry out this decomposition for our
example poset.

A

⎛

⎜
⎝

3

1 2

4
⎞

⎟
⎠ = {a(1) > a(3) < a(2) ≤ a(4)},

= {a(3) < a(1) ≤ a(2) ≤ a(4)}
∪ {a(3) ≤ a(2) < a(1) ≤ a(4)}
∪ {a(3) ≤ a(2) ≤ a(4) < a(1)},

= A(3124) ∪ A(3214) ∪ A(3241).

The fact that the union is disjoint is easy to see, by looking at a(1) relative
to a(2) and a(4).
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The nice thing about reducing to the case of permutations is that their
P -partitions are characterized by descents. That is,

A(w) = {a(w(1)) ≤ · · · ≤ a(w(n)) : a(w(i)) < a(w(i + 1)) if i ∈ Des(w)},
= {b1 ≤ b2 ≤ · · · ≤ bn : bi < bi+1 if i ∈ Des(w)}.

We now count P -partitions according to their maximum value. Define
the order polynomial, Ω(P ; k), to be the number of P -partitions a : P →
{1, 2, . . . , k}. That is,

Ω(P ; k) = |{a ∈ A(P ) : max(a(i)) ≤ k}|.

The fact that this is indeed a polynomial in k will be justified shortly.
In the case of permutations, these turn out to be binomial coefficients that

depend only on k and des(w). For example,

Ω(3124; k) = |{1 ≤ a(3) < a(1) ≤ a(2) ≤ a(4) ≤ k}|,
= |{1 ≤ b1 < b2 ≤ b3 ≤ b4 ≤ k}|,
= |{1 ≤ b1 < b2 < (b3 + 1) ≤ (b4 + 1) ≤ k + 1}|,
= |{1 ≤ b1 < b2 < (b3 + 1) < (b4 + 2) ≤ k + 2}|,
= |{1 ≤ c1 < c2 < c3 < c4 ≤ k + 2}|,

=

(
k + 2

4

)
.

We are essentially choosing a set of n integers from among k + j integers,
where j is the number of weak inequalities among the a(i). This number
corresponds to the number of ascents of w, so if w ∈ Sn, j is n− 1− des(w).

Thus, for a permutation w ∈ Sn, we have:

Ω(w; k) =

(
k + n− 1− des(w)

n

)
,

and Lemma 3.1 leads to the following proposition.

Proposition 3.1. For any poset P on {1, 2, . . . , n},

Ω(P ; k) =
∑

w∈L(P )

(
k + n− 1− des(w)

n

)
.

Now define the order polynomial generating function to be

H(P ; t) =
∑

k≥0

Ω(P ; k)tk,
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and recall from Equation 1.3 that

ti

(1 − t)n+1
=
∑

k≥0

(
k + n− i

n

)
tk.

Therefore, with a permutation w,

H(w; t) =
∑

k≥0

Ω(w; k)tk,

=
∑

k≥0

(
k + n− 1− des(w)

n

)
tk,

=
tdes(w)+1

(1− t)n+1
.

Summing over all linear extensions of P , we get:

H(P ; t) =
∑

k≥0

Ω(P ; k)tk,

=
∑

k≥0

∑

w∈L(P )

Ω(w; k)tk,

=
∑

w∈L(P )

⎛

⎝
∑

k≥0

Ω(w; k)tk

⎞

⎠ ,

=
∑

w∈L(P )

H(w; t),

and hence the following result.

Theorem 3.1. For any poset P on {1, 2, . . . , n},

H(P ; t) =

∑
w∈L(P ) t

des(w)+1

(1− t)n+1
.

For example, with our running example of

P =

3

1 2

4
,

we have L(P ) = {3124, 3214, 3241}, so

H(P ; t) =
t2 + 2t3

(1− t)5
.
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Theorem 3.1 yields many interesting corollaries. For example if we take
P to be an antichain, i.e., the set {1, 2, . . . , n} with no relations, then every
function a : {1, 2, . . . , n} → {1, 2, . . . , k} is a P -partition and Ω(P ; k) = kn.
On the other hand, every permutation w ∈ Sn is a linear extension of P , so
L(P ) = Sn. Thus, we see the Eulerian polynomial emerge in the numerator
for H(P ; t):

∑

k≥0

kntk =

∑
w∈Sn

tdes(w)+1

(1− t)n+1
=

tSn(t)

(1− t)n+1
.

Dividing by t gives us another way to prove the Carlitz identity in Corol-
lary 1.1. Other such results, and connections with discrete geometry, are
explored in the problems at the end of the chapter.

We will now turn to some other ways the Eulerian numbers arise in the
study of posets.

3.3 The shard intersection order

We will now introduce a partial order on the set of all permutations whose
rank generating function is the Eulerian polynomial. Let Sh(Sn) denote this
poset, called the shard intersection order. How the name arises will be dis-
cussed in Chapter 11, where a more general construction will be discussed.

To understand this partial order most simply, we first highlight the max-
imal decreasing runs of our permutations, e.g., if w = 12573486, we would
write w = 1|2|5|73|4|986, or draw:

1
2

5

7

3
4

9
8

6
.

We can think of the decreasing runs of w as blocks in an ordered set partition
of {1, 2, . . . , n}. We say two blocks A, B, in such a partition are overlapping
if there are elements a, c ∈ A and b ∈ B such that a < b < c. Continuing the
example of w above, the block 73 overlaps with 5, block 4, and block 986. No
other pairs of blocks in w are overlapping.
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With this point of view the partial order is characterized by two things.
We say u ≤ v in Sh(Sn) if:

• (Refinement) u refines v as a set partition, and
• (Consistency) if i and j are in the same block in u, and k not in the same

block as i and j in u with i < k < j, then either k is in the same block as
i and j in v, or k is on the same side of i and j in both v and u.

Intuitively, v can be obtained from u by merging some blocks in u while
maintaining the relative positions of the overlapping blocks.

For example, while we can merge two blocks of 1|2|5|73|4|986 to obtain
1|2|73|54|986, they are not comparable in the partial order since in one case
5 appears to the left of the block 73, while in the other it appears to the
right. On the other hand, we have 1|2|5|73|4|986 <Sh 2|5|73|4|9861, i.e.,

1
2

5

7

3
4

9
8

6
<Sh

2

5

7

3

9
8

6

1

4

,

because we can obtain the permutation on the right by merging the 986
block and the 1. This new block, 9861, had to be to the right of the 73 block
because the block containing the 6 was already to the right. However, there
were some choices in where to place the new block relative to the 2 and
the 4. These could have been placed on either side of the 9861 block, so that
w = 1|2|5|73|4|986 is also less than the following permutations, each with the
same set of decreasing runs: 2|5|73|4|9861, 5|73|4|9861|2, and 5|73|9861|2|4.

We have Sh(S3) shown in Figure 3.3 and Sh(S4) shown in Figure 3.4 (where
the partial order moves from left to right rather than bottom to top).

There is a unique minimum permutation in Sh(Sn) given by 1|2| · · · |n, with
n singleton blocks, while the unique maximum element is n · · · 21, with only
one block. It is straightforward to verify that every cover relation u <Sh v
amounts to merging only one pair of blocks. Since the number of blocks in u is
n−des(u), this means the poset Sh(Sn) is ranked, with rank function ρ(w) =
des(w). Hence we can state the following result on the shard intersection
order.
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1
2

3

2
1

3 3

1
2 2

3

1 1

3
2

3
2

1

Fig. 3.3 The poset Sh(S3).

Proposition 3.2. The Eulerian polynomial Sn(t) is the rank generating
function for Sh(Sn), i.e.,

f(Sh(Sn); t) =
∑

w∈Sn

tdes(w) = Sn(t).

It is fairly evident that this partial order is a lattice. Given elements u and
v in Sn, we have some ordered blocks in u and some ordered blocks in v, e.g.,

u =

1
2

5

7

3
4

9
8

6

, v = 5

2
3

1

4

6
7

8
9

.

Their least upper bound is the permutation obtained from merging the small-
est number of blocks of u needed to get a collection of blocks consistent with
the blocks of v, and this can be done greedily working from left to right:
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u ∨ v = 5

2

7

3

1

4

9
8

6

.

The greatest lower bound is similarly found.
We will now discuss a partial order for which the rank generating function

is the Narayana polynomial.

3.4 The lattice of noncrossing partitions

The most natural partial order on set partitions is refinement ordering. For
convenience, however, we will consider the dual ordering of reverse refine-
ment, or coarsening. (There are several good reasons for this. For one thing
it makes this order compatible with the shard intersection order.) We defer
investigation of the poset of set partitions to Problem 3.8 at the end of the
chapter. Here we focus attention on the subposet consisting of the noncrossing
partitions.

Recall that NC(n) is the set of all set partitions of {1, 2, . . . , n} that obey
the noncrossing condition on their blocks. See Section 2.6. We will now dis-
cuss NC(n) as a partially ordered set, with σ <NC τ if σ refines τ . The
unique minimum element in the poset is partition with all singleton blocks,
{{1}, {2}, . . . , {n}}, while the partition with only one block, {{1, 2, . . . , n}},
is the unique maximum.

This partial ordering makes NC(n) a lattice. The greatest lower bound of
partitions σ and τ is found by simply computing all intersections of the blocks
in σ with blocks in τ . Clearly the noncrossing condition is preserved under
intersection. The least upper bound is found by taking the union of blocks,
with the proviso that if a block B of σ and a block B′ of τ have nonempty
intersection or if B and B′ are crossing, then we merge these blocks in σ ∨ τ .
For example, if

σ = 1 2 3 4 5 6 7 8 9 ,
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1
2

3
4

2
1

3
4

3

1
2

4

2
3

1

4

4

1
2

3

2

4

1

3

3
4

1
2

2
3

4

1

1

3
2

4

1

4

2
3

1

3
4

2

1
2

4
3

3
2

1

4

4

2
1

3

3
4

2
1

2
1

4
3

4

2
3

1

3

1

4

2

2

4
3

1

4
3

1
2

4

1

3
2

3
2

4

1

1

4
3

2

4
3

2
1

Fig. 3.4 The shard intersection poset for S4 contains the poset of noncrossing
partitions in the guise of 231-avoiding permutations.
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and

¿ = 1 2 3 4 5 6 7 8 9 ;

then

∨ = 1 2 3 4 5 6 7 8 9 .

We see the Hasse diagrams for NC(3) and NC(4) in Figures 3.5 and 3.6.

1 2 3

1 2 3

1 2 3

1 2 3 1 2 3

Fig. 3.5 The poset NC(3).

It is clear that NC(n) is ranked by n−|π|, i.e., nminus the number of blocks
in the partition. Thanks to Proposition 2.3, this shows the rank generating
function is the Narayana polynomial.

Proposition 3.3. The rank generating function for NC(n) is

f(NC(n); t) =
∑

π∈NC(n)

tn−|π| =
∑

w∈Sn(231)

tdes(w) = Cn(t).

Moreover, the bijection φ given in Section 2.6 between 231-avoiding
permutations and noncrossing partitions can be used to show that NC(n)
is isomorphic to a subposet of Sh(Sn), as indicated in Figure 3.4. Let
Sh(Sn(231)) denote the partial order on Sh(Sn) applied only to the per-
mutations in Sn(231).
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1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

Fig. 3.6 The poset NC(4).

We can see that for merging blocks in a 231-avoiding permutation “consis-
tency” is taken care of since there is no choice in how to write the blocks in
a 231-avoiding manner. For example, suppose blocks A and C are to merge
in a 231-avoiding permutation, and that block B contains elements between
the maximum of A and the minimum of C. Then if we merge blocks C and
A, they must go to the left of B, or else they create a 231 pattern as shown
here:
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A

B

C

A

B

C

contains 231

A

B

C

avoids 231

Hence, every cover relation in Sh(Sn(231)) is a cover relation in NC(n)
and vice versa, and we make the following observation.

Proposition 3.4. As posets, Sh(Sn(231)) and NC(n) are isomorphic.

3.5 Absolute order and Noncrossing partitions

The lattice of noncrossing partitions can be found sitting inside another
partial order on permutations as we will describe in this section. In this
case, it is more convenient to write elements of Sn in cycle notation. For
example, instead of writing w = 315486927 in one-line notation, we write
w = (13582)(4)(6)(79), where the cycle (13582) means w(1) = 3, w(3) = 5,
w(5) = 8, w(8) = 2, and w(2) = 1. Let cyc(w) denote the number of cycles
of w, so that our example above has cyc(w) = 4.

Now write u→ v if there is a single transposition (ij) such that v = u◦(ij)
and u has more cycles than v. For example, (142)(3)(567)→ (142)(3675) since
(142)(3)(567) ◦ (35) = (142)(3675). These directed edges can be used as the
edges in the Hasse diagram of a partial order on Sn, called the absolute order,
denoted Abs(Sn). See Figure 3.7 for Abs(S4).

This poset is clearly ranked by n minus the number of cycles: n− cyc(w).
(Indeed if i and j are in different cycles of u, then v = u ◦ (ij) has these two
cycles merged into one, with all other cycles of u untouched.) Notice that the
identity permutation is the unique minimum of Abs(Sn), while the maximal
elements are n-cycles.

We can recursively compute the rank function for this poset (i.e., count
permutations by the number of cycles) by considering the effect of inserting
n into the cycle notation of a permutation in Sn−1. Let us generate Sn from
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(1)(2)(3)(4)

(12)(3)(4) (13)(2)(4) (14)(2)(3) (1)(23)(4) (1)(24)(3) (1)(2)(34)

(123)(4) (132)(4) (124)(3) (142)(3) (134)(2)(143)(2) (1)(234)(1)(243)(12)(34) (13)(24) (14)(23)

(1234) (1243) (1324) (1342) (1423)(1432)

Fig. 3.7 The absolute order with noncrossing partition lattice highlighted.

Sn−1 as follows. Fix a permutation u in Sn−1 and form a permutation v in
Sn in any of the following distinct ways.

• Let v(i) = u(i) for i = 1, . . . , n− 1, v(n) = n. The rank of v in Abs(Sn) is
n− cyc(v) = n− cyc(u)− 1, which is the rank of u in Abs(Sn−1).

• For some 1 ≤ j ≤ n − 1, let v(j) = n and v(n) = u(j), while v(i) = u(i)
for i 	= j. This inserts n in the middle of a cycle of u, so the rank of v is
n− cyc(v) = n− cyc(u), which is one more than the rank of u.

This line of reasoning gives

f(Abs(Sn); t) = (1 + (n− 1)t)f(Abs(Sn−1); t),

and since f(Abs(S1); t) = 1, we have the following observation.

Observation 3.1 For any n ≥ 1, the rank generating function for the abso-
lute order on Sn is the generating function for the statistic n− cyc(w), and
this function factors as follows:
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f(Abs(Sn); t) =
∑

w∈Sn

tn−cyc(w),

=

n−1∏

i=1

(1 + (i− 1)t),

= (1 + t)(1 + 2t) · · · (1 + (n− 1)t).

We remark that the coefficients in the polynomial (1+t)(1+2t) · · · (1+nt)
are known as the Stirling numbers of the first kind.

We can see the lattice of noncrossing partitions inside the absolute order by
considering the set of all elements below any one of the n-cycles, say (12 · · ·n).
The fact that each of these intervals is identical is left to Problem 3.11. The
correspondence between this interval, which we will denote Abs((12 · · ·n)),
and the lattice of noncrossing partitions is straightforward.We simply convert
each cycle to a block of a partition. Conversely, given a noncrossing partition,
simply write each block in increasing order and make that block a cycle.
Compare Figure 3.6 with Figure 3.7.

Proposition 3.5. As posets, Abs((12 · · ·n)) and NC(n) are isomorphic.

Notes

Partially ordered sets appear in various parts of mathematics. Gian-Carlo
Rota and Richard Stanley were two of the central figures in bringing the
general study of posets into the mainstream of combinatorics in the second
half of the 20th century, with applications in algebra and topology. Richard
Stanley’s book [154] introduces most of the modern results in the general the-
ory of posets. In particular, it summarizes Stanley’s theory of P -partitions.
We remark that our definition differs from Stanley’s. In [154] a P -partition
is order-reversing rather than order preserving. This choice makes sense as
Stanley was initially motivated by counting plane partitions, a problem dis-
cussed as far back as the book from 1915/16 by Percy MacMahon [106]. See
Problem 3.6.

Nathan Reading introduced the shard intersection order in 2011 [124].
In fact, his construction can be done in any Coxeter group, as discussed in
Chapter 11. A combinatorial model for this partial order in the case of the
symmetric group was first described by Erin Bancroft [13], and was given the
form described here by this book’s author in [118].

While the shard intersection order is quite recent, the lattice of noncrossing
partitions has been studied at least since Germain Kreweras [97] in 1972.
Philippe Biane’s 1997 paper [16] was the first to remark upon the fact that
the lattice of noncrossing partitions emerges from the absolute order on the
symmetric group. That NC(n) is isomorphic to the shard intersection order
on 231-avoiding permutations is a special case of Reading’s work [124]. Both
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Biane’s construction and Reading’s construction can be generalized to give a
definition of the lattice of noncrossing partitions in any Coxeter group. See
Chapter 12. The relevance of the lattice of noncrossing partitions in different
parts of mathematics has been surveyed by Rodica Simion [139] and by Jon
McCammond [107].

Problems

3.1. Let P be the labeled poset consisting of the disjoint union of the chains
1 <P 2 <P · · · <P k and k+1 <P k+2 <P · · · <P n for some k. Characterize
the set of linear extensions of P . (Hint: for w ∈ L(P ), consider Des(w−1).)

3.2. A polytope is the intersection of half-spaces in R
n. For example, the

standard simplex Σn is the intersection of the nonnegative coordinate half
spaces defined by xi ≥ 0 and the hyperplane

∑n
i=1 xi ≤ 1, and we can define

a unit cube Δn to be the intersection of xi ≥ 0 and xi ≤ 1 for all i.
LetΩ(P ; k) denote the number of integer points in the k-fold dilation of the

polytope P . (The notation is intentionally suggestive here.) For example, if

P = Σ2 = {(x, y) : x ≥ 0, y ≥ 0, x+ y ≤ 1},

then we have Ω(Σ2; 0) = 1, Ω(Σ2; 1) = 3, and Ω(Σ2; 2) = 6.
Find rational expressions for the following generating functions.

1.
∑

k≥0

Ω(Σ2; k)t
k

2.
∑

k≥0

Ω(Σ3; k)t
k

3.
∑

k≥0

Ω(Σn; k)t
k

4.
∑

k≥0

Ω(Δ2; k)t
k

5.
∑

k≥0

Ω(Δ3; k)t
k

6.
∑

k≥0

Ω(Δn; k)t
k

3.3 (Set partitions). Let B(n) denote the number of set partitions of
{1, 2, . . . , n}. These are sometimes called the Bell numbers. The first few
of them are:

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, . . . ,

with B(0) := 1. This exercise will show the exponential generating function
for the Bell numbers is:
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∑

n≥0

B(n)
zn

n!
= e(e

z−1).

The approach here is to refine the problem first. Let S(n, k) denote the num-
ber of set partitions of {1, 2, . . . , n} with k blocks. These numbers are known
as Stirling numbers of the second kind.

1. Show that S(n+1, k) = kS(n, k) + S(n, k− 1), and use this recurrence to
create a triangle of these numbers, for 1 ≤ k ≤ n ≤ 10.

2. Show that for fixed k,

∑

n≥1

S(n, k)
zn

n!
=

(ez − 1)k

k!
.

3. Show that

1 +
∑

n,k≥1

S(n, k)
ykzn

n!
= ey(e

z−1).

and set y = 1 to obtain the exponential generating function for the Bell
numbers.

3.4 (Integer partitions). A partition of an integer n is a weakly decreas-
ing sequence of positive integers whose sum is n, i.e., λ = (λ1, . . . , λk) is a
partition of n if λ1 ≥ · · · ≥ λk and

∑
λi = n. For example, λ = (7, 4, 4, 2, 1)

is a partition of n = 18. We often draw partitions as a collection of n boxes
that upper- and left-justified, so that the number of boxes in row i is λi. Such
a picture is called a Young diagram. (These are also known in the literature
as Ferrers diagrams, though Ferrers diagrams are lower-left justified.) For
example, with λ = (7, 4, 4, 2, 1) we would draw

:

Let pn denote the number of partitions of n, with p0 = 1 by convention.
The first few values of pn are:

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, . . .

1. Show the ordinary generating function for the number of partitions of n is:

∑

n≥0

pnz
n =

∏

i≥1

1

(1− zi)
.

This is called Euler’s product formula.



66 3 Partially ordered sets

2. Let pn,k denote the number of partitions of n into k parts. For example,
p5,3 = 2 as the partitions (3, 1, 1) and (2, 2, 1) are the only partitions of
n = 5 into k = 3 parts. Refine Euler’s product formula to obtain an
expression for the following generating function:

∑

n,k≥0

pn,kt
kzn.

3. The conjugate of a partition λ is the partition λ′ with Young diagram
obtained by transposing the Young diagram for λ. For example, if λ =
(3, 3, 2, 1, 1), its conjugate is λ′ = (5, 3, 2) as seen here:

¸ = ↔ = ¸′

Let p′n denote the number of partitions that are self-conjugate, i.e., for
which λ = λ′. Show that

∑

n≥0

p′nz
n = (1 + z)(1 + z3)(1 + z5) · · · =

∏

i≥1

(1 + z2i−1).

(Hint: show that p′n also counts the number of partitions of n into distinct
odd parts by exhibiting a bijection between partitions with distinct odd
parts and self-conjugate partitions.)

4. Give a bijective proof of the following formula for the generating function
for the number of partitions with exactly k parts (with k fixed):

∑

n≥0

pn,kz
n = zk ·

k∏

i=1

1

(1− zi)
.

5. Show that the number of partitions of n into distinct parts equals the
number of partitions of n into odd parts. One way to prove this is to
verify the identity of generating functions:

∏

i≥1

(1 + zi) =
∏

i≥1

1

(1− z2i−1)
.

Try to prove the claim with a bijection as well.
6. Let φ(z) =

∏
i≥1(1 − zi) denote the denominator of Euler’s product for-

mula. This is sometimes called the Euler function in number theory. Show
that
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φ(z) = 1− z − z2 + z5 + z7 − z12 − z15 + z22 + z26 − · · · .

Find a formula for the exponents of the nonzero terms in the series expan-
sion of φ(z), and show the only coefficients are 1,−1, and 0. (Hint: interpret
the left-hand side as running over all partitions into distinct parts, where
if the partition has an odd number of parts it gets counted with a minus
sign.)

3.5. A marked partition of n is a partition in which a part of size i can come
with i different markings. To be precise, let

A = {(a, b) : a ≥ b ≥ 1},
= {(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3), . . .},

and let α = ((a1, b1), (a2, b2), . . . , (ak, bk)) be a collection of points in A or-
dered lexicographically, i.e., ai > ai+1 or ai = ai+1 and bi ≥ bi+1. To say α
is a marked partition of n means a1 + · · ·+ ak = n, ignoring the markings.

For example, α = ((3, 1), (2, 2), (2, 1), (1, 1), (1, 1)) is a marked partition of
n = 3 + 2 + 2 + 1 + 1 = 9. Let mn denote the number of marked partitions
of n. Some small values of mn are

1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 500, 859, . . .

with m0 = 1.
Show that, by analogy with Euler’s product formula for unmarked parti-

tions, we have
∑

n≥0

mnz
n =

∏

i≥1

1

(1− zi)i
.

3.6. A plane partition is an array of nonnegative integers

ρ =

ρ1,1 ρ1,2 · · ·
ρ2,1 ρ2,2 · · ·
...

...
. . .

= (ρi,j)i,j≥1

whose rows and columns are weakly decreasing, i.e., for fixed i, ρi,j ≥ ρi,j+1

and for fixed j, ρi,j ≥ ρi+1,j . The support of a plane partition is the set of
cells with positive entries. We only wish to consider those partitions with
finite support.

The positive terms in a plane partition determine a Young diagram, and
hence a partition, which we call the shape of the plane partition. One help-
ful way to understand plane partitions is a three-dimensional analogue of a
Young diagram, where ρi,j = r is represented by a stack of r boxes in position
(i, j). For example, here is one plane partition of shape 3, 2, 2, drawn both as
an array of numbers and as a pile of boxes stacked in a corner:
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ρ =
5 2 1
2 2
2 1

=
.

Let Ω(λ; k) denote the number of plane partitions of shape λ whose largest
part is at most k. Describe the generating function

∑

k≥0

Ω(λ; k)tk,

in the case where λ = (3, 2, 2). Hint: draw a poset P on {1, 2, 3, 4, 5, 6, 7} such
that the set of P -partitions coincides with the set of plane partitions of shape
λ = (3, 2, 2).

3.7. A bipartite P -partition is a map a : P → {1, 2, . . .} × {1, 2, . . .}, where
we use the lexicographic ordering on {1, 2, . . .} × {1, 2, . . .}. Lexicographic
ordering is a total order, so the order polynomial Ω(P ; kl) counts bipartite
P -partitions

a : P → {1, 2, . . . , k} × {1, 2, . . . , l}.

Show that
(
kl + n− 1

n

)
=
∑

w∈Sn

(
k + n− 1− des(w)

n

)(
l + n− 1− des(w−1)

n

)
.

3.8 (The partition lattice). Let Π(n) denote the set of all set partitions
of {1, 2, . . . , n}, ordered by reverse refinement.

1. Draw the Hasse diagrams for Π(3) and Π(4), highlighting NC(3) and
NC(4) as sub-posets.

2. Show Π(n) is a lattice.
3. Count the number of maximal chains in Π(n), i.e., chains

{{1}, {2}, . . . , {n}} → · · · → {{1, 2, . . . , n}},

of length n − 1. For example, in Π(1) and Π(2) there is one such chain,
while in Π(3) there are three.

3.9 (Parking functions). A parking function of length n is a sequence of
positive integers, (a1, . . . , an), such that if b1 ≤ · · · ≤ bn is an increasing
rearrangement of a1, . . . , an, then bi ≤ i. They get their name because of
the following interpretation. Imagine there are n cars that want to park in n
spaces on a one-way street. Denote the cars by C1, . . . , Cn, and let a1, . . . , an



3.5 Absolute order and Noncrossing partitions 69

be their preferred parking spaces. If a car finds its preferred space occupied,
it will park in the next available space. All cars will be able to park if and
only if (a1, . . . , an) is a parking function. For example, suppose there are six
cars, with preferences (1, 1, 5, 2, 2, 3). Then the cars will park as follows:

car: C1 C2 C4 C5 C3 C6

space: 1 2 3 4 5 6
.

On the other hand, if the preferences were (1, 1, 6, 3, 5, 5), then the sixth car
will be out of luck, since when it arrives it wants to park in space five or
higher, and the only available space is space four:

car: C1 C2 C4 C5 C3

space: 1 2 3 4 5 6
.

Let PF(n) denote the set of parking functions of length n. For example,

PF(2) = {(1, 1), (1, 2), (2, 1)}

and

PF(3) =

⎧
⎪⎪⎨

⎪⎪⎩

(1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1),
(1, 1, 3), (1, 3, 1), (3, 1, 1), (1, 2, 2),
(2, 1, 2), (2, 2, 1), (1, 2, 3), (1, 3, 2),
(2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)

⎫
⎪⎪⎬

⎪⎪⎭
.

Show that
|PF(n)| = (n+ 1)n−1.

3.10. How many maximal chains are there in the lattice of noncrossing
partitions?

3.11. Prove that the interval below any n-cycle in the absolute order on Sn

is the same as any other. That is, if c and c′ are two different n-cycles show
that Abs(c) = Abs(c′). Hint: c and c′ are conjugate to one another, i.e., there
is a permutation w such that c′ = w ◦ c ◦ w−1. Show that conjugation by w
takes cover relations to cover relations in these posets.



Chapter 4

Gamma-nonnegativity

The binomial distribution is the first probability distribution a student
encounters. Among its many properties is the fact that it is palindromic
and unimodal. Many combinatorial distributions, including the Eulerian and
Narayana distributions, can be built out of copies of binomial distributions
that are shifted to have the same center of symmetry, and this fact has many
interesting consequences.

4.1 The idea of gamma-nonnegativity

We can observe that, for fixed n, the sequence of Eulerian numbers,
〈
n
k

〉
is

palindromic,
〈
n

k

〉
=

〈
n

n− 1− k

〉
, (4.1)

and unimodal :
〈
n

0

〉
≤
〈
n

1

〉
≤ · · · ≤

〈
n

�(n− 1)/2�

〉
≥ · · · ≥

〈
n

n− 1

〉
.

When there is no possibility for confusion, we will call a polynomial palin-
dromic or unimodal if its sequence of coefficients has the same property. So
we say the Eulerian polynomial Sn(t) is palindromic and unimodal.

The palindromicity is easy to explain combinatorially, as reversal of a
permutation swaps descents and ascents. This gives a bijection between the
set of permutations with k descents and permutations with k ascents, and
hence n− 1− k descents.

Unimodality is trickier, but both these properties follow from a property
that will be a major theme later in the book, called gamma-nonnegativity,
which we now explain.
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First, observe that the sequence of binomial coefficients
(
n
k

)
, with n fixed,

is palindromic and unimodal.
Loosely speaking, gamma-nonnegativity means a sequence of numbers can

be written as a sum of rows of Pascal’s triangle with the same center of
symmetry. For example, rows 5 and 6 of the Eulerian triangle (Table 1.3) can
be written as follows.

n = 5 :

1 26 66 26 1

1× (1 4 6 4 1)
22× (1 2 1)
16× (1)

n = 6 :

1 57 302 302 57 1

1× (1 5 10 10 5 1)
52× (1 3 3 1)

136× (1 1)

In terms of generating functions, gamma-nonnegativity means a polynomial
of degree n can be written as a sum of polynomials of the form tj(1+ t)n−2j .
In the case of the Eulerian polynomials for n = 5 and n = 6 we have

S5(t) = (1 + t)4 + 22t(1 + t)2 + 16t2,

S6(t) = (1 + t)5 + 52t(1 + t)3 + 136t2(1 + t).

The coefficients in expansions like the ones above make up what we call
the gamma vector. When these coefficients are nonnegative, we say the poly-
nomial itself is gamma-nonnegative.

4.2 Gamma-nonnegativity for Eulerian numbers

In this section we show the Eulerian polynomials are gamma-nonnegative, a
result first due to Foata and Schützenberger.

Theorem 4.1. For any n > 0, there exist nonnegative integers γn,j such that

Sn(t) =

�(n−1)/2	∑

j=0

γn,jt
j(1 + t)n−1−2j , (4.2)

i.e., the Eulerian polynomials are gamma-nonnegative.

We list the entries in the gamma vectors for the Eulerian polynomials in
Table 4.1.

There is a beautiful combinatorial proof of Theorem 4.1 given by Foata
and Strehl, based on an action we call “valley hopping” as illustrated in
Figure 4.1. Here we draw a permutation as a “mountain range,” so that
peaks and valleys form the upper and lower limits of the decreasing runs. By
convention, we have points at infinity on the far left and far right.
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Table 4.1 Entries of the gamma vector for the Eulerian polynomials, γn,j, 0 ≤ 2j <
n ≤ 10.

n\j 0 1 2 3 4
1 1
2 1
3 1 2
4 1 8
5 1 22 16
6 1 52 136
7 1 114 720 272
8 1 240 3072 3968
9 1 494 11616 34304 7936

10 1 1004 40776 230144 176896

∞

6

7

2

8

4

1

3

5

9

∞t + 1

t + 1

t + 1

t + 1

Fig. 4.1 The mountain range view of the permutation w = 862741359.

Formally, given w = w(1) · · ·w(n) ∈ Sn, we say a letter w(i) is a peak if
w(i − 1) < w(i) > w(i + 1) and it is a valley if w(i − 1) > w(i) < w(i + 1).
Otherwise we sayw(i) is free. Using the convention that w(0) = w(n+1) =∞,
we see that w cannot begin or end with a peak.

We partition Sn into equivalence classes according to the following action
on free letters. If w(i) = j is free, then Hj(w) denotes the permutation
obtained by moving j directly across the adjacent valley(s) to the nearest
mountain slope of the same height. More precisely, we have the following.

• If w(i) = j lies on a downslope, i.e., w(i − 1) > w(i) > w(i + 1), we find
the smallest k > i such that w(k) < j < w(k + 1), and

Hj(w) = w(1) · · ·w(i − 1)w(i + 1) · · ·w(k) j w(k + 1) · · ·w(n),
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• If w(i) = j lies on an upslope, i.e., w(i− 1) < w(i) < w(i+1), we find the
largest k < i such that w(k − 1) > j > w(k), and

Hj(w) = w(1) · · ·w(k − 1) j w(k) · · ·w(i − 1)w(i + 1) · · ·w(n).

Clearly, if j, l are free letters, H2
j (w) = H2

l (w) = w and Hj(Hl(w)) =
Hl(Hj(w)). Thus, for any collection of free letters J = {j1, . . . , jk}, we can
define the operation HJ(w) = Hj1 · · ·Hjk(w). Also, observe that HJ(w) has
the same set of free letters as w.

Let Hop(w) denote the hop-equivalence class of w. Notice that every peak
of w is necessarily the larger element of a descent, for any u ∈ Hop(w), while
a valley is never the larger element of a descent. If a free letter lies on an
upslope of u it is not part of a descent, while if it is on a downslope it is the
larger element of a descent of u. Moreover, this property is independent of
the positions of the other free letters. If w has r peaks, it has r + 1 valleys,
and hence n− 1− 2r free letters. Thus, letting pk(w) denote the number of
peaks of w, we have:

∑

u∈Hop(w)

tdes(u) = tpk(w)(1 + t)n−1−2 pk(w). (4.3)

We can choose a canonical representative for each hop-equivalence class
by choosing to put each free letter on an upslope. These are precisely the
permutations for which pk(w) = des(w). We denote this set of representa-
tives by:

Ŝn = {w ∈ Sn : pk(w) = des(w)}.

Thus by summing (4.3) over all w ∈ Ŝn, we get:

Sn(t) =
∑

w∈̂Sn

tpk(w)(1 + t)n−1−2 pk(w).

Moreover, we can now give a combinatorial interpretation to the numbers
in Table 4.1.

Corollary 4.1. For any n, j,

γn,j = |{w ∈ Ŝn : des(w) = j}|.

With this interpretation in hand, it is not difficult to relate the Eulerian
polynomials to the generating function for the peak statistic. That is, define
the peak polynomials Pn(t) and peak numbers pn,k as follows:

Pn(t) =
∑

w∈Sn

tpk(w) =

�(n−1)/2	∑

k=0

pn,kt
k.
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Then we have

Sn(t) =
(1 + t)n−1

2n−1
Pn

(
4t

(1 + t)2

)
. (4.4)

Some peak numbers are included in Table 4.2.

Table 4.2 The peak numbers, pn,k, 0 ≤ 2k < n ≤ 10.

n\k 0 1 2 3 4
1 1
2 2
3 4 2
4 8 16
5 16 88 16
6 32 416 272
7 64 1824 2880 272
8 128 7680 24576 7936
9 256 31616 185856 137216 7936

10 512 128512 1304832 1841152 353792

Another consequence of Corollary 4.1 is seen when we specialize t = −1
in the Eulerian polynomial:

Sn(−1) =
∑

w∈̂Sn

(−1)pk(w)(1− 1)n−1−2 pk(w)

=

{
(−1)(n−1)/2γn,(n−1)/2 if n odd,

0 if n even.

But γn,(n−1)/2 (with n odd) is the number of permutations w such that

w(1) < w(2) > w(3) < · · · > w(2i− 1) < w(2i) > w(2i+ 1) < · · · .

These are known as up-down alternating permutations and the number of
such permutations is known as the Euler number, denoted En. This definition
makes sense for both even and odd values of n, and the sequence of Euler
numbers begins:

1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, . . . . (4.5)

Taking the limit as t → −1 in Theorem 1.6, we get an expression for
the exponential generating function for the odd-indexed Euler numbers, with
alternating plus and minus signs:
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S(−1, z)− 1 = z − 2
z3

3!
+ 16

z5

5!
− · · · ,

=
∑

k≥0

(−1)kE2k+1
z2k+1

(2k + 1)!
,

=
1− e−2z

1 + e−2z
= tanh z.

The sequence 1, 2, 16, 272, 7936, . . . is also known as the sequence of tangent
numbers. Problem 4.2 investigates other properties of Euler numbers.

4.3 Gamma-nonnegativity for Narayana numbers

We will now show the Narayana polynomials Cn(t) are gamma-nonnegative.
Hence, the sequence of Narayana numbers Nn,k, for fixed n, is symmetric
and unimodal. The reason for this is quite simple: Foata and Strehl’s valley-
hopping action described in Section 4.2 preserves the pattern 231. Hence,
if w ∈ Sn(231), the hop-equivalence class Hop(w) is composed entirely of
permutations avoiding 231.

Let’s make this argument rather more precise. Suppose w /∈ Sn(231), so
that there is a triple of indices i < j < k with w(k) < w(i) < w(j). Then
without loss of generality, we may assume w(j) is a peak. (Otherwise, there
is a peak w(j′) with i < j′ < j and w(j′) > w(j).) If neither w(i) nor w(k)
are free letters, then clearly all members of Hop(w) contain 231. But even if
w(i) or w(k) are free, the relative position of the letters w(i), w(j), w(k) is
preserved, since neither w(i) nor w(k) can hop past w(j). See Figure 4.2 for
an illustration.

w(j)

w(i)
w(k)

Fig. 4.2 Valley-hopping preserves the pattern 231.

Thus we have the following.

Theorem 4.2. For any n > 0, there exist nonnegative integers γ̂n,j such that

Cn(t) =

�n/2	∑

j=0

γ̂n,jt
j(1 + t)n−1−2j , (4.6)

i.e., the Narayana polynomials are gamma-nonnegative.
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Moreover, each hop class Hop(w) still has a unique representative for which
des(w) = pk(w), and so:

γ̂n,j = |{w ∈ Sn(231) : des(w) = pk(w) = j}|.

These numbers are listed in Table 4.3.

Table 4.3 The gamma numbers γ̂n,k for the Narayana distribution, 0 ≤ 2k <
n ≤ 10.

n\k 0 1 2 3 4
1 1
2 1
3 1 1
4 1 3
5 1 6 2
6 1 10 10
7 1 15 30 5
8 1 21 70 35
9 1 28 140 140 14

10 1 36 252 420 126

Of course, there is a similar connection with the peak generating function
for all 231-avoiding permutations. Let

Pn(231; t) =
∑

w∈Sn(231)

tpk(w).

Then we have

Cn(t) =
(1 + t)n−1

2n−1
Pn

(
231;

4t

(1 + t)2

)
. (4.7)

For reference we include in Table 4.4 the peak numbers for 231-avoiding
permutations.

4.4 Palindromicity, unimodality, and the gamma basis

We will now lay out the general definition and elementary consequences of
gamma-nonnegativity.

We say a polynomial h(t) is palindromic if its coefficients are the same
when read from left to right as from right to left. To be more precise, we
say h is palindromic for n if h(t) = tnh(1/t). Such an n is the sum of the
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Table 4.4 The number of 231-avoiding permutations in Sn with k of peaks, 0 ≤
2k < n ≤ 10.

n\k 0 1 2 3 4
1 1
2 2
3 4 1
4 8 6
5 16 24 2
6 32 80 20
7 64 240 120 5
8 128 672 560 70
9 256 1792 2240 560 14

10 512 4608 8064 3360 252

highest and lowest degrees of nonzero terms in h. In the simplest case, h has
a nonzero constant term, so n is the degree of h. Here, writing

h(t) = h0 + h1t+ · · ·+ hnt
n,

we have hi = hn−i for all i. If h has no constant term, n is greater than the
degree of h, e.g., h(t) = t2 + t3 is palindromic for n = 5.1

We say a polynomial is unimodal if its coefficients weakly increase then
weakly decrease, i.e., there is some k for which

h0 ≤ h1 ≤ · · · ≤ hk ≥ hk+1 ≥ · · · ≥ hn.

If h(t) is palindromic for n, unimodality means that h0 ≤ h1 ≤ · · · ≤ h�n/2	.
As a vector space, the set of polynomials palindromic for n has dimension

�n/2�+ 1. One natural basis for this vector space is

Σn =

{
{tj + tn−j}0≤j<n/2 if n is odd,

{tj + tn−j}0≤j<n/2 ∪ {tn/2} if n is even.

While Σn might be the standard basis for polynomials palindromic for n, we
will now discuss a more interesting basis that we call the “gamma basis,”
defined as follows:

Γn = {tj(1 + t)n−2j}0≤j≤n/2.

Notice that every member of Γn is palindromic and unimodal with the same
center of symmetry at n/2. Hence the nonnegative span of Γn contains only
palindromic and unimodal polynomials.

1 In the literature the term “symmetric” is sometimes used to describe what we
mean by “palindromic.” This is okay in some circumstances, but there is a more
common notion of “symmetric polynomial”—namely a polynomial that is fixed under
permutation of its variables—so we prefer the less ambiguous term. George Andrews
used another synonym for palindromic, “reciprocal polynomial,” in [8] and [9].
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If h(t) is palindromic for n, the sequence of its coefficients in Γn is called
the gamma vector of h, and the gamma polynomial γ(h; t) is the generating
function for the gamma vector. We have

h(t) = (1 + t)nγ(h; t/(1 + t)2) =
∑

0≤j≤n/2

γjt
j(1 + t)n−2j . (4.8)

We say h(t) is gamma-nonnegative if γ(h; t) has nonnegative coefficients.
For example, if

h(t) = 1 + 7t+ 15t2 + 15t3 + 7t4 + t5,

we can write

h(t) = (1 + t)5 + 2t(1 + t)3 − t2(1 + t),

and so

γ(h; t) = 1 + 2t− t2.

As a vector in the space of palindromic polynomials with basis Σ5, h is rep-
resented by (1, 7, 15), whereas γ = (1, 2,−1). We can see that palindromicity
and nonnegativity of h(t), and even unimodality, are not enough to guarantee
gamma-nonnegativity.

The product of two gamma-nonnegative polynomials is again gamma-
nonnegative, though the center of symmetry necessarily shifts. That is, if

g(t) =
∑

0≤i≤m/2

γit
i(1 + t)m−2i and h(t) =

∑

0≤j≤n/2

γ′
jt

j(1 + t)n−2j ,

then

g(t)h(t) =
∑

0≤k≤(m+n)/2

⎛

⎝
∑

i+j=k

γiγ
′
j

⎞

⎠ tk(1 + t)m+n−2k.

Thus the set of all gamma-nonnegative polynomials of bounded degree is
closed under multiplication. Moreover, we see that the gamma polynomial
for the product g(t)h(t) is the product of the gamma polynomial for g and
the gamma polynomial for h, i.e.,

γ(gh; t) = γ(g; t)γ(h; t).

We will record these observations for future reference.

Observation 4.1 If h is a polynomial in the nonnegative span of Γn, i.e.,
h(t) ∈ R≥0 Γn, then h is palindromic and unimodal, with center of symmetry
�n/2�. Moreover, if g(t) ∈ R≥0 Γm, then g(t)h(t) ∈ R≥0 Γm+n, and γ(gh; t) =
γ(g; t)γ(h; t).
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4.5 Computing the gamma vector

There are straightforward linear transformations that map a palindromic
polynomial h to its gamma vector, implicit in Equation (4.8).

Suppose h(t) is symmetric for n so that

h(t) = h0 + h1t+ · · ·+ h�n/2	t
�n/2	 + · · · ,

with hi = hn−i. By abuse of notation, let h = (h0, h1, . . . , h�n/2	) denote the
coefficients of this polynomial in the basis Σn, and let γ = (γ0, γ1, . . . , γ�n/2	)
be the corresponding gamma vector. We have the following change of basis
matrices:

G =

[
(−1)i−j

((
n− i− j

i− j

)
+

(
n− i− j − 1

i− j − 1

))]

0≤i,j≤n/2

,

and

S =

[(
n− 2j

i− j

)]

0≤i,j≤n/2

,

so that
Gh = γ and Sγ = h.

While the entries in S follow immediately from Equation 4.8, the entries
of G are harder to guess at. However, it is straightforward to check that S
and G are inverses of one another.

For example if n = 5,

G =

⎛

⎝
1 0 0
−5 1 0
5 −3 1

⎞

⎠ and S =

⎛

⎝
1 0 0
5 1 0
10 3 1

⎞

⎠ ,

so we see that in our example of h(t) = (1 + t5) + 7(t+ t4) + 15(t2 + t3),

Gh =

⎛

⎝
1 0 0
−5 1 0
5 −3 1

⎞

⎠

⎛

⎝
1
7
15

⎞

⎠ =

⎛

⎝
1
2
−1

⎞

⎠ = γ,

and

Sγ =

⎛

⎝
1 0 0
5 1 0
10 3 1

⎞

⎠

⎛

⎝
1
2
−1

⎞

⎠ =

⎛

⎝
1
7
15

⎞

⎠ = h.

As a word of caution, we note that the palindromicity degree n is needed
to recover h from γ. For example, the polynomial h(t) = 1 + 4t + 4t2 + t3

has γ(h; t) = 1+ t, but γ(t) = 1+ t is the γ-polynomial for a whole family of
symmetric polynomials, e.g.,
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(1 + t)2γ(t/(1 + t)2) = 1 + 3t+ t2,

(1 + t)3γ(t/(1 + t)2) = 1 + 4t+ 4t2 + t3,

(1 + t)4γ(t/(1 + t)2) = 1 + 5t+ 8t2 + 5t3 + t4,

...

A very different way to express γ(h; t) in terms of h(t) is with the following
identity of generating functions.

Proposition 4.1 (Zeilberger’s lemma). Suppose h(t) is palindromic for
n, with gamma polynomial γ(t). Then we have the following identity of power
series:

γ(z) =
h(zC(z)2)

C(z)n
, (4.9)

where C(z) = 1−
√
1−4z
2z is the Catalan number generating function.

To see how the identity arises, we begin with h(t) = (1 + t)nγ(t/(1 + t)2).
Now setting z = t/(1 + t)2, we find

zt2 + (2z − 1)t+ z = 0.

Solving for t, we find

t =
1− 2z −

√
(2z − 1)2 − 4z2

2z
,

= −1 + 1−
√
1− 4z

2z
,

= −1 + C(z).

The Catalan generating function also satisfies C(z)− 1 = zC(z)2, and Equa-
tion (4.9) now follows. See Problem 4.5 for one use of Equation (4.9).

4.6 Real roots and log-concavity

We have emphasized the importance of the palindromicity and unimodality
implied by gamma-nonnegativity. There are at least two other related ideas
that have been studied: real-rootedness and log-concavity. While they are
somewhat ancillary to our main concern, we will briefly survey some of their
properties here.

Many interesting polynomial generating functions turn out to be real-
rooted, that is, these polynomials factor completely over the real numbers.
The Eulerian polynomials and the Narayana polynomials, for example, have
only real roots. (See Problems 4.6 and 4.7.) If a polynomial h(t) is palin-
dromic, then h is real-rooted if and only if γ(h; t) is real-rooted. Indeed, if a
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is a real root of h with a /∈ {0,−1} (the cases of a ∈ {0,−1} are easily
considered) then 1/a is also a root of h by symmetry, and

γ(h; a/(1 + a)2) =
1

(1 + a)n
h(a) =

1

(1 + 1/a)n
h(1/a) = 0,

thus implying the real number a/(1 + a)2 is a (nonpositive) root of γ(h; t).
On the other hand, if b < 0 is a real root of γ(h; t), then both

a = −1 + 1 +
√
1− 4b

2b
and

1

a
= −1 + 1−

√
1− 4b

2b

are roots of h(t). That no other roots exist follows by considering the degrees
of h(t) and γ(h; t).

It turns out that whenever a polynomial h(t) has nonnegative and palin-
dromic coefficients, having all real roots implies h(t) is gamma-nonnegative,
but not conversely. (Consider h(t) = 1 + 4t + 7t2 + 4t3 + t4. It has no real
roots, yet it has nonnegative γ-polynomial γ(h; t) = 1 + t2.) In particular,
nonnegative, palindromic, and real-rooted polynomials are unimodal.

To see why this is so, suppose h(t) has nonnegative and symmetric coef-
ficients, and all its roots are real. Then as mentioned earlier, its roots apart
from 0 and −1 come in reciprocal pairs, a, 1/a. Consider

(t− a)(t− 1/a) = (1 + t)2 − (2 + a+ 1/a)t.

If h(t) has nonnegative coefficients, then all its roots must be nonpositive. In
particular, a < 0, and dividing the positive quantity (a+ 1)2 by a shows

0 >
(a+ 1)2

a
= 2 + a+ 1/a.

Thus (t− a)(t− 1/a) is in the positive span of Γ2. Since h(t) can be written
as a product of powers of t (in Γ2), powers of (1+ t) (in Γ1), and terms of the
form (t − a)(t− 1/a), we have that h(t) is a product of gamma-nonnegative
polynomials. Since we noted in Observation 4.1 that such polynomials are
closed under multiplication, h(t) is gamma-nonnegative as well.

Let us collect these comments.

Observation 4.2 If h has palindromic coefficients, then h(t) is real-rooted
if and only if γ(h; t) has only real roots. Moreover, if the coefficients of h(t)
are nonnegative, then all the roots of h are nonpositive and γ(h; t) has non-
negative coefficients as well. Thus if h(t) is nonnegative, real-rooted, and
palindromic, then it is unimodal.

Another property related to real-rootedness and unimodality is log-
concavity. A sequence a1, . . . , an is said to be log-concave if

a2i ≥ ai−1ai+1 for all i = 2, . . . , n− 1.
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This immediately implies that the sequence is unimodal since if there is some
j such that aj−1 > aj < aj+1, then clearly a2j < aj−1aj+1. We will say a
polynomial is log-concave if its sequence of coefficients is log-concave.

Log-concavity is more robust than gamma-nonnegativity in the sense that
it applies perfectly well to sequences that are not palindromic, whereas the
gamma vector requires palindromicity to exist. Real-rootedness also implies
log-concavity (Problem 4.8), and hence unimodality, but not conversely. The
polynomial 1 + 4t+ 7t2 + 4t3 + t4 from before is log-concave, yet has no real
roots.

Log-concave sequences are closed under multiplication, i.e., if a1, a2, . . .
and b1, b2, . . . are log-concave, then so is a1b1, a2b2, . . .. However, they are
not closed under addition, e.g., (0, 0, 11, 0, 0) and (1, 4, 6, 4, 1) are both log-
concave (and gamma-nonnegative), yet their sum (1, 4, 17, 4, 1) is not log-
concave.

We collect these comments in another observation, to compare with Ob-
servations 4.1 and 4.2.

Observation 4.3 Suppose h(t) has nonnegative coefficients. If h(t) is real-
rooted, then h is log-concave. In particular, h is unimodal.

Notice, then, that if the goal is to prove unimodality of a polynomial h,
real-rootedness is more than sufficient. The relationships between these three
concepts: gamma-nonnegativity, log-concavity, and real-rootedness are shown
in Figure 4.3. The reader is asked to find a polynomial in each distinct region
of that Venn diagram in Problem 4.10.

real-rooted
gamma

-nonnegative
log-concave

Fig. 4.3 The relationship between the notions of gamma-nonnegativity, log-
concavity, and real-rootedness for palindromic polynomials with nonnegative
coefficients.
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4.7 Symmetric boolean decomposition

If f(P ; t) is the rank generating function of a poset P , the fact that f(P ; t)
is gamma-nonnegative might only be the enumerative shadow of a deeper
structural property of the poset itself, which we call symmetric boolean de-
composition. Loosely, it means that a poset can be partitioned into a number
of disjoint boolean algebras with the same center of symmetry around the
middle rank of P .

This is a stronger version of a property known as a symmetric chain de-
composition of a poset, which itself implies unimodality of the rank function
f(P ; t). The fact that a symmetric boolean decomposition implies a sym-
metric chain decomposition follows once we can show that every boolean
algebra has a symmetric chain decomposition. This is left to Problem 4.14.
See also Problem 4.13 for more properties and consequences of symmetric
chain decompositions.

Rather than giving a formal definition of symmetric boolean decomposi-
tion, let us see some examples. In Figure 4.4, posets (a) and (b) have sym-
metric boolean decompositions, while (c) and (d) do not.

(a) (b)

(c) (d)

Fig. 4.4 Posets with and without symmetric boolean decompositions.
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Formally, we say a poset P of rank n admits a symmetric boolean decom-
position if there is a collection {P1, . . . , Pk} of subposets of (P,≤) with the
following properties:

• Pi ∩ Pj = ∅ if i 	= j,
• P1 ∪ · · · ∪ Pk = P ,
• for each i = 1, . . . , k there is a number j, 0 ≤ j ≤ n/2, and a bijection

ρi : 2[n−2j] → Pi that takes cover relations to cover relations and sends
elements of rank r in 2[n−2j] to elements of rank j + r in P .

That is, each induced poset (Pi,≤) has 2n−2j elements (for some j) and
contains a copy of the boolean algebra 2[n−2j], plus possibly more relations.

For example, we can see in Figure 4.4 that poset (a) contains a copy
of 2{1,2,3} as a proper subposet, whereas in (b) the part of the partition
containing it has no unnecessary cover relations. Note also the delicacy of the
decomposition: the poset in (c) differs from (b) only in one cover relation.

We can also observe that just as gamma-nonnegative polynomials are
closed under multiplication, so too are posets with symmetric boolean de-
compositions. First, we define the product of two posets (P,≤P ) and (Q,≤Q)
to be the poset on the cartesian product P×Q with partial order (p, q) ≤P×Q

(p′, q′) if and only if p ≤P p′ and q ≤Q q′. Then it is a straightforward matter
to verify the following observation. This is left to the reader in Problem 4.16.

Observation 4.4 Suppose (P,≤P ) and (Q,≤Q) are posets with symmetric
boolean decompositions. Then (P × Q,≤P×Q) has a symmetric boolean de-
composition.

This result is illustrated in Figure 4.5.
Two interesting examples of posets with symmetric boolean decomposi-

tions are the shard intersection order and the lattice of noncrossing parti-
tions.

Theorem 4.3. The shard intersection order and the lattice of noncrossing
partitions admit symmetric boolean decompositions.

This result follows from the valley-hopping argument given in Section 4.2.
Indeed, the hop-equivalence classes are boolean intervals in the shard inter-
section order with the proper rank properties, i.e., their descents are dis-
tributed like tj(1 + t)n−2j . Since hop-equivalence preserves the pattern 231,
this gives a symmetric boolean decomposition for the shard intersection order
on 231-avoiders, which we showed is isomorphic to the lattice of noncrossing
partitions. How this works in S4 is shown in Figure 4.6.

Notes

Gamma-nonnegativity of the Eulerian polynomials was observed by Do-
minique Foata and Marcel-Paul Schützenberger in their 1970 book [70,
Théorème 5.6]. Foata and Volker Strehl [72] gave the result a combinatorial
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P = Q =

P × Q = =

Fig. 4.5 The product of two posets with a symmetric boolean decomposition has a
symmetric boolean decomposition.

proof very similar to the “valley-hopping” argument given here, which was
essentially rediscovered by Louis Shapiro, Wen Jin Woan, and Seyoum Getu
in 1983 [135]. In a 2008 paper, [31], Petter Brändén studies valley-hopping
(what he calls the “modified Foata-Strehl” action) on a large family of poly-
nomials that generalize the Eulerian polynomials and include the Narayana
polynomials. That the Narayana polynomials are gamma-nonnegative is also
implicit in the work of Rodica Simion and Daniel Ullman from 1991 [140].
See also Simion’s 1994 paper [138].

We also mention that George Andrews anticipated some of the ideas in
this section, proving in a 1975 paper [8] that a product of palindromic and
unimodal polynomials is again palindromic and unimodal. Further, he dis-
cussed the gamma polynomial and palindromic polynomials (what he called
“reciprocal polynomials”) in the larger context of quadratic transformations
in a 1985 paper [9].

More recent interest in gamma-nonnegativity was sparked by a 2005 pa-
per of Światos�law Gal [79]. This work showed certain questions in topology
could be resolved by demonstrating gamma-nonnegativity of combinatorial
invariants. Prior to Gal’s work, researchers had attacked such questions via
real-rootedness, but Gal showed that real-rootedness could fail yet gamma-
nonnegativity still holds. (This subject is discussed further in Chapter 10.)
Similar real-rootedness conjectures known as the Neggers and Stanley conjec-
tures were disproved around the same time by Petter Brändén [28] (Stanley)
and John Stembridge [158] (Neggers). Both Gal [79] and Brändén [29] showed
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Fig. 4.6 The symmetric boolean decomposition of the shard intersection order and
noncrossing partition lattice (in bold) induced by hop-equivalence classes. The Hasse
diagram is drawn left to right, and edges not needed for the decomposition are
omitted.
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gamma-nonnegativity could be a viable replacement for real-rootedness in
many of these contexts. See also the work of Victor Reiner and Volkmar
Welker [128].

Some nice surveys about log-concavity, unimodality, real-rootedness, and
gamma-nonnegativity include a 1989 paper by Richard Stanley [150], a 1994
paper by Francesco Brenti [33], and a 2014 survey by Brändén [32]. Only
Brändén’s discusses gamma-nonnegativity.

The idea of symmetric boolean decomposition first appears in Simion and
Ullman’s work on the lattice of noncrossing partitions, though they do not
state this explicitly [140]. However, a remark about such a decomposition
was later made by Simion [138, Proposition 3.4]. In 1999, while studying
a generalization of the lattice of noncrossing partitions, Patricia Hersh [90]
makes the definition of symmetric boolean decomposition explicit. More rec-
ently this book’s author demonstrated the symmetric boolean decomposition
of the shard intersection order [118].

Problems

4.1. Verify Equations (4.4) and (4.7).

4.2 (Alternating permutations). A permutation w is called alternating if

w(1) < w(2) > w(3) < · · · or w(1) > w(2) < w(3) > · · · .

In the first case, we say w is up-down alternating, while in the second case
we say w is down-up alternating.

1. Let En denote the set of up-down alternating permutations of [n], and let
E ′n denote the set of down-up alternating permutations. Show |En| = |E ′n|.

2. Let En denote the cardinality of either En or E ′n, with E0 := 1. The first
few values of En are

1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, . . . .

Show that for n ≥ 1,

2En+1 =
n∑

k=0

(
n

k

)
EkEn−k.

3. Show that ∑

n≥0

En
zn

n!
= sec z + tan z.

Since sec z is an even function and tan z is an odd function, conclude that
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∑

n≥0

E2n
z2n

(2n)!
= sec z,

and
∑

n≥0

E2n+1
z2n+1

(2n+ 1)!
= tan z.

4.3. A permutation w ∈ Sn is called min-max if w−1(1) < w−1(n) and max-
min if w−1(n) < w−1(1). Let E↗

n denote the number of up-down alternating
permutations that are min-max permutations, and let E↖

n denote the number
of up-down alternating permutations that are max-min permutations.

Show that

E↗
n − E↖

n =

{
0 if n is odd,

En−2 if n is even.

4.4. The stack-sorting operator S is a recursively defined function on per-
mutations. If w is an empty permutation S(w) := w. If w is not empty and
maxw(i) = m, then write w = u·m·v for some (possibly empty) permutations
u and v. Then we define S(w) = S(u)S(v)m.

1. Compute S(389124576) and S(132549678).
2. Prove that S(w) = 12 · · ·n if and only if w is 231-avoiding. We call such a

permutation stack-sortable.
3. Show that S(w) = S(w′) if Hop(w) = Hop(w′), i.e., if w and w′ are in the

same valley-hopping equivalence class.
4. A permutation is called r-stack sortable if Sr(w) = 12 · · ·n. Show that

r-stack sortability is preserved by valley hopping, and conclude that
the Eulerian distribution on r-stack sortable permutations is gamma-
nonnegative, i.e.,

∑

w∈Sr
n

tdes(w) =
∑

j≥0

γr;n,jt
j(1 + t)n−1−2j ,

where Sr
n denotes the set of r-stack sortable elements in Sn, and γr;n,j =

|{w ∈ Sr
n : pk(w) = des(w) = j}|.

4.5. Let

hn(t) = (1 + t)(1 + t+ t2) · · · (1 + t+ · · ·+ tn−1) =

n∏

i=1

1− ti

1− t
,

and let γ(t) be the corresponding gamma polynomial. Note that hn(1) = n!.
What is γ(−1)?

4.6. Prove the Eulerian polynomials Sn(t) are real rooted.
Hint: Let An(t) = tSn(t) and show that An(t) has n real roots. We can

modify Equation (1.9) to write
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An+1(t) = t ((n+ 1)An(t) + (1− t)A′
n(t)) . (4.10)

If we suppose An(t) has n real roots, then we can use this recurrence to prove
Sn+1(t) = An+1(t)/t has n real roots as follows. Rolle’s theorem shows that
the roots of a polynomial f(t) and its derivative f ′(t) are “interlacing.” Show
that (n + 1)An(t) and (1 − t)A′

n(t) have interlacing roots, and use this to
show their sum has n real roots.

Moreover, show that the sequence of Eulerian polynomials forms a Sturm
sequence, i.e., the polynomials Sn(t) and Sn+1(t) have interlacing roots.

4.7. Let Nn(t) = tCn(t) denote the Narayana polynomial multiplied by a
power of t.

1. Prove the polynomials Nn(t) satisfy the following recurrence:

(n+ 1)Nn(t) = (2n− 1)(1 + t)Nn−1(t)− (n− 2)(1− t)2Nn−2(t). (4.11)

(A bijective proof would be best, but this can also be verified with gener-
ating functions using Equation (2.6).)

2. Use the recurrence in (4.11) to prove that the Narayana polynomials are
real-rooted and form a Sturm sequence.

4.8 (Real roots and log-concavity). The goal of this problem is to show
that a polynomial with positive coefficients and only real roots has log-
concave, and hence unimodal, coefficients.

1. Show that the sequence of binomial coefficients with n fixed,

(
n

0

)
,

(
n

1

)
, . . . ,

(
n

n

)
,

is log-concave, i.e., the polynomial (1 + t)n is log-concave.
2. Show that the sequence of binomial coefficients with k fixed,

(
k

k

)
,

(
k + 1

k

)
, . . . ,

is log-concave.
3. Prove that if a1, a2, . . . and b1, b2, . . . are log-concave, then the sequence

c1, c2, . . . defined by ck = akbk is log-concave.
4. Show that if a0, a1, . . . , an is a finite sequence of nonnegative numbers

and the sequence b0, b1, . . . given by bk = ak/
(
n
k

)
is log-concave, then

a0, a1, . . . , an is itself log-concave.
5. Let a0, a1, . . . , an be a sequence of nonnegative numbers such that f(t) =

a0 + a1t+ · · ·+ ant
n is real-rooted.



4.7 Symmetric boolean decomposition 91

a. Write ak =
(
n
k

)
bk. Show that

n−1∑

k=0

(
n− 1

k

)
bk+1t

k

is real-rooted. (Hint: it is a multiple of the derivative of f .)
b. Show that the polynomial

n∑

k=0

(
n

k

)
bn−kt

k

is real-rooted.
c. Use the operations indicated in parts 5a) and 5b) to show that for any

j = 1, . . . , n − 1, the polynomial bj−1 + 2bjt + bj+1t
2 is real-rooted.

Conclude that the sequence b0, b1, b2, . . . is log-concave. By part 4) this
proves that a real-rooted polynomial with nonnegative coefficients is
log-concave, and hence unimodal.

4.9. Prove that if f(t) and g(t) are nonnegative and log-concave, then their
product, f(t)g(t), is log-concave. Hint: first prove that if a0, a1, a2, . . . is a
nonnegative and log-concave sequence, then aiaj ≤ ai+1aj−1 for any i < j−1.

4.10. If a polynomial is real-rooted and palindromic then it is both gamma-
nonnegative and log-concave, as illustrated in Figure 4.3. Find examples of
polynomials with positive, palindromic integer coefficients that fit in the other
regions of that Venn diagram.

1. Find a polynomial that is gamma-nonnegative but not log-concave (and
hence not real-rooted).

2. Find a polynomial that is log-concave and palindromic but not gamma-
nonnegative (and hence not real-rooted).

3. Find a polynomial that is log-concave and gamma-nonnegative but not
real-rooted.

4.11 (Gamma-nonnegativity for involutions). An involution is a per-
mutation that is its own inverse: w = w−1. Show that the distribution of de-
scents for involutions, i.e., the Eulerian distribution for involutions, is gamma-
nonnegative. That is, show there exist nonnegative integers γj such that

∑

w=w−1∈Sn

tdes(w) =
∑

j≥0

γjt
j(1 + t)n−1−2j .

4.12 (Two-dimensional gamma-nonnegativity). Let

Sn(s, t) =
∑

w∈Sn

sdes(w
−1)tdes(w),
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i.e., the joint distribution of descents and inverse descents. Show that there
exist nonnegative integers γi,j such that

Sn(s, t) =
∑

i,j≥0

γi,j(st)
i(s+ t)j(1 + st)n−1−j−2i.

4.13 (Symmetric chain decomposition). A symmetric chain decompo-
sition of a finite ranked poset P with maximal rank n is a partition into
saturated chains

p0 <P p1 <P · · · <P pk,

such that ρ(p0)+ρ(pk) = n for each chain. (Recall a “saturated” chain is one
for which ρ(pi) + 1 = ρ(pi+1) for all i.)

1. Show that if P has a symmetric chain decomposition, then its rank func-
tion,

f(P ; t) =
∑

p∈P

tρ(p) =
∑

k≥0

fkt
k,

is symmetric and unimodal.
2. Let A ⊂ P be an antichain, i.e., a set of pairwise incomparable elements

of P . Show that |A| ≤ f�n/2	.
3. Show that the product of two chains has a symmetric chain decomposition.

That is, show P has a symmetric chain decomposition, where P = [k]× [l]
is the set of pairs (i, j) with 1 ≤ i ≤ k and 1 ≤ j ≤ l, ordered by
(i, j) ≤ (i′, j′) if and only if i ≤ i′ and j ≤ j′.

4. Show that if P and Q are posets with symmetric chain decompositions,
then their cartesian product P ×Q (with partial order (p, q) ≤P×Q (p′, q′)
if and only if p ≤P p′ and q ≤Q q′) has a symmetric chain decomposition.

4.14 (Sperner’s Theorem). Show that the boolean algebra 2[n], i.e., the set
of subsets of a finite set ordered by inclusion, has a symmetric chain decompo-
sition. (This implies that any poset with a symmetric boolean decomposition
inherits a symmetric chain decomposition.)

Conclude Sperner’s Theorem: any collection A of subsets of [n] such that
no subset contains another satisfies |A| ≤

(
n

�n/2	
)
.

4.15 (Lattice of divisors). The lattice of positive divisors of an integer
n, Λ(n), is the set of all integers d that divide n, ordered by divisibility. If
d = pm1

1 pm2
2 · · · pmk

k is the prime factorization of d, we define the degree of
d to be deg(d) = m1 + m2 + · · · + mk. The covers of Λ(n) are given by
multiplication by a single prime, d ≺ pid for some pi. Thus Λ(n) is ranked
by degree. Let fk(n) denote the number of divisors of n of degree k.

Show that the lattice of positive divisors of an integer n has a symmetric
chain decomposition, and conclude that any collection A of mutually indivis-
ible divisors of n (i.e., if a, b ∈ A, then neither a|b nor b|a) has cardinality at
most f�deg(n)/2	(n).
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4.16. Verify Observation 4.4, i.e., show that if posets P and Q have a sym-
metric boolean decomposition, then so does their cartesian product, P ×Q.

4.17 (Simion and Ullmann’s symmetric boolean decomposition). In
[140], Rodica Simion and Daniel Ullman gave a symmetric boolean decompo-
sition of NC(n) that is different from the one that follows from valley hopping.
Simion and Ullman provide a certain encoding of noncrossing partitions as
words on the alphabet {b, e, l, r}. Given a noncrossing partition π ∈ NC(n),
the encoding assigns a word w(π) = w = w1w2 · · ·wn−1 of length n − 1 as
follows:

wi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b if i and i + 1 are in different blocks

and i is not the largest element in its block,

e if i and i + 1 are in different blocks

and i+ 1 is not the smallest element in its block,

l if i and i + 1 are in different blocks,

i is the largest element in its block,

and i+ 1 is the smallest element in its block,

r if i and i + 1 are in the same block.

We call such a word the SU-word for π.
For example, if π = {{1, 2, 6}, {3}, {4, 5}}, we have its SU-word is w(π) =

rblre. LetB(w), E(w), L(w), R(w) denote the sets of positions inw containing
the letters b, e, l, and r, respectively. For example w = rblre has B(w) = {2},
E(w) = {5}, L(w) = {3}, and R(w) = {1, 4}.

1. Show n = |B(w)| + |E(w)| + |L(w)|+ |R(w)| + 1.
2. Show π has rank equal to |B(w)| + |R(w)|.
3. Show that |B(w)| = |E(w)| and that these sets give a valid matching on

[n] by having an open parenthesis at each b ∈ B(w) (beginning) and a
closed parenthesis at e+ 1 for each e in E(w) (ending).

4. Let π and π′ be noncrossing partitions with SU-words w and w′. Show
that if B(w) = B(w′), E(w) = E(w′), and R(w) ⊆ R(w′), then π ≤NC π′.

5. Use 5) to give a symmetric boolean decomposition of NC(n).
6. Show that this decomposition is different from the one inherited from the

decomposition of the shard intersection order restricted to 231-avoiding
permutations.



Chapter 5

Weak order, hyperplane arrangements,
and the Tamari lattice

One of the most elegant ways in which the Eulerian numbers and
the Narayana numbers arise is in the counting of faces of polytopes. These
polytopes are related to certain poset structures on, respectively, the set of
all permutations of [n] and on the set of 231-avoiding permutations of [n] (or
any set of Catalan objects). These posets are known as the weak order and
the Tamari lattice, respectively. Our study of the weak order leads naturally
to a side trip into the realm of hyperplane arrangements. This geometric
perspective will be useful to have in later parts of the book.

5.1 Inversions

Before we define the weak order, we should introduce a commonly known
permutation statistic called inversion number, inv(w). An inversion is a pair
i < j such that w(i) > w(j). The set of all inversions is denoted by

Inv(w) = {1 ≤ i < j ≤ n : w(i) > w(j)},

and inv(w) = | Inv(w)|. For example, with w = 5624713, we have

Inv(w) =

{
(1, 3), (1, 4), (1, 6), (1, 7), (2, 3), (2, 4), (2, 6),

(2, 7), (3, 6), (4, 6), (4, 7), (5, 6), (5, 7)

}
,

and so inv(w) = 13. Notice that the set of inversions uniquely determines w.
(See Problem 5.1.) Also notice that descents are simply adjacent inversions,
(i, i+ 1), and so des(w) ≤ inv(w).

It is also useful to observe that w and its inverse permutation must have
the same number of inversions: if i < j and w(i) > w(j), then w(j) < w(i)
and w−1(w(j)) = j > i = w−1(w(i)). That is, (w(j), w(i)) ∈ Inv(w−1). For
example, with w = 5624713, we get w−1 = 6374125 and
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Lehrbücher, DOI 10.1007/978-1-4939-3091-3 5

95



96 5 Weak order, hyperplane arrangements, and the Tamari lattice

Inv(w−1) =

{
(2, 5), (4, 5), (1, 5), (3, 5), (2, 6), (4, 6), (1, 6),

(3, 6), (1, 2), (1, 4), (3, 4), (1, 7), (3, 7)

}
.

In particular, inv(w) = inv(w−1).
The permutation 12 · · ·n is the only one that has no inversions, while

n · · · 21 has the most, with
(
n
2

)
of them. Here, every pair of indices is an

inversion. In Table 5.1 we see the permutations in S4 grouped according to
the number of inversions.

Table 5.1 The permutations in S4 grouped according to number of inversions.

inv(w) = 0 1 2 3 4 5 6

1234 1243 1342 2341 3412 3421 4321
1324 1423 2413 2431 4231
2134 2314 4123 3241 4312

3124 1432 4132
2143 3142 4213

3214

Let In,k denote the number of permutations in Sn with k inversions. We
call these numbers Mahonian numbers after Percy MacMahon, who wrote
a very influential book on enumerative combinatorics in the early twentieth
century [106]. More about MacMahon’s contribution to the study of this
distribution is discussed in Chapter 6. The triangle of Mahonian numbers is
shown in Table 5.2.

Table 5.2 The Mahonian numbers In,k, 1 ≤ n ≤ 6, 0 ≤ k ≤
(
n
2

)
.

n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1
2 1 1
3 1 2 2 1
4 1 3 5 6 5 3 1
5 1 4 9 15 20 22 20 15 9 4 1
6 1 5 14 29 49 71 90 101 101 90 71 49 29 14 5 1

The generating function for permutations according to inversion number is
rather straightforward to understand. Let In(q) denote the generating func-
tion for the Mahonian numbers In,k, i.e.,

In(q) =
∑

w∈Sn

qinv(w) =
∑

k≥0

In,kq
k.
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For any n ≥ 1, let [n]q = 1+ q+ q2 + · · ·+ qn−1 = 1−qn

1−q . Then we can see
that

In(q) = (1 + q + q2 + · · ·+ qn−1)In−1(q) = [n] · In−1(q).

Indeed, suppose v ∈ Sn−1 has k inversions. We can form n distinct permuta-
tions in Sn by adding n to the right or left of v, or by inserting n in a gap
between the letters of v. Such permutations have a predictable number of
inversions:

• v(1) · · · v(n− 1)n has k inversions,
• v(1) · · · v(n− 2)n v(n− 1) has k + 1 inversions,
• v(1) · · · v(n− 3)n v(n− 2)v(n− 1) has k + 2 inversions,
...

• n v(1) · · · v(n− 1) has k + n− 1 inversions.

Since I1(q) = 1, the recurrence gives the following simple formula.

Theorem 5.1 (Inversion generating function). For any n ≥ 1,

In(q) = [n]q! =

∏n
i=1(1− qi)

(1 − q)n
.

The polynomials In(q) are easily seen to be palindromic and unimodal. In
fact, they are log-concave. (See Problem 5.4.) However, they are not gamma-
nonnegative, and In(q) has complex roots for n ≥ 3, (In(ζ) = 0 for any mth
roots of unity with ζ 	= 1, m ≤ n).

The number of inversions in a permutation also counts the minimal number
of adjacent transpositions needed to sort a permutation w into the identity
permutation 12 · · ·n. That is, let si denote the ith simple transposition, the
permutation that swaps i and i+1 and fixes all other elements of {1, 2, . . . , n}.
Then

w ◦ si = w(1) · · ·w(i − 1)w(i + 1)w(i)w(i + 2) · · ·w(n),

and we have the following observation that can be proved, e.g., by induction.
See Problem 5.5.

Observation 5.1 (Sorting with simple transpositions) Inversion num-
ber equals the minimal number of simple transpositions necessary to sort a
permutation. That is, if w ∈ Sn,

inv(w) = min{k : w ◦ si1 ◦ · · · ◦ sik = 12 · · ·n}.

For example if w = 314526, we have inv(w) = 4, while the following
sequence of adjacent swaps (done greedily) will sort the permutation:

314526
s1−→ 134526

s4−→ 134256
s3−→ 132456

s2−→ 123456.

We have highlighted the numbers being swapped in boldface.
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5.2 The weak order

Now we present a partial order for Sn called the weak order, and denoted by
Wk(Sn). We define this partial ordering as follows. For any permutations u
and v in Sn,

u ≤Wk v if and only if Inv(u) ⊆ Inv(v).

Notice that if i is to the right of (i + 1) in w, i.e.,

w = w(1) · · · (i + 1) · · · i · · ·w(n),

then
si ◦ w = w(1) · · · i · · · (i+ 1) · · ·w(n).

Since i and i+1 are consecutive and no other letters have moved, we see that
every inversion of si ◦w is an inversion in w. Further, the only inversion of w
that is not an inversion of si ◦w is the pair corresponding to the positions of
i and i + 1, i.e., the pair (w−1(i + 1), w−1(i)). For example, if w = 1532467
we have Inv(w) = {(2, 3), (2, 4), (2, 5), (3, 4)}. If we swap the 4 and the 5, we
find s4 ◦ w = 1432567 and Inv(s4 ◦ w) = {(2, 3), (2, 4), (3, 4)}.

In general we can say v <Wk w is a cover relation in Wk(Sn) if:

• w = si ◦ v for some i = 1, 2, . . . , n− 1, and
• inv(w) = 1 + inv(v).

As cover relations are given by left multiplication, this will be what we
call the “left” weak order. An equally valid approach would be to define the
weak order by inclusion of inversion sets for the inverse permutations, i.e., we
could declare u below v if Inv(u−1) ⊆ Inv(v−1). In this case cover relations
are given by right multiplication by simple transpositions: w = v ◦ si. (See
Problem 5.2.) When we need to distinguish between the two, we will write
Wkl(Sn) and Wkr(Sn), respectively.

We will see that the left weak order is more natural from a geometric
point of view, while the right weak order is often convenient for thinking
about sorting. For example, Observation 5.1 essentially describes a path,
in the Hasse diagram for right weak order, from a permutation w to the
identity permutation. (See Problem 5.5.) The posets Wkl(Sn) and Wkr(Sn)
are isomorphic via mapping permutations to their inverses, so when the choice
is unimportant we will write Wk(Sn) and refer to simply “the” weak order.

Some immediate consequences of the definition are that 12 · · ·n is the
unique minimum, n · · · 21 is the unique maximum, and that Wk(Sn) is ranked
by inversion number. We see both versions of Wk(S3) in Figure 5.1 and the
right version of Wk(S4) in Figure 5.2.
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312

s1

321
s2

231

s1

132

s2

123

s1

213

s2

231

s1

321

s2

312

s1

132
s2

123

s1

213

s2

Wkl(S3) Wkr(S3)

Fig. 5.1 The left and right weak orders on S3.

1234

2134 12431324

21432314

3124 1342 1423

1432

2413

3214

2341

2431

3142

4213

4123

4132

3241

4231

3412

43123421

4321

Fig. 5.2 The (right) weak order on S4. The colored edges indicate which simple
transposition is used for the cover relation.
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Proposition 5.1. The rank generating function for the weak order is the
Mahonian polynomial In(q):

f(Wk(Sn); q) =
∑

w∈Sn

qinv(w) = [n]q!.

5.3 The braid arrangement

The way we have drawn the Hasse diagrams for Wk(S3) and Wk(S4) suggest
that there is a geometric structure related to the weak order, and indeed this
is the case, as we now describe.

One way to characterize the Hasse diagram for the weak order is as
the 1-skeleton of a polytope called the permutahedron. This is the poly-
tope obtained by taking the convex hull of all points (xw(1), . . . xw(n)) where
x = (x1, . . . , xn) is some generic base point in R

n. We will not delve fur-
ther into the details of the polytopal construction, but rather describe the
hyperplane arrangement dual to the polytope. This arrangement is known as
the braid arrangement and it will be an important touchstone for us in later
chapters.

Let
H(n) = {Hi,j : 1 ≤ i < j ≤ n},

where
Hi,j = {x ∈ R

n : xi = xj}.

We will see that H(n) can be used to partition R
n into subsets, corresponding

to various equalities and inequalities among the coordinates, that we call the
faces of the arrangement. In fact, since the line � = R ·(1, 1, . . . , 1) is contained
in each hyperplane of H(n), we can view H(n) as partitioning the (n − 1)-
dimensional vector space

V = R
n /�.

To be concrete, we will identify the quotient space R
n /� with the linear

subspace
V ∗ = {x ∈ R

n : x1 + x2 + · · ·+ xn = 0}.

(Properly speaking these are dual spaces, but as they are both isomorphic
to R

n−1 we will not worry about this distinction.) The weak order arises
from the braid arrangement by identifying the maximal open cones in the
complement of H(n) with elements of Sn, and orienting the arrangement
according to some transverse direction. See Figure 5.3.

Our goal for the moment is not to give another characterization of the weak
order, but to describe a partial order on the set of all faces of H(n) (which
corresponds to the reverse containment order on faces of the permutahedron).
This will give another context in which the Eulerian numbers arise. First, let



5.3 The braid arrangement 101

•(a, b, c)

•
(b, a, c)

•(c, a, b)

•(c, b, a)

•
(b, c, a)

•(a, c, b)
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x
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=
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2

x
1

=
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2

<
x
3

H1,2

x1 = x2 = x3

x1 < x2 < x3

x1 < x3 < x2

x2 < x1 < x3

x3 < x1 < x2

x2 < x3 < x1

x3 < x2 < x1

Fig. 5.3 The braid arrangement H(3), drawn in the plane given by x1+x2+x3 = 0.

us be clear about what constitutes a “face” of H(n). For each hyperplane
Hi,j ∈ H(n), we will define the positive halfspace to be the set of all points
for which xj − xi is positive, and the negative halfspace to be the set of all
points for which xj − xi is negative.

For each point x ∈ R
n /�, we define its sign sequence to be the vector

that records, for each hyperplane Hi,j , whether x is in the positive halfspace,
negative halfspace, or on the hyperplane itself. That is, the sign sequence is
σ(x) = (σi,j(x))1≤i<j≤n, where

σi,j(x) =

⎧
⎪⎨

⎪⎩

+ if xj − xi > 0,

0 if xj − xi = 0,

− if xj − xi < 0.

For any σ, we denote the set of all points with sign sequence σ by Fσ, i.e.,

Fσ = {x ∈ R
n /� : σ(x) = σ}.
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If Fσ is nonempty, we refer to it as a face of the arrangement H(n). (Note
that if none of the entries of σ are zero, Fσ actually lies in the complement
of H(n). Nonetheless we refer to Fσ as a face of the arrangement.)

For example, x = (−.5, 0,−.5, 1) has σ(x) = (+, 0,+,−,+,+), and so it
is a point of the face Fσ = F(+,0,+,−,+,+) in H(4). (We order the pairs of
coordinates, (i, j), lexicographically.) Similarly,

F(0,+,+) = {x ∈ R
3 /� : x1 = x2 < x3}

is a face of H(3).

5.4 Euclidean hyperplane arrangements

So far, we have said nothing particularly special about the braid arrangement.
We have used this arrangement merely as a concrete example to illustrate how
we might deal with any hyperplane arrangement. In general, we may suppose
V is a Euclidean vector space with an inner product 〈·, ·〉, and that H is a
finite collection of hyperplanes in V , i.e., suppose

H = {H1, . . . , HN},

where each Hi is a co-dimension one linear subspace of V . We can choose a
collection of normal vectors for each hyperplane, say βi for Hi, so that each
hyperplane gets an explicit description:

Hi = {λ ∈ V : 〈λ, βi〉 = 0}.

This choice of βi also divides V −Hi into a positive halfspace:

H+
i = {λ ∈ V : 〈λ, βi〉 > 0},

and a negative halfspace:

H−
i = {λ ∈ V : 〈λ, βi〉 < 0},

(see Figure 5.4). Notice both βi and −βi give the same hyperplane, but with
reversed halfspaces since 〈λ,−βi〉 = −〈λ, βi〉. Thus in order for the notion of
the sign vector of a point in V to be well defined, we need to specify our choice
of normal vectors, not merely the hyperplanes. In the braid arrangement, the
normal vectors we chose were all vectors of the form

εj − εi = (0, . . . , 0,−1, 0, . . . , 0, 1, 0, . . . , 0),

where εi is a standard basis vector for Rn.
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H−
β

H+
β

Hββ

Fig. 5.4 The positive and negative halfspaces of a hyperplane.

By taking all points with common sign vector, we can define the faces of
the arrangement to be intersections of hyperplanes and halfspaces:

F =
N⋂

i=1

H
σi(F )
i ,

where we understand H0
i = Hi. Define the support of a face F to be the

smallest linear subspace in which F is contained:

supp(F ) =
⋂

σi(F )=0

Hi.

This gives a convenient way to see the dimension of a face: dimF =
dim(supp(F )).

We now let Σ = Σ(H) denote the set of all nonempty faces of H. We can
define a partial order on Σ by containment of their closures. That is, if F
and G are faces of H, we put F ≤Σ G if and only if F ⊆ G in V . With
our characterization of faces in terms of sign sequences, it turns out that this
only depends on σ(F ) and σ(G) as follows.
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Proposition 5.2. Two faces of H satisfy F ≤Σ G if and only if, for each i:

σi(F ) = σi(G) or σi(F ) = 0.

That is, we move up in the partial order by changing a zero entry to
a nonzero entry, i.e., by stepping off of some hyperplane into a higher-
dimensional cone. For example, in the braid arrangement Σ(H(n)), if σ(F ) =
(+,+, 0, 0,−,−) and σ(G) = (+,+, 0,+,−,−), then F ≤Σ G, yet neither of
these faces is comparable to the face with sign vector (−,+,+,+,+,+).

We can see the partial order on faces ofH(3) shown in Figure 5.5, where we
list only the sign sequence identifying the face. Compare it with the picture
of the braid arrangement in Figure 5.3.

(0, 0, 0)

(0,+,+) (+,+, 0) (−, 0,+) (+, 0,−) (−,−, 0) (0,−,−)

(+,+,+) (−,+,+) (+,+,−) (−,−,+) (+,−,−) (−,−,−)

Fig. 5.5 The partial order on faces of braid arrangement H(3).

The face (0, 0, . . . , 0) is the unique minimum of the partial order. The
maximal faces are called chambers and have all nonzero entries, i.e., they
are the maximal-dimensional cones in the complement of H. We can see that
cover relations increase the dimension by one. Hence the rank function of the
poset Σ is the dimension generating function.

Observation 5.2 The rank generating function for the poset of faces of a
hyperplane arrangement is the dimension generating function:

f(Σ; t) =
∑

F∈Σ

tdim(F ).

In the case of the braid arrangement, we can give an explicit combinatorial
description of this rank function, as we will see in Section 5.6.
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5.5 Products of faces and the weak order on chambers

We now describe further general properties of Σ. We define a product of
faces as follows. Let F and G be two faces of Σ. Choose a point λ ∈ F and
a point μ ∈ G, and consider the line p(x) = (1 − x)λ + xμ. For values of x
in 0 < x < 1, the line may cross various faces of Σ, and we define the Tits
product of F and G, denoted FG, to be the first face encountered on this
line segment. (The product is named for Jaques Tits, who used this product
to give a geometric approach to an algebraic result of Louis Solomon. See
[142, 163].) See Figure 5.6.

F

G FG

•λ

•μ

Fig. 5.6 The Tits product of two faces in a hyperplane arrangement.

Notice that

〈βi, p(x)〉 = (1− x)〈βi, λ〉+ x〈βi, μ〉,

so if 0 < x < ε is sufficiently small and σi(F ) 	= 0

σi(p(x)) = σi(p(0)) = σi(F ),

which is positive or negative according to the sign of 〈βi, λ〉. However if
σi(F ) = 0, it is 〈βi, μ〉 whose sign is the same as the sign of 〈βi, p(x)〉, i.e.,

σi(p(x)) = σi(G).

Hence the product of two faces can be given succinctly in terms of sign
vectors.

Observation 5.3 The Tits product of faces F and G is the face FG with
the following sign vector:

σi(FG) =

{
σi(G) if σi(F ) = 0,

σi(F ) otherwise.
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The Tits product is associative: (FG)H = F (GH), and it gives Σ the
structure of a monoid, with identity (0, 0, . . . , 0). While the product is not
commutative in general, commuting faces have nice properties, as we now
describe.

Suppose F and G are distinct faces and FG = GF . This means F and G
both lie strictly below H = FG in Σ and moreover, H is the smallest face
that contains both F and G on its boundary.

Now suppose I is another face that commutes with both F and G, i.e.,
FI = IF and GI = IG. (Assume I is not equal to F , G, or H .) Then I and
H form a commuting pair as well, since

IH = IFG = FIG = FGI = HI.

Thus the face J = HI = IH is the smallest face containing the triple of
pairwise commuting faces F,G, and I.

We can continue this line of reasoning for any number of pairwise com-
muting faces to obtain the following.

Proposition 5.3. A collection of faces F1, . . . , Fk lie on the boundary of a
common face if and only if their pairwise products commute:

FiFj = FjFi for all pairs i, j.

Moreover, the smallest face that contains them all is the product F1F2 · · ·Fk.

We have mentioned that maximal faces in Σ are called chambers. Let C
denote the set of chambers. The set C plays a special role in the study of
hyperplane arrangements. For one thing C is an ideal in the monoid Σ, since
if C is a chamber it has all nonzero entries and thus if F is any face,

CF = C and FC = C′,

for some (possibly different) chamber C′.
Further, we can define a natural and important partial order on C as

follows. By analogy with what we get in the case of the braid arrangement,
we call this the weak order on the chambers, denoted Wk(C).

First, choose a chamber C0 that we will call the base chamber, and choose
the normal vectors βi so that σ(C0) = (+,+, . . . ,+). Then −C0 is also a
chamber, with sign vector (−,−, . . . ,−). We declare two chambers C1, C2 to
be adjacent if the support of their intersection is a single hyperplane:

supp(C1 ∩ C2) = H,

and we sometimes refer to this hyperplane H as the wall between C1 and C2.
It should be clear that the sign vectors of C1 and C2 differ only in the entry
corresponding to H . Say that σH(C1) = + and σH(C2) = −.

Then we partially order C by declaring that C1 <Wk C2 is a cover relation
if and only if C1 and C2 are adjacent and σ(C1) has more positive entries
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than σ(C2). Define the inversion set of a chamber to be the set of negative
entries in its sign vector:

Inv(C) = {i : σi(C) = −},

and let inv(C) = | Inv(C)| denote the number of inversions. Then taking the
transitive closure of the cover relation described above leads to this simple
characterization of the weak order on C:

C1 ≤Wk C2 if and only if Inv(C1) ⊆ Inv(C2).

In Figure 5.7 we see the partial order on chambers of the braid arrangement
H(3). This poset has minimum C0 and maximum −C0, and it is ranked by
the number of minus signs in the sign vector, i.e., inv(w) = |{i : σi(C) = −}|.

Observation 5.4 The partial order on chambers has rank function

f(Wk(C); q) =
∑

C∈C
qinv(C).

(−,+,−)

(−,−,−)

(+,−,−)

(+,−,+)

(+,+,+)

(−,+,+)

Fig. 5.7 The partial order on chambers in a hyperplane arrangement.

In the case of H(n), the chambers correspond to permutations and the
partial order Wk(C) is isomorphic to the weak order Wk(Sn). Whether we
get the left weak order or the right weak order depends on how we choose to
label chambers. Refer to Figure 5.3.
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5.6 Set compositions

We will now return to the discussion of the specific case of the braid arrange-
ment and study its combinatorics in detail. In particular, we will enumerate
all the faces of H(n) according to dimension.

Define a set composition of n to be a linearly ordered set partition of
{1, 2, . . . , n}, i.e., we say F = B1|B2| · · · |Bk is a set composition of n if
Bi ∩ Bj = ∅ for i 	= j and

⋃
Bi = {1, 2, . . . , n}. The linear ordering means,

e.g., 12|34 	= 34|12. By convention, we will write the elements of each block
Bi in increasing order. Let Comp(n) denote the set of all set compositions of
the set {1, 2, . . . , n}. We see the set compositions for n = 3 and n = 4 listed
in Table 5.4.

The correspondence between Comp(n) and faces of H(n) is straightfor-
ward. If i and j are in the same block of set composition F ∈ Comp(n), then
xi = xj , while if k is in a block to the left of l, then xk < xl. For example,

37|45|126↔ {x3 = x7 < x4 = x5 < x1 < x2 < x6},

and
{x2 = x3 < x5 < x1 = x4 < x6} ↔ 23|5|14|6.

Notice the number of bars indicates the number of inequalities, and hence
the dimension of the face of H(n).

The partial order on faces is easy to see in terms of the model of set
compositions. We know that a face F is contained in a face G if, as set
compositions, F is a refinement of G. In H(n), this amounts to breaking
some equalities among the coordinates, while at the same time preserving all
the inequalities of G, i.e., changing a zero to nonzero in the sign vector.

Proposition 5.4. The poset of faces of H(n) is isomorphic to Comp(n)
under refinement order.

See Figure 5.8 for the faces of H(3) labeled by set compositions.
We now turn to the rank generating function for Comp(n), which, by

Proposition 5.4, is the dimension generating function for the faces of H(n).
For a given set composition A = A0|A1| · · · |Ak, let rk(A) = k denote the
number of vertical bars in A, i.e., its rank in the refinement order, i.e., the
dimension of A in Σ(H(n)). Then,

f(Comp(n); t) =
∑

A∈Comp(n)

trk(A),

=
∑

F∈Σ(H(n))

tdim(F ),

= f(Σ(H(n)); t).

We will let fk denote the coefficient of tk in f(Comp(n); t), i.e.,
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2|13

13|2

23|1 1|23

3|1
2

12
|3

123

1|2|3

1|3|2

2|1|3

3|1|2

2|3|1

3|2|1

(a)

123

12|3 1|23 2|13 13|2 23|1 3|12

1|2|3 2|1|3 1|3|2 2|3|1 3|1|2 3|2|1

(b)

Fig. 5.8 (a) The braid arrangement H(3), and (b) its poset of faces, with faces now
labeled by set compositions.

fk = |{A ∈ Comp(n) : rk(A) = k}|,
= |{faces of dimension k in Σ(H(n))}|.

For example,
f(Comp(3); t) = 1 + 6t+ 6t2,

and
f(Comp(4); t) = 1 + 14t+ 36t2 + 24t3.

Table 5.3 has the number of set compositions of n with k blocks.

Table 5.3 The number of set compositions of n with k blocks.

n\k 0 1 2 3 4 5 6 7 8 9
1 1
2 1 2
3 1 6 6
4 1 14 36 24
5 1 30 150 240 120
6 1 62 540 1560 1800 720
7 1 126 1806 8400 16800 15120 5040
8 1 254 5796 40824 126000 191520 141120 40320,
9 1 510 18150 186480 834120 1905120 2328480 1451520 362880

10 1 1022 55980 818520 5103000 16435440 29635200 30240000 16329600 3628800

We will now find a formula for fk in terms of n and k.
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Table 5.4 Set compositions for n = 3 and n = 4, i.e., faces of H(n), grouped
according to dimension and underlying permutation.

w ∈ S3 dim = 0 dim = 1 dim = 2

123 123 1|23 1|2|3
12|3

132 13|2 1|3|2
213 2|13 2|1|3
231 23|1 2|3|1
312 3|12 3|1|2
321 3|2|1

w ∈ S4 dim = 0 dim = 1 dim = 2 dim = 3

1234 1|234 1|2|34 1|2|3|4
1234 12|34 12|3|4

123|4 1|23|4
1243 124|3 1|24|3 1|2|4|3

12|4|3
1324 13|24 1|3|24 1|3|2|4

13|2|4
1342 134|2 1|34|2 1|3|4|2

13|4|2
1423 14|23 1|4|23 1|4|2|3

14|2|3
1432 14|3|2 1|4|3|2
2134 2|134 2|1|34 2|1|3|4

2|13|4
2143 2|14|3 2|1|4|3
2314 23|14 2|3|14 2|3|1|4

23|1|4
2341 234|1 2|34|1 2|3|4|1

23|4|1
2413 24|13 2|4|13 2|4|1|3

24|1|3
2431 24|3|1 2|4|3|1
3124 3|124 3|1|24 3|1|2|4

3|12|4
3142 3|14|2 3|1|4|2
3214 3|2|14 3|2|1|4
3241 3|24|1 3|2|4|1
3412 34|12 3|4|12 3|4|1|2

34|1|2
3421 34|2|1 3|4|2|1
4123 4|123 4|1|23 4|1|2|3

4|12|3
4132 4|13|2 4|1|3|2
4213 4|2|13 4|2|1|3
4231 4|23|1 4|2|3|1
4312 4|3|12 4|3|1|2
4321 4|3|2|1
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Let S(n, k) denote the number of ways to partition the set {1, 2, . . . , n}
into k nonempty blocks. These are the Stirling numbers of the second kind
and are well known. (See Problem 3.3.) It is easily verified, for instance, that

S(n, k) = kS(n− 1, k) + S(n− 1, k − 1),

since we can either add an nth element to any of k blocks in a partition
counted by S(n − 1, k) or else create a new block containing only the new
element along with any partition with k−1 blocks counted by S(n−1, k−1).
We list the number of set partitions with k blocks in Table 5.5.

Table 5.5 Stirling numbers of the second kind.

S(n, k) 1 2 3 4 5 6 7 8 9 10
1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1
6 1 31 90 65 15 1
7 1 63 301 350 140 21 1
8 1 127 966 1701 1050 266 28 1
9 1 255 3025 7770 6951 2646 462 36 1
10 1 511 9330 34105 42525 22827 5880 750 45 1

Since set compositions are just ordered set partitions, the number of set
compositions with k blocks is then k!S(n, k). Hence, we have the following
expression for f(Comp(n); t).

Theorem 5.2. The number of set compositions of n with k blocks, i.e., the
number of faces of dimension k − 1 in the braid arrangement H(n), is

fk−1 = k!S(n, k).

Thus,

f(Comp(n); t) =
n−1∑

k=0

(k + 1)!S(n, k + 1)tk.

Now notice that by ignoring the vertical bars, we can group set com-
positions according to the underlying permutation in Sn, where we recall
that the numbers in each block are written in increasing order. For a set
composition A, let p(A) denote the permutation obtained in this way, e.g.,
p(34|12|5) = 34125. Conversely, for a permutation w, let Comp(w) denote
the set of set compositions that map to w. That is,

Comp(w) = {A ∈ Comp(n) : p(A) = w}.



112 5 Weak order, hyperplane arrangements, and the Tamari lattice

For example, if w = 53214867,

Comp(w) = {5|3|2|148|67, 5|3|2|1|48|67, 5|3|2|14|8|67, 5|3|2|148|6|7,
5|3|2|1|4|8|67, 5|3|2|1|48|6|7, 5|3|2|14|8|6|7, 5|3|2|1|4|8|6|7}.

(5.1)

With a moment’s reflection, we can see that Comp(w) consists of all ways
inserting bars between the letters of w such that there must be a bar in each
descent position, since each block is written in increasing order. Hence,

|Comp(w)| = 2n−1−des(w),

since there are a total of n − 1 gaps between letters of w. Even better, we
have ∑

A∈Comp(w)

trk(A) = tdes(w)(1 + t)n−1−des(w). (5.2)

For example, with w = 53214867 as in (5.1), we have t4(1 + t)3, since the
eight elements of Comp(w) are obtained from 5|3|2|148|67 by inserting or not
inserting bars between the 1 and the 4, the 4 and the 8, and the 6 and the 7:

5

t

3

t

2

t

1

(1 + t)

4

(1 + t)

8

t

6

(1 + t).

7

By summing Equation (5.2) over all permutations w in Sn, we get the
following expression for f(Comp(n); t).

f(Comp(n); t) =
∑

A∈Comp(n)

trk(A),

=
∑

w∈Sn

∑

A∈Comp(w)

trk(A),

=
∑

w∈Sn

tdes(w)(1 + t)n−1−des(w),

= (1 + t)n−1
∑

w∈Sn

(
t

1 + t

)des(w)

.

Hence, we see that f(Comp(n); t) is just a transformation of the Eulerian
polynomial!

Theorem 5.3. The dimension generating function for the faces of the braid
arrangement H(n) is expressed in terms of the Eulerian polynomial Sn(t) as
follows:

f(Comp(n); t) = (1 + t)n−1Sn(t/(1 + t)).
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5.7 The Tamari lattice

The Catalan analogue of the weak order is called the Tamari lattice, after
Dov Tamari [162], though it was independently discovered by James Stasheff
[156]. This lattice has enjoyed enormous popularity. Just as the weak order
can be realized with the polytope known as the permutahedron, the Hasse
diagram of the Tamari lattice is the one-skeleton of the associahedron. Real-
izing the associahedron in Euclidean space is not as simple as realizing the
permutahedron. There are many different constructions and we will not att-
empt to describe them here. (See Problem 8.4 for a realization by Jean-Louis
Loday [101]. See also the survey by Cesar Ceballos and Gunter Ziegler [46].)
However, as we now describe, it is easy to see where the name of the polytope
comes from.

Consider all valid parenthesizations of wxyz, the associative product of
four elements. They are:

(((wx)y)z), ((wx)(yz)), ((w(xy))z), (w((xy)z)), (w(x(yz))).

These parenthesizations can be given a partial order by declaring that cover
relations are of the form ((fg)h) < (f(gh)) for any sub-expressions f , g,
and h. Recall from Section 2.5 that parenthesizations of n + 1 elements are
naturally encoded by planar binary trees with n internal nodes and n + 1
leaves. Then this gives us a partial order on PB(n).

We will take this partial order on PB(n) as our definition of the Tamari
lattice. For example, we see PB(3) in Figure 5.9 and PB(4) in Figure 5.10.

w x y z

w x y z

w x y z

w x y z

w x y z

Fig. 5.9 The Tamari lattice for PB(3).

A quick observation confirms that the Tamari lattice is not ranked, so
there is no rank function to discuss. The Tamari lattice can be obtained from
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Fig. 5.10 The Tamari lattice for PB(4).

the weak order Wk(Sn) in a couple of ways. From a geometric standpoint,
one can deform the permutahedron to get the associahedron. (In fact this
is one of a family of such polytopes called “generalized permutahedra” con-
structed by Alexander Postnikov [121].) In terms of the dual picture of the
braid arrangement, we can think of coarsening the arrangement by removing
walls between certain chambers (what remains is a “fan” but no longer a hy-
perplane arrangement). See Figure 5.11. In purely poset-theoretic terms, the
Tamari lattice can be realized by restricting the weak order to 231-avoiding
permutations. For example, see Figure 5.12.

Let Wk(Sn(231)) denote the set of 231-avoiding permutations endowed
with the weak order. The bijection between PB(n) and Sn(231) given in
Section 2.5 is a poset isomorphism from the left weak order (Wkl(Sn(231)),≤)
to (PB(n),≤). Problem 5.11 asks for a bijection that makes the Tamari lattice
isomorphic to the right weak order, as suggested by comparing Figure 5.10
and Figure 5.12.
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•

•

•

•

•

x1 < x2 < x3

x1 < x3 < x2

x2 < x1, x3

x3 < x1 < x2

x3 < x2 < x1

Fig. 5.11 A coarsening of the braid arrangement H(3) whose weak order is the
Tamari lattice.

Proposition 5.5. The Tamari lattice (PB(n),≤) is isomorphic to
(Wk(Sn(231)),≤), the set of 231-avoiding permutations under the weak order.

5.8 Rooted planar trees and faces of the associahedron

Just as we saw the Eulerian numbers emerge in counting faces of the permu-
tahedron, we will now see the Narayana numbers crop up while enumerating
the faces of the associahedron.

The combinatorial model we will develop is parenthesizations of n + 1
elements, or rooted planar trees with n+ 1 leaves. The total number of such
trees is given the small Schröder number rn discussed in Problem 2.14.

The correspondence between parenthesizations and trees is straightfor-
ward, just as it was for the special case of planar binary trees and complete
parenthesizations, e.g.,

zyxwv

←→ (vw(xyz)).
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1234

2134 1243

1324

2143

3124

1423

1432

3214

4213

4123

4132

4312

4321

Fig. 5.12 The Tamari lattice given by the weak order on S4(231).

Let P(n) denote the set of rooted planar trees with n+ 1 leaves. We will
define a partial order on P(n) that encodes the (reverse) inclusion of faces
of the associahedron. See Figure 5.13(a) for the n = 3 case. For any pair of
trees σ, τ ∈ P(n), we say σ ≤ τ if τ refines σ as a parenthesization. In terms
of the pictures, this means that we can choose some internal nodes of σ with
more than two branches and slide some of the branches up and away to the
left or the right. By a “branch,” we mean a line segment from a leaf to some
internal node. (It helps to think of the branches as being anchored at the
leaves.) We cannot violate planarity, so if we want to slide the fourth branch
to the left, say, then branches one, two, and three must come along for the
ride:

−→
.

A cover relation is given by choosing only one such refinement, creating ex-
actly one new internal node. For example, one can check that σ = (vw(xyz)),
i.e.,
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zyxwv

,

has four covers: ((vw)(xyz)), (v(w(xyz))), (vw((xy)z)), and (vw(x(yz))),
drawn as:

zyxwv

,

zyxwv

,

zyxwv

, and

zyxwv

.

It is easy to see that the tree with only one internal node is the unique
minimum for this partial order, and that the poset is ranked by one less than
the number of internal nodes. Hence, the planar binary trees, with n internal
nodes, are maximal. See Figure 5.13(b).

Let i(σ) denote the number of internal nodes of σ ∈ P(n). Then the rank
generating function for P(n) (i.e., the codimension generating function for
the faces of the associahedron) is

f(P(n); t) =
∑

σ∈P(n)

ti(σ)−1.

For example,
f(P(3); t) = 1 + 5t+ 5t2,

and
f(P(4); t) = 1 + 9t+ 21t2 + 14t3.

The coefficient of tk in f(P(n); t), i.e., the number of planar rooted trees
with n+ 1 leaves and k + 1 internal nodes, is given in Table 5.6.

Table 5.6 The number of planar rooted trees with n + 1 leaves and k + 1 internal
nodes.

n\k 0 1 2 3 4 5 6 7 8 9
1 1
2 1 2
3 1 5 5
4 1 9 21 14
5 1 14 56 84 42
6 1 20 120 300 330 132
7 1 27 225 825 1485 1287 429
8 1 35 385 1925 5005 7007 5005 1430
9 1 44 616 4004 14014 28028 32032 19448 4862

10 1 54 936 7644 34398 91728 148512 143208 75582 16796
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To any rooted tree, we can assign a canonical planar binary tree as follows.
Each internal node is the endpoint for at most three kinds of branches: left,
right, and middle. There can be several middle branches, but only one left
branch and only one right branch. (We think of them from the point of view of
the internal node. Planarity guarantees that these notions are well defined.)
Given a tree σ, let b(σ) denote the binary tree formed by sliding all middle

w x y z

w x y z

w x y z

w x y z

w x y z

•

w x y z

•

w x y z

•

w x y z

•

w x y z

•

w x y z

w x y z

(a):

(wxyz)

((wx)yz) ((wxy)z) (wx(yz)) (w(xy)z) (w(xyz))

((wx)y)z) ((wx)(yz)) ((w(xy))z) (w(x(yz))) (w((xy)z))

(b):

Fig. 5.13 (a) Faces of the associahedron labeled with rooted planar trees, and (b)
the poset of parenthesizations.
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branches one at a time to the left, so that each becomes the right branch for
a new internal node:

−→ .

In terms of parenthesizations, this means every substring of a parenthesiza-
tion, · · · (fgh) · · · , with subexpressions f , g, and h, is refined to · · · ((fg)h) · · · .
Among all binary trees τ ∈ PB(n) that are above the tree σ ∈ P(n) in the
refinement order, this identifies the one that is minimal with respect to the
Tamari lattice, since it has the fewest left-pointing leaves. See Problem 5.12.

For example,

σ = −→ = b(σ).

On the other hand, given a binary tree τ ∈ PB(n), let P(τ) denote the set
of planar trees that project to τ , i.e.,

P(τ) = {σ ∈ P(n) : b(σ) = τ}.

In Table 5.7 we see the parenthesizations for n = 4 grouped according to this
map.

For any τ ∈ PB(n), there is a unique internal node just above the root,
which we call the ground node. The left branch and the right branch of the
ground node are in every planar tree. We see that every other internal node
lies somewhere along a left branch or a right branch whose endpoint is closer
to the ground node. If an internal node lies on a left branch, it is the endpoint
for a branch that terminates at a right-pointing leaf and we color it black. If
it lies on a right branch, it is the endpoint for some left-pointing leaf and we
color it white. See the picture below (the ground node is white):

With this color scheme, we can now see that the elements of P(τ) are
those elements of P(n) obtained by allowing the black internal nodes to
merge with nodes just below them in the tree. Each black node can be chosen
independently to merge or not, so the number of trees in P(τ) is

2(#black nodes of τ).
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Table 5.7 Rooted planar trees, grouped according to the map onto planar binary
trees.

τ ∈ PB(4) rk = 0 rk = 1 rk = 2 rk = 3

But we can get a more refined count than this, since each time a black node
merges with the node below it, the overall number of internal nodes decreases
by one. Since the white nodes remain in every tree, we have:

∑

σ∈P(τ)

ti(σ) = t(#white nodes of τ)(1 + t)(#black nodes of τ). (5.3)
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τ =

Fig. 5.14 The eight trees in P(τ), ordered by refinement.

For example, in Figure 5.14 we see the trees in P(τ) for a certain tree τ
in PB(7) with three black nodes and four white nodes. We have drawn the
trees in refinement order so that it is easy to see the distribution of internal
nodes is t4(1 + t)3.

If τ ∈ PB(n), the number of white nodes is equal to the number of left
leaves at the top of the tree, as each leaf can be traced back to the internal
node at which its branch originates. Moreover, since there are n internal
nodes, this means:

n = (#black nodes in τ) + (#white nodes in τ)

= (#black nodes in τ) + (#left leaves in τ).

Hence if τ has k left leaves, it has n − k black nodes. Thus Equation (5.3)
becomes ∑

σ∈P(τ)

ti(σ) = tk(1 + t)n−k. (5.4)
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Letting l(τ) denote the number of left leaves in a planar binary tree, and
summing over all trees, we have the following expression for f(P(n); t).

f(P(n); t) =
∑

σ∈P(n)

ti(σ)−1,

=
∑

τ∈PB(n)

∑

σ∈P(τ)

ti(σ)−1,

=
∑

τ∈PB(n)

tl(τ)−1(1 + t)n−l(τ),

= (1 + t)n−1
∑

τ∈PB(n)

(
t

1 + t

)l(τ)−1

.

By Proposition 2.2, we know that counting planar binary trees by left
leaves corresponds to counting 231-avoiding permutations by descents. That
is, f(P(n); t) is a transformation of the Narayana polynomial.

Theorem 5.4. The dimension generating function for the faces of the asso-
ciahedron is expressed in terms of the Narayana polynomial Cn(t) as follows:

f(P(n); t) = (1 + t)n−1Cn(t/(1 + t)).

Compare this result with Theorem 5.3.

Notes

The distribution of inversions (the Mahonian distribution) given in Theo-
rem 5.1 is due to Olinde Rodrigues in 1839 [131]. According to Günter Ziegler
[169], the permutahedron was probably first studied by Pieter Schoute—it ap-
pears in Schoute’s 1911 book [133]. The weak order on permutations has been
studied since at least the early 1960s, and the connection with the permuta-
hedron seems to have been known from the beginning. Early interest in the
weak order seems to have come from computer scientists, who were interested
in its help for the theory of sorting. See, for example, the paper of Georges
Guilbaud and Pierre Rosenstiehl [85]. The absolute order of Section 3.5 can
also be related to sorting—see Problem 5.6.

Our presentation of hyperplane arrangements and the use of sign sequences
to characterize faces is mostly adapted from the book by Peter Abramenko
and Ken Brown [1, Section 1.4]. The Tits product for faces of the braid
arrangement (and closely related arrangements) first appears in the work of
Jaques Tits from 1976 [163]. It was studied at a greater level of generality
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in the 1997 PhD thesis of Thomas Patrick Bidigare [17], and subsequently
this concept found interesting applications to the study of random walks and
card shuffling [18, 19]. See Problem 5.9.

The Tamari lattice is named for Dov Tamari, who studied it at least as
early as 1962 [162], though James Stasheff also wrote a paper describing this
poset in 1963 [156]. Whether the Tamari lattice could be realized as the one-
skeleton a convex polytope was an open question, though it is folklore that
John Milnor did as much in the 1960s. Unpublished notes of Mark Haiman
from 1984 contain the first definitive construction, and Carl Lee [99] has the
first construction to appear in print. Subsequently, many distinct realizations
have appeared, as discussed by Cesar Ceballos and Günter Ziegler [46].

Problems

5.1. Prove that a permutation is uniquely determined by its inversion set.

5.2. Take the definition of the right weak order to be u ≤Wkr v if and only
if Inv(u−1) ⊆ Inv(v−1). Prove that cover relations are given by right multi-
plication of simple generators: v <Wkr v ◦ si.

5.3. Prove the shard intersection order is a coarsening of the (right) weak
order. That is, if u ≤Sh v, then u ≤Wkr v.

5.4. Show that In(q) is log-concave but not real-rooted.

5.5 (Length of a permutation). Define the adjacent sorting length of a
permutation w, denoted �(w), to be the minimal number of adjacent swaps
needed to sort the permutation. That is, if si = (i, i+1) is the transposition
that swaps i and i+ 1,

�(w) = min{k : w ◦ si1 ◦ · · · ◦ sik = 12 · · ·n}.

For example, �(3142) = 3 since

3142 ◦ s3 ◦ s1 ◦ s2 = 3124 ◦ s1 ◦ s2 = 1324 ◦ s2 = 1234,

and no shorter sequence of swaps will do the same.
Show that �(w) = inv(w), i.e., the minimal number of adjacent swaps

needed to sort a permutation equals the number of inversions.
Conclude that the weak order Wk(Sn) is ranked by adjacent sorting length,

i.e.,

f(Wk(Sn); q) =
∑

w∈Sn

q�(w).
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5.6 (Absolute length). Define the absolute sorting length of a permuta-
tion w, denoted �′(w), to be the minimal number of swaps needed to sort a
permutation. That is, if ti,j = (i, j) is the transposition that swaps i and j,

�′(w) = min{k : w ◦ ti1,j1 ◦ · · · ◦ tik,jk = 12 · · ·n}.

For example, �′(31542) = 3 since

31542 ◦ t3,5 ◦ t1,3 ◦ t1,2 = 31245 ◦ t1,3 ◦ t1,2 = 21345 ◦ t1,2 = 12345,

and no shorter sequence of swaps will do the same. (By default we write
transpositions with i < j.)

Show that for w ∈ Sn, �
′(w) = n − cyc(w), where cyc(w) denotes the

number of cycles of w. For example cyc(31542) = 2, since we can write 31542
in cycle notation as (1352)(4), and n− cyc(31542) = 5− 2 = 3 = �′(31542).

Conclude that the absolute order Abs(Sn) from Section 3.5 is ranked by
absolute sorting length, i.e.,

f(Abs(Sn); t) =
∑

w∈Sn

t�
′(w).

5.7 (Sorting index). The following is a greedy algorithm for sorting a per-
mutation with transpositions: find the largest element that is out of place,
move it to its proper place, and repeat.

More precisely, if w(n) = n, do nothing and move on to sort w(1) · · ·
w(n− 1).

If w(i) = n, with i < n, apply the transposition ti,n to get w′ = w ◦ ti,n.
Then w′(n) = n, and we can now sort w′(1) · · ·w′(n− 1).

For example, here is the algorithm applied to the permutation w =
3172546:

3172546
t3,7−−→ 3162547

t3,6−−→ 3142567
t3,4−−→ 3124567

t1,3−−→ 2134567
t1,2−−→ 1234567

This algorithm is known as straight selection sort. Suppose ti1,j1 , . . . , tik,jk
are the swaps used in straight selection sort for some w. Define the sorting
index for w to be

sor(w) =

k∑

r=0

(jr − ir),

e.g., with w = 3172546 above, we get

sor(3172546) = (7− 3) + (6 − 3) + (4− 3) + (3 − 1) + (2− 1) = 11.

Informally, the sorting index measures the “cost” of straight selection sort,
with transpositions of elements that are far away costing more than elements
closer by.
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Show that ∑

w∈Sn

qsor(w) = [n]! = In(q).

That is, the sorting index is Mahonian. (Note, however, that it is not generally
true that sor(w) = inv(w), e.g., sor(3172546) = 11 and inv(3172546) = 7.)

5.8. Using the model of set compositions, let F = B1| · · · |Bk and
G = C1| · · · |Cl be two faces of the braid arrangement H(n). Show that the
Tits product of F and G has its blocks given by all nonempty pairwise inter-
sections of blocks, Bi ∩ Cj , ordered lexicographically, i.e.,

FG = B1 ∩ C1| · · · |B1 ∩ Cl| · · · |Bk ∩ C1| · · · |Bk ∩ Cl,

ignoring empty blocks.
For example, if F = 13|245|67 and G = 7|123|46|5, then

FG = 13|2|4|5|7|6.

5.9 (Hyperplane walks and shuffling). Recall that a permutation w ∈ Sn

corresponds to the unique chamber C(w) = w(1)|w(2)| · · · |w(n), e.g., w =
32145↔ C(w) = 3|2|1|4|5.

Let R denote the set of rays in the braid arrangement, which in terms of set
compositions are merely those set compositions with exactly two parts. Then
F ∈ R means F = S|S′, with S a proper, nonempty subset of {1, 2, . . . , n},
and S′ = {1, 2, . . . , n} − S the complement of S.

1. Walking from rays. Given permutations u, v ∈ Sn, write u
F−→ v if

FC(u) = C(v), i.e., if the Tits product of F with the chamber for u equals

the chamber for v. Let M(u, v) = |{F ∈ R : u
F−→ v}|, and let

M = [M(u, v)]u,v∈Sn ,

denote the matrix containing these numbers, with rows and columns in-
dexed by permutations. Calculate the matrixM for n = 3 and n = 4.

2. Riffle shuffles. Given a permutation v = v(1) · · · v(n) and an integer
k = 1, . . . , n−1, let P = P (v; k) denote the disjoint union of the two chains
v(1) <P · · · <P v(k) and v(k + 1) <P · · · <P v(n). A riffle shuffle of v
is any permutation u contained in the set of linear extensions L(P (v; k))
for some k. A particular riffle shuffle u may appear in L(P (v; k)) for more
than one k, and so denote by N(v, u) the number of ways to obtain u from
a riffle shuffle of v, i.e.,

N(v, u) = |{k : u ∈ L(P (v; k))}|.

Let us denote the matrix of these numbers by

N = [N(v, u)]v,u∈Sn .
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Calculate the matrix N for n = 3 and n = 4.
3. Show that |M(u, v)| = |N(v, u)|, and conclude thatM and N are trans-

poses of one another.

5.10. Suppose f is a polynomial of degree at most n− 1 with all real roots
and f(1) 	= 0. Show that the transformation

f(t) �→ (1 + t)n−1f(t/(1 + t)),

where deg f=n−1, preserves real-rootedness and conclude that f(Σ(H(n)); t)
is real-rooted from the real-rootedness of Sn(t).

Further, show that the operation
∑

akt
k �→

∑ ak

k! t
k preserves real-

rootedness and conclude that the Stirling polynomials,

Stirn(t) =
∑

S(n, k)tk,

are real-rooted.

5.11. Describe a bijection PB(n) ↔ Sn(231) that makes the Tamari lattice
isomorphic to Wkr(Sn(231)), the right weak order on 231-avoiding permuta-
tions.

5.12. Show that the set of planar binary trees that cover a planar tree τ form
an interval in the Tamari lattice.

5.13. Recall rn, the small Schröder number is the number of parenthesiza-
tions of n+ 1 symbols, or the number of planar trees with n+ 1 nodes.

1. Show rn = Cn(2), where Cn(t) is the Narayana polynomial, e.g., r4 =
C4(2) = 1 + 6 · 2 + 6 · 22 + 23 = 45.

2. Further, let

rn(t) =
∑

σ∈P(n)

ti(σ)−1.

Is rn(t) real-rooted? Log-concave?



Chapter 6

Refined enumeration

In this chapter we return to purely enumerative questions.Often,
the way we count allows us to keep track of more than one permutation
statistic without any extra effort. In particular we consider various ways to
pair a statistic with an Eulerian distribution with another statistic having a
Mahonian distribution. Similar ideas are explored for Catalan objects.

6.1 The idea of a q-analogue

Recall that in Theorem 5.1 we showed that if we count permutations accord-
ing to the number of inversions, we get a polynomial in q that generalizes the
number n!, i.e.,

∑

w∈Sn

qinv(w) = [n]q! = (1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1). (6.1)

A formula such as (6.1) is sometimes called a q-analogue. This term means
different things in different contexts. For us it will mean that we take a classic
enumerative result, in this case, the fact that there are n! permutations, and
replace the integers in the formula with the “q-integers” [i]q = 1+q+· · ·+qi−1.
When the symbol q is understood and there is no worry of confusion, we
will write [i] for brevity. Another example of a q-analogue we have already
seen comes from the binomial theorem, where we can replace the formula
for the number of subsets of {1, 2, . . . , n}, 2n, with [2]n = (1 + q)n. Such a
refinement replaces a simple enumeration of a set of combinatorial objects
with a generating function for some statistic on that set, e.g., inversions of
permutations, cardinality of subsets.

© Springer Science+Business Media New York 2015
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Lehrbücher, DOI 10.1007/978-1-4939-3091-3 6

127



128 6 Refined enumeration

Often the same q-analogue will have more than one combinatorial interpre-
tation. For example, [n]! also counts permutations according to major index.
The major index of a permutation w = w(1) · · ·w(n) is

maj(w) =
∑

i∈Des(w)

i.

For example, Des(531264) = {1, 2, 5}, so maj(531264) = 1 + 2 + 5 = 8. We
can see that major index has the same distribution as (6.1) by thinking about
how major index is affected when recursively constructing a permutation.

If we have a permutation v in Sn−1 with maj(v) = k, then placing n at the
far right clearly leaves the major index unchanged, but at first glance, other
insertions have a less obvious effect on major index. For example, placing n
into slot n− 1 will raise the major index by one if v(n − 2) > v(n − 1) was
already a descent, but it will raise the major index by n − 1 if v(n − 2) <
v(n− 1) was not a descent.

It turns out that if we want to insert n into v so that major index increases
by 0, 1, . . . , n− 1, the following insertion process will do the trick: first move
from right to left placing n in descent positions, then move from left to right
placing n in ascent positions. We think of the far right position as a descent
position and the far left position as an ascent position. For example, consider
the permutation v = 34|17|6|258, where we have marked the descent positions
with bars for visual clarity. We have maj(v) = 2+4+5 = 11, and here are the
permutations in S9 obtained by inserting n = 9 into v in all possible ways:

w maj(w)

34|17|6|2589 11
34|17|69|258 12
34|179|6|258 13
349|17|6|258 14
934|17|6|258 15
394|17|6|258 16
34|197|6|258 17
34|17|6|2958 18
34|17|6|2598 19

.

Thus we see that the distribution of major index grows by a factor of [n] =
1+q+ · · ·+qn−1 when moving from Sn−1 to Sn. So by induction major index
is a Mahonian statistic just like inversion number.

Theorem 6.1. For any n ≥ 1,

∑

w∈Sn

qmaj(w) = [n]! =
∑

w∈Sn

qinv(w).

Problem 6.1 asks for a direct bijective proof of this theorem.
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6.2 Lattice paths by area

We will now describe another common q-analogue, this one for the binomial
coefficient

(
n
k

)
. Define [

n

k

]
=

[n]!

[k]![n− k]!
, (6.2)

where [0]! = 1. While it is not immediately obvious, this expression, while a
priori a rational function of q, is in fact a polynomial with positive integer
coefficients.

A beautiful combinatorial meaning for this polynomial is given as follows.
Write n = k+ l, and let L(k, l) denote the set of lattice paths p from (0, 0) to
(k, l) that take only steps East, from (i, j) to (i+1, j), and North, from (i, j)
to (i, j+1). There are n = k+ l steps in such a path, and we can identify each
path with a subset A of {1, 2, . . . , n} by identifying which steps are East. For
example, the set A = {1, 3, 4} ⊂ {1, 2, 3, 4, 5} corresponds to the path

p =

• 1 •

• 3 • 4 •

•

The area underneath such a path will be denoted area(p), so we can see in
this example that area(p) = 2. The claim is that

[
n
k

]
counts all such paths

according to area.
For example,

[
5

2

]
= 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6,

and in Table 6.1 we see the ten lattice paths from (0, 0) to (2, 3) grouped
according to area.

Let an,k(q) denote the generating function for paths in L(k, n−k) accord-
ing to area, i.e.,

an,k(q) =
∑

p∈L(k,n−k)

qarea(p).

Then we have the following refinement of Pascal’s recurrence,

an,k(q) = qn−kan−1,k−1(q) + an−1,k(q),

which can be given the following picture proof:
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Table 6.1 Lattice paths counted according to area.

area(p) = 0 1 2 3 4 5 6

• • •
•
•
•

• •
• •

•
•

• •
•
• •

•

• •
•
•
• •

•
• •

•
• •

•
•
• •

• •

•
•
•
• • •

•
• • •

•
•

•
• •

• •
•

•
•
• • •

•

•

n
−

k

•

k

al
l
pa

th
s

←→

n •

•

n
−

k

•

k − 1

pa
th
s
w
it
h

n

⋃

•

n
−

k
−
1

•

k

•

pa
th
s
w
it
ho

ut
n

.

But by appealing to the formula in (6.2) it is easily verified that

[
n

k

]
= qn−k

[
n− 1

k − 1

]
+

[
n− 1

k

]
,

so the q-binomial coefficients satisfy the same recurrence as the an,k(q). As
these functions satisfy the same recurrence (with the same boundary condi-
tions), they must be the same.

Theorem 6.2. For any n ≥ k ≥ 0,

[
n

k

]
=

[n]!

[k]![n− k]!
=

∑

p∈L(k,n−k)

qarea(p).
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•
1

• 2 • 3 •
4

• 5 •
6

• 7 •

(1, 2) (1, 3) (1, 5) (1, 7)

(4, 5) (4, 7)

(6, 7)

←→ 2357146

Fig. 6.1 A map between lattice paths and permutations with at most one descent.

In particular, this shows that the q-binomial coefficients are polynomials
with nonnegative integer coefficients.

We can create a bijection between paths in L(k, n− k) and permutations
w in Sn with Des(w) ⊆ {k} as follows. If A is the subset of {1, 2, . . . , n}
corresponding to the East steps of p, then form w = w(p) by writing first the
elements of A in increasing order, followed by the elements of {1, 2, . . . , n}\A
in increasing order. We see an example in Figure 6.1.

It is an exercise to show that this map takes area to inversion number:
area(p) = inv(w). See Problem 6.3. Thus,

[
n

k

]
=

∑

p∈L(k,n−k)

qarea(p) =
∑

w∈Sn

Des(w)⊆{k}

qinv(w).

We can apply the same idea repeatedly to count permutations whose
descent set is contained in any set J = {j1, j2, . . . , jk−1}. Let a1 = j1,
a2 = j2 − j1, and so on, with ak = n − jk−1. The structure of a permu-
tation whose descent set is contained in J is that of k increasing runs, with
the ith run having length ai. Generically it looks like this:

• •
•

•

j1

•
•

•
• •

j2 · · · jk−1

•
•

•
•

a1 a2 ak

.

The distribution for two runs is
[
n
a1

]
, so to get three runs, we split up the

rightmost n− a1 elements into runs of length a2 and n− a1 − a2, and so on.
The total distribution is:
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[
n

a1

][
n− a1
a2

]
· · ·
[
n− a1 − a2 − · · · − ak−1

ak

]
=

[n]!

[a1]![a2]! · · · [ak]!
,

which, by analogy with the usual multinomial coefficients, we will denote

[
n

a1, a2, . . . , ak

]
.

We have the following result.

Theorem 6.3. For any J = {j1, . . . , jk−1} ⊆ {1, 2, . . . , n− 1}, the distribu-
tion of inversions for all w in Sn with descent set contained in J is given by
the q-multinomial coefficient. That is,

∑

w∈Sn

Des(w)⊆J

qinv(w) =

[
n

a1, a2, . . . , ak

]
,

where a1 = j1, ak = n− jk−1, and ai = ji − ji−1 for 1 < i < k.

6.3 Lattice paths by major index

We have established one combinatorial interpretation for
[
n
k

]
in terms of a

statistic for lattice paths and connected it with inversion number for a certain
collection of permutations.

Now we will show the q-binomial coefficient also counts lattice paths acc-
ording to major index, and connect this with the major index distribution for
another collection of permutations. Here we define the major index of a path,
maj(p), by thinking of p as a word in {N,E} with E > N . For example, if
p = NEENENE, maj(p) = 3+5 = 8. In terms of pictures, maj(p) is adding
the positions of the valleys of p, since a valley is an East step followed by a
North step. Notice that if a valley lies at the position (x, y), its position in
the word is x+y. In Table 6.2 we see the ten paths in L(2, 3) again, this time
grouped according to major index.

The following can be proved with a bijection on the set of lattice paths
from (0, 0) to (k, l) that takes area to major index. See Problem 6.4.

Theorem 6.4. For any n ≥ k ≥ 0,

[
n

k

]
=

∑

p∈L(k,n−k)

qmaj(p).

Just as Theorem 6.2 could be reinterpreted as a result counting certain
permutations according to inversion number, we can understand Theorem 6.4
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Table 6.2 Lattice paths counted according to major index. Valleys are labeled with
their position.

maj(p) = 0 1 2 3 4 5 6

•
•
•
• • •

• 1

•
•
• •

• • 2

•
•
•

•
• • 3

•
•

• 1

• 3

•
•

• 1

•
• 4

•

•
• 2

• 4

•

•
• 2

•
• •

•
•
• 3

• •

•
•
• • 4

•

•
1

• 4 • 5 •
2

• 6 •
3

• 7 •

←→ 1452637

Fig. 6.2 A bijection from paths to permutations that preserves major index.

in terms of a collection of permutations counted by major index. The map
from paths to permutations is again obtained by labeling the edges in the
path. We first label vertical edges: 1, 2, . . . , l and then we label the horizontal
edges l+1, l+2, . . . , n. We get the permutation w by reading the edge labels
from the start of the path to the end. We see an example in Figure 6.2.

By design, all the horizontal edges have larger labels than the vertical
edges, so anytime we encounter a valley: EN , we have a descent of w in that
position. Hence, maj(p) = maj(w).

But how do we characterize these permutations independent of the bijec-
tion? Define a shuffle of two words u = u(1) · · ·u(k) and v = v(1) · · · v(l) to
be the word containing the letters of u and v such that u and v appear as sub-
words in the proper order, and denote the set of shuffles of u and v by u� v.
In the language of posets, the shuffles of u and v are the linear extensions of
the disjoint union of u and v, i.e., u� v = L(u∪ v). Here we think of u and v
as totally ordered chains and define P by u(1) <P u(2) <P · · · <P u(k) and
v(1) <P v(2) <P · · · <P v(l). See Problem 3.1.
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Table 6.3 Permutations w in u� v with u = 123 and v = 45. Descent positions are
marked with a bar for convenience.

maj(w) 0 1 2 3 4 5 6
12345 4|1235 45|123 145|23 4|15|23 4|125|3 14|25|3

14|235 124|35 1245|3

A moment of reflection allows us to realize that the paths in L(l, k) corre-
spond to the shuffles u = 12 · · · k and v = (k + 1) · · ·n.

For example, the shuffles of u = 123 and v = 45 are shown in Table 6.3.
Compare with the paths in Table 6.2. Hence, we have the following result.

Theorem 6.5. The q-binomial coefficient counts shuffles according to major
index, i.e., [

n

k

]
=
∑

w∈u�v

qmaj(w),

where u = 12 · · · k and v = (k + 1) · · ·n.

6.4 Euler-Mahonian distributions

We will now study a generating function for the joint distribution of descents
and inversions.

Define
Sn(q, t) =

∑

w∈Sn

qinv(w)tdes(w),

where S0(q, t) = 1 for convenience. For example, S1(q, t) = 1, S2(q, t) = 1+qt,
and S3(q, t) = 1 + 2qt+ 2q2t+ q3t2. For slightly larger examples, we see

S4(q, t) = 1 + (3q + 4q2 + 3q3 + q4)t+ (q2 + 3q3 + 4q4 + 3q5)t2 + q6t3,

and

S5(q, t) = 1 + (4q + 6q2 + 6q3 + 6q4 + 2q5 + 2q6)t

+ (3q2 + 9q3 + 12q4 + 18q5 + 12q6 + 9q7 + 3q8)t2

+ (2q4 + 2q5 + 6q6 + 6q7 + 6q8 + 4q9)t3 + q10t4.

This is an example of what is called an Euler-Mahonian distribution. Any
pair of statistics (s1, s2) where

∑
w∈Sn

ts1(w) = Sn(t) and
∑

w∈Sn
qs2(w) = [n]!

is called an Euler-Mahonian pair. Apart from (des, inv), we will mention a
result of Carlitz for (des,maj). Other interesting examples include (exc, inv)
and (exc,maj). See the notes at the end of the chapter.
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We can obtain a recursive formula for the distribution of the (des, inv) pair
by following the proof of the quadratic recurrence for Eulerian polynomials
in Theorem 1.5.

Theorem 6.6. For any n > 0,

Sn(q, t) = Sn−1(q, t) + t
n−2∑

i=0

[
n− 1

i

]
Si(q, t)q

n−1−iSn−1−i(q, t). (6.3)

While this result is nice, a non-recursive way to get our hands on the
Euler-Mahonian distribution is via set compositions, as studied in Section 5.6.
Recall that a set composition is an ordered set partition of {1, 2, . . . , n}, and
that each set composition has a natural permutation associated with it by
taking all the elements of each block in increasing order. For example, the
composition A = 9|678|35|124 is a set composition with underlying permuta-
tion w = w(A) = 967835124. If we say that a set composition A has inversion
number equal to the inversion number of w(A), we can define

f(Comp(n); q, t) =
∑

A∈Comp(n)

qinv(A)t|A|,

where Comp(n) denotes the set of all set compositions of {1, 2, . . . , n} and
|A| denotes the number of bars in A. Using Theorem 5.3, we have

Sn(q, t) = (1− t)n−1f(Comp(n); q, t/(1− t))

=
∑

A∈Comp(n)

qinv(w(A))t|A|(1 − t)n−1−|A|.

If A has bars in positions indexed by the set J , then by construction
Des(w(A)) ⊆ J , so

∑

A∈Comp(n)
bars(A)=J

qinv(w(A))t|A|(1 − t)n−1−|A| = t|J|(1− t)n−1−|J| ·
∑

w∈Sn

Des(w)⊆J

qinv(w).

Summing over all sets J , we have the following formula.

Sn(q, t) =
∑

J⊆{1,...,n−1}
t|J|(1− t)n−1−|J|

∑

w∈Sn

Des(w)⊆J

qinv(w).

This focuses the problem on counting the distribution of inversions for
permutations with particular descent sets, and we know from Theorem 6.3
exactly how to do this. If J = {j1, . . . , jk−1} ⊆ {1, 2, . . . , n− 1},
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∑

w∈Sn

Des(w)⊆J

qinv(w) =

[
n

a1, a2, . . . , ak

]
,

where a1 = j1, ak = n− jk−1, and ai = ji − ji−1 for 1 < i < k.
We will say a vector of positive integers a = (a1, . . . , ak) whose entries sum

to n is called a composition of n, denoted a � n. Its length is the number of
entries, denoted �(a) = k.

With this notation, we have the following formula for the Euler-Mahonian
polynomials.

Theorem 6.7. The Euler-Mahonian distribution has the following explicit
formula:

Sn(q, t) =
∑

a�n
t�(a)−1(1 − t)n−�(a)

[
n

a1, . . . , a�(a)

]
. (6.4)

With the q-factorials arising in (6.3) and (6.4), it is natural to consider
the following generating function:

S(q, t, z) :=
∑

n≥0

Sn(q, t)
zn

[n]!
. (6.5)

Clearly as q → 1, this specializes to the exponential generating function for
Eulerian polynomials given in Theorem 1.6.

The q-analogue of the exponential function that will arise here is

exp(z; q) :=
∑

n≥0

zn

[n]!
.

Then if we let f = exp(z(1− t); q)− 1, then

fk =
∑

a1,...,ak≥1

(z(1− t))a1+···+ak

[a1]! · · · [ak]!
,

=
∑

n≥1

∑

(a1,...,ak)�n

zn(1− t)n

[a1]! · · · [ak]!
,

and hence

1

1− f
= 1+ f + f2 + · · · ,

= 1+
∑

n,k≥1

∑

(a1,...,ak)�n

zn(1− t)n

[a1]! · · · [ak]!
,

= 1+
∑

n≥1

zn(1− t)n

[n]!

∑

a�n

[
n

a1, . . . , a�(a)

]
.
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Thus, if we compute the geometric series for t
1−tf , we get:

1

1− ( t
1−t )f

= 1 +
∑

n≥1

zn

[n]!

∑

a�n
t�(a)(1− t)n−�(a)

[
n

a1, . . . , a�(a)

]
,

= 1 +
∑

n≥1

zn

[n]!
· tSn(q, t),

using the formula in (6.4).
Since f = exp(z(1− t); q)− 1, we have established that

1 +
∑

n≥1

zn

[n]!
· tSn(q, t) =

1− t

1− t− t exp(z(1− t); q)
,

and after some simple manipulations, we obtain the following result due to
Richard Stanley.

Theorem 6.8 (Stanley [147]). The exponential generating function for the
Euler-Mahonian distribution is

S(q, t, z) =
(1− t) exp(z(1− t); q)

1− t exp(z(1− t); q)
.

6.5 Descents and major index

We will now turn our attention to another refinement of the Eulerian num-
bers. Let

Smaj
n (q, t) =

∑

w∈Sn

qmaj(w)tdes(w).

We use the superscript “maj” to distinguish this Euler-Mahonian distribution
from the one for (des, inv). Let us denote the coefficient of tk by

〈
n

k

〉maj

=
∑

w∈Sn,des(w)=k

qmaj(w),

so that

Smaj
n (q, t) =

n−1∑

k=0

〈
n

k

〉maj

tk.
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For example,

Smaj
3 (q, t) = 1 + (2q + 2q2)t+ q3t2,

Smaj
4 (q, t) = 1 + (3q + 5q2 + 3q3)t+ (3q3 + 5q2 + 3q3)t2 + q6t3,

Smaj
5 (q, t) = 1 + (4q + 9q2 + 9q3 + 4q4)t

+ (6q3 + 16q4 + 22q5 + 16q6 + 6q7)t2

+ (4q6 + 9q7 + 9q8 + 4q9)t3 + q10t4.

Notice that, unlike (des, inv), the coefficient of tk here is palindromic as a
polynomial in q.

The same idea we used to prove Theorem 1.3 can be used to prove the

following recurrence for the polynomials
〈
n
k

〉maj
. We will defer a detailed proof

to Problem 6.6.

Theorem 6.9. For any k and n > 0,

〈
n

k

〉maj

= [k + 1]

〈
n− 1

k

〉maj

+ qk[n− k]

〈
n− 1

k − 1

〉maj

. (6.6)

The key observation comes from the discussion preceding Theorem 6.1
about the effect of insertion of n into a permutation in Sn−1.

Notice that
[
n+ k

n

]
=

[
n+ k − 1

n− 1

]
+ qn

[
n+ k − 1

n

]
,

from which it follows by induction on n that

1

(1− t)(1 − qt) · · · (1− qnt)
=
∑

k≥0

[
n+ k

n

]
tk.

Manipulations of this generating function along with recurrence (6.6) can be
used to prove the following generalization of Corollary 1.1 due to MacMahon,
but often referred to as the Carlitz identity.

Corollary 6.1. For any n ≥ 0,

Smaj
n (q, t)

(1− t)(1 − qt) · · · (1− qnt)
=
∑

k≥0

[k + 1]ntk.

Another way to obtain Corollary 6.1 is to adapt the idea of P -partitions
from Section 3.2 to obtain a q-analogue of Theorem 3.1. The key ingredient
here is to define a q-analogue of the order polynomial:
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Ω(P ; k, q) =
∑

a∈A(P ;k)

qa1+···+an ,

where P is a labeled poset with n elements, and A(P ) denotes the set of
reverse P -partitions. See Problem 6.7.

6.6 q-Catalan numbers

We will now discuss q-analogues of Catalan numbers.
The first is a q-analogue of the Catalan numbers due to MacMahon. Define

Cn(q) =
1

[n+ 1]

[
2n

n

]
.

We will show that this q-analogue of the Catalan number Cn counts Dyck
paths according to major index. The idea is similar to earlier proof of the
formula for Catalan numbers. Using the formula for q-binomial coefficients,
we see that [

2n

n

]
= q

[
2n

n+ 1

]
+

1

[n+ 1]

[
2n

n

]
.

We will show that among all lattice paths in L(n, n), the paths that go
below the line y = x, i.e., those that are not Dyck paths, have major index
distributed as q

[
2n
n+1

]
.

Fix a path p that passes below the line y = x and let (x, y) be the first
minimum valley of the path. Recall from Section 2.4.2 that a minimum valley
is one for which x− y is greatest. By first minimum valley we mean the mini-
mum valley with smallest x-coordinate. Now let p′ denote the path obtained
by changing the East step immediately prior to (x, y) into a North step, and
keeping all the remaining steps the same. See Figure 6.3.

We can see immediately that p′ is a path from (0, 0) to (n− 1, n+1) such
that

maj(p) = maj(p′) + 1.

Clearly we can do this for any path in L(n, n) that passes below y = x, and
the map is reversible. (In p′ the point (x− 1, y) is the first minimum valley;
change the North step following it into an East step. If p′ does not go below
the line y = x, then consider (0, 0) to be its first minimum valley.) Hence,

∑

p∈L(n,n)−Dyck(n)

qmaj(p) =
∑

p′∈L(n−1,n+1)

qmaj(p′)+1 = q

[
2n

n+ 1

]
,

and we have established MacMahon’s formula for the q-Catalan numbers.
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•

•

• • • • •
(x, y)

•

• •

• • •

•

•

• •
y = x

first minimum valley

(n, n)

(n − 1, n + 1)

Fig. 6.3 The map p �→ p′ used for Theorem 6.10.

Theorem 6.10. For any n ≥ 0,

∑

p∈Dyck(n)

qmaj(p) =
1

[n+ 1]

[
2n

n

]
.

6.7 q-Narayana numbers

Taking the q-analogue of the formula for the Narayana number Nn,k in Equa-
tion (2.3), we have

Nn,k(q) =
1

[k + 1]

[
n

k

][
n− 1

k

]
. (6.7)

Let Dyck(n; k) denote the set of Dyck paths with 2n steps that have k
valleys (and k + 1 peaks). Then we have the following result, which can also
be found in MacMahon’s work.
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Theorem 6.11. For any n ≥ 1 and k ≥ 0,

∑

p∈Dyck(n;k)

qmaj(p) = qk(k+1) · 1

[k + 1]

[
n

k

][
n− 1

k

]
= qk(k+1)Nn,k(q).

To prove this theorem, we will develop a recurrence for the set of paths
that start at (0, 0), do not pass below the line y = x, end at coordinate (a, b),
and have k valleys. Denote this set by Dyck(a, b; k). In terms of words on
{N,E}, these are words with b letters N , a letters E, and such that every
initial subword has at least as many letters N as letters E. Hence the set is
empty if a > b.

Let us denote the major index generating function for these paths by

N(a,b),k(q) =
∑

p∈Dyck(a,b;k)

qmaj(p).

Theorem 6.11 applies to the special case of a = b = n.
It is easy to see that adding an E step to any path does not change major

index, and hence along the boundary of the line y = x we have

N(a,a),k(q) = N(a−1,a),k(q).

Now suppose a < b. By considering the location of the final valley of a
path in Dyck(a, b; k), we have

N(a,b),k(q) = N(a−1,b),k(q) + qa+b−1N(a−1,b−1),k−1(q)

+
(
N(a,b−1),k(q)−N(a−1,b−1),k(q)

)
. (6.8)

The first term accounts for paths that finish with an East step and hence
whose final valley is not in column a, the second term accounts for paths
whose final valley is at (a, b − 1), and the third term accounts for paths
whose final valley is at (a, j) for some j < b− 1.

To be clear about this last term, let A denote the set of paths in Dyck(a, b−
1; k) that have their final valley at (a, j) for some j < b − 1, and let B =
Dyck(a, b − 1; k) − A denote the complement of A. We have that a path is
in A if and only if it ends with a North step. Thus B is the set of paths in
Dyck(a, b − 1; k) that end in an East step. Each path p in B has the form
p = p′E for some path p′ in Dyck(a− 1, b− 1; k) and maj(p) = maj(p′). This
tells us that

∑

p∈B

qmaj(p) =
∑

p′∈Dyck(a−1,b−1;k)

qmaj(p′) = N(a−1,b−1),k(q),
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Fig. 6.4 Counting paths in Dyck(a, b; k) according to the location of the final valley.

and therefore
∑

p∈A

qmaj(p) = N(a,b−1),k(q)−N(a−1,b−1),k(q),

as desired.
An illustration to accompany this argument for (6.8) is in Figure 6.4.
We have the following formula for N(a,b),k(q), of which Theorem 6.11 is a

special case.
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Proposition 6.1. For any 0 ≤ a ≤ b,

N(a,b),k(q) = qk
2

([
a

k

][
b

k

]
−
[
a+ 1

k + 1

][
b − 1

k − 1

])
.

To prove Proposition 6.1 it is a straightforward matter of showing that the
proposed formula satisfies the recurrence in (6.8) with the same boundary
conditions. See Problem 6.8.

6.8 Dyck paths by area

Another natural q-analogue of the Catalan numbers is obtained by keeping
track of the area below the lattice path. Since Dyck paths do not go below
the line y = x, we will normalize the area statistic, so for p ∈ Dyck(n),
area(p) counts the number of unit squares above the line y = x. For example,
Figure 6.5 shows a path in Dyck(8) with area 7.

•

•

• •

•

• • • •

• •

•

•

• • • •

••

••••

•••• ••••••

••••

••• •••• ••••• ••••

•••• ••••

•••••

••••••

••••• ••••• ••••

y = x

point of last return

p1

p2

Fig. 6.5 A Dyck path with area 7, decomposed according to the point of last return
into paths p1 and p2.
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Let Carea
n (q) denote the generating function for the area statistic on

Dyck(n), i.e.,

Carea
n (q) =

∑

p∈Dyck(n)

qarea(p).

The quadratic recurrence relation for Catalan numbers, i.e.,

Cn =
n−1∑

i=0

CiCn−1−i,

can be understood for Dyck paths by decomposing a Dyck path p according
to its point of last return, i.e., the last time the path touches the line y = x
before reaching (n, n). If the path never touches the line y = x except at the
endpoints we consider (0, 0) to be the point of last return. See Figure 6.5.

Suppose (n − 1 − i, n − 1 − i) is the point of last return of a Dyck path
p. Then we can write p = p1Np2E, where p1 is a Dyck path from (0, 0) to
(n− 1− i, n− 1− i) and p2 is a Dyck path from (n− 1− i, n− i) to (n− 1, n),
i.e., a Dyck path of size i. Moreover, the area of p is

area(p) = area(p1) + area(p2) + i,

and we get the following quadratic recurrence for Carea
n (q).

Proposition 6.2. For n ≥ 1,

Carea
n (q) =

n−1∑

i=0

qiCarea
i (q)Carea

n−1−i(q). (6.9)

Carlitz produced an interesting formula for the generating function of the
polynomials Carea

n (q), in the form of a continued fraction. Let us define

Dyck(q, z) =
∑

n≥0

Carea
n (q)zn =

∑

Dyck paths p

qarea(p)z|p|,

where |p| = n for p ∈ Dyck(n).

Theorem 6.12. We have the following continued fraction expansion for
Dyck(q, z):

Dyck(q, z) =
1

1− z

1− qz

1− q2z

1− q3z

. . .

, (6.10)

where for k ≥ 1, the numerator of level k is qk−1z.
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•

•

•
•

•

p1

p2

p3

p4

Fig. 6.6 A Dyck path decomposed into prime Dyck paths.

Theorem 6.12 result can be proved using the recurrence of (6.9), but it
can also be given another interesting proof using “prime decomposition” of
paths. Call a Dyck path prime if the only points at which it touches the line
y = x occur at (0, 0) and (n, n). Write Dyck′(n) for the set of all prime Dyck
paths of length n. Further, let Dyck′ =

⋃
Dyck′(n) denote the set of all prime

Dyck paths and let Dyck =
⋃
Dyck(n) denote the set of all Dyck paths.

Notice that each path p ∈ Dyck has a unique “prime decomposition” into
concatenated prime paths, p1, p2, . . .. See, for example, Figure 6.6.

Now, letting Dyck′(q, z) denote the generating function for prime paths
by area and size, we have:

Dyck(q, z) = 1 + Dyck′(q, z) +
(
Dyck′(q, z)

)2
+
(
Dyck′(q, z)

)3
+ · · · ,

=
1

1−Dyck′(q, z)
. (6.11)

Further, there is a simple relationship between prime paths and arbitrary
Dyck paths. In fact we have a bijection Dyck′(n) ↔ Dyck(n − 1) since a
prime path in Dyck′(n) can be written uniquely as p′ = NpE, where p is
a Dyck path in Dyck(n − 1). We have area(p′) = area(p) + (n − 1) and
|p′| = |p|+ 1, so
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Dyck′(q, z) =
∑

p′∈Dyck′
qarea(p

′)z|p
′|,

= z
∑

p∈Dyck

qarea(p)(qz)|p|,

= zDyck(q, qz). (6.12)

Thus, by applying (6.12) to (6.11) we get

Dyck(q, z) =
1

1− zDyck(q, qz)
, (6.13)

and this functional equation can be applied to the Dyck(q, qz) appearing in
the denominator to obtain

Dyck(q, z) =
1

1− zDyck(q, qz)
,

=
1

1− z

1− qzDyck(q, q2z)

.

Continuing in this way, we find

Dyck(q, z) =
1

1− z

1− qzDyck(q, q2z)

,

=
1

1− z

1− qz

1− q2zDyck(q, q3z)

,

=
1

1− z

1− qz

1− q2z

1− q3zDyck(q, q4z)

,

...

=
1

1− z

1− qz

1− q2z

1− q3z

1− q4z

. . .

,

as claimed in Theorem 6.12.
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While a continued fraction formula can be elegant, it may seem a bit
esoteric at first. However it can be useful for explicit computation as well.
For example, if we wish to have the generating function for Dyck paths of size
n, we can truncate the continued fraction after n levels to obtain a rational
function and extract the coefficient of zn in the usual way. With n = 4, this
gives:

1

1− z

1− qz

1− q2z

1− q3z

=
1− z(q + q2 + q3) + z2q4

1− z(1 + q + q2 + q3) + z2(q2 + q3 + q4)
,

= 1 + Carea
1 (q)z + Carea

2 (q)z2 + Carea
3 (q)z3

+ Carea
4 (q)z4 +

∑

|p|>4,p=p1p2p3p4

qarea(p)z|p|,

where the final term is the sum over all paths with |p| > 4 and at most four
prime factors. That is, truncating after the first four levels of the continued
fraction produces a rational generating function for all Dyck paths with at
most four prime factors, and this includes all Dyck paths of size at most four.

We can refine the Narayana numbers by keeping track of the area under a
Dyck path along with its number of valleys. Recall from Proposition 2.1 that
we can write the Narayana polynomial Cn(t) as

Cn(t) =

n−1∑

k=0

Nn,kt
k =

∑

p∈Dyck(n)

tval(p).

Recall the decomposition p = p1Np2E, with p1 ∈ Dyck(n − 1 − i) and
p2 ∈ Dyck(i) discussed prior to Proposition 6.2 (see Figure 6.5). Notice that
p has a valley at the point of last return, so we have

val(p) = val(p1) + val(p2) + 1,

unless i = n − 1 and p1 is empty, in which case val(p) = val(p2). Hence, we
have a common refinement of (6.9) and (2.5).

Theorem 6.13. For n ≥ 1,

Carea
n (q, t) = qn−1Carea

n−1(q, t) + t

n−2∑

i=0

qiCarea
i (q, t)Carea

n−1−i(q, t).

We can also produce a continued fraction for counting Dyck paths by area
and valleys. Let

Dyck(q, t, z) =
∑

p∈Dyck

qarea(p)tval(p)z|p|,
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and
Dyck′(q, t, z) =

∑

p′∈Dyck′
qarea(p

′)tval(p
′)z|p

′|.

The first important observation is

Dyck(q, t, z) = 1+Dyck′(q, t, z)+t
(
Dyck′(q, t, z)

)2
+t2
(
Dyck′(q, t, z)

)3
+· · · ,

so that

tDyck(q, t, z) = (t− 1) +
1

1− tDyck′(q, t, z)
.

Next, notice that the number of valleys in p′ = NpE is val(p′) = val(p), so

Dyck′(q, t, z) = zDyck(q, t, qz).

From these observations, we can use induction to get the following result
that generalizes Theorem 6.12.

Theorem 6.14. We have the following continued fraction for Dyck paths
counted by area and number of valleys:

tDyck(q, t, z)=(t−1)+
1

1− z(t− 1)− z

1− qz(t− 1)− qz

1− q2z(t− 1)− q2z

. . .

.

Notes

Theorem 6.1 is due to Percy MacMahon. See [106]. Since MacMahon was a
major in the British army, what he called the “greater index” of a permuta-
tion, we now call the “major index.”

There is a wide variety of Euler-Mahonian pairs in the literature, e.g.,
[40, 52, 67, 71, 80, 82, 122, 136]. The results we chose to focus on here are due
to Richard Stanley [147] (Theorem 6.8) and MacMahon [106] (Corollary 6.1).

The q-analogues of the Catalan and Narayana numbers found in Theo-
rems 6.10 and 6.11 are due to MacMahon [106], though the arguments given
here are adapted from a paper by J. Fürlinger and Josef Hofbauer [78]. The
generating function for area appearing in Proposition 6.2 is due to Leonard
Carlitz and John Riordan [42].

The distribution for (val, area) over Dyck paths is not the most important
bivariate joint distribution for Dyck paths. There is a different story of “(q, t)-
Catalan numbers,” which study the pairs of statistics (area, bounce) and
(dinv, area). While we will not discuss bounce and dinv here, we remark that
both have the same distribution as area over all Dyck paths. Further,
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∑
qarea(p)tbounce(p) =

∑
qbounce(p)tarea(p) =

∑
qdinv(p)tarea(p).

While the second can be proved bijectively, the first is far from evident com-
binatorially. See Jim Haglund’s manuscript for more [87].

Problems

6.1. Prove Theorem 6.1 with a bijection. That is, define a bijection
φ : Sn → Sn such that maj(w) = inv(φ(w)).

6.2. Show that the q-binomial coefficients are symmetric,
[
a+b
a

]
=
[
a+b
b

]
via

a bijection, i.e., define a map L(a, b) → L(b, a) that preserves the areas of
paths.

6.3. Show that the bijection illustrated in Figure 6.1 takes area to inversion
number.

6.4. Prove Theorem 6.4 with a bijection L(a, b)→ L(a, b) that takes a path
with area k to a path with major index k.

6.5. From Problem 3.1 we know that w ∈ u � v (with u = 12 · · ·k and
v = (k + 1) · · ·n) if and only if Des(w−1) ⊆ {k}. Thus from Theorems 6.4
and 6.2 we have

[
n

k

]
=
∑

w∈u�v

qmaj(w) =
∑

w∈u�v

qinv(w
−1).

Is it true that maj(w) = inv(w−1)? If so, prove it. If not, define a bijection
φ : u� v → u� v such that maj(φ(w)) = inv(w−1).

6.6. Prove Theorem 6.9.

6.7. Prove Corollary 6.1 using the q-order polynomial and proving a refine-
ment of Theorem 3.1. Hint: use reverse P -partitions, in which a1 ≥ · · · ≥ an
and ai > ai+1 if i is a descent.

6.8. Prove Proposition 6.1, and establish Theorem 6.11 as a special case.



Chapter 7

Cubes, Carries, and an Amazing Matrix
(Supplemental)

7.1 Slicing a cube

In this supplemental chapter we will find the Eulerian numbers cropping up
in some surprising places.

First, consider cutting up the n-dimensional cube [0, 1]n according to the
braid arrangement. For example, Figure 7.1 shows this in three dimensions.

(0,0,0)

(0,0,1)

(1,0,0)
(0,1,0)

(0(0 0,0))))

Fig. 7.1 Slicing a cube with the braid arrangement, looking down the line x = y = z.

Ignoring overlaps on the boundaries, each region here is a simplex of the
form

Sw = {x ∈ R
n : 0 ≤ xw(1) ≤ xw(2) ≤ · · · ≤ xw(n) ≤ 1},

where w ∈ Sn. By symmetry, each of these regions has the same volume, and
since their union has volume 1, we get

vol(Sw) =
1

n!
.

© Springer Science+Business Media New York 2015
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Now consider slicing the cube by level sets. For fixed n, and any k =
0, 1, . . . , n− 1, let

Rk = {y ∈ [0, 1]n : k ≤ y1 + y2 + · · ·+ yn ≤ k + 1}.

For three dimensions, we have illustrated these slices in Figure 7.2. The fol-
lowing proposition suggests how to compute the volume of these slices.

(0,0,0)

(0,1,0)

k = 1

k = 2

Fig. 7.2 Slicing a cube with level sets.

Proposition 7.1. The volume of the kth slice of the n-cube is given by:

vol(Rk) =

〈
n
k

〉

n!
,

where
〈
n
k

〉
is the number of permutations of n with k descents.

This result is mentioned in Dominique Foata’s 1977 paper [67], in which he
asks for a combinatorial proof. Richard Stanley provided a beautifully simple
proof in a note at the end of Foata’s paper, which we describe here. (This is
Problem 51 in Stanley’s textbook [154].)

Let
Sk =

⋃

des(w−1)=k

Sw,

denote the union of points in the cones corresponding to permutations with k
descents. We will define a map φ : Sk →Rk that is “generically” a bijection,
in that it is bijective for all points such that no two coordinates are equal.
(Such points have measure zero and are irrelevant for the volume calculation.)

The map is given explicitly by φ(x1, . . . , xn) = (y1, . . . , yn) with

yi =

{
xi+1 − xi if xi < xi+1,

1 + xi+1 − xi if xi > xi+1,

where xn+1 = 1. If xi = xi+1 for some i, φ is undefined.
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Suppose x = (x1, . . . , xn) is a generic point in Sw. To say that xi > xi+1

is to say that i + 1 appears to the left of i in w, i.e., w−1(i + 1) < w−1(i).
In other words i is a descent of w−1. Notice that if des(w−1) = k, then∑

yi = k + 1− x1. Thus φ maps points from Sk to Rk.
For example, generic points in the region S631425 satisfy

0 < x6 < x3 < x1 < x4 < x2 < x5 < 1,

and these get mapped to

(y1, y2, y3, y4, y5, y6) = (x2−x1, 1+x3−x2, x4−x3, x5−x4, 1+x6−x5, 1−x6).

The sum of the coordinates under this map is
∑

yi = 3−x1, so 2 <
∑

yi < 3,
as expected since des(w−1) = 2. Notice that on Sw, the map φ is an affine
transformation, given here by:

y = φ(x) =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎝

0
1
0
0
1
1

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎝

−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1
0 0 0 0 0 −1

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎠

x.

The determinant of the linear part of this transformation has absolute value
1, so it is volume-preserving.

It remains to show that φ is invertible.
To reverse the map φ, we work from right to left, exploiting the observation

that xi = xi+1 − yi or xi = 1+ xi+1 − yi. Since 0 < xi < 1, only one of these
expressions can be correct. By convention yn = 1−xn, so we get started with
xn = 1− yn. Otherwise, once we have calculated xi+1 we get:

xi =

{
xi+1 − yi if xi+1 > yi,

1 + xi+1 − yi if xi+1 < yi.

To take an example, suppose

y = (.3, .14, .1592, .6, .53, .58, .97).

Working through the coordinates one at a time we conclude that

x7 = 1− y7 = .03,

x6 = 1 + x7 − y6 = .45,

x5 = 1 + x6 − y5 = .92,

x4 = x5 − y4 = .32,

x3 = x4 − y3 = .1608,
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x2 = x3 − y2 = .0208,

x1 = 1 + x2 − y1 = .7208 .

One can check that these coordinates define a point in the region corre-
sponding to w = 2734651, and applying φ will take x back to y.

A more succinct way to express the inverse transformation is to collect
partial sums from right to left, taking only the fractional part of the partial
sum as we go:

xi = 1− ((yi + · · ·+ yn) mod 1) .

Since the xi must be generic, we leave this inverse map undefined whenever
any subset of the yj sums to an integer. But if the yj are generic, this will
never happen, so for the volume calculation this set has measure zero.

We have shown that φ is generically bijective and volume-preserving. Thus
Proposition 7.1 follows.

7.2 Carries in addition

The volume calculation we just carried out turns out to have a surprising
application in the problem of the distribution of “carries” in addition.

Consider adding two numbers in base ten with the usual addition algo-
rithm. As we move from right to left we “carry” a 1 to the next column if
the sum in the previous column (plus the previous carried digit) adds up to
ten or more. How many carries will we expect to have?

Here is the sum of two thirty digit numbers:

carries: 000001 01011 11010 00101 00110 1001

27182 81828 45904 52353 60287 47135
+ 31415 92653 58979 32384 62643 38328

58598 74482 04883 84738 22930 85463

We carried a one in thirteen of the thirty columns, or about forty-three
percent of the time. Intuition tells us that we will carry a one about half the
time, and this is indeed what will bear out.

But now consider adding three numbers. Here we can carry 0, 1, or 2. For
example, here is the sum of three thirty digit numbers:

carries: 121011 11121 12111 11102 00001 0121

57721 56649 01532 86060 65120 90082
69314 71805 59945 30941 72321 21458

+ 16449 34066 84822 64364 72415 16665
143485 62521 46300 81367 09857 28205
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Of the thirty columns, seven carried zero, five carried two, and eighteen
carried a one. It certainly doesn’t seem that each carry is equally likely. Sym-
metry should suggest that carrying a zero has the same probability as carrying
a two. The fact that we carry a one much more frequently is suggested by the
fact that there are many more ways to obtain a number between 10 and 19
as a sum of three digits than there are ways to write a single digit number as
a sum of three digits. But what exactly is the probability of getting a carry
of two?

This is the problem considered by John Holte in [91]. (The title of this
chapter is a nod to his fine paper.) To quote Holte’s motivating question,

What is the long-run frequency of each possible carry value when we add any
number of long numbers represented in any base?

Or, when adding n random numbers in base b, what is the probability of
having a carry of k? Remarkably, we will see the answer depends only on n
and k, but not the base b. Let us denote the probability by pn,k.

Theorem 7.1. When adding n numbers in base b, the probability of having
a carry of k is

pn,k =

〈
n
k

〉

n!
,

where k = 0, 1, . . . , n− 1.

The form this answer takes suggests that we make a connection between
Holte’s question and Foata’s question. That is, we will show that the volume
calculation in Proposition 7.1 implies Theorem 7.1.

To see the connection, suppose we are adding n numbers in base b, and
that in a particular column we add digits d1, d2, . . . , dn, with 0 ≤ di ≤ b− 1.
If we carried a j from the previous column, then to say that we carry k into
the next column means

bk ≤ j + d1 + d2 + · · ·+ dn < b(k + 1). (7.1)

Now split j into n equal pieces so to write

j + d1 + d2 + · · ·+ dn = (d1 + j/n) + (d2 + j/n) + · · ·+ (dn + j/n).

Since 0 ≤ j ≤ n− 1, we have 0 ≤ j/n < 1 and so 0 ≤ (di + j/n) < b. Thus,
dividing (7.1) by b, we obtain

k ≤ x1 + x2 + · · ·+ xn < k + 1, (7.2)

where

0 ≤ xi =
di + j/n

b
< 1.
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Let ψ denote the map from integer n-tuples to the cube [0, 1]n given by
ψ(di) = (di + j/n)/b, depending on the prior carry of j in {0, 1, . . . , n− 1}.

Thus having a carry of k corresponds to a point in the kth slice of the
n-cube as discussed in Section 7.1. For fixed n and b, there are only finitely
many points (j, d1, . . . , dn) in [0, n− 1]× [0, b− 1]n. Thus, the image of these
points under ψ is finite as well. We want to argue that despite the discrete
nature of this problem, we can use the volume calculation to obtain the result
here. This can certainly be done if our points xi are geometrically uniform in
the n-cube.

If the digits di are uniformly random in {0, 1, . . . , b−1}, intuition tells the
points xi are distributed roughly uniformly in the interval [0, 1). While perfect
uniformity won’t always occur, we get something close enough to uniform.
For fixed j, di + j/n is just a slight shift away from uniform, and taking
all j together splits [0, 1) into n subintervals on which the xi are identically
distributed:

[0, 1/n) ∪ [1/n, 2/n)∪ · · · ∪ [1− 1/n, 1).

So whatever the probability of having a carry of j come in, this distribution
is repeated in n intervals of equal size in [0, 1), and this is good enough to
conclude that probability is proportional to volume.

Hence we can conclude Theorem 7.1 from the geometric result: choosing n
random digits in base b that results in a carry of k is equal to the probability
of choosing a random point in the kth slice of the unit cube. However while
[154] mentions this geometric argument, it was not the technique used by
Holte. We present his argument next.

7.3 The amazing matrix

Holte’s approach to the carries problem is to view the “carries process” as a
Markov chain. This is natural, since carrying a k depends only on the digits in
the column being added and the number j that was carried into that column.

Thus for fixed b and n, let π(j, k) denote the probability of “carrying out”
k given that we “carry in” j to a particular column. Then by (7.1),

π(j, k) =
(number of solutions (d1, . . . , dn) to (7.1))

bn
.

To count the integer solutions to (7.1) is to ask for the number of integer
solutions to

c+ d1 + d2 + · · ·+ dn = b(k + 1)− 1− j, (7.3)

where 0 ≤ c, d1, d2, . . . , dn ≤ b − 1. If we let r = b(k + 1) − 1 − j, then the
number of solutions to Equation (7.3) is the coefficient of zr in
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(1 + z + z2 + · · ·+ zb−1)n+1 =
(1 − zb)n+1

(1− z)n+1
.

Expanding both numerator and denominator as series in z, we find

(1− zb)n+1

(1− z)n+1
=

n+1∑

l=0

(−1)l
(
n+ 1

l

)
zbl
∑

m≥0

(
m+ n

n

)
zm,

=
∑

m,l≥0

(−1)l
(
n+ 1

l

)(
n+m

n

)
zbl+m,

=
∑

r≥0

(
n+1∑

l=0

(−1)l
(
n+ 1

l

)(
n+ r − bl

n

))

zr.

Given that
(
n+r−bl

n

)
= 0 if r < bl, the coefficient of zr only ranges over

l ≤ r/b = k + 1− (j + 1)/b. We therefore have the following explicit formula
for π(j, k).

Proposition 7.2. Suppose we are adding a list of n numbers in base b. The
probability of carrying out a k from one column to the next, given that we
carry in a j is

π(j, k) =
1

bn

∑

0≤l≤k+1−(j+1)/b

(−1)l
(
n+ 1

l

)(
n+ b(k + 1− l)− 1− j

n

)
.

The transition matrix Πn = (π(j, k))0≤j,k≤n−1 is what Holte calls the
“Amazing matrix.” Here are the first two matrices:

Π2 =
1

2b

(
b+ 1 b− 1
b− 1 b+ 1

)
, Π3 =

1

6b2

⎛

⎝
b2 + 3b+ 2 4b2 − 4 b2 − 3b+ 2

b2 − 1 4b2 + 2 b2 − 1
b2 − 3b+ 2 4b2 − 4 b2 + 3b+ 2

⎞

⎠ .

It turns out that the matrix Π is diagonalizable, and its eigenvalues are
1, 1/b, 1/b2, . . . , 1/bn−1, though the eigenvectors are independent of b.

Let V = Vn denote the matrix such that VΠV −1 = D, withD the diagonal
matrix with the indicated eigenvalues. For example, one can check

⎛
⎝

1 4 1
1 0 −1
1 −2 1

⎞
⎠ · 1

6b2

⎛
⎝

b2 + 3b+ 2 4b2 − 4 b2 − 3b+ 2
b2 − 1 4b2 + 2 b2 − 1

b2 − 3b+ 2 4b2 − 4 b2 + 3b+ 2

⎞
⎠ =

⎛
⎝

1 0 0
0 1/b 0
0 0 1/b2

⎞
⎠

⎛
⎝

1 4 1
1 0 −1
1 −2 1

⎞
⎠ ,
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so

V3 =

⎛

⎝
1 4 1
1 0 −1
1 −2 1

⎞

⎠ .

Let Vn = (v(j, k))0≤j,k≤n−1. It turns out that

v(j, k) =

k∑

l=0

(−1)l
(
n+ 1

l

)
(k + 1− l)n−j .

The matrices V4 and V5 are shown here:

V4 =

⎛

⎜
⎜
⎝

1 11 11 1
1 3 −3 −1
1 −1 −1 1
1 −3 3 −1

⎞

⎟
⎟
⎠ , V5 =

⎛

⎜
⎜
⎜
⎜
⎝

1 26 66 26 1
1 10 0 −10 −1
1 2 −6 2 1
1 −2 0 2 −1
1 −4 6 −4 1

⎞

⎟
⎟
⎟
⎟
⎠

.

Notice the Eulerian numbers appearing in the top row! This is because if
j = 0,

v(0, k) =
k∑

l=0

(−1)l
(
n+ 1

l

)
(k + 1− l)n,

which is the formula given in Equation (1.11) for the Eulerian number
〈
n
k

〉
.

For fixed j, v(j, k) is the coefficient of tk in

⎛

⎝
∑

l≥0

(−1)l
(
n+ 1

l

)
tl

⎞

⎠

⎛

⎝
∑

m≥0

(m+ 1)n−jtm

⎞

⎠ = (1 − t)n+1 Sn−j(t)

(1− t)n+1−j
,

where the second sum is the Carlitz identity given in Equation (1.10). Thus
we have a simpler way to describe the entries of V :

∑

k≥0

v(j, k)tk = (1− t)jSn−j(t),

where Sn−j(t) is the Eulerian polynomial.
Now let us verify that VΠ = DV .
We want to show that

n−1∑

k=0

v(j, k)π(k, l) =
v(j, l)

bj
,

for 0 ≤ j, l ≤ n− 1.
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Using the formulas we’ve derived, we have

n−1∑

k=0

v(j, k)π(k, l)

=
1

bn

n−1∑

k=0

l+1−(k+1)/b∑

m=0

(−1)m
(
n+ 1
m

)(
n− 1− k + (l + 1−m)b

n

)
v(j, k),

=
1

bn

l∑

m=0

(−1)m
(
n+ 1
m

) (l+1−m)b−1∑

k=0

(
n− 1− k + (l + 1−m)b

n

)
v(j, k).

(7.4)

If we let M = (l + 1−m)b− 1, we can rewrite the inner sum here as

M∑

k=0

(
n+M − k

n

)
v(j, k),

which we can recognize as the coefficient of tM in

⎛

⎝
∑

r≥0

(
n+ r

n

)
tr

⎞

⎠

⎛

⎝
∑

k≥0

v(j, k)tk

⎞

⎠ =
1

(1− t)n+1
(1 − t)jSn−j(t).

Using the Carlitz identity once more, we find

1

(1− t)n+1
(1 − t)jSn−j(t) =

Sn−j(t)

(1− t)n+1−j
,

=
∑

M≥0

(M + 1)n−jtM ,

and therefore
M∑

k=0

(
n+M − k

n

)
v(j, k) = (M + 1)n−j .

Returning to Equation (7.4), we now obtain

n−1∑

k=0

v(j, k)π(k, l) =
1

bn

l∑

m=0

(−1)m
(
n+ 1

m

)
((l + 1−m)b)n−j ,

=
1

bj

l∑

m=0

(−1)m
(
n+ 1

m

)
(l + 1−m)n−j ,

=
v(j, l)

bj
,

as desired.
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Since the largest eigenvalue of Π is 1, the Perron-Frobenius theorem tells
us the first row of V is proportional to the stable distribution for the carries
process. Hence Theorem 7.1 follows.

We finish this chapter by remarking that the Amazing Matrix has reap-
peared in some surprising places. For instance Francesco Brenti and Volkmar
Welker rediscovered the Amazing Matrix in commutative algebra [36], where
Π is essentially the transformation of a Hilbert series of a graded ring to its
bth “Veronese algebra.” In terms of generating functions, this is the map

h(t)

(1− t)d
=
∑

k≥0

akt
k �→

∑

k≥0

abkt
k =

h〈b〉(t)

(1− t)d
.

The transformation matrix for h �→ h〈b〉 is (after deleting the first row and
column) the Amazing Matrix.

Brenti and Welker analyze this transformation as they did for the barycen-
tric subdivision transformation, which is discussed in Chapter 9. Since the
stable distribution for the Amazing Matrix is the Eulerian distribution, they
find that repeatedly applying the Veronese map takes any h-polynomial to
the Eulerian polynomial in the limit. In particular, applying the map enough
times yields a real-rooted h-polynomial.

In a different direction, the Amazing Matrix shows up in the analysis of
card shuffling. Persi Diaconis and Jason Fulman have several papers on this
topic [57–59]. A “b”-shuffle of a deck of cards is a generalization of the usual
riffle shuffle, which is a b-shuffle for b = 2. In a b-shuffle we split the deck into
b piles of sizes c1, . . . , cb with probability

(
n

c1,...,cb

)

bn
.

Then we drop cards randomly from each of the piles, with probability pro-
portional to the size of the pile. The connection between carries in addition
and shuffling is most succinctly summarized by Theorem 1.1 of [58], which
we quote directly here:

The probability that the base-b carries chain goes from 0 to j in r steps is
equal to the probability that the permutation in Sn obtained by performing r
successive b-shuffles (started at the identity) has j descents.

The reader is encouraged to read [57] for a very friendly introduction to
this story.
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Combinatorial topology



Chapter 8

Simplicial complexes

Another setting in which the Eulerian numbers have arisen is in
combinatorial topology. In this chapter we will put some of our previous
work in the context of the study of simplicial complexes. While there is some
assumed familiarity with topological concepts, no formal topological back-
ground is required for understanding this chapter.

8.1 Abstract simplicial complexes

A simplicial complex Δ on a vertex set V is a collection of subsets F of V ,
called faces, such that:

• if v ∈ V then {v} ∈ Δ,
• if F ∈ Δ and G ⊂ F , then G ∈ Δ.

The dimension of a face F is dimF = |F |− 1. In particular dim ∅ = −1. The
dimension of the complex Δ itself, denoted by dimΔ, is the maximum of the
dimensions of its faces. Maximal dimensional faces are often called facets.

Using the common nomenclature, vertices are zero-dimensional faces,
one-dimensional faces are edges, two-dimensional faces are triangles, three-
dimensional faces are tetrahedra, and so on. A k-dimensional face is called a
k-simplex.

Let Fk(Δ) denote the set of all k-element sets in Δ ((k − 1)-dimensional
faces), and let ∂Fk(Δ) denote the boundary of this set, i.e., the set of all
(k − 1)-element subsets of the sets in Fk(Δ). That is,

∂Fk(Δ) =
⋃

G∈Fk(Δ)

{
F ∈

(
V

k − 1

)
: F ⊂ G

}
,
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where
(
V
k

)
denotes the set of all k-element subsets of the vertex set V .

With this notation, the conditions for Δ to be a simplicial complex can be
phrased as:

∂Fk(Δ) ⊆ Fk−1(Δ), for k = 1, 2, . . . , d.

That is, the boundary of the set of (k − 1)-faces is contained in the set of
(k − 2)-faces. The boundary of whole complex is simply the set of all faces
of Δ that are properly contained in some other face of Δ, i.e., ∂Δ is the set
of all non-maximal faces of Δ.

For us, Δ is a combinatorial object, not a geometric one. However, we can
construct the geometric realization of Δ, denoted ||Δ||, by creating a copy
of the standard geometric k-simplex for each abstract k-simplex, and gluing
faces according to inclusion of vertex sets in Δ. (The standard geometric k-
simplex is the convex hull of k+1 standard basis vectors.) More precisely, if F
and G are faces of Δ, we identify the geometric simplices ||F || and ||G|| along
the geometric realization of their common face: ||F ∩G||. When we attribute
a topological property to an abstract simplicial complex (e.g., Euler charac-
teristic, homology), what we really mean is that, up to homeomorphism, the
geometric realization has the property.

For example, if V = {1, 2, 3}, Δ = {∅, {1}, {2}, {3}, {1, 2}, {2, 3}} is a
one-dimensional simplicial complex, which we can represent pictorially as:

1 2 3
.

Similarly, the picture in Figure 8.1 encodes a two-dimensional simplicial
complex. This complex has one triangle, {1, 3, 4}, six edges, {0, 1}, {1, 2},
{1, 3}, {1, 4}, {2, 4}, {3, 4}, and five vertices, {0}, {1}, {2}, {3}, and {4}.

0

1 2

3 4

Fig. 8.1 A two-dimensional simplicial complex.

On the other hand, the set {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {1, 2, 3}} is not
a simplicial complex since it is missing the edge {2, 3}. It might look like this:
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•2

•1

•3••

••

••••

•

••

.

Notice that part of the boundary of the 2-dimensional cell is missing from
the complex.

Given a topological cell complex Δ (a bunch of open cells glued along their
boundaries, i.e., a regular CW -complex) there is a quite natural partial order
on its open cells given by F ≤Δ G if and only if the closure of G contains
the closure of F : F ⊆ G. We call this partial order the face poset of Δ.

In the case where Δ is a simplicial complex on vertex set V , the face poset
is an order ideal in the boolean algebra 2V defined by its maximal faces.
Conversely, any order ideal of a boolean algebra defines an abstract simplicial
complex, and for this reason abstract simplicial complexes are sometimes
called set systems. For example, the face poset of the complex shown in
Figure 8.1 is given in Figure 8.2.

∅

0 1 2 3 4

01 02 03 0412 13 14 23 24 34

012 023013 014 123 134124 234024 034

0123 0124 0134 0234 1234

01234

∅

1 3 4

13 14 34

134

33

313

4

4

4

34

1

114

2

∅

24

4442

12

1 2

∅

0 1

01

∅

1

∅

11

Fig. 8.2 The face poset of the complex in Figure 8.1 is the lower ideal highlighted.
The minimal non-faces are circled.
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Let P (Δ) denote the face poset of the complexΔ. It is self-evident that this
poset is ranked by one more than dimension, which for a simplicial complex
is just the cardinality of the subsets.

Observation 8.1 The face poset of a simplicial complex Δ has the following
interpretations for its rank generating function:

f(P (Δ); t) =
∑

F∈P (Δ)

trk(F ),

=
∑

F∈Δ

tdimF+1,

=
∑

F∈Δ

t|F |.

8.2 Simple convex polytopes

Many interesting simplicial complexes arise from convex polytopes. The sub-
ject of polytopes is vast, and we will only scratch the surface here. Our pur-
pose is only to provide a glimpse of an area in which simplicial complexes (and
the tools for studying them) have natural analogues. For a more thorough
treatment, see Ziegler’s book [169].

There are two standard, equivalent definitions of a convex polytope. One is
as the intersection of affine halfspaces (provided the intersection is bounded).
The other definition is the convex hull of a finite number of points in Eu-
clidean space. For the purposes of our discussion, take a convex polytope P to
be the convex hull of a finite number of points in Euclidean space. There is
a natural cell decomposition of the resulting body into vertices, edges, faces,
and so on, though now k-faces need not be simplices.

First, we define the vertices to be those points that do not lie on a line be-
tween two other points of P . To put it another way, any small one-dimensional
neighborhood around a vertex contains points not in P . In general, a k-
dimensional face F of P is a maximal collection of points in P that are con-
tained in a k-dimensional affine space, but for which any (k+1)-dimensional
neighborhood of F has points outside of P . If P is d-dimensional, the facets
of P refer to the (d− 1)-dimensional faces.

With this definition, the faces are closed sets, and inclusion of faces means
pointwise inclusion. We can study the face poset of a polytope and count
faces by dimension just as with a simplicial complex.

A simplicial polytope is one for which every face on the boundary of P is
a simplex, and in this case the boundary ∂P is the geometric realization of a
simplicial sphere.

A simple polytope of dimension d is one for which every vertex is adjacent to
exactly d facets. In this case, the polytope is “dual” to a simplicial polytope.
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That is, if P is a simple polytope in a vector space V there is a polytope P∗

in the dual space V ∗ given by

P∗ = {x ∈ V ∗ : 〈x,y〉 ≤ 1 for y ∈ P}.

When V = R
d, we have V ∼= V ∗, so we can view both polytopes as occupying

the same space. The pairing between P and P∗ is such that k-faces of P
correspond to (d− k)-faces of P∗. This maps P to the empty face, facets to
vertices and so on. Since vertices of P are contained in d facets, this means
the facets of P∗ have d vertices, i.e., they are simplices. Thus the dual of a
simple polytope is a simplicial polytope.

For example, in Figure 8.3 we see that the 3-cube is a simple polytope,
but not simplicial. Its dual is the octahedron, whose boundary is a simplicial
complex.

Recall that the dual of a poset (P,≤) is the poset (P ∗,≤), given by x ≤P y
if and only if y ≤P∗ x. Intuitively, it is the reverse of the order on P . The
following is a useful fact relating the face poset of a polytope and its dual.

Proposition 8.1. Let P (P) = (P,≤) be the face poset of a polytope P. Then
P (P∗) ∼= (P ∗,≤), that is, the face poset of dual polytope P∗ is isomorphic to
the dual poset of P .

See Figures 8.4 and 8.5 for an illustration. Full details can be found in
[169, Chapter 2].

P =

EE

A

B C

D

F

H

G

←→
ffffff

a

b

c

d

e
= P∗

Fig. 8.3 The cube is a simple polytope. Its dual, the octahedron, is simplicial.

Other examples of simple polytopes include the permutahedra and the
associahedra discussed in Chapter 5.

8.3 Boolean complexes

As mentioned, the face poset of a simplicial complex is an order ideal in 2V .
In particular, the interval [∅, F ] in the face poset is isomorphic to 2F , the
boolean algebra on the vertices of F . A boolean complex is a cell complex Δ
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A B C D E F G H

AB AD AE BC BF CD CG DH EF EH FG GH

ABCD ABEF ADEH BCFG CDGH EFGH

∅

P

Fig. 8.4 The face poset of the cube P in Figure 8.3.

ade abe bce cde adf abf bcf cdf

ae ed ad be ab ce bc cd af df bf cf

e a d b c f

∅

P∗

Fig. 8.5 The face poset of the octahedron P∗ in Figure 8.3.



8.4 The order complex of a poset 169

whose face poset requires only this weaker condition: every principal order
ideal in P (Δ) is boolean. (Recall a principal order ideal is the set of elements
below one particular element.) These are also sometimes called simplicial
posets, or, because we can think of every face as a combinatorial simplex,
triangulated manifolds.

Every simplicial complex is a boolean complex, but not conversely. Two
distinct faces of a simplicial complex cannot share the same vertex set, but in
a boolean complex this can happen. For example, the cell complex shown in
Figure 8.6 has two triangles glued together at the corners a and b. Since there
is more than one edge with vertex set {a, b}, this is not a simplicial complex.
Notice that if a boolean complex is not simplicial, as in this example, its face
poset is not a lattice, i.e., there is a collection of vertices with no least upper
bound.

a b

•

• a b •

• • • • ••

• •

Fig. 8.6 A boolean complex and its face poset.

8.4 The order complex of a poset

Given any finite poset P , there is a natural simplicial complex associated with
P called the order complex, denoted Δ(P ). The complex Δ(P ) has vertex set
V = P , and each face of Δ(P ) corresponds to a chain of elements of P :

a1 <P a2 <P · · · <P ak ↔ F = {a1, a2, . . . , ak} ∈ Δ(P ).

For example, in Figure 8.7, we see a poset P and its order complex.
It is an exercise to verify that Δ(P ) is indeed a simplicial complex for any

finite poset P . (See Problem 8.8.) A more interesting question is to ask what
complexes arise as the order complex of some poset. For example, one can
show the complex shown in Figure 8.1 is not the order complex of any poset.

While the order complex of a poset and the face poset of a complex are not
directly related, we remark that if Δ is a simplicial complex and P = P (Δ)
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P =

•
0

•1

•3

•
2

•4

Δ(P ) =

•
0

•1

•3

•2

•4

Fig. 8.7 A poset P and its order complex Δ(P ).

is its face poset, then Δ and the order complex of P have the same topology
(they are homeomorphic). In fact the order complex of P is known as the
barycentric subdivision of Δ, a special construction that will be discussed
further in Chapter 9.

8.5 Flag simplicial complexes

One reason why the complex of Figure 8.1 cannot be an order complex is that
order complexes are part of a special family of simplicial complexes known as
flag complexes. A flag complex is a simplicial complex whose minimal non-
faces in 2V are edges. We can see in Figure 8.2 that the simplicial complex
from Figure 8.1 has the triangle {1, 2, 4} as a minimal non-face. Hence, it is
not a flag complex and cannot possibly be the order complex of a poset. We
sometimes say a flag complex has no “missing faces” of dimension greater
than one.

Flag complexes are completely determined by their 1-skeleton, i.e., by
the graph showing only vertices and edges. Any time vertices a1, . . . , ak are
pairwise connected in a flag complex Δ, we are guaranteed that {a1, . . . , ak}
is a face of Δ. In graph theory, a collection of k pairwise connected vertices is
known as a complete graph on k vertices, or a k-clique. For this reason, flag
complexes are sometimes known as clique complexes.

To see that an order complex of a poset P is a flag complex, we first
form the comparability graph of P , by connecting elements a and b if and
only if a and b are comparable in P . Then the order complex Δ(P ) is the
clique complex for the comparability graph. Since the comparability graph
for a chain of n elements is itself a complete graph, the order complex of an
n-chain is an (n− 1)-simplex. See Figure 8.8.

Another broad class of flag complexes are those that arise from a sim-
plicial hyperplane arrangement. We say a linear hyperplane arrangement H
is simplicial if every face gives rise to a simplex when intersected with a
sphere. Rays become vertices, two-dimensional cones become edges, three-
dimensional cones become triangles, and so on. See Figure 8.9. The face
(0, 0, . . . , 0) at the center of the arrangement corresponds to the empty face
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P comparability graph Δ(P )

•0

•1

•2

•3

•0

•1 •2

•3 0

2

3

1

Fig. 8.8 The order complex of 4-chain is a 3-simplex.

in the simplicial complex, while the chambers in the complement of H corre-
spond to facets.

Fig. 8.9 A simplicial cone intersected with a sphere. Rays become vertices, two-
dimensional cones become edges, three-dimensional cones become triangles, and so on.

LetΣ = Σ(H) denote the cell complex obtained in this way, by intersecting
H with a sphere. Recall we used the same notation for the poset of faces of H
in Section 5.3—we now recognize the poset studied there as the face poset of
Σ. Clearly the geometric realization of such a complex is a sphere. We want
to verify that Σ is a flag simplicial complex as well.
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Recall from Section 5.3 that there is a geometrically defined associative
product of faces in any hyperplane arrangement, which we called the Tits
product. Given two faces F and G, the product FG is the first face entered
upon walking some small distance from F to G.

Proposition 5.3 states that, given any collection of faces, the faces are
pairwise commuting if and only if they lie on the boundary of a common
face. When applied to the rays of the hyperplane arrangement, this shows
that two vertices a, b of Σ are connected with an edge if and only if they
commute: ab = ba. If a1, . . . , ak are pairwise commuting vertices, then their
product, taken in any order, is a face of Σ. (Indeed, Proposition 5.3 also says
this product is the least upper bound for the collection {a1, . . . , ak} in the
face poset.) Thus Σ is the clique complex for its one-skeleton, i.e., it is a flag
complex.

Observation 8.2 If H is a simplicial hyperplane arrangement, then Σ(H)
is a flag simplicial sphere.

One final example we mention here is the simplicial complex dual to the
associahedron. Recall from Section 5.8 that faces of the associahedron are
encoded with planar rooted trees, or by a simple bijection, partial parenthe-
sizations of a string of n symbols. The vertices of this complex are given by
expressions that have only a single pair of parentheses. We say that two ver-
tices are adjacent if and only if the pairs of parentheses are noncrossing. That
is, if the positions of the parentheses from the first vertex are a and b, and
the positions of the parentheses from the second vertex are c and d, then we
cannot have a < c < b < d or c < a < d < b. Every larger parenthesization
can be decomposed in a natural way into a collection of mutually noncrossing
vertices, and every collection of pairwise noncrossing vertices gives rise to a
unique parenthesization. Thus the associahedron is the clique complex of the
graph given by pairs of noncrossing vertices. See Problem 8.9.

8.6 Balanced simplicial complexes

A simplicial complex Δ with vertex set V is called d-colorable if there is a
function c : V → {1, 2, . . . , d}, called a coloring of its vertices, such that for
every face F ∈ Δ, the restriction map c : F → {1, 2, . . . , d} is one-to-one.
That is, every face has distinctly colored vertices. If a (d − 1)-dimensional
complex Δ is d-colorable, we say it is a balanced simplicial complex.

A familiar example of a balanced simplicial complex is a bipartite graph.
It is a one-dimensional complex for which two colors, say white and black,
can be used to color the vertices so that every edge has one black vertex
and one white vertex. See Figure 8.10. A bipartite graph can have no three
pairwise connected vertices, a, b, c, since if we color a black, then one of b
or c must also be black. See the graph in Figure 8.10(b). Similar reasoning
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(a) bipartite

b

a

c

(b) not bipartite

Fig. 8.10 (a) A bipartite graph and (b) a non-bipartite graph.

shows that a bipartite graph can have no cycles of odd length, and in fact
this characterizes the bipartite graphs.

This fact about bipartite graphs is not important on its own, but is meant
only to illustrate how special the balanced d-complexes are among all d-
dimensional simplicial complexes.

As a different sort of example, we note that the order complex of a ranked
poset is balanced. Indeed, if P is a ranked poset, give each element a the color
rk(a)+1. Since a chain cannot have two elements of the same rank, each face
has distinctly colored vertices. A maximal chain in P corresponds to a facet
of Δ(P ), so the total number of colors equals the number of vertices in a
maximal dimensional face. Hence when P is a ranked poset, Δ(P ) is both a
balanced complex and a flag complex.

Observation 8.3 The order complex of a poset is a balanced flag complex.

8.7 Face enumeration

The rank numbers of the face poset give an important combinatorial invariant
of a simplicial complex (indeed, of any finite cell complex), which we call its
f -vector. This vector records the number of faces of each dimension. For a
simplicial complex Δ, we write

f(Δ) = (f0, f1, . . .),

with

fk = |{F ∈ Δ : |F | = 1 + dimF = k}|.

The polynomial f(P (Δ); t) = f(Δ; t) is called the f -polynomial, which we
now write without reference to the face poset, i.e.,

f(Δ; t) =
∑

F∈Δ

t|F | =
1+dimΔ∑

k=0

fkt
k.
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So for example, with Δ as in Figure 8.1, we have f(Δ) = (1, 5, 6, 1) and
f(Δ; t) = 1 + 5t+ 6t2 + t3.

While the f -vector encodes purely combinatorial data, it can be used to
deduce topological information. For example,

1−f(Δ;−1) = f1−f2+f3−· · · = (vertices)− (edges)+(faces)−· · · = χ(Δ),

is the Euler characteristic of Δ. For our purposes, we will find it more con-
venient to work with the reduced Euler characteristic,

χ̃(Δ) = −1 + χ(Δ) = −f(Δ;−1).

So, for example, since an n-simplex has f(Δ; t) = (1+t)n+1, and its boundary
has f(∂Δ; t) = (1 + t)n+1 − tn+1 we have

χ̃(n-ball) = 0

and
χ̃(n-sphere) = (−1)n.

Returning to the example in Figure 8.1, we see χ̃(Δ) = −1+5−6+1 = −1,
which we expect since Δ can be deformed into a 1-sphere (contract the edge
{0, 1} and collapse the triangle {1, 3, 4}).

As another example, let Δ be the boundary of the 3-simplex shown here:

Then we have f(Δ) = (1, 4, 6, 4), and χ̃(Δ) = −1 + 4 − 6 + 4 = 1 since Δ is
a 2-sphere.

What characterizes an f -vector of a simplicial complex? The entries are
obviously nonnegative integers, and f0 = 1, but what other restrictions are
there? Well, for one thing, if there are n vertices there can be at most

(
n
2

)

edges, since there is at most one edge for every pair of vertices. That is,
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f2 ≤
(
f1
2

)
.

This simple observation can be greatly generalized. It turns out there is a
sharp upper bound on the number of (k+1)-faces expressed as a polynomial
in fk. (Likewise, there is a sharp lower bound on the number of k faces re-
quired for a given number of (k + 1)-faces.) Collectively, these restrictions,
known as the Kruskal-Katona-Schützenberger inequalities (or KKS inequali-
ties), characterize the set of f -vectors of simplicial complexes. See Chapter 10.
We remark that characterizing f -vectors of boolean complexes is much, much
simpler. See Problem 8.7.

8.8 The h-vector

There is a transformation of the f -vector that can sometimes bring features
of the simplicial complex into sharp focus. One way to think of this trans-
formation is to write the f -vector in terms of right-justified copies of rows
of Pascal’s triangle. For example, if we consider the example of Δ shown in
Figure 8.1, with f(Δ) = (1, 5, 6, 1), we have:

(1, 5, 6, 1)
1× (1, 3, 3, 1)
2× (1, 2, 1)
−1× (1, 1)
−1× (1)

The coefficients used in this expansion, read from top to bottom, make up
the h-vector of Δ. So in this case, h(Δ) = (1, 2,−1,−1).

More generally, if Δ is (d − 1)-dimensional (so that the f -vector is
(f0, f1, . . . , fd)), let

Hd =

[
(−1)i+j

(
d− j

i− j

)]

0≤i,j≤d

.

Then we define the h-vector to be

h(Δ) = Hd · f(Δ).

For example, with f(Δ) = (1, 4, 6, 4), we have

Hd =

⎛

⎜⎜
⎜
⎝

(
3
0

)
−
(

2
−1

) (
1
−2

)
−
(

0
−3

)

−
(
3
1

) (
2
0

)
−
(

1
−1

) (
0
−2

)
(
3
2

)
−
(
2
1

) (
1
0

)
−
(

0
−1

)

−
(
3
3

) (
2
2

)
−
(
1
1

) (
0
0

)

⎞

⎟⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

1 0 0 0
−3 1 0 0
3 −2 1 0
−1 1 −1 1

⎞

⎟
⎟
⎠ ,
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and so

h(Δ) =

⎛

⎜⎜
⎝

1 0 0 0
−3 1 0 0
3 −2 1 0
−1 1 −1 1

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

1
4
6
4

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

1
1
1
1

⎞

⎟⎟
⎠ .

Notice that for any simplicial complex, f0 = h0 = 1, while

hd =
d∑

i=0

(−1)d−ifi = (−1)df(Δ;−1) = (−1)d χ̃(Δ).

The general formula for an entry of the h-vector is:

hk = fk

(
d− k

0

)
−
(
d− k + 1

1

)
fk−1 + · · ·+ (−1)i

(
d− k + i

i

)
fk−i + · · · ,

=

k∑

i=0

(−1)k−ifi

(
d− i

k − i

)
.

It is easily verified that the matrix Hd has inverse

H−1
d =

[(
d− j

i− j

)]

0≤i,j≤d

,

so there is no true loss of information when working with h-vectors instead
of f -vectors, provided we know the dimension of the complex.

If we define the h-polynomial to be the generating function for the h-vector,

h(Δ; t) =
d∑

i=0

hit
i,

we can state the linear relationship between the f -vector and the h-vector as:

f(Δ; t) =

d∑

i=0

hit
i(1 + t)d−i = (1 + t)dh(Δ; t/(1 + t)), (8.1)

and

h(Δ; t) =

d∑

i=0

fit
i(1 − t)d−i = (1− t)df(Δ; t/(1− t)). (8.2)

The form of Equation (8.1) should look familiar. If Σ(n) is the simpli-
cial complex dual to the permutahedron (obtained by intersecting the braid
arrangement with a sphere), Theorem 5.3 says

f(Σ(n); t) = (1 + t)n−1Sn(t/(1 + t)),
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i.e., the Eulerian polynomial is the h-polynomial of the permutahedron. Sim-
ilarly, Theorem 5.4 says the Narayana polynomial is the h-polynomial of the
associahedron.

8.9 The Dehn-Sommerville relations

One of the primary reasons for studying the h-vector is that it makes certain
relations among the face numbers more apparent. Just as the Euler charac-
teristic appears as the top entry in the h-vector, there are other, more subtle
relationships between the entries of the f -vector that depend on the topol-
ogy of Δ. The Dehn-Sommerville relations refer to the relations among face
numbers in simplicial spheres. They were originally studied in the case of
polytopes, and the idea can be applied to any triangulation of a manifold
without boundary. Victor Klee called such manifolds “Eulerian.” Nowadays,
the face poset of such a simplicial complex is known as an Eulerian poset.

Define the link of a face F ∈ Δ to be

lk(Δ;F ) = {G ∈ Δ : G ∩ F = ∅, G ∪ F ∈ Δ},

which we may abbreviate with lkF when Δ is understood. It turns out that if
Δ triangulates a manifold, links of nonempty faces are homologous to either
balls or spheres. They are balls when F lies on the boundary of Δ and spheres
otherwise. In particular, if Δ triangulates a manifold without boundary (such
as a sphere), then for any nonempty face F ,

χ̃(lkF ) = (−1)dim lkF .

We call a simplicial complex with this property an Eulerian complex, and
throughout the rest of this section we assume Δ is an Eulerian complex. For
the moment, however, we make no assumption about χ̃(lk ∅) = χ̃(Δ) itself.

Now assume further that all maximal faces of Δ have the same dimension.
In this case Δ is what is known as a pure simplicial complex. For pure com-
plexes, the dimension of the link of a face is its codimension. That is, if Δ is
(d− 1)-dimensional, and F is a nonempty face of Δ,

dim(lkF ) = dimΔ− dimF,

and therefore,
χ̃(lkF ) = (−1)d−|F |.

Now for any nonempty face F of Δ, define

φ(F ) =
∑

F⊆G∈Δ

(−1)|G|.
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Then letting H = G−F denote the complement of F in G, we haveH∩F = ∅
andH∪F = G ∈ Δ, i.e.,H ∈ lkF . Conversely, ifH ∈ lkF , then F ⊆ H∪F =
G is a face of Δ containing F . In other words, we have:

φ(F ) =
∑

H∈lkF

(−1)|F |+|H|,

= (−1)|F |
∑

H∈lkF

(−1)|H|,

= (−1)|F |f(lkF ;−1),
= (−1)|F |(− χ̃(lkF )),

= (−1)|F |(−1)d−1−|F |,

= (−1)d−1.

So if Δ is a pure Eulerian complex, φ(F ) is constant for every nonempty face!
Now if we sum φ(F ) over all faces of cardinality k, we get:

(−1)d−1fk =
∑

|F |=k

φ(F ),

=
∑

|F |=k

∑

F⊆G∈Δ

(−1)|G|,

=
∑

G∈Δ
k≤|G|≤d

∑

F⊆G
|F |=k

(−1)|G|,

=
∑

G∈Δ
k≤|G|≤d

(−1)|G|
(
|G|
k

)
,

=
∑

k≤i≤d

(−1)ifi
(
i

k

)
.

This is the first version of the Dehn-Sommerville relations.

Theorem 8.1 (Dehn-Sommerville, f-version). For any pure Eulerian
complex Δ with f(Δ) = (1, f1, . . . , fd), we have, for each k ≥ 1,

(−1)d−1fk =
∑

k≤i≤d

(−1)ifi
(
i

k

)
. (8.3)

For example, with d = 4 we have:

f1 = −f1
(
1
1

)
+ f2

(
2
1

)
− f3

(
3
1

)
+ f4

(
4
1

)
,

f2 = f2
(
2
2

)
− f3

(
3
2

)
+ f4

(
4
2

)
,

f3 = −f3
(
3
3

)
+ f4

(
4
3

)
,

f4 = f4
(
4
4

)
.
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and with d = 5 we get:

f1 = f1
(
1
1

)
− f2

(
2
1

)
+ f3

(
3
1

)
− f4

(
4
1

)
+ f5

(
5
1

)
,

f2 = −f2
(
2
2

)
+ f3

(
3
2

)
− f4

(
4
2

)
+ f5

(
5
2

)
,

f3 = f3
(
3
3

)
− f4

(
4
3

)
+ f5

(
5
3

)
,

f4 = −f4
(
4
4

)
+ f5

(
5
4

)
,

f5 = f5
(
5
5

)
.

(8.4)

In terms of linear algebra, we are saying the f -vector is in the fixed point
space of a certain linear transformation T , e.g., for d = 4 and d = 5, these
transformations are

⎡

⎢⎢
⎣

−1 2 −3 4
0 1 −3 6
0 0 −1 4
0 0 0 1

⎤

⎥⎥
⎦ and

⎡

⎢
⎢⎢
⎢
⎣

1 −2 3 −4 5
0 −1 3 −6 10
0 0 1 −4 10
0 0 0 −1 5
0 0 0 0 1

⎤

⎥
⎥⎥
⎥
⎦
,

respectively. Computing the dimension of the fixed point space of T boils
down to computing the rank of T −I, and the alternating ±1 on the diagonal
mean that T − I has rank �d/2�, e.g., for d = 4 and d = 5, T − I looks like:

⎡

⎢
⎢
⎣

−2 2 −3 4
0 0 −3 6
0 0 −2 4
0 0 0 0

⎤

⎥
⎥
⎦ and

⎡

⎢
⎢
⎢
⎢
⎣

0 −2 3 −4 5
0 −2 3 −6 10
0 0 0 −4 10
0 0 0 −2 5
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦
,

which both have rank 2.
So the f -vectors of Eulerian simplicial complexes live in a vector space of

roughly half the dimension of Δ. Is there is a change of basis of the f -vector
that allows us to see this fact? The answer is an emphatic “Yes!” and in the
remainder of this chapter we will describe ways to do so.

As a first step, let’s add a row with χ̃(Δ) to the top of the system of equa-
tions given by transformation T , and multiply the ith equation by (−1)d−1ti.
With d = 5 this is:

χ̃(Δ) = −f0
(
0
0

)
+ f1

(
1
0

)
− f2

(
2
0

)
+ f3

(
3
0

)
− f4

(
4
0

)
+ f5

(
5
0

)
,

f1 · t = (f1
(
1
1

)
− f2

(
2
1

)
+ f3

(
3
1

)
− f4

(
4
1

)
+ f5

(
5
1

)
) t,

f2 · t2 = (−f2
(
2
2

)
+ f3

(
3
2

)
− f4

(
4
2

)
+ f5

(
5
2

)
) t2,

f3 · t3 = (f3
(
3
3

)
− f4

(
4
3

)
+ f5

(
5
3

)
) t3,

f4 · t4 = (−f4
(
4
4

)
+ f5

(
5
4

)
) t4,

f5 · t5 = f5
(
5
5

)
t5.
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Summing both sides, with the right-hand side taken column-wise, we find:

(−1)d−1(f(Δ; t)− 1) + χ̃(Δ) = −f0 + f1(1 + t)− f2(1 + t)2 + f3(1 + t)3 − · · · ,
= −f(Δ;−(1 + t)),

or
(−1)df(Δ; t)− f(Δ;−(1 + t)) = (−1)d + χ̃(Δ). (8.5)

Now we can use the transformation in Equation (8.1) for expressing the
h-vector in terms of the f -vector, i.e.,

f(Δ; s) = (1 + s)dh(Δ; s/(1 + s)).

Take s = t and s = −(1 + t) respectively on the left-hand side of (8.5) to
rewrite it as:

(−1)d(1 + t)dh(Δ; t/(1 + t))− (−t)dh(Δ; (1 + t)/t) = (−1)d + χ̃(Δ),

or upon multiplying both sides by (−1)d,

(1 + t)dh(Δ; t/(1 + t))− tdh(Δ; (1 + t)/t) = 1 + (−1)d χ̃(Δ). (8.6)

Now let x = t/(1 + t), so that t = x/(1 − x). Then dividing both sides of
equation (8.6) by (1+ t)d = (t/x)d, i.e., multiplying by (x/t)d = (1− x)d, we
get:

h(Δ;x) − xdh(Δ; 1/x) = (1− x)d(1 + (−1)d χ̃(Δ)).

By comparing coefficients on the left and right, we have the h-version of the
Dehn-Sommerville relations.

Theorem 8.2 (Dehn-Sommerville, h-version). Suppose Δ is a pure Eu-
lerian complex of dimension d−1, with h(Δ) = (1, h1, . . . , hd). Then for each
k ≥ 0,

hk − hd−k = (−1)k
(
d

k

)
(1 + (−1)d χ̃(Δ)).

In particular, if χ̃(Δ) = (−1)d−1, the h-vector is palindromic:

hk = hd−k. (8.7)

This is point for us. If Δ is a sphere, or any triangulated manifold with the
same Euler characteristic, the h-vector is palindromic. Hence the space of h-
vectors of spheres is clearly �d/2�-dimensional, and since the transformation
f ↔ h is invertible, so is the space of f -vectors of spheres.

The Dehn-Sommerville relations give a very sophisticated reason why the
Eulerian numbers and Narayana numbers are palindromic: because they are
the entries of the h-vector of a sphere!

There are many interesting results and open questions regarding the char-
acterization of h-vectors of spheres, some of which are discussed further in
Chapter 10.
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Notes

Simplicial decomposition of topological spaces is a standard idea in algebraic
topology. See Allen Hatcher’s textbook for more from the point of view of
topologists [88]. Two classic textbooks on polytopes include one by Branko
Grünbaum [84] and another by Günter Ziegler [169].

Much of the work on connections between posets and simplicial complexes
was pioneered by Richard Stanley in the 1970s and 1980s, e.g., [144–147]. See
also work of Anders Björner [23], and [21] in which he connects poset theory
to general CW -complexes. Chapter 4 of Stanley’s textbook [154] discusses
many of these results and more. Flag complexes arise naturally in graph
theory, and they are of particular interest in the context of the Charney-Davis
conjecture, stated by Ruth Charney and Mike Davis in their 1995 paper [48]
and discussed further in Chapter 10.

The f -vectors of abstract simplicial complexes admit a complete charac-
terization known as the Kruskal-Katona-Schützenberger inequalities, given
in Chapter 10. These are due to, independently Joseph Kruskal in 1963
[98] and Gyula Katona in 1966 [94]. We attach the name of Marcel-Paul
Schützenberger because in 1959 he too described the inequalities in a tech-
nical report for MIT’s Research Laboratory of Electronics [134]. However
the note in which it appears is both hard to find and rather skimpy on de-
tails. Most people know of these inequalities simply as the “Kruskal-Katona”
inequalities.

In [151] Stanley characterizes the f -vectors of Boolean complexes. There
is also a characterization of the f -vector of a balanced simplicial complex,
due to Peter Frankl, Zoltán Füredi, and Gil Kalai [75]. See Chapter 10.

The Dehn-Sommerville relations were first stated in low dimensions by
Max Dehn [55], and in 1927 by Duncan Sommerville [143]. The proof we give
here is adapted from Victor Klee’s 1964 paper [95]. Stanley generalizes the
argument in Chapter 4 of [154] as well, where it can be phrased in terms of
the Möbius function of the face poset.

Problems

8.1. 1. Draw the Hasse diagram for the face poset of the following simplicial
complex:

= •
a

Δ

•b •c

•
d

•e .
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2. Draw a geometric realization of the abstract simplicial complex whose
Hasse diagram is below:

∅

{1} {2} {3} {4} {5} {6}

{1, 2} {1, 3} {2, 3} {2, 4} {3, 5} {4, 6} {5, 6}

{1, 2, 3}

.

8.2. Prove that the face poset of a simplicial complex can have no “bowties”
in its Hasse diagram:

•

•

•

•

i.e., no quadruple of faces, F1, F2, G1, G2, with dimF1 = dimF2 = dimG1 −
1 = dimG2 − 1, and such that F1 ⊂ G1, F1 ⊂ G2, F2 ⊂ G1, and F2 ⊂ G2.

8.3. Show that if a polytope P is a d-simplex, so is its dual, P∗.

8.4. Recall that PB(n) denotes the set of planar binary trees with n internal
nodes. Label the leaves from left to right by 0, 1, . . . , n, and then label the
internal nodes 1, 2, . . . , n so that node i is the one that falls between leaf i−1
and leaf i. Let li denote the number of leaves on the left branch of node i and
let ri denote the number of leaves on the right branch of node i. Let vi = liri
denote the product of these two numbers, and let v(τ) = (v1, . . . , vn). For

example, v( ) = (1), v( ) = (2, 1), and if

=¿

then v(τ) = (5, 2, 1, 3, 4, 24, 1, 2, 3).
Show that the convex hull of the points v(τ), as τ runs over all planar

binary trees in PB(n), is a geometric realization of the associahedron, whose
face poset was described combinatorially in Section 5.8.

8.5. Show that the permutahedron and associahedron are simple polytopes.
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8.6. A spin necklace is a cyclically ordered set partition of {1, 2, . . . , n}
(drawn clockwise in a circle) together with a labeling of the edges between
the blocks that respects block sizes (modulo n). That is, the difference be-
tween the edge labels on either side of a block must differ by the cardinality
of the block. For example,

46

135

2

3 6

1

is a spin necklace on {1, 2, 3, 4, 5, 6}.
Let ΣT (n) denote the set of spin necklaces on {1, 2, . . . , n}, together with

the empty set. We partially order ΣT (n) by declaring that ∅ is a unique
minimal element and two spin necklaces satisfy F ≤ΣT G if and only if G is
a refinement of F . For example, here is the Hasse diagram for ΣT (2):

12

1

12

2

1 2
1

2
1 2

2

1

.

Note that there are n! maximal elements, corresponding to permuta-
tions, and n rank one elements (vertices), corresponding to the single block
{1, 2, . . . , n}, with a “handle” labeled by some i = 1, 2, . . . , n. Show that
ΣT (n), is a boolean complex, i.e., simplicial poset, but not a simplicial com-
plex.

8.7. Show that f = (f0, f1, . . . , fd) is the f -vector of a (d − 1)-dimensional
boolean complex (simplicial poset) if and only if f0 = 1 and fi ≥

(
d
i

)
for each

i > 0.

8.8. Show that the order complex of a finite poset is a simplicial complex.

8.9. Verify that the simplicial complex dual to the associahedron is a flag
complex.

8.10. Let Σ(n) denote the simplicial complex for the braid arrangement.
Show that Σ(n) is balanced.

8.11. Show that the f -polynomial of Δ is real-rooted if and only if its h-
polynomial is real-rooted.



Chapter 9

Barycentric subdivision

Barycentric subdivision has long been a useful tool in geometry
and topology. It is an operation that preserves topology and is well-behaved
combinatorially. In this chapter we will study a transformation of Brenti and
Welker that maps the f -vector of a complex to the f -vector of its barycentric
subdivision.

9.1 Barycentric subdivision of a finite cell complex

The term barycenter refers to the center of mass of a convex polytope, and
there is a straightforward notion of barycentric subdivision for convex poly-
topes which goes as follows. Place a vertex on the center of mass of each
face of the polytope and connect vertices that lie in a common face. This
“triangulates” the polytope in the sense that every face resulting from the
subdivision is a simplex.

a b a b
sd

Fig. 9.1 A cell complex and its barycentric subdivision.
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Ignoring geometry, we can define the barycentric subdivision combinato-
rially: the barycentric subdivision of Δ is the order complex of the poset of
nonempty faces ofΔ. See Figure 9.1. Let sd(Δ) denote this abstract simplicial
complex. Then the k-faces of the complex sd(Δ) are k-chains of nonempty
faces of Δ, sometimes called flags :

F1 <Δ F2 <Δ · · · <Δ Fk.

In particular, each nonempty face of Δ corresponds to a vertex of sd(Δ).
As with general order complexes, the barycentric subdivision is a flag

complex. Moreover, since face posets are ranked by dimension, sd(Δ) is the
order complex of a ranked poset, and hence balanced.

Our combinatorial definition of barycentric subdivision makes sense for any
cell complex Δ for which there is a well-defined face poset, though we need to
be a little careful about the topology. If there are cells ofΔ with identifications
on their boundary, i.e., a (k− 1)-dimensional cell with fewer than k vertices,
information can get lost. For example, in Figure 9.2 we see that the cell
complex on a circle with just one edge and one vertex has a contractible
barycentric subdivision. However, if no face has self-identifications on its
boundary, e.g., if Δ is a polytope or a boolean complex, then Δ and its
barycentric subdivision are homeomorphic.

cell complex Δ combinatorial subdivision topological subdivision

v

E

v

v
<

Δ
E

E

Fig. 9.2 Combinatorial barycentric subdivision can destroy topology if Δ has cells
with self-identifications.

There is a topological definition of barycentric subdivision that does not
have this problem. In a true cell complex, each cell “remembers where it
came from” in the sense that we know how its boundary is mapped onto
lower-dimensional cells. Thus, we can “unglue” the cell, deform the cell con-
tinuously into a geometric simplex, perform barycentric subdivision, and glue
the subdivided cell back with the original boundary map. Doing this for each
cell gives the topological definition of barycentric subdivision.

In all that follows, however, we will only consider the combinatorial defi-
nition.
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9.2 The barycentric subdivision of a simplex

We will now do a careful enumeration of the faces in the barycentric subdi-
vision of a simplex. We will denote a simplex on vertex set V by 2V = {F :
F ⊆ V }.

Let’s do small examples first.
If V = {1, 2}, 2V = {∅, {1}, {2}, {1, 2}} the barycentric subdivision is

drawn: . We can list the flags of 2V as:

empty face vertices edges
∅ {1} {1} ⊂ {1, 2}

{2} {2} ⊂ {1, 2}
{1, 2}

so f(sd(2V )) = (1, 3, 2) and h(sd(2V )) = (1, 1, 0).
If V = {1, 2, 3}, the barycentric subdivision of a triangle is

.

We color the vertices in the barycentric subdivision to recall the dimension
of the corresponding face in the original complex. (This gives a balanced
coloring to sd(Δ).) Listing the flags we find:

empty face vertices edges triangles

∅ {1} {1} ⊂ {1, 2} {1} ⊂ {1, 2} ⊂ {1, 2, 3}
{2} {1} ⊂ {1, 3} {1} ⊂ {1, 3} ⊂ {1, 2, 3}
{3} {2} ⊂ {1, 2} {2} ⊂ {1, 2} ⊂ {1, 2, 3}
{1, 2} {2} ⊂ {2, 3} {2} ⊂ {2, 3} ⊂ {1, 2, 3}
{1, 3} {3} ⊂ {1, 3} {3} ⊂ {1, 3} ⊂ {1, 2, 3}
{2, 3} {3} ⊂ {2, 3} {3} ⊂ {2, 3} ⊂ {1, 2, 3}
{1, 2, 3} {1} ⊂ {1, 2, 3}

{2} ⊂ {1, 2, 3}
{3} ⊂ {1, 2, 3}
{1, 2} ⊂ {1, 2, 3}
{1, 3} ⊂ {1, 2, 3}
{2, 3} ⊂ {1, 2, 3}

and so f(sd(2V )) = (1, 7, 12, 6) and h(sd(2V )) = (1, 4, 1, 0).
Before moving on to larger cases, it will be a good idea to refine our

bookkeeping. Notice that there is a lot of redundancy in counting flags, in
that for every flag
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S1 ⊂ S2 ⊂ · · · ⊂ Sk ⊂ {1, 2, . . . , n},

there is another flag
S1 ⊂ S2 ⊂ · · · ⊂ Sk,

of one dimension lower. Thus,

f(sd(2V ); t) = (1 + t)f(sd(∂2V ); t). (9.1)

That is, the faces of the barycentric subdivision of ∂2V are precisely those
flags that do not contain the interior of the simplex, i.e., the face V =
{1, 2, . . . , n}.

For example, the barycentric subdivision of the boundary of the triangle
is (combinatorially) a hexagon:

,

corresponding to the flags below:

empty face vertices edges

∅ {1} {1} ⊂ {1, 2}
{2} {1} ⊂ {1, 3}
{3} {2} ⊂ {1, 2}
{1, 2} {2} ⊂ {2, 3}
{1, 3} {3} ⊂ {1, 3}
{2, 3} {3} ⊂ {2, 3}

.

Thus f(sd(∂2V )) = (1, 6, 6). We see that

(1+ t)f(sd(∂2V ); t) = (1+ t)(1+6t+6t2) = 1+7t+12t2+6t3 = f(sd(2V ); t),

as expected.
Moreover, since

f(sd(∂2V ); t) = (1 + t)|V |−1h(sd(∂2V ); t/(1 + t)),

and
f(sd(2V ); t) = (1 + t)|V |h(sd(2V ); t/(1 + t)),

Equation (9.1) gives us

h(sd(∂2V ); t) = h(sd(2V ); t). (9.2)
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That is, the barycentric subdivision of the boundary of the simplex has the
same h-vector as the barycentric subdivision of the simplex itself. For sim-
plicity then (since we have to keep track of fewer flags) we will restrict our
attention to sd(∂2V ). Note that it is highly unusual that a simplicial complex
and its boundary be related in such a way. See Problem 9.1.

For the subdivided tetrahedron we draw the boundary only:

and we get f(sd(∂2V )) = (1, 14, 36, 24) and h(sd(∂2V )) = (1, 11, 11, 1). Thus
f(sd(2V )) = (1, 15, 50, 60, 24) and h(sd(2V )) = (1, 11, 11, 1, 0).

So what are the h-vectors we have computed so far?

(1, 1), (1, 4, 1), (1, 11, 11, 1), . . .

if we throw in the vector (1) at the beginning for the trivial simplex, we have
the first few rows of Table 1.3. We have Eulerian numbers!

Let us prove this connection by counting flags carefully. Throughout the
remainder of Section 9.2, we will fix a finite vertex set V and let Δ = sd(∂2V )
denote the barycentric subdivision of the boundary of the simplex with vertex
set V .

This first step in computing f(Δ) is to modify our bookkeeping. Since flags
are sequences of nested subsets, we can keep track only of the new additions.
That is, given

∅ ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Sk ⊂ {1, 2, . . . , n} = V,

let Ai = Si+1 − Si, as i ranges from 0 to k, with S0 = ∅ and Sk+1 =
{1, 2, . . . , n}. Instead of the original flag, we can record the tuple (A0, A1,
. . . , Ak). For example, if V = {1, 2, 3, 4, 5, 6, 7}, the flag

∅ ⊂ {3, 4} ⊂ {3, 4, 6, 7} ⊂ {1, 3, 4, 6, 7} ⊂ {1, 2, 3, 4, 6, 7} ⊂ V,
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becomes the tuple
({3, 4}, {6, 7}, {1}, {2}, {5}).

Even better, we can write
34|67|1|2|5,

if we agree to list the elements of each Ai in increasing order and drop the
curly braces and commas. This is a set composition!

We enumerated set compositions in our study of the braid arrangement
in Section 5.6. So the complex Σ(n) (associated with the braid arrangement
H(n)) is isomorphic to the barycentric subdivision of the boundary of a sim-
plex. If we restate Theorems 5.2 and 5.3, we have the following.

Theorem 9.1. The barycentric subdivision of the boundary of the simplex
2V , with |V | = n, has the following f - and h-polynomials:

f(sd(∂2V ); t) =

n−1∑

k=0

(k + 1)!S(n, k + 1)tk,

where S(n, k) is a Stirling number of the second kind, and

h(sd(∂2V ); t) =

n−1∑

k=0

〈
n

k

〉
tk,

where
〈
n
k

〉
is an Eulerian number. In other words, the Eulerian polynomial is

the h-polynomial of sd(∂2V ).

9.3 Brenti and Welker’s transformation

We will now use the ideas developed for the simplex to study f - and h-vectors
of sd(Δ), where Δ is any boolean complex. Recall from Section 8.3 that a
boolean complex is a cell complex in which each face is a simplex. A simplicial
complex is a boolean complex, but this family also includes complexes whose
faces are not uniquely determined by their vertex sets.

As a starting point, let us consider the boolean complex and its barycentric
subdivision given in Figure 9.3.

With the vertices of Δ labeled a, b, c, d, and the two edges between a and
b labeled E1 and E2, we have the following flags of faces in sd(Δ).
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a
b

c

d

E1

E2

a
b

c

d

sd

Fig. 9.3 A boolean complex and its barycentric subdivision.

empty face vertices edges triangles

∅
{a}
{b}
{c}
{d}
E1 {a} ⊂ E1

{b} ⊂ E1

E2 {a} ⊂ E2

{b} ⊂ E2

{b, c} {b} ⊂ {b, c}
{c} ⊂ {b, c}

{b, d} {b} ⊂ {b, d}
{d} ⊂ {b, d}

{c, d} {c} ⊂ {c, d}
{d} ⊂ {c, d}

{b, c, d} {b} ⊂ {b, c, d} {b} ⊂ {b, c} ⊂ {b, c, d}
{c} ⊂ {b, c, d} {b} ⊂ {b, d} ⊂ {b, c, d}
{d} ⊂ {b, c, d} {c} ⊂ {b, c} ⊂ {b, c, d}
{b, c} ⊂ {b, c, d} {c} ⊂ {c, d} ⊂ {b, c, d}
{b, d} ⊂ {b, c, d} {d} ⊂ {b, d} ⊂ {b, c, d}
{c, d} ⊂ {b, c, d} {d} ⊂ {c, d} ⊂ {b, c, d}

We have f(Δ) = (1, 4, 5, 1) and f(sd(Δ)) = (1, 10, 16, 6). The beautiful
result of Brenti and Welker gives us the means for computing f(sd(Δ)) as a
simple linear transformation of f(Δ), which will now derive.

Notice that we have grouped the faces of sd(Δ) according to the last face
Sk in the flag. Within each of these groups, we can identify the flags

S1 ⊂ S2 ⊂ · · · ⊂ Sk,
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with set compositions of Sk, i.e., let Ai = Si+1 −Si for i = 0, . . . , k− 1, with
S0 = ∅. Then the composition A = A0|A1| · · · |Ak−1 corresponds to the flag

A0 ⊂ (A0 ∪A1) ⊂ · · · ⊂ (A0 ∪ A1 ∪ · · · ∪Ak−1).

For example, b|d|c denotes the flag {b} ⊂ {b, d} ⊂ {b, c, d} and bd|c denotes
the flag {b, d} ⊂ {b, c, d}.

We should be careful to first fix the flag we are working with, since, for
example, a|b could denote either the edge E1 or the edge E2. But once we
know which maximal face Sk the flag lives in, the set compositions of that
face are well defined.

For any fixed choice of face F of Δ, let Comp(F ) denote the set of
all set compositions A of the vertex set of F , i.e., all compositions A =
A0|A1| · · · |Ak−1 such that Ai ∩ Aj = ∅ and A0 ∪ · · · ∪ Ak−1 = F . These
compositions represent all the flags in sd(Δ) whose maximal element is F .
We denote by rk(A) = k − 1 the number of bars in A, i.e., the dimension of
the corresponding face of sd(Δ).

If |F | = j, then, as we saw in the case of the simplex, there are k!S(j, k) set
compositions of F with k parts. These are set compositions of rank rk(A) =
k − 1, and so ∑

A∈Comp(F )

t1+rk(A) =
∑

k≥0

k!S(j, k)tk.

Each face G ∈ sd(Δ) corresponds to a flag of faces of Δ, so summing over all
F in Δ, we have:

f(sd(Δ); t) =
∑

G∈sd(Δ)

t1+dimG,

=
∑

F∈Δ

∑

A∈Comp(F )

t1+rk(A),

=
∑

j≥0

fj(Δ) ·
∑

k≥0

k!S(j, k)tk,

=
∑

k≥0

⎛

⎝
∑

j≥0

fj(Δ)k!S(j, k)

⎞

⎠ tk.

Let us state a theorem.

Theorem 9.2. For any finite boolean complex Δ, with dimΔ = d − 1, the
f -vector of its barycentric subdivision is given by:

fk(sd(Δ)) =
∑

j≥0

fj(Δ)k!S(j, k).

We can also describe this transformation with a matrix. Let

Bd = [a!S(b, a)]0≤a,b≤d .
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Then, Theorem 9.2 says

f(sd(Δ)) = Bd f(Δ).

For example, with d = 3, we have

B3 =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 1 1
0 0 2 6
0 0 0 6

⎞

⎟
⎟
⎠ .

Thus, for Δ as in Figure 9.3, we have

f(sd(Δ)) =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 1 1
0 0 2 6
0 0 0 6

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

1
4
5
1

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

1
10
16
6

⎞

⎟
⎟
⎠ ,

as desired.

9.4 The h-vector of sd(Δ) and j-Eulerian numbers

Recall from Section 8.8 now that the transformation from f -vector to h-vector
is given by the matrix

Hd =

[
(−1)a+b

(
d− b

a− b

)]

0≤a,b≤d

,

and the inverse transformation is

H−1
d =

[(
d− b

a− b

)]

0≤a,b≤d

.

That is,
h(Δ) = Hdf(Δ) and f(Δ) = H−1

d h(Δ).

Then we can compose these operations to write h(sd(Δ)) = HdBd f(Δ),
or

h(sd(Δ)) = HdBdH
−1
d h(Δ). (9.3)

Denote this transformation by

Ed = Hd Bd H
−1
d .

It turns out that this transformation is beautifully combinatorial. We see
some small examples in Table 9.1.
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Table 9.1 The barycenter transformation on h-vectors.

d Hd Bd H−1
d Ed

0 (1) (1) (1) (1)

1

(
1 0

−1 1

) (
1 0
0 1

) (
1 0
1 1

) (
1 0
0 1

)

2

⎛

⎝
1 0 0

−2 1 0
1 −1 1

⎞

⎠

⎛

⎝
1 0 0
0 1 1
0 0 2

⎞

⎠

⎛

⎝
1 0 0
2 1 0
1 1 1

⎞

⎠

⎛

⎝
1 0 0
1 2 1
0 0 1

⎞

⎠

3

⎛

⎜⎜
⎝

1 0 0 0
−3 1 0 0
3 −2 1 0

−1 1 −1 1

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

1 0 0 0
0 1 1 1
0 0 2 6
0 0 0 6

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

1 0 0 0
3 1 0 0
3 2 1 0
1 1 1 1

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

1 0 0 0
4 4 2 1
1 2 4 4
0 0 0 1

⎞

⎟⎟
⎠

4

⎛

⎜⎜⎜
⎝

1 0 0 0 0
−4 1 0 0 0
6 −3 1 0 0

−4 3 −2 1 0
1 −1 1 −1 1

⎞

⎟⎟⎟
⎠

⎛

⎜⎜⎜
⎝

1 0 0 0 0
0 1 1 1 1
0 0 2 6 14
0 0 0 6 36
0 0 0 0 24

⎞

⎟⎟⎟
⎠

⎛

⎜⎜⎜
⎝

1 0 0 0 0
4 1 0 0 0
6 3 1 0 0
4 3 2 1 0
1 1 1 1 1

⎞

⎟⎟⎟
⎠

⎛

⎜⎜⎜
⎝

1 0 0 0 0
11 8 4 2 1
11 14 16 14 11
1 2 4 8 11
0 0 0 0 1

⎞

⎟⎟⎟
⎠

There are some tantalizing properties of the matrices in Table 9.1. Notice,
for example:

• the sum of all the entries in Ed is (d+ 1)!,
• the sum of the entries in each column of Ed is d!,
• the sum of the entries of row k of Ed, k = 1, . . . , d + 1, is the Eulerian

number
〈
d+1
k

〉
.

All of these properties and more will follow from the following theorem
due to Brenti and Welker.

First define the numbers
〈
n; j

k

〉
= |{w ∈ Sn : des(w) = k, w(1) = j}|,

as the j-Eulerian numbers. These numbers refine the usual Eulerian numbers
in the sense that

〈
n

k

〉
=

〈
n; 1

k

〉
+

〈
n; 2

k

〉
+ · · ·+

〈
n;n

k

〉
.

Similarly, define the j-Eulerian polynomials by
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Sn;j(t) =
∑

w∈Sn

w(1)=j

tdes(w) =
n−1∑

k=0

〈
n; j

k

〉
tk.

These are the generating functions for the columns of Ed. For future use, let
Sn;j = {w ∈ Sn : w(1) = j} denote the set of permutations beginning with j.

Theorem 9.3. Let Ed denote the barycenter transformation for h-vectors
h = (h0, . . . , hd). Then

Ed =

[〈
d+ 1; j

k

〉]

0≤k,j−1≤d

,

so that if h(t) = h(Δ; t), then

h(sd(Δ); t) =

d∑

j=0

hj(Δ)Sd+1;j+1(t).

We will now prove Theorem 9.3.
First, consider an entry Tr,s, 0 ≤ r, s ≤ d, of the matrix T = Bd H

−1
d . We

have:

Tr,s =

d∑

b=0

(
d− s

b− s

)
r!S(b, r) =

d∑

b=0

(
d− s

d− b

)
r!S(b, r).

Since this is a positive formula, it is not too hard to come up with a combi-
natorial interpretation for it. Let Tr,s denote the set of all set compositions
A = A0|A1| · · · |Ar of {1, 2, . . . , d+1} for which minA0 = s+1. To form such
a composition, we first choose d−b elements from among {s+2, . . . , d+1} to
put in A0 along with s+1. This can be done in

(
d−s
d−b

)
ways. To form A1| · · · |Ar

we need to create a set composition from the remaining b elements, and this
can be done in r!S(b, r) ways. See Figure 9.4.

1, 2, . . . , s, s + 1,

minA0

s + 2, . . . , d + 1

Choose d − b more for A0

Form A1| · · · |Ar from remaining b elements

Fig. 9.4 Forming an element of Tr,s.

Now let

Ts =
d⋃

r=0

Tr,s,
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denote the set of all set compositions of {1, 2, . . . , d + 1} with minA0 =
s + 1. Further, let Ts(t) denote the generating function counting these set
compositions according to the number of bars,

Ts(t) =
∑

A∈Ts

trk(A) =

d∑

r=0

Tr,st
r.

In other words, Ts(t) is the generating function for column s of the matrix T .
But each set composition A = A0|A1| · · · |Ar can be mapped to a per-

mutation w = w(A) by removing bars and writing each block in increasing
order. Since minA0 = s+1, this means w(1) = s+1. That is, w ∈ Sd+1;s+1.
Further, Des(w) ⊆ D, where D = D(A) = {|A0|, |A0|+ |A1|, . . . , |A0|+ |A1|+
· · ·+ |Ar−1|}, i.e., there must be bars in A where there are descents in w. So
we can write

Ts(t) =
∑

A∈Ts

trk(A),

=
∑

J⊆{1,2,...,d}

∑

A∈Ts

D(A)=J

t|J|,

=
∑

J⊆{1,2,...,d}

∑

w∈Sd+1;s+1

D(w)⊆J

t|J|,

=
∑

w∈Sd+1;s+1

∑

Des(w)⊆J

t|J|,

=
∑

w∈Sd+1;s+1

tdes(w)(1 + t)d−des(w),

= (1 + t)dSd+1;s+1(t/(1 + t)).

Since Ts(t) encodes column s of Bd H
−1
d , the polynomial HdTs(t) =

Sd+1;s+1(t) encodes column s of Ed = Hd Bd H
−1
d . That is, the columns

of Ed are encoded by the j-Eulerian polynomials, which proves Theorem 9.3.

9.5 Gamma-nonnegativity of h(sd(Δ))

In Theorem 9.4, we will see that if h(Δ) is nonnegative, then the polynomial
h(sd(Δ); t) is real-rooted. Moreover, if h(Δ) is palindromic, then h(sd(Δ)) is
also palindromic. By Observation 4.2, this implies that h(sd(Δ); t) is gamma-
nonnegative as well. We can also prove this gamma-nonnegativity directly by
investigating the j-Eulerian polynomials closely, as we now show.
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First, we can observe that if w(1) = 1, there is never a descent in the first
position, while if w(1) = n there is always a descent in the first position. Hence
the distributions of descents in Sn;1 and Sn;n are the Eulerian distribution
for Sn−1, i.e.,

Sn;1(t) = Sn−1(t) and Sn;n(t) = tSn−1(t).

In general, if we track the effect of removing the letter j from the beginning
of a permutation in Sn;j, we get the following recurrence relation.

Observation 9.1 For any 1 ≤ j ≤ n,

Sn;j(t) = t

j−1∑

k=1

Sn−1;k(t) +

n−1∑

k=j

Sn−1;k(t).

Next, notice that there are some nice symmetries in the array of j-Eulerian
numbers. For example, recall the involution w0 : Sn → Sn that maps i to
n + 1 − i. This involution swaps descents for ascents, and if w(1) = j, then
w0w(1) = n+1−j. Hence, we have the following observation about symmetry.

Observation 9.2 For any n, j, we have the following symmetries of j-
Eulerian numbers: 〈

n; j

k

〉
=

〈
n;n+ 1− j

n− 1− k

〉
,

and
Sn;j(t) = tn−1Sn;n+1−j(1/t).

We now define the palindromic j-Eulerian polynomials by lumping to-
gether classes fixed by the involution w0, namely all permutations beginning
with either j or n+ 1− j:

Sn;j(t) =
∑

w∈Sn;j∪Sn;n+1−j

tdes(w).

Observe that

Sn;j(t) =

{
Sn;j(t) + Sn,n+1−j(t) if j 	= (n+ 1)/2, and

Sn;j(t) if j = (n+ 1)/2.

By the symmetry seen in Observation 9.2, the polynomials Sn;j(t) have
palindromic coefficients, and hence a gamma vector. Note the symmetry axis
for Sn;j(t) is at degree �n−1

2 �. If

Sn;j(t) =

�(n−1)/2	∑

i=0

γ
(n;j)
i ti(1 + t)n−1−2i,

let γ(n;j) = (γ
(n;j)
0 , γ

(n;j)
1 , . . . , γ

(n;j)
�(n−1)/2	) denote the corresponding gamma

vector.
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We will develop a recursive argument for why γ(n;j) is nonnegative for all
n and j. This recurrence depends on another family of gamma vectors, from
the following polynomials, defined for 1 ≤ j < (n+ 1)/2:

S′
n;j(t) = tSn;j(t) + Sn;n+1−j(t).

Note that these polynomials are also palindromic by Proposition 9.2, with
symmetry axis at degree �n/2�. Hence S′

n;j(t) has a gamma vector, which we
denote by

γ′(n,j) = (γ
′(n,j)
0 , γ

′(n,j)
1 , . . . , γ

′(n,j)
�n/2	).

Note, however, that the shifted center of symmetry means we expand using
the basis Γn for S′

n;j(t), as opposed to Γn−1 for Sn;j(t).
For example,

S5;1(t) = 10t+ 28t2 + 10t3 = 10t(1 + t)2 + 8t2,

so γ(5;1) = (0, 10, 8), while

S′
5;1(t) = 2t+ 22t2 + 22t3 + 2t4 = 2t(1 + t)3 + 16t2(1 + t),

so γ′(5;1) = (0, 2, 16).
Now by applying Observation 9.1 to these gamma vectors, we get the

following recurrences.

Proposition 9.1. We have the following recurrences for the γ(n;j) and γ′(n;j):

1. If j = (n+ 1)/2, then

γ(n;(n+1)/2) = γ′(n−1;1) + γ′(n−1;2) + · · ·+ γ′(n−1;(n−1)/2).

2. For j < (n+ 1)/2,

γ(n;j) = 2

j−1∑

k=1

γ′(n−1;k) +

�n/2	∑

k=j

γ(n−1;k),

and

γ′(n;j) =

j−1∑

k=1

γ′(n−1;k) + 2

�n/2	∑

k=j

(0, γ(n−1;k)),

where for γ = (γ0, γ1, . . .), (0, γ) = (0, γ0, γ1, . . .).

Since these gamma vectors are nonnegative for small n and the recurrences
are nonnegative, we get the following corollary.

Corollary 9.1. The polynomials Sn;j(t) and S′
n;j(t) are gamma-nonnegative.
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As of this writing it is an open problem to find a combinatorial interpre-
tation for the entries in γ(n;j) and γ′(n;j). We remark that valley-hopping
clearly does not apply.

Returning now to h(sd(Δ)), suppose that h(Δ) = (h0, h1, . . . , hd) is non-
negative, hi ≥ 0, and palindromic, hi = hd−i. Then applying the transforma-
tion Ed will give us gamma-nonnegativity.

For example, if d = 5 and h(Δ) = (h0, h1, h2, h3 = h2, h4 = h1, h5 = h0),
then

h(sd(Δ))t =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

h0

27h0 + 18h1 + 12h2

92h0 + 102h1 + 108h2

92h0 + 102h1 + 108h2

27h0 + 18h1 + 12h2

h0

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

= h0

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

1
5
10
10
5
1

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

+ (22h0 + 18h1 + 12h2)

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

0
1
3
3
1
0

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

+ (16h0 + 48h1 + 72h2)

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

0
0
1
1
0
0

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

.

Equivalently,

h(sd(Δ); t) = h0S6;1(t) + h1S6;2(t) + h2S6;3(t),

or

γ(sd(Δ)) = h0γ
(6;1) + h1γ

(6;2) + h2γ
(6;3),

= h0(1, 22, 16) + h1(0, 18, 48) + h2(0, 12, 72).

In general, we get the following result.

Corollary 9.2. If Δ is a boolean complex with a palindromic h-vector (h0, h1,
. . . , hd), then

h(sd(Δ); t) =

�d/2	∑

i=0

hiSd+1;i+1(t),

and

γ(sd(Δ)) =

�d/2	∑

i=0

hiγ
(d+1;i+1).

In particular, if hi ≥ 0 for all i, h(sd(Δ)) is gamma-nonnegative.

The h-vector of a sphere is always nonnegative (this is far from obvious—
see Chapter 10), and though we did not prove it, the Dehn-Sommerville
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relations can be applied to boolean complexes, not only simplicial complexes.
Thus if Δ is a triangulated sphere, Corollary 9.2 tells us h(sd(Δ)) is gamma-
nonnegative.

9.6 Real roots for barycentric subdivisions

Brenti and Welker asked whether h(sd(Δ); t) is log-concave or real-rooted.
This is not always so, but they show the following remarkable result. For
any polynomial h(t) = h0 + h1t+ · · ·+ hdt

d, define the sequences of complex

numbers {β(n)
i }n≥0 as (reciprocals of) the roots of the polynomial obtained

by n applications of Ed to h(t):

En
d h(t) =

d∏

i=1

(1 − β
(n)
i t).

So if h(t) = h(Δ; t), then En
d h(t) = h(sdn(Δ); t) is the h-polynomial of the

nth barycentric subdivision of Δ.

Theorem 9.4 (Real roots). We have the following results for real rooted-
ness.

1. If h(t) = h0 + h1t + · · · + hdt
d is a nonnegative integer polynomial, then

h′(t) = Ed h(t) has only real roots.
2. For any d > 1, there are negative real numbers α2, . . . , αd−1 such that for

every (d−1)-dimensional boolean complex Δ, the sequence of complex roots

β
(n)
i associated with h(sdn(Δ); t) satisfies:

a. the numbers β
(n)
i , 1 ≤ i ≤ d, are real for n sufficiently large,

b. lim
n→∞

β
(n)
1 = 0,

c. lim
n→∞

β
(n)
i = αi for 2 ≤ i ≤ d− 1,

d. lim
n→∞

β
(n)
d = −∞.

Whoa! Part (1) says that if we have any nonnegative h-polynomial,
Ed h(t) is real-rooted. If h is palindromic, then Ed h(t) is palindromic and
real rooted, which by Observation 4.2 implies that it is log-concave and
gamma-nonnegative. We can prove part (1) with an interlacing argument for
j-Eulerian polynomials. See Problem 9.6.

Part (2) follows from (1) by some linear algebra on Ed. See Problem 9.7. In
short, the matrix Ed /d! has largest eigenvalue 1, with multiplicity one, and
we can take the corresponding eigenvector, e, to be nonnegative. Hence, there
is some n such that (Ed /d!)

nh(t) is close enough to e(t) that all its coefficients
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are positive. Part (1) then says that (Ed /d!)
n+1h(t) is both positive and real-

rooted. Furthermore, real-rootedness holds for all subsequent applications of
the transformation. We conclude e(t) is real-rooted, and we call these roots
α1 = 0, α2, . . . , αd−1. The details are outlined in Problem 9.8.

One of the morals of this theorem is that while the f - and h-vectors are
useful combinatorial tools, repeated barycentric subdivision “smooths out”
a lot of the subtlety. All that is retained is the Euler characteristic and the
dimension.

Notes

Nearly all the content in this chapter is drawn from either a 2008 paper of
Francesco Brenti and Volkmar Welker [35] or a paper from 2011 by Eran
Nevo, Bridget Tenner and the author [112]. Brenti and Welker’s result is also
studied and extended in the work of Emanuele Delucchi, Aaron Pixton, and
Lucas Sabalka [56], as well as in the work of Satoshi Murai and Nevo [109].

It is worth remarking that another paper by Brenti and Welker from 2009
also involves a linear transformation of h-polynomials with a combinatorial
description. See [36] and Chapter 7.

Problems

9.1. Find an example of a simplicial complex Δ for which f(sd(Δ)) =
(1, 15, 26, 12) and f(sd(∂Δ)) = (1, 11, 10).

9.2. Prove that the j-Eulerian polynomials, while not always palindromic,
are in fact unimodal.

9.3. Define a collection of polynomials f1, f2, . . . , fk, to be compatible if every
nonnegative linear combination of them,

c1f1 + c2f2 + · · ·+ ckfk,

with c1, . . . , ck ≥ 0, is real-rooted. (In particular each polynomial fi must be
real-rooted.)

Prove that if f1, f2, . . . , fk are pairwise compatible polynomials with pos-
itive leading coefficients, then the entire collection is compatible.

9.4. Prove that the j-Eulerian polynomials are real-rooted (and hence log-
concave and unimodal).

9.5. Show that Sn;j(t) and S′
n;j(t) are real-rooted.
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9.6. Prove Part 1 of Theorem 9.4.

9.7. Since Bd is triangular, we can read its eigenvalues: 1, 1, 2, 6, . . . , d!. Since
Ed is similar to Bd, it has the same eigenvalues. Define the normalized trans-
formations, Bd = Bd /d! and Ed = Ed /d!, so that they have largest eigen-
value 1.

By the Perron-Frobenius theorem, Ed has a fixed point. Compute this
fixed point for d = 1, . . . , 10.

9.8. Prove the rest of Theorem 9.4. In particular, show that the fixed point
e(t) has only nonpositive real roots αi as described in the theorem.



Chapter 10

Characterizing f-vectors
(Supplemental)

10.1 Compressed simplicial complexes

What characterizes an f -vector of a simplicial complex? The entries are obvi-
ously nonnegative integers, and f0 = 1, but what other restrictions are there?
Well, for one thing, if there are n vertices there can be at most

(
n
2

)
edges,

since there is at most one edge for every pair of vertices. That is,

f2 ≤
(
f1
2

)
.

This simple observation can be greatly generalized. It turns out there is a
sharp upper bound on the number of (k+1)-faces expressed as a polynomial
in fk. (Likewise, there is a sharp lower bound on the number of k faces re-
quired for a given number of (k + 1)-faces.) Collectively, these restrictions,
known as the Kruskal-Katona-Schützenberger inequalities (or KKS inequal-
ities), characterize the set of f -vectors of simplicial complexes. We remark
that characterizing f -vectors of boolean complexes is much, much simpler.
See Problem 8.7 (Fig. 10.1).

To explain the KKS inequalities, we will introduce the notion of the com-
pression of a simplicial complex. For a simplicial complex Δ, its compres-
sion, C(Δ), is a canonical simplicial complex with the same f -vector. That
is, C(Δ) depends only on the f -vector of Δ, so that if f(Δ) = f(Δ′), then
C(Δ) = C(Δ′). When C(Δ) = Δ, we say that Δ is a compressed complex.
We will prove the KKS inequalities hold for compressed complexes. Once we
have shown the compression of a simplicial complex is well defined, this will
prove the KKS inequalities hold for all simplicial complexes.

To introduce the idea of compression, we first digress into a discussion of
the reverse lexicographic, or “revlex” order on k-element sets of nonnegative

© Springer Science+Business Media New York 2015
T.K. Petersen, Eulerian Numbers, Birkhäuser Advanced Texts Basler
Lehrbücher, DOI 10.1007/978-1-4939-3091-3 10
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Fig. 10.1 The revlex order on k-sets.

integers. We use
(
N

k

)
to denote the set of all k-element sets, or “k-sets,” of

nonnegative integers. Let S and T be distinct sets of integers in
(
N

k

)
. Then

we write
S ≺ T

if and only if the list (sk, . . . , s1) appears before (tk, . . . , t1) in lexico-
graphic order. In other words, we can think of “revlex” as short for “lex-
icographic order on the elements written in reverse order.” For example,
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{2, 4, 5, 6} ≺ {0, 1, 4, 7} since (6, 5, 4, 2) is lexicographically earlier than
(7, 4, 1, 0). In examples, we will usually write k-sets S = {s1 < · · · < sk}
as words sk · · · s1. Figure 10.2 lists the first few k-sets in revlex order, for
small k, and Figure 10.1 visualizes k-sets with grayscale colors with the order
increasing down columns.

Another way to think about revlex is to say S ≺ T if and only the largest
element for which S and T differ is in T , i.e., max(S − T ) < max(T − S). To
put it another way, S ≺ T if either:

• max(S) < max(T ), or
• max(S) = max(T ) = m and S − {m} ≺ T − {m} as (k − 1)-sets.

This second characterization gives us a nice inductive understanding of revlex
order.

0 : ∅
1 : 0 ≺ 1 ≺ 2 ≺ 3 ≺ 4 ≺ 5 ≺ · · ·
2 : 10 ≺ 20 ≺ 21 ≺ 30 ≺ 31 ≺ 32 ≺ 40 ≺ 41 ≺ 42 ≺ 43 ≺ 50 ≺ · · ·
3 : 210 ≺ 310 ≺ 320 ≺ 321 ≺ 410 ≺ 420 ≺ 421 ≺ 430 ≺ 431 ≺ 432 ≺ · · ·
4 : 3210 ≺ 4210 ≺ 4310 ≺ 4320 ≺ 4321 ≺ 5210 ≺ 5310 ≺ 5320 ≺ 5321 ≺ · · ·
5 : 43210 ≺ 53210 ≺ 54210 ≺ 54310 ≺ 54320 ≺ 54321 ≺ 63210 ≺ 64210 ≺ · · ·

Fig. 10.2 Revlex order on k-sets, k ≤ 5.

The successor of a set S = {s1, . . . , sk}, with s1 < · · · < sk, is easily
described. If s2 > s1 + 1, then the k-set immediately following S is {s1 +
1, s2, . . . , sk}. Otherwise, let si be the smallest element of S such that si + 1
is not in S. Then the successor of S is:

{0, 1, . . . , i− 2, si + 1, . . . , sk}.

That is, we increase si by one and replace any preceding elements with the
smallest possible values. For example, here are a few consecutive 6-sets in
revlex order:

· · · ≺ 976541 ≺ 976542 ≺ 976543 ≺ 983210 ≺ 984210 ≺ · · · .

Let Fk(j) denote the jth k-set in revlex order, and let Fk(j) denote the
set of the first j k-sets in revlex order, i.e.,

Fk(j) =

{
S ∈

(
N

k

)
: S � Fk(j)

}
.

For example, F4(6) = {0, 1, 2, 5}, and

F4(6) = {3210, 4210, 4310, 4320, 4321, 5210}.

Now let Δ be a simplicial complex with f -vector f(Δ) = (f0, f1, . . . , fd).
The compression of Δ is defined to be the union, for k = 0, 1, . . . , d, of the
first fk k-sets. In other words,
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C(Δ) =

d⋃

k=0

Fk(fk).

For example, if Δ is the complex from Figure 8.1, with f(Δ) = (1, 5, 6, 1),
the associated compressed complex is

C(Δ) = {∅} ∪ F1(5) ∪ F2(6) ∪ F3(1).

Figure 10.3 shows a portion of revlex order, with the faces of Δ highlighted
in bold, the faces of C(Δ) in boxes.

∅
0 ≺ 1 ≺ 2 ≺ 3 ≺ 4 ≺ 5 ≺ 6 · · ·
10 ≺ 20 ≺ 21 ≺ 30 ≺ 31 ≺ 32 ≺ 40 ≺ 41 ≺ 42 ≺ 43 ≺ 50 ≺ · · ·
210 ≺ 310 ≺ 320 ≺ 321 ≺ 410 ≺ 420 ≺ 421 ≺ 430 ≺ 431 ≺ 432 ≺ · · ·

Fig. 10.3 Faces of Δ (in bold) and C(Δ) (boxed) shown among all k-sets in revlex
order.

We can see C(Δ) in Figure 10.4. Notice that while compression preserves
dimension and Euler characteristic, it does not respect topology more broadly.
Indeed, the complex Δ in Figure 8.1 is connected, whereas C(Δ) has two
connected components.

0

12

3 4

Fig. 10.4 The compression of two-dimensional simplicial complex.

To achieve our goal of characterizing the set of f -vectors of simplicial
complexes, the most important theorem we will need is the following.

Theorem 10.1 (Compression of a simplicial complex). If Δ is a sim-
plicial complex, then its compression C(Δ) is a simplicial complex.
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This theorem means that it suffices to characterize the f -vectors of com-
pressed complexes.

The boundary of the set of k-faces of Δ is (by definition of simplicial
complex) contained in the set of (k − 1)-faces of Δ. We need to show that
compression preserves this property. For this we will apply the following
lemma.

Lemma 10.1. If F is a collection of k-sets and G is a collection of (k−1)-sets
such that

∂F ⊆ G,

then
∂C(F) ⊆ C(G).

Theorem 10.1 follows immediately, since we can relabel the vertices of Δ
so that they are {0, 1, . . . , n}. Taking F = Fk(Δ) and G = Fk−1(Δ), and
applying the lemma for each k = 1, 2, . . . , d, implies that

∂Fk(C(Δ)) ⊆ Fk−1(C(Δ)).

In other words, C(Δ) is a simplicial complex.
We will now prove Lemma 10.1. The proof is inductive and rather involved,

so there is no major harm in skipping it. However, we will explore some
interesting features of revlex order along the way, so there is no major harm
in reading it, either.

10.2 Proof of the compression lemma

Let F and G be families of sets as in Lemma 10.1. That is, let F be a collection
of k-sets, and let G be a collection of (k − 1)-sets such that

∂F ⊆ G.

We wish to show that the boundary of the compression of F is contained in
the compression of G. Of course it suffices to take G = ∂F , which we will
assume from now on. We will proceed by induction on k and m, where m
denotes the largest element appearing in a set of F or G.

If k = 1, of course, this is trivial, while if the largest element appearing
in F is n = k − 1, i.e., if F = {{0, 1, 2, . . . , (k − 1)}}, then the result follows
since C(F) = F and C(∂F) = ∂F .

The main idea will be to split, for any 0 ≤ i ≤ m, the set of k-sets into
those sets containing i and those not containing i. That is,

(
N

k

)
=

(
N

k

)

i

⋃(N
k

)

i

,
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where

(
N

k

)

i

=

{
S ∈

(
N

k

)
: i ∈ S

}
and

(
N

k

)

i

=

{
S ∈

(
N

k

)
: i /∈ S

}
.

We give the sets
(
N

k

)
i
and

(
N

k

)
i
the total ordering inherited from

(
N

k

)
, i.e.,

revlex order.
For example, if k = 4 and i = 2, we get:

(
N

4

)

2

: 3210 ≺ 4210 ≺ 4320 ≺ 4321 ≺ 5210 ≺ 5320 ≺ · · · ,
(
N

4

)

2

: 4310 ≺ 5310 ≺ 5410 ≺ 5430 ≺ 5431 ≺ 6310 ≺ · · · .

Define the i-compression of a family of k-sets F as follows. Let a = |F ∩
(
N

k

)
i
| and let b = |F ∩

(
N

k

)
i
|, so that a+ b = |F|. Let A denote the first a sets

in
(
N

k

)
i
and let B denote the collection of the first b sets in

(
N

k

)
i
. Then the

i-compression of F is denoted

Ci(F) = A ∪ B.

For example, suppose

F = {54310, 63210, 64210, 65321}.

Then
C6(F) = {63210, 64210, 64310}∪ {43210},

(the first three 4-sets with a 6 and the first 4-set without a 6) while

C5(F) = {53210, 54210}∪ {43210, 63210},

(the first two 4-sets with a 5 and the first two 4-sets without a 5).
Our first task is to show that this weaker form of compression preserves

boundaries; i.e., that the i-compression of a simplicial complex is a simplicial
complex.

Lemma 10.2. Let F ⊂
(
N

k

)
, let G ⊂

(
N

k−1

)
, and ∂F ⊆ G. Suppose m is the

largest element in a set from either of the families F or G. Then for any
i ≤ m, ∂Ci(F) ⊆ Ci(G).

Our approach to this lemma is to reduce to smaller cases, appealing to
cases with either smaller m or smaller k. The main tool is the following map
defined for any i. Let φi be defined on any set F of nonnegative integers as:

φi(F ) = {j : i > j ∈ F} ∪ {j − 1 : i < j ∈ F}.
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For example, φ3(5410) = 4310 and φ4(74320) = 6320. Notice that if i /∈ F ,
|φi(F )| = |F |, while if i ∈ F , |φi(F )| = |F | − 1.

54210

64210

65210

65410

65420

65421

43210

53210

54210

54310

54320

54321

63210

64210

64310

64320

64321

65210

65310

65320

65321

65410

65420

65421

65430

43210

53210

54310

54320

54321

63210

64310

64320

64321

65310

65320

65321

65430

3210

4210

4310

4320

4321

5210

5310

5320

5321

5410

5420

5421

5430

5431

5432

6210

6310

6320

6321

N

5

)
3

φ3 N

5

)
N

5

)
3

φ3 N

4

)

Fig. 10.5 The map φi on sets in revlex order, for i = 3.

The map φi is an order-preserving bijection between
(
N

k

)
i
and

(
N

k

)
. The

inverse function is given by

ψi(H) = {j : i > j ∈ H} ∪ {j + 1 : i ≤ j ∈ H}.

For example, ψ2(43210) = 54310. In particular, if F ⊂
(
N

k

)
i
, then the image

of its i-compression, φi(Ci(F)), is compressed in
(
N

k

)
. In other words, we have

the following lemma.
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Lemma 10.3. Let i ∈ N, and let k > 1. Then for any F ⊂
(
N

k

)
i
,

φi(Ci(F)) = C(φi(F)) ⊂
(
N

k

)
.

That is, the image of the i-compression is compressed.

In a similar fashion, φi is an order-preserving bijection between
(
N

k

)
i
and

(
N

k−1

)
. The inverse is given by the same inverse function ψi above, and then

taking the union with i. That is, the pre-image of H ∈
(

N

k−1

)
is

ψi(H) ∪ {i} = H ′ ∈
(
N

k

)

i

.

See Figure 10.5.

Lemma 10.4. Let i ∈ N, and let k > 1. Then for any F ⊂
(
N

k

)
i
,

φi(Ci(F)) = C(φi(F)) ⊂
(

N

k − 1

)
.

That is, the image of the i-compression is compressed.

Loosely speaking, Lemmas 10.3 and 10.4 capture how φi moves us to

smaller cases. Given a family F ⊂
(
N

k

)
i
, φi(F) is a family in

(
N

k

)
with smaller

maximum, and i-compression commutes with this map. Likewise, given a
family F ∈

(
N

k

)
i
, φi(F) is a family of (k−1)-sets, and i-compression commutes

with this map. It remains to show that the boundary map is compatible with
the map φi as well.

Supposing F ⊂
(
N

k

)
i
is a family of k-sets not containing i, it is easy to see

that φi commutes with the boundary map:

∂φi(F) = φi(∂F). (10.1)

Therefore Lemma 10.3 shows by induction on m that the boundary of the
i-compression of F is contained in the i-compression of the boundary of F .

Lemma 10.5. Let i ∈ N, and let k > 1. Then for any F ⊂
(
N

k

)
i
with maxi-

mum element m, F ′ = φi(F) ⊂
(
N

k

)
with maximum element at most m − 1.

Moreover,
∂Ci(F) ⊆ Ci(∂F)

if and only if
∂C(F ′) ⊆ C(∂F ′).
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Proof. Suppose ∂Ci(F) ⊆ Ci(∂F). Applying φi to both sides clearly preserves
the inclusion. Applying φi to the left-hand side we get:

φi(∂Ci(F)) = ∂φi(Ci(F)), (by Equation (10.1))

= ∂C(φi(F)), (by Lemma 10.3)

= ∂C(F ′),

while on the right-hand side we get:

φi(Ci(∂F)) = C(φi(∂F)), (by Lemma 10.3)

= C(∂φi(F)), (by Equation (10.1))

= C(∂F ′).

This proves the “only if” implication. Since φi is a bijection, all these steps
can be reversed, proving the “if” statement. ��

While this takes care of those k-sets not containing i, if F ∈
(
N

k

)
i
, things

are not so simple. Rather, if F = {a1, . . . , ak−1, i}, we have

∂F = {F \ {aj} : 1 ≤ j ≤ k − 1} ∪ {{a1, . . . , ak−1}},

so that all but {a1, . . . , ak−1} live in
(

N

k−1

)
i
. Hence,

φi(∂F ) = ∂φi(F ) ∪ {φi(F )},

where ∂φi(F ) ⊂
(

N

k−2

)
and φi(F ) ∈

(
N

k−1

)
. For families F ⊂

(
N

k

)
i
, we can

write:
∂F =

⋃

F∈F
({F \ {aj} : 1 ≤ j ≤ k − 1} ∪ {F \ {i}}) ,

and
φi(∂F) = ∂φi(F) ∪ φi(F). (10.2)

We are now ready to prove the companion to Lemma 10.5.

Lemma 10.6. Let i ∈ N, and let k > 1. Then for any F ⊂
(
N

k

)
i
, F ′ =

φi(F) ⊂
(

N

k−1

)
. Moreover,

∂Ci(F) ⊆ Ci(∂F)

if and only if
∂C(F ′) ⊆ C(∂F ′).

Proof. Suppose ∂Ci(F) ⊆ Ci(∂F). Applying φi to both sides clearly preserves
the inclusion.
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Since Ci(F) ⊂
(
N

k

)
i
, on the left side we have:

φi(∂Ci(F)) = ∂φi(Ci(F)) ∪ φi(Ci(F)), (by Equation (10.2))

= ∂C(φi(F)) ∪ C(φi(F)), (by Lemma 10.4)

= ∂C(F ′) ∪ C(F ′). (10.3)

Note that ∂C(φi(F)) = ∂C(F ′) ⊂
(

N

k−2

)
, while C(φi(F)) = C(F ′) ⊂

(
N

k−1

)
.

For the right-hand side, first write

∂F = A ∪ B,

with A ⊂
(

N

k−1

)
i
and B ⊂

(
N

k−1

)
i
. Specifically,

A =
⋃

F∈F
{F − {aj} : 1 ≤ j ≤ k − 1},

and
B =

⋃

F∈F
F − {i}.

Then the i-compression of ∂F is:

Ci(∂F) = Ci(A) ∪ Ci(B),

and the union is disjoint. Applying φi, we have:

φi(Ci(∂F)) = φi(Ci(A)) ∪ φi(Ci(B)),
= C(φi(A)) ∪ C(φi(B)) (by Lemmas 10.3 and 10.4),

where C(φi(A)) ⊂
(

N

k−2

)
and C(φi(B)) ⊂

(
N

k−1

)
.

Notice that |B| = |F|, so |φi(B)| = |φi(F)| = |F ′|, and thus,

C(φi(B)) = C(F ′).

Further, it is not too difficult to see that

∂F ′ = φi(A),

since both sets consist of φi applied to the (k − 2)-sets in the collection

⋃

F∈F
{F − {i, aj} : 1 ≤ j ≤ k − 1}.

Hence, we can write

φi(Ci(∂F)) = C(∂F ′) ∪ C(F ′),
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and comparing with Equation (10.3), we have:

∂Ci(F) ⊆ Ci(∂F),

if and only if:
φi(∂Ci(F)) ⊆ φi(Ci(∂F)),

if and only if:
∂C(F ′) ⊆ C(∂F ′),

as desired. ��
Taken together, the reduction Lemmas 10.5 and 10.6 prove Lemma 10.2,

that i-compression preserves boundaries for arbitrary families of k-sets F ⊂
(
N

k

)
. Lemma 10.5 handles F ∩

(
N

k

)
i
with induction on m, while Lemma 10.6

uses induction on k to address F ∩
(
N

k

)
i
.

It remains to show that i-compression can be used to obtain full compres-
sion.

First, suppose F is i-compressed, and A = F ∩
(
N

k

)
i
, B = F ∩

(
N

k

)
i
. Let A

denote the largest element of A in revlex order, and let B denote the largest
element in B. Suppose A ≺ B in revlex order (the case B ≺ A is similar).
See Figure 10.6.

If {
S � B : S ∈

(
N

k

)}
= F ,

then F is fully compressed and we are done.
Else, let C denote the (unique) element such that C ≺ B, C /∈ F , and all

k-sets less than C are in F , i.e.,

C≺ =

{
S ∈

(
N

k

)
: S ≺ C

}
⊂ F .

By construction, C≺ is the “totally compressed part” of F . As such, C≺ is
fixed by all subsequent partial compressions.

We can continue to compress, depending on B and C, as follows. Either:

a) C ∩ B 	= ∅, in which case there is some j ∈ C ∩ B and we will apply
j-compression, or

b) C ∩ B = ∅ and C ∪B � {0, 1, . . . ,m}, in which case there is some j ≤ m
such that j /∈ C, j /∈ B, and we will apply j-compression, or

c) C and B are complements, C = {0, 1, . . . ,m} \B, and so m+ 1 = 2k.

In this last case, we see that when m is odd it is possible to have a family of
k-sets that is i-compressed for all i ≤ m, yet the family is not fully
compressed. We will handle this special case later.

For now, suppose m is even. Then there will always be some choice of j of
type a) or b), and each such j-compression strictly increases the size of the
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B =
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Fig. 10.6 Example of an i-compressed family, i = 3. The family F is highlighted in
bold.

fully compressed part of the family. For example, in Figure 10.6, choosing
j = 6 or j = 4 (both case a)) will do the trick. We continue in this way until
there is no set C and the family is fully compressed.

Now suppose m = 2k− 1 is odd, F is i-compressed for all i ≤ m, yet F is
not fully compressed. Let B denote the largest element in F and let C ≺ B
denote any element less than B, yet such that C /∈ F . Since F is i-compressed
for all i ≤ m, it must be that we are in case c), and so C is the complement
of B in {0, 1, . . . ,m}. In particular C is uniquely determined by B.

For example, suppose

F ={210, 310, 320, 321, 410,
420, 421, 430, 431, 510}

so that the only thing missing from F is C = 432. Then F is i-compressed
for all i ≤ 5, yet not compressed.
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Since C ≺ B, in particular maxC < maxB = m. But then all the subsets
of {0, 1, . . . ,m − 1} are in ∂F already. Thus we can see that ∂C ⊂ ∂F . Let
F ′ = F − {B} ∪ {C} be the family obtained by replacing B with C. Then
∂F ′ ⊆ ∂F .

On the other side, suppose after some number of i-compressions we obtain
a family F that is compressed, and a family G that is i-compressed for all
i ≤ m, but not fully compressed, and ∂F ⊆ G. Let B be the largest element
of G and let C be its complement, C /∈ G. Again, we wish to swap B with
C to get G′ = G − {B} ∪ {C}. Since maxC < maxB = m, in particular,
C ⊆ {0, 1, . . . ,m − 1}. Since C /∈ G, it is not in ∂F for any F ∈ F either.
Hence

max{maxF}F∈F ≤ m− 1,

so B is not on the boundary of F either. Hence, there is no harm in replacing
B by C, and ∂F ⊂ G′ with G′ compressed.

This (finally!) completes the proof of all cases of the compression lemma,
Lemma 10.1. Let’s move on to discussing the numeric consequences of com-
pression.

10.3 Kruskal-Katona-Schützenberger inequalities

Recall that we denote the jth element of
(
N

k

)
by Fk(j). It turns out the

elements of Fk(j) give a simple way to compute j, its position in revlex
order.

For example, suppose F5(j) = {0, 1, 2, 5, 7}. To find j, we will count the
ways to form a 5-set S ≺ {0, 1, 2, 5, 7}. To do so, we consider five cases (though
the final three cases are empty):

• S = {s1, s2, s3, s4, s5} ⊂ {0, 1, 2, 3, 4, 5, 6},
• S = {s1, s2, s3, s4, 7}, with {s1, s2, s3, s4} ⊂ {0, 1, 2, 3, 4},
• S = {s1, s2, s3, 5, 7}, with {s1, s2, s3} ⊂ {0, 1},
• S = {s1, s2, 2, 5, 7}, with {s1, s2} ⊂ {0},
• S = {s1, 1, 2, 5, 7}, with {s1} ⊂ ∅.

Thus we have

j − 1 = ( number of sets S ≺ {0, 1, 2, 5, 7} ),

=

(
7

5

)
+

(
5

4

)
+

(
2

3

)
+

(
1

2

)
+

(
0

1

)
,

= 26,

So in this example j = 27.
In general, if S ≺ Fk(j) = {a1, a2, . . . , ak}, with a1 < a2 < · · · < ak, there

are k cases to consider:
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• S = {s1, s2, . . . , sk} ⊂ {0, 1, . . . , ak − 1},
• S = {s1, s2, . . . , sk−1, ak}, with {s1, s2, . . . , sk−1} ⊂ {0, 1, . . . , ak−1 − 1},
...
• S = {s1, s2, a3, . . . ak−1, ak}, with {s1, s2} ⊂ {0, 1, . . . , a2 − 1},
• S = {s1, a2, a3, . . . , ak−1, ak}, with {s1} ⊂ {0, 1, . . . , a1 − 1}.

Thus,

j − 1 =

(
ak
k

)
+

(
ak−1

k − 1

)
+ · · ·+

(
a1
1

)
.

Letting ar denote the smallest element such that ar + 1 /∈ Fk(j), the succes-
sor of

{a1, . . . , ar−1, ar, ar+1, . . . , ak}

in revlex order is

Fk(j + 1) = {0, 1, . . . , r − 2, ar + 1, ar+1, . . . , ak}.

This gives us the following, more compact expression.

Proposition 10.1. Suppose Fk(j) = {a1, a2, . . . , ak}, with 0 ≤ a1 < a2 <
· · · < ak, is the jth k-set in revlex order. Then we have

j =

(
ak
k

)
+ · · ·+

(
ar+1

r + 1

)
+

(
ar + 1

r

)
, (10.4)

where ar is the smallest element such that ar + 1 /∈ Fk(j).

For example, with F5(27) = {0, 1, 2, 5, 7} from before, we have

j =

(
7

5

)
+

(
5

4

)
+

(
3

3

)
= 27.

This way of writing the integer j as a sum of decreasing binomial coef-
ficients:

(
ak

k

)
+
(
ak−1

k−1

)
+ · · · as in Equation (10.4) is called the k-binomial

expansion of j, or the Macaulay expansion of j. It can be computed greedily,
by first finding the largest a such that

(
a
k

)
≤ j, then the largest b such that(

b
k−1

)
≤ j−

(
a
k

)
, and so on. Thus the 93rd 4-set must be F4(93) = {1, 2, 6, 8},

since

93 =

(
8

4

)
+ 23,

=

(
8

4

)
+

(
6

3

)
+ 3,

=

(
8

4

)
+

(
6

3

)
+

(
3

2

)
.
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The same technique we used for determining the position of a k-set in
revlex order (Proposition 10.1) can be used to count the sets in the boundary
of a collection of compressed k-sets, ∂Fk(j).

Suppose

S = {s1, . . . , sk−1} ⊂ {b1, . . . , bk} ≺ {a1, . . . , ak} = Fk(j),

so that S is an element in ∂Fk(j). Then there are k− 1 cases (some of which
may be empty):

• S = {s1, . . . , sk−1} ⊂ {0, 1, . . . , ak − 1},
• S = {s1, . . . , sk−2, ak}, with {s1, . . . , sk−2} ⊂ {0, 1, . . . , ak−1 − 1},
...
• S = {s1, s2, a4, . . . , ak}, with {s1, s2} ⊂ {0, 1, . . . , a3 − 1},
• S = {s1, a3, a4, . . . , ak}, with {s1} ⊂ {0, 1, . . . , a2 − 1}.

This case analysis establishes the enumeration, but it is even better. It
tells us that we are counting precisely those (k − 1)-sets S ≺ {a2, . . . , ak}.
To put it another way, if F ≺ Fk(j), the greatest (k − 1)-subset of Fk(j)
(in revlex order) is greater than the greatest (k − 1)-subset of F . This will
be useful later on. We have established the following, keeping in mind that
{a2, . . . , ak} itself is on the boundary of Fk(j).

Proposition 10.2 (Lower bounds). Suppose Fk(j) = {a1, a2, . . . , ak},
with 0 ≤ a1 < a2 < · · · < ak, is the jth k-set in revlex order. Then

|∂Fk(j)| =
(

ak
k − 1

)
+

(
ak−1

k − 2

)
+ · · ·+

(
a2
1

)
+

(
a1
0

)
.

Moreover,
∂Fk(j) = {S : S � {a2, . . . , ak}}.

Corollary 10.1 (KKS inequalities, lower bound version). Suppose Δ
is a simplicial complex with f -vector (f0, f1, . . . , fd). Let

fk =

(
ak
k

)
+

(
ak−1

k − 1

)
+ · · ·+

(
a1
1

)
,

be the k-binomial expansion of fk, with 0 ≤ a1 < a2 < · · · < ak. Then

fk−1 ≥
(

ak
k − 1

)
+

(
ak−1

k − 2

)
+ · · ·+

(
a1
0

)
.

For example, if we want to construct a simplicial complex with

f3 = 100 =

(
9

3

)
+

(
6

2

)
+

(
1

1

)
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triangles, we need to have at least
(
9

2

)
+

(
6

1

)
+

(
1

0

)
= 43

edges, which in turn means there have to be at least
(
9

1

)
+

(
6

0

)
= 10

vertices.
Notice that because ∂Fk(j) does not depend on a1 = min(Fk(j)), ∂Fk(j)

can equal ∂Fk(j
′) for j 	= j′. For example,

∂{F � 320} = {10, 20, 21, 30, 31, 32}= ∂{F � 321}.

Now let’s turn our thinking around and define

∂Fk(j) to be the largest
collection F of (k+1)-sets whose boundary ∂F is contained in Fk(j). That is,

∂Fk(j) =

{
S ∈

(
N

k + 1

)
: if F ∈ ∂S then F � Fk(j)

}
.

From the “moreover” part of Proposition 10.2, we can see that if 0 /∈
Fk(j) = {a1, . . . , ak}, then for any 0 ≤ i < a1,

Fk(j) = ∂{F � {i, a1, . . . , ak}}.

Therefore in this case,

∂Fk(j) = {F � {a1 − 1, a1, . . . , ak}},
= Fk+1(j

′),

where if ar is the smallest element such that ar + 1 /∈ Fk(j),

j′ =

(
ak

k + 1

)
+ · · ·+

(
ar+1

r + 2

)
+

(
ar + 1

r + 1

)
.

In general, to find

∂Fk(j), we should then find the nearest F � Fk(j) with
0 /∈ F and apply this trick. To find such an F , we need to find the smallest
element ar such that ar ≥ r + 1. Then

F = {ar − r, . . . , ar − 2, ar − 1, ar+1, . . . ak},

has 0 /∈ F . Now,

∂Fk(j) =

∂{F ′ � F},
= {G � {ar − r − 1, ar − r, . . . , ar − 1, ar+1, . . . , ak}},
= Fk+1(j

′).
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Here we can see that ar − 1 is the smallest element such that (ar − 1) + 1 /∈
Fk+1(j

′), so

j′ =

(
ak

k + 1

)
+ · · ·+

(
ar+1

r + 2

)
+

(
ar

r + 1

)
,

exactly as in the previous case. We record this important result here.

Proposition 10.3 (Upper bounds). Suppose Fk(j) = {a1, a2, . . . , ak},
with 0 ≤ a1 < a2 < · · · < ak, is the jth k-set in revlex order. Then if ar
is the smallest element such that ar ≥ r + 1,

| ∂Fk(j)| = j′ =

(
ak

k + 1

)
+ · · ·+

(
ar+1

r + 2

)
+

(
ar

r + 1

)
.

Moreover,

∂Fk(j) = Fk+1(j
′).

Corollary 10.2 (KKS inequalities, upper bound version). Suppose Δ
is a simplicial complex with f -vector (f0, f1, . . . , fd). Let

fk =

(
ak
k

)
+

(
ak−1

k − 1

)
+ · · ·+

(
a1
1

)
,

be the k-binomial expansion of fk, then

fk+1 ≤
(

ak
k + 1

)
+

(
ak−1

k

)
+ · · ·+

(
ar

r + 1

)
,

where r is the smallest index such that ar ≥ r + 1.

For example there exists a simplicial complex with

f3 = 1000 =

(
19

3

)
+

(
8

2

)
+

(
3

1

)

triangles and (
19

4

)
+

(
8

3

)
+

(
3

2

)
= 3935

tetrahedra, but there is no simplicial complex with f3 = 1000 and f4 = 3936.

10.4 Frankl-Füredi-Kalai inequalities

There is an analogue of the KKS inequalities for balanced simplicial com-
plexes, due to Frankl, Füredi, and Kalai. To give an idea for how things are
different in a balanced world, recall that balanced 1-dimensional complexes
are bipartite graphs. The greatest number of edges in a bipartite graph comes
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from having half the vertices colored black, half colored white, and an edge
matching each black vertex with each white vertex. Thus, if there are n = 2k
vertices, there can be at most k2 edges. (If n = 2k + 1 there are at most
k(k+1) edges.) Our first “FFK-inequality” is that for 2-colorable complexes,
we have

f2 ≤ �f1/2��f1/2�,

If the goal is to characterize f -vectors of d-colored simplicial complexes,
one should study revlex order on “d-colored” k-sets. A d-colored k-set of N is
a k-set S such that no two elements of S are congruent modulo d. Let

(
N

k:d

)

denote the set of d-colored k-subsets. The color of a set S in
(

N

k:d

)
is the set

of remainders modulo d, i.e., cold(S) = {s mod d : s ∈ S}. In Figure 10.7 we
see the 4-colored k-sets listed in revlex order. Notice that 521, 531, and 541
are not 4-colored since 1 ≡ 5 mod 4. Also notice there are no 4-colored sets
with k > 4.

0 : ∅
1 : 0 ≺ 1 ≺ 2 ≺ 3 ≺ 4 ≺ 5 ≺ · · ·
2 : 10 ≺ 20 ≺ 21 ≺ 30 ≺ 31 ≺ 32 ≺ 41 ≺ 42 ≺ 43 ≺ 50 ≺ 52 ≺ · · ·
3 : 210 ≺ 310 ≺ 320 ≺ 321 ≺ 421 ≺ 431 ≺ 432 ≺ 520 ≺ 530 ≺ 532 · · ·
4 : 3210 ≺ 4321 ≺ 5320 ≺ 5432 ≺ 6310 ≺ 6431 ≺ 6530 ≺ 6543 ≺ · · ·
5 : ∅

Fig. 10.7 Revlex order on 4-colored k-sets, k ≤ 4.

The notion of compression of a d-colored complex makes perfect sense, and
we can define compressed d-complexes just as in the uncolored case, with the
property that the compression of a d-colored simplicial complex is again a
d-colored simplicial complex.

To give the characterization of revlex order for d-colored complexes, it will
be helpful to have a d-colored version of binomial coefficients. That is, define

(
n

k : d

)
=

∣
∣∣
∣

{
S ∈

(
N

k : d

)
: maxS < n

}∣∣∣
∣ .

Thus if n ≤ d,
(

n
k:d

)
=
(
n
k

)
is just the usual binomial coefficient. On the other

hand, if k > d, there is no way to choose a k-set without having two elements
be congruent modulo d, so

(
n
k:d

)
= 0.

But when n > d this number is much smaller. For example, how many
5-colored 3-sets have their maximum less than 22? We need to choose a set
{a, b, c} from {0, 1, 2, . . . , 21} such that each number has a distinct remainder
modulo 5. Let’s arrange the numbers in array of five columns first:

0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19
20 21

.
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We see the multiples of five on the left, those numbers congruent to 1 modulo 5
in the next column, 2 modulo 5 in the third column, and so on. Every column
is a congruence class. Our goal is to count the number of ways to choose four
elements from this array so that no two elements lie in the same column.

There are five choices for an element in column one and five choices for
column two, while if we choose an element from the third, fourth, or fifth
column, we have only four choices. Thus it makes sense to refine our count
according to how many elements we choose from among the first two columns.
We can:

• choose two elements from the first two columns in 52 ways and one element
from the final three columns in

(
3
1

)
· 4 ways,

• choose one element from the first two columns in
(
2
1

)
· 5 ways and two

elements from the final three columns in
(
3
2

)
· 42 ways, or

• choose no elements from the first two columns and three elements from
the final three columns in

(
3
3

)
· 43 ways.

In total, then, we find

(
2

2

)
· 52 ·

(
3

1

)
· 4 +

(
2

1

)
· 5 ·
(
3

2

)
· 42 +

(
2

0

)
· 50 ·

(
3

3

)
· 43 = 844

different 5-colored 3-sets on {0, 1, 2, . . . , 21}. Thus, we write

(
22

3 : 5

)
= 844.

The reasoning we used in the example generalizes easily. For n > d suppose
n = qd + r, with 0 ≤ r ≤ d − 1. If we draw the numbers {0, 1, 2, . . . , n − 1}
in an array with d columns, we will find the first r columns have q + 1 rows,
while the final d− r of them have q rows. Then we can write:

(
n

k : d

)
=

k∑

j=0

(
r

j

)(
d− r

k − j

)
(q + 1)jqk−j ,

where j counts the number of elements chosen from among the first r columns.
One can show, just as in the uncolored case, that every positive integer has

a unique expansion in terms of colored binomial coefficients. As with Propo-
sition 10.1, we can connect this expansion with revlex ordering on colored
k-sets.

Proposition 10.4. Suppose Fk:d(j) = {a1, a2, . . . , ak}, with 0 ≤ a1 < a2 <
· · ·ak, is the jth d-colored k-set in revlex order. Then we have

j =

(
ak
k : d

)
+

(
ak−1

k − 1 : d− 1

)
+ · · ·+

(
ar+1

r+1 : d−k+r+1

)
+

(
ar+i

r : d−k+r

)
,
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where r is the smallest index such that there is an element b = ar + i < ar+1

with 1 ≤ i ≤ d and b 	≡ ai mod d for any i 	= r.

(The strange-looking condition on ar + i merely comes from identifying
the successor of Fk:d(j) in revlex order.)

The Frankl-Füredi-Kalai result in the d-colorable case is essentially the
same statement as Propositions 10.2 and 10.3, and it can be given a very
similar argument after replacing the revlex order on

(
N

k

)
with the revlex order

on
(

N

k:d

)
. We will give the main result here without proof.

Proposition 10.5 (FFK inequalities). Suppose Δ is a d-colorable simpli-
cial complex with f -vector (f0, f1, . . . , fd). Let

fk =

(
ak
k : d

)
+

(
ak−1

k − 1 : d− 1

)
+ · · ·+

(
a1

1 : d− k + 1

)
,

be the d-colored k-binomial expansion of fk, with 0 ≤ a1 < a2 < · · · < ak.
Then

fk−1 ≥
(

ak
k − 1 : d

)
+

(
ak−1

k − 2 : d− 1

)
+ · · ·+

(
a1

0 : d− k + 1

)
,

and

fk+1 ≤
(

ak
k + 1 : d

)
+

(
ak−1

k : d− 1

)
+ · · ·+

(
ar

r + 1 : d− k + r

)
,

where r is as in Proposition 10.4. Moreover, every vector satisfying these
inequalities is the f -vector of a d-colorable simplicial complex.

Now that we have these inequalities, one may wonder whether the set
of flag complexes, another special family of simplicial complexes, enjoys a
similar characterization of its f -vectors. As of this writing, the answer is no,
but we have the following partial result from Andrew Frohmader in 2008 [76].

Proposition 10.6. The f -vector of a flag complex is an FFK-vector. There
are FFK-vectors that are not realized as the f -vector of any flag complex.

To see that this is indeed not a characterization of f -vectors for flag com-
plexes, Frohmader points to the vector (1, 4, 5, 1). It is the f -vector of a
balanced complex with d = 3 colors. However, it cannot be the f -vector of a
flag complex, since a graph with four vertices and five edges must be only one
edge away from having a 4-clique, or tetrahedron. Removing one edge from
a tetrahedron yields two triangles, however, and this f -vector has f3 = 1.

We close this section by remarking that the KKS inequalities are in some
sense the limit of the FFK inequalities as d → ∞. That is, fix a vector
f = (f0, f1, . . .). Then if d is large enough (certainly if d > max fi), f is a
d-FFK vector if and only if f is a KKS vector.
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10.5 Multicomplexes and M -vectors

An interesting generalization of the study of simplicial complexes is the study
of multicomplexes. This allows not only subsets of a fixed vertex set, but
multi-subsets of the vertex set. A multiset is a set in which the elements are
allowed to have multiplicities, written {im1

1 , . . . , imk

k }, where mj is the mul-
tiplicity of ij. For example, {1, 1, 2, 4} = {12, 2, 4} and {2, 5, 5, 5, 6, 6, 7, 7} =
{2, 53, 62, 72} are multisets. Every set is a multiset in which all elements have
multiplicity one. The size of a multiset is the sum of the multiplicities of
the distinct elements in the set, e.g., the multisets above have sizes four and
eight, respectively.

If we fix a vertex set V , then a multicomplex Δ is a collection of multisets
of V that are closed under containment, i.e., if G is a multiset in Δ and
F is a sub-multiset of G, then F is in Δ. We use the same terminology
as in the simplicial case, so that a k-multiset is called a k-face, and so on.
The dimension of a face is one less than the sum of the multiplicities, e.g.,
dim({1, 1, 2, 4, 4, 4}) = 5.

If V = {1, 2, . . . , n}, let x1, . . . , xn be a set of commuting indeterminates.
A simple way to understand a multicomplex is in terms of monomials in the
xi. (This will be described in more detail for the case of simplicial complexes
in Section 10.6.) Monomials are easily identified with multisets, via

xm1

i1
· · ·xmk

ik
↔ {im1

1 , . . . , imk

k }.

We write xF for F a multiset, e.g., if F = {0, 1, 1, 3}, we have xF = x0x
2
1x3.

With this convention, we say Δ is a multicomplex if it satisfies the following
divisibility property: for any G ∈ Δ, if xF divides xG, then F ∈ Δ. From
this point of view, the dimension of a face is one less than the degree of the
corresponding monomial: dimF = deg(xF )− 1.

We can identify finite multicomplexes by their facets, though multicom-
plexes can be infinite, even with finite vertex set. A way to identify a mul-
ticomplex in either case is by its minimal non-faces. As in the simplicial
case, multicomplexes can be illustrated with a face poset. In this setting,
a multicomplex Δ is a lower ideal in the poset of multisets on V . For ex-
ample, the poset highlighted in Figure 10.8 is the multicomplex with facets
{{0, 1, 1}, {0, 1, 2}, {1, 1, 1}}. We have shown only the first four levels of the
multiset poset, but we remark it is an infinite poset unless we bound the
multiplicities.

The f -vector of a multicomplexΔ is called an M -vector. There is a version
of the KKS inequalities for multicomplexes due to Macaulay [105]. In fact,
it predates the KKS inequalities by about thirty years. Macaulay’s paper is
from 1927, while Schützenberger’s paper appeared in 1959 [134], Kruskal in
1963 [98], and Katona in 1966 [94].
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Fig. 10.8 The face poset of a multicomplex inside the first few levels of the multiset
poset. The minimal non-faces are circled.

To begin the characterization, we can see if there are n vertices, then there
can be as many as

(
n
2

)
+ n =

(
n+1
2

)
2-faces, i.e.,

f2 ≤
(
f1 + 1

2

)
.

The generalization of this observation to higher dimensional faces can be
stated as follows.

Proposition 10.7 (M-vector inequalities). Suppose Δ is a multicomplex
with f -vector (f0, f1, . . . , fd). Let

fk =

(
mk

k

)
+

(
mk−1

k − 1

)
+ · · ·+

(
mr

r

)
,

be the k-binomial expansion of fk, where mk ≥ mk−1 ≥ · · · ≥ mr ≥ r > 0.
Then,

fk−1 ≥
(
mk − 1

k − 1

)
+

(
mk−1 − 1

k − 2

)
+ · · ·+

(
mr − 1

r − 1

)
,

and

fk−1 ≤
(
mk + 1

k

)
+

(
mk−1 + 1

k − 1

)
+ · · ·+

(
mr + 1

r

)
.
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Moreover, any vector satisfying these inequalities is the f -vector of some
multicomplex.

The proposition can be proved by studying revlex order for multisets.
Many of the properties of compressed multicomplexes are analogous to those
for simplicial complexes and the proof of Proposition 10.7 follows along sim-
ilar lines as the proof of KKS inequalities. See [105].

We remark that while a simplicial complex has its face poset contained in
a finite poset, the boolean algebra 2V , a multicomplex on V has its face poset
contained in an infinite poset. While there are

(
n
k

)
k-sets of n elements, there

are
(
n+k−1

k

)
k-multisets of n elements. The rank function for 2V is (1 + t)n,

while the rank function for the poset of multisets is:

∑

k≥0

(
n+ k − 1

k

)
tk =

1

(1 − t)n
.

Thus, an easy observation that can be made for face numbers of multisets
is the following.

Observation 10.1 For a multicomplex with n vertices,

fi ≤
(
n+ i− 1

i

)
.

10.6 The Stanley-Reisner ring

An algebraic invariant of considerable importance is the Stanley-Reisner ring
of a simplicial complex Δ. We will see that algebraic properties of this ring
have topological implications for Δ and vice versa.

For Δ with vertex set V = {1, 2, . . . , n}, let x1, x2, . . . , xn be a set of
commuting indeterminates, and let k be a field. We can identify monomials
with multisets on V as in Section 10.5, via

xm1

i1
· · ·xmk

ik
↔ {im1

1 , . . . , imk

k }.

We write xF for F a multiset, e.g., if F = {0, 1, 1, 3}, we have xF = x0x
2
1x3.

Then the Stanley-Reisner ring of Δ, denoted k[Δ], is

k[Δ] = k[x1, . . . , xn]/I(Δ),

where I(Δ) denotes the ideal in k[x1, . . . , xn] generated by the minimal non-
faces of Δ:

I(Δ) = 〈xF : F ⊂ V, F /∈ Δ〉.
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For example, if Δ is the complex of Figure 8.1 whose face poset is shown in
Figure 8.2, its minimal non-faces are:

x0x2, x0x3, x0x4, x2x3, x1x2x4,

and so
k[Δ] = k[x1, . . . , xn]/〈x0x2, x0x3, x0x4, x2x3, x1x2x4〉.

As a vector space, k[Δ] is the k-span of all monomials whose support is a
face of Δ, i.e.,

k[Δ] = span{xF : supp(F ) ∈ Δ},

where supp(F ) denotes the set of elements of the multiset F , ignoring mul-
tiplicities. For example supp({1, 1, 1, 3, 4}) = {1, 3, 4}.

If Δ is (d − 1)-dimensional, suppose {i1, . . . , id} is a maximal face. This
means the elements xi1 , . . . , xid are algebraically independent in k[Δ], and
any larger collection of vertices contains a non-face. Hence k[Δ] has dimension
d as a k-algebra.

Define the fine Hilbert series for the Stanley-Reisner ring to be the formal
sum of all monomials in k[Δ], i.e.,

F (k[Δ];x1, . . . , xn) =
∑

supp(F )∈Δ

xF .

The usual Hilbert series of k[Δ] is obtained by setting xi = t, i.e.,

F (k[Δ]; t) =
∑

k≥0

dimk(k[Δ])tk,

where dimk denotes the vector space dimension of the degree k homogeneous
component of the ring.

It turns out that computing F (k[Δ];x1, . . . , xn) (and hence F (k[Δ]; t))
is directly linked with the f - and h-vectors of Δ, and this gives a bridge
connecting algebraic facts about k[Δ] with enumerative facts about Δ.

Let us return to the example of Figure 8.1. For each face F in Δ, the sum
of all monomials whose support is F is a rational function of the variables
appearing in the face. For example with the edge F = {2, 4} this sum is

x2x4

(1− x2)(1 − x4)
= x2x4(1 + x2 + x2

2 + · · · )(1 + x4 + x2
4 + · · · ).

Using the same idea for all the faces, the fine Hilbert series for this example is
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F (k[Δ];x0, x1, x2, x3, x4) = 1+
x0

1−x0
+

x1

1−x1
+

x2

1−x2
+

x3

1−x3
+

x4

1−x4

+
x0x1

(1− x0)(1 − x1)
+

x1x2

(1− x1)(1 − x2)

+
x1x3

(1− x1)(1 − x3)
+

x1x4

(1− x1)(1 − x4)

+
x2x4

(1− x2)(1 − x4)
+

x3x4

(1− x3)(1 − x4)

+
x1x3x4

(1− x1)(1 − x3)(1 − x4)
.

Passing to the usual Hilbert series, we have:

F (k[Δ]; t) = 1 +
5t

1− t
+

6t2

(1− t)2
+

t3

(1− t)3

=
1 + 2t− t2 − t3

(1− t)3
.

In Section 8.8 we found the f -vector of Δ is (1, 5, 6, 1) and the h-vector is
(1, 2,−1,−1), and now we see these coefficients appearing again. This is not
a coincidence.

In general for a face F of a simplicial complex Δ, we get:

∑

supp(G)=F

xG =
∏

i∈F

xi

1− xi
=

∏
i∈F xi

∏
j /∈F (1− xj)

∏
i∈V (1− xi)

.

Hence, we can write:

F (k[Δ];x1, . . . , xn) =
∑

supp(F )∈Δ

xF =
∑

F∈Δ

∏
i∈F xi

∏
j /∈F (1− xj)

∏
i∈V (1− xi)

,

and so if we set xi = t to get the ordinary Hilbert series, we have

F (k[Δ]; t) =

∑
F∈Δ t|F |(1 − t)n−|F |

(1− t)n
,

=

∑
F∈Δ t|F |(1 − t)d−|F |

(1− t)d
,

=
h(Δ; t)

(1− t)d
,

where the second equality follows because max |F | = d ≤ n and the third
equality follows from the transformation from f - to h-polynomials given in
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Equation 8.2. The main point for us is the observation that the numerator
of the Hilbert series of the Stanley-Reisner ring is the h-polynomial.

10.7 The upper bound theorem and the g-theorem

In this section we will survey some big results with minimal description of
the proofs. The point is to convey some of the flavor of results in this area of
mathematics as a prelude to stating some open problems.

Suppose now that Δ is a (d − 1)-sphere with f1 = n vertices. The upper
bound theorem for spheres states that the entries of the f -vector of Δ are
bounded by the f -vector of the boundary of a cyclic polytope, which has
hi = hd−i =

(
n−d+i−1

i

)
.

Theorem 10.2 (Upper Bound Theorem). If Δ is a simplicial sphere,
then for i ≤ d/2,

hi(Δ) ≤
(
n− d+ i− 1

i

)
.

This result was proved for simplicial convex polytopes by Peter McMullen
[108] and for general triangulations of spheres by Richard Stanley [146]. Here
is an outline of Stanley’s approach, which was the first big application of the
Stanley-Reisner ring.

• First, Stanley showed that if the ring k[Δ] is what is known as a Cohen-
Macaulay ring, then in particular, h(Δ) = (h0, h1, . . . , hd) is an M -vector.

• Further, a result of Reisner [129] shows that if Δ is a sphere, then k[Δ] is
Cohen-Macaulay. Hence h(Δ) is an M -vector whenever Δ is a sphere.

• Since Δ has n vertices and is (d − 1)-dimensional, h1(Δ) = n − d. Thus
h(Δ) is the f -vector of a multicomplex with n− d vertices, and the Upper
Bound Theorem follows from Observation 10.1.

Another big result characterizes the f -vectors of simplicial polytopes. It
is known as the g-theorem. The “g” in g-theorem refers to the vector of first
differences of the h-vector, known as the g-vector. That is, let g0 = 1 and
gi = hi − hi−1 for i = 1, 2, . . . , �d/2�. For example, if h = (1, 4, 7, 4, 1), then
g = (1, 3, 3). A simplicial polytope is a convex polytope whose boundary is
a simplicial sphere, so the Dehn-Sommerville relations tell us its h-vector
is palindromic. Thus in this setting the g-vector is enough to recover the
h-vector, and hence the f -vector.

The characterization of g-vectors of simplicial polytopes is remarkably
simple.

Theorem 10.3 (The g-theorem). An integer vector g is the g-vector of a
simplicial convex polytope if and only if g is an M -vector.

There is a construction of Lou Billera and Carl Lee [20] that takes any
M -vector g and constructs a simplicial polytope Δ with this g-vector, i.e.,
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such that g(Δ) = g. The proof that g(Δ) is an M -vector for any simplicial
polytope Δ was a tour-de-force by Stanley that we will sketch here in the
barest terms.

Using the fact thatΔ is polytopal, we can construct a complex toric variety
X whose cohomology is isomorphic to the following quotient of the Stanley-
Reisner ring with real coefficients:

S = R[Δ]/〈θ1, . . . , θd〉,

where the θi are certain degree one elements of R[Δ]. In particular, the Hilbert
series for S is the h-polynomial of Δ, i.e., dimSi = hi.

Working on the cohomology side, Stanley uses a result known as the hard
Lefschetz theorem to show there is a degree one element ω (which we can
take to be the sum of the vertices of Δ) such that the map ω : Si−1 → Si

is an injection for all i = 1, . . . , �d/2�. This implies the Hilbert series for
S/ωS has dim(S/ωS)i = hi − hi−1 = gi. Now a result of Macaulay shows
that we can associate a multicomplex to any graded algebra generated by
degree one elements, and moreover the f -polynomial of this multicomplex is
the Hilbert series of the algebra. Applied to S/ωS, we have that the g-vector
(1, g1, g2, . . .) is an M -vector.

We close this section by mentioning two more results regarding the char-
acterization of f - and h-vectors, now in the context of balanced complexes.
Recall that a balanced (d − 1)-dimensional complex Δ is one for which the
vertices can be assigned one of d colors so that every face of Δ has distinctly
colored vertices. We say Δ is a Cohen-Macaulay complex if k[Δ] is Cohen-
Macaulay.

Theorem 10.4 (Balanced Cohen-Macaulay complexes). An integer
vector h is the h-vector of a balanced Cohen-Macaulay complex if and only if
h is an FFK-vector, i.e., h is the f -vector of a balanced simplicial complex.

There is a construction due to Anders Björner, Peter Frankl, and Stanley
[22] that takes an FFK-vector f and constructs a balanced Cohen-Macaulay
complex whose h-vector is f . The other implication is due to Stanley [148],
and it again works with a quotient of the ring k[Δ].

The key idea here is that we can choose θi to be the sum of all vertices
with color i, i.e.,

θi =
∑

col(x)=i

x.

With this choice the quotient

S = k[Δ]/〈θ1, . . . , θd〉

has nice properties. As mentioned earlier, general arguments show we can
construct a multicomplex Δ′ from S whose f -vector is the h-vector of Δ.
Moreover, since xy = 0 if x and y are vertices of the same color, x2 = xθi = 0
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in S. So the multicomplex associated with S consists of squarefree monomials
only, i.e., Δ′ is a simplicial complex. If we allow Δ′ to inherit the coloring
from Δ, we get that Δ′ is balanced, so h is an FFK-vector as well.

As shown by Reisner, Cohen-Macaulayness of k[Δ] depends on the topol-
ogy of Δ, and in particular spheres are Cohen-Macaulay. Hence, a weaker
version of Theorem 10.4 could be stated for balanced spheres.

Corollary 10.3 (Balanced simplicial spheres). The h-vector of a bal-
anced simplicial sphere is the f -vector of a balanced simplicial complex, i.e.,
h(Δ) is an FFK-vector whenever Δ is a balanced sphere.

10.8 Conjectures for flag spheres

In this section we will survey three conjectures related to flag simpli-
cial spheres. In increasing order of specificity, they are: the Charney-Davis
conjecture, Gal’s conjecture, and the Nevo-Petersen conjecture. That is,
the Nevo-Petersen conjecture implies Gal’s conjecture, which implies the
Charney-Davis conjecture. We will outline these conjectures and present some
evidence for them now.

A certain conjecture of Heinz Hopf claims that if M is a closed 2d-
dimensional manifold of non-positive curvature, then

(−1)dχ(M) ≥ 0.

That is, the sign of the Euler characteristic is predictable. In their 1995 paper
[48], Ruth Charney and Mike Davis studied Hopf’s conjecture, and came up
with four new conjectures (that they labeled A, B, C, and D) that attack
the larger conjecture from various points of view. Their conjecture D can be
stated as follows.

Conjecture 1 (Charney-Davis) If Δ is a flag simplicial sphere of dimen-
sion d− 1 = 2m− 1, then

(−1)mh(Δ;−1) ≥ 0.

Nearly all the examples discussed in this book provide evidence for the
Charney-Davis conjecture. Any Coxeter complex is a flag sphere, as are gen-
eralized associahedra and barycentric subdivisions of boolean spheres. As
we will see shortly, the Charney-Davis conjecture follows in each of these
cases from the fact that the relevant h-polynomial is real-rooted. See Theo-
rems 9.4, 11.2, and 12.3.

Since Δ is a sphere of dimension d − 1, the Dehn-Sommerville relations
tell us that h(Δ; t) is palindromic, and therefore can be written as

h(Δ; t) =
∑

j≥0

γjt
j(1 + t)d−2j .
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Hence,

h(Δ;−1) =
{
γm(−1)m if d = 2m,

0 otherwise.

Thus the Charney-Davis conjecture follows if γd/2 ≥ 0 whenever d is even.

In a 2005 paper [79], Światos�law Gal went further, to claim that every
entry of the gamma vector for a flag sphere is nonnegative.

Conjecture 2 (Gal’s conjecture) If Δ is a flag simplicial sphere, then
γ(Δ; t) has nonnegative coefficients.

Gal provided some evidence for his conjecture, showing that it was pre-
served under certain simple operations, such as the “join” (cartesian product)
of two simplicial complexes and “edge subdivision.” Starting from small ex-
amples of flag spheres (both in terms of dimension and number of cells), one
can use these operations to build larger examples of flag spheres. Kalle Karu
proved a result that implies Gal’s conjecture for barycentric subdivisions in
his 2006 paper [93].

From Observation 4.2 we can see that if the h-polynomial of a sphere is
real-rooted then it is gamma-nonnegative as well. Perhaps one could conjec-
ture that any such sphere has a real-rooted polynomial? In fact this is true
for dimension at most four. However, Gal showed how to construct a flag
simplicial sphere Δ of dimension five with:

f(Δ; t) = 1 + 17t+ 109t2 + 345t3 + 575t4 + 483t5 + 161t6,

h(Δ; t) = 1 + 11t+ 39t2 + 59t3 + 39t4 + 11t5 + t6,

γ(Δ; t) = 1 + 5t+ 4t2 + t3.

It is simple to verify that γ(Δ; t) has one real root and two complex roots.
Hence, h and f are not real-rooted either. Nonetheless, Conjecture 2, and
hence Conjecture 1 hold for this example.

Gal asked whether there might be some explanation for the conjectured
nonnegativity of the gamma vector. This is the subject of the following con-
jecture from Eran Nevo and the author of this book in 2011 [111].

Conjecture 3 (Nevo-Petersen conjecture) The gamma vector of a flag
simplicial sphere is the f -vector of a balanced simplicial complex, i.e., γ(Δ)
is an FFK-vector whenever Δ is a flag sphere.

Compare this conjecture with Corollary 10.3. Conjecture 3 holds for all the
examples discussed in this book. Coxeter complexes were handled by Nevo
and the author in [111], as were the type An and Bn associahedra, along with
the case of flag (d−1)-spheres with at most 2d+3 vertices. Nevo, the author,
and Bridget Tenner proved Conjecture 3 in the case of barycentric subdivi-
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sions in [112]. Satoshi Murai and Nevo proved the conjecture for barycentric
subdivisions of polytopes in [109]. Natalie Aisbett [5] and (independently)
Vadim Volodin [165] established the result for a family of simple polytopes
known as flag nestohedra.

To give an idea for how such a result is proved, we will illustrate the idea
used in [111] to prove it in the case of the type An−1 Coxeter complex. The
general idea is to take the set of combinatorial objects counted by the gamma
vector and construct from them a balanced simplicial complex.

From Section 4.2, we know that in this case γj counts the number of
permutations in Sn for which pk(w) = des(w) = j. We will draw such a per-
mutation with bars in the descent positions, e.g., w = 14|29|3578|6. Notice
that such a permutation is uniquely expressed as a collection of disjoint in-
creasing runs, and that the largest element in a given block is larger than the
smallest element of the following block. Moreover, to ensure that the peak set
and the descent set coincide, all the blocks, apart from the last, must have
at least two elements.

We now define a simplicial complex Δ whose faces are the elements of
Sn whose peak set coincides with the descent set. We have F ⊂ G if we
can obtain F by removing bars from G to obtain F (rewriting elements of
merged blocks in increasing order). For example, the following is a triangle
in the complex:

14|293578

14
|29

|35
67
8

1249|35678

1249|3578|6

12345789|614|235789|6

14|29|3578|6
.

The vertices in the complex thus correspond to elements with a single
bar/descent, not appearing in position 1. We can give this complex a balanced
coloring by coloring the bars as follows. Use color 1 for bars in gaps 2 and
3, use color 2 for bars in gaps 4 and 5, use color 3 for bars in gaps 6 and 7,
and so on. Because our blocks have length at least two we can never have
two bars of the same color in a given face. Moreover, the number of colors
used equals the number of vertices in a maximal face. Thus the coloring is
balanced.

This construction can be restricted to only those 231-avoiding permuta-
tions whose descent sets and peak sets coincide. (Coarsening only removes
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occurrences of the pattern 231.) Recall Theorem 4.2 shows the gamma vec-
tor of the associahedron of type An−1 counts these permutations by descents.
Thus, we also get a balanced complex whose f -vector is the gamma vector
for the associahedron of type An−1.

Similar constructions can be found in Chapter 13.



Part III

Coxeter groups



Chapter 11

Coxeter groups

The set Sn of permutations form a group under composition, called
the symmetric group. To this point we have hardly mentioned this fact, let
alone exploited the group structure. The task of this chapter is to show how
the combinatorial notions of inversion and descent can be understood as
arising from the group structure. We will then generalize from the symmet-
ric group to other finite groups with a similar structure, known as Coxeter
groups. This gives a natural setting in which to give a more general notion of
Eulerian numbers.

11.1 The symmetric group

We define Sn to be the set of all bijections w : [n]→ [n]. This set is a group
under composition. To this point, we have mainly considered elements of Sn

written in one-line notation, but we now want to shift the focus a bit and
write our elements as products of a very particular subset of permutations.
Let si denote the permutation that swaps elements i and i + 1 while fixing
all others. For example, in S5 there are four simple transpositions, written
here in one-line notation:

s1 = 21345,

s2 = 13245,

s3 = 12435,

s4 = 12354.

These elements are called the simple transpositions, and when n is understood
the set of simple transpositions is denoted S = {s1, . . . , sn−1}.

We can think of permutations as acting on a collection of n labeled beads
laid out in a row, with si swapping the beads in positions i and i+ 1:

© Springer Science+Business Media New York 2015
T.K. Petersen, Eulerian Numbers, Birkhäuser Advanced Texts Basler
Lehrbücher, DOI 10.1007/978-1-4939-3091-3 11
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1 2 · · · i − 1 i i + 1 i + 2 · · ·

1 2 · · · i − 1 i + 1 i i + 2 · · ·
si :

.

This sort of picture makes it easy to compute products of simple transposi-
tions by hand. For example, here is s1s3s2s3s4 in S5:

1 2 3 4 5

2 1 3 4 5

2 1 4 3 5

2 4 1 3 5

2 4 3 1 5

2 4 3 5 1

s1 :

s3 :

s2 :

s3 :

s4 :

.

So we have w = s1s3s2s3s4 is written 24351 in one-line notation.
Notice that our convention with the products is to write them right to

left, as we would with composition of functions: s4 is applied first, then s3,
and so on. However, for the one-line notation of the product to appear on
the bottom line we apply the transpositions on the beads from left to right:
s1 first, then s3, and so on.

Any permutation can be written as a product of simple transpositions,
with the identity considered to be the empty product and written e. For
example the element w = 24351 can be written as such a product in the
following ways:

s1s3s2s3s4, s3s1s2s3s4, s1s2s3s2s4, s1s2s3s4s2,

or even
s2s1s3s2s3s2s3s1s2s3s2s3s4.

Of course, this last expression seems rather silly. Why write an element as a
product of thirteen simple transpositions when only five will do?

Let us deduce some properties of products of simple transpositions that
can help us classify such products. First of all, we notice that every simple
transposition is its own inverse: s2i = e. Also, if two simple transpositions
are “far apart” then they commute: sisj = sjsi if |i − j| > 1. In the case
j = i + 1, observe that sisi+1si = si+1sisi+1 since both products have the
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effect of swapping i and i + 2 while fixing all other elements. Let us collect
these identities here.

Observation 11.1 (The braid relations) The simple transpositions sat-
isfy the following relations:

1. s2i = e for all i = 1, . . . , n− 1,
2. sisj = sjsi if |i− j| > 1, or by relation 1, (sisj)

2 = e,
3. sisi+1si = si+1sisi+1 for all i = 1, . . . , n−2, or by relation 1, (sisi+1)

3 = e.

Using these relations, we can see that all the expressions for w = 24351
above are equivalent to one another without having to convert every expres-
sion to one-line notation. For example, s1s3s2s3s4 = s3s1s2s3s4 since s1 and
s3 commute, and s1s3s2s3s4 = s1s2s3s2s4 since s3s2s3 = s2s3s2. The reader
should try to show that the longer expression above is also reducible to these
expressions. Here are the first few steps in one such reduction, with the pieces
to rewrite in parentheses:

s2s1s3(s2s3s2)s3s1s2s3s2s3s4 = s2s1(s3s3)s2(s3s3)s1s2s3s2s3s4,

= (s2s1s2)s1s2s3s2s3s4,

= · · · .

If a product of simple transpositions can be shortened in this way, we say
the expression is reducible. Otherwise it is reduced.

In Table 11.1 we see the reduced expressions for each of the elements of
S4.

We define the length of an element w ∈ Sn, denoted �(w), to be the minimal
number of terms required to write w as a product of simple transpositions.
In other words,

�(w) = min{k : w = si1 · · · sik},

with the length of the identity equal to zero. Notice that if w = si1 · · · sik ,
then w−1 = sik · · · si1 is the reversal of this expression. So all the reduced
expressions for w−1 are obtained by reversing the reduced expressions for w,
and in particular, �(w) = �(w−1).

One simple way to find a reduced expression for a permutation is to sort
it. An induction argument shows that the following greedy sort will produce
a reduced expression for an element w in Sn. (See Problem 5.5 in Chapter 5.)
We demonstrate with the example w = 37821564.

We first find the smallest element that is out of place. In this case it is 1.
We apply adjacent transpositions to move it to its proper place:
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Table 11.1 The reduced expressions for elements of S4, along with length and de-
scent statistics.

w reduced expressions �(w) = inv(w) Des(w)

1234 e 0 ∅
2134 s1 1 {1}
1324 s2 1 {2}
1243 s3 1 {3}
2314 s1s2 2 {2}
2143 s1s3, s3s1 2 {1, 3}
3124 s2s1 2 {1}
1342 s2s3 2 {3}
1423 s3s2 2 {2}
3214 s1s2s1, s2s1s2 3 {1, 2}
2341 s1s2s3 3 {3}
2413 s1s3s2, s3s1s2 3 {2}
3142 s2s1s3, s2s3s1 3 {1, 3}
1432 s2s3s2, s3s2s3 3 {2, 3}
4123 s3s2s1 3 {1}
3241 s1s2s1s3, s1s2s3s1, s2s1s2s3 4 {1, 3}
2431 s1s2s3s2, s1s3s2s3, s3s1s2s3 4 {2, 3}
4213 s1s3s2s1, s3s1s2s1, s3s2s1s2 4 {1, 2}
3412 s2s1s3s2, s2s3s1s2 4 {2}
4132 s2s3s2s1, s3s2s1s3, s3s2s3s1 4 {1, 3}
3421 s1s2s1s3s2, s1s2s3s1s2, 5 {2, 3}

s2s1s2s3s2, s2s1s3s2s3, s2s3s1s2s3
4231 s1s2s3s2s1, s1s3s2s1s3, s1s3s2s3s1, 5 {1, 3}

s3s1s2s1s3, s3s1s2s3s1, s3s2s1s2s3
4312 s2s1s3s2s1, s2s3s1s2s1, 5 {1, 2}

s2s3s2s1s2, s3s2s1s3s2, s3s2s3s1s2
4321 s1s2s1s3s2s1, s1s2s3s1s2s1, s1s2s3s2s1s2, s1s3s2s1s3s2, 6 {1, 2, 3}

s1s3s2s3s1s2, s2s1s2s3s2s1, s2s1s3s2s1s3, s2s1s3s2s3s1,
s2s3s1s2s1s3, s2s3s1s2s3s1, s2s3s2s1s2s3, s3s1s2s1s3s2,
s3s1s2s3s1s2, s3s2s1s2s3s2, s3s2s1s3s2s3, s3s2s3s1s2s3

3 7 8 2 1 5 6 4

3 7 8 1 2 5 6 4

3 7 1 8 2 5 6 4

3 1 7 8 2 5 6 4

1 3 7 8 2 5 6 4

s4 :

s3 :

s2 :

s1 :

.

Now that 1 is in its proper place, we apply the same procedure again.
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1 3 7 8 2 5 6 4

1 3 7 2 8 5 6 4

1 3 2 7 8 5 6 4

1 2 3 7 8 5 6 4

s4 :

s3 :

s2 :

.

At this point, 1, 2, and 3 are in their proper place, so next we move 4 into
place, then 5, and so on. Here are the remaining steps in the sorting:

1 2 3 7 8 5 6 4

1 2 3 7 8 5 4 6

1 2 3 7 8 4 5 6

1 2 3 7 4 8 5 6

1 2 3 4 7 8 5 6

1 2 3 4 7 5 8 6

1 2 3 4 5 7 8 6

1 2 3 4 5 7 6 8

1 2 3 4 5 6 7 8

s7 :

s6 :

s5 :

s4 :

s6 :

s5 :

s7 :

s6 :

.

Recording all the steps used in this way gives the expression

(s4s3s2s1)︸ ︷︷ ︸
(sort 1)

(s4s3s2)︸ ︷︷ ︸
(sort 2)

(s7s6s5s4)︸ ︷︷ ︸
(sort 4)

(s6s5)︸ ︷︷ ︸
(sort 5)

(s7s6)︸ ︷︷ ︸
(sort 6)

.

If we call this expression u, we have that wu = e, so u = w−1. Hence, to
obtain a reduced expression for w, we need to reverse the order of the terms.
We have

w = s6s7s5s6s4s5s6s7s2s3s4s1s2s3s4,

and �(w) = 15.
Another way to think about this sorting process is that we are moving

down in the right weak order Wkr(Sn). Recall from Section 5.2 that the
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weak order is ranked by inversion number, and that every cover relation is of
the form u <Wkr usi for some i, with inv(usi) = inv(u) + 1. Our greedy sort
therefore looks at all elements covered by w and chooses to move down along
the edge of the Hasse diagram labeled by the simple transposition with the
smallest index. We continue in this way, decreasing the number of inversions
by one with every edge traversed, finishing with the identity. Hence we have
the following consequence.

Observation 11.2 (Length equals inversion number) For any permu-
tation w in Sn,

�(w) = inv(w),

and thus the weak order Wk(Sn) is ranked by length:

f(Wk(Sn); q) = [n]! =
∑

w∈Sn

q�(w).

Looking back upon the example of w = 37821564, we compute

inv(w) = 2 + 5 + 5 + 1 + 0 + 1 + 1 + 0 = 15,

as expected.
There is a similar connection between descents and reduced expressions.

To see the connection, let w = w(1) · · ·w(i− 1)w(i)w(i + 1)w(i+ 2) · · ·w(n)
be an element of Sn written in one-line notation, and consider the effect of
right multiplication by si:

wsi = w(1) · · ·w(i − 1)w(i + 1)w(i)w(i + 2) · · ·w(n).

We see this action swaps the numbers in positions i and i + 1 of w. Thus i
is a descent position of w if and only if i is not a descent position of wsi. In
particular, i is a descent of w if and only if inv(w) > inv(wsi), i.e., w covers
wsi in the weak order. We have the following characterization of descents.

Observation 11.3 (Descents in terms of words) For any permutation
w in Sn,

Des(w) = {1 ≤ i ≤ n− 1 : �(w) > �(wsi)}.

In particular, the descents of w label the ways to move down from w in the
(right) weak order.

A consequence of this observation is that i is a descent of w if and only
if there is a reduced expression for w that has si as its rightmost term. For
example, we can see in Table 11.1 that w = 4312 has five reduced expressions,
and each of these end in either s1 or s2.
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11.2 Finite Coxeter groups: generators and relations

Given the discussion of the previous section, we could have given an abstract
definition of the symmetric group Sn in terms of generators and relations as
follows. Fix the set of generators S = {s1, . . . , sn−1}, and let S∗ denote the
set of all finite words on the alphabet S. Then S∗ is a monoid under concate-
nation of words, with e as the identity. Define an equivalence relation on S∗

by declaring that two words are equivalent if one can be transformed into the
other by applying a sequence of braid relations, as listed in Observation 11.1.
(However, we emphasize that now the braid relations are definitions, not
properties deduced from what we know about the symmetric group.) Then
Sn is isomorphic to S∗ modulo this equivalence relation.

We use the notation 〈S : R〉 to indicate such a construction, where R is a
set of words equal to the identity. Thus we claim that the symmetric group
Sn has presentation

〈

S :
s2i ,

(sisi+1)
3,

(sisj)
2 for |i− j| > 1

〉

.

The information in this presentation is easily captured in a graph. For
example, the generators and relations presentation of S7 can be shown with:

•
s1

•
s2

•
s3

•
s4

•
s5

•
s6 .

Here, the nodes correspond to the elements of S, each of which is assumed
to satisfy s2i = e. If there is no edge between two elements, they commute.
An edge indicates the product of the two generators has order three.

It is really quite remarkable that a presentation with generators and rela-
tions defines a finite group. The structure of such groups is very rigid, and
they admit a complete classification, which we will now describe.

First, define a Coxeter system to be a pair (W,S), where W is a group
and S is a minimal generating set of W , subject to the following relations.
(By minimal generating set we mean every element of w can be written as a
product of elements of S and no proper subset of S will do the same.) For
every pair s, t in S, we have

• st = e if and only if s = t, and if s 	= t,
• (st)m(s,t) = (ts)m(s,t) = e for some integer m(s, t) > 1.

We say such a group W is a Coxeter group of rank r = |S|.
To each Coxeter system we can associate a Coxeter graph whose nodes

are the elements of S. If m(s, t) > 2, then we draw an edge between s and t,
labeled with m(s, t) if m(s, t) > 3. (The case m(s, t) = 3 is the most common
in such pictures. A Coxeter system with m(s, t) ≤ 3 for all s and t is called
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simply laced.) Irreducible Coxeter systems correspond to connected Coxeter
graphs, which are shown in Figure 11.1.

An (n ≥ 1) • • • • • • • •

Bn (n ≥ 2) • • • • • • • •4

Dn (n ≥ 4) • • • • • • •
•

•

E6

• • • • •

•

E7

• • • • • •

•

E8

• • • • • • •

•

F4
• • • •4

H3
• • •5

H4
• • • •5

I2(m) (m ≥ 5) • •m

Fig. 11.1 The Coxeter graphs for irreducible finite Coxeter groups

For example, the group F4 has the following presentation. If we label the
generators as:

• • • •4
r s t u

then

F4 =

〈

{r, s, t, u} :
r2, s2, t2, u2,

(rs)3, (st)4, (tu)3,
(rt)2, (ru)2, (su)2

〉

.
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While it may be straightforward to check that F4 is a group (since the gen-
erators are involutions, the inverse of a word is its reversal), the fact that
there are only finitely many equivalence classes of words is not trivial. To
underscore how delicate the situation is, we remark that the group with five
generators whose graph is obtained by adding only one generator to F4 as
follows:

• • • •4 ,•
(11.1)

is an infinite group. See Problem 11.3.
We will not prove the classification of finite Coxeter systems here. (See

the notes at the end of the chapter for suggestions for further reading.) We
will simply take it as given that such a classification exists and study the
outcome. The names for the Coxeter systems in Figure 11.1 are chosen to
agree with a similar classification for root systems coming from Lie theory.
More will be said about this in Section 11.5.

By analogy with what we have seen for the symmetric group, we define
the length of an element w in W to be the number of terms in a shortest
expression for w as a product of elements of S. That is,

�(w) = min{k : w = s1 · · · sk, si ∈ S}.

Now we can use length to help us define the general notion of descents for
elements of a Coxeter group. For any element w in the Coxeter group W , let

Des(w) = {s ∈ S : �(w) > �(ws)},

and des(w) = |Des(w)|. We will define the W -Eulerian numbers by counting
the distribution of descent numbers across the Coxeter group W . This is the
topic of Section 11.4.

Before moving on, a couple of remarks are in order.
First, from the point of view of Coxeter groups, there are actually two

natural definitions of the descent set. The one given here is the “right” descent
set. We could equally well define the “left” descent set to be the set of w to be
generators that satisfy �(w) > �(sw). This alternate viewpoint is occasionally
useful. The two definitions are equivalent under the involution w ↔ w−1.

Second, we could now define the weak order for the Coxeter group W to
be the transitive closure of the cover relations w <Wk ws if �(ws) = �(w) + 1
(or the same for left multiplication). Rather than take this as a definition,
however, we will develop a geometric story for W (beginning in Section 11.5)
in which the weak order on W emerges as the weak order on the chambers
of a hyperplane arrangement associated with W . This approach generalizes
what we saw for the braid arrangement and Wk(Sn) Chapter 5.
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11.3 W -Mahonian distribution

The distribution of length in the symmetric group is called the Mahonian
distribution, with generating function:

∑

w∈Sn

qinv(w) =
∑

w∈Sn

q�(w) = [1][2] · · · [n],

where [k] = 1 + q + q2 + · · · + qk−1 = (1 − qk)/(1 − q) is the q-analogue of
k. A similar formula exists for any finite Coxeter group, and we can think of
length as a general “W -Mahonian” statistic for any finite Coxeter group W .
The generating function for length is also commonly known as the Poincaré
polynomial.

The general result depends on certain constants related to W called the
degrees of the Coxeter group. (The name refers to the degrees of the fun-
damental polynomial invariants for W . If these comments don’t make sense,
don’t worry. It’s not important for us.) The degrees for irreducible Coxeter
groups can be found in Table 11.2. If W is reducible, W = U×V , the degrees
of W are the degrees of U together with the degrees of V , with repetition
allowed. The remarkable thing is that the distribution of length is given by
the product of the q-analogues of the degrees.

Theorem 11.1 (W -Mahonian distribution). The distribution of length
in the finite Coxeter group W of rank n is given by

∑

w∈W

q�(w) = [d1][d2] · · · [dn] =
∏n

i=1(1− qdi)

(1− q)n
,

where d1, d2, . . . , dn are the degrees of W .

For example, Theorem 11.1 tells us the Mahonian distribution for D5 is:

∑

w∈D5

q�(w) =
(1− q2)(1 − q4)(1 − q6)(1− q8)(1− q5)

(1 − q)5
,

= 1 + 5q + 14q2 + 30q3 + 54q4 + 85q5 + 120q6

+155q7 + 185q8 + 205q9 + 212q10 + 205q11 + 185q12 + 155q13

+120q14 + 85q15 + 54q16 + 30q17 + 14q18 + 5q19 + q20.

11.4 W -Eulerian numbers

We define the W -Eulerian polynomial to be the generating function for de-
scents, denoted



11.4 W -Eulerian numbers 247

Table 11.2 The degrees of the fundamental invariants for irreducible finite Coxeter
groups.

Coxeter group Degrees: d1, d2, . . . , dn

An 2, 3, 4, . . . , n + 1

Bn 2, 4, 6, . . . , 2n

Dn 2, 4, 6, . . . , 2n − 2, n

E6 2, 5, 6, 8, 9, 12

E7 2, 6, 8, 10, 12, 14, 18

E8 2, 8, 12, 14, 18, 20, 24, 30

F4 2, 6, 8, 12

H3 2, 6, 10

H4 2, 12, 20, 30

I2(m) 2, m

W (t) =
∑

w∈W

tdes(w) =

n∑

k=0

〈
W

k

〉
tk,

where n = |S| is the rank of W . The coefficients of this polynomial,
〈
W

k

〉
= |{w ∈W : des(w) = k}|,

are called the W -Eulerian numbers.
When W = An−1, these are the classical Eulerian numbers,

〈
n
k

〉
. For a

different example, the reader can try to compute

B2(t) = 1 + 6t+ t2.
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More generally, the Eulerian polynomial for the dihedral group I2(m) is 1 +
2(m − 1)t + t2. See Problem 11.6. Type Bn Eulerian numbers for low rank
can be found in Table 11.3, the type Dn Eulerian numbers of low rank are
in Table 11.4, and the exceptional groups have their Eulerian distributions
in Table 11.5.

Table 11.3 The Eulerian numbers
〈
Bn

k

〉
, 0 ≤ k ≤ n ≤ 9.

n\k 0 1 2 3 4 5 6 7 8 9
2 1 6 1
3 1 23 23 1
4 1 76 230 76 1
5 1 237 1682 1682 237 1
6 1 722 10543 23548 10543 722 1
7 1 2179 60657 259723 259723 60657 2179 1
8 1 6552 331612 2485288 4675014 2485288 331612 6552 1
9 1 19673 1756340 21707972 69413294 69413294 21707972 1756340 19673 1

Table 11.4 The Eulerian numbers
〈
Dn

k

〉
, 0 ≤ k ≤ n ≤ 9.

n\k 0 1 2 3 4 5 6 7 8 9
4 1 44 102 44 1
5 1 157 802 802 157 1
6 1 530 5551 10876 5551 530 1
7 1 1731 35121 124427 124427 35121 1731 1
8 1 5528 208732 1265704 2201030 1265704 208732 5528 1
9 1 17369 1187252 11816900 33427118 33427118 11816900 1187252 17369 1

Table 11.5 The W -Eulerian numbers
〈
W
k

〉
of exceptional type.

W\k 0 1 2 3 4 5 6 7 8
E6 1 1272 12183 24928 12183 1272 1
E7 1 17635 309969 1123915 1123915 309969 17635 1
E8 1 881752 28336348 169022824 300247750 169022824 28336348 881752 1
F4 1 236 678 236 1
H3 1 59 59 1
H4 1 2636 9126 2636 1

One of the first things we notice about the W -Eulerian numbers is their
palindromicity. One general explanation for this relies on the existence of
a unique element of maximal length in W . This element, called the long
element, is denoted w0, and it has Des(w0) = S. The involution w �→ w0w
has the effect of complementing descent sets:
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Des(w0w) = S −Des(w).

See Problem 11.7. In particular, des(w0w) = n− des(w). Taking these prop-
erties as given for now, we have the following.

Observation 11.4 For any finite Coxeter group W , the W -Eulerian num-
bers are palindromic: 〈

W

k

〉
=

〈
W

n− k

〉
.

In the case of the symmetric group, W = Sn, the long element is the
decreasing permutation w0 = n · · · 21. Left multiplication by w0 has the effect
of replacing i with n+1− i in the one-line notation of a permutation. In this
case it is clear that the descent sets of w and w0w are complementary.

Not only are the W -Eulerian distributions palindromic, but they are also
unimodal. In fact, the W -Eulerian polynomials are real-rooted and hence
gamma-nonnegative for any W .

Theorem 11.2. For any finite Coxeter group W , the W -Eulerian polynomial
W (t) =

∑
w∈W tdes(w) is real-rooted. In particular, if W is of rank n, there

exist nonnegative integers γW
j such that

W (t) =

�n/2	∑

j=0

γW
j tj(1 + t)n−2j . (11.2)

The first step in proving this theorem is to reduce it to the case of irre-
ducible Coxeter groups. (As of this writing there is no case-free proof of this
theorem.) Notice that if W = U × V , with U and V finite Coxeter groups,
i.e., if W is reducible, then all the generators for U commute with all the
generators for V . (The Coxeter graphs for U and V are disjoint subgraphs of
the graph for W .) Thus every element w in W can be written as w = uv = vu
for some unique choice of u ∈ U and v ∈ V , and this implies that the descent
set of w is the disjoint union of the descent set of u and the descent set of v.
In particular,

des(w) = des(u) + des(v).

Hence the W -Eulerian polynomial is multiplicative:

U(t)V (t) =
∑

u∈U,v∈V

tdes(u)+des(v) =
∑

w∈W

tdes(w) = W (t).

Hence if U(t) and V (t) are real-rooted, so is W (t).
Thus to prove Theorem 11.2, it suffices to prove it for W -Eulerian poly-

nomials of irreducible Coxeter groups. As previously discussed, Sn is a Cox-
eter group of type An−1. This case is the subject of Problem 4.6 (see also
Theorem 4.1). The W -Eulerian polynomial for the dihedral group I2(m) is
1 + 2(m − 1)t + t2 = (1 + t)2 + 2(m − 2)t, which is both real-rooted and
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gamma-nonnegative since m ≥ 2. The real-rootedness for Coxeter groups of
exceptional type, i.e., the groups of type E6, E7, E8, F4, H3, and H4, can be
verified one at a time by computer. We have their W -Eulerian numbers in Ta-
ble 11.5, and their corresponding gamma coefficients are listed in Table 11.6.

Table 11.6 The gamma coefficients γW
j of exceptional type.

W\j 0 1 2 3 4
E6 1 1266 7104 3104
E7 1 17628 221808 282176
E8 1 881744 23045856 63613184 17111296
F4 1 232 208
H3 1 56
H4 1 2632 3856

The infinite families of types Bn and Dn can be addressed in much the
same way as the symmetric group, since we can represent group elements
with signed permutations. (See Chapter 13.) Proofs of real-rootedness and
separate proofs of gamma-nonnegativity (with combinatorial interpretations)
for the W -Eulerian polynomials of type Bn and Dn are given in Chapter 13,
along with exponential generating functions.

11.5 Finite reflection groups and root systems

Coxeter groups get their name from H. S. M. Coxeter, who sought a classifi-
cation of regular convex polytopes via their symmetry groups. For example
it is well known that the symmetric group Sn is isomorphic to the group of
symmetries for an n-simplex. Similarly, the group of symmetries of an n-cube
is the Coxeter group Bn. See Figure 11.2. These symmetry groups share the
property that they can be generated by a set of reflections in R

n that satisfy
the appropriate relations.

All the finite Coxeter groups can be realized in a similar way, as finite
reflection groups. In other words, for a finite Coxeter system (W,S) we can
identify the elements of S with certain reflections acting on a vector space
V , such that the reflections satisfy the relations given by the Coxeter graph.
Thus W can be seen as a finite subgroup of the general linear group GL(V )
generated by these reflections. The group W fixes a certain collection of
vectors called a root system. Each root is orthogonal to a hyperplane in V , and
the collection of all such hyperplanes is called the Coxeter arrangement forW .
The braid arrangement discussed in Section 5.3 is the Coxeter arrangement
for the symmetric group.

The hyperplane arrangement we have just described is a Euclidean ar-
rangement as discussed in Chapter 5. Let us recall some of the details of this
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Fig. 11.2 The symmetric group S3 is the group of symmetries of a triangle; the
hyperoctahedral group B2 is the group of symmetries of the square.

setting. First, we fix a real vector space V with an inner product 〈·, ·〉. Given
a nonzero vector β in V , let Hβ denote the hyperplane orthogonal to β:

Hβ = {λ ∈ V : 〈λ, β〉 = 0}.

A hyperplane is a codimension one subspace of V . If V is a line, a hyperplane
is a point. If V is a plane, a hyperplane is a line. If V is isomorphic to R

3, a
hyperplane is a plane, and so on.

Notice that any nonzero scalar multiplication of β defines the same hyper-
plane. We denote by sβ the orthogonal reflection through Hβ . Explicitly sβ
acts on a vector μ in V by

sβ(μ) = μ− 2〈μ, β〉
〈β, β〉 β.

From this definition it is easy to check that s2β is the identity map, and that
〈sβ(λ), sβ(μ)〉 = 〈λ, μ〉 for any λ and μ in V . In particular, the action of sβ
preserves distances. See Figure 11.3.

We will now let Φ denote a particular collection of vectors in V called a
root system. A root system is defined by the following properties:

• Φ spans V ,
• if β ∈ Φ, then −β ∈ Φ,
• for α, β ∈ Φ, sβ(α) ∈ Φ.

Further, if

•
2〈α, β〉
〈β, β〉 is an integer for all α and β in Φ,
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Hβ

β

μ

sβ(μ)

Fig. 11.3 The orthogonal reflection sβ.

we say that the root system is crystallographic. The classification of fi-
nite root systems follows much the same one as for finite Coxeter groups,
with very similar graphical notation, which we will explain shortly. See Fig-
ure 11.4, which lists all the irreducible crystallographic root systems. The
only non-crystallographic finite root systems are H3,H4, and I2(m) with
m /∈ {2, 3, 4, 6}. Note that we use a boldface font for root systems and itali-
cized font for Coxeter groups, e.g., B2 is a root system and B2 is a Coxeter
group.

To begin to understand the classification of root systems we choose a
set of linearly independent roots called the simple roots, and denoted Δ =
{α1, . . . , αn}. The set Δ is chosen so that Φ = Π ∪ −Π , where Π is the set
of all roots in the nonnegative span of Δ and −Π is the set of all roots in
the nonpositive span of Δ. The sets Π and −Π are referred to as the positive
roots and negative roots, respectively. Notice that since Φ was assumed to
span V , this means Δ is a basis for V . We refer to the cardinality of Δ (i.e.,
the dimension of V ) as the rank of Φ.

Now given Δ, we can construct a graph, called a Dynkin diagram, whose
nodes correspond to the elements of Δ. Similarly to Coxeter graphs, we label
the edge between α and β with the order of sαsβ . Let m(α, β) denote this
power. The casem(α, β) = 2 means sαsβ = sβsα, and α and β are orthogonal.
We draw an edge between α and β if m(α, β) ≥ 3. If m(α, β) ≥ 4 we label
the edge with this power. One difference from Coxeter graphs is that in a
Dynkin diagram we draw < or > to indicate when one root is shorter or
longer than another. For example, in the diagram for Bn, the leftmost simple
root is shorter than the others, while in Cn it is longer.

We say a root system Φ is reducible if it can be partitioned as Φ = Φ1∪Φ2

where Φ1 and Φ2 are root systems in their own right, lying in mutually orthog-
onal subspaces of V . Otherwise, we say Φ is irreducible. In terms of Dynkin
diagrams, Φ is irreducible if and only if its Dynkin diagram is connected.

LetW = W (Φ) = 〈sβ : β ∈ Φ〉 denote the subgroup ofGL(V ) generated by
the reflections through the hyperplanes Hβ . (In fact, W lies in the orthogonal
subgroup O(V ). See Problem 11.8.) This is the Coxeter group generated by Φ.
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An (n ≥ 1) • • • • • • • •

Bn (n ≥ 2) • • • • • • • •4
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•
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F4 • • • •4
>

G2 • •6
>

Fig. 11.4 The Dynkin diagrams for irreducible crystallographic root systems.

A special subfamily of the finite Coxeter groups are those whose root system
is crystallographic. If Φ is crystallographic, W is known as the Weyl group
of Φ.

Let S = {sα : α ∈ Δ} denote the set of simple reflections, i.e., those
reflections orthogonal to the simple roots. Then (W,S) is a Coxeter system
in the sense of Section 11.2, only now we have a geometric understanding of
the generating set S, and the relations satisfied by the elements of S can be
verified geometrically.

We remark that every root system has a Coxeter group, and every Cox-
eter group has a root system, but the same Coxeter group can arise from
more than one root system. For example, the root systems of type Bn and
type Cn are “dual” in a certain sense, and have the same Weyl group: the
hyperoctahedral group Bn. This is why there was no type Cn Coxeter graph
listed in Figure 11.1.

Here are some examples of root systems.
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11.5.1 Type An−1

Let {ε1, ε2, . . . , εn} denote the standard basis elements in R
n. The root sys-

tem of type An−1 is

Φ = {εi − εj : 1 ≤ i 	= j ≤ n}.

Let Vn−1 = {x ∈ R
n :
∑

xi = 0} denote the subspace of Rn spanned by Φ.
The hyperplane orthogonal to εi − εj is

Hij = {x ∈ Vn−1 : xi = xj}.

We let Sn act on Vn−1 by the permuting the standard basis elements. The
reflection through Hij swaps εi and εj , and thus corresponds to the transpo-
sition that swaps i and j.

We take the simple roots to be αi = εi+1 − εi, so that

Δ = {αi : 1 ≤ i ≤ n− 1}.

Thus, the positive roots are εj − εi, for 1 ≤ i < j ≤ n. With our choice of
simple roots, we have that the simple reflection si corresponds to the adjacent
transposition that swaps i and i+ 1.

11.5.2 Type Bn

Let V = R
n with the standard basis {ε1, . . . , εn} as before. The root system

of type Bn is

Φ = {±εi : 1 ≤ i ≤ n} ∪ {±εi ± εj : 1 ≤ i 	= j ≤ n}.

We take the simple roots to be

Δ = {ε1, ε2 − ε1, . . . , εn − εn−1},

i.e., the type An−1 simple roots, αi = εi+1 − εi (1 ≤ i ≤ n − 1), together
with α0 = ε1. The positive roots are thus

Π = {ε1, . . . , εn} ∪ {εj ± εi : 1 ≤ i < j ≤ n}.

We can represent the Coxeter group Bn as the set of signed permutations,
i.e., bijections

w : {−n, . . . ,−1, 0, 1, . . . , n} → {−n, . . . ,−1, 0, 1, . . . , n}

such that w(−i) = −w(i) for all i. We have these permutations acting on V
by w · εi = εw(i), with the understanding that ε−i = −εi.
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The hyperplane orthogonal to β = εi is simply a coordinate hyperplane,
denoted

Hi = {x ∈ R
n : xi = 0},

and the corresponding reflection swaps εi with −εi. We represent this with
a signed permutation that swaps i with −i.

The hyperplane orthogonal to β = εj − εi is denoted

Hij = {x ∈ R
n : xi = xj}.

The reflection through Hij swaps εi and εj. It corresponds to the signed
permutation that swaps i and j (and −i with −j).

The hyperplane orthogonal to β = εj + εi is denoted:

Hīj = {x ∈ R
n : −xi = xj}.

The reflection through Hīj swaps εi and −εj, corresponding to the signed
permutation that swaps i and −j (and −i with j).

11.5.3 Type Cn

The root system of type Cn also lives in V = R
n. It is

Φ = {±2εi : 1 ≤ i ≤ n} ∪ {±εi ± εj : 1 ≤ i 	= j ≤ n}.

See Figure 11.5 for a comparison of the type B2 root system and the type
C2 root system.

Since each of these roots are simply rescaled versions of the type Bn roots,
the type Cn hyperplane arrangement and the type Bn hyperplane arrange-
ment are identical. Hence, they have the same Coxeter group.

11.5.4 Type Dn

The root system of type Dn is a subsystem of both the type Bn and type
Cn root systems. It is

Φ = {±εi ± εj : 1 ≤ i 	= j ≤ n}.

The simple roots are

Δ = {ε1 + ε2, ε2 − ε1, ε3 − ε2, . . . , εn − εn−1},

and we label them by αi = εi+1 − εi for i > 0, and α1̄ = ε1 + ε2.
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α1

α2 α1 + α2 2α1 + α2

−α1

−α2−α1 − α2−2α1 − α2

α1

α2 α1 + α2

α1 + 2α2

−α1

−α2−α1 − α2

−α1 − 2α2

)b()a(

Fig. 11.5 (a) The root system of type B2, and (b) the root system of type C2.

We can represent the groupDn as the subgroup of Bn whose elements have
an even number of minus signs among {w(1), . . . , w(n)}. These elements act
on the standard basis in the same way, by permutation and sign changes.

The hyperplane arrangement for Dn is the subarrangement of the type
Bn arrangement consisting of the hyperplanes Hij and Hīj , but not the
coordinate hyperplanes.

More about the combinatorics of the Coxeter groups of types Bn and
Dn can be found in Chapter 13. We finish the discussion here with a non-
crystallographic example.

11.5.5 Roots for I2(m)

Let Φ denote the set of all unit vectors β = (x, y) in the Euclidean plane such
that the second coordinate y lies in the set {± sin(π/2m),± sin(3π/2m), . . . , }.
Then the lines orthogonal to these vectors sit equally spaced at an angle of
π/m from one to the next. The group generated by reflections across these
lines is the dihedral group I2(m).

This is shown in Figure 11.6 for m = 5, where the simple roots are Δ =
{α1, α2}, and Π = {α1, α2, β, γ, δ}. We can represent all the elements of the
dihedral group as products of the two reflections s = sα1 and t = sα2 . We
have labeled the cones with group elements according to how they act on any
point μ in the cone labeled by 1. For example, if μ is any point in the cone
labeled 1, then st(μ) = s(t(μ)) is a point in the cone labeled by st.
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Fig. 11.6 The roots for the dihedral group I2(m) with m = 5.

11.6 The Coxeter arrangement and the Coxeter complex

We will now fix a root system Φ with Coxeter group W and study the corre-
sponding hyperplane arrangement in more detail. We saw this done for the
case of the Φ = An−1 and W = Sn in Section 5.3, where the arrangement in
question was the braid arrangement. Let

H = H(Φ) =
⋃

β∈Π

Hβ,

where
Hβ = {λ ∈ V : 〈λ, β〉 = 0},

denotes the hyperplane orthogonal to β. We refer to H as the Coxeter ar-
rangement of Φ. Since the corresponding group W fixes Φ, it also fixes H.

Recall from Section 8.5 that any such hyperplane arrangement can be
associated with a flag simplicial complex Σ = Σ(H) in a natural way by
identifying the face poset of H with the face poset of Σ. The origin in V
is identified with the empty set in Σ, the rays in H become the vertices in
Σ, and so on, until the chambers in H are identified with the facets in Σ.
Moreover, we can realize Σ by intersecting the arrangement with a sphere. In
the case that H = H(Φ), we call the complex Σ = Σ(Φ) the Coxeter complex
for the root system.
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From now on, we will move freely between the faces of the hyperplane
arrangement H and the corresponding faces of the simplicial complex Σ. Let
us recall some notation and terminology from the discussion of hyperplane
arrangements in Section 5.4.

For each hyperplane Hβ , we define the positive halfspace

H+
β = {λ ∈ V : 〈λ, β〉 > 0},

and negative halfspace

H−
β = {λ ∈ V : 〈λ, β〉 < 0},

and let H0
β = Hβ denote the set of points on the hyperplane. The faces of

the arrangement are all possible intersections of hyperplanes and halfspaces:

⋂

β∈Π

H
σβ

β ,

where σβ ∈ {−, 0,+}. A face F is encoded by a sign sequence σ(F ) =
(σβ(F ))β∈Π . For example, in Figure 11.6, the ray on the boundary between
the cone labeled s and the cone labeled st is the face

F = H−
α1
∩H+

α2
∩H0

β ∩H+
γ ∩H+

δ ,

and so

σ(F ) = (σα1(F ), σα2 (F ), σβ(F ), σγ(F ), σδ(F )) = (−,+, 0,+,+).

Inclusion of faces in Σ is easily phrased in terms of sign sequences (see
Proposition 5.2): F ≤Σ G if and only if, for all β ∈ Π ,

σβ(F ) = σβ(G) or σβ(F ) = 0.

That is, we move up in the face poset by changing a zero entry to a nonzero
entry, i.e., by stepping off of some hyperplane into a higher-dimensional cone.
The maximal faces (called chambers in H, and facets in Σ) have all their
entries nonzero.

We can see the B2 hyperplane arrangement and corresponding sign se-
quences in Figure 11.7. In the figure, sign vectors are given as

(σα1 , σα2 , σα1+α2 , σ2α1+α2).
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(−,+, 0, −) (+, −, 0,+)

(−, 0, −, −)

(+, 0,+,+)(−,+,+, 0)

(+, −, −, 0)
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(0, 0, 0, 0) α1
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(+, −, −, −)(−, −, −, −)

Fig. 11.7 The sign vectors for the B2 hyperplane arrangement. The positive roots
are shown in gray.

11.7 Action of W and cosets of parabolic subgroups

What distinguishes the Coxeter arrangement from other finite Euclidean hy-
perplane arrangements is that we have the action of the group W to work
with. We can encode faces with sign vectors when convenient, but we can
also characterize faces in terms of W -orbits as follows.

Let C denote the face with sign vector (+,+, . . . ,+). We call this cone the
fundamental chamber. Every point of V is in the W -orbit of a unique point
in the closure of C, so we say that C is a fundamental domain for the action
of W on V . Let us be more explicit.

We have

C = {λ ∈ V : 〈λ, β〉 ≥ 0 for all β ∈ Π},
= {λ ∈ V : 〈λ, α〉 ≥ 0 for all α ∈ Δ}.

The second equality follows since every positive root β is a nonnegative linear
combination of simple roots. For sake of clarity later on, fix a labeling on the
simple roots, Δ = {α1, . . . , αn}, and use the same labeling to index the
corresponding simple reflections: S = {s1, . . . , sn}, so that sαj = sj .
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We can partition C as follows:

C =
⋃

J⊆Δ

CJ ,

where for any subset of simple roots indexed by J ⊆ [n] = {1, 2, . . . , n} we
define

CJ = {λ ∈ V : 〈λ, αj〉 = 0 if j ∈ J, 〈λ, αj〉 > 0 otherwise}.

Note that C[n] contains only the origin, while C∅ = C is the fundamental
chamber itself. The dimension of face CJ in H is easily seen to be |Jc|, where
Jc denotes the complement of J , i.e., Jc = [n]− J . The extreme rays of the
cone C are of the form C{j}c . Let us give each such ray the color j, and define
the color of face CJ to be Jc, which is easily verified to be the set of colors
of the extreme rays on its boundary.

Now, because C is a fundamental domain for the action of W , each face
of the Coxeter complex Σ can be expressed in the form

wCJ = {w(λ) : λ ∈ CJ}.

The coloring of faces of C extends to all faces of Σ, with the color of wCJ

equal to Jc. This coloring means Σ is a balanced simplicial complex in the
sense of Section 8.6.

Notice that the chambers of H are the elements in the W -orbit of C∅. We
can thus identify chambers with elements of W :

w ↔ wC∅.

In Figure 11.8 we see all the faces of Σ(B2) labeled in this way. Compare
this with Figure 11.7.

Notice that faces are sometimes fixed by elements of W . For example, the
face Cα1 in Figure 11.8 lies in the hyperplane Hα1 , and hence is fixed by
the reflection s1. In general, face CJ is fixed by sj for all j ∈ J . Therefore
any product of such reflections fixes CJ as well. Define WJ , for any subset
J ⊆ [n], to be the subgroup of W generated by the simple reflections indexed
by J :

WJ = 〈sj ∈ S : j ∈ J〉.

These subgroups are Coxeter groups in their own right, which we call the
standard parabolic subgroups of W . The Dynkin diagram for WJ is just the
subgraph on the nodes indexed by J . For example, suppose we label the
Dynkin diagram for W = E7 as follows

•α1 •α2 •α3 •α4 •α5 •α6

•
α7

.
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s1
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}
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}
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s1s2C{1} s2C{1}

s2s1s2C{1}
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C∅s1C∅

s2C∅s1s2C∅

s2s1C∅s1s2s1C∅

s2s1s2C∅w0C∅

C{1,2}

Fig. 11.8 The Coxeter arrangement of type B2, with labels coming from the B2-
action.

Then the parabolic subgroup W{1,2,3,5,6,7} has Dynkin diagram

•α1 •α2 •α3 •α5 •α6

•
α7

,

so we can see that in this case the parabolic subgroup is reducible. It is the
product of two symmetric groups: W{1,2,3,5,6,7} ∼= A4×A2. Similarly, we find
the parabolic W{2,3,4,6,7} ∼= D4 ×A1.

Consider now the W -coset wWJ = {wv : v ∈ WJ}. Every element of WJ

fixes the face CJ , so every element u = wv ∈ wWJ takes a point λ ∈ CJ to a
point u(λ) = w(v(λ)) = w(λ) ∈ wCJ . With this in mind, we can study faces
of the Coxeter complex purely algebraically, under the identification

wWJ ↔ wCJ .

The partial order on faces of Σ corresponds quite simply to reverse inclusion
of cosets:

vCJ ≤Σ wCK if and only if wWK ⊆ vWJ .
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The origin (empty face) thus corresponds to all of W and maximal cones
(facets) correspond to singleton cosets: wW∅ = {w}.

We remark that we could have constructed the Coxeter complex Σ this
way in the first place, by defining its faces abstractly as cosets of parabolic
subgroups. However, without the geometry of the underlying hyperplane ar-
rangement, it would require a separate argument to show that the set

{wWJ : w ∈W,J ⊆ [n]}

is isomorphic to an abstract simplicial complex with vertex set

{wW{j}c : w ∈ W, j ∈ [n]}.

See Problem 11.12.

11.8 Counting faces in the Coxeter complex

In this section we will compute the f - and h-vectors of the Coxeter complex
Σ. We know from Theorem 5.3 that the classical Eulerian polynomial is
the h-polynomial of the type An−1 Coxeter complex, and the goal here is to
show the W -Eulerian polynomial is the h-polynomial for the type W Coxeter
complex.

For example, from Figure 11.8 we can see that Σ(B2) is the boundary of
an octagon. Thus we have f(Σ(B2); t) = 1 + 8t + 8t2, and h(Σ(B2); t) =
W (B2; t) = 1 + 6t+ t2.

Recall from Section 11.6 that the Coxeter complex is a balanced simplicial
complex. We have colored its vertices such that every face has distinctly
colored vertices; in particular, F has color set J if it is of the form F = wCJc .
For any J ⊆ [n], let fJ denote the number of faces of Σ with color set J .

If a face F has color set J , then dimF = |J |−1 (thinking of the dimension
in the complex Σ, not in the hyperplane arrangement H). Hence, we can
express the f -vector for Σ as:

f(Σ; t) =
∑

F∈Σ

tdimF+1 =
∑

J⊆[n]

fJ t
|J|.

But by construction, the J-colored faces are precisely those in the W -orbit of
CJc . As discussed in Section 11.7, since CJc is stabilized by the subgroupWJc ,
this means we can simply count the number of cosets of the corresponding
parabolic subgroups:
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fJ = |{wCJc : w ∈ W}|,
= |W/WJc |,
= |{wWJc : w ∈ W}|.

Now consider a coset of the form wWJc . Each such coset has a unique
element of minimal length. (See Problem 11.13.) Suppose u is the element of
minimal length in wWJc . Then in particular, for each i ∈ Jc, usi is in wWJc

and by minimality of u, �(usi) > �(u). That is, none of the simple reflections
indexed by Jc are descents of u, so if u is the minimal length element of the
coset wWJc ,

Des(u) ⊆ J.

In Section 5.6 we used the model of set compositions to capture cosets
of parabolic subgroups. For example, the set composition 13|5|26|4 would
correspond to the coset

135264 ·W{1,4} = {135264, 315264, 135624, 315624},

with color set {2, 3, 5}. The minimal length coset representative is in this case
the permutation obtained by listing the elements of each block in increasing
order. Right multiplication by the elements of WJc act on positions, permut-
ing the elements within the blocks of the composition.

A consequence of this discussion is that we have translated the problem
of counting faces of color J to the problem of counting the elements of W
whose descent set is contained in J :

fJ = |{w ∈ W : Des(w) ⊆ J}|.

This naturally partitions the faces of Σ according to the elements w of W ,
with each w corresponding to the collection of cosets in which it appears as
the minimal length representative:

w ↔ {wWJc : Des(w) ⊆ J ⊆ [n]}.

The dimension generating function for the set of faces corresponding to
a given element w is thus tdes(w)(1 + t)n−des(w), and we can write the f -
polynomial for Σ as follows.

f(Σ; t) =
∑

F∈Σ

tdimF+1,

=
∑

J⊆[n]

fJ t
|J|,

=
∑

J⊆[n]

∑

w∈W,Des(w)⊆J

t|J|,
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=
∑

w∈W

∑

Des(w)⊆J⊆[n]

t|J|,

=
∑

w∈W

tdes(w)(1 + t)n−des(w),

= (1 + t)n
∑

w∈W

(
t

1 + t

)des(w)

,

= (1 + t)nW (t/(1 + t)).

In other words, we have the following result.

Theorem 11.3. For any finite Coxeter group W , the h-polynomial of Σ is
the W -Eulerian polynomial.

With this connection made, we can now give a topological argument for the
palindromicity of the W -Eulerian numbers mentioned in Observation 11.4.
Since the Coxeter complex Σ is a sphere, the Dehn-Sommerville relations
(Section 8.9) imply its h-vector is palindromic.

11.9 The W -Euler-Mahonian distribution

The way we have counted faces here lends itself to refinement in a natural
way. Define the W -Euler-Mahonian distribution to be the joint distribution
of descents and length, with generating function

W (q, t) =
∑

w∈W

q�(w)tdes(w).

Now consider counting the elements in a coset uWJc with u the coset
representative of minimal length. We have

∑

w∈uWJc

q�(w) =
∑

v∈WJc

q�(u)+�(v) = q�(u)WJc(q, 1).

For fixed J , each element w in W has a unique decomposition w = uv with
Des(u) ⊆ J and v ∈WJc . (See Problem 11.14.) Thus,

W (q, 1) =
∑

Des(u)⊆J

q�(u)WJc(q, 1),
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or ∑

Des(u)⊆J

q�(u) =
W (q, 1)

WJc(q, 1)
.

Let fJ(q) denote this polynomial.
Then by the principle of inclusion-exclusion,

∑

Des(u)=J

q�(u) =
∑

I⊆J

(−1)|J−I|fI(q).

Let hJ (q) denote this polynomial. Then putting this into W (q, t), we have:

W (q, t) =
∑

w∈W

q�(w)tdes(w),

=
∑

J⊆[n]

hJ(q)t
|J|,

=
∑

I⊆J⊆[n]

(−1)|J−I|fI(q)t
|J|,

=
∑

I⊆[n]

fI(q)t
|I|(1− t)n−|I|.

Putting in our expression for fI(q) gives the following result.

Proposition 11.1. For any finite Coxeter group of rank n, the Euler-Mahonian
distribution has the following recursive description:

W (q, t) =
∑

I⊆[n]

W (q, 1)

WIc(q, 1)
t|I|(1− t)n−|I|.

In particular, if we set q = 1 in this expression we have

W (t) =
∑

I⊆[n]

|W |
|WIc | t

|I|(1 − t)n−|I|.

So, for example, the reader is invited to run through all parabolic subgroups
of D5 to find

W (t) = (1− t)5 +

(
2
24 · 5!
5!

+
24 · 5!
2 · 2 · 3! +

24 · 5!
2 · 4! +

24 · 5!
234!

)
t(1− t)4

+

(
4
24 · 5!
4!

+ 4
24 · 5!
2 · 3! +

24 · 5!
2 · 2 · 2

)
t2(1− t)3

+

(
4
24 · 5!
3!

+ 6
24 · 5!
2 · 2

)
t3(1− t)2 + 5

24 · 5!
2

t4(1− t) +
24 · 5!
1

t5,

= 1 + 157t+ 802t2 + 802t3 + 157t4 + t5.



266 11 Coxeter groups

11.10 The weak order

Recall from Section 5.5 that there is a partial ordering on the set of chambers
for any hyperplane arrangement that we call the weak order. Since the cham-
bers in the Coxeter arrangement correspond to group elements, this gives us
a quite natural partial ordering on the Coxeter group itself, which we will
denote Wk(W ).

In Section 5.5 we saw this partial ordering on chambers characterized with
sign sequences. Recall that the inversion set of a chamber C is the index set
for the negative entries in its sign vector:

Inv(C) = {β : σβ(C) = −},

and inv(C) = | Inv(C)| denotes the number of inversions. Then for two cham-
bers C1 and C2, we have

C1 ≤Wk C2 if and only if Inv(C1) ⊆ Inv(C2). (11.3)

Cover relations come from crossing a wall from one chamber to another, and
this has the effect of changing exactly one entry in the sign vector.

In the case of the Coxeter arrangement, the entries of the sign vector are
indexed by positive roots and we can characterize the inversion sets for a
chamber wC∅ as follows:

Inv(wC∅) = {β ∈ Π : w−1(β) < 0}.

Indeed, we can check that if λ is a point in the fundamental chamber C∅,
then 〈λ,w−1(β)〉 = 〈w(λ), β〉, so

w−1(β) < 0 if and only if σβ(wC∅) = −.

By a mild abuse of notation we will define the inversion set of a group element
to be the same. That is, Inv(w) = Inv(wC∅), the set of positive roots that
w−1 sends to negative roots.

We thus define the weak order on W , Wk(W ), by

u ≤Wk v if and only if Inv(u) ⊆ Inv(v). (11.4)

A cover relation u <Wk v means the chambers uC∅ and vC∅ are adjacent
and this implies that we can obtain v from u with right multiplication by a
simple reflection, as we now explain.

Let λ ∈ uC∅ and μ ∈ vC∅ so that the line segment p(x) = (1− x)λ + xμ,
with 0 ≤ x ≤ 1, crosses a wall from the chamber uC∅ to the chamber vC∅.
Notice that u−1(λ) lies in the fundamental chamber. Then applying u−1 to
the entire segment p(x), we have the segment
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p(x) :

λ

μ

uC∅ vC∅

u−1(λ)

u−1(μ)

C∅ u−1vC∅u−1 q(x) :

Fig. 11.9 Pulling back the line segment p(x) = (1 − x)λ + xμ to the neighborhood
of the fundamental chamber.

q(x) = u−1p(x) = (1− x)u−1(λ) + xu−1(μ)

that crosses from C∅ to u−1vC∅. See Figure 11.9. But the only chambers ad-
jacent to C∅ are by construction the ones corresponding to simple reflections.
Thus u−1v = s for some simple reflection s, or v = us.

One consequence of this observation is that the length of an element equals
its inversion number. This is easy to see by induction on length. The claim
is clearly true for any simple reflection s. Now suppose it is true for all u
with �(u) ≤ k. If u <Wk v is a cover relation, then inv(v) = inv(u) + 1 and
v = us. If �(u) = inv(u) = k, then �(v) = k± 1. But if �(v) = k− 1, then our
induction hypothesis says inv(v) = k − 1 as well. However, since v covers u,
we already know inv(v) = k + 1. Hence �(v) = k + 1 = inv(v), as desired.

Observation 11.5 Suppose w is an element of a finite Coxeter group W .
Then length equals inversion number, i.e.,

�(w) = inv(w).
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We know that in any Euclidean hyperplane arrangement the weak order on
chambers is ranked by inversion number. (See Observation 5.4). In particular
the same is true for Wk(W ), and by Observation 11.5 we can phrase the
result in terms of length.

Observation 11.6 The weak order Wk(W ) is ranked by length, i.e.,

f(Wk(W ); q) =
∑

w∈W

q�(w).

Moving down in the weak order, then, amounts to multiplying on the
right by a simple reflection in a way that reduces the length statistic: �(w) >
�(ws). This means that the edges in the Hasse diagram for Wk(W ) that move
downward from an element w can be labeled by the members of the descent
set Des(w). Moreover, we can exploit this fact to show that

Des(w) = {s ∈ S : �(w) > �(ws)} = {sα : α ∈ Δ and w(α) < 0},

i.e., the descent set of w corresponds to the simple roots that are taken to
negative roots by w.

To see this correspondence, suppose the simple reflection sα is a descent
of v. That is, suppose v = usα and that u <Wk v is a cover relation in the
weak order. Then we can write the difference of inversion sets as

Inv(v)− Inv(u) = {β},

for some positive root β ∈ Π . This means, in turn, that v−1(β) < 0 is
a negative root, i.e., if λ is a point in the fundamental chamber C∅ then
〈λ, v−1(β)〉 < 0.

Since v−1 = sαu
−1, we get 〈sα(λ), u−1(β)〉 < 0. This means the corre-

sponding entry in the sign vector for sαC∅ is negative. But this chamber,
being adjacent to the fundamental chamber, has only one negative entry:
σα(sαC∅) = −. Thus u−1(β) = α, or u(α) = β.

Since β is a positive root, this means

v(α) = u(−α) = −u(α) = −β < 0.

In other words, if sα is a descent of v, then v(α) < 0. Each of these steps is
reversible, so we have the following.

Observation 11.7 Suppose w is an element of a finite Coxeter group W .
Then the descent set is indexed by those simple roots that w takes to negative
roots, i.e.,

Des(w) = {sα : α ∈ Δ,w(α) < 0} = {sα : α ∈ Inv(w−1) ∩Δ}.

Notice that throughout the discussion in this section, we are working with
the “right” weak order. If we had identified Inv(w) with Inv(w−1C∅) we
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would get the “left” weak order, where cover relations are given by left mul-
tiplication by a simple reflection. See the discussion in Section 5.2 and also
Problem 11.15.

11.11 The shard intersection order

In Section 11.8 we saw how W -Eulerian numbers arose in the h-vector of the
Coxeter complex. This followed from careful study of the Coxeter arrange-
ment H, which decomposed the ambient vector space V into a disjoint union
of open cones that we called the faces of H. What Nathan Reading calls
shards arise from a different sort of decomposition of the arrangement H.
This decomposition is closely linked to the W -Eulerian numbers as well, as
we now describe.

We form shards by splitting up the hyperplane arrangement H into closed
codimension one cones, each entirely contained in some hyperplane. For ex-
ample, we have a rank two arrangement in Figure 11.10. Its shards are the
two lines and six half-lines. These shards appear disconnected to emphasize
their locations, but in fact they all intersect at the origin.

Each shard contains walls on the boundaries of some chambers. Among
these, there is unique chamber of minimal length. Call this chamber C and
say C′ is the chamber on the other side of the wall contained in the shard.
We identify the shard with the chamber C′. (That this identification is well-
defined takes some work.) It turns out thatC′ coversC and no other chambers
in the weak order. Since covers in the weak order on W correspond to descent
sets, we have an identification between shards and elements with exactly one
descent:

{shards} ↔ {w : des(w) = 1}.

The correspondence between shards and chambers is indicated in our labeling
of the chambers in Figure 11.10. For example, shard l2 contains the walls
between two pairs of chambers. Among these, C0 has minimal length, and
so we identify the shard l2 with the chamber C2, which lies just across l2
from C0.

Since they are closed cones, the shards overlap in various ways and, rem-
arkably, the set of intersections of the shards is in bijection with the set of
chambers of H. The lattice of intersections of shards, with partial order given
by reverse containment, thus passes to a lattice structure on chambers. This
partial order is a coarsening of the weak order, in the sense that if C1 ≤Sh C2

in the shard intersection order, then C1 ≤Wk C2 in the weak order. However,
two elements that are comparable in the weak order may be incomparable in
the shard intersection order.

Since chambers correspond to group elements, we get a partial order on
W itself, denoted (Sh(W ),≤). The minimal element is the empty intersection
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Fig. 11.10 The shards in a rank two arrangement (with fundamental chamber C0)
and the corresponding lattice of intersections.

which we identify with the identity inW and as mentioned, shards correspond
to elements with a single descent. Surprisingly, the correspondence between
chambers and codimension continues: an intersection of shards having codi-
mension k corresponds to an element with k descents. Thus the rank gener-
ating function is given by the W -Eulerian polynomial.

Theorem 11.4. The rank generating function for the shard intersection or-
der is the W -Eulerian polynomial:

f(Sh(W ); t) =
∑

w∈Sh(W )

trk(w) =
∑

w∈W

tdes(w) = W (t).

We already saw this result for the symmetric group in Section 3.3. We give
more details of the construction of the shard intersection order in Chapter 13,
including combinatorial models for groups of type Bn and Dn that make
Theorem 11.4 apparent.

Notes

Coxeter groups are named for Harold Scott MacDonald Coxeter whose well-
known book on regular polytopes is a touchstone for many [53]. There are
several good books on the general subject, including one by James Humphreys
[92] and one by Anders Björner and Francesco Brenti [25]. This chapter leans
heavily on both these books, as well as ideas found in the book by Peter
Abramenko and Kenneth Brown [1].
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As pointed out by Brenti [34], Björner essentially proved that the W -
Eulerian polynomial is the h-vector of the Coxeter complex (Theorem 11.3)
in 1984 [24]. Proposition 11.1 is due to Victor Reiner in 1995 [125].

Brenti conjectured the real-rootedness of W -Eulerian polynomials in 1994
[34], and this conjecture was finally resolved in a 2015 paper by Carla Savage
and Mirko Visontai [132].

We have only touched the surface of Nathan Reading’s work on the shard
intersection order here. See his 2011 paper [124] for details.

Problems

11.1. Find all reduced expressions for the following permutations, written
here in one-line notation.

1. w = 321
2. w = 4321
3. w = 213465
4. w = 216345

11.2. How many reduced expressions are there for the long element in the
symmetric group Sn, i.e., w0 = n(n− 1) · · · 321?

11.3. Show the group whose generators and relations are indicated in (11.1)
is an infinite group.

11.4. Compute the Mahonian polynomials for B6, D6, E6, and F4.

11.5. Conclude from Theorem 11.1 that for any W , |Π | equals the sum of
the degrees minus n = |Δ|, i.e.,

|Π | = d1 + · · ·+ dn − n.

11.6. Compute the Eulerian polynomial for the dihedral group I2(m) = 〈s, t :
(st)m〉.

11.7. Show that Des(w0w) = S −Des(w).

11.8. Show that 〈sβ(λ), sβ(μ)〉 = 〈λ, μ〉 for any reflection sβ and any pair
of points λ, μ in V . This shows the group generated by such reflections con-
tains only rigid motions, i.e., the finite reflection groups are subgroups of the
orthogonal group O(V ).

11.9. Show that the root systems of types Bn and Cn are dual in the follow-
ing sense: if α ∈ Bn then α∨ = 2α

〈α,α〉 ∈ Cn.
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11.10. The root poset can be defined as the partial ordering on the positive
roots given by α ≤ β if and only if β − α is a positive root. Draw the Hasse
diagrams for the root posets on A5, B5, C5, and D5.

11.11. 1. Describe all the standard parabolic subgroups of F4.
2. A maximal parabolic subgroup of (W,S) is one obtained by deleting a

single generator from S, i.e., of the form WJ with J = S − {s}. Find all
the maximal parabolic subgroups of B6,

3. Find all maximal parabolic subgroups of E8.

11.12. As described at the end of Section 11.7, show that the purely algebraic
description of the Coxeter complex is indeed a simplicial complex.

11.13. Show that any coset of a parabolic subgroup wWJ has a unique mem-
ber of minimal length.

11.14. Fix a subset J of simple generators. Show that for any w ∈ W , there
is a unique pair u, v, with Des(u) ⊆ J and v ∈WJc = 〈si : i /∈ J〉, such that

w = uv.

Conclude that
W (q, 1) =

∑

Des(u)⊆J

q�(u)WJc(q, 1).

11.15. Compare the combinatorial definition of the inversion set for w =
356124 with the root-theoretic inversion set for wC∅ in Σ(A5).

Show that Equation (11.3) gives rise to the right weak order Wkr(Sn),
while defining

u ≤Wk v if and only if {β ∈ Π : u(β) < 0} ⊆ {β ∈ Π : v(β) < 0}

suggests the left weak order Wkl(Sn).

11.16. Show the involution w → w0w is an involution that takes the weak
order to its dual. Conclude that the weak order is isomorphic to its dual.



Chapter 12

W -Narayana numbers

Just as Eulerian numbers generalize to Coxeter groups, so too do the
Narayana numbers. There is a great deal of interest in these generalizations.
Entire books could be (and have been) dedicated to the subject. We give
a brief survey of this circle of ideas in this chapter, with an emphasis on
parallels with our discussion of the classical case.

12.1 Reflection length and Coxeter elements

For a given root system Φ, let T = {sβ : β ∈ Π} denote the set of all
reflections in the roots. Since S ⊆ T , T is clearly a generating set for the
Coxeter group W , though it is usually not minimal. Moreover, we can check
that, for any α ∈ Δ and w ∈ W ,

sw(α) = wsαw
−1.

(See Problem 12.1.) Every positive root is equal to w(α) for some w and α
(the W -orbit of Δ is all of Φ), so we can therefore write T = {wsw−1 : w ∈
W, s ∈ S}. As words in S, the reflections are therefore palindromes, i.e., they
can be written the same forwards as backwards. In the case of the symmetric
group, this corresponds to the fact that any transposition is conjugate to an
adjacent transposition.

We define the reflection length of an element w (also sometimes called
the absolute length of w) to be the minimal number of reflections needed to
express w, i.e.,

�′(w) = min{k : w = sβ1 · · · sβk
}.

We originally motivated the notion of length by considering how to sort a
permutation using adjacent transpositions. If we modify our sorting to allow
nonadjacent transpositions as well, we have the notion of reflection length.
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Since S ⊆ T , the reflection length of an element w is never greater than
its usual length: �′(w) ≤ �(w). However, while �(w) can be as much as |Π |,
reflection length has a uniform upper bound of |Δ|, i.e., the rank of W .

The upper bound for �(w) follows from the geometric interpretation of
length, in terms of inversions. The upper bound for reflection length also has a
geometric interpretation. Let rk(w) denote the codimension of the subspace of
V fixed by w, i.e., suppose U ⊆ V is a maximal subspace such that w(U) = U .
Then rkw = n−dimU . Thus the identity has rank zero, reflections have rank
one, and so on. In general, we have the following result.

Proposition 12.1. Let W be a finite Coxeter group of rank n. For any
w ∈ W ,

�′(w) = rk(w).

In particular, �′(w) ≤ n.

See Problem 12.2 for the proof of Proposition 12.1.
A collection of group elements achieving this upper bound are the permu-

tations of the set S, i.e., elements obtained by taking the product of each
simple reflection once, in some order. These elements are known as Coxeter
elements. The Coxeter elements will come to play an important role in the
study of “W -Catalan numbers” in Section 12.2.

For example, in the dihedral group I2(m) with generators s and t, the
Coxeter elements are st and ts, which correspond to rotations of π/m and
−π/m. For the symmetric group Sn = An−1, the Coxeter elements are the
n-cycles.

All the Coxeter elements are conjugate to one another (see Problem 12.3),
and hence they have the same order, denoted h. (For any Coxeter element c
there is a plane in V called the Coxeter plane on which c acts by rotation
by 2π/h.) Remarkably, h = |Φ|/|Δ|—a quantity sometimes known as the
Coxeter number—though we will not use this fact. It also turns out that h
is equal to the highest degree of W , as one can verify from Table 11.2 in the
irreducible cases. The number of Coxeter elements for the group W is equal
to the number of orientations of the Coxeter graph of W . See Problem 12.6.

Returning to our discussion of reflection length, there is an elegant expres-
sion for the length generating function in terms of the degrees, reminiscent
of Theorem 11.1. The coefficients of this generating function in the case of
the symmetric group are known as the Stirling numbers of the first kind (see
Observation 3.1) and so we refer to these numbers as W -Stirling numbers.

Theorem 12.1 (W -Stirling distribution). The distribution of reflection
length in the finite Coxeter group of rank n is given by

∑

w∈W

t�
′(w) =

n∏

i=1

(1 + (di − 1)t),

where d1, d2, . . . , dn are the degrees of W .
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For example,

∑

w∈D5

t�
′(w) = (1 + t)(1 + 3t)(1 + 5t)(1 + 7t)(1 + 4t),

and for the dihedral group I2(m),

∑

w∈I2(m)

t�
′(w) = (1 + t)(1 + (m− 1)t) = 1 +mt+ (m− 1)t2.

See Table 12.1 for a listing of the inversions, length, reflection length, and
descents of the elements of I2(5).

Table 12.1 The elements of I2(5), their inversions and their descents.

w {β ∈ Π : w(β) < 0} �(w) �′(w) Des(w)

1 ∅ 0 0 ∅

s {α1} 1 1 {s}

t {α2} 1 1 {t}

st {α2, δ} 2 2 {t}

ts {α1, β} 2 2 {s}

sts {α1, β, γ} 3 1 {s}

tst {α2, γ, δ} 3 1 {t}

stst {α2, β, γ, δ} 4 2 {t}

tsts {α1, β, γ, δ} 4 2 {s}

ststs = tstst {α1, α2, β, γ, δ} 5 1 {s, t}
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12.2 Absolute order and W -noncrossing partitions

In this section we will define a partial order on W , called the absolute order of
W , denoted Abs(W ). We did this in Section 3.5 for the case of the symmetric
group. The motivation in that section was to identify a subinterval of Abs(Sn)
isomorphic to the lattice of noncrossing partitions. Here we do the same for
any finite Coxeter group W , thereby obtaining a notion of W -noncrossing
partitions.

We define the absolute order of W as follows. Say that u <Abs v is a
cover relation in the absolute order if v = ut and �′(v) = �′(u) + 1. Then
(Abs(W ),≤) is the transitive closure of these cover relations, i.e., u ≤Abs v
if and only if �′(v) = �′(u) + k and there is a sequence of reflections t1, . . . , tk
such that v = ut1 · · · tk. In Figure 12.1 we see two examples.

e

s1 s2

s1s2 s2s1

s1s2s1 = s2s1s2

Abs(A2)

e

s t

st ts

sts tst

stst tsts

ststs = tstst

Abs(I2(5))

Fig. 12.1 The absolute orders Abs(A2) and Abs(I2(5)), with the lattice of noncross-
ing partitions highlighted in bold.

The absolute order is obviously ranked by reflection length, so we have the
following observation.

Observation 12.1 The rank generating function for the absolute order is
the W -Stirling polynomial, i.e.,

∑

w∈Abs(W )

trk(w) =
∑

w∈W

t�
′(w) =

n∏

i=1

(1 + (di − 1)t),

where d1, d2, . . . , dn are the degrees of W .

Now we will consider a special subposet of Abs(W ). Recall that the Coxeter
elements are products of all the generators in S = {s1, . . . , sn}, taken in
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some order, i.e., a Coxeter element is of the form c = si1 · · · sin for some
permutation i1 · · · in of the indices 1, . . . , n. Let

[e, c] = {w ∈ W : e ≤Abs w ≤Abs c}

denote the interval from e to c in the absolute order, with the induced partial
order. It is not too difficult to show that if c and c′ are Coxeter elements, then
the map c �→ c′ = wcw−1 is an isomorphism of posets from [e, c] to [e, c′].
(See Problem 12.5.) That is, the structure of this interval as an abstract poset
does not depend on the choice of Coxeter element c.

Thus for any c, let NC(W ) = [e, c], which we call the W -noncrossing
partition lattice. The lattices of noncrossing partitions for A2 and I2(5) are
highlighted in Figure 12.1. We are calling the poset NC(W ) a lattice without
justification. Certainly Abs(W ) is not a lattice, so the fact that NC(W ) is a
lattice is not immediate.

The number of elements in NC(W ) can be computed in terms of the de-
grees of W , as follows.

Theorem 12.2. For any finite Coxeter group W , with root system Φ of
rank n,

|NC(W )| =
n∏

i=1

h+ di
di

=
1

|W |

n∏

i=1

(h+ di),

where d1, d2, . . . , dn are the degrees of W , and h = |Φ|/n is the Coxeter
number.

12.3 W -Catalan and W -Narayana numbers

Since we know there are Catalan-many noncrossing partitions in the classical
case, |NC(An−1)| = Cn = 1

n+1

(
2n
n

)
, it makes sense to define the W -Catalan

numbers to be the number of W -noncrossing partitions, i.e., define

Cat(W ) =

n∏

i=1

h+ di
di

.

We list the W -Catalan numbers in Table 12.2.

Table 12.2 The W -Catalan numbers.

W An Bn Dn E6 E7 E8 F4 H3 H4 I2(m)

Cat(W )
1

n+ 2

(
2n+2
n+1

) (
2n
n

)
3n−2

n

(
2n−2
n−1

)
833 4160 25080 32 280 105 m+ 2
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Since theW -noncrossing partitions come with a ready-made rank function,
we can define the W -Narayana polynomial, denoted Cat(W ; t), to be the rank
generating function for NC(W ):

Cat(W ; t) = f(NC(W ); t) =
∑

w∈NC(W )

trk(w) =
∑

w∈[e,c]

t�
′(w).

We define, for k = 0, 1, . . . , n, the W -Narayana number, denoted N(W,k), to
be the number of elements in NC(W ) of rank k. We have

N(W,k) = |{w ∈ [e, c] : �′(w) = k}|,

and

Cat(W ; t) =

n∑

k=0

N(W,k)tk.

For example, we see in Figure 12.1 that

Cat(A2; t) = 1 + 3t+ t2 and Cat(I2(5); t) = 1 + 5t+ t2.

(In general, Cat(I2(m); t) = 1+mt+ t2 for any m ≥ 3. See Problem 12.7.) In
Table 12.3 we have the type Bn Narayana numbers, Table 12.4 contains the
typeDn Narayana numbers, and the exceptional cases are listed in Table 12.5.

Table 12.3 The Bn-Narayana numbers N(Bn, k) =
(
n
k

)2, 0 ≤ k ≤ n ≤ 9.

n\k 0 1 2 3 4 5 6 7 8 9
2 1 4 1
3 1 9 9 1
4 1 16 36 16 1
5 1 25 100 100 25 1
6 1 36 225 400 225 36 1
7 1 49 441 1225 1225 441 49 1
8 1 64 784 3136 4900 3136 784 64 1
9 1 81 1296 7056 15876 15876 7056 1296 81 1

Table 12.4 The Dn-Narayana numbers N(Dn, k) =
(
n
k

)
(
(
n−1
k

)
+

(
n−2
k−2

)
), 0 ≤ k ≤

n ≤ 9.

n\k 0 1 2 3 4 5 6 7 8 9
4 1 12 24 12 1
5 1 20 70 70 20 1
6 1 30 165 280 165 30 1
7 1 42 336 875 875 336 42 1
8 1 56 616 2296 3500 2296 616 56 1
9 1 72 1044 5292 11466 11466 5292 1044 72 1
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Table 12.5 The W -Narayana numbers N(W,k) of exceptional type.

W\k 0 1 2 3 4 5 6 7 8
E6 1 36 204 351 204 36 1
E7 1 63 546 1470 1470 546 63 1
E8 1 120 1540 6120 9518 6120 1540 120 1
F4 1 24 55 24 1
H3 1 15 15 1
H4 1 60 158 60 1

We can see an evident symmetry in the W -Narayana numbers, i.e., for
W of rank n, N(W,k) = N(W,n − k). This palindromicity follows because
the noncrossing partition lattice is self-dual. Proof of the following result is
deferred to Problem 12.8.

Proposition 12.2. The noncrossing partition lattice NC(W ) = [e, c] is self-
dual, and the map w �→ w−1c is an anti-isomorphism. In particular, the
W -Narayana numbers are palindromic:

N(W,k) = N(W,n− k),

where W is of rank n.

But, just as we saw for the W -Eulerian numbers, we can do better than
symmetry. In fact, the W -Narayana polynomials are real-rooted, and hence
gamma-nonnegative.

Theorem 12.3. For any finite Coxeter group W , the W -Narayana polyno-
mial is real-rooted. In particular, if W is of rank n, there exist nonnegative

integers γ
NC(W )
j such that

Cat(W ; t) =
∑

w∈[e,c]

t�
′(w) =

∑

j≥0

γ
NC(W )
j tj(1 + t)n−2j .

Again, proof of this result boils down to proving it in the irreducible cases.
See Problem 12.9. The type An version of this result was the subject of
Problem 4.7 (see also Theorem 4.2). The result clearly holds for dihedral
groups, since

Cat(I2(m); t) = 1 +mt+ t2 = (1 + t)2 + (m− 2)t,

which is both real-rooted and gamma-nonnegative since m ≥ 2. The ex-
ceptional cases are easily checked. Their Narayana numbers are shown in
Table 12.5 and their corresponding gamma numbers are shown in Table 12.6.
We defer discussion of the type Bn and Dn cases to Chapter 13.
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Table 12.6 The gamma coefficients γ
NC(W)
j of exceptional type.

W\j 0 1 2 3 4
E6 1 30 69 13
E7 1 56 245 140
E8 1 112 840 1024 120
F4 1 20 9
H3 1 12
H4 1 56 40

12.4 Coxeter-sortable elements

Another way to come by the W -Narayana numbers is to generalize the no-
tion of 231-avoiding permutations. The 231-avoiding permutations are what
is known as stack-sortable (see Problem 4.4). Work of Nathan Reading gen-
eralizes this notion as follows.

We first fix a particular choice of Coxeter element, c, and a particular
reduced expression for this element, c = si1si2 · · · sin . We write

c∞ = si1si2 · · · sin |si1si2 · · · sin |si1si2 · · · sin | · · · .

This is not an element of W , but a formal product. Since every finite word
in S is a subword of c∞, clearly we can obtain any reduced expression for an
element w ∈ W as a subword of c∞. Among all reduced expressions for w,
define the c-sorting word for w to be the one that is lexicographically first as
a subword of c∞.

For example, label the B3 Coxeter graph as

• • •
s0

4
s1 s2

and consider the Coxeter element c = s2s0s1. Then

c∞ = s2s0s1|s2s0s1|s2s0s1| · · · .

In Table 12.7 we see a few elements of B3 and their c-sorting words.
We will keep the bars in a sorting word to indicate where in c∞ we found

these letters. Notice that the lexicographically first reduced expression for w
in c∞ might be a different reduced expression from the one we initially use
to identify w. For example, the element w = s0s2 first appears in c∞ as s2s0.

Each string of letters between the bars of the sorting word can be thought
of as a subset of the letters in the word for c. Thus the sorting word for w
corresponds to a sequence of such subsets. We say an element w is c-sortable if
this sequence of subsets is decreasing under inclusion. Let Sort(c) denote the
set of all c-sortable elements. In Table 12.7 we can see examples of sortable
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Table 12.7 The c-sorting words for some elements of B3. Here, c = s2s0s1.

w c-sorting word c-sortable?
e e yes
s0s1 s0s1 yes
s0s2 s2s0 yes
s1s0 s1|s0 no
s0s2s1 s2s0s1 yes
s1s2s1 s2s1|s2 yes
s1s0s2s1 s1|s2s0s1 no
s1s0s1s2s1 s1|s0s1|s2s1 no
s0s2s1s0s2s1s0 s2s0s1|s2s0s1|s0 yes

and non-sortable elements, while in Table 12.8 we see all of the c-sortable
elements for c = s2s0s1 in B3.

Remarkably there is a bijection between c-sortable elements and elements
in the interval [e, c] of the absolute order, i.e., between the sortable elements
and noncrossing partitions. The way in which this works is to define an
ordered set of reflections given by the c-sorting word for an element w. If
w = si1 · · · sik , we let

tj = si1 · · · sij−1sijsij−1 · · · si1 .

In our running example of c = s2s0s1 in B3, consider w = s2s0s1|s2s0s1|s0.
Then the reflections for this sorting word are:

t1 = s2,

t2 = s2(s0)s2,

t3 = s2s0(s1)s0s2,

t4 = s2s0s1(s2)s1s0s2,

= s0s1s0,

t5 = s2s0s1s2(s0)s2s1s0s2,

= s2s1s0s1s2,

t6 = s2s0s1s2s0(s1)s0s2s1s0s2,

= s1s0s1s2s1s0s1,

t7 = s2s0s1s2s0s1(s0)s1s0s2s1s0s2,

= s1s0s1.

Each of these reflections has the effect of deleting a single letter in this reduced
expression for w (tj deletes the jth letter). Thus these reflections correspond
to inversions of w. In particular, some of them correspond to the descents of
w, i.e., w ≥Wk tjw = ws for some s ∈ S. Call these the cover reflections for
w since they correspond to the elements that w covers in the weak order.
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In the example above, with w = s2s0s1s2s0s1s0, both t1 and t7 are the
cover reflections:

t1w = s0s1s2s0s1s0 = ws1,

and
t7w = s2s0s1s2s0s1 = ws0.

Define a map ncc : Sort(c) → [e, c] from the set of c-sortable elements
to members of the interval [e, c] by sending w to the product of its cover
reflections, taken in the order indicated above:

ncc(w) = tj1 · · · tjdes(w)
.

Continuing our running example of w = s2s0s1s2s0s1s0, we have

ncc(w) = t1t7 = (s2)(s1s0s1).

This map is a bijection.

Theorem 12.4 (Reading). The map ncc is a bijection between c-sortable
elements and the interval [e, c]. Moreover, if w is a c-sortable element with k
descents, then ncc(w) is an element of reflection length k. As a consequence,

N(W,k) = |{w ∈ Sort(c) : des(w) = k}|.

In Table 12.8 we see all the c-sortable elements in B3 with c = s2s0s1,
along with the corresponding element of [e, c]. The reflection factorization in
the second column is the one given by the map ncc. It is minimal with respect
to reflection length, but not necessarily with respect to length.

We make the comment here, without justification, that the set Sort(c)
forms a full rank sublattice of the shard intersection order, Sh(W ). Then the
map ncc is not only a bijection, it is a poset isomorphism (Sort(c),≤Sh) →
([e, c],≤Abs). This correspondence is one of Reading’s main motivations for
studying the shard intersection order.

12.5 Root posets and W -nonnesting partitions

Another natural way in which the W -Catalan and W -Narayana numbers
arise is by counting antichains in the root poset for the positive roots Π . The
Coxeter number, and in fact all the degrees of the fundamental invariants can
be deduced from this poset. The partial order on roots is defined as follows.
For any positive roots β and γ in Π , we declare that β ≤ γ if and only if
γ − β is a nonnegative linear combination of simple roots.



12.5 Root posets and W -nonnesting partitions 283

Table 12.8 The c-sortable elements for c = s2s0s1, along with their images under
the map ncc.

w des(w) = �′(ncc(w)) ncc(w)

e 0 e
s2 1 (s2)
s0 1 (s0)
s1 1 (s1)
s2s0 2 (s2)(s2s0s2)
s2s1 1 (s2s1s2)
s0s1 1 (s0s1s0)
s2s0s1 1 (s2s0s1s0s2)
s2s1|s2 2 (s2)(s1)
s0s1|s0 1 (s1s0s1)
s2s0s1|s2 2 (s2)(s0s1s0)
s2s0s1|s0 1 (s2s1s0s1s2)
s0s1|s0s1 2 (s0)(s1)
s2s0s1|s2s0 2 (s0s1s0)(s2s1s0s1s2)
s2s0s1|s0s1 2 (s2s0s2)(s2s1s2)
s2s0s1|s2s0s1 1 (s1s0s1s2s1s0s1)
s2s0s1|s2s0s1|s2 2 (s0s1s0)(s2s1s2)
s2s0s1|s2s0s1|s2 2 (s2)(s1s0s1)
s2s0s1|s2s0s1|s2s0 2 (s2s1s2)(s1s0s1)
s2s0s1|s2s0s1|s2s0s1 3 (s2)(s2s0s2)(s1)

α1

α1 + α2

α1 + α2 + α3

α1 + α2 + α3 + α4

α1 + α2 + α3 + α4 + α5

α2

α2 + α3

α2 + α3 + α4

α2 + α3 + α4 + α5

α3

α3 + α4

α3 + α4 + α5

α4

α4 + α5

α5

Fig. 12.2 The root poset for A5.

In Figures 12.2, 12.3, 12.4, and 12.5 we see the Hasse diagrams for the
root posets of types A5, B5, C5, and D5.

The root poset is ranked. In the crystallographic case, the rank of β =∑
α∈Δ cαα is ht(β) = −1 +

∑
α∈Δ cα, known as the height of the root. For

example, in B5, β = 2α0 + α1 + α2 has ht(β) = 4 and rank 3. This statistic
gives a simple way to compute the degrees of the fundamental invariants of
the Coxeter group W .
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α4

α3 + α4

α2 + α3 + α4

α1 + α2 + α3 + α4

α0 + α1 + α2 + α3 + α4

2α0 + α1 + α2 + α3 + α4

2α0 + 2α1 + α2 + α3 + α4

2α0 + 2α1 + 2α2 + α3 + α4

2α0 + 2α1 + 2α2 + 2α3 + α4

α3

α2 + α3

α1 + α2 + α3

α0 + α1 + α2 + α3

2α0 + α1 + α2 + α3

2α0 + 2α1 + α2 + α3

2α0 + 2α1 + 2α2 + α3

α2

α1 + α2

α0 + α1 + α2

2α0 + α1 + α2

2α0 + 2α1 + α2

α1

α0 + α1

2α0 + α1

α0

Fig. 12.3 The root poset for B5.

α4

α3 + α4

α2 + α3 + α4

α1 + α2 + α3 + α4

α0 + α1 + α2 + α3 + α4

α0 + 2α1 + α2 + α3 + α4

α0 + 2α1 + 2α2 + α3 + α4

α0 + 2α1 + 2α2 + 2α3 + α4

α0 + 2α1 + 2α2 + 2α3 + 2α4

α3

α2 + α3

α1 + α2 + α3

α0 + α1 + α2 + α3

α0 + 2α1 + α2 + α3

α0 + 2α1 + 2α2 + α3

α0 + 2α1 + 2α2 + 2α3

α2

α1 + α2

α0 + α1 + α2

α0 + 2α1 + α2

α0 + 2α1 + 2α2

α1

α0 + α1

α0 + 2α1

α0

Fig. 12.4 The root poset for C5.
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α1

α1 + α2

α1 + α2 + α3

α1 + α2 + α3 + α4

α2

α2 + α3

α2 + α3 + α4

α3

α3 + α4

α4α1̄

α1̄ + α2

α1̄ + α2 + α3

α1̄ + α2 + α3 + α4

α1 + α1̄ + α2 + α3 + α4

α1 + α1̄ + 2α2 + α3 + α4

α1 + α1̄ + 2α2 + 2α3 + α4

α1 + α1̄ + α2

α1 + α1̄ + α2 + α3

α1 + α1̄ + 2α2 + α3

Fig. 12.5 The root poset for D5.

Fix a crystallographic root system Φ and let hi denote the number of
positive roots of height i. Draw an array of boxes with hi boxes in row i
(right justified). Now let ei be the number of boxes in column i, read from
left to right. These are known as the exponents of Φ, and remarkably, the
degrees are obtained by adding one to each of the exponents: di = ei + 1.

For example, in Figure 12.6 we have drawn the height arrays and computed
the exponents for the rank 5 root systems.

Root system: A5 B5/C5 D5

Height array:

Exponents: (1, 2, 3, 4, 5) (1, 3, 5, 7, 9) (1, 3, 4, 5, 7)

Fig. 12.6 The height arrays for computing exponents.
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The W -Catalan numbers emerge here from counting antichains A in
the root poset. Recall that an antichain is a set of mutually incomparable
elements. For example, the following are antichains in D5:

{α1, α1̄, α2 + α3, α4}, {α1 + α1̄ + 2α2 + α3},

and
{α1 + α2 + α3 + α4, α1̄ + α2 + α3, α1 + α1̄ + α2}.

These antichains are sometimes known as W -nonnesting partitions, and
the set of all such antichains is denoted NN(W ). The name comes from the
fact that in the type An−1 root poset, antichains can be turned into nonnest-
ing partitions of [n] as follows. Draw the numbers 1, 2, . . . , n in the gaps be-
tween the simple roots. For each element of the antichain, draw diagonal lines
of slope ±1 from that root down to the numbers. In Figure 12.7 is an example
of an antichain in A7, where we have circled the elements of the antichain
and drawn the lines in gray. See Problem 12.11.

1 2 3 4 5 6 7 81 4444 7 87762

Fig. 12.7 The arc diagram for the nonnesting partition {{1, 4, 7, 8}, {2, 6}, {3}, {5}}
corresponds to an antichain in the type A7 root poset.

Notice that the number of elements in the antichain equals n minus the
number of blocks in the nonnesting partition. From Problem 2.7 we have a
bijection between nonnesting and noncrossing partitions that preserves the
number of blocks. Hence counting antichains in theAn−1 root poset according
to cardinality gives the Narayana numbers. This fact generalizes as follows.

Theorem 12.5. The number of W -nonnesting partitions, i.e., antichains A
in the root poset of W , is given by the W -Catalan number:

|NN(W )| = Cat(W ).

Moreover, the number of antichains of cardinality k equals the W -Narayana
number:

N(W,k) = |{A ∈ NN(W ) : |A| = k}|.
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The known proofs of this theorem are case-by-case. There now exist bijec-
tions between nonnesting and noncrossing partitions of types An, Bn, Dn.

12.6 The W -associahedron

Yet another way thatW -Narayana numbers arise comes from a generalization
of the associahedron. Recall from Section 5.8 that the associahedron is a
polytope whose one-skeleton is the Tamari lattice. This is a simple polytope,
so we can also describe its dual simplicial complex. In Section 5.8 we see
the faces of this complex are encoded by rooted planar trees, with Catalan-
many facets encoded by the planar binary trees. Theorem 5.4 shows that the
h-polynomial of the associahedron is the Narayana polynomial.

A similar story can be told for any finite Coxeter groupW . That is, there is
a simplicial complex whose h-polynomial is theW -Narayana polynomial. This
complex is dual to a simple polytope that we will call the W -associahedron.
We denote both the polytope and the complex by Assoc(W ). (The context
should make it clear to which object we are referring.) For example, in
Figure 12.8 we see the associahedron of type B3 and its dual simplicial
complex. In general the type Bn associahedron Assoc(Bn) is known as the
cyclohedron .

2α1 + α2

−α3

2α1 + α2

−α3

−α1

α1 α1 + α2

α1 + α2 + α3

−α2 α2

2α1 + α2 + α3 2α1 + 2α2 + α3

α2 + α3α3

(b)(a)

Fig. 12.8 In (a) we have the B3 associahedron, and in (b) its dual simplicial complex.
The vertices of the complex are labeled with the almost positive roots in B3.

The construction of the W -associahedron is as follows. For the root system
Φ, define the almost positive roots to be the set Φ≥−1 = Π ∪−Δ, i.e., the set
of positive roots together with the negatives of the simple roots. These roots
will be the vertex set for a graph defined by a certain symmetric relation,
α ∼ β, and Assoc(W ) will be the clique complex for this graph.
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We will explain the general construction through careful examination of
the B3 case.

First, we give the Coxeter graph for W a balanced coloring. (Every irre-
ducible graph is bipartite, so this is always possible.) For example, take the
following two coloring of the B3 graph:

s0

4
s1 s2

.

We now define two involutions τ• and τ◦ on Φ≥−1.

τ•(α) =

{
α if α ∈ −Δ and sα is white,
∏

black nodes i si(α) otherwise.

τ◦(α) =

{
α if α ∈ −Δ and sα is black,
∏

white nodes j sj(α) otherwise.

Roughly, these involutions act as the product of the black nodes and the
product of the white nodes, respectively. The exception comes in the case
when one of the involutions acts on a negative simple root of the opposite
color, in which case the involution takes the root to itself.

In our running example of B3,

τ•(α) =

{
α if α = −α1,

s0s2(α) otherwise,

τ◦(α) =

{
α if α = −α0 or α = −α2,

s1(α) otherwise.

We can display the orbits of the group generated by τ• and τ◦ as follows:

−®1 ®1 ®1 + ®2 ®1 + ®2 + ®3
¿• ¿◦ ¿•

¿◦ ¿◦

−®2 ®2 2®1 + ®2 + ®3 2®1 + 2®2 + ®3
¿◦ ¿• ¿◦

¿• ¿•

−®3 ®2 ®2 + ®3 2®1 + ®2
¿• ¿◦ ¿•

¿◦ ¿◦
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Now we must build the graph on Φ≥−1 whose clique complex is Assoc(W ).
We do this in two stages. First for each α ∈ Δ, we connect −α to every
β ∈ Φ≥−1 such that β and α are incomparable in the root poset. In the B3

case, this gives this much of the graph:

2®1 + ®2

−®3

−®1

®1 ®1 + ®2

®1 + ®2 + ®3

−®2 ®2

2®1 + ®2 + ®3 2®1 + 2®2 + ®3

®2 + ®3®3

From here, we construct the rest of the graph by acting on edges with τ•
and τ◦. That is, if we have an edge between α and β, there must also be
edges between τ•(α) and τ•(β), and between τ◦(α) and τ◦(β). For example,
since −α3 and 2α1 + α2 are connected, we must also have edges between
τ•(−α3) = α3 and τ•(2α1 + α2) = α2 + α3. The reader is invited to recover
the rest of the edges in Figure 12.8 for themselves.

The following theorem marks the final occurrence of the W -Narayana
numbers we will mention.

Theorem 12.6. The h-polynomial of the simplicial complex dual to the
W -associahedron is the W -Narayana polynomial:

h(Assoc(W ); t) = Cat(W ; t).
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Notes

The subject of “Coxeter-Catalan combinatorics” is a vast and growing sub-
ject. We have only scratched the surface here. The reader is invited to seek
more information in Chapter 13 and the references.

Proposition 12.1, that reflection length equals the codimension of the fixed
point space, was proved by Roger Carter in 1972 [45]. The factorization of the
reflection length generating function was first described by Geoffrey Shepard
and John Todd in 1954 [137] and given a case-free proof by Louis Solomon
in 1963 [141].

The definition of the W -noncrossing partition lattice as an interval in the
absolute order is due to Thomas Brady and Colum Watt in 2002 [27]. The
connection with antichains in the root poset was remarked by Victor Reiner
in his paper studying the type Bn version of noncrossing partitions [126],
where he attributes the idea to Alexander Postnikov. These ideas can be
generalized as described in Drew Armstrong’s 2009 manuscript [10].

The real-rootedness of the W -Narayana polynomials claimed in Theo-
rem 12.3 follows from work of Petter Brändén in 2006 [30]. The weaker
property of gamma-nonnegativity was known to Rodica Simion and Daniel
Ullmann in the classical case in 1991 [140], and Patricia Hersh proved it in the
type Bn case in 1999 [90]. In fact, both NC(An) and NC(Bn) admit symmet-
ric boolean decompositions. As of this writing it is an open question whether
all W -noncrossing partition lattices admit such a decomposition. Such a de-
composition is preserved under cartesian products, so the result would follow
from a proof in the type Dn case. It has also been conjectured by the author
that Nathan Reading’s shard intersection order admits a symmetric boolean
decomposition, but type An−1 is the only case so far proved.

The notion of Coxeter-sortable elements, and in particular Theorem 12.4
can be found in Reading’s 2007 paper [123].

The simplicial version of the W -associahedron was first studied, in the
crystallographic case, by Sergey Fomin and Andrei Zelevinsky, where they
arose in the theory of cluster algebras [74]. There is a wonderful survey by
Fomin and Reading from 2007 that discusses the many interesting and deep
connections between the associahedron and other parts of mathematics [73].

Problems

12.1. Show that every reflection is conjugate to a simple reflection.

12.2. Prove Proposition 12.1.

12.3. Prove that if c and c′ are Coxeter elements, then c′ = wcw−1 for
some w.
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12.4. Prove Theorem 12.1 in the case of the dihedral group I2(m).

12.5. Show that if c and c′ are Coxeter elements, then the intervals [e, c] and
[e, c′] are isomorphic.

12.6. Prove that each orientation of the edges of the Coxeter graph gives a
unique Coxeter element c by declaring that if si → sj then si appears to the
left of sj in any reduced expression for c.

12.7. Prove the Narayana polynomial for I2(m) is 1 +mt+ t2.

12.8. Prove Proposition 12.2, that [e, c] is self-dual, via the anti-isomorphism
w �→ w−1c.

12.9. Show that if W ∼= U×V is reducible, then NC(W ) ∼= NC(U)×NC(V ).
Conclude therefore that Cat(W ; t) = Cat(U ; t)Cat(V ; t).

12.10. Prove that in Sn, the c-sortable permutations with c = sn−1 · · · s2s1
are precisely the 231-avoiding (i.e., stack sortable) permutations.

12.11. Show that the antichains in the root lattice of type An−1 are in bijec-
tion with nonnesting partitions of [n] (see Problem 2.7 for that definition).



Chapter 13

Combinatorics for Coxeter groups
of types Bn and Dn

(Supplemental)

13.1 Type Bn Eulerian numbers

In Section 11.5.2 we saw that the group Bn is isomorphic to the set of all
signed permutations. These are permutations

w : {−n, . . . ,−1, 0, 1, . . . , n} → {−n, . . . ,−1, 0, 1, . . . , n},

such that w(−i) = −w(i) for all i. Notice that this forces w(0) = 0 and the
element w is completely determined by w(1), . . . , w(n). In one-line notation,
we write w = w(1) · · ·w(n) with bars to indicate negative numbers. For
example, if w is determined by w(1) = −3, w(2) = 4, w(3) = 5, w(4) = −1
and w(5) = 2, we write w = 3̄451̄2.

Now we choose the generating set S. For i ≥ 1 we let si denote the permu-
tation that swaps i and i+ 1, and by symmetry −i and −(i+ 1). (These are
analogous to the generators for the symmetric group.) We also let s0 denote
the permutation that swaps 1 and −1.

It is straightforward to verify that the elements of S = {s0, s1, . . . , sn−1}
satisfy the relations for a type Bn Coxeter system, with graph

•
s0

4 •
s1

•
s2

•
sn−1

.

That is, the relations for these generators satisfy

• s2i = e,
• (sisi+1)

3 = e for i = 1, . . . , n− 2,
• (s0s1)

4 = e, and
• (sisj)

2 = e if |i− j| > 1.

We now wish to come up combinatorial analogues of inversion number and
descent number.

© Springer Science+Business Media New York 2015
T.K. Petersen, Eulerian Numbers, Birkhäuser Advanced Texts Basler
Lehrbücher, DOI 10.1007/978-1-4939-3091-3 13
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Recall from Section 11.5.2 that there are three kinds of positive type Bn

roots. They are:

• εj − εi, with 1 ≤ i < j ≤ n,
• εj + εi, with 1 ≤ i < j ≤ n, and
• εi, with 1 ≤ i ≤ n.

Thus by considering the action of Bn given by w · εi = εw(i), we can char-
acterize precisely those roots in the inversion set, and the type B inversion
number can be defined as follows:

invB(w) = |{1 ≤ i < j ≤ n : w(i) > w(j)}|
+ |{1 ≤ i < j ≤ n : −w(i) > w(j)}|
+ |{1 ≤ i ≤ n : w(i) < 0}|.

By considering only the inversions corresponding to the simple roots, i.e.,

• εi+1 − εi, with 1 ≤ i ≤ n− 1, and
• ε1,

we see the combinatorial description of the descent set is:

DesB(w) = {0 ≤ i ≤ n− 1 : w(i) > w(i + 1)}.

We denote the number of descents by desB(w) = |DesB(w)|. Notice that the
only difference from the definition for unsigned permutations is that we have
a descent in position 0 if w(1) < 0.

With the example of w = 3̄142̄5, we have invB(w) = 2 + 3 + 2 = 7 and
desB(w) = 1+1 = 2, while if v = 53̄2̄14̄ we have invB(v) = 7+6+3 = 16 and
desB(v) = 2 + 0 = 2. In Table 13.1 we have the reduced words and descent
sets for the elements of B2.

Using the model of signed permutations, it is not too difficult to deduce
Theorem 11.1 in this case with an induction argument (insert n or −n in all
possible ways).

Theorem 13.1 (Bn-Mahonian distribution). For any n ≥ 1,

∑

w∈Bn

qinvB(w) = (1 + q)(1 + q + q2 + q3) · · · (1 + q + · · ·+ q2n−1),

= [2][4] · · · [2n].

We next collect a miscellany of results for the type Bn Eulerian numbers.
Each fact can be proved with a bijection or else deduced from the others.

Theorem 13.2 (A miscellany for Bn-Eulerian numbers). For any
n ≥ 1,

Bn(t) = (1 + t)Bn−1(t) + 2t

n−1∑

i=1

2i
(
n− 1

i

)
Bn−1−i(t)Si(t), (13.1)

= (1 + (2n− 1)t)Bn−1(t) + 2t(1− t)B′
n−1(t), (13.2)



13.1 Type Bn Eulerian numbers 295

Table 13.1 The reduced expressions for elements of B2, along with length and de-
scent sets.

w reduced expressions �(w) = invB(w) DesB(w)

12 e 0 ∅

1̄2 s0 1 {0}

21 s1 1 {1}

21̄ s0s1 2 {1}

2̄1 s1s0 2 {0}

2̄1̄ s0s1s0 3 {0}

12̄ s1s0s1 3 {1}

1̄2̄ s0s1s0s1, s1s0s1s0 4 {0, 1}

Bn(t)

(1− t)n+1
=
∑

k≥0

(2k + 1)ntk, (13.3)

(2k + 1)n =

n∑

i=0

〈
Bn

i

〉(
k + n− i

n

)
, (13.4)

2Bn(t
2) = (1 + t)n+1Sn(t) + (1− t)n+1Sn(−t). (13.5)

Equations (13.1) and (13.2) follow from straightforward bijective argu-
ments for signed permutations. Equation (13.3) can be deduced from (13.2),
though it can also be proved with a “signed” P -partition argument. (See work
of Chak-On Chow [49] and the author [116].) Equations (13.4) and (13.5) fol-
low directly from (13.3).

From the identity in (13.5), we can deduce an exponential generating func-
tion for Bn-Eulerian numbers from the classical case (Theorem 1.6). Let

B(t, z) :=
∑

n≥0

Bn(t)
zn

n!
.
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Recalling from Equation (1.13)

S(t, z) =
∑

n≥0

Sn(t)
zn

n!
=

t− 1

t− ez(t−1)
,

we get

2B(t2, z) =
∑

n≥0

2Bn(t
2)
zn

n!
,

= (1 + t)
∑

n≥0

Sn(t)
(1 + t)nzn

n!
+ (1− t)

∑

n≥0

Sn(−t)
(1− t)nzn

n!
,

= (1 + t)S(t, z(1 + t)) + (1− t)S(−t, z(1− t)),

=
2(t2 − 1)ez(t

2−1)

t2 − e2z(t2−1)
.

Let us record this explicit formula for B(t, z), first due to Francesco Brenti
in 1994 [34].

Theorem 13.3. We have

B(t, z) =
(t− 1)ez(t−1)

t− e2z(t−1)
. (13.6)

In 1995 Victor Reiner described a generating function for the Euler-
Mahonian distribution as well [125]. Recall the q-analogue of the exponential
function

exp(z; q) =
∑

n≥0

zn

[n]!
,

and define

expB(z; q) =
∑

n≥0

zn

Bn(q, 1)
=
∑

n≥0

zn

[2][4] · · · [2n] .

Then we have the following result. Compare it with Theorem 6.8.

Theorem 13.4. We have the following generating function for the Bn-Euler-
Mahonian polynomials:

∑

n≥0

Bn(q, t)
zn

Bn(q, 1)
=
∑

n≥0

Bn(q, t)z
n

[2][4] · · · [2n] ,

=
(1 − t) expB(z(1− t); q)

1− t exp(z(1− t); q)
.

This result generalizes Equation 13.6 since at q = 1, this will giveB(t, z/2).
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13.2 Type Bn gamma-nonnegativity

Our goal here is to give a combinatorial reason why the Bn-Eulerian polyno-
mials are gamma-nonnegative. The gamma numbers for Bn-Eulerian polyno-
mials are given in Table 13.2. We will adapt the argument from work of John
Stembridge from 2008 [159] (also found in work of Kevin Dilks, Stembridge,
and the author [60]), though the combinatorial description first appeared in
the author’s 2007 paper [116]. As in the classical case, the idea is to use a
simple combinatorial action on permutations, but the action here is quite
different from valley hopping as given in Section 4.2.

Table 13.2 The gamma numbers γBn
j , 0 ≤ 2j ≤ n ≤ 9.

n\j 0 1 2 3 4
2 1 4
3 1 20
4 1 72 80
5 1 232 976
6 1 716 7664 3904
7 1 2172 49776 88640
8 1 6544 292320 1217792 354560
9 1 19664 1618656 13201664 12933376

Fix an unsigned permutation u ∈ Sn, and consider the set of all signed
permutations obtained by changing signs on letters of u, i.e., those w ∈ Bn

such that |w(1)||w(2)| · · · |w(n)| = u. Let B(u) denote the set of all 2n such
permutations. For example, if u = 312, the eight elements of B(u), together
with their type B descent numbers, are listed here:

w desB(w)

312 1
3̄12 1
31̄2 1
312̄ 2
3̄1̄2 1
3̄12̄ 2
31̄2̄ 2
3̄1̄2̄ 2

.

The generating function for desB over these eight elements is 4t(1+t). We will
see that the distribution of desB over elements in B(u) is gamma-nonnegative
for any u and depends only on what we call the number of left peaks of u.

The key idea is that, once the peaks and valleys of u have been identified,
the descents of an element w ∈ B(u) are determined independently by the
sign choices of those elements not lying in a valley or at a peak.
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Specifically, let w ∈ B(u) and write w(i) = σiu(i), so that σi ∈ {−,+} is
the sign of the ith letter of w. Then we can make the following observations:

• if u(i− 1) < u(i), then w(i − 1) > w(i) if and only if σi = −,
• if u(i− 1) > u(i), then w(i − 1) > w(i) if and only if σi−1 = +.

To put it another way, the sign σj controls the descent in position j − 1 if
and only if j − 1 is not a descent of u, and it controls the descent in position
j if and only if j is a descent of u.

Consider the example of u = 31472865. Then there is a descent in position
0 if and only if σ1 = − while there is a descent in position 1 if and only if
σ1 = +. Since u(2) = 1 is smaller than the elements on either side of it, the
sign σ2 has no effect whatever on the descent set. With u(3) = 4, we find that
w(2) > w(3) if and only if σ3 = −, but that σ3 does not control whether w(3)
is greater than w(4) (σ4 does that). By considering the sign of each letter in
turn, we have:

∑

w∈B(u)

tdesB(w) = (t+t)(1+1)(t+1)(t+t)(1+1)(t+t)(1+t)(1+1) = 64t3(1+t)2.

See Figure 13.1.
To summarize, let

cj(u) =

⎧
⎪⎨

⎪⎩

2t if u(j − 1) < u(j) > u(j + 1),

2 if u(j − 1) > u(j) < u(j + 1),

1 + t otherwise,

where u(0) = 0 and u(n+ 1) = n+ 1. Then we have

∑

w∈B(u)

tdesB(w) = c1(u) · · · cn(u).

Define the number of left peaks of a permutation u ∈ Sn to be

lpk(u) = |{1 ≤ i < n : u(i− 1) < u(i) > u(i+ 1)}|,

where u(0) = 0. In other words,

lpk(u) =

{
pk(u) if u(1) < u(2),

1 + pk(u) if u(1) > u(2).

Thus each left peak contributes a factor of 2t, each valley contributes a factor
of 2, and all other positions contribute (1 + t). If u has k left peaks, it has k
valleys (there is no valley to the left of the first left peak), and hence n− 2k
positions that are neither left peaks nor valleys. We have
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3

3̄

1

1̄

4

4̄

7

7̄

2

2̄

8

8̄

6

6̄

5

5̄

0 t + t 1 + 1 t + 1 t + t 1 + 1 t + t 1 + t 1 + 1

Fig. 13.1 The choices of sign independently control descents, depending on the local
shape of u. Peaks have weight t + t, valleys have weight 1 + 1, and other positions
have weight 1 + t.

∑

w∈B(u)

tdesB(w) = (4t)lpk(u)(1 + t)n−2 lpk(u).

Summing over all u ∈ Sn gives the desired gamma-nonnegativity result.

Theorem 13.5. For all n ≥ 1, there exist nonnegative integers γBn

j such
that

Bn(t) =

�n/2	∑

j=0

γBn

j tj(1 + t)n−2j . (13.7)
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Moreover,
γBn

j = 4j · |{u ∈ Sn : lpk(u) = j}|.
This result suggests the distribution of left peaks in the symmetric group

should be of interest in its own right. Define

Pn(t) =
∑

u∈Sn

tlpk(u) =

�n/2	∑

k=0

pn,kt
k.

Then

Bn(t) = (1 + t)nPn

(
4t

(1 + t)2

)
.

The left peak numbers for small n are given in Table 13.3.

Table 13.3 The left peak numbers pn,k, 0 ≤ 2k ≤ n ≤ 9.

n\k 0 1 2 3 4
1 1
2 1 1
3 1 5
4 1 18 5
5 1 58 61
6 1 179 479 61
7 1 543 3111 1385
8 1 1636 18270 19028 1385
9 1 4916 101166 206276 50521

Given this combinatorial description for the gamma vector of the type Bn

Coxeter complex, we can establish Conjecture 3 in the case of the Bn Coxeter
complex as follows.

Define the set of decorated permutations, Decn, to be the set of all permu-
tations w ∈ Sn with bars in the left peak positions. The bars can come in
one of four styles: {| = |0, |1, |2, |3}, and thus for each w ∈ Sn we have 4lpk(w)

decorated permutations. For example, here are three elements of Dec9:

4|238|176519, 4|3238|276519, 25|137|169|284.

We can construct a balanced simplicial complex from Decn by declaring
that a decorated permutation G covers F if we can remove a bar from G to
obtain F . However, we don’t write the merged blocks in strictly increasing
order. If we remove the bar between words wi and wi+1 of G, we keep the
decreasing part of wi as is, and rewrite wi+1, together with the increasing
part of wi, in increasing order. (The increasing part begins with the small-
est element of the word. The decreasing part can be empty.) For example,
9|76514|2238 is an edge with vertices 9|76512348 and 145679|2238. Here is a
triangle in the B9 case:
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25|3146789

25
|31

7|1
46
89

12357|14689

12357| 169| 284

1235679|28425|31679|284

25|317|169|284

We color the vertices similarly to how we did in the case of type An−1.
A bar (of any style) receives color i if it occurs in position 2i or 2i− 1. Since
peaks cannot be consecutive, this guarantees that each face has a distinctly
colored vertex set.

13.3 Type Dn Eulerian numbers

The Coxeter group of typeDn is the subgroup ofBn consisting of those signed
permutations with an even number of minus signs among w(1), . . . , w(n). For
example, 351̄24̄ is an element of Dn, while 351̄24 is an element of Bn but not
Dn. When we write an element of Dn as a word w = w(1)w(2) · · ·w(n), we
refer to it as an even signed permutation. This is a good model to have, but
another useful model is to write w as a forked signed permutation as follows:

w = w(n̄) · · ·w(2̄)w(1)
w(1̄)

w(2) · · ·w(n),

or simply
w(1)
w(1̄)

w(2) · · ·w(n).

For example, the even signed permutation w = 351̄24̄ corresponds to the
following forked signed permutation:

w = 42̄15̄
3
3̄
51̄24̄.

The model of forked signed permutations is particularly helpful in under-
standing the action of the generating set S. We let s1, . . . , sn−1 be the
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adjacent transpositions defined as they were for An−1 and Bn, but we add
the generator s1̄ that swaps 1 with −2 and −1 with 2.

It is straightforward to verify that the set S = {s1̄, s1, s2, . . . , sn−1} gen-
erate a type Dn Coxeter system, with graph:

• • •
s1

s1̄
s2 s3 s4

•
sn−1

.

In other words, the elements of S satisfy the following relations:

• s2i = e for i = 1̄, 1, 2, . . . , n− 1,

• (s1̄s2)
3 = e and (sisi+1)

3 = e for i = 1, 2, . . . , n− 2, and

• (sisj)
2 = e otherwise.

The root system Dn is the same as the Bn system, except it does not
contain the standard basis vectors εi. That is, the positive roots are:

• εj − εi, with 1 ≤ i < j ≤ n, and
• εj + εi, with 1 ≤ i < j ≤ n.

The group Dn acts on the standard basis vectors in the same way as Bn, so
we define the type D inversion number to be:

invD(w) = |{1 ≤ i < j : w(i) > w(j)}|
+ |{1 ≤ i < j : −w(i) > w(j)}|.

The simple roots in this case are:

• εi+1 − εi, with 1 ≤ i ≤ n− 1, and
• ε1 + ε2,

so the type D descent set is:

DesD(w) = {i ∈ {−1, 1, 2, . . . , n− 1} : w(i) > w(|i|+ 1)}.

Let desD(w) = |DesD(w)| denote the number of such descents. Notice that
this definition is quite natural with the model of forked permutations.

We check for w =
3̄
3
51̄42 that invD(w) = 4+ 2 = 6, while desD(w) = 2. If

v =
2
2̄
4̄135̄, then invD(v) = 6 + 7 = 13 and desD(v) = 3.

Using the model of even-signed permutations, it is not too difficult to
prove Theorem 11.1 in this case with an induction argument. Take any signed
permutation of length n− 1 and add n or −n in all possible ways. The only
subtlety is that the parity of the number of minus signs determines whether
we insert n or −n.
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Theorem 13.6 (Dn-Mahonian distribution). For any n ≥ 4,

∑

w∈Dn

qinvD(w) = (1 + q) · · · (1 + q + · · ·+ q2n−3)(1 + q + · · ·+ qn−1),

= [2][4] · · · [2n− 2][n].

The type Dn Eulerian polynomials have the following exponential gener-
ating function, which, like Theorem 13.3, is due to Brenti [34].

Theorem 13.7. We have

1 + tz +
∑

n≥2

Dn(t)
zn

n!
=

(1− t)(ez(1−t) − z)

1− te2z(1−t)
. (13.8)

There is also an Euler-Mahonian generalization, which (as with type Bn)
is due to Reiner [125]. First, define

expD(z; q) =
∑

n≥0

zn

Dn(q, 1)
=
∑

n≥0

zn

[2][4] · · · [2n− 2][n]
.

Then we have the following result. Compare it with Theorem 6.8.

Theorem 13.8. We have the following generating function for the Dn-Euler-
Mahonian polynomials:

2tz +
∑
n≥2

Dn(q, t)
zn

Dn(q, 1)
=

(1 − t) expD(z(1 − t); q) + t(2 − tz)(exp(z(1 − t); q)− 1)

1− t exp(z(1− t); q)
.

13.4 Type Dn gamma-nonnegativity

Our goal here is to give a combinatorial reason why the type Dn-Eulerian
polynomials are gamma-nonnegative. The corresponding gamma numbers are
shown in Table 13.4. As with type Bn, our argument is adapted from Stem-
bridge’s from 2008 paper [159] (also found in [60] and Chak-On Chow’s 2008
paper [50]). It is worth remarking that real-rootedness of the type Dn Eule-
rian polynomials was first proved in 2015 by Carla Savage and Mirkó Visontai
[132], so for some time, the combinatorial explanation was the only explana-
tion for gamma-nonnegativity here.

To begin, notice that counting descents of type D makes sense for any
signed permutation, not simply the elements of Dn. Moreover, changing the
sign of w(1) moves between Dn and Bn\Dn and leaves the type D descent set
unchanged. That is, if w = w(1)w(2) · · ·w(n) is an element of Dn, then w′ =
w(1)w(2) · · ·w(n) is an element of Bn \Dn such that DesD(w) = DesD(w′).
As a consequence of this observation, we can count type D descents over
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all signed permutations and then divide by two to obtain the Dn-Eulerian
polynomial. That is, we have

Dn(t) =
1

2

∑

w∈Bn

tdesD(w).

Table 13.4 The gamma numbers γDn

j , 0 ≤ 2j ≤ n ≤ 9.

n\j 0 1 2 3 4
4 1 40 16
5 1 152 336
6 1 524 3440 832
7 1 1724 26480 27712
8 1 5520 175584 480512 76032
9 1 17360 1065696 6123776 3791104

To prove gamma-nonnegativity, we will consider the same combinatorial
action as we did for type Bn, only this time keeping track of the effect on type
D descents. As earlier, we let B(u) denote the set of all signed permutations
w such that |w(1)||w(2)| · · · |w(n)| = u in Sn. We can write w(i) = σiu(i) as
well, and consider the effect that choosing σi to be positive or negative has
on the descent set. For j > 2, σj impacts the descent set exactly as it does
for type B. Letting cj(u) denote the contribution of the sign σj as before, we
have, for j ≥ 3,

cj(u) =

⎧
⎪⎨

⎪⎩

2t if u(j − 1) < u(j) > u(j + 1),

2 if u(j − 1) > u(j) < u(j + 1),

1 + t otherwise.

For j = 1, 2, we will be more careful. Recall that 1 ∈ DesD(w) if and only
if w(1) > w(2), while −1 ∈ DesD(w) if and only if −w(1) > w(2). Hence,
changing the sign of w(1) will not change the cardinality of DesD(w)∩{−1, 1}.
If u(1) > u(2), then exactly one of −1 or 1 is a descent, regardless of the signs
σ1 and σ2. We let

c1(u) =

{
2 if u(1) < u(2),

2t if u(1) > u(2).

For σ2, we have the following cases:

• if u(1) < u(2), then w(1) > w(2) if and only if σ2 = −,
• if u(1) < u(2), then −w(1) > w(2) if and only if σ2 = −,
• if u(2) > u(3), then w(2) > w(3) if and only if σ2 = +.
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Letting σ1 and σ2 range over all possible signs, we have:

c1(u)c2(u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2 + 2t2 if u1 < u2 < u3,

2t(1 + t) if u1 < u2 > u3,

4t if u1 > u2 < u3,

2t(1 + t) if u1 > u2 > u3.

For any u ∈ Sn,

∑

w∈B(u)

tdesD(w) = c1(u)c2(u) · · · cn(u).

If u1 < u2 > u3, u1 > u2 < u3, or u1 > u2 > u3, then we find:

∑

w∈B(u)

tdesD(w) = (4t)lpk(u)(1 + t)n−2 lpk(u), (13.9)

and so the contribution in each of these cases is gamma-nonnegative.
However, if u1 < u2 < u3, the sum is not gamma-nonnegative. For exam-

ple, if u = 23541, we find

∑

w∈B(u)

tdesD(w) = (2 + 2t2)(2t)(1 + t)(2),

= 8t+ 16t3 + 8t5,

= 8t(1 + t)4 − 32t2(1 + t)2 + 16t3.

To fix this, we will lump together such permutations with some others to
obtain a contribution that is overall gamma-nonnegative. For a permutation
u = u1u2u3 · · ·un, let u

′ = u2u1u3 · · ·un. If u1 < u2 < u3, then u′
2 < u′

1 < u′
3

and so u′
1 > u′

2 < u′
3, giving c1(u

′)c2(u
′) = 4t. Since cj(u) = cj(u

′) for all
j ≥ 3, we have:

∑

w∈B(u)∪B(u′)

tdesD(w) = (c1(u)c2(u) + c1(u
′)c2(u

′))c3(u) · · · cn(u),

= (2 + 2t2 + 4t)c3(u) · · · cn(u),
= 2(1 + t)2c3(u) · · · cn(u),
= 2 · (4t)lpk(u)(1 + t)n−2 lpk(u). (13.10)

Let us denote
SI
n = {u ∈ Sn : u1 < u2 < u3},

SII
n = {u ∈ Sn : u2 < u1 < u3},



306 13 Combinatorics for Coxeter groups of types Bn and Dn

and

SIII
n = {u ∈ Sn : u1 < u2 > u3, u1 > u2 > u3, or u2 < u3 < u1},

Thus, Sn is the disjoint union SI
n∪SII

n ∪SIII
n and SI

n and SII
n are in bijection

via u ↔ u′. The distribution of desD over B(u) for u in SIII
n is gamma-

nonnegative by Equation (13.9), and the distribution of desD over B(u) ∪
B(u′) for u in SI

n (with u′ in ∪SII
n ) is gamma-nonnegative by (13.10).

In total,

Dn(t) =
1

2

∑

w∈Bn

tdesD(w),

=
∑

u∈SI
n

(4t)lpk(u)(1 + t)n−2 lpk(u),

+
1

2

∑

u∈SIII
n

(4t)lpk(u)(1 + t)n−2 lpk(u).

To put it another way, define the “indicator” function

φ(u) =

⎧
⎪⎨

⎪⎩

1 if u1 < u2 < u3,

0 if u2 < u1 < u3,

1/2 otherwise.

Then,

Dn(t) =
∑

u∈Sn

φ(u)(4t)lpk(u)(1 + t)n−2 lpk(u).

While this expression is not as neat and tidy as the one for type Bn, the
gamma-nonnegativity is manifest. Hence we have the following result.

Theorem 13.9. For all n ≥ 4, there exist nonnegative integers γDn

j such
that

Dn(t) =

�n/2	∑

j=0

γDn

j tj(1 + t)n−2j . (13.11)

Moreover,

γDn

j = 4j · |{u ∈ Sn : u1 < u2 < u3, lpk(u) = j}|
+ 2 · 4j−1 · |{u ∈ Sn : u3 	= max{u1, u2, u3}, lpk(u) = j}|.

We can use this combinatorial description to construct a balanced simpli-
cial complex, to establish Conjecture 3 in the case of the Dn Coxeter complex.
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Let DecDn denote a set of decorated permutations corresponding the type
Dn gamma vector, i.e.,

DecDn = {w ∈ Decn : w1 < w2 < w3}
∪ {w ∈ Decn : w3 	= max{w1, w2, w3} and c1 ∈ {0, 1}},

where c1 denotes the style of the first bar in w.
It is easy to see that DecDn is a subcomplex of Decn, i.e., if G ∈ DecDn and

F is a face of Decn contained in G, then F ∈ DecDn as well.

13.5 Combinatorial models for shard intersections

We saw the shard intersection order for type An−1 in Section 3.3, though
at the time we did not understand it geometrically. In Section 11.11, we
saw the general definition of the shard intersection order from the geometric
point of view, but we did not explore combinatorial models. In the following
subsections, we make the explicit connection between the general definition
of the shard intersection order and combinatorial models for types An−1, Bn,
and Dn. This material is adapted from the author’s paper [118], though the
type An−1 was studied by Erin Bancroft as well [13].

13.5.1 Type An−1

Recall the root system of type An−1 is most naturally realized in

V = {x ∈ R
n :
∑

xi = 0},

where we choose the positive roots to be

Π = {εj − εi : 1 ≤ i < j ≤ n}.

With respect to this choice of root system, the fundamental chamber C is
given by:

C = {x ∈ V : x1 < x2 < · · · < xn},

and the hyperplane corresponding to a positive root εj − εi is:

Hij = {x ∈ V : xi = xj}.

There are only two types of rank two subarrangements ofH(An−1), shown
in Figure 13.2. If we consider two hyperplanes Hij and Hkl with {i, j} ∩
{k, l} = ∅, the hyperplanes are orthogonal, and we get no cutting relations.
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(This arrangement is isomorphic toH(A1×A1).) On the other hand, suppose
the hyperplanes are not orthogonal. Then we get an arrangement isomorphic
to H(A2), generated, say, by Hij and Hjk, with 1 ≤ i < j < k ≤ n. The
hyperplanes Hij and Hjk are basic (as shown in Figure 13.2), and the third
hyperplane in the arrangement,Hik, gets cut according to whether xj ≤ xi =
xk or xi = xk ≤ xj .

Hij

Hkl

C′

{i, j} ∩ {k, l} = ∅ Hik ∩ {xj ≤ xi, xk}

Hik ∩ {xi, xk ≤ xj}

Hjk

Hij

C′

xi < xj < xk

xi < xk < xj

xj < xi < xk

xj < xk < xi

xj < xk < xi

xk < xj < xi

1 ≤ i < j < k ≤ n

Fig. 13.2 The rank two subarrangements of H(An−1).

As there are no other possibilities for the rank two subarrangements of
H(An−1), we have the following Proposition.

Proposition 13.1. The hyperplane Hij has 2j−i−1 shards, and hence there
are ∑

1≤i<j≤n

2j−i−1 = 2n − n− 1,

shards in H(An−1).

Notice the not surprising coincidence that the number of shards equals the
Eulerian number

〈
n
1

〉
= 2n − n− 1.

Now that we have identified the shards, we will describe how permutations,
as drawn in Section 3.3, encode shard intersections.

Visually, we represent the permutation as an array with a mark in column
i (from left to right), row j (from bottom to top) if w(i) = j. We group
together any decreasing runs into blocks with thick lines:
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8

3

9

6

4

5

1

2

7

.

(13.12)

If it is possible to draw a horizontal line to connect two decreasing runs, the
block on the left is considered less than the block on the right. This gives
a “pre-order” on {1, . . . , n} that we call a permutation pre-order. (It’s like a
partial order, but with ties allowed.) When writing a permutation in one-line
notation, we simply put bars between the decreasing runs to indicate the
blocks in the pre-order; relations between the blocks must be inferred. With
w in (13.12), we would write w = 2|83|964|51|7.

For the rest of this section we will pass freely from thinking of an element
w ∈ Sn as a word and as a permutation pre-order.

Permutation pre-orders neatly encode type An−1 shard intersections as
follows. For any w ∈ Sn, define the cone of w, C(w), as the set of points
x ∈ V such that:

• if i and j are in the same block in w, then xi = xj ,
• if i < k < j and k is not in the same block as i and j, then:

a) xk ≤ xi = xj if k appears to the left of i in w, and
b) xi = xj ≤ xk if k appears to the right of i in w.

The example shown in (13.12) then corresponds to the cone of all points
satisfying

x8 = x3 ≥ x9 = x6 = x4 ≥ x7,

x9 = x6 = x4 ≥ x5 = x1 ≤ x2, and

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 = 0.

At the extremes we have C(1|2| · · · |n) = V and C(n · · · 21) = (0, 0, . . . , 0).
Notice that the dimension of C(w) is equal to one less than the number of
decreasing runs in w (since the sum of the coordinates is zero), and hence
codimension corresponds to descent number.
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Observation 13.1 For any w ∈ Sn,

des(w) = n− 1− dim(C(w)).

In particular, shards correspond to elements with one descent.

Thus Proposition 13.1 gives a very roundabout way to show there are
2n − n− 1 permutations with one descent.

It remains to be seen that the cones so described are in fact intersections
of shards.

To begin, the identity permutation corresponds to the empty intersection,
i.e., V , while if w has only one descent, it corresponds to a shard itself and
we are done.

Now to any collection of shards {σ1, . . . , σr}, we claim we can associate an
element w such that

r⋂

i=1

σi = C(w).

For induction, suppose the result holds for any intersection of fewer shards.
In particular,

⋂r−1
i=1 σi = C(u) for some u. Let σr = C(v) be a new shard with

xa = xb. Then σr ∩ C(u) = C(w), where w is the permutation formed by
merging the blocks of u containing a and b, along with any blocks between
them. Moreover, if a < k < b and k was left of a in u but right of a in v, then
k is in the same block with a and b in w.

For example, taking the pre-order in (13.12) with the shard 31|2|4|5|6|7|8|9
we get:

8

3

9

6

4

5

1

2

7

⋂

8

3

9

6

4

5

1

2

7

=

8

3

9

6

4

5

1

2

7

.

We have shown that an intersection of shards corresponds to C(w) for some
w. Now we will show that each cone C(w) corresponds to an intersection of
shards.

Permutations with one descent correspond to shards themselves, so sup-
pose w has more than one descent. The following describes a collection of
shards whose intersection gives the cone C(w). Given two elements in a de-
creasing run, say w(i) > w(j) (and so i < j), we let σ be the shard with
xw(i) = xw(j) and such that for each k with w(j) < k < w(i), we put
xk ≤ xw(i) if w

−1(k) < i, xw(i) ≤ xk otherwise.
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Doing this for all pairs of elements in decreasing runs yields a collection
of shards σ, each of which contains C(w) and such that all the conditions
imposed by w are articulated by some shard.

To illustrate, let w = 2|83|964|51|7. Then the collection of shards we get
is:

C(2|83|964|51|7) = C(1|2|83|4|5|6|7|9)∩ C(1|2|3|4|5|8|96|7)
∩ C(1|2|3|8|94|5|6|7)∩ C(1|2|3|64|5|7|8|9)
∩ C(2|3|4|51|6|7|8|9).

We remark that while this idea shows C(w) is formed as an intersection of
a set of shards, the set of shards we generate this way is neither necessarily
minimal nor maximal. In our example, further intersecting with the shard
1|2|3|6|8|94|5|7 would not change the result. Also, we could have removed
the shard 1|2|3|8|94|5|6|7 and still obtained C(w).

We can now give a partial order on Sn by reverse inclusion of the cor-
responding subsets of V . That is, u ≤ v in the shard intersection order if
and only if C(v) ⊆ C(u). This definition can be stated combinatorially in
terms of permutation pre-orders as was given in Section 3.3. Verification of
equivalence is straightforward.

Proposition 13.2. In terms of permutation pre-orders, u ≤ v in Sh(Sn) if
and only if:

• (Refinement) u refines v as a set partition, and
• (Consistency) if i and j are in the same block in u, and i < k < j (with k

not in the same block as i and j in u), then either k is in the same block
as i and j in v, or k is on the same side of i and j in v as in u.

The intersection lattice is ranked by codimension, so by Observation 13.1
we can see that rank in Sh(Sn) corresponds to descent number:

rk(w) = des(w).

In other words, we have established Theorem 11.4 in the case of the symmetric
group.

13.5.2 Type Bn

The root system of type Bn lives in V = R
n, with positive roots

Π = {εj ± εi : 1 ≤ i < j ≤ n} ∪ {εi : 1 ≤ i ≤ n}.

As the hyperplane arrangement for Cn is identical to that of Bn, all results
that follow in this section hold for the Coxeter groups of type Cn as well.
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With respect to this choice of root system, the fundamental chamber C is
given by:

C = {x ∈ R
n : 0 < x1 < · · · < xn}.

The hyperplane corresponding to the positive root εj − εi is:

Hij = {x ∈ R
n : xi = xj},

the hyperplane corresponding to the positive root εj + εi is:

Hīj = {x ∈ R
n : −xi = xj},

and the hyperplane corresponding to the positive root εi is:

H0i = {x ∈ R
n : xi = 0}.

There are three possibilities for rank two subarrangements of H(Bn). The
subarrangements are either isomorphic to H(A1 × A1), to H(A2), or to
H(B2). The possibilities are shown in Figures 13.2 and 13.3.

The cutting relations for hyperplanes Hij , with 0 ≤ i < j ≤ n, are rather
different from the cutting relations for the hyperplanes Hīj , with 1 ≤ i <
j ≤ n. In particular there are 2j−i−1 shards in Hij and 2j−i3i−1 shards in
hyperplane Hīj .

It is easy to see that a hyperplane Hij , with 0 ≤ i < j ≤ n is either cut
according to the arrangement H(A2) in Figure 13.2 or, if i = 0, according
to Figure 13.3 (a). In either case, we find the shards of Hij are formed by
choosing, for each k such that i < k < j, whether xk ≤ xi = xj or xi = xj ≤
xk. In particular, there are 2j−i−1 shards of this hyperplane, just as we found
in Proposition 13.1 for type An−1.

The cutting relations for the hyperplane Hīj appear in the arrangements
of Figure 13.3 (a), (b), (c), and (d).

In case (a), we have two choices. Either 0 ≤ xi = −xj , or xi = −xj ≤ 0.
Now consider cases (b) and (c). Suppose, without loss of generality, that

0 ≤ xi = −xj . Here we need to choose, for each k such that 1 ≤ k < i,
whether:

• −xk ≤ −xi = xj ≤ 0 ≤ xi = −xj ≤ xk,
• −xi = xj ≤ −xk, 0, xk ≤ xi = −xj , or
• xk ≤ −xi = xj ≤ 0 ≤ xi = −xj ≤ −xk.

Note that we could not have 0 ≤ xi = −xj ≤ −xk, xk, as all coordinates
would be forced to equal zero. Hence there are three choices for each such k,
yielding a total of 3i−1 choices of this kind.

Finally consider case (d). Here we see we need to choose, for each k such
that i < k < j, whether xk ≤ xi = −xj or xi = −xj ≤ xk, yielding 2j−i−1

choices.
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We have now completely described the shards of type Bn, and moreover
we have the following proposition. The formula for the sum is easily verified
by induction.

Proposition 13.3. For all 0 ≤ i < j ≤ n, the hyperplane Hij has 2j−i−1

shards. For any 1 ≤ i < j ≤ n, the hyperplane Hīj has 2j−i3i−1 shards.
Therefore, there are

∑

0≤i<j≤n

2j−i−1 +
∑

1≤i<j≤n

2j−i3i−1 = 3n − n− 1,

shards of H(Bn) in all.

H0j ∩ {xj ≤ xi}H0j ∩ {xi ≤ xj}

Hīj ∩ {−xi, xj ≤ 0}

Hīj ∩ {0 ≤ −xi, xj}
H0i

Hij

C′

0 < xi < xj0 < −xi < xj

0 < xj < xi

0 < −xj < xi

0 < xi < −xj0 < −xi < −xj

0 < −xj < −xi

0 < xj < −xi

1 ≤ i < j ≤ n

(a)

Hj̄k ∩ {−xj, xk ≤ −xi}

Hj̄k ∩ {−xi ≤ −xj, xk}

Hīk

Hij

C′

−xk < xi < xj

xi < −xk < xj

−xk < xj < xi

xi < xj < −xk

xj < −xk < xi

xj < xi < −xk

1 ≤ i < j < k ≤ n

(b)

Hj̄k ∩ {−xj, xk ≤ xi}

Hj̄k ∩ {xi ≤ −xj, xk}

Hik

Hīj

C′

−xj < xi < xk

−xj < xk < xi

xi < −xj < xk

xk < −xj < xi

xi < xk < −xj

xk < xi < −xj

1 ≤ i < j < k ≤ n

(c)

Hīk ∩ {−xi, xk ≤ xj}

Hīk ∩ {xj ≤ −xi, xk}

Hjk

Hīj

C′

−xk < −xj < xi

−xj < −xk < xi

−xk < xi < −xj

−xj < xi < −xk

xi < −xk < −xj

xi < −xj < −xk

1 ≤ i < j < k ≤ n

(d)

Fig. 13.3 The rank two subarrangements of H(Bn) not pictured in Figure 13.2.
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We now encode intersections of shards with signed permutations. As with
the symmetric group, we will highlight the maximal decreasing runs of w,
written in long form, w = wn̄ · · ·w1̄0w1 · · ·wn, by inserting bars in ascent
positions. For example, we write

w = 3̄|542̄|101̄|24̄5̄|3.

Visually, we represent a signed permutation as an array with a mark in
column i, row j (−n ≤ i, j ≤ n) if w(i) = j. As with the type An−1 model,
we group together decreasing runs into blocks indicated by thick lines:

5

2̄

4̄

3̄

1

0

1̄

3

4

2

5̄

.

(13.13)

If it is possible to draw a horizontal line to connect two decreasing runs, the
block on the left is considered less than the block on the right. This gives a
certain pre-order on {0,±1, . . . ,±n} that we will call a signed permutation
pre-order.

Signed permutation pre-orders are in bijection with type Bn shard inter-
sections. Just as with the type An−1 model, we define a cone of points, C(w),
for an element w ∈ Bn as follows:

• if i and j are in the same block in w, then we have xi = xj , with the
understanding that x−i = −xi and x0 = 0,

• if i < k < j and k is not in the same block as i and j, then:

a) xk ≤ xi = xj if k appears to the left of i in w, and
b) xi = xj ≤ xk if k appears to the right of i in w.

The example shown in (13.13) then corresponds to the set of points in R
5

satisfying:
x1 = 0 = −x1 ≤ x2 = −x4 = −x5 ≥ −x3.
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Each block has a negative counterpart, except for the block containing
zero. Thus the dimension of C(w) is half the number of blocks not containing
zero, plus one if there is a nonzero number in the block with zero. Since the
type Bn descent statistic only considers descents among w0w1 · · ·wn, this
means codimension corresponds to the type Bn descent statistic.

Observation 13.2 For any w ∈ Bn,

desB(w) = n− dim(C(w)).

In particular, shards correspond to signed permutations with exactly one type
Bn descent.

Thus Proposition 13.3 gives an indirect way to prove there are 3n − n− 1
signed permutations with exactly one descent, i.e.,

〈
Bn

1

〉
= 3n − n− 1.

We can show that the cones C(w) always correspond to intersections of
type Bn shards, by using an idea similar to the An−1 case, by greedily finding
a set of shards whose intersection is the desired cone.

Now we can define the shard intersection order on Bn as u ≤ v in
(Sh(Bn),≤) if and only if C(v) ⊆ C(u). This manifests itself for signed per-
mutation pre-orders in the same notions of “refinement” and “consistency”
given in Proposition 13.2. We can use the same intuition of merging blocks
to move up in the poset, taking care to act symmetrically: if i joins a block
with j, then −i must join a block with −j and so on.

For example, 4̄5̄|3̄|2̄|101̄|2|3|54 < 3̄|542̄|101̄|24̄5̄|3 as shown:

5

2̄

4̄

3̄

1

0

1̄

3

4

2

5̄

<

5

2̄

4̄

3̄

1

0

1̄

3

4

2

5̄

.

In moving from the signed permutation on the left to the one on the right,
we merged 2̄ with the block 54 (and hence 2 with 4̄5̄). This meant that we
needed to decide whether the new block would be right or left of 3 and right
or left of the block containing 0. In this case, we chose 542̄ to be left of both.

The lattice of Bn shard intersections is ranked by codimension, so by
Observation 13.2 we can see that rank in Sh(Bn) corresponds to type Bn

descent number:
rk(w) = desB(w).

In other words, we have established Theorem 11.4 for the case of W = Bn.
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13.5.3 Type Dn

Recall the root system of type Dn lives in V = R
n, with positive roots

Π = {εj ± εi : 1 ≤ i < j ≤ n}.

With respect to this choice, the fundamental chamber C is given by:

C = {x ∈ R
n : −x2 < ±x1 < x2 < · · · < xn}.

Since the Dn roots are all the Bn roots save the standard basis elements,
the arrangement H(Dn) is the subarrangement of H(Bn) generated by the
hyperplanes Hij and Hīj (but not H0i).

The rank two subarrangements of H(Dn) either look like H(A1 ×A1) or
like H(A2), and we can identify all the cutting relations from the pictures in
Figure 13.2 and Figure 13.3 (b), (c), and (d).

The hyperplanes Hij , with 1 ≤ i < j ≤ n, are once again cut according to
relation in Figure 13.2. We find 2j−i−1 shards of this hyperplane as in An−1

and Bn.
Now consider a hyperplane Hīj with 1 ≤ i < j ≤ n. The cutting relations

for this hyperplane are given by parts (b), (c), and (d) of Figure 13.3. From
part (d) we see that for each k such that i < k < j, we must choose whether
−xk ≤ xi = −xj or whether xi = −xj ≤ −xk, yielding 2j−i−1 choices.

The interaction between the relations in parts (b) and (c) are somewhat
delicate. Since we have no hyperplanes of the form H0i, we do not know
explicitly whether xi = −xj is weakly positive or negative. However, if we
know that, say, −xi = xj ≤ ±xk, we can infer that −xi = xj is negative.
Likewise, if ±xk ≤ −xi = xj , we can infer that −xi = xj is positive. If k is
such that 1 ≤ k < i and both xk and −xk are on the same side of −xi = xj

we say k is in the zero block of the shard.
If the zero block is empty, we know that for each k = 1, . . . , i − 1, there

are two choices:

• xk ≤ xi = −xj ,−xi = xj ≤ −xk, or
• −xk ≤ xi = −xj ,−xi = xj ≤ xk.

Thus there are 2j−i−1 · 2i−1 shards of Hīj with an empty zero block. Note,
however, that xi = −xj and −xi = xj are incomparable.

We will now count the remaining shards in Hīj according to the smallest
element in the zero block.

Suppose h is the smallest element in the zero block. First of all, since
the zero block is nonempty, we know whether −xi = xj is weakly positive or
weakly negative, giving two initial choices. Suppose, without loss of generality,
that ±xh ≤ −xi = xj .

Then for each g = 1, . . . , h− 1, there are two choices:

• xg ≤ xi = −xj ≤ ±xh ≤ −xi = xj ≤ −xg, or
• −xg ≤ xi = −xj ≤ ±xh ≤ −xi = xj ≤ xg.
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For each k = h+ 1, . . . , i− 1, there are three choices:

• xk ≤ xi = −xj ≤ ±xh ≤ −xi = xj ≤ −xk,
• xi = −xj ≤ ±xh,±xk ≤ −xi = xj , or
• −xk ≤ xi = −xj ≤ ±xh ≤ −xi = xj ≤ xk.

Hence, we find a total of 2j−i−1 · 2 · 2h−1 · 3i−1−h choices for a given h.
Pulling all the cases for the zero block together (empty and h = 1, . . . , i−1)

we find a total of:

2j−i−1
(
2i−1+2 · 3i−2+ · · ·+2i−2 · 3+2i−1

)
= 2j−i−1(2i−1+2(3i−1−2i−1)),

= 2j−i−1(2 · 3i−1 − 2i−1),

= 2j−i · 3i−1 − 2j−2.

shards in Hīj .
We have now characterized the shards of type Dn. In particular we have

the following companion to Propositions 13.1 and 13.3.

Proposition 13.4. For all 1 ≤ i < j ≤ n, the hyperplane Hij has 2j−i−1

shards, while the hyperplane Hīj has 2
j−i ·3i−1−2j−2 shards. Therefore, there

are ∑

1≤i<j≤n

2j−i−1 + 2j−i · 3i−1 − 2j−2 = 3n − n2n−1 − n− 1,

shards of H(Dn) in all.

To describe shard intersections, the most helpful way to write elements
w ∈ Dn is as “forked” signed permutations, e.g.,

w = 2̄315
4
4̄
5̄1̄3̄2, (13.14)

corresponds to {w(1),−w(1)} = {4,−4}, w(2) = −5, w(3) = −1, w(4) = −3,
and w(5) = 2. As an even signed permutation, we would write w = 4̄5̄1̄3̄2.
We choose the forked model because it is more indicative of the geometry of
the corresponding chamber in the complement of H(D5):

−x2 < x3 < x1 < x5 < ±x4 < −x5 < −x1 < −x3 < x2.

We draw w ∈ Dn as an array with a mark in column i ≥ 0, row j if
w(i + 1) = j. We put a mark in column i ≤ 0, row j if w(i − 1) = j. In
effect, we draw w as if it is a type Bn element, then slide w(i) one step left
for i positive, one step right for i negative. Hence, w(1) and −w(1) appear in
the same center column. Again, we draw solid lines in descent positions. For
example, the element w in (13.14) is drawn as:
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5

2̄

4̄

3̄

1

1̄

3

4

2

5̄

.

(13.15)

The partial order on blocks in this case is similar to earlier cases, with one
caveat. Usually, if it is possible to draw a horizontal line to connect two
decreasing runs, the block on the left is considered less than the block on
the right. However, if w(1) and w(−1) are in distinct blocks, these blocks are
only comparable if there is a triple i < k < j with i, j in the block containing
w(1) and k in the block containing w(−1). For example, in (13.16) the block
containing w(−1) and the block containing w(1) are incomparable:

5

2̄

4̄

3̄

1

1̄

3

4

2

5̄

.

(13.16)

In either case, we get a pre-order on {−n, . . . ,−1, 1, . . . , n}, which we call
a forked permutation pre-order.
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For any w ∈ Dn, we define a cone of points C(w) in R
n just as in the

An−1 and Bn cases. Specifically,

• if i and j are in the same block in w, we have xi = xj , with the under-
standing that x−i = −xi,

• if i < k < j and k is not in the same block as i and j, then:

a) xk ≤ xi = xj if k is less than i in the pre-order given by w, and
b) xi = xj ≤ xk if k greater than i in the pre-order given by w.

The example shown in (13.15) then corresponds to the set of points satis-
fying:

−x2, x1 = x3 ≤ x4 = x5 = −x4 = −x5(= 0) ≤ −x1 = −x3, x2,

while the example shown in (13.16) corresponds to:

−x2, x1 = x3 ≤ x4 = −x5, x4 = −x5 ≤ −x1 = −x3, x2.

As with earlier cases, we can determine the dimension of C(w) by the
number of nonzero blocks and whether there are any coordinates equal to
zero. We have the following.

Observation 13.3 For any w ∈ Dn,

desD(w) = n− dim(C(w)).

In particular, shards correspond to forked signed permutations with exactly
one type Dn descent.

Thus, Proposition 13.4 shows there are 3n−n2n−1−n− 1 elements of Dn

with exactly one descent.
That the cones C(w) correspond to intersections of type Dn shards follows

from explicit decomposition of a given cone into shards along similar lines
as earlier cases. As an example, the forked permutation in (13.15) can be
written as the following intersection ofDn shards (with bars drawn to indicate
divisions between the blocks):

w = 2̄|31|5 4
4̄
5̄|1̄3̄|2 = 4̄5̄|3̄|2̄|1

1̄
|2|3|54 ∩ 2̄|1|3|4 5

5̄
4̄|3̄|1̄|2 ∩ 5̄|4̄|2̄|1̄ 3

3̄
1|2|4|5.

The shard intersection order on Dn is also analogous to earlier examples.
We have u ≤ v in (Dn,≤) if and only if C(v) ⊆ C(u), and the containment
of cones can be easily captured by the merging of blocks consistent with the
forked pre-order.

The lattice of Dn shard intersections is ranked by codimension, so by
Observation 13.3 we have see that

rk(w) = desD(w),

establishing Theorem 11.4 in the case of W = Dn.
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13.6 Type Bn noncrossing partitions and Narayana
numbers

As mentioned in Section 12.2 we call the interval [e, c] in Abs(W ) the non-
crossing partition lattice because of the case of the symmetric group. Let’s
revisit this connection as a lead-in to discussion of other types. See Sec-
tion 3.5.

We can represent any permutation by placing n points on a circle and
drawing an arc from i to j if w(i) = j, e.g.,

w = 18642735 = (1)(285)(367)(4),

is drawn as

•1
• 2

• 3

•
4•

5

•
6

•7

•8

.

Take W = An−1 = Sn, where c = s1s2 · · · sn is the n-cycle, written c =
(12 · · ·n). If we draw all permutations in [e, c] this way, we find all cycles
are oriented clockwise and none of the arcs from different cycles cross in the
interior of the disk. The correspondence with the classical noncrossing set
partitions of {1, 2, . . . , n} becomes clear. See Figure 13.4.

Now let us turn to the type Bn model. By this stage in the book, we might
guess a type Bn noncrossing partitions is some kind of “set partition with
signed symmetry,” and indeed this is the case. Our discussion of this model
follows closely work of Victor Reiner from 1997 [126].

Just as we did with type An−1, we start with the cycle notation for a
Coxeter element. Here we choose c = s0s1 · · · sn−1 = (12 · · ·n1̄2̄ · · · n̄), so it
makes sense to draw the numbers 1, 2 . . . , n,−1,−2, . . . ,−n clockwise around
a circle. For a signed permutation w in Bn, we draw a line from i to j if
w(i) = j. For example,

w = 32̄1̄4 = (131̄3̄)(22̄)(4)(4̄),
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Fig. 13.4 The poset NC(A3) realized as the interval below c = (1234) in Abs(A3).

is drawn as

•0

•1
• 2

• 3

•
4•

-1

•
-2

•-3

•-4

.
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If we draw the elements below c in Abs(Bn), we can see how to give the
combinatorial model for Bn-noncrossing partitions. Let

π = {J−k, . . . , J−1, J0, J1, . . . , Jk},

be a set partition of {0,±1,±2, . . . ,±n} such that:

• for each block Ji in π, the block J−i = −Ji = {−s : s ∈ Ji} is also a block
of π, and

• if i and −i are in the same block, that block is J0, which we call the zero
block. Note 0 ∈ J0 for every π.

We define the lattice NC(Bn) to be the set of all Bn-noncrossing par-
titions ordered by reverse refinement, so {{0, 1, 2, . . . , n,−1,−2, . . . ,−n}}
is the maximal element and {{0}, {1}, {2}, . . . , {n}, {−1}, {−2}, . . . , {−n}}
is the minimal element. The rank of an element in this poset is given by half
the number of nonzero blocks.

We can identify the canonical positive blocks J1, . . . , Jk as follows. Suppose
a is the smallest positive number not in J0. Then the block J containing a is
J1, and we order the nonzero blocks clockwise, until we reach −J1.

For example, the partition below has positive blocks are J1 = {3, 4} and
J2{6}. The negative blocks are J−1 = {−3,−4} and J−2 = {−6}, while the
zero block is J0 = {0, 1, 2, 5,−1,−2,−5}:

•0

•1 • 2

• 3

• 4

• 5
•
6•

−1

•−2

•−3

•−4

•−5

•−6

.

In Figure 13.5 we see NC(B3).
According to our formula, Cat(Bn) =

(
2n
n

)
. While this may not be obvi-

ous from the model, Reiner gives a bijection between type Bn noncrossing
partitions and pairs of n-subsets with the same cardinality. Given a Bn-
noncrossing partition π, let L = L(π) denote the numbers that are the clock-
wise first numbers in a positive block, and let R = R(π) denote the set of
absolute values of numbers that are the clockwise last numbers in a positive
block. For example, if π is the partition pictured here:
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= •0

•1 • 2

• 3
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• 5
•
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•−2

•−3

•−4

•−5

•−6

π ,

•0

•1

•2

•3
•−1

•−2

•−3

(∅, ∅)

•0

•1

•2

•3
•−1

•−2

•−3

({2}, {2})

•0
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•2

•3
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•−2

•−3

({1}, {1})

•0

•1

•2

•3
•−1

•−2

•−3

({3}, {3})

•0

•1

•2

•3
•−1

•−2

•−3

({1}, {3})

•0

•1

•2

•3
•−1

•−2

•−3

({2}, {3})

•0

•1

•2

•3
•−1

•−2

•−3

({2}, {1})

•0

•1

•2

•3
•−1

•−2

•−3

({3}, {2})

•0

•1

•2

•3
•−1

•−2

•−3

({1}, {2})

•0
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•3
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•−2

•−3

({3}, {1})

•0
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•3
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•−2

•−3

({1, 2}, {1, 2})
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({1, 2}, {2, 3})
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•−1

•−2

•−3

({2, 3}, {1, 3})
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•−3

({1, 3}, {1, 2})
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({1, 3}, {2, 3})
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({1, 2, 3}, {1, 2, 3})

Fig. 13.5 The poset NC(B3) realized as the interval below c = (1231̄2̄3̄) in Abs(B3).
A symmetric boolean decomposition of the poset is highlighted in bold.
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we have L(π) = {2, 4} and R(π) = {4, 5}. Conversely, we can think of putting
a left parenthesis to the left of l and −l for each l in L and similarly we put
a right parenthesis to the right of r and −r for each r in R. Each layer
the resulting parenthesization determines the blocks of the partition. For
example, suppose n = 6 and (L,R) = {{3, 4}, {1, 2}}. We get:

•0

•1 • 2

• 3

• 4

• 5
•
6•

−1

•−2

•−3

•−4

•−5

•−6 )

(

)

(

)

(

)

(

−→ •0

•1 • 2

• 3

• 4

• 5
•
6•

−1

•−2

•−3

•−4

•−5

•−6

.

The bijection is denoted η, i.e, η(π) = (L,R). The η map can be ex-
tremely helpful and we will return to it later, but we remark that it does
not readily encode the poset structure of NC(Bn). While it is clear that if
π < π′ in NC(Bn), then L(π′) ⊂ L(π) and R(π′) ⊂ R(π), the converse is
not true. That is, simply because L′ ⊂ L and R′ ⊂ R it does not necessar-
ily follow that the corresponding Bn-partitions are comparable in NC(Bn).
For example, one can check in NC(B5) that the partitions corresponding to
(L,R) = ({2, 3, 4}, {1, 4, 5}) and (L′, R′) = ({3, 4}, {1, 5}) are incomparable.

We finish this section by remarking that since the |L| = |R| equals the
number of positive blocks, the rank of a Bn-noncrossing partition is n−|L| =
n− |R|. Let f(NC(Bn); t) denote the rank generating function for NC(Bn).
Then

f(NC(Bn); t) =
∑

π∈NC(Bn)

trk(π) =
∑

L,R⊆{1,...,n}
|L|=|R|

tn−|L| =
n∑

k=0

(
n

k

)2

tk.

This tells us that
(
n
k

)2
ought to be the type Bn analogue of the Narayana

numbers.

Proposition 13.5. The number of Bn-noncrossing partitions of rank n− k
is equal to the number of pairs (L,R) with L,R ⊆ {1, 2, . . . , n} and |L| =
|R| = k, i.e.,

|{π ∈ NC(Bn) : rk(π) = n− k}| =
(
n

k

)2

.

In particular, NC(Bn) is rank-symmetric.
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As a consequence, there are

n∑

k=0

(
n

k

)2

=

(
2n

n

)
,

Bn-noncrossing partitions in all, confirming our formula for the type Bn

Catalan numbers.

13.7 Gamma-nonnegativity for Cat(Bn; t)

It is a not-too-difficult exercise to obtain an explicit formula for the gamma-
basis coefficients of the polynomials

Cat(Bn; t) =

n∑

k=0

(
n

k

)2

tk.

They are

γ
NC(Bn)
j =

(
n

j, j, n− 2j

)
=

n!

j!j!(n− 2j)!
.

See Table 13.5. This fact was remarked upon in work of Alexander Postnikov,
Reiner, and Lauren Williams from 2008 [120].

Table 13.5 The gamma numbers γ
NC(Bn)
j , 0 ≤ 2j ≤ n ≤ 10.

n\k 0 1 2 3 4
2 1 2
3 1 6
4 1 12 6
5 1 20 30
6 1 30 90 20
7 1 42 210 140
8 1 56 420 560 70
9 1 72 756 1680 630

Rather than merely verify this numeric fact, we will demonstrate a sym-
metric boolean decomposition of NC(Bn). This was outlined in work of Saúl
Blanco and the author in 2014 [26]. The maximal elements of the boolean
pieces correspond, under Reiner’s bijection η, to members of the set

Pn = {(L,R) : L,R ⊆ {1, . . . , n}, |L| = |R|, L ∩R = ∅}.

Recall that each element π of NC(Bn) corresponds to a pair η(π) = (L,R)
with L,R ⊆ {1, . . . , n} and |L| = |R|. Moreover, if π < π′ in NC(Bn), then
L(π′) ⊂ L(π) and R(π′) ⊂ R(π). The converse is not generally true, but if
the same element i appears in both L and R, then {i} is a singleton block of
the corresponding partition. Hence, we have the following lemma.
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Lemma 13.1. Suppose L,R ⊆ {1, . . . , n} with |L| = |R|, and that there is
an element i in L∩R. Let π be the partition corresponding to (L,R) and let
π′ be the partition corresponding to (L \ {i}, R \ {i}). Then

π < π′

in NC(Bn).

For any pair of subsets with empty intersection in Pn, let

B(L,R) = {(L′, R′) : L′ = L ∪A,R′ = R ∪A, for some A ⊆ {1, . . . , n} \ (L ∪ R)}.
Then B(L,R), ordered by reverse inclusion, is isomorphic to a boolean algebra
on the complement of L∪R. By Lemma 13.1, this partial order is consistent
with the partial order on NC(Bn). That is, if (L

′, R′) ≤ (L′′, R′′) in B(L,R),
then η−1(L′, R′) ≤ η−1(L′′, R′′) in NC(Bn).

Hence, we can claim to have a symmetric boolean decomposition of
NC(Bn).

Theorem 13.10. We have a symmetric boolean decomposition of NC(Bn)
given by: ⋃

(L,R)∈Pn

η−1 (B(L,R)) .

In particular,

γ
NC(Bn)
j = |{(L,R) : L,R ⊆ {1, . . . , n}, |L| = |R| = j, L ∩R = ∅}|.

Figure 13.5 illustrates the theorem in the case of B3, with the symmetric
boolean decomposition highlighted in bold. We recall from Theorem 4.3 that
NC(An−1) has a symmetric boolean decomposition as well.

We finish this section by showing how to construct a simplicial complex—in
fact a flag complex—whose f -vector is the gamma-vector above, thus estab-
lishing Conjecture 3 in the case of the Bn associahedron.

Let

Pn = {(L,R) : L,R ⊆ {1, . . . , n}, |L| = |R|, L ∩R = ∅}.

This set can be seen to form a simplicial complex with vertex set

V = {(l, r) : 1 ≤ l 	= r ≤ n}.

We declare that two vertices (l1, r1) and (r1, r2) are adjacent if and only
if l1, l2, r1, r2 are all distinct and l1 < l2 if and only if r1 < r2. Then Pn

is the clique complex for the adjacency graph, since we can consider every
element of Pn as a list of vertices by ordering L = {l1 < l2 < · · · } and
R = {r1 < r2 < · · · }.

So while Pn is not itself a balanced complex, its f -vector is still an FFK-
vector by Proposition 10.6.
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13.8 Type Dn noncrossing partitions and Narayana
numbers

Our combinatorial model for type Dn noncrossing partitions begins with
choosing a particular Coxeter element,

c = s1̄s1s2 · · · sn−1 = (11̄)(23 · · ·n2̄3̄ · · · n̄).

Motivated by the geometry of the Coxeter arrangement as well as this cycle,
we order 2, 3, . . . , n,−2,−3, . . . ,−n clockwise around a circle and place 1 and
−1 in the center of the circle, though they are not in the same point. It helps
to think of 1 as slightly above the plane containing the circle, and −1 as
lying slightly below, as we did with type Dn shard intersections and forked
permutations.

Let us now define the Dn-noncrossing partitions. Let

π = {J−k, . . . , J−1, J0, J1, . . . , Jk},

be a set partition of {±1,±2, . . . ,±n}. Then π is a Dn-signed partition if:

• each block Ji in π has its negative block −Ji in π,
• there is at most one block equal to its negative, called the zero block, which

may be empty, and
• if J0 is not empty, it has at least four elements, and both −1 and 1 are in

this block.

For example, here are some elements of NC(D5):

c = •
−1
••

−1

•1

• 2

• 3

• 4

• 5
•−2

•−3

•−4

•−5

; c · t24 = •
−1
••

−1−
•1

• 2

• 3

• 4

• 5
•−2

•−3

•−4

•−5

;
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and

c · t1̄3 = •
−1
•

−1
• •1

• 2

• 3

• 4

• 5
•−2

•−3

•−4

•−5

;

where tij denotes the reflection through hyperplane Hij .
While the Dn-noncrossing partitions have some features in common with

Bn-noncrossing partitions, they are not a subset of the Bn-noncrossing par-
titions. Notice, e.g., that the following Dn-noncrossing partition,

•−1
•• •1

• 2

• 3

• 4

• 5
•−2

•−3

•−4

•−5

;

would have a crossing if drawn as a Bn-partition:

•
−1
•

•1 • 2

• 3

• 4

• 5•−2

•−3

•−4

•−5

:

This model was developed by Christos Athanasiadis and Victor Reiner in
2004 [12]. Before this model was developed, Reiner came up with a plausible
notion of a type Dn noncrossing partition that generalized the type An and
Bn noncrossing partitions, but as a subposet of NC(Bn) [126]. However this
poset is not isomorphic to the interval [e, c] in the absolute order, and as
the theory progressed, it was dropped in favor of the current model. Reiner’s
“false” type Dn noncrossing partitions are the Bn-noncrossing partitions such
that J0 	= {−i, 0, i} for any i, denoted NC(BDn). While as a poset NC(BDn)
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is not isomorphic to [e, c], the number of such elements in each rank agrees
with the same count for NC(Dn), i.e.,

f(NC(Dn); t) =
∑

π∈NC(Dn)

trk(π) =
∑

π′∈NC(BDn)

trk(π
′) = f(NC(BDn); t),

so we can use either set for enumeration purposes. (There is no simple bi-
jective proof of this identity at the time of this writing.) Rank enumeration
in NC(BDn) is relatively straightforward, as we now demonstrate. This idea
follows [126].

First notice the set of all Bn-noncrossing partitions decomposes as:

NC(Bn) = NC(BDn) ∪
n⋃

i=1

NC(Bn; i),

where NC(Bn; i) denotes the set of all Bn-noncrossing partitions with J0 =
{−i, 0, i}. Note that every element of NC(Bn; i) corresponds to a noncrossing
partition on {i+ 1, i+ 2, . . . , n,−1,−2, . . . ,−i+ 1}:

noncrossing partition below here

•0

• • i − 1

• i

• i + 1

•
•••−i + 1

•−i

•−i − 1

•
•

.

Hence the number of elements of NC(Bn; i) with k nonzero blocks is the
number of classical noncrossing partitions in NC(n − 1) with k blocks. This
is the Narayana number

Nn,k−1 =
1

n− 1

(
n− 1

k − 1

)(
n− 1

k − 2

)
,

as seen from Proposition 2.3. Thus the number of elements in NC(BDn) with
k nonzero blocks is:

|{π ∈ NC(BDn) : rk(π) = k}| = |{π ∈ NC(Bn) : rk(π) = k}|
− n · |{π ∈ NC(Bn; i) : rk(π) = k}|,

=

(
n

k

)2

− n

n− 1

(
n− 1

k − 1

)(
n− 1

k − 2

)
,

=

(
n

k

)2

−
(
n

k

)(
n− 2

k − 1

)
,

=

(
n

k

)((
n− 1

k

)
+

(
n− 2

k − 2

))
.



330 13 Combinatorics for Coxeter groups of types Bn and Dn

Since NC(Dn) has the same rank numbers as NC(BDn), we can use these
numbers as the type Dn Narayana numbers.

Proposition 13.6. The number of Dn-noncrossing partitions of with k nonzero
blocks is

(
n

k

)2

− n

n− 1

(
n− 1

k − 1

)(
n− 1

k − 2

)
=

(
n

k

)((
n− 1

k

)
+

(
n− 2

k − 2

))
.

Considering all such partitions without regard to rank, we get confirmation
of the formula for type Dn Catalan numbers:

|NC(Dn)| = |NC(BDn)| = |NC(Bn)| − n|NC(n− 1)|,

=

(
2n

n

)
−
(
2n− 2

n− 1

)
.

13.9 Gamma-nonnegativity for Cat(Dn; t)

For the type Dn case, we will show that

Cat(Dn; t) =

n∑

k=0

(
n

k

)((
n− 1

k

)
+

(
n− 2

k − 2

))
tk,

has a nonnegative gamma vector, with

γ
NC(Dn)
j =

n− j − 1

n− 1

(
n

j, j, n− 2j

)
.

See Table 13.6.

Table 13.6 The gamma numbers γ
NC(Dn)
j , 0 ≤ 2j ≤ n ≤ 9.

n\k 0 1 2 3 4
4 1 8 2
5 1 15 15
6 1 24 54 8
7 1 35 140 70
8 1 48 300 320 30
9 1 63 567 1050 315

We can verify the formula by resorting again to the “false”Dn-noncrossing
partitions, NC(BDn). Recall the decomposition
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NC(Bn) = NC(BDn)

n⋃

i=1

NC(Bn; i),

where NC(Bn; i) consists of those Bn-noncrossing partitions with zero block
J0 = {−i, 0, i}. More importantly, recall that NC(Bn; i) ∼= NC(An−2), and
that NC(Bn; i) embeds in ranks 1 to n− 1 of NC(Bn). Hence,

γ
NC(Bn)
j = γ

NC(BDn)
j + nγ

NC(An−2)
j−1 .

Recalling the formulas for γ
NC(Bn)
j and γ

NC(An−2)
j−1 , we have

γ
NC(Dn)
j = γ

NC(BDn)
j

=

(
n

j, j, n− 2j

)
− n

(
1

j

(
n− 2

j − 1, j − 1, n− 2j

))
,

=

(
n

j, j, n− 2j

)
− j

n− 1

(
n

j, j, n− 2j

)
,

=
n− 1− j

n− 1

(
n

j, j, n− 2j

)
.

We remark that one can show that NC(BDn) admits a symmetric boolean
decomposition, but it is not known whether the same is true for NC(Dn).



Chapter 14

Affine descents and the Steinberg torus
(Supplemental)

14.1 Affine Weyl groups

In this section we outline some basic facts for affine Weyl groups, following
standard notations. See Sections 4.3 and 4.6 of the book by James Humphreys
for more details [92].

We now consider that Φ is an irreducible and crystallographic root system,
i.e., 2〈α, β〉/〈β, β〉 is an integer for all roots α and β. These root systems are
listed in Figure 11.4. The group W = W (Φ) is a finite Coxeter group, but
there is an infinite Coxeter group associated with Φ as well, known as the
affine Weyl group, and denoted W̃ . This is the group generated by reflections
sβ,k through the affine hyperplanes

Hβ,k = {λ ∈ V : 〈λ, β〉 = k},

where β ∈ Π and k ∈ Z.
Let Φ∨ denote the set of coroots

β∨ := 2β/〈β, β〉,

with β ∈ Φ. Composing two reflections sβ,k corresponding to the same β
corresponds to translation by a vector in ZΦ∨. Let L = ZΦ∨ denote this
lattice of translations, a subgroup of W̃ . The affine group W̃ also contains the
finite group W , generated by reflections across the hyperplanes Hβ,0 = Hβ .

The crystallographic condition guarantees thatW fixes L, and we can write
W̃ as a semidirect product L�W . The product in the semidirect product is

(μ,w) · (μ′, w′) = (μ+ w(μ′), ww′).

© Springer Science+Business Media New York 2015
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The geometric action of W̃ on V extends both the action of W by linear
reflections and the action of L by translations:

(μ,w) · λ = μ+ w(λ),

for μ ∈ ZΦ∨, w ∈W , and λ ∈ V .
Since Φ is irreducible, there is a unique maximum in its root poset, known

as the highest root and denoted α̃. The group W̃ is generated by S̃ = S ∪
{sα̃,1}. The pair (W̃ , S̃) is an irreducible Coxeter system. The corresponding

Coxeter graphs/Dynkin diagrams are shown in Figure 14.1. The graph for W̃
differs from that of W by the addition of one node. Geometrically, the new
simple root is the lowest root α0 = −α̃. If Δ = {α1, . . . , αn} denotes the set
of simple roots for W , let us denote the nodes of the diagram by

Δ̃ = {α0} ∪Δ = {α0, α1, . . . , αn}.

Let Σ̃ denote the set of faces of the affine hyperplane arrangement

H̃(Φ) = {Hβ,k : β ∈ Φ, k ∈ Z}.

By adding an empty face, Σ̃ is a simplicial complex isomorphic to the Coxeter
complex for W̃ . The maximal faces in this arrangement are called alcoves (as
opposed to chambers in the finite case).

The fundamental alcove is

A∅ = C∅ ∩ {λ ∈ V : 〈λ, α̃〉 < 1},

where C∅ is the fundamental chamber of the finite Coxeter arrangement. We
can write the faces of the fundamental alcove as

AJ =

{
CJ ∩ {λ ∈ V : 〈λ, α̃〉 < 1} if α0 /∈ J,

CJ−{α0} ∩ {λ ∈ V : 〈λ, α̃〉 = 1} if α0 ∈ J,

where J is a proper subset of Δ̃ and CJ is a face of the fundamental chamber
as in Section 11.7.

In Figure 14.2 we see the affine arrangement and faces of the fundamental
alcove for A2. The same for C2 is in Figure 14.3.

14.2 Faces of the affine Coxeter complex

The closure of the fundamental alcove is a fundamental domain for the action
of W̃ on V , and each face of Σ̃ is of the form

F = μ+ w ·AJ ,

where μ ∈ L, w ∈ W , and J is a proper subset of Δ̃.
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Ãn (n ≥ 1) • • • • • • • •
•

B̃n (n ≥ 3) • • • • • • •4
•

•
<

C̃n (n ≥ 2) • • • • • • • •4 4
> <

D̃n (n ≥ 4) • • • • • •
•

•

•

•

Ẽ6

• • • • •

•

•

Ẽ7

• • • • • • •

•

Ẽ8

• • • • • • • •

•

F̃4 • • • • •4
>

G̃2 • • •6
>

Fig. 14.1 The Dynkin diagrams for irreducible affine root systems.

The vertices of Σ̃ are of the form μ + w · A
˜Δ−{α} for some α ∈ Δ̃. If we

assign color α to all such vertices, we obtain a balanced coloring of Σ̃, with
face μ+ w ·AJ receiving color set Δ̃− J .

Each face F has a canonical representation, in the sense that we can iden-
tify F with a triple (μ,w, J), for μ ∈ L, w ∈ W , and J ⊂ Δ̃. The uniqueness
of μ is not surprising, since we can translate any face to a face in the neigh-
borhood of the origin. The uniqueness of J follows from the fact that each
face is in the orbit of a unique face of the closure of A∅. The finite group
element w is unique up to right multiplication by the subgroup of W that
fixes AJ . We can make the choice of w unique by declaring that, for any
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•

α∨
2

α̃∨

α∨
1

• Hα2

Hα1

Hα̃,1

A∅

(b)(a)

•
A{α1,α2} A{α2}

•
A{α2,α0}

A{α0}

•
A{α1,α0}

A{α1}
A∅

(c)

Fig. 14.2 The affine arrangement H̃(A2). (a) Positive (co)roots. (b) Affine hyper-
planes and the fundamental alcove. (c) The faces of the fundamental alcove.

α ∈ Δ̃, if w(α) < 0, then α ∈ Δ̃ − J . Following Paola Cellini [47], we define
the affine descent set of an element of the finite group W to be

D̃es(w) = {α ∈ Δ̃ : w(α) < 0},

=

{
Des(w) if w(α0) > 0,

Des(w) ∪ {α0} if w(α0) < 0.

Notice that since α0 is a negative root, this means every element w ∈W has
at least one affine descent, including the identity. We can state the uniqueness
of the representation as follows.

In the case of type An−1, we will see in Section 14.4.1 D̃es(w) is the “cyclic”
descent set of a permutation, i.e., the usual descent set along with a descent
in zero if the last letter is larger than the first.
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• α∨
1

α̃∨α∨
2 β∨

Hα2Hα1

Hα̃,1

•
A∅

)b()a(

•
A{α1,α2}

A{α2}

•
A{α2,α0}A{α0}•

A{α1,α0}

A{α1}
A∅

(c)

Fig. 14.3 The affine arrangement H̃(C2). (a) Positive coroots: α∨
1 = 1

2
α1, α̃∨ = 1

2
α̃,

α∨
2 = α2, β∨ = β. (b) Affine hyperplanes and the fundamental alcove. (c) The faces

of the fundamental alcove.

Proposition 14.1. Each face F ∈ Σ̃ has a unique representation

F = μ+ w ·AJ ,

with μ ∈ L, J ⊂ Δ̃, and w ∈ W such that D̃es(w) ⊆ Δ̃− J .

By analogy with the usual Eulerian polynomial, it now makes sense to
define the affine Eulerian polynomial to be the generating function for affine

Eulerian numbers. Let d̃es(w) = |D̃es(w)|, and write

W̃ (t) =
∑

w∈W

t
˜des(w).

Before we study this polynomial and its coefficients, let us first describe a
structure for which it is the h-polynomial.
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14.3 The Steinberg torus

The coroot lattice L acts on V by translations and fixes the affine hyperplane
arrangement H̃. Thus we can consider the set of L-orbits of faces of Σ̃. The
Steinberg torus is this quotient set of faces modulo translations, denoted by
Σ, i.e.,

Σ = Σ̃/L.

Geometrically, we can identify the Steinberg torus with a triangulation of the
geometric torus V/L. This cell decomposition is not a simplicial complex, as
different faces can share the same vertex set, but it is a boolean complex.
Moreover, the balanced coloring for Σ̃ passes through the quotient, so we
inherit a balanced coloring for Σ as well.

The Steinberg torus is named for Robert Steinberg, who exploited the
torus to help compute the length generating function for the affineWeyl group
[157]. It was studied again (and named) by Kevin Dilks, John Stembridge,
and the author in 2009 [60]. The presentation here largely follows [60].

Each face of Σ̃ has in its orbit a cell in its L-orbit with μ = 0, so another
way to define the Steinberg torus is to identify opposite faces of the polytope

PΦ = {λ ∈ V : −1 ≤ 〈λ, β〉 ≤ 1 for all β ∈ Φ}.

This polytope is the union of the closures of the alcoves w ·A∅, with w ∈W .
A point λ on the boundary of PΦ has 〈λ, β〉 = −1 for some root β. We identify
λ with λ′ = λ+ β∨ which satisfies 〈λ′, β〉 = 1 and also lies on the boundary.
See Figure 14.4.

• •

• •

• •

•

• •

• •

• •

•

•

•

Fig. 14.4 The polytopes PA2
and PC2

. The Steinberg tori are obtained by identifying
points on the boundary.

From Proposition 14.1 we see that we can abstractly identify the faces of
Σ with the cosets of “quasi-parabolic” subgroups of W , i.e., for any proper
subset J ⊂ Δ̃,
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L+ w · AJ ↔ wWJ = {wv : v ∈ 〈sα : α ∈ J〉}.

As in Proposition 14.1, we can choose a unique minimal length representative
w such that D̃es(w) ⊆ Δ̃− J .

Proposition 14.2. Every face F ∈ Σ has a unique J ⊆ Δ̃ and w ∈ W such
that

F = L+ w ·AJ ,

with D̃es(w) ⊆ Δ̃− J .

We call such subgroups WJ “quasi-parabolic” since although they are
parabolic subgroups of W̃ , they are not necessarily parabolic subgroups of
W . Such a group is always a finite Coxeter group, however, and a subgroup
of W .

Just as the model of set compositions can be used to encode faces of
the type An−1 Coxeter complex, there is a similar combinatorial model to
encode faces of the type An−1 Steinberg torus, developed by Marcelo Aguiar
and the author [2]. See Figure 14.5.

Also noteworthy at this point is that, unlike for Coxeter complexes, the
distinction between types Bn and Cn really matters. This is because the
structure of the torus is intimately linked with the root system, not merely
the group. When n ≥ 3, the polytopes PΦ have very different boundaries,
despite having the same number of maximal cells. In particular, the polytope
PC3 is a cube, while the polytope PB3 is a rhombic dodecahedron. The iden-
tifications taking place on their boundaries lead to a different triangulated
torus. In fact Σ(C3) and Σ(B3) don’t even have the same number of vertices
(eight and ten, respectively).

We now turn to the f - and h-vectors of the Steinberg torus. To count
faces we use a similar line of reasoning as in the case of the finite Coxeter
complex to count W -orbits. First, define fJ to be the number of faces of
Σ with color set J , ignoring the empty face. Ignoring the empty face simply
omits the constant term from the f -polynomial. However, omitting f∅ = 1 has
the effect of making the corresponding h-polynomial palindromic. In general,
while the Dehn-Sommerville relations for a torus are not palindromic, they
can be made so by ignoring the empty face. This idea was generalized to
other triangulated manifolds by Isabella Novik and Ed Swartz in 2009 [113].

Now, for any nonempty subset ∅ 	= J ⊆ Δ̃,

fJ = |{w ·A
˜Δ−J : w ∈ W}|,

= |W/W
˜Δ−J |,

= |W |/|W
˜Δ−J |,

= |{w ∈ W : D̃es(w) ⊆ J}|.
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Fig. 14.5 The faces of the Steinberg torus Σ(A2), with colors corresponding to
W -orbits. Note the identifications along the boundary.

Define hJ to be
hJ = |{w ∈W : D̃es(w) = J}|,

so that by inclusion-exclusion

hJ =
∑

∅�=I⊆J

(−1)|J−I|fI .

Now we can express the affine Eulerian polynomial as follows:

W̃ (t) =
∑

w∈W

t
˜des(w),

=
∑

∅�=J⊆ ˜Δ

hJ t
|J|,

=
∑

∅�=I⊆J⊆ ˜Δ

(−1)|J−I|fIt
|J|,

=
∑

∅�=I⊆ ˜Δ

fIt
|I|(1− t)n+1−|I|,
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Using our calculation for fJ from above, we can give the following expression
for the affine Eulerian polynomial.

Proposition 14.3. The affine Eulerian polynomial has the following
expression,

W̃ (t) =
∑

w∈W

t
˜des(w) =

∑

∅�=I⊆ ˜Δ

|W |
|W

˜Δ−I |
t|I|(1 − t)n+1−|I|.

Furthermore, we can see that

W̃ (t) = (1 − t)n+1f(Σ − {∅}; t/(1− t)),

= h(Σ − {∅}; t).

That is, the affine Eulerian polynomial is the h-polynomial of the Steinberg
torus (ignoring the empty face).

14.4 Affine Eulerian numbers

We now describe the combinatorial definitions of affine descents and give
some enumerative results, all of which are contained in [60]. Most generally,
we can state the following fact.

Theorem 14.1. The affine Eulerian polynomial W̃ (t) is gamma-nonnegative
for all finite Weyl groups W .

It is known that W̃ (t) is real-rooted in all cases except D̃n. See Section 3.5
of the paper of Carla Savage and Mirko Visontai [132].

14.4.1 Type An−1

The highest root in An−1 is εn−ε1, so α0 = ε1−εn. Thus w ·α0 < 0 whenever
w(n) > w(1). Therefore

D̃es(w) = {0 ≤ i ≤ n− 1 : w(i) > w(i + 1)},

with w(0) = w(n). These are better known as “cyclic descents” since we think
of the permutation w wrapping around so that we compare w(n) and w(1).

For example, D̃es(25413) = {0, 2, 3}.
In Table 14.1 we see the affine Eulerian numbers of type An−1, i.e., the

distribution of cyclic descents over the symmetric group.
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Table 14.1 The affine Eulerian numbers for An−1, 0 ≤ k ≤ n ≤ 9.

n\k 0 1 2 3 4 5 6 7 8
2 0 2
3 0 3 3
4 0 4 16 4
5 0 5 55 55 5
6 0 6 156 396 156 6
7 0 7 399 2114 2114 399 7
8 0 8 960 9528 19328 9528 960 8
9 0 9 2223 38637 140571 140571 38637 2223 9

Cyclic descents were studied by Jason Fulman for their connections to
card shuffling (“riffle shuffles with a cut”) in a 2000 paper [77] and also by
the author in 2005 [115]. Both papers give simple arguments for the following
observation.

Observation 14.1 For any n ≥ 2,

Ãn(t) = (n+ 1)tAn−1(t),

where An−1(t) = Sn(t) is the classical Eulerian polynomial.

Hence, Ãn(t) is real-rooted and gamma-nonnegative from what we know
in the classical case. Moreover, the following generating function is easily
obtained.

Proposition 14.4. We have the following exponential generating function
for affine Eulerian polynomials:

z +
∑

n≥2

Ãn−1(t)
zn

n!
=

z(1− t)

1− tez(1−t)
.

14.4.2 Type Bn

In type Bn, the highest root is εn−1 + εn, so w · α0 < 0 if and only if
w(n − 1) + w(n) > 0. That is, we have a descent in 0 if w(n − 1) > −w(n).
We have in this case,

D̃es(w) =

{
Des(w) if w(n − 1) < −w(n),
Des(w) ∪ {α0} if w(n − 1) > −w(n).

For example, D̃es(234̄51̄) = {0, 3, 5}.
The type Bn affine Eulerian numbers are in Table 14.2.
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Table 14.2 The affine Eulerian numbers for Bn, 0 ≤ k ≤ n ≤ 9.

n\k 0 1 2 3 4 5 6 7 8 9
2 0 4 4
3 0 10 28 10
4 0 24 168 168 24
5 0 54 904 1924 904 54
6 0 116 4452 18472 18472 4452 116
7 0 242 20612 157294 288824 157294 20612 242
8 0 496 91600 1227504 3841360 3841360 1227504 91600 496
9 0 1006 396112 8989576 45616432 75788308 45616432 8989576 396112 1006

The type Bn affine Eulerian polynomial has a nonnegative gamma vector
reminiscent of the type Dn Eulerian polynomials.

Proposition 14.5. For n ≥ 2, we have

B̃n(t) =
∑

u∈Sn

φ(u)(4t)pk(0u0)(1 + t)n+1−2 pk(0u0),

where

φ(u) =

⎧
⎪⎨

⎪⎩

1 if u(n− 2) > u(n− 1) > u(n),

0 if u(n− 2) > u(n) > u(n− 1),

1/2 otherwise.

Moreover, we have the following generating function.

2 + 2tz +
∑

n≥2

B̃n(t)
zn

n!
=

2(1− t)(1 − tzez(1−t)

1− te2z(1−t)
.

Savage and Visontai proved in 2015 that B̃n(t) is real-rooted [132].

14.4.3 Type Cn

In type Cn, the highest root is 2εn, and so we have a descent in α0 if and
only if w(n) > 0. Thus,

D̃es(w) = {0 ≤ i ≤ n : w(i) > w(i + 1)},

with w(0) = w(n + 1) = 0. For example, D̃es(234̄51̄) = {3, 5}. The type Cn

affine Eulerian numbers are in Table 14.3.
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Table 14.3 The affine Eulerian numbers for Cn, 0 ≤ k ≤ n ≤ 9.

n\k 0 1 2 3 4 5 6 7 8 9
2 0 4 4
3 0 8 32 8
4 0 16 176 176 16
5 0 32 832 2112 832 32
6 0 64 3648 19328 19328 3648 64
7 0 128 15360 152448 309248 152448 15360 128
8 0 256 63232 1099008 3998464 3998464 1099008 63232 256
9 0 512 257024 7479296 45175808 79969280 45175808 7479296 257024 512

The type Cn affine descent set can be thought of as a special kind of cyclic
descent, and indeed we have the following connection with classical Eulerian
polynomials. Just as with Observation 14.1 this observation was proved both
by Fulman in [77] and the author in [115].

Observation 14.2 For any n ≥ 1,

C̃n(t) = 2ntAn−1(t).

From this observation it follows that C̃n(t) is real-rooted and gamma-
nonnegative. We can express its gamma vector in terms of the classical case.
Moreover, we have the following generating function.

Proposition 14.6. We have the following exponential generating function:

1 +
∑

n≥1

C̃n(t)
zn

n!
=

1− t

1− te2z(1−t)
.

14.4.4 Type Dn

The highest root for Dn is the same as the highest root in Bn, with the same
effect on combinatorial descents. We have an affine descent for an element
w ∈ Dn if w(i) > w(i + 1) for i = 1, . . . , n − 1 in the usual way, along
with a descent at the beginning if −w(1) > w(2), and another at the end if

w(n − 1) > −w(n). For example, D̃es(34̄21̄5) = {0,−1, 1, 3}, since w(1) >
w(2), w(−1) > w(2), w(3) > w(4), and w(4) > −w(5). See Table 14.4.

The type Dn affine Eulerian polynomial has a nonnegative gamma vector
as well.
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Table 14.4 The affine Eulerian numbers for Dn, 0 ≤ k ≤ n ≤ 9.

n\k 0 1 2 3 4 5 6 7 8 9
4 0 16 80 80 16
5 0 44 464 904 464 44
6 0 104 2568 8848 8848 2568 104
7 0 228 13192 79580 136560 79580 13192 228
8 0 480 63904 665568 1850528 1850528 665568 63904 480
9 0 988 296608 5232400 22833760 36169768 22833760 5232400 296608 988

Proposition 14.7. For n ≥ 4, we have

D̃n(t) =
∑

u∈Sn

φ(u)φ(←−u )(4t)pk(0u0)(1 + t)n+1−2 pk(0u0),

where←−u = u(n) · · ·u(2)u(1), and φ is the same as in Proposition 14.5. More-
over, we have the following generating function:

2 + 4t
z2

2
+
∑

n≥3

D̃n(t)
zn

n!
=

2(1− t)(1 + tz2 − 2tzez(1−t))

1− te2z(1−t)
.

We finish by remarking that the polynomial D̃n(t) is the only case of an
affine Eulerian polynomial for which real-rootedness is not proved.
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Hints and Solutions

Problems of Chapter 1

1.1 Compositions of n are in bijection with subsets of {1, 2, . . . , n − 1} via
the map that takes a composition α to its partial sums. That is, if α =
(α1, . . . , αk) is a composition of n with k > 1 parts, then

(α1, . . . , αk)↔ {α1, α1 + α2, . . . , α1 + · · ·+ αk−1}.

For example, (3, 1, 1, 2) ↔ {3, 4, 5}. If α has only one part, i.e., if α = (n),
then α↔ ∅.

We can visualize the bijection between compositions and subsets by pic-
turing n stones lined up in a row, with bars placed in between the stones (at
most one bar per gap):

• • •| • | • | • •.

If we list the number of stones in each group, we get a composition of n (here,
(3, 1, 1, 2)), while if we record the number of stones to the left of each bar,
we get a subset of n− 1 (here, {3, 4, 5}).

1.2 In each case, the answer is given by the Fibonacci numbers:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . ,

with f0 = f1 = 1 and fn = fn−1 + fn−2, though the indexing needs to be
adjusted to fit the first two cases.

1. If n = 1 there is only one such composition: (1), and if n = 2, there
are two: (1, 1) and (2). From here, we can build “1–2” compositions of n
recursively. Let cn denote the number of such compositions. To each of the
cn−1 1–2 compositions of n− 1, we add a new part of size 1 on the right:

© Springer Science+Business Media New York 2015
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(α1, . . . , αk) �→ (α1, . . . , αk, 1), and to each of the cn−2 1–2 compositions of
n−2, we add a new part of size 2 on the right: (β1, . . . , βl) �→ (β1, . . . , βl, 2).
Since every 1–2 composition of n finishes with either a 1 or a 2, this
produces all such compositions, and we get the recurrence: cn = cn−1 +
cn−2, with c1 = 1 and c2 = 2. Thus, cn = fn, n ≥ 1.

2. For compositions with odd parts, the smallest examples are (1) and (1, 1).
A recursive procedure for obtaining odd compositions of n either adds a
new part of size 1 to the end of a composition of n − 1: (α1, . . . , αk) �→
(α1, . . . , αk, 1), or else adds 2 to the final part of a composition of n− 2:
(β1, . . . , βl) �→ (β1, . . . , βl + 2). This procedure is reversible, since every
odd composition of n either ends with a 1 or with an odd number greater
than 1. If cn now denotes the number of odd compositions of n, we get
c1 = c2 = 1, and cn = cn−1 + cn−2 for n ≥ 3. Thus cn = fn−1 for n ≥ 1.

3. Now let cn denote the number of compositions of n whose parts are at least
1, except possibly the last. The first examples are (1) and (2), so c1 = c2 =
1. For n ≥ 3, we form such a composition by either adding 1 to the final
part of such a composition of n − 1: (α1, . . . , αk) �→ (α1, . . . , αk + 1), or
by taking such a composition of n− 2 and adding both 1 to the final part
and a new part of size 1: (β1, . . . , βl) �→ (β1, . . . , βl + 1, 1).

1.3 Let’s count 1–2 compositions according to the number of 2s we use. To
create a composition α of n using only parts of size 1 and 2, we observe that:

• If there are no 2s, there is only one such composition: α = (1, 1, . . . , 1).
• If there is one 2, there are n − 2 ones, and n − 1 entries of α in all. We

have to choose which of the n − 1 entries of α will be occupied by the 2.
There are thus

(
n−1
1

)
such compositions.

• If there are two 2s, there are n− 4 ones, and n− 2 entries of α in all. We
have to choose where the 2s go, and this can be done in

(
n−2
2

)
ways.

...
• If there are k 2s, there are n − 2k ones, and n − k entries in α. We can

choose where the 2s go in
(
n−k
k

)
ways.

...

Summing over all k gives the desired formula.

1.4 We have

φn =
fn

fn−1
,

=
fn−1 + fn−2

fn−1
,

= 1 +
1

φn−1
,
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and taking the limit on both sides gives φ = 1 + 1/φ. Thus, φ2 − φ − 1 = 0.
Solving for φ, we find

φ =
1 +
√
5

2
.

1.5 Letting f(z) be the generating function we seek, the recurrence relation
gives us:

f(z) = 1 + z
(
1 + z + 2z2 + 3z3 + · · ·

)

+ z2
(
1 + z + 2z2 + 3z3 + · · ·

)
,

= 1 + zf(z) + z2f(z).

Solving for f(z), we have

f(z) =
1

1− z − z2
,

which answers part 1. We can also write

f(z) =
1

1− z(1 + z)
,

from which part 2 follows by the binomial theorem:

f(z) = 1 + z(1 + z) + z2(1 + z)2 + z3(1 + z)3 + · · · ,

=
∑

k≥0

zk

⎛

⎝
k∑

j=0

(
k

j

)
zj

⎞

⎠ ,

=
∑

l≥0

⎛

⎝
∑

j≥0

(
l − j

j

)
⎞

⎠ zl.

To address part 3, we first use the method of partial fractions to verify
that:

f(z) =
1

(1− αz)(1− βz)
=

A

1− αz
+

B

1− βz
,

with A = α/(α − β) and B = β/(β − α). Expanding each of these terms
individually yields

f(z) = A
(
1 + αz + α2z2 + · · ·

)
+B

(
1 + βz + β2z2 + · · ·

)
,

=
∑

k≥0

(
Aαk +Bβk

)
zk.
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We can write the coefficient of zk purely in terms of α and β as:

Aαk +Bβk =
αk+1 − βk+1

α− β
.

Now, factoring 1− z − z2 as (1− αz)(1− βz) shows us

α = φ =
1 +
√
5

2
and β = φ =

1−
√
5

2
,

where φ is the golden ratio. So the kth Fibonacci number is

fk =
φk+1 − φ

k+1

φ− φ
=

φk+1 − φ
k+1

√
5

,

as desired.

1.6

1. If we transform a permutation by mapping w(i) to n+ 1−w(i), we swap
ascents for descents, e.g., 351246 �→ 427631. Thus the number of permuta-
tions with k descents equals the number of permutations with k ascents.

2. The descents of a permutation occur in between the runs of a permutation.
This is easily seen if we put a bar between the runs of a permutation, e.g.,
137|4|26|5. Thus the number of descents is one less than the number of
runs, i.e., the number of permutations with k descents equals the number
of permutations with k + 1 runs.

3. The readings of a permutation w correspond to runs in the inverse per-
mutation, w−1. That is, in a reading of w, we look to see if 1 is to the left
of 2, 2 is left of 3, and so on, i.e., if w−1(1) < w−1(2) < · · · . We have to
start a new reading whenever w−1(i) > w−1(i+1). To take the example of
w = 1374265, we have w−1 = 1524763 and listing the positions in which
we read 1, 2, 3, . . . in w correspond to the elements of the runs of w−1.

times w read 1 3 7 4 2 6 5
1 1 2
2 3 4 5
3 6
4 7

runs of w−1 1 5 2 4 7 6 3
1 1 5
2 2 4 7
3 6
4 3

Thus the number of permutations with k readings equal the number of per-
mutations with k runs.

1.7 We can use Foata and Schützenberger’s “transformation fondamen-
tale.” The idea is as follows. When writing a permutation in cycle nota-
tion, excedances correspond to ascents within cycles, e.g., in cycle notation
w = 1376245 = (1)(2375)(46). We can choose a canonical way to write the
cycles of w so that the permutation obtained by forgetting parentheses has
all its ascents coming from within cycles.
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There is more than one way to do this. Our choice is to declare that
standard cycle notation writes each cycle so that it begins with the smallest
element of the cycle, and the cycles are written so that their minimal elements
appear in decreasing order.

For example, we would write the cycle 1 �→ 7 �→ 6 �→ 2 �→ 1 as (1762), and
never (7621), (6217), or (2176). Writing cycles this way guarantees that the
ascents of the word representing the cycle correspond precisely to excedances
in the permutation. Writing (7621) in this case disguises the fact that there
is an excedance in position 1.

We write the cycles so that the smallest element of each cycle is smaller
than the one that follows it so that the last element of each cycle is greater
than the first element of the next cycle. For example, if w = 137482695, its
cycles are (1), (2376), (4), and (589) and putting these in decreasing order
according to their smallest element yields

(589)(4)(2376)(1).

Now if we drop the parentheses, the resulting permutation, call it v, only has
ascents where the cycles have ascents: v = 589423761.

This transformation is straightforward to reverse. Define a left-right min-
imum to be an element w(j) such that w(i) > w(j) for all i < j. If we put
a bar to the left of each left-right minimum, the blocks that we form can
then be transformed into cycles of a new permutation whose excedances cor-
respond to the ascents of w. For example, if w = 879631524, its left-right
minima are 8, 6, 3, and 1, which we mark:

w = |879|6|3|1524 �→ (879)(6)(3)(1524) = v.

1.8 An inversion is a pair (i, j) such that w(i) > w(j). Inversion sequences
are so-called because they record the number of inversions involving a given
element of a permutation. (An inversion sequence is also known as a Lehmer
code.) There are a few natural ways to construct a bijection between permu-
tations and inversion sequences.

Let w be a permutation, and for each j, let sj denote the number of
elements to the left of w(j) that are greater than w(j), i.e.,

sj = {i < j : w(i) > w(j)}.

Clearly, 0 ≤ sj ≤ j − 1, so s(w) = (s1, s2, . . . , sn) is an inversion sequence.
For example,

589423761 �→ (0, 0, 0, 3, 4, 2, 3, 8).

To see that the map w �→ s(w) is a bijection, we can simply work in
reverse. The value of sn tells us what w(n) must be: w(n) = n− sn. Having
established the value of w(n), we can determine w(n − 1) in much the same
way: it is the member of {1, 2, . . . , n}−{w(n)} that has sn−1 elements greater
than it. Similar reasoning works for sn−2 and so on.
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For example, if s = s(w) = (0, 0, 1, 3, 0, 4, 1, 5, 5), we see that w(9) =
9 − 5 = 4, since it must be smaller than exactly five elements in [9]. Now,
w(8) must be smaller than five elements in {1, 2, . . . , 9}−{4}, so w(8) = 3. At
this point we know w(7) is smaller than only one element of {1, 2, 5, 6, 7, 8, 9},
so w(7) = 8. Continuing in this manner, we find:

w = 576192834.

Under the map w �→ s(w), it is easy to check that w(i) > w(i + 1) if and
only if si < si+1, so that the number of permutations with k descents equals
the number of inversion sequences with k ascents.

1.9 There is a bijection that takes permutations to increasing binary trees.
It applies the following recursive procedure: to any permutation, identify its
minimum and split the permutation into subwords, wl and wr, consisting of
the (possibly empty) words to the left and right of the minimum. We can
apply this splitting to the words wl and wr as well, continuing until all the
leaves of the tree are labeled with empty words. The process is captured in
the tree, e.g., w = 589423761 would split first into wl = 58942376 and the
empty word wr, which we draw as:

1

58942376 .

Now applying the same decomposition to v = 58942376, its minimum value
is 2 and we find vl = 5894 is the word to the left of 2, vr = 376 is the word
to right of 2. At this stage, we would have:

1

2

5894 376 .
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The final steps of the procedure are indicated here:

1

2

4

589

376

→

1

2

4

589

3

76

→

1

2

4

5

89

3

76

→

1

2

4

5

89

3

6

7

→

1

2

4

5

8

9

3

6

7

.

Notice that the decomposition w = wl 1wr, shows that

des(w) =

{
des(wl) + des(wr) + 1 if wl nonempty,

des(wl) + des(wr) if wl empty.

Moreover, if we let c(w) denote the number of left internal children of the
tree for w, we have the same recurrence relation:

c(w) =

{
c(wl) + c(wr) + 1 if wl nonempty,

c(wl) + c(wr) if wl empty.

Thus, since c(w) and des(w) agree for small w, the number of left internal
children of the tree for w equals the number of descents of w, and counting
increasing binary trees according to internal left children gives rise to the
Eulerian distribution.

1.10 See Chapter 7.

1.11 Let ω denote the permutation that cyclically shifts the numbers 1 to
n, i.e., ω(i) = i+1 for i ≤ n− 1, and ω(n) = 1. Letting ω act on Sn by right
multiplication, we partition Sn into (n−1)! orbits of size n. For example with
n = 4, we get 6 orbits:
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w wω wω2 wω3

1234 2341 3412 4123
1324 3241 2413 4132
2134 1342 3421 4213
2314 3142 1423 4231
3124 1243 2431 4312
3214 2143 1432 4321

.

We can see that the number of cyclic descents is constant on each orbit.
Moreover, each orbit has a unique member with w(n) = n. For this element
it is clear that cdes(w) = 1 + des(w) = 1 + des(w′), where w′ ∈ Sn−1 is
the permutation w(1) · · ·w(n − 1). Thus, each orbit contributes ntcdes(w) =
nt · tdes(w′) to the cyclic descent generating function.

Summing over all orbits gives:

∑

w∈Sn

tcdes(w) = nt
∑

w′∈Sn−1

tdes(w) = ntSn−1(t).

1.12 To construct a permutation with exactly one descent, we need to have
two increasing runs. Suppose w = w1 · · ·wn with

w1 < · · · < wk > wk+1 < · · · < wn.

It suffices to specify the elements in the first run, so we need to choose a
proper, nonempty subset of {1, 2, . . . , n}, (so k = 1, 2, . . . , n − 1), such that
its maximum is greater than the minimum of its complement.

The only subsets of {1, 2, . . . , n} that are excluded are the empty set, and
sets of the form {1, 2, . . . , i} for i = 1, . . . , n. Hence, there are 2n−1−n ways
to choose the elements of the first increasing run, yielding

〈
n
1

〉
= 2n − n− 1,

as desired.

1.13 The argument given here is presented in Knuth’s book [96].
As suggested in the hint, we consider (k+1)n to count the number of inte-

ger vectors (a1, . . . , an), with 0 ≤ ai ≤ k. Given such a vector, its increasing
arrangement is obtained by a permutation w:

aw(1) ≤ aw(2) ≤ · · · ≤ aw(n).

For example, if (a1, a2, a3, a4, a5) = (0, 1, 0, 5, 2), then its rearrangement is
(0, 0, 1, 2, 5). We can see from this example that more than one permutation
can produce the sorting of a vector. In this case, since a1 = a3, we have
(0, 0, 1, 2, 5) = (a1, a3, a2, a5, a4) = (a3, a1, a2, a5, a4). In order that our choice
is canonical, we will declare that if aw(i) = aw(i+1), then w(i) < w(i + 1). In
the example of (0, 1, 0, 5, 2), we choose w = 13254, not 31254. Conversely, if
j is a descent of w, w(j) > w(j + 1), then aw(j) < aw(j+1).
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So how many integer vectors correspond to a given w? Taking the example
of w = 13254, we seek the number of integer vectors (a1, a2, a3, a4, a5) such
that:

0 ≤ a1 ≤ a3 < a2 ≤ a5 < a4 ≤ k,

or equivalently,

1 ≤ a1 + 1 < a3 + 2 < a2 + 2 < a5 + 3 < a4 + 3 ≤ k + 3,

i.e., we want to choose five integers 1 ≤ b1 < b2 < b3 < b4 < b5 ≤ k+3. Thus
there are

(
k+3
5

)
integer vectors that correspond to this permutation w.

In general, we want the number of vectors satisfying

0 ≤ aw(1) ≤ aw(2) ≤ · · · ≤ aw(n) ≤ k,

with aw(j) < aw(j+1) if j is a descent of w. Letting bi = aw(i) + 1 plus the
number of ascents to the left of position i, we can transform this counting
problem into the problem of counting integer vectors (b1, . . . , bn) satisfying

1 ≤ b1 < b2 < · · · < bn ≤ k + 1 + (n− 1− des(w)) = k + n− des(w).

There are
(
k+n−des(w)

n

)
such vectors, and hence this many vectors (a1, . . . , an)

associated with a given w.
We can therefore conclude:

(k + 1)n = |{(a1, . . . , an) : 0 ≤ ai ≤ k}|,

=
∑

w∈Sn

|{(a1, . . . , an) corresponds to w}|,

=
∑

w∈Sn

(
k + n− des(w)

n

)
,

=

n−1∑

i=0

〈
n

i

〉(
k + n− i

n

)
,

which is Worpitzky’s identity.

1.14 Following the hint, we first remark that the generating function for all
ways to put n distinct balls, labeled 1 to n, say, into boxes is

∑

k≥0

(k + 1)ntk.

For any particular configuration of balls in boxes, there is a natural way to
associate a permutation, obtained by listing the contents of the boxes from
left to right (we fix a linear ordering on the boxes), and when there are two or
more balls in a box, we list the balls in increasing order of their labels. We rep-
resent the boxes with a vertical bar to show the divisions between the boxes,
and we call the arrangement of bars and numbers a “barred permutation.”
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For example, if there are seven balls, one placement of the balls into five
boxes is given by the following barred permutation:

1|5|237||46.

Here, the first box contains ball 1, the second has ball 5, the third contains
2, 3, and 7, the fourth box is empty, and the fifth box has balls 4 and 6.

Note that counting arrangements of n balls in k + 1 boxes amounts to
counting barred permutations with k bars.

Let us fix a permutation w in Sn and count all the barred permutations
whose underlying permutation is w. There must be at least one bar in each
descent position, but other gaps can have arbitrarily many bars. That is, the
weight of a gap is

1 + t+ t2 + · · · = 1

1− t
,

if there is no descent in that position, and it is

t+ t2 + t3 + · · · = t

1− t
,

if there is a descent. For example, if w = 562143 there are seven gaps in which
to insert bars, and three of them have descents, so the generating function
for the barred permutations corresponding to w is t3/(1 − t)7, as illustrated
here:

w = 5 6 ↘ 2 ↘ 1 4 ↘ 3 weight

1

1− t
· 1

1− t
· t

1− t
· t

1− t
· 1

1− t
· t

1− t
· 1

1− t
=

t3

(1− t)7
,

or in general
tdes(w)

(1− t)n+1
.

Therefore, the generating function for putting n labeled balls into k labeled
boxes is

∑

k≥0

(k + 1)ntk =
∑

w∈Sn

tdes(w)

(1 − t)n+1
,

=
Sn(t)

(1− t)n+1
,

as desired.
This argument and a generalization can be found in [119].
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1.15 Taking the hint, we have:

1

1− t
S(t, z/(1− t)) =

∑

n≥0

Sn(t)

(1− t)n+1

zn

n!
,

=
∑

n≥0

∑

k≥0

(k + 1)ntk
zn

n!
,

=
∑

k≥0

tk
∑

n≥0

(z(k + 1))n

n!
,

=
∑

k≥0

tkez(k+1),

= ez
∑

k≥0

(tez)k,

=
ez

1− tez
.

Setting u = z/(1− t), we have z = u(1− t), and

S(t, u) =
(1− t)eu(1−t)

1− teu(1−t)
,

=
1− t

e−u(1−t) − t
,

=
t− 1

t− eu(t−1)
,

as given in Equation (1.13).
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Problems of Chapter 2

2.1 Letting Sn(p) denote the set of permutations avoiding the pattern p, we
can see that the sets Sn(132), Sn(213), Sn(312), and Sn(231) are equinumer-
ous by geometric symmetries. If we draw a permutation that contains the
pattern 132 and flip it across a vertical line (reversing the permutation), we
end up with a permutation that contains the pattern 231. If a permutation
contains 231 and we flip it across a horizontal line we end up with a per-
mutation containing 213. Flipping a permutation with 213 across a vertical
line gives a permutation containing 312, and flipping this permutation hori-
zontally brings us back to the original permutation containing 132. Similarly,
flipping a permutation containing 123 across a vertical line (or a horizontal
line) will give a permutation containing 321. See Figure 14.6.

Thus we have bijections showing |Sn(132)| = |Sn(231)| = |Sn(213)| =
|Sn(312)| and |Sn(123)| = |Sn(321)|. Since we know 231-avoiding permuta-
tions are counted by Catalan numbers, all that remains is to show that 123-
avoiding permutations or 321-avoiding permutations are counted by Catalan
numbers. There are many ways to do this, but one is to show that 321-
avoiding permutations are in bijection with Dyck paths. Here is a picture of
the correspondence, which can be thought of as a simple modification of the
bijection between 231-avoiding permutations and Dyck paths illustrated in
Figures 2.8 and 2.9. See Figure 14.7.

The details are left to the reader.

2.2 We will show (n+ 1)Cn =
(
2n
n

)
by defining an action on all

(
2n
n

)
lattice

paths from (0, 0) to (n, n) that take North and East steps, then showing that
this action defines Catalan-many equivalence classes, each containing exactly
one Dyck path. This action mimicks the one presented in Section 2.4.2.

First, rather than paths from (0, 0) to (n, n), it will be convenient to con-
sider paths from (0,−1) to (n, n) that always begin with a north step. (See
Figure 2.6.) We write such a lattice path as a word with N and E, and insert
a vertical bar to the left of every occurrence of the letter N , e.g.,

p = |NEEE|N |NEEE|NE|N |N |N |N |NE.

One of these vertical bars is special: it is the place where the last minimum
valley of the path occurs, and as in Section 2.4.2 we will mark it with a bullet:

p = |NEEE|N |NEEE|NE •N |N |N |N |NE.

The bullet and the n bars split the word into n + 1 blocks, and cyclically
permuting these blocks gives another lattice path from (0,−1) to (n, n) that
starts with a north step. Further, the • will always be the rightmost minimal
valley after permuting, since there are more letters N than E to its right.
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Fig. 14.6 Symmetries of patterns of length three.

Declare two paths to be equivalent if they can be obtained from one an-
other by this cyclic action. For example, the equivalence class of our example
p is the following set of nine paths:



372 Hints and Solutions

2

3

1

7

4

8

5

6

•

•

• •

• • •

•

•

•

• • •

• • • •

Fig. 14.7 The correspondence between Dyck paths and 321-avoiding permutations.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|NEEE|N |NEEE|NE •N |N |N |N |NE
|NE|NEEE|N |NEEE|NE •N |N |N |N
|N |NE|NEEE|N |NEEE|NE •N |N |N
|N |N |NE|NEEE|N |NEEE|NE •N |N
|N |N |N |NE|NEEE|N |NEEE|NE •N
•N |N |N |N |NE|NEEE|N |NEEE|NE
|NE •N |N |N |N |NE|NEEE|N |NEEE
|NEEE|NE •N |N |N |N |NE|NEEE|N
|N |NEEE|NE •N |N |N |N |NE|NEEE

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

If the bullet is on the far left, that means that the path remains above the
line y = x after the first step. This can only happen once per equivalence
class. Since each equivalence class has n+ 1 members, we have

(
2n

n

)
= (n+ 1)Cn,

as desired.

2.3 Let bn denote the number of planar binary trees with n internal nodes,
and set b0 = 1 (i.e., there is one tree with no internal nodes).

Any planar binary tree with n internal nodes can be partitioned at the
root into a left branch and a right branch. If there are i internal nodes on the
left branch, there must be n− 1− i internal nodes on the right branch:
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.

Thus all trees with i internal nodes on the left branch and n − 1 − i nodes
on the right branch can be formed in bibn−1−i ways. Summing this over all i
gives

bn =

n−1∑

i=0

bibn−1−i.

2.4 The map suggested by Figure 2.10 is a slight modification of the map
from all permutations to increasing binary trees outlined in the solution to
Problem 1.9.

It is straightforward to check that counting left-pointing leaves corresponds
to counting left internal children.

2.5 The key thing here is to show that the inverse of the map φ shown
in Figure 2.11 is well defined. That is, given a noncrossing partition whose
blocks are made into decreasing runs, there is only one way to arrange these
blocks to avoid the pattern 231.

Let these blocks be denoted by R1, . . . , Rk. We claim that if we order the
blocks so that

minR1 < minR2 < · · · < minRk,

the permutation formed by concatenating the blocks in this order avoids
231. If there was a 231 pattern, the “2” would have to belong to a block R
somewhere to the left of the blocks containing the “3” and the “1.” Without
loss of generality, we can assume that the 3 and the 1 are in the same block.
Call it S. But since the minimum element of block R is less than the minimum
element of block S, this means there is an element “0” in block R. That is,
we have some a, c ∈ R and b, d ∈ S such that a < b < c < d. But this
would imply that the blocks R and S have a crossing. Since the blocks are
noncrossing, there cannot be a 231 pattern.

Now if we order the blocks in another way, there is a block R to the left of a
block S such that minS < minR < maxS. But then the elements a = minS,
b = minR, and c = maxS form a 231 pattern.

2.6 We will show that triangulations of a polygon satisfy the quadratic
recurrence, as the initial values clearly agree.

Label the nodes clockwise from 1 to n+ 2, and consider the triangle con-
taining nodes n + 2 and 1. The third node on this triangle will be labeled



374 Hints and Solutions

i+2, where i = 0, . . . , n− 1. For each i, we partition the problem of triangu-
lating the (n+2)-gon into two independent triangulation problems: we must
triangulate the (i + 2)-gon with nodes 1, . . . , i + 2, and we must triangulate
the (n+ 1− i)-gon with nodes i+ 2, i+ 3, . . . , n+ 2:

i + 2

n + 2 1

Ci

Cn−1−i

.

If Ci counts the triangulations of (i+ 2)-gon, then Cn−1−i counts the trian-
gulations of an (n+ 1− i)-gon, so summing over all i we have

Cn =

n−1∑

i=0

CiCn−1−i,

as desired.

2.7 It turns out that both noncrossing and nonnesting partitions of [n] can
be uniquely constructed from the list of cardinalities of its blocks and the
minimal element of the block. This allows us to construct a bijection between
the two sets that takes a nonnesting partition with k blocks to a noncrossing
partition with k blocks.

In particular, if π is a noncrossing partition that has blocks R1, . . . , Rk,
with minimal elements ai = minRi and a1 < a2 < · · · < ak, then we can form
a nonnesting partition π′ with the same block cardinalities and restriction on
its minimal elements: π′ = {S1, . . . , Sk}, |Si| = |Ri|, and minSi = ai =
minRi. This idea can be found in Athanasiadis [11] and more recently in
Fink and Iriarte Giraldo [65].

Here is an example. Suppose π = {{1, 4, 10, 11}, {2}, {3}, {5, 8, 9}, {6, 7}}
is a noncrossing partition, drawn as:

1 2 3 4 5 6 7 8 9 10 11 .
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This partition will end up corresponding to the nonnesting partition π′ =
{{1, 4, 7, 10}, {2}, {3}, {5, 8, 11}, {6, 9}}, with arc diagram as follows:

1 2 3 4 5 6 7 8 9 10 11 .

We can pull apart the arc diagrams of both π and π′ into strings with only
the minimal elements marked, as follows:

• • •1 , 2 , 3 , • •5 , 6 • .

Given these marked strings we can construct a noncrossing (resp. nonnest-
ing) partition from them in a recursive manner. Supposing we have inserted
the first i − 1 blocks in an arc diagram, there is a unique way to insert the
ith block so that the marked node goes in its proper place and the remaining
nodes are placed so that all arcs are noncrossing (resp. nonnesting).

For example, here are the steps in the construction of the nonnesting
partition π′. We have marked with an arrow where each subsequent block
must begin, and the newest arcs are shown with dashed lines.

• • •1

• • •1 2

• • •1 2 3

1 2 3 • 5 • • • •

1 2 3 • 5 6 • • • • •

Now supposing we want to construct the noncrossing partition π from
these blocks, the steps would look like this:
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• • •1

• • •1 2

• • •1 2 3

1 2 3 • 5 • • • •

1 2 3 • 5 6 • • • • •

2.8 There are various ways to put noncrossing matchings in bijection with
another set of Catalan objects. Here are two.

First we illustrate a bijection between noncrossing matchings on [2n] and
noncrossing partitions on [n]. After drawing the arc diagram for our non-
crossing matching, identify nodes (2k− 1) and 2k for k = 1, . . . , n. If (2k− 1)
or 2k is matched with (2j − 1) or 2j, then we put j and k in the same block.
Visually, this is easiest to see if draw our nodes on a disk, e.g.,

1
2

3

4

56

7

8

9

↔

1
3

5

7

911

13

15

17
2

4

6

8
10

12

14

16

18

.

Another straightforward bijection can be found between noncrossing
matchings and Dyck paths. If we think of our noncrossing matchings as bal-
anced parenthesizations, we have a list of n left parentheses and n right
parentheses, such that there are never more right parentheses than left in
reading the string from left to right. Replacing each left parenthesis with a
north step, N , and each right parenthesis with an east step, E, yields a path
that never goes below the line y = x. For example,
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

corresponds to NNENENNNEEEENNNEEE.

•
•
• •

• •
•
•
• • • • •

•
•
• • • •

Given this correspondence with Dyck paths, we see that peaks of the Dyck
path correspond to adjacent matched pairs in the noncrossing matching (e.g.,
{2, 3}, {4, 5}, {8, 9}, {15, 16} in the example above). Thus counting non-
crossing matchings according to the number of adjacent pairs will give the
Narayana numbers.

2.9 In a standard Young tableau with two rows, we can create Dyck path
by taking our ith step to the North if i is in the top row, to the East if i is
in the bottom row. For example,

1 2 5 6
3 4 7 8

would correspond to the path NNEENNEE. We will find a peak whenever
the number i appears in the top row and i + 1 is in the bottom row. The
collection of all such i is often called the descent set of the tableau. Since these
descents correspond to peaks in the Dyck path, we get the Narayana numbers
by counting two-row standard Young tableaux according to the number of
descents.
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2.10 To any Motzkin path, we can form Dyck path by deleting all horizontal
steps:

U U H U D D H H U D D U U U D D U D D .

(Of course we’re using U and D steps instead of N and E for the Dyck path.)
Conversely, from any Dyck path we can build infinitely many Motzkin

paths by inserting horizontal steps between U and D steps. If p is a Dyck
path with 2n steps, there are 2n+1 gaps in which to insert H steps, e.g., the
path UUDD would give Motzkin paths of the form:

1
1−z

z

1
1−z

z

1
1−z

z 1
1−z

z 1
1−z

.

We are counting paths according to the total number of steps, so each U or
D on the Dyck path gives weight z, and between the steps of the Dyck path
we can insert arbitrarily many paths, with weight

1

1− z
= 1 + z + z2 + z3 + · · · .

In general, a Dyck path with 2n steps yields a collection of Motzkin paths
with length generating function

z2n

(1− z)2n+1
=

1

1− z
·
(

z2

(1− z)2

)n

.

Thus, recalling C(z) = 1−
√
1−4z
2z is the generating function for Dyck paths

according to semilength n,

M(z) =
∑

n≥0

∑

p∈Dyck(n)

1

1− z
·
(

z2

(1− z)2

)n

,

=
1

1− z
· C(z2/(1− z)2),

=
1

1− z
· 1−

√
1− 4z2/(1− z)2

2z2/(1− z)2
,

=
1− z −

√
1− 2z − 3z2

2z2
,

as desired.
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2.11 This bijection is straightforward. For a path encoded as a word p =
p1 · · · pn with pi ∈ {U,D,H}, we create a noncrossing partial matching as
follows.

If pi = U , write a left parenthesis in position i: (.
If pi = D, then write a right parenthesis in position i: ).
If pi = H , we leave a blank space.
For example, the path p = HUHHUDHDHUHD would transform as

follows:
H U H H U D H D H U H D
· ( · · ( ) · ) · ( · )

,

with arc diagram

1 2 3 4 5 6 7 8 9 10 11 12 .

The parentheses will be a noncrossing matching on the positions corre-
sponding to the U and D steps, since this subword corresponds to a Dyck
path (and we already discussed the correspondence between Dyck paths and
complete noncrossing matchings in the solution to Problem 2.8).

2.12 We can construct Schröder paths from Dyck paths by inserting diagonal
steps freely in the gaps between the N and E steps of the Dyck path. This is
much like the way we construct Motzkin paths from Dyck paths by inserting
H steps between U and D steps.

The main difference between counting Schröder paths and Motzkin paths
is that each diagonal step replaces two steps: an N and an E. That is, a
Schröder path from (0, 0) to (n, n) has n equal the number of diagonal steps
plus the number of north steps (or number of diagonals plus number or east
steps). For a Dyck path of length 2n, there are 2n+1 gaps, and n north steps,
so this means we can construct a collection of Schröder paths with generating
function

zn

(1− z)2n+1
=

1

1− z
·
(

z

(1− z)2

)n

.

Recalling C(z) = 1−
√
1−4z
2z is the generating for Dyck paths according the

number or north steps, we get:

R(z) =
∑

n≥0

∑

p∈Dyck(n)

1

1− z
·
(

z

(1− z)2

)n

,

=
1

1− z
· C(z/(1− z)2),
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=
1

1− z
· 1−

√
1− 4z/(1− z)2

2z/(1− z)2
,

=
1− z −

√
1− 6z + z2

2z
,

as desired.

2.13 Let A denote the set of Schröder paths with a peak on the line y =
x+ 1 and let B denote the set of Schröder paths without a peak on the line
y = x + 1. We can construct a bijection from A to B as follows. Let p be a
path in set A and suppose the rightmost peak on the line y = x+1 occurs at
the point (k, k + 1) in the path. Then we can decompose p as p = q ·NE · r,
where q is a Schröder path of size k and r is a Schröder path of size n− 1− k
that has no peak on the line y = x+ 1.

We claim that the path p′ given by p′ = N · q · E · r has no peaks on
the line y = x + 1. Indeed, the sub-path r has no such peaks by assump-
tion, and the path N · q · E never passes below y = x + 1 except at its
beginning and its end, so it certainly cannot have a peak on y = x + 1.
See Figure 14.8, where p = (NDENENNEED)(NE)(NNENEDE) and
p′ = (N)(NDENENNEED)(E)(NNENEDE).

q

r

q

r

Fig. 14.8 A map between Schröder paths with and without a peak on the line
y = x+ 1.

The only exception to our rule occurs when q is the empty path, i.e., when
p = NE · r with r having no peaks on the line y = x + 1. In this case, we
map p to p′ = D · r, where “D” indicates a Northeast, or “diagonal,” step.

In either case, the map is straightforward to reverse. If p is a path with no
peaks on the line y = x+1 and p begins with a diagonal step, we replace that
initial diagonal step with NE. Otherwise, p can be uniquely decomposed as:
p = N · q · E · r, where q is a nonempty Schröder path and r is a Schröder
path that has no peaks on the line y = x + 1. Then the path p′ = q ·NE · r
has at least one peak on the line y = x+ 1.
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This shows |A| = |B|, so rn = Rn/2, for n ≥ 1.
Now if we know R(z) =

∑
Rnz

n, then r(z) =
∑

rnz
n is easily deduced:

r(z) =
∑

n≥0

rnz
n,

= 1 +
1

2

∑

n≥1

Rnz
n,

= 1 +
1− z −

√
1− 6z + z2

4z
− 1

2
,

=
1 + z −

√
1− 6z + z2

4z
.

2.14 We can think of our parenthesizations as rooted planar trees, as indi-
cated here:

zyxwv

←→ vw(xyz)

.

Let tn denote the number of rooted planar trees with n leaves, n ≥ 1. We
want to show tn = rn−1.

We can break down any planar tree into an ordered list of such trees by
cutting it just above the root. For example,

cut here

−→

⎛

⎜
⎝ ; ;

⎞

⎟
⎠ :

This gives us the following recurrence, for n ≥ 2:

tn =
∑

2≤k≤n

∑

i1+···+ik=n

ti1 · · · tik .

In other words, each tree with at least 2 leaves can be cut into an ordered list
of k trees whose total number of leaves add up to n. But this sum is merely
reflecting the coefficient of a k-fold product of T (z) with itself.
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Therefore from this recurrence we get the following formula for T (z) =∑
n≥1 tnz

n:

T (z) = z +
∑

k≥2

T (z)k,

= z + T (z)2
(

1

1− T (z)

)
,

and thus,
2T (z)2 − (1 + z)T (z) + z = 0.

We want r(z) =
∑

n≥0 rnz
n = T (z)/z, so the identity for T (z) gives us:

2zr(z)2 − (1 + z)r(z) + 1 = 0.

Solving for r(z) gives us:

r(z) =
1 + z −

√
1− 6z + z2

4z
,

as we hoped to find.
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Problems of Chapter 3

3.1 Let’s take a small example. Let

P =

1
2
3

4
5

.

Then here are the linear extensions of P :

L(P ) =

1
2
3
4
5

,

1
2
4
3
5

,

1
2
4
5
3

,

1
4
2
3
5

,

1
4
2
5
3

,

1
4
5
2
3

,

4
1
2
3
5

,

4
1
2
5
3

,

4
1
5
2
3

,

4
5
1
2
3

.

Let’s write these in a table as permutations, along with the inverse of each
permutation:

w w−1

12345 12345
12435 124|35
12453 125|34
14235 134|25
14253 135|24
41235 234|15
41253 235|14
41523 245|13
45123 345|12

.

We’ve marked the descent positions of the inverse permutations. Notice that
these are the permutations that have at most one descent, and this descent
occurs in position 3, i.e., Des(w−1) ⊆ {3}.

In general, if P is the disjoint union of chains 1 <P 2 <P · · · <P k and
k + 1 <P k + 2 <P · · · <P n, then a linear extension w is characterized
by the property that w−1(1) < w−1(2) < · · · < w−1(k) and w−1(k + 1) <
w−1(k + 2) < · · · < w−1(n). Thus the only place where a descent can occur
in such a w−1 is in position k. That is, Des(w−1) ⊆ {k}.

3.2 (Parts 1–3) We will show that Ω(Σ2; k) =
(
k+2
2

)
. This can easily be

seen by examining a picture:
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(k; 0)

(0; k)

To see the result in a way that allows for generalization, we can see that the
k-fold dilation of Σ2 is defined by:

kΣ2 = {(x, y) : x ≥ 0, y ≥ 0, x+ y ≤ k}.

Notice that we have 0 ≤ x ≤ k − y ≤ k, so that to count integer points, we
want pairs of integers (a, b) satisfying

0 ≤ a ≤ b ≤ k,

of which there are
(
k+2
2

)
. Thus, by Equation (1.3), we have

∑

k≥0

Ω(Σ2; k)t
k =

∑

k≥0

(
k + 2

2

)
tk,

=
1

(1− t)3
.

When we move to Σ3, we have

kΣ3 = {(x, y, z) : x ≥ 0, y ≥ 0, z ≥ 0, x+ y + z ≤ k}.

Notice that we can characterize this set of points with the following linear
chain of inequalities:

0 ≤ x ≤ k − y − z ≤ k − z ≤ k,

and thus Ω(Σ3; k) counts integer triples (a, b, c) satisfying

0 ≤ a ≤ b ≤ c ≤ k,

of which there are
(
k+3
3

)
. Thus, again using Equation (1.3), we have

∑

k≥0

Ω(Σ3; k)t
k =

∑

k≥0

(
k + 3

3

)
tk,

=
1

(1− t)4
.
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In general forΣn, we haveΩ(Σn; k) =
(
k+n
n

)
, much as we found in counting

P -partitions of a linear extension in Proposition 3.1. Thus,

∑

k≥0

Ω(Σn; k)t
k =

1

(1− t)n+1
.

(Parts 4–6) We will jump straight to the general case here. The k-fold
dilation of the cube Δn has no constraints on its coordinates, apart from 0 ≤
xi ≤ k. Thus, we have Ω(Δn; k) = (k+1)n. Using the Carlitz identity (1.10),
we get

∑

k≥0

Ω(Δn; k)t
k =

∑

k≥0

(k + 1)ntk,

=
Sn(t)

(1− t)n+1
,

where Sn(t) is the Eulerian polynomial.
There is a general theory of counting integer points in convex polytopes,

known as Ehrhart theory. The numerator of the rational generating function∑
k≥0 Ω(P ; k)tk is known as the h∗-polynomial of P . Thus, we see that Sn(t)

is the h∗-polynomial of a cube. For more, see the book by Matthias Beck and
Sinai Robins [14].

3.3

1. To form a set partition of {1, 2, . . . , n+ 1} with k parts we can either:

• add the number n+1 to an existing part of a set partition of {1, 2, . . . , n}
with k parts, or

• add the singleton set {n + 1} as a new part onto a set partition of
{1, 2, . . . , n} with k − 1 parts.

The first case has kS(n, k) options and the second case has S(n, k − 1)
options. Thus, S(n, k) = kS(n, k) + S(n, k − 1), as desired. Table 5.5
contains small values for the Stirling numbers of the second kind.

2. Another way to form a set partition with k parts is to simply choose some
elements for the first block, some other elements for the second block,
and so on. For example, if we want only three blocks, we might choose a
elements for the first block, b elements for the second block, and c elements
for the third block. This can be done in
(
n

a

)(
n− a

b

)(
n− a− b

c

)
=

n!

a!(n− a)!

(n− a)!

b!(n− a− b)!

(n− a− b)!

c!0!
=

n!

a!b!c!

ways. But this count also considers the blocks themselves as coming in
some particular order. We are counting each unordered set partition 3!
times. Thus the number of ways to form a set partition with block sizes
a, b, c is
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1

3!
· n!

a!b!c!
.

Summing over all possible positive integers a, b, c gives the total number
of set partitions with three parts:

S(n, 3) =
1

3!
·
∑

a,b,c≥1
a+b+c=n

n!

a!b!c!
.

Generally, the number of ways to choose groups of i1, i2, . . . , ik elements
from an n-element set follows a similar pattern, which we denote by

(
n

i1, i2, . . . , ik

)
=

n!

i1!i2! · · · ik!
.

Ignoring the order on the k blocks requires dividing by k!, and then we
sum over all possible block sizes:

S(n, k) =
1

k!
·

∑

i1,...,ik≥1
i1+···+ik=n

(
n

i1, i2, . . . , ik

)
,

=
1

k!
·

∑

i1,...,ik≥1
i1+···+ik=n

n!

i1!i2! · · · ik!
.

Thus,

∑

n≥1

S(n, k)
zn

n!
=

1

k!
·
∑

n≥1

∑

i1,...,ik≥1
i1+···+ik=n

zn

i1!i2! · · · ik!
,

=
1

k!
·

⎛

⎝
∑

i≥1

zi

i!

⎞

⎠

k

,

=
(ez − 1)k

k!
.

3. Continuing from part 2,

1 +
∑

n,k≥1

S(n, k)
ykzn

n!
= 1 +

∑

k≥1

yk
∑

n≥1

S(n, k)
zn

n!
,

=
∑

k≥0

yk(ez − 1)k

k!
,

= ey(e
z−1),

as desired.
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Since B(n) =
∑

k≥0 S(n, k), we get the generating function for Bell num-
bers by setting y = 1. This gives us

∑

n≥0

B(n)
zn

n!
= e(e

z−1).

It is interesting to note that this generating function is a composition
of generating functions: ez − 1 is the generating function for nonempty (un-
ordered) finite sets, while ez is the generating function for all finite sets. When
we compose, e(e

z−1), we get the generating function for all finite sets whose
elements nonempty finite sets, i.e., set partitions. There is a more general
idea about composing generating functions of combinatorial objects, some-
times known as the theory of “species.” See the book by Francois Bergeron,
Gilbert Labelle, and Pierre Leroux [15].

3.4 The study of partitions of an integer has a long history in Number
Theory and Combinatorics, with contributions from Euler himself, Srinivasa
Ramanujan, Godfrey Harold Hardy, George Andrews, and many more. A good
survey of the combinatorial approach to counting partitions is Igor Pak’s pa-
per [114].

1. If we expand each term in the product as a geometric series, we have:

(1 + z + z2 + · · · )(1 + z2 + z2·2 + · · · ) · · · (1 + zi + z2·i + · · · ) + · · · .

The power of a term in the expansion of this product looks like

m1 · 1 +m2 · 2 + · · ·+mi · i+ · · · ,

where the mi are nonnegative integers. This corresponds to a partition
λ having mi parts of size i. For example, we obtain a z14 term from the
product

z0·1 · z3·2 · z1·3 · z0·4 · z1·5 · z0·6 · z0·7 · · · ,

where m2 = 3, m3 = 1, m5 = 1, and mi = 0 otherwise. This set of
multiplicities corresponds to the partition λ = (5, 3, 2, 2, 2).
The coefficient of zn is therefore the number of ways to express n as a sum
of positive integers, i.e., pn.

2. We can easily augment our reasoning from part 1 to keep track of the
number of parts in λ, since this is just

∑
mi. Now we would like each

term of our generating function to have the form

t
∑

miz
∑

mi·i =
∏

i≥1

(tzi)mi .
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This is achieved by expanding the product of all geometric series of the
form

1 + tzi + (tzi)2 + · · · = 1

(1− tzi)
.

Thus,
∑

n,k≥0

pn,kt
kzn =

∏

i≥1

1

(1− tzi)
.

3. The product
∏
(1 + z2i−1) is clearly the generating function for parti-

tions whose parts are distinct odd numbers. Thus we will find a bijection
between self-conjugate partitions and partitions with distinct odd parts.
Such a bijection can be seen visually in the following example:

↔

.

That is, in any self-conjugate partition, we mark the boxes on the diagonal
of the Young diagram. Now if we split the boxes into “hooks” as suggested
in the illustration, each hook has the same number of boxes to the right
and below the marked boxes. Hence each hook contains an odd number
of boxes. Moreover, the length of two hooks cannot be the same, since
that would imply the boxes of the self-conjugate Young diagram are not
upper-left justified, e.g.,

.

In the other direction, we can take any partition with distinct odd parts
and “fold” the rows into hooks and then nest those hooks to form a self-
conjugate partition.

4. The conjugate of a partition with k parts is a partition whose largest part
is λ1 = k. Using the same reasoning from parts 1 and 2, the generating
function for such partitions is

zk ·
k∏

i=1

1

(1 − zi)
.

More generally, we can count partitions whose parts are restricted to come
from any set S by considering

∏

s∈S

1

(1− zs)
.
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This technique can be used to answer questions like “How many ways
can you make a dollar out of pennies, nickels, dimes, and quarters?” The
answer to this question would be the coefficient of z100 in the generating
function

1

(1− z)(1− z5)(1− z10)(1− z25)
.

5. To prove the identity of generating functions, we can plow through the
following manipulations:

∏

i≥1

(1 + zi) =
∏

i≥1

(1− z2i)

(1− zi)
,

=
∏

i≥1

(1− z2i−1)(1 − z2i)

(1− z2i−1)(1 − zi)
.

Now, if we consider the numerator alone, it is

(1 − z)(1− z2)(1− z3)(1− z4) · · · =
∏

j≥1

(1− zj).

If we write the denominator as two large products, we get the desired
outcome:

∏

i≥1

(1− z2i−1)(1 − z2i)

(1 − z2i−1)(1− zi)
=

∏
j≥1(1− zj)

∏
i≥1(1− z2i−1)

∏
k≥1(1 − zk)

,

=
∏

i≥1

1

(1− z2i−1)
.

Now, to prove bijectively that the number of partitions with odd parts
equals the number of partitions with distinct parts we need to be clever.
There are several bijections in the literature, including the following one
due to James Joseph Sylvester in the 19th century. (See [114, Section 3].)
We will describe the bijection with pictures.
First, we take the Young diagram of our partition with odd parts and bend
its rows into hooks and nest the hooks much as we did in part 3. The new
array of boxes is symmetric about the diagonal, but it is not necessarily a
Young diagram in its own right.

↔

We take this symmetric array of boxes and split it into two pieces just
below the diagonal as indicated here:
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↔

.

Now we draw each of these smaller diagrams as nested hooks:

↔

.

One can check that the lengths of these hooks are all distinct, and we
let them be the rows of a new Young diagram, one corresponding to a
partition with distinct parts:

.

Thus in our example, we map the partition λ = (7, 7, 5, 3, 3, 3, 1) to the
partition λ′ = (10, 8, 7, 3, 1).
The inverse of this map is rather tedious. Roughly described, if μ is a
partition with distinct parts μ1 > μ2 > · · · , you take the rows μ1, μ3, . . .
and make them hooks of the partition above the diagonal, while the rows
μ2, μ4, . . . and so on are hooks below the diagonal. There is a unique way
to nest the hooks so that when we push the nested hooks together we
obtain a diagram that is symmetric around the diagonal.

6. The product φ(z) =
∏

i≥1(1 − zi) counts partitions with distinct parts,
but such that if λ has an odd number of parts it is counted with a minus
sign. Let D+

n denote the set of partitions of n with an even number of
distinct parts, and similarly let D−

n denote the set of partitions with an
odd number of distinct parts. Then

φ(z) = 1 +
∑

n≥1

(|D+
n | − |D−

n |)zn.

We will show that the difference between |D+
n | and |D−

n | is at most one,
and we will characterize exactly when it is nonzero. The method for doing
this is to construct a sign-reversing involution on D+

n ∪D−
n that will pair

off elements with an odd number of parts with elements having an even
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number of parts. This is known as Franklin’s involution, after 19th century
mathematician Fabian Franklin. See [114, Section 5].
Let λ = (λ1, . . . , λk) be a partition with distinct parts. We will now define
two numbers related to the Young diagram of λ. Let s = λk be the smallest
part of λ, and let d denote the number of boxes of λ in the 45 degree
diagonal line that passes through the rightmost box of the first row of λ.
For example, λ = (8, 7, 4, 3) has s = 3 and d = 2, as shown here:

:

The involution does the following. If s > d, then take the d boxes in the
rightmost diagonal and form a new bottom row with them:

�→ :

If s ≤ d, then we take the bottom row of boxes and form a new rightmost
diagonal of boxes with them:

�→ :

It should be clear that this is an involution, and that the parity of the
number of rows changes.
The are two exceptions to the rule that we have overlooked. If the bottom
row and the rightmost diagonal have a box in common, and s = d or
s = d + 1, then the partition is a fixed point. Young diagrams such as
these are illustrated here:

(s = d) (s = d + 1) .

If n is such that neither of these situations can arise, then |D+
n |−|D−

n | = 0
and the coefficient of zn in φ(z) is zero.
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Now suppose one of these situations does occur. If s = d, then the total
number of boxes is

n = d2 + (d− 1) + (d− 2) + · · ·+ 1,

= d2 + d(d− 1)/2,

=
d(3d− 1)

2
,

while if s = d+ 1, then the total number of boxes is

n = d2 + d+ (d− 1) + · · ·+ 1,

= d2 + d(d+ 1)/2,

=
d(3d+ 1)

2
.

Just as square numbers count the number of boxes in square arrays and
triangular numbers count boxes in triangular arrays, the numbers of the
form d(3d±1)/2 are called pentagonal numbers since they count the boxes
in these “pentagonal” arrays. (Think of it as a square with a triangle stuck
on the end. That’s a pentagon, right?)
We have shown the only nonzero terms in φ(z) correspond to pentagonal
numbers. Moreover, for a pentagonal partition of n = d(3d ± 1)/2, the
number of boxes on the diagonal equals the number of rows, and hence
|D+

n | − |D−
n | = (−1)d in this case.

Taken together we have shown

φ(z) =
∏

i≥1

(1− zi) = 1 +
∑

d≥1

(−1)d
(
z

d(3d−1)
2 + z

d(3d+1)
2

)
.

This is known as Euler’s Pentagonal Theorem.

3.5 This result follows exactly the same line of reasoning as part 1 of the
previous problem. The only difference is that we get one copy of 1/(1 − zi)
for each possible marking of a part of size i.

3.6 There are several ways to do this, but the bottom line is that we think
of the cells of the Young diagram of λ as being ordered from Southeast to
Northwest and label each element so that the labeling is “natural,” i.e., if
i ≤P j, then i <Z j. With λ = (3, 2, 2), we can take the following poset:

P =

1
2 3 4 .

5 6
7

Given this poset P , the plane partitions of shape (3, 2, 2) correspond to
P -partitions. The number of plane partitions whose largest part is at most k
is therefore the order polynomial for P , and by Theorem 3.1, we have:
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∑

k≥0

Ω(P ; k)tk =

∑
w∈L(P ) t

des(w)+1

(1− t)8
=

t+ 8t2 + 10t3 + 2t4

(1 − t)8
.

The study of plane partitions is part of what led Richard Stanley to de-
velop the general theory of P -partitions. There are many further (harder)
questions one can ask about plane partitions. For one, the generating func-
tion for all plane partitions of n turns out to coincide with the generating
function for marked partitions in Problem 3.5. The formula for the number
of plane partitions that fit inside an a × b × c box also has a nice product
formula. See [153, Chapter 7].

3.7 The idea of multipartite P -partitions first appears in an influential paper
of Ira Gessel [81]. This identity of binomial coefficients is a corollary of that
work. The general idea is that we can split apart bipartite P -partitions into
a disjoint union of pairs of ordinary P -partitions.

First, we interpret the left-hand side of the equation in terms of n lexico-
graphically ordered pairs:

(1, 1) ≤ (i1, j1) ≤ · · · ≤ (in, jn) ≤ (k, l),

where (a, b) ≤ (c, d) means a ≤ c or a = c and b ≤ d. There are
(
kl+n−1

n

)

ways to choose n pairs from among these kl pairs.
Now let us partition these collections of pairs as follows. For each subset

S ⊆ [n− 1], let AS denote the set of sequences of pairs ((i1, j1), . . . , (in, jn))
such that:

• if s ∈ S, is < is+1 and js > js+1,
• if s /∈ S, is ≤ is+1 and js ≤ js+1.

Thus, the first coordinates of the elements of AS form an increasing se-
quence, with some weak and some strict inequalities, dictated by S, whereas
the second coordinates either strictly decrease or weakly increase, again as
determined by S.

In fact, we can think of the second coordinates as the P -partitions for a
particular poset determined by S. The poset PS is a poset on [n] such that
a <P a+ 1 if a ∈ S, a >P a+ 1 if a /∈ S. We illustrate in the case n = 4 in
Table 14.5.

Since 1 ≤ i1 ≤ · · · ≤ in ≤ k, this establishes is that

(
kl + n− 1

n

)
=

∑

S⊆[n−1]

(
k + n− 1− |S|

n

)
Ω(PS ; l).

Now consider the set of linear extensions of PS . These are all permutations
v such that:

• if s ∈ S, v−1(s) > v−1(s+ 1), and
• if s /∈ S, v−1(s) < v−1(s+ 1).
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Table 14.5 The decomposition of (1, 1) ≤ (i1, j1) ≤ (i2, j2) ≤ (i3, j3) ≤ (i4, j4) ≤
(k, l).

S is js PS

∅ i1 ≤ i2 ≤ i3 ≤ i4 j1 ≤ j2 ≤ j3 ≤ j4

1

2

3

4

{1} i1 < i2 ≤ i3 ≤ i4 j1 > j2 ≤ j3 ≤ j4 1

2

3

4

{2} i1 ≤ i2 < i3 ≤ i4 j1 ≤ j2 > j3 ≤ j4
1

2

3

4

{3} i1 ≤ i2 ≤ i3 < i4 j1 ≤ j2 ≤ j3 > j4

1

2

3

4

{1, 2} i1 < i2 < i3 ≤ i4 j1 > j2 > j3 ≤ j4

1

2

3

4

{1, 3} i1 < i2 ≤ i3 < i4 j1 > j2 ≤ j3 > j4
1

2

3

4

{2, 3} i1 ≤ i2 < i3 < i4 j1 ≤ j2 > j3 > j4 1

2

3

4

{1, 2, 3} i1 < i2 < i3 < i4 j1 > j2 > j3 > j4

1

2

3

4
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In other words, Des(v−1) = S, so for each linear extension v of PS , we can
write (

k + n− 1− |S|
n

)
=

(
k + n− 1− des(v−1)

n

)
.

This means

(
k + n− 1− |S|

n

)

Ω(PS ; l) =

(
k + n− 1− |S|

n

)
∑

v∈L(PS)

(
l + n− 1− des(v)

n

)

,

or
∑

v∈L(PS)

(
k + n− 1− des(v−1)

n

)(
l + n− 1− des(v)

n

)
.

Summing over all descent sets S gives the desired result.

3.8 For n = 3, every set partition of [n] is noncrossing, so NC(3) = Π(3),
and both are shown in Figure 3.5. In Figure 14.9, we see the Hasse diagram
for Π(4), with NC(4) highlighted in bold.

The only partition with a crossing is {{1, 3}, {2, 4}}.
It is easily verified that Π(n) is a lattice. The least upper bound for par-

titions {R1, . . . , Rk} and {S1, . . . , Sl} is found by drawing their arc diagrams
superimposed on the same set of nodes. The greatest lower bound is found
by taking the partition whose blocks are the pairwise intersections Ri ∩ Sj

(ignoring empty intersections).
Enumeration of chains in a poset is an important subject as we will see

later in the book. In the case of the partition lattice, the number of maximal
chains is given by

(
n

2

)(
n− 1

2

)
· · ·
(
2

2

)
=

n!(n− 1)!

2n−1
.

This formula follows almost immediately from the observation that cover
relations in the partition lattice correspond to merging a single pair of blocks,
i.e., a cover is of the form:

{R1, . . . , Rk} → {R1, . . . , Ri ∪Rj , . . . , Rk},

for some 1 ≤ i < j ≤ k. Thus if we have k blocks, there are
(
k
2

)
ways to pick

a pair of blocks to merge, independent of the structure of those blocks.
When we restrict to the lattice of noncrossing partitions, we see that count-

ing maximal chains is a little more delicate. (The up-degree of an element
depends on more than the number of blocks.)

3.9 To show there are (n + 1)n−1 parking functions, we will first count
“cyclic” parking functions for n cars on n + 1 spaces arranged in a circle.
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1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 41 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

2

4

3

Fig. 14.9 The partition lattice Π(4).

We allow each car to have a preference ai from 1 to n+ 1, and now if a car
finds the spot they like occupied, they can loop around back to the beginning
of the spaces.

Since there are more spaces than we have cars, every list of preferences
will result in all the cars parking. There are (n+ 1)n such lists.

Now observe that if we shift all of the preferences by one (modulo n+ 1),
we end up with all the cars in the same spaces relative to one another. That
is, if a = (a1, . . . , an) ∈ [n+ 1]n leads to car Ci parking in space j, then the
preference list given by shifting each preference one space will lead to car Ci

parking in space j + 1 (mod n+ 1).
Let us denote this shift by a + 1 := (a1 + 1, . . . , an + 1) (mod n + 1).

If we repeat this shift n+ 1 times, we return to a. Moreover, exactly one of
a, a+1, a+2, . . . , a+n leaves space n+1 empty, and this vector is an ordinary
parking function. For example, if n = 5, and a = (3, 5, 1, 4, 3), Figure 14.10
shows the six cyclic parking functions obtained by shifting in this way. In
this case, (1, 3, 5, 2, 1) is the only one of the six vectors that is an ordinary
parking function.
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6
C5

1
C3

2

3
C1

4
C4

5
C2

6
C2

1
C5

2
C3

3

4
C1

5
C4

6
C4

1
C2

2
C5

3
C3

4

5
C1

(3, 5, 1, 4, 3) (4, 6, 2, 5, 4) (5, 1, 3, 6, 5)

6
C1

1
C4

2
C2

3
C5

4
C3

5

6

1
C1

2
C4

3
C2

4
C5

5
C3

6
C3

1

2
C1

3
C4

4
C2

5
C5

(6, 2, 4, 1, 6) (1, 3, 5, 2, 1) (2, 4, 6, 3, 2)

Fig. 14.10 The shifts of a cyclic parking function.

Thus each ordinary parking function gives rise to (n + 1) cyclic parking
functions, so

(n+ 1) · |PF(n)| = (n+ 1)n,

or |PF(n)| = (n+ 1)n−1, as desired.

3.10 We will show that there are nn−2 maximal chains in NC(n). This
was proved by Germain Kreweras in the 1972 paper introducing noncrossing
partitions [97, Corollary 5.2], and in 1980 Paul Edelman proved it (and a
stronger result about chain enumeration) with a bijection [63, Corollary 3.3].

We will prove the formula with a bijection between maximal chains in
NC(n) and parking functions of length n − 1, PF(n − 1). The result then
follows from Problem 3.9. This bijection can be found in a paper of Richard
Stanley [152]. The main idea is, in going up a chain in NC(n), to keep track
of the two blocks that merge in a given cover relation.

Suppose π = {R1, . . . , Rk} is an element of NC(n), and we are going to
move up by merging blocks Ri and Rj . Without loss of generality, suppose
we have minRi < minRj . Then we will label this cover relation with

max{a ∈ Ri : a < b for all b ∈ Rj}.

To any maximal chain

{{1}, . . . , {n}} = π1 <NC π2 <NC · · · <NC πn = {{1, 2, . . . , n}},

we associate the vector a = (a1, . . . , an−1), where ai is the label for the cover
relation between πi and πi+1.
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For example, in Figure 14.11 is a maximal chain of noncrossing partitions
in NC(7) with the cover relations labeled. The corresponding parking function
is (3, 2, 4, 1, 3, 1).

1 2 3 4 5 6 7

3

1 2 3 4 5 6 7

2

1 2 3 4 5 6 7

4

1 2 3 4 5 6 7

1

1 2 3 4 5 6 7

3

1 2 3 4 5 6 7

1

1 2 3 4 5 6 7

Fig. 14.11 The labeling of this chain in NC(7) corresponds to the parking function
(3, 2, 4, 1, 3, 1).

To see that the resulting vector is a parking function, we want to show
that if (b1, . . . , bn−1) is the increasing arrangement of a, then bj ≤ j, i.e., for
each j, there are at least j − 1 entries of a that are smaller than j.

To see this, we notice that each of the elements k = 1, . . . , j − 1 will have
to merge with one another at some point in the chain, and when their blocks
merge, the label of such a merge must be smaller than j. Indeed, suppose R
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and S are two blocks with minR < minS < j. Then the label that comes
from merging these blocks is

max{r ∈ R : r < s for all s ∈ S} < minS < j.

There must be at least j − 1 such merges before the chain is complete, so
there are at least j − 1 entries in a that are smaller than j.

This verifies that (a1, . . . , an−1) must be an element of PF(n− 1).
The inverse of this map is not as elegant, but it can be constructed recur-

sively, based on the observation that, in order to avoid crossing arcs, the final
time a number j appears in the parking function a = (a1, . . . , an−1) its block
must merge with the block containing j+1. To build the chain corresponding
to a, we can make a labeled arc diagram that begins by having some arcs
emanating from node j, one for each occurrence of j in a. We label these arcs
from top to bottom with the positions in a in which j occurs. For example,
if a = (4, 2, 1, 2, 1, 1), we would draw

1 2 3 4 5 6 7

3
5
6

2
4 1

These arcs can then be matched up greedily from bottom to top (avoiding
crossings) to form a diagram such as this one:

1 2 3 4 5 6 7

3
5

6
2

4 1

The labels on these arcs now tells us the steps in forming the maximal chain,
as shown in Figure 14.12.

3.11 Let’s use the basic result that conjugacy classes in Sn are given by cycle
type, i.e., by the number and size of the cycles. In particular, all n-cycles are
conjugate to one another and all transpositions (i.e., 2-cycles) are conjugate
to one another.

Now suppose u → v is a cover relation, with u ◦ t = v in Abs(c). Now
suppose c′ = w◦c◦w−1, u′ = w◦u◦u−1, v′ = w◦v◦w−1, and t′ = w◦t◦w−1.

Clearly, u′ → v′ is a cover relation in Abs(Sn), since

u′ ◦ t′ = (w ◦ u ◦ w−1) ◦ (w ◦ t ◦ w−1) = w ◦ u ◦ t ◦ w−1 = w ◦ v ◦ w−1 = v′.

It needs to be verified that u′ → v′ is a cover in Abs(c′). This follows if
v′ ≤Abs c

′.
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1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

Fig. 14.12 The chain in NC(7) constructed from a parking function.

Since v → v1 → · · · → vk → c, we can apply conjugation by w to each
element in this chain and find

v′ → v′1 → · · · → v′k → c′.

Hence v′ ≤Abs c
′.

Thus conjugation by w is a poset isomorphism Abs(c)↔ Abs(c′).
Combinatorially, the effect of conjugation is to relabel the members of the

elements in the blocks of a noncrossing partition.
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Problems of Chapter 4

4.1 Given Corollary 4.1, we have

Sn(t) =
∑

w∈̂Sn

tpk(w)(1 + t)n−1−2 pk(w),

= (1 + t)n−1
∑

w∈̂Sn

(
t

(1 + t)2

)pk(w)

.

Now recall that the number of elements in a hop-equivalence class depends
only on the number of peaks. In particular,

|Hop(w)| = 2n−1−2 pk(w).

Moreover, since the number of peaks is constant on hop-equivalence classes,
we have

Pn(t) =
∑

v∈Sn

tpk(v),

=
∑

w∈̂Sn

|Hop(w)|tpk(w),

=
∑

w∈̂Sn

2n−1−2pk(w)tpk(w),

= 2n−1
∑

w∈̂Sn

(
t

4

)pk(w)

.

Thus,

(1 + t)n−1

2n−1
Pn

(
4t

(1 + t)2

)
= (1 + t)n−1

∑

w∈̂Sn

(
t

(1 + t)2

)pk(w)

= Sn(t),

which establishes Equation (4.4). Equation (4.7) follows the same proof since
hop-equivalence classes preserve the pattern 231.

4.2 Many of the enumerative results for alternating permutations are clas-
sical, due to Désiré André [6, 7].

1. We will show |En| = |E ′n| with a bijection. Let ω be the involution on Sn

that turns a permutation “upside down,” i.e., ωw(i) = n+1−w(i). Then
i ∈ Des(w) if and only if i /∈ Des(ωw). This clearly sends up-down alter-
nating permutations to down-up alternating permutations. For example,

781924365↔ 32918745.
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2. By part 1), we know the set of all alternating permutations of size n has
cardinality 2En.
On the other hand, we can form the set of all alternating permutations of
n as follows:

n

k n − 1 − k

• Choose k elements of {1, 2, . . . , n− 1} to go to the left of n, and place
the remaining elements to the right of n. This can be done in

(
n−1
k

)

ways.
• Arrange the elements to the left of n as an up-down permutation, writ-

ten from right to left: · · · > u(3) < u(2) > u(1). This can be done in
Ek ways.

• Arrange the elements to the right of n as an up-down permutation
written left to right: v(1) < v(2) > v(3) < · · · . This can be done in
En−1−k ways.

Summing over all k yields the desired result:

2En =

n−1∑

k=0

(
n− 1

k

)
EkEn−1−k,

for n ≥ 2.
3. Let E(z) =

∑
n≥0 Enz

n/n! be the desired generating function. Using the
result from part 2), we have:

∑

n≥2

2En
zn−1

(n− 1)!
=
∑

n≥2

(
∑

k+l=n−1

Ek

k!

El

l!

)

zn−1,

=
∑

n≥2

∑

k+l=n−1

(
Ek

zk

k!

)(
El

zl

l!

)
,

=

⎛

⎝
∑

k≥0

Ek
zk

k!

⎞

⎠

⎛

⎝
∑

l≥0

El
zl

l!

⎞

⎠− 1,

= E(z)2 − 1,
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where the second to last identity comes from thinking of the index n as
simply a way to keep track of the total degree in the expansion of the
product. The only term missing from the product was E2

0 = 1. So we have

E(z)2 − 1 = 2
∑

n≥2

En
zn−1

(n− 1)!
. (14.1)

But notice

E′(z) =
∑

n≥1

En
zn−1

(n− 1)!
,

so the right-hand side of (14.1) is 2(E′(z)− 1). Therefore we can write:

E(z)2 + 1 = 2E′(z).

It easy to check that taking E(z) = sec z + tan z satisfies this differential
equation with initial condition E(0) = 1. This completes the derivation of
André’s generating function for up-down permutations.

4.3 This problem is taken from the paper [89] by Fiacha Heneghan and the
author.

To form an up-down min-max permutation of n, we have to do three
things:

1

n

2i 2j k

1. choose the elements that go to the left of 1 and arrange them as an up-
down permutation of even length,

2. choose the elements that go between 1 and n and arrange them as a down-
up permutation of even length, and

3. arrange the remaining elements as an up-down permutation to the right
of n.

Step 1 can be done in
(
n−2
2i

)
E2i ways, step 2 can be done in

(
n−2−2i

2j

)
E2j

ways, and, letting k = n− 2− 2i− 2j, step 3 can be done in Ek ways. Thus,
for a fixed n, the number of min-max up-down permutations is:

E↗
n =

∑

i,j,k≥0
2i+2j+k=n−2

(
n− 2

2i

)
E2i

(
n− 2− 2i

2j

)
E2jEk,

= (n− 2)!
∑

i,j,k≥0
2i+2j+k=n−2

E2i

(2i)!

E2j

(2j)!

Ek

k!
. (14.2)
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Let E↗(z) =
∑

n≥0 E
↗
n+2z

n/n!. Then using the results of part 3 of Prob-
lem 4.2, we have

E↗(z) = sec z · sec z · (sec z + tan z) = sec3 z + sec2 z tan z.

Nearly identical reasoning for E↖(z) =
∑

n≥0 E
↖
n+2z

n/n! gives us

E↖(z) = tan z · sec z · (sec z + tan z) = sec2 z tan z + sec z tan2 z.

Now that we have these two generating functions, we can compute their
difference to find:

E↗(z)− E↖(z) = sec3 z − sec z tan2 z = sec z · (sec2 z − tan2 z) = sec z.

The coefficient of zn/n! is, on the left-hand side, E↗
n+2 −E↖

n+2, while on the
right-hand side it is 0 for odd n, En for even n.

It would be interesting to have a direct bijective proof of this fact.

4.4

1. We will apply the sorting operator recursively, which we can speed up with
the easy observation that if a word w has no descents then S(w) = w. We
have:

S(389124576) = S(38)S(124576)9,
= 38S(1245)S(6)9,
= 38124569,

and

S(132549678) = S(13254)S(678)9,
= S(132)S(4)56789,
= S(1)S(2)3456789,
= 123456789.

2. We recall (from Chapter 2) the decomposition of a 231-avoiding permuta-
tion as w = u(1) · · ·u(k)nv(1) · · · v(n − 1 − k), where u is a 231-avoiding
permutation of {1, 2, . . . , k} and v is a 231-avoiding permutation of the set
{k + 1, . . . , n− 1}.
By induction, we can suppose S(u) = 12 · · · k and S(v) = (k+1) · · · (n−1).
Therefore, S(w) = S(u)S(v)n = 12 · · ·n.

3. This result also follows by induction on n.
Suppose w and w′ are in the same hop-equivalence class. Then all the peaks
and valleys of w and peaks and valleys of w′ are the same. In particular,
the location of n is the same for both w and w′. Moreover, the sets of
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letters to the left and the right of n in w is the same as the set of letters
to the left of n in w′.
Write w = unv and w′ = u′nv′. Then Hop(u) = Hop(u′) and Hop(v) =
Hop(v′). By induction, we can assume that S(u) = S(u′) and S(v) = S(v′),
and the result follows.

4. By part 3), we see that the set of r-stack sortable permutations is a union
of hop-equivalence classes. The result now follows.

4.5 Note that if we plug z = −1 into C(z) we get (
√
5− 1)/2 = φ−1, where

φ is the golden ratio. Hence, we get

γ(−1) = φ1+2+···+(n−1)
n∏

i=1

1− (−φ−2)i

1 + φ−2
,

=

n∏

i=1

φi − (−φ−1)i

φ+ φ−1
,

=
n∏

i=1

fi,

where the fi are the Fibonacci numbers given by f1 = f2 = 1 and fi =
fi−1 + fi−2.

The answer to this question is what led Zeilberger, in his personal journal
with Shalosh B. Ekhad,

http://www.math.rutgers.edu/˜zeilberg/pj.html

to come up with what we call Zeilberger’s lemma in Equation (4.9). It is
rather surprising that we begin with a refinement of n!, the product of the
first n natural numbers, and through the process of passing to the gamma
polynomial at t = −1 we end up with the product of the first n Fibonacci
numbers.

Richard Stanley followed Zeilberger’s proof with a more direct argument.
Since by Observation 4.1 we know that gamma polynomials are multiplica-
tive, we first investigate the gamma polynomial for each term in the product.
For the term (1 + t+ t2 + · · ·+ ti), we have γi(t) =

∑
j≥0(−1)j

(
i−j
j

)
tj . Since

fi =
∑

j≥0

(
i−j
j

)
is another well-known identity for Fibonacci numbers, we

get γi(−1) = fi and the result follows.

4.6 Suppose for induction that An(t) has n distinct, nonpositive real roots:

An(t) =
n∏

i=1

(t− αi),

with
αn < · · · < α2 < α1 = 0.
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Rolle’s theorem tells us that as a function of a real variable t, the derivative
of An(t) is zero somewhere between each consecutive pair of zeroes of An(t).
That is,

A′
n(t) =

n−1∏

i=1

(t− βi),

with
αn < βn−1 < · · · < β2 < α2 < β1 < α1 = 0.

Moreover, (1− t)A′
n(t) has roots βn−1, . . . , β1 and β0 = 1.

We will show that

Sn+1(t) = (n+ 1)An(t) + (1 − t)A′
n(t),

has n real roots, as desired.
We can check that the sign of (1− t)A′

n(t), and hence the sign of Sn+1(t),
alternates at the roots of An(t). That is,

Sn+1(α1) = Sn+1(0) > 0,

Sn+1(α2) < 0,

Sn+1(α3) > 0,

...

Thus the intermediate value theorem tells us Sn+1(t) has real roots
δ1, . . . , δn−1 such that:

αn < δn−1 < · · · < δ2 < α2 < δ1 < α1.

This gives us n − 1 distinct real roots, but we still need one more. We will
find this by examining what happens as t→ −∞.

Without loss of generality, suppose n is even. Then Sn+1(αn) < 0. The
highest term in (n+1)An(t) is (n+1)tn, and the highest term in (1− t)A′

n(t)
is −ntn. As t → −∞, then, Sn+1(t) > 0. Hence, there is yet another root,
δn < αn, such that Sn+1(δn) = 0.

This proves that the Eulerian polynomials are real rooted. Moreover, notice
that the roots of Sn(t) are α2, . . . , αn, and

δn < αn < · · · < δ2 < α2 < δ1,

i.e., the roots of consecutive Eulerian polynomials are interlacing. Thus the
Eulerian polynomials form a Sturm sequence.

4.7

1. The recurrence shown in (4.11) is straightforward to verify with generat-
ing functions. Letting N(t, z) = 1 +

∑
n≥1 Nn(t)z

n, we get the following
formula from Equation (2.6):
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N(t, z) =
1− z(t− 1)−

√
1− 2z(t+ 1) + z2(t− 1)2

2z
. (14.3)

After a bit of careful bookkeeping, we can see the recurrence in (4.11)
corresponds to the following identity for the generating function:

(1−(1+t)z)N(t, z) = 1+(t−1)z+z(2(1+t)z−(1−t)2z2−1)
d

dz
[N(t, z)] .

A quick check tells us that the generating function in (14.3) does indeed
satisfy this equation.
Robert Sulanke gives a bijective proof of (4.11) in [161] using “marked”
Dyck paths in the style of Section 2.4.2.

2. We will prove real-rootedness by induction, using the recurrence (4.11),

(n+ 1)Nn(t) = (2n− 1)(1 + t)Nn−1(t)− (n− 2)(1− t)2Nn−2(t).

Our induction hypothesis is that, apart from the common root at t = 0,
Nn−1(t) and Nn−2(t) have distinct and interlacing roots, i.e., write

Nn−1(t) = t

n−2∏

i=1

(t− αi),

and

Nn−2(t) = t

n−3∏

i=1

(t− βi),

where
αn−2 < βn−3 < · · · < β2 < α2 < β1 < α1 < 0.

(This trivially holds for N1(t) = t and N2(t) = t(1 + t).)
The polynomial −(1−t)2Nn−2(t), and hence Nn(t), has the following signs
at the roots of Nn−1(t) (without loss of generality, suppose n is even).

t α1 α2 · · · αn−3 αn−2

−(1− t)2Nn−2(t) + − · · · + −
Nn(t) + − · · · + −

This tells us Nn(t) has at least n − 2 distinct roots, δ0 = 0, δ1, . . . , δn−3

such that
αn−2 < δn−3 < · · · < δ2 < α1 < 0 = α0 = δ0.

Further, since the largest term in Nn(t) is t
n, we see that although the sign

of Nn(t) is negative at αn−2 (when n is even) the limit as t→ −∞ has sign
(−1)n. Thus, there is another root of Nn(t), say δn−1 < αn−2, moreover,
since Nn(t) nonnegative and symmetric coefficients, its reciprocal 1/δn−1

is another root of Nn(t), with α1 < 1/δn−1 < 0.



408 Hints and Solutions

This shows that Nn(t) has n real roots. Also Nn(t) and Nn−1(t) have
interlacing real roots that are distinct except for t = 0. Thus the Narayana
polynomials, Cn(t) = Nn(t)/t, form a Sturm sequence.
That the techniques for proving the real-rootedness of the Eulerian and
Narayana polynomials are so similar hints at a more general theory for
establishing real-rootedness of a sequence of polynomials. There is a large
and growing literature on this subject. Petter Brändén has a nice survey
of the current state of the art [32].

4.8

1. We wish to show (
n

k

)2

≥
(

n

k − 1

)(
n

k + 1

)
,

or (
n
k

)2
(

n
k−1

)(
n

k+1

) ≥ 1.

Using the formula for binomial coefficients, we see

(
n
k

)2
(

n
k−1

)(
n

k+1

) =
(n− k + 1)(k + 1)

(n− k)k
> 1,

and the result is proved.
2. Similarly to part 1), we see, with k fixed,

(
n
k

)2
(
n+1
k

)(
n−1
k

) =
n2 + n− nk

n2 + n− nk − k
≥ 1,

with equality only for k = 0.
3. Suppose a2j ≥ aj−1aj+1 and b2j ≥ bj−1bj+1. Then

c2j = (ajbj)
2 ≥ (aj−1aj+1)(bj−1bj+1) = (aj−1bj−1)(aj+1bj+1) = cj−1cj+1.

4. By part 1),
(
n
k

)
forms a log-concave sequence, and ak =

(
n
k

)
bk. Thus by

part 3) if sequence {bk} is log-concave, then so is sequence {ak}.
5. The goal here is to show that a real-rooted polynomial with nonnegative

coefficients is log-concave. The argument presented here is adapted from
the introduction of Brändén’s survey [32].

a. With f(t) =
∑

akt
k and ak =

(
n
k

)
bk, we have

1

n
f ′(t) =

n∑

k=0

k

n

(
n

k

)
bkt

k−1 =

n−1∑

k=0

(
n− 1

k

)
bk+1t

k.

If f is real-rooted, the real-rootedness of this polynomial follows from
Rolle’s theorem.
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b. By symmetry of binomial coefficients, this polynomial is simply tnf(1/t).
c. We’ll call the operation of part 5a) the normalized derivative and the

operation of part 5b) we will call reversal. Both of these operations
preserve real-rootedness, and the goal is to isolate three consecutive
terms of the polynomial f through these operations.
This can be done as follows. Apply the normalized derivative until the
constant term is bj−1. If j = n− 1, we are done. If j < n− 1, we apply
reversal then again repeat the application of the normalized derivative
until the constant term is bj+1. An example should make the idea clear.
Suppose

f(t) = b0 +

(
7

1

)
b1t+

(
7

2

)
b2t

2 + · · ·+
(
7

6

)
b6t

6 + b7t
7,

and say that we want to show b24 ≥ b3b5. Here are the steps of the
process, where “d” indicates we applied the normalized derivative, and
“r” indicates reversal.

b0 +
(
7
1

)
b1t+

(
7
2

)
b2t

2 +
(
7
3

)
b3t

3 +
(
7
4

)
b4t

4 +
(
7
5

)
b5t

5 +
(
7
6

)
b6t

6 + b7t
7

↓ (d)

b1 +
(
6
1

)
b2t+

(
6
2

)
b3t

2 +
(
6
3

)
b4t

3 +
(
6
4

)
b5t

4 +
(
6
5

)
b6t

5 + b7t
6

↓ (d)

b2 +
(
5
1

)
b3t+

(
5
2

)
b4t

2 +
(
5
3

)
b5t

3 +
(
5
4

)
b6t

4 + b7t
5

↓ (d)

b3 +
(
4
1

)
b4t+

(
4
2

)
b5t

2 +
(
4
3

)
b6t

3 + b7t
4

↓ (r)

b7 +
(
4
1

)
b6t+

(
4
2

)
b5t

2 +
(
4
3

)
b4t

3 + b3t
4

↓ (d)

b6 +
(
3
1

)
b5t+

(
3
2

)
b4t

2 + b3t
3

↓ (d)

b5 +
(
2
1

)
b4t+ b3t

2
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We know this polynomial is real-rooted, and hence its discriminant is
nonnegative, i.e.,

4(b24 − b3b5) ≥ 0.

4.9 Following the hint, we will first prove the following.

Lemma. If a0, a1, a2, . . . is a nonnegative, log-concave sequence, then for any
i < j − 1, aiaj ≤ ai+1aj−1.

The proof follows by induction on j− i, with two cases. If j− i is even, the
base case is j − i = 2, which is the definition of log-concavity: aiai+2 ≤ a2i+1.
If j − i is odd, observe that

a2i+1a
2
i+2 ≥ (aiai+2)(ai+1ai+3) = aiai+3(ai+1ai+2),

from whence it follows that

aiai+3 ≤ ai+1ai+2.

Now suppose for induction that ai+2aj−2 ≥ ai+1aj−1 and all the terms
are positive. Then

ai+1aj−1 =
a2i+1a

2
j−1

ai+1aj−1
≥ (aiai+2)(aj−2aj)

ai+1aj−1
= aiaj

(
ai+2aj−2)

ai+1aj−1

)
≥ aiaj,

as desired.
This proves the lemma.
Now, with the lemma in hand, let f(t) =

∑
fit

i and g(t) =
∑

git
i. Then

if h(t) =
∑

hit
i = f(t)g(t), we have

hn =
∑

i+j=n

figj .

With some careful bookkeeping, we find

h2
n =

n∑

i=0

n∑

j=0

fifjgn−ign−j,

and

hn−1hn+1 =

n−1∑

i=0

n+1∑

j=0

fifjgn−i−1gn−j+1.
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Computing the difference we get:

h2
n − hn−1hn+1 =

n∑

i=0

fifng0gn−i −
n−1∑

j=0

fjfn+1g0gn−j−1,

= f0fng0gn +

n−1∑

j=0

(fi+1fn − fifn+1) g0gn−i−1.

By the lemma, all the differences in parentheses are nonnegative. Thus h2
n ≥

hn−1hn+1, and h(t) is log-concave, as we hoped to show.

4.10 Here are some sample polynomials:

1. 1 + 4t+ 17t3 + 4t3 + t4

2. 1 + 2t+ 3t2 + 2t3 + t4

3. 1 + 5t+ 9t2 + 5t3 + t4

4.11 As of this writing, this is an open problem! These polynomials are
not real-rooted, but it is not too difficult to show they are palindromic. See
papers by Mark Dukes [61] and Victor Guo and Jiang Zeng [86]. Guo and
Zeng proved unimodality, and conjectured gamma-nonnegativity.

4.12 This is an open problem! See this author’s survey [119], and a related
paper by Mirkó Visontai [164].

4.13

1. Every chain is obviously rank palindromic and unimodal, and within a
poset P of rank n, a symmetric chain has rank generating function

tj(1 + t+ · · ·+ tn−2j) = tj + tj+1 + · · ·+ tn−j ,

for some j ≤ �n/2�. Thus, the rank function takes the form

�n/2	∑

j=0

gjt
j(1 + t+ · · ·+ tn−2j),

where gj is the number of symmetric chains in the decomposition with
minimum rank equal to j. Symmetry is therefore obvious, and

f0 = g0 ≤ f1 = g0+g1 ≤ f2 = g0+g1+g2 ≤ · · · ≤ f�n/2	 = g0+· · ·+g�n/2	,

so f is also unimodal.
2. Suppose P = c1 ∪ c2 ∪ · · · ∪ ck is a symmetric chain decomposition of

poset P . Then any antichain A can have at most one element from each
chain, and thus |A| ≤ k. But the number of chains in a symmetric chain
decomposition is equal to

g0 + g1 + · · ·+ g�n/2	 = f�n/2	.
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3. We can do this greedily, by taking the largest chain to be:

(1, 1) < (2, 1) < · · · < (k, 1) < (k, 2) < · · · < (k, l),

the second chain to be:

(1, 2) < (2, 2) < · · · < (k − 1, 2) < (k − 1, 3) < · · · < (k − 1, l),

and so on. Each chain is rank symmetric since the sum of the coordinates
of the minimal and maximal elements is a constant (k + l + 2) on each
chain. The example pictured here should make idea clear.

(k; 1)

(1; l)

(k; l)

(1; 1)

middle rank

4. Suppose P has rankm and symmetric chain decomposition c1∪c2∪· · ·∪cr,
while Q is rank n with symmetric chain decomposition d1 ∪ d2 ∪ · · · ∪ ds.
Then P ×Q has rank m+ n, and we can partition this poset as

P ×Q =
⋃

1≤i≤r
1≤j≤s

ci × dj .

The posets ci×dj are products of chains, so by part 3), they have symmet-
ric chain decompositions. All that remains to show is that these decom-
positions have the same center of symmetry across all choices of i and j.
This is achieved by showing that the sum of the ranks of the minimal and
maximal elements in ci × dj is m+ n.
Let ci,0 and ci,1 denote the minimal and maximal elements in chain ci, and
similarly denote the minimal and maximal elements of di by di,0 and di,1.
The minimal element of ci × dj is (ci,0, di,0) and the maximal element is
(ci,1, di,1).
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By the definition of symmetric chain decomposition, we have:

ρP (ci,0) + ρP (ci,1) = m and ρQ(dj,0) + ρQ(dj,1) = n.

The rank of an element (p, q) in P ×Q is the sum ρP (p)+ρQ(q). Thus the
sum of the minimal rank and maximal rank of ci × dj is:

ρP×Q((ci,0, dj,0)) + ρP×Q((ci,1, dj,1))

= ρP (ci,0) + ρQ(dj,0) + ρP (ci,1) + ρQ(dj,1),

= ρP (ci,0) + ρP (ci,1) + ρQ(dj,0) + ρQ(dj,1),

= m+ n,

as desired.

4.14 This follows by induction from Problem 4.13 once we recognize that
2[n] is isomorphic to the product {0, 1}×2[n−1]. Sperner’s theorem is a special
case of part 2 of Problem 4.13.

A more direct symmetric chain decomposition of 2[n] is due to Martin
Aigner in 1973 [4] and (independently) Curtis Greene and Daniel Kleitman
in 1976 [83]. This construction also turns out to be the same as the recursive
approach found in a 1951 paper by Nicolaas de Bruijn, Ca. van Ebbenhorst
Tengbergen, and D. Kruyswijk [54]. (See Problem 4.15.)

The symmetric chain decomposition works as follows. Consider subsets of
[n] as binary strings in {0, 1}n, with the obvious correspondence. Now, we
can consider any binary string to define a partial matching, with the 0 letters
as openers and the 1 letters as closers. For example, the word 110100010110
corresponds to the following matching:

1 1 0 1 0 0 0 1 0 1 1 0 .

Notice that all the unmatched ones in a binary string occur to the left of
the unmatched zeroes. This is the key insight that gives a natural symmetric
chain decomposition.

For a given matching on n, let all the unmatched positions be zeroes. Then
we can move up in a chain by converting the zeroes to ones, working from left
to right. The minimal element in such a chain has rank equal to the number
of matched pairs, and the maximal element has the same co-rank, i.e., (the
number of ones in the minimal element of a chain) plus (the number of ones
in the maximal element of the chain) equals n.

Here is the chain containing the example string used above:
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0 0 0 1 0 0 0 1 0 1 1 0

1 0 0 1 0 0 0 1 0 1 1 0

1 1 0 1 0 0 0 1 0 1 1 0

1 1 0 1 1 0 0 1 0 1 1 0

1 1 0 1 1 0 0 1 0 1 1 1

.

In Figure 14.13 we see the full decomposition applied to the case n = 4.

4.15 The topic of this problem is studied in the 1951 paper of Nicolaas de
Bruijn, Ca. van Ebbenhorst Tengbergen, and D. Kruyswijk [54].

As a first easy observation, we see that the divisibility lattice of a prime
power is simply a chain: Λ(pm) = {1 ≺ p ≺ p2 ≺ · · · ≺ pm} ∼= [m+ 1], where
[n] denotes the set {1, 2, . . . , n} with the usual ordering.

A second easy observation is that if gcd(a, b) = 1, then Λ(ab) ∼= Λ(a)×Λ(b).
Putting these two observations together, we see that if n has prime de-

composition n = pm1
1 · · · pmk

k , then

Λ(n) ∼= Λ(pm1
1 )× · · · × Λ(pmk

k ),
∼= [m1 + 1]× · · · × [mk + 1].

See Figure 14.14.
The results of Problem 4.13 can now be applied.
Notice that the boolean lattice is a special case, being isomorphic to the

lattice of divisors of a number whose prime factors all have multiplicity one,
i.e., 2[k] ∼= Λ(p1 · · · pk).



Hints and Solutions 415

0 0 0 0

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

0 1 0 0

0 1 1 0

0 1 1 1

0 0 1 0

1 0 1 0

1 0 1 1

0 0 0 1

1 0 0 1

1 1 0 1

0 1 0 1 0 0 1 1

Fig. 14.13 The symmetric chain decomposition of {0, 1}4.

4.16 Similarly to part 4 of Problem 4.13, suppose P has rank m and sym-
metric boolean decomposition P1 ∪ P2 ∪ · · · ∪ Pr, while Q is rank n with
symmetric boolean decomposition Q1 ∪Q2 ∪ · · · ∪Qs.

Then P ×Q has rank m+ n, and we can partition this poset as

P ×Q =
⋃

1≤i≤r
1≤j≤s

Pi ×Qj.

The product of boolean algebras of ranks k and l is a boolean algebra of rank
k + l, and just as in part 4 of Problem 4.13, it follows that the middle ranks
of all the subposets Pi ×Qj , viewed inside P ×Q, coincide.

4.17 Parts 1)–4) can be found in [140, Section 2]. Part 5) is a main topic in
the 2014 paper of Saúl Blanco and this book’s author [26], and part 6) is in
Section 5 of [118].

We remark that the existence of a symmetric boolean decomposition of
NC(n) also follows by induction. The argument applies Problem 4.16 to each
term in the poset isomorphism here:

NC(n) ∼= [2]×NC(n− 1) ∪ NC(1)×NC(n− 2) ∪ NC(2)×NC(n− 3) ∪ · · · .
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1

3 2

6 4

12

Λ(12) ∼= Λ(22) × Λ(3) ∼= [3] × [2]

1

3 2

6 4

12

5

15 10

30 20

60

Λ(60) ∼= Λ(12) × Λ(5) ∼= [3] × [2] × [2]

Fig. 14.14 The lattice of divisors of 60 is isomorphic to [3]× [2]× [2].

In this correspondence, [2]×NC(n−1) is isomorphic to the set of all partitions
with either {1} as a singleton block or both 1 and 2 in the same block. For i ≥
3, NC(i−2)×NC(n− i+1) is isomorphic to the set of noncrossing partitions
on {2, 3, . . . , i−1} paired with noncrossing partitions on {i, i+1, . . . , n}. This
decomposition was used by Simion and Ullman to prove that NC(n) has a
symmetric chain decomposition.
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Problems of Chapter 5

5.1 This result follows by induction with the recursive argument leading up
to Theorem 5.1.

A visual correspondence between inversion sets and permutations is to use
the model of permutations as arrays of nonattacking rooks on a chessboard.
For each i, we put a rook in column i (from left to right) and row w(i) (from
bottom to top).

For each rook in the diagram consider the cells to the right of the rook in
the same row. For the rook in column i, row w(i), we scan the cells in row
w(i), column j with j > i. If the rook in column j is in a row below the rook
in column i, i.e., w(i) > w(j), we label the cell with (i, j).

For example, if w = 971326458, we draw

and the inversion set is

Inv(w) =

{
(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9)
(2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (6, 7), (6, 8)

}
.
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This method can be used to easily translate between a permutation, its
inversion set, and its inversion sequence s = (s1, . . . , sn), given by

sj = |{i < j : w(i) > w(j)}|,
since sj is simply the number of marked cells in column j. In the example
above, s = (1, 2, 2, 3, 2, 3, 3, 1).

See also Problem 1.8.

5.3 Suppose u ≤Sh v. Recall the model for shards from Section 3.3, in
which we think of permutations as ordered set partitions in which the blocks
are given by maximal decreasing runs. The definition for Sh(Sn) says that
u ≤Sh v if:

• (Refinement) u refines v as a set partition, and
• (Consistency) if i and j are in the same block in u, and k is not in the

same block as i and j in u with i < k < j, then either k is in the same
block as i and j in v, or k is on the same side of i and j in both v and u.

Our goal is to show Inv(u−1) ⊂ Inv(v−1).
But notice the inversion set of the inverse of a permutation w is the set of

all (w(j), w(i)) such that (i, j) is an inversion of w. That is, we need to keep
track of all (k, l) such that k < l and k appears to the right of l in w.

Suppose u ≤Sh v and (k, l) is in Inv(u−1), and therefore u ≤Wk v.
If k and l are in the same block (i.e., decreasing run) in u, they must be in

the same block of v by the “refinement” condition. Hence (k, l) is in Inv(v−1).
If k and l are in different blocks of u, then the “consistency” condition

guarantees that (k, l) is in Inv(v−1).
This can be seen in the visual representation used in Section 3.3. For

example, consider the following cover relation in Sh(S9):

u =

1
2

5

7

3
4

9
8

6
<Sh

2

5

7

3

9
8

6

1

4

= v:

5.4 If n ≥ 3, then (1 + q + q2) is a factor of In(q), and this has roots
(−1±

√
−3)/2. Thus In(q) has complex roots. In general,

[k] = 1 + q + · · ·+ qk−1 = (1− qk)/(1− q),

so [k] has roots given by all complex kth roots of unity, apart from q = 1.
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Despite not being real rooted, In(q) is still log-concave. This follows since
each factor [k] is trivially log-concave and the product of log-concave poly-
nomials is log-concave as shown in Problem 4.9.

5.5 First we make the simple observation that for any w ∈ Sn and any
i = 1, . . . , n− 1, inv(w ◦ si) = inv(w) ± 1.

Thus we can establish that �(w) = inv(w) by exhibiting a sorting algorithm
that reduces inversion number with each swap. This can be done greedily as
follows.

Suppose j ≤ n is the largest element of w that is to the left of where it
belongs, i.e., suppose w(i) = j for some i < j, and that w(k) = k for k ≥ j+1.
(If there is no such j, w is sorted and we are done.) Since i + 1 < j + 1,
we know w(i) = j > w(i + 1). Then let w′ = w ◦ si and observe that
inv(w′) = inv(w)− 1.

Now we repeat with the permutation w′, continuing until we have no
inversions.

5.6 Just as with the solution to Problem 5.5, we will use a sorting algo-
rithm that decreases the statistic in question, n− cyc(w), at each step. First,
however, notice that for any transposition ti,j ,

cyc(w ◦ ti,j) = cyc(w)± 1.

Since we have not worked with cycle structure as much as one-line notation,
this assertion may require a moment of thought. Let v = w◦ti,j . Then if i and
j are in the same cycle of w, they will be in different cycles of v. Conversely,
if i and j are in different cycles of w, these two cycles will be merged in v.
For example let w = (137)(24658), let v = w ◦ t4,8, and let v′ = w ◦ t3,5. Then
in cycle notation,

v = (137)(24)(586) and v′ = (13824657).

This example possesses all the necessary ingredients for the general assertion.
Now that we have seen that right multiplication by a transposition either

increases cycle number by one or decreases cycle number by one, we will
exhibit an algorithm that sorts permutations in a way that only increases
the number of cycles (and so decreases n− cyc(w)), until we end up with the
identity: 12 · · ·n = (1)(2) · · · (n).

The algorithm we will use is the “straight selection sort” algorithm de-
scribed in Problem 5.7.

This algorithm finds the largest k ≤ n such that w(k) 	= k. Suppose
w(i) = k, with i < k. Then we apply the transposition ti,k to get w′ = w◦ti,k.
We have w′(k) = k, i.e., k is a fixed point of w′, whereas k was not a fixed
point of w. That is to say, cyc(w′) = cyc(w) + 1, as desired.

We now repeat with the permutation w′, continuing until we have a per-
mutation with all fixed points.
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5.7 The distributions of sor(w) and inv(w) are easily seen to agree for small
n. We will prove the sorting index is Mahonian by showing the following
recursive formula holds:

∑

w∈Sn

qsor(w) = (1 + q + · · ·+ qn−1)
∑

u∈Sn−1

qsor(u).

To see the recursive formula is true, let Sn;j denote the set of all v in Sn

such that v(j) = n. Clearly the distribution of sor on Sn;n (the permutations
for which n is a fixed point) is the same as the distribution of sor on Sn−1:

∑

v∈Sn;n

qsor(v) =
∑

u∈Sn−1

qsor(u).

Now if w ∈ Sn;j, with j < n, notice that v = w ◦ tj,n is in Sn;n and
moreover, sor(w) = n− j + sor(v). Thus,

∑

w∈Sn;j

qsor(w) = qn−j
∑

v∈Sn;n

qsor(v).

Summing over all j, we have

∑

w∈Sn

qsor(w) =

n∑

j=1

∑

w∈Sn;j

qsor(w),

=
n∑

j=1

qn−j
∑

v∈Sn;n

qsor(v),

= (1 + q + · · ·+ qn−1)
∑

u∈Sn−1

qsor(u),

as desired.
The sorting index was first studied by Mark Wilson in 2010 [167] and

independently by this book’s author in 2011 [117], who generalized the notion
to other Coxeter groups. The sorting index for permutations can also be
derived from work of Dominique Foata and Guo-Niu Han in 2009 [69].

5.8 Suppose a point x = (x1, . . . , xn) lies on face F . Then i and j are in the
same block of F if and only if the sign vector has σij(F ) = 0, i.e., we have
xi = xj .

By Observation 5.3 regarding the Tits product, we have σij(FG) = σij(F )
if σij(F ) 	= 0. Thus, we can see that as a set composition, FG must be a
refinement of F .

A given block of F signals that we have some equal coordinates: xi1 =
· · · = xik , and so σab(F ) = 0 for a, b ∈ {i1, . . . , ik}. By Observation 5.3 again,
we have σab(FG) = σab(G) for each such pair (a, b). This means that if a and
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b are in the same block of G, they are in the same block of FG. If a and b
are in different blocks of G, with, say, a to the left of b, then the same must
be true for the relative positions of a and b in FG.

Thus if B is a block of F , and G = C1|C2| · · · |Cl, then B will be refined
by the linear ordering of blocks of G:

B → B ∩ C1|B ∩ C2| · · · |B ∩ Cl.

Applying this refinement rule to each block of F in place (and ignoring empty
blocks), gives the desired expression for FG.

5.9 Here are the matricesM = N T for n = 3 and n = 4:

u, v 123 132 213 231 312 321

123 2 1 1 1 1 0
132 1 2 1 0 1 1
213 1 1 2 1 0 1
231 1 0 1 2 1 1
312 1 1 0 1 2 1
321 0 1 1 1 1 2

u, v
1234 3 1 1 1 1 0 1 0 1 1 1 0 1 0 0 0 1 0 1 0 0 0 0 0
1243 1 3 1 0 1 1 0 1 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 0
1324 1 1 3 1 0 1 1 0 0 0 1 0 1 0 1 1 1 0 0 1 0 0 0 0
1342 1 0 1 3 1 1 1 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 0
1423 1 1 0 1 3 1 0 1 1 0 0 0 0 1 0 0 0 0 1 0 1 1 1 0
1432 0 1 1 1 1 3 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 1
2134 1 0 1 1 1 0 3 1 1 1 1 0 0 0 1 0 0 1 0 0 1 0 0 0
2143 0 1 1 0 1 1 1 3 1 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1
2314 1 0 0 0 1 0 1 1 3 1 0 1 1 1 1 0 0 1 0 0 0 1 0 0
2341 1 0 0 0 0 0 1 0 1 3 1 1 1 0 0 1 1 1 1 0 0 1 0 0
2413 0 1 1 0 0 0 1 1 0 1 3 1 0 0 0 1 0 0 1 1 1 0 0 1
2431 0 1 0 0 0 0 0 1 1 1 1 3 1 0 0 1 0 0 1 0 0 1 1 1
3124 1 1 1 0 0 1 0 0 1 0 0 1 3 1 1 1 1 0 0 0 0 0 1 0
3142 1 0 0 1 1 1 0 0 1 0 0 0 1 3 1 0 1 1 0 0 0 1 1 0
3214 0 0 1 0 0 1 1 1 1 0 0 1 1 1 3 1 0 1 0 0 0 0 0 1
3241 0 0 1 0 0 0 1 0 0 1 1 1 1 0 1 3 1 1 0 1 0 0 0 1
3412 1 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1 3 1 1 1 0 1 1 0
3421 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 1 3 0 1 1 1 0 1
4123 1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 3 1 1 1 1 0
4132 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1 3 1 0 1 1
4213 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 1 1 1 3 1 0 1
4231 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 0 0 1 1 0 1 3 1 1
4312 0 1 0 0 0 1 0 0 0 0 0 1 1 1 0 1 1 0 1 1 0 1 3 1
4321 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 1 0 1 0 1 1 1 1 3

To see thatM = N T , we will show that

|M(u, v)| = |N(v, u)|.
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Consider a fixed choice of u, say u = 82374165, and let F = s1 · · · sk|sk+1 · · · s8,
with s1 < · · · < sk and sk+1 < · · · < s8, be any ray in the corresponding
braid arrangement. Then using the notation of Problem 5.8,

F · C(u) = s1 · · · sk|sk+1 · · · s8 · 8|2|3|7|4|1|6|5,
= v(1)|v(2)| · · · |v(8) = C(v).

The permutation v is such that v(1) · · · v(k) is the subword of u contain-
ing the letters {s1, . . . , sk}, and v(k + 1) · · · v(8) is the subword of u on the
complement.

For example, if F = 128|34567, then v = 821 37465.
We can see that |M(u, v)| 	= 0 if and only if v is a concatenation of two

subwords of u, i.e., if

v = u(s1) · · ·u(sk)u(sk+1) · · ·u(sn)

for some complementary index sets s1 < · · · < sk and sk+1 < · · · < sn.
From the point of view of v, we are saying that u can be obtained by cutting
v at a point k to get subwords v(1) · · · v(k) and v(k + 1) · · · v(n) such that
interleaving these subwords gives u.

But this is precisely what it means to say that u ∈ L(P (v; k)). Thus the

number of rays F such that u
F−→ v, i.e., |M(u, v)|, is

|{k : u ∈ L(P (v; k))}| = N(v, u).

For more about the combinatorics of card shuffling from the point of view
of hyperplane arrangements, in particular, computation of the eigenvalues
for the matrix N , see work of Bidigare, Hanlon, and Rockmore [18], Brown
and Diaconis [37], or for a more accessible introduction, Billera, Brown, and
Diaconis [19].

5.10 Suppose α 	= 1 is a root of f , and let g be the polynomial g(t) =
(1 + t)n−1f(t/(1 + t)). Then let

β =
α

1− α
,

so that
β

1 + β
= α.

We have
g(β) = (1 + β)n−1f(α) = 0.

Thus every root of f corresponds to a root of g.
For the second assertion, see Brandën’s discussion in Section 7.1 of [32].
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5.11 We can construct an order preserving map

(PB(n),≤)→ (Wkr(Sn(231)),≤)

as follows. Given a tree τ we define the core of the tree to be path obtained
by following along just to the left of the right subtree.

left subtree right subtree

Label the gaps between the leaves from right to left with 1, 2, . . . , n. Let
w(1) be the value of the label of the core. Further values are found recursively
by traversing subtrees from right to left, identifying the core of each as we go.

123456789 4

1

1

2

2

3

349

5

5

6

6

7

8

8

79

The example tree above would thus correspond to

w = 412395687.

The recursive nature of the construction makes it easy to verify that the
Tamari lattice on trees is compatible with the right weak order on the corre-
sponding permutations. Suppose w = wrwl, where wr = w(1) · · ·w(k) is the
part of the permutation coming from the right subtree and wl is the part of
the permutation coming from the left subtree.

If we move up in the Tamari lattice by moving branches within either
subtree, we can claim the corresponding permutations have the same relative
order in Wkr(Sn(231)) by appealing to induction on n. Now suppose that we
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move up in the Tamari lattice by moving the bottom branch of the left tree
onto the right branch. Continuing from the example above, we get:

123456789 4

2

1

3

2

4

359

1

5

6

6

7

8

8

79

.

The effect here is to make the first letter of wl the first letter of the new
permutation:

w → w(k + 1)w(1) · · ·w(k)w(k + 2) · · ·w(n) = w′.

In the full weak order, there is a chain of permutations from w to w′:

w = w(1) · · ·w(k − 1)w(k)w(k + 1)w(k + 2) · · ·w(n)
↓

w(1) · · ·w(k − 1)w(k + 1)w(k)w(k + 2) · · ·w(n)
↓
...

w(1)w(k + 1)w(2) · · ·w(k)w(k + 2) · · ·w(n)
↓

w(k + 1)w(1) · · ·w(k)w(k + 2) · · ·w(n) = w′.

By construction, w(1) < w(k + 1) and w(1) > w(i) for each i = 2, . . . , k.
Hence, every one but the first and the last permutation in this chain contains
the pattern 231. Therefore w < w′ is indeed a cover relation in Wkr(Sn(231)).

We remark that there is a natural isomorphism between Wkl(Sn) and
Wkr(Sn), given by mapping w to w−1. However, this map does not preserve
pattern avoidance. In particular, the inverse of w = 312 is w−1 = 231.

5.12 Any two planar binary trees that are refinements of the same planar
tree can be obtained from each other by sliding branches from left to right.
The maximum element in the interval has all its branches of the same level
pushed to the right, and the minimum has all its branches pushed to the left.

This leads to interesting results related to the algebra of planar binary
trees. See work by Maria Ronco and Jean-Louis Loday [103, 104], by Marcelo
Aguiar and Frank Sottile [3], and also further articles by Loday alone
[100, 102].
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5.13 From Theorem 5.4 we have

rn(t) = f(P(n); t),
= (1 + t)n−1Cn(t/(1 + t)),

=

n−1∑

k=0

Nn,kt
k(1 + t)n−1−k.

Substituting t = 1, we get

rn = Nn,0 · 2n−1 +Nn,1 · 2n−2 + · · ·+Nn,n−2 · 2 +Nn,n−1 · 1,
= Nn,n−1 · 2n−1 +Nn,n−2 · 2n−2 + · · ·+Nn,1 · 2 +Nn,0 · 1,
= Cn(2),

where the second expression follows by palindromicity of the Narayana
numbers.

The fact that rn(t) is real-rooted and log-concave follows from real-
rootedness of the Narayana polynomial Cn(t), using the same transformation
as was used in Problem 5.10.
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Problems of Chapter 6

6.1 We will use inversion sequences to find a bijection with both permuta-
tions counted according to inversion number as well as permutations counted
according to major index.

Recall that an inversion sequence s = (s1, . . . , sn) is a member of the
cartesian product

{0} × {0, 1} × {0, 1, 2} × · · · × {0, 1, . . . , n− 1},

and we have a bijection between permutations and inversion sequences given
by w �→ (s1, . . . , sn) given by

sj = |{i < j : w(i) > w(j)}|.

Clearly inv(w) = s1 + s2 + · · ·+ sn.
Now let w′ be the permutation constructed from (s1, . . . , sn) as follows.

Let w1 = 1 and let wi denote the permutation constructed from (s1, . . . , si).
We order the gaps of wi from right to left according to non-ascent position,
and then left to right according to non-descent positions. Place i + 1 in gap
si+1. For example, here is the permutation constructed from the inversion
sequence (0, 0, 1, 1, 0, 5, 6, 0):

∅
↓0
1
↓0
12
↓1
312
↓1

3412
↓0

34125
↓5

341625
↓6

3417625
↓0

3416258.

It follows by induction that the major index of the resulting permutation is
the sum of the entries in the inversion sequence.
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6.2 To show that
[
a+b
a

]
=
[
a+b
b

]
with a bijection, we can create a bijection

L(a, b) ↔ L(b, a) that preserves area. To do this we simply read the path
back to front and swap N for E. Here is an example:

NENNENENNE �→ NEENENEENE,

or in pictures,

•
• •

•
• •

• •
•
• •

�→

•
• • •

• •
• • •

• •

.

By reading the path backwards we complement the area, but then we swap
N for E, which again complements area, but also takes a path from (0, 0) to
(a, b) and creates a path from (0, 0) to (b, a).

6.3 Each box (i, j) (as labeled in Figure 6.1) that sits beneath a lattice path
corresponds to a unique pair of steps, with horizontal step labeled i and a
vertical step labeled j. In the corresponding permutation j appears before i,
so (i, j) is an inversion pair for w−1. Hence (w−1(i), w−1(j)) is an inversion
pair for w.

6.4 We can provide a recursively defined bijection by finding a natural
recurrence for

[
a+b
a

]
that is compatible with both major index and area.

For example, one can verify:

[
a+ b

a

]
=

[
a+ b− 1

a− 1

]
+ qa+b−1

[
a+ b− 2

a− 1

]
+ · · ·+ qa+1

[
a

a− 1

]
+ qa

[
a− 1

a− 1

]
.

In terms of major index, we have the following picture proof:

a

b

[
a+b
a

]

↔

• •

(a − 1)

b

[
a+b−1
a−1

]
⋃

• •
•

(a − 1)

(b
−
1)

[
a+b−2
a−1

]
qa+b−1
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⋃
· · ·
⋃

• •
•
•
•
•
•

(a − 1)

[
a

a−1

]

qa+1

⋃

• •
•
•
•
•
•
•

(a − 1)

[
a−1
a−1

]

qa .

In terms of area, we have this, rather different, picture proof:

a

b

[
a+b
a

]

↔

• •
(a − 1)

b

[
a+b−1
a−1

]
⋃

•
•

• •(a − 1)

(b
−
1) [

a+b−2
a−1

]

qa+b−1

⋃
· · ·
⋃

•
•

• •
•
•
•
•

(a − 1)

[
a

a−1

]

qa+1

⋃

•
• • •

•
•
•
•
•

(a − 1)

[
a−1
a−1

]

qa .

When a = 0 or b = 0 there is only one path, so the boundary paths are
necessarily identified under the bijection. The remaining paths can be put in
bijection by using the corresponding parts of the pictures for the recurrence.

To decompose a path according to the major index recurrence, we look
to the end of the permutation. If it ends with an E step, we remove only
that E. If it ends with an N , we remove all the trailing letters N and the E
just prior.

For example, suppose p = NENNNNENEE is a chosen path with major
index 9 in L(4, 5). Then

p = NENNNNENEE ←E (NENNNNEN)E ←E (NENNNN)EN

←EN (N)ENNNN ←ENNNN N,

and at this point we have a boundary path.
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To find a path p′ with area 9, we reverse these steps, but with the recur-
rence for area. In this case, a path either begins with an E, or it begins with
an N and ends with an E followed by some number of N steps.

With our example, we have

N →N ·ENNN N(N)ENNN →N ·E N(NNENNN)E

→E E(NNNENNNE)→E E(ENNNENNNE) = p′,

and we can see that maj(p) = 2 + 7 = 9 = area(p′).
A non-recursive description of this (or any other) bijection that takes ma-

jor index to area would be nice to have.

6.5 We know that inv(w−1) = inv(w), but inv(w) 	= maj(w) in general,
so the identity cannot hold at the level of each permutation. For example,
maj(3412) = 2 while inv(3412) = 4.

By composing the bijections indicated in Figures 6.1 (for area) and 6.2 (for
major index) with the bijection in the solution to Problem 6.4, we can create
a bijection that takes a permutation u with Des(u−1) ⊆ {k} and major index
j to a permutation v with Des(v−1) ⊆ {k} and j inversions. This bijection
would benefit from a more direct, non-recursive, description.

We remark that this bijection is not the same as the bijection in Prob-
lem 6.1, which typically changes the inverse descent set. For example, con-
sider the permutation w = 3412, whose inverse descent set is {2}. Under the
bijection of Problem 6.1 w �→ w′ = 4132, whose inverse descent set is {2, 3}.

6.6 This result follows from the idea of Theorem 1.3 and the observations
preceding Theorem 6.1. In particular, inserting n at the far right, and in other
non-ascent positions from right to left increases major index by 0, 1, 2, . . . and
so on, while preserving number of descents. On the other hand, inserting n
in non-descent positions from left to right increases descent number by one
and major index by k, k + 1, . . . and so on (provided we are inserting in a
permutation with k − 1 descents).

6.7 First, notice that

[
n+ k

n

]
=

[
n+ k − 1

n− 1

]
+ qn

[
n+ k − 1

n

]
,

from which it follows by induction on n,

1

(1− t)(1 − qt) · · · (1− qnt)
=
∑

k≥0

[
n+ k

n

]
tk.

Notice that we can interpret the q-binomial coefficient as

[
n+ k

n

]
=

∑

0≤a1≤···≤an≤k

qa1+···+an ,
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since for any path in L(k, n), we can compute the area under the path by
letting ai denote the number of boxes under the path in row n+ 1 − i, e.g.,
the following path has (a1, . . . , a6) = (1, 1, 2, 3, 3, 4):

•
• •

•
• •

• •
•
• •

.

Now let A(w) denote the set of all reverse P -partitions for the permutation
w ∈ Sn, i.e.,

A(w) = {a1 ≥ a2 ≥ · · · ≥ an : ai > ai+1 if i ∈ Des(w)}.

The set of reverse P -partitions for a labeled poset P is the disjoint union of
the P -partitions for the linear extensions of P :

A(P ) =
⋃

w∈L(P )

A(w).

Let

A(w; k) = {k ≥ a1 ≥ a2 ≥ · · · ≥ an ≥ 0 : ai > ai+1 if i ∈ Des(w)}.

Our first observation is

Ω(w; k, q) =
∑

a∈A(w;k)

qa1+···+an = qmaj(w)

[
n+ k − des(w)

n

]
.

For example, if Des(w) = {2, 3} and w ∈ S7, we have A(w; k) is the set of
all vectors satisfying:

k ≥ a1 ≥ a2 > a3 > a4 ≥ a5 ≥ a6 ≥ a7 ≥ 0,

or
k − 2 ≥ a1 − 2 ≥ a2 − 2 ≥ a3 − 1 ≥ a4 ≥ a5 ≥ a6 ≥ a7 ≥ 0,

or
k − 2 ≥ b1 ≥ b2 ≥ b3 ≥ b4 ≥ b5 ≥ b6 ≥ b7 ≥ 0.
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We know the sum of qb1+···+b7 over all such bi is
[
7+k−2

7

]
, and also

qa1+···+a7 = q5 · qb1+···+b7 .

Thus,
∑

a∈A(w;k)

qa1+···+a7 = q5
[
7 + k − 2

7

]
.

For any particular permutation w, then, we have

qmaj(w)tdes(w)

(1− t)(1− qt) · · · (1− qnt)
=

∑

k≥0

qmaj(w)

[
n+ k − des(w)

n

]

tk =
∑

k≥0

Ω(w; k, q)tk.

On the other hand, if P is an antichain, Ω(P ; k, q) = [k+1]n, and the result
follows by summing over all linear extensions, i.e., over all w ∈ Sn.

6.8 Let

n(a, b, k; q) = qk
2

([
a

k

][
b

k

]
−
[
a+ 1

k + 1

][
b− 1

k − 1

])
.

To check the boundary conditions, verify that n(a, a, k; q) = n(a −
1, a, k; q). First,

n(a− 1, a, k; q) = qk
2

([
a− 1

k

][
a

k

]
−
[

a

k + 1

][
a− 1

k − 1

])
,

= qk
2 [a]![a− 1]!

[a− k − 1]![k]![a− k]![k − 1]!

(
[k + 1]− [k]

[k][k + 1]

)
,

= qk
2 [a]![a− 1]!

[a− k − 1]![k]![a− k]![k − 1]!

(
qk

[k][k + 1]

)
.

On the other hand,

n(a, a, k; q) = qk
2

([
a

k

][
a

k

]
−
[
a+ 1

k + 1

][
a− 1

k − 1

])
,

= qk
2 [a]![a− 1]!

[a− k − 1]![k]![a− k]![k − 1]!

(
[a][k + 1]− [k][a+ 1]

[a− k][k][k + 1]

)
,

= qk
2 [a]![a− 1]!

[a− k − 1]![k]![a− k]![k − 1]!

(
qk

[k][k + 1]

)
.

Verification of the recurrence in Equation (6.8) is equally straightforward, if
tedious. It helps to use identities such as [r + s] = [r] + qr[s].

A computer can also help simplify the job.
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Problems of Chapter 8

8.1

1. Here is the corresponding face poset:

∅

{a}{b} {c} {d} {e}

{a, b} {a, c} {b, c} {a, d} {c, e}{c, d} {d, e}

{a, b, c} {a, c, d}

.

2. Here is a geometric realization. It is a triangle glued inside a hexagon:

•
1

•2

•
3

•
5

•6
•4

.

8.2 This property follows immediately from the fact that the face poset is
a lower ideal in the boolean lattice on the vertex set V . In particular, every
pair of subsets has a least upper bound, namely their union. In the bowtie,
F1 and F2 are both covered by G1 and G2. Hence both G1 and G2 must have
vertex set F1 ∪ F2. Therefore they cannot be distinct faces of a simplicial
complex.

8.3 It suffices to prove this for the standard simplex, i.e., the convex hull
of the standard basis elements in R

d+1. Letting ei denote the ith coordinate
vector, we have that the k-faces of P are linear combinations of the form

t1ei1 + · · ·+ tkeik ,

where 0 ≤ ti ≤ 1 and
∑

ti = 1. Let F denote the set of all such linear
combinations. Clearly we can identify F with the subset {i1, . . . , ik}. The
center of each such face F is the vector given by taking ti = 1/k.
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The facets of P are faces of the form F = {1, 2, . . . , d+1}−{i} for some i.
We can therefore denote the center of each facet by

e∗i =
1

d

⎛

⎝−ei +
d+1∑

j=1

ej

⎞

⎠ .

For example if d = 5, e∗3 = (1/5, 1/5, 0, 1/5, 1/5, 1/5).
A quick linear algebra exercise shows the e∗i , i = 1, 2, . . . , d+1 are linearly

independent in R
d+1, and hence their convex hull, P∗, is a d-simplex.

8.4 This is Jean-Louis Loday’s realization of the associahedron. See [101].

8.5 To show that a d-dimensional polytope is simple, we must show that
each vertex lies on the boundary of exactly d facets. This is straightforward
after we recall our combinatorial models for faces of the permutahedron and
the associahedron in Chapter 5.

For the permutahedron, faces are encoded by ordered set partitions.
A face F is contained in a face G if and only if G is a coarsening of F .
The facets of the permutahedron have exactly two blocks, thus each vertex
w(1)|w(2)| · · · |w(d) is contained in exactly d − 1 facets. For example, the
vertex 3|1|4|2|5 is contained in 3|1245, 13|245, 134|25, and 1234|5.

For the associahedron, faces are encoded by planar trees with d+1 leaves,
and again the containment of faces is given by coarsening. Vertices are planar
binary trees, and facets are planar trees with exactly two internal nodes. Since
there must always be a root node, this amounts to deciding which of the d−1
other nodes we keep. For example, the planar binary tree shown here:

,

is on the boundary of each of the four planar trees below:

; ; ; :

8.6 The cell complex described here is the Steinberg torus described in
Chapter 14. See [2, 60]. It is a simplicial poset since for any face G, we can
identify all faces F ≤ΣT G by the subset of the edges of G that we contract.
Each set of edges of G corresponds to a distinct face that is refined by G.

While each lower interval is boolean, ΣT (n) is not a simplicial complex
since a face is not determined by its vertex set. We can see this even from
the n = 2 case, since both edges in that example have the same two vertices.
This continues to be true for every n: each maximal face of the Steinberg
torus shares the same vertex set!
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8.7 This is a Theorem due to Richard Stanley [151, Theorem 2.1].
Let P be the face poset of a given boolean complex, and let Bi denote the

boolean algebra on i elements. Recall that by definition of boolean complex,
the interval below any element of P is isomorphic to Bi, where i is the rank
of the element.

Since the complex is (d−1)-dimensional, P has there is at least one simplex
G of maximal dimension, and the interval in P below this face is the boolean
algebra on the d vertices: [0, G] ∼= Bd. There are

(
d
i

)
faces F ⊆ G such that

[0, F ] ∼= Bi. This implies that fi(P ) ≥
(
d
i

)
.

Conversely, suppose f = (f0, f1, . . . , fd) satisfies fi ≥
(
d
i

)
. We will show

that there exists a boolean complex with this f -vector. Since the boolean
algebra Bd achieves the lower bound for every i, fi(Bd) =

(
d
i

)
, it suffices to

show that if f = (f0, f1, . . . , fj , . . . , fd) is the f -vector of a boolean complex,
then for any j = 1, 2, . . . , d, so is the vector f ′ = (f0, f1, . . . , fj + 1, . . . , fd).

Suppose P is the face poset of a boolean complex with f -vector f =
(f0, f1, . . . , fj , . . . , fd). Pick any face G such that dimG = j − 1, i.e., such
that [0, G] ∼= Bj . Then G covers

(
j

j−1

)
= j faces, call them F1, F2, . . . , Fj .

Form a new poset P ′ = P ∪{G′}, where G′ is a new element that also covers
F1, F2, . . . , Fj . Then f(P ′) = (f0, f1, . . . , fj + 1, . . . , fd), as desired.

8.8 This is immediate from the definition of the order complex. If x1 <P

· · · <P xk is a chain in P , then we can identify the chain with the members
of P in the chain, {x1, . . . , xk}, and clearly any subset of this set will also
form a chain in P .

8.9 We can describe faces of the associahedron (and hence its dual) with pla-
nar trees, or equivalently, parenthesizations. We will sayΔ(n) is the simplicial
complex dual to the associahedron whose faces are valid parenthesizations of
a string of n + 1 characters. The dimension of a face is one less than the
number of pairs of parentheses. (So Δ(n) has dimension n− 2.) For example,
the face F given by

F = (a((bc)de)fg)h

is a triangle in Δ(n).
Vertices correspond to all ways to insert a single pair of parentheses so

that it encloses at least two characters (apart from a pair around the entire
string). Two vertices are adjacent if and only if their pairs of parentheses are
noncrossing. Let Δ′(n) denote the clique complex for this relation on pairs
of parentheses.

The union of any collection of pairwise noncrossing pairs of parentheses
will obviously yield a valid parenthesization, so Δ′(n) is clearly a subcomplex
of Δ(n).

On the other hand, if F is any face of Δ(n), i.e., a parenthesization, we can
work greedily from the inside out to find a collection of pairs of parentheses
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whose union is F and such that no two of the pairs are crossing. For example,
with F = (a((bc)de)fg)h as above, we have

F = a(bc)defgh ∪ a(bcde)fgh ∪ (abcdefg)h.

Thus each face is in the clique complex Δ′(n), and Δ(n) = Δ′(n) is indeed a
flag complex.

8.10 The faces of Σ(n) are set compositions, e.g., F = 23|156|47|8 is a
triangle in Σ(8). The vertices correspond to set compositions with two blocks,
and each vertex of a face F is obtained by removing all but one bar from F .
Continuing with our example, the faces of F = 23|156|47|8 are

23|145678, 12356|478, 1234567|8.

We will color the vertices with colors i = 1, 2, . . . , n − 1 according to the
number of elements in the left block, i.e., according to the position of the
vertical bar. In F above, the vertices have colors 2, 5, and 7. Clearly every
face has distinctly colored vertices, since there is exactly one vertex per bar.
Moreover, there are n − 1 colors and n − 1 is the number of vertices in a
maximal face.

8.11 The transformation between f - and h-polynomials is exactly the trans-
formation described in Problem 5.10.
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Problems of Chapter 9

9.1 The following simplicial complex has the desired properties:

.

9.2 Unimodality for Sn;j(t) follows from the recurrence in Observation 9.1.
Suppose for induction that Sn−1;j(t) are unimodal and that their centers are
either in the coefficient of t�(n−2)/2	 or t1+�(n−2)/2	. Moreover, suppose the
center of unimodality weakly increases with j, so that in the sum

Sn;j(t) = tSn−1;1(t) + · · ·+ tSn−1;j−1(t) + Sn−1;j(t) + · · ·+ Sn−1;n−1(t),

there are at most two different centers of unimodality, and the centers are
adjacent powers of t.

Then effectively we are adding the two sequences of coefficients of the
form:

a0 ≤ · · · ≤ aj ≥ aj+1 ≥ aj+2 ≥ · · · ,

and
b0 ≤ · · · ≤ bj ≤ bj+1 ≥ bj+2 ≥ · · · ,

yielding

(a0 + b0) ≤ · · · ≤ (aj + bj) and (aj+1 + bj+1) ≥ (aj+2 + bj+2) ≥ · · · ,

so whether (aj + bj) < (aj+1 + bj+1) or (aj + bj) ≥ (aj+1 + bj+1), the sum is
unimodal.

9.3 This is the “compatibility lemma” of Maria Chudnovsky and Paul Sey-
mour [51, Lemma 2.2]. Its proof (found in Section 3 of that paper) uses
induction on k and on the maximal degree of the polynomials.

9.4 We will use Observation 9.1 and the compatibility lemma of Problem 9.3.
Our proof here is essentially Theorem 2.3 in the paper by Carla Savage and
Mirko Visontai [132].

For brevity, let fj(t) = Sn;j(t) and let gj(t) = Sn+1;j(t), which by Obser-
vation 9.1 can be written as:

gj(t) = t

j−1∑

k=1

fk(t) +

n∑

k=j

fk(t).
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We will prove the following lemma, from which the result follows by induction.
Suppose, for each i < j that

(a) fi(t) and fj(t) are compatible, and
(b) tfi(t) and fj(t) are compatible.

Then for each i < j

(A) gi(t) and gj(t) are compatible, and
(B) tgi(t) and gj(t) are compatible.

Suppose (a) and (b) hold. To show gi and gj are compatible, we examine
the nonnegative linear combination

cigi(t) + cjgj(t) =

i−1∑

k=1

(ci + cj)tfk(t) +

j−1∑

k=i

(ci + tcj)fk(t) +

n∑

k=j

fk(t). (14.4)

To prove this polynomial is real-rooted, it suffices to prove that the polyno-
mials in the sum are compatible. By Problem 9.3, this amounts to showing
that any pair of polynomials in the following set is compatible:

I ∪ II ∪ III = {tfk(t)}1≤k≤i−1 ∪ {(ci + tcj)fk(t)}i≤k≤j−1 ∪ {fk(t)}j≤k≤n.

Any two polynomials within a subset (I, II, or III) are compatible by hy-
pothesis (a), and likewise a polynomial from set I and set III are compatible
by hypothesis (b). To see that a polynomial from I and a polynomial from
II are compatible, let k ≤ i− 1, i ≤ l ≤ j − 1, and consider the combination

atfk(t) + b(ci + cjt)fl(t) = atfk(t) + bcifl(t) + bcjtfl(t). (14.5)

This is therefore a nonnegative linear combination of tfk, fl, and tfl. The
polynomials tfk and fl are compatible by hypothesis (b), the polynomials
tfk and tfl are compatible by hypothesis (a), and fl and tfl are obviously
compatible. Hence Equation (14.5) is a nonnegative linear combination of
pairwise compatible polynomials. By the compatibility lemma, this means
the linear combination is real-rooted. A similar argument shows a polynomial
from II and a polynomial from III are compatible. This covers all cases,
showing the polynomial in Equation (14.4) is real-rooted. This establishes
conclusion (A).

The proof of (B) follows from a similar sort of reasoning, where we now
must consider pairs of polynomials from the set:

I ′∪II ′∪III ′ = {(cit+cj)tfk(t)}1≤k≤i−1∪{tfk(t)}i≤k≤j−1∪{(cit+cj)fk(t)}j≤k≤n.

Again, all pairs of such polynomials are compatible, given hypotheses (a)
and (b).
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Notice that this method gives an alternate proof that the classical Eulerian
polynomial Sn(t) is real-rooted, since Sn(t) =

∑
j≥1 Sn;j(t) and our lemma

shows the Sn;j are compatible.

9.5 Since Sn;j(t) is a sum of j-Eulerian polynomials, this follows directly
from the lemma used in the solution to Problem 9.4.

9.6 The lemma in the solution of Problem 9.4 shows any nonnegative lin-
ear combination of j-Eulerian polynomials is real-rooted. Hence Part 1 of
Theorem 9.4 follows from Theorem 9.3.

9.7 Here is the table with the entries of the eigenvector (e0, . . . , ed−1) for Ed:

d\k 0 1 2 3 4 5 6 7 8

3 0 1 0

4 0 1 1 0

5 0 1 7
2 1 0

6 0 1 17
2

17
2 1 0

7 0 1 586
33

5459
132

586
33 1 0

8 0 1 1543
45

9349
60

9349
60

1543
45 1 0

9 0 1 2780273
43956

22330265
43956

57026873
58608

22330265
43956

2780273
43956 1 0

10 0 1 6198113
54628

371920561
245826

3260108681
655536

3260108681
655536

371920561
245826

6198113
54628 1 0

It is not clear what combinatorial interpretation these polynomials might
possess. When we clear the denominators, we get:

d\k 0 1 2 3 4 5 6 7 8

3 0 1 0

4 0 1 1 0

5 0 2 7 2 0

6 0 2 17 17 2 0

7 0 132 2344 5459 2344 132 0

8 0 180 6172 28047 28047 6172 180 0

9 0 175824 11121092 89321060 171080619 89321060 11121092 175824 0

10 0 1966608 223132068 2975364488 9780326043 9780326043 2975364488 223132068 1966608 0

It would be desirable to have a combinatorial interpretation for these num-
bers, but no such interpretation is known as of this writing.
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9.8 See Section 4 of the paper by Francesco Brenti and Volkmar Welker [35].
Approximate values for the roots of e(t) are given below:

d roots

3 −1, 0

4 −3.1861, −.3139, 0

5 −7.3642, −1, −.1358, 0

6 −15.0956, −2.1252, −.4705, −0.0662, 0

7 −29.1205, −3.8761, −1, −.2580, −0.0343, 0

8 −54.2076, −6.5400, −1.7664, −.5661, −.1529, −0.0184, 0

9 −98.6263, −10.5365, −2.8404, −1, −.3521, −0.0949, −0.0101, 0

10 −176.6778, −16.4739, −4.3206, −1.5830, −.6317, −.2314, −0.0607, −0.0057, 0
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Problems of Chapter 11

11.1 Let R(w) denote the set of reduced expressions for the element w in
Sn. It is interesting to consider not only the set of reduced expressions, but
how one can transform one reduced word to get another. We will draw an
edge between two reduced expressions if one can get from one to the other
by a commutation sisj = sjsi or a braid move sisi+1si = si+1sisi+1.

1.
R(321) = {s1s2s1 ↔ s2s1s2}

2. Here we will abbreviate reduced expressions by writing only the index of
the generator, e.g., 1321 instead of s1s3s2s1.

R(4321) =

323123

232123

231213

213213231231

213231

212321

121321

321323

321232

312132

312312 132132

132312

123212

123121

3.
R(213465) = {s1s5 ↔ s5s1}

4.
R(216345) = {s1s5s4s3 ↔ s5s1s4s3 ↔ s5s4s1s3 ↔ s5s4s3s1}

Victor Reiner and Yuval Roichman studied the diameter of the graph
on R(w) in a 2013 paper [127]. In particular, for the symmetric group the
diameter of R(w0) is

1
24n(n− 1)(n− 2)(3n− 5).

11.2 The formula for the number of reduced expressions of w0 is

(
n
2

)
!

∏n−1
i=1 (2i− 1)n−i

.
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For example, with n = 4 this yields

(
4
2

)
!

13 · 32 · 5 =
6!

32 · 5 = 16,

as witnessed in the solution to part 2) of Problem 11.1.
The rather mysterious-looking formula is actually a special case of the

hook-length formula that counts the number of standard Young tableaux of
shape λ = (n − 1, . . . , 3, 2, 1). See Chapter 7 of Richard Stanley’s textbook
[153] for an exposition of these ideas.

The result of this problem was proved by Stanley using symmetric func-
tions in 1984 [149] and Paul Edelman and Curtis Greene in 1987 using bijec-
tions on Young tableaux [62].

11.3 This group is an infinite reflection group, F̃4,. See Figure 14.1 in
Chapter 14.

11.4 We can use Theorem 11.1 along with Table 11.2 to get:

B6(q) = q36 + 6 q35 + 20 q34 + 50 q33 + 104 q32 + 190 q31

+ 315 q30 + 484 q29 + 699 q28 + 958 q27 + 1255 q26

+ 1580 q25 + 1919 q24 + 2254 q23 + 2565 q22 + 2832 q21

+ 3037 q20 + 3166 q19 + 3210 q18 + 3166 q17 + 3037 q16

+ 2832 q15 + 2565 q14 + 2254 q13 + 1919 q12

+ 1580 q11 + 1255 q10 + 958 q9 + 699 q8 + 484 q7

+ 315 q6 + 190 q5 + 104 q4 + 50 q3 + 20 q2 + 6 q + 1,

and

D6(q) = q29 + 6 q28 + 20 q27 + 50 q26 + 104 q25 + 189 q24

+ 309 q23 + 464 q22 + 649 q21 + 854 q20 + 1065 q19

+ 1265 q18 + 1436 q17 + 1561 q16 + 1627 q15 + 1627 q14

+ 1561 q13 + 1436 q12 + 1265 q11 + 1065 q10 + 854 q9

+ 649 q8 + 464 q7 + 309 q6 + 189 q5 + 104 q4

+ 50 q3 + 20 q2 + 6 q + 1,

and

E6(q) = q36 + 6 q35 + 20 q34 + 50 q33 + 105 q32 + 195 q31

+ 329 q30 + 514 q29 + 754 q28 + 1048 q27 + 1389 q26

+ 1765 q25 + 2159 q24 + 2549 q23 + 2911 q22 + 3222 q21
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+ 3461 q20 + 3611 q19 + 3662 q18 + 3611 q17 + 3461 q16

+ 3222 q15 + 2911 q14 + 2549 q13 + 2159 q12

+ 1765 q11 + 1389 q10 + 1048 q9 + 754 q8 + 514 q7

+ 329 q6 + 195 q5 + 105 q4 + 50 q3 + 20 q2 + 6 q + 1,

and

F4(q) = q24 + 4 q23 + 9 q22 + 16 q21 + 25 q20 + 36 q19 + 48 q18

+ 60 q17 + 71 q16 + 80 q15 + 87 q14 + 92 q13 + 94 q12

+ 92 q11 + 87 q10 + 80 q9 + 71 q8 + 60 q7 + 48 q6 + 36 q5

+ 25 q4 + 16 q3 + 9 q2 + 4 q + 1.

11.5 The terms appearing in Theorem 11.1 expand as

1− qd

1− q
= 1+ q + q2 + · · ·+ qd−1.

Thus the total degree of

W (q) =
∑

w∈W

q�(w) =

n∏

i=1

(1 − qdi)

(1− q)

is −n+
∑

di. The long element w0 has this maximal length,

�(w0) = −n+
∑

di.

On the other hand, if C = w0C∅ is the chamber corresponding the
long element, then C = −C∅ and therefore Inv(w0) = Φ. Since we know
from Observation 11.5 that number of inversions equals length, we get
|Φ| = �(w0) = −n+

∑
di, as desired.

11.6 The elements of the dihedral group with generators s and t are:

1, s, t, st, ts, sts, tst, stst, tsts, . . . ,

and since
(st)m = (ts)m = e,

we have two ways to write the long element:

w0 = sts · · ·︸ ︷︷ ︸
m

= tst · · ·︸ ︷︷ ︸
m

.
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As there are no other relations, all the expressions listed above are reduced,
and the generating function for length is therefore

1 + 2q + 2q2 + 2q3 + · · ·+ 2qm−1 + qm = (1 + q)(1 + q + · · ·+ qm−1),

=
(1 − q2)(1− qm)

(1− q)2
.

11.7 Recall that w0(β) < 0 for every positive root β. Thus by Observa-
tion 11.7, we get

Des(w0w) = {sα : α ∈ Δ,w0w(α) < 0},
= {sα : α ∈ Δ,w(α) = β > 0},
= {sα : α ∈ Δ,α /∈ Des(w)},
= S −Des(w).

11.8 We have

sβ(λ) = λ− 2〈λ, β〉
〈β, β〉 β,

and thus

〈sβ(λ), sβ(μ)〉 =
〈
λ− 2〈λ, β〉

〈β, β〉 β, μ−
2〈μ, β〉
〈β, β〉 β

〉
,

=

〈
λ, μ− 2〈μ, β〉

〈β, β〉 β
〉
+

〈
−2〈λ, β〉
〈β, β〉 β, μ−

2〈μ, β〉
〈β, β〉 β

〉
,

= 〈λ, μ〉 − 2〈μ, β〉
〈β, β〉 〈λ, β〉 −

2〈λ, β〉
〈β, β〉 〈μ, β〉+

4〈λ, β〉〈μ, β〉
〈β, β〉2 〈β, β〉,

= 〈λ, μ〉.

11.9 This is a straightforward check under the correspondence α ↔ α∨ =
2α

〈α,α〉 :
±εi ↔ ±2εi

and
±εi ± εj ↔ ±εi ± εj .

11.10 These are drawn in Figures 12.2, 12.3, 12.4, and 12.5.

11.11

1. Here is the Coxeter graph for F4,

• • • •4 .

As there are 16 subsets of the simple generators, there are 16 parabolic
subgroups. We list them here, up to isomorphism, along with multiplicities:
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F4

B3 (2 times)
A1 ×A2 (2 times)
A2 (2 times)
A1 ×A1 (3 times)
B2

A1 (4 times)
{e}

2. The maximal parabolic subgroups of B6 are:

A5

A1 ×A4

B2 ×A3

B3 ×A2

B4 ×A1

B5

3. The maximal parabolic subgroups of E8 are:

D7

A1 ×A6

A2 ×A1 ×A4

A7

A4 ×A3

D5 ×A2

E6 ×A1

E7

11.12 Fix a Coxeter system (W,S), and define

Σ = {wWJ : w ∈ W,J ⊆ S},

We define a “face” to be wWJ , with wWJ ≤Σ vWK if and only if vWK ⊆
wWJ .

For notational convenience, let F (w, J) = wWS−J . Thus F (w, ∅) =
wWS = W , regardless of the coset representative w, and F (w, S) = wW∅ =
{w}, a singleton coset corresponding to a maximal simplex.

With the partial ordering defined here, F (e, S) is clearly a simplex with
vertex set V (e) = {F (e, {s}) : s ∈ S}. Said another way, the standard
parabolic subgroups form a boolean algebra under reverse inclusion.

We can act on cosets by left multiplication by an element w:

w · uWJ = {wv : v ∈ uWJ}.
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Thus,
w · F (e, J) = wWS−J = F (w, J),

and F (e, J) ≤Σ F (e,K) if and only if F (w, J) = wWS−J ⊆ wWS−K =
F (w,K). Thus every face is a simplex.

It remains to show that every face has a unique vertex set. This will follow
from the following claim. If u 	= v, then the sets

V (u) = {F (u, {s}) : s ∈ S} and V (v) = {F (v, {s}) : s ∈ S}

are not identical.
We first consider the vertex set of the identity versus another element v

ofW . Suppose s ∈ S is a descent of v. Then it follows from the braid relations
for W that every reduced expression for v has an s in it. Since v−1 is obtained
by writing any reduced expression for v in reverse, this shows v−1 is not a
member of WS−{s}. Hence, e is not in vWS−{s} and F (v, {s}) is not a vertex
in V (e).

In general, consider two vertex sets V (u) and V (v). Acting on these vertex
sets by u−1 we see that V (u) = V (v) if and only if V (e) = V (u−1v). But if
u 	= v, then u−1v 	= e, and we have already seen that these vertex sets are
distinct.

To summarize, Σ is a simplicial complex with vertex set

V = {F (w, {s}) : w ∈W, s ∈ S}.

11.13 Let wWJ = {wx : x ∈ WJ}. If u is an element of minimal length,
then if s ∈ J , �(us) > �(u) and none of the reduced expressions for u have an
element of J as the rightmost letter. That implies that if x ∈ WJ , we have
�(ux) = �(u) + �(x). Thus if v = ux also has minimal length, �(u) = �(v),
which forces �(x) = 0, which means x = e, which means u = v.

11.14 This follows immediately from Problem 11.13.

11.15 The combinatorial inversion set for w = 356124 is

Inv(w) = {(1, 4), (1, 5), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)},

while its inverse has inversion set is

Inv(w−1) = {(1, 3), (2, 3), (1, 5), (2, 5), (4, 5), (1, 6), (2, 6), (4, 6)}.

When we think of w as labeling a chamber in the Coxeter arrangement,
we obtain the following cone of points:

wC∅ = {λ ∈ V : x3 < x5 < x6 < x1 < x2 < x4},

where V = R
6 /�, where � is the line given by

∑
xi = 0. As the positive roots

are βij = εj − εi in the type An−1 root system, we find

〈λ, βij〉 = xj − xi.
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Thus xj − xi > 0 if and only if i appears to the left of j in w, i.e., w−1(i) <
w−1(j). We conclude that Inv(wC∅)↔ Inv(w−1). In this example,

Inv(wC∅) = {β1,3, β2,3, β1,5, β2,5, β4,5, β1,6, β2,6, β4,6}.

To remove a single entry of the inversion set for the chamber, i.e., to move
down by a cover relation in the weak order of Equation (11.3), we must find
a root corresponding to an adjacent inversion pair in the permutation, e.g.,
β1,6. To change the ordering of these two entries, we must multiply w on the
right by a simple reflection; in this case by s3, to get ws3 = 351624. This is
the right weak order: �(ws) < �(w) implies ws ≤Wk w.

On the other hand, if we first define Inv(w) = {β ∈ Π : w(β) < 0}, we are
really studying the inversions of the chamber w−1C∅. Multiplying w−1 on the
right to move down in the chamber geometry corresponds to multiplying w on
the left, so here we find the left weak order: �(sw) < �(w) implies sw ≤Wk w.

11.16 This can be shown geometrically or in terms of reduced expressions.
In either case, the bottom line is that w �→ w0w complements inversion sets.
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Problems of Chapter 12

12.1 We want to check that for any root α,

sw(α) = wsαw
−1,

or sw(α)w = wsα.
Fix a vector λ ∈ V . We calculate the action of sw(α)w on λ compared to

the action of wsα on λ. We find

sw(α)w(λ) = w(λ) − 〈w(α), w(λ)〉〈w(α), w(α)〉w(α),

= w

(
λ− 〈w(α), w(λ)〉〈w(α), w(α)〉α

)
,

= w

(
λ− 〈α, λ〉〈α, α〉α

)
,

= wsα,

where the second equation follows from linearity and the third follows from
orthogonality (see Problem 11.8).

12.2 This is a result due to Roger Carter [45]. The proof is as follows.
Suppose

w = sβ1 · · · sβk
,

is a reduced expression for w that minimizes reflection length. Then clearly
w fixes the intersection of the hyperplanes

Hβ1 ∩ · · · ∩Hβk
,

and if U denotes the maximal subspace fixed by w, we get dim(U) ≥ n− k.
Since U is the set of all vectors fixed by w, we can express w as a product

of reflections wsβ such that each root β lies in U⊥. But this means w is an

element of the group generated by the sub-root system spanning U⊥, which
has dimension at most k ≤ n. If k < n, then by induction on n we are done.

Thus it suffices to consider elements w such that w has no nonzero fixed
points, and show that such an element can be expressed as a product of at
most n reflections.

Suppose w is such an element, i.e., w(λ) 	= λ for any nonzero element
λ ∈ V . Then in particularw−e is invertible as an element of the groupGL(V ),
and for any β ∈ Φ, there exists an element λ ∈ V such that (w − e)(λ) = β.
Thus w(λ) = λ+ β. Since w is in the orthogonal subgroup we can write
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〈λ, λ〉 = 〈w(λ), w(λ)〉,
= 〈λ + β, λ+ β〉,
= 〈λ, λ〉 + 2〈λ, β〉+ 〈β, β〉,

and so after subtracting 〈λ, λ〉 and dividing by 〈β, β〉 we find

2〈λ, β〉
〈β, β〉 = −1.

But this means

sβ(λ) = λ− 2〈λ, β〉
〈β, β〉 β,

= λ+ β,

= w(λ),

and the element v = sβw fixes λ:

v(λ) = sβw(λ) = sβ(λ + β) = λ.

Since v has a nonzero fixed point, it sits inside a reflection group of rank
less than n, and by induction �′(v) ≤ n − 1. But since w = sβv, �

′(w) ≤ n,
as desired.

12.3 One way to prove any two Coxeter elements are conjugate is to show
every permutation of s1, . . . , sn can be obtained from the particular Coxeter
element c = s1s2 · · · sn by the operations of conjugation by a simple reflection,
e.g., sncsn = sns1 · · · sn−1, and by applying commutation relations sisj =
sjsi for appropriate i and j. Since there is only one of each generator, braid
relations are irrelevant.

For example, suppose c′ = s6s4s5s1s2s3 in some finite Coxeter group of
rank six. We will abbreviate the reduced expressions in what follows by listing
only the subscripts, i.e., we write c′ = 645123.

Our first step will be to notice that the s4 can commute with s6, so we
can first write c′ = 465123. Next we conjugate by s4 to get:

s4c
′s4 = 4(465123)4 = 651234.

Next we can conjugate by s6 to get

s6s4c
′s4s6 = 6(651234)6 = 512346 = 561234,

where the last equality comes from the fact that s6 commutes with each of
s1, s2, s3, and s4. Finally, conjugating by s5 and s6 gives the desired result:

s6s5s6s4c
′s4s6s5s6 = 65(561234)56 = 123456 = c.
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12.4 Since there are only two generators in I2(m), every element of odd
length is a reflection. This means that every element of even length can be
written as a product of at most two reflections.

The identity is the only element of reflection length zero, the m elements
of odd length have reflection length one, and the remaining m− 1 elements
have reflection length two. This shows

∑

w∈I2(m)

t�
′(w) = 1 +mt+ (m− 1)t2 = (1 + t)(1 + (m− 1)t),

as desired.

12.5 First, let us prove that conjugation preserves reflection length: �′(u) =
�′(wuw−1). It is clear that conjugating a single reflection, say sβ , results in
another reflection: wsβw

−1. Now if u = sβ1 · · · sβk
has reflection length k,

write

v = wuw−1,

= wsβ1sβ2 · · · sβk
w−1,

= wsβ1w
−1wsβ2w

−1w · · ·w−1wsβk
w−1,

= (wsβ1w
−1)(wsβ2w

−1)(w · · ·w−1)(wsβk
w−1),

which shows �′(v) ≤ k. But we have u = w−1vw, so the same reasoning
shows k = �′(u) ≤ �′(v) = k′. Thus k = k′, and we see conjugation preserves
reflection length, i.e., conjugation preserves ranks in the intervals [e, c] and
[e, c′].

Now we must show that conjugation takes cover relations to cover rela-
tions. As we have seen, if t is a reflection then wtw−1 is also a reflection. Thus
a cover u < v in [e, c], with v = ut, is mapped to the cover wuw−1 < wvw−1

in [e, wcw−1], since wvw−1 = (wuw−1)(wtw−1) = w(ut)w−1. This shows the
interval [e, wcw−1] is isomorphic to [e, c] for any w.

12.6 This follows immediately from the fact that elements not directly con-
nected in the Coxeter graph commute.

12.7 Choose the Coxeter element c = st in I2(m). Every reflection wsw−1

and wtw−1 lies below st in the absolute order:

st = (s)(t) = (t)(tst) = (tst)(tstst) = (sts)(s) = (ststs)(sts) = · · · .

If r is a reflection that begins with an s, then r = st(r′), where r′ is a
reflection. Hence st = rr′. If r begins with a t, then rst = r′ is also a
reflection and st = rr′ again.
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We conclude that the interval [e, c] contains every one of the m reflections,
so the Narayana polynomial is

∑

w∈[e,c]

x�′(w) = 1 +mx+ x2.

12.8 Suppose

u0 = e→ u1 = sβ1 → u2 = sβ1sβ2 → · · · → uk = sβ1 · · · sβk
= u,

is a saturated chain in [e, c] from e to u. If we apply the map w �→ w−1c to
this chain, we get a saturated chain

v = vk → vk−1 → · · · → v2 → v1 → v0 = c,

where vj = u−1
j c.

To see that vj < vj+1 is indeed a cover relation in [e, c], write

vj+1 = u−1
j+1c,

= sβj+1u
−1
j c,

= (u−1
j cc−1uj)(sβj+1u

−1
j c),

= u−1
j c(c−1ujsβj+1u

−1
j c),

= vjr,

with r = (c−1uj)sβj+1(u
−1
j c) a reflection.

12.9 This follows immediately from the fact that all the generators (and
hence all the reflections) of U and V commute. Hence every element w ∈W
can be written uniquely in the form w = uv with u ∈ U and v ∈ V , from
which it follows that �′(w) = �′(u) + �′(v). Geometrically, this makes sense
since U and V are the Coxeter groups for mutually orthogonal root systems.

12.10 We will show that the stack-sortable permutations are c-sortable with
the claimed choice of c. In the solution to Problem 4.4 it is showed that 231-
avoiding permutations are characterized by the fact that they are sorted by
the following operator S. If w is empty, S(w) := w. If w is not empty and
max{w(i)} = m, we write w = u·m·v for some (possibly empty) permutations
u and v. We then recursively define S(w) = S(u)S(v) ·m. Notice that if w is
sorted after one pass through the stack, this means that both u and v sorted
by one application of S, and moreover, all the letters in u are less than all
the letters of v. That is, w must avoid the pattern 231.

In terms of reduced expressions for w, the fact that all the letters of u
are less than the letters of v means that the simple transpositions used to
produce u commute with the simple transpositions involved with m · v. Thus
it will suffice to show that elements of the form m · v, with v a 231-avoiding
permutation, are c-sortable.



Hints and Solutions 451

Suppose w has the form w = m · v, with v ∈ Sm−1(231), and let c =
sm−1sm−2 · · · s2s1, so that the c-sorting word is

c∞ = sm−1 · · · s2s1|sm−1 · · · s2s1|sm−1 · · · s2s1| · · · .

Applying the stack-sorting operator to w can be expressed as follows:

S(w) = S(m · S(v)) = S(v) ·m.

As suggested above, this can be achieved in the following two steps:

• First, sort v with S while m sits to the left of v. By induction on m, this
can be realized as a c′-sortable element for c′ = sm−1sm−2 · · · s2. (Since m
is in position 1 of w, we never use s1.) Note that a c′-sortable element is
also a c-sortable element.

• Next, move m to the right of S(v). This is achieved by the following right
multiplication by simple transpositions,

(m · S(v)) · s1s2 · · · sm−1 = S(v) ·m.

Note this expression is equal to the identity, since we supposed v was
231-avoiding.

Write sik · · · si1 for the c′-sorting word used for v above. We have shown

w(si1 · · · sik) · s1s2 · · · sm−1 = e,

or
w = sm−1 · · · s2s1|(sik · · · si1).

(The bar is used for emphasis.) As a c′-sortable element, sik · · · si1 is a
c-sortable element that has no s1, so this shows w is in fact c-sortable.

Let us see this idea applied to the example of w = (13254)9(867) in S9.
We have placed parentheses around u and v for emphasis. First, sort v = 867
while keeping all other elements fixed:

w → ws7s8 = (13254)9678.

Next, move the 9 to the far right:

(ws7s8)s6s7s8 = (13254)6789.

Now we turn our attention to sorting u = 13254 = (132)5(4).

u→ us4 = (132)45,
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and
(us4)s2 = 12345.

Notice that these generators will commute with all of the generators used
above.

Putting it all together, we can write

(((ws7s8)s6s7s8)s4)s2 = 123456789 = e.

Therefore

w = s2s4s8s7s6s8s7,

= s8s7s6s4s2|s8s7,

as desired.

12.11 This is an unpublished result of Alexander Postnikov. Figure 12.7
gives the general idea. See Remark 2 of Victor Reiner’s paper [126].
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