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Chapter 22

Search Databases and Statistics: Pitfalls and Best 
Practices in Phosphoproteomics

Jan C. Refsgaard, Stephanie Munk, and Lars J. Jensen

Abstract

Advances in mass spectrometric instrumentation in the past 15 years have resulted in an explosion in the 
raw data yield from typical phosphoproteomics workflows. This poses the challenge of confidently identify-
ing peptide sequences, localizing phosphosites to proteins and quantifying these from the vast amounts of 
raw data. This task is tackled by computational tools implementing algorithms that match the experimental 
data to databases, providing the user with lists for downstream analysis. Several platforms for such auto-
mated interpretation of mass spectrometric data have been developed, each having strengths and weak-
nesses that must be considered for the individual needs. These are reviewed in this chapter. Equally critical 
for generating highly confident output datasets is the application of sound statistical criteria to limit the 
inclusion of incorrect peptide identifications from database searches. Additionally, careful filtering and use 
of appropriate statistical tests on the output datasets affects the quality of all downstream analyses and 
interpretation of the data. Our considerations and general practices on these aspects of phosphoproteomics 
data processing are presented here.

Key words Phosphoproteomics, Database Search, False Discovery Rate, Statistics, Quantitation, 
MaxQuant

1 Introduction

Virtually all cellular processes are regulated by posttranslational 
modifications (PTMs). Phosphorylation is a crucial and highly 
dynamic PTM that contributes to cellular physiology and patho-
physiological developments [1]. Phosphoproteomics platforms are 
generating an ever increasing amount of data. For the experimental-
ist the challenge lies in transforming these vast amounts of informa-
tion in the acquired MS and MS/MS scans into quantified 
phosphorylation sites (phosphosites) mapped to identified proteins.

There are several approaches for assigning peptide sequences to 
ions sequenced by mass spectrometry (MS). De novo sequencing 
reads out the peptide sequence from the mass differences of the ions 
detected in the MS/MS scan [2, 3]. In the early years of the mass 
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spectrometry era, this daunting task was performed manually, but it 
is now automated. An alternative to de novo approaches is the spec-
tral library approach, which compares each MS/MS spectrum to a 
reference library of previously observed MS/MS spectra [4]. 
Another approach is the database search strategy, which implements 
theoretical spectra from an in-silico digested database of all proteins 
in the species of interest [5]. The acquired experimental spectra can 
be compared to those theoretical spectra to infer and score peptide 
spectral matches (PSMs). The latter approach is the most widely 
used in phosphoproteomics analyses. This strategy has also been 
extended to mapping and scoring of phosphosites. As such, for every 
potentially phosphorylated peptide, a theoretical tandem spectrum 
is generated for each possibly phosphorylated version of the peptide 
(corresponding to each serine, threonine and tyrosine in the pep-
tide). The platforms of phosphorylation site identification reviewed 
in this chapter implement this latter strategy.

There are three independent steps in the processing of raw MS 
data into quantified phosphosite ratios:

 1. Database search: Raw spectra are searched against a reference 
peptide database, and a score is calculated for each PSM.

 2. Filtering: In this step the PSMs are sorted and filtered down to 
a target False Discovery Rate (FDR) to limit false positive 
identifications.

 3. Quantitation: Finally ratios are calculated for all peptides (and 
proteins).

This chapter gives an overview of all the important consider-
ations which should be taken into account when processing raw 
data to retrieve a quantified phosphoproteomics output. The focus 
is on understanding the biases that are inherent to such data so that 
common pitfalls can be avoided.

2 MS Data Formats

Most vendors of mass spectrometric instrumentation have their 
own MS raw file format, and generally also provide a platform to 
process this raw data into quantified data. However, if the user opts 
for software that is unable to parse these formats, conversion will 
be necessary. Phosphoproteomics data generally contains two types 
of information: (1) full MS spectra and (2) MS/MS (tandem MS) 
spectra. When converting from vendor raw data format, it is impor-
tant to bear in mind the information retained in the new file for-
mat. As such, the popular format MGF (Mascot Generic File) does 
not contain full MS information, and it therefore cannot be used 
for quantification based on metabolic labeling [6, 7]. For convert-
ing between MS file formats we recommend ProteoWizard 
MSConvert [8] or TOPPAS [9] FileConverter workflow.
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ProteoWizard MSConvert [8] is available for Windows, Linux, 
and OS X. All versions of the software can read and write the follow-
ing open formats: mzML, mzXML, MGF, ms2/cms2/bms2, and 
mzIdentML. The Windows version can furthermore read the fol-
lowing vendor formats: Agilent, Bruker FID/YEP/BAF, Thermo 
RAW, and Waters RAW. MSConvert has both a command line and 
graphical user interface, rendering it versatile and user friendly.

TOPPAS FileConverter [9] is available for Windows, Linux, 
and OS X, and it provides a graphical user interface to the com-
mand line tool FileConverter, which is part of TOPP (The OpenMS 
Proteomics Pipeline) [10, 11]. It can convert the following input 
file formats: mzData, mzXML, mzML, dta, dta2d, MGF, fea-
tureXML, consensusXML, ms2, fid, tsv, peplist, kroenik, and edta 
into mzData, mzXML, mzML, dta2d, MGF, featureXML, consen-
susXML, and edta format.

In our opinion the best open formats are mzML and mzXML. 
mzML is the de facto standard that was developed by the HUPO 
(Human Proteome Organization) initiative to unify the mzXML 
and mzData formats.

For more in-depth overview of all proteomics file formats the 
reader is referred to Deutsch [12].

3 Database Search

A wealth of different database search algorithms has been devel-
oped over the years. The most popular include the open source 
engines X!Tandem [13], OMSSA [14], MyriMatch [15], the free-
ware engine Andromeda [16], and the proprietary engines 
SEQUEST [17], PEAKS DB [3], and MASCOT [18]. All these 
algorithms are very mature and should produce comparable results. 
However, because they all use slightly different and to some extent 
orthogonal scoring schemes, using two in combination often yield 
higher confidence identifications [19].

4 Filtering

This step of the phosphosite identification workflow aims to 
exclude low-confidence identifications resulting from the database 
search. While more stringent filtering will result in a sacrifice of 
identifications of the total number of peptides and phosphosites, 
the resulting identifications are more trustworthy. This is in 
particular advantageous for the experimentalists using this infor-
mation for hypothesis generation and downstream experiments.

There are two commonly used approaches to filter MS data, 
based on (1) arbitrary PSM score cutoffs and (2) FDR. The PSM 
score cutoff strategy depends on the size of the search database. 

Phosphoproteomics – from raw data to identification and quantification



326

Larger databases will inherently yield more false positive identifica-
tions at a given cutoff. Therefore higher PSM score cutoffs are 
required when dealing with phosphoproteomics in comparison to 
proteomes due to the differences in search space. Therefore we 
recommend the FDR approach.

The advantage of the FDR approach over the cutoff approach is 
that a given FDR is comparable across datasets, irrespective of the 
size of the dataset and search space. FDR is calculated using a tar-
get–decoy database approach, in which the PSMs are performed 
against a database of interest and a fictive database of comparable 
size. The most widely used decoy approach is the pseudo-reversed 
method proposed by Elias and Gygi [19], in which they dubbed 
the decoy database “reverse” and the original search database the 
“forward.” Pseudo-reversed is a quite fitting name, as the trypti-
cally digested peptides are literally reversed, except for the last 
R/K, which is swapped. Searching against a concatenated forward 
and reverse database, the FDR can be calculated simply by count-
ing the number of forward and reverse peptides/proteins above a 
given score cutoff. For most search engine platforms, the desired 
FDR is set in advance, and all peptides above the corresponding 
score are accepted. Additionally, most platforms allow the user to 
set the FDR on both peptide and protein identifications. Setting 
the FDR on the protein identification level will almost always result 
in a more stringent FDR of the peptide identifications, as multiple 
forward hits match the same protein. For phosphoproteomics data, 
however, it is recommendable to set the FDR on the peptide level, 
as the resulting phosphosites are identified on the peptide level and 
ultimately the data of interest. A 1 % FDR is commonly accepted 
in the phosphoproteomics community.

The ultimate aim of phosphoproteomics investigations is to iden-
tify the exact location of the phosphorylation moiety in the 
sequenced phosphopeptide, and the predicted protein of origin. 
While no successful approach has been developed for implement-
ing false localization rates at the phosphorylation site level, apply-
ing stringent FDR at the peptide level is beneficial in the processing 
of phosphoproteomics data. Peptides that pass at a higher FDR 
cutoff are generally identified from MS/MS scans with more peaks, 
thereby increasing the confidence of the phosphorylation site 
localization. This is illustrated in Fig. 1 where the median localiza-
tion probability drops below 100 % at peptide FDR = 0.2 % 
(see Fig. 1). In addition to a stringent FDR at the peptide level, it 
is common practice to filter all resulting phosphosites such that 
none has a localization probability below 75 % [20]. While 75 % 
may seem very low, it is important to note that most sites can be 
localized with much higher accuracy, some even with 100 % 

4.1 False 
Discovery Rate

4.2 Phosphosite 
Localization 
Probability
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 accuracy if the peptide contains only one serine, threonine or 
 tyrosine. The average localization probability at 1 % peptide FDR 
was 96.6 % for the data used to create Fig. 1.

5 Quantitation

Phosphoproteomics experiments often seek to determine the differ-
ences in the abundance of phosphosites between perturbations, tis-
sues or other conditions, as these changes are vital to answering the 
biological question at hand. Quantitation strategies are either based 
on label-free approaches that do not require alterations to the exper-
imental workflow, or on isotopic labeling of amino acids. Label-free 
quantitation (LFQ) is based on comparison of full MS scans from 
separate MS raw files representing the conditions of interest. Recent 
innovations in LFQ such as iBAQ [21] combined with improve-
ments of MS instrumentations have rendered LFQ strategies a viable 
alternative to isotopic labeling. While LFQ gives hopes for clinical 
proteomics, labeling-based strategies remain the preferred tool in 
quantitative phosphoproteomics. The two most popular labeling 
techniques are stable isotope labeling with amino acids in cell culture 
(SILAC) [6, 7] and isobaric tags for relative and absolute quantita-
tion (iTRAQ) [22]. The advantage with labeling strategies lies in the 
detection of all conditions within the same MS or MS/MS scan, 
allowing for more direct and accurate quantitation.

Fig. 1 Boxplots depicting the relationship between the phosphorylation localiza-
tion probability and the False Discovery rate

Phosphoproteomics – from raw data to identification and quantification
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6 Foreground and Background for Enrichment Analyses

The goal of most phosphoproteomics experiments is to understand 
how phosphorylation events affect a biological system. Evidently, 
phosphosites that differ between biological conditions are of inter-
est, and such phosphoproteomics experiments should ideally be per-
formed quantitatively. These phosphosites of interest are best 
understood in the context of the phosphosites that are unchanged in 
the given experimental data. When possible, it is therefore advisable 
to generate a reference dataset of unchanged phosphosites (back-
ground) and a dataset of changed phosphosites (foreground) from 
the same data as both will have been subjected to the same experi-
mental biases. These datasets are typically defined by applying statis-
tical tests, such as t-tests, to determine the fold change cutoffs.

Various steps in the phosphoproteomics workflows will inherently 
introduce biases in the data that can be misinterpreted as biologically 
relevant if not accounted for. The easiest and most robust approach 
that we recommend, as previously mentioned, is to generate a refer-
ence dataset from the same original data. Common sources of bias 
include the lysis buffer used, fractionation methods, phosphopep-
tide enrichment protocols, and MS methods applied. Phosphopeptide 
enrichment protocols commonly display biases towards either singly 
or multiply phosphorylated peptides or towards hydrophobic or 
hydrophilic peptides. Mass spectrometric biases are specific to the 
fragmentation technique and/or instrument applied. In MS meth-
ods where the most intense peaks in a MS spectrum are submitted 
for MS/MS analysis, there is an inherent bias to sequence peptides 
that are more abundant. The combination of all the abovemen-
tioned biases will be present in the experimental data, stressing the 
importance of applying a custom reference dataset.

The following example systematically dissects a fictive dataset, to 
illustrate the importance of using an appropriate foreground and 
background. For simplicity, it is assumed that every protein only 
gives rise to one phosphorylated peptide.

Two experimental conditions: control and perturbation.
Our fictive organism has 40,000 different proteins, of which 

100 are ribosomal.
4000 SILAC phosphopeptide pairs are identified, of which 50 

are ribosomal.
400 of them have a perturbation:control ratio above 5, of 

which 5 are ribosomal.
The aim is to calculate whether this perturbation of interest 

enriches ribosomal phosphosites. Using the above data we explore 
the importance of using a custom background.

6.1 Sources 
of Experimental 
Biases

6.2 Example Pitfall 
Caused by 
Experimental Bias

6.2.1 Example 
Experiment
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It is common in proteomics data analysis to compare an experi-
mental foreground dataset to an entire proteome database of inter-
est to search for significantly perturbed pathways, sequence motifs, 
and more. However, this approach assumes that the preparation 
and analysis of the sample does not introduce any biases. With this 
approach, when calculating the enrichment factor of ribosomal 
protein phosphorylation in your data compared to a complete pro-
teome for this fictive dataset (n denotes “number of”):

Expectation: nribosomal proteins/ntotal proteins = 100/40,000 = 0.25 %
Observation: nribosomal proteins above cutoff/ntotal proteins above cutoff = 

5/400 = 1.25 %
Enrichment: Observation/Expectation = 1.25 %/0.25 % = 5
Significance: A two-sided binomial test with 400 trials, 5 successes 

and an expected frequency of 0.25 % gives a p-value of 3.6 %, 
and the enrichment would thus be deemed significant.

Conclusion: The applied experimental perturbation increases phos-
phorylation on ribosomal proteins fivefold.

However, our fictive dataset has a bias, which is common to 
most phosphoprotemics workflows, namely an enrichment for 
abundant proteins. Therefore, 1.25 % of the identified phospho-
sites reside in ribosomal proteins, compared to only 0.25 % in the 
total proteome. We therefore encourage using the unperturbed 
experimental data itself as background when applying this custom 
background from the experimental data:

Expectation: nribosomal proteins/n total proteins = 50/4000 = 1.25 %
Observation: nribosomal proteins above cutoff/ntotal proteins above 

cutoff = 5/400 = 1.25 %
Enrichment: Observation/Expectation = 1.25 %/1.25 % = 1
Significance: A Fisher’s exact test using a 2 × 2 contingency table 

with the values (5, 400) vs. (50, 4000) yields a p-value of 
100 %, meaning there is a 100 % chance there is no difference 
between the number of regulated ribosomal proteins and other 
regulated proteins.

Conclusion: The applied experimental perturbation does not affect 
phosphorylation on ribosomal proteins.

Foreground and background datasets are typically defined using 
statistical tests to determine appropriate cutoffs to judge whether a 
phosphosite is changed or unchanged between experimental con-
ditions. Here we discuss common statistical approaches that can be 
applied to phosphoproteomics data and when those different tests 
are appropriate to apply.

Many statistical tests assume that the data conforms to the nor-
mal distribution and that the data has the same mean and variance 
across datasets in experiments with many conditions. It is therefore 

6.2.2 Faulty Approach: 
Global Background

6.3 Statistical Test 
Used to Define 
Foreground 
and Background 
Datasets
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important when analyzing quantitative data, to perform all statisti-
cal tests on log transformed data (usually log2 or log10), as fold 
change ratios in a linear scale are not normally distributed. Most 
proteomics software packages also normalize the output data to 
compensate for this.

Cutoffs are usually set using p-values, the motivation for which 
is to ensure that the entries in the foreground are significantly dif-
ferent from the background. However, when searching for biologi-
cally meaningful regulatory events, it is important to bear in mind 
that p-values only define whether an entity is significantly different 
from another. Thus, p-values are very susceptible to the number of 
replica and sample variance, which in the correct combination can 
lead to very small fold change being considered significant.

The nature of the phosphoproteomics data will determine the 
ideal statistical test, which should be used to calculate p-values. 
In cases where many replicate experiments have been performed, a 
student’s t-test is advisable. This test requires many data points 
(at least three ratios) for each phosphorylation site, as this test is 
based on both the fold changes and the variance of each ratio 
across measurements. As such, the student’s t-test also compen-
sates for experimental and instrumental imposed variance, and 
should be used when those are expected. However, most phospho-
proteomics screens are not performed with enough replicate 
experiments to perform student’s t-test, in which case, a test based 
on the distribution of the entire dataset is beneficial. For this we 
recommend the Significance A test.

There are two types of t-tests that in principle could be applied to 
phosphoproteomics data: the related and the independent t-test. 
Both tests determine whether a phosphorylation site differs 
between conditions or not, and both are performed on the abun-
dance values of the phosphosites rather than their ratios.

Related t-test: This test compares the abundance of phospho-
sites between conditions within each replicate experiment. This 
means that the abundances in condition 1 and 2 are compared 
within the first replicate, then within the second replicate and so 
forth. In theory this test has good statistical power, but it is limited 
by the fact that MS data often has many missing values, in which 
case the replicate data-points are lost, and the test loses its power.

Independent t-test: The independent t-test determines the sta-
tistical difference between the mean intensities of a phosphosite 
across conditions. As this test uses the mean intensities, missing 
values are tolerable, and it is therefore more robust for MS data 
compared to the related t-test.

Both of these t-tests can be performed assuming either equal 
or unequal variance. Equal variance calculates a variance of the 
abundance of the phosphosite across conditions and replicates, and 
the test will therefore use all data points. Unequal variance assumes 

6.3.1 Student’s t-tests
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that the variance is not comparable between conditions, and the 
test will therefore calculate a variance across replicates but sepa-
rately for each condition. This will therefore include less data 
points per variance calculation, and as missing values are common 
in MS data, applying equal variance is more robust.

Significance A is a statistical test that determines for each ratio 
whether it differs significantly from the distribution of the whole 
dataset [23]. This test is particularly applicable for phosphopro-
teomics data that is heavily perturbed. This test takes advantage of 
the fact that the middle 68.26 % of the ratio distribution conforms 
better to a normal distribution.

Here the 15.87 %, 50 % and 84.13 % percentiles are assumed 
to correspond to left standard deviation r−1, the mean r0 and the 
right standard deviation r1 respectively. The distance z (analogous 
to the standard deviation in t-test) is then calculated and applied to 
determine a p-value for the ratio of each phosphorylation site:
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In the publication introducing Significance A, the authors also 
proposed the option of correcting the p-values for multiple testing. 
This can be done with a Benjamini–Hochberg correction.

To get an intuitive idea of how Significance A works, let us 
imagine data ratios that are distributed as follows:

9000 peptides are unregulated; average log ratio = 0 and a stan-
dard deviation = 1

1000 peptides are regulated; average log ratio = 0 and standard 
deviation = 5

Table 1 outlines the difference between using the “real” stan-
dard deviation (which we know for the used model dataset) and 
using Significance A or RMSD (Root Mean Square Deviation) to 
calculate the standard deviation (see Table 1). First it should be 
noted, for the above data, significance A overestimates the stan-
dard deviation by 21 % whereas RMSD overestimates it by 84 %. 
Using RMSD only 269 of the 1000 regulated proteins would be 
found above 3 standard deviations (used as cutoff) as estimated by 
RMSD. There against 469 proteins would pass this criterion when 
using significance A, which is much closer to what we would have 
gotten had we known the “real” standard deviation (549).

6.3.2 Significance A

Phosphoproteomics – from raw data to identification and quantification
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There are several common approaches to define foreground or 
background datasets. These typically apply cutoffs for fold change, 
p-values or a combination thereof based on the quantitative phos-
phoproteome or the proteome from the same experiment. Choosing 
a good cutoff requires several considerations that we review here.

If the proteome in the given data is expected to be largely unper-
turbed, for example in short term treatment conditions, the distri-
bution of the proteome can be used to define a cutoff for the 
phosphoproteomics data. Such proteomics data can be acquired by 
sampling the experiment prior to phosphopeptide enrichment or be 
extracted from the non-modified peptides that are sequenced after 
phosphopeptide enrichment. This is particularly advantageous 
when comparing datasets with very different amounts of perturba-
tion on the phosphoproteome, as most statistical tests will in this 
case require more stringent cutoffs for significance in the more per-
turbed datasets. In a mildly or unperturbed proteome, however, the 
quantitative data is more comparable across datasets, and will there-
fore result in more similar stringency when acquiring a cutoff.

Therefore you can perform a statistical test, such as Significance 
A, on your proteome data and use the identified cutoffs to define 
regulated events in your phosphoproteomics data. However, cau-
tion has to be applied when using proteomics data which is not 
directly extracted from the phosphoproteomics experiment itself. 
Due to less complex sample preparation protocols, data distribu-
tion can be narrower, leading to an overestimation of regulated 
phosphopeptides compared to the proteome.

Defining a cutoff will deem all entries above the cutoff to be regu-
lated, while everything below is unregulated. However, biological 
systems are not binary and events falling right below the cutoff 
might still be regulated and biologically relevant. Therefore it is 
often advisable to have cutoff for the background as well as for the 
foreground. Events falling into the “grey zone” between those two 
cutoffs will be considered neither regulated nor unregulated and 
therefore not used for the analysis. Commonly only the ratios 

6.4 Approaches 
to Applying Cutoffs 
to Define Foreground 
and Background 
Dataset

6.4.1 Setting Cutoffs 
Based on the Experimental 
Proteome vs. 
Phosphoproteome

6.4.2 Additional 
Considerations

Table 1  
Table showing how Significance A compares to root mean square distance (RMSD) when estimating 
standard deviation (SD) on a set of peptides where 9000 are unregulated and have a average log 
ratio of 0 and a SD of 1 and 1000 are regulated and have a average log ratio of 0 and a SD of 5

Real Significance A RMSD

Standard deviation 1.00 1.21 1.84

Regulated peptides (of 1000) at 3 SD 549 (54.9 %) 469 (46.9 %) 269 (26.9 %)

Unregulated peptides (of 9000) at 3 SD 24 (0.270 %) 3 (0.029 %) 0 (3.2 × 10−6%)
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within 1 standard deviation of the sample mean are used as the 
background cutoff, thus if a cutoff of 3 standard deviations has 
been chosen, then peptides with a standard deviation between 0 
and 1 will become the background dataset and everything with a 
standard deviation above 3 will become the foreground dataset, as 
visualized in Fig. 2.

Considering the biological question of a specific analysis type, 
the user may benefit from performing all downstream analysis 
twice: once for the upregulated and once for the downregulated 
phosphosites. This is of particular relevance if a given dataset is 
skewed towards upregulation or downregulation, e.g., in the con-
text of kinase or phosphatase inhibitors.

7 Platforms for Phosphoproteomics Analysis

Many software packages have been developed to search, filter and/
or quantify (phospho)peptides. Below we present a few popular 
software packages that can perform all three steps of the analysis. 
All presented software is very mature, and the choice of software 
package is therefore usually based on user preferences. Generally 
the software can be classified into two different categories:

 1. Pipeline/workflow oriented tools offer very high levels of flex-
ibility and automation and are capable of creating workflows 
that can be reused for different types of follow-up analyses. 
However, generation of the workflow requires time and famil-
iarity with the software, and can be difficult for first-time users.

Fig. 2 Data separated into a Foreground and Background, the Grey Zone data is 
not used for further analysis, as it contains a mixture of regulated and unregu-
lated peptides

Phosphoproteomics – from raw data to identification and quantification
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 2. Conventional software packages are generally equally powerful 
and tend to be easier to learn; however, they offer a lower 
degree of automation and flexibility. For those software options 
we put an emphasis on MaxQuant, which is freely available and 
very user friendly.

Workflow-based software packages allow the users to generate a 
workflow, in a drag-and-drop manner. Once a workflow has been 
generated, it can be saved and shared among coworkers ensuring 
that everybody analyzes the data in the exact same way. Pipeline 
software packages work like workflows, but are generally made up 
of small command-line programs that can be chained together to 
form a pipeline by scripting.

The Trans-Proteomic Pipeline [24] (TPP) is an open-source proj-
ect from the Seattle Proteome Center (SPC). TPP is a web-based 
front end to a large collection of command-line tools. It can be 
used for almost any combination of MS instruments and labeling 
techniques.

A typical approach for using this pipeline in processing of 
quantitative phosphoproteomics data would include the following 
steps:

 1. Standard input: Convert vendor format to mzXML (mzML or 
mzData)

 2. Peptide assignment: Search data against one of the following 
databases: SEQUEST [17], MASCOT [18], COMET [25], 
ProbID [26] X!Tandem [13], or any other database of 
interest.

 3. Validation:
 (a) Rank (phospho)peptides based on scores and filter based on 

a user-specified FDR using PeptideProphet [27].
 (b) Optionally: assemble peptides into proteins using 

ProteinProphet [27]
 4. Quantification: use ASAPRatio [28] to calculate peptide ratios.

The software is very easy to install for Windows. While, Linux 
is officially supported it requires editing the make file to compile 
the source code. The advantage of this platform is that it covers all 
steps in phosphoproteomics data processing, from format conver-
sion to quantification. This platform could be useful for inexperi-
enced users in phosphoproteomics data analysis, as it offers 
pipelines that guide the user through the workflow.

The OpenMS [10] Proteomics Pipeline [11] (TOPP) is a large 
collection of programs with a command-line interface that can be 
chained together, much like the TPP. TOPPAS [9] is a workflow- 

7.1 Workflow- 
and Pipeline- Based 
Software

7.1.1 Trans-Proteomic 
Pipeline

7.1.2 TOPP and TOPPAS
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based graphical front end to TOPP. TOPP/TOPPAS can use the 
following search databases: Mascot [18], MyriMatch [15], 
OMSSA [14] and X!Tandem [13]. TOPP and TOPPAS are avail-
able for Windows, Linux, and OS X. For working with this plat-
form you can follow the same four steps as described above for 
TPP. However, it allows for a greater level of flexibility in setting 
up the workflow.

Proteome Discover is commercially available Windows software 
developed by Thermo Scientific. Its main focus is on data gener-
ated with Thermo Scientific Orbitrap instruments. Like TOPPAS 
it is also used in a workflow manner and can supports most of the 
popular search databases and labeling techniques.

Conventional software packages offer a workflow, which cannot be 
edited. However, these platforms generally allow a great level of 
flexibility within this scheme. This approach is more readily acces-
sible as the platforms are very user-friendly and recommendable for 
beginners.

Mascot [18] was developed by Matrix Science and is one of the 
oldest and most well-established database search engines. Mascot 
refers to the core database search algorithm, but complete data 
processing requires two main products: Mascot Server, which does 
the database search, and Mascot Distiller, which can do validation 
and quantitation. Mascot is only available for Windows.

MaxQuant [23] is freeware developed at the Max Planck Institute 
of Biochemistry. MaxQuant uses a search database, Andromeda, 
developed specifically for this platform [16]. In recent years, the 
development of this platform has focused on including features 
that allow for compatibility with many different MS instruments 
(Thermo *.Raw, Brucker *.d, Sciex *.wiff and mzXML) and label-
ing techniques. This particular advantage renders MaxQuant an 
attractive software for the broad MS user community.

MaxQuant offers the option to group your input data, so that 
the chosen parameters can be applied specifically for a group or 
globally for all the data analyzed. As such, the user can analyze 
proteomics and phosphoproteomics data in parallel by applying 
specific parameters to some of the data (such as the search for 
phosphorylation in the phosphoproteome) while still using shared 
parameters, such as FDR cutoffs and the FASTA file being queried. 
Additionally, MaxQuant allows the option to configure the 
Andromeda database search engine, for example to include new 
modifications and FASTA files of interest. MaxQuant is only avail-
able for Windows.

7.1.3 Proteome 
Discoverer™

7.2 Conventional 
Software Packages

7.2.1 Mascot

7.2.2 MaxQuant
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8 Protocol: Phosphoproteomics Analysis with MaxQuant

To use MaxQuant, download the latest version from http://www.
maxquant.org/. This protocol is designed for v. 1.5.0.0 but is 
readily transferrable to other versions.

Download a relevant proteome in FASTA format (see Note 1), 
for example from ftp://ftp.uniprot.org/pub/databases/uniprot/
current_release/knowledgebase/proteomes.

 1. Launch MaxQuant. The user is presented with the interface 
seen in Fig. 3.

 2. Navigate to “Raw files” tab.
 3. Under Input data click “Load” (or Load folder) to import MS 

data files (or complete folders containing raw MS data) into 
MaxQuant.

 4. Highlight all files that belong to the same experiment (usually 
also grouping replicates), and under Edit exp. Design click “Set 
Experiment.” Write a descriptive name for the given experi-
ment in the popup menu. All files should be assigned to an 
experiment.

 5. If the files include different experimental workflows that 
require applying different parameters, the files must be grouped 
accordingly (see Note 2). Highlight the files to be grouped 

8.1 Materials

8.2 Method

Fig. 3 Screen shot of MaxQuant version 1.5.0.0
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together, by clicking “Set parameter group” and indicate a 
group number.

 6. Navigate to Group-specific parameters tab.
 7. For every parameter group repeat the following steps.
 8. Under Parameter section select “General.”
 9. Under Type change the multiplicity (number of labels) to 

reflect the numbers of conditions in your experiment and select 
labels appropriately (see Note 3).

 10. In the Variable modifications section keep default settings and 
scroll down to select modifications of interest if applicable. For 
phosphoproteomics experiments chose “Phospho (STY)” then 
click the “>” button.

 11. In the Digestion mode section select the relevant enzyme using 
the “>” and “<” buttons (see Note 4).

 12. Under Parameter section: select Instrument, and change values 
to reflect the quality and settings of the instrument that gener-
ated the MS data. Default parameters are provided for Orbitrap, 
Brucker TOF and AB Sciex TOF.

 13. If applicable select “LFQ” in the drop-down menu, under 
Label-free quantification in the Parameter section.

 14. Navigate to Global Parameters tab.
 15. Under Parameter section select “General.”
 16. In the FASTA files section click “Add file” to important the 

proteome FASTA file.
 17. Under Identification change PSM FDR (FDR at the spectrum 

level), Protein FDR and Site decoy fraction (modified peptides 
FDR) (see Note 5).

 18. Navigate to Performance tab.
 19. In the footer of the program change the number of threads 

(cores) to be used for processing. This can be up to the num-
ber of cores on the computer (see Note 6).

 20. In the footer of the program click “Start.”

9 Notes

 1. Not all FASTA files are configured in Andromeda. Under the 
“Andromeda configuration” tab, this can be checked, and file 
of interest can be configured for use in MaxQuant.

 2. Examples of situations where grouping files to apply group 
specific parameters would be useful:
 (a) Some of the files contain data with two labels while others 

have three.
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 (b) Different variable modifications are desired for different 
files, as some are to be used for phosphoproteome deter-
mination and others for proteome.

 (c) The MS data files were generated using different MS- 
instruments or instrumental settings.

 3. A triple SILAC experiments requires a multiplicity of 3. These 
should be specified: labels-1: nothing indicated, labels-2: Arg6 
and Lys4, labels-3: Arg10 and Lys8.

 4. Here, indicate the enzymes used for digestion in the experi-
mental workflow. This is typically Lys-C and/or trypsin for 
most phosphoproteomics workflows.

 5. We suggest setting all FDRs to 1 %.
 6. If your system has less than 1GB ram per core, set the number 

of threads to the same number of GB ram available. Regardless 
of processing power, if all cores are used the processing capac-
ity of the computer will be consumed.
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