
1
Introduction

The purpose of this chapter is to quickly introduce enough theory so that
we can present some examples that will then be used throughout the course
of the book to illustrate the theory and how to use it. These examples are
simple to write down in general and to understand at an elementary level,
but they are also useful for the understanding of deeper parts of the theory.
Two main classes of systems considered in the book are holonomic

systems and nonholonomic systems. This terminology may be found in
Hertz [1894]. Holonomic systems are mechanical systems that are subject to
constraints that limit their possible configurations. As Hertz explains, the
word holonomic (or holonomous) is comprised of the Greek words mean-
ing “integral” (or “whole”) and “law,” and refers to the fact that such
constraints, given as constraints on the velocity, may be integrated and re-
expressed as constraints on the configuration variables. We make this idea
precise as we move through the book. Examples of holonomic constraints
are length constraints for simple pendula and rigidity constraints for rigid
body motion.
The rolling disk and ball are archetypal nonholonomic systems: systems

with nonintegrable constraints on their velocities. These examples have a
long history going back, for example, to Vierkandt [1892] and Chaplygin
[1897a]. In this chapter and the book in general we discuss both the rolling
disk and ball, as well as many other nonholonomic systems such as the
Chaplygin sleigh, the roller racer, and the rattleback. As pointed out in
Sommerfeld [1952] a general analysis of the distinction between holonomic
and nonholonomic constraints may be found as early as Voss [1885], while
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2 1. Introduction

specific examples of nonholonomic systems were of course analyzed even
earlier. For more on the history of nonholonomic systems, see Chapter 5.
We remark that Hertz defines a holonomic system as a system “between

whose possible positions all conceivable continuous motions are also possi-
ble motions.” The point is that nonholonomic constraints restrict types of
motion but not position. The meaning of Hertz’s statement should become
clearer as the reader continues through the book.
Other examples discussed here include the free rigid body and the some-

what more complex satellite with momentum wheels. These are (holo-
nomic) examples of free and coupled rigid body motion, respectively—the
motion of bodies with nontrivial spatial extent, as opposed to the motion of
point particles. The latter is illustrated by the Toda lattice, which models
a set of interacting particles on the line; we shall also be interested in some
associated optimal control systems.
We also describe here the Heisenberg system, which was first studied by

Brockett [1981] (see also Baillieul [1975], who studied some related sys-
tems). This does not model any particular physical system, but is a pro-
totypical example for nonlinear kinematic control problems (both optimal
and nonoptimal) and can be viewed as an approximation to a number of
interesting physical systems; in particular, this example is basic for under-
standing more sophisticated optimal reorientation and locomotion prob-
lems, such as the falling cat theorem that we shall treat later. A key point
about this system (and many others in this book) is that the corresponding
linear theory gives little information.

1.1 Generalized Coordinates
and Newton–Euler Balance

In this and subsequent sections in this chapter we discuss some ideas from
mechanics in an informal fashion. This is intended to give context to the
physical examples discussed in later sections. More formal derivations of
many of the ideas discussed here are given in later chapters.

Coordinates and Kinematics. The most basic goal of analytical me-
chanics is to provide a formalism for describing motion. This is often done
in terms of a set of generalized coordinates, which may be interpreted
as coordinates for the system’s configuration space, often denoted by
Q. This is a set of variables whose values uniquely specify the location
in 3-space of each physical point of the mechanism. A set of generalized
coordinates is minimal in the sense that no set of fewer variables suffices
to determine the locations of all points on the mechanism. The number
of variables in a set of generalized coordinates for a mechanical system is
called the number of degrees of freedom of the system.
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1.1.1 Example (A Simple Kinematic Chain). Simple ideas along this
line, which will be generalized to provide the foundation of most of the
models studied in this book, may be illustrated using the simple kinematic
chain shown in Figure 1.1.1.

Figure 1.1.1. Kinematic chains.

Here there are drawn two copies of the same mechanism. This mechanism
consists of planar rigid bodies connected by massless rods, and the joints
are free to rotate in a fixed plane. In the first, the motion of a typical point
P is described in terms of coordinate variables (θ1, θ2), where θ2 is the
relative angle between the two links in the chain. In Figure 1.1.1 (b), the
motion of the typical point P is described in terms of coordinate variables
(ϕ1, ϕ2), which are the (absolute) angles of the links with respect to the
vertical direction.
Other choices of coordinate variables are, of course, possible. In any

case, the coordinate variables serve the purpose of describing the location
of typical points of the mechanism with respect to a privileged coordinate
frame, which we may refer to as an inertial frame. A thorough axiomatic
discussion of inertial frames is beyond the scope of this book, but roughly
speaking, these are frames that are “nonaccelerating relative to the distant
stars.” For the purposes of our discussions here it suffices to consider them
as “fixed” coordinate systems.
Specifically, in this case, the inertial frame is chosen so that its origin

is at the hinge point of the upper link. The y-axis is directed parallel and
opposite to the gravitational field, and the x-axis is chosen so as to give the
coordinate frame the standard orientation. Suppose the point P is located
on the second link, as depicted. If this has coordinates (x�, y�) with respect
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to a local frame fixed in the second link, then the coordinates with respect
to the inertial frame are given by

[
x
y

]
=

[
r1 sin θ1 + x� sin(θ1 + θ2) + y� cos(θ1 + θ2)
−r1 cos θ1 − x� cos(θ1 + θ2) + y� sin(θ1 + θ2)

]
, (1.1.1)

where r1 is the length of the first link, or equivalently by

[
x
y

]
=

[
r1 sinϕ1 + x� sinϕ2 + y� cosϕ2

−r1 cosϕ1 − x� cosϕ2 + y� sinϕ2

]
. (1.1.2)

The mappings (θ1, θ2) �→ (x, y) are examples of functions that associate
values of the generalized coordinate variables (θ1, θ2) (respectively (ϕ1, ϕ2))
to inertial coordinates of the point P . In this example, the configuration
manifold is given by Q = S1 × S1 and is parameterized by the two angles
θ1, θ2, which serve as generalized coordinates. One can also make the alter-
native choice of ϕ1, ϕ2 as generalized coordinates that provide a different
set of coordinates on Q. �
Newton’s Laws. The most fundamental contribution to mechanics were
Newton’s three laws of motion for a particle (see Newton [1650], Book I,
Section 3, Propositions XI, XII, XIII) and, for example, Chorlton [1983]).
They are as follows:

(1) Every particle continues in its state of rest or of uniform velocity in a
straight line unless compelled to do otherwise by a force acting on it.

(2) The rate of change of linear momentum is proportional to the im-
pressed force and takes place in the direction of action of the force.

(3) To every action there is an equal and opposite reaction.

For a particle of constant massm, Newton’s second law can be written as:

mẍ(t) = F(t), (1.1.3)

where x ∈ R
3 is the position vector of the particle and F(t) is the impressed

force, both measured with respect to an inertial frame.

Remarks on Rigid Body Mechanics. As a preliminary to describing
general rigid body mechanics, one procedure is to consider the special case
of a finite number of point masses constrained so that the distance between
points is constant, with each point mass experiencing internal forces of
interaction (equal in magnitude and acting in opposite directions along
straight lines joining the points) together with external forces. In this case,
Newton’s laws lead to the equations of rigid body dynamics for this special
type of rigid body.
For a rigid body that is a continuum or for a system of point particles or

rigid bodies mechanically linked, one may derive the equations of motion
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by an application of Newton’s law for the motion of the center of mass and
Euler’s law for motion about the center of mass, i.e.,

Iω̇(t) = T (t), (1.1.4)

where I is the moment of inertia of the rigid body about its center of mass,
ω is the angular velocity about the center of mass, and T (t) is the applied
torque about the center of mass, all measured with respect to an inertial
frame.
It turns out, however, that the equations of motion for the special case

of a finite number of constrained point masses described above may be
derived solely from Newton’s laws.
The rigid body also provides a nice example of a system whose config-

uration space is a manifold. In fact, it is the set Q = SE(3) of Euclidean
motions, that is, transformations of R3 consisting of rotations and transla-
tions. Each element of Q gives a placement of all the particles in the rigid
body relative to a reference position, all in an inertial frame. We will return
to the rigid body from a more advanced point of view later.

Newton–Euler Balance Laws. More generally, for a system of inter-
connected rigid bodies, such as the kinematic chain described earlier, one
can derive the equations of motion from Newton’s laws together with Eu-
ler’s law giving the rate of change of angular momentum about a pivot point
in terms of applied torques, as in equation (1.1.4). It is interesting to note
that these equations cannot (without further assumptions) be derived from
Newton’s laws alone; for an illuminating discussion of these relationships,
see Antman [1998].
So far, the examples mentioned are ones with holonomic constraints (the

length of the pendula in the kinematic chain is assumed constrained to be
constant, and the rigid body is constrained by rigidity). However, one of the
purposes of this book is to study nonholonomic systems, wherein one has
constraints on the velocities. Examples are systems such as rolling wheels.
Even in this case, one can use Newton–Euler balance ideas to obtain the
equations correctly.
For the bulk of this book, however, we will not take the point of view

of Newton–Euler balance laws. One reason for this is that there is a more
useful alternative given by Hamilton’s principle (and the associated Euler–
Lagrange equations) for holonomic systems and by the Lagrange–d’Alem-
bert principle in the nonholonomic case. We shall briefly study these princi-
ples in the next sections and return to them in more detail later. In addition,
the Hamilton principle and Lagrange–d’Alembert formalism are covariant,
in the sense that they use only the intrinsic configuration manifold Q, and
one may use any set of coordinates on it; in addition, there is a simple
and elegant way to write the equations valid in any set of generalized co-
ordinates. The covariant nature of the Euler–Lagrange formalism was one
of the greatest discoveries of Lagrange and is the basis of the geometric
approach to mechanics.
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One should ask whether the Newton–Euler balance approach is equiv-
alent to the Euler–Lagrange and Lagrange–d’Alembert approaches under
general sets of hypotheses. This is a subtle question in general, which is,
unfortunately, not systematically addressed in most books, including this
one. However, these approaches can be shown to be equivalent in many
concrete situations, such as interconnected rigid bodies and rolling rigid
bodies, which we will come to later. See Jalnapurkar [1994] for one such
exposition of this equivalence. We will confine ourselves to proving the
equivalence in one concrete nonholonomic situation later, namely, a system
called the Chaplygin sleigh; see Section 1.7.

1.2 Hamilton’s Principle

In this section we give a brief introduction to the Euler–Lagrange equa-
tions of motion for holonomic systems from the point of view of variational
principles. We return to this later in Chapter 3 from a more abstract point
of view. The reader for whom this is familiar may, of course, skip ahead.
Let Q be the configuration space1 of a system with (generalized) coordi-

nates qi, i = 1, . . . , n. We are given a real-valued function L(qi, q̇i), called a
Lagrangian. Often we choose L to be L = K−V , where K is the kinetic
energy of the system and V (q) is the potential energy.

1.2.1 Definition. Hamilton’s principle singles out particular curves
q(t) by the condition

δ

∫ b

a

L(q(t), q̇(t)) dt = 0, (1.2.1)

where the variation is over smooth curves in Q with fixed endpoints.

To make this precise, let the variation of a trajectory q(·) with fixed
endpoints satisfying q(a) = qa and q(b) = qb be defined to be a smooth
mapping

(t, ε) �→ q(t, ε), a ≤ t ≤ b, ε ∈ (−δ, δ) ⊂ R,

satisfying

(i) q(t, 0) = q(t), t ∈ [a, b],

(ii) q(a, ε) = qa, q(b, ε) = qb.

1The configuration space of a system is best thought of as a differentiable manifold,
and generalized coordinates as a coordinate chart on this manifold. To enable us to
introduce some examples early on, we shall treat this rather informally at first and
return to a more intrinsic approach later.
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Letting δq(t) = (∂/∂ε)q(t, ε)|ε=0 be the virtual displacement correspond-
ing to the variation of q, we have

δq(a) = δq(b) = 0. (1.2.2)

The precise meaning of Hamilton’s principle is then the statement

d

dε

∫ b

a

L(q(t, ε), q̇(t, ε)) dt

∣∣∣∣∣
ε=0

= 0 (1.2.3)

for all variations.
One can view Hamilton’s principle in the following way: The quantity∫ b

a
L(q(t), q̇(t)) dt is being extremized among all curves with fixed end-

points; that is, the particular curve q(t) that is sought is a critical point

of the quantity
∫ b

a
L(q(t), q̇(t)) dt thought of as a function on the space

of curves with fixed endpoints. Examples show that the quantity
∫ b

a
Ldt

being extremized in (1.2.1) need not be minimized at a solution of the
Euler–Lagrange equations, just as in calculus: Critical points of functions
need not be minima.2

A basic result of the calculus of variations is:

1.2.2 Proposition. Hamilton’s principle for a curve q(t) is equivalent to
the condition that q(t) satisfy the Euler–Lagrange equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0. (1.2.4)

The idea of the proof is as follows: Let δq be a virtual displacement of
the curve q(t) corresponding to the variation q(t, ε). We may compute the
variation of the integral in Definition 1.2.1 corresponding to this variation
of the trajectory q by differentiating with respect to ε and using the chain
rule. We obtain ∫ b

a

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i

)
dt = 0, (1.2.5)

where δq̇i = d
dtδq

i. Integrating by parts and using the boundary conditions
δqi = 0 at t = a and t = b yields the identity∫ b

a

(
− d

dt

∂L

∂q̇i
+

∂L

∂qi

)
δqi dt = 0. (1.2.6)

Assuming a rich enough class of variations yields the result.3

2Perhaps the simplest example of this comes up in the study of geodesics on a sphere
where geodesics that “go the long way around the sphere” are critical points, but not
minima. In this example, L is just the kinetic energy of a point particle on the sphere.
See Gelfand and Fomin [1963] for further information.

3Again, further geometric insight into the notion of the variation operation is some-

thing we will return to later; for example, the equality δq̇i = d
dt
δqi is self-evident from

our definition of the virtual displacement and equality of mixed partials.
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A critical aspect of the Euler–Lagrange equations is that they may be
regarded as a way to write Newton’s second law in a way that makes sense
in arbitrary curvilinear and even moving coordinate systems. That is, the
Euler–Lagrange formalism is covariant. This is of enormous benefit, not
only theoretically, but for practical problems as well.

Mechanical Systems with External Forces. In the presence of ex-
ternal forces Fi, the equations are

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Fi (1.2.7)

for i = 1, . . . , n . Here we regard the quantities Fi as given by external
agencies.4 Note that if these forces are derivable from a potential U in the
sense that Fi = −∂U/∂qi, then these forces can be incorporated into the
Lagrangian by adding −U to the Lagrangian. Thus, this way of adding
forces is consistent with the Euler–Lagrange equations themselves.
These equations can be derived from a variational-like principle, the

Lagrange–d’Alembert principle for systems with external forces, as
follows:

δ

∫ b

a

L(qi, q̇i) dt+

∫ b

a

F · δq dt = 0, (1.2.8)

where F · δq =
∑n

i=1 Fiδq
i is the virtual work done by the force field F

with a virtual displacement δq as defined above.
A rigorous analysis of virtual work and integral laws of motion for con-

tinuum mechanics in Euclidean space may be found in Antman and Osborn
[1979].

Remarks on the History of Variational Principles. The history of
variational principles and the so-called principle of least action is quite
complicated, and we leave most of the details to other references. Some
of this history can be gleaned, for example, from Whittaker [1988] and
Marsden and Ratiu [1999]. An interesting historical note is that the cur-
rently accepted notion of the “principle of least action” is regarded by
some as being synonymous with “Hamilton’s principle.” Indeed Feynman
[1989] advocates this point of view. However, both historically and factu-
ally, Hamilton’s principle and the principle of least action (which
should really be called the principle of critical action) are slightly dif-
ferent. Hamilton’s principle involves varying the integral of the Lagrangian

4In elementary books on mechanics external forces are often regarded as a given vec-
tor field, but in fact, they should be regarded as a given one-form field. Such distinctions
are not important just now, but this is a crucial distinction in the geometric formulation
of mechanics that will be important for us later on.
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over all curves with fixed endpoint and fixed time. The principle of least
action, on the other hand, involves variation of the quantity

∫ b

a

∑
i

q̇i
∂L

∂q̇i
dt

over all curves with fixed energy.
The principle of critical action originated in Maupertuis’s work (Mau-

pertuis [1740]), which attempted to obtain for the corpuscular theory of
light a theorem analogous to Fermat’s principle of least time. Briefly
put, the latter involves taking the variations of

∫
nds, (1.2.9)

where n is the refractive index over the path of the light. This gives rise to
Snel’s law.5 Maupertuis’s principle was established by Euler [1744] for the
case of a single particle and in more generality by Lagrange [1760].
One can expand this to obtain the Hamilton–Jacobi equation in optics,

otherwise known as the eikonal equation.
One can observe this as follows. Since ds2 = dq(s)·dq(s), one may rewrite

the shortest path length as

∫ P2

P1

nds =

∫ P2

P1

n(q(s))

√
dq

ds
· dq
ds

ds. (1.2.10)

Taking variations leads to the eikonal equation

d

ds

(
n
dq

ds

)
= gradn.

In a homogeneous medium n is constant and thus we obtain

d2q

ds2
= 0, (1.2.11)

implying q = sa + b for a and b constants, so the light rays travel in
straight lines.
We note also that the light rays are the orthogonal to the wave fronts

S(q) = const and thus

n
dq

ds
= Sq.

5A simple derivation of Snel’s law from the variational point of view can be found,
for example, in Feynman [1989]. This law was discovered by the Dutch mathematician
and geodesist Willebord Snel van Royen. (Because his name in Latin is “Snellius” the
law is often called Snell’s law.)
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The gradient of S is perpendicular to the wave front. The bigger the gra-
dient the slower the front moves and hence Hamilton called the quantity

p =
∂S

∂q

the vector of normal slowness to the front. For further details, see Born
and Wolf [1980] and Holm [2008].
It is curious that Lagrange dealt with the more difficult principle of

critical action already in 1760, yet Hamilton’s principle, which is simpler,
came only much later in Hamilton [1834, 1835].
Another bit of interesting history is that Lagrange [1788] did not derive

the Lagrange equations of motion by variational methods, but he did so
by requiring that simple force balance be covariant, that is, expressible in
arbitrary generalized coordinates. For further information on the history of
variational principles and the precise formulation of the principle of least
action, see Marsden and Ratiu [1999].

Energy and Hamilton’s Equations. If the matrix ∂2L/∂q̇i∂q̇j is non-
singular, we call L a nondegenerate or regular Lagrangian, and in this
case we can make (at least locally) the change of variables from (qi, q̇i) to
the variables (qi, pi), where the momentum is defined by

pi =
∂L

∂q̇i
.

This change of variables is commonly referred to as the Legendre trans-
formation. We shall see how to write it in a coordinate-free way in Chap-
ter 3. Introducing the Hamiltonian

H(qi, pi) =

n∑
i=1

piq̇
i − L(qi, q̇i),

one checks, by a careful use of the chain rule, that the Euler–Lagrange
equations become Hamilton’s equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
,

where i = 1, . . . , n. If we think of the Hamiltonian as a function of (qi, q̇i),
then we write it as E(qi, q̇i) and still refer to it as the energy. If the
Lagrangian is of the form kinetic minus potential, then the energy and
Hamiltonian are kinetic plus potential.
If one introduces the Poisson bracket of two functions K,L of (qi, pi)

by the definition

{K,L} =

n∑
i=1

∂K

∂qi
∂L

∂pi
− ∂L

∂qi
∂K

∂pi
,
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then one checks, again using the chain rule, that Hamilton’s equations may
be written concisely as

Ḟ = {F,H}
for all functions F . In particular, since the Poisson bracket is clearly skew
symmetric in K,L, we see that {H,H} = 0, and so H has zero time deriva-
tive (conservation of energy). The corresponding statement for the energy
E can be verified directly to be a consequence of the Euler–Lagrange equa-
tions (and this holds even if L is degenerate).

Exercises

� 1.2-1. Consider the Lagrangian

L(x, y, z, ẋ, ẏ, ż) =
1

2
m

(
ẋ2 + ẏ2 + ż2

)−mgz.

Compute the equations of motion in both Lagrangian and Hamiltonian
form. Verify that the Hamiltonian (energy) is conserved along the flow. Are
there other conserved quantities?

� 1.2-2. Consider a Lagrangian of the form L = 1
2

∑n
k,l=1 gkl(q)q̇

k q̇l, where
gkl is a symmetric matrix. Show that the Lagrange equation of motion are

∑
s

grsq̈
s +

∑
l,m

Γrlmq̇lq̇m = 0

for suitable symbols Γ. Verify conservation of energy directly for this system.

1.3 The Lagrange–d’Alembert Principle

Holonomic and Nonholonomic Constraints. Suppose the system
constraints are given by the following m equations, linear in the velocity
field, where m < n:

n∑
k=1

ajk(q
i)q̇k = 0, (1.3.1)

where j = 1, . . . ,m.
If one can find m constraints on the positions alone, that is, constraints

of the form bj(qi) = 0, such that their time derivatives, namely

n∑
k=1

∂bj

∂qk
q̇k = 0,

determine the same constraint distribution as the constraints (1.3.1), then
one says that the constraints are holonomic. Otherwise, they are called
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nonholonomic. For example, the length constraint on a pendulum is
a holonomic constraint, whereas a constraint of rolling without slipping
(which we shall discuss in the next section) is nonholonomic.
It is also sometimes useful to distinguish between constraints that are

dependent or independent of time. Those that are independent of time are
called scleronomic, and those that depend on time are called rheonomic.
This terminology can also be applied to the mechanical system itself; see,
e.g., Greenwood [1977]. For example, a bead on a hoop is a rheonomic
system. For more details on such “moving” systems, see Marsden and Ratiu
[1999].
The Frobenius theorem and differential forms, which we shall review in

Chapter 2, give necessary and sufficient conditions under which a given
set of constraints is integrable. We shall return to these ideas in a more
geometric form in Chapter 5.

Dynamic Nonholonomic Equations of Motion. We will now sketch
the derivation of the equations of motion of a nonholonomic mechanical
system using Newton’s laws and Lagrange’s equations.6 We omit external
forces for the moment. Later on in the text we shall derive the equations
of motion from other points of view.
We regard the system as being acted on by just those forces Fi, i =

1, . . . , n, that have to be exerted by the constraints in order that the system
satisfy the nonholonomic constraints (1.3.1). Let F1δq

1 + F2δq
2 + · · · +

Fnδq
n be the work done by these forces when the system undergoes an

arbitrary virtual displacement (δq1, . . . , δqn). One assumes that with these
forces, the system is described by a holonomic system subject to the forces
of constraint; therefore, the equations of motion are given by (1.2.7). To
determine these forces of constraint, we make the following fundamental
assumption:

Assumption. In any virtual displacement consistent with the
constraints, the constraint forces Fi do no work, i.e., we assume
that the identity

F1δq
1 + F2δq

2 + · · ·+ Fnδq
n = 0

holds for all virtual displacements δqi satisfying the constraints
(1.3.1).

Assuming that the m vectors (a11, . . . , a
1
n), (a

2
1, . . . , a

2
n), . . . , (a

m
1 , . . . , amn )

are linearly independent, it follows from the same linear algebra used to
prove the Lagrange multiplier theorem that the forces of constraint have
the form Fi = λ1a

1
i + · · ·+ λmami for i = 1, . . . , n.

6See also, for example, Whittaker [1988] and the references therein, Ferrers [1871],
Neumann [1888], and Vierkandt [1892].
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In summary, the dynamic nonholonomic equations of motion are

d

dt

∂L

∂q̇i
− ∂L

∂qi
=

m∑
j=1

λja
j
i , (1.3.2)

where i = 1, . . . , n, together with the constraint equations (1.3.1). One
determines the Lagrange multipliers λi by imposing the constraints in much
the same way as one solves constrained maximum and minimum problems
in calculus.
The dynamic nonholonomic equations of motion (1.3.2) are also known

as the Lagrange–d’Alembert equations. These equations are the correct
equations for mechanical dynamical systems and in many cases (such as
rolling bodies in contact) can be shown to be equivalent to Newton’s law
F = ma with reaction forces.7 We shall see this explicitly in the context of
some simple and concrete examples shortly.

Lagrange–d’Alembert Principle. The generalization of Hamilton’s
principle to the nonholonomic context is as follows:

1.3.1 Definition. The principle

δ

∫ b

a

L(q(t), q̇(t)) dt = 0, (1.3.3)

where the virtual displacements δq are assumed to satisfy the constraints
1.3.1, that is,

n∑
k=1

ajkδq
k = 0, (1.3.4)

where j = 1, . . . ,m, is called the Lagrange–d’Alembert principle.

As with Hamilton’s principle, one can check that the following proposi-
tions are true:

1.3.2 Proposition. The Lagrange–d’Alembert principle given in Defini-
tion 1.3.1, together with the constraints (1.3.1), is equivalent to the Lagran-
ge–d’Alembert equations of motion (1.3.2).

This is a fundamental principle, and we shall return to it later in more
detail.

Energy. We introduce the energy in the same way as with holonomic
systems, namely

E(qi, q̇i) =
∂L

∂q̇i
q̇i − L(qi, q̇i). (1.3.5)

7See, for example, Vershik and Gershkovich [1988], Bloch and Crouch [1998a], and
Jalnapurkar [1994].
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1.3.3 Proposition. Energy is conserved for nonholonomic systems; that
is, for solutions of (1.3.2) subject to the constraints (1.3.1), we have

dE

dt
= 0.

Proof. We begin by taking the time derivative of the energy expression
(1.3.5) and using the equations of motion (1.3.2):

d

dt
E(qi, q̇i) =

d

dt

(
∂L

∂q̇i
q̇i − L(qi, q̇i)

)

=
d

dt

(
∂L

∂q̇i

)
q̇i +

∂L

∂q̇i
q̈i − ∂L

∂qi
q̇i − ∂L

∂q̇i
q̈i

=
m∑
j=1

λja
j
i q̇

i.

But this vanishes by virtue of the constraints (1.3.1). �

This proposition is consistent with the fact that the forces of constraint
do no work. Of course, this result is under the assumptions that the La-
grangian is not explicitly time-dependent and that the constraints are time-
independent.

Nonholonomic Mechanical Systems with External Forces. If ex-
ternal forces F e, such as control forces, are added to the system, then one
adds these forces to the right-hand side of the equations, just as we did
earlier for the Lagrange equations of motion. Namely, the equations are

d

dt

∂L

∂q̇i
− ∂L

∂qi
=

m∑
j=1

λja
j
i + F e

i , (1.3.6)

where i = 1, . . . , n, together with the constraint equations (1.3.1). One de-
termines the Lagrange multipliers λi by imposing the constraints as before.
The corresponding Lagrange–d’Alembert principle is

δ

∫ b

a

L(q(t), q̇(t)) dt+

∫ b

a

F e · δq dt = 0, (1.3.7)

where the virtual displacements δq now are assumed to satisfy the con-
straints (1.3.4).

Variational Nonholonomic Equations. It is interesting to compare
the dynamic nonholonomic equations, that is, the Lagrange–d’Alembert
equations with the corresponding variational nonholonomic equations. The
distinction between these two different systems of equations has a long and
distinguished history going back to the review article of Korteweg [1899]
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and is discussed in a more modern context in Arnold, Kozlov, and Neishtadt
[1988]. (For Kozlov’s work on vakonomic systems, see, e.g., Kozlov [1983]
and Kozlov [1992]).8 The upshot of the distinction is that the Lagran-
ge–d’Alembert equations are the correct mechanical dynamical equations,
while the corresponding variational problem is asking a different question,
namely one of optimal control.
Perhaps it is surprising, at least at first, that these two procedures give

different equations. What, exactly, is the difference in the two procedures?
The distinction is one of whether the constraints are imposed before or
after taking variations. These two operations do not, in general, commute.
We shall see this explicitly with the vertical rolling disk in the next section.
With the dynamic Lagrange–d’Alembert equations, we impose constraints
only on the variations, whereas in the variational problem we impose the
constraints on the velocity vectors of the class of allowable curves.
The variational equations are obtained by using Lagrange multipliers

with the Lagrangian rather than Lagrange multipliers with the equations,
as we did earlier. Namely, we consider the modified Lagrangian

L(q, q̇) +
n∑

k=1

m∑
j=1

μja
j
k q̇

k. (1.3.8)

Notice that there are as many Lagrange multipliers μj as there are con-
straints, just as in the Lagrange–d’Alembert equations. Then one forms the
Euler–Lagrange equations from this modified Lagrangian and determines
the Lagrange multipliers, to the extent possible, from the constraints and
initial conditions. We shall see explicitly how this works in the context of
examples in the next section and return to the general theory later on.

Exercises

� 1.3-1. Consider the Lagrangian

L(x, y, z, ẋ, ẏ, ż) =
1

2
m

(
ẋ2 + ẏ2 + ż2

)−mgz

with the constraints
yẋ− xẏ = 0.

(a) Are these constraints holonomic or nonholonomic?
(b) Write down the dynamic nonholonomic equations.

8As Korteweg points out, there were many confusions and mistakes in the literature
because people were using the incorrect equations, namely the variational equations,
when they should have been using the Lagrange–d’Alembert equations; some of these
misunderstandings persist, remarkably, to the present day. What Arnold et al. call the
vakonomic equations, we will call the variational nonholonomic equations. This ter-

minology will be useful in distinguishing the system from the dynamic nonholonomic
equations we introduced above.
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(c) Write down the variational nonholonomic equations.
(d) Are these two sets of equations the same?

� 1.3-2 (Rosenberg [1977]). Consider the Lagrangian

L(x, y, z, ẋ, ẏ, ż) =
1

2

(
ẋ2 + ẏ2 + ż2

)

with the constraints
ż − yẋ = 0 .

(a) Write down the dynamic nonholonomic equations.
(b) Write down the variational nonholonomic equations.
(c) Are these two sets of equations the same?

� 1.3-3. Derive a formula for dE/dt for nonholonomic systems with forces.

1.4 The Vertical Rolling Disk

Geometry and Kinematics. The vertical rolling disk is a basic and
simple example of a system subject to nonholonomic constraints: a ho-
mogeneous disk rolling without slipping on a horizontal plane. In the first
instance we consider the “vertical” disk, a disk that, unphysically of course,
may not tilt away from the vertical; it is not difficult to generalize the sit-
uation to the “falling” disk. It is helpful to think of a coin such as a penny,
since we are concerned with orientation and the roll angle (the position of
Lincoln’s head, for example) of the disk.9

Let S1 denote the circle of radius 1 in the plane. It is parameterized by an
angular variable (that is, a variable that is 2π-periodic). The configuration
space for the vertical rolling disk is Q = R

2×S1×S1 and is parameterized
by the (generalized) coordinates q = (x, y, θ, ϕ), denoting the position of
the contact point in the xy-plane, the rotation angle of the disk, and the
orientation of the disk, respectively, as in Figure 1.4.1.

The variables (x, y, ϕ) may also be regarded as giving a translational
position of the disk together with a rotational position; that is, we may
regard (x, y, ϕ) as an element of the Euclidean group in the plane. This
group, denoted by SE(2), is the group of translations and rotations in the
plane, that is, the group of rigid motions in the plane. Thus, SE(2) =
R

2 × S1 (as a set). This group and its three-dimensional counterpart in
space, SE(3), play an important role throughout this book. They will be
treated via their coordinate descriptions for the moment, but later on we
will return to them in a more geometric and intrinsic way.

9Other references that treat this example (including the falling disk) are, for example,
Vierkandt [1892], Bloch, Reyhanoglu, and McClamroch [1992], Bloch and Crouch [1995],
Bloch, Krishnaprasad, Marsden, and Murray [1996], O’Reilly [1996], Cushman, Hermans,
and Kemppainen [1996], and Zenkov, Bloch, and Marsden [1998].
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Figure 1.4.1. The geometry of the rolling disk.

In summary, the configuration space of the vertical rolling disk is given by
Q = SE(2) × S1, and this space has coordinates (generalized coordinates)
given by ((x, y, ϕ), θ).

The Lagrangian for the vertical rolling disk is taken to be the total kinetic
energy of the system, namely

L(x, y, ϕ, θ, ẋ, ẏ, ϕ̇, θ̇) =
1

2
m(ẋ2 + ẏ2) +

1

2
Iθ̇2 +

1

2
Jϕ̇2, (1.4.1)

where m is the mass of the disk, I is the moment of inertia of the disk
about the axis perpendicular to the plane of the disk, and J is the moment
of inertia about an axis in the plane of the disk (both axes passing through
the disk’s center).
For the derivation of kinetic energy formulas of this sort, we refer to any

basic mechanics book, such as Synge and Griffiths [1950]. We shall derive
such formulas from a slightly more advanced point of view in Section 3.15.
If R is the radius of the disk, the nonholonomic constraints of rolling

without slipping are

ẋ = R(cosϕ)θ̇ ,

ẏ = R(sinϕ)θ̇ ,
(1.4.2)

which state that the point P0 fixed on the rim of the disk has zero velocity at
the point of contact with the horizontal plane. Notice that these constraints
have the form (1.3.1) if we write them as

ẋ−R(cosϕ)θ̇ = 0 ,

ẏ −R(sinϕ)θ̇ = 0 .
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We can write these equations in the form of the equations (1.3.1), namely
as the two constraint equations

a1 · (ẋ, ẏ, ϕ̇, θ̇)T = 0 ,

a2 · (ẋ, ẏ, ϕ̇, θ̇)T = 0 ,

where T denotes the transpose and where

a1 = (1, 0, 0,−R cosϕ) , a2 = (0, 1, 0,−R sinϕ) .

In the notation used in (1.3.1),

a11 = 1, a12 = 0, a13 = 0, a14 = −R cosϕ ,

and similarly for a2:

a21 = 0, a22 = 1, a23 = 0, a24 = −R sinϕ .

We will compute the dynamical equations for this system with controls
in the next section. In particular, when there are no controls, we will get
the dynamical equations for the uncontrolled disk. As we shall see, these
free equations can be explicitly integrated.

Dynamics of the Controlled Disk. Consider the case where we have
two controls, one that can steer the disk and another that determines the
roll torque. Now we shall use the general equations (1.3.6) to write down
the equations for the controlled vertical rolling disk. According to these
equations, we add the forces to the right-hand side of the Euler–Lagrange
equations for the given Lagrangian along with Lagrange multipliers to en-
force the constraints and to represent the reaction forces. In our case, L
is cyclic in the configuration variables q = (x, y, ϕ, θ), and so the required
dynamical equations become

d

dt

(
∂L

∂q̇

)
= uϕf

ϕ + uθf
θ + λ1a

1 + λ2a
2, (1.4.3)

where, from (1.4.1), we have

∂L

∂q̇
= (mẋ,mẏ, Jϕ̇, Iθ̇),

and where
fϕ = (0, 0, 1, 0), fθ = (0, 0, 0, 1),

corresponding to assumed controls in the directions of the two angles ϕ
and θ, respectively. Here uϕ and uθ are control functions, so the external
control forces are F = uϕf

ϕ + uθf
θ, and the λi are Lagrange multipliers,

chosen to ensure satisfaction of the constraints (1.4.2).
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We eliminate the multipliers as follows. Consider the first two compo-
nents of (1.4.3) and substitute the constraints (1.4.2) to eliminate ẋ and ẏ
to give

λ1 = m
d

dt
(R cosϕ θ̇) ,

λ2 = m
d

dt
(R sinϕ θ̇) .

Substitution of these expressions for λ1 and λ2 into the last two components
of (1.4.3) and noticing the simple identities

λ1a
1
3 + λ2a

2
3 = 0 ,

λ1a
1
4 + λ2a

2
4 = −mR2θ̈ ,

gives the dynamic equations

Jϕ̈ = uϕ ,

(I +mR2)θ̈ = uθ , (1.4.4)

which, together with the constraints

ẋ = R(cosϕ)θ̇ ,

ẏ = R(sinϕ)θ̇ , (1.4.5)

(and some specification of the control forces), determine the dynamics of
the system.
The free equations , in which we set uϕ = uθ = 0, are easily integrated.

In fact, in this case, the dynamic equations (1.4.4) show that ϕ̇ and θ̇ are
constants; calling these constants ω and Ω, respectively, we have

ϕ = ωt+ ϕ0 ,

θ = Ωt+ θ0 .

Using these expressions in the constraint equations (1.4.5) and integrating
again gives

x =
Ω

ω
R sin(ωt+ ϕ0) + x0 ,

y = −Ω

ω
R cos(ωt+ ϕ0) + y0 .

Consider next the controlled case, with nonzero controls u1, u2. Call the
variables θ and φ “base” or “controlled” variables and the variables x and
y “fiber” variables. The distinction is that while θ and ϕ are controlled
directly, the variables x and y are controlled indirectly via the constraints.10

10The notation “base” and “fiber” comes from the fact that the configuration space
Q splits naturally into the base and fiber of a trivial fiber bundle, as we shall see later.
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It is clear that the base variables are controllable in any sense we can
imagine. One may ask whether the full system is controllable. Indeed it is,
in a precise sense as we shall show later, by virtue of the nonholonomic
nature of the constraints.

The Kinematic Controlled Disk. It is also useful to define and study
a related system, the so-called kinematic controlled rolling disk. In this case
we imagine we have direct control over velocities rather than forces, and
accordingly, we consider the most general first-order system satisfying the
constraints or lying in the “constraint distribution.” In the present case of
the vertically rolling disk, this system is

q̇ = u1X1 + u2X2, (1.4.6)

where X1 = (R cosϕ,R sinϕ, 0, 1)T and X2 = (0, 0, 1, 0)T and where q̇ =
(ẋ, ẏ, ϕ̇, θ̇)T .
In fact, X1 and X2 constitute a maximal set of independent vector fields

on Q satisfying the constraints, in the sense that the components of X1

and X2 satisfy the equations (1.4.5), as is easily checked. As we shall see,
it is instructive to analyze both the control and optimal control of such
systems.

The Variational Controlled System. As we indicated in the last sec-
tion, the variational system is obtained by using Lagrange multipliers with
the Lagrangian rather than Lagrange multipliers with the equations, as we
did earlier. Namely, we consider the Lagrangian

L =
1

2
m(ẋ2 + ẏ2) +

1

2
Iθ̇2 +

1

2
Jϕ̇2 + μ1(ẋ−Rθ̇ cosϕ) + μ2(ẏ −Rθ̇ sinϕ) ,

where, because of the Lagrange multipliers, we relax the constraints and
take variations over all curves. In other words, we write down the Euler–
Lagrange equations for this Lagrangian and determine the multipliers from
the constraints and initial conditions to the extent possible.
The Euler–Lagrange equations for this Lagrangian, including external

forces in the ϕ and θ equations, are

mẍ+ μ̇1 = 0 , (1.4.7)

mÿ + μ̇2 = 0 , (1.4.8)

Jϕ̈−Rμ1θ̇ sinϕ+Rμ2θ̇ cosϕ = uϕ , (1.4.9)

Iθ̈ −R
d

dt
(μ1 cosϕ+ μ2 sinϕ) = uθ . (1.4.10)

From the constraint equations (1.4.5) and integrating equations (1.4.7)
and (1.4.8) once, we have

μ1 = −mRθ̇ cosϕ+A ,

μ2 = −mRθ̇ sinϕ+B ,
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where A and B are integration constants. Substituting these into equations
(1.4.9) and (1.4.10) and simplifying, we obtain

Jϕ̈ = Rθ̇(A sinϕ−B cosϕ) + uϕ ,

(I +mR2)θ̈ = Rϕ̇(−A sinϕ+B cosϕ) + uθ .

These equations, together with the constraints, define the dynamics. Notice
that for nonzero A and B, they are different from the dynamic nonholo-
nomic (Lagrange–d’Alembert) equations. As we have indicated, the motion
determined by these equations is not that associated with physical dynam-
ics in general, but is a model of the type of problem that is relevant to
optimal control problems, as we shall see later.
Note also that the constants of motion A and B are not determined

by the constraints or initial data. Thus in this instance there are many
variational nonholonomic trajectories with a given set of initial conditions;
the choice of A = B = 0 yields the nonholonomic (i.e., the Lagrange–d’Al-
embert) case. Interestingly, it is not always true that the nonholonomic
trajectories are special cases of the variational nonholonomic trajectories,
but it is possible to quantify when this occurs; see, e.g., Cardin and Favretti
[1996].
More details on this issue may be found in Fernandez and Bloch [2008]

where necessary and sufficient conditions for the equivalence of the dynam-
ics of nonholonomic mechanics and variational nonholonomic (vakonomic)
dynamics for certain initial conditions are given. In this work the notion of
conditionally variational nonholonomic systems is developed. For
such systems for any given initial data there exists a value of the Lagrange
multiplier for the variational nonholonomic system such that the trajecto-
ries of the two types of system coincide. Similarly if the result only holds
for some initial data the system is said to be partially conditionally
variational nonholonomic.

Exercises

� 1.4-1. Write down an expression for the energy of the (dynamic nonholo-
nomic) vertical rolling disk and compute its time rate of change under the
action of the controls uϕ and uθ.

� 1.4-2. Compute the dynamic nonholonomic and variational nonholonomic
equations of motion of the upright rolling penny in the presence of a linear
potential of the form V (x, y, ϕ, θ) = αx for a real number α. Solve the
equations if possible.
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1.5 The Falling Rolling Disk

A more realistic disk is of course one that is allowed to fall over (i.e., it
is permitted to deviate from the vertical). This turns out to be a very
instructive example to analyze. See Figure 1.5.1. As the figure indicates,
we denote the coordinates of contact of the disk in the xy-plane by (x, y)
and let θ, ϕ, and ψ denote the angle between the plane of the disk and
the vertical axis, the “heading angle” of the disk, and “self-rotation” angle
of the disk, respectively.11 Note that the notation ψ for the falling rolling
disk corresponds to the notation θ in the special case of the vertical rolling
disk.

ϕ

P

Qx

z

y

θ

(x, y)

ψ

Figure 1.5.1. The geometry for the rolling disk.

For the moment, we just give the Lagrangian and constraints, and return
to this example in Chapter 8, where we work things out in detail. While
the equations of motion are straightforward to develop, as in the vertical
case, they are somewhat messy, so we will defer these calculations until the
later discussion. We will also show in Chapter 8 that this is a system that
exhibits stability but not asymptotic stability.
Denote the mass and radius of the disk by m and R, respectively; let I

be, as in the case of the vertical rolling disk, the moment of inertia about

11A classical reference for the rolling disk is Vierkandt [1892], who showed something
very interesting: On an appropriate symmetry-reduced space, namely, the constrained
velocity phase space modulo the action of the group of Euclidean motions of the plane, all
orbits of the system are periodic. Modern references that treat this example are Hermans
[1995], O’Reilly [1996], Cushman, Hermans, and Kemppainen [1996], and Zenkov, Bloch,
and Marsden [1998].
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the axis through the disk’s “axle” and J the moment of inertia about any
diameter. The Lagrangian is given by the kinetic minus potential energies:

L =
m

2

[
(ξ −R(ϕ̇ sin θ + ψ̇))2 + η2 sin2 θ + (η cos θ +Rθ̇)2

]

+
1

2

[
J(θ̇2 + ϕ̇2 cos2 θ) + I(ϕ̇ sin θ + ψ̇)2

]
−mgR cos θ,

where ξ = ẋ cosϕ + ẏ sinϕ + Rψ̇ and η = −ẋ sinϕ + ẏ cosϕ, while the
constraints are given by

ẋ = −ψ̇R cosϕ,

ẏ = −ψ̇R sinϕ.

Note that the constraints may also be written as ξ = 0, η = 0.

Unicycle with Rotor. An interesting generalization of the falling disk is
the “unicycle with rotor,” analyzed in Zenkov, Bloch, and Marsden [2002b],
(see Figure 1.5.2).

x
(x,y)

z

y

φ

ψ

q

x

Figure 1.5.2. The configuration variables for the unicycle with rotor.

This is a homogeneous disk on a horizontal plane with a rotor. The rotor
is free to rotate in the plane orthogonal to the disk. The rod connecting
the centers of the disk and rotor keeps the direction of the radius of the
disk through the contact point with the plane. We may view this system
as a simple model of unicycle with rider whose arms are represented by the
rotor. Stabilization is discussed in Chapter 9. A unicycle with pendulum is
discussed in Zenkov, Bloch, and Marsden [2002b] and the web supplement.
The configuration space for this system is Q = S1 × S1 × S1 × SE(2),

which we parameterize with coordinates (θ, χ, ψ, φ, x, y). As in Figure 1.5.2,
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θ is the tilt of the unicycle itself, and ψ and χ are the angular positions of
the wheel of the unicycle and the rotor, respectively. The variables (φ, x, y),
regarded as a point in SE(2), represent the angular orientation of the overall
system and position of the point of contact of the wheel with the ground.
Further details are given in Chapter 9.

1.6 The Knife Edge

A simple and basic example of the behavior of a system with nonholonomic
constraints is a knife edge or skate on an inclined plane.12

To set up the problem, consider a plane slanted at an angle α from the
horizontal and let (x, y) represent the position of the point of contact of the
knife edge with respect to a fixed Cartesian coordinate system on the plane
(see Figure 1.6.1). The angle ϕ represents the orientation of the knife edge
with respect to the xy-axis. The knife edge is moving under the influence
of gravity with the acceleration due to gravity denoted by g. It also has
mass m, and the moment of inertia of the knife edge about a vertical axis
through its contact point is denoted by J .

m = mass

g

ϕ

(x, y)

x
y

α

J = moment of
inertia

Figure 1.6.1. Motion of a knife edge on an inclined plane.

With this notation, the knife edge Lagrangian is taken to be

L =
1

2
m

(
ẋ2 + ẏ2

)
+

1

2
Jϕ̇2 +mgx sinα (1.6.1)

with the constraint
ẋ sinϕ = ẏ cosϕ . (1.6.2)

12This example is analyzed in, for example, Neimark and Fufaev [1972] and Arnold,
Kozlov, and Neishtadt [1988].
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As for the rolling penny, we will compare the mechanical nonholonomic
equations and the variational equations. In contrast to the penny we can-
not solve the equations explicitly in general, but this is possible for certain
initial data of interest. In particular, we shall be concerned with the initial
data corresponding to the knife edge spinning about a point on the plane
with zero initial velocity along the plane. The question is, what is the mo-
tion of the point of contact? We shall not consider the addition of controls
for the moment.

The Nonholonomic Case. The equations of motion given in general
by (1.3.2) become, in this case,

mẍ = λ sinϕ+mg sinα ,

mÿ = −λ cosϕ ,

Jϕ̈ = 0 .

We assume the initial data x(0) = ẋ(0) = y(0) = ẏ(0) = ϕ(0) = 0 and
ϕ̇(0) = ω. The energy is given, according to the general formula (1.3.5), by

E =
1

2
m

(
ẋ2 + ẏ2

)
+

1

2
Jϕ̇2 −mgx sinα

and is preserved along the flow. Since it is preserved, it equals its initial
value

E(0) =
1

2
Jω2 .

Hence, we have

1

2

ẋ2

cos2 ϕ
−mgx sinα = 0 .

Solving, we obtain

x =
g

2ω2
sinα sin2 ωt

and, using the constraint,

y =
g

2ω2
sinα

(
ωt− 1

2
sin 2ωt

)
.

Hence the point of contact of the knife edge undergoes a cycloid motion
along the plane, but does not slide down the plane.

The Variational Nonholonomic Case. Now we consider, in contrast,
the variational nonholonomic equations of motion. We consider the con-
strained Lagrangian

LC =
1

2
m

(
ẋ2 + ẏ2

)
+

1

2
Jϕ̇2 +mgx sinα− λ (ẋ sinϕ− ẏ cosϕ) .
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As in the general theory, define the momenta by pi = ∂L/∂q̇i, which be-
comes, in this case,

px =
∂LC

∂ẋ
= mẋ− λ sinϕ ,

py =
∂LC

∂ẏ
= mẏ + λ cosϕ .

Now assume initial data satisfying px(0) = py(0) = ϕ(0) = ϕ̇(0) = 0. Then
from Lagrange’s equations, we get

ṗx = mg sinα ,

ṗy = 0 ,

and hence from the initial data

px = (mg sinα)t ,

mẏ + λ cosϕ = 0 .

Now the equation for ϕ̇ is

Jϕ̈ = −λẋ cosϕ− λẏ sinϕ = −(λg sinα cosϕ)t ,

using the above expressions for px and py to solve for ẋ and ẏ.
Again using the expressions for px and py we have

λ = py cosϕ− px sinϕ = −(mg sinα sinϕ)t .

Using this expression for λ gives

ẋ = (g sinα)t+ λ/m sinϕ = (g sinα)t− (g sinα sin2 ϕ)t

= (mg sinα cos2 ϕ)t ,

ẏ = −λ/m cosϕ = (g sinα sinϕ cosϕ)t ,

ϕ̈ =
(m
J
g2 sin2 α sinϕ cosϕ

)
t2 .

Hence, in the variational formulation the point of contact of the knife edge
slides monotonically down the plane, in contrast to the nonholonomic me-
chanical setting (see, e.g., Kozlov [1983]).

1.7 The Chaplygin Sleigh

One of the simplest mechanical systems that illustrates the possible “dis-
sipative nature” of nonholonomic systems, even though they are energy-
preserving, is the Chaplygin sleigh.13

13The system is discussed in the original work of Chaplygin (see the references) as
well as in Neimark and Fufaev [1972] and Ruina [1998].



1.7 The Chaplygin Sleigh 27

We now derive the equations of motion both using balance of forces as
in Ruina [1998] and by the Lagrange multiplier approach, following the
general theory. This system consists of a rigid body in the plane that is
supported at three points, two of which slide freely without friction while
the third is a knife edge, a constraint that allows no motion perpendicular
to its edge.
To analyze the system, use a coordinate system Oxy fixed in the plane

and a coordinate system Aξη fixed in the body with its origin at the point
of support of the knife edge and the axis Aξ through the center of mass
C of the rigid body. The configuration of the body is described by the
coordinates x, y and the angle θ between the moving and fixed sets of axes.
Let m be the mass and I the moment of inertia about the center of mass.
Let a be the distance from A to C. See Figure 1.7.1.

θ

x

z

y

(x,y)

A

ξ

η

Ca

O

Figure 1.7.1. The Chaplygin sleigh is a rigid body moving on two sliding posts and

one knife edge.

Denote the unit vectors along the axes Aξ and Aη in the body by e1 and
e2. The knife edge constraint can then be expressed as follows: The velocity
at A is given by vA = v1e1, where v1 is the velocity in the direction e1.

The force at A is written as Re2; that is, the force is normal to the
direction of motion at A. The position of point C is rC = rA + ae1, where
the vectors r are in the fixed frame.
Since ė1 = θ̇e2 and ė2 = −θ̇e1, the velocity and acceleration of the point

C are given by

vC = ve1 + θ̇ae2 ,

aC = v̇e1 + vθ̇e2 + θ̈ae2 − θ̇2ae1. (1.7.1)
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The balance of linear and angular momentum at the point A then gives

Re2 = maC ,

0 = (rC − rA)× (maC) + Iθ̈e3, (1.7.2)

where e3 is the normal vector to the plane. Setting θ̇ = ω we find that
equations (1.7.1), (1.7.2) yield the equations

v̇ = aω2 ,

ω̇ = − ma

I +ma2
vω . (1.7.3)

The equations above are examples of momentum equations in nonholo-
nomic mechanics, which we shall study in general in Chapter 5 and which
will play an important role in the book. In the absence of nonholonomic
constraints, this equation would yield conservation of angular momentum.
This set of equations has a family of equilibria (i.e., points at which the

right-hand side vanishes) given by {(v, ω) | v = const, ω = 0}.
Linearizing about any of these equilibria one finds that one has one zero

eigenvalue together with a negative eigenvalue if v > 0 and a positive eigen-
value if v < 0. In fact, the solution curves are ellipses in the vω plane with
the positive v-axis attracting all solutions; see below. (See Figure 1.7.2.)
We shall discuss this further in Section 8.6.

ω

v

–1

–1

–2

1

2

10

Figure 1.7.2. Chaplygin sleigh phase portrait.

We can also derive the equations from the Lagrangian (Lagrange–d’Al-
embert) point of view. The Lagrangian is given by

L(xC , yC , θ) =
1

2
m

(
ẋ2
C + ẏ2C

)
+

1

2
Iθ̇2 ,
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where xC and yC are the coordinates of the center of mass. We rewrite
this in terms of the coordinates of the knife edge x = xC − a cos θ and
y = yC − a sin θ. Hence we may rewrite the Lagrangian as

L(x, y, θ) =
1

2
m

(
d

dt
(x+ a cos θ)

2
+

d

dt
(y + a sin θ)

2

)
+

1

2
Iθ̇2

=
1

2
m

((
ẋ− a sin θθ̇

)2

+
(
ẏ + a cos θθ̇

)2
)
+

1

2
Iθ̇2

=
1

2

(
mẋ2 +mẏ2 +

(
I +ma2

)
θ̇2 − 2maẋθ̇ sin θ + 2maẏθ̇ cos θ

)
.

(1.7.4)

The knife edge constraint is

ẏ cos θ − ẋ sin θ = 0 . (1.7.5)

Hence the nonholonomic equations of motion are

m
d

dt

(
ẋ− a sin θθ̇

)
= −λ sin θ ,

m
d

dt

(
ẏ + a cos θθ̇

)
= λ cos θ ,

d

dt

(
Iθ̇ +ma2θ̇ −maẋ sin θ +maẏ cos θ

)

−
(
−maẋθ̇ cos θ −maẏθ̇ sin θ

)
= 0;

that is,

ẍ− a cos θθ̇2 − a sin θθ̈ = −λ sin θ

m
,

ÿ − a sin θθ̇2 + a cos θθ̈ =
λ cos θ

m
,

(I +ma2)θ̈ +maθ̇ (ẋ cos θ + ẏ sin θ) = 0 ,

(1.7.6)

where in the third of equations (1.7.6) we used the constraint (1.7.5).
Now the velocity in the direction of motion is given by

v = ẋ cos θ + ẏ sin θ . (1.7.7)

Hence the last of equations (1.7.6) becomes

θ̈ = ω̇ = − ma

I +ma2
vω (1.7.8)

and

v̇ = ẍ cos θ + ÿ sin θ − ẋθ̇ sin θ + ẏθ̇ cos θ

= a(cos2 θ + sin2 θ)θ̇2 = aθ̇2 = aω2 . (1.7.9)
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Figure 1.7.3. Chaplygin sleigh trajectory.

Thus we obtain our earlier sleigh equations (1.7.3).
We remark that in Ruina [1998] a piecewise holonomic version of the

sleigh is discussed, where the knife edge constraint is replaced by a moving
peg in a slot. This also exhibits asymptotic stability and illustrates aspects
of mechanical locomotion. See also Coleman and Holmes [1999]. This phe-
nomenon may also be seen in passive walking machines such as those of
McGeer, as Ruina discusses.

Exercises

� 1.7-1.

(a) Compute the nonholonomic equations of motion for the Chaplygin
sleigh on an incline.

(b) Project. Simulate the equations on the computer and discuss the
nature of the dynamics; is the sleigh stable going down the incline
“forwards” or “backwards”?

� 1.7-2. Compute the variational equations of motion of the Chaplygin
sleigh. Say what you can about the qualitative behavior of the system.

1.8 The Heisenberg System

The Heisenberg Algebra. The Heisenberg algebra is the algebra one
meets in quantum mechanics, wherein one has two operators q and p
that have a nontrivial commutator, in this case a multiple of the identity.
Thereby, one generates a three-dimensional Lie algebra. The system stud-
ied in this section has an associated Lie algebra with a similar structure,
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which is the reason the system is called the Heisenberg system. There is no
intended relation to quantum mechanics per se other than this.
In Lie algebra theory this sort of a Lie algebra is of considerable interest.

One refers to it as an example of a central extension because the element
that one extends by (in this case a multiple of the identity) is in the center
of the algebra; that is, it commutes with all elements of the algebra.
The Heisenberg system has played a significant role as an example in

both nonlinear control and nonholonomic mechanics.

The Dynamic Heisenberg System. As with the previous example, the
dynamic Heisenberg system comes in two forms, one associated with the
Lagrange–d’Alembert principle and one with an optimal control problem.
As in the previous examples, the equations in each case are different.
In the dynamic setting, we consider the following standard kinetic energy

Lagrangian on Euclidean three-space R
3:

L =
1

2
(ẋ2 + ẏ2 + ż2)

subject to the constraint
ż = yẋ− xẏ. (1.8.1)

Controls u1 and u2 are given in the x and y directions. Letting q =
(x, y, z)T , the dynamic nonholonomic control system is14

q̈ = u1X1 + u2X2 + λW , (1.8.2)

where X1 = (1, 0, 0)T and X2 = (0, 1, 0)T and W = (−y, x, 1)T . Eliminat-
ing λ we obtain the dynamic equations

(1 + x2 + y2)ẍ = (1 + x2)u1 + xyu2 ,

(1 + x2 + y2)ÿ = (1 + y2)u2 + xyu1 ,

(1 + x2 + y2)z̈ = yu1 − xu2 . (1.8.3)

Optimal Control for the Heisenberg System. The control and op-
timal control of the corresponding kinematic problem have been quite im-
portant historically, and we shall return to them later on in the book in
connection with, for example, the falling cat problem and optimal steering
problems.15

The system may be written as

q̇ = u1g1 + u2g2 , (1.8.4)

14This example with controls was analyzed in Bloch and Crouch [1993]. A related
nonholonomic system, but with slightly different constraints, may be found in Rosenberg
[1977], Bates and Sniatycki [1993], and Bloch, Krishnaprasad, Marsden, and Murray
[1996].

15As we mentioned earlier, this example was introduced in Brockett [1981].



32 1. Introduction

where g1 = (1, 0, y)T and g2 = (0, 1,−x)T . As in the rolling disk example,
g1 and g2 are a maximal set of independent vector fields satisfying the
constraint

ż = yẋ− xẏ . (1.8.5)

Written out in full, these equations are

ẋ = u1 , (1.8.6)

ẏ = u2 , (1.8.7)

ż = yu1 − xu2 . (1.8.8)

Relationship Between the Vertical Disk and Heisenberg System.
Consider the vertical disk example, but eliminate ψ from the representa-
tion of the configuration (see, e.g., Lynch, Bloch, Drakunov, Reyhanoglu,
Zenkov [2011]). The system can be written as

ẋ = vR cosϕ,

ẏ = vR sinϕ,

ϕ̇ = ω, (1.8.9)

where the forward velocity and heading velocity controls are v and ω, re-
spectively. We can define a change of coordinates F (ϕ)

⎡
⎣x1

x2

z

⎤
⎦ = F (ϕ)

⎡
⎣xy
ϕ

⎤
⎦ ,

where

F (ϕ) =

⎡
⎣ 0 0 1

cosϕ sinϕ 0
ϕ cosϕ− 2 sinϕ ϕ sinϕ+ 2 cosϕ 0

⎤
⎦ ,

and a nonsingular state-dependent transformation of the controls

u1 = ω,

u2 = Rv +
(z
2
− x1x2

2

)
ω,

yielding the system

ẋ1 = u1, (1.8.10)

ẋ2 = u2, (1.8.11)

ż = x1u2 − x2u1. (1.8.12)
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Aside on the Jacobi–Lie Bracket. A notion that is important in
mechanics and control theory is that of the Jacobi–Lie bracket [f, g]
of two vector fields f and g on R

n that are given in components by
f = (f1, . . . , fn) and g = (g1, . . . , gn). It is defined to be the vector field
with components

[f, g]i =
n∑

j=1

(
f j ∂g

i

∂xj
− gj

∂f i

∂xj

)
,

or in vector calculus notation

[f, g] = (f · ∇) g − (g · ∇) f.

Later on, in Chapter 2, we will define the Jacobi–Lie bracket intrinsically
on manifolds. An important geometric interpretation of this bracket is as
follows.
Suppose we follow the vector field g (i.e., flow along the solution of the

equation ẋ = g(x)) from point x(0) = x0 for t units of time, then beginning
with this as initial condition, we flow along the vector field f for time t;
then along the vector field −g, and finally along −f all for t units of time.
Formally, we arrive at the point

(exp−tf)(exp−tg)(exp tf)(exp tg)(x0) , (1.8.13)

where (exp tg) represents the flow of the vector field g for t units of time.
Flows of vector fields will be described in more detail in Chapter 2.
Locally, expanding the exponential and in turn expanding each occur-

rence of g in the exponential in a Taylor series about x0 we have along the
flow of the equation ẋ = g(x),

x(t) = x0 + tg(x0) +
t2

2
g(x0) · ∇g(x0) +O(t3) . (1.8.14)

(Here we compute the second derivative of x(t) at t = t0 by differentiating
ẋ(t) = g(x(t)) with respect to t.) Hence, after a short computation using
additional Taylor expansions, one finds that (1.8.13) becomes

x0 − t2 [f, g] (x0)x0 +O(t3) , (1.8.15)

where [f, g] is the Lie bracket as defined above. Thus, if [f, g] is not in the
span of vector fields g and f , then by concatenating the flows of f and g,
we obtain motion in a new independent direction.

Return to the Heisenberg System. In the Heisenberg example, one
verifies that the Jacobi–Lie bracket of the vector fields g1 and g2 is

[g1, g2] = 2g3 ,
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where g3 = (0, 0, 1). In fact, the three vector fields g1, g2, g3 span all of R3

and, as a Lie algebra, is just the Heisenberg algebra described earlier.
By general controllability theorems that we shall discuss in Chapter 4

(Chow’s theorem), one knows now that one can, with suitable controls,
steer trajectories between any two points in R

3. The above geometric in-
terpretation makes this plausible. In particular, we are interested in the
following optimal steering problem (see Figure 1.8.1).

x2

x1

x3

(0, 0, a)

(0, 0, 0)

Figure 1.8.1. An optimal steering problem.

Optimal Steering Problem. Given a number a > 0, find
time-dependent controls u1, u2 that steer the trajectory starting
at (0, 0, 0) at time t = 0 to the point (0, 0, a) after a given time
T > 0 and that among all such controls minimizes

1

2

∫ T

0

(u2
1 + u2

2) dt .

An equivalent formulation is the following: Minimize the integral

1

2

∫ T

0

(ẋ2 + ẏ2) dt

among all curves q(t) joining q(0) = (0, 0, 0) to q(T ) = (0, 0, a) that satisfy
the constraint

ż = yẋ− xẏ .

As before, any solution must satisfy the Euler–Lagrange equations for the
Lagrangian with a Lagrange multiplier inserted:

L
(
x, ẋ, y, ẏ, z, ż, λ, λ̇

)
= 1

2

(
ẋ2 + ẏ2

)
+ λ (ż − yẋ+ xẏ) .
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The corresponding Euler–Lagrange equations are given by

ẍ− 2λẏ = 0 , (1.8.16)

ÿ + 2λẋ = 0 , (1.8.17)

λ̇ = 0 . (1.8.18)

From the third equation λ is a constant, and the first two equations state
that the particle (x(t), y(t)) moves in the plane in a constant magnetic field
(pointing in the z direction, with charge proportional to the constant λ).
For more on these ideas, see Chapter 7 on optimal control.
Some remarks are in order here:

1. The fact that this optimal steering problem gives rise to an interesting
mechanical system is not an accident; we shall see this in much more
generality in Chapter 7 and the Internet Supplement.

2. Since particles in constant magnetic fields move in circles with con-
stant speed, they have a sinusoidal time dependence, and hence so
do the controls. This has led to the “steering by sinusoids” approach
in many nonholonomic steering problems (see, for example, Murray
and Sastry [1993] and Section 6.1).

Equations (1.8.16) and (1.8.17) are linear first-order equations in the
velocities and are readily solved:

[
ẋ(t)
ẏ(t)

]
=

[
cos(2λt) sin(2λt)
− sin(2λt) cos(2λt)

] [
ẋ(0)
ẏ(0)

]
. (1.8.19)

Integrating once more and using the initial conditions x(0) = 0, y(0) = 0
gives

[
x(t)
y(t)

]
=

1

2λ

[
cos(2λt)− 1 sin(2λt)
− sin(2λt) cos(2λt)− 1

] [−ẏ(0)
ẋ(0)

]
. (1.8.20)

The other boundary condition x(T ) = 0, y(T ) = 0 gives

λ =
nπ

T

for an integer n. Using this information, we find z by integration: From
ż = yẋ− xẏ and the preceding expressions we get

ż(t) =
T

2nπ

[
ẋ(0)2 + ẏ(0)2 − cos

(
2nπt

T

)
(ẋ(0)2 + ẏ(0)2)

]
.

Integration from 0 to T and using z(0) = 0 gives

z(T ) =
T 2

2nπ

[
ẋ(0)2 + ẏ(0)2

]
.



36 1. Introduction

Thus, to achieve the boundary condition z(T ) = a one must choose

ẋ(0)2 + ẏ(0)2 =
2πna

T 2
.

One also finds that

1

2

∫ T

0

[
ẋ(t)2 + ẏ(t)2

]
dt =

1

2

∫ T

0

[
ẋ(0)2 + ẏ(0)2

]
dt

=
T

2

[
ẋ(0)2 + ẏ(0)2

]

=
πna

T
,

so that the minimum is achieved when n = 1.

Summary: The solution of the optimal control problem is given by choos-
ing initial conditions such that ẋ(0)2 + ẏ(0)2 = 2πa/T 2 and with the tra-
jectory in the xy-plane given by the circle

[
x(t)
y(t)

]
=

1

2λ

[
cos(2πt/T )− 1 sin(2πt/T )
− sin(2πt/T ) cos(2πt/T )− 1

] [−ẏ(0)
ẋ(0)

]
(1.8.21)

and with z given by

z(t) =
ta

T
− a

2π
sin

(
2πt

T

)
.

Notice that any such solution can be rotated about the z axis to obtain
another one.

Exercises

� 1.8-1. Solve the optimal steering problem for the vertical disk problem
(1.8.9) with cost function 1

2 (v
2 + ω2).

� 1.8-2. For the standard kinetic energy Lagrangian on R
3 and constraint

(1.8.1) above, write down the variational nonholonomic problem. How does
this compare with the optimal steering problem?

1.9 The Rigid Body

The Free Rigid Body. A key system in mechanics is the free rigid
body. There are many excellent treatments of this topic; see, for example,
Whittaker [1988], Arnold [1989], and Marsden and Ratiu [1999]. We restrict
ourselves here to some essentials, although we shall return to the topic in
detail in the context of nonholonomic mechanics and optimal control.
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The configuration space of a rigid body moving freely in space is R
3 ×

SO(3), describing the position of a coordinate frame fixed in the body
and the orientation of the frame, the orientation of the frame given by an
element of SO(3), i.e., an orthogonal 3×3 matrix with determinant 1. Since
the three components of translational momentum are conserved, the body
behaves as if it were rotating freely about its center of mass.16

Hence the phase space for the body may be taken to be T SO(3)—the
tangent bundle of SO(3)—with points representing the position and veloc-
ity of the body, or in the Hamiltonian context we may choose the phase
space to be the cotangent bundle T ∗ SO(3), with points representing the
position and momentum of the body. (This example may be equally well
formulated for the group SO(n) or indeed any compact Lie group.)
If I is the moment of inertia tensor computed with respect to a body

fixed frame, which, in a principal body frame, we may represent by the
diagonal matrix diag(I1, I2, I3), the Lagrangian of the body is given by the
kinetic energy, namely

L =
1

2
Ω · IΩ, (1.9.1)

where Ω is the vector of angular velocities computed with respect to the
axes fixed in the body.
The Euler–Lagrange equations of motion may be written as the system

Ȧ = AΩ̂ , (1.9.2)

IΩ̇ = IΩ× Ω , (1.9.3)

where A ∈ SO(3) and we write

Ω̂ ≡
⎛
⎝ 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

⎞
⎠ .

The dynamics may be rewritten

I
˙̂
Ω = [IΩ̂, Ω̂], (1.9.4)

or, in terms of the angular momentum matrix M̂ = IΩ̂,

˙̂
M = [M̂, Ω̂]. (1.9.5)

The Rolling Ball. This paragraph considers the controlled rolling in-
homogeneous ball on the plane, the kinematics of which were discussed in
Brockett and Dai [1992], establishing the completely nonholonomic nature

16This is not the case with other systems, such as a rigid body moving in a fluid;

even though the system is translation-invariant, its “center of mass” need not move on

a straight line, so the configuration space must be taken to be the full Euclidean group.
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of the constraint distribution H. (A distribution is completely nonholo-
nomic if the span of the iterated brackets of the vector fields lying in it has
dimension equal to the dimension of the underlying manifold; see Chapter 4
for a full explanation.) See also Rojo and Bloch [2010]. The dynamics of the
uncontrolled system is described, for example, in McMillan [1936] (see also
Bloch, Krishnaprasad, Marsden, and Murray [1996], Jurdjevic [1993], Koon
and Marsden [1997b], and Krishnaprasad, Yang and Dayawansa [1991]).
We will use the coordinates x, y for the linear horizontal displacement and
P ∈ SO(3) for the angular displacement of the ball. Thus P gives the orien-
tation of the ball with respect to inertial axes e1, e2, e3 fixed in the plane,
where the ei are the standard basis vectors aligned with the x-, y-, and
z-axes, respectively. See Figure 1.9.1.

ω

(x, y)

Figure 1.9.1. The rolling ball.

Let the ball have radius a and mass m and let ω ∈ R
3 denote the

angular velocity of the ball with respect to the inertial axes. In particular,
the ball may spin freely about the z-axis, and the z-component of angular
momentum is conserved. If J denotes the inertia tensor of the ball with
respect to the body axes (i.e., fixed in the body), then J = PTJP denotes
the inertia tensor of the ball with respect to the inertial axes (i.e., fixed
in space) and Jω is the angular momentum of the ball with respect to the
inertial axes. The conservation law alluded to above is expressed as

eT3 Jω = c . (1.9.6)

The nonholonomic constraints of rolling without slipping may be expressed
as

aeT2 ω + ẋ = 0 ,

aeT1 ω − ẏ = 0 .
(1.9.7)

We may express the kinematics for the rotating ball as Ṗ = Ω̂P , where
Ω = Pω is the angular velocity in the body frame.
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Appending the constraints via Lagrange multipliers we obtain the equa-
tions of motion

ˆ̇ΩP − ̂(J−1Ω̂JΩ)P = aλ1
̂(J−1Pe1)P + aλ2

̂(J−1Pe2)P ,

mẍ = λ2 + u1 ,

mÿ = −λ1 + u2 .

(1.9.8)

Using inertial coordinates ω = PTΩ, the system becomes

ω̇ = J
−1ω̂Jω + aλ1J

−1e1 + aλ2J
−1e2 ,

mẍ = λ2 + u1 ,

mÿ = −λ1 + u2 ,

Ṗ = P ω̂ .

(1.9.9)

Also, from the constraints and the constants of motion we obtain the
following expression for ω:

ω = ẋ(α2e3 − e2) + ẏ(e1 − α1e3) + α3e3 ,

where

α1 =
eT3 Je1
aeT3 Je3

, α2 =
eT3 Je2
aeT3 Je3

, α3 =
c

eT3 Je3
. (1.9.10)

Then the equations become

mẍ = λ2 + u1 ,

mÿ = −λ1 + u2 ,

Ṗ = P ̂(ẋ(α2e3 − e2) + ẏ(e1 − α1e3) + α3e3) .

(1.9.11)

One can now eliminate the multipliers using the first three equations of
(1.9.9) and the constraints. The resulting expressions are a little compli-
cated in the general case (although they can be found in straightforward
fashion), but become pleasingly simple in the case of a homogeneous ball,
where say J = mk2 (k is called the radius of gyration in the classical
literature).
In the latter case, the equations of motion for ω1 and ω2 become simply

mk2ω̇1 = aλ1 ,

mk2ω̇2 = aλ2 .
(1.9.12)

Rewriting these equations in terms of x and y using the multipliers and
substituting the resulting expressions for the λi into the equations of motion
for x and y yields the equations

mẍ =
a2

a2 + k2
u1 ,

mÿ =
a2

a2 + k2
u2 .

(1.9.13)
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A similar elimination argument works in the general nonhomogeneous
case.
Note that the homogeneous ball moves under the action of external forces

like a point mass located at its center but with force reduced by the ratio
a2/(a2 + k2); see also the following subsection.

A Homogeneous Ball on a Rotating Plate. A useful example is a
model of a homogeneous ball on a rotating plate (see Neimark and Fufaev
[1972] and Yang [1992] for the affine case and, for example, Bloch and
Crouch [1992], Brockett and Dai [1992], and Jurdjevic [1993] for the linear
case). As we mentioned earlier, Chaplygin [1897b, 1903] studied the motion
of an inhomogeneous rolling ball on a fixed plane.

Let the plane rotate with constant angular velocity Ω̃ about the z-axis.
The configuration space of the sphere is Q = R

2×SO(3), parameterized by
(x, y,R), R ∈ SO(3), all measured with respect to the inertial frame. Let
ω = (ω1, ω2, ω3) be the angular velocity vector of the sphere measured also
with respect to the inertial frame, let m be the mass of the sphere, mk2 its
inertia about any axis, and let a be its radius.
The Lagrangian of the system is

L =
1

2
m(ẋ2 + ẏ2) +

1

2
mk2(ω1

2 + ω2
2 + ω3

2) (1.9.14)

with the affine nonholonomic constraints

ẋ+ aω2 = −Ω̃y,

ẏ − aω1 = Ω̃x.
(1.9.15)

Note that the Lagrangian here is a metric on Q that is bi-invariant on
SO(3), since the ball is homogeneous. Note also that R2 × SO(3) is a prin-
cipal bundle over R

2 with respect to the right SO(3) action on Q given
by

(x, y,R) �→ (x, y,RS) (1.9.16)

for S ∈ SO(3). The action is on the right, since the symmetry is a material
symmetry.
A brief calculation shows that the equations of motion become

ẍ− k2Ω̃

a2 + k2
ẏ = 0,

ÿ +
k2Ω̃

a2 + k2
ẋ = 0.

(1.9.17)

These equations are easily integrated to show that the ball simply oscil-
lates on the plate between two circles rather than flying off as one might
expect.
Set

α =
k2Ω̃

a2 + k2
.
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Then one can see that the equations are equivalent to

...
x + α2ẋ = 0, (1.9.18)
...
y + α2ẏ = 0. (1.9.19)

Hence
x = A cosαt+B sinαt+ C

for constants A,B,C depending on the initial data, and similarly for y.

The Inverted Pendulum on a Cart. A useful classical system for
testing control-theoretic ideas is the inverted pendulum on a cart, the goal
being to stabilize the pendulum about the vertical using a force acting on
the cart. In this book we will use this system to illustrate stabilization using
the energy methods as discussed in Bloch, Marsden, and Alvarez [1997] and
Bloch, Leonard, and Marsden [1997] (see Chapter 9 for further references).
Here we just write down the equations of motion.
First, we compute the Lagrangian for the cart–pendulum system. Let s

denote the position of the cart on the s-axis and let φ denote the angle of
the pendulum with the upright vertical, as in Figure 1.9.2.

s

φ

m

l

g

M

l = pendulum length

m = pendulum bob mass

M = cart mass

g = acceleration due to gravity

s

Figure 1.9.2. The pendulum on a cart.

Here, the configuration space is Q = G×S = R×S1 with the first factor
being the cart position s, and the second factor being the pendulum angle
φ. The velocity phase space TQ has coordinates (s, φ, ṡ, φ̇).
The velocity of the cart relative to the lab frame is ṡ, while the velocity

of the pendulum relative to the lab frame is the vector

vpend = (ṡ+ l cosφ φ̇,−l sinφ φ̇). (1.9.20)

The kinetic energy of the coupled cart-pendulum system is given by

K
(
s, φ, ṡ, φ̇

)
=

1

2
(ṡ, φ̇)

(
M +m ml cosφ
ml cosφ ml2

)(
ṡ

φ̇

)
. (1.9.21)
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The Lagrangian is the kinetic minus potential energy, so we get

L(s, φ, ṡ, φ̇) = K(s, φ, ṡ, φ̇)− V (φ), (1.9.22)

where the potential energy is V = mgl cosφ. Note that there is a symmetry
group G of the pendulum–cart system, that of translation in the s variable,
so G = R. We do not destroy this symmetry when doing stabilization in φ.

For convenience we rewrite the Lagrangian as

L(s, φ, ṡ, φ̇) =
1

2
(αφ̇2 + 2β cosφṡφ̇+ γṡ2) +D cosφ , (1.9.23)

where α = ml2, β = ml, γ = M +m, and D = −mgl are constants. Note
that αγ − β2 > 0. The momentum conjugate to s is ps = γṡ + β cosφφ̇,
and the momentum conjugate to φ is pφ = αφ̇ + β cosφṡ. The relative

equilibrium defined by φ = 0, φ̇ = 0, and ṡ = 0 is unstable, since D < 0.
The equations of motion of the cart–pendulum system with a control

force u acting on the cart (and no direct forces acting on the pendulum)
are, since s is a cyclic variable (i.e., L is independent of s),

d

dt

∂L

∂ṡ
= u ,

d

dt

∂L

∂φ̇
− ∂L

∂φ
= 0 ,

that is,

d

dt
ps =

d

dt
(γṡ+ β cosφθ̇) = u ,

d

dt
pφ + β sinφṡφ̇+D sinφ =

d

dt
(αφ̇+ β cosφṡ)

+ β sinφṡφ̇+D sinφ = 0 .

Rigid Body with a Rotor. Following the work of Krishnaprasad [1985],
Bloch, Krishnaprasad, Marsden, and Alvarez [1992], and Bloch, Leonard,
and Marsden[1997, 2000], we consider a rigid body with a rotor aligned
along the third principal axis of the body as in Figure 1.9.3. This is a
model for a satellite. The rotor spins under the influence of a torque u
acting on the rotor. The configuration space is Q = SO(3) × S1, with the
first factor being the rigid body attitude and the second factor being the
rotor angle. The Lagrangian is total kinetic energy of the system (rigid
carrier plus rotor), with no potential energy.
Again, this system will be used in Section 9.2 to illustrate the energy

method in analyzing stabilization and stability.
The Lagrangian for this system (see Bloch, Krishnaprasad, Marsden, and

Alvarez [1992] and Bloch, Leonard, and Marsden [2001]) is

L =
1

2
(λ1Ω

2
1 + λ2Ω

2
2 + I3Ω

2
3 + J3(Ω3 + α̇)2) , (1.9.24)
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spinning rotor

rigid carrier

Figure 1.9.3. The rigid body with rotor.

where I1 > I2 > I3 are the rigid body moments of inertia, J1 = J2 and
J3 are the rotor moments of inertia, λi = Ii + Ji, Ω = (Ω1,Ω2,Ω3) is the
body angular velocity vector of the carrier, and α is the relative angle of
the rotor.
The body angular momenta are determined by the Legendre transform

to be

Π1 = λ1Ω1 ,

Π2 = λ2Ω2 ,

Π3 = λ3Ω3 + J3α̇ ,

l3 = J3(Ω3 + α̇) .

The momentum conjugate to α is l3.
The equations of motion with a control torque u acting on the rotor are

λ1Ω̇1 = λ2Ω2Ω3 − (λ3Ω3 + J3α̇)Ω2 ,

λ2Ω̇2 = −λ1Ω1Ω3 + (λ3Ω3 + J3α̇)Ω1 ,

λ3Ω̇3 + J3α̈ = (λ1 − λ2)Ω1Ω2 ,

l̇3 = u .

(1.9.25)

The equations may also be written in Hamiltonian form:

Π̇1 =

(
1

I3
− 1

λ2

)
Π2Π3 − l3Π2

I3
,

Π̇2 =

(
1

λ1
− 1

I3

)
Π1Π3 +

l3Π1

I3
,

Π̇3 =

(
1

λ2
− 1

λ1

)
Π1Π2 = a3Π1Π2 ,

l̇3 = u.

Here λi = Ii + Ji.
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Exercises

� 1.9-1. Compute the equations of motion for the variational nonholonomic
ball and compare the dynamics with the nonholonomic case.

� 1.9-2. Compute the dynamics of the homogeneous ball on a freely rotating
table. (See Weckesser [1997] and references therein.)

� 1.9-3. Analyze the motion of the cart on an inclined plane making an angle
of α to the horizontal. Show that with a suitable change of variable one
can still find a symmetry of the motion.

1.10 The n-dimensional Rigid Body

In this section we review the classical rigid body equations in three and,
more generally, in n dimensions. We shall also compare the left and right
invariant equations.
For convenience we shall use the following pairing (multiple of the Killing

form) on so(n), the Lie algebra of n×n real skew matrices regarded as the
Lie algebra of the n-dimensional proper rotation group SO(n):

〈ξ, η〉 = −1

2
trace(ξη). (1.10.1)

The factor of 1/2 in (1.10.1) is to make this inner product agree with the
usual inner product on R

3 when it is identified with so(3) in the following
standard way: associate the 3× 3 skew matrix û to the vector u by û · v =
u× v, where u× v is the usual cross product in R

3.
We use this inner product to identify the dual of the Lie algebra, namely

so(n)∗, with the Lie algebra so(n).
We recall from Manakov [1976] and Ratiu [1980] that the left invariant

generalized rigid body equations on SO(n) may be written as

Q̇ = QΩ, Ṁ = [M,Ω], (1.10.2)

where Q ∈ SO(n) denotes the configuration space variable (the attitude of
the body), Ω = Q−1Q̇ ∈ so(n) is the body angular velocity, and

M := J(Ω) = ΛΩ + ΩΛ ∈ so(n)

is the body angular momentum. Here J : so(n) → so(n) is the symmetric
(with respect to the inner product (1.10.1)), positive definite, and hence
invertible, operator defined by

J(Ω) = ΛΩ + ΩΛ,

where Λ is a diagonal matrix satisfying Λi+Λj > 0 for all i �= j. For n = 3
the elements of Λi are related to the standard diagonal moment of inertia
tensor I by I1 = Λ2 + Λ3, I2 = Λ3 + Λ1, I3 = Λ1 + Λ2.
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The equations Ṁ = [M,Ω] are readily checked to be the Euler–Poincaré
equations on so(n) for the Lagrangian l(Ω) = 1

2 〈Ω, J(Ω)〉 . This corresponds
to the Lagrangian on T SO(n) given by

L(g, ġ) =
1

2

〈
g−1ġ, J(g−1ġ)

〉
. (1.10.3)

It follows from general Euler–Poincaré theory (see, for example, Marsden
and Ratiu [1999]) that the equations (1.10.2) are the geodesic equations
on T SO(n), left trivialized as SO(n) × so(n), relative to the left invariant
metric whose expression at the identity is

〈〈Ω1,Ω2〉〉 = 〈Ω1, J(Ω2)〉 . (1.10.4)

According to Mishchenko and Fomenko [1978], there is a similar formalism
for any semisimple Lie group and that in that context, one has integrability
on the generic coadjoint orbits.

Right Invariant System. The system (1.10.2) has a right invariant
counterpart. This right invariant system is given as follows. Consider the
right invariant Riemannian metric on SO(n) whose value at the identity is
given by (1.10.4). The geodesic equations of this metric on T SO(n), right
trivialized as SO(n)× so(n), are given by

Q̇r = ΩrQr, Ṁr = [Ωr,Mr] (1.10.5)

where in this case Ωr = Q̇rQ
−1
r and Mr = J(Ωr) where J has the same

form as above.

Relating the Left and the Right Rigid Body Systems.

1.10.1 Proposition. If (Q(t),M(t)) satisfies (1.10.2), then the pair
(Qr(t),Mr(t)), where Qr(t) = Q(t)T and Mr(t) = −M(t), satisfies (1.10.5).
There is a similar converse statement.

The proof is a straightforward verification.
The relation between the left and right systems given in this proposition

is not to be confused with the right trivialized representation of the left
invariant rigid body equations; that is, the left invariant system written in
spatial representation. For a discussion of this distinction, see, for example,
Holm, Marsden and Ratiu [1986]. One can also view the right invariant
system as the inverse representation of the standard left invariant rigid
body.

Remark. It is a remarkable fact that the dynamic rigid body equa-
tions on SO(n) and indeed on any semisimple Lie group are integrable
(Mishchenko and Fomenko [1976]). A key observation in this regard, due
to Manakov, was that one could write the generalized rigid body equations
as Lax equations with parameter:

d

dt
(M + λΛ2) = [M + λΛ2,Ω+ λΛ], (1.10.6)
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where M = J(Ω) = ΛΩ + ΩΛ, as in §2. The nontrivial coefficients of λ
in the traces of the powers of M + λΛ2 then yield the right number of
independent integrals in involution to prove integrability of the flow on a
generic adjoint orbit of SO(n) (identified with the corresponding coadjoint
orbit). We remark that the SO(n) rigid body equations were in fact written
down by F. Frahm in 1874 who also proved integrability for the case n =
4. In addition, F. Schottky in 1891 showed how to obtain explicit theta-
function solutions in this case. For references to this work see Bogayavlenski
[1994] and Fedorov and Kozlov [1995]. Moser and Veselov [1991] show that
there is a corresponding formulation of the discrete rigid body equations
with parameter. We shall return to this issue in Chapter 3.

1.11 The Roller Racer

We now consider a tricycle-like mechanical system called the roller racer,
or the Tennessee racer, that is capable of locomotion by oscillating
the front handlebars. This toy was studied using the methods of Bloch,
Krishnaprasad, Marsden, and Murray [1996] in Tsakiris [1995] and Kr-
ishnaprasad and Tsakiris [2001] and by energy–momentum methods in
Zenkov, Bloch, and Marsden [1998]. Analysis of this system may be a use-
ful guide for modeling and studying the stability of other systems, such as
aircraft landing gears and train wheels.
The roller racer is modeled as a system of two planar coupled rigid bodies

(the main body and the second body) with a pair of wheels attached on
each of the bodies at their centers of mass: a nonholonomic generalization
of the coupled planar bodies discussed earlier. We assume that the mass
and the linear momentum of the second body are negligible, but that the
moment of inertia about the vertical axis is not. See Figure 1.11.1.

θ

x

z

y

(x, y)
φ

d1 d2

Figure 1.11.1. The geometry for the roller racer.

Let (x, y) be the location of the center of mass of the first body and
denote the angle between the inertial reference frame and the line passing
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through the center of mass of the first body by θ, the angle between the
bodies by φ, and the distances from the centers of mass to the joint by d1
and d2. The mass of body 1 is denoted by m, and the inertias of the two
bodies are written as I1 and I2.
The Lagrangian and the constraints are

L =
1

2
m(ẋ2 + ẏ2) +

1

2
I1θ̇

2 +
1

2
I2(θ̇ + φ̇)2

and

ẋ = cos θ

(
d1 cosφ+ d2

sinφ
θ̇ +

d2
sinφ

φ̇

)
;

ẏ = sin θ

(
d1 cosφ+ d2

sinφ
θ̇ +

d2
sinφ

φ̇

)
.

The configuration space is SE(2) × SO(2). The Lagrangian and the con-
straints are invariant under the left action of SE(2) on the first factor of
the configuration space.
We shall see later that the roller racer has a two-dimensional manifold

of equilibria and that under a suitable stability condition some of these
equilibria are stable modulo SE(2) and in addition asymptotically stable
with respect to φ̇.

1.12 The Rattleback

A rattleback is a convex asymmetric rigid body rolling without sliding on
a horizontal plane. It is known for its ability to spin in one direction and
to resist spinning in the opposite direction for some parameter values, and
for other values to exhibit multiple reversals. See Figure 1.12.1.

Figure 1.12.1. The rattleback.

Basic references on the rattleback are Walker [1896], Karapetyan [1980,
1981], Markeev [1983, 1992], Pascal [1983, 1986], and Bondi [1986]. We
adopt the ideal model (with no energy dissipation and no sliding) of these
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references, and within that context no approximations are made. In par-
ticular, the shape need not be ellipsoidal. Walker did some initial stability
and instability investigations by computing the spectrum, while Bondi ex-
tended this analysis and also used what we now recognize as the momentum
equation. (See Chapter 5 for the general theory of the momentum equation
and see Zenkov, Bloch, and Marsden [1998] and Section 8.5 for the explicit
form of the momentum for the rattleback. A discussion of the momentum
equation for the rattleback may also be found in Burdick, Goodwine and
Ostrowski [1994].) Karapetyan carried out a stability analysis of the rel-
ative equilibria, while Markeev’s and Pascal’s main contributions were to
the study of spin reversals using small-parameter and averaging techniques.
Energy methods were used to analyze the problem in Zenkov, Bloch, and
Marsden [1998], and we return to this in Section 8.5.
Introduce the Euler angles θ, φ, ψ using the principal axis body frame

relative to an inertial reference frame. We use the same convention for the
angles as in Arnold [1989] and Marsden and Ratiu [1999]. These angles
together with two horizontal coordinates x, y of the center of mass are
coordinates in the configuration space SO(3)× R

2 of the rattleback.
The Lagrangian of the rattleback is computed to be

L =
1

2

[
A cos2 ψ +B sin2 ψ +m(γ1 cos θ − ζ sin θ)2

]
θ̇2

+
1

2

[
(A sin2 ψ +B cos2 ψ) sin2 θ + C cos2 θ

]
φ̇2

+
1

2

(
C +mγ2

2 sin
2 θ

)
ψ̇2 +

1

2
m

(
ẋ2 + ẏ2

)
+m(γ1 cos θ − ζ sin θ)γ2 sin θ θ̇ψ̇ + (A−B) sin θ sinψ cosψ θ̇φ̇

+ C cos θ φ̇ψ̇ +mg(γ1 sin θ + ζ cos θ),

where

A,B,C = the principal moments of inertia of the body,

m = the total mass of the body,

(ξ, η, ζ) = coordinates of the point of contact relative to the body frame,

γ1 = ξ sinψ + η cosψ,

γ2 = ξ cosψ − η sinψ.

The shape of the body is encoded by the functions ξ, η, and ζ. The con-
straints are

ẋ = α1θ̇ + α2ψ̇ + α3φ̇, ẏ = β1θ̇ + β2ψ̇ + β3φ̇,
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where

α1 = −(γ1 sin θ + ζ cos θ) sinφ,

α2 = γ2 cos θ sinφ+ γ1 cosφ,

α3 = γ2 sinφ+ (γ1 cos θ − ζ sin θ) cosφ,

βk = −∂αk

∂φ
, k = 1, 2, 3.

The Lagrangian and the constraints are SE(2)-invariant, where the action
of an element (a, b, α) ∈ SE(2) is given by

(x, y, φ) �→ (x cosα− y sinα+ a, x sinα+ y cosα+ b, φ+ α).

Corresponding to this invariance, ξ, η, and ζ are functions of the variables
θ and ψ only.

1.13 The Toda Lattice

An important and beautiful mechanical system that describes the interac-
tion of particles on the line (i.e., in one dimension) is the Toda lattice. We
shall describe the nonperiodic finite Toda lattice following the treatment
of Moser [1975].
This is a key example in integrable systems theory. Later on, in Chap-

ter 8, we shall compare the behavior of this system to certain nonholonomic
systems. In the Internet Supplement we also consider the Toda lattice from
the point of view of optimal control theory.
The model consists of n particles moving freely on the x-axis and in-

teracting under an exponential potential. Denoting the position of the kth
particle by xk, the Hamiltonian is given by

H(x, y) =
1

2

n∑
k=1

y2k +

n−1∑
k=1

e(xk−xk+1).

The associated Hamiltonian equations are

ẋk =
∂H

∂yk
= yk ,

ẏk = − ∂H

∂xk
= exk−1−xk − exk−xk+1 , (1.13.1)

where we use the convention ex0−x1 = exn−xn+1 = 0, which corresponds to
formally setting x0 = −∞ and xn+1 = +∞.
This system of equations has an extraordinarily rich structure. Part of

this is revealed by Flaschka’s (Flaschka [1974]) change of variables given by

ak =
1

2
e(xk−xk+1)/2 and bk = −1

2
yk . (1.13.2)
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In these new variables, the equations of motion then become

ȧk = ak(bk+1 − bk) , k = 1, . . . , n− 1 ,

ḃk = 2(a2k − a2k−1) , k = 1, . . . , n ,

with the boundary conditions a0 = an = 0. This system may be written in
the following matrix form (called the Lax pair representation):

d

dt
L = [B,L] = BL− LB, (1.13.3)

where

L =

⎛
⎜⎝

b1 a1 0 ··· 0
a1 b2 a2 ··· 0

. . .
bn−1 an−1

0 an−1 bn

⎞
⎟⎠ , B =

⎛
⎜⎝

0 a1 0 ··· 0
−a1 0 a2 ··· 0

. . .
0 an−1

0 −an−1 0

⎞
⎟⎠ .

If O(t) is the orthogonal matrix solving the equation

d

dt
O = BO , O(0) = Identity ,

then from (1.13.3) we have

d

dt
(O−1LO) = 0 .

Thus, O−1LO = L(0); i.e., L(t) is related to L(0) by a similarity trans-
formation, and thus the eigenvalues of L, which are real and distinct, are
preserved along the flow. This is enough to show that in fact this system
is explicitly solvable or integrable.

Discussion. There is, however, much more structure in this example. For
instance, if N is the matrix diag[1, 2, . . . , n], the Toda flow (1.13.3) may be
written in the following double bracket form:

L̇ = [L, [L,N ]] . (1.13.4)

This was shown in Bloch [1990] and analyzed further in Bloch, Brockett,
and Ratiu [1990], Bloch, Brockett, and Ratiu [1992], and Bloch, Flaschka,
and Ratiu [1990]. This double bracket equation restricted to a level set of
the integrals described above is in fact the gradient flow of the function
TrLN with respect to the so-called normal metric; see Bloch, Brockett,
and Ratiu [1990]. Double bracket flows are derived in Brockett [1994].
From this observation it is easy to show that the flow tends asymptot-

ically to a diagonal matrix with the eigenvalues of L(0) on the diagonal
and ordered according to magnitude, recovering the observation of Moser,
Symes [1982], and Deift, Nanda, and Tomei [1983].
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A very important feature of the tridiagonal aperiodic Toda lattice flow
is that it can be solved explicitly as follows: Let the initial data be given
by L(0) = L0. Given a matrix A, use the Gram–Schmidt process on the
columns of A to factorize A as A = k(A)u(A), where k(A) is orthogonal
and u(A) is upper triangular. Then the explicit solution of the Toda flow
is given by

L(t) = k(exp(tL0))L0k
T (exp(tL0)) . (1.13.5)

The reader can check this explicitly or refer, for example, to Symes [1980,
1982].

Four-Dimensional Toda. Here we simulate the Toda lattice in four
dimensions (see Bloch [2000]). The Hamiltonian is

H(a, b) = a21 + a22 + b21 + b22 + b1b2 , (1.13.6)

and one has the equations of motion

ȧ1 = −a1(b1 − b2) ḃ1 = 2a21 ,

ȧ2 = −a2(b1 + 2b2) ḃ2 = −2(a21 − a22)
(1.13.7)

(setting b1 + b2 + b3 = 0, for convenience, which we may do since the trace
is preserved along the flow). In particular, TraceLN is, in this case, equal
to b2 and can be checked to decrease along the flow.

Figure 1.13.1 exhibits the asymptotic behavior of the Toda flow. We will
return to this property in Chapter 8.
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Solution curves of Toda

Figure 1.13.1. Asymptotic behavior of the solutions of the four-dimensional Toda

lattice.
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Exercises

� 1.13-1. Show that TraceLk for all k is conserved along the flow of the
Toda lattice

� 1.13-2. Characterize all the equilibria for the Toda flow (allowing ai to
take the value 0). Hint: Use the double bracket form of the equations.
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