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  Pref ace   

 Although the term “junk” DNA was used since the early 1960s, the term’s origin 
was attributed to Susumo Ohno who offi cially used the term to describe pseudo-
genes’ sequences resulted from gene duplication and subsequent mutagenesis 
events. Since then, the term was widely used to describe any non-coding sequence 
of the genome. Today, “junk” DNA refers to any genomic sequence that does not 
play a functional role in the organism. The use of the term was accompanied by 
various unanswered questions: Why do we have so much “junk” DNA in our 
genome? Do these non-coding sequences have functional signifi cance? The discov-
ery of novel genomic elements in the recent years was a step forward in an attempt 
to address these issues. It appears that the percentage of the non-functional DNA is 
being signifi cantly reduced as more and more functions are attributed to those non- 
coding regions of the genome. Despite the continuous shrinkage of the non- 
functional portion of the genome, it is believed that a signifi cant part of the genome 
is indeed non-functional. 

 In this book, we attempt to provide a thorough review of various non-coding 
genomic elements and discuss in depth their role in health, disease and evolution. 
We begin our exploration with non-coding RNA molecules, miRNAs, piRNAs, 
LncRNAs and transposable elements as these moieties dominate the scientifi c lit-
erature in the last 10 years. We proceed with the discussion of copy number varia-
tion regions, mini- and micro-satellites, and proximal and distal elements of the 
genome. The last section of this book focuses on the review of well-known non- 
coding regions of the genome, introns, centromeres and telomeres, but enriched 
with newly discovered functions. As the vast amount of data in regard to these ele-
ments is attributed to a great degree to the growing technology in the fi eld of bio-
medicine, the last chapter of this book discusses the latest development in the fi eld 
of Next Generation Sequence and the potential applications of this technology in the 
study of non-coding regions of the genome. 

 The original structure of this book was greatly shaped by many conversations 
with colleagues in Cyprus and abroad. We are indebted to all the authors contribut-
ing to this publication for their in-depth review of the subject and their excellent 
writing. We must also thank all the scientists whose work is included in this book. 
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    Chapter 1   
 MiRNAs’ Function and Role in Evolution: 
Under the View of Genomic Enhancement 
Phenomena       

       Konstantinos     Voskarides       and     Kyriacos     Felekkis     

            Introduction: Biogenesis, Nomenclature 
and the Principal Role of miRNAs 

 MiRNAs are short, single-stranded  RNA   molecules approximately 21–23 nucleo-
tides in length (mature miRNAs), which usually have a uridine at their 5′ end and 
they are partially complementary to one or more messenger RNA (mRNA) mole-
cules. Although they cover only a small part of the  genome  , their role in  gene 
express   ion    regulation   is considered to be of high signifi cance. MiRNAs were dis-
covered by Victor Ambros, Rosalind Lee and Rhonda Feinbaum in 1993 during a 
study of the gene  lin - 14  in  C. elegans  development [ 1 ]. They found that LIN-14 
protein abundance was regulated by a short RNA product encoded by the  lin - 4  gene, 
which was partially complementary to many regions of the  lin - 14  3′ UTR. This 
complementarity was suffi cient to inhibit the translation of the  lin - 14  mRNA and 
necessary for the worm development. A huge amount of data has been accumulated 
since then for miRNAs and many more are yet to be discovered in the near future. 

 Due to this great and continuous fl ow of data, a specifi c nomenclature system has 
been created. The prefi x “mir” is followed by a dash and a number, the latter often 
indicating order of naming. For example, mir-123 was named and likely discovered 
prior to mir-456. The uncapitalized “mir-” refers to the pre-miRNA, while a capitalized 
“miR-” refers to the mature form. MiRNAs with nearly identical sequences bar one or 

        K.   Voskarides ,  Ph.D.      (*) 
  Department of Biological Sciences ,  Molecular Medicine Research Center, 
University of Cyprus ,   Kallipoleos 75 ,  1678   Nicosia ,  Cyprus   
 e-mail: kvoskar@ucy.ac.cy   

    K.   Felekkis ,  B.Sc., Ph.D.      (*) 
  Department of Life and Health Sciences ,  University of Nicosia Medical School, 
University of Nicosia ,   46 Makedonitissas Ave. ,  1700   Nicosia ,  Cyprus   
 e-mail: Felekkis.k@unic.ac.cy  

mailto:kvoskar@ucy.ac.cy
mailto:Felekkis.k@unic.ac.cy


2

two nucleotides are annotated with an additional lower case letter. For  example, miR-
123a would be closely related to miR-123b. Pre-miRNAs that lead to 100 % identical 
mature miRNAs but that are located at different locations in the  genome   are indicated 
with an additional dash-number suffi x. For example, the pre- miRNAs hsa-mir-194-1 
and hsa-mir-194-2 lead to an identical mature miRNA (hsa-miR- 194) but are located 
in different regions of the genome. Species of origin is usually designated with a three-
letter prefi x, e.g., hsa-miR-123 is a human ( Homo sapiens ) miRNA and oar-miR-123 
is a sheep ( Ovis aries ) miRNA. When relative expression levels are known, an asterisk 
following the name indicates a miRNA that is expressed at low levels relative to the 
miRNA in the opposite arm of a hairpin. For example, miR-123 and miR-123* would 
share a pre-miRNA hairpin, but more miR- 123 would be found in the cell. 

 But what is known about the “molecular play” of miRNAs? Each miRNA is 
thought to regulate multiple genes. Since hundreds of  miRNA gene   s   are predicted to 
be present in higher eukaryotes, the potential regulatory circuitry afforded by miR-
NAs is vast [ 2 ,  3 ]. Acting at the post- transcriptional   level, these molecules may regu-
late the expression of more than 30 % of all mammalian protein-coding genes [ 4 ]. 
Several research groups have verifi ed that miRNAs may act as key regulators of 
processes as diverse as embryonic development, cell proliferation, cell growth, tissue 
differentiation and apoptosis. The mature miRNA can bind even with partial comple-
mentarity to the target mRNA (typically on 3′ UTR), downregulating the translation 
of the mRNA. The mature miRNA mainly acts by targeting a miRNA recognition 
element (MRE) on the mRNA’s 3′ UTR and binds on it through a Watson–Crick base-
pairing manner. MiRNA target recognition properties depend on its ‘seed region’. 
Recognition binding sequences are short, usually 6–8 nt [ 5 – 8 ]. The expression of a 
large number of the predicted human miRNA genes has been confi rmed, but many 
predicted  miRNA target   s   remain to be identifi ed and verifi ed (reviewed in Chap.   2    ). 

 Most of the  miRNA gene   s   are located in “spacing” DNA, the DNA that is found 
between different genes. A percentage of 40 % of miRNA genes may lie in the 
introns of protein and non-protein coding genes or even in exons of long non 
protein- coding transcripts [ 9 ]. These are usually, though not exclusively, found in a 
sense orientation [ 10 ,  11 ] and are usually regulated together with their host genes 
[ 9 ,  12 ,  13 ]. A number of miRNA genes have a common promoter, including 
42–48 % of all polycistronic miRNAs (found in the same genetic region), contain-
ing multiple discrete loops from which mature miRNAs are processed [ 14 ,  15 ]. This 
does not necessarily mean the mature miRNAs of a family will have similar struc-
ture and functions. The  promoters   mentioned have some similarities in their motifs 
to promoters of other genes transcribed by  RNA    polymerase   II, such as protein 
coding genes [ 14 ,  16 ]. In brief, animal miRNAs are transcribed by RNA polymerase 
II and processed by the microprocessor protein complex (DGCR8/Drosha) into pre-
cursor stem-loop miRNAs in the nucleus. The cleavage of a pri-miRNA by micro-
processor begins with DGCR8 recognizing the ssRNA–dsRNA junction typical of 
a pri-miRNA. Drosha is approaching its substrate through interaction with DGCR8 
and cleaves the stem of a pri-miRNA ~11 nt away from the two single stranded seg-
ments (~22 nts away from the loop) (summarized by Felekkis et al. [ 17 ]). Drosha 
removes the double-stranded stem from the remainder of the pri-miRNA by cleav-
ing proximal and distal of the stem, generating a pre-miRNA that has a 5′-mono-
phosphate and a 3′-2-nt overhang (Fig.  1.1 ).

K. Voskarides and K. Felekkis
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  Fig. 1.1    Several layers of regulation control  miRNA gene   biogenesis in animals:  transcription   
activation,  splicing  , recognition by Drosha, post-processing,  RNA   editing, sub-cellular localiza-
tion, nuclear export, and hairpin arm selection. From Ameres SL, Zamore PD. Diversifying 
 microRNA   sequence and function. Nat Rev Mol Cell Biol. 2013 Aug; 14(8):475–488. Reprinted 
with permission from Nature Publishing Group       
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   Precursor miRNAs (pre-miRNAs) are exported into the cytoplasm by Exportin-5 
and are cleaved by Dicer to produce mature miRNAs. After cleavage, the miRNA 
duplex is unwound by an unidentifi ed  RNA   helicase and the mature miRNA strand 
binds to an Argonaute (Ago) protein into an RNPcomplex (RSIC) (Fig.  1.1 ). The 
other miRNA strand is degraded. A primary determinant as to which of the two 
strands of a miRNA duplex will be loaded on Ago proteins is the inherent thermo-
dynamic asymmetry of the miRNA duplex. The RNA strand whose 5′- end is less 
stably bound to the opposite strand will be loaded to Ago proteins and form the 
mature miRNA [ 17 ]. 

 Mature miRNAs recognize their respective target mRNAs and mediate post- 
transcriptional      repression of their targets through translational repression, deadenyl-
ation, or enhanced mRNA decay. The procedure is similar in plants, with the 
difference that plants have no Drosha homolog. The plant Dicer homolog, DICER- 
LIKE1 (DCL1), orchestrates both processing events within the nucleus, typically 
resulting in an 21-nucleotide mature miRNA/miRNA passenger strand duplex with 
two-nucleotide 39 overhangs [ 18 – 20 ].  

    MiRNA Genes  Evolution   

    Chromosomal Organization of miRNA Genes 

 An interesting observation is that  miRNA gene   number per  chromosome   corre-
lates with the protein-coding gene density. This indicates that integration and/or 
maintenance of  miRNA genes   roughly follows protein-coding genes. However, 
 Homo Sapiens   chromosomes   14, 19, and X are exceptionally enriched for miRNA 
genes, something that may be related with the evolutionary history of those 
chromosomes. 

 As previously mentioned miRNAs that are found in genetic clusters are called 
polycistronic and tend to have a common promoter. It is obvious that those miRNAs 
were formed though repeated genomic duplication events caused by the unequal 
recombination—the not perfect alignment of homologous  chromosomes   during 
meiosis—a very frequent phenomenon in chromosomal regions with genetic 
repeats. The end result of such event will be the gain or loss of a single copy. 

 Plausibly, employment of an already existing functional promoter by new 
 miRNA gene   s   is an effi cient way to express new miRNAs, eliminating the need 
for de novo establishment of promoter-enhancer sequences upstream of the 
miRNA gene. The subsequent result of this phenomenon is miRNAs (in regions 
up to ~50 kb) that tend to be co-expressed [ 12 ,  15 ]. Amplifi cation of an ancestral 
miRNA inside a cluster is not only signifi cant for “de novo” birth of novel miR-
NAs but  possibly contributes to the effective dosage of a given expressed miRNA 
homolog [ 11 ,  15 ].  

K. Voskarides and K. Felekkis
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    Old and Young miRNA Genes 

 Conserved miRNA sequences among species, are considered as the oldest ones. 
Newly derived miRNAs are the non-conserved miRNAs and are derived through 
duplication events and subsequent nucleotide substitutions [ 21 ]. Frequency of 
duplication of derived miRNAs may be different in plants and animals since there is 
evidence that hairpin structure is the main source of new miRNAs in  Drosophila  
species instead of duplication events that dominate in miRNAs’ birth in plants [ 22 , 
 23 ]. Nozawa et al. [ 22 ] found evidence that miRNAs are initially controlled by neu-
tral evolution but once  miRNA gene   s   acquired their functions, they appear to evolve 
very slowly, maintaining essentially the same structures for a long time. This sug-
gests that once a miRNA gains a function it undergoes extreme purifying selection. 
On the other hand, miRNAs which are more recently derived (and thus presumably 
non-functional) are frequently lost (Fig.  1.2 ).

   A lot of interest has been displayed on functional differences among old and 
young miRNAs. Comparative genomics suggests that ancient miRNAs have on 
average two fold more targets than newly generated ones [ 24 ]. On the other hand, 
new miRNAs genes were shown to have lower expression compared with the old 
ones [ 25 ]. Expression regulation of intronic miRNAs (intragenic) is of considerable 
interest. Do they follow the expression pattern of their host gene? A recent publica-
tion provides evidence that expression of intragenic miRNAs differs between young 
and old miRNAs. Young intragenic miRNAs display lower levels of co-expression 
with host genes than old ones [ 26 ]. This interesting co-evolutionary relation requires 
further investigation. 

Continuous readjustment of the whole transcriptome expression 
through evolutionary time
(copy numbers, transcription regulation, time: A 3D procedure)

Protein coding 
genes’ duplications

Genes with 
new functions

CNVs

Expression 
re-regulation

ENVIRONMENTAL CHANGES IN TIMELINE

Plant
Drosophila

I. miRNA gene

Active miRNA gene Inactive miRNA gene

New miRNA gene

Duplication Duplication

II. Protein-coding gene III. Transposable element IV. Genomic hairpin

Strong purifying selection Weak selection

  Fig. 1.2    Model of miRNAs as regulators of duplication phenomena in evolution. From Nozawa 
M, Miura S, Nei M (2012) Origins and evolution of  miRNA gene   s   in plant species. Genome Biol 
Evol 4:230–239. With permission from Oxford University Press       
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 Without a doubt, the main question is “when did the fi rst miRNAs appeared and 
why?” A way to answer this question is to identify the old (ancient) miRNAs and 
study their functions. Comparative sequence data indicate that the oldest known 
animal miRNA is miR-100. Related to this miRNA the miR-125 and let-7 that were 
initially active in neurosecretory cells located around the mouth. Other sets of 
ancient miRNAs were fi rst present in locomotor ciliated cells, specifi c brain centers, 
or, more broadly, one of four major organ systems: central nervous system, sensory 
tissue, musculature and gut. These fi ndings reveal that miRNA evolution and the 
establishment of tissue identities were closely coupled in bilaterian evolution [ 27 ]. 

 But what about plants? Combined with numerous data sets from high-throughput 
sequencing experiments, eight miRNA families have been identifi ed in the common 
ancestor of all embryophytes. The MIR396 family was present in the common 
ancestor of all tracheophytes (vascular plants), while the MIR397 and MIR398 fam-
ilies were acquired in the common ancestor of all spermatophytes. A high propor-
tion of species-specifi c or non-conserved  miRNA gene   s   were also observed in 
various plant species. This demonstrates that many plant miRNAs have been raised 
during speciation processes (for more information see the detailed review of 
Cuperus et al. [ 28 ]).  

    Genomic Duplications, Repetitive Regions and Transposons 
(TEs) as Potential Sources of miRNA Genes 

 A duplication can be segmental (from a few nucleotides to several thousand kilo-
bases—“tandem” is a similar term used for exactly the same and connected genetic 
repeats) or may cover the whole  genome   (an event also called polyploidization). 
Segmental duplication (or small-scale duplication) and polyploidization correspond 
to distinct evolutionary processes with widely different impacts. Another type of 
frequent duplications in genomes is the  inverted duplication   s  . These are segmental 
and inversely repeated genetic regions. 

 Just as with protein-encoding genes, a major route for new  miRNA gene   s   evolu-
tion is genomic duplications. Segmental or  inverted duplication   s   can be a source of 
new miRNA genes. There is substantial evidence that many of the miRNA families 
originated through multiple genomic duplication events or through repetitive genetic 
elements [ 2 ,  21 ,  29 – 33 ]. Several molecular mechanisms can determine the future of 
such new miRNA genes. Sub-functions or completely new functions can be “born”. 
We encourage the readers who are interested in all the evolutionary processes 
regarding miRNAs to read the detailed review “The evolution and functional diver-
sifi cation of animal miRNA genes” by Liu et al. [ 34 ]. 

 Tandem duplications can result in paralogous miRNA sequences that are located 
on the same transcript and organized as tandem paralog clusters [ 31 ,  35 ]. In a recent 
study, evidence is given that repetitive elements contribute to the de novo origin of 
miRNAs in mammalian genomes and that large  segmental duplication   events acceler-
ate the expansion of miRNA families, including those derived from repetitive 

K. Voskarides and K. Felekkis



7

sequences [ 33 ]. The latter ones are considered as the younger  miRNA gene   s  , being 
also the less conserved among species. Sun et al. [ 36 ] found similar evidence in plants, 
underlining that differences exist between the miRNAs that are found in repetitive 
elements and those that are not. The former tend to have longer hairpin precursor, 
lower G-C content in hairpin precursor sequences and lower minimum free energy. 

 Based on the observation that some miRNA precursors had extended similarity 
beyond miRNA sequences with target genes, Allen et al. [ 37 ] proposed the  inverted 
duplication   model. Under this hypothesis, new  miRNA gene   s   are generated from 
inverted duplication events happened on one of their target genes by forming two 
adjacent gene segments in either convergent or divergent orientation. Recent obser-
vations showing that a large proportion of miRNA genes are included in  transpos-
able element   s   (TEs) or pseudogenes, urged scientists to believe that  inverted 
duplications   are closely related with TEs (see next paragraph) or pseudogenes. 
Zhang et al. [ 38 ] further confi rmed that the inverted duplication model in plants is 
happening via TEs or pseudogenes, showing also that inverted duplications give rise 
to miRNAs much more frequently that  segmental duplication   s  . 

 Data regarding the evolution of miRNAs from TEs are signifi cant and continu-
ously accumulating. Smalheiser and Torvik [ 39 ] reported 11 instances of presum-
ably TE-derived mammalian miRNAs. Later studies by Piriyapongsa and Jordan 
[ 40 ] and Piriyapongsa et al. [ 41 ] identifi ed that 12 % of miRNAs in their study data 
set overlap with TEs in the human  genome  . These miRNAs reside within TE copies 
of all four major TE classes including short interspersed repetitive elements (SINEs), 
long interspersed repetitive elements (LINEs), long terminal repeats (LTRs), and 
DNA  transposons  , suggesting that the formation of novel miRNAs from these ele-
ments has occurred multiple times during the human genome evolution. Devor [ 42 ] 
demonstrated seven marsupial-specifi c miRNAs that possibly evolved from 
marsupial- specifi c TEs. Recently, strong evidence was published for similar proce-
dures in plants [ 32 ,  36 ,  43 ]. The very detailed  bioinformatic   analysis by Li et al. [ 32 ] 
gave results supporting the notion that TEs in gene rich regions in plants can form 
foldbacks in non-coding part of transcripts that may eventually evolve into  miRNA 
gene   s   or be integrated into protein coding sequences to form potential targets in a 
“temperate” manner. A similar work by Sun et al. [ 36 ] in four plant species con-
fi rmed that a signifi cant number of miRNAs in plants derived from TEs. In addition, 
Lenhert et al. [ 44 ] found evidence in mice that lineage-specifi c retrotransposons 
have played an important role in the birth of new miRNA genes during evolution. 

 Dahary et al. [ 45 ] published more evidence on TEs and miRNAs evolution, giv-
ing also data for the fi rst time in regards to the relationship of  CpG island   s   (CG 
repeats) with miRNAs. They found that 300 bp upstream and downstream of the 
 miRNA gene  , the observed-to-expected ratio of CpG is signifi cantly higher than the 
 genome   average. Further analysis identifi ed 65 human miRNAs that overlap CpG 
islands (59 of these are fully contained within CpGs) and that none of them were TE 
associated. The authors believe that the association between miRNAs and CpG 
islands raises two possible scenarios. Either CpG-rich regions serve as genomic 
material for miRNAs to emerge or that miRNAs are preserving these regions from 
their natural decay by methylation and deamination.   
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    MiRNAs Target Sites’  Evolution   

    Co-evolution of miRNA Genes and Their Targets 

 As mentioned before, a single miRNA appears to control many protein-coding 
genes. But are the miRNA’s target seed sites conserved among different species? 
Hertel et al. [ 31 ] recently reported that human,  Drosophila melanogaster , and 
 Caenorhabditis elegans  share 20 common  miRNA gene   s   in their genomes. However, 
 bioinformatic   analysis suggested that only fi ve miRNA genes share the same target 
genes among these species [ 46 ]. Additionally, as mentioned above, ancient miR-
NAs have on average twofold more targets than newly generated ones [ 24 ]. This 
fi nding indicates that most of the miRNAs have experienced gains and losses of 
their target genes during evolution. 

 Miura et al. [ 47 ] investigated the target sites of miRNAs in Hox genes (the genes 
that control the body segmentation of metazoan embryos), in 12  Drosophila  species 
and in  Daphnia . Phylogenetic analysis of target sites in Abd-A, Ubx, and Antp Hox 
genes showed that the old target sites, which existed before the divergence of the 12 
Drosophila species, have been well maintained in most species under purifying 
selection. By contrast, new target sites, which were generated during Drosophila 
evolution, were often lost in some species and mostly located in non-conserved 
regions of the 3′ UTRs. These results indicate that these regions can be a potential 
source for new target sites and in this way creating targets in multiple genes for each 
miRNA in animals. 

 More complex factors may contribute to the dual evolution of miRNAs and their 
targets. The recent and very interesting study of Chen et al. [ 48 ] showed that the 
number of miRNA types that regulate a gene is the strongest indicator of proteins’ 
and genes’ evolution. They also divided proteins into low and high intrinsically 
disordered proteins, fi nding this way differences in their evolution rates. Additionally, 
they found that phosphorylated proteins tend to have a higher level of miRNA regu-
lation in their genes and that the number of phosphorylation sites of a protein is 
correlated with the level of miRNA regulation in low intrinsically disordered pro-
teins. Many different scenarios can explain these results, demonstrating the evolu-
tionary complexity of miRNAs genesis.  

    Duplications as a Major Evolutionary Pressure for miRNAs’ 
Target Sites Emergence and Their Genomic Distribution 

 A crucial matter in miRNAs evolution is which factors determine the type and the 
number of miRNAs’ targets in 3′ UTRs. Very recently, it was demonstrated that 
genomic duplications events constitute the main evolutionary factor for this process. 
Firstly, Ha et al. [ 49 ] proved that small RNAs produced during interspecifi c mating 
or polyploidization serve as a buffer against the genomic shock in interspecifi c 
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hybrids and allopolyploids. The authors came to this conclusion after studying allo-
tetraploids coming from  A. thaliana  and  A. arenosa , identifying adoptive alterations 
of the miRNAs and siRNAs levels in comparison with the parental species. Abrouk 
et al. [ 50 ] found evidence that the above mechanism may be a standard procedure in 
plants after euploidy, especially in euploidy events that are involved in evolutionary 
speciation. They further suggested that miRNAs may be implicated in genes partici-
pating in stress responses pathways, which are essential for plant  adaptation   and 
useful for crop variety innovation. 

 On the other hand, whole  genome   duplication events are rare in animals and in 
other phylogenetic clades. Despite this, genetic dosage effects of smaller scale are 
present in such species. Importantly, Lehnert et al. [ 51 ] showed that sense Alu repeat 
sequences are enriched for  miRNA target   sites. Even more noteworthy, Li et al. [ 52 ] 
and D’Antonio and Ciccrelli [ 53 ] found that  miRNA targets   are signifi cantly enriched 
for paralogs genes. Characteristically, Li et al. [ 52 ] mention that their results suggest 
that “miRNA-mediated regulation plays an important role in the regulatory circuits 
involving duplicated genes including adjusting imbalanced dosage effects of gene 
duplicates, and possibly creating a mechanism for genetic buffering”. On the other 
hand, D’Antonio and Ciccrelli [ 53 ] found that this fi ne tuning is more signifi cant for 
“ohnologs”, i.e. the paralogs genes that came through vertebrate-specifi c whole 
genome duplication events. A more complicate analysis by Fernandez and Chen [ 54 ] 
revealed that human paralogs of poorly packed proteins (categorized so according to 
special structural criteria) are more likely to be targeted by miRNAs, thus underscor-
ing a means to buffer dosage imbalance effects arising from gene duplication. 

 Our team provided further evidence for this “genomic duplication” hypothesis. 
By performing  in silico  whole  genome   analysis, we demonstrate that both the num-
ber of miRNAs that target genes found in Copy Number Variations ( CNVs  ) regions 
as well as the number of miRNA-binding sites are signifi cantly higher than those of 
genes found in non- CNV   regions [ 55 ]. In addition, by examining the miRNA–CNV 
genes interactions in eight different species we demonstrated that there appears to 
be an evolutionary dependence on  gene express   ion    regulation   by miRNAs [ 56 ]. 
There is signifi cant indication that a number of genes located within CNVs have 
increased (or sometimes reduced) expression level [ 57 – 60 ]. This suggests that miR-
NAs may have acted as equilibrators of gene expression during evolution in an 
attempt to regulate aberrant gene expression and to increase the tolerance to genome 
plasticity. Our results were further confi rmed by Woodwark and Bateman [ 61 ]. 
These data raise the possibility that miRNAs may have been created under evolu-
tionary pressure, as a mechanism for increasing the tolerance to genome plasticity. 

 One specifi c example that shows the role of miRNAs in tuning the  gene dosage   
of paralogs is represented by atrophins, a phylogenetically conserved family of  tran-
scriptional   regulators that appeared in metazoans (Atro) and duplicated in verte-
brates (ATN1 and Rere). The dosage of the fl y atrophin gene Atro is under the tight 
control of miR-8 [ 62 ]. The lack of miR-8 produces Atro overexpression and results 
in elevated apoptosis in the brain, behavioral defects and severe defects in animal 
survival [ 62 ,  63 ]. Additionally, reduced Atro expression causes impaired survival, 
indicating that the fi ne-tuning dosage of this gene is crucial for its activity [ 62 ]. 
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 A rarer phenomenon is the targeting of miRNAs on coding sequences. Recent 
data suggest that in such cases, target sites arise from highly repeated sequences 
inside the ORFs. The same researchers showed that such sequence repeats largely 
arise through duplications and occur particularly frequently within families of 
paralogous C2H2 zinc-fi nger genes [ 64 ].   

    Adjustment of Expression Levels’ Variability According 
Current Environmental Frame 

 Wu et al. [ 65 ] summarize a number of studies to support the idea that miRNAs are 
vital molecules for  natural selection   that proceeds through canalizing evolution. 
Canalization refers to the process by which phenotypes are macro-evolutionary sta-
bilized within species. The existence and identity of canalizing genes have thus 
been an important, but controversial topic. For example, Rutherford and Lindquist 
[ 66 ] showed that hsp90 gene may be one of those genes, since its deletion in 
 Drosophila  can result in many abnormalities, in contrast to “cryptic” genetic varia-
tions that are found on it and do not cause any observable phenotype. Hsp90 is an 
important chaperone, regulating the folding of many proteins. In the same way, 
miRNAs affect the expression of many genes of the  genome  . 

 Despite the evidence for the importance of gene regulation by miRNAs, the typi-
cal magnitude of observed repression by miRNAs is relatively small [ 65 ,  67 ,  68 ]. 
Wu et al. [ 65 ] cite a number of previous studies to show that miRNAs can be func-
tionally classifi ed in two categories. The fi rst category sets the mean of the expres-
sion level of the target genes (referred to as expression tuning) and the second one 
reduces their variance (expression buffering, or homeostasis). On the other hand, 
some miRNAs’ deletions seem not to be “signifi cant” at the organism level. 
Additionally, decay of some miRNAs genes is considered to be accomplished fast, 
maybe within millions of years only. Of course, a controversial observation is the 
conservation over species of a number of  miRNA gene   s   and their targets. All these 
advocate to “canalizing” phenotypes, regulated by miRNAs. 

 Despite the attractiveness of Wu’s ideas [ 65 ], we believe that the real situation 
for miRNAs’ evolution is slightly different. “Canalizing” evolution is of course a 
very important evolutionary phenomenon, since this way signifi cant phenotypic 
frameworks are secured over the danger of drastic evolutionary changes (like new 
mutations’ emergence, founder effects, genetic drift, occasional directional or adap-
tive evolution etc.). But in case of miRNAs, we have a kind of a very “fl exible” and 
“adjustable” canalizing evolution. A whole network of gene regulation has been 
invented by nature in a way that  genome   can adapt very easily in current environ-
mental changes; but of course without any drastic changes of the main phenotypes. 
Adding to this equation the phenomenon of genomic duplications, we have then an 
even larger network, increasing even more the genomic plasticity and “evolvabil-
ity”. In this way, maybe the majority of population members can adopt effectively 
under an environment change. Alternatively, conventional evolution knowledge 
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demands the elimination of a big part of the population by  natural selection  , 
 resulting to the survival of few of the best adopted individuals. Such catastrophic 
evolutionary procedures are highly energy consuming and can slow down evolu-
tion for just some relatively mild environmental changes. Sometimes, the only 
thing needed is just a fi ne tuning re-regulation of the expression network and this 
can be achieved effectively by the miRNAs’. 

 Going back again to genomic duplications, we can suggest that that genomic 
duplications are the “fuels” and miRNAs are the “regulators” of the genomic engine. 
An interesting question is what came fi rst, duplications or miRNAs? Gu et al. [ 69 ] 
found evidence that support the evolutionary scenario that gene/ genome   duplica-
tions in the early stage of vertebrates expand the protein-encoding genes and miR-
NAs simultaneously. The fact is that this is a very complex co-regulation. Adding to 
this the parameter of evolutionary time, then we can actually have a three dimen-
sional evolutionary process (Fig.  1.2 ). 

 Additionally, we must have in mind that environment is not only the one outside 
the organism boundaries but it is also the one outside the cell boundaries (usually 
termed as “internal environment”). Under this framework we can examine the 
results of Mukherji et al. [ 70 ] where they found that repression through miRNAs 
varies a lot among different individual cells. Additionally, they found that a miRNA 
can behave both as a switch, in the target expression regime below the threshold, 
and as a fi ne-tuner, in the sensitive transition between the threshold and the minimal 
repression regime at high mRNA levels. So, do miRNAs fi nally regulate their func-
tion at the cellular level and not at the organismic level? We previously commented 
on duplication events as signifi cant factors for miRNAs’ evolution. Interestingly, it 
is now well established that somatically derived  CNVs   may be an important factor 
of genetic differentiation among same type of cells. In this concept, evolution in 
cellular level micro-environments can be the reason of different proteomic profi les 
that are found in similar cell types and can explain the results of Mukherji et al. [ 70 ] 
and those of other studies. This hypothesis is more plausible in rapidly proliferating 
cells, like bone marrow stem cells and  cancer   cells. Selection can act more effi -
ciently through a big number of cell cycles and very possibly new  miRNA gene   s   or 
target sites can emerge or decay this way. Future studies are needed and especially 
“wet lab” experiments to test these theoretical assumptions.  

    Conclusions 

 Nobody can doubt that miRNAs are signifi cant buffering tools that can modulate 
problems associated with drastic changes in  gene express   ion  . It would not be an 
exaggeration to suggest that miRNAs could have emerged under the pressure of 
genomic duplications, in order to control “genomic boundaries” and “genomic 
expression”. It is also possible that miRNAs emerged multiple times through evolu-
tion (there are some data supporting this hypothesis in animal and plants), for the 
above reason. What is certain is that since they emerged, they are continuously 
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gaining signifi cant cellular, developmental and evolutionary roles. On the other 
hand, it would be a unreasonable to believe that this is the whole story in  gene 
expression regulation  . We believe that we still have a lot to learn regarding gene 
regulation and the associated mechanisms.     
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    Chapter 2   
 MicroRNAs in Disease       

       Gregory     Papagregoriou     

            The Study of MicroRNAs 

    Overview 

 MicroRNAs or miRNAs are a newly described class of short non-coding  RNA   
 molecules with the distinctive role of fi ne-tuning the expression of mRNAs in the 
living cells of all organisms [ 1 ]. Their targets are usually mRNA molecules that bear 
specifi c miRNA recognition sites on their 3′ UTRs, 5′ UTRs or coding regions; 
miRNAs bind onto their target sites in a Watson–Crick base pairing manner and 
eliminate mRNA translation (Fig.  2.1a ) [ 2 ]. In humans, such post- transcriptional   
regulation of  gene express   ion   cannot be overlooked as more than half of all genes 
have evolutionary conserved  miRNA target   sites [ 3 ]. Consequently, miRNAs are 
prime regulators of all kinds of physiological cellular processes; hence faulty 
 regulation of mRNA expression can lead to  disease  .

       Target Prediction Algorithms 

 More than a handful of algorithms are available online and are elegantly designed 
to deliver predictions for miRNA binding sites on the 3′ UTR of protein-coding 
mRNAs, or to predict target sites for any miRNA sequence. Their numbers keep 
growing in order to serve the emerging demands of the scientifi c community for 
customization and credibility of results. Search variables usually include the 
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seed-region length and miRNA/mRNA species, while each algorithm allows for 
further customization of search criteria depending on the prediction approach or 
even a cutoff p-value in correspondence to the statistical processing followed in 
each case. One must always have in mind the philosophy of predicting a  miRNA 
target   site on the 3′ UTR of an mRNA or elsewhere: a certain algorithm follows 
precise and predetermined criteria to predict such sites, which some are based solely 
on Watson–Crick complementarity between the miRNA and its target sites and 
other encompass more complicated approaches such as a learning algorithm or free 
energy values, therefore hits returned are destined to include false-positive results. 
Consequently, not all prediction results are valid and there is always a need for 
using a fi ltering approach in an effort to isolate the most useful and in a sense true 
miRNA–mRNA pairs. Filtering strategies can revolve around a wide or a narrow 
spectrum of criteria that are predominantly “ making sense ”; hence, both the miRNA 

  Fig. 2.1    Polymorphisms 
on  miRNA target   
sequences ( miRSNPs  ). 
Normal binding of 
miRNAs ( a ) can be 
diminished when target 
nucleotides corresponding 
to the miRNAs seed region 
are altered ( b ). In some 
cases, miRSNPs serve as 
gain-of-function mutations, 
when they create new 
target sites for different 
miRNAs ( c )       
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and its potential mRNA targets should be expressed in the same tissue for example, 
or they are encountered in the same pathway or developmental stage. Moreover, all 
algorithms are enforced with a powerful statistical evaluation of prediction results, 
which in most cases can itself fi lter out correct pairs. In some studies, researchers 
repeat prediction analyses using a number of available algorithms and align predic-
tion results to pick up only the pairs predicted by the most of them. 

 All algorithms predict target sites on 3′ UTR mRNA sequences, while some of 
them expand their predictions to include the gene’s coding sequence, its 5′ UTR, 
sequences located upstream the  transcription   start points and even on the mitochon-
drial  genome   [ 4 ,  5 ]. The miRWalk algorithm works by “walking” on the gene 
sequence in a window of seven or more nucleotides and a miRNA is predicted to 
target a specifi c mRNA based only on seed region complementarity [ 4 ]. TargetScan 
on the other hand, is searching for the presence of conserved 8mer and 7mer sites 
that match the seed region of each miRNA, while it “ranks” a predicted  miRNA 
target   based on site length, type, context and accessibility [ 6 ]. The miRanda algo-
rithm considers the miRNA sequence as input and searches a sequence dataset for 
potential target regions and successful predictions are made based on the alignment 
score and the minimum free energy of the miRNA bound to the potential target 
sequence [ 7 ]. The miRDB algorithm uses a completely different approach, as it is 
based on an SVM algorithm which is trained by a wiki database, in which users are 
able to input sequences of validated miRNA/mRNA couples [ 8 ], while the RNA22 
algorithm uses a reverse approach as it fi rst examines gene sequences for putative 
miRNA binding sites and then identifi es a miRNA that could target an identifi ed 3′ 
UTR site [ 9 ]. Predictions can be easily made by visiting the appropriate web loca-
tion of each algorithm and placing a query about your miRNA or mRNA of choice. 
Results will be returned instantly and will depict the target site, its length, and a 
statistical score describing the likelihood this interaction is true based on the param-
eters on which each algorithm operates. The validity of prediction algorithms has 
been the number of many studies, all indicating an increased rate of false-positive 
results emerging from predictions, therefore a good  bioinformatics   analysis and fi l-
tering of predicted targets should be then supported by functional experiments [ 10 ].  

    Validation of miRNA Targets 

 As prediction algorithms can be a starting point in  miRNA target   discovery, direct 
interaction between a miRNA and an mRNA can only be valid when at least proven 
in vitro. Luciferase reporter constructs have been widely used as a straight-forward 
solution in studying direct binding of a miRNA on its target sequence. Albeit a 
useful and reliable tool, luciferase reporter constructs can only serve in examin-
ing one particular miRNA–mRNA target site and can be laborious at times. Target 
sites are introduced into the 3′-untranslated ending of the luciferase gene and 
plasmids are transfected into cell lines together with miRNA mimics or inhibitors 
(also called  antagomirs  ). miRNA-analogous oligonucleotides are commercially 
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available, relatively low in price and ready to use in cell cultures in various types; 
“mimics” that share the same sequence as a mature miRNA, “inhibitors” that are 
used to silence a specifi c miRNA, or “target site protectors” that prohibit miRNA 
binding onto its target sequence. Commercially available mimics and inhibitors 
are frequently chemically modifi ed to LNAs (Locked Nucleic Acids) by the inser-
tion of a 2′O-5′C Methyl-bridge, which helps the  RNA   oligonucleotide to keep an 
open conformation and to be thermally more stable than conventional oligos. (The 
reader is encouraged to see [ 11 ] and references within for a good presentation of 
currently used techniques in miRNA research and their limitations). 

 A good miRNA–mRNA couple can signifi cantly reduce luciferase expression 
levels and in the same time a target site mutation, preferably at the nucleotides cor-
responding to the miRNA’s seed region, can abolish miRNA binding ability and 
therefore increase luciferase expression; this is a useful approach when investigat-
ing the effects of SNPs occurring at  miRNA target   sites. 

 As miRNAs are considered as post- transcriptional   regulators, further investiga-
tion of their properties can include the determination of the protein levels of target 
mRNAs. This can be achieved by performing protein assays, i.e. western blots, 
amino acid stable isotope labelling or proteomics, after the overexpressing or 
knocking-down miRNAs in vitro. It has been found that specifi c miRNAs can regu-
late a restricted number of proteins, while changes in protein levels can sometimes 
be subtle [ 12 ]. Such effects are somehow expected, as protein levels are determined 
by a number of factors including mRNA  transcription   rate or protein degradation.  

    Identifying miRNAs in Tissues, Bodily Fluids and Exosomes 

 Isolation of miRNA species can be achieved by using readily available kits in the 
market developed by various companies. Specifi c applications require specifi c kits 
usually depending on the starting material, for example isolation of an enriched 
miRNA fraction from urine samples, serum or formalin-fi xed paraffi n-embedded 
(FFPE) tissues can be performed using appropriate commercial kit protocols. 
Alternatively, the TRIzol reagent can be used, although a biased loss of small RNAs 
with low GC content when processing a small number of cells with TRIzol has been 
reported [ 13 ]. Exosomes are small, 30–150 nm sized vesicles secreted by cells that 
contain miRNAs among other molecules; the isolation of miRNAs from exosomes 
can be achieved either by the use of Total exosome isolation reagents or by ultracen-
trifugation in sucrose gradients [ 14 ,  15 ]. Quantitation and quality assessment of 
enriched miRNA fractions can be performed using a microfl uidics-based platform 
or an equivalent electrophoresis system, rather than a standard spectrophotometer 
due to their small size and reduced abundance compared to total  RNA  . 

 MicroRNAs can be detected using a number of methods, such as northern blots, 
real-time PCR or miRNA-specifi c probe hybridization. Although having limited 
sensitivity, northern blots are widely used for the identifi cation of specifi c miRNAs 
and while their workfl ow is relatively simple, they require heavy optimization. 
A sample is let to run on an electrophoresis gel, which is consequently transferred 
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to a porous membrane and miRNA-specifi c probes are let to hybridize onto targets 
while emitting fl uorescence or radioactivity [ 16 ]. Relative quantifi cation of cell- 
extracted miRNAs can be easily performed by real-time quantitative PCR (qRT- 
PCR). Following extraction, reverse  transcription   of miRNA species is performed in 
a two-step procedure: miRNA molecules are extended (3′ end) and single strand 
synthesis is completed with a universal primer [ 17 ,  18 ]. With the use of appropriate 
primers, miRNA sequences are detected in qRT-PCR and can be quantifi ed by being 
compared to a number of small RNAs used as reference. Alternatively, reverse tran-
scription can be performed using a stem-loop approach and miRNAs can be accu-
rately detected via highly specifi c TaqMan probes [ 19 ]. In samples originating from 
exosomes or biofl uids, quantitative analysis of miRNA expression can be diffi cult, 
as there is usually a lack of a stably-expressed small  RNA   to be used as a reference. 
For this purpose, a synthetic miRNA is usually spiked-in at a predetermined con-
centration to assist in downstream analyses [ 20 – 22 ]. 

 In fresh or preserved tissue sections, miRNAs can be easily detected by in situ 
hybridization (ISH), where labelled probes with complementary sequences to target 
miRNAs are left to hybridize and reveal miRNA localization and differential expres-
sion [ 23 ]. Despite its wide use, ISH requires optimization and can sometimes be a 
laborious process. Nevertheless, when the probe affi nity for its target is high, ISH 
can be used as a semiquantitative method of determining miRNA abundance in tis-
sues and single cells. High resolution analysis of miRNA expression at single-cell 
level can be also performed by pairing fl uorescent ISH with fl ow cytometry (fl ow- 
FISH), a technique able to give additional useful information on mRNAs or proteins 
of interest simultaneously [ 24 ,  25 ].  

    High-Throughput Methods in miRNA Research 

 The special nature of miRNA molecules makes their study a cumbersome matter; 
miRNAs are quite small in size and, unlike mRNAs, they do not share any common 
sequence features that ease their simultaneous isolation [ 26 ]. Tissue and cell miRNA 
profi ling or  disease    biomarker   discovery can be performed with the use of high- 
throughput methods such as commercially available microarray platforms or  next- 
generation sequencing   (NGS) of isolated miRNA fractions [ 27 ,  28 ]. Both techniques 
are considered acceptable, albeit approaching miRNA identifi cation in a different 
manner. Microarrays identify fl uorescently labelled miRNA cDNAs as they hybrid-
ize in complementary glass-immobilized probes, while NGS detects miRNAs by 
sequencing them; hence through NGS previously unidentifi ed or novel miRNAs can 
be identifi ed, while miRNA chip microarrays work with a predetermined range of 
miRNAs depending on the chip of choice. Differential expression of miRNAs on 
the other hand can be effi ciently performed by both techniques, while small-scale 
study of specifi c miRNAs can be also performed using qRT-PCR [ 29 ]. Results are 
quite simple to read after they are further validated with qRT-PCR: certain miRNAs 
are expected to be either up- or down- regulated in a pathogenic tissue or cell type 
compared to controls, thus giving a sense of a pattern to characterize a disease. 
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Nevertheless, the elucidation of the exact biological meaning of any fi ndings can at 
times be problematical and unfortunately in studies available, further functional 
investigation of fi ndings is rarely performed. 

 Furthermore,  microRNA   targets can be also detected using high-throughput 
methods. Integration of high-throughput sequencing methods and protein immuno-
precipitation, led to HITS-CLIP ( High-throughput sequencing   of  RNA   isolated 
with crosslinking immunoprecipitation) a robust method established by Chi et al. 
[ 10 ], which is exploited for the simultaneous isolation of miRNA–mRNA couples. 

  Antibodie s raised against AGO are used for the immunoprecipitation of  RNA  - 
binding  protein complexes from 254 nm UV-crosslinked samples, and at the same 
time the mRNAs bound on the miRNAs which these complexes accompany. An 
improved version of HITS-CLIP was developed by Hafner et al. [ 30 ] in an attempt 
to overcome technical limitations emerging from ineffi cient UV-crosslinking, 
named as Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immuno-
precipitation (PAR-CLIP). In PAR-CLIP, cells are treated prior to crosslinking with 
4-thiuridine, which is incorporated into targeted mRNAs to facilitate the precise 
binding position of the riboprotein complex by detecting thymidine to cytidine tran-
sitions. By PAR-CLIP, crosslinking effi ciency was severely enhanced by irradiating 
cells with UV light and RNA recovery was dramatically improved. Moreover, 
Cross-linking ligation and sequencing of hybrids, or CLASH is a recently devel-
oped technique used to map miRNA–mRNA interactions by NGS [ 31 ]. In CLASH, 
cells that keep a stable expression a tagged AGO1 protein (PTG-AGO) are UV 
irradiated and lysed. PTH-AGO is then purifi ed and samples are treated with 
RNAses that trim RNA–RNA duplexes, which are in turn ligated together and form 
chimeric miRNA–mRNA molecules that are eventually sequenced with NGS.   

    MicroRNAs Triggering Diseases 

    miRNA-Related Mutations as the Primary Cause of a Disease 

 A  miRSNP  (Fig.  2.1 ) can either be a single nucleotide change affecting the target 
region of a miRNA or its sequence at maturity. Such SNPs can effectively eliminate 
or weaken the binding of a miRNA to its target mRNA 3′ UTR (Fig.  2.1b ) site and/
or create a new binding site for a different miRNA (Fig.  2.1c ); thus miRNAs can be 
considered as both primary or secondary players in  disease   development. In both 
cases, the protein levels of a targeted mRNA can be altered; at times, such changes 
can be phenotypically evident. Mutations in genes coding for miRNAs are consid-
ered as being quite rare; up to date only a small number of publications report such 
mutations that run in families in a Mendelian manner. Following the one-to-many 
mode of action, miRNAs with mutated seed regions lose the ability to target the 
range of mRNAs they usually aim at but inevitably gain novel targets. In some 
cases, mutations in the seed or other vital  miRNA gene   regions affect the abundance 
of the mature miRNA. 
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 The frequency of SNPs in  miRNA gene   s   was thoroughly investigated by Gong 
et al. in 2011, who gathered all known SNPs from dbSNP v.132 that fell into such 
sequences. Notably, only 757 polymorphisms (SNPs and indels) out of 30 million 
in total were found to be located in 440 pre-miRNA regions, with 50 of them to be 
positioned in the seed regions of 41 miRNAs [ 32 ]. Such small numbers imply that 
there is a great possibility of a seed region sequence change to be a  disease   causing 
mutation rather than have no effect. Moreover, Gong et al. report that evolutionary 
conserved miRNAs and clustered miRNA genes tend to have less SNPs, a fact that 
can be attributed to the functional importance of certain miRNAs. The potential 
role for each SNP was calculated and recorded in the miRNASNP database 
(  www.bioguo.org/miRNASNP    ). 

 The fi rst work reporting seed region mutations was by Mencia et al., who identi-
fi ed two variants in miR-96, at positions 4 (+13G>A) and 5 (+14C>A) of its seed 
region, in a Spanish family with autosomal dominant non-syndromic hearing loss 
(ADNSHL) [ 33 ]. These mutations are responsible for the defected action of miR- 
96, as it fails to target and regulate fi ve genes expressed in the inner ear;  AQP5 , 
 CELSR2 ,  MYRIP ,  ODF2  and  RYK . MiR-96 is expressed together with miR-182 and 
miR-183 as a multicistronic transcript in the mouse retina as well as in the inner ear. 
However, miR-96 seed region mutation carriers did not have an ocular phenotype, 
hence miR-96 is thought to target genes expressed in the ear rather than in the retina. 
In a different study, 882 ADNSHL patients from Italy were screened for miR-96 
seed region mutations [ 34 ]. Interestingly, a novel mutation that segregated with the 
 disease   in one family was successfully identifi ed, but was located outside the mature 
miRNA sequence. Being part of the pre-miRNA hairpin sequence, this mutation 
was found to effectively alter both mature miR-96 and miR-96* passenger miRNA 
biogenesis. Furthermore, Dorn et al. in 2012 described a similar mutation at the 3′ 
end (u17c) of miR-499 sequence that fell outside its seed region [ 35 ]. This mutation 
was identifi ed while investigating a cohort of 2.606 individuals in search of genetic 
factors contributing in cardiomyopathy. By using luciferase reporter constructs and 
a mouse model, the authors identifi ed a series of mRNAs that escaped miR-499 
regulation possibly due to the c17 mutation. 

 Mutations in the miR-184 seed region have also been reported. MiR-184 was 
found to be abundantly expressed in the corneal and lens epithelia [ 36 ]. A single 
mutation at the fourth seed region nucleotide (c.57 C>U) of miR-184 was found to 
be associated with autosomal dominant familial keratoconus with early-onset ante-
rior polar cataract in a Northern Irish family [ 37 ]. This mutation was identifi ed after 
deep sequencing of a genomic locus indicated by  linkage   analysis in three genera-
tions of the family. The same mutation was also identifi ed in a Spanish family with 
early onset cataract paired with various ocular abnormalities, while it has also been 
found in patients with EDICT  syndrome   (endothelial dystrophy, iris hypoplasia, 
congenital cataract and stromal thinning) [ 38 ,  39 ]. A different study identifi ed two 
other mutations (+8C>A and +3A>G) in miR-184 in patients with isolated 
 keratoconus that signifi cantly repressed the expression of miR-184 [ 40 ]. 
Nevertheless, the exact mechanism explaining the pathogenesis of miR-184 seed 
region mutations remains elusive.  
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    Mutations in miRNA Genes or Target Sites Contributing 
to Disease 

 Currently, there has been great interest in the discovery and functional characteriza-
tion of  miRSNPs   located both on  miRNA gene   s   and  miRNA target   sites, as being 
contributors to a pathological phenotype. Such polymorphisms can act as pheno-
type modifi ers by improving or exacerbating  disease   manifestation, or contributing 
to the risk of developing primary or secondary clinical states. Validated and pre-
dicted miRSNPs in human and mouse genes are recorded into four databases, 
Patrocles, dbSMR, PolymiRTS and MiRSNP [ 41 – 44 ]. Published data implicate 
miRSNPs in  diseases   in more ways than one; they can have a signifi cant contribu-
tion to the pathogenesis of a disease, they can modify well characterized phenotypes 
of patients bearing a single mutation in a specifi c gene, they can regulate drug 
responses, or they can have no effect at all. Whatever the case may be, miRSNPs 
cannot be overlooked by modern geneticists. The role of miRSNPs will be analyzed 
below using some good examples from the current bibliography. 

 In  diseases   with monogenic inheritance,  miRSNPs   can have a signifi cant effect. 
Evidence for such mechanism was shown for miR-24 when a point mutation that 
altered its binding to  SLITRK1  gene was identifi ed in patients with Tourette  syn-
drome   [ 45 ]. Similarly, point mutations on  REEP1  which is a candidate gene for 
hereditary spastic paraplegia were found on the binding sites of two miRNAs (miR- 
140 and miR-691) [ 46 ,  47 ]. 

 The role of  miRSNPs   as phenotype modifi ers was demonstrated in CFHR5 
nephropathy, where all patients found as far share an identical duplication of exons 
2 and 3 in the  CFHR5  gene [ 48 ]. Although related, certain patients are clinically 
distinguishable with a portion of them rapidly progressing to mid-life end-stage 
renal failure requiring renal transplantation, and the rest having only some episodes 
of microscopic or macroscopic hematuria but with uncompromised renal function 
[ 49 ]. During the progression of the  disease   a genetic trigger channels the clinical 
fate of each patient towards a certain direction. The SNP rs13385 located on the 3′ 
UTR of the  HBEGF  gene and the target region of miR-1207-5p was reported to be 
associated with the severity of CFHR5 nephropathy in these patients, as the T-allele 
can eliminate the miRNA binding onto its target sequence [ 50 ]. 

 Complex genetic traits are often the result of a joint action among a number of 
genetic and environmental factors that construct phenotypes, which are usually 
highly variable among patients. Impressively, a number of examples are available 
demonstrating the implication of the same common miRSNP in a number of differ-
ent multifactorial phenotypes. For example, a miRSNP spotted on the miR-146a 
precursor (rs2910164 G>C) has been recently associated with susceptibility to lep-
rosy [ 51 ]. When macrophage-like THP-1 cells were infected with live or irradiated 
strains of  Mycobacterium leprae , live bacteria induced the expression of miR-
146a, thus suggesting a pivotal role for this miRNA in  disease   progression. 
Consequently, C-allele carriers demonstrated a higher expression of miR-146a in 
nerves compared to patients with non-leprous neuropathies and this result was 
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directly correlated with low levels of TNF recorded as a failure of the immune 
system to be effectively regulated. Impressively, the same SNP was also found to 
be associated with other multifactorial phenotypes, such as ischemic stroke, 
colorectal  cancer   survival [ 52 ], control of cell apoptosis, migration and growth in 
non-small cell lung cancer cells [ 53 ], or Hirschprung disease by eliminating 
 ROBO1  expression levels [ 54 ]. A different common SNP (rs11614913-C>T) on 
miR-162a2, was found to be related with increased susceptibility to esophageal 
squamous cell carcinomas [ 55 ], to the development of cardiovascular disease in 
patients with type 2 diabetes [ 56 ], but not Parkinson’s disease [ 57 ]. Both SNPs on 
miR-146a and miR-162a2 are considered to be common polymorphisms, with 
Minor Allele Frequencies (MAF) 0.38 and 0.39 respectively, and together with 
rs71428439 (A/G, MAF 0.15) on miR-149, rs3746444 (A/G, MAF 0.18) on miR-
499, rs895819 (T/C, MAF 0.36) on miR-27a stem loop, rs4938723 (T/C, MAF 
0.31) on the Pri-miR-34b/c promoter form a team of  miRSNPs   that have been 
weakly or strongly associated with all kinds of  diseases  . However, only a small 
number of published works extend their fi ndings in characterizing a functional 
relationship between the miRSNPs and relevant target genes to bridge gaps between 
genotypes and clinical phenotypes. 

 In a large number of publications, the role of  miRSNPs   in  cancer   susceptibility 
has been thoroughly evaluated [ 58 ]. Unfortunately, the functional characterization 
of such polymorphisms, as well as their comprehensive association to specifi c clini-
cal features, is not the norm in most of them. Nevertheless, miRSNPs are proven to 
have an emerging role in cancer prognosis. A polymorphism on the 3′ UTR of 
 IGF-1R  gene limited the binding of miR-515-5p and increased the risk of develop-
ing breast cancer in subjects with  BRCA1  mutation [ 59 ]. In addition, increased sus-
ceptibility to breast cancer was attributed to two more SNPs identifi ed on  TGFB1  
and  XRCC1  which alter their expression levels as the target site of miR-187 and 
miR-183 is respectively interrupted [ 60 ]. In a Chinese lung cancer cohort, a SNP on 
the 3′ UTR of  CD133  was found to be signifi cantly associated with a decreased risk 
in developing the  disease  , evidently by enhancing the binding of miR-135a/b to 
reduce CD133 levels [ 61 ].  

    Non-canonical miRNA Targeting Properties in Disease 

 As previously mentioned, miRNAs recognize and bind target sequences on the 3′ 
UTR of mRNAs waiting to be translated. In some rare cases, miRNAs were found 
to target mRNAs in other regions as well: the coding sequence and the 5′ UTR. Non- 
canonical  miRNA target  ing has been established by CLASH experiments, with 
60 % of miRNAs to bind onto mRNAs with an irregular manner; mismatched 
nucleotides in the seed region, non-seed targeting and some of them binding to 5′ 
UTRs [ 31 ]. In addition, miRNAs were found to have similar effi ciently in binding 
onto 3′ UTRs as they have when targeting 5′ UTRs in vitro to regulate the expres-
sion of mRNAs [ 62 ]. In some instances, miRNAs acting on the 5′ UTR of target 
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mRNAs induce rather than repress their translation [ 63 ,  64 ]. Contrastingly, coding 
sequence targets are thought to be recognized by miRNAs less effectively compared 
to 3′ UTR target sites [ 65 ]. 

 Akhtar et al. [ 66 ] presented evidence using luciferase reporter constructs that 
miR-602 and miR-608 target the sonic hedgehog (SHH) mRNA not on its 3′ UTR 
but on predicted target sites of the coding region. In osteoarthritis,  SHH  expression 
levels are elevated and eventually promote cartilage degradation. A potential mech-
anism explaining SHH upregulation involves the induction of SHH expression indi-
rectly by IL-1β, through the direct suppression on the expression of miR-602 and 
miR-608 that repress SHH expression levels. In another study, the p53 inactivator 
MDM4 was found to have a miR-34a target site on its last 11th exon [ 67 ]. Moreover, 
a previously reported polymorphism rs79824231 located on this target site appeared 
to have the ability to disrupt miR-34a binding. 

 Functional  miRNA target   sites on the 5′ UTR are rarely found. Recently, miR-
103a- 3p was found to target and suppress the  cancer   related gene GPRC5A through 
two target sites on the gene’s 5′ UTR in pancreatic cells [ 68 ]. Kim et al. [ 69 ] dem-
onstrated a relationship between miR-34 family members, induced by p53, and the 
Axin2 mRNA in colorectal cancer.  Axin2  bears functional miR-34 target sites in 
both 5′ and 3′ UTRs that presumably act as “sponges” to negatively modulate miR- 
34 levels in cancer cells, which present elevated Axin2 and low miR-34 levels. 
Furthermore, a good example of non-canonical 5′ UTR miRNA binding is the abil-
ity of miR-122, a liver specifi c miRNA, to bind onto two 5′ UTR target sites of the 
Hepatitis C virus (HCV)  genome   and protects the UTR from host nucleolytic deg-
radation to eventually promote its autonomous replication [ 70 ].  

    Emerging Pharmacogenomics Due to miRNA-Linked 
Genetic Variation 

 As expected, genomic variation related to miRNAs has also been implicated in 
patient response to administrated pharmaceutical therapy. In addition, certain drugs 
were found to formulate unique responses by interfering with miRNA expression 
levels. Such  microRNAs   have been described by a number of researchers and are 
frequently teamed under the term “Pharmaco-miRs”. One can assume that mutated 
 miRNA target   sites on mRNAs engaged in pathways related to drug metabolism or 
absorption, can inevitably implicate miRNAs in drug responses as well [ 71 ]. In 
2007 Mishra et al. presented evidence that  miRSNPs   can actually regulate drug 
responses. A polymorphism at the 3′ UTR of the dihydrofolate reductase ( DHFR ) 
gene, which was previously associated with upregulation of DFHR expression, was 
found to interrupt the conserved target site of miR-24 and caused the reported over-
expression of DHFR [ 72 ]. As a result, elevated DHFR led to methotrexate resis-
tance, a widely used chemotherapeutic agent. Polymorphisms in miRNA 3′ UTR 
target sites and/or  miRNA gene   s   have been associated with resistance to chemo-
therapy in patients suffering from various subtypes of  cancer  . The CREAM 
(Chemotherapy ResistancE-Associated MiRSNP) repository lists 150 such SNPs 
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predicted to interfere with 1164 chemotherapy response compounds [ 73 ]. In breast 
cancer patients with estrogen receptor alpha expression, the acquired resistance to 
tamoxifen treatment has been associated with an elevated expression of miR-519a, 
which in turn targets a number of tumor-suppressor mRNAs to decrease the life 
expectancy of patients [ 74 ].   

    MicroRNAs in Developing Disease 

 Over the last few years many studies were designed to capture the effects of miRNA 
action in complex  disease   entities. Multifactorial  diseases   not only depend on the 
genetic load of an individual but are assisted towards overcoming a triggering 
threshold by lifestyle as well. MicroRNAs are considered as key regulators in dis-
ease development as they are implicated in all kinds of cellular processes and most 
importantly cell and tissue development and differentiation. Hence, the elucidation 
of miRNA signatures in such diseases, is postulated to unveil basic and advanced 
understanding of their pathology and progression and at the same time assist the 
development of tailored therapies per different patient. For this purpose, DICER 
knockout animal models, in vitro studies and expression assays have been recruited, 
as well as next generation high-throughput technologies. 

 MicroRNA signature of complex  disease   is a trending topic in scientifi c litera-
ture. Biomarkers are molecular signatures of a pathological state and can either be 
substances or molecules, which can be detected and measured in an objective way. 
MiRNAs have the specifi cations of being ideal and powerful  biomarkers   for non- 
invasive assays, as they can be measured in more than one ways, are abundantly 
expressed in all tissues and bodily fl uids, are stable molecules and belong to a 
diverse and multitudinous family of non-coding RNAs. 

    miRNAs and Cancer 

 MicroRNA implication in  cancer   has been extensively studied in the past years and 
they have been found to be differentially expressed in a wide spectrum of malignant 
states. Being characterized as being both tumorigenic or tumor suppressive, miR-
NAs associated with cancer have been named as  Oncomirs  [ 75 ]; however, this char-
acterization is only valid when a given miRNA is targeting an oncogene or a tumor 
suppressor gene. Deregulated miRNA expression under variable circumstances can 
alter their targeting potential against an mRNA, which in turn is associated with a 
specifi c type of cancer. In general, induction and progression of cancer is the orches-
trated interaction and balance between tumor enhancers and suppressors and miR-
NAs seem to play a pivotal role in cancer development as more than half of miRNA 
encoding genes are found in genomic cancer hot-spots or at fragile chromosomal 
regions associated with translocations [ 76 ]. Tumor progression is marked by abnor-
mal changes in cellular function and metabolism that lead to uncontrollable 
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proliferation, resistance to apoptosis, escape from tumor suppressor action, induc-
tion of angiogenesis and eventually, invasion and metastasis; inevitably, miRNAs 
were found to be involved in all stages [ 77 ]. 

 The fi rst study implicating miRNAs in  cancer   by Calin et al. in 2002 demon-
strated the involvement of miR-15a and miR-16-1 in B cell chronic lymphocytic 
leukemia. Their expression was found to be compromised by frequently observed 
deletions of the genes that encode for them in the 13q14 locus, which in turn is asso-
ciated with the  disease   [ 78 ]. The miR-15a/miR-16 cluster of  miRNA gene   s  , encodes 
for miRNAs that are thought to be tumor suppressors under physiological states, by 
targeting BCL2 among other well described  oncogenes   [ 79 ]. The complexity of 
miRNA involvement in cancerous states has been widely observed. In some cases a 
specifi c miRNA has been given the properties of an oncomiR, while the same 
miRNA was found to act suppressively in other types of cancer. A good example is 
miR-125b; its levels drop in thyroid, ovarian and oral squamous cell carcinomas to 
halt cell proliferation and interfere with the progression of the cell- cycle, while in 
prostate cancer it was found to inhibit p53-dependent apoptosis of cancerous cells 
[ 80 ]. The p53  transcription   factor is a direct regulator of miR-34a and miR-34b/c, 
while these miRNAs target and regulate p53 expression [ 81 ]. In chronic lympho-
cytic leukemia, miR-34a, miR-34b/c and  DAPK1  were found to be  epigenetically   
inactivated by hypermethylation of their promoter to disrupt the tumor suppressive 
p53 pathway [ 82 ]. Hypermethylation of miR-34b/c is also considered as a potential 
diagnostic factor in Stage I non-small cell lung carcinoma [ 83 ]. In breast tumors, 
downregulation of miR-34a was signifi cantly associated with metastasis [ 84 ]. 

 In certain types of  cancer   miRNAs have a proven diagnostic and prognostic 
value, which has become of great signifi cance in clinical practice. MicroRNA 
expression is evidently fl uctuating in cancerous cells; affected tissues are distin-
guished by their expression potential of miRNAs. MiRNAs can be easily and effi -
ciently isolated from formalin-fi xed paraffi n-embedded tissues, which is the starting 
material in most cases. Identifi cation of miRNAs in biofl uids, such as blood serum, 
saliva or urine, is also supporting the need of establishing non-invasive diagnostic 
and prognostic tests, as well as tumor classifi cation tests. 

 The prognostic value of miRNAs has been investigated in many types of  cancer  , 
such as lung cancer, liver cancer, melanoma or prostate cancer. Inevitably, a number 
of specifi c miRNAs are recurrently found to be elevated or diminished in tissues or 
cell types studied. This fact can be explained by the potential role such miRNAs 
have in cancer development and their role as  biomarkers   cannot be overlooked. For 
example, in prostate cancer, miR-141 was found to be considerably elevated in the 
serum of patients with prostate cancer compared to controls and is considered as a 
prognostic marker with a 100 % specifi city [ 85 ]. The same miRNA was also found 
to be increased in patients with ovarian cancer, while in metastatic colon cancer it 
was correlated with the levels of the carcinoembryogenic antigen (CEA) and poor 
prognosis [ 86 ,  87 ]. 

 In a cohort of colon carcinoma patients, miR-21 was found to have a higher 
expression in adenomas as well as in patients with advance malignancy classifi ca-
tion stage tumors. Survival of patients in the same study was also correlated with 
high miR-21 expression, as well as their response to therapy [ 88 ]. MiR-21 has also 
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been found to be overly expressed in tumorous tissue from both breast and lungs 
[ 89 ,  90 ]. It is considered as a very important oncomiR and apoptosis suppressor and 
the therapeutic value of its inhibition was examined in breast  cancer   cells and mice 
with positive results [ 91 ]. In non-small cell lung carcinoma let-7 is not only consid-
ered as a primal tumor suppressor but also as a putative therapeutic agent. Poor 
prognosis of lung cancer in patients was directly correlated with compromised let-7 
expression [ 92 ].  

    miRNAs and Diabetes 

 Diabetes mellitus (DM) is a complex  disease   affecting 347 million people of all 
ages worldwide. It is mainly characterized by elevated blood glucose levels and can 
be found in two forms depending on insulin availability or usage; pancreatic β-cells 
fail to produce insulin in Type 1 (T1D) patients, while Type 2 (T2D) patients are 
insulin resistant [ 93 ]. The role of miRNAs in diabetes starts with the control over 
pancreatic islet β-cell proliferation and function. In islet-specifi c Dicer1 mice 
knockouts, β-cells were completely absent and animals die soon after birth at P3 
[ 94 ]. Beta-cell Dicer1 knockdown mice presented with a dramatic reduction in insu-
lin production rates in isolated β-cells compared to wild-type animals [ 95 ]. 
Differentiation of insulin producing cells is a process mediated by a cross-talk 
between Neurogenin3 produced by endocrine progenitor cells and Hes1. 
Pancreatectomized mice presented a failure in β-cell regeneration from pancreatic 
pro-endocrine cells and defected post- transcriptional   regulation of Neurogenin3 
protein expression by miRNAs was found to be the cause; miR-15a, miR-15b, miR- 
16 and miR-195 were found to be highly expressed in treated mice and have pre-
dicted target sites on the Neurogenin3 transcript [ 96 ]. Beta-cell development and 
function is thought to be guarded specifi cally by miR-375. In vitro studies demon-
strated an increase of insulin secretion after glucose stimulation in cells lacking 
miR-375, while miR-375 knockout mice presented with fasting hyperglycemia at 
the 12th week of life and β-cell mass was reduced responding to limited levels of 
proliferation [ 97 ,  98 ]. Using luciferase reporter constructs, miR-375 was found to 
have a conserved functional target site on the 3′ UTR of 3′-phosphoinositide- 
dependent protein kinase-1 ( PDK1 ), an actively involved protein in insulin signal-
ing and β-cell response in insulin demand through the phosphatidyloinositol 3 
kinase (PI3-K) pathway [ 99 ]. Islet β-cell function is also regulated by miR-7a, 
which is regarded as a negative regulator of insulin granule exocytosis. In β-cell 
miR-7a2 knockout mice, insulin secretion was increased in response to high glu-
cose levels, suggesting a higher tolerance to glucose [ 100 ]. 

 Pancreatic β-cells sense glucose levels and respond by releasing insulin. 
Prolonged exposure of the pancreatic β-cell line MIN6 to high glucose levels ini-
tially induced miR-15a levels and eventually reduced them, in accordance with 
insulin production levels [ 101 ]. MiR-15a regulates insulin synthesis in an indirect 
manner, by targeting the mRNA of the uncoupling protein-2 gene ( UCP-2 ), which 
codes for an important protein that monitors ATP generation triggered by glucose. 

2 MicroRNAs in Disease



30

Insulin protein stability requires the polypyrimidine tract binding protein (PTB), 
which is in turn targeted by miR-133a. In glucose-treated human islets, miR-133 
was found to be elevated and PTB biosynthesis was effectively reduced accompa-
nied by a reduction in insulin synthesis as well [ 102 ]. In addition, insulin release is 
also regulated by miRNAs, with miR-124a targeting directly the exocytosis regula-
tor Ras-related protein Rab27A, miR-96 and miR-9 increasing the expression levels 
of the Rab GTPase effector granuphilin, and miR-34a targeting the vesicle- 
associated membrane protein 2 (VAMP2) [ 103 – 105 ]. 

 Tissue resistance to insulin leads to T2D and a number of studies demonstrate the 
involvement of miRNAs in this poorly understood process. A number of signaling 
pathways were found to be regulated by specifi c miRNAs in the liver, the adipose 
tissue and skeletal muscle, which uptake blood glucose in response to stimulation 
by endogenous or administrated insulin. Adipocyte development is facilitated by 
miR-143. Inhibition of miR-143 in pre-adipocytes reduced triglyceride accumula-
tion by 75 %, while halted the expression of important genes such as  GLUT4 ,  aP2 , 
 HSL  and  PPAR-γ2  [ 106 ]. The infl uence of miR-143 on adipogenesis was recently 
found to have a stage-specifi c role during their development, possibly by the direct 
regulation of MAP2K5 and consequently the MAPK signaling pathway [ 107 ]. In 
addition, insulin resistance in adipocytes is thought to be regulated by miR-320 via 
the direct regulation of the p85 PI3-K subunit, which in turn modulates the phos-
phorylation levels of Akt and Glut4 to assist downstream signaling pathways [ 108 ]. 
In obesity models, the pattern of miRNA expression in developing adipocytes 
appears to be paradoxically inversed [ 109 ]. 

 The use of miRNAs as  biomarkers   in DM is also currently examined. In T1D 
non-obese mice, elevated miR-375 levels preceded the onset of diabetes by 2 weeks 
suggesting the use of this miRNA as a valid  biomarker   to indicate β-cell death and 
initiation of diabetes [ 110 ]. In T2D, a comprehensive evaluation of miRNAs in the 
plasma of patients, revealed the downregulation of miR-21, miR-24, miR-15a, miR- 
125, miR-191, miR-197, miR-223, miR-320 and miR-486 and the upregulation of 
miR-28-3p compared to healthy controls [ 111 ]. MiR-21 in particular, was found to 
be signifi cantly upregulated in diabetic mice and correlated with the development of 
microalbuminuria and renal fi brosis and infl ammation; soon after knocking down 
miR-21 in the same animals, renal symptoms ameliorated thus suggesting a poten-
tial role for miR-21 as a therapeutic agent for diabetic nephropathy [ 112 ]. Ethnic 
origin of T2D patients also appeared to play a role in circulating miRNA signatures. 
For instance, miR-144 was found to be signifi cantly associated with T2D in Swedish 
patients, but not Iraqis, while miR-24 and miR-29b appeared to be consistently 
marking the  disease   in both populations [ 113 ].  

    miRNAs and Neurodegeneration 

 In neurodegenerative disorders, the physiological function or structure of neu-
rons is gradually compromised leading to degeneration and inevitably cell death. 
Patients in most cases present with motor and/or cognitive decline depending on 
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the impairment of specifi c brain regions, while clinicopathological symptoms 
 occasionally overlap among different  disease   entities. Defected development of the 
central nervous system has been a common fi nding in Dicer knock-out animals, 
suggesting a pivotal role for miRNAs in neuronal differentiation and brain cortex 
size, while neurogenesis was found to be induced by a number of miRNAs, such as 
miR-9, miR-24, miR-125b and miR-128 [ 114 ,  115 ]. 

 In sporadic Parkinson’s  disease   (PD), mutations in  LRRK2  are considered as 
causative factors. LRRK2 protein levels are thought to be effectively regulated by 
miR-205 through a conserved binding site, while patients with sporadic PD demon-
strated signifi cantly reduced levels of miR-205, resulting in elevated LRRK2 levels 
and neurite outgrowth [ 116 ]. The role of LRRK2 in disease pathogenesis is still 
unclear, although its function as a kinase and GTPase implicates this protein in a 
number of molecular pathways possibly implicated with PD [ 117 ]. Nevertheless, in 
a drosophila model mutated  LRRK2  was found to interact with  microRNA   biogen-
esis through an  RNA  -independent association with the RISC complex [ 118 ]. 
Additionally, miR-133b was found to be reduced in the substantia nigra of PD 
patients and regulates the maturation and function of midbrain dopaminergic neu-
rons possibly via Pitx3, which in turn modulates the expression level of miR-133b 
in a proposed negative feedback loop [ 119 ]. More genes involved in PD are also 
targeted by miRNAs, such as α-synuclein which was found to be regulated post- 
transcriptionally by miR-7 and miR-153 [ 120 ]. 

 In developing Alzheimer’s Disease (AD), specifi c miRNAs were found to regu-
late relevant genes. The β-amyloid precursor protein (APP) was found to be targeted 
by miR-106a and miR-502c [ 121 ], the tau protein is bound and regulated by miR- 
34a [ 122 ], and miR-98 targets IGF-1 [ 123 ]. Furthermore, exons 7 and 8 of APP are 
abnormally  spliced   in post-mitotic neurons of dicer conditionally knocked-out mice 
and miR-124 was found to be responsible for this effect assisted by its target gene 
 PTBP1  [ 124 ]. It appears that the abundance of miR-124 in neurons is concomitant 
with the occurrence of the neuronal APP isoform which lacks exons 7 and 8; hence, 
its absence promotes AD through the accumulation of non-neuronal 
APP. Furthermore, miR-9 was also found to be decreased in response to amyloid 
beta (Aβ) accumulation in primary neurons and is a direct regulator of  BACE1  
expression, which in turn regulates APP cleavage [ 125 ,  126 ]. BACE1 mRNA is also 
targeted by miR-29 and miR-107, with the latter found to be downregulated in both 
AD and PD patients [ 119 ,  127 ,  128 ]. Moreover, in AD neuronal aging is promoted 
by an increase in miR-34 levels prior to the accumulation of Aβ in mice, possibly 
through its target gene  Bcl-2  [ 129 ]. 

 The role of miR-146a in neurodegeneration has been explored by a number of 
studies. This miRNA is upregulated in brain regions affected in AD, while it is also 
induced by IL-1β, TNFα and Αβ42 peptides which in turn are pro-infl ammatory 
cytokines triggering AD (reviewed in [ 130 ]). The same miRNA was also found to 
mark prion induced neurodegeneration [ 131 ]. The expression of miR-146a was 
found to be mainly induced by NF-κΒ in Toll/IL-1 receptors and represses the 
release of chemokines and IL-8 via a negative regulation of IL-1β as a part of a 
feedback loop to eventually regulate innate immune responses [ 132 ]. 
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 Identifi cation of solid  biomarkers   in neurodegenerative disorders is still under 
great consideration by the scientifi c community. Examples of biomarkers in AD 
include miR-125b that has been proposed as a circulating  biomarker   with 68.3 % 
specifi city and 80.8 % sensitivity when patients are compared to healthy controls 
[ 133 ]. Moreover, miR-384 which targets APP and BACE-1 was isolated from the 
cerebrospinal fl uid of patients with mild cognitive impairment and Alzheimer’s type 
dementia and was found to be signifi cantly lower compared to controls [ 134 ]. In a 
recent meta-analysis of eight studies in search of the diagnostic validity of biomark-
ers in neurodegeneration, authors found contrasting results between different stud-
ies and suggest the usage of assays taking into account multiple miRNAs instead of 
a single species assay [ 135 ]. In other disorders such as multiple sclerosis, miR-21, 
miR-142-3p, miR-146a/b, miR-155 and miR-326 were found to be elevated in 
mononuclear blood cells and white matter brain regions in MS patients (reviewed in 
[ 136 ]). Also, in amyotrophic lateral sclerosis mice and patients the muscle-enriched 
miR-206 was found to be elevated in circulation and is proposed as a potential  dis-
ease   prognostic marker [ 137 ].  

    miRNAs and Cardiovascular Disease 

 The cardiovascular  disease   (CVD) group consists of a number of highly prevalent 
disorders that, together with  cancer  , are the leading causes of death in the western 
world [ 138 ]. Coronary artery disease presenting with acute myocardial infarction 
(MI), as well as essential hypertension, cardiac hypertrophy and atherosclerosis are 
the main categories of CVDs. Cardiac hypertrophy and failure are responses trig-
gered by stress factors such as MI or hypertension, which in turn alter the hemody-
namic environment and lead heart cells to undergo reprogramming in order to adapt. 
Consequently, heart cells regress to an expression potential that resembles a fetal 
type and cardiac cell specifi cally expressed miRNAs are thought to play a pivotal 
role in this procedure [ 139 ]. Dicer inactivation in cardiac cells of mice caused pro-
gressive dilated cardiomyopathy, accompanied by heart failure and eventually death 
after birth, while impaired expression of the dicer endonuclease was also identifi ed 
in patients with dilated cardiomyopathy [ 140 ]. 

 In the developing heart, miR-1, miR-133a/b and miR-208 are considered as 
basic players for regulating the expression of genes in cardiac muscles and therefore 
the heart’s growth and function [ 141 ]. It has been demonstrated that at the onset of 
pressure-overload cardiac hypertrophy, miR-1 expression is repressed to cause 
downstream global changes in  gene express   ion   [ 142 ]. In Dahl hypertensive rats, 
silencing of miR-208a in the heart, prevented cardiac remodeling and myosin 
switching while increased rat survival [ 143 ]. 

 MicroRNAs contribute in the development and stabilization of atherosclerotic 
plaques, with miR-92a to modulate plaque angiogenesis in mice [ 144 ], miR-21 to 
be stress-induced in the endothelium and modulates apoptosis [ 145 ], and miR-155 
to regulate pro-infl ammatory macrophages, act repressively on Bcl6 and enhance 
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plaque formation [ 146 ], among others. In addition, miR-155, miR-145 and miR-126 
are thought as potential candidates for atherosclerosis treatment [ 147 ]. Other factors 
conferring risk in atherosclerosis development, such as the high levels of low- 
density lipoprotein (LDL) and low levels of the high-density lipoprotein are regu-
lated by miRNAs, with miR-122 to be responsible for increasing LDL levels and 
miR-33 upregulation to be associated with low HDL levels [ 148 ,  149 ]. Elevated 
LDL due to miR-122 upregulation is used as a control feature in miR-122 adminis-
trated  antagomir   therapy against Hepatitis C virus [ 148 ]. In an atherosclerotic 
mouse model, administration of miR-33  antagomirs   increased HDL levels and 
plaque size appeared to be reduced and their stability increased [ 150 ]. 

 In mice undergoing acute MI, members of the miR-29 family were found to be 
downregulated in the fi brotic heart region being adjacent to the infarct and to regu-
late the expression of fi brotic genes such as  COL1A1 ,  COL1A2 ,  COL3A1  and  FBN1  
[ 151 ]. Cardiac fi brosis due to miR-29 might consequently lead to hypertension and 
it has been shown that adjustment of aerobic training habits in rats individuals 
helped in increasing miR-29c levels [ 152 ]. Moreover, miR-15 family members are 
found to be regulated in infarcted heart regions responding to ischemia-reperfusion 
injury in MI mice and pig models [ 153 ]. Therapeutic administration of miR-15 
 antagomirs  , succeeded in sequestrating miR-15 tissue levels and reduced infarct 
size, while induced tissue remodeling. 

 In essential hypertension, human cytomegalovirus (HCMV)-encoded miRNA, 
hvmn-miR-UL112 was found to be differentially expressed between hypertensive 
patients and controls and it direct regulator of interferon regulatory factor 1 (IRF-1) 
mRNA, which in turn upregulates angiotensin II type3 receptor to deregulate blood 
pressure [ 154 ]. In pulmonary arterial hypertension (PAH), miR-204 was found to be 
signifi cantly downregulated in vitro as a response to the aberrant expression of 
STAT3, which normally induces the  transcription   of miR-204 host gene [ 155 ]. 
Intratracheal delivery of miR-204 mimics in PAH affected rats presented with 
reduced arterial pulmonary pressure. Additionally, pulmonary vascular remodeling 
due to hypoxia in PAH has been associated with elevated miR-21 in mice [ 156 ]. 

 The use of miRNAs as  biomarkers   in CVDs has also been extensively explored 
(reviewed in [ 157 ]). Myocardial damage is characterized by a release of miR-208b 
and miR-499 into circulation and the prognostic value of both miRNAs is under study 
[ 158 ]. In addition, the use of miR-133a as a  biomarker   for cardiomyocyte death in 
CVD patients has also been established [ 159 ]. Circulating levels of let-7b, miR-30a 
and miR-195 were identifi ed in patients with developing MI and found to have up to 
90 % sensitivity and 90 % specifi city in discriminating patients from controls [ 160 ].  

    miRNAs and Renal Disease 

 Kidney development and growth is dependent on miRNAs. In mouse podocytes, the 
highly differentiated epithelial cells of the glomerulus, Dicer inactivation depleted 
foot processes and induced apoptosis, while animals developed albuminuria 
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followed by glomerular sclerosis, tubulo-interstitial fi brosis, an abnormal appear-
ance of the glomerular basement membrane, mesangial expansion, acute renal  dis-
ease   progression and eventually died after 6–8 weeks [ 161 – 163 ]. Impressively, 
proteins involved in podocyte function, such as nephrin and podocin, were found to 
be signifi cantly decreased, while the major  transcription   factor that drives podocyte 
differentiation WT1 was found to be unaffected; hence miRNAs are believed to 
have limited infl uence in triggering podocyte differentiation but are essential in 
preserving podocyte function [ 163 ]. Like Dicer knockouts, clinical features of end-
stage renal disease (ESRD) were recorded in Drosha-ablated mouse podocytes and 
animals presented with collapsing glomerulopathy, thus suggesting a pivotal role 
for miRNAs in podocyte function [ 164 ]. Microarray experiments revealed the spe-
cifi c enrichment of miR-192, miR-194, miR-204, miR-215 and miR-216 in the kid-
ney, with miR-192 having a proven role in diabetic nephropathy (DN) [ 165 ,  166 ]. 

 Diabetic patients developing nephropathy present proteinuria, thickening of the 
glomerular basement membrane (GBM), expansion of the mesangium and accumu-
lation of the extracellular matrix, where laminin, fi bronectin and collagens type I and 
IV fail to preserve GBM’s normal structure [ 167 ]. In diabetic mice, miR-192 was 
found to be elevated in their glomeruli [ 168 ]. This miRNA can regulate E-box 
repressors expression, which in turn regulate  Col1a1  and  Col1a2   gene express   ion   
through TGF-β, leading to their accumulation. In addition, hyperglycemia seems to 
induce the abnormally high expression of miR-377 in mesangial cells, causing the 
targeted PAK1 and mnSOD mRNA downregulation and fi nally enhanced production 
of fi bronectin [ 169 ]. Furthermore, in early diabetic nephropathy miRNA-21 was 
found to have reduced levels in db/db mice, while its over-expression paused mesan-
gial cell proliferation and decreased the albumin excretion rate [ 170 ]. In podocytes 
cultured in high glucose levels, as well as in diabetic mice manifesting proteinuria, 
miR-195 expression was found to be elevated [ 171 ]. Furthermore, in Hypertensive 
Nephrosclerosis (HN), a  disease   where hypertension leads to arterial sclerosis which 
in turn causes glomerular sclerosis and hypertrophy, atrophy of the tubules and inter-
stitial fi brosis, miR-200a and b, miR-141, miR-429, miR-205 and miR-192 were 
found in abundance and their levels correlated with the presence of proteinuria [ 172 ]. 

 A frequent clinicopathological fi nding in glomerular  disease   is focal segmental 
glomerulosclerosis (FSGS), and urine miR-196a, miR-30a-5p and miR-490 were 
found to characterize patients with active FSGS compared to patients with FSGS in 
remission [ 173 ]. In mesangial glomerulonephritis, miR-21 and miR-124 were found 
to be upregulated in WKY rats [ 174 ]. Lupus nephritis (LN) manifests with mesan-
gial glomerulonephritis, and in LN patients, miR-146a of glomerular origin was 
also found to be upregulated in both B6.MRLc1 mice and humans [ 175 ,  176 ]. In 
patients with IgA nephropathy, miR-200c was found to be downregulated with its 
levels of expression correlating with proteinuria, while miR-192, miR-141, miR- 
205 were upregulated, with miR-192 demonstrating an association with glomerulo-
sclerosis and a decrease in glomerular fi ltration rate [ 177 ]. Furthermore, in a group 
of ESRD patients having received a kidney transplant, serum miR-181a, miR-
483- 5p and miR-557 were differentially expressed during the fi rst 7 days following 
transplantation surgery, hence acting as factors predicting graft rejection [ 178 ]. 
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 In polycystic kidney disease (PKD), miRNAs were found to be important play-
ers in  disease   pathogenesis. Cyst development mechanisms in PKD are still poorly 
understood [ 179 ]. MiR-15a expression levels were found to be downregulated in 
both autosomal dominant and recessive PKD, which subsequently caused the 
upregulation of its target Cdc25A, a cell cycle regulator [ 180 ]. In a PKD rat model, 
differential expression of miRNAs demonstrated an increased expression of miR-21 
and downregulation of miR-31, miR-164a and miR-125 [ 181 ]. Furthermore, the 
overexpression of the oncogenic miRNA cluster miR-17-92 in mice was found to be 
directly regulated with cyst growth, while its inactivation in a PKD mouse model 
delayed cyst development, as  Pkd1 ,  Pkd2  and  Hnf-1b  gene transcripts have func-
tional binding sites for both miR-17 and miR-92a [ 182 ].   

    MicroRNAs as Therapeutic Agents 

 The use of artifi cial miRNA molecules as therapeutic agents is currently under pro-
gressive development. Such molecules are modifi ed oligonucleotides that can either 
sequestrate a specifi c miRNA to enhance the expression of its targets ( antagomirs  ), or 
boost its levels to target  disease   promoting mRNAs (mimics). Based on their one-to- 
many way of function miRNA-like molecules can be used to treat  diseases   having 
more than one pathways affected, but on the other hand limit the specifi city of a puta-
tive therapeutic approach [ 183 ]. Hence, good therapeutic candidates can be miRNAs 
that have a well-documented way of action and are ideally tissue specifi c. Moreover, 
drug delivery can be problematic and challenging in some cases (reviewed in [ 184 ]). 

 As mentioned earlier, in a work by Joplin et al. [ 70 ] miR-122 was found to target 
two specifi c sites at the 5′ UTR of the HCV  genome   to stabilize and protect it from 
nucleolytic degradation, thus assisting in hepatitis C propagation [ 185 ]. HCV 
 infection is the primary cause of liver  disease   and affects more than 170 million 
people worldwide; hence the development of effectual therapeutic approaches is 
more than necessary and the exploitation of miR-122 properties over HCV will 
hopefully give rise to the fi rst approved miRNA-related drug [ 186 ]. To develop this 
 miravirsen  drug, a series of anti-miR-122 oligonucleotides targeting the miRNA’s 
5′ end sequence were tested in order to block its seed region, and fi nally a highly 
stable sequence specifi c 15-mer LNA-modifi ed oligo (SPC3649) demonstrated 
strong inhibitory effects on miR-122 function in hepatocytes of both mice and 
African green monkeys, even at low concentrations [ 148 ,  187 ]. When this mira-
virsen was administrated in HCV infected chimpanzees, they presented a signifi cant 
reduction in traceable HCV, while HCV levels continued to drop even 2 weeks after 
the drug administration was concluded, thus rendering the miravirsen a more com-
prehensive therapeutic agent compared to other approaches [ 188 ]. Currently, 
this miravirsen is in Phase 2a clinical trials with very encouraging results. Clinical 
trials exhibit a dose-dependent and persistent reduction of HCV levels, while no 
side-effects were recorded [ 189 ]. Impressively, 14 weeks after concluding the drug 
administration four out of nine patients that received a high dose (7 mg/kg) of 
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 miravirsen, the viral  RNA   was undetectable, depicting a lack of resistance of the 
virus against the drug. 

 Besides miR-122, a small number of other miRNAs are also thought as potential 
therapeutic candidates. For example, miR-92a was found to control angiogenesis 
and its inhibition through an  antagomir   in mouse models presenting with limb isch-
emia and myocardial infarction, accelerated the recovery of affected tissues and 
promoted angiogenesis as it naturally targets relevant genes [ 144 ]. Additionally, the 
members of miR-15 family are found to be implicated in cell survival and regulate 
cell cycle progression and are upregulated in infarcted regions of mice and pigs in 
response to injury caused by ischemia [ 153 ]. Administration of modifi ed LNAs in 
animals sequestrated the expression levels of miR-15 family members and increased 
the viability of cardiomyocytes after hypoxia, while cardiac function was enhanced. 

 Another important miRNA drug under development is MRX34, a double 
stranded  RNA   molecule that mimics miR-34 and is currently in Phase 1 clinical tri-
als. As mentioned above, miR-34 family expression is promoted by p53 and is 
found to be downregulated in various types of  cancer  , as it is considered an impor-
tant tumor suppressor (reviewed in [ 183 ]). The miR-34 family consists of three 
miRNAs that share the same seed-region, namely miR-34a, b and c, with miR-34a 
to be the most abundant. Tumor suppression in vivo was succeeded in animals with 
xenografts that promoted prostate cancer [ 190 ], lymphoma [ 191 ], non-small cell 
lung cancer [ 192 ] and others, which had miR-34 delivered intravenously or directly 
with intratumoral injections. Phase 1 trials of miR-34 replacement are ongoing and 
started with a debate on the drug delivery approach to be used. After exploring a 
number of available solutions, an ionizable liposome (NOV340—SMARTICLES) 
was selected to carry the miR-34 oligonucleotide based on its use in mouse models, 
the miRNA bio-distribution and the vehicle’s safety [ 193 ]. When this liposome is 
released in biofl uids with neutral pH it gains a slightly anionic character that pre-
vents it from having non-specifi c interactions with negatively charged cellular 
membranes, while it becomes cationic in tumor regions where the environment has 
lower pH and becomes active. This specifi c vehicle is preferably delivered to the 
liver, thus liver cancer was proposed as the  disease   model in this case.  

    Conclusions 

 Without doubt, miRNA involvement in  diseases   is a trending matter in the literature. 
From causing a  disease   to modifying complex genotypes, miRNAs seem to be 
implicated in every aspect of a cell’s effort to develop, differentiate, and lead a 
healthy living or program its death. Although a number of different approaches both 
in vitro and in vivo have been developed as a response to the growing needs of the 
scientifi c community to study miRNAs, the need to discover robust prognostic and 
diagnostic miRNA markers is essential. In addition, miRNA  bioinformatics   have 
been greatly used as the starting point in deciphering miRNA–mRNA target pair-
ings and have become more and more effi cient through time. Hopefully the 
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development of novel high-throughput technique in the years to come will facilitate 
the comprehensive functional characterization of miRNAs in disease; the knowl-
edge emerging from endless lists of differentially expressed miRNAs in cells or 
tissues is of little help in understanding their true biological meaning. 

 Conclusively, miRNAs have what it takes to become the next generation of thera-
peutic agents. Taking miRNA research from the bench to the bedside, it is indeed 
exciting that the fi rst two miRNA drugs, miravirsen and miR-34 replacement, are 
already in clinical trials. What remains is the development of more drugs and why 
not, tailored therapies for patients.     
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    Chapter 3   
 piRNAs-Transposon Silencing and Germ Line 
Development       

       Catherine     Demoliou      

            Introduction 

 DNA in eukaryotic cells is packaged into two forms of  chromatin  : euchromatin, and 
 heterochromatin  . Euchromatin is rich in actively transcribed genes. Heterochromatin 
is rich instead, in repeated, non-coding sequences representing multiple copies of 
‘selfi sh’ or “parasitic” intergenic genetic elements that are  epigenetically   repressed 
[ 1 – 3 ]. These elements, called  transposons   or  transposable element   s   (TEs), are able 
to mobilize “jump” within the  genome  , and to multiply during their transposition. 
TEs represent 45 % of the human and primate genomes. They are mainly scattered 
between and within genes in mammals including humans, and at constitutive het-
erochromatin pericentromeric and subtelomeric regions in plants and in  Drosophila  
fruit fl ies. There are two major TE classes. Class I includes the autonomous ret-
rotransposons, which either have long interspersed nuclear elements (LINEs), or no 
long terminal repeats (non-LTRs). Both types replicate in a “copy-and-paste” man-
ner. That is, a TE is transcribed fi rst to messenger  RNA   (mRNA), which associates 
with self-encoding,  reverse transcriptase  s and endonucleases in the cytoplasm, and 
then it is transported back into the nucleus. There, the TE-RNA is reverse tran-
scribed to DNA and integrated into a new site in the host genome. Subtypes of 
LTRs, the non-autonomous LTRs, contain short interspersed elements (SINEs), 
which replicate using the activities of an endonuclease and of a reverse transcriptase 
encoded either within the LINE-1 elements (L1), or within other TEs. In contrast, 
the Class II TEs are of the DNA-type. They transpose via a DNA “cut-and-paste” 
mechanism using the “target capture” action of a transposase, which is often 
encoded within the DNA sequence of the TE. 
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 TEs have contributed to genomic changes that had an impact on the evolution of 
eukaryotes, and are responsible for intra-population genetic variations. Recent evi-
dence shows that through evolution, TEs, once thought to be only parasites, have 
been recruited by genomes to defend TE invasions. TE transpositions, however, 
continue to be a thread, since TEs have not stopped replicating and mobilizing inde-
pendently within the  genome  . Mutations caused by TE transpositions may result in 
the deregulation of  transcription   and translation of genes required for normal cell 
function. Furthermore, TE transpositions can be the cause for  diseases   including 
 cancer  .  De novo  transpositions of TEs are linked to at least 65 known human dis-
eases. Most importantly, TE transpositions during germ line development can be the 
cause of developmental, hereditary and fertility disorders [ 1 – 6 ]. 

 The control of  gene express   ion   in eukaryotic organisms is by gene silencing at 
DNA level, involving  chromatin   remodelling that is regulated via  DNA methylation   
and  epigenetic   modifi cations [ 4 – 6 ]. In addition, eukaryotes have evolved highly 
effi cient and specialized systems, which detect, guide, and repress the expression of 
genes and especially of active TEs. Such systems recruit non-coding RNAs to regu-
late TE-expression via  transcriptional   gene silencing (TGS), or posttranscriptional 
gene silencing (PTGS). TGS systems operate in the nucleus and can induce epigen-
etic modifi cations guided by long or short antisense non-coding RNAs. PTGS sys-
tems inactivate or degrade targeted mRNA or TEs. They operate mainly in the 
cytoplasm where they are guided by short non-coding RNAs. These small RNAs 
associate with effector proteins to form the catalytic core of the  RNA  -induced 
silencing complex (RISC) [ 7 – 9 ]. In addition, as we will see later on, there are other 
partner proteins, which contribute to the assembly of a functional RISC. The degra-
dation of targeted mRNA via RISC, is called RNA interference (RNAi), and it was 
fi rst observed in plants [ 10 ,  11 ]. 

 The small RNAs used for TGS or PTGS in metazoan include several classes: the 
micro RNAs (miRNAs), which regulate  gene express   ion  ; the small interfering 
RNAs (siRNAs), which regulate gene expression and TE transpositions, and the 
small non-coding P-element induced RNAs ( piRNAs  ), which repress TE expression 
and mobilization specifi cally in germ line cells during  gametogenesis   (Fig.  3.1 ). 
piRNAs (24–32 nt long) exert their effect by binding to the P-element induced 
wimpy testis ( PIWI  ) subfamily of proteins of the Argonaute family. The smaller 
miRNAs and siRNAs (20–23 nt long), exert their effects by binding instead to the 
AGO subfamily members of the Argonaute family [ 14 – 17 ].

   This chapter will concentrate on the biological roles of  piRNAs   and the  PIWI   
proteins, which are expressed in  germ cell   s   and form the catalytic core of 
piRISC. Genetic studies on PIWI proteins using animal models and the isolation 
and sequencing of piRNAs have aided in building up a coherent picture of piRISC 
functions during  gametogenesis   [ 12 ,  18 – 25 ]. This picture, although not complete, 
shows the evolution of interrelationships between piRNAs and TEs expressed dur-
ing embryogenesis and postnatal germ cell development. Germ cells use TEs in  cis , 
as the source of small  RNA   regulatory sequences (e.g. piRNAs) to guide the degra-
dation of TEs or mRNA. TEs in  trans , appear to provide instead RNA regulatory 
sequences for modulating gene  transcription  /translation (e.g.  DNA methylation  , 
RNA inactivation by deadenylation etc.) [ 1 – 3 ,  22 – 25 ].  
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    Germ Cells and Embryonic Development 

 Mammalian  germ cell   s   arise relatively late during embryo development from a 
small population of extra-embryonic mesoderm cells of the epiblast. The cells 
develop into primordial germ cells (PGCs) that migrate and colonize the genital 
ridges that will form the gonads. Sex specifi cation of PGCs in foetal testes, is 
defi ned by paternally inherited determinants expressed in the early development of 
the zygote. In the ovaries, it is defi ned by maternally inherited determinants present 
in the germ plasma of the oocytes. During ovary development, the PGCs fi rst prolif-
erate via mitosis, and then differentiate into germline stem cells (GSCs), known as 
secondary oocytes (Fig.  3.2 ). Subsequently, GSCs enter meiosis I and arrest in pro-
phase. The completion of meiosis I occurs only upon onset of sexual maturation and 
ovulation when again they arrest in metaphase of meiosis II. At this stage, the 
oocytes build-up special cytoplasmic granules, the so-called germ plasma that is 
required to support the embryo for the next generation of PGCs. In addition, the 
presence of GSCs drives the development of support somatic (follicle) cells. In 
mice, the mature oocytes remain  transcription  -silent until fertilization occurs. 
Fertilization signals the oocyte meiosis to resume, and the highly differentiated 
oocytes fi nally transform into totipotent embryos [ 26 ].

   Male mammalian PGCs, in contrast, undergo only mitotic proliferation during 
the stages of embryonic development (Fig.  3.2 ). They then arrest in G1 phase (sper-
matogonia), and differentiate to GSCs in the male gonad. Mitotic proliferation and 

  Fig. 3.1    Classes of regulatory non-coding RNAs and subsets of  piRNAs  . Long non-coding RNAs 
refer to the antisense RNAs involved in  epigenetic   functions [ 7 ,  8 ].  piRNA   subsets: repeat-
associated- siRNAs (rasiRNAs) identifi ed in organisms like  Drosophila  and Zebrafi sh [ 12 ]; mouse 
 heterochromatin   associated pi-like small RNAs (tel-sRNAs) [ 13 ]; 21U RNAs, small RNAs 
expressed in the  C. Elegans  germ line [ 14 ]       
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differentiation of spermatogonia into spermatocytes resume in the testes, only upon 
sexual maturation. Adult spermatocytes undergo meiosis to form each, four haploid 
spermatids that lose their cytoplasm as they develop into mature spermatozoa 
(sperm) able to fertilize an oocyte [ 26 ]. 

 Mitotic proliferations of PGCs and transition into GSCs, prenatally in females, 
and during juvenile development in males, are characterized by a  genome  - wide   
DNA CpG demethylation by DNA methyltransferase (DNMT) enzyme(s). These 
processes require the expression of pluripotent stem cell markers (i.e. Oct4, Vasa, 
Fragilis and Nanog) [ 27 ], as well as several developmental factors, which defi ne 
whether the cells will differentiate (specifi cation) or continue to proliferate as plu-
ripotent GSCs [ 28 ]. DNA demethylation is required in order to erase inherited 
imprints from both parents, and to ensure the pluripotency of the GSCs. It is also 
required to enable genomic reprogramming and resetting of imprinting for  germ 
cell   specifi cation [ 6 ,  26 ]. It is this period of DNA demethylation that TEs can be 
particularly active due to the relaxation of  epigenetic   control and to the increased 
expression of  transcription   factors [ 2 ]. 

 The maintenance of the GSC phenotype and GSCs proliferation involve exten-
sive changes in histone modifi cations and  RNA  -driven gene silencing processes, 
which are specifi c to the germ line. Signals and molecules that commit  germ cell   s   
to undergo meiosis are provided by somatic support cells. Meiotic progression 

  Fig. 3.2    Developmental  germ cell   transitions during  gametogenesis  . A schematic diagram show-
ing mammalian female and male gametogenesis in the fetus, and adulthood [ 26 ]. In ovaries the 
number of primary oocytes is determined during foetal development. There is no further prolifera-
tion after birth; meiosis starts with sexual maturation, and is completed only upon fertilization. 
Male  germ cells   continue to proliferate upon sexual maturation to form spermatocytes that undergo 
meiosis to form haploid spermatids;  PGS  primordial germ cell,  GSC  germ stem cells       
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events (i.e. crossing over, meiotic silencing of unpaired  chromatin  , imprinting), are 
also guided by  epigenetic   transitions that involve the re-establishment of  DNA 
methylation   patterns ( de novo  DNA methylation) as well as the post-translational 
modifi cation of major histones [ 27 – 30 ]. 

 The  RNA  -driven gene silencing processes are closely associated with the mater-
nally inherited  piRNAs   and with the  PIWI  -dependent biogenesis of regulatory piR-
NAs from RNA-precursor transcripts [ 21 ]. During the window period of DNA 
demethylation and during  germ cell   mitotic self-renewal and meiosis, the piRNAs 
(inherited and newly generated), bind PIWI to form piRISC for targeted TGS or 
PTGS [ 21 ,  31 – 37 ]. These processes require the support of Tudor-domain-containing 
proteins known as Tudor domain-related proteins (TDRDs), which form the cyto-
plasmic scaffold for  piRNA   loading and processing and for piRISC mobilization 
and function [ 38 – 49 ]. In addition, a functional piRNA-PIWI pathway is also 
required for ovarian somatic cell-support during germ cell development in the 
zygote [ 34 ,  50 ]. The PIWI protein expression and the piRNAs signatures identifi ed 
in diverse species such as  Drosophila , zebra fi sh and mammals, indicate that this 
pathway has been conserved through evolution [ 51 ]. 

 Other short RNAi pathways, i.e. the miRNA pathway and the siRNAs-pathway, 
are also important for the proper development of  germ cell   s  . Recent fi ndings sug-
gest that PTGS during the very early developmental stages of the embryo, between 
oocyte fertilization and blastocyst implantation, may involve RNAi processes that 
are guided by temporal transitions of endogenous small RNAs, from retrotransposon- 
derived siRNAs/ piRNAs   or zygote synthesized miRNAs [ 52 ,  53 ] (Fig.  3.3 ).
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  Fig. 3.3    Proposed transition of functional small RNAs during mammalian oogenesis and early 
embryogenesis. The schematic diagram is not drawn to scale.  Dotted lines  represent the putative 
expression of zygotic siRNAs and  piRNAs  . Reprinted from Ohnishi Y, et al. Small  RNA   class 
transition from siRNA/ piRNA   to miRNA during pre-implantation mouse development. Nucleic 
Acids Res. 2010; 38(15):5141–5151 (Open Access) [ 52 ]       
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       The  PIWI   Proteins 

 Most of the information about the function of  PIWI   proteins comes primarily from 
studies in  Drosophila  and mice. The  Drosophila  PIWI proteins Aubergine (Aub), 
Piwi and Argonaute-3 (Ago3) comprise the PIWI subfamily of the highly conserved 
Argonaute family. The other subfamily, referred to as AGO, includes the Ago1 and 
Ago2 proteins that bind miRNA and siRNA, respectively [ 40 ,  54 – 56 ]. AGO pro-
teins are ubiquitously expressed and have been found in almost all eukaryotes. 
Metazoans have representatives of both Argonaute subfamilies. Fungi, green algae 
and plants encode exclusively AGO-like proteins whereas amoebas encode exclu-
sively PIWI-like proteins, placing  piwi  as the oldest ancestor gene and fi rst in the 
line of evolution of the Argonaute clan [ 12 ,  14 – 17 ,  46 ,  51 ]. 

 In  Drosophila , the Ago3 and Aub proteins are expressed primarily in the cyto-
plasm of male and female  germ cell   s   and in the cytoplasm of female somatic nurse 
cells. In contrast, Piwi is a nuclear protein and it is expressed in both, germline and 
ovarian somatic cells [ 54 ].  PIWI   proteins are required for the biogenesis of 
 Drosophila   piRNAs   and for the piRISC-mediated degradation of TEs in germ cells, 
as well as for TGS in somatic and in germ cells [ 21 ]. These activities are interlinked 
and essential for germ line maintenance, proliferation and differentiation that are 
required to ensure fertility. Piwi and Aub expression is required for ensuring both 
male and female fertility whereas Ago3 expressions seems to be more important in 
female fertility [ 40 ,  57 ]. Mutations in PIWI proteins result in the over expression 
and mobilization of retrotransposons in male fl ies. This results in DNA damage and 
germ cell apoptosis that causes sterility since GSC maintenance, proliferation and 
embryonic axis specifi cations are defective [ 20 – 22 ,  24 ,  25 ,  32 – 34 ,  50 ,  54 – 56 ]. 

    The Mouse  PIWI   Family 

 The mouse Miwi ( Piwil1 ), Mili ( Piwil2 ) and Miwi2 ( Piwil4 ) proteins, share signifi -
cant homology with their  Drosophila  and human counterparts. Their expression in 
different, overlapping periods during  gametogenesis  , is specifi c to the male germ line 
(Fig.  3.4 ). Mili is expressed at E12.5 of embryonic stage, and is present throughout 
gametogenesis to the round post-meiotic spermatid stage; Miwi2 is transiently 
expressed at E15.5 of embryonic stage until shortly after birth [ 41 ], and Miwi is 
expressed from the pachytene meiotic stage to post-meiotic round spermatid stage in 
the adult testis [ 42 ,  55 ,  58 ]. Mili binds  piRNAs   of 24–28 nt long, whereas Miwi2 and 
Miwi bind piRNAs that are a little longer (27–32 nt) [ 36 ,  58 ]. Studies have shown that 
Mili plays a role in TE control, GSC maintenance and differentiation; Miwi2 in TE 
control and genocyte proliferation, and Miwi in meiosis during spermatogenesis [ 20 –
 23 ]. Their differential role has also been suggested from evidence that shows bind-
ing (Miwi2, Mili) to prenatal piRNAs with nucleotide sequences complementary to 
TEs and binding (Miwi, Mili) to TE-derived postnatal  piRNA   or to non-coding inter-
genic and genic piRNAs during spermatogenesis (pre and post meiosis) [ 35 ,  47 ,  48 ].
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   Several studies using  PIWI   mutant/defi cient mice have provided an inside of 
PIWI protein functions. Prenatal Miwi2 and Mili expressions have been associated 
with  piRNA  -guided  de novo   DNA methylation   that represses TE expression as well 
as with the piRNA-targeted cleavage of TE- RNA   [ 20 – 23 ,  58 – 62 ]. If Miwi2 or 
Mili proteins are not expressed in prenatal  germ cell   s  , the genomic regions of Line1 
and intracisternal A-particle (IAP) type  transposons   (non-LTR) are hypomethyl-
ated. As a result, TE mRNA levels are up-regulated causing spermatogenic stem cell 
arrest at leptotene (Miwi2) or zygotene/early pachytene (Mili) stages that results in 
germ cell apoptosis and sterility [ 45 ,  47 ,  48 ,  58 ]. Since Mili and Miwi2- defi cient 
mice have impaired prenatal piRNA production, Mili and Miwi2 are considered to 
be involved in piRNA biogenesis [ 63 ]. Defi ciency in Miwi, which also results in 
sterility, affects adult germ cells instead, by arresting spermatogenesis and thus pre-
venting spermiogenesis [ 35 ,  64 ]. Furthermore, ribonucleoprotein- associated mRNA 
that is required for GSC renewal and for spermiogenesis are stabilized by Mili and 
Miwi, respectively [ 59 ,  63 ,  65 ]. 

 In contrast to the male germ line, female mouse  germ cell   s   express only Mili. 
Studies with female knockout mice for Mili and/or proteins that associate with 
piRISC, have shown that female fertility is not affected. These sex-specifi c differ-
ences in mice suggest that the expression of  PIWI   members and/or associated pro-
teins may be redundant for mammalian oogenesis. Mammalian oogonia, unlike 
germ cells, proliferate and undergo meiosis only during gestation (Fig.  3.2 ), and they 

  Fig. 3.4     PIWI   protein and  piRNA   expression during mammalian spermatogenesis. A schematic 
representation of mouse spermatogenesis on a time coordinate showing the periods during which 
Mili, Miwi2, Miwi and piRNA are expressed and  epigenetic   reprogramming takes place (i.e. DNA 
demethylation/methylation) [ 2 ].  PGC  primordial  germ cell   s  ,  GSC  germ stem cells,  RSP  round 
spermatids,  ESP  elongated spermatids.  Bent arrows  indicate cell self-renewal       
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may have an adequate amount of maternally inherited  piRNAs   for controlling TE 
expression [ 21 ,  35 ,  41 ,  45 ]. Alternatively,  transposon   control in mammalian oocytes, 
may involve other non-coding RNAs, like siRNAs, or proteins that block TE integra-
tion and/or provide innate immunity against retroviruses [ 52 ,  53 ,  66 – 68 ]. 

 The specifi c requirements for  PIWI   function and the mechanisms of TE silencing 
observed in the male germ line may be unique to mammals and the result of the 
evolution of the mammalian  germ cell   development system. In other vertebrates 
(i.e.  Drosophila  fl ies, aphids and zebra fi sh), and in distant organisms (i.e. sea 
urchin), both, male and female  gametogenesis   require the contributions of all PIWI 
members for normal cell specifi cation, maintenance and germ cell meiosis [ 69 ]. In 
 Drosophila , for example, maternally inherited  piRNAs   may contribute to female 
PGCs formation and GSCs specifi cation during early embryogenesis. However, 
unlike mammals, GSC self-renewal divisions in  Drosophila , requires a functional 
Piwi that resides in the nurse and somatic cells of the ovary [ 34 ,  50 ,  55 ,  70 ,  71 ].  

    The Human  PIWI   Family 

 All known members of the AGO family have been identifi ed in the human  genome   
[ 72 ].  PIWI   proteins are expressed mainly in human testes and consist of the Piwil1/
Hiwi, Piwil4/Hiwi2, Piwil3/Hiwi3 and the Piwil2/Hili proteins with homologues in 
other mammals and vertebrates. The  PIWL1, PIWIL4, PIWIL3         and  PIWIL2     genes 
are on  chromosomes   12, 11, 22 and 8, respectively. The three AGO genes ( AGO1, 
AGO3,  and  AGO4   ) are closely clustered on  chromosome   1 suggesting a common 
evolution from concurrent gene duplications originating from the  AGO2   gene (of a 
more ancestral origin) found on chromosome 8 [ 73 ]. In normal human testes, Hiwi 
(the Miwi protein homologue), is specifi cally expressed in spermatocytes and round 
spermatids during spermatogenesis, and its over-expression is associated with semi-
noma tumours [ 74 ]. Hiwi2/Miwi2, the only protein member expressed in human 
somatic cells ubiquitously, may play a role in  chromatin   remodelling [ 75 ].  

    The Endonuclease Activity of the  PIWI   Proteins 

 The members of the  PIWI   subfamily, like those of the AGO subfamily, are charac-
terized by the conserved PAZ (Piwi-Argonaute-Zwille) domain, the PIWI sequence 
domains and a middle (MID) sequence domain (Fig.  3.5 ). The PAZ and PIWI-MID 
domains are responsible for facilitating the formation of the double stranded  RNA   
complex (i.e. small RNA bound to single stranded target mRNA), required for the 
cleavage of target RNA. The MID-domain recognizes and binds specifi cally the 
characteristic 5′ end phosphate of Uridine (1U-bias) of  piRNA  -precursor molecules 
or  piRNAs   generated products, and ensures the correct orientation of the bound 
piRNA by anchoring it. The PAZ domain at the N-terminal region, forms a pocket 
that binds the 3′ overhang of the piRNA. Cleavage of mRNA occurs at the PIWI 
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domain, which is at the C terminal region and contains the catalytic DDH triad 
composed of two aspartic acid residues (D) and one histidine (H). This catalytic site 
has an RNAse H-like “slicer” endonuclease activity responsible for the dsRNA 
guided hydrolysis of target mRNA bound to piRNA (Fig.  3.5 ) [ 76 – 79 ].

   The endogenous  PIWI  -slicer activity of some PIWI proteins is probably respon-
sible for both, the biogenesis of regulatory mature  piRNAs   and the  piRNA  -targeted 
TE degradation [ 35 ,  37 ,  63 – 67 ,  79 ]. The fi rst phase of the piRNA-PIWI pathway 
involves the pre-cleavage of very long  RNA   transcripts to fragments of various 
lengths (primary piRNA-precursors), to which PIWI proteins may bind via the pre- 
bound piRNAs. The intermediates formed are then cleaved into smaller fragments 
by the PIWI slicer activity, trimmed to size by a 3′ to 5′ exonuclease (i.e. Ago2, 
which co-localizes with Ago3 and Miwi in the chromatoid body of male  germ cell   s  ), 
and subsequently 2′-O-methylated 3′ by the HEN1 methyl transferase to form the 
mature and stable “primary piRNAs” with regulatory function(s) [ 20 ,  32 ,  63 ,  65 , 
 75 – 82 ]. The 5′ to 3′ processing of primary piRNA-precursors is considered to be 
undertaken by an AGO subfamily member [ 20 ,  81 ,  82 ]. However, in vivo studies 
using the method of cross-linking prior to immunoprecipitation (HITS-CLIP 
method) of PIWI-piRNA complexes, have suggested instead, that long primary 
piRNA-precursors are processed to mature piRNAs via a 5′ to 3′ endonuclease 
activity of PIWI proteins (Mili, Miwi) without being guided by pre-bound piRNA 
[ 65 ]. Furthermore, studies with mouse Miwi-catalytic mutants of the DDH triad and 
with Miwi defi cient mice have indicated that the biogenesis of primary piRNA- 
precursors and primary piRNAs is independent of PIWI-slicer activity [ 63 ]. 

  Fig. 3.5    Protein structure and a putative model of  PIWI   slicer activity based on Ago structure. ( a ) 
The crystal structure of  Thermus thermophilus  Ago, showing the PAZ, MID and PIWI domains 
(PDB identity 3F73; created using Cn3D). ( b)  A putative model of PIWI-bound  piRNA   ( red ) forming 
a double strand with target- RNA   ( black ) at the catalytic pocket of PIWI. The 5′ end of piRNA is 
stabilized by the MID domain. The  solid  and  dotted lines  at the 3′ end of piRNA denote a PIWI con-
formational change after base pairing that is considered to trigger PIWI cleavage of target RNA [ 76 ]       
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 Based on current evidence an alternative hypothesis could be that Ago2 or 
another endonuclease may cleave very long mRNA transcripts that are bound with 
low affi nity to  PIWI   proteins via their 5′U/A ends (Fig.  3.6a ). After each round of 
endonuclease cleavage in a 5′ to 3′ direction, the 5′U end fragments generated will 
have unique secondary or 3D structures and upon binding to PIWI may now provide 
different new sites for endonuclease cleavage (Fig.  3.6b ). Depending on their size, 
the PIWI-bound fragments would continue either to be further cleaved by the endo-
nuclease, or trimmed by a 3′ to 5′ exonuclease. Those with the right size to bind 
PIWI with higher affi nity (i.e. by 3′ binding to the PAZ domain) may then form a 
stable  piRNA  -PIWI complex, which can be methylated by HEN1 methyltransferase 
to produce mature  piRNAs   having primarily U at the 5′-end but diverse sequences 
(Fig.  3.6a ). On the basis of such a model, Mili and Miwi, may participate and speed 
up primary piRNA biogenesis by stabilizing the 5′ end of single stranded piRNA 
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  Fig. 3.6    A schematic representation of a putative mechanism for primary biogenesis of  piRNAs  . 
( a )  PIWI   ( blue packman ) binds non-coding  RNA   through the 5′ end U and promotes its 5′ to 3′ 
cleavage by an endonuclease ( red packman ). The fragments generated continue to be loaded onto 
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precursors without using their endogenous slicer activity [ 65 ]. This slicer activity, 
in fact, could be required only for secondary processing as suggested from studies 
on LINE1  transposon    silencing   during spermatogenesis [ 63 ,  83 ]. Nuclear Miwi2 is 
most likely to be involved instead in TGS, by regulating  DNA methylation   of target 
transposon loci [ 58 – 61 ]. As mentioned above, the cooperation of several other pro-
teins, especially of TDRDs, is needed for the loading of piRNAs intermediates into 
Piwi as well as for acting as chaperons (i.e. heat shock protein 90, HSP90, homo-
logues) for piRNAs mobilization and the regulation of TE and/or transcription of 
precursor piRNA [ 33 ,  49 ,  66 ,  84 – 89 ].

   The N-terminal region of  PIWI   proteins, rich in R-G or R-A amino acids, is the 
site for post  transcriptional   methylations by symmetrical arginine methyltransfer-
ase (SAM) enzymes that are important in specifi cation and maintenance of  germ 
cell   s  . The symmetrically dimethylated (sDMS) status of the N-terminal of PIWIs 
(Fig.  3.7 ), may determine the interactions with components involved either in 
 piRNA   biogenesis or in macromolecular assembly required for piRISC mobiliza-
tion and function [ 90 – 92 ]. The stable association of the mature primary piRNA 
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  Fig. 3.8    Schematic representation of ( a )  Drosophila  ovarian egg chamber ( b ) mouse fetal testis 
and ( c ) mouse  germ cell   s  . Tudor (TUD), tudor-domain containing proteins (TDRD), developmen-
tal factors and  PIWI   proteins that accumulate to form macromolecular assemblies in germ granules 
( blue ) and in the nuage ( blue ) are listed in the Table for  Drosophila  and mouse. Adapted from Chen 
C, Nott TJ, Jin J, Pawson T. Deciphering arginine methylation: Tudor tells the tale. Nat Rev Mol 
Cell Biol 2011; 12:629–642 with permission from Nature Publishing Group       

with Piwi may induce a conformation change at the N-terminal of Piwi, which 
dictates the methylation pattern of PIWI by the symmetric arginine dimethylase 
enzyme (dPRMT5). This pattern in turn, may defi ne which TDRD protein binds to 
PIWI to modulate and/or guide piRISC function(s) specifi ed by the signature of the 
bound piRNA (i.e. PIWI localization, piRNA biogenesis, mobilization to the 
nucleus for TE silencing, and/or the regulation of gene  transcription  /translation) 
[ 37 ,  55 ,  85 ,  86 ,  92 – 103 ].

   During  Drosophila  embryogenesis, piRISC-associate proteins co-localize with 
 PIWI   proteins in the oocyte germ plasma and in cell specifi c cytoplasmic granules 
(nuage), in nurse and ovarian somatic cells (Fig.  3.8 ). The precise molecular func-
tion of these proteins and the mechanisms that ensure binding specifi cities are not 
as yet, known. However, loss of TDRD protein function results in the expressions 
of TEs, impaired  gametogenesis  , meiosis arrest and sterility. In mammalian cells, 
like in  Drosophila , a larger number of such associate TDRDs, co-localize with PIWI 
in similar germ and somatic cell granules (Fig.  3.8 ). Their pattern of expression is 
highly correlated with PIWI expression, and it appears that distinct combinations 
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of TDRDs-PIWI assemblies characterize  transposon    silencing   and spermiogenesis. 
Targeted deletions of TDRDs do not affect  germ cell   viability but they do affect the 
maintenance of GSCs and male fertility [ 49 ,  100 – 103 ]. There are also a number of 
other developmental markers, which co-localize with PIWI proteins in the cytoplas-
mic granules and are just as important for GSC development and spermatogenesis 
(Fig.  3.8 ). The PIWI associations with the various proteins including TDRDs in cyto-
plasmic granules, appear to be conserved through evolution [ 21 ,  90 ,  91 ,  94 – 96 ,  101 ].

   There is limited knowledge at present as to how the expression of  PIWI   proteins 
is regulated during  gametogenesis  . Hou et al. [ 104 ] have shown that the expression 
of  Miwi  from mid pachytene spermatocyte stage to round spermatid stage, is con-
trolled by developmental  transcription   factors through a  DNA methylation  - 
dependent  mechanism involving  epigenetic   modifi cations at the putative PIWI 
promoter region. Regulation of PIWI protein expression by developmental tran-
scription factors would be in agreement with the fact that PIWI proteins are highly 
expressed only in germ line cells during gametogenesis.  

     PIWI    Evolution   

 The RNAi system of defence against retrotransposons is very ancient. A plausible 
direct evolutionary connection between prokaryotes and the RNAi system in 
eukaryotes, is supported by the evidence for the existence of a prokaryotic immune 
system that uses as guides  RNA   or DNA molecules and homologues of the AGO 
family to degrade nucleic acids of invading elements [ 105 ]. Furthermore, organisms 
from far back in evolution, such as sponges, and organisms near the evolutionary 
basis of metazoans, express  piwi -like genes in somatic stem cells that give rise to the 
next generation, in support of a  PIWI   ancestral origin and its ancient role in  game-
togenesis   [ 106 – 110 ]. 

 The diversifi cation of the AGO gene family into the AGO and  PIWI   families in 
contemporary animals including humans, is considered to have been established 
since the origin of metazoan, (i.e. more than 600 million years ago), and it must have 
played an important role in the evolution of multicellularity [ 15 ,  73 ,  105 – 108 ]. 
Phylogenetic analysis shows that after branching out, both, the AGO and the PIWI 
proteins have undergone a marked degree of expansion. Both must have evolved fol-
lowing vertebrate-specifi c duplication events, which were independent and lineage- 
specifi c (Fig.  3.9 ), in agreement with the reported absence of pairwise orthologies 
between the PIWI members of  Drosophila  and mice. The  Drosophila  PIWI proteins 
(Piwi, Aub and Ago3), for example, are related structurally more to each other rather 
than to the mouse PIWI family members (Mili, Miwi and Miwi2) [ 105 ]. In terms of 
the evolution of PIWI structure, the PAZ domains of Piwi-like and of Dicer-like 
proteins appear to cluster together, whereas the PAZ domain of the AGO members 
appears to have evolved separately. This suggests that the  multidomain formation in 
AGO members may have occurred after an  ago - piwi  gene duplication with AGO 
inheriting the PAZ domain from an ancestral  piwi  gene [ 15 ,  105 ,  108 ,  111 ].
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  Fig. 3.9    Neighbor-joining phylogenetic tree of Argonaute/ PIWI   protein family. Major organism 
groups (with colours) are mammals ( red ), birds ( light red ), cold-blooded vertebrates ( deep blue ), 
urochordates ( light blue ), deutrostome invertebrates ( purple ), protostome invertebrates ( orange ), 
plants ( green ), fungi ( black ), and protists ( light purple ). The tree is unrooted.  Asterisks  (“*”) indi-
cate those nodes supported 60 % or greater occurrence and >0.90 probability in square parenthe-
ses. Nodes with one or two values less than 50 % have  dashes  (“–”) while values less than 50 % 
are unmarked.  Scale bar  represents 0.1 expected amino acid residue substitutions per site. Human 
and Drosophila PIWI/Ago proteins are in larger font. The branch leading to a putative, but unlikely, 
fi fth Argonaute gene homolog in mouse, mAgo5, is labeled with a large  arrow . Other branches are 
labeled by a four letter species identifi er (the fi rst two letters from the genus and species names) 
and the GenBank accession number). From Murphy D, Dancis B, Brown JR. The evolution of core 
proteins involved in  microRNA   biogenesis. BMC Evol Biol. 2008; 8:92 (Open Access) [ 73 ]       

 

C. Demoliou



61

   The independent and lineage-specifi c evolution of the Argonaute family of genes 
may have resulted from the specifi c cell-line diversifi cation in protein expression 
profi les, which could have evolved independently in each species because of spe-
cifi c developmental needs, i.e. the role of  Drosophila  Piwi in ovarian somatic cells 
vs. Aub and Ago3 involvement in TE cleavage in  germ cell   s   [ 50 ,  109 – 112 ]. The 
expansion of AGO and  PIWI   homologues and their functional specialization after 
gene duplication events, appears to have been well conserved during evolution, and 
can be observed even in distantly related organisms (Fig.  3.9 ) [ 73 ,  113 ,  114 ]. A 
representative example is the pea aphid, which expresses eight copies of  piwi  and 
two copies of  ago3  genes that have evolved separately in the germ and somatic cells 
of the organism, respectively, thus providing a greater plasticity for its sexual and 
asexual reproductive cycles [ 71 ]. Studies on the  Drosophila  piRISC assembly pro-
teins have indicated that evolutionary selection dynamics would have favoured 
codon bias in the effort to combat TE abundance and invasions. That is, genes of the 
 piRNA   machinery with greater translational and possibly functional effi ciency may 
have been selected through evolution in order to cope as best as possible with TE 
expansions [ 113 ].   

    Location of  piRNA   Biogenesis, and piRNA Origin 
and  Evolution   

    Location of  piRNA   Biogenesis 

 Experimental evidence indicates that  Drosophila   piRNA   biogenesis and the loading 
of mature piRNA onto  PIWI   proteins destined for nuclear function(s), occur in the 
germ plasma and in distinct cytoplasmic granules, proximal to the nucleus of  germ 
cell   s  . Similar granules make up the nuage structures around the nucleus of nurse 
oocyte cells, and the Yb-bodies of somatic ovarian cells [ 20 ,  115 ]. All of these gran-
ules are associated with active  transcription  ,    PGC specifi cation and maintenance, 
and with germ cell differentiation and maturation. Granule formations require the 
hierarchical recruitment of components, such as developmental factors, TDRD pro-
teins, and other components, a number of which form the macromolecular assembly 
for piRISC function(s) as, previously discussed. TDRD protein expression is gen-
der and cell specifi c, and TDRD mutations affect negatively piRNA biogenesis, 
loading of mature piRNA to PIWI proteins and TE repression, which result in the 
abnormal development of germ cells and sterility [ 49 ,  69 ,  94 ,  98 ,  99 ]. 

 Cytoplasmic granules similar to those observed in  Drosophila , also exist in 
mammals. In the mouse male embryonic  germ cell   s  , Mili and Miwi2 are localized 
in two different granules (P-bodies). In the adult mouse testes, the P-body compo-
nents form the inter-mitochondrial cement area seeing in spermatocytes, and later 
on, the chromatoid body seeing in round spermatids. The P-bodies appear to be the 
key sites for  piRNA   biogenesis, and to interact with each other functionally and 
physically during the critical developmental stage of  de novo   DNA methylation  . 
They contain either Mili (called pi-bodies), or Miwi2 (called piP-bodies), and 
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 different TDRD proteins and other associate molecules required for the piRISC 
assembly structure, and for its localization and function(s) during  gametogenesis  . 
Disruption of the Mili pi-bodies affects negatively the integrity of piP-bodies but 
not  vice versa , suggesting that Miwi2 is downstream of Mili regarding cytoplasmic 
granule communications. However, disruption of both types of P-bodies causes 
down regulation of piRNA production, accumulation of TEs and reduction in  de 
novo  DNA methylation, which result in germ cell loss and sterility [ 38 ,  39 ,  90 ,  91 , 
 116 ]. Like in  Drosophila , the integrity of P-bodies depends on the expression of 
TDRD and other proteins. Miwi is present in the whole of the cytoplasm in sper-
matocytes, and it concentrates in the chromatoid bodies in the round spermatids 
[ 81 ]. Mili and/or Miwi mutations, in combination with defi ciencies in specifi c 
TDRDs, cause reductions in piRNA levels in mouse male germ cells, and increase 
retrotransposon  transcription   (LINE and LTR). These effects are associated with 
DNA hypomethylation, developmental germ cell defects and sterility [ 49 ,  85 ,  87 , 
 88 ,  101 – 105 ].  

    Genomic Origin of  piRNAs   and Processing Selection 

 Deep sequencing technology has greatly aided in the characterization of the size 
and sequence of individual  piRNAs   [ 117 – 119 ]. It has also led to the development of 
algorithms to predict  piRNA   sequences and their genomic origin [ 119 – 122 ]. 
 Drosophila  piRNAs map mainly within intergenic pericentromeric and telomeric 
repetitive sequences including TEs [ 33 ,  34 ]. The majority of mammalian piRNAs 
map at intergenic, intronic and exonic sites, the functional signifi cance of which is 
relatively unknown. Furthermore, although in  Drosophila  and Zebra fi sh most piR-
NAs have antisense homologies with  transposon   transcripts from all major classes 
of TEs, in mice only 17–20 % of piRNAs have any correspondence to known repeti-
tive TEs and to retrotransposon coding regions. The remaining mammalian piRNAs 
(about 80%) correspond to unique non-coding sequences that represent the majority 
of “junk DNA” and may have important regulatory roles as new functions of “junk” 
DNA are being discovered [ 31 – 33 ,  43 – 47 ]. 

 Sequence comparisons of  piRNAs   isolated from  in vitro  and  in vivo  studies, have 
shown that the hundreds of thousands of piRNAs are highly variable, and they are 
processed from long single stranded  RNA   precursors encoded in large tandem arrays 
of  chromosomes  , called clusters, ranging from 20 to 100 kb [ 47 ,  119 ,  120 ].  piRNA   
precursors may originate from one strand (+/−), called “uni-strand” or “monodirec-
tional” clusters, or from both strands, called “dual strand” clusters. In some cases, in 
mice and in fl ies, the two halves of piRNA precursor may map to both genomic 
strands but in opposite orientations originating from “bidirectional clusters”, due to 
 transcription   from a centrally located promoter (0.1–1 kb long) [ 119 ]. 

 In addition to the variability in the sequences of the  piRNAs  , there are differences 
in the frequency with which piRNAs map to specifi c cluster regions of  chromo-
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somes  .  piRNA   densities of clusters can range from 40 to 4000 [ 120 – 124 ]. It has been 
debated as to whether the higher abundance of some piRNAs (i.e. those derived from 
intergenic non-coding sequences and from 3′ untranslated regions (3′ UTRs)), repre-
sent a programmed biogenesis of piRNAs with regulatory functions, or instead, local 
levels due to differences in translation effi ciency, sequence motifs or stability. Robine 
et al. [ 124 ] argue that the 3′ UTR-derived piRNA production is, most likely, selected 
actively for  trans  regulatory functions since in  Drosophila  and mouse gonads, the 
piRNAs come from distinct piRNA-precursor categories. In terms of evolution, the 
co- transcription   of piRNA clusters within protein coding gene sequences may have 
provided a greater range of regulatory piRNAs for a more effi cient response to cell-
specifi c requirements during the various stages of  gametogenesis  . 

 Master loci in  Drosophila , express putative regulatory transcripts as substrates 
for the production of  piRNAs   that target protein mRNA coded in  transposons  . 
Examples include: the locus of the suppressor of the stellate gene ( su ( ste )), which 
prevents the over expression of stellate protein that crystallizes in spermatocytes 
and causes sterility [ 109 ,  125 ]; the  fl amenco  locus involved in the repression of LTR 
retrotransposons of the  gypsy  family ( gypsy ,  ZAM  and  Idefi x ), and the  3R-TAS  locus 
responsible for the silencing of the  P  element involved in female hybrid dysgenesis 
[ 16 ,  17 ,  21 ,  126 ]. Control of  transposon    transcription   via piRISC in  Drosophila , 
may have evolved after the transposition of a TE into a  piRNA   cluster. This event 
would have provided an evolutionary advantage to the fl y by enabling it to discrimi-
nate mobile transposons from transcripts of endogenous genes, and eliminate them 
[ 50 ,  109 ,  111 – 114 ,  124 ]. 

 The few studies on the mechanism of regulation of  piRNA    transcription   from 
clusters in  Drosophila , have indicated that uni-strand cluster transcription involves 
Polymerase II that requires a transcription start site and histone methyltransferase 
(H3K4me2) activity [ 127 ]. Transcription of dual-strand piRNA clusters in germ and 
somatic cells of the gonads, require instead the presence of double stranded DNA for 
the binding of specifi c  epigenetic   and transcription factors (i.e. HP1a, H3K9methyl-3, 
Cuff, Del). Binding is regulated by the  heterochromatin   Rhino, which acts as a 
licensing factor by distinguishing piRNA loci for cluster expression [ 127 – 129 ]. 

 Taken together, it would appear that in  Drosophila , the  piRNA  - PIWI   pathway 
may regulate piRNA cluster expression or TGS by modifying  chromatin   status at 
specifi c genomic targets, via a piRISC-recruitment of  epigenetic   and  transcription   
factors [ 125 – 130 ]. Heterochromatin binding of piRISC may involve direct piRNA 
binding to DNA, whereas euchromatin binding may involve binding to nascent 
 RNA   transcripts of 100–800 bp long, needed for the recruitment of histone methyl-
transferase and other proteins [ 130 ]. An H3K9 dependent vs. independent mecha-
nism and the piRNA-Piwi complex bound to specifi c transcription factor(s) (i.e. the 
gametocyte-specifi c factor 1), have been shown to be involved in differentiating 
piRNA-precursor-transcription from piRNA-Piwi-repression of TE transcription 
[ 21 ,  130 ]. Specifi c RNA binding proteins may also be involved in the tagging and 
movement of cluster-derived RNA to the cytoplasm for the delivery of signals as to 
which PIWI protein may bind and process the precursor piRNA. 

3 piRNAs-Transposon Silencing and Germ Line Development



64

 Comparisons on the similarities between rat and mouse  genome  , suggest that in 
mammals, most  piRNA   clusters may have originated via ectopic recombination and 
insertion of long sequences at regions fl anked by  chromosome  -specifi c repetitive 
elements [ 117 ,  123 ]. Since in mice, there are no master loci as in  Drosophila , poten-
tial regulatory sites for piRNA-cluster expression may most likely be interspersed in 
the genome and regulated by  chromatin   remodelling in a manner similar to that 
seen in  Drosophila . Alternatively, expression of developmentally regulated mRNA 
transcripts may provide the substrates for the generation of  piRNAs   in response to 
specifi c need for TGS and/or PTGS. Present evidence indicates that the expression 
of specifi c  RNA   clusters during mouse spemiogenesis is regulated by zinc-type- 
transcription      factors and the MYB-related protein A [ 131 ,  132 ].  

     piRNA   Cluster  Evolution   

 Comparisons of orthologous regions between rat, mouse and human genomes using 
the sequences of 140 known rodent  piRNA   clusters, have identifi ed 37 of these to be 
of an ancestral origin and conserve in all three species. These clusters overlap 
protein- coding genes by spanning several exons and introns in most cases. The 
remaining 103 clusters are contained within intergenic regions and do not overlap 
protein-coding genes. Forty three of the one hundred and three clusters appear to 
have an ancestral origin, the remaining 60 appear to have evolved recently with most 
(44 clusters) having been acquired after rodent–primate divergence without a single 
cluster loss. Rapid expansion occurred before the rat-mouse split through recombi-
nation and long sequence insertions, primarily within genomic regions that were not 
preserved after cluster acquisition. In terms of large scale evolution, the rate of clus-
ter expansion appears to exceed the highest known rates for any of the families of 
mammalians genes. On a small scale, however, the evolutionary rates of  piRNAs   are 
similar to those observed for other mammalian sequences. On given evidence, it has 
been suggested that piRNA cluster expansion is driven by positive selection, possi-
bly as the result of the interplay between invading TEs and the transposition of exist-
ing TEs into clusters. Mammals in response to such evolutionary pressures may 
have selected to enhance the piRNA repertoire for silencing TEs [ 117 ,  125 ]. 

 The mammalian  piRNA   clusters are by majority syntenic (i.e. their presence and 
chromosomal organization are conserved in the mouse, rat and human) [ 31 – 33 , 
 43 – 47 ]. Positive selection and conservation of the piRNA cluster location, however, 
does not result in piRNA sequence conservation between closely related species and 
even between individual animals of the same species, as demonstrated from the 
sequencing of  piRNAs   isolated from the  Xenopous tropicalis  oocytes [ 133 ]. piR-
NAs are highly diverse due to the irregular manner of their biogenesis from different 
regions of cluster transcripts, and from clusters transcribed from one strand in pref-
erence to the other (strand asymmetry) [ 37 ,  51 ]. A quasi-random sub-saturation 
processing from common precursors has been suggested to explain the diversity in 
piRNAs and the low frequency of piRNAs with overlapping sequences [ 119 ]. 
Studies using computer simulations for TE transposition in  Drosophila , and 
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 comparisons of sequences of a number of RNAi defence genes (including those of 
the piRISC) and of genes of the immune system, have suggested that intra-popula-
tion and inter-species variations in transpositions, may contribute to the generation 
of individual piRNA sequences. Non-coding sequences are less conserved, and the 
generation of piRNAs from randomly cleaved long primary piRNA-precursors may 
further contribute to piRNA sequence diversity, as previously discussed. Based on 
the evidence available, it has been suggested that the piRNA defence system against 
 transposons   is most likely a dynamic one, and operates in a manner analogous to 
that of the immune defense system [ 113 ,  114 ,  134 ,  135 ]. A strong negative selection 
at the sequence level of piRNAs has only been observed in human African 
 populations, in agreement with the fi ndings that Africans have much higher rates of 
TE insertions than other populations [ 136 ,  137 ].   

    The Classes of  piRNAs   

 The sequence signatures of  piRNAs   isolated from  Drosophila  and mice, have led to 
the proposal of two mechanistically different pathways for piRNAs biogenesis  in 
vivo  [ 31 ,  34 ,  43 ,  55 ,  65 ]: (a) The primary pathway that generates primary  piRNA  - 
precursors  with U at the 5′ end, from long mRNA transcripts that are processed to 
mature piRNAs, as previously discussed. The biological signifi cance of this in guid-
ing/regulating piRISC or TGS is not known, at present. (b) The secondary pathway, 
also called the ping-pong amplifi cation pathway, is assumed to use primary piRNAs 
to trigger the production of secondary piRNAs that drive TE- RNA   degradation. 
Both pathways are active in the germline, whereas only the primary pathway is 
involved in piRNA biogenesis in gonad somatic cells [ 138 ]. 

  piRNA   isolation and sequencing have revealed some features that are shared 
between the diverse mature  piRNAs   species and are used to identify their origin and 
to understand the mechanism(s) of mature piRNA biogenesis [ 18 ,  21 ,  31 – 34 ,  43 ,  47 ]:

    1.    The mammalian  piRNAs   and  Drosophila  piRNAs/rasiRNAs as well as the 
pi-like- RNAs in other somatic cells/tissues [ 118 ], are larger (24–32 nt long) than 
miRNAs and siRNAs.   

   2.    Mature  piRNAs   and primary  piRNA  -precursors carry a phosphate group at their 
5′ end, indicative of being generated from a dsRNA precursor intermediate that 
is processed by an endonuclease.   

   3.    Mature  piRNAs   are 2′-O-methylated at their 3′ end for greater stability [ 77 ,  79 ].   
   4.    Mature  piRNAs   derived from  piRNA  -precursors via primary processing, show a 

very strong preference for U at the 5′ end and no nucleotide bias at position 10. 
Those derived via secondary processing show instead, a bias for Adenine (A) at 
position 10 and no 5′ end bias.   

   5.    Antisense  piRNAs   derived from  RNA   transcripts containing TE repeats may 
share higher complementarity with sense piRNAs at the 5′ end [ 21 ,  31 – 34 , 
 43 – 47 ].    
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  Because there are no other known secondary structures motifs to distinguish 
 piRNAs   (i.e. hairpin-like structures as in miRNAs and siRNAs), their classifi cation 
in mammals, is based on the above features, origin of  piRNA   cluster/strand and the 
stage of  gametogenesis   during which piRNAs are most abundant. The two major 
and distinct populations identifi ed are the pre-pachytene and pachytene classes of 
piRNAs (Fig.  3.10 ).

      The Pre-pachytene Class of  piRNAs   

 This class of mammalian  piRNAs  , originate in a set of clusters (referred to as pre- 
pachytene  piRNA   clusters), and match those of  Drosophila  piRNAs originating in 
 transposon   master loci. These are “dual-strand clusters”, rich in repetitive elements. 
The mouse pre-pachytene clusters are distinct, more numerous, and smaller in 
genomic coverage than the clusters of the pachytene class. Pre-pachytene piRNAs 
expressed in male growth-arrested gonocytes during embryonic development, are 
detected up to the mature spermatid-stage in adulthood. The majority show a sense 
bias: they contain A at position 10 (Fig.  3.10 ), and their fi rst ten nucleotides are often 
complementary to piRNAs derived from antisense precursors. Pre-pachytene piR-
NAs are considered, therefore, to be processed from  RNA   transcripts via the ping-
pong amplifi cation pathway (secondary processing) [ 34 ,  50 ,  55 ,  61 ,  68 ,  69 ,  86 ]. 

  Fig. 3.10    The major classes of mammalian  piRNAs  .  A  Adenine,  U  Uracil,  N  any ribonucleotide 
(Adenine, Uracil, Cytosine or Guanine)       
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 Pre-pachytene  piRNAs   associate primarily with Miwi2 (80 %) and Mili, in 
mouse gonocytes, and with Mili and Miwi after birth and during adulthood. Their 
presence is related primarily to the  de novo  methylation of DNA and the silencing 
of TE via piRISC [ 55 ,  58 – 65 ]. Reduction in pre-pachytene piRNAs due to loss of 
Mili or Miwi activity, results in retrotransposon expression and male sterility, as 
previously discussed [ 63 ,  64 ,  83 ]. The  piRNA  -like small  RNA   (pilRNA) identifi ed 
in hematopoietic cells (B-cells, T-cells, NK-cells), and in somatic cells from various 
tissues of other animals including fl ies, mice and rhesus macaque monkeys, resem-
ble more the pre-pachytene class of piRNAs, and are considered to be involved in 
TE and/or endogenous retrovirus suppression [ 118 ].  

    The Pachytene Class of  piRNAs   

 The mammalian pachytene class of  piRNAs   [ 34 ,  44 ,  47 ,  64 ,  65 ,  139 ,  140 ], are found 
in abundance (>90 %), in testicular  germ cell   s   during the pachytene stage, when 
spermatocytes enter meiosis to become spermatids. Pachytene piRNAs persist until 
the haploid round spermatid stage after which they disappear gradually during 
sperm differentiation. The majority (70 %), map to highly conserved monodirec-
tional (“uni-strand”)  piRNA   clusters, which are transcribed into long precursors 
ranging in length, from several to >100 kb. These clusters, are distributed over most 
 chromosomes  , mainly at intergenic regions but also at protein coding-genic regions 
(exons and introns) or 3′ UTRs, and they show no repeats or evidence for a  transpo-
son   origin [ 44 ,  64 ,  124 ]. Pachytene piRNAs show primarily a 5′ end U bias, no bias 
for A at position 10, and no signifi cant complementarily to each other (Fig.  3.10 ). 
They are considered therefore, to be the products of primary processing. As men-
tioned above, the functional signifi cance of these piRNAs is unknown. They associ-
ate primarily with Miwi but also with Mili [ 64 ,  65 ,  83 ,  139 ]. It has been suggested 
that pachytene piRNAs may represent the degradation of end products of 
mRNA, which are destined for clearance during the fi nal differentiation of sperma-
tids into sperm [ 65 ].  

    Drosophila Classes of  piRNAs   

  piRNAs   from  Drosophila  germ line and nurse cells, have been mapped to discrete 
clusters transcribed from loci that contain defective  transposons  , or from master 
loci that contain active transposons [ 21 ,  25 ]. Most  piRNA   clusters are “dual-strand 
clusters” with antisense bias. piRNAs generated from sense precursor transcripts 
show no 5′ end U, have A at position 10 (typically Ago3-bound piRNAs), and are 
complementary to the fi rst ten nucleotides of piRNAs generated from antisense pre-
cursor transcripts (Aub/Piwi-bound piRNAs). The majority of piRNAs in  Drosophila  
germ line cells, therefore, are the products of TE cleavage, via secondary 
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processing. Mature piRNAs of  germ cell   s   originating in clusters that do not contain 
TE sequences or in 3′ UTRs, are thought to be the products of primary processing 
by Piwi instead. 

 In ovarian somatic cells of  Drosophila , which express only Piwi,  piRNAs   are 
mainly the products of primary processing that takes place in cytoplasmic granules, 
called the Yb bodies [ 112 ,  115 ]. These piRNAs show a bias for U at position 1. 
They originate mainly in the antisense strand of “uni-strand” clusters, and are des-
tined for maternal transmission acting as  trans -silencers of TE transposition during 
the early stages of embryogenesis [ 21 ,  25 ,  50 ,  57 ,  68 ,  138 ,  141 ,  142 ]. A few piRNAs 
derived from select master loci may have specifi c functions that are required for 
somatic cell maintenance [ 124 ]. Overall, piRNAs in  Drosophila,  can be catego-
rized into (a) the germ line piRNAs (resembling the pre-pachytene class of mam-
malian piRNAs), which are the products of secondary processing, and (b) the 
ovarian somatic piRNAs (resembling the pachytene class of mammalian piRNAs), 
which are the products of primary processing [ 21 ,  50 ,  112 ]. 

 Genomic studies in sea anemones and sponges that diverged before the emer-
gence of bilateral animals (e.g. human, fl ies and worm), have provided evidence that 
both types of  piRNA   may have existed since the origin of metazoan [ 105 ,  109 ].   

     PIWI   Role in  piRNA   Biogenesis 

    Primary  piRNA   Biogenesis 

 The existence of an operational primary  piRNA   pathway was originally proposed 
from studies on  Drosophila  ovarian somatic cell, which express only Piwi [ 57 ,  138 , 
 141 – 143 ]. Processing of primary piRNA-precursors from clusters (>200 kb long) 
requires the Piwi association with ribosomal components in the cytoplasm and/or 
cytoplasmic granules, to produce piRNA from both genomic strands [ 124 ,  138 , 
 141 ]. piRNA-precursors are loaded onto piRNA-bound Piwi (ovarian somatic cells), 
and/or piRNA-bound Aub (nurse and  germ cell   s  ), with the help of cytoplasmic 
granule proteins (the nuclease Zuc and the putative helicases Armi and Yb), to be 
tailor-processed from the 3′ end into mature  piRNAs   of a size that is determined by 
the footprint of bound piRNA [ 57 ,  84 ,  109 ,  112 ,  138 ]. Mature piRNAs are fi nally 
loaded onto Piwi, which enters the nucleus for downstream target recognition and 
silencing. In germ line cells, Yb is not expressed and therefore, only Armi and Zuc 
are considered to be involved in the biogenesis of primary piRNAs destined to initi-
ate the secondary pathway [ 138 ,  141 ]. The  armi  and  zuc  gene homologues are con-
served in mice, and in the absence of the  armi  germ line orthologue, spermatogenesis 
is blocked and both Mili and Miwi2 lack bound piRNA [ 144 ]. 

 The direct role of Piwi/Miwi2 in primary  piRNA   biogenesis is not clear. Mature 
 piRNAs   can still be produced even when  Drosophila  Piwi or mouse Miwi2 are 
mutated. This means that primary piRNA production in the germ line is carried out 
either by sequence independent endonucleases, or by an AGO member as men-
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tioned above [ 60 ,  83 ]. In line with these observations, the localization of Piwi/
Miwi2 in the nucleus and the distinct sizes of bound piRNAs in  Drosophila  and 
mice, suggested that the main roles of Piwi/Miwi2 may be in TGS guided by the 
loaded piRNAs, rather than in piRNA biogenesis per se [ 115 ]. Recent studies in 
 Drosophila  with Piwi defi cient ovarian germ or somatic cells [ 21 ,  60 ], or with cul-
tured ovarian somatic cells [ 21 ], or from inserting ectopic piRNA targets in the fl y 
 genome   [ 130 ], have shown that the Piwi is guided by piRNA to euchromatin DNA 
targets, which are silenced via the Piwi recruitment of  epigenetic   factors that con-
vert DNA to  chromatin  . A role in piRNA biogenesis to silence  transcription   of a 
locus may still be required for complete TE silencing, and may involve the chaper-
oning and export to the cytoplasmic sites of Piwi bound to nascent transcripts by 
other proteins [ 145 ]. 

 Data sequences of mammalian pachytene  piRNAs   isolated from  in vivo  and  in 
vitro  studies, indicate that the majority of piRNAs (70–80 %) that bind Mili and 
Miwi, have signatures of primary  piRNA   biogenesis in evidence that this pathway is 
operating in mammals [ 18 ,  32 ,  44 ,  65 ,  96 ]. Since both of these proteins associate 
also with piRNAs that bear the signatures of secondary processing, it is possible that  
in vivo , the  PIWI  -symmetric dimethylation status defi ned by the bound piRNA may 
dictate (in association with the other components of the piRISC assembly), whether 
Miwi and Mili are involved in primary or secondary piRNA biogenesis. Primary 
piRNAs generated from mRNA transcripts from various species, appear to be evo-
lutionarily more conserved and may be involved in gene regulation at more than one 
level of  transcription   and translation [ 64 ,  124 ,  140 ]. 

 It has been argued whether the long  piRNA  -precursor molecules may have a 
biological function in directing  DNA methylation   and/or TGS during mitosis/meio-
sis. Recent analysis of the correlations between DNA methylation and the density of 
 piRNAs   at piRNA coding regions, in human and mouse chromosomes, has indi-
cated a preferential methylation close to such regions up to 16 Mb long, suggesting 
that long precursor piRNA- PIWI   complexes may  epigenetically   control the expres-
sion of non-coding regions, in a manner similar to X- chromosome   silencing [ 146 ].  

    The Ping-Pong Circular Model 

 The putative ping-pong mechanism is assumed to enable  piRNA   amplifi cation and 
 transposons   silencing to occur simultaneously during active  transposon   expression, 
which increase the effi ciency of TE degradation via the production of antisense 
 piRNAs  . The mechanism is considered to be driven by the maternally inherited 
mature piRNAs during early embryogenesis in  Drosophila   germ cell   s  , and possibly 
in mammalian oocytes. It involves the catalysis of 5′ cleavage of TE- RNA   strands 
of opposite orientation. This is via reciprocal cycles of slicer activity of Aub/Piwi 
(bound to antisense piRNAs) and Ago3 (bound to sense piRNAs), which amplify 
the pool of complementary sense and antisense secondary piRNAs that feed into the 
cycle. The piRNAs that associate with Aub or Ago3, often overlap at their 5′ end by 
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ten nucleotides, which enables the transfer of the 5′-sliced precursor between the 
ping-pong partners that assemble on the surface of other proteins (i.e. vasa, TDRD 
proteins) [ 34 ,  64 ,  73 ,  138 ]. 

 Based on the  piRNA   signatures generated, mice, unlike  Drosophila , are assumed 
to use mature  piRNAs   derived from sense piRNA-precursors, in order to prime anti-
sense piRNA production for TE- RNA   degradation (Fig.  3.11 ). In foetal gonocytes, 
Mili associates primarily with sense piRNAs that have A at position 10, and 
Miwi2 associates with antisense piRNA with 5′ U, indicative of ping-pong signa-
tures [ 19 ,  32 ,  34 ,  46 ,  51 ,  55 ]. However, studies with catalytically inactive Mili- 
and with Miwi2-DDH mutants, have shown that secondary piRNA biogenesis 
(pre-pachytene piRNA), and normal  germ cell   development depend on Mili and not 
on Miwi2 slicer-activity. Furthermore, in terms of piRNA levels, Mili appears to 
compensate for Miwi2 when the latter is not expressed [ 140 ]. piRNA analyses from 
 in vitro  (Mili) and from  in vivo  studies using Miwi- and Mili-DDH mouse mutants 
[ 64 ,  83 ,  103 ,  124 ], have shown that Miwi and Mili can catalyze secondary piRNA 

  Fig. 3.11    The ping-pong model for  piRNA   biogenesis in mammals. Sense  piRNAs   derived from 
primary processing are used as guides by Mili to cleave antisense TE transcripts. The cleaved 
antisense transcripts serve in turn as guides for Miwi2 to cleave sense  RNA   thus fuelling an ampli-
fi cation cycle in which the 5′ ends of piRNAs are defi ned by  PIWI   cleavage. The 3′ ends are 
assumed to be shortened by an endonuclease and/or exonuclease and subsequently 2′-O-Methylated. 
Regulatory piRNAs may also be loaded onto to Miwi2 ( long  dotted arrow) for nuclear transport 
and piRISC function in TGS       
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production (pre-pachytene piRNA), via an intra-amplifi cation mechanism using 
complementary piRNAs as guides. As previously discussed, since the expression of 
Miwi2 but not its slicer-activity is required for  de novo   DNA methylation   and nor-
mal  gametogenesis  , the role of Miwi2 may be limited to piRISC  transcriptional   and 
post-transcriptional functions [ 45 ,  83 ]. Alternatively, Miwi2 (like Mili and Miwi) 
may also promote primary piRNA biogenesis via the stabilization of mRNAs so that 
the mRNA can be cleaved by other endonucleases.

    piRNA   signatures for the function of the two pathways have been obtained from 
many animal species, including planarias, fl ies, zebra fi sh, frog, silkworm and mice, 
suggesting that they are conserved through evolution for the defence against invad-
ing TEs [ 33 ,  46 ,  51 ,  61 ,  66 ,  133 ,  147 ,  148 ]. Genetic studies on the evolutionary 
origin of the  Drosophila  somatic piRNA clusters and  PIWI   proteins, support the 
notion that the primary piRNA-Piwi pathway in these cells, evolved as a counter 
defence to the colonization of a follicular niche/soma by specifi c TEs, which tried 
to avoid germ line piRNA surveillance. Since mutations in genes that act only in the 
secondary pathway, result in the collapse of the entire piRNA pool, the role of the 
ping-pong mechanism could also be to ensure that all primary piRNA samples are 
used [ 23 ,  57 ,  110 ,  117 ,  134 ,  138 ,  141 ].   

    The Biological Signifi cance of the  piRNA  - PIWI   Pathway 

    Role in Human Diseases 

 A large number of investigations have provided evidence that the  piRNA  - PIWI   
pathway in metazoan has been associated with  transcriptional   and post transcrip-
tional repression of TEs, and possibly of other genetic elements that are involved in 
the regulation of  gametogenesis   (from  germ cell   specifi cation to GSC maintenance 
and proliferation, meiosis and to spermiogenesis). The biological signifi cance of 
this pathway in human sperm development, and any relationship to idiopathic male 
sterility, however, have hardly been investigated. There has been one study in a 
Chinese population, on genetic variations in PIWI  vs.  spermiogenic failure. The 
study identifi ed an SNP in the 3′ untranslated region of  HIWI2  associated with 
increased risk of oligozoospermia, and a non-synonymous SNP in  HIWI3  that was 
associated with reduced risk of oligozoospermia [ 149 ]. Some other studies have 
shown that the loss of the  HIWI  locus correlates with testicular atrophy and with the 
lack of development of proper secondary sexual characteristics [ 150 ,  151 ]. 

 The effect of the  piwi  gene on germline development, has been related to the 
gonad somatic cell functions [ 40 ]. In lower organisms, it appears to play a role in 
 genome   rearrangement (Ciliates), synaptic plasticity and in associative memory 
development (Aplysia), as well as in whole-body regeneration (Colonial Ascidians) 
[ 132 ]. Maternal germline  piRNA   in  Drosophila,  has been implicated in the 
 programming of somatic cells, and both maternal and zygotic Piwi proteins appear 
to be required for the establishment of  heterochromatin   and the suppression of 
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 phenotypic variations through  epigenetic   mechanisms. In addition, Piwi has been 
shown to have a role as an epigenetic activator [ 132 ]. A role of Piwi in somatic tis-
sue differentiation, has been recently supported from studies on the time expression 
of piRNA during rat liver differentiation [ 152 ]. 

  piRNA  - PIWI   It has been considered, therefore, that the “stem-like” proliferative 
phenotype of  cancer   cells could be related to the expression of components (i.e. 
PIWI proteins) involved in  germ cell   maintenance and self-renewal. Indeed 
 investigations on PIWI re-expression in a cancer context, in humans, have shown 
that the Hiwi and Hili proteins and specifi c  piRNAs   (e.g. piRNA 651), are differen-
tially expressed in precancerous and cancer cells depending on the cell type of the 
tumor (i.e. testicular (seminomas) and ovarian cancer, prostate, breast, gastrointes-
tinal and endometrial  cancers  ) [ 13 ,  22 ,  28 ,  104 ,  153 – 161 ]. 

 Studies using ovarian tumours have shown that the high expression of  HIWI2  is 
associated with the silencing of genes that regulate apoptosis (i.e. Stat3/Bcl-X(L); 
p14ARF/p53), and with the expression of stem cell markers (e.g.  c -   KIT  ) thus cor-
relating  PIWI   expression with the growth of  cancer   cells [ 13 ,  159 – 161 ]. The 
oncogen- like function of Hiwi2 was attributed to a Hiwi2-induced global DNA- 
hypermethylation of repetitive elements, which caused the silencing of tumour sup-
pressor genes like the  CDKIs  [ 160 ]. Furthermore, Hiwi-mediated tumorigenesis 
was reversed by a methyltransferase inhibitor suggesting a connection between 
Hiwi2 and DNA methyltransferase [ 159 ]. 

 Although investigations at the molecular level on the role of the  piRNA  - PIWI   
pathway in  cancer   are limited, the available studies suggest that if components of 
the piRNA-PIWI path are expressed in an aberrant way, they may contribute instead 
to the progression of cancer. In support, recent evidence has shown that the ectopic 
expression of piRNA pathway-associated genes contribute to the development of 
brain malignancies in  Drosophila  [168]. Furthermore, recent evidence has shown 
that promoter  CpG island   hypermethylation and inhibition of Piwil1, Piwil2, Piwil 
4 and TDRD1 protein expression are related to reduced piRNA biogenesis and 
LINE-1 repetitive sequence hypomethylation, in primary seminoma and nonsemi-
noma testicular tumors. Based on these, it is possible that the  epigenetic   inactivation 
of the PIWI-family of proteins could indeed contribute to male infertility and at 
least to the infertility-associated testicular cancer [ 162 ]. There are still many ques-
tions regarding the role of the PIWI proteins in cancer  epigenetics  . As matters stand 
at present, [ 153 – 161 ], the piRNA levels and the expression of specifi c piRNAs have 
the potential to serve as cell markers for cancer diagnosis, and/or to be used as treat-
ment for altering the  DNA methylation   patterns to silence cancer related genes.   

    Conclusions 

 TEs have several opportunities to transpose themselves during  gametogenesis  , espe-
cially during periods when gene silencing and gene activation are taking place simul-
taneously (i.e. mitosis and meiosis of  germ cell   s  ). The degradation of TEs transcripts 
via the direct catalytic activity of piRISC, and the repression of TE expression via 
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piRISC-mediated  epigenetic   modifi cations, are two important functions that sexu-
ally reproducing organisms have evolved for defending TE invasions during game-
togenesis. These functions have been well conserved and have evolved in mammals 
for optimal responses. Optimization may have driven the evolution of the spatio-
temporal expression of  PIWI   proteins during male gametogenesis and the co-opera-
tion of multiple protein partners to facilitate piRISC activities in an orchestrated 
manner. This co-operation involves the receipt of messages ( transcription   of coding 
and non-coding mRNAs) during male gamete development and maturation, and the 
sorting and processing of these messages at specifi c cytoplasmic granules near the 
nucleus by the PIWI proteins and their associate partners. The generation of a large 
and highly diverse number of  piRNAs   that represent TE- RNA   degradation products 
or serve as guides to degrade TEs, ensure feedback responses for piRISC and TGS 
so that the integrity of the  genome   is maintained [ 99 ]. Although the biological sig-
nifi cance of piRNAs generated from non-coding intergenic DNA regions without 
repeats remains obscure at present, their number and diversity suggest that they may 
have functions beyond those of defending  transposon   mobilization. Based on studies 
in  Drosophila  and mice, such additional functions during gametogenesis include:

    1.    the degradation of mRNA (maternal) via recruitment of mRNA modifying 
enzymes [ 163 ];   

   2.    the stabilization of coding mRNA via  PIWI   binding [ 31 ,  59 ,  63 ,  65 ] and,   
   3.    the  piRNA  - PIWI  -recruitment of  transposable element   s   required for the assem-

bly of the telomere protein complex to prevent telomere fusion [ 70 ,  164 ].    

  The  piRNA  - PIWI   pathway may also have roles outside of the germ line as sug-
gested by the evidence of the co-expression of PIWI-members and  piRNAs   in 
somatic stem cells of various tissues (including brain) of  Drosophila , mouse and 
rhesus macaque [ 118 ] and in human brain [ 165 ]. Such roles are supported by the 
observe relationship between a specifi c piRNA and the repression of expression of 
the human melatonin receptor 1A gene [ 166 ], and the evidence for a piRNA regula-
tory role in the  transcriptional   regulation of plasticity-related genes involved in 
memory functions of the central nervous system of snails [ 167 ]. 

 Compared with other small  RNA   systems, the  piRNA  - PIWI   pathway is still not 
well understood, however. Many questions need to be answered with regard to the 
regulation/mechanisms of piRNA cluster  transcription   and primary piRNA biogen-
esis, the biological signifi cance of the diverse  piRNAs   and the relationships of PIWI 
proteins with the various partners in cytoplasmic granules. The mechanisms and 
components that piRISC uses for the  transcriptional  /translational regulation of TEs 
and of other genes required for  gametogenesis   are been revealed slowly, and there 
are still a lot of questions. 

 Studies on the  piRNA   sequence and piRNA cluster evolution are consistent with 
the fast rates of evolution of the  PIWI   proteins in agreement with their interdependent 
roles in  genome   defence against  transposons  . The abundance and redundancy of 
mature  piRNAs   generated (with high sequence diversity), may also be part of the 
evolutionary strategy of organisms for coping with the fast rates of the ever expand-
ing transposons. Whether different evolutionary pressures apply to piRNAs used for 
the regulation of  transcription  /translation of other genetic elements remain to be seen.     
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    Chapter 4   
 Long Non-coding RNA       

       Monika     Gullerova     

            Introduction 

 Rapid developments in sequencing technologies during past decade revealed that 
protein coding genes represent only 2 % of the human  genome   [ 1 ]. This came across 
as a surprise considering that genomes of the other organisms (from yeast to 
 Caenorhabditis elegans ) are quite dense. Is the rest of the human genome merely 
“junk” DNA? This question was partially answered by experimental approaches 
like high-throughput sequencing or whole genome high density tailing arrays. Now 
it is known that this “junk” DNA is transcribed throughout mammalian genomes 
and because it lacks protein coding capacity it is referred to as  long non-coding 
RNA   (lncRNA) [ 2 – 7 ]. 

 Non-coding transcripts have similar structure to messenger or coding  RNA   
(mRNA): they are transcribed by  RNA polymerase   II (Pol II), they possess a cap 
and a polyA tail and they can be even  spliced  . However their function remains enig-
matic [ 8 ]. Non-coding RNAs can be also divided into two groups based on their 
length: short and  long non-coding RNA  s (ncRNAs) or based on their primary func-
tion: structural and regulatory ncRNA (Fig.  4.1 ). Unlike mRNA and structural 
ncRNAs, most of lncRNAs are localized in nucleus [ 7 ].

   Prior to the sequencing era, some lncRNA were discovered using old-fashioned 
gene cloning methods. Initially they were thought to be coding RNAs, however, deeper 
analyses revealed a lack of open reading frames (ORF). Furthermore they were thought 
to be random in nature more so than stable elements in  genome  . This opinion changed 
when FANTOM consortium analyzed over 60,000 full length cDNAs and identifi ed 
over 11,000 lncRNAs in mouse [ 9 ]. Interestingly, a large portion of identifi ed lncRNAs 
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is transcribed in antisense orientation to protein-coding genes, thus are referred to as 
natural antisense transcripts (NATs). Another study extended these fi ndings by identi-
fying NATs in human genome [ 10 ]. Interestingly many  cancer   associated genes, par-
ticularly tumor suppressor genes have long antisense ncRNA. 

 More recently, it was shown that intergenic regions also express thousands of 
 long non-coding RNA  s, named large intervening non-coding RNAs (lincRNAs). 
These transcripts were discovered by analyses of active  chromatin   marks (H3K4 
acetylation and H3K36 trimethylation)  genome  - wide   and eliminating those regions 
corresponding to protein coding genes and  microRNAs  . This approach was fol-
lowed by extended analyses using  RNA  - seq   experiments [ 4 – 6 ,  11 – 13 ]. Up to date, 
there are more than 8000 lincRNAs identifi ed. More than half one them are con-
fi rmed lincRNAs; they can be localized in nucleus, cytoplasm or both and they are 
multi-exonic, capped and polyadenylated. 

 A major interest now lies in functional analysis of lncRNA. The fact that they are 
not evolutionary conserved, even between related species could indicate that most 
of them are non functional and may represent just  transcriptional   noise. To date, 
only 200 lncRNAs have been studied functionally with variable outcome, although 
many of them show at least functional evidence in vitro. Only a few lncRNAs have 
been studied in animal models, suggesting that they are not essential for viability. 
For example, mouse homologue of HOTAIR is poorly conserved in sequence and its 
deletion, along with the deletion of the HoxC cluster, has only a little effect in vivo, 
neither on the expression pattern or  transcription   effi ciency, nor on the amount of 
K27me3 coverage of different Hoxd target genes [ 14 ]. On the other hand it is pos-
sible that the lack of one particular lncRNA can substituted by another one. 

 Overall, it is certain that mammalian genomes, including humans, produce 
 thousands of lncRNAs. Due to the complexity and variability of lncRNAs it may 
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  Fig. 4.1    Summary of various types of non-coding RNAs       
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take several years to understand and clarify their functional identity. It is very likely 
that some lncRNA are involved in a range of biological processes. In this chapter, I 
will discuss a number of important topics regarding lncRNAs: their origin, function, 
and role in  disease  .  

    Origins and Genome Localization of lncRNA 

 Low degree of lncRNA conservation among species suggests their different evolu-
tionary design to protein coding genes. The limited phylogenetic range of lncRNA 
could be also explained by specifi c existence, but rapid declination within particular 
lineages [ 15 ]. A fi rst possible scenario for lncRNA emergence is metamorphosis of 
protein-coding gene into non-coding  RNA    seq  uence. A protein-coding gene may 
under go mutations such as a frame shift that disrupts its open reading frame while 
maintaining the expression of the RNA transcript. For example,  Xist  gene encodes 
an lncRNA that is crucial for X  chromosome   inactivation. Recently, it’s been shown 
that several exons and the promoter of  Xist  are derived from the protein-coding 
gene  Lnx3  that has acquired frame shift mutations during early mammalian evo-
lution [ 16 ,  17 ]. It is possible that such a metamorphosis involved two steps: ini-
tial degeneration of the original sequence, followed by subsequent emergence of 
residual exons into newly formed Xist gene. Possibly these events occurred concur-
rently (Fig.  4.2a ). A nother possibility includes chromosomal rearrangement, when 
two separate sequences are joined and together create an expressed non-coding 
sequence (Fig.  4.2b ). One such example comes from the observation that a dog 
testis-derived non-coding RNA has arisen only recently following a lineage spe-
cifi c change. Also duplications in a non-coding RNA sequence could cause repeats, 
increasing the length of the transcript. Rare examples of duplicated lncRNA include 
Neat2 (mouse nuclear enriched abundant transcript) and mouse testis-derived 
lncRNA that are separate paralogous to non-exonic sequences elsewhere in the 

Mutations in protein coding gene Chromosomal rearrangements

Duplications Insertions of transposable elements

+

Origins of lncRNAs
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  Fig. 4.2    Origins of lncRNAs.  Block arrows  represent genes.  Black  regions in  block arrows  are 
introns. ( a ) Mutations in protein coding gene. ( b ) Chromosomal rearrangements. ( c ) Duplications. 
( d ) Insertions of  transposable element   s         
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 genome   [ 18 ]. Local, tandem duplication might also lead to generation of repeats 
increasing the size of lncRNA (Fig.  4.2c ). Insertions of  transposable element   s   may 
also emerge as lncRNA. For example, BC1 and BC200 (brain cytoplasmic RNA1 
and 200- nucleotide) ncRNAs derive from two separate  transposons  , in the rodent 
and anthropoid lineages. Despite their lack of common origin, BC1 and BC200 are 
involved in similar roles in translational regulation. Furthermore, a transposable 
element containing a  transcriptional   start site can be inserted into the genome to 
create a functional, but noncoding RNA sequence [ 19 ] (Fig.  4.2d ).

   In respect of protein-coding genes, lncRNA can overlap with a gene as well as 
being associated with the gene’s promoter region. They can be transcribed from 
intragenic sequence, exonic or intron, or from intergenic region (Fig.  4.3 ). In gen-
eral, lncRNA are expressed at low levels and their expression varies with location, 
time, development and physiological stimuli.

      Natural Antisense Transcripts (NATs) 

 Strand specifi c sequencing methods, like  RNA  - seq  , reveal complex overlapping 
 transcription   with many lncRNA being transcribed from complementary DNA 
strands of protein coding genes. These are referred to as antisense transcripts (AS). 
AS can arise from novel transcription start sites as well as from bi-directional  pro-
moters  , or through  transcriptional   read-through. In yeast, AS do not occur randomly, 
but have been linked to sexual differentiation or stress response genes [ 20 – 22 ] as 
well as genes with higher variability in expression. Furthermore, certain AS tran-
script pairs are conserved across several yeast species. 

 Recently  genome  - wide   transcriptome studies reveal that natural AS transcripts 
(NATs) frequently occur across mammalian genomes [ 23 ,  24 ]. The sizes and fea-
tures of NATs can be variable. They can be classifi ed based on their  transcriptional   
start site,  splicing  , capping and polyadenylation. With respect to transcriptional start 
sites, NATs can be divided into three types: (1) overlapping, (2) intronic and (3) 
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associated
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Genomic localization of lncRNAs

  Fig. 4.3    Genomic localizations of lncRNAs. Schematic diagram illustrating organization of 
lncRNAs associated with protein-coding genes.  Arrows  pointing towards right represent sense 
 transcription  ,     arrows  pointing towards left correspond to antisense transcription       
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intergenic [ 25 ,  26 ]. Sequence of overlapping NATs partly overlaps with sense 
mRNA sequence with preference for the 3′-untranslated region (3′ UTR). Due to 
sequence complementarity, these regions can mutually interact by complete or par-
tial hybridization. Thus NATs may function to regulate the expression of the over-
lapping sense mRNA [ 27 – 29 ].  

    Long Intergenic ncRNAs (lincRNAs) 

 Mammalian genomes encode >1000 long intergenic noncoding (linc)RNAs that are 
clearly conserved across mammals and are potentially functional. These lincRNAs 
have been implicated in diverse biological processes, including cell-cycle regula-
tion, immune surveillance, and embryonic stem cell pluripotency. However, the 
mechanism by which these lincRNAs function remains elusive. To date, there are 
approximately 3300 of human lincRNAs identifi ed by analyzing  chromatin  -state 
maps in various human cell types. It is known that one of the well-characterized 
lincRNA HOTAIR binds the polycomb repressive complex (PRC2). Remarkably, 
approximately 20 % of lincRNAs expressed in various cell types are bound by 
PRC2. Other lincRNA interact with different chromatin-modifying complexes. 
Furthermore depletion of certain lincRNAs associated with PRC2 leads to changes 
in  gene express   ion  , causing the up-regulation of genes that are normally silenced by 
PRC2. Therefore it is suggested that some lincRNAs guide chromatin-modifying 
complexes to specifi c genomic loci to regulate gene expression [ 2 ,  5 ].  

     Promoter   Associated ncRNAs (CUTs, PROMPTs) 

 Several  genome  - wide   studies have revealed the unanticipated property of  RNA   
 polymerase   II (Pol II) to initiate  transcription   in promoter regions in both directions. 
Such a bi-directional transcription results in so called cryptic unstable transcripts 
(CUTs) in budding yeast [ 30 – 32 ]. CUTs are Pol II-dependent transcripts produced 
from  promoters   in opposite direction to the coding gene, which are degraded by the 
nuclear exosome shortly after their synthesis. Another type of transcript derived 
from promoter regions are stable unannotated transcripts (SUTs), which are not 
processed by exosome [ 32 ]. Bidirectional transcription is not only limited to yeast 
species, but extends to higher eukaryotes too. Studies using exosome depletion in 
human fi broblasts have revealed lncRNAs, which correspond to upstream regions of 
protein coding genes. Such promoter-upstream transcripts are referred to as 
PROMPTs [ 33 ]. Furthermore,  RNA-seq   analysis from mouse embryonic stem cells 
has shown many promoter associated transcripts, which are transcribed in non- 
random, divergent orientation [ 34 ]. Another sequencing approach employed global 
run on sequencing (GRO-seq) to indentify nascent RNAs in human fi broblasts. This 
study revealed that almost 80 % of the active promoters display bidirectional  tran-
scriptional   activity [ 35 ]. It is now known that bidirectional transcription is a 
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widespread phenomenon, which is conserved across species. There are suggestions 
that this bidirectional transcription may be a type of  gene express   ion    regulation   that 
promotes an open  chromatin   structure at promoters by recruiting positive or nega-
tive transcriptional regulators.  

    Enhancer Associated ncRNAs (eRNAs) 

 Enhancers act to regulate expression of protein-coding genes from a distance in an 
orientation independent manner. A recent study, which analysed  genome    wide   loca-
tion of the enhancer binding protein CBP, showed over 12,000 positive loci in 
mouse neurons. Further  transcriptional   analysis also confi rmed that Pol II is present 
at 25 % of those loci. Enhancer associated transcripts were identifi ed as lncRNAs 
(termed eRNAs) produced in both directions and their expression does correlate 
with mRNA synthesis from nearby gene [ 36 ]. There is a possibility that eRNAs may 
be directly involved in enhancer function. eRNAs may facilitate recruitment of 
enhancer-associated proteins or enhance  chromatin   looping to provide contact 
between the enhancer and the promoter of a particular regulated gene [ 37 ].  

    Repeat Associated ncRNAs 

 Retrotransposons are genetic elements that can amplify themselves within a  genome  . 
They are ubiquitous components of the DNA of many eukaryotic organisms, and 
are particularly abundant in plants, where they are often a principal component of 
nuclear DNA. In mammals, almost half the genome (45–48 %) comprises ret-
rotransposons, which possess extensive  transcriptional   activity. FANTOM 4 project 
has revealed that in human and mouse genomes, retrotransposons are expressed in 
a tissue specifi c manner. They are located close to promoter regions of protein- 
coding genes, suggesting that they may play a role in controlling alternative  promot-
ers   or in the post-transcriptional regulation of  gene express   ion   [ 38 ]. 

 Pseudogenes are another type of repetitive elements that can be transcribed into 
lncRNA. These can regulate protein-coding genes through competition for regula-
tory miRNA binding [ 39 ,  40 ].   

    Biogenesis, Processing and Structure of lncRNAs 

 Biogenesis of lncRNA is very similar to mRNA. LncRNAs are produced from 
many regions across the  genome   by transcribing Pol II. Only some lncRNAs have 
been shown to be products of Pol III. The majority of lncRNAs are 5′ capped, poly-
adenylated and  spliced  . LncRNA can be divided into two categories based on their 
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orientation: they can be encoded on positive or negative DNA strand (sense or anti-
sense orientation). 

 Many lncRNA transcripts are not end products, but face to further processing 
into a fi nal functional form. The presence of sense lncRNA, which contain exons 
from mRNA sequences and intronic lncRNA that are derived entirely from intronic 
sequence, has lead to the hypothesis that many lncRNA transcripts are unprocessed 
pre-mRNAs prior to  splicing   and that intronic lncRNAs are by-products of this pro-
cessing step. However, this is not the case for all sense and intronic lncRNAs since 
the expression patterns of some of these transcripts are not the same as their associ-
ated protein-coding gene [ 41 ]. Another hypothesis suggests that some lncRNA 
sequences are precursors to short miRNAs. An example of this is the lncRNA  H19  
which encodes the miRNA  miR - 675  [ 4 ]. Based on this evidence, post- transcriptional      
processing may occur with many lncRNA transcripts, but until more of them are 
functionally defi ned this question remains open. 

 Secondary structure formation is an important consideration in lncRNAs because 
they are able to interact with proteins or genomic DNA via these structures. Recently, 
models used for prediction of secondary structure have redefi ned the question of 
lncRNA evolution by looking at sequence conservation or compensatory mutations 
that would maintain secondary structure motifs [ 42 ]. However, approaches that pre-
dict  RNA   secondary structures with high precision have yet to be developed. 
Therefore, the number of structured ncRNAs remains to be determined, but is 
expected in intergenic, intronic and UTR regions and lacking in exon sequence.  

    Mechanism of Action 

 Despite the fact that only a fraction of all identifi ed lncRNAs has been examined 
experimentally, an emerging paradigm suggests that they are implicated in many 
biological contexts. To date, lncRNAs have been implicated in regulation of  gene 
express   ion  , guidance of  chromatin  -modifying complexes, X  chromosome   inactiva-
tion, genomic imprinting, nuclear compartmentalization, nuclear-cytoplasmic traf-
fi cking,  RNA    splicing   and translational control [ 43 – 46 ]. 

    Regulation of Chromatin Structure 

 LncRNAs have been implicated in  epigenetic   gene regulation. Recent studies pro-
pose two basic models for lncRNA action at the  chromatin   level:

    1.     epigenetic   silencing in  cis , where lncRNA transcripts coat gene clusters and 
silence their expression by making them inaccessible to  transcription   machinery. 
These lncRNAs can also recruit  chromatin   remodeling proteins to  epigenetically   
mark the region for heritable gene silencing;   

   2.     epigenetic   silencing in  trans : lncRNAs can interact with  chromatin   modifying 
proteins to  epigenetically   silence genes at another locus (Fig.  4.4 ).
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          Epigenetic Regulation in  cis  

 One of the well studies lncRNAs to date is Xist, which is crucial for X  chromosome   
inactivation in female somatic cells. It has been discovered in 1991 and despite of 
enormous effort, the exact mechanism of Xist-mediated X chromosome inactivation 
is still not fully understood. It is accepted that Xist is associated as an  RNA   com-
partment with the inactivated X chromosome [ 47 ]. The coating the  chromatin   that 
is silenced provides the fi rst model for how lncRNA might function in stable  epi-
genetic   gene silencing in  cis . Xist establishes a specialized, Pol II free, region, into 
which most of the X chromosome becomes localized during inactivation [ 48 ]. It 
should be noted that Xist coating of chromatin is stable even during metaphase, sug-
gesting a form of epigenetic memory for the inactive X chromosome to remain 
silent over many cell divisions [ 49 ]. 

 RepA, a small repeat region within Xist, is transcribed from both X  chromo-
somes   along with Tsix lncRNA (antisense partner of Xist) [ 50 ]. Tsix prevents RepA 
binding to either X chromosomes until post-cellular differentiation, when RepA in 
association with the  chromatin  -modifying complex PRC2 (polycomb repressive 
complex 2) binds to one of the two X chromosomes at the so called inactivation 
center [ 50 ]. Full-length Xist, produced from the X  chromosome  , destined to be 
inactivated, also binds to PRC2 and leads to the spreading of X inactivation from the 
center to the entire X chromosome in  cis . Active chromatin status of the other X 
chromosome is protected by Tsix, which blocks  transcription   of Xist. It is not well 
understood, what prevents Xist from escaping the inactive X chromosome and act-
ing on the active X chromosome in  trans  or how 20 % of X chromosome genes 
escape inactivation in human females [ 51 ,  52 ]. Once inactivation is established, X 
chromosome is condensed into facultative  heterochromatin   and forms a round body 
at the nuclear periphery [ 53 ]. The inactive chromosome possesses repressive chro-
matin marks and  DNA methylation   at  CpG island   s   [ 52 ,  54 ,  55 ]. 
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  Fig. 4.4    Epigenetic regulation of  gene express   ion   by lncRNAs.  Block arrow  represents protein- 
coding gene,  red arrow  depicts lncRNA       
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 Genomic imprinting is another  epigenetic   phenomenon that utilizes lncRNA 
[ 56 ]. Imprinted genes play an important role in mammalian development and there-
fore their expression has to be tightly regulated [ 57 ]. Interestingly, many imprinted 
gene loci express lncRNAs that play a crucial role in regulating the expression of 
neighboring imprinted coding genes in  cis  [ 58 ]. One such lncRNA involved in 
genomic imprinting in  cis  is  Air , which is mono-allelically expressed from the 
paternal allele.  Air  is known to bind to G9a histone methyltransferase and associate 
with  chromatin   to participate on silencing of three imprinted genes: Slc22a3, 
Slc22a2 and Igf2r. Loss of  Air  leads to bi-allelic expression of Slc22a3 and loss of 
G9a recruitment to imprinted genes. It has been suggested that Air acts to guide G9a 
to chromatin at the Slc22a3 promoter [ 59 ].  

    Epigenetic Regulation in  trans  

 In contrast, to previous examples, a long intervening lncRNA, HOTAIR, regulates 
human genes expression in  trans  on a  genome  - wide   scale by associating with  chro-
matin   modifying complexes such as polycomb repressive complex (PRC2), LSD1 
and CoREST/REST [ 5 ,  60 – 62 ]. It has been shown that 5′ domain of HOTAIR binds 
PCR2, whereas a 3′ domain of HOTAIR binds LSD1/CoREST complexes. This 
way HOTAIR guides PCR2 and LSD1/CoREST to their endogenous targets. 
Consequently, PRC2 methylates histone H3 lysine 27, whilst LSD1/CoREST 
demethylates histone H3 at lysine 4. This collectively leads to the loss of active 
histone marks (H3K4 dimethylation) and the gain of a repressive histone marks 
(H3K27 trimethylation) at the target loci [ 62 ].   

    Gene Regulation Through lncRNA Transcription 

 Transcription of lncRNA itself can act as both, a positive (activation) or negative 
(repression) regulator of  gene express   ion   (Fig.  4.5 ), affecting expression of neigh-
boring genes.

   Activation: the act of lncRNA  transcription   can help to open the  chromatin   struc-
ture of a genetic locus to permit access of transcription machinery to neighboring 
protein-coding genes. In  fi ssion yeast , transcription of lncRNAs  UAS1  and  UAS2  
have been shown to activate the expression of the  fbp1  gene by this mechanism. Pol 
II transcribes several species of ncRNAs at the  fbp1  locus during  transcriptional   
activation. The chromatin is progressively converted to an open confi guration, 
which is coupled to translocation of Pol II through the upstream region of the  fbp1  
transcriptional start site. It has been shown that transcription through the promoter 
region is required to make DNA sequence accessible to transcriptional activators 
and to Pol II [ 63 ]. Similar example of gene transcription regulation have been 
observed within β-globin locus [ 64 ]. 
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 Repression:  transcription   of lncRNAs near protein-coding loci can also act as 
a negative regulator. The presence of the transcription machinery on the lncRNA 
gene locus can physically prevent transcription machinery from binding to the 
protein- coding gene. In  budding yeast , transcription of the lncRNA  SRG1  inhibits 
transcription of the overlapping  SER3  gene. This repression occurs by a transcrip-
tion-interference mechanism in which  SRG1  transcription across the  SER3  promoter 
interferes with the binding of activators [ 65 ]. Such a  transcriptional   interference 
process may represent a widespread function for lncRNAs. There seems to be a 
strong conservation of their promoter regions in contrast to weaker conservation 
of their transcripts, which is consistent with the act of transcription itself having a 
greater biological impact than the transcript sequence [ 7 ,  66 ].  

    Transcriptional Regulation 

 Protein coding  gene express   ion   is tightly regulated process, which involves direct 
interactions of proteins with other proteins or DNA. Another aspect of the regula-
tion of gene expression comes from an additional layer of complexity consisting of 
dynamic interactions between  RNA  , DNA or proteins. Transcription of lncRNAs 
can regulate the expression of neighboring genes ( in cis  regulation) or can also tar-
get distant  transcriptional   activators or repressors ( in trans  regulation) (Fig.  4.6 ).

      Transcriptional Regulation in  cis  

 If lncRNA sequence overlaps through complementarity with the binding site of a 
 transcription   factor, the lncRNA transcript can hybridize to this site and so prevent 
a transcription factor from binding. One such an example is a lncRNA that is tran-
scribed from a minor promoter upstream of the human dihudrofolate reductase 
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  Fig. 4.5    Gene expression regulation through lncRNA  transcription  .  Block arrows  are protein- 
coding genes,  red arrows  are lncRNAs.  Block crosses  depict negative transcription factor       
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 DHFR  gene. Transcription of this full length lncRNA is thought to repress transcrip-
tion from the major  DHFR  promoter [ 67 ] in an  RNA   dependent manner. The 
lncRNA binds to the major  DHFR  promoter and the general transcription factor IIB 
and leads to dissociation of the pre-initiation complex. It is proposed that the single- 
stranded lncRNA hybridizes to double-stranded DNA in the promoter region to 
form a triplex structure. Such a structure is predicted to be most concentrated around 
human  promoters   [ 68 ], but it is unclear whether this is a common mechanism for 
lncRNA  transcriptional   repression. 

 Another type of  transcriptional   gene regulation by lncRNA is the recruitment of 
 transcription   factors. When a lncRNA sequence is located near to transcription fac-
tor binding site, the lncRNA transcript may enhance the binding of the transcription 
factor to promoter region. An example of this type of regulation is the lncRNA 
called  Evf2 , which regulates two homeodomain genes,  Dlx5  and  Dlx6 , involved in 
neuronal differentiation, migration and limb pattering [ 69 ]. Single-stranded  Evf2  
forms a complex with  Dlx2 , another homeodomain protein. This  Evf2 - Dlx2  com-
plex activates  Dlx5 / 6  enhancer, by a yet unknown mechanism.  

    Transcriptional Regulation in  trans  

 Another way that lncRNA may regulate  transcription   is through their affect on tran-
scription factors traffi cking in the cell. In particular, lncRNA can either enhance 
transcription factor access to DNA binding sites or prevent it, as in the case of the 
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lncRNA  NRON . This lncRNA prevents the transcription factor  NFAT  (nuclear factor 
of activated T cells) from entering the nucleus by directly interacting with importin- 
beta 1, one of the nuclear-cytoplasm transport factors [ 70 ]. The  NRON  gene con-
tains three exons and can be alternatively  spliced  , producing variant transcripts 
ranging in size from 0.8 to 3.7 kb. Depletion of  NRON  leads to increased levels and 
activity of  NFAT  in nucleus. Interestingly  NRON ’ s  predicted secondary structure is 
rich in stem loops, which is conserved between diverse vertebrates and requires 
further study. 

 LncRNA can bind to accessory proteins to activate them allosterically, or induce 
their oligomerization and activation. One such lncRNA is  HSR1  (heat shock  RNA  - 
1 ), which together with an eukaryotic translation-elongation factor 1A, stimulates 
trimerization of heat-shock factor 1 ( HSF1 ) [ 71 ]. Trimeric  HSF1  activates heat- 
shock proteins by binding to their  promoters  . Formation of  HSR1 - HSF1  is induced 
by heat shock and knockdown of  HSR1  causes cells to become thermo-sensitive. 
This suggests that HSR1 may be a part of cellular thermo-sensing machinery, 
resembling a similar mechanism in bacteria.   

    Post- transcriptional   Processing 

 In addition to all of the above  transcriptional   mechanisms, many lncRNAs are also 
involved in post-transcriptional processing of protein-coding mRNAs, including 
regulation of  splicing  , editing, transport, translation, and degradation of their cor-
responding mRNA transcripts. 

 Natural antisense transcripts (NATs) are typical example of lncRNAs that act to 
regulate mRNA dynamics. Unlike NATs associated with imprinting genes such as 
Tsix, Air or HOTAIR, which induce  epigenetic   changes in  chromatin   and lead to 
gene silencing, other NATs can form  RNA   duplexes to mask key  cis  regulatory ele-
ments. This can lead to an alternative  splicing   pattern of overlapping gene tran-
scripts. For example, the Zeb2/Sip1 NAT is complementary to the 5′ splice site of 
an intron of the zinc fi nger Hox mRNA Zeb2, which is involved in epithelial- 
mesenchymal transition (EMT). Zeb2 NAT is expressed upon EMT and masks the 
splice site, so blocking splicesome function. This causes the translation machinery 
to recognize and bind to an internal ribosome entry site (IRES) in the retained intron 
resulting in more effi cient Zeb2 translation (Fig.  4.7 ) [ 72 ].

   More recently, a NAT specifi c for tyrosine kinase containing immunoglobulin 
and epidermal growth factor homology domain-1 (Tie-1) was identifi ed in zebraf-
ish, mouse and human. The tie-1 NAT specifi cally binds tie-1 mRNA in vivo, form-
ing an  RNA  –RNA duplex. This leads to down-regulation of the Tie-1 protein with 
consequent specifi c defects in cellular endothelial contact junctions [ 73 ]. 

 In contrast, the expression of beta-secretase-1 (BACE-1) NAT increases stability 
of BACE-1 mRNA and leads to high production of Abeta (amyloid-beta) 1-42 
through a post- transcriptional   feed-forward mechanism [ 74 ,  75 ]. In this way BACE-1 
NAT acts a positive regulator of Abeta 1-42 through stabilization of BACE-1 mRNA. 
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 Alternative  splicing   is a well-known mechanism of pre-mRNA processing in 
higher eukaryotes. The serine/arginine (SR) splicing factors regulate cell type spe-
cifi c alternative splicing in a concentration and phosphorylation-dependent man-
ner. How levels of active SR proteins are regulated is not well understood. Recent 
studies on the long nuclear-retained regulatory  RNA   (nrRNA) called MALAT 
(metastasis- associated lung carcinoma transcript 1) implicated its role in alterna-
tive splicing [ 76 ,  77 ]. MALAT1 (also known as NEAT2) a 7 kb RNA is localized in 
nuclear speckles, where it interacts with SR splicing factor, SRSF1 and affects the 
distribution of other splicing factors. Depletion of MALAT1 changes the alternative 
splicing profi le of multiple endogenous pre-mRNAs. More importantly, MALAT1 
regulates the phosphorylation status of SR proteins, thereby regulating pre-mRNA 
processing via modulation of active SR proteins levels. 

 Furthermore, there is growing evidence showing that transcripts produced from 
pseudogenes play an important role in regulating mRNA stability of the gene para-
logue. For example, transcripts from the tumor suppressor pseudogene of  PTEN  
( PTENP1 ) and oncogenic  KRAS  ( KRASP ) regulate levels of their gene counterparts, 
 PTEN  and  KRAS  [ 39 ,  78 ]. It is biologically relevant to keep the right dosage of 
 PTEN  in the cell. A number of miRNA and pseudogene transcripts are also directly 
involved in  PTEN  dosage regulation at a post- transcriptional   level.  PTEN  and 
 PTENP1  3′ UTRs are highly conserved.  PTENP1   RNA  , which is also referred to as 
competing endogenous RNA (ceRNA), binds to common miRNA preventing their 
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binding to miRNA response element in 3′ UTR of  PTEN . This competitive binding 
of  PTENP1  to miRNA results in increased levels of  PTEN  RNA and consequently 
 PTEN  protein (Fig.  4.8 ) [ 40 ,  79 ,  80 ].

   Additionally a similar mechanism has been shown for  KRAS  mRNA, which is 
increased by expression of ceRNAs of  KRASP . Interestingly, some protein-coding 
genes, such as  ZEB2 ,  VAPA  and  CNOT6L  can also act as ceRNAs. 

 The initial studies describing links between imprinting and X  chromosome   inac-
tivation were based on discovery of the  H19  and  Xist  RNAs. The  H19  gene encodes 
a 2.3 kb lncRNA that is expressed exclusively from the maternal allele and is 
 spliced  , polyadenylated and exported into cytoplasm where it accumulates [ 81 ]. 
 H19  cause imprinting of its counterpart protein-coding gene, the insulin-like growth 
factor 2,  IGF2 . Recent studies revealed that  H19  is host to an exonic miRNA,  miR - 
675    , which is also imprinted and maternally expressed.  H19  and  miR675  are con-
served across mammalian species, suggesting that both are selected [ 82 ]. It is 
proposed that  H19  might act through the nonsense mediated  RNA   decay pathway. 
Indeed, a key component of this pathway has been shown to regulate the levels of 
 H19  RNA during embryonic stem cell differentiation [ 83 ].   

    lncRNA and Disease 

 Recent and rapid progress in lncRNA research reveals a growing body of evidence 
that lncRNA play an important role in variety of normal physiological processes. 
Consequently their mis-regulated expression contributes to numerous  diseases  , 
including  cancer  . 
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    lncRNA and Cancer 

 New technological approaches, such as  genome  - wide   studies, RIP- RNA    seq  uencing, 
 gene express   ion   screens, region-targeted assays and gene knock-down/knock- out 
experiments all contribute to the determination of lncRNA function in pathogenesis. 
Accumulating data show that lncRNAs are indeed involved in carcinogenesis, inva-
sion and metastasis. Based on their function, lncRNAs can be divided into two 
major categories: oncogenic and tumor suppressor classes. 

    Oncogenic lncRNAs 

 Some lncRNAs, referred to as oncogenic transcripts, can regulate cellular pathways 
that lead to  oncogenesis  . Recent studies identify more and more of onco-lncRNAs 
such as  KRASP ,  HULC ,  HOTAIR ,  MALAT1 / NEAT1 ,  p15AS ,  ANRIL ,  H19 ,  SRA1 , 
 p21NAT  or  RICTOR . Some lncRNAs can act as oncogenic as well as tumor suppres-
sor transcripts, depending on cellular context. 

 The lncRNA, referred to as  cancer   metastasis-associated lung adenocarcinoma 
transcript,  MALAT1 , was identifi ed in non-small-cell lung cancer [ 84 ].  MALAT1  is 
abundant and plays a key role in cell proliferation, migration and invasion. It local-
izes predominantly in nuclear speckles in a  transcription   dependent manner to regu-
late mRNAs post- transcriptional   processing such as alternative  splicing   [ 76 ,  85 ]. 
 MALAT1  is also up-regulated in other types of cancer, including breast, prostate, 
liver and colon [ 84 ,  86 – 90 ]. Furthermore, higher expression of  MALAT1  is  associated 
with metastatic tumors where it is correlated with poor prognosis. Recent studies 
demonstrate that  MALAT1  is involved in cell mobility at it targets genes, required 
for cell migration, in order to regulate their  gene express   ion   at both a transcriptional 
and post-transcriptional level. However, the underlying mechanism of  MALAT1  in 
tumor metastatic process remains unclear. 

 A  genome  - wide   study unveiled associations of multiple genetic variants in a large 
“gene-desert” region of  chromosome   8q24 with susceptibility to prostate  cancer   
(PC). Re-sequencing approaches helped to identify a 13 kb long intron-less lncRNA, 
termed  PRNCR1  (prostate cancer non-coding RNA1) [ 91 ]. Depletion of  PRNCR1  
attenuated the viability of PC cells and the  trans -activation activity of the androgen 
receptor. Therefore, it has been proposed that  PRNCR1  is involved in prostate carci-
nogenesis through androgen receptor activity. These fi ndings provide a novel insight 
into understanding the pathogenesis of genetic factors for prostate cancer. 

 The lincRNA  HOTAIR  is expressed in many posterior and distal sites during 
evolution and is highly conserved in vertebrates [ 60 ].  HOTAIR  is over-expressed in 
metastatic breast  cancer   and correlates with poor prognosis [ 61 ]. De-regulation of 
 HOTAIR  represses the expression of a subset of cell-to-cell interaction promoting 
genes, including  JAM2 ,  PCDH10 ,  PCDHB5  and  EPHA1 . Furthermore, the interac-
tion of  HOTAIR  and  PRC2 , which leads to increased H3K27 trimethylation and 
silencing of metastasis suppressor genes, is responsible for  HOTAIR  mediated 
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tumor cell invasion and subsequent metastasis. Additionally, increased levels of 
 HOTAIR  were detected in hepatocellular carcinoma (HCC), suggesting that  HOTAIR  
could be a candidate  biomarker   for tumor recurrence prediction. Depletion of 
 HOTAIR  in liver cancer cells results in reduced cell viability and sensitized apopto-
sis induced by  TNF - alpha  [ 92 ]. These studies indicate that lincRNAs have active 
roles in modulating the cancer epigenome and could be an important predictor for 
cancer outcome as well as novel targets for cancer therapy. 

 Loss of imprinting (LOI) is involved in a number of human hereditary  diseases   and 
 cancers   [ 93 ]. Disruption in the expression of imprinted genes such as  H19 ,  p57 ,  IGF2  
and  KvLQT1 , results in almost 80 % of Beckwith–Wiedemann  syndrome   (BWS). 
About 5–10 % of BWS patients are predisposed to a number of childhood tumors. 
 Kcnq1ot1  is an imprinted antisense lncRNA, which is about 60 kb long and possesses 
a silencing domain at its 5′ end [ 94 ].  Kcnq1ot1  transcript is associated with multiple 
chromosomal rearrangements in BWS. Its abnormal expression was observed in 
50 % of BWS patients and 53 % of colorectal cancers [ 95 – 97 ]. Loss of  Kcnq1ot1  
imprinting is accompanied by loss of methylation of the control element, a CpG-
island called  KvDMR1. KvDMR1  contains the promoter for the paternally expressed 
 Kcnq1ot1 . Disruption of this promoter abolishes  Kcnq1ot1  transcripts leading to acti-
vation of neighboring genes such as tumor repressor  CDKN1C  [ 98 ]. These data sug-
gest that abnormal expression of  Kcnq1ot1  contributes to carcinogenesis. 

 Recent studies report consistent differences in the expression of sense and anti-
sense transcripts between normal and neoplastic cells. A group of genes that gener-
ate NATs in normal, but not  cancer   cells are involved in essential metabolic 
processes. Altered ratio of sense and antisense  transcription   contributes to tumori-
genesis and cancer progression [ 99 – 103 ]. For example, leukemic cells express 
higher amounts of antisense p15 NATs and smaller amounts of its partner p15 sense 
mRNA than normal lymphocytes. Many NAT lncRNAs may have relevance to the 
cancer genes, including p21, p53, E-cadherin or myc [ 104 ]. Thus, it is proposed that 
tumorigenic NATs are a trigger for  heterochromatin   formation and  DNA methyla-
tion   in tumor suppressor silencing.  

    Tumor Suppressor lncRNAs 

 Some lncRNAs are found to function as tumor suppressors, resembling some 
protein- coding genes. This group of lncRNAs includes  MEG3 ,  GAS5 ,  lincRNA - p21 , 
 PTENP1 ,   TERRA   ,  CCND1  and  TUG1 . 

  MEG3  is a lncRNA transcript of a maternally imprinted gene, which is expressed 
in normal human cells. Loss of  MEG3  was found in meningiomas and adenomas of 
gonadotroph origins [ 105 ,  106 ].  MEG3  is a positive regulator of the tumor suppres-
sor gene, p53. Ectopic expression of  MEG3  up-regulates p53 protein levels and 
dramatically induces p53  transcription  . Furthermore,  MEG3  selectively enhances 
p53 binding to its target promoter, such as  GDF15 . Expression of  MEG3  is able to 
inhibit cell proliferation in the absence of p53. All these data suggest that lncRNA 
 MEG3  functions as a tumor suppressor in both a p53-dependent and p53- independent 
manner [ 107 ,  108 ]. 
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  LincRNA - p21  is another example of a tumor suppressor lncRNA, whose expres-
sion is directly induced by the p53-signaling pathway.  LincRNA - p21  is required for 
global repression of genes that interfere with p53 function to regulate cellular apop-
tosis. This occurs through physical interaction with  RNA  -binding protein hnRNP-K 
leading to its localization on gene  promoters  , which are thought to be repressed in a 
p53-dependent manner [ 109 ]. 

  GAS5  (growth arrest-specifi c 5) is tumor suppressor lncRNA, which regulates 
normal growth in lymphocytes. Depletion of  GAS5  inhibits apoptosis and maintains 
rapid cell cycling, which indicates that its expression is necessary for normal growth 
arrest.  GAS5  regulates the expression of a critical group of genes with tumor sup-
pressive functions. Additionally, several snoRNAs are transcribed solely from  GAS5  
introns. Under starvation,  GAS5  directly interacts with the DNA binding domain of 
glucocorticoid receptor (GR), leading to inhibition of GR binding to its target gene 
 promoters  . Such repression is not limited only to GR, but applies also to other mem-
bers of the nuclear receptor family. Interestingly,  GAS5  is signifi cantly down- 
regulated in breast  cancer   cells [ 110 – 112 ]. 

  Cis -acting lncRNA,  CCND , originates from the promoter of the  CCND1  gene 
encoding cyclin D1 protein. Upon induction,  CCND  lncRNA transcript is tethered 
to the  CCND1  promoter and so inhibits  CCND1  expression. Cyclin D1 is frequently 
over-expressed in human tumors. Therefore, it is proposed that  CCND1  transcript 
functions as a tumor suppressor to repress tumorigenesis [ 113 ]. 

 Expression of the telomere-related lncRNA,   TERRA   , is highly dependent on 
development, nuclear reprogramming, telomere length, cellular stresses and  chro-
matin   structure. Many abnormal telomere phenotypes in aging and  cancer   cells are 
linked to mis-regulated expression of  TERRA . Low levels of  TERRA  have been 
observed in the tumor-derived and in vitro immortalized cell lines. It has been pro-
posed that  TERRA -regulated telomere length plays an important role in tumor 
development [ 114 – 117 ].   

    lncRNA and Other Diseases 

 LncRNAs in the context of their cellular function can also be involved in  diseases   
other than  cancer  . 

 Patients with  SCA8  have a trinucleotide expansion in an lncRNA called ataxin 8, 
which is antisense to the  KLHL1  gene. Involvement of this type of mutation in  disease   
progression was confi rmed in mouse model transgenic mice with this repeat expan-
sion displaying a progressive neurological phenotype similar to human  SCA8  [ 118 ]. 

 An inherited form of alpha-thalassaemia is caused by the translocation of an 
antisense lncRNA to a neighboring region of the alpha-globin gene ( HBA2 ). 
Induction of this lncRNA results in  epigenetic   silencing of  HBA2  leading to 
anemia [ 119 ]. 

 The expression of the antisense transcript to  BACE1  gene, as a response to cell 
stress, leads to progression of the well-studied Alzheimer’s  disease   [ 74 ,  120 ]. 
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 Also, psoriasis-associated  RNA   induced by stress, called  PRINS , is up-regulated 
in skin cells of patients with psoriasis. It acts through down-regulation of  G1P3 , 
gene encoding a protein with anti-apoptotic effect in keratinocytes leading to pso-
riasis progression [ 121 ]. 

 A study using a single-nucleotide polymorphism marker identifi ed a lncRNA 
called  MIAT  (myocardial infarction-associated transcript) on  chromosome   22 in 
patients with myocardial infarction [ 122 ]. Furthermore,  genome  - wide   analysis 
identifi ed a region encompassing a lncRNA,  ANRIL , which is linked to coronary 
artery  disease   [ 123 ,  124 ]. 

 Overall, identifi ed lncRNAs play a clear role in pathology of various  diseases  . It 
remains to be determined what is their specifi c function and how they are associated 
with human pathology.  

    lncRNA as Biomarkers 

 To date, although our understanding on how lncRNAs cause  disease   is far from 
complete, certain features of lncRNAs make them ideal candidates for therapeutic 
intervention. For example, only a minority of lncRNAs are unstable. LncRNA half-
lives vary over a wide range, comparable to that of mRNAs. Combining half- lives 
with comprehensive lncRNA annotations hundreds of unstable (half-life < 2 h) 
intergenic,  cis -antisense, and intronic lncRNAs, as well as lncRNAs showing 
extreme stability (half-life > 16 h) were identifi ed. Intergenic and  cis -antisense 
RNAs are more stable than those derived from introns [ 125 ]. 

 LncRNA expression is elevated in several types of  cancers  , including human 
prostate  cancer  , renal cell carcinomas, breast and ovarian cancer, as well as human 
lung cancer, suggesting that lncRNAs may become a promising  biomarker   in  dis-
ease   diagnostics. For example, the prostate specifi c lncRNA,  DD3 , shows higher 
specifi city than serum prostate-specifi c antigen (PSA), suggesting that is could be 
developed into highly specifi c biomarker [ 126 ]. HCC-associated lncRNA,  HULC , 
is also upregulated in the blood of hepatocarcinomas, implying its potential use in 
diagnosis of this type of cancer [ 127 ]. Expression of  HOX  specifi c antisense  RNA  , 
 HOTAIR , is increased in breast tumor cells, suggesting that it may become a power-
ful predictor of patient outcome such as metastasis and death.  SNORD -host RNA, 
 Zfas1  is an antisense transcript of the protein-coding gene  Znfx1. Zfas1  is highly 
expressed in mammary glands and it’s obviously down-regulated in breast cancer 
cells, suggesting its potential for diagnosis of breast cancer [ 128 ]. 

 LncRNAs-based  biomarkers   could also be developed for  diseases   other than  can-
cer  . For example, noncoding transcript for beta-secretase-1 ( BACE1 ), which regu-
lates  BACE1  mRNA and protein production, is upregulated in Alzheimer’s  disease   
and thus could be exploited as a  biomarker   [ 129 ]. ANRIL lncRNA, is expressed in 
tissues and cells affected by atherosclerosis, which makes it a potential biomarker 
for coronary artery disease [ 130 ]. 

 Overall it is clear that lncRNAs possess a signifi cant potential for development 
of new approaches in diagnostics and therapy.   

M. Gullerova



101

    lncRNA and Stem Cell Development 

 Cellular reprogramming demonstrates the plasticity of cell fates. LncRNAs, whose 
expressions are linked to pluripotency, are direct targets of key  transcription   factors 
[ 131 ]. One such a lncRNA ( RoR ) modulates cellular reprogramming, which has 
been identifi ed by loss-of function and gain-of function approaches. This provided 
fi rst evidence for the critical function of a lncRNA in the derivation of pluripotent 
stem cells. LncRNAs also help to regulate development by physically interacting 
with proteins to coordinate  gene express   ion   in embryonic stem cells (ESCs) [ 132 ]. 
This is contrary to the dogma that proteins alone are the key regulators of this pro-
cess. LncRNA determine the fate of ESCs by keeping them in their unspecialized 
state or by directing them along a pathway to cellular differentiation.  

    lncRNA and Immunity 

 Whole-transcriptome analysis has shown that lncRNAs are associated with diverse 
biological processes in different tissues and are also involved in the host response to 
viral infection and innate immunity [ 6 ]. Also a recent study revealed altered expres-
sion of lncRNA during CD8+ T cell differentiation upon antigen recognition [ 133 ]. 
Likewise, eight mRNA-like lncRNAs were differentially expressed in virus-infected 
birds [ 134 ]. Whole-transcriptome analysis of severe acute respiratory  syndrome   in 
coronavirus-infected lung samples shows that there is a widespread differential 
regulation of lncRNAs in response to viral infection [ 135 ]. All of this suggests that 
lncRNAs are involved in regulating the host response in virus-infected cells, includ-
ing innate immunity.  

    Concluding Remarks 

 The discovery of lncRNAs has changed our view of the complexity of the mam-
malian transcriptome. LncRNAs are becoming widely recognized as key regulators 
of protein-coding  gene express   ion   and so provide an additional layer of  transcrip-
tional   control. To date, lncRNAs have been shown to be involved in many different 
stages of  gene expression regulation  . This diversity in function suggests that 
lncRNAs will ultimately be found to participate at all levels of transcriptional con-
trol, from nuclear localization of  transcription   factors to transcriptional termination. 
Several lncRNAs have been implicated in the mediation of  chromatin   structure. 
Enabling the accessibility of the  genome   to Pol II and its associated factors is the 
most effi cient way to activate or repress transcription. LncRNAs also function in X 
 chromosome   inactivation and genomic imprinting through chromatin remodeling. 

 Future discoveries may struggle to identify additional  transcriptional   regula-
tory lncRNA that share a function with known lncRNAs, because different RNAs 
can have similar functions even though they lack detectable sequence similarity. 
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Real challenges lie in determining the biological signifi cance of lncRNAs-protein 
interaction. Scientists have to clearly demonstrate biological roles of particular 
lncRNAs and relate them to their associated transcriptional units. It is peculiar that 
lncRNAs are not evolutionary conserved, they are expressed in very low levels 
and their knock-out don’t show a clear phenotype. Therefore, their biological 
 signifi cance remains an open topic for a further analysis. 

 The de-regulation of lncRNA expression in the context of cell pathology repre-
sents a new layer of complexity in the molecular architecture of human  disease  . 
Several lines of evidence have suggested that even small-scale mutations can affect 
lncRNA structure and function. Future studies need to elucidate the mechanism by 
which disease-causing mutations in lncRNA functional motifs can affect its regula-
tory domains and thereby contribute to disease pathology. 

 Future research of lncRNA may lead to discoveries of their biological functions 
and ultimately propose new  RNA  -based targets for the prevention and treatment of 
human  disease  .     
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    Chapter 5   
 Unveiling Transposable Elements Function 
to Enrich Knowledge for Human Physiology 
and Disease Pathogenesis       

       Ioannis     S.     Vizirianakis      ,     Elsa     P.     Amanatiadou      , and     Sotirios     S.     Tezias     

            Introduction 

 Transposable elements (TEs) are DNA sequences that have the ability to move from 
one chromosomal location to another through their integration into the  genome   at 
different sites. TEs have been found in virtually all eukaryotic organisms, covering 
3–80 % of their genomes and considerably infl uencing evolutionary history [ 1 ,  2 ]. 
In humans, TEs have been estimated to occupy approximately 45 % of genomic 
sequence, a proportion being one of the highest among mammals. However, as it has 
been proposed, it is possible that this impressive number represents an underestima-
tion, since sequences of ancient TEs may have deteriorated beyond recognition [ 3 ]. 

 TEs can be grouped in two major classes [ 4 ]. Class II elements or DNA  transpo-
sons   account for roughly 3 % of the  genome   and move by a cut and paste mecha-
nism through an element encoded transposase. There is no indication of their 
activity to date which is believed to have subsided 37 million years ago [ 5 ,  6 ]. Class 
I elements or retrotransposons move by a copy and paste mechanism through an 
 RNA   intermediate which is reverse transcribed and then inserted at a new site in the 
host genome. This process is known as retrotransposition. Retrotransposons can be 
further categorized in two major subclasses: long terminal repeat retrotransposons 
(LTR) and non-LTR retrotransposons. LTR  retroelements   include endogenous retro-
viruses (ERVs) and consist 8 % of the human genome. Although inactive in humans 
for millions of years their activity is signifi cant in rodent germline [ 7 ]. The LTR 
retrotransposon subclass has a mode of retrotransposition very similar to retrovi-
ruses. Non-LTR retroelements include long interspersed nuclear elements (LINEs), 
short interspersed elements (SINEs) such as Alu elements and hybrid  SINE- R/ VNTR   
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(variable number of tandem repeat)/Alu elements (SVAs) which are all evidently 
capable of retrotransposition in the human genome. LINEs are termed autonomous, 
since they encode the proteins required for their mobilisation. All the other elements 
are non-autonomous, since they encode no proteins and parasitize LINE machinery 
in order to achieve their genome mobilization. 

 The LINE-1 (L1) family is represented by more than 500,000 copies in the 
human  genome   comprising an estimated 17 % [ 8 ]. Most of these copies are inactive 
due to accumulated mutations and only 80–100 elements are functional and capable 
of retrotransposition in human [ 9 ]. In contrast, several thousand L1 elements are 
still active in mice. A full length L1 is 6 kb long and includes a 5′-untranslated 
region (5′-UTR), two open reading frames (ORF1 and ORF2), a 3′-UTR and a 
poly(A) tail. The 5′-UTR serves as a  RNA  -polymerase II promoter while the polyA 
signal in the 3′-UTR is weak and often read through during  transcription   allowing 
3′-fl anking sequences to be co-transcribed along L1 sequence. ORF1 and ORF2 
encode proteins with RNA-chaperone and endonuclease/  reverse transcriptase   
activity respectively. Both of the proteins are required for retrotransposition which 
takes place through a mechanism called “target-site primed reverse transcription” 
(TPRT). The synthesized RNA transcript from L1 element transcription is fi rst 
exported to the cytoplasm in order that ORF1 and ORF2 are produced and then re- 
enters the nucleus and gets reverse-transcribed directly at the site of integration 
[ 10 ]. ORF1 and ORF2 exhibit a  cis  preference to the RNA they were translated from 
but also act  in trans  to promote the mobilisation of the non-autonomous  retroele-
ments   such as Alus [ 11 ,  12 ] and SVAs [ 13 ,  14 ]. 

 More than 1,000,000 copies of Alu elements have been identifi ed so far, a fact 
that renders them the most abundant repeats in the human  genome   occupying an 
estimated 11 %. Alu elements are derived from 7SL  RNA  , a functional component 
of the signal recognition particle. B1 SINE elements in mice most closely resemble 
Alus and also derived from 7SL RNA. Alus are 300 bp long and transcribed by 
 RNA polymerase   III. They end in a polyA tail of variable length which has been 
proved to be critical for retrotransposition as is also the integrity of the internal RNA 
polymerase III promoter [ 15 ]. In addition, it has been demonstrated that Alus 
require only ORF2 of L1 for their mobilization since expression of L1 elements 
with mutant ORF1 in ex vivo assays allows Alu mobilization [ 12 ]. Alu elements 
exhibit the highest retrotransposition rate per live births (1/21) among the currently 
mobilizing elements in humans [ 16 ]. Interestingly, Alu sequences are highly poly-
morphic with respect to their presence or absence among individuals. 

 SVA elements are intermediate in size (~2 kb) and much fewer than the other 
retrotransposons such as L1 and Alu (2700 copies, 0.2 % of human  genome  ), since 
they are hominid-specifi c and originated less than 25 million years ago [ 17 ]. SVAs 
have a composite structure and are generally believed to be transcribed by  RNA   
 polymerase   II. They include a hexamer repeat region, an Alu like region, a variable 
number of tandem repeat ( VNTR  ) region, a short interspersed element of retroviral 
origin (SINE-R) and a polyA tail. Their mode of mobilization relies on the L1 enzy-
matic machinery as is also the case with Alu elements [ 18 ].  
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    Transposable Elements: Innate Role and Function 
Controversy 

 Mobile elements and their impressive prevalence in genomes across species has 
been the subject of intense scientifi c debate since their discovery by McClintock 
[ 19 ]. An initially underestimated discovery that was faced with skepticism waited 
for years for validation and fi nally led to the appreciation of its signifi cance and a 
Nobel Prize Award. During this course, various experimental efforts have been suc-
cessfully carried out, while a lot of light has been shed on the structure, distribution 
and mode of activity of TEs leaving though their true reason of existence still elu-
sive. Barbara McClintock, whose maize breeding experiments provided the fi rst 
detailed descriptions of TEs, proposed that the  genome   is a dynamic entity subject 
to alteration and rearrangement and also referred to TEs as controlling units sug-
gesting they may serve important regulatory roles. 

 A lot of efforts describing TE functional characteristics have tried to attribute a 
central more specifi c role to their presence and mobilization, ranging from control 
of embryonic development to the well described contribution in producing genetic 
variability and promoting the evolutionary process. In certain species such as 
insects, TEs play a role in fundamental cellular processes like the maintenance and 
structural integrity of DNA during cell division. In fruit fl y and silk worm, a type of 
 transposon   is suggested to move bits of DNA to the end of the  chromosomes   to 
prevent the loss of telomeres following chromosomal replication [ 20 ,  21 ]. Since TE 
structure, distribution and mode of activity seems to be variable across species their 
presence might be accompanied by discrete and differential key roles in each case. 
Most certainly, and based on knowledge accumulated thus far, the term “junk DNA” 
is presently at least not representative. 

 The increasing availability of vast amount of genomic information from multiple 
species combined with the advancements happening in computational techniques 
for comparative studies has greatly promoted research concerning the impact of 
TEs on the evolutionary process. Several examples demonstrate clearly that TEs 
have served as an important creative force in the evolution of genomes crucially 
affecting variation of  genome   size, composition and structure among species. 
Indeed, it is TE presence that defi nes the differences in genome size of higher 
organisms compared to prokaryotes, although the number of existed gene structures 
increases also [ 1 ]. Interestingly, even among mammals there is a correlation of 
genome size with the TE genomic content. Moreover, the types and families of TEs 
in vertebrate genomes differ greatly, defi ned in part by the rate of activity and elimi-
nation of ancestral TEs, while inter-individual variation within the same species is 
also present [ 5 ]. Such differences can be actually used as markers in conducting 
phylogenetic analysis. Apart from the structural genetic diversity that results from 
TE activity, the impact of the new insertion events is considerable, since genome 
functionality can be affected in various ways, further driving biodiversity and 
genome evolution [ 4 ].  
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    Mechanisms Through Which TE Activity Affects Gene 
Expression and Function 

 The most obvious way in which a retrotransposition event can affect the host 
 genome   integrity is insertional mutagenesis. TEs can be inserted into or near genes 
remodeling the local genomic region and can do so often accompanied by 3′ trans-
duction phenomena. In this case, DNA sequences downstream of a L1 element for 
example, can be transcribed by  RNA    polymerase   II and co-mobilize due to the pres-
ence of a weak L1 termination and polyA signal [ 22 ]. The rate at which adjacent 
genomic regions can be transduced along L1 insertion has been computationally 
estimated at one every fi ve L1 retrotransposition events [ 23 ]. 

 The impact of the insertion event can be detrimental to the host, regardless of 
whether it involves integration into intron or exon sequences of a gene. Insertion in 
exon regions can cause the creation of new chimeric mRNA and proteins providing 
that the integration results in a tolerable phenotype. Insertion in the intron region of 
genes has been reported to result in mis- splicing  , Alu exonization or exon skipping, 
as well as in reduced mRNA levels due to ineffi ciency of the  RNA    polymerase   II to 
transcribe through the  transposable element   [ 24 ,  25 ]. Another phenomenon observed 
and associated to the insertion of a mobile element is the deletion of an adjacent 
genomic sequence. Insertion-mediated deletions caused by Alu and L1 have been 
confi rmed by comparative genomic studies and two mechanisms, TPRT-dependent 
insertion mediated deletion and endonuclease-independent insertion have been 
identifi ed that can mediate such deletions of host DNA [ 26 ]. 

 In addition, instead of disrupting gene function insertions may alter the expres-
sion pattern of nearby genes interfering this way with gene regulation. It has been 
estimated that TE-derived sequences are contained in the coding region of 4 % of 
human genes and in 25 % of human  promoters   [ 27 ]. The introduction of functional 
both splice and polyA sites which can lead to aberrant processing of  RNA   tran-
scripts, or the introduction of promoter sequences and regulatory regions can lead to 
changes of  gene express   ion   profi les with a potential impact on the host behavior 
[ 28 – 31 ]. Interestingly, it has been shown that 7–10 % of  transcription   factor binding 
sites that have been experimentally characterized derive from repetitive sequences 
including simple sequence repeats and TEs [ 32 ]. The fi rst report of interference 
with  transcriptional   control of a gene involves a L1 element residing in the 
apolipoprotein(a) transcriptional control region (ACR). It was demonstrated in vitro 
that the L1 element when linked in either orientation to the apolipoprotein(a) mini-
mal promoter can confer a tenfold increase in transcriptional activity [ 33 ]. On the 
other hand, an Alu element at the distal part of the human BRCA2 promoter con-
tains a 221 base-pair silencer region. This region has been found to negatively regu-
late BRCA2 gene expression in breast cell lines in a tissue specifi c manner [ 34 ]. 

 Genome integrity is directly compromised by the induction of double-strand 
breaks (DSBs) which are related to L1 ORF2 endonuclease activity. Expression of 
a transiently transfected L1 element in HeLa cells led to a at least tenfold greater 
induction of DSBs than the rate of L1 integration under the same transfection 
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 conditions and the damage was confi rmed to be specifi c to the L1 endonuclease 
activity [ 35 ]. It is diffi cult to assess the signifi cance this process might hold in vivo 
since L1 induced DSBs cannot be distinguished by the ones that arise through dif-
ferent mechanisms. On the other hand, inaccurate repair of DSB DNA lesions can 
lead to random mutations that further compromise genomic integrity [ 36 ,  37 ]. 

 TEs can also affect host  genome   long after the integration process is completed. 
Genetic instability can result through non-allelic homologous recombination 
(NAHR), which it consists the main  disease  -causing mechanism for Alu elements. 
In fact, these post-insertional rearrangements pose a far greater risk to the integrity 
of the genome than the initial insertion event. Homologous recombination is a fun-
damental biological mechanism and is highly conserved along species. Normally, 
programmed homologous recombination occurs once during meiosis. However, the 
presence of abundant and highly homologous sequences in relatively close proxim-
ity, such as Alu elements, increases the potential for mutagenic NAHR. This process 
can result in genomic deletions, duplications, chromosomal inversions, interchro-
mosomal translocations and NAHR events have been implicated in a number of 
human genetic  diseases   as they occur at appreciable rates [ 26 ,  38 ]. 

 Another way in which TE activity can perturb normal gene regulation is by alter-
ing the  epigenetic   state at the site of integration. The recruitment of  heterochromatin   
inducing factors that promote  DNA methylation   and subsequent histone deacety-
lation may infl uence the expression of genes that lie in the vicinity of the integration 
site, apart from suppressing TE element  transcription  . It has been reported that in 
humans, Alu elements are methylated in a more focused manner than LTR and L1 
elements which provoke larger  chromatin   modifying effects [ 38 ,  39 ]. In accordance 
to the above, it has been suggested that L1 elements may play a role in X-inactivation 
in mammals. The strong presence of L1 elements in the X- chromosome   has been 
proposed to lead to silencing of the intervening sequences through  heterochromati-
zation  . Therefore LINE elements may act as modifi ers of the epigenetic state of the 
mammalian  genome   [ 40 ].  

    Mechanisms Involved in the Regulation of TE Activity 
Within the Cells 

 TE mobilization has been clearly demonstrated to affect  genome   stability and func-
tion. Under this perspective, it is not surprising that the hosts have evolved several 
different mechanisms to limit and regulate TE activity (Fig.  5.1 ). In particular, it has 
been suggested through comprehensive analysis of the rate of expansion of L1 fami-
lies that the most advanced mammalian species have the highest ability to restrict 
L1 expression [ 41 ]. These suppressive mechanisms can act on different stages of the 
TE amplifi cation cycle, both on the  transcriptional  , as well as on post- transcriptional 
level. Of major importance,  epigenetic   regulation and the  RNA   interference (RNAi) 
pathway have also been adopted to limit the negative effects of retrotransposition.
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    DNA methylation   is the best established mechanism that may infl uence  hetero-
chromatin   formation. In mammals, DNA methylation occurs in cytosines embedded 
in  CpG island   s  . TE  promoters   are normally transcriptionally-silent due to increased 
DNA methylation patterns and formation of repressive  chromatin   states. Actually, 
methylation measurements of L1 promoters indicate that they range from 20 to 
100 % methylated [ 42 ]. Most Alus are highly methylated and consequently repressed 
in differentiated cells (but not in male germ-line cells) [ 43 ,  44 ]. In addition, SVA 
elements are found in extensively methylated states in most human tissues [ 45 ]. 
SVAs contain numerous CpGs in the  VNTR   domain and have been suggested to act 
as species-specifi c CpG islands [ 46 ]. It is noteworthy, that DNA methylation has 
been proposed to have evolved for the specifi c purpose of suppressing TE activity 
[ 47 ]. Apart from immediate  transcriptional   repression, DNA methylation can result 
in permanent inactivation by C→T deamination [ 48 ]. 

 Mutations in genes that belong to the  DNA methylation   machinery invariably 
enhance TE  transcription   and result in reduced viability and fertility. Most represen-
tatively, mouse embryos that lack Dnmt1, a DNA methyltransferase, reactivate 
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  Fig. 5.1    Depiction of principal mechanisms that regulate  transposable element   activity and the 
variable ways it can affect host physiology and pathophysiology. In addition, current advance-
ments in the fi eld of DNA sequencing and computational analysis are expected to promote the 
exploitation of knowledge accumulated and lead to positive outcomes. Many of the concepts pre-
sented here are further elaborated on inside the text.  APOBEC  Apolipoprotein B mRNA editing 
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intracisternal A particles (IAPs), endogenous retroviral sequences representing an 
important class of TEs, and die before mid-gestation [ 49 ,  50 ]. Dnmt3L knock-out 
mice exhibit loss of methylation of L1 and LTR elements and a corresponding 
increase in the levels of expression of their  RNA   transcripts resulting in failure of 
the male germline [ 51 ]. The same situation exists for proteins that indirectly con-
tribute to the execution of the DNA methylation pathway. Mutation of Lsh, a  chro-
matin   remodeling protein that makes DNA accessible to Dnmts, leads to 
hypomethylation and increase in transcription of IAPs as well as postnatal lethality 
in mouse embryonic cells [ 52 ]. 

 Demethylation of CpG rich  promoters   is expected to result in enhancement of 
their activity and increased expression of the TEs. This holds true for several  cancer   
cell lines where the hypomethylation status in these tumor cells has been correlated 
to increased L1  transcription   [ 53 ,  54 ]. This situation is also depicted in the case of 
chronic myeloid leukemia (CML) where the hypomethylation of L1 elements has 
been implicated with  disease   progression [ 55 ]. One should bear in mind that 
demethylation of potent TE promoters has possible implications beyond the activa-
tion of retrotransposition. This way, transcription factor balance may be disturbed 
or  transcriptional   activation may expand to include genes in the vicinity of demeth-
ylated promoters [ 56 ]. Activation of the antisense promoter that is located in the 5′ 
UTR of L1 elements is another possible concern. Interestingly, treatment with aza-
cytidine and decitabine, two hypomethylating agents, has been shown to alter the 
expression of c-Met oncogene in colon carcinoma and myeloid leukemia cells. The 
cause of this effect is demethylation of an antisense promoter located in a L1 ele-
ment in the second intron of the c-Met gene [ 57 ]. Histone acetylation on the other 
hand and its impact on suppressing TE activity is less straightforward and under-
stood so far. It has been reported though that in some cell types after the insertion of 
engineered L1s the surrounding  chromatin   is rapidly deacetylated [ 58 ]. 

 Of equal importance, the RNAi pathway is presented as a powerful mechanism 
to control TE activity. RNAi involves small non-coding RNAs of different classes 
that guide the  RNA  -induced silencing complex to degrade target transcripts 
through homology based recognition. The effector complex is made-up of  PIWI  /
Argonaute proteins with RNase H-like activity that can slice single-stranded 
nucleic acids. The PIWI/Argonaute protein family is subdivided into AGO 
(Argonaute) families which can bind to small interfering RNAs (siRNAs),  microR-
NAs   (miRNAs) in many tissues and PIWI families which can bind to the  germ cell   
specifi c Piwi-interacting RNAs ( piRNAs  ). Along with  DNA methylation  , these 
discrete mechanisms seem to overlap instead of only acting independently in favor 
of the host  genome   defense. It has been proposed that miRNAs may direct meth-
ylation at the L1 promoter this way maintaining L1 DNA methylation [ 59 ]. In 
addition, mutant male mice for either Mili or Miwi2, two of the PIWI proteins, 
display loss of DNA methylation at retrotransposon loci and an increase in ret-
rotransposon mRNA expression leading to small testes and sterility [ 60 ,  61 ]. The 
 piRNA   pathway appears to hold a dual role in male germline restricting TE activity 
both by post- transcriptional   degradation and by transcriptional silencing through 
DNA methylation [ 48 ,  61 ,  62 ]. 
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 The female germline differs greatly in that Mili or Miwi2 mutations, even when 
combined, do not lead to activation of TEs and remain fertile [ 48 ]. Alternative 
mechanisms including the siRNA pathway control TE expression in this case. 
Although siRNAs were thought to arise primarily from exogenous sources it seems 
that endogenously produced siRNAs (endo-siRNAs) play a role in restraining TE 
mobilization. Profi ling of the total small  RNA   population in mouse oocytes uncov-
ered a broad class of endo-siRNAs that was previously unrecognized. This class 
derived from  retroelements   including LINE, SINE and LTR retrotransposons and it 
was suggested that retrotransposons are suppressed through the RNAi pathway in 
mouse oocytes [ 63 ]. siRNAs containing L1, IAP and Mouse Transcript (MT) 
sequences are produced in oocytes though it has been proposed that they mainly 
target genes bearing TE repeats in their 3′ UTR region instead of TEs themselves 
[ 64 ]. The control of  transposon   activity by endo-siRNAs is a well characterized 
mechanism in  Drosophila  both in somatic tissues and in the germline [ 65 ]. 

 The host response and capacity of regulating TE activity is of course multifacto-
rial and refl ects the need for accurate tuning and preservation of a critical balance. 
Epigenetic regulation as well as the RNAi pathway emerged as valuable controlling 
mechanisms to this end. Several other mechanisms also facilitate the process of TE 
restraining. To mention a few  RNA   editing,  DNA repair   proteins and the APOBEC 
family of proteins have been shown to modulate TE activity (reviewed in [ 66 ]).  

    Transposable Element Functions in Physiology 
and Human Pathophysiology 

 The fact that TE activity can have implications on human  disease   has been broadly 
demonstrated and viewed with great interest [ 24 ,  26 ,  67 – 69 ]. This way, the ultimate 
effect of a new transposition event can be neutral, benefi cial or harmful to the host, 
with the propensity of the last to be more easily detected and further examined. 
Despite the noted effect on creating genetic instability and contributing to human 
disease pathogenesis, there are numerous examples described in which TEs have had 
a positive impact on the host physiology resulting occasionally in a favorable pheno-
type. As an example, a L1-induced transposition event of the cyclophylin gene into 
the TRIM5 gene is the causative reason owl-monkeys exhibit resistance to human 
immunodefi ciency virus (HIV) 1 infection [ 70 ]. Additionally, an Alu insertion poly-
morphism gene has been associated with protection from dry/atrophic form of age-
related macular degeneration [ 71 ]. In certain cases host genomes have managed to 
even exploit TE-encoded proteins in order to support useful functions. This seems to 
be the case with RAG-1 protein, which is involved in the V(D)J recombination pro-
cess during antibody production and probably emerged from a DNA transposase [ 72 ]. 

 On the other hand, several intricate ways in which TE activity has affected 
human pathophysiology have been also well documented. The list of human  dis-
eases   attributed to  transposable element   mobilization is ever increasing since the 
initial discovery of a L1 insertion in exon 14 of the factor VIII gene in two unrelated 
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patients with hemophilia A [ 73 ]. Approximately a hundred  retroelements   insertions 
that cause a wide range of diseases have been recorded accounting for 1/250 (0.4 %) 
of all  disease  - causing  mutations in human [ 69 ]. Numerous examples of all currently 
mobilizing elements in the human  genome   (L1, Alu and SVA) exist where de novo 
insertion led to manifestation of disease. L1 insertions have been reported to result 
in β-thalassemia, colon  cancer   and most recently to neurofi bromatosis (NF) type I 
disorder (also known as von Recklinghausen disease) [ 74 ]. Alu insertions have in 
many cases disrupted genes residing on the X  chromosome   resulting this way in a 
wide range of human disease (see review article [ 8 ]). Interestingly, L1, Alu and SVA 
elements exhibit a different retrotransposition rate per live births (1/212 for L1, 1/21 
for Alu and 1/916 for SVA) that so far coincides with the number of disease-causing 
mutations attributed to each type of TE (25 for L1, 60 for Alu and 7 for SVA) [ 8 , 
 16 ]. In general, the calculated number of retrotransposition events causing mono-
genic (single-gene involvement) disease has been recently estimated at 500/year 
[ 8 ]. Advancements in whole-genome scale approaches such as high throughput 
sequencing or novel microarray-based methods are expected to contribute to better 
accuracy in measurements and thus more insight in the investigation of TE role in 
human structural variation and disease pathogenesis at the molecular level.  

    Exploitation of TE Activity for Therapeutic Applications 

 As an interesting twist to their well-established role in human pathogenesis, TEs 
have emerged as useful tools for insertional mutagenesis, germline  trans -genesis, 
functional genomics applications, and, most importantly, for gene therapy efforts 
(reviewed in [ 66 ]) (Fig.  5.1 ). In fact, the latest generation in  transposon   technology 
has been stratifi ed in a stressful attempt to develop non-viral gene delivery 
approaches, thus circumventing the problems faced with traditional viral vectors 
and overcoming the weaknesses that most non-viral vectors exhibit when it comes 
to gene transduction experimentation studies. 

 Effective gene therapy involves the process of transducing the gene into the tar-
get cells effi ciently, succeeding long term expression and also avoiding possible 
secondary effects such as immune reactions or transformed cell growth. Insertional 
mutagenesis resulting from the use of integrating viral vectors is a major setback 
and most non-viral vectors are unable to achieve high and stable expression of the 
therapeutic gene, highlighting the need for safe and effi cient alternatives [ 75 ]. 

 DNA  transposons   replicate through a “cut and paste” mechanism getting excised 
from a locus and subsequently integrated into another by the transposase protein 
they encode. The transposase can also act  in trans  on practically any DNA fragment 
that is fl anked by the terminal repeat sequences present at each end of the  transpo-
son  . This really attractive property led to the development of alternative gene deliv-
ery systems in which the DNA sequence of interest can be placed between the 
transposon terminal repeats and the transposase is supplied in the form of an expres-
sion plasmid or mRNA synthesized in vitro. 
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 The fact that DNA  transposons   are inactive in vertebrates was overcome by 
genetic engineering in order that these elements obtain the capacity to transpose in 
mammalian tissues. The transposons Sleeping Beauty (SB), reconstructed from a 
Tc1/ mariner -type element, and Piggyback (PB) originating from the cabbage looper 
 Trichoplusia ni , demonstrate transposition activity in a wide variety of vertebrate 
cell lines and species including humans [ 76 ]. In a further effort to promote human 
gene therapy applications, SB100X, a novel hyperactive SB transposase was 
recently developed through mutations and modifi cations of the originally recon-
structed SB enzyme. The result was a up to 100 times enhancement of its transposi-
tional activity in HeLa cells [ 77 ]. In fact, the effi ciency in  trans -gene delivery 
reaches those of viral vectors and this robustness is extremely useful in applications 
such as the transfection of primary and other hard to transfect cell types. The 
SB100X system was able to support 35–50 % stable gene transfer in CD34 +  cells 
enriched in hematopoietic stem or progenitor cells. The gene-marked CD34 +  cell 
population was further transplanted to immunodefi cient mice and resulted in long- 
term engraftment and hematopoietic reconstitution [ 77 ]. 

 The interest in applying TE-based systems for effective gene delivery is con-
stantly increasing. These efforts are trying to approach the treatment of several con-
ditions as is junctional epidermolysis bullosa [ 78 ], type 1 tyrosinemia [ 79 ], 
hemophilia A and B [ 80 ,  81 ]. Most importantly, the “DNA Advisory Committee” 
approved in 2008 the fi rst human gene therapy clinical trial that is based on the use 
of  transposons   [ 82 ]. The aim is to genetically modify T cells with the use of SB 
transposons in an attempt to treat patients with CD19 +  B-lymphoid malignancies. T 
cells will be co-transfected with a  transposon   encoding a chimeric antigen receptor 
(CAR) to enable T cells to recognize lineage-specifi c tumor antigen, such as CD19, 
along with a construct expressing an early generation hyperactive SB transposase. 
The outcome and promise of this effort is eagerly anticipated.  

    Erythroid Maturation Program of MEL Cells: 
Lessons Learned from the Blockade of Differentiation 
by Methylation Inhibitors and the Activation of TEs 

 Previous work from our laboratory has indicated that the induction of haemoglobin 
synthesis and terminal erythroid maturation of murine erythroleukemia (MEL) cells 
in vitro is associated with changes in methylation of  RNA   species, as well as with 
alterations in the intracellular concentration of intermediates involved in the active 
methylation cycle [ 83 – 85 ]. Such a conclusion has gained further support by the fact 
that N 6 -methyladenosine (N 6 mAdo) has inhibited commitment of MEL cells to ter-
minal maturation through its intracellular conversion into S-N 6 - 
methyladenosylhomocysteine (N 6 -SAH), an active intermediate that affects 
methylation of RNA and DNA [ 86 ]. It has been interesting then to observe that 
MEL cells exposed to chemical inducers and simultaneously treated with methyla-
tion inhibitors (DNA/RNA methylation blockers) although they express the β major  
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globin gene, however, they: (a) exhibit a blockade to terminal erythroid maturation 
and (b) produce relatively short polyA −  (non-polyA tail) RNA transcripts accumu-
lated in the cytoplasm that share signifi cant structural homology with 3′-end down-
stream β major  globin gene DNA sequences including the B1 retrotransposon element 
located within this region (designated as B1-559; see Fig.  5.2 ) [ 85 ,  87 ,  88 ]. It is 
noteworthy to emphasize that B1 repeat element has been found to be located in a 
DNA region where several consensus binding sequences exist for the erythroid- 
specifi c  transcription   factors GATA-1, AP1/NF-E2 and EKLF. Recently moving 
toward elucidating the potential functionality of B1-559, we have published data 
showing that this locus has been: (1) a candidate region encoding the core structure 
of some of the cloned non-polyA tail RNA species accumulated mainly in the cyto-
plasm of MEL cells treated with methylation inhibitors; and (2) capable to recruit 
transcription factors and drive the expression of luciferase gene in cooperation with 
DNase I hypersensitive site 2 (HS2) derived from locus control region (LCR) of 
human β-globin gene cluster [ 89 ,  90 ]. Such a direction has been further supported 
by earlier reports indicated the involvement of Alu-like repetitive sequences in the 
coordinated post- transcriptional   control of  gene express   ion   [ 91 ], while non-globin 
DNA sequences located in large distance from the Gγ-globin and other globin genes 
were found to be potentially homologous to an  RNA polymerase   III template [ 92 ].

   In our case, the fact that the B1-559 DNA fragment exhibited potential promoter- 
like activity in cooperation with HS2 tend to suggest that the identifi ed three con-
sensus sequences for GATA-1, AP1/NF-E2 and EKLF located within this fragment 
(see Fig.  5.2a ) may contribute to  transcriptional   activation mechanisms. It has been 
proposed, based on these data, that B1-559 exerts a potential transcriptional role in 
this part of the  genome   and thus may affect the expression pattern of β major  gene dur-
ing development, as shown in Fig.  5.2b , by cooperating with enhancer sequences 
previously known to serve major roles [ 93 – 95 ]. To this end, recent fi ndings impli-
cate the involvement of B1 repeat family in complex regulatory elements in the 
control of  gene express   ion   in the mouse genome. In particular, insertion of a B1 in 
the 3′-untranslated region of the rabbit β-globin gene generated a construct that 
conferred transcriptional regulation of this recombinant gene upon its transfection 
into the cells [ 91 ]. Such transcriptional activation of B1-559 also coincides with 
data implicating B1 retrotransposon elements in the recruitment of  transcription   
factors like PAX6 at discrete binding sites throughout the mouse genome [ 96 ]. 
Moreover, a novel abundant NF-κB-binding site residing in specialized Alu- 
repetitive elements having the potential for long range transcription regulation has 
been recently identifi ed by genome analysis [ 97 ]. Similar observations were also 
shown for L1s. P53 DNA binding sites have been detected within L1 which are 
involved in the regulation of their expression in the mouse genome [ 98 ]. Indeed, the 
transcriptional activation of L1 elements appears to be closely related with hypo-
methylation of their promoter region, whereas such activity of L1 has been recently 
shown to contribute to the progression and clinical behavior of chronic myeloid 
leukemia (CML) [ 55 ]. Overall, such functions of TEs to regulate gene activation or 
silencing represent processes of great interest that are under scrutiny [ 55 ,  99 ]. To 
this regard, an additional diverse role of TEs in the mouse and human genome was 
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further outlined. In particular, it has been documented that the presence of Alu ele-
ments within the 3′-UTR region of genes may lead to their targeted silencing [ 100 ]. 
Furthermore, the creation of two isoforms of rodent natural killer (NK) cell- 
activating receptor NKG2D gene seems to be driven by a B1 retrotransposon inser-
tion leading to gene regulatory change and its fi nal functional diversifi cation [ 101 ]. 
And consistent with these results, novel transcripts of the human neuronal apoptosis 
inhibitory protein (NAIP) gene has been shown to arise from transcription start sites 
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  Fig. 5.2    Diagrammatic outline of mouse β-globin gene family locus along with unique structural 
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that initiate within an Alu retrotransposon element generating  RNA   transcripts that 
may have novel functions intracellularly [ 102 ]. 

 The impact of a potential cooperation between enhancer (HS2) and B1-559, as 
proposed in Fig.  5.2b , is very interesting and remains to be further proved. However, 
the possibility that HS2 distant elements and DNA domains like B1-559 exert a 
regulatory effect on β major  globin  gene express   ion   via a “trans-regulated circuit” in 
hematopoietic cells upon development and under the infl uence of  DNA methylation   
state is quite challenging. Alternatively, TEs may serve to complex  transcriptional   
switches in eukaryotic systems. One such example applies to the activation of 
interferon- beta (IFN-β)  transcription   which has been uncovered to be a highly 
ordered process beginning with the delivery of NF-kB to the IFN-β enhancer 
through a process involving stochastic interchromosomal interactions between the 
IFN-β enhancer and specialized Alu elements [ 103 ,  104 ]. In any case, however, all 
the above mentioned examples support the hypothesis that TEs in the mammalian 
genomes might be considered as modulatory elements in transcriptional regulatory 
circuits (TRCs) ensuring coordinated expression of genes organized in transcrip-
tional units like globin genes and many others.  

    New Concepts Regarding the Usefulness of “Junk DNA” 
Toward the Clinical Exploitation of Personal Genome 
Variations 

 A few years ago, in the fi rst comprehensive whole- genome   analysis of mobile 
elements- related structural variants of an individual, it has been demonstrated that 
TEs play an important role in generating interindividual structural variability by 
estimating the Alu, L1 and SVA retrotransposition rates to be one in 21 births, 212 
births, and 916 births, respectively [ 16 ]. Now, it is a fortune that very recently a vast 
amount of functional data from the “ENCODE Project Consortium” (The 
Encyclopedia of DNA Elements; ENCODE) have been released related to the regu-
lation and function of human and other complex genomes (see at:   http://genome.
ucsc.edu/ENCODE/     and   www.nature.com/encode    ). It is interesting to note that 
these data provide new insights into genetic variability patterns seen in individuals 
and populations especially in terms of ‘junk DNA” structure by providing evidence 
that ~80 % of the human genome serves some function [ 105 – 107 ]. As it has been 
shown, many previously clinically-validated DNA variants are located outside of 
the exome and within or very close to intergenic regions and other non-coding func-
tional DNA elements. As a consequence, by also including in  genome-wide   associa-
tion studies the variations seen in “junk DNA” could provide new ways on how to 
more effi ciently achieve the clinical translation of genomic information to link spe-
cifi c genetic polymorphisms with  disease   etiology and progression profi les. Such 
new genetic information impinge on the regulation of complex mechanisms 
involved in human genome function which in turn may contribute to molecular 

5 Unveiling Transposable Elements Function to Enrich Knowledge for Human…

http://genome.ucsc.edu/ENCODE/
http://genome.ucsc.edu/ENCODE/
http://www.nature.com/encode


122

pathophysiology mechanisms. To this end, the “junk DNA” functionality in DNA 
replication,  transcription   and translation machineries seems to contribute in interin-
dividual variability, more than previously believed, and this in turn may affect the 
way by which the clinical exploitation of the generated knowledge could be 
enhanced. By including such information in clinical genomic studies, it is expected 
to enrich and strengthen our translational medicine capabilities and achieve major 
benefi ts in therapeutics for all patients worldwide.     
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    Chapter 6   
 Copy Number Variation in Human Health, 
Disease and Evolution       

       Carolina     Sismani      ,     Costas     Koufaris      , and     Konstantinos     Voskarides     

            Introduction 

 The most widespread type of variation in the human  genome   is Single Nucleotide 
Polymorphisms (SNPs). Therefore until recently the basis of studying genome vari-
ability and  disease   pathogenicity was mainly focused on SNPs. However, the 
advancement of  genome-wide   technologies that allow comprehensive screening of 
the entire genome has enabled the identifi cation of another important abundant form 
of genetic variation in the human genome that of structural variation. These studies 
have also shown that the extent of structural variation is much greater than was 
previously anticipated [ 1 ]. 

 Structural Variation (SV) is a collective term for a group of genomic alterations 
that change the structure but not the sequence of the  genome  . SVs include quantita-
tive changes such as Copy Number Variations (deletions and duplications), positional 
changes such as translocations and changes in terms of sequence orientation such as 
inversions. Copy Number Variations ( CNVs  ) represent a large category of structural 
variation and have been defi ned as a segment of DNA that is larger than 1 kb and 
present at a variable copy number in comparison to a reference genome [ 2 ]. 

  CNVs   can be generally divided into two major categories based on their fre-
quency. The fi rst category includes CNVs which are common in the general popula-
tion with an overall frequency higher than 1 %. These copy number changes are also 
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referred as CNPs (Copy Number Polymorphism). Common CNVs (CNPs) are 
 usually small, typically they are less than 10 kb and can have no phenotypic effect 
on an individual or they might be associated with susceptibility to complex genetic 
 diseases   such as psoriasis and Crohn’s  disease   [ 3 ,  4 ]. 

 The second category involves  CNVs   that are rare in the general population. 
These CNVs are typically much larger in size than the common CNVs and conse-
quently have a much larger risk of involving dosage-sensitive genes resulting in a 
phenotypic effect. The pathological conditions caused by genomic rearrangements 
(deletions/duplications, inversions, insertions and translocations) are collectively 
defi ned as genomic disorders [ 5 ]. 

  CNV   are found in the genomes of all individuals, are wide-spread across the 
 genome  , and include both inherited and de novo  CNVs   [ 6 ]. CNVs are usually stable 
and can potentially be inherited. As the importance of the duplications and deletions 
that result in these variants is becoming apparent, cataloging them and assessing 
their frequencies is now an important goal. A continuously updated summary of 
CNVs can be found in The Database of Genomic Variants (  http://projects.tcag.ca/
variation/    ). In addition the Database of Chromosomal Imbalance and Phenotype in 
Humans using Ensembl Resources (DECIPHER;   https://decipher.sanger.ac.uk/
information    ) is cataloguing clinically relevant CNVs. Furthermore new genetic 
disorders/ syndromes   caused by CNVs are also catalogued in the Online Mendelian 
Inheritance in Man (OMIM,   www.omim.org    ) database.  

    Mechanisms of  CNV   Formation 

 Three major types of mechanisms have been proposed for the formation of  CNVs   
in the human  genome   namely, (a) Homologous Recombination Mechanism (HRM) 
with the major mechanism being Non-Allelic Homologous Recombination (NAHR), 
(b) Non-homologous recombination mechanism (NHRM) with the major mecha-
nism being Non-homologous End joining (NHEJ) and (c) replication based mecha-
nisms (RBM) with the major mechanism being Fork Stalling and Template 
Switching/mediated break-induced replication FoSTeS/MMBIR. HRM are mostly 
associated with recurrent CNVs with recurrent breakpoints and are found in regions 
of extensive homology (1–5 kb). Non-recurrent rare CNVs occur at regions with 
very limited homology, microhomology (2–15 bp) or even no homology at all and 
are mostly formed by NHRM and RBM. These mechanisms occur both in  germ 
cell   s   and somatic cells, where the rearrangements can be associated with genomic 
disorders and  cancer  , respectively. 

    Non-allelic Homologous Recombination (NAHR) 

 NAHR is the predominant molecular genetic mechanism responsible for recurrent 
genomic rearrangements, those that share a common size and show clustering of 
breakpoints. NAHR is mostly mediated by low-copy repeats (LCR)s also known as 
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 segmental duplication   s   ( SD  ) which are genomic fragments of high sequence 
 identity (>95 %), usually 10–500 kb in size, which account for ~5 % of the human 
 genome   [ 7 ]. 

 Meiotic recombination between non-allelic LCRs in direct orientation on the 
same  chromosome   results in deletions or reciprocal duplications of the genomic 
region located between them. The rearrangement breakpoints of NAHR tend to 
cluster within LCR, termed recombination hotspots.  

    Non-homologous End Joining (NHEJ) 

 Some simple non-recurrent rearrangements can occur via Non-homologous end 
joining (NHEJ) [ 8 ]. NHEJ is one of the two major mechanisms employed by the cell 
to repair double-stranded breaks and has been described in several organisms, from 
bacteria to mammals. Unlike NAHR, NHEJ does not require substrates with 
extended homology. 

 NHEJ involves four steps: detection of double-stranded DNA break, molecular 
bridging of both broken DNA ends, modifi cation of the ends to make them compat-
ible and ligatable, and the fi nal ligation step.  

    Microhomology Mediated Replication Error Mechanisms 

 Recent studies of genomic disorders have shown that complex non-recurrent 
structural rearrangements, can be explained by replication-based human genomic 
rearrangement mechanisms such as FoSTeS/MMBIR (fork stalling and template 
switching/microhomology-mediated break-induced replication) [ 9 ,  10 ]. In these 
models, the DNA replication fork stalls or collapses, the lagging strand disengages 
from the original template and anneals to another replication fork in physical prox-
imity, utilizing microhomology at the 3 Ά end, “priming” or reinitiating DNA 
synthesis [ 11 ].   

     Evolution   of  CNV   

     CNVs   and Purifying Selection 

 Generally,  CNVs   seems to preferentially locate outside of genes and highly con-
served elements. It is also quite logical that signifi cantly lower proportion of dele-
tions than duplications overlaps with  disease  -related genes and more generally with 
protein coding regions. But are we sure that this large pool of CNVs found in “junk” 
genetic regions are evolutionarily and phenotypically neutral? No, since these 
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regions are usually understudied in genetic and genomic research. Even in the case 
of functionally neutral CNVs, this is a quite big pool of amplifi ed DNA that it can 
potentially gain a role after sequential mutation and/or after change of environmen-
tal conditions. We must always have in mind that evolution is a very dynamic pro-
cedure and genetic regions that are currently under negative selection can have 
adaptive benefi t/s under a different environment. 

 Nguyen et al. [ 12 ] were the fi rst to support that purifying (negative) selection is 
the main evolutionary force on  CNV   regions, despite the fact that the same group 
gave evidence for the opposite (that positive selection directs  CNVs  ) 2 years before 
[ 13 ]. They fi nally concluded that positive selection is the exception and not the rule. 
After separating available by then CNVs in four groups and analyzing each group 
under an evolutionary concept they concluded in very interesting results. In brief, 
their data supported a model of reduced purifying selection (Hill-Robertson inter-
ference) within copy number variable regions that are enriched in nonessential 
genes, allowing both the fi xation of slightly deleterious substitutions and increased 
drift of CNV alleles [ 12 ]. At the same sense, Schuster-Böckler et al. [ 14 ], by analyz-
ing all the available CNV human population database records they found that 
dosage- sensitive genes are under-represented in CNV regions. They concluded that 
this is a strong indication for action of negative selection on human CNV regions. 

 Berglund et al. [ 15 ], found evidence for negative selection acting on  CNVs   in 
dogs. By analyzing  CNV   regions in many canine breeds, they noticed that 98 % of 
them are observed in multiple breeds. CNVs that predicted to disrupt gene function 
were signifi cantly less common than expected by chance. Their data supported the 
fact that purifying selection is a major factor acting on structural variation and shap-
ing so the dog  genome  , concluding from this that many CNVs are “unwarranted” by 
evolution, even if found in “junk” DNA. These sequence features may have driven 
genome instability and chromosomal rearrangements throughout canine evolution 
[ 15 ]. In the same line of thinking, recent work by another group support the hypoth-
esis that ohnologs (paralogous genes that have originated by whole-genome dupli-
cation) are overrepresented in pathogenic copy number mutations possibly because 
they include critical dosage-sensitive elements of the genome [ 16 ]. 

 Zhou et al. [ 17 ] established a number of second- chromosome   substitution lines 
in  Drosophila melanogaster  in order to uncover  CNV   characteristics when these are 
in homozygous state. They found that more than 70 % of the dosage-sensitive  CNVs   
are recessive with undetectable effects on  transcription   in heterozygotes, this being 
supporting for negative selection effect. Gazave et al. [ 18 ] performed comparative 
genomic hybridizations in four primate species populations in order to reveal CNV 
frequencies and hotspots. They showed that CNVs fate has been possibly deter-
mined by selective pressures in different lineages, this resembling a kind of genomic 
divergent evolution. Evidence for purifying selection was stronger in gorilla CNVs 
overlapping genes, while positive selection appeared to have driven the fi nal fre-
quencies of structural variants in the orangutan lineage. In contrast, chimpanzees 
and bonobos present high levels of common structural polymorphism, which is 
indicative of relaxed purifying selection.  
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    Gene Duplication and Positive Selection 

 Very early after  CNVs   discovery, evidence was found for positive selection acting 
on these genomic elements, within the modern human populations [ 13 ]. Those 
researchers supported that they found evidence for positive selection by analyzing a 
set of 627 human  CNV   regions, based on the fact that those CNVs were enriched in 
genes, particularly genes implicated in secretion and sensing of the environment. 

 Poptsova et al. [ 19 ] performed pathway enrichment analysis for genes found in 
 CNVs   in a collection of individuals with Caucasian, Asian or Yoruban descent, 
combining high-resolution array and sequencing data. The analysis suggested pos-
sible examples of positive selection, in pathways like NF-kB and MAPK signaling, 
and Alu/L1 retrotransposition factors. The authors believe that their results show 
that constitutional CNVs may modulate subtle pathway changes through specifi c 
pathway enzymes, which may become fi xed in some populations [ 19 ]. 

 Positive selection may result in pleiotropic effects for the genes in specifi c  CNV   
regions. An interesting example is the 16p11.2 chromosomal region. Duplications 
or deletions at the chromosomal locus 16p11.2 have been implicated in microceph-
aly, autism [ 20 ], schizophrenia [ 21 ], epilepsy, and other neuropsychiatric disorders, 
as also in anorexia, underweight and obesity phenotypes [ 22 ]. Data show that 
genetic balance is sensitive at this region. As a result of this, energy balance, brain 
structure and IQ levels [ 23 ] can be easily disturbed by different kind of re- 
arrangements. Recently, animal model studies showed that the neurological pheno-
types at 16p11.2 can be attributed on  KCTD13   gene dosage   [ 24 ]. It would be 
interesting if evolutionary studies could be performed for this gene in order to 
understand better its selection and its role. Human lineage specifi c traits, like intel-
ligence, may be related with  KCTD13  evolutionary history. 

 Below we will analyze the three major evolutionary fates of  CNVs   in genomes 
and consequently in populations, based on widely accepted models (Fig.  6.1 ). For a 
more detailed analysis on these models please read the review of Hahn [ 25 ]. Such 
genetic evolutionary phenomena are diffi cult to be directly observed since they are 
happening in the depth of macro-evolutionary time. Despite this, pieces of evidence 
are always there. Range of genetic diversity is something that can be directly mea-
sured and be compared within different species. Sudmant et al. [ 26 ] compared the 
diversity and rates of copy number and single nucleotide variation across the homi-
nid phylogeny. They found a correlation between duplications and single nucleotide 
diversity, believing that this recapitulates greatly the phylogeny of apes. Duplications 
are redundant compared with deletions by 2.8-fold. The load of segregating duplica-
tions remains signifi cantly higher in bonobos, Western chimpanzees, and Sumatran 
orangutans-populations that have experienced recent genetic bottlenecks (P = 0.0014, 
0.02, and 0.0088, respectively). The authors conclude that demographic effects, 
such as bottlenecks, have contributed to larger and more gene-rich segments being 
deleted in the chimpanzee lineage and that this effect may have contributed to 
 episodic bursts in  CNV   during hominid evolution.
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      Neofunctionalization 

 After the gene duplication, some of the new copy numbers may gain a novel func-
tion since they gradually accumulate mutations. This process is called neofunction-
alization (Fig.  6.1 ). Of course, alternatively, if evolutionarily necessary, the new 
copies can preserve the function of the “maternal” copy for thousands of years 
(Fig.  6.1 ). New copies may serve as “back-ups” for this gene function or contribute 
to increased dosage, if this is required. It is believed that new duplication copies are 
often free from selective pressure. Thus duplicate genes accumulate mutations 
faster than a functional single-copy gene. This is why that some scientists believe 
that this process is the end stage for all subfunctionalized genes. 

 One characteristic example is the evolution of the antifreeze protein in the 
Antarctic zoarcid fi sh. In this case, type III antifreeze protein gene diverged from a 
paralogous copy of sialic acid synthase (SAS) gene. The ancestral SAS gene was 
found to have both sialic acid synthase and additional ice-binding properties, this 
witnessing that neofunctionalization happened. It is obvious here, that after duplica-
tion, one of the paralogs began to accumulate mutations that lead to the replacement 
of the SAS domains of the gene and allowing this way for the antifreeze property to 
arise. This specialization allows Antarctic zoarcid fi sh to survive in extreme low 
temperatures of the Antarctic Sea [ 27 ].  

    Subfunctionalization 

 Another possible fate for duplicate genes is that both copies are equally free to 
accumulate degenerative mutations, so long as any defects are complemented by 
the other copy. This leads to a phenomenon often termed as neutral “subfunc-
tionalization” or DDC (duplication-degeneration-complementation) in which the 

Gene duplication

Neofunctionalization

Subfunctionalization

Conservation

Degeneration/Gene loss

  Fig. 6.1    The evolutionary fates of duplicate genes (see text for details)       
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functionality of the original gene is distributed among the two copies. Neither gene 
can be lost, as both can perform non-redundant functions, but ultimately neither is 
able to achieve novel functionality. 

 A usefulness of the subfunctionalization process is when a gene specializes 
among different tissues, developmental stages, or environmental conditions, so 
there is a need of many differently specialized copies. Isozymes are a good example 
of this phenomenon. These are encoded from paralogs that catalyze the same bio-
chemical reaction, but have evolved a “catalytic freedom”, catalyzing a spectrum of 
substrates in a variety of cell types. Human hemoglobin is an example of a subfunc-
tionalization process, despite this is not a typical enzyme. The ancestral gene copy 
is undoubtedly a version of the beta globin gene. Through the subfunctionalization, 
new versions of the gene derived, like the alpha globin genes. Today, functional 
hemoglobin molecules are dimers of a number of available chains. For an analytical 
review on evolution of mammalian globin genes please read Storz et al. [ 28 ]. 

 One other good example of segregation avoidance occurs in the acetylcholines-
terase (AChE1) locus of the common mosquito, Culex pipiens. An allele of this 
gene has evolved to confer resistance to organophosphate pesticides. It has been 
found in heterozygote form as a separate duplicated locus in multiple mosquito 
populations (Hahn [ 25 ] and references therein).  

    Loss 

 Sometimes, genomic copy numbers can lead to deleterious increased  gene expres-
s   ion   such as Rett-like  syndrome   and Pelizaeus–Merzbacher  disease   [ 29 ]. Such 
pathogenic mutations are likely to be lost from the population and it is very unlikely 
to be established in the population and gain new functions. However, it is widely 
known that most duplications are in fact not damaging or benefi cial. These neutral 
sequences can be increased or lost in the population randomly by genetic drift, this 
being an evolutionary process in molecular level that Kimura proposed for fi rst time 
in 1962 (neutral evolution).  

    The Examples of the  DUF1220  and the Amylase Genes 

 DUF1220 domains’ duplications are of great evolutionary interest in human specia-
tion. DUF1220 protein domains have been duplicated many times in the human 
lineage probably exhibiting the most extreme human lineage–specifi c copy number 
increase of any protein coding region in the human  genome   [ 30 ,  31 ]. The majority 
of DUF1220 sequences are located at 1q21.1. Copy numbers at the chromosomal 
region 1q21 have been recently associated with neurological disorders and human 
cognitive functions as well. Neurological disorders that have been associated with 
this region are microcephaly, autism and schizophrenia. Teams of Dumas and Sikela 
showed that copy numbers of DUF1220 are highly expanded in humans, reduced in 
African great apes, further reduced in orangutan and Old World monkeys, represent 
only a single-copy in non-primate mammals, and are absent in non-mammalian 
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species. Examination of expression in brain showed that neuron-specifi c DUF1220 
signals are present in the cortical layers of the hippocampus and they are also abun-
dant in neurons within the neocortex. Davis et al. [ 32 ] showed a positive correlation 
between the DUF1220 copy numbers and the human cognitive abilities in two inde-
pendent populations of European descent, this being the fi rst replicated association 
with these traits. The actual cognitive traits measured were the total IQ and mathe-
matical aptitude scores. It is obvious through these and other studies, that expansion 
of DUF1220 copy numbers follow the expansion of the human brain size and the 
development of the higher cognitive functions in apes. 

 The α-amylase genes are located in a cluster on the  chromosome   that includes sali-
vary amylase genes ( AMY1 ), two pancreatic α-amylase genes ( AMY2A  and  AMY2B ) 
and a related pseudogene. The  AMY1  genes show extensive  copy number variation   
which is directly proportional to the salivary α-amylase content in saliva. Perry et al. 
[ 33 ] published an exceptional paper examining the increase in copies of the salivary 
amylase gene in humans throughout evolutionary history. Perry and colleagues found 
that  AMY1  copy numbers started to increase 120,000 years ago, something that was 
catalytic for  adaptation   of humans to starch consumption. A most recent study found 
very strong evidence that  AMY1  copy number are associated with increased Body Mass 
Index (BMI) [change in BMI per estimated copy = −0.15 (0.02) kg/m 2 ; P = 6.93 × 10 −10 ] 
and obesity risk [odds ratio (OR) per estimated copy = 1.19, 95 %, CI = 1.13−1.26; 
P = 1.46 × 10 −10 ]. This is one of the many evolutionary examples where we observe a 
change of gene function after a sudden environmental change. Our  genome   has been 
evolved under very different environmental conditions than today and evolutionary time 
was not adequate to adopt in food plethora of present times. This is part of the answer 
why today we have an extreme increasing of  diseases   like obesity and diabetes.   

    Co-evolution of  CNVs   with MicroRNAs 

  Evolution   of genomic elements must be always considered in relation with other 
genomic elements, especially the ones having a special regulatory role. This sub-
chapter summarizes recent fi ndings about co-evolution of  CNVs   with  microRNAs  , 
that it is discussed in more detail in Chap.   1    . 

 Existing data show that tandem duplications can result in paralogous  microRNA   
sequences that are located on the same transcript and are organized as tandem para-
log clusters [ 34 ,  35 ]. In a recent study, evidence was found that repetitive elements 
contribute to creation of new  microRNAs   in mammals and that large  segmental 
duplication   events accelerate the expansion of microRNA families, including those 
derived from repetitive sequences [ 36 ]. The latter ones are considered as the younger 
microRNA genes, being also the less conserved. Similar evidence was found in 
plants where microRNAs that are found in repetitive elements tend to have longer 
hairpin precursor, lower G-C content in hairpin precursor sequences and lower min-
imum free energy [ 37 ]. 

 An interesting model for the deriving of new  microRNA   genes has been  proposed 
by Allen et al. [ 38 ], called the  inverted duplication   model. Under this hypothesis, 

C. Sismani et al.

http://dx.doi.org/10.1007/978-1-4939-3070-8_1


137

new microRNA genes are generated from inverted duplication events happened on 
one of their target genes by forming two adjacent gene segments in either conver-
gent or divergent orientation. Recent observations showed that many microRNA 
genes are found in  transposable element   s   and pseudogenes. This was considered as 
an indication that these  microRNAs   have been derived through  inverted duplica-
tions  . Zhang et al. [ 35 ] confi rmed further the inverted duplication model in plants, 
this happening via TEs or pseudogenes, showing also that inverted duplications give 
rise to microRNAs much more frequently that  segmental duplication   s  . 

 A crucial matter in  microRNAs   evolution is what factors determine the type and 
the number of microRNAs’ targets in 3′ UTRs. Ha et al. [ 39 ] proved that small 
RNAs produced during interspecifi c mating or polyploidization serve as a buffer 
against the genomic shock in interspecifi c hybrids and allopolyploids. The authors 
came to this conclusion after studying allotetraploids coming from  A. thaliana  and 
 A. arenosa , identifying adoptive alterations of the microRNAs and siRNAs levels in 
comparison with the parental species. Abrouk et al. [ 40 ] found evidence that the 
above mechanism may be a standard procedure in plants after euploidy, especially 
in euploidy events that are involved in evolutionary speciation. 

 But since whole  genome   duplications are very rare to animal species, research 
has been performed for duplications of smaller scale in such species. Li et al. [ 41 ] 
and D’Antonio and Ciccrelli [ 42 ] found that  microRNA   targets are signifi cantly 
enriched for paralogs genes. Characteristically, Li et al. [ 41 ] mention that their 
results suggest that “microRNA-mediated regulation plays an important role in the 
regulatory circuits involving duplicated genes including adjusting imbalanced dos-
age effects of gene duplicates, and possibly creating a mechanism for genetic buff-
ering”. A more complicate analysis by Fernandez and Chen [ 43 ] revealed that 
human paralogs of poorly packed proteins (categorized so according special 
 structural criteria) are more likely to be targeted by  microRNAs  , thus underscoring 
a means to buffer dosage imbalance effects arising from gene duplication. 

 Recently, our team proceeded to analysis of available data of public genetic data-
bases and we found evidence that miRNAs and Copy Number Variations must have 
co-evolved and interacted in a way to maintain the balance of the dosage sensitive 
genes. Our fi ndings raised the possibility that miRNAs may have been created under 
evolutionary pressure, as a mechanism for increasing the tolerance to  genome   plas-
ticity [ 44 ,  45 ]. Our results were further confi rmed by Woodwark and Bateman [ 46 ]. 
There is signifi cant indication that a number of genes located within  CNVs   have 
altered expression level [ 9 ,  47 – 49 ]. This suggests further that  microRNAs   may have 
acted as equilibrators of  gene express   ion   during evolution in an attempt to regulate 
aberrant gene expression and to increase the tolerance to genome plasticity.   

    Methodologies for Detecting  CNVs   

 The discovery of  CNVs   has been accelerated in the last years due to the advances in 
array-based methods and more recently Next Generation Sequencing (NGS) that 
allow comprehensive screening of the entire  genome  . In addition several other 
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methodologies have been implemented that target defi ned loci such as Fluorescence 
In situ Hybridization (FISH), Quantitative Polymerase Chain Reaction (Q-PCR) or 
other probe based methods like Multiplex Ligation Probe Amplifi cation (MLPA) 
and Multiplex Amplifi able Probe Hybridization (MAPH). 

    Whole Genome Approaches 

    Array-Based Methods 

 Two different array-based approaches are currently used for the detection and 
analysis of  CNVs  . The fi rst approach is based on array-Comparative Genomic 
Hybridization (array-CGH) using differentially labelled reference and test sam-
ples which are co-hybridized on an array slide containing mapped DNA sequences 
which are spaced across the whole  genome  . This method was initially described 
in 1997 but has tremendously evolved over the years [ 50 ]. Today the most widely 
used DNA sequences for mapping DNA are BAC clones or short oligonucleotides 
[ 51 ,  52 ]. 

 In array-CGH, the relative fl uorescent intensities of two DNA samples (tagged 
with two different fl uorophores respectively) hybridized to glass attached probes is 
measured. If there is more fl uorescent signal from the sample under investigation 
relative to the control, then there is a gain of that specifi c genomic region, and if 
there is less signal relative to the control, then there is a loss of that DNA region. 
Gains and losses of clones are detected as a ratio that is plotted against the annotated 
genomic position (Fig.  6.2 ).

   The resolution of array-CGH is based on the density, size and genomic distance 
of the probes. Currently commercially available arrays contain up to one million 
oligonucleotide probes (Agilent technologies,   www.agilent.com    ). 

 The second approach utilizes the existing SNP (Single Nucleotide Polymorphism) 
genotyping platforms [ 53 ]. Although both approaches are quite similar there is a 
fundamental difference between the two approaches, as SNP arrays were initially 
designed for genotype and later validated for  CNV   detection. The difference 
between the two platforms are in the type of hybridization, comparative hybridiza-
tion, comparing it to a reference sample versus single one colour hybridization fol-
lowing a subsequent comparison with a set of reference values from controls. In 
addition, genotyping arrays provide information on SNP genotypes. The resolution 
of the SNP array is based on the number of SNPs on the array. Currently commer-
cially available SNP arrays contain well over one million SNPs. 

 In the last few years, SNP-CGH “hybrid arrays” combining properties from both 
platforms have been developed (CGH-SNP arrays) and include probes in regions 
with known  copy number variation   that do not contain SNPs (Affymetrix,   www.
affymetrix.com     and Illumina,   www.illumina.com    ).  

C. Sismani et al.

http://www.agilent.com/
http://www.affymetrix.com/
http://www.affymetrix.com/
http://www.illumina.com/


Human DNA

Test 
Genomic 
DNA

Reference 
Genomic 
DNA

Labeling with fluorescent dyes cy3 cy5

+ Human COT-1 DNA

Hybridization

a

b

Array-CGH 
slide

Duplication

Log2 Ratio
ch1/ch2

-1

+1

-0.5

+0.5

Deletion

0

  Fig. 6.2    ( a ) Illustration of a deletion ( highlighted ) of approximately 0.8 Mb in size on the short 
arm of  chromosome   8 (q-arm) at chromosomal band 8p23.1 [(location: 7242978–8079890) using 
build GRCh37 (hg19)]. The current deletion lies within a highly polymorphic region as it is indi-
cated shown by the  dark blue  for duplication and  orange  for deletion. The colors represent the 
recurrence of the same aberration regarding to our local database. ( b ) Array-CGH methodology for 
the identifi cation of  CNV         
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    Next Generation Sequencing (NGS) 

 Traditionally, array-CGH is the golden standard for  genome  - wide   method of choice 
detection of  CNVs  . However, as resolution of array-CGH is relatively low, higher 
than 10 kb, even for the ultrahigh resolution platforms of one million probes, smaller 
CNVs are still diffi cult to detect. In the last years, NGS, a high throughput sequenc-
ing technology has revolutionized the fi eld of genetics [ 54 ]. Whole genome NGS 
has now emerged as a very promising tool for genome-wide detection of CNVs at 
much higher resolution than array-CGH high resolution (<10 kb) [ 55 ]. In addition, 
NGS has the benefi t to detect any type of variation even down to the base pair level 
[ 56 ]. In NGS sequence assemblies from test and reference samples are compared 
computationally and differences in sequences, copy number and orientation are 
annotated. However as statistical approaches of NGS are still very limited in rela-
tion to  CNV   detection, further studies are needed prior to its routine implementation 
for the detection of CNVs.   

    Targeted/Locus Specifi c Approach 

    Fluorescence In Situ Hybridization (FISH) 

 FISH is a very well established method with a wide range of applications in cytoge-
netics. FISH is a targeted locus specifi c approach to detect  CNVs  . FISH employs 
fl uorescently labeled probes that are hybridized on metaphase  chromosomes   from 
the test samples and hybridization patterns (absence/presence, duplication of signal) 
are compared to reference samples. However the low resolution (>100 kb) as well 
as the targeted nature of the method does not allow FISH to be implemented on 
large scale  genome    wide   screenings.  

    Q-PCR 

 Real Time quantitative PCR ( RT  -PCR or Q-PCR) is another targeted strategy for the 
detection of  CNVs  . The basis of Q-PCR is that the rate of amplifi cation of a region 
is proportionate to the number of template copies [ 57 ,  58 ]. Amplifi cation (fl uores-
cence signal representing the target) is then measured in real time during exponen-
tial phase and compared to a control region of known copy number, allowing the 
detection of copy number of the target region.  

    Probe Based Multiplex Assays 

 Multiplex Ligation-dependent Probe Amplifi cation (MLPA) and Multiplex 
Amplifi able Probe Hybridization (MAPH) are able to detect abnormal copy num-
bers based on quantifi cation of probes specifi cally designed for the regions of 
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interest [ 59 ,  60 ]. Both methods are based on multiplex PCR methodology using 
fl uorescently labeled universal primers and rely on probe amplifi cation of different 
size probes rather than amplifi cation of the genomic test DNA. Both methods can 
detect abnormal copy numbers for up to 50 regions simultaneously and hybridiza-
tion ratios are compared with control regions. The main difference between the two 
methods is that MLPA is performed in solution and the probes are designed in two 
parts and are dependent on the presence of the targeted region for ligation and cre-
ation of a contiguous probe to be amplifi ed. In MAPH the denatured test DNA is 
bound on a nylon membrane and then hybridized with a probe set which are subse-
quently amplifi ed. 

 Again, the targeted nature of both methods do not allow implementation on large 
scale  genome    wide   screening.    

    Effect of  CNV   on Human Variation and Disease 

    Mechanisms by Which  CNV   Affect Cell or Organism Phenotype 

 The most widely accepted mechanism by which  CNV  , whether residing in coding 
or “junk” DNA, can affect the phenotype of cells or organisms is by altering the 
expression levels of dosage-sensitive genes. For the majority of human genes mod-
est increases or decreases in expression levels caused by CNV deletions or duplica-
tions will have minimal or no observable phenotypic effects. However, certain 
classes of genes are known to be particularly sensitive to dosage levels changes. The 
best established categories of dosage sensitive genes are those coding for structural 
proteins or members of protein complexes [ 61 ]. Theoretical and experimental data 
supports that modest changes in the dosage levels of such genes can disrupt protein–
protein interactions and assembly of molecular complexes, thus impairing their bio-
logical functions. Similarly, modest changes in copy number of rate-limiting 
enzymes in metabolic pathways can also affect the output and function of metabolic 
and signalling pathways. 

 A straightforward mechanism by which  CNV   can affect  gene dosage   is by alter-
ing the number of gene copies in the  genome  . Studies have demonstrated that CNV 
deletions or duplications of protein-coding genes are in general positively corre-
lated to changes in  gene express   ion   [ 48 ,  62 ]. Additionally, CNV located in non- 
coding regions of the DNA are also known to be able to affect expression of genes. 
One way this can be achieved is through the disruption of  cis  and  trans -regulatory 
sequences (such as enhancers, insulators, and  promoters  ), thus affecting the expres-
sion of genes that are under the regulation of these elements. It has also been deter-
mined that large CNV can affect the expression of neighbouring genes outside the 
affected region, as well as in genomic regions further away [ 63 ,  64 ]. Changes in the 
copy number of non-coding regulatory  RNA   genes (such as  microRNA   and  long 
non-coding RNA  ) can also disrupt the physiological regulation of their target genes. 
For example CNV amplifi cations of miRNA will result in lower expression of their 
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target genes, while conversely CNV deletions of the same  miRNA gene   will result 
in their increased expression. 

 Dramatic over-expression of individual genes can also result in prominent phe-
notypic effects which are not observable after modest changes in  gene express   ion  . 
For example the dramatic amplifi cation of  oncogenes   such as tyrosine kinases, 
growth factor receptors, and cell growth genes—often to hundreds of copies per 
 genome  —can be a major driver of the process of carcinogenesis. Highly over- 
expressed proteins can also engage in promiscuous off-target molecular interac-
tions, affecting phenotypes that are irrelevant to the normal functioning of the 
protein [ 65 ]. 

 Complete loss-of-function can occur when  CNV   deletions unmask a recessive 
mutation or  epigenetic   aberration affecting the second allele. The complete loss-of- 
function of genes with non-redundant biological functions due to the combination 
of a CNV deletion with genetic or epigenetic lesion on the second allele can 
adversely affect the fi tness of the organism. The aberration affecting the second 
allele can be another CNV, a point mutation or dysfunctional epigenetic regulation. 
For example, the coexistence of CNV deletions with point mutations affecting 
NRXN1 or CNTNAP2 genes has been found in patients with Pitt-Hopkins-like  syn-
drome   [ 66 ]. A single CNV deletion can also result in loss-of-function of genes if 
located in the X  chromosome   in males or when one allele is silenced by parental 
imprinting mechanisms. 

 Researchers have also suggested mechanisms by which large-scale  CNV   can 
infl uence organism fi tness irrespective of the effects on the individual genes included 
within the affected genomic regions. A fi rst proposed mechanism is that the simul-
taneous over-expression of a large number of proteins can act to overwhelm protein 
control mechanisms and proteasomal degradation, potentially impacting essential 
cellular functions [ 67 ]. A second proposed mechanism is that the large scale ampli-
fi cation of genomic regions containing repetitive elements acting as a drain on the 
cellular methyl pool, thus promoting DNA hypomethylation and associated genomic 
instability [ 68 ].  

    Contribution of  CNV   to Non-pathological Individual Variation 

 On average  CNV   affect around four million bases per  genome  , which is similar to 
the number of bases that differ between individuals due to single nucleotide poly-
morphisms (SNP) [ 69 ]. Consequently, CNV could be important contributors to the 
“normal”,  non-pathogenic   phenotypic variability between humans. At present much 
less attention has been placed on CNV underlying non-pathogenic human traits, 
although some interesting links have been reported. One interesting case discussed 
previously relates to the salivary amylase gene (“The Examples of the  DUF1220  
and the Amylase Genes” section above). In regards to polygenic complex human 
traits, studies have indicated that CNV are involved in the observed variability in 
intelligence [ 70 ,  71 ], height [ 72 ,  73 ], and even musical aptitude [ 74 ], although these 
remain highly debated.  
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    Interpretation of the Pathogenic Signifi cance of  CNV   

 The demarcation of benign from pathogenic  CNV   is a challenging, but also an 
essential step for the accurate interpretation of clinical and research fi ndings. 
Criteria used for the interpretation of CNV include its inheritance pattern, frequency 
in the population, genomic size of the CNV, and gene content. Classical evolution-
ary theory predicts that purifying selection acts to remove inherited CNV that are 
detrimental to the organism from the gene pool (see section “ Evolution   of CNV” for 
details). Indeed, CNV disrupting protein-coding genes are depleted amongst high 
frequency deletions [ 69 ], indicating the action of purifying selection. It can there-
fore be predicted based on evolutionary theory that an inverse association should 
exist between the penetrance of a given CNV and its frequency in the population. It 
is expected that common CNV are benign or have very low to moderate penetrance 
and contribute only modestly to  disease   risk, while pathogenic CNV of high pene-
trance are present at lower frequencies in the population. Determining whether a 
CNV found in a patient was of de novo origin or is inherited from a healthy parent 
and investigating the presence of the variant in databases of patient cohorts (e.g. 
DECIPHER decipher.sanger.ac.uk) or healthy controls (e.g. DGV dgv.tcag.ca) are 
important steps in CNV evaluation, especially for severe phenotypes.  

     CNV   in Intellectual Disability/Developmental Delay 
and Microdeletion/Microduplication Syndromes 

 Among the earliest and best established pathogenic phenotypes linked to  CNV   are 
 intellectual disability   and developmental delay. It had been established for a long 
time by traditional karyotyping that chromosomal abnormalities are associated with 
intellectual disability and development delay. Over the past decade large case- 
control studies indicate that 15–20 % of ID and developmental delay cases are 
caused by CNV that were too small to be detected by traditional karyotyping [ 75 , 
 76 ]. Screening for pathogenic CNV is now routinely used for clinical diagnosis of 
ID and developmental delay. 

 Microdeletions and microduplications have been recognized as a causative 
genetic factor of syndromic  intellectual disability   for many decades now. Typical 
examples include Prader–Willi (OMIM# 176270) and Angelman (OMIM# 105830) 
 syndromes   (15q11-q13 deletion), Williams–Beuren  syndrome   (7q11.23 deletion, 
OMIM# 194050), Smith–Magenis syndrome (deletion of 17p11.2, OMIM# 182290) 
and others. Prior to the implementation of  genome    wide   array-CGH and the estab-
lishment of publically available databases, the identifi cation of these syndromes 
was based on genotype-phenotype approach where a series of patients with similar 
recognizable clinical features were investigated and the genetic cause of the syn-
drome was subsequently discovered. However many syndromes have a wide range 
of clinical features, variability in expression and penetrance which hampered this 
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genotype-phenotype approach. Implementation of high-resolution genome wide 
array-based approaches, in the last decade, has led to the identifi cation of continu-
ously growing number of recurrent microdeletion and microduplication syndromes 
caused by submicroscopic  CNVs   such as the 1p36 microdeletion syndrome, the 
17q21.31 microdeletion syndrome and many others [ 77 ,  78 ]. Whole genome array- 
CGH investigation allows the identifi cation of a similar genomic aberration in 
patients prior to common clinical presentation delineation. Today more than hun-
dred new microdeletion/microduplication syndromes have been identifi ed [ 79 ] 
using both approaches. 

 As most recurrent genomic rearrangements are mediated by sequences such as 
 segmental duplication   s   [ 80 ] and low copy repeats and are caused by NAHR it was 
expected that the implementation of array-CGH would lead to the identifi cation of 
the reciprocal duplication of most of the previously identifi ed recurrent microdele-
tion  syndromes  . Indeed, much reciprocal duplication was identifi ed such as the 
7q11.23 microduplication  syndrome   and the 22q11.2 microduplication syndrome 
and many others [ 81 – 83 ]. However the reciprocal duplication were identifi ed for 
only a fraction of the microdeletion deletion syndromes mostly due to the fact that 
microduplications generally result in milder phenotypes or sometimes in no pheno-
type and consequently can escape detection. 

 Furthermore, the collection of clinical and genetic information in databases such 
as DECIPHER and other free databases has been crucial for discriminating between 
patients with rare aberrations and those with new microdeletion/duplication 
 syndromes  .  

     CNV   in Psychiatric Diseases 

 It is now established that pathogenic  CNV   are important genetic contributors to the 
incidence of major psychiatric  diseases   such as autism, schizophrenia, and bipolar 
disorder. Particularly strong evidence supports causal associations between rare and 
de novo CNV and psychiatric diseases, with a number of studies reporting an 
enrichment of these CNV types in psychiatric patients compared to controls [ 84 ]. 
Beyond their enrichment in psychiatric patients, evidence that CNV are implicated 
in these diseases has also been gathered from animal models. One example is the 
display of autism-related behaviour in mice knockout for Cntnap2, a neuronal trans-
membrane protein implicated in autism [ 85 ]. In animal models CNV have also been 
demonstrated to cause similar anatomical abnormalities as observed in humans, for 
example 16p11.2 affecting brain growth (for details see “Gene Duplication and 
Positive Selection” section above) [ 20 ]. 

 Ultimately, the  CNV   disruption of susceptibility genes will in some manner 
interfere with the physiological development of the brain. The strong links 
between CNV and psychiatric  diseases   possibly refl ect the inherent sensitivity of 
neurodevelopmental pathways and neuronal structures involved in learning and 
memory to abnormal  gene dosage  . In accordance with this a signifi cant number of 

C. Sismani et al.



145

established susceptibility genes affected by CNV are synaptic scaffolding  proteins 
or regulators of the levels of synaptic proteins [ 86 ]. A signifi cant confounding 
factor for interpreting the role of CNV in psychiatric diseases is their variable 
expressivity and incomplete penetrance [ 84 ]. Almost all CNV associated with 
psychiatric disorders are present at lower frequencies in neurotypical controls, 
while individual CNV are often associated with a number of psychiatric diseases. 
This phenotypic variability can be probably attributed to the interaction of the 
CNV with environmental factors and with other genetic factors in order to gener-
ate the pathological phenotype. A second issue is that recurrent CNV in psychiat-
ric diseases are often very large,  making it diffi cult to locate the pathogenic genes. 
An important challenge for researchers is going to be to elucidate how CNV cause 
the neurobiological abnormalities that eventually lead to the development of psy-
chiatric diseases.  

     CNV   in Cancer 

  CNV  , of both inherited and de novo origin, have been associated with an increased 
disposition to  cancer  , prognosis of the  disease  , and response to therapies. Rare 
inherited CNV have been detected in nearly half the known cancer predisposition 
genes, potentially contributing to the incidence of human  cancers   [ 87 ,  88 ]. 
However, highly penetrant inherited CNV are believed to account for only a small 
fraction of familial cancers, which themselves constitute a minority of clinical 
cancer cases. Consequently, it is considered probable that CNV of low or moderate 
penetrance are the main contributors to hereditary cancer predisposition associated 
with CNV [ 88 ]. The identifi cation of CNV of low or moderate penetrance associ-
ated with increased predisposition to cancer is a challenging task, requiring very 
large cohorts. Nevertheless, in recent years studies have reported a number of com-
mon CNV to be associated with increased disposition to various cancers, for exam-
ple CNV in 20p13 [ 89 ], 2p24.3 [ 90 ], and CNV-67048 [ 91 ]. An interesting case of 
an inherited CNV deletion within a gene desert that was shown to be associated 
with a 1.3 odds ratio of pancreatic cancer is CNVR2966.1 at 6q13 [ 92 ]. The pro-
posed mechanism by which this inherited CNV affects cancer risk is its ability to 
directly interact with the upstream sequence of  CDKN2B  and affect the expression 
of this known cancer gene. It is expected that efforts to identify inherited CNV 
associated with increased cancer risk will be an area of intensive research in the 
coming years. 

 The accumulation of somatic mutations in the form of  aneuploidies  , point 
mutations, and  CNV   is an essential aspect of carcinogenesis and neoplastic pro-
gression. Studies have demonstrated that somatic CNV are especially prominent 
across  cancer   genomes [ 93 ]. The high rate of de novo CNV formation in tumor 
tissue is in accordance with the genomic instability and high mutation rate that 
characterises cancer cells. Recently the largest study examining the patterns of 
somatic CNV across various cancer types has been published [ 94 ]. In this study 
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the authors examined the copy number profi les of 4943 primary cancer specimens 
across 11 cancer types. The authors report patterns of somatic CNV that were com-
mon in the various  cancers   examined. One observation was the tendency for CNV 
to be longer and more frequent near the telomeres compared to CNV located inter-
nally, indicating that these are formed by different mechanisms. By analysing all 
cancer lineages this study identifi ed 70 recurrently amplifi ed and 70 recurrently 
deleted genomic regions, however only a minority of those regions contained 
known cancer genes. Another observation was that large duplications of  genome   
(such as whole genome duplication) are associated with subsequent increases in 
somatic CNV within those regions. It is established that CNV disruptions of can-
cer genes contribute to  tumorigenesis. However, a large number of somatic CNV 
detected in tumors are expected to be “passenger” mutations that arise during can-
cer evolution but do not contribute to the malignancy. The demarcation of driver 
from passenger CNV in tumors is a highly challenging task. The strongest case for 
somatic CNV contributing to cancer development can be made for those that recur 
at appreciable frequencies, indicating that they contribute to cancer development. 
However, recurrent CNV could also be explained in certain cases due to their loca-
tion in fragile sites or due to absence of negative selection against them in evolv-
ing cancer genomes. 

 The classic Knudson’s “two-hit” model considers that  cancer   progression 
requires the disruption of both alleles of tumor-suppressor genes. According to this 
model, a  CNV   deletion, either of germline or somatic origin, resulting in the loss-
of- function of one copy of a tumor-suppressor gene is only adverse when the second 
functioning allele is also disrupted. The disruption of the second allele can be 
another CNV deletion, a point mutation or  epigenetic   dysregulation. Germline CNV 
deletions of tumor suppressor genes can increase the predisposition against cancer, 
as only a single mutational event that affects the second allele is required to com-
plete the loss-of-function of the protein. Somatic CNV deletions of tumor suppres-
sor genes such as Tp53 and retinoblastoma have been long established as important 
mutational events in the multi-step process of carcinogenesis, again requiring the 
disruption of second allele to allow cancer progression. Recently an alternative 
model to the “two-hit” model has been proposed to explain the recurrent focal 
regions of hemizygosity observed in cancer which do not contain known tumor- 
suppressor genes [ 95 ]. According to this model the synergistic haploinsuffi ciency of 
genes involved in repressing cell proliferation result in a proliferative advantage to 
cancer cells. 

 Unlike tumor-suppressor genes,  oncogenes   drive carcinogenesis through their 
increased activity. Somatic amplifi cation of gene copy number of oncogenes has 
long being accepted to be an important carcinogenic mechanism. Classic exam-
ples include the amplifi cation of Myc in Burkett’s lymphoma and N-Myc in neu-
roblastoma. More recent studies have highlighted that  CNV   affecting regulatory 
elements can also drive oncogenic expression. A recent example of this is the 
fi nding of recurrent structural variants in medulloblastomas placing the  GLI1  
family genes close to active enhancers, increasing their expression, which con-
tributes to  cancer   progression [ 96 ]. Although less established than CNV affecting 
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tumor suppressor genes, inherited CNV affecting oncogenes are also implicated 
in cancer. For example individuals with higher copy number of the g.CNV-30450 
CNV located in the promoter region of the MAPKAPK2 oncogene resulting in 
greater expression of the protein, had greater incidence and worse prognosis of 
lung cancer [ 97 ]. 

 Genomic instability is often observed in  cancer  . The increased rate of formation 
of new mutations is believed to be a driver of tumorigenesis by causing new carci-
nogenic mutations. Disruption of genes involved in  DNA repair   and maintenance 
can also lead to a greater mutation rate and susceptibility to cancer development. 
Subset of rare  CNV   associated with cancer, affect genes with genomic stability and 
DNA repair such as BRCA1, MSH2, and HRPT2 [ 88 ]. At least one example of a 
common CNV associated with greater mutation rates has been recently reported, 
affecting the cytidine deaminase APOBEC3B [ 98 ], with perhaps many more 
remaining to be identifi ed.  

     CNV   and Xenobiotics Metabolism 

 Humans possess highly specialised enzymatic machinery involved in the biochemi-
cal modifi cation and excretion of substances that are of external origin. Inherited 
 CNV   affecting the number of copies of xenobiotics enzymes were amongst the fi rst 
to be recognised and have been linked to individual susceptibility to environmental 
agents and to pharmaceuticals. These inherited CNV are also of particular interest 
due to their high degree of variability between individuals and ethnic populations. 

 Evidence supports that  CNV   affecting metabolic enzymes involved in the detoxi-
fi cation and removal of environmental carcinogens are associated with  cancer   inci-
dence. The most extensively studied are CNV deletion polymorphisms affecting the 
 GSTM1  gene, which codes for an phase II metabolism enzyme involved in the 
glutathione- mediated reduction of electrophilic chemicals, which has been linked 
by molecular epidemiology studies to cancer susceptibility [ 99 ]. Another interest-
ing case involved CNV affecting  CYP2A6 , an enzyme with a crucial function in 
nicotine metabolism and clearance. The number of copies of  CYP2A6  varies 
between ethnicities and has been associated with smoking behaviour and tobacco- 
related  diseases   [ 100 ]. 

  CNV   also affect the effi cacy and side-effects associated with pharmaceutical 
treatments.  SULT1A1  is an enzyme catalyzing the sulphate conjugation of a wide 
variety of drugs. Deletions and duplications of this gene (ranging from one to fi ve 
copies) are correlated with the hepatic activity of this enzyme, supporting the func-
tional effects of CNV affecting this gene. Again, considerable inherited variability 
in copy number exists between populations, with 26 % of Caucasians vs. 63 % of 
African-Americans having three or more copies of  SULT1A1  [ 101 ]. Another 
important potential link is an association between the  CYP2D6  genotype and 
response to tamoxifen in postmenopausal women, although this is currently a mat-
ter of debate [ 102 ].  
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    Other Diseases Reported to Be Affected by  CNV   

 Beyond the more established contribution of  CNV   to  intellectual disability  , psychi-
atric  diseases  , and  cancer  , studies have indicated the contribution of CNV to a wide 
range of other human diseases. Examples include CNV linked to risk of osteoporo-
sis [ 103 ], early-onset obesity [ 104 ], atherosclerosis [ 105 ], and Alzheimer’s  disease   
[ 106 ]. These will also be areas of intensive research in the future.      
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  G4    G-quadruplex   
  HD or HTT    Huntington disease   
  HERVs    Human endogenous retroviruses   
  HNPCC    Hereditary non-polyposis colorectal cancer   
  HVR    Hypervariable   
  LINEs    Long interspersed elements   
  LP-BER    Long-patch base excision repair   
  LTRs    Long repetitive sequences   
  MD    Myotonic dystrophy   
  MMR    Mismatch repair   
  MSI    Microsatellite instability   
  NAHR    Non-allelic homologous recombination   
  Nt    Nucleotides   
  ORFs    Open reading frames   
  PABPs    Poly(A) binding proteins   
  SBMA    Spinobulbar  muscular atrophy or Kennedy  disease     
  SCA    Spinocerebellar ataxia   
  SCA8    Spinocerebellar ataxia type 8   
  SINEs    Short interspersed elements   
  SN-BER    Single nucleotide-base excision repair   
  SNPs    Single nucleotide polymorphisms   
  SSRs    Simple sequence repeats or STRs: short tandem repeats   
  SVAs    SINE- VNTR  -ALUs   
  TEs    Transposable elements   
  TNR    Trinucleotide repeat   
  TREDs    Trinucleotide  repeat expansion disorders     
  TRs       Tandem repeats   
  VNTRs       Variable number tandem repeats   

          Introduction 

 DNA repeats are common in eukaryotic and in prokaryotic organisms classifi ed into 
two main categories. The fi rst category is represented by the interspersed repeats, 
so-called because they are consisted of repeated units which contain distinct rem-
nants of  transposons   [ 1 ,  2 ]. Interspersed repeats are quantitatively the most abundant 
sequences of repeated motifs, occupying approximately 45 % in humans and 33 % 
in mice, explaining to a certain extent the degree of variation in  genome   size between 
different organisms [ 2 ]. The second category includes the tandem repeats ( TRs  ) that 
occur in low complexity DNA when a steady pattern of one, two or many more 
nucleotides is repeated and the repetitions are not only sequential but also directly 
adjacent to each other [ 1 ]. Because TRs were initially identifi ed as satellite bands in 
density-gradient centrifugal separations of genomic DNA, the name  satellite DNA   
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has been widely used in reference to TRs, although there are marked differences 
between satellites and TRs. TRs are further stratifi ed in the (a) microsatellites or 
Short Tandem repeats (STR) the (b)  minisatellites   or Variable Number  Tandem 
Repeat   s   ( VNTRs  ) and (c) the recently identifi ed  megasatellites   [ 3 ]. Tandem repeats 
constitute about 8 % of the human genome while only microsatellites comprise 
approximately 3 % of the sequenced human genome [ 4 ]. The sequence 
CAGCAGCAGCAG, for example, is a short  TR  , where the repeated unit is the tri-
nucleotide CAG sequence, and in this example is repeated four times. 

 In tandem  repetitive DNA   sequences in the human  genome  , in particular micro-
satellites and  minisatellites  , differ from the other repetitive DNAs such as,  satellite 
DNA  , telomeres, transposable and retrotransposable sequences and high copy num-
ber genes in many ways [ 5 ,  6 ]. In contrast to satellite DNA, as for example alpha 
satellite DNA, which is found in heterochromatic regions of the  chromosomes  , 
minisatellites and microsatellites are generally found in euchromatin [ 7 ].  Telomeres  , 
although by defi nition have a repeat length similar to microsatellites, are unlike to 
 TRs   constituted of invariable repetitive sequences of (TTAGGG)n, that are specifi c 
to the  chromosome   tips and responsible for protection from chromosome fusion and 
rearrangement [ 8 – 10 ]. In contrast also to transposable and retrotransposable 
sequences, the TRs do not propagate themselves in the genome by a cut and paste 
or a copy and paste mechanism, but they rather originate from endless cycles of 
DNA recombination, replication and repair due to their contribution and participa-
tion in all these processes [ 11 ]. 

 Unlike also to high copy number genes, that are, in a sense, repetitive complex 
sequences, the  TRs   are not transcribed autonomously, but they may harbor regula-
tory elements or extend in exons or introns and interfere with protein synthesis [ 12 ].  

     Tandem Repeat   s   (Micro-, Mini- and Mega-Satellite) 
Sequence Defi nitions 

  TRs   are classifi ed according to their size in repeats with units less than nine nucleo-
tides (nt) in length, which are known as microsatellites, or also as simple sequence 
repeats (SSRs), or short tandem repeats (STRs), and those with units of 10 nt or 
greater in length that are known as  minisatellites   [ 1 ]. It has been suggested that TRs 
with enormously long units, greater than 135 nt, comprise a separate class of repeats 
termed  megasatellites   [ 13 ]. They can be further classifi ed into perfect or imperfect 
repeats (also called exact or approximate repeats) depending on whether they are 
precise copies or differ by ≥1 bp due to mismatch mutations, insertions or deletions. 
 Microsatellites   are the most prevalent and are almost perfect repeats [ 3 ,  14 ]. 

 Since there was no direct association between the content in DNA repeats of a 
living organism with its evolutionary history, the repeats were initially regarded as 
having no biological effect. For this reason they were referred to as non-functional 
junk or selfi sh DNA during the fi rst decades in the advent of DNA research [ 15 – 17 ]. 
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    Microsatellite DNA 

 STRs are in general less frequent than SNPS. According to “The 1000  Genomes   
Project Consortium 2012” there are approximately 700,000 STR loci identifi ed in 
individual genomes tested at the fi rst phase of the 1000  genome   Project. In contrast 
3.8 million SNPs were identifi ed in 270 individuals and catalogued by the 
International HapMap Consortium, by October 2007. Consequently in an approxi-
mated frequency of 1SNP per 1000 genome bases, STRs are estimated to less than 
1 per 5000 bases. 

  Microsatellite DNA  is formed of much smaller units than any other satellite, 
with only  1  to 9 bp and they can be found in both coding and non-coding regions. 
The vast majority of microsatellites have 2 bp repeats the so called dinucleotide 
repeats, being most frequently (CA)n, followed by (AT)n, (GA)n and (GC)n, with 
the last combination of repeat being rare [ 14 ] or 3 bp repeats consisting either a 
codon, as for example most frequently (CAG), coding for glutamine, or other trip-
lets without coding properties [ 14 ,  18 ]. 

 There is evidence that the regional variation in  microsatellite   frequency cannot be 
explained by their base composition alone [ 19 ] and that the density of the microsatel-
lite is almost twice higher at the ends of the arms of  chromosomes   in the human and 
mouse genomes [ 20 ].  Microsatellites   are also frequently found in proximity to inter-
spersed repetitive elements, such as the short interspersed nuclear elements (SINEs) 
and the long interspersed nuclear elements (LINEs). For example, human ALU repeats 
are often accompanied by structures resembling to microsatellites at their 3′ ends, that 
have probably evolved by the insertion of poly(A) tails of reversed transcribed mes-
sages that follow retrotransposable elements at their insertion in a new position in the 
 genome   [ 21 ]. In addition, mononucleotide poly(A) arrays or (A)n and other confor-
mations of A-rich microsatellites predominate at ALU insertions and this is considered 
as potential evidence for the association of microsatellites with poly(A) tails [ 14 ]. 

 More than one million  microsatellite   loci are dispersed in the human  genome  . 
This number includes a signifi cant group of microsatellites interrupted by other 
sequences and a group that is uninterrupted monomorphic [ 14 ]. In addition, mono-
nucleotide repeats, particularly A and T repeats, are encountered in half a million 
loci, while the number of pentanucleotide repeat loci is only a few thousand and the 
higher the repeat sequence is, the more rare the microsatellite becomes. It is probable 
that larger repeats are less common because microsatellites have arisen with the pro-
cesses of the so called “DNA slippage”, “polymerase slippage”, or “slipped strand 
mispairing” [ 22 ,  23 ]. When the new strand is synthesized from the template strand 
during replication of the microsatellite sequence, it will sometimes pair with another 
part of the repeat sequence. If the template strand is looped out then a contraction of 
the microsatellite will result. If the nascent strand loop is integrated, then expansion 
of the microsatellite will occur [ 24 ,  25 ]. In addition, the recombination events, such 
as unequal crossing over and gene conversion, can also cause the contractions and 
expansions of  TR   sequences. It has been widely discussed and accepted that replica-
tion is the most common cause of instability in microsatellites, but recent studies 
provide evidence that recombination may also cause microsatellite instability [ 26 ]. 
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 Microsatellite repetitions are found in the order of 10 to 100 times and are 
 therefore the most useful DNA markers for fi ngerprinting, population, recombina-
tion and evolution studies but also for direct and indirect diagnosis in the clinical 
practice that require polymorphic markers [ 14 ,  27 – 31 ].  

    Minisatellite DNA 

  Minisatellite DNA  is consisted of repeated units of 10–400 bp long with an average of 
about 20 bp. In general the repeat units cover a stretch of approximately 1–5 Kb, with 
20–50 repetitions. Specifi cally, in humans, 90 % of  minisatellites   sequences are located 
to subtelomeric regions [ 32 ] and are hypervariable stretches of DNAs [ 33 ]. The basic 
repeat unit may vary in length from 10 to >50 nucleotides, with mutation rates ranging 
from 0.5 to >20 % per generation. They include some of the most variable loci in the 
human  genome   and often referred to as  V ariable  N umber   T andem  R epeat   s   (  VNTR s  ), 
which is probably the most familiar terminology in the majority of the manuscripts. This 
terminology also highlights the fi ngerprinting properties of the minisatellites in proxim-
ity to genes or in dispersed clusters in euchromatic regions of the chromosomal DNA 
[ 27 – 29 ]. Minisatellites have been frequently used as genetic markers in  linkage   analysis 
studies [ 34 ] and also in population studies [ 35 ]. They have been considered as regula-
tory regions of  gene express   ion   or as parts of genuine open reading frames [ 36 ]. Finally, 
minisatellites as also microsatellites, are associated with  chromosome   fragile sites and 
are found in the vicinity of a number of recurrent translocation breakpoints [ 37 ]. 

 Minisatellites have also been reported to act as “hot spots” for homologous 
recombination [ 38 ]. The huge expansions in  minisatellite   sequences are a result of 
unequal crossover or of unequal sister chromatid exchange. Thus, these genetic 
mechanisms probably account for the extreme variability that is often seen between 
individuals at these loci [ 39 ].  

    Megasatellite DNA 

  Megasatellite DNA  is part of the  satellite DNA   families, with extremely large tan-
dem repetitive sequences that cannot be classifi ed as  minisatellites  . They are called 
either macro- or  megasatellite   DNA [ 40 – 44 ]. One characteristic example of a mega-
satellite DNA is the RS447 which is found on human 4p16.1 to consist of 20–100 
copies with a 4746 bp unit sequence, containing an open reading frame of 1590 bp 
encoding an intronless functional deubiquitinating enzyme (USP17) gene [ 44 – 46 ]. 
Τhe RS447 megasatellite itself contains the functional expression unit of USP17 
that is expressed in human cells [ 46 ]. While USP17 is ubiquitously expressed in 
human tissues, presents with a unique expression pattern in the human brain, with 
its complementary strand transcribed as an antisense transcript that potentially regu-
lates the level of USP17 expression [ 46 ]. The high-level expression of USP17 anti-
sense  RNA   in brain may suppress expression of USP17 and stimulate 
ubiquitin-dependent protein degradation. Strikingly the copy number of RS447 is 
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hypervariable (HVR) and highly polymorphic between individuals, as well as 
among mammalian species [ 44 ], but the unit sequences of RS447 are extremely 
homologous within species [ 47 ]. In conclusion, the unstable nature of RS447 mega-
satellite DNA leads to its hypervariability and may contribute to the structural 
dynamics of this  repetitive DNA   in the  genome  . 

 In addition, the  megasatellite   repeat DXZ4, localized at Xq23-24, has 50–100 
copies of a CpG-rich 3-kb monomer. DXZ4 is found in constitutive  heterochroma-
tin   on the active X  chromosome   characterized by a highly structured pattern of 
H3K9me3 nucleosomes. In contrast, an amount of DXZ4 is found in euchromatin 
on the inactive X chromosome characterized by the modifi ed histones H3K4me2 
and H3K9Ac. It has been put forward, that this megasatellite repeat is implicated in 
a novel function involving X chromosome inactivation [ 48 ].   

     Tandem Repeat   s   Function in the Genome 

 Satellites have a spectrum of functions in the  genome   and were recently recognized 
as key players in evolution, methylation, regulation and stabilization. Tandem 
repeats in the coding sequence may cause the generation of toxic or malfunctioning 
proteins and the non-coding repeats may result in  chromosome   fragility, in the 
silencing of the genes in which they are located, in the regulation of  transcription   
and translation, and in the sequestering of proteins that are associated with  splicing   
and cell architecture [ 49 ]. 

 Tandem repeats are not uniformly represented in all mammalian genes with an 
average representation to about 17 % of the genes, but their unique property is that 
they are often unstable or hypervariable in mammals. Flows in DNA replication and 
repair are constantly introducing changes in the repeated sequences and in the number 
of repeat units and result in  TR   mutations. The frequency of TR mutations depends 
on the number of repeat units, the repeat consistency and the length of the repeat unit. 
The mutation rates of  TRs   are also caused by environmental factors and the higher 
 transcription   and replication rates that may lead to increased instability [ 50 ]. 

 The longer and the more consistent a repeat region is, the more unstable it 
becomes and the mutation rates are often 10–100,000 times higher than the average 
mutation rates in other parts of the  genome   [ 25 ,  51 – 53 ]. Tandem repeat polymor-
phisms are emerging as a third major class of genetic mutation, with counterparts 
the single nucleotide polymorphisms (SNPs) and the  copy number variation  s 
(CNVs)   . Moreover, tandem repeat variability is by defi nition an important genetic 
change by itself, but also infl uences certain changes to concomitant  epigenetic   
marks due to the high instability and the complete reversibility [ 2 ]. 

 The most prominent example of instability and versatility of  TRs   is that most 
humans have 30 CGG•CGG repeats in the 5′ UTR of their FMR1 gene [ 54 – 56 ], while 
population studies in Caucasians indicate that ∼1 in 246–468 females have 55–200 
repeats while ∼1 in 3717–8918 males have 200 to >1000 repeats in the FMR1 gene 
due to instability induced through maternal meiosis [ 57 ]. Thus, the TRs in the genomes 
are polymorphic, with some individuals or families having some tandem repeat 
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regions that are signifi cantly longer than those recorded in the general population. 
In addition, these larger repeat lengths are not biologically neutral. Indeed, FMR1 
alleles with 55–200 CGG•CCG repeats, in the premutation range, are related to neu-
rodegeneration [ 58 ] and ovarian insuffi ciency [ 59 ,  60 ]. While extended alleles with 
>200 repeats, in the full mutation range, are related to  intellectual disability   and autis-
tic symptoms [ 61 ]. The FMR1 gene is not unique as regards signifi cant repeat length 
polymorphism and also in the fact that is related to  disease   pathogenesis. To date, 
>15 disorders have been identifi ed in humans as the results of the presence of large 
expansion-prone DNA tandem repeats in their corresponding genes [ 49 ]. 

 Many genetic disorders, mostly neurodegenerative and late onset, are caused by 
dynamic mutations, concerning almost exclusively trinucleotide repeat (TNR) 
expansions. The aberrant expansion of TNRs and consequently their instability 
within specifi c genes in germ line cells and somatic cells are the causes of these 
genetic disorders [ 62 ]. While many repeats are located within non-coding regions, 
TNRs also occur often within coding and regulatory regions [ 53 ,  63 ]. Several neu-
rodegenerative  diseases   are associated to variation of specifi c repeat areas located 
within coding regions, but variation of repeats located in introns and untranslated 
regions of genes can also lead to various disorders [ 62 ]. 

 In general the repeat expansion  diseases   that are analyzed separately in the text 
of this chapter can be stratifi ed into two subclasses:

 –    Those with TNRs located in an exon coding for polyglutamine tracts  
 –   Those with TNRs in non-coding, regulatory or coding but non-translated 

sequences [ 64 – 66 ].    

 Both coding and non-coding TNR repeats can have signifi cant effects on cell 
processes [ 62 ]. TNRs are highly polymorphic and most importantly above a thresh-
old, in average of 30–50 repeat units, the repeats transcend the afforded length and 
undergo transition to the pathogenic unstable repeat range. TNRs that are located in 
different parts of the genes, including the 3′ and the 5′ UTRs, the exons and the 
introns, are related to various disorders with the common feature of  repeat instabil-
ity   over a given threshold [ 67 ]. 

 Repeat instability can speed up the  disease   progression, depending on the expan-
sion, the age at onset of the parents and the gender of the carrier parent. The degree 
of variation of the repeat sequence over time is associated with tissue or cell-type 
[ 67 ]. It has been observed that in most of the CAG/CTG disorders,  repeat instability   
usually affects the brain, except the cerebellum, which presents with reduced repeat 
instability [ 67 ]. Moreover, the fact that the somatic CAG instability is usually greater 
in the Central Nervous System (CNS) and, more specifi cally, in the neurons, indi-
cates the implication of inappropriate mismatch repair rather than DNA replication 
processes as presented in this chapter in the  DNA repair   and instability section [ 68 ]. 

 Variable tandem repeats that are located in  promoters   of the human  genome   or 
coding sequences can act as mediators for rapid phenotypic changes. The frequent 
contraction or expansion of the repeat tract leads to quantitative and progressive 
changes in  gene express   ion   or function [ 69 ]. Thus,  TR   sequences in the promoters 
are involved in gene expression variation, suggesting that such sequences confer an 
important regulatory role due to genetic variation and can accelerate the evolution 
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of gene expression. This is because the inherent instability of tandem repeats in 
promoters may lead to altered levels of  transcription  ,    generated by the polymor-
phism that allows rapid divergence [ 69 ]. 

 On the other hand, while some variable  TRs   can infl uence  gene express   ion   by 
modifying the  transcription   factor binding sites or by spacing between promoter 
elements, many variable TRs may control promoter activity by modifying the struc-
ture of the  chromatin   itself [ 2 ]. 

 In higher vertebrates,  TRs   also mediate evolvability in organismal morphology and 
these unstable repeats may give evolutionary fl exibility to organ and/or body shape [ 53 ]. 

    Microsatellite Functions 

 The exceptional variability of  microsatellite   sequences has permitted microsatel-
lites to be utilized in various applications such as genetic mapping, forensic science, 
conservation, population and evolutionary studies. 

 Some microsatellites may serve as regulatory elements of  gene express   ion   due to 
their considerable density in  promoters  , together with their ability to function as 
structural elements [ 70 ,  71 ].  Promoter   related microsatellites are frequently G/C 
rich, and many are found within or near the 5′ UTR,  CpG island   s  , and G-quadruplex 
(G4) structures [ 72 ]. 

 The highly conserved microsatellites are abundant in the promoter regions of 
diverse mammalian genes, many of which seem to regulate cell and tissue growth 
and development [ 73 ]. The promoter function is induced by the variation of pro-
moter microsatellites, which leads to a variation of phenotypes. This variation may 
be benefi cial or  disease   causing [ 74 ,  75 ]. Nevertheless dynamic increases in the 
repeat lengths of microsatellites found within  promoters   can at times distort the 
normal phenotypes and produce abnormal ones [ 2 ]. It is well known that the expan-
sion of microsatellites in protein coding or 5′ untranslated regions causes 
Huntington’s disease and fragile-X  syndrome   respectively [ 2 ]. 

  Promoter   microsatellites also have the ability to create various DNA secondary 
structures, with varying consequences in the regulation of  gene express   ion   and the 
 chromatin   conformation [ 76 ]. Indeed, microsatellites with the motif AC/GT can 
form ZDNA, which is a left-handed spin double helix [ 77 ], and microsatellites that 
consist of the motif AG/CT can form H-DNA a DNA triplex structure [ 78 – 80 ]. 
Another DNA secondary structure is the G-quadruplex (G4) [ 81 ]. The G4 secondary 
structure plays an important role in gene regulation [ 82 ,  83 ] and can be highly con-
served in mammals [ 83 ], particularly in promoter regions [ 82 ,  84 ]. These particular 
DNA structures can either regulate  transcription   by modulating  RNA    polymerase   
activity [ 85 ,  86 ] or by affecting RNA folding when present in 5′ UTR [ 87 ,  88 ]. 

 G/C rich motifs that include the so called CpG dinucleotides are candidate sites 
for  epigenetic   modifi cations, due to the abundance of cytosines. Each one of the 
total G/C containing microsatellites, with the exception of the unusual mononucleo-
tide motif C/G, includes CpG dinucleotide targets of epigenetic modifi cation [ 89 ]. 
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It has been observed that changes in repeat number of these  CpG island   s   in micro-
satellites would change the number of methylation sites. In addition, changes in 
 microsatellite   length may infl uence the structural potential, which is important 
because G4 creation appears to limit the methylation at CpG dinucleotides [ 90 ]. 
Thus, the longer the microsatellites are, the higher the probability to have increased 
structural potential, and may in turn meddle in methylation [ 91 ]. 

 Moreover, microsatellites composed of the motif AC/GT can have signifi cant 
effects, on human phenotypes, when they acquire instability. The  promoters   of neu-
ral development genes include an impressive number of conserved microsatellites 
[ 73 ,  92 ]. Changes in AC/GT length have been shown to regulate  gene express   ion   
[ 93 ], and the AC/GT length variation is associated with human phenotypes that 
depend on the regulation of genes harboring AC/GT [ 72 ]. It has been also suggested 
that the  microsatellite   motif can also infl uence  RNA   structure, due to the identifi ca-
tion of certain strand-specifi c biases [ 92 ]. 

 A remarkable fact is that the human  chromosomes   have very low numbers of A 
repeats and also absence of ACG repeats. This phenomenon could be explained by 
various arguments:

 –    These microsatellites play no structural role in the  genome   and if they occur by 
chance, they may not be able to maintain during evolution.  

 –   They may offer strong signals for methylation of CG sequences.  
 –   They are probably involved in DNA  transcription   and replication, possibly 

through the formation of unusual DNA structures [ 94 ].  
 –   Slippage of DNA strands which is essential for the repeats to grow in length [ 31 ] 

may not be possible with some  microsatellite   sequences and the secondary struc-
tures they form.  

 –   The insertion of repeat sequences in the range of 24–40 nucleotides in either 
nucleosome cores or inter-nucleosomal DNA, affects  chromosome   structure and 
cannot be maintained [ 95 ]. An observation that underlies the above arguments 
comes from Figs.  7.1  and  7.2 , where our  bioinformatic   approach clearly demon-
strates that the repeat frequencies of certain di- and tri-nucleotides are substan-
tially different throughout the  genome   and that they cannot be all maintained in 
equal repeat lengths depending on their nucleotide composition.

       Thus, the abundance of microsatellites varies strongly for each sequence motif. 
 Microsatellites   with different repeated motifs may be associated with the determi-
nation of  chromosome   structure. Some chromosome structures have also been asso-
ciated with a higher percentage of AT nucleotides, such as cohesin binding sequence 
[ 96 ] or scaffold attached regions [ 97 ]. In conclusion, changes in  microsatellite   
sequence repeat copy number occur mainly in somatic cells [ 51 ]. Mutagenesis rate 
for microsatellite DNA is expected to be in the range of 0.1–0.2 % [ 51 ,  98 ,  99 ], 
although a higher mutation rate has also been reported to reach as high as 1.5 % at 
the human DXS981 locus [ 100 ]. In contrast to the above, triplet repeats, that are 
implicated in several inherited neuromuscular degenerative  diseases  , can be 
increased in either male or female germinal cells [ 101 ], despite their stability in the 
majority of the somatic cells with the exception of brain and CNS cells [ 67 ].  
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    Minisatellite Functions 

 Minisatellites are associated with the regulation of genes by various processes. 
Certain  minisatellites   are incorporated into open reading frames, some of which 
may be, polymorphic in the human population [ 36 ]. Other minisatellites are binding 
sites for proteins with a spectrum of functional properties, while minisatellites 
located in the 5′ region of genes contribute to the regulation of  transcription   [ 102 ]. 
Certain minisatellites located within introns interfere with  splicing  , creating multi-
ple splice donor sites [ 103 ]. Minisatellites at imprinted loci have been linked to the 
maintenance of the imprint control [ 104 ,  105 ]. Minisatellites have also been sug-
gested in the literature as intermediate structures in the initiation process of  chromo-
some   pairing in eukaryotic genomes [ 11 ,  106 ]. Minisatellites may also compose 
chromosome fragile sites, identifi ed through induction of replication stress in cell 
cultures [ 37 ]. They have also been found in the locality of a number of repeated 
translocation breakpoints and in the control recombination site in immunoglobulin 
heavy chain genes [ 107 ]. 
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  Fig. 7.1    Distribution of most common di-nucleotide repeats in human  genome   (hg19). The occur-
rence of dinucleotide sequence lengths are depending on the nucleotide pair variation as demon-
strated in this graph concerning the distribution of the most common dinucleotides in the genome. 
The differences in the distributions support the literature as concerns  microsatellite   sequence 
length divergence. The fi gure clearly shows that the repeat sequence lengths of dinucleotides are 
different throughout the genome and that microsatellites cannot be all maintained in equal repeat 
lengths. The vertical axis represents the frequency of the repeats, while the horizontal, the number 
of the repeats in each particular sequence found in the genome       
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 In addition, one subcategory of  minisatellites   includes the highly polymorphic 
arrays of short tandem repeats with no known function that are used as power-
ful DNA markers, referred to as  variable number tandem repeat   s   (VNTRs)   . These 
sequences usually contain 1–5 kb of DNA with repeated units of 15–100 nucleotides 
[ 34 ,  39 ]. Several minisatellites across the  genome   share enough sequence homology 
to be amplifi ed and consequently analyzed by a single primer pair and one probe, 
yielding effi cient DNA fi ngerprints. Such is a 10–15 bp core sequence of myoglobin 
minisatellites which includes an invariant core sequence (GGGCAGGANG) among 
several polymorphic  VNTR   loci [ 33 ,  108 ]. 

 In conclusion,  minisatellites   are the most variable loci in the mammalian and 
human genomes and are therefore excellent molecular markers for studying  TR   
variability and instability. Simple intra-allelic rearrangements are the result of low 
levels of somatic instability, while complex gene conversions are due to the high 
frequency of germline instability, which is almost certainly occurring at meiosis. 
Increased level of instability in microsatellites and minisatellites coincides as a 
prominent concurrent phenomenon in many human  cancer   cells [ 109 ,  110 ], athero-
sclerotic plaques [ 111 ] and cells derived from irradiated animals [ 112 ,  113 ].  
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  Fig. 7.2    Distribution of most common tri-nucleotide repeats in human  genome   (hg19). The distri-
bution of three trinucleotide repeats involved in polyglutamine (PolyQ) and non-polyglutamine tri-
nucleotide  repeat expansion disorder   s   shows also in this fi gure a marked  microsatellite   repeat length 
divergence. The fi gure clearly demonstrates that the repeat sequence lengths of certain trinucleotides 
are substantially different throughout the genome and that microsatellites cannot be all maintained 
in equal repeat lengths, depending on the three nucleotide combinations (CAG)n in PolyQ disorders, 
(CCG)nin FRAXE and (CGG)nin FRAXA. The vertical axis represents the frequency of the repeats, 
while the horizontal, the number of the repeats in each particular sequence found in the genome       
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     Telomere   Function 

 Satellites by defi nition, contain also a particular class of long  TRs  , located at the tips 
of all  chromosomes   which are known as telomeres. Telomeric DNA has 10–15 kb of 
hexanucleotide repeats (mostly TTAGGG) and is added to the telomeres of all chro-
mosomes by the enzyme telomerase. Such DNA is most certainly functional because 
it protects the ends of chromosomes from degradation and provides a way for the 
complete replication of telomeric sequences. It also partially regulates the pairing 
and the orientation of chromosomes during cell division. Functional aspects that 
apply to the micro- and mini-satellites, as regards their dynamic behavior, apply also 
to the telomeres. Telomeric DNA sequences belong, according to the sequence defi -
nition given before in this chapter, to microsatellites but some authors regard them 
as yet another subgroup of  minisatellites  . The telomeric sequences have 10–15 kb of 
hexanucleotide repeats, most usually TTAGGG in the human  genome  , at the tips of 
the chromosomes. A dedicated enzyme telomerase is occupied solely with ensuring 
that the complete replication of the  chromosome   is achieved by adding these 
sequences perpetually to the telomeres.  Telomeres   of somatic cells are generally 
shorter than in  germ cell   s   that are designed to live and replicate longer. In humans, 
it has been suggested that telomeric loss is associated with ageing and tumorigenesis 
and this is also a landmark being tested in research involving senescence [ 114 ].  

    Megasatellite Functions 

 The macro- or  megasatellite   DNA copy number may have an infl uence on  gene 
express   ion   and the clinical phenotype and may sometimes cause genetic  disease   
[ 115 ]. In facioscapulohumeral muscular dystrophy (FSHD), a lower copy number 
of 3.3-kb tandem repeat D4Z4, is strongly associated with both lower expression 
levels of adjacent genes and disease severity [ 42 ]. The copy number and the meth-
ylation status in RS447 DNA may affect both the  chromatin   structure and the 
expression of genes in the immediate neighboring region [ 116 ,  117 ]. 

 Moreover, many neurodegenerative  diseases  , such as Parkinson’s  disease  , are 
associated with insuffi ciency of the ubiquitin-proteasome system [ 118 ]. Thus, the 
expression level of the USP17 gene, which may be associated with RS447 copy 
number and methylation status, may also affect the activity of USP17 deubiquitinat-
ing enzyme and cause dysfunction of the ubiquitin-proteasome system, which in 
turn may alter or even cause the disease [ 47 ].   

     Tandem Repeat   s   Evolutional Drive and Recombination 

 The scientifi c community has previously considered regions of tandem repeat DNA 
as “junk” DNA without any signifi cant mutagenic or selective function in the human 
 genome  . However, recent extensive research showed evidence that these DNA frag-
ments have critical functions in the human genome going under  natural selection   
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through evolution. Tandem repeats are evolutionary pertinent due to their powerful 
mutagenic nature. They are mutating in a rate between 10 −3  and 10 −6  per cellular 
division and three phenomena are correlated with  TR  ’s evolutionary instability: rep-
lication slippage, repair and recombination. During replication, errors occur in 
result of slip-strand mispairing. Some of them are corrected by exonucleolytic 
proofreading but many escape this repairing process e.g. by creating secondary 
structures that escape  DNA repair  ing mechanism. During recombination events, 
errors occur through unequal crossing-over or by gene conversion that can change 
TR’s repeat number. Interaction between replication slippage, repair and recombi-
nation could also lead to mutations as in the case of many neurological  diseases  , 
where recombination repair through gene conversion is believed to be responsible 
for trinucleotide expansions [ 119 ]. 

 Strong evidence suggests that tandem repeats are not only randomly distributed 
along human  genome   but that their base composition, length and position are con-
served and modulated in strict terms through evolution. The establishment of tan-
dem repeats in the ORFs of 17 % of human genes indicates their prevalence over 
time and their evolutionary impact [ 2 ]. An interesting fi nding by Sawaya et al. [ 72 ] 
made clear that microsatellites can function as regulators of  gene express   ion  . This 
is justifi ed by the high density of microsatellites in  promoters   which are highly 
conserved, combined with their ability to function as structural elements.  Promoter   
microsatellites are signifi cantly associated with  CpG island   s  , G4 quadruplexes and 
untranslated regulatory regions. Variation within these regions could be either evo-
lutionary benefi cial to genes that are selectively transcribed or potentially harmful 
as regards expression of  diseases   associated genes. Furthermore, Riley and Krieger 
[ 120 ] made an interesting observation for some dinucleotide repeats and their fl ank-
ing sequences. The fi ndings of their study were informative of the nature and history 
of tandem repeats and more specifi cally of the dinucleotide repeats. They found 252 
human genes containing (AC) n, (GT) n,  (AG) n,  or (CT) n  repeats in their UTRs of 
which 22 had conserved upstream fl anking sequences by comparing two different 
species (Homo sapiens and marsupial species). More interestingly, 18 from these 22 
genes were proven to have critical functions in the mammalian embryonic nervous 
system and an additional one was responsible for kidney’s podocyte cells develop-
ment, cells that have many similarities to neurons. As long as these structures are 
important for gene  transcription  ,    translation,  chromatin   organization, recombina-
tion and DNA replication,  natural selection   seems to act in a non-random way as 
regards to  TRs   size expansions/contractions or base alteration. 

     Tandem Repeat   s   in Homologous and Non-homologous 
Recombination 

 Recombination in all genomes drives evolution and permits meiotic and mitotic 
changes that accumulate overtime. The gradual accumulation of genetic alterations 
over a long period of time in reproductive or somatic cells would result in a large- 
scale reformulation and reconstruction of the human  genome  . Recombination is clus-
tered in regions of the genome called “hotspots” that undergo recombination in 
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higher rates than average and contribute to genome diversity. Hotspots are distributed 
in many locations of the human genome as a result of the non-random DSBs (double 
strand breaks) that initiate recombination events. Regions enriched for these hotspots 
include telomeres with their fl anking sequences, as well as other regions containing 
repetitive sequences and sequences enriched in GC content. The major conserved 
regulator protein of recombination hotspots is PR domain zinc fi nger protein 9, 
encoded by the PRDM9 gene. PRDM9 is a meiosis-specifi c histone methyltransfer-
ase with a tandem repeat zinc-fi nger domain encoded by a  minisatellite   sequence 
[ 121 ]. This specifi c protein is considered to trigger  chromatin   remodeling via histone 
3 lysine 4 methylation allowing SPO11 to create DSBs so as to initiate recombination 
[ 122 ]. The bizarre in this case is that PRDM9’s binding affi nity depends on variations 
in the minisatellite itself enhancing an interesting but yet speculative theory that 
PRDM9 is driving its own evolution [ 123 ]. The fact that PRDM9 regulates about 
40 % of human hotspots [ 124 ] combined with the discovery of a new hotspot in 
human genome that is essentially a tandem repeat of a hypervariable minisatellite, 
with a recombinative potential up to 13.5 times over average [ 38 ], declares that some 
 minisatellites   are major regulators of human hotspots and recombination. 

 On the other hand, several reports declare an association between  microsatellite   
polymorphisms recombination rates in the human  genome   but no one has answered 
yet the question whether the recombination is mutagenic to microsatellites or mic-
rosatellites act as recombination signals. Although microsatellites were considered 
as genetic markers that have no contribution in phenotypic variations in the past, an 
interesting fi nding though by Biet et al. [ 125 ] showed signifi cant association of 
dinucleotide repeats with recombination enzymes in yeast, bacteria and humans. 
More specifi c, a common denominator affecting the binding of the recombination 
enzymes scRad51, hsRad51, ecRecA to oligonucleotide dinucleotide repeats (GT, 
CA, CT, GA, GC, AT) is the formation of secondary structures such as Z-DNA in 
ssDNA that is conserved through evolution. As regards to their binding preference, 
oligonucleotides with CT, GT, CA repeats have stronger binding affi nity than GA, 
AT, CG repeats. As one would expect, di-nucleotide repeats according to Biet, are 
positively correlated with recombination rates. But, according to Guo et al. [ 126 ], 
the correlation between dinucleotide repeats and recombination rates seem not to be 
signifi cant compared to motifs of other lengths such us tri-, tetra- or mono- nucleotide 
repeats. More specifi cally, dinucleotide microsatellites with different motifs con-
sisting of either A or T lead to increased recombination rates compared to dinucleo-
tide microsatellites with motifs consisting of both A & T together, lead to decreased 
recombination rates in the human genome. Tri-nucleotide repeats on the other hand 
show the strongest direct effect on recombination rates in the human genome. That 
can be explained by the fact that gene densities are remarkably linked with higher 
recombination rates [ 127 ] and are abundant of trinucleotide repeats [ 128 ]. But, the 
question remains whether do microsatellites themselves act as recombination sig-
nals. It is commonly known that microsatellites are associated with meiotic hotspots 
in the MHC loci, as well as in regions with high recombination rates on human 
 chromosome   22 [ 129 ], but this is a more complex and multifactorial phenomenon. 
According to Myers et al. [ 130 ], recombination is clustered in “hotspot”, regions 
that have much more recombination potential than the genome average, where cer-
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tain microsatellite motifs are overrepresented. So the question is why these certain 
motifs are overrepresented in hotspots. In addition it is unclear whether the majority 
of hotspots contain microsatellites. An interesting report showed that the major fac-
tor which results in converting microsatellite motifs into recombination signals is 
their base composition affecting the stability of the DNA helix [ 131 ]. Furthermore, 
an interesting report showed fl anking sequences have undergone the same evolu-
tionary drive as microsatellites themselves and act as regulators regarding their mic-
rosatellite’s sequence variation and their motif length [ 132 ]. The theory that certain 
sequence motifs, neighboring to or inside the microsatellites, drive microsatellite 
and genome diversity through evolution, gains more and more support [ 132 ].  

     Tandem Repeat   s   in Replicative Recombination 

 Almost 45 % of the human  genome   is composed of DNA segments related to  trans-
posable element   s   (TEs) which represent truncated of full length  transposon   
sequences within genomes commonly known also as interspersed repeats. 
Approximately 90 % of these DNA sequences are related to retrotransposable ele-
ments, but only a minority of those is active and can exhibit new transposition 
events. TEs are divided in two major categories: (1) the DNA  transposons   and (2) 
the retrotransposons. DNA transposons represent nearly 3 % of the human genome 
and are characterized by their ability to “cut” themselves from a genomic locus and 
migrate to another genomic locus (cut and paste). Although DNA transposons lost 
their ability to propagate themselves in the human genome during evolution, they 
had highly active role before 38 million years. On the other hand, the retrotranspo-
sons are characterized by their ability to copy themselves through  RNA   to DNA 
reverse  transcription   (copy and paste). The outcome of this procedure is the increase 
of retrotransposon copies in the human genome over time. The retrotransposons are 
subdivided in two categories, focusing on the presence or absence of long repetitive 
sequences (LTRs). Human endogenous retroviruses (HERVs) are the so called LTR 
elements constituting approximately 9 % of the human genome. Most of the HERVs 
were introduced in the genome before 25 million years and their activity is quite 
limited to humans. In contrast, the majority of TEs in the human genome is the out-
come of the activity of non-LTR elements including LINEs, ALUs, and SVAs which 
represent nearly 1/3 of the human genome [ 133 ]. Data indicate that certain LTR and 
non-LTR elements have still an active role in human genome, so it is of outmost 
importance to defi ne the relationship between tandem and interspersed repeats. 

 Increasing evidence show a strong association between non-LTR elements and 
 microsatellite   sequences. More specifi c, microsatellite sequences can arise during 
retrotransposition of non-LTR elements, mainly LINE1 and ALU subfamilies, into 
the  genome  . Two specifi c studies showed that 36 % of mono-, di-, tri-, tetra- 
nucleotide microsatellites were “born” during the integration of LINEs and ALUs 
into three primate genomes (human, chimpanzee, orangutan) and that as high as 
25 % of microsatellite “births” and 24 % of microsatellite “deaths” occur within 
LINE1 and ALU sequences during retrotransposition [ 134 ]. A common feature of 
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these two major families of non-LTR elements is a poly(A) tail at their 3′ end of 
their sequence which gives them the unique ability to mobilize [ 135 ]. This poly(A) 
tail is a crucial component of the retrotransposition process and its length strongly 
infl uences the dynamics of these major  retroelement   families [ 136 ]. In LINES, a 
poly(A)  RNA   tail is normally formed during the  transcription   process as a 3′ end of 
LINE mRNA. Contrary to LINEs, only active ALUs have the poly(A) RNA tail 
which is recognized by LINE ORF1 protein and therefore undergo LINE1 mediated 
retrotransposition [ 137 ]. Poly(A)RNA tails are the binding sites of PABPs (Poly(A) 
binding protein) creating a critical ribonucleoprotein complex between LINE1 pro-
teins and LINE/ALU RNAs. Several reports demonstrated that the length of these 
poly(A) tails is positively correlated with LINEs and ALUs ability to integrate into 
genomes [ 138 ,  139 ]. Not only the overrepresentation of poly(A) repeats in human 
genome is justifi ed by poly(A) tails of both LINEs and ALUs [ 128 ] but also di- and 
tetra-microsatellite repeats derived from poly(A) tails [ 21 ,  140 ]. Furthermore, the 
abundance of non-LTR elements in human genome made the perfect environment 
for the conversion of CAA to NAA, a mechanism responsible for the generation of 
a large number of A-rich trinucleotide repeats in human genome. More than 60 % 
of these repeats are located within ALU poly(A) tail sequences [ 141 ]. 

 Another interesting non-autonomous non-LTR retrotransposon, that is currently 
active via LINE1 retrotransposition machinery, is SVA (SINE- VNTR  -ALU). SVAs, 
which are the newest class of  retroelements  , also members of the family of 
 non- autonomous retrotransposons, have a special feature that makes them unique. 
Being the only active composite retrotransposons, each component of an SVA is 
derived either from a retrotransposon or from a repeat sequence, characterizing 
SVAs as a repeat of repeats. A typical SVA is consisted from the 5′ prime end to the 
3′ prime, of a hexameric CCCTCT repeat, followed by a sequence homologous to 
antisense ALU sequences, a variable number of tandem  minisatellite   repeats (VNTR 
domain), and fi nally a sequence homologous to HERVK-10 endogenous retrovirus, 
followed by a polyadenylation (polyA) sequence [ 142 ]. SVA’s core sequence is a 
VNTR (Variable Number  Tandem Repeat  ) but its functional role is not yet under-
stood, although its length has increased through evolution. SVAs are highly poly-
morphic, and therefore each repeat domain is capable of misaligning with another 
locus containing similar SVA element or another repeat sequence, leading to NAHR 
(non- homologous recombination) [ 143 ]. In conclusion, older and younger retroele-
ments are associated with  satellite DNA   sequences and have a potentially synergis-
tic natural history in the  genome  . In particular the youngest human specifi c 
retroelements, SVAs, have incorporated in their complex genome sequence, parts 
from microsatellites,  minisatellites   and other older retroelements.   

    Repeat Instability Through Meiosis and Repair 

 Since the discovery of triplet repeat expansions molecular and structural studies 
explored the hypothesis, that intermediate unstable secondary structures were the 
culprits of unstable expansions [ 144 – 146 ]. The length of the repeat and the 
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probability of a given sequence to form a secondary structure determine, to a certain 
point, the likelihood of repeat expansions in polyglutamine or non-polyglutamine 
disorders [ 147 – 149 ]. 

 Although expansions can arise in both  germ cell   s   and somatic cells, anticipation 
in inheritance of trinucleotide repeat disorders is associated with  repeat instability   
in the germ cells [ 150 ]. Furthermore expansions are found in dividing as well as in 
non-dividing cells meaning that dynamic mutations occur either during DNA repli-
cation or during  DNA repair   [ 145 ]. 

    Triplet Repeat Instability at Meiosis 

 Male meiosis is rather more permissive to trinucleotide expansion studies than 
female meiosis and oocyte studies. This is due to the very high numbers of sperma-
tozoa in the ejaculate and also to the subsequent high rates of replication cycles 
during spermatogenesis. A detailed study to identify the particular  gametogenesis   
stage during male  germ cell   development, at which instability takes place, would 
elucidate the mechanisms of trinucleotide expansions. Therefore  gene express   ion   
involved in replication, repair and recombination may answer questions related to 
the effects of male germ cell mitosis, meiosis or maturation on instability [ 26 ]. In 
the pre-meiotic stage, expansions can occur during mitotic replication and repair, 
while in the post-meiotic stage expansions can be infl uenced by meiotic recombina-
tions. Studies of the mismatch repair protein genes in both humans and mice have 
shown that both MSH2 and MSH3 have expression variability with the fi rst being 
highly expressed in mitotic spermatogonia, while MSH3 increases expression to 
peak values at the meiotic spermatocyte stage [ 151 ]. Consequently these results 
may indicate that abnormal repeat expansions may arise as early as at the stage of 
replicating spermatogonia. In Huntington Disease (HD), which is the most frequent 
disorder in the group of polyglutamine (CAG)n  repeat expansion disorder   s  , elegant 
studies using modern technology have reported intriguing results. Expansion prod-
ucts were found in almost equal rates in both pre- and post-meiotic cells but the 
proportion of large expansions in post-meiotic spermatids and spermatozoa was 
signifi cantly higher [ 152 ]. The above indicate that male  germ cells   expansion in HD 
can occur before and potentially during or after meiosis [ 150 ]. 

 Repeat instability mechanisms during  gametogenesis   in HD may have similari-
ties to other repeat expansion loci causing instability disorders, but have also marked 
differences that underline dissimilarities in molecular pathology and genetic coun-
seling. Studies of families with similar (but not CAG)  repeat expansion disorder   s  , as 
is Myotonic Dystrophy (DM1) and Spinocerebellar ataxia type 8 (SCA8), caused by 
the unstable (CTG)n, have shown repeat expansion bias from the maternal side in 
contrast to the paternal. In addition, FMR1 gene (CGG)n repeat expansions are 
invariably maternal and arise in the oocyte, as mothers rather than fathers are 
responsible for the unstable transmission. FMR1 paternal instability transmission 
does not take place as (CGG)n stretches contract in FRAXA males to premutation 
range lengths [ 153 ]. Contractions or deletions of the expanded alleles may also be 
identifi ed in male SCA8 patients in analogy to FRAXA patients [ 154 ]. 
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 As regards transmission in male HD patients who have a higher risk for sperm 
cell HTT gene DNA expansions, there could be measures to reduce the (CAG)n 
instability anticipation. Pearson suggests early pubertal semen storage, to be used 
for future assisted reproduction, as he postulates from the literature that at the onset 
of puberty the late onset HD carriers have lower chances to harbor expansions com-
pared to their semen samples later in life [ 150 ].  

    Triplet Instability in Somatic Tissues 

 The fi ndings in reproductive tissues and  germ cell   s   are not necessarily analogous to 
those of somatic tissues, which undergo completely unrelated to germ cells processes. 
Differences exist even between tissues of patients or between different trinucleotide 
 repeat expansion disorder   s  . For example different somatic tissue cells from 12 HD 
patients were found to display repeat mosaicism as in their germ cells [ 155 ]. 
Surprisingly the greatest level of polyglutamine coding (CAG)n mosaicism in HD 
was detected in both brain and sperm. On top of that fi nding, affected brain regions by 
obvious neuropathological lesions were having the highest repeat mosaicism [ 155 ]. 

 In a dual experimental approach, both DM patients’ fi broblasts were extracted 
and cultured at progressing ages and DM transgenic mice tissues were studied. The 
results were intriguing due to the fact that replication progression was associated 
with the expansions and may affect tissue and age specifi c  repeat instability   [ 156 ]. 

 In conclusion although  germ cell   s   and somatic cells may poses unrelated replica-
tion processes,  repeat instability   is a tissue specifi c phenomenon that is probably 
observed predominantly in affected tissues and the germ cells which are known to 
have varying replication rates but also high plasticity of their DNA [ 157 ,  158 ].  

    Triplet Repeat Instability Due to Defects in DNA Repair 

 As presented above CAG instability is more prominent from all somatic cells in the 
brain neurons of the CNS, implicating mechanisms independent of the replication 
process [ 68 ]. Sound hypothesis and adequate experimentation have suggested and 
consequently shown that triplet repeats form different secondary DNA structures, 
depending on their sequence [ 159 ]. The secondary DNA specifi c conformation pre-
determines stability or instability, explaining why CAG repeats forming predomi-
nantly random coils are unstable, while CTGs which tend to form hairpins are stable 
[ 160 ]. Trinucleotide repeat length can also infl uence stability by generating multiple 
conformations, raising thus the complexity of the DNA structures [ 161 ]. 
Transcription of the repeats leads to the formation of hybrid DNA– RNA   structures 
in addition to the DNA–DNA structures that may arise in nuclear  chromatin   and 
affect the stability of the initial conformation of the repeat secondary structure 
[ 162 ]. Finally, other important nuclear processes may infl uence the primary and 
secondary repeat structures, such as methylation, chromatin remodeling and  tran-
scription   and have an important effect on stability [ 146 ]. 

V.A. Galani et al.



173

 In mice it has been shown that  repeat instability   is reduced as a direct conse-
quence of mismatch repair genes inactivation [ 163 ,  164 ]. The same is true for the 
long-patch base excision repair and the single nucleotide excision repair systems 
[ 165 ,  166 ]. 

 Base excision repair (BER) is a dedicated  DNA repair   pathway occupied with 
the elimination of DNA base fl ows. Oxidative damage due to 8-oxoguanine 
(8-oxoG) is the most common DNA lesion [ 167 ], that BER is destined to correct by 
a series of enzymes. The enzymes remove the unmatched DNA base (glycosylase), 
cleave the abasic site, (Ape1 endonuclease) and repair the either single base defect 
or the multibase stretch defect (DNA polymerase β-Polβ and fl ap endonuclease 
1-Fen1) [ 62 ,  168 ]. 

 BER protein signifi cance in TNR instability has been studied in  repeat instability   
models of yeast and mice suggesting that replication errors together with BER may 
contribute to instability. Although there is no clear view which of the two, replica-
tion or repair, is more crucial for instability, the disruption of Lig1 and PCNA 
 interaction increased instability due to replication errors in yeast [ 169 ]. Lig1 protein 
defi ciency on the other hand did not result in instability, in contrast to Lig1 overex-
pression that led to repair dependent instability [ 170 ]. Similarly, in Lig1 mutant DM 
mice, a maternal bias with shift to increased contractions and decreased expansions 
was found, indicating the interplay between replication and repair in instability 
[ 171 ]. Furthermore, in HD mice with  Neil  defi ciency somatic and germline instabil-
ity was reduced, including the brain tissue. Neil1 is a DNA glycosylase acting on 
pyrimidine-derived lesions, that can also remove duplex and single-strand DNA 
lesions and 8-oxoG lesions in both somatic and germ line tissues [ 172 ]. Finally, in 
a fragile X premutation model the DNA oxidizing molecule, potassium bromate, 
exacerbated repeat instability in the germline driving the gene towards the repeat 
expansion, indicating repair of oxidative DNA lesions as related to the instability of 
(CGG)n repeats [ 173 ]. 

 Age increases oxidative damage on DNA in certain tissues related to  repeat 
instability  , as in the  germ cell   s   and the brain. Also accessibility of repair proteins to 
hairpin secondary conformations of (CAG)n and (CTG)n is potentially reduced due 
to inappropriate recognition [ 174 ]. On top, hairpin conformations of (CAG)n and 
(CTG)n repeats are considered as hot spots for DNA oxidative damage [ 175 ]. 
Consequently, reduced accessibility and increased susceptibility of repeat second-
ary structures to DNA damage may facilitate accumulation of oxidative lesions at 
(CAG)nor (CTG)n repeats or even deteriorate to generate unstable expansions [ 62 ].   

    Satellite Repeats in Human Disorders 

 Satellite repeats, either mini-or micro-satellites with short or long repeated 
sequences of DNA, are usually prone to acquire repeat instabilities due to errors that 
occur during the repair process that follows replication. Replication errors, that 
affect  repeat instability  , may happen in  germ cell   s   at meiosis or in somatic cells at 
mitosis with defects in recognition and repair of replication errors. 
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 The two major types of satellite repeat involvement in human inherited or 
acquired disorders are given below:

•    Micro- and mini-satellite instability disorders that relate to impaired DNA mis-
match repair during replication in somatic cells. Instability disorders are present 
in  cancer   cells as the result of the nuclear proofreading machinery failure to cor-
rect mismatches that spontaneously arise in fast replicating nuclei. Instability is 
present in coding, as well as in non-coding microsatellites with potential func-
tional oncogenic effects, either on the  chromatin   conformation or on the  gene 
express   ion  . Such failures exist (1) due to predisposition owing to inherited 
defects of the mismatch repair genes (2) due to acquired inability of the cell 
nucleus to sustain high fi delity replication of the DNA and correct distribution of 
the genetic material to the daughter cells. Defects in recognition and repair of 
replication errors are most frequently found in tumors with inactivating  mutations 
on mismatch repair (MMR) genes. Such inactivating mutations are found in dis-
orders inherited from the germ line, such as in human non-polyposis colorectal 
 cancers   or in sporadic colorectal, endometrial and gastric cancers. Inactivating 
MMR gene alterations result in instability of both mini- and micro- satellite 
repeats in cancer cells and can be used as diagnostic or prognostic markers for 
these types of cancer.  

•   Repeat instabilities at meiosis are either contractions or expansions, but the later 
are those related to human disorders known as the trinucleotide  repeat expansion 
disorder   s  . Triplet repeat expansion disorders, which are common human genetic 
defects, are characterized by abnormal expansion of a triplet repeat stretch adja-
cent to a functional gene during meiosis, resulting in an abnormal repeat number 
interfering with expression or regulation of this gene. The most common repeat 
forms in expansion disorders are the trinucleotides CAG, CGG, CTG and GAA.    

    Micro- and Mini-Satellite Instability Disorders 

 Predisposing germ line mutations, responsible for recognition and repair failures in 
hereditary non-polyposis colorectal  cancer   (HNPCC), are more frequently those 
affecting the MLH1 and MSH2 genes. Both genes belong to classes of mismatch 
repair homologous genes present in prokaryotes and eukaryotes. 

 More than 30 different genes have been found to harbor mutations at coding 
repeat sequences in sporadic  cancers   with  microsatellite   instability [ 176 ]. Among 
them are genes directly related to mismatch  DNA repair   as MLH3, MSH3, MSH6 
and PMS2. 

 Almost all the above mismatch repair genes (MLH1, MSH2, MSH3, MSH6 
and PMS2) have been tested for  microsatellite   mutational biases in different spe-
cies (yeast, mouse and human) and have been found to favor either deletions or 
insertions [ 177 ]. 
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 Cancers may also destabilize  minisatellites   in patients with MMR gene inherited 
defects manifested as colorectal  cancers  , specifi cally in those patients known to 
have  microsatellite   instability (MSI). Furthermore there is evidence that DNA insta-
bility may be detected in minisatellites even in cases with a MMR gene mutation, 
where MSI has not been observed [ 178 ].  

    Repeat Expansion or Trinucleotide Repeat Instability Disorders 

 Trinucleotide  repeat expansion disorder   s   (TREDs) are a defi ned group of genetic 
disorders affecting the neural and the neuromuscular system. In a total of more than 
15 disorders, (CAG)n and (CTG)n repeat expansions are the most frequent, encoun-
tered in the majority of these disorders. The repeats causing the TREDs are poly-
morphic in the general population with a normal higher repeat range of approximately 
30–50 repeats. Loss of function or gain of function is related to the specifi c gene 
location of the expansion which is either at the 5′ or 3′ UTR or within introns or 
exons. Unstable repeats are pathogenic and result in dynamic mutations that can 
expand further in the germline and somatic tissues and also from one generation to 
the next [ 179 ]. The deterioration of the TREDs from a normal or permutation status 
to a full mutation is described in  medical genetic   s   as anticipation, meaning the clini-
cal presentation of the early onset disorder in the future generations with more pro-
nounced symptoms [ 26 ]. 

 There are many important features in each particular TRED, of which the note-
worthy are: (1) expansions are more frequent than contractions, (2)  germ cell   s   may 
have the same pathogenic expansions as selective tissue cells, (3) expansions tend to 
be increased in the affected tissue cells and in particular to the brain cells, (4) repeat 
sequence tracts in affected somatic tissues seem to increase with age [ 157 ,  180 ]. 

 At least fi ve different trinucleotide sequences are involved in  repeat expansion 
disorder   s  , CGG, CCG, CAG, GAA and CTG, with a frequent range from over 21 
tandem repetitions to more than 250 and an excessive range in some particular dis-
orders, as in the FRAX  syndrome  , with more than 10 3  repeats in full mutations. 
Maternal meiosis is the common cause of triplet repeat expansions, but contractions 
may also occur [ 181 ]. 

 Various genes in mammalian species and in humans contain repetitive triplets 
CAG or CAA coding for glutamine. The universal code for glutamine (CAG) is 
found in more than half of the  repeat expansion disorder   s   in humans. Due to the 
translation of these expansions in the affected cells a deleterious polyglutamine 
tract is formed leading to polyglutamine or alternatively termed polyQ disorders. 
The cells may not effectively get rid of proteins with excessively long polygluta-
mine tracts that eventually can accumulate in nerve cells over time and damage 
their cytoplasm. For this reason, the stratifi cation of the repeat expansion disor-
ders is facilitated by the simple discrimination between polyglutamine and non- 
polyglutamine disorders. 
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    Polyglutamine Disorders (CAG)N 

 There is a signifi cant association of the polyglutamine tract length with a tendency 
for early onset appearance of the polyglutamine (polyQ) disorders. The most fre-
quent polyglutamine disorder is Huntington chorea, followed by SBMA (Spinobulbar 
Muscular Atrophy or Kennedy  disease  ) and the Spinocerebellar ataxias (SCA1, 
SCA2, SCA3, SCA6, SCA7 & SCA17) (Table  7.1 ).

       Non-polyglutamine Disorders 

 The most frequent disorders in this group are Fragile X  syndrome   (FRAXA), 
Myotonic Dystrophy (DM) and Friedreich’s ataxia (FRDA), followed by other less 
frequent disorders, as FRAXE (Fragile XE mental retardation) and Spinocerebellar 
ataxias (SCA8 & SCA12) (Table  7.2 ).

   Fragile X  syndrome   (FRAXA) is the most frequent and prominent disorder 
among the non-polyglutamine disorders, owing its name to the association of a 
fragile site on the X  chromosome  , with mental retardation in karyotyped mentally 
retarded patients. Although the triplet CGG in fragile X syndrome gene FMR1 
codes for arginine, the gene expansion is located at the 5′ prime untranslated region 
of the gene and therefore affects directly on the regulation of the protein FMRP 
expressed. The long stretches of >55 repeats of CGG and particularly those of full 
mutations affect mostly the methylation of this region creating more  CpG island   
targets for methylation. Abnormal methylation interacts with all aspects of the 
molecular function of the FMR1 gene including regulation, expression and 
replication.    

    Contribution of Microsatellite and Minisatellite DNAs 
to Medical Genetics 

 Microsatellite and  minisatellite   DNA variations have played a crucial role in the 
development of  medical genetic   s  . Their use in  linkage   analysis studies revealed the 
association of various genes with hundreds of hereditary  diseases  , helped in the 
chromosomal abnormality screening and in the mapping of genetic loci susceptible 
to tumors. Many micro- and mini-satellites found to be functional promoter poly-
morphisms are acting as common genetic risk factors for disorders, like diabetes, or 
pathogenic mutations (Huntington Disease, Fragile X Syndrome, Myotonic 
Dystrophy, Spinocerebellar Ataxias). Finally, microsatellites and  minisatellites  , 
constituting a powerful tool for the  genome   identifi cation, the parentage confi rma-
tion and the sexual assault examinations, favored signifi cantly the forensic science. 
The contribution of these DNA variations in medical genetics is described in the 
following pages. 
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    Microsatellite DNAs and Medical Genetics 

 Microsatellite markers constitute powerful tools for testing genetic loci associated 
with common  diseases  . For example, Huntington’s  disease   which as described previ-
ously, is caused by an expansion of a CAG repeat encoding a polyglutamine stretch 
in the huntingtin protein, the size of which is inversely associated with the age at 
onset of Huntington’s disease [ 182 ]. Similarly, Fragile X  syndrome  , caused by an 
expansion of a CGG repeat in the fragile X gene, exceeds a threshold length at which 
the protein produced by the gene cannot be detected [ 183 ]. STRs have also been used 
for the prenatal diagnosis of Down syndrome using amniotic cells [ 184 ], the detection 
of hemophilia A and B [ 185 ,  186 ], the diagnosis of prostate adenocarcinoma in tran-
srectal prostate biopsy specimens [ 187 ], the detection of Duchenne muscular dystro-
phy [ 188 ] and the duplication screening in Charcot–Marie-Tooth patients [ 189 ]. 

 The requirement of very small amount of DNA, pure or even degraded to some 
extent, for the analysis of  microsatellite   markers as well as their adaption to high- 
throughput systems favored their use in  linkage   analysis genetics. With the develop-
ment of the second generation genetic linkage maps of human  chromosomes  , the 
responsible genes and the respective mutations for over 2000 genetic disorders were 
identifi ed. Microsatellite markers have played an important role in the linkage anal-
ysis of recessive  diseases   with very low incidence, in which only a very small num-
ber of patients can be collected [ 190 ]. In cases of patients, whose ancestors lived in 
the same area for a long period, only few patients are suffi cient to map a gene asso-
ciated with a genetic  disease  . The responsible genes for Fukuyama-type congenital 
muscular dystrophy, an autosomal recessive, severe muscular dystrophy associated 
with brain anomalies [ 191 ], and for the Gelatinous drop-like corneal dystrophy, an 
autosomal recessive disorder characterized by severe corneal amyloidosis leading to 
blindness [ 192 ], were isolated using microsatellite markers. Finally, the analysis of 
STRs in the Xq11–Xq13 interval can provide a simple and rapid scan of the genetic 
loci associated with prostate carcinoma predisposition in large populations [ 193 ]. 

 STRs, due to their high heterozygosity, are very useful in paternity and forensic 
testing. The genotyping of autosomal, Y-chromosomal and mitochondrial STRs has 
increased the ability to solve problems relevant to paternity or relevant to related-
ness on the maternal or the paternal lineage [ 194 – 196 ]. On the other hand, forensic 
genotyping, providing reliable evidence for sentencing the offenders and exonerat-
ing the innocent suspects, has great impact on the society. The use of STR analyses 
offered a doubtless identifi cation of an individual implicated in violent crimes such 
as murders or sexual assaults and the identifi cation of remains of missing persons or 
victims of mass disasters [ 197 – 199 ]. 

 Furthermore, the analysis of autosomal, Y-chromosomal and mitochondrial 
microsatellites has been widely used for the identifi cation of “founder effect” phe-
nomena [ 200 ,  201 ], which are caused when a small group of individuals cuts out 
from a larger population and establishes a new population. These populations are 
usually characterized by increased frequencies of certain genetic  diseases  , such as 
Tay–Sachs  disease   in Ashkenazi Jews [ 202 ] and asthma in Hutterites [ 203 ]. 
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Consequently, the study of founder populations is very useful for identifying which 
genes are involved in a genetic disease and which is the genetic profi le of the disor-
der. STRs constitute a valuable tool for the above analysis offering a fi ne-mapping 
of the disease genes. 

 DNA typing is necessary for the engraftment documentation after allogeneic 
bone marrow transplantation or allogeneic peripheral blood stem cell  transplantation 
[ 204 ]. The serial chimerism analysis of STRs offers a reliable and simple screening 
for the detection of relapse and the identifi cation of patients with progressive mixed 
chimerism [ 205 ]. In case of chronic myeloid leukemia, although the common STR 
analysis is an appropriate screening test for patients in the post- transplant setting, 
the use of leukemia STR specifi c sensitive molecular assay is necessary in patients 
exhibiting mixed hematopoietic chimerism [ 206 ]. Finally, STR analysis is very use-
ful in leukemia patients with graft failure after a bone marrow transplant and in need 
of a second transplant [ 207 ].  

    Minisatellite DNAs and Medical Genetics 

 The  minisatellite   DNAs are highly polymorphic sequences with high heterozygos-
ity in given populations [ 34 ], frequently encountered in the literature as variable 
number of tandem repeats ( VNTRs  ). 

 Alec Jeffreys, who discovered the technique of genetic fi ngerprinting in 1984, 
showed that  minisatellites   constitute the most variable markers of human  genome  , 
exhibiting this variation in the numbers of repeat units or “stutters”. The hypervaria-
tion of  VNTRs   has been utilized for the discrimination of individual genomes in 
criminal forensic studies and for parentage testing [ 208 ]. The use of VNTRs in such 
cases offered a reliable ‘DNA fi ngerprinting’, unique for any individual, and a pow-
erful tool for criminal justice [ 209 ]. However, allele databanks for every population 
are essential so as to estimate the probability of a particular allele combination 
[ 210 ]. The analysis of highly variable VNTRs led to a trustworthy  paternity testing   
and eliminated the non-paternity, which constituted a common source of bias in the 
estimation of mutation rates when they were obtained from family data with discor-
dance of parental and offspring genotypes [ 211 ]. 

 The use of  VNTRs   has also contributed signifi cantly in the detection of total or 
partial chromosomal losses by the disappearance of a paternal or maternal allele on 
Southern blot analysis. Specifi cally, loss of  VNTR   alleles was revealed in 40 % of 
colorectal carcinomas from constitutionally heterozygous patients at the  chromo-
some   17p loci, suggesting that hemi- or homo-zygosity of 17p alleles plays a role in 
the development of these tumors [ 212 ]. Furthermore, the detection of genetic mate-
rial loss from the short arm of chromosome 17, evidenced by a VNTR allele loss, 
has shown that the increased p53 mRNA expression is involved in breast tumor 
biology [ 213 ]. Similar partial chromosomal deletions, detected with VNTR analy-
sis, were associated with gastric carcinoma [ 214 ], neuroblastoma [ 215 ], non- 
Hodgkin lymphoma [ 216 ], head and neck  cancer   [ 217 ]. 
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  VNTRs   have also played a role in the study of tumor suppressor genes, most of 
which were characterized by inactivation of both alleles in tumors. The use of a p53 
cDNA probe and two  VNTR   probes on  chromosome   17 has shown that the allelic 
loss of p53 may play an important role in the development and progression of ovar-
ian carcinomas [ 218 ]. Furthermore, rare alleles of the H-ras VNTR, located down-
stream of the H-ras oncogene, have been associated with breast  cancer   and they 
have been proposed as informative markers for the breast cancer risk [ 219 ]. The use 
of four intragenic VNTRs as probes has shown that the loss of heterozygosity of the 
Rb gene is correlated with pRb protein expression and p53 alteration in human 
esophageal cancer [ 220 ]. Finally, a VNTR located at the intron 16 of the human reti-
noblastoma (RB1) gene is associated with tumor presence in retinoblastoma [ 221 ]. 

 Many  VNTRs  , constituting functional promoter polymorphisms, act as genetic 
risk factors or pathogenic mutations for various  diseases  . The evaluation of a  minis-
atellite   marker expansion in the promoter of the CST6 gene has been found to be 
informative for the recessive myoclonus epilepsy (EPM1) onset [ 222 ], while the 
expansion of a  VNTR   upstream of the insulin gene, which regulates the insulin 
expression, is indicative of the polycystic ovary  syndrome   [ 223 ]. The alleles of 
another insulin gene VNTR regulatory polymorphism (26–63 repeats) predispose to 
type 1 diabetes in a recessive inheritance mode or are dominantly protective (140 to 
more than 200 repeats) [ 224 ]. Furthermore, a VNTR polymorphism of the P-selectin 
glycoprotein ligand-1 is a signifi cant determinant of thrombotic predisposition in 
patients with antiphospholipid syndrome [ 225 ], whereas a VNTR polymorphism in 
the intron 2 of the interleukin-1 receptor antagonist gene is informative for the age 
at onset of neuropsychiatric symptoms in Wilson’s  disease   [ 226 ]. 

  VNTRs   have also been used in prenatal diagnosis for the confi rmation of parent-
age and the elimination of maternal contamination of chorionic villus or amniotic 
cell samples [ 227 ,  228 ]. Additionally, a  VNTR   identifi ed in the human phenylala-
nine hydroxylase (PAH) gene has been used for the prenatal diagnosis of classical 
phenylketonuria [ 229 ], while prenatal diagnosis of hemophilia A can be achieved 
using an intragenic marker (BCL1) and an extra-genic VNTR (DXS52) [ 230 ]. 
Finally, VNTR genetic markers have been used in clinics to detect chimerism after 
bone marrow transplantation [ 231 ,  232 ].  

    Novel Methods for the Analysis 
of Micro- and Minisatellite DNAs 

 Taking into account the above, we can assume that micro- and  minisatellite   DNAs 
constitute useful genetic markers in coding and regulatory regions of the human 
 genome  . However, the role of many STRs and  VNTRs   remains unclear due to the 
technical diffi culties of tandem repeat sequencing. Specifi cally, the next generation 
sequencing is probably not suitable for the analysis of genomic regions with tan-
dem repeats because of reads with short lengths. For this reason, new methods for 
the analysis of micro- and minisatellite markers have been developed [ 233 ,  234 ]. 
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The only limitation of these methods is their ability to genotype only repeats with 
short unit length and low copy numbers. Recently, a new method based on tar-
geted enrichment for tandem repeats followed by sequencing has been developed 
[ 235 ], permitting a better assessment of repeat variability between individuals. The 
use of this method has revealed a high degree of variability in STRs and VNTRs, 
even between direct relatives, and the occurrence of de novo mutations. The 
development of such techniques will give the opportunity for new  genome-wide   
association studies that will testify the  linkage   of tandem repeats with inherited or 
multifactorial disorders.      
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    Chapter 8   
 Intron Biology, Focusing on Group II Introns, 
the Ancestors of Spliceosomal Introns       

       María     Dolores     Molina-Sánchez      ,     Rafael     Nisa-Martínez       ,     Fernando   
  M.     García- Rodríguez              ,     Francisco     Martínez-Abarca      , and     Nicolás     Toro     

            Characteristics of Group II Introns 

  Group II intron   s   are mobile metalloribozymes that self-splice from precursor  RNA   to 
generate excised intron lariat RNA forms, which invade new DNA genomic locations 
by reverse  splicing  . These  retroelements   also encode a  reverse transcriptase   that 
stabilizes the RNA structure for forward and reverse splicing and fi nally converts the 
inserted intron RNA back to DNA. For these reasons, group II introns initially identifi ed 
in the mitochondrial and chloroplast genomes of lower eukaryotes and plants, and 
subsequently found in bacteria and archaea are thought to be the ancestors of nuclear 
spliceosomal introns and non-long terminal repeat (non-LTR) retrotransposons [ 1 – 4 ]. 
Recently identifi ed structural and functional similarities between group II introns and 
spliceosomal nuclear RNAs have suggested that group II introns may have played an 
important role at the very start of eukaryote evolution. It is now thought that their 
invasion of pre-eukaryotic genomes and their proliferation in those genomes may have 
driven the evolutionary separation of nucleus and cytoplasm [ 5 ]. 

 Typically, group II introns consist of a conserved  RNA   structure organized into six 
domains. Domain V is the most conserved of these domains and is considered to be an 
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essential part of the catalytic core (Fig.  8.1 ) [ 6 ,  7 ]. In mobile introns, a protein (the 
intron-encoded protein) is commonly encoded by domain IV, which contains a specifi c 
subdomain (subdomain DIVa) responsible for facilitating the canonical interaction 
generating the ribonucleoprotein (RNP) particles involved in the  invasion of new DNA 
targets [ 8 ]. The IEP has two conserved domains: an N-terminal  RT   domain and a mat-
urase/thumb domain (also known as the X-domain). Some IEPs also have a C-terminal 
DNA-binding (D) region followed by a DNA endonuclease (En) domain (Fig.  8.1 ).

       Group II Intron Ribozyme Sequences 

  Group II intron    ribozymes   are characterized by a conserved secondary structure, 
which varies in size from 100 nt up to about 3000 nt [ 9 ]. The fi rst model was 
established on the basis of a phylogenetic data comparison, looking for potential 
base pairings that had been preserved by evolution despite primary sequence 
divergence [ 6 ,  10 ]. The only sequences of group II intron ribozymes that are strongly 
conserved are the intron boundaries (GUGYG at the 5′ exon junction and AY at the 
3′ junction), which resemble those of spliceosomal introns (GU…AG) and few 
nucleotides dispersed throughout the rest of the structure [ 11 ]. 

  Group II intron    ribozymes   are organized into six domains, DI–DVI, radiating 
from a central core (Fig.  8.1 ). They form a structure consisting of a set of double 
helices resulting from Watson-Crick and Crick wobble base-pairing [ 12 ]. The six 
domains fold into a catalytically active tertiary structure with the assistance of a 
series of conserved motifs involved in long-range tertiary interactions surrounding 
a catalytic four-metal-ion center [ 13 ]. Some interactions involve Watson-Crick base 
pairs (α-α′, β-β′, γ-γ′, δ-δ′, ε-ε′, IBS1-EBS1, IBS2-EBS2 and IBS3-EBS3), whereas 
other are tetraloop-receptor interactions of known geometries (ζ-ζ′, η-η′ and θ-θ′), 
or other types of less well defi ned non-Watson-Crick interactions (λ-λ′, κ-κ′ and 
μ-μ′) [ 14 ,  15 ]. Two of the six domains are essential for catalysis: the largest domain 
(DI), and DV. Recent crystallographic studies have revealed that the shape of the 
 RNA   molecule is dictated by a set of tertiary interaction networks within domains I 
and III that creates the scaffold responsible for binding and activating catalytic 
domain V [ 16 ]. DI is essential for exon recognition in forward and reverse  splicing   
reactions. DV contains the catalytic triad, AGC at its base, the G residue being 
invariant and critical for splicing. Another important catalytic motif is the AC bulge 
of DV. Tertiary contacts between conserved nucleotides in the linker region J2/3 and 
the fi fth nucleotide of the intron (λ position) have been described and reported to 
bring together these nucleotides to form a metal ion-binding platform directly 
involved in catalysis [ 10 ,  17 – 20 ]. Domain VI (DVI) contains a highly conserved 
bulged adenosine residue that acts as the branch point for lariat formation during 
splicing [ 7 ]. DVI also takes part in the long-range η-η′ interaction underlying the 
organization of the terminal loop of DVI and an internal helix of DII, which has 
been reported to be important for transesterifi cation at the 3′-splice site [ 9 ]. 

  Group II intron   s   can be classifi ed into three structural subclasses, according to 
the recognition of their fl anking exons. Subclass IIA and IIB introns, which display 
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  Fig. 8.1    Secondary structure of group II intron RNAs and domain structure of the intron-encoded 
proteins (IEP). Structure of a representative  ribozyme   (not to scale): domains (DI–DVI), the EBS/
IBS elements, the bulged adenosine within DVI, and the sequences involved in the tertiary interac-
tions (Greek letters) occurring during  splicing  , as described in the text. Major differences between 
group IIA and IIB introns are indicated in  brackets . Note that group IIC introns lack the EBS2 
element. The loop of DIV, which encodes the IEP, is depicted by  dashed lines , with a box showing 
the location and structure of DIVa, a high-affi nity binding site for the IEP. Diagrams ( drawn to 
scale ) of the Ll.LtrB (IIA), RmInt1 (IIB) and GBSi1 (IIC) IEPs encoded within intron DIV are 
boxed on the right, with the predicted  reverse transcriptase   (RT)   , maturase (X), variable DNA- 
binding region (D) and conserved DNA endonuclease (En) domains indicated. The C-tail denotes 
a C-terminal extension of 20 amino-acid residues conserved in the RmInt1 IEP and involved in 
maturase activity and DNA target recognition. The numbers above the  RT   domain identify con-
served amino-acid sequence blocks characteristic of  RTs         
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strong DNA target specifi city, recognize their two exons via three base-pair inter-
actions (IBS1/EBS1 and IBS2/EBS2 for the 5′ exon and δ-δ′ (IIA) or IBS3/EBS3 
(IIB) for the 3′ exon), whereas subclass IIC introns use only two of these interac-
tions (IBS1/EBS1 and IBS3/IBS3) and require a stem-loop structure in ssDNA that 
is generally derived from a  transcription   terminator by an as yet unknown recogni-
tion mechanism [ 21 ]. Additional subclasses have also been defi ned on the basis of 
specifi c structural differences: A1, A2, B1, B2 and B3 [ 10 ,  22 ].  

    Group II Intron-Encoded Proteins 

 The IEP component is a multifunctional protein containing a  reverse transcriptase   
(RT)    domain with subdomains conserved across other  RT   families (subdomains 0, 
1, 2, 2a, 3, 4, 5, 6, 7) [ 8 ,  23 ]. Downstream from the RT domain is domain X, which 
functions as the thumb domain of the RT, and has a sequence conserved among 
group II introns but not between group II introns and other types of  RTs   [ 4 ,  24 ]. 
Domain X is immediately followed by a DNA-binding domain (D), defi ned on the 
basis of its function, but displaying no sequence conservation. Finally, many group 
II IEPs have an endonuclease domain (En) at their C-terminus that is required for 
the retromobility of these introns (Fig.  8.1 ). However, most bacterial IEPs have no 
En domain. Instead, they have a C-terminal portion that constitutes a distinctive, 
characteristic signature of this ORF class and has probably been conserved through-
out evolution. This region of the protein is a group-specifi c functionally important 
protein region participating in both maturase function and intron mobility [ 25 ]. 
Recent studies on the consensus amino-acid sequences of the maturase and 
C-terminal domains have expanded our knowledge of subclasses of intron ORFs 
with no recognizable D/En region [ 26 ]. 

 The classifi cation and phylogenetic analysis of group II introns on the basis of 
their IEPs have resulted in the defi nition of several main groups: A, B, C, D, E, F, 
CL1 (chloroplast-like 1), CL2 (chloroplast-like 2) and ML (mitochondrion-like) [ 4 , 
 26 ,  27 ], although additional types of intron ORF have recently been identifi ed [ 26 ]. 
The introns of classes A, C, D, E and F and the newly identifi ed  g1  introns encode 
proteins with no En domain [ 26 ]. The En domain seems to have been acquired only 
once in recent phylogenetic lineages of group II introns, by the common ancestor of 
classes B, CL and ML [ 26 ]. Intron  RNA   structures are generally congruent with 
ORF phylogeny [ 27 ].  

    Group II Intron Splicing 

  Group II intron   s   have developed a series of  splicing   mechanisms to ensure their 
removal from the pre-mRNA and, hence, their survival in the host  genome   [ 28 ]. 
Organellar group II introns mostly interrupt essential genes, whereas prokaryotic 
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group II introns are found in  mobile genetic element   s   or intergenic regions [ 29 ]. 
Some group II introns can self-splice in vitro [ 30 ], but excision in vivo is generally 
assisted by protein factors that facilitate either  ribozyme   folding or the splicing 
reaction itself [ 31 ]. 

    Excision Mechanisms of Group II Introns 

 Several excision mechanisms have been described for group II introns, generating 
different intron  splicing   products and ligated exons [ 15 ,  32 ]. These mechanisms 
generally co-exist within the same host [ 33 – 36 ], but some group II introns have 
been reported to display excision exclusively via a specifi c pathway [ 37 – 39 ]. Major 
advances have been made towards understanding the mechanism and kinetics of 
group II intron splicing in studies based on self-splicing assays, in which the intron 
precursor is incubated in non-physiological conditions (high temperatures and salt 
concentrations) in vitro [ 30 ]. 

  Group II intron   catalysis generally involves two sequential transesterifi cation 
reactions (Fig.  8.2a ). Mg 2+  ions are involved in ensuring the correct folding of the 
catalytic core of the intron  ribozyme   and they also orchestrate the rearrangement of 
the single active site between the fi rst and second  splicing   reactions [ 19 ,  40 ,  41 ]. 
The branching reaction is the most common excision pathway among group II 
introns [ 15 ,  42 ,  43 ] (Fig.  8.2a  [1]). The 2′-OH of a bulged adenosine located in 
ribozyme domain VI initiates a nucleophilic attack on the phosphate bond at the 
intron-5′ exon junction, generating an intron intermediate in which the adenosine is 
covalently linked to the fi rst intron nucleotide. In a second step, the free 3′-OH of 
the 5′ exon triggers a nucleophilic attack on the 3′ splice site, leading to exon liga-
tion and intron lariat release. Alternatively, the fi rst transesterifi cation reaction can 
be initiated by a hydroxyl group from a water molecule, generating a linear excised 
intron and ligated exons [ 44 – 46 ] (Fig.  8.2a  [2]). This excision pathway has classi-
cally been associated with group II introns that have lost the bulged adenosine [ 37 –
 39 ]. Both steps in the branching reaction are reversible [ 47 ], but the fi rst reaction of 
the hydrolytic pathway seems to be irreversible [ 33 ,  48 ]. The most recently discov-
ered intron excision mechanism mediates the release of the intron as a true circle 
[ 35 ,  36 ,  49 – 51 ] (Fig.  8.2a  [3]). The mechanism underlying this reaction remains 
unknown, but it has been suggested that the 3′-OH of a free 5′ exon could attack the 
3′ splice site, releasing the 5′ exon-intron linear intermediate and linked exons. The 
hydroxyl group at the end of the intron thus reacts with the fi rst intron residue and 
forms the circular intron. The maturase activity of the IEP modulates the balance 
between intron lariats and circles in vivo [ 52 ]. It has recently been suggested that 
the splicing of wheat mitochondrial group II introns under cold stress plays a regu-
latory role [ 53 ]. Introns with a conventional branchpoint structure display classical 
lariat- type splicing regardless of germination temperature. By contrast, the excision 
of non-conventional introns shifts from a predominantly hydrolytic pathway at 
room temperature to the production of circular molecules in the cold.
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   The 5′ and 3′ splice sites are recognized principally by base pairing. The EBS1- 
IBS1 interaction is crucial to 5′ splice site recognition during the  splicing   reaction. 
By contrast, the EBS2-IBS2 duplex is entirely dispensable for catalysis and 
splice site fi delity [ 36 ,  54 ]. Indeed, group IIC introns naturally lack the EBS2-IBS2 
interaction, instead requiring the recognition of an upstream  transcription   terminator 

  Fig. 8.2    Mechanisms of group II intron excision. ( a ) Intron lariat, linear and circular molecules 
may be generated, depending on the excision pathway: branching [1], hydrolysis [2] and circle 
formation [3], respectively. The intron  RNA    seq  uence is indicated by a  dark blue line , and the exon 
sequences are represented by an  empty blue box  (5′ exon) or a  light blue box  (3′ exon).  Orange 
bars  correspond to the EBSs/IBSs interaction. The bulged adenosine in intron domain VI is repre-
sented as an  A. Dotted red lines  indicate the nucleophilic attacks occurring during each step of the 
reaction. ( b ) Structural similarities between the catalytic core of group II introns and activated 
spliceosomes.  Dark blue lines  represent the intron RNA, whereas  light blue boxes  and lines cor-
respond to exon sequences ( dotted lines  indicating connecting regions of variable length omitted 
from the diagram for simplifi cation). snRNA segments are shown in  black  or  dark gray , and  pink 
spheres  represent Mg 2+  ions. The catalytic triad is shown in  red ; the unpaired CA region in intron 
domain V and the equivalent segment in the U6 snRNA are shown in  green  and the bulged adenos-
ine (A) region is shown in  violet . The nucleophilic attack of the bulged adenosine on the 5′ exon-
intron junction is indicated by a  red arrow. Orange bars  correspond to the EBSs/IBSs interaction. 
Other long-range contacts are identifi ed by  yellow  and  light gray bars        
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stem-loop [ 21 ]. Similarly, recognition of the 3′ splice site involves base pairing 
between the fi rst nucleotide of the 3′ exon and the nucleotide preceding the EBS1 
sequence (δ) in group IIA introns, or the EBS3 residue located in the coordination 
loop in group IIB and IIC introns [ 55 ,  56 ]. In addition to the long-range interactions 
underlying the catalytic conformation, tertiary contacts and structural constraints 
determine the effi ciency and fi delity of identifi cation, for both splice sites [ 11 ,  36 , 
 57 ] (Fig.  8.2b , left panel). 

 Degeneration is common in organellar group II introns, for both  RNA   structures 
and ORF motifs. Thus, the intron  ribozyme   may be encoded in two or more pieces 
located at different positions in the  genome  , with disruptions often observed within 
dIV [ 58 ]. The intron and the fl anking exons are transcribed separately, in a manner 
similar to that for  cis - splicing   introns, making the ligation of two distant exons pos-
sible.  Trans -splicing is generally reported in higher plants, and this process requires 
the assistance of host-encoded protein factors [ 59 ]. A more dramatic process, intron 
fragmentation, has been observed in the chloroplast genome of  Euglena gracilis , in 
which 155 small group II intron fragments are found [ 60 ]. 

 Alternative  splicing   reactions have also been reported for bacterial and organel-
lar group II introns [ 61 – 63 ]. These reactions occur at low frequency and result from 
misrecognition of the 3′ or 5′ splice site, inducing ORF truncations or small inser-
tions. Alternative excision was initially thought to result in unproductive process-
ing, but a recent study has revealed that this constitutive regulated process involving 
an unknown mechanism generates four functional surface-layer protein isoforms in 
the human pathogen  Clostridium tetani  [ 64 ].  

    Proteins Assisting Intron Excision 

 The effi ciency of group II intron  splicing   in vivo is dependent on two groups of 
proteins [ 8 ]: those encoded by intron domain IV (IEPs), which are involved in  cis - 
splicing  reactions and found mostly in bacteria, and a group of host-encoded pro-
teins with diverse functions, mediating the  trans -splicing of organellar group II 
introns in yeasts, algae and higher plants [ 31 ,  65 ]. IEPs promote the splicing of 
group II introns in the maturase domain. They are highly specifi c splicing factors, 
playing little or no role in the excision of any intron other than the intron that 
encodes them [ 66 – 68 ]. They are usually expressed in  cis , but they can promote the 
splicing of genomic copies of ORF-less introns [ 68 ,  69 ]. 

 The organellar introns have diverged considerably from their bacterial ancestors, 
through a decrease in the number of maturase-encoding genes. A few intron- 
encoded ORFs are found in the mitochondria of lower eukaryotes (i.e.,  Marchantia 
polymorpha ), but only one organelle-encoded protein has been reported to assist in 
the  splicing   of about 20 group II introns in vascular plants. This protein is called 
MatR in mitochondria, and MatK in chloroplasts [ 70 ,  71 ]. Moreover, a series of 
maturase-related proteins (nMat1a, nMat1b, nMat2a, and nMat2b) have been iden-
tifi ed in the nucleus of angiosperms. After translation, these proteins are imported 
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into mitochondria and chloroplasts to mediate the excision of group II introns [ 72 –
 74 ]. An extensive search of the genomic sequences of recently sequenced green 
algae and land-plant mitochondria identifi ed a number of new genes potentially 
encoding maturases, the role of which in the maturation of group II introns remains 
to be elucidated [ 75 ]. 

 A plethora of nuclear-encoded proteins from various families, with diverse func-
tions, has been reported to contribute to the correct folding and excision of organel-
lar group II introns [ 9 ,  31 ,  65 ,  76 ]. One of the most numerous and well characterized 
groups of proteins identifi ed is the DEAD-box proteins, which act as ATP-dependent 
 RNA   chaperones, ensuring the correct folding of the  ribozyme   or resolving inactive 
kinetic traps and then triggering productive RNA folding (the yeast factor MSS116, 
CYT-19 in  N. crassa ; Ded1 in  S. cerevisiae ; SrmB in  E. coli ; PMH2 in  A. thaliana ) 
[ 77 – 80 ]. Only a small number of these proteins (MSS116, CYT-19 and Ded1) can 
stimulate group II intron  splicing   in vitro in near-physiological conditions, suggest-
ing that additional cofactors must be required to trigger splicing in vivo. Genetic 
and biochemical data have shown that organellar group II intron RNAs and multiple 
protein factors form functional high-molecular weight, spliceosome-like complexes 
[ 81 ,  82 ] (Fig.  8.2b ).   

    Group II Intron Mobility 

 In addition to acting as catalytic RNAs, some group II introns are also target- specifi c 
 mobile genetic element   s   (recently reviewed in [ 8 ,  83 ]). Mobile group II introns can 
insert site-specifi cally into a DNA sequence identical to the splice site (homing), at 
a frequency of up to 100 % [ 84 – 86 ], or more randomly, at low frequency, into ecto-
pic sites (transposition) [ 87 – 89 ]. These mechanisms occur through an  RNA   inter-
mediate and are referred to as  retrohoming   and retrotransposition, respectively [ 90 , 
 91 ]. Both events occur via full reverse  splicing  , mediated by a ribonucleoprotein 
particle (RNP) formed by the association of the IEP with DIVa and the catalytic 
core regions of the excised intron RNA [ 92 ]. The IEP is essential for maintenance 
of the active intron RNA structure, to ensure that the intron can reverse splice into 
the DNA target site.  Group II intron   mobility mechanisms were fi rst studied for the 
yeast mtDNA introns aI1 and aI2 [ 93 – 96 ], and have since been investigated in bac-
teria [ 66 ,  90 ,  97 ]. The main difference between yeast and bacterial mobile introns is 
that one or both exons may accompany the intron (co-conversion of fl anking exons) 
in yeast, but not in bacteria [ 98 ]. 

 The  retrohoming   of group II introns is highly site-specifi c, because a ≈20–25-bp 
DNA target sequence is recognized by the RNP via domain D or other regions. The 
IEP recognizes the upstream (positions −23 to −1) and downstream (positions +4 to 
+9) exon DNA sequences (Fig.  8.3a ). Thirteen nucleotides of the DNA target are 
recognized by base pairing between the intron  RNA   and exon sequences, through 
EBS2/IBS2, EBS1/IBS1 and either δ-δ′ (IIA introns) or EBS3/IBS3 (IIB, IIC 
introns) interactions (Fig.  8.3b ; [ 12 ,  32 ,  99 ,  100 ]). The essential role of each of the 

M.D. Molina-Sánchez et al.



203

base-pairing interactions has been demonstrated by mutating the DNA target site 
and observing the inhibition of reverse  splicing   in vitro or of intron mobility in vivo. 
These mutations can be rescued by compensatory mutations in the intron RNA. DNA 
target specifi city is mostly controlled by the intron RNA, as the IEP can recognize 
only a few nucleotide positions. Initial recognition appears to involve interactions in 
the major groove between the IEP and key bases in the distal region of the 5′ exon, 
in the chain into which the intron subsequently reverse splices [ 101 ]. These interac-
tions, enhanced by contact between the phosphate backbone and the IEP, involve 
unwinding of the DNA, allowing the reverse splicing of the intron RNA by pairing 
with IBS and/or δ sequences. DNA target sites have been defi ned experimentally for 
the yeast introns  coxI -I1 [ 102 ] and  coxI -I2 [ 103 ], the  L. lactis  Ll.LtrB intron [ 99 ], 
the  S. meliloti  RmInt1 intron [ 104 ], the  B. halodurans B.h .I1 intron [ 21 ], the  E. coli 
E.c .I5 intron [ 105 ], the  T. elongatus T.e .I4h intron [ 106 ] and the  Enterobacter cloa-
cae  group IIC  E.cl .GOC intron [ 107 ]. Group IIA, IIB and IIC introns differ in terms 
of DNA target site recognition, and these differences affect design and performance 
in the biotechnological context (Fig.  8.3b ).

  Fig. 8.3    DNA target site recognition: ( a ) RNP complexes recognize the target site on double- or 
single-stranded DNA primarily through EBS-IBS pairing (and by δ–δ′ interactions in subgroup 
IIA), whereas the IEP also binds specifi cally to key nucleotide residues in distal 5′ and 3′ exon 
regions indicated by  dotted lines  in the diagram. ( b ) Comparison between the base-pairing interac-
tions used by group IIA, IIB and IIC introns for DNA target site recognition.  EBS  exon binding 
site,  IBS  intron binding site       
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      Group II Intron Mobility Pathways 

 After reverse  splicing   of the  RNA   into the DNA target site, at least three different 
mechanisms may complete the mobility of yeast group II introns [ 96 ,  108 ]. One of 
these mechanisms involves a minor pathway through which a small proportion of 
the intron mobility events occur in natural conditions without the coconversion of 
exons, probably through the synthesis of a full-length intron cDNA, which is joined 
by  DNA repair  . A second  RT  -independent pathway (≈40 %), in which intron inte-
gration occurs by homologous recombination of both the 5′ and 3′ exon sequences, 
involves the repair of the nicks generated by RNPs in the DNA target, by the double- 
strand break reaction (DSBR) mechanism (Fig.  8.4c ). Finally, the major pathway 
(≈60 %) entails the coconversion of the 5′ exon only, and involves cDNA synthesis 
by target-primed reverse  transcription   (TPRT) and the integration of the intron by 
homologous recombination (DSBR) (Fig.  8.4a, b ).

   The bacterial group II intron mobility pathway was fi rst described for the  L. lac-
tis  Ll.LtrB IIA intron, in studies involving in vivo plasmid-based genetic assays in 
both  L. lactis  and  E. coli  [ 66 ,  90 ]. Retrohoming was subsequently characterized by 
analyzing the biochemical characteristics of RNPs reconstituted from the purifi ed 
IEP (LtrA) and in vivo excised lariat  RNA   [ 67 ,  109 ]. In vivo, the RNPs bind the 
DNA nonspecifi cally and then scan for the accurate target site by facilitated diffu-
sion [ 109 ]. Ll.LtrB RNPs recognize a relatively long target region through three 
sequence motifs in DI of the RNA (EBS1, EBS2 and δ), and they base pair to 
complementary sequences in the DNA target site (IBS1, IBS2 and δ′) and through 
interactions of the IEP with nucleotides located in positions −25 to +9 of the inser-
tion site (Fig.  8.3a ) [ 83 ,  99 ,  100 ,  110 ,  111 ]. Once the target has been recognized, 
 retrohoming   occurs by TPRT (Fig.  8.4d ). The RNA cleaves the sense strand of the 
double-stranded DNA at the exon junctions, and the intron RNA integrates into the 
target site. At the same time, LtrA cleaves the antisense strand at position +9, 
through its En activity. The 3′ end of the antisense strand is used by the  RT   domain 
of the IEP for the reverse  transcription   of the inserted RNA intron. The resulting 
cDNA is then integrated into the host DNA by homologous recombination- 
independent repair mechanisms [ 90 ]. 

 Some mobile group IIB introns have an IEP with no En domain. Their IEPs have 
 RT   activity, and their RNPs can mediate reverse  splicing   into double- or single- 
stranded DNA substrates but cannot carry out site-specifi c second-strand cleavage; 
they therefore require a variant of the TPRT  retrohoming   pathway (Fig.  8.4e ) [ 91 , 
 105 ,  112 ,  113 ]. Most En −  group II introns are inserted into the strand used as a tem-
plate for synthesis of the lagging strand during replication [ 114 ]. They can therefore 
insert into single-stranded DNA only when the replication fork has overtaken the 
insertion site. The IEP thus uses the nascent lagging strand to prime reverse  tran-
scription   [ 91 ]. Other mechanisms have also been suggested for the initiation of the 
cDNA synthesis, including random nicks in the antisense strand ( Schizosaccharomyces 
pombe cob -I1 intron, [ 115 ]), or de novo initiation (RT encoded by the Mauriceville 
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plasmid in  Neurospora , [ 116 ]). The best studied IIB-like intron is RmInt1 [ 69 ,  91 , 
 112 ], which recognizes a DNA target site extending 20 nt into the 5′ exon and 5 nt 
into the 3′ exon. Target recognition occurs primarily by base-pairing between the 
EBS1, EBS2 and EBS3 of the intron  RNA   and the corresponding IBS sequences in 
the DNA target. The RmInt1 RT recognizes two critical nucleotide residues, possi-
bly with the contribution of additional sequences [ 104 ,  112 ]. 

 Unlike group IIA and IIB introns, group IIC introns have limited specifi city 
due to the recognition of short IBS1 and IBS3 sequences (Fig.  8.3b ). Moreover, 
the IBS2/EBS2 pairing seems to be replaced by the recognition of a palindromic 
Rho- independent  transcription   terminator motif or phage attachment site ( attC  
sites), through an as yet unidentifi ed mechanism [ 21 ,  37 ,  116 – 118 ]. Group IIC 
intron- encoded proteins also lack the En domain, but retain both domain Z 
(DNA binding) and domain X (maturase activity) [ 107 ]. Introns of this kind are 
found after non- identical terminators, inserted into the top or bottom strand, 
with a leading or inverse orientation, respectively [ 12 ,  107 ]. The integration of 
these introns resembles that of IIB introns, as it occurs through reverse  splicing   
into single-stranded DNA at the replication fork or transcription bubble, with 
the nascent lagging strand preferentially used to prime reverse transcription of 
the intron. 

 It was thought that linear introns could not undergo reverse  splicing   [ 119 –
 121 ], but recent studies have shown that yeast and bacterial linear group II 
introns reverse splice effi ciently (Fig.  8.4f ) [ 122 – 124 ]. The  retrohoming   of lin-
ear Ll.LtrB intron was demonstrated in eukaryotes, by the microinjection of 
RNPs into  Xenopus laevis  oocyte nuclei or  Drosophila melanogaster  embryos 
[ 123 ,  124 ]. The linear  RNA   undergoes the fi rst reverse splicing reaction, becom-
ing attached to the 3′ exon but not to the 5′ exon. The IEP then reverse tran-
scribes the RNA, and the cDNA is ligated to the 5′ exon by the non-homologous 
end-joining (NHEJ) factor Lig 4 and the  DNA repair   polymerase θ (polQ). Other 
DNA ligases and polymerases can also perform this function, but at lower effi -
ciency [ 124 ]. This mechanism may also mediate the retrohoming of linear RNAs, 
not only in eukaryotes, but also in many prokaryotes with homologous NHEJ 
machinery [ 8 ,  125 ]. 

  Group II intron   s   can also retrotranspose to ectopic DNA target sites, albeit at low 
frequency (10 −4 –10 −5 ) [ 88 ,  114 ,  126 – 128 ]. The pattern of spread of Ll.LtrB within 
the  L. lactis   genome   is consistent with intron retrotransposition into double- or 
single- stranded DNA through a homologous recombination-independent mecha-
nism [ 114 ], similar to that described for the mitochondrial and bacterial RmInt1 
introns [ 32 ]. In  L. lactis , the retrotransposition of the Ll.ltrB intron is biased towards 
reverse  splicing   into transiently single-stranded DNA, with priming by the nascent 
lagging strand (Fig.  8.4e ). By contrast, the retrotransposition of Ll.LtrB in  E. coli  is 
characterized by the preferential use of double-stranded DNA targets, with or with-
out En cleavage of the opposite strand [ 129 ], indicating a role of the host cell, in 
addition to the intron, in pathway selection [ 130 ].  
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    Host Factors Infl uencing the Retrohoming Pathway 
of Group II Introns 

 Mobile group II introns are genetic elements with specifi c molecular characteristics 
favoring their retention and spread in the  genome  . However, their mobility depends 
on the genetic background of the host, and  retrohoming   is dependent on the comple-
tion of cell functions [ 111 ]. The replication machinery of the cell is required in the 
early stages, but the host repair machinery is essential during late stages of retro-
homing. The fi rst experiments performed with the group II intron Ll.LtrB from  L. 
lactis  in the heterologous host  E. coli  [ 131 ] led to the formulation of a model of 
retrohoming involving host factors that either increased or decreased the effi ciency 
of mobility. Thus, exonucleases (Recj, MutD, and PolI) cutting the ends of the 
DNA, RNases (RNase H) degrading the  RNA   template after cDNA synthesis, DNA 
and repair polymerase complexes (PolII, PolIII, PolIV and PolV) ensuring correct 
synthesis of the second DNA chain and DNA ligases all facilitate intron mobility. 
By contrast, degradative enzymes may decrease retrohoming levels. For example, 
RNase I and E, may eliminate the intron RNA, and exonuclease III (XthA) may 
degrade the newly synthesized cDNA or top strand in the upstream exon. Further 
studies revealed that some enzymes from the degradosome (RNase E) may affect 
retrohoming levels, depending on the physiological status of the cell [ 132 ]. It was 
subsequently shown that Ll.LtrB mobility was infl uenced by cell interactions and 
responses to cellular or environmental stresses, through global regulators [ 133 –
 136 ]. One recent study [ 137 ] confi rmed previous fi ndings and revealed, through 
genetic and biochemical analyses, a possible role for replication restart proteins in 
the retrohoming mechanism.   

    Use of Group II Introns in Biotechnology 

  Group II intron   s   have a number of characteristics that render them suitable for use 
as biotechnological tools: (1) they integrate into their DNA targets highly effi ciently, 
in a homologous recombination-independent manner; (2) they can mobilize foreign 
DNA inserted within the intron; (3) minimal host functions, in the form of common 
cellular  DNA repair   mechanisms, are required for intron integration and (4) group 
II introns recognize the target DNA mostly through base pairing with the intron 
 RNA  . This last characteristic makes it possible to change intron specifi city simply 
by changing the EBS/δ sequences. Currently, Ll.LtrB [ 138 ] a group IIA intron 
from  Lactoccocus lactis , and the group IIB introns EcI5 [ 105 ] from  Escherichia 
coli  and RmInt1 from  Sinorhizobium meliloti  [ 139 ] are used as biotechnological 
tools. A chimeric intron based on the TeI3c  ribozyme   and the TeI4c IEP from 
 Thermosynechococcus elongatus  have also been used for gene targeting in 
thermophilic bacteria [ 140 ]. 
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 Introns were initially modifi ed for the recognition of new target sites by 
 identifying target sites matching the requirements of the IEP and then modifying the 
EBS/δ sequences to ensure base pairing with the new IBS/δ′ sequences. The retar-
geted introns are known as  targetrons  . Several algorithms have been developed for 
the retargeting of the Ll.LtrB [ 138 ], EcI5 [ 105 ] and RmInt1 [ 141 ] introns. These 
algorithms are based on the observed nucleotides frequencies obtained in invasion 
experiments using both randomized EBSs/δ-intron donor libraries and randomized 
IBSs/δ′-intron target site libraries. The algorithm scores a DNA sequence across a 
sliding window with 1 bp increments. The length of the sliding window depends on 
the intron: 45 bp for Ll.LtrB, 36 bp for EcI5 and 25 bp for RmInt1. A score is 
assigned to the potential target sites identifi ed, with higher scores associated with a 
greater probability of a high invasion frequency. For each algorithm, a threshold 
value has been defi ned, above which the retargeted intron insertion frequency is 
high enough for the identifi cation of intron insertion into the selected new target site 
in a simply assay, such as colony PCR. Once the best potential target site has been 
identifi ed, the EBSs/δ sequences of the introns are modifi ed to ensure base pairing 
with the new target site and are inserted into the intron donor plasmid, in which the 
IBSs/δ′ regions of the fl anking exons are also modifi ed to provide complementarity 
with the modifi ed EBS/δ regions, for effi cient  RNA    splicing  . Intron donor plasmids 
also contain the IEP sequence, together with the corresponding intron from a posi-
tion outside the DIV of the  ribozyme   (ΔORF) and downstream from the intron 
RNA. This conformation has been shown to be more effi cient for  retrohoming   than 
the wild-type conformation with the IEP within DIV of the intron RNA [ 69 ,  105 , 
 110 ]. Different  promoters   have been used for expression of the  targetron   and the 
associated IEP: constitutive promoters, such as the Km promoter used for the 
RmInt1 targetron [ 69 ], the T7 promoter recognized by the T7  RNA polymerase   used 
in the expression of EcI5 and Ll.LtrB targetrons in  E. coli , inducible promoters, 
such as the m-toluic acid-inducible promoter or tac promoter [ 142 ,  143 ] and endog-
enous promoters from the bacterial strain in which the targetron is used [ 144 – 146 ]. 

 Intron integration can be detected by colony PCR or through the use of a select-
able marker such as an antibiotic resistance gene. A retrotransposition-activated 
marker (RAM) has been developed for this purpose [ 145 ,  147 ]. The RAM cassette 
is based on a selectable marker with its own promoter inserted in reverse orientation 
into group II intron domain IV of the intron  RNA  . The marker is interrupted by the 
td group I intron in the forward orientation. The selectable marker is thus expressed 
only if  retrohoming   occurs. Subsequent modifi cations, with the selectable marker 
fl anked by FRT sites recognized by the site-specifi c recombinase Flp, made it pos-
sible to remove the marker gene and led to the  adaptation   of the system for multiple 
gene disruptions. 

 Retargeted introns have been used in various species of the genera  Agrobacterium  
[ 142 ],  Azospirillum  [ 148 ],  Bacillus  [ 149 ],  Clostridium  [ 145 ],  Ehrlichia  [ 150 ], 
 Escherichia  [ 105 ],  Francisella  [ 146 ],  Lactococcus  [ 151 ],  Listeria  [ 152 ], 
 Paenibacillus  [ 153 ],  Pasteurella  [ 154 ],  Proteus  [ 155 ],  Pseudomonas  [ 142 ], 
 Ralstonia  [ 143 ],  Salmonella  [ 111 ],  Shewanella  [ 156 ],  Shigella  [ 111 ],  Sinorhizobium  
[ 139 ],  Sodalis  [ 157 ],  Staphylococcus  [ 144 ],  Vibrio  [ 158 ], and  Yersinia  [ 159 ]. In 
bacteria,  targetrons   are used primarily to obtain knockout mutants. In  Clostridium , 
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a genus in which transformation is diffi cult, retargeted intron derivatives of Ll.LtrB, 
known as ClosTron [ 145 ], have proved useful in several studies of the biology of the 
various species. When retargeted ΔORF introns insert into the sense strand, a con-
ditional disruption is obtained as  splicing   can take place if the IEP is expressed, 
even  in trans . However, intron targeting to the antisense strand leads to an uncondi-
tional mutation. 

 It is also possible to use  targetrons   to deliver foreign DNA into specifi c 
sequences [ 151 ,  160 ,  161 ]. The cargo gene is transported into the deleted region of 
DIV. For Ll.LtrB, fragments of less than 100 bp in length have a slight effect on 
intron insertion, but mobility effi ciency is greatly reduced by fragments of more 
than 1 kb [ 162 ]. The secondary structure of the cargo sequences also affects intron 
mobility [ 156 ]. 

 A method for bacterial  genome   editing using both  targetrons   and the Cre/lox 
system has recently been used [ 156 ]. This system has been used for insertions of 
12 kb and deletions of up to 120 kb in  E. coli  and  S. aureus , inversions in  E. coli  and 
 Bacillus subtilis  and one-step cut-and-paste manipulations for the translocation of 
120 kb of genomic sequence to a site 1.5 Mb away. 

  Group II intron   s   (Ll.LtrB) have also been used in eukaryotic cells [ 163 ]. This 
approach is less well developed in eukaryotes than in prokaryotes and several hur-
dles have yet to be overcome. The principal problem concerns the concentration of 
Mg 2+ , which is below that required for the movement of Ll.LtrB in eukaryotic cells. 
Furthermore, the chromatinization of cellular DNA strongly inhibits intron integra-
tion. In eukaryotic cells, group II introns are microinjected into the cell nucleus as 
in vitro reconstituted ribonucleoproteins (RNPs).  Xenopus laevis  oocytes, and 
embryos of  Drosophila melanogaster  and zebrafi sh have been used for this purpose. 
RNPs have been reconstituted with both lariat and linear RNAs. In addition to the 
RNPs, a mixture of 500 mM Mg 2+  and 17–20 mM each of dATP, dCTP, dGTP and 
dTTP is also injected into the nucleus, to optimize intron insertion. The RNPs and 
Mg 2+  must be injected separately, because RNPs precipitate at this Mg 2+  concentra-
tion. In these conditions, lariat RNPs injected into the  X. laevis  oocyte nuclei can 
both insert into an injected plasmid target at high frequency and stimulate DNA 
integration by homologous recombination, by producing target-site double-strand 
breaks. In  D. melanogaster  embryos, intron integration into the  yellow  gene has 
been achieved with introns retargeted against this gene. More knowledge is required 
about the behaviour of group II introns in eukaryotic cells, for the development of 
tools for use in eukaryotes.  

    Evolutionary Aspects of Bacterial Group II Introns 

  Group II intron   s   display structural, functional and mechanistic similarities to 
eukaryotic pre-mRNA nuclear introns [ 164 – 168 ]. Nuclear pre-messenger  RNA   
introns [ 11 ] and non-long terminal repeat retrotransposons may have evolved from 
mobile group II introns [ 169 ]. It has been suggested [ 2 ,  168 ,  170 ] that, at an early 
stage in the evolution of eukaryotes, the ancestral group II intron structure was split 
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into the non-catalytic spliceosomal introns and the catalytically active RNA 
component of the spliceosome. This transition was accompanied by the degradation 
of the  reverse transcriptase   ORF.  Maturases   may have persisted in plants, during 
evolution, through the acquisition of a targeting signal enabling them to function 
within the organelles, to support the  splicing   of organellar group II introns [ 75 , 
 171 ]. The evolution of eukaryotic cell organization may also have been a defensive 
response to the deleterious effect of group II intron proliferation in the host  genome   
[ 172 ,  173 ]. Nevertheless, a recent report [ 174 ] suggests that the compartmentalization 
of eukaryotic cells into nucleus and cytoplasm does not prevent group II intron 
invasion of the host genome, although it may control proliferation of the intron, 
through transient or stable nucleolar sequestration. Strikingly, when the IEP loses 
its maturase activity, the protein becomes localized in nuclear speckles, domains of 
the nucleus enriched in pre-mRNA splicing factors [ 175 ], including small nuclear 
ribonucleoproteins (snRNPs) and serine-arginine (SR) proteins located in the 
interchromatin regions of the nucleoplasm. This is consistent with the hypothesis 
that eukaryotic spliceosomal introns may have evolved from group II introns. 

 Bacterial group II introns are tending to evolve towards an inactive form by frag-
mentation, with the loss of the 3′ terminus, including the IEP [ 176 ,  177 ]. The sig-
nifi cance of fragmented introns within a particular  genome   remains unclear. It has 
recently been suggested that, as for  transposable element   s   (TEs), the dispersal and 
dynamics of group II intron spread within a bacterial genome follows a selection- 
driven extinction model, predicting the removal of highly colonized genomes from 
the population by purifying selection [ 178 ]. Only 25 % of the bacterial genomes 
sequenced to date [ 8 ] harbor recognizable group II introns. This suggests that these 
introns did not act as a major force with a broad effect in the promotion of evolu-
tionary change, but caution is required in the interpretation of these observations, 
because the 5′ end of fragmented intron sequences lacking the encoded ORF is 
unlikely to have been detected in sequenced bacterial genomes. 

 It is generally accepted that the “selfi sh” features of mobile elements underlie 
their acquisition and maintenance in bacterial genomes, but these elements may also 
be benefi cial to the host. In bacteria, group II introns are thought to be tolerated to 
some extent because they self-splice and preferentially home to sites outside key 
functional genes, generally within intergenic regions or other  mobile genetic ele-
ment   s   [ 179 ]. Other studies have suggested that group II introns are benefi cial to the 
host because they control other potentially harmful mobile genetic elements [ 180 ], 
and contribute to the generation of diversity and the remodeling of genomes in times 
of stress [ 135 ]. These features may decrease negative effects on the host organism, 
resulting in the maintenance of these  retroelements   for longer periods in bacterial 
populations. It also seems likely that the gradual eradication of group II introns by 
the host during evolution would not result in the complete elimination of intron 
sequences, with some intron fragments remaining and continuing to evolve in the 
 genome  . It thus remains possible that these fragments provide sequence variation on 
which selection can act, leading to their persistence and continuing evolution in the 
genomes of some bacterial lineages [ 181 ].     
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          Introduction 

 The term  centromere   ( kentron , center;  meros , part), initially coined by Waldeyer in 
1903 for the neck of sperm, was reinterpreted by Darlington in 1936 as the centric 
constriction on metaphase  chromosomes   to which spindle fi bers attach during cell 
division [ 1 ]. Centromeres were cytologically distinguished by their constricted 
morphological appearance and with C-banding which is a Giemsa staining proce-
dure that preferentially stains the  heterochromatin   regions [ 2 ]. Now, fl uorescence in 
situ hybridization (FISH) probes against  centromeric   DNA of specifi c  chromosome   
and antibodies against centromere proteins are commonly used for the localization 
of centromeric regions [ 3 – 5 ]. 

 The human  centromere   is a region on the  chromosome   consisting of an underly-
ing alpha satellite  repetitive DNA   sequence that winds around nucleosomes con-
taining centromere protein (CENP)-A, a histone H3 variant. Hence, CENP-A is the 
 epigenetic   mark of a centromere and is one of the 17 proteins forming the constitu-
tive centromere-associated network (CCAN) which is crucial in marking and main-
taining the active centromere throughout the cell cycle [ 6 ,  7 ]. The  kinetochore  , on 
the other hand, is important in providing an interface for spindle microtubule bind-
ing, stabilizing correct attachments and participating in the spindle assembly check-
point (SAC), as well as the movement of sister chromatids towards opposite poles 
during anaphase [ 8 ]. 

 Together, the function of the  centromere   and  kinetochore   is to ensure high 
fi delity of  chromosome   segregation during cell division because an erroneous 
chromosome segregation can lead to cell arrest or cell death, or more danger-
ously, chromosomal instability (CIN) and  aneuploidy   in the daughter cells. CIN, 
the rate of karyotypic change resulting in anomalous organization and/or number 
of  chromosomes  , has been reported as one of the key features in  cancer   cells and 
was postulated to precede aneuploidy. Aneuploidy, however, is the karyotypic 
state depicted by abnormal number of chromosomes and has long been associated 
with carcinogenesis and  birth disorder   s  . The fi rst suggestion of a possible link 
between aneuploidy and cancer was in the monograph published by Boveri in 
1914 [ 9 – 11 ].  

    Health 

 The main functional role of the  centromere   is to ensure that replicated  chromo-
somes   are distributed equally to daughter cells during cell division. These functions 
can be divided into the following classes: (1) Genetic/ epigenetic   marking or identity 
of the locus along a specifi ed region of each  chromosome  , (2) SAC and correct 
attachment of microtubules, (3) sister chromatid cohesion and release, (4) move-
ment of chromosomes to opposing poles and (5) cytokinesis where a group of tran-
sient proteins mark the site for the fi nal separation of the daughter cells. 
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    Centromere Structure 

 The  centromere   is comprised of three main zones (Fig.  9.1 ); (1) the cohesion zone 
that holds the two replicated sister chromatids together until the onset of anaphase, 
(2) the DNA interface where proteins directly interact with centromere DNA to 
mark and maintain the centromere site between cell divisions, and (3) a platform for 
the capture of spindle microtubules—this zone is commonly referred to as the 
 kinetochore  .

      Centromere DNA 

 Human  centromere   DNA is composed of a tandemly repeated AT-rich monomer of 
171 bp commonly known as alpha satellite [ 12 ]. This repeat is organized into higher 
order repeats (HORs) ranging in size from 2 to 35 monomers, which are then orga-
nized into further tandem arrays spanning (250 kb to 3 Mb) (Fig.  9.2 ) [ 13 ]. One 
feature of alpha satellite HORs is that they have  chromosome   specifi city [ 4 ]. 
Differences in the primary sequence of each HOR monomer repeat give rise to its 
unique chromosome specifi city. This difference allows researchers and diagnostic 
scientists to use techniques such as FISH to identify single  chromosomes   such as 
the X or the Y. However, not all chromosomes can be distinguished by a single alpha 

  Fig. 9.1    Centromere structure during interphase and metaphase. ( a ) The  centromere   locus is 
marked by a group of proteins ( green ) known as the CCAN complex which are found at the same 
chromosomal site throughout the cell cycle. (b) After DNA replication, the  chromatin   ( purple ) 
condenses to form the mature metaphase  chromosome   attached to spindle microtubules ( blue ). It 
is during this stage that the centromere attracts other proteins involved in microtubule spindle 
attachment ( orange ) and sister centromere cohesion ( yellow )       
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satellite HOR class. This is nicely illustrated in the acrocentric chromosomes, 13, 
14, 15, 21 and 22. HORs from these chromosomes share a high level of sequence 
homology, where single chromosomes cannot be differentiated by hybridization 
techniques such as FISH or Southern blot.

   Alpha  satellite DNA   also contains a conserved 17-bp motif known as the 
CENP-B box. This sequence is present in varying frequencies in alpha satellite 
HORs, ranging from 50 to 0 % in  chromosomes   21 and Y, respectively [ 14 ]. The 
CENP-B protein binds to the CENP-B box and is thought to be important for the de 
novo assembly of the  centromere  . The formation and stability of artifi cial chromo-
somes in the laboratory is dependent on CENP-B-box rich DNA [ 15 ]. Paradoxically, 
once the  chromosome   is in the cell it does not need the CENP-B protein for full 
centromere function, as shown by several lines of evidence—(1) knockouts of the 
CENP-B gene in mouse exhibit full centromere function, develop normally and are 

  Fig. 9.2    Schematic illustrating the genomic organization of human  centromeres  . A condensed 
metaphase  chromosome   showing  centromeric   alpha satellite ( green ) and pericentric DNA families 
( blue  and  pink ). Note that the repetitive pericentromeric DNA is composed of different sized 
monomer sequences that are not similar to alpha satellite. The fundamental repeating unit of alpha 
satellite is an AT-rich 171 bp unit. This is organized into higher order repeats (HORs) that have a 
high level of sequence identity. Individual centromeres can be distinguished by their HOR type 
which varies in length and sequence structure. Furthermore, the overall length of the alpha satellite 
domain is highly polymorphic between individuals. An alternative way to view the organization of 
centromeric DNA is to break it up into monomer units shown as  colored circles . The sequential 
order of each unit is linked with a line and the HOR monomer units are linked with thicker lines 
which represent multiple HORs       
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fertile, (2) natural  centromeres   such as in the Y chromosome do not contain the 
CENP-B box, and (3) human neocentromeres form on DNA that has no alpha satel-
lite or CENP-B box motifs [ 14 ,  16 – 19 ].  

    Alpha Satellite DNA Mapping and Sequencing 

 Alpha  satellite DNA   was one of the fi rst sequences to be identifi ed and sequenced, 
however when one examines the  centromeric   regions of the human reference 
 genome   it is quite apparent that they contain megabase-size gaps due to diffi culties 
with contig assembly. While high-throughput genome sequencing has led to a revo-
lution in rapidly identifying the molecular defects behind many human disorders, 
 centromeres   remain incomplete due to the short read length of the current parallel 
sequencing technologies, satellite DNA regions again suffer from poor assembly. 
Recently, novel computational methods involving unit monomer analysis has pro-
vided new ways in analyzing these regions. By grouping similar monomer units 
together predictions can be made that reveal the overall array length for haploid 
 centromeres   such as in the X and Y  chromosomes   can be made (Fig.  9.2 ) [ 20 ].  

    CENP-A and Alpha Satellite: Centromeric Chromatin 

 The  centromere  -specifi c histone H3 variant CENP-A (described in “Centromere 
Proteins” section below) is normally present within subsections of the HOR region 
of alpha  satellite DNA  . This has been shown with elegant anti-CENP-A and alpha 
satellite FISH experiments on extended  chromatin   fi bers [ 21 ]. This subdomain 
structure of CENP-A and alpha satellite is considered to play a role in the three 
dimensional assembly of the mature mitotic centromere, since alpha satellite DNA 
is present within the inner (pairing) and outer (microtubule binding) regions of the 
centromere (Fig.  9.1 ).  

    Eviction of the Invaders 

 Unlike  centromeres   of multi-cellular eukaryotes, human centromeres are mostly 
made up of one class of DNA, alpha  satellite DNA  . It is rare to fi nd the presence of 
LINE and SINE  transposable element   s   (TEs) within the HOR array. What is the 
possible mechanism that keeps the intruders at bay? Detailed sequence map analy-
sis at the border regions of alpha satellite has shown that the age of TE insertion 
decreases as one goes from outer non-alpha satellite DNA to the inner higher order 
alpha arrays [ 22 ]. This suggests that TEs are rapidly pushed away from the HOR 
region to the periphery. A simple mechanism that would explain this would be 
unequal crossing over between homologous  chromosomes   or sister chromatids, 
which also contributes to the evolution of  centromere   DNA.   
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    Centromere Proteins 

    Classes of Centromere/Kinetochore Proteins 

 The  centromere  / kinetochore   complex can be broadly classifi ed into two main 
groups based on structure and function with respect to  chromosome   segregation. 
The centromere locus needs to be identifi ed and maintained in one region per chro-
mosome, this memory between cell cycles is maintained by a group of proteins that 
are present at the centromere throughout the cell cycle (Fig.  9.1 ). The second group 
falls into the active process of preparing and executing chromosome segregation. 
These proteins are present at the centromere/kinetochore in a transient manner 
beginning after DNA replication to the completion of telophase. 

 To date, over 100 proteins have been shown to locate to the  centromere  / kinetochore   
at some stage during the cell cycle. For the purpose of this chapter we are only 
including proteins that have multiple lines of evidence such as antibody and epitope 
fusion localization. Some proteins have been misclassifi ed because of artifact sig-
nals from antibody staining experiments. 

 The fi rst set of human  centromere   proteins discovered were identifi ed using 
auto- immune sera from patients with scleroderma  disease   [ 5 ]. Protein immunoblot-
ting uncovered three common antigens, named CENP-A, -B and -C in ascending 
molecular weight order [ 23 ]. Serendipitously, these three proteins bind to the cen-
tromere DNA and form the foundation platform onto which other centromere and 
 kinetochore   proteins assemble the mature, functional structure.   

    Centromere Function 

    Epigenetic Marking 

 Most eukaryotic  centromeres   are characterized by long tracts of repeat DNA, 
either satellite or  transposable element   s  . Furthermore, this DNA was often spe-
cifi c to the  centromeric   locus, for example alpha satellite in humans. One popular 
hypothesis regarding the interaction between  centromere   DNA and protein was 
that the protein had specifi c DNA-binding affi nity, such as the CENP-B protein 
binding to the CENP-B box motif in alpha satellite [ 14 ]. However, immuno-fl u-
orescence analysis of variant  chromosomes   such as dicentrics or neocentromeres 
(described in “Disease” section below) showed that some centromere proteins 
were only present at functionally active centromeres whether alpha  satellite 
DNA   was present or absent, and other proteins were present at both active and 
inactive centromeres [ 19 ,  24 ]. This line of evidence showed that centromeres had 
genetic and epigenetic characteristics unlike their telomere counterparts which 
are strictly genetic.  
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    CENP-A: The Primary Mark 

 CENP-A is a histone H3 variant that is only found at active  centromeres   [ 25 ]. It 
replaces both units of histone H3 of the histone octamer which provides the  centro-
meric    epigenetic   mark and a  chromatin   platform onto which the constitutive 
 centromere  - associated  network (CCAN) of proteins bind to [ 6 ] (see Table  9.1 ). 
Further evidence to support the foundation role of CENP-A is shown in gene knock-
out/knockdown studies which result in the loss of downstream centromere proteins 
and the absence of a functional  kinetochore   [ 26 ].

       Spindle Assembly Checkpoint (SAC) 

 After  chromosomes   have replicated and condensed, they then are captured by the 
mitotic spindle via the interaction with the  kinetochore  . The chromatid pairs then 
shuffl e between spindle poles to ensure that each sister  centromere   has attached to 
spindle microtubules emanating from one pole and thus achieving bi-orientated 
attachment. Once all chromosomes have acquired correct attachment and equal ten-
sion, the chromatids are then ready to segregate to opposite poles. The cell is able to 
detect the tension and signal for the beginning of anaphase. A group of proteins that 
are essential for the correct attachment of chromosomes were identifi ed through 
elegant genetic screens in budding yeast [ 27 ,  28 ]. These spindle assembly check-
point (SAC) proteins are conserved in humans and mutations elevate the rate of 
 chromosome   segregation errors and have a role in  cancer   predisposition (see 
“Disease” section).  

    Sister Centromere Cohesion 

 After DNA replication, sister chromatids need to be held together to prevent them 
from prematurely separating, which can result in mis-segregation. A conserved 
protein complex, known as cohesin, holds the sister chromatids together until the 
early stages of mitosis when cohesin is progressively removed from the arms and 
remains at the  centromere   region until the onset of anaphase. A protector protein, 
Shugoshin, binds to the  centromeric   pool of cohesin and thus prevents its prema-
ture removal [ 29 ]. So the last chromosomal region to be held together before 
anaphase is the inner centromere domain. In addition to mitosis, cohesin also 
plays an important role during meiosis I when homologous  chromosomes   are held 
together at the centromere by a meiotic-specifi c cohesin complex. It is hypothe-
sized that weakening of this complex due to aging may contribute to higher rates 
of chromosomal non- disjunction in women of advanced maternal age (see 
“Disease” section).  

9 Centromeres in Health, Disease and Evolution



228

    Ta
bl

e 
9.

1  
  C

en
tr

om
er

e 
an

d 
 ki

ne
to

ch
or

e   
pr

ot
ei

ns
 o

rg
an

iz
ed

 in
to

 f
un

ct
io

na
l c

la
ss

es
   

 C
en

tr
om

er
e 

pr
ot

ei
n 

co
m

pl
ex

 
 Pr

ot
ei

ns
 

 Fu
nc

tio
n 

 C
on

st
itu

tiv
e 

C
en

tr
om

er
e-

 
A

ss
oc

ia
te

d 
N

et
w

or
k 

(C
C

A
N

) 
 C

E
N

PA
, C

E
N

PC
, C

E
N

PH
, C

E
N

PI
, C

E
N

PK
, C

E
N

PL
, 

C
E

N
PM

, C
E

N
PN

, C
E

N
PO

, C
E

N
PP

, C
E

N
PQ

, C
E

N
PR

, 
C

E
N

PS
, C

E
N

PT
, C

E
N

PU
, C

E
N

PW
, C

E
N

PX
 

 C
C

A
N

 c
om

pl
ex

 p
la

ys
 a

 c
en

tr
al

 r
ol

e 
in

 e
st

ab
lis

hi
ng

 a
 f

ou
nd

at
io

n 
fo

r 
m

ito
tic

-s
pe

ci
fi c

  k
in

et
oc

ho
re

   p
ro

te
in

s.
 

 M
IS

18
 c

om
pl

ex
 

 M
IS

18
A

, M
IS

18
B

, K
N

L
2,

 P
L

K
1,

 H
JU

R
P 

 L
ic

en
si

ng
 a

nd
 lo

ad
in

g 
of

 C
E

N
PA

 to
  c

en
tr

om
er

ic
    c

hr
om

at
in

.   
 K

M
N

 n
et

w
or

k 
 M

IS
12

, K
N

L
1,

 D
SN

1,
 P

M
F1

, N
SL

1,
 N

D
C

80
, N

U
F2

, 
SP

C
24

, S
PC

25
 

 O
ut

er
  k

in
et

oc
ho

re
   c

om
pl

ex
 r

eq
ui

re
d 

fo
r 

co
rr

ec
t  c

hr
om

os
om

e   
al

ig
nm

en
t, 

m
ito

tic
 c

he
ck

po
in

t s
ig

na
lli

ng
 a

nd
 a

tta
ch

m
en

t o
f 

th
e 

ki
ne

to
ch

or
e 

to
 m

ic
ro

tu
bu

le
s.

 
 R

Z
Z

 c
om

pl
ex

 
 R

O
D

, Z
W

IL
C

H
, Z

W
10

, Z
W

IN
T

 
 M

ito
tic

 c
he

ck
po

in
t r

ol
e,

 p
re

ve
nt

s 
ce

lls
 f

ro
m

 p
re

m
at

ur
el

y 
ex

iti
ng

 
m

ito
si

s 
 SK

A
 c

om
pl

ex
 

 SK
A

1,
 S

K
A

2,
 S

K
A

3 
 M

ic
ro

tu
bu

le
-b

in
di

ng
 c

om
pl

ex
 r

eq
ui

re
d 

fo
r 

co
rr

ec
t  c

hr
om

os
om

e   
se

gr
eg

at
io

n 
 M

ito
tic

 C
he

ck
po

in
t C

om
pl

ex
 

 B
U

B
1,

 B
U

B
1B

, M
A

D
2L

1,
 C

D
C

20
, B

U
B

3,
 M

A
D

1L
1,

 
T

T
K

, A
U

R
K

B
 

 E
ns

ur
es

 a
ll 

 ch
ro

m
os

om
es

   h
av

e 
bi

-o
ri

en
t a

tta
ch

m
en

ts
 to

 th
e 

m
ito

tic
 s

pi
nd

le
, c

or
re

ct
s 

m
is

-a
lig

nm
en

t e
rr

or
s 

an
d 

si
gn

al
s 

on
se

t 
of

 a
na

ph
as

e 
 C

hr
om

os
om

e 
Pa

ss
en

ge
r 

C
om

pl
ex

 
 IN

C
E

N
P,

 S
U

R
V

IV
IN

, A
U

R
K

B
, B

O
R

E
A

L
IN

 
 K

ey
 r

eg
ul

at
in

g 
co

m
pl

ex
 o

f 
m

ito
si

s,
 c

or
re

ct
s 

 ch
ro

m
os

om
e   

m
is

- a
lig

nm
en

ts
, r

eq
ui

re
d 

fo
r 

 ch
ro

m
at

in
-  i

nd
uc

ed
 m

ic
ro

tu
bu

le
 

st
ab

ili
sa

tio
n 

an
d 

m
ar

ks
 th

e 
sp

in
dl

e 
m

id
zo

ne
 d

ur
in

g 
an

ap
ha

se
. 

 C
en

tr
om

er
e 

C
oh

es
io

n 
 C

B
X

5,
 C

B
X

1,
 C

B
X

3,
 S

G
O

L
1,

 S
G

O
L

2,
 R

E
C

8 
 H

ol
ds

 s
is

te
r 

 ce
nt

ro
m

er
es

   to
ge

th
er

 a
ro

un
d 

pe
ri

ce
nt

ri
c 

 he
te

ro
ch

ro
m

at
in

,   p
ro

te
ct

s 
fr

om
 p

re
m

at
ur

e 
ch

ro
m

at
id

 s
ep

ar
at

io
n.

 
 M

ic
ro

tu
bu

le
-B

in
di

ng
 P

ro
te

in
s 

 C
E

N
PE

, C
E

N
PF

, C
L

A
SP

1,
 C

L
A

SP
2,

 C
L

IP
1,

 
D

Y
N

E
IN

, D
Y

N
A

C
T

IN
, E

B
1,

 K
IF

18
A

, M
C

A
K

, P
IN

X
1 

 M
ic

ro
tu

bu
le

 m
ot

or
 a

nd
 tr

ac
ki

ng
 p

ro
te

in
s 

es
se

nt
ia

l f
or

 m
ov

em
en

t 
an

d 
al

ig
nm

en
t o

f 
 ch

ro
m

os
om

es
   d

ur
in

g 
m

ito
si

s.
 

  M
os

t p
ro

te
in

s 
in

 th
is

 li
st

 h
av

e 
be

en
 s

ho
w

n 
to

 lo
ca

liz
e 

to
 th

e 
 ce

nt
ro

m
er

e   
at

 s
om

e 
st

ag
e 

du
ri

ng
 th

e 
ce

ll 
cy

cl
e 

an
d 

ha
ve

 a
 f

un
ct

io
na

l r
ol

e 
in

  c
hr

om
os

om
e   

se
gr

eg
a-

tio
n.

 M
an

y 
ot

he
r p

ro
te

in
s 

ha
ve

 b
ee

n 
fo

un
d 

at
 th

e 
ce

nt
ro

m
er

e 
bu

t h
av

e 
no

t b
ee

n 
in

cl
ud

ed
 in

 th
is

 ta
bl

e 
be

ca
us

e 
th

ey
 e

ith
er

 d
o 

no
t h

av
e 

a 
cl

ea
r r

ol
e 

in
 c

hr
om

os
om

e 
se

gr
eg

at
io

n 
or

 th
ei

r 
 ce

nt
ro

m
er

ic
   lo

ca
liz

at
io

n 
is

 s
ec

on
da

ry
 to

 th
ei

r 
pr

im
ar

y 
fu

nc
tio

n  

T.T. Beh and P. Kalitsis



229

    Chromosome Movement 

 One of the key roles of the  kinetochore   is to capture the spindle microtubules, align 
the  chromosomes   to the midzone and then move them to the opposite poles. Affi nity 
biochemical experiments from yeast have shown that the budding yeast  centromere   
comprises of one super-complex that binds to one microtubule. Humans contain 
around 20 microtubules per kinetochore attachment, thus there are multiple sub-
units that act together in concert [ 30 ]. Once each sister centromere is captured to 
the microtubules they then go through a pushing and pulling action between spin-
dle poles to establish equal tension. This movement is partly triggered by motor, 
microtubule binding and checkpoint proteins. A protein complex at the heart of this 
process is the KMN network (Table  9.1 ). Again, like other complexes, it is con-
served in a multitude of eukaryotic organisms and plays an essential role in  chro-
mosome   segregation. Components of this complex are transiently present at the 
centromere and form a link between the  centromeric    chromatin   and the outer 
kinetochore.  

    Cytokinesis 

 As described above,  centromere   cohesion plays an important role in holding the 
sister chromatids together until the beginning of anaphase. Additional roles 
include tension sensing and  chromosome   alignment or error correction. The com-
plex of proteins at the heart of this region is the Chromosome Passenger Complex 
(CPC) [ 31 ]. This includes the four subunits, Aurora B kinase, INCENP, SURVIVIN 
and BOREALIN. Furthermore, the CPC has an additional role once  chromosomes   
begin to move to opposite poles. They are left behind at the spindle midzone thus 
marking this region as the site of cellular/cytoplasmic constriction and eventual 
cleavage of the membranes and spindle microtubules to release the two daughter 
cells. Any defects in this later stage of mitosis can lead to cells with multiple cop-
ies of the  genome   (polyploidy) and are thought to be involved in tumour 
progression.    

    Disease 

 Structural abnormalities implicating the  centromeric   DNA, namely the presence of 
more than one  centromere  , repositioning of the centromere to a non-centromeric 
DNA site, prematurely separated  centromeres  , mutations and aberrant expression of 
centromere-associated  kinetochore   proteins, anomalous methylation and altered 
 transcription   of alpha satellite, as well as pericentric regions have all been associ-
ated with human  diseases  . 
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    Chromosome Structural Abnormalities 

    Dicentric Chromosomes 

 Robertsonian translocations (ROBs) are the most common constitutional structural 
rearrangements in humans, observed at a rate of one in every thousand live births. 
ROBs involve whole-arm exchanges between two of the fi ve non-homologous 
human acrocentric  chromosomes   (13, 14, 15, 21 and 22), giving rise to a karyotypi-
cally metacentric  chromosome   [ 32 ]. Carriers of balanced ROBs are generally nor-
mal but with increased risk of infertility due to conception of non-viable fetuses and 
also with elevated chance of having offspring with Down  syndrome  . 

 The other commonly reported constitutional dicentric  chromosomes   are the 
isodicentric X chromosomes especially idic(X)(p11) which could occur as both 
mosaic or non-mosaic. Idic(X)(p11) cases account for about 18 % of Turner  syn-
drome   patients, amounting to an incidence rate of approximately 1 in 14,000 
females. Other dicentric X chromosomes might include rearranged derivatives of X 
chromosomes or isodicentrics that have breakpoints at sites other than Xp11 [ 33 ]. 

 A rarer non-homologous, non-ROBs had also been reported to give rise to con-
stitutional dicentric  chromosomes  . Thus far, only 27 cases were reported since the 
1970s. Most cases (23/27) involved an acrocentric  chromosome   and 15/19 of cyto-
genetically distinguishable heterodicentric chromosomes had only one primary 
constriction whereby 12/15 of the inactivated  centromere   being the acrocentric  cen-
tromeres  . This is probably due to the relative stability of the dicentric formed as 
p-arm deletion of acrocentric chromosomes is not embryonic lethal and the centro-
meres of acrocentrics have higher tendency to become inactivated [ 34 ,  35 ]. 

 Constitutional dicentric  chromosomes   are stably transmitted through cell divi-
sions because one of the two  centromeres   is either inactivated via  epigenetic   mecha-
nisms or deleted partially or fully (Fig.  9.3 ) [ 36 ,  37 ]. An inactivated  centromere   is 
positive for CENP-B but negative for the essential proteins, CENP-A, -C and -E and 
hence, is distinguishable from functionally active centromeres [ 38 ]. Stability of a 
dicentric  chromosome   with two functional centromeres could also be achieved 
through close proximity of the centromeres—an intercentromeric distance of less 
than 12 Mb as seen on isodicentric X chromosomes [ 39 ].

   In malignancies, dicentric  chromosomes   are generally an outcome of telomere 
fusion events due to telomere instability of  cancer   cells as observed in giant cell 
tumor of the bone, meningioma, chronic lymphocytic leukemia (CLL), pancreatic 
cancer and osteosarcoma [ 40 ,  41 ]. However, most dicentric chromosomes in hema-
tological malignancies arise from reciprocal translocation that produces a dicentric 
 chromosome   and an acentric chromosomal fragment which might be lost in subse-
quent mitoses. Thus far, the mechanism of  centromere   inactivation in malignancies 
has not been well studied. Investigations into the dicentric chromosomes of acute 
myeloid leukemia (AML) and myelodysplastic  syndromes   indicated that a reper-
toire of strategies namely functional ( epigenetic  ) inactivation, intercentromeric 
deletion, inversion to reduce intercentromeric distance, and partial or full centro-
mere excision were deployed to produce a more stable chromosome [ 41 ].  
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   Neocentromeres 

 Neocentromere is the term coined for an ectopic  centromere   which forms in a region 
of the  chromosome   outside the repetitive alpha  satellite DNA   [ 19 ]. It binds all 
known centromere proteins except CENP-B and functions similarly to the native 
centromere [ 42 ] although the level of CENP-A incorporation [ 43 ], cohesion [ 44 , 
 45 ] and error correction by Aurora B [ 46 ] appear to be lowered. Neocentromeres 
have been found in euchromatic sites and the formation of neocentromeres does not 
seem to correlate with reduced expression of the genes in those regions [ 47 ]. 

Ai

Bi

ii

ii

iii

viiivii

iv

v vi

iii iv

  Fig. 9.3    Epigenetic status of the  centromere   in abnormal  chromosomes  . Replicated sister chroma-
tids ( black  and  grey ) are shown aligned and attached to microtubules. The satellite-rich centromere 
DNA ( orange  and  light grey  shaded boxes) mark the centromere locus. Functionally active  centro-
meres   build a mature  kinetochore   ( red  and  blue ovals ) which capture spindle microtubules and 
move chromatids to opposite poles. ( Ai  and  ii ) Functional dicentric chromosomes with closely 
spaced centromeres act in unison to correctly segregate the chromatids. ( Aiii  and  iv ) Dicentric 
chromosomes with centromeres spaced further apart can also segregate correctly but ( Av  and  vi ) 
sister chromatids can twist between the two centromeres resulting in single chromatids attached to 
both poles which causes possible breakage of the  chromosome  . ( Avii  and  viii ) Epigenetic inactiva-
tion of one of the centromeres (loss of the kinetochore) resolves the confl ict between the two active 
centromeres and thus chromosomes can correctly segregate. Neocentromeres form on non-alpha 
 satellite DNA  , often in euchromatic regions. ( B ) Two possible mechanisms of neocentromere for-
mation, ( Bi  and  ii ) repositioning of the centromere to a new region along the chromosome. The old 
centromere is subsequently inactivated. ( Biii  and  iv ) Another mechanism shows a breakage and the 
formation of an acentric fragment. This chromosomal fragment is rescued by the formation of a 
kinetochore but the underlying alpha satellite DNA is absent       
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 The fi rst report of a constitutional human neocentromere in 1993 was from cyto-
genetic screening of a 4 year-old patient who was presented with delayed speech 
development [ 19 ]. Subsequent discoveries were made in patients with a wide spec-
trum of clinical presentations including facial dysmorphism and growth retardation 
in younger patients to infertility and high proportion of miscarriages in adult patients 
[ 47 ]. In children, several  cancer   types including retinoblastoma [ 48 ], Wilms tumor 
[ 49 ], cystic hygroma [ 50 ] and hemangioma [ 51 ] were reported as co-morbidities 
with the other developmental disorders. 

 In addition, neocentromeres have also been specifi cally associated with a few 
 cancers   thus far, namely AML, atypical lipomas and well-differentiated liposarco-
mas (ALP-WDLPS), lung sarcomatoid carcinoma and T-cell non-Hodgkin lym-
phoma [ 52 ]. The presence of neocentromeres on either a supernumerary ring or a 
long marker  chromosome  , both derived from the long arm of chromosome 12, is a 
defi ning characteristic of ALP-WDLPS of borderline malignancy [ 53 ]. These  chro-
mosomes   have amplifi cation of the 12q14-15 region containing  oncogenes   that 
include  MDM2  and  CDK4  [ 54 ]. However, the same amplifi ed region is also found 
in other more aggressive liposarcomas but on chromosome 12 with alpha satellites 
suggesting that the neocentromere formed was to stabilize the complex rearranged 
acentric chromosome containing amplifi ed 12q14-15 which might confer selective 
advantage within the tumor microenvironment besides highlighting the difference 
between neocentromere and the native  centromere   with alpha satellites [ 47 ].  

   Premature Centromere Division 

 Premature  centromere   division (PCD; OMIM #212790) is a cytogenetically detect-
able trait where the X  chromosome   appears to have no discernible centromere 
resulting in a rod-shaped X chromosome. The frequency of lymphocytes showing 
PCD and DNA damage increases as we age but for sporadic Alzheimer’s  disease   
patients, the increased frequency was even more signifi cant when compared to 
their age-matched controls. In addition, PCD was shown to be consistently more 
prominent in females than males and was thought to be the cause of chromosomal 
instability resulting in tissue mosaicism and neuronal cell death in Alzheimer’s 
disease [ 55 ]. 

 PCD is also found in older females who experience signifi cantly higher chance 
of spontaneous abortion and bearing children with trisomies especially trisomy 21. 
In females, the immature oocytes arrest in prophase I and only proceed with meiosis 
upon hormonal stimulation during the period after puberty until menopause. Hence, 
the chiasmata between homologous  chromosomes   and cohesion of the sister chro-
matid arms in prophase I as well as the subsequent  centromere   cohesion between 
the sister chromatids in meiosis II have to be properly maintained by the cohesin 
complexes for many years before these oocytes are released and potentially fertil-
ized [ 56 ]. This long period of arrest led to the postulation of an age-dependent 
‘cohesin fatigue’ being a contributing factor to the much higher  aneuploidy   rate of 
oocytes in older women [ 57 ,  58 ].   
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    Centromere Protein Genes 

   CENP-A and HJURP in Cancer 

 Studies performed in colorectal, testicular, liver, breast and lung  cancers   were 
reported to have elevated expression of CENP-A while separate studies in lung, 
breast and brain cancers had reported on overexpression of the CENP-A chaperone, 
HJURP [ 59 ,  60 ]. CENP-A and HJURP could potentially be used as prognostic 
markers for certain groups of  cancer  . CENP-A has been demonstrated to correlate 
positively with pathological grade and negatively with survival prognosis in lung 
adenocarcinoma [ 61 ], epithelial ovarian cancer [ 62 ] and estrogen-receptor positive 
breast cancers that were not treated with systemic therapy [ 63 ]. HJURP has shown 
a similar pattern of correlation with astrocytomas, the most common type of adult 
brain cancer [ 59 ]. In combination, upregulation of both CENP-A and HJURP at 
their mRNA levels were found to be associated with decreased survival in breast 
cancer patients [ 64 ].  

   BUB1B, ESCO2, CASC5 and CENP-E in Developmental Disorders 

 Mosaic variegated  aneuploidy    syndrome   (MVA; OMIM #257300) is a collective 
term for the cytogenetic characteristic where mosaic  aneuploidies   are commonly 
observed with clinical features namely microcephaly, mental retardation and growth 
retardation. In a subset of MVA patients, premature chromatid separation (PCS; 
OMIM #176430) was evident [ 65 ]. PCS is another cytogenetic description for a 
spectrum of  diseases  , in which a signifi cant percentage of the mitotic lymphocytes 
appear to have separated  centromeres   and splayed chromatids. This is in contrast to 
the metaphase  chromosome   of normal, colchicine or colcemid treated cells where 
two sister chromatids are linked at the  centromere   region [ 66 ]. 

 The SAC gene,  BUB1B  was not only the fi rst gene found to be associated with 
MVA but also the fi rst mitotic SAC gene where its allelic mutations in the germline 
were linked to a human  disease   [ 67 ]. Monoallelic  BUB1B  mutations appeared to 
give rise to the most severe phenotype including high occurrence of PCS, cataracts, 
Dandy–Walker  syndrome   and  cancer  . Biallelic  BUB1B  mutations yielded moderate 
phenotype while MVA without  BUB1B  mutations rarely had PCS and showed no 
signs of cataracts, Dandy–Walker syndrome and cancer [ 68 ]. Hence, many have 
postulated that other mitotic SAC genes might have important role in instigating the 
remaining forms of MVA. 

 The other cytogenetically observed trait around the  centromere   is  heterochroma-
tin   repulsion which is most noticeable on  chromosomes   with large tracts of 
 heterochromatin namely chromosomes 1, 9 and 16 [ 69 ]. This affects most meta-
phase chromosomes of patients with Roberts  syndrome   (RBS; OMIM #268300) 
and the milder SC phocomelia syndrome (SC; OMIM #269000). The causative 
gene for both of these  syndromes   was found to be Establishment of Cohesion 1 
Homologue 2 ( ESCO2 ) and these syndromes can be regarded as a spectrum 
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 depending on the variants of the mutated  ESCO2 . Clinical features of these patients 
include growth retardation, mental retardation and the presence of craniofacial 
abnormalities with microcephaly being the most common besides several others 
including hypertelorism, hypoplastic nasal alae and malar hypoplasia. The presence 
of cleft lip and palate was associated with the severity of limbs malformations while 
corneal opacities correlated with mental retardation and cardiac defects [ 70 ]. 

  CASC5  or  KNL1  mutations were reported to cause autosomal recessive primary 
microcephaly (MCPH; OMIM #251200). CASC5 is a member of the conserved 
KMN (KNL1/MIS12 complex/NDC80 complex) network of proteins within a 
 kinetochore   that links the  chromosome   to the microtubules. CASC5 which localizes 
to the kinetochore from G2 til late anaphase is also part of the SAC machinery as it 
is known to bind to BUB1B [ 71 ]. Compound heterozygous variants of  CENPE  had 
recently been described in two siblings with microcephalic osteodysplastic primor-
dial dwarfi sm (MOPD2; OMIM #210720) which was a  disease   previously reported 
to be linked to mutated centrosome-associated protein, pericentrin (PCNT) [ 72 ]. 
CENP-E is a dimeric kinesin-like motor protein which was shown to be important 
for the stability of binding between kinetochore and the dynamic microtubules, 
while PCNT is essential in the formation of microtubule arrays at the centrosome 
[ 73 ]. This suggests that the overlapping phenotype for both  CENPE  and  PCNT  
mutations might be spindle-related [ 72 ].  

   Other Centromere Protein Genes in Cancers 

 Kinetochore protein genes that are crucial for the normal function of the  centromere   
have been reported to be mutated or differentially expressed in various  cancers  . 
Mutations in  BUB1  were implicated in colorectal, adult T-cell leukemia/lymphoma 
(ATLL), lung and pancreatic cancers while mutations in  BUB1B  had been reported 
in more  cancer   types including colorectal cancer, MVA, ATLL, glioblastomas, 
Wilms tumor and B-cell lymphoma [ 74 ]. 

 In addition to mutation, the level of expression for SAC proteins appears to be 
important in tumorigenesis.  BUB1 ,  BUB1B  and  BUB3  were reported to be unregu-
lated in gastric  cancer   [ 75 ]. However, in pediatric glioblastoma, expression of  BUB1  
and  BUB1B  were upregulated whereas  BUB3  was downregulated [ 76 ]. In clear cell 
renal carcinomas investigated for the expression of their SAC genes,  BUB1 ,  BUB1B  
and  MAD2L1  (MAD2 mitotic arrest defi cient-like 1) were found to be overex-
pressed while  MAD1  had decreased expression [ 77 ].   

    Epigenetics 

 Epigenetics is the study of the changes in  gene express   ion   or protein function that 
are not due to alterations in the DNA sequence of the gene, but are heritable through 
cell division. Such changes could occur at, (1) the  genome   structural level involving 
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 DNA methylation  , histone modifi cations, nucleosome positioning, and histone vari-
ants, (2) the  RNA   level which includes RNA  splicing   and RNA interference, and (3) 
the protein level in cases of prion formation where the ‘infectious’ proteins are able 
to induce conformational change of native proteins rendering them ‘infectious’ as 
well as dysfunctional [ 78 ,  79 ]. 

   DNA Methylation 

 Cytosine residues of the non- CpG island   s   (non-CGIs) or else referred to as the 
global CpG dinucleotides within intronic and intergenic regions, especially  trans-
posable element   s   and simple repeat sequences, are mostly methylated in somatic 
tissues as opposed to unmethylated cytosines in the CGIs that are known to coincide 
with gene  promoters   or regulatory regions [ 80 ]. 

 Abnormal  DNA methylation   had been reported in immunodefi ciency,  centro-
meric   instability, and facial anomalies (ICF)  syndrome  . ICF is a rare autosomal 
recessive  disease   which is currently categorized into three groups namely ICF1 
(OMIM #242860) with mutations found in the DNA methyltransferase 3B 
( DNMT3B ) gene, ICF2 (OMIM #614069) with mutations in zinc fi nger- and BTB 
domain-containing 24 ( ZBTB24 ) gene, and the fi nal group with currently unknown 
molecular etiology provisionally designated ICFX [ 81 ]. Although all three groups 
exhibit hypomethylation of satellites 2 and 3 which are part of the constitutive  het-
erochromatin  , ICF2 and ICFX, however, show additional hypomethylation at the 
alpha satellite [ 82 ]. In the heterochromatic region that exhibit reduced DNA meth-
ylation from an average level of 80 % in normal cells to 30 % in ICF cells, some 
heterochromatic genes were shown to have escaped silencing compared to the con-
trol, although each patient appeared to have his own signature of heterochromatic 
genes that escaped silencing across different  chromosomes   [ 83 ]. 

 Wilms tumor is the most common renal tumor in children under 5 years of age, 
accounting for 90 % of the total pediatric renal  cancer   cases and contributing to 
approximately 7 % of all pediatric malignancies [ 84 ]. Hypomethylation of alpha 
satellite on chromosomes 1 and 10 was observed in Wilms tumor patient samples 
but it was not correlated with  aneuploidy  . To a lesser extent and frequency, satellite 
2 was also hypomethylated on these  chromosomes   [ 85 ]. These studies into ICF and 
Wilms tumors indeed pose an interesting question about the mechanisms that lead 
to the differences in their hypomethylation profi les. 

 In  cancer   as well as aged cells, global hypomethylation and concomitant increase 
in the methylation of  promoters   have been observed and were thought to contribute to 
genomic instability and gene silencing respectively. Furthermore, global  non- CGIs 
could be further subcategorized and studied. Hypomethylation of Alu, LINE-1 
and alpha satellite in CLL patients were examined and alpha satellite hypometh-
ylation was suggested to be a potential negative prognostic marker for CLL [ 86 ]. 
Separately, in a study performed in ovarian epithelial tumors, satellite 2 hypometh-
ylation on  chromosomes   1 and 16 was strongly correlated with both  genome  - wide   
hypomethylation and the degree of tumor malignancy. Extensive hypomethylation 
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of  chromosome   1 alpha satellite was also observed in larger proportion of carcino-
mas compared to the more benign forms [ 80 ]. Therefore, it appears that the level 
of  DNA methylation   at  centromeric   satellite sequences is a useful  biomarker   in the 
study and diagnosis of  cancers  .  

   Pericentric and Centromeric Transcription and Histone Modifi cations 

 Expression of pericentric and  centromeric   transcripts has been found to be altered 
in senescent cells and human  cancer   samples when compared to normal tissues, 
refl ecting the global  epigenetic   deregulation [ 87 ]. This could partly be facilitated by 
the altered  DNA methylation   in these regions. In addition to global DNA methyla-
tion changes, the global histone marks have also been found to be altered. The loss 
of both H4K20me3, the pericentric constitutive  heterochromatin   mark, and 
H3K27me3, the facultative heterochromatin mark, were reported in lung cancer 
cells when examined with the non-tumor cells [ 88 ]. 

 Upregulation of pericentric satellite 3 was also observed in a Hutchinson-Gilford 
progeria  syndrome   (HGPS) patient. HGPS (OMIM #176670) is a  disease   of rapid 
aging due to the expression of mutant Lamin A, a developmentally regulated gene. 
However, the expression of alpha satellite was unaltered, suggesting that the expres-
sion of pericentric and  centromeric   sequences are controlled by different mecha-
nisms. The upregulation of satellite 3 was accompanied by the loss of H3K27me3 
and pericentric constitutive  heterochromatin   mark H3K9me3 but by the increase of 
another constitutive heterochromatin mark, H4K20me3 [ 89 ]. Hence, thus far, the 
relationships between the expression of repetitive satellites and both  DNA methyla-
tion   as well as histone modifi cations remain to be clarifi ed. 

 Although the cases aforementioned were characterized by upregulation of 
 centromeric   and/or pericentromeric sequences, the right  transcriptional   balance 
between sense and antisense strand of both pericentric and centromeric 
sequences appears to be crucial for the proper formation and function of a  cen-
tromere   [ 90 ,  91 ].    

     Evolution   

    Primate Centromere DNA 

 Alpha  satellite DNA   is a relatively conserved  centromeric   repeat family. It is found 
in great apes, old world monkeys and new world monkeys, which span approxi-
mately 43 million years of evolution since the last common ancestor. In great apes 
it is organized into HOR structures, however in more distant species, it is mainly 
found in divergent monomeric forms. One proposed hypothesis is that HOR struc-
ture arose after the divergence of the great apes from the rest of the primate species 
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[ 92 ]. Interestingly, HOR structures are not necessarily restricted to certain species 
or particular  chromosomes  , for example the  centromere   array of the mouse Y  chro-
mosome   contains a HOR but the autosomes and X chromosome only have the 
monomeric form [ 93 ]. 

 As described above, alpha satellite is found in many primate species across 43 
million years of evolution. This appears to be rather a long time when compared to 
other mammalian  centromere   satellites such as the mouse minor  satellite DNA  . The 
monomer repeat unit is 120 bp and is only found in a subset of species in the  Mus  
genus spanning about 5–7 million years [ 94 ]. The higher rate of centromere DNA 
evolution in the mouse may be related to a much shorter generation time which 
increases the chance of the centromere array to rearrange and diverge during mei-
otic recombination. Even though minor and alpha satellite DNAs are quite diverged, 
they do share some features such as a high AT content and the conservation of the 
CENP-B box motif.  

    The Rapidly Evolving Y Centromere 

 The human Y  chromosome   exists in a haploid state in males, and offers a unique 
perspective into the evolution of  centromere   DNA within a species since there is no 
homologous counterpart of this region for meiotic recombination to occur. Like 
most other Y chromosome sequences that do not recombine with a homologue, the 
centromere DNA has undergone a rapid rate of sequence divergence. Some of the 
features that mark the Y centromere as separate from other human  centromeres   
include; a diverged alpha satellite monomer, absence of the CENP-B box motif, 
diverged HOR and a signifi cantly smaller overall length [ 13 ,  14 ]. Evidence for the 
rapid divergence in the Y alpha satellite sequence is nicely illustrated in the analysis 
of the HOR in humans and chimpanzees. The HOR of the X and 17 alpha satellite 
exhibits a conserved co-linearity of the HOR, whereas the Y alpha satellite has 
completely lost this conserved structure and the length of the HOR between humans 
and chimpanzees is also different [ 93 ]. 

 The functional consequences of a rapidly diverging and smaller Y  centromere   
may be responsible for the Y  chromosome  ’s partial instability during division of 
aging cells [ 95 ,  96 ]. Measurement of the CENP-A protein on Y  centromeres   shows 
that it contains around half the amount when compared to the autosomes and X 
centromeres [ 43 ]. This lower amount is consistent with less alpha  satellite DNA   
present at Y centromeres. Y alpha satellite DNA ranges in length from 250 to 
1500 kb, in contrast to the X centromere which is megabases in size, ranging from 
1300 to 3700 kb [ 13 ]. On the extreme end of low amounts of alpha satellite, neo-
centromeres are formed on non-alpha satellite regions of the  genome   and are found 
to contain even lower amounts of CENP-A than the Y centromere [ 43 ] (see 
“Disease” section).  

9 Centromeres in Health, Disease and Evolution



238

    Adaptive  Evolution   of Foundation Centromere Proteins 

 It has been hypothesized that rapidly evolving  centromere   DNA can expand and 
create larger  centromeres   that can bind more spindle microtubules [ 97 ]. Other evo-
lutionary mechanisms can increase the size of a centromere, such as translocations 
of acrocentric  chromosomes   in humans to generate metacentric (Robertsonian) 
chromosomes with two adjacent centromeres [ 98 ]. These chromosomes have a 
higher chance of being inherited during the asymmetric cell divisions of female 
meiosis where the egg spindle pole releases more microtubules to capture the bigger 
centromere than the polar body pole. To prevent a complete runaway of chromo-
somes with larger and larger centromeres the cell counters this expansion by  epi-
genetic   means, through the adaptive evolution of centromere  chromatin   proteins 
such as CENP-A and CENP-C [ 99 ]. Evidence for this hypothesis is now accumulat-
ing in many species groups, such as fl ies, plants and primates that show these two 
proteins are under adaptive evolution [ 100 – 102 ]. In contrast, when similar sequence 
analysis across the primate group was performed, it did not show any evidence for 
adaptive selection for the non-essential CENP-B protein, even though this protein 
directly binds to the alpha  satellite DNA   [ 102 ].  

    ZNF397, an Evolutionary New Centromere Protein 

 Many  centromere   proteins are conserved in eukaryotic species, ranging from the 
single-celled budding yeast to humans. In some instances in evolution, new pro-
teins appear via a variety of molecular mechanisms. One example of this is zinc 
fi nger protein 397 (ZNF397), which presumably arose from a gene duplication 
event after the separation of placental and marsupial mammals. We had previously 
identifi ed ZNF397 using anti-centromere antibodies from a patient with autoim-
mune  disease   [ 103 ]. Interestingly, this protein has a unique cell cycle localization 
pattern where it is present from the end of telophase through to early prophase. 
Knockout experiments in mouse showed that the protein is not essential for  chro-
mosome   segregation. One attractive hypothesis is that the protein has acquired cen-
tromere targeting activity but it is yet to be directly involved in full  kinetochore   
function.  

    Karyotype  Evolution   and Meiotic Drive: Robertsonian 
Translocations 

 Mendel’s law of segregation implies that the two homologous  chromosomes   in a 
parent segregate at meiosis into the gametes to ensure the offspring acquire only one 
copy of each  chromosome   from each parent, thereby maintaining the proper 
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chromosome number in sexually reproducing organisms. This law assumes that the 
process of segregation occurs in a random and non-biased manner. However, in 
humans, the most common ROBs namely der(13q14q) and der(14q21q) arise 
mainly during oogenesis but not spermatogenesis [ 32 ]. It was postulated that the 
chromosomal rearrangements of ROBs cause functional heterozygosity at the  cen-
tromere   of homologous chromosomes leading to the differential interactions with 
the meiotic spindle. This then contributes to preferential segregation of the rear-
ranged chromosomes into functional meiotic product instead of the polar bodies 
[ 104 ]. These ROB chromosomes in male carriers are not subjected to the same 
meiotic drive owing to the process of spermatogenesis where polar bodies do not 
form, hence, do not render the opportunity for preferential segregation.  

    Neocentromeres and Evolutionary New Centromeres 

 One of the hallmarks of speciation at the genetic level is the divergence of karyo-
types between two newly-formed species. This separation can often produce a 
reproductive barrier between the two groups which then further accelerates the rate 
of evolution. Chromosomal rearrangements including, translocations, inversions, 
deletions and duplications, are a driving force in the emergence of new karyotype 
confi gurations. As a consequence of genomic rearrangements, the  centromere   can 
also change position to either rescue an acentric chromosomal fragment or compen-
sate for a partially deleted (inactivated) centromere, as has been observed in de novo 
clinical cytogenetic cases (Fig.  9.3 ) (see “Disease” section). Changes in centromere 
position in closely related species led to the concept of Evolutionary New 
Centromeres (ENCs) [ 105 ]. ENCs were initially thought to have arisen due to the 
physical repositioning of an extant centromere. This hypothesis has been replaced 
by the ENC hypothesis because of more accurate  genome   and cytogenetic mapping. 
So the evolutionary timeline of the formation of an ENC is as follows: (1) chromo-
somal rearrangement, (2) neocentromere formation and (3) accumulation of  satel-
lite DNA   at the neocentromeric locus [ 106 ]. 

 A good example that illustrates this progress from neocentromere to an ENC is 
in the orangutan. Early cytogenetic analyses of orangutan  centromeres   using 
alpha satellite FISH showed that at least one  chromosome   was devoid of alpha 
 satellite DNA   [ 107 ]. It wasn’t until high-throughput sequencing and CENP-A 
pulldown technologies that defi nitively revealed that chromosome 12 contained a 
neocentromere but had not yet acquired any alpha satellite DNA sequences [ 108 ]. 
The ENC chromosome 12 is present in 2 species of orangutan,  Pongo abelii  
(Sumatran) and  Pongo pygmaeus  (Bornean) which shared a common ancestor 
between 0.4 and 1 million years ago. This shows that ENCs can take a long time 
to acquire satellite sequences. Interestingly, the progenitor chromosome 12 with 
the alphoid  centromere   still exists together with the ENC form in the two orang-
utan species.   

9 Centromeres in Health, Disease and Evolution



240

    Conclusions 

 In the last few decades we have made rapid progress in the discovery of most of the 
genomic and protein elements that make up a functional  centromere  . Human centro-
mere DNAs have been identifi ed and mapped to each  chromosome  . Current 
sequencing methods have made some in-roads towards completing the  genome   map 
of these repeat-rich regions. Furthermore, novel computational methods have 
allowed the interrogation of high-throughput genome sequencing results from indi-
viduals, however, gaps still remain. The next breakthrough in long-read single- 
molecule sequencing will allow these gaps to be closed and analyzed 
centromere-by-centromere. Insights will be made in the rate of evolution across 
populations and within families. This will enable researchers to further understand 
the contribution of variation and mutation on centromere dysfunction in human 
 chromosome instability   disorders.     

   References 

    1.    Battaglia E (2003) Centromere, kinetochore, kinochore, kinetosome, kinosome, kinetomere, 
kinomere, kinetocentre, kinocentre: history, etymology and intepretation. Caryologia 
56:1–21  

    2.    Arrighi FE, Hsu TC (1971) Localization of heterochromatin in human chromosomes. 
Cytogenetics 10:81–86  

    3.    Vissel B, Choo KH (1992) Evolutionary relationships of multiple alpha satellite subfamilies 
in the centromeres of human chromosomes 13, 14, and 21. J Mol Evol 35:137–146  

    4.    Choo KH, Vissel B, Nagy A, Earle E, Kalitsis P (1991) A survey of the genomic distribution 
of alpha satellite DNA on all the human chromosomes, and derivation of a new consensus 
sequence. Nucleic Acids Res 19:1179–1182  

     5.    Moroi Y, Peebles C, Fritzler MJ, Steigerwald J, Tan EM (1980) Autoantibody to centromere 
(kinetochore) in scleroderma sera. Proc Natl Acad Sci U S A 77:1627–1631  

     6.    Hori T, Shang W-H, Takeuchi K, Fukagawa T (2013) The CCAN recruits CENP-A to the 
centromere and forms the structural core for kinetochore assembly. J Cell Biol 200:45–60  

    7.    Westhorpe FG, Straight AF (2013) Functions of the centromere and kinetochore in chromo-
some segregation. Curr Opin Cell Biol 25:334–340  

    8.    Foley EA, Kapoor TM (2013) Microtubule attachment and spindle assembly checkpoint sig-
nalling at the kinetochore. Nat Rev Mol Cell Biol 14:25–37  

    9.    Bayani J, Selvarajah S, Maire G, Vukovic B, Al-Romaih K, Zielenska M et al (2007) Genomic 
mechanisms and measurement of structural and numerical instability in cancer cells. Semin 
Cancer Biol 17:5–18  

   10.    Chandhok NS, Pellman D (2009) A little CIN may cost a lot: revisiting aneuploidy and can-
cer. Curr Opin Genet Dev 19:74–81  

    11.    Holland AJ, Cleveland DW (2009) Boveri revisited: chromosomal instability, aneuploidy and 
tumorigenesis. Nat Rev Mol Cell Biol 10:478–487  

    12.    Manuelidis L (1978) Chromosomal localization of complex and simple repeated human 
DNAs. Chromosoma 66:23–32  

      13.    Wevrick R, Willard HF (1989) Long-range organization of tandem arrays of alpha satellite 
DNA at the centromeres of human chromosomes: high-frequency array-length polymor-
phism and meiotic stability. Proc Natl Acad Sci U S A 86:9394–9398  

T.T. Beh and P. Kalitsis



241

       14.    Masumoto H, Masukata H, Muro Y, Nozaki N, Okazaki T (1989) A human centromere anti-
gen (CENP-B) interacts with a short specifi c sequence in alphoid DNA, a human centromeric 
satellite. J Cell Biol 109:1963–1973  

    15.    Okada T, Ohzeki J, Nakano M, Yoda K, Brinkley WR, Larionov V et al (2007) CENP-B 
controls centromere formation depending on the chromatin context. Cell 131:1287–1300  

    16.    Hudson DF, Fowler KJ, Earle E, Saffery R, Kalitsis P, Trowell H et al (1998) Centromere 
protein B null mice are mitotically and meiotically normal but have lower body and testis 
weights. J Cell Biol 141:309–319  

   17.    Perez-Castro AV, Shamanski FL, Meneses JJ, Lovato TL, Vogel KG, Moyzis RK et al (1998) 
Centromeric protein B null mice are viable with no apparent abnormalities. Dev Biol 
201:135–143  

   18.    Kapoor M, Montes de Oca Luna R, Liu G, Lozano G, Cummings C, Mancini M et al (1998) 
The cenpB gene is not essential in mice. Chromosoma 107:570–576  

       19.    Voullaire LE, Slater HR, Petrovic V, Choo KH (1993) A functional marker centromere with 
no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centro-
mere? Am J Hum Genet 52:1153–1163  

    20.    Miga KH, Newton Y, Jain M, Altemose N, Willard HF, Kent WJ (2014) Centromere refer-
ence models for human chromosomes X and Y satellite arrays. Genome Res 24:697–707  

    21.    Blower MD, Sullivan BA, Karpen GH (2002) Conserved organization of centromeric chro-
matin in fl ies and humans. Dev Cell 2:319–330  

    22.    Schueler MG, Higgins AW, Rudd MK, Gustashaw K, Willard HF (2001) Genomic and 
genetic defi nition of a functional human centromere. Science 294:109–115  

    23.    Earnshaw WC, Rothfi eld N (1985) Identifi cation of a family of human centromere proteins 
using autoimmune sera from patients with scleroderma. Chromosoma 91:313–321  

    24.    Earnshaw WC, Migeon BR (1985) Three related centromere proteins are absent from the 
inactive centromere of a stable isodicentric chromosome. Chromosoma 92:290–296  

    25.    Palmer DK, O’Day K, Wener MH, Andrews BS, Margolis RL (1987) A 17-kD centromere 
protein (CENP-A) copurifi es with nucleosome core particles and with histones. J Cell Biol 
104:805–815  

    26.    Howman EV, Fowler KJ, Newson AJ, Redward S, MacDonald AC, Kalitsis P et al (2000) 
Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null 
mice. Proc Natl Acad Sci U S A 97:1148–1153  

    27.    Hoyt MA, Totis L, Roberts BT (1991) S. cerevisiae genes required for cell cycle arrest in 
response to loss of microtubule function. Cell 66:507–517  

    28.    Li R, Murray AW (1991) Feedback control of mitosis in budding yeast. Cell 66:519–531  
    29.    Salic A, Waters JC, Mitchison TJ (2004) Vertebrate shugoshin links sister centromere cohe-

sion and kinetochore microtubule stability in mitosis. Cell 118:567–578  
    30.    Santaguida S, Musacchio A (2009) The life and miracles of kinetochores. EMBO J 

28:2511–2531  
    31.    Carmena M, Wheelock M, Funabiki H, Earnshaw WC (2012) The chromosomal passenger 

complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol 
13:789–803  

     32.    Bandyopadhyay R, Heller A, Knox-DuBois C, McCaskill C, Berend SA, Page SL et al (2002) 
Parental origin and timing of de novo Robertsonian translocation formation. Am J Hum 
Genet 71:1456–1462  

    33.    Scott SA, Cohen N, Brandt T, Warburton PE, Edelmann L (2010) Large inverted repeats 
within Xp11.2 are present at the breakpoints of isodicentric X chromosomes in Turner syn-
drome. Hum Mol Genet 19:3383–3393  

    34.    Lemyre E, der Kaloustian VM, Duncan AM (2001) Stable non-Robertsonian dicentric chro-
mosomes: four new cases and a review. J Med Genet 38:76–79  

    35.    Dutta UR, Pidugu VK, Dalal A (2012) Molecular cytogenetic characterization of a non- 
Robertsonian dicentric chromosome 14;19 identifi ed in a girl with short stature and amenor-
rhea. Case Rep Genet 2012:212065  

9 Centromeres in Health, Disease and Evolution



242

    36.    Page SL, Shaffer LG (1998) Chromosome stability is maintained by short intercentromeric 
distance in functionally dicentric human Robertsonian translocations. Chromosome Res 
6:115–122  

    37.    Rivera H, Ayala-Madrigal LM, Gutiérrez-Angulo M, Vasquez AI, Ramos AL (2003) 
Isodicentric Y chromosomes and secondary microchromosomes. Genet Couns 14:227–231  

    38.    Page SL, Earnshaw WC, Choo KH, Shaffer LG (1995) Further evidence that CENP-C is a 
necessary component of active centromeres: studies of a dic(X; 15) with simultaneous immu-
nofl uorescence and FISH. Hum Mol Genet 4:289–294  

    39.    Sullivan BA, Willard HF (1998) Stable dicentric X chromosomes with two functional centro-
meres. Nat Genet 20:227–228  

    40.    Gisselsson D, Jonson T, Petersén A, Strömbeck B, Dal Cin P, Höglund M et al (2001) 
Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chro-
mosome abnormalities in human malignant tumors. Proc Natl Acad Sci U S A 98:
12683–12688  

     41.    Mackinnon RN, Campbell LJ (2011) The role of dicentric chromosome formation and sec-
ondary centromere deletion in the evolution of myeloid malignancy. Genet Res Int 
2011:643628  

    42.    Saffery R, Irvine DV, Griffi ths B, Kalitsis P, Wordeman L, Choo KH (2000) Human centro-
meres and neocentromeres show identical distribution patterns of >20 functionally important 
kinetochore-associated proteins. Hum Mol Genet 9:175–185  

      43.    Irvine DV, Amor DJ, Perry J, Sirvent N, Pedeutour F, Choo KHA et al (2004) Chromosome 
size and origin as determinants of the level of CENP-A incorporation into human centro-
meres. Chromosome Res 12:805–815  

    44.    Amor DJ, Bentley K, Ryan J, Perry J, Wong L, Slater H et al (2004) Human centromere 
repositioning “in progress”. Proc Natl Acad Sci U S A 101:6542–6547  

    45.    Alonso A, Hasson D, Cheung F, Warburton PE (2010) A paucity of heterochromatin at func-
tional human neocentromeres. Epigenetics Chromatin 3:6  

    46.    Bassett EA, Wood S, Salimian KJ, Ajith S, Foltz DR, Black BE (2010) Epigenetic centro-
mere specifi cation directs aurora B accumulation but is insuffi cient to effi ciently correct 
mitotic errors. J Cell Biol 190:177–185  

      47.    Marshall OJ, Chueh AC, Wong LH, Choo KHA (2008) Neocentromeres: new insights into 
centromere structure, disease development, and karyotype evolution. Am J Hum Genet 
82:261–282  

    48.    Morrissette JD, Celle L, Owens NL, Shields CL, Zackai EH, Spinner NB (2001) Boy with 
bilateral retinoblastoma due to an unusual ring chromosome 13 with activation of a latent 
centromere. Am J Med Genet 99:21–28  

    49.    Hu J, McPherson E, Surti U, Hasegawa SL, Gunawardena S, Gollin SM (2002) Tetrasomy 
15q25.3 → qter resulting from an analphoid supernumerary marker chromosome in a patient 
with multiple anomalies and bilateral Wilms tumors. Am J Med Genet 113:82–88  

    50.    Haddad V, Aboura A, Tosca L, Guediche N, Mas A-E, L’Herminé AC et al (2012) Tetrasomy 
13q31.1qter due to an inverted duplicated neocentric marker chromosome in a fetus with 
multiple malformations. Am J Med Genet A 158A:894–900  

    51.    Liu J, Jethva R, Del Vecchio MT, Hauptman JE, Pascasio JM, de Chadarévian J-P (2013) 
Tetrasomy 13q32.2qter due to an apparent inverted duplicated neocentric marker chromo-
some in an infant with hemangiomas, failure to thrive, laryngomalacia, and tethered cord. 
Birth Defects Res A Clin Mol Teratol 97:812–815  

    52.    Burrack LS, Berman J (2012) Neocentromeres and epigenetically inherited features of cen-
tromeres. Chromosome Res 20:607–619  

    53.    Gaskin CM, Helms CA (2004) Lipomas, lipoma variants, and well-differentiated liposarco-
mas (atypical lipomas): results of MRI evaluations of 126 consecutive fatty masses. AJR Am 
J Roentgenol 182:733–739  

    54.    Italiano A, Maire G, Sirvent N, Nuin PAS, Keslair F, Foa C et al (2009) Variability of origin 
for the neocentromeric sequences in analphoid supernumerary marker chromosomes of well- 
differentiated liposarcomas. Cancer Lett 273:323–330  

T.T. Beh and P. Kalitsis



243

    55.    Zivković L, Spremo-Potparević B, Siedlak SL, Perry G, Plećaš-Solarović B, Milićević Z et al 
(2013) DNA damage in Alzheimer disease lymphocytes and its relation to premature centro-
mere division. Neurodegener Dis 12:156–163  

    56.    Nagaoka SI, Hassold TJ, Hunt PA (2012) Human aneuploidy: mechanisms and new insights 
into an age-old problem. Nat Rev Genet 13:493–504  

    57.    Jessberger R (2012) Age-related aneuploidy through cohesion exhaustion. EMBO Rep 
13:539–546  

    58.    Wassmann K (2013) Sister chromatid segregation in meiosis II: deprotection through phos-
phorylation. Cell Cycle 12:1352–1359  

     59.    Valente V, Serafi m RB, de Oliveira LC, Adorni FS, Torrieri R, Tirapelli DP et al (2013) 
Modulation of HJURP (Holliday Junction-Recognizing Protein) levels is correlated with 
glioblastoma cells survival. PLoS One 8:e62200  

    60.    Vardabasso C, Hasson D, Ratnakumar K, Chung C-Y, Duarte LF, Bernstein E (2014) Histone 
variants: emerging players in cancer biology. Cell Mol Life Sci 71:379–404  

    61.    Wu Q, Qian Y-M, Zhao X-L, Wang S-M, Feng X-J, Chen X-F et al (2012) Expression and 
prognostic signifi cance of centromere protein A in human lung adenocarcinoma. Lung 
Cancer 77:407–414  

    62.    Qiu J-J, Guo J-J, Lv T-J, Jin H-Y, Ding J-X, Feng W-W et al (2013) Prognostic value of cen-
tromere protein-A expression in patients with epithelial ovarian cancer. Tumour Biol 
34:2971–2975  

    63.    McGovern SL, Qi Y, Pusztai L, Symmans WF, Buchholz TA (2012) Centromere protein-A, 
an essential centromere protein, is a prognostic marker for relapse in estrogen receptor- 
positive breast cancer. Breast Cancer Res 14:R72  

    64.    Hu Z, Huang G, Sadanandam A, Gu S, Lenburg ME, Pai M et al (2010) The expression level 
of HJURP has an independent prognostic impact and predicts the sensitivity to radiotherapy 
in breast cancer. Breast Cancer Res 12:R18  

    65.    Callier P, Faivre L, Cusin V, Marle N, Thauvin-Robinet C, Sandre D et al (2005) Microcephaly 
is not mandatory for the diagnosis of mosaic variegated aneuploidy syndrome. Am J Med 
Genet A 137:204–207  

    66.    Kajii T, Ikeuchi T (2004) Premature chromatid separation (PCS) vs. premature centromere 
division (PCD). Am J Med Genet A 126A:433–434  

    67.    Hanks S, Coleman K, Reid S, Plaja A, Firth H, Fitzpatrick D et al (2004) Constitutional 
aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet 
36:1159–1161  

    68.    García-Castillo H, Vásquez-Velásquez AI, Rivera H, Barros-Núñez P (2008) Clinical and 
genetic heterogeneity in patients with mosaic variegated aneuploidy: delineation of clinical 
subtypes. Am J Med Genet A 146A:1687–1695  

    69.    Goh ES-Y, Li C, Horsburgh S, Kasai Y, Kolomietz E, Morel CF (2010) The Roberts syn-
drome/SC phocomelia spectrum--a case report of an adult with review of the literature. Am J 
Med Genet A 152A:472–478  

    70.    Vega H, Trainer AH, Gordillo M, Crosier M, Kayserili H, Skovby F et al (2010) Phenotypic 
variability in 49 cases of ESCO2 mutations, including novel missense and codon deletion in 
the acetyltransferase domain, correlates with ESCO2 expression and establishes the clinical 
criteria for Roberts syndrome. J Med Genet 47:30–37  

    71.    Genin A, Desir J, Lambert N, Biervliet M, Van Der Aa N, Pierquin G et al (2012) Kinetochore 
KMN network gene CASC5 mutated in primary microcephaly. Hum Mol Genet 
21:5306–5317  

     72.    Mirzaa GM, Vitre B, Carpenter G, Abramowicz I, Gleeson JG, Paciorkowski AR et al (2014) 
Mutations in CENPE defi ne a novel kinetochore-centromeric mechanism for microcephalic 
primordial dwarfi sm. Hum Genet 133:1023–1039  

    73.    Gudimchuk N, Vitre B, Kim Y, Kiyatkin A, Cleveland DW, Ataullakhanov FI et al (2013) 
Kinetochore kinesin CENP-E is a processive bi-directional tracker of dynamic microtubule 
tips. Nat Cell Biol 15:1079–1088  

9 Centromeres in Health, Disease and Evolution



244

    74.    Bolanos-Garcia VM, Blundell TL (2011) BUB1 and BUBR1: multifaceted kinases of the cell 
cycle. Trends Biochem Sci 36:141–150  

    75.    Grabsch H, Takeno S, Parsons WJ, Pomjanski N, Boecking A, Gabbert HE et al (2003) 
Overexpression of the mitotic checkpoint genes BUB1, BUBR1, and BUB3 in gastric cancer-
-association with tumour cell proliferation. J Pathol 200:16–22  

    76.    Morales AG, Pezuk JA, Brassesco MS, de Oliveira JC, de Paula Queiroz RG, Machado HR 
et al (2013) BUB1 and BUBR1 inhibition decreases proliferation and colony formation, and 
enhances radiation sensitivity in pediatric glioblastoma cells. Childs Nerv Syst 29:
2241–2248  

    77.    Pinto M, Vieira J, Ribeiro FR, Soares MJ, Henrique R, Oliveira J et al (2008) Overexpression 
of the mitotic checkpoint genes BUB1 and BUBR1 is associated with genomic complexity in 
clear cell kidney carcinomas. Cell Oncol 30:389–395  

    78.    Halfmann R, Lindquist S (2010) Epigenetics in the extreme: prions and the inheritance of 
environmentally acquired traits. Science 330:629–632  

    79.    Grossniklaus U, Kelly WG, Kelly B, Ferguson-Smith AC, Pembrey M, Lindquist S (2013) 
Transgenerational epigenetic inheritance: how important is it? Nat Rev Genet 14:228–235  

     80.    Qu G, Dubeau L, Narayan A, Yu MC, Ehrlich M (1999) Satellite DNA hypomethylation vs. 
overall genomic hypomethylation in ovarian epithelial tumors of different malignant poten-
tial. Mutat Res 423:91–101  

    81.    Weemaes CMR, van Tol MJD, Wang J, van Ostaijen-ten Dam MM, van Eggermond MCJA, 
Thijssen PE et al (2013) Heterogeneous clinical presentation in ICF syndrome: correlation 
with underlying gene defects. Eur J Hum Genet 21:1219–1225  

    82.    Jiang YL, Rigolet M, Bourc’his D, Nigon F, Bokesoy I, Fryns JP et al (2005) DNMT3B 
mutations and DNA methylation defect defi ne two types of ICF syndrome. Hum Mutat 
25:56–63  

    83.    Brun M-E, Lana E, Rivals I, Lefranc G, Sarda P, Claustres M et al (2011) Heterochromatic 
genes undergo epigenetic changes and escape silencing in immunodefi ciency, centromeric 
instability, facial anomalies (ICF) syndrome. PLoS One 6:e19464  

    84.    Fawkner-Corbett DW, Howell L, Pizer BL, Dominici C, McDowell HP, Losty PD (2014) 
Wilms’ tumor--lessons and outcomes--a 25-year single center UK experience. Pediatr 
Hematol Oncol 31:400–408  

    85.    Ehrlich M, Hopkins NE, Jiang G, Dome JS, Yu MC, Woods CB et al (2003) Satellite DNA 
hypomethylation in karyotyped Wilms tumors. Cancer Genet Cytogenet 141:97–105  

    86.    Fabris S, Bollati V, Agnelli L, Morabito F, Motta V, Cutrona G et al (2011) Biological and 
clinical relevance of quantitative global methylation of repetitive DNA sequences in chronic 
lymphocytic leukemia. Epigenetics 6:188–194  

    87.    Ting DT, Lipson D, Paul S, Brannigan BW, Akhavanfard S, Coffman EJ et al (2011) Aberrant 
overexpression of satellite repeats in pancreatic and other epithelial cancers. Science 
331:593–596  

    88.    Eymery A, Horard B, El Atifi -Borel M, Fourel G, Berger F, Vitte A-L et al (2009) A transcrip-
tomic analysis of human centromeric and pericentric sequences in normal and tumor cells. 
Nucleic Acids Res 37:6340–6354  

    89.    Shumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR, Erdos MR et al (2006) 
Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature 
aging. Proc Natl Acad Sci U S A 103:8703–8708  

    90.    Chan FL, Marshall OJ, Saffery R, Kim BW, Earle E, Choo KHA et al (2012) Active transcrip-
tion and essential role of RNA polymerase II at the centromere during mitosis. Proc Natl 
Acad Sci U S A 109:1979–1984  

    91.    Hall LE, Mitchell SE, O’Neill RJ (2012) Pericentric and centromeric transcription: a perfect 
balance required. Chromosome Res 20:535–546  

    92.    Alkan C, Ventura M, Archidiacono N, Rocchi M, Sahinalp SC, Eichler EE (2007) Organization 
and evolution of primate centromeric DNA from whole-genome shotgun sequence data. 
PLoS Comput Biol 3:1807–1818  

T.T. Beh and P. Kalitsis



245

     93.    Pertile MD, Graham AN, Choo KHA, Kalitsis P (2009) Rapid evolution of mouse Y centro-
mere repeat DNA belies recent sequence stability. Genome Res 19:2202–2213  

    94.    Garagna S, Redi CA, Capanna E, Andayani N, Alfano RM, Doi P et al (1993) Genome distri-
bution, chromosomal allocation, and organization of the major and minor satellite DNAs in 
11 species and subspecies of the genus Mus. Cytogenet Cell Genet 64:247–255  

    95.    Griffi n DK, Abruzzo MA, Millie EA, Sheean LA, Feingold E, Sherman SL et al (1995) Non- 
disjunction in human sperm: evidence for an effect of increasing paternal age. Hum Mol 
Genet 4:2227–2232  

    96.    Nath J, Tucker JD, Hando JC (1995) Y chromosome aneuploidy, micronuclei, kinetochores 
and aging in men. Chromosoma 103:725–731  

    97.    Zwick ME, Salstrom JL, Langley CH (1999) Genetic variation in rates of nondisjunction: 
association of two naturally occurring polymorphisms in the chromokinesin nod with 
increased rates of nondisjunction in Drosophila melanogaster. Genetics 152:1605–1614  

    98.    Daniel A (2002) Distortion of female meiotic segregation and reduced male fertility in human 
Robertsonian translocations: consistent with the centromere model of co-evolving centro-
mere DNA/centromeric histone (CENP-A). Am J Med Genet 111:450–452  

    99.    Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with 
rapidly evolving DNA. Science 293:1098–1102  

    100.    Malik HS, Henikoff S (2001) Adaptive evolution of Cid, a centromere-specifi c histone in 
Drosophila. Genetics 157:1293–1298  

   101.    Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S (2002) Centromeric localization and 
adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14:1053–1066  

     102.   Schueler MG, Swanson W, Thomas PJ, NISC Comparative Sequencing Program, Green ED 
(2010) Adaptive evolution of foundation kinetochore proteins in primates. Mol Biol Evol 
27:1585–1597  

    103.    Bailey SL, Chang SC, Griffi ths B, Graham AN, Saffery R, Earle E et al (2008) ZNF397, a 
new class of interphase to early prophase-specifi c, SCAN-zinc-fi nger, mammalian centro-
mere protein. Chromosoma 117:367–380  

    104.    Pardo-Manuel de Villena F, Sapienza C (2001) Nonrandom segregation during meiosis: the 
unfairness of females. Mamm Genome 12:331–339  

    105.    Rocchi M, Stanyon R, Archidiacono N (2009) Evolutionary new centromeres in primates. 
Prog Mol Subcell Biol 48:103–152  

    106.    Kalitsis P, Choo KHA (2012) The evolutionary life cycle of the resilient centromere. 
Chromosoma 121:327–340  

    107.    Miller DA, Sharma V, Mitchell AR (1988) A human-derived probe, p82H, hybridizes to the 
centromeres of gorilla, chimpanzee, and orangutan. Chromosoma 96:270–274  

    108.    Locke DP, Hillier LW, Warren WC, Worley KC, Nazareth LV, Muzny DM et al (2011) 
Comparative and demographic analysis of orang-utan genomes. Nature 469:529–533    

9 Centromeres in Health, Disease and Evolution



247© Springer Science+Business Media New York 2015 
K. Felekkis, K. Voskarides (eds.), Genomic Elements in Health, 
Disease and Evolution, DOI 10.1007/978-1-4939-3070-8_10

    Chapter 10   
 Structure and Functions of Telomeres 
in Organismal Homeostasis and Disease       

       Penelope     Kroustallaki       and     Sarantis     Gagos     

             Telomeres   Co-evolved with Linear Chromosomes 

 From the origins of life, the ancestral circular prokaryotic  genome   developed a 
 complex biological machinery committed to maintain DNA integrity that ensures 
cellular homeostasis and the fi delity of the transmission of precise genetic informa-
tion through cell generations [ 1 – 3 ]. In both prokaryotes and eukaryotes, a highly 
effi cient repair system, evolved to sense and restore DNA base pair alterations or 
miss- matches, as well as any discontinuity of the genome, such as single or double 
strand breaks of the DNA helix [ 4 ,  5 ].  DNA repair   is a highly dynamic biological 
process that implies the congression of several types of specialized factors at the site 
of the DNA lesion, and in parallel, interacts with the course of the progression of the 
cell cycle affecting dramatically the overall cellular fate [ 6 ,  7 ]. Activation of the 
DNA repair machinery is operated by a series of post-translational modifi cations of 
numerous protein substrates that are profi cient to sense the site of the damage, they 
are capable to slow down the cell cycle as long as the damage is repaired, and they 
are even destined to kill the cell if the damage is unrepairable [ 8 ]. 

 In eukaryotes, the circular ancestral  genome   evolved into multiple linear chro-
mosomal entities that in many species can be visualized by light microscopy in 
cytological preparations stained by nucleophilic dyes [ 9 ,  10 ]. The adaptivity of the 
ancestral linear  chromosomes   was challenged by two very important biological 
constrains that literally shaped life as we know it: (a) The so-called, “ chromosome   
end-replication problem” proposed independently by Watson and Olovnikov during 
the 1970s [ 11 – 13 ] and (b) the putative activation of DNA damage responses at the 

    P.   Kroustallaki ,  B.Sc., M.Sc.      •    S.   Gagos ,  Ph.D.      (*) 
  Laboratory of Genetics, Department of Experimental Medicine and Translational Research , 
 Biomedical Research Foundation of the Academy of Athens, Greece (BRFAA) , 
  4 Soranou Ephessiou St. ,  Athens   115 27 ,  Greece   
 e-mail: penelopekroust@hotmail.com; sgagos@bioacademy.gr  

mailto:penelopekroust@hotmail.com
mailto:sgagos@bioacademy.gr


248

linear chromosome’s “blunt” ends [ 14 ,  15 ] or the catastrophic activity of DNA exo-
nucleases at the exposed chromosome termini [ 16 ] (Fig.  10.1a, b ).

   The “ chromosome   end-replication problem” stems from the inert insuffi ciency 
of the semiconservative DNA replication machinery that is incapable to fully 
polymerize the lagging DNA strand and eventually trims down a terminal part from 
the 5′ end of the linear chromosome every time a DNA molecule replicates itself 
and the cell divides [ 17 ]. The second telomeric constrain, entailed the immediate 
evolution of a specialized terminal chromosomal structure that hides the discontinu-
ity of the DNA helix from the DDR machinery and in parallel, protects chromosome 
blunt ends from nucleolytic degradation [ 18 – 20 ]. 

  Fig. 10.1    The two major telomeric constrains and nature’s solutions to the  chromosome   terminal 
problem: Any interruption of the integrity of the prokaryotic circular DNA molecule in the form of 
DSB, activates DNA damage responses (DDR) that may lead to cell cycle arrest, or even to cell 
death ( a ). The evolution of circular  chromosomes   to linear DNA molecules was challenged by the 
universal insuffi ciency of the DNA replication machinery to replicate completely the 5′-end of the 
linear DNA molecule. This process shortens the chromosome by each cell division and can jeop-
ardize  genome   integrity and organismal homeostasis. In addition, the termini of linear DNA mol-
ecules can be perceived as DNA lesions, they can activate local DDR and can be degraded by 
nucleases ( b ). The partially dispensable repetitive, G-rich, primary structure of eukaryotic telo-
meres and the development of telomere replenishment mechanisms, such as the  ribozyme   telom-
erase, resolved the end-replication problem. Like most telomerases, human telomerase  reverse 
transcriptase   (hTERT) assembles with its  RNA   component (hTERC), anchors itself to the telo-
mere, and neo-synthesizes G-rich telomeric repeats according to its single-stranded complemen-
tary RNA template ( c ). To resolve the second telomeric constrain, the ends of linear chromosomes 
evolved secondary structures that mimic the circular ancestral DNA and can hide the single- 
stranded telomeric G-overhang into a telomeric loop (T-loop). The T-loop is formed by the inva-
sion of the G-overhang into double stranded telomeric repeats that is mediated by a three-stranded 
DNA displacement loop (D-loop) ( asterisk ). The formation of T-loops is facilitated by shelterin 
components and telomere interacting factors ( d )       
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 The specialized entities that comprise linear  chromosome   ends, were termed 
“telomeres” from the Greek words “τέλος” (-end) and “–μέρος” (part) by the Nobel 
laureate geneticist Herman Muller in 1938 [ 21 ]. The role of telomeres in chromo-
some protection and overall  genome   integrity was recognized during the 1930s by 
another Nobel laureate, Barbara McClintock who performed a series of studies in 
irradiated maize ( Zea mays ) cells and described the ongoing mutagenic phenome-
non of Breakage/Fusion/Bridge cycles (B/F/B cycles) [ 22 ,  23 ]. Dividing cells 
undergoing subsequent rounds of terminal chromatid, or chromosome breakage, 
followed by fusion and anaphase bridging, display multiple structural chromosome 
anomalies such as dicentric (or poly-centric) and ring  chromosomes   [ 23 ,  24 ]. The 
B/F/B cycles are capable to generate chromosomal translocations, inversions or 
duplications and can lead to losses of large genomic segments or even whole chro-
mosomes [ 25 – 28 ]. Today, it is well established that B/F/B cycles are illegitimate 
outcomes of Non-Homologous End Joining (NHEJ) or Homologous Recombination 
(HR)  DNA repair   pathways and play an important role in the ongoing chromosomal 
instability that is considered a hallmark of  cancer   [ 29 ,  30 ].  

    The Primary Nucleotide Structure of  Telomeres   
and Mechanisms of  Telomere   Length Maintenance 

 The molecular era of telomere research begins in 1978, when E. Blackburn and 
J. Gall, described that the terminal structures of the bulky extrachromosomal rDNA 
molecules of  Tetrahymena , are composed by tandemly repeated hexanucleotide 
sequences [ 31 ]. In the early 1980s, J. Szostak and E. Blackburn, showed that proto-
zoan telomeric function from  Tetrahymena , could be transferred to yeast  chromo-
somes   of  Saccharomyces cerevisiae  [ 32 ]. Driven by these fi ndings, E. Blackburn, 
and C. Greider, described for the fi rst time, that eukaryotic telomeres consist of 
tandemly repeated G- and C-rich complementary DNA sequences and set the basis 
to resolve the end-replication problem [ 33 ]. Their subsequent studies revealed that 
in  Tetrahymena , the G-rich telomeric DNA strand can be neo-synthesized by an 
 RNA  -dependent,  reverse transcriptase  , termed “telomerase” [ 33 ,  34 ]. These discov-
eries immediately raised the interest of the broad scientifi c community that very 
soon called telomeres the “thread of life” and telomerase the “fountain of youth”. 
The important contributions of E. Blackburn, J. Szostak, and C. Greider to science 
were recognized by the 2009 Nobel Prize in Physiology or Medicine. 

 In the past three decades, our understanding about the structure and the function 
of telomeres has signifi cantly improved through the efforts of a relatively small, 
but vigorously thriving research community: In 1989, Morin [ 35 ] showed that the 
 primary structure of human telomeres is composed by tandem repeats of the 
 complementary hexa-nucleotides TTAGGG/AATCCC (G-rich and C-rich strands). 
The same group documented human telomerase activity, while J. Meyne used 
Fluorescent in Situ Hybridization (FISH) to visualize telomeres at  chromosome   
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 termini, showing in parallel that the TTAGGG repeats are highly conserved between 
mammals [ 35 ,  36 ]. In fact, from anthozoans (corals) to humans, different species 
share the same TTAGGG repeat at their chromosome termini indicating that  telomere 
homeostasis is operated by highly conserved biological pathways [ 20 ,  37 – 39 ]. 

 The primary nucleotide structure of mammalian telomeres is composed of long 
stretches of double-stranded TTAGGG/AATCCC hexa-nucleotide repeats that vary 
in size between different organisms and species [ 36 ,  40 ]. The double telomeric 
strand terminates in a relatively short, single-stranded, TTAGGG-rich overhang that 
protrudes out of the 3′-end of each linear DNA molecule [ 41 ]. The length of the 
G-overhang ranges between 30 and 600 nucleotides [ 36 ,  41 ,  42 ]. The average length 
of double-stranded mammalian telomeres varies between  chromosomes   of the same 
cell and amongst species, from 5–20 kb in humans, to 50–150 kb in several rodents 
[ 36 ,  43 ,  44 ]. The telomerase holoenzyme, acts as a  reverse transcriptase   to polymer-
ize the 3′-overhang of the telomeric sequence using as template a specialized 
nuclear non-coding  RNA   that contains sequence complementarity with the G-rich 
telomeric repeat [ 34 ] (Fig.  10.1c ). 

 Studies in  Caenorhabditis elegans , revealed that double stranded telomeres can 
also terminate in 5′-end single stranded C-rich overhangs [ 45 ]. Similar to the 
worms, G1/S phase arrested or terminally differentiated mammalian cells, display 
frequent C-overhangs [ 46 ]. Telomeric C-rich overhangs are less well studied than 
G-overhangs and may play a role in biological processes involving homologous 
telomeric recombination [ 46 ].  

    Replicative Senescence and Ageing 

 Normal human cells  in culture  have a limited proliferative life-span, often termed 
the “Hayfl ick limit”. After 50–100 population doublings (PDs), most of the cultured 
cells enter a static phase termed “senescence”. Senescent cells stop to divide, 
undergo “crisis” and eventually they die [ 47 ,  48 ]. The term “replicative senescence”, 
was introduced by Greider and Harley in 1990, who elaborated the “telomeric 
hypothesis of aging”, based on their observations in human diploid cells that pro-
gressively lost their telomeres after consequent population doublings (PDs) [ 49 ]. 
According to this theory, most dividing somatic cells do not possess an active mech-
anism of telomere maintenance; hence, anytime a cell replicates its  genome  , a por-
tion of the telomeres will be lost and cannot be replenished [ 11 ,  13 ,  49 ]. Thus 
gradual telomeric shortening must be associated with cellular, tissue and organismal 
ageing. Indeed, several studies have shown that there is a positive correlation with 
telomere length of somatic tissues and life-span [ 50 ,  51 ]. Furthermore, cells from 
individuals with premature aging  syndromes   show reduced telomeric length and 
proliferative capacity  in culture  [ 52 ,  53 ]. However, there is a marked deviation of 
telomere length between individuals belonging in the same age group, indicating 
genetic and multifactorial effects on telomere metabolism [ 54 – 57 ]. 
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 In longed-lived mammals and humans, the gradual telomeric loss and the loss of 
replicative capacity act as barriers to carcinogenesis [ 58 ,  59 ]. On the contrary, many 
short-lived animals such as laboratory mice, have signifi cantly longer telomeres 
than humans, and do not display replicative aging [ 44 ,  60 ,  61 ]. There is now sub-
stantial evidence that in short lived mammals, like rodents, cellular senescence does 
not act as an oncosuppressor pathway [ 62 – 64 ]. Primary normal diploid mouse cell 
cultures undergo spontaneous transformation and become polyploid, upon a limited 
number of PDs, whereas normal human cells are constrained by the Hayfl ick limit 
[ 64 ,  65 ]. Ectopic expression of telomerase activity in cultured, diploid, human reti-
nal pigment epithelial cells is capable to confer immortalization and bypasses the 
Hayfl ick barrier [ 66 ].  

    Biogenesis of  Telomerases   

 Although telomerase activity can be reconstituted in vitro just by the combined 
presence of the  reverse transcriptase   (TERT) and its  RNA   template (TERC), the 
different telomerase holoenzymes between species, are composed from several pro-
tein components [ 67 ,  68 ]. These molecules take part in biogenesis, assembly, target-
ing and regulation of telomerases. The molecular cloning of the telomerase 
holoenzyme constituents, in various experimental in vivo models and in human 
cells, enabled the investigation and manipulation of the biological processes that 
regulate telomere length [ 60 ,  67 ,  69 ,  70 ]. In  S. cerevisiae , the telomerase ribonu-
cleoprotein (RNP) is composed of the three protein subunits, Est1, Est2 and Est3 
[ 71 – 73 ]. Depletion of any one of these proteins in vivo, is associated with a yeast 
phenotype described as “Ever Shorter  Telomeres  ” and leads to massive cell death 
through replicative senescence [ 74 ,  75 ]. 

 Based on sequence similarity Reichenbach et al., and Snow et al. (2003) identi-
fi ed the Suppressor of Morphogenesis in Genitalia (SMG), hEST1A(SMG6), 
hEST1B(SMG5) and hEST1C(SMG7) proteins as human homologues of the yeast 
Est genes. Despite the weak sequence homology, hEST1A and hEST1B were proven 
to be part of the active human telomerase holoenzyme [ 76 ,  77 ]. The conserved moi-
ety of hEST1C revealed a 14-3-3 phosphoserine binding motif, but no association 
with telomerase RNP [ 78 ]. In yeast and humans, telomerase is considered to act as 
a multimer (dimer in humans) [ 79 – 81 ] while in protozoa like Tetrahymena, acts as 
a monomer [ 82 ,  83 ].  Telomerase   activity is regulated by negative feed-back mecha-
nisms. In  Saccharomyces Cerevisiae  the telomerase dependent telomere elongation 
was found increased in  chromosomes   carrying shorter telomeres [ 84 ]. 

  Telomerase   RNAs have been identifi ed in several protozoa, yeast and vertebrate 
species including humans [ 85 ]. Despite the extensive phylogenetic divergence in 
primary and secondary structures [ 86 ] the  RNA   region that bears the template of all 
telomerases, appears to be always single-stranded and is capable to associate with 
the active  reverse transcriptase   site of TERT [ 86 ] (Fig.  10.1c ). In humans, precursor 
hTR molecules, are transcribed by  RNA polymerase   II and immediately associate 
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with a protein heterotrimer composed of Dyskerin, NHP2, and NOP10, that is 
bound to the RNP assembly chaperone NAF1 [ 87 ,  88 ]. The process is facilitated by 
two helicases, Pontin (TIP49, TIP49a, or RUVBL1) and Reptin (TIP48, TIP49b, or 
RUVBL2), and by the Dyskerin chaperone SHQ1 [ 89 – 92 ]. 

 Cajal bodies are subnuclear compartments that accumulate RNP particles involved 
in  splicing  , ribosome biogenesis and telomere maintenance [ 93 ]. After co- 
transcriptional      assembly with the Dyskerin heterotrimer and  RNA   processing, 
hTERC is directed towards the nucleoli and then to Cajal bodies [ 94 – 96 ]. The heli-
cases Pontin and Reptin, bind to Dyskerin and TERT independently and facilitate the 
assembly of the telomerase RNP [ 95 ]. The mature telomerase RNP concentrates in 
Cajal bodies by the aid of TCAB1/WDR79 ( Telomerase   Cajal Body protein 1) and 
then it is rooted to the telomeres [ 16 ,  95 ,  97 ,  98 ]. The two subunits of the Ku heterodi-
mer implicated in Non-Homologous End Joining (NHEJ)  DNA repair  , associate 
directly to the telomerase RNA component to facilitate telomere neosynthesis [ 99 ]. 
Telomerase holoenzyme recognizes the telomere, and binds its substrate DNA, 
through sequence complementarity encoded by its RNA template [ 95 ]. The di-hexa-
nucleotide RNA template (CAAUCCCAAUCC) of hTERC catalyzes the addition of 
a single nucleotide at the time, to the 3′ end of the telomeric G-overhang [ 100 ] 
(Fig.  10.1c ). Neo-synthesis of the next telomeric nucleotide, requires a slight translo-
cation of the active site along the template (type I translocation) [ 33 ,  95 ,  101 ]. If 
during this process telomerase remains associated to the telomere, the holoenzyme is 
considered to present nucleotide processivity [ 102 ]. In vitro DNA synthesis by most 
telomerases is Nucleotide Processive [ 103 ]. When the fi nal telomeric nucleotide of 
the template is synthesized, a realignment of the catalytic site to the beginning of the 
RNA di-hexa-nucleotide is required, to allow a new round of reverse  transcription   
(translocation II). If telomerase remains bound to the telomere during translocation 
II, is considered to display Repeat Processivity [ 33 ,  101 ]. Different species exert vari-
able degrees of relative repeat addition processivity of their telomerases [ 35 ,  101 , 
 104 – 106 ]. In cultured human  cancer   cell lines, the pharmaceutical disruption of 
repeat addition processivity inhibits telomerase activity, inducing telomere shorten-
ing and replicative senescence [ 107 ]. Evaluation of telomerase processivity can be 
achieved using the original protocol applied for the detection of telomerase activity 
by Greider and Blackburn [ 33 ]. The method takes advantage of the enzymatic activ-
ity of telomerase that is capable to elongate terminal repeats in the presence of radio-
labelled dNTPs [ 108 ], the products of the reaction are visualized as DNA ladders by 
gel electrophoresis [ 33 ].  

    Measuring  Telomere   Length 

 The classical procedure to measure the length of repetitive telomeric sequences is 
based on extensive digestion of genomic DNA with frequent cutting restriction 
enzymes, that do not break down telomeric and subtelomeric regions (Terminal 
Restriction Fragment assay) [ 49 ,  109 – 111 ]. Size resolution of sub-terminal and 
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terminal restriction fragments is achieved via agarose gel electrophoresis. Telomeric 
DNA is visualized as smears by Southern blotting or in-gel hybridization, using 
probes specifi c for C-or G-rich telomeric repeats, hence it presents extensive length 
variation between cells and  chromosomes   [ 57 ,  111 ]. The TRF assay is considered to 
be the most accurate method to measure the length of telomeric repeats in epidemio-
logical studies [ 112 ]. Currently there are several methods to measure the length of 
telomeric repeats in biological samples, clinical specimens, cell nuclei or even indi-
vidual  chromosome   ends [ 113 ]. Telomeric in situ Quantitative-FISH or Telomeric 
Flow-FISH are commonly used in both research and clinical settings [ 114 – 119 ]. 
These two protocols are based on FISH of telomere specifi c fl uorescent PNA (pep-
tide nucleic acid analog) probes that stoichiometrically bind to terminal DNA 
repeats and can quantify telomeric length in situ, based on the intensity of the emit-
ted fl uorescence signals [ 120 – 124 ]. 

 The arsenal of telomere length quantifi cation protocols has been expanded by the 
introduction of PCR-based methods such as Single  Telomere   Length Analysis 
(STELA) [ 54 ,  125 ] and of MM-Q-PCR that utilizes Real-Time PCR technology 
[ 126 ]. STELA is a DNA ligation-based method that uses primers designed for spe-
cifi c subtelomeric sequences, and can accurately measure telomere length of spe-
cifi c  chromosome   ends [ 125 ]. STELA can be modifi ed to evaluate extremely short 
telomeres [ 127 ,  128 ]. MM-Q-PCR normalizes the amplifi cation rate of telomeric 
DNA to a single gene, to validate the overall amount of telomeres in a given biologi-
cal specimen [ 126 ]. MM-Q-PCR requires small amounts of DNA and is extensively 
applied in large scale population studies [ 126 ,  129 ,  130 ].  

     Telomeres   and Cancer 

 In 1990, de Lange et al. [ 131 ] showed that primary tumors display shorter 
 telomeres than their adjacent normal tissues and proposed the “telomeric theory of 
 cancer  ”. De Lange’s hypothesis was supported by the fi ndings of Counter et al. 
[ 132 ], who revealed that telomerase is activated in ovarian tumor cells, but not in 
stromal nonmalignant cells, suggesting that telomerase activity might be linked to 
continuous proliferation of cancer cells. The studies on telomerase activity in neo-
plasia boost up from 1994, when J.W. Shay and W.E. Wright, presented the 
Telomeric Repeat Amplifi cation Protocol (TRAP) assay to evaluate telomerase 
activity with high sensitivity. In Kim et al. (1994), the two researchers and their 
colleagues, used the TRAP technology to demonstrate for the fi rst time, that the 
majority of human tumors activate telomerase [ 133 ,  134 ]. The TRAP assay has 
been modifi ed through the years and became quantitative by Q- RT  -PCR [ 108 ], it’s 
general principle though, remains the same: In protein extracts, an oligonucleotide 
with the TTAGGG repeat is incubated with unlabeled nucleotides. Then the prod-
ucts of the reaction are PCR amplifi ed by the addition of a G-rich complementary 
primer that bears a short tract of non-telomeric DNA at the 5′ end to prevent repeti-
tive sequence miss-alignment [ 133 ]. 
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 An alternative mechanism of telomere elongation ( Alternative Lengthening of 
Telomeres  -ALT) that is mediated by homologous recombination of telomeric 
repeats was discovered in 1993 in yeast mutants defi cient for telomerase activity 
[ 74 ]. Three years later, the group of R. Reddel, presented for the fi rst time, that a 
small proportion of human immortalized or  cancer   cell lines do not express telom-
erase activity, but they utilize an alternative pathway of telomere lengthening ( ALT  -
pathway) [ 135 ]. In cancer or virally immortalized human cell lines, the ALT path-
way is associated with a “loose”  heterochromatin   structure at telomeres and 
 centromeres   [ 136 ,  137 ], and is characterized by increased homologous telomeric 
recombination, extreme deviation of telomere length from very short, to as long as 
50–60 kb, frequent presence of the so called ALT associated PML bodies, and 
extensive chromosomal instability [ 136 ,  138 – 145 ]. In addition, cells utilizing the 
ALT pathway display abundant extrachromosomal, C-rich, telomeric repeats 
(C-circles) and increased rates of telomeric sister chromatid exchanges (T-SCEs) 
[ 146 ] (Fig.  10.2c ). The ALT-associated PML bodies (APBs) are ALT-characteristic, 
sub-nuclear compartments that contain Promyelocytic Leukemia body protein 
(PML), telomeric DNA, telomere associated factors and proteins involved in DDR 
(i.e. RAD51, RPA1, 53BP1 and the MRN complex (MRE11, RAD50, NBS1) [ 147 –
 152 ]. APBs are enriched in G2/M [ 153 ,  154 ] and may play a role in telomere recom-
bination by tethering together  chromosome   ends and by promoting heterologous 
telomeric interactions [ 139 ,  141 ,  155 ]. The orphan nuclear receptors of the NR2C/F 
classes (TR2, TR4, COUP-TF1, COUP-TF2 and EAR2), which belong to the 
nuclear hormone receptor (NHR) family of  transcription   factors, are frequently 
found at the telomeres of ALT cells and may favor the telomere–telomere recombi-
nation necessary for ALT maintenance [ 156 ]. There is now increasing evidence that 
embryonic and somatic stem cells display both known mechanisms of telomere 
maintenance [ 157 – 159 ].

       Mouse Models 

  Telomerase   activity knock-out mice have normal development [ 160 ]. Reduced fer-
tility and degenerative defects in highly proliferating tissues emerge only after three 
generations [ 160 ,  161 ]. The phenotype is more pronounced in the sixth generation, 
with severe congenital malformations, male sterility and an increase in the inci-
dence of spontaneous lymphomas and carcinomas [ 160 ,  161 ]. In addition, tumor 
cells from late generation double knockout mice, null for mTERC and p53, showed 
elevated frequencies of  chromosome   fusions, anaphase bridges, and nonreciprocal 
translocations [ 162 ]. Conversely, telomerase over-expression in aging transgenic 
mice was associated with spontaneous emergence of epidermal tumors, mammary 
and lung carcinomas or lymphomas [ 163 – 167 ]. Hence, both telomerase depletion 
and overexpression, can lead to carcinogenesis in mice. Lack of telomerase activity 
generates genomic instability and promotes tumorigenesis [ 161 ,  162 ], while excess 
of telomerase facilitates neoplastic transformation since most tumors depend on 
telomerase to maintain continuous cellular proliferation [ 30 ,  133 ]. 
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  Fig. 10.2     Telomere   dysfunction induced foci (TIFs) ( arrows ) in a cell nucleus from an immortal-
ized human cell line (VA-13) 24 h after exposure to gamma-irradiation. Immuno-Fluorescence 
microscopy reveals co-localizations ( yellow spots ) of the telomere specifi c protein TRF2 (shelterin 
component) with the phosphorylated histone H2A (γ-H2AX) that is a marker of DNA damage 
responses. TRF2 is labelled with Alexa-568 ( red ), γ-H2AX with Alexa-488 ( green ). DAPI 
(4′,6-diamidino-2-phenylindole) is  blue , (630×) ( a ). A partial metaphase spread from human BJ 
fi broblasts depleted for TRF2 and counter-stained with DAPI (630×). Fluorescence In Situ 
Hybridization (FISH) with probes specifi c for all human  centromeres   (labelled green with FITC) 
and for TTAGGG telomeric repeats (labelled red with Rhodamine), display multi- centromeric   
 chromosomes   generated by extensive Non-Homologous End Joining (NHEJ) of uncapped  chromo-
some   termini ( white arrows ). Junction points maintain visible telomeric repeats ( red arrows ) ( b ). 
Strand specifi c telomeric Chromatid Orientation FISH in pig iPS cells [ 366 ] demonstrates 
Telomeric Sister Chromatid Exchanges (T-SCE) ( yellow arrows ) and induction of fragile telomeres 
(FT) in both the G-and C-rich telomere strands ( red  and  green arrows ). Peptide Nucleic Acid ana-
log (PNA) probes specifi c for TTAGGG (green = FITC) and AATCCC repeats (red = Rhodamine), 
DAPI is  blue  (×630). T-SCEs have been associated with increased telomeric recombinogenicity in 
the  ALT   pathway and extreme telomere dysfunction when telomeres are critically shortened [ 367 , 
 368 ]. FTs have been connected to increased telomeric replication stress [ 211    ]       

 The fi rst attempt to extend longevity in genetically engineered mice through 
 telomere manipulation was presented by the group of M. Blasco, in 2008, who 
showed that overexpression of mTERT in  cancer   resistant Sp53/Sp16/SARF mice, 
can delay aging [ 168 ]. In 2011, Jaskelioff et al. [ 169 ] proved that in prematurely 
aged mTERT defi cient mice, reconstitution of telomerase activity can revert a 
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 number of age-related phenotypes caused by extreme telomere shortening. Prompted 
by these fi ndings, in 2012 de Jesus and associates examined the effects of 
adenoviraly- mediated increase at the levels of TERT, in naturally aged laboratory 
mice. Interestingly the life-span of these animals was signifi cantly increased with 
no effects in cancer susceptibility. Therefore, at the organismal level, telomerase 
acts as a longevity gene by preventing premature telomere attrition [ 170 ]. 
Understanding the complex mechanisms of telomere length regulation, will provide 
in the near future the means to ameliorate the biologic consequences of replicative 
ageing and in parallel to protect tissues and organs from neoplasia.  

    The High Order Structure of  Telomeres   and Nature’s Solution 
to the Second Basic Telomeric Constrain 

 The description of the repetitive nature of the telomeric DNA sequences and the 
biological pathways of telomere elongation, effectively resolved the fi rst telomeric 
constrain set by the end replication problem [ 34 ]. Nature’s solution to the second 
telomeric limitation, required a complex structural organization of the telomeric 
territories, specialized to effi ciently protect  chromosome   termini from being per-
ceived as targets of DNA damage responses or enzymatic degradation [ 19 ,  171 ]. 
The peculiar telomere protective structure is shaped both by the unique properties 
of primary telomeric DNA sequences, and by a dynamic interaction of telomeric 
repeats with telomere associating nuclear factors [ 15 ,  20 ,  171 ]. Albeit some 
sequence dissimilarities between species, most eukaryotic telomeres are rich in 
Guanines [ 39 ] this unique property provides to the telomeric repeats the ability to 
fold into non-canonical secondary four-stranded DNA structures formed by 
Guanine-quartets, known as G-quadruplexes [ 20 ,  172 – 174 ]. These unusual DNA 
conformations are much more stable than the double-stranded DNA and have to be 
resolved to permit telomere neosynthesis [ 172 ,  175 ]. Unresolved G-quadruplex for-
mations would probably infl ict a structural barrier to DNA replication and could be 
a potential source of genomic instability [ 20 ,  175 ]. G-quadruplexes inhibit telomer-
ase activity and if stabilized by a chemical compound, can act synergistically with 
Camptothecin or PARP-1 inhibitors to suppress tumor growth in mice [ 176 ,  177 ]. 

 The budding yeast Cell division control protein 13 (Cdc13) and the Repressor- 
activator protein 1 (Rap1), were between the fi rst telomere associating proteins to be 
discovered [ 178 ]. In  S. cerevisiae , Cdc13 acts as a single stranded telomeric DNA 
binding protein that controls telomere elongation by telomerase, whereas Rap1 is 
responsible for the formation of a multi-protein terminal  chromosome   cap, termed 
the “Telosome” [ 179 – 181 ]. The Telosome is composed by the silent information 
regulator proteins Sir2, Sir3, Sir4 and the telomere-length controllers Rif1 and Rif2 
[ 178 ,  181 – 183 ]. In  S. cerevisiae , Rap1–Rif1 complexes are negative regulators of 
telomere length [ 184 – 187 ]. In fi ssion yeast  S. pombe , Rap1 and Rif1 bind to double- 
stranded telomeric DNA, interact with the telomere repeat-binding protein Taz1, 
and regulate telomere length and status of telomeric  heterochromatin   [ 20 ,  188 ]. 
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Rif1 is highly expressed in mouse embryonic stem (ES) cells and  germ cell   s   [ 189 , 
 190 ]. The primary function of mammalian Rif1 appears to be involved in DNA- 
damage [ 191 – 193 ]. However, human RIF1 localizes to dysfunctional telomeres and 
to telomeric DNA clusters in  ALT   cells [ 192 ], whereas mouse Rif1 maintains telo-
mere length homeostasis of embryonic stem cells (ESCs) by mediating sub-terminal 
heterochromatin silencing [ 194 ]. 

 The protective telomeric structure in mammals is conferred by the assembly of 
the shelterin complex that caps and shelters  chromosome   ends from being processed 
as DNA Double Strand Breaks (DSBs) [ 171 ]. Human shelterin is composed of three 
TTAGGG binding subunits (TRF1, TRF2, and POT1) and three interconnecting 
molecules (TIN2, TPP1, and RAP1) [ 171 ]. Multiple modules of the six shelterin 
proteins bind to double stranded telomeric repeats via the TRF1 and TRF2 Myb 
domains, while POT1 associates with single stranded telomeric repeats via its 
Oligonucleotide/Oligosaccharide-Binding (OB) folds [ 195 ,  196 ] (Fig.  10.3a ).

   Electron microscopy on purifi ed telomeres of diverse origins, revealed that telo-
meres do not end as linear DNA molecules, but they form lasso-like structures, that 
were termed T-loops [ 197 ]. It is now well established that the T-loop is formed by 
the invasion of single-stranded G-overhang into double stranded telomeric repeats, 
to form a three-stranded DNA displacement loop (D-loop), that renders the 3′ end 
biochemically inaccessible to  DNA repair   sensors and nucleases [ 171 ,  198 ] 
(Fig.  10.1d ). T-loops can reach several kb in size, whereas the size of the D-loop is 
limited by the size of the G-overhang [ 197 ,  199 ]. 

 de Lange [ 200 ] proposed that the T-loop structure is the most ancestral element 
of telomere protection. T-loops preceded protein capping and the emergence of 
telomerase. The formation of the early T-loops, utilized the complex recombination- 
dependent, replication (RDR) machinery that pre-existed  chromosome   linearization 
as a part of the circular  DNA repair   system [ 200 ,  201 ]. 

 Human shelterin interacts with several components of the recombinatorial  DNA 
repair   machinery such as the MRN complex (Mre11/Rad50/Nbs1) to shape and 
maintain the T-loop [ 171 ,  202 ,  203 ]. The DNA helicases RTEL1 (regulator of telo-
mere elongation helicase 1), and the Werner  syndrome   helicase (WRN) resolve 
T-loops to enable telomere replication or terminal DNA repair [ 204 – 206 ]. Doksani 
et al. [ 207 ] used stochastic optical reconstruction microscopy (STORM) to show 
that in mouse  chromosomes  , TRF2 is the only required shelterin component for 
biogenesis and/or maintenance of T-loops. Depletion of the other mouse shelterin 
factors such as TRF1, Rap1, or the POT1 proteins (POT1a and POT1b) did not 
affect the T-loops. 

 Several combinations of proteins with similarities to the human shelterin compo-
nents are found in other species [ 20 ]. Mouse shelterin is considered to be composed 
by TRF1, TRF2, Rap1, and two human POT1 homologues POT1a and POT1b 
[ 208 – 210 ]. Rap1 is the single human shelterin homologue found at budding yeast 
telomeres, while Ciliate telomeres contain POT1 and TPP1 [ 20 ]. 

 From yeast to humans, the independent or combined depletion of  Shelterin   or 
Telosome components from the telomeres, has been related to terminal dysfunction, 
increased rates of telomeric DNA replication stress, aberrant patterns of telomere 
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sister chromatid exchanges (T-SCEs) and activation of telomeric DNA damage 
responses [ 14 ,  20 ,  210 ,  211 ] (Fig.  10.2c ). Mammalian shelterin-free telomeres elicit 
ATM/ATR (ataxia telangiectasia mutated/ataxia telangiectasia and Rad3 related) 
DNA damage responses and are processed either by canonical or alternative Non 
Homologous End Joining (NHEJ) or by homologous recombination (HR) [ 212 ]. 

  Telomere   dysfunction-induced foci (TIF) are nuclear structures formed by the 
accumulation of DDR factors, such as γ-H2AX or 53BP1, at telomeres rendered 
dysfunctional by critical DNA repeat shortening, or by depletion of telomere pro-
tective factors [ 213 ,  214 ] (Fig.  10.2a ). In the absence of 53BP1, shelterin deprived 
telomeric repeats immediately become targets for nucleolytic degradation [ 212 ]. 

  Shelterin   components interact with a plethora of DDR proteins, and nuclear 
 factors implicated in telomere metabolism or the perpetuation of mitotic fi delity 
(Fig.  10.1d ). Several of these molecules such as ATM, ATR, ERCC1/XPF, DNA-PK, 
BRCA1, BRCA2, PARP-2, TANK1 and TANK2 have been implicated in premature 
aging  syndromes  , in hereditary  cancer   predisposition and in sporadic tumors [ 18 , 
 215 – 218 ] others have DNA binding domains such as HMBOX1 and the COUP 
nuclear orphan receptors [ 156 ]. 

 In addition to  chromosome   end capping and protection, the shelterin components 
play important regulatory roles in telomere replenishment and homeostasis [ 20 , 
 161 ,  171 ]. Longer telomeres bind more TRF1 and TRF2 factors and elicit a negative 
feedback for telomerase activity [ 219 ]. Human POT1 and its homologue TEBP 
from  Tetrahymena , have been shown to be capable to regulate the formation of 
 terminal G-quadruplexes and to control telomere accessibility by telomerase 
 [ 220 – 223 ] (Fig.  10.3a ). Loss of Rap1 induces telomere recombination [ 224 ] while 
TRF2 interacts directly with the DDR machinery through ATM [ 225 ], and acts 
together with Ku70/Ku80 to suppress homologous telomeric crossovers [ 226 ].  

    The  Heterochromatic   Higher Order of  Telomeres   
and “The  Telomere   Position Effect” 

 Beyond the formation of protective, telomere specifi c nucleoprotein structures, the 
integrity and functionality of eukaryotic  chromosomes   depend also on large scale 
 epigenetic   modifi cations that increase the architectural and functional complexity 
of the linear DNA termini [ 20 ,  227 ]. With the exception of lower eukaryotes, in 
most species telomeric DNA is organized in unusually spaced, tightly packed 
nucleosomes [ 181 ,  228 ]. Telomeric nucleosomes display higher mobility compared 
to the nucleosomes structured on average genomic sequences [ 229 ,  230 ]. The pecu-
liar characteristics of the primary telomeric DNA sequences seem to represent a 
crucial determinant for  chromatin   organization both in terms of nucleosomal posi-
tioning and spacing [ 20 ]. 

 Dipterans like  Anopheles  and  Drosophila melanogaster  have evolved unique 
biological ways for terminal  chromosome   organization and capping, as well as for 
telomere length maintenance [ 231 ,  232 ]. In contrast to most organisms studied, 
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dipterans do not use telomerase to elongate their telomeres [ 231 ,  232 ].  Telomeres   in 
 Drosophila  are maintained by homologous recombination and gene conversion of 
the telomere-specifi c LTR repetitive retro-transposable DNA elements  HeT - A  [ 231 , 
 233 ,  234 ]. Notably the Het-A elements of Drosophila contain sequences that allow 
the formation of G-quartets in vitro [ 235 ]. Fly chromosome termini are capped and 
protected by the assembly of the “terminin” protein complex [ 236 ]. Terminin is 
composed from the  heterochromatin   protein 1 (HP1), the HP1/ORC-associated pro-
tein HOAP, and the gene products of modigliani (Moi), Ver (Verrocchio), and 
HipHop [ 236 – 240 ]. The dependence of  Drosophila  chromosome capping on the 
protein HP1, which is also a major component of mammalian heterochromatin reg-
ulation, and the well-established, heterochromatic state of mammalian telomeres 
suggests a major role of  chromatin   regulation in the metabolism of the telomeres of 
linear  chromosomes   [ 137 ,  238 ]. 

 The heteropyknotic, highly heterochromatic nature of telomeres of several mam-
malian species was recognized at the early years of  chromosome   labelling research 
(1960–1970s) when B. Dutrillaux, T.C. Hsu, J.M. Scheres, J. Lejeune and other 
pioneer cytogeneticists discovered the C- and T-Banding technologies that were 
effi ciently staining  centromeric   and telomeric  heterochromatin   in interphase nuclei 
and metaphase  chromosomes   [ 9 ,  241 – 246 ]. 

 In close proximity to the telomeres, eukaryotic  chromosomes   display additional 
structural territories that are termed “sub-telomeres” [ 247 – 249 ]. The sub-terminal 
DNA regions are located immediately adjacent to telomeric repeats and are com-
prised of different types of repetitive genomic elements [ 250 ]. In humans, subtelo-
meres contain canonical and degenerate telomeric repeats, and they are highly 
polymorphic because they frequently undergo large  segmental duplication   s   [ 249 ]. 

 In contrast to yeast and dipterans, mammalian telomeres and subtelomeric 
regions, accumulate repressive histone modifi cations and display extensive hyper-
methylation of subtelomeric DNA [ 20 ,  227 ,  250 ,  251 ]. Mouse subtelomeres are 
enriched for the H3K9m3  heterochromatin   mark, mediated by the Suv39h1 and 
Suv39h2 histone methyl-transferases [ 137 ]. In mice, Rif1 maintains H3K9me3 lev-
els at subtelomeric regions through the negative modulation of the expression of 
Zscan4 [ 194 ]. In humans,  DNA methylation   accumulates at highly repetitive  chro-
mosome   territories such as  centromeres  , pericentric regions and subtelomeres and is 
considered to act as a suppressor of illegitimate recombination [ 252 – 254 ]. 
Mammalian telomeres display trimethylated lysines in histones H3 and H4, exten-
sive histone hypoacetylation, accumulation of HP1 and hypermethylation of sub-
telomeric  CpG island   s   [ 227 ,  255 ]. The heterochromatic state of telomeres is believed 
to play important roles in the organization of nuclear architecture; it may also con-
tribute to interphase  chromatin   interactions and the regulation of the mechanisms of 
telomere replenishment [ 227 ,  256 ]. 

  Telomeres   not only constitute targets of  epigenetic   modifi cations but they also act 
as epigenetic agents per se, via a mechanism that is capable to spread heterochro-
matic silencing to nearby euchromatin [ 257 ,  258 ]. The so called  Telomere   Position 
Effect ( TPE  ) regulates the  transcriptional   activity of genes adjacent to  telomere 
ends, by repressing their expression [ 259 ,  260 ]. TPE is extending in a  continuously 
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decreasing fashion from the telomeres to the  centromeric   chromosomal regions 
[ 261 ].  Telomere position effect   s   have been identifi ed in a variety of lower organisms 
such as  Schizosaccharomyces pompe ,  Trypanosoma brucei ,  Plasmodium falci-
parum , as well as in plants, mice and humans [ 255 ,  259 ,  262 – 264 ]. 

 The fi rst organism in which  TPE   was described was  Drosophila melanogaster  
[ 265 – 267 ]. However the TPE phenomenon has been thoroughly investigated and 
best understood in  Saccharomyces cerevisiae  [ 266 – 268 ]. More than 50 proteins are 
implicated in  S. Cerevisiae  TPE, with the Ku heterodimer (yKu70p and yKu80p), 
the Sir-complex (Sir2p, Sir3p and Sir4p) and the C-terminal domain of Rap15 being 
essential TPE components, whereas in  S. Pompe , TPE depends on Taz1p, spRap1 
(homolog of Rap1p) and Swi6 (ortholog of HP1) [ 185 ,  188 ,  255 ,  257 ,  269 – 271 ]. 

 Little is known about the molecular mechanism of  TPE   in Homo sapiens. The 
histone deacetylase, SIRT6 is considered essential for maintenance of TPE in human 
cells [ 272 ]. Furthermore, the  heterochromatin   protein HP1, the  chromatin   remodel-
ing factor SAL1 and the shelterin components TRF1 and TIN2 are thought to be key 
players of the human TPE processes [ 273 ,  274 ]. In humans, TPE was fi rst system-
atically studied in HeLa cells, in which an exogenous reporter gene was stochasti-
cally incorporated into the  genome  . Clones with the exogenous gene inserted 
adjacent to telomeres, presented tenfold decreased expression, in contrast to clones 
carrying the reporter in random genomic positions, with the phenomenon being 
telomere length and heterochromatin formation dependent. In this context, hTERT 
overexpression that results in telomere elongation, led to further decrease of the 
adjacent transgene’s expression, while overexpression of TRF1 or treatment with 
the histone deacetylation inhibitor Trichostatin A, restored expression [ 259 ,  275 ]. 

 The biological machinery that regulates the expression of subtelomeric genes 
may be implicated in normal human ageing and nosology and especially in age 
related  diseases   when telomeres are substantially shorter [ 259 ]. A rare myopathy 
termed Facio-Scapulo-Humeral Dystrophy (FSHD) is currently the only human 
 disorder directly associated to  TPE  . The leading causative factor of FSHD, is the 
DUX4 homeobox protein, expressed by a gene located adjacent to the subtelomeric 
D4Z4 tandem repeat array, within  chromosome   band 4q35 [ 276 ]. Normal FSHD 
alleles carry 11–110 copies of the D4Z4 repeat, that are acting as a barrier of DUX4 
expression, whereas pathogenic alleles have only 1–10 tandem repeats and allow 
the expression of DUX4 [ 258 ,  276 – 281 ]. Stadler et al. [ 258 ] have shown that the 
expression of DUX4 can be further up-regulated in FSHD myoblasts and myotubes 
with short telomeres.  

    TERRAs: Novel Partners of  Telomere   Homeostasis 

 In 2007, Azzalin et al. [ 282 ] brought down one longstanding dogma of molecular 
biology: In contrast to the “good- chromatin  ” euchromatin, that is “unpacked” and 
capable to be transcribed into coding or non-coding RNAs, highly heterochromatic 
regions such as the mammalian  centromeres   and subtelomeres, were generally 
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considered transcriptionally silent. The groups of J. Lingner in 2007, and M. Blasco 
(2008) showed that throughout eukaryotes, subtelomeric regions and telomeres are 
transcribed into variable sized, long non-coding telomeric repeat-containing RNAs 
that were termed TERRAs [ 282 – 285 ]. From anthozoans to humans, TERRAs con-
sist of subtelomeric sequences and multiple tracts of the hexa-nucleotide repeat 
(5′-UUAGGG-3′) [ 283 ].  TERRA   molecules are considered to be much shorter than 
their available C-rich telomeric DNA template and were shown to display heteroge-
neous lengths between species and  chromosomes  , ranging from 100 bp, up to more 
than 9 kb [ 178 ,  282 ,  285 – 288 ]. 

 It is very possible that the eukaryote telomeric transcriptome will be expanded 
with several types of telomeric non coding  RNA   transcripts: In addition to  TERRA  , 
 Schizosaccharomyces pombe  telomeres express several types of telomeric tran-
scripts named ARIA, ARRET and anti-ARRET [ 289 ,  290 ]. ARIAs were also found 
in plants [ 291 ]. They are mainly comprised by C-rich complementary  RNA 
seq  uences that use the G-rich telomeric DNA as template, suggesting that in parallel 
to subtelomeric regions, canonical telomeric DNA repeats can serve as  transcription   
start-sites for  RNA polymerase   s   [ 289 ,  290 ]. ARRET display sequence complemen-
tarity with proximal subtelomeric regions and lack canonical telomere repeats 
[ 289 ]. The anti-ARRETs are transcribed by the antiparallel strand of the ARRET 
template hence they are complementary to ARRET [ 283 ,  289 ]. 

 Up to date,  TERRA   is the most well studied species of the telomere transcrip-
tome [ 283 ]. Chromatin immunoprecipitation (ChIP) experiments revealed that from 
fungi to humans, TERRAs are neosynthesized by the DNA-dependent  RNA    poly-
merase   II (RNAPII) that produces G-rich, TERRA molecules, using the C-rich telo-
meric DNA strand as a template [ 282 ,  285 ]. A proportion of TERRAs is modifi ed at 
their 3′-end, by the addition of a polyadenylation tag [ 292 ,  293 ]. In human cells 
polyadenylated TERRAs fractionate within the nucleoplasmic fraction and do not 
associate with  chromatin   [ 293 ]. It is estimated that around 7 % of human TERRA is 
polyadenylated [ 292 ]. The larger fraction of human TERRAs is non-polyadenylated 
and found associated with telomeric  heterochromatin   [ 293 ]. 

 Human CpG dinucleotide-containing  TERRA    promoters   were found in at least 
half of the highly heterochromatic human subtelomeres [ 282 ]. TERRA promoters 
are active during G1 and G2 phases of the cell cycle and silenced during the S-phase 
[ 293 ]. Subtelomeric  DNA methylation   and other subterminal  epigenetic   modifi ca-
tions are direct modulators of TERRA metabolism. Combined depletion of the 
DNA methyltransferases DNMT1 and DNMT3b that control  heterochromatin   state 
of the subterminal  CpG island   s   of human  chromosomes  , led to up-regulation of 
TERRA  transcription   in diploid and  cancer   cell lines [ 294 ]. The shelterin compo-
nent TRF2 is considered a negative controller of TERRAs.  Telomere   de-protection 
induced by TRF2 knockdown, leads to overproduction of TERRA in human fi bro-
blasts and HeLa cells [ 283 ,  295 ,  296 ]. On the contrary, Deng et al. [ 297 ] have shown 
that the  chromatin   organizing factor CTCF and the cohesin subunit Rad21 bind to 
subtelomeric regions and promote TERRA transcription in human cell lines. In bud-
ding yeast, Rif1 and Rif2 block TERRA transcription at all telomeres whereas the 
proteins of the Sir-family are involved in TERRA repression only at the subset of 
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telomeres carrying the conserved yeast subtelomere structures termed Y’-elements 
[ 283 ,  298 ]. 

 The formation of DNA/ RNA   hybrids named R-loops is a rare natural outcome of 
 transcription  ,    caused by invasion of the DNA double strand, by nascent RNA tran-
scripts. R-loops have been considered causative factors of  genome   fragility and can 
induce repressive  chromatin   marks over mammalian gene terminators [ 299 ]. 
Co- transcriptional   base-complementarity may promote the formation of DNA/RNA 
hybrids at telomeres [ 300 ,  301 ]. G-rich telomeric DNA/RNA hybrids are capable to 
form G-quadruplexes and thus they can inhibit telomerase accessibility to telomeres 
[ 283 ]. 

 In yeast, the poly(A)-polymerase Pap1p polyadenylates and stabilizes TERRAs 
whereas overexpression of the 5′-3′ exonuclease Rat1p, is capable to fully degrade 
TERRAs from the nucleus [ 302 ]. Yeast defective for Rat1p, accumulate TERRAs 
and display some degree of telomere shortening, suggesting that telomere- associated 
TERRAs may directly affect the mechanisms of telomere replenishment [ 283 ]. 
 Telomere   attrition in Rat1 defi cient cells was rescued by overexpression of RNaseH, 
indicating that telomere metabolism is affected by the formation of telomeric  RNA  /
DNA hybrids [ 284 ]. In human cell lines utilizing the alternative lengthening of telo-
meres ( ALT  -pathway) depletion of RNaseH1 caused  TERRA  -telomeric hybrid 
accumulation, exposure of single-stranded telomeric DNA, increased levels of the 
single strand DNA binding protein RPA and abrupt telomere length excision, 
whereas overexpression of RNaseH1 suppressed ALT telomeric recombination and 
led to telomere shortening [ 300 ]. Analogous changes at the levels of RNaseH1 in 
telomerase positive cells did not demonstrate any of the above phenotypes suggest-
ing a specifi c role for TERRA in alternative lengthening of telomeres [ 300 ]. 

  TERRA   association with human telomeres is regulated by proteins known to 
participate in the biological processes of mRNA decay (NMD), such as the  RNA  /
DNA helicase and ATPase UPF1, the RNA endonuclease hEST1A/SMG6, and 
the protein kinase SMG1 [ 282 ,  283 ]. Depletion of UPF1 in telomerase positive 
HeLa cells affected replication of the leading telomere strand causing telomeric 
fragility [ 303 ]. UPF1-depleted cells accumulate telomeric R-loops because the 
C-rich telomeric strand acts as the template for both TERRA and leading-strand 
DNA replication [ 303 ].  

     Telomeropathies   

 The fi rst premature aging disorder linked to impaired telomere metabolism was 
Dyskeratosis Congenita (DC), an inherited bone marrow failure condition, fi rst 
described in 1906 by Zinsser [ 304 ]. DC is a rare, childhood onset  disease  , estimated 
to occur with a frequency of 1, in one million individuals, with death occurring at an 
average age of 16 [ 305 ]. The three distinctive clinical characteristics of DC are skin 
pigmentation abnormalities, nail dystrophy and mucosal leukoplakia [ 306 ,  307 ]. 
These phenotypes are present in almost 80–90 % of diagnosed cases [ 307 ]. 
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Organ failure is a typical outcome of DC patients, with bone marrow in 80 % of the 
cases being the fi rst tissue to be affected, leading to aplastic anemia [ 306 ,  308 ]. In 
addition to bone marrow failure, pulmonary fi brosis and  cancer  , are the main fatal 
complications of the disease [ 306 ]. The most frequent malignancies are myelodys-
plastic  syndromes   (MDS), head and neck  cancers   (squamous carcinomas), and 
acute myeloid leukemias (AML) [ 115 ,  309 ]. The clinical phenotype of DC is 
expanding continuously with a plethora of disease manifestations such as immune 
defi ciency, cardiomyopathy, liver cirrhosis, mental retardation, epiphora (excessive 
tears in the eyes), dental loss, osteoporosis, premature hair loss/greying and deaf-
ness [ 15 ,  19 ]. 

 DC patients, present abnormally short telomeres as compared to individuals 
belonging in the same chronological age group [ 114 ,  310 ]. The premature telomere 
attrition is considered to be the underlying cause behind most of the pathological 
features of DC signifying this  disease   as a “ Telomeropathy  ” [ 311 – 314 ]. This is sup-
ported by the fact that all major mutations linked to DC, involved genes implicated 
in telomere maintenance: About 50 % of DC patients have a mutation in one of the 
three main components of the telomerase holoenzyme complex, Dyskerin, TERC 
and TERT [ 315 ]. The DKC1 gene, that encodes Dyskerin protein, is located at the 
X  chromosome   [ 316 ]. Mutations of DKC1 cause a recessive, X-linked form of DC 
characterized by a severe phenotype [ 316 ]. An autosomal dominant milder form of 
DC, results from defects of the gene responsible for TERC, whereas mutations in 
the  reverse transcriptase   component TERT, have been linked to autosomal dominant 
and autosomal recessive inheritance [ 311 ,  314 ,  317 ,  318 ]. Many TERT mutations 
affect severely the activity of telomerase [ 311 ,  319 – 321 ]. However, in some cases 
the phenotype appears relatively milder therefore they are thought to behave more 
as risk polymorphisms, than as determinants of disease [ 312 ] (Table  10.1 ).

   Homozygous mutations of the NOP10 and NHP2 components of telomerase 
holoenzyme are considered responsible for an autosomal recessive form of DC 
[ 322 ,  323 ]. Approximately 11 % of DC cases result from mutations in the TINF2 
gene, encoding the  Shelterin   component TIN2 [ 171 ,  324 ]. TIN-2 telomeropathy is 
linked to a severe clinical phenotype and transmitted in an autosomal dominant 
mode [ 325 ]. While fi ve out of six DC genes result in impaired telomerase activity, 
TIN2 mutations are thought to jeopardize either the protection of telomeres or the 
accessibility of telomere ends by telomerase, leading to more pronounced telo-
mere attrition [ 312 ]. Most TINF2 mutation patients, display exceptionally short 
telomeres from a much earlier age than the patients bearing any other mutant DC 
gene [ 312 ]. 

 Dyskeratosis congenita is considered a highly heterogeneous disorder with its 
genetic cause and phenotype overlapping signifi cantly with various  syndromes   such 
as Hoyeraal-Hreidersson (HHS), Coats-Plus, and Revesz  syndrome  . HHS particu-
larly, is believed to be a severe DC form and the phenotype diverges by the addition 
of cerebellar hypoplasia, microcephaly and intrauterine growth retardation [ 326 ]. 
Similarly to HHS, Revesz syndrome is also extremely rare and is presenting with 
HHS symptoms and bilateral exudative retinopathy [ 327 ]. Patients of those severe 
telomeropathies exert extremely short telomeres and a higher mortality rate than 
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classic DC cases. Coats-Plus syndrome has been linked to CTC1 mutations and 
patients exhibit exudative retinopathy and intracranial calcifi cations, features that 
are also observed in HHS and Revesz syndromes [ 328 ,  329 ]. Due to the small num-
ber of HHS, Revesz and Coats-Plus syndrome patients and their overlapping clini-
cal fi ndings, it is extremely diffi cult to determine guidelines distinguishing the three 
disorders [ 330 ]. 

 The most common adulthood onset manifestation of impaired telomere mainte-
nance is the idiopathic pulmonary fi brosis (IPF) which is a fatal progressive lung 
 disease   that typically presents in the fi fth decade with the incidence increasing with 
advanced age [ 50 ,  331 – 333 ]. IPF is characterized as sporadic and only 0.5–2.2 % of 
the cases present familial inheritance [ 334 ,  335 ]. Mutations in TERT and TERC 
telomerase subunits have been identifi ed in about 1–3 % of sporadic and 8–15 % of 
familial IPF cases [ 321 ,  336 – 338 ]. The pattern of inheritance in most families is 
autosomal dominant and consistent with incomplete penetrance and haploinsuffi -
ciency of telomerase [ 335 ,  339 – 342 ]. Furthermore, 37 % of familial and 25 % of 
sporadic cases present telomere length shorter than the 1/10 of the general popula-
tion, suggesting an association with impaired telomere replenishment. This phe-
nomenon may be explained by the underlying telomerase mutations and/or the 
effects of environmental causes such as smoking, which is a common characteristic 
of at least 50 % of IPF patients [ 342 ]. Because telomerase is expressed only in 
mitotically active cells, IPF may result, partly, from the senescence or loss of a stem 
cell population in lungs, capable to respond to continual injuries over time. Due to 
the haploinsuffi ciency of telomerase, the clinical phenotype arises only after ade-
quate time has elapsed and thus the cells have conducted enough division rounds to 
present critically short telomeres [ 321 ,  343 ]. Mutations in TERT and TERC have 
also been found in bone morrow failure disorders other than DC, such as the myelo-
dysplastic  syndromes   (MDS) and aplastic anemia (AA) [ 320 ,  344 – 346 ]. Another 
adult-onset disorder presenting telomerase mutations is familial liver cirrhosis, 
which is a known complication of dyskeratosis congenita [ 116 ,  311 ]. 

 Dysfunctional or prematurely shortened telomeres have been observed in several 
premature ageing or  cancer   pre-disposing  syndromes   caused by mutations in genes 
encoding proteins that are key players of DNA damage responses and are also 
implicated in telomere metabolism [ 347 ].  Telomere   dysfunction foci (TIFs) and 
short telomeres have been found in lymphocytes from patients with Fanconi anemia 
(FA) [ 348 ]. A subset of FA patients, carry mutations in FANCD2, a protein that 
interacts with telomeric DNA and regulates the levels of the shelterin component 
TRF1 [ 347 ]. Mutations in the RECQL4 helicase that resolves telomeric D-loops, 
are the causal factors of the Rothmund–Thomson progeroid  syndrome   ( RT  ), a  dis-
ease   with some DC clinical characteristics that is accompanied by increased TIF 
frequencies and excessive telomeric instability [ 349 ]. The Nijmegen  chromosome   
breakage syndrome occurs due to mutations of the Nibrin (NBN) gene that encodes 
a member of the MRN (MRE11/RAD50/NBN) complex [ 53 ]. The MRN multimer 
is involved in the mechanisms regulating telomere length maintenance [ 148 ,  350 ]. 
Cells from patients with Nijmegen syndrome show decreased telomere length and 
poor proliferation rates [ 53 ]. 
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 Ataxia telangiectasia (AT) is characterized by neurological deterioration, immu-
nodefi ciency, spontaneous chromosomal instability, hypersensitivity to ionizing 
radiation, predisposition to leukemias and lymphomas and premature ageing [ 351 ]. 
In yeast, the Ataxia telangiectasia mutated (Atm) homolog, Tel1, is necessary for 
normal telomere length regulation [ 352 ]. Lymphocytes of AT patients exert acceler-
ated telomere shortening and frequent terminal  chromosome   fusions [ 351 ,  353 ]. 

 Two other rare genetic  cancer   predisposition  diseases   Werner’s  syndrome   (WS), 
and Bloom’s syndrome (BS), are related to premature aging [ 354 ]. WS and BS are 
caused by loss of function of the RecQ helicases WRN and BLM, respectively [ 355 , 
 356 ]. Both diseases are characterized by replication errors, hyper-DNA recombina-
tion and chromosomal instability [ 355 ,  357 ]. Mutations in the WRN gene were 
associated with insuffi cient replication of the G-rich telomeric strand [ 358 ]. BLM 
also contributes to  chromosome  -end maintenance through its  genome  - wide   activity 
in resolving diffi cult-to-replicate regions such as telomeres. BLM-defi cient normal 
human fi broblast cells display elevated frequencies of telomere dysfunction [ 359 ]. 

 The Immunodefi ciency, Centromeric region instability and Facial anomalies 
 syndrome   (ICF) is a rare condition caused by mutations in the DNA methylotrans-
ferase gene DNMT3B [ 360 ]. Cells from ICF patient’s display telomeric abnormali-
ties and reduced subtelomeric methylation [ 361 – 364 ]. Remarkably, ICF cells are 
characterized by abnormally high levels of  TERRA   transcripts suggesting the fi rst 
link between alterations in the telomere transcriptome and human nosology [ 365 ].     
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    Chapter 11   
 Proximal Regulatory Elements with Emphasis 
on CpG Rich Regions       

       Pavlos     Fanis     

            Introduction 

 All cells of a complex multicellular organism contain the same  genome   but carry 
out different biological processes such as proliferation, differentiation, cell survival 
and apoptosis. The execution of these diverse functions is characterized by differen-
tially expression of the genes in the different cell types of the organism. The mam-
malian genome encodes 30,000–40,000 genes which are transcribed in the proper 
spatial and temporal patterns. The regulation of the genes can be controlled at many 
phases such as  transcription   initiation, elongation and termination. Moreover, the 
control of the transcription can be applied at other levels including  RNA   processing, 
export from the nucleus to the cytoplasm, mRNA translation and mRNA and protein 
degradation. To better understand the mechanisms that are responsible for the dis-
tinct  gene express   ion   patterns we need to have better knowledge of the  transcrip-
tional   regulatory elements infl uencing the transcription. In the eukaryotic genome 
there are various types of transcriptional regulatory elements that are involved in the 
control of gene expression. Here, we discuss the general features of eukaryotic tran-
scription focusing on the GC rich regions and their roles in health and  disease  . We 
give an outline of the eukaryotic transcription initiation process and then we focus 
at the structural, function and mechanistic function of GC rich regions in health and 
disease as well as methods currently used to identify transcription regulatory 
 elements in the human genome.  
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    Eukaryotic Transcription 

 The initiation is the fi rst step in  transcription   where the highest regulation is occur-
ring. The process begins when the  RNA    polymerase   (RNA pol) binds to template 
DNA strand and begins the production of the complementary RNA. In eukaryotes 
there are fi ve  RNA polymerases  , RNA pol I that transcribes a set of genes that 
encode the ribosomal RNAs (rRNAs), RNA pol III that is responsible for the tran-
scription of genes that encode the transfer RNA (tRNA), the 5S RNA and some 
small RNAs and RNA pol II (will be highlighted in this chapter) that transcribes the 
majority of genes that encode the mRNA which serve as template for the production 
of protein molecules [ 1 – 3 ]. Finally, in plants there are the RNA pol IV and the RNA 
pol V that synthesize small interfering RNA (siRNA) and RNAs involved in siRNA-
directed  heterochromatin   formation, respectively [ 4 ,  5 ]. 

 Protein-coding genes are controlled by  cis -acting regulatory DNA elements and 
by  trans -acting remodeler, mediator complexes and  transcription   factors that recog-
nize the  cis -acting regulatory DNA elements. The  cis -acting regulatory elements 
can be divided into the distinct  proximal regulatory element   s   (promoter) and distal 
regulatory elements (Fig.  11.1 ).

   The basic  transcription   machinery is composed by the  RNA   pol II enzyme, the 
general transcription factors such as TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH 
and the mediator complex [ 6 ]. TFIID general transcription factor interact with the 
core promoter and participate in the recruitment of the pre-initiation complex (PIC) 
[ 7 ]. TFIID is a multi-subunit protein complex containing the TATA-box binding 
protein (TBP) and the TBP-associated factors (TAFIIs). After the TFIID binds to 
the promoter the general transcription factors, RNA pol II and the mediator complex 
are recruited in a highly ordered fashion to form the PIC. When formation of PIC at 
the promoter is complete, transcription proceeds through a series of steps before the 
fully establishment of the transcription elongation RNA pol II complex [ 8 ]. 

 The formation of PIC in the core promoter of a gene it serves to accurately initi-
ate  transcription  . Transcriptional activity can be further activated through changes 
in the activities of transcription factors (co-activators) [ 9 ]. Transcription factors 
are usually DNA-binding proteins that affect the transcription of a gene positively 
or negatively by binding to DNA regulatory elements or by interactions with other 
proteins [ 10 ]. The recognition sites of transcription factors are specifi c and usually 
located upstream of the core promoter. The precise sequence of a transcription 
factor binding site can be important for the binding strength of a transcription fac-
tor, thus can have an impact in the levels of  gene express   ion   [ 11 ]. Transcription 
factors often work in groups or complexes that allow various levels of  transcrip-
tional   control [ 11 ] and are classifi ed in different categories according to their 
DNA-binding domains such us basic leucine zipper (bZIP), basic helix-loop- helix 
(bHLH), zinc fi nger, homeodomain and nuclear hormone factors [ 12 ]. 

 Transcription factors bind to DNA and mark a gene for activation or repres-
sion through interactions with co-activators and co-repressors. Co-activators and 
co- repressors bind to  transcription   factors and function by recruiting other proteins 
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with enzymatic activities that alter  chromatin   structure [ 13 ]. Chromatin compact 
state often makes gene  promoters   inaccessible to  transcriptional   machinery and/or 
transcription factors. Thus, co-activators including histone modifi cation and ATP- 
dependent remodeling protein complexes alter the structure of chromatin by making 
it accessible to the binding of transcription factors [ 14 ]. The opposing effects on 
chromatin structure, by making it inaccessible to transcription factors, have the 
co-repressors. 

 Transcription in more than half of human genes is initiated from genomic regions 
with increase content of G and C nucleotides referred to as CpG islands.  

    GC Rich Regions 

  DNA methylation   is carried out by the transfer of a methyl group at the 5 position 
of the pyrimidine ring of cytosine to form the methylcytosine and is observed in 
most of the organisms but the rate of methylation differs strongly, some species like 
yeast luck DNA methylation [ 15 ]. As the embryonic stem cell (ES) undergoes dif-
ferentiation into different tissues, DNA methylation changes the expression of 
genes [ 16 ]. Methylation of DNA at the 5 position of cytosine has the specifi c effect 
of reducing  gene express   ion  . In somatic cells, DNA methylation usually occurs in 
a CpG dinucleotide context. CpG are DNA regions where a cytosine occurs next to 
a guanine. CpG means “Cytosine-phosphate-Guanine”. The CpG is used to distin-
guish the linear sequence from the G-C base pairing. Enzymes that add the methyl 
group to the cytosine are called DNA methyltransferases (DNMTs) [ 17 ]. 

 The frequency of CpG dinucleotides in human  genome   is ~1 %, lower than 
would be expected due to random chance. It is proposed that the CpG defi ciency is 
due to increase susceptibility of methylcytosines to deaminate to thymidine [ 18 ]. In 
mammals  CpG island   s   are regions in the genome with a high content of CpG sites. 
CpG islands are typically 300–3000 bp in length and generally associated and found 
in or closed to ~40 % of promoter regions of mammalian genes [ 19 ,  20 ]. The CpG 
sites of the CpG island of  promoters   are unmethylated if the genes are expressed. 
Methylation of CpG sites in the promoter of a gene may inhibit  gene express   ion   
[ 21 ]. The regulation of these promoters involves proteins which specifi cally bind at 
non-methylated CpGs and have an effect at the modifi cation status of CpG island 
 chromatin   [ 22 ]. CpG islands typically exist at/or near  transcription   start site of 
genes, especially of housekeeping genes (genes that expressed in all cell types) and 
a signifi cant fraction of the brain or the neutrally expressed genes [ 23 ,  24 ]. In 
humans, approximately 70 % of the gene promoters are associated with CpG islands 
making this the most common promoter type [ 25 ]. A large group of CpG islands are 
in distant regions from the transcription start site but show existence of promoter 
activity [ 20 ,  26 ]. 

 Genes transcribed by  RNA    polymerase   II can be divided in two different classes 
according to the CpG density across theirs 5′ ends. In the fi rst class the CpG density 
is the same as the  genome   average (1 every 100 nucleotides). In this class there are 
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genes that are expressed in a limited number of cell types. In the second class, the 
5′ end of the genes is surrounded by  CpG island   s   [ 27 ]. The association of CpG 
islands with the upstream regions of many genes can be used to predict  promoters   
and/or genes in the mammalian genome [ 28 ]. As mentioned before, CpGs at the 
CpG islands of active genes remain not methylated. The features of non- methylation 
and the high density of G+C are accompanied by distinctive  chromatin   organiza-
tion. The CpG islands show the properties of the active chromatin, such as hyper-
acetylation of histones H3 and H4 and nuclease enhance sensitivity at nucleosome-free 
regions [ 21 ,  29 ,  30 ].  

   CpG Islands and Methylation 

  CpG island   s   were fi rst identifi ed by digestion of mouse genomic DNA with a 
methyl-CpG specifi c restriction enzyme. A part of the DNA was consist of very 
highly fragmented DNA and was found to be composed of clusters of non- 
methylated CpG sites, the CpG islands [ 19 ,  45 ]. In addition, computational predic-
tion and sequencing techniques identify approximately 27,000 CpG islands [ 43 ]. 

 The characteristic clustering of CpG sites is because of their immunity against de 
novo methylation by DNA methyltransferases (DNMTs) during the earliest stages 
of mammalian development. A reason for this might be the binding of  transcription   
factors that prohibit DNMT association at  CpG island   sequences [ 41 ]. 

 The majority of CpG islands are hypomethylated but, as mentioned before, a small 
percentage is methylated during development. Some of these examples are shown to 
play a role in X-inactivation and genomic imprinting [ 46 ,  47 ]. Hypermethylation of 
CpG island  promoters   result in  transcriptional   repression. Promoters with relatively low 
CpG content were found to be more often hypermethylated [ 48 ]. Moreover, sites of 
 CpG island   methylation frequently found to genomic regions distal to promoters [ 49 ]. 

 Transcription in de novo methylation  CpG island   s   (in tumor cells or in cell lines) 
is strongly repressed. This event does not occur in physiological conditions in the 
organism except for the CpG islands of the imprinted genes [ 31 ,  32 ]. Repression of 
the  transcription   in the methylated DNA is mediated by proteins such as MeCP and 
MBD family proteins that bind specifi cally methylated CpGs and recruit histone 
deacetylases and  transcriptional   corepressors [ 33 ,  34 ].  DNA methylation   in CpG- 
poor  promoters   correlates with their level of expression. Many examples suggest 
that although DNA methylation affects  gene express   ion   it is unlikely to play a gen-
eral role as a transcriptional regulator. For example, demethylation of the promoter 
of the aminotransferase gene in rats does not lead to its activation in cells where it 
was previously methylated and inactive despite the presence of proteins that bind to 
the promoter [ 35 ]. DNA methylation is essential for proper mammalian develop-
ment as shown by the embryonic lethality caused by disruption of the methyltrans-
ferase genes  Dnmt1 ,  Dnmt3α  or  Dnmt3b  in mouse [ 36 ,  37 ]. 

  CpG island   s   remain free of methylation in the heavily methylated  genome  . One 
possibility is the protection by the  transcription   factors that bind and provide less 
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accessibility to DNA methyltransferases [ 41 ]. It is still unclear the existence of CpG 
islands because ~40 % of all human  promoters   are CpG-poor and can operate with-
out CpG islands. An example is the erythroid specifi c α-and β-globin genes that are 
expressed to produce the haemoglobins. The α-globin gene is associated with a 
CpG island but the β-globin gene is not. The mouse α-and β-globin genes both are 
not associated with a CpG island [ 42 ]. This difference between human and mouse 
CpG islands can be found in approximately 20 % of human CpG island promoters 
 compared to the mouse orthologues [ 23 ,  43 ] suggesting that some human CpG 
islands obtain a CpG island or some mouse promoters lost a CpG island during 
evolution [ 42 ]. CpG islands can be lost when they de novo methylated in the germ 
line and replaced through deamination by TpG instead of CpG but this cannot 
explained how they appear in the fi rst place. One possibility is that CpG islands 
might have emerged as a genome footprint in the  chromosomes   by the replication 
initiation event [ 44 ]. Comparative foot-printing analyses across human and mouse 
 CpG island   s   have revealed that the protein–DNA interaction pattern varies among 
the two species. Despite the high degree of conservation of their coding sequences 
this observation suggest that regulatory regions are more permissive to changes than 
coding regions [ 41 ]. 

   Role of CpG Islands in Bidirectional Transcription 
and DNA Replivatio 

 An interesting feature of  CpG island    promoters   is the elevated prevalence of bidi-
rectional  transcription   [ 38 ]. The reason for this might be the high frequency of tran-
scription factors bound to them and the presence of elements that are responsible for 
activating bidirectional transcription in vitro. This kind of organization allows the 
coordinate regulation of the two genes [ 39 ]. Some chromosomal replication origins 
have been mapped close to gene  promoters   in human cells. Moreover, it is also 
shown that  transcription   factors stimulate replication in many organisms. These 
evidences suggested that  CpG island   s   might serve not only as promoters but also 
as replication origins because of the high density occupancy of transcription fac-
tors and the open  chromatin   organization. An example is the binding of the origin 
recognition complex (ORC) to the CpG islands [ 40 ].   

    Genomic Approaches for Identifying Regulatory Elements 

 There are many experimental and computational approaches for the identifi cation or 
prediction of  proximal regulatory element   s   in the genomes of eukaryotes. 

P. Fanis



291

    Functional Assays 

 One of the most effi cient ways for identifying and examining the regulatory  activity 
of a DNA element is the use of a reporter gene assay. In such assay the DNA region 
of interest is cloned into a plasmid containing a reporter gene that can be easily 
measure [such as green fl uorescent protein (GFP), luciferase, β-galactosidase, 
chloramphenicol acetyltransferase (CAT)]. The resulting construct is then intro-
duced into cells or organism of interest and the reporter  gene express   ion   is mea-
sured. The nature of the plasmid construct depends on the regulatory elements to be 
identifi ed. For example if the element to be tested is for promoter activity, is placed 
immediately upstream of the reporter gene. Once the element is identifi ed further 
studies, such as deletions or creation of mutations, can be performed for more accu-
rate characterization of the element. There are limitations of using such functional 
assays for identifi cation of  proximal regulatory element   s  . First, transfection assays 
mostly are performed in immortalized cell lines that are not representing the natural 
occurring environments. Secondly, an upstream regulatory element, in reality, might 
be used only in limited content such as specifi c tissue, developmental stage or spe-
cifi c environmental responses that differs from the cell culture that is selected for 
the assay. Transgenic assays by injecting the construct into embryos of animal mod-
els and follow the expression of the reporter gene through development can be done 
to overcome this limitation. Transgenic assays have also their limitation as they can 
reveal the specifi c expression pattern in the early developmental stages as they are 
sometimes instable because of embryonic cell multiplication [ 50 ].  

    Identifi cation of Proximal Regulatory Elements 
on a Genome- Wide Scale 

 A technique for identifi cation of  transcription   factor binding sites (TFBSs) on a 
 genome  - wide   scale is the DNase I hypersensitive site (HS) mapping in which 
nucleosome-free regions are easily digested by the DNase I enzyme. These open 
 chromatin   regions are functionally related to  transcriptional   activity due to the bind-
ing of transcription factors [ 51 ,  52 ]. DNase I hypersensitive technique can be com-
bined with high throughput sequencing or chip to provide a genome view of DNase 
I HS in specifi c cells at a specifi c developmental stage [ 53 ,  54 ]. 

 Another powerful technique for determination of genomic sequences that are 
bound by a specifi c protein in vivo is the  chromatin   immunoprecipitation (ChIP). In 
this technique the protein(s) of interest are crosslinked temporarily with the associ-
ated chromatin in the living cells which then are lysed and the DNA–protein com-
plexes are sheared by sonication at the desired size. The crosslinked DNA fragments 
that are associated with the protein(s) of interest are immunoprecipitated by a pro-
tein specifi c antibody and the associated DNA regions and their sequences can be 
determined by microarrays (ChIP-chip), by high throughput sequencing (ChIP-seq) 

11 Proximal Regulatory Elements with Emphasis on CpG Rich Regions



292

or ChIP-exo, an extension of ChIP-seq to increase the resolution of TF bound sites 
[ 55 ]. Limitations of ChIP assays are that specifi c antibodies must be created for 
each DNA binding factor of interest. Moreover, ChIP assays cannot distinguish 
between different isoforms of a specifi c  transcription   factor.   

    Computational Approaches Identifying Proximal 
Regulatory Elements 

 Ninety eight percent of the human  genome   consist of non-coding DNA, thus is likely 
to contain regulatory regions [ 56 ]. Identifying a promoter of a specifi c gene can be 
diffi cult as core  promoters   are found far from the fi rst exon because of the existence of 
the 5′ untranslated region (UTR) and/or introns. Furthermore, not all the promoters 
contain the core promoter elements thus the identifi cation can be a challenge [ 57 ]. For 
prediction and identifi cation of such regulatory regions, computational approaches are 
very helpful. Such approaches can look for common sequences to all known promot-
ers and they search the genome to identify new regions with such sequences. These 
methods can be used alone or in combination with the existence of a  CpG island   or the 
presence of a possible fi rst exon. Application of such approaches in  genome-wide   
scale is limited because of lacking specifi city and sensitivity. The reason of this is due 
to the fact that these computational programs rely on the amount and quality of the 
available data that they use for fi nding new regulatory regions/elements. Moreover, 
these approaches can identify proximal promoter elements that are already identifi ed. 

    Identifi cation of New Upstream Regulatory Elements 

 In TFBSs prediction programs a given sequence is scanned for known  transcription   
factor sequence motifs that are experimentally identifi ed. Examples of such data-
bases are the TRANSFAC [ 58 ] and the JASPAR [ 59 ]. In these databases potential 
TFBSs are predicted, which in many cases the number of sites are large with many 
false positives. The reason for this is, in part, the quality of the data that are used to 
build the databases. Furthermore, these databases are not fully complete because 
not all of the DNA binding factors have been identifi ed and some of the known 
DNA binding factors are not thoroughly defi ned. Another approach for identifi ca-
tion of novel TFBSs is the examination for common sequence motifs in the upstream 
region of genes that are co-expressed. Known algorithms that use this approach are 
the MEME and AlignACE. Comparative genomic approaches can be used for pre-
diction/identifi cation of TFBSs. With these approaches TFBSs assumed to be con-
served across evolution and DNA sequences from species separated by large 
evolutionary distances are compared. Sequences that are conserved are candidates 
to be functional TFBSs. Example of programs that perform such analyses are the 
PhastCons [ 60 ] and the Footprinter [ 61 ]. The limitation with these approaches is not 
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all the TFBSs are common among species due to the fact that the same factor may 
bind to sequence variants of the TFBSs or a specifi c regulatory element is not con-
served among species without affecting the expression of a gene. In addition, some 
regulatory elements important for human development and  disease   can be found 
only in humans. New analytical approaches in comparative genomics are required 
for detection of weak conserved TFBSs by increasing, for example, the number of 
species that the  genome   sequencing information is accessible.      
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    Chapter 12   
 Genomic Analysis Through High-Throughput 
Sequencing       

       Michalis     Hadjithomas     

            Introduction 

 The advent of high-throughput sequencing in the early years of the millennium has 
disrupted the way research is being conducted in the biological sciences across the 
board, from human biology to microbial ecology.  High-throughput sequencing   was 
primarily developed to produce massive amounts of sequences in order to re- 
construct the large genomes of higher-organisms, especially humans. However, it 
was quickly realized that massively parallel sequencing could be used to probe and 
answer questions that were previously outside the reach of scientifi c methods. This 
has led to the development of a multitude of high-throughput sequencing applica-
tions including exome sequencing (i.e. targeted re-sequencing of an organism’s 
exons), long range  chromatin   interaction analysis, ribosome profi ling, and many 
more, some of which we will discuss in this chapter. 

 The development of applications of high-throughput sequencing was paralleled 
by an explosion of technology development, which has caused the per-base cost of 
sequencing to drop dramatically, faster than was expected based on Moore’s law, 
which predicts that the output of a technology doubles—and therefore its cost 
halves—every 2 years (Fig.  12.1 ) [ 1 ]. The natural consequence of this drop in costs 
is twofold; experiments can be done in a grander scale and smaller labs (thus more 
researchers) are able to apply this technology to their own research.

   The purpose of this chapter is to give a high level overview of the most popular 
sequencing technologies in the market at the time of writing, and also introduce the 
reader to some of the major applications that can be used in the study of genomic 
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elements that play a role in human health. However, before starting the discussion, 
it is useful to defi ne some of the terminologies that are often used when talking 
about high-throughput sequencing:

 amplicon  An amplicon is the DNA fragment that is the product of PCR amplifi cation 
of a target sequence. 

 contig  Most sequencing platforms produce short reads that are then assembled by 
computer algorithms to form longer sequences. A contig is a unit of the 
longest possible contiguous sequence that can be assembled by a specifi c 
algorithm using the available overlapping reads. 

 scaffold  A scaffold is a sequence that is composed of one or more contigs, which 
have been paired through the use of paired-end sequencing, or through the 
use of other experimental evidence, such as optical mapping. 

 read trimming  The computational operation to remove adapter sequences from reads after 
sequencing. 

 read   High-throughput sequencing   is the result of the massive parallelization 
of individual sequencing reactions that are performed simultaneously. 
A “read” is the sequence output of each reaction. 

 polony  Polony derives from the term “polymerase colony” which describes a 
cluster of immobilized, clonally amplifi ed DNA molecules. 

 paired-end tags  A paired-end tag (PET) is a fragment of DNA that results from the ligation 
of two sequences that may be on the opposite ends of a contiguous 
sequence or may be on different molecules but close in 3D space. 

 multiplexing  The combination of libraries coming from different samples in one 
sequencing reaction. 

 barcode  A short unique sequence of DNA added during library construction to 
allow for post-sequencing separation of reads coming from different 
sources/samples. 

  Fig. 12.1    The declining cost of DNA sequencing (data from NHGRI [ 1 ])       

(continued)
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 library  A collection of adapter ligated DNA fragments to be used as a template for 
sequencing. 

 coverage  Sometimes the term “coverage” is used inter-changeably with the term 
“depth of coverage”. However, when coverage is reported in percentages, 
it refers to the fraction of sequence recovered given a known length of 
input DNA. For example, if an amplicon is 1000 bases long, but only 900 
bases are sequenced, the coverage is reported to be 90 %. 

 depth of coverage  The number of times that each nucleotide base is sequenced. The average 
depth of coverage can be calculated using Eq. ( 12.1 ) (“Overview and Costs 
in Applications” section below). 

       Technologies 

 There are three major players in the current market of high-throughput sequencers 
that are discussed in this section: Illumina/Solexa, Life Technologies’ Ion Torrent 
and Pacifi c Bioscience’s PacBio RSII system. Each technology has its strengths and 
weaknesses, which are summarized in Table  12.1 . Naturally, the decision of which 
technology to acquire or use will depend on the intended application. A fourth 
emerging technology is not discussed here but is mentioned in the last section of the 
chapter, which discusses the future of this fi eld.

   A common characteristic of all the technologies discussed in this chapter is that 
they require a step of library construction before the sequencing run can be performed. 
The purpose of this step is to attach adapters to the ends of DNA molecules. For the 
Illumina and Ion Torrent platforms, these adapters are used for the clonal amplifi ca-
tion of the library inserts in order to increase the detectable signal during sequencing. 
The sensitivity of the PacBio system is high enough that clonal amplifi cation is not 
needed. Additionally, all these platforms need the adapters for sequencing initiation. 

    Illumina/Solexa 

 Illumina technology has the highest share of the high-throughput sequencing mar-
ket as it is the oldest of the most popular technologies and also because its high 
sequencing output made it an attractive technology to acquire in the early days of 
high-throughput sequencing. Similarly to the other technology platforms discussed 
here, Illumina uses a Sequencing By Synthesis approach to elucidate the sequence 
of a DNA molecule. 

 The sequencing reactions in all Illumina platforms are performed on a fl ow cell, 
which may be divided from 1 to 8 lanes depending on the instrument being used. 
Attached to the fl ow cell are special oligonucleotides that are complimentary to the 
adapters used in the library preparation and are used to capture the single stranded 
DNA fragments. Using these complimentary adapter sequences, these fragments are 
clonally amplifi ed clusters of DNA through bridge-PCR. During this process, the 
extended DNA forms a bridge with a near-by immobilized complimentary adapter, 

(continued)
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which now serves as the primer for the next round of synthesis. At the end of the clonal 
amplifi cation reaction, one strand of DNA is removed from each template through the 
use of a restriction site on the fl ow cell bound adapter. The end result is a collection of 
single-stranded polonies that serve as the template for DNA polymerization.  

    Ion Torrent Semi-conductor Sequencing 

 The technology used by Life Technologies’ IonTorrent platform is similar in many 
ways to the now defunct 454 pyrosequencing platform in that it uses emulsion-PCR 
(emPCR) for sample amplifi cation and also in that only one type of nucleotide is 
provided during each fl ow cycle of the sequence run. IonTorrent semiconductor 
sequencing is unique in that it is the fi rst mainstream platform that does not use light 
as the readout signal, but instead it detects the proton ions released by the addition 
of each nucleotide. The intensity of the signal is directly related to the number of 
bases incorporated at each cycle. A major advantage of this technique is that, since 
there is no need for image acquisition, sequencing run times can be as low as 2.3 h 
depending on the chip used. One drawback to this approach is that in cases where 
the same base is repeated multiple times (homopolymer) the signal output is high, 
which makes it challenging to accurately estimate the size of the repeat between 
homopolymers of similar size. For example, a homopolymer of nine cytosines may 
have a signal similar in intensity to that of a homopolymer of ten cytosines. This 
leads to a higher rate of false insertions or deletions in homopolymers. 

 There are two instruments offered by IonTorrent with different output capabili-
ties, the Personal Genome Machine (PGM) and Proton. The PGM chip with the 
highest output (Ion318) produces up to 2 Gb of sequence per run, while the Proton 
can produce up to 10 Gb per run with the IonP1 chip. Life Technologies has 
announced recently that they will be releasing the Proton-II chip which will increase 
the output of the Proton to around 32 Gb which will enough to sequence a human 
 genome   to a depth of coverage of 10×, while maintaining the short sequencing run 
time. Additionally, Life Technologies is developing an alternative method to 
emPCR, which relies on isothermal template amplifi cation [ 2 ]. The application of 
this method promises to greatly reduce template preparation time, without the need 
for a dedicated instrument, thus also reducing costs.  

    Pacifi c Biosciences SMRT 

 Pacifi c Biosciences (PacBio) with its single molecule real-time (SMRT) technology 
is the most recent player to emerge in the high-throughput sequencing fi eld. The 
PacBio SMRT method relies on zero-mode waveguide (ZMW) wells, each contain-
ing a single polymerase enzyme, DNA template, sequencing primer and fl uores-
cently labeled nucleotides. The fl uorescent signal associated with each nucleotide 
incorporation to the growing DNA strand is recorded in real time [ 3 ]. This process 
takes about 2 days and it produces up to 5 Gb of sequence. 
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 The PacBIO SMRT technology has three major strengths over the other sequenc-
ing methods discussed. First, it is the only technology, so far, that uses single mol-
ecule detection, which means it does not rely on PCR amplifi cation that may 
introduce biases and errors. Secondly, it produces reads that are considerably longer 
that what Illumina and IonTorrent currently produce, with read lengths over 30,000 
bases reported. These longer reads are extremely important when studying genomic 
regions with a high number of repetitive sequences. Additionally, longer reads allow 
for unambiguous mRNA isoform resolution since assembly of transcripts, and the 
artifacts associated with this process, is not necessary. Lastly, since DNA chain 
extension is observed in real time this method is able to capture polymerase kinetics. 
The rate with which polymerase incorporates nucleotides differs between modifi ed 
and unmodifi ed nucleotides. Consequently, the variation in the kinetics of nucleo-
tide incorporation during DNA synthesis can be used to infer modifi cations in the 
DNA template and thus provide a direct way to studying base modifi cations [ 4 ].   

    Applications 

    Overview and Costs 

 In this section, major applications of high-throughput sequencing technologies will 
be discussed in some detail. However, this is by no means a complete collection of 
applications, since the number of applications is limited only by the number of 
methods that one can use to isolate DNA or  RNA  , and also because new applica-
tions will surely have emerged by the time this book is published. Software tools 
necessary for data analysis vary based on the application. Some commonly used and 
publicly available tools are summarized in Table  12.2 , while other tools are specifi c 
to the sequencing technology and are provided by the manufacturer.

   The general workfl ow of a high-throughput sequencing experiment is similar 
between most technologies in the market. The fi rst step of the experiment, which in 
essence defi nes the application, is the isolation and selection of the nucleic acid 
material to be studied. These methodologies will be discussed briefl y in each sub-
section. In the case of  RNA   based approaches, the RNA is reverse transcribed to 
DNA. Additionally, amplifi cation of the isolated DNA is required for the Illumina 
and IonTorrent technologies. The resulting DNA molecules are then ligated to pro-
prietary and technology specifi c adapters in the second step of library construction. 
The last step is the sequencing of the DNA libraries. 

 The cost of sequencing highly depends on different elements of the experimental 
design, in addition to the technology used. The fi rst consideration is the depth of 
coverage of sequencing required, because this affects the amount of data (or output) 
that needs to be produced. The depth of coverage can be calculated using:

   
Depth of Coverage

O

I

R L

I
= =

´

  
 ( 12.1 ) 
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where  O  is the unassembled sequencing output, which can also be described as the 
number of reads ( R ) multiplied by the average length of each read ( L ), and  I  is either 
the estimated length of the input DNA (e.g. the size of a  genome  ) or the sum of the 
length of the assembled contigs. Using this equation and having an estimate of the 
length of the DNA to be sequenced, a researcher may estimate the amount of 
sequencing needed to achieve the desired depth of coverage, which may be as high 
as the 1000× coverage required for confi dent identifi cation of somatic mutations. 

 Often, the minimum output of a sequencing run may be orders of magnitude 
higher than the output needed for a sample, especially if the sample is comprised of 
only a limited number elements, as in the case of small RNAs. In these cases, the 
researcher may combine samples from multiple sources or experiments in one 
sequencing run by multiplexing. This is achieved through the addition of short 
unique DNA tags (barcodes) to each sample during library construction. The sam-
ples can then be separated computationally during post-sequencing analysis. 

 While multiple samples can be combined in one sequencing run, each sample 
will still need to go through the step of library construction. This raises the costs of 
sequencing experiments considerably since the economies of scale do not apply. 
Additionally, the DNA adapters and formulations necessary for library construction 
often are proprietary, which makes it diffi cult to fi nd lower cost alternatives.  

    DNA Based Applications 

    Targeted Re-sequencing 

 Targeted re-sequencing is usually associated with sequencing the amplicons gener-
ated by the PCR amplifi cation of exons. This can be performed on all predicted 
exons (i.e. the exome) or on a subset of these exons. This approach can easily be 
applied to the study of the non-genic genomic elements discussed in this book by 

 Name  Reference 

 Read Trimmers  Cutadapt 
 PRINSEQ 
 Skewer 
 Trimmomatic 

 [ 42 ] 
 [ 43 ] 
 [ 44 ] 
 [ 45 ] 

 Genome assemblers  Celera 
 Newbler 
 SOAPdenovo2 
 Velvet 
 ALLPATHS 

 [ 46 ] 
 [ 47 ] 
 [ 48 ] 
 [ 49 ] 
 [ 50 ] 

 Transcriptomics  Tophat (Spliced alignment) 
 Cuffl inks (Assembler) 
 PASA 
 Rnnotator 
 Trinity 

 [ 51 ] 
 [ 52 ] 
 [ 53 ] 
 [ 54 ] 
 [ 55 ] 

 Short read mappers  Bowtie 
 BWA 
 SOAP2 

 [ 56 ] 
 [ 57 ] 
 [ 58 ] 

   Table 12.2    Commonly 
used tools   
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simply designing custom PCR primers targeting areas of interest. Care needs to be 
taken when designing primers for targeted re-sequencing in order to avoid non- 
specifi c binding of oligo-nucleotides. In the case where a high number of loci are 
being targeted, potentially cross reacting primers maybe partitioned into separate 
primer mixes in order to be used in different PCR reactions. 

 An advantage of using this approach is that the length of the fragments to be 
sequenced are known in advance and therefore the step of fragment size selection 
can be avoided for established protocols. Additionally, knowing the input sequences 
simplifi es downstream  bioinformatic   analyses.  

    Epigenomics 

 Epigenomics refers to the fi eld that studies the global changes of  gene express   ion   that 
do not result from the change in DNA sequence, but from chemical modifi cations of 
either the DNA or the histones associated with DNA [ 5 ]. Epigenomic applications, 
therefore, depend on which of these two kinds of modifi cations one intends to study. 

 Chip-seq is used for the study of histone modifi cations. Chromatin, i.e. the com-
plex of DNA and proteins, is crosslinked to form stable complexes, and then enzy-
matic treatment or physical shearing is used to break the  chromatin   into smaller 
pieces. DNA fragments bound to histones are selected using antibodies that target 
specifi c post-translational modifi cations. These fragments are sequenced and are 
then mapped to a reference  genome   to create a map of the particular modifi cations 
across the genome [ 6 ]. 

 The methylation of DNA can be studied using a variety of approaches. The more 
straightforward approach is to use the Pacifi c Biosciences SMRT technology, which 
does not use PCR amplifi cation and therefore preserves DNA modifi cations. The 
sequencing signal for this technology is the rate of base incorporation by poly-
merase during chain elongation. This rate depends on the chemical structure of the 
base being incorporated and therefore, also differs for chemically modifi ed bases 
such as methylated adenines [ 7 ] and cytosines [ 8 ]. Additionally, this approach has 
the benefi t that it does not require the existence of a reference sequence. 

 A more indirect way of studying  DNA methylation   of cytosines is using bisulfi te 
sequencing. Bisulfi te converts cytosine to uracil in treated DNA; however, methyl-
ated cytosines are protected from this conversion [ 9 ]. PCR amplifi cation of bisulfi te 
treated DNA will therefore result in the unmethylated cytosines to be converted to 
thymines while methylated cytosines will remain cytosines. The reads produced 
after a high-throughput sequencing run can then be mapped and compared to a ref-
erence  genome   to fi nd which cytosines remained cytosines after bisulfi te treatment, 
and were therefore methylated [ 10 ,  11 ].  

    Long-Distance Genomic Interactions 

 An innovative application of massively parallel high-throughput sequencing is the 
study of long distance  chromatin   interactions that occur between genomic elements. 
There are several variations of methods for studying the three-dimensional structure 
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of chromatin in the nucleus, such as Circularized Chromosome Conformation 
Capture (4C) [ 12 ], Carbon-Copy Chromosome Conformation Capture (5C) [ 13 ], 
Hi-C [ 14 ], ChIA-PET [ 15 ] and others. All of these techniques are variations of the 
Chromosome Conformation Capture (3C) method in which chromatin is cross- 
linked, sheared (either enzymatically or physically) and then ligated. The result of 
this approach is that DNA fragments that are close in three-dimensional space but 
maybe far apart in sequence space or even on a different  chromosome   are linked 
together. Sequencing the ligated fragments, therefore, allows for studying the spa-
tial organization of chromatin and how it differs between healthy and  disease   states, 
e.g. in healthy vs  cancer   cells [ 16 ].  

    Metagenomics 

 The term “ metagenomics  ” describes the application of high-throughput sequencing 
in the study of microbial communities. It has traditionally been employed in the study 
of environmental samples, such as those gathered from soil or water, or samples col-
lected from symbiotic environments, e.g. the root systems of plants. Metagenomics 
has more recently gained considerable traction in the study of human health. As a 
result of the colonization of intestinal and air-accessible surfaces on humans by bac-
teria and fungi, there are more non-human cells in the human body than human cells. 
It was therefore not a surprise that the composition of these microbial populations has 
a direct effect on human health. Some of the most impressive examples include the 
observation that the health of the gut microbiome is associated with  diseases   like 
obesity [ 17 ] and diabetes [ 18 ], or that the method of delivery at birth (viz. natural vs 
Caesarian) infl uences the health of the baby by changing the skin microbiome [ 19 ]. 
These studies, in addition to many others, employed extensive use of high-through-
put sequencing to study the microbial communities inhabiting a human biome. 

 There are two common approaches to studying microbial communities using high-
throughput sequencing. The fi rst one targets the 16S ribosomal  RNA   genes (rRNA) 
of microbes using targeted PCR amplifi cation. This approach gives an overview of 
the taxonomic composition of a microbiome. The main benefi t of this approach is that 
it requires less sequencing throughput and the data analysis is relatively straight for-
ward. However, preferential amplifi cation of 16S rRNA genes may lead to over-rep-
resentation of some bacterial groups [ 20 ]. Additionally, sequencing and assembly 
errors may lead to the formation of hard to identify chimeras [ 21 ]. The second 
approach, shotgun  metagenomic   sequencing, does not focus on specifi c genetic ele-
ments, but instead it is based on the genomic analysis of the total DNA extracted from 
microbial communities. Although the analysis of these data is more complex com-
pared to 16S rRNA data, shotgun metagenomic sequencing is a much richer source of 
information. Besides revealing the composition of a microbiome, shotgun metage-
nomic sequencing can be used to study the functional properties of these organisms 
and to investigate the effect that the microbiome’s secondary metabolism may have 
on the host [ 22 ]. Additionally, full reconstruction of microbial genomes is possible 
using these data [ 23 ]. Since shotgun metagenomic sequencing is unbiased, it can also 
be useful in the discovery of new bacterial groups and viruses [ 24 ].   
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     RNA   Based Applications 

    Small Non-coding  RNA   (miRNA) and Long Non-coding 
RNA (lncRNA) Sequencing 

 Non-coding RNAs play important roles in modulating the regulation of  gene expres-
s   ion   in all major cellular functions and, as such, they have been implicated in many 
 diseases   ranging from  cancer   to cardiac failure [ 25 – 27 ]. A major obstacle in study-
ing ncRNAs with high-throughput sequencing methods stems from the diffi culty in 
extraction and isolation of high quality samples at satisfactory yields, especially in 
the case of miRNAs (~22 bp in length). Up to 1 μg of miRNA can be isolated from 
cell lines and fresh tissue, but in the latter case the sample is heterogeneous [ 28 ]. 
Homogeneous samples from tissues can be retrieved through laser capture micro- 
dissection, which, however, drastically reduces the yield to less than 10 ng. Plasma 
and urine samples also have similarly low yields, which hinders accurate mRNA 
quantifi cation and subsequent analyses. This problem is further exacerbated by the 
fact that miRNAs usually represent a small fraction of a cell’s total  RNA   and the 
absence of a “hook” sequence that could be used for the targeted amplifi cation or 
selection of these molecules. 

 Once an ncRNA sample has been attained, high-throughput sequencing can be 
used for the discovery of new ncRNA species [ 29 ] that could be used both to study 
their function but also as  biomarkers   for  disease   [ 30 ]. Additionally, using immune- 
precipitation techniques (see below) the interactions of ncRNAs with other macro-
molecules can be further investigated.  

     RNA   Interactions 

 Several methods exist to probe the interaction between  RNA   and proteins. Similarly 
to ChIP approaches, these methods involve the crosslinking of RNA to bound pro-
teins, which are then selected using specifi c antibodies. Some of the most com-
monly used techniques are CLIP-seq [ 31 ], individual-nucleotide resolution 
Cross-Linking and ImmunoPrecipitation (iCLIP) [ 32 ] and Photoactivatable-
Ribonucleoside- Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP) 
[ 33 ]. These techniques enable the characterization and study of post- transcriptional   
control and the mechanisms through which mis-regulation may lead to  disease   [ 34 ]. 
For example, CLIP-Seq has been used to study the binding patterns of the exon 
junction complex, which plays a major role in the post-transcriptional fate of mRNA 
[ 35 ]. Another study determined the transcriptome-wide binding sites and prefer-
ences of RNA-binding proteins (RBPs) and  microRNA  -containing ribonucleopro-
tein complexes (miRNPs) [ 33 ]. Understanding these processes will help elucidate 
the link between genetic variations and disease, especially in the cases of synony-
mous mutations or non-genic mutations that disrupt the mechanisms of post- 
transcriptional gene regulation.  
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   Ribosome Profi ling 

 The number of copies of an mRNA transcript present in a cell generally correlates 
with the level of its encoded protein being produced. However, this is not always the 
case as the translation of specifi c mRNAs may be attenuated. Ribosome profi ling 
identifi es which mRNAs are actively being translated, by using an approach similar 
that used for studying  RNA  –protein interactions [ 36 ]. Ribosomes and mRNA are 
crosslinked and then the overhanging strands of mRNA are digested by ribonucle-
ases. The protected RNA is released, reverse transcribed to DNA that is then 
sequenced and mapped back to the original  genome  . 

 Besides providing a global view of all active protein expression in the cell, ribo-
some profi ling also provides valuable information regarding translation elongation 
rates, and initiation and pause sites. Additionally, ribosome profi ling allows for the 
discovery of elements that encode small proteins that may be missed by conven-
tional methods. Lastly, the role of upstream open reading frames in the regulation of 
 gene express   ion   can be studied using this approach.  

   TAIL-seq 

 A very recently developed application for the study of  gene express   ion    regulation   
through the control of mRNA stability is TAIL-seq [ 37 ]. This method specifi cally 
targets the 3′ of mRNA molecules. Briefl y, as in other  RNA   methods, total RNA is 
rRNA-depleted, tagged with a biotinylated adaptor at the 3′ end and then partially 
digested. The resulting fragment is pulled down using streptavidin, modifi ed with a 
5′ adapter, gel-purifi ed, reverse transcribed and sequenced. 

 Although normally the length estimation of long homopolymers—in this case 
poly(A) and poly(T)—through sequencing is challenging, the authors of this study 
noticed that there was a correlation between the fl uorescence signal intensity and 
the location of the end of a poly(T) homopolymer. Using this observation and sta-
tistical methods, they were able to accurately calculate the  genome  - wide   poly(A) 
length distribution of mRNA tails in HeLA and NIH 3T3 in addition to observing 
pervasive uridylation and guanylation of poly(A) tails [ 37 ].    

    Future and Challenges 

 Sequencing technologies and protocols are constantly being improved as all of the 
companies try to remain competitive. New chemistries that extend read length and 
improve quality are being introduced regularly, whereas there is a push to simplify 
workfl ows as much as possible to make this technology accessible to any research 
or clinical lab, irrespective of its size. Illumina has recently announced that they will 
release model HiSeq X Ten in a bid to be the fi rst technology to break the $1000 
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human  genome   barrier. The HiSeq X Ten system is in reality 10 HiSeq X instru-
ments bundled together for a cost expected to exceed 10 million dollars. The major 
technological improvement in this new system is that the fl ow cells now come with 
ordered ‘nanowells’ where the template oligos are attached, as opposed to the ran-
dom placement in the earlier systems. Additionally, Illumina is introducing a 
medium sized sequencer, NextSeq to occupy the space between MiSeq and HiSeq 
currently fi lled by Ion Torrent’s Proton sequencer. 

 Ion Torrent is also expected to release improved chemistries and protocols. The 
Ion Rapid Isothermal Amplifi cation Chemistry is being developed to simplify and 
speed up library template preparation, which is now performed by the Ion Touch 
system. Additionally, Ion Torrent will release Ion Hi-Q™ Sequencing Chemistry, 
which is expected to reduce insertion and deletions errors by 90 %. 

 A lot of excitement has been created by the announcement of Oxford Nanopore 
Technologies’ intention to release two new sequencing systems, MinION and 
GridION, that use an entirely novel approach to sequencing. A biological nanopore 
is set in a membrane layer and allows electrical current to pass through. When an 
electrically charged particle, e.g. a nucleic acid polymer, passes through the pore it 
disrupts the electrical current. This disruption of current can be measured. Moreover, 
the intensity of signal change varies according to which base is passing through the 
nanopore, thus providing the means for DNA sequencing. The promise of this tech-
nology is the reduction both in sequencing costs but also the size of the sequencing 
instrument. For example, Oxford Nanopore’s MinION is a disposable device that is 
not much bigger than a pack of chewing gum and that connects directly to the USB 
port of a computer. The performance of MinION device sequencing is currently 
being evaluated through a community access program. 

 There has been considerable effort in recent years to develop the methodologies 
for applying genomic and  transcriptomic   techniques at the single cell level. The 
greatest challenge to this single cell sequencing is in amplifying the whole  genome   
or transcriptome without introducing errors while avoiding contamination from 
other cells. Currently, the prevailing approaches to whole genome amplifi cation are 
Multiple Displacement Amplifi cation (MDA) [ 38 ] and Polymerase Chain Reaction 
(PCR). Both approaches have biases and may also lead to the introduction of arti-
facts; therefore, the decision of which method to use depends on the type of genetic 
elements and sequence variations to be studied [ 39 ]. Despite these hurdles, single 
cell sequencing will provide scientists with the capability to study the genomes and 
transcriptomes of healthy and diseased cells from the same individual over time, in 
addition to providing insights in the genomic heterogeneity of individuals. Lastly, a 
natural application of single cell genomics is in the fi eld of pre-implantation genetic 
diagnosis [ 40 ] in addition to non-invasive pre-natal testing using isolated fetal cells 
from maternal blood [ 41 ]. 

 With the continuing increase of sequencing throughput, the decrease in sequenc-
ing costs and the development of new technologies and methods there are two major 
hurdles for the adoption of high-throughput sequencing technologies by research 
labs. First is the availability of properly trained bioinformaticians who are able to 
analyze the large data sets produced by high-throughput sequencing. The second 
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limitation is the cost associated with securely storing and managing these data, in 
addition to the cost of the high capacity computing capabilities needed to process 
and analyze the data. Despite these limitations, the benefi ts of acquiring high- 
throughput sequencing capabilities outweigh the associated effort and costs, as this 
opens new and unprecedented avenues towards understanding the role of non-genic 
elements in human health.     
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