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    Chapter 11   

 Chemoselective Strategies to Peptide and Protein 
Bioprobes Immobilization on Microarray Surfaces       

     Alessandro     Gori      and     Renato     Longhi     

  Abstract 

   Ordered and reproducible bioprobe immobilization onto sensor surfaces is a critical step in the development 
of reliable analytical devices. A growing awareness of the impact of the immobilization scheme on the consis-
tency of the generated data is driving the demand for chemoselective approaches to immobilize biofunctional 
ligands, such as peptides, in a predetermined and uniform fashion. Herein, the most intriguing strategies to 
selective and oriented peptide immobilization are described and discussed. The aim of the current work is to 
provide the reader a general picture on recent advances made in this fi eld, highlighting the potential associ-
ated with each chemoselective strategy. Case studies are described to provide illustrative examples, and 
 cross-references to more topic-focused and exhaustive reviews are proposed throughout the text.  
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1      Introduction 

 Array-based technologies bring a unique potential for rapid and 
high-throughput analysis [ 1 ,  2 ]. Nevertheless, in order to guaran-
tee the consistency and the reliability of the analytical data, the full 
exploitation of such powerful techniques relies on the effective and 
reproducible immobilization of bioprobe ligands onto the sensor 
surface. A key aspect in the manufacturing of microarrays is to pre-
serve the biochemical properties of the immobilized biomolecule 
as well as to ensure its stable binding on the sensor surface through-
out the experimental procedures. 

 Traditional schemes for biomolecule immobilization rely on 
non-covalent random absorption of the analyte on the sensor sur-
face based on electrostatic and hydrophobic forces or, alternatively, 
on aspecifi c covalent binding [ 3 – 6 ]. In the latter case, covalent link-
ages are formed between bioprobe functional groups, mainly amine 
groups from lysine residues and sulfhydryl groups from  cysteine 
side chains, and respectively cross-reactive groups present at the 
sensor surface. While covalent immobilization is less susceptible to 
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those environment-related factors (pH, ionic strength) whose 
 variation may compromise the stability of the probe attachment, as 
in the case of non-covalent interactions, the chemical conditions 
used during immobilization may be not always compatible with 
bioprobe structural and functional integrity [ 3 ]. 

 In recent years, due to the growing awareness that peptide 
molecules play a key role in modulating a wide range of biological 
functions, along with their relative ease of synthesis and manipula-
tion, peptides have progressively experienced an increasing 
 application in the development of biosensors [ 7 – 9 ]. Nonspecifi c 
immobilization of peptide ligands on sensor surfaces potentially 
leads to heterogeneous presentation of the bioprobe (Fig.  1a ) and, 
as a consequence, inherently mines the performance of the analyti-
cal assay, particularly in those cases where an excellent signal-to- 
noise ratio (SNR) is essential to lowering the infl uence of 
background signal levels. Spatially oriented immobilization strate-
gies are therefore appealing to enable optimal exposure of the 
 peptidic probe in order to guarantee the retainment of its full func-
tionality with respect to the ligand-target interaction (Fig.  1b ). To 
this end, a set of chemoselective strategies to specifi cally immobi-
lize probe-surface linkage, suitable even in the context of highly 
functionalized molecule such as peptides, have been developed.

2       Bioorthogonal “Click” Reactions 

 Site-specifi c conjugation requires uniquely reactive functional 
groups. To meet the requirement of bioorthogonality, such  reactive 
chemical handles should be non-native and non-perturbing and 
should give rise to selective reactions even in a complex biological 
context. Moreover, ideal bioprobe immobilization strategy should 
be high yielding and cost effective. The so-called “click” reactions 
well match these criteria. Indeed, the philosophy of “click chemis-
try” encompasses a wide range of chemical transformations  
(e.g., cycloadditions, nucleophilic substitutions, additions to car-
bon multiple bonds) mainly characterized by high conversion effi -
ciency and selectivity, broad applicability, and biologically benign 
reaction conditions [ 10 ]. Given the often exquisite chemoselectiv-
ity they display toward common functional groups, click reactions 
have not surprisingly found extensive application in the realization 
of peptide bioconjugates and to build peptide-functionalized 
 biomaterials [ 11 ]. Moreover, the fast reaction kinetics that com-
monly characterize this class of reactions well address the need for 
fast immobilization, particularly relevant to overcome intrinsically 
slow reactivity at the solution-solid support interface and thereby 
to reduce the bioprobe denaturation risks associated to prolonged 
reaction times. The most popular click reactions suitable for 
peptide- specifi c immobilization are herein presented and 
discussed. 
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   Huisgen 1,3-dipolar cycloaddition of azides to alkynes is a well- 
known process, whose fi rst reports date back to the early 1960s. 
However, this reaction gained an unprecedented popularity only 
after the introduction of the copper-catalyzed variant (CuAAC, 
Scheme  1 a) [ 12 ,  13 ]. The effi ciency and selectivity of this reaction 
combined with its wide scope, spanning from organic synthesis to 

2.1  Azide-Alkyne 
Cycloaddition

  Fig. 1    Nonspecifi c versus chemoselective presentation. Nonspecifi c presentation 
may result in multiple forms of bioprobe display (panel  a ), potentially affecting 
optimal interaction with candidate target. In contrast, chemoselective immobili-
zation results in univocal bioprobe presentation (panel  b ), which ensures ideal 
probe-target interaction and, thereby, reproducible data analysis       
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peptidomimetics and bioconjugation techniques, have represented 
the basis for such a great success. CuAAC is indeed generally 
 characterized by almost quantitative yields, fast to instantaneous 
reaction kinetics, wide tolerance to different reaction conditions, 
and, notably, nearly full orthogonality with common peptide and 
protein functional groups. Taken together, these features allow 
azido- or alkynyl-functionalized peptides to undergo selective and 
controlled conjugation, either to other functionalized biomole-
cules or solid supports. Additionally, the triazole moiety which is 
generated upon cycloaddition is remarkably inert under standard 
biological conditions [ 14 ], which guarantees the stability of the 
immobilization. It is then not surprising that CuAAC has been 
thoroughly exploited to obtain functionalized surfaces for  analytical 
purposes.

   Noteworthy, Lin and coworkers elegantly showed the impact 
of a site-specifi c bioconjugation strategy by selectively immobiliz-
ing the maltose-binding protein (MBP) to a glass surface through 
CuAAC and by evaluating its binding activity in comparison to 
randomly linked MBP. Results clearly evidenced that the specifi -
cally immobilized MBP preserved considerably higher binding 
activity than the randomly coupled MBP [ 15 ]. Further support to 
oriented immobilization advantages was recently reported by Zilio 
et al. in the functionalization of a Si-SiO 2  substrate using a click-
able polymeric coating to enable the attachment of azido-modifi ed 
peptides. Correct orientation of peptidic probes was found signifi -
cantly favorable for optimal ligand-target antibodies interaction 
[ 16 ]. CuAAC can also serve the purpose to produce peptide- 
functionalized surfaces with tunable ligand concentration or pat-
terned topology to quantitatively ascertain complex molecular 
interactions [ 17 – 20 ]. In a seminal report, the Becker group 
 produced a functionalized surface where the peptide ligand density 
was tuned by means of a gradient concentration of alkyne func-
tional groups. Following immobilization of azido-modifi ed RGD 
peptides via CuAAC, the effect of peptide concentration on cell 
adhesion could be quantitatively evaluated on a single slide [ 20 ]. 
Intriguingly, the generation of ligands gradient can arise from the 
local generation of the Cu(I) catalyst, as demonstrated by Larsen 
an collaborators [ 19 ]. 

 The only potential limitations associated to CuAAC arise from 
residual copper catalyst which, depending on the system, can lead 
to ligand or target denaturation and/or interference with analyti-
cal signal detection. To partially overcome this issue, while also 
improving reaction performance, Cu(I)-binding ligands have been 
developed [ 21 ]. Moreover, in recent years, catalyst-free strain- 
promoted azide-alkyne cycloaddition (SPAAC) has also emerged 
as a gold-standard technique for conjugation of peptide-based 
probes, particularly for in vivo applications (Scheme  1 b) [ 22 ]. In 
this case, the driving force of the reaction is uniquely given by the 
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  Scheme 1    Reaction schemes for common click-type reactions ( a ) Copper catalyzed azide-alkyne-cycloaddi-
tion (CuAAC) (b) Strain promoted azide-alkyne-cycloaddition (SPAAC) (c) Non-traceless Staudinger reaction 
ligation (d) Traceless Staudinger ligation (e) Thiol-Micheal addition (f) Thiol-ene addition (g) Oxime ligation 
(h) Native chemical ligation (NCL)       
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intramolecular strain of the cyclooctyne used as the azido 
 counterpart; thus, no metal catalyst is required. However, the high 
reactivity of the cyclooctyne makes it more feasible to cross-react 
with other functional groups, such as cysteine thiols, leading to 
aspecifi c binding. Also, this technique is limited by the costs and 
the diffi culties in synthesizing the cyclooctyne building blocks to 
be incorporated in the peptide ligand. Nevertheless, many cyclooc-
tyne-based probes have been developed, whose reactivity and 
properties are modulated by electronic and steric effects [ 23 ]. 

 For instance, the azadibenzocyclooctyne (ADIBO) shows a 
good compromise between reactivity and synthetic accessibility 
and, interestingly, was claimed to outperform conventional CuAAC 
in the immobilization of acetylene-functionalized glass slides with 
azido-functionalized peptides [ 24 ]. Pfeifer and collaborators 
reported on the use of ADIBO-activated slide surfaces for the 
preparation of high-density fl uorescently labeled peptide microar-
rays [ 24 ]. Excellent immobilization kinetics, good spot homoge-
neities, and reproducible signal intensities were obtained. Also, 
interestingly, the specifi c immobilization of bovine serum albumin 
(BSA) and dextran via SPAAC led to reduced nonspecifi c binding 
of fl uorescently labeled IgG to the microarray surface in compari-
son with other techniques. SPAAC-mediated microarray surface 
functionalization with peptides was also exploited by Chaikof and 
coworkers [ 25 ]. Immobilization occurred in a fast (<15 min), 
selective, and tunable fashion. Notably, the generation of a 
 physiologically stable linker methodology also allowed the authors 
to perform peptide decoration of mammalian cells without com-
promising their integrity.  

   Azides are chemically inert and relatively stable functional groups 
under standard biological conditions and only rarely appear in 
 natural biological environments. Not surprisingly, azides have been 
used in several conjugation strategies, including the Staudinger 
ligation, which occurs between an azide and a phosphine com-
pound to yield a native amide bond [ 11 ,  26 ]. Staudinger ligation 
can be divided into two subclasses, traceless and non-traceless, 
depending on whether the phosphine oxide generated during the 
reaction is contained or not in the ligated product (Scheme  1 c, d). 
Noteworthy, this reaction can be performed in aqueous buffer 
with no need for metal catalyst. The reaction kinetics, as like as the 
fi nal yields, are mainly determined by the structure of the phos-
phine taking part in the reaction. However, generally, reaction 
kinetics are considerably slower than CuAAC. The reaction is also 
amenable to some side reactions, mainly oxidation of the  phosphine, 
which may result in lowered yields. However, the bioorthogonal 
nature of both the azide and the phosphine functions has resulted 
in the Staudinger ligation fi nding numerous applications in various 
immobilization strategies [ 27 ,  28 ]. 

2.2  Staudinger 
Ligation
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 For example, Kohn and coworkers provided new insights on 
the substrate specifi city of protein tyrosine phosphatases (PTPs) 
through the generation of a phosphotyrosine (pTyr)-peptide 
microarray on a phosphane-modifi ed glass slide obtained by pep-
tide ligand immobilization via non-traceless Staudinger ligation 
[ 29 ]. Similarly, azide-tagged N-Ras proteins were selectively 
immobilized onto phosphane-modifi ed glass surfaces, and protein 
functional activity was retained [ 30 ,  31 ]. Likewise, the Raines 
group reported on the immobilization of the S-protein with good 
effi ciency and almost fully intact functionality [ 32 ]. Several others 
reported on the use of Staudinger ligation for selective immobili-
zation methods, highlighting the considerable potential of this 
reaction for bioconjugation purposes.  

   The Michael addition involves the addition of a nucleophile, also 
called a “Michael donor,” to an activated electrophilic olefi n, the 
“Michael acceptor,” resulting in a “Michael adduct” (Scheme  1 e). 
While typical Michael donors refer to enolates, a wide range of 
chemical functionalities possess suffi cient nucleophilicity to per-
form as Michael donors [ 33 ]. In the biological context, both 
amines and thiols are exploitable as non-enolate nucleophiles. 
Cysteine thiols are usually more nucleophilic than amines, and the 
attack of the free sulfhydryl group to the activated alkene to afford 
thioethers generally proceeds with fast reaction kinetics and high 
conversion. Moreover, smooth reaction conditions, i.e., weakly 
basic aqueous buffer at room temperature, are optimal for biocon-
jugation purposes and enable a fair selectivity with respect to the 
potentially competing free amine groups. Due to the plethora of 
electron-withdrawing activating groups that enable the 
 thiol- Michael addition, the reaction kinetics are highly dependent 
on the nature of the Michael acceptor [ 33 ]. Recently, acceptor 
reactivity has been ranked, with maleimide, vinyl sulfone, and acry-
lates performing the best [ 34 ]. Accordingly, bioprobes conjuga-
tion mediated by these functionalities has been extensively exploited 
to generate functionalized sensor surfaces [ 35 – 37 ]. A case example 
is given by the work reported by Fu et al. [ 38 ]. An array of 
β-galactosidase (β-Gal)-anchoring peptides was generated by 
means of simple modifi cation of aminated microwells with bifunc-
tional linker SMCC, followed by rapid and covalent immobiliza-
tion of peptides through thiol-maleimide addition. Subsequent 
β-Gal anchoring afforded an immobilized enzyme that exhibited 
considerably higher activity with respect to otherwise immobilized 
β-Gal. In addition, peptide-modifi ed surfaces were found to 
 positively affect the thermal stability of the bound enzyme, like the 
stability under storage conditions. Taken all together, authors 
 estimated a 20-fold increase in enzyme activity for β-Gal on 
peptide- modifi ed surface, highlighting how deep is the impact an 
appropriate selection of the immobilization strategy may have in 
obtained results.  

2.3  Thiol-Michael 
Addition
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   Since the introduction of the archetypal concept of click chemistry 
by Sharpless and coworkers, many fast and chemoselective trans-
formations have emerged as attractive click-type processes. Among 
these, the thermal- or UV-initiated addition of a thiol to an alkene 
through a radical mechanism (Scheme  1 f), commonly termed 
thiol-ene reaction, has earned the click status in view of its favor-
able peculiarities [ 39 ]. High effi ciency, broad orthogonality, and 
compatibility with physiologic conditions make thiol-ene addition 
a feasible candidate for selective conjugation. Additionally, the 
robust thioether linkage which is formed upon thiol-ene addition 
displays remarkable stability in a wide range of environmental con-
ditions. However, careful tuning of the reaction parameters is 
required to limit undesired side reactions, e.g., alkene polymeriza-
tion, and to ensure excellent reaction yields [ 11 ]. Intriguingly, the 
modular nature of the reaction in virtue of the photoinitiation fea-
ture allows spatial and temporal control of supports functionaliza-
tion. For example, a landmark contribution to photochemical 
surface patterning has been reported from the Waldmann group 
[ 40 ]. Photochemical coupling of a set of olefi n-tagged biomole-
cules to a thiol-modifi ed surface allowed the fabrication of a micro-
array with precise control on protein immobilization even in the 
sub-micrometer scale. Functional integrity of immobilized mole-
cules was also assessed and found to be comparable to that one in 
solution phase. Hawker and collaborators exploited thiol-ene 
chemistry to produce multifunctional microarrays embedded at 
the surface of poly(ethylene glycol)-based hydrogels [ 41 ]. Mild 
reaction conditions (UV irradiation at 365 nm for 2 min) allowed 
the incorporation of a wide range of orthogonal chemical handles 
exploitable for click-mediated selective conjugation of biomole-
cules, including functional peptides to direct cell adhesion. The 
combination of polymer direct functionalization with orthogonal 
postfunctionalization allowed the generation of different platforms 
for multiple display of functionally distinct biomolecules for 
 different investigation purposes.  

   The generation of an oxime bond between two biomolecules 
through the condensation of a carbonyl group (aldehyde or 
ketone) with an aminooxy group is commonly referred as oxime 
ligation (Scheme  1 g). This reaction is particularly attractive due 
to its true click character: high conversion effi ciency, chemoselec-
tivity toward other functional groups, and mild reaction condi-
tions in aqueous media are indeed distinctive features of the oxime 
ligation [ 42 ]. In addition, water is the only side product formed 
in the process, and no metal catalyst is required. Despite this, 
oxime ligation has not benefi tted from the same broad popularity 
of other click  strategies such as CuAAC. This is likely due to the 
traditional  limitations associated with the synthesis of aldehyde- 
and  aminooxy- functionalized biomolecules. However, recent 

2.4  Thiol-ene 
Addition

2.5  Oxime Ligation

Alessandro Gori and Renato Longhi



153

advances have enabled oxime ligation to gain a progressively lead-
ing role for bioconjugation purposes [ 11 ,  43 ,  44 ]. One appealing 
feature of oxime ligation lies in its reversibility. Indeed, unlike 
other covalent linkages, the oxime bond is reversible as a function 
of pH. Conveniently, the operational range of pH 4–8 largely 
avoids undesired hydrolysis of the oxime bond and guarantees the 
stability of the conjugate under standard biological conditions. 
Oxime bond hydrolysis can instead be triggered at lower or higher 
pH values. Notably, the pH responsiveness of the oxime bond 
enables the generation of dynamic biomaterials which can be 
adopted for controlled capture-and- release strategies. Patterned 
peptide-presenting surfaces are essential tools in the investigation 
of cell behavior in biomaterials and tissue engineering. 
Functionalized surfaces with patterned topography were realized 
by capping either the aminooxy or aldehyde group with a photo-
labile group. Upon unmasking of the reactive groups with site-
specifi c UV irradiation, ligand immobilization can be performed 
via oxime ligation to functionalize the surface with controlled 
spatial resolution. This approach found application in the Dumy, 
Yousaf, and Barner-Kowollik groups [ 45 – 47 ]. Maynard and col-
laborators have exploited a combination of oxime ligation and 
CuAAC to immobilize different proteins on a functionalized sur-
face. The same authors reported a different strategy to surface 
patterned functionalization by electron-beam lithography. 
Aminooxy groups on the surface were then coupled to ketone-
functionalized RGD peptides, which were shown to retain func-
tional integrity [ 48 ].   

3    Native Chemical Ligation 

 Native chemical ligation consists in the condensation of two free 
peptide fragments to yield a new construct linked by a native amide 
bond (Scheme  1 h). The reaction occurs between a peptide  thioester 
and another peptide fragment bearing an N-terminal cysteine and 
proceeds through an initial (reversible) transthioesterifi cation step 
followed by an irreversible S,N-acyl shift which originates the new 
native amide bond. Although not always regarded as a prototypic 
click reaction, NCL chemoselectivity and effi ciency, along with 
mild operational conditions, are surely appealing features in the 
peptide chemistry arena. Remarkably, NCL likely represents the 
gold-standard technique for the total chemical synthesis of pro-
teins [ 49 ]. To overcome synthetic limitations associated with the 
synthesis of peptide thioesters, new strategies entailing thioester 
surrogates and precursors have been developed, like unnatural 
 thiolated amino acids which have been synthesized to expand the 
potential of NCL [ 50 ]. NCL reaction kinetics are highly  dependent 
on the substrates participating in the reaction; however, the time 
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required for nearly quantitative product formation can be consid-
erably short (<1 h). Despite NCL has recently experienced a 
 growing application in the preparation of peptide bioconjugates, 
its potential for the functionalization of surfaces for analytical 
applications remains widely unexplored. Only few examples have 
indeed been reported to date. Among these, Helms et al. realized 
a cysteine-functionalized biosensor surface for conjugation with 
peptide thioesters [ 7 ]. Specifi c and complete immobilization of a 
decapeptide occurred with fast kinetics, and the peptide ability to 
engage in specifi c binding to its target was preserved. Interestingly, 
a peculiar feature of cysteine-functionalized sensors is that 
 functional groups maintain their reactivity for extended periods of 
time. As a consequence, ligand density can be tuned stepwise at 
any time in sensor’s life by using short ligation pulses, and the same 
functionalized surface can be used for separate experiments. 
Conversely, peptides bearing an N-terminal cysteine can be 
 chemoselectively immobilized onto thioester-functionalized slides, 
as, for example, reported by the Yao group [ 51 ]. More recently, 
Dendane et al. exploited this kind of approach for the site-specifi c 
and chemoselective immobilization of peptides on hydrogen-ter-
minated silicon nanowires [ 52 ].  

4    Conclusions and Future Perspectives 

 Microarray-based screening is progressively gaining central impor-
tance in the dissection of a number of biological processes. The 
development of innovative analytical platforms strongly relies on 
new synthetic methods to allow controlled, oriented, and robust 
bioprobe immobilization on sensor surfaces. In this context, the 
last decade has experienced a growing application of the so-called 
click reactions for the sophisticated functionalization of sensors. 
Among these, some of the most popular have been discussed in the 
present work. Notwithstanding, the click repertoire already 
includes a more extensive range of chemoselective transformations, 
such as Diels-Alder reactions, which have been exploited for the 
generation of peptide and protein bioconjugates. Additional reac-
tions that match the click-type criteria are likely to be discovered in 
the near future. Moreover, the potential of already existing click- 
type reactions is presumably going to be fully unrevealed thanks to 
new synthetic breakthroughs that may overcome current limita-
tions. The combination of different and orthogonal strategies will, 
also, contribute to widen the available analytical toolbox for new 
devices development. Overall, a growing synthetic fl exibility, a 
more and more refi ned control on immobilization parameters, and 
an increasing range of possible applications are likely to character-
ize the microarray fi eld over the upcoming years.     
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