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1 Introduction

Change-point tests address the question whether a stochastic process is stationary
during the entire observation period or not. In the case of independent data, there is
a well-developed theory; see the book by Csörgő and Horváth [6] for an excellent
survey. When the data are dependent, much less is known. The CUSUM statistic
has been intensely studied, even for dependent data; see again Csörgő and Horváth
[6]. The CUSUM test, however, is not robust against outliers in the data. In the
present paper, we study a robust test which is based on the two-sample Wilcoxon
test statistic. Simulations show that this test outperforms the CUSUM test in the
case of heavy-tailed data.

In order to derive the asymptotic distribution of the test, we study the stochastic
process
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where h W R
2 ! R is a kernel function. In the case of independent data, the

asymptotic distribution of this process has been studied by Csörgő and Horváth [5].
In the present paper, we extend their result to short range dependent data .Xi/i�1.
Similar results have been obtained for long range dependent data by Dehling, Rooch
and Taqqu [10], albeit with completely different methods.

U-statistics have been introduced by Hoeffding [14], where the asymptotic
normality was established both for the one-sample as well as the two-sample
U-statistic in the case of independent data. The asymptotic distribution of one-
sample U-statistics of dependent data was studied by Sen [18, 19], Yoshihara [22],
Denker and Keller [12, 13] and by Borovkova, Burton and Dehling [3] in the so-
called non-degenerate case, and by Babbel [1] and Leucht [16] in the degenerate
case. For two-sample U-statistics, Dehling and Fried [8] established the asymptotic
normality of

Pn1

iD1

Pn1Cn2

jDn1C1 h.Xi; Xj/ for dependent data, when n1; n2 ! 1. The
main theoretical result of the present paper is a functional version of this limit
theorem.

In our paper, we focus on data that can be represented as functionals of a mixing
process. In this way, we cover most examples from time series analysis, such as
ARMA and ARCH processes, but also data from chaotic dynamical systems. For a
survey of processes that have a representation as functional of a mixing process,
see e.g. Borovkova, Burton and Dehling [3]. Earlier references can be found in
Ibragimov and Linnik [15], Denker [11] and Billingsley [2].

2 Definitions and Main Results

Given the samples X1; : : : ; Xn1 and Y1; : : : ; Yn2 , and a kernel h.x; y/, we define the
two-sample U-statistic

Un1;n2 WD 1

n1 n2

n1X

iD1

n2X

jD1

h.Xi; Yj/: (2)

More generally, one can define U-statistics with multivariate kernels h W Rk �R
l !

R. In the present paper, for the ease of exposition, we will restrict attention to
bivariate kernels h.x; y/. The main results, however, can easily be extended to the
multivariate case.

Assuming that .Xi/i�1 and .Yi/i�1 are stationary processes with one-dimensional
marginal distribution functions F and G, respectively, we can test the hypothesis
H W F D G using the two-sample U-statistic. E.g., the kernel h.x; y/ D y � x leads
to the U-statistic

Un1;n2 D 1

n1 n2

n1X

iD1

n2X

jD1

.Yj � Xi/ D 1

n2

n2X

jD1

Yj � 1

n1

n1X

iD1

Xi; (3)
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and thus to the familiar two-sample Gauß-test. Similarly, the kernel h.x; y/ D 1fx�yg
leads to the U-statistic

Un1;n2 D 1

n1 n2

n1X

iD1

n2X

jD1

1fXi�Xjg; (4)

and thus to the 2-sample Mann-Whitney-Wilcoxon test.
In the present paper, we investigate tests for a change-point in the mean of a

stochastic process .Xi/i�1. We consider the model

Xi D �i C �i; i � 1; (5)

where .�i/i�1 are unknown constants and where .�i/i�1 is a stochastic process. We
want to test the hypothesis H W �1 D : : : D �n against the alternative that there
exists 1 � k � n � 1 such that �1 D : : : D �k ¤ �kC1 D : : : D �n.

Tests for the change-point problem are often derived from 2-sample tests applied
to the samples X1; : : : ; Xk and XkC1; : : : ; Xn, for all possible 1 � k � n � 1. For two-
sample tests based on U-statistics with kernel h.x; y/, this leads to the test statisticPk

iD1

Pn
jDkC1 h.Xi; Xj/, 1 � k � n, and thus to the process

Un.�/ D
Œn��X

iD1

nX

jDŒn��C1

h.Xi; Xj/; 0 � � � 1: (6)

In this paper, we will derive a functional limit theorem for the process .Un.�//0���1,
n � 1. Specifically, we will show that under certain technical assumptions on the
kernel h and on the process .Xi/i�1, a properly centered and renormalized version
of .Un.�//0���1 converges to a Gaussian process.

In our paper, we will assume that the process .�i/i�0 is weakly dependent. More
specifically, we will assume that .�i/i�0 can be represented as a functional of an
absolutely regular process.

Definition 1. (i) Given a stochastic process .Xn/n2Z we denote by A k
l the

��algebra generated by .Xk; : : : ; Xl/. The process is called absolutely regular if

ˇ.k/ D sup
n

8
<

:sup
JX

jD1

IX

iD1

jP.Ai \ Bj/ � P.Ai/P.Bj/j
9
=

; ! 0; (7)

as k ! 1, where the last supremum is over all finite A n
1 �measurable

partitions .A1; : : : ; AI/ and all finite A 1
nCk�measurable partitions .B1; : : : ; BJ/:

(ii) The process .Xn/n�1 is called a two-sided functional of an absolutely regular
sequence if there exists an absolutely regular process .Zn/n2Z and a measurable
function f W RZ ! R such that

Xi D f ..ZiCn/n2Z/:
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Analogously, .Xn/n�1 is called a one-sided functional if Xi D f ..ZiCn/n�0/.
(iii) The process .Xn/n�1 is called 1-approximating functional with coefficients

.ak/k�1 if

E jXi � E.XijZi�k; : : : ; ZiCk/j � ak: (8)

In addition to weak dependence conditions on the process .Xi/i�1, the asymptotic
analysis of the process (6) requires some continuity assumptions on the kernel
functions h.x; y/. We use the notion of 1-continuity, which was introduced by
Borovkova, Burton and Dehling [3]. Alternative continuity conditions have been
used by Denker and Keller [13].

Definition 2. The kernel h.x; y/ is called 1-continuous, if there exists a function
� W .0; 1/ ! .0; 1/ with �.�/ D o.1/ as � ! 0 such that for all � > 0

E.jh.X0; Y/ � h.X; Y/j1fjX�X0j��g/ � �.�/ (9)

E.jh.X; Y 0/ � h.X; Y/j1fjY�Y0j��g/ � �.�/ (10)

for all random variables X; X0; Y and Y 0 having the same marginal distribution as X1,
and such that X; Y are either independent or have joint distribution P.X1;Xk/, for some
integer k.

The most important technical tool in the study of U-statistics is Hoeffding’s
decomposition, originally introduced by Hoeffding [14]. If Ejh.X; Y/j < 1 for
two independent random variables X and Y with the same distribution as X1, we can
write

h.x; y/ D 	 C h1.x/ C h2.y/ C g.x; y/; (11)

where the terms on the right-hand side are defined as follows:

	 D
Z Z

h.x; y/dF.x/dF.y/

h1.x/ D
Z

h.x; y/dF.y/ � 	

h2.y/ D
Z

h.x; y/dF.x/ � 	

g.x; y/ D h.x; y/ � h1.x/ � h2.y/ � 	:

Here, F denotes the distribution function of the random variables Xi. Observe that,
by Fubini’s theorem,

E.h1.X// D E.h2.X// D 0:
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In addition, the kernel g.x; y/ is degenerate in the sense of the following definition.

Definition 3. Let .Xi/i�1 be a stationary process, and let g.x; y/ be a measurable
function. We say that g.x; y/ is degenerate if

E.g.x; X1// D E.g.X1; y// D 0; (12)

for all x; y 2 R.

The following theorem, a functional central limit theorem for two-sample
U-statistics of dependent data, is the main theoretical result of the present paper.

Theorem 1. Let .Xn/n�1 be a 1-approximating functional with constants .ak/k�1 of
an absolutely regular process with mixing coefficients .ˇ.k//k�1, and let h.x; y/ be
a 1-continuous bounded kernel, satisfying

1X

kD1

k2.ˇ.k/ C p
ak C �.ak// < 1; (13)

Then, as n ! 1, the DŒ0; 1�-valued process

Tn.�/ WD 1

n3=2

Œ�n�X

iD1

nX

jDŒ�n�C1

.h.Xi; Xj/ � 	/; 0 � � � 1; (14)

converges in distribution towards a mean-zero Gaussian process with representation

Z.�/ D .1 � �/W1.�/ C �.W2.1/ � W2.�//; 0 � � � 1; (15)

where .W1.�/; W2.�//0���1 is a two-dimensional Brownian motion with mean zero
and covariance function Cov.Wk.s/; Wl.t// D min.s; t/�kl, where

�kl D E.hk.X0/hl.X0// C 2

1X

jD1

Cov.hk.X0/; hl.Xj//; k; l D 1; 2: (16)

Remark 1. (i) In the case of i.i.d. data, Theorem 1 was established by Csörgő and
Horváth [5]. In the case of long-range dependent data, weak convergence of the
process .Tn.�//0���1 has been studied by Dehling, Rooch and Taqqu [10] and
by Rooch [17], albeit with a normalization different from n3=2.

(ii) Using the representation (15), one can calculate the autocovariance function of
the process .Z.�//0���1. We obtain

Cov.Z.�/; Z.�// D �11Œ.1 � �/.1 � �/ minf�; �g�
C�22Œ��.1 � � � � C minf�; �g/�
C�12Œ�.1 � �/.� � minf�; �g/ C �.1 � �/.� � minf�; �g/�:
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(iii) We conjecture that a similar theorem also holds for unbounded kernels under
some moments conditions and faster mixing rates (similar to Theorem 2.7 of
Sharipov, Wendler [20]). As our main application is the Wilcoxon test, where
the kernel is bounded, we restrict the theorem to the case of bounded kernels.

(iv) For the kernel h.x; y/ D y � x, we can analyze the asymptotic behavior of the
process Tn.�/ using the functional central limit theorem (FCLT). Note that,
since Xj � Xi D .Xj � E.Xj// � .Xi � E.Xi//, we may assume without loss of
generality that Xi has mean zero. Then we get the representation

Tn.�/ D 1

n3=2

Œn��X

iD1

nX

jDŒn��C1

.Xj � Xi/

D Œn��

n

1p
n

nX

iD1

Xi � 1p
n

Œn��X

iD1

Xi: (17)

Thus, weak convergence of .Tn.�//0���1 can be derived from the FCLT for
the partial sum process 1p

n

PŒn��
iD1 Xi. Such FCLTs have been proved under a

wide range of conditions, e.g. for functionals of uniformly mixing data in
Billingsley [2].

We finally want to state an important special case of Theorem 1, namely when
the kernel is anti-symmetric, i.e. when h.x; y/ D �h.y; x/. Kernels that occur in
connection with change-point tests usually have this property. For anti-symmetric
kernels, the limit process has a much simpler structure; moreover one can give a
simpler direct proof in this case. Note that for independent random variables X; Y
we have by anti-symmetry that Eh.X; Y/ D �Eh.Y; X/ D �Eh.X; Y/ and so 	 D
Eh.X; Y/ D 0.

Theorem 2. Let .Xn/n�1 be a 1-approximating functional with constants .ak/k�1

of an absolutely regular process with mixing coefficients .ˇ.k//k�1, and let h.x; y/

be a 1-continuous bounded anti-symmetric kernel, such that (13) holds. Then, as
n ! 1, the DŒ0; 1�-valued process

Tn.�/ WD 1

n3=2

Œ�n�X

iD1

nX

jDŒ�n�C1

h.Xi; Xj/; 0 � � � 1; (18)

converges in distribution towards the mean-zero Gaussian process � W.0/.�/; 0 �
� � 1, where .W0.�//0���1 is a standard Brownian bridge and

�2 D Var.h1.X1// C 2

1X

iD2

Cov.h1.X1/; h1.Xk//: (19)
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3 Application to Change Point Problems

In this section, we will apply Theorem 1 in order to derive the asymptotic
distribution of two change-point test statistics. Specifically, we wish to test the
hypothesis

H0 W �1 D : : : D �n (20)

against the alternative of a level shift at an unknown point in time, i.e.

HA W �1 D : : : D �k ¤ �kC1 D : : : D �n; for some k 2 f1; : : : ; n � 1g: (21)

We consider the following two test statistics,

T1;n D max
1�k<n

ˇ̌
ˇ̌
ˇ̌

1

n3=2

kX

iD1

nX

jDkC1

�
1fXi<Xjg � 1=2

�
ˇ̌
ˇ̌
ˇ̌ (22)

T2;n D max
1�k<n

ˇ̌
ˇ̌
ˇ̌

1

n3=2

kX

iD1

nX

jDkC1

�
Xj � Xi

�
ˇ̌
ˇ̌
ˇ̌ : (23)

Theorem 3. Let .Xn/n�1 be a 1-approximating functional with constants .ak/k�1

of an absolutely regular process with mixing coefficients .ˇ.k//k�1, satisfying (13),
and assume that X1 has a distribution function F.x/ with bounded density. Then,
under the null hypothesis H0,

T1;n ! �1 sup
0���1

jW.0/.�/j; (24)

where .W.0/.�//0���1 denotes the standard Brownian bridge process, and where

�2
1 D Var.F.X1// C 2

1X

kD2

Cov.F.X1/; F.Xk//: (25)

Assuming that EjXij2Cı < 1, ˇ.k/ D O.k�.2Cı/=ı/ and ak D O.k�.1Cı/=2ı/, and
under the null hypothesis H0,

T2;n ! �2 sup
0���1

jW.0/.�/j; (26)

where

�2
2 D Var.X1/ C 2

1X

kD2

Cov.X1; Xk/: (27)
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Proof. We will establish weak convergence of T1;n. In order to do so, we will apply
Theorem 1 to the kernel h.x; y/ D 1fx<yg. Borovkova, Burton and Dehling [3]
showed that this kernel is 1-continuous. By continuity of the distribution function
of X1, we get that 	 D RR

1fx<ygdF.x/dF.y/ D 1=2. Moreover, we get

h1.x/ D P.x < X1/ � 1

2
D 1

2
� F.x/

h2.x/ D P.X1 < x/ � 1

2
D F.x/ � 1

2
:

Note that h2.x/ D �h1.x/. Hence W2.�/ D �W1.�/, and thus the limit process in
Theorem 1 has the representation

Z.�/ D .1 � �/W1.�/ C �.W2.1/ � W2.�// D W1.�/ � �W1.1/:

Here W1.�/ is a Brownian motion with variance �2
1 . Weak convergence of T2;n can

be shown directly from the functional central limit theorem for the partial sum
process; see Corollary 3.2 of Wooldridge and White [21]. We have to check the
L2-near epoch dependence. Note that by our assumptions

E jX0 � EŒX0jZ�l; : : : ; Zl�j2

D E

"
jX0 � EŒX0jZ�l; : : : ; Zl�j2 1

fjX0�EŒX0jZ�l;:::;Zl�j�a
�

1
1Cı

l g

#

C E

"
jX0 � EŒX0jZ�l; : : : ; Zl�j2 1

fjX0�EŒX0jZ�l;:::;Zl�j>a
�

1
1Cı

l g

#

� a
� 1

1Cı

l E jX0 � EŒX0jZ�l; : : : ; Zl�j C a
ı

1Cı

l E jX0 � EŒX0jZ�l; : : : ; Zl�j2Cı

� Ca
ı

1Cı

l D O.l�1=2/; (28)

so the condition of Corollary 3.2 of Wooldridge and White [21] holds. Hence, the
partial sum process . 1p

n

PŒnt�
iD1 Xi/0�t�1 converges in distribution to .�2 W.t//0�t�1,

where W is standard Brownian motion. Convergence in distribution of T2;n follows
by an application of the continuous mapping theorem.

Remark 2. (i) The distribution of sup0���1 jW.�/j is the well-known Kolmogorov-
Smirnov distribution. Quantiles of the Kolmogorov-Smirnov distribution can
be found in most statistical tables.

(ii) In order to apply Theorem 3, we need to estimate the variances �2
1 and

�2
2 . Regarding �2

2 given in expression (27), we apply the non-overlapping
subsampling estimator
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O�2
2 D 1

Œn=ln�

Œn=ln�X

iD1

1

ln

0

@
ilnX

jD.i�1/lnC1

Xj � ln
n

nX

jD1

Xj

1

A
2

(29)

investigated by Carlstein [4] for ˛-mixing data. In case of AR(1)-processes,
Carlstein derives

ln D max.dn1=3.2
=.1 � 
2//2=3e; 1/ (30)

as the choice of the block length which minimizes the MSE asymptotically, with

 being the autocorrelation coefficient at lag 1.

Regarding �2
1 given in (25), one faces the additional challenge that the distri-

bution function F is unknown. This problem has been addressed, e.g. in Dehling,
Fried, Sharipov, Vogel and Wornowizki [9], for the case of functionals of absolutely
regular processes and F being estimated by the empirical distribution function Fn.
The authors find the subsampling estimator for �2

1

O�1 D 1

Œn=ln�

r
�

2

Œn=ln�X

iD1

1p
ln

ˇ̌
ˇ̌
ˇ̌

ilnX

jD.i�1/lnC1

Fn.Xj/ � ln
n

nX

jD1

Fn.Xj/

ˇ̌
ˇ̌
ˇ̌ ; (31)

employing non-overlapping subsampling, to give smaller biases, but somewhat
larger MSEs than the corresponding overlapping subsampling estimator. The adap-
tive choice of the block length ln proposed by Carlstein worked well in their
simulations if the data were generated from a stationary ARMA(1,1) model and
an estimate of 
 was plugged in. In the next section, we will explore this and other
proposals in situations with level shifts and normally or heavy-tailed innovations.

4 Simulation Results

The assumptions regarding the underlying process .Xi/ in Theorem 1 are satisfied
by a wide range of time series, such as AR and ARMA processes. To illustrate the
results and to investigate the finite sample behavior and the power of the tests based
on T1;n and T2;n, we will give some simulation results. We study the underlying
change-point model

Xi D
�

�i if i D 1; : : : ; Œn��

� C �i if i D Œn�� C 1; : : : ; n:
(32)

Within this model, the hypothesis of no change is equivalent to � D 0. We assume
that the noise follows an AR(1) process, i.e. that

�i D 
 �i�1 C �i; (33)
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Table 1 Empirical level of the tests based on T1;n and T2;n, for n D 200,
with fixed or adaptive subsampling block length ln and overlapping (ol) or non-
overlapping (nol) subsampling. The results are for AR(1) observations with
different lag-one autocorrelations 
 and different t3-distributed innovations, and
based on 4000 simulation runs each

T1;n T2;n

ln fixed Adaptive ln fixed Adaptive

� 
 Unadj. ol nol ol nol Unadj. ol nol ol nol

1 0.0 2.8 2.0 2.9 2.0 2.2 4.5 2.9 3.9 3.7 3.8

1 0.4 24.5 2.5 3.1 3.5 3.9 34.2 3.9 4.9 5.5 6.0

1 0.8 81.6 6.2 6.5 1.9 2.5 91.5 10.5 10.6 3.4 4.0

3 0.0 3.1 2.2 2.9 2.2 2.9 3.8 2.5 3.5 3.1 3.1

3 0.4 26.9 2.4 3.0 3.2 3.0 32.0 3.3 3.8 4.3 4.9

3 0.8 82.7 6.9 7.0 2.0 2.8 90.6 10.2 10.5 3.2 3.9

where �1 < 
 < 1, and where the innovations �i are i.i.d. random variables
with mean zero, bounded density and finite second moments. The innovations �i

are generated from a standard normal or a t�-distribution with � D 3 degrees of
freedom, scaled to have the same 84.13 % percentile as the standard normal, which
is 1. The autoregression coefficient is varied in 
 D f0:0; 0:4; 0:8g, corresponding
to zero, moderate or strong positive autocorrelation, and the sample size is n D 200.
For the choice of the block length we used Carlstein’s adaptive rule outlined above,
or a fixed block length of ln D 9, which is in good agreement with the empirical
findings of Dehling et al. [10] for larger sample sizes, and their theoretical result
that ln should be chosen as o.

p
n/ to achieve consistency. For comparison, we also

include tests employing overlapping subsampling for estimation of the asymptotical
variance, applying the same block lengths as the non-overlapping versions.

Table 1 contains the empirical levels (i.e. the fraction of rejections) of the tests
with an asymptotic level of 5 %, obtained from 4000 simulation runs for each
situation. Note that the tests developed under the assumption of independence,
not adjusting for autocorrelation, become strongly oversized with an increasingly
positive autocorrelation, i.e. they reject a true null hypothesis far too often, and are
practically useless already for 
 D 0:4. The performance of the adjusted tests is
much better in this respect and in a good agreement with the asymptotic results.
Only if the autocorrelation is strong (
 D 0:8), the tests with a fixed block length
become somewhat anti-conservative (oversized), and even more so for the CUSUM-
test. Longer block lengths are needed for stronger positive autocorrelations, and
Carlstein’s adaptive block length (30) adjusts for this. There is little difference
between the tests employing overlapping and non-overlapping subsampling here.

In order to investigate the powers of the tests under the alternative, we consider
shifts of increasing height �, generating 400 data sets for each situation. The
sample size is again n D 200, and the change point is at observation number

 D Œ�n� D 100.
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Figure 1 illustrates the powers of the different versions of the tests in case of
Gaussian or t3-distributed innovations and several autocorrelation coefficients 
.
Under normality, the CUSUM test T2;n is somewhat more powerful than the test
T1;n based on the Wilcoxon statistic, while under the t3-distribution it is the other
way round. The CUSUM test with the fixed block length considered here becomes
strongly oversized if 
 is large, while this effect is less severe for the test based on
the Wilcoxon statistic. Carlstein’s adaptive choice of the block length increases the
power if 
 is small and improves the size of the test substantially if 
 is large. The
tests employing overlapping subsampling (not shown here) perform even slightly
more powerful in case of zero or moderate autocorrelations, but much less powerful
in case of strong autocorrelations. We have also considered the case of negative
autocorrelation (
 D �0:4, not shown here). We obtained similar results for the
power of the test based on the Wilcoxon statistic relatively to that of the CUSUM
test, and little difference between using a fixed or the adaptive block length.

The tests with Carlstein’s adaptive choice of the block length could be improved
further by using a more sophisticated estimate of 
 than the ordinary sample
autocorrelation used here. The latter is positively biased in the presence of a shift,
which leads to too large choices of the block length. This negative effect becomes
more severe for larger values of 
, since the plug-in-estimate of the asymptotically
MSE-optimal choice of ln increases more rapidly if O
 is close to 1, while it is rather
stable for moderate and small values of O
. In our study, for 
 D 0 the average
value chosen for ln increases from about 2 to about 3, only, as the height of the
shift increases, while it increases from about 6 to about 9 if 
 D 0:4, and even from
about 16 to about 24 if 
 D 0:8. An estimate of the autocorrelation coefficient which
resists shifts could be used, e.g. by applying a stepwise procedure which estimates
the possible time of occurrence of a shift before calculating O
 from the corrected
data, but this will not be pursued here.

5 Data Example

For illustration we apply the tests to time series data representing the monthly
average daily minimum temperatures in Potsdam, Germany, measured between
January 1893 and December 1992. The 1200 data points for these 100 years have
been deseasonalized by subtracting the median value from each calendar month, see
Fig. 2. Our interest is in whether the level of this time series is constant or whether
there is a monotonic change. Such a systematic change is likely to show a trend-like
behavior and not a sharp shift, but nevertheless we would like a change-point test to
detect such a change if its null hypothesis is a constant level.

The empirical autocorrelation and partial autocorrelation functions suggest a
first order autoregressive model with lag-one autocorrelation about 0.25 for the
deseasonalized data. The test statistics take their maximum values after time point
595, i.e. rather in the middle of the time series. The resulting p-values are 0.23 and
0.16 for the CUSUM test with the fixed and the adaptive block length, respectively.
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Fig. 1 Power of the tests in case of a shift in the middle of an AR(1) process with Gaussian (left)
or t3-innovations (right) and different lag one correlations 
 D 0:0 (top), 
 D 0:4 (middle) or

 D 0:8 (bottom), n D 200. Wilcoxon test Tn;1 (bold lines) and CUSUM test Tn;2 (thin lines).
Adjustment by non-overlapping subsampling with fixed (black) or adaptive block length (dashed)
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Fig. 2 Deseasonalized time series representing the monthly average daily minimum temperatures
in Potsdam, Germany

As opposed to this, both versions of the Wilcoxon based test become significant
as the corresponding p-values are 0.04 and 0.015, respectively. The differences
between the results agree with the better power behavior of the Wilcoxon based test
relatively to the CUSUM test in case of the (left-)skewed distributions of minimum
temperatures, and the better power of the versions employing the adaptive block
length over those with the fixed block length considered here in case of small
positive autocorrelations. The sample median of the second time period is about
0.4 degrees larger than that of the first period.

6 Auxiliary Results

In this section, we will prove some auxiliary results which will play a crucial role in
the proof of Theorem 1. The main result of this section is the following proposition,
which essentially shows that the degenerate part in the Hoeffding decomposition of
the U-statistic Tn.�/ is uniformly negligible.

Proposition 1. Let .Xn/n�1 be a 1-approximating functional with constants .ak/k�1

of an absolutely regular process with mixing coefficients .ˇ.k//k�1, satisfying

1X

kD1

k.ˇ.k/ C p
ak C �.ak// < 1: (34)

Moreover, let g.x; y/ be a 1-continuous bounded degenerate kernel. Then, as
n ! 1,

1

n3=2
sup

0���1

ˇ̌
ˇ̌
ˇ̌

Œn��X

iD1

nX

jDŒn��C1

g.Xi; Xj/

ˇ̌
ˇ̌
ˇ̌ ! 0 (35)

in probability.
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The proof of Proposition 1 requires some moment bounds for increments of
U-statistics of degenerate kernels, which we will now state as separate lemmas.

Lemma 1. Let .Xn/n�1 be a 1-approximating functional with constants .ak/k�1 of
an absolutely regular process with mixing coefficients .ˇ.k//k�1, satisfying

1X

kD1

k.ˇ.k/ C p
ak C �.ak// < 1: (36)

Moreover, let g.x; y/ be a 1-continuous bounded degenerate kernel. Then, there
exists a constant C1 such that

E

0

@
Œn��X

iD1

nX

jDŒn��C1

g.Xi; Xj/

1

A
2

� C1Œn��.n � Œn��/: (37)

Proof. We can write

E

0

@
Œn��X

iD1

nX

jDŒn��C1

g.Xi; Xj/

1

A
2

D
Œn��X

iD1

nX

jDŒn��C1

E.g.Xi; Xj//
2

C 2
X

1�i1¤i2�Œn��

X

Œn��C1�j1¤j2�n

E
�
g.Xi1 ; Xj1 /g.Xi2 ; Xj2 /

�
(38)

The elements of the first sum all are bounded, hence

Œn��X

iD1

nX

jDŒn��C1

E.g.Xi; Xj//
2 � CŒn��.n � Œn��/: (39)

Concerning the second sum, by Lemma 5, we get

X

1�i1<i2�Œn��

X

Œn��C1�j1<j2�n

E
�
g.Xi1 ; Xj1 /g.Xi2 ; Xj2 /

�

� 4 S
X

1�i1<i2�Œn��

X

Œn��C1�j1�j2�n

�.aŒk=3�/

C8 S2
X

1�i1<i2�Œn��

X

Œn��C1�j1�j2�n

.
p

aŒk=3� C ˇ.Œk=3�// (40)

with k D maxfji2 � i1j; jj2 � j1jg. We will first treat the summands with k D i2 � i1.
Suppose for one moment that k is fixed and we will bound the number of indices
that appear in the sum. Observe that in this case we have Œn�� ways to choose i1,
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once i1 is chosen we have one way to pick i2 because i2 D i1 C k. For j1 we have
as before n � Œn�� ways to pick this index and then for each j1, j2 need to be in the
interval Œj1; j1 C k� and there are exactly k integers in such interval.

X

1�i1<i2�Œn��

X

Œn��C1�j1<j2�n

�
4S�.aŒk=3�/ C 8S2p

aŒk=3� C 8S2ˇ.Œk=3�/
�

� CŒn��.n � Œn��/

 
nX

kD1

k�.ak/ C
nX

kD1

k
p

ak C
nX

kD1

kˇ.k/

!
� CŒn��.n � Œn��/

(41)

Analogously we can find the bounds for the terms with k D i1 � i2, k D j2 � j1 and
k D j1 � j2 using the conditions of summability.

We now define the process G.�/, 0 � � � 1, by

Gn.�/ WD n�3=2

Œn��X

iD1

nX

jDŒn��C1

g.Xi; Xj/; 0 � � � 1: (42)

Lemma 2. Under the conditions of Lemma 1, there exists a constant C such that

E.jGn.�/ � Gn.�/j2/ � C

n
.� � �/; (43)

for all 0 � � � � � 1.

Proof. We can write

E.jGn.�/ � Gn.�/j2/ (44)

� 2

n3
E

0

@
Œn��X

iD1

Œn��X

jDŒn��C1

g.Xi; Xj/

1

A
2

C 2

n3
E

0

@
Œn��X

iDŒn��C1

nX

jDŒn��C1

g.Xi; Xj/

1

A
2

D 2

n3
E

0

@
Œn��X

iD1

Œn��X

jDŒn��C1

g.Xi; Xj/

1

A
2

C 2

n3
E

0

@
Œn���Œn��X

iD1

n�Œn��X

jDŒn���Œn��C1

g.Xi; Xj/

1

A
2

� C
1

n3
.Œn��.Œn�� � Œn��/ C .Œn�� � Œn��/.n � Œn��// � C

n
.� � �/

using the stationarity of the process .Xn/n2N and Lemma 1.
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Proof of Proposition 1. From Lemma 2 we obtain, using Chebyshev’s inequality,

P .jGn.�/ � Gn.�/j � �/ � 1

�2

C

n
.� � �/; (45)

for all � > 0. Thus we get for 0 � k � m � n with k; m; n 2 N

P

�ˇ̌
ˇ̌Gn

�m

n

�
� Gn

�
k

n

�ˇ̌
ˇ̌ � �

�
� 1

�2
E

�
Gn

�m

n

�
� Gn

�
k

n

��2

� 1

�2

C

n2
.m � k/ � 1

�2

C

n5=3
.m � k/4=3 (46)

as m � k � n. Now consider the variables

�i D
�

Gn
�

i
n

� � Gn
�

i�1
n

�
if i D 1; : : : ; n � 1

0 else
(47)

and suppose that Si D �1 C �2 C : : : C �i with S0 D 0, then Si D Gn. i
n /. In

consequence the inequality (46) is equivalent to

P.jSm � Skj � �/ � 1

�2

	
C3=4

n5=4
.m � k/


4=3

for 0 � k � m � n: (48)

So the assumption of Theorem 7 are satisfied with the variables (47) in the role of
the �i, ˇ D 1=2, ˛ D 2=3 and ul D C3=4=n5=4, uo D 0 and hence

P

�
max

1�i�n�1
jSij � �

�
� K

�2

	
C3=4

n5=4
.n � 1/


4=3

� KC

�2n1=3
(49)

where K depends only of ˛ and ˇ. Thus, (35) holds as n ! 1. �

7 Proof of Main Results

In this section, we will prove Theorems 1 and 2. Note that Theorem 2 is a direct
consequence of Theorem 1, applied to anti-symmetric kernels. We will nevertheless
present a direct proof of Theorem 2, since this proof is much simpler than the proof
in the general case. Moreover, Theorem 2 covers those cases that are most relevant
in applications.

The first part of the proof is identical for both Theorems 1 and 2. Note that,
for each � 2 Œ0; 1�, the statistic Tn.�/ is a two-sample U-statistic. Thus, using the
Hoeffding decomposition (11), we can write Tn.�/ as
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Tn.�/ D 1

n3=2

0

@
Œ�n�X

iD1

nX

jDŒ�n�C1

.h1.Xi/ C h2.Xj/ C g.Xi; Xj//

1

A

D 1

n3=2

0

@.n � Œn��/

Œn��X

iD1

h1.Xi/ C Œn��

nX

jDŒn��C1

h2.Xj/ C
Œ�n�X

iD1

nX

jDŒ�n�C1

g.Xi; Xj/

1

A

(50)

By Proposition 1, we know that

1

n3=2
sup

0���1

ˇ̌
ˇ̌
ˇ̌

Œ�n�X

iD1

nX

jDŒ�n�C1

g.Xi; Xj/

ˇ̌
ˇ̌
ˇ̌ ! 0

in probability. Thus, by Slutsky’s lemma, it suffices to show that the sum of the first
two terms, i.e.

0

@n � Œn��

n3=2

Œn��X

iD1

h1.Xi/ C Œn��

n3=2

nX

jDŒn��C1

h2.Xj/

1

A

0���1

(51)

converges in distribution to the desired limit process.

Proof of Theorem 2. It remains to show that (51) converges in distribution to
�W.0/.�/; 0 � � � 1, where .W.0/.�//0���1 is standard Brownian bridge on Œ0; 1�,
and where �2 is defined in (19). By antisymmetry of the kernel h.x; y/, we obtain
that h2.x/ D �h1.x/. Hence, in this case, (51) can be rewritten as

n � Œn��

n3=2

Œn��X

iD1

h1.Xi/ � Œn��

n3=2

nX

iDŒn��C1

h1.Xi/ D 1

n1=2

Œn��X

iD1

h1.Xi/ � Œn��

n3=2

nX

iD1

h1.Xi/:

By Proposition 2.11 and Lemma 2.15 of Borovkova, Burton and Dehling [3], the
sequence .h1.Xi//i�1 is a 1-approximating functional with approximating constant
C

p
ak. Since h1.Xi/ is bounded, the L2-near epoch dependence in the sense of

Wooldridge and White [21] also holds, with the same constants. Moreover, the
underlying process .Zn/n�1 is absolutely regular, and hence also strongly mixing.
Thus we may apply the invariance principle in Corollary 3.2 of Wooldridge and
White [21], and obtain that the partial sum process

0

@ 1

n1=2

Œn��X

iD1

h1.Xi/

1

A

0���1

(52)
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converges weakly to Brownian motion .W.�//0���1 with Var.W.1// D �2.
The statement of the Theorem follows with the continuous mapping theorem for
the mapping x.t/ 7! x.t/ � tx.1/; 0 � t � 1.

The proof of Theorem 1 requires an invariance principle for the partial sum
process of R

2-valued dependent random variables; see Proposition 2 below. For
mixing processes, such invariance principles have been established even for partial
sums of Hilbert space valued random vector, e.g. by Dehling [7]. In this paper, we
provide an extension of these results to functionals of mixing processes.

Proposition 2. Let .Xn/n2N be a 1-approximating functional of an absolutely
regular process with mixing coefficients .ˇ.k// and let h1.�/, h2.�/ be bounded1–
continuous functions with mean zero, such that

X

k

k2.ˇ.k/ C ak C �.ak// < 1: (53)

Then, as n ! 1,

0

@ 1p
n

Œnt�X

iD1

�
h1.Xi/

h2.Xi/

�1

A

0�t�1

�!
�

W1.t/
W2.t/

�

0�t�1

(54)

where .W1.t/; W2.t//0�t�1 is a two-dimensional Brownian motion with mean zero
and covariance E.Wk.s/ Wl.t// D min.s; t/�kl, where �k;l as defined in (16).

Proof. To prove (54), we need to establish finite dimensional convergence and
tightness. Concerning finite-dimensional convergence, by the Cramér-Wold device
it suffices to show the convergence in distribution of a linear combination of the
coordinates of the vector

0

@ 1p
n

Œnt1�X

iD1

h1.Xi/;
1p
n

Œnt1�X

iD1

h2.Xi/; : : : ;
1p
n

Œntj�X

iD1

h1.Xi/;
1p
n

Œntj�X

iD1

h2.Xi/;

: : : ;
1p
n

nX

iD1

h1.Xi/;
1p
n

nX

iD1

h2.Xi/

!
; (55)

for 0 D t0 < t1 < : : : < tj < : : : < tk D 1. Any such linear combination can be
expressed as

kX

jD1

1p
n

Œntj�X

iDŒntj�1�C1

.ajh1.Xi/ C bjh2.Xi//; (56)
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for .aj; bj/
k
jD1 2 R

2 k. By using the Cramér-Wold device again, the weak conver-
gence of this sum is equivalent to the weak convergence of the vector

0

@ 1p
n

Œnt1�X

iD1

.a1h1.Xi/ C b1h2.Xi//; : : : ;
1p
n

Œntj�X

iDŒntj�1�C1

.ajh1.Xi/ C bjh2.Xi//;

: : : ;
1p
n

nX

iDŒntk�1�C1

.akh1.Xi/ C bkh2.Xi//

1

A (57)

to

�
a1.W1.t1/ � W1.t0// C b1.W2.t1/ � W2.t0//; : : : ;

ak.W1.tk/ � W1.tk�1// C bk.W2.tk/ � W2.tk�1//
�
: (58)

Since .Xn/n�1 is a 1-approximating functional, it can be coupled with a process
consisting of independent blocks. Given integers L WD Ln D Œn3=4� and ln D Œn1=2�,
we introduce the .l; L/ blocking .Bm/m�0 of the variables .ajh1.Xi/ C bjh2.Xi// with
i D Œntj�1� C 1; : : : ; Œntj�, j D 0; : : : ; k and

Bm WD
m.LnC.m�1/ln/X

iD.m�1/.LnCln/C1

.ajh1.Xi/ C bjh2.Xi// (59)

and separating blocks

QBm WD
m.LnCln/X

iDmLnC.m�1/lnC1

.ajh1.Xi/ C bjh2.Xi//: (60)

By Theorem 5 there exists a sequence of independent blocks .B0
m/ with the same

blockwise marginal distribution as .Bm/ and such that

P
�jBm � B0

mj � 2˛l
� � 1 � ˇ.l/ � 2˛l;

where ˛l WD .2
P1

kDŒln=3� ak/
1=2. We can express the components of our vector (57)

as a sum of blocks

ŒntjC1�X

iDŒntj�C1

.ajh1.Xi/ C bjh2.Xi//

D

h ntjC1
LCl

i

X

mD
h ntj

LCl

i
C1

Bm C

h ntjC1
LCl

i

X

mD
h ntj

LCl

i
C1

QBm C
X

Rj

.ajh1.Xi/ C bjh2.Xi//; (61)
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where Rj denotes the set of indices not contained in the blocks. Observe that by the
Lemma 3 for any set A � f1; : : : ; ng

E

 
X

i2A

.ajh1.Xi/ C bjh2.Xi//

!2

� C#A (62)

and hence

E

0

BB@

h ntjC1
LCl

i

X

mD
h ntj

LCl

i
C1

QBm

1

CCA

2

� C
n

Ln C ln
ln � Cn3=4; (63)

so it follows with the Chebyshev inequality that this term is negligible. For the last
summand, we have that

E

0

@
X

Rj

.ajh1.Xi/ C bjh2.Xi//

1

A
2

� C2.Ln C ln/ � Cn3=4: (64)

Furthermore, we need to show that we can replace the blocks Bm by the independent
coupled blocks B0

m:

P

0

BB@

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1p
n

h ntjC1
LCl

i

X

mD
h ntj

LCl

i
C1

.Bm � B0
m/

ˇ̌
ˇ̌
ˇ̌
ˇ̌

> �

1

CCA �

h ntjC1
LCl

i

X

mD
h ntj

LCl

i
C1

P

�
jBm � B0

mj >
�
p

n

n1=4

�

� n
1
4

�
ˇ.Œ

ln
3

�/ C ˛
Œ

ln
3 �

�
! 0

as n ! 1 by our conditions on the mixing coefficients and approximation
constants. Here we used that fact that ˛n ! 0 and thus, for almost all n 2 N,

P
�jBm � B0

mj > �n1=4
� � P

�jBm � B0
mj > 2˛ln

�
: (65)

With the above arguments the result holds if we show the convergence of

1p
n

0

BB@

h
nt1

LCl

i

X

mD
h

nt0
LCl

i
C1

B0
m; : : : ;

h
ntkC1
LCl

i

X

mD
h

ntk
LCl

i
C1

B0
m

1

CCA : (66)
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Since this vector has independent components, we only need to show the one-
dimensional convergence, which is a consequence of Theorem 4, using the summa-
bility condition (53).

We now turn to the question of tightness and show that, for each � and �, there
exist a ı, 0 < ı < 1, and an integer n0 such that, for 0 � t � 1,

1

ı
P

 
sup

t�s�tCı

jYn.s/ � Yn.t/j � �

!
� �; n � n0 (67)

with

Yn.t/ D 1

�
p

n

Œnt�X

iD1

h1.Xi/ C .nt � Œnt�/
1

�
p

n
h.XŒnt�C1/ (68)

(h2 can be treated in the same way) and by Theorem 8, this condition reduces to:
For each positive � there exist a ˛ > 1 and an integer n0, s. t.

P

0

@max
i�n

ˇ̌
ˇ̌
ˇ̌

iX

jD1

h1.Xj/

ˇ̌
ˇ̌
ˇ̌ � �

p
n

1

A � �

�2
; n � n0: (69)

Let t � s, s; t 2 Œ0; 1�. By Lemma 4 we get

E

0

B@

ˇ̌
ˇ̌
ˇ̌

1p
n

Œnt�X

iD1

h1.Xi/ � 1p
n

Œns�X

iD1

h1.Xi/

ˇ̌
ˇ̌
ˇ̌

4
1

CA D 1

n2
E

0

@
Œnt�X

Œns�C1

h1.Xi/

1

A
4

� 1

n2
..Œnt� � Œns�/2C/ (70)

and this implies

P

 ˇ̌
ˇ̌
ˇ

1p
n

mX

iD1

h1.Xi/ � 1p
n

kX

iD1

h1.Xi/

ˇ̌
ˇ̌
ˇ � �

!
� 1

�4

�
C1=2

n
.m � k/

�2

: (71)

By Theorem 7

P

0

@max
i�n

ˇ̌
ˇ̌
ˇ̌

iX

jD1

h1.Xj/

ˇ̌
ˇ̌
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p
n

1

A � K

�4

�
C1=2

n
.n � 1/

�2

(72)

and we get the assertion. Thus we have established tightness of each of the two
coordinates of the partial sum process, which implies tightness of the vector-valued
process.
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Proof of Theorem 1. From Proposition 2 we obtain that

0

@ 1p
n

Œn��X

iD1

�
h1.Xi/

h2.Xi/

�1

A

0���1

�!
�

W1.�/

W2.�/

�

0���1

; (73)

in distribution on the space .D.Œ0; 1�//2. We consider the functional given by

�
x1.t/
x2.t/

�
7! .1 � t/x1.t/ C t.x2.1/ � x2.t//; 0 � t � 1: (74)

This is a continuous mapping from .DŒ0; 1�/2 to DŒ0; 1�, so we may apply the
continuous mapping theorem to (73), and obtain

0

@n � Œn��

n3=2

Œn��X

iD1

h1.Xi/ C Œn��

n3=2

nX

jDŒn��C1

h2.Xj/

1

A

0���1

�! ..1 � �/W1.�/ C �.W2.1/ � W2.�///0���1 :

Together with the remarks at the beginning of this section, this proves Theorem 1.

Appendix: Some Auxiliary Results from the Literature

In this section, we collect some known lemmas and theorems for weakly dependent
data. We start with some results on the behaviour of partials sums:

Lemma 3 (Borovkova, Burton, Dehling [3], Lemma 2.23). Let .Xk/k2Z be a
1-approximating functional with constants .ak/k�0 of an absolutely regular process
with mixing coefficients .ˇ.k//k�0. Suppose moreover that EXi D 0 and that one of
the following two conditions holds:

1. X0 is bounded a.s. and
P1

kD0.ak C ˇ.k// < 1:

2. EjX0j2Cı < 1 and
P1

kD0.a
ı

1Cı

k C ˇ
ı

1Cı .k// < 1:

Then, as N ! 1,

1

N
ES2

N ! EX2
0 C 2

1X

jD1

E.X0Xj/ (75)

and the sum on the r.h.s. converges absolutely.
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Lemma 4 (Borovkova, Burton, Dehling [3], Lemma 2.24). Let .Xk/k2Z be a
1-approximating functional with constants .ak/ of an absolutely regular process
with mixing coefficients .ˇ.k//k�0. Suppose moreover that EXi D 0 and that one
of the following two conditions holds:

1. X0 is bounded a.s. and
P1

kD0 k2.ak C ˇ.k// < 1:

2. EjX0j4Cı < 1 and
P1

kD0 k2.a
ı

3Cı

k C ˇ
ı

4Cı .k// < 1:

Then there exits a constant C such that

ES4
N � CN2: (76)

Theorem 4 (Borovkova, Burton, Dehling [3], Theorem 4). Let .Xk/k2Z be a
1-approximating functional with constants .ak/k�0 of an absolutely regular process
with mixing coefficients .ˇ.k//k�0. Suppose moreover that EXi D 0, EjX0j4Cı < 1
and that

1X

kD0

k2.a
ı

3Cı

k C ˇ
ı

4Cı .k// < 1; (77)

for some ı > 0. Then, as n ! 1;

1p
n

nX

iD1

Xi ! N .0; �2/; (78)

where �2 D EX2
0 C 2

P1
jD1 E.X0Xj/: In case �2 D 0, N .0; 0/ denotes the point

mass at the origin. If X0 is bounded, the CLT continues to hold if (77) is replaced
by the condition that

P1
kD0 k2.ak C ˇ.k// < 1.

An important tool to derive asymptotic results for weakly dependent data are
coupling methods. We will apply this method in the proof of Proposition 2.

Theorem 5 (Borovkova, Burton, Dehling [3], Theorem 3). Let .Xn/n2N be a
1-approximating functional with summable constants .ak/k�0 of an absolutely
regular process with mixing rate .ˇ.k//k�0. Then given integers K; L and N, we
can approximate the sequence of .K C 2L; N/�blocks .Bs/s�1 by a sequence of
independent blocks .B0

s/s�1 with the same marginal distribution in such a way that

P.jjBs � B0
sjj � 2˛L/ � 1 � ˇ.K/ � 2˛L; (79)

where ˛L WD �
2
P1

lDL al
�1=2

:

In statistical application, the question of how to estimate �2 is important. In the
situation when the observations are a functional of ˛-mixing process, Dehling et al.
[10] propose the estimation of the variance of partial sums of dependent processes
by the subsampling estimator
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ODn D 1

Œn=ln�

r
�

2

Œn=ln�X

iD1

j OTi.ln/ � ln QUnjp
ln

(80)

with OTi.l/ D Pil
jD.i�1/lC1 Fn.Xj/ and QUn D 1

n

Pn
jD1 Fn.Xj/, where Fn.�/ is the

empirical distribution function.

Theorem 6 (Dehling, Fried, Sharipov, Vogel, Wornowizki [9], Theorem 1.2).
Let .Xk/k�1 be a stationary, 1-approximating functional of an ˛-mixing processes.
Suppose that for some ı > 0, EjX1j2Cı < 1, and that the mixing coefficients
.˛k/k�1 and the approximation constants .ak/k�1 satisfy

1X

kD1

.˛k/
2

2Cı < 1;

1X

kD1

.ak/
1Cı
2Cı < 1: (81)

In addition, we assume that F is Lipschitz-continuous, that ˛k D O.n�8/ and that
am D O.m�12/. Then, as n ! 1, ln ! 1 and ln D o.

p
n/, we have ODn �! �

in L2:

To deal with the degenerate kernel g, we need to find upper bounds for the
expectations E

�
g.Xi1 ; Xj1 /g.Xi2 ; Xj2 /

�
, in terms of the maximal distance among the

indices. Since 1 � i1 < i2 � Œn�� and Œn�� C 1 � j1 < j2 � n, we get
i1 < i2 < j1 < j2.

Lemma 5 (Dehling, Fried [8], Proposition 6.1). Let .Xn/n�1 be a 1-approxima-
ting functional with constants .ak/k�1 of an absolutely regular process with mixing
coefficients .ˇ.k//k�1 and let g.x; y/ be a 1-continuous bounded degenerate kernel.
Then we have

jE.g.Xi1 ; Xj1 /g.Xi2 ; Xj2 //j � 4S�.aŒk=3�/ C 8S2.
p

aŒk=3� C ˇ.Œk=3�// (82)

where S D j supx;y g.x; y/j and k D max fi2 � i1; j1 � i2; j2 � j1g.

The following two results are useful for proving tightness of a stochastic process.
The first one is used to control the fluctuation of maximum. Let �1; : : : ; �n be random
variables, and define Sk D �1 C : : : C �k (S0 D 0), and Mn D max0�k�n jSkj.
Theorem 7 (Billingsley [2], Theorem 10.2). Suppose that ˇ � 0 and ˛ > 1=2

and that there exist nonnegative numbers u1; : : : ; un such that for all positive �

P
�jSj � Sij � �

� � 1

�4ˇ

0

@
X

i<l�j

ul

1

A
2˛

; 0 � i � j � n ; (83)
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then for all positive �

P .Mn � �/ � Kˇ;˛

�4ˇ

 
X

0<l�n

ul

!2˛

; (84)

where Kˇ;˛ is a constant depending only on ˇ and ˛.

Theorem 8 (Billingsley [2], Theorem 8.4). The sequence fYng, defined by

Yn.t/ D 1

�
p

n
SŒnt� C .nt � Œnt�/

1

�
p

n
�Œnt�C1 (85)

is tight if for each � > 0 there exist a � > 1 and a n0 2 N such that for n � n0

P

�
max
i�n

jSkCi � Skj � ��
p

n

�
� �

�2
: (86)

Acknowledgements The authors wish to thank the referees for their very careful reading of an
earlier version of this manuscript, and for their many thoughtful comments that helped to improve
the presentation of the paper. This research was supported by the Collaborative Research Center
823, Project C3 Analysis of Structural Change in Dynamic Processes, of the German Research
Foundation DFG.

References

1. Babbel, B.: Invariance principles for U-statistics and von Mises functionals. J. Stat. Plan.
Inference 22, 337–354 (1989)

2. Billinsgley, P.: Convergence of Probability Measures. 2nd edn. Wiley, New York (1999)
3. Borovkova, S.A., Burton, R.M., Dehling, H.G.: Limit theorems for functionals of mixing

processes with applications to U-statistics and dimension estimation. Trans. Am. Math. Soc.
353, 4261–4318 (2001)

4. Carlstein, E.: The use of subseries values for estimating the variance of a general statistic from
a stationary sequence. Ann. Stat. 14, 1171–1179 (1986)
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