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    Chapter 10   

  S equential Elution from  IMAC  (SIMAC): An Effi cient Method 
for Enrichment and Separation of Mono- and 
Multi- phosphorylated Peptides       

     Tine     E.     Thingholm     and     Martin     R.     Larsen      

  Abstract 

   Phosphoproteomics relies on methods for effi cient purifi cation and sequencing of phosphopeptides from 
highly complex biological systems, especially when using low amounts of starting material. Current meth-
ods for phosphopeptide enrichment, e.g., Immobilized Metal ion Affi nity Chromatography and titanium 
dioxide chromatography provide varying degrees of selectivity and specifi city for phosphopeptide enrich-
ment. The number of multi-phosphorylated peptides identifi ed in most published studies is rather low. 
Here we describe a protocol for a strategy that separates mono-phosphorylated peptides from multiply 
phosphorylated peptides using Sequential elution from Immobilized Metal ion Affi nity Chromatography. 
The method relies on the initial enrichment and separation of mono- and multi-phosphorylated peptides 
using Immobilized Metal ion Affi nity Chromatography and a subsequent enrichment of the mono- 
phosphorylated peptides using titanium dioxide chromatography. The two separate phosphopeptide frac-
tions are then subsequently analyzed by mass spectrometric methods optimized for mono-phosphorylated 
and multi-phosphorylated peptides, respectively, resulting in improved identifi cation of especially multi- 
phosphorylated peptides from a minimum amount of starting material.  

  Key words      Phosphopeptide    enrich   ment    ,   Multi-phosphorylated peptides  ,   Immobilized metal affi nity 
chromatography  ,   Sequential elution  ,    Titanium dioxide   chromatography  ,    Mass spectrometry    

1      Introduction 

 Several techniques exist for phosphopeptide enrichment prior to 
mass spectrometric analysis. Today the most commonly used meth-
ods are Immobilized Metal Affi nity Chromatography ( IMAC  ) 
[ 1 – 3 ] and titanium dioxide ( TiO 2   ) chromatography [ 4 – 7 ] ( see  
Chapters   8     and   9    ). Recent studies comparing three different phos-
phopeptide enrichment methods including phosphoramidate 
chemistry (PAC) [ 8 ], IMAC and TiO 2  chromatography showed 
that each method isolated distinct, partially overlapping segments 
of a phosphoproteome, whereas none of the tested methods was 
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able to provide a whole phosphoproteome [ 9 ]. This is in itself not 
surprising as the three different methods apply completely differ-
ent chemistries for phosphopeptide capture, numerous protocols 
for IMAC and TiO 2  exist and the purifi cation effi ciency can be very 
variable for both IMAC and TiO 2  depending on the person who is 
performing the analysis. 

 One of the challenges in large-scale phosphoproteomics is the 
analysis of multi-phosphorylated peptides. Multi-phosphorylated 
peptides are in general suppressed in the ionization process in the 
mass spectrometric (MS) analysis in the presence of mono- or non- 
phosphorylated peptides and therefore the chance to detect them 
by tandem MS ( MS/MS  ) analysis is limited. In addition, most mass 
spectrometers are only able to perform a limited number of MS/
MS in a given time period resulting in the negligence of the less 
abundant multi-phosphorylated peptides. Furthermore, in collision 
induced dissociation ( CID  ) the major fragmentation pathway is the 
loss of phosphoric acid usually resulting in poor peptide backbone 
fragmentation. Consequently, little sequence  information and lower 
identifi cation rates are obtained. This is especially evident for multi-
phosphorylated peptides which lose more phosphoric acid mole-
cules. Several other kind of fragmentation methods exist which can 
increase the identifi cation of multi-phosphorylated peptides. 
Optimized phosphorylation-directed multistage tandem MS 
(pdMS 3 ) [ 10 ,  11 ], multistage activation (MSA) [ 12 ], higher energy 
collision dissociation ( HCD  ) [ 13 ] or Electron capture/transfer dis-
sociation (ECD/ ETD  ) [ 14 ,  15 ] could provide better identifi cation 
for multi-phosphorylated peptides. However, in order to set up the 
special experimental parameters optimal for analysis of multi-phos-
phorylated peptides, such as normalized collision energy, fragmen-
tation time and number of ions used for fragmentation, the 
multi-phosphorylated peptides have to be separated from the 
mono-phosphorylated peptides prior to  LC  -MS/MS analysis. 

 Previously, we developed a method for separation of mono- 
phosphorylated peptides from multiply phosphorylated peptides 
where we are using   S equential elution from  IMAC    ( SIMAC  ) [ 11 ]. 
In this strategy the peptide mixture is incubated with  IMAC   beads, 
which have a stronger selectivity for multi-phosphorylated pep-
tides than for mono-phosphorylated peptides [ 16 ]. After incuba-
tion, the sample is split in three “elution” fractions ( see  Fig.  1 ); an 
IMAC fl ow-through fraction, an acidic (1 %  TFA  ) fraction and a 
basic (pH 11.3) fraction. The IMAC fl ow-through and acidic frac-
tions which contain predominantly mono-phosphorylated and a 
signifi cant number of non-phosphorylated peptides are further 
submitted to  TiO 2    chromatography to achieve pure phosphory-
lated fractions prior to tandem MS analysis. Alternatively, the two 
fractions can be pooled prior to TiO 2  enrichment. The basic frac-
tion is analyzed directly by  MS/MS   analysis without further TiO 2  
purifi cation, as this sample in general is relative free of non- 
phosphorylated peptides.
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    SIMAC   greatly improves the number of phosphorylation sites 
identifi ed even from very low amounts of starting material and 
offers a way to identify and characterize multi-phosphorylated pep-
tides at large-scale levels [ 11 ] ( see  also Chapter   11    ).  

2    Materials 

       1.    Transferrin (human) was a gift from ACE Biosciences 
A/S. Serum albumin (bovine), beta-lactoglobulin (bovine), 
carbonic anhydrase (bovine), beta-casein (bovine), alpha-
casein (bovine), ovalbumin (chicken), ribonuclease B (bovine 
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  Fig. 1    The  SIMAC   strategy used for the enrichment and separation of mono- from 
multi-phosphorylated peptides. The peptide sample is mixed with the  IMAC   
beads and incubated for 30 min in a Thermomixer at room temperature. After 
incubation, the beads are packed into a GELoader tip forming an IMAC micro- 
column. The IMAC fl ow-through is collected and further enriched using  TiO 2    
chromatography. The mono-phosphorylated peptides are eluted from the IMAC 
micro-column using acidic elution conditions (1 %  TFA  , pH 1.0) and for complex 
samples this eluate is also further enriched using TiO 2  chromatography or com-
bined with the IMAC-FT prior to TiO 2  enrichment. The multi-phosphorylated pep-
tides are subsequently eluted from the IMAC micro-column using basic elution 
conditions (ammonia water, pH 11.3). The Figure is taken from [ 25 ]       
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pancreas), alcohol dehydrogenase (Baker yeast), myoglobin 
(whale skeletal muscle), lysozyme (chicken), and alpha-amylase 
(bacillus species) were from Sigma (St. Louis. MO, USA).      

       1.     Triethylammonium bicarbonate  .   
   2.     Dithiothreitol   ( DTT  ).   
   3.     Iodoacetamide  .   
   4.    Modifi ed trypsin.   
   5.     Acetone  .      

        1.    Lysis Buffer: 6 M urea, 2 M thiourea, 1× PhosSTOP phospha-
tase inhibitors.   

   2.     Dithiothreitol   ( DTT  ).   
   3.     Iodoacetamide  .   
   4.    Endoproteinase Lys-C.   
   5.     Triethylammonium bicarbonate  .   
   6.    Modifi ed trypsin.   
   7.    PhosStop.      

       1.    Iron-coated PHOS-select™ metal chelate beads (Sigma ® ), 
stored at −20 °C.   

   2.     IMAC   Loading Buffer: 0.1 % trifl uoroacetic acid ( TFA  ), 
Protein Sequencer Grade, 50 % acetonitrile,  HPLC   Grade.   

   3.    GELoader tips (Eppendorf (20 μL) or Bio-Rad (200 μL)).   
   4.    Low-binding microcentrifuge tubes 1.7 mL.   
   5.    1–5 mL disposable syringes fi tted to GeLoader tip or p200 tips 

by using a pipette tip cut in both ends.   
   6.     IMAC   Elution Buffer 1: 1 %  TFA  , 20 % acetonitrile.   
   7.     IMAC   Elution Buffer 2: 1 % ammonia water (40 μL ammonia 

solution (25 %), 980 μL UHQ water (pH ~ 11)), make fresh as 
required.   

   8.    Formic acid.   

   9.    Milli-Q water (UHQ water) ( see   Notes 1  and  2 ).        

     1.     Titanium dioxide   ( TiO 2   ) beads (Titansphere, 5 μm, GL sci-
ences Inc.).   

   2.    Low-binding microcentrifuge tubes 1.7 mL.   
   3.    3 M Empore C8 disk (3 M, Bioanalytical Technologies, St. 

Paul, MN, USA).   
   4.     Acetonitrile  ,  HPLC   Grade.   
   5.     TiO 2    Loading Buffer: 1 M glycolic acid in 5 % trifl uoroacetic 

acid ( TFA  ), 80 % acetonitrile.   

2.2  Reduction, 
Alkylation, 
and Digestion 
of Proteins

2.3  Reduction, 
Alkylation, 
and Digestion of  HeLa   
Proteins

2.4  Immobilized 
Metal ion Affi nity 
Chromatography 
( IMAC  )

2.5  Titanium Dioxide 
( TiO 2   ) Chromatography
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   6.     TiO 2    Washing Buffer 1: 1 %  TFA  , 80 % acetonitrile.   
   7.     TiO 2    Washing Buffer 2: 0.1 %  TFA  , 10 % acetonitrile.   
   8.     TiO 2    Elution Buffer: 1 % ammonia water (40 μL ammonia solu-

tion (25 %) in 960 μL UHQ water).   

   9.    Formic acid.        

     1.    POROS Oligo R3 reversed phase material (PerSeptive 
Biosystems, Framingham, MA, USA).   

   2.    GELoader tips (Eppendorf, Hamburg, Germany) or p200 
pipette tips depending on the size of the column needed.   

   3.    3 M Empore C18 disk (3 M, Bioanalytical Technologies, St. 
Paul, MN, USA).   

   4.    1–5 mL disposable syringes fi tted to GeLoader tip or p200 tips 
by using a pipette tip cut in both ends.   

   5.    RP Washing Buffer: 0.1 %  TFA  .   
   6.    RP Elution Buffer (for  LC  -ESI  MS/MS   analysis): 70 % aceto-

nitrile, 0.1 %  TFA  .   
   7.     2,5-dihydroxybenzoic acid   ( DHB  ) Elution Buffer (for  MALDI   

MS analysis): 20 mg/mL DHB in 50 % acetonitrile, 1 % ortho- 
phosphoric acid.      

       1.    Tabletop centrifuge.   
   2.    pH meter.   
   3.    Thermomixer.   
   4.    Shaker.   
   5.    Vacuum centrifuge.      

       1.    Mass spectrometer capable of performing  MS/MS  —preferen-
tially a high-resolution/high mass accuracy instrument (Q-TOFs 
(Waters, ABSciex, Bruker, and Agilent) or Orbitrap based mass 
spectrometer (Thermo Fisher Scientifi c)) interfaced to a 
nanoHPLC (e.g., Dionex 3000 ultimate  LC   system (Thermo 
Fisher Scientifi c)) with a 50–100 μm i.d. RP capillary column 
setup for highly sensitive online peptide separation can be used. 
For simpler samples a  MALDI   MS instrument can be used (e.g., 
Bruker Ultrafl ex (Bruker Daltonics, Bremen, Germany)).   

   2.    Software for processing of raw mass spectrometry data fi les and 
generation of peak lists for searching against a protein database 
(e.g.,  Uniprot  ) Analysis software such as Mascot/Mascot 
Distiller (Matrix Science, London, UK) (data from most ven-
dors and instruments),  Proteome Discover   er   (Thermo Scientifi c, 
Bremen, Germany) (data from Thermo instruments), 
 MaxQuant   [ 15 ] (high resolution data from Thermo Orbitrap 
instruments and certain Bruker and ABSciex Q-TOFs) and the 
TransProteomicPipeline [ 16 ] (vendor independent).       

2.6  Reversed Phase 
(RP) Micro-columns

2.7  Other Materials

2.8  Analysis by Mass 
Spectrometry
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3    Methods 

 The principle of the  SIMAC   method is illustrated in this chapter 
fi rstly using a peptide mixture originating from tryptic digestions 
of 12 standard proteins (Model proteins) ( see   Notes 3  and  4 ). The 
protocol is then applied to enrich for phosphorylated peptides 
from whole cell lysates from 150 μg of proteins from  HeLa   cells. 

 The  SIMAC   purifi cation method is a simple and very straight-
forward method. It is fast and effi cient for enrichment of phospho-
peptides from even highly complex samples [ 17 ,  18 ]. The 
experimental setup of the method is illustrated in Fig.  1 . 

       1.    Dissolve each protein in 50 mM triethylammonium bicarbonate 
( TEAB  ), pH 7.8, 10 mM  DTT   and incubate at 37 °C at 1 h. 
After reduction, add 20 mM iodoacetamide and incubate the 
samples at room temperature for 1 h in the dark.   

   2.    Digest each protein using trypsin (1–2 % w/w) at 37 °C for 
12 h.   

   3.    Lyse  HeLa   cells in 6 M  Urea  , 2 M ThioUrea containing phos-
phatase inhibitors (PhosStop). Precipitate proteins using 10 
volume excess of ice-cold acetone and incubate over night at 
−20 °C. Centrifuge the sample at 14,000 ×  g  and wash the pellet 
twice with ice-cold acetone. Redissolve the pellet in 50 μL 6 M 
urea, 2 M thiourea, 10 mM  DTT   containing 1 μg endoprotein-
ase Lys-C and incubate at room temperature for 2 h. After incu-
bation, dilute the sample 10× with 50 mM  TEAB  , pH 7.8 
containing 20 mM iodoacetamide and incubate for 1 h in the 
dark at room temperature. After incubation, add trypsin (1–2 % 
w/w) and place the sample at room temperature overnight.      

   Always adjust the amount of  IMAC   beads to the amount of sample 
in order to reduce the level of nonspecifi c binding from non- 
phosphorylated peptides. For 1 pmol tryptic digest use 7 μL IMAC 
beads ( see  Chapter   8    ). For more complex samples where more 
material is available, more IMAC beads should be used. This sec-
tion is describing a protocol for using 150 μg tryptic digest from 
 HeLa   cells.

    1.    Transfer 50 μL  IMAC   beads to a fresh low-binding microcen-
trifuge tube 1.7 mL.   

   2.    Wash the  IMAC   beads twice using 200 μL IMAC Loading 
Buffer ( see   Note 5 ).   

   3.    Resuspend the beads in 200 μL  IMAC   Loading Buffer and 
add the sample ( see   Note 6 ).   

   4.    Incubate the sample with  IMAC   beads in a Thermomixer for 
30 min at room temperature.   

3.1  Digestion 
of Model Proteins 
and the  HeLa   Cell 
Lysate

3.2  Batch Mode 
Sequential Enrichment 
and Separation 
with  IMAC   Beads
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   5.    Generate an  IMAC   micro-column essentially as described in 
Chapter   10    .   

   6.    Squeeze the tip of a 200 μL GELoader tip to prevent the 
 IMAC   beads from leaking.   

   7.    After incubation, pack the beads in the constricted end of the 
GELoader tip by application of air pressure forming an  IMAC   
micro-column [ 19 ].   

   8.    It is critical to collect the  IMAC   fl ow-through (FT) in a new 
1.7 mL low-binding microcentrifuge tube for further enrich-
ment by  TiO 2    chromatography ( see  Subheading  3.3 ).   

   9.    Wash the  IMAC   column using 70 μL IMAC Loading Buffer.   
   10.    Elute the mono-phosphorylated peptides bound to the  IMAC   

beads using 80 μL of IMAC Elution Buffer 1. Collect the elu-
ate into the IMAC-FT tube. The IMAC-FT and 1 %  TFA   elu-
tion fractions can be analyzed separately.   

   11.    Pool the eluate with the  IMAC  -FT to obtain the  SIMAC  - 
mono  fraction and lyophilize it prior to  TiO 2    enrichment ( see  
Subheading  3.3 ).   

   12.    Elute the multi-phosphorylated peptides bound to the  IMAC   
micro-column using 80 μL of IMAC Elution Buffer 2 directly 
into a p200 pipette tip containing a Poros Oligo R3 microcol-
umn (approximately 1 cm long).   

   13.    Acidify with 100 % formic acid, typically 1 μL per 10 μL eluate 
(pH should be ~2–3), and 5 μL 100 %  TFA  , and desalt/con-
centrate the eluted multi-phosphorylated peptides on the 
Poros Oligo R3 micro-column ( see  Subheading  3.4 ).   

   14.    Elute the peptides from the column using 60 μL RP Elution 
Buffer into a fresh 1.7 mL low binding microcentrifuge tube.   

   15.    Lyophilize the sample prior to  LC  - MS/MS  .    

           1.    Add acetonitrile,  TFA  , and glycolic acid to the  SIMAC  -mono 
peptide fraction to obtain  TiO 2    Loading Buffer conditions 
(80 % acetonitrile, 5 % TFA, and 1 M glycolic acid) ( see   Note 
7 ) or dilute the sample at least 10× with the TiO 2  Loading 
Buffer.   

   2.    Add 0.6 mg  TiO 2    beads per 100 μg peptide solution ( see   Note 8 ).   
   3.    Place the tubes on a shaker (highest shaking) at room tem-

perature for 5–10 min.   
   4.    After incubation, centrifuge to pellet the beads (table centri-

fuge <15 s).   
   5.    Transfer the supernatant to another low-binding tube and 

incubate it with another round of  TiO 2    beads using half of the 
amount of TiO 2  beads as used in the fi rst incubation. This can 
be repeated to recover larger amounts of phosphopeptides.   

3.3   TiO 2    Batch Mode 
Purifi cation 
of the “Mono”-
Phosphorylated 
Peptides
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   6.    Pool the  TiO 2    beads from the incubations using 100 μL 
Loading Buffer and transfer the solution to a new low-binding 
microcentrifuge tube ( see   Note 9 ).   

   7.    Vortex the solution for 10 s and then centrifuge in a table 
centrifuge to pellet the beads. Remove the supernatant.   

   8.    Wash the beads with 70–100 μL ( see   Note 10 ) Washing Buffer 
1, mix for 10 s and then centrifuge to pellet the beads.   

   9.    Wash the beads with 70–100 μL Washing Buffer 2, mix for 
10 s and then centrifuge to pellet the beads. This step is impor-
tant to remove peptides that bind to  TiO 2    in a  HILIC   mode 
( see   Note 11 ).   

   10.    Dry the beads for 5–10 min in the vacuum centrifuge or on 
the table.   

   11.    Elute the phosphopeptides with 100–200 μL Elution Buffer—
mix well and leave the solution on a shaker for 10 min to allow 
an effi cient elution.   

   12.    Centrifuge the solution for 1 min and pass the supernatant 
over a small stage tip fi lter [ 20 ] (C8 stage tip) into a new low- 
binding tube to recover the liquid without any  TiO 2    beads.   

   13.    Wash the beads with 30 μL Elution Buffer and pool the wash 
(eluate) with the eluate from the previous step.   

   14.    Elute potential bound peptides from the C8 fi lter with 5 μL 
30 % acetonitrile and pool with the eluate from  steps 12  to 
 13 .   

   15.    Lyophilize the eluted peptides or acidify the eluate with 1 μL 
formic acid per 10 μL eluate for direct cleanup of the phos-
phopeptides using RP material prior to downstream analyses 
as described for the multi-phosphorylated peptides above ( see  
Subheading  3.4 ) (e.g.,  HILIC   fractionation [ 17 ]).      

     Use GELoader tip micro-columns of ~6–10 mm or p200 pipette 
tips micro-columns (1–2 cm) depending on the amount of mate-
rial to be purifi ed. Here, it is illustrated for the p200 pipette tip 
(150 μg peptides from  HeLa   cell lysate).

    1.    Suspend Poros Oligo R3 reversed phase (RP) material in 200 μL 
100 % acetonitrile.   

   2.    Prepare a p200 pipette tip micro-column by stamping out a 
small plug of C 18  material from a 3 M Empore™ C 18  extraction 
disk and place it in the constricted end of the tip.   

   3.    Pack Poros Oligo R3 RP beads on top of the p200 stage tip 
until the size of the column is 1–2 cm.   

   4.    Load the acidifi ed phosphopeptide sample slowly onto the RP 
micro-column (~1 drop/s).   

3.4  Poros Oligo R3 
Reversed Phase (RP) 
Micro- column 
Desalting/
Concentration 
of the Sample
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   5.    Wash the RP micro-column using 60 μL RP Washing Buffer.   
   6.    Elute the phosphopeptides from the RP micro-column using 

40–60 μL RP Elution Buffer, followed by lyophilization of the 
phosphopeptides. (N.B. For  MALDI   MS analysis the peptides 
can be eluted off the GeLoader tip RP micro-column directly 
onto the MALDI target using 1 μL  DHB   solution. After crys-
tallization the sample is ready for MALDI MS analysis).   

   7.    Redissolve the lyophilized phosphopeptides in 0.5 μL 100 % 
formic acid and dilute immediately to 10 μL with UHQ water. 
The sample is then ready for  LC  -ESI-MS n  analysis.    

     For  LC  - MS/MS   analysis of purifi ed phosphopeptides a standard 
strategy as described below can be used. A typical nanoLC setup 
would include a 0.075 mm × 200 mm analytical column packed 
with 3 μm RP resin interfaced with a high resolution/mass accu-
racy mass spectrometer as described in our original paper [ 17 ]. The 
number of phosphopeptides identifi ed in the analysis can be 
increased by maximizing the resolution of the nanoLC separation 
via longer columns (e.g., 50 cm) and smaller chromatographic par-
ticle sizes (e.g., 1.9 μm). Alternatively, a two column system can be 
utilized using a 0.1 mm × 20 mm pre-column packed with RP resin 
(3–5 μm) combined with an analytical column as described above. 
A two column system is described below.

    1.    The phosphopeptides are redissolved in 0.1 %  TFA   and loaded 
onto a pre-column as described above using a μHPLC system 
(e.g., Dionex or EASY- LC  ) at a loading speed of 5 μL/min.   

   2.    The phosphopeptides are eluted directly onto the analytical col-
umn (e.g., 0.075 mm × 200 mm) using a gradient (60–120 min) 
from 0 to 35 % B-Buffer (e.g., A-Buffer: 0.1 % formic acid; 
B-Buffer: 90 % acetonitrile, 0.1 %  TFA  ) at an elution speed of 
2–300 nL/min.   

   3.    The phosphopeptides are eluted directly into a tandem mass 
spectrometer and analyzed by Data Dependent Analysis.    

   LC  -ESI- MS/MS   analysis of multi-phosphorylated peptides is 
improved by redissolving the phosphopeptides by sonication in an 
 EDTA   containing buffer prior to LC-ESI-MS/MS analysis [ 21 ]. 

 An example of the results obtained by the  SIMAC   method 
using a relatively low complexity sample consisting of tryptic pep-
tides derived from 12 standard proteins is shown in Fig.  2 . The 
Figure shows the  MALDI   MS results obtained on a Bruker Ultrafl ex 
from a direct analysis of 1 pmol of the tryptic digest (Fig.  2a ), the 
MALDI MS peptide mass map from the purifi cation of the  IMAC   
fl ow-through from 1 pmol peptide mixture using  TiO 2    chromatog-
raphy (Fig.  2b ), the MALDI MS peptide mass map of the mono-
phosphorylated peptides eluted from the IMAC material using 1 % 

3.5   μHPLC Tandem 
Mass Spectrometry 
( LC  - MS/MS  ) Analysis
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  Fig. 2    Results obtained from 1 pmol peptide mixture using the  SIMAC   strategy. ( a )  MALDI   MS peptide mass 
map of the direct analysis of the tryptic peptides. ( b ) MALDI MS peptide mass map of peptides identifi ed from 
the  IMAC   fl ow-through after further enrichment using  TiO 2    chromatography. ( c ) MALDI MS peptide mass map 
of peptides eluted from the IMAC micro-column using 1 %  TFA  . ( d ) MALDI MS peptide mass map of peptides 
eluted from the IMAC microcolumn using ammonia water (pH 11.30). The number of phosphate groups on the 
individual phosphopeptides is indicated by “#P”.  Asterisk  indicates the metastable loss of phosphoric acid       

 TFA   (Fig.  2c ) and the MALDI MS peptide mass map obtained 
from the basic elution from the IMAC material (Fig.  2d ). The 
phosphopeptides are illustrated by #P ( see   Note 12 ).

   An example of the results obtained using the present  SIMAC   
protocol for enrichment of phosphopeptides from a total of 150 μg 
peptides derived by tryptic digestion from a  HeLa   cell lysate is 
shown in Fig.  3 . The enriched phosphopeptides were separated on 
a Dionex 3000 ultimate  LC   system using a homemade RP capillary 
column (25 cm) directly into a Q-Exactive Plus ESI- MS/MS   
instrument. The peptides were separated using a 90 min gradient 
from 0 to 25 % B Buffer (90 % acetonitrile in 0.1 % formic acid). 
The MS instrument was set to isolate and fragment 12 parent ions 
per MS cycle (MS and MS/MS resolution was set to 70,000 and 
35,000 at 200  m / z , respectively; MS and MS/MS AGC target was 
1E6 and 5E4, respectively; normalized collision energy was 30; 
isolation window was 1.5 Da). Here a total of 3370 unique phos-
phopeptides were identifi ed from the 150 μg of starting material, 
using the  Proteome Discover   er   1.4.1.14 (SwissProt_2014_04 
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(20340 entries)) with an enrichment percentage of about 88 % 
phosphopeptides using  TiO 2    only ( see  Fig.  3a ). When SIMAC was 
applied to the same sample a total of 5337 unique phosphopep-
tides (enrichment percentage 89 %) could be identifi ed, whereof 
3804 and 2499 were identifi ed in the SIMAC mono and multi 
fractions, respectively. Of these, only 966 unique phosphopeptides 
were shared between the two fractions ( see  Fig.  3b ) indicating a 
good separation. When looking at the number of phosphate groups 
on the unique phosphopeptides identifi ed in each fraction a clear 
enrichment of multi-phosphorylated peptides could be seen when 
using the SIMAC procedure, as the SIMAC multi fraction con-
tained 56.5 % phosphopeptides ( see  Fig.  3d ) with 2 or more 
 phosphate groups compared to only 14 % in the mono fraction 
(Fig.  3c ) and 22 % in the TiO 2  enrichment ( see  Chapter   9    ). In total 
the SIMAC procedure resulted in the identifi cation of 31 % multi- 
phosphorylated peptides.
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  Fig. 3    Results obtained from the enrichment of phosphorylated peptides from acetone precipitated proteins 
from  HeLa   cells using  TiO 2    chromatography or  SIMAC  . ( a ) Overview of the number of unique phosphopeptides 
identifi ed in the TiO 2  and SIMAC experiments. ( b ) Venn diagram showing the overlap between the SIMAC mono 
and multi fractions. ( c ) Percentage distribution of the number of phosphate groups on the phosphopeptides 
identifi ed in the SIMAC mono fraction. ( d ) Percentage distribution of the number of phosphate groups on the 
phosphopeptides identifi ed in the SIMAC multi fraction       
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4        Notes 

     1.    It is important to obtain the highest purity of all chemicals 
used.   

   2.    All solutions should be prepared in UHQ water.   
   3.    Always start by testing the method using a model peptide mix-

ture. It is important to freshly prepare the peptide mixture as 
peptides bind to the surface of the plastic tubes in which they 
are stored. In addition, avoid transferring the peptide sample 
to different tubes to minimize adsorptive losses of the 
sample.   

   4.    The peptide mixture used for the experiment illustrated in this 
chapter contained peptides originating from tryptic digestions 
of 1 pmol of each of the 12 proteins. Experiments have shown 
that the presented method is sensitive down to the low femto-
mole level [ 11 ].   

   5.    The PhosSelect  IMAC   beads are very fragile so high speed 
mixing should be avoided in any steps.   

   6.    The sample should be diluted in  IMAC   Loading Buffer or for 
larger volume add 100 %  TFA   and 100 % acetonitrile to make 
the sample up to the IMAC Loading Buffer. The total volume 
should not exceed 300 μL.   

   7.    If you have 100 μL peptide sample, you can add 50 μL water, 
50 μL 100 %  TFA  , 800 μL acetonitrile, and 76 mg glycolic 
acid to make the sample up to the proper  TiO 2    Loading Buffer.   

   8.    The optimal amount of  TiO 2    beads to add to the sample in 
order to reduce non-specifi c binding and optimize phospho-
peptide yield is 0.6 mg TiO 2  per 100 μg of peptide starting 
material ( see  [ 17 ] for further information). This will of course 
change depending on the source of biological material used as 
TiO 2  selectively enriches other biomolecules (reviewed in 
[ 22 ]) such as sialylated glycopeptides [ 23 ] and acidic lipids 
[ 24 ] commonly found in membrane fractions.   

   9.    The transfer to a new tube is performed due to the fact that 
peptides stick to plastic and can be eluted from the plastic sur-
face in the last elution step resulting in contamination with 
non-modifi ed peptides.   

   10.    For larger scale analysis, where more  TiO 2    beads are used, 
larger volumes of the buffers should be used.   

   11.     TiO 2    is an effi cient  HILIC   material and hydrophilic peptides 
can bind to the material when loaded in high organic solvent. 
The inclusion of 5 %  TFA   and 1 M glycolic acid should pre-
vent most hydrophilic non-modifi ed peptides from binding, 
however, some can still be found in the eluates from TiO 2 . 
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Therefore in order to eliminate any binding from non- 
modifi ed hydrophilic peptides this last Washing Buffer is 
important. For membrane preparations the last washing super-
natant will contain neutral glycopeptides which can then be 
analyzed further.   

   12.    The results obtained using this protocol will differ according to 
the mass spectrometer used for the analysis of the phosphopep-
tides, not only between  MALDI   MS and ESI MS but also within 
different MALDI MS instruments, depending on laser optics, 
laser frequency, instrumental Confi guration, sensitivity, etc.         
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