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    Chapter 13   

 Somatic Embryogenesis: Still a Relevant Technique 
in Citrus Improvement       

     Ahmad     A.     Omar    ,     Manjul     Dutt    ,     Frederick     G.     Gmitter    , and     Jude     W.     Grosser      

  Abstract 

   The genus  Citrus  contains numerous fresh and processed fruit cultivars that are economically important 
worldwide. New cultivars are needed to battle industry threatening diseases and to create new marketing 
opportunities.  Citrus  improvement by conventional methods alone has many limitations that can be over-
come by applications of emerging biotechnologies, generally requiring cell to plant regeneration. Many 
citrus genotypes are amenable to somatic embryogenesis, which became a key regeneration pathway in 
many experimental approaches to cultivar improvement. This chapter provides a brief history of plant 
somatic embryogenesis with focus on citrus, followed by a discussion of proven applications in 
biotechnology- facilitated citrus improvement techniques, such as somatic hybridization, somatic cybrid-
ization, genetic transformation, and the exploitation of somaclonal variation. Finally, two important new 
protocols that feature plant regeneration via somatic embryogenesis are provided: protoplast transforma-
tion and  Agrobacterium -mediated transformation of embryogenic cell suspension cultures.  

  Key words       Agrobacterium   -mediated  transformation    ,    Cell suspension    ,    Cybridization    ,    Polyethylene 
glycol   ( PEG  )  ,    Protoplast fusion    ,    Protoplast transformation    ,    Somaclonal variation    ,    Somatic hybrid    

1      Introduction 

  Citrus  spp., native of South East Asia and China, are cultivated in 
more than 100 countries, between approximately 40° N and 40° S 
around the world. The genus  Citrus  has been recognized as one of 
the most economically important fruit tree crops in the world. The 
most commercially important  Citrus  species are oranges ( Citrus 
sinensis  L. Osbeck), tangerines ( Citrus unshiu  Marc.,  Citrus nobilis  
Lour.,  Citrus deliciosa  Ten.,  Citrus reticulata  Blanco and their 
hybrids), lemons ( Citrus limon  L. Burm. f.), limes ( Citrus auran-
tifolia  Christm. Swing. and  Citrus latifolia  Tan.), and grapefruits 
( Citrus paradisi  Macf.).  Fortunella ,  Poncirus ,  Microcitrus , 
 Clymenia , and  Eremocitrus  are other genera of the family  Rutaceae , 
related to  Citrus . The importance of  Citrus  spp. is linked to their 
economic value and to the nutritional proprieties of their fruits. 
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Moreover,  Citrus  spp. are connected to the social background of 
the countries where they are grown, because many traditions, also 
those related to the cookery, involve the use of  Citrus  fruits.  Citrus  
fruits are mostly eaten fresh, but a large part of the production, 
mainly of grapefruits and oranges, is also used for juice extraction. 
Furthermore,  Citrus  spp. are utilized in several fi elds, not only in 
the food industry, such as the production of marmalades, candies, 
etc., but also, due to their richness in essential oils and polyphe-
nols, in the cosmetic, fl avor, and pharmacy industries. 

 Although a high genetic variability is present in the genus 
 Citrus  and its wild relatives, improvement by conventional breed-
ing is diffi cult because of various biological factors including ste-
rility [ 1 ] self- and cross-incompatibility [ 2 ], widespread nucellar 
embryony [ 1 ,  3 ], and long juvenile periods resulting in large plant 
size at maturity. A consequence of these factors is the dearth of 
information on genetic control of economically important traits 
and rapid and effective screening procedures [ 4 ]. Sweet orange 
and grapefruit are important citrus species, and they are believed 
to be interspecifi c hybrids, not true biological species [ 5 ,  6 ]. All 
cultivars within these species have arisen via somatic mutation, 
either bud-sport or nucellar-seedling variants [ 7 ], and not sexual 
hybridization; intraspecifi c hybridization results in weak or invia-
ble hybrid progeny (indicative of inbreeding depression) that gen-
erally produces fruit unlike those of the parents. The hybrid 
orange cultivar Ambersweet, which originated by hybridization of 
a mandarin × tangelo hybrid with sweet orange [ 8 ], may be the 
only exception. 

 Advances in in vitro tissue culture and improvements in molec-
ular techniques offer new opportunities for developing novel citrus 
cultivars as some of these technologies can overcome the limita-
tions of sexual hybridization. For example,  somatic hybrid  ization 
can create new combinations that were previously impossible 
because of sterility or sexual incompatibility. By using this tech-
nique, improved varieties of citrus and unique new breeding par-
ents, for scion as well as for rootstocks, can be produced. This 
technique consists of combining complementary parents with the 
purpose of transferring desired traits to new plants such as resis-
tance to  Phytophthora , citrus canker, citrus greening (HLB), citrus 
variegated chlorosis, blight, and drought [ 9 ,  10 ]. Selecting somatic 
mutations or genetic transformation allow the modifi cation of very 
few traits while retaining the essential characterization that typifi es 
specifi c cultivar or cultivars groups. These techniques often require 
 somatic embryo  genesis for effi cient plant recovery. This chapter 
will review somatic embryogenesis, and discuss applications of 
in vitro biotechnologies and their protocols by utilizing somatic 
embryogenesis in plant recovery, that can be used to obtain useful 
new genetic combinations for citrus improvement. 
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    Somatic embryo  genesis is defi ned as the differentiation of somatic 
cells into  somatic embryo  s which show several distinct characteris-
tics [ 11 ], including similarity to the developmental stages of 
 zygotic embryo   genesis  : bipolar structure presenting shoot and 
root meristems, a closed tracheal system separated from the mater-
nal tissue, and frequently single-cell origin with production of spe-
cifi c proteins. Somatic embryos play an important role in many 
fi elds, particularly for large-scale vegetative propagation. This mor-
phogenic process, that can occur with the formation of embryos 
emerging directly from explants (direct somatic embryogenesis, 
DSE), or after the formation of callus (indirect somatic embryo-
genesis, ISE), has been reported in several species [ 12 ,  13 ]. Somatic 
embryos developing via DSE are formed from competent explant 
cells which, contrary to ISE, are able to undergo embryogenesis 
without dedifferentiation, i.e., callus formation. It is believed that 
both processes are extremes of one continuous developmental 
pathway [ 14 ]. Distinguishing between DSE and ISE can be diffi -
cult [ 15 ], and both processes have been observed to occur simul-
taneously under the same tissue culture conditions [ 16 ]. Secondary 
somatic embryos can arise cyclically from the surface of primary 
somatic embryos, often at a much higher effi ciency for many plant 
species [ 17 ,  18 ]. Some cultures are able to retain their competence 
for secondary embryogenesis for many years and thus provide use-
ful material for various studies, as described for  Vitis ruperis  [ 19 ]. 
It is possible to induce somatic embryogenesis using different types 
of culture media, environmental conditions and explants including 
seedlings and their fragments, petioles, leaves, roots, shoot meri-
stems, seeds, cotyledons, anthers, pistils, and zygotic embryos. 
Immature zygotic embryos present the most frequently applied 
source of embryogenic cells which have been employed in most of 
the established protocols. Immature zygotic embryos made possible 
the induction of SE in plant species which, for many years, had been 
considered to be recalcitrant, viz grasses [ 20 ] and conifers [ 21 ]. 
By 1995 tissue culture conditions for SE induction had been 
described for over 200 plant species [ 17 ]; increasing numbers of 
protocols were published after that. The most frequent mode of 
embryogenesis is via callus formation, which is an indirect type of 
regeneration. 

 The interest in  somatic embryo  genesis is due to several factors 
such as high regeneration effi ciency and the infrequent appearance 
of  somaclonal variation   [ 22 ].  Somatic embryo  genesis has a key role 
in in vitro clonal propagation for plant mass propagation, as well as 
for  germplasm conservation   and exchange, cryopreservation to 
establish gene banks, sanitation, metabolite production, and syn-
thetic seed production. The application of synthetic seed technol-
ogy to  Citrus  has been reported for somatic embryos of  Citrus 
reshni ,  Citrus reticulata  Blanco (cv Avana and cv Mandarino 
Tardivo di Ciaculli),  Citrus clementina  Hort. ex Tan. (cv Monreal 
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and cv Nules), a lemon hybrid [ 23 ,  24 ], and Kinnow mandarin [ 25 ]. 
Moreover, in vitro conservation of several  Citrus  species using 
 encapsulation  –dehydration technology of cryopreservation has 
also been reported [ 26 ,  27 ]. 

 Plant regeneration systems that limit or avoid genetic chime-
rism in regenerants are of special value for biotechnologies that 
combine tissue culture with genetic transformation or mutant 
induction and selection. Genetic modifi cation is a unicellular event, 
and hence regeneration from multicellular centers frequently 
results in the formation of genetic chimeras. A high probability for 
the single cell origin of regenerants is what provides for ideal 
SE. The classical conception of SE is based on the unicellular ori-
gin of  somatic embryo  s [ 28 ], and this mode of somatic  embryo 
development   was the most frequently noticed in embryogenic  cell 
suspension  s of  D. carota  [ 29 ]. However, single-cell origin of 
somatic embryos is not the rule, and even in a model system such 
as embryonic cell suspension of   Daucus carota   , development of 
embryos from a group of cells cannot be excluded [ 30 ]. 
Development of somatic embryos from more than one cell has in 
fact been reported in several plant systems. Moreover, both a mul-
ticellular and a unicellular origin of somatic embryos in the same 
regeneration system is quite a common phenomenon, as was 
observed in several species including  Musa  spp. [ 31 ],  Cocos nucifera  
[ 32 ],  Santalum album  and  S. spicatum  [ 33 ], and   H. vulgare    [ 34 ]. 
It is believed that somatic embryos originated from a single cell 
displayed normal morphology of “single embryo” while aberrant, 
multiple embryos are derived from a group of cells [ 35 – 37 ]. 
Numerous published protocols on successful SE induction and 
plant regeneration in different plant species, suggest that SE could 
be achieved for additional plant species provided that appropriate 
explant and culture conditions are employed, although progress 
will probably remain slow with the more recalcitrant woody 
species. 

   The establishment of effi cient embryogenic cultures has become 
an integral part of plant biotechnology as regeneration of trans-
genic plants in most of the important crops (such as  canola  , cas-
sava, cereals, cotton, soybean, and various woody tree species) is 
dependent on the formation of  somatic embryo  s. One of the most 
attractive features of embryogenic cultures is that plants derived 
from them are predominantly normal and devoid of any pheno-
typic or genotypic variation, possibly because they are often derived 
from single cells and there is stringent selection during embryo-
genesis in favor of normal cells [ 38 ]. Embryogenic cultures were 
fi rst described in callus and suspension cultures of  carrot   by Reinert 
[ 39 ] and Steward et al. [ 40 ], respectively. In the following decades 
with increasing understanding of the physiological and genetic 
regulation of zygotic as well as somatic embryogenesis, embryogenic 
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cultures had been obtained on chemically defi ned media in a wide 
variety of species [ 38 ]. In most instances the herbicidal synthetic 
auxin 2,4-dichlorophenoxyacetic acid (2,4-D) was required for the 
initiation of embryogenic cultures; somatic embryos develop when 
such cultures are transferred to media containing very low amounts 
of 2,4-D or no 2,4-D at all. 

 During the 1950s a number of attempts were made to demon-
strate the  totipotency   of plant cells. The fi rst evidence of the pos-
sibility that single cells of higher plants could be cultured in 
isolation was provided by Muir et al. [ 41 ], who obtained sustained 
cell divisions in single cells of  tobacco   placed on a small square of 
fi lter paper resting on an actively growing callus, which served as a 
nurse tissue. Similar results were obtained by Bergmann [ 42 ] who 
plated single cells and cell groups suspended in an  agar   medium. 
Further progress was made by Jones et al. [ 43 ], who were able to 
culture single isolated cells in a conditioned medium in specially 
designed microculture chambers. Direct and unequivocal evidence 
of the totipotency of plant cells was fi nally provided by Vasil and 
Hildebrandt [ 44 ,  45 ], who regenerated fl owering plants of tobacco 
from isolated single cells cultured in microchambers, without the 
aid of nurse cells or conditioned media. Up to date, in vitro culture 
techniques have enabled plant regeneration from over 1000 differ-
ent species [ 46 ], following two alternative morphogenetic path-
ways, shoot organogenesis (SO) or SE. Both morphogenic 
pathways, SE and SO, may be induced simultaneously in the same 
tissue culture conditions [ 47 ]. Thus, differentiation between SE 
and SO can sometimes be diffi cult, and even a detailed comparative 
histological analysis of the morphogenic process can only suggest 
an embryo-like origin of developing structures [ 48 ]. However, SE 
and SO can be separated in space and time [ 49 ,  50 ] with the use of 
appropriate medium composition, mainly type or concentration of 
 plant growth regulator   s   (PGRs). 

 The application of in vitro systems based on SE for plant regen-
eration is determined not only by a high effi ciency of  somatic 
embryo   formation, but frequently depends on capacity of the 
embryos for complete plant development. The process of develop-
mental changes, which a somatic embryo undergoes, is called 
“ conversion  ”, and it involves the formation of primary roots, a 
shoot meristem with a leaf primordium and greening of hypocotyls 
and cotyledons [ 51 ]. In numerous systems, in spite of the high 
number of somatic embryos produced, problems with a lack or a 
low frequency of embryo conversion into plants has occurred. To 
stimulate embryo conversion, and to improve the effi ciency of 
plant regeneration, a number of different strategies have been 
tested.  Gibberellic acid   ( GA 3   ) is frequently employed in media 
used for somatic embryo conversion. It should be stressed that in 
some systems, abnormal morphology of somatic embryos did not 
decrease the chances of development into normal plants [ 52 – 54 ]. 

Somatic Embryogenesis in Citrus
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In a plant seed the embryo is generally formed following the fusion 
of gametes from two parents during  fertilization  . However, some 
species form embryos in the seed without fertilization. This kind of 
reproduction is termed  apomixis   by which somatic cell-derived 
embryos develop in a seed.  Apomixis   is a fairly uncommon trait in 
plants, but approximately 400 species exhibit this type of propaga-
tion in nature [ 55 ]. Apomixis is classifi ed into apospory, diplo-
spory, and  adventitious embryony   according to the developmental 
process of somatic embryo(s). In apospory and diplospory, apo-
mictic embryo(s) develop megagametophytic structure without 
meiotic reduction, which is widely observed in grass species. On 
the other hand, in adventitious embryony as observed in citrus and 
mango ( Mangifera indica  L.), somatic embryos are directly initi-
ated from nucellar cells in ovule tissue [ 56 ]. In citrus, polyembry-
ony, specifi cally adventitious embryony, is a common reproductive 
phenomenon. Some cultivars develop many embryos in a seed, 
such as Satsuma mandarin ( Citrus unshiu ) and Ponkan ( Citrus 
reticulata ) which form 20 or more embryos in a seed. In contrast, 
monoembryonic cultivars (e.g.,  Clementine  ,  Citrus clementina , 
and Kinokuni mandarin,  Citrus kinokuni ) form only a single, 
zygotically derived embryo in each seed [ 57 ]. Apomixis has great 
potential as a breeding technology because introduction of apo-
mixis into non-apomictic plants enables clonal propagation with 
genetically true seeds from hybrids. The potential economic ben-
efi t of incorporation of apomixis in rice was estimated to exceed 
US $2.5 billion per annum [ 58 ]. Because of its economic potential 
as a breeding technology, genomics-based approaches have been 
applied to identify the gene responsible for apomixes [ 59 ,  60 ].  

    Somatic embryo  genesis is particularly attractive in citrus because 
many cultivars and accessions have the capacity for nucellar embry-
ony [ 61 ]. Somatic embryogenesis has been induced directly in cul-
tured nucelli [ 62 ] and undeveloped ovules [ 63 ,  64 ] or indirectly 
via callus formation [ 65 – 69 ]. Embryogenesis has also been induced 
from  endosperm  -derived callus [ 70 ], juice vesicles [ 71 ], anthers 
[ 72 ,  73 ], and styles [ 74 – 77 ]. 

 In order to apply the techniques of modern plant biotechnology 
to citrus breeding, it is necessary to develop reliable and effi cient 
plant tissue culture procedures for plant regeneration (Fig.  1 ). 
In citrus, the production of embryogenic callus lines have been 
reported from the culture of excised nucelli [ 78 ], abortive ovules 
[ 79 ], unfertilized ovules [ 80 ], undeveloped ovules [ 64 ], isolated 
nucellar embryos [ 81 ], Satsuma juice vesicles [ 71 ], anthers [ 82 ], 
styles and stigmas of different species of citrus [ 75 ,  83 ], as well as 
from leaves, epicotyls, cotyledons and root segments of in vitro 
grown nucellar seedling of  C. reticulata  Blanco [ 84 ]. The  embryo-
genic potential   of citrus varies with genotype and type of explant. 
One important application of this technique is the production of 
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virus-free citrus plants through  somatic embryo  genesis from 
undeveloped ovules of some citrus species [ 79 ,  85 ].  Somatic 
embryo  s, embryogenic callus and cell cultures recovered from 
in vitro cultured ovules have also been used to develop cryopreser-
vation strategies for  germplasm conservation   [ 86 ], to generate 
 somaclonal variation   [ 87 ], and for  protoplast fusion   technologies 
to generate  somatic hybrid  s and  cybrids   [ 4 ,  9 ,  88 ,  89 ]. Many citrus 
species are found responsive to culture on a basal medium supple-
mented with  malt extract  , but embryogenesis has been enhanced 
by the addition of other growth substances.

  Fig. 1     Somatic embryo  genesis in citrus. ( a ) Citrus ovules, ( b ) ovule derived embryogenic callus, ( c ) embryogenic 
callus, ( d ) embryogenic  cell suspension   cultures, ( e ) protoplast derived micro-calli, ( f ) callus derived  somatic 
embryo  s, ( g ,  h ) small-medium somatic embryos on cellulose acetate fi lter papers, ( i ) enlarged embryos on 
EME- maltose   medium, ( j ) enlarged embryos and shoots on 1500 medium, ( k ) small plantlet on B+ medium, 
( l ) plantlets on rooting medium       
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    Anther culture   is a commonly used method to produce 
haploids and doubled-haploids in  Citrus , as well as in other fruit 
crops [ 90 – 92 ].  Citrus   anther culture   produced also  somatic 
embryo  - derived  regenerants in  C. aurantium  [ 82 ,  93 ],  C. sinensis , 
 C. aurantifolia  [ 94 ],  C. madurensis  [ 95 ],  C. reticulata  [ 93 ,  96 ], 
 Poncirus trifoliata , the hybrid No. 14 of  C. ichangensis  ×  C. reticulata  
[ 97 ] and  C. paradisi . While the somatic embryogenesis capacity of 
 Citrus  has been found to vary with the cultivar and type of explant, 
regeneration methods that involve the use of embryogenic callus 
of nucellar origin (polyembryonic types) generally provide the 
best results. Unfortunately, these systems either fail or provide 
only poor results with monoembryonic species that produce only 
 zygotic embryo  s. Kobayashi et al. [ 98 ] cultured the ovules of 23 
monoembryonic cultivars and never obtained nucellar embryos.  

   The selection of elite citrus plants is essential for the development 
of effi cient systems of  somatic embryo  genesis. For these purposes, 
explants should be collected from selected elite specimens that are 
visibly free from any symptoms of disease, stress or spontaneous 
mutations (i.e., variegated fruits and leaves, variation in color, size 
and shape of fruits, and various other plant abnormalities). Carimi 
[ 99 ] addressed several points to bear in mind when deciding upon 
the choice of explant, i.e., (1) callus formation appears to depend 
on the status of the tissue, (2) callus initiation occurs more readily 
in tissues that are still juvenile, and (3) explants must contain liv-
ing cells. When fl oral tissues and fruits are old, chances of callus 
and embryo formation from undeveloped ovules, stigma, or style 
explants decrease. Stigma and styles derived from immature fl ow-
ers and undeveloped ovules from unripe fruits have higher 
 embryogenic potential  s, although embryogenic callus lines have 
been successfully initiated also from the undeveloped ovules of 
mature fruits.  

   The composition of the media used for in vitro regeneration of 
citrus  somatic embryo  s is based on the inorganic salts recom-
mended by Murashige and Skoog [ 100 ] and on the organic com-
pounds suggested by Murashige and Tucker [ 101 ].  Sucrose   
(50 g/L) is usually used as the carbon source. When needed, 
growth regulators can be added directly to the medium before or 
after autoclaving. The pH of the medium is generally adjusted to 
5.8. Normally, 8 g/L  agar   is used to solidify media for citrus tissue 
culture. After preparing the media, it could be stored at room tem-
perature for several weeks before use. Starrantino and Russo [ 64 ] 
fi rst reported somatic embryogenesis from undeveloped ovule cul-
ture. The percentage of embryogenic explants ranges from 0 % to 
70 %, depending on the genotype. As mentioned, this regeneration 
procedure does not work with monoembryonic genotypes [ 102 ] 
(for more details about how to initiate somatic embryogenesis 
including embryogenic callus and suspension lines from undeveloped 
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ovule culture, see [ 9 ,  10 ,  103 ]). EBA (MT basal medium plus 
0.01 mg/L 2,4-D and 0.1 mg/L 6-BAP) and DOG (MT basal 
medium plus 5 mg/L kinetin) media are often used for embryo-
genic callus induction [ 103 ].   

      Somaclonal variation  , first defined and reviewed by Larkin and 
Scowcroft [ 104 ], is a commonly observed phenomenon in cell and 
tissue cultures of different species regardless of the regeneration 
system used [ 105 ]. This variation involves changes in both nuclear 
and cytoplasmic genomes, and their character can be of genetic or 
 epigenetic   nature [ 22 ]. Mechanisms which determine  somaclonal 
variation   [ 106 – 108 ], as well as the advantages and drawbacks of 
in vitro produced plant variants [ 109 – 111 ], have been widely dis-
cussed. The identification of valuable somaclonal variants holds 
great promise for cultivar improvement, especially for the citrus 
species that are difficult to manipulate by sexual hybridization [ 4 ]. 
Somaclonal variation has been observed in citrus plants regener-
ated from nucellar callus of monoembryonic “ Clementine  ” man-
darin [ 85 ]. Callus lines have been selected for salt tolerance [ 112 , 
 113 ] and regenerated into plantlets; however, regenerated plantlets 
lacked internodes and hence could not be propagated further [ 114 ]. 
 C. limon  embryogenic culture lines resistant to “mal secco” toxin 
were selected. These lines produced  somatic embryo  s, which 
retained resistance to the toxin [ 115 ]. “Femminello” lemon 
somaclones have also been evaluated for tolerance to mal secco by 
artificial inoculation [ 116 ]. Somaclones of “Hamlin,” “Valencia,” 
“Vernia,” and “OLL” (Orie Lee Late) sweet oranges have been 
obtained via regeneration from callus, suspension cultures, and/or 
protoplasts, obtained via somatic embryogenesis, in efforts to 
improve processing and fresh market sweet oranges [ 87 ,  117 ]. 
Significant variation has been observed in fruit maturity date, juice 
quality, seed content and clonal stability. The University of Florida, 
Institute of Food and Agricultural Science (UF/IFAS), through 
Florida Foundation Seed Producers (FFSP), has released several 
improved sweet oranges regenerated using the somatic embryo-
genesis pathway, such as “Valencia protoclone SF14W-62” 
(Valquarius ® -U.S. Patent PP21,535, selected for 6–8 weeks early 
maturity date), “Valencia protoclones N7-3” (U.S. Patent 
PP21,224 and T2-21, seedlessness and late maturity), “Hamlin 
protoclone N13-32” (improved juice color), and somaclones 
“OLL-4” and “OLL-8” (high yield and juice quality, clonal stability). 
We are also evaluating several hundred lemon somaclones (derived 
from multiple commercial lemon cultivars) for fruit rind oil con-
tent and seed content. We have identified several seedless soma-
clones and somaclones that consistently yield more oil per unit of 
rind surface area (Gmitter, Grosser and Castle, unpublished data). 
It is clear that useful genetic variation can be obtained from 
large enough populations of somatic embryogenesis-regenerated 
somaclones.  

1.2  Applications 
of SE in Cultivar 
Improvement of Citrus

1.2.1  Generation 
of Somaclonal Variation
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   As mentioned above, new cultivars of sweet orange have been 
developed from populations of plants regenerated from proto-
plasts via  somatic embryo  genesis (protoclones) (Fig.  1 ). In plant 
tissue culture history, embryogenic cell culture and the develop-
ment of protoplast technologies that require plant recovery are 
closely linked. Although progress in the development of proto-
plast technologies has been made in other woody tree species, 
including the regeneration of somatic embryos from protoplasts 
isolated from embryogenic cells of   Pinus taeda    and   Picea glauca    
[ 118 – 120 ],  citrus has been the true model system in this regard 
primarily due to its robust ability for somatic embryogenesis. 
The limited range of the explant source from which morphoge-
netically competent tissues can be obtained has limited success 
with protoplast culture in other tree species. Methods for the iso-
lation and culture of  Citrus  protoplasts from embryogenic callus 
and suspension cultures, and subsequent plant regeneration are 
well developed [ 9 ,  10 ,  89 ,  103 ,  121 – 123 ].  Protoplast fusion   tech-
niques have been used to generate  somatic hybrid   plants from 
more than 500 parental combinations, including more than 300 
from our laboratory (for reviews, see ref. [ 4 ,  9 ,  10 ,  88 ,  124 ]). 
As a by-product of  protoplast fusion  , hundreds of diploid cybrid 
citrus plants have also been regenerated via somatic embryogene-
sis [ 125 ,  126 ]. Protoplasts have also been proven to be very useful 
in the genetic transformation of plants [ 127 – 130 ], including eco-
nomically important cereals [ 131 ]. Once again, citrus has led the 
way with genetic transformation of protoplasts among woody 
fruit trees, with transformed plant recovery due to robust somatic 
embryogenesis [ 129 ,  132 ].  

   The complex 8P protoplast culture medium of Kao and Michayluk 
[ 133 ] has been used for successful protoplast culture and plant 
regeneration from embryogenic cultures of several plant species. 
The success of this complex medium is probably due to the appro-
priate concentrations of the multivitamin, organic acid, and sugar/
alcohol additives that are combined with the basal medium formu-
lation. These additives seem to provide additional buffering capac-
ity and reduce the environmental stress on protoplasts by providing 
required metabolic intermediates needed to sustain adequate cell 
viability and  totipotency  . However, optimal basal tissue culture 
media have been developed for most plant genera, and an effi cient 
protoplast culture medium may be developed for a particular genus 
by simply supplementing the optimal basal medium with 8P mul-
tivitamin, organic acid, and sugar/alcohol additives. This approach 
has been successful for  Trifolium  [ 134 ,  135 ] and  Citrus  [ 9 ]. 
Reducing or eliminating the ammonia content of the basal medium 
has also been useful. Most basal media contain high levels of 
NH 4 NO 3  that can often be toxic to protoplasts.  Glutamine   or 
Ca(NO 3 ) 2  have been found to be good alternative sources of N in 
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embryogenic suspension culture and protoplast culture media, as 
demonstrated in H+H suspension culture medium and BH3 
protoplast medium of citrus [ 9 ], as well as in  Populus  protoplast 
media [ 136 ]. Vardi et al. [ 137 ] reported the fi rst example of suc-
cessful citrus protoplast isolation and culture, followed by callus 
formation and embryo differentiation. Subsequently, numerous 
 Citrus  species have been regenerated from protoplasts via  somatic 
embryo  genesis [ 124 ]. Ohgawara et al. [ 138 ] obtained for the fi rst 
time  somatic hybrid  s of citrus regenerated via somatic embryogen-
esis, involving  Citrus  ( C. sinensis  and  Poncirus trifoliata ). Citrus 
protoplasts can be isolated from different sources including 
embryogenic cells (cultured on either solid or liquid media), non- 
embryogenic callus, and leaves. Embryogenic cell cultures (on 
solid or liquid media) yield protoplasts with the best potential for 
proliferation and embryo regeneration. Leaves are another often 
utilized source for protoplast isolation in  Citrus , because leaf 
protoplasts are generally easy to isolate and large amounts of pro-
toplasts are produced; however, they are not totipotent and do not 
develop into somatic embryos. In vitro cultured nucellar seedlings 
are becoming more commonly used as a source of leaf material for 
protoplast isolation, as this source eliminates the need for harsh 
decontamination. Leaf protoplasts are often used in somatic fusions 
with embryogenic culture protoplasts, where the latter provides 
the capacity for somatic embryogenesis and plant recovery in 
somatic hybrids and  cybrids  . Embryogenic callus or suspension 
cultures used for protoplast isolation should be in the log phase of 
growth at the time of isolation. Friable tissue with low starch con-
tent generally gives the best results.  Citrus  embryogenic cultures 
often require continual subculturing for long periods before they 
reach adequate friability and appropriate starch levels for proto-
plast manipulation. Transferring  Citrus  callus to  glutamine  - 
containing  media can sometimes reduce the starch content of cells 
to appropriate levels for protoplast isolation [ 9 ,  10 ,  103 ]. A proce-
dure for the induction of suspension cultures from embryogenic 
calli has been previously described [ 9 ,  10 ,  103 ,  139 ]. Suspension 
cultures offer several distinct advantages over stationary cultures, 
especially when conducting multiple experiments requiring large 
volumes of explant. Suspension cultures quickly generated needed 
volumes of explant for multiple experiments, and rapidly growing 
suspension cells have thinner  cell wall  s that are more amenable to 
enzyme digestion. Combining an enzyme solution (generally con-
taining cellulose and macerase) with a complex protoplast culture 
medium may reduce stress on protoplasts during isolation and 
thereby increase viability. We prefer maintaining suspension cul-
tures on a 2-week subculture cycle, with optimum protoplast isola-
tions occurring at days 4–12, when suspension cultures are in the 
log phase of growth.  
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    Somatic hybrid  ization allows production of  somatic hybrid  s that 
incorporate genomes of the two parents with little or no recombi-
nation, but with increased heterozygosity in the resulting poly-
ploidy hybrids [ 140 ]. Somatic hybridization in citrus relies on the 
process of  somatic embryo  genesis for plant regeneration. In citrus, 
this technology has been extensively used and has important appli-
cations in both scion and rootstock improvement [ 124 ]. The first 
successful protoplast isolations were reported as early as 1982 
[ 123 ], and the first citrus somatic hybrid was obtained between 
 C. sinensis  and  P. trifoliata  [ 138 ]. These results encouraged the 
development and incorporation of somatic hybridization tech-
niques into the citrus breeding programs in several countries [ 9 ]. 
Somatic hybridization has made it possible to hybridize commercial 
citrus with citrus relatives that possess valuable attributes, thus 
broadening the germplasm base available for rootstock improve-
ment [ 141 ]. Somatic hybrids have been developed and established 
at the Citrus Research and Education Center, University of Florida, 
USA for three decades to improve citrus scions and rootstocks [ 9 , 
 10 ,  124 ]. The most important contribution somatic hybridization 
can make to citrus breeding programs is the creation of unique 
tetraploid breeding parents. 

   We have used  somatic hybrid  ization to create new tetraploid 
somatic hybrids that combine elite diploid scion material as tetra-
ploid breeding parents being used in interploid hybridization 
schemes to develop seedless and easy-to-peel new mandarin vari-
eties [ 142 ], and in grapefruit/pummelo and acid fruit improve-
ment (lemons/limes) [ 10 ,  143 ]. The fi rst seedless triploid mandarin 
from this program (C4-15-19, from a cross of “LB8-9” with a 
somatic hybrid of “Nova” mandarin hybrid + “Succari” sweet 
orange), was recently released by UF/IFAS for commercialization. 
This is the fi rst released triploid citrus cultivar fathered by a 
somatic hybrid. The majority of somatic hybrid breeding parents 
produced for scion improvement have been from fusions of two 
polyembryonic parents. In this case, the somatic hybrid can only 
be effi ciently used as a  pollen   parent in interploid crosses. Using 
this approach, we have produced several thousand triploid hybrids 
fathered by somatic hybrids. Interploid crosses utilizing a mono-
embryonic diploid female parent and a tetraploid male parent 
require embryo rescue for triploid plant recovery because embryos 
do not complete normal development, presumably as a conse-
quence of  endosperm  :embryo ploidy level balance. By contrast, 
interploid crosses utilizing a monoembryonic tetraploid females 
do not require embryo rescue [ 10 ].  Somatic hybrid  s produced 
by the fusion of a polyembryonic embryogenic parent with a 
monoembryonic leaf parent are frequently monoembryonic. 
We have recently effi ciently recovered triploid progeny by simply 
planting fully developed seeds from interploid crosses involving the 

1.2.4  Somatic 
Hybridization

 Scion Improvement
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following monoembryonic somatic hybrid females in our breeding 
program: “Succari” sweet orange + “Hirado Buntan” pummelo, 
“Murcott” + “Chandler” sdlg.#80, “Murcott” + “Chandler” sdlg. 
A-1-11 (grapefruit/pummelo improvement), “Santa Teresa” 
lemon + “Lakeland Limequat” (lemon improvement), and 
“W. Murcott” + UF03-B (“Fortune” × “Murcott”) (mandarin 
improvement) (J.W. Grosser, unpublished information). Thus, our 
future somatic hybridization work will focus more on production 
of monoembryonic somatic hybrids. Creation of triploid citrus 
hybrids directly by electrofusion of  haploid   and diploid protoplasts 
is also promising [ 144 ].  

   Numerous allotetraploid  somatic hybrid  s via  protoplast fusion   
with plant recovery by  somatic embryo  genesis, which combine 
complementary diploid rootstocks, have been produced [ 9 ]. These 
hybrids have direct rootstock potential [ 145 ], but their most 
important contribution may be their use as breeding parents in 
rootstock crosses at the tetraploid level. We initiated tetraploid 
rootstock breeding around the year 2000, and since this time hun-
dreds of zygotic allotetraploids (“tetrazygs”) have been obtained. 
This approach is quite powerful genetically, because the alleles 
from four rootstock genotypes can be recombined simultaneously, 
creating a wealth of genetic diversity in progeny. Resulting allotet-
raploid rootstock candidates have been screened for tolerance to 
the  Diaprepes / Phytophthora  complex [ 117 ,  87 ], salinity [ 145 ], and 
now HLB (Huanglongbing or citrus greening), all with promising 
results. With the cost of citrus production and harvesting increas-
ing over time, there has been greater emphasis on developing root-
stocks to facilitate Advanced Citrus Production Systems (ACPS), 
that reduce tree size to make orchard management and crop har-
vesting more effi cient and also to bring young trees into economi-
cally valuable production earlier. We learned early on that tetraploid 
rootstocks, especially allotetraploid somatic hybrids, always have 
some capacity to reduce tree size, even from somatic hybrids pro-
duced between two vigorous parents [ 10 ,  145 ]. Through multiple 
fi eld trials, we have identifi ed some somatic hybrid and “tetrazyg” 
rootstock hybrids that have combined desirable horticultural attri-
butes, disease resistance and stress tolerance traits, and confer vary-
ing degrees of tree size control [ 10 ]. UF/IFAS has recently “fast 
track” released 17 new rootstock selections to the Florida industry 
for large scale evaluation that include one somatic hybrid and six 
“tetrazyg” allotetraploid hybrids. The release additional improved 
allotetraploid rootstocks can be expected in the near future.   

    Cybrids   combine the nucleus of a species with alien cytoplas-
mic organelles [ 126 ,  146 ].  Cybridization   could be a valuable 
method for improvement of various crops that would be in the 
non-regulated category of genetically modified organisms. 

 Rootstock Improvement

1.2.5  Somatic 
 Cybridization  
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The first  cybrids   in citrus were created by the “donor–recipient” 
method [ 147 ]. The phenomenon of  cybridization   in citrus 
also occurs as an accidental by-product of  somatic hybrid  iza-
tion via  protoplast fusion   [ 125 ,  148 ]. The general somatic 
hybridization model of fusing embryogenic culture cell proto-
plasts with leaf protoplasts often yields diploid plants with the 
morphology of the leaf parent. These plants have always, with-
out exception, been validated as cybrids, as citrus leaf proto-
plasts are not capable of plant regeneration. Such cybrids 
always have the mitochondrial (mt) genome of the embryo-
genic suspension/callus parent, whereas the chloroplast (cp) 
genome is randomly inherited. Thus, recovered cybrid plants 
are regenerated via  somatic embryo  genesis. Moreira et al. 
[ 148 ] found that embryogenic suspension culture cells gener-
ally have four times more mt per cell than do leaf cells and 
hypothesized that the extra mt acquired by the cybrid cells is 
necessary to satisfy the high energy demand of the somatic 
embryogenesis pathway of regeneration. This phenomenon 
has been exploited to produce targeted cybrids. One approach 
for cultivar improvement has been to transfer of cytoplasmic 
male sterility (CMS) from “Satsuma” mandarin to other elite 
but seedy scions via cybridization. This approach has the 
potential to make existing popular cultivars less seedy, without 
altering the cultivar integrity in any other way [ 126 ,  146 ]. 
This technique has only been partially successful in our experi-
ence; for example, we have produced cybrid “Sunburst” man-
darin clones that have less than half the normal seed content of 
“Sunburst”, but still too many seeds to label them as seedless 
(JW Grosser, unpublished information). However, these cybrid 
“Sunburst” trees produce a fruit that is easier to peel and with 
better flavor than traditional “Sunburst.” Accidental cybrids of 
“Ruby Red” and “Duncan” grapefruit, both containing the mt 
genome from “Dancy” mandarin, have also been produced 
from separate experiments. In both cases, the fruit from cybrid 
trees has improved characteristics, including significantly 
higher brix and brix/acid ratios, and an extended harvesting 
season that extends well into the summer with no vivipary or 
fruit drying (Satpute et al., submitted). UF/IFAS has released 
the first cybrid citrus cultivar, namely the N2-28 cybrid “Ruby 
Red” grapefruit, from this work. We are also attempting to 
utilize cybrid technology for improving disease resistance in 
existing cultivars. The mt genome of kumquat ( Fortunella 
crassifolia  Swingle) is purported to contain a gene for citrus 
canker resistance. Citrus canker disease has caused significant 
damage to the Florida grapefruit industry. We have initiated an 
embryogenic suspension culture of “Meiwa” kumquat and 
performed fusions with leaf protoplasts of grapefruit cultivars 
“White Marsh,” “Flame” (red) and a dark red somaclone N11-11. 
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Multiple diploid plants from each fusion combination exhibiting 
grapefruit morphology have been regenerated and their cybrid 
nature confirmed by mitochondrial intron marker analysis [ 149 ]. 
Cp genome inheritance analysis in these plants is currently under-
way. These cybrid grapefruit plants are being propagated for a can-
ker challenge assay to determine if the transfer of the kumquat mt 
genome can indeed improve their resistance to citrus canker.   

   Genetic transformation has become an attractive alternative 
method for improving plant species including citrus, because it is 
possible to maintain cultivar integrity while adding a single trait. 
Exploiting the process of  somatic embryo  genesis, citrus can be 
transformed either directly from embryogenic  cell suspension   
cultures or indirectly from isolated protoplasts. Embryogenic cells 
are usually treated with an   Agrobacterium    culture followed by 
selection and regeneration of transgenic plants. Plant protoplasts 
are commonly transformed using the  polyethylene glycol   ( PEG  )-
mediated DNA uptake process, and less frequently using electro-
poration. The PEG-mediated DNA transfer can be readily adapted 
to a wide range of plant species and tissue sources. In this chapter 
we describe an effi cient, protoplast-based citrus-transformation 
system that could be routinely used to transform several important 
polyembryonic citrus cultivars that feature robust somatic embryo-
genesis, including important processing sweet oranges and the 
popular mandarin cultivar W. Murcott. 

 The fi rst reports of citrus transformation began to appear more 
than two and half decades ago [ 150 – 152 ]. Over time, citrus trans-
formation effi ciency has been increased due to continual 
 improvements in   Agrobacterium   -mediated methodology and  pro-
toplast transformation   system, as well as the selection techniques of 
the transgenic events. In citrus, the common method of transfor-
mation is   Agrobacterium -mediated transformation   of stem pieces 
(mostly nucellar seedling internodes). This method works best 
with seedy polyembryonic cultivars and uses adventitious shoot 
induction (organogenesis) as the regeneration pathway. However, 
many important citrus cultivars are commercially seedless (zero to 
fi ve seeds per fruit) or totally seedless, which makes it diffi cult or 
impossible to obtain adequate nucellar seedling explants for 
 Agrobacterium -mediated transformation. Other limitations of 
 Agrobacterium -mediated citrus transformation include inadequate 
susceptibility to  Agrobacterium  infection and ineffi cient plant 
regeneration via adventitious shoot-bud induction in certain com-
mercially important cultivars, particularly mandarins. Finally, there 
are signifi cant Intellectual Property issues with the use of the com-
mon  Agrobacterium -mediated method. 

   Direct delivery of free DNA molecules into plant protoplasts 
has been well documented [ 153 ]. Several factors could affect 
the effi ciency of free DNA delivery systems, including plasmid 

1.3  Citrus 
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Embryogenesis
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DNA concentration and form, carrier DNA, and treatment and 
pretreatment buffers. The delivery of foreign genes into proto-
plasts is usually carried out by electroporation [ 154 ] or treatment 
with  polyethylene glycol   ( PEG  ) [ 130 ,  155 ] (Fig.  2 ). The PEG-
mediated transformation is simple and effi cient, allowing a 

  Fig. 2     GFP   selection in protoplast/GFP transformation system. ( a ) protoplasts expressing GFP 24 h after 
transformation, ( b ) protoplast derived micro-calli (transformed and non-transformed) under  blue light , 
( c ) protoplast derived micro-calli (transformed and non-transformed) under  white light , ( d ) transgenic ( green ) 
and non- transgenic ( red )  somatic embryo  s under  blue light , ( e ) transgenic ( green ) and non-transgenic ( yel-
low ) somatic embryos under  white light , ( f ) transgenic ( green ) and non-transgenic ( red ) somatic embryos 
under  blue light , ( g ) enlarged transgenic embryo expressing GFP, ( h ,  i ) transgenic somatic embryo derived 
shoots, ( j ) non- transformed shoot, ( k ) micrografting of transgenic shoot onto non-transgenic rootstock, ( l ) GFP 
expression in root       
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simultaneous processing of many samples, and yields a transformed 
cell population with high survival and division rates [ 156 ]. The 
method utilizes inexpensive supplies and equipment, and helps to 
overcome an obstacle of host range limitations of   Agrobacterium   -
mediated  transformation  , since DNA uptake by protoplasts is pro-
moted by chemical treatment with PEG. Plant recovery is usually 
through the  somatic embryo  genesis pathway rather than through 
organogenesis. Moreover, the transformation method of choice for 
plant protoplasts is dependent on a number of factors, including 
effi ciency of DNA delivery, toxicity to the cells, ease of use, and 
cost and availability of materials. In  protoplast transformation   sys-
tems, plating and selection methods are important considerations 
in the development of stable transgenic plants. The ideal system 
should permit easy identifi cation of transformants without the 
complications of multiple recovery of single transformation events 
or recovery of “false-positives” due to inadequate selection pres-
sure. Therefore using the  GFP   gene ( green fl uorescent protein  ) as 
a selectable marker essentially eliminates the problem of multiple 
recoveries of single events. Under optimal conditions, up to 50 
transformed embryos can be recovered per million input of proto-
plasts (transformation frequency = 0.005 %). The low toxicity, 
 simplicity, high effi ciency, and low cost of the PEG transformation 
method make it an attractive alternative to electroporation as the 
method of choice for stable transformation of plant protoplasts.

    PEG  -mediated gene transfer to citrus protoplasts has proven 
to be effi cient, reliable, inexpensive, and a simple method that 
works well when using relatively young embryogenic cultures with 
good  totipotency   [ 129 ,  132 ,  157 ]. In this system, large popula-
tions of protoplasts are isolated from embryogenic suspension cul-
tures to increase the likelihood of obtaining an adequate number 
of stable independent transformation events. Regeneration of 
transgenic plants via  somatic embryo  genesis is possible under suit-
able in vitro conditions through selection at an early stage of devel-
opment (usually the pro-embryo stage) using  GFP   gene as a 
reporter gene. However, the tissue-culture response may vary 
depending on the plant genotype, handling and the condition of 
the suspension cells. A major requirement for  protoplast transfor-
mation   system is the preparation of viable protoplasts. We have 
successfully used the procedure described below for gene transfer 
to citrus for several cultivars, including “Hamlin” and “Valencia” 
sweet oranges, and “W. Murcott” tangor [ 9 ,  10 ,  129 ,  132 ].  Cell 
suspension  s provide an unlimited source of rapidly dividing pro-
toplasts that can be obtained after 12–18 h incubation in enzyme 
solution and show a transient expression of introduced genes 
within 24 h after transformation. This protocol can be adapted to 
a wide range of plant species and tissue sources used for protoplast 
preparation.  
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   Genetic transformation using embryogenic  cell suspension   cultures 
offers a practical alternative to the transformation of epicotyl 
explants obtained from germinating seedlings, since almost all 
polyembryonic cultivars can be introduced in vitro as embryogenic 
cell suspension cultures [ 158 ]. Amenability of cell suspension cul-
tures to transformation using   Agrobacterium    would allow the 
transformation of any cultivar that can be introduced as  embryo-
genic cell mass   es  , including specialty seedless sweet oranges or 
“Satsuma” mandarins and other diffi cult-to-transform cultivars of 
the mandarin or lemon group. Our protocol is based on a hygro-
mycin selection regime, as it was observed that kanamycin selec-
tion resulted in erratic and low transgenic embryo production. 
Ineffi cient kanamycin selection was either due to cells overcoming 
the effects of the antibiotic or to the protection of cells from 
kanamycin by the surrounding cells [ 159 ,  160 ]. Successful callus 
transformation of sweet oranges and mandarins can be accom-
plished in a selected medium containing 25 mg/L of hygromycin 
B. Most material, stocks, and medium are similar to the  protoplast 
transformation   process.   Agrobacterium  mediated transformation   
relies on an active  Agrobacterium  culture instead of plasmid 
DNA as in the protoplast transformation process. Additional mate-
rials required in this protocol are indicated in the protocol section. 
A description of the transformation process can also be found in 
Dutt and Grosser [ 158 ].    

2    Materials 

       1.    Fluorescence microscope with FITC fi lters: Zeiss SV11 epifl u-
orescence stereomicroscope equipped with a 100 W mercury 
 bulb   light and a fl uorescein-5-isothiocyanate/ GFP   (FITC/
GFP) fi lter set with a 480 nm excitation fi lter and a 515 nm 
long-pass emission fi lter (Chroma Technology Corp., 
Brattleboro, VT, USA).   

   2.    Temperature-controlled rotary shaker at 28 ± 2 °C.   
   3.    Laminar fl ow cabinet.   
   4.    pH meter.   
   5.    Autoclave.   
   6.    Sterilized paper plates.   
   7.    Syringe fi lter units, 0.2 μm pore size.   
   8.    Centrifuge with 100–400 ×  g  capability.   
   9.    40 mL Pyrex tubes.   
   10.    15 mL Pyrex capped tube.   
   11.    15-mL round-bottom screw-cap centrifuge tubes.   

1.3.2   Agrobacterium  - 
Mediated  Transformation 
of Embryogenic Cell 
Suspension Cultures

2.1  Equipment
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   12.    60 × 15 mm petri dishes.   
   13.    100 × 20 mm petri dishes.   
   14.    100  ×  15 mm petri dishes.      

       1.    Sterilization solution: 20 % (v/v) commercial bleach solution.   
   2.    BH3 macronutrient stock: 150 g/L KCl, 37 g/L MgSO 4 ·7H 2 O, 

15 g/L KH 2 PO 4 , 2 g/L K 2 HPO 4 ; dissolve in H 2 O and store 
at 4 °C.   

   3.    Murashige and Tucker (MT) macronutrient stock [ 101 ]: 
95 g/L KNO 3 , 82.5 g/L NH 4 NO 3 , 18.5 g/L MgSO 4 ·7H 2 O, 
7.5 g/L KH 2 PO 4 , 1 g/L K 2 HPO 4 ; dissolve in H 2 O and store 
at 4 °C.   

   4.    MT micronutrient stock: 0.62 g/L H 3 BO 3 , 1.68 g/L 
MnSO 4 ·H 2 O, 0.86 g/L ZnSO 4 ·7H 2 O, 0.083 g/L KI, 
0.025 g/L Na 2 MoO 4 ·2H 2 O, 0.0025 g/L CuSO 4 ·5H 2 O, 
0.0025 g/L CoCl 2 ·6H 2 O; dissolve in H 2 O and store at 4 °C.   

   5.    MT vitamin stock: 10 g/L myoinositol, 1 g/L  thiamine  -HCl, 
1 g/L pyridoxine-HCl, 0.5 g/L  nicotinic acid  , 0.2 g/L  gly-
cine  ; dissolve in H 2 O and store at 4 °C.   

   6.    MT calcium stock: 29.33 g/L CaCl 2  · 2H 2 O; dissolve in H 2 O 
and store at 4 °C.   

   7.    MT iron stock: 7.45 g/L Na 2 EDTA, 5.57 g/L FeSO 4  · 7H 2 O; 
dissolve in H 2 O and store at 4 °C.   

   8.    Kinetin (KIN) stock solution: 1 mg/mL; dissolve the powder 
in a few drops of 1 N HCl; bring to fi nal volume with H 2 O and 
store at 4 °C.   

   9.    BH3 multivitamin stock A: 1 g/L  ascorbic acid  , 0.5 g/L cal-
cium pantothenate, 0.5 g/L choline chloride, 0.2 g/L folic 
acid, 0.1 g/L ribofl avin, 0.01 g/L p-aminobenzoic acid, 
0.01 g/L biotin; dissolve in H 2 O and store at −20 °C.   

   10.    BH3 multivitamin stock B: 0.01 g/L retinol dissolved in a few 
drops of alcohol, 0.01 g/L cholecalciferol dissolved in a few 
drops of ethanol, 0.02 g/L vitamin B12; dissolve in H 2 O and 
store at −20 °C.   

   11.    BH3 KI stock: 0.83 g/L KI; dissolve in H 2 O and store at 4 °C.   
   12.    BH3 sugar and sugar alcohol stock: 25 g/L fructose, 25 g/L 

ribose, 25 g/L xylose, 25 g/L mannose, 25 g/L rhamnose, 
25 g/L cellobiose, 25 g/L galactose, 25 g/L  mannitol  ; dis-
solve in H 2 O and store at −20 °C.   

   13.    BH3 organic acid stock: 2 g/L fumaric acid, 2 g/L citric acid, 
2 g/L malic acid, 1 g/L pyruvic acid; dissolve in H 2 O and 
store at −20 °C.      

2.2  Medium Stock 
Solutions
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       1.    Coumarin (stock solution, 1.46 mg/mL): Dissolve the powder 
in warm H 2 O; store at 4 °C.   

   2.    α-Naphthalene acetic acid (NAA; stock solution, 1 mg/10 mL): 
Dissolve the powder in a few drops of 5 M NaOH, bring to 
fi nal volume with H 2 O and store at 4 °C.   

   3.    2,4-Dichlorophenoxyacetic acid (2,4-D; stock solution, 
1 mg/10 mL): Dissolve the powder in a few drops of 95 % 
(v/v) ethanol, bring to fi nal volume with H 2 O; store at 4 °C.   

   4.    6-Benzylaminopurine (BAP; stock solution, 1 mg/mL): 
Dissolve the powder in a few drops of 5 M NaOH, bring to 
fi nal volume with H 2 O; store at 4 °C.   

   5.     Gibberellic acid   ( GA 3   ; stock solution, 1 mg/mL): Dissolve the 
powder in a few drops of 95 % (v/v) ethanol, bring to fi nal 
volume with H 2 O, fi lter-sterilize; store in small aliquots at 
4 °C; add to the medium after autoclaving and cooling the 
medium to 55 °C in a water bath.      

   The enzyme solution is fi lter sterilized.

    1.     Calcium chloride   (CaCl 2 ·2H 2 O stock solution, 0.98 M): 
Dissolve 14.4 g in 100 mL H 2 O and store at −20 °C.   

   2.    Monosodium phosphate (NaH 2 PO 4  stock solution, 37 mM): 
Dissolve 0.44 g in 100 mL H 2 O and store at −20 °C.   

   3.    2 (N-morpholino) ethanesulfonic acid (MES stock solution, 
0.246 M): Dissolve 4.8 g in 100 mL H 2 O and store at −20 °C.   

   4.    Enzyme solution: 0.7 M  mannitol  , 24 mM CaCl 2 , 6.15 mM 
MES buffer, 0.92 mM NaH 2  PO 4 , 2 % (w/v) Cellulase 
Onozuka RS (Yakult Honsha), 2 % (w/v) Macerozyme R-10 
(Yakult Honsha), pH 5.6. To prepare 40 mL of enzyme solu-
tion, dissolve 0.8 g Cellulase Onozuka RS, 0.8 g Macerozyme 
R-10 and 5.12 g mannitol in 20 mL H 2 O and add 1 mL of 
CaCl 2  · 2H 2 O, NaH 2 PO4 and MES stock solutions; bring vol-
ume to 40 mL with H 2 O, pH to 5.6 using KOH, fi lter-steril-
ize; store at 4 °C for up to 3 weeks.      

       1.    CPW salts stock solution 1: 25 g/L MgSO 4 ·7H 2 O, 10 g/L 
KNO 3 , 2.72 g/L KH 2 PO 4 , 0.016 g/L KI, 0.025 ng/L 
CuSO 4 ·5H 2 O; dissolve in H 2 O and store at −20 °C.   

   2.    CPW salts stock solution 2: 15 g/L CaCl 2 ·2H 2 O; dissolve in 
H 2 O and store at −20 °C.   

   3.    13 % CPW (13 %, w/v,  mannitol   solution with CPW salts): 
Dissolve 13 g mannitol in 80 mL H 2 O, add 1 mL each of CPW 
salts stock solutions 1 and 2; bring volume to 100 mL with 
H 2 O, pH to 5.8, fi lter-sterilize; store at room temperature.   

2.3  Plant Growth 
Regulator Stocks

2.4  Enzyme Stock 
Solutions

2.5  CPW Solution
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   4.    25 % CPW (25 %, w/v,  sucrose   solution with CPW salts): 
Dissolve 25 g sucrose in 80 mL H 2 O, add 1 mL each of CPW 
salts stock solutions 1 and 2; bring to 100 mL with H 2 O, pH 
to 5.8, fi lter-sterilize and store at room temperature.      

       1.     PEG   8000 MW (stock solution, 50 %): Place the bottle of PEG 
in a water bath at 80 °C until it melts completely, take 250 mL 
and mix it with 250 mL H 2 O, add 4 g of resin AG501-X8 
(Bio- Rad), stir for 30 min, fi lter out the resin through a layer 
of cotton and allow to stand for several hours before use; store 
at 4 °C.   

   2.     Polyethylene glycol   ( PEG  ) working solution: 40 % (w/v) PEG, 
0.3 M glucose, 66 mM CaCl 2 ·2H 2 O, pH 6.0. To prepare 
100 mL of PEG solution, dissolve 0.97 g CaCl 2 ·2H 2 O and 
5.41 g glucose in 10 mL H 2 O, add 80 mL of PEG stock solu-
tion (50 %) and adjust the volume to 100 mL with H 2 O, pH 6; 
fi lter-sterilize and store at 4 °C . Check the pH every 2–3 
weeks, since this solution acidifi es with time.   

   3.    Elution solutions for  PEG   removal. Solution A: 0.4 M glucose, 
66 mM CaCl 2 ·2H 2 O, 10 %  dimethyl sulfoxide   ( DMSO  ), 
pH 6.0. Solution B: 0.3 M  glycine   adjusted with NaOH pellets 
to pH 10.5. Filter-sterilize both solutions; store at room 
 temperature and mix together (9:1, v:v) immediately prior to 
use to avoid precipitation.      

       1.    Any suitable binary vector containing the hygromycin select-
able marker gene for selection in plants. We have had good 
success with the pCAMBIA 1300 series of plant transforma-
tion vectors (  www.cambia.org    ).   

   2.      Agrobacterium     tumefaciens  EHA105 stock containing the 
appropriate binary vector plasmid (stored in 20 %  glycerol   
at −80 °C).   

   3.    Solid bacterial growth medium: Yeast Extract Peptone (YEP) 
medium (10 g/L peptone, 10 g/L yeast extract, 5 g/L NaCl, 
pH 7.0) supplemented with 15 g/L TC  agar  , 20 mg/L  rifam-
picin  , and 100 mg/L kanamycin.   

   4.    Liquid bacterial growth medium: YEP medium supplemented 
with 20 mg/L  rifampicin   and 100 mg/L kanamycin.      

       1.     Rifampicin  : 20 mg of antibiotic dissolved in 1 mL of  DMSO  .   
   2.    Acetosyringone: 0.196 mg dissolved in 1 mL of  DMSO   to 

prepare a 100 mM concentration stock solution.   
   3.    Hygromycin sulfate: 50 mg of antibiotic dissolved in 1 mL of 

water. The solution sterilized by fi ltration using a 0.2 μm 
membrane.   

2.6  Protoplast 
Transformation 
Solutions

2.7   Agrobacterium   
Culture Medium

2.8  Suspension Cell 
Transformation Stock 
Solutions

Somatic Embryogenesis in Citrus

http://www.cambia.org/


310

   4.    Timentin and  cefotaxime  : 400 mg of each antibiotic dissolved 
in 1 mL of water. The solution sterilized by fi ltration using a 
0.2 μm membrane.      

       1.    EME 0.15 M semisolid medium: 20 mL/L MT macronutrient 
stock, 10 mL/L MT micronutrient stock, 10 mL/L MT vita-
min stock, 15 mL/L MT calcium stock, 5 mL/L MT iron 
stock, 50 g/L  sucrose  , 0.5 g/L  malt extract  , 8 g/L  agar  , 
pH 5.8; autoclave medium and pour into 100 × 20 mm petri 
dishes, 35 mL per dish.   

   2.    DOG semisolid medium: Same as EME 0.15 M semisolid 
medium plus 5 mg/L kinetin (5 mL kinetin stock solution); 
autoclave medium and pour into 100 × 20 mm petri dishes, 
35 mL per dish.   

   3.    H+H semisolid medium: 10 mL/L MT macronutrient stock, 
5 mL/L BH3 macronutrient stock, 10 mL/L MT micronu-
trient stock, 10 mL/L MT vitamin stock, 15 mL/L MT cal-
cium stock, 5 mL/L MT iron stock, 50 g/L  sucrose  , 0.5 g/L 
 malt extract  , 1.55 g/L  glutamine  , 8 g/L  agar  , pH 5.8; auto-
clave medium and pour into 100 × 20 mm petri dishes, 35 mL 
per dish.      

       1.    H+H liquid medium: 10 mL/L MT macronutrient stock, 
5 mL/L BH3 macronutrient stock, 10 mL/L MT micronutri-
ent stock, 10 mL/L MT vitamin stock, 15 mL/L MT calcium 
stock, 5 mL/L MT iron stock, 35 g/L  sucrose  , 0.5 g/L  malt 
extract  , 1.55 g/L  glutamine  , pH 5.8; pour 500 mL aliquots 
into 1000 mL glass Erlenmeyer fl asks, autoclave and store at 
room temperature.      

   All protoplast liquid media are fi lter sterilized.

    1.    BH3 0.6 M liquid medium: 10 mL/L BH3 macronutrient 
stock, 10 mL/L MT micronutrient stock, 10 mL/L MT vita-
min stock, 15 mL/L MT calcium stock, 5 mL/L MT iron 
stock, 2 mL/L BH3 multivitamin stock A, 1 mL/L BH3 mul-
tivitamin stock B, 1 mL/L BH3 KI stock, 10 mL/L BH3 
sugar and sugar alcohol stock, 20 mL/L BH3 organic acid 
stock, 20 mL/L  coconut water  , 82 g/L  mannitol  , 51.3 g/L 
 sucrose  , 3.1 g/L  glutamine  , 1 g/L  malt extract  , 0.25 g/L 
casein enzyme hydrolysate, pH 5.8; fi lter-sterilize and store at 
room temperature.   

   2.    EME 0.6 M liquid medium: 20 mL/L MT macronutrient 
stock, 10 mL/L MT micronutrient stock, 10 mL/L MT vita-
min stock, 15 mL/L MT calcium stock, 5 mL/L MT iron 
stock, 205.4 g/L  sucrose  , 0.5 g/L  malt extract  , pH 5.8; fi lter- 
sterilize and store at room temperature.      

2.9  Callus- 
Induction Media

2.10  Cell Suspension 
Maintenance Medium

2.11  Protoplast 
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       1.    EME 0.15 M liquid medium: 20 mL/L MT macronutrient 
stock, 10 mL/L MT micronutrient stock, 10 mL/L MT vita-
min stock, 15 mL/L MT calcium stock, 5 mL/L MT iron 
stock, 50 g/L  sucrose  , 0.5 g/L  malt extract  , pH 5.8; fi lter- 
sterilize and store at room temperature.   

   2.    EME–malt 0.15 M liquid medium: 20 mL/L MT macronutri-
ent stock, 10 mL/L MT micronutrient stock, 10 mL/L MT 
vitamin stock, 15 mL/L MT calcium stock, 5 mL/L MT iron 
stock, 50 g/L  maltose  , 0.5 g/L  malt extract  , pH 5.8; fi lter- 
sterilize and store at room temperature.   

   3.    EME–malt 0.15 M semisolid medium: 20 mL/L MT macro-
nutrient stock, 10 mL/L MT micronutrient stock, 10 mL/L 
MT vitamin stock, 15 mL/L MT calcium stock, 5 mL/L MT 
iron stock, 50 g/L  maltose  , 0.5 g/L  malt extract  , 8 g/L  agar  , 
pH 5.8; autoclave medium and pour into 100 × 20 mm petri 
dishes, 35 mL per dish.   

   4.    EME 1500 semisolid medium: 20 mL/L MT macronutrient 
stock, 10 mL/L MT micronutrient stock, 10 mL/L MT 
 vitamin stock, 15 mL/L MT calcium stock, 5 mL/L MT iron 
stock, 50 g/L  sucrose  , 1.5 g/L  malt extract  , 8 g/L  agar  , 
pH 5.8; autoclave medium and pour into 100 × 20 mm petri 
dishes, 35 mL per dish.   

   5.    B+ semisolid medium: 20 mL/L MT macronutrient stock, 
10 mL/L MT micronutrient stock, 10 mL/L MT vitamin 
stock, 15 mL/L MT calcium stock, 5 mL/L MT iron stock, 
25 g/L  sucrose  , 20 mL/L  coconut water  , 14.6 mg/L couma-
rin (10 mL coumarin stock), 0.02 mg/L NAA (200 μl NAA 
stock), 1 mg/L  GA 3    (add 1 mL GA 3  stock after medium is 
autoclaved and cooled to 55 °C in water bath), 8 g/L  agar  , 
pH 5.8; autoclave medium and pour into 100 × 20 mm petri 
dishes, 35 mL per dish.   

   6.    DBA3 semisolid medium: 20 mL/L MT macronutrient stock, 
10 mL/L MT micronutrient stock, 10 mL/L MT vitamin 
stock, 15 mL/L MT calcium stock, 5 mL/L MT iron stock, 
25 g/L  sucrose  , 1.5 g/L  malt extract  , 20 mL/L  coconut 
water  , 0.01 mg/L 2,4-D (100 μl 2,4-D stock), 3 mg/L BAP 
(3 mL BAP stock); 8 g/L  agar  , pH 5.8; autoclave medium and 
pour into 100 × 20 mm petri dishes, 35 mL per dish.   

   7.    RMAN medium (Root induction and propagation): 10 mL/L 
MT macronutrient stock, 5 mL/L MT micronutrient stock, 
5 mL/L MT vitamin stock, 15 mL/L MT calcium stock, 
5 mL/L MT iron stock, 25 g/L  sucrose  , 0.5 g/L  activated 
charcoal  , 8 g/L  agar  , 0.02 mg/L NAA (200 μl NAA stock 
solution), pH 5.8; autoclave medium and pour into sterile 
Magenta GA-7 boxes, 80 mL per box.      

2.12  Protoplast 
Culture and Plant 
Regeneration Media
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       1.    EME– sucrose   0.15 M semisolid medium supplemented with 
Acetosyringone: 20 mL/L MT macronutrient stock, 10 mL/L 
MT micronutrient stock, 10 mL/L MT vitamin stock, 
15 mL/L MT calcium stock, 5 mL/L MT iron stock, 50 g/L 
sucrose, 0.5 g/L  malt extract  , 8 g/L  agar  , pH 5.8; autoclave 
medium, add 1 mL/L acetosyringone stock solution to par-
tially cooled medium and pour into 100 × 20 mm petri dishes, 
35 mL per dish.   

   2.    EME– sucrose   0.15 M liquid medium: 20 mL/L MT macro-
nutrient stock, 10 mL/L MT micronutrient stock, 10 mL/L 
MT vitamin stock, 15 mL/L MT calcium stock, 5 mL/L MT 
iron stock, 50 g/L sucrose, 0.5 g/L  malt extract  . Pour into 
250 mL bottles before autoclaving.   

   3.    EME– maltose   0.15 M semisolid medium supplemented with 
antibiotics: 20 mL/L MT macronutrient stock, 10 mL/L MT 
micronutrient stock, 10 mL/L MT vitamin stock, 15 mL/L 
MT calcium stock, 5 mL/L MT iron stock, 50 g/L maltose, 
0.5 g/L  malt extract  , 8 g/L  agar  , pH 5.8; autoclave medium, 
add 1 mL/L timentin, 1 mL/L  cefotaxime   and 500 mg/L 
hygromycin stock solutions to partially cooled medium, and 
pour into 100 × 20 mm petri dishes, 35 mL per dish.   

   4.    EME 1500 semisolid medium supplemented with antibiotics: 
20 mL/L MT macronutrient stock, 10 mL/L MT micronutri-
ent stock, 10 mL/L MT vitamin stock, 15 mL/L MT calcium 
stock, 5 mL/L MT iron stock, 50 g/L  sucrose  , 1.5 g/L  malt 
extract  , 8 g/L  agar  , pH 5.8; autoclave medium, add 0.5 mL/L 
timentin, 0.5 mL/L  cefotaxime   and 500 mg/L hygromycin 
stock solutions to partially cooled medium, and pour into 
100 × 20 mm Petri dishes, 35 mL per dish.   

   5.    B+ semisolid medium supplemented with antibiotics: 20 mL/L 
MT macronutrient stock, 10 mL/L MT micronutrient stock, 
10 mL/L MT vitamin stock, 15 mL/L MT calcium stock, 
5 mL/L MT iron stock, 25 g/L  sucrose  , 20 mL/L  coconut 
water  , 14.6 mg/L coumarin (10 mL coumarin stock), 
0.02 mg/L NAA (200 μl NAA stock), 1 mg/L  GA 3    (add 1 mL 
GA 3  stock solution after medium is autoclaved and cooled to 
55 °C in water bath), 8 g/L  agar  , pH 5.8; autoclave medium, 
add 0.5 mL/L timentin stock solution to partially cooled 
medium and pour into 100 × 20 mm petri dishes, 35 mL per 
dish.   

   6.    DBA3 semisolid medium supplemented with antibiotics: 
20 mL/L MT macronutrient stock, 10 mL/L MT micronutri-
ent stock, 10 mL/L MT vitamin stock, 15 mL/L MT calcium 
stock, 5 mL/L MT iron stock, 25 g/L  sucrose  , 1.5 g/L  malt 
extract  , 20 mL/L  coconut water  , 0.01 mg/L 2,4-D (100 μl 
2,4-D stock solution), 3 mg/L BAP (3 mL BAP stock solu-

2.13  Suspension 
Culture 
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tion); 8 g/L  agar  , pH 5.8; autoclave medium, add 0.5 mL/L 
timentin stock solution to partially cooled medium and pour 
into 100 × 20 mm petri dishes, 35 mL per dish.   

   7.    RMAN medium supplemented with antibiotics: 10 mL/L MT 
macronutrient stock, 5 mL/L MT micronutrient stock, 
5 mL/L MT vitamin stock, 15 mL/L MT calcium stock, 
5 mL/L MT iron stock, 25 g/L  sucrose  , 0.5 g/L  activated 
charcoal  , 8 g/L  agar  , 0.02 mg/L NAA (200 μl NAA stock 
solution), pH 5.8; autoclave medium, add 0.5 mL/L timentin 
stock solution to partially cooled medium and pour into sterile 
Magenta GA-7 boxes, 80 mL per box.       

3    Methods 

       1.    Immerse harvested  immature   fruit in sterilization solution in a 
beaker for 30 min.   

   2.    Using sterile tongs, place fruit on sterilized paper plates in a 
laminar fl ow hood.   

   3.    Using a sterile surgical blade, make an equatorial cut, 1–2 cm 
deep, and open the fruit.   

   4.    With sterile forceps, extract ovules and place them onto callus- 
induction medium (EME 0.15 M, H+H or DOG).   

   5.    Incubate extracted ovules in the dark at 28 ± 2 °C and transfer 
them every 3–4 weeks to new callus-induction medium until 
embryogenic (yellow and friable) callus emerges from the 
ovules.   

   6.    To maintain long-term cultures, transfer embryogenic undif-
ferentiated calli ( see   Note 1 ) onto new medium every 4–6 
weeks and incubate under the same conditions.   

   7.    To initiate  cell suspension  s from embryogenic undifferentiated 
 nucellus  -derived callus, take approx. 2 g of calli from callus-
induction medium and transfer to 125 mL Erlenmeyer fl asks, 
each containing 20 mL of H+H liquid medium.   

   8.    Shake the  cell suspension   cultures on a rotary shaker at 125 rpm 
under a 16 h photoperiod (70 μmol m −2  s −1 ) at 28 ± 2 °C.   

   9.    After 1 week, add 10 mL of new H+H liquid medium to 
Erlenmeyer fl asks and return back to the shaker.   

   10.    After one more week, add 20 mL of new H+H liquid medium 
to Erlenmeyer fl asks and return back to the shaker.   

   11.    Subculture established embryogenic  cell suspension   cultures 
every 2 weeks by removing 20 mL from the culture and replac-
ing with 20 mL fresh aliquots of H+H liquid medium; shake at 
125 rpm and incubate under the same conditions.      

3.1  Protoplast 
Transformation [ 9 , 
 129 ]: Initiation 
and Maintenance 
of Embryogenic 
(Callus and Cell 
Suspension) Cultures
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       1.    Transfer 1–2 g of friable callus into a 60 × 15 mm petri dish.  If 
  using a suspension as a source for embryogenic cells (s ee   Note 2 ) 
transfer approx. 2 mL of suspension ( see   Note 3 ) with a wide-
mouth pipette.   

   2.    Drain off the liquid medium using a Pasteur pipette.   
   3.    Resuspend the cells in a mixture of 2.5 mL 0.6 M BH3 liquid 

medium and 1.5 mL enzyme solution ( see   Note 4 ).   
   4.    Seal petri dishes with Parafi lm and incubate overnight (15–20 h) 

at 28 °C on a rotary shaker at 25–30 rpm in the dark.      

        1.    Following overnight incubation, pass  enzymatic   preparations 
through a sterile 45 μm nylon mesh sieve ( see   Note 5 ) to 
remove undigested tissues and other cellular debris; collect the 
fi ltrate in 40 mL Pyrex tubes.   

   2.    Transfer the protoplast-containing fi ltrate ( see   Note 6 ) to a 
15 mL calibrated screw-cap centrifuge tube.   

   3.    Centrifuge at 900 rpm for 10 min.   
   4.    Remove the supernatant with a Pasteur pipette and gently 

resuspend the protoplast pellet in 5 mL of 25 % CPW 
solution.   

   5.    Slowly pipette 2 mL of 13 % CPW solution directly on top of 
the  sucrose   layer. Avoid mixing the two layers.   

   6.    Centrifuge at 900 rpm for 10 min.   
   7.    Only viable protoplasts ( see   Note 7 ) form a band at the inter-

face between the  sucrose   and the  mannitol   layers.   
   8.    Remove the protoplasts ( see   Note 8 ) from this interface with a 

Pasteur pipette and resuspend them in 10 mL of BH3 0.6 M 
liquid medium (using a new screw-cap centrifuge tube).   

   9.    Centrifuge at 900 rpm for 10 min.   
   10.    Remove the supernatant and gently resuspend the pellet in 

10 mL of BH3 0.6 M medium ( see   Note 9 ).   
   11.    Centrifuge at 900 rpm for 10 min.   
   12.    Remove the supernatant and gently resuspend the pellet in 

10 mL of BH3 0.6 M medium.   
   13.    Centrifuge at 900 rpm for 10 min.   
   14.    Remove the supernatant and resuspend the pellet into 5 mL 

BH3 0.6 M.   
   15.    Determine protoplast density using a hemocytometer 

( see   Note 10 ).   
   16.    Centrifuge at 900 rpm for 10 min.   
   17.    Remove the supernatant and resuspend the pellet into BH3 

0.6 M to reach 4 × 10 6  protoplasts/mL.      

3.2  Protoplast 
Transformation: 
Preparation 
and Enzymatic 
Incubation of Cultures 
from Embryogenic 
Callus

3.3  Protoplast 
Transformation: 
Protoplast Isolation 
and Purifi cation 
[ 9 ,  129 ]
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       1.    In a 15 mL round-bottom screw- cap   centrifuge tubes 
( see   Note 12 ) add 0.5 mL of protoplast suspension (2 × 10 6  
protoplasts/mL).   

   2.    Add 30–40 μg plasmid DNA ( see   Note 13 ) and gently mix 
well by gentle agitation.   

   3.    Immediately add 0.5 mL of  PEG   solution directly into the 
center of the tube to give the desired fi nal PEG concentration 
(20 %) ( see   Note 14 ), allowing the PEG to mix with the pro-
toplast suspension by gentle agitation ( see   Note 15 ).   

   4.    After 25–30 min, add 0.5 mL of A + B solution (9:1, v:v) into 
each transformation tube, but this time gently and slowly onto 
the inside edge of the tube, trying not to agitate the fragile 
transforming protoplasts.   

   5.    After another incubation period of 25–30 min, gently add 
1 mL of BH3 0.6 M medium onto the inside edge of the tube, 
again trying not to disturb the protoplasts.   

   6.    After incubating for an additional 10 min, dilute the protoplast 
suspension with four 1-mL aliquots of BH3 0.6 M at 5 min 
intervals onto the inside edge of the tube, again trying not to 
disturb the protoplasts.   

   7.    Cap and seal the tube with Parafi lm.   
   8.    Centrifuge at 700 rpm for 5 min.   
   9.    Carefully, remove supernatant, add 2 mL BH3 0.6 M medium 

and gently resuspend the protoplast.   
   10.    Centrifuge at 700 rpm for 5 min.   
   11.    Carefully, remove supernatant, add 2 mL BH3 0.6 M medium 

and gently resuspend the protoplast ( see   Note 16 ).   
   12.    Repeat  steps 10  and  11  one more time, carefully avoiding the 

loss of protoplasts.   
   13.    Finally, add 1–1.5 mL of a 1:1 (v:v) mixture of BH3 0.6 M and 

EME 0.6 M liquid media to each tube, gently resuspend the 
protoplast.   

   14.    Transfer the suspended protoplast into 60 × 15 mm petri dishes 
and spread into a thin layer by gently swirling the petri dishes 
( see   Note 17 ).   

   15.    Seal the dishes with Parafi lm and culture in the dark at 28 ± 2 °C 
for 4–6 weeks ( see   Note 18 ).   

   16.    Check   GFP    expression 48 h after transformation ( see   Note 19 ) 
using Zeiss SV11 epifl uorescence stereomicroscope and return 
the dishes back in the dark at 28 ± 2 °C (Fig.  2 ).      

3.4  Protoplast 
Transformation: 
Polyethylene Glycol 
( PEG  )-Induced 
Protoplast 
Transformation [ 129 ] 
( see   Note 11 ) 
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       1.    After 4–6 weeks of incubation ( see   Note 20 ),  supplement 
  cultures of transformed protoplasts with new medium con-
taining reduced osmoticum. Accomplish this by adding 10–12 
drops of 1:1:1 (by volume) mixture of BH3 0.6 M, EME 
0.6 M, and EME 0.15 M liquid media.   

   2.    Incubate cultures for another 2 weeks in low light 
(20 μmol m −2  s −1  intensity) with a 16 h photoperiod at 28 ± 2 °C.   

   3.    Accomplish another reduction of osmoticum in the cultures by 
the following steps: add 2 mL of 1:2 (v:v) mixture of BH3 
0.6 M and EME-malt 0.15 M liquid media to each dish of 
transformed-treated protoplasts.   

   4.    Immediately pour the entire contents onto petri dishes with 
 agar  -solidifi ed EME-malt 0.15 M medium and swirl gently 
each dish in order to spread the liquid containing protoplast- 
derived colonies evenly over the entire semisolid agar surface.   

   5.    Incubate cultures with a 16 h photoperiod (70 μmol m −2  s −1  
intensity) at 28 ± 2 °C and, from this point until  somatic 
hybrid  s are planted in compost, keep the cultures under the 
same growth conditions.   

   6.    Transfer regenerated  somatic embryo  s as soon as they appear 
from callus colonies to new  agar  -solidifi ed EME-malt 0.15 M 
medium ( see   Note 21 ).   

   7.    After 3–4 weeks, move small  somatic embryo  s to semis solid 
EME 1500 medium for enlargement and  germination  .   

   8.    Move the germinated embryos to semisolid B+ medium for 
axis elongation.   

   9.    Dissect abnormal embryos that fail to germinate into large sec-
tions and place on DBA3 medium for shoot induction.   

   10.    Transfer all resulting  GFP   positive shoots into RMAN medium 
to induce rooting ( see   Note 22 ) (Fig.  2 ).   

   11.    Transfer rooted plants into peat based potting mixture in the 
greenhouse and cover with rigid clear plastic for 3–4 weeks 
maintaining high humidity.   

   12.    Remove the plastic covers following this period of 
acclimatization.   

   13.    After having an established plant with 3–4 leaves start molecu-
lar analysis ( see   Note 23 ).      

       1.    Obtain   Agrobacterium    cultures kept in a −80 °C freezer and 
thaw.   

   2.    Remove a loopful  of   bacteria from each thawed culture, and 
streak it on an individual YEP plate.   

   3.    Incubate plates at 28 °C for 2 days.   
   4.    Use a single bacterial colony and inoculate a fl ask of 25 mL 

liquid YEP medium containing appropriate antibiotics.   

3.5  Protoplast 
Transformation: 
Protoplast Culture 
and Plant 
Regeneration
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   5.    Culture for 24 h at 28 °C.   
   6.    Transfer a 3–5 mL overnight aliquot into fresh 25 mL liquid 

YEP medium containing appropriate antibiotics.   
   7.    Culture for 3–4 h at 26 °C.   
   8.    Centrifuge cells at 6000 rpm for 8 min at 25 °C.   
   9.    Resuspend cells in 25 mL liquid EME- sucrose   medium.   
   10.    Prior to use in transformation, measure the optical density 

(OD) of cultures and adjust to 0.3.
    11.    Transfer 20 mL of  cell suspension   cultures into a 100 × 15 mm 

petri dish. Drain off the liquid medium using a Pasteur pipette.   
   12.    Transfer bacterial solution into the suspension cells for 20 min 

with frequent and gentle agitation.   
   13.    Blot  cell suspension   cultures on sterile paper towels and trans-

fer onto semisolid EME- sucrose   medium supplemented with 
acetosyringone.   

   14.    Incubate in the dark at 25 °C for 5 days.          

       1.    Transfer putative  transgenic   cells onto EME +  maltose   
embryo production medium supplemented with appropri-
ate antibiotics.   

   2.    Maintain cultures either in the dark or under low light 
(20 μmol m −2  s −1  intensity) condition.   

   3.    After 4–6 weeks in this medium, transfer cells into fresh 
medium. At this stage add 2 mL of 1:2 (v:v) mixture of BH3 
0.6 M and EME-malt 0.15 M liquid media to each dish of 
transformed-suspension cells. Supplement the 1:2 mixture 
with 200 mg/L timentin and 25 mg/L hygromycin.   

   4.    Transfer regenerated  somatic embryo  s as soon as they appear 
from callus colonies to new  agar  -solidifi ed antibiotic supple-
mented EME- maltose   medium.   

   5.    After 3–4 weeks, move small  somatic embryo  s to semi solid 
EME 1500 antibiotic supplemented medium for enlargement 
and  germination  .   

   6.    Move the germinated embryos to semisolid antibiotic supple-
mented B+ medium for axis elongation.   

   7.    Dissect abnormal embryos that fail to germinate into large sec-
tions and place on antibiotic supplemented DBA3 medium for 
shoot induction.   

   8.    Transfer all resulting shoots into RMAN medium to induce 
rooting.   

   9.    Transfer rooted plants into a peat based potting mixture in the 
greenhouse and cover with rigid clear plastic for 3–4 weeks 
maintaining high humidity.   

3.7  Suspension Cell 
Culture 
Transformation: 
Selection of Putative 
Transformed Embryos 
and Regeneration 
of Transformed Plants
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   10.    Remove the plastic covers following this period of 
acclimatization.   

   11.    Established plants with 3–4 leaves can then be subjected to 
appropriate molecular analysis to determine gene insertion.       

4    Notes 

     1.    Since the nucellar callus has high embryogenic capacity, the 
best way to maintain the long-term callus in an undifferenti-
ated state is to visually select and subculture only white/yellow 
friable callus. Differentiated callus types and organized tissues 
should be discarded.   

   2.    Cultured embryogenic cells used for protoplast isolation 
should be in the log phase of growth. For consistent results, 
maintain uniform growth conditions for the  cell suspension  , 
because the physiological state of the suspension cells is an 
important factor infl uencing protoplast yield, quality and 
transformation effi ciency. Use 5–12 day-old suspensions from 
a 2 week subculture cycle, or 7–21 day-old callus from a 4 
week subculture cycle.   

   3.     Cell suspension   morphology differs from one genotype to 
another, thus we recommend using a volume of suspension 
that approximates 1 g fresh weight of callus.   

   4.    Best release of protoplasts is obtained with freshly prepared 
digestion enzymes, do not store enzyme solution more than 
2 weeks.   

   5.    Nylon mesh is sealed to a 4 cm long plastic cylindrical tube 
made from a plastic syringe. In order to make a similar piece of 
equipment, take a 30 mL plastic syringe, cut it at the 25 mL 
mark and keep the upper part with wings. Place a nylon mem-
brane on a preheated hot plate beneath the cylindrical tube 
and seal the two parts.   

   6.    Protoplasts are fragile, thus take extra care when fi ltering the 
protoplast/enzyme solution and later when centrifuging and 
resuspending protoplasts. When being transferred from one 
tube to another it is important that the protoplasts are drawn 
gently into the Pasteur pipette and dispensed slowly down the 
inside wall of the receiving centrifuge tube. Also, when resus-
pending pellets of protoplasts with different solutions, ensure 
a gentle technique of breaking clumps by introducing small 
bubbles of air with a Pasteur pipette, instead of sucking sus-
pensions in and out of the pipette. Mishandling of the proto-
plasts can affect their integrity and thereby affect the effi ciency 
of the procedure.   

   7.    If, after isolation and purifi cation, a good yield of protoplasts 
(5–10 × 10 6  protoplasts/incubation plate) is not obtained, it 
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may be necessary to vary both the enzyme concentration and 
length of incubation time to optimize digestion effi ciency.   

   8.    When recovering protoplasts from the  sucrose  - mannitol   gradi-
ent take as little of the sucrose as possible with the  protoplasts. 
Retention of too much sucrose makes it diffi cult to pellet the 
protoplasts at later steps.   

   9.    The washing step that removes the enzymes seems to have a 
greater bearing on the transformation effi ciency, because pro-
toplast samples that have not been washed very well always 
yield lower transformation, division, and survival rates. It is 
recommended to repeat  steps 10  and  11  in method  3.3  until 
a tight clean pellet is obtained.   

   10.    Determine the protoplast density using a hemocytometer. If 
the number of protoplasts exceeds 100 cells/square in the 
hemocytometer, dilute the protoplast suspension to obtain 
accurate counting.   

   11.    Perform  protoplast transformation   ( PEG  -induced method) 
within 1–2 h (preferably immediately) after protoplast isola-
tion, since protoplasts start to regenerate  cell wall  s as soon as 
they are rinsed from the enzyme solution.  Cell wall   regenera-
tion may hinder transformation.   

   12.    The number of tubes is determined by the total volume of 
mixed protoplasts at 4 × 10 6  protoplasts/mL.   

   13.    The DNA should be sterile (ethanol-precipitated and dissolved 
in sterile water). Do not incubate DNA for too long with the 
protoplasts because it may result in lower transformation effi -
ciency due to nuclease digestion. The DNA concentration 
should be at least 1 μg/μl, to minimize the added volume. 
In the co-transformation you will add two DNA plasmids one 
for the gene of interest and the other for the reporter gene. 
In the direct transformation you will add one DNA plasmid 
which contain both the gene of interest and the reporter gene 
in one construct.   

   14.    Using high  PEG   concentration could reduce the transforma-
tion frequency due to either PEG toxicity, lower fi nal DNA 
concentration, or a combination of these two factors. Use only 
freshly prepared and fi lter-sterilized PEG solution (do not 
autoclave). Check the pH periodically. The PEG should be 
added immediately after DNA addition as protoplasts are a rich 
source of nucleases (secretion and release by breakage) that 
may hydrolyze the DNA.   

   15.    The protoplast/ PEG   solution may be agitated gently every 
5 min for 30 min. A certain proportion of protoplasts will 
invariably break during and following the PEG treatment. The 
debris of dead cells is detrimental for a continued liquid culture 
of surviving protoplasts, thus try to handle the protoplast/
PEG culture very gently to reduce this phenomena.   
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   16.    Washing the protoplasts three times is very important to 
remove all the  PEG   and A:B solution.   

   17.    In each transforming dish, protoplasts are plated at a density of 
approx. 1–1.5 × 10 6  protoplasts/mL of culture medium. In 
order to retain viability and induce cell division, transformed 
protoplasts have to be plated in thin-layer culture at high cell 
density. In the case of citrus protoplasts, the best results are 
obtained when the cell density exceeds 1 × 10 6  protoplasts/mL 
of medium. If necessary, determine and adjust protoplast den-
sity using a hemocytometer.   

   18.    Check the cultures every week to evaluate the rate of colony 
development. In the event of fast colony development feeding 
can begin as early as 10–14 days after transformation as fol-
lows: add 6–8 drops of liquid 1:1:1 of BH3 0.6 M–EME 
0.6 M–EME 0.146 M medium to reduce the osmotic pressure 
and incubate the cultures again in the dark at 28 °C without 
agitation. Ten to 14 days later add another 6–8 drops of liquid 
1:1:1 of BH3 0.6 M–EME 0.6 M–EME 0.146 M medium. 
Depending on the quality of protoplast preparations, up to 
75 % of the protoplasts survive and 20–40 % of cells will 
undergo divisions during the fi rst 7–10 days of culture. After 
14 days of culture, the dividing cells should form colonies of 
2–16 cells.   

   19.    Optimal fl uorescence is observable only after 48 h, although 
some transformed protoplasts start exhibiting  GFP   fl uores-
cence 24 h after transformation.   

   20.    In the case of slow developing colonies, begin feeding 4–6 
weeks after transformation.   

   21.    Take care of those  GFP   positive embryos developing faster and 
separate them from the rest. Transfer them earlier for regenera-
tion to plants. Faster-developing embryos can rapidly produce 
healthy (normal) plants. It is recommended to place a few 
(6–8) embryos together onto cellulose acetate fi lter paper for 
rapid and normal development.   

   22.    In certain leaf pieces, the green fl uorescence can be entirely 
masked by the chlorophyll pigment. In case of doubts about 
the transgenic nature of regenerated plants, a small portion of 
leaves may be used to make protoplasts in 1 mL of enzyme 
solution and the protoplasts may directly be observed as they 
are released. To accelerate the propagation of the transgenic 
shoots, you can use any available grafting technique, either 
shoot tip grafting onto a greenhouse growing rootstock or 
in vitro micro-grafting on seedling rootstock [ 129 ].   

   23.    Molecular analysis (PCR, Southern and Western analysis) 
should confi rm the integration and expression of the transgene 
in the citrus genome.         
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