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  Abstract 

   The development of baculovirus expression vector systems has accompanied a rapid expansion of our 
knowledge about the genes, their function and regulation in insect cells. Classifi cation of these viruses has 
also been refi ned as we learn more about differences in gene content between isolates, how this affects 
virus structure and their replication in insect larvae. Baculovirus gene expression occurs in an ordered 
cascade, regulated by early, late and very late gene promoters. There is now a detailed knowledge of these 
promoter elements and how they interact fi rst with host cell-encoded RNA polymerases and later with 
virus-encoded enzymes. The composition of this virus RNA polymerase is known. The virus replication 
process culminates in the very high level expression of both polyhedrin and p10 gene products in the latter 
stages of infection. It has also been realized that the insect host cell has innate defenses against baculovi-
ruses in the form of an apoptotic response to virus invasion. Baculoviruses counter this by encoding 
apoptotic-suppressors, which also appear to have a role in determining the host range of the virus. Also of 
importance to our understanding of baculovirus expression systems is how the virus can accumulate muta-
tions within genes that affect recombinant protein yield in cell culture. The summary in this chapter is not 
exhaustive, but should provide a good preparation to those wishing to use this highly successful gene 
expression system.  
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1      Introduction 

 The last 20 years have seen baculoviruses maintain a reputation for 
producing high yields of recombinant proteins in insect cells. 
Despite the perceived diffi culties of working with a virus in eukary-
otic cells, the fact that posttranslational modifi cations such as gly-
cosylation, fatty acid acylation, disulphide bond formation, and 
phosphorylation are carried out very similar to the same processes 
in mammalian cells has convinced many users of the value of bacu-
loviruses as expression vectors. Continuous development of the 
system by many groups has seen the early problems of making 
recombinant viruses a distant memory. Using baculoviruses as 
expression vectors is no longer the preserve of specialist virologists. 
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The many commercial kits now available have brought the system 
within the capabilities of any competent molecular biologist. Most 
of these kits are based on the prototype member of the Baculoviridae, 
namely  Autographa californica  multiple nucleopolyhedrovirus 
(AcMNPV) and utilize the highly expressed polyhedrin gene pro-
moter. The simplicity of culturing insect cells such as  Spodoptera 
frugiperda  or  Trichoplusia ni  makes scale up of recombinant pro-
tein production feasible for most laboratories. The problems expe-
rienced with spinner or suspension cultures where shear forces 
limited viability have largely been solved with the introduction of 
serum-free media allied with antifoam and protective (e.g., 
 Pluronic ®  F-68  ) agents. The exploitation of baculoviruses as bio-
safe insecticides has also benefi ted from the work on expression 
vectors and fundamental studies on virus gene function. While 
most baculovirus expression vectors lack the original polyhedrin 
gene required for making occluded viruses, recombinant virus 
insecticides can preserve this process by utilizing nonessential 
regions of the virus genome for the insertion of foreign genes 
encoding insecticidal proteins.  

2    Classifi cation 

 The Baculoviridae are a family of DNA viruses with circular dou-
ble stranded genomes that only infect arthropods. They are char-
acterized by their ability to occlude virions in a crystalline protein 
matrix to form either polyhedra or granules. Viruses forming 
polyhedra are known as nucleopolyhedroviruses (NPVs) and 
those forming granules as granuloviruses. This subdivision is 
based on a number of criteria, including occlusion body mor-
phology and the mechanism by which nucleocapsids are envel-
oped in infected cells [ 1 ]. Granuloviruses produce small occlusion 
bodies ( OBs  ) (0.16 − 0.30 μm × 0.30 − 0.50 μm) normally con-
taining one or occasionally two virions encapsulated in a protein 
called granulin. Nucleopolyhedroviruses produce larger occlu-
sion bodies (0.5–1.5 μm in diameter) composed of polyhedrin 
protein, which contain many virions. The family is divided into 
four genera that only infect arthropods. The Alphabaculoviruses 
and Betabaculoviruses comprise nucleopolyhedroviruses (NPVs) 
and granuloviruses (GVs) that are isolated from Lepidoptera 
(butterfl ies and moths). Figure  1  illustrates an example of each of 
these genera. Deltabaculoviruses and Gammabaculoviruses com-
prise NPVs and infect dipteran (fl ies) and hymenopteran (sawfl ies) 
species, respectively. The NPVs pathogenic for members of the 
order Lepidoptera have been further subdivided into groups I 
and II based on molecular phylogenies [ 1 ,  2 ]. An occluded virus 
also infects the pink shrimp  Penaeus monodon  [ 3 – 5 ]. Partial 
sequence analysis showed that it encodes proteins similar to those 
produced by baculoviruses.
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3       Baculovirus Structure 

 The double stranded, supercoiled, circular DNA genome of 
AcMNPV is highly condensed within a nucleocapsid. This con-
densed packaging is facilitated by the core protein p6. 9  , a 54 
amino acid protein rich in arginine [ 6 ]. A major protein of the 
capsid, vp39, has also been identifi ed. This 39 kDa protein has 
been found to be distributed randomly over the surface of the 
nucleocapsid [ 7 ]. 

 There are two types of baculovirus progeny, budded virus 
( BV  ) and occlusion-derived virus ( ODV  ), which are genetically 
identical [ 8 ]. However, there are differences in morphology, tim-
ing and cellular site of maturation, structural proteins, source of 
viral envelopes, antigenicity, and infectivity [ 9 – 13 ]. 

  BV   particles possess spike-like structures known as peplomers, 
composed of the glycoprotein GP64 for group I NPVs, at one end 
of the virion [ 14 ]. The GP64 protein is incorporated throughout 
the virus envelope, albeit at lower concentrations than at the 
peplomers [ 14 ]. During infection, GP64 localizes to discrete areas 
of the plasma membrane at which points budding of virions takes 
place [ 15 ]. Thus, as BV particles bud from the plasma membrane 
they acquire a plasma membrane-derived envelope containing the 
GP64 glycoprotein. 

 Granuloviruses and group II NPVs lack GP64 but instead 
encode a homolog of another envelope protein, LD130 [ 16 ]. 
While the LD130-encoding baculoviruses do not contain  gp64  

  Fig. 1    Electronmicrographs of  Autographa californica  multiple nucleopolyhedrovirus (AcMNPV) polyhedron ( a ) 
and  Plodia interpunctella  granulovirus (PiGV) granules ( b ). Note the multiple virus particles (vps) in longitudinal 
or cross section in AcMNPV, whereas in PiGV each granule contains a single virus particle (vp). Virus particles 
are occluded within polyhedrin protein (P) or granulin protein (G).  Polyhedra   are bounded by an envelo pe (PE  ), 
which contains protein and carbohydrate. Scale bar is 200 nM       
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homologs, those encoding GP64 also contain a version of LD130. 
The OpMNPV LD130 homolog was found to be a glycosylated 
protein associated with  BV   particles and the plasma membrane of 
cells at similar locations as the GP64 protein [ 17 ]. 

 One of the major differences between  BV   and  ODV   is that the 
latter do not contain  GP64   or LD130. Instead a virus-encoded 
envelope protein  P74   is associated with the outside of the virus 
[ 18 ,  19 ]. The presence of P74 on the outside of the virion enve-
lope suggests that it may play a role in ODV attachment to midgut 
cells. Another structural protein of the ODV envelope of  Spodoptera 
littoralis  (Spli) NPV has been identifi ed. The gene encoding this 
protein was termed  per os  infectivity factor (  pif   ) and is homologous 
to ORF 119 of AcMNPV [ 20 ]. A third gene product inferred to 
be a structural protein is encoded by  pif-2 , which was identifi ed in 
 Spodoptera exigua  NPV and is present in AcMNPV as ORF22 [ 21 ]. 
Recent studies have also identifi ed  pif -4 [ 22 ] and  pif -5 [ 23 ,  24 ] as 
additional envelope proteins. The PIFs form a complex on the sur-
face of ODV [ 25 ]. 

 Other  ODV  -specifi c envelope proteins include  ODV-E25   
[ 26 ],  ODV-E66   [ 27 ],  ODV-E56   [ 28 ],  ODV-E18  , and  ODV-E35   
[ 29 ]. These proteins, along with P74, have been found to associate 
with intranuclear microvesicle structures, which appear in the 
nucleus during infection [ 29 ,  30 ]. This association has led to the 
suggestion that these microvesicles play a role in ODV envelop-
ment [ 27 ,  28 ]. Invagination of the inner nuclear membrane 
observed during baculovirus infection has raised the possibility 
that it may act as the source of the microvesicles [ 31 – 33 ]. 

 Another  ODV  -specifi c protein,  GP41  , has been identifi ed as 
an O-linked glycoprotein, predicted to localize to the region 
between the virus envelope and the nucleocapsid, an area referred 
to as the tegument [ 34 ]. Although GP41 is not present in the bud-
ded form of the virus, it has been shown to be required for release 
of nucleocapsids from the nucleus during  BV   production [ 35 ]. An 
additional protein,  ODV-EC27  , has been identifi ed as a structural 
protein of the ODV envelope and capsid, and may be present in a 
modifi ed form in BV [ 29 ]. This protein may be a cyclin homolog, 
involved in host cell cycle arrest during baculovirus infection [ 36 ]. 
An envelope protein of both BV and ODV has also been identifi ed 
(BV/ODV-E26) and found to be associated with intranuclear 
microvesicles [ 37 ]. A seminal study of protein composition of 
ODV was conducted by using a combination of techniques [ 38 ]. 
Screening expression libraries with antibodies generated to ODV 
or BV and mass spectroscopic (MS) analysis of ODV protein 
extracts identifi ed up to 44 potential components unique to 
ODV. This topic was revisited recently when the protein content of 
BV was reexamined [ 39 ]. 

 The major component of the NPV occlusion body is the 
29 kDa polyhedrin protein. While the protein is thought to be small 
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enough to diffuse through nuclear pores, a nuclear localization 
signal (KRKK) has been identifi ed at amino acids 32–35 [ 40 ]. 
Another region of the protein (amino acids 19–110) is required for 
assembly into large occlusion-like particles [ 40 ]. The polyhedrin 
protein is resistant to solubilization except under strongly alkaline 
conditions and functions to shield virions from physical and bio-
chemical decay while outside the insect host, as well as protecting 
against proteolytic decay during late stages of infection [ 41 ]. 

 Surrounding the polyhedral matrix of a mature occlusion body 
is the polyhedron envelo pe (PE  ), also known as the polyhedron 
membrane or calyx. The PE was originally reported to be com-
posed of carbohydrate [ 42 ]; however, a 34 kDa phosphorylated 
protein (PP34) has since been found to be covalently bound to the 
PE of AcMNPV via a thiol linkage [ 43 ]. The polyhedron envelope 
is thought to increase the stability of the occlusion body in the 
environment and has been found to protect occlusion bodies from 
physical stress [ 43 ,  44 ]. A recombinant virus unable to produce 
PP34 was found to be defi cient in polyhedron envelope formation 
and electron dense spacers, which are thought to be precursors of 
the envelope structure [ 44 ,  45 ]. 

 Both electron dense spacers and the polyhedron envelope have 
been found in association with fi brillar structures composed of the 
 P10 protein   [ 44 ,  46 ]. This protein, like polyhedrin, is produced in 
large quantities during the occlusion phase. The association of the 
polyhedron envelope with the P10-containing fi brillar structures 
suggests a role for the protein in assembly and proper association 
of the polyhedron envelope around the occlusion body matrix 
[ 46 ]. Comparative analysis of P10 protein sequences revealed that 
they appear to have an amphipathic alpha-helical terminus that 
condenses as coiled-coil multimers [ 47 ]. The condensation of P10 
monomers to coiled-coil multimers may be a step leading to fi brous 
body formation in virus-infected cells.  

4    Baculovirus Replication In Vivo 

 Within a cell, baculoviruses have a biphasic cycle of replication pro-
ducing two structurally distinct viral phenotypes responsible for 
specialized functions within the insect host. Occlusion-derived 
virus ( ODV  ) initiates the primary infection in the gut epithelial 
cells, while budded virus ( BV  ) is responsible for secondary rounds 
of infection in the insect host. Infection begins with ingestion of 
occlusion bodies by a suitable insect host larval stage, followed by 
dissolution of the occlusion body matrix in the alkaline midgut. 
Occlusion-derived virus is released from dissolved occlusion bod-
ies, passes through the peritrophic membrane of the midgut and 
infects the columnar epithelial cells that border the gut lumen. 
It has been suggested that entry occurs by direct membrane fusion, 
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involving interaction between virion surface proteins and midgut 
cell surface proteins [ 48 ]. Removal of  P74  , PIF1 or PIF2 from 
virus particles by deletion of the appropriate gene has been dem-
onstrated to prevent infection of insect larvae via the oral route 
[ 18 – 21 ]. Deletion of  pifs -3-5 has a similar effect [ 22 – 24 ,  49 ]. 
Midgut regenerative cells have also been found to be sites of pri-
mary infection, albeit at a lower frequency than columnar cells 
[ 50 ]. After replication in the epithelial cells, virus buds in a polar 
manner, exiting the basal membrane into the hemolymph, thereby 
allowing the infection to spread throughout the insect host. Early 
synthesis of the BV envelope fusion protein GP64 seems to allow a 
“pass through” strategy for the virus, whereby uncoated virus 
nucleocapsids can rapidly exit the newly infected midgut cells to 
accelerate the onset of systemic infections [ 51 ]. The insect tracheal 
system has been identifi ed as the main route used by the virus to 
spread from one tissue to another [ 52 ]. Effi cient BV formation in 
AcMNPV requires Ac92 and Ac79 [ 53 ,  54 ]. 

 In addition to enlargement of the nucleus upon baculovirus 
infection, cells become rounded due to rearrangement of the cyto-
skeleton. A distinct structure termed the virogenic stroma develops 
in the nucleus. This is a chromatin-like network of electron-dense 
fi laments. It is the predominant structure in the nucleus from 8 to 
48 h postinfection (h pi) [ 55 ], and is thought to be the site of viral 
DNA replication and late gene transcription, as well as nucleocap-
sid formation [ 56 ]. Once assembled, nucleocapsids are released 
from the nucleus, gaining a nuclear membrane-derived envelope 
that is subsequently lost during transit through the cytoplasm. In 
the case of group I NPVs, the envelope glycoprotein GP64 local-
izes to discrete areas of the plasma membrane during infection and 
it is at these sites that budding of nucleocapsids takes place [ 15 ]. 
The  BV   envelope is therefore derived from the plasma membrane 
and contains the viral glycoprotein GP64. Group II NPVs, and 
GVs, encode homologs of the envelope fusion (F) protein LD130 
[ 16 ], which associate with BV particles, and the plasma membrane 
of infected cells, at similar positions to GP64 in group I NPV- 
infected cells [ 17 ]. These F proteins are functionally analogous to 
GP64 since they can restore infectivity to mutant viruses lacking 
 gp64  [ 57 ]. GP64 is essential for cell-to-cell BV transmission, since 
AcMNPV particles containing the protein, but not those lacking 
the protein, are able to disseminate virus to other cells [ 58 ]. 

 Later in infection (~24 h pi),  BV   production is reduced and 
nucleocapsids are transported to sites of intranuclear envelopment 
and incorporation into  OBs   [ 44 ]. The source of the  ODV   enve-
lope is unclear. A number of ODV envelope proteins have been 
found to associate with intranuclear microvesicle structures that 
appear in the nucleus during infection, thereby suggesting they 
may be the source of the envelope [ 27 – 29 ]. 
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  Occlusion bodies   accumulate until the terminal stages of infection 
when the insect liquefi es and the occlusion bodies are released 
into the environment. Liquefaction appears to be caused by the 
production of both virus-encoded chitinase and cathepsin genes 
[ 59 – 61 ] and may also involve the  fp25k  product [ 62 ]. Deletion of 
the cathepsin gene from   Bombyx mori    NPV reduced recombinant 
protein degradation in virus-infected insects, presumably because 
of the reduction in proteinase activity [ 63 ]. Just prior to death 
many Lepidopteran species crawl to the top of the vegetation on 
which they were feeding and hang from this elevated position, 
facilitating dissemination of the virus as the cadaver decomposes 
[ 64 ]. This enhanced locomotory activity (ELA) may well be virus- 
induced, since insects infected with a   B. mori    NPV mutant lacking 
the protein tyrosine phosphatase gene showed dramatically reduced 
ELA before death after about 5 days [ 65 ]. However, removal of 
ecdysteroid glucosyltransferase gene (  egt   ) from a baculovirus was 
found to reduce vertical movement of virus-infected insects on 
plants [ 66 ]. Occlusion bodies serve as survival vehicles for the virus 
when outside the insect host, as well as acting as dispersal agents 
between individual insects. They may also protect the virus against 
proteolytic decay during the end stages of infection [ 41 ].  

5    Baculovirus Gene Expression and Replication 

 The complete sequence of AcMNPV clone 6 has been determined. 
The original analysis of the 133,894 bp genome suggested that 
the virus encodes 154 methionine-initiated, potentially expressed 
open reading frames (ORFs) of 150 nucleotides or more [ 67 ]. 
However, resequencing of various regions of the genome and 
comparison with other virus isolates has corrected a number of 
errors and suggests that AcMNPV may only encode 150 genes. 
Other baculoviruses have also been sequenced. An up-to-date 
summary of completed genomes is available from the National 
Center for Biotechnology Information (NCBI). Baculovirus gene 
expression is divided into four temporal phases: immediate-early, 
delayed- early, late, and very late, although the fi rst two are often 
considered as one. Immediate-early genes are distinguished from 
delayed-early by their expression in the absence of  de novo  protein 
synthesis. Expression of delayed-early genes, however, appears to 
be  dependent on the presence of immediate-early gene products. 
 Transcription   of late genes occurs concurrently with the onset of 
viral DNA replication at about 6 h pi. Very late gene transcription 
begins at about 20 h pi and involves high levels of expression from 
the  polyhedrin   and  p10  promoters, two proteins involved in the 
occlusion of virions. While levels of late gene mRNA transcripts 
decrease at very late times in infection, very late polyhedrin and 
 p10    gene   transcript levels continue to remain high [ 68 ]. 
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 Analysis of the AcMNPV genome has revealed that RNA 
transcripts are not clustered according to their temporal expres-
sion. Instead, early and late genes are found distributed through-
out the genome. All AcMNPV RNAs are both 5′ methyl capped 
and 3′ polyadenylated [ 69 ,  70 ]. Only one transcript, which is that 
of the immediate-early gene  ie-1 , is known to be spliced [ 71 ]. 
However, transcriptional units involving overlapping RNAs have 
been identifi ed in the AcMNPV genome, which may provide an 
alternative means of introducing a variety of expression [ 72 ,  73 ]. 
Overlapping transcripts composed of early and late RNAs with a 
common 3′ end have been identifi ed in a number of regions [ 72 , 
 73 ]. The  Hin dIII-K fragment of the AcMNPV genome produces 
fi ve overlapping RNAs, two immediate-early, one delayed-early, 
and two late gene transcripts, transcribed in the same direction and 
terminating at a common 3′ end [ 73 ]. This arrangement has been 
implicated in the temporal regulation of these genes. It has been 
suggested that the longer, later 5′ extended transcripts serve to 
repress transcription of earlier genes, located downstream, proba-
bly by means of promoter occlusion, as well as acting as mRNAs 
for late viral products [ 73 ]. 

 The  polyhedrin   and  p10    gene  s are also transcribed as several 
overlapping RNAs. In the case of these two genes, however, tran-
scripts have common 5' ends, with longer RNAs being derived 
from read through of termination signals at the 3′ end of the 
smaller RNAs [ 72 – 74 ]. Four overlapping transcripts were mapped 
to the p10 gene region and were found to comprise two sets: a late 
phase pair of transcripts (1100 and 1500 bases) sharing a common 
5′ end that are most abundant at 12 h pi and a very late phase pair 
(750 and 2500 bases) that also have a common 5′ end and are 
most abundant at 24 h pi [ 74 ].  Promoter   occlusion may also be 
operating in this region. Synthesis of earlier transcripts may prevent 
 RNA polymerase   initiation at the  p10  promoter located down-
stream. At later times, when transcription from upstream promot-
ers has ceased, RNA polymerase may be able to initiate at the 
downstream  p10  promoter [ 74 ]. 

   Baculovirus early genes are transcribed before the onset of viral 
DNA replication. Expression of many early genes begins 
 immediately after cell infection, with some transcripts, for exam-
ple the anti-apoptotic  p35 gene   early mRNAs, appearing within 
the fi rst 2 h [ 75 ]. Genes in this phase of the virus lifecycle are 
transcribed by the host  RNA polymerase   II, as demonstrated by 
the fact that early transcription is sensitive to α-amanitin [ 76 ], a 
compound that binds to and inactivates the large subunit of RNA 
polymerase II. 

   Most early baculovirus promoters contain a TATA element which, as 
well as regulating the rate of transcription initiation, also establishes 

5.1  Early Gene 
Expression

5.1.1   Promoter   Elements
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the position of the RNA start site 25–30 bases downstream [ 71 , 
 77 – 79 ]. An initiator motif (ATCA(G/T)T(C/T)), which overlaps 
the RNA start site, has also been identifi ed in many early promoters. 
The most conserved of these is the CAGT motif that has been found 
to contribute to basal promoter activity, as well as being suffi cient in 
determining the position of the RNA start site in the absence of a 
TATA element [ 79 – 82 ]. In composite promoters, those containing 
both CAGT and TATA motifs, cooperation is thought to occur 
between the two to stabilize host transcription machinery or enhance 
recruitment of required factors [ 83 ]. 

 The early promoter of  dnapol , which encodes the viral DNA 
polymerase, does not contain a TATA or CAGT motif. Early tran-
scription from this promoter initiates from multiple sites including 
the sequence CGTGC [ 84 ]. This sequence is also found at the 
start of  p143  [ 85 ]. The signifi cance of this unusual promoter motif 
is unknown, although it is thought that these promoters may be 
more responsive to viral transactivators during infection [ 83 ]. 

 Another  cis -acting element identifi ed in early promoters is a 
downstream activating region ( DAR  ). A DAR has been identifi ed 
in the 5′ noncoding regions of the immediate-early   ie-1        gene   [ 84 ]. 
This element, located between positions +11 and +24, is necessary 
for optimal expression of  ie-1  early in infection [ 81 ]. The core 
DAR sequence (A/T)CACNG has also been identifi ed in the 5′ 
noncoding region of the envelope glycoprotein encoding gene 
 gp64 , and has been found to stimulate the rate of early  gp64  tran-
scription [ 81 ,  86 ]. 

 Many early baculovirus promoters have also been found to 
possess an upstream activating region ( UAR  ), consisting of one or 
more  cis -acting DNA elements that affect the level of transcrip-
tion, but not the position of the RNA start site [ 78 ,  79 ,  87 ]. The 
 ie-1  UAR has been found to increase promoter activity twofold 
early in Sf-21 cell infection [ 81 ], while the  p35  UAR was shown 
to be responsible for a 10- to 15-fold enhancement of basal tran-
scription [ 78 ]. A number of distinct UAR elements have been 
identifi ed. The fi rst consists of GC-rich sequences and, as such, is 
termed the GC motif. GC motifs have been found in the UARs of 
a number of early baculovirus promoters including those of  p35  
and  39K , a gene encoding a protein (pp31) associated with the 
virogenic stroma [ 78 ,  79 ,  88 ]. The CGT motif consists of the 
consensus sequence A(A/T)CGT(G/T) and has been identifi ed 
in the UARs of  p35 ,  39K  and the helicase encoding gene  p143  
[ 78 ,  79 ,  85 ]. A third UAR motif, referred to as the GATA ele-
ment, has also been identifi ed in the early   gp64     promoter   and in 
that of the immediate- early  pe-38  [ 86 ,  89 ].  

   The AcMNPV genome contains homologous regions ( hrs ), rich in 
 Eco RI sites, distributed throughout the genome [ 90 ]. Eight of 
these regions ( hr 1,  hr 1a,  hr 2,  hr 3,  hr 4a,  hr 4b,  hr 4c,  hr 5) have been 

5.1.2  Transcriptional 
Enhancers

Baculovirus Molecular Biology



34

identifi ed and were found to consist of two to eight copies of a 
28 bp imperfect palindromic repeat (28-mer) bisected by an 
 Eco RI site and fl anked on each side by direct repeats of about 
20 bp [ 67 ,  91 ]. Several early viral promoters, including those of 
 39K , the immediate-early gene   ie-2    (formerly  ie-n ),  p143  and  p35 , 
have been shown to be stimulated by  cis -linkage to  hrs  [ 80 ,  85 ,  87 , 
 92 – 94 ].  Promoter   enhancement by  hrs  occurs in a position- and 
orientation- independent manner [ 93 ] and this enhancement is 
further augmented by the immediate-early  IE-1 protein   [ 91 ], a 
viral transactivator which has been found to bind to  hr  sequences 
[ 94 – 96 ]. The  hr  28-mer is the minimal sequence required for IE-1 
mediated promoter enhancement [ 92 – 94 ]. The IE-1 protein binds 
to the 28-mer as a dimer, interacting with the two palindromic half-
sites, both of which are required for  hr  enhancer activity [ 93 – 96 ]. 
Oligomerization of IE-1 is thought to occur in the cytoplasm, 
before localization to the nucleus, binding to  hr  sequences, and 
subsequent enhancement of promoter activity through interaction 
with components of the basal transcription complex [ 95 ,  97 ].  

   A number of transactivational regulators of baculovirus early gene 
promoters have been identifi ed. The immediate-early gene,  ie-1,  is 
thought to be the principal transregulator of early baculovirus 
expression and was originally identifi ed due to its  trans -acting 
regulatory role in  39K  expression [ 92 ]. As well as stimulating 
expression of genes such as  p35 ,  p143 , and  39K  [ 85 ,  87 ,  92 ,  98 ], 
IE-1 is capable of stimulating its own promoter [ 99 ]. The 
N-terminal region of the 582 residue  IE-1 protein   has been found 
to contain a transactivation domain, while the C-terminal of the 
protein contains a DNA binding domain [ 95 ]. A small basic 
domain between residues 537 and 538 has been identifi ed as a 
nuclear localization signal, which functions upon dimerization of 
IE-1 [ 97 ]. Transcripts of  ie-1  give rise to both spliced and unspliced 
RNAs. Unspliced transcripts encode IE-1 itself, while spliced 
transcripts encode another immediate-early transregulator, IE- 0  , 
identical to IE-1 except for 54 additional amino acids at its 
N-terminus [ 71 ,  99 ]. While IE-0 is expressed only during the 
early phase of infection, IE-1 RNA is expressed in both the early 
and late phases [ 71 ]. Transient expression assays have shown IE-1 
to have a negative regulatory effect on  ie-   0    promoter expression, 
while IE-0 transactivates the  ie-1  promoter [ 99 ]. Deletion of  ie-
1 / ie-0  from the virus genome using an  Escherichia coli -based sys-
tem prevented virus replication in insect cells, although restoration 
of the mutant with either gene largely restored production of 
infectious virus progeny [ 100 ]. 

 The transcriptional regulator  IE-2   indirectly stimulates expres-
sion from promoters dependent on IE-1 for transactivation, by 
increasing transcription from the  ie-1  promoter. The protein has 
been shown to be capable of enhancing IE-1 transactivation of both 

5.1.3  Transactivational 
Regulators
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the  p143  and  39K  promoters [ 85 ,  101 ]. In addition to enhancing 
IE-1 expression, IE-2 stimulates expression of IE-0 in transient 
assays, as well as auto-regulating its own expression [ 80 ]. Like 
IE-0 expression, IE-2 regulation has been shown to be down- 
regulated by IE-1 [ 102 ]. Another transactivational regulator, 
encoded by  orf121 , has been shown to stimulate the  ie-1  promoter 
in a similar manner to IE-2 in transient assays [ 103 ]. 

 The immediate-early gene  pe-38  encodes a 38 kDa protein, 
which also acts as an early transregulator. The p143 gene promoter 
is transactivated by  PE  -38, and this transactivation has been found 
to be augmented by IE-2 [ 85 ]. However, the delayed-early  39K  
promoter was not stimulated by PE-38 [ 85 ], suggesting that 
PE-38 has a restricted transactivation range compared to IE-1, 
which is capable of stimulating both promoters [ 85 ,  92 ]. 

 Transcripts of  ie-   0   ,  ie-   2    and  pe-38  are expressed during the early 
phase of infection, while  ie-1  RNAs are expressed during the early 
and late phases. The fact that IE-1 down-regulates expression of 
both IE-0 and IE-2 in transient assays suggests that it may function 
to shut off immediate-early gene expression during the late phase 
of infection [ 99 ,  102 ], while IE-1 stimulation of its own promoter 
suggests that it positively regulates its own expression during infec-
tion [ 99 ]. Baculovirus  pe-38  is transactivated by IE-1 when both 
are transfected into mammalian BHK-21 cells [ 104 ].   

   As one of the fi rst viral families found to be capable of regulating 
host apoptotic pathways, the baculoviruses have become impor-
tant tools in the study of apoptosis [ 105 ,  106 ].  Apoptosis   may 
have evolved to remove unwanted cells in the development of an 
organism but has been adapted as an antiviral defense mechanism. 
Members of the  Baculoviridae  encode a number of important 
apoptotic suppressors. The study of the mechanism of action of 
these proteins in baculovirus-infected insect cells has revealed 
important information about conserved points in the cell death 
pathway. Additional information about the use of baculoviruses in 
the study of apoptosis can be found in Chapter   25     of this book. 

 AcMNPV infection of Sf-21 cells induces apoptosis, thereby 
resulting in the activation of the novel insect caspase SF-caspase-1, 
an effector caspase found to have sequence similarity to human 
caspase-3,-6, and-7 [ 107 ]. Expression of the AcMNPV anti- 
apoptotic  p35 gene   blocks apoptosis allowing replication of the 
virus to proceed [ 105 ]. The specifi c factors that activate the cell 
death pathway in AcMNPV-infected Sf-21 cells are unclear. While 
budded virus binding alone is not suffi cient to induce apoptosis, 
transient expression of the  IE-1 protein   has been found to induce 
cell death in Sf-21 cells [ 108 ]. Cell death induced by IE-1 is fur-
ther enhanced by  pe-38  in transient assays, although the precise 
mechanism by which this augmentation takes place remains 
unclear [ 109 ]. 

5.2  Baculovirus 
and  Apoptosis  
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 Although some induction of apoptosis occurs upon IE-1 
expression, viral DNA replication is required for the full apoptotic 
response [ 110 ,  111 ]. This is supported by the fi nding that the tim-
ing of DNA synthesis coincides with activation of SF-caspase-1 and 
the occurrence of the fi rst morphological signs of apoptosis, such 
as cell membrane blebbing [ 110 ]. It is possible that DNA synthesis 
induces apoptosis indirectly by promoting the onset of late gene 
expression. Alternatively, viral DNA replication may activate apop-
tosis directly by damaging cellular DNA or disturbing the insect 
cell cycle. 

 The baculovirus anti-apoptotic  p35 gene   was fi rst identifi ed 
during characterization of an AcMNPV spontaneous mutant. 
The mutant, termed the annihilator (vAcAnh), was found to cause 
premature death in  S. frugiperda  ( Sf-21  ) cells, but not in  T. ni  
( Tn- 368    ) cells [ 105 ]. Infection of Sf-21 cells with wild type 
AcMNPV causes transient plasma membrane blebbing at approx-
imately 12 h pi [ 105 ]. A similar effect was observed with vAcAnh 
infection of Sf-21 cells. However, while this blebbing disappeared 
in the wild type infection, it was found to intensify with the 
mutant infection, thereby resulting in disintegration of cells into 
apoptotic bodies [ 105 ]. Cell blebbing was not observed in  T. ni  
cells infected with either the wild type virus or vAcAnh, allowing 
amplifi cation of the mutant in this cell line [ 105 ]. Annihilator 
mutant-infected Sf-21 cells also exhibited a number of other features 
of apoptosis, including nuclear condensation, intact mitochondria 
retention until late in the apoptotic process, and internucleosomal 
cleavage of cellular DNA beginning between 6 and 12 h pi [ 105 ]. 
A deletion in the p35 gene, located in the  Eco RI-S fragment of 
the AcMNPV genome, was subsequently identifi ed as being 
responsible for the annihilator mutant phenotype [ 105 ]. The p35 
gene is transcribed from a promoter containing both early and 
late start sites, although it is predominantly transcribed as an 
early gene, with transcripts detectable within the fi rst 2 h of infec-
tion [ 75 ,  78 ,  87 ]. The gene encodes a 299 amino acid protein 
with no recognizable sequence motifs. 

 Another class of anti-apoptotic genes, the inhibitor of apopto-
sis ( iap ) genes, has also been identifi ed. Baculovirus IAP proteins 
block apoptosis in Sf-21 cells induced by a number of different 
stimuli other than baculoviral infection, including treatment with 
apoptosis inducing agents such as actinomycin D, cycloheximide, 
tumor necrosis factor α and UV light [ 112 ]. A  Cydia pomonella  
granulovirus (CpGV) iap gene product, Cp-IAP-3, was the fi rst 
IAP protein to be identifi ed and confi rmed to have anti-apoptotic 
activity. This Cp-iap-3 gene was initially identifi ed during a genetic 
screen for genes that could complement the absence of p35 in 
annihilator mutant-infected Sf-21 cells. Cp-IAP-3 is expressed 
both early and late in infection from distinct transcription start 
sites and has been found to localize in the cytoplasm, with no 
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IAP-3 detectable in the nuclei of infected cells [ 113 ]. Five iap 
genes have been recognized: iap-1 is found in Group I NPVs, 
iap-2 occurs in both Group I and II NPVs, iap-3 is encoded by 
Group I, II, GVs and hymenopteran NPVs, whereas iap-4 is pres-
ent in a few Group I and II NPVs and iap-5 occurring solely in 
GVs [ 114 ]. 

 A characteristic of all members of the IAP family is the presence 
of 1–3 copies of an imperfect 70 amino acid repeat called a 
Baculovirus IAP Repeat (BIR) at the N-terminus of the protein 
[ 106 ]. Baculoviral IAPs, and several cellular IAPs, also contain a 
carboxy terminal RING fi nger (zinc-like-fi nger) motif. Both BIR 
and RING domains are thought to be involved in protein–protein 
interactions and are essential for inhibition of apoptosis, with the 
BIRs having been implicated directly in the binding and inhibition 
of caspases [ 115 ]. The mechanism by which baculovirus IAPs block 
apoptosis is distinct from that of P35. While P35 is capable of 
directly interacting with and inhibiting the active caspase, IAP acts 
upstream of this by inhibiting maturation of the procaspase [ 116 ].  

   The homologous regions ( hrs ), identifi ed as enhancers of early gene 
expression, have also been proposed as origins of viral DNA replica-
tion [ 90 ]. Evidence for this role was obtained through assays of 
transient replication, which have shown plasmids containing  hrs  to 
be capable of AcMNPV dependent replication when these were 
used to transfect Sf-21 cells [ 117 ]. As with early promoter enhance-
ment, a single 28-mer is suffi cient to support plasmid replication 
[ 94 ]. However, deletion mutagenesis of  hr5 , which contains six pal-
indromes, revealed the effi ciency of replication from individual  hrs  
to be dependent on the number of palindromes presents [ 118 ]. An 
AcMNPV non- hr  containing origin has also been identifi ed in the 
 Hin dIII-K fragment of the genome [ 117 ]. A circular topology has 
been found to be a requirement for replication of origin- containing 
plasmids, suggesting the mechanism of baculovirus DNA replica-
tion involves a theta or rolling circle intermediate [ 117 ]. 

 Six genes, encoding P143 (DNA helicase), DNA polymerase 
[ 119 ], IE-1, late expression factor-1 (LEF-1) (primase), LEF-2 
(primase associated protein) [ 120 ], and LEF-3, (single-stranded 
DNA binding protein) [ 121 ,  122 ] have been found to be essential 
for transient DNA replication [ 123 ]. In addition,  lef-11  was 
reported to be essential for AcMNPV replication in Sf-9 cells [ 124 ]. 
DNA-independent ATPase activity has been associated with the 
DNA helicase of  Trichoplusia ni  granulovirus [ 125 ]. Deletion of 
the DNA polymerase gene from the virus genome abrogates virus 
replication [ 126 ]. LEF-2 is a capsid protein not required for initia-
tion of DNA replication but is necessary for amplifi cation [ 127 ]. 

 Genes encoding P35, IE-2,  PE  -38 and LEF-7 are thought to 
play a stimulatory role in DNA replication [ 123 ,  128 ]. The stimu-
latory effect of the anti-apoptotic   p35  gene   in transient assays is 
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thought to be largely due to its role in preventing premature cell 
death, although there is evidence suggesting that P35 may also be 
involved in early gene regulation [ 98 ]. The  pe-38  gene product has 
been seen to play a role in the activation of expression of the bacu-
lovirus helicase homolog P143, while IE-2 stimulates  pe-38  and 
 ie-1  expression [ 85 ,  129 ]. Stimulation of viral DNA replication by 
LEF-7 was observed [ 128 ] and this protein has been found to 
contain two single stranded binding protein (SSB) motifs. 

 Baculovirus DNA replication is associated with distinct foci in 
the nuclei of infected cells [ 130 ]. It was found that IE- 2  , LEF-3 
and an additional protein thought to play a role in AcMNPV rep-
lication, termed DNA binding protein (DBP), colocalized with 
centers of viral DNA replication within the nucleus [ 130 ]. The 
importance of LEF-3 in DNA replication is further underlined by 
its involvement with viral helicase and polymerase. The protein 
interacts with P143 and is required for nuclear localization of the 
helicase [ 131 ,  132 ]. It has also been found to play a role in enhanc-
ing the strand displacement activity of DNA polymerase [ 119 ]. 
Interaction between LEF-1 and LEF-2 has been observed, and is 
thought to be required for DNA replication [ 133 ,  134 ]. The IE-1, 
LEF-3 and P143 products interact with DNA in vivo, as demon-
strated by formaldehyde cross linking studies [ 135 ]. Deletion of 
very late factor 1 (vlf1) reduces DNA replication to a third of nor-
mal levels and no budded virus is produced [ 136 ]. Virus DNA 
levels double every 1.7 h from 6 h pi until about 20 h pi [ 137 ]. 
By this point each cell contains about 84,000 genomes.  

     The  RNA polymerase   responsible for transcription of late and very 
late baculovirus genes is encoded by the virus itself [ 138 ]. This viral 
polymerase is α-amanitin-resistant and unable to transcribe from 
early gene promoters [ 139 ]. The products of four lef genes,  lef-8 , 
 lef-4 ,  lef-9  and  p47 , have been identifi ed as components of the 
AcMNPV RNA polymerase [ 138 ]. The LEF-4 has guanylytransfer-
ase activity [ 140 ] and RNA 5′ triphosphatase and nucleoside tri-
phosphatase activity [ 141 ]. Genes encoding each of the RNA 
polymerase subunits have been shown to be necessary for late and 
very late gene expression in transient expression assays [ 128 ,  142 , 
 143 ]. Studies on temperature sensitive mutants had previously 
identifi ed similar roles for p47 and LEF-4 in late gene transcription, 
suggesting them to be members of the same protein complex [ 144 ]. 
Pairwise interactions between LEF-9 and P47, LEF-4 and P47, and 
LEF-8 and P47 have been demonstrated, but interactions between 
LEF-4 and LEF-8 do not occur unless P47 is present [ 145 ]. 

 The viral  RNA polymerase   is thought to carry out both 5′ 
methyl capping and 3′ polyadenylation of late and very late 
transcripts [ 140 ,  141 ,  146 ]. The RNA triphosphate cleaves the 
5′-triphosphate from primary transcript termini, producing the 
guanylyltransferase substrate. The fi nal stage of the reaction 
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requires RNA methyltransferase to catalyze the transfer of a methyl 
group to the guanosine cap. The protein responsible for this stage 
of the process remains to be confi rmed, although it has been sug-
gested that a host cell enzyme could carry out this step [ 138 ,  141 ]. 
LEF-4 has also been found to possess an ATPase activity, although 
the function of this activity is unknown [ 146 ]. Both LEF-8 and 
LEF-9 contain conserved motifs present in the large subunits of 
other DNA-directed  RNA polymerases   [ 146 ,  147 ]. The conserved 
motif of LEF-8 had been proposed as a putative catalytic site of the 
enzyme [ 146 ]; however,  lef-8  mutagenesis studies have revealed 
that both termini of the protein are essential for its function [ 148 ]. 
In addition, a host cell protein, designated polyhedrin promoter 
binding protein (PPBP), has been identifi ed that binds to very late 
promoters and is required for expression of these genes [ 149 , 
 150 ]. The protein has both double stranded and single stranded 
binding activities and may act as an initiator binding protein similar 
to the TATA-binding protein (TBP) required for transcription ini-
tiation by eukaryotic RNA polymerases I, II and III [ 150 ].  

   Baculovirus late and very late transcripts initiate at the central A of 
a conserved (A/G)TAAG sequence, usually ATAAG for abundant 
transcripts, which is essential for promoter activity [ 6 ,  7 ,  151 ]. 
Analysis of the   gp64     promoter   region, which contains two active 
and three inactive TAAG motifs, revealed that sequences 
 immediately surrounding the initiation site, rather than its posi-
tion, determine its use as a late gene promoter [ 152 ]. Mutations in 
sequences surrounding TAAG have been shown to reduce tran-
scription at the level of transcription initiation [ 153 ]. However, 
the TAAG motif and its surrounding sequences are not involved in 
mediating the difference in temporal regulation between late and 
very late transcription. The very late  polyhedrin   and  p10    gene  s are 
abundantly expressed at very late times in the infection. Despite 
having little homology, the 5′ leader sequences of both promoters 
are extremely A + T rich and contain sequences necessary for the 
burst in expression observed very late in infection [ 153 – 156 ]. 
Mutations upstream of the TAAG motifs of both very late promot-
ers exert a mild effect on expression [ 154 ,  157 ]. Thus, the polyhe-
drin promoter consists of a 49 bp 5′ untranslated region and 20 bp 
upstream of the transcription start site [ 154 ], while the  p10  pro-
moter consists of a 70 bp 5′ untranslated region and 30 bp upstream 
of the transcription start site [ 155 ,  157 ]. Polyhedrin and  p10  pro-
moters appear to be regulated differently, with  p10  expression 
occurring earlier in infection and at lower levels than that of poly-
hedrin [ 158 ].  

   Nineteen Late Expression Factor ( lef ) genes of AcMNPV, which 
are necessary and suffi cient for transient expression from both late 
and very late viral promoters in Sf-21 cells, have been identifi ed 
[ 143 ,  159 – 161 ]. A subset of these genes is involved in plasmid 
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DNA replication, while another four are thought to be subunits of 
the viral  RNA polymerase  , as outlined above. The remaining  lefs  
( lef-5, lef-6, lef-10, 39K, lef-12 ) are thought to function in late pro-
moter recognition or stabilization of late transcripts [ 128 ]. In 
addition to its role in plasmid DNA replication,  ie-1  is thought to 
have a direct effect on expression from the very late polyhedrin 
promoter [ 162 ] .  Further genes involved in transient late gene 
expression have been identifi ed [ 161 ]. One of these genes, termed 
 orf41 , was found to be necessary for late gene expression, while 
 orf69  was found to play a stimulatory role [ 161 ]. LEF-12 is dis-
pensable for virus replication [ 163 ]. It was suggested that IE0 
could be regarded as the 20th LEF since it can replace IE1 in a 
transient replication assay [ 164 ]. 

 The  FP25K protein  , a late gene product thought to be a 
structural component of the nucleocapsid, enhances the rate of 
transcription from the very late polyhedrin promoter, but not that 
of the  p10  promoter [ 165 ]. The effect of this protein on transcrip-
tion of only one of these very late hyperexpressed genes is consis-
tent with the differential regulation observed for the two 
promoters [ 158 ]. 

 The Very Late Expression Factor-1 ( vlf-1 ), is specifi c for regu-
lation of very late transcripts [ 166 ]. The encoded protein, VLF-1, 
is required for high level expression from the  polyhedrin   and   p10  
promoter  s and is thought to exert its effect by interacting with the 
burst sequences located between the transcriptional and transla-
tional start sites of each promoter [ 167 ]. Although  vlf-1  is mainly 
transcribed at late times in infection, the stability of the protein 
allows it to remain at high levels throughout the very late phase 
[ 168 ,  169 ]. Accelerated production of VLF-1 results in premature 
polyhedrin synthesis, showing that the timing of VLF-1 expression 
is important in very late gene transcription [ 169 ]. 

 VLF-1 has also been found to play a role in  BV   production, 
possibly as a resolvase or topoisomerase to produce monomeric 
viral genomes from concatemeric products of the DNA replication 
process [ 168 ]. The predicted sequence of the 44.4 kDa VLF-1 
protein shows similarity to the sequences of a large class of resolvases 
and integrases found in  Saccharomyces cerevisiae , prokaryotes and 
phages [ 166 ]. Viruses carrying  vlf-1  null mutations have been 
found to be either nonviable or so defective in BV production that 
they were extremely diffi cult to propagate, thereby indicating an 
essential role for the protein in baculovirus replication [ 168 ]. The 
level of VLF-1 protein required for activation of very late promoter 
burst sequences is thought to be much higher than is required for 
the protein’s role in BV production [ 169 ]. Overexpressed and 
purifi ed VLF1 added to transcription assays containing baculovirus 
 RNA polymerase   stimulated transcription of the polyhedrin gene 
promoter, but not 39K [ 170 ]. 
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 Serial passage of Nucleopolyhedroviruses through cultured 
cell lines results in the appearance of a spontaneous mutant termed 
the ‘few polyhedra’ (FP) mutant [ 171 ,  172 ]. With continued pas-
sage this  FP phenotype   becomes dominant [ 173 ]. Fourteen pas-
sages of  Trichoplusia ni  (Tn)MNPV in  T. ni  cells was found to 
result in a purely FP mutant population [ 173 ]. The characteristics 
most commonly associated with the FP phenotype are a reduced 
number of polyhedra per cell compared to the wild type, occlu-
sions containing no virions or virions of altered morphology, 
altered intranuclear envelopment, and the production of more  BV   
than cells infected with the wild type [ 172 – 174 ]. 

 A common feature of many AcMNPV and  Galleria mellonella  
(Gm)MNPV FP mutants is insertion of DNA sequences (0.8–
2.8 kb), homologous to moderately repetitive host DNA, into a 
region of the genome encoding a 25 kDa protein (i.e., the  FP25K 
protein  ). Subsequent studies correlated AcMNPV FP mutations to 
large insertions of host cell DNA or deletions of viral DNA, detect-
able by restriction endonuclease (RE) analysis, in this region of the 
genome [ 175 ,  176 ]. Targeted mutation of AcMNPV  fp25k  con-
fi rmed alterations in this gene to be suffi cient to cause the complex 
characteristics of the FP phenotype, including reduced virion 
occlusion, altered intranuclear envelopment and enhanced  BV   
 production [ 177 ]. 

 A late gene product, the  FP25K protein  , is highly conserved 
among members of the Nucleopolyhedroviruses, with the last 
19–26 C-terminal amino acids the only region lacking signifi cant 
conservation among sequenced   fp25k  gene   s   [ 178 ]. Although iden-
tifi ed as a structural protein of the nucleocapsids of  BV   and  ODV   
[ 179 ], a large fraction of the protein remains associated with amor-
phous cytoplasmic bodies throughout infection [ 179 ]. 

 Mutations in  fp25k  alter the apparent expression and/or accu-
mulation of several viral proteins. Rates of both polyhedrin biosyn-
thesis and nuclear localization are reduced in cells infected with 
 fp25k  mutants [ 180 ]. The effect of FP25K on polyhedrin biosyn-
thesis was found to occur at the level of transcription, with wild 
type FP25K found to enhance expression from the polyhedrin pro-
moter [ 165 ]. While the rate of polyhedrin transcription in  fp25k  
mutants was reduced,  p10  RNA levels were unaffected, suggesting 
that the reduction in polyhedrin RNA does not refl ect a general 
effect on very late gene expression [ 165 ]. Acquisition of mutations 
within  fp25k  in baculovirus expression vectors could, therefore, 
seriously affect recombinant protein production. This might occur 
if recombinant virus is produced and amplifi ed in  T. ni  cell lines. 
Thus, most commercial baculovirus expression systems guard 
against using  T. ni  cells for virus production and amplifi cation, 
recommending these cells for protein production only.    
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6    Baculoviruses as Expression Vectors 

 Two features of baculoviruses underpin their use as expression vec-
tors. The fi rst is that the very late  polyhedrin   and  p10    gene  s are 
dispensable for virus replication in cell culture and in insects if the 
budded virus is delivered to the hemocoel of the larval host [ 180 –
 182 ]. The second is that both of these virus gene promoters are 
very strong and if coupled with a foreign gene coding region can 
enable the production of large amounts of recombinant protein in 
insect cells. Recent studies to elucidate the nature of the very late 
virus gene promoters have also enabled expression vectors to be 
derived that contain multiple copies of the polyhedrin and p10 
promoters so that several recombinant proteins can be produced 
simultaneously in virus-infected cells [ 183 – 185 ]. These vectors 
have been of particular use in assembling structures in insect cells 
that are composed of more than one protein [ 186 ]. Insect cells are 
also competent in accomplishing many of the post translational 
processes required when producing proteins from eukaryotic cells, 
thereby producing biologically active products. 

 The original method for producing recombinant baculoviruses 
required replacing the native polyhedrin gene with the heterolo-
gous coding sequences, thus deriving a polyhedrin-negative virus. 
This virus had to be identifi ed by visual selection of plaques lacking 
polyhedra in a standard virus titration. While moderately diffi cult 
to the experienced user, it often proved impossible for the novice. 
Fortunately, this problem has been solved by a wide variety of 
newer methods that enable modifi cation of the virus genome to be 
done more easily. Currently, automated systems for making recom-
binant baculoviruses are being devised that promise to facilitate the 
simultaneous production of dozens, if not hundreds, of expression 
vectors. Baculoviruses have also become a useful tool for introduc-
ing foreign genes into human cells, where the lack of virus amplifi -
cation means that there need be no concerns over biosafety of the 
gene delivery vector [ 187 ].     
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