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Preface

A Fields Institute International Symposium on Asymptotic Methods in Stochastics
was organized and held in honour of Miklds Csorgé’s work on the occasion of
his 80th birthday at Carleton University, Ottawa, Canada, July 3-6, July 2012.
The symposium was hosted and sponsored by the School of Mathematics and
Statistics, Carleton University, and co-sponsored by the Fields Institute for Research
in Mathematical Sciences.

The symposium attracted more than 70 participants from around the world,
including many graduate students and postdoctoral fellows. It is with great sadness
that we are to write here that in January 2014, one of the participants, Marc Yor,
passed away. We recall the happy days we were lucky to spend with him here, while
he was attending our conference. We are very pleased that in collaboration with
Francis Hirsch and Bernard Roynette, he also contributed a paper for publication
in this volume. Unfortunately, we cannot any more thank him for his eminent
participation in our symposium, where he also gave a talk on peacocks and
associated martingales.

The opening address was given by Don Dawson, “Path properties of fifty years
of research in Probability and Statistics: a tribute to Miklés Csorgd,” that was
followed by Miklds presenting his 50- year involvement in Asymptotic Methods
in Stochastics in a historical context.

In this regard we wish to mention that there were two previous conferences,
both held at Carleton University, in celebration of Miklés Csorgd’s contributions
to Probability and Statistics on the respective occasions of his 65th and 70th
birthdays. The first one, ICAMPS ’97 (International Conference on Asymptotic
Methods in Probability and Statistics, 8—13 July 1997), was organized by Barbara
Szyszkowicz, who also edited the proceedings volume of this conference (cf. [V1]
in Publications of Miklés Csorgd; bold-face letters and/or numbers in square
brackets will throughout refer to the latter list of publications). The second one,
ICAMS ’02 (International Conference on Asymptotic Methods in Stochastics,
23-25 May 2002), was organized by Lajos Horvath and Barbara Szyszkowicz, and,
just like the preisent symposium, it was also co-sponsored by Tthe Fields Institute.
For the proceedings volume of ICAMS’02, we refer to [V2], that is, Volume 44

vii
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of Fields Institute Communications, as well as to the there indicated Fields Institute
website: www.fields.utoronto.ca/publications/supplements/, where the editors of the
latter volume, Lajos Horvath and Barbara Szyszkowicz, also have a 69-page résumé
of Miklés’ work over the past forty or so years at that time, titled “Path Properties
of Forty Years of Research in Probability and Statistics: In Conversation with
Miklés Csorgé”. This article with its 311 references, together with Miklés’ list
of publications at that time, is also available as no. 400 — 2004 of the Technical
Report Series of LRSP. It can also be accessed on the LRSP website: http://www.
Irsp.carleton.ca/trs/trs.html.

We much appreciate having been given the opportunity by the Editorial
Board of Publications of the Fields Institute to include in this volume
Miklés’ above-mentioned list of publications (cf. Table of Contents). The Editors
also have a 45-page resume, titled “A Review of Miklés Csorgs’s Mathematical
Biography”, that can be accessed on the Fields Institute website www.fields.
utoronto.ca/publications/supplements/. Unfortunately, due to space limitations, we
could not include in this collection our expository style review of SELECTED PATH
PROPERTIES OF 50+ YEARS OF RESEARCH IN PROBABILITY AND STATISTICS:
IN CONVERSATION WITH MIKLOS CSORGO.

In the abstract of his talk at the conference, “Almost exact simulations using
Characteristic Functions”, Don McLeish nicely relates asymptotics, numerical
methods and simulations as tools of approximation in Probability and Statistics.
We quote the first part of his abstract here:

Asymptotic statistics explores questions like when and how do functions of observed data
behave like functions of normal random variables? and much of the work of Miklds Csorgd
and his coauthors can be described analogously as when and how do functionals of an
observed path behave like those of corresponding Gaussian processes? . For much of the
past century, asymptotics provided the main approximation tool in probability and statistics.
Although it is now supplemented with other approximation tools such as numerical methods
and simulation, asymptotics remains a key to understanding the behaviour of random
phenomena.

The following participants presented 30-minute talks at the conference: Raluca
Balan, Istvan Berkes, David Brillinger, Alexander Bulinski, Murray Burke, Endre
Csédki, Herold Dehling, Dianliang Deng, Richard Dudley, Shui Feng, Anténia
Foldes, Peter W. Glynn, Edit Gombay, Karl Grill, Lajos Horvath, Gail B. Ivanoff,
Jana Jureckovd, Reg Kulperger, Deli Li, Zhengyan Lin, Peter March, Yuliya
Martsynyuk, Don McLeish, Masoud Nasari, Emmanuel Parzen, Magda Peligrad,
Jon N.K. Rao, Bruno Rémillard, Pal Révész, Murray Rosenblatt, Susana Rubin-
Bleuer, Thomas Salisbury, Qi-Man Shao, Zhan Shi, Josef G. Steinebach, Qiying
Wang, Martin Wendler, Wei-Biao Wu, Marc Yor, and Hao Yu.

We are pleased to publish this collection of twenty articles in the Fields Institute
Communications series by Springer, and it is our pleasure to dedicate this volume
to Miklés Csorgd as a token of respect and appreciation of his work in Probability
and Statistics by all the contributors to this volume, and all the participants in our
2012 Fields Institute International Symposium. We are grateful to the contributors
for submitting their papers for publication in this volume, as well as to the referees
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for their valuable time and enhancing work on it. All papers have been refereed,
and accordingly revised if so requested by the editors. We wish to record here our
sincere thanks to everyone for their extra time, care and collaboration throughout
this elaborate process. The papers in this volume contain up-to-date surveys and
original results at the leading edge of research in their topics written by eminent
international experts. They are grouped into seven sections whose headings are
indicative of their respective main themes that also reflect Miklés’ wide-ranging
research areas in Probability and Statistics. Except for Section 2, the listing of the
articles in each is in the alphabetical order resulting from that of their authors. The
reason for making an exemption from this “rule” in Section 2 is that the Cséki et al.
paper there also provides a general footing for the results that are proved in Révész’s
exposition right after.

In Section 1, Miklés Csorg6 and Zhishui Hu present, in a historical context,
and then establish, a weak convergence theorem for self-normalized partial sums
processes of independent identically distributed summands when the latter belong
to the domain of attraction of a stable law with index o € (0, 2]. In particular,
Theorem 1.1 of this paper identifies the limiting distribution in Theorem 1.1 of
Chistyakov and Gotze (cf. 2. in References therein) under the same necessary
and sufficient conditions in terms of weak convergence in D[0, 1]. Initiated by
his primary contributions [97] (with Lajos Horvath), [190] and [191] (both with
Barbara Szyszkowicz and Qiying Wang), self-normalization and Studentization
have become an important global research area of Mikl6és Csorgd and his col-
laborators (cf., e.g., [192], [204], [205], [216], [217], [220], [221], [222], [223]
and [224]). In the introduction of their paper in this section, Dianliang Deng
and Zhitao Hu present an up-to-date survey of results dealing with the precise
asymptotics for the deviation probabilities of self-normalized sums and continue
with establishing integrated precise asymptotics results for the general deviation
probabilities of multidimensionally indexed self-normalized sums. Magda Peligrad
and Hailin Sang deal with asymptotic results for linear processes in general and,
in the latter context, review some recent developments, including the central limit
theorem (CLT), functional CLT and their self-normalized forms for partial sums.
They study these in terms of independent and identically distributed summands
(cf. 16. in References therein) and, via self-normalization, for short memory linear
processes as well, as, e.g., in 14. in References therein. Self-normalized CLT and
self-normalized functional CLT are also covered for long memory linear processes
with regularly varying coefficients (cf. 15. in References therein).

In Section 2, Endre Csaki, Anténia Foldes and Pal Révész survey
their joint work with Miklés on anisotropic random walks on the two-
dimensional square lattice 72 of the plane (cf. [210], [213], [215], [218], and
[219]). Such random walks possibly have unequal symmetric horizontal and vertical
step probabilities, so that these step probabilities can only depend on the value of
the vertical coordinate. In particular, if such a random walk is situated at the site
on the horizontal line y = j € Z, then, at the next step, it moves with probability
p; to either vertical neighbour and with probability 1/2 — p;, to either horizontal
neighbour. It is assumed throughout that 0 < p; < 1/2 and minjezp; < 1/2.
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The case p; = 1/2 for some j means that the horizontal line y = j is missing,
a possible lack of complete connectivity. The initial motivation for studying such
two-dimensional random walks on amnisotropic lattice has originated from the
so-called transport phenomena of statistical physics (cf. 12., 14., 15. and 16. in
References therein), where having p; = 1/2,j = £1,£2,..., but py = 1/4, the
so-called random walk on the two-dimensional comb, i.e., when all the horizontal
lines of the x axis are removed, is also of interest (cf. 1., 2., 5. and 29. in References
therein). In his paper, Pal Révész continues the investigation of the latter comb-
random walk, and also that of a random walk on a half-plane half-comb lattice
(cf. [218]), and concludes a result for each on the area of the largest square they
respectively succeed in covering at time n. Gail B. Ivanoff reviews martingale
techniques that play a fundamental role in the analysis of point processes on [0, c0),
and revives the question of applying martingale methods to point processes in higher
dimensions. In particular, she revisits the question of a compensator being defined
for a planar point process in such a way that it exists, it is unique and it characterizes
the distribution of the point process. She proceeds to establish a two-dimensional
analogue of Jacod’s characterization of the law of a point process via a regenerative
formula for its compensator and also poses some related open questions.

In Section 3, the paper of Alexander Bulinski deals with high -dimensional
data that can be viewed as a set of values of some factors and a binary response
variable. For example, in medical studies the response variable can describe the
state of a patient’s health that may depend only on some parts of the factors.
An important problem is to determine collections of significant factors. In 3. of
References of the paper, Bulinski establishes the basis for the application of the
multifactor dimensionality reduction (MDR) method in this regard, when one uses
an arbitrary penalty function to describe the prediction error of the binary response
variable by means of a function of the factors. The goal of thie present paper is
to conclude multidimensional CLT’s for statistics that justify the optimal choice
of a subcollection of the explanatory variables. Statistical variants of these CLT’s
involving self-normalization are also explored. The paper of Deli Li, Yongcheng
Qi and Andrew Rosalsky is devoted to extending recent theorems of Hechner,
and Hechner and Heinkel (cf. 6. and 7. in References therein) dealing with sums
of independent Banach space valued random variables. The proof of the main
result, Theorem 3 in this paper, is based on new versions of the classical Lévy,
Ottaviani, and Hoffmann-Jorgensen inequalities (cf. 11., 3. and 8., respectively,
in References therein) that were recently obtained by Li and Rosalsky (cf. 13. in
References of the paper). In her second paper in this volume, Magda Peligrad
surveys the almost sure CLT and its functional form for stationary and ergodic
processes. Her survey addresses the question of limit theorems, started at a point,
for almost all points. These types of results are also known under the name of
quenched limit theorems, or almost sure conditional invariance principles. All these
results have in common is that they are obtained via a martingale approximation
in the almost sure sense. As applications of the surveyed results, several classes of
stochastic processes are shown to satisfy quenched CLT and quenched invariance
principles, namely, classes of mixing sequences, shift processes, reversible Markov
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Chains and Metropolis Hastings algorithms. In his paper, Qiying Wang revisits,
with some improvements, his recent extended martingale limit theorem (MLT) and,
for a certain class of martingales, concludes that the convergence in probability of
the conditional variance condition in the classical MLT can be reduced to the less
restrictive convergence in distribution condition for the conditional variance (cf. 7.
in References therein). The aim of this paper is to show that the latter extended MLT
can be used to investigate a specification test for a nonlinear cointegrating regression
model with a stationary error process and a nonstationary regressor. This, in turn,
leads to a neat proof for the main result in Wang and Phillips of 11. in References.
Anchored by his 1997 book with Lajos Horvéth (cf. [AS]), change-point analysis
has been an important research area of Miklés and his collaborators for almost
three decades now (cf. [93], [94], [105], [106], [110], [147], [148], [155], [175],
[198], [204] and [223]). The three papers in Section 4 present recent advances in
the field. Alina Bazarova, Istvan Berkes and Lajos Horvath develop two types
of tests to detect changes in the location parameters of dependent observations
with infinite variances. In particular, autoregressive processes of order one with
independent innovations in the domain of attraction of a stable law of index
a € (0,2) are considered, and, for testing the null hypothesis of the stability of
the location parameter versus the at most one-change alternative, they construct a
suitably trimmed CUSUM process via removing the d largest observations from the
sample. They recall (cf. 8. in References therein) that the thus adjusted CUSUM
process converges weakly to a Brownian bridge, if d = d(n) — oo fast enough
but so that d(n)/n — 0, as n — oo. However the normalizing sequence depends
heavily on unknown parameters. In view of this, two types of test statistics are
studied, namely, maximally selected CUSUM statistics whose long run variance
is estimated by kernel estimators, and ratio statistics that do not depend on the
long run variances whose estimation is thus avoided. Herold Dehling, Roland
Fried, Isabel Garcia, and Martin Wendler study the detection of change-points
in time series. Instead of using the classical CUSUM statistic for detection of jumps
in the mean that is known to be sensitive to outliers, a robust test based on the
Wilcoxon two-sample test statistic is proposed. The asymptotic distribution of the
proposed test can be derived from a functional central limit theorem for a two-
sample U-statistics -dependent data that in the case of independent data was studied
by Csorgé and Horvath (cf. 5. in References therein, [106] in Miklés’ list). In
their present paper, their result is extended to short-range-dependent data, namely,
data that can be represented as functionals of a mixing process. Similar results
were obtained for long-range-dependent data by Dehling, Rooch and Taqqu (cf. 10.
in References therein). Further to [106], we mention [204], where the projection
variate is assumed to be in the domain of attraction of the normal law, possibly with
infinite variance. Edit Gombay deals with retrospective change-point detection in
a series of observations generated by a binary time series model with link functions
other than the logit link function that was considered by Fokianos, Gombay and
Hussein in 5. of References therein that appeared in 2014. It is shown that the
results in the latter work carry over if, instead of the logit link function, one uses
the probit, the log-log, and complementary log-log link functions in the binary
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regression model. Some of the technical details omitted in 5. are also detailed in
their present paper.

In Section 5, Kilani Ghoudi and Bruno Rémillard investigate the asymptotic
behaviour of multivariate serial empirical and copula processes based on residuals
of autoregressive-moving-average (ARMA) models. Motivated by Genest et al. 14.
as in References therein, multivariate empirical processes based on squared and
other functions of residuals are also investigated. Under the additional assumption
of symmetry about zero of the innovations, it is shown that the limiting processes
are parameter-free. This, in turn, leads to developing distribution-free nonparametric
tests for a change-point in the distribution of the innovations, tests of goodness-
of-fit for the law of innovations, and tests of independence for m consecutive
innovations. Simulations are also carried out to assess the finite-sample properties
of the proposed tests and to provide tables of critical values. Murray Rosenblatt
presents a historical overview of the evolution of a notion of strong mixing as a
measure of short-range dependence and a sufficient condition for a CLT. He also
discusses a characterization of strong mixing for stationary Gaussian sequences,
as well as examples of long-range dependence leading to limit theorems with
nonnormal limiting distributions. Results concerning the finite Fourier transform are
noted, and a number of open questions are considered. We also note in passing that
the articles [197], [200], [206], [207], [214] and [227] in Miklés’ list of publications
deal with empirical and partial sums processes that are based on short and long
memory sequences of random variables.

In Section 6, the paper by Hongwei Dai, Donald Dawson and Yiqiang Zhao
extends the classical kernel method employed for two-dimensional discrete random
walks with reflecting boundaries. The main focus of the paper is to provide a survey
on how one can extend the latter kernel method to study asymptotic properties of
stationary measures for continuous random walks. The semimartingale reflecting
Brownian motion is taken as a concrete example to detail all key steps in the
extension in hand that is seen to be completely parallel to the method for discrete
random walks. The key components in the analysis for a boundary measure,
including analytic continuation, interlace between the two boundary measures,
and singularity analysis, allow the authors to completely characterize the tail
behaviour of the boundary measure via a Tauberian-like theorem. In their paper,
Peter Glynn and Rob Wang develop central limit theorems and large deviation
results for additive functionals of reflecting diffusion processes that incorporate the
cumulative amount of boundary reflection that has occurred. In particular, applying
stochastic calculus and martingale ideas, partial differential equations are derived
from which the central limit and law of large numbers behaviour for additive
functionals involving boundary terms can be computed. The corresponding large
deviation theory for such additive functionals is then also developed. For papers on
additive functionals in Mikl6s’ list of publications, we refer to [134], [152], [187]
and [212]. Paper [173] in the same list contains a self-contained background on
stochastic analysis, It6 calculus included. The paper by Francis Hirsch, Bernard
Roynette and Marc Yor studies peacock processes which play an important role in
mathematical finance. A deep theorem of Kellerer (cf. 9. in References therein)
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asserts the existence of peacock processes as a Markov martingale with given
marginals, assumed to increase in the convex order. The paper in hand revisits
Kellerer’s theorem with a proof, in the light of the papers 5. and 8. in its References
by Hirsch-Roynette and G. Lowter, respectively, and presents, without proof, results
of 6., 7. and 8. by G. Lowter, which complete and make Kellerer’s theorem more
precise on some points. Many other references around Kellerer’s theorem can be
found in 4. of References of the paper.

Mayer Alvo’s paper in Section 7 deals with applying empirical likelihood
methods to various problems in two-way layouts involving the use of ranks.
Specifically, it is shown that the resulting test statistics are asymptotically equivalent
to well-known statistics such as the Friedman test for concordance. It is also shown
that empirical likelihood methods can be applied to the two-sample problem, as
well as to various block design situations. In her paper Jana Jureckova highlights
asymptotic behaviour in statistical estimation via describing some of the most
distinctive differences between the asymptotic and finite-sample properties of
estimators, mainly of robust ones. The latter are, in general, believed to be resistant
to heavy-tailed distributions, but they can themselves be heavy-tailed. Indeed, as
pointed out by Jureckova, many are not finite-sample admissible for any distribution,
though they are asymptoticallly admissible. Hence, and also in view of some other
examples she deals with in her paper, she rightly argues that before taking a recourse
to asymptotics, we should analyzse the finite-sample behaviour of an estimator,
whenever possible.

The Fields Institute announcement of our Ssymposium was also noticed by
Dr. Laszlé Pordany, Aambassador for Hungary in Canada (2012). Seeing the
programme, he wrote to Miklés, conveying his wish to receive the Hungarian par-
ticipants of the conference in his ambassadorial residence. We, in turn, reciprocated
with an invitation to His Excellency to attend, and also participate in, the opening
of the symposium, that he gracefully accepted. Following the first -day programme,
in the evening, Ambassador Laszl6 Porddny and Mrs. Maria Csikés welcomed the
Hungarian participants at the Aambassador’s residence, and His Excellency used
the occasion to speak In Memoriam Sandor Csorgé (Egerfarmos, 16 July 16, 1947
— Szeged, 14 February 14, 2008). We most sincerely thank Dr. Laszl6 Pordany for
the eminent role he played in making the first day of our conference especially
memorable.

The occasion of presenting this volume also gives us the opportunity to sincerely
thank the Fields Institute for Research in Mathematical Sciences for their financial
support of our symposium. We hope very much that this volume, and the national
and international success of our conference itself, will have justified their much
appreciated trust in us.

Last, but not least, we most sincerely wish to thank Gillian Murray, the coordi-
nator of our manifold LRSP (Laboratory for Research in Statistics and Probability)
activities for more than three decades, for her help in preparing this volume, in
collaboration with Rafal Kulik and Barbara Szyszkowicz, for publication, while in
retirement now.
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In conclusion, we also want to express our appreciation to the Editorial Board of
the Fields Institute for their approval of the publication of these proceedings in their
Communications series; to Carl R. Riehm, the Managing Editor of Publications, for
his kind attention to, and sincere interest in, the publication of this volume, and to
the Publications Manager, Debbie Iscoe, for her cooperation and expert help in its
preparation for Springer. We hope very much that the readers will find this collection
of papers, and our introductory comments on them, informative and also of interest
in their studies and research work in Stochastics.

Ottawa, ON, Canada Donald Dawson
Rafal Kulik
Mohamedou Ould Haye
Barbara Szyszkowicz
Yigiang Zhao
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Limit Theorems for Self-normalized
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Weak Convergence of Self-normalized Partial
Sums Processes

Miklés Csorgé and Zhishui Hu

1 Introduction

Throughout this paper {X,X,,n > 1} denotes a sequence of independent and
identically distributed (i.i.d.) non-degenerate random variables. Put Sy = 0, and

S, = Zn:X,-, X, = S,/n, V?= anx,?, n>1.
i=1 i=1

The quotient S,/ V,, may be viewed as a self-normalized sum. When V,, = 0 and
hence S, = 0, we define S,,/V, to be zero. In terms of S,/ V,, the classical Student
statistic 7, is of the form

(1/x/ﬁ) Z?=1 Xi
(/-1 ¥, -x2)
S,/ Vi
V=SV 1)

Tn(X) =
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If T, or S,/V, has an asymptotic distribution, then so does the other, and they

coincide [cf. Efron [10]]. Throughout, i> will indicate convergence in distribution,

. . oood . oo
or weak convergence, in a given context, while = will stand for equality in

distribution.

The identification of possible limit distributions of normalized sums Z, =
(S, — A,)/B, for suitably chosen real constants B, > 0 and A,, the description
of necessary and sufficient conditions for the distribution function of X such that
the distributions of Z,, converge to a limit, were some of the fundamental problems
in the classical theory of limit distributions for identically distributed summands
[cf. Gnedenko and Kolmogorov [13]]. It is now well-known that Z, has a non-
degenerate asymptotic distribution for some suitably chosen real constants A, and
B, > 0 if and only if X is in the domain of attraction of a stable law with index
a € (0,2]. When o = 2, this is equivalent to £(x) := EX’I(]X| < x) being a
slowly varying function as x — o0, one of the necessary and sufficient analytic

conditions for Z, —d> N(0,1), n — oo [cf. Theorem la in Feller [11], p.313], i.e.,
for X to be in the domain of attraction of the normal law, written X € DAN. In
this case A, can be taken as nEX and B, = n'/*{x(n) with some function £x(n)
that is slowly varying at infinity and determined by the distribution of X. Moreover,
Lx(n) = y/Var (X) > 0if Var (X) < oo, and £x(n) /' oo if Var (X) = oo. Also,
X has moments of all orders less than 2, and variance of X is positive, but need
not be finite. The function £(x) = EX?I(]X| < x) being slowly varying at oo is
equivalent to having x’P(|X| > x) = o({(x)) as x — oo, and thus also to having
Z, i) N(0,1) as n — oo. In a somewhat similar vein, Z, having a non-degenerate

limiting distribution when X is in the domain of attraction of a stable law with index
a € (0, 2) is equivalent to

| — F() + F(—x) ~ 2—°

X “h(x)

and

1—F(x) F(—x) N
1 —F(x) + F(—x) " 1—F(x) + F(—x)

q

as x — 400, where p,g > 0,p + g = 1 and h(x) is slowly varying at +o0
[cf. Theorem la in Feller [11], p.313]. Also, X has moments of all orders less than
a € (0,2). The normalizing constants A, and B,,, in turn, are determined in a rather
complicated way by the slowly varying function A.

Now, in view of the results of Giné, Gotze and Mason [12] and Chistyakov and
Gotze [2], the problem of finding suitable constants for Z, having a non-degenerate
limit in distribution when X is in the domain of attraction of a stable law with
index o € (0, 2] is eliminated via establishing the convergence in distribution of
the self-normalized sums S,,/V,, or, equivalently, that of Student’s statistic 7}, to a
non-degenerate limit under the same necessary and sufficient conditions for X.
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For X symmetric, Griffin and Mason [14] attribute to Roy Erickson a proof of

the fact that having S,/V, 4 N(0,1), as n — oo, does imply that X € DAN.
Giné, Gotze and Mason [12] proved the first such result for the general case of
not necessarily symmetric random variables (cf. their Theorem 3.3), which reads as
follows.

Theorem A. The following two statements are equivalent:

(a) X € DAN and EX = 0;
(b) Su/ Vi <> N(0, 1), n — 0.

Chistyakov and Gotze [2], in turn, established the following global result (cf.
their Theorem 1.1.) when X has a stable law with index o € (0, 2].

Theorem B. The self-normalized sums S,/V, converge weakly as n — 0o to a
random variable Z such that P(|Z| = 1) < 1 if and only if

(i) X is in the domain of attraction of a stable law with index o € (0, 2];
(ii) EX=0ifl <a <2;
(iii) if « = 1, then X is in the domain of attraction of Cauchy’s law and Feller’s
condition holds, that is, nll>nolo nEsin(X/ay,) exists and is finite, where a, =

inf{x > 0 : nx2EX?I(|X| < x) < 1}.

Moreover, Chistyakov and Gotze [2] also proved (cf. their Theorem 1.2) that the
self-normalized sums S,/ V, converge weakly to a degenerate limit Z if and only if
P(]X| > x) is a slowly varying function at 4-co.

Also, in comparison to the Giné et al. [12] result of Theorem A above that
concludes the asymptotic standard normality of the sequence of self-normalized
sums S,/V, if and only if X € DAN and EX = 0, Theorem 1.4 of Chistyakov
and Gotze [2] shows that S,,/V, is asymptotically normal if and only if S,/V, is
asymptotically standard normal.

We note in passing that Theorem 3.3 of Giné et al. [12] (cf. Theorem A) and
the just mentioned Theorem 1.4 of Chistyakov and Goétze [2] confirm the long-
standing conjecture of Logan, Mallows, Rice and Shepp [21] (LMRS for short),
stating in particular that “ S,/ V,, is asymptotically normal if (and perhaps only if) X
is in the domain of attraction of the normal law” (and X is centered). And in addition
“It seems worthy of conjecture that the only possible nontrivial limiting distributions
of S,/ V, are those obtained when X follows a stable law”. Theorems 1.1 and 1.2
of Chistyakov and Gotze [2] (cf. Theorem B above and the paragraph right after)
show that this second part of the long-standing LMRS conjecture also holds if one
interprets nontrivial limit distributions as those, that are not concentrated at the
points 41 and —1.

The proofs of the results of Chistyakov and Gotze [2] (Theorems 1.1-1.7) are
very demanding. They rely heavily on auxiliary results from probability theory and
complex analysis that are proved in their Sect. 3 on their own.
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As noted by Chistyakov and Gotze [2], the “if” part of their Theorem 1.1
(Theorem B above) follows from the results of LMRS as well, while the “if” part of
their Theorem 1.2 follows from Darling [8]. As described in LMRS [cf. Lemma 2.4
in Chistyakov and Gotze [2]; see also Csorgd and Horvath [3], and S. Csorgd
[71], the class of limiting distributions for « € (0,2) does not contain Gaussian
ones. For more details on the lines of research that in view of LMRS have led to
Theorems A and B above, we refer to the respective introductions of Giné et al. [12]
and Chistyakov and Goétze [2].

Further to the lines of research in hand, it has also become well established in
the past twenty or so years that limit theorems for self-normalized sums S,/V,
often require fewer, frequently much fewer, moment assumptions than those that are
necessary for their classical analogues [see, e.g. Shao [27]]. All in all, the asymptotic
theory of self-normalized sums has much extended the scope of the classical theory.
For a global overview of these developments we refer to the papers Shao [28-30],
Csorgd et al. [5], Jing et al. [16], and to the book de la Pefia, Lai and Shao [9].

In view of, and inspired by, the Giné et al. [12] result of Theorem A above,
Csorgd, Szyszkowicz and Wang [4] established a self-normalized version of
the weak invariance principle (sup-norm approximation in probability) under the
same necessary and sufficient conditions. Moreover, Csorgd et al. [6] succeed
in extending the latter weak invariance principle via weighted sup-norm and L,-
approximations, 0 < p < 00, in probability, again under the same necessary and
sufficient conditions. In particular, for dealing with sup-norm approximations, let Q
be the class of positive functions g(7) on (0, 1], i.e., infs<;<; g(f) > 0for 0 < § < 1,
which are nondecreasing near zero, and let

1
I(g,c) = / exp(—cg*()/nDdt, 0 < ¢ < oo.
0+

Then [cf. Corollary 3 in Csorgd et al. [6]], on assuming that g € Q, the following
two statements are equivalent:

(a) X € DAN and EX = 0;
(b) On an appropriate probability space for X, X1, X, ..., one can construct a
standard Wiener process {W(s), 0 < s < oo} so that, as n — o0,

sup [/ Vi = Wenn) /n'"2| [ q(t) = op(1) )

0<t<l1

if and only if I(q, c) < oo forall ¢ > 0.

With g(f) = 1 on (0, 1], this is Theorem 1 of Csorgd et al. [4], and when 02 =
EX? < oo, then (2) combined with Kolmogorov’s law of large numbers results in the
classical weak invariance principle that in turn yields Donsker’s classical functional
CLT.

This work was inspired by the Chistyakov and Gétze [2] result of Theorem B
above. Our main aim is to identify the limiting distribution in the latter theorem
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under the same necessary and sufficient conditions in terms of weak convergence
on DJ[0, 1] (cf. Theorem 1). Our auxiliary Lemma 1 may be viewed as a scalar
normalized version of Theorem B (Theorem 1.1 of Chistyakov and Gotze [2]).

2 Main Results

An R-valued stochastic process {X(r),t > 0} is called a Lévy process, if the
following four conditions are satisfied:

(1) it starts at the origin, i.e. X(0) = 0 a.s.;

(2) it has independent increments, that is, for any choice of n > 1 and 0 < ) <
t) < .-+ < t,, the random variables X(to), X(t;) — X(t9),--- , X(t,) — X(t,—1)
are independent;

(3) itis time homogeneous, that is, the distribution of {X(¢+s) —X(s) : ¢ > 0} does
not depends on s;

(4) as a function of 1, X (¢, w) is a.s. right-continuous with left-hand limits.

A Lévy process {X(t),t > 0} is called a-stable (with index o € (0, 2]) if for any
a > 0, there exists some ¢ € R such that {X(ar)} £ {a"*X(t) + ct}. If {X (1), > 0}
is an «a-stable Lévy process, then for any t+ > 0, X(¢) has a stable distribution. For
more details about Lévy and «-stable Lévy processes, we refer to Bertoin [1] and
Sato [26].

It is well known that G is a stable distribution with index o € (0, 2] if and only
if its characteristic function f (1) = f_ozo ¢™dG(x) admits the representation (see for
instance Feller [11])

exp iyt+c|t|“g§—:‘i‘;[cos”—2‘)‘ +i(p—q)ﬁ sin ”—2‘)‘]} ifo # 1;

f@ = (3)

exp iyt—c|t|[% + i(p—q)ﬁlog|t|]}, ifa =1,

where ¢, p,q,y are real constants with ¢,p,q > 0, p + g = 1. Write G ~
S(a, y, ¢, p, q) and, as in Theorem B, let

a, = inf{x > 0 : nx 2EX*I(|X| < x) < 1}.

The following result is our main theorem.

Theorem 1. Let X,X;,X5,--+ be a sequence of i.i.d. non-degenerate random

variables and let G ~ S(a,y,c,p,q). If X is in the domain of attraction of G of

index a € (0,2], with EX = 0if 1 < a < 2 and lim nEsin(X/a,) exists and is
n—>oo

finite if @« = 1, then, as n — 0o, we have

Sy a4 X(1)
—
Va (X1
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on D|0, 1], equipped with the Skorokhod J\ topology, where X (t) is an a-stable Lévy

process of index o« € (0,2] on [0,1], X(1) ~ S(a,y’,1,p,q) withy’ = 0ifa # 1

and y' = lim nEsin(X/a,) if « = 1, and [X], is the quadratic variation of X (t).
n—>oo

When @ = 2, G is a normal distribution, X(1) £ N(,1) and [X]; = 1.
Consequently, X(z)/ \/ﬁ is a standard Brownian motion and thus we obtain the
weak convergence of S|,/ V), to a Brownian motion as in (c) of Theorem 1 of Cs6rgé
et al. [4] [see also our lines right after (2)].

Consider now the sequence 7,, of Student processes in ¢t € [0, 1] on D0, 1],
defined as

il x
{T(X). 0=1=<1}: = (l/ﬁ)2i=1X’_ 75 0=1=1
(/=) T - %,2)
S[nt]/vn }
= L0=<tr<lg . (4)
§ \/(}’l - (Sn/vn)z)/(n - 1)

Clearly, T,1(X) = T,(X), with the latter as in (1). Clearly also, in view of
Theorem 1, the same result continues to hold true under the same conditions for
the Student process T,,; as well, i.e., Theorem 1 can be restated in terms of the latter
process. Moreover, if 1 < o < 2, then EX =: p exists and the following corollary
obtains.

Corollary 1. Let X,X1,X,--- be a sequence of i.i.d. non-degenerate random
variables and let G ~ S(a, Y, ¢, p,q). If X is in the domain of attraction of G of
index a € (1, 2], then, as n — 0o, we have

(1/ /) X1 (X — ) 4 X0
((1/(n RN SN ¢ _Xn)z)l/z /X,

Tn,t(X - H) =

on D|0, 1], equipped with the Skorokhod J\ topology, where X (t) is an a-stable Lévy
process of indexa € (1,2]on [0, 1], X(1) ~ S(«, 0, 1, p, ), and [X]; is the quadratic
variation of X (t).

As noted earlier, with o = 2, X(¢)/ m is a standard Brownian motion.
Moreover, in the latter case, we have (X — i) € DAN and this, in turn, is equivalent
to having (2) with T, ,(X — 1) as well, instead of Sy, / V,, [cf. Corollary 3.5 in Cs6rgd
et al. [5]].

Corollary 1 extends the feasibility of the use of the Student process T, (X — i)
for constructing functional asymptotic confidence intervals for u, along the lines
of Martsynyuk [22, 23], beyond X — p being in the domain of attraction of the
normal law.
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Via the proof of Theorem 1 we can also get a weak convergence result
when X belongs to the domain of partial attraction of an infinitely divisible law
(cf. Feller [11], p. 590).

Theorem 2. Let X(t) be a Lévy process with [X]; # 0, where [X], is the quadratic
variation of X(t). If there exist some positive constants {b,} and some subsequence

d
{m,}, where m, — oo as n — oo, such that S,,,/b, — X(1) as n — oo, then

St/ Vi, < X()/+/[X]1 on D[0, 1], equipped with the Skorokhod J, topology.

As will be seen, in the proof of Theorems 1 and 2 we make use of a weak
convergence result for sums of exchangeable random variables. For any finite or
infinite sequence £ = (&1, &, - -), we say £ is exchangeable if

(s Eiro) 2 (E1 v --)

for any finite permutation (ky, k2, - - ) of N. A process X(¢) on [0, 1]is exchangeable
if it is continuous in probability with X; = 0 and has exchangeable increments over
any set of disjoint intervals of equal length. Clearly, a Lévy process is exchangeable.

By using the notion of exchangeability, we can get the following corollary from
the proof of Theorem 1.

Corollary 2. Let X, X,,X5,--- and G be as in Theorem 1. If X is in the domain of
attraction of G of index o € (0,2], withEX = 0if1 < a < 2and lim nEsin(X/a,)
n—o0

exists and is finite if « = 1, then, as n — 00,

2

(B Y mt=i=n ) 4 o x),.0), ©
a, a? an

where, with AX(t) == X(t) — X(t—), J = max{|AX ()| : 0 <t < 1} is the biggest

Jjump of X(t) on [0, 1], where, as in Theorem 1, X(t) is an a-stable Lévy process with
index o € (0,2] on [0,1], X(1) ~ S(«,y’,1,p,q) as specified in Theorem 1, and
[X]; is the quadratic variation of X (t).

We note in passing that, under the conditions of Corollary 2, the joint convergence
in distribution as n — oo

2
(22 20) % o ©

n n

amounts to an extension of Raikov’s theorem from X € DAN to X being in the
domain of attraction of G of index o € (0,2]. When o = 2, i.e., when X € DAN,
the statement of (6) reduces to Raikov’s theorem in terms of having (fli, Z—'Z%) i)
(N(0,1),1) as n — oo (cf. Lemma 3.2 in Giné et al. [12]).
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As a consequence of Corollary 2, under the same conditions, as n — 0o, we have

maxXj<ij<n | Xi| 4« J
S, X(1)

(N

and

maXi<i<n |Xl| i) J

) (8)
Va X1

In case of « = 2, G is a normal distribution, X € DAN with EX = 0, and
X(1)/+/[X]: is a standard Brownian motion. Consequently, J in Corollary 2 is zero
and, as n — o0, we arrive at the conclusion that when X € DAN and EX = 0,

then the respective conclusions of (7) and (8) reduce to max;<;<, |Xi|/|Sx| ﬁ) 0
and max;<j<, |Xi|/Vy £> 0. Kesten and Maller ([20], Theorem 3.1) proved that

P
maxi<i<n | Xi|/|Sx| = 0 is equivalent to having

x| EXI(IX| < x)| + EX*I(]X| < x)
— 00
X2P(|X| > x)

and O’Brien[24] showed that max;<;<, |X;i|/Vx i 0 is equivalent to X € DAN.
For X in the domain of attraction of a stable law with index € (0,2),
Darling [8] studied the asymptotic behavior of S,/ max;<;<, |X;| and derived the
characteristic function of the appropriate limit distribution. Horvath and Shao [15]
established a large deviation and, consequently, the law of the iterated logarithm for
S,/ maxj <<, |X;| under the same condition for X symmetric.
Proofs of Theorems 1, 2 and Corollary 2 are given in Sect. 3.

3 Proofs

Before proving Theorem 1, we conclude the following lemma.

Lemma 1. Let G ~ S(w,y,c,p,q) with index a € (0,2] and let Y, be a random
variable associated with this distribution. If there exist some positive constants {A,}

d
satisfying S, /A, — Yy as n — oo, then

(1) X is in the domain of attraction of G,
(2) EX=0if1 <a <2, and lim nEsin(X/ay,) exists and is finite if o« = 1.
n—>oo

Conversely, if the above conditions (1) and (2) hold, then

Sufan > Y., @ € (0,2],
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where Y, is a random variable with distribution G' ~ S(a,y’,1,p, q), with y' = 0
ifa # landy’ = lim nEsin(X/a,) ifa = 1.
n—>oQo

Proof. If o = 2, then G is a normal distribution and the conclusion with X € DAN
and EX = 0 is clear.

If 0 < @ < 2, then X belongs to the domain of attraction of a stable law G with
the characteristic function f(¢) as in (3) if and only if (cf. Theorem 2 in Feller [11],
p-577)

0(x) = EXMI(|X] < x) = ¥*L(x), x — o0,

and

P(X > x)

— " 5 p,x— o0,
P(X|>xn 7

where L(x) is a slowly varying function at infinity. In this case, as n — oo, we have
(cf. Theorem 3 in Feller [11], p. 580)

A\ S L
— —b, —d> Y, with distribution G, « € (0,2), ©)]
an

where

(n/an)EX, ifl <a<2;
b, = § nEsin(X/a,), ifa = 1;
0, f0<a<l1,

and G ~ S(x,0,1,p, q). Thus if (2) holds, then, as n — oo, we have

Sn e
on 4 Y, with distribution G, « € (0,2),
an

where G’ ~ S(a,y’,1,p,q) withy’ = 0if « # 1 and y’ = lim nEsin(X/ay,)
n—>oo
ifo =1.
d
If, as n — oo, there exists some positive constants {A,} satisfying S,/A, —
Y, with distribution G with index « € (0,2), then (1) holds. Hence (9) is also
true. Consequently, by Theorem 1.14 in Petrov [25], we have b, — b for some
real constant b, as n — oo. Thus if @ = 1, then lim nEsin(X/a,) exists and is
n—>oo
finite, and if 1 < « < 2, since in this case n/a, = na,*L(a,)(@*""/L(a,)) ~
a*~'/L(a,) — oo as n — oo, we have EX = 0.
Proof of Lemma 1 is now complete. O
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Proof of Theorem 1. Since X(¢) is a Lévy process, we have the Lévy-Itd decompo-
sition (see for instance Corollary 15.7 in Kallenberg [18])

X(1) :bt+aW(t)+/O /I 1x(n—En)(ds,dx)—G-/O /l 1)cn(ds,dx), (10)

for some b € R,0 > 0, where W(¢) is a Brownian motion independent of 7, and
n = >, 8, 4x, is a Poisson process on (0, c0) x (R \ {0}) with En = A ® v, where
AX, = X;—X,— is the jump of X at time ¢, A is the Lebesgue measure on (0, oo) and
v is some measure on R \ {0} with /(x> A 1)v(dx) < oo. The quadratic variation of
X(?) is (cf. Corollary 26.15 in Kallenberg [18])

Xl =0’ + ) _(AX,). (11)

s<t

Noting that a Lévy Process is exchangeable, by Theorem 2.1 of Kallenberg [17]
(or Theorem 16.21 in Kallenberg [18]), X(¢) has a version X'(r), with representation

X0 =bt+0B0)+ Y By <n—1. t€0.1]. (12)
J

in the sense of a.s. uniform convergence, where

My =X(1),0' >0, <B3<--<0=<..- < B4 < B, are random variables
with Zj ,3]2 < 00, a.s.,

(2) B(?) is a Brownian bridge on [0, 1],

(3) 71, 7, - - - are independent and uniformly distributed random variables on [0, 1],

and the three groups (1)—(3) of random elements are independent. X (¢) has a version
X'(f) means that for any 7 € [0, 1], X(¢) = X'(f) a.s. But since both X(¢) and X' (¢)
are right continuous, we have

P(X(t) = X'(¢) forall € [0, 1]) = 1.
Thus we may say that X(f) = X'(¢) on [0, 1]. By (12), we get that (B, B2,-++)

are the sizes of the jumps of {X(7),7 € [0, 1]} and (zy, 72, - - -) are the related jump
times. Thus n =}, 8, 5, on (0, 1] x (R \ {0}) and, by (11),

X1 =0+ > (AX)? =0’ + ) B

s<1 J
We are to see now that we also have

o =o. (13)
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Write

X"(t) = bt + oW(r) +/ /

1/n<|x|<1

=bit+oBt)+ Y Bl =<1. n=1,
[Bj1>1/n

x(n — En)(ds, dx)+/ / xn(ds, dx)

|x[>1

where b, = b+ oW (1) — [xI(1/n < |x| < 1)v(dx) and B(t) = W(1) — tW(1) is
a Brownian bridge. Noting that W(1) and {B(r)} are independent, X"(7) is also an
exchangeable process for each n > 1. From the proof of Theorem 15.4 in Kallenberg
[18], we have

E sup (X(s) — X"(s))> = 0, n — oo.

0<s<l

Thus, as n — oo, X"(¢) < X(#) on D(0, 1) with the Skorokhod J; topology. Then,
by Theorem 3.8 in Kallenberg [19], as n — oo, we have

o + Z ,32—>a/2+z,32
‘/3/‘>1/n
Hence 0> = 02, and (13) holds.
By Lemma 1, S,,/a, < X(1). Hence, by Theorem 16.14 in Kallenberg [18], we

have Sp./an LY X(#) on D(0, 1) with the Skorokhod J; topology. By noting that
{Xi/an,i = 1,--- , n} are exchangeable random variables for each n, and by using
Theorems 3.8 and 3.13 in Kallenberg [19], as n — oo, we have

n 2 n
(i_ > )a(_z ZSX,-/%) 2 x(y, X1, > 8g) in RxRy x A(R\{0}), (14)
noi=1"n =1

J

where v, means convergence in distribution with respect to the vague topology,
and A4 (R \ {0}) is the space of integer-valued measures on R \ {0} endowed with
the vague topology. Hence

D d
(‘S/ sz ZSX,-/V”) d (\)/‘ﬂ Z ﬂ,N[T> in Rx Ry x A (R\ {0}).

i=1 i=1

Since {X;/V,,i = 1,--- , n} are exchangeable for each n, by Theorems 3.8 and 3.13
in Kallenberg [19], we have

Sy 4 X(2)

Vi N VIXTi

on D[0, 1], equipped with the Skorokhod J; topology. O
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Proof of Theorem 2. 1t is similar to the proof of Theorem 1 with only minor
changes. Hence we omit the details. O

Proof of Corollary 2. Note that (14) is equivalent to (see remarks below
Theorem 2.2 of Kallenberg [17])

Sn - X,2 an Xn2 d .
(_72_23 3 a”')_)(X(1)7[X]17ﬂ17ﬁ27”')1n ROO’ (15)
a, a a, a
where X, = X3 < -+ fﬂO < .-+ < X,4 < X, are obtained by ordering {X;, 1 <
i <n}U{X;i>n}withX; =0,i=1,2,---. Now the conclusion of (5) follows
directly from (15). O
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Precise Asymptotics in Strong Limit Theorems
for Self-normalized Sums of Multidimensionally
Indexed Random Variables

Dianliang Deng and Zhitao Hu
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Professor Miklos Csorgd’s work on the occasion of his 80th
birthday

1 Introduction

Let {X,X,,Xp;n € Zy,n € fo_} be the independent and identically distributed
(i.i.d.) random variables on a probability space (£2,.#,P) where Z; denote
the set of positive integers and fo_ denote the positive integer d-dimensional
lattice with coordinate-wise partial ordering <. The notation m < n, where
m = (my,mp,...,my) and n = (ny,ny,...,ny), thus means that my < ny, for
k = 1,2,...,d and also |n| denotes ]_[Z:lnk, n — oo means n; — oo for
k=1,2,....d.SetS, = > X;, W> = Y7 X2, Sn = Y cn Xk, and W2 =
> k<nXi Where n € Z, andn € Z¢.

In the classical limit theory, the concentration is on the asymptotic properties
for the normalized partial sum S,/(EW?)!/? under the finite second moment
assumption. However the current concern is to study the same properties for the self-
normalized sum S,/ W,, without the finite moment assumption and many results have
been obtained on this topic. Griffin and Kuelbs [8] established a self-normalized
law of the iterated logarithm for all distributions in the domain of attraction of
a normal or stable law. Shao [23] derived the self-normalized large deviation for
arbitrary random variables without any moment conditions. In addition, Slavova
[25], Hall [14], and Nagaev [20] obtained the Berry-Esseen bounds. Wang and
Jing [29] derived exponential nonuniform Berry-Esseen bounds. Further results for
self-normalized sums include large deviation (see [4, 28]) Cramér type results (see
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[24, 27]), Darling-Erdos theorem and Donsker’s theorem (see [2, 3]), Kolmogorov
and Erdos test (see [29]) and the law of iterated logarithm (see [5, 9, 22]), among
many others. The known results have shown that comparing the same problems in
the standard normalization, the moment assumptions under self-normalization can
be eliminated and fundamental properties can be maintained much better by self-
normalization than deterministic normalization. Furthermore, the limit theorems of
self-normalized sums have resulted in more and more attention and been widely
used in statistical analysis. Griffin and Mason [10] derived the asymptotic normality.
Giné, Gotze and Mason [7] studied the asymptotic properties of the Student

1/2
t-statistic T, = fv—” (W) . Mason and Shao [19] extended this result

to the bootstrapped Student #-statistic. Most recently, Csorgé and Martsynyuk [1]
established functional central limit theorems for self-normalized type versions of
the vector of the introduced least squares processes for (8, ), as well as for their
various marginal counterparts. They also discussed joint and marginal central limit
theorems for Studentized and self-normalized type least square estimators of the
slope and intercept. The results obtained in Csorgd and Martsynyuk [1] provide a
source for completely data-based asymptotic confidence intervals for 8 and .

However, the recent interest lies in the precise asymptotics for self-normalized
sum S,/ W,. Zhao and Tao [30] obtained the following result.

Theorem 1. Suppose that EX = 0 and I(x) = EX*I{|X| < x} is a slowly varying
function at co. Then for any > 0 and § > max(—1,2/8 — 1),

e -2/
. _ (logn)
lim fCG+D—2 - X
e—>01 Z n

n=2
Se N2 (]S, s\ | BEINIPGFD
E[(W)’(\Wn e )]—m w

This theorem extends result in Liu and Lin [18] from the normalized sum to
the self-normalized sum. On the other hand, Pang et. al. [21] obtained the precise
asymptotics of the law of iterated logarithm (LIL) for self-normalized sums, which
can be thought of as the extension of the result on the precise asymptotics of LIL
obtained in Gut and Spataru [13].

Theorem 2. Suppose that X is symmetric with EX = 0 and I(x) = EX? I{|X| < x}
is a slowly varying function at oo, satisfying 1(x) < c) exp(c2(logx)?) for some
c1>0,c0>0and0 < B < 1. Leta > —1 and b > —1/2. Assume that a,(€) is a
nonnegative function of € such that

a(e)loglogn -t as n— o0 and € \( 1+ a.

Then
s a b
lim (2 —a— 1)b+1/22 (log n)“(loglog n) o
elva+1 =1 n
Sn 12 ) re+1i
P(|=2|> (2logl + o = exp(—2tV/1 + a)———2=. (2
(5] = @roztozm 2 + o) = exn-2ev T2 @)
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In addition, Deng [6] extended Theorems 1 and 2 and derived the more general
results for the precise asymptotocs in the deviation probability of self-normalized
sums for the one-dimensionally indexed random variables.

Comparing with the precise asymptotics for normalized sums and self-
normalized sums of one-dimensionally indexed random variables, the analogues
for multidimensionally indexed random variables also resulted in the attention
to the researchers. Gut and Spataru [13] studied the precise asymptotics for
normalized sums of multidimesionally indexed random variables and established

precise asymptotocs for Y [n|"/P72P(|Sa| > €|n|'/?), and for 3, “Og ‘"‘) L S (N
€y/[nllogn[), (0 < § < 1) ase \ 0, and for } (1155 \n\log|n|P(|Sn| >
€y/|n|loglog|n|) as € N\ +/2(d — 1)EX2. One of the results obtained in Gut and

Spataru [13] is as follows.

Theorem 3. Suppose that EX=0, that E[X*(log(1+|X|))*' (loglog(e+|X]))’]
< 00 for some § > 1, and set EX? = o2. Then,

lim e2—2(d—1)o? x

e\ +/2(d—1)
2
Z ——P(|Sy| = €+/|n|loglog |n]) = _— 3)
|n |10 |n| d—1
{n:|n|>3}

Meanwhile, Jiang and Yang [16] proved a result for self-normalized sums of
multidimensionally indexed random variables as follows.

Theorem 4. Assume that EX = 0, and EX*1(|X| < x) is a slowly varying function
at infinity. Then, for 0 < § <1,

: log |n|)°
hm€28+2 ( _ eV p
elo Z |n|(log |n[)*~!

From the previous discussion, we can summarize that the common interest
for the precise asymptotics of normalized sums and self-normalized sums of
multidimensionally indexed random variables is to find the convergence rate for
the following infinite series

Sn

Wa

EN28+2
> €y/log Inl) S 4)

d— D1 +93)

Z h(n])P(|Sq| = 6\/H¢)1(|Il|)) for normalized sums (5)

and

Z ho(In)P(|Sn| = eWa2(|n|))  for self-normalized sums (6)
n
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as € — ¢ for specified functions A; (x), h2(x), ¢1(x) and ¢, (x). For example, Gut
and Spataru [13] derived the precise asymptotics of (5) for hj(x) = (logx)®/x,
hi(x) = 1/(xlogx); ¢1(x) = /Togx, ¢1(x) = 4/loglogx and Jiang and Yang [16]
did that of (6) for hy(x) = (logx)?/(x(logx)?~") and ¢,(x) = +/Togx. However,
there is no result on the precise asymptotics of series (5) and (6) for the general
forms of functions &, (x), iy (x), ¢1 (x) and ¢, (x). Therefore the interest of this paper
is to derive the analogues of Theorem 3 and to give the extensions of Theorem 4.
Although we can derive the precise asymptotics for the series (5), in what follows we
will focus on the derivation of precise asymptotics for the series (6) with the general
functions A, (x) and ¢, (x). In fact we will extend the foregoing results in some sense.
Firstly we will investigate the precise asymptotics in the deviation probabilities
of self-normalized sums for the multidimensionally indexed random variables as
€ \{ €0 where ¢ can be 0 or greater than 0. Secondly instead of special functions
such as x",logx, loglogx in the deviation probabilities for self-normalized sums,
we will consider the precise asymptotics of (6) for general functions. Thirdly, since
there is no discussion on the precise asymptotics of (5) with general functions £, (x)
and ¢; (x), the results obtained in this paper can also be suitable to the series (5).
Therefore the present paper will give the integrated results and the theorems stated
above can be considered as the special cases of our results. Moreover some novel
results are derived. The remainder of this paper is organized as follows. Section 2
introduces some definitions, notation and states main results. Section 3 will give
some preliminaries for the proofs of theorems, which follow in Sect. 4.

2 Main Results

In the remaining sections, suppose that {X,X,,n € Zi} be nondegenerate i.i.d.
random variables and set Sy = Y, _, Xk and W2 = Y, _ X2. Let N denote the
standard normal random variable. Let ¢ (x), g(x) be positive valued functions on
[1,00), [¢(1), 00), respectively, and «(x) be a positive function on the positive finite
interval [a, b] such that:

(A1) ¢(x) is differentiable with the positive derivative ¢’ (x) and ¢ (x) = o(/%).
(A2) g(x) is an integrable function with the anti-derivative G(x) = f(;( 0 g(ndt;
(A3) hmx—)eg_ a(x) = 0 for some € € [a, b].

Based on the discussion in Sect. 1 the main results are stated as follows.

Theorem 5. Suppose that EX?1(|X| < x) is a slowly varying function at co, ¢ (x),
g(x) and a;(x) (i = 1,2) satisfy (Al)—(A3), respectively.

(i) If for fixed 1/2 < y < 1, the integral

2

*® x yx
al(e)/o G <E) exp (—7) dx < 400 @)
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uniformly with respect to € € [a, b], then

im, o) 3 EBMED ([ 2| coqmp )
_ ai(€) V]
amatyrle(D)] e

By choosing the appropriate forms to functions g(x), ¢ (x), o¢; (x) and &5 (x), many
known results can follow from Theorem 5.

At first, by setting g(x) = (logx)?**~!/x(d + t > 0), ¢(x) = x'/9(g > 2) and
a(x) = (—logx)~*9 we have the following corollary.

Corollary 1. Suppose that EX*I(|X| < x) is a slowly varying function at co. Then

] 1)\ ~@+o) (log |n|)? y P
it (logz) 2 P( = el q) @roa—n 9

Wa

In particular, by setting t = 0 in (9), the self-normalized version of Theorem 1
in Gut and Spataru [13] is obtained and thus this result can be thought of as the
generalization of the aforementioned theorem. Next one can also obtain the self-
normalized version of Theorem 4 in Gut and Spataru [13] by choosing g(x) =
x24T g (x) = (logx)'/? and a(x) = x>@+9:

EIN 2(d+6)
Sn ze(loglnl)”z) = BN )
Wh

. (log |11|)‘S
lim €9 ) ( d=1)(d+9)

e—>01

n:|n|>3

Then Theorem 4 can be obtained by replacing § with § + 1 — d in (10). Moreover,
if we choose g(x) = x*"*!, ¢ (x) = (loglogx)'/?, & (x) = a2(x) = x*"*2, we have
that

hm 621’]+2 Z (10g10g|n|)r’P &
>0t In|(log In[)? "~ \| W

E|N|27]+2
d-D'1+n

Y

> e(logloglnl)‘/2) =

[n|>3

More generally, by taking g(x) = BxPC+D=3 ¢ (x) = (ne(x))"/? and o) (x) =
as(x) = xPP+D=2 we have the succeeding corollary.

Corollary 2. Suppose that ¢(x) is a positive valued differentiable function on
[1,00) such that ¢'(x) > 0, limy_e0 @(x) = 00 and ¢(x) = o(xP'?). Then for
B>0,8>%—1landn>0,
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=28 ¢’ (n|) S,
li BB+1)—2 (p(|n))) @ pll2m
oot Z (log |n|)4—1 W,

IBElzlﬂ(8+l)—2
T @=DWPFRBE+ ) -2

> e(n¢(|n|)>“ﬂ)

n:|n|>3

12)

Now we consider deriving the analogue of Theorem 3. So far, the choice of
function g(x) is limited to the power functions or slow varying functions, for
which, the condition (7) always holds. However, the conditions in Theorem 5 are no
longer satisfied for the exponential functions. In fact, by setting g(x) = 2xexp(x?),

¢ (x) = (loglogx)'/?, a;(x) = v/x2 — 2 and €y = +/2, we have that

Sn
lim Ve —_ (‘
dmves2 oz

o INNT_ V2
- im0z |o(F)] - 75

> ¢(loglog |n|)1/2)

provided that (7) in Theorem 5 holds. However, (7) in Theorem 5 does not hold for
the above choices of functions g(x) and «(x). In fact, for 0 < y < 1, the integral

T S

does not converge uniformly with respect to € > +/2. Therefore in order to obtain
the self-normalized version of Theorem 3, the stronger condition should be added
on the random variables. Actually, we have the following result.

Theorem 6. Let X be a variable with E|X|**® < 400 for some 0 < § < 1. Suppose
that (A2) and (A3) hold for g(x) and a;(€)(i = 1, 2), respectively, and ¢ (x) satisfies
the following condition:

(Al") ¢ (x) is differentiable with the positive derivative ¢’(x) and ¢ (x) = O(xﬁ‘%‘ )(8 > 0).
Then (8) holds provided that

ai(e)E |:G (@)} < 400 (13)

uniformly with respect to € € [a, b].

Now many specified results can also be obtained by choosing different forms to
2(x), ¢ (x), a1 (x) and oz (x). Under the condition that E|X|>**? < +00(§ > 0), we
have form > —1,d + t > 0 that
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lim (E —2d+71))

21 Z (log |n|)* (loglog |n|)™ o

el 2t s [n|
2m+1 2m+1
Sn I'(=5=)
P(|—| > e(loglo (|n|))1/2) = . (14
( Wa g8 (d— 1)!,/(d+ )7
2 1 "(logl "
Jim €2 exp _d+1) ) (logn|)*(loglog n|)"
0 262 [n|
[n|>3
Sn 2(d + 7)y"!
P |—| > €logl = — 15
(‘Wn > € ogoglnl) @— (15)
and
lim €221 exp (_7_22) Z (loglog In|)™ exp[r(loi log [n|)'/?] 5
el 2¢2 ) [n|(log [n[)
Sn ! 472m
P(|—=| > e(logl ) = 16
(5] = ctoetogmp =) = F= ao)
In particular, by choosing T = —1 and m = 0 in (14), the self-normalized version
of Theorem 3 can be obtained:
lim /e2—-2(d— Z (‘S— e(loglog(|n|))l/2)
el /2d=1) nl=3 |n| log|n|
1 2
a7

T d—\@-n

Now for 4 > —1,v > 0 and n > 0, by taking g(x) = x* exp(vx?), ¢(x) =
e())2, a1(x) = (2 —2v)7 and ar(x) = (& — 21})“T+2 in Theorem 6, the
subsequent corollary follows.

Corollary 3. Let X be a random variable with E|X|*T® < 4+00(§ > 0). Suppose
that ¢(x) is a positive valued differentiable function on [1, 00) such that ¢’ (x) > 0,
lim,— 00 @(x) = 00 and ¢(x) = O+, Then

e exp(vg(nD)le(lnD]) T /()
AT 2 (og fn )+ "
Sa 25 (L
P (‘W 2 6(’7<ﬂ(|”|))1/2) = (2) ptl e
" d-Dvrn—=>
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Also, the following corollary can be derived by taking g(x) = x* exp(vx),
a1 (x) = exp(—v?/2x?*)x** and oz (x) = exp(—v?/2x?*)x***D in Theorem 6.

Corollary 4. Let X be a random variable with E|X|>*? < 4-00. Suppose that
¢ (x) is a positive valued differentiable function on [1,00) such that ¢'(x) > 0,
lim, 00 ¢ (x) = 00 and ¢ (x) = O/ *+29). Then for v > 0,

v? (@) exp(og(ln))¢ (i)
?) 2 (log [n))?= P (

> ep(n)) = 215

lim, o e exp (— A

So far, we obtain the precise asymptotics for the probability deviation series
of self-normalized sums of multidimensionally indexed random variable under
the moment condition that E|X|>*® < 400 for § > 0. However the analogue
of Theorem 1 cannot be derived under the same moment condition. If strong
conditions are added on the random variable X, the precise asymptotics in complete
moment convergence for self-normalized sums of multidimensionally indexed
random variables can be obtained.

Theorem 7. Let X be a symmetric random variable with E|X|*> < 4o0. Suppose
that (A1)—(A3) hold for ¢ (x), g(x) and a;(€). Then

2
lim_, + aa(€) 3, %LL"E[( ) 1( Wz e¢>(ln|))}
=tim,_ + 5E[NG ()],
provided that
N
oy (€)E [NzG (%)} < 400 (18)

uniformly with respect to € € [a, b, respectively.

For the different choices of functions g(x), ¢(x) and «2(x), the analogues of
previous results can also be obtained. Moreover replacing €¢(|n|) by €¢(|n|) +
k(|n|) and e (|n|) + « (€, |n|) in (8), the self-normalized versions of Theorem 2 can
be derived for the multidimensionally indexed random variables.

Theorem 8. Suppose that the same conditions as that in Theorem 5 or Theorem 6
hold.

(1) If k(x) is a nonnegative function of x such that x (x) = O(1/¢(x)), then

i 03 glg (D}’ ('"')p(‘

e—0t (log |n|)4—!

= imaor|o(F))

> ep(inl) + x(|n|))
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(ii) If k(e, x) is a nonnegative function with respect to € and x such that
k(e,x)p(x) > pasx —> ocoande — ¢y > 0,

then

wio% sl (nDlg () , (‘ Sn] epnb -+ . |n|))

L (log [n )

= exp(—e€op) lim «;(€)E |:G (m)} .
+ €

€—>€,

Theorem 9. Suppose that the same conditions as that in Theorem 7 hold.

(1) If k(x) is a nonnegative function of x such that k (x) = O(1/¢(x)), then
gle (In)]¢’ (In]) 2 (]S
Jim 2 D g T - [(W) ’(‘W

= lim ay(€)E [N2 (|N|)i|
€_>€(;r €

(ii) If k (e, x) is a nonnegative function with respect to € and x such that

> ep(inl) + x(|n|))]

k(e,x)p(x) > pasx —> ocoande — ¢y > 0,

then

> ep(inl) + k(e. |n|>)}

[B(nDl¢"(mD | ( Sa\*, (] Sn
im0 3 4G () o

W,
e—)eo n n

= exp(—e€pp) lim ay(e)E |:G (M)} .
6—)66"’ €

Also, one can obtain many results by choosing different forms for functions g(x),
¢(x), k(x) and « (¢, x). Finally we end this section by a specific result on the precise
asymptotic in the complete moment convergence.

Corollary 5. Let t > 0, m > 1/2 and k (€, x) be a nonnegative function of € and x
such that

k(e,x)(2logloglogx)'/? = pasx — coand € | /7.

Then, under the same conditions as in Theorem 9,
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. (log log |n|)*~" (log log log | )"~ ( Su )2
lim (2 — 7)™ E|l|l—] x
Jim (€ =0 inl(log [n])? W,
Sn 1/2 _ \/_F(m)
’(Wn > e(2logloglog n)"”? + k(e. |n|))} 2expl—pt L

3 Preliminaries

Again suppose that {Xx,k € Zf{_} are random variables and {S,,n € fo_} are their
partial sums. Note that Sy, is simply a sum of |n| random variables. Let

d(j) = card{k : |k| =j}, and M(j) = card{k: |k| <j}.
From Hardy and Wright [15], the following asymptotics hold:

i(l ~d—1
M) ~ J_((;g_])l)! as j— oo

and
d(j) = o(j%) forany§ >0 as j— ooc.

Further, since all terms in the sums we are considering are nonnegative, the order of
summation can be changed as follows (see Gut [11, 12]).

ToeLre

In particular, if the functions involving n only depend on the value of |n|, the second
summation can be further simplified. For example,

> glp(In))]g’ (In)P(1Sa| = €Wagp(n])

[e.]

Z >~ gle(InD]¢’(In)P(S| = eWag(|n)))

J=1 |n|=j

Z d()glp (' DP(ISx()| = €Wa(yo (7))

where 7(j) = (j,1,...,1) € Z‘j_ and Sy = ZLIXW).
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Now we give a proposition which is crucial in the proofs of theorems for the
multidimensionally indexed random variables.

Proposition 1. Let a(€) be a function satisfying (A3) in Sect. 2, {a(j,€),j > 1} bea
nondecreasing sequence of functions such that lim; . a(j,€) = 0 for all € € [a, b].
Suppose that the infinite series Zfil d(j)a(j, €) converges for € € [a, b]. Then,

lim_a(e) > d(jai.e) = lim_a(e) > (ogj)*a(.€)/(d —1)!

T Jz1 < Jz1
The proof of Proposition 1 can be obtained from the following lemma (see
Spataru [27]).
Lemma 1. Let {a(j).j > 1} be a nondecreasing sequence such that limj

a(j) = 0,and let 0 < § < 1. Then, there exists ko = ko(8) such that

—§ )
L Y (ogj)y*a) < > dGag) = €1 + ﬁ > (logj)*""aj).

—_ 1)
(d =1t Jj=ko j=1 j=ko

Since S}y and Sy, Wiy and W, have the identical distributions, respectively,
one can obtain the multidimensional-index versions of several inequalities for self-
normalized sums of random variables, which will be used in the proofs of our
theorems.

Lemma 2 (Shao [24]). Let {X, X,k € Zi} bei.i.d. random variables with EX = 0
and EX?I(|X| < x) is slowly varying as x — oc. Then for arbitrary 1/2 <y < 1,
there exist 0 < § < 1,x0 > 1 and ng such that for any |n| > ng and xy < x < 8+/|n|,

2
P(Sa/ Wy > X) < exp (—%) .

Lemma 3 (Wang and Jing [29]). Let {X;,k € Zi} be a sequence of symmetric
random variables with E|Xy|> < +o0 fork € Zi. Then for alln € Zi and x € R,

|P(Sp/ Wy = x) — P(N > x)| < Amin{(1 + |x|*)Ls. 1}e~/2

where Ly = 3 < it EIXlP/ (Cjgy<j) EXDY 2.

Lemma 4 (Jingh et al. [17]). Let {X;,k € Zi} be a sequence of random variables
with EX;, = 0 and E|X;|**® < 400 for 0 < 8 < 1. Then for alln € Zi and x € R,

|P(Su/Wa = x) = P(N > x)| < Al +x)' F0e7/2 /a2 18

holds for O <x= dnqg where dnqg = (Z\k\ﬁlnl EXI%)I/Z/(Z‘Hf‘n‘ E|Xk|2+5)l/(2+5).
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4 Proofs of Main Results

We will first present a lemma on the standard normal random variable. Similar to
Lemma 3.1 in Deng [6], the following lemma follows.

Lemma 5. Suppose that g(x),¢(x) and o;(x)(i = 1,2) satisfy the conditions
(Al)—(A3), respectively. Then we have

lim_r1(€) Zg[as(lnl)]as (In|)(log |n|)1 — dP(IN| > e¢(|n]))

E—)EO

. a(e) IN|
- M@t (%)) )
and
im,a(€) 3 16 Dl ) log )~ [ > s
L €o(e) V]
e ()] e

where Gy (x) = f(;(l) 2uG(u)du.

4.1 The Proof of Theorem 5

From Lemma 5, proving (8) is equivalent to proving

im0 3 MU

n

Wha

. e¢(|n|>) PN > e¢(|n|)>) "
21

Now, for afixed M > 0, set K = K(M,€) = ¢~ (M/¢). Then,

im0 Y [¢(InD}¢ (1) (&

> e¢>(|n|)) PN > e¢(|n|>)’

p— (log [n])d—1 Wa
g (Ing ()
- Jim en(0 XSGR P(| 52| > cotmb )~ Pavi> coqmn)

+11ma(e)ZMP(

d—1
g e (logIn)

Wl > 6¢(|n|)) P(IN| > €¢(|nl))‘

= (I) + (II)
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Since Sp/Wa—PN(0, 1) as |n| — oo and P(|N| > x) is continuous for x > 0, it is

obvious that
p (‘ Sn
W n

= hm ai(e) Z —g[zggl]ﬁdﬂfl') P(‘Wn

O|n| 1= sup — 0 as |n| — oo.
X

> x) — P(|N| > x)

As to (I), we have that

> e¢(|n|>) — P(N| > e ()

e—>eo In|<K

= lim_ai(e) ) glg(InD]e’(In))(log [n))' =8}

€—>¢, In|<K

If ¢ > 0, then K = K(M,¢) is bounded and the summation Z\n|51<g[¢(|“|)]x
#'(In])(log [n|)' =48}, has finite terms for a fixed M. Thus, from condition (A3),

lim_e(€) Y glg (I’ (In])(log|n])! =6y = .

€€, In|<K

If ¢ = 0, we have that

> gld(nD]¢’(In))(log [n])'~

M
G(?) In|<K

= G(M) 33" glg(ImDl¢’ (In)(log [n))'~
J=K |n|=j

== (M) > d()glp ()¢’ ()(log))' ™

J=<K
1 1 [o® 1 1 ¢
= — g(uw)du = g(u)du
@d-D'G%) Jpa @=D'GY) Jyq)
1 1 M 1

S@-niem I =@

Therefore by Toeplitz’s lemma [see, e.g., Stout [26], pp. 120-121], one can obtain
that

> gld(nD]g’ (In))(log [n])' 8 = 0

[n|<K

1
e—>e;r G(?)
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and thus by noting that (7) implies that a(e)G(%) are bounded uniformly for € €
[a, b], we have

lim oy () > glg(InD)]g’ (n))[P(|Sal > €Wadh(In])) — P(IN| > e (In)))|

E—)EO ‘nlSK

M 1
= lim a;(€)G(—)——
el € G(Y)

>~ glp(InDI¢’ (In))8jn = 0.

In|<K
We turn to (II). Firstly note that

_ oy gl¢(In))]g’(In])
un = 11m+061(€) Z W

e—€ In|>K

Sn
Wa

d

< tim ai(e) Y glp(Inl¢’(In)(log n)'~*P(ISs| > W (Inl))

> e¢(|n|)) — P(N| > eg(n])

€—>€, In|>K
+ lim_ai(e) ||z: gl (InD]¢’ (In])(log In)! ~*P(IN| > e (|n|))
€—>€, nl>K

= lim o;(e)A;(e) + lim+ a1(€)As(€).

E—)GO E—)GO

Now, (7) implies that for any give € € [a, D], o1 (€)E [G (ﬂ)] < 00 and thus,

€

(d — Dl (€)Az(€)
= (d—=Dlai(e) Y glp(Inhlg’(Inl)(log [n))'P(N| > e¢(In]))

[n|>K

= (@d=Di(e) Y Y glp(nD]¢’(In))(log [n)'~P(IN| > e (In]))
77K In|=j

= (d—D'i(e) Y d()glp (D¢ ()(log)' *P(N| > €4 (j))
j>K

— () / (@D WP(N| > ep(x))dx = a1 (€) / (PN > eu)du
K M/e
— ai(e) /ﬂ /M * W) dudF(y) < a1 (€) /M G(g)dF(y)

_ NI
=o1(€)E |G| — ) Ignsm | = 0as M — oo.
€
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Next, from Lemma 2, as M — oo,
(d—1D'ai(e)Ar(€)
= (d— D!ai(e) Z gl¢(InD)]¢’(In])(log [n])' ~P(|Sa| > Wae(|n]))

In|>K

— (@~ Dlar©) Y gl (Dl () logn]) exp(

In|>K

V€2¢2(|nl))
2

242
= (= e (@) Y Y sl (Dl () og )~ exp (20 )

X 2
J>K |n|=j

= (d—Dlar(e) Y d()glp ()¢’ () (logj)' ™ exp (

J>K

o] 242
<@ [ elpw e (-2 Y ax

o) 2
= al(e)G( ) exp (—%) I5r —i—/M yay(€)yG(= )exp( y; )dy—> 0.

V€2¢2(i))
2

Thus, (21) holds. Now it follows from (19) in Lemma 5 and (21) that,

lim o1 (€) Zg[¢(|n|>]¢ (In))(log [n])'~*P(|Sa| > €Wagh(n]))

€—>€0

= lim o1(e) Zg[as(lnl)]as (In])(log n|)' ~*P(IN| > e¢(In))
1 [N
S @M “1(€)EG( c )

This completes the proof of Theorem 5.

The proof of Theorem 6 can be obtained by using Lemma 4, instead of using
Lemma 2, in (22) of the proof of Theorem 5, and thus are omitted. Now we are in
the position to prove Theorem 7.

4.2 The Proof of Theorem 7

In order to complete the proof of the theorem, we first note that

lim az(é)zg(fﬁ(lnl))qﬁ (In))(log [n])' = E(Sn/Wa)*I(|Sa| = €Wag(In))

€—>€0

= Jim ca(©) 3 #((In)¢' i) g )~ d/ w0 (‘W

=x)
E—)so n
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= Jim () 3@ () Doz )~ d{e b (|n|>P( Sl e¢(|n|>)
Sn
2xP | | — d.
+/s¢<|n> * (Wn Zx) x}
= lm Cete) Y6 (u)g ()¢t ) (| 3| = eoin) )

E—)EO

n

 lim ex(@) D s(@()g oz ' [ oup (|

€—>€0 n

zx) dx

=D+ (V)
Similar to the proof of (7), one can prove that

() = lim e az(e>2g(¢>(|n|))¢ (In))¢2(nl)(log In])'~ dP( fV—

€—>€0 n

> e¢>(|n|))

lim e 0!2(6)Z:g(¢>(lnl))<i5 (In)¢*(In|)(log n])'~*P (IN| = e¢(In]))

€—>€0

! M
= = m S (1)

where G(x) = f;(l) u?g(u)du.
Next, if

Sn

Wa

> x) dx

= lim az(e)Zg(¢<|n|>>¢ (In|)(log [n)' / | 2P (IN| = x)dx,  (23)

e—>eo e¢(|n|
S
- > x) dx
W,

n

Jim, ) 36 i og )~ | o 2 (

from (20) in Lemma 5, we have

(1v) = lim az(e>2g(¢(|n|)>¢ (In)(log |n])'~ / . 2xP(

6—)60

(d_l D1 hm 20 (€)EG, (| |)

and thus by the fact that G (x) + G»(x) = x>G(x) — [¢(1)]*G[p(1)],

lim az(e)zg(¢(|n|))¢> (Inf)(log [n)' =" E(Sn/Wa)*I(ISa| = €Wa¢(In]))

€—>€0

(d—1 hi € “Z(G)EGZ(I I) * (d—1 iyp fim €z (| |)
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! NI IN|
mi}f{: a(e)E [Gz (?) + Gy ( . )}

T @1 jjjl a(€)E [NZG (T) - 62[¢(1)]2G[¢(1)]}

1 26 IN|
(w4w$2”@Eh (?)}

Now, it remains to prove (23). To this end, it suffices to prove that

hm o (e )Zw

e (log |n|)1—

S
/ 2xP(‘—n zx) dx—/ 2xP (IN| > x)dx| =0 (24)
e (In)) Wa $(In))
Moreover, (24) can be obtained by proving
/
A S Al L]
it i,y (ognD
Sn
/ 2xP (‘— Zx) dx—/ 2xP (|N| = x)dx| =0, (25)
ep(|n|) Wa ¢(In)
and
/
i )y S0 )
e ke doginD)
Sn
2P| |—|>x)dx — 2xP (|N| = x)dx| =0 (26)
e (Inl) Wn e(Inl)

where K = K(e, M) = ¢~ (M/¢).
To prove (25), by setting 8jn| = sup, |P(|Sa/Wa| > x) — P(IN| > x)|, we have
that

n

S
2xP( —
e¢(nl) W,

o0
= x) dx — / 2xP(|N| > x)dx
€¢(In))

~ (log|n)="

In|<K n

<w(e) Y. g(@(n)))¢’(In|) )

e (s
(log n]) el +o, Wa

zﬁw—mwzn

In|<K

g(@(In)g/(n)) [0+ Sn
+ata(€) Z W ol Zx‘P (‘Wu

Ex) dx — P(|N| > x)| dx

In|<K

= (V) + (VD).
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Now, from Lemma 3 and (18) in Theorem 7, we have
(V) < az(e) x
n

8(@(n[))¢’(In]) [ ( S,
E 2x| P
~ (log n])y*=1 eg(In)) 45,

In|<K

£(@(n))¢’ () 2 .
=@ ) ~ (log [n))i=1 ¢(|n|>+am|1/42x[AeXp{_7§ + CeXp{_Eﬂdx

In|<K

> x) dx + P(IN| > x)] dx

n

< Caz(é)

2
20 L Of  rew]-Fa

8_1/2
< C““f)),z @G’ (/)eXP§ 5 }

Ci
- X 00w o, @)

' j<K(e.M)

where §; = exp{—Sj_l/z/Z} — 0 as j — o0o. Next, we have

(V) < ax(€) %

> £@(nD)6 n) f¢<“)+8"'1/42x‘POS_ “

n
— 2x)dx—P(|N|2x)
In|<K(e.M) (log [n[)@~" ep(Inl) Wa

< g(@(In))¢' (In)) @n) 5, 26d
= Inls%(:e,M) (log )=t Jep(n Olnl
a2 (€) e (j)+5; " |
< 1)’,-51%4) 6 ()F'G) / " i
Car(e) o\ s el)2
5!
<@ T, w0wos

where § jl/ > - 0. Now again from Toeplitz’s lemma, we have that

i 8(@(In)))¢’(|n])
im ————— X

d—1
e—>€0+ In|<K(e.M) (log |n|)

o0
S,
Lol
e¢(In)) Wa

C
= =y Jm, (e Y s@M (I +8% =0

J<K(e.M)

o0
> x) dx — / 2xP(|N| = x)dx
e¢(In|)
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Next, we show (26). Note that from the conditions in Theorem 7 and Lemma 3, we
have

ae) Y g@(nD)g"(Inh)

d—1
ke dogm)

o0 Sn
2xP | | —
e¢(Inl) W,

g(@(n[))¢’(In[) [ Sn
= Z - ¢ (n)) > [P (‘Wn

d—1
ke dognD

Zx)dx—/ 2xP (|N| > x) dx
¢ (Inl)

zx) + P (|N| 2x)i| dx

[\

8@()9'()

T aao XEXp | —
(logH*=" Jeg i (

< Cox(e) Y. Z 8(@(In))¢’(In)) cex (_x_z) N
ep(|nl)
< Cale) ), d()
j>K(e,M)

d—1
oK) e (log n|)
) dx
Cas(€)

oo , e’} x2
= @0 S O ([ resn (= ) as)
_ Carle) [ x X
=@-nil, xG (Z) exp (—5) dx

€@ s (N1 o -
< e [vo (M) i = 28)

(SRS

which converges to 0 uniformly with respect to € as M — oo. Therefore (26)
follows. This completes the proof of Theorem 7.

Lemma 6. Suppose that g(x), ¢ (x) and a;(x)(i = 1,...,4) satisfy the conditions
(Al)—(A3), respectively.

(i) Assume that «(x) is a function of x such that
Kkx)px) = 0(1), as x— oo.
Then

lim (€)Y gl ()¢’ (Inl)(log|n])' ~*P(IN| > e¢(|n]) + «(n]))
e—>0t n

! N
= a=mim al(e)EG(|€|)7 (29)
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and

lim as(€) Y glp(n])]@’ (In])(log |n])' EN’I(N| > € (j) + x ()]
e—0t n

1 2G IN|
(d— 01 EEI(I)I a(€)E |:N (T):| . 30)

(i) Assume that k (€, x) is a nonnegative function such that

()K€, x) > p asx — oo ande—)e(;">0.

Then
lim 063(€)Zg[¢(lnl)]¢ (In)(log [n])'~*P(IN| > g (|n|) + k(€. |n]))
_exp(—€op) IN|
- tm weo () o
and
lim 064(6)Zg[¢(|n|)]¢ (In])(log |n|)' “EIN*I(IN| > e¢(|n]) + (e, |n|))]
_ oxp(z€op) lim_ay(e)E [Nz (' ')} (32)
Td—D!

Proof. (i) From Lemma 5, to prove (29) and (30) it suffices to prove that
limay(€) ) gl (In])]g(jn]) (log [n])'~
|P(IN| > €¢(|n[) + «(In])) — P(IN| > €¢(In|))| =0 (33)

and

Jim aa(e) 3 gl¢(ImDlg’(Inl)(log [n])! ~
|EIN*I(IN| > e¢(|n]) + «(In])] — EIN*I(IN| > eg(n])]| = 0.  (34)
Now note that

IP(IN| > €¢(In]) + «(In])) — P(IN| > €¢(In)))]

€¢(In)+«(Inl) _
/ \F exp{——}dx<|x(|n|)|\f { (g n) ~ bembl)*
€¢(Inl)

Cexp(eC) 2 {_ez¢z(n)}
=T VAU 33
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and

|EIN’*I(IN| > € (In|) + «(In]))] — E[N’I(|N| > e¢(|n]))]]

ep(nh+eln)  [5 >
/ = exp{—x—}dx
c¢(In)) w 2

1 _ 2
= e + (D)~ gy Z exp | LD DD

< Ce ¢>(|n|)exp(eC)\/7 { ¢’ ( Inl)} (36)

where C denote a constant which varies from line to line. Therefore from (35)
and (36),

w

a1(€) ) glp(InD)l¢’ (In))(log In))'~/|P(IN| > eg(In))+«(In))~P(N| > ¢ (n)))|

3 gl (nDle'(nl) Cexp(eC) [Z | 42(n)
=€) 2 o)™ gD Ee""{_ 2 }

gl ()16 G) Cexpl(eC) 242()
<“(€)ZZ (oz) ™ $0) ne"p{_ 2 }

Jj=1|n|=

<Cexp(e6)a1<e) L0 P \f _€¢%0)
T d-! ,~:1 () 2

_ Cai(e) 1 (IN|
S a- 1)!E[W” (T)} ©7

and

a2(€) Y~ glp(In))]¢’ (In])(log|m)'~ x

|EIN*I(IN| > e¢(In]) + «(|n]))] — E[N’I(IN| > e¢(In]))]|

2 2(n
UZg[%('g'ﬁ,]ﬁd(ll D e (n]) exp(eC) \f ex{ ¢<>}

o ! 242
< CexpleO)éan(© Y Y g[¢(lg|i¢|n(|l;lz<lﬁ(lnl) %exp{_e ¢2(|n|)}
J=1 Inl=j

Cexp(eC)e’ar(€) on . o, [2 E2¢2(j)
< (d—l)!z ;¢(])g[¢(1)]¢(/)\/;exp§— 5 }

<Ca2(e)E[|N| (' ')} (38)
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Next from integral by part, we have that

el ()] = [5G

[T e (5 ) [T (-5 )

= [0l Foo (5 ) [0 G oo (5) 4]
e[ (%) o ()]

Therefore

lime—o2(€)E |:|N|g (M)] = lim o (€)e [ENZG (M) EG (|N|>] =0
€ e—0 € €

(39)

provided that lim_, a2 (€)E [NZG (VZ—‘)] < +o0. Similarly one can prove that

hm al(e)E[llill (|N|):| =0 (40)

provided that lim_ o1 (€)E [G (@)] < +o00. Hence (33) and (34) follow
from (37) to (40).
(ii) Note that as x — oo and € — €y+ > 0, €¢(x) — oo. By the asymptotic result

for normal tail probability P(|N| > x) ~ )—lc\/g exp(—%z)(x — 00), we have
that

P(IN| > €¢(In]) + « (e, n]))

2 1 1 2
- \/;e¢(|n|) T m) P [—z(ecﬁ(lnl) + k(€. n])) }

2 2,42 i|
\/7 $(mD exp[—egp(|nf)x (e, Inl)]eXp[ € ¢~ (Inf)|.

Therefore for any 0 < 6 < 1, there exist ¢ > 0 and an integer Ny such that for
all In| > Npand ¢y < € < ¢y + €,

exp(—€op — O)P(IN| > €¢(|n]))
< P(IN| > €¢(|n[) + «(e. [n])) < exp(=€op + O)P(IN| > €¢(|n))
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and thus (31) follows from (19) in Lemma 5 and the arbitrariness of §. Next we have
that

EN’I{|N| > e¢(In|) + k(. [n|)}
= [e¢(In|) + k (e, In])]*P(IN| > e¢(In|) + k(€. n]))

+/ 2xP(|N| > x)dx
¢ (In)+(e.Inl)

~ [e¢(In]) + « (e, [n])]* exp{—eg (In)x (e, |n|)}P(IN| > € (|n])

1 /2 X2
+ 2x—/ = exp{—=-Jdx
ep(In))+«(en)) XV TT 2

~ [€¢°(In]) + 2€0p + 2] exp{—eop} P(IN| > € (|n]))
~ €*¢*(In|) exp{—€op}P(IN| > ¢ (|n])).

Therefore

lim a4(€) Zg[¢(|n|)]¢’(|n|)(10g In|)' E[N*I(IN| > e¢(In]) + « (e, [n]))]
e—>€eT0

= lim tx4(6)2g ¢(In))]¢’(In|)(log [n)' ~“€>¢>(In|) exp{—eop}P(IN| > €¢(In|)

_ exp{—€op} . IN|
BRI S [Gl (T)}
T [NZ (' |)]
T @=L

expl—eup} v
e imawoce |6 ()] @b

Now note that

ay(€)e’E [G2 (Lﬂ)} = ay(e)€? /000 /Og 2ug(u)dudF (x)

< ay(€)e? /00 2§G (;) dF (x)
0

= e [ 26 (D) are + a0 [ 226 (%) arey
0

X0

<2¢)G (?) as(e) + xz(eo + 1)%a4(e)E |:N2 (|N|)I{|N| > xo}:| (42)
0 0
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Now if 1im€_>€0+ as(€)E [N2G (@)] < 400, for any 6 > 0 by choosing a large xy

such that the second term of (42) is less than 6/2 and then choosing a small € > 0
such that the first term of (42) is less than 6/2 for €y < € < €y + €, we have

lim o4(€)e’E [Gz (M)} =0. (43)
+ €

€—>€,

Hence (32) follows from (42) and (43).

4.3 The Proof of Theorem 8

Based on the same procedures in the proofs of Theorem 5, it is easy to show that

S B AL IALLIIN

e—0+ (log |n|)4-1

P (|| > cotm + ub) = w1 > enl) -+ c(aiy| =0
and
| &l (mIg ()
2 g

> cpn) + (e, fnp ) -7 (|7

n

(5
Wh

Therefore Theorem 8 follows from Lemma 6.
Also, we omit the proof of Theorem 9 due to the same reason.

> ep(In]) + « (e, |n|))‘ =0.

Acknowledgements The first author’s research is partly supported by the Natural Sciences and
Engineering Research Council of Canada.

References

1. Csorg6, M., Martsynyuk, Y.V.: Functional central limit theorems for self-normalized least
squares processes in regression with possibly infinite variance data. Stoch. Process. Appl. 121,
2925-2953 (2011)

2. Csorgd, M., Szyszkowicz, B., Wang, Q.: Darling-Eredds theorem for self-normalized sums.
Ann. Probab. 31, 676-692 (2003)

3. Csorgd, M., Szyszkowicz, B., Wang, Q.: Donsker’s theorem for self-normalized partial sums
processes. Ann. Probab. 31, 1228-1240 (2003)



Precise Asymptotics for Self-normalized Sums 41

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

217.

28.

29.

30.

Dembo, A., Shao, Q.M.: Self-normalized large deviations in vector spaces. In: Eberlein, E.,
Hahn, M., Talagrand, M. (eds.) Progress in Probability, vol. 43, pp. 27-32. Springer-Verlag
(1998). ISBN: 978-3-0348-9790-7

. Deng, D.: Self-normalized Wittmann;s laws of iterated logarithm in Banach space. Stat.

Probab. Lett. 77, 632-643 (2007)

. Deng, D.: Precise asymptotics in the deviation probability series of self-normalized sums.

J. Math. Anal. Appl. 376, 136-153 (2010)

. Giné, E., Gotze, F., Mason, D.M.: When is the Student t-statistics asymptotically standard

normal? Ann. Probab. 25, 1514-1531 (1997)

. Griffin, P.S., Kuelbs, J.: Self-normalized laws of the iterated logarithm. Ann. Probab. 17,

1571-1601 (1989)

. Griffin, P.S., Kuelbs, J.: Some extensions of the LIL via Self-normalized sums. Ann. Probab.

19, 380-395 (1991)

Griffin, P.S., Mason, D.M.: On the asymptotic normality of self-normalized sums. Math. Proc.
Camb. Philos. Soc. 109, 597-610 (1991)

Gut, A.: Marcinkiewicz laws and convergence rates in the law of large numbers for random
variables with multidimemsional indices. Ann. Probab. 6, 469-482 (1978)

Gut, A.: Convergence rates for probabilities of moderate deviations for sums of random
variables with multidimensional indices. Ann. Probab. 8, 298-313 (1980)

Gut, A., Spataru, A.: Precise asymptotics in some strong limit theorems for multidimensionally
indexed random variables. J. Multivar. Anal. 86, 398—422 (2003)

Hall, P.: On the effect of random norming on the rate of convergence in the central limit
theorem. Ann. Probab. 16, 1265-1280 (1988)

Hardy, G.H., Wright, EMM.: An Introduction to the Theory of Numbers, 3rd edn. Oxford
University Press, Oxford (1954)

Jiang, C., Yang, X.: Precise asymptotics in self-normalized sums iterated logarithm for
multidimensionally indexed random variables. Appl. Math. J. Chin. Univ. Ser. B 22, 87-94
(2007)

Jing, B.Y., Shao, Q.M., Wang, Q.Y.: Self-normalized Cramér type large deviations for
independent random variables. Ann. Probab. 31, 2167-2215 (2003)

Liu, W.D., Lin, Z.Y.: Precise asymptotics for a new kind of complete moment convergence.
Stat. Probab. Lett. 76, 1787-1799 (2006)

Mason, D.M., Shao, Q.M.: Bootstrapping the student t-statistic. Ann. Probab. 29, 1435-1450
(2001)

Nagaev, S.V.: The Berry-Esseen bound for self-normalized sums. Sib. Adv. Math. 12, 79-125
(2002)

Pang, P, Zhang, L., Wang, W.: Precise asymptotics in the self-normalized law of iterated
logarithm. J. Math. Anal. Appl. 340, 1249-1261 (2008)

de la Pena, V., Klass, M., Lai, T.Z.: Self-normalized processes: exponential inequalities,
moment bounds and iterated logarithm laws. Ann. Probab. 32, 1902-1933 (2004)

Shao, Q.M.: Self-normalized large deviations. Ann. Probab. 25, 285-328 (1997)

Shao, Q.M.: Cramér-type large deviation for Student’s t statistic. J. Theor. Probab. 12, 387-398
(1999)

Slavova, V.V.: On the Berry-Esseen bound for Students statistic. In: Kalashnikov, V.V,
Zolotarev, V.M. (eds.) Stability Problems for Stochastic Models. Lecture Notes in Mathemat-
ics, vol. 1155, pp. 355-390. Spinger, Berlin (1985)

Stout, W.F.: Almost Sure Convergence. Academic, New York/San Francisco/London (1974)
Spataru, A.: Exact asymptotics in log log lowas for random fields. J. Theor. Probab. 17,
943-965 (2004)

Wang, Q.: Limit theorems for self-normalized large deviation. Electron. J. Probab. 10,
1260-1285 (2005)

Wang, Q., Jing, B.Y.: An exponential nonuniform Berry-Esseen bound for self-normalized
sums. Ann. Probab. 27, 2068-2088 (1999)

Zhao, Y., Tao, J.: Precise asymptotics in complete moment convergence for self-normalized
sums. Comput. Math. Appl. 56, 1779-1786 (2008)



The Self-normalized Asymptotic Results
for Linear Processes

Magda Peligrad and Hailin Sang

1 Introduction

Let (&) be a sequence of independent and identically distributed (i.i.d.) centered
random variables with § € ZP,p > O0; let (a;) be real coefficients such that
32 lai|""@P) < oco. Then the linear process

oo

Xt = Zaiét_i (1)

i=0

exists and is well-defined. It is also interesting to replace the i.i.d. innovation process
in (1) by white noise processes, martingale difference processes or other dependence
structures.

We can study many time series via the research on linear processes. For example,
for a causal ARMA(p,q) process defined by the equation

P q
X, — Z ¢iXt—i = ég.t + Z QiSt—h
i=1 i=1
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there exists a sequence of constants (¢;) such that Zfio lpjl < oo and X, =
2120 @;i&—;. In fact, as early as in 1938, Wold proved the Wold decomposition
for weakly stationary processes: any mean zero weakly stationary process can
be decomposed into a sum of a linear part Z?io a;Z;—; and a singular process.
Here (Z;) is a white noise process. The singular process could be zero under some
regularity condition. Traditionally, linear process decomposition plays a key role
in the development of time series asymptotics; see Hannan [10], Anderson [1] and
Fuller [7].

For stationary time series, it is commonly accepted that the term “short memory”
or “short range dependence” describes a time series with summable covariances.
We refer to the review work or books on long memory time series by Baillie [3],
Robinson [19] and Doukhan, Oppenheim and Taqqu [5] for references to both
theory and applications. In terms of a linear process, if the innovations have a second
moment, one commonly uses Y |a;| as the standard for memory. A linear process
with a second moment has short memory if Y a; # 0 and Y |a;| < oco. Otherwise
it is called a long memory linear process. If the innovations do not have a second
moment, there is no completely commonly accepted definition of short memory or
long memory. Nevertheless, in the regularly varying tail case with o < 2, usually
we say that the linear process has short memory if }_ |a;|*/? < oo and long memory
if 3 |a;|*/? = oo but 3" |a;|* < 0o. The case a = 2 needs special treatment which
is handled in the next section. Recall that, a distribution function F(x) has regularly
varying tail with parameter @ > 0if 1 — F(x) = x~*L(x) forx > 0 and some slowly
varying function L(x).

This paper is aimed to review some recent developments on the linear process
asymptotics including central limit theorem, functional central limit theorem and
their self-normalized form. For classical asymptotics of linear processes, see the
papers Giraitis and Surgailis [9], Phillips and Solo [17] and Wu and Woodroofe [20]
and the references therein.

2 The Central Limit Theorem

Let (&;) be a sequence of i.i.d. centered random variables and
H(x) = E(£21()%| < x)) is a slowly varying function at cc. 2)

This tail condition (2) is highly relevant to the central limit theory. For i.i.d.
centered variables this condition is equivalent to the fact that the variables are in the
domain of attraction of the normal law. This means: there is a sequence of constants
na — oo such that Y ', &/n, is convergent in distribution to a standard normal
variable (see for instance Fuller, [6]; Ibragimov and Linnik, [11]; Araujo and Giné,
[2]). More precisely, if we put b = inf{x > 1 : H(x) > 0} then 7, is defined as
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H 1
nn:inf%s:szb—i—l, (s)f—}.

3
ERi 3)
To simplify the exposition we shall assume that the sequence of constants is indexed
by integers, (¢;);ez, and construct the linear process

[e.]

Xi= ) b, )

Jj=—00

In what follows we shall also make the following conventions:

Convention 1 By convention, for x = 0, |x|[H(Jx|™') = 0. For instance we can

write instead ;7 , 2 azH(la|™") < oo, simply Y, a?H(laj|™") < oo.

Convention 2 The second convention refers to the function H(x) defined in (2).
Since the case E(£3) < oo is known, we shall consider the case E(§2) = oo. Let
b = inf{x>0:H(x)> 1} and Hy(x) = H(x Vv (b + 1)). Then clearly b < oo,
Hp(x) > 1 and Hy(x) = H(x) for x > b + 1. We shall redenote H(x) by H(x).
Therefore, since our results are asymptotic, without restricting the generality we
shall assume that H(x) > 1 for all x > 0.

In a recent paper, Peligrad and Sang [16] addressed the question of the central
limit theorem for partial sums of a linear process. For independent and identically
distributed random variables they showed that the central limit theorem for the linear
process is equivalent to the fact that the variables are in the domain of attraction of
a normal law, answering in this way an open problem in the literature.

When the variables satisfy (2) a natural question is to point out necessary and
sufficient conditions to be imposed to the coefficients which assures the existence
of the linear process.

Proposition 1 (Peligrad and Sang [16], Proposition 2.2). Let (& )iez be a
sequence of i.i.d. centered random variables satisfying (2). The linear process
(Xy) in (4) is well defined in the almost sure sense if and only if

Y_aH(a)™") < oo, ()

JEZ

As an example in this class we mention the particular linear process with
regularly varying weights with exponent & where 1/2 < o < 1. This means that the
coefficients are of the form a, = n™*L(n) forn > 1 and a, = 0 for n < 0, where
L(n) is a slowly varying function at oco. It incorporates the fractionally integrated
processes that play an important role in financial econometrics, climatology and so
on and they are widely studied. Such processes are defined for 0 < d < 1/2 by

r(i+d)

X, =(1-B) "% = Zaiék—i where a; = T@ri+1)

i>0
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and B is the backward shift operator, Bey = e¢—;. For this example, by the well
known fact that for any real x, lim, oo I"(n + x)/n*I"(n) = 1, we have

lim a,/n®! =1/ ().
n—>o00

Notice that these processes have long memory because ijl laj| = oo.
The partial sums of a linear process can be expressed as an infinite series of
independent random variables with double indexed sequence of real coefficients.
Denote:

bpj = a1 + -+ + Qjn

and with this notation

$iX) =D Xi =) by 6)
k=1

Iz

A key element in establishing the central limit theorem for the partial sums of a
linear process is to defined a suitable normalizing sequence

Peligrad and Sang ([16], Theorem 2.5), added the point (4) to the well-known results
(1), (2) and (3) from the next theorem.

Theorem 1. Let (& )rez be a sequence of independent and identically distributed
centered random variables. Then the following four statements are equivalent:

(1) & satisfies condition (2).
(2) The sequence (&,),cz satisfies the central limit theorem

Sn(§)

n

= N(0,1),

where S, (§) denotes the partial sums for the sequence (&,)nez.
(3) The sequence (&,),eyz satisfies the functional CLT

S[nt] (E) N W(f)

n

on the space D|0, 1] of all functions on [0, 1] which have left-hand limits and are
continuous from the right, where W(t) is the standard Brownian motion and [x]
denotes the integer part of x.
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(4) For any sequence of constants (a,)nez, satisfying (5) and ), bik — 00 the
central limit theorem holds

Sn(X)

n

= N(0, 1).

The point (4) of this theorem extends the Theorem 18.6.5 in Ibragimov and
Linnik [11] from i.i.d. innovations with finite second moment to innovations in
the domain of attraction of a normal law. It positively answers the question on the
stability of the central limit theorem for i.i.d. variables under formation of linear
sums.

This theorem has rather theoretical importance. For applying it the normalizing
sequence D, should be known. This sequence depends on the function H(s) which
is often unknown. A way to avoid the use of H(s) is via the self-normalization that
will be discussed in the next section.

3 Self-normalization

In this section we shall review self-normalized central limit theorem and self-
normalized functional central limit theorem for linear processes (1). For a sequence
of i.i.d. centered random variables (&;)iez define

V2= Vi) =Y 8.
k=1

Recall that for a sequence of non degenerate i.i.d. centered random variables
(&1)rez, the self-normalized sum S,,(§)/V, = N(0,1) if and only if £ is in the
domain of attraction of a normal law (Giné, G6tze and Mason [8]).

The following theorem, due to Csorgd, Szyszkowicz and Wang [4] gives the self-
normalized functional central limit theorem.

Theorem 2 (Csorgd, Szyszkowicz and Wang [4]). The following statements are
equivalent:

(1) The i.i.d. sequence (&)kez is centered and in the domain of attraction of a
normal law.

(2) Spy(§)/V, = W(¢) on the space DI0, 1].

(3) On an appropriate probability space,

1 1
—Sh — —=W(nt)| = op(1).
U0 1S (€)= = W] = on(1)
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This result extended the classical weak invariance principle which states that, on
an appropriate probability space, as n — oo,

[n1]

sup |—— Zs, W(m)| = op(1)

0<r<l1

if and only if Var(&) = 0% < co.

One natural question is, can we have the weak invariance principle for the self-
normalized partial sums of the linear process (X)), when the innovation is in the
domain of attraction of a normal law?

Define

VIX) =D X} (7)
k=1

One of the first self-normalized central limit theorems for linear processes is due
to Juodis and Rackauskas [12], who considered a specific form of dependence.
Precisely, they assumed that X;,i € Z, is AR(1) process obtained as a solution of
the equation X, = pX,—; + &. They proved that S,(X)/V,(X) = N(, (1 + p)/(1 —
p)) under the condition |p| < 1 and & has mean 0 and satisfies (2). They further
apply blocking technique to remove the parameter p in the self-normalized central
limit theorem. More precisely they proved the following theorem:

Theorem 3 (Juodis and Rackauskas [12]). For the AR(1) process X, = pX,—1 +
&, assume that |p| < 1 and & has mean 0 and satisfies (2). Further assume that
n=mN.LetY; = Y\, icinXi» J=1,2,--+ N and define Uy = Y{ +---+Y3.
Then

ULSH(X) = N(,1) )

under the conditions m — oo and m/n — 0 as n — oo.

It is well known that, in this case, (X;;i € Z) is a stationary sequence which can
be expressed as the infinite time series X, = Zfil ©’€—j. So the problem Juodis and
Rackauskas [12] have solved is for a specific short memory linear process.

For general short memory linear processes, Kulik [14] provides a nice self-

normalized functional central limit theorem.

Theorem 4 (Kulik [14]). For the class of linear processes (1) with Z,fil lar] <
o0, assume the innovations are centered and satisfy (2). Then

Sn(X)

2
VX O£
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where B2 = (3 120 an)*/ (X _re ab). Also, the following invariance principle holds

o | S0 1BIW G| _
p =

1).
@1 Va(X) Jn or(l)

Juodis and Rackauskas [13] also considered the linear process (1) satisfying a
stronger condition than Kulik [14], namely, 220 i|la;| < oo. Under this condition,
they establish (8), avoiding in this way to use the sequence of constants (a;) in the
limit. Later, Rackauskas and Suquet [18] give the self-normalized central limit
theorem (8) under the same conditions as in Theorem 4. Furthermore, they provide
the invariance principle S},)(X)/U, = W(?) in the space D[0, 1] or the Banach
space C[0, 1] of continuous functions on [0, 1].

The results we discussed so far are for short memory linear processes only.
Peligrad and Sang [15] provide self-normalized central limit theorem and self-
normalized functional central limit theorem for long memory linear processes with
regularly varying coefficients

a, =n"%L(n), where 1/2 <a < 1,n> 1. 9)
Recall (2) and (3) and set
B2 := col,n® L (n) with [, = (1) (10)

where
Cy = {/oo[xl—“ —max(x— 1,0)'7%dx}/(1 — ). (11)
0

Theorem 5 (Peligrad and Sang [15]). Define (X,;n > 1) by (1) and assume
that the innovations are centered and conditions (2) and (9) are satisfied. Then,
Sty (X) /By, converges weakly on the space D|0, 1] endowed with Skorohod topology
to the fractional Brownian motion Wy with Hurst index H = 3/2 — «; i.e. to a
Gaussian process with covariance structure %(t3_2°‘ 4537 — (t—9)72) fors < t.
In particular, fort = 1, S,(X)/B, — N(0, 1).

Denote Y 2, ai2 = A? and recall the definition (7). The corresponding self-
normalized result is:

Theorem 6 (Peligrad and Sang [15]). Under the same conditions as in Theorem 5,

1
—VI(X) 5 a2 (12)
nl,



50 M. Peligrad and H. Sang

and therefore

S (X) o
na,V,(X) = A Wi (1)

In particular

Sn(X) Cq
na,V,(X) =N, A2”

The question of selfnormalized central limit theorem for a general linear process
when the sequence of constants (a,),cz satisfies (5) and the innovation is in the
domain of attraction of a normal law is an interesting and useful problem. We can
say that by combining the result on self-normalized CLT in Giné, Gotze and Mason
[8] with Theorem 1, we have:

Theorem 7 (Theorem 2.5, Peligrad and Sang [15]). Let (§)rez be a sequence of
i.i.d. centered random variables such that &, is centered and satisfies condition (2).
Assume (ap)nez satisfies (5). Then (1)—(4) in Theorem 1 are equivalent to (5)
For any sequence of constants (a,)nez satisfying (5) and )", b;21k — 00 the self-
normalized CLT

Sn(X)

W:'N(O,l) as n — o0

holds.

However, the selfnormalizer in this result is based on innovations and the
coefficients rather than on observable variables (X;). Further study is needed to
determine a suitable normalizer for the general case, based on the linear process
itself or partial sums in blocks of variables.
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Planar Processes



Some Results and Problems for Anisotropic
Random Walks on the Plane

Endre Csaki, Anténia Foldes, and Pal Révész

1 Introduction

We consider random walks on the square lattice Z> with possibly unequal symmetric
horizontal and vertical step probabilities, so that these probabilities can only depend
on the value of the vertical coordinate. In particular, if such a random walk is
situated at a site on the horizontal line y = j € Z, then at the next step it moves
with probability p; to either vertical neighbor, and with probability 1/2 — p; to
either horizontal neighbor. More formally, consider the random walk {C(N) =
(C1(N),C2(N)): N =0,1,2,...} on Z? with the transition probabilities

P(CN +1) = (k+ L)ICIN) = (k.)))
1
=PCW+ 1) = (*k-L)ICWN) = (*k.j) = - —pj.

P(CN +1) = (k,j+ DIC(N) = (k.)))
=P(C(N + 1) = (k.j = DICN) = (k.))) = ). (1)
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for (k,j) € Z>, N = 0,1,2,... We assume throughout the paper that 0 < p; < 1/2
and minjez p; < 1/2. Unless otherwise stated we assume also that C(0) = (0, 0).
This model has a number of physical applications and the topic has a broad
literature. We refer to Silver et al. [28], Seshadri et al. [26], Shuler [27], Westcott
[30], where certain properties of this random walk were studied under various
conditions. Heyde [14] proved an almost sure approximation for C»(-) under the
condition

'Y prt =2y 4o, nT' Y pTl =2y +o(") 2)
j=1 j=1

as n — oo for some constants y, 1 <y <ooand 1/2 < n < oco.

Heyde et al. [16] treated the case when conditions similar to (2) are assumed but
y can be different for the two parts of (2) and obtained almost sure convergence to
the so-called oscillating Brownian motion. In Heyde [15] limiting distributions were
given for C(-) under the condition (2) but without remainder. Den Hollander [12]
proved strong approximations for C(-) in the case when p;-s are random variables
with values 1/4 and 1/2. Roerdink and Shuler [25] proved some asymptotic
properties, including local limit theorems, under certain conditions. For more
detailed history see [12].

First we give a general construction and discuss the issue of recurrence and
transience of this random walk. In Sect. 2 we discuss strong approximations of the
random walk {C(N), N = 0, 1,...}. Section 3 treats the local time and in Sect. 4
some results on the range will be given.

1.1 General Construction

Suppose that in a probability space we have two independent simple symmetric
random walks, i.e.,

Si(n),n=0,1,2,..., S(n),n=0,1,2,...,

where §1(0) = S»(0) = 0, S;(-) are sums of i.i.d. random variables each taking the
values 1 and —1 with probability 1/2. The local times of S; are defined by

EGn)=#0<k<n:Sik)=j}, jeZ n=0,1.2,...

Moreover, on the same probability space we have a double array of independent
geometric random variables

GP. i=12.....jel
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with distribution
PGV = k) = 2p;(1 - 2p)*. k=0,1,2....

We now construct our walk C(N) as follows. We will take all the horizontal steps
consecutively from S;(-) and all the vertical steps consecutively from S»(:). First
we will take some horizontal steps from S; (), then exactly one vertical step from
S>(+), then again some horizontal steps from S (-) and exactly one vertical step from
S>(+), and so on. Now we explain how to get the number of horizontal steps on each
occasion. Consider our walk starting from the origin proceeding first horizontally
G§0) steps (note that G(lo) = 0 is possible with probability 2py), after which it takes
exactly one vertical step, arriving either to the level 1 or —1, where it takes G(ll)
or G(l_l) horizontal steps (which might be no steps at all) before proceeding with
another vertical step. If this step carries the walk to the level j, then it will take GY)

horizontal steps, if this is the first visit to level j, otherwise it takes Gg) horizontal
steps. In general, if we finished the k -th vertical step and arrived to the level j for
the i-th time, then it will take Gl@ horizontal steps.

In this paper N will denote the number of steps of the walk out of which Hy
denotes the number of horizontal steps and Vi = n the number of vertical steps,
i.e., Hy + Vy = N. Then clearly

C(N) = (Ci1(N), C2(N)) = (S1(Hy), S2(Vn)).

1.2 Recurrence, Transience

Our result on recurrence is a simple application of the celebrated Nash-Williams
theorem [21]. To state this result we need some definitions. Consider a Markov
chain (X, Y, p) with countable state space X, process Y and transition probabilities
p(u, v). The chain is reversible if there exist strictly positive weights , forallu € X
such that

mup(W, V) = myp(v, u). (3)
If the chain is reversible we will use
a(u,v) := myp(u,v).

Obviously the above defined anisotropic walk is a Markov chain on the state
space X = 72, with the transition probabilities defined in (1). Furthermore, this
Markov chain is reversible with the strictly positive weights

. 1
”(kv]) = -
Pj
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and

a (ko). (k + 1)) = a((koj). (k— 1)) = % 1 4
J

(and for non nearest neighbor sites a(.,.) = 0). This Markov chain is also time
homogeneous, irreducible, i.e. it is possible to get to any state from any state with
positive probability. The invariant measure is given by

1
pk.j) = nkj) = —,  (kj) €22 (5)
J

i.e.,

() =Y puW)p(v.u),

where the summation goes for the four nearest neighbors of u.

Theorem A (Nash-Williams [21]). Suppose that (X,Y, p) is a reversible Markov

chain and that X = |2, A¥ where A* are disjoint. Suppose further that u € A*

and a(u,v) > 0 together imply that v € A1 J AX|J A*, and that for each k

the sum Z a(u,v) < oo. Let [A¥, A¥T1] denote the set of pairs (u, v) such that
ue Ak vexX

u € A and v € A, The Markov chain is recurrent if

-1

Z Z a(u,v) = o0. (6)

k=0 \ (u,v)e[Ak, Ak+1]

To apply this theorem, let A* be the set of 8k lattice points on the square of width
2k, centered at the origin. Furthermore, let [A*, A*T1] be the set of 8k + 4 nearest
neighbor pairs (edges) between A* and A1

It is easy to see by (4) that the sum in (6) is equal to

-1 -1

o] k 1 k o] k 1
> Z(——1)+Zl -yt
k=0 == \2Pi j=—k k=0 \j=—« Pi

So we got the following result.
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Theorem 1. The anisotropic walk is recurrent if

-1

N ! = 0. @)

k=0 \j=—k P

As a simple consequence, if minjez p; > 0, then the anisotropic walk is recurrent.
It is an intriguing question whether the converse of this statement is true as well.
That is to say, is it true that

Conjecture 1. If

-1
o0 k 1
2\ 2| < ®
k=0 \j=—k Pj
then the anisotropic walk is transient.
We can’t prove this conjecture, but a somewhat weaker result is true.

Theorem 2. Assume that

k
1
> — =Kt 4 oA, k> o0 ©)
=P

for some C > 0, A > 0and 0 < § < 1. Then the anisotropic random walk is
transient.

Proof. Consider the simple symmetric random walk S(-) of the vertical steps and
let &(-,-) be its local time, and p,(-) be its return time to zero. Consider the
anisotropic random walk of N steps, where N = N(m) is the time of m-th return
of S»(+) to zero, i.e., let Vy = pa(m).

First we give a lower bound for the number of the horizontal steps Hy.

Lemma 1. For small enough ¢ > 0 we have almost surely for large enough m
HN — HN(m) 2 m1+(1—£)(A+1)‘ (10)

Proof. For simplicity in the proof, we denote & by & and p, by p. From the
construction in Sect. 1.1 it can be seen that the number of horizontal steps up to
the m-th return to zero by the vertical component is given by

oo §(j.p(m))

Hy= Y > G
j=—o0 i=1
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where Gjl: are as in Sect. 1.1. Since p(m) > m?>~¢ for small & > 0 and large enough
m almost surely, it follows from the stability of local time (see [23], Theorem 11.22,
p. 127), that for any & > 0, |j| < m'~® we have

(1 =em = &G, p(m)) = (1 + &)m
almost surely for large enough m. Hence

(1—e)m

Hy > Z ZGy)zU

jl<mi= i=1

We consider the expectation of U,, and show that the other terms are negligible. We
have

. 1—2p:
EGY) = — T
2pj
. 1—=2p;
VarG?) = —2p/ .
4pj
Hence by (9) we get
1—2p; 1+(1—e)(A+1
EU,, = m(1 —¢) Z > em! TU7OAFD,
lil<m!=® Pi

where ¢ > 0 is a constant. In what follows the value of such a ¢ might change from
line to line. We have

1—2p,
VarU,, = m(1 — ¢ i
( ) | Z_‘ e
lil<m!'=¢ J
It follows from (9) that 2—[171 < c|j|'*4%, hence
l/|1+A -5
VarU,, < cm(l — ¢) Z < cm!TU=e)@+24-5),
Dj

[il<m!—e

By Chebyshev inequality

3 T2A—2e(14+A)—(1-0)8

_ (1—e)(A+2) _ —1—(1—¢)8+2¢
P(|Un — EUn| Z m )=c 2(—0)(A+2) =cm

which, by choosing ¢ small enough, is summable. Hence, as m — oo,

Uy, = EU,, + O(m'"™0W2) 4.,
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consequently
Hy > U, > cm!+(1=00+4)

almost surely for large m. O

Lemma 2. Let S(-) be a simple symmetric random walk and let r(m) be a sequence
of integer valued random variables independent of S(-) and such that r(m) > mP
almost surely for large m with B > 2. Then with small enough ¢ > 0 we have

|S(r(m))| = mP2=17

almost surely for large m.

Proof. From the local central limit theorem

P(S(k) = j) < ﬁ

for all k > 0 and j € Z with an absolute constant ¢ > 0. Hence

1S (k)| ) ;
P(_ <x)= 3 PS®K =j) <ex,
vk lil<xv/k

This remains true if k is replaced by a random variable, independent of S(-), e.g.
k = r(m), i.e. we have

Sermpl 1\ _ 1
m — mlte | = Tgplte’
consequently by Borel-Cantelli Lemma

Vr(m) Y

mlte

3

1S(r(m))| =

almost surely for all large enough m. This completes the proof of the Lemma. O
Applying the two lemmas with r(m) = Hy(y), we get
|SI(HN)| > mA/Z—aA/2—3£/2 —m’
with y > 0 by choosing ¢ > 0 small enough. It follows that for large N, S;(Hy)
almost surely can’t be equal to zero.

Let

Ay = {3, p2(m) <j < po(m+ 1) suchthat C(j) = (0,0)}.
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Clearly A,, could only happen if from p,(m) to pp(m + 1) the walk only steps
horizontally (if it makes one vertical step the return to the origin could only happen
after or at p,(m + 1)). Thus by our lemmas in order that A, could happen, the walk
needs to have at least m” consecutive steps on the x-axis, thus

S TP@A) <Y (172 p)™ < 0.

So the anisotropic random walk cannot return to zero infinitely often with probabil-
ity 1, it is transient. This proves the theorem. |

2 Strong Approximations

In this section we present results concerning strong approximations of the two-
dimensional anisotropic random walks. Of course, the results are different in the
various cases, and in some cases the problem is open. We also mention weak
convergence results available in the literature. First we describe the general method
how to obtain these strong approximations.

Assume that our anisotropic random walk is constructed on a probability space as
described in Sect. 1.1, and in accordance with Theorems 6.1 and 10.1 of Révész [23]
we may assume that on the same probability space there are also two independent
standard Wiener processes (Brownian motions) W;(:), i = 1,2 with local times
n;i(-,-) such that for all £ > 0, as n — oo, we have

Si(n) = Wi(n) + 0(n'/*™)  a.s.

and
&G.m) = mi(i,n) + 0(/**7) as.
Then
Ci(N) = Si(Hy) = Wi(Hy) + O(Hll\,/4+£) as.,
and

C2(N) = $2(Vy) = Wa(Vy) + O(V;//Hs) a.s.,

if Hy — oo and Vy — oo as N — 00, almost surely.
So we have to give reasonable approximations to Hy and Vy, or at least to one of
them, and use Vy + Hy = N.
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It turned out that in many cases treated, the following is a good approximation
of H, N-

&2(j.n)

Hy~3 ) G~ Zé‘(/n) 2”’
joi=1

with n = Vy. Hy and the double sum above are not necessarily equal, since the last
geometric variable might be truncated in Hy. So we have to investigate the additive
functional

217/

J

Am) =) f(EaG.n) = Zf(Sz k). fG) =
J
of the vertical component and approximate it by the additive functional of W;(+)

B() = /_ FOOm (. ) dx = /0 FWa(s)) ds.

where between integers we define f(x) = f(j),j <x <j+ 1.
In certain cases the following Lemma, equivalent to Lemma 2.3 of Horvéth [17],
giving strong approximation of additive functionals, may be useful.

Lemma A. Let g(t) be a non-negative function such that g(t) = g(j),j <t <j+1,
forj € 7 and assume that g(t) < c(|t|® + 1) for some 0 < c and B > 0. Then

3605200 — [ sWalas] = o247 s
j=0 0

asn — Q.

Now let us introduce the notations

k k
DGy =bi. D f(=) =cx
j=1 j=1

The next assumption is a reasonable one used in the literature: as k — oo
b= (y — DK* + o(k*~") (11)
= (y — DK* + o(k"") (12)

with some y > 1, > 0 and § > 0. Observe that (2) is a particular case with o« = 1.
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We consider the following cases:

1 a=0

2)0<ax<l

B)a=1

4 a>1

(5) nonsymmetric case, i.e. the constants y in (11) and (12) are different.

2.1 TheCasea =0

The most interesting and well established case is the so-called comb structure, i.e.,
po=1/4,p; =1/2, j = £1,%£2,.... It follows from Theorem I that the random
walk in this case is recurrent. We note in passing the interesting result of Krishnapur-
Peres [18]: two independent random walks on the comb meet only finitely often with
probability 1.

For random walk on comb we refer to Weiss and Havlin [29], Bertacchi and
Zucca [2] and references given there. The following result on weak convergence
was established by Bertacchi [1].

Theorem B.
Ci(Nt) Cy(Nr) L
( ]171/4 ’ ;/1/2 D120 ) =S (Wi(n200.0). Wa(r): £ 2 0), N — oc.

Strong approximation was given in Cséki et al. [5].

Theorem 3. On an appropriate probability space we have
NTCUN) = Wi(20. N)) [ + N™12| (V) = Wa(N)| = OWVT5) - as.,

as N — oo.

We have the following consequences.
Corollary 1.
Ci(N)

li =1 as.
INHLSO? 25/4373/4N1/4(log log N)3/4 a3

. G (N) _
im sup =1 as.

N—oo (2Nloglog N)l/2

For general results in the case @ = 0 we just remark that in this case f = > if )
is convergent, then by our assumptions its terms are non-negative and at least one
of them is strictly positive, hence f > 0. By the ratio ergodic theorem (cf., e.g.,
Theorem 3.6 in Revuz [24])
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Am) ~f&0.n). f=Y () =2 —1) +£0).
J

almost surely, as n — 00, hence
A(n) = O((nloglogn)'/?) as., n — oo.

Let

&2(j,n) &(n)—1

Hy=Y"Y"6G6Y Hy=) > &/
j =1 i =1

Obviously, Hy < Hy < H, ; . Consider H Ij,' , which is a (random) sum of independent
random variables. Under the condition .# = {S,(k), k > 0} we have

EHY|F) =) f(ea(.n) = An)
J

Var(HY |7) = ZJ;%&U’ n).
j J

It is easy to see that the sum Zi f()/2p;j is also convergent, hence
Var(Hy | F) ~ c£(0,n)

with some ¢ > 0. Now apply Theorem 6.17 in Petrov [22] saying that for sums of
independent (not necessary identically distributed) random variables we have

1/2+4¢
Y Xi=) EX;+o (Z VarX,-)
almost surely. Thus

Hy = f£(0,n)(1 + o(1)) = f£(0, V) (1 + o(1))

almost surely as N — oo. Similar results are true for Hy,, hence also for Hy, i.e.

Hy = f£(0,n)(1 + o(1)) = f&(0, Vy) (1 + o(1)).

Since C;(N) = S)(Hy), using that Hy = O((NloglogN)'/?) and the strong
approximations of S;(-), S2(-) by Wi(-), Wz(:) and &, (0, -) by 72(0, -), we can obtain
the following limit distribution: as N — oo,
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(50-50) # ondmo e

Further results, like strong approximations, remain to be established in this case.

2.2 TheCase0) <a <1

This is also a recurrent case, but approximations, limit theorems, etc. remain to be
worked out in detail. We just note that from the law of the iterated logarithm for the
local time we have

A(n) =Y _f()Ea(.n) < c(nloglogn) /2,
J

a.s., n — 00, hence the vertical part dominates, i.e., as N — oo we should have
Hy = O((NloglogN)'T9/2) << N a.s.,

and we expect that
C1(N) = Wi (Z(N)) + ONIF/4+ey g5,

where

N
200 = [ 7o) ds.
0
and for the vertical component
Cy(N) = Wo(N) + ONV*7%),  a.s.

as N — oo.

2.3 TheCasea =1

Assume also that § > 1/2,y > 1.

It can be seen from Theorem 1 that the anisotropic random walk in this case is
recurrent.

Heyde [14] gave the following strong approximation:

Theorem C. On an appropriate probability space we have
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Y2C,(N) = Wo(N(1 + ) + O(NY*(log N)/*(loglog N)'/?)  a.s.

as N — oo, where W(-) is a standard Wiener process and limy_, o ey = 0 a.s.
In another paper Heyde [15] gave weak convergence result for both coordinates.

Theorem D.

(S0 ) = M=y a7h).

Strong approximation result for both coordinates was given in Cséki et al. [9]:

Theorem 4. On an appropriate probability space we have for any ¢ > 0
— )N
‘CI(N) —w (—(y ~ ) )‘ +

as N — oo.
Moreover, in the periodic case, when p; = p;jy1 for eachj € Z and a fixed integer
L > 1we have

o (U5

as N — oo, where

Cy(N) — Ws (g)' = ON/37%%8y g,

C>(N) — W, (g)‘ = ONY**%)  as.,

L—1 —
=0 P; :
2L

Some consequences are the following laws of the iterated logarithm.

-~ Ci1(N) 2(y =D\
imsu = a.s.
N_,oop (Nloglog N)1/2 y

; C>(N) 2\
imsup—————— == a.s.
N_,oop (NloglogN)1/2 y

2.4 The Casea > 1

In this case the random walk is transient by Theorem 2.

It is an open problem to give strong approximations in this case. Horvath [17]
established weak convergence of C»(-) to some time changed Wiener process. We
mention a particular case of his results, valid for all « > 1.
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Let

L) = /0 IWals)|“ ds.

1, is strictly increasing, so we can define its inverse, denoted by J,,. Then we have

Cz(Nl‘) Law
]m—) coWa(Ju (1))

with some constant cg.
In this case the number of horizontal steps dominates the number of vertical
steps, therefore C; (V) might be approximated by W;(N).

2.5 Unsymmetric Case

Some weak convergence in this case was treated in Heyde et al. [16] and Horvéth
[17]. Strong approximation in a particular case, the so-called half-plane half-comb
structure (HPHC) was given in Cséki et al. [8].

Letp; = 1/4,j = 0,1,2,...and p; = 1/2,j = —1,-2,..., i.e, a square
lattice on the upper half-plane, and a comb structure on the lower half plane. Let
furthermore

(1) = /OtI{Wz(S) > 0} ds,

i.e., the time spent by W, on the non-negative side during the interval [0, f]. The
process y2(t) := aa(f) + ¢ is strictly increasing, hence we can define its inverse:

Ba() == (r2(1)~".

Theorem 5. On an appropriate probability space we have
[CI(N) = Wi(N = Bo(N))] + |C2(N) = Wa(B2(N))| = ONY*F7) as.,

as N — oo.

The following laws of the iterated logarithm hold:

Corollary 2.
limsupw :hmsup&:] a.s
—oo +/tloglogt N—ooo ~/NloglogN o
t— t
lim ianl(—'Bz()) = lim inf& =-1 a.s.,

t—~oo  /tloglogt N—oo /NloglogN
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hmsupwzhmsupﬂ:] a.s
—oo +/tloglogt N—oo ~/NloglogN o
1% t C,(N
iminf V2P0 e ™ 5

i—~oo /tloglogi  N—oco /NloglogN

3 Local Time

We don’t know any general result about the local time of the anisotropic walk.
It would require to determine asymptotic results or at least good estimations for
the return probabilities, i.e., we would need local limit theorems. In fact, we know
such results in two cases: the periodic and the comb structure case.

3.1 Periodic Anisotropic Walk

In case of the periodic anisotropic walk, i.e., when p; = p;;, for some fixed integer
L>1landj = 0,£1,£2,... we know the following local limit theorem for the
random walk denoted by CF(-).

Lemma 3. As N — oo, we have

P(CY(2N) = (0,0)) ~ (13)

1
4 Npo/y — 1

withy = 312 p; '/ (2L).

The proof of this lemma is based on the work of Roerdink and Shuler [25]. It
follows from this lemma, that the truncated Green function g(-) is given by

al log N
g) = S P(CP(k) = (0,0) ~ ——= N — o,

P dport Sy — 1’

which implies that our anisotropic random walk in this case is recurrent and also
Harris recurrent.
First, we define the local time by

N

E((kj),N) =Y HC*(r) = (k.j)},  (k.j) € Z2. (14)

r=1
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In the case when the random walk is (Harris) recurrent, then we have (cf. e.g.
Chen [4])

lim Z((k1,j1),N) _ ki, ji)
N—oo E((ka2,j2),N)  p(ka,j2)

where p4(+) is an invariant measure. Hence by (5)

i Z((0,0),N) _ p;
m - = —
N—oco E((k,j),N)  po

for (k,j) € Z* fixed.
Thus, using now g(N), it follows from Darling and Kac [11] that we have

Corollary 3.

Z((0,0),N i dpor /)y — 1 E((0,0),N _
fim p(ZOON ) iy p (VY S IEOON )
N—o0 g(N) N—o0 logN

forx > 0.
For a limsup result, via Chen [4] we conclude
Corollary 4.
lim su £(0.9.5) !
= a.s.
N_mop logNlogloglogN  4pom/y —1
3.2 Comb

Now we consider the case of the two-dimensional comb structure C2, i.e., when
po=1/4andp; = 1/2forj = £1,£2,...
First we give the return probability from Woess [31], p. 197:

1/2

P(CCN) = (0.0) ~ F e

This result indicates that the local time tipically is of order N'/*. In Cséki et al.
[6] and [7] we have shown the following results.

Theorem 6. The limiting distribution of the local time is given by
Jim P(Z((0, 0),N)/N'* < x) = P21 (0, 12(0, 1)) < x) = PQ|U|V|V| < x),
—00

where U and V are two independent standard normal random variables.
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Concerning strong approximation, in Csaki et al. [7] we proved the following
results.

Theorem 7. On an appropriate probability space for the random walk {C(N) =
(CI(N),Co(N));N = 0,1,2,...} on C? one can construct two independent
standard Wiener processes {W\(t); t > 0}, {W,(t); t > 0} with their corresponding
local time processes 11 (-, ), N2(-, +) such that, as N — oo, we have for any § > 0

sup |2 ((x,0), N) — 21 (x, 72(0,N))| = ON'A+%) s,

XEZ

The next result shows that on the backbone up to [x] < N'/47¢ we have
uniformity, all the sites have approximately the same local time as the origin.
Furthermore if we consider a site on a tooth of the comb its local time is roughly half
of the local time of the origin. This is pretty natural, as it turns out from the proof
that on the backbone the number of horizontal and vertical visits to any particular
site are approximately equal.

Theorem 8. On the probability space of Theorem 7, as N — oo, we have for any
0<e<1/4

max |Z((x,0),N) — £((0,0),N)| = ON"*?) a.s.

<N

and

1
max max |E((x,y),N)—§S((O,O),N)|=0(N1/4_8) as.,

O<ly|SNIA=e x| <N1/4—e

forany 0 < § < ¢/2, where the maximum is taken on the integers.

It would be an interesting problem to investigate the local time for |y| > N'/4.
We believe e.g. that the maximal local time taken for all (x, y) € Z? is of order N'/2.
Such results however remain to be established.

One of our old results [10] describes the Strassen class of 7;(0, 72(0, zt))
as follows. This, combined with Theorems 7 and 8, allows us to conclude the
corresponding Strassen class result for the local times of the walk.

Theorem 9. The net

11(0,72(0, z1)) )
25/43-3/411/4(log log 1)3/4’

0<z=<l ,
>3

ast — oo, is almost surely relatively compact in the space C([0, 1], R) of continuous
Sfunctions from [0, 1] to R, and the set of its limit points is the class of nondecreasing
absolutely continuous functions (with respect to the Lebesgue measure) on [0, 1] for
which
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I* %f(O) =0 and /1 [F0)|*3 dx < 1} .
0

Some obvious consequences of these results are the following

1(0,72(0,7))  2%/4

o i = — as.
vl '/4(loglogr)3/4  33/4 a8
i E((x,0),N) 2%
e limsu = —— as.,
N_,oop NY4(loglog N)3/4  33/4
E((x,y),N 25/4
e limsup (&), N) = as.y#0.

Nooo NVA(loglogN)3/4 — 33/4
A beautiful classical result of Lévy, P. [19] reads as follows

Theorem E. Let W(-) be a standard Wiener process with local time process n(-, -).
The following equality in distribution holds:

(n(0,1), 1 > 0}2{ sup W(s), 1 > 0}.

0<s<t

Consequently using a Hirsch type result of Bertoin [3], we get

Corollary 5. Let B(f) > 0,t > 0, be a non-increasing function. Then we have
almost surely that

n1(0,172(0,7)) 0
= or oo

BT
according as the integral f loo B(r)/t dt diverges or converges.
So we also have

Corollary 6. Let B(n),n = 1,2,... be a non-increasing sequence of positive
numbers. Then, for any fixed (x,v) € 72, we have almost surely that

2(y)m _
= or o0

o T8y
according as the series Y 1> B(n)/n diverges or converges.

Now we also might consider the behavior of the supremum of the local time over
the backbone. To this end we first had to prove the following pair of integral tests
for the sup, g 11 (x, 72(0, 1)) process.

Theorem 10. Let f(t) > 0 be a non-decreasing function and put

oo £2 3
I(f) = /1 fT(t)eXp (—me(t)) dr.
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Then, as t — 00,

P(sup 11 (x, 12(0,1)) > 1/*f(1) i.0) =0 or 1

x€R

according as I(f) converges or diverges.

Theorem 11. Let g(f) > 0 be a non-increasing function and

oo ,2
J(2) ::/l gdt.

Then, as t — 00,

P(sup 71 (x, 12(0,1)) < t"/*g(1) i.0) =0 or 1

x€R

according as whether J(g) converges or diverges.
The above theorems imply the following integral tests for sup,¢; & ((x, 0), n);

Theorem 12. Let a(n) be a non-decreasing sequence. Then, as n — oo,

P(sup Z((x,0),n) > 2n"*a(n) i.0) =0 or 1

XEZ

according as

iaz(n)ex —w <00 or =00
n P 25/3 o

n=1
Theorem 13. Let b(n) be a non-increasing sequence. Then, as n — oo,

P(sup Z((x,0),n) < n'/*b(n) i.0) =0 or 1

X€EZ

according as

o0
b2
S22 o =0
n

n=1

4 Range

The range of the anisotropic walk is defined in the usual way as

RNy = Y I(Z((k.j),N) > 0)

(kj)e7?
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i.e., the number of distinct sites visited by the random walk up to time N, where
Z ((k,j), N) is the local time of the point (k, j) at time N.
We are not aware of any all embracing result about the range of the anisotropic
walk in general. However the case of the periodic walk is completely understood.
Recall that the walk is periodic if p; = pjy; for eachj € Z, where L > 11is a
positive integer. In this case it is easy to see that

-1 _
Zj:o p; !
2L

Roerdink and Shuler [25] gives the asymptotic expected value of the range:

2ny—1 N
% logN’

E(R(N)) ~

Moreover, it can be seen that our walk in this case is equivalent to the so-called
random walk with internal states, consequently, a law of large numbers follows from
Nandori [20]

) i YRM)logN _
im ———— = lim ———— = a.s.
N—oo E(R(N)) N—oo2m./y —IN

As a special case from these results we recover the well-known Dvoretzky-Erd&s
[13] results for the simple random walk on the plane (without the remainder term),
as for the plane L = 1 and y = 2. Thus we get

ER(N)) ~ _1;3\/ N - oo

and

. R(N) . R(N)logN
Iim ——— = lim —— =1 a.s.
N—oo E(R(N)) N—oo TN
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On the Area of the Largest Square Covered
by a Comb-Random-Walk

Pal Révész

1 Introduction

In recent years Mikl6s and some of his friends (Bandi, Toncsi and myself) have
investigated some asymptotic properties of the comb-random-walk. In the present
paper I continue this project. In particular, I am interested in the area of the largest
disc around the origin completely covered by a comb-random-walk, and also by a
random walk on a half-plane half-comb (cf. Theorems 1 and 2 respectively).

Let C(n) = (C;(n), C2(n)) be a comb-random-walk, i.e., C(n) is a Markov chain
on Z* with C(0) = (0,0) and

1
PIC+ 1) =xy£D)|Cm=xy}=7 if y#0,

P{Cn+1)=x£1,0)| Cn) = (x,0)} =
1

= P(C(n+ 1) = (0. £1) | C(n) = (1.0)} =

Various properties of C were studied in many papers (cf., e.g.,[2-5]).

We say that a lattice point (x, y) of Z? is covered by C at time n if thereis ak < n
for which C(k) = (x,y). A set A is covered if each (x,y) € A is covered. Let R, be
the largest integer for which [—R,,, R,]? is covered at time .

Our main result in this regard reads as follows.
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Theorem 1. For any ¢ > 0 we have

n1/4 2 /4
<R, <(14+8A,=0+¢&)—

5
Moo )5/ 2+¢ 1/4 3/4
(logn)3/2+e = 7 (oglogn)™® as. (1)

if nis large enough.

The above mentioned problem is due to ErdSs and Chen [9] who studied the
largest square covered by a simple random walk on Z2.
Let S»(n) be the simple random walk on Z2, i.e., S»(n) is a Markov chain with
S>(0) = (0,0) and
1
PiSa(n+ 1) = (v Ly £ 1) | S2(n) = (60} = 5.

Let U, be the largest integer for which the square [~U,, U,]? is covered by S, at
time n. The properties of U, were investigated in many papers (cf., e.g., [1, 8-11]).
The corresponding results conclude that

U, ~ exp(C(logn)'/?)

with some constant C > 0.

2 Proof of Theorem 1

We recall the following result.

Lemma 1 ([4] (1.23)).

li Cl (n) _ 25/4 )
WP W oglogmyt 3 @

Clearly (2) implies
R, <(1+4+¢)A, as. 3)

if n is large enough which, in turn, implies the upper part of (1).

In order to prove the lower part of (1), we recall some known results on C and
present their simple consequences.

Let

E((x,y),n) =#k: k<n,Ck) = (x,y)},
Z, = min Z((x,0),n).

|x|<n!/4(logn)=3/2
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Then we have

E((0,0),n) 29

li _ = ——  as. 5], (1.21)), 4
l,fii‘ip n'/4(loglogn)3/4  33/4 as. ([5).(1:21)) @
and, if n is large enough,
nl/4
Z((0,0),n) > —— a.s. ([5], Corollary 1.5). (5)
(logn)?

Before we continue the proof of the lower part of (1) we recall some known
results on the simple random walk S; on Z!. Let

E1(x,n) =#k: k<n, Si(k) =x},

p(0,i, k) =
=P{min{j: j>m, $;(¢G) =0} <min{j: j >k, S;(j) =k} | S1(m) = i}.

Then we have

p(0.i k) = k;i ([12], 3.1)). (6)
Now (6) implies
P{S; hits G > 0 during its first excursion } = % @)
and (7) implies
P{S; does not hit G = n'/*(log n) ™ during its first (8)
V4 (logn) =3/
n1/4(log n) %2 excursions } = (1 — (1205—174)61) e

< exp(—(logn)*™?/2)

if a > 3/2. We also recall that, if n is large enough, then
nl/2
——— < £/(0,n) <n"*(logn)® ([12] Theorem 11.1), )
(lOg n)1+£
and, in turn, the following result.
Lemma 2 ([7]). Let
nl/2

0 Gogmy =
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Then

fivn)
£100.1)

lim sup
"7 el <g(n)

4=0a& (10)

A trivial consequence of (9) and Lemma B is that for large n we have

nl/2
- < (1- 0, < 1 ,
Togmie = (1=91(0.m) < min £ (x.m)

< |I‘nax E1(x,n) < (1 4+ )& (0,n) < nl/z(logn)s. a.s. (11
x| <g(n)

Now we present a simple generalization of the Borel-Cantelli lemma.

Lemma 3. Let {A,} and {B,} be two sequences of events for which

o0
> P{A, | B} < oo, (i)
n=1
and
B, occurs a.s. if nis large enough. (ii)

Then A,, occurs a.s. only finitely many times.

Proof. Since

P{Kan} = P{Zn | Bn}P{Bn} = P{Zn | Bn},

A,B, occurs finitely many times. Since A,B, C B,, A,B, also occurs a.s. only
finitely many times. O

Going back to study of the properties of C, we let

1. V(n) = #{k: k <n, Co(k) # Co(k + 1)},
2. H(n) = #{k: k<n, Ci(k) # Ci(k+ 1)},
3. v(n) = max|G(k)],
4. h(n) = I&lewl ),
5. E((x.y).n) = #{k: k < n,Ck) = (x,y)},
6. t(n) = #k: k <n, Co(k) #0, Co(k + 1) = 0},
7. My(x) =  max  |Ca(k)],
k<n, Ci(k)=x
8. m, = min Mn(x)-

Ix|<n!/4(logn)=3/2

LetX;(i = 1,2,...) be +1 resp. —1 if the i-th horizontal step of Cis +1 resp. —1.
Similarly let Y;(i = 1,2,...) be +1 resp. —1 if the i-th vertical step of C is +1
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resp. —1. For example if C(0) = (0,0),C(1) = (1,0),C(2) = (1,1),C(3) =

(1,0),C(4) = (0,0) then X; = 1,V =1,Y, = -1, X, = —1.
LetSi(n)=X1+ X+ + X, () =1+ Y2 +---+ Y,.

Clearly S;(n) and S»(n) are independent, simple random walks on Z' and

Ci(n) = S1(H(n)),
Cy(n) = $2(V(n)).

Now we present a two lemmas on the above random sequences.

Lemma 4.

V(n) < n,
v(n) < (1+ s)b;l a.s
tn) <1+ s)b;l a.s.
L) = (€)' < Hn) < E(m) + €)' as.

h(n) < (1 +&)(b(¢ ()" < (1 + €)23*n"*(oglogn)** a.s.

12)
13)
(14)
15)
(16)

Proof. Equation (12) is trivial. Equation (13) follows from the law of the iterated
logarithm (LIL) and from (12). Equation (14) follows from the LIL. In order to

see (15) let Ca(k) = 0 and £, = min{j : j > 0, Ca(k +j) # O}.
Then

. 1 .
P{Ek:]}zﬁ (]ZO,I,...),

E{, =1 and Var{, =2.

Hence we have (15). Equation (16) is trivial.

Lemma 5.

V(n) =n—H(n) >n—Lm) — Cm)*T >n—n'?* as.
v(n) > (1—e)B(V(n)™' = (1—e)b,' as.io.
tn) > (1—e)b,' as.io.

Proof. is trivial.
By (9), if n is large enough, we have

1/2
n

1/2 €
TALS <¢, <V,/“(logV,)*® as.

A7)

(18)
19)
(20)

3y



82 P. Révész

and
1/2 1/2
n n _ yl/4+e _ «l/24e
Tog V)T < oz V)i V, 7T =6 =TT < Hy < (22)

<&+ < v 2(10g V)% as.

Since n = H,, + V,,, we have
1/2

Va
V. + W <n<V,+ Vi/z(log Vn)zs a.s.

Consequently, if n is large enough,

12 3 n'/?
I3
and
n'/? 1/2 1+3
Wfﬂ—VnZHnSn/(logn)"_a. (23)
Clearly,
Z((x,0),n) > &1(x, Hy). 24)

By (11) and (23), for large n we have

n1/4 - Hrll/z - ) 0 <
(logn)¥2*e = (log H,)'*e — |x\21<%n>gl(x’ " =
= min gl(xv H,) < min S](X, H,) <
lx‘sg(#{fﬂ) b= Gogn?7?
<Z,:= mirll4 Z((x,0),n) a.s. (25)

|X‘§ (lo;n)3/2
Now, if a > 3/2, then by (8) we have

P{among the at least n'/*(log n) /2 excursions going vertically
from (0, 0) no one hits (0, n'/*(logn) ™} <
3/2

(1— ™! /4(1og myey"*toen”
1 — exp(—exp(—(log n)“_3/2)).

IA

= exp(—(logn)*™/?) <

IA
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Consequently,

nl/4 nl/4
Plmy>——— | Zy> ——— " >
{m - (logn)5/2+€ | (10gn)3/2+£} -

/4 e nl/4 1
> eXp( (ogn) "2 exp(—(logn) )) ~ (logn)*/2 pi+logny °

Apply now Lemma 1| with
nl/4
o= ez o

L1/4
B,=12,>———-—".
{ (logn)3/2+e }

Then we also have the lower part of (1) and, this combined with (3), concludes the
proof of Theorem 1. O

3 The Largest Square Covered by a HPHC Random Walk

Quite recently Miklds and his friends [6] investigated the properties of a random
walk on a half-plane-half-comb (HPHC). Let D(n) = (D;(n), D2(n)) be a Markov
chain on Z? with D(0) = (0,0) and

PIDIN +1) = (k+ 1.)) [ DIN) = (k.j)} =

:P{D(N—i—l)z(k—l,j)|D(N):(k,j)}:%_pl

PIDIN + 1) = (k.j+ 1) | DIN) = (k.j)} =
=P{DIN +1) = (k.j—1) [ DIN) = (k.))} = .
where
pi=1/4 if j=0,1,2,...,
pi=1/2 if j=-1,-2,...,

i.e., we have a square lattice on the upper half-plane and a comb structure on the
lower half-plane. Let L, be the largest integer for which [—L,, L,]? is covered by D
at time n. Our main result on an HPHC reads as follows.
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Theorem 2. For any ¢ > 0, if n is large enough, we have

L, < (logn)'** a.s., (26)
and
P{L, < (logn)'~*} < exp(—(logn)?). 27

In order to prove Theorem 2, we recall a few known results.

Lemma C ([12] p. 215). Let

E((r.y),n) = #{k: k<n, SH(0) = (x.y)}.
Then

(logn)'~* < £((0,0),n) < (logn)'**  a.s.

if nis large enough.

Lemma D ([12] p. 34, p. 117). Let
v, = min{k : £ (0,k) = n}.
Then

max [S;(j)| < U;/2+£ <n't%* s
i<

=Vn
if nis large enough.

Lemma E ([12] p. 100).

P{max [S1(j)| < n'~"} < exp(—n°).
J=vn

Lemma F ([1]).

- £((x,0),n) _
lim sup ——————1|=0 a.s.
n—>00 [x|<(logn)lte 52((03 O)a I’l)
Consequently,
min  £((x,0),n) > (logn)'™* a.s. (28)

x| <(logn)!+e

if nis large enough.
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Proof of (26). Lemmas C and D combined imply

max  |Dy(k)| < (logn)'**  as.,

k<n: Di(k)=0
if n is large enough, which, in turn, implies (26). a
Proof of (27). By Lemmas E and F we conclude (27) as well. O
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A Compensator Characterization of Planar
Point Processes

B. Gail Ivanoff

This paper is dedicated to Professor Miklos Csorgd, a wonderful
mentor and friend, on the occasion of his 80th birthday.

1 Background and Motivation

If N is a point process on Ry with E[N(7)] < oo V¢ € Ry, the compensator of N
is the unique predictable increasing process N such that N — N is a martingale with
respect to the minimal filtration generated by N, possibly augmented by information
at time 0. Why is N so important? Some reasons include:

* The law of N determines and is determined by N [11].

* The asymptotic behaviour of a sequence of point processes can be determined
by the asymptotic behaviour of the corresponding sequence of compensators
[2,3,7].

* Martingale methods provide elegant and powerful nonparametric methods for
point process inference, state estimation, change point problems, and easily
incorporate censored data [13].

Can martingale methods be applied to point processes in higher dimensions?
This is an old question, dating back more than 30 years to the 1970s and 1980s
when multiparameter martingale theory was an active area of research. However,
since there are many different definitions of planar martingales, there is no single
definition of “the compensator” of a point process on Ri. A discussion of the
various definitions and a more extensive literature review can be found in [10]
and [7].

In this article, we revisit the following question: When can a compensator be
defined for a planar point process in such a way that it exists, it is unique and it
characterizes the distribution of the point process? Since there are many possible
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definitions of a point process compensator in two dimensions, we focus here on the
one that has been the most useful in practice: the so-called *-compensator. Although
existence and uniqueness of the *-compensator is well understood [5, 6, 14], in
general it does not determine the law of the point process and it must be calculated
on a case-by-case basis. However, it will be proven in Theorem 6 that when the point
process satisfies a certain property of conditional independence (usually denoted by
(F4), see Definition 2), the *-compensator determines the law of the point process
and an explicit regenerative formula can be given. Although it seems to be widely
conjectured that under (F4) the law must be characterized by the *-compensator,
we have been unable to find a proof in the literature and, in particular, the related
regenerative formula (14) appears to be completely new.

The basic building block of the planar model is the single line process (a point
process with incomparable jump points). This approach was first introduced in
[15] and further exploited in [10]. In both cases, the planar process is embedded
into a point process with totally ordered jumps on a larger partially ordered space.
“Compensators” are then defined on the larger space. In the case of [10], this is a
family of one-dimensional compensators that, collectively, do in fact characterize
the original distribution. Although the results in [10] do not require the assumption
(F4) and are of theoretical significance, they seem to be difficult to apply in
practice due to the abstract nature of the embedding. So, although in some sense
the problem of a compensator characterization has been resolved for general planar
point processes, for practical purposes it is important to be able to work on the
original space, Ri, if possible. We will see here that the assumption (F4) allows us
to do so.

Returning to the single line process, when (F4) is satisfied we will see that its
law can be characterized by a class of avoidance probabilities that form the two-
dimensional counterpart of the survival function of a single jump point on [0, co).
Conditional avoidance probabilities then play the same role in the construction of
the *-compensator as conditional survival distributions do for compensators in one
dimension. For clarity and ease of exposition, we will be assuming throughout
continuity of the so-called avoidance probabilities; this will automatically ensure
the necessary predictability conditions and connects the avoidance probabilities and
the *-compensator via a simple logarithmic formula. The more technical issues of
discontinuous avoidance probabilities and other related problems will be dealt with
in a separate publication. We comment further on these points in the Conclusion.

Our arguments involve careful manipulation of conditional expectations with
respect to different o-fields, making repeated use of the conditional independence
assumption (F4). For a good review of conditional independence and its implica-
tions, we refer the reader to [12].

We proceed as follows: in Sect.2, we begin with a brief review of the point
process compensator on R, including its heuristic interpretation and its regener-
ative formula. In Sect.3 we define compensators for planar point processes. We
discuss the geometry and decomposition of planar point processes into “single line
processes” in Sect.4, and in Sect.5 we show how the single line processes can
be interpreted via stopping sets, the two-dimensional analogue of a stopping time.
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The compensator of the single line process is developed in Sect. 6 and combined
with the decomposition of Sect. 4, this leads in Sect. 7 to the main result, Theorem 6,
which gives an explicit regenerative formula for the compensator of a planar point
process that characterizes its distribution. We conclude with some directions for
further research in Sect. 8.

2 A Quick Review of the Compensator on R

There are several equivalent characterizations of a point process on R, and we refer
the reader to [4] or [13] for details. For our purposes, given a complete probability
space (§2, .7, P), we interpret a simple point process N to be a pure jump stochastic
process on R defined by

NG ==y I(m < 1), e

i=1

where 0 < 177 < 1, < ... is a strictly increasing sequence of random variables
(the jump points of N). Assume that E[N(f)] < oo for every t € R4. Let (1) =
Fo Vv FN(1), where FV (1) := o{N(s) : s < t}, suitably completed, and .%, can
be interpreted as information available at time 0. This is a right-continuous filtration
on Ry and without loss of generality we assume .% = .%(00). The law of N is
determined by its finite dimensional distributions.

Since N is non-decreasing, it is an integrable submartingale and so has a Doob-
Meyer decomposition N —N where N is the unique .% -predictable increasing process
such that N — N is a martingale. Heuristically,

N(df) ~ P(N(dr) = 1 | Z(1)).

More formally, for each ¢,

2"—1
- ) (k+ 1)t kt kt
Vo= RV (S5) - (3)17(5)] e

where convergence is in the weak L'-topology.
We have the following examples:

1. If N is a Poisson process with mean measure I" and if .# = %", then by
independence of the increments of A, it is an immediate consequence of (2) that
N=T.

2. Let N be a Cox process (doubly stochastic Poisson process): given a realization
I' of a random measure y on Ry, N is (conditionally) a Poisson process with
mean measure I". If %, = o{y}, then N = y. We refer to y as the driving
measure of the Cox process.
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3. The single jump process: Suppose that N has a single jump point 7y, a r.v. with
continuous distribution F and let % = .Z". In this case [4, 13]

- ! dF (u)
N(t) = Iu<t)——=A0Ar11), 3
0= [ =T = Aaam) )
where A(7) := —In(1 — F(¢)) is the cumulative (or integrated) hazard of F. F

is determined by its hazard ld_F;'().). The relationship A(f) = —In P(N(¢) = 0) in
Eq. (3) will be seen to have a direct analogue in two dimensions.

4. The general simple point process: We note that the jump points (t;) are
Z -stopping times and so we define .7 (1;) := {F € .% : FN{t; <t} € Z(t) Vt}.
Assume that for every n, there exists a continuous regular version F,(+|.Z (ty—1))
of the conditional distribution of t, given .#(1,—) (we define t; = 0). Then
if A, = —In(1 — F,), we have the following regenerative formula for the

compensator (cf. [4], Theorem 14.1.1V):

N(@) =" At At)I(Tyey < 1). @)

n=1

Let Q = P| g, (the restriction of P to ﬂo); Since there is a 1-1 correspondence
between F, and A,, together, Q and N charac}erize the law of N ([11],
Theorem 3.4). When .# = .#V (i.e. %, is trivial), N characterizes the law of N.

Comment 1. Note that A, can be regarded as a random measure with support on
(Tu—1, 00). Of course, in general we do not need to assume that F), is continuous in
order to define the compensator (cf. [4]). However, the logarithmic relation above
between A, and F, holds only in the continuous case, and we will be making
analogous continuity assumptions for planar point processes.

3 Compensators on R%

We begin with some notation: For s = (s, 52),1 = (f1, ) € RZ,

e s<t&sp<tiands; <1y
e sK1E s <tands,; < 1.
WeletA, ;= {s € RA : s <rfand D, := {s € R, : 5y < ryors; < ir}.
AsetLgRi_ is a lower layer if for every r € R2, ¢ € L < A, C L. In analogy

to (1), given a complete probability space (§2, %, P) and distinct Ri_ -valued random
variables 7, 1, . . . (the jump points), the point process N is defined by

N@ =Y Im <) =Y In €A). 5)

i=1 i=1
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As pointed out in [13], in Ri_ there is no unique ordering of the indices of the jump
points. Now letting t; = (71, 7;2), we assume that P(t;; = tj; for some i # j) =
P(t;» = tj, for some i # j) = 0 and that P(7;; = 0) = P(r;» = 0) = 0 Vi. In this
case, we say that N is a strictly simple point process on Ri_ (i.e. there is at most one
jump point on each vertical and horizontal line and there are no points on the axes).
The law of N is determined by its finite dimensional distributions:

P(N(t) = ki,...N(t;) = k)i > Lt1,....t; €RY ki, ... ki € Zy.
For any lower layer L, define
FN(L):=0(N(@t):tel)
and
F(L) = Fyv FN(L), (6)

where .7 denotes the sigma-field of events known at time (0,0). In particular, since
there are no jumps on the axes, .# (L) = %, for L equal to the axes. Furthermore,
for any two lower layers L;, L, it is easy to see that

y(Ll) \% y(Lz) = y(Ll U L,) and y(Ll) N y(Lz) = y(Ll N Ly).
Fort € Rﬁ_, denote
F (1) := F(A) and F*(1) := F(D,).

Both (%#(t)) and (F*(r)) are right continuous filtrations indexed by Ri: ie.
FH(s) € F®(@) foralls <t € R andift, | £, then FX (1) = N, FM(1,).
More generally, if (L,) is a decreasing sequence of closed lower layers, % (N,L,) =
NnZ (Ly) (cf. [8]).

Definition 1. Let (X(¢) : ¢ € Ri) be an integrable stochastic process on Ri and let
(F@) :te Ri) be any filtration to which X is adapted (i.e. X(¢) is .% (f)-measurable
forallt e Ri). X is a weak .% -martingale if for any s < ¢,

EX(s. 1| Z(9)] =0

where X (s, 1] := X(t1, 1) — X(s1, t2) — X(t1, 52) + X (51, 52).

We now turn our attention to point process compensators on Ri_. It will always
be assumed that E[N(¢)] < oo for every ¢ € Rﬁ_. Fort = (11,h) € Ri_ and 0 <
k,j < 2" — 1 define

ANG) '—N((ﬁ JE) ((k+ Dy G+ l)tz):|
)= on’on |’ on ’ on .
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In analogy to R, the weak % -compensator of N is defined by

y -1 21 it it
%0 = i 325 E [avn 1 7 (5032,
and the .7 *-compensator (strong .7 -compensator) of N is defined by
N L (R
N*(1) = nlinéo; gE[AN(k,]) | 7 (2_2_)}

B.G. Ivanoff

where both limits are in the weak L' topology. When there is no ambiguity, reference
to .7 will be suppressed in the notation. Note that although N* is .% *-adapted, it is

not .%-adapted in general.

Comment 2. Under very general conditions, the compensators exist and N — N
and N — N* are weak martingales with respect to .# and .Z*, respectively [7, 14].
Furthermore, each has a type of predictability property that ensures uniqueness
(cf. [7]). Both compensators have non-negative increments: N(*)(s, f] > 0Vs,t €
Ri. However, neither compensator determines the distribution of N in general, as

can be seen in the following examples.

Examples. 1. The Poisson and Cox processes: Let N be a Poisson process on

R%Z with mean measure I and let .# = .ZV. By independence of the
increments, both the weak and *-compensators of N (N and N*) are equal to I”
([7], Theorem 4.5.2). A deterministic *-compensator characterizes the Poisson
process, but a deterministic weak compensator does not (see [7] for details).
Likewise, if N is a Cox process with driving measure y on Ri_ and if %) = o{y},
then N* = y; this too characterizes the Cox process (cf. [7], Theorem 5.3.1). This
discussion can be summarized as follows:

Theorem 1. Let N be a strictly simple point process on Rﬁ_ and let y be a
random measure on Rﬁ_ that puts 0 mass on every vertical and horizontal line. Let
Fo = ofytand F(t) = Fo Vv FN(1), YVt € Rﬁ_. Then N is a Cox process with
driving measure y if and only if N* = y. The law of N is therefore determined
by Q := P|g, and N*. In the case that y is deterministic, % is trivial and N is
a Poisson process.

. The single jump process: Assume that N has a single jump point 7 € R?, a
random variable with continuous distribution F and survival function

S(u) = P(t > u).

Then (cf. [7]):
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. dF
Ny = / 1w <09
[0.4]x[0.2] 1 —F(u)

ATk dF(M)
N = 1 )
(t) /[O,tl]x[o,tz] (M = t) S(u)

Although both formulas look very similar to (3), in two dimensions it is well
known that neither dF (u)/(1 — F(u)) nor dF () /S(u) determines F.

So we see that neither N nor N* determines the law of N in general. The problem
is that the filtration .# does not provide enough information about N, and in some
sense the filtration .%* can provide too much. As was observed in [10], the correct
amount of information at time ¢ lies between . (¢) and . *(¢). The solution would be
to identify a condition under which the two filtrations provide essentially the same
information — this occurs under a type of conditional independence, a condition
usually denoted by (F4) in the two-dimensional martingale literature.

To be precise, fort = (1, 1) € Rﬁ_ and any filtration (.% (1)), define the following
o-fields:

F (1) -

F20) -

Vsery Z (t1,5)

Vsery F (5, 1p).

Definition 2. We say that the filtration (% (¢)) satisfies condition (F4) if for all
t e Rﬁ_, the o-fields .#!(¢) and .#2(¢) are conditionally independent, given .7 ()
(Z'() L7 | Z ).

For the point process filtration .% (1) = .%Vv.#N(t), in practical terms (F4) means
that the behaviour of the point process is determined only by points in the past (in
terms of the partial order): geographically, this means by points from the southwest.
N could denote the points of infection in the spread of an air-born disease under
prevailing winds from the southwest: since there are no points in [0, ;] X (2, c0)
southwest of (71, 00) x [0, £,] and vice versa, the behaviour of N in either region will
not affect the other.

While it appears that (F4) is related to the choice of the axes, it can be expressed
in terms of the partial order on R%r. In fact, it is equivalent to the requirement that
forany 5,7 € R,

E[E[ | Z(9] | -F O] =E[ | Z(s AD]l.

This concept can be extended in a natural way to other partially ordered spaces; see
Definition 1.4.2 of [7], for example.

Condition (F4) has the following important consequence: if F € F(t) = Fy V
ZN(1), then for any lower layer D,

PF | #(D)] = PIF | Z(1) N F(D)]. (7
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This is proven in [5] for D = D, for s € Rﬁ_, and the result is easily generalized as
follows. To avoid trivialities, assume t & D. Let s := sup{s € R4 : (s,;) € D} and
52 := sup{s € R4 : (11, s) € D} and define the lower layers D; and D, as follows:

Dy:={u= (u,u) €D :u <s1}
Dy :={u= (u,uz) € D :up < 55}

We have that D = (DNA;) UD,UD; and #(D) = Z(A,ND)Vv F (D) V % (D).
By (F4), #(Dy) L (%(t) v F(Dy1)) | F((t1,s2)). Now use the chain rule for
conditional expectation ([12], Theorem 5.8):

F(D2) L(F (1) v F (D) | F((1,52))

= F(Dy) L.F (1) [(F((1,52) v .F(Dr))

= F(Dy) LF() [(Z((h.52) v .F (D) V.F(A ND)) ®
= F(Dy) L Z(1) | (F(D1) vV F(A,ND)). 9)

(8) and (9) follow since .7 ((t1, 52)) € % (A; N D) C .Z(¢t). But once again by (F4)
we have # (D) L (1) | #((s1,12)), and since .Z ((s1,12)) € -F (A, N D) C .Z(¢)
we have
F D) LF(@) | F((s1,0)) = F(D1) L F@) | (F((s1,12) vV F(A N D))
= FZ(D)) L .Z@) | Z(A,ND). (10)

Finally, if F € .Z (1),
P[F | Zp) = PI[F | (A, N D) Vv F(Dy) v F(D)]
= P[F | #(A,N D) Vv Z(Dy)] by (9)
= P[F | # (A, N D)] by (10),
and (7) follows since .# (A; N D) = % (t) N % (D).

We can use (7) to argue heuristically that (F4) ensures that .% and .%* provide
roughly the same information:

) kty jt
E|AN(k,j) | F* | —, =
[ w17 (5 2,,)}

_E |:AN(k,j) 7 (M’E) vz ("—“ w)} by (F4) (cf. (7))
n n n n
~ E|:AN(k,j) | # (%]2%)} asn — oo.

Therefore, N ~ N* and in particular, N*is & -adapted. In this case, we refer to
N — N* as a strong .%-martingale:
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Definition 3. Let (X(¢) : t € Rﬁ_) be an integrable stochastic process on Ri_ and let
(F@) :te Rﬁ_) be any filtration to which X is adapted. X is a strong .% -martingale
if forany s <,

E[X(s.4] | Z*(5)] = 0.

As mentioned before, to avoid a lengthy discussion of predictability we will deal
only with continuous compensators. In this case, we have the following (cf. [5, 6]):

Theorem 2. Let N be a strictly simple point process and assume that the filtration
F = Fo Vv FN satisfies (F4). If y is a continuous increasing .7 -adapted process
such that N — y is a strong martingale, then N* = y. (We say that y is increasing if
y(s,f] >0V s < teRﬁ_.)

We now address the following question: if (F4) is satisfied, will the
*-compensator characterize the distribution of N? In the case of both the Poisson and
Cox processes, (F4) is satisfied for the appropriate filtration (.7 (f) = .#N(¢) for the
Poisson process and .Z (t) = o{y} v .ZN(¢) for the Cox process) and the answer is
yes, as noted in Theorem 1. For these two special cases, it is possible to exploit one
dimensional techniques since conditioned on .%y, the *-compensator is deterministic
(see [7], Theorem 5.3.1). Unfortunately, this one dimensional approach cannot be
used for more general point process compensators. Nonetheless, Theorem 1 turns
out to be the key to the general construction of the compensator.

Before continuing, we note here that when (F4) is assumed a priori and the
point process is strictly simple, there are many other characterizations of the two-
dimensional Poisson process — for a thorough discussion see [16]. Assuming (F4),
another approach is to project the two-dimensional point process onto a family of
increasing paths. Under different sets of conditions, it is shown in [1] and [10]
that if the compensators of the corresponding one-dimensional point processes are
deterministic, the original point process is Poisson. (For a comparison of these
results, see [10].) However, the characterization of the Poisson and Cox processes
given in Theorem 1 does not require the hypothesis of (F4), and in fact implies
it. Furthermore, it can be extended to more general spaces and to point processes
that are not strictly simple (cf. [7], Theorem 5.3.1), although (F4) will no longer
necessarily be satisfied.

Returning to the general case, the first step is to analyze the geometry of strictly
simple point processes from the point of view taken in [10] and [15].

4 The Geometry of Point Processes on Rﬁ_

Let d = 1 or 2. If N is a strictly simple point process on R%, then N can be
characterized via the increasing family of random sets

E(N):={te R :N(s) <kVs <t} k> 1.
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By convention, in Ry we define &(N) to be the origin, and in Ri_ we define & (N)
to be the axes. We observe that:

o InR4, &(N) = [0, .
s N(t) =k & te &l (N)\E W)} (§)(N) denotes the interior of & (N).)
e In Rﬁ_, &k (N) is defined by the set of its exposed points:

& = min{r € R% : N(1) > k}

where for a nonempty Borel set B € R%, min(B) := {t € B: s £ t,Vs € B,
s # t}. By convention, min(@) := oo. It is easily seen that

Ek(N) = mrengr-

To illustrate, in Fig. 1 we consider the random sets & (N) and & (N) of a point
process with five jump points, each indicated by a “®”. While the exposed points
rl(l), 12(1), 13(1) of &, (N) are all jump points of N, the exposed points of & (N) include

rl(l) \ rz(l) and rz(l) \% rgl) (each indicated by a “0”) , which are not jump points. In

fact, if

Elj_(N) = ﬂe,e’Eé”k,eaée’ Deyer,

T
1'1(1) V 12(1)
A
11(2> 1.1(1) v 12(1)
[
(1)
R ; &H(N)
£

® &i(N)

a0

(0,0)

Fig. 1 Upper boundaries of the random sets &, (V) and & (N). Jump points of N indicated by ®.
Other exposed points indicated by O
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c T
i 11(1) V 1'2(1)
!
1'2(1) \/13(1)
(])‘ &' (N)
)
° &I (N)
(1)
73
(0,0)

Fig. 2 Upper boundaries of the random sets & (N) and §1+ (N)

then &(N) C &1 (N) C §k+ (N). If & is empty or consists of a single point, then
§k+ N) = Rﬁ_. For the same example, the upper boundaries of the sets £ () and

.§1+ (N) are illustrated in Fig. 2.
We can now define N in terms of single line point processes:

Definition 4. A point process on Ri_ whose jump points are all incomparable is a
single line process. (Points s, t € Ri_ are incomparable if s £ tand r £ s.)

Definition 5. Let N be a strictly simple point process on Ri_ and let J(N) denote
the set of jump points of N. Then N(t) = > 7° My (t) where for k > 1, M is the
single line process whose set of jump points is

J(My) :=min (J(N) N (L, (N) \ &—1(V)))

where & = {{0} x R4} U {Ry x {0}} and £/ = R?.

Returning to our example, in Fig. 3 we illustrate each of the jump points of M with
®_ and each of jump points of M, with &.
Before continuing, we make a few observations:

o &(N) = é,j_l(N) N & (My) (this is illustrated in Fig. 3 for k = 2). We note that
M has no jump points if J(M;) = @; in this case & (M) = Ri_ and £(N) =
ELI(N).
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T
(1) (1)
T, VT
l ‘1 2 E
D |
&
)\ 11(2> 1'2(1) \Y 13(1) .
@ & (N)
2 % &H(N)
e
® S1(N)
Y

(0,0)

Fig. 3 Jump points of M, indicated by ®, jump points of M, indicated by &

* Since {N(t) = k} = {t € &, (N) \ §(N)}, in a manner that will be made
precise, the law of N (its finite dimensional distributions) is determined by the
joint (finite dimensional) distributions of the random sets §7 (V). We will see that
this can be done by successive conditioning, as in one dimension where the joint
distribution of the successive jump times is built up through conditioning.

o If M is a single line process, it is completely determined by &, (M) (cf. [10] — the
jump points of M are the exposed points of &; (M)).

* Since the point process and its related random sets & (V) are determined by single
line processes, we will be able to reduce our problem to the following question:
will the *-compensator of the single line process M; characterize its distribution
if (F4) is satisfied?

First, we need to consider the concept of stopping in higher dimensions.

S Stopping Sets and Their Distributions

We begin with the definition of adapted random sets and stopping sets; in particular,
a stopping set is the multidimensional analogue of a stopping time.
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Definition 6. Let d = 1 or 2. An adapted random set { with respect to the filtration
Z on R‘j_ is a random Borel subset of R‘j_ such that {t € {} € F(¢) Vi € R‘j_. An
adapted random set £ is an .% -stopping set if £ is a closed lower layer.

For d = 1, we see that if 7 is an .7 -stopping time, then { = [0, 7) is an adapted
random set and £ = [0, 7] is an % -stopping set. Since .# is right-continuous, it is
easily seen that £ = [0, 7] is an .% -stopping set if and only if 7 is an .#-stopping
time. Ford = 2 and . (1) = %y v .#"(¢) for a point process N, and if .7 (L) is
defined as in (6) for a lower layer L, then it is shown in [7] that both {§ € L} € .# (L)
and {L C £} € F(L).

The law of an adapted random set ¢ is determined by its finite dimensional
distributions:

P(ti,....t€0),neNt1,....1, eRY, d=1or2.
In analogy to the history of a stopping time, the history of a stopping set £ is
F():={GeF:GN{ECLyeF(L)V lowerlayers L}.

If £ takes on at most countably many values in the class of lower layers, then equality
can be used in the definition above, and it is easy to see that .%#(§) = .%# (L) on
{& = L}. For any point process N on Ri and filtration .# = .%, v .#", we have the
following:

o Since {t € &} = {N(1) < k} € %, Vk,t, £ (N) is an .¥ -adapted random set.
e It is shown in [9] that the sets & (/N) and S,j' (N) are both .%-stopping sets. As
well, both are .7 (&, (N))-measurable for every & (i.e. {t € E,E-H(N)} e F(&) V).

* Since N is strictly simple, a priori there are no jumps on the axes and so
F(§) = Fo.

Just as the joint distributions of the increasing jump times 7; < 7, < ...
determine the law of a point process on R4 and can be built up by successive
conditioning on %y, C Z(t;) € F(1r;) C ..., we see that the law (finite
dimensional distributions) of a planar point process N can be reconstructed from
the joint finite dimensional distributions of the related adapted random sets:

P(N(ti) = ki,...N(ty) = k) =Pl € § 1\ &, i=1,....n).
As well, it is clear that the joint distributions of the increasing random sets & C

& C ... can be built up by successive conditioning on %y = % (&) € F (&) <
F&)C....
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6 The Compensator of a Single Line Point Process

We are now ready to construct the *-compensator of a single line process M on Ri.
Of course, we continue to assume that E[M(t)] < oo V¢ € R%r.

Although in principle the law of a point process is determined by the joint laws of
the sets £ (M), k > 1, in the case of a single line process, the law of M is completely
determined by the law of &7 (M) ([10], Proposition 5.1). In other words, the set of
probabilities

P(M(ty) =0.....M(t,) = 0) = P(11,....1, € E/(M))

forty,....t, € Rﬁ_, n > 1, characterize the law of M. (This can be compared with
the characterization of the law of a point process on an arbitrary complete measur-
able metric space via the so-called avoidance function; see [4], Theorem 7.3.11.)

However, when (F4) is satisfied, we have a further simplification. Define the
avoidance probability function Py of a single line process M by

Po(t) := P(M(1) = 0),1 € R%.

Theorem 3 ([10], Lemma 5.3). Let M be a single line process whose minimal
filtration F = FM satisfies (F4). The law (the f.d.d.’s) of £](M) (and hence the
law of M) is determined by the avoidance probability function Py of M.

A complete proof is given in [10], but to illustrate, we consider two incomparable
points 5,7 € R3 . If 51 < #; and 1, < s, recalling that .# = .ZM satisfies (F4) and
that M is a single line process, we have:

PM(1) = 0] F'(s))

= PM(t) =0 | F(s A1) by (F4) (cf. (7))

=PM@)=0|M(sAt)y=0IMsA L) =0)
P(M(1) = 0)

Therefore,

P(M(s) = 0,M(r) = 0)
= P(s,1 € §{(M))
= E[I(M(s) = 0)P(M(t) =0 | F'(s))]

PM(1) = 0) }

—E [I(M(S) = 0I(M(s A ) = 0) 5=
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PM(t) =0
—E 1@4@):(»__£_£l___l_
P(M(s A1) = 0)

_ P(M(s) = 0)P(M(r) =0) _ Po(s)Po(7)
- P(M(s A1) = 0) T Po(sAt)

Y

Under (F4), the avoidance probability function of a single line process can be
regarded as the two-dimensional analogue of the survival function of the jump
time 7 of a single jump point process on R.. Henceforth, we will assume that the
avoidance probability function is continuous. Obviously, the avoidance probability
function is non-increasing in the partial order on R, but when is a continuous
function bounded by O and 1 and non-increasing in each variable an avoidance
probability? The answer lies in its logarithm.

Let A(f) := —InPy(f) = —InP(M(r) = 0). Returning to (11) and taking
logarithms on both sides, if s, € Ri are incomparable,

A(sVit)=—InPM(svit) =0)
> —InP(M(A;UA;) =0)since A;, UA, C Agyr
= —InPM(s) = 0,M(r) = 0)
= A(s) + A(r) — A(s A1) by (11).

If Py is continuous, then A is continuous and increasing on Ri_: i.e. it has non-
negative increments. Therefore, A = —InPy is the distribution function of a
measure on Rﬁ_. In what follows, we will use the same notation for both the
measure and its distribution function; for example, for B a Borel set, A(B) and
M (B) are the measures assigned to B by the distribution functions A(f) = A(A,)
and M(f) = M(A,), respectively. To summarize, when .% = .M satisfies (F4):

e If Py is continuous, A = —In Py defines a measure on Rﬁ_, and it is straightfor-
ward that for any lower layer L,

P(LC &(M)) = e = P(M(L) = 0).

e Conversely, a measure A that puts mass 0 on each vertical and horizontal
line uniquely defines the (continuous) avoidance probability function Py (and
therefore the law) of a single line point process whose minimal filtration
satisfies (F4).

* Heuristically, d A can be interpreted as the hazard of M:

P(M(dr) = 11.7*(1) R I(M(A,) = 0)dA(r).

We will refer to A as the cumulative hazard of M.
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All of the preceding discussion can be applied to conditional avoidance probabil-
ity functions and conditional cumulative hazard functions, but first we need to define
regularity of conditional avoidance probabilities; this is analogous to the definition
of a regular conditional distribution.

Definition 7. Given an arbitrary o-field %’ C .%, we say that a family (Py(t, ) :
(t,w) € Ri X £2) is a continuous regular version of a conditional avoidance
probability function given .%#’ if for each ¢ € R%r, Py(t,) is .%’-measurable, and
foreach w € £2, Py(-, w) is equal to one on the axes, and — In Py (-, @) is continuous
and increasing on R?..

We have the following generalization of Theorem 3:

Theorem 4. Let M be a single line process with filtration F () = Fo N FY(t) that

satisfies (F4). If there exists a continuous regular version P(()O) (-, ) of the conditional
avoidance probability of M given %y, then the conditional law of £&{ (M) (and hence

M) given %, is determined by Péo), or equivalently by the conditional cumulative
hazard Ao := —In P{.

Now we can define the *-compensator of the single line process; to do so, we
will make use of Theorem 1. Suppose first that we have the minimal filtration:
F () = FM(1). Since PM(L) = 0) = e 4® for any lower layer L, we can
identify the single line process M with the single line process M| (the first line) in
the decomposition of a Poisson process N with continuous mean measure A (cf.
Definition 5): we have & (M) = & (M;) = & (N). As shown in Example 7.4 of
[9], it is easy to see that the (ZN)*-compensator of M is M*(f) = A(A, N & (M)).
However, since .Z < .#V and M* is .#™-adapted, by Theorem 2 it follows that
M* is also the (ZM)*-compensator of M. Similarly, if .Z (1) = %, v .ZM(r), since
P(M(L) = 0 | %)) = e~ for any lower layer L, we make the same identification
with a Cox process with driving measure A( to obtain M*(1) = Ao(A, N & (M))
(as above, this is both the (%) Vv .#")* and the (%, v .#™)*-compensator). We
summarize this as follows:

Theorem 5. Let M be a single line process with filtration %o v FM satisfying

(F4). If there exists a continuous regular version Péo) of the conditional avoidance
probability function of M given .y, then the (%o N FM)*-compensator of M is

M* (1) = Ao(A, N E1(M)), (12)

where Ag = —In Péo). Furthermore, if Q = P|g,, then the law of M is characterized
by Q and M*.

Note: Compare (12) with (3), the formula for the compensator of a single jump
process M on Ry (with %, trivial). If the jump point of M has continuous
distribution F, then Py = 1 — F and from (3), the compensator is —In Py(t A 71) =
A(A; N & (M)). Thus, (12) and (3) are identical and in both cases, A = —In P can
be interpreted as a cumulative hazard. The same will be true if .% is not trivial.
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7 The Compensator of a General Point Process

We are now ready to develop a recursive formula for the general point process
compensator. Let N be a general strictly simple point process on R%r with filtration
F = Py Vv FV satisfying (F4) and let N = Y 2, M be the decomposition
into single line point processes of Definition 5. We will proceed as follows, letting
k> 1:

1. We will show that if the filtration .% () = %oV .Z N (¢) satisfies (F4) under P, then
so does 4 (1) := .7 (§—1(N)) v .FMk(¢). This is the key point in the development
of the general point process compensator.

2. Since & (N) = E,;"_l (N) N & (My) and E,;"_l (N) is F (&k—1(N))-measurable, the
conditional law of & (N) given .7 (&;,—; (N)) is determined by the conditional law
of & (My). By Theorem 4 and the preceding point, this in turn is characterized by
the conditional avoidance probability function

PE(1) = PM(®) = 0| Z (§o1 (V). (13)
Therefore, the law of N is determined by Q = P|g, and the conditional

avoidance probability functions Pék) k> 1.
3. Define Ay(A;, ) := —In Pg‘) (t, ). Letting % (§,—1 (N)) play the role of ., for
M, and defining ¢ (¢) as in point 1 above, it will be shown that

M (1) = Ax(A NEN)I( € E_ (V).

is both the ¥*- and the .7 *-compensator of M.
4. Since N* =}, My, when (F4) holds the law of N is therefore characterized by
Q and N*.

Putting the preceding points together, we arrive at our main result:

Theorem 6. Let N be a strictly simple point process on Ri_ with filtration (F (t) =
Fo NV FN(1)) satisfying (F4). Assume that there exists a continuous regular version
of P(()k) Vk > 1, where P(()k) is as defined in (13). Then the *-compensator of N has
the regenerative form:

N*(1) = > A& N EWN)I( € E_(N)) (14)

k=1

where A(t) = —In Pék) (). If Q = P|#,, then the law of N is characterized by Q
and N*.

Comment 3. Theorem 6 is the two-dimensional analogue of the corresponding
result for point processes on R, and in fact the formulas in one and two dimensions
are identical: recalling (4) (the compensator on R.),
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o0
N =D Aut At (T < 1)

n=1
= D AANEWNDI( € & (N)),
n=1

which is the same as (14).
Proof of Theorem 6. We must fill in the details of points 14, listed above.

1. » We will begin by showing that that for any .% -stopping set &£ and incomparable
points s,z € R% ,

F)LF @) [ (F(E) vV F(s A1),
or equivalently that for any F € .7 (¢),
P(F|FE)V F(9) =PF | F(E) vV F(s A1) (15)
This then shows that
(F () v FENL(F @OV FE) | (F(E)Vv.F(sAD)
and so if 9 (s):=.F (&i—1) VvV FMi(s), then G () LY ()|(F (Ex=1) V F (s A 1)).
*  We will then show that for G € 4(t),
PG| F (&) vV F(s A1) = PG| F (&) v FM(s A1)
=P(G|Y(sA1D)). (16)
Since 9(s) < ZF(&—1) vV Z(s), (15) and (16) prove that ¥(s) L
G@) | 9G(s ).
Therefore, the proof of point 1 will be complete provided that (15) and (16)
are verified.

To prove (15), we recall (7): if (F4) holds and if F € % (¢), then for any lower
layer D,

P[F | Z(D)] = PIF | .7 (D) N F(1)].

Next, as is shown in [7], any stopping set £ can be approximated from above by
a decreasing sequence (g,,(£)) of discrete stopping sets (i.e. g,,(£) is a stopping
set taking on at most countably many values in the set of lower layers and £ =
Nmgm(£)). Since Z(§) = Ny (gm(§)) ([7], Proposition 1.5.12), it is enough
to verify (15) for £ a discrete stopping set. Let 2 be a countable class of lower
layers such that )., P(§ = D) = 1. As noted before, for £ discrete,

FE)=1Ge F:GN{E =Dl e F(D)VYD e T}
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and it is straightforward that % (§) = #(D) on {§¢ = D}. For F € % (1), we
consider F N {t € £} and F N {r € £} separately. First,

PFN{te | FE)V F(s)
= Y PFN{te&l | FE) Vv F©))E=D)

De9
=Y P(FN{teD}| F(D) Vv F )IE =D)
De2
= Y I(FN{teDYIE = D)
De2
=Y P(FN{reD}| FD) Vv F(sADIE=D)
De9
= Y PFN{te&} | FE) v F(s A)IE = D)
De9
=P(FN{t€&} | ZE)V F(sAD). (17)

Next,
P(FN{t e} | F )V .F ()
=Y PFN{tet} | FE) vV F6)IE =D)

De9

= D%p(F N{te D} | F(D)V F(s))I(§ = D)

= Z P(FN{te D | Z(DUA)IE = D)
De9

=Y P(FN{teD}|FDUA)NFZW)IE =D) (18)
De9

= Y P(FN{teD}|.F(DUA)NA)IE = D)
De9

= Z P(FN{te DY | .Z(DU A, NA))IE = D) (19)
De9

= Y P(FN{teD}|.F(D)v.F(A NA)IE =D)
De9

= DZ@P(F N{te &} | F(E) v FANA)IE =D)

= PE(F N{te&}| F(E)Vv.F(s AL)). (20)

Equations (18) and (19) follow from (7). Putting (17) and (20) together
yields (15).
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Now we prove (16). Since s and ¢ are incomparable, without loss of generality
we will assume that 1; < sy and f, > s, and so sAt = (71, 52). We have F (§;—1) VvV
F(snt) = F(E_1)VIFN(sAt). Lett ;= inf(v € Ry : Mi(v,55) > 0)Aty; Tisa
stopping time with respect to the one-dimensional filtration .% (§,— ) V.# Yk (-, 55).
Note that Z (§—1) V Z(1.52) = F (&) V FN (1, 52) = F (Ee-1) VT (1, )
since N has no jumps on A ,) \ §—1 other than (possibly) a single jump from
M, on the line segment {(7,u),0 < u < s,}. Approximate t from above with
discrete stopping times 7, < 1, 7, | . By right continuity of the filtrations,

FE)V F(tn.52) = F (E1) V T (T, 52)
L ZE) VIV (,5)
= F (&) vV .FM(1,5). 1)
Without loss of generality, let G = {M;(r) = j} in (16). Observe that on
M (s A1) > 0f, Mi(1) = Mi(T, 12) + Mi(((Tin, 0), (21, 52)]) for every m, since
{Mi(t) > 0} and the jumps of M; are incomparable. On {M(s A 1) = 0},
Ty = t1Vm and My (t) = Mi(t,, 1;). For ease of notation in what follows, let
X(tm) := Mi(ty, ) and Y(z,) := Mi((t,0), (t1,52)]). Recall that s A t =
(t1, 52) and let R, denote the (countable) set of possible values of 7,,.

P(My =j| Z (1) vV F(s A1)
= Y PMi=j| FE-)V T ANy =r)

reR,
= > Y PX(tw) =h.Y(tn) =j—h| F(E1) V F(s A (T = 1)
W reRy
= ; S PX() =h| FEr) Vv F(s ANIY () =j— (T = 1)
reRy
= Y D PX(M) =h|FE)V F(r.5)
o X I(Y(r) =j—hI(tw = 1) (22)
= Y Y PXM)=hY@)=j—h|FE)VF(r.s) Vv FWsAD)
o X I(T, = 1) (23)

= PMy=j|FEmr)V T (T, 52) VI (s A1)
" PMy = j | FEer) Vv T (z,55) v FM(s A1) (24)
= P(Mi=j| F(Er) v (s A1),
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(22) and (23) follow from (7) and the fact that X(r) is . (r, t;)-measurable,
and (24) follows from (21). This proves (16) and completes the proof of point 1.
2. This follows immediately from point 1 and Theorem 4.

3. Begin by recalling that M} has its support on E,j'_ 1 (N)\ &—1(NV) and so Pf)k) (1 =
P(My(1) = 0].7 (&-1(N))) = P(Mp(A:NE", (N)) = 0|.F (&1 (N))). Therefore,
we will identify M; with the first line of a Cox process whose driving measure
A(®) = —In Pék) (#) has support §k+_ {(VN) \ &—1(N). Now, identifying % =
F(E—1(N)) and 9 (1) = F (§—1(N)) v .FMk(t), as in Theorem 5 we have that
the ¥*-compensator of M is:

M () = A 0 &1(M)
= A(A N E M)t € E_,(N))
= AA N EL (N NEM))I( € E_ (N))
= Ap(A N ENNI(1 € & (N)).
The last two equalities follow since {r € 5;: ((N)} is F (§—1 (N))-measurable

and &(N) = &7 (N) N & (My).

We must now show that M; is also the .# *-compensator of Mj. First we show
that M is .Z-adapted. On {r € &_,} € Z (1), P’(1) = 0.On {r € £&_,}, by (7)
and taking discrete approximations of &, arguing as in the proof of (20) we
have

PPOI(t € £_)) = PMi(1) = 0 | F(&-1) N F(O)I(t € E_,).

Therefore, — In Pék) is #-adapted. Since MZ‘ is % -adapted and continuous, by
Theorem 2 it remains only to prove that

E[(Mi - M)(s.1] | F*(5)] = 0.
First, if £ € & orif s € (&1 )¢, then (My — M) (s, 7] = 0 and so trivially
E[(My = M) (s, 01(1 € E-1) | F¥(5)] =0, (25)
and
E[(M = M) (s, 1(s € () | F*(9)] = 0. (26)

Fors <t,t €&, ands € &, itis enough to show that

E[Mi(s.q)I(s € & .t €E_)) | 9*(5)]
= E[Mi(s.0I(s € & .t € E_)) | F(Ea1) V (FM)*(9)]
= E[Mi(s. (s € & 1€ §_)) | F (&) V (FN)*(5)]. 27
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If (27) is true, then since .F*(s) = Fo V (FV)*(s) € F (&—1) V (FV)*(s),
0 = E[(My — B (s, (s € & 1 € 6 | 97(5)]
= E[(My = M{)(s. 015 € §7,. 1 € 50) | T (En) v (F)"(9)]

=E[M—MO)(s. (s €& 1€ ) | F*()]. (28)

To prove (27), let 7; = inf{v : My (v, s2) > 0} A t,. Similar to the argument used
to prove (16), we have

F (&) vV I (1, 50) = F(E) vV T (11, 5)
and using (F4) (cf. (7)) and discrete approximations for 7y, it follows that
E[Mi(s. (s € & .t € &) | F () vV (FV) (9)]
= E[Mi(s. (s € & 1 € &) | F (&) vV (FV) () v FM (11 52)] .

Next, letting 7, = inf{u : My (s;, u) > 0} A 1, we argue as above and apply (F4)
(cf. (7)) twice to obtain

E[M(s,I(s € & 1 € ) | F () V(TN () v FYe (11, 5)]
= E[M(s,I(s € 1 € &) | F (1) V T (s1,00) v T (11, 52)]
= E[Mis (s € & 1 € 6) | 9°(5)].

This complet~es the proof of (27) and (28). Combining (25), (26) and (28), it
follows that M} is the .#*-compensator of Mj.

4. This is immediate because of the decomposition N = Y 72 | M.

This completes the proof of Theorem 6. a

8 Conclusion

In this paper we have proven a two-dimensional analogue of Jacod’s characterization
of the law of a point process via a regenerative formula for its compensator. For
clarity we have restricted our attention to continuous avoidance probabilities. There
remain many open questions that merit further investigation, for example:

Extend the regenerative formula to discontinuous avoidance probability func-
tions. In this case, the logarithmic relation between the avoidance probability
and the cumulative hazard will be replaced by a product limit formula.

Extend the regenerative formula to marked point processes.
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Find a complete characterization of the class of predictable increasing functions
that are *-compensators for planar point processes satisfying (F4), in analogy to
Theorem 3.6 of [11].

Generalize the results of this paper to point processes on R% ,d > 2. The main
challenge will be to find an appropriate d-dimensional analogue of (F4).
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Central Limit Theorem Related
to MDR-Method

Alexander Bulinski

1 Introduction

High dimensional data arise naturally in a number of experiments. Very often such
data are viewed as the values of some factors Xi,...,X, and the corresponding
response variable Y. For example, in medical studies such response variable Y
can describe the health state (e.g., Y = 1 or ¥ = —1 mean “sick” or “healthy”)
and Xi,...,X, and X,,+1, ..., X, are genetic and non-genetic factors, respectively.
Usually X; (1 < i < m) characterizes a single nucleotide polymorphism (SNP), i.e.
a certain change of nucleotide bases adenine, cytosine, thymine and guanine (these
genetic notions can be found, e.g., in [2]) in a specified segment of DNA molecule.
In this case one considers X; with three values, for instance, 0, 1 and 2 (see, e.g.,
[4]). Tt is convenient to suppose that other X; (im+ 1 < i < n) take values in {0, 1, 2}
as well. For example, the range of blood pressure can be partitioned into zones
of low, normal and high values. However, further we will suppose that all factors
take values in arbitrary finite set. The binary response variable can also appear in
pharmacological experiments where ¥ = 1 means that the medicament is efficient
and Y = —1 otherwise.

A challenging problem is to find the genetic and non-genetic (or environmental)
factors which could increase the risk of complex diseases such as diabetes, myocar-
dial infarction and others. Now the most part of specialists share the paradigm
that in contrast to simple disease (such as sickle anemia) certain combinations
of the “damages” of the DNA molecule could be responsible for provoking the
complex disease whereas the single mutations need not have dangerous effects
(see, e.g., [15]). The important research domain called the genome-wide association
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studies (GWAS) inspires development of new methods for handling large massives
of biostatistical data. Here we will continue our treatment of the multifactor
dimensionality reduction (MDR) method introduced by M. Ritchie et al. [13]. The
idea of this method goes back to the Michalski algorithm. A comprehensive survey
concerning the MDR method is provided in [14], on subsequent modifications and
applications see, e.g., [5, 7-12, 17] and [18]. Other complementary methods applied
in GWAS are discussed, e.g., in [4], there one can find further references.

In [3] the basis for application of the MDR-method was proposed when one uses
an arbitrary penalty function to describe the prediction error of the binary response
variable by means of a function in factors. The goal of the present paper is to
establish the new multidimensional central limit theorem (CLT) for statistics which
permit to justify the optimal choice of a subcollection of the explanatory variables.

2 Auxiliary Results

Let X = (Xy,...,X,) be a random vector with components X; : 2 — {0, 1,...,q},
i =1,...,n(q,n are positive integers). Thus, X takes values in X = {0, 1,...,g}".
Introduce a random (response) variable Y : 2 — {—1, 1}, non-random function
f: X — {—1,1} and a penalty function v : {—1, 1} — Ry (the trivial case ¢y = 0
is excluded). The quality of approximation of Y by f(X) is defined as follows

Err(f) := E|Y — f(X)[y /(). (1)
SetM ={xe X:P(X=x)>0}and
Fx)=y(-DP¥ =—-11X=x)—y(HPY =1|X=x), xe M.

It is not difficult to show (see [3]) that the collection of optimal functions, i.e. all
functions f : X — {—1, 1} which are solutions of the problem Err(f) — inf, has the
form

f=LA}—{A}, Ae o, 2)
I{A} stands for an indicator of A (I{@} := 0) and <7 consists of sets
A={xeM:F(x)<0}UBUC.
Here B is an arbitrary subset of {x € M : F(x) = 0} and C is any subset of M :=

X\ M. If we take A* = {x € M : F(x) < 0}, then A* has the minimal cardinality
among all subsets of .27 In view of the relation ¥ (—1) + /(1) # 0 we have

A"=xeM:PY =1X=x)>yW)}. y¥) =yED/@ED+vd).
3)
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If (1) = Othen A* = @. If ¥(1) # 0 and Y (—1)/¥ (1) = a where a € R4
thenA* = {x e M : P(Y = 1|X = x) > a/(1 + a)}. Note that we can rewrite (1) as
follows

Er(f) =2 ) YOPY =pfX) # ).

ye{—1,1}

The value Err(f) is unknown as we do not know the law of a random vector (X, Y).
Thus, statistical inference on the quality of approximation of Y by means of f(X) is
based on the estimate of Err(f).

Let £!,£2,... be ii.d. random vectors with the same law as a vector (X,Y).
For N € Nset £y = {£',... £V}, To approximate Err(f), as N — oo, we will
use a prediction algorithm. It involves a function fpy = fpa(x, &y) with values
{—1, 1} which is defined for x € X and &y. In fact we use a family of functions
fpa(x, v,,) defined for x € X and v,, € V,,, where V,,, := (X x {—1,1})™, m € N,
m =< N. To simplify the notation we write fps(x, v,,) instead of fp, (x,v,,). For
S C {1,...,N} (“C” means non-strict inclusion “C”) put &y(S) = {&,j € S}
and S:={1,...,N}\ S. For K € N (K > 1) introduce a partition of {1,...,N}
formed by subsets

Si(N) = {(k— D[N/K] + 1,... . k[N/K]l{k < K} + Nik=K}}, k=1,....K,

here [b] is the integer part of a number b € R. Generalizing [4] we can construct
an estimate of Err(f) using a sample &y, a prediction algorithm with fp4 and K-fold
cross-validation where K € N, K > 1 (on cross-validation see, e.g., [1]). Namely,
let

K 0 j— i £ (SN
Erre(fon. &) 1= 22 %Z Zlﬁ(y, Sk(N))I{Y —yvaA(XvSN(Sk(N)))#y}'

Vel—L1} k=1 jESy(N) 1Sk (N)

4)
For each k = 1,..., K, random variables @(y, Sk(N)) denote strongly consistent
estimates (as N — oo) of ¥ (y), y € {—1, 1}, constructed from data {¥/,j € Si(N)},
and 1S stands for a finite set S cardinality. We call ErrK(pr,éN) an estimated
prediction error.
The following theorem giving a criterion of validity of the relation

Errg(fea, En) — Err(f) as., N — oo, 5)

was established in [3] (further on a sum over empty set is equal to 0 as usual).

Theorem 1. Let fpy define a prediction algorithm for a function f : X — {—1, 1}.
Assume that there exists such set U C X that for eachx € U andanyk =1,..., K
one has

fea(x, En(SkN))) = f(x) a.s., N — oo. (6)
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Then (5) is valid if and only if, for N — oo,

K

Z(Zﬂ{fm(x, En(Sk(N))) =—1}L(x)— Z]I{pr(x, Ev(Sk(N)) =1L(x)) — 0 as.

k=1 yex+ xeX—
@)

HereXT = X\U)NxeM: fx) =1, X" :=X\D)NxeM: fx)=-1}
and

L) =y (WDPX =x,Y =1)—y(-)PX =x,Y = —1), xeX.

The sense of this result is the following. It shows that one has to demand
condition (7) outside the set U (i.e. outside the set where fp4 provides the a.s.
approximation of f) to obtain (5).

Corollary 1 ([3]). Let, for a function f : X — {—1, 1}, a prediction algorithm be
defined by fpa. Suppose that there exists a set U C X such that for each x € U and
anyk =1,...,K relation (6) is true. If

Lix) =0 for xe X\U)NM

then (5) is satisfied.

Note also that Remark 4 from [3] explains why the choice of a penalty function
proposed by Velez et al. [17]:

WU’) = C(P(Y = y))_lv y € {_15 1}7 c> O, (8)

is natural. Further discussion and examples can be found in [3].

3 Main Results and Proofs

In many situations it is reasonable to suppose that the response variable Y depends
only on subcollection Xy, , ..., X, of the explanatory variables, {ki, ..., k.} being a
subset of {1, ...,n}. It means that for any x € M

P(Y: 1|X1 :Xl,...,Xn :x,,) = P(Y: 1|Xk1 :xkl,...,Xkr :xkr). (9)

In the framework of the complex disease analysis it is natural to assume that
only part of the risk factors could provoke this disease and the impact of others
can be neglected. Any collection {ki,...,k,} implying (9) is called significant.
Evidently if {ki,...,k,} is significant then any collection {m;,...,m;} such that
{ki, ... .k} C {my,...,m;} is significant as well. For a set D C X let my,

seensKp
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{u= (... %) x=(x1,...,x,) € D}.For B € X, where X, := {0, 1,...,q}"
define in X = X, a cylinder

Crydo(B) :={x = (x1,...,%,) € X: (xt,,..., %) € B}.
For B = {u} where u = (u1,...,u;) € X, we write Cy, _x (u) instead of
Cx,...x, ({u}). Obviously
PY =11Xy, =x,....X, =x,) =P = 1|1X € Gy, (1)),
here

U=y, ,ixh Le u=x, i=1,...,r (10)

For C C X, N € Nand Wy C {1,...,N} set

Y iewy Y = 1,X € C}
Yjewy X/ € C}

Py, (Y =1|X € C) := (11)

When C = X we write simply IA’WN(Y = 1) in (11). According to the strong
law of large numbers for arrays (SLLNA), see, e.g., [16], for any C C X with
PXe(C)>0

Py, (Y =1]Xe€C) > P(Y =1|X € C) as., Wy — 00, N — oo.

If (9) is valid then the optimal function /* defined by (2) with A = A* introduced
in (3) has the form

fkl """ kr(x) _ I, if PY=1XeC, iw)>y{y) and x e M, (12)

—1, otherwise,

here u and x satisfy (10) (P(X € Cy, ...« (1)) > P(X = x) > 0 as x € M). Hence, for
each significant {ki,.... &k} C {l,...,n}and any {my,...,m,} C {1,...,n} one
has

Err(fkl ..... kr)fErr(fml ,,,,, er)' (13)

For arbitrary {m;,...,m,} C {1,...,n},x € X, u = m,, mx{x} and a penalty

function ¥ we consider the prediction algorithm with a function f,, " such that

P ...y (x, SN(WN)) — ) & FWNiE T RA = emy,
P —1, otherwise,

(14)
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here pw, (¥) is a strongly consistent estimate of y(y) constructed by means of
Env(Wy). Introduce

Ui={xeM: PY =1Xp =X, . X, = Xm,) v} (15)

Using Corollary 1 (and in view of Examples 1 and 2 of [3]) we conclude that for
any {my,...,m,} C{l,...,n}

IA:“rrK(]A‘;'/;"'“’m", &v) — Err(f™ ") as., N — oo. (16)

Relations (13) and (16) show that for each ¢ > 0, any significant collection
{ki,...,k} C {1,...,n} and arbitrary set {my,...,m,} C {1,...,n} one has

Errg(Fo% &) < Errg(fm" £y) + & as. (17)

when N is large enough.

Thus, fora givenr = 1,...,n — 1, according to (17) we come to the following
conclusion. It is natural to choose among factors Xj, . .., X, a collection Xy, ..., Xk
leading to the smallest estimated prediction error ErrK(fQ """ kr &y). After that it
is desirable to apply the permutation tests (see, e.g., [4] and [6]) for validation
of the prediction power of selected factors. We do not tackle here the choice
of r, some recommendations can be found in [14]. Note also in passing that a
nontrivial problem is to estimate the importance of various collections of factors,

see, e.g., [15].

r

Remark 1. Tt is essential that for each {m,,...,m,} C {1,...,n} we have strongly
consistent estimates of Err(f™""r). So to compare these estimates we can use the
subset of 2 having probability one. If we had only the convergence in probability

should take into account the Bonferroni corrections for all subsets {m, ..., m,} of

{1,...,n}.

Further on we consider a function ¥ having the form (8). In view of (3) w.l.g. we
can assume that ¢ = 1 in (8). In this case y(¢) = P(Y = 1). Introduce events

Avi() ={¥ =—y, jeS(N)}, NeN, k=1,....K, ye{-1,1},
and random variables

A — HAN«(»)}
I//N,k(y) . f)sk(N)(Y _ y) B
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trivial cases P(Y = y) € {0, 1} are excluded. Here we formally set 0/0 := 0. Then

P(Y =y) — Ps,o)(Y = y)

J I — I
Ia) =90 = G IO - B Ao
(18)
Clearly
AN ()} — 0 as.,, N — oo, (19)

and the following relation is true

HAN ()} R 1
Psaw(¥ =y PX¥=y)

as., N — oo. (20)

Therefore, by virtue of (18)-(20) we have that fory € {—1,1}andk =1,...,K

Uni() =¥ () = 0 as., N— oco. Q1)

Let {my,...,m,} C {1,...,n}. We define the functions which can be viewed
as the regularized versions of the estimates fA;Zl """ " of fmie-mr (see (14) and (12)).
Namely, for Wy C {1,...,N}, N € N, and ¢ = (ey)yen Where non-random positive
ey — 0,as N — oo, put

1, Pyy(Y=1|X € Coy....o, (W) > Py (V) + e, x € M,

—1, otherwise,

where u = 7, . {x}. Regularization of AI’,’/Q‘ """ " means that instead of the thre-
shold ),)WN (W) we use )/)WN (W) + &en.

Take now U appearing in (15). Applying Corollary 1 once again (and in view
of Examples 1 and 2 of [3]) we can claim that the statements which are analogous
to (16) and (17) are valid for the regularized versions of the estimates introduced
above. Now we turn to the principle results, namely, central limit theorems.

Theorem 2. Let ey — 0 and N'/?ey — 00 as N — oo. Then, for each K € N,

any subset {my,...m,} of {1,...,n}, the corresponding function f = f™ " and
my ...,

prediction algorithm defined by fpa = fp, ; " the following relation holds:

NErre(fon, En) — Err(f)) -2 Z ~ N(0,6?), N — oo, (22)
where o2 is variance of the random variable

v=2 Y H{(I;_ B (MO0 # 4= PY() # 517 = ). (23)
ye{—1,1}
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Proof. For a fixed K € Nand any N € N set

Tn(f) = Zﬁs( 5 DO v Y. MY =y f(X) # ),
ye{—1,1} JESKN)
— ] — ]
Iv(f) = Zﬁs 0 E{Z”}wm@)ﬁ%mﬂ{y »fOF) # 3.

One has
Err(fea, &n) — Err(f) = (Errg(fea. v) — T (f)
+ (Tn() — Tn () + (In(f) — Err(f)). (24)
First of all we show that
INErri(fon, &) — Tw(F)) —> 0, N — oo. (25)
Forxe X,ye {-1,1},k=1,...,K and N € N introduce

Fyi(x,y) := Tfpalx, En (Sk(N))) # vy — I (x) # v}

Then

K
Errc(fon, ) — Tw(f) = %Z S s YUY = ().
k=

ﬁS ( ) ye{—1,1} JESK(N)
(26)
We define the random variables
Byi(y) == D Y =y} Fya(X,y)
v uSk(N JESK(N)
and verify that foreachk = 1,...,K
R P
Y UnkO)Brx() — 0, N — oo, @7)

ye{—L11}

Clearly (27) implies (25) in view of (26) as §S;y(N) = [N/K] fork=1,...,K — 1
and [N/K] < #1Sk(N) < [N/K] + K. Write By x(y) = (1) 2O+ B(z) ) Where
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(1) j j j
0)=——= ) KX eU)}I{Y = y}Fyi(X,y),
ﬁSk( ﬁ%(:m V5N k y
(2)
1) =—= ) KX ¢UIY = y}Fyi(X.y).
ﬁSk(N,e%(:N) VsI'N k y
Obviously
By, O)] < Z Z |L{fpa(x, En(Sk(N))) # vy} — I{f (x) # y}.

xeU V ﬁSk( FESLN)

Functions fp4 and f take values in the set {—1, 1}. Thus, for any x € U (where
U is defined in (15)), k = 1,...,K and almost all € £2 relation (6) ensures
the existence of an integer Ny(x, k, @) such that fps (x, Ey(Sk(N))) = f(x) for N >
No(x, k, w). Hence Bz(\}.)k()’) = 0 for any y belonging to {—1,1},eachk = 1,...,K
and almost all € §2 when N > Nox(w) = max,ey No(x, k, w). Evidently by
Clearly to avoid the interruption of the formula Ny < oo a.s., because U < co. We
obtain that

> Unk(BYLG) > 0 as. N oo. (28)

ye{—1,1}

If U = X'then Bg)k (y) = Oforall N, k and y under consideration. Consequently, (27)
is valid and thus, for U = X, relation (25) holds. Let now U # X. Then for k =
1,...,K and N € N one has

Y Ui MBLO) =Y > Hyiy) + Y D Hwax.y),

ye{—1,1} x€X4 ye{—1,1} x€X_ ye{—1,1}

here Xy = X\ U)N{xeX: f(x) =1L X =X\U)N{xeX: f(x) =-—1}
and

Y i) o . o
/ﬂsk—av,e%{“ I eax, En(SeND) £33 = T () #9D)

where A/(x,y) = {X/ = x, ¥/ = y}. The definition of U yields that X1 = & and

HN’/((X, y) =

Xe=MU{XeM:PY =Xy, =Xnyseoos X, = Xm,) = y()}.
Set

Ry ) = X = 5 (i (DY = 1} — fap (DY = —1}).
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It is easily seen that

Y Y Hi) == 3 s G = 1Y )

xeX— ye{—1.1} xeX_ JESKN) ﬁSk(N)

Note that R}, (x) = 0 as. forallx € M, k = 1

,....K,j=1,...,Nand N € N.
Let us prove that, foranyx e MNX_andk =1,...,K,

fpa(x. v (SeV)) = 1} —> 0, N — oo (29)

For any v > 0 and x € M N X_ we have
P(I{fpa(x. En (Sk(N))) = 1} > v)

P( s (¥ = Xy = Ty eoe KXoy, = %) > D (V) +5N).

Now we show that, for k = 1,..., K, this probability tends to 0 as N — oo. For
Wy C{l,...,N}andx € M N X_, put

Z' % 77j R
Ay(Wy,x) =P (M > ywy (V) + en
Fivy 2jewy &

where n/=I{Y/=1, X/

xml,...,X{nr = Xm, }» U= ]I{X{n1 :xml,...,X{nr = X, }
j=1...,N.Setp = PXy, = Xm;»-..,Xm, = Xxn,). It follows that, for any
oy > 0,
An(Wy, x)
<P ZIEWN,‘,I

PTG > i)+,
jEWN >

1 .
vy 20| <o

JEWN

P () = v ()| < aw)

Due to the Hoeffding inequality

P()Mj;% el —p‘ > aN) < 2exp {—2Wyay} =: Sn(Wy. o).
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We have an analogous estimate for the last summand in (30). Consequently, taking
into account that p > 0 we see that for all N large enough

AWy = (e Y0 > (0= an) () = ay + n) + 280y, o).

u /EW
Whenever x € M N X_ one has
PY =1,X, =Xm,-- X, =%,) =P = DPXyp, = x5+, X, = Xin,)s

therefore

aven < P(3 > VB {pex —e(y () + p = +))

+28N(WN, OlN).

The CLT holds for an array {1/,j € Wy,N € N} consisting of i.i.d. random
variables, thus

_En) 2% 7 ~ N(0. 62
\/WN,EZW(" ) 0.07).

2
here oy = varl{Y = 1, X0, = Xpy, ..., X,
some ay > 0,

= X, ;. Hence Ay(Wy,x) — 0 if, for

r

an vV iWy = 00, en/fiWy = 00, ay/ey — 0 as N — oo. (3D
Take Wy = Si(N) with k = 1,...,K. Then iS¢(N) > (K — 1)[N/K] for k =
1,...,K and we conclude that (31) is satisfied when eyN'/? — oo as N — oo if
we choose a sequence (oy)yen in appropriate way. So, relation (29) is established.
Let
Ri(0) =X =x(y (DY = 1} =y (-DHY = -1}), xeX, jeN

For all x € M N X_ one has

)_
\/ﬁSk(N,E%(:N) Rl \/ﬁsk(Nﬁ%)

W) =y (DY = 1) — (a1 — Y (—D))I{Y = —1}
+ X =x : : .
jeg(;w{ } ViSk(N)
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Note that ER;(x) = 0 for all j € N and x € X_. The CLT for an array of i.i.d.
random variables {R;(x),j € Si(N), N € N} provides that

—— Y R 52 ~NO.0}). N oo,

v uSk(N JESK(N)

where olz(x) = var({X = x}(y(HI{Y = 1} — ¢y (—1I{Y = —1})), x € X_. For
eachy € {—1, 1},

Uva¥) — ¥ () KX =Xy =y}

v ﬁSk(N JESk )
= (v ) = ¥ () \/ﬁSk—(NIE%(;V)(H{Xj — WY =y} — EI{X = x}I{¥ = y})
+(Ins ) =Y O VISNPX = x.Y = y).
Due to the CLT
KX = 3 {Y =y} —ELX = x}I{¥V =y} 1aw X
— Z,~N(0,02(x,
jeszk(:N) ViSk(N) 2~N(0, 05 (x,y))

as N — oo, where 03 (x,y) = varl{X/ = x, ¥/ = y}. In view of (21) we have

vk () — ¥ () : : : : P
_— X = xM{Y =y} — El{X = x\{YV = — 0
S0 jEESk(N: )( { (Y =y} — EI{ (Y = y))

as N — oo. Now we apply (18)—-(20) once again to conclude that

(I i) — U 0) VESEN) 25 Zs ~ N(0,02(y)), N — oo,
with 02(y) = P(Y = —y)(P(Y = y))>. Thus,
> Ivi0BRG) —> 0. N > co. (32)
ye{—1,1}

Taking into account (28) and (32) we come to (27) and consequently to (25).
Now we turn to the study of Ty(f) — Ty(f) appearing in (24). One has

VNG = Tv()
Zﬁs( W2 ) —vO) 30 Y = () # )

ye{-11} JESK(N)
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PutZ =Y = y,f(X’) #y},j=1,...,N.Foreachk = 1,...,.K

Y i) =Y ———= > HY =y.f(X) #}

ye{-1.1} VﬁS"(N JESK®)
Ina®) =Y O0)——= Y (Z —EZ)
ye{X;l} ' VﬁS"(N /e%;v)
FVISN) D7 Wva) — )P = y.f(X) # ).
ye{—1,1}

Due to (21) and CLT for an array of {Z,j € Si(N), N € N} we have

) . P
Ynvi () =¥ () (Z -EZ) —0
yE{Xl:I} ' v ﬁSk(N Jeg(;\’)

as N — oo. Consequently the limit distribution of

VNI () = Tw () + (Tn(f) = Err(f)]

will be the same as for random variables

K
JN[(TNG)—Errv)H%Z D Gna) =Y O)PY = y.f(X) # ).

k=1ye{—1,1}

Note that foreachy € {—1,1}andk =1,...,K
A p
Ps, (Y =y) —P(Y =y) — 0,

VISCN) Ps,n) (Y = ) — P(Y = y)) =5 Zy ~ N(0.02),

as N — oo, where 67 = P(Y = —1)P(Y = 1).
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(33)

Now the Slutsky lemma shows that the limit behavior of the random variables

introduced in (33) will be the same as for random variables

VN(Tw(f) — Err(f))

2N & Ps,n(Y = y) —P(Y = y))P(Y = y,f(X) # ¥)
R P(Y = y)?

k=1 ye{—1,1}

ZZ

k=1 ye{—1,1} Skl P =)

Z (]I{Yf =y.f(X) #y} —P(Y = y.f(X) # )
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Y =y} —PY = y)P(Y =y.f(X) # y))

P(Y = y)?
VN & i
= — E ]
X Zﬁ SeV )jeSZ(N)(V =
where

- Y =y} ( . P(Y =y,f(X) # y))
Vi = ——— [T (X — .
}YE{Z_;’I} P =) X7 # v} P =)

Foreachk = 1,...,K, the CLT for an array {V/,j € S;(N),N € N} of i.i.d. random
variables yields the relation

3 (V—EV) 5 Z~N(©0.0%). N - o,

1
Iyg = ————
\ ﬁSk(N) JESK(N)

where 02 = varV and V was introduced in (23). Since ZN1,..-,Zyg are
independent and W/,/ﬂSk(N) — JKfork =1,...,K,as N > 0o, we come
to (22). The proof is complete. O

Recall that for a sequence of random variables (ny)yen and a sequence of
... . . P
positive numbers (ay)yen one writes ny = op(ay) if ny/ay — 0, N — oo.

Remark 2. As usual one can view the CLT as a result describing the exact rate of
approximation for random variables under consideration. Theorem 2 implies that

Errg(fpa. En) — Err(f) = op(ay), N — oo, (34)

where ay = o(N~'/?). The last relation is optimal in a sense whenever o> > 0, i.e.
one cannot take ay = O(N~'/?) in (34).

Remark 3. Inview of (11) it is not difficult to construct the consistent estimates 6y
of unknown o appearing in (22). Therefore (if 0> # 0) we can claim that under
conditions of Theorem 1

law

ﬂ(érm(fm, &v) — Err(f)) — = ~N(0,1), N — oo.
OoN o

Now we consider the multidimensional version of Theorem 2. To simplify
notation set @ = (my,...,m,). We wrltefPA . and f* instead of f, pas " and fr
respectively. Employing the Cramér—Wold device and the proof of Theorem 2 we
come to the following statement (as usual we use the column vectors and write T

for transposition).
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Theorem 3. Let ey — 0 and N'?ey — 00 as N — oo. Then, for each K € N, any
ai) = {m(ll),...,m(rl)} C{l,...,n}wherei=1,...,s, one has

IN@EZP, . Z)T 2 2~ N, C), N > .

Here Z](\;) = lAfrrK(fgfz, EN)—Err(f“(i)), i=1,...,s andthe elements of covariance
matrix C = (c;;) have the form

cij = cov(V(a(®), V(@(), i.j=1,....s,

the random variables V(a(i)) being defined in the same way as V in (23) with
frmre peplaced by f4O.

To conclude we note (see also Remark 3) that one can construct the consistent
estimates é‘N of the unknown (nondegenerate) covariance matrix C to obtain the
statistical version of the last theorem. Namely, under conditions of Theorem 3 the
following relation is valid

C2@W, . ZO)T B 122 L NO.1), N > o,
where I stands for the unit matrix of order s.
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1 Introduction and Main Result

It is a great pleasure for us to contribute this paper in honour of Professor Miklds

P

Csorgd’s work on the occasion of his 80th birthday.

Throughout, let (B, || - ||) be a real separable Banach space equipped with its
Borel o-algebra % (= the o-algebra generated by the class of open subsets of B
determined by || - ||) and let {X,;; n > 1} be a sequence of independent copies of
a B-valued random variable X defined on a probability space (£2,.%#,P). As usual,
let S, = ZZZIXk, n > 1 denote their partial sums. If 0 < p < 2 andif X is a

real-valued random variable (that is, if B = R), then

Sn
lim - = 0 almost surely (a.s.)
n—o0 nl/p
if and only if
E|X|? < oo where EX = 0 whenever p > 1.
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This is the celebrated Kolmogoroff-Marcinkiewicz-Zygmund strong law of large
numbers (SLLN); see Kolmogoroff [9] for p = 1 and Marcinkiewicz and Zygmund
[14] forp # 1.

The classical Kolmogoroff SLLN in real separable Banach spaces was estab-
lished by Mourier [15]. The extension of the Kolmogoroff-Marcinkiewicz-Zygmund
SLLN to B-valued random variables is independently due to Azlarov and Volodin
[1] and de Acosta [4].

Theorem 1 (Azlarov and Volodin [1] and de Acosta [4]). Let 0 < p < 2 and let
{Xy; n > 1} be a sequence of independent copies of a B-valued random variable X.
Then

S
lim — =0 a.s.
n—o0 pl/p

if and only if

S
E|X|? < 0o and —-- —p 0.
nl/P

Let0 < p <2andlet {®,; n > 1} be asequence of i.i.d. stable random variables
each with characteristic function ¥ () = exp{—|t}’'}, — oo < t < 0o. Then B is
said to be of stable type p if Y, | ©,v, converges a.s. whenever {v, : n> 1} C B
with Y2 ||lv,|lP < oo. Equivalent characterizations of a Banach space being
of stable type p and properties of stable type p Banach spaces may be found in
Ledoux and Talagrand [10]. Some of these properties are summarized in Li, Qi, and
Rosalsky [12].

At the origin of the current investigation is the following recent and striking result
by Hechner [6] for p = 1 and Hechner and Heinkel [7, Theorem 5] for 1 < p < 2
which are new even in the case where the Banach space B is the real line. The
earliest investigation that we are aware of concerning the convergence of the series

Yol (]EIS”I) was carried out by Hechner [5] for the case where {X,;; n > 1}isa

n=1 n
sequence of i.i.d. mean zero real-valued random variables.

Theorem 2 (Hechner [6, Theorem 2.4.1] for p = 1 and Hechner and Heinkel [7,
Theorem 5] for 1 < p < 2). Suppose that B is of stable type p for some p € [1,2)
and let {X,; n > 1} be a sequence of independent copies of a B-valued variable X

with EX = 0. Then
i 1 (E|S.|
— n \ nl/r

if and only if

E[IX[In(1 +[IX])) <00 ifp=1,

o0
/ PP (IX|| > 1) dr < 00 if 1 < p < 2.
0
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Inspired by the above discovery by Hechner [6] and Hechner and Heinkel [7], Li,
Qi, and Rosalsky [12] obtained sets of necessary and sufficient conditions for

o 1 (”Sn”)
E - < 00 as.
n \ nl/r

n=1

for the three cases: 0 < p < 1I,p = 1,1 < p < 2 (see Theorem 2.4, Theorem 2.3,
and Corollary 2.1, respectively of Li, Qi, and Rosalsky [12]). Again, these results
are new when B = R; see Theorem 2.5 of Li, Qi, and Rosalsky [12]. Moreover for
1 <p < 2,Li, Qi, and Rosalsky [12, Theorems 2.1 and 2.2] obtained necessary and

sufficient conditions for
i 1 (E|S.]
—n nl/p

for general separable Banach spaces.

This paper is devoted to an extension of Theorem 2 above and Theorems 2.1
and 2.2 of Li, Qi, and Rosalsky [12]. More specifically, the main result of this
paper is the following theorem. We note that no conditions are being imposed on
the Banach space B.

Theorem 3. Let 0 < p < 2and 0 < g < oco. Let {X,; n > 1} be a sequence of
independent copies of a B-valued random variable X. Then

oo

L (1Sall\*
;ZE(’M < o0 (1)
if and only if
o0
LISl
Z_;;( l/p) < 00 a.s. 2)
and

o0
/ Pq/”(||X||q >ndt<ooif0<qg<p,
0

. 3
E[X[PIn(1 + [X]) <00 ifg=p, )

E[X|? < o0 ifq>p.

Furthermore, each of (1) and (2) implies that
Jim T =0 a.s. “4)

For 0 < g < p, (1) and (2) are equivalent so that each of them implies that (3)
and (4) hold.
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Remark 1. Let g = 1. Then one can easily see that Theorems 2.1 and 2.2 of Li, Qi,
and Rosalsky [12] follow from Theorem 3 above.

Remark 2. Tt follows from the conclusion (4) of Theorem 3 that, if (2) holds for
some g = g1 > 0 then (2) holds for all g > ¢;.

The proof of Theorem 3 will be given in Sect. 3. For proving Theorem 3, we
employ new versions of the classical Lévy [11], Ottaviani [3, p. 75], and Hoffmann-
Jgrgensen [8] inequalities which have recently been obtained by Li and Rosalsky
[13] (stated in Sect.2). As an application of the new versions of the classical
Lévy [11] and Hoffmann-Jgrgensen [8] inequalities, in Theorem 7 some general
results concerning sums of the form Y o2, a,|| > 7_; Vi||? (where the a, > 0 and
{Vi; k > 1}is asequence of independent symmetric B-valued random variables and
q > 0) are established; these results are key components in the proof of Theorem 3.

2 New Versions of Some Classical Stochastic Inequalities

Li and Rosalsky [13] have recently obtained new versions of the classical Lévy
[11], Ottaviani [3, p. 75], and Hoffmann-Jgrgensen [8] inequalities. In this section
we state the results obtained by Li and Rosalsky [13] which we use for proving the
main result in this paper. Then, as an application of the new versions of the classical
Lévy and Hoffmann-Jgrgensen [8] inequalities, we establish some general results
for sums of the form Y2 | a,|| Y7 _, Vi||%, where the a, are nonnegative and where
{Vi; k > 1} is a sequence of independent symmetric B-valued random variables and
qg > 0.

Let {V,; n > 1} be a sequence of independent B-valued random variables defined
on a probability space (£2,.%7,P). Let B® = BxBxBx--- andg: B® - R, =
[0, oo] be a measurable function. Let

Thn=gV1,....Vs,0,..), Yy, =¢(,...,0,V,,0,...), M, = max Tj;, N, = max Y

I<j=n I<j=n
forn > 1, and

M =supT,, N =sup/,.

n>1 n>1

The following result, which is a new general version of Lévy’s inequality, is
Theorem 2.1 of Li and Rosalsky [13].

Theorem 4 (Li and Rosalsky [13]). Let{V,; n > 1} be a sequence of independent
symmetric B-valued random variables. Let g : B* — Ry = [0,00] be a
measurable function such that for all X,y € B*,

¢(*5) = eman e0o. e, ®
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where 1 < a < o0 is a constant, depending only on the function g. Then for all
t > 0, we have

t
P (M, > 1) < 2]P’<Tn > —)
o
and
t
PN, > 1) < 2IP’(Tn > —).
o
Moreover if T, — T in law, then for all t > 0, we have
t
P(M > 1) §2P(T> —)
o
and

IP’(N>t)§2]P’<T>£).

Remark 3. Theorem 4 includes the classical Lévy inequality [11] as a special case
if B =Rand g(x,x,....%,,...) = |Z?:1xi\, (X1, X2, ..., Xp,...) € R®.
Theorem 4 is due to Hoffmann-Jgrgensen [8] for the special case of @ = 1.

The following result, which is Theorem 2.2 of Li and Rosalsky [13], is a new
general version of the classical Ottaviani [3, p. 75] inequality.

Theorem 5 (Li and Rosalsky [13]). Let{V,; n > 1} be a sequence of independent
B-valued random variables. Let g : B® — R = [0, o] be a measurable function
such that for all X,y € B*,

gx+y) =B (ex) +¢¥). (6)

where 1 < B < o0 is a constant, depending only on the function g. Then for all
n > 1 and all nonnegative real numbers t and u, we have

]P’(T,, > é)
PM,>t+u) < ;
1—maX1§k5n_1P(Dn’k > %)
where
DnJ:g(()’ 703_‘/j+13"' 7_Vn307"'),j= 1,2,...,1/1—1,

In particular, if for some § > 0,

8 1
max P(an>—)§—,
1<k<n—1 ’ B 2



134 D.Lietal.

then for every t > §, we have

P (M, > 2tf) §2P(Tn > é)

Remark 4. The classical Ottaviani inequality follows from Theorem 5 if B = R
and

g(x1,x2, ... Xy, ..) = (X1, %2, ..., X, ...) € R™.

The following result, which is Theorem 2.3 of Li and Rosalsky [13], is a new
general version of the classical Hoffmann-Jgrgensen inequality [8].

Theorem 6 (Li and Rosalsky [13]). Let {V,; n > 1} be a sequence of independent
symmetric B-valued random variables. Let g : B® — Ry = [0,00] be a
measurable function satisfying conditions (5) and (6) . Then for all nonnegative
real numbers s, t, and u, we have

P(T, >s+t+u)<P(N>,32)+2P( L;)P(M>ﬂ2)

=2(vo ) e (o )2 (5> 3)

N u !
P(Mn>s+t+u)§2P(Nn>a_ﬂ2)+8P(Tn>W)P(Tn>O{2ﬁ2)’

and

]P’(M>s+t+u)<2]P’(N> '32)+4P(M>#) (M>aﬁ2)

Remark 5. The classical Hoffmann-Jgrgensen inequality [8] follows from Theo-
rem6ifa =1and § = 1.

For illustrating the new versions of the classical Lévy [11] and Hoffmann-
Jgrgensen [8] inequalities, i.e., Theorems 4 and 6 above, we now establish the
following general result.

Theorem 7. Let g > 0 and let {a,; n > 1} be a sequence of nonnegative real
numbers such that Y .o, a, < oo. Let {Vi; k > 1} be a sequence of independent
symmetric B-valued random variables. Write

b=

k=n

I\/
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and

217 if 0<g<1 I, f0<g=1
a = and B = @)
1, ifqg>1. 2071 if g > 1.

Then, for all nonnegative real numbers s, t, and u, we have that

e’} n q
t
P{supb, ||V.|?>1t] <2P an Vil > — (8)
(apmivrr =) <ar (S |50 - )
and
[eS) n q s
P(Zdn ZV,' >S+t+u)SP(supbn||Vn||‘1>E)
n=1 i=1 nzl

+4P (T2 |2 Vil > ) B (SR | Vil > o)
)

q
) (10)

Furthermore, we have that

o
E (supbn ||v,,||‘1) <2aE (Z an

nx1 n=1

n

2.V

i=1

and
[’} n q
E (Z an | Y Vi ) <6(c + B)°E (supbn ||vn||‘1) +6(c+ B, (A
n=1 i=1 n1
where
e’} n q
to = inf{t >0; P (Zan S| > t) <247 Y« +/3)‘3§ .
n=1 i=1
Proof. Form > 1 and (x1,x2,...,X,) € B™, write

q

m
ng (xlv-x25---sxm) = Zan
n=1

m
2
i=1

One can easily check that, for each m > 1, the function g,, satisfies conditions (5)
and (6) with « and 8 given by (7) . Let

Tm,n=gm(V1,-.-,Vn,0,..-,0), Ym,n=gm(O,...,O,Vn,O,...,O), 1§n§m
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Clearly,
q

i=1

m
Tm,m - E ap
n=1

and

max Y., = max (Z a,-) Vol = max (by — bugr) |Vall?.
— 1<n<m

1<n<m 1<n=m

Then by Theorem 4 we have for all nonnegative real numbers ¢,

P ( max (b, — byut1) |Vall? > t) =P ( max Y, > t)
1<n<m 1<n=<m
<P (Tmm > i) .
- ’ o ( )
m q ¢
= 2P n I K
(Za . a)

n=1
and by Theorem 6 we have for all nonnegative real numbers s, #, and u,

n

>

i=1

P(Tym>s+t4+u) <P ( max (b, — byut1) | Val? > i)
1<n<m ,32

t
+4P (Tm,m > %) P (Tm,m > 05_,32)

13)

Note that with probability 1,

q o0 q

/Zan

n=1

n

2.V

i=1

m

Tm,m = Zan

n=1

n

2.V

i=1

and

max (b, — but1) |Vall? /7 sup by, |Vul|? as m — oo.
1<n<m n>1

Thus, letting m — oo, (8) and (9) follow from (12) and (13) respectively.
We only need to verify (11) since (10) follows from (8). Set

>
i=1

q

o0
y=o+f and T:Zan
n=1
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Letc > tp. Notingy > 1, y/a > 1,and y/B > 1, by (9) withs = t = u = y3x, we
have that

o0
E(T) = 3)/3/ P (T > 3y3x) dx
0

c o0
:3;/3(/ +/ )P(T>3y3x)dx
0 c
o0 o0
3y? c—i—/ P | supb, |Va||? > x dx+4/ P>(T > x)dx
c n>1 c

o0
3y? (c +E (supbn ||V,,||q) + 4P(T > c)/ P(T > x)dx)
n>1 0

IA

IA

IA

1
3y’c+3y°E <sup by ||Vn||q) + ~E(T)
n>1 2
since 12y3P(T > ¢) < 1/2 by the choice of c. We thus conclude that

E(T) < 6(c + B)°E (supbn ||V,,||") +6(ax+ B)c Ye>1
n>1

and hence (11) is established. O

3 Proof of Theorem 3

For the proof of Theorem 3, we need the following five preliminary lemmas.

Lemma 1. Let {ci; k > 1} be a sequence of real numbers such that

oo

> el < o0

k=1
and let {a,x; k > 1,n > 1} be an array of real numbers such that

sup |ank| < oo and lim a,; =0V k> 1.
n>1,k>1 n—>00

Then

oo
lim E ap kCr = 0.
n—00 p
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Proof. This follows immediately from the Lebesgue dominated convergence theo-
rem with counting measure on the positive integers. |

The proofs of Lemmas 2 and 3 and Theorem 3 involve a symmetrization
argument. For the sequence {X,; n > 1} of independent copies of the B-valued
random variable X with partial sums S, = Y ;_ Xx, n > 1, let {X', X); n > 1}
be an independent copy of {X, X,; n > 1}. The symmetrized random Varlables are
defined by X = X — X, X, = X, —X,n>1.SetS, =Y _ le,S =Y le,
n>1.

Lemma 2. Let 0 < p < 2 and let {X,; n > 1} be a sequence of independent copies
of a B-valued random variable X. Then

Sn
nl_l)IIolo m =0 a.s. (14)
if and only if
) S

Proof. By Theorem 1, we see that (15) immediately follows from (14) . We now
show that (15) implies (14) . For 0 < p < 1, (14) follows from (15) since

Zk 1|| k”

n—)oo nl/P

=0 a.s.ifand only if E|X||P < oo.

Clearly, for 1 < p < 2, (15) implies that E||X|| < oo and hence by the SLLN of
Mourier [15]

Then

—p EX
o P

and so EX = 0 in view of the second half of (15) . We thus conclude that when
1 <p <2,(15)entails EX = 0.
Next, it follows from the second half of (15) that
SZ”
W —Pp 0.

Hence for any given € > 0, there exists a positive integer n, such that

(15

> 2"/1’6) <1/24, V> n.
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Note that {Xn; n > 1} is a sequence of i.i.d. B-valued random variables. Thus, by
the second part of Proposition 6.8 of Ledoux and Talagrand [10, p. 156], we have

E Hsz < 6E max |&:| + 6 x 2P < 12E max |Xi| + 6 x 2"7¢, ¥ n > n.
1<i<2n 1<i<2n
and hence
E | S E max <i<on [|Xi|
1<i<2n i
— = 12(—2n/,, )+6e, Vn=>n.

It is easy to show that, for 1 < p < 2, the first half of (15) implies that

fim Zmatisisz Xl o

n—00 on/p

We thus have that

AT —y, (16)

Since EX = 0, applying (2.5) of Ledoux and Talagrand [10, p. 46], we have that

] E || S
o EISA o Bl g EISHL i
=l <pm<on ml/P =l <pm<on 2"/P 2"/P 2”/17
for n > 1. It now follows from (16) that
E|S,
lim ISl =0
n—>00 nl/.”
and hence that
S 0
m —>p U.
By Theorem 1 again, we see that (14) follows. O

Lemma3. Let0 < p < 2and0 < g < 0. Let {X,; n > 1} be a sequence of
independent copies of a B-valued random variable X. If (2) holds, i.e., if

o 1 (||Sn||)q
E - <00 a.s.,
n \ nl/pr

n=1

then (14) holds, i.e.,

— =0 a.s.
n—o0 pl/p
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Proof. We first show that (2) implies that

22 50 17
2n/p L a7
To see this, forn > 1 and X = (x1,x2,...,Xm) € B?" write

1 _ k+1-2" 9
wiory (|24
gn(X) = gn (X1, X2, ..., %) = k; % T

Clearly, g, : B¥ — [0, oo] is a measurable function satisfying condition (6) with 8
given by (7) . Set

Vi=8n, Vi=Xuyj 1, 25j<2",

Myj=gu(Vi,....V30,...,0), Dyj=gs(0,....0,=Vj,...,=Va), 1 =j<2"

By Theorem 5 (i.e., Theorem 2.2 of of Li and Rosalsky [13]), we have that

P(Mn,z” > t/:B)
Pl max M,; >t4+u] < ,Vs>0,u>0.
1<j<2n 1 — maxy<j<o P (Dyy > u/p)
(18)
It is easy to see that
2n+1_1
M, = gu (8,0 0) = Z — = y—1=a/p M q
n1 n (020, 0,00, Z AR 2 = Snlp
(19)
and it follows from (2) that
o+l
1 (1Sl
Mn,2” = gn (Szn,in_H, . ,X2n+l_l) = Z E (|I|€1—I/([|)I) — 0 a.s. (20)

k=2"

Since {X,;; n > 1} is a sequence of independent copies of X, we have that for all
u>0,

P(Dyy>u) =P (ga(0,....0,X1,.... Xonjy1) >u), 2<j<2"
Note that
8n (0,0, X1, X0, oo X 1) <8 (0,...,0,X1. Xa, .., Xonjyo), 25 <2

We thus conclude that for all u > 0,

max ]P’(D,,J- > u/,B) <P(g,. X1, X2,...,Xm) >u/p). 21

2<j=<2"
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Set

k 1+q/p
(ﬁ) ifl <k<2"

Ak =
0 if k > 2",

Then clearly {a,x; k > 1,n > 1} is an array of nonnegative real numbers such that

sup aux <1 < oo and hm ank =0 Vk>1
n>1k>1

Note that, forn > 1,

ooy ([
gn(XhXZv---aXZ”): kZZ:n k T

x5
-2 ()
()

lim g, (X1, Xs,...,Xo) =0 as. (22)
n—>0o0

Then, by Lemma 1, (2) implies that

It now follows from (18) and (20)—(22) that

P (Mw > ﬁ)
hm P(M, > ¢) < lim

=0 Ve>0;
oo P (gn(Xl,Xz,...,in)> %)

that is,
Mn,l —P O

and hence (17) follows from (19).
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We now show that (2) implies that
E|X|P < oo. (23)
To see this, (2) clearly ensures that

o0 ~ q 00 o
_r12=:1;<n1/p =P ;; Y +r;; i <00 as.,

(24)

A

Sn

00
D an

n=1

where a, = n~'"%9P, n > 1. Since {}A(n n > 1} is a sequence of independent copies
of the B-valued random variable X, it follows from (8) of Theorem 7 that

g 2 1S\ ¢
>t)§2P(Z_:lZ(nl/p) >a) Vit>0,

o0
b, = Zn_l_‘m’, n>1
k=n

X,

P (sup by,

n>1

where

which, together with (24), ensures that

~ |14
sup b, || X,

n>1

< 00 a.s. (25)

It is easy to check that

and so we have by (25) that

q

%, e
sup ——-- | = supn arp HX" H <00 as.
n>1 N P n>1

Since the )A(n, n > 1 arei.i.d., it follows from the Borel-Cantelli lemma that for some
finite A > 0,

oo

P (||5(|| > xnl/f’) <

n=1
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and hence
E|X - X|IP < o0

which is equivalent to (23) . By Lemma 2, (14) now follows from (17) and (23) .
The proof of Lemma 3 is complete. a

Lemma 4. Let (E,¥) be a measurable linear space and g : E — [0,00] be a
measurable even function such that for all X,y € E,

gx+y) < B(gx +g¥),

where 1 < B < 00 is a constant, depending only on the function g. If V is an
E-valued random variable and V is a symmetrized version of 'V (i.e., V=v-V
where V' is an independent copy of V), then for all t > 0, we have that

P(g(V) < NEg(V) < BEg(V) + Bi (26)
and
Eg(V) < 2BEg(V). @7
Moreover, if
g(V) < ¢ a.s., (28)
then
Eg(V) < oo ifand only if Eg(V) < occ. (29)

Proof. We only give the proof of the second part of this lemma since the first part
of this lemma is a special case of Lemma 3.2 of Li and Rosalsky [13]. Note that,
by (28), there exists a finite positive number t such that

P(g(V) <7) > 1/2.

It thus follows from (26) and (27) that

1 A A
ﬁ]Eg(V) < Eg(V) = 2BEg(V) + 2f7

which ensures that (29) holds. O

The following nice result is Proposition 3 of Hechner and Heinkel [7].
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Lemma 5 (Hechner and Heinkel [7]). Let p > 1 and let {X,; n > 1} be a
sequence of independent copies of a B-valued random variable X. Write

1
up = inft: POX|| > 1) < -4, n>1.
n

Then the following three statements are equivalent:

o0
0 / PUP(IX| > 1)dt < 0o
O% u
(i) Z 31 < 0%
n=1

o0

1

(lll) E nl+—l/pE (IIE/?<X;1 ”Xk”) < Q.
n=1 -

Proof of Theorem 3. Firstly, we see that (1) immediately implies that (2) holds.
Thus, by Lemma 3, for 0 < g < 0o, each of (1) and (2) implies that (4) holds.

Secondly, we show that (1) follows from (2) and (3). To see this, by Lemma 4,
we conclude that (1) is equivalent to

=1 (150

Since (2) ensures that (24) holds, by (10) and (11) of Theorem 7, we see that (30)
holds if and only if

X,

n>1

E (supbn q) < 00, 31D

where b, = > 22, n~179? n > 1. Since lim, o b,/n"9? = p/q, we conclude
that (31) is equivalent to

A 1PN 4P ~ |9
Xn n
E|sup—— =E|sup—— | < o0. (32)
n>1 n n>1 nq/p

Note that we have from (3) that
E|X|]? < o0 if0<gq<p,
E[IX|”In(1 + [ X]) <oo ifg=p,

E|X||? < o0 ifg>p
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which is equivalent to

E|X|P < oo if0 < g <p,
E[X|”log(1 + |X])) < 0o ifg=p, (33)
E[IX||9 < oo if g > p.

Burkholder [2] proved that (33) and (32) are equivalent. We thus conclude that (1)
follows from (2) and (3) .

Since (1) and (30) are equivalent, (30) implies that (32) holds, and (32) and (33)
are equivalent, we conclude that (3) follows from (1) if ¢ > p.

We now show that (1) implies that (3) holds if 0 < g < p. By the Lévy inequality,
we have that, for everyn > 1 and all # > 0,

~ |14 ~
P(max XkH > t) = P(max XkH > tl/q)
1<k=<n 1<k<n
N A2
< 21@()(5"” > ) =2 (|3, > 1),
which ensures that, for every n > 1,
N ~ |14
E (max XkH ) <2E |3, (34)
1<k<n
Since (1) and (30) are equivalent, it now follows from (1) and (34) that
o0 o0
L g ) = L g %" 35
Y (o) = Lo (m [5) <0 09
where p; = p/q > 1 (since 0 < g < p)and Y = | X|%, ¥, = )}A(n q, n>1.By
Lemma 5, (35) is equivalent to
o0
/ PYPI(Y > 1)dt < oo,
0
i.e.,
o
/ PP (||X — X'||4 > 1) dt < oo. (36)
0

Let m(||X||) denote a median of | X|. Since, by the weak symmetrization inequality,
we have that
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P(IX] = m(IXID)] > 1) < 2P ([IX]| = [X"ll] > 1)

t
<P(IX—X/|| > 1) < 4P (||X|| > E) Vi>o0,
we conclude that (36) is equivalent to
o
/ PP (X7 > 1) dt < oo,
0

i.e., (3) holdsif 0 < g < p.

Finally, by Lemma 3, (2) implies that E[|X||”? < oo. Then (32) holds and
hence (30) holds if 0 < g < p. Since, under (2) , (1) and (30) are equivalent,
we see that (1) follows from (2) if 0 < g < p. O
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Quenched Invariance Principles via Martingale
Approximation

Magda Peligrad

1 Introduction and General Considerations

In recent years there has been an intense effort towards a better understanding of the
structure and asymptotic behavior of stochastic processes. For dependent sequences
there are two basic techniques: approximation with independent random variables
or with martingales. Each of these methods have its own strength. On one hand
the processes that can be treated by coupling with an independent sequence exhibit
faster rates of convergence in various limit theorems; on the other hand the class
of processes that can be treated by a martingale approximation is larger. There are
plenty of processes that benefit from approximation with a martingale. Examples
are: linear processes with martingale innovations, functions of linear processes,
reversible Markov chains, normal Markov chains, various dynamical systems and
the discrete Fourier transform of general stationary sequences. A martingale approx-
imation provides important information about these structures because of their rich
properties. They satisfy a broad range of inequalities, they can be embedded into
Brownian motion and they satisfy various asymptotic results such as the functional
conditional central limit theorem and the law of the iterated logarithm. Moreover,
martingale approximation provides a simple and unified approach to asymptotic
results for many dependence structures. For all these reasons, in recent years
martingale approximation, “coupling with a martingale”, has gained a prominent
role in analyzing dependent data. This is also due to important developments by
Liverani [30], Maxwell-Woodroofe [31], Derriennic-Lin [15-17] Wu-Woodroofe
[51] and developments by Peligrad-Utev [35], Zhao-Woodroofe [49, 50], Volny [46],
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Peligrad-Wu [37] among others. Many of these new results, originally designed for
Markov operators, (see Kipnis-Varadhan [29] and Derriennic-Lin [16]) have made
their way into limit theorems for stochastic processes.

This method has been shown to be well suited to transport from the mar-
tingale to the stationary process either the conditional central limit theorem or
conditional invariance principle in probability. As a matter of fact, papers by
Dedecker-Merlevede-Volny [13], Zhao and Woodroofe [50], Gordin and Peligrad
[24], point out characterizations of stochastic processes that can be approximated
by martingales in quadratic mean. These results are useful to treat evolutions in
“annealed” media.

In this survey we address the question of limit theorems started at a point for
almost all points. These types of results are also known under the name of quenched
limit theorems or almost sure conditional invariance principles. Limit theorems for
stochastic processes that do not start from equilibrium is timely and motivated by
recent development in evolutions in quenched random environment, random walks
in random media, for instance as in Rassoul-Agha and Seppélédinen [40]. Moreover
recent discoveries by Volny and Woodroofe [47] show that many of the central limit
theorems satisfied by classes of stochastic processes in equilibrium, fail to hold
when the processes are started from a point. Special attention will be devoted to
normal and reversible Markov chains and several results and open problems will be
pointed out. These results are very important since reversible Markov chains have
applications to statistical mechanics and to Metropolis Hastings algorithms used in
Monte Carlo simulations. The method of proof of this type of limiting results are
approximations with martingale in an almost sure sense.

The field of limit theorems for stochastic processes is closely related to ergodic
theory and dynamical systems. All the results for stationary sequences can be
translated in the language of Markov operators.

2 Limit Theorems Started at a Point via
Martingale Approximation

In this section we shall use the framework of strictly stationary sequences adapted
to a stationary filtrations that can be introduced in several equivalent ways, either
by using a measure preserving transformation or as a functional of a Markov chain
with a general state space. It is just a difference of language to present the theory in
terms of stationary processes or functionals of Markov chains.

Let (£2,7,P) be a probability space, and T : £2 + §2 be a bijective
bimeasurable transformation preserving the probability P. A set A € o is said
to be invariant if T(A) = A. We denote by .# the o-algebra of all invariant sets. The
transformation 7 is ergodic with respect to probability PP if each element of .# has
measure 0 or 1. Let .%, be a o-algebra of &/ satisfying %y C T~'(%) and define
the nondecreasing filtration (.%;),cz by .%; = T~1(%). Let X, be a .#y-measurable,
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square integrable and centered random variable. Define the sequence (X;);ez by
X, = XpoT.LetS, = X; +---+X,. Forp > 1, |.ll, denotes the norm in
L,(£2, o/, P). In the sequel we shall denote by Eo(X) = E(X|.%).

The conditional central limit theorem plays an essential role in probability theory
and statistics. It asserts that the central limit theorem holds in probability under the
measure conditioned by the past of the process. More precisely this means that for
any function f which is continuous and bounded we have

Eo(f(S./+/n)) — E(f(cN)) in probability, (1)

where N is a standard normal variable and o is a positive constant. Usually we shall
have the interpretation 0? = lim,_s oo var(S,) /n.

This conditional form of the CLT is a stable type of convergence that makes
possible the change of measure with a majorizing measure, as discussed in
Billingsley [1], Rootzén [44], and Hall and Heyde [25]. Furthermore, if we consider
the associated stochastic process

1
Wn(t) = %S[m‘],
where [x] denotes the integer part of x, then the conditional CLT implies the
convergence of the finite dimensional distributions of W, (7) to those of oW (r)
where W(r) is the standard Brownian Motion; this constitutes an important step
in establishing the functional CLT (FCLT). Note that W, () belongs to the space
DJ0, 1], the set of functions on [0, 1] which are right continuous and have left hands
limits. We endow this space with the uniform topology.

By the conditional functional central limit theorem we understand that for any
function f continuous and bounded on D[0, 1] we have

Eo(f(W,)) — E(f(c W)) in probability. 2)

There is a considerable amount of research concerning this problem. We mention
papers by Dedecker and Merlevede [10], Wu and Woodroofe [51] and Zhao and
Woodroofe [50] among others.

The quenched versions of these theorems are obtained by replacing the conver-
gence in probability by convergence almost sure. In other words the almost sure
conditional theorem states that, on a set of probability one, for any function f which
is continuous and bounded we have

Eo(f(Sa/~/n)) — E(f(aN)), 3)
while by almost sure conditional functional central limit theorem we understand

that, on a set of probability one, for any function f continuous and bounded on
D[0, 1] we have

Eo(f(Wn)) — E(f(aW)). “)
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We introduce now the stationary process as a functional of a Markov chain.

We assume that (£,),ez is a stationary ergodic Markov chain defined on a
probability space (£2,.%,P) with values in a Polish space (S,.”). The marginal
distribution is denoted by w(A) = P(§ € A), A € .. Next, let LI(r) be the set
of functions / such that ||A||3 , = [h*dn < oo and [ hdm = 0. Denote by .% the
o—field generated by & with j < k, X; = h(§;). Notice that any stationary sequence
(Yi)rez can be viewed as a function of a Markov process & = (¥;;j < k) with the
function g(&;) = Yi. Therefore the theory of stationary processes can be imbedded
in the theory of Markov chains.

In this context by the central limit theorem started at a point (quenched) we
understand the following fact: let P* be the probability associated with the process
started from x and let E* be the corresponding expectation. Then, for 7—almost
every x, for every continuous and bounded function f,

E*(f (Sa/~/n)) — E(f(oN)). )

By the functional CLT started at a point we understand that, for w—almost every x,
for every function f continuous and bounded on DJ0, 1],

E*(f(Wn)) — E(f(cW)). (6)

where, as before W is the standard Brownian motion on [0, 1].

It is remarkable that a martingale with square integrable stationary and ergodic
differences satisfies the quenched CLT in its functional form. For a complete and
careful proof of this last fact we direct to Derriennic and Lin ([15], page 520). This
is the reason why a fruitful approach to find classes of processes for which quenched
limit theorems hold is to approximate partial sums by a martingale.

The martingale approximation as a tool for studying the asymptotic behavior
of the partial sums S, of stationary stochastic processes goes back to Gordin [22]
who proposed decomposing the original stationary sequence into a square integrable
stationary martingale M, = Z:l: , D; adapted to (%,), such that S, = M, + R,
where R, is a telescoping sum of random variables, with the basic property that
sup, | [Rallz < oc.

For proving conditional CLT for stationary sequences, a weaker form of martin-
gale approximation was pointed out by many authors (see for instance Merlevede-
Peligrad-Utev [32], for a survey).

An important step forward was the result by Heyde [28] who found sufficient
conditions for the decomposition

S, = M, + R, with R,/+/n — 0inL,. @)
Recently, papers by Dedecker-Merlevede-Volny [13] and by Zhao-Woodroofe [50]

deal with necessary and sufficient conditions for martingale approximation with an
error term as in (7).
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The approximation of type (7) is important since it makes possible to transfer
from martingale the conditional CLT defined in (1), where o = ||Dy|>.

The theory was extended recently in Gordin-Peligrad [24] who developed
necessary and sufficient conditions for a martingale decomposition with the error
term satisfying

max |S,’ —Mj|/\/ﬁ — 0in L,. (8)
I<j<n - !

This approximation makes possible the transport from the martingale to the
stationary process the conditional functional central limit theorem stated in (2).
These results were surveyed in Peligrad [38].

The martingale approximation of the type (8) brings together many disparate
examples in probability theory. For instance, it is satisfied under Hannan [26, 27]
and Heyde [28] projective condition.

o0
E(Xy|-#—-s) =0 almost surely and Z IE—;(Xo) —E_i—1(Xo)|l2 < 00;  (9)

i=1

It is also satisfied for classes of mixing processes; additive functionals of Markov
chains with normal or symmetric Markov operators.

A very important question is to establish quenched version of conditional CLT
and conditional FCLT, i.e. the invariance principles as in (3) and also in (4) (or
equivalently as in (5) and also in (6)). There are many examples of stochastic
processes satisfying (8) for which the conditional CLT does not hold in the
almost sure sense. For instance condition (9) is not sufficient for (3) as pointed
out by Volny and Woodroofe [47]. In order to transport from the martingale to
the stationary process the almost sure invariance principles the task is to investigate
the approximations of types (7) or (8) with an error term well adjusted to handle this
type of transport. These approximations should be of the type, for every ¢ > 0

Po[|S, — M,|/~/n > €] = 0 a.s. or Po[lmax IS; = Mi|//n>¢]l—0as. (10)
<i<n

where (M,), is a martingale with stationary and ergodic differences and we
used the notation Py(A) = P(A|.%p). They are implied in particular by stronger
approximations such that

|S, —M,|/~/n — 0a.s. or max |S; — M;|//n — 0 a.s.
<i<n

Approximations of these types have been considered in papers by Zhao-Woodroofe
[49], Cuny [5], Merlevede-Peligrad M.-Peligrad C. [34] among others.

In the next subsection we survey resent results and point out several classes of
stochastic processes for which approximations of the type (10) hold.
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For cases where a stationary martingale approximation does not exist or cannot
be pointed out, a nonstationary martingale approximation is a powerful tool.
This method was occasionally used to analyze a stochastic process. Many ideas
are helpful in this situation ranging from simple projective decomposition of
sums as in Gordin and Lifshitz [23] to more sophisticated tools. One idea is to
divide the variables into blocks and then to approximate the sums of variables
in each block by a martingale difference, usually introducing a new parameter,
the block size, and changing the filtration. This method was successfully used in
the literature by Philipp-Stout [39], Shao [45], Merlevede-Peligrad [33], among
others. Alternatively, one can proceed as in Wu-Woodroofe [51], who constructed a
nonstationary martingale approximation for a class of stationary processes without
partitioning the variables into blocks.

Recently Dedecker-Merlevede-Peligrad [14] used a combination of blocking
technique and a row-wise stationary martingale decomposition in order to enlarge
the class of random variables known to satisfy the quenched invariance principles.
To describe this approach, roughly speaking, one considers an integer m = m(n)
large but such that n/m — oo. Then one forms the partial sums in consecutive
blocks of size m, Y;’ = Xmi-1)+1 + -+ X, 1 <j <k, k = [n/m]. Finally, one
considers the decomposition

S, = M" + R, (11)

n
where M), = ZD’.‘, with D} =Y} — E(Yj”|ﬁm(,~_ 1)) a triangular array of row-wise
=1
stationary martingale differences.

2.1 Functional Central Limit Theorem Started at a Point
Under Projective Criteria

We have commented that condition (9) is not sufficient for the validity of the almost
sure CLT started from a point. Here is a short history of the quenched CLT under
projective criteria. A result in Borodin and Ibragimov ([2], ch.4, section 8) states that
if ||Eo(S,)]|2 is bounded, then the CLT in its functional form started at a point (4)
holds. Later, Derriennic-Lin [15-17] improved on this result imposing the condition
[IEo(S)|l2 = O(n'/?=¢) with € > 0 (see also Rassoul-Agha and Seppiliinen
[41]). A step forward was made by Cuny [5] who improved the condition to
[IEo(S)|]2 = Om'/*(logn)~2(loglogn)~'=%) with § > 0, by using sharp results
on ergodic transforms in Gaposhkin [21].

We shall describe now the recent progress made on the functional central limit
theorem started at a point under projective criteria. We give here below three classes
of stationary sequences of centered square integrable random variables for which
both quenched central limit theorem and its quenched functional form given in (3)
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and (4) hold with 02 = lim,— oo var(S,)/n, provided the sequences are ergodic.
If the sequences are not ergodic then then the results still hold but with o replaced
by the random variable 7 described as n = lim,— o0 E(S|.#)/n and E(5) = o. For
simplicity we shall formulate the results below only for ergodic sequences.

1. Hannan-Heyde projective criterion. Cuny-Peligrad [6] (see also Volny-
Woodroofe [48]) showed that (3) holds under the condition

o o0
E(S"—\/I;O) — 0 almost surely and ; IE—:(Xo) — E—i—1(X0) |2 < o0.
(12)
The functional form of this result was established in Cuny-Volny [8].
2. Maxwell and Woodroofe condition. The convergence in (4) holds under
Maxwell-Woodroofe [31] condition,

Eo(S,
le (;{(3/1;)”2 < 0. (13)

as recently shown in Cuny-Merlevede [7]. In particular both conditions (12)
and (13) and is satisfied if

Eo(X
Z|| ol _ "

3. Dedecker-Rio condition. In a recent paper Dedecker-Merlevede-Peligrad [14]
proved (4) under the condition

Y IXEo (X1 < oo (15)
k>0

The first two results were proved using almost sure martingale approximation
of type (10). The third one was obtained using the large block method described
in (11).

Papers by Durieu-Volny [19] and Durieu [20] suggest that conditions (12), (13)
and (15) are independent. They have different areas of applications and they
lead to optimal results in all these applications. Condition (12) is well adjusted
for linear processes. It was shown in Peligrad and Utev [35] that the Maxwell-
Woodroofe condition (13) is satisfied by p—mixing sequences with logarithmic rate
of convergence to 0. Dedecker-Rio [9] have shown that condition (15) is verified for
strongly mixing processes under a certain condition combining the tail probabilities
of the individual summands with the size of the mixing coefficients. For example,
one needs a polynomial rate on the strong mixing coefficients when moments higher
than two are available. However, the classes described by projection conditions have
a much larger area of applications than mixing sequences. They can be verified by
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linear processes and dynamical systems that satisfy only weak mixing conditions
(Dedecker-Prieur [11, 12], Dedecker-Merlevede-Peligrad [ 14] among others). More
details about the applications are given in Sect. 3.

Certainly, these projective conditions can easily be formulated in the language
of Markov operators by using the fact that Eo(Xy) = Q(f)(&). In this language

Eo(S) = (Q + Q* + -+ + 0 () (&)

2.2 Functional Central Limit Theorem Started at a Point
Jor Normal and Reversible Markov Chains

In 1986 Kipnis and Varadhan proved the functional form of the central limit
theorem as in (2) for square integrable mean zero additive functionals f € Lg(n)
of stationary reversible ergodic Markov chains (§,),ez with transition function
0(&,A) = P(& € Al&) under the natural assumption var(S,)/n is convergent
to a positive constant. This condition has a simple formulation in terms of spectral
measure py of the function f with respect to self-adjoint operator Q associated to the
reversible Markov chain, namely

bl

This result was established with respect to the stationary probability law of the
chain. (Self-adjoint means Q = Q*, where Q also denotes the operator Qf (§) =
[f(x)Q(&, dx); Q* is the adjoint operator defined by < Of, g >=< f,Q*g >, for
every f and g in L, (7)).

The central limit theorem (1) for stationary and ergodic Markov chains with
normal operator Q (QQ* = Q*(Q), holds under a similar spectral assumption,
as discovered by Gordin-Lifshitz [23] (see also and Borodin-Ibragimov [2], ch.4
sections 7—-8). A sharp sufficient condition in this case in terms of spectral measure is

1

where D is the unit disk.

Examples of reversible Markov chains frequently appear in the study of infinite
systems of particles, random walks or processes in random media. A simple
example of a normal Markov chain is a random walk on a compact group.
Other important example of reversible Markov chain is the extremely versatile
(independent) Metropolis Hastings Algorithm which is the modern base of Monte
Carlo simulations.
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An important problem is to investigate the validity of the almost sure central limit
theorem started at a point for stationary ergodic normal or reversible Markov chains.
As a matter of fact, in their remark (1.7), Kipnis-Varadhan [29] raised the question
if their result also holds with respect to the law of the Markov chain started from x,
for almost all x, as in (6).

Conjecture. For any square integrable mean 0 function of reversible Markov
chains satisfying condition (16) the functional central limit theorem started from
a point holds for almost all points. The same question is raised for continuous time
reversible Markov chains.

The answer to this question for reversible Markov chains with continuous state
space is still unknown and has generated a large amount of research. The problem
of quenched CLT for normal stationary and ergodic Markov chains was considered
by Derriennic-Lin [15] and Cuny [5], among others, under some reinforced assump-
tions on the spectral condition. Concerning normal Markov chains, Derriennic-Lin
[15] pointed out that the central limit theorem started at a point does not hold for
almost all points under condition (17). Furthermore, Cuny-Peligrad [6] proved that
there is a stationary and ergodic normal Markov chain and a function f € ]Lg(n)
such that

/ |log(]1 — z|) loglog(|1 — z|)|
D

dz) < oo
T pr(dz)

and such that the central limit theorem started at a point fails, for w—almost all
starting points.
However the condition

/1 (log™ | log(1 —1)|)?

1 1—1t

or(dt) < oo, (18)

is sufficient to imply central limit theorem started at a point (5) for reversible
Markov chains for 7—almost all starting points. Note that this condition is a slight
reinforcement of condition (17).

It is interesting to note that by Cuny ([5], Lemma 2.1), condition (18) is
equivalent to the following projective criterion

loglog n)*||Eo(Sy)||3
) (log 0gn)2|| oSullly _ (19)
n n
Similarly, condition (17) in the case where Q is symmetric, is equivalent to
Eo(Sn)13
5 UGS _ 00,
n n
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3 Applications

Here we list several classes of stochastic processes satisfying quenched CLT and
quenched invariance principles. They are applications of the results given in Sect. 2.

3.1 Mixing Processes

In this subsection we discuss two classes of mixing sequences which are extremely
relevant for the study of Markov chains, Gaussian processes and dynamical systems.

We shall introduce the following mixing coefficients: For any two o-algebras &/
and 4 define the strong mixing coefficient o (27, %):

(<, B) = sup{|P(A N B) — P(A)P(B)|:A € </, B € B).

The p—mixing coefficient, known also under the name of maximal coefficient of
correlation p(27,%) is defined as:

p( . B) = sup{Cov(X. V) /| X[2[|Y]l2 : X € Lo(#), ¥ € La(A)}.

For the stationary sequence of random variables (Xj)rez, we also define .#,! the
o—field generated by X; with indices m < i < n, .#" denotes the o—field generated
by X; with indices i > n, and .%,, denotes the o—field generated by X; with indices
i < m. The sequences of coefficients a(n) and p(n) are then defined by

a(n) = a(Fo, 7). p(n) = p(Fo, F").
An equivalent definition for p(n) is
p(n) = sup{[[E(Y|Z0)[2/[Yll2 = ¥ € Lo(F"), E(Y) = 0}. 21

Finally we say that the stationary sequence is strongly mixing if o(n) — 0 as
n — oo, and p—mixing if p(n) — 0 as n — oo. It should be mentioned that a
p—mixing sequence is strongly mixing. Furthermore, a stationary strongly mixing
sequence is ergodic. For an introduction to the theory of mixing sequences we direct
the reader to the books by Bradley [3].

In some situations weaker forms of strong and p—mixing coefficients can be
useful, when #" is replaced by the sigma algebra generated by only one variable,
X,, denoted by .#. We shall use the notations &(n) = a(%,-#)) and p(n) =
p(F0,F)).

By verifying the conditions in Sect. 3, we can formulate:
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Theorem 1. Let (X,,),ez be a stationary and ergodic sequence of centered square
integrable random variables. The quenched CLT and its quenched functional form
as in (3) and (4) hold with 6* = lim, oo var(S,)/n under one of the following three
conditions:

> ok
> <o 22)
k=1
Z % < 00 (23)
ak)
Q*(u)du < oo, (24)
Z / 0

where Q denotes the generalized inverse of the function t — P(|Xo| > ).

We mention that under condition (23) the condition of ergodicity is redundant.
Also if (24) holds with @ (k) replaced by «(k), then the sequence is again ergodic.

In order to prove this theorem under (22) one verifies condition (14) via the
estimate

E(Eo(Xx))? = EX:Eo(Xx)) < (k)| Xol I3,

which follows easily from the definition of p.
Condition (23) is used to verify condition (13). This was verified in the Peligrad-
Utev-Wu [36] via the inequalities

r

IE(Sy+1 [ Fo)l2 < ¢ Y 272p(2)

=0
and
By [ Z)ls S
ZO =7 <CZ;P(2/)<OO. (25)
r= Jj=

Furthermore (25) easily implies (13). For more details on this computation we also
direct the reader to the survey paper by Merlevede-Peligrad-Utev [32].

To get the quenched results under condition (24) the condition (15) is verified via
the following identity taken from Dedecker-Rio ([9], (6.1))

EXoE(Xk|-Z0)| = Cov(|Xo|(I{rx.20)>0; — IEx,|.Z0)<0})s Xk)- (26)
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By applying now Rio’s [42] covariance inequality we obtain

a(k)
E|XoE(X:|-%0)| < ¢ 0% (u)du.
0

It is obvious that condition (22) requires a polynomial rate of convergence to 0
of p(k); condition (23) requires only a logarithmic rate for p(rn). To comment about
condition (24) it is usually used in the following two forms:

- either the variables are almost sure bounded by a constant, and then the
. . o ~
requirementis >~ @(k) < oo.
- the variables have finite moments of order 2 + § for some § > 0, and then the
condition on mixing coefficients is Y ;2 | K>3 (k) < oo.

3.2 Shift Processes

In this sub-section we apply condition (13) to linear processes which are not mixing
in the sense of previous subsection. This class is known under the name of one-sided
shift processes, also known under the name of Raikov sums.

Let us consider a Bernoulli shift. Let {¢;; k € Z} be an i.i.d. sequence of random
variables with P(e; = 0) = P(¢; = 1) = 1/2 and let

oo

1
Y, = ZZ_I‘_len_k and X, = g(Y,) —/ g(x)dx,
k=0 0

where g € L,(0, 1), (0, 1) being equipped with the Lebesgue measure.
By applying Proposition 3 in Maxwell and Woodroofe [31] for verifying
condition (13), we see that if g € 1,(0, 1) satisfies

1 1 1 1 t
/ / e g(y)]z—(log [log D dxdy < o0 @7
o Jo |X - )’| |x - yI

for some ¢ > 1, then (13) is satisfied and therefore (3) and (4) hold with 6> =
lim,—, oo var(S,)/n. A concrete example of a map satisfying (27), pointed out in
Merlevede-Peligrad-Utev [32] is

1 1 (1
g(x)zﬁmsm(;) ,0<x< 1.
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3.3 Random Walks on Orbits of Probability Preserving
Transformation

The following example was considered in Derriennic-Lin [18] and also in Cuny-
Peligrad [6]. Let us recall the construction.

Let 7 be an invertible ergodic measure preserving transformation on (S, .o/, ),
and denote by U, the unitary operator induced by t on L, (7). Given a probability
v = (pr)kez on Z, we consider the Markov operator Q with invariant measure 7,
defined by

of = Zpkfo o, forevery f € Li(n).

kEZ

This operator is associated to the transition probability

O(x.A) =Y pda(r's). seSAeca.
keZ

We assume that v is ergodic, i.e. the the group generated by {k € Z : p; > 0}
is Z. As shown by Derriennic-Lin [18], since t is ergodic, Q is ergodic too. We
assume v is symmetric implying that the operator Q is symmetric.

Denote by I' the unit circle. Define the Fourier transform of v by (1) =
> iezPiAk, for every A € I'. Since v is symmetric, ¢(1) € [—1,1], and if s
denotes the spectral measure (on I") of f € IL,(ir), relative to the unitary operator
U, then, the spectral measure p; (on [—1, 1]) of f, relative to the symmetric operator
Q is given by

1
/ Y ()pr(ds) = / V() (dA),
—1 r

for every positive Borel function i on [—1, 1]. Condition (19) is verified under the
assumption

+ —
/ (log™ |log(1 — ¢(1))])? 11 (dA) < 0.
r

1—9(A)

and therefore (5) holds.

When v is centered and admits a moment of order 2 (i.e. ZkeZ kzpk < 00),
Derriennic and Lin [18] proved that the condition f r “_;W,uf(dk) < 00, is
sufficient for (5).
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Leta € R — Q, and let t be the rotation by a on R/Z. Define a measure o on
R/Zby o = Zkez PiSrq. For that 7, the canonical Markov chain associated to Q
is the random walk on R/Z of law o. In this setting, if (c,(f)) denotes the Fourier
coefficients of a function f € L,(R/Z), condition (19) reads

(log™ | log(1 = (™)) )?|ca ()
Z 1— (p(e2ijma) <000

3.4 CLT Started from a Point for a Metropolis Hastings
Algorithm

In this subsection we mention a standardized example of a stationary irreducible and
aperiodic Metropolis-Hastings algorithm with uniform marginal distribution. This
type of Markov chain is interesting since it can easily be transformed into Markov
chains with different marginal distributions. Markov chains of this type are often
studied in the literature from different points of view. See, for instance Rio [43].

Let E = [—1,1] and let v be a symmetric atomless law on E. The transition
probabilities are defined by

0(x.A) = (1 = [x])8:(A) + [x|v(A),

where &, denotes the Dirac measure. Assume that 6 = [, [x|"'v(dx) < oo. Then
there is a unique invariant measure

7(dx) = 07 x|~ v (d)

and the stationary Markov chain (y;) generated by Q(x, A) and x is reversible and
positively recurrent, therefore ergodic.

Theorem 2. Let f be a function in L3 () satisfying f(—x) = —f(x) for any x € E.
Assume that for some positive t, |[f| < g on[—t, t]| where g is an even positive function
on E such that g is nondecreasing on [0, 1], x~'g(x) is nonincreasing on [0, 1] and

/[0 , [xg(x)]?dx < . (28)

Define X, = f(yx). Then (5) holds.

Proof. Because the chain is Harris recurrent if the annealed CLT holds, then the
CLT also holds for any initial distribution (see Chen [4]), in particular started at a
point. Therefore it is enough to verify condition (20). Denote, as before, by [E* the
expected value for the process started from x € E. We mention first relation (4.6) in
Rio [43]. For any n > 1/t
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IE*(Sa(8))] < ng(1/n) +1~'f(x)| for any x € [—1, 1].
Then
[E*(Su(g))I” < 2[ng(1/m)]* + 207%|f(x)|? for any x € [-1, 1],
and so, forany n > 1/t
IE S, < 2[ne(1/m] + 26| [f @3,

Now we impose condition (20) involving ||E*(S,)| |%’n, and note that

ng(1/n))? . .
s 8U/F it and only if 28) holds.
n n
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An Extended Martingale Limit Theorem
with Application to Specification Test
for Nonlinear Co-integrating Regression Model

Qiying Wang

Dedicated to Miklos Csorgd on the occasion of his 80th
birthday.

1 Introduction

Let {M,;, #,;,1 < i < k,} be a zero-mean square integrable martingale array,
having difference y,; and nested o-fields structure, that is, .%,; S %41, for
1 <i < k,,n > 1. Suppose that, as n — oo, k, — 00,

kn
> EDEI(yml = €) | Fuia] = 0.

i=1

for all € > 0, and the conditional variance
ky
2 ar 2
ZE[Ym | Znim1] —p M7,
i=1

where M? is an a.s. finite random variable. The classical martingale limit theorem
(MLT) shows that M, = Zf;l Yni —p Z, where the r.v. Z has characteristic
function Ee'? = Ee~M’*'/ 2 t € R. If M? is a constant, the nested structure of the
o-fields .%,; is not necessary. See, e.g., Chapter 3 of Hall and Heyde (1980).

The classical MLT is a celebrated result and one of the main conventional tools
in statistics, econometrics and other fields. In many applications, however, the
convergence in probability for the conditional variance required in the classical MLT
seems to be too restrictive. Illustrations can be found in Wang and Phillips [8—10],
Wang and Wang [13].
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Motivated by econometrics applications, Wang [7] currently provided an exten-
sion of the classical MLT. In the paper, it is shown that, for a certain class of
martingales, the convergence in probability for the conditional variance in the
classical MLT can be reduced to less restrictive: the convergence in distribution.
As noticed in Wang [7], this kind of extensions removes a main barrier in the
applications of the classical MLT to non-parametric estimates with non-stationarity.
Indeed, using this extended MLT as a main tool, Wang [7] improved the existing
results on the asymptotics for the conventional kernel estimators in a non-linear
cointegrating regression model.

The aim of this paper is to show that Wang’s extended MLT can also be used to
the inference with non-stationarity. In particular, when it is used to a specification
test for a nonlinear co-integrating regression model, a neat proof can be provided
for the main result in Wang and Phillips [11].

This paper is organized as follows. In next section, we state Wang’s extended
MLT, but with some improvements. Specification test for a nonlinear co-integrating
regression model is considered in Sect. 3, where Wang’s extended MLT is connected
to the main results. Finally, in Sect.4, we finish the proof of the main results by
checking the conditions on Wang’s extended MLT.

Throughout the paper, we denote by C, Cy, ... the constants, which may change
at each appearance. The notation —p (—p respectively) denotes the convergence
in distribution (in probability respectively) for a sequence of random variables
(or vectors). If 0{,(11), oc,(lz), R oe,(lk) (1 < n < oco) are random elements on D[0, 1] or
D[0, o0) or R, we will understand the condition

(afll),af),...,a,(f)) = (a&),aé?,...,aé’g)
to mean that for all aél,), aé?, e, aé@-continuity sets Ay, As, ..., Ax
P(a,(ll) S Al,oc,(lz) €Ay, ... ,a,gk) € Ak) — P(oc(oé) S Al,aézo) €A, ... ,otg;) € Ak).

[see Billingsley ([1], Theorem 3.1) or Hall [5]]. As usual, D[0, 1] (D]0, co)
respectively) denotes the space of cadlag functions on [0, 1] ([0, co) respectively),
which is equipped with Skorohod topology.

2 An Extended Martingale Limit Theorem

This section states a current work on the martingale limit theorem by Wang [7], but
with some improvement. We only provide a simplified version of the paper, as it is
sufficient for the purpose of this paper.

Let {(ex, M), Fi}1<k<n, Where F = o(€j, 15, &,j < k) and &; is a sequence of
random variables, form a martingale difference, satisfying

E(élz-i-l | yk) —a.s. 1, E(ni-i-l | tg?c) —a.s. ls
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and as K — oo,

iull’E{[€1%+11(|6k+1| > K) + npp l(me1 | = K] | Fi} — 0.
>

Consider a class of martingale defined by
Sp = an,k€k+l7 (1)
k=1

where, for a real function f,(...) of its components,
Xk = fa(€1. €20 e 2, N B ket ).

Let W,(r) = JLE Zj[."jl nj+1 and Gy = > _}_, x. . Recalling the definition of 7,
W, (t) = W() on D[0, 1], where W(7) is a standard Winner process. The following
theorem comes from Theorem 2.1 of Wang [7], but with some improvements.
A outline on the proof of this theorem will be given in Sect. 4.

Theorem 1. Suppose that (a) maxi<k<yu |x¥,x| = op(1) and for any |Bx| < C

% ;Z:lﬁkxn,k E(Mi+1€x+1 | Fx) = op(1): )
(b) there exists an a.s. finite functional g2(W) of W(s),0 < s < 1, such that
W.(1), Gi} = (W), g1 (W)} 3)
Then, as n — o0,
{Sn Ga} —p {51W)N. gi(W)}, )

where N is a standard normal variate independent of gi(W).

We mention that (2) is weaker than (2.3) of Wang [7], where a stronger version
is used:

1 n
— ) %kl |EMkt1€x1 | F)| = op(1). (%)
o3

It is interesting to notice that, for certain classes of x, «, the condition (2) is satisfied,
but it is hard to verify (5). [llustration can be found in (17), (18), and (19) of Sect. 4.
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3 Specification Test for a Nonlinear Cointegrating
Regression Model

Consider a nonlinear cointegrating regression model:

yt+l :f(xf)+€[+17 t:1727"'7ns (6)

where ¢, is a stationary error process and x; is a nonstationary regressor. We are
interested in testing the null hypothesis:

HO : f(x) Zf(xv 9), 0 e 5207

for x € R, where f(x, 0) is a given real function indexed by a vector 6 of unknown
parameters which lie in the parameter space £2.

To test Hy, Wang and Phillips [11] [also see Gao et al [3, 4]] made use of the
kernel-smoothed self-normalized test statistic S,,/V,,, where

S, = Z LAlr+lLAls+lK[(xr—xs)/h]s V}f = Z itrz+1’:i§+1K2[(xt—xs)/h],
s,t=1,s7t s;t=1,s7t

involving the parametric regression residuals it;+1 = .41 — f (x;, é), where K(x) is
a non-negative real kernel function, 4 is a bandwidth satisfying # = h, — 0 as the
sample size n — oo and 6 is a parametric estimator of 6 under the null Hy, that is
consistent whenever 6 € £2.

Under certain conditions on the x; and ¢, (see Assumptions 1, 2, 3, and 4 below),
it was proved in Wang and Phillips [11] that

Si =2 1Y+ op(n?* V), (7

=2

V,% =o! Z Kz[(x, —xs)/h] + op(n*? h)
ts=l1

t#s

=207 ) Y2+ op(n*? h). (8)
=2

where Y, = Y ') 11K [(x;—xi)/h] and 6 is given as in Assumption 2. It follows
easily from (7) and (8) that the limit distribution of S,,/V,, is determined by the joint
asymptotics for Y ', €41 Y,y and Y, Y2, under a suitable standardization.
Using the extended MLT in Sect.2, this section investigates the joint limit
distribution of Y, €.+1 Y, and Y ', Y2 (under a suitable standardization), and
hence the limit distribution of S,/V,. We use the following assumptions in our

development.
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Assumption 1. (i) {n:}:cz is a sequence of independent and identically distributed
(iid) continuous random variables with Eny = 0, En% = 1, and with the
characteristic function ¢(t) of no satisfying |t||¢(t)| — 0, as |t| — oo. (ii)

xx=px—1+& x=0 p=1+4+k/n, 1=t=<n, 9)

where Kk is a constant and & = Y oo -k with ¢ = Y ;2 e # 0 and
SR8 k|| < oo for some § > 0.

Assumption 2. {¢;,.Z,};>1, where %, is a sequence of increasing o-fields which
is independent of ni,k > t + 1, forms a martingale difference satisfying
E(61‘2+1|yt) —as. 02 > 0, E(€r+l7lr+l|yr) —as. CO as t — oo and
sup;s1 E(le1|* | 1) < o0

Assumption 3. K(x) is a nonnegative real function satisfying sup, K (x) < oo and
[ K(x)dx < oo.

Define,
1 t t
Lo(t.u) = lim /0 /0 11(GO) — GO)) — | < eldxdy

_ / ’ / ' $.[G() — G(y)Jdxdy, (10)
0 Jo

where §, is the dirac function. Lg (¢, u) characterizes the amount of time over the
interval [0, 7] that the process G () spends at a distance u from itself, and is well
defined as shown in Section 5 of Wang and Phillips [11, 12]. We have the following
theorem.

Theorem 2. Under Assumptions I, 2, and 3, nh®> — oo and h log* n — 0, we have

|- 1<
(o et Y 5 DY) =0 (1N 0P, an
" =2

no=2

where &> = (2¢)"'o?n’/?h ffzo K*(x)dx, n”* = Lg(1,0) is the self intersection
local time generated by the process G = for U= dW (s) and N is a standard normal
variate which is independent of n’.

Comparing to Theorem 3.3 of Wang and Phillips [11], Theorem 2 reduces the
condition (2.4) of the paper, i.e., the requirement on the joint convergence of
Y iei €k/+/n and > ;| ni/+/n. More interestingly, proof of Theorem 2 is quite
neat, since calculations involving in verification of Theorem 1 are also used in
the proofs of (7) and (8). In comparison, the proof of Theorem 3.3 in Wang and
Phillips [11] requires some different techniques, introducing some new calculations
like their Propositions 6—8 which are quite complexed.
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For the sake of completeness, we present the following theorem, which is the
same as Theorem 3.1 of Wang and Phillips [11], providing the limit distribution of
S,/ V, under some additional assumptions on the regression function f(x), the kernel
function K (x) and the 7.

Assumption 4. (i) There is a sequence of positive real numbers &, satisfying
8y — 0 as n — oo such that supyeq, |10 — 0|| = op(8,), where || - || denotes
the Euclidean norm.

(i) There exists some gy > 0 such that 32];(5’” is continuous in both x € R and
t € Oy, where Oy = {t: ||t — 0| < &0,0 € $20}.

(iii) Uniformly for 6 € £,

*f(x, 1)
0r?

) af (x, 1)

ot l’ze) + ‘

lima] = €O+ 1),
for some constants B > 0 and C > 0.

(iv) Uniformly for 6 € §2, there exist 0 < y' < 1 and max{0,3/4—-28} <y <1
such that

L+ [xP=1 + |ylf, if B >0,

vell o pp=0. 1P

g+ y.0) — g(x. 8)] < Clyl” {

— )
forany x,y € R, where g(x,1) = 5.
Assumption 5. nh®> — oo, §2n'tP/h — 0 and nh*log’n — 0, where B
and 8? are defined as in Assumption 4. Also, [(1 + IX|?THK (x)dx < oo and
E|eo|*#+2 < o0

As noticed in Wang and Phillips [11], the sequence §, in Assumption 4(i)
may be chosen as §2 = n~(TP/2p=1/8 due to the fact that 8, also satisfies
Assumption 5. Hence, by Park and Phillips [10], Assumption 4(i) is achievable
under Assumption 4(ii)—(iv). Assumptions 4(ii)—(iv) are quite weak and include a
wide class of functions. Typical examples include polynomial forms like f(x, ) =
014 x4 ...+ 6x*=!, where @ = (61,. .., 6;), power functions like f (x, a, b, c) =
a+ b x¢, shift functions like f (x, 8) = x(14 6x)I(x > 0), and weighted exponentials
suchas f(x,a,b) = (a+ be*)/(1 + €).

Theorem 3. Under Assumptions 1-5 and the null hypothesis, we have

—>D N, (13)

where N is a standard normal variate.

The limit in Theorem 3 is normal and does not depend on any nuisance
parameters. As a test statistic, Z, = S,/+/2 V,, has a big advantage in applications.
As for the asymptotic power of the test, we refer to Wang and Phillips [11].
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4 Proofs of Main Results

Proof of Theorem 1. Letx}, = x,,I(Y_j—, x7, < A). Note that, on the set G2 < n,

Bic Xnk EMiy1€c41 | Fi) = B Xy E(Mit1€x+1 | F20)
\/— Z «/_ Z k
and P(G?> > nl) — 0 as n — oo. The condition (2) implies that

f Z,kankE(nk+1€k+l | F) = op(1),

for any A > 0. Hence (3.24) of Wang [7] still holds true if we replace (5), which
is required in the proof of Wang [7], by (2). The remaining part in the proof of
Theorem 1 is the same as that of Theorem 2.1 in Wang [7]. We omit the details. [

Proof of Theorem 2. Without loss of generality, assume o> = 1. Furthermore, we
may let |e;] < C. This restriction can be removed by using the similar arguments
as in Wang and Phillips ([11], pages 754-756). Write x,, = Y,,/d,, where Y,, =
Zf;ll €+1K [(x, —x;)/ h] Due to Assumptions 1 and 2, it is readily seen that

n
{ E Xn k€k+1, jn+l} ,
n>1

k=1

where Z, = o(er,..., €501, Mk Nos N—1, - . .), forms a class of martingale
defined as in Sect.2. Hence, to prove Theorem 2, it suffices to verify conditions
(a) and (b) of Theorem 1, which is given as follows. We first introduce the following
proposition.

Proposition 1. Under Assumptions 1, 2, and 3 and hlog> n — 0, we have

EY? < C(1 +h i), (14)

D B Yo = Op(n”*1*Y), (15)

for any |Bi| < C, and if in addition |e;| < C, then
EY, < C(1+ 1P (16)

The proof of Proposition 1 is given in Section 6 of Wang and Phillips [11].
Explicitly, (15) follows from (6.3) of the paper with g(x) = 1 and a minor
improvement, as | 8| < C. Equations (14) and (16) come from (6.6) and (6.8) of the
paper, respectively.
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Due to Proposition 1, it is routine to verify the condition (a) of Theorem 1.
Indeed, by (16), it follows that

1/4

max Ixm| < — (Zylfk) OP[(n5/2h3)1/4/(n3/2h)1/2] — Op(l),

1<t<n n

which yields the first part of the condition (a). To prove the remaining part, we split
the left hand of the (2) as

1 n
— Z,kan,k E(Mkt1€x+1 | Fi)
Vi

1 « Co —
= — ) Bixpi(Vik—Co)+ —= ) Prxnk
i Vi

= A1n+A2n7 (17)

where Vi = E(Mk+1€x+1 | Zx). It follows from (15) that, for any |B;| < C,
1/4y _
Ay = \/_dn Z_:,Bk Yue = Op(h''™) = op(1), (18)

due to & — 0. On the other hand, by recalling V;, —,; Cy and noting that

1 < C <
7 > 1Bl Elul < T Y (EY)' < Z(l +h'n'? < C. (19)
k=1 " k=1

"kl

simple calculations show that A, = op(1). Taking these estimates into (17), we get
the required (2), and hence the condition (a) of Theorem 1 is identified.

To verify the condition (b) of Theorem 1, by recalling (8) and o? = 1, it suffices
to show that

[nt]

Zn,+1, d22K2 (x—x)/h]y = {W@), Le(1,0)}.  (20)

nps=1

1

The individual convergence of two components in (20) has been established in
Section 5 of Wang and Phillips [11]. The joint convergence can be established in
a similar way, which is outlined as follows.

Write g(x) = K2(x), xt, = x/(/n¢) and ¢, = /n¢/h. It follows from these
notation that

> K*(0d -

kj=1 kj=1
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We first prove the result (20) under an additional condition:

Con : g(x) is continuous and g(7) has a compact support,

where g(x) = / eMg(r)dt. (21)

To start, noting that g(x) = 5= [0 ¢™g(—1)dt, we have

Cn

n 1 n 00 . )
= 3 glen Con — )] = > [ §(=s/ca) & e in) s
kj=1 Y7

2 2
n 2nn
kj=1

= Ry + Ry, (22)

where, for some A > 0,

n
Rin = > 8(=s/cy) & ertin s,

2
27tn kj=1 [s|l<A

1 . .
Ry = Z 8(—s/cy) € Wenin) g,

2
2mn k=1 |s|>A

Furthermore, R;,, can be written as

1

1 1
Ry = — g(=s/cn) / / e (=) ly dy ds + op(1).
21 Jisi<a o Jo

Recall ¢, — oo. It is readily seen that sup| -, [§(—s/c,) — g(0)] — 0 for any
fixed A > 0. Hence, by noting that the classical invariance principle gives

[nt]
{%; Nj+1 x[m‘],n§ = {W(@). GO},

where G(t) = fot e“=9dW(s) (see, e.g., Phillips [6] and/or Buchmann and Chan
[2]), it follows from the continuous mapping theorem that, for any A > 0,

1 (]
§ NG Z Nj+1. Rin

j=1

—p {W(1). £(0) 84(G)}. (23)

where g4(G) = - Jsi<a fol fol eS6W=6W gydy ds, as n — oo. Note that (0) =

ffzo K?(x)dx and g4 (G) converges to Lg(1,0) in Ly, as A — oo. See (7.2) of Wang
and Phillips [12]. The results (20) will follow under the additional condition (21), if
we prove

E|Ry|* — 0, 24)
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as n — oo first and then A — oo. This follows from (7.8) of Wang and Phillips
[12], and hence the details are omitted.

To remove the additional condition (21), it suffices to construct a gs, (x) so that it
satisfies (21), /%2 |gs, (x)|dx < oo, [°2 |g(x) — g5, (x)|dx < €, and we may prove

= lslen kn = 5] = g0 [ (s = )] | = Op©). (25)
kj=1

This is exactly the same as in the proof of Theorem 5.1 in Wang and Phillips [11, 12],

and hence the details are omitted. |
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Part IV
Change-Point Problems



Change Point Detection with Stable AR(1)
Errors

Alina Bazarova, Istvan Berkes, and Lajos Horvath

1 Introduction and Results

In this paper we are interested to detect possible changes in the location model
Xj=ci+e, 1<j=<n. @))]
We wish to test the null hypothesis of stability of the location parameter, i.e.,
Hy: ci=c=...=¢,
against the one change alternative
Hy: thereis k* suchthat ¢; = ... = ¢+ £ Cprq1 = ... = Cp.
We say that k* is the time of change under the alternative. The time of change as

well as the location parameters before and after the change are unknown. The most
popular methods to test Hy against Hy are based on the CUSUM process
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Up®) = > X — nxJ Zn:Xi.
i=1 i=1

Clearly, if Hy is true, then U,(t) does not depend on the common but unknown
location parameter. It is well known that if X;,...,X, are independent and
identically distributed random variables with a finite second moment, then

1 200.,1]
var) 72 Un(x) — B(x),

where B(x) is a Brownian bridge. Throughout this paper Z[0, 1] denotes the space of

right continuous functions on [0, 1] with left limits; @[ii] means weak convergence
in 2[0, 1] with respect to the Skorohod J; topology (cf. Billingsley [10]). Of
course, var(X;) can be consistently estimated by the sample variance in this case,
resulting in

1 )0,
— U 2 B @)
with

1/2

1 & _
*: _ Xi_Xn2
o, {n;( )

Assuming that X, X», ..., X, are independent and identically distributed random
variables in the domain of attraction of a stable law of index « € (0, 2), Aue et al. [3]
showed that

_ 1<
ith X, = — X;.
W1 " ;

1

Va0 2 Bt
—F Uy X)) —> al\X),
nl/2L(n)
where L is a slowly varying function at co and B,(x) is an «-stable bridge.
(The a—stable bridge is defined as B, (x) = W, (x) — xW,(1), where W,, is a Lévy
a—stable motion.) Since nothing is known on the distributions of the functionals of
a—stable bridges, Berkes et al. [9] suggested the trimmed CUSUM process

|nx] n
[nx]
T.(x) = E Xil{|Xi| < Mg} — - E Xi{|Xi| < Nnal,
i=1

i=1

where 7, 4 is the dth largest among |Xi|, |Xz/, ..., |X,|. Assuming that the X;’s are
independent and identically distributed and are in the domain of attraction of a stable
law, they proved

1 2(0.1
— 7,00 2 By,
6,n/2
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where

2
n

L1 Ly
o—}f: ;Z X,I{|Xz| =< r}nd}_;ZXII“Xv]l = r’"*d} ’
i=1 j=1

and B(¢) is a Brownian bridge. Roughly speaking, the classical CUSUM procedure
in (2) can be used on the trimmed variables X;/{|X;| < n,4},1 < j < n. The
CUSUM process has also been widely used in case of dependent variables, but it is
nearly always assumed that the observations have high moments and the dependence
in the sequence is weak, i.e. the limit distributions of the proposed statistics are
derived from normal approximations. For a review we refer to Aue and Horvath [5].
However, very few papers consider the instability of time series models with heavy
tails.

Fama [16] and Mandelbrot [23, 24] pointed out that the distributions of commod-
ity and stock returns are often heavy tailed with possibly infinite variance and they
started the investigation of time series models where the marginal distributions have
regularly varying tails. Davis and Resnick [14, 15] investigated the properties of
moving averages with regularly varying tails and obtained non—Gaussian limits for
the sample covariances and correlations. Their results were extended to heavy tailed
ARCH by Davis and Mikosch [13]. The empirical periodogram was studied by
Mikosch et al. [25]. Andrews et al. [1] estimated the parameters of autoregressive
processes with stable innovations.

In this paper we study testing Hy against H4 when the error terms form an
autoregressive process of order 1, i.e., ; is a o (gj, j < i) measurable solution of

e, =pei—1+& —o00<i<oo. 3)
We assume throughout this paper that

gj, —00 < j < oo are independent and identically distributed, (@3]

&o belongs to the domain of attraction of a stable 5)

random variable £ © yith parameter 0 < o < 2,
and
&o is symmetric when o = 1. (6)

Assumption (5) means that

S e—a, / by > £© @)
j=1
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for some numerical sequences a, and b,,. The necessary and sufficient condition for
this is

Plgg >t Pleg < —t
Pleo > 1} —p and lim Pleo = —1} = 8)
=00 L, (1)t =00 L (Ot
for some numbers p > 0, g > 0, p + g = 1, where L is a slowly varying function
at oo. It is known that (3) has a unique stationary non—anticipative solution if and
only if

—l<p<l. )

Under assumptions (4), (5), (6), (7), (8), and (9), {e;} is a stationary sequence and
Eleo|* < oo forall 0 < k < « but E|eg| = oo for all k > . The AR(1) process
with stable innovations was considered by Chan and Tran [12], Chan [11], Aue and
Horvéth [4] and Zhang and Chan [28] who investigated the case when p is close to
1 and provided estimates for p and the other parameters when the observations do
not have finite variances.

The convergence of the finite dimensional distributions of U, (x) is an immediate

dd
consequence of Phillips and Solo [26]. Let f—) denote the convergence of the finite
dimensional distributions.

Theorem 1. If Hy, (3), (4), (5), (6) and (9) hold, then we have that

1—p fdd
m(]n(x) e Ba(x),

where By (x),0 <t < 1 is an a—stable bridge.

It has been pointed out by Avram and Taqqu [6, 7] that the convergence of
the finite dimensional distributions in Theorem 1 cannot be replaced with weak
convergence in 20, 1]. Avram and Taqqu [6, 7] also proved that under further
regularity conditions, the convergence of the finite dimensional distributions can
be replaced with convergence in Z[0, 1] with respect to the M; topology. However,
the distributions of supy, . |By(x)|dx and fol B2 (x)dx depend on the unknown o
and they are unknown for any 0 < o < 2.

The statistics used in this paper are based on T, (x) with a truncation parameter
d = d(n) satisfying

1_i>m din)/n=0 (10)
and

d(n) > n® withsome 0<§ < 1. (11)
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Let F(x) = P{Xy < x}, H(x) = P{|Xo| > x} and let H~!(¢) be the (generalized)
inverse of H. We also assume that & has a density function p(#) which satisfies

o0
/ |p(t + s) — p(t)|dt < C|s| with some C. 12)

—00
Let
A, =d"?H™'(d/n). (13)

The following result was obtained by Bazarova et al. [8]:

Theorem 2. If Hy, (3), (4), (5), (6) and (9), (10), (11), (12) hold, then we have that

2—a\"? (1=p\"? T,(x) 2.
(32) (15 " 2
o 1+p A,

where B(x) is a Brownian bridge.

The weak convergence in Theorem 2 can be used to construct tests to detect
possible changes in the location parameter in model (1). However, the normalizing
sequence depends heavily on unknown parameters and they should be replaced with
consistent estimators. We discuss this approach in Sect.2. We show in Sect. 3 that
ratio statistics can also be used so we can avoid the estimation of the long run
variances.

2 Estimation of the Long Run Variance

The limit result in Theorem 2 is the same as one gets for the CUSUM process in
case of weakly dependent stationary variables (cf. Aue and Horvéath [5]). Hence
we interpret the normalizing sequence as the long run variance of the sum of the
trimmed variables. Based on this interpretation we suggest Bartlett type estimators
as the normalization.

The Bartlett estimator computed from the trimmed variables X = X I{|X;| <
Nn.d} 1S given by

where

S| =

n—j
) ‘ ; e ow 1
Pi=- ) (- XD( - XD, X=X
i=1
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w(-) is the kernel and A(-) is the length of the window. We assume that w(-) and A(-)
satisfy the following standard assumptions:

w(0) =1, (14)

o) =0 if t>a withsome a > 0, 15)

w(-) is a Lipschitz function, (16)

®(+), the Fourier transform of w(-), is also Lipschitz and integrable a7
and

h(n) > oo and h(n)/n— o0 as n — oo. (18)

For functions satisfying (14), (15), (16), and (17) we refer to Taniguchi and
Kakizawa [27]. Following the methods in Liu and Wu [22] and Horvéth and Reeder
[18], the following weak law of large numbers can be established under Hy:

2
ns,

20+ pa/(1-p2—a)

1, as n— oo. (19)

The next result is an immediate consequence of Theorem 2 and (19).

Corollary 1. If Hy, (3), (4), (5), (6), (9), (10), (11), (12) and (19) hold, then we
have that

T,(x) 2[0.1]
m —_—> (X),

where B(x) is a Brownian bridge.

It follows immediately that under the no change null hypothesis

M sup |B(x)|.

2 0<x<I nl/23, 0<x<I

Simulations show that s, performs well under Hy but it overestimates the norming
sequence under the alternative. Hence 2, has little power. The estimation of the
long—run variance when a change occurs has been addressed in the literature. We
follow the approach of Antoch et al. [2], who provided estimators for the long run
variance which are asymptotically consistent under Hy as well as under the one
change alternative. Let xo denote the smallest value in [0, 1] where |T,(x)| reaches
its maximum and let k = | xon|. The modified Bartlett estimator is defined as

n—1 .
~ ~ J ~

Jj=1
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where

t

T 1 )
/= _.E Lotej, tz=XZ—TE X L=1,...k,
L ki

1 < .
w=X—-—— Y X/, t=k+1...n

{=k+1

Combining the proofs in Antoch et al. [2] with Liu and Wu [22] and Horvéth and
Reeder [18] one can verify that

ng% £> 1, as n—> o0 (20)
Ay (1 + p)a/((1—p)2—a)) ’

under Hy as well as under the one change alternative H4. Due to (20) we
immediately have the following result:

Corollary 2. If Hy, (3), (4), (5), (6), (9), (10), (11), (12) and (20) hold, then we
have that

T,(x) 2[0.1]
nl/25, —

B(x),

where B(x) is a Brownian bridge.

We suggest testing procedures based on

1
Qn = W sup ITn(X)I
n Sn 0<x<l1

It follows immediately from Corollary 2 that under Hy

9, 2 sup B 1)

0<x<l

First we study experimentally the rate of convergence in Theorem 2. In this
section we assume that the innovations ¢; in (3), (4), (5), (6), and (7) have the
common distribution function

q(1— t)_3/2, if —oc0o<t<0,

F() = 3
1—p(1—0732 if 0<t<oo,

where p > 0, g > O and p + g = 1. We present the results for the case of p = p =
g = 1/2 based on 10° repetitions. We simulated the elements of an autoregressive
sample (ey, ..., e,) from the recursion (3) starting with some initial value and with
a burn in period of 500, i.e. the first 500 generated variables were discarded and
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percentiles of the distribution -
of 2, under H,

1.29 |1.32 |1.33 |1.34 |1.36

X

-3 -27 24 21 -18 -15 -12 -09 -06 -03 0 03 06 09 12 15 18 21 24 27 3

Fig. 1 Empirical power for .2, with significance level 0.05, n = 400 (dashed), n = 600 (solid)
and n = 800 (dotted) with k; = n/2

the next n give the sample (ey,...,e,). Thus (ey,...,e,) are from the stationary
solution of (3). We trimmed the sample using d(n) = [n®* | and computed

2 a\Y2 1 o\ V2
2,,:( “) ( ”) L 1m0l
o I+p An 0<x<1

Under Hy we have

2, 2 sup B

0<x<l

The critical values in Table 1 provide information on the rate of convergence in
Theorem 2.

Figures 1 and 2 show the empirical power of the test for H, against H4 based
on the statistic .2, for a change at time k* = n/4 and n/2 and when the location
changes from 0 to ¢ € {—3,-2.9,...,2.9,3} and the level of significance is 0.05.
We used the asymptotic critical value 1.36. Comparing Figs. 1 and 2 we see that we
have higher power when the change occurs in the middle of the data at k* = n/2.
We provided these results to illustrate the behaviour of functionals of 7, without
introducing further noise due to the estimation of the norming sequence.
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X

-3 -27 24 21 -18 -15 -1.2 -09 -0.6 -0.3 o 03 06 09 12 15 18 21 24 27 3

Fig. 2 Empirical power for .2, with significance level 0.05, n = 400 (dashed), n = 600 (solid)
and n = 800 (dotted) with k; = n/4

percentiles of the distribution -
of 9, under H, 1.57 | 1.52 |1.50 |1.49 1.36

Next we study the applicability of (21) in case of small and moderate sample

sizes. We used h(n) = n'/? as the window and the flat top kernel
1 0<r=<.1
() =3 1.1 - dA<tr<l11
0 r>11

Figures 3 and 4 show the empirical power of the test for Hy against H4 based
on the statistic 2, for a change at time k* = n/4 and n/2 and when the location
changes from 0 to ¢ € {—3,-2.9,...,2.9,3} and the level of significance is 0.05.
We used the asymptotic critical value 1.36 (Table 2). Comparing Figs.3 and 4 we
see that we have again higher power when the change occurs in the middle of the
data at k; = n/2.

Figure 5 shows how the power of the test behaves depending on the value of
d =n, e €{0.3,0.35,0.42,0.45,0.5} for n = 400. The bigger the d is, the better
is the power curve.
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X

-3 27 24 21 -18 -15 -12 -09 -0.6 -0.3 0 03 06 09 12 15 18 21 24 27

3

Fig. 3 Empirical power for .2, with significance level 0.05, n = 400 (dashed), n = 600 (solid)

and n = 800 (dotted) with k; = n/2

X

-3 -27 24 -21 -18 -15 -12 -09 -0.6 -0.3 0 03 06 09 12 15 18 21 24 27

3

Fig. 4 Empirical power for én with significance level 0.05, n = 400 (dashed), n = 600 (solid)

and n = 800 (dotted) with k; = n/4
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X
03 06 09 12 15 18 21 24 27 3

-3 27 24 21 -18 -15 -12 09 -06 -0.3 0

Fig. 5 Empirical power curves for 2, with significance level 0.05 for d = n¢, ¢ = 0.35 (dash-
dotted), € = 0.42 (dashed), € = 0.45 (solid), € = 0.5 (dotted) with n = 400, k; = n/2

3 Ratio Statistics

The statistics Qn as well as Qn are very sensitive to the behaviour of 5, and 5,,. As we
pointed out, §, is the right norming only under Hy. The sequence Q, works under H
and under the one change alternative, but it could break down if multiple changes
occur under the alternative. Even if the Bartlett type estimator is the asymptotically
correct norming factor, the rate of convergence can be slow. Also, these estimators
are very sensitive to the choice of the window 4 = h(n). Following the work of
Kim [19] (cf. also Kim et al. [20]) and Leybourne and Taylor [21], Horvéth et al.
[17] proposed ratio type statistics of functionals of CUSUM processes. We adapt
their approach to the trimmed CUSUM process. Let 0 < § < 1 and define

Zn,l (k)
m )
né<k<n—nd an(k)

Z, =

where

i k
Zu1 () = max |3 GHIX| <tk = (1/K) 3 OGHIXG] < ma)})

j=1 j=1
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and

Zu2(k) = max | > XGHIX| < a} = 1/ (1= R) Y (GHIX| < mua)})|
| j=i j=k+1

Roughly speaking, we split the data into two subsets at k, compute the maximum
of the CUSUM in both subsamples and compare these maxima. To state the limit
distribution of Z, under the null hypothesis, we need to introduce

z1(1) = sup [W(s) — (s/)W ()]

0<s<t

and

2() = sup [W*(s) = (1 = s)/(1 =)W ()],

1<s<l

where W*(t) = W(1) — W(z). The following result is an immediate consequence of
Theorem 2.

Theorem 3. If Hy, (3), (4), (5), (6) and (9), (10), (11), (12) hold, then we have that

2

2
zZ, — .
s<i<1—s 22(1)

(22)

We reject the no change null hypothesis if Z, is large. Using Monte Carlo
simulations, it is easy to obtain the distribution function of the limit in (22).
Selected critical values can be found in Horvath et al. [17], where some probabilistic
properties of the limit are also discussed.

Below we study the finite sample behaviour of Z,. Table 3 contains simulated
significance levels when § = .2, n = 400, 600, 800, 1,000 and n = 5,000. (Since
the distribution function of the limit in (22) is unknown, we used n = 5,000 for the
limit distribution.)

Figures 6 and 7 contain the empirical power curves of the test for Hy against
H, based on the statistic Z, for a change at time k* = n/4 and n/2 and when the
location changes from 0 to ¢ € {—5,—4.9,...,4.9,5} and the level of significance
is 0.05. We used critical values from Table 3. Figure 8 shows how the power of
the test behaves depending on the value of d = n¢, € € {0.3,0.35,0.42,0.45,0.5}
for n = 400. The bigger the d is, the better is the power curve.

Table 3 ‘Simulated 95 % n 400 600 [800 |1,000 |5,000
percentiles of the distribution 590 15.67 549 5?43 5?03

of Z, under H,
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X

-5 45 4 35 -3 25 -2 -15 -1 -05 0 05 1 15 2 25 3 35 4 45 5

Fig. 6 Empirical power curves for Z, with significance level 0.05, n = 400 (dashed), n = 600
(solid) and n = 800 (dotted) with k; = n/2

X

-5 45 -4 -85 -3 25 -2 -15 -1 -05 0 05 1 15 2 25 8 35 4 45 5

Fig. 7 Empirical power curves for Z, with significance level 0.05, n = 400 (dashed), n = 600
(solid) and n = 800 (dotted) with k; = n/4
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X

-5 45 4 35 -3 25 -2 -15 -1 -05 0 05 1 15 2 25 38 35 4 45 5

Fig. 8 Empirical power curves for Z, with significance level 0.05 for d = n¢, € = 0.35 (dash-
dotted), € = 0.42 (dashed), € = 0.45 (solid), € = 0.5 (dotted) with n = 400, k; = n/2
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Change-Point Detection Under Dependence
Based on Two-Sample U-Statistics

Herold Dehling, Roland Fried, Isabel Garcia, and Martin Wendler

1 Introduction

Change-point tests address the question whether a stochastic process is stationary
during the entire observation period or not. In the case of independent data, there is
a well-developed theory; see the book by Csorgd and Horvéth [6] for an excellent
survey. When the data are dependent, much less is known. The CUSUM statistic
has been intensely studied, even for dependent data; see again Csorgé and Horvéth
[6]. The CUSUM test, however, is not robust against outliers in the data. In the
present paper, we study a robust test which is based on the two-sample Wilcoxon
test statistic. Simulations show that this test outperforms the CUSUM test in the
case of heavy-tailed data.

In order to derive the asymptotic distribution of the test, we study the stochastic
process

[nA] n
Yo > axix). 0=a=<1, (1)
i=1 j=[nA]+1

H. Dehling (0<) » I. Garcia
Fakultit fiir Mathematik, Ruhr-Universitit Bochum, 44780 Bochum, Germany
e-mail: herold.dehling@rub.de; isabel.garciaarboleda@rub.de

R. Fried
Fakultit fiir Statistik, Technische Universitit Dortmund, 44221 Dortmund, Germany
e-mail: fried @statistik.tu-dortmund.de

M. Wendler

Institut fiir Mathematik und Informatik, Ernst-Moritz-Arndt-Universitit,
17487 Greifswald, Germany

e-mail: martin.wendler @rub.de

© Springer Science+Business Media New York 2015 195
D. Dawson et al. (eds.), Asymptotic Laws and Methods in Stochastics,
Fields Institute Communications 76, DOI 10.1007/978-1-4939-3076-0_12


mailto:herold.dehling@rub.de
mailto:isabel.garciaarboleda@rub.de
mailto:fried@statistik.tu-dortmund.de
mailto:martin.wendler@rub.de

196 H. Dehling et al.

where & : R?> — R is a kernel function. In the case of independent data, the
asymptotic distribution of this process has been studied by Csorg6 and Horvéth [5].
In the present paper, we extend their result to short range dependent data (X;)i>1.
Similar results have been obtained for long range dependent data by Dehling, Rooch
and Taqqu [10], albeit with completely different methods.

U-statistics have been introduced by Hoeffding [14], where the asymptotic
normality was established both for the one-sample as well as the two-sample
U-statistic in the case of independent data. The asymptotic distribution of one-
sample U-statistics of dependent data was studied by Sen [18, 19], Yoshihara [22],
Denker and Keller [12, 13] and by Borovkova, Burton and Dehling [3] in the so-
called non-degenerate case, and by Babbel [1] and Leucht [16] in the degenerate
case. For two-sample U-statistics, Dehling and Fried [8] established the asymptotic
normality of )L Z"S;I"j_l h(X;. X;) for dependent data, when n;,n, — oo. The
main theoretical result of the present paper is a functional version of this limit
theorem.

In our paper, we focus on data that can be represented as functionals of a mixing
process. In this way, we cover most examples from time series analysis, such as
ARMA and ARCH processes, but also data from chaotic dynamical systems. For a
survey of processes that have a representation as functional of a mixing process,
see e.g. Borovkova, Burton and Dehling [3]. Earlier references can be found in
Ibragimov and Linnik [15], Denker [11] and Billingsley [2].

2 Definitions and Main Results

Given the samples Xi,...,X,, and Yi,...,Y,,, and a kernel h(x,y), we define the
two-sample U-statistic

ni n

Unpony = ZZh(X,,Y) )

nn
1211/1

More generally, one can define U-statistics with multivariate kernels / : R* x R/ —
R. In the present paper, for the ease of exposition, we will restrict attention to
bivariate kernels %(x, y). The main results, however, can easily be extended to the
multivariate case.

Assuming that (X;);>1 and (Y¥;);>) are stationary processes with one-dimensional
marginal distribution functions F and G, respectively, we can test the hypothesis
H : F = G using the two-sample U-statistic. E.g., the kernel 2(x,y) = y — x leads
to the U-statistic

np m

mnz:mZZ(Y Xi) = — Z »——Zx,, 3)
i=1 j=1 ] 1 i=1
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and thus to the familiar two-sample GauB-test. Similarly, the kernel 4(x, y) = 1<)y
leads to the U-statistic

1
Uiy = M Z Z Lixi<xbs 4)

and thus to the 2-sample Mann-Whitney-Wilcoxon test.
In the present paper, we investigate tests for a change-point in the mean of a
stochastic process (X;);>1. We consider the model

Xi=/~‘Li+Si7i217 (5)

where (1;)i>1 are unknown constants and where (;);> is a stochastic process. We
want to test the hypothesis H : ; = ... = u, against the alternative that there
exists | <k <mn—1suchthat u; =... = g # g1 = ... = Un.

Tests for the change-point problem are often derived from 2-sample tests applied
to the samples X, ..., Xy and X1, ..., Xy, for all possible 1 < k < n— 1. For two-
sample tests based on U-statistics with kernel A(x, y), this leads to the test statistic
Zle 27=k+1 h(X;,X;), 1 < k < n, and thus to the process

[nA] n
Usd) =) Y h(Xi.X), 0<A<L 6)
i=1 j=[nA]+1

In this paper, we will derive a functional limit theorem for the process (U, (A))o<i<1,
n > 1. Specifically, we will show that under certain technical assumptions on the
kernel 2 and on the process (X;);>1, a properly centered and renormalized version
of (U,(A))o<r<1 converges to a Gaussian process.

In our paper, we will assume that the process (£;);>o is weakly dependent. More
specifically, we will assume that (&;);>0 can be represented as a functional of an
absolutely regular process.

Definition 1. (i) Given a stochastic process (X,),cz we denote by Jz{/‘ the
o —algebra generated by (Xg, . .., X;). The process is called absolutely regular if

J 1
Blk) = sup {sup Y > " |P(A; N B) — P(A)P(B))| ¢ — O, (7)

j=1 i=1

as k — oo, where the last supremum is over all finite .27/"—measurable
partitions (A, ...,A) and all finite .;zfn"fk—measurable partitions (By, ..., By).

(ii) The process (X,),>1 is called a two-sided functional of an absolutely regular
sequence if there exists an absolutely regular process (Z,),ecz and a measurable
function f : R — R such that

Xi = f((Zi+n)nez)-
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Analogously, (X,).>1 is called a one-sided functional if X; = f((Zi+n)n>0)-
(iii) The process (X,),>1 is called 1-approximating functional with coefficients
(ap)i=1 if

E\Xi— EXi|Zi—k, ..., Zitx)| < ax. (8)

In addition to weak dependence conditions on the process (X;);>1, the asymptotic
analysis of the process (6) requires some continuity assumptions on the kernel
functions A(x,y). We use the notion of 1-continuity, which was introduced by
Borovkova, Burton and Dehling [3]. Alternative continuity conditions have been
used by Denker and Keller [13].

Definition 2. The kernel 4(x, y) is called 1-continuous, if there exists a function
¢ : (0,00) — (0, 00) with ¢(€) = o(1) as € — 0 such that for all € > 0

E(|n(X',Y) — h(X.Y)|I{x—x|<e}) < ¢(€) 9

E(Jh(X,Y) = h(X. V) [1gy-y|<) < $(€) (10)

for all random variables X, X', ¥ and Y’ having the same marginal distribution as X,
and such that X, Y are either independent or have joint distribution Py, x,), for some
integer k.

The most important technical tool in the study of U-statistics is Hoeffding’s
decomposition, originally introduced by Hoeffding [14]. If E|h(X,Y)| < oo for
two independent random variables X and Y with the same distribution as X;, we can
write

h(x,y) = 0 + hi(x) + la(y) + g(x,y), (11)
where the terms on the right-hand side are defined as follows:
0= // h(x,y)dF (x)dF(y)
e = [ hdro) -
o) = [ hxy)arc - 6

g(x,y) = h(x,y) — hi(x) — ha(y) — 6.

Here, F denotes the distribution function of the random variables X;. Observe that,
by Fubini’s theorem,

E(h (X)) = E(h2(X)) = 0.
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In addition, the kernel g(x, y) is degenerate in the sense of the following definition.
Definition 3. Let (X;);>; be a stationary process, and let g(x,y) be a measurable

function. We say that g(x, y) is degenerate if

for all x,y € R.

The following theorem, a functional central limit theorem for two-sample
U-statistics of dependent data, is the main theoretical result of the present paper.

Theorem 1. Let (X,,)n>1 be a 1-approximating functional with constants (ay)k>1 of
an absolutely regular process with mixing coefficients (B(k))i>1, and let h(x,y) be
a 1-continuous bounded kernel, satisfying

o0
> KRB + Jar + ¢(a)) < oo (13)
k=1
Then, as n — oo, the D|0, 1]-valued process
| A n
T.() = — Zl %l(h(xhxﬂ —6). 0<2<1, (14)
i=1 j=[An

converges in distribution towards a mean-zero Gaussian process with representation
ZA) = (1 = HWi(A) + AW (1) = W2(4)), 0 <A = 1, (15)

where (W (1), Wa(X))o<a<1 is a two-dimensional Brownian motion with mean zero
and covariance function Cov(Wy(s), W(t)) = min(s, t)oy, where

ou = E(h(Xo)h(Xo)) +2 ) Cov(h(Xo), (X)), k.1 =1,2. (16)
j=1

Remark 1. (i) In the case of i.i.d. data, Theorem 1 was established by Csorgd and
Horvéth [5]. In the case of long-range dependent data, weak convergence of the
process (T,,(1))o<a<1 has been studied by Dehling, Rooch and Taqqu [10] and
by Rooch [17], albeit with a normalization different from n3/2,

(i) Using the representation (15), one can calculate the autocovariance function of
the process (Z(A))o<i<1. We obtain

Cov(Z(A), Z(n)) = oni[(1 = A)(1 — ) min{A, u}]
+oo[Ap(l — p — A + min{A, pu})]
tor[p(l =A)(A —min{A, 1}) + A(1 — ) (ke —min{A, u})].
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(iii)) We conjecture that a similar theorem also holds for unbounded kernels under
some moments conditions and faster mixing rates (similar to Theorem 2.7 of
Sharipov, Wendler [20]). As our main application is the Wilcoxon test, where
the kernel is bounded, we restrict the theorem to the case of bounded kernels.

(iv) For the kernel i(x,y) = y — x, we can analyze the asymptotic behavior of the
process T,(A) using the functional central limit theorem (FCLT). Note that,
since X; — X; = (X; — E(Xj)) — (X; — E(X;)), we may assume without loss of
generality that X; has mean zero. Then we get the representation

[nA] n
1 Z Z
TV!(A') = n3/2 (}(] _Xl)
i=1 j=[nA]+1

LAl 1 $ 1
= T_nlgxi_%;xi' (17)

Thus, weak convergence of (7,(A))o<i<i can be derived from the FCLT for

the partial sum process JLE Zgnﬂ X;. Such FCLTs have been proved under a

wide range of conditions, e.g. for functionals of uniformly mixing data in
Billingsley [2].

We finally want to state an important special case of Theorem 1, namely when
the kernel is anti-symmetric, i.e. when hA(x,y) = —h(y,x). Kernels that occur in
connection with change-point tests usually have this property. For anti-symmetric
kernels, the limit process has a much simpler structure; moreover one can give a
simpler direct proof in this case. Note that for independent random variables X, Y
we have by anti-symmetry that Eh(X,Y) = —Eh(Y,X) = —Eh(X,Y) and so 6 =
Eh(X,Y) = 0.

Theorem 2. Let (X,)n>1 be a 1-approximating functional with constants (ay)i>1
of an absolutely regular process with mixing coefficients (B(k))x>1, and let h(x,y)
be a 1-continuous bounded anti-symmetric kernel, such that (13) holds. Then, as
n — 00, the D[0, 1]-valued process

[An] n
1
L) = —53 ), hXiX), 0=2<1, (18)
i=1 j=[An]+1

converges in distribution towards the mean-zero Gaussian process ¢ WO (1), 0 <
A <1, where (W°(A))o<i<1 is a standard Brownian bridge and

o® = Var(h; (X)) + 2 ZCOV(hl(Xl)v h(Xk))- (19)
i=2
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3 Application to Change Point Problems

In this section, we will apply Theorem 1 in order to derive the asymptotic
distribution of two change-point test statistics. Specifically, we wish to test the
hypothesis

Hoiﬂlz...zun (20)
against the alternative of a level shift at an unknown point in time, i.e.
Hy:py=...= g # k1 = ... = Uy, forsomek € {1,...,n—1}. 20

We consider the following two test statistics,

1 k n

Ty = max |- Zl ;H (Ix<xy — 1/2) (22)
=1j=
1 n

T2 = max WX; k 1(X,—Xi) . (23)
=1 j=

Theorem 3. Let (X,)n>1 be a 1-approximating functional with constants (ay)i>1
of an absolutely regular process with mixing coefficients (B(k))i>1, satisfying (13),
and assume that X, has a distribution function F(x) with bounded density. Then,
under the null hypothesis Hy,

Ty, — o1 sup [WOQ)], (24)
0<i<l

where (W (1))o<i<1 denotes the standard Brownian bridge process, and where
o0
of = Var(F(X,)) +2 Y Cov(F(X1). F(Xy)). (25)
k=2

Assuming that E|1X;|*T® < oo, B(k) = O(=Cr9/%) and ap = O(Kk=+9/2%), and
under the null hypothesis H,

Ty — 0y sup [WOQ). (26)
0o<ic<l
where
o0
07 = Var(X)) +2 ) _ Cov(X;. Xp). (27)

k=2
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Proof. We will establish weak convergence of T ,,. In order to do so, we will apply
Theorem 1 to the kernel A(x,y) = l.,;. Borovkova, Burton and Dehling [3]
showed that this kernel is 1-continuous. By continuity of the distribution function
of X;, we get that 0 = [ 1,,3dF(x)dF(y) = 1/2. Moreover, we get

M@ = P < X))~ 5 = 3~ FQ

1 1
hx) =PX; <x)—==Fx) —=.
2 2
Note that h(x) = —h;(x). Hence W5(1) = —W;(A4), and thus the limit process in
Theorem 1 has the representation

Z(A) = (1 =H)Wi(A) + A(W2(1) = W2(1)) = Wi(A) — AW, (D).

Here W;(A) is a Brownian motion with variance 012. Weak convergence of T, , can
be shown directly from the functional central limit theorem for the partial sum
process; see Corollary 3.2 of Wooldridge and White [21]. We have to check the
L,-near epoch dependence. Note that by our assumptions

E|Xo — E[Xo|Z-..... Z]”
=E||Xo—E[Xo|Z_.....Z])* 1 .
[ {X0—ElXo|Z—....Z0 | <a; "}
+E||Xo—E[Xo|Z_1,....2Z]* 1 o
{IXo—E[XolZ—1... Zi)l>a; "3

8

N
<a, "VE|Xo—E[Xo|Z_1,....Z)| + a/ T E |Xo — E[Xo|Z—, ..., Z))*T?

8

<Ca/7 =00, (©8)

so the condition of Corollary 3.2 of Wooldridge and White [21] holds. Hence, the
partial sum process (\/Lﬁ Zl[.'l]l Xi)o<i<1 converges in distribution to (o2 W(#))o<i<1,
where W is standard Brownian motion. Convergence in distribution of 7, follows
by an application of the continuous mapping theorem.

Remark 2. (i) The distribution of supy ., ., |W(4)] is the well-known Kolmogorov-
Smirnov distribution. Quantiles of the Kolmogorov-Smirnov distribution can
be found in most statistical tables.

(i) In order to apply Theorem 3, we need to estimate the variances o7 and
o5. Regarding o7 given in expression (27), we apply the non-overlapping
subsampling estimator



Change-Point Detection Based on Two-Sample U-Statistics 203

[n/1n] ily

62 = [n/l]z > X——ZX (29)

j=0—=Dl+1

investigated by Carlstein [4] for a-mixing data. In case of AR(1)-processes,
Carlstein derives

1, = max([n'?(2p/(1 — p?))**1, 1) (30)

as the choice of the block length which minimizes the MSE asymptotically, with
p being the autocorrelation coefficient at lag 1.

Regarding 012 given in (25), one faces the additional challenge that the distri-
bution function F is unknown. This problem has been addressed, e.g. in Dehling,
Fried, Sharipov, Vogel and Wornowizki [9], for the case of functionals of absolutely
regular processes and F being estimated by the empirical distribution function F,.

The authors find the subsampling estimator for 012
[”/ln lln i n
Fu(Xp) — = ) Fu(X))]|. 31
61 = n/l],/ () = - D FalX)) @31
j=(i— l)ln+l Jj=1

employing non-overlapping subsampling, to give smaller biases, but somewhat
larger MSEs than the corresponding overlapping subsampling estimator. The adap-
tive choice of the block length [, proposed by Carlstein worked well in their
simulations if the data were generated from a stationary ARMA(1,1) model and
an estimate of p was plugged in. In the next section, we will explore this and other
proposals in situations with level shifts and normally or heavy-tailed innovations.

4 Simulation Results

The assumptions regarding the underlying process (X;) in Theorem 1 are satisfied
by a wide range of time series, such as AR and ARMA processes. To illustrate the
results and to investigate the finite sample behavior and the power of the tests based
on Ty, and T ,, we will give some simulation results. We study the underlying
change-point model

& ifi=1,....[nA]
Xi = w+&ifi=[nA]+1,...,n. (32)

Within this model, the hypothesis of no change is equivalent to = 0. We assume
that the noise follows an AR(1) process, i.e. that

& =p& +e, (33)



204 H. Dehling et al.

Table 1 Empirical level of the tests based on T}, and T3,, for n = 200,
with fixed or adaptive subsampling block length /,, and overlapping (ol) or non-
overlapping (nol) subsampling. The results are for AR(1) observations with
different lag-one autocorrelations p and different #3-distributed innovations, and
based on 4000 simulation runs each

T\, 15,

1, fixed Adaptive 1, fixed Adaptive
vop Unadj. (ol |nol [ol |nol |Unadj. |ol nol |ol |nol
oo (00 | 2.8 20 (29 20 (22 | 45 29 | 39 |37 |38
oo (04 (245 2.5 3.1 |35 |39 [34.2 39 | 49 |55 |6.0
oo | 0.8 |81.6 62 (65 1.9 |25 |91.5 10.5 |10.6 |34 |4.0
3 100 | 3.1 22129 122 (29 | 38 25 | 35 |31 |31
3 104 269 24 3.0 132 3.0 |320 33 | 3.8 |43 49
3 108 827 69 (7.0 2.0 |2.8 |90.6 10.2 |10.5 3.2 |39

where —1 < p < 1, and where the innovations ¢; are i.i.d. random variables
with mean zero, bounded density and finite second moments. The innovations ¢;
are generated from a standard normal or a f,-distribution with v = 3 degrees of
freedom, scaled to have the same 84.13 % percentile as the standard normal, which
is 1. The autoregression coefficient is varied in p = {0.0, 0.4, 0.8}, corresponding
to zero, moderate or strong positive autocorrelation, and the sample size is n = 200.
For the choice of the block length we used Carlstein’s adaptive rule outlined above,
or a fixed block length of [, = 9, which is in good agreement with the empirical
findings of Dehling et al. [10] for larger sample sizes, and their theoretical result
that Z, should be chosen as o(4/n) to achieve consistency. For comparison, we also
include tests employing overlapping subsampling for estimation of the asymptotical
variance, applying the same block lengths as the non-overlapping versions.

Table 1 contains the empirical levels (i.e. the fraction of rejections) of the tests
with an asymptotic level of 5%, obtained from 4000 simulation runs for each
situation. Note that the tests developed under the assumption of independence,
not adjusting for autocorrelation, become strongly oversized with an increasingly
positive autocorrelation, i.e. they reject a true null hypothesis far too often, and are
practically useless already for p = 0.4. The performance of the adjusted tests is
much better in this respect and in a good agreement with the asymptotic results.
Only if the autocorrelation is strong (p = 0.8), the tests with a fixed block length
become somewhat anti-conservative (oversized), and even more so for the CUSUM-
test. Longer block lengths are needed for stronger positive autocorrelations, and
Carlstein’s adaptive block length (30) adjusts for this. There is little difference
between the tests employing overlapping and non-overlapping subsampling here.

In order to investigate the powers of the tests under the alternative, we consider
shifts of increasing height u, generating 400 data sets for each situation. The
sample size is again n = 200, and the change point is at observation number
7 = [An] = 100.
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Figure 1 illustrates the powers of the different versions of the tests in case of
Gaussian or f3-distributed innovations and several autocorrelation coefficients p.
Under normality, the CUSUM test T, , is somewhat more powerful than the test
T, based on the Wilcoxon statistic, while under the #3-distribution it is the other
way round. The CUSUM test with the fixed block length considered here becomes
strongly oversized if p is large, while this effect is less severe for the test based on
the Wilcoxon statistic. Carlstein’s adaptive choice of the block length increases the
power if p is small and improves the size of the test substantially if p is large. The
tests employing overlapping subsampling (not shown here) perform even slightly
more powerful in case of zero or moderate autocorrelations, but much less powerful
in case of strong autocorrelations. We have also considered the case of negative
autocorrelation (p = —0.4, not shown here). We obtained similar results for the
power of the test based on the Wilcoxon statistic relatively to that of the CUSUM
test, and little difference between using a fixed or the adaptive block length.

The tests with Carlstein’s adaptive choice of the block length could be improved
further by using a more sophisticated estimate of p than the ordinary sample
autocorrelation used here. The latter is positively biased in the presence of a shift,
which leads to too large choices of the block length. This negative effect becomes
more severe for larger values of p, since the plug-in-estimate of the asymptotically
MSE-optimal choice of I, increases more rapidly if p is close to 1, while it is rather
stable for moderate and small values of p. In our study, for p = 0 the average
value chosen for [, increases from about 2 to about 3, only, as the height of the
shift increases, while it increases from about 6 to about 9 if p = 0.4, and even from
about 16 to about 24 if p = 0.8. An estimate of the autocorrelation coefficient which
resists shifts could be used, e.g. by applying a stepwise procedure which estimates
the possible time of occurrence of a shift before calculating p from the corrected
data, but this will not be pursued here.

S Data Example

For illustration we apply the tests to time series data representing the monthly
average daily minimum temperatures in Potsdam, Germany, measured between
January 1893 and December 1992. The 1200 data points for these 100 years have
been deseasonalized by subtracting the median value from each calendar month, see
Fig. 2. Our interest is in whether the level of this time series is constant or whether
there is a monotonic change. Such a systematic change is likely to show a trend-like
behavior and not a sharp shift, but nevertheless we would like a change-point test to
detect such a change if its null hypothesis is a constant level.

The empirical autocorrelation and partial autocorrelation functions suggest a
first order autoregressive model with lag-one autocorrelation about 0.25 for the
deseasonalized data. The test statistics take their maximum values after time point
595, i.e. rather in the middle of the time series. The resulting p-values are 0.23 and
0.16 for the CUSUM test with the fixed and the adaptive block length, respectively.
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Fig. 1 Power of the tests in case of a shift in the middle of an AR(1) process with Gaussian (left)
or t3-innovations (right) and different lag one correlations p = 0.0 (fop), p = 0.4 (middle) or
p = 0.8 (bottom), n = 200. Wilcoxon test T, ; (bold lines) and CUSUM test T, (thin lines).
Adjustment by non-overlapping subsampling with fixed (black) or adaptive block length (dashed)
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Fig. 2 Deseasonalized time series representing the monthly average daily minimum temperatures
in Potsdam, Germany

As opposed to this, both versions of the Wilcoxon based test become significant
as the corresponding p-values are 0.04 and 0.015, respectively. The differences
between the results agree with the better power behavior of the Wilcoxon based test
relatively to the CUSUM test in case of the (left-)skewed distributions of minimum
temperatures, and the better power of the versions employing the adaptive block
length over those with the fixed block length considered here in case of small
positive autocorrelations. The sample median of the second time period is about
0.4 degrees larger than that of the first period.

6 Auxiliary Results

In this section, we will prove some auxiliary results which will play a crucial role in
the proof of Theorem 1. The main result of this section is the following proposition,
which essentially shows that the degenerate part in the Hoeffding decomposition of
the U-statistic T,,(4) is uniformly negligible.

Proposition 1. Let (X,,)q>1 be a 1-approximating functional with constants (ay)i>1
of an absolutely regular process with mixing coefficients (8(k))i>1, satisfying

Y kB + Var + ¢ (@) < oo. (34)

k=1

Moreover, let g(x,y) be a 1-continuous bounded degenerate kernel. Then, as
n— oo,

1
—7 Sup Y e X)|—0 (35)
A=

in probability.
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The proof of Proposition 1 requires some moment bounds for increments of
U-statistics of degenerate kernels, which we will now state as separate lemmas.

Lemma 1. Let (X,))u>1 be a 1-approximating functional with constants (ay)i>1 of
an absolutely regular process with mixing coefficients (B(k))x>1, satisfying

D KBH) + ar + (@) < oo. (36)
k=1

Moreover, let g(x,y) be a 1-continuous bounded degenerate kernel. Then, there
exists a constant Cy such that

2
[nA] n
E(Y. Y eXX)| <Cilnd](n—[nd]). (37)
i=1 j=[nA]+1
Proof. We can write
(A n SR ) B
E[(Y. > exx)| => Y E@X.X))?
i=1 j=[nA]+1 i=1 j=[nA]+1
+2 ) Y E(eX.X)g(Xi. X)) (38)

I<ii#i =[nA] [nA]+1<j1 #ja<n

The elements of the first sum all are bounded, hence

[nA] n
>0 E(gXi.X))* < CnAl(n — [nA)). (39)
i=1 j=[nA]+1

Concerning the second sum, by Lemma 5, we get

Z Z E(g(Xilv)(fl)g(Xizv)(fz))

1<ii<iz<[nA] [nA]+1<j1 <j2=<n

<45s Z Z ¢ (ap/3)

I<ii<iz<[n] [nA]+1<j1<ja<n

+857 Y- S (Jawa + B3 (@0)

1<ii<iy<[nA] [nA]+1<j1<jr<n

with k = max{|i, — i1|, [j2 —j1|}. We will first treat the summands with k = i, — ij.
Suppose for one moment that k is fixed and we will bound the number of indices
that appear in the sum. Observe that in this case we have [nA] ways to choose i,
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once i is chosen we have one way to pick i, because i, = i; + k. For j; we have
as before n — [nA] ways to pick this index and then for each jj, j, need to be in the
interval [j1,j; + k] and there are exactly & integers in such interval.

> > (4Shlapsm) + 88 Vagr + 85°B((k/3D)

1<ii<iy<[nA] [nA]+1<ji1<ja=<n
< ClnA)(n — [nA]) (Z k(@) + ) k/ax + Zkﬁ(k)) < ClnA)(n — [nA])
k=1 k=1 k=1
(41)

Analogously we can find the bounds for the terms with k = i} — i», k = j, —j; and
k = ji — j» using the conditions of summability.

We now define the process G(1),0 < A < 1, by

[nA] n
Gu(M)=n"2% 1 3 g(XiX). 0=AsL. (42)
i=1 j=[nA]+1

Lemma 2. Under the conditions of Lemma 1, there exists a constant C such that

C
E(IG,(n) = Gu(w)?) = —(n— ), (43)
forall0<pu<n<l
Proof. We can write
E(IGu(n) — Gu()]?) (44)
5 [lw) o, ) n :
< EE Z Z gXin X)) | + ;E Z Z 8(Xi, X))
i=1 j=[nu]+1 i=[np]+1 j=[nn]+1
5 [l e R O 2
= EE Z Z gXi X)) | + ;E Z Z 8(Xi, X))
i=1 j=[nu]+1 =1 j=[nmn]—[pu]+1

IA

C (el — b)) + on) = g = b)) < (= )

using the stationarity of the process (X,),en and Lemma 1.
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Proof of Proposition 1. From Lemma 2 we obtain, using Chebyshev’s inequality,

PG = Gol] 2 ) = 5 (1= ). 43)

forall € > 0. Thus we getfor0 < k <m < nwithk,m,n e N

)< a(e ) C))

m k
(-6 ()=
n n
1C 1 C 43
SZﬁ(m_k)Se_ZW(m_k) (46)
as m — k < n. Now consider the variables
G,(3) -G, (B ifi=1,....n—1
é‘i — (n) ( n ) (47)
0 else

and suppose that S; = ¢ + & + ... + ¢ with S = 0, then S; = Gn(é). In
consequence the inequality (46) is equivalent to

1 [y v
P(|S,, —Sk| =€) < —2[—(m—k)i| for 0<k<m<n. (48)
€ n

So the assumption of Theorem 7 are satisfied with the variables (47) in the role of
the &, B =1/2,a =2/3 and u; = C¥*/n®*, u, = 0 and hence

K [C¥ ke
P (lﬁf?saf_l S| > €) =3 [W("— 1):| IV (49)

where K depends only of & and . Thus, (35) holds as n — co. a

7 Proof of Main Results

In this section, we will prove Theorems 1 and 2. Note that Theorem 2 is a direct
consequence of Theorem 1, applied to anti-symmetric kernels. We will nevertheless
present a direct proof of Theorem 2, since this proof is much simpler than the proof
in the general case. Moreover, Theorem 2 covers those cases that are most relevant
in applications.

The first part of the proof is identical for both Theorems 1 and 2. Note that,
for each A € [0, 1], the statistic T,(A) is a two-sample U-statistic. Thus, using the
Hoeffding decomposition (11), we can write T,,(1) as
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[An] n
1
L) =—5 |22 X () +h(X) +g(X. X))
i=1 j=[An]+1
1 [nA] n [An] n
== (=AY mX) + Al Y )+ > g X)
i=1 j=[nAl+1 i=1 j=[An]+1

(50)

By Proposition 1, we know that

[An] n
3—/2 sup D Y g(XX)|—0
(R = B iy

in probability. Thus, by Slutsky’s lemma, it suffices to show that the sum of the first
two terms, i.e.

[nA]

l n
3/’; ]Zhl(x)+ 3/2 Z h2()(j) (51)

j=[nA]+1

0<A<l

converges in distribution to the desired limit process.

Proof of Theorem 2. It remains to show that (51) converges in distribution to
aW®(),0 < A <1, where (W (1))o<i< is standard Brownian bridge on [0, 1],
and where o2 is defined in (19). By antisymmetry of the kernel A(x, y), we obtain

that /1, (x) = —h(x). Hence, in this case, (51) can be rewritten as
[nA] n [nA] n
— [nA] [nA] [nA]
—n Zhl(X) —n 2 )= 1/ZZMX) S/ZZhl(Xi).
i=[nA]+1 i=1

By Proposition 2.11 and Lemma 2.15 of Borovkova, Burton and Dehling [3], the
sequence (/;(X;))i>1 is a 1-approximating functional with approximating constant
C./ax. Since hi(X;) is bounded, the L,-near epoch dependence in the sense of
Wooldridge and White [21] also holds, with the same constants. Moreover, the
underlying process (Z,).>1 is absolutely regular, and hence also strongly mixing.
Thus we may apply the invariance principle in Corollary 3.2 of Wooldridge and
White [21], and obtain that the partial sum process

[nA]
o /2 Zhl(X) (52)

0<A<l
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converges weakly to Brownian motion (W(A))o<i<; with Var(W(1)) = o2

The statement of the Theorem follows with the continuous mapping theorem for
the mapping x(f) — x(f) —tx(1), 0 <r < 1.

The proof of Theorem 1 requires an invariance principle for the partial sum
process of R2-valued dependent random variables; see Proposition 2 below. For
mixing processes, such invariance principles have been established even for partial
sums of Hilbert space valued random vector, e.g. by Dehling [7]. In this paper, we
provide an extension of these results to functionals of mixing processes.

Proposition 2. Let (X,),en be a 1-approximating functional of an absolutely
regular process with mixing coefficients (B(k)) and let h\(-), hy(-) be boundedl—
continuous functions with mean zero, such that

DR BE) + a + pla) < oo. (53)
k
Then, as n — oo,
[)
he hl(Xi)) (Wl (f)) 54
NG ; (hz(Xi) . w0/, O3

where (W1 (1), Wa(£))o<i<1 is a two-dimensional Brownian motion with mean zero
and covariance E(Wi(s) Wi(¢)) = min(s, t)ox, where oy as defined in (16).

Proof. To prove (54), we need to establish finite dimensional convergence and
tightness. Concerning finite-dimensional convergence, by the Cramér-Wold device
it suffices to show the convergence in distribution of a linear combination of the
coordinates of the vector

[n11] [n11] [nz; [nz;

] |
1 1 1 1
— hX;), — h(X),...,.— h(X;), — ho(X;),
VL DRLCS, ISy DILLY

L % > (X)), % th(x,-)) L)
i=1 i=1

forO =1 <1t <... <t <... <t =1 Any such linear combination can be
expressed as

[ntj]

k
Yo— D (@hi(X) + biha(Xy)). (56)

j=1 i=[nti—]+1

N
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for (aj, bj);.‘zl € R*k. By using the Cramér-Wold device again, the weak conver-
gence of this sum is equivalent to the weak convergence of the vector

[nn1] (]
1 1
7 > (arhi (X)) + bihy(X)). ... —= > (@h(X) + bin(X)).
i=1 i=[nti_1]+1
1 n

o, _n Z (Clkhl(X,') + bkhZ(Xi)) (57)
i=[ntr—1]+1

to

(ar(Wi(11) — Wi(10)) + b1 (Wa(11) — Wa(to)). . . ..
ar(Wi (1) — Wi (1)) + bi(Wa(ti) — Wa(ti—1))).  (58)

Since (X,),>1 is a 1-approximating functional, it can be coupled with a process
consisting of independent blocks. Given integers L := L, = [#*/*] and 1, = [n'/?],
we introduce the (I, L) blocking (B,,)m>0 of the variables (a;h (X;) + bjha(X;)) with
i=[nq]+1,....[n],j=0,..., kand

m(Ly+(m—1)1,)
B, = Z (a;h (X;) + bjha (X)) (59)
i=(m—1)(Ly,+1,)+1

and separating blocks

m(Ly+1y)
B, = Z (ajhi(Xi) + bjha(Xi)). (60)
i=mLy+(m—1)ly+1

By Theorem 5 there exists a sequence of independent blocks (B],) with the same
blockwise marginal distribution as (B,,) and such that

P(|B, — B,| <2a) > 1—B(l) — 20,

where o := (2372, 5 ax)'/?. We can express the components of our vector (57)
as a sum of blocks

[ntj41]

Y (@hi(X) + biha(X,)

i=[ntj]+1

%] ]
= Y Bat Y. But ) (@h(X)+bh(X)). (61

m= 1 |+1 m=[ 1 | +1 Ry
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where R; denotes the set of indices not contained in the blocks. Observe that by the
Lemma 3 for any setA C {1,...,n}

2

E (Z(afhl(xo + bihz(x,-))) < CHA (62)

i€EA
and hence
nt;. 2
2] \
E B,| <cC I, < Cn’/*, 63

Z <Crlhson (63)

m=[ 1 | +1

so it follows with the Chebyshev inequality that this term is negligible. For the last
summand, we have that

2

E( D (@h(X) +bha(X)) | < C2(L, + 1) < Cn¥/*, (64)

R;

Furthermore, we need to show that we can replace the blocks B,, by the independent
coupled blocks B

L] [ 7] s
P 7 Z (Bn—B,)|>¢€]| < Z P(le—B;n|>W)
m=[L”—Jg,]+1 m=[L”—J£,]+1

as n — oo by our conditions on the mixing coefficients and approximation
constants. Here we used that fact that o, — 0 and thus, for almost all n € N,

P(|B,,—B,,| > en'/*) < P(|B,, — B,| > 2a,,) . (65)
With the above arguments the result holds if we show the convergence of
2] 2]

% > B,... Y B, (66)

m=[1%21:|+1 m=[%:|+l
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Since this vector has independent components, we only need to show the one-
dimensional convergence, which is a consequence of Theorem 4, using the summa-
bility condition (53).

We now turn to the question of tightness and show that, for each ¢ and n, there
existad, 0 < § < 1, and an integer ng such that, for0 <t < 1,

%P (,ngﬂg |Ya(s) — V()] = e) <n, n=ng (67)
with
[n1] 1
h) = = ;hl(xi) o (= [n]) == h K1) (68)

(hy can be treated in the same way) and by Theorem 8, this condition reduces to:
For each positive € there exist a @« > 1 and an integer no, s. t.

i €
P I}?ylx Z;hl(xj) > Avn| < =" > ny. (69)
=

Lett > s,s,t € [0, 1]. By Lemma 4 we get

[ Ins] 4 [ 4

1 1 1
E %;hl(xi)_jﬁ;hl(xi) =;E Zhl(Xi)

[ns]+1

IA

%(([nt] — [ns)*0) (70)
n

and this implies

1 & 1< 1 [(C\? ?
P( %;hl(xi)_ﬁ;hl(xi) 26) < 6—4(7(’"—/‘)) . (71)

By Theorem 7

2

" K (C'?
P | max E m(X)| > evn| <= (—(n— 1)) (72)
i<n € n
Jj=1

and we get the assertion. Thus we have established tightness of each of the two
coordinates of the partial sum process, which implies tightness of the vector-valued
process.
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Proof of Theorem 1. From Proposition 2 we obtain that

[n4]

hl(Xi) N WI(A)
\/_Z(hZ(Xi)) (WZ(A))O<A<1 ™

0<A<l

in distribution on the space (D([0, 1]))?. We consider the functional given by

(W) o (1= 021 () + 1G2(1) —xa(), 0<r<1. (74)
x2(f)

This is a continuous mapping from (D0, 1])> to D[0, 1], so we may apply the
continuous mapping theorem to (73), and obtain

[nA] n

ni
352 ]Zhl(X) 3/2 > h(X)

=[nA]+1 0<i<l

— (I =HWiA) + A(Wa(1) = W2(A)))p<i<i -

Together with the remarks at the beginning of this section, this proves Theorem 1.

Appendix: Some Auxiliary Results from the Literature

In this section, we collect some known lemmas and theorems for weakly dependent
data. We start with some results on the behaviour of partials sums:

Lemma 3 (Borovkova, Burton, Dehling [3], Lemma 2.23). Let (Xi)iez be a
1-approximating functional with constants (ax)x>0 of an absolutely regular process
with mixing coefficients (B(k))k>0. Suppose moreover that EX; = 0 and that one of
the following two conditions holds:

1. X is bounded a.s. and y_po O(le + ,B(k)) < 0.
2. E|Xo|*** < coand 332 0(01”“s + B h (k)) < oo.

Then, as N — oo,

1 o0
NESIZV — EX2 +2 ; E(XoX)) (75)

and the sum on the r.h.s. converges absolutely.
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Lemma 4 (Borovkova, Burton, Dehling [3], Lemma 2.24). Let (Xi)iez be a
1-approximating functional with constants (ax) of an absolutely regular process
with mixing coefficients (B(k))i>o. Suppose moreover that EX; = 0 and that one
of the following two conditions holds:

1. X is bounded a.s. and y_ ;2 Okz(ak + B(k)) < oo.
2. E|Xo|**? < coand 322 ) K (a; i +,34+5 (k) < oo.

Then there exits a constant C such that
ESy < CN?. (76)

Theorem 4 (Borovkova, Burton, Dehling [3], Theorem 4). Let (Xi)iez be a
1-approximating functional with constants (ay)i=o of an absolutely regular process

with mixing coefficients (B(k))i=o. Suppose moreover that EX; = 0, E|Xo|**? < oo
and that
Zkz(a*“ + B (k) < oo, (77)
for some § > 0. Then, as n — 00,
1 < )
T ZX,- — N(0,07), (78)
i=1

where 0% = EX2 + 2 Z/ 1 E(X0X;). In case 0% = 0, .4(0,0) denotes the point
mass at the origin. If Xy is bounded, the CLT continues to hold if (77) is replaced
by the condition that Y o k*(ax + B(k)) < oc.

An important tool to derive asymptotic results for weakly dependent data are
coupling methods. We will apply this method in the proof of Proposition 2.

Theorem 5 (Borovkova, Burton, Dehling [3], Theorem 3). Ler (X,).en be a
1-approximating functional with summable constants (ar)k=0 of an absolutely
regular process with mixing rate (B(k))x>0. Then given integers K,L and N, we
can approximate the sequence of (K + 2L, N)—blocks (Bs)s>1 by a sequence of
independent blocks (B.)s>1 with the same marginal distribution in such a way that

P(||B; — B,|| <201) > 1— B(K) — 20, (79)

where ay 1= (2 Yo a1)1/2 .

In statistical application, the question of how to estimate o2 is important. In the
situation when the observations are a functional of «-mixing process, Dehling et al.
[10] propose the estimation of the variance of partial sums of dependent processes
by the subsampling estimator
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[”/ln
|T (ln) U,|
On = i \/7 (80)

with Ti()) = YL ) Fa(Xp) and U, = LY F,(X;), where F,(") is the
empirical distribution function.

Theorem 6 (Dehling, Fried, Sharipov, Vogel, Wornowizki [9], Theorem 1.2).
Let (Xi)k>1 be a stationary, 1-approximating functional of an a-mixing processes.
Suppose that for some § > 0, E|X{|*t% < oo, and that the mixing coefficients
(ar)i>1 and the approximation constants (ay)x>1 satisfy

Y @)™ <00, Y (@) < cc. 81)

k=1 k=1

In addition, we assume that F is Lipschitz-continuous, that o = O(n™%) and that
a, = O(m™"2). Then, as n — oo, I, — oo and I, = o(\/n), we have D, — o
in Lz.

To deal with the degenerate kernel g, we need to find upper bounds for the

expectations E (g(Xi1 . )g(Xiz,ij)), in terms of the maximal distance among the
indices. Since 1 < i; < ip < [nA] and [mA] + 1 < j; < j» < n, we get
i1 <ip <ji <jr.
Lemma 5 (Dehling, Fried [8], Proposition 6.1). Let (X,),>1 be a 1-approxima-
ting functional with constants (ay)x>1 of an absolutely regular process with mixing
coefficients (B(k))i>1 and let g(x,y) be a 1-continuous bounded degenerate kernel.
Then we have

|E(g(Xi,. Xj)8(Xir. X;,))| < 45 (ap/z) + 85°(awa + B(k/3])) (82)

where S = |sup, , g(x,y)| and k = max {i» — i1, j1 — i2,jo — ji}-

The following two results are useful for proving tightness of a stochastic process.
The first one is used to control the fluctuation of maximum. Let &y, .. ., &, be random
variables, and define Sy = & + ... + & (So = 0), and M,, = maxo<<n |Sk|.

Theorem 7 (Billingsley [2], Theorem 10.2). Suppose that § > 0 and o« > 1/2
and that there exist nonnegative numbers uy, . . . , u, such that for all positive A

20

1
P(IS;=Sil = 2) < 5 'ZMI . O0<i<j<n , (83)
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then for all positive A

2a

Kg o
PMyz2) < S| 3w (84)

0<I<n

where Kg o is a constant depending only on 8 and o.

Theorem 8 (Billingsley [2], Theorem 8.4). The sequence {Y,}, defined by

Y, (1) = —fs[m] + (nt — ) fs[mm (85)
is tight if for each € > 0 there exista A > 1 and a ny € N such that for n > ng
P (maX|Sk+i — Sk > lffﬁ) < < (86)
i<n A2
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Binary Time Series Models in Change Point
Detection Tests

Edit Gombay

1 Introduction

Consider a binary time series, {Y¥;}, with probability of success m,(8) and an
accompanying vector of covariates {Z,;} defined below in (1) and (2). This model
has a lot of applications in various fields. Kedem and Fokianos [6] contains many
examples that include rainfall data in environmental studies; mortality data in
biostatistics; stock prices in financial studies, to name a few. Fokianos et al. [5]
studies change detection algorithms for such models restricting attention to logistic
regression. It is not practical to consider a general class of link functions as then
the conditions would be too cumbersome hence an obstacle in applications. So it is
customary to consider the frequently used link functions separately. In this note the
work of Fokianos et al. [5] will be supplemented by considering the link function
leading to the probit model, the loglog and complementary link functions.

As in Kedem and Fokianos [6] we denote denote the history of the binary process
and its past covariate vector values by {.%,_;} that is a filtration generated by
{Yie1,Y—2,...,Z,—1,Z,—>, .. .}. It is convenient to think that the vector of covariates
Z, may contain lagged values of the binary response itself, thus permitting an AR(p)-
type serial dependence over time, and in this case {.%,—, } is the sigma field generated
by {Z—1,Z;—2,...}. The conditional density of the series {Y;} is the Bernoulli
probability function

m(B)

fOi Bl Fi—1) = exp {)’t log (1 —(B)

) +log(1 — m (B! | (1)
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where 8 € %P (p > 1) is the parameter vector, and the dependence on the covariate
vector Z,—; € ZP is expressed with the help of a general inverse link @ as

m(B) =P(Y, = 1| F1) = ®(B'Zi-1) = P(n0), @

where Z, is assumed to be .%;-measurable. The logit link function n, = 'Z,—; =
log[r:(B)/(1 — m,(B))] is using the standard logistic distribution

e 1
D(x) = = ,
1 +e 1+e™
leading to logistic regression.

The standard normal distribution function @ gives the probit model with link
function B'Z,_; = &~ (m,(B)).

Other link functions in the literature are the following: the double exponential
distribution @(x) = exp(—exp(—x)) leading to the log-log link function 8'Z,_; =
—log[—log((B))]; the double exponential distribution @(x) = 1 — exp(—exp(x))
leading to the complementary log-log link function 8'Z,_; = log —log(1 — = (8));
and the identity link uses the uniform distribution. See Kedem and Fokianos [6] for
a discussion and comparisons.

We study the important problem of stability of the parameter vector § over time,
hence, to formulate the problem we will index it as 8, when necessary. However,
for simplicity we will omit the subscript # when we work under the hypothesis of no
change in its value.

Retrospective change-point detection assumes that a series of observations
Y1, --.,Y, generated by this model is available and tests hypotheses

Hy: B = Bo, fort =1,2,...,n, Bounknown, 3)
H,:B:=pBo, fort=1,2,...,t—1, and B; # Bofort > 1,

where 7, 1 < t < n, is the unknown time when a change occurs in a component of
vector .

2 Conditions and Results

Our test statistic is based on the standardized score obtained via a partial likelihood
function. In general, inferences concerning the binary time series model introduced
in Sect. 1 are based on the so-called partial likelihood function defined as

[Tr0: 8170 = [T @)y a - me)t=.
=1 =1
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or equivalently on the log-partial likelihood function,

_ ¢ 7(B) B
LB = 3P = Lrlo 20 T o —m(p)L (@
The score vector of this log-partial likelihood is
)3 3 : $(B'2-1)
n = Vgl = t— i — @ t— s
SB) = 2 VpiB) = 2 2 W= @B 2-0) Gz, 01— ez )

&)

where ¢ (u) = %dﬁ(u).
In case of the logit link this has the simple form

exp(B'Zi-1) )

S.(8) = ;z,_l (¥, — m(B)) = ;Zr—l (Yf T+ exp(B'Zi1)

which is the reason why it is so often used.
The (cumulative) conditional information matrix 7,(8) is defined on p. 12 of
Kedem and Fokianos [6] by the formula

T.(B) = ) Cov(Vsl(B)|-Fim).

=1
AsE((Y,—n(B))?|-Z—1) = m,(B)(1 —m,(B)) in our model, we obtain its alternative

expression

B " , »*(B'Z—1)
T.(B) = ;zr_lz,_l B Z) 1 —DPZr)

(6)

2.1 Null Hypothesis of No Change

Under the null hypothesis of no change we need the following conditions on the
covariate process.

(C1) Itis ergodic and stationary in the sense that for all k > 0 (Zy+1, Zi+2, - . . ) has
the same distribution as (Zy, Z, ... ).

(C2) E|Z}|® < o0, i = 1,...,p, where Zi, 1 < i < p, are the components of
vector Z.

(C3) The true value of B is in an open subset of the parameter space £2, 2 C R?.

We note here that condition (C1) is strong stationarity, which is needed in the
proofs below.
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From (C2) we have

L i e
2 Zz;z{ % E(ZIZ)), n— oo,
n

=1

1~ .
=) ZAZ ~" EZZZ), n— o0,

=1

foralli,j,l € {1,2,...,p} by the ergodic theorem for strongly stationary stochastic
processes (cf. Doob [3]).

The L; norm of a random variable X is defined as || X||; = E(|X]), and for
a random vector X it is the sum of the L; norms of its components. With this
notation, if

*(B'Zi-1)
E|Z—\Z_ < o0, (N
T (A
then by the ergodic theorem, as n — oo
1 I~ *(B'Zi-1) ‘
—Tn( _ Zl_ Z]_ s T,
WP = Bl G - e )
where
o 2(B'Z,—
T:E(Z;—lzi—l ’ P2 ) / ) )
PBZ-)(1 —P(BZi-1)) )ij=1..,»
We will show that
2(R!
Z_
PB7n) = =S

¢(ﬁ/Z[—l)(l - ¢(ﬂ/Zr—l))

is a bounded function, so (7) holds, and by assumption (C2) covariance matrix 7'
exists.
We verify (7) separately for the various link functions.

CASE 1: Probit model.

We can use the tail approximation for the normal distribution function. On the
right tail 1 — @(x) ~ ¢(x)/x as x — o00. (~ means that the ratio converges to a
constant.) Hence,

P Pex _pwx
(1 -0()  SWHx) D)’

— 0. ®)
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On the left tail as x — —o0, by symmetry, @(x) ~ —¢(x)/x giving

¢*(v) W) M
PM(1-Px) (A-2)px) 11—

As x¢(x) — 0, x — £o00, by (8), (9), and with x = B’Z,_; an upper bound for (7)
can be obtained by using

X — 0. ©))

E\Z_\Z_,g(B'Zi—)| < oo,

where g(x) is a bounded function.
CASE 2: Log-log Link.

Now @(x) = exp(—exp(—x)) and ¢(x) = exp(—exp(—x))exp(—x), and
calculations show that

(exp(— exp(—x)) exp(—x))°

-0 x +o00.
exp(— exp(—x)) (1 — exp(— exp(—x))) e

So by condition (C2) on the moments of Z, we get (7).

CASE 3: Complementary Log-log Link.
The verification of (7) is done by calculations similar to CASE 2 with the
different different @ and ¢ functions.

Note. The identity link uses the uniform distribution function @(«) on a finite
interval (a, b), so it will truncate the vector Z, through n, = 8'Z, at finite values, and
the score vector (5) is also using truncated Z; values through the uniform density.
Hence, under condition (C1) condition (C2) will follow for random variables with
finite support. Under (C1) and (C3) it is easy to see that all results derived in the
rest of this paper will be valid, so we shall not write out the details of the case of the
uniform link.

For our procedures to work we need the strong approximation of the score
process by a Brownian motion. Several applicable theorems are available in the
literature. We shall use Theorem 1 of Eberlein [4] which requires the verification of
five properties of the partial sum process.

Let

X =2y =) | g i b | =

¢(ﬁ/Zr—l)(1 - ¢(ﬂ/Zr—l))
=Z1 (Y- ﬂt(ﬂ)) w(ﬂ/Zt—l)7
and S,(m) = Y X,
We list the five conditions as (E1)—(E5).
(E1) EX;) =0, t>0.
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It is clear that E(X,) = E(E(X;|-%—1)) = 0, hence condition (E1) is satisfied.
Next, we need that uniformly in m

(E2) |E(S,(m)|-Zn)|li = O(n'/?>7%) for some 0 < 6 < 1/2.

As X, are martingale differences E(S,(m)|-%,) = 0, so (E2) is clearly satisfied.
The third condition (E3) ((1.5) of Theorem 1 in Eberlein [4]) is that uniformly in
m

(E3) ELS,(m)iSu(m);| Foul — ELS,(m)iSu(m)]ll; = O(n'~?) for some 6 > 0 and
forall 1 <i,j <p.

For condition (E4) we need that for some M > 0 and § > 0

(E4) E(|X]**) < M.

Finally, let

(T )iy = IS, m)S, 0m)].

We need that there is a covariance matrix I" such that uniformly in m
(E5) (Tw(m))ij—1I;; =0O(n"*), forsomep > 0andalll <i,j<d.

2.2 Proof of Condition (E3)

Note that X; and X; are uncorrelated if k # [. By stationarity it is sufficient to
consider m = 0. With notation

¢*(B'Zi—1)

y(B'Zi1) = P(B'Zi—1)(1 = P(B'Zi—1))

we have for 1 < i,j, < p, that
E($,(0):8,(0);) = E (2": Z/iZiV(ﬁ’Zk_l)) .
k=1
Similarly, we calculate that
E(S,(0):8,(0);].Fo) = E (Z Z;iZf;y(ﬂ’zk_l)%) .
k=1
Hence, for the validity of (E3) we have to analyze

S [E(2zr @ z-07) (v @ zon)).

k=1
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If the Central Limit Theorem holds for its non-conditional version, that is, if

w12y [Z;;Zj;y(ﬂ’zk_l) —E (Z,iZiy(,B’Zk_l))] —PN(@0,0%), n— 00, (10)
k=1

with 02 < oo, then, as the limit is almost surely finite, by multiplying with n=?,
6 > 0, we get

—(1/2+6)

S [azy @z & (Z;;Ziy(/ﬁ’zk_l))]' — 0. an
k=1

The sequence on the left hand side of (11) is a non-negative sequence of random
variables, that is, nonnegative measurable functions almost surely converging to
zero, hence by the bounded convergence theorem their integral is converging to
zero, which gives

n

> [E(zZy B z-n2)-E (Z;;Ziy(ﬂ/zk_l))” ~40, (12)

k=1

= (1/2+0)

and from (12) condition (E3) will follow. To see that the the Central Limit Theorem
in (10) holds we have to verify the conditions for its validity. There are several
versions in the literature, see, for example, Serfling [8] for a detailed study. A basic
set of conditions is that the zero mean terms in the partial sums have finite 2+4§-order
absolute moments for some § > 0, and the existence of the asymptotic variance
0 < 02 < oo. This is clearly satisfied by condition (C2) as the function y(8'Z—) is
bounded. Some additional regularity conditions are required, such as, for example,
the Ibragimov condition. “These conditions are not severe additional restrictions,
but are not, ..., very amenable to verification, although they have some intuitive
appeal”, remarks Serfling [8]. We assume they are valid, but will not formulate
them, as it would not contribute to our main purpose.

2.3 Proof of Condition (E4)

We will do the calculations separately for the various @ functions.

CASE 1: Probit model.
Again, we use the well-known tail approximation for the normal distribution
function: 1 — @(x) ~ ¢(x)/x as x — oc. For the one-dimensional case we have

248\ __ Zt—1¢(nt) 2 _ 248 o
E([1X )_E(‘—¢(nr)(l—¢>(n,)) E()Y, =" Z) | -
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As
E(1Y,—m["| 7)) = 1 — o) o) + (@(n))* T (1 — &(ny),

(n: = B'Z,—1), we have

248y _ 246 > () P>t )
BOXIP) = B (1207 | Gy + (o) 4

At the tails, in the first term as x — —oo for the normal distribution we have

¢2+8(x) ¢2+8|x|1+8
(®(x))1 ~ PIRS]

= ¢ (x)|x|' T

Similar approximation can be used for the second term in (13) when x — oo. For the
normal density ¢ (x)x' % — 0, x — =00, so we obtain an upper bound for (13) that
is the expected value of |Z,_;|>** multiplied by a bounded function, hence finite by
condition (C2). For higher dimensions note that each component of the Z,_; vector
is multiplied by the same function, and we use Minkowski’s Inequality to arrive
to (E4).

CASE 2: Log-log Link.
Now @(x) = exp(—exp(—x)) and ¢(x) = exp(—exp(—x)) exp(—x). To show
that

E|X, [P+ < o0

we use in our calculations that

(1)) _ 248 g7
£ (12115 B = 15 )

_ 248 é(n) :|2+8
E(”Z"1 | [fl’(m)(l — o)

x[|1 = @) [P o) + (@) (1 - 45(77;))]).

Putting into this expression the current distribution function @ and density ¢, we
can directly calculate the tail behavior of the multiplier function of [Z/]**?, and
obtain that it is a bounded function. So we can see by condition E(|Z/|**%|) < oo,
i=1,...,p, that (E4) is satisfied.

CASE 3: Complementary Log-Log Link.

For @(x) = 1 — exp(—exp(x)) the density is ¢(x) = exp(x)exp(—exp(x)).
Again, we can use in the calculations the the explicit form of E(||(Y; —
7:(B))|1>F9|.Z,—1). It can be expressed as a function of ®@(1;). The the integrand is
1Z;—1||>*% multiplied by a bounded function, so it will follow that (E4) is true. This
concludes the proof of (E4).
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2.4 Proof of Condition (ES)

We need that uniformly in m
(Tw(m))ij — Iij = O(n™")

for some p > O and all 1 <i,j < d. By stationarity 7,,(m) = T all m. As (7) holds,
we cantake I' = T.
Hence we have the following result for our three models.

Theorem 1. Under our assumptions (C1)—(C3), there exists a vector of Brownian
motions (W;)>o0 with covariance matrix E(T,(B)), with T,(B) defined in (6), such
that, if B is the true vector of coefficients in the regression model (1), then the score
vector in (5) admits the following approximation

S, (B) — W(n) = 0(n'/*7%) a.s.

for some § > 0.

Next we consider the problem of consistently estimating the parameter vector .
It will be shown that the maximizer of the partial log-likelihood function

L(B) = Y_[vilog T — + log(1 — m))]
=1 !

can serve this purpose. Let

P(B'Zi-1)

Iﬁ(ﬂr) = @(,B/Zt—l)(l — @(,B/Zt—l))’

n=p'Z.

Taylor expansion about the true value B, gives

p
CL(B) ~ ~L(Bo) = 1 + 52+ 55 = {Z(/ﬂ ~B) Z (Y- ®(n) 1//(77;)}
=1

P P
+ {%ZZ( )(IBk :30) Z (Yr D(n1)) l///(Ut)—‘15(7)t)1//(77r)]:|

j=1k=1
P

P p ) n
{ Y Y- f0><ﬂ"—ﬂ{§)(ﬁ’—ﬁé)%22’_ zt 7, lc’“}
j=1k= =1

11=1

O\I'~

where

=Y, = 2m) v () —d Y () — " )Y () — S (Y’ ().
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Terms in S; have mean zero. To calculate their variance we consider

E(7, (= o) vn)

j 2
N (R R

@) (1= ¥(1)
= E(@_(m).

Function y(x) was shown to be bounded in the proof of (7), so by stationarity and
the moment conditions on Z; we get that

|
n > 7 (Y= D@) v (n) > 0, n— 0. (14)
t=1

If @(x)(1 — @(x))y¥’'(x) is a bounded function, then by arguments and calculations
as above we get that

R
=2 22 (Y= @)Y (1) =0, n = oo
=1

Furthermore,
I I RUD) -
=D ZZ (=Y () = (D)= Y 77 e O T,
n; 1t—1 t t n; t—1 Tl¢(x)(1_q>(x))
as was shown in the proof of (7), giving
a.s 1 /
Sy =>4 —5(.3 = Bo) T(B — Po), n— oo. (15)

Calculations to prove that @(x)(1 — @(x))¥’(x) is a bounded function are done in
the Appendix.

Finally, we can show that for all i,j,k = 1,..., p there exists a function M (x)
such that

< My (). (16)

I e o
; Zzi—lzt—lzt—lclt
=1

for which we have

E(M,'jk(x)) < 0Q.
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Again, these calculations are done in the Appendix.

We now prove that the maximizer of the partial log-likelihood function in a
neighborhood of the true value B is consistent as n — oo. For this we follow
the ideas of Lehmann [7] for the multidimensional case. (cf. Cramér [2] for the
one-dimensional case.)

Consider a small a-radius neighborhood Q, of By. It is sufficient to show that
with probability converging to one L(8) < L(fBo) in Q,. By (14) in Q,

1] < pa’,

because if n is large enough, then
1
=D 2y (Y= @) ¥ ()| < @,
=1

and | — Bi| < a.

By (16) in Q, for large n and probability close to one |S3| < d’cy, ¢; a
constant. The quadratic form in (15) can be expressed with the help of an orthogonal
transformation in a form Y %_, 1;£? with }_ £? = a? on Q,, where {1} are positive,
hence we get that with a constant c;

P(S; < —czaz) — 1, n— oo.
Putting these together we have with probability arbitrarily close to one, that
S1+ 5 +853< —C2612 + C3a3,

where c3 is a constant. This means that for a small a, if 8 € Q,, then L(B8) < L(By).
Thus we have proven

Theorem 2. Let ,3” be the maximizer of the partial log-likelihood function.
If assumptions (C1)—(C3) hold for our models, then

P( lim ,BA,,:,BO)—>1, n— oo.
n—>o0

The next result proves the asymptotic normality of estimator Bn.

Theorem 3. Let ,3” be the maximizer of the partial log-likelihood function. Under
our assumptions (C1)—(C3) for our models

n'2T'2(B, — B) =4 N(0, 1),

where I,x, is the identity matrix.
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Finally, we need the following theorem for the large sample behavior of the test
statistic Sg(B8,), which is the score vector function evaluated at 8 = §,,.

Theorem 4. Under assumptions (Cl1)—(C3) for our models we have that the
statistics process

n_l/zf’;l/sz(,én), k=1,...,n,

converges in distribution to B(t), a p-dimensional vector of independent Brownian
bridges.

The proofs of the last two theorems are very similar to the proofs of the
corresponding statements in Fokianos et al. [5] with the appropriate replacement
in the formulas. As all the necessary differences in the details have been considered
above, those proofs will be omitted.

These theoretical results allow us to extend the use of the tests of Hy for our
current models. Note, that the test statistic is the score vector S;(8) of (5), evaluated
atf = ,én, hence only one parameter estimation using all available data is required.

Test 1: (one-sided) The null hypothesis of no change is rejected if for some i, i =
1,2,...,p, the maximum of the standardized score component corresponding to
the ith coefficient crosses a boundary C\(a*). That is, as soon as for some i, i =
1,2,...,p,

(%—1/2 max n—l/zsk(én)) > Ci(a*).
1<k<n

In this testing procedure, a* = 1 — (1 — &)!/? is the probability of false alarm
in monitoring the ith regression coefficient, while « is the overall probability of
false alarm for a change in any coefficient. The threshold C(.) is obtained from the
distribution of the supremum of the one-dimensional Brownian bridge B(u) using

P( sup B(u) > Cl(a*)) =a*.

0<u<l

Similarly, a two-sided test can be defined as follows:

Test 2: (two-sided) The null hypothesis is rejected if for some i, i = 1,2,...,p, the
maximum of the absolute value of the standardized score component corresponding
to the ith coefficient crosses a boundary Cy(a*). That is, as soon as for some i,
i=12,...,p

(f_l/2 max n_l/zsk(:én)) > C(a").
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The threshold C,(.) is computed from the equation

P o = o) <o
0<u<l

where B(u) denotes a one-dimensional Brownian bridge. Values of C; () and C ()
are readily available in the literature.

Paper Fokianos et al. [5] has simulation studies and data applications that show
the excellent performance of the above tests in case of the logit link function. We
expect that the change in the link function will not make the practical applications
any different.

2.5 Alternative Hypothesis of One Change

Recall that the test Astatistic process is th§ standardized score vector Sk(,én) =
Stz (Y = PBZ— )V (), e = BLZi—1, k = 1,...,n. To examine the
behavior of this process under the alternative of one change (AMOC — At Most
One Change), we need to separate the case when the source of change is the
covariate vector from the case when the parameter vector changes. Tests for change
in the covariate vector were defined in Berkes et al. [1], so we need to consider only
the situation when the 8 vector changes but the {Z,} process is stationary. This rules
out the auto-regressive type components in the Z; vector.

As function ¥ (x) is bounded in out models, it is easily seen that the mean of the
terms in Sk(,én) is

E((Y: — @(712))8 (7).

where g(x) is a bounded function. We assume that E(®(B,Z;)) # E(®(B1Z:)),
where B, denotes the value of the parameter vector after change. We cannot have
E(Y,—®(Bl) = Oforallt = 1,....nas E(Y;) = E(®(B)Z)), t < , and
E(Y,) = E(®(B'Z)),t > t. Let t = né for some 0 < § < 1, and separate the
various cases as follows.

1. én —P ,Baa ,Ba 7é ,307 ,Ba 7é ,31
2. Bp =P Bii=0o0ri=1
3. B, is not convergent

In the first case if 1 < ¢ < 7 then E(Y; — @(,3;2,_1)) = EY;, — @(B\Zi—1)) +
E(P(B}Z—1) — P(B.Z—1)), and if T < t < n then E(Y, — ®(B/Zi—1)) = E(Y, —
D(B1Zi—1)) + E(@(BZi—1) — QD(,BA;,ZT_I)). These converge to different values, and
from this we get that the size of drift at r = 7 is O(/n).
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In the second case, as the process is tied down S, (,én) = 0, so E(S, (,én)) =0.
From this we get that E(®(BZ—1) — @(,3;2,_1)), t < 1 and E(®(B1Zi—1) —
(b(,BA;lZ,_l)), t > t have different signs, and this leads to the same conclusion as
in the first case.

Finally, if ,3n is not convergent, then as Sy # 1, [|Bo — Bill # 0, so there exists
a § > 0 such that for any n and any ,3,1 value, we have that ||,f§n — Bi|l > & for
i :AO or i = 1. Considering, again E(®(B(Z;—1) — 45(,3;2,_1)) and E(®(B1Zi—1) —
®(B!Z,—1)) we can argue as in the first two cases to conclude that the drift is of size

0(J/n).

Appendix

To see that @(x)(1 — @(x))y'(x) is a bounded function the three cases have to be
treated separately.

CASE 1: Probit model.
‘We have

P ()P() — ¢ (NP> (x) — 7 (x)

P()(1 — P(x)) =¢'W-y®. (A7

P)(1-P)Y'(x) =

We use the normal density and distribution function and the tail approximation for
the distribution function to show that ¢’(x) — 0 as x — Zo0. The two tails are
looked at separately, and then by the earlier results for the y(x) function we can
show that the limit of the function in (17) as x — F00 is zero, so it is bounded.

CASE 2: Log-log link.

In (17) we use @(x) = exp(—e™™) and ¢p(x) = exp(—e¥)e ™ now, and
straightforward calculation gives again separately for x — 400 and x — —o0
that the function has limit zero, hence boundedness will follow.

CASE 3: Complementary log-log link.

We do the calculations as above with the different distribution and density
function.

Next we show that (16) is true. Note, that

= (Y= @) ¥ () = 20 )Y () — &' )Y ().

By the previous results we need to consider the first term only. We use Cauchy’s
Inequality, and then it is sufficient to show that

E(E(, = o7 (v (0)7)
= E(e()(1 = ) (¥ (1)?)
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is finite. We can apply tail approximation formula for the normal distribution, and
only straightforward calculations are needed for the other cases. These are very
tiresome, but no new ideas are necessary, hence they are omitted. Note, that in
condition (C2) E|Z,‘;|’( < o00,i =1,...,p, k = 6is needed for this part of the
proofs only. In all other parts k = 4 + §, § > 0, would suffice.
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Diagnostic Tests for Innovations of ARMA
Models Using Empirical Processes of Residuals

Kilani Ghoudi and Bruno Rémillard

This paper is dedicated to Professor Miklés Csorgd on his 80™
birthday.

1 Introduction

Measures and formal tests of lack of fit for time series models have attracted
a lot of attention during the last sixty years. The first ad hoc procedure was
based on correlograms, a term which, according to Kendall [22], was coined by
Wold in his 1938 Ph.D. thesis. See, e.g., Wold [35]. Motivated by the pioneering
work of Kendall [21, 22], the first rigorous results on the asymptotic covariance
between sample autocorrelations were done by Bartlett [3] for autoregressive
models. Then, Quenouille [32] proved the asymptotic normality of autocorrelations
and proposed a test of goodness-of-fit for autoregressive models using linear
combinations of autocorrelation coefficients. It was extended to moving average
models by Wold [34]. The development of tests of goodness-of-fit using residuals
for ARMA time series models with Gaussian innovations started in the 1970s,
following the publication of Box and Jenkins [6] and the famous work of Box and
Pierce [7], where the authors proposed a test of lack of fit using the sum of the
squares of autocorrelation coefficients of the residuals, viz. 0, = nY ;—, r2(k),
where ro(k) = > /i1 €rn€i—kn / > ein is the lag k autocorrelation coefficient
and the ¢,,’s are the residuals of the ARMA model. Even if the authors warned
the reader that the suggested chi-square approximation with m — p — g degrees
of freedom was “valid” for m large (and the sample size much larger), many
researchers applied the test with m small. In fact, taking a simple AR(1) model
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X, —pn = ¢X—1 — pn) + €, it is easily seen that for m fixed, the limiting
distribution Q of the sequence Q, is not a chi-square. It is a quadratic form of
Gaussian variables with E(Q) = m — 1 4+ ¢>". Due to that incorrect limiting
distribution, modifications were suggested. See, e.g., Davies et al. [10] and Ljung
and Box [28]. Nevertheless, as mentioned in Davies et al. [10] these corrections
are far from optimal and their behavior, in most practical situations, still differs
from the prescribed asymptotic. The right quadratic form finally appeared in Li
and McLeod [26] where they considered general innovations. During that fruitful
period, McLeod and Li [30] proposed a test based on autocorrelation on the squared
residuals, viz QF = n(n + 2) Y j_, r2,(k)/(n — k), where re.(k) = Y 1_,(e?, —
62 (€}, — 061/ Di— (e}, — 62)* and 62 = Y|, €7, /n. These authors proved
that the joint limiting distribution of r,.(1), ..., r..(m) is Gaussian with zero mean
and identity covariance matrix, so that the limiting distribution of the sequence Q7
is chi-square with m degrees of freedom. Until recently, the squared residuals were
not used.

Because the tests based on autocorrelations of residuals or squared residuals are
not consistent, i.e. when the null hypothesis is false, the power does not always
tend to one as the sample size n goes to infinity, Bai [2] investigated the sequential
empirical processes based on the (unnormalized) residuals of mean zero ARMA
processes. He showed that these processes have the same asymptotic behavior
whether the model parameters are estimated or not. His result was then cited in many
subsequent works dealing with empirical process based on residuals. Unfortunately
many of these authors forget to specify that Bai’s result is only valid for mean zero
ARMA processes. Even if the results of Bai [2] are theoretically interesting, they are
of limited practical use. First, in applications, the mean is rarely known. When the
mean must be estimated, the limiting distribution of the empirical process is much
more complicated and there is a significant effect on the test statistics. Second, he
did not consider the important case of standardized residuals. Building the empirical
process with standardized residuals yield a much different limiting process. These
two problems were solved by Lee [25] in the case of AR(p) models; however he
did not consider the sequential empirical process. Surprisingly his results are still
ignored. Last but not least, for testing independence, one needs to study the behavior
of the empirical process based on successive residuals. Even if the assumption of Bai
is kept, it will be shown that the limiting distribution is no longer parameter free.

The rest of this paper is organized as follows. The main results appear in
Sect.2, where one considers multivariate serial empirical processes of residuals,
including results for the empirical copula process and associated M&bius transforms.
Motivated by the findings of Genest et al. [15], one studies in Sect. 3 the asymptotic
behavior of empirical processes based on squared residuals, including the associated
copula processes. These results shed some light on the surprising findings of
McLeod and Li [30]. Under the additional assumption of symmetry about O of the
innovations, it is shown that the limiting processes are parameter free. Section 4
contains tests statistics for diagnostic of ARMA models, using empirical processes
constructed from the underlying residuals. In particular, one proposes nonparametric
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tests of change-point in the distribution of the innovations, tests of goodness-of-
fit for the law of innovations, and tests of serial independence for m consecutive
innovations. Simulations are also carried out to assess the finite sample properties
of the proposed tests and give tables of critical values. Section 5 contains an example
of application of the proposed methodologies. The proofs are given in Sect. 6.

2 Empirical Processes of Residuals

Consider an ARMA (p, ¢) model given by

P g
Xi—p—Y) $Xik—p) =& — Y Oceis

k=1 k=1

where the innovations (g;) are independent and identically distributed with con-
tinuous distribution F with mean zero and variance o>. Suppose that i, ¢, 0 are
estimated respectively by i, QASn, én The residuals e;,, are defined by ¢;,, = 0 for
i=1,...,max(p, q), while fori = max(p,q) + 1,...,n,

14 q
€in = Xi - ﬂn - Z ¢k,n(Xi—k - ,an) + Z Qk,nei—k,n-

k=1 k=1

2.1 Asymptotic Behavior of the Multivariate Sequential
Empirical Process

In this section, one studies the asymptotic behavior of empirical processes needed
to define the tests statistics proposed in Sect. 4.

Let m be a fixed integer and for all (s,x) € [0, 1] x [—o0, +00]", define the
multivariate sequential empirical process by

|ns] m m

H,(s,x) = % Z l_[ 1(eitj—10 < X)) — HF(xj) )

i=1 |j=1 j=1

where e,+;, = e;, fori > 1. Since only a finite number of residuals is affected by
this circular definition, the asymptotic behavior of Hj, is not altered.
Similarly, the univariate sequential empirical process is given by

Lns]
F(s,y) = % S {1en = ) — FO)} = Hy(s,7.00,....00),
i=1
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for all (s,y) € [0, 1] x [—o0, +0o0]. It was studied by Bai [2] under the assumption
that p is known. One will see that it makes a difference for the asymptotic
distribution of H,, and [F,,.

To simplify the proof, one can assume without loss of generality that m < g. For
ifm > ¢q,set 6 = Oforall k € {g+ 1,...,m}. This assumption is not needed in
practice.

Next, define By = 6, if m = 1 and forany m > 1,

o 1 0---0
o 0 1-.---0

9111 em—l 92 91

Further set & = {8 € R"; p(By) < 1}, where p(B) is the spectral radius of B.
Assume that stationarity and invertibility conditions are met, i.e. the roots of the
polynomials 1 — Y7 _, ¢z* and 1 — }"7_, 6,2* are all outside the complex unit
circle. The latter condition is equivalent to 8 € &.

For all (s, x) € [0, 1] X [—o0, +00]™, set

|ns] m m

H, (5.%) = % ST 1Em =) - [[F&)

i=1 | j=1 j=1

=E,{s, F(x1),...,F(xn,)},
where

1 Lns] m m

(s, Uty ... ) = T Z Hl{F(8i+j—1) < uj—
J

uj 1,
i=1 | j=1 1

for (s, u) € [0, 1]'*™. Note that each F(g;4;—1) is uniformly distributed over (0, 1).
The price to pay for having to estimate the parameters (i, ¢, 0) is to make the
following assumptions, described in terms of the estimation errors @, = /n (¢, —

9) 0y = /i (0= 0) and My = /it (1 = ) (1 = LIy ).

(A1) Let Sr denotes the interior of the support of F, i.e., Sp = {x € R;0 < F(x) <
1}, and assume that F admits a uniformly continuous bounded density f on its
support Sr, and such that f is positive on Sg.

(A2) 0 € O and, as n — 00, (Hu, My, ®p, O) ~> (H,. 4, ®,0) in Dy x
R!*P+4 where (H, .#, @, ®) is a centered and continuous Gaussian process.

Here Z(A) is the Skorokod space of cadlag processes on A, and &, =
2 ([0, 1] x [—o0, oco]™).
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Remark 1. Because our limiting process is a function of ﬁl,/// , D, 0, the joint
convergence of (H,, M,, ®,, ®,) is needed for its representation. First, it is easy
to check that E, ~ E in 2(][0,1]'*™), and H,~H in Z,,, where H (x) =
E{F(x1),...,F(xy)}, using the results of Bickel and Wichura [4]; see also Ghoudi

et al. [18]. The joint convergence of the parameters (M,,, @,, ®,) ~> (A ,D,O)
in R'*P%4 is also a formality in general, so (A2) will hold true if one can show

that any linear combination of a finite number of random variables ]I?]In (s, x),
(s,x) € [0, 1] X [—00, +00]" and (M,, ®,, ©,) converges in law to the appropriate
limit. That would be the case for example if one could write

1 n
My, @, Op) = —= ) &+ op(1), ey
Vi ;
where & = &(e;,&i—1,...) is a stationary ergodic sequence of square integrable

martingale differences, i.e., E(&|e;—1, €i—2,...) = 0. For if the latter is true, then
the joint convergence to a centered Gaussian variable follows from the CLT for
martingales [13]. Note that typically, the weak convergence of the estimators is
proven using a representation like (1). In particular, this is true for OLS estimators
and for many robust estimators as well.

Before stating the convergence results, one needs to define the following
elements:
For any x € [-o00, +oo]" and any j,k € 7, ={l,...,m},j #k, set

Fum =Hx) [] Fo),
le Zu\{jik}

where H(y) = E{e;1(e; <y)}. Note that H(co) = H(—o0) = 0, and one
can verify that f_t;o H(y)dy = —o?. Next, for all x € [—00, +00]” and P =
M, ®,0,0) e R'TP+4 x ¢ and forj € {1, ..., m}, define

m

by P) = —a ] Few

N7
1 =10l k=1

min(g,j—1) m—1—1

=Y 0 Y (B, B
=1

k=m—j

min(pyj—1) m—1—1 m—1—k—I

+ Z o Z (Blé)jm Z Vi Sjm—k—i—1 (),
I=1 =0

k=m—j
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where the coefficients ¥y, ¥, . . . are uniquely determined by the equation

0 q

1 =YY 6
E:lﬂkzk:M lz| < 1.
k=0

11— Z=1 ¢ka ’

Remark 2. Note that for any j € _Z,, vj(x, P) does not depend on x;. Also, for an
AR(p) model, ¢ = 0, s0 (BY);n = 1ifj = m —k, and (BY);, = 0 otherwise.
It follows that

min(pj—1)  j—1—I

v Py =M [] Feo+ Y. &Y i)

k=1k#j =1 =0

In particular, when p = 1, then ¥, = ¢', so vi(x,P) = M ]_[',Z’:2 F(x;) and for all
j=2,...,m,

m Jj—2
yxP)=M [| Fo)+ @Y Haim)g' [ Fo. )

k=1k] =0 ketjj—1—1

Recall that from Remark 1, E, ~» Ein 2([0, 1]'*"), and H?}Inwﬂ?}l in 9,,, where

I (x) = E{F(x1),. .., F(o)}. Also, K(s,u) = E(s,u, 1,...,1), (s,u) € [0, 1],
is the well-known Kiefer process, i.e. a continuous centered Gaussian process with
covariance function Cov {K(s, u), K(z,v)} = min(s, #) {min(u, v) — uv}, s, u,t,y €

[0,1]. As a result, IEO‘ (s,x) = K{s, F(x)}, for all (s,x) € [0,1] x [-o0, o0]. One
can now state the main result of the paper about the convergence of H,, in Z,,r =

2 ([o, 1] x E’").
Theorem 1. Under assumptions (AI-A2), H,, ~ H in D, , where
H(s, %) =H (s.%) + 5 Y _f)vi(x. 2).  (s.x) €[0,1] x Sf",
j=1

with & = (M, D, ©,0). In particular, F,, > F in D, f, where

F(s.y) =F (s.) + f0)&.  (s.) € [0.1] x Sr.,

with & = . [ (1 — Y {_, 6k). If in addition fu, = X, + op(1/ /0 ), then /n &, ~>
& ~ N(0,0?), and I@‘,, ~> Fin 9, p, where

[ns]
B0 = = Y 1=, =) = FO)

i=1

and cov {I% (s,y), 5} = sH(y), (s.y) € [0,1] x SE.
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Remark 3. To recover the result of Bai [2], note that if u is known, then & = 0,

so IF, WIEO‘ by Theorem 1. However, if m > 1, H, 7‘»]1‘3]1, even in the simple case
of AR(1) models, as seen from (2). The result of Lee [25] for AR(p) models is
obtained by settingm = 1 and s = 1.

2.2 Empirical Process of Standardized Residuals

When testing for goodness-of-fit, it is often necessary to consider standardized
residuals. To this end, let 62 = ip I

i=p+1 lzn It follows from the proof of
Theorem 1 that 67 = 0252, + op(n™'/?), where 52, = >""| €?/n, with &; = o¢;.

4
As a result, under the assumption that the kurtosis ,32 of g; exists, i.e., B2 = E)

E(e!) < oo, one has .7F = /n (——1) fz’ (€7 = 1) + op(1) w» 7
where .* ~ N(0, 8, — 1). For y € [—o0, + 0], set

o4

Fr(y) = % " {1en /6, <3) — F* )}
i=1

where F*(y) = F(oy), and f*(y) = of(oy) are respectively the distribution
function and the density of ¢; = ¢;/o. Further set £* = & /o.

Corollary 1. IfE(e}) < oo and (A1-A2) hold, then F* ~ F* in 9, f, where
() = K{L.F*0)} +/*0)E" + 3" 07", ye5r.

Furthermore, if fi, = X, + op(1//n), set

() = Z{l( i V) —F ()}, y € [-o0, +0q),

where foranyi=1,...,n,2Z;, = <= & — . & Then F* v F* in P F.

Se.n

As noted by Durbin [12] and detailed in Sect. 4, the last result can be used to test
the null hypothesis that €; = ¢;/a ~ F*. The possibility of constructing goodness-
of-fit tests using IF; was also mentioned in passing by Lee [25].

Remark 4. To illustrate the inadequacy of using Bai [2] results when the mean
is estimated, consider doing a goodness-of-fit test of normality for the following
simple model: X; = 1 + &;, where ¢; ~ N(0, 1) are independent, i = 1,...,n
For testing Hy : &; ~ N(0, 1), one applies the Kolmogorov-Smirnov test based on
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Table 1 Percentages of rejection of the stan-
dard Gaussian hypothesis for N = 10,000
replications of the Kolmogorov-Smirnov and
Lilliefors tests, using samples of size n =

100

Kolmogorov-Smirnov test | Lilliefors test
& e & €
4.89 10.03 4.96 | 4.96

the statistic sup, g |F,(1,x)|, and the Lilliefors tests based on sup,cp |]F: (%) ‘ Both
tests are evaluated with &; = X; — 1 and ¢; = X; — X,,, respectively,i = 1,...,n.
Because Lilliefors test is a corrected version of the Kolmogorov-Smirnov test in
case of estimated parameters, one could get around 5 % of rejection whether one
uses ¢g; or e;. If estimation of the mean would not matter, the same should be true
for the Kolmogorov-Smirnov test. The results of N = 10,000 replications of that
experiment are displayed in Table 1 where samples of size n = 100 were used. As
predicted, both tests are correct when one uses &; corresponding to a known mean,
while the results differ a lot when using residuals e; corresponding to an estimated
mean. In fact, for the g;, Kolmogorov-Smirnov statistic KS, = sup,cp |F,(1,x)|

converges in law to sup, ¢y | IE‘ (1,x)| = sup,ep 1) IK(1, )|, as predicted by Bai [2]
and Theorem 1, while for the residuals ¢;, KS, converges in law to sup,cp [F(1, x)|.

2.3 Empirical Processes for Testing Randomness

When testing for randomness, defined here as the independence of m consecutive
innovations, the marginal distribution F' is unknown, so one cannot use directly the
empirical process H,. It is then suggested to estimate F' by its empirical analog F),
defined by F,,(y) = % Y 1ein <),y € [—00, +00]. One can base the inference
on the empirical process

1 n m m
A,(x) = Wi Z l_[ (eitj—10 < X5) — l_[Fn(xj)
i=1 |j=1 Jj=1

H,(1,%) = v [ [FaGo) = [ TF)
Jj=1 J=1

The following result is a direct consequence of Theorem 1 and the multinomial
formula [18]. Before stating it, recall that v; is defined by (2), and set
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m

M -
v;er(x’ P) = Vj(X, P) - ﬁ l—[ F(xy), X €8p, j=1,...,m.
‘ ~ L= O k=1kj

Corollary 2. Under Assumptions (A1-A2), A, ~ A in Dy, r, where

A® =H1.x) - Y Fly) [[ Fo)=A® + Y fa)vx 2),

j=1 k=1k#j j=1

and A(x) = H(x) — Y1 F(Lx) [Ti= 4 F (), x € S5

As suggested by many authors, e.g., Genest and Rémillard [14], one can also
base tests of randomness on the residuals empirical copula process defined by

:]s

1 n
Ciw = —= > 1‘[1 Fueirim1a) < w} = [u efo.1]".
i=1 | j=1

Jj=1

To obtain more powerful tests, it may be appropriate to use the Mobius
decomposition of the copula [14], defined for any subset A in .4, = {B C
{1,...,m}, B> 1and |B| > 1}, by

Can(u) = Z l_[ {Fuleirj—1a) < wi} —uj],

i=1 jeA

The asymptotic behavior of these processes is given next. It is a consequence of
Theorem 1, and the fact that the Mobius transformed process Cy4 ,, is a continuous
function of C,,.

Before stating the result, define <E (w) = E(1,u) — 370, K(1,u) T2 g e

u e [0,1]", and note that A(X) =C {F(x1),...,F(m)}, X € [—00, +00]". C
is the limiting distribution of the serial empirical process defined in Genest and
Rémillard [14].

Corollary 3. Under Assumptions (AI-A2), C, ~ C in (][0, 1]™), where
C) = AF '), ....F Y(uy)}, uelo, 1]

Moreover, {Cy p}aec.s, ¥ {Calac.s,, where

Cau) =Ca (W) +f 0 F~"(ug) Ho F () 1(A = {1.£}), uel01]",
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with

min(p,{—1) m—1—t

dy= Y B > (Bf),, Ymt-i
=1

k=m—{

min(g,{—1)

- Y OB, 3)

=1

o
The processes {Ca}ae.s, are independent Wiener sheets, i.e., independent centered
Gaussian processes with covariance function

Iy(u,v) = Cov {(EA (w), Ca (V)} = l—[ {min(u;, vj) — vy},

jeA
u,v e [0, 1]

Remark 5. In Genest and Rémillard [14], where there was no estimation of parame-

o
ters, the distribution free processes {Ca }ae.,, Were used to construct powerful tests
of serial independence. Applications of these processes in the present context would
require resampling techniques, such as weighted bootstrap, to obtain independent

copies of (&M, ), for 2 < £ < m. Such techniques are being investigated.

3 Empirical Processes of Squared Residuals

Let G be the distribution function of &2, i.e., for any y > 0, G(y) = F(\/y) —
F(—./y). Assume here that the open support Sr is symmetric about 0 and define
accordingly the open support S¢ in Ry = [0, 00) of G. As before, let m be a fixed
integer. In this section, one omits the parameter s which is only is used for change-
point tests. As one will see later, basing test statistics of change-point on I, produces
parameter-free asymptotic limits, so there is no need of considering change-point
tests based on squared residuals. For all x € [0, 00]™, set

1 n m m
Li(x) = —= 1l =) — | |G
\/ﬁ ; Jl] +j—1, / Jl]
U5 ifjigA

—J/XifjeA
the (continuous) linear operator ¥, from %, r to %, ¢ by

Next, for any x € R”} and any A C Fms set (X4); = { , and define

V(@) = Y (—DMe(lx0), x €55,
AC/W
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where |A| is the cardinal A. In particular, when m = 1, one has ¥;(g)(x) =
g(1, /x) — g(1, —/x). The usefulness of this operator can be easily seen from the
relation L,, = ¥,,(H,,), that holds almost everywhere.

Before stating the main result, define

L (X) = Z ]"[1(%] 1_x,)—]"[G(x,) . x€[0,00]",
j=1

i=1 |j=1

G.0) = == {1, <0 =GO}, v < 0.oc],

i=1

and
G () = % ; (1€ <) -G}, yeo. ool

The next result is a consequence of Theorem 1 and the continuity of ¥,,,.

o

Theorem 2. Under assumptlons (A] -A2), L, ~» L in Py and }inwL in
D j0,00], Where L = 0, (H), L— {12 (H) and

L) =L 0 + Y (V5 — =y} Y (=D yxa, 2),
j=1 AC _Zn\{}

forx € Sg", where vj is defined by (2). In particular, G, v G 2, g, where
Gy =G )+ (VY —f(=V/}E.  ye0,00],

and G= ¥1(F) is a G-Brownian bridge.
In addition, if the law of € is symmetric about 0, then L. =1, is parameter free. In

o o
particular, G, and G, both converge in 9, ¢ to Go.

3.1 Empirical Processes of Pairs of Lagged Squared Residuals

For{ € {2,...,m}, set

Liga(x,y) = % Y AN, <x e, <) —GWGH)), xy e (0,00,
i=1
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Further set ;¢ (x,y) =L (x,00,...,y,00,...). Note that ;¢ is the limiting
process of

n

% Y {1} <xely <) - GWGH)) .

i=1

Corollary 4. Under assumptions (A1-A2),
Lizar- o L) v @iz L) in 2507,

where, forall x,y € Se

Liety) = Lic (@) + (V3 — (D)} GO)E
+ V() = (=)} Gw)&E
+ {F(VY) — (=D} {H(Vx) — H(=V/x)} .,
where < is defined by (3). Moreover, if the law of €; is symmetric about 0, then
Lie ZH‘:L[ is parameter free.

Now for all (x,y) € [0, 0], set

n

RBron(x,y) = % S {1, <y, <) — GG}
i=1

where G, (x) = > I_, l(el%n < x)/n. It is easy to check that the processes

R Lns)
Rrin ) = = Y AU =0 - GO {1l <) =GO},
i=1

with £ € {2,...,m}, converge jointly to 9021,2, ... ,é’l,m, where

F1e (6y) =Lis (6.)) = G0 G 0) = GO) G (¥, xy € [0, 0],

Moreover the processes %12, ... ,,%l,m are independent copies of each other.
Combining Theorem 2 and Corollary 4, one obtains the following result.

Corollary 5. Under assumptions (A1-A2), Z14n ~> %\ ¢ in Dr G, where

B i(6y) =Z10 (63) + {F(D) —F(—3)} { HVZ) — H(=%)} 4,

forx,y € Sg.
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Remark 6. 1If g = E(g}) < oo, it follows from Hoffding’s equality that

1 n
By on(Lx,y)dxdy = — ) (€7, —67) (el s, — 6. )
[ st = v

Following McLeod and Li [30], let 7., be the correlation between pairs of
lagged squared residuals (el.z’n,efH,n). It then follows from (4), Corollary 5 and
the calculations in Ghoudi et al. [18] and Genest and Rémillard [14], that, as
n — 00, the variables /i 7., converge jointly to independent variables r, ¢,

where (itg — 0rees = [po i1 (. y)dxdy = [0 Fres1 (x,y)dxdy, L =
1,...,m— 1. The equality follows from the facts that I; (x) = f(i/x) —f(—+/x) and
L(x) = H(/x)—H(—+/x) are integrable, [~ I; (x)dx = 2 [ xf(x)dx = 2E(e;) = 0
and [;° L(x)dx = —E {€}}. This sheds new light on the results of McLeod and
Li [30].

3.2 Empirical Process of Standardized Squared Residuals

2
Assume that E(s}) < oo, and set G*(y) = ﬁ Yo %1 (Z—nf < y) — G*(y)} ,
where G*(y) = G(o%y), y € [0, oc], is the distribution function of €> = &2 /02,

Corollary 6. Suppose that (A1-A2) hold and that the law of ¢; is symmetric about 0.
Then G} ~ G* in 9, where G*(y) = K{G*(y)} + y¢*(»).L*., y € Sq.
Furthermore, set G*(y) = ﬁ Y A2, <) —G*()}, y € R, where Z;,, =

in —
&i/Sen. Then G ~> G* in 2, g.

3.3 Empirical Copula for Squared Residuals

The empirical copula process for squared residuals is defined by

1 n m m
D,(u) = 7 ST G ) <wh = w |- welo.1]"
i=1 | j=1 j=1

Next, for any A € .#,, set

n

1
Dy p(u) = 7 SOTTAGHE -1, < u} —u] we 0. 1],
i=1 jeA
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Further set

n m m

Dy (u) = % ST 6E ) <wh—T]w|. welo.n),
i=1

j=1 j=1
and for any A € .#,,, define

D (0) = % S TIHGE ) < wh—u]. we 1"

i=1 jeA

Note that ]]3),1%)]]3) in 2([0, 1]™), while the processes ]B)A,n converge jointly to
processes IB)A that are independent Wiener sheets for all A € .7, [14].

Corollary 7. Under assumptions (A1-A2), D, ~> D in ([0, 1]™), where

j=1

D(w) = L{G™ (w).....G )} = > G{G " ()} [T ue.
o

Moreover {Da y}ae.s, converge jointly to {Da}ae. s, having representation

Da(w) =Da () + [ {VG )} = {~VG T |
x [H{VGTwn} -1 {6} ] o 14 = 1.0,

where {]B)A}Ae v, are independent Wiener sheets, and <7 is defined by (3). Further-

o o
more, if the law of €; is symmetric about 0, then D =D, and Dy =Dy, with A € Z,,
are parameter and distribution free.

Remark 7. Since the autocorrelations r,.({) are distribution free, even if the law
of & is not symmetric about 0, one can ask if the same is true for standard
nonparametric measures of dependence like Spearman’s rho. The answer is no in
general. To see that, suppose that [, f*(x)dx is finite. Then

1w = {VGT @} ~f {-V6 )
and

() = V{VGTw} - v{-VGTw}
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are integrable, J; = fol Li(wdu = [ {f>(x) —f*(—x)} dx and J, = fol L(uw)du =
—E[|e;| {F(¢;) — F(—e€;)}]. Since /n p1o, = 12 f[0.1]2 D130 (1, v)dudv, it follows
from Corollary 7 that '

\/ﬁﬁuﬂ > 12/ ]1-0)){1’(} (M, v)dudv + 12J1J,
[0,1)?

#* 12/ IcD)){ug} (u, v)dudv,
[0.1)?

unless JiJ, = 0. Note that 12f[0.1]2 ﬁ){l,f} (u,v)dudv are i.i.d. N(0, 1), and
Ji = 0 if the distribution of ¢; is'symmetric about 0. One can check that the
same results will hold if el%n is replaced by |e;,| or any even function 7 which

is increasing on [0, 0o0). However, the results of McLeod and Li [30] do no extend
unless E{¢" (¢;)} = 0.

4 Diagnostic Tests for ARMA Models

To carry on diagnostic of ARMA models, one may consider to test several
hypotheses, such as change-point analysis, tests of goodness-of-fit, and tests of
randomness. Tests statistics for these hypotheses are defined next, based on the
empirical processes defined previously.

4.1 Change-point Problems for Innovations

To test for change-point in the distribution of the innovations, that is whether there
exists T € {l,...,n—1}suchthate;...,e, follow a distribution F; and e,41 ..., &,
follow a distribution F, # Fj, Bai [2] proposed statistics based on the sequential
empirical process

Lns)

LS e <) — Fa0)) = By {5 FuO)}
i=1

n

B(s,y) =

R

with F,(y) = 1 30 1(ein < y), y € [—00, +00],

ns|

B,(s,u) = %Z%l(% 5,4)_ L”nuj}’ u€lo,1],

i=1
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and R;, is the rank of ¢;,,, i =, ..., n. Note that Z,(s,y) = F,(s,y) — %F,,(l,y)
and B, (s, u) = K, (s,u) — L';—SJKn(l, u), so it follows from Theorem 1 that %, and
B, converge respectively in 2 p, and Z ([0,1]?) to % and B, where B(s,u) =
K(s,u) —sK(1,u),s,u € [0,1] and B(s,y) = B{s, F1(y)},s € [0,1],y € [—00, o0].
The process B does not depend on the estimated parameters nor the marginal
distribution F;. It is a continuous centered Gaussian process with covariance given
by Cov {B(s,u),B(t,v)} = {min(s,?) — st} {min(u, v) — uv}. In fact, B appears
as the limit of many other processes used in tests of change-point [9, 31] and
tests of independence [5, 18]. A natural statistic for testing for change-point is the
Kolmogorov-Smirnov statistic

Tln = Sup |<@n(s’ y)l = Sup IBH(S, M)|
s€[0,1],yeR s,u€l0,1]

Carlstein [9] suggested to consider statistics of the form sup ¢{%,(s,-)}. For

s€[0,1]
instance, the Cramér-von Mises statistic leads to
1
T>, = max / {Bn(k/n,u)}zdu

1<k<n 0

R+ 1)Q2n+1) ko Rin(Rin—1

= max Kot Hent 1) + = Z Rin(Rin—1)

I<ksn | n? 6n n2

i=1

_ Zk: Zk: max(lii,;s Rj,n)

i=1 j=1

Remark 8. Carlstein [9] suggests to estimate the first time 7 of a change-point by
T, = inf{j;supy,<; [Bn(i/n,u)| = Ti,}, related to the Kolmogorov-Smirnov
statistic, or by 2, = inf{j;supy<,<; fol{B,,(j/n,u)}2du = T5,}, related to the
Cramér-von Mises statistic.

Quantiles of Ty, and T>,, appearing in Table 2, were computed using N =
100,000 replications of the statistics applied to

Lns]
@n(s, u) = ﬁ Z {1 (U; < u) —ﬁn(u)}, s,u € [0, 1],
i=1

where f’n(u) = %Z?:l 1(U; < u), and where Uy,...,U, are i.i.d. uniformly
distributed over [0, 1].
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Table 2 Quantiles of order 95 % and 99 % for the statistic ﬁ,, and fz,,

iwln f"Zn

Sample size Sample size
Level (%) |50 100 250 500 50 100 250 500
95 0.775 10.795 |0.814 | 0.822 |0.181 |0.188 |0.194 |0.196
99 0.888 | 0.911 |0.934 |0.943 |0.253 |0.263 | 0.272 | 0.278

Table 3 Percentage of detection of change-point for the first experiment, with N = 10,000
replications

n = 100 n =250

o=15 o=2 o=5 o=15 o=2 o=5
P [T [Ton |Tww |Tow [T |Ton [T |Ton [Tin [Tow | Tin Ton
0 5.05/4.96| 551 532| 52 | 521| 6.16| 553| 571 5.15, 593 531
0.1] 5.51(542| 6 5.78| 7.64| 7.48| 7.25| 6.27| 9.05| 8.2 | 20.47| 18.73
0.3| 8.39|7.21|17.43|14.03|84.17| 84.83|18.74| 13.74 | 58.64 | 56.46| 100 100
0.5[11.19|8.75|29.48|22.36|99.12| 99.37 | 29.59 | 22.04 | 84.87 | 85.25| 100 100

4.1.1 Simulation Results

One considers two experiments. In the first experiment, X|, . . ., X,, are independent,
with X; ~ N(0,1), for i = 1,...,n(1 — p), while X; ~ N(0,0?), for i =
n(l—p)+1,...,n.Herep € {0,0.1,0.3,0.5}, 0 € {1.5,2,5}, and n € {100, 250}.
The residuals are defined as if the X;’s were independent. As seen in Table 3,
the Kolmogorov-Smirnov test (based on T},) seems more powerful especially for
detecting small changes in the structure. As expected, the maximum power is
attained when p = 0.5. The values for p > 0.5 are omitted since the power is
symmetric about p = 0.5.

In the second experiment, ¢y, ..., ¢, are independent, with &; ~ N(0, 1), and
X,' =02+ O.5Xi_1 + &, i=1,... ,np, while X,' =02+ O.5Xi_1 + & — 98,'_1,
fori=np+1,...,n,p€{0,0.1,0.3,0.5,0.7,0.9}, 0 € {0.1,0.25,0.5}, and n €
{100, 250}. One fits an AR(1) model to the data. Contrary to the first experiment,
the power of the tests should not be symmetric about p = 0.5. That is reflected
in Table 4. Surprisingly, the Cramér-von Mises test (based on T3,) seems more
powerful for detecting the type of changes modeled here.

4.2 Goodness-of-Fit Tests for Innovations

Two familiar scenarios could be considered: F is equal to a specific distribution Fy
or I belongs to a scale family of distributions. Only the second scenario is discussed
next. Applications to the first scenario are straightforward.
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Table 4 Percentage of detection of change-point for the second experiment, with N =
10,000 replications

n = 100 n =250

6 =0.10 0 =025 0 =05 6 =0.10 0 =0.25 0 =05
P [T |Tow [T |Tow [T |[Ton |[Tin [Ton [Tin |[Tow |Tin | Ton
0.0| 4.46| 431 453 4.02| 4.59| 425 6 5.51| 6.16| 5.17| 5.94| 5.03
0.1 493| 45 | 493| 484| 553| 54 | 7.39| 6.54| 7.23| 6.81| 7.76| 7.72
0.3| 798| 8.68| 8.56| 9.69|11.38|12.58| 18.63|20.57|20.54|22.52|26.05|28.77
0.5/ 11.56|12.39| 14.26| 15.99| 18.94 | 22 27.45|30.21|33.5 |37.6943.78|49.27
0.7| 899| 9.88|12.64|15.2 |17.85|22.59|20 23.42|28.68|33.01|38.35/44.8
09| 5.75| 6.07| 7.68| 823| 7.5 | 853 9.1 | 895|11.03|12 12.35| 14.41

4.2.1 Testing Hy: F = Fy(-/o) for Some ¢ > 0

Next assume that one wants to test the hypothesis that the error distribution belongs
to a scale family, that is, the &;’s have distribution F(-) = Fo(-/o) for some
o > 0 and some standardized distribution Fy. To this end, define F}(y) =
ﬁ Yo {1(ein/6n < y) — Fo(y)}, y € [—00, +00], and let Uy - - - » Ulpsyy DE the

order statistics of the pseudo-observations Fy(e1.,/0n), - - ., Fo(enn/0n)-
One can then use the statistics 75, = ||F|| = KS, (uz"l:n), ey ”?n:n)) and T, =

Tiy(B) = CVM, (ufy,. ., ). where

(k—1)

U(k:n) — ,

KSn {M(l:n), ceey M(n:n)} = ﬁ llélka;(n %

k
Uy — .

and

. 2i—1\> 1
CVM,, {u(l:n), ey u(n:n)} = Z (I/t(,';n) — 7) 4+ E

i=1

e Iff, = X, + op(1), critical values or P-values for T;‘n or ijn can be obtained via
Monte-Carlo simulation. In fact, recalling the construction of IEAT,’;‘ in Corollary 1,
one obtains that both 7%, and 7%, = ||F*| converge in law to the same limit,
while 7y, and YA”Z‘H = Tr, (IEAT: ) converge in law to the same limit.

In particular, when F, is standard Gaussian distribution, the limit law of
f‘;‘n is the same as that obtained by Lilliefors [27]. For instance, the Lilliefors
test, based on the Kolmogogov-Smirnov statistic, is available in many statistical
packages and can be applied to residuals of ARMA models without any change,
whenever fi, = X, + op(1). Table 5 provides critical values of the Kolmogorov-
Smirnon statistic 75, and Cramér-von Mises statistic f‘fn for different levels.
These quantiles are computed for a sample size n = 250 for each statistics,
N = 100,000 replications. Table 6 shows that these quantiles are quite precise
for almost any sample size.
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Table 5 Quantiles of order
90 %, 95 % and 99 % for the

Statistic

statistics T3 ,T4 ,TS and Tg, Order (%) %;' ﬁk" i?" TA?"
for sample $izes larger 90 0.8200 |0.1035 | 1.0300 | 0.2058
than 40 95 0.8900 |0.1258 | 1.1400 | 0.2656
99 1.0500 | 0.1770 | 1.3600 | 0.4252
Table 6 Percentage of Length of series
. . .. Ak
r;iec;lfn ;‘f S;a“f;‘;fs Do Statistic | Level (%) (50  [100 [250 [500 1000
s Tay> Tgy, for different
e 5 T, 10 893 | 959 | 9.89 |10.88 |10.88

sample sizes, using 10,000

replications based on the 5 4.64 | 453 | 536 | 5.69 | 582
quantiles in Table 5 1 077 | 078 | 092 | 1.17 | 1.13
T, 10 9.59 | 9.36 | 9.87 |10.31 | 9.97

5 493 | 450 | 480 | 540 | 5.11

1.07 | 1.00 | 1.03 | 1.11 | 1.05

T2, 10 9.91 |10.55 |10.89 |10.37 |10.69

5 485 | 551 | 533 | 543 | 537

1.03 | 1.04 | 1.03 | 1.21 | 1.22

T, 10 10.05 | 9.93 |10.20 | 9.53 |10.12

5 5.07 | 488 | 5.13 | 476 | 5.08

1 0.85 | 095 | 0.78 | 091 | 0.98

* If the law F is symmetric about zero (whether [, = X, + op(1) or not), one can
use test statistics based on the empirical process of squared residuals

Gy() = Z{ (Az < ) Go(»)

Further let v(l Wy v(*;m) be the order statistics of the pseudo-observations
G()(ei’n/O'n),l =1,...,n,and set 77, = |G| = K.S,,(vz"lm),...,v(";m)) and
7."%"". = QGO(G;,*) = CVM,f(v.E"l:n)., e U;;_un))_' AFcordlng to Corollary 6, the
limiting behavior of the statistics is not distribution free. However, they have
the same limiting distributions as 77, = |G| and T, = J5,(G};), where

y € [0, o<].

1) = % S (/2 <3) — G}, v e 0,00

i=1

As a result, the statistics YA”;[ and YA”g‘n can be easily simulated, and then used
to estimate P-values for 72, and T¢, respectively. Quantiles for f‘;‘n and f”:n are
computed in Table 5 for a sample size n = 250 using N = 100,000 replications.
Table 6 shows that these quantiles are quite precise for almost any sample size.
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Table 7 Percentage of rejection of the null hypothesis of Gaussianity for an
AR(1) model with n € {100,250} and N = 1000 replications, when the
innovations are Student with v € {00, 20, 15, 10, 5}

n =100 n =250

v v
Statistic |oo |20 |15 10 5 oo |20 15 10 5
T3, 42 |73 | 83 |10.2 314 |58 | 83 |10.1 |16.1 |62.4
T, 5.1 (7.7 | 97 |134 |413 |57 | 93 |13.8 |21.2 |759
T2, 53 |72 | 93 135 [409 |6.1 |11.3 |14.0 | 26.2 |79.0
T, 52 |89 |10.7 |16.8 |49.1 |5.7 |13.0 |16.8 |31.0 |84.2

4.2.2 Simulation Results

Consider the following experiment for measuring the power of a test of Gaussianity:
Assume that ¢1, ..., ¢, are independent with Student distribution with parameter
v € {5,10,15,20,00}, and X; = 0.2 + 0.5X;_1 + ¢, i = 1,...,n. The null
hypothesis is that the distribution is AR(1) with Gaussian innovations. The results of
1000 replications of the experiment for samples sizes n € {100, 250} are displayed
in Table 7. As seen from the case v = oo corresponding the null hypothesis, the
levels of the tests are respected. As expected, the power of the tests increases as the
degree of freedom v decreases. Also, for each test statistic, the power increases with
the sample size. The best test statistic seems to be T*n, for all alternatives considered,
although T}, and T2, are close contenders. From a practical point of view, statistics
Ty, and T¢, are easier to compute.

4.3 Tests of Serial Independence

One could define the empirical copula process C, of the residuals. However, as
shown in Proposition 3, its limiting behavior is not distribution free, even if Mdbius
transforms were used. Fortunately, it was shown in Corollary 7 that when the law
of the innovations is symmetric about O, the limiting distribution of the empirical
copula process I, of the squared residuals defined in Sect. 3.3, does not depend
on the estimated parameters, nor the underlying distribution function F. However,
as suggested in Genest and Rémillard [14], it is recommended to use the slightly
modified process D, defined for u = (uy, ..., u,) € [0, 1]" by

i=1 | j=1

]D)(ll)_\/_z 1—[1( i+j—1.n u])_l—!Ln:/J
j=
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Here R;, is the rank of el%n amongst e%’n, R ei’n, and R,y;, = R;, fori > 1.
In addition, to produce critical values or P-values for statistics based on D, it is
worth noticing that under the assumption of symmetry, D, has the same limiting

distribution as

D(w) = % ST (R";f“ < uj) et
1 j=1

- . n

i= j=1
u = (u,...,uy) € [0,1]", where R; is the rank of U; amongst the i.i.d.
uniform variates Uy, ..., U,. Consequently the methodology developed in Genest

and Rémillard [14] and Genest et al. [16] could be applied here, including optimal
tests combining Mobius transforms. In the sequel, consider the test statistics W, ,, =

2/A
Z\A|>1,Ac,¢m ! ‘BAJL and

By, = / ]ﬁ)i(u)du
(0,1

_ % Xn: Xn: ﬁ { |- maX(Ri+k—1/l,ij+k—l,n)}

i=1 j=1 k=1
n—1D2n-1)"
S

_zzn: ﬁ { n(n—1) —Ri+1;—nlz,n(Ri+k—1,n - 1)} ,

i=1 k=1

5 1 n n
where By, = / ]D)fw(u)du = p Z Z l_[Dn(Ri+k_1,n,Rj+k_1,n), forany A C
0.1y i=1 j=1 keA

I, and D, (s, 1) = ("H()ﬁnﬂ) + 5(;;21) + r(;zl) - maxn(s,r). Approximate quantiles for

statistics By, , and Wy, , forn = 100 and m € {2, ..., 6} can be found in Table 8.

Table 8 Quantiles of order 90 %, 95 % and 99 % for statistics B,,, and W,,, for m €
{2,3,4,5,6},n =100, using N = 100,000 replications

m

Statistic | Order (%) |2 3 4 5 6

B, 90 0.046897 | 0.060624 | 0.049211 | 0.032736 0.019022
95 0.058246 | 0.075242 | 0.061684 | 0.040947 0.024196
99 0.085475 | 0.111449 | 0.093319 | 0.066445 0.042824

Win 90 4.568240 | 13.237556 |33.925330 | 87.203099 | 229.239008
95 5.673710 | 14.741794 |36.038715 | 90.624271 | 237.633039

99 8.326064 | 18.169826 |40.856984 |98.200949 |255.363139
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Table 9 List of models with Gaussian noise u;

Model |Name Equation

Al LLD. & = u;

A2 AR(1) g =038_ +u

A3 | ARCH(1) e =hu, by = 1+0862

A4 | Threshold e = h)u;, with 2 = 0.25 + 0.6 h-_,
GARCH(1, 1) +0.56%  1(u—; < 0) +0.2&2 1(u;—; > 0)

A5 Bilinear AR(1) & =0.8¢_1u—; +u;

A6 Nonlinear MA(1) |& = 0.8u? | + u;

A7 Threshold AR(1) | & = 0.4e;—11(g;—; > 1) —0.56;—11(e;—1 < 1) + u;
A8 Fractional AR(1) |& = 0.8|e;—|"/? 4+ u;

A9 Sign AR(1) & = sign(gi—1) + 0.43 u;

Table 10 Percentage of rejection of the null hypothesis of serial indepen-
dence for the alternatives described in Table 9 using samples of size n = 100
and N = 10,000 replications

m=2 m=4 m=26

Model By Won | Bun Wan | Bun Winn

LLD. 492 | 492 | 468 | 493 | 479 | 4.37
AR(1) 71.79 |71.79 | 64.41 |43.65 |55.13 |20.31
ARCH(1) 11.94 |11.94 | 9.33 |36.85 |7.77 |80.45
Threshold GARCH(1,1) | 9.36 | 9.36 | 9.10 |32.03 | 7.54 | 7891
Bilinear AR(1) 72.67 |72.67 |41.08 | 63.96 |30.65 |83.55
Nonlinear MA(1) 40.83 140.83 |11.12 |22.81 | 9.50 |24.51
Threshold AR(1) 45.63 |45.63 | 7.62 |20.01 | 6.20 | 12.32
Fractional AR(1) 59.16 |59.16 |47.32 |30.27 |39.73 | 13.18
Sign AR(1) 58.13 |58.13 [59.33 |60.70 |59.28 |61.09

To assess the finite sample power of these two statistics, one uses the same
models as in Hong and White [19] and Genest et al. [15]. Those models, listed
in Table 9 are all of the form &; = @(g;—1, u;, u;—). As in Hong and White [19],
the white noise u; was taken to be Gaussian. The percentage of rejection of the null
hypothesis of serial independence are given in Table 10 for samples of size n = 100,
using the tests statistics B,,, and W,,, with m € {2,4,6}. As seen from that Table,
the test based on B,,, is quite good for all alternatives but stochastic volatility
models, when m = 2. Another characteristic is that its power seems to decrease
sometimes dramatically as m increases. For the test statistic W, ,, the power seems
to increase with m for stochastic volatility models, while it seems to decrease for
constant volatility models. It outperforms the test based on B, , when m > 2 for all
models but the AR(1) and the fractional AR(1).
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5 Example of Application

As an example of application of the proposed tests, consider the Indian sugarcane
annual production data studied in Mandal [29] who suggested an ARIMA(2,1,0)
model for these data. Note also that other studies of sugarcane production showed
that ARIMA models were quite appropriate, see, e.g., Suresh and Krishna Priya [33]
and references therein. The data consisted of 53 values representing the annual
sugar production (million tonnes) from 1951 to 2003. As suggested in Mandal [29],
an ARIMA(2,1,0) model was fitted to the data and the diagnostic tests described
in Sect.4 were applied to the series of residuals. No change-point was detected in
the series of residuals. In fact, for the change-point test statistics T, and Ty, their
respective values are 0.7894 and 0.1233, yielding P-values of 4.40 % and 18.35 %
respectively, using N = 10,000 replications. Thus the null hypothesis is barely
rejected at the 5 % level and is accepted at the 1 % level.

Next, for testing that the innovations have a Gaussian distribution, the tests based
on T3, Ty, T, and T¢, clearly reject the null hypothesis since the largest P-value
is 0.4 %. Finally, for tests of serial dependence based on Bg, and W ,, both tests
accept the null hypothesis with P-values of 46 % and 24 % respectively.

Rejecting the Gaussian distribution hypothesis for the innovations might indicate
that the OLS estimation of the parameters is not be the optimal choice. To double
check, a robust estimation of the parameters using the LAD method leads to P-values
of 5.9 % and 23.4 % for the the change-point tests while both the null hypothesis of
a Gaussian distribution and Laplace distribution are rejected at the 5 % level. As for
the test of serial dependence with these residuals, the null hypothesis is accepted
with P-values of 61 % and 29.4 % for Bg, and Ws, respectively. So basically, the
two methods of estimation provide similar conclusions.

6 Proofs

The proofs extend the techniques used by Bai [2] and Ghoudi and Rémillard [17]
and are given after introducing some useful notations and auxiliary results.

Let ¥; = X; — u, and recall that M, = /n (i, —p) (1 - Z§=1¢k,n),

d)k,n = \/ﬁ (qgk,n_d)k), 1 < k < p, and @k,n = \/ﬁ (ék,n_ek), 1 Sk <gq.
To simplify the notations let P, = (M,,®,,0,,0,) and for i > 1, define
@i = (€ire e Eitmet) s Win = (i s€itmin) ' and D, = D;i,(P,) = @; —
Win = (di,n,...,di+m_1,n)-r. By setting V;, = (0,...,0, vH_m_l,n)T e R™, with
Vin = Mn+ ‘Z=l ¢k,nYi—k_ZZ=1 @k,ngi—ka one writes Di,n = i,n/ﬁ +BG,1Di—1,n,
for i > 1. By iteration, one obtains D;, = B‘é;lqun + Y2 B’én Viekn/ /1
for i > 1.



262 K. Ghoudi and B. Rémillard

Now for P = (M, ®,0,0) € R'*7+4 x ¢ define Li(P) = Y 1% (BY) Vit (P)
and

i—2
) 1 ; 1
Din(P)=B:'D+ —L(P) =B 'D + — Y BV (P), i>1,
( ) 0 1 ﬁ P) 0 1 «/ﬁ 2 0 «(P) l
with D = (ey, ..., sm)T and

P q
ViP) = (0,...,0,M + Z 1Y it m—1-k — Z Okitm—1—k) " -
=1 k=1

Observe that D;,, = D; ,(P,) and di1j—1» = ditj—1,.(P,) where d; ;1 ,(P) denotes

the jth component of the vector D; ,(P).
The next subsection provides some auxiliary results needed for the main proof.

6.1 Auxiliary Results

Foranyt= (t1,...,t,)" €[0,1]" and any j,k € #, = {1,...,m},j # k, define
Sic(t) = H®) nlejn \gj.x) 11- Where H(y) = H{F~'(y)} and

m min(g,j—1) m—1—1

- M
vj(t,P)z 1—2—’”9 l—[ Z 0 Z B@ jm&m i—1(t)
1=1Y1 k=1 k%] k=m—j
min(pyj—1) m—1—I m—1—k—I
+ Z q)l Z B@ Z thjm k—I— t(t)
k=m—j

Note that ¥;(t, P) = v;(x,P), withx = (F~'(t1),..., F ' (t,) .

Since 0 € O satisfies p(Bg) < 1 then |Bgy||, < v < 1 for some natural matrix
norm |.||, [20, p. 14]. Next, for any y, A € R, let I,(i,j, y, A, P) = ydiyj—1,(P) +
AA,(i,j) where A,(i,j) = it'|D1|loo + Rij//n with

i+j—m—1

P q
R;; = Z kl’k(l + Z |Yi+j—k—l| + Z |5i+j—k—l|)-

k=1 =1 =1
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Observe that 15,(i, 7,0, A, P) = 1A, (i,j) does not depend on P. Define also

— 1(sirjm1 S F7H())} l—[ 1(Vitr—1 < f),
k=1,kj

ULy, A P) = {Leisjm1 < F'(t) + Tu(inf, . A, P))

where v; = F(g;) has a uniform distribution. We also let

ULty 2 P) = [Ty ] [FIF7 @) + TGy A P} — 1]
X [ i 1Wink—1 < 1),

Uity P = 5o S ULy A ) Uty 4. D)

and U/ (s, t, 7, A, P) = ﬁ ZZL:YIJ (_J{’n(t, v, A, P).
Now for b > 0, let

Dy ={P=(M.2.0,0):|Bsll, <z, max{[|[M[lco. [|Plloo. [Ollcc} = b}

The next lemmas are used to prove Theorem 1.

Lemmal. Forany$§ > 0,i > land 1 < j < mif P,P' € D, are such that
IP—P' |0 < 8 then there exists a constant Cj, depending on m, T and b such that

(l) |Fn(isjs 1z Av P) - Fn(isjs 1z Av P/)l =< |y|8CbAn(ls])
(ii) |digj—12(P) = ditj—1.2(P")| < 8CpAy(i. j)-
(iii) |diyj—1.(P)| = CpAu(i.)).

The righthand-sides of the four inequalities given above do not depend on P.

Lemma 2. [f the ¢;’s are independent and identically distributed with zero mean
and finite variance then

(i) Yo E(A,G.))%) = C.

(ii) max)<i<, Maxi<j<m |Rij|//n " 0asn goes to infiniry.
(it) 5 iy Rij = Op(1) and 3 31, R = O,(1).
Lemma 3. Under the conditions of Theorem 1 for any y, A € R

sup sup sup \U{l(s,t, y,A,P)| i>0 5)
PeD, te[0.1]m s€[0,1]
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and for any €, > 0 there exists § > 0 such that

PJsup sup  sup |[f}{l((s, t,y,1,P)) —[f}{l((s, t,y,A,P)|>e; <1, (6)
Pe®, (t,t’)et/%b' s€[0,1]

where f/if‘g ={(t.t) € [0.1]" x [0, 1]" :t; =t and ||t — || 0 < &}

Next, set Sj(s.t.P) = LV @®) [Tisp e [12) Huieer < 10} —
sv;(t, P), for t € [0, 1]™. The next Lemmas establishes the asymptotics of §/, and U/,.

Lemma 4. Under the conditions of Theorem 1

sup sup sup |E{S(s,t,P)}| — 0. (7)
te[0.1]" se[0.1] PeD,,

and

sup sup sup |S}(s,t,P)| 0. ¢))
s€[0,1] tef0,11" PeD,,

Lemma 5. [fthe conditions of Theorem 1 are satisfied then for any y € R

sup sup sup [D(s.t.y.0.P) = f (' (1) yi5(t. P)| > . ©)
PED, te[0,1]" s€[0,1]

6.1.1 Proof of Lemma 1

One can easily check that the matrix By satisfies (B’(; )jm = 0if k < m—j. Recall that,
from the equivalence of norms, there exits a constant C > 0 such that ||V||,/C <
[Vleo < C||V]l, holds for any vector V € R™. Using these facts and the definition

of I, one sees that

|Fn(i’jv V7A7P) - Fn(i7j7 Va/LP/)|

' ' 1 i—2
<IyI|By" = BEYD + —= > BiVik(P) — By Vik(P)|
ﬁ k=m—j
‘ ‘ C i—2
< lyIC| By — By HD: + T Y BiViu(P) = B Vik (P
k=m—j

= IyIC11By " = Byl D1loo
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B@ BQ/ 14 [ 13 I o0

+IB I I Viek (P) = Viek (P') [l -

from |P — P’||oo < § one can verify that ||Bg — By ||oo < §. Combining these facts
one sees that

Now recall that since P, P’ € ©,, one has ||Bs||, < t and ||Bs'|, < t. Moreover,

k—1

> B} (Bs — By)By !
r=0

kK pk
1By — By llp =

P
k—1

k—r—1
> " 1Bo 11} 1Bs — Borllo1Ba &
r=0

IA

k—1
C Y lIBo |15 1Bs — Bollool|Bolls ™" < Cokr*",
r=0

IA

[Vi(P)=Vi(P)[loo < [IP=P'lloo (1 + 0= [Yim—1—1| + i, |€i+m—1-1]) and that
IViP)loo < b1+ X0 Yigmor—l + X, l€i4m-1~). Collecting these
terms yields |I,(i,j, v, A, P) — [,(i,j, v, A, P)| < GCpé|y|A.(,)), where C, =
C?> max{C/t?,mbC/t + 1}. This proves (i). Inequality (ii) follows immediately
from the fact that diy;—1,(P) = I,(i,j,1,0,P). The proofs of (iii) and (iv) are
omitted since they easily follow from the proof of (7).

6.1.2 Proof of Lemma 2

First recall that the random variables Y;’s and ¢;’s are stationary with finite variances.
To prove (i) one easily verifies that

i+j—m—1i+j—m—1

ERY) <3{1+pEXYD) +CEEDY Y. Y k<
k=1 h=1

for some constant Cy. Therefore Y i, E(A,(i,j)?) <2, *t%E(e}) +2C, < C
for some constant C. To prove (ii), notice that [R;;| < (1 + pmaxi<i<,|Yi| +
gmax<i<y |€i) Y j—, kt*. The above sum converges since T < 1. The random
variables Y; and e; are stationary with finite variances, so an application of
Bonferroni’s inequality shows that max;<;<, |Yi|/+/n and max <<, |&i|//n
converge to zero in probability. To complete the proof, note that (iii) follows from
the fact that (E|R;;|)* < E(R}) < C.
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6.1.3 Proof of Lemma 3

First, define

[ns]
Ut (5.7, 4, P) = S (U (4,7, 4, P) — T (6. . A, P)}/ Vit

i=1

and Ut (s, t, . A, P) = Y U7 (t y, A )/ o/, where

ULkt y. 1. P) = l_[ uipior < 63 HF7H (1) < eivjm1 < 11,)
k=1,k#j

Uty A P) = [F(f) — 1] l_[ I l—[ Heipr < F (1)}

k>j  k<j
and tIn = F~1(4j) + max[0, I,(i,j, 7, A, P)]. One also defines

Lns)
U (s.t.y. 4. P) = > {UL (.7, A.P) = U] (t.y. 1. P)}//n

i=1

[ns]
and U= (s, t, y, A, P) = Z UL, (t,y, A, P)//n , where

i=1

UL (t.y. A P) = 115, < giyj1 < F (1)} x l_[ Wiy < 1},

k=1, k#j
UL (ty. A P) = -] [Ueiinr < F' )} x [ [t x [ — F2,)]
k<j k>j

and r;;, = F~'(1) + min[0, [,(i.j, y, A, P)].

It is easy to see that U/ (s, t, y, A, P) = Ut (s, t, 7,4, P) + U (s,t, 7,4, P), and
U (s, t,y,A,P) = UF(s,t,y,A,P) + U (s,t,y, A, P), therefore the Lemma will
follows if one shows that statement (11) holds with U/t and U/~ in place of U/
and that statement (6) holds with U/ and T/" in place of U,. The proofs for j+
exponent and for j— exponent are very similar, therefore only the proof with j+
exponent is presented next. The limit in (6) will be established first. It will be shown
that the convergence is also uniform for all bounded A and y. Since t; = tj’. one easily
verifies that
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1|

Ur(s,t, 1.4, P) = Ut (5., 1,4, P)| = —

n

{H i [ | Mvia—t <

i=1 | k>j k<j

—[Tal i < z;}} [Pty -]

k>j  k<j

which is bounded by

T ‘F(t,]n tj) [T ][t <1

k>j  k<j

_Htl/cl_ll{ui-i-k—l <n}.

k>j  k<j

Using Lemma 1 and the fact that F' is uniformly continuous and admits a bounded
density, one finds that

[t (s, t, 9, A, P) = Ut (5,1, y, A, P)|

< —ZA (i,)) l—[tk—l—[tk nl{vi+k—1 <t}

k>j k>j k<j

+ l_[ / l—[ Hvipp—1 <t} — l_[ Lt < 1}

k>j k<j k<j
With few straightforward algebraic manipulations, one sees that

UF (st 7, A, P) = U (s, 8, y, A, P)|

ZA(u) [Ta-114

k>j k>j

+ l_[ 1{vipx—1 < max(i, 1)} — l_[ 1{Vipr—1 < min(t, 1)}

k<j k<j
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One then easily verifies that

1
n 2
[T (5.t 7. A, P) = U (s, v, A, P) < € (Z An@f)z)
i=1

n

x4 (m—j)é + %Z [ [Hvisir < max(s. 1)}

i=1 | k<j

- l_[ 1{Vitx—1 < min(z, 1)} ,
k<j

which in turn is bounded by

1/2

C (Z A, j)z) (m—j)8 + | [ [ max(t. 1) — | [ min(te. )
i=1

k<j k<j

+n7 4 sup [Ba(1,8) — Bau(1,0)]?
le—t |l <s

m8 + v'mé +n~V*  sup |,3n(1,t)—,3n(1,t/)|% ,

llt—t'||<5

<C (Z An(i,j)z)
i=1

where S, is the serial Kiefer process defined for all (s, t) € [0, 1] x [0, 1]™ by

|ns] m m

1
Bu(s, t) = — I(UH_"_l <t)— tie. (10)
\/ﬁ ; l] J J i 7

By Lemma 2, Y""_, A,(i,j)*> = O,(1) and since B, is tight [11], it follows that for
any €,n > 0 the probability that the above right-hand-side is greater than € can be
made less than 7 by choosing the appropriate 8.

To prove (5) note that for any b > 0, the set D, is compact. Therefore for any
8 > 0 the set ®, can be covered by a finite number of balls (4, ..., $Bx) with
diameters less or equal to §. Denote Py, ..., Pk the centers of these balls. Now if
P e ®,, then P € %, for some 1 < r < K. It follows from the definitions of I", U
and U and Lemma 1 that

LGijoys A = Ci8,Py) < T(0j, v A P) < L0, v A + Ci6, Py,
ULN(ty,h— Ci8.P) < ULN (61,4, P) < U (6. A+ Ci8. P,

n

Uty A —Ci8,P) < UT(t.y. A, P) < UT .y, A + C18.P)),

n N n
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for some constant C; > 0. One also gets
U (5.t 7.4, P))|
< Ut (s, t,y, A + C18,P,)| + [UF (s,t,y, A — C16,P,)|
+|UF (5.6, 7. A + C18,P,) — Uit (s, .y, A — C16.P,)|.
Upon calling on condition (A1) one sees that

|®];L+(S, t, )’,l + C187 Pr) - Hj]r.z—i—(S? t, )/,A - CIS’PV)|

n n 1/2
Cs
< =) A(ij) = C8 (§ :An(i,j)z) :
N p

Note that the right hand side does not depend on s, t or P. Taking the supremum and
then the expectation, it follows upon calling on Lemma 2 that

E{sup sup sup |[UF(s,t,y, A + C16,P,) — Ul (s, t,y,A — Ci6,P,)|
Pe®,, te[0,1]" s€[0,1]

is bounded by C’§, which can be made arbitrarily small by choosing §. So it remains
to show that

sup sup \Ufj’(s,t, y,A,P)| i>0 an
te[0,1]" se[0,1]

for any fixed P € D). For let § > 0, and A, > 0 be such that lim, . A,/n +
(nA,)"' =0andletK = |[1/8] + 1,andlet0 = ap < a; < --- < ax = 1 be
a partition of [0, 1] with mesh less or equal to § and set K, = [1/A,] + 1 and let
0 =by < by <--- < bk, = 1be a partition of [0, 1] with mesh less or equal to A,,.
For any given 1 < j < m, note that for any t € [0, 1]" one has b, < #; < b,;+ for
some 1l <rj<K,—1landforany k:1 <k <mk #ja, <ty < a4 for some
1 < r, < K—1. It follows that

ULl (t.y.A.P) < UL (", 7.1, P)

+1(by; < Vitj—1 < by1) l_[ 1(Viti—1 < ane+1),
ki

and
U (ty. 1. P) = UL (€. 7. A, P)

—1(by; < Vigj—1 < by1) l_[ 1(Vitk—1 < ay),
k#j
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— T
where t+ = (ar1+lv ey arj_l_H, brj+lv a,j+l+1, ey a,m_H) and
t™ =(a,,... yQri_y s b,j, Ariyys - - ,a,m)T. One can also verify that

UIr(t,y, A, P) < UF (T, 1, A, P)

n

+{brj+l - brj} l_[ 1(Viti—1 < ap+1) 1_[ Ari+1,

k<j k>j
and
Uy (47,4 P) = U (. v A P) = (bt = by} [ [1ianr < @) [ [ -
k<j k>j

Straightforward computations show that

sup sup |U,F(s,t, . A, P)|
te[0.1)" s€[0.1]

< max max sup {|U{l+(s, tt, Y, A, P)| + Ut (s, t7,y, A, P)|

T 1<Ky 1< <Kk#jo<s<1
D P~ Ty AP )

+2 sup sup |:8n(ss t) - ,Bn(ss t/)l + 2An\/ﬁ

[t—t' <4, 0<s<I

The last two terms go to zero in probability from the definition of A, and because
of the tightness of B, [11]. .
Next, [Uit (s, tT,y,A,P) — Uit (s,t7, , A, P)| is bounded by

|0t (s, 6,7, 4. P) — Ut (s, t*, 1, 1. P)|
+UF (5.6, 7,4, P) = UF (5,67, 7, 4, P),
where t* is such that 1; = 1 forall 1 < k # j < m and tj* = tj+. Now by (6), the
sup of |Uit (s, t+, y, A, P) — Uit (s, t*, y, A, P)| converges in probability to zero. In
addition
[Tt (s, 6%, y, A, P) = Ut (s, t7, 9, A, P)|

Lns]
Y [FFE bys1) + Tlifo v A P) = by

i=1

NG

— F(F (by) + L(iojo v, A P) + by [ [ an [ [ 1iacr < a)
k>j k<j
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Lns]
< S |FE 1) + Tuinj. v A P) — by 1

i=1

)

— F(F ' (by) + (i j. v, 4. P)) + by,

converges in probability to zero upon using (A1) and mimicking the proof of
Lemma 2.1 of Koul [23]. Finally, to complete the proof, note that the behavior of
[Uit (s, tT, y, A, P)| and that of [ (s,t™, y, A, P)| are identical, so only the proof
for |/t (s, t™, y, &, P)| will be presented. Note that supy,; Ut (s, t,y,A,P)| =
sup; <<, [0 (I/n,t7,y, A, P)|. To study the behavior of the above as n goes to
inﬁni_t)T, let 1 < h < m and define

Ut (h,s.t,y, A, P)

Lns/m]
1 : .
= Ujitl *m+h,n(t’ Vs A’ P) - Uj:l *m+h,n(t’ Vs A” P) .
N (i) (-1

i=1

Observe that [Uit (s, t, y, A, P) — S b, U (h,5,t,7,A,P)| < m//n . Since m is
fixed and finite, the proof will be complete if one shows that

max  max sup |[f}£l+(h, ml/n,t7,y, A, P)| AN
I<rj<Kn 1< <K k#j 1 <(<|n/m]

forany 1 < h < m. Set #; = o(eo, ..., Emmtntj—2). We can drop the first m terms
without affecting the limit.

For the rest one can easily verifies that {{VF (h, m€/n,t™, y, A, P), %} is a mar-
tingale and «; ,(t) = Uzitl)*m (&Y A P)— U{;l)*m +na(t v, A, P) are martingale
differences. Applying Doob’s inequality followed by Rosenthal’s inequality, one
shows that

P{ sup |U (h,ml/n,t,y,A,P)| > €}
1=t=|n/m]

Ln/m] 2 Ln/m]

SCenTES Y E(in®’|Fic) p + Cetn T Y Ekia(t)).

i=1 i=1

As aresult, E(kin (/| Fim1) < |0,y yinnt v A P < [F(F1 () + L((— 1)
m+h,j,y, A, P)) —t;| < |fI|(G—1) *m+ h,j,y, A, P)|, which implies that
Ln/m] ? "
EX Y E(kin®|Fi) ¢ <alfll Y E(LG.j.y. A P)]*) < Cn.

i=1 i=1
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The last inequality follows from Lemmas 1 and 2 and hypothesis (A1). Note also
that Z}i/lmj E(k;,(t)*) is bounded by n since |«;,(t)] < 1. Collecting the terms
shows that P{Sup;<y<,/m| |[[~J{1(h, ml/n,t,y,A,P)| > € < Cie*n~! for some
constant C; > 0 that does not depend t. The proof is then complete upon noting
that

PJ max  max sup |T[~J{l(h,m€/n,t_,y,k,P)| > €
I=rj<Kn 1=ne<K k#j 1 <t<|n/m)
S KnKm_l

X max max P
1=<rj<Kn 1<r <K k#j

sup |T[~J{l(h,m€/n,t_,y,k,P)| > €
1=<t<|n/m]

< Cie *(na,) 'K —0.

6.1.4 Proof of Lemma 4

Observe that
' 1 Lns]
E(S)(s.t.P)} = = Y E| {(L@)} [ [ [ [1viger < 10) | — st P)
= > <
1 lns] | i—2
- Z Z BGE | Vi-x(P) nl(UiH—l < tz)l—[tz
i=1 | k=0 <j (=) ;
—sv;(t, P).

First note that there exists C > 0 such that for any P € ©,, E|V,—(P)| < Cb. For
i > m one easily checks that E{Vi—(P) [[,; Wui+e—1 < te}} [, 7 is equal to
©,...,0, ,uj,k)T where

p
i = [ JuE | M+ ®Yikymi
t>j =1

q
- Z Ok tm—i—1} l—[ 1(Vige—1 < ty)
=1

l<j
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_Hﬂz Ml_[lz-i-zq)zE Yi—i— znl(Uz <ty)

>j L<j L<j
_Z®IE Em—k— lnl(w <ty)
l<j
Now note that E{ j__l 1(ve < l‘()&‘m_k_l} = 0 form—k—1 < 1 and

{1_[ 1(1}[ < 1) Em—i— 1} Zﬁl(tm_k_l) l_[jé_ll Om—k— (e forl <m—-k—-1<j—1

and E{l_[ L(ve < 1) Yo 1} = Y T T Ve H (tys—a) TT, Litm—k—i—a 1
form — k — l > 1 and 0 otherwise. Using these facts, one sees that p;; simplifies

to wjx = Ml_[17éj te + Z[l7=1 @, Z;n;(l)_k_l Ir/fozgrj,m—k—l—oz ®t - ?:1 ®l§j,m—k—l(t)
which implies that

Lns)

— sUj(t,P) + — ! Z{ Z(B )mM [ ]

i=m I#j

’E{Sﬁl(s, t, P)}’ <

m—1—k—I

p
> (B Z VaSjmii—a(t)
=1

m—I[—1
+ 2
k=0
m—I—

2

1
k=0

q
> B mOFjmi- m}‘
=1

for some positive constant C;. Since (B )jm = 0if k < m—j, the above simplifies to

|E{S] (s, t.P)}| < —sﬁj(t,P)+M{(1 By)i Ml—[tg
I#j
m—Il—1 p m—1—k—I
+ ) D BYm® Z VS m—t—1-a (t)
k=m—j I=1
m—Il—1 q
- Z(Blé)jm(aléj,m—k—l(t)}‘
k=m—j I=1

lns] oo

S22 BmM ).

i=m k=i—1 l;é]

C1b 1
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Using the definition of ¥ and the fact that ((/ — Bg) ™ ") = 1/ (1=, 6), the
above simplifies to

an] 00

|E(S) (s, t, P)}| < Lns) _n;_mH‘\ vi(t, P)|+—Z >

i=m k=i—1

Straightforward computations show that |7;(t,P)| < Cb for any P € ®; and any
t € [0, 1], and reduce the above to

, Cb
sup sup sup |E{S(s,t,P)}| < —,
te[0,1]" s€[0,1] PED, n

for some constant C > 0. This goes to zero as n goes to infinity and completes the
proof of the first part of the Lemma.

To complete the proof and establish (8), note that since F is continuous, an
application of Schwartz’s Inequality yields |H(x) — H(y)| < o+/]x—y| for all
x,y € [0, 1]. That is, the function His uniformly continuous. Using this fact one also
sees that for any 7 > O there exists ad > 0 such that sup_y | <s SUPpen, |Vj(t, P)—
D;(t',P)| < n. Straightforward algebraic manipulations show that |S(s,t,P) —
S/ (s, t', P)| is bounded by

[D;(t, P) — (', P)|
Lns]

m m j—1
+=Do@®) | [T a— JT %) []1@iser <10

i=1 k=j+1 k=j+1 (=1

|ns] m —1
+% Yoy [« { [[1ire <20 - l—[ (V-1 <tp)¢ |

i=1 k=j+1  e=1

which in turn is bounded by

m m n

- - G
sup  sup |D;(t,P) — ;(t', P)| + 7 l_[ Ik — l_[ A ZR"J

[t—t' [l oo <6 PED), k=j+1 k=j+1 | i=1

n i—1
G !
—ER,~||1,~_< fe. 1,
+n z;|: {Vige—1 < max(te, 1))}

i=1 =1

Jj—1
- ]_[ 1{vit¢—1 < min(t, tﬁ»)}}

(=1
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Cp(m—j)8
< sup sup |[V(t,P)— (Y, P)| + u ZR’J
lt=t'll oo <6 PED, i=1

( ZR) [ Z|:H1{Uz+£ 1 < max(te, 1)}

i=1 L{=1
1

1 2
- l_[ 1{viy¢—1 < min(z, fé)}:H .

(=1

Therefore sup,e(o 1) SUP|,—y | o, <5 SUPpeo, IS} (5.2, P) — S](s, 7, P)| is smaller than

C 8
MZRW sup sup [ij(t. P) — Tj(t', P)]

n i1 lt—t' | oo <8 PED;,
1
| | 1< ?
+C [ sup B = Bu(LO) + md)2 | [ =D R
lt—t'll oo <8 n—= "

which can be made arbitrarily small by choosing § and calling on the tightness of
B, and Lemma 2. Moreover, using the same arguments as in the proof of Lemma 1,
one can easily verify that

. . P
sup sup [8](5,,P) = S) (5, t, P > 0.
s€0.1] PP/ €Dy [[P—P |l oo <6

Since [0, 1]" and D}, are compact, the proof will be complete if one shows that for
any t € [0, 1]" and any P € D,

sup [S/ (5. £, P)| —5 0. (12)
0<s<l
To prove (12), set
I_mJ i+j—m—2 o
Sin(s,t.P) = Z Z By [ [1 i1 < 1)
i=1 k=0 h<j
I_nvj i+j—m—2 )
Son(s.t.P) = Z@—Z Z By 7 Y imYijimr—t | [1irn—t < 1)
i=1 k=0 h<j
I_nvj i+j—m—2

S3,(s,t,P) = Z@)z— Z Z (By AR )imEitj—k—1 lnl(vz+h 1 < ty).
i=1 k=0

h<j
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Because of (7), and since S/ (s,t,P) = Zi:l S{m(s, t,P) — si;(t, P), the limit in

(12) follows if one shows that supy.,, |S};n(s, t,P) — E{Sim(s, t,P)}| BN 0 for
ke{l1,2,3}. o , .

Here only the asymptotic of 8}, shall be established. Those of §), and S}, use
the same arguments and are much simpler. Since ||®||o < b and p is finite, the
convergence of 8, will follows from that of ;,,, where

an] i+j—m—2
Kip = —Z Z (By _]+k)/m Yivjg—1- ll—Il(Ut+h 1 =< t).
i=1 = h<j
Note that k;,, = k;, — k1, where
I_nsJ 00
Kip = — ZZ(B Yk | [ 1 it < 1)
i=1 k=0 h<j
and
an] o)
Kip = —Z Z (By EAR )imYitj—k—1- ll—Il(Ut+h 1 =< t).
i=1 k=i+j—m—2 h<j
Using the stationarity of Y, one sees that
CE|Y1| CE\Y|
E( sup i) < —Z Z Ev| = Z <

_ 2’
i=1 k=i—1 I’l(l ‘C)
which goes to zero as n goes to infinity. Therefore is just remains to establish
Sup;e(o.1) [Kin — E(K1,)| converges to zero in probability. To do so, one uses the
invertibility of ¥ and gets

|_mJ o |_mJ
Kip = —ZZ(BW T Yt [ 1) = ZCH
i=1 k=0 h<j

where

o _
§i = h(eigjm1, Eigj2, . ..) = Z Xh€i+j—1—h l_[ 1(vitj—1-k < tj—t),
h=0 k=1
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with o, = Y p_o We(By 7"7"),,,. Observe that

E| 5|

IA

Eleol ZIXh| < CE|80|ZZ|W|T m—j+h—

h=0 {=0

C o
- :Elsolrm_/ZWd < 0.

(=0
Since Y ;2 |¥¢| converges see Bai Bai [1] or Brockwell and Davis Brockwell

and Davis [8], Lemma 3.6 of Kulperger and Yu Kulperger and Yu [24] yields the
invariance property, that is

SUPo<<] ZL"YJ i — SE(%)| = 0,(1) and completes the proof. O

6.1.5 Proof of Lemma 5

To prove Lemma 5, observe that |I[_J{1(s t,y,0,P) — syf o F~'(t;)V;(t, P)| is equal to

LmJ
‘\/‘ [[F{F—l(tj)+Fn(i,j,y,o,P)}—F{F‘l(tj)Jr 4 (Li(P))j”

T
m j—1
+ [F{F_l(tj) + %(Li(l)))j} — tj:|:| l—[ Ik l_[ 1(Vite—1 < 1)

k=j+1 (=1

—S]/f o F_l (lj)\jj(t, P)‘

Applications of the mean value theorem shows that the above is bounded by

WZ o Cb'y'\Zlf(&,) — F{F @)}R;,

\/_ i=1
IVIIIfII v o
IDL ®); [T ][ 1@ier <10 = 560 P)|
k=j+1 (=1
ALl ),

where &;; is such that max |&; — F~'(t;)| < maxR;;//n = o0,(1) by Lemma 2. By
(A1) and Lemma 2 the first two terms converge to zero in probability. The middle
term goes in probability to zero by Lemma 4 and the last term converges to zero
since f is bounded and sup;e( 1j» SUPpesn, |Vj(7, P)| < Cb as mentioned in the proof
of Lemma 4. O
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6.2 Proof of Theorem 1

To prove Theorem 1, note that H, :H?]I,, + ﬁn, where

Lns)

% Z {Iwi, <x)—1(w; <x)}, (5,x) €[0,1] x R™.
i=1

Bn(s,x,P,) =
Since the functions v; are continuous, the proof of the theorem will be complete if
one can show that, as n — oo,

sup sup |Bu(s.x.P) —s 3 fO)vy(x. P)| > 0. (13)

5€[0,1] x€R™ =

From the tightness of P, one sees that the probability that P, is outside ®,, can be
made arbitrarily small by choosing b large enough. Therefore (13) will follows if
one shows

sup sup sup ﬁn(s,x,P)—st(xj)vj(x,P) £>O. (14)

s€[0,1] xER™ PeD), pa

The proof shall be given after adding few notations. For 1 <j < m let

[ns]

- 1
Z [1{gi+j_1 <xj+diyji1.(P)}
i=1

,Bj,n(s, X, P) = ﬁ

—1(gitj1 < X))] l_[ 1(gitr—1 < X2).
k=1.k#j

Now Eq. (14) will be established by showing that

sup sup sup max ‘ﬁj,n(s,x,P) — sf (xj)vj(x, P)} N 0 (15)
s€[0,1] x€ER" PeD,, | Sj=m !

and that

sup sup sup B,,(s, x,P) — Z,B}-,n(s,x,P) BN 0. (16)

s€[0,1] x€R™ PeD), =
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Upon setting t = (71,.. . tw) | with fp = F(x;) for k = 1,...,m and noticing
that 8,,(s, x, P) = Uj(s,7,1,0,P) + v /(s,1,1,0,P), one concludes that (15) is just
a consequence of Lemmas 3 and 5. To prove (16), observe that an application of
the multinomial formula shows that 8, (s, x, ,P) = >, I A£D Ban(s,x, P) where

Ban(s.x.P) =Y B0 (s.x.P)//n and

Bian(s, x, P) = l_[ [1{eirjm1 < x; + digjm1.,(P)}

jeA

—1(gipj—1 < x))] l—[ 1(gigi—1 < x1).
keA

The proof will then be complete if one shows that

B P
sup sup sup |Ban(s.x,P)| — 0,
s€[0.1] x€R™ PED,,

for all subsets A with |A| > 2. The rest of the proof mimics the arguments of Ghoudi
and Rémillard [17] and is given next.
Let A be a subset of _¢Z, with |A| > 2. Let§ > 0 and

[ns]
Brsnls.x.P) = —— T 2 Puasto P [[1C A1) < 83

j=1

where C;, and A, (i, ) are defined in Sect. 6.1. One easily verifies that

sup sup sup

Brn(s.x.P) = Brsa(s. x.P)|
s€[0,1] x€R™ PeD),

< % S UL (G A > 83}
i=1

The righthand-side of the above goes to zero in probability since

Z 1{C;,A (l j) > 8}}‘ = % ZZP{CbAn(le) > 8}
j=1 i=1

552\/_ ;;EA(U)]

The last bound, which is consequence of Markov inequality, goes to zero by
Lemma 2. To complete the proof, it remains to show that for any A C _#,, with
Al = 2,
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- P
sup sup sup |Basn(s,x,P)] — 0.
s€[0,1] xER™ PED,

Since |A| > 2 one assumes that j,jo € A and uses Lemma 1 to verify that
|Basn(s, X, P)| is bounded the sum of the following two terms

Lns)
1 .
ﬁ Z Hx < eipjo1 < x4+ CoAn(i, )} 1xj, — 8 < &ipjo—1 < xj, + 6}
i=1

X l—[ 1(git1-1 <x1+9) l_[ 1(gipx—1 < x1),

1eA\{jjo} keAc
and

Lns]
1
Tn Z 1(x; — Co Ay (i, )) < €ij—1 < X)1(xjy — 8 < &ijo—1 < Xjp + &)
i=1

X l_[ 1(gixi—1 < x4+ 06) l_[ 1(giti—1 < xx).

1eA\{jjo} keAc

Upon noting that C, A, (i,j) = I,(,J,0, Cp, F) for any arbitrary H, € D, one
gets
|Basa(s. X, P)| < [Ul(5.t5,0, Cp. Po)| + |U(s. 15,0, Cp, Z)|

+|U) (5. t5,0,=Cp, Z0)| + |Uj(s. 5, 0, —Cp, P0)|

+[T (5, t5, 0, Cp, Do) — T ((s. 5,0, Cp, P))]

+|T (s, t5, 0, —Cp, 20)) — U} (s, 85,0, —Cy, 20))],
where (x3); = x; + 8 if I € A\ {j} and (x3); = x; otherwise, (x5); = x; + § if
L€ A\ {jijo} while (5)iy = xjy — 8, (x); = % and (x}); = x for [ € A°. We also

have #; = F(x;) and t; = F(x}) for all 1 < [ < m. The proof is concluded by using
Lemma 3. O

6.3 Proof of Corollary 3

First, note that

1

n

\[FAF, )} — u] — [F{F, 0} — FdF, w)}]]| = [FadF, )} —ul <
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Therefore sup,_,-; |F{F; (u)} —u| < supeg [T (1,y)|/+/n + 1/n, which goes to
zero in probability by Theorem 1. The above inequality also implies that the process
VA(F{F; (u)} — u) is tight and is asymptotically equivalent to —F,(1, F, ! (u)).
To complete the proof observe that

Colur, ... up) = H,(1,F; N uy), ..., F, ()

+v/n | [[FF, )y =] Jwi

i=1 i=1

= Hu(1LF, ), Fy ()

+ Y VEF ) —wh) [ Jw+ op(D).

j=1 i#j
Now H,, (1, F, Y1), ..., F Y (um)) » H(L, F~ (1), ..., F~'(uy)) and
VA(F{F ()} — u) ~> —F(1, F~ ' (w)) = —H(1, F(u), 00, . .., 00).

The convergence of C,,, follows the convergence of C, and the fact that C4, =
M4 (C,) where My is the continuous Mobius transform discussed in Genest and
Rémillard [14]. O
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Short Range and Long Range Dependence

Murray Rosenblatt

1 Introduction

In this section a discussion of the evolution of a notion of strong mixing as a measure
of short range dependence and with additional restrictions a sufficient condition for
a central limit theorem, is given. In the next section I will give a characterization of
strong mixing for stationary Gaussian sequences. In Sect. 3 I will give a discussion
of processes subordinated to Gaussian processes and in Sect. 4 results concerning
the finite Fourier transform is noted. In Sect.5 a number of open questions are
considered.

In an effort to obtain a central limit theorem for a dependent sequence of random
variables in [12], I made use of a blocking argument of S.N. Bernstein [1] and was
led to what I called a strong mixing condition [2, 12]. In the blocking argument big
blocks are separated by small blocks. Consider a sequence of random variables X,
n=...,—1,0,1,....Let 8, and .%,, be the o-fields generated by X;, j < n and X,
Jj = m, respectively. If

sup  |P(ANB)—P(A)P(B)| < a(m —n),
A€ERB, BEF,

m > n with (k) — 0 as k — oo, the sequence {X,} is said to satisfy a strong
mixing condition. Such a sequence needn’t be stationary. A sequence with such a
strong mixing condition can be thought of as one with short range dependence and
its absence an indicator of long range dependence.
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The strong mixing condition together with the following assumptions are enough
to obtain asymptotic normality for partial sums of the sequence. Assume that EX,, =
0 for all n. The critical additional assumptions are

1.

2

b
E|Y "Xj| ~hb—a)

J=a

as b —a — oo with h(m) 1 oco as m — oo, where x(0) ~ y(6) means
x(0)/y(0) —> 1as 8 — 6y and
2.

» 248
EY " X| =0(hb-a)*?
Jj=a
as b — a — oo for some § > 0.
The following theorem was obtained.

Theorem 1. If{X,}, E(X,) = O, is a sequence satisfying a strong mixing condition
and assumptions 1. and 2., we can determine numbers ky, p,, q, satisfying

kn(pn + qn) =n,
k. Pn, qn — 0,
Gn/Pn — 0
as n — oo such that
S, .
S 5=
Vi - h(py) e

is asymptotically normally distributed with positive variance (see [12] and [2]).

In the argument the numbers k,c(g,) have to be made very small. An elegant
statement of a result can be given in a stationary case (see Bradley [3] for a proof).

Theorem 2. Let {X,} be a strictly stationary sequence with E(Xy) = 0, EXS < o0
that is strongly mixing and let 6> = ES?> — 00 as n — oc. The sequence (S2/0?) is
uniformly integrable if and only if S,,/ 0, is asymptotically normally distributed with
mean zero and variance one.
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In the paper [9] Kolmogorov and Rozanov showed that a sufficient condition for a
stationary Gaussian sequence to be strongly mixing is that the spectral distribution
be absolutely continuous with positive continuous spectral density.

One should note that the concept of strong mixing here is more restrictive in the
stationary case than the ergodic theory concept of strong mixing. A very extensive
discussion of our notion of strong mixing as well as that of other related concepts is
given in the excellent three volume work of Richard Bradley [3].

In 1961 corresponding questions were taken up for what is sometimes referred
as narrow band-pass filtering in the engineering literature. These results are strong
enough to imply asymptotic normality for the real and imaginary parts of the
truncated Fourier transform of a continuous time parameter stationary process.
Let X(r), EX(f) = 0, be a separable strongly mixing stationary process with
EX*(f) < oo that is continuous in mean of fourth order. If the covariance and 4th
order cumulant function are integrable, it than follows that

-1/2
(%T) /OT cos(A)X (f)dt,

—1/2
(%T) / CinGXd, A £0,
0

are asymptotically normal with variance

nf(A)

and independent as T — oo (f(A) the spectral density of X(f) at A). This follows
directly from the results given in [14].

2 Gaussian Processes

In the 1961 paper [13] a Gaussian stationary sequence {Y;} with mean zero and
covariance

re =EYoY = (1 + k)2~ P as k — oo,

0 < D < 1/2, was considered. The normalized partial sums process

n
—1+4+D
Z,=n 't Zxk
k=1

of the derived quadratic sequence

X, =Y -1
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was shown to have a limiting non-Gaussian distribution as n — oo. The character-
istic function of the limiting distribution is

$(0) = exp (% Z(zm)kck/k)

k=2

with
1 1
k= / dxl---/ dxglxy — x| 7P|y — xa| 7P et — xi 7Pl — x| 7P
0 0

Since conditions 1. and 2. are satisfied by X, the fact that the limiting distribution
is non-Gaussian implies that {X;} and {Y;} cannot be strongly mixing.

In their paper Helson and Sarason [6] obtained a necessary and sufficient
condition for a Gaussian stationary sequence to be strongly mixing. This was that
the spectral distribution of the sequence be absolutely continuous with spectral
density w

w = |P|?exp(u + ¥)

with P a trigonometric polynomial and u and v real continuous functions on the unit
circle and v the conjugate function of v.
It is of some interest to note that the functions of the form

exp(u + v) = w,

with u and w continuous are such that w” is integrable for every positive or negative
integer n. (The set of such functions w is W.) An example with a discontinuity at
zero is noted in Ibragimov and Rozanov [7]

2, cos(kA)
f(A) = exp { /(2: Knk+ 1)
=1

Making use of results on trigonometric series with monotone coefficients, it is clear
that

>, sin(kA)
; k(lnk+1)

is continuous and that

1
Inf(A) ~ Inln T



Short Range and Long Range Dependence 287

as A — 0. So, f(4) and 1/f(A) are both spectral densities of strongly mixing
Gaussian stationary sequences. f(A) has a discontinuity at A = 0 while 1/f(4)
is continuous with a zero at A = 0. Sarason has also shown in [15, 16] that the
functions logw, w € W, have vanishing mean oscillation. Let f be a complex
function on (—, 7] and [ an interval with measure |/|.

Let

=17} x)dx
and

M) = sup 1] [1 F(x) — fild.

[l|<a

f is said to be of bounded mean oscillation if M5, (f) < oc. Let
Mo(f) = lim M(f).
a—0

f is said to be of vanishing mean oscillation if f is of bounded mean oscillation and
My(f) = 0.

In the case of a vector valued (d-vector) stationary strong mixing Gaussian
sequence there is dy < d such that the spectral density matrix w(A) has rank d, for
almost all A. If dy = d the sequence is said to have full rank. The case of sequences
of rank dy < d can be reduced to that of sequences of full rank. A result of Treil and
Volberg [20] in the full rank case is noted.

Theorem 3. Assume that the spectral density w of a stationary Gaussian process is
such that w=' € L. The process is strongly mixing if and only if

lim sup {det(w()k)) exp (—[log det w](A)) } —1,
[A]—>1

where det(w(A)) and [log det w](A) are the harmonic extensions of w and log detw
on the unit circle at the point A on the unit disc.

The harmonic extension # on the unit disc of a function f on the unit circle is given
via the Poisson kernel

1—r2 1+ re
Pr(e):—:Re(l_reiG

) O< <15
1—2rcosf +r2 ) ==

u(re®y = % / i P.(6 — 0)f (eM)dt.

—T
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3 Processes Subordinated to Gaussian Processes

In the paper [18] M. Taqqu considered the weak limit of the stochastic process

[nt]

Z,(t) =n""tPY "X,

k=1

as n — oo and noted various properties of the limit process. Here [s] denotes the
greatest integer less than or equal to s. M. Taqqu [19] and R. Dobrushin and P. Major
[5] discovered about the same time that the simple example of M. Rosenblatt was
a special case of an interesting broad class of nonlinear processes subordinated to
the Gaussian stationary processes. Consider {X,}, EX, = 0, EX> = 1 a stationary
Gaussian sequence with covariance

r(n) = n"“L(n), O<a<l,
where L(t), t € (0, 00) is slowly varying. Let H(-) be a function with
EH(X,) =0, EH*(X,) = 1.

H;(:) is the jth Hermite polynomial with leading coefficient one. Then H(-) can be
expanded in terms of the H;’s

[e.]

HX,) =) gH(X,)

j=1

with
o0
24
ZCJ’J- < 0.
j=1

Assume that @ < 1/k with k the smallest index such that ¢, # 0 (H is then said to
have rank k). Set

AN — Nl—ka/Z(L(N))k/Z

and

Nn—1

vy =4y > HX),
j=N(n—1)
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n=...,—1,0,1,...and N = 1, 2, .. .. Then the finite dimensional distributions of
Y,ILV, n=...,—1,0,1,...as N — oo tend to those of the sequence Y

i(xpFeetag) 1

Yr=d / e T T AW ) - AW ()

i + -+ xx)

with W(-) the Wiener process on (—oo, co) where in the integration it is understood
that the hyper-diagonals x; = x;, i 7 j are excluded, and

d= /exp(ix)|x|“_ldx = 2I"(x) cos (%) .

In [4] P. Breuer and P. Major obtained central limit theorems for nonlinear functions
of Gaussian stationary fields. As in the discussion of results for noncentral limit
theorem we shall consider the case of stationary sequences. Again, let

Nn—1

vy =4y > HX),
j=N(n—1)

with X, a stationary Gaussian sequence EX,, = 0, EX?> = 1. H(-) is real-valued with
EH(X,) =0, EH*(X,) < oo.

Assume that H has rank k and that
> lrmff < oo

(r(-) the covariance function of the X sequence). Let H; be the /th Hermite
polynomial. With Ay = N'/? the limits

. 2 . -2 l/: . 2
Jim E(YY(H)) = Jim AR Yo - =oilt
—N<ij<0

exist for all / > k and

oo
o’ = E cllo} < oo.

I=k

The finite dimensional distributions of Y~ as N — oo tend to the finite dimensional
distributions of 0Z, with the Z, i.i.d. standard normal random variables. T.C. Sun
obtained the case of this result for k = 2 in [17].
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4 Finite Fourier Transform

In 1961 paper [14] I showed that in the case of a separable continuous time
parameter process a variety of filters amounting to narrow band-pass filtering, under
the assumption of strong mixing, integrability of the covariance function and the
4th order cumulant function, stationarity and positivity of the spectral density imply
asymptotic normality. This implies that

T T
/ cos(An)X(r)dt, / sin(A)X (r)dt
0 0

are asymptotically normal as 7 — oo for all A and independent for A # 0 as
T — oo.

A recent paper of Peligrad and Wu [11] is of considerable interest. They use
a stationary ergodic Markov sequence £, on the probability space (§2,.%, P) with
marginal distribution

7(A) = P& € A).

Let

L) = {h:/hzdn < oo,/hdn :o} ,
T = B j < kI, X; = h(§).
The condition
EXo|F—) =0 P almost surely (1)

is of particular interest. They obtain the following theorem among others.

Theorem 4. If (X)) is stationary ergodic satisfying (1) then for almost all 8 €
(0,2m)

[f]

2
tim ZHO _g0). 5.0 =3 x,
k=1

n—00 n

with g integrable over [0, 27] and

L\/- [Re(S4(6)), Im(S,(6))] = [N1(6), N2(6)]
n

under P with S,(0) the Fast Fourier transform computed at 6 and N,(6), N»(0)
independent identically distributed normal random variables with mean zero and

variance g(0)/2. One can always take X as a function of a Markov sequence &, =
(Xi, k < n).
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In a number of examples one considers derived sequences
N -1
ZV=4ay'>"% N=12..,
JjeBy
with
N .. .
B, ={j:nN <j<(@mn+1)N}

and Ay a norming constant (which needn’tbe /N). The interest is in convergence of
the finite dimensional distributions of the sequence Z as N — oo to finite dimen-
sional distributions of a limit sequence Z; . The object is to determine the appropriate

norming constant Ay and the character of the nontrivial limit sequence Z;. One is
also led to the following question — for which sequences &, does one have

Eusor ) =2V, 20)

(equality in distribution for all N = 1,2, ... and ny, ..., ny). If this is satisfied with
Ay = N9, &, is said to be a self-similar sequence with self-similarity parameter «.
In the case of the limit theorems of Taqqu [18, 19], Dobrushin and Major [5] the
limit processes are self-similar with self-similarity parameter o.
It’s of interest to note that if the covariances

r(n) = n~“L(n), a€(0,1)

with L(n) slowly varying are monotone

falx) = Z r(n) cos nx,
n=1

go(x) = Z r(n) sin nx,
n=1

converge uniformly outside an arbitrarily small neighbourhood of x = 0 and
a—1 —1 . 1
Ja(x) ~ Lx ) (1 —a)sin me ,

ga(¥) ~x* 'L (1 — @) cos (%m)

as x — O0+. The real spectral density of the Gaussian stationary process with
covariances r(n) has a singularity at x = 0. Given the Hermite polynomial H;
consider the derived process Hy(X;) (X; the Gaussian process). The covariance of
the derived process
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EH(Xo)Hi (X)) = kIr(j)*

so its spectral density will have a singularity at zero if and only if ko < 1.
A limit theorem of Kesten and Spitzer [8] is of great interest.

Sp=X1+--+ X, n=>1,

is the simple random walk on the integers (X; = £1 with probability 1/2 and i.i.d.)
with random sequence & (x), x integer, i.i.d. with the same distribution as the X;’s but
independent of them. The asymptotic behaviour of

Un = Z S(Sk)
k=1

is considered as n — oo. Uj is the linearly interpolated process. They show that
n Uy, 120,n=1273,...

converges weakly to

o
/ L;(x)dZ(x), t>0,
—0o0
where L;(x) is the local time at x of Brownian motion B; and Z(x) is a Brownian
motion with time —co < x < o0.

£(Sx), Kk = 1,2,... can be extended to a two-sided stationary sequence as
follows. Introduce Xy, X_1,X_»,... as i.i.d. random variables with the same dis-
tribution as the earlier random variables and independent of all the other variables.

Let no = £(0),

§(Xhx)  ifi>0

" E(-Xix)ifi<o’

The sequence 7); is stationary and we obtain an approximation to its spectral density

if Y X #0, i>0

0
E i) = m . i— .
0 =) Be20) ) s if ST X = 0. i=2m

and

I~

——E 2172
m V2
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as m — oo. This suggests that the spectral density is of the form
S cosm
m \/ﬁ
and this behaves like

e/ ~ g

as A — 0.

5 Open Questions

The almost everywhere character (in 8) of the result of Peligrad and Wu indicates
that the asymptotics of the finite Fourier transform at points where there is a
singularity of the spectral density functions are not dealt with. This would, for
example, be the case if we had a Gaussian stationary sequence (X;) with covariance
of the form

r(n) =Y Biln| ™ cosn(d — A)Li(n).
J

B; > 0,0 < a; < 1, A distinct, and wished to compute the finite Fourier transform
of H(Xy) at A = A; with the leading non-zero Fourier-Hermite coefficient k of H(-)
such that ko; < 1. As before the L;(:) are slowly varying. The variance of the finite
Fourier transform and its limiting distributions when properly normalized as N tends
to infinity are not determined. Of course this is just a particular example of interest
under the assumptions made in the theorem of Peligrad and Wu.

The random sequences with covariances almost periodic functions contain a large
class of interesting nonstationary processes. The harmonizable processes of this type
have all their spectral mass concentrated on at most a countable number of

A=pu+b b=bj=....—1,0.1,....

It would be of some interest to see whether one could characterize the Gaussian
processes of this type which are strongly mixing. Assume that the spectra on the
lines of support are absolutely continuous with spectral densities f, (). Under rather
strong conditions one can estimate the f,(-) (see [10]). However, there are still many
open questions.

Acknowledgements I thank Professor Rafal Kulik for his help in putting this paper into coherent
form.
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Kernel Method for Stationary Tails: From
Discrete to Continuous

Hongshuai Dai, Donald A. Dawson, and Yiqgiang Q. Zhao

1 Introduction

The kernel method proposed in this paper is an extension of the classical kernel
method first introduced by Knuth [11], and later developed as the kernel method
by Banderier et al. [1]. The key idea in the kernel method is very simple: consider
a functional equation K(x,y)F(x,y) = A(x,y)G(x) + B(x,y), where F(x,y) and
G(x) are unknown functions. Through the kernel function K, we find a branch, say
¥y = yo(x), such that K (x, yo(x)) = 0. When substituting this branch to the right-hand
side of the functional equation, we then obtain G(x) = —B(x, yo(x))/A(x, yo(x)),
and therefore,

_ —A(x,y)B(x, yo(x)) /A(x, yo(x)) + B(x,y)
F(x,y) = Ky .

through analytic continuation. Inspired by Fayolle, lasnogorodski and Malyshev [7],
Li and Zhao [13, 14] applied this method to study tail asymptotics of discrete
reflected random walks in the quarter plane. The key challenge in the extension
is that instead of one unknown function in the right-hand side of the functional
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equation (referred to as the fundamental form in the case of random walks in the
quarter plane), there are now two unknowns. Specifically, the fundamental form is
of the form:

hx, y)(x, y) = hi(x, )71 (X) + ha(x, y)72(y) + ho(x. y) 70,0,

where 7 (x,y), 71 (x) and 7> (y) are unknown generating functions for joint and two
boundary probabilities, respectively. Following the spirit in the kernel method, we
find abranch Y = Y, (x) such that 2(x, Yo(x)) = 0, which only leads to a relationship
between the two unknown boundary generating functions:

hl(x, Y()(X))T[l (x) —+ hz(x, Yo(x))ﬂz(Y()(x)) + ]’l()(x, Y()(X))JTQ() = O,

instead of a determination of the unknown functions. Without such a determination,
the analytic continuation of the branch and the unknown functions, and the interlace
of the two unknown functions, allow us to carry out a singularity analysis for r; and
1, which leads to not only a decay rate, but to also exact tail asymptotic properties
of the boundary probabilities through a Tauberian-like theorem.

The purpose of this paper is to further extend the kernel method to study
continuous random walks. It is well known that there is a close relationship between
the discrete random walk and the continuous one. For example, some classical
continuous models can be approached in law by discrete random walks, which is
a natural motivation for the extension. The direct motivation is the recent work by
Dai and Miyazawa [4, 5], in which the authors studied tail asymptotic properties
for a semimartingale reflecting Brownian motion by extending the approach used in
Miyazawa [16] for the discrete random walk.

Semimartingale reflecting Brownian motions (SRBM) are important models,
often playing a fundamental role in both theoretical and applied issues (see for
example, Dai and Harrison [3] and Williams [20, 21]). Their stationary behavior,
such as properties of stationary distributions when they exist, is important, espe-
cially in applications. However, except for a very limited number of special cases, a
simple closed expression for the stationary distribution is not available. Therefore,
the asymptotic analysis, often used as a tool of approximation, becomes more impor-
tant besides for its own interest. For example, Miyazawa and Rolski [17] considered
asymptotics for a continuous tandem queueing system; Dai and Miyazawa [4] used
an inverse-technique to study the tail behavior of the marginal distributions for the
two-dimensional SRBM; and Dai and Miyazawa [5] combined an analytic method
with geometric properties of the SRBM to study the tail asymptotic properties of a
marginal measure, which is closely related to the kernel method surveyed here (also
see our final note at the end of this paper).

The main focus of this paper is to provide a survey on how we can extend the
kernel method, which is employed for two-dimensional discrete reflected random
walks, to study asymptotic properties of stationary measures for continuous random
walks. We take the SRBM as a concrete example to detail all key steps in the
extension of the kernel method. One can find that the extension proved here is
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completely in parallel to the method for discrete random walks. In fact, the SRBM
case is much simpler than a “typical discrete random walk case” (a non-singular
genus one case). Specifically, the analytic continuation of a branch defined by
the kernel equation and the meromorphic continuation of the unknown moment
generating functions to the whole cut plane become straightforward for the SRBM
case as shown later in this paper. Therefore, the interlace between the two unknown
functions and the continuous version of the Tauberian-like theorem are among the
key challenges, details of which will be provided.

The rest of this paper is organized as follows. In Sect. 2, we provide the model
description of the semimartingale reflecting Brownian motion, and discuss some
properties of this model. In Sect. 3, properties of the branch points and the two
branches of the algebraic function defined by the kernel equation are studied.
Section 4 is devoted to asymptotic analysis of the two unknown functions in the
kernel method. In Sect.5, we prove a continuous version of the Tauberian-like
theorem. Section 6 is devoted to characterizing the exact tail asymptotic for a
boundary measure of the model. A final note is provided to complete the paper.

2 SRBM

We first introduce the general SRBM models. SRBM models arise as an approxima-
tion for queueing networks of various kinds (see for example, Williams [20, 21]).
The state space for a d-dimensional SRBM Z = {Z(¢),t > 0} is R‘_‘;_. The dynamics
of the process consists of a drift vector w, a non-singular covariance matrix X', and
a d x d reflection matrix R that specifies the boundary behavior. In the interior of
the orthant, Z is an ordinary Brownian motion with parameters y and X', and Z is
pushed in direction R/, whenever the boundary surface {z € R? : z; = 0} is hit,
where R’ is the jth column of R, for j = 1,...,d. The precise description of Z is
given as follows:

Z(t) = X(t) + RY(¢), fort >0, (1)

where X is an unconstrained Brownian motion with drift vector x, covariance matrix
X and Z(0) = X(0) € R%, and Y is a d-dimensional process with components
Yy, ..., Y, such that

(i) Y is continuous and non-decreasing with Y(0) = 0;
(ii) Y; only increases at times ¢ for which Z;(1) = 0,/ = 1,...,d;
(iii) Z(r) e R, t> 0.

In order to study the existence of such a process, we introduce some definitions.
We call a d x d matrix R an S-matrix, if there exists a d-vector @ > 0 such that
Rw > 0, or equivalently, if there exists w > 0 such that Rw > 0. Furthermore, R
is called completely S if each of its principal sub-matrices is an S-matrix. Taylor
and Williams [19] and Reiman and Williams [18] proved that for a given set of
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data (X, i, R) with X' being positive definite, there exists an SRBM for each initial
distribution of Z(0) if and only if R is completely S. Furthermore, when R is
completely S, the SRBM is unique in distribution for each given initial distribution.
A necessary condition of the existence of the stationary distribution for Z is

R is non-singular and R~y < 0. 2)

Recall that any matrix A of the form A = s/ — B with s > 0 and B > 0, for which
s > p(B), where p(B) is the spectral radius of B, is called an M-matrix. For more
information, see [2]. Harrison and Williams [10] proved that if R is an M-matrix, the
existence and uniqueness of a stationary distribution of Z is equivalent to Eq. (2).
They further explained how the M-matrix structure arises naturally in queueing
network applications. For a two-dimensional SRBM, Harrison and Hasenbein [9]
showed that condition (2) and R being a P-matrix are necessary and sufficient for
the existence of a stationary distribution. Here, we call a square matrix M a P-matrix
if all of its principal minors are positive.

In this paper, we consider the same model as in Dai and Miyazawa [4]. It is a
two-dimensional SRBM Z with data (X, i, R), where R = ()22 is a P— matrix,
and (R, p) satisfies the condition (2); namely

rip >0, rn >0, and ri1rn — riarg > 0; (3)
and

Py — Fiapby < 0, and rippy — o < 0. 4)

Under conditions (3) and (4), the SRBM is well defined and has a unique stationary
distribution 7. Let Z = (Z;,Z;) be a random vector that has the stationary
distribution of the SRBM. We also introduce two boundary measures as they did
in [4]. Let E;(-) denote the conditional expectation given that Z(0) follows the
stationary distribution w. By Proposition 3 of Dai and Harrison [3], we get that
each component of E; (Y(1)) is finite. Therefore, define

1
V) = B[ [ tawendrio]. i=1.2 )

where A C Rﬁ_ is a Borel set. From (5), one can easily find that V; defines a finite
measure on Rﬁ_, and has a support on the face F; = {x € Rﬁ_ : x; = 0}. Notice
that V;(A) is the expected fraction of time, during the unit interval, spent in A by
the SRBM Z when the “time clock” runs according to the ith reflector Y¥;. This is an
equivalent quantity to the joint probability vector 7;; when the ith component is 0
in the discrete case. Readers may refer to Konstantopoulos, Last and Lin [12] for
more interpretations of V;. Tail probabilities of SRBM models have attracted a lot of
interest recently. See, for example, Dupuis and Ramanan [6], Dai and Miyazawa [4]
and the references therein. Our focus in this paper is to study the tail behavior of the
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boundary measures V;, i = 1, 2, in terms of the kernel method. It follows from Dai
and Harrison [3], and Harrison and Williams [10] that V;, i = 1, 2, have continuous
densities.

There usually exist two types of tail properties, referred to as rough and exact
asymptotics. Let g(x) be a positive valued function of x € [0, co). If

1
a = lim ——logg(x) (6)
X—>00 X

exists, g(x) is said to have a rough decay rate «. On the other hand, if there exists a
function 4 such that

lim 59 _

X—>00 h(x) - 0

then g(x) is said to have exact asymptotic i(x). In our case, we are interested in the
function defined by the boundary measure V;.

In order to reach our goal, we use moment generating functions. In the sequel,
for = (0,,6,) € R?, we define

$(61.62) = Erel®?), ®)
1
46 = [ | i) =B, [ e 0ariw), ©)
R% 0
and
1
#2000 = [ Vi@ =B, [ M Oara). (10)
R% 0
Functions ¢ and ¢;, i = 1, 2, are related through the following fundamental form.
Let R = (ry),,, and ¥ = (X;),,,. It follows from (2.3) in Dai and Miyazawa [4]
that for ¥ = (x,y) € R? with ¢(x,y) < oo,
Y (x,y) = yi(x, )91(y) + v2(x, )2 (x), (11)
where
y1(x,y) = rux + ray, (12)
Y2(x,y) = riox + ry, (13)
and
A . .
)/(x,y):—<x,,u>—§ <X, XXx>, (14)

with u = (u1, p2) satisfying (4).
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3 Kernel Equation, Branch Points, and Analytic
Continuation

In this section, we study the kernel equation:

y(x.y) =0. 15)

Specifically, we provide detailed properties on the branch points, and also the
function branches defined by the kernel equation. Only elementary mathematics
will be involved in obtaining these properties.

We first rewrite the kernel equation in a quadratic form in y with coefficients that
are polynomials in x:

1 1
y(x,y) = xp1 + yua + Eznxz + Ypxy + 5222)/2

1 1
= 5222)’2 + (u2 + Zax)y + 54‘711962 + xu
= ay’ + b(x)y + ¢(x) = 0, (16)
where
1 1.,
a= 5222, b(x) = ur + Xpx and  c(x) = xuy + 5211)6 .
Let
D1 (x) = b*(x) — 4ac(x) (17)

be the discriminant of the quadratic form in (16). Therefore, in the complex plane
C, for every x, two solutions to (16) are given by

—b(x) £ /b2(x) — dac(x)
2a ’

Yi(x) = (18)

unless D;(x) = 0, for which x is called a branch point of Y. We emphasize that in
using the kernel method, all functions and variables are usually treated as complex
ones.

Symmetrically, when x and y are interchanged, we have

y(x,y) = ax* + b(y)x + &(y) = 0, (19)

where

I QR 2y) =
a= Ezllab@) = Xpy+p, and c(y) = 5222)’2 + Yia.
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Let D, (y) = b?(y) — 4ac(y). For each fixed y, two solutions to (19) are given by

—b(y) £ \/B2(y) — 4ac(y)

X+(y) = 7 , (20)

unless D,(y) = 0, for which y is called a branch point of X.
We have the following properties on the branch points.

Lemma 1. D;(x) has two zeros satisfying x; < 0 < x, with x;,i = 1,2 being real
numbers. Furthermore, D1 (x) > 0in (x1,x;), and Di(x) < 0in (—00,x1) U (x2, 00).
Similarly, D»(y) has two zeros satisfying y1 < 0 < y, with y;,i = 1,2 being real
numbers. Moreover, Dy(y) > 0 in (y1,y2), and D2(y) < oo in (—00,y1) U (2, 00).

Proof. Note that
Di(x) = 4[(2122 S + 2(Ziapts — Saaii)x + ug] 1)

Then it follows from (21) that the discriminant of the quadratic form Dj(x) is
given by

A= (Zn— Znm)’ — (Zh — ZuZn)us. (22)

One can verify that A > 0. In fact, since u = (i1, 42) satisfies conditions (3)
and (4), iy or U, is negative. Without loss of generality, we assume that p, < 0.
If u; > 0, it follows that since the matrix X' is positive definite, A > 0. If u; < 0,
elementary calculations show that A > 0.If u; = 0, itis clear that A > 0. So, there
exist two distinct solutions to D (x) = 0. We assume x; < x,. Now we show that
x1 <0 < x. If 7é 0, then

13

__m 23)
L - Zn

X1X2 =

since | X| > 0, i.e., 2122 — X112 < 0. Therefore x; < 0 < x,. If up, = 0, then we
can easily get x; = 0 and x, > 0. Since 2122 — Y11 X»n <0, we get Di(x) > 0 for
x € (x1,x2)-

Similarly, we can prove the results for D,(y). O

It follows from Lemma 1 that /D;(x) is well defined in [x;, x,]. Next, we will
study the analytic continuation of this function on the cut plane C \ {(—oo, x]u

[XQ, OO)}
Set x = u + iv, where u, v € R. Then, we can rewrite D1 (x) as:

Di(x) = R(u, v) + I(u, v)i, 24)
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where

R(u,v) = (2122 - 211222) W —v%) + 2(Zapto — Snpr)u + p3,

and
I(u,v) = 2v{(2122 —XnXn)u+ Xops — 222#1}-
For fixed u and u # it = —%, we get from the definition of /(u, v) that
I(u,v) =0<<= v =0. (25)
On the other hand,
R(u,0) = Dy (u). (26)

It follows from (25), (26) and Lemma 1 that
R(u,v) <0 < u € (—o0, x1) U (x2, 00). 27
For u = u, we have
I(u,v) =0 vek (28)
Since x; < i < xp,
Dy (i) = D (i + 0i) > 0. (29)
Therefore,
R(u,0) = (2122 - Ellzzz)ﬁz + 2(Z1ap2 — Zoppu )it + p3 > 0. (30)
On the other hand,
—(Z, - ZuZn)v? >0, (31)
since
YL — ¥ %5 <0.
It follows from (30) and (31) that

R(it,v) = R(@1,0) — (X}, — 211 Zio)v* > 0. (32)
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Therefore, along the curve
C:{x:u—i—iv:u:ﬁ},
we have
R(u,v) = Re(D;(x)) > 0.

From above arguments, we know that /D;(x), as the analytic continuation, is
analytic in C \ {(—oo, x1] U [x2, 00)}. For convenience, denote

C,=C\ {(—oo,xl] U [, oo)}.
C, =€\ {(=00. 1] U b2, 00)}.

The following lemma is immediate from the above discussion.

Lemma 2. Both Y (x) and Y_(x) are analytic on C,. Similarly, both X+ (y) and
X_(y) are analytic on C,.

Remark 1. In the SRBM case, the analytic continuation of the lower part of
the ellipse y(x,y) = O coincides with Y_(x) in the whole cut plane, and the
continuation of the upper part with Y (x). However, in the discrete case, the analytic
continuation, denoted by Yy(x), of the lower part is not always equal to Y_(x) or
Y4 (x), which is Y_(x) in some parts of the cut plane and Y (x) in other parts. Also,
the upper part can only be continued to the whole cut plane meromorphically. One
can prove that the meromorphic continuation Y; (x) has two poles in the cut plane.
To be consistent with the discrete case, in the following we use Y, and Y instead of
Y_ and Y. Similarly, we use X, and X, instead of X_ and X.

Based on Lemma 2, we have the analytic continuation of y; for k = 1, 2.

Lemma 3. The function y,(x, Yy(x)) is analytic on C,. Similarly, the function
v1(Xo(y),y) is analytic on C,.

Proof. 1t follows from the definition of y,(0) that y,(x, Yo(x)) = riix + r Yo(x).
The analytic continuation is immediate from Lemma 2. O

Remark 2. Similar results were obtained in [4] based on geometric properties.

4 Interlace Between ¢; and ¢, and Singularity Analysis

For (x,y) satisfying the kernel equation: y(x,y) = 0, if ¢(x,y) < oo then the
right-hand side of the fundamental form provides a relationship between the two
unknown functions: y;(x, y)¢1(¥) + y2(x,y)¢2(x) = 0. Through a study of the
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interlace between the two unknown functions, we will perform a singularity analysis
of these functions. For characterizing exact tail asymptotics for the two boundary
distributions V;, i = 1, 2, the following are important steps:

(i) analytic continuation of the functions ¢; (y) and ¢, (x);
(ii) singularity analysis of the functions ¢; (y) and ¢,(x); and
(iii) applications of a Tauberian-like theorem.

The interlace between ¢; (v) and ¢, (x) plays a key role in the analysis.

4.1 Analytic Continuation

We first introduce the following notation:

I = {(x.y) : (x,y) € R? such that y(x,y) < 0},
O = {(x,y) € R*: y(x,y) = 0},
= {(xy : (x.y) € R yi(x,y) <0},

D= {(x,y): (x.y) € R% y(x,y) <0}.

We also introduce the following lemma, which is a transformation of Pring-
sheim’s theorem for a generating function (see, for example, Dai and Miyazawa [4]
and Markushevich [15]).

o0

Lemmad4. Let g(A) = [, e™dF(x) be the moment generating function of a
probability distribution F on Ry with real variable A. Define the convergence
parameter of g as

Cy(g) =sup{A > 0: g(A) < oo}. (33)

Then, the complex variable function g(2) is analytic on {z € C : Re (z) < C,(g)}.
The following lemma is an immediate consequence of the above lemma.

Lemma 5. ¢(z) is analytic on {z : Re(z) < 12}, and ¢,(z) is analytic on {z :
Re (z) < 11}, where vy = Cp(¢$1), and 11 = Cp(¢h2).

The following lemma implies that t; > 0 and , > 0.

Lemma 6. ¢:(z), i = 1,2 can be analytically continued up to the region {z :
Re(z) < €} in their respective complex plane, where € > 0.

Proof. In order to simplify the discussion, we let 2;, i = 1,2, 3,4 denote the ith
quadrant plane. One can easily get that y () passes through the origin (0, 0). By the
proof of Lemma 1, we have that p; or w, is negative. Therefore, without loss of
generality, we assume that
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I nNa; #0.

Corresponding to (34), without loss of generality, we can further assume that

'ne, #0.
By (34), for any (6, 6,) € dI" N 23, we have
Y1(0)1(02) + y2(0) (01, 62) = 0.
So,

_ 1261, 62)2(61)

¢1(62) = @)

Using 6, = Xo(6,) for 6, € [y,, 0) leads to

Y2(X0(62). 02)2(X0(62))
Y1(Xo(62), 6)

$1(62) = —

On the other hand, for all 6; € [x;, 0) we have

$2(0)) < oo.

It follows from (35) that

o = {91 -0, € (x1, 0) such that Yo(6;) < 0, and Y, (6)) > o} £0.

Let
B = {92 10, = Y1(0)) for any 6, € sz}
Then, from (40) and (41) we have that for any 6, € £,

Xo (92) < 0.
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(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

By (37), (42) and Lemma 4, we conclude that ¢;(6,) can be analytically

continued to {z :Re(z) < €} for some € > 0.

Using a similar argument, we can conclude that ¢,(6;) can be analytically

continued to a region {z : Re(z) < €} with the same € > 0.

O

The following property allows us to express ¢(y) and ¢,(x) in terms of each

other as a univariate function.
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Lemma 7. ¢, can be analytically continued to the region: {z € C; : y2(z, Yo(2)) #
0} N{z € C,: Re (Yy(2)) < 12}, and

Y1(2. Yo(2)) 1 (Yo (2)) .

P == ¥2(2. Yo ()

(43)

Similarly, ¢ can be analytically continued to the region: {z € C,
Y1(X0(2),2) # 0} N{z € C, : Re (Xo(2)) < 11}, and

¥2(X0(2). 2)$2(X0(2))
Y1(Xo0(2). 2)

$1(2) = — . (44)

Proof. Since y(6) = 0 passes through the origin (0,0), and t; > 0 and 7, > O,
there exists 0 < xp < 77 satisfying the following conditions:

(1) There exists an open neighborhood U (xo, €) with € > 0, such that for all x €
U(xo,€),0 < Re(z) < t1; and

(2) Corresponding to xo, there exists an open neighborhood U(Yy(xo), §) such that
forally € U(Yo(x0),6), Re (y) < 1.

So, we can find a small enough § > 1 > 0 such that (xo, Yo(xo) + 1) € I". On the
other hand, ¢, (xg) < oo and ¢ (Yo(xo) +1) < co. So we can get that ¢(x0, Yo(xo) +
n) < oo. Hence, ¢(x0, Yo(xo)) < oo. By Eq.(11), Eq. (43) holds. Noting that the
right-hand side of Eq. (43) is analytic except for the points that y»(z, Yo(z)) = 0 or
Re (z) > 1, by the uniqueness of analytic continuation, the lemma is now proved.
O

Remark 3. LetD = {(x,y) € R? : ¢(x,y) < 0o}. We then have ¢(z) < oo for any
z€ DN I Infact, Eq. (11) holds as long as ¢ (x, y), ¢ (y) and ¢,(x) are finite. On
the other hand, the function y(x, y)¢(x,y) is an analytic function of two complex
variables x and y for Re (x) < 0 and Re (y) < 0. This domain can be analytically
extended as long as ¢ and ¢, are finite. If both ¢;(y) and ¢,(x) are finite, then
y(x,y)¢(x,y) is finite. Moreover, if y(x, y) # 0, then ¢ (x, y) is finite.

4.2 Singularity Analysis

In this subsection, we study properties of singularities of ¢, (x). We can use the same
method to study ¢; (y), which will not be detailed here. Inspired by Lemmas 4 and 5,
in order to determine 71, we only need to consider the real number case.

We first introduce a lemma, which will be used later. Let X be the solution of
y = Yo(x) fory € (0, yz]. Then, we have the following lemma.

Lemma 8. Ifx = 1, then X = X1(y).
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Proof. Since X is a solution y = Yy(x), x = Xo = Xo(y) or x = X1 = X1(y).
Next, we show that if ; = X, then ¥ # X, (). If ¥ = Xo(9), then )/(X()@),jz) =
1 (Xo(3),3) = 0.

On the other hand, if X = 7y, then X < x*, which is given in Lemma 11 below. So
)/Q(X()G/),il) < 0. Hence (Xo(y),y) € ol ﬂBFzﬂFﬂRZ. But ar7 ﬂarzﬂFﬂRz =
{(0,0)}. It is a contradiction, which proves the lemma.

Lemma9. Let 1y = X be between 0 and x,. Then, X is a zero of yz(x, Yo(x)) or
Yo (%) is a zero of y1(Xo(y), y). Similar results hold for ¢1 ().

Proof. If 7y = X is not a zero of y,(x, Yo(x)), then we show that y* = Y (X) is a zero
of y1(Xo(y),y). It follows from Lemmas 3 and 7 that y* should be a singular point
of ¢1(Yo(x)).

On the other hand, we have Yy(X) < yy, since x € (0, x;). Otherwise, from the
definitions of Yy and Y}, we get that Y1 (X) = Yy(%). Then, x = x,, which contradicts
the assumption. Similarly, we get that

Xo(y") < X1(y") < xa. (45)
Since
o HBI),
we have
T 2(X0(1o0). Y00 (Xo (o)) )
71 (Xo(Yo). Yo(x))
By Lemma 8, we have
3= X16). (48)
Then, by (45) and (48), we get
Xo(y*) = Xo(Yo(%)) < & (49)

So, according to (47), (49) and the assumptions, we conclude that y* is a zero of
Y1(Xo (), ). o

The following lemma follows directly from Lemmas 7 and 9.

Lemma 10. The function ¢,(x) is meromorphic on the cut plane C,. Similarly, the
Sfunction ¢ (y) is meromorphic on the cut plane C,,.
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From Lemma 9, we get that the singular points of ¢, (x) have a close relationship
with the zeros of y»(x, Yy(x)) and y;(Xo(y), y). In the sequel, we discuss the zeros of
y2(x, Yo(x)) in detail. Similar results for y»(x, Yo(x)) can be obtained using a similar
argument.

Since y,(0,0) = 0 and y(0,0) = 0, y2(x,y) = 0 and y(x,y) = 0 must intersect
at some point (x4, y,) on dI" other than (0,0). We claim that x, > 0. In fact,
V2 (xq, yq) = 0 is equivalent to r1»x, + r2y, = 0. This implies that

.
Vg = ——2x,. (50)
Ly

On the other hand, since y (0, 6,) = 0 forany 8 = (0;,6,) € dI", and X is positive
definitive, we get that for any 6 € 91" and 8 # 0,

<0,u><0. (51)
Combining (50) and (51), we get that x,(rpo 1 — riop2) < 0. It follows from Eq. (4)

that x, > 0.
In the next lemma, we will characterize the roots of y» (x, Yo (x)) =0.

Lemma 11. x* is the root of yz(z, Yo(z)) = 0 in (0, xp] if and only if
y2(x2. Yo (x2)) = 0.
Proof. It is obvious that x, is a solution of y(z,Yo(z)) = O if and only if

y2(x2. Yo(x2)) = 0.

Next, we assume that x* € (0, x;). We first show that if x* is a solution of
y2(x. Yo(x)) = 0, then y>(x2, Yo(x2)) > 0. If the statement does not hold, then we
have y, (x2, Yo(x2)) < 0. Since Yy(x) = Y;(x) at the point x,, we get

y2(x2, Yi(x2)) <O. (52)

Since, for fixed x, y» (x, y) is strictly increasing in y, we have

y2(x Yo%) < y2(x. Y1(x)) (53)

forx € (0, xp).
On the other hand,

y2(x*, Yo(x™)) = 0. (54)
By (52), (53) and (54), we know that there exists X € (x*, x;) such that
n(E Yi®) =0, (55

which contradicts the fact that the line y2(x,y) = 0 has at least one intersection
point with y(x,y) = 0 besides the origin (0, 0).
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Now we show that if y, (xz, Yo (xz)) > 0, then y, (x, Yo (x)) = 0 has aroot between
0 and x,. Since y» (x, Yo(x)) is a continuous function (xi, x), it suffices to show that
V2 (x, Yo (x)) > 0 cannot hold for any x € (0, x;). From the definition of ¥, and
Y1 (x), we get that if yz(x, Yo(x)) > 0, then )/z(x, Y, (x)) > 0, since rp; > 0. So, if
V2 (x, Yo (x)) > 0 for any x € (0, x,), then

Tnpa(x. Yo(x)) y2(x. Y1 (x)) > 0. (56)
We can rewrite Eq. (56) as follows:
F(x) = x((Zaarfy — 2rirn Zia + 15 Z1)x — 2riormits + 2r5,u1) > 0. (57)
On the other hand, it follows from Eq. (4) that
2r§2u1 — 2r1arn i < 0.
Hence,
F'(0) = 215,11 — 2riarapta < 0. (58)

Since F(0) = 0, we cannot have F(x) > 0 for all x € (0, x;). From the above
arguments, the lemma is proved. O

Next, we demonstrate how to get the zeros of y,(x, Yy(x)). For convenience, let

@ = 72(xY(®). ik = 72(x. ¥1(x) and f(x) = 2afo(x)fi (x). Hence, a zero
of fo(x) must be a zero of f. Conversely, any zero of f(x) must be a zero of f;(x) or
f1(x). From Eq. (16), we have

+ X
Yi() + Yolo) = 222228 (59)
X
+ 13X
Yi(0)Yo(n) = 2T 2t =1 (60)

2
Therefore,

S ) = 2afo(x)f1(x)
= x((zzzrfz —2r1rn X + 13 X11)x — 2rirnps + 27%2#1)- (61)

By Eq. (61), there exist two solutions to f(x) = 0, one of which is trivial. We assume
that the non-zero solution is xy, i.e.,

2riirnpa — 25, i

- . (62)
Znrl, = 2rmirnXn + 5,20

X0
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Remark 4. 1f x* is a non-zero solution to y,(x, Yo(x)) = 0, then x* = x,.

By the above arguments, we get that the roots of y, (x, Yo(x)) = 0 are all real.
Similarly, y1(Xo(y),y) = 0 has only real roots.

4.3 Asymptotics Behavior of ¢,(x) and ¢1(y)

In this subsection, we provide asymptotic behavior of the unknown functions ¢, (x)
and ¢;(y). We only provide details for ¢, (x), since the behavior for ¢ (y) can be
characterized in the same fashion.

First, we recall the following facts. If y, (x, Yo (x)) has a zero in (0, x], then such
azero is unique, denoted by x*. If y, (x, Yo (x)) does not have a zero in (0, x;], for the
convenience of using the minimum function, let x* > x, be any number. Similarly,
if 1(Xo(y). ¥) has a zero in (0, 2], then such a zero is unique, denoted by y*. For
convenience, if y; (Xo(y), y) does not have a zero in (0, y;], we let y* > y, be any
number. Let X be the solution of y* = Y(x). Then x = Xo(y*) or ¥ = X;(y*). By
Lemma 8, for convenience, we let X > x, be any number, if X = Xo(y*).

Remark 5. From the above discussion, we know that 7; € {x*,X, x,}. This same
result was obtained by Dai and Miyazawa [4] using a different method by the
following four steps: (1) defining T = (;, 72); (2) providing a fixed point equation
based on the convergence domain; (3) proving the existence of the solution to the
fixed point equation; (4) showing T = (71, 12) is the solution. Our method is in
parallel to the kernel method for discrete random walks in Li and Zhao [13, 14].

To state the main theorem, we introduce the following notations for the conve-
nience of expressing the coefficients involved.

(1)
&mﬁwwwﬁgfwnwwmw,ﬁn:x*<mmxmk
Ai(t)) = n(En@)E(om) if 7 = ¥ < min{x*, v}

y (2% ®) 1)
yi (¢ 7o) Lo ™) £
(S Sn—3h) @ —x1)

ifty =x*=X=x,,

where L(y) is given by

Z1r2(Xo(). y)92(Xo ) y1 (X1 (). y)
y(}’%l 222 — 2212}’12 + ’%1)

L(y) = , (63)
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and f*(x) is given by

f* (x) = x(zzzrfz — 2% + r%l) (64)
(ii)
*, Y, * T2 R if = x* = < "';
y1(x*. Yo(x*)) Y 7o s — ifo=x*=x<%*
Asx(ty) = EZZZ(Yo(xz)) " (xz,YO(xz)) ) _ .
, if 1y =X =x <x*.
VI Z0n—5h (n—x) Vz(XLYo(Xz))
(iii)
oT -
Asz(t) = — K(x
3(m) 0y 1(2.Yo(x2)) (x2)
where T'(x,y) is given by
y1(x, »)¢1(y)
T(x,y) = ———""—"——, (65)
)/Z(x, y)

and K (x») is given by

- -/ (Z11Zn - XD)
K(XZ) = A/ X2 — X1. (66)

X

(iv)

Y1 (%, Yo(x*))v2 (Xo (Yo (x*)), Yo(x*)) 2 (Xo (Yo (x*)))
Y2 (%, Yo(x*)) vy (Xo(Yo(x*)), Yo(x*)) Y5 (x*)

Ay(r)) =

Theorem 1. For the function ¢, (x), a total of four types of asymptotics exist as x
approaches to Ty, based on the detailed properties of 1.

Case 1: Ifty = x* < min{X, x,}, or 1y = X < min{x™, x5}, or 1y = X = x* = x,

then
xli)ﬂrll (t1 = )2 (x) = Ai(1). (67)

Case2: Ifty=x"=xy <X ort =X=x, <x* then

Xli_{lfll VT =X (x) = Asx(Ty). (68)
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Case 3:  If 11 = xp < min{X, x*}, then
lim A/ T1 — Xi é(x) = A3(‘L’1). (69)
X—=>T1]

Case4: Ifty =x* =X < xp, then

lim ( — 1)’ (x) = As(T1). (70)

Proof. We first consider the case that x* < min{X, x,}. It is obvious that x* = xy. In
such a case, Yy(x*) is not a pole of ¢ (z), and Yo (x*) is a simple pole of ¢ (z). From
Eq. (43), we get

Y1(x Yo ()1 (Yo (x))
y2(x. Yo(x))
_ Zan (x, Yo(x)) 1 (Yo (x)) y2(x. Y1 (x))
N 2af (x)
_ Zan (x, Yo ()1 (Yo (x))y2(x, Y1 (x))

- (x—x)f* (1) ’ .

ha(x) = —

where f*(x) is given by Eq. (64).
Therefore,
Ty (x*, Yo(x*)) 1 (Yo (x™)) y2 (x*, Y1 (x*))
)
Next, we consider the case that X < min{x*, x,}. In such a case, y = Yp(x*) is a
zero of y; (Xo ), y). Then, using the same argument as the above case, we get that

lim @ =) (x) = . (72)

}g}}@ —-»$1() = L), (73)
where L(y) is given by (63). Hence,
(x, Yo(x)) 1 (Yo(x))
y2(x, Yo (x))

i oV (x. Yo(x)) (Yo (%) — Yo(x)) 1 (Yo (x))
= lim(x — x) — .
xo% Y2(x, Yo(x) (Yo (%) — Yo(x))

On the other hand, we can rewrite Y;(x) as follows.

lim (& — )¢z (x) = lim (3 — )2

(74)

_(’uz —+ Elzx) - \/(211222 — Efz)(x—xl)(xz —X)
n
= () +p(. )

Yo(x) =
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where

p(x) = _ B2t Xox
Yy

and

JE1 0 - S - ) — v
Zn '

q(x) = —

So, we easily get that

r®) —p® _ Tn

e el 79
and
By Egs. (75), (76) and (77),
tim 20710 _ 4y, 78)
X—>X X — )C

Since X < xp, one can get Y'(X) # 0. Noting that y, (5c, YO()?)) # 0, we get from
Eqgs. (74) and (78) that

y1(%. Yo (X)) L(Yo (%))
Y2 (% Yo(®)Y@E)

lim(x — x)¢(x) = (79)

Now, we consider the case that x* = X = x,. Since I is a convex set, and the
curve of y; is above the curve of y», we can easily get that Yo(x*) < y». In such a
case, we first have that lim, .« (Yo(x*) — Yo(x))¢1 (Yo(x)) = L(Y,(x*)). Hence,

Y1(x Yo ()1 (Yo(x))
y2(x, Yo(x))

Y1(x, Yo(0) (Yo (x*) — Yo(0)1 (Yo(x)  /x* —x

(" =)o (x) = —(x" —x)

= . (80
—pa(x, Yo(x)) \ Va* —x Yo(x*) — Yo(x) 80

By Eq. (75),
lim Yo(x*) = Yo(x) _ \/(2”222 — ZH) (02 —x1) @0

S —x) X '



316 H. Dai et al.
and

y2(x, Yo(x)) Ya(x*, Yo(x*)) — ya(x, Yo(x))

lim = lim
x—=>x* N /x* —Xx x—>x* VXt —x
—rn\[(Z11Z0n — Th) J/x — X
= . (82)
2
So, by Egs. (80), (81) and (82), we get
x*, Yo(x*))L(Yo (x*) X
lim (" — x)a(x) = yi(x*, Yo (x™®)) (2 0(x™)) 2 83)
x—x* r22(211222 — 212)(x* —xl)

We then consider the case that x* = x, < X. In such a case, ¢, (Yo(x)) is analytic
at y* = Yo(x*) and y,(x*, Yo(x*)) = 0. Therefore

Xl_lfil* vVt — X¢2 (X) = _xl_lg;l* Y1 (X, YO(X))¢1 (YO(X)) v (X Yo(x)) i ]/;())CC* Yo(x*))
2

= y1(x*. Yo(x™)) o1 (Yo(x™)) (84)

) Z11 52 — Z3,(x2 — x1)

The next case is that ¥ = x, < x*. In such a case, y>(x*, Yo(x*)) # 0 and
y = Yo(x) is a pole of ¢;(y). Then, we have

y1(x, Yo(x))

Jim VE=R9200 = lim S (Yo(a) — Yo (o) T

=x2 Yo(x2) — Yo(x)
ZnL(Yo(x2)) Y1(x2, Yo(x2))

\/M(xz — ) V2002 Yo(x2))

The second last case is x; < min{x, x*}. In such a case, we can see that 7, =
vo. In fact, if 7, < y,, then, from Remark 5, we get that 1, = y or 1, = y*. If
T, = Y, then x1() is a zero of y, (x, Yo(x)). But, since 11 = x», T4 (x, Yo(x)) #0
for x € (0, x3). So, 1o # y. If 1, = y*, then X;(y*) = x, = X, which contradicts
the assumption of this case. So 7, = y,. Since x, < x*, ¢1(y) is continuous at
y = Yy(x7). Finally, we have y, (xz, Yy (xz)) # 0.

Then, we have

(85)

dgpa(x) _ 9T N 9T 9Y(x)
ox  ox  dy ox

(86)
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where T'(x,y) is given by (65) with
T T -
T _ roT(xy) —mdi(y) 87)
dx —y2(x,y)
and
T _ —r$1() = 1 )P1 () + ral(x,y) (88)
dy y2(x,y)
From the above argument,
. oT
Iim /x, —x— =0, (89)
X—)Xz ax
and
dY, ~
im =3 _ ko) £o0. (90)
X—>X2 dx
where K (x,) is given by (66).
Combining (89) and (90) leads to
lim (2 — 9940 = | Ko o1
im (x; —x)p,(x) = — X2).
X—>x2 2 2 0y l(2.¥0(x2)) 2
Now, we consider the final case that x* = X < x,. By (43) and (44),
() = Y1(x, Yo(0) 1 (Yo(x))
H(x) = —
y2(x. Yo(x))
_n (x. Yo(x))y2(Xo (Yo (). Yo(x)) 2 (Xo(Yo(x))) ©92)
y2(x. Yo(0)) y1(Xo(Yo(x)), Yo (x)) '
On the other hand, from Lemma 8, we have
1% Yo(2)) y2(Xo(Yo(x¥)), Yo(x™)) # 0.
We also have
tim (Xo(Yo(x)), Yo(x)) lim V! (Xo(Yo(x)), Yo(x)) — y1(Xo(Yo(x*)). Yo(x*))
x—x* x*—x e x* —x
= y{(Xo(Yo(x*)), Yo(x*)) Y5 (x¥). (93)
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Combining Egs. (76) and (93), we get

) (x _ x*)z
hm*
=y (x, Yo@) v (Xo(Yo(x)), Yo(x))
= ! . (94)
V(. o))y (Xo(Yoa). Yox) ) Yy )
Finally, it follows from (92) to (94) that
lim (% — )2 _n (*, Yo(x*)) y2 (Xo (Yo (x™)). Yo (x*)) 2 (Xo (Yo (x*))) 95
R 72l Tole)y] Koo, Fo ey )
It follows from Eq. (78) that Y (x*) # 0. By (14) and (13), we have
V(. Yo(x™)) v (Xo (Yo(x™)). Yo (x™)) # 0. o

5 Tauberian-Like Theorem

Similar to the discrete case, in order to get exact tail asymptotic properties for
the boundary measures, we need a technical tool, which is a counterpart to the
Tauberian-like theorem used for the discrete reflected random walks. Now, we
provide a Tauberian-like theorem for moment generating functions.

We first introduce some notations. Let g(s) be the L-transformation of f(s), i.e.,

5(s) = /0 SF (1),

Then, g(s) is analytic on the left half-plane. The singularities of g(s) are all in
the right half-plane. We now extend the Tauberian-like theorem for a generating
function (e.g., Corollary 5.1 in Flajolet and Sedgewick [8]) to that for the continuous
case. Denote

A(zp. €) = {Z € C:z # 2, |arg(z —20)| > f}s
where arg(z) € (—m, m]is the principal part of the argument of a complex number z.

Theorem 2. Assume that g(z) satisfies the following conditions:

(1) The left-most singularity of g(z) is ap with ag > 0. Furthermore, we assume
that as 7 — «y,

8(2) ~ (g —2) ™

for some A € C\ Z<o;
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(2) g(2) is analytic on A(ay, €o) for some € € (0, 3];
(3) g(z) is bounded on Ay, €1) for some €, > 0.

Then, as t — 00,

A—1

f(o) ~ ol (96)
r )

where I'(+) is the Gamma function.

Proof. 1t follows from the inverse Laplace-transform that

x+iw

f) = 1 lim e *g(s)ds, 7

27wi w—o00 X—iw

where x is a constant on the left of ay. Next, we show that the straight path [x —
iw, x + iw] of integration can be replaced with the path y, where y consists of a
circular arc which encircles g on the left, and two beams which are bent with the
angle +6 (6 > ¢p) against the positive x-axis. This is valid since we can connect
the straight path and the path y by two large circular arcs y; and y, with radius R
above and below, respectively (see Fig. 1 for a picture). All of these paths reside in
an area in which, from condition (2), the function g(z) is analytic. Therefore,

x+iw
/ e_”g(s)ds%—/e_”g(s)ds—i—/ e_”g(s)ds—}—/ e g(s)ds = 0. (98)
x—iw Y Y1

V2

Fig. 1 The paths x+iw
[x—iw, x +iw], y1, ¥ and y

R

1¢]

X-iw
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So, we only need to show that fori = 1, 2,
lim e g(s)ds =0, 99)
R—00 Vi
which can be easily done.

We next assume that G(z) = (o — z)~*. We study the asymptotic behavior of

(1) = lim _—1 / e 'G(s)ds. (100)
R—00 2771 y

We have

/ e 'G(s)ds / e (ap — s)Mds
¥ ¥

= ! / @™ (g — 5)"*ds
¥

= ! / e (—u) *du, (101)
7

where u = (s — a)t and y is the new curve transformed from y by p. It follows
from the Hankel’s contour integral and (101) that as R — oo,
—aot

€ -1

fo = 0

(102)

We are now ready to prove the main result of this lemma. It follows from
condition (1) that

8@ = (o —2)* +o((@o —27*). (103)

In order to prove the lemma, we only need to prove that if G(z) = 0((050 -7 )
and satisfies conditions (2) and (3), then

f@) = o(e™' ™), (104)

ast — 0o.

In the rest of the proof, to simplify the notation, without loss of generality, any
unspecified constant will be denoted by the same K.

It follows from condition (3) that there exists K > 0 such that

|G(2)] < K|(2o —2)7* (105)
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in the whole region A. Since G(z) = o((a — 2) ™), there exists §(¢) > 0 such that
forz e A,

o — 2| < 8(€) = |G(2)| < Kel(co —2) 7. (106)

In order to prove (104), we need to prove that for some large enough T'(¢) > 0, we
have

IF(1)] < Kee ™', for t > T(e). (107)

To prove (107), we choose the contour 2 = 9 + 2, + P5 as follows:
1
P ={d lr—ao| = -, Jarg(z— )| = o};
1
2, = {4 7 < lz—aol, |2l <o + R, larg(z — ag)| = €o};
and
1
2y = {| 7= lz—aol, |2l < a0+ R, |arg(z — a)| = —€o}.

We proceed to evaluate the contributions to f(t) due to each of % separately. For
this purpose, we define for k = 1,2, 3,

1
Fiu(t) = — [ e G(s)ds.
2mi Dy

Fork =1,
1 ot
Fi(t) = — e 'G(s)ds
2mi D

1
= W — @G (s)ds
2mi J g,

1
= / e G(u + ao)du, (108)
Tl

2

where u = s — op. We can choose T'(¢) > ﬁ such that from (106) we have

1
O] = 5o [ G+ anal
2mi 9

1 Y
< —e e / e[/ (6)|d6

— 27

< Kee @'/~ 1 (109)
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where u(0) = %(cos 0 + isin6).
The cases for k = 2 and k = 3 are similar, so we only provide details for the
case of k = 2. In this case, let s = oy + % with @ = €. Then, we have

C(R) ws
/ e 'G(s)ds = e_“‘)’/ e G(ag + —)ds, (110)
@2 1 t
where C(R, t) is a constant such that

wC(R, 1)
t

loo + | = ap + R.

Now we decompose the integral (110) as follows:
C(R.t) log? 1
e ! / e G(ag + ?)ds = ! / e G(ag + ?)ds
1 1

C(R) ws
+e_a°r/ e G(oy + T)ds
1

og?t
= Fa1 (1) + F(1). (111)
So,
[F2(0)| < [Far1 ()] + [Fa(D)]. (112)

Choose T>(¢) > 0 such that for any + > T,(¢), we have log’t/t < 6(¢) and
log?1 > 1.
For F;, by (106), we have

log? 1 ws log? 1
e_“"t/ e G(og + T)ds < Kee™'/! / |e?|s™*ds
1 1

o0
= Kee ®'*™! / e sy (113)
1

We also have
o0
/ e 0 gTh g < o0 (114)
1
since cos €y > 0 for ¢y € (0, % .
For Fa,, since |G(s)| < K|(ao — s)7*|, we get
C(R.1)

1
|Fa(t)| < Ee—“mr“—” / le™*[|s™*|ds. (115)

log? 1
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We can also easily get that
|e—a)sl < e—xcos(eo). (116)

By (116),

C(R,t) 1 C(R,t) 1 00)
le™5||s™*|ds < K— stds < K= s tds. (117)
1 ? 2 Ji

ogzr logzr
Now, it follows from (111) to (117) that
|[F2(1)] < Kee™ @'~ for some 1 > T»(e). (118)

By (109) and (118), we can easily know that (107) holds. Therefore, the lemma is
proved. O

Remark 6. From the proof of Theorem 2, we can relax conditions (2) and (3) to the
following, respectively: for some constant 8 > «y,

(2) g(z) is analytic on A(wy, €g) for some ¢y > 0 with Re (z) < B;
(3’) g(z) is bounded on A(w, €1) for some €; > 0 with Re (z) < S.

Remark 7. In [5], Dai and Miyazawa proved another version of the Tauberian-like
theorem. It is not difficult to see that the conditions in Theorem 2 are weaker than
those assumed in [5].

6 Exact Tail Asymptotics

In this section, we provide the exact tail asympotics for boundary measures. The tail
asymptotic property for the boundary measures V; and V; is a direct consequence of
the Tauberian-like theorem and the asymptotic behavior, obtained above, of ¢, (x)
and ¢ (y).

One may notice that the Tauberian-like theorem is for a density function.
However, it is easy to show (e.g., see D.5 of [4]) that the theorem can be applied
to the finite measures V| and V,. Specifically, we can show that condition 3
of Theorem 2 is satisfied for ¢, (e.g., see Lemmas 6.6 and 6.7 in Dai and
Miyazawa [4]), and therefore by Theorems 1 and 2, we have the following tail
asymptotic properties.

Theorem 3. For the boundary measure Vz(x, oo), we have the following tail

asymptotic properties for large x.

Case 1: Ifty = x* < min{X, x,}, or 1y = X < min{x™, x5}, or 1y = X = x* = x,
then

Va(x, 00) ~ Cre™™%;
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Case2: Ifty=x"=xy <X ort =X=x, <x* then
Vs (x, oo) ~ Cze_“xx_%;
Case 3:  If 11 = xp < min{X, x*}, then
Vz(x, oo) ~ C3e_”xx_%;
Case4: Ifty = x* =X < xp, then
Vz(x, oo) ~ Cse” "x;

where C;, i = 1,2, 3, 4 are constants.

Tail asymptotic properties for V| can be symmetrically stated.

It is of interest to know why and when one of the above asymptotic types
would arise. From an analytical point of view, this solely depends on the type of
the dominant singularity of the unknown function for the boundary measure. The
above four types of tail asymptotic properties correspond to the following properties
of the dominant singularity, respectively:

(i) asimple pole or a double pole and the branch point x, simultaneously;
(i1) a simple pole and the branch point x, simultaneously;
(iii) the branch point x; only; and
(iv) a double pole.

From a practical point of view, it is interesting to know the specific type of the tail
asymptotics for a given set (X, i, R) of system parameters (specified numbers). In
the following, we provide general steps for the boundary measure V, by analyzing
the function ¢, (x).

Step 1. Based on Eq. (21), evaluate the value of x;:

_ 2Znapn — Tpu) + VA

Xy = , (119)
2(X1Zpn - X2)
where A is given by (22).
Step 2. Recall that
— XY1x)—+/D
Yo(x) = (2 + Z1ox) 1(x) (120)

X

where D (x) is given by (21) .
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According to Lemma 11, if y, (xz, Yy (xz)) > 0, then, by Remark 4, evaluate the
value of x*:

" 2r11raps — 2135,

x* = )
Tty = 2rmirnZn + 5,20

(121)

If y>(x2, Yo(x2)) < 0, letx* > x, be any number.
Step 3. Similar to Steps 1 and 2, evaluate the values of y* and y,, respectively.
Step4. (i) If y* > y,, then let X > x, be any number.
(ii) If y* € (0, y,], then calculate

"1 s 2212)’* +

=X ="y (122)
11 2
where
= 2riirai o — 23 o (123)
12,20 = 2rira X + Zard,
Next, verify if
Yo(x') = y*. (124)

If (124) is true, then ¥ = x'. Otherwise, let ¥ > x, be any real number.
Step 5. By the above steps, the values of x*, x; and x are determined. Then, by
Theorem 3 the type of tail asymptotic properties of the boundary measure V; is
determined.

7 A Final Note and Concluding Remarks

The research work in this paper was motivated by Dai and Miyazawa [4], in which
the same SRBM was considered, but the exact tail behaviour in boundary proba-
bilities was not reported. Before we completed this paper, Dai and Miyazawa [5]
reported the tail behaviour as a continuation of their work in [4]. We therefore
present our work as a survey of the kernel method and emphasize the connection of
this method to the closely related method in [5]. In [5], the authors used geometric
properties of the model to obtain the rough decay and then used an analytic
approach for refined tail decay properties. The kernel method is a different (pure
analytic) approach. One of the common components in [5] and in this paper is the
generalization of the Tauberian-like theorem to the continuous case. The Tauberian-
like theorem (Theorem 2) given in this paper has a weaker condition than that given
in [5].
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The kernel method is a general approach, which could be used for studying
tail asymptotics for more general models. For example, for the two-dimensional
continuous case, this approach can be a candidate for studying exact tail asymptotic
properties of reflected Levy processes. In fact, this method can be applied to a
special Levy case studied in Miyazawa and Rolski [17]. For high (>3) dimensional
models, it could be more challenging since the number of unknown functions in the
fundamental form will be increased.

It is noted that the same four types of exact tail asymptotic properties are found
for both discrete reflected random walks in the quarter plane and two-dimensional
SRBM. This is simply due to the fact that the kernel function in both cases is a
quadratic form in two variables. It is interesting to consider whether this is still
true for more general two-dimensional continuous models, for example the reflected
Lévy process, for which the kernel function in general is not a quadratic form.
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Central Limit Theorems and Large Deviations
for Additive Functionals of Reflecting Diffusion
Processes

Peter W. Glynn and Rob J. Wang

1 Introduction

Reflecting diffusion processes arise as approximations to stochastic models
associated with a wide variety of different applications domains, including
communications networks, manufacturing systems, call centers, finance, and the
study of transport phenomena (see, for example, Chen and Whitt [4], Harrison [8],
and Costantini [5]). If X = (X(¢) : t > 0) is the reflecting diffusion, it is often of
interest to study the distribution of an additive functional of the form

A 2 /0 FX($)ds + AQ),

where f is a real-valued function defined on the domain of X, and A = (A(?) :
t > 0) is a process (related to the boundary reflection) that increases only when X is
on the boundary of its domain. In many applications settings, the boundary process
A is a key quantity, as it can correspond to the cumulative number of customers lost
in a finite buffer queue, the cumulative amount of cash injected into a firm, and other
key performance measures depending on the specific application.

Given such an additive functional A = (A(¢) : ¢t > 0), a number of limit theorems
can be obtained in the setting of a positive recurrent process X.

The Strong Law: Compute the constant « such that

@“—'i‘a (1)
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as t — oo. In the presence of (1), we can approximate A(?) via
2
A(f) ~ at, (2)

2
where &~ means “has approximately the same distribution as” (and no other rigorous
meaning, other than that supplied by (1) itself.)

The Central Limit Theorem: Compute the constants o and 1 such that
A(t
12 (% —a) = 7N(0, 1) 3)

as t — oo, where = denotes convergence in distribution and N(0, 1) is a normal
random variable (rv) with mean O and unit variance. When (3) holds, we may
improve the approximation (2) to

A1) R at + piN(, 1) (4)

for large #, thereby providing a description of the distribution of A(¢) at scales of
order '/ from a.

Large Deviations: Compute the rate function (I(x) : x € R) for which
1 .
" logP(A(t) € tI") — — 1n1f I(x) 5)
xX€E€

as t — oo, for subsets I” that are suitably chosen. Given the limit theorem (5), this
suggests the (crude) approximation

P(A(t) e I') ~ exp (—t inlﬁ I(y/t)) 6)
Y€

for large ¢; the approximation (6) is particularly suitable for subsets I that are “rare”
in the sense that they are more than order /7 from at.

The main contribution of this paper concerns the computation of the quantities
a, 1, and I(-), when A is an additive functional for a reflecting diffusion that
incorporates the boundary contribution A. To give a sense of the new issues that
arise in this setting, observe that when A(r) = 0 for r > 0, then « can be easily
computed from the stationary distribution v of X via

o= /Sf(x)rr(dx),

where S is the domain of X. However, when A is non-zero, this approach to
computing o does not easily extend. The key to building a suitable computational
theory for reflecting diffusions is to systematically exploit the martingale ideas that
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(implicitly) underly the corresponding calculations for Markov processes without
boundaries; see, for example, Bhattacharyya [2] for a discussion in the central limit
setting. In the one-dimensional context, a (more laborious) approach based on the
theory of regenerative processes can also be used; see Williams [15] for such a
calculation in the setting of Brownian motion. In the course of our development
of the appropriate martingale ideas, we will recover the existing theory for non-
reflecting diffusions as a special case.

The paper is organized as follows. In Sect.2, we show how one can apply
stochastic calculus and martingale ideas to derive partial differential equations from
which the central limit and law of large numbers behavior for additive functionals
involving boundary terms can be computed. Section 3 develops the corresponding
large deviations theory for such additive functionals. Finally, Sects. 4 and 5 illustrate
the ideas in the context of one-dimensional reflecting diffusions.

2 Laws of Large Numbers and Central Limit Theorems

Let S° be a connected open set in R, with S and S denoting its closure and
boundary, respectively. We assume that there exists a vector field y : S — R
satisfying

(y(x), n(x)) >0
for x € aS, where n(x) is the unit inward normal to dS at x (assumed to exist).
Accordingly, y(x) is always “pointing” into the interior of S. Given functions p :
S — R?and o : S — R4, we assume the existence, for each x € S, of a pair of

continuous processes X = (X(7) : t > 0) and k = (k(¢) : ¢t > 0) (with k of bounded
variation) for which

X(6) = xo + / (1(X(s))ds + / o (X(5))dB(s) + k1), %

0 0

X(1) €S,
K1) = / 1X() € 35)dIk| (1),
0
and
k(t) = s))d|k|(s),
0 /0y<x< DIkl (s)

where B = (B(?) : t > 0) is a standard R?-valued Brownian motion, and |k|(¢) is the
(scalar) total variation of k over [0, ¢]; sufficient conditions surrounding existence of
such processes can be found in Lions and Snitzman [10]. Note that our formulation
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permits the direction of reflection to be oblique. Regarding the structure of the
boundary process A, we assume that it takes the form

A = /0 X))kl (5.

for a given functionr : S — R.

We expect laws of large numbers and central limit theorems to hold with the
conventional normalizations only when X is a positive recurrent Markov process.
In view of this, we assume:

Al: X is a Markov process with a stationary distribution s that is recurrent in the
sense of Harris.

Remark. By Harris recurrence, we mean that there exists a non-trivial o-finite
measure ¢ on S for which whenever ¢(B) > 0, fooo I(X(s) € B)yds = o0 P, as.
for each x € S, where

P.() 2 P(-| X(0) = »).

We note that Harris recurrence implies that any stationary distribution must be
unique. For a discussion of methods for verification of recurrence in the setting
of continuous-time Markov processes, see Meyn and Tweedie [11-13].

The key to developing laws of large numbers and central limit theorems for the
additive functional A is to find a function # : S — R and a constant « for which

M) 2 u(X(0) — (@) — )

is a local .%,-martingale, where .%, = o(X(s) : 0 < s < ). In order to explicitly
compute u, it is convenient to identify a suitable partial differential equation satisfied
by u that can be used to solve for u. Note that if u € C*(S), Itd’s formula ensures
that

dM() = du(X(0) — (f(X(1)) — a)dt — r(X(1))d|K| ()

P uX )
0x;0x;

Vu(X(0)dX (1) + - Z(G Dy (X (1) ———

Lj 1
— (F(X(®) — a)dt — r(X(1))d|k|(2)
Vu(X (1) (e (X(0)di + o (X(1))dB(1)

3214
+ y(X(@®)d[k[(1) + = Z (oo T)IJ(X( 1) ZH2D) (X(t))

lj 1
— (F(X (@) — a)dt — r(X(1))d|k|(2)
= (ZwX©®) - (FX(@®) —a)dt + (VuX @)y (X(1))
— r(X(0)))d|k|(®) + Vu(X(1)o (X(1))dB(?),



CLT’s and Large Deviations for Additive Functionals of Reflecting Diffusions 333

where Vu(x) is the gradient of u evaluated at x (encoded as a row vector) and .Z is
the elliptic differential operator

- 3 1< e
¢ = ?:1: “’(x)_axi + 3 1(oa )i (x) e (8)

i,j=

The process M can be guaranteed to be a local martingale if we require that « and o
satisfy

(Lu)(x) =f(x) —a, xS 9)
Vu(x)y(x) = r(x), x € S,

since this choice implies that
dM(t) = Vu(X(2))o (X (2))dB(t).

(We use here the fact that |k|(f) increases only when X(f) € 9S.) Accordingly, the
quadratic variation of M is given by

M, M) = /0 Vu(X () (X())o™ (X()) Va(X(s) ds

=X /O r V(X(s))ds.

Since v is nonnegative and X is positive Harris recurrent, it follows that

t

l/Otv(X(s))ds — /Sv(y)n(dy) P, a.s.
as t — oo, for each x € S. Set
2 _
P = /S v (dy)
- /S Vu(y)o ()0 0)Vuly)(dy).

and assume 7> < co. As a consequence of the path continuity of M, the martingale
central limit theorem then implies that for each x € S,

V2M(1) = nN(0, 1) (10
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as t — oo under P, (see, for example, Ethier and Kurtz [7]). In other words,
2 (X (1)) — (A(®) — ar)) = gN(0, 1)

as t — oo under P,.
Let P,(-) = fS P.(-)(dx), and observe that X is stationary under P,. Thus,

u(X(1)) Z u(X(0)) for t > 0 under P, (where Z denotes equality in distribution),
so that

2uX(@) = 0 (11)

as t — oo under P . It follows that
1
;A(t) =

as t — oo under P, . Let E, (-) be the expectation operator associated with P,. If f
and r are nonnegative, the Harris recurrence implies that

1
?A(t) — E;A(l) P;a.s.
as t — oo, for each x € S. Hence, E;A(1) = «, so that
1
;A(t) —a P.as.

as t — oo, for each x € §. This establishes the desired strong law of large numbers
for the additive functional A.
Turning now to the central limit theorem, (10) and (11) together imply that

1'/? (@ —a) = N(0, 1)

as t — oo under P;. Recall that a Harris recurrent Markov process X automatically
exhibits one-dependent regenerative structure, in the sense that there exists a non-
decreasing sequence (7}, : n > —1) of randomized stopping times, with 7_; = 0,
for which the sequence of random elements (X(7,—; + ) : 0 < s < T, — T,—1)
is identically distributed for n > 1 and one-dependent for n > 0; see Sigman
[14]. The one-dependence implies that the central limit theorem can be extended
from the stationary setting in which X (0) has distribution 7 to cover arbitrary initial
distributions, so that

12 (@ —a) = 7N, 1)
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ast — oo under P,, for each x € S. We summarize this discussion with the following
theorem.

Theorem 1. Assume Al and that f and r are nonnegative. If there exists u € C*(S)
and o € R that satisfy

(Lu)(x) =fx)—a, xeS
Vu(x)y(x) = r(x), x € 35,

with
7 = [ VuG)r )0 Vuta(ay) < .
S
then, for each x € S,
1
;A(t) —a P;a.s.

and
1'/? (@ —a) = nN(0, 1)

ast — oo, under P,.

The function u satisfying (9) is said to be a solution of the generalized Poisson
equation corresponding to the pair (f, r).

3 Large Deviations for the Additive Functional A

The key to developing a suitable large deviations theory for A is again based on
construction of an appropriate martingale. Here, we propose a one-parameter family
of martingales of the form

M(8, 1) = exp(0A(1) — ¥ (0)n)he (X(1))

for 6 lying in some open interval containing the origin, where ¥ (6) and hy are
chosen appropriately. As in Sect.2, we use stochastic calculus to derive a corre-
sponding PDE from which one can potentially compute 1/ (6) and /g analytically.
In particular, if g € C*(S), Itd’s formula yields

dM(6.1) = d(exp(6A(r) — ¥ (0)1)hy(X(1))
+ exp(0A(1) — ¥ (0)n)dhy (X(1))
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= exp(0AQ1) — Y (O))(0f (X (0))dt + Or(X(1))d|k| (1)
— Y (0)dDhe (X (1)) + exp(A(1) — ¥ (0)1) [Vhe (X (@) (X (0)dr
+ Vhe(X(1)o (X (6))dB(t) + Vhe(X(1)y (X (1))d|k| (1)

+ = Z(O_O_T)U(X(t)) O(X( )) i|

1] 1
—  oxp(0A() — w(Q)t)[((Zho)(X(t)) - O
O R X))t + (Vhe (X (D) (X (D)

+ 0r(X(0)ho (X(1)))d|k|(1) + VR (X(1))o (X (t))dB(t)},

where .Z is the differential operator defined in Sect. 2. If we require that sy and
¥ (0) satisfy

(Lho)(x) + (6f(x) =¥ (0))he(x) =0, x €S (12)
Vhg(x)y(x) + 0r(x)hg(x) = 0, x € S,

then
dM(0, t) = Vhe(X(1))o (X(1))dB(?),

and M(6, 1) : t > 0) is consequently a local .%,-martingale. (Again, we use here the
fact that |k| increases only when X is on the boundary of S.) Note that (12) takes
the form of an eigenvalue problem involving the operator .Z + 6f.#, where .# is
the identity operator for which .#u = u. In this eigenvalue formulation, v () is the
eigenvalue and Ay the corresponding eigenfunction. Since .Z + 0f .7 is expected to
have multiple eigenvalues, (12) cannot be expected to uniquely determine v (6) and
hg. In order to ensure uniqueness, we now add the requirement that sy be positive.

Let (T, : n > 0) be the localizing sequence of stopping times associated with
the local martingale (M (6, ) : t > 0), so that

Ecexp(BA( A T,) =y (0)(t A T)ha (X(t A T,)) = ho(x) (13)

for x € S, where E,(-) is the expectation operator associated with P,(-) and a A b 2
min(a, b) fora, b € R.

Suppose that S is compact, so that /g is then bounded above and below by positive
constants (on account of the positivity of 4 and the fact that g € C*(S)). If f and r
are nonnegative (as in Sect. 2), it follows that for 6 < 0,

exp(0A(t A Ty) — ¥ (0)(t A To))ho(X(1 A T,))



CLT’s and Large Deviations for Additive Functionals of Reflecting Diffusions 337

is a bounded sequence of rv’s, and thus the Bounded Convergence Theorem implies
that

E, exp(0A(1) — ¥ (0)1)ho (X(1)) = hg(x) (14)

forf <0,and x € S.
On the other hand, if 6 > 0, the positivity of &y and Fatou’s lemma imply that

E, exp(0A(1) — ¥ (0)D)hg (X(1)) < ho(x)
for x € S, from which we may obtain the upper bound

hg (x)

E,exp(PA() < eV Or 22
PEA®) = infyes hg (y)

and hence exp(0A(r)) is P,-integrable. Since f and r are nonnegative and 6 > 0,
O0A(t AN T,) < 60A(1), so

XpOA( A Ty) = Y (O)(t A T)ho(X( A T,)) < exp(BAD) + [ (9)] @) sup ks ).
NS

The Dominated Convergence Theorem, as applied to (13), then yields the conclusion
that

Eexp(0A(1) — ¥ (0)D)he (X (1)) = hg(x) (15)
forx € S. Since

ew(@)the—(x) < Ecexp(AA(1)) < elﬂ(@)tﬂ’
sup, s ho () infyes ho (y)

it follows that
1
" log E, exp(6A(t)) — v (6)

as t — oo, proving the following theorem.
Theorem 2. Assume that S is compact and that f and r are nonnegative. If there
exists a positive function hg € C*(S) and Y (0) € R that satisfy
(ZLhe)(x) + (0f (x) =¥ (0)he(x) =0, x € S
Vhg(x)y(x) + 0r(x)hg(x) = 0, x € 38,
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then

%logEx exp(0A(1)) — ¥ (6)

ast — oQ.

The Girtner-Ellis Theorem (see, for example, p.45 of Dembo and Zeitouni [6]) then
provides technical conditions under which

1
—log P (A(t) € tI') —» — inf I(y)
t yer
as t — oo, where
I(y) = sup[fy — ¥ (6)].
6eR
In particular, if I = (z, 00), then

Slog PL(AW) = 1) — ~(0.2— ¥(6)

provided that v (-) is differentiable and strictly convex in a neighborhood of a point
0, satisfying ¥'(6,) = z. See p.15-16 of Bucklew [3] for a related argument.

4 CLT’s for One-dimensional Reflecting Diffusions

We now illustrate these ideas in the setting of one-dimensional diffusions. In
this context, we can compute the solution of the generalized Poisson equation
corresponding to (f, r) fairly explicitly.

We start with the case where there are two reflecting barriers, at 0 and b, so that
S = [0, b]. Then, X = (X(¢) : t > 0) satisfies the stochastic differential equation
(SDE)

dX(t) = u(X(2)dt + o(X(1))dB(t) + dL(t) — dU(¢t)
= u(X(2)dt + o(X(t))dB(t) + dk(t),
with y(0) = 1 and y(b) = —1; the processes L and U increase only when X

visits the lower and upper boundaries at 0 and b, respectively. We consider here
the additive functional

A@=Aﬂnmw+mm+mwm
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where f : [0, b] — R is assumed to be bounded. In this setting, Theorem 1 leads to
consideration of the ordinary differential equation (ODE)

pu )+ T = ) (16)
u (0) =71, (17)
u'(b) = —ry. (18)

Hence, if ;t(-) and o2(+) are continuous and o%(-) positive, (16) can be re-written
via the method of integrating factors (see, for example, Karlin and Taylor [9]) as

d )\ ) 200 — @) 209
(o ([ 7)) = 2555 e ([ 55050):
from which we conclude that
wW'(x) = (L/(O) +/ —2(]0((:;)(;) ®) exp (/ 2((;) )dy) (19)
o[ 20)
But «/(0) = ro and «’(b) = —ry, and thus
2(f() —@) Y 2u(z)
= (’°+/o o e ([ i) @)
(- ),

Hence,

y 20 4 2@,
ro + rbe(f" %) ) 4 fob g(())) (fo 26 Z)dy
o y (21

'y 244(2)

2-[0}](721_())) (/0 2<>dz)dy

By setting rp = r, = 0, we conclude that the stationary distribution = of X must
satisfy

b b
/ 7(d0f () = / FEP, 22)
0 0
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where

1 X 2u(2)
7 &XP ( I g é) dz)
b1 Y 2u(2) '
Jo 72G) €XP (fo U‘ﬁ(; dz)dy

Since (22) holds for all bounded functions f, it follows that 7 (dx) = p(x)dx, so that
7 has now been computed. Furthermore, (19) establishes that

*2(f(y) — )
= (o [ Hog e ([ S5) )

2u0)
“p(_[;ogwf”)’

where « is given by (21). Consequently, we have explicit formulae for both 7 and
', from which the variance constant

px) =

b
#=/wm%%wmw
0

of Theorem 1 can now be calculated. We now illustrate these calculations in the
context of some special cases, focusing our interest on the boundary processes (by
setting f = 0).

Example 1 (Two-sided Reflecting Brownian Motion). Here ju(x) = j and 6% (x) =
0% > 0.1f u # 0, then, upon setting § = 2u/0?,

w(ro + rpet?)
0= ——>"2

efb — 1
and
_ g
P = —5—-
Also,

T 2a 2w, 2
u'(x) = (ro +/ ——Ozlenbdy) e o
0 g

ro+rp —tr roe_fb —+rp
1 —e 6P 1 —etb

and consequently

- — 2
u/(x)z _ ro+ rp ze_zsx _ 2(}’0@ &b =+ rb)(ro + }"b) —tx + roe &b +rp
I 1=y Tew
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Therefore,

2
P = o? ( ro+n )ze—sb  (roe T 4 rp)(ro + 1) 26D N roe ¥ 41y
1—e 80 (1 —e~tb)2 et — 1 1—e8b '

27' ¥
If w =0, thena = % and p(x) = ;. Also,
/ (V()+Vb)
u'(x) =ry— — *

and therefore

2
b ((rotrb)x_ VO)
2 2
n =0 - 7 dx
0 b

o2(ry +13)
3(r0 =+ r;,) '

Example 2. Two-sided Reflecting Ornstein-Uhlenbeck: For this process, p(x) =
—a(x —¢) and 6% (x) = 02 > 0. We thus have

_ (1(1/)—0)2—1102
ro + rpe o2
a(\—c)z—acz
o2 fo dy
Also,
, 2(1 f) 211(@—0) dz ,\ 2a(x—c)d
wx)=ro—— [ e dy ) elo o2
0= Jo
a(xfc)zfacz 2(;( a(yfc)zfa(xfc)z
= rpe 02 e o2 dy
2
0 Jo
and
_ X 2a(z—¢)
e 0T dy
p(x) = y 2az—c) —c)
b —f; o2 dZdy

. \/2_7, ICEONEY
o (0-a/E) -0 (coyE)
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where ¢ and @ are, respectively, the density and cumulative density function (CDF)
of a standard normal random variable. From these, one may readily compute

2 , [f s Doy _abv—e?—at—e? )2
=0 rpe o2 e o? dy | px)dx
0

o o2 0
numerically when the problem data are explicit.

The diffusions in our examples arise as approximations to queues in heavy traffic,
in which L(r) then approximates the cumulative lost service capacity of the server
over [0, #], while U(f) describes the cumulative number of customers lost due to
blocking (because of arrival to a full buffer); see Zhang and Glynn [16] for details.

Turning now to the setting in which only a single reflecting barrier is present (say,
at the origin), S then takes the form S = [0, 00), and the differential equation for u
takes the form

() W) = () — e

u (O) = rp.

' (x) + ——

Then u'(x) is again given by (19), and

Lot A, L8355 4y (23)
1 ([0 %dz) ’
2 57 e\ 020 dy

o2(y)

provided that the problem data are such that the integrals in (23) converge and are
finite. In particular, X fails to have a stationary distribution if

00 e
o O (Y)

S Large Deviations: One-dimensional Reflecting Diffusions

In this setting, we discuss the large deviations theory of Sect. 3, specialized to the
setting of one-dimensional diffusions with reflecting barriers at 0 and . Theorem 2
asserts that the key ODE in this setting requires finding ¥ (6) € R and hy € C?[0, b]
for which

2
W00+ 67—y =0, 0=x=b ()

() hg (x) +
1 (0) + Orohg(0) = 0,
—hly(b) + Oryhs(b) = 0.
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The above differential equation (24) can be put in the form
d /
— 2 (@@hp () + b()hy (x) = Ae(0)ho (x) (25)

for 0 < x < b, where A = —y(0) and

a(x) = exp ( /0 zo’jg)) dy) ,

206(x) 2u0)
b = =0y P (/0 270y & ) ’

2 “2(9)
o = on () F):

Suppose that f, i, and o2 are continuous on [0, b], with 6%(x) > 0 for x € [0, b].
Because a(-) and c(-) are then positive on [0, b], (25) takes the form of a so-called
Sturm-Liouville problem. Consequently, there exist real eigenvalues A} < A, <

- with A, — oo satisfying (25), with corresponding eigenfunction solutions
vy, V2, .... Furthermore, the eigenfunction v; has the property that it has exactly
i — 1 roots in [0, b]; see, for example, Al-Gwaiz [1] for details on Sturm-Liouville
theory. As a consequence, the eigenfunction v; is the only eigenfunction that can be
taken to be positive over [0, b]. Thus, it follows that we should set ¥ (6) = —A; and
h@ = V.

We now illustrate these ideas in the setting of reflecting Brownian motion in one
dimension, again focusing on the boundary process by setting f = 0.

Example 3 (Two-sided Reflecting Brownian Motion). Here u(x) = p and 02(x) =
02 > 0. The case in which ry = 0 and r, = 1 was studied in detail in Zhang and
Glynn [16]. In particular, consider the parameter spaces given by

% = {0, u, b): 0 >0}

Py =40, . b): 0 <0, u(u+60) <0}

Kz = {0, u, b): 0 <0, w( + 605> >0, bu(u + 602) > —0c*}

Ry = {0, u, b): 0 <0, w(p + 605> >0, bu(u + 602) < —0c*}

#={0.pn.b): 0=0}

By ={(0, u, b): 0 <0, w(+00%) >0, bu(u + 00) = —00*}.
The authors showed that, for (8, u, b) € %; (i = 1, 3), the solutions ¥ = ¥ (0)
and hg(-) to

(Lhg)(x) = ¥ (8)hy(x)
hy(0) = 0
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1, (b) = Ohy(b)
ho(0) = 1

for 0 < x < b are given by ¥(0) = ﬁ(9) u and

ho(x) = ev”[(ﬂ((?) e 4 (B6) + e }

1
26(0)

where $(6) is the unique root in .%; of the equation

1 ((ﬂ—M)(ﬁ +pn+ 902)) 2b
og =

B NGB +mB—pn—00%)) o
with . = (|u|V|u+002|, 0o) and .Z3 = (0, |,u|/\|u+9c72|).F0r 0, ., b) € %
(i = 2, 4), the solutions are given by ¥ (0) = M and

L (EOR | w (5O
=75 oo (537) g0 ()

where £(6) is the unique root in (0 s ) of the equation

o? V& + G+ 00)) + 0%

o2
For (0, u, b) € %, () = 0 and hg(x) = 1. Finally, for (8, u, b) € %,, the
solutions are given by ¥ (8) = ——2 and

bé ( £ + u(u + 002) )
= arccos .

ho(x) = e " (%x + 1) )

The case of arbitrary ry and r, is conceptually similar, but requires even more
complicated regions into which to separate the parameter space. For instance, it
will be necessary to consider the signs of 0(ry + 73), (1 — 0r902) (10 + Orp0?), and
b(i — 0ro0?) (i + 0rp0?) + O(ro + rp)o*, amongst other quantities. It is therefore
clear that an explicit description of the solution to (24) will, in general, be very
complex.
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Kellerer’s Theorem Revisited

Francis Hirsch, Bernard Roynette, and Marc Yor

1 Introduction
In the following, we shall call a peacock, a family (u,,t > 0) of probability
measures on R such that:

(i) V¢>0, /|x| L (dx) < 00:

(ii) for every convex function ¢ : R — R, the map:

(20— / Y0 1u(dx) € (—o0, +o0]

is increasing.

An R-valued process (X;, # > 0) will also be called a peacock, if the family of its
one-dimensional marginal laws is a peacock.
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The term “peacock” comes from PCOC (pronounced peacock), which is the
acronym for the french expression: Processus Croissant pour 1I’Ordre Convexe
(which means: Increasing Process in the Convex Order). We refer to the recent
monograph [5] for an introduction to this topic, a description of possible applica-
tions, many examples and relevant references.

We say that two R-valued processes are associated, if they have the same one-
dimensional marginals. A process which is associated with a martingale is called a
1-martingale.

Likewise, a family (u;,t > 0) of probability measures on R and an R-valued
process (Y;, ¢+ > 0) will be said to be associated if, for every t > 0, the law of
Y, is g, ie. if (u;,t > 0) is the family of the one-dimensional marginal laws of
(Y;,t = 0).

It is an easy consequence of Jensen’s inequality that an R-valued process
(X;,t = 0) which is a 1-martingale, is a peacock. A remarkable result due to H.
Kellerer [6] states that, conversely, any R-valued process (X;,# > 0) which is a
peacock, is a 1-martingale. More precisely, Kellerer’s result states that any peacock
admits an associated martingale which has the Markov property. Note that, in
general, it is a difficult challenge to exhibit explicitly a martingale associated to
a given peacock. The most part of the monograph [5] is devoted to this question.

In the recent paper [4], a new proof of Kellerer’s theorem (but without the
Markov property) was presented. On the other hand, G. Lowther [8] showed that
if (st > 0) is a peacock such that the map: t —> pu, is weakly continuous
(i.e. for any R-valued, bounded and continuous function f on R, the map: t —
Jf(x) p(dx) is continuous), then (u,,r > 0) is associated with a unique
strongly Markov martingale which moreover is almost-continuous (see Sect. 4 for
definitions). Actually, this paper [8] partially relies on [7] and [9], but it seems that
only [9] was published in a journal.

In this paper, our aim is two-fold:

1. to give a proof of Kellerer’s theorem (including the Markov property), following
essentially [4] and [9];

2. to present, without proof, results of [7, 8] and [9], which complete and precise
Kellerer’s theorem on some points.

For the sake of clarity and brevity, we refer here essentially to these papers. Many
other references around Kellerer’s theorem may be found in [5].
The remainder of this paper is organised as follows:

* Section 2 is devoted to preliminary results about call functions (Sect.2.1),
Lipschitz-Markov property (Sect. 2.2), finite-dimensional convergence (Sect. 2.3)
and Fokker-Planck equation (Sect. 2.4);

* in Sect. 3, we prove Kellerer’s theorem by a two steps approximation. We first
consider the regular case (Sect.3.1), then the right-continuous case (Sect.3.2)
and, finally, the general case (Sect. 3.3);

* in Sect. 4, we gather some related results from [7, 8] and [9], concerning notably
strong Markov property, almost-continuity and uniqueness.
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2 Preliminary Results

In this section, we fix further notation and terminology, and we gather some
preliminary results which are essential in the sequel.

2.1 Call Functions

In the following, we denote by .# the set of probability measures on R, equipped
with the topology of weak convergence (with respect to the space of R-valued,
bounded, continuous functions on R).

We denote by .#; the subset of .# consisting of measures u € .# such that
[ x| p(dx) < oo. For u € .#;, we denote by E[u] the expectation of j, namely:

E[u] = /x p(dx).

We define, for i € .4, the call function C,, by:

VxeR, Culx)= /(y—x)+ u(dy).

The following easy (and classical) proposition holds (see e.g. [4, Proposition 2.1]).
Proposition 1. If u € .#;, then C,, satisfies the following properties:

(a) Cy is a convex, nonnegative function on R.
(D) limy—s 400 Cpu(x) = 0.
(c) There exists a € R such that lim, o (Cp(x) + x) = a.

Conversely, if a function C satisfies the above three properties, then there exists a
unique @ € My such that C = C,,. This measure | is the second derivative, in the
sense of distributions, of the function C, and a = E[u].

To state the next proposition (which also is classical and whose proof can be found
e.g. in [4]), we now recall that a subset 57 of . is said to be uniformly integrable if

lim sup / |x] u(dx) = 0.
€ H0 pet Jixlzc}

We remark that, if 57 is uniformly integrable, then

S C My and sup{/ |x] w(dx); € % < oo.
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Proposition 2. Let I be a set and let & be a filter on 1. Consider a uniformly
integrable family (u;,i € I) in M, and u € M. The following properties are
equivalent:

(1) li(;vn Wi = W with respect to the topology on M .
(2) u € M and
Vx € R, liéran Cu,(x) = Cp(x).

We now fix a family (u,,t > 0) in .#; and we define a function C(z,x) on
R+ x R by:

C(t,x) = Cy,(x).

The following characterization of peacocks is easy to prove and is stated in
[5, Exercise 1.7].

Proposition 3. The family (i, t > 0) is a peacock if and only if:

1. the expectation E[u,] does not depend on t,
2. for every x € R, the functiont > 0 —> C(t, x) is increasing.

We also have (see [5, Exercise 1.1]):

Proposition 4. Assume that (iu;,t > 0) is a peacock, and let T > 0. Then, the set
{is; 0 <t < T} is uniformly integrable.

2.2 Lipschitz-Markov Property

Following [9] (see also [6, Definition 3]), we now introduce a property, namely the
Lipschitz-Markov property, which is stronger than the mere Markov property. (Note
that in [9], the Lipschitz-Markov property is simply called Lipschitz property.)

If (X;,t > 0) is an R-valued process, we denote by .ZX the filtration generated
by X, that is:

Vi>0, FF=o0Xs<0.
On the other hand, for any Lipschitz continuous f : R — R, we denote by L(f) its
Lipschitz constant.

Definition 1 ([9], Definition 4.1). Let X be an R-valued stochastic process. Then
X 1is said to satisfy the Lipschitz-Markov property if, for all 0 < s < t and every
bounded Lipschitz continuous g : R — R with L(g) < 1, there exists a Lipschitz
continuous f : R — R with L(f) < 1 and

f(X,) = E[g(X)|F7]].
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The following proposition presents an important example of process satisfying the
Lipschitz-Markov property (see also Proposition 9 below, based on [9, Lemma 4.3]).
In the sequel, we adopt the following notation: U = (0, 4+00) xRand U = R4 xR.

Proposition 5. Let o : (t,x) € U — o(t,x) € R be a continuous function on U
such that the derivative o/ exists and is continuous on U. Let Xy be an integrable
random variable and let (B;, t > 0) denote a standard Brownian motion independent
of Xo. Then, the stochastic differential equation

t
X, =Xy + / o(s,X;) dB; (1)
0

admits a unique strong solution which satisfies the Lipschitz-Markov property.

Proof. 1t is classical that Eq. (1) admits a unique (non-exploding) strong solution.
Let s > 0. For any x € R, we denote by (X;”,7 > s) the strong solution (for
t>s)of

t
X = x+ / o (u, X5) dB,.
N

We also denote by (U;™, ¢ > s) the process defined by:

§,X 4 §,X
Ut’ = axt .

We obtain easily:

‘ ! ‘ 1 [
US* = exp |:/ ol (u,X2*) dB, — 2 / o (u, X5™) dui| .
In particular, (U™, > s) is a positive local martingale and hence:
U*>0 and E[U]*] <.

Let now g be a bounded Lipschitz continuous function of C!-class with |¢’| < 1 and
0 < s < t. We define the function f : R — R by:

f) =E[g(x;7)].
Then, f is a bounded C!-function and
el = E[g" () U] < 1.
It is now clear that, if (X;, # > 0) is solution to (1), then

E[g(X)|.7] = E[g (X}")]] .=y, = (X,

The Lipschitz-Markov property follows easily from what precedes. O
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2.3 Finite-dimensional Convergence

Definition 2. Let / be a set and let & be a filter on I. We consider R-valued
stochastic processes (X?);c; and X possibly defined on different probability spaces.
Then we shall say that (X?),c; converges (with respect to &) to X in the sense
of finite-dimensional distributions if, for any finite subset {t,#,--- ,t,} of Ry,
the distributions of (X,(li) ,X,(,? Lo ,X,(ni)) converge weakly to the distribution of
(X4, Xy, -+ . Xy,), which means that, for any bounded continuous f : R" — R,

- X)) = B (G X X))

1

mE[f (X)), X5
We also shall write:

f.d. limx® = x
&

and we shall say, in short, that X f.d. converges (with respect to &) to X.

The finite-dimensional convergence has important stability properties, in particular
with respect to the Lipschitz-Markov property and to the martingale property. This is
stated in the next propositions where we consider, like in Definition 2, a set /, a filter
& on I and R-valued stochastic processes (X?);c; and X. The following proposition
extends [6, Satz 10].

Proposition 6 ([9], Lemma 4.5). Suppose that, for every i € I, X satisfies the
Lipschitz-Markov property, and that X® fd. converges to X. Then, X satisfies the
Lipschitz-Markov property.

Proof. Let 0 < s < t and a bounded Lipschitz continuous g : R — R with
L(g) < 1. For any i € I, there exists a Lipschitz continuous f@ : R — R with
L(f?) < 1 and
i) (y (i i @
FOxD) = Elg(x)I#.
Moreover, we may suppose that:

Viel, sup|f?)| < suplg()|.
xeR x€ER

Consider an ultrafilter %7 on I which refines &. By Ascoli’s theorem, there exists a
Lipschitz continuous f : R — R with L(f) < 1 and

liﬁénf @ = f uniformly on compact sets.

Foreveryn € N,0 < 51 < 55 < -+ < 5, < s, for any bounded continuous
h : R" — R and for any continuous 6 : R — R with compact support, one has,
foreveryi eI,
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Elg(x”) §(XD) h(x?, X9, ..., xD)]

52

= E[fOx?) 0(x") h(xP, X2, - XD)].

52

Since
1$Um9=f9 uniformly
and
f@@mwzx
we obtain:

Elg(X0) 0(X,) h(Xsy, Xy -+, X, )] = E[f(X5) 0(X0) h(Xsp, Xy o0, X5,)]-
This holding for any 6 with compact support, we also have:
]E[g(Xt) h(XY] 5 szv ttt X&‘,,)] = EV(XY) h(XY] 3 X&‘zv ttt X&‘,,)]a

which yields the desired result. O

Proposition 7. Suppose that, for every i € I, XV is a martingale, and that X f.d.
converges to X. Suppose moreover that, for every t > 0,

{Xt(i); ie [} is uniformly integrable.

Then, X is a martingale.

Proof. By Proposition 2, the process X is integrable. We now prove that it is a
martingale. We set:

Vp>0, VxeR, ¢,(x) = min[max(x,—p),p].
Then, ¢, is a bounded continuous function, and
lp(x) — x| < 1x] Tgjagspy-

Foreveryn e N,0 < 51 < s < -+ < s, <5 < t, for any bounded continuous
h:R" — R, we have forevery i € I,

B, -+ X X)] = BIRD, - X)X,

s1° s1°

We set: || 1 ||oo = sup{|h(x)|; x € R"}. Then,
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[Eh(Xy,. . Xs,) 9p(X)] = Elh(Xs,. -+ X;,) Xi]|
< I hlloo E[IX:| 1ix,5p3 ] . foreveryp >0,

[EIAGED. X0) ()] ~ B, X0 X1

< ||kl E [lX,(i)l 1 ] , foreveryi e I andeveryp > 0,

(X" 1>p}
and likewise, replacing ¢ by s. Moreover,
mERXY. - X0) (X)) = By, . X,) ¢p (X)),

and likewise, replacing ¢ by s. Finally, we obtain, for p > 0,

UE[h(le [ aXYy,)Xt] - E[h(le [ aXv,,)Xx“

0] _ 0) . ]
<2 hllo (SI}GJ;)E[IX: o] +i‘;}’E[|Xs L0y )

and the desired result follows, letting p go to co. O

2.4 Fokker-Planck Equation

We now state M. Pierre’s uniqueness theorem for a Fokker-Planck equation, which
plays an important role in our proof of Kellerer’s theorem in the regular case. This
theorem is stated and proved in Subsection 6.1 of [5].

Theorem 1 ([5], Theorem 6.1). Let a : (t,x) € U —> a(t,x) € Ry be a
continuous function such that a(t,x) > 0 for (t,x) € U, and let @ € ;. Then
there exists at most one family of probability measures (p(t, dx),t > 0) such that

(FP1) t> 0 — p(t,dx) is weakly continuous,
(FP2) p(0,dx) = p(dx) and

p P .
a—lz—@(ap)zo in 2'(U)

(i.e. in the sense of Schwartz distributions in the open set U).

3 Kellerer’s Theorem

In this section, we shall give a proof of Kellerer’s theorem. Following [4], we shall
proceed by a two steps approximation, starting with the regular case.
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3.1 The Regular Case

Theorem 2. Let (X;,t > 0) be an R-valued integrable process such that E[X;]
is independent of t, and let C : U —> R the corresponding call function (see
Sect. 2.1):

C(t,x) = E[(X, —x)+].
We assume:

(i) Cisa C®-function on U.
We set:

_ 92C
V(t,x) e U, p(t,x)= W(z‘,x).

Thus, the law of X, is p(t, x)dx.
— C
(ii) p>0on Uandg >0onU.
We set:
— t,
Vitx) €T, o(tx) = (2222 i (0
p(t.x)

Then, the stochastic differential equation
t
Y=Y+ / o(s,Ys) dB;
0

(where Yy is a random variable with law p(0,x)dx, independent of the Brownian
motion (Bs,s > 0)) admits a unique strong solution, which is a martingale
associated to X and satisfying the Lipschitz-Markov property.

Proof. (1) We first prove that Y is associated to X. Set:

1, _ 5
a=—-0"="*.
2 P
We have;
82( ) 92 8C 0
—(a [ [ —
ox2 p ox2 ot Btp

on U. In particular, the family (p(z, x)dx,¢ > 0) satisfies (FP1) and (FP2) in
Theorem 1. On the other hand, for any C?-function ¢ : R —> R with compact
support, we have by It6’s formula:

Elp(¥)] = Elp(¥o)] + /0 El¢"(Y.) als. ¥,)] ds
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and therefore, denoting, for every ¢t > 0, by ¢(t, dx) the law of Y,

d
& [ow at.a0 = [ " a0 .0,

Thus, the family (g¢(z,dx),z > 0) also satisfies properties (FP1) and (FP2).
Hence, by Theorem 1,

Vi=0, q( dx) = p(t,x)dx

and Y is associated to X.

(2) Obviously, Y is a local martingale. We now prove that it is a true martingale. Let
¢ be a C?-function on R such that ¢ (x) = 1 for |x| < 1, ¢(x) = 0 for |x| > 2,
and 0 < ¢(x) < 1forall x € R. We set, for k > 0, ¢(x) = x ¢ (k™! x). Fix now
0<s <---<s, <s <tand abounded continuous /4 : R" — R. We set:

ek = E[h(yvl s Yx27 ey, Yxn) ¢k(Yt)] - E[h(yvl 5 Yx27 Tt Yxn) ¢k(Yv)]
and m = sup,cp« [1(x)|. By dominated convergence,

klim Or = Eln(Yy,, Y, - . Y Yi] = E[h(Ys,, Yy, oo+, Ys,) Y.
—00

On the other hand, since Y is associated to X, [td’s formula yields:

t t BC
= [ ELo 0l r] du=m [ [ 1g{0] 5o dua

[ 18l ar= [ o+ 26/ e
and ¢} (x) = 0 for |x| & [k, 2k]. Therefore, there exists a constant /2 such that:
|0c] < m sup{C(t,y) = C(s,5); k < |y| =< 2k;.

Thus, since by hypothesis E[X;] = E[X;], Proposition 1 entails: lim_.co 6 = 0,
which yields the desired result.
(3) Finally, by Proposition 5, Y satisfies the Lipschitz-Markov property.
|

Remark 1. By now, the formula giving o in terms of the derivatives of C, in the
statement of Theorem 2, is common in Mathematical Finance, where it is referred
to Dupire [3] or Derman-Kani [2].
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3.2 The Right-continuous Case

We now present our proof of Kellerer’s theorem for right-continuous peacocks.
Theorem 3. Let (1, t > 0) be a peacock such that the map:
t>0— u, €4

is right-continuous. Then there exists a cadlag martingale associated to (ji;,t > 0)
and satisfying the Lipschitz-Markov property.

Proof. We set, as in Sect. 2.1, C(t,x) = C,,(x). We shall regularize, in space and
time, p(t, dx) := pu,(dx) considered as a distribution on U. Thus, let o be a density
of probability on R, of C*-class, with compact support contained in [0, 1]. We set,
fore € (0,1) and (¢, x) € Ry xR,
1—¢ —-X
pie =+ [a] @ (*25) mratan] aut eatn

with

I 2
0= = exp(_z(wt))‘

Lemma 1. The function p, is of C*°-class on Ry xR and p.(t,x) > 0 for any (¢, x).
Moreover,

/pg(t,x) dx=1 and / |x| pe(t, x) dx < oo.

The proof is straightforward.
We now set:

Wi (dx) = pe(t, x) dx.
By Lemma 1, uf € .#; and we set:
Ce(t,x) = Cpe(x).
Lemma 2. Foranyt > 0, the set {i1{; 0 < & < 1} is uniformly integrable.

Proof. Leta = [ ya(y) dy. A simple computation yields:

[ wuiao= fow [ 0+ mra] a
+ ,x) dx
/{lxzc} il g()

and the result follows from the uniform integrability of {u,; 0 < v < r+ 1}
(Proposition 4). |
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Lemma 3. One has:

Ce(t,x) = (1 —¢) / / a(u)a(y) C(t+ eu,x + ey) dy du
+o00

+e (y—x) gt y) dy.

X

The function C; is of C*-class on Ry x R. Moreover, for any (t,x) € Ry x R,

aC;

and

= pe(t,%).

Proof. The above expression of C, follows directly from the definitions. We deduce
therefrom that C, is of C°°-class on R4 x R. Now, by property 2 in Proposition 3,

aC, [ [Fe° €
% t,x >83_f|:x (y—x)g(t,y)dyi|—§g(t,x)>0.

Finally, the equality:

2
Ce
W(LX) = p(t,x)
holds, since, by Proposition 1, it holds in the sense of distributions, and both sides
are continuous. O
The following lemma is an easy consequence of the right-continuity of (i, r > 0).

Lemmad4. Fort > 0,

!i_r)%uf:u, in M.

By Theorem 2, there exists a martingale (M, t > 0) satisfying the Lipschitz-Markov
property, which is associated to (u;, ¢ > O) For everyn € Nandt, = (11,--- ,1,) €

R’ , we denote by ,u(ti’") the law of (M} ,--- , M, ), a probability on R".

Lemma5. For every n € N and 7, € R, the set of probability measures:
(),

{ns,”; 0 <e <1}, istight.
Proof. Letn € Nand t, = (t1,--+ ,t,) € R . For x = (x1,+-+ ,xy) € R", we set
|x| := sup,<;<, x| Then, for ¢ > 0,

1
pE (x| = ¢) = (sup IM;] > c) <-E [ sup IM’EI]
! 1<j<n c 1<j<n

<! ZE[I ]=1 ;/ x| 22 ().
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Now, by Lemma 2, for 1 <j <n,

sup / |x| pjj(dx) < 00.

0<e<l
Thus,
lim sup ui”’)(|x| >¢)=0,
c>+000cect
which yields the tightness of {;*"™; 0 < & < 1}. O

Let % be an ultrafilter on (0, 1) such that limy, ¢ = 0. As a consequence of the
previous lemma, the family of probabilities on R”: (,u(ti’"), ¢ > 0), weakly converges
(with respect to %) to a probability which we denote by ,u(t:) . We remark that, by
Lemma 4, for any t > 0, p,zrl)) = u,. By Kolmogorov’s extension theorem, there
exists a process (M;, t > 0) such that, for every n € N and every 7, = (t1,--- ,t,) €
R, the law of My, M) is u(f:l). Since for any r > 0, ME,I)) = [, the process
M = (M,,t+ > 0) is associated to (u,,t > 0). Moreover, by Proposition 6, M
satisfies the Lipschitz-Markov property, and by Lemma 2 and Proposition 7, M is
a martingale. By the classical theory of martingales (see, for example, [1]), almost

surely, for every t > 0,

M, = lim M,

s—>1,5€Q,s>1

is well defined, and (1l71,, t > 0) is a right-continuous martingale which, by the right-
continuity of (u,,t > 0), is associated to (u,,t > 0). Besides, it is easy to see that
M still satisfies the Lipschitz-Markov property. Modifying M on a negligible set, we
may assume that Misa cadlag process and, moreover,

Vt (S] Q+, Ml‘ == Ml‘ a.s.

3.3 The General Case

We now obtain, by approximation, a proof of Kellerer’s theorem in the general case.

Theorem 4. Let (u;,t > 0) be a peacock. Then there exists a martingale associated
to (s, t > 0) and satisfying the Lipschitz-Markov property.

Proof. We consider a peacock (1, ¢ > 0) and we set C(t, x) = C,,(x).
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Lemma 6. There exists a countable set D C R such that the map:
t— u; €M

is continuous at any s € D.

Proof. By property 2 in Proposition 3, there exists a countable set D C Ry such
that, for every x € Q, the map:

t —> C(t,x)
is continuous at any s ¢ D. Since
V-xvyvts |C(t,y)—C(t,x)| = |y_x|s

this continuity property holds for every x € R. It suffices then to apply Proposition 2,
taking into account Proposition 4. O

We may write D = {d,; n € N}. For p € N, we denote by (k,({’),n > 0) the
increasing rearrangement of the set:

(k277 ke NfU{d;; 0 <j <p}.

We define (,uﬁp), t > 0) by:

» kO -t t— kP 0
n .
W = ———— U+ ——=Wn ifte[? k]
kr(ﬁ - ) P kffﬁ L 5o PRl n s Kyt

Lemma 7. The following properties hold:

(i) (u?’), t > 0) is a peacock and the map: t —> ,u,(p) € M is continuous.
(ii) Foranyt > 0, the set {u?’); p € N} is uniformly integrable.
(iii) Fort> 0, 1imyoo u”) = 1, in M.
Proof. Properties (i) and (iii) are clear by construction. Property (ii) follows directly
from Proposition 4. O

By Theorem 3, there exists, for each p, a martingale (M,(p ), t > 0) which is associated
to (p,ﬁp), t > 0) and satisfies the Lipschitz-Markov property. For any n € N and
7, = (t1,---.1,) € R", we denote by ,uﬁ’:’") the law of (M,(lp),u- ,M,(f)), a
probability measure on R”. The proof of the following lemma is quite similar to
that of Lemma 5, hence we omit this proof.

Lemma 8. For every n € N and t, € R, the set of probability measures
(™ p >0}, is tight.
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Let now % be an ultrafilter on N, which refines Fréchet’s filter.! As a consequence
of the previous lemma, for every n € N and every 7, € R, lim ui‘”") exists in .4
a)/ n

and we denote this limit by > . By property (iii) in Lemma 7, ,ugf)o'l) = 1. By
Kolmogorov’s extension theorem, there exists a process M = (M;,t > 0) such that,
for every n € N and every v, = (t1,--- ,#,) € R", the law of (M,,,--- ,M,)) is

,u(tfo’") . In particular, this process (M,, t > 0) is associated to (i, r > 0). Moreover,

by Proposition 6, M satisfies the Lipschitz-Markov property, and by property (ii) in
Lemma 7 and Proposition 7, M is a martingale. O

4 Related Results

The following definition was first introduced by Lowther in [7], and also plays a
central role in [8, 9].

Definition 3. Let X = (X;,t > 0) be an R-valued stochastic process. Then:

1. X is strong Markov if for every bounded, measurable g : R — R and every
t > 0, there exists a measurable f : Ry x R — R such that

f(r. Xo) = Elg(Xeq0) |- 7]

for every stopping time t.

2. X is almost-continuous if it is cadlag, continuous in probability, and given any
two independent, identically distributed cadlag processes Y,Z with the same
distribution as X and for every 0 < s < ¢ we have

P(Y; <Zs, Y,>Z and Y, # Z, forevery u € (s,1)) = 0.

3. X is an almost-continuous diffusion (abbreviated to ACD) if it is strong Markov
and almost-continuous.

The main result of [8] is the following theorem:

Theorem 5 ([8], Theorem 1.3). Let (u;,t > 0) be a peacock such that the map:
t>0— u;, €4

is continuous. Then there exists an ACD martingale which is associated to
(s, t = 0), and it is unique in law.

On the other hand, the Lipschitz-Markov property entails the strong Markov
property:

At this place, it seems that the use of filters rather than sequences is necessary, since we
have to consider a convergence in a uncountable product of spaces of probabilities, namely:

Myex (2R
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Proposition 8 ([9], Lemma 4.2). Let X be a cadlag, R-valued process which
satisfies the Lipschitz-Markov property. Then it is strong Markov.

As a consequence, the martingale appearing in the statement of Theorem 3 is
strong Markov. Note that a kind of converse of Proposition 8 holds (see also
[7, Theorem 1.5]):

Proposition 9 ([9], Lemma 4.3). If X is an ACD local martingale, then X satisfies
the Lipschitz-Markov property.

The following result concerns the stability with respect to the f.d. convergence.

Theorem 6 ([9], Theorem 1.2). I]‘(M(i))iel is a family of ACD martingales which
f.d. converges on a dense subset of Ry to a process X which is cadlag and
continuous in probability, then X is an ACD.

It follows from what precedes that if (i, # > 0) is a peacock such that the map:
t>0— u, €M

is continuous, the martingale M “constructed” in the proof of Theorem 3 is the
unique ACD martingale associated to (i, r > 0) (and, in particular, it is independent
of the ultrafilter % and of the regularization process). About the continuity of M,
we may use the following remarkable result, the proof of which relies on [7].

Theorem 7 ([9], Lemma 1.4). Let X be an almost-continuous process. If the
support of the law of X; is connected for every t in R4 outside of a countable set,
then X is continuous.

Finally, we obtain from what precedes:

Theorem 8. Suppose that (u,,t > 0) is a peacock such that the map:
t>0— u, €4

is continuous, and such that the support of i, is connected for every t in R outside
of a countable set. Then there exists one and only one continuous, strongly Markov
martingale which is associated to (p;,t > 0).
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Empirical Likelihood and Ranking Methods

Mayer Alvo

1 Introduction

In the parametric setting, when the joint distribution of the observations is known
up to one or more parameters, likelihood methods in statistics have been effectively
used to provide tests of hypotheses and confidence intervals. On the other hand,
estimating equation methods have been used in estimation problems when the
complete probability distribution is not specified. Boos [4] discusses the use of
score tests in this more general context. Aitchison and Silvey [1] considered
maximum likelihood estimation and hypothesis testing subject to constraints on the
parameters. In cases when the likelihood function is misspecified, serious errors
in inference can result. Empirical likelihood is a nonparametric technique that is
entirely data driven. Owen [11] provides a thorough and excellent treatment of
the subject and discusses its relation to the bootstrap. Qin and Lawless [12] have
extended empirical likelihood methods to deal with constraints on parameters.
DiCiccio, Hall and Romano [5] have shown that unlike the bootstrap, empirical
likelihood is Bartlett-correctable, thus yielding second order approximations.

In a series of articles, Alvo and Cabilio generalized ranking methods to deal with
tests of trend and the analysis of two-way layouts. The test statistics developed were
motivated by notions of distance between permutations. Liu et al. [9] have described
a rank-based empirical likelihood approach for inference on population medians.
The goal of the present article is to apply empirical likelihood methods to various
problems in two-way layouts involving the use of ranks and to compare with the
previous results of Alvo and Cabilio. In Sect. 2 we introduce the usual problem of
testing for concordance and place it in the context of empirical likelihood. In Sect. 3,
we discuss generalizations and applications to the multi-sample situation.
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2 Empirical Likelihood Methods

Suppose that ¥;; for 0 < j < r,1 < i < n, represent the jth response of k = r + 1
treatments in the ith replication. Let Y;; have a continuous cumulative distribution
function Fj;. We would like to test the hypothesis

Hy:Fo=...=F,i=1,....,n (1)
against the alternative
H :F;j(x)=Fi(x=0),0<j<ri=1,....n. 2)
Let R;; denote the rank of Y;; among the k responses {Yio, Yi1, ..., Y} . Since

Rj=1+ ZI[Y{/'>YM]
=0
it follows that

ERj =1+ P(Y;> Yy)
t=0

which clearly depends on 6 = (6,..., 0:) . We shall further assume that the
k—dimensional distributions {F; (-,...,:),i = 1,...,n} are independent and iden-
tical to some cumulative distribution function F (:,...,-). As well, we suppose
that F (-,...,-) is differentiable and symmetric in its arguments. In that case, it
is possible to drop the first subscript and consider the random vector of ranks
R = {Ry, Ry, ..., R,}. Under the null hypothesis (1), all rankings are equally likely
in the space & = {w,} of all possible k! permutations, where @ is a column vector
permutation of the integers (1,2, ..., k). It follows that for any components R, R’

P(R:i,R/:j)——l i#J

PR=10= T kk—1)

1
k 9
and consequently

k+1 -1 k+1
=( + ),VarRz , Cov (R,R/)z—:_—z.

ER

The covariance matrix

k-1 .
>~ on the diagonal

Cov (R) =
k1 ;
—=5 off the diagonal
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is a k X k singular matrix of rank (k — 1) . Let 1; be a k—dimensional vector of ones
and let T be the k x k! matrix given by

k+1 k+1
T:(wl—le,...,wk!— ) lk)

Noting that

k!
> wi= (k=1 [k(k—;l)} 1,
i=1

and

k!
R=) wilkrw]

i=1
it follows that

k!
ER = Z w;P (R :w',')

i=1

k!
= E Wi
i=1

k+1
=Tn + 1 (3)
where &t = (71, ..., ) .

In view of the fact that the covariance matrix of R is singular, we shall consider
instead the reduced ranking S = {Rj,...,R,}. The covariance matrix of S is
nonsingular of full rank r with

k2—1 .

>~ on the diagonal
Cov (S) = .

— k1 off the diagonal

12

The inverse takes the form of

12 2 on the diagonal

(Cov(8))™ = ——
kk+1) 1 off the diagonal
12
= T -]r Ir
e U

where J, is an r X r matrix of ones and /, is the identity matrix of order r.
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Set @ = ES. Let us consider an empirical likelihood approach for testing
hypotheses about the mean p [11]. Suppose that we observe a random sample
of n rankings Sy, ..., S, and suppose that ¥ (Y,j, 0<j<r, [,l,) is a vector valued
function. Let u, be a fixed point of u for which the variance-covariance matrix of
"4 (Y,j, 0<j=<r, [,LO) is finite and has rank ¢ > 0. Let w; be the probability mass
placed at {Y;;,0 <j < r} . If p, satisfies E (¥ (¥, 0 < j < r, py)) = 0, then

lg (o) = —210g Z (1o) = X, 4)

where the profile empirical likelihood ratio function is given by

Z () = max { IT/L nw| Zwillf (Yi',O <j< r,;L) =0,w; >0, Zwi =1
i=1 i=1
)

We now choose

: k+1
W(lejvof‘]frs”’):(Sl_l'l’)vq:rvl'l’ozTlr

The results of the maximization adapted to this choice show that an empirical log
likelihood-ratio statistic /r (p) for the mean can be obtained with

1 1 .
A0+ Si—po)

A

w; =

l,....n (6)

and tisa (r — 1) x 1 vector of Lagrange multipliers satisfying
A R
= 1+t (Si— o)

Owen (Theorem 3.2 p.219) has shown that | t| = O, (n_%) ,and

I (1) = 1. (8 = o) (Cov (8)™" (8 = o) + 0, (1) )

where S =n~! (S; +... +8,) and that hence Iz (ty) —>4 x7_,. The empirical
likelihood ratio test would then reject the null hypothesis whenever

I (o) = =2 ) log (ni) > xi_, (@)

where Xi_ | (o) is the upper 100(1 — )% point of a chi-square distribution with
(k — 1) degrees of freedom and the {Ww;} are given in (6).
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As in Owen, a 100(1 — «)% confidence region may be written as

n
C,»,n = § E v?/iSiIHi’;lnfvi >r

i=1

2
with r = exp (——”*2‘ M) .

We may now relate (7) to the vector of relative frequencies #. Setting Ry =
n~1 3", Ry;, we have

(8 — o) (Cov ()" (S = o)

_ k(kl_il) (5 o) G +1) (5 — o)

~ e B ) (14 1) B - o)

= e 1= m0) (1) G =)+ G =) G- o)}
_ % (RO— %)2 +(5-po) G- uo)}

= e (R =) (R= o)}

= W+ D (Tr) (T®) (®)

since T, = Hz'—lTl, = (. We recognize that (8) is the usual Friedman statistic (see
Alvo, Cabilio and Feigin [3]) and that in view of (3)

k 2
iy iy =Y (k- C30)
i=0

where R; is the average of the ranks assigned to object i. Hence, the empirical log
likelihood-ratio statistic is asymptotically equivalent in distribution to the Friedman
statistic. As such, the Friedman statistic shares, at least asymptotically, many of
the properties of the empirical likelihood ratio statistic. Specifically, we can obtain
narrower confidence intervals for the mean [11].

The expression for the power function may be derived from Sen [13]. Specifi-
cally, it was shown that the power function for the Friedman statistic is given by the
non central chi square with noncentrality parameter
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A=

00 2 r
[ / f(x,x) dx:| E 9]-2
oo =

where f (-, -) is the joint marginal density function derived from F (-, -, ...,-) of any
pair of elements.

nk
k+1

3 General Block Designs

The methods of empirical likelihood may be generalized to deal with general block
designs. Suppose that ¢ objects are ranked k; at a time 2 < k; < t by b judges
(blocks) independently, 2 = 1, ..., b, in such a way that each object is presented to
ri judges and each pair of objects (i, ) is presented together to A;; of these judges,
i,j = 1,...,t. For a balanced incomplete block design (BIBD), k;, = k,r; = r,
Ajj = A and we must have that

bk = rt
A=) =rk-1).

In the complete ranking situation k, = f,7 = b = A. We would like to test the
hypothesis of no treatment effect; that is each judge selects the ranking at random
from the space of k! permutations of the integers (1,..., k). In order to consider
the asymptotics in this situation we shall allow z replications of such basic designs.
Alvo and Cabilio [2] introduced the notion of compatibility in order to deal with
precisely such a situation. We recall

Definition 1. The complete ranking p of 7 objects is said to be compatible with an
incomplete ranking u* of a subset of k of these objects, 2 < k < ¢, if the relative
ranking of every pair of objects ranked in u* coincides with their relative ranking
in w.

As an example, the incomplete ranking u* = (2, —, 1) is compatible with each
of the rankings in the class

C(p*) =1{2,3.1.(3.2,1),(3,1,2)} .

We may arrange the complete rankings in a fixed but arbitrary order and then
specify by means of a matrix all the compatible classes corresponding to the missing
pattern. Let u; = (1,2,3), 42 = (1,3,2),u3 = 2, 1,3), 04 = (2,3,1), 45 =
(3,2,1), u6 = (3,2,1). Then the compatibility matrix corresponding to rankings
whereby only objects one and three are ranked
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mr (10
M2 | 10
c=Mm 10
na | 01
us | 01
e \O01

Here the columns of the matrix correspond to the incomplete rankings (1, —, 2),
(2, —, 1) respectively. Alvo and Cabilio [2] have shown that for a specific pattern of
missing observations for each of the b blocks, the matrix of scores is given by

T = (T;‘|T;|...|T,§‘)
k! k!
= T( L c1| C2| |t—b,cb)

where C; is the compatibility matrix for block i. This decomposition suggests that
we may define an empirical likelihood test for each block separately. In view of
the independence of the observations in each block, the profile empirical likelihood
ratio function for the general block design will be the sum of the individual profile
empirical likelihood ratio function for each block. Consequently,

b
lg(po) =n Z — o) (Cov (Sh))_l (Sh — mio) + 0y (1)
=1

3

(T* ) ( ) + Op (1) - ank(F)

where SZ is the vector whose components are the averages of the ranks in block 4,

= (|l 7)o = (yglBaol - - - [Hpo)
and
b /
1 (k! kp!
I = — | — C .
,; k! ( ”) ( ")

In the special case of the BIBD, it can be shown that

Ie (o) = Xiy -

Specific results for general designs may be obtained from Alvo and Cabilio [2]
who obtained the eigenvalues of I" for general cyclic designs and group divisible
designs.
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4 Two Sample Problems

Consider now the two sample problem. Suppose that Y;; for 0 < j < r,1 <i <
n;, I = 1,2 represent the jth response of k = r 4 1 treatments in the ith replication,
Ith population. Let Y;; have a continuous cumulative distribution function Fy;. We
assume that Fj; (x) = Fj; (x — 6)) forall 1 < i < n;. We would like to test the null
hypothesis

Hy : Fjj (x) = Fj (x)
against the alternative
H1 . F]ij(x) = F,(x—@;) .

Let R;; denote the rank of Y;; among the k responses {Yjo, ..., Yk} and let S;; =
(Ri1s - - -, Riix) be the ith vector of rankings in the /th population. We shall suppose
that we observe a random sample of n; rankings {S;;},/ = 1,2. Sety; = ES;;,y =
¥, — ¥, and using the Neyman-Scott [10] parametrization, set

ny np
Vi=K_——V,Vo=HK——7).
ni np

Under the null hypothesis, y = 0. Suppose that ¥, (Ylij, 0<j=<rl<iz<n,pu, y)
is a vector valued function. Let p be a fixed point of y for which the variance-
covariance matrix of ¥, (Ylij, 0<j=<rl<iz<n,pu, y) is finite and has rank g >
0. Let wy; be the probability mass placed at

Y (Y;0<j<rl<i<n,p,y).
If p, satisfies
EW (Yiy,0<j<r1<i<mp,pg)) =0,
then we shall show that

le (s yo) = —210g Z (15 ¥0) = X,

where the profile empirical likelihood ratio function is given by

Z(ksy)

2 n
= max { [T I mwii| Y ) wi (Y 0 <j < r 1 <i<m.p,y)=0.

=1 i=1

n
WUEO,E Wij=1 .
i=1
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The maximization is solved by using Lagrange multipliers. The Lagrangian is

2 n
L= Y logwi—Y (Zwﬁ_ 1)
I =1 \i=1
—anlzzwli‘l’l (Y, 0<j<r1<i<n,p,y)
] i

where {v;, 1;} are the Lagrange multipliers. Following Liu et al. [9], and setting
V(Y. 0<j<r1<i<n,p,y)=Si—y).q=r.

we see that

1 1

— Jd=1,...,n,1=1,2
n {1 +t (Sli_yl)}

Wy =
and t;is a (r — 1) x 1 vector of Lagrange multipliers satisfying

i—(s”_yl) —0/=12
L+4Si—y)

i=1

_1
Owen (Theorem 3.2 p.219) has shown that ||t;|| = O, (”1 2) ,foreach! = 1,2.

Moreover, it can be seen that under the null hypothesis
2
- p o=
le () =D i (Si—p) (Cov(S)™" (Si—p) +0, (1)
=1

where S;=n;! Y7L, S;;. Estimating gt by

. mSi+mS,
fi=—
ny + nyp

we have that

N niny
lg(R) = "

(S1=82)" (Cov (8)™" (81-82) + 0, (1)

+ ny

from which it follows that Ig (1) —4 x7_, asn — oo, with n;/n — A, 1 = 1,2.

It can be seen that the empirical likelihood ratio test is asymptotically equivalent
to the Feigin and Alvo [6] two-sample test. The Cov (S) can be estimated as
described in Feigin and Alvo [6].
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5 Other Test Statistics

Test statistics other than the mean ranking can be considered using the empirical
likelihood approach. Specifically we may consider the Kendall score function
sgn (Y,-q2 - Y,-ql) which represents the level of agreement between the ranking of
judge i and the complete natural ordering {1,2,...,1} with respect to the paired
comparison of the objects g, g». The parameter of interest in that case is

= / / 5@ (11 — ya1) 591 (15 — ya2) dF (y1) dF (32)

wherey; = (y11,y12) ,¥2 = (21, ¥22) have common distribution F. For independent
variables Y1, Y,, the parameter t represents the covariance of the sign of the dif-
ference between the first coordinates and the sign of the difference between the
second coordinates. This shows that the empirical likelihood approach is much more
generally applicable to new situations.

6 Simulations

It is well known that the chi square distribution is not a good approximation to
the null distribution of the Friedman statistic for small and even moderate sample
sizes [7]. Unfortunately, a Bartlett correction for this test statistic is not possible
since the condition

lim sup |Ee™| < oo
el =00

is not satisfied for lattice random variables. Jensen [8] obtained an 0( ) approx-

imation. In view of the asymptotic equivalence of the Friedman statlstlc to the
empirical likelihood ratio test, we may consider a calibration mentioned by Owen
(p 33-35) which involves using the bootstrap. Specifically, for b = 1,...,B and
i =1,...,nlet S*” be independent random vectors sampled from among the
rankings S 1,---,9,. This resampling can be implemented by drawing nB random
integers J (i, b) independently from the uniform distribution on (1,...,n) and
setting S¥* = S ;). Now let

C* = —21log #* (S)

where

Z*" (S) = max { [T/ nwi| Zw,- (Sf" —S) = 0.w; > 0, Zwi =1
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Define the order statistics C'V) < C? < ... < C®), We may now compare the 95 %
critical value C*-%°®) with that of the appropriate Chi square. We do not pursue this
further in this paper.

7 Conclusion

In this paper, we applied the methods of empirical likelihood to various non-
parametric problems involving ranking data. Specifically, it was shown that the
Friedman statistic has an empirical likelihood interpretation. This should enable us
to construct narrower confidence intervals for the treatment means. As well, it was
shown that empirical likelihood methods can be applied to the two sample problem
as well as to various block design situations.
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Asymptotic and Finite-Sample Properties
in Statistical Estimation

Jana Jureckova

1 Introduction

Consider first the problem of estimating the shift parameter 6 based on observations
X1, ..., Xy, distributed according to distribution function F(x — ). Parallel problem
consists of estimating the regression parameter in model ¥; = x;rﬂ + e;,i =
1,...,n. Many estimators of 6 are asymptotically normally distributed, which is
proven with the aid of the central limit theorem. The word “central” is suitable,
because it approximates well the central part, but less accurately the tails of the
true distribution of the estimator. The leading idea of robust estimators was their
assumed resistance to heavy-tailed distributions and to the gross errors. However,
while they are often asymptotically normal, we can show that they themselves can
be heavy-tailed for any finite 7.

Another interesting fact is that though many estimators are asymptotically
admissible with respect to quadratic or generally to convex risk functions, some of
them are not finite-sample admissible for any distribution at all, and cannot be even
Bayesian. This is true mainly for trimmed estimators, as the median, trimmed mean
or the trimmed least squares estimator. Generally this is true for many estimators
with bounded influence functions; cf. [6, 7].

If we do not know F exactly, we usually take recourse to robust estimators,
less sensitive to the outlying observations and to the gross errors. Well-known
are the classes of M-, L- and R-estimators, each of which containing elements,
asymptotically normal and efficient for specific distributions. In the family of
symmetric contaminated distributions, .# = (1 — ¢)F + ¢H, H € ¢ with
unimodal central distribution F, any of these classes contains an element with the
mini-maximally optimal asymptotic variance over .%. Under a fixed F, we can
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obtain the M-, L- and R-estimators with identical influence functions by a suitable
transformation (dependent on F') of the respective score (weight) function. However,
the influence function characterizes the statistical functional rather than its finite-
sample estimator, and the M-, L- and R-estimators can behave differently for finite n.

The asymptotic approach often stretches the truth; when the number of observa-
tions is finite, the distribution of a robust estimator is far from normal, and it inherits
the tails from the parent distribution F'. From this point of view, the estimator is non-
robust. Our purpose in the present paper is to illustrate some distinctive differences
between the asymptotic and finite-sample properties of robust estimators. We
shall devote attention to the tail-behavior of M-estimators and of their one-step
versions, and generally to the tail-behavior of equivariant estimators. Concerning
the one-step version T,gl) of estimator 7, starting with an initial estimator T,§°’ ,
it is interesting though not well known that while asymptotic properties of T,(ll)
depend on those of non-iterated 75, its finite-sample properties rather depend on
the initial 7.”. The finite-sample properties of an estimator depend on its finite
sample distribution; we shall illustrate the exact finite-sample densities of some
equivariant estimators. However, to calculate the density numerically requires a
multiple numerical integration, for which a very good approximation is needed. We
recommend the saddle-point approximation, which is very precise even for a very
small 7.

2 Tail-Behavior of Equivariant Estimators

2.1 Estimation of Shift Parameter, i.i.d. Observations

Let Xi,...,X, be a random sample from an unknown distribution function
F(x — 0), where F is absolutely continuous with positive density f. For the sake
of identifiability of 0, assume that f is symmetric around 0, or another condition
guaranteeing the identifiability. Suppose that F is heavy-tailed in the sense that

. —In(1 - F(x))
lim ————~ =

1, for some m > 0. @))
x—>00 mlnx

Then, for x > 0,

1 —F(x) = x "L(x) (2)

where L(x) is slowly varying at infinity, i.e. lim,—, LL((“X’;) =1Va>0.
For that, we should verify that L,, (x) = x"(1 — F(x)) is slowly varying at infinity.

Indeed, for x > 0 and any a > 0 fixed, under (1)
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In ([ZH(Z;)) =m Ina+In(l — F(ax)) — In(l — F(x))
=m Ina+ (M) -m In(ax) — (w

m In(ax) m Inx

)-mlnx—>0

as x — 0o, and it confirms (2). In that case F belongs to domain of attraction of the
Fréchet distribution. Conversely, (2) implies (1).

Let T, = T,(X1,...,X,) be a translation equivariant estimator of 6, further
satisfying the following natural condition:

min X; > 0 = T,(X) > 0, lrnax Xi<0=T,X) <0. 3)
<i<n

1<i<n
Tail-behavior of T, can be characterized by means of a measure proposed in [3]:

_ _1nP9(|Tn - el > a) _ _lnPO(lTn| > a)
BaT) = —— 0 —Fa) ~ —m(l-Fa) @)

and its values for a > 0. If T, satisfies (3), then under any fixed n

1 <liminf B(a,T,) <limsup B(a,T,) <n
a—>00 a—>00
(see [3] for the proof). Particularly, if lim,—.o B(a, T,) = A, > 0 and F is heavy-
tailed with tail index m, then

Po(T, > a) = a "L, (a), L, slowly varying at infinity,

hence T, is also heavy-tailed. Specifically, it applies also to median X, and to the
M-estimator M,, with bounded v -function, where A, = 3. It means that X, and M,
are heavy-tailed with the tail index “5*. It is finite for every n, though increasing with
n, which classifies the distribution of these estimates as heavy-tailed for any finite
n. The distribution of estimates is light-tailed (normally, exponentially tailed) only
under n = oo. The sample mean X, has A, = 1; thus X,, is heavy-tailed with the tail

index m for any n < oo.

2.2 Estimation of Shift Parameter, Non-identically
Distributed Observations

Let us now consider the case where the X;, i = 1,...,n are independent, but
non-identically distributed, X; having continuous distribution function F;(x — ),
symmetric around 6, and heavy-tailed in the sense that

1 —Fi(x) =x "Li(x), 0 <m; < oo, L; slowly varying at infinity, i = 1, ..., n.
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Denote
my =min{m;, 1 <i<n} m" =max{m;, 1 <i<n}.

If we are not aware of the difference between Fy, ..., F,, we automatically use an
equivariant estimate 7, satisfying (3) as before. Then even its tail behavior cannot
be exponentially-tailed. In fact, as proven in [8],

a_’"*L(a) < Py(T,— 0 > a) <a ™L(a) for a> ay,

where L(-) is slowly varying at infinity. Particularly, if X1, . . ., X,, are heteroscedastic
in the sense that F;(x) = F(x/0;), i = 1,...,n, then my, ..., m, coincide. Hence,
the heteroscedasticity does not affect the tail index of T,, which is always equal
tom.

2.3 Estimation of Regression Parameter

Consider the linear model Y,, = X, 8 + e, with a fixed (nonrandom) design matrix
X, of order n x p and of rank p, with the rows x;r, i=1,...,n. The vector of errors
e, consists of n independent components, identically distributed with a symmetric
distribution function F such that 0 < F(z) < 1, z € R!. Let T, be an estimator of

B, regression equivariant in the sense
T,(Y +Xb) =T, (Y) +b, VbeR”.

He et al. [2] extended the tail measure (4) to T, in the linear model in the following
way:

—In P (max; |x] (T, — B)| > a)

B(a, T,) = —1In (1 - F(a)) ’

a> 0. )

The same authors showed that if there exists at least one non-positive and one non-
negative residual r; = Y; — xiTTn, then limsup,_, . B(a, T,) < n. The properties
of this measure were further studied by Mizera and Miiller [12] and Portnoy and
Jureckova [13], and this measure was extended to multivariate models by Zuo ([15,
16] and [17]). Jureckovd, Koenker and Portnoy [11] studied the tail behavior of the
least-squares estimator with random (possibly heavy-tailed) matrix X.

It is traditionally claimed that robust estimators are insensitive to outliers in Y
and to heavy-tailed distributions of model errors. However, we can show that an
equivariant estimator T, in the linear model is still heavy-tailed for any finite n
provided the distribution function F is heavy-tailed, even if X is non-random. More
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precisely, if T, is a regression equivariant estimator of § such that there exists at
least one non-negative and one non-positive residual r; = ¥; — x;rTn, i=1,...,n,
then

P (T, = BIl > @) = a™""*VL(a)

where L(-) is slowly varying at infinity. Hence, the distribution of | T,, — || is heavy-
tailed under every finite n (see [8] for the proof).

2.4 Tail-Behavior of M-Estimator of Regression Parameter

The class of M-estimators defined as

n

_ - T
T, = arg;gﬁgp{Zp(Yl X; b)}

i=1

covers the Huber estimator and some redescending M-estimators. Assume that F is
symmetric with nondegenerate tails (heavy or light) and such that

—In(1—F
fim M0 =F@+e) e veso.
a0 —In(1 — F(a))

Following [12], we suppose that p satisfies the conditions (discussed in [12] in
detail):

(1) p is absolutely continuous, nondecreasing on [0, 00), p(z) > 0,
p(z) = p(—2), z€ R
(ii) p(z) is unbounded and its derivative /(z) is bounded for z € R!.
(iii) p is subadditive in the sense that there exists L > 0 such that

p(z1 + 22) < p(z1) + p(z2) + Lforzy,z2 = 0.
Define
myx = mx(n, X, p)
= min {card M Z p(x;rb) > Z p(x;rb) for some b # 0}
ieH i¢MN
where . runs over subsets of 4" = {1,2,...,n}. Then it is proven in [5] that

liminf B(a, T,) > mx.
a—>0o0

It means that m, is the lower bound for the tail behavior of M-estimator generated
by p and it coincides with the lower bound derived in [12] for the finite-sample
breakdown point of the M-estimator T,,.
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3 One-Step Version of an Estimator, Its Tail-Behavior
and Breakdown Point

A broad class of estimators T, of § admit a representation

1,00 = B+ OTX)™ YoV —xTB) + R,

i=1

IR, [l = 0, (IX, X, ]| 7"/2) (©6)

with a suitable function ¥ and a functional y = y (¥, F).

The one-step version of T, is defined as the one-step Newton-Raphson iteration
of the system of equations Y ., x;¥(¥; — x;rb) = 0, even when the estimator is not
a root of this system (as in the case of L;-estimator or of other M-estimators with
discontinuous ).

Let us start with a consistent initial estimator Tﬁ,o) of B, satisfying
/2T — B) = 0,(1). The one-step version of T, is defined as

o | Q)T Dy (=X)L, £.0
T;O) ... otherwise

where Q* = n~'XTX,. The two-step or the k-step versions of T, are defined
analogously for k = 2, 3, . ... Here we assume that y # 0 and that J, is a consistent
estimator of y such that 1 — (y/y,) = OP(n_l/ 2). For possible regression invariant
estimates of y we refer the reader to [9].

While the asymptotic properties of T,(ll) depend on those of the non-iterated
estimator T, its finite-sample breakdown point depends on that of initial Tﬁ,o) (see
[13]). There is a conjecture that even more finite sample properties of T depend
solely on the initial estimator. We shall illustrate this phenomenon at least in the
special case of location model:

3.1 One-Step Version in the Location Model

Let T, be an equivariant estimator of a location parameter and 7 be an equivariant
initial estimator. Consider a modified one-step version of 7}, :

T,(lo)—i-)?n_an... if [P71W,] <c, 0<c<o0
(0)

7D —
n 7!

. otherwise
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where W, = n ' Yy (Yi = T\”) = 0,(n""/%). Then T." — T, = 0,(n""/2) and
T,(ll) is also equivariant. Surprisingly, the tail behavior of T,(ll) and of T,(lk) depends

more on that of T,(,O) than on the tail-behavior of non-iterative 7,,. The following
theorem is proven in [5]:

Theorem 1. Let Yi,...,Y, be a sample from a population with distribution
function F(y — 0), F symmetric and increasing on the set {x : 0 < F(x) < 1}.
Let T,, be an equivariant estimator of 0 admitting the representation

1 n
Tu(Y) =0+ — Y ¢ (¥;—0) + Ry, Ry =o0p(n""?)
ny i=1

with a bounded skew-symmetric non-decreasing . Then, fork = 1,2, ...
liminf B(T”, @) < liminfB(TY, a)
a—>00 a—>00

< limsup B(Tlgk), a) < limsup B(T,go), a).

a—>o0 a—>00

Example 1. (i) Let T,§°’ = 5(,1 be the sample median, n odd. Let 7, be an

equivariant estimator and TV its k-step version starting with X,,. Then, under
the conditions of Theorem 1,

I
limB(T,(,"),a):% for k=1.2.....
a—>0o0

(i) Let T,(lo) = )_(n be the sample mean. Let T, be an equivariant estimator and T,(,k)
its k-step version starting with X,,. Then, under the conditions of Theorem 1,

n if F is of type I (exponentially tailed)
lim B(T®,a) =
a0 1 if F is of type II (heavy tailed)

fork =1,2,..., where the types I or II of F mean that its tails satisfy

—In(1-F
muzl, b>0, r>1

a—>00 ba”

—In(l - F
fim —=F@) o,
a—>00 mlna

respectively (see [3] for more details).
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4 Finite-Sample Density of Equivariant Estimators

The finite-sample properties of estimator 7,,, including the moments, depend on its
entire scope, not only on its central part. The finite sample density can be sometimes
derived, though it does not have a simple form. For instance, let X|,...,X, be a
sample from the distribution with distribution function F(x — 6) where F has a
continuously differentiable density f and finite Fisher information. Denote by g (?)
the density of a translation equivariant estimator 7, of 8. Then (see [10])

_ — [ = 0) -
ge(f) = /T(Xl < e / Z m ]!:[lf()(k — 9)dx1 e dxn

..... i=1

(X))
:E()g;f(xi) I[T(Xl,,”,xn)ft_eu .

If T, is a solution of the equation ) ;_, ¥ (X; — t) = 0 with monotone v, then g (7)
can be rewritten as

n , n

a0 = Bo | L TS 0 - ) < o]
= f(X) P

To calculate it numerically means an n-fold integration, and we recommend to use

a saddle point approximation as it is more precise.

This density is numerically compared in [10] with its saddle-point approxima-
tion, developed in [1], for the Huber and maximum likelihood estimators, and
for various parent distributions, including the Cauchy. The numerical comparisons
demonstrate that the saddle-point approximations are very precise even for small
sample sizes, and thus can be recommended in applications. A similar approach
applies to the density of a regression quantile, derived in [4], and its saddle-point
approximation, computed in [14].
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