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Preface

Our goal in this book is to explore some of the connections between con-
trol theory and geometric mechanics; that is, we link control theory with a
geometric view of classical mechanics in both its Lagrangian and Hamilto-
nian formulations and in particular with the theory of mechanical systems
subject to motion constraints. This synthesis of topics is appropriate, since
there is a particularly rich connection between mechanics and nonlinear
control theory. While an introduction to many important aspects of the
mechanics of nonholonomically constrained systems may be found in such
sources as the monograph of Neimark and Fufaev [1972], the geometric
view as well as the control theory of such systems remains largely scat-
tered through various research journals. Our aim is to provide a unified
treatment of nonlinear control theory and constrained mechanical systems
that will incorporate material that has not yet made its way into texts and
monographs.
Mechanics has traditionally described the behavior of free and interacting

particles and bodies, the interaction being described by potential forces. It
encompasses the Lagrangian and Hamiltonian pictures and in its modern
form relies heavily on the tools of differential geometry (see, for example,
Abraham and Marsden [1978] and Arnold [1989]). From our own point of
view, our papers Bloch, Krishnaprasad, Marsden, and Murray [1996], Bloch
and Crouch [1995], and Baillieul [1998] have been particularly influential
in the formulations presented in this book.
There are many other recent books that are of interest including Holm

[2008] and Levi [2014]. An elementary and historical approach to the least
action principle will appear in Rojo and Bloch [2015].

v



vi Preface

Control Theory and Nonholonomic Systems. Control theory is the
theory of prescribing motion for dynamical systems rather than describing
their observed behavior. These systems may or may not be mechanical in
nature, and in fact traditionally, the underlying system is not assumed to be
mechanical. Modern control theory began largely as linear theory, having
its roots in electrical engineering and using linear algebra, complex variable
theory, and functional analysis as its principal tools. The nonlinear theory
of control, on the other hand, relies to a large extent again on differential
geometry.
Nonholonomic mechanics describes the motion of systems constrained

by nonintegrable constraints, i.e., constraints on the system velocities that
do not arise from constraints on the configurations alone. Classic examples
are rolling and skating motion. Nonholonomic mechanics fits uneasily into
the classical mechanics, since it is not variational in nature; i.e., it is nei-
ther Lagrangian nor Hamiltonian in the strict sense of the word. It has a
close cousin (variational axiomatic mechanics—a term coined by Arnold,
Kozlov, and Neishtadt [1988]) which is variational for systems subject to
nonintegrable constraints but does not describe the motion of mechanical
systems. It is important, however, for the theory of optimal control, as will
be developed in the main text.
There is a close link between nonholonomic constraints and controlla-

bility of nonlinear systems. Nonholonomic constraints are given by nonin-
tegrable distributions; i.e., taking the bracket of two vector fields in such
a distribution may give rise to a vector field not contained in this distri-
bution. It is precisely this property that one wants in a nonlinear control
system so that we can drive the system to as large a part of the state space
as possible.
A key concept for studying the control and geometry of nonholonomic

systems, as well as many other mechanical systems, is the notion of a fiber
bundle and an associated connection. The bundle point of view not only
gives us a way of organizing variables in a physically meaningful way, but
gives us basic ideas on how the system behaves physically, and on how to
prescribe controls. A bundle connection relates base and fiber variables in
the system, and in this sense one can take a gauge theoretic point of view
of nonholonomic control systems.

Optimal Control. There is a beautiful link between optimal control of
nonholonomic systems and the so-called sub-Riemannian geometry. For a
large class of physically interesting systems, the optimal control problem
reduces to finding geodesics with respect to a singular (sub-Riemannian)
metric. The geometry of such geodesic flows is exceptionally rich and pro-
vides guidance for designing control laws. See Montgomery [2002] for ad-
ditional information.

Physical Examples. One of the aims of this book is to illustrate the el-
egant mathematics behind many simple, interesting, and useful mechanical
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examples. Among these are the rigid body and rolling rigid body, the rolling
ball on a rotating turntable, the rattleback top, the rolling penny, and the
satellite with momentum wheels. There are clearly a number of points
in common between these systems, among them the fact that rotational
motion and the existence of constraints, either externally imposed or dy-
namically generated (conserved momenta), play a key role. In one sense
these notions—rotation and constraints—form the heart of the book and
are vital to studying both the dynamics and control of these systems. Fur-
ther, one of the delights of this subject is that although these systems may
have many features in common, their behavior is quite different and often
quite unexpected. Why does a rattleback top rotate in only one direction?
What is the behavior of a ball on a rotating turntable? Why does a tennis
racket not want to spin about its middle axis? How do I roll a penny to a
particular point on a table, parallel to an edge, and with Lincoln’s head in
the upright position?
While we have attempted to cover a substantial amount of material, this

book is very much written from the authors’ perspective, and there is much
fascinating work in this area that we have had to omit.

A Path Through the Book. This book can be read on many different
levels. On the one hand, there are numerous physical examples that are
analyzed in elementary terms, as in Chapter 1. On the other hand, there
are theoretical sections that use some sophisticated analysis and geometry.
There are also sections on the background mathematics used, and our hope
is that this book mixes these ingredients in an instructive and useful way.
Depending on one’s background and preferences, this book can be read in a
linear or nonlinear fashion (in the sense of progression through the pages).
Many of the examples are returned to later in the book as illustrations

of the general theory. These later returns to the examples vary in difficulty
from again quite elementary to more sophisticated demonstrations of the
theory. We urge the reader to use them to understand the theory.
The theory itself varies greatly in difficulty—some of it is again quite

elementary and easy to read—usually at the beginning of each section or
chapter, but some of it quite technical and based on various pieces of the
research work of the authors and sometimes their collaborators. Many tech-
nical sections may be omitted on first reading or without loss of continuity;
we also refer the reader to the Internet supplement for additional material.
This is available on the book’s web site, where errata, reprint data, and
other information may be found:
http://www.cds.caltech.edu/mechanics_and_control

We have gone to some trouble to fill in the necessary background for the
general theory and to put in elementary illustrations of it. For example, we
discuss the theory of connections and the geodesic flow on the line.

Scope of the Book. We should also emphasize that while this book cuts
quite a large swath through an area of mechanics and nonlinear control, it

http://www.cds.caltech.edu/mechanics_and_control
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is very much mechanics and control as seen by the authors. There is a huge
and exciting literature on mechanics, nonholonomic mechanics, nonlinear
control, and optimal control that we have not discussed at all and indeed
have not even been able to reference in many cases. We urge the reader to
follow up on related areas both through the references that are here and
through references in those papers.

Prerequisites. This book is intended for graduate students who wish to
learn this subject as well as for researchers in the area who wish to enhance
their techniques. Chapter 1 is written in a way that assumes rather few pre-
requisites and is intended to motivate people to read further and to acquire
the needed background for that task. Chapters 2, 3, and 4 contain some
of the needed background in geometry, mechanics, and control. They are
necessarily brief in nature and are meant, in part, to summarize topics that
are treated in other courses. There is, however, new expository material on
various topics that we describe in more detail below. In addition, we have
collected material that is hard to find in any one source. From Chapter 5
on, we assume that the reader is knowledgeable about these topics.
A knowledge of basic mechanics, as in the well-known book of Goldstein,

Poole and Safko [2001], is helpful, although we do in fact develop both
Lagrangian and Hamiltonian mechanics as well as the theory of control
from first principles. So for a reader who knows nothing of these fields but
has the usual dose of “mathematical sophistication” it is quite possible
to read and benefit from this book. Similarly, it not necessary to know
anything about nonholonomic mechanics.
Some parts of Chapters 2 and 3 are based on Mechanics and Symme-

try (Marsden and Ratiu [1999]) and can be skipped by the knowledgeable
reader or consulted as the need arises. Another piece of useful background is
the Beijing lecture notes of Roger Brockett (see Brockett [2000]) as well as
the recent notes on the early days of geometric nonlinear control, Brockett
[2014], Brockett’s spirit certainly pervades much of the nonlinear control
theory in this book. Similarly, the collection Mathematical Control Theory,
written in honor of Roger Brockett’s 60th birthday, is a useful adjunct (see
Baillieul and Willems [1999]).
This book can be viewed as somewhere between a research monograph

and a textbook. It has been successfully used as a textbook for courses at
Caltech and Michigan as well as for lecture series at the Technical Univer-
sity of Vienna and the IIIe Cycle Romand de Mathématique, Les Diablerets,
Switzerland. In this regard, there are a number of exercises, particularly in
the earlier chapters, meant to help readers gauge their understanding, but
this is not a main focus of the book.

A Brief Rundown of the Chapters in This Book. We will now give
a brief synopsis of the various chapters in the book. Specific citations to
the works of authors that are mentioned here are given in the main text.
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Chapter 1 consists of a little preliminary mechanics but mainly of ex-
amples that are used later in the book. Key examples include the vertical
and falling rolling disks and various versions of a skate on ice as well as the
rolling ball. More complicated examples include the roller racer and rattle-
back top. There are also mechanical examples that are holonomic but that
are used later to illustrate basic Lagrangian and Hamiltonian mechanics
and control. These include the Toda lattice, the free and controlled rigid
body, and the pendulum on a cart.
Chapter 2 is devoted to various mathematical preliminaries and can be

used as desired according to the mathematical expertise of the reader. It
goes all the way from the basic theory of manifolds and ordinary differential
equations to the theory of Ehresmann connections. The most original part
and that which is least likely to be familiar to readers is that on connections.
We have gone to a great deal of trouble here to analyze how Ehresmann
connections specialize to principal connections and to affine connections
and Riemannian connections. These ideas are also illustrated with very
simple examples such as the geodesic flow on the line! Connections play a
vital role in mechanics and in particular nonholonomic mechanics, where
they arise from constraints.
Chapter 3 gives general background in geometric mechanics, and parts of

it can again be skipped by the knowledgeable reader. There are, however,
new things here: a new exposition of the theory of forces; a description
of the Murray-Ostrowski view of mechanical systems and the mechanical
connection, together with the example of the spacecraft with rotors; a de-
tailed description of coupled planar rigid body motion as developed by Oh,
Sreenath, Krishnaprasad, and Marsden; and a description of phases and
holonomy as developed by Marsden and Ostrowski.
Chapter 4 gives general background in nonlinear control theory including

basic definitions of controllability and accessibility, some theory on averag-
ing and motion planning (including work of Leonard and Krishnaprasad),
a proof of Brockett’s necessary condition for stabilization, and some of the
theory of Hamiltonian and Lagrangian control systems following work of
Brockett, van der Schaft, Willems, and others.
Chapter 5 is the basic chapter on nonholonomic mechanics and owes

much in exposition to the paper of Bloch, Krishnaprasad, Marsden, and
Murray as well as to work of Bloch and Crouch. We discuss the basic geo-
metric approach in these papers. The basic interaction of symmetries and
constraints in nonholonomic systems and how they lead to the nonholo-
nomic momentum equation is discussed. Explicit examples of the momen-
tum map are given. In addition, the role of “almost” Hamiltonian structure
is discussed, building on work of Bates and Sniatycki, van der Schaft and
Maschke, as well as that of Marsden and Koon.
Chapter 6 discusses various aspects of control and stabilization of non-

holonomic systems both for kinematic and dynamic systems. Open loop
controls are discussed for the Brockett canonical form following Murray
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and Sastry, and its discontinuous stabilization is discussed based on the
work of Bloch, Drakunov, and Kinyon. The Coron approach to smooth
time-varying stabilization is also briefly discussed. Following the work of
Bloch, Reyhanoglu, and McClamroch, control and stabilization of dynamic
nonholonomic control systems is described. Control of nonholonomic sys-
tems on Riemannian manifolds is discussed following work of Bloch and
Crouch.
Chapter 7 is devoted to optimal control. It begins by discussing the re-

lationship of variational nonholonomic control systems and the classical
Lagrange problem to optimal control. A brief introduction to the maxi-
mum principle is given. We then discuss sub-Riemannian (kinematic) opti-
mal control problems based on the work of Bloch, Crouch, and Ratiu and
building on the work of Brockett and Baillieul. We give a brief discussion
of abnormal extremals following work of Montgomery and Sussmann. Dy-
namic optimal control is discussed following work of Bloch and Crouch and
Silva, Leite, and Crouch. Related work on integrable systems is discussed
in the internet supplement.
Chapter 8 discusses an energy-momentum-based approach to the stabil-

ity of nonholonomic systems. This is based on the thesis work of Zenkov
and related work with Bloch and Marsden. Also described are notions of
asymptotic stability in Euler–Poincaré–Suslov systems following work of
Kozlov and its connection to the Toda lattice following work of Bloch.
Chapter 9 discusses some recent and still developing research on energy-

based techniques for mechanical and nonholonomic systems. A brief de-
scription of the controlled Lagrangian or matching technique of Bloch,
Leonard, and Marsden is given with some recent applications to certain
nonholonomic systems based on work with D. Zenkov. Finally, work of
Baillieul is described on second-order averaging methods and their connec-
tions with classical geometry.

Acknowledgments. We are very grateful to many colleagues for their
collaboration and for their input, directly or indirectly. We are especially
grateful to P. S. Krishnaprasad and Richard Murray, as well as to Roger
Brockett, Chris Byrnes, Leo Colombo, Sergey Drakunov, Michael Fairchild,
Oscar Fernandez, Islam Hussein, Rohit Gupta, Sameer Jalnapurkar, Matt
Kvalheim, Michael Kinyon, Wang-Sang Koon, Naomi Leonard, Didong Li,
Jared Maruskin, Tom Mesdag, Harris McClamroch, Tomoki Ohsawa, Jim
Ostrowski, Tudor Ratiu, Mahmut Reyhanoglu, Alberto Rojo, and Hans
Troger, among others. Support from the NSF, AFOSR, the Institute for
Advanced Study and the University of Michigan during the writing of this
book is also most appreciated.
A largely complete copy of this book was submitted to the publisher in

August 2001 and was circulated around this time. Earlier versions were
circulated to students and colleagues in 2000. Thanks to all our students
and colleagues who have used notes associated with the book and provided
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advice and corrections. We would like to thank Wendy McKay, Michael
Jeffries, and Matt Haigh for the invaluable help with the typesetting and
graphics for the book. Thanks also to the anonymous reviewers of the
book and to the staff at Springer-Verlag especially Achi Dosanjh, Elizabeth
Young, David Kramer, and Mary Ann Brickner.
The book has been used in teaching in several courses since the publica-

tion of the first edition. We would like to thank students in these classes
for their feedback as well as others who given feedback.
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In the second edition of this work we have added in some substantial new
material. In addition we have corrected various typos and errors in the
first edition and we have added in references that reflect recent research
by the authors and others. Needless to say it is impossible to reflect all the
wonderful recent work that has been done in this field.
The additional material includes work on the Hamel equations and qua-

sivelocities, discrete dynamics, both holonomic and nonholonomic, Hamil-
tonization, and the Hamilton–Jacobi equation.
We discuss this new material in some more detail below:
The Hamel equations generalize the Euler–Lagrange equations and are

useful for analyzing both free and constrained systems, but are particularly
useful in the constrained setting. They describe the dynamics of a mechani-
cal systems in terms of quasivelocities—velocities relative to a set of vector
fields that span the fibers of the tangent bundle of the configuration space.
A good example of quasivelocities is the set of components of the body
angular velocity of a rigid body rotating about a fixed point. Dynamics in
such a set of coordinates is often much simpler than in the obvious set of
canonical coordinates. We describe the general case in Chapter 3 and their
application to nonholonomic systems in Chapter 5.

Discrete mechanics has played a crucial role in computational mechanics
in recent years. A discrete analogue of Lagrangian mechanics can be ob-
tained by considering a discretization of Hamilton’s principle; this approach
underlies the construction of variational integrators. We discuss the gen-
eral theory of discrete mechanics in Chapter 3 and indicate its application

xiii
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to mechanical systems with symmetry by applying them to generalized
rigid body equations. In particular we discuss the Moser–Veselov equa-
tions which inspired much of the development in this area as well as the
symmetric representation of the rigid body equations as developed by the
authors of this manuscript and their collaborators, and their discretization.
In Chapter 8 we discuss discrete nonholonomic systems.
We also discuss in Chapter 7 the relationship between optimal control

on the special orthogonal group and the symmetric rigid body equations
as well as the related discrete optimal control problem.
In Chapter 8 we discuss the important concept of Hamiltonization—

showing how some nonholonomic systems may be expressed in Hamiltonian
form by a time reparameterization. This goes back to work of Chaplygin,
but we provide many modern references. We also discuss in Chapter 8
work of the authors on invariant measure in systems with internal degrees
of freedom. This extends the group setting and we discuss also a beautiful
integrable nonholonomic system, the Chaplygin sleigh with oscillator. We
also discuss in Chatper 8 the nonholonomic Hamilton–Jacobi equation and
nonholonomic systems as limits—the notion that they may be obtained as
a limiting case of a holonomic system with large friction, an idea going all
the way back to Caratheodory.
In Chapter 9 we discuss how energy methods may be used in analyzing

the stabilization of nonholonomic systems such as the falling disk, as well as
a discrete extension of the theory of controlled Lagrangians or energy shap-
ing for the stabilization of mechanical systems. In Chapter 4 we included
some new material on the bundle picture in control systems.
Finally we have to say how sorry we are not to have had Jerry Marsden’s

valuable input for this second edition. A lot of the work described here
would never have happened without Jerry’s input and wisdom.

Ann Arbor, MI, USA Anthony M. Bloch
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A Diagram for the Book

In Chapter 1, we will introduce many of the basic
ideas of mechanics, nonholonomic mechanics, con-
trol, and optimal control, together with a number
of illustrative physical examples. These basic ideas
will be explained, expanded on, and made rigorous
in subsequent chapters. In addition, the examples
discussed will occur in different contexts as the ex-
position develops. A detailed path through this book
is given in the preface.

In the following two pages, we present a diagram
which attempts to tie together the various key
threads in our exposition. These topics and the links
between them will be clarified in the upcoming chap-
ters of the book.
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1
Introduction

The purpose of this chapter is to quickly introduce enough theory so that
we can present some examples that will then be used throughout the course
of the book to illustrate the theory and how to use it. These examples are
simple to write down in general and to understand at an elementary level,
but they are also useful for the understanding of deeper parts of the theory.
Two main classes of systems considered in the book are holonomic

systems and nonholonomic systems. This terminology may be found in
Hertz [1894]. Holonomic systems are mechanical systems that are subject to
constraints that limit their possible configurations. As Hertz explains, the
word holonomic (or holonomous) is comprised of the Greek words mean-
ing “integral” (or “whole”) and “law,” and refers to the fact that such
constraints, given as constraints on the velocity, may be integrated and re-
expressed as constraints on the configuration variables. We make this idea
precise as we move through the book. Examples of holonomic constraints
are length constraints for simple pendula and rigidity constraints for rigid
body motion.
The rolling disk and ball are archetypal nonholonomic systems: systems

with nonintegrable constraints on their velocities. These examples have a
long history going back, for example, to Vierkandt [1892] and Chaplygin
[1897a]. In this chapter and the book in general we discuss both the rolling
disk and ball, as well as many other nonholonomic systems such as the
Chaplygin sleigh, the roller racer, and the rattleback. As pointed out in
Sommerfeld [1952] a general analysis of the distinction between holonomic
and nonholonomic constraints may be found as early as Voss [1885], while

© Springer-Verlag New York 2015
A.M. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary
Applied Mathematics 24, DOI 10.1007/978-1-4939-3017-3 1
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specific examples of nonholonomic systems were of course analyzed even
earlier. For more on the history of nonholonomic systems, see Chapter 5.
We remark that Hertz defines a holonomic system as a system “between

whose possible positions all conceivable continuous motions are also possi-
ble motions.” The point is that nonholonomic constraints restrict types of
motion but not position. The meaning of Hertz’s statement should become
clearer as the reader continues through the book.
Other examples discussed here include the free rigid body and the some-

what more complex satellite with momentum wheels. These are (holo-
nomic) examples of free and coupled rigid body motion, respectively—the
motion of bodies with nontrivial spatial extent, as opposed to the motion of
point particles. The latter is illustrated by the Toda lattice, which models
a set of interacting particles on the line; we shall also be interested in some
associated optimal control systems.
We also describe here the Heisenberg system, which was first studied by

Brockett [1981] (see also Baillieul [1975], who studied some related sys-
tems). This does not model any particular physical system, but is a pro-
totypical example for nonlinear kinematic control problems (both optimal
and nonoptimal) and can be viewed as an approximation to a number of
interesting physical systems; in particular, this example is basic for under-
standing more sophisticated optimal reorientation and locomotion prob-
lems, such as the falling cat theorem that we shall treat later. A key point
about this system (and many others in this book) is that the corresponding
linear theory gives little information.

1.1 Generalized Coordinates
and Newton–Euler Balance

In this and subsequent sections in this chapter we discuss some ideas from
mechanics in an informal fashion. This is intended to give context to the
physical examples discussed in later sections. More formal derivations of
many of the ideas discussed here are given in later chapters.

Coordinates and Kinematics. The most basic goal of analytical me-
chanics is to provide a formalism for describing motion. This is often done
in terms of a set of generalized coordinates, which may be interpreted
as coordinates for the system’s configuration space, often denoted by
Q. This is a set of variables whose values uniquely specify the location
in 3-space of each physical point of the mechanism. A set of generalized
coordinates is minimal in the sense that no set of fewer variables suffices
to determine the locations of all points on the mechanism. The number
of variables in a set of generalized coordinates for a mechanical system is
called the number of degrees of freedom of the system.
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1.1.1 Example (A Simple Kinematic Chain). Simple ideas along this
line, which will be generalized to provide the foundation of most of the
models studied in this book, may be illustrated using the simple kinematic
chain shown in Figure 1.1.1.

Figure 1.1.1. Kinematic chains.

Here there are drawn two copies of the same mechanism. This mechanism
consists of planar rigid bodies connected by massless rods, and the joints
are free to rotate in a fixed plane. In the first, the motion of a typical point
P is described in terms of coordinate variables (θ1, θ2), where θ2 is the
relative angle between the two links in the chain. In Figure 1.1.1 (b), the
motion of the typical point P is described in terms of coordinate variables
(ϕ1, ϕ2), which are the (absolute) angles of the links with respect to the
vertical direction.
Other choices of coordinate variables are, of course, possible. In any

case, the coordinate variables serve the purpose of describing the location
of typical points of the mechanism with respect to a privileged coordinate
frame, which we may refer to as an inertial frame. A thorough axiomatic
discussion of inertial frames is beyond the scope of this book, but roughly
speaking, these are frames that are “nonaccelerating relative to the distant
stars.” For the purposes of our discussions here it suffices to consider them
as “fixed” coordinate systems.
Specifically, in this case, the inertial frame is chosen so that its origin

is at the hinge point of the upper link. The y-axis is directed parallel and
opposite to the gravitational field, and the x-axis is chosen so as to give the
coordinate frame the standard orientation. Suppose the point P is located
on the second link, as depicted. If this has coordinates (x�, y�) with respect
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to a local frame fixed in the second link, then the coordinates with respect
to the inertial frame are given by

[
x
y

]
=

[
r1 sin θ1 + x� sin(θ1 + θ2) + y� cos(θ1 + θ2)
−r1 cos θ1 − x� cos(θ1 + θ2) + y� sin(θ1 + θ2)

]
, (1.1.1)

where r1 is the length of the first link, or equivalently by

[
x
y

]
=

[
r1 sinϕ1 + x� sinϕ2 + y� cosϕ2

−r1 cosϕ1 − x� cosϕ2 + y� sinϕ2

]
. (1.1.2)

The mappings (θ1, θ2) �→ (x, y) are examples of functions that associate
values of the generalized coordinate variables (θ1, θ2) (respectively (ϕ1, ϕ2))
to inertial coordinates of the point P . In this example, the configuration
manifold is given by Q = S1 × S1 and is parameterized by the two angles
θ1, θ2, which serve as generalized coordinates. One can also make the alter-
native choice of ϕ1, ϕ2 as generalized coordinates that provide a different
set of coordinates on Q. �
Newton’s Laws. The most fundamental contribution to mechanics were
Newton’s three laws of motion for a particle (see Newton [1650], Book I,
Section 3, Propositions XI, XII, XIII) and, for example, Chorlton [1983]).

They are as follows:

(1) Every particle continues in its state of rest or of uniform velocity in a
straight line unless compelled to do otherwise by a force acting on it.

(2) The rate of change of linear momentum is proportional to the im-
pressed force and takes place in the direction of action of the force.

(3) To every action there is an equal and opposite reaction.

For a particle of constant massm, Newton’s second law can be written as:

mẍ(t) = F(t), (1.1.3)

where x ∈ R
3 is the position vector of the particle and F(t) is the impressed

force, both measured with respect to an inertial frame.

Remarks on Rigid Body Mechanics. As a preliminary to describing
general rigid body mechanics, one procedure is to consider the special case
of a finite number of point masses constrained so that the distance between
points is constant, with each point mass experiencing internal forces of
interaction (equal in magnitude and acting in opposite directions along
straight lines joining the points) together with external forces. In this case,
Newton’s laws lead to the equations of rigid body dynamics for this special
type of rigid body.
For a rigid body that is a continuum or for a system of point particles or

rigid bodies mechanically linked, one may derive the equations of motion
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by an application of Newton’s law for the motion of the center of mass and
Euler’s law for motion about the center of mass, i.e.,

Iω̇(t) = T (t), (1.1.4)

where I is the moment of inertia of the rigid body about its center of mass,
ω is the angular velocity about the center of mass, and T (t) is the applied
torque about the center of mass, all measured with respect to an inertial
frame.
It turns out, however, that the equations of motion for the special case

of a finite number of constrained point masses described above may be
derived solely from Newton’s laws.
The rigid body also provides a nice example of a system whose config-

uration space is a manifold. In fact, it is the set Q = SE(3) of Euclidean
motions, that is, transformations of R3 consisting of rotations and transla-
tions. Each element of Q gives a placement of all the particles in the rigid
body relative to a reference position, all in an inertial frame. We will return
to the rigid body from a more advanced point of view later.

Newton–Euler Balance Laws. More generally, for a system of inter-
connected rigid bodies, such as the kinematic chain described earlier, one
can derive the equations of motion from Newton’s laws together with Eu-
ler’s law giving the rate of change of angular momentum about a pivot point
in terms of applied torques, as in equation (1.1.4). It is interesting to note
that these equations cannot (without further assumptions) be derived from
Newton’s laws alone; for an illuminating discussion of these relationships,
see Antman [1998].

So far, the examples mentioned are ones with holonomic constraints (the
length of the pendula in the kinematic chain is assumed constrained to be
constant, and the rigid body is constrained by rigidity). However, one of the
purposes of this book is to study nonholonomic systems, wherein one has
constraints on the velocities. Examples are systems such as rolling wheels.
Even in this case, one can use Newton–Euler balance ideas to obtain the
equations correctly.
For the bulk of this book, however, we will not take the point of view

of Newton–Euler balance laws. One reason for this is that there is a more
useful alternative given by Hamilton’s principle (and the associated Euler–
Lagrange equations) for holonomic systems and by the Lagrange–d’Alem-
bert principle in the nonholonomic case. We shall briefly study these princi-
ples in the next sections and return to them in more detail later. In addition,
the Hamilton principle and Lagrange–d’Alembert formalism are covariant,
in the sense that they use only the intrinsic configuration manifold Q, and
one may use any set of coordinates on it; in addition, there is a simple
and elegant way to write the equations valid in any set of generalized co-
ordinates. The covariant nature of the Euler–Lagrange formalism was one
of the greatest discoveries of Lagrange and is the basis of the geometric
approach to mechanics.



6 1. Introduction

One should ask whether the Newton–Euler balance approach is equiv-
alent to the Euler–Lagrange and Lagrange–d’Alembert approaches under
general sets of hypotheses. This is a subtle question in general, which is,
unfortunately, not systematically addressed in most books, including this
one. However, these approaches can be shown to be equivalent in many
concrete situations, such as interconnected rigid bodies and rolling rigid
bodies, which we will come to later. See Jalnapurkar [1994] for one such
exposition of this equivalence. We will confine ourselves to proving the
equivalence in one concrete nonholonomic situation later, namely, a system
called the Chaplygin sleigh; see Section 1.7.

1.2 Hamilton’s Principle

In this section we give a brief introduction to the Euler–Lagrange equa-
tions of motion for holonomic systems from the point of view of variational
principles. We return to this later in Chapter 3 from a more abstract point
of view. The reader for whom this is familiar may, of course, skip ahead.
Let Q be the configuration space1 of a system with (generalized) coordi-

nates qi, i = 1, . . . , n. We are given a real-valued function L(qi, q̇i), called a
Lagrangian. Often we choose L to be L = K−V , where K is the kinetic
energy of the system and V (q) is the potential energy.

1.2.1 Definition. Hamilton’s principle singles out particular curves
q(t) by the condition

δ

∫ b

a

L(q(t), q̇(t)) dt = 0, (1.2.1)

where the variation is over smooth curves in Q with fixed endpoints.

To make this precise, let the variation of a trajectory q(·) with fixed
endpoints satisfying q(a) = qa and q(b) = qb be defined to be a smooth
mapping

(t, ε) �→ q(t, ε), a ≤ t ≤ b, ε ∈ (−δ, δ) ⊂ R,

satisfying

(i) q(t, 0) = q(t), t ∈ [a, b],

(ii) q(a, ε) = qa, q(b, ε) = qb.

1The configuration space of a system is best thought of as a differentiable manifold,
and generalized coordinates as a coordinate chart on this manifold. To enable us to
introduce some examples early on, we shall treat this rather informally at first and
return to a more intrinsic approach later.
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Letting δq(t) = (∂/∂ε)q(t, ε)|ε=0 be the virtual displacement correspond-
ing to the variation of q, we have

δq(a) = δq(b) = 0. (1.2.2)

The precise meaning of Hamilton’s principle is then the statement

d

dε

∫ b

a

L(q(t, ε), q̇(t, ε)) dt

∣∣∣∣∣
ε=0

= 0 (1.2.3)

for all variations.
One can view Hamilton’s principle in the following way: The quantity∫ b

a
L(q(t), q̇(t)) dt is being extremized among all curves with fixed end-

points; that is, the particular curve q(t) that is sought is a critical point

of the quantity
∫ b
a
L(q(t), q̇(t)) dt thought of as a function on the space

of curves with fixed endpoints. Examples show that the quantity
∫ b
a
Ldt

being extremized in (1.2.1) need not be minimized at a solution of the
Euler–Lagrange equations, just as in calculus: Critical points of functions
need not be minima.2

A basic result of the calculus of variations is:

1.2.2 Proposition. Hamilton’s principle for a curve q(t) is equivalent to
the condition that q(t) satisfy the Euler–Lagrange equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0. (1.2.4)

The idea of the proof is as follows: Let δq be a virtual displacement of
the curve q(t) corresponding to the variation q(t, ε). We may compute the
variation of the integral in Definition 1.2.1 corresponding to this variation
of the trajectory q by differentiating with respect to ε and using the chain
rule. We obtain ∫ b

a

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i
)

dt = 0, (1.2.5)

where δq̇i = d
dtδq

i. Integrating by parts and using the boundary conditions
δqi = 0 at t = a and t = b yields the identity∫ b

a

(
− d

dt

∂L

∂q̇i
+

∂L

∂qi

)
δqi dt = 0. (1.2.6)

Assuming a rich enough class of variations yields the result.3

2Perhaps the simplest example of this comes up in the study of geodesics on a sphere
where geodesics that “go the long way around the sphere” are critical points, but not
minima. In this example, L is just the kinetic energy of a point particle on the sphere.
See Gelfand and Fomin [1963] for further information.

3Again, further geometric insight into the notion of the variation operation is some-

thing we will return to later; for example, the equality δq̇i = d
dt
δqi is self-evident from

our definition of the virtual displacement and equality of mixed partials.
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A critical aspect of the Euler–Lagrange equations is that they may be
regarded as a way to write Newton’s second law in a way that makes sense
in arbitrary curvilinear and even moving coordinate systems. That is, the
Euler–Lagrange formalism is covariant. This is of enormous benefit, not
only theoretically, but for practical problems as well.

Mechanical Systems with External Forces. In the presence of ex-
ternal forces Fi, the equations are

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Fi (1.2.7)

for i = 1, . . . , n . Here we regard the quantities Fi as given by external
agencies.4 Note that if these forces are derivable from a potential U in the
sense that Fi = −∂U/∂qi, then these forces can be incorporated into the
Lagrangian by adding −U to the Lagrangian. Thus, this way of adding
forces is consistent with the Euler–Lagrange equations themselves.
These equations can be derived from a variational-like principle, the

Lagrange–d’Alembert principle for systems with external forces, as
follows:

δ

∫ b

a

L(qi, q̇i) dt+

∫ b

a

F · δq dt = 0, (1.2.8)

where F · δq =
∑n

i=1 Fiδq
i is the virtual work done by the force field F

with a virtual displacement δq as defined above.
A rigorous analysis of virtual work and integral laws of motion for con-

tinuum mechanics in Euclidean space may be found in Antman and Osborn
[1979].

Remarks on the History of Variational Principles. The history of
variational principles and the so-called principle of least action is quite
complicated, and we leave most of the details to other references. Some
of this history can be gleaned, for example, from Whittaker [1988] and
Marsden and Ratiu [1999]. An interesting historical note is that the cur-
rently accepted notion of the “principle of least action” is regarded by
some as being synonymous with “Hamilton’s principle.” Indeed Feynman
[1989] advocates this point of view. However, both historically and factu-
ally, Hamilton’s principle and the principle of least action (which
should really be called the principle of critical action) are slightly dif-
ferent. Hamilton’s principle involves varying the integral of the Lagrangian

4In elementary books on mechanics external forces are often regarded as a given vec-
tor field, but in fact, they should be regarded as a given one-form field. Such distinctions
are not important just now, but this is a crucial distinction in the geometric formulation
of mechanics that will be important for us later on.
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over all curves with fixed endpoint and fixed time. The principle of least
action, on the other hand, involves variation of the quantity

∫ b

a

∑
i

q̇i
∂L

∂q̇i
dt

over all curves with fixed energy.
The principle of critical action originated in Maupertuis’s work (Mau-

pertuis [1740]), which attempted to obtain for the corpuscular theory of
light a theorem analogous to Fermat’s principle of least time. Briefly
put, the latter involves taking the variations of

∫
nds, (1.2.9)

where n is the refractive index over the path of the light. This gives rise to
Snel’s law.5 Maupertuis’s principle was established by Euler [1744] for the
case of a single particle and in more generality by Lagrange [1760].

One can expand this to obtain the Hamilton–Jacobi equation in optics,
otherwise known as the eikonal equation.
One can observe this as follows. Since ds2 = dq(s)·dq(s), one may rewrite

the shortest path length as

∫ P2

P1

nds =

∫ P2

P1

n(q(s))

√
dq

ds
· dq
ds

ds. (1.2.10)

Taking variations leads to the eikonal equation

d

ds

(
n
dq

ds

)
= gradn.

In a homogeneous medium n is constant and thus we obtain

d2q

ds2
= 0, (1.2.11)

implying q = sa + b for a and b constants, so the light rays travel in
straight lines.
We note also that the light rays are the orthogonal to the wave fronts

S(q) = const and thus

n
dq

ds
= Sq.

5A simple derivation of Snel’s law from the variational point of view can be found,
for example, in Feynman [1989]. This law was discovered by the Dutch mathematician

and geodesist Willebord Snel van Royen. (Because his name in Latin is “Snellius” the

law is often called Snell’s law.)
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The gradient of S is perpendicular to the wave front. The bigger the gra-
dient the slower the front moves and hence Hamilton called the quantity

p =
∂S

∂q

the vector of normal slowness to the front. For further details, see Born
and Wolf [1980] and Holm [2008].

It is curious that Lagrange dealt with the more difficult principle of
critical action already in 1760, yet Hamilton’s principle, which is simpler,
came only much later in Hamilton [1834, 1835].

Another bit of interesting history is that Lagrange [1788] did not derive
the Lagrange equations of motion by variational methods, but he did so
by requiring that simple force balance be covariant, that is, expressible in
arbitrary generalized coordinates. For further information on the history of
variational principles and the precise formulation of the principle of least
action, see Marsden and Ratiu [1999].

Energy and Hamilton’s Equations. If the matrix ∂2L/∂q̇i∂q̇j is non-
singular, we call L a nondegenerate or regular Lagrangian, and in this
case we can make (at least locally) the change of variables from (qi, q̇i) to
the variables (qi, pi), where the momentum is defined by

pi =
∂L

∂q̇i
.

This change of variables is commonly referred to as the Legendre trans-
formation. We shall see how to write it in a coordinate-free way in Chap-
ter 3. Introducing the Hamiltonian

H(qi, pi) =

n∑
i=1

piq̇
i − L(qi, q̇i),

one checks, by a careful use of the chain rule, that the Euler–Lagrange
equations become Hamilton’s equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
,

where i = 1, . . . , n. If we think of the Hamiltonian as a function of (qi, q̇i),
then we write it as E(qi, q̇i) and still refer to it as the energy. If the
Lagrangian is of the form kinetic minus potential, then the energy and
Hamiltonian are kinetic plus potential.
If one introduces the Poisson bracket of two functions K,L of (qi, pi)

by the definition

{K,L} =

n∑
i=1

∂K

∂qi
∂L

∂pi
− ∂L

∂qi
∂K

∂pi
,
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then one checks, again using the chain rule, that Hamilton’s equations may
be written concisely as

Ḟ = {F,H}
for all functions F . In particular, since the Poisson bracket is clearly skew
symmetric in K,L, we see that {H,H} = 0, and so H has zero time deriva-
tive (conservation of energy). The corresponding statement for the energy
E can be verified directly to be a consequence of the Euler–Lagrange equa-
tions (and this holds even if L is degenerate).

Exercises

� 1.2-1. Consider the Lagrangian

L(x, y, z, ẋ, ẏ, ż) =
1

2
m
(
ẋ2 + ẏ2 + ż2

)−mgz.

Compute the equations of motion in both Lagrangian and Hamiltonian
form. Verify that the Hamiltonian (energy) is conserved along the flow. Are
there other conserved quantities?

� 1.2-2. Consider a Lagrangian of the form L = 1
2

∑n
k,l=1 gkl(q)q̇

k q̇l, where
gkl is a symmetric matrix. Show that the Lagrange equation of motion are

∑
s

grsq̈
s +
∑
l,m

Γrlmq̇lq̇m = 0

for suitable symbols Γ. Verify conservation of energy directly for this system.

1.3 The Lagrange–d’Alembert Principle

Holonomic and Nonholonomic Constraints. Suppose the system
constraints are given by the following m equations, linear in the velocity
field, where m < n:

n∑
k=1

ajk(q
i)q̇k = 0, (1.3.1)

where j = 1, . . . ,m.
If one can find m constraints on the positions alone, that is, constraints

of the form bj(qi) = 0, such that their time derivatives, namely

n∑
k=1

∂bj

∂qk
q̇k = 0,

determine the same constraint distribution as the constraints (1.3.1), then
one says that the constraints are holonomic. Otherwise, they are called
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nonholonomic. For example, the length constraint on a pendulum is
a holonomic constraint, whereas a constraint of rolling without slipping
(which we shall discuss in the next section) is nonholonomic.
It is also sometimes useful to distinguish between constraints that are

dependent or independent of time. Those that are independent of time are
called scleronomic, and those that depend on time are called rheonomic.
This terminology can also be applied to the mechanical system itself; see,
e.g., Greenwood [1977]. For example, a bead on a hoop is a rheonomic
system. For more details on such “moving” systems, see Marsden and Ratiu
[1999].
The Frobenius theorem and differential forms, which we shall review in

Chapter 2, give necessary and sufficient conditions under which a given
set of constraints is integrable. We shall return to these ideas in a more
geometric form in Chapter 5.

Dynamic Nonholonomic Equations of Motion. We will now sketch
the derivation of the equations of motion of a nonholonomic mechanical
system using Newton’s laws and Lagrange’s equations.6 We omit external
forces for the moment. Later on in the text we shall derive the equations
of motion from other points of view.
We regard the system as being acted on by just those forces Fi, i =

1, . . . , n, that have to be exerted by the constraints in order that the system
satisfy the nonholonomic constraints (1.3.1). Let F1δq

1 + F2δq
2 + · · · +

Fnδq
n be the work done by these forces when the system undergoes an

arbitrary virtual displacement (δq1, . . . , δqn). One assumes that with these
forces, the system is described by a holonomic system subject to the forces
of constraint; therefore, the equations of motion are given by (1.2.7). To
determine these forces of constraint, we make the following fundamental
assumption:

Assumption. In any virtual displacement consistent with the
constraints, the constraint forces Fi do no work, i.e., we assume
that the identity

F1δq
1 + F2δq

2 + · · ·+ Fnδq
n = 0

holds for all virtual displacements δqi satisfying the constraints
(1.3.1).

Assuming that the m vectors (a11, . . . , a
1
n), (a

2
1, . . . , a

2
n), . . . , (a

m
1 , . . . , amn )

are linearly independent, it follows from the same linear algebra used to
prove the Lagrange multiplier theorem that the forces of constraint have
the form Fi = λ1a

1
i + · · ·+ λmami for i = 1, . . . , n.

6See also, for example, Whittaker [1988] and the references therein, Ferrers [1871],
Neumann [1888], and Vierkandt [1892].
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In summary, the dynamic nonholonomic equations of motion are

d

dt

∂L

∂q̇i
− ∂L

∂qi
=

m∑
j=1

λja
j
i , (1.3.2)

where i = 1, . . . , n, together with the constraint equations (1.3.1). One
determines the Lagrange multipliers λi by imposing the constraints in much
the same way as one solves constrained maximum and minimum problems
in calculus.
The dynamic nonholonomic equations of motion (1.3.2) are also known

as the Lagrange–d’Alembert equations. These equations are the correct
equations for mechanical dynamical systems and in many cases (such as
rolling bodies in contact) can be shown to be equivalent to Newton’s law
F = ma with reaction forces.7 We shall see this explicitly in the context of
some simple and concrete examples shortly.

Lagrange–d’Alembert Principle. The generalization of Hamilton’s
principle to the nonholonomic context is as follows:

1.3.1 Definition. The principle

δ

∫ b

a

L(q(t), q̇(t)) dt = 0, (1.3.3)

where the virtual displacements δq are assumed to satisfy the constraints
1.3.1, that is,

n∑
k=1

ajkδq
k = 0, (1.3.4)

where j = 1, . . . ,m, is called the Lagrange–d’Alembert principle.

As with Hamilton’s principle, one can check that the following proposi-
tions are true:

1.3.2 Proposition. The Lagrange–d’Alembert principle given in Defini-
tion 1.3.1, together with the constraints (1.3.1), is equivalent to the Lagran-
ge–d’Alembert equations of motion (1.3.2).

This is a fundamental principle, and we shall return to it later in more
detail.

Energy. We introduce the energy in the same way as with holonomic
systems, namely

E(qi, q̇i) =
∂L

∂q̇i
q̇i − L(qi, q̇i). (1.3.5)

7See, for example, Vershik and Gershkovich [1988], Bloch and Crouch [1998a], and
Jalnapurkar [1994].
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1.3.3 Proposition. Energy is conserved for nonholonomic systems; that
is, for solutions of (1.3.2) subject to the constraints (1.3.1), we have

dE

dt
= 0.

Proof. We begin by taking the time derivative of the energy expression
(1.3.5) and using the equations of motion (1.3.2):

d

dt
E(qi, q̇i) =

d

dt

(
∂L

∂q̇i
q̇i − L(qi, q̇i)

)

=
d

dt

(
∂L

∂q̇i

)
q̇i +

∂L

∂q̇i
q̈i − ∂L

∂qi
q̇i − ∂L

∂q̇i
q̈i

=
m∑
j=1

λja
j
i q̇

i.

But this vanishes by virtue of the constraints (1.3.1). �

This proposition is consistent with the fact that the forces of constraint
do no work. Of course, this result is under the assumptions that the La-
grangian is not explicitly time-dependent and that the constraints are time-
independent.

Nonholonomic Mechanical Systems with External Forces. If ex-
ternal forces F e, such as control forces, are added to the system, then one
adds these forces to the right-hand side of the equations, just as we did
earlier for the Lagrange equations of motion. Namely, the equations are

d

dt

∂L

∂q̇i
− ∂L

∂qi
=

m∑
j=1

λja
j
i + F e

i , (1.3.6)

where i = 1, . . . , n, together with the constraint equations (1.3.1). One de-
termines the Lagrange multipliers λi by imposing the constraints as before.
The corresponding Lagrange–d’Alembert principle is

δ

∫ b

a

L(q(t), q̇(t)) dt+

∫ b

a

F e · δq dt = 0, (1.3.7)

where the virtual displacements δq now are assumed to satisfy the con-
straints (1.3.4).

Variational Nonholonomic Equations. It is interesting to compare
the dynamic nonholonomic equations, that is, the Lagrange–d’Alembert
equations with the corresponding variational nonholonomic equations. The
distinction between these two different systems of equations has a long and
distinguished history going back to the review article of Korteweg [1899]
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and is discussed in a more modern context in Arnold, Kozlov, and Neishtadt
[1988]. (For Kozlov’s work on vakonomic systems, see, e.g., Kozlov [1983]
and Kozlov [1992]).8 The upshot of the distinction is that the Lagran-
ge–d’Alembert equations are the correct mechanical dynamical equations,
while the corresponding variational problem is asking a different question,
namely one of optimal control.
Perhaps it is surprising, at least at first, that these two procedures give

different equations. What, exactly, is the difference in the two procedures?
The distinction is one of whether the constraints are imposed before or
after taking variations. These two operations do not, in general, commute.
We shall see this explicitly with the vertical rolling disk in the next section.
With the dynamic Lagrange–d’Alembert equations, we impose constraints
only on the variations, whereas in the variational problem we impose the
constraints on the velocity vectors of the class of allowable curves.
The variational equations are obtained by using Lagrange multipliers

with the Lagrangian rather than Lagrange multipliers with the equations,
as we did earlier. Namely, we consider the modified Lagrangian

L(q, q̇) +
n∑

k=1

m∑
j=1

μja
j
k q̇

k. (1.3.8)

Notice that there are as many Lagrange multipliers μj as there are con-
straints, just as in the Lagrange–d’Alembert equations. Then one forms the
Euler–Lagrange equations from this modified Lagrangian and determines
the Lagrange multipliers, to the extent possible, from the constraints and
initial conditions. We shall see explicitly how this works in the context of
examples in the next section and return to the general theory later on.

Exercises

� 1.3-1. Consider the Lagrangian

L(x, y, z, ẋ, ẏ, ż) =
1

2
m
(
ẋ2 + ẏ2 + ż2

)−mgz

with the constraints
yẋ− xẏ = 0.

(a) Are these constraints holonomic or nonholonomic?
(b) Write down the dynamic nonholonomic equations.

8As Korteweg points out, there were many confusions and mistakes in the literature
because people were using the incorrect equations, namely the variational equations,
when they should have been using the Lagrange–d’Alembert equations; some of these
misunderstandings persist, remarkably, to the present day. What Arnold et al. call the
vakonomic equations, we will call the variational nonholonomic equations. This ter-

minology will be useful in distinguishing the system from the dynamic nonholonomic
equations we introduced above.
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(c) Write down the variational nonholonomic equations.
(d) Are these two sets of equations the same?

� 1.3-2 (Rosenberg [1977]). Consider the Lagrangian

L(x, y, z, ẋ, ẏ, ż) =
1

2

(
ẋ2 + ẏ2 + ż2

)

with the constraints
ż − yẋ = 0 .

(a) Write down the dynamic nonholonomic equations.
(b) Write down the variational nonholonomic equations.
(c) Are these two sets of equations the same?

� 1.3-3. Derive a formula for dE/dt for nonholonomic systems with forces.

1.4 The Vertical Rolling Disk

Geometry and Kinematics. The vertical rolling disk is a basic and
simple example of a system subject to nonholonomic constraints: a ho-
mogeneous disk rolling without slipping on a horizontal plane. In the first
instance we consider the “vertical” disk, a disk that, unphysically of course,
may not tilt away from the vertical; it is not difficult to generalize the sit-
uation to the “falling” disk. It is helpful to think of a coin such as a penny,
since we are concerned with orientation and the roll angle (the position of
Lincoln’s head, for example) of the disk.9

Let S1 denote the circle of radius 1 in the plane. It is parameterized by an
angular variable (that is, a variable that is 2π-periodic). The configuration
space for the vertical rolling disk is Q = R

2×S1×S1 and is parameterized
by the (generalized) coordinates q = (x, y, θ, ϕ), denoting the position of
the contact point in the xy-plane, the rotation angle of the disk, and the
orientation of the disk, respectively, as in Figure 1.4.1.

The variables (x, y, ϕ) may also be regarded as giving a translational
position of the disk together with a rotational position; that is, we may
regard (x, y, ϕ) as an element of the Euclidean group in the plane. This
group, denoted by SE(2), is the group of translations and rotations in the
plane, that is, the group of rigid motions in the plane. Thus, SE(2) =
R

2 × S1 (as a set). This group and its three-dimensional counterpart in
space, SE(3), play an important role throughout this book. They will be
treated via their coordinate descriptions for the moment, but later on we
will return to them in a more geometric and intrinsic way.

9Other references that treat this example (including the falling disk) are, for example,
Vierkandt [1892], Bloch, Reyhanoglu, and McClamroch [1992], Bloch and Crouch [1995],

Bloch, Krishnaprasad, Marsden, and Murray [1996], O’Reilly [1996], Cushman, Hermans,
and Kemppainen [1996], and Zenkov, Bloch, and Marsden [1998].
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Figure 1.4.1. The geometry of the rolling disk.

In summary, the configuration space of the vertical rolling disk is given by
Q = SE(2) × S1, and this space has coordinates (generalized coordinates)
given by ((x, y, ϕ), θ).

The Lagrangian for the vertical rolling disk is taken to be the total kinetic
energy of the system, namely

L(x, y, ϕ, θ, ẋ, ẏ, ϕ̇, θ̇) =
1

2
m(ẋ2 + ẏ2) +

1

2
Iθ̇2 +

1

2
Jϕ̇2, (1.4.1)

where m is the mass of the disk, I is the moment of inertia of the disk
about the axis perpendicular to the plane of the disk, and J is the moment
of inertia about an axis in the plane of the disk (both axes passing through
the disk’s center).
For the derivation of kinetic energy formulas of this sort, we refer to any

basic mechanics book, such as Synge and Griffiths [1950]. We shall derive
such formulas from a slightly more advanced point of view in Section 3.15.
If R is the radius of the disk, the nonholonomic constraints of rolling

without slipping are

ẋ = R(cosϕ)θ̇ ,

ẏ = R(sinϕ)θ̇ ,
(1.4.2)

which state that the point P0 fixed on the rim of the disk has zero velocity at
the point of contact with the horizontal plane. Notice that these constraints
have the form (1.3.1) if we write them as

ẋ−R(cosϕ)θ̇ = 0 ,

ẏ −R(sinϕ)θ̇ = 0 .
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We can write these equations in the form of the equations (1.3.1), namely
as the two constraint equations

a1 · (ẋ, ẏ, ϕ̇, θ̇)T = 0 ,

a2 · (ẋ, ẏ, ϕ̇, θ̇)T = 0 ,

where T denotes the transpose and where

a1 = (1, 0, 0,−R cosϕ) , a2 = (0, 1, 0,−R sinϕ) .

In the notation used in (1.3.1),

a11 = 1, a12 = 0, a13 = 0, a14 = −R cosϕ ,

and similarly for a2:

a21 = 0, a22 = 1, a23 = 0, a24 = −R sinϕ .

We will compute the dynamical equations for this system with controls
in the next section. In particular, when there are no controls, we will get
the dynamical equations for the uncontrolled disk. As we shall see, these
free equations can be explicitly integrated.

Dynamics of the Controlled Disk. Consider the case where we have
two controls, one that can steer the disk and another that determines the
roll torque. Now we shall use the general equations (1.3.6) to write down
the equations for the controlled vertical rolling disk. According to these
equations, we add the forces to the right-hand side of the Euler–Lagrange
equations for the given Lagrangian along with Lagrange multipliers to en-
force the constraints and to represent the reaction forces. In our case, L
is cyclic in the configuration variables q = (x, y, ϕ, θ), and so the required
dynamical equations become

d

dt

(
∂L

∂q̇

)
= uϕf

ϕ + uθf
θ + λ1a

1 + λ2a
2, (1.4.3)

where, from (1.4.1), we have

∂L

∂q̇
= (mẋ,mẏ, Jϕ̇, Iθ̇),

and where
fϕ = (0, 0, 1, 0), fθ = (0, 0, 0, 1),

corresponding to assumed controls in the directions of the two angles ϕ
and θ, respectively. Here uϕ and uθ are control functions, so the external
control forces are F = uϕf

ϕ + uθf
θ, and the λi are Lagrange multipliers,

chosen to ensure satisfaction of the constraints (1.4.2).
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We eliminate the multipliers as follows. Consider the first two compo-
nents of (1.4.3) and substitute the constraints (1.4.2) to eliminate ẋ and ẏ
to give

λ1 = m
d

dt
(R cosϕ θ̇) ,

λ2 = m
d

dt
(R sinϕ θ̇) .

Substitution of these expressions for λ1 and λ2 into the last two components
of (1.4.3) and noticing the simple identities

λ1a
1
3 + λ2a

2
3 = 0 ,

λ1a
1
4 + λ2a

2
4 = −mR2θ̈ ,

gives the dynamic equations

Jϕ̈ = uϕ ,

(I +mR2)θ̈ = uθ , (1.4.4)

which, together with the constraints

ẋ = R(cosϕ)θ̇ ,

ẏ = R(sinϕ)θ̇ , (1.4.5)

(and some specification of the control forces), determine the dynamics of
the system.
The free equations , in which we set uϕ = uθ = 0, are easily integrated.

In fact, in this case, the dynamic equations (1.4.4) show that ϕ̇ and θ̇ are
constants; calling these constants ω and Ω, respectively, we have

ϕ = ωt+ ϕ0 ,

θ = Ωt+ θ0 .

Using these expressions in the constraint equations (1.4.5) and integrating
again gives

x =
Ω

ω
R sin(ωt+ ϕ0) + x0 ,

y = −Ω

ω
R cos(ωt+ ϕ0) + y0 .

Consider next the controlled case, with nonzero controls u1, u2. Call the
variables θ and φ “base” or “controlled” variables and the variables x and
y “fiber” variables. The distinction is that while θ and ϕ are controlled
directly, the variables x and y are controlled indirectly via the constraints.10

10The notation “base” and “fiber” comes from the fact that the configuration space
Q splits naturally into the base and fiber of a trivial fiber bundle, as we shall see later.
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It is clear that the base variables are controllable in any sense we can
imagine. One may ask whether the full system is controllable. Indeed it is,
in a precise sense as we shall show later, by virtue of the nonholonomic
nature of the constraints.

The Kinematic Controlled Disk. It is also useful to define and study
a related system, the so-called kinematic controlled rolling disk. In this case
we imagine we have direct control over velocities rather than forces, and
accordingly, we consider the most general first-order system satisfying the
constraints or lying in the “constraint distribution.” In the present case of
the vertically rolling disk, this system is

q̇ = u1X1 + u2X2, (1.4.6)

where X1 = (R cosϕ,R sinϕ, 0, 1)T and X2 = (0, 0, 1, 0)T and where q̇ =
(ẋ, ẏ, ϕ̇, θ̇)T .
In fact, X1 and X2 constitute a maximal set of independent vector fields

on Q satisfying the constraints, in the sense that the components of X1

and X2 satisfy the equations (1.4.5), as is easily checked. As we shall see,
it is instructive to analyze both the control and optimal control of such
systems.

The Variational Controlled System. As we indicated in the last sec-
tion, the variational system is obtained by using Lagrange multipliers with
the Lagrangian rather than Lagrange multipliers with the equations, as we
did earlier. Namely, we consider the Lagrangian

L =
1

2
m(ẋ2 + ẏ2) +

1

2
Iθ̇2 +

1

2
Jϕ̇2 + μ1(ẋ−Rθ̇ cosϕ) + μ2(ẏ −Rθ̇ sinϕ) ,

where, because of the Lagrange multipliers, we relax the constraints and
take variations over all curves. In other words, we write down the Euler–
Lagrange equations for this Lagrangian and determine the multipliers from
the constraints and initial conditions to the extent possible.
The Euler–Lagrange equations for this Lagrangian, including external

forces in the ϕ and θ equations, are

mẍ+ μ̇1 = 0 , (1.4.7)

mÿ + μ̇2 = 0 , (1.4.8)

Jϕ̈−Rμ1θ̇ sinϕ+Rμ2θ̇ cosϕ = uϕ , (1.4.9)

Iθ̈ −R
d

dt
(μ1 cosϕ+ μ2 sinϕ) = uθ . (1.4.10)

From the constraint equations (1.4.5) and integrating equations (1.4.7)
and (1.4.8) once, we have

μ1 = −mRθ̇ cosϕ+A ,

μ2 = −mRθ̇ sinϕ+B ,
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where A and B are integration constants. Substituting these into equations
(1.4.9) and (1.4.10) and simplifying, we obtain

Jϕ̈ = Rθ̇(A sinϕ−B cosϕ) + uϕ ,

(I +mR2)θ̈ = Rϕ̇(−A sinϕ+B cosϕ) + uθ .

These equations, together with the constraints, define the dynamics. Notice
that for nonzero A and B, they are different from the dynamic nonholo-
nomic (Lagrange–d’Alembert) equations. As we have indicated, the motion
determined by these equations is not that associated with physical dynam-
ics in general, but is a model of the type of problem that is relevant to
optimal control problems, as we shall see later.
Note also that the constants of motion A and B are not determined

by the constraints or initial data. Thus in this instance there are many
variational nonholonomic trajectories with a given set of initial conditions;
the choice of A = B = 0 yields the nonholonomic (i.e., the Lagrange–d’Al-
embert) case. Interestingly, it is not always true that the nonholonomic
trajectories are special cases of the variational nonholonomic trajectories,
but it is possible to quantify when this occurs; see, e.g., Cardin and Favretti
[1996].
More details on this issue may be found in Fernandez and Bloch [2008]

where necessary and sufficient conditions for the equivalence of the dynam-
ics of nonholonomic mechanics and variational nonholonomic (vakonomic)
dynamics for certain initial conditions are given. In this work the notion of
conditionally variational nonholonomic systems is developed. For
such systems for any given initial data there exists a value of the Lagrange
multiplier for the variational nonholonomic system such that the trajecto-
ries of the two types of system coincide. Similarly if the result only holds
for some initial data the system is said to be partially conditionally
variational nonholonomic.

Exercises

� 1.4-1. Write down an expression for the energy of the (dynamic nonholo-
nomic) vertical rolling disk and compute its time rate of change under the
action of the controls uϕ and uθ.

� 1.4-2. Compute the dynamic nonholonomic and variational nonholonomic
equations of motion of the upright rolling penny in the presence of a linear
potential of the form V (x, y, ϕ, θ) = αx for a real number α. Solve the
equations if possible.
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1.5 The Falling Rolling Disk

A more realistic disk is of course one that is allowed to fall over (i.e., it
is permitted to deviate from the vertical). This turns out to be a very
instructive example to analyze. See Figure 1.5.1. As the figure indicates,
we denote the coordinates of contact of the disk in the xy-plane by (x, y)
and let θ, ϕ, and ψ denote the angle between the plane of the disk and
the vertical axis, the “heading angle” of the disk, and “self-rotation” angle
of the disk, respectively.11 Note that the notation ψ for the falling rolling
disk corresponds to the notation θ in the special case of the vertical rolling
disk.

ϕ

P

Qx

z

y

θ

(x, y)

ψ

Figure 1.5.1. The geometry for the rolling disk.

For the moment, we just give the Lagrangian and constraints, and return
to this example in Chapter 8, where we work things out in detail. While
the equations of motion are straightforward to develop, as in the vertical
case, they are somewhat messy, so we will defer these calculations until the
later discussion. We will also show in Chapter 8 that this is a system that
exhibits stability but not asymptotic stability.
Denote the mass and radius of the disk by m and R, respectively; let I

be, as in the case of the vertical rolling disk, the moment of inertia about

11A classical reference for the rolling disk is Vierkandt [1892], who showed something
very interesting: On an appropriate symmetry-reduced space, namely, the constrained
velocity phase space modulo the action of the group of Euclidean motions of the plane, all
orbits of the system are periodic. Modern references that treat this example are Hermans
[1995], O’Reilly [1996], Cushman, Hermans, and Kemppainen [1996], and Zenkov, Bloch,
and Marsden [1998].
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the axis through the disk’s “axle” and J the moment of inertia about any
diameter. The Lagrangian is given by the kinetic minus potential energies:

L =
m

2

[
(ξ −R(ϕ̇ sin θ + ψ̇))2 + η2 sin2 θ + (η cos θ +Rθ̇)2

]

+
1

2

[
J(θ̇2 + ϕ̇2 cos2 θ) + I(ϕ̇ sin θ + ψ̇)2

]
−mgR cos θ,

where ξ = ẋ cosϕ + ẏ sinϕ + Rψ̇ and η = −ẋ sinϕ + ẏ cosϕ, while the
constraints are given by

ẋ = −ψ̇R cosϕ,

ẏ = −ψ̇R sinϕ.

Note that the constraints may also be written as ξ = 0, η = 0.

Unicycle with Rotor. An interesting generalization of the falling disk is
the “unicycle with rotor,” analyzed in Zenkov, Bloch, and Marsden [2002b],
(see Figure 1.5.2).

x
(x,y)

z

y

φ

ψ

q

x

Figure 1.5.2. The configuration variables for the unicycle with rotor.

This is a homogeneous disk on a horizontal plane with a rotor. The rotor
is free to rotate in the plane orthogonal to the disk. The rod connecting
the centers of the disk and rotor keeps the direction of the radius of the
disk through the contact point with the plane. We may view this system
as a simple model of unicycle with rider whose arms are represented by the
rotor. Stabilization is discussed in Chapter 9. A unicycle with pendulum is
discussed in Zenkov, Bloch, and Marsden [2002b] and the web supplement.
The configuration space for this system is Q = S1 × S1 × S1 × SE(2),

which we parameterize with coordinates (θ, χ, ψ, φ, x, y). As in Figure 1.5.2,
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θ is the tilt of the unicycle itself, and ψ and χ are the angular positions of
the wheel of the unicycle and the rotor, respectively. The variables (φ, x, y),
regarded as a point in SE(2), represent the angular orientation of the overall
system and position of the point of contact of the wheel with the ground.
Further details are given in Chapter 9.

1.6 The Knife Edge

A simple and basic example of the behavior of a system with nonholonomic
constraints is a knife edge or skate on an inclined plane.12

To set up the problem, consider a plane slanted at an angle α from the
horizontal and let (x, y) represent the position of the point of contact of the
knife edge with respect to a fixed Cartesian coordinate system on the plane
(see Figure 1.6.1). The angle ϕ represents the orientation of the knife edge
with respect to the xy-axis. The knife edge is moving under the influence
of gravity with the acceleration due to gravity denoted by g. It also has
mass m, and the moment of inertia of the knife edge about a vertical axis
through its contact point is denoted by J .

m = mass

g

ϕ

(x, y)

x
y

α

J = moment of
inertia

Figure 1.6.1. Motion of a knife edge on an inclined plane.

With this notation, the knife edge Lagrangian is taken to be

L =
1

2
m
(
ẋ2 + ẏ2

)
+

1

2
Jϕ̇2 +mgx sinα (1.6.1)

with the constraint
ẋ sinϕ = ẏ cosϕ . (1.6.2)

12This example is analyzed in, for example, Neimark and Fufaev [1972] and Arnold,
Kozlov, and Neishtadt [1988].
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As for the rolling penny, we will compare the mechanical nonholonomic
equations and the variational equations. In contrast to the penny we can-
not solve the equations explicitly in general, but this is possible for certain
initial data of interest. In particular, we shall be concerned with the initial
data corresponding to the knife edge spinning about a point on the plane
with zero initial velocity along the plane. The question is, what is the mo-
tion of the point of contact? We shall not consider the addition of controls
for the moment.

The Nonholonomic Case. The equations of motion given in general
by (1.3.2) become, in this case,

mẍ = λ sinϕ+mg sinα ,

mÿ = −λ cosϕ ,

Jϕ̈ = 0 .

We assume the initial data x(0) = ẋ(0) = y(0) = ẏ(0) = ϕ(0) = 0 and
ϕ̇(0) = ω. The energy is given, according to the general formula (1.3.5), by

E =
1

2
m
(
ẋ2 + ẏ2

)
+

1

2
Jϕ̇2 −mgx sinα

and is preserved along the flow. Since it is preserved, it equals its initial
value

E(0) =
1

2
Jω2 .

Hence, we have

1

2

ẋ2

cos2 ϕ
−mgx sinα = 0 .

Solving, we obtain

x =
g

2ω2
sinα sin2 ωt

and, using the constraint,

y =
g

2ω2
sinα

(
ωt− 1

2
sin 2ωt

)
.

Hence the point of contact of the knife edge undergoes a cycloid motion
along the plane, but does not slide down the plane.

The Variational Nonholonomic Case. Now we consider, in contrast,
the variational nonholonomic equations of motion. We consider the con-
strained Lagrangian

LC =
1

2
m
(
ẋ2 + ẏ2

)
+

1

2
Jϕ̇2 +mgx sinα− λ (ẋ sinϕ− ẏ cosϕ) .
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As in the general theory, define the momenta by pi = ∂L/∂q̇i, which be-
comes, in this case,

px =
∂LC

∂ẋ
= mẋ− λ sinϕ ,

py =
∂LC

∂ẏ
= mẏ + λ cosϕ .

Now assume initial data satisfying px(0) = py(0) = ϕ(0) = ϕ̇(0) = 0. Then
from Lagrange’s equations, we get

ṗx = mg sinα ,

ṗy = 0 ,

and hence from the initial data

px = (mg sinα)t ,

mẏ + λ cosϕ = 0 .

Now the equation for ϕ̇ is

Jϕ̈ = −λẋ cosϕ− λẏ sinϕ = −(λg sinα cosϕ)t ,

using the above expressions for px and py to solve for ẋ and ẏ.
Again using the expressions for px and py we have

λ = py cosϕ− px sinϕ = −(mg sinα sinϕ)t .

Using this expression for λ gives

ẋ = (g sinα)t+ λ/m sinϕ = (g sinα)t− (g sinα sin2 ϕ)t

= (mg sinα cos2 ϕ)t ,

ẏ = −λ/m cosϕ = (g sinα sinϕ cosϕ)t ,

ϕ̈ =
(m
J
g2 sin2 α sinϕ cosϕ

)
t2 .

Hence, in the variational formulation the point of contact of the knife edge
slides monotonically down the plane, in contrast to the nonholonomic me-
chanical setting (see, e.g., Kozlov [1983]).

1.7 The Chaplygin Sleigh

One of the simplest mechanical systems that illustrates the possible “dis-
sipative nature” of nonholonomic systems, even though they are energy-
preserving, is the Chaplygin sleigh.13

13The system is discussed in the original work of Chaplygin (see the references) as
well as in Neimark and Fufaev [1972] and Ruina [1998].
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We now derive the equations of motion both using balance of forces as
in Ruina [1998] and by the Lagrange multiplier approach, following the
general theory. This system consists of a rigid body in the plane that is
supported at three points, two of which slide freely without friction while
the third is a knife edge, a constraint that allows no motion perpendicular
to its edge.
To analyze the system, use a coordinate system Oxy fixed in the plane

and a coordinate system Aξη fixed in the body with its origin at the point
of support of the knife edge and the axis Aξ through the center of mass
C of the rigid body. The configuration of the body is described by the
coordinates x, y and the angle θ between the moving and fixed sets of axes.
Let m be the mass and I the moment of inertia about the center of mass.
Let a be the distance from A to C. See Figure 1.7.1.

θ

x

z

y

(x,y)

A

ξ

η

Ca

O

Figure 1.7.1. The Chaplygin sleigh is a rigid body moving on two sliding posts and

one knife edge.

Denote the unit vectors along the axes Aξ and Aη in the body by e1 and
e2. The knife edge constraint can then be expressed as follows: The velocity
at A is given by vA = v1e1, where v1 is the velocity in the direction e1.

The force at A is written as Re2; that is, the force is normal to the
direction of motion at A. The position of point C is rC = rA + ae1, where
the vectors r are in the fixed frame.
Since ė1 = θ̇e2 and ė2 = −θ̇e1, the velocity and acceleration of the point

C are given by

vC = ve1 + θ̇ae2 ,

aC = v̇e1 + vθ̇e2 + θ̈ae2 − θ̇2ae1. (1.7.1)
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The balance of linear and angular momentum at the point A then gives

Re2 = maC ,

0 = (rC − rA)× (maC) + Iθ̈e3, (1.7.2)

where e3 is the normal vector to the plane. Setting θ̇ = ω we find that
equations (1.7.1), (1.7.2) yield the equations

v̇ = aω2 ,

ω̇ = − ma

I +ma2
vω . (1.7.3)

The equations above are examples of momentum equations in nonholo-
nomic mechanics, which we shall study in general in Chapter 5 and which
will play an important role in the book. In the absence of nonholonomic
constraints, this equation would yield conservation of angular momentum.
This set of equations has a family of equilibria (i.e., points at which the

right-hand side vanishes) given by {(v, ω) | v = const, ω = 0}.
Linearizing about any of these equilibria one finds that one has one zero

eigenvalue together with a negative eigenvalue if v > 0 and a positive eigen-
value if v < 0. In fact, the solution curves are ellipses in the vω plane with
the positive v-axis attracting all solutions; see below. (See Figure 1.7.2.)
We shall discuss this further in Section 8.6.

ω

v

–1

–1

–2

1

2

10

Figure 1.7.2. Chaplygin sleigh phase portrait.

We can also derive the equations from the Lagrangian (Lagrange–d’Al-
embert) point of view. The Lagrangian is given by

L(xC , yC , θ) =
1

2
m
(
ẋ2
C + ẏ2C

)
+

1

2
Iθ̇2 ,
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where xC and yC are the coordinates of the center of mass. We rewrite
this in terms of the coordinates of the knife edge x = xC − a cos θ and
y = yC − a sin θ. Hence we may rewrite the Lagrangian as

L(x, y, θ) =
1

2
m

(
d

dt
(x+ a cos θ)

2
+

d

dt
(y + a sin θ)

2

)
+

1

2
Iθ̇2

=
1

2
m

((
ẋ− a sin θθ̇

)2
+
(
ẏ + a cos θθ̇

)2)
+

1

2
Iθ̇2

=
1

2

(
mẋ2 +mẏ2 +

(
I +ma2

)
θ̇2 − 2maẋθ̇ sin θ + 2maẏθ̇ cos θ

)
.

(1.7.4)

The knife edge constraint is

ẏ cos θ − ẋ sin θ = 0 . (1.7.5)

Hence the nonholonomic equations of motion are

m
d

dt

(
ẋ− a sin θθ̇

)
= −λ sin θ ,

m
d

dt

(
ẏ + a cos θθ̇

)
= λ cos θ ,

d

dt

(
Iθ̇ +ma2θ̇ −maẋ sin θ +maẏ cos θ

)

−
(
−maẋθ̇ cos θ −maẏθ̇ sin θ

)
= 0;

that is,

ẍ− a cos θθ̇2 − a sin θθ̈ = −λ sin θ

m
,

ÿ − a sin θθ̇2 + a cos θθ̈ =
λ cos θ

m
,

(I +ma2)θ̈ +maθ̇ (ẋ cos θ + ẏ sin θ) = 0 ,

(1.7.6)

where in the third of equations (1.7.6) we used the constraint (1.7.5).
Now the velocity in the direction of motion is given by

v = ẋ cos θ + ẏ sin θ . (1.7.7)

Hence the last of equations (1.7.6) becomes

θ̈ = ω̇ = − ma

I +ma2
vω (1.7.8)

and

v̇ = ẍ cos θ + ÿ sin θ − ẋθ̇ sin θ + ẏθ̇ cos θ

= a(cos2 θ + sin2 θ)θ̇2 = aθ̇2 = aω2 . (1.7.9)
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Figure 1.7.3. Chaplygin sleigh trajectory.

Thus we obtain our earlier sleigh equations (1.7.3).
We remark that in Ruina [1998] a piecewise holonomic version of the

sleigh is discussed, where the knife edge constraint is replaced by a moving
peg in a slot. This also exhibits asymptotic stability and illustrates aspects
of mechanical locomotion. See also Coleman and Holmes [1999]. This phe-
nomenon may also be seen in passive walking machines such as those of
McGeer, as Ruina discusses.

Exercises

� 1.7-1.

(a) Compute the nonholonomic equations of motion for the Chaplygin
sleigh on an incline.

(b) Project. Simulate the equations on the computer and discuss the
nature of the dynamics; is the sleigh stable going down the incline
“forwards” or “backwards”?

� 1.7-2. Compute the variational equations of motion of the Chaplygin
sleigh. Say what you can about the qualitative behavior of the system.

1.8 The Heisenberg System

The Heisenberg Algebra. The Heisenberg algebra is the algebra one
meets in quantum mechanics, wherein one has two operators q and p
that have a nontrivial commutator, in this case a multiple of the identity.
Thereby, one generates a three-dimensional Lie algebra. The system stud-
ied in this section has an associated Lie algebra with a similar structure,
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which is the reason the system is called the Heisenberg system. There is no
intended relation to quantum mechanics per se other than this.
In Lie algebra theory this sort of a Lie algebra is of considerable interest.

One refers to it as an example of a central extension because the element
that one extends by (in this case a multiple of the identity) is in the center
of the algebra; that is, it commutes with all elements of the algebra.
The Heisenberg system has played a significant role as an example in

both nonlinear control and nonholonomic mechanics.

The Dynamic Heisenberg System. As with the previous example, the
dynamic Heisenberg system comes in two forms, one associated with the
Lagrange–d’Alembert principle and one with an optimal control problem.
As in the previous examples, the equations in each case are different.
In the dynamic setting, we consider the following standard kinetic energy

Lagrangian on Euclidean three-space R
3:

L =
1

2
(ẋ2 + ẏ2 + ż2)

subject to the constraint
ż = yẋ− xẏ. (1.8.1)

Controls u1 and u2 are given in the x and y directions. Letting q =
(x, y, z)T , the dynamic nonholonomic control system is14

q̈ = u1X1 + u2X2 + λW , (1.8.2)

where X1 = (1, 0, 0)T and X2 = (0, 1, 0)T and W = (−y, x, 1)T . Eliminat-
ing λ we obtain the dynamic equations

(1 + x2 + y2)ẍ = (1 + x2)u1 + xyu2 ,

(1 + x2 + y2)ÿ = (1 + y2)u2 + xyu1 ,

(1 + x2 + y2)z̈ = yu1 − xu2 . (1.8.3)

Optimal Control for the Heisenberg System. The control and op-
timal control of the corresponding kinematic problem have been quite im-
portant historically, and we shall return to them later on in the book in
connection with, for example, the falling cat problem and optimal steering
problems.15

The system may be written as

q̇ = u1g1 + u2g2 , (1.8.4)

14This example with controls was analyzed in Bloch and Crouch [1993]. A related
nonholonomic system, but with slightly different constraints, may be found in Rosenberg
[1977], Bates and Sniatycki [1993], and Bloch, Krishnaprasad, Marsden, and Murray

[1996].
15As we mentioned earlier, this example was introduced in Brockett [1981].
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where g1 = (1, 0, y)T and g2 = (0, 1,−x)T . As in the rolling disk example,
g1 and g2 are a maximal set of independent vector fields satisfying the
constraint

ż = yẋ− xẏ . (1.8.5)

Written out in full, these equations are

ẋ = u1 , (1.8.6)

ẏ = u2 , (1.8.7)

ż = yu1 − xu2 . (1.8.8)

Relationship Between the Vertical Disk and Heisenberg System.
Consider the vertical disk example, but eliminate ψ from the representa-
tion of the configuration (see, e.g., Lynch, Bloch, Drakunov, Reyhanoglu,
Zenkov [2011]). The system can be written as

ẋ = vR cosϕ,

ẏ = vR sinϕ,

ϕ̇ = ω, (1.8.9)

where the forward velocity and heading velocity controls are v and ω, re-
spectively. We can define a change of coordinates F (ϕ)

⎡
⎣x1

x2

z

⎤
⎦ = F (ϕ)

⎡
⎣xy
ϕ

⎤
⎦ ,

where

F (ϕ) =

⎡
⎣ 0 0 1

cosϕ sinϕ 0
ϕ cosϕ− 2 sinϕ ϕ sinϕ+ 2 cosϕ 0

⎤
⎦ ,

and a nonsingular state-dependent transformation of the controls

u1 = ω,

u2 = Rv +
(z
2
− x1x2

2

)
ω,

yielding the system

ẋ1 = u1, (1.8.10)

ẋ2 = u2, (1.8.11)

ż = x1u2 − x2u1. (1.8.12)
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Aside on the Jacobi–Lie Bracket. A notion that is important in
mechanics and control theory is that of the Jacobi–Lie bracket [f, g]
of two vector fields f and g on R

n that are given in components by
f = (f1, . . . , fn) and g = (g1, . . . , gn). It is defined to be the vector field
with components

[f, g]i =
n∑

j=1

(
f j ∂g

i

∂xj
− gj

∂f i

∂xj

)
,

or in vector calculus notation

[f, g] = (f · ∇) g − (g · ∇) f.

Later on, in Chapter 2, we will define the Jacobi–Lie bracket intrinsically
on manifolds. An important geometric interpretation of this bracket is as
follows.
Suppose we follow the vector field g (i.e., flow along the solution of the

equation ẋ = g(x)) from point x(0) = x0 for t units of time, then beginning
with this as initial condition, we flow along the vector field f for time t;
then along the vector field −g, and finally along −f all for t units of time.
Formally, we arrive at the point

(exp−tf)(exp−tg)(exp tf)(exp tg)(x0) , (1.8.13)

where (exp tg) represents the flow of the vector field g for t units of time.
Flows of vector fields will be described in more detail in Chapter 2.

Locally, expanding the exponential and in turn expanding each occur-
rence of g in the exponential in a Taylor series about x0 we have along the
flow of the equation ẋ = g(x),

x(t) = x0 + tg(x0) +
t2

2
g(x0) · ∇g(x0) +O(t3) . (1.8.14)

(Here we compute the second derivative of x(t) at t = t0 by differentiating
ẋ(t) = g(x(t)) with respect to t.) Hence, after a short computation using
additional Taylor expansions, one finds that (1.8.13) becomes

x0 − t2 [f, g] (x0)x0 +O(t3) , (1.8.15)

where [f, g] is the Lie bracket as defined above. Thus, if [f, g] is not in the
span of vector fields g and f , then by concatenating the flows of f and g,
we obtain motion in a new independent direction.

Return to the Heisenberg System. In the Heisenberg example, one
verifies that the Jacobi–Lie bracket of the vector fields g1 and g2 is

[g1, g2] = 2g3 ,
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where g3 = (0, 0, 1). In fact, the three vector fields g1, g2, g3 span all of R3

and, as a Lie algebra, is just the Heisenberg algebra described earlier.
By general controllability theorems that we shall discuss in Chapter 4

(Chow’s theorem), one knows now that one can, with suitable controls,
steer trajectories between any two points in R

3. The above geometric in-
terpretation makes this plausible. In particular, we are interested in the
following optimal steering problem (see Figure 1.8.1).

x2

x1

x3

(0, 0, a)

(0, 0, 0)

Figure 1.8.1. An optimal steering problem.

Optimal Steering Problem. Given a number a > 0, find
time-dependent controls u1, u2 that steer the trajectory starting
at (0, 0, 0) at time t = 0 to the point (0, 0, a) after a given time
T > 0 and that among all such controls minimizes

1

2

∫ T

0

(u2
1 + u2

2) dt .

An equivalent formulation is the following: Minimize the integral

1

2

∫ T

0

(ẋ2 + ẏ2) dt

among all curves q(t) joining q(0) = (0, 0, 0) to q(T ) = (0, 0, a) that satisfy
the constraint

ż = yẋ− xẏ .

As before, any solution must satisfy the Euler–Lagrange equations for the
Lagrangian with a Lagrange multiplier inserted:

L
(
x, ẋ, y, ẏ, z, ż, λ, λ̇

)
= 1

2

(
ẋ2 + ẏ2

)
+ λ (ż − yẋ+ xẏ) .
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The corresponding Euler–Lagrange equations are given by

ẍ− 2λẏ = 0 , (1.8.16)

ÿ + 2λẋ = 0 , (1.8.17)

λ̇ = 0 . (1.8.18)

From the third equation λ is a constant, and the first two equations state
that the particle (x(t), y(t)) moves in the plane in a constant magnetic field
(pointing in the z direction, with charge proportional to the constant λ).
For more on these ideas, see Chapter 7 on optimal control.
Some remarks are in order here:

1. The fact that this optimal steering problem gives rise to an interesting
mechanical system is not an accident; we shall see this in much more
generality in Chapter 7 and the Internet Supplement.

2. Since particles in constant magnetic fields move in circles with con-
stant speed, they have a sinusoidal time dependence, and hence so
do the controls. This has led to the “steering by sinusoids” approach
in many nonholonomic steering problems (see, for example, Murray
and Sastry [1993] and Section 6.1).

Equations (1.8.16) and (1.8.17) are linear first-order equations in the
velocities and are readily solved:

[
ẋ(t)
ẏ(t)

]
=

[
cos(2λt) sin(2λt)
− sin(2λt) cos(2λt)

] [
ẋ(0)
ẏ(0)

]
. (1.8.19)

Integrating once more and using the initial conditions x(0) = 0, y(0) = 0
gives

[
x(t)
y(t)

]
=

1

2λ

[
cos(2λt)− 1 sin(2λt)
− sin(2λt) cos(2λt)− 1

] [−ẏ(0)
ẋ(0)

]
. (1.8.20)

The other boundary condition x(T ) = 0, y(T ) = 0 gives

λ =
nπ

T

for an integer n. Using this information, we find z by integration: From
ż = yẋ− xẏ and the preceding expressions we get

ż(t) =
T

2nπ

[
ẋ(0)2 + ẏ(0)2 − cos

(
2nπt

T

)
(ẋ(0)2 + ẏ(0)2)

]
.

Integration from 0 to T and using z(0) = 0 gives

z(T ) =
T 2

2nπ

[
ẋ(0)2 + ẏ(0)2

]
.
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Thus, to achieve the boundary condition z(T ) = a one must choose

ẋ(0)2 + ẏ(0)2 =
2πna

T 2
.

One also finds that

1

2

∫ T

0

[
ẋ(t)2 + ẏ(t)2

]
dt =

1

2

∫ T

0

[
ẋ(0)2 + ẏ(0)2

]
dt

=
T

2

[
ẋ(0)2 + ẏ(0)2

]

=
πna

T
,

so that the minimum is achieved when n = 1.

Summary: The solution of the optimal control problem is given by choos-
ing initial conditions such that ẋ(0)2 + ẏ(0)2 = 2πa/T 2 and with the tra-
jectory in the xy-plane given by the circle

[
x(t)
y(t)

]
=

1

2λ

[
cos(2πt/T )− 1 sin(2πt/T )
− sin(2πt/T ) cos(2πt/T )− 1

] [−ẏ(0)
ẋ(0)

]
(1.8.21)

and with z given by

z(t) =
ta

T
− a

2π
sin

(
2πt

T

)
.

Notice that any such solution can be rotated about the z axis to obtain
another one.

Exercises

� 1.8-1. Solve the optimal steering problem for the vertical disk problem
(1.8.9) with cost function 1

2 (v
2 + ω2).

� 1.8-2. For the standard kinetic energy Lagrangian on R
3 and constraint

(1.8.1) above, write down the variational nonholonomic problem. How does
this compare with the optimal steering problem?

1.9 The Rigid Body

The Free Rigid Body. A key system in mechanics is the free rigid
body. There are many excellent treatments of this topic; see, for example,
Whittaker [1988], Arnold [1989], and Marsden and Ratiu [1999]. We restrict
ourselves here to some essentials, although we shall return to the topic in
detail in the context of nonholonomic mechanics and optimal control.
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The configuration space of a rigid body moving freely in space is R
3 ×

SO(3), describing the position of a coordinate frame fixed in the body
and the orientation of the frame, the orientation of the frame given by an
element of SO(3), i.e., an orthogonal 3×3 matrix with determinant 1. Since
the three components of translational momentum are conserved, the body
behaves as if it were rotating freely about its center of mass.16

Hence the phase space for the body may be taken to be T SO(3)—the
tangent bundle of SO(3)—with points representing the position and veloc-
ity of the body, or in the Hamiltonian context we may choose the phase
space to be the cotangent bundle T ∗ SO(3), with points representing the
position and momentum of the body. (This example may be equally well
formulated for the group SO(n) or indeed any compact Lie group.)
If I is the moment of inertia tensor computed with respect to a body

fixed frame, which, in a principal body frame, we may represent by the
diagonal matrix diag(I1, I2, I3), the Lagrangian of the body is given by the
kinetic energy, namely

L =
1

2
Ω · IΩ, (1.9.1)

where Ω is the vector of angular velocities computed with respect to the
axes fixed in the body.
The Euler–Lagrange equations of motion may be written as the system

Ȧ = AΩ̂ , (1.9.2)

IΩ̇ = IΩ× Ω , (1.9.3)

where A ∈ SO(3) and we write

Ω̂ ≡
⎛
⎝ 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

⎞
⎠ .

The dynamics may be rewritten

I
˙̂
Ω = [IΩ̂, Ω̂], (1.9.4)

or, in terms of the angular momentum matrix M̂ = IΩ̂,

˙̂
M = [M̂, Ω̂]. (1.9.5)

The Rolling Ball. This paragraph considers the controlled rolling in-
homogeneous ball on the plane, the kinematics of which were discussed in
Brockett and Dai [1992], establishing the completely nonholonomic nature

16This is not the case with other systems, such as a rigid body moving in a fluid;

even though the system is translation-invariant, its “center of mass” need not move on

a straight line, so the configuration space must be taken to be the full Euclidean group.
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of the constraint distribution H. (A distribution is completely nonholo-
nomic if the span of the iterated brackets of the vector fields lying in it has
dimension equal to the dimension of the underlying manifold; see Chapter 4
for a full explanation.) See also Rojo and Bloch [2010]. The dynamics of the
uncontrolled system is described, for example, in McMillan [1936] (see also
Bloch, Krishnaprasad, Marsden, and Murray [1996], Jurdjevic [1993], Koon
and Marsden [1997b], and Krishnaprasad, Yang and Dayawansa [1991]).
We will use the coordinates x, y for the linear horizontal displacement and
P ∈ SO(3) for the angular displacement of the ball. Thus P gives the orien-
tation of the ball with respect to inertial axes e1, e2, e3 fixed in the plane,
where the ei are the standard basis vectors aligned with the x-, y-, and
z-axes, respectively. See Figure 1.9.1.

ω

(x, y)

Figure 1.9.1. The rolling ball.

Let the ball have radius a and mass m and let ω ∈ R
3 denote the

angular velocity of the ball with respect to the inertial axes. In particular,
the ball may spin freely about the z-axis, and the z-component of angular
momentum is conserved. If J denotes the inertia tensor of the ball with
respect to the body axes (i.e., fixed in the body), then J = PTJP denotes
the inertia tensor of the ball with respect to the inertial axes (i.e., fixed
in space) and Jω is the angular momentum of the ball with respect to the
inertial axes. The conservation law alluded to above is expressed as

eT3 Jω = c . (1.9.6)

The nonholonomic constraints of rolling without slipping may be expressed
as

aeT2 ω + ẋ = 0 ,

aeT1 ω − ẏ = 0 .
(1.9.7)

We may express the kinematics for the rotating ball as Ṗ = Ω̂P , where
Ω = Pω is the angular velocity in the body frame.
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Appending the constraints via Lagrange multipliers we obtain the equa-
tions of motion

ˆ̇ΩP − ̂(J−1Ω̂JΩ)P = aλ1
̂(J−1Pe1)P + aλ2

̂(J−1Pe2)P ,

mẍ = λ2 + u1 ,

mÿ = −λ1 + u2 .

(1.9.8)

Using inertial coordinates ω = PTΩ, the system becomes

ω̇ = J
−1ω̂Jω + aλ1J

−1e1 + aλ2J
−1e2 ,

mẍ = λ2 + u1 ,

mÿ = −λ1 + u2 ,

Ṗ = P ω̂ .

(1.9.9)

Also, from the constraints and the constants of motion we obtain the
following expression for ω:

ω = ẋ(α2e3 − e2) + ẏ(e1 − α1e3) + α3e3 ,

where

α1 =
eT3 Je1
aeT3 Je3

, α2 =
eT3 Je2
aeT3 Je3

, α3 =
c

eT3 Je3
. (1.9.10)

Then the equations become

mẍ = λ2 + u1 ,

mÿ = −λ1 + u2 ,

Ṗ = P ̂(ẋ(α2e3 − e2) + ẏ(e1 − α1e3) + α3e3) .

(1.9.11)

One can now eliminate the multipliers using the first three equations of
(1.9.9) and the constraints. The resulting expressions are a little compli-
cated in the general case (although they can be found in straightforward
fashion), but become pleasingly simple in the case of a homogeneous ball,
where say J = mk2 (k is called the radius of gyration in the classical
literature).
In the latter case, the equations of motion for ω1 and ω2 become simply

mk2ω̇1 = aλ1 ,

mk2ω̇2 = aλ2 .
(1.9.12)

Rewriting these equations in terms of x and y using the multipliers and
substituting the resulting expressions for the λi into the equations of motion
for x and y yields the equations

mẍ =
a2

a2 + k2
u1 ,

mÿ =
a2

a2 + k2
u2 .

(1.9.13)
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A similar elimination argument works in the general nonhomogeneous
case.
Note that the homogeneous ball moves under the action of external forces

like a point mass located at its center but with force reduced by the ratio
a2/(a2 + k2); see also the following subsection.

A Homogeneous Ball on a Rotating Plate. A useful example is a
model of a homogeneous ball on a rotating plate (see Neimark and Fufaev
[1972] and Yang [1992] for the affine case and, for example, Bloch and
Crouch [1992], Brockett and Dai [1992], and Jurdjevic [1993] for the linear
case). As we mentioned earlier, Chaplygin [1897b, 1903] studied the motion
of an inhomogeneous rolling ball on a fixed plane.

Let the plane rotate with constant angular velocity Ω̃ about the z-axis.
The configuration space of the sphere is Q = R

2×SO(3), parameterized by
(x, y,R), R ∈ SO(3), all measured with respect to the inertial frame. Let
ω = (ω1, ω2, ω3) be the angular velocity vector of the sphere measured also
with respect to the inertial frame, let m be the mass of the sphere, mk2 its
inertia about any axis, and let a be its radius.
The Lagrangian of the system is

L =
1

2
m(ẋ2 + ẏ2) +

1

2
mk2(ω1

2 + ω2
2 + ω3

2) (1.9.14)

with the affine nonholonomic constraints

ẋ+ aω2 = −Ω̃y,

ẏ − aω1 = Ω̃x.
(1.9.15)

Note that the Lagrangian here is a metric on Q that is bi-invariant on
SO(3), since the ball is homogeneous. Note also that R2 × SO(3) is a prin-
cipal bundle over R

2 with respect to the right SO(3) action on Q given
by

(x, y,R) �→ (x, y,RS) (1.9.16)

for S ∈ SO(3). The action is on the right, since the symmetry is a material
symmetry.
A brief calculation shows that the equations of motion become

ẍ− k2Ω̃

a2 + k2
ẏ = 0,

ÿ +
k2Ω̃

a2 + k2
ẋ = 0.

(1.9.17)

These equations are easily integrated to show that the ball simply oscil-
lates on the plate between two circles rather than flying off as one might
expect.
Set

α =
k2Ω̃

a2 + k2
.
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Then one can see that the equations are equivalent to

...
x + α2ẋ = 0, (1.9.18)
...
y + α2ẏ = 0. (1.9.19)

Hence
x = A cosαt+B sinαt+ C

for constants A,B,C depending on the initial data, and similarly for y.

The Inverted Pendulum on a Cart. A useful classical system for
testing control-theoretic ideas is the inverted pendulum on a cart, the goal
being to stabilize the pendulum about the vertical using a force acting on
the cart. In this book we will use this system to illustrate stabilization using
the energy methods as discussed in Bloch, Marsden, and Alvarez [1997] and
Bloch, Leonard, and Marsden [1997] (see Chapter 9 for further references).
Here we just write down the equations of motion.
First, we compute the Lagrangian for the cart–pendulum system. Let s

denote the position of the cart on the s-axis and let φ denote the angle of
the pendulum with the upright vertical, as in Figure 1.9.2.

s

φ

m

l

g

M

l = pendulum length

m = pendulum bob mass

M = cart mass

g = acceleration due to gravity

s

Figure 1.9.2. The pendulum on a cart.

Here, the configuration space is Q = G×S = R×S1 with the first factor
being the cart position s, and the second factor being the pendulum angle
φ. The velocity phase space TQ has coordinates (s, φ, ṡ, φ̇).
The velocity of the cart relative to the lab frame is ṡ, while the velocity

of the pendulum relative to the lab frame is the vector

vpend = (ṡ+ l cosφ φ̇,−l sinφ φ̇). (1.9.20)

The kinetic energy of the coupled cart-pendulum system is given by

K
(
s, φ, ṡ, φ̇

)
=

1

2
(ṡ, φ̇)

(
M +m ml cosφ
ml cosφ ml2

)(
ṡ

φ̇

)
. (1.9.21)
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The Lagrangian is the kinetic minus potential energy, so we get

L(s, φ, ṡ, φ̇) = K(s, φ, ṡ, φ̇)− V (φ), (1.9.22)

where the potential energy is V = mgl cosφ. Note that there is a symmetry
group G of the pendulum–cart system, that of translation in the s variable,
so G = R. We do not destroy this symmetry when doing stabilization in φ.

For convenience we rewrite the Lagrangian as

L(s, φ, ṡ, φ̇) =
1

2
(αφ̇2 + 2β cosφṡφ̇+ γṡ2) +D cosφ , (1.9.23)

where α = ml2, β = ml, γ = M +m, and D = −mgl are constants. Note
that αγ − β2 > 0. The momentum conjugate to s is ps = γṡ + β cosφφ̇,
and the momentum conjugate to φ is pφ = αφ̇ + β cosφṡ. The relative

equilibrium defined by φ = 0, φ̇ = 0, and ṡ = 0 is unstable, since D < 0.
The equations of motion of the cart–pendulum system with a control

force u acting on the cart (and no direct forces acting on the pendulum)
are, since s is a cyclic variable (i.e., L is independent of s),

d

dt

∂L

∂ṡ
= u ,

d

dt

∂L

∂φ̇
− ∂L

∂φ
= 0 ,

that is,

d

dt
ps =

d

dt
(γṡ+ β cosφθ̇) = u ,

d

dt
pφ + β sinφṡφ̇+D sinφ =

d

dt
(αφ̇+ β cosφṡ)

+ β sinφṡφ̇+D sinφ = 0 .

Rigid Body with a Rotor. Following the work of Krishnaprasad [1985],
Bloch, Krishnaprasad, Marsden, and Alvarez [1992], and Bloch, Leonard,
and Marsden[1997, 2000], we consider a rigid body with a rotor aligned
along the third principal axis of the body as in Figure 1.9.3. This is a
model for a satellite. The rotor spins under the influence of a torque u
acting on the rotor. The configuration space is Q = SO(3) × S1, with the
first factor being the rigid body attitude and the second factor being the
rotor angle. The Lagrangian is total kinetic energy of the system (rigid
carrier plus rotor), with no potential energy.
Again, this system will be used in Section 9.2 to illustrate the energy

method in analyzing stabilization and stability.
The Lagrangian for this system (see Bloch, Krishnaprasad, Marsden, and

Alvarez [1992] and Bloch, Leonard, and Marsden [2001]) is

L =
1

2
(λ1Ω

2
1 + λ2Ω

2
2 + I3Ω

2
3 + J3(Ω3 + α̇)2) , (1.9.24)
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spinning rotor

rigid carrier

Figure 1.9.3. The rigid body with rotor.

where I1 > I2 > I3 are the rigid body moments of inertia, J1 = J2 and
J3 are the rotor moments of inertia, λi = Ii + Ji, Ω = (Ω1,Ω2,Ω3) is the
body angular velocity vector of the carrier, and α is the relative angle of
the rotor.
The body angular momenta are determined by the Legendre transform

to be

Π1 = λ1Ω1 ,

Π2 = λ2Ω2 ,

Π3 = λ3Ω3 + J3α̇ ,

l3 = J3(Ω3 + α̇) .

The momentum conjugate to α is l3.
The equations of motion with a control torque u acting on the rotor are

λ1Ω̇1 = λ2Ω2Ω3 − (λ3Ω3 + J3α̇)Ω2 ,

λ2Ω̇2 = −λ1Ω1Ω3 + (λ3Ω3 + J3α̇)Ω1 ,

λ3Ω̇3 + J3α̈ = (λ1 − λ2)Ω1Ω2 ,

l̇3 = u .

(1.9.25)

The equations may also be written in Hamiltonian form:

Π̇1 =

(
1

I3
− 1

λ2

)
Π2Π3 − l3Π2

I3
,

Π̇2 =

(
1

λ1
− 1

I3

)
Π1Π3 +

l3Π1

I3
,

Π̇3 =

(
1

λ2
− 1

λ1

)
Π1Π2 = a3Π1Π2 ,

l̇3 = u.

Here λi = Ii + Ji.
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Exercises

� 1.9-1. Compute the equations of motion for the variational nonholonomic
ball and compare the dynamics with the nonholonomic case.

� 1.9-2. Compute the dynamics of the homogeneous ball on a freely rotating
table. (See Weckesser [1997] and references therein.)

� 1.9-3. Analyze the motion of the cart on an inclined plane making an angle
of α to the horizontal. Show that with a suitable change of variable one
can still find a symmetry of the motion.

1.10 The n-dimensional Rigid Body

In this section we review the classical rigid body equations in three and,
more generally, in n dimensions. We shall also compare the left and right
invariant equations.
For convenience we shall use the following pairing (multiple of the Killing

form) on so(n), the Lie algebra of n×n real skew matrices regarded as the
Lie algebra of the n-dimensional proper rotation group SO(n):

〈ξ, η〉 = −1

2
trace(ξη). (1.10.1)

The factor of 1/2 in (1.10.1) is to make this inner product agree with the
usual inner product on R

3 when it is identified with so(3) in the following
standard way: associate the 3× 3 skew matrix û to the vector u by û · v =
u× v, where u× v is the usual cross product in R

3.
We use this inner product to identify the dual of the Lie algebra, namely

so(n)∗, with the Lie algebra so(n).
We recall from Manakov [1976] and Ratiu [1980] that the left invariant

generalized rigid body equations on SO(n) may be written as

Q̇ = QΩ, Ṁ = [M,Ω], (1.10.2)

where Q ∈ SO(n) denotes the configuration space variable (the attitude of
the body), Ω = Q−1Q̇ ∈ so(n) is the body angular velocity, and

M := J(Ω) = ΛΩ + ΩΛ ∈ so(n)

is the body angular momentum. Here J : so(n) → so(n) is the symmetric
(with respect to the inner product (1.10.1)), positive definite, and hence
invertible, operator defined by

J(Ω) = ΛΩ + ΩΛ,

where Λ is a diagonal matrix satisfying Λi+Λj > 0 for all i �= j. For n = 3
the elements of Λi are related to the standard diagonal moment of inertia
tensor I by I1 = Λ2 + Λ3, I2 = Λ3 + Λ1, I3 = Λ1 + Λ2.
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The equations Ṁ = [M,Ω] are readily checked to be the Euler–Poincaré
equations on so(n) for the Lagrangian l(Ω) = 1

2 〈Ω, J(Ω)〉 . This corresponds
to the Lagrangian on T SO(n) given by

L(g, ġ) =
1

2

〈
g−1ġ, J(g−1ġ)

〉
. (1.10.3)

It follows from general Euler–Poincaré theory (see, for example, Marsden
and Ratiu [1999]) that the equations (1.10.2) are the geodesic equations
on T SO(n), left trivialized as SO(n) × so(n), relative to the left invariant
metric whose expression at the identity is

〈〈Ω1,Ω2〉〉 = 〈Ω1, J(Ω2)〉 . (1.10.4)

According to Mishchenko and Fomenko [1978], there is a similar formalism
for any semisimple Lie group and that in that context, one has integrability
on the generic coadjoint orbits.

Right Invariant System. The system (1.10.2) has a right invariant
counterpart. This right invariant system is given as follows. Consider the
right invariant Riemannian metric on SO(n) whose value at the identity is
given by (1.10.4). The geodesic equations of this metric on T SO(n), right
trivialized as SO(n)× so(n), are given by

Q̇r = ΩrQr, Ṁr = [Ωr,Mr] (1.10.5)

where in this case Ωr = Q̇rQ
−1
r and Mr = J(Ωr) where J has the same

form as above.

Relating the Left and the Right Rigid Body Systems.

1.10.1 Proposition. If (Q(t),M(t)) satisfies (1.10.2), then the pair
(Qr(t),Mr(t)), where Qr(t) = Q(t)T and Mr(t) = −M(t), satisfies (1.10.5).
There is a similar converse statement.

The proof is a straightforward verification.
The relation between the left and right systems given in this proposition

is not to be confused with the right trivialized representation of the left
invariant rigid body equations; that is, the left invariant system written in
spatial representation. For a discussion of this distinction, see, for example,
Holm, Marsden and Ratiu [1986]. One can also view the right invariant
system as the inverse representation of the standard left invariant rigid
body.

Remark. It is a remarkable fact that the dynamic rigid body equa-
tions on SO(n) and indeed on any semisimple Lie group are integrable
(Mishchenko and Fomenko [1976]). A key observation in this regard, due
to Manakov, was that one could write the generalized rigid body equations
as Lax equations with parameter:

d

dt
(M + λΛ2) = [M + λΛ2,Ω+ λΛ], (1.10.6)
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where M = J(Ω) = ΛΩ + ΩΛ, as in §2. The nontrivial coefficients of λ
in the traces of the powers of M + λΛ2 then yield the right number of
independent integrals in involution to prove integrability of the flow on a
generic adjoint orbit of SO(n) (identified with the corresponding coadjoint
orbit). We remark that the SO(n) rigid body equations were in fact written
down by F. Frahm in 1874 who also proved integrability for the case n =
4. In addition, F. Schottky in 1891 showed how to obtain explicit theta-
function solutions in this case. For references to this work see Bogayavlenski
[1994] and Fedorov and Kozlov [1995]. Moser and Veselov [1991] show that
there is a corresponding formulation of the discrete rigid body equations
with parameter. We shall return to this issue in Chapter 3.

1.11 The Roller Racer

We now consider a tricycle-like mechanical system called the roller racer,
or the Tennessee racer, that is capable of locomotion by oscillating
the front handlebars. This toy was studied using the methods of Bloch,
Krishnaprasad, Marsden, and Murray [1996] in Tsakiris [1995] and Kr-
ishnaprasad and Tsakiris [2001] and by energy–momentum methods in
Zenkov, Bloch, and Marsden [1998]. Analysis of this system may be a use-
ful guide for modeling and studying the stability of other systems, such as
aircraft landing gears and train wheels.
The roller racer is modeled as a system of two planar coupled rigid bodies

(the main body and the second body) with a pair of wheels attached on
each of the bodies at their centers of mass: a nonholonomic generalization
of the coupled planar bodies discussed earlier. We assume that the mass
and the linear momentum of the second body are negligible, but that the
moment of inertia about the vertical axis is not. See Figure 1.11.1.

θ

x

z

y

(x, y)
φ

d1 d2

Figure 1.11.1. The geometry for the roller racer.

Let (x, y) be the location of the center of mass of the first body and
denote the angle between the inertial reference frame and the line passing
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through the center of mass of the first body by θ, the angle between the
bodies by φ, and the distances from the centers of mass to the joint by d1
and d2. The mass of body 1 is denoted by m, and the inertias of the two
bodies are written as I1 and I2.
The Lagrangian and the constraints are

L =
1

2
m(ẋ2 + ẏ2) +

1

2
I1θ̇

2 +
1

2
I2(θ̇ + φ̇)2

and

ẋ = cos θ

(
d1 cosφ+ d2

sinφ
θ̇ +

d2
sinφ

φ̇

)
;

ẏ = sin θ

(
d1 cosφ+ d2

sinφ
θ̇ +

d2
sinφ

φ̇

)
.

The configuration space is SE(2) × SO(2). The Lagrangian and the con-
straints are invariant under the left action of SE(2) on the first factor of
the configuration space.
We shall see later that the roller racer has a two-dimensional manifold

of equilibria and that under a suitable stability condition some of these
equilibria are stable modulo SE(2) and in addition asymptotically stable
with respect to φ̇.

1.12 The Rattleback

A rattleback is a convex asymmetric rigid body rolling without sliding on
a horizontal plane. It is known for its ability to spin in one direction and
to resist spinning in the opposite direction for some parameter values, and
for other values to exhibit multiple reversals. See Figure 1.12.1.

Figure 1.12.1. The rattleback.

Basic references on the rattleback are Walker [1896], Karapetyan [1980,
1981], Markeev [1983, 1992], Pascal [1983, 1986], and Bondi [1986]. We
adopt the ideal model (with no energy dissipation and no sliding) of these



48 1. Introduction

references, and within that context no approximations are made. In par-
ticular, the shape need not be ellipsoidal. Walker did some initial stability
and instability investigations by computing the spectrum, while Bondi ex-
tended this analysis and also used what we now recognize as the momentum
equation. (See Chapter 5 for the general theory of the momentum equation
and see Zenkov, Bloch, and Marsden [1998] and Section 8.5 for the explicit
form of the momentum for the rattleback. A discussion of the momentum
equation for the rattleback may also be found in Burdick, Goodwine and
Ostrowski [1994].) Karapetyan carried out a stability analysis of the rel-
ative equilibria, while Markeev’s and Pascal’s main contributions were to
the study of spin reversals using small-parameter and averaging techniques.
Energy methods were used to analyze the problem in Zenkov, Bloch, and
Marsden [1998], and we return to this in Section 8.5.

Introduce the Euler angles θ, φ, ψ using the principal axis body frame
relative to an inertial reference frame. We use the same convention for the
angles as in Arnold [1989] and Marsden and Ratiu [1999]. These angles
together with two horizontal coordinates x, y of the center of mass are
coordinates in the configuration space SO(3)× R

2 of the rattleback.
The Lagrangian of the rattleback is computed to be

L =
1

2

[
A cos2 ψ +B sin2 ψ +m(γ1 cos θ − ζ sin θ)2

]
θ̇2

+
1

2

[
(A sin2 ψ +B cos2 ψ) sin2 θ + C cos2 θ

]
φ̇2

+
1

2

(
C +mγ2

2 sin
2 θ
)
ψ̇2 +

1

2
m
(
ẋ2 + ẏ2

)
+m(γ1 cos θ − ζ sin θ)γ2 sin θ θ̇ψ̇ + (A−B) sin θ sinψ cosψ θ̇φ̇

+ C cos θ φ̇ψ̇ +mg(γ1 sin θ + ζ cos θ),

where

A,B,C = the principal moments of inertia of the body,

m = the total mass of the body,

(ξ, η, ζ) = coordinates of the point of contact relative to the body frame,

γ1 = ξ sinψ + η cosψ,

γ2 = ξ cosψ − η sinψ.

The shape of the body is encoded by the functions ξ, η, and ζ. The con-
straints are

ẋ = α1θ̇ + α2ψ̇ + α3φ̇, ẏ = β1θ̇ + β2ψ̇ + β3φ̇,
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where

α1 = −(γ1 sin θ + ζ cos θ) sinφ,

α2 = γ2 cos θ sinφ+ γ1 cosφ,

α3 = γ2 sinφ+ (γ1 cos θ − ζ sin θ) cosφ,

βk = −∂αk

∂φ
, k = 1, 2, 3.

The Lagrangian and the constraints are SE(2)-invariant, where the action
of an element (a, b, α) ∈ SE(2) is given by

(x, y, φ) �→ (x cosα− y sinα+ a, x sinα+ y cosα+ b, φ+ α).

Corresponding to this invariance, ξ, η, and ζ are functions of the variables
θ and ψ only.

1.13 The Toda Lattice

An important and beautiful mechanical system that describes the interac-
tion of particles on the line (i.e., in one dimension) is the Toda lattice. We
shall describe the nonperiodic finite Toda lattice following the treatment
of Moser [1975].
This is a key example in integrable systems theory. Later on, in Chap-

ter 8, we shall compare the behavior of this system to certain nonholonomic
systems. In the Internet Supplement we also consider the Toda lattice from
the point of view of optimal control theory.
The model consists of n particles moving freely on the x-axis and in-

teracting under an exponential potential. Denoting the position of the kth
particle by xk, the Hamiltonian is given by

H(x, y) =
1

2

n∑
k=1

y2k +

n−1∑
k=1

e(xk−xk+1).

The associated Hamiltonian equations are

ẋk =
∂H

∂yk
= yk ,

ẏk = − ∂H

∂xk
= exk−1−xk − exk−xk+1 , (1.13.1)

where we use the convention ex0−x1 = exn−xn+1 = 0, which corresponds to
formally setting x0 = −∞ and xn+1 = +∞.
This system of equations has an extraordinarily rich structure. Part of

this is revealed by Flaschka’s (Flaschka [1974]) change of variables given by

ak =
1

2
e(xk−xk+1)/2 and bk = −1

2
yk . (1.13.2)
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In these new variables, the equations of motion then become

ȧk = ak(bk+1 − bk) , k = 1, . . . , n− 1 ,

ḃk = 2(a2k − a2k−1) , k = 1, . . . , n ,

with the boundary conditions a0 = an = 0. This system may be written in
the following matrix form (called the Lax pair representation):

d

dt
L = [B,L] = BL− LB, (1.13.3)

where

L =

⎛
⎜⎝

b1 a1 0 ··· 0
a1 b2 a2 ··· 0

. . .
bn−1 an−1

0 an−1 bn

⎞
⎟⎠ , B =

⎛
⎜⎝

0 a1 0 ··· 0
−a1 0 a2 ··· 0

. . .
0 an−1

0 −an−1 0

⎞
⎟⎠ .

If O(t) is the orthogonal matrix solving the equation

d

dt
O = BO , O(0) = Identity ,

then from (1.13.3) we have

d

dt
(O−1LO) = 0 .

Thus, O−1LO = L(0); i.e., L(t) is related to L(0) by a similarity trans-
formation, and thus the eigenvalues of L, which are real and distinct, are
preserved along the flow. This is enough to show that in fact this system
is explicitly solvable or integrable.

Discussion. There is, however, much more structure in this example. For
instance, if N is the matrix diag[1, 2, . . . , n], the Toda flow (1.13.3) may be
written in the following double bracket form:

L̇ = [L, [L,N ]] . (1.13.4)

This was shown in Bloch [1990] and analyzed further in Bloch, Brockett,
and Ratiu [1990], Bloch, Brockett, and Ratiu [1992], and Bloch, Flaschka,
and Ratiu [1990]. This double bracket equation restricted to a level set of
the integrals described above is in fact the gradient flow of the function
TrLN with respect to the so-called normal metric; see Bloch, Brockett,
and Ratiu [1990]. Double bracket flows are derived in Brockett [1994].
From this observation it is easy to show that the flow tends asymptot-

ically to a diagonal matrix with the eigenvalues of L(0) on the diagonal
and ordered according to magnitude, recovering the observation of Moser,
Symes [1982], and Deift, Nanda, and Tomei [1983].
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A very important feature of the tridiagonal aperiodic Toda lattice flow
is that it can be solved explicitly as follows: Let the initial data be given
by L(0) = L0. Given a matrix A, use the Gram–Schmidt process on the
columns of A to factorize A as A = k(A)u(A), where k(A) is orthogonal
and u(A) is upper triangular. Then the explicit solution of the Toda flow
is given by

L(t) = k(exp(tL0))L0k
T (exp(tL0)) . (1.13.5)

The reader can check this explicitly or refer, for example, to Symes [1980,
1982].

Four-Dimensional Toda. Here we simulate the Toda lattice in four
dimensions (see Bloch [2000]). The Hamiltonian is

H(a, b) = a21 + a22 + b21 + b22 + b1b2 , (1.13.6)

and one has the equations of motion

ȧ1 = −a1(b1 − b2) ḃ1 = 2a21 ,

ȧ2 = −a2(b1 + 2b2) ḃ2 = −2(a21 − a22)
(1.13.7)

(setting b1 + b2 + b3 = 0, for convenience, which we may do since the trace
is preserved along the flow). In particular, TraceLN is, in this case, equal
to b2 and can be checked to decrease along the flow.

Figure 1.13.1 exhibits the asymptotic behavior of the Toda flow. We will
return to this property in Chapter 8.
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Solution curves of Toda

Figure 1.13.1. Asymptotic behavior of the solutions of the four-dimensional Toda

lattice.
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Exercises

� 1.13-1. Show that TraceLk for all k is conserved along the flow of the
Toda lattice

� 1.13-2. Characterize all the equilibria for the Toda flow (allowing ai to
take the value 0). Hint: Use the double bracket form of the equations.



2
Mathematical Preliminaries

This chapter covers a fairly wide array of topics from mathematics that
we shall need in later chapters. We do not pretend to give all the needed
background for the reader to learn these things in a comprehensive way
from scratch. However, we hope that this summary will be helpful to set
the notation, fill in some gaps the reader may have, and to provide a guide
to the literature for needed background and proofs.

2.1 Vector Fields, Flows, and Differential
Equations

This section introduces vector fields on Euclidean space and the flows they
determine. This topic puts together and globalizes two basic ideas learned
in undergraduate mathematics: vector fields and differential equations.

2.1.1 Example (A Basic Example). An example that illustrates many of
the concepts of dynamical systems is the ball in a rotating hoop. Refer to
Figure 2.1.1.

This system consists of a rigid hoop that hangs from the ceiling with
a small ball resting in the bottom of the hoop. The hoop rotates with
frequency ω about a vertical axis through its center.
Consider varying ω, keeping the other parameters (radius of the

hoop, mass of the ball, etc.) fixed. For small values of ω, the ball stays
at the bottom of the hoop, and correspondingly, that position is stable

© Springer-Verlag New York 2015
A.M. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary
Applied Mathematics 24, DOI 10.1007/978-1-4939-3017-3 2
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ω> ω0ω < ω0

Figure 2.1.1. The ball in the hoop system; the equilibrium is stable for ω < ωc and

unstable for ω > ωc.

(Figure 2.1.1 (left)). Accept this in an intuitive sense for the moment; even-
tually, one has to define this concept carefully. However, when ω reaches
a certain critical value ω0, this point becomes unstable and the ball rolls
up the side of the hoop to a new position x(ω), which is stable. The ball
may roll to the left or to the right, depending perhaps upon the side of the
vertical axis to which it was initially leaning. (See Figure 2.1.1 (right).) The
position at the bottom of the hoop is still a fixed point, but it has become
unstable. The solutions to the initial value problem governing the ball’s
motion are unique for all values of ω. Despite this uniqueness, because of
uncertainties in the initial condition, for ω > ω0 we cannot predict which
way the ball will roll.
Using the basic principles of mechanics given in Chapter 1, we start with

the Lagrangian function for this problem (the kinetic energy in an inertial
frame minus the gravitational potential energy). Then the associated Euler–
Lagrange equations with forces are given by

mR2θ̈ = mR2ω2 sin θ cos θ −mgR sin θ − νRθ̇, (2.1.1)

where R is the radius of the hoop, θ is the angle from the bottom vertical,
m is the mass of the ball, g is the acceleration due to gravity, and ν is a
coefficient of friction.1

To analyze the system (2.1.1), we use a phase plane analysis; that is,
we write the equation as a system:

ẋ = y ,

ẏ =
g

R
(α cosx− 1) sinx− βy ,

1This does not represent a realistic friction law, but is an ad hoc one for illustration

only; even for this simple problem friction laws are controversial, depending on the exact

nature of the mechanical system. If one were to suppose Coulomb friction, one would

make the tangential force proportional to the normal force.
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where α = Rω2/g and β = ν/mR. This system of equations produces for
each initial point in the xy-plane a unique trajectory. That is, given a point
(x0, y0) there is a unique solution (x(t), y(t)) of the equation that equals
(x0, y0) at t = 0. This statement is proved by using general existence and
uniqueness theory, which we give in Theorem 2.1.4. When we draw these
curves in the plane, we get figures like those shown in Figure 2.1.2. �

α = 0.5, β = 0 α = 1.5, β = 0

α = 1.5, β = 0.1

.
θ

θ

θθ

.
θ

.
θ

Figure 2.1.2. The phase portrait for the ball in the hoop before and after the onset of

instability for the case g/R = 1.

The above example has system parameters such as g,R, and ω. In
many problems one takes the point of view, as we have done in the preceding
discussion, of looking at how the phase portrait of the system changes as
the parameters change. Sometimes these parameters are called control
parameters, since one can readily imagine changing them. However, this
is still a passive point of view, since we imagine sitting back and watching
the dynamics unfold for each value of the parameters.
In control theory, on the other hand, we take a more active point of view,

and try to intervene directly with the dynamics to achieve a desired end.
For example, we might imagine manipulating ω as a function of time to
make the ball move in a desired way.

Dynamical Systems. More generally than in the above example, in
Euclidean space R

n, whose points are denoted by x = (x1, . . . , xn), we are
concerned with a system of the form

ẋ = F (x) , (2.1.2)
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which, in components, reads

ẋi = F i(x1, . . . , xn), i = 1, . . . , n,

where F is an n-component function of the n variables x1, . . . , xn. Some-
times the function, or vector field, F depends on time or on other parame-
ters (such as the mass or angular velocity in the example), and keeping track
of this dependence is important. For general dynamical systems one needs
some theory to develop properties of solutions; roughly, we draw curves
in R

n emanating from initial conditions, just as we did in the preceding
example.

Equilibrium Points, Stability, and Bifurcation. Equilibrium points
are points where the right-hand side of the system (2.1.2) vanishes. In the
ball in the hoop example, as ω increases, we see that the original stable
fixed point becomes unstable and two stable fixed points split off at a critical
value that we denoted above by ω0, as indicated in Figure 2.1.2. One can use
some basic stability theory that we shall develop to show that ω0 =

√
g/R.

This is one of the simplest situations in which symmetric problems can have
asymmetric solutions and in which there can be multiple stable equilibria,
so there is nonuniqueness of equilibria (even though the solution of the
initial value problem is unique).
This example shows that in some systems the phase portrait can change

as certain parameters are changed. Changes in the qualitative nature of
phase portraits as parameters are varied are called bifurcations. Conse-
quently, the corresponding parameters are often called bifurcation pa-
rameters. These changes can be simple, such as the formation of new
fixed points, called static bifurcations, or more complex dynamic bi-
furcations such as the formation of periodic orbits, that is, an orbit x(t)
with the property that x(t+ T ) = x(t) for some T and all t, or even more
complex dynamical structures. Thus, the ball in the hoop example exhibits
a static bifurcation called a pitchfork bifurcation as the parameter ω
crosses the critical value ω0 =

√
g/R.

Another important bifurcation, called the Hopf bifurcation, or more
properly, the Poincaré–Andronov–Hopf bifurcation, occurs in a num-
ber of examples. This is a dynamic bifurcation in which, roughly speaking,
a periodic orbit rather than another fixed point is formed when an equilib-
rium loses stability. In this case, too, there will be a bifurcation parameter,
say μ, that crosses a critical value μ0, as indicated in Figure 2.1.3, while
the original critical point loses stability.
Depending on the nonlinear terms, in this bifurcation the periodic orbits

can appear above (supercritical) or below (subcritical) the critical value.
Unless a special degeneracy occurs, the subcritical case gives rise to unsta-
ble periodic orbits, and the supercritical case gives rise to stable orbits. See
Figure 2.1.4.
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y

x

y

x

y

x

μ < μ0 μ >> μ0μ > μ0

Figure 2.1.3. A periodic orbit appears for μ close to μ0.

γ = unstable closed orbitγ = stable closed orbit

μ

(a)  Supercritical
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y

x
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(b)  Subcritical

Figure 2.1.4. The periodic orbit appears for μ close to μ0 can be super- or subcritical.

An everyday example of a Hopf bifurcation is flutter. For example, when
venetian blinds flutter in the wind or a television antenna “sings” as the
wind velocity increases, there is probably a Hopf bifurcation occurring. A
related example that is physically easy to understand is flow through a
hose: Consider a straight vertical rubber tube conveying fluid. The lower
end is a nozzle from which the fluid escapes. This is called a follower-
load problem, since the water exerts a force on the free end of the tube
that follows the movement of the tube. Those with any experience in a
garden will not be surprised by the fact that the hose will begin to oscillate
if the water velocity is high enough.

Vector Fields. With the above example as motivation, we can begin
the more formal treatment of vector fields and their associated differential
equations. Of course, we will eventually add the concept of controls to these
vector fields, but we need to understand the notion of vector field itself first.

2.1.2 Definition. Let r ≥ 0 be an integer. A Cr vector field on an open
set U ⊂ R

n is a mapping X : U → R
n of class Cr from U ⊂ R

n to R
n. The

set of all Cr vector fields on U is denoted by Xr(U), and the C∞ vector
fields by X∞(U) or X(U).
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We think of a vector field as assigning to each point x ∈ U a vector X(x)
based (i.e., bound) at that same point.

Newton’s Law of Gravitation. Here the set U is R3 minus the origin,
and the vector field is defined by

F(x, y, z) = −mMG

r3
r,

where m is the mass of a test body, M is the mass of the central body, G
is the constant of gravitation, r is the vector from the origin to (x, y, z),
and r = (x2 + y2 + z2)1/2; see Figure 2.1.5.

Figure 2.1.5. The gravitational force field.

Evolution Operators. Consider a general physical system that is ca-
pable of assuming various “states” described by points in a set Z. For
example, Z might be R

3 × R
3, and a state might be the position and ve-

locity (q, q̇) of a particle. As time passes, the state evolves. If the state is
z0 ∈ Z at time t0 and this changes to z at a later time t, we set

Ft,t0(z0) = z

and call Ft,t0 the evolution operator ; it maps a state at time t0 to what
the state would be at time t. “Determinism” is expressed by the law

Ft2,t1 ◦ Ft1,t0 = Ft2,t0 , Ft,t = identity,

sometimes called the Chapman–Kolmogorov law.
The evolution laws are called time-independent when Ft,t0 depends

only on the elapsed time interval t− t0; i.e.,

Ft,t0 = Fs,s0 if t− t0 = s− s0.
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Setting Ft = Ft,0, the preceding law becomes the group property :

Fτ ◦ Ft = Fτ+t, F0 = identity .

We call such an Ft a flow and Ft,t0 a time-dependent flow , or an evo-
lution operator. If the system is defined only for t ≥ 0, we speak of a
semiflow .
It is usually not Ft,t0 that is given, but rather the laws of motion . In

other words, differential equations are given that we must solve to find the
flow. In general, Z is a manifold (a generalization of a smooth surface), but
we confine ourselves for this section to the case that Z = U is an open set
in some Euclidean space R

n. These equations of motion have the form

dx

dt
= X(x), x(0) = x0 ,

where X is a (possibly time-dependent) vector field on U .

Newton’s Second Law. The motion of a particle of mass m moving
in R

3 under the influence of the gravitational force field is determined by
Newton’s second law:

m
d2r

dt2
= F ,

i.e., by the ordinary differential equations

m
d2x

dt2
= −mMGx

r3
,

m
d2y

dt2
= −mMGy

r3
,

m
d2z

dt2
= −mMGz

r3
.

Letting q = (x, y, z) denote the position and p = m(dr/dt) denote the
linear momentum, these equations become

dq

dt
=

p

m
,

dp

dt
= F(q) .

The phase space here is the open set U = (R3\{0}) × R
3. The right-hand

side of the preceding equations defines a vector field by

X(q,p) = (p/m,F(q)).

In many courses on mechanics or differential equations, it is shown how
to integrate these equations explicitly, producing trajectories, which are
planar conic sections. These trajectories comprise the flow of the vector
field.
Of course, these equations are special cases of the Euler–Lagrange equa-

tions, and so we see how dynamical systems are relevant to the study of
mechanics, and this relevance is both for holonomic and nonholonomic sys-
tems of the sorts we saw in Chapter 1.
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Integral Curves of Vector Fields. Relative to a chosen set of Eu-
clidean coordinates, we can identify a vector field X defined on an open
set in R

n with an n-component vector function (X1(x), . . . , Xn(x)), the
components of X.

2.1.3 Definition. Let U ⊂ R
n be an open set and X ∈ Xr(U) a vector field

on U . An integral curve of X with initial condition x0 is a differentiable
curve c defined on some open interval I ⊂ R containing 0 such that c(0) =
x0 and c′(t) = X(c(t)) for each t ∈ I.

Clearly, c is an integral curve of X when the following system of ordinary
differential equations is satisfied:

dc1

dt
(t) = X1(c1(t), . . . , cn(t)),

...
...

dcn

dt
(t) = Xn(c1(t), . . . , cn(t)).

We shall often write x(t) = c(t), an admitted abuse of notation. The
preceding system of equations is called autonomous when X is time-
independent. If X were time-dependent, time t would appear explicitly
on the right-hand side. As we have already seen, the preceding system of
equations includes equations of higher order (such as second-order Euler–
Lagrange equations) by the usual reduction to first-order systems.

Existence and Uniqueness Theorems. One of the basic theorems
concerning the existence and uniqueness of solutions of ordinary differential
equations of the above sort is the following.

2.1.4 Theorem (Local Existence, Uniqueness, and Smoothness). Let U ⊂
R

n be open and X be a Cr vector field on U for some r ≥ 1. For each
x0 ∈ U , there is a curve c : I → U with c(0) = x0 such that c′(t) = X(c(t))
for all t ∈ I. Any two such curves are equal on the intersection of their
domains. Furthermore, there are a neighborhood U0 of the point x0 ∈ U , a
real number a > 0, and a Cr mapping F : U0× I → U , where I is the open
interval ]−a, a[, such that the curve cu : I → U defined by cu(t) = F (u, t) is
a curve satisfying cu(0) = u and the differential equations c′u(t) = X(cu(t))
for all t ∈ I.

This theorem has many variants. We refer to Coddington and Levinson
[1955], Hartman [1982], and Abraham, Marsden, and Ratiu [1988] for these
variants and for proofs.2

2This last reference also has a proof based directly on the implicit function theorem
applied in suitable function spaces. This proof has a technical advantage: It works easily
for other types of differentiability assumptions on X or on Ft, such as Hölder or Sobolev
differentiability; this result is due to Ebin and Marsden [1970].
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Here is an example of a variant: with just continuity of X one can get
existence (the Peano existence theorem) but without uniqueness. The
equation in one dimension given by ẋ =

√
x, x(0) = 0 has the two C1

solutions x1(t) = 0 and x2(t), which is defined to be 0 for t ≤ 0 and
x2(t) = t2/4 for t > 0. This example shows that one can indeed have
existence without uniqueness for continuous vector fields.
The standard proof of Theorem 2.1.4 starts with a Lipschitz assump-

tion on the vector field and proceeds to show existence and uniqueness by
showing that there is a unique solution to the integral equation

x(t) = x0 +

∫ t

0

X(x(s)) ds.

One way to do this is by using the contraction mapping principle on a
suitable space of curves3 or by showing that the sequence of curves given
by Picard iteration converges: Let x0(t) = x0 and define inductively

xn+1(t) = x0 +

∫ t

t0

X(xn(s)) ds.

The existence and uniqueness theory also holds if X depends explicitly
on t or on a parameter ρ, is jointly continuous in (t, ρ, x), and is Lipschitz
or class Cr in x uniformly in t and ρ.

Dependence on Initial Conditions and Parameters. The follow-
ing inequality is of basic importance not only in existence and uniqueness
theorems, but also in making estimates on solutions.

2.1.5 Theorem (Gronwall’s Inequality). Let f, g : [a, b[ → R be continuous
and nonnegative.4 Suppose there is a constant A ≥ 0 such that for all t
satisfying a ≤ t ≤ b,

f(t) ≤ A+

∫ t

a

f(s) g(s) ds.

Then

f(t) ≤ A exp

(∫ t

a

g(s) ds

)
for all t ∈ [a, b[ .

We refer to the preceding references for the proof. This result is one of
the key ingredients in showing that the solutions depend in a Lipschitz or
smooth way on initial conditions. Specifically, let Ft(x0) denote the solution
(= integral curve) of x′(t) = X(x(t)), x(0) = x0. Then for Lipschitz vector

3The contraction mapping principle is a standard result in basic real analysis, with
which we assume the reader is familiar; see, for example, Marsden and Hoffman [1993].

4We denote an interval that is open on the right and closed on the left by either
[a, b[ or by [a, b).
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fields, Ft(x) depends in a continuous, and indeed Lipschitz, manner on
the initial condition x and is jointly continuous in (t, x). Again, the same
result holds if X depends explicitly on t and on a parameter ρ, is jointly
continuous in (t, ρ, x), and is Lipschitz in x uniformly in t and ρ. We let
F ρ
t,λ(x) be the unique integral curve x(t) satisfying x′(t) = X(x(t), t, ρ) and

x(λ) = x. Then F ρ
t,t0(x) is jointly continuous in the variables (t0, t, ρ, x),

and is Lipschitz in x, uniformly in (t0, t, ρ).
Additional work along these same lines shows that Ft is Cr if X is.

Again, there is an analogous result for the evolution operator F ρ
t,t0(x) for a

time-dependent vector field X(x, t, ρ), which depends on extra parameters
ρ in some other Euclidean space, say R

m. If X is Cr, then F ρ
t,t0(x) is C

r in
all variables and is Cr+1 in t and t0.

Suspension Trick. The parameter ρ can be dealt with by suspending X
to a new vector field obtained by appending the trivial differential equation
ρ′ = 0; this defines a vector field on R

n ×R
m, and the basic existence and

uniqueness theorem may be applied to it. The flow on R
n × R

m is just
Ft(x, ρ) = (F ρ

t (x), ρ).

Rectification. An interesting result, called the rectification theorem,
shows that near a point x0 satisfying X(x0) �= 0, the flow can be trans-
formed by a change of variables so that the integral curves become straight
lines moving with unit speed.5 This shows that in effect, nothing interest-
ing happens with flows away from equilibrium points as long as one looks
at the flow only locally and for short time.
The mapping F gives a locally unique integral curve cu for each u ∈ U0,

and for each t ∈ I, Ft = F |(U0 × {t}) maps U0 to some other set. It is
convenient to think of each point u being allowed to “flow for time t” along
the integral curve cu (see Figure 2.1.6). This is a picture of a U0 “flowing,”
and the system (U0, a, F ) is a local flow of X, or flow box.

Global Uniqueness. The first global issue concerns uniqueness. Recall
that local uniqueness was already addressed in Theorem 2.1.4; now we
are concerned with global uniqueness. The following is readily proved by
combining local uniqueness with a connectedness argument.

2.1.6 Proposition (Global Uniqueness). Suppose c1 and c2 are two in-
tegral curves of X in U and that for some time t0, c1(t0) = c2(t0). Then
c1 = c2 on the intersection of their domains.

Completeness. Other global issues center on considering the flow of a
vector field as a whole, extended as far as possible in the t-variable.

5The proof can be found in Abraham and Marsden [1978], Arnold [1983], and Abra-

ham, Marsden, and Ratiu [1988], but of course the result goes back to the classical
literature.
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U0
Ft (U0)

Figure 2.1.6. The flow of a vector field.

2.1.7 Definition. Given an open set U and a vector field X on U , let
DX ⊂ U ×R be the set of (x, t) ∈ U ×R such that there is an integral curve
c : I → U of X with c(0) = x with t ∈ I. The vector field X is complete if
DX = U×R. A point x ∈ U is called σ-complete, where σ = +,−, or ±, if
DX∩({x}×R) contains all (x, t) for t > 0, t < 0, or t ∈ R, respectively. Let
T+(x) (respectively T−(x)) denote the sup (respectively inf) of the times
of existence of the integral curves through x; T+(x), respectively, T−(x) is
called the positive (negative) lifetime of x.

Thus, X is complete iff each integral curve can be extended so that its
domain becomes ]−∞,∞[; i.e., T+(x) = ∞ and T−(x) = −∞ for all x ∈ U .

2.1.8 Examples.

A. For U = R
2, let X be the constant vector field X(x, y) = (0, 1). Then

X is complete, since the integral curve of X through (x, y) is t �→ (x, y+ t).

B. On U = R
2\{0}, the same vector field is not complete, since the integral

curve of X through (0,−1) cannot be extended beyond t = 1; in fact, as
t → 1 this integral curve tends to the point (0, 0). Thus T+(0,−1) = 1,
while T−(0,−1) = −∞.

C. On R consider the vector field X(x) = 1 + x2. This is not complete,
since the integral curve c with c(0) = 0 is c(θ) = tan θ, and thus it cannot
be continuously extended beyond −π/2 and π/2; i.e., T±(0) = ±π/2. �

2.1.9 Proposition. Let U ⊂ R
n be open and X ∈ Xr(U), r ≥ 1. Then:

(i) DX ⊃ U × {0}.
(ii) DX is open in U × R.

(iii) There is a unique Cr mapping FX : DX → U such that the mapping
t �→ FX(x, t) is an integral curve at x for all x ∈ U .

(iv) For (x, t) ∈ DX , (FX(x, t), s) ∈ DX iff (m, t+ s) ∈ DX ; in this case,

FX(x, t+ s) = FX(FX(x, t), s).
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2.1.10 Definition. Let U ⊂ R
n be open and X ∈ Xr(U), r ≥ 1. Then

the mapping FX is called the integral of X, and the curve t �→ FX(x, t)
is called the maximal integral curve of X at x. If X is complete, FX is
called the flow of X.

Thus, if X is complete with flow F , then the set {Ft | t ∈ R} is a group
of diffeomorphisms on U , sometimes called a one-parameter group of
diffeomorphisms. Since Fn = (F1)

n (the nth power), the notation F t is
sometimes convenient and is used where we use Ft. For incomplete flows,
(iv) says that Ft ◦ Fs = Ft+s wherever it is defined. Note that Ft(x) is
defined for t ∈ ]T−(x), T+(x)[. The reader should write out similar defi-
nitions for the time-dependent case and note that the lifetimes depend on
the starting time t0.

Criteria for Completeness. A useful criterion for global existence or
completeness is the following:

2.1.11 Proposition. Let X be a Cr vector field on an open subset U
of Rn, where r ≥ 1. Let c(t) be a maximal integral curve of X such that
for every finite open interval ]a, b[ in the domain ]T−(c(0)), T+(c(0))[ of
c, c(]a, b[) lies in a compact subset of U . Then c is defined for all t ∈ R. If
U = R

n, this holds, provided that c(t) lies in a bounded set.

For example, this is used to prove the following:

2.1.12 Corollary. A Cr vector field on an open set U with compact support
contained in U is complete.

Completeness corresponds to well-defined dynamics persisting eternally.
In some circumstances (shock waves in fluids and solids, singularities in
general relativity, etc.) one has to live with incompleteness, realize that
one may be dealing with an overly idealized model, or overcome it in some
other way.

2.1.13 Examples.

A. Let X be a Cr vector field, r ≥ 1, on the open set U ⊂ R
n admitting a

first integral, i.e., a Cr function f : U → R such that

n∑
i=1

Xi(x1, . . . , xn)
∂f

∂xi
(x1, . . . , xn) = 0.

If all level sets f−1(r), r ∈ R, are compact, then X is complete. Indeed, by
the chain rule, it follows that f is constant along integral curves of X, and
so each integral curve lies on a level set of f . Thus, the result follows by the
preceding proposition. Of course, in mechanics we often turn to quantities
like energy and linear and angular momentum to find first integrals.

B. Suppose X(x) = A · x + B(x) where A is a linear operator of Rn to
itself and B is sublinear; i.e., B : Rn → R

n is Cr with r ≥ 1 and satisfies
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‖B(x)‖ ≤ K‖x‖ + L for constants K and L. We shall show that X is
complete. Let x(t) be an integral curve of X on the bounded interval [0, T ].
Then

x(t) = x(0) +

∫ t

0

(A · x(s) +B(x(s))) ds .

Hence

‖x(t)‖ ≤ ‖x(0)‖+
∫ t

0

(‖A‖+K)‖x(s)‖ ds+ Lt.

By Gronwall’s inequality,

‖x(t)‖ ≤ (Lt+ ‖x(0)‖)e(‖A‖+K)t

for 0 ≤ t ≤ T . Hence, x(t) remains bounded on bounded t-intervals, so the
result follows by Proposition 2.1.11. �

A further example on the global existence of solutions for a particle in a
potential field is given in the web supplement.
The following is proved by a study of the local existence theory; we state

it for completeness only.

2.1.14 Proposition. Let X be a Cr vector field on U , r ≥ 1, x0 ∈ U ,
and T+(x0)(T

−(x0)) the positive (negative) lifetime of x0. Then for each
ε > 0, there exists a neighborhood V of x0 such that for all x ∈ V , T+(x) >
T+(x0)− ε (respectively, T−(x) < T−(x0) + ε). (One says that T+(x0) is
a lower semicontinuous function of x.)

2.1.15 Corollary. Let Xt be a Cr time-dependent vector field on U , r ≥ 1,
and let x0 be an equilibrium of Xt; i.e., Xt(x0) = 0, for all t. Then for
any T there exists a neighborhood V of x0 such that any x ∈ V has integral
curve existing for time t ∈ [−T, T ].

Linear Equations. Flows of linear equations ẋ = Ax, where A is an
n × n matrix, are given by Ft(x) = etA, where the exponential is defined,
for example, by a power series

etA = I + tA+
1

2
t2A2 +

1

3!
t3A3 + · · · .

Of course, one has to show that this series converges and is differentiable in
t and that the derivative is given by AetA, but this is learned in courses on
real analysis. One also learns how to carry out exponentiation in courses
in linear algebra by bringing A into a canonical form.

Exercises

� 2.1-1. Derive equation (2.1.1) using Lagrangian mechanics.
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� 2.1-2. Is the flow of the vector field

X(x, y) =

(
x+ y,

1

1 + x2 + y2

)

on R
2 complete?

� 2.1-3. Consider the matrix

A =

⎡
⎢⎢⎣
−2 −1 0 0
1 0 0 0
0 0 3 −1
0 0 1 1

⎤
⎥⎥⎦ .

Solve the system ẋ = Ax for x ∈ R
4 with initial condition x = (1,−1, 2, 3).

2.2 Differentiable Manifolds

Modern analytical mechanics and nonlinear control theory are most natu-
rally discussed in the mathematical language of differential geometry. The
present chapter is meant to serve as an introduction to the elements of
geometry that we shall use in the remainder of the book. Since this is not
primarily a text on geometry, there is a great deal that must be left out.6

Studying the motion of physical systems leads immediately to the study
of rates of change of position and velocity, i.e., to calculus. Differentiable
manifolds provide the most natural setting in which to study calculus.
Roughly speaking, differentiable manifolds are topological spaces that lo-
cally look like Euclidean space, but that may be globally quite differ-
ent from Euclidean space. Since taking a derivative involves only a local
computation—carried out in a neighborhood of the point of interest—it
would appear that derivatives should be computable on any topological
space that is infinitesimally indistinguishable from Euclidean space. This
is indeed the case. What makes differentiable manifolds most important in
the study of analytical mechanics, however, is the global features and their
implications for the large-scale behavior of trajectories of the corresponding
equations of motion.
With these remarks in mind, we begin with a definition of manifold that

relates these objects to Euclidean space in small neighborhoods of each
point. Questions about important global features of differentiable manifolds
will be discussed in subsequent sections.

2.2.1 Definition. An n-dimensional differentiable manifold M is a set
of points together with a finite or countably infinite set of subsets Uα ⊂ M
and 1-to-1 mappings ϕα : Uα → R

n such that:

6Some references are Abraham, Marsden, and Ratiu [1988], Auslander and

MacKenzie [1977], Boothby [1986], Dubrovin, Fomenko and Novikov [1984], and Warner
[1983].
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1.
⋃

α Uα = M .

2. For each nonempty intersection Uα ∩ Uβ, the set ϕα(Uα ∩ Uβ) is
an open subset of Rn, and the 1-to-1 and onto mapping ϕα ◦ ϕ−1

β :
ϕβ(Uα ∩ Uβ) → ϕα(Uα ∩ Uβ) is a smooth function.

3. The family {Uα, ϕα} is maximal with respect to conditions 1 and 2.

The situation is illustrated in Figure 2.2.1.

ϕβ

ϕα

M
y

x

y

x

Uα

Uβ

Figure 2.2.1. Coordinate charts on a manifold.

The sets Uα in the definition are called coordinate charts. The map-
pings ϕα are called coordinate functions or local coordinates. A col-
lection of charts satisfying 1 and 2 is called an atlas. The notion of a Ck-
differentiable (respectively analytic) manifold is defined similarly, wherein
the coordinate transformations ϕα ◦ϕ−1

β are required only to have con-
tinuous partial derivatives of all orders up to k (respectively be analytic).
We remark that condition 3 is included merely to make the definition of
manifold independent of a choice of atlas. A set of charts satisfying 1 and
2 can always be extended to a maximal set, and in practice, 1 and 2 define
the manifold.
A coordinate neighborhood V of a point x in a manifold M is a subset

of the domain U of a coordinate chart ϕ : U ⊂ M → R
n such that ϕ(V )

is open in R
n. Unions of coordinate neighborhoods define the open sets in

M , and one checks that these open sets in M define a topology. Usually
we assume without explicit mention that the topology is Hausdorff: Two
different points x, x′ in M have nonintersecting neighborhoods.

A useful viewpoint is to think of M as a set covered by a collection
of coordinate charts with local coordinates (x1, . . . , xn) with the property
that all mutual changes of coordinates are smooth maps.
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We can also extend the definition of manifold to manifold with bound-
ary, in which case we take the maps ϕ to be either into R

n or R
n
+ =

{(x1, . . . , xn) | xn ≥ 0} (see, e.g., Spivak [1979] or Abraham, Marsden,
and Ratiu [1988] for details). In doing this, one must define the notion of
a smooth map from a half-open set in R

n to another, and this is done by
requiring the map to be the restriction of a smooth map on a containing
open set. See Figure 2.2.2.

xn

xnx

n_1

n_1

ϕi

ϕj ϕji

Figure 2.2.2. For a manifold with boundary, charts map into either open sets or

half-open sets, and the overlap maps are still required to be smooth.

Level Sets as Differentiable Manifolds in R
n. A typical and im-

portant way that manifolds arise is as follows. Let p1, p2, . . . , pm : Rn → R.
The zero (or level) set

M = {x | pi(x) = 0, i = 1, . . . ,m}
is called a differentiable variety in R

n. If the n×m matrix(
∂p1
∂xi

... · · · ...∂pm
∂xi

)

has a (constant) rank ρ at each point x ∈ M , then M admits the structure
of a differentiable manifold of dimension n − ρ. We call this the rank
condition. In particular, if the rank is m (so that the matrix is onto R

m),
then we say that the map p = (p1, . . . , pm) is a submersion. This is a
common case that is often encountered.
The idea of the proof of the rank criterion (or its special case, the sub-

mersion criterion) is that under our rank assumption an argument using
the implicit function theorem shows that an (n − ρ)-dimensional coordi-
nate chart may be defined in a neighborhood of each point on M . In this
situation, we say that the level set is a submanifold of Rn.

Matrix Groups. We briefly discuss matrix groups as examples of dif-
ferentiable manifolds. More details are given in Section 2.8.

Let Rn×n be the set of n×n matrices with entries in R, and let GL(n,R)
denote the set of all n × n invertible matrices with entries in R. Clearly,
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GL(n,R) is a group, called the general linear group. Let A ∈ GL(n,R)
be symmetric (and invertible). Consider the subset

S = {X ∈ GL(n,R) | XAXT = A}.

It is easy to see that if X ∈ S, then X−1 ∈ S, and if X,Y ∈ S, then the
product XY is also in S. Hence, S is a subgroup of GL(n,R).

We can also show that S is a submanifold of Rn×n. Indeed, S is the zero
locus of the mapping X �→ XAXT − A. Let X ∈ S, and let δX be an
arbitrary element of Rn×n. Then

(X + δX)A(X + δX)T −A =

XAXT −A+ δXAXT +XAδXT +O(δX)2.

We can conclude that S is a submanifold of R
n×n if we can show that

the linearization of the locus map, namely the linear mapping L defined
by δX �→ δXAXT + XAδXT of Rn×n to itself, has constant rank for all
X ∈ S. We see that both the original map and the image of L lie in the
subspace of n×n symmetric matrices. We claim that the map L is onto this
space and hence the original map is a submersion. Indeed, given X and any
symmetric matrix S we can find δX such that (δX)AXT +XA(δX)T = S,
namely δX = SA−1X/2 . Thus, the original map to the space of symmetric
matrices is a submersion. For a submersion, the dimension of the level set
is the dimension of the domain minus the dimension of the range space. In
this case, this dimension is n2 − n(n+ 1)/2 = n(n− 1)/2. In summary, we
have established the following fact.

2.2.2 Proposition. Let A ∈ GL(n,R) be symmetric. Then the subgroup
S of GL(n,R) defined by

S = {X ∈ GL(n,R) | XAXT = A}

is a submanifold of Rn×n of dimension n(n− 1)/2.

The Orthogonal Group. Of special interest in mechanics is the case
A = I. Here S specializes to O(n), the group of n×n orthogonal matrices.
It is both a subgroup of GL(n,R) and a submanifold of the vector space
R

n×n. GL(n,R) is an open, dense subset of Rn×n that inherits the topology
and manifold structure from R

n×n. Thus, O(n) (or any S defined as above)
is both a subgroup and a submanifold of GL(n,R). Subgroups of GL(n,R)
that are also submanifolds are called matrix Lie groups. We shall discuss
Lie groups more abstractly later on.

Tangent Vectors to Manifolds. Two curves t �→ c1(t) and t �→ c2(t)
in an n-manifold M are called equivalent at x ∈ M if

c1(0) = c2(0) = x and (ϕ ◦ c1)′(0) = (ϕ ◦ c2)′(0)
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in some chart ϕ, where the prime denotes the derivative with respect to the
curve parameter. It is easy to check that this definition is chart independent.
A tangent vector v to a manifold M at a point x ∈ M is an equivalence
class of curves at x. One proves that the set of tangent vectors to M at
x forms a vector space. It is denoted by TxM and is called the tangent
space to M at x ∈ M . Given a curve c(t), we denote by c′(s) the tangent
vector at c(s) defined by the equivalence class of t �→ c(s+ t) at t = 0.

Let U be a chart of an atlas for the manifold M with coordinates
(x1, . . . , xn). The components of the tangent vector v to the curve t �→
(ϕ ◦ c)(t) are the numbers v1, . . . , vn defined by

vi =
d

dt
(ϕ ◦ c)i

∣∣∣∣
t=0

,

i = 1, . . . , n. The tangent bundle of M , denoted by TM , is the differen-
tiable manifold whose underlying set is the disjoint union of the tangent
spaces to M at the points x ∈ M ; that is,

TM =
⋃

x∈M

TxM.

Thus, a point of TM is a vector v that is tangent to M at some point
x ∈ M . To define the differentiable structure on TM , we need to specify
how to construct local coordinates on TM . To do this, let x1, . . . , xn be
local coordinates onM and let v1, . . . , vn be components of a tangent vector
in this coordinate system. Then the 2n numbers x1, . . . , xn, v1, . . . , vn give
a local coordinate system on TM . Notice that dimTM = 2dimM .

The Tangent Bundle Projection. The tangent bundle, or natural
projection , is the map τM : TM → M that takes a tangent vector v to
the point x ∈ M at which the vector v is attached (that is, v ∈ TxM).
The inverse image τ−1

M (x) of a point x ∈ M under the natural projection
τM is the tangent space TxM . This space is called the fiber of the tangent
bundle over the point x ∈ M .

Manifolds with Boundary. A manifold M with boundary is the union
of two other manifolds, the interior and the boundary, denoted by ∂M . The
boundary has its own tangent space, which is a subspace of the tangent
space to the entire manifold at that point. See Figure 2.2.3.

Tangent Spaces to Level Sets. Let M = {x | pi(x) = 0, i = 1, . . . ,m}
be a differentiable variety in R

n. For each x ∈ M ,

TxM =

{
v ∈ R

n

∣∣∣∣ ∂pi∂x
(x) · v = 0

}

is called the tangent space to M at x. Clearly, TxM is a vector space.
If the rank condition holds, so that M is a differentiable manifold, then
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∂M

M

y

Ty∂M

x

TxM

Figure 2.2.3. An example of a manifold M showing its boundary ∂M . In this example,

M is two-dimensional, while the bounding curve is one-dimensional.

this definition may be shown to be equivalent to the one given earlier. For
example, the reader may show that the tangent spaces to spheres are what
they should intuitively be, as in Figure 2.2.4.

x

S2

TxS2

Figure 2.2.4. The tangent space to a sphere.

Tangent Spaces to Matrix Groups. Let A ∈ GL(n,R) be a symmetric
matrix. We wish to explicitly describe the tangent space at a typical point
of the group S = {X ∈ GL(n,R) | XTAX = A}. Given our definition, it
is clear that the tangent space TXS is a subspace of the linear space of all
n× n matrices, Rn×n. Let V ∈ R

n×n. Then V is in TXS precisely when it
is tangent to a curve in the group:

d

dε

∣∣∣∣
ε=0

[
(X + εV )TA(X + εV )−A

]
= 0.

This condition is equivalent to V TAX +XTAV = 0.
This shows that if X ∈ S, then

TXS = {V ∈ R
n×n | V TAX +XTAV = 0}.

Differentiable Maps. Let E and F be vector spaces (for example, Rn

and R
m, respectively), and let f : U ⊂ E → V ⊂ F , where U and V are
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open sets, be of class Cr+1. We define the tangent map7 of f to be the
map Tf : TU = U × E → TV = V × F defined by

Tf(u, e) = (f(u), Df(u) · e), (2.2.1)

where u ∈ U and e ∈ E. This notion from calculus may be generalized
to the context of manifolds as follows. Let f : M → N be a map of a
manifold M to a manifold N . We call f differentiable (or Ck) if in local
coordinates on M and N it is expressed, or represented, by differentiable
(or Ck) functions. The derivative of a differentiable map f : M → N at
a point x ∈ M is defined to be the linear map

Txf : TxM → Tf(x)N

constructed in the following way. For v ∈ TxM , choose a curve c : ]−ε, ε[ →
M with c(0) = x, and velocity vector dc/dt |t=0 = v . Then Txf · v is the
velocity vector at t = 0 of the curve f ◦ c : R → N ; that is,

Txf · v =
d

dt
f(c(t))

∣∣∣∣
t=0

.

The vector Txf · v does not depend on the curve c but only on the vector
v. If M and N are manifolds and f : M → N is of class Cr+1, then
Tf : TM → TN is a mapping of class Cr. Note that

dc

dt

∣∣∣∣
t=0

= Txc · 1.

Vector Fields and Flows. Let us now interpret what we did with vector
fields and flows in R

n in the context of manifolds. A vector field X on
a manifold M is a map X : M → TM that assigns a vector X(x) at the
point x ∈ M ; that is, τM ◦ X = identity. An integral curve of X with
initial condition x0 at t = 0 is a (differentiable) map c : ]a, b[ → M such
that ]a, b[ is an open interval containing 0, c(0) = x0, and

c′(t) = X(c(t))

for all t ∈ ]a, b[. In formal presentations we usually suppress the domain of
definition, even though this is technically important. The flow of X is the
collection of maps

ϕt : M → M

such that t �→ ϕt(x) is the integral curve of X with initial condition x.
Existence and uniqueness theorems from ordinary differential equations, as

7The tangent map is sometimes denoted by f∗.
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reviewed in the last section, guarantee that ϕ is smooth in x and t (where
defined) if X is. From uniqueness, we get the flow property

ϕt+s = ϕt ◦ ϕs

along with the initial condition ϕ0 = identity. The flow property generalizes
the situation where M = V is a linear space, X(x) = Ax for a (bounded)
linear operator A, and

ϕt(x) = etAx

to the nonlinear case.

Differentials. If f : M → R is a smooth function, we can differentiate
it at any point x ∈ M to obtain a map Txf : TxM → Tf(x)R. Identifying
the tangent space of R at any point with itself (a process we usually do
in any vector space), we get a linear map df(x) : TxM → R. That is,
df(x) ∈ T ∗

xM , the dual of the vector space TxM .
In coordinates, the directional derivative df(x) · v, where v ∈ TxM ,

is given by

df(x) · v =
n∑

i=1

∂f

∂xi
vi.

We will employ the summation convention and drop the summation
sign when there are repeated indices. We also call df the differential
of f .
One can show that specifying the directional derivatives completely de-

termines a vector, and so we can identify a basis of TxM using the operators
∂/∂xi. We write

(e1, . . . , en) =

(
∂

∂x1
, . . . ,

∂

∂xn

)

for this basis, so that v = vi∂/∂xi.
If we replace each vector space TxM with its dual T ∗

xM , we obtain a
new 2n-manifold called the cotangent bundle and denoted by T ∗M . The
dual basis to ∂/∂xi is denoted by dxi. Thus, relative to a choice of local
coordinates we get the basic formula

df(x) =
∂f

∂xi
dxi

for any smooth function f : M → R.

Degree of a Map. As we shall see in Chapter 4, an important notion for
understanding stabilization is the notion of the degree of a map (see, e.g.,
Milnor [1965]). Let M and N be oriented n-dimensional manifolds without
boundary, M compact and N connected. Let f : M → N be a smooth map.
Let x ∈ M be a regular point of the map and let Txf : TxM → Tf(x)N
denote the corresponding tangent map, which is thus a linear isomorphism.
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Define the sign of Txf to be +1 or −1 according to whether or not it
reverses orientation. Then for any regular value y ∈ N we define

deg(f ; y) =
∑

x∈f−1(y)

signTxf (2.2.2)

if f−1(y) �= ∅, 0 if f−1(y) = ∅.
Now consider a smooth vector field X defined on an open set U of Rn

with an isolated zero at x ∈ U . Consider the function

X(x)

‖X(x)‖ , (2.2.3)

which maps a small sphere centered at x into the unit sphere regarded as
the oriented boundary of the corresponding ball. Note that this is just the
unit direction vector of the vector field. The degree of this mapping is called
the index of the vector field.

It is not hard to see, for example, that if x is a nondegenerate zero of
X, then the index of the vector field X at x is either +1 or −1: If X is
orientation-preserving, we can locally smoothly deform X to the identity
without introducing any new zeros, and if it is orientation-reversing, to a
reflection. (Details of this smooth isotopy may be found in Milnor [1965].)

In the plane the index of a zero of a vector field simply measures how
many times the vector field rotates in the anticlockwise direction as one tra-
verses a small loop around the zero in the anticlockwise direction. One can
easily check that a source, sink, or center has index +1, while the index of a
saddle is −1. Similarly, the index of a zero of the linear differential equation
on R

n, ẋ = Ax, A nonsingular, is Index = sign (detA). For example, for
the stable system ẋ = −x on R

n, the index of zero is (−1)n.

Exercises

� 2.2-1. Using the submersion criterion, show that the level set x2
1 + · · · +

x2
n − 1 = 0 is a differentiable manifold of dimension n− 1.

� 2.2-2. Show that the set {(x, y) | x2(x + 1) − y2 = 0} in R
2 is not a

differentiable manifold.

� 2.2-3. Let S = {X ∈ GL(n,R) | XTAX = A}, as in the text. Note that
the n× n identity matrix I is in S, and show that for any pair of matrices
V1, V2 ∈ TIS we have V1V2 − V2V1 ∈ TIS.

� 2.2-4. If ϕt : S
2 → S2 rotates points on S2 about a fixed axis through an

angle t, show that ϕt is the flow of a certain vector field on S2.

� 2.2-5. Let f : S2 → R be defined by f(x, y, z) = z. Compute df relative
to spherical coordinates (θ, ϕ).

� 2.2-6. One can show that the sum of the indices of the singular points of
a vector field on a compact manifold without boundary is independent of
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the vector field and depends only on the manifold. This sum is called the
Euler characteristic. Use this fact to show that the Euler characteristic
of the n-torus is zero and that of the n-sphere is 1 + (−1)n. (Construct a
vector field with no zeros on the torus and a vector field with the given
index on the sphere.)

2.3 Stability

In this section we summarize some of the key notions of stability.

2.3.1 Definition. Let x0 be an equilibrium of the system of differential
equations ẋ = f(x). The point x0 is said to be nonlinearly or Lyapunov
stable if for any neighborhood U of x0 there exists a neighborhood V ⊂ U
of x0 such that any trajectory x(t) of the system with initial point in V
remains in U for all time. If in addition x(t) → x0 as t → ∞, x0 is said
to be asymptotically stable.

The basic notions of Lyapunov stability and asymptotic stability are il-
lustrated in Figure 2.3.1. For the harmonic oscillator, the origin is Lyapunov
stable, but not asymptotically stable.

xe
x

y

Stable Asymptotically stable

xe

Harmonic oscillator

a b c

Figure 2.3.1. In Lyapunov stability points near the equilibrium point stay near, while

for asymptotic stability, they also converge to the equilibrium point as t → +∞.

The notion of stability can be attached to invariant sets other than equi-
librium points via a similar definition. In particular, the notion of a stable
periodic orbit is illustrated in Figure 2.3.2.

Spectral Stability. There are some specific criteria for stability. The
most basic one is the classical spectral test of Lyapunov.

2.3.2 Definition. Let x0 be an equilibrium of the system of differential
equations ẋ = f(x). The point x0 is said to be spectrally stable if all the
eigenvalues of the linearization of f at x0, i.e., of the matrix

Aij =
∂f i

∂xj
(x0),

lie in the left half-plane.
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x0 periodic orbit

Figure 2.3.2. A periodic orbit is asymptotically stable when nearby orbits wind to-

wards it.

A basic result on stability is the following:

2.3.3 Theorem (Lyapunov). Spectral stability implies asymptotic stability.

Invariant Manifolds. At a general equilibrium x0, if one computes that
spectrum of the linearization A and finds a number of eigenvalues in the
left half-plane, then there is an invariant manifold (i.e., a manifold that is
invariant under the flow and that is simply the graph of a mapping in this
case) that is tangent to the corresponding (generalized) eigenspace; it is
called the local stable manifold. All trajectories on this stable manifold
are asymptotic to the point x0 as t → ∞.
Similarly, associated with the eigenvalues in the right half-plane is an

unstable manifold. The basic notion of invariant manifolds is illustrated
schematically in Figure 2.3.3.

Stable Manifold

Unstable Manifold

Figure 2.3.3. Invariant manifolds for an equilibrium point.

If none of the eigenvalues associated with an equilibrium are on the
imaginary axis, then the equilibrium is called hyperbolic. In this case, the
tangent spaces to the stable and unstable manifolds span the whole of Rn.
This is the situation shown in Figure 2.3.3. When there are eigenvalues on
the imaginary axis, one introduces the notion of the center manifold as
well; this is discussed in the next section.
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One can also have invariant manifolds attached to other invariant sets,
and in particular to periodic orbits. This is illustrated in Figure 2.3.4.

stable manifold of the periodic orbit

unstable manifold of the periodic orbit

periodic orbit

Figure 2.3.4. The stable and unstable manifolds of a periodic orbit.

Much more on how to analyze and achieve stability through control will
be discussed in later parts of this book.

The LaSalle Invariance Principle. A key ingredient in proving asymp-
totic stability of controlled or uncontrolled systems is the LaSalle invariance
principle.
This main theorem may be stated as follows:

2.3.4 Theorem. Consider the smooth dynamical system on R
n given by

ẋ = f(x) and let Ω be a compact set in R
n that is (positively) invariant

under the flow of f . Let V : Ω → R be a C1 function such that

V̇ (x) =
∂V

∂x
· f ≤ 0

in Ω. Let M be the largest invariant set in Ω where V̇ (x) = 0. Then every
solution with initial point in Ω tends asymptotically to M as t → ∞. In
particular, if M is an isolated equilibrium, it is asymptotically stable.

The invariance principle is due to Barbashin and Krasovskii [1952], Lasalle
and Lefschetz [1961], and Krasovskii [1963]. The book of Khalil [1992] has
a nice treatment.
Note that in the statement of the theorem, V (x) need not be positive

definite, but rather only semidefinite, and that if in particular M is an equi-
librium, the theorem proves that the equilibrium is asymptotically stable.
The set Ω in the LaSalle theorem also gives us an estimate of the region of
attraction of an equilibrium. This is one of the reasons that this is a more
attractive methodology than that of spectral stability tests, which could in
principle give a very small region of attraction.
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Exercises

� 2.3-1. Derive the critical stability value ω0 =
√

g/R for the particle in the
rotating hoop.

� 2.3-2. Consider the following vector field in R
3:

ẋ = −x+ y + f ,

ẏ = −y + g ,

ż = z ,

where f(x, y, z) = − (x+ 1
2y
)3

and g(x, y, z) = − (y + 1
2x
)3
.

(a) Compute the linearized system at the origin and write it in the form
ẋ = Ax for a suitable 3× 3 matrix A and where x is the vector with
components (x, y, z).

(b) Sketch the phase portrait of this linear system.

(c) To what extent is the phase portrait of the nonlinear system similar
to that of the linear system in a neighborhood of the origin?

(d) Consider the function

V (x, y, z) =
1

2

[
x2 + y2 + xy

]
.

Compute its time derivative along the flow of the given vector field.

(e) Show that the plane z = 0 is invariant.

(f) Is the origin globally attracting within the plane z = 0?

(g) Describe the invariant manifolds of the origin for this system.

(h) Can this vector field have any periodic orbits?

2.4 Center Manifolds

Here we discuss some results in center manifold theory and show how they
relate to the Lyapunov–Malkin theorem, which plays an important role
in the stability analysis of nonholonomic systems. The center manifold
theorem provides useful insight into the existence of invariant manifolds.
These invariant manifolds will play a crucial role in our analysis. Lya-
punov’s original proof of the Lyapunov–Malkin theorem used a different
approach to proving the existence of local integrals, as we shall discuss
below. Malkin extended the result to the nonautonomous case.
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Center Manifold Theory in Stability Analysis. We consider firstly
center manifold theory and its applications to the stability analysis of non-
hyperbolic equilibria.
Consider a system of differential equations

ẋ = Ax+X(x, y), (2.4.1)

ẏ = By + Y (x, y), (2.4.2)

where x ∈ R
m, y ∈ R

n, and A and B are constant matrices. It is supposed
that all eigenvalues of A have nonzero real parts, and all eigenvalues of
B have zero real parts. The functions X, Y are smooth, and satisfy the
conditions X(0, 0) = 0, dX(0, 0) = 0, Y (0, 0) = 0, dY (0, 0) = 0. We now
recall the following definition:

2.4.1 Definition. A smooth invariant manifold of the form x = h(y) where
h satisfies h(0) = 0 and dh(0) = 0 is called a center manifold.

We are going to use the following version of the center manifold theorem
following the exposition of Carr [1981] (see also Chow and Hale [1982]).

2.4.2 Theorem (The center manifold theorem). Suppose that the func-
tions X(x, y), Y (x, y) are Ck, k ≥ 2. Then there exist a (local) center
manifold for (2.4.1), (2.4.2), x = h(y), |y| < δ, where h is Ck. The flow
on the center manifold is governed by the system

ẏ = By + Y (h(y), y). (2.4.3)

The basic idea of realizing the center manifold as a graph over the linear
center subspace is shown in Figure 2.4.1.

h

center manifold

x

y

Figure 2.4.1. The center manifold realized as the graph of the function h.
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The next theorem explains that the reduced equation (2.4.3) contains
information about stability of the zero solution of (2.4.1), (2.4.2).

2.4.3 Theorem. Suppose that the zero solution of (2.4.3) is stable (resp.
asymptotically stable) and that the eigenvalues of A are in the left half-
plane. Then the zero solution of (2.4.1), (2.4.2) is stable (resp. asymp-
totically stable). If either the zero solution of (2.4.3) is unstable, or if any
eigenvalues of A are in the right half plane, then the zero solution of (2.4.1),
(2.4.2) is also unstable.

Let us now look at the special case of (2.4.2) in which the matrix B
vanishes. Equations (2.4.1), (2.4.2) become

ẋ = Ax+X(x, y), (2.4.4)

ẏ = Y (x, y). (2.4.5)

2.4.4 Theorem. Consider the system of equations (2.4.4), (2.4.5).
If X(0, y) = 0, Y (0, y) = 0, and all of the eigenvalues of the matrix A
have negative real parts, then the system (2.4.4), (2.4.5) has n local inte-
grals in a neighborhood of x = 0, y = 0.

Proof. The center manifold in this case is given by x = 0. Each point
of the center manifold is an equilibrium of the system (2.4.4), (2.4.5). For
each equilibrium point (0, y0) of our system, consider the associated m-
dimensional stable manifold Ss(y0). The center manifold and these mani-
folds Ss(y0) can be used for a (local) substitution (x, y) �→ (x̄, ȳ) such that
in the new coordinates the system of differential equations becomes

˙̄x = Āx̄+ X̄(x̄, ȳ), ˙̄y = 0.

The last system of equations has n integrals ȳ = const, so that the original
equation has n smooth local integrals. Observe that the tangent spaces to
the common level sets of these integrals at the equilibria are the planes
y = y0. Therefore, the integrals are of the form

y = f(x, k), where ∂xf(0, k) = 0. �

The Lyapunov–Malkin Theorem. The following theorem gives sta-
bility conditions for equilibria of the system (2.4.4), (2.4.5).

2.4.5 Theorem (Lyapunov–Malkin). Consider the system of differential
equations (2.4.4), (2.4.5), where x ∈ R

m, y ∈ R
n, A is an m ×m matrix,

and X(x, y), Y (x, y) represent nonlinear terms. If all eigenvalues of the
matrix A have negative real parts, and X(x, y), Y (x, y) vanish when x = 0,
then the solution x = 0, y = c of the system (2.4.4), (2.4.5) is stable with
respect to x, y, and asymptotically stable with respect to x. If a solution
x(t), y(t) of (2.4.4), (2.4.5) is close enough to the solution x = 0, y = 0,
then

lim
t→∞x(t) = 0, lim

t→∞ y(t) = c.
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Proof. (See Lyapunov [1907], Malkin [1938], and Zenkov, Bloch, and
Marsden [1998].) From Theorem 2.4.4, the phase space of system (2.4.4),
(2.4.5) is locally represented as a union of invariant leaves

Qc = {(x, y) | y = f(x, c)} .

Use x as local coordinates on these leaves. On each leaf we have a reduced
system that can be written as ẋ = F (x), where F (x) = Ax+X(x, f(x, c)).
Since detA �= 0, each reduced system has an isolated equilibrium x = 0
on a corresponding leaf. The equilibrium of the system reduced to a leaf
passing through x = 0, y = 0 is asymptotically stable, since the matrix of
the linearization of the reduced system is A. To finish the proof, we notice
that the equilibria of systems on nearby leaves are asymptotically stable
as well because the corresponding matrices Ac, by continuity, also have all
eigenvalues in the left half-plane, since locally, Ac will be close to A. �

Historical Note. The proof of the Lyapunov–Malkin theorem uses the
fact that the system of differential equations has local integrals, as discussed
above. To prove existence of these integrals, Lyapunov used a theorem of
his own about the existence of solutions of PDEs. He did this assuming
that the nonlinear terms on the right-hand sides are series in x and y
with time-dependent bounded coefficients. Malkin generalized Lyapunov’s
result for systems for which the matrix A is time-dependent. We consider
the nonanalytic case, and to prove existence of these local integrals, we use
center manifold theory. This simplifies the arguments to some extent as
well as showing how the results are related.

A Class Satisfying the Lyapunov–Malkin Theorem. The following
lemma specifies a class of systems of differential equations that satisfy the
conditions of the Lyapunov–Malkin theorem.

2.4.6 Lemma. Consider a system of differential equations of the form

ẇ = Aw +By + U(w, y), ẏ = Y(w, y), (2.4.6)

where w ∈ R
n, y ∈ R

m, detA �= 0, and where U and Y represent higher-
order nonlinear terms. There is a change of variables of the form w =
x+ φ(y) such that:

(i) In the new variables x, y, the system (2.4.6) has the form

ẋ = Ax+X(x, y), ẏ = Y (x, y).

(ii) If Y (0, y) = 0, then X(0, y) = 0 as well.
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Proof. Put w = x+ φ(y), where φ(y) is defined by

Aφ(y) +By + U(φ(y), y) = 0.

Then the system (2.4.6) written in terms of the variables x, y becomes

ẋ = Ax+X(x, y), ẏ = Y (x, y),

where

X(x, y) = Aφ(y) +By + U(x+ φ(y), y)− ∂φ

∂y
Y (x, y),

Y (x, y) = Y(x+ φ(y), y).

Note that Y (0, y) = 0 implies X(0, y) = 0. �

Exercise

� 2.4-1. Sketch the phase portrait of the system

ẋ = −x+ xy ,

ẏ = xy .

Verify the conclusions of the Lyapunov–Malkin theorem. See Figure 2.4.2.
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Figure 2.4.2. Phase portrait of the system ẋ = −x+ xy; ẏ = xy.
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2.5 Differential Forms

We next review some of the basic definitions, properties, and operations on
differential forms, without proofs (see Abraham, Marsden, and Ratiu [1988]
and references therein). The main idea of differential forms is to provide
a generalization of the basic operations of vector calculus, div, grad, and
curl,of Green, Gauss, and Stokes to manifolds of arbitrary dimension.

Basic Definitions. Let V be a vector space. A map α : V × · · · × V
(where there are k factors) → R is multilinear when it is linear in each of
its factors, that is,

α(v1, . . . , avj + bv′j , . . . , vk)

= aα(v1, . . . , vj , . . . , vk) + bα(v1, . . . , v
′
j , . . . , vk)

for all j with 1 ≤ j ≤ k. A k-multilinear map α : V × · · · × V → R is skew
(or alternating) when it changes sign whenever two of its arguments are
interchanged, that is, for all v1, . . . , vk ∈ V ,

α(v1, . . . , vi, . . . , vj , . . . , vk) = −α(v1, . . . , vj , . . . , vi, . . . , vk).

A 2-form Ω on a manifold M is, for each point x ∈ M , a smooth skew-
symmetric bilinear mapping Ω(x) : TxM × TxM → R. More generally,
a k-form α (sometimes called a differential form of degree k) on a
manifold M is a function α(x) : TxM ×· · ·×TxM (there are k factors)→ R

that assigns to each point x ∈ M a smooth skew-symmetric k-multilinear
map on the tangent space TxM to M at x.

Without the skew-symmetry assumption, α would be referred to as a
(0, k)-tensor.
Let x1, . . . , xn denote coordinates on M , let

{e1, . . . , en} =

{
∂

∂x1
, . . . ,

∂

∂xn

}

be the corresponding basis for TxM , and let {e1, . . . , en} = {dx1, . . . , dxn}
be the dual basis for T ∗

xM . Then at each x ∈ M , we can write a 2-form as

Ωx(v, w) = Ωij(x)v
iwj , where Ωij(x) = Ωx

(
∂

∂xi
,

∂

∂xj

)
.

Here the summation convention is used; that is,

Ωx(v, w) = Ωij(x)v
iwj =

n∑
i,j=1

Ωij(x)v
iwj .

More generally, a k-form can be written

αx(v1, . . . , vk) = αi1...ik(x)v
i1
1 . . . vikk ,
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where there is a sum on i1, . . . , ik, where

αi1...ik(x) = αx

(
∂

∂xi1
, . . . ,

∂

∂xik

)
,

and where vi = vji ∂/∂x
j , with a sum on j.

Tensor and Wedge Products. If α is a (0, k)-tensor on a manifold M ,
and β is a (0, l)-tensor, their tensor product α⊗ β is the (0, k+ l)-tensor
on M defined by

(α⊗ β)x(v1, . . . , vk+l) = αx(v1, . . . , vk)βx(vk+1, . . . , vk+l) (2.5.1)

at each point x ∈ M .
If t is a (0, p)-tensor, define the alternation operator A acting on t by

A(t)(v1, . . . , vp) =
1

p!

∑
π∈Sp

sgn(π)t(vπ(1), . . . , vπ(p)), (2.5.2)

where sgn(π) is the sign of the permutation π,

sgn(π) =

{
+1 if π is even,
−1 if π is odd,

(2.5.3)

and Sp is the group of all permutations of the numbers 1, 2, . . . , p. A permu-
tation is called odd if it can be written as the product of an odd number
of transpositions (that is, a permutation that interchanges just two ob-
jects) and otherwise is even. The operator A therefore skew-symmetrizes
p-multilinear maps.

If α is a k-form and β is an l-form on M , their wedge product α ∧ β is
the (k + l)-form on M defined by8

α ∧ β =
(k + l)!

k! l!
A(α⊗ β). (2.5.4)

For example, if α and β are one-forms, then

(α ∧ β)(v1, v2) = α(v1)β(v2)− α(v2)β(v1) ,

while if α is a 2-form and β is a 1-form,

(α ∧ β)(v1, v2, v3) = α(v1, v2)β(v3) + α(v3, v1)β(v2) + α(v2, v3)β(v1).

We state the following without proof:

8The numerical factor in (2.5.4) agrees with the convention of Abraham and Marsden
[1978], Abraham, Marsden, and Ratiu [1988], and Spivak [1979], but not that of Arnold

[1989], Guillemin and Pollack [1974], or Kobayashi and Nomizu [1963]; it is the Bourbaki
[1971] convention.
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2.5.1 Proposition. The wedge product has the following properties:

(i) α ∧ β is associative : α ∧ (β ∧ γ) = (α ∧ β) ∧ γ.

(ii) α ∧ β is bilinear in α, β :

(aα1 + bα2) ∧ β = a(α1 ∧ β) + b(α2 ∧ β),

α ∧ (cβ1 + dβ2) = c(α ∧ β1) + d(α ∧ β2).

(iii) α∧β is anticommutative : α∧β = (−1)klβ∧α, where α is a k-form
and β is an l-form.

In terms of the dual basis dxi, any k-form can be written locally as

α = αi1...ikdx
i1 ∧ · · · ∧ dxik ,

where the sum is over all ij satisfying i1 < · · · < ik.

Pull Back and Push Forward. Let ϕ : M → N be a C∞ map from
the manifold M to the manifold N and let α be a k-form on N . Define the
pull back ϕ∗α of α by ϕ to be the k-form on M given by

(ϕ∗α)x(v1, . . . , vk) = αϕ(x)(Txϕ · v1, . . . , Txϕ · vk). (2.5.5)

If ϕ is a diffeomorphism, the push forward ϕ∗ is defined by ϕ∗ =
(ϕ−1)∗.
Here is another basic property.

2.5.2 Proposition. The pull back of a wedge product is the wedge product
of the pull backs:

ϕ∗(α ∧ β) = ϕ∗α ∧ ϕ∗β. (2.5.6)

Interior Products and Exterior Derivatives. Let α be a k-form on a
manifold M , and X a vector field. The interior product iXα (sometimes
called the contraction of X and α, and written i(X)α) is defined by

(iXα)x(v2, . . . , vk) = αx(X(x), v2, . . . , vk). (2.5.7)

2.5.3 Proposition. Let α be a k-form and β an l-form on a manifold M .
Then

iX(α ∧ β) = (iXα) ∧ β + (−1)kα ∧ (iXβ). (2.5.8)

The exterior derivative dα of a k-form α on a manifold M is the
(k + 1)-form on M determined by the following proposition:

2.5.4 Proposition. There is a unique mapping d from k-forms on M to
(k + 1)-forms on M such that:

(i) If α is a 0-form (k = 0), that is, α = f ∈ C∞(M), then df is the
one-form that is the differential of f .
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(ii) dα is linear in α; that is, for all real numbers c1 and c2,

d(c1α1 + c2α2) = c1dα1 + c2dα2.

(iii) dα satisfies the product rule; that is,

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ,

where α is a k-form and β is an l-form.

(iv) d2 = 0; that is, d(dα) = 0 for any k-form α.

(v) d is a local operator ; that is, dα(x) depends only on α restricted
to any open neighborhood of x; in fact, if U is open in M , then

d(α|U) = (dα)|U.

If α is a k-form given in coordinates by

α = αi1...ikdx
i1 ∧ · · · ∧ dxik (sum on i1 < · · · < ik),

then the coordinate expression for the exterior derivative is

dα =
∂αi1...ik

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxik (sum on all j and i1 < · · · < ik).

(2.5.9)

Formula (2.5.9) can be taken as the definition of the exterior derivative,
provided one shows that (2.5.9) has the above-described properties and,
correspondingly, is independent of the choice of coordinates.
Next is a useful proposition that, in essence, rests on the chain rule:

2.5.5 Proposition. Exterior differentiation commutes with pull back:

d(ϕ∗α) = ϕ∗(dα), (2.5.10)

where α is a k-form on a manifold N and ϕ is a smooth map from a
manifold M to N .

A k-form α is called closed if dα = 0 and exact if there is a (k−1)-form
β such that α = dβ. By Proposition 2.5.4 every exact form is closed. The
exercises give an example of a closed nonexact one-form.

2.5.6 Proposition (Poincaré Lemma). A closed form is locally exact; that
is, if dα = 0, there is a neighborhood about each point on which α = dβ.

The proof is given in the exercises.
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Vector Calculus. The table below entitled “Vector Calculus and Dif-
ferential Forms” summarizes how forms are related to the usual operations
of vector calculus. We now elaborate on a few items in this table. In item
4, note that

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz = (gradf) = (∇f) ,

which is equivalent to∇f = (df)�. (The � and � terminologies are explained
in the table below.)
The Hodge star operator on R

3 maps k-forms to (3 − k)-forms and is
uniquely determined by linearity and the properties in item 2.9

In item 5, if we let F = F1e1 + F2e2 + F3e3, so

F  = F1 dx+ F2 dy + F3 dz,

we obtain

d(F ) = dF1 ∧ dx+ F1d(dx) + dF2 ∧ dy + F2d(dy) + dF3 ∧ dz

+ F3d(dz) ,

which equals

(
∂F1

∂x
dx+

∂F1

∂y
dy +

∂F1

∂z
dz

)
∧ dx

+

(
∂F2

∂x
dx+

∂F2

∂y
dy +

∂F2

∂z
dz

)
∧ dy

+

(
∂F3

∂x
dx+

∂F3

∂y
dy +

∂F3

∂z
dz

)
∧ dz .

This becomes

− ∂F1

∂y
dx ∧ dy +

∂F1

∂z
dz ∧ dx+

∂F2

∂x
dx ∧ dy − ∂F2

∂z
dy ∧ dz

− ∂F3

∂x
dz ∧ dx+

∂F3

∂y
dy ∧ dz

=

(
∂F2

∂x
− ∂F1

∂y

)
dx ∧ dy +

(
∂F1

∂z
− ∂F3

∂x

)
dz ∧ dx

+

(
∂F3

∂y
− ∂F2

∂z

)
dy ∧ dz .

9This operator can be defined on general Riemannian manifolds; see Abraham, Mars-
den, and Ratiu [1988].
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Hence, using item 2,

∗(d(F )) =

(
∂F2

∂x
− ∂F1

∂y

)
dz +

(
∂F1

∂z
− ∂F3

∂x

)
dy

+

(
∂F3

∂y
− ∂F2

∂z

)
dx,

(∗(d(F )))� =

(
∂F3

∂y
− ∂F2

∂z

)
e1 +

(
∂F1

∂z
− ∂F3

∂x

)
e2

+

(
∂F2

∂x
− ∂F1

∂y

)
e3

= curl F = ∇× F.

With reference to item 6, let

F = F1e1 + F2e2 + F3e3,

so that

F  = F1 dx+ F2 dy + F3 dz.

Thus,

∗(F ) = F1 dy ∧ dz + F2(−dx ∧ dz) + F3 dx ∧ dy,

and so

d(∗(F )) = dF1 ∧ dy ∧ dz − dF2 ∧ dx ∧ dz + dF3 ∧ dx ∧ dy

=

(
∂F1

∂x
dx+

∂F1

∂y
dy +

∂F1

∂z
dz

)
∧ dy ∧ dz

−
(
∂F2

∂x
dx+

∂F2

∂y
dy +

∂F2

∂z
dz

)
∧ dx ∧ dz

+

(
∂F3

∂x
dx+

∂F3

∂y
dy +

∂F3

∂z
dz

)
∧ dx ∧ dy

=
∂F1

∂x
dx ∧ dy ∧ dz +

∂F2

∂y
dx ∧ dy ∧ dz +

∂F3

∂z
dx ∧ dy ∧ dz

=

(
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

)
dx ∧ dy ∧ dz

= (divF ) dx ∧ dy ∧ dz.

Therefore, ∗(d(∗(F ))) = divF = ∇ · F .
The definition and properties of vector-valued forms are direct extensions

of these for usual forms on vector spaces and manifolds. One can think of
a vector-valued form as an array of usual forms.
The following table should serve as a useful reference for future compu-

tations.
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Vector Calculus and Differential Forms

1. Sharp and Flat (Using standard coordinates in R
3)

(a) v = v1 dx+v2 dy+v3 dz = one-form corresponding to the vector
v = v1e1 + v2e2 + v3e3.

(b) α� = α1e1+α2e2+α3e3 = vector corresponding to the one-form
α = α1 dx+ α2 dy + α3 dz.

2. Hodge Star Operator

(a) ∗1 = dx ∧ dy ∧ dz.

(b) ∗dx = dy ∧ dz, ∗dy = −dx ∧ dz, ∗dz = dx ∧ dy,
∗(dy ∧ dz) = dx, ∗(dx ∧ dz) = −dy, ∗(dx ∧ dy) = dz.

(c) ∗(dx ∧ dy ∧ dz) = 1.

3. Cross Product and Dot Product

(a) v × w = [∗(v ∧ w)]�.

(b) (v · w)dx ∧ dy ∧ dz = v ∧ ∗(w).

4. Gradient ∇f = gradf = (df)�.

5. Curl ∇× F = curlF = [∗(dF )]�.

6. Divergence ∇ · F = div F = ∗d(∗F ).

Exercises

� 2.5-1. Let ϕ : R3 → R
2 be given by ϕ(x, y, z) = (x+ z, xy). For

α = ev du+ u dv ∈ Ω1(R2) and β = u du ∧ dv

compute α ∧ β, ϕ∗α, ϕ∗β, and ϕ∗α ∧ ϕ∗β.

� 2.5-2. Given

α = y2 dx ∧ dz + sin(xy) dx ∧ dy + ex dy ∧ dz ∈ Ω2(R3)

and

X = 3
∂

∂x
+ cos z

∂

∂y
− x2 ∂

∂z
∈ X(R3),

compute dα and iXα.
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� 2.5-3. (a) Denote by Λk(Rn) the vector space of all skew-symmetric k-
linear maps on R

n. Prove that this space has dimension n!/k! (n−k)!
by showing that a basis is given by {ei1 ∧ · · · ∧ eik | i1 < · · · < ik},
where {e1, . . . , en} is a basis of Rn and {e1, . . . , en} is its dual basis;
that is, ei(ej) = δij .

(b) If μ ∈ Λn(Rn) is nonzero, prove that the map v ∈ R
n �→ ivμ ∈

Λn−1(Rn) is an isomorphism.

(c) If M is a smooth n-manifold and μ ∈ Ωn(M) is nowhere vanishing
(in which case it is called a volume form), show that the map X ∈
X(M) �→ iXμ ∈ Ωn−1(M) is a module isomorphism over F(M).

� 2.5-4. Let α = αi dx
i be a closed one-form in a ball around the origin in

R
n. Show that α = df for

f(x1, . . . , xn) =

∫ 1

0

αj(tx
1, . . . , txn)xj dt.

� 2.5-5. (a) Let U be an open ball around the origin in R
n and α ∈ Ωk(U)

a closed form. Verify that α = dβ, where

β(x1, . . . , xn)

=

(∫ 1

0

tk−1αji1...ik−1
(tx1, . . . , txn)xj dt

)
dxi1 ∧ · · · ∧ dxik−1 ,

and where the sum is over i1 < · · · < ik−1. Here,

α = αj1...jk dx
j1 ∧ · · · ∧ dxjk ,

where j1 < · · · < jk and where α is extended to be skew-symmetric
in its lower indices.

(b) Deduce the Poincaré lemma from (a).

2.6 Lie Derivatives

The dynamic definition of the Lie derivative is as follows. Let α be a k-form
and let X be a vector field with flow ϕt. The Lie derivative of α along
X is given by

£Xα = lim
t→0

1

t
[(ϕ∗

tα)− α] =
d

dt
ϕ∗
tα

∣∣∣∣
t=0

. (2.6.1)

This definition together with properties of pull backs yields the following.
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2.6.1 Theorem (Lie Derivative Theorem). Using the above notation, we
have

d

dt
ϕ∗
tα = ϕ∗

t£Xα. (2.6.2)

This fundamental formula holds also for time-dependent vector fields.
If f is a real-valued function on a manifold M and X is a vector field on

M , the Lie derivative of f along X is the directional derivative

£Xf = X[f ] := df ·X. (2.6.3)

In coordinates on M ,

£Xf = Xi ∂f

∂xi
. (2.6.4)

If Y is a vector field on a manifold N and ϕ : M → N is a diffeomorphism,
the pull back ϕ∗Y is a vector field on M defined by

(ϕ∗Y )(x) = Txϕ
−1 ◦ Y ◦ ϕ(x). (2.6.5)

Two vector fields X on M and Y on N are said to be ϕ-related if

Tϕ ◦X = Y ◦ ϕ. (2.6.6)

Clearly, if ϕ : M → N is a diffeomorphism and Y is a vector field on N ,
ϕ∗Y and Y are ϕ-related. For a diffeomorphism ϕ, the push forward is
defined, as for forms, by ϕ∗ = (ϕ−1)∗.

Jacobi–Lie Brackets. In Section 1.8 we discussed the Jacobi–Lie bracket
for vector fields in R

n and saw its importance for the analysis of control
systems.
We now extend this operation to vector fields on manifolds. If M is a

finite-dimensional (smooth) manifold, then the set of vector fields on M
coincides with the set of derivations on F(M).10 This identification is as
follows. Given a vector fieldX ∈ X(M) define the map θX : F(M) → F(M)
by f → X[f ], where X[f ](x) = df(x) ·X(x), which in coordinates is just
the directional derivative

X[f ] = Xi ∂f

∂xi

with, as usual, a sum understood on the index i. This map θX is a derivation
in that it is linear and satisfies the Leibniz rule for products. Conversely,
any derivation is given in this fashion.
Given two vector fields X and Y on M , one can check that the map

f �→ X[Y [f ]]− Y [X[f ]] is a derivation; thus, it determines a unique vector
field denoted by [X,Y ] and called the Jacobi–Lie bracket of X and Y .

10The same result is true for Ck manifolds and vector fields if k ≥ 2. This property
is false for infinite-dimensional manifolds; see Abraham, Marsden, and Ratiu [1988].
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In coordinates,

[X,Y ]j = Xi ∂Y
j

∂xi
− Y i ∂X

j

∂xi
= (X · ∇)Y j − (Y · ∇)Xj , (2.6.7)

and in general, where we identify X,Y with their local representatives,

[X,Y ] = DY ·X −DX · Y. (2.6.8)

There is an interesting link between the Jacobi–Lie bracket and the Lie
derivative as follows. Defining £XY = [X,Y ] gives the Lie derivative of
Y along X. Then the Lie derivative theorem holds with α replaced by Y .

The Lie bracket of two vector fields has a geometric meaning in terms of
successive applications of the flows of the two vector fields in the forward
and reverse directions. We discussed this in Section 1.8. We invite the reader
to generalize it to the context of manifolds.
If a set of vector fields Xi is such that there exist functions γijk such

that
[Xi, Xj ] = γijkXk,

then the set is said to be involutive. As we shall see later, it is in this
case that one generates no new directions by bracketing, and so this is an
impediment to showing controllability. This may be a good time to reread
the Heisenberg example in Section 1.8.

Algebraic Definition of the Lie Derivative. The algebraic approach
to the Lie derivative on forms or tensors proceeds as follows. Extend the
definition of the Lie derivative from functions and vector fields to differen-
tial forms, by requiring that the Lie derivative be a derivation; for example,
for one-forms α, write

£X〈α, Y 〉 = 〈£Xα, Y 〉+ 〈α,£XY 〉 , (2.6.9)

where X,Y are vector fields and 〈α, Y 〉 = α(Y ). More generally,

£X(α(Y1, . . . , Yk)) = (£Xα)(Y1, . . . , Yk) +

k∑
i=1

α(Y1, . . . ,£XYi, . . . , Yk),

(2.6.10)
where X,Y1, . . . , Yk are vector fields and α is a k-form.

2.6.2 Proposition. The dynamic and algebraic definitions of the Lie deri-
vative of a differential k-form are equivalent.

Cartan’s Magic Formula. A very important formula for the Lie deriva-
tive is given by the following.

2.6.3 Theorem. For X a vector field and α a k-form on a manifold M ,
we have

£Xα = diXα+ iXdα. (2.6.11)
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This is proved by a lengthy but straightforward calculation.
Another property of the Lie derivative is the following: If ϕ : M → N is

a diffeomorphism, then

ϕ∗£Y β = £ϕ∗Y ϕ
∗β

for Y ∈ X(N), β ∈ Ωk(N). More generally, if X ∈ X(M) and Y ∈ X(N)
are ψ related, that is, Tψ ◦X = Y ◦ψ for ψ : M → N a smooth map, then

£Xψ∗β = ψ∗£Y β for all β ∈ Ωk(N).

Volume Forms and Divergence. An n-manifold M is said to be ori-
entable if there is a nowhere-vanishing n-form μ on it; μ is called a volume
form , and it is a basis of Ωn(M) over F(M). Two volume forms μ1 and μ2

on M are said to define the same orientation if there is an f ∈ F(M) with
f > 0 and such that μ2 = fμ1. Connected orientable manifolds admit pre-
cisely two orientations. A basis {v1, . . . , vn} of TmM is said to be positively
oriented relative to the volume form μ on M if μ(m)(v1, . . . , vn) > 0. Note
that the volume forms defining the same orientation form a convex cone in
Ωn(M); that is, if a > 0 and μ is a volume form, then aμ is again a volume
form, and if t ∈ [0, 1] and μ1, μ2 are volume forms, then tμ1 + (1− t)μ2 is
again a volume form. The first property is obvious. To prove the second, let
m ∈ M and let {v1, . . . , vn} be a positively oriented basis of TmM relative
to the orientation defined by μ1, or equivalently (by hypothesis) by μ2.
Then μ1(m)(v1, . . . , vn) > 0, μ2(m)(v1, . . . , vn) > 0, so that their convex
combination is again strictly positive.
If μ ∈ Ωn(M) is a volume form, since £Xμ ∈ Ωn(M), there is a function,

called the divergence of X relative to μ and denoted divμ(X) or simply
div(X), such that

£Xμ = divμ(X)μ. (2.6.12)

From the dynamic approach to Lie derivatives it follows that divμ(X) = 0
iff F ∗

t μ = μ, where Ft is the flow of X. This condition says that Ft is
volume-preserving. If ϕ : M → M , since ϕ∗μ ∈ Ωn(M), there is a
function, called the Jacobian of ϕ and denoted by Jμ(ϕ) or simply J(ϕ),
such that

ϕ∗μ = Jμ(ϕ)μ. (2.6.13)

Thus, ϕ is volume-preserving iff Jμ(ϕ) = 1. The inverse function theorem
shows that ϕ is a local diffeomorphism iff Jμ(ϕ) �= 0 on M .

There are a number of valuable identities relating the Lie derivative, the
exterior derivative, and the interior product. For example, if Θ is a one-form
and X and Y are vector fields, identity 6 in the following table gives

dΘ(X,Y ) = X[Θ(Y )]− Y [Θ(X)]−Θ([X,Y ]). (2.6.14)
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The following list of identities will be a useful reference for the remainder
of the text.

Identities for Vector Fields and Forms

1. Vector fields on M with the bracket [X,Y ] form a Lie algebra; that
is, [X,Y ] is real bilinear and skew-symmetric, and Jacobi’s identity
holds:

[[X,Y ], Z] + [[Z,X], Y ] + [[Y, Z], X] = 0.

Locally,

[X,Y ] = DY ·X −DX · Y = (X · ∇)Y − (Y · ∇)X ,

and on functions,

[X,Y ][f ] = X[Y [f ]]− Y [X[f ]].

2. For diffeomorphisms ϕ and ψ,

ϕ∗[X,Y ] = [ϕ∗X,ϕ∗Y ] and (ϕ ◦ ψ)∗X = ϕ∗ψ∗X.

3. The forms on a manifold constitute a real associative algebra with ∧
as multiplication. Furthermore, α∧β = (−1)klβ∧α for k- and l-forms
α and β, respectively.

4. For maps ϕ and ψ,

ϕ∗(α ∧ β) = ϕ∗α ∧ ϕ∗β and (ϕ ◦ ψ)∗α = ψ∗ϕ∗α.

5. d is a real linear map on forms, ddα = 0, and

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ

for α a k-form.

6. For α a k-form and X0, . . . , Xk vector fields,

(dα)(X0, . . . , Xk) =

k∑
i=0

(−1)iXi[α(X0, . . . , X̂i, . . . , Xk)]

+
∑

0≤i<j≤k

(−1)i+jα([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk) ,

where X̂i means that Xi is omitted. Locally,

dα(x)(v0, . . . , vk) =
k∑

i=0

(−1)iDα(x) · vi(v0, . . . , v̂i, . . . , vk).
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7. For a map ϕ,ϕ∗dα = dϕ∗α.

8. Poincaré Lemma. If dα = 0, then α is locally exact; that is, there
is a neighborhood U about each point on which α = dβ. The same
result holds globally on a contractible manifold.

9. iXα is real bilinear in X, α, and for h : M → R,

ihXα = hiXα = iXhα.

Also, iX iXα = 0 and

iX(α ∧ β) = iXα ∧ β + (−1)kα ∧ iXβ

for α a k-form.

10. For a diffeomorphism ϕ,

ϕ∗(iXα) = iϕ∗X(ϕ∗α);

if f : M → N is a mapping and Y is f -related to X, i.e., Tf ◦X =
Y ◦ f , then

iY f
∗α = f∗iXα.

11. £Xα is real bilinear in x, α, and

£X(α ∧ β) = £Xα ∧ β + α ∧£Xβ.

12. Cartan’s Magic Formula: £Xα = diXα+ iXdα.

13. For a diffeomorphism ϕ,

ϕ∗£Xα = £ϕ∗Xϕ∗α;

if f : M → N is a mapping and Y is f -related to X, then

£Y f
∗α = f∗£Xα.

14. For vector fields X,X1, . . . , Xk and a k-form α,

(£Xα)(X1, . . . , Xk) =X[α(X1, . . . , Xk)]

−
k∑

i=1

α(X1, . . . , [X,Xi], . . . , Xk).

Locally,

(£Xα)(x) · (v1, . . . , vk) = (Dαx ·X(x))(v1, . . . , vk)

+
k∑

i=1

αx(v1, . . . ,DXx · vi, . . . , vk).
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15. The following identities hold:

(a) £fXα = f£Xα+ df ∧ iXα;

(b) £[X,Y ]α = £X£Y α−£Y £Xα;

(c) i[X,Y ]α = £X iY α− iY £Xα;

(d) £Xdα = d£Xα;

(e) £X iXα = iX£Xα.

16. If M is a finite-dimensional manifold, X = X l∂/∂xl, and

α = αi1...ikdx
i1 ∧ · · · ∧ dxik ,

where i1 < · · · < ik, then the following formulas hold:

dα =

(
∂αi1...ik

∂xl

)
dxl ∧ dxi1 ∧ · · · ∧ dxik ,

iXα = X lαli2...ikdx
i2 ∧ · · · ∧ dxik ,

£Xα = X l

(
∂αi1...ik

∂xl

)
dxi1 ∧ · · · ∧ dxik

+ αli2...ik

(
∂X l

∂xi1

)
dxi1 ∧ dxi2 ∧ · · · ∧ dxik + · · · .

Exercises

� 2.6-1. Consider the two-form β on R
3 given by

β = x dy ∧ dz + y dx ∧ dz + zdx ∧ dy

and the vector fields X, Y on R
3 defined by

X = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
; Y =

∂

∂x
+

∂

∂y
+

∂

∂z
.

(a) Is β closed? exact?

(b) Compute iXβ.

(c) Find the flow Ft of X.



2.7 Stokes’s Theorem, Riemannian Manifolds, Distributions 97

(d) Compute
d

dt

∣∣∣∣
t=0

F ∗
t β and

d

dt

∣∣∣∣
t=0

F ∗
t Y .

� 2.6-2. Let M be an n-manifold, ω ∈ Ωn(M) a volume form, X,Y ∈ X(M),
and f, g : M → R smooth functions such that f(m) �= 0 for all m. Prove
the following identities:

(a) divfω(X) = divω(X) +X[f ]/f ;

(b) divω(gX) = g divω(X) +X[g];

(c) divω([X,Y ]) = X[divω(Y )]− Y [divω(X)].

� 2.6-3. Let μ = dx ∧ dy ∧ dz denote the standard volume form on R
3 and

let

X = a
∂

∂x
+ b

∂

∂y
+ c

∂

∂z
(2.6.15)

where a, b, c are differentiable functions of R3 be an arbitrary vector field.
Show that the formula (2.6.12) gives the usual definition of divergence for
the vector field on R

3.

� 2.6-4. Show that the partial differential equation

∂f

∂t
=

n∑
i=1

Xi(x1, . . . , xn)
∂f

∂xi

with initial condition f(x, 0) = g(x) has the solution f(x, t) = g(Ft(x)),
where Ft is the flow of the vector field (X1, . . . , Xn) in R

n whose flow is
assumed to exist for all time. Show that the solution is unique. Generalize
this exercise to the equation

∂f

∂t
= X[f ]

for X a vector field on a manifold M .

� 2.6-5. Show that if M and N are orientable manifolds, so is M ×N .

2.7 Stokes’s Theorem, Riemannian
Manifolds, Distributions

The basic idea behind the definition of the integral of an n-form ω on an
oriented n-manifold M is to pick a covering by coordinate charts and to
sum up the ordinary integrals of f(x1, . . . , xn) dx1 · · · dxn in these charts,
where

ω = f(x1, . . . , xn) dx1 ∧ · · · ∧ dxn
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is the local representative of ω, being careful not to count overlaps twice.
The change of variables formula guarantees that the result, denoted by∫
M

ω, is well defined. Literally carrying this out as stated would involve
some fairly serious combinatorial problems in keeping track of overlaps
of coordinate charts. Thus, an alternative approach using a tool called
partitions of unity (a bunch of positive functions that add up to one) is often
used, since it makes the bookkeeping fairly easy. See Abraham, Marsden,
and Ratiu [1988] for details.
If one has an oriented manifold with boundary, then the boundary ∂M

inherits a compatible orientation. This proceeds in a way that generalizes
the relation between the orientation of a surface and its boundary that one
learns in the classical Stokes’s theorem in R

3.

2.7.1 Theorem (Stokes’s Theorem). Suppose that M is a compact, ori-
ented k-dimensional manifold with boundary ∂M . Let α be a smooth (k−1)-
form on M . Then ∫

M

dα =

∫
∂M

α. (2.7.1)

Special cases of Stokes’s theorem are as follows:

The Integral Theorems of Calculus. Stokes’s theorem generalizes
and synthesizes the classical theorems:

(a) Fundamental Theorem of Calculus.∫ a

b

f ′(x) dx = f(b)− f(a). (2.7.2)

(b) Green’s Theorem. For a region Ω ⊂ R
2,∫∫

Ω

(
∂Q

∂x
− ∂P

∂y

)
dx dy =

∫
∂Ω

P dx+Qdy. (2.7.3)

(c) Divergence Theorem. For a region Ω ⊂ R
3,∫∫∫

Ω

div F dV =

∫∫
∂Ω

F · n dA. (2.7.4)

(d) Classical Stokes’s Theorem. For a surface S ⊂ R
3,∫∫

S

{(
∂R

∂y
− ∂Q

∂z

)
dy ∧ dz

+

(
∂P

∂z
− ∂R

∂x

)
dz ∧ dx+

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy

}

=

∫∫
S

n · curl F dA =

∫
∂S

P dx+Qdy +Rdz, (2.7.5)

where F = (P,Q,R).
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Notice that the Poincaré lemma generalizes the vector calculus theorems
in R

3 saying that if curl F = 0, then F = ∇f , and if div F = 0, then
F = ∇×G. Recall that it states, If α is closed, then locally α is exact; that
is, if dα = 0, then locally α = dβ for some β.

Change of Variables. Another basic result in integration theory is the
global change of variables formula.

2.7.2 Theorem (Change of Variables). Suppose that M and N are ori-
ented n-manifolds and F : M → N is an orientation-preserving diffeomor-
phism. If α is an n-form on N (with, say, compact support), then

∫
M

F ∗α =

∫
N

α.

Riemannian Manifolds. A differentiable manifold with a positive def-
inite symmetric quadratic form 〈·, ·〉 on every tangent space TMx is called
a Riemannian manifold. The quadratic form 〈·, ·〉 itself, often denoted
by g( , ) is called a Riemannian metric.

In local coordinates qi on M and the associated tangent coordinates q̇i

the length of a vector v = viei is then given by

g(v, v) = gij(q)v
ivj , gij = gji ,

where as above, the summation convention is in force.
Let f be a smooth function on M . The gradient vector field associated

with f , which is denoted by grad f or ∇f , is defined by

df(v) = 〈grad f, v〉

for any v ∈ TM . The flow of the vector field grad f is called the gradient
flow of f .

Frobenius’s Theorem. A basic result called Frobenius’s theorem
plays a critical role in control theory, and we shall have much to say about
it later in the book. For now we just state it briefly, since it is normally
regarded as part of the theory of differentiable manifolds. The theory of dis-
tributions plays a key role in both the theory of nonholonomic systems and
nonlinear control theory. Two useful references (from the control-theoretic
point of view) are Sussmann [1973] and Isidori [1995].

2.7.3 Definition. A smooth distribution on a manifold M is the as-
signment to each point x ∈ M of the subspace spanned by the values at x
of a set of smooth vector fields on M ; i.e., it is a “smooth” assignment of
a subspace to the tangent space at each point, also called a vector sub-
bundle. We denote the distribution by Δ and the subspace at x ∈ M by
Δx ⊂ TxM .
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A distribution is said to be involutive if for any two vector fields X,Y
on M with values in Δ, [X,Y ] is also a vector field with values in Δ.
The subbundle Δ is said to be integrable if for each point x ∈ M there is
a local submanifold of M containing x such that its tangent bundle equals
Δ restricted to this submanifold. See Figure 2.7.1.

x
Δx

integral manfolds of Δ

Figure 2.7.1. The integral manifolds of a distribution.

If Δ is integrable, the local integral manifolds can be extended to get,
through each x ∈ M , a maximal integral manifold, which is an immersed
submanifold of M . The collection of all maximal integral manifolds through
all points of M forms a foliation.

2.7.4 Theorem (Frobenius’s Theorem). Involutivity of Δ is equivalent
to the integrability of Δ, which in turn is equivalent to the existence of a
foliation on M whose tangent bundle equals Δ.

Given a set of smooth vector fields X1, . . . , Xd on M we denote the
distribution defined by their span by

Δ = span{X1, . . . , Xd}.

The distribution at any point is denoted by Δx. A distribution Δ on M
is said to be nonsingular (or regular) on M if there exists an integer d
such that dim(Δx) = d for all x ∈ M . A point x ∈ M is said to be a regular
point if there exists a neighborhood U of x such that Δ is nonsingular on
U . Otherwise, the point is said to be singular.

Note that the Frobenius theorem as stated above applies to nonsingu-
lar or regular distributions. For generalized distributions in the sense of
Sussmann, see, for example, Vaisman [1994].
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Exercises

� 2.7-1. Let Ω be a closed bounded region in R
2. Use Green’s theorem to

show that the area of Ω equals the line integral

1

2

∫
∂Ω

(x dy − y dx).

� 2.7-2. On R
2\{(0, 0)} consider the one-form

α = (x dy − y dx)/(x2 + y2).

(a) Show that this form is closed.

(b) Using the angle θ as a variable on S1, compute i∗α, where i : S1 → R
2

is the standard embedding.

(c) Show that α is not exact.

� 2.7-3. Suppose that a set of linearly independent vector fields Xi has the
property that there are functions γijk such that

[Xi, Xj ] = γijkXk.

Show that the span of these vector fields defines an integrable distribution.

� 2.7-4. The magnetic monopole. Let B = gr/r3 be a vector field on
Euclidean three-space minus the origin, where r = ‖r‖. Show thatB cannot
be written as the curl of something.

� 2.7-5. Let M be a manifold and ω a two-form on M .

(a) Consider the distribution D on M defined at x ∈ M by

Dx = {vx ∈ TxM | ivx
ω = 0} .

Develop a condition(s) that guarantees that this distribution is inte-
grable.

(b) Let ω on R
4, with coordinates (x, y, z, w), be given by

ω = dx ∧ dy + dx ∧ dz + dx ∧ dw.

Compute the distribution D in this case. Does your condition hold?

(d) Find an explicit example of such a vector field X for the example in
part (b).
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2.8 Lie Groups

Lie groups arise in discussing conservation laws for mechanical and control
systems and in the analysis of systems with some underlying symmetry.
There is a huge literature on the subject. Useful references include Abra-
ham and Marsden [1978], Marsden and Ratiu [1999], Sattinger and Weaver
[1986], and Libermann and Marle [1987].

2.8.1 Definition. A Lie group is a smooth manifold G that is a group and
for which the group operations of multiplication, (g, h) �→ gh for g, h ∈ G,
and inversion, g �→ g−1, are smooth.

Before giving a brief description of some of the theory of Lie groups
we mention an important example: the group of linear isomorphisms of
R

n to itself. This is a Lie group of dimension n2 called the general linear
group and denoted by GL(n,R). The conditions for a Lie group are easily
checked: This is a manifold, since it is an open subset of the linear space of
all linear maps of Rn to itself; the group operations are smooth, since they
are algebraic operations on the matrix entries.

2.8.2 Definition. A matrix Lie group is a set of invertible n × n ma-
trices that is closed under matrix multiplication and that is a submanifold
of Rn×n.

A theorem in Lie group theory shows that (although this is by no means
obvious) one could equivalently define a matrix Lie group to be a (topo-
logically) closed subgroup of GL(n,R). All of the Lie groups discussed in
this book will be matrix Lie groups.

Lie Algebras. Lie groups are frequently studied in conjunction with Lie
algebras, which are associated with the tangent spaces of Lie groups as
we now describe. To begin with, we state a generalization of the result
established in Exercise 2.2-3.

2.8.3 Proposition. Let G be a matrix Lie group, and let A,B ∈ TIG (the
tangent space to G at the identity element). Then AB −BA ∈ TIG.

Our proof makes use of the following lemma.

2.8.4 Lemma. Let R be an arbitrary element of a matrix Lie group G,
and let B ∈ TIG. Then RBR−1 ∈ TIG.

Proof. Let RB(t) be a curve in G such that RB(0) = I and R′
B(0) = B.

Then S(t) = RRB(t)R
−1 ∈ G for all t, and S(0) = I. Hence S′(0) ∈ TIG,

proving the lemma. �

Proof of Proposition. Let RA(s) be a curve in G such that RA(0) = I
and R′

A(0) = A. Thus, by the preceding lemma, S(t) = RA(t)BRA(t)
−1 ∈

TIG. Hence S′(t) ∈ TIG, and in particular, S′(0) = AB −BA ∈ TIG. �
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2.8.5 Definition. For any pair of n×n matrices A,B we define the ma-
trix Lie bracket [A,B] = AB −BA.

2.8.6 Proposition. The matrix Lie bracket operation has the following
two properties:

(i) For any n×n matrices A and B, [B,A] = −[A,B] (this is the property
of skew-symmetry).

(ii) For any n× n matrices A, B, and C,

[[A,B], C] + [[B,C], A] + [[C,A], B] = 0.

(This is known as the Jacobi identity.)

The proof of this proposition involves a straightforward calculation and
is left to the reader.

2.8.7 Definition. A (matrix) Lie algebra g is a set of n × n matrices
that is a vector space with respect to the usual operations of matrix addition
and multiplication by real numbers (scalars) and that is closed under the
matrix Lie bracket operation [· , ·].
2.8.8 Proposition. For any matrix Lie group G, the tangent space at the
identity TIG is a Lie algebra.

Proof. This is an immediate consequence of the fact that TIG is a vector
space and the preceding proposition. �

One can also define a Lie algebra g abstractly as a vector space over a
field F on which a Lie bracket operation [·, ·] is defined such that g is closed
under this operation; [A,αB + βC] = α[A,B] + β[A,C] for any α, β ∈ F
and A,B,C ∈ g; and properties (i) and (ii) in theorem 2.8.6 hold.
For A ∈ g we define the operator adX to be the operator that maps

B ∈ g to [A,B]. We write adA B = [A,B].

2.8.9 Definition. A representation of a Lie algebra g on a vector space
V is a mapping ρ from g to the linear transformations of V such that for
A,B ∈ g

(i) ρ(αA+ βB) = αρ(A) + βρ(B)

(ii) ρ([A,B]) = ρ(A)ρ(B)− ρ(B)ρ(A).

If the map ρ is 1-1, the representation is said to be faithful.

For a Lie algebra g the map A → adA is a representation of the Lie
algebra g, with g itself the vector space of the representation. This is called
the adjoint representation. The ad-action of the Lie algebra on itself is
the infinitesimal action of the Adjoint action of the group—see later in this
section and, for example, Arnold [1989].
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The Killing form of a Lie algebra is the symmetric bilinear form de-
fined by

κ(A,B) = Trace(adA adB) . (2.8.1)

One can show that a Lie algebra is semi-simple, i.e. it contains no
abelian ideals other than {0}, if and only if the Killing form is nondegener-
ate. Further, the group G corresponding to g is compact if and only if the
Killing form is negative definite. See, for example, Sattinger and Weaver
[1986] for proofs.
A great deal of the structure of a Lie group may be inferred from studying

the Lie algebra. Before discussing important general relationships between
Lie groups and Lie algebras, we describe several examples that play an
important role in mechanics and control.

The Special Orthogonal Group. The set of all elements of O(n) hav-
ing determinant 1 is a subgroup called the special orthogonal group,
denoted by SO(n). Because any X ∈ O(n) satisfies XXT = I, it follows
that detX = ±1. We could also characterize SO(n) as the connected com-
ponent of the identity element in O(n). Thus, TI SO(n) = TI O(n). From
this observation and the calculation carried out for GL(n,R) in Section 2.2,
TI SO(n) is just the set of n×n skew-symmetric matrices, which we denote
by so(n).

The Symplectic Group. Suppose n = 2l (that is, n is even) and con-
sider the nonsingular skew-symmetric matrix

J =

(
0 I
−I 0

)
,

where I is the l × l identity matrix. It is an exercise left to the reader to
verify that

Sp(l) = {X ∈ GL(2l) | XJXT = J}
is a group. It is called the symplectic group. Again referring to the exam-
ple of GL(n,R) in Section 2.2, we find that this matrix Lie algebra TI Sp(l)
is the set of n × n matrices satisfying JY T + Y J = 0. We denote this Lie
algebra by sp(l).

The Heisenberg Group. Consider the set of all 3 × 3 matrices of the
form ⎛

⎝1 x y
0 1 z
0 0 1

⎞
⎠

where x, y, and z are real numbers. It is straightforward to show that this
is a group, and since it is a submanifold of the set of all 3× 3 matrices, it
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is a Lie group. Call it H. The corresponding Lie algebra may be written
down from the definition. Specifically,

X1(t) =

⎛
⎝1 t 0
0 1 0
0 0 1

⎞
⎠ , X2(t) =

⎛
⎝1 0 0
0 1 t
0 0 1

⎞
⎠ , X3(t) =

⎛
⎝1 0 t
0 1 0
0 0 1

⎞
⎠

are three curves in H that pass through the identity when t = 0. The
derivatives X ′

i(0) are elements of the Lie algebra:

A =

⎛
⎝0 1 0
0 0 0
0 0 0

⎞
⎠ , B =

⎛
⎝0 0 0
0 0 1
0 0 0

⎞
⎠ , C =

⎛
⎝0 0 1
0 0 0
0 0 0

⎞
⎠ ,

respectively. Since three independent parameters are used to specify H, H
is three-dimensional. The matrices A, B, and C are linearly independent
and span the Lie algebra. The commutation relations for the Lie brackets
of these three basis elements are [A,B] = C, [A,C] = 0, and [B,C] = 0.
This Lie algebra is called the Heisenberg algebra.
Recall that we encountered this algebra in Section 1.8 when we analyzed

the Heisenberg system, and we shall encounter it several times again.

The Euclidean Group. Consider the Lie group of all 4× 4 matrices of
the form (

R v
0 1

)
,

where R ∈ SO(3) and v ∈ R
3. This group is usually denoted by SE(3)

and is called the special Euclidean group. Let the associated matrix be
denoted by

E(R, v) =

(
R v
0 1

)
.

The corresponding Lie algebra, se(3), is six-dimensional and is spanned by
⎛
⎜⎜⎝
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ .

The special Euclidean group is of central interest in mechanics since it de-
scribes the set of rigid motions and coordinate transformations of 3-space.
More specifically, suppose there are two coordinate frames A and B lo-
cated in space such that the origin of the B-frame has A-frame coordinates
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v = (v1, v2, v3)
T and such that the unit vectors in the principal B-frame

coordinate directions are (r11, r21, r31)
T , (r12, r22, r32)

T , and (r13, r23, r33)
T

with respect to A-frame coordinates. The rigid motion that moves the
A-frame into coincidence with the B-frame is specified by the rotation⎛

⎝r11 r12 r13
r21 r22 r23
r31 r32 r33

⎞
⎠

followed by the translation v = (v1, v2, v3)
T . Thus a point with A-frame

coordinates x = (x1, x2, x3) is moved under the rigid motion to a new
location whose A-frame coordinates are Rx+ v.

Remark. The above discussion is nice and concrete, but gives the im-
pression that one needs coordinate frames to define the Euclidean group.
More intrinsically, the Euclidean group SE(3) can also be defined simply
as the set of all isometries of R3 to itself. (It is a famous theorem of Mazur
and Ulam that such isometries are, in fact, affine maps.)

Resuming the previous discussion, we observe that the group SE(3) is
also associated with the set of rigid coordinate transformations of R3 as
follows. Suppose a point Q is located in space and has A-frame coordinates
(xA

1 , x
A
2 , x

A
3 )

T and B-frame coordinates (xB
1 , x

B
2 , x

B
3 )

T . The relationship be-
tween these coordinate descriptions is given by

xA = RxB + v.

Let G be a matrix Lie group and let g = TIG be the corresponding Lie
algebra. The dimensions of the differentiable manifold G and the vector
space g are of course the same, and there must be a one-to-one local cor-
respondence between a neighborhood of 0 in g and a neighborhood of the
identity element I in G. One explicit local correspondence is provided by
the exponential mapping exp : g → G, which we now describe.
Let A ∈ R

n×n (the space of n × n matrices). We define exp(A) by the
series

I +A+
1

2
A2 +

1

3!
A3 + · · · . (2.8.2)

2.8.10 Proposition. The series (2.8.2) is absolutely convergent.

Proof. The ijth entry in the nth term of this matrix series is bounded
in absolute value by (n − 1)ān/n!, where ā = maxij{|aij |}. Hence, the
ijth element in each term in the series is bounded in absolute value by
the corresponding term in the absolutely convergent series eān = 1+ ān+
1
2 ā

2n2+· · · . Hence each entry in the series of matrices converges absolutely,
proving the proposition. �

2.8.11 Proposition. Let G be a matrix Lie group with corresponding Lie
algebra g. If A ∈ g, then exp(At) ∈ G for all real numbers t.
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Group Actions. We now define the action of a Lie group G on a man-
ifold M . Roughly speaking, a group action is a group of transformations
of M indexed by elements of the group G and whose composition in M is
compatible with group multiplication in G.

2.8.12 Definition. Let M be a manifold and let G be a Lie group. A left
action of a Lie group G on M is a smooth mapping Φ : G × M → M
such that (i) Φ(e, x) = x for all x ∈ M , (ii) Φ(g,Φ(h, x)) = Φ(gh, x) for all
g, h ∈ G and x ∈ M , and (iii) Φ(g, ·) is a diffeomorphism for each g ∈ G.

We often use the convenient notation gx for Φ(g, x) and think of the
group element g acting on the point x ∈ M . The condition above then
simply reads (gh)x = g(hx).

Similarly, one can define a right action, which is a map Ψ : M×G → M
satisfying Ψ(x, e) = x and Ψ(Ψ(x, g), h) = Ψ(x, gh).

Orbits. Given a group action of G on M , for a given point x ∈ M , we
let

Orbx = {gx | g ∈ G} ,

called the group orbit through x. It can be shown that orbits are always
smooth (possibly immersed) manifolds. This notion generalizes the notion
of an orbit of a dynamical system, for the flow of a vector field on M can
be thought of as an action of R on M , and in this case the general notion
of orbit reduces to the familiar notion of orbit.
A simple example is the action of SO(3) on R

3 given by matrix multipli-
cation: The action of A ∈ SO(3) on a point x ∈ R

3 is simply the product
Ax. In this case, the orbit of the origin is a single point (the origin itself),
while the orbit of another point is the sphere through that point.

Infinitesimal Generator. An important concept for mechanics is that
of the infinitesimal generator of the group action:

2.8.13 Definition. Suppose Φ : G × M → M is an action. For ξ ∈ g,
the map Φξ : R × M → M defined by Φξ(t, x) = Φ(exp(tξ), x) is an R-
action—that is, a flow—on M . The vector field on M that generates this
flow, namely

ξM (x) =
d

dt

∣∣∣∣
t=0

Φξ(t, x) . (2.8.3)

is called the infinitesimal generator of the action corresponding to ξ.

A basic important identity relating the Jacobi–Lie bracket of generators
to the Lie algebra bracket is as follows (see, for example, Marsden and
Ratiu [1999] for the proof):

[ξQ, ηQ] = −[ξ, η]Q . (2.8.4)



108 2. Mathematical Preliminaries

Left- and Right-Invariant Vector Fields. A Lie group acts on its
tangent bundle by the tangent map. Given ξ ∈ g we can consider the action
of G on ξ either on the left or the right: TeLgξ or TeRgξ, where Lg and Rg

denote left and right translations, respectively; for example, Lg : G → G
is the map given by g′ �→ gg′. We can abbreviate these expressions and
write gξ and ξg, respectively. For matrix Lie groups this action is just
multiplication on the left or right.
Allowing g ∈ G to vary over the group, the vectors TeLgξ, TeRgξ define

left- and right-invariant vector fields, that is, vector fields satisfying

(ThLg)X(h) = X(gh) or (ThRg)X(h) = X(hg) , (2.8.5)

respectively. If we let ξL(g) = TeLgξ, then the Jacobi–Lie bracket of two
such left-invariant vector fields in fact gives the Lie algebra bracket:

[ξL, ηL](g) = [ξ, η]L(g).

For the right-invariant case, one inserts a minus sign.

Spatial and Body Velocities. There are two ways to pull back a tan-
gent vector to a group to the identity. One can think of these as “body” or
“spatial” velocities denoted by

ξb =
(
TgLg−1

)
ġ and ξs =

(
TgRg−1

)
ġ , (2.8.6)

respectively.

Adjoint and Coadjoint Actions. We also define the adjoint action
of G on its Lie algebra to be given by

Adg ξ = Tg−1Lg

(
TeRg−1ξ

)
(2.8.7)

for ξ ∈ g.
For matrix groups this is simply conjugation by the matrix g: gξg−1.

Thus ξs = Adg ξ
b.

The dual action Ad∗g−1 is called the coadjoint action.

Quotient Spaces and Equivariance. If we have an action of a group G
on M and the action is free (that is, if gx = x for any x implies that g is the
identity) and if the action is also proper (that is, the map (g, x) �→ (g, gx) is
a proper map: inverse images of compact sets are compact), then it can be
shown (see, for example, Abraham and Marsden [1978]) that the space of
orbits, denoted by M/G, is a smooth manifold and the natural projection
π : M → M/G taking a point to its orbit is a smooth submersion.

If G acts on two manifolds M and N and if f : M → N is equivariant,
that is, f(gx) = gf(x), then f induces, in a natural way, a map of the
quotients: fG : M/G → N/G.
There are similar statements for other equivariant objects. For example,

let X be an equivariant vector field on M ; that is, fixing g and denoting
the map x �→ gx by Φg, we have Φ∗

gX = X. Then X induces, in a natural
way, a vector field XM/G on M/G.
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Exercises

� 2.8-1. A point P in R
3 undergoes a rigid motion associated with E(R1, v1)

followed by a rigid motion associated with E(R2, v2). What matrix element
of SE(3) is associated with the composite of these motions in the given
order?

� 2.8-2. A coordinate frame B is located with respect to a coordinate frame A
as follows. B is initially coincident with A, but is displaced by the rigid mo-
tion associated with E(R1, v1) and is then subsequently further displaced
by E(R2, v2). What matrix element of SE(3) is associated with the coor-
dinate transformation from the A-frame to the B-frame? (That is, what
matrix element of SE(3) is used to describe A-frame coordinates of a point
in terms of the B-frame coordinates of the same point?)

� 2.8-3. Let Y ∈ sp(l) be partitioned into l × l blocks,

Y =

(
A B
C D

)
.

Write down a complete set of equations involving A, B, C, and D that
must be satisfied if Y ∈ sp(l). Deduce that the dimension of sp(l) as a real
vector space is 2l2 + l = n(n+ 1)/2, and consequently, dimSp(l) = 2l2 + l.

� 2.8-4. Suppose the n×n matrices A and M satisfy AM+MAT = 0. Show
that exp(At)M exp(AT t) = M for all t. This direct calculation shows that
for A ∈ so(n) or A ∈ sp(l), we have exp(At) ∈ SO(n) or exp(At) ∈ Sp(l),
respectively.

2.9 Fiber Bundles and Connections

In this section we give a somewhat brief but, we hope, instructive treatment
of fiber bundles and related concepts. We describe both theory and some
illustrative examples. Our exposition is somewhat more explicit than is
usual. References are given to more comprehensive treatments.

Fiber Bundles. Fiber bundles provide a basic geometric structure for
the understanding of many mechanical and control problems, in particular
for nonholonomic problems. References include Abraham, Marsden, and
Ratiu [1988], Steenrod [1951], and Schutz [1980].

A fiber bundle essentially consists of a given space (the base) together
with another space (the fiber) attached at each point, plus some compati-
bility conditions. More formally, we have the following:

2.9.1 Definition. A fiber bundle is a space Q for which the following
are given: a space B called the base space, a projection π : Q → B with
fibers π−1(b), b ∈ B, homeomorphic to a space F , a structure group G of
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homeomorphisms of F into itself, and a covering of B by open sets Uj,
satisfying

(i) the bundle is locally trivial, i.e., π−1(Uj) is homeomorphic to the
product space Uj × F and

(ii) if hj is the map giving the homeomorphism on the fibers above the
set Uj, for any x ∈ Uj ∩ Uk, hj(h

−1
k ) is an element of the structure

group G.

If the fibers of the bundle are homeomorphic to the structure group,
we call the bundle a principal bundle. If the fibers of the bundle are
homeomorphic to a vector space, we call the bundle a vector bundle.

2.9.2 Example. A basic example of a vector bundle is TS1, the tangent
bundle of the circle. The base is S1, the fibers are homeomorphic to R, and
since the tangent space can be represented by any nonzero real number,
the structure group is ratios of nonzero real numbers and may be identified
with R\{0}.
The frame bundle of a manifold has the same structure group as TM ,

but the fibers are the set of all bases for the tangent space. Hence for TS1

the fibers of the frame bundle are homeomorphic to its structure group
R\{0}, and hence the frame bundle is a principal bundle. In fact, all frame
bundles are principal. �
Connections. An important additional structure on a bundle is a con-
nection or Ehresmann connection; see, for example, Kobayashi and
Nomizu [1963], Marsden, Montgomery, and Ratiu [1990], or Bloch, Krish-
naprasad, Marsden, and Ratiu [1996]. We follow the treatment in the last
of these here.
However, before we give the precise mathematical definitions we will give

a somewhat intuitive discussion of the nature of and need for connections.
A nice reference in this regard is the book by Burke [1985].

Suppose we have a bundle and consider (locally) a section of this bundle,
i.e., a choice of a point in the fiber over each point in the base. We call
such a choice a “field.”
The idea is to single out fields that are “constant.” For vector fields on

the plane, for example, it is clear what we want such fields to be—they
should be literally constant. For vector fields on a manifold or an arbitrary
bundle, we have to specify this notion. Such fields are called “horizontal”
and are also key to defining a notion of derivative, or rate of change of a
vector field along a curve.11A connection is used to single out horizontal
fields, and is chosen to have other desirable properties, such as linearity.
For example, the sum of two constant fields should still be constant. As we

11Recall that we already have a notion of derivative, namely the Lie derivative. How-
ever, Lie derivatives do not give one a way of differentiating vector fields along curves.
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shall see below, we can specify horizontality by taking a class of fields that
are the kernel of a suitable form. Note that we do not in general have a
metric; given one, there is a natural choice of connection and horizontality
on the tangent bundle, as we shall see below.
More formally, we consider a bundle with projection map π and as usual

let Tqπ denote its tangent map at any point. We call the kernel of Tqπ at
any point the vertical space and denote it by Vq.

2.9.3 Definition. An Ehresmann connection A is a vector-valued one-
form on Q that satisfies:

(i) A is vertical valued: Aq : TqQ → Vq is a linear map for each point
q ∈ Q.

(ii) A is a projection: A(vq) = vq for all vq ∈ Vq.

The key property of the connection is the following: If we denote by Hq

or horq the kernel of Aq and call it the horizontal space, the tangent
space to Q is the direct sum of the Vq and Hq; i.e., we can split the tangent
space to Q into horizontal and vertical parts. For example, we can project
a tangent vector onto its vertical part using the connection. Note that the
vertical space at Q is tangent to the fiber over q.
Later on when we discuss nonholonomic systems we shall choose the

connection so that the constraint distribution is the horizontal space of the
connection.
Now define the bundle coordinates qi = (rα, sa) for the base and fiber.

The coordinate representation of the projection π is just projection onto
the factor r, and the connection A can be represented locally by a vector-
valued differential form ωa:

A = ωa ∂

∂sa
, where ωa(q) = dsa +Aa

α(r, s)dr
α.

We can see this as follows: Let

vq =
∑
β

ṙβ
∂

∂rβ
+
∑
b

ṡb
∂

∂sb

be an element of TqQ. Then ωa(vq) = ṡa +Aa
αṙ

α and

A(vq) = (ṡa +Aa
αṙ

α)
∂

∂sa
.

This clearly demonstrates that A is a projection, since when A acts again
only dsa results in a nonzero term, and this has coefficient unity.

2.9.4 Example. It may be helpful to the reader to keep in mind here the
physical example of the vertical rolling disk from Chapter 1. There it is
natural to choose r1 = θ, r2 = ϕ, s1 = x, s2 = y. Then the connection
given by the constraints gives ω1 = dx− cosϕdθ and ω2 = dy − sinϕdθ.
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Note that we use a different notation, namely ωa, for the local coordinate
representation of the connection A for three reasons. First, it is common
in the literature to use ω to stand for constraint one-forms. Second, in the
preceding formula, it is standard to define the components of the connection
A by Aa

α as shown, reflecting the fact that the connection is a projection; to
distinguish this use of indices on A from the use of indices on the constraint
one-forms, it is convenient to use a different letter. Third, we want to regard
ωa as (coordinate-dependent) differential forms, as opposed to A, which is
a vertical-valued form; again, a different letter emphasizes this fact. Note
in particular that the exterior derivative of A is not defined, but we can
(locally) take the exterior derivative of ωa. In fact, this will give an easy
way to compute the curvature, as we shall see. �
Horizontal Lift. Given an Ehresmann connection A, a point q ∈ Q, and
a vector vr ∈ TrB tangent to the base at a point r = π(q) ∈ B, we can
define the horizontal lift of vr to be the unique vector vhr in Hq that
projects to vr under Tqπ. If we have a vector Xq ∈ TqQ, we shall also write
its horizontal part as

horXq = Xq −A(q) ·Xq.

In coordinates, the vertical projection is the map

(ṙα, ṡa) �→ (0, ṡa +Aa
α(r, s)ṙ

α) ,

while the horizontal projection is the map

(ṙα, ṡa) �→ (ṙα,−Aa
α(r, s)ṙ

α).

Curvature. Next, we give the basic notion of curvature.

2.9.5 Definition. The curvature of A is the vertical-vector-valued two-
form B on Q defined by its action on two vector fields X and Y on Q by

B(X,Y ) = −A([horX,horY ]),

where the bracket on the right-hand side is the Jacobi–Lie bracket of vector
fields obtained by extending the stated vectors to vector fields.

One can show that curvature is independent of the extension of the vector
fields.
Notice that this definition shows that the curvature exactly measures the

failure of the horizontal distribution to be integrable.
Recall from equation (2.6.14) that we have the following useful identity

for the exterior derivative dα of a one-form α (which could be vector-space
valued) on a manifold M acting on two vector fields X,Y :

(dα)(X,Y ) = X[α(Y )]− Y [α(X)]− α([X,Y ]).
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This identity shows that in coordinates, one can evaluate the curvature
by writing the connection as a form ωa in coordinates, computing its ex-
terior derivative (component by component), and restricting the result to
horizontal vectors, that is, to the constraint distribution. In other words,

B(X,Y ) = dωb(horX, horY )
∂

∂sb
,

so that the local expression for curvature is given by

B(X,Y )b = Bb
αβX

αY β , (2.9.1)

where the coefficients Bb
αβ are given by

Bb
αβ = −

(
∂Ab

α

∂rβ
− ∂Ab

β

∂rα
+Aa

α

∂Ab
β

∂sa
−Aa

β

∂Ab
α

∂sa

)
. (2.9.2)

2.9.6 Example (Connections on TR1). The idea of a connection can
be illustrated by considering the simplest possible example: a connection
on the bundle TQ = TR1 with coordinates (x, ẋ). We may define the
horizontal space to be the kernel of the form

dẋ+A1
1(x, ẋ)dx,

where A1
1 is a smooth function of x and ẋ. More specifically, we can choose

a connection that is linear in the velocities:

dẋ+ a(x)ẋdx.

Here A is the R-valued form

(dẋ+ a(x)ẋdx)
∂

∂ẋ
.

Elements of T (TQ) are of the form

vq = ẋ
∂

∂x
+ ẍ

∂

∂ẋ
,

and their projection onto the vertical space is

A(vq) = (ẍ+ a(x)ẋ2)
∂

∂ẋ
.

The kernel of A, i.e., the horizontal vectors, is the span of

∂

∂x
− a(x)ẋ

∂

∂ẋ
.

Note that the standard choice is a(x) = 0; i.e., the standard horizontal
space is the span of the vectors ∂/∂x. �
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Linear Connections, Affine Connections, and Geodesics. Here we
consider how Ehresmann connections specialize to linear connections and
affine connections defined in the tangent bundle, and we shall derive the
geodesic equations. (As above, a good related reference for some of these
ideas, but with a rather different approach, is Burke [1985].)
As above, we use bundle coordinates (rα, sa), and we specify the connec-

tion by the one-forms

ωa(q) = dsa +Aa
α(r, s)dr

α,

and the action of A on a tangent vector vq = (ṙα, ṡa) is given by

A(vq) = (ṡa +Aa
αṙ

α)
∂

∂sa
. (2.9.3)

For linear connections we require that the sum of two (local) horizontal
sections be horizontal; i.e., if (ṙα, ṡa(r)) and (ṙα, ˙̂sa(r)) are horizontal, then

so should be
(
ṙα, ṡa(r) + ˙̂sa(r)

)
. Thus if we have

ṡa +Aa
α(r, s)ṙ

α = ˙̂sa +Aa
α(r, ŝ)ṙ

α = 0,

then we require
ṡa + ˙̂sa +Aa

α(r, s+ ŝ)ṙα = 0.

Hence we take the connection coefficients be of the form

Aa
α(r, s) = Γa

αb(r)s
b. (2.9.4)

If the bundle is the tangent bundle, these are called the components of
the affine connection in the tangent bundle.

In the tangent bundle we have sa = ṙa. We define geodesic motion
along a curve r(t) as being one for which the tangent vector is parallel
transported along the curve; i.e., vq along the curve is always horizontal,
or A(vq) is zero. Making use of (2.9.3), this condition is

r̈a + Γa
bcṙ

bṙc = 0. (2.9.5)

This is the equation of geodesic motion. We can also determine this equa-
tion by another method, developed in what follows.

2.9.7 Example (Connections on TR1 continued). Returning to our
system on TR1 suppose now that we have a curve x(t) such that its tangent
vector is parallel transported along the curve. In this case vq along the curve
being horizontal, or having A(vq) equal to zero, gives

ẍ+ a(x)ẋ2 = 0.

For a(x) = 0 this reduces to ẍ = 0, the equation of motion for a free
particle on the line. Our example gives the generalization of this equation
for arbitrary connections. �
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Affine Connections and the Covariant Derivative. In the tangent
bundle we can specify a linear connection by its action on vector fields, or
by a map from vector fields (X,Y ) to the vector field ∇XY that satisfies
for smooth functions f and g and vector fields X,Y, Z:

(i) ∇fX+gY Z = f∇XZ + g∇Y Z,

(ii) ∇X(Y + Z) = ∇XY +∇XZ,

(iii) ∇X(fY ) = f∇XY + (df ·X)Y ,

where df ·X is the directional derivative of f along X, or Lie derivative.
Given a basis of vector fields ∂

∂rj
we can represent ∇ by

∇∂/∂ri

∂

∂rj
= Γk

ij

∂

∂rk
. (2.9.6)

For X,Y vector fields given locally by X = Xi(∂/∂ri), Y = Y i(∂/∂ri), (i)
and (iii) imply

∇XY =

(
Xj ∂Y

i

∂rj
+XkY jΓi

kj

)
∂

∂ri
. (2.9.7)

The geodesic equations above then may be written

∇ṙ ṙ = 0. (2.9.8)

We can see this directly by a simple computation, again using (i) and (iii):

∇ṙi(∂/∂ri)ṙ
j ∂

∂rj
= ṙi∇∂/∂ri ṙ

j ∂

∂rj

= ṙi
∂

∂ri
ṙj

∂

∂rj
+ ṙiṙjΓk

ij

∂

∂rk

= (r̈j + Γj
ikṙ

iṙk)
∂

∂rj
(by the chain rule).

Sometimes we will write

∇ṙ ṙ =
D2r

dt2
,

DX

dt
= ∇ṙ(t)X. (2.9.9)

We define DX/dt to be the covariant derivative.
By (2.9.7), in local coordinates

DX

dt
= ∇ṙX =

(
ṙj

∂Xi

∂rj
+Γi

kjX
kṙj
)

∂

∂ri
=
(
Ẋi+Γi

kjX
kṙj
) ∂

∂ri
, (2.9.10)

where ṙ(t) = ṙi(∂/∂ri). For X = ṙ we of course recover the geodesic
equations.
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Curvature and Torsion. For an affine connection we define the curva-
ture and torsion as follows. For X, Y , and Z arbitrary vector fields on M ,
the curvature tensor R and the torsion tensor are defined by

R(X,Y )(Z) = ∇X(∇Y Z)−∇Y (∇XZ)−∇[X,Y ](Z)

and
T (X,Y ) = ∇XY −∇Y X − [X,Y ]t.

Riemannian Connections. Now suppose M is endowed with a Rie-
mannian metric g. This means that we can define orthonormal bases of
Tp(M) at each p ∈ M , and can define a subbundle P ′ of the frame bundle
P whose fibers are orthonormal bases, and P ′ has structure group O(n).
This subbundle is said to be a reduced bundle of P .
There exists a unique affine connection on M , called the Riemannian

connection or Levi–Civita connection, such that ∇g = 0 and the tor-
sion tensor T vanishes. An affine connection is called a metric connection
if ∇g = 0.
If the metric is given by g =

∑
gijdx

idxj , the connection coefficients,
which are called Christoffel symbols, are given by

Γi
jk =

1

2
gil
{
∂gjl
∂xk

+
∂glk
∂xj

− ∂gjk
∂xl

}
,

where, as usual, there is a sum over the index l understood.

Principal Connections. We now consider the special case of principal
connections. We start with a free and proper group action of a Lie group
G with Lie algebra g on a manifold Q and construct the projection map
π : Q → Q/G; this setup is also referred to as a principal bundle. The
kernel kerTqπ (the tangent space to the group orbit through q) is called
the vertical space of the bundle at the point q and is denoted by verq.

2.9.8 Definition. A principal connection on the principal bundle π :
Q → Q/G is a map (referred to as the connection form) As : TQ → g
that is linear on each tangent space (i.e., As is a g-valued one-form) and
is such that

(i) As(ξQ(q)) = ξ for all ξ ∈ g and q ∈ Q, and

(ii) As is equivariant:

As(TqΦg(vq)) = Adg As(vq)

for all vq ∈ TqQ and g ∈ G, where Φg denotes the given action of G
on Q and where Ad denotes the adjoint action of G on g.

The horizontal space of the connection at q ∈ Q is the linear space

horq = {vq ∈ TqQ | As(vq) = 0} .
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Thus, at any point, we have the decomposition

TqQ = horq ⊕ verq .

Often one finds connections defined by specifying the horizontal spaces
(complementary to the vertical spaces) at each point and requiring that
they transform correctly under the group action. In particular, notice that
a connection is uniquely determined by the specification of its horizontal
spaces, a fact that we will use later on. We will denote the projections onto
the horizontal and vertical spaces relative to the above decomposition using
the same notation; thus, for vq ∈ TqQ, we write

vq = horq vq + verq vq.

The projection onto the vertical part is given by

verq vq = (As(vq))Q(q),

and the projection to the horizontal part is thus

horq vq = vq − (As(vq))Q(q).

The projection map at each point defines an isomorphism from the hor-
izontal space to the tangent space to the base; its inverse is called the
horizontal lift. Using the uniqueness theory of ODEs one finds that a
curve in the base passing through a point π(q) can be lifted uniquely to a
horizontal curve through q in Q (i.e., a curve whose tangent vector at any
point is a horizontal vector).
Since we have a splitting, we can also regard a principal connection as

a special type of Ehresmann connection. However, Ehresmann connections
are regarded as vertical-valued forms, whereas principal connections are
regarded as Lie-algebra-valued. Thus, the Ehresmann connection A and
the connection one-form As are different, and we will distinguish them;
they are related in this case by

A(vq) = (As(vq))Q(q).

The general notions of curvature and other properties that hold for gen-
eral Ehresmann connections specialize to the case of principal connections.
As in the general case, given any vector field X on the base space, using
the horizontal lift, there is a unique vector field Xh that is horizontal and
that is π-related to X; that is, at each point q, we have

Tqπ ·Xh(q) = X(π(q)),

and the vertical part is zero:

(As(X
h
q ))Q(q) = 0.
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It is well known (see, for example, Abraham, Marsden, and Ratiu [1988])
that the relation of being π-related is bracket-preserving; in our case, this
means that

hor [Xh, Y h] = [X,Y ]h,

where X and Y are vector fields on the base.

2.9.9 Definition. The covariant exterior derivative D of a Lie-algebra-
valued one-form α is defined by applying the ordinary exterior derivative d
to the horizontal parts of vectors:

Dα(X,Y ) = dα(horX, horY ).

The curvature of a connection As is its covariant exterior derivative, and
it is denoted by Bs.

Thus, Bs is the Lie-algebra-valued two-form given by

Bs(X,Y ) = dAs(horX, horY ).

Using the identity

(dα)(X,Y ) = X[α(Y )]− Y [α(X)]− α([X,Y ])

together with the definition of horizontal shows that for two vector fields
X and Y on Q, we have

Bs(X,Y ) = −As([horX, horY ]),

where the bracket on the right-hand side is the Jacobi–Lie bracket of vector
fields. The Cartan structure equations say that if X and Y are vector
fields that are invariant under the group action, then

Bs(X,Y ) = dAs(X,Y )− [As(X),As(Y )],

where the bracket on the right-hand side is the Lie algebra bracket. This
follows readily from the definitions, the fact that [ξQ, ηQ] = −[ξ, η]Q (see
equation (2.8.4)), the first property in the definition of a connection, and
writing hor X = X − ver X, and similarly for Y , in the preceding formula
for the curvature. The proof of the structure equations is given in the
Internet supplement.

Remark. Given a general distribution D ⊂ TQ on a manifold Q one can
also define its curvature in an analogous way directly in terms of its lack
of integrability. Define vertical vectors at q ∈ Q to be the quotient space
TqQ/Dq and define the curvature acting on two horizontal vector fields u, v
(that is, two vector fields that take their values in the distribution) to be
the projection onto the quotient of their Jacobi–Lie bracket. One can check
that this operation depends only on the point values of the vector fields,
so indeed defines a two-form on horizontal vectors.
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Relationship of Riemannian Curvature to the Curvature of a
Principal Connection. The tangent bundle of a Riemannian manifold
is a particular case of a principal bundle. In this case the structure group
is the orthogonal group O(n) and Bs is a Lie algebra-valued 2-form with
values in the Lie algebra o(n) of O(n). The curvature Bs(X,Y ) is equal in
this case to the Riemannian curvature tensor R(X,Y ).

Riemmannian Curvature in Local Coordinates. To compute a for-
mula for the Riemannian curvature in local coordinates set X = ∂

∂xi ≡ ∂i

and similarly set Y = ∂j and Z = ∂k. Set (R(X,Y )Z)
l
= Rl

ijkZ
iXjY k.

Then

Rl
ijk =

∂

∂xj
Γl
ik − ∂

∂xk
Γl
ij + Γl

jsΓ
sik − Γl

ksΓ
s
ij . (2.9.11)

The Weitzenböck Connection. The Weitzenböck connection arises by
assuming that the affine connection still satisfies ∇g = 0 (i.e., is g-metric
compatible) but has zero curvature and non-zero torsion (in contrast to the
Levi-Civita connection. We denote this connection by ∇w. This connection
can be used in analyzing Hamiltonization of nonholonomic systems (see
Fernandez and Bloch [2011]).

The Maurer–Cartan Equations. A consequence of the structure equa-
tions relates curvature to the process of left and right trivialization.

2.9.10 Theorem (Maurer–Cartan Equations). Let G be a Lie group and
let ρ : TG → g be the map that right translates vectors to the identity:

ρ(vg) = TgRg−1 · vg.
Then

dρ− [ρ, ρ] = 0.

Proof. Note that ρ is literally a connection on G for the left action. In
considering this, keep in mind that for the action by left multiplication we
have ξQ(q) = TeRg · ξ. On the other hand, the curvature of this connection
must be zero, since the shape space G/G is a point. Thus, the result follows
from the structure equations. �

Of course, there is a similar result for the left trivialization λ, and we get
the identity

dλ+ [λ, λ] = 0.

Bianchi Identities. The Bianchi identities are a famous set of identities
for the Riemann curvature tensor of a given Riemannian metric. We defined
the Riemann curvature tensor above for general affine connections. The
relation between the Riemannian connection and the present formalism is
to use the frame bundle as the bundleQ and think of it as a principal bundle
over the underlying manifold M and the group SO(n) as the structure
group. Then the curvature as defined here coincides with the Riemann



120 2. Mathematical Preliminaries

curvature tensor. We will not go into this in detail here, since it is not
needed for our present purposes, and instead we refer to Spivak [1979] or
Kobayashi and Nomizu [1963] for an exposition of this. It is interesting that
in the context of principal connections, the general proof is rather easy.

2.9.11 Theorem (Bianchi Identities). We have the identity DBs = 0, that
is, for any vector fields u, v, w on Q,

dBs(hor(u), hor(v), hor(w)) = 0.

Proof. From the structure equations and the fact that d2As = 0 we find
that dBs = d[As,As]. Using the identity relating the exterior derivative
and the Jacobi–Lie bracket of vector fields, we get

(d[As,As])(hor(u), hor(v), hor(w))

= hor(u)
[
[As,As](hor(v), hor(w))

]
+ cyclic

− ([As,As])([hor(u), hor(v)], hor(w))− cyclic.

But all the terms in this expression are zero, since A vanishes on horizontal
vectors. �

Local Formulas for the Connection. Pick a local trivialization of the
bundle; that is, locally in the base, we write Q = Q/G × G, where the
action of G is given by left translation on the second factor. We choose
coordinates rα on the first factor and a basis ea of the Lie algebra g of G.
We write coordinates of an element ξ relative to this basis as ξa. Let tangent
vectors in this local trivialization at the point (r, g) be denoted by (u,w).
We will write the action of As on this vector simply as As(u,w). Using this
notation, we can write the connection form in this local trivialization as

As(u,w) = Adg(wb +Ab(r) · u), (2.9.12)

where wb is the left translation of w to the identity (that is, the expression
of w in “body coordinates”). The preceding equation defines the expression
Ab(r). We define the connection components by writing

Aloc(r) · u = Aa
αu

αea. (2.9.13)

We can also phrase this local representation in the following way:

2.9.12 Proposition. In local coordinates q = (g, r) a principal connection
one-form can be written as

As = Adg
(
g−1dg +A(r)dr

)
, (2.9.14)

so that
As · q̇ = Adg

(
g−1ġ +A(r)ṙ

)
, (2.9.15)

where g−1ġ denotes the lifted action of g−1 on the tangent vector ġ.
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Proof. The infinitesimal generator of the action of the group on itself
by the left action is of the form ξG(g) = ξg, where again we are using
shorthand for the lifted action. (Note that this is a push forward of ξ by
the right action!)
Condition (i) of definition 2.9.8 then implies that

As(r, g) · (0, ξg) = ξ.

Writing

(0, ξg) = ξg
∂

∂g

we see that this holds if

As = Adg
(
g−1dg

)
+A(r, g)dr.

Thus As · q̇ must be of the form

As(q) · (ṙ, ġ) = ġg−1 +A(r, g)ṙ.

Now the equivariance condition (ii) of definition 2.9.8 implies

Adh A(r, g) = A(r, hg). (2.9.16)

Setting h = g−1 in (2.9.16) implies Adg−1 A(r, g) = A(r, e) or A(r, g) =
Adg A(r, e) ≡ Adg A(r), giving the result. �

Local Formulas for the Curvature. Similarly, the curvature can be
written in a local representation as

Bs((u1, w1), (u2, w2)) = Adg(Bb(r) · (u1, u2)),

which again serves to define the expression Bb(r). We can also define the
coordinate form for the local expression of the curvature by writing

Bb(r) · (u1, u2) = Ba
αβu

α
1u

β
2 ea.

Then one has the formula

Bb
αβ =

(
∂Ab

β

∂rα
− ∂Ab

α

∂rβ
− Cb

acAa
αAc

β

)
,

where Cb
ac are the structure constants of the Lie algebra defined by

[ea, ec] = Cb
aceb.
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Parallel Translation and Holonomy Groups. Let P be a principal
bundle with a connection and C a piecewise differentiable curve in its base
space M with beginning point p and endpoint q. Suppose x is a point on
the fiber over p. Then there is a unique curve C∗

x in P starting at x such
that π(C∗

x) = C and each tangent vector to C∗
x is horizontal. The curve C∗

x

is said to be a lift of C that starts at x, and the map that takes x to the lift
of q, the endpoint of the lifted curve, is said to be parallel translation.

Now suppose C is a closed curve starting at p. Parallel translation then
maps the point x to a point in the same fiber over p, xa say, a ∈ G. Thus
each closed curve at p and fiber point x determines an element of G, and
the set of all such elements forms a subgroup of G called the holonomy
group of the connection with reference point x.

Holonomy for the Heisenberg Control System. A nice example of
holonomy in action is for the Heisenberg control system:

ẋ = u1,

ẏ = u2,

ż = xu2 − yu1.

(2.9.17)

Here we consider the bundle R
3 with base the xy-plane, fiber z, and con-

nection

A = (dz − xdy + ydx)
∂

∂z
. (2.9.18)

A horizontal curve has tangent vectors (ẋ, ẏ, xẏ − yẋ).
Now suppose we consider a loop in the base with z starting at the point

z0. Then the final position in the fiber, zf , is given by

zf − z0 =

∮
x dy − y dx. (2.9.19)

By Green’s theorem the right-hand side is just 2A, where A is the area of
the loop! Hence the term “nonholonomic integrator.” This is also sometimes
referred to as the area rule. Recalling also our analysis of Lie brackets,
note that if the loop is a square with sides of length ε, then A = ε2.

We will see more analysis of this in Chapter 6, where we analyze the
control of nonholonomic systems. For more on holonomy and phases, see
Chapter 3.
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Exercises

� 2.9-1. Consider the trivial bundle R
4 with base R

2 parametrized by coor-
dinates (θ, ϕ) and fibers R

2 parametrized by coordinates (x, y). Compute
the curvature of the connection given by the vertical rolling disk constraints
ω1 = dx− cosϕ dθ and ω2 = dy − sinϕ dθ.

� 2.9-2. Consider the same space as above but with connection given by the
integrable constraints ω1 = dx− cos θ dθ and ω2 = dy− sin θ dθ. Show that
the curvature of this connection is zero.



3
Basic Concepts in Geometric
Mechanics

In this chapter we develop and summarize some basic concepts in the
geometric mechanics of holonomic systems (see Chapter 1), which provide
background for parts of the rest of this book. Readers well versed in this
material may omit part or all of it. Parts of the rest of the book can be
read without this material, so the reader can return to it as the need arises.

Geometric Mechanics. The geometric view of mechanics has a rich
history, going back to the founders of mechanics, but especially Euler,
Lagrange, Hamilton, Jacobi, and Poincaré. After a historical lull starting
about 1910, there have been many modern developments that blossomed
starting about 1950. One of the goals, recognizing the fundamental work
of Lagrange and Hamilton, was to make the covariance properties of me-
chanics explicit by working in the context of manifolds from the beginning.
The two branches, Hamiltonian and Lagrangian mechanics, have led to two
possible starting points for mechanics.
The Lagrangian side of mechanics focuses on variational principles for its

basic formulation, while the Hamiltonian side focuses on geometric struc-
tures called symplectic or Poisson structures. These two sides interact with
each other, at least on the most basic level, through what is called the
Legendre transformation.
We shall begin (for no particular reason) with the Hamiltonian side of

the story. The reader is referred to one of the standard books, such as

© Springer-Verlag New York 2015
A.M. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary
Applied Mathematics 24, DOI 10.1007/978-1-4939-3017-3 3
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Abraham and Marsden [1978], Arnold [1989], Guillemin and Sternberg
[1984], Libermann and Marle [1987], or Marsden and Ratiu [1999], for
proofs that we have omitted.

3.1 Symplectic and Poisson Manifolds
and Hamiltonian Flows

3.1.1 Definition. Let P be a manifold and let F(P ) denote the set of
smooth real-valued functions on P . Consider a bracket operation denoted by

{ , } : F(P )×F(P ) → F(P ).

The pair (P, { , }) is called a Poisson manifold if { , } satisfies:

(PB1) bilinearity {f, g} is bilinear in f and g.
(PB2) anticommutativity {f, g} = −{g, f}.
(PB3) Jacobi’s identity {{f, g}, h}+ {{h, f}, g}+ {{g, h}, f} = 0.
(PB4) Leibniz’s rule {fg, h} = f{g, h}+ g{f, h}.
Notice that conditions (PB1)–(PB3) make (F(P ), { , }) into a Lie algebra.
If (P, { , }) is a Poisson manifold, then one can show that because of

(PB1) and (PB4), there is a tensor B on P assigning to each z ∈ P a linear
map B(z) : T ∗

z P → TzP such that

{f, g}(z) = 〈B(z) · df(z),dg(z)〉. (3.1.1)

Here 〈 , 〉 denotes the natural pairing between vectors and covectors. Be-
cause of (PB2), B(z) is antisymmetric. Letting zI , I = 1, . . . ,M , denote
coordinates on P , (3.1.1) becomes

{f, g} = BIJ ∂f

∂zI
∂g

∂zJ
. (3.1.2)

(By our summation convention, there is a summation understood on re-
peated indices.) Antisymmetry means that BIJ = −BJI , and Jacobi’s
identity reads

BLI ∂B
JK

∂zL
+BLJ ∂B

KI

∂zL
+BLK ∂BIJ

∂zL
= 0. (3.1.3)

3.1.2 Definition. The pair (P, { , }) is called an almost Poisson man-
ifold if all the conditions of Definition 3.1.1 hold except (PB3) (Jacobi’s
identity).

As we shall see later, in Chapter 5, the notion of almost Poisson struc-
tures comes up in nonholonomic systems, and the failure of Jacobi’s identity
is related to the nonintegrability of the constraints that we have seen al-
ready in Chapter 1. See Cannas Da Silva and Weinstein [1999] for more
mathematical information about almost Poisson manifolds.
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3.1.3 Definition. Let (P1, { , }1) and (P2, { , }2) be Poisson manifolds. A
mapping ϕ : P1 → P2 is called Poisson if for all f, h ∈ F(P2), we have

{f, h}2 ◦ ϕ = {f ◦ ϕ, h ◦ ϕ}1. (3.1.4)

In other words, Poisson maps are maps that preserve the Poisson struc-
ture in the obvious way. We define almost Poisson maps in the same way
relative to almost Poisson structures. Often, Poisson structures come from
symplectic structures, which are defined next.

3.1.4 Definition. Let P be a manifold and Ω a 2-form on P . The pair
(P,Ω) is called a symplectic manifold if Ω satisfies

(S1) dΩ = 0 (i.e., Ω is closed) and

(S2) Ω is nondegenerate.

In this context we can define the abstract notion of Hamilton’s equations,
whose solution curves will be integral curves of Hamiltonian vector fields.

3.1.5 Definition. Let (P,Ω) be a symplectic manifold and let f ∈ F(P ).
Let Xf be the unique vector field on P satisfying

Ωz(Xf (z), v) = df(z) · v for all v ∈ TzP. (3.1.5)

We call Xf the Hamiltonian vector field of f . Hamilton’s equations
are the differential equations on P given by

ż = Xf (z). (3.1.6)

If (P,Ω) is a symplectic manifold, define the Poisson bracket operation
{·, ·} : F(P )×F(P ) → F(P ) by

{f, g} = Ω(Xf , Xg). (3.1.7)

The construction (3.1.7) makes (P, { , }) into a Poisson manifold. In other
words, if a manifold is symplectic, then it is also Poisson.

3.1.6 Proposition. Every symplectic manifold is Poisson.

The converse is not true; for example, the zero bracket makes any man-
ifold Poisson. A nontrivial example of Poisson brackets that are not sym-
plectic is the Lie–Poisson structure associated with the rigid body, a notion
that is defined in Section 3.6.

Hamiltonian vector fields are defined on Poisson manifolds as follows.

3.1.7 Definition. Let (P, { , }) be a Poisson manifold and let f ∈ F(P ).
Define Xf to be the unique vector field on P satisfying

Xf [k] : = 〈dk,Xf 〉 = {k, f} for all k ∈ F(P ).

We call Xf the Hamiltonian vector field of f .
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A check of the definitions shows that in the symplectic case, Defini-
tions 3.1.5 and 3.1.7 of Hamiltonian vector fields coincide.

If (P, { , }) is a Poisson manifold, there are therefore three equivalent
ways to write Hamilton’s equations for H ∈ F(P ), as is readily verified:

(i) ż = XH(z).

(ii) ḟ = df(z) ·XH(z) for all f ∈ F(P ).

(iii) ḟ = {f,H} for all f ∈ F(P ).

The Flow of a Hamiltonian Vector Field. Hamilton’s equations de-
scribed in the abstract setting above are very general. They include not
only what one normally thinks of as Hamilton’s canonical equations in
classical mechanics, but Schrödinger’s equation in quantum mechanics as
well. Despite this generality, the theory has a rich structure.
Let H ∈ F(P ), where P is a Poisson manifold. Let ϕt be the flow of

Hamilton’s equations; thus, ϕt(z) is the integral curve of ż = XH(z) start-
ing at z. (If the flow is not complete, restrict attention to its domain of
definition.) There are two basic facts about Hamiltonian flows given in the
next proposition.

3.1.8 Proposition. The following hold for Hamiltonian systems on Pois-
son manifolds:

(i) Each ϕt is a Poisson map.

(ii) H ◦ ϕt = H (conservation of energy).

We refer to the basic references given earlier for the proof. One should
note that the first part of this proposition is true even if H is a time-
dependent Hamiltonian, while the second part is true only when H is in-
dependent of time.
In case (P,Ω) is symplectic, a diffeomorphism ϕ : P → P is Poisson iff

it is symplectic; that is, ϕ∗Ω = Ω. In particular, we get

3.1.9 Proposition. The flow of a Hamiltonian vector field on a symplectic
manifold consists of symplectic diffeomorphisms.

One direct way to prove this is to use the Lie derivative and Cartan’s
magic formula:

d

dt
ϕ∗
tΩ = ϕ∗

t£xH
Ω

= ϕ∗
t (ixH

dΩ+ dixH
Ω)

= ϕ∗
t (ddH) = 0.

Since ϕt is the identity at t = 0, we get ϕ∗
tΩ = Ω for all t.
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If P is 2n dimensional, μ = Ωn is a volume element and so we get

3.1.10 Corollary. (Liouville’s Theorem) The flow of a Hamiltonian
vector field consists of volume-preserving maps.

It is also instructive to prove this by noting that in canonical coordinates,

XH(q, p) =

(
∂H

∂pi
,−∂H

∂qi

)

which has zero divergence by equality of mixed partial derivatives.

Exercises

� 3.1-1. Consider R
2n with coordinates (q1, . . . , qn, p1, . . . , pn). Show that

ω =
∑n

i=1 dq
i ∧ dpi is a symplectic form on R

2n.

� 3.1-2. On a symplectic vector space represent the sympletic form by a
matrix Ω. What is the relationship between this matrix and the matrix B
of the corresponding Poisson bracket?

� 3.1-3. Consider the subset T ⊂ R
2n defined to be the set of all points

(q1, . . . , qn, p1, . . . , pn) ∈ R
2n such that q1 > 0, . . . , qn > 0. Show that

ω =
n∑

i=1

n∑
j=i

dqj

qj
∧ dpi

is a symplectic form on T . Write out the Poisson brackets of the coordinate
functions and a formula for the Poisson bracket of two functions f , g of
(q1, . . . , qn, p1, . . . , pn).

3.2 Cotangent Bundles

Let Q be a given manifold (usually the configuration space of a mechanical
system) and T ∗Q its cotangent bundle. Coordinates qi on Q induce, in a
natural way, coordinates (qi, pj) on the cotangent bundle T ∗Q, called the
canonical cotangent coordinates of T ∗Q.

3.2.1 Proposition. There is a unique 1-form Θ on T ∗Q such that in any
choice of canonical cotangent coordinates,

Θ = pidq
i; (3.2.1)

Θ is called the canonical 1-form. We define the canonical 2-form Ω by

Ω = −dΘ = dqi ∧ dpi (a sum on i is understood). (3.2.2)
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To clarify its covariant nature, one should find an intrinsic definition of
Θ, and there are many such. One of these is to require the identity β∗Θ = β
for any one-form β : Q → T ∗Q. Another is the definition

Θ(wαq
) = 〈αq, TπQ · wαq

〉,

where αq ∈ T ∗
q Q, wαq

∈ Tαq
(T ∗Q), and where πQ : T ∗Q → Q is the

cotangent bundle projection.
In summary, we have the following result:

3.2.2 Proposition. (T ∗Q,Ω) is a symplectic manifold.

In canonical coordinates the Poisson brackets on T ∗Q have the classical
form

{f, g} =
∂f

∂qi
∂g

∂pi
− ∂g

∂qi
∂f

∂pi
, (3.2.3)

where summation on repeated indices is understood.

3.2.3 Theorem. (Darboux’s Theorem) Every symplectic manifold lo-
cally looks like T ∗Q; in other words, on every finite-dimensional symplectic
manifold there are local coordinates in which Ω has the form (3.2.2).1

Hamilton’s equations in these canonical coordinates have the classical
form

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, (3.2.4)

as one can readily check.
The local structure of Poisson manifolds is more complex than what

one obtains in the symplectic case. However, every Poisson manifold is the
union of symplectic leaves; to compute the bracket of two functions in
P , one may do it leaf-wise . In other words, to calculate the bracket of f
and g at z ∈ P , select the symplectic leaf Sz through z, and evaluate the
bracket of f |Sz and g|Sz at z. We shall see a specific case of this method
in Section 3.6.

Exercise

� 3.2-1. Compute the Lagrangian and Hamiltonian equations of motion for
a particle on the surface on the n-sphere. Describe the phase space. Hint:
To compute the motion it is helpful to view the system as an example of
constrained (holonomic) motion.

1See Marsden [1981] and Olver [1988] for a discussion of the infinite-dimensional
case.



3.3 Lagrangian Mechanics and Variational Principles 131

3.3 Lagrangian Mechanics and Variational
Principles

Let Q be a manifold and TQ its tangent bundle. Coordinates qi on Q induce
coordinates (qi, q̇i) on TQ, called tangent coordinates. A mapping L :
TQ → R is called a Lagrangian. Often we choose L to be L = K−V , where
K(v) = 1

2 〈v, v〉 is the kinetic energy associated with a given Riemannian
metric and where V : Q → R is the potential energy.

3.3.1 Definition. Hamilton’s principle singles out particular curves
q(t) by the condition

δ

∫ a

b

L(q(t), q̇(t))dt = 0, (3.3.1)

where the variation is over smooth curves in Q with fixed endpoints.

The precise meaning of the variations was discussed in Section 1.2.
It is interesting to note that (3.3.1) is unchanged if we replace the inte-

grand by L(q, q̇)− d
dtS(q, t) for any function S(q, t). This reflects the gauge

invariance of classical mechanics and is closely related to Hamilton–
Jacobi theory. It is also interesting to note that if one keeps track of the
boundary conditions in Hamilton’s principle, they essentially define the
canonical one-form pidq

i. This turns out to be a useful remark in numer-
ical algorithms as well as in more complex field theories (see Marsden,
Patrick, and Shkoller [1998] and Marsden and West [2001]).

If one prefers, the action principle may be stated as follows: The map

I defined by I(q(·)) =
∫ b
a
L(q(t), q̇(t))dt from the space of curves with

prescribed endpoints in Q to R has a critical point at the curve in question.
In any case, a basic and elementary result of the calculus of variations,
whose proof was already sketched in Chapter 1, is contained in the following
proposition:

3.3.2 Proposition. The principle of critical action for a curve q(t) is
equivalent (assuming sufficient regularity) to the condition that q(t) satisfies
the Euler–Lagrange equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0. (3.3.2)

3.3.3 Definition. Let L be a Lagrangian on TQ and let FL : TQ → T ∗Q
be defined (in coordinates) by

(qi, q̇j) �→ (qi, pj) ,

where pj = ∂L/∂q̇j . We call FL the fiber derivative. (Intrinsically, FL
differentiates L in the fiber direction.)
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A Lagrangian L is called hyperregular if FL is a diffeomorphism. If L is
a hyperregular Lagrangian, we define the corresponding Hamiltonian by

H(qi, pj) = piq̇
i − L.

The change of data from L on TQ to H on T ∗Q is called the Legendre
transform.

One checks that the Euler–Lagrange equations for L are equivalent to
Hamilton’s equations for H.

Second-Order Systems. Consider the projection

πQ : TQ → Q

and assume that L is hyperregular. Define the function HL on TQ by

HL(q, q̇) = FL(q, q̇)q̇ − L(q, q̇), (3.3.3)

so that
H = HL ◦ (FL)−1

. (3.3.4)

We say that a vector field X ∈ Γ(TTQ) is of second order if

πQ∗X(q,q̇) = q̇, q̇ ∈ TqQ.

Setting ΩL = FL∗Ω, we obtain a symplectic form on TQ, since we assumed
that FL is a diffeomorphism. We may now define the Lagrangian vector field
XL ∈ Γ(TTQ), corresponding to the Hamiltonian (3.3.3) as the second-
order vector field satisfying

ΩL(XL, Z) = dHL(Z), (3.3.5)

where Z is an arbitrary vector field on TQ. It is easily verified that XL is
related to the Hamiltonian vector field XH , with Hamiltonian H defined
in (3.3.4), by the relation

FL∗XL = XH .

The system of Lagrangian equations (3.3.2) may now be abstracted by the
dynamical system on TQ given by

v̇ = XL(v), v ∈ TQ. (3.3.6)

A vector field Z on TQ is said to be vertical if πQ∗Z = 0. Using local co-
ordinates one easily shows that (3.3.5) is satisfied identically for all vertical
vector fields and any second-order vector field XL.

Additional Holonomic Constraints. In problem (3.3.1), if we assume
that there are additional holonomic constraints of the form φi(q) = 0,
1 ≤ i ≤ m, then we can extend the principle of critical action to the
augmented variational problem with Lagrange multipliers

δ

∫ b

a

(
L(q, q̇) +

m∑
i=1

λiφi(q)

)
dt = 0 , (3.3.7)
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where the variations are subject to the condition that q is a smooth curve
in Q satisfying φi(q) = 0, 1 ≤ i ≤ m, and q(a) = qa, as well as the endpoint
conditions q(b) = qb, φi(qa) = φi(qb) = 0, 1 ≤ i ≤ m. Set (q(t), q̇(t)) = q̄(t).

Necessary conditions may therefore be written as

i ˙̄qΩL − dHL +

m∑
i=1

λiπ
∗
Qdφi = 0 (3.3.8)

with φi(q) = 0, 1 ≤ i ≤ m.
Suppose that the set

Qc = {q ∈ Q | φi(q) = 0} ⊂ Q

is a regular smooth submanifold of Q. If i : Qc → Q is the inclusion
mapping, then ī = i∗ : TQc → TQ and ī∗π∗

Qdφi = d(φi ◦ πQ ◦ ī) ≡ 0. It
follows that the necessary conditions (3.3.8) are satisfied by simply pulling
back via ī to Qc to obtain a Lagrangian system on Qc with Lagrangian
L ◦ ī. Thus, as long as the holonomic constraints are sufficiently regular,
we may remove the constraints by restricting to the space defined by the
constraints.
More general nonholonomic constraints will be considered later on, in

Chapter 5.

Lagrangian Submanifolds. There is another mechanism by which one
may characterize Hamiltonian systems. Suppose that M is a manifold that
admits a nondegenerate two-form Ω. A distribution D on a submanifold
N ⊂ M is said to be isotropic (coisotropic) if

D⊥
x = {Yx ∈ TxM | Ω(Dx, Yx) = 0}, x ∈ N,

satisfies D⊥
x ⊂ Dx (D⊥

x ⊃ Dx) for all x ∈ N ⊂ M . A distribution D
is said to be Lagrangian if D is both isotropic and coisotropic. In this
case DimDx = 1

2 DimM . A submanifold N ⊂ M , with inclusion map
i : N → M , is said to be Lagrangian when Ω is a symplectic form and
i∗TN is a Lagrangian distribution on N ⊂ M . In the case M = T ∗Q, there
is a natural symplectic form ω, and an induced symplectic form ω̇ on TT ∗Q
given in local coordinates by

ω̇ =
∑
i

dq̇i ∧ dpi +
∑
i

dqi ∧ dṗi.

If XH is a Hamiltonian vector field on T ∗Q, then set

N = {(x,XH(x)) | x ∈ T ∗Q} ⊂ TT ∗Q.

It turns out that N is a Lagrangian submanifold of TT ∗Q (with sym-
plectic form ω̇), and every Lagrangian submanifold of TT ∗Q is locally
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parametrized by a Hamiltonian vector field on T ∗Q. Thus Hamiltonian
vector fields on T ∗Q are equivalently defined by the Lagrangian submani-
folds of TT ∗Q that are parametrized by a single Hamiltonian function on
T ∗Q. See Weinstein [1971], Abraham and Marsden [1978], van der Schaft
[1982, 1983], and, for the Poisson case, Sanchez [1986] for details. We note
that this is also the setting for the generalized Legendre transformation
theory of Tulczyjew [1977].

Invariance Under Coordinate Changes and Rayleigh Dissipation.
An advantage of Lagrangian models of mechanical system dynamics is their
manifest invariance with respect to coordinate changes. One can extend
also these models to include dissipation by defining a dissipation func-
tion D(q, q̇) such that

q̇TDq̇ = rate of dissipation of energy per second.

We generally assume that dissipation functions are quadratic, symmetric,
and positive definite with respect to the generalized velocity variables q̇.
Letting L(q, q̇) be the Lagrangian of the system of interest, the dissipative
equations of motion are given locally by

d

dt

∂L

∂q̇
− ∂L

∂q
+

∂D

∂q̇
= 0. (3.3.9)

We have the following results which are easy to check:

3.3.4 Theorem. If E(q, q̇) is the total energy of the system, then

d

dt
E(q, q̇) = −q̇T

∂D

∂q̇
.

3.3.5 Theorem. The dissipative Lagrangian system is invariant under a
change of coordinates q = Q(q). In particular, if the system dynamics is
given by a Lagrangian L(q, q̇) and dissipation function D(q, q̇), with cor-
responding equation of motion (3.3.9), then the same system dynamics is
prescribed in terms of Q-coordinates by a Lagrangian L(Q, Q̇), dissipation
function D(Q, Q̇), and equations of motion

d

dt

∂L
∂Q̇

− ∂L
∂Q

+
∂D
∂Q̇

= 0.

This type of rate-dependent dissipation is often called Rayleigh dissi-
pation. For a discussion of Rayleigh dissipation on manifolds, see Bloch,
Krishnaprasad, Marsden, and Ratiu [1996]. For a discussion of generalizimg
the conservative/nonconservative/dissipative/gyroscopic force decomposi-
tion to the nonlinear case on R

n, see Zhuraviev [2009].
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3.4 Mechanical Systems with External
Forces

Most mechanical systems interact with the environment through (gener-
alized) forces. The basic mechanisms that describe these interactions are
Newton’s laws and the Lagrange–d’Alembert principle. We describe below
very briefly the Lagrange–d’Alembert principle and its relationship with
constrained dynamics. We will return to this topic in Chapter 5.

Newton’s Laws. To describe a version of Newton’s second law consistent
with our configuration space modeled by the manifold Q, we introduce
axiomatically a bundle isomorphism

P : TQ → T ∗Q , (3.4.1)

where Pq : TqQ → T ∗
q Q defines the relationship between the phase velocity

q̇ ∈ TqQ and the momentum p ∈ T ∗
q Q:

p = Pq(q̇). (3.4.2)

For example, for a single particle on a line with mass m this isomorphism
is simply given by the map (q, v) �→ (q,mv), and more generally, it is given
by the Legendre transformation.
We first need a notion of uniform motion given by Newton’s first law.

We model this as the flow on TQ induced by a second-order vector field
X0 on TQ, which we take to be the geodesic flow with respect to a suitable
metric on Q (see Chapter 2). Now, P∗ : TTQ → TT ∗Q is also a bundle
isomorphism, so P∗X0 defines a vector field on T ∗Q.
Our abstract notion of a force field will be a time-varying one-form

F (t) on Q. Thus, F (t) ∈ Γ(T ∗Q) (a section of the bundle T ∗Q for each t).
If Z is a vector field on Q, then we may lift Z to a function PZ on T ∗Q

by setting

PZ(q, p) = p(Zq), p ∈ T ∗
q Q.

We note that PZ is the momentum function associated with Z (see
Abraham and Marsden [1978] and Section 3.9).

If η is a one-form on Q, then we define the vertical lift of η, denoted
by ηv, which will be a vector field on T ∗Q, by setting

ηv(PZ) = η(Z),

for all vector fields Z on Q. Locally, if η=
∑

i αidq
i, then ηv=

∑
i αi(∂/∂pi).

Our definition of a Newtonian vector field XF corresponding to an
external force field F is the vector field on T ∗Q given by

XF = P∗X0 + F v. (3.4.3)
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Since X0 is of second order, in local coordinates (q, v) for TQ we may write
it in the form

q̇ = v, v̇ = av(q, v).

The dynamical system α̇ = XF (α), α ∈ T ∗Q can therefore be expressed in
local coordinates (q, p) for T ∗Q in the form

ṗ = ap(q, p) + F , (3.4.4)

q̇ = P−1
q (p) ,

where av(q, p) =
d
dtPq(v), v̇ = av(q, v), q̇ = v = P−1

q (p).
The representation (3.4.4) is useful in distinguishing two important com-

ponents of the Newtonian system on T ∗Q. The kinematics are the system
on Q defined locally by

q̇ = P−1
q (p),

which describes the evolution of q with p ∈ TqM as an input. The dynamics
are the system on T ∗Q defined locally by

ṗ = ap(q, p) + F,

which describes the evolution of p with F ∈ T ∗
q M as an input. Note that

our input space in each of the examples above is a vector bundle.
For an interesting related discussion of forces as vector fields on classical

spacetime, see the book Marsden and Hughes [1994] and the references
therein. In particular, see the original article on classical spacetime, Cartan
[1923], as well as Misner, Thorne, and Wheeler [1973]. For further details
on the approach discussed here, see Bloch and Crouch [1998b].

Lagrange–d’Alembert Principle. The Lagrange–d’Alembert princi-
ple gives an alternative means of describing motion subject to an external
force field F . Given a Lagrangian function L, the motion is governed by
solutions of the variational system

δ

∫ b

a

L(q, q̇)dt+

∫ b

a

F (δq)dt = 0, q(t) ∈ Q, (3.4.5)

subject to the condition that q is a C1 curve satisfying q(a) = qa and
q(b) = qb.
Solutions of this “variational” system are flows of the vector field XL on

TQ satisfying
iXL

ΩL − dHL + π∗
QF (t) ≡ 0. (3.4.6)

As in the previous section, the formulation (3.4.6) includes holonomic con-
straints. To incorporate nonholonomic constraints, additional “forces” must
be included to ensure that the constraints are satisfied. We apply the
Lagrange–d’Alembert principle to this situation later on.
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3.5 The Hamilton–Pontryagin Principle

Let L : TQ → R be a (possibly degenerate) Lagrangian, and let q, (q, v),
and (q, p) be local coordinates forQ, TQ, and T ∗Q, respectively. Let (q, v, p)
be local coordinates for the Pontryagin bundle TQ ⊕ T ∗Q. Define the
path space of curves (q(t), v(t), p(t)), a ≤ t ≤ b, in TQ⊕T ∗Q that connect
points qa and qb in Q, i.e., q(a) = qa and q(b) = qb.
The following Hamilton–Pontryagin principle (see Yoshimura and

Marsden [2006b, 2007] for details and history) is straightforward to prove:

3.5.1 Theorem. Keeping the endpoints of q(t) fixed whereas the endpoints
of v(t) and p(t) are allowed to be free, the stationary condition for the action
functional ∫ b

a

[
L(q(t), v(t)) + 〈p(t), q̇(t)− v(t)〉]dt (3.5.1)

is equivalent to the implicit Euler–Lagrange equations

q̇ = v, ṗ =
∂L

∂q
, p =

∂L

∂v
. (3.5.2)

For hyperregular Lagrangians, equations (3.5.2) are equivalent to the Euler–
Lagrange equations (3.3.2).

3.6 Lie–Poisson Brackets and the Rigid
Body

An important Poisson structure that occurs in a number of basic exam-
ples, such as rigid bodies and fluids, is the Lie–Poisson bracket defined in
this section. This class of examples also provides a rich class of Poisson
manifolds that are not symplectic.

The Lie–Poisson Bracket. Let G be a Lie group and g = TeG its Lie
algebra with [ , ] : g× g → g the associated Lie bracket.

3.6.1 Proposition. The dual space g∗ is a Poisson manifold with either
of the two brackets

{f, k}±(μ) = ±
〈
μ,

[
δf

δμ
,
δk

δμ

]〉
. (3.6.1)

Here g is identified with g∗∗ in the sense that δf/δμ ∈ g is defined
by 〈ν, δf/δμ〉 = Df(μ) · ν for ν ∈ g∗, where D denotes the derivative.2

The notation δf/δμ is used to conform to the functional derivative no-
tation in classical field theory. Assuming that g is finite-dimensional and

2In the infinite-dimensional case one needs to worry about the existence of δf/δμ;
in this context, methods like the Hahn–Banach theorem are not always appropriate!
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choosing coordinates (ξ1, . . . , ξm) on g and corresponding dual coordinates
(μ1, . . . , μm) on g∗, the Lie–Poisson bracket (3.6.1) is

{f, k}±(μ) = ±μaC
a
bc

∂f

∂μb

∂k

∂μc
; (3.6.2)

here Ca
bc are the structure constants of g defined by [ea, eb] = Cc

abec,
where (e1, . . . , em) is the coordinate basis of g and where for ξ ∈ g we write
ξ = ξaea, and for μ ∈ g∗, μ = μae

a, where (e1, . . . , em) is the dual basis.
Formula (3.6.2) appears explicitly in Lie [1890], Section 75.

Lie–Poisson Reduction. Which sign to take in (3.6.2) is determined
by understanding Lie–Poisson reduction, which can be summarized as
follows. Let the left and right translation maps to the identity be
defined as follows:

λ : T ∗G → g∗ is defined by pg �→ (TeLg)
∗pg ∈ T ∗

e G
∼= g∗; (3.6.3)

ρ : T ∗G → g∗ is defined by pg �→ (TeRg)
∗pg ∈ T ∗

e G
∼= g∗. (3.6.4)

Then λ is a Poisson map if one takes the − Lie–Poisson structure on g∗,
and ρ is a Poisson map if one takes the + Lie–Poisson structure on g∗.3

Every left-invariant Hamiltonian and Hamiltonian vector field on T ∗G is
mapped by λ to a Hamiltonian and Hamiltonian vector field on g∗. There is
a similar statement for right-invariant systems on T ∗G. One says that the
original system on T ∗G has been reduced to g∗. The reason λ and ρ are
both Poisson maps is perhaps best understood by observing that they are
both equivariant momentum maps (see Section 3.7) generated by the lift to
T ∗G of the action of G on itself by right and left translations, respectively.

Euler Equations. The classical Euler equations of motion for rigid
body dynamics are given by

Π̇ = Π× Ω, (3.6.5)

where Π = IΩ is the body angular momentum, Ω is the body angular veloc-
ity, and I is the moment of inertia tensor. Euler’s equations are Hamiltonian
relative to a Lie–Poisson structure. To see this, take G = SO(3) to be the
configuration space. Then g ∼= (R3,×), and we make the identification
g ∼= g∗. The corresponding Lie–Poisson structure on R

3 is given by

{f, k}(Π) = −Π · (∇f ×∇k). (3.6.6)

For the rigid body one chooses the minus sign in the Lie–Poisson bracket.
This is because the rigid body Lagrangian (and hence Hamiltonian) is left-
invariant, and so its dynamics push to g∗ by the map λ in (3.6.3).

3This follows from the fact that λ and ρ are momentum maps; see Marsden and
Ratiu [1999].
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Starting with the kinetic energy Hamiltonian, we directly obtain the
formula H(Π) = 1

2Π · (I−1Π), the kinetic energy of the rigid body. One
verifies the following result from the chain rule and properties of the triple
product:

3.6.2 Proposition. Euler’s equations are equivalent to the following equa-
tion for all f ∈ F(R3)

ḟ = {f,H}. (3.6.7)

Casimir Functions. Some conserved quantities can be captured in the
basic notion of a Casimir function.

3.6.3 Definition. Let (P, { , }) be a Poisson manifold. A function C ∈
F(P ) satisfying

{C, f} = 0 for all f ∈ F(P ) (3.6.8)

is called a Casimir function .

A crucial difference between symplectic manifolds and Poisson manifolds
is this: On symplectic manifolds, the only Casimir functions are the con-
stant functions (assuming that P is connected). On the other hand, on
Poisson manifolds there is often a large supply of Casimir functions. In the
case of the rigid body, every function C : R3 → R of the form

C(Π) = Φ(‖Π‖2), (3.6.9)

where Φ : R → R is a differentiable function, is a Casimir function, as is
readily checked.
Casimir functions are constants of the motion for any Hamiltonian, since

Ċ = {C,H} = 0 for any H. In particular, for the rigid body, ‖Π‖2 is a
constant of the motion; this is the invariant momentum sphere of rigid
body dynamics.

Reduction of Dynamics. The maps λ and ρ induce Poisson isomor-
phisms between (T ∗G)/G and g∗ (with the − and + brackets, respectively),
and this is a special instance of Poisson reduction. The following result is
one useful way of formulating the general relation between T ∗G and g∗. We
treat the left-invariant case to be specific. Of course, the right-invariant case
is similar.

3.6.4 Theorem. Let G be a Lie group and H : T ∗G → R a left-invariant
Hamiltonian. Let h : g∗ → R be the restriction of H to the identity. For a
curve p(t) ∈ T ∗

g(t)G, let μ(t) = (T ∗
g(t)L) ·p(t) = λ(p(t)) be the induced curve

in g∗. Assume that ġ = ∂H/∂p ∈ TgG. Then the following are equivalent:

(i) p(t) is an integral curve of XH ; i.e., Hamilton’s equations on T ∗G
hold.

(ii) For any F ∈ F(T ∗G), Ḟ = {F,H}, where { , } is the canonical bracket
on T ∗G.



140 3. Basic Concepts in Geometric Mechanics

(iii) μ(t) satisfies the Lie–Poisson equations

dμ

dt
= ad∗δh/δμμ, (3.6.10)

where adξ : g → g is defined by adξ η = [ξ, η] and ad∗ξ is its dual, i.e.

μ̇a = Cd
ba

δh

δμb
μd. (3.6.11)

(iv) For any f ∈ F(g∗), we have

ḟ = {f, h}−, (3.6.12)

where { , }− is the minus Lie–Poisson bracket.

We now make some remarks about the proof. First of all, the equivalence
of (i) and (ii) is general for any cotangent bundle, as we have already noted.
Next, the equivalence of (ii) and (iv) follows directly from the fact that λ
is a Poisson map and H = h ◦ λ. Finally, we establish the equivalence of
(iii) and (iv). Indeed, ḟ = {f, h}− means
〈
μ̇,

δf

δμ

〉
= −

〈
μ,

[
δf

δμ
,
δh

δμ

]〉
=

〈
μ, adδh/δμ

δf

δμ

〉
=

〈
ad∗δh/δμ μ,

δf

δμ

〉
.

Since f is arbitrary, this is equivalent to (iii).

Exercises

� 3.6-1. Prove Proposition 3.6.2

� 3.6-2. Prove that the functions C given in (3.6.9) are Casimir functions
for the rigid body bracket.

3.7 The Euler–Poincaré Equations

For the rigid body there is an analogue of the above theorem on SO(3) and
so(3) using the Euler–Lagrange equations and the variational principle as a
starting point. We now generalize this to an arbitrary Lie group and make
the direct link with the Lie–Poisson equations.

3.7.1 Theorem. Let G be a Lie group and L : TG → R a left-invariant
Lagrangian. Let l : g → R be its restriction to the tangent space to G at the
identity. For a curve g(t) ∈ G, let

ξ(t) = g(t)−1 · ġ(t); i.e., ξ(t) = Tg(t)Lg(t)−1 ġ(t).
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Then the following are equivalent:

(i) g(t) satisfies the Euler–Lagrange equations for L on G.

(ii) The variational principle

δ

∫
L(g(t), ġ(t))dt = 0 (3.7.1)

holds, for variations with fixed endpoints.

(iii) The Euler–Poincaré equations hold:

d

dt

δl

δξ
= ad∗ξ

δl

δξ
. (3.7.2)

(iv) The variational principle

δ

∫
l(ξ(t))dt = 0 (3.7.3)

holds on g, using variations of the form

δξ = η̇ + [ξ, η], (3.7.4)

where η vanishes at the endpoints.

Proof. We will just give the main idea of the proof. First of all, the
equivalence of (i) and (ii) holds on the tangent bundle of any configuration
manifold Q, as we have seen; secondly, (ii) and (iv) are equivalent. To see
this, one needs to compute the variations δξ induced on ξ = g−1ġ = TLg−1 ġ
by a variation of g. To calculate this, we need to differentiate g−1ġ in the
direction of a variation δg. If δg = dg/dε at ε = 0, where g is extended to
a curve gε, then

δξ =
d

dε

(
g−1 d

dt
g

)∣∣∣∣
ε=0

,

while if η = g−1δg, then

η̇ =
d

dt

(
g−1 d

dε
g

)∣∣∣∣
ε=0

.

The difference δξ − η̇ is the commutator [ξ, η]. This argument is fine for
matrix groups, but takes a little more work to make precise for general Lie
groups. See, for example, Bloch, Krishnaprasad, Marsden, and Ratiu [1996]
for the general case. Thus, (ii) and (iv) are equivalent.
To complete the proof, we show the equivalence of (iii) and (iv). Indeed,

using the definitions and integrating by parts,

δ

∫
l(ξ) dt =

∫
δl

δξ
δξ dt =

∫
δl

δξ
(η̇ + adξ η) dt

=

∫ [
− d

dt

(
δl

δξ

)
+ ad∗ξ

δl

δξ

]
η dt,

so the result follows. �
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Generalizing what we saw directly in the rigid body, one can check di-
rectly from the Euler–Poincaré equations that conservation of spatial an-
gular momentum holds:

d

dt
π = 0, (3.7.5)

where π is defined by

π = Ad∗g
∂l

∂ξ
. (3.7.6)

Since the Euler–Lagrange and Hamilton equations on TQ and T ∗Q are
equivalent, it follows that the Lie–Poisson and Euler–Poincaré equations
are also equivalent. To see this directly, we make the following Legendre
transformation from g to g∗:

μ =
δl

δξ
, h(μ) = 〈μ, ξ〉 − l(ξ).

Note that
δh

δμ
= ξ +

〈
μ,

δξ

δμ

〉
−
〈
δl

δξ
,
δξ

δμ

〉
= ξ,

and so it is now clear that (3.6.10) and (3.7.2) are equivalent.
An important generalization of this theorem to the case in which one has

systems whose Lagrangian is parametrized, including the rigid body in a
gravitational field (the heavy top), and compressible fluid mechanics that
involve semidirect product theory is given in Holm, Marsden, and Ratiu
[1998].

3.8 The Hamel Equations

Here we discuss formalism that generalizes Euler–Lagrange equations as
well as Euler–Poincaré equations, see, e.g., Hamel [1949]; Papastavridis
[1998, 1999]; Bloch, Marsden, and Zenkov [2009a]; Maruskin and Bloch
[2010]; Ball and Zenkov [2015]. We follow the treatment in Bloch, Marsden,
and Zenkov [2009a] to which we refer for more details.

Quasivelocities. Quasivelocities are the components of a mechanical
system’s velocity relative to a set of vector fields that span the fibers of
the tangent bundle of the configuration space. These vector fields need
not be associated with (local) configuration coordinates, so in fact, we do
not mention “quasicoordinates,” a vacuous concept that has led to some
confusion in the literature. A good example of quasivelocities is the set of
components of the body angular velocity of a rigid body rotating about a
fixed point.
Let q = (q1, . . . , qn) be local coordinates on the configuration space Q

and ui ∈ TQ, i = 1, . . . , n, be smooth independent local vector fields defined
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in the same coordinate neighborhood.4 The components of ui relative to
the basis ∂/∂qj will be denoted ψj

i (q); that is,

ui(q) = ψj
i (q)

∂

∂qj
, i, j = 1, . . . , n, (3.8.1)

where a sum on j is understood. The fields ui, i = 1, . . . , n, in general, do
not commute as they are not associated with any coordinate system.
Define the quantities ckij(q) by

[ui, uj ] = ckij(q)uk. (3.8.2)

One finds that

ckij = (ψ−1)km

[
∂ψm

j

∂ql
ψl
i −

∂ψm
i

∂ql
ψl
j

]
.

Let ξ = (ξ1, . . . , ξn) ∈ R
n be quasivelocities, i.e., the components of the

velocity vector q̇ ∈ TQ relative to the basis u1, . . . , un:

q̇ = ξiui(q); (3.8.3)

then
l(q, ξ) := L(q, ξiui(q)) (3.8.4)

is the Lagrangian of the system written in the local coordinates (q, ξ) on the
tangent bundle TQ. The (local) coordinates (q, ξ) on TQ are the Lagrangian
analogues of non-canonical variables in Hamiltonian dynamics.
One of the reasons for using quasivelocities is that the Euler–Lagrange

equations written in generalized coordinates are not always effective for
analyzing the dynamics of a mechanical system of interest. For example,
it is difficult to study the motion of the Euler top if the Euler–Lagrange
equations (either intrinsically or in generalized coordinates) are used to
represent the dynamics.
On the other hand, the use of the angular velocity components relative to

a body frame pioneered by Euler [1752] results in a much simpler represen-
tation of dynamics. Euler’s approach was further developed by Lagrange
[1788] for reasonably general Lagrangians on the rotation group and by
Poincaré [1901] for arbitrary Lie groups (see Section 3.7 for details and
Marsden and Ratiu [1999] for history). Other examples include the use of
velocity and angular velocity components relative to a moving frame in
the study of dynamics of a rigid body moving on a surface as discussed in
Routh [1860] and Markeev [1992].

Nonholonomic Bases and Frames. The vector fields ui are some-
times said to definite a nonholonomic (anholonomic) basis or non-
coordinate basis (or frame).

4In certain cases, some or all of ui can be chosen to be global vector fields on Q.
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Object of Anholonomy. Note that the ckij above are sometimes known
as the objects of anholonomy. These are most familiar in the case when
Q is a Lie group G and the ui are left invariant vector fields. In this case
the objects of anholonomy are the structure constants of the corresponding
Lie algebra g.

Transpositional Relations. The transpositional relations are defined
by considering the commutator [q̇, δq], where as before δq denotes a virtual
displacement.
If we have a torsionless connection, then we have

[q̇, δq] = ∇q̇δq −∇δq q̇ (3.8.5)

from the formula for the torsion. In other words, the path formed by the al-
ternating parallel transport of the tangent and virtual displacement vector
fields closes.
In a nonholonomic frame such a path will not close. Indeed we will have

[q̇, δq] = ∇q̇δq −∇δq q̇ − T (q̇, δq). (3.8.6)

There is an interesting history to the transpositional relations and how they
affect the form of the equations of motion. For more information on the
transpositional relations and their history, see Fernandez and Bloch [2011]
and Maruskin, Bloch, Marsden and Zenkov [2012].

Derivation of Hamel’s Equations Using Hamilton’s Principle.
Given two elements ξ, ζ ∈ R

n, define the antisymmetric bracket operation
[· , ·]q : Rn × R

n → R
n by

([v, w]q)
kuk(q) = [viui, w

juj ](q), (3.8.7)

where [· , ·] is the Jacobi–Lie bracket (2.6.8) on Q. Therefore, each tangent
space TqQ becomes isomorphic to the Lie algebra Vq := (Rn, [· , ·]q). Thus,
if the fields u1, . . . , un are independent in U ⊂ Q, the tangent bundle TU
is diffeomorphic to a Lie algebra bundle over U .
The dual of [· , ·]q is, by definition, the operation [· , ·]∗q : Vq × V ∗

q → V ∗
q

given by
〈[ξ, α]∗q , ζ〉 ≡ 〈ad∗ξ α, ζ〉 := 〈α, [ξ, ζ]q〉.

Here ad∗ is the dual of the usual ad operator in a Lie algebra; note that in
general this operation need not be associated with a Lie group.
Let u = (u1, . . . , un) ∈ TQ× · · · × TQ. For a function f : Q → R, define

u[f ] ∈ V ∗
q by u[f ] = (u1[f ], . . . , un[f ]), where ui[f ] = ψj

i ∂jf is the usual
directional derivative of f along the vector field ui. Viewing ui as vector
fields on TQ whose fiber components equal 0 (that is, taking the vertical
lift of these vector fields), one defines the directional derivatives ui[l] for a
function l : TQ → R by the formula

ui[l] = ψj
i

∂l

∂qj
.
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The evolution of the variables (q, ξ) is governed by theHamel equations

d

dt

∂l

∂ξ
=

[
ξ,

∂l

∂ξ

]∗
q

+ u[l] ≡ ad∗ξ
∂l

∂ξ
+ u[l] (3.8.8)

coupled with (3.8.3). In (3.8.8), u[l] = (u1[l], . . . , un[l]). If ui = ∂/∂qi,
equations (3.8.8) become the Euler–Lagrange equations (3.3.2). Below, we
will derive equations (3.8.8) using the principle of critical action.
The coordinate form of equations (3.8.8) reads

d

dt

∂l

∂ξj
= ckij

∂l

∂ξk
ξi + uj [l], i, j, k = 1, . . . , n. (3.8.9)

For the early development of these equations, see Poincaré [1901] and Hamel
[1904].
The following result generalizes the statement of Theorem 3.7.1.

3.8.1 Theorem. Let L : TQ → R be a Lagrangian and l : TQ → R be
its representation in local coordinates (q, ξ) defined by (3.8.4). Then, the
following statements are equivalent:

(i) The curve q(t), where a ≤ t ≤ b, is a critical point of the action
functional ∫ b

a

L(q, q̇) dt (3.8.10)

on the space of curves in Q connecting qa to qb on the interval [a, b],
where we choose variations of the curve q(t) that satisfy δq(a) =
δq(b) = 0.

(ii) The curve q(t) satisfies the Euler–Lagrange equations for L on Q.

(iii) The curve (q(t), ξ(t)) is a critical point of the functional

∫ b

a

l(q, ξ) dt (3.8.11)

with respect to variations δξ, induced by the variations δq = ζiui(q),
and given by

δξ = ζ̇ + [ξ, ζ]q. (3.8.12)

(iv) The curve (q(t), ξ(t)) satisfies the Hamel equations (3.8.8) coupled
with the equations q̇ = 〈u(q), ξ〉 ≡ ξiui(q).

Proof. The equivalence of (i) and (ii) is established in Proposition 3.3.2.
Denote the components of δq(t) relative to the basis u1(q(t)), . . . , un(q(t))

by ζ(t) = (ζ1(t), . . . , ζn(t)), that is,

δq(t) = 〈u, ζ〉 ≡ ζi(t)ui(q(t)).
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To prove the equivalence of (i) and (iii), we first compute the quantities δq̇
and d(δq)/dt:

δq̇ = δ
[
ξi(t)ui(q(t))

]
= δξi(t)ui(q(t)) + ξi(t)

∂ui

∂qj
δqj ,

d(δq)

dt
=

d

dt

(
ζi(t)ui(q(t))

)
= ζ̇i(t)ui(q(t)) + ζi(t)

∂ui

∂qj
q̇j .

Since δq̇ = d(δq)/dt, we obtain

δξk(t)uk(q(t)) = ζ̇k(t)uk(q(t)) + ξi(t)ζj(t)

(
∂uj

∂ql
ψl
i −

∂ui

∂ql
ψl
j

)
(q(t))

=
(
ζ̇k(t) + ckij(q(t))ξ

i(t)ζj(t)
)
uk(q(t)); (3.8.13)

that is,
δξ(t) = ζ̇(t) + [ξ(t), ζ(t)]q(t),

which generalizes the formula for variations (3.7.4).
To prove the equivalence of (iii) and (iv), we use (3.8.12) and compute

the variation of the functional (3.8.11):

δ

∫ b

a

l(q, ξ) dt =

∫ b

a

(
∂l

∂q
δq +

∂l

∂ξ
δξ

)
dt

=

∫ b

a

(
∂l

∂q
ζiui +

∂l

∂ξ

(
ζ̇ + [ξ, ζ]q(t)

))
dt

=

∫ b

a

(
u[l]ζ +

∂l

∂ξ
[ξ, ζ]q(t) − d

dt

(
∂l

∂ξ

)
ζ

)
dt

=

∫ b

a

(
u[l] +

[
ξ,

∂l

∂ξ

]∗
q(t)

− d

dt

∂l

∂ξ

)
ζ dt.

The latter quantity vanishes if and only if the Hamel equations are satisfied.
�

Derivation of Hamel’s Equations Using Hamilton–Pontryagin’s
Principle. The derivation of the Hamel equations in Theorem 3.8.1 uses
constrained variations (3.8.12). We now utilize the Hamilton–Pontryagin
principle (Theorem 3.5.1) and obtain these equations using unconstrained
variations.
Below, the entries of the inverse of the matrix ψj

i are written as φk
j , so

that φk
jψ

j
i = δki .

We start by rewriting the action (3.5.1) using the tangent vector com-
ponents relative to the frame ui(q), i = 1, . . . , n. Denote the components
of q̇, v, and p by ξ, η, and μ, respectively:

q̇ = ξjuj = ξjψi
j

∂

∂qi
, v = ηjuj = ηjψi

j

∂

∂qi
, p = μju

j = μjφ
j
idq

i.
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The action integral becomes

s =

∫ b

a

[
l(q, η) + 〈p, q̇ − v〉

]
dt

=

∫ b

a

[
l(q, η) + 〈μju

j , (ξi − ηi)ui〉
]
dt. (3.8.14)

3.8.2 Theorem. The following statements are equivalent:

(i) The curve (q(t), η(t), μ(t)), a ≤ t ≤ b, is a critical point of the action
functional (3.8.14) on the space of curves connecting qa and qb on the
interval [a, b], with variations of the curve (q(t), η(t), μ(t)) satisfying
δq(a) = δq(b) = 0.

(ii) The implicit Hamel equations

uj [l]− μ̇j + ckijξ
iμk = 0, (3.8.15)

μ =
∂l

∂η
, (3.8.16)

ξ = η (3.8.17)

hold.

Proof. Taking the variation of (3.8.14) gives:

δs =

∫ b

a

[
δl(q, η) + δ〈p, q̇ − v〉

]
dt

=

∫ b

a

[
∂l(q, η)

∂qi
δqi +

∂l(q, η)

∂ηi
δηi + 〈δp, q̇ − v〉+ 〈p, δq̇〉 − 〈p, δv〉

]
dt = 0.

Computing δv, we obtain

δv = δ(ηiui) = δηiui + ηiδui

= δηiui +
∂ψm

i

∂qs
ηiδqs

∂

∂qm
= δηiui +

∂ψm
i

∂qs
φk
mηiukδq

s.

Therefore,

〈p, δv〉 = μiδη
i +

∂ψm
i

∂qs
φk
mμkη

iδqs.

Now, as it is usually done, the term 〈p, δq̇〉 is rewritten as

d〈p, δq〉
dt

− 〈ṗ, δq〉.

After integration the first term becomes 〈p, δq〉|ba = 0. Next,

ṗ =
d

dt
(μju

j) = μ̇ju
j + μi

dui

dt

= μ̇ju
j +

∂φk
s

∂qr
ψr
i μkξ

idqs = μ̇jφ
j
sdq

s +
∂φk

s

∂qr
ψr
i μkξ

idqs.
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Therefore,

−〈ṗ, δq〉 = −μ̇jφ
j
sδq

s − ∂φk
s

∂qr
ψr
i μiξ

iδqs.

Using these formulae, we obtain

δs =

∫ b

a

[(
∂l

∂qs
− μ̇jφ

j
s −

∂φk
s

∂qr
ψr
i μkξ

i − ∂ψm
i

∂qs
φk
mμkη

i

)
δqs

+

(
∂l

∂ηi
− μi

)
δηi + 〈δμ, ξ − η〉

]
dt

=

∫ b

a

[(
∂l

∂qm
ψm
j − μ̇j − ∂φk

m

∂qr
ψr
i ψ

m
j μkξ

i − ∂ψm
i

∂qr
φk
mψr

jμkη
i

)
φj
sδq

s

+

(
∂l

∂ηi
− μi

)
δηi + 〈δμ, ξ − η〉

]
dt = 0.

Since δq, δη, and δμ are arbitrary, δs vanishes if and only if equations
(3.8.16) and (3.8.17), and

uj [l]− μ̇j − ∂φk
m

∂qr
ψr
i ψ

m
j μkξ

i − ∂ψm
i

∂qr
φk
mψr

jμkη
i = 0, (3.8.18)

hold.
Differentiating the formula φk

mψm
j = δkj implies

∂φk
m

∂qr
ψm
j = −∂ψm

j

∂qr
φk
m,

and therefore

− ∂φk
m

∂qr
ψr
i ψ

m
j − ∂ψm

i

∂qr
φk
mψr

j = φk
m

[
∂ψm

j

∂qr
ψr
i −

∂ψm
i

∂qr
ψr
l

]
= ckij . (3.8.19)

Because of (3.8.17) and (3.8.19), equation (3.8.18) becomes (3.8.15). �

Exercises

� 3.8-1. Use (3.8.12) and derive formula (3.7.4). Hint: Select ui ∈ TG to be
left-invariant vector fields generated by a basis in the Lie algebra of the
group G.

� 3.8-2. Compare the Hamel equations for the rigid body to the Euler–
Lagrange equations in terms of the Euler angles. See Goldstein, Poole and
Safko [2001] and Marsden and Ratiu [1999].

3.9 Momentum Maps

Momentum maps capture in a geometric way conserved quantities asso-
ciated with symmetries, such as linear and angular momentum, that are
associated with translational and rotational invariance.
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Definition of Momentum Maps. Let G be a Lie group and P a Pois-
son manifold such that G acts on P by Poisson maps (in this case the action
is called a Poisson action). Denote the corresponding infinitesimal action
of g on P by ξ �→ ξP , a map of g to X(P ), the space of vector fields on P .
We write the action of g ∈ G on z ∈ P as simply gz; the vector field ξP is
obtained at z by differentiating gz with respect to g in the direction ξ at
g = e. Explicitly,

ξP (z) =
d

dε
[exp(εξ) · z]

∣∣∣∣
ε=0

.

3.9.1 Definition. A map J : P → g∗ is called a momentum map if
X〈J,ξ〉 = ξP for each ξ ∈ g, where 〈J, ξ〉(z) = 〈J(z), ξ〉.
3.9.2 Theorem. (Noether’s Theorem) If H is a G-invariant Hamil-
tonian on P , then J is conserved on the trajectories of the Hamiltonian
vector field XH .

Proof. Differentiating the invariance condition H(gz) = H(z) with re-
spect to g ∈ G for fixed z ∈ P , we get dH(z) · ξP (z) = 0, and so
{H, 〈J, ξ〉} = 0, which by antisymmetry gives d〈J, ξ〉 · XH = 0, and so
〈J, ξ〉 is conserved on the trajectories of XH for every ξ in G. �

The Construction of Momentum Maps. Let Q be a manifold and
let G act on Q. This action induces an action of G on T ∗Q by cotangent
lifting; that is, we take the transpose inverse of the tangent lift. The action
of G on T ∗Q is always symplectic and therefore Poisson.

3.9.3 Theorem. A momentum map for a cotangent lifted action is given by

J : T ∗Q → g∗ defined by 〈J, ξ〉(pq) = 〈pq, ξQ(q)〉. (3.9.1)

In canonical coordinates we write pq = (qi, pj) and define the action
functions Ki

a by (ξQ)
i = Ki

a(q)ξ
a. Then

〈J, ξ〉(pq) = piK
i
a(q)ξ

a , (3.9.2)

and therefore

Ja = piK
i
a(q). (3.9.3)

Equivariance. Recall that by differentiating the conjugation operation
h �→ ghg−1 at the identity, one gets the adjoint action of G on g. Taking
its dual produces the coadjoint action of G on g∗. The cotangent mo-
mentum map can be checked to have the following equivariance property.

3.9.4 Proposition. The momentum map for cotangent lifted actions is
equivariant , i.e., the diagram in Figure 3.9.1 commutes.
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T ∗Q ∗

T ∗Q ∗

J

J

G-action
on T ∗Q

coadjoint
action

�

�
� �

Figure 3.9.1. Equivariance of the momentum map.

Differentiating the equivariance relation, one gets the following:

3.9.5 Proposition. Equivariance of the momentum map implies infinites-
imal equivariance, which can be stated as the classical commutation re-
lations

{〈J, ξ〉, 〈J, η〉} = 〈J, [ξ, η]〉.
Using this, one finds that, remarkably, momentum maps that are equiv-

ariant are always Poisson maps.

3.9.6 Proposition. If J is infinitesimally equivariant, then J : P → g∗ is
a Poisson map. If J is generated by a left (respectively right) action, then
we use the + (respectively −) Lie–Poisson structure on g∗.

The Lagrangian Side. The above development concerns momentum
maps using the Hamiltonian point of view. However, one can also consider
them from the Lagrangian point of view. In this context we consider a
Lie group G acting on a configuration manifold Q and lift this action to
the tangent bundle TQ using the tangent operation. Given a G-invariant
Lagrangian L : TQ → R, the corresponding momentum map is obtained
by replacing the momentum pq in (3.9.1) with the fiber derivative FL(vq).
Thus, J : TQ → g∗ is given by

〈J(vq), ξ〉 = 〈FL(vq), ξQ(q)〉 , (3.9.4)

or, in coordinates,

Ja =
∂L

∂q̇i
Ki

a, (3.9.5)

where the action coefficients Ki
a are defined as before by writing ξQ(q) =

Ki
aξ

a∂/∂qi. We have Noether’s Theorem:

3.9.7 Proposition. For a solution of the Euler–Lagrange equations (even
if the Lagrangian is degenerate), J is constant in time.

Proof. In the case that L is a hyperregular Lagrangian, this follows from
its Hamiltonian counterpart. To include the degenerate case and to give
a proof that is purely Lagrangian we use Hamilton’s principle (which is
the way it was originally done by Noether). To do this, choose any function
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φ(t, s) of two variables such that the conditions φ(a, s) = φ(b, s) = φ(t, 0) =
0 hold. Since L is G-invariant, for each Lie algebra element ξ ∈ g, the
expression ∫ b

a

L(exp(φ(t, s)ξ)q, exp(φ(t, s)ξ)q̇)) dt (3.9.6)

is independent of s. Differentiating this expression with respect to s at
s = 0 and setting φ′ = ∂φ/∂s taken at s = 0 gives

0 =

∫ b

a

(
∂L

∂qi
ξiQφ

′ +
∂L

∂q̇i
(TξQ · q̇)iφ′

)
dt. (3.9.7)

Now we consider the variation q(t, s) = exp(φ(t, s)ξ) ·q(t). The correspond-
ing infinitesimal variation is given by

δq(t) = φ′(t)ξQ(q(t)).

By Hamilton’s principle, we have

0 =

∫ b

a

(
∂L

∂qi
δqi +

∂L

∂q̇i
δ̇q

i
)
dt. (3.9.8)

Note that
δ̇q = φ̇′ξQ + φ′(TξQ · q̇)

and subtract (3.9.8) from (3.9.7) to give

0 =

∫ b

a

∂L

∂q̇i
(ξQ)

iφ̇′ dt =
∫ b

a

d

dt

(
∂L

∂q̇i
ξiQ

)
φ′ dt. (3.9.9)

Since φ′ is arbitrary, except for endpoint conditions, it follows that the
integrand vanishes, and so the time derivative of the momentum map is
zero, and so the proposition is proved. �

Exercises

� 3.9-1. Consider the action of R on R
3 given by x · qi �→ qi + x. Show

that the action lifted to T ∗
R

3 is given by x · (qi, pi) �→ (qi + x, pi). Hence
show that the infinitesimal generator of this lifted action is the vector field
ξQ = (ξ, ξ, ξ, 0, 0, 0).

Thus write down the action coefficients of the lifted action and the mo-
mentum map. This gives an expression for the linear momentum of a par-
ticle in R

3.
Finally, show this momentum is conserved along the flow of a free parti-

cle: Noether’s theorem in this case.

� 3.9-2. Consider again the configuration space R3, this time with the action
of SO(3) given by A ·q �→ Aq. Show that the action lifted to T ∗

R
3 is given

by A · (q,p) �→ (Aq, Ap). Write Aq = ω × q for a suitable vector ω and
then show that the momentum map is given by J(q,p) = q× p.
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3.10 Symplectic and Poisson Reduction

We have already seen how to use variational principles to reduce the Euler–
Lagrange equations when the configuration manifold is a group. We will
use this same method to perform reduction of nonholonomic systems in
Chapter 5.
On the Hamiltonian side, there are three levels of reduction of decreasing

generality: those of Poisson reduction, symplectic reduction, and cotangent
bundle reduction. (For the last see Marsden [1992].) Let us first consider
Poisson reduction.

Poisson Reduction. For this situation, we start with a Poisson manifold
P and let the Lie group G act on P by Poisson maps. Assuming that P/G
is a smooth manifold, endow it with the unique Poisson structure such that
the canonical projection π : P → P/G is a Poisson map. We can specify the
Poisson structure on P/G explicitly as follows. For f and k : P/G → R, let
F = f ◦π and K = k◦π, so F and K are f and k thought of as G-invariant
functions on P . Then {f, k}P/G is defined by

{f, k}P/G ◦ π = {F,K}P . (3.10.1)

To show that {f, k}P/G is well defined, one has to prove that {F,K}P is
G-invariant. This follows from the fact that F and K are G-invariant and
the group action of G on P consists of Poisson maps.

Lie–Poisson Reduction. For P = T ∗G we get a very important special
case.

3.10.1 Theorem. (Lie–Poisson Reduction) Let P = T ∗G and assume
that G acts on P by the cotangent lift of left translations. If one endows g∗

with the minus Lie–Poisson bracket, then P/G ∼= g∗.

Symplectic Reduction. In this case we begin with a symplectic mani-
fold (P,Ω). Let G be a Lie group acting by symplectic maps on P ; in this
case, the action is called a symplectic action. Let J be an equivariant
momentum map for this action and H a G-invariant Hamiltonian on P . Let
Gμ = {g ∈ G | g · μ = μ} be the isotropy subgroup (symmetry subgroup)
at μ ∈ g∗. As a consequence of equivariance, Gμ leaves J−1(μ) invariant.
Assume for simplicity that μ is a regular value of J, so that J−1(μ) is
a smooth manifold and Gμ acts freely and properly on J−1(μ), so that
J−1(μ)/Gμ =: Pμ is a smooth manifold. Let iμ : J−1(μ) → P denote the
inclusion map and let πμ : J−1(μ) → Pμ denote the projection. Note that

dimPμ = dimP − dimG− dimGμ. (3.10.2)

Building on classical work of Jacobi, Liouville, Arnold, and Smale, we have
the following basic result of Marsden and Weinstein [1974] (see also Meyer
[1973]).
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3.10.2 Theorem. (Symplectic Reduction Theorem) There is a unique
symplectic structure Ωμ on Pμ satisfying

i∗μΩ = π∗
μΩμ. (3.10.3)

Given a G-invariant Hamiltonian H on P , define the reduced Hamilto-
nian Hμ : Pμ → R by H = Hμ ◦ πμ. Then the trajectories of XH project
to those of XHμ

. An important problem is how to reconstruct trajectories
of XH from trajectories of XHμ

. Schematically, we have the situation in
Figure 3.10.1.

reduction

� �

� �

P

Pμ

J−1(μ)

iμ

πμ

reconstruction

Figure 3.10.1. Reduction to Pμ and reconstruction back to P .

As already hinted at in Chapter 1, the reconstruction process is where
the holonomy and “geometric phase” ideas enter.

Coadjoint Orbits. Let Oμ denote the coadjoint orbit through μ. As
a special case of the symplectic reduction theorem, we get the following
corollary.

3.10.3 Corollary. (T ∗G)μ ∼= Oμ.

The symplectic structure inherited on Oμ is called the (Lie–Kostant–
Kirillov) orbit symplectic structure. This structure is compatible with
the Lie–Poisson structure on g∗ in the sense that the bracket of two func-
tions on Oμ equals that obtained by extending them arbitrarily to g∗,
taking the Lie–Poisson bracket on g∗ and then restricting to Oμ.

3.10.4 Examples.

A. Rotational Coadjoint Orbits. G = SO(3), g∗ = so(3)∗ ∼= R
3. In

this case the coadjoint action is the usual action of SO(3) on R
3. This is

because of the orthogonality of the elements of G. The set of orbits consists
of spheres and a single point. The reduction process confirms that all orbits
are symplectic manifolds. One calculates that the symplectic structure on
the spheres is a multiple of the area element.



154 3. Basic Concepts in Geometric Mechanics

B. Jacobi–Liouville Theorem. Let G = T
k be the k-torus and assume

thatG acts on a symplectic manifold P . In this case the components of J are
in involution and dimPμ = dimP−2k, so 2k variables are eliminated. As we
shall see, reconstruction allows one to reassemble the solution trajectories
on P by quadratures in this abelian case.

C. Jacobi–Deprit Elimination of the Node. Let G = SO(3) act on
P . In the classical case of Jacobi, P = T ∗

R
3, and in the generalization of

Deprit [1983] one considers the phase space of n particles in R
3. We just

point out here that the reduced space Pμ has dimension dimP − 3 − 1 =
dimP − 4, since Gμ = S1 (if μ �= 0) in this case. �
Orbit Reduction Theorem. This result of Marle [1976] and Kazhdan,
Kostant, and Sternberg [1978] states that Pμ may be alternatively con-
structed as

PO = J−1(O)/G, (3.10.4)

where O ⊂ g∗ is the coadjoint orbit through μ. As above we assume that
we are away from singular points. The spaces Pμ and PO are shown to be
isomorphic by using the inclusion map lμ : J−1(μ) → J−1(O) and taking
equivalence classes to induce a symplectic isomorphism Lμ : Pμ → PO. The
symplectic structure ΩO on PO is uniquely determined by

j∗OΩ = π∗
OΩO + J∗

OωO , (3.10.5)

where jO : J−1(O) → P is the inclusion, πO : J−1(O) → PO is the projec-
tion, and where JO = J|J−1(O) : J−1(O) → O and ωO is the orbit sym-
plectic form. In terms of the Poisson structure, J−1(O)/G has the bracket
structure inherited from P/G; in fact, J−1(O)/G is a symplectic leaf in
P/G. Thus, we get the picture in Figure 3.10.2.

/Gμ /G

� � �

J−1(μ) ⊂ J−1(O) ⊂ P

Pμ
∼= PO ⊂ P/G

/G

Figure 3.10.2. Orbit reduction gives another realization of Pμ.
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Kirillov has shown that every Poisson manifold P is the union of sym-
plectic leaves, although the preceding construction explicitly realizes these
symplectic leaves in this case by the reduction construction. A special case
is the foliation of the dual g∗ of any Lie algebra g into its symplectic leaves,
namely the coadjoint orbits. For example, so(3) is the union of spheres plus
the origin, each of which is a symplectic manifold. Notice that the drop in
dimension from T ∗ SO(3) to O is from 6 to 2, a drop of 4, as in general
SO(3) reduction. An exception is the singular point, the origin, where the
drop in dimension is larger.

Exercises

� 3.10-1. Compute the dimension of the generic coadjoint orbits of SO(n).
These are important for proving integrability of the generalized
(n-dimensional) rigid body equations.

3.11 A Particle in a Magnetic Field

In cotangent bundle reduction theory, one adds terms to the symplectic
form called “magnetic terms” that may be identified with curvatures of
certain connections that we explain shortly. To explain this terminology,
we consider a particle in a magnetic field.
Let B be a closed two-form on R

3 andB = Bxi+Byj+Bzk the associated
divergence-free vector field; i.e., iB(dx ∧ dy ∧ dz) = B, or

B = Bxdy ∧ dz −Bydx ∧ dz +Bzdx ∧ dy.

Thinking of B as a magnetic field, the equations of motion for a particle
with charge e and mass m are given by the Lorentz force law:

m
dv

dt
=

e

c
v ×B, (3.11.1)

where v = (ẋ, ẏ, ż). On R
3×R

3, i.e., on (x,v)-space, consider the symplectic
form

ΩB = m(dx ∧ dẋ+ dy ∧ dẏ + dz ∧ dż)− e

c
B. (3.11.2)

For the Hamiltonian, take the kinetic energy:

H =
m

2
(ẋ2 + ẏ2 + ż2) . (3.11.3)
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Writing XH(u, v, w) = (u, v, w, (u̇, v̇, ẇ)), the condition defining XH ,
namely iXH

ΩB = dH, is

m(udẋ− u̇dx+ vdẏ − v̇dy + wdż − ẇdz)

− e

c
[Bxvdz −Bxwdy −Byudz +Bywdx+Bzudy −Bzvdx]

= m(ẋdẋ+ ẏdẏ + żdż), (3.11.4)

which is equivalent to u = ẋ, v = ẏ, w = ż,mu̇ = e(Bzv − Byw)/c,mv̇ =
e(Bxw −Bzu)/c, and mẇ = e(Byu−Bxv)/c, i.e., to

mẍ =
e

c
(Bz ẏ −By ż),

mÿ =
e

c
(Bxż −Bzẋ), (3.11.5)

mz̈ =
e

c
(Byẋ−Bxẏ),

which is the same as (3.11.1). Thus the equations of motion for a particle
in a magnetic field are Hamiltonian, with energy equal to the kinetic energy
and with the symplectic form ΩB .

If B = dA, i.e.,B = ∇×A, where A is a one-form andA is the associated
vector field, then the map (x,v) �→ (x,p), where p = mv+eA/c, pulls back
the canonical form to ΩB , as is easily checked. Thus, equations (3.11.1) are
also Hamiltonian relative to the canonical bracket on (x,p)-space with the
Hamiltonian

HA =
1

2m

∥∥∥p− e

c
A
∥∥∥2 . (3.11.6)

Even in Euclidean space, not every magnetic field can be written as
B = ∇ × A. For example, the field of a magnetic monopole of strength
g �= 0, namely

B(r) = g
r

‖r‖3 , (3.11.7)

cannot be written this way, since the flux of B through the unit sphere
is 4πg, yet Stokes’s theorem applied to the two hemispheres would give
zero. Thus, one might think that the Hamiltonian formulation involving
only B (i.e., using ΩB and H) is preferable. However, one can recover the
magnetic potential A by regarding A as a connection on a nontrivial bundle
over R3\{0}. The bundle over the sphere S2 is in fact the Hopf fibration
S3 → S2. This same construction can be carried out using reduction. For
a readable account of some aspects of this situation, see Yang [1980]. For
an interesting example of Weinstein in which this monopole comes up, see
Marsden [1981], p. 34.
When one studies the motion of a colored (rather than a charged) par-

ticle in a Yang–Mills field, one finds a beautiful generalization of this
construction and related ideas using the theory of principal bundles; see
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Sternberg [1977], Weinstein [1978b], and Montgomery [1984]. In the study
of centrifugal and Coriolis forces one discovers some structures analogous
to those here (see Marsden and Ratiu [1999] for more information).

3.12 The Mechanical Connection

An important connection for analyzing the dynamics and control of me-
chanical systems is the mechanical connection, a notion that goes back to
Smale [1970].

Locked Inertia Tensor. Assume that we have a configuration manifold
Q and Lagrangian L : TQ → R. Let G be a Lie group with Lie algebra g,
and assume that G acts on Q, and lift the action to TQ via the tangent
mapping. We assume also that G acts freely and properly on Q. We assume
also that we have a metric 〈〈 , 〉〉 on Q that is invariant under the group
action.
For each q ∈ Q define the locked inertia tensor to be the map I : g →

g∗ defined by
〈Iη, ζ〉 = 〈〈ηQ(q), ζQ(q)〉〉 . (3.12.1)

Recall that ξQ denotes the infinitesimal generator of the action of G
on Q. Locally, if

[ξQ(q)]
i = Ki

a(q)ξ
a (3.12.2)

relative to the coordinates qi of Q and a basis ea, a = 1, . . . ,m, of g (Ki
a

are called the action coefficients), then

Iab = gijK
i
aK

j
b . (3.12.3)

Recall also that the momentum map in this context, J : TM → g∗, is given
by

〈J(q, v), ξ〉 = 〈〈ξQ(q), v〉〉 . (3.12.4)

3.12.1 Definition. We define the mechanical connection on the prin-
cipal bundle Q → Q/G to be the map As : TQ → g given by

As(q, v) = I(q)−1 (J(q, v)) ; (3.12.5)

that is, As is the map that assigns to each (q, v) the corresponding angular
velocity of the locked system. In coordinates,

Aa = I
abgijK

i
bv

j . (3.12.6)

One can check that As is G-equivariant and As (ξQ(q)) = ξ.
The horizontal space of the connection is given by

horq = {(q, v) | J = 0} ⊂ TqQ. (3.12.7)
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The vertical space of vectors that are mapped to zero under the projection
Q → S = Q/G is given by

verq = {ξQ(q)|ξ ∈ g}. (3.12.8)

The horizontal–vertical decomposition of a vector (q, v) ∈ TqQ is given by

v = horq v + verq v, (3.12.9)

where

verq v = [As(q, v)]Q(q) and horq v = v − verq v. (3.12.10)

3.12.2 Example (Pendulum on a Cart). An example that illustrates
the mechanical connection is the uncontrolled inverted pendulum on a cart.
Recall that the Lagrangian may be written

L = 1
2

(
αθ̇2 − 2β cos θθ̇ṡ+ γṡ2 +D cos θ

)
. (3.12.11)

In this case the Lagrangian is cyclic in the variable s; that is, L is invariant
under the linear R1 action s �→ s+ a.
The infinitesimal generator of this action is thus given by

ξQ =
d

dt

∣∣∣∣
t=0

(s+ at, θ) = (a, 0). (3.12.12)

In this case using the mechanical metric induced by the Lagrangian we
have

J(q, v) = 〈J(q, v), a〉 = 〈FL(q, v), (a, 0)〉 (3.12.13)

and hence

J =
∂L

∂ṡ
= γṡ− β cos θθ̇. (3.12.14)

The locked inertia tensor I(q) is given by

〈I(q)a, b〉 = 〈〈(a, 0), (b, 0)〉〉 , (3.12.15)

and hence

I(q) =
[
1 0

] [ γ −β cos θ
−β cos θ α

] [
1
0

]
= γ. (3.12.16)

Notice that this is indeed just the “locked” inertia “γ = m+M ,” the sum
of pendulum and cart mass!
Hence the action of the mechanical connection on a tangent vector v at

the point q is given by

As(q, v) =
1

γ

(
γṡ− β cos θθ̇

)
=

(
ṡ− β

γ
cos θθ̇

)
. (3.12.17)



3.13 The Lagrange–Poincaré Equations 159

The vertical–horizontal decomposition of a vector v is given by

verq v = [As(q, v)]Q(q) =

(
ṡ− β

γ
cos θθ̇, 0

)
,

horq v = v − verq v =

(
β

γ
cos θθ̇, θ̇,

)
. (3.12.18)

Note that the horizontal component of v is clearly zero under the action
of A. �

3.13 The Lagrange–Poincaré Equations

To describe the reduced Lagrange equations, we make use of a connection
on the principal G-bundle Q → Q/G; for the Euler–Poincaré-equations,
in which Q = G, the group structure automatically provides such a con-
nection. For a more general choice of Q one can choose the mechanical
connection as defined in the previous section. (See Marsden and Scheurle
[1993b].)
Thus, assume that the bundle Q → Q/G has a given (principal) connec-

tion As. Divide variations into horizontal and vertical parts; this breaks
up the Euler–Lagrange equations on Q into two sets of equations that we
now describe. Let rα be coordinates on the shape space Q/G and let Ωa be
coordinates for vertical vectors in a local bundle chart. Drop L to TQ/G to
obtain a reduced Lagrangian l : TQ/G → R in which the group coordinates
are eliminated. We can represent this reduced Lagrangian in a couple of
ways. First, if we choose a local trivialization as we have described earlier,
we obtain l as a function of the variables (rα, ṙα, ξa). However, it will be
more convenient and intrinsic to change variables from ξa to the local ver-
sion of the locked angular velocity, which has the physical interpretation of
the body angular velocity, namely Ω = ξ +Ab, or in coordinates,

Ωa = ξa +Aa
α(r)ṙ

α.

We will write l(rα, ṙα,Ωa) for the local representation of l in these variables.

3.13.1 Theorem. A curve (qi, q̇i) ∈ TQ satisfies the Euler–Lagrange equa-
tions if and only if the induced curve in TQ/G with coordinates given in a
local trivialization by (rα, ṙα,Ωa) satisfies the Lagrange–Poincaré equa-
tions

d

dt

∂l

∂ṙα
− ∂l

∂rα
=

∂l

∂Ωa

(−Ba
αβ ṙ

β + Ea
αdΩ

d
)
, (3.13.1)

d

dt

∂l

∂Ωb
=

∂l

∂Ωa

(−Ea
αbṙ

α + Ca
dbΩ

d
)
, (3.13.2)

where Ba
αβ are the coordinates of the curvature Bs of As, and Ea

αd = Ca
bdAb

α.
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The first of these equations is similar to the equations for a nonholonomic
system written in terms of the constrained Lagrangian, and the second is
similar to the momentum equation (see Chapter 5). It is useful to note that
the first set of equations results from the variational principle of Hamilton
by restricting the variations to be horizontal relative to the given connec-
tion. As we shall see, this is very similar to what one has in systems with
nonholonomic constraints with the principle of Lagrange–d’Alembert.
If one uses as variables (rα, ṙα, pa), where p is the body angular momen-

tum, so that p = I(r)Ω = ∂l/∂Ω, then the equations become (using the
same letter l for the reduced Lagrangian, an admitted abuse of notation)

d

dt

∂l

∂ṙα
− ∂l

∂rα
= pa

(−Ba
αβ ṙ

β + Ea
αdI

depe
)− pd

∂Ide

∂rα
pe, (3.13.3)

d

dt
pb = pa

(−Ea
αbṙ

α + Ca
dbI

depe
)
, (3.13.4)

where Ide denotes the inverse of the matrix Iab.
The above equstions may be further written in Hamiltonian form by

defining the conjugate variables yα to rα and the reduced Hamiltonian

h(r, y, p) = 〈y, ṙ〉+ 〈p,Ω〉 − l(r, ṙ,Ω).

We then obtain the Hamilton–Poincaré equations

d

dt
rα =

∂h

∂ẏα
, (3.13.5)

d

dt
yα = − ∂h

∂rα
+ pa

(−Ba
αβ ṙ

β + Ea
αdI

depe
)− pd

∂Ide

∂rα
pe, (3.13.6)

d

dt
pb = pa

(−Ea
αbṙ

α + Ca
dbI

depe
)
. (3.13.7)

The intrinsic geometry of these equations is systematically developed in
Cendra, Marsden, and Ratiu [2001a], and their nonholonomic counterpart
is developed in Bloch, Krishnaprasad, Marsden, and Murray [1996] and
Cendra, Marsden, and Ratiu [2001b].

Derivation of the Lagrange–Poincaré Equations. Here we derive a
slightly more general version of equations (3.13.1) and (3.13.1) using the
formalism of Section 3.8. Having applications to nonholonomic systems in
mind, we assume that the basis in the Lie algebra of the symmetry group
depends on the shape configuration of the system.
Recall that the configuration space has the structure of a principle fiber

bundle Q → Q/G and has a given principle connection As. Later we will
discuss how the structure of the Lagrangian can be used for selecting a
connection. Assuming that the vectors ea(r), a = 1, . . . , k, form a basis of
g = TeG for each r ∈ Q/G, we define the frame e(r) by

e(r) = (e1(r), . . . , ek(r)) ∈ gk. (3.13.8)
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Since this frame spans the Lie algebra g, there exists a g⊗ g∗-valued one-
form γ on Q/G such that

de = 〈γ(r), e〉. (3.13.9)

In coordinates we have

∂ea
∂rα

= γb
aα(r)eb(r).

Define the form E by
E = γ + adAb

, (3.13.10)

which, in coordinates, reads Ec
αb = γc

bα+Cc
abAa

α, where C
c
ab are the structure

constants of the Lie algebra g.
If the basis ea, a = 1, . . . , k, consists of constant vectors, formula (3.13.10)

becomes Ec
αb = Cc

abAa
α as in Theorem 3.13.1.

3.13.2 Theorem. The equations of motion of a G-invariant system are

d

dt

∂l

∂ṙ
− ∂l

∂r
= −
〈

∂l

∂Ω
, iṙBb + 〈iṙγ,Ab〉 − 〈γ, iṙAb〉 − 〈E ,Ω〉

〉
, (3.13.11)

d

dt

∂l

∂Ω
= ad∗Ω

∂l

∂Ω
−
〈

∂l

∂Ω
, iṙE
〉
, (3.13.12)

ġ = g(Ω− iṙAb). (3.13.13)

The Lagrange–Poincaré equations (3.13.11) and (3.13.12) are independent
of the group variable g and govern the reduced dynamics. The reconstruc-
tion equation (3.13.13) is used to obtain the group dynamics.

Proof. Using a local trivialization representation Q = Q/G × G for the
configuration space, define the vector fields ui by the formulae

uα =
∂

∂rα
−Aa

α(r)Lg∗ea(r), uσ+a = Lg∗ea(r), (3.13.14)

where α = 1, . . . , σ = dimQ/G, a = 1, . . . , k = dimG, and where Aa
α(r)

are the connection components as defined in (2.9.13).
The fields uα span the horizontal space and the remaining fields uσ+a

span the vertical space (tangent space to the group orbit) at q ∈ Q. The
components of the velocity vector q̇ relative to basis (3.13.14) are

ṙα and Ωa = ξa +Aa
αṙ

α,

where the ξa are Lie algebra variables. The Lie algebra element ξ = ξaea(r)
and the group element g are related by the equation ξ = Lg−1∗ġ ≡ g−1ġ.
Straightforward calculation shows that

[uα, uβ ] =
(Bc

αβ + γc
bβAb

α − γc
bαAb

β

)
uσ+c, (3.13.15)

[uα, uσ+b] = −Ec
αbuσ+c, (3.13.16)

[uσ+a, uσ+b] = Cc
abuσ+c. (3.13.17)
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Thus, from the definitions of Bs, E , and formulae (3.8.7) and (3.13.15)–
(3.13.17) one obtains

[(ṙ1, 0), (ṙ2, 0)]q = Bb(ṙ1, ṙ2)− 〈iṙ1γ, iṙ2Ab〉+ 〈iṙ2γ, iṙ1Ab〉,
[(ṙ, 0), (0,Ω)]q = −〈iṙE ,Ω〉, [(0,Ω1), (0,Ω2)]q = adΩ1

Ω2. (3.13.18)

Using (3.13.18) and evaluating [· , ·]∗q , the Hamel equations (3.8.8) become
(3.13.11)–(3.13.13). �

Explicit Form of the Reduced Lagrangian. It is possible to write
down a useful explicit form of the reduced Lagrangian for mechanical sys-
tems (see, e.g., Murray [1995] and Ostrowski [1995, 1998]). We shall also
see a related, even simpler version of this in the next section in the context
of Routh reduction.
Suppose we have a Lagrangian on L on TQ that is invariant under the

action of G on Q. We define the reduced Lagrangian l : TQ/G → R to be

l(r, ṙ, ξ) = L(r, g−1g, ṙ, g−1ġ), (3.13.19)

where (r, ṙ, ξ = g−1ġ) are local coordinates on TQ/G. Here the ξ are re-
ferred to as body velocities or velocities with respect to the body frame,
while ξs = ġg−1 = Adg ξ are referred to as spatial velocities. See Marsden
and Ratiu [1999] for further details.
For a mechanical system the Lagrangian has the form

L(q, vq) =
1

2
〈〈vq, vq〉〉 − V (q). (3.13.20)

Then we have the following result.

3.13.3 Proposition. For a G-invariant mechanical Lagrangian the re-
duced Lagrangian may be written in the form

l(r, ṙ, ξ) =
1

2
(ṙT , ξT )

(
m(r) AT

b I
IAb I

)(
ṙ
ξ

)
− V (r), (3.13.21)

where here I is the local form of the locked inertia tensor and Ab is the
local form of the mechanical connection.

Proof. Write L as

L(r, g, ṙ, ġ) =
1

2
(ṙT , ġT )

(
g11 g12
gT12 g22

)(
ṙ
ġ

)
− V (r, g). (3.13.22)

We now consider each term of the kinetic energy separately: Firstly,

ġT g22 ġ = 〈〈(0, ġ) , (0, ġ)〉〉 = 〈J (0, ġ) , ξs〉
= 〈IAs (0, ġ) , ξ

s〉 = 〈Iξs, ξs〉 (3.13.23)
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using (2.9.14) for the local expression of the connection and the definition
of the mechanical connection (3.12.5).
Similarly,

ṙT g12 ġ = 〈〈(ṙ, 0) , (0, ġ)〉〉 = 〈J (ṙ, 0) , ξs〉
= 〈IAs (ṙ, 0) , ξ

s〉 = 〈IAdg A(r)bṙ, ξ
s〉 , (3.13.24)

again using (2.9.14). Now set m(r) = g11(r, e) and V (r) = V (r, e). Then
the reduced Lagrangian in the spatial frame is

ls(r, ṙ, ξs) =
1

2
(ṙT , (ξs)T )

(
m(r) AT

b Ad∗g I
IAdg Ab I

)(
ṙ
ξs

)
− V (r). (3.13.25)

Using ξs = Adg ξ and defining I(r) = I(r, e) = Ad∗g IAdg gives the body
representation

l = lb(r, ṙ, ξ) =
1

2
(ṙT , ξT )

(
m AT

b I
IAb I

)(
ṙ
ξ

)
− V (r). (3.13.26)

�

Setting Ω = ξ +Abṙ we obtain the block diagonal form

l = lΩ(r, ṙ,Ω) =
1

2
(ṙT ,ΩT )

(
m−AT

b IAb 0
0 I

)(
ṙ
Ω

)
− V (r). (3.13.27)

We can then compute the equations of motion in these reduced coordinates.
See Marsden and Scheurle [1993a] and Ostrowski [1995].

Define the generalized momentum

p =
∂l

∂ξ
= Iξ + IAbṙ. (3.13.28)

Suppose also that there is a G-invariant forcing F = (Fα, Fa), the com-
ponents corresponding to base and fiber directions, respectively. Then the
reduced equations of motion are

M̃ r̈ + ṙT C̃(r)ṙ + Ñ +
∂V

∂r
= T (r)F,

ṗ = ad∗ξ p+ F ,

g−1ġ = ξ = −Abṙ + I−1p,

where M̃(r) = m(r)−AT
b (r)I(r)Ab(r), and C̃(r) represents reduced Cori-

olis and centrifugal terms and is defined by

Cαβγ ṙ
αṙβ =

1

2

(
∂M̃αβ

∂rγ
+

∂M̃αγ

∂rβ
− ∂M̃γβ

∂rα

)
ṙβ ṙα,
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while

〈
Ñ , δr

〉
=

〈
p, dAb(ṙ, δr)− [Abṙ,Abδr] +

[I−1p,Abδr
]
+

1

2

∂I−1p

∂r
δr

〉

and (T (r)F )α = Fα−FaAa
α, F a = Fbg

b
a, with gba denoting the lifted action

of the group.
The reduced part of these equations is of course equivalent to the reduced

Euler–Lagrange equations discussed above, but this is a useful way to look
at the full set of equations.

3.13.4 Example (Pendulum on a Cart). One can see this structure
quite explicitly in the pendulum on a cart discussed above in Section 3.12.
The off-diagonal entries of the kinetic energy metric are −β cos θ = −γ(β/
γ cos θ, just IAb in the notation above. �
3.13.5 Example (Rigid Body (Satellite) with Rotor). Computation-
ally, these equations are often quite straightforward to obtain by a direct
analysis. Consider, for example, the satellite with rotor that we briefly an-
alyzed in Chapter 1. (See also Ostrowski [1995].)

Recall from Chapter 1 that the Lagrangian for this system in the body
frame is

l =
1

2
(λ1Ω

2
1 + λ2Ω

2
2 + I3Ω

2
3 + J3(Ω3 + α̇)2). (3.13.29)

Hence comparing with equations (3.13.26) we see that the local form of the
locked inertia tensor is the matrix

I = diag (λ1, λ2, λ3) , (3.13.30)

IAb = [0, 0, J3]
T
, (3.13.31)

and the local form of the mechanical connection is

Ab = I−1(IAb) = [0, 0, J3/ (I3 + J3)]
T
. (3.13.32)

Here
p = Π = (λ1Ω1, λ2Ω2, λ3Ω3 + J3α̇) , (3.13.33)

and the equation
ξ = −Abṙ + I−1p (3.13.34)

becomes
ξ = −Abα̇+ I−1p, (3.13.35)

that is,

Ω = − J3
I3 + J3

[0, 0, α̇]T + I−1p (3.13.36)

with I given by (3.13.30).
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Finally, identifying the algebra with its dual, the equations

ṗ = ad∗ξ p = adΩ̂ p = p× Ω (3.13.37)

give the equations we saw in Chapter 1:

Π̇1 =

(
1

I3
− 1

λ2

)
Π2Π3 − l3Π2

I3
,

Π̇2 =

(
1

λ1
− 1

I3

)
Π1Π3 +

l3Π1

I3
,

Π̇3 =

(
1

λ2
− 1

λ1

)
Π1Π2

.
= a3Π1Π2.

The base space equation is just

l̇3 = u (3.13.38)

as before, where l3 is the momentum conjugate to α. �

Exercises

� 3.13-1. Repeat the above analysis for the case of a satellite with three
rotors, one about each principal axis.

3.14 The Energy-Momentum Method

A key notion in dynamics and control is that of stability of a point or set. In
this context one normally thinks either of asymptotic or nonlinear stability,
the former meaning essentially that all nearby trajectories tend to the set
and the latter meaning that all trajectories starting nearby the set remain
near the set. Most often one considers stability of an equilibrium point of
a given system. Also of interest are relative equilibria—equilibria modulo
the action of a symmetry group. Examples of such equilibria are the steady
motions of rigid body—uniform rotations about one of the principal axes.
In the theory of controlled systems, the problem is often that of achieving
nonlinear or asymptotic stability of an initially unstable equilibrium point
or set.
In this section we sketch a few key ideas in the stability theory for rel-

ative equilibria of holonomic mechanical systems. We will not be exhaus-
tive or completely up to date; our purpose is just to give enough back-
ground so that the corresponding methods for nonholonomic systems can
be treated later. The reader can consult the references below for further
details. The key idea is the use of a combination of energy and another
conserved quantity, such as momentum, to provide a Lyapunov function



166 3. Basic Concepts in Geometric Mechanics

for the system. In Chapter 8 we extend this notion to nonholonomic sys-
tems, while in Chapter 9 we will see the method applied to stabilization
problems in control.

The Energy–Momentum Method for Holonomic Systems. The
energy-momentum method has a long and distinguished history going back
to Routh, Riemann, Poincaré, Lyapunov, Arnold, Smale, and many others.
The main new feature provided in the more recent work of Simo, Lewis,
and Marsden [1991] (see Marsden [1992] for an exposition) is to obtain
the powerful block diagonalization structure of the second variation of the
augmented Hamiltonian as well as the normal form for the symplectic struc-
ture. This formulation also allowed for the proof of a converse of the energy-
momentum method in the context of dissipation-induced instabilities due
to Bloch, Krishnaprasad, Marsden, and Ratiu [1994, 1996].

As we saw in Theorem 2.3.3, there is a standard procedure for determin-
ing the stability of equilibria of an ordinary differential equation

ẋ = f(x), (3.14.1)

where x = (x1, . . . , xn) and f is smooth. Recall that equilibria are points
xe such that f(xe) = 0; that is, points that are fixed in time under the
dynamics. By stability of the fixed point xe we mean that any solution
to ẋ = f(x) that starts near xe remains close to xe for all future time. A
traditional method of ascertaining the stability of xe is to examine the first
variation equation

ξ̇ = df(xe)ξ (3.14.2)

where df(xe) is the Jacobian of f at xe, defined to be the matrix of partial
derivatives

df(xe) =

[
∂f i

∂xj

]
x=xe

. (3.14.3)

3.14.1 Theorem (Lyapunov’s theorem). If all the eigenvalues of df(xe)
lie in the strict left half-plane, then the fixed point xe is stable. If any of
the eigenvalues lie in the right half-plane, then the fixed point is unstable.

For Hamiltonian systems, the eigenvalues come in quartets that are sym-
metric about the origin, and so they cannot all lie in the strict left half-
plane. (See, for example, Marsden and Ratiu [1999] for the proof of this
assertion.) Thus, the above form of Lyapunov’s theorem is not appropriate
to deduce whether or not a fixed point of a Hamiltonian system is stable.
When the Hamiltonian is in canonical form, one can use a stability test

for fixed points due to Lagrange and Dirichlet. This method starts with
the observation that for a fixed point (qe, pe) of such a system,

∂H

∂q
(qe, pe) =

∂H

∂p
(qe, pe) = 0.

Hence the fixed point occurs at a critical point of the Hamiltonian.
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Lagrange–Dirichlet Criterion. If the 2n × 2n matrix δ2H consisting
of second partial derivatives (the second variation) is either positive or neg-
ative definite at (qe, pe), then it is a stable fixed point.

The proof is very simple. Consider the positive definite case. Since H
has a nondegenerate minimum at ze = (qe, pe), Taylor’s theorem with re-
mainder shows that its level sets near ze are bounded inside and outside
by spheres of arbitrarily small radius. Since energy is conserved, solutions
stay on level surfaces of H, so a solution starting near the minimum has to
stay near the minimum.
For a Hamiltonian of the form kinetic plus potential V , critical points

occur when pe = 0 and qe is a critical point of the potential of V . The
Lagrange–Dirichlet Criterion then reduces to asking for a non-degenerate
minimum of V .
In fact, this criterion was used in one of the classical problems of the

19th century: the problem of rotating gravitating fluid masses. This prob-
lem was studied by Newton, MacLaurin, Jacobi, Riemann, Poincaré, and
others. The motivation for its study was in the conjectured birth of two
planets by the splitting of a large mass of solidifying rotating fluid. Rie-
mann [1860], Routh [1877] and Poincaré [1885, 1892]; Poincaré [1901] were
major contributors to the study of this type of phenomenon and used the
potential energy and angular momentum to deduce the stability and bifur-
cation.
The Lagrange–Dirichlet method was adapted by Arnold [1966b] into

what has become known as the energy-Casimir or Arnold method.
Arnold analyzed the stability of stationary flows of perfect fluids and ar-
rived at an explicit stability criterion when the configuration space Q for
the Hamiltonian of this system is the symmetry group G of the mechanical
system.
A Casimir function C is one that Poisson commutes with any function

F defined on the phase space of the Hamiltonian system, that is,

{C,F} = 0. (3.14.4)

Large classes of Casimirs can occur when the reduction procedure is per-
formed, resulting in systems with non-canonical Poisson brackets. For ex-
ample, in the case of the rigid body discussed previously, if Φ is a function
of one variable and μ is the angular momentum vector in the inertial coor-
dinate system, then

C(μ) = Φ(‖μ‖2) (3.14.5)

is readily checked to be a Casimir for the rigid body bracket.

Energy–Casimir method. Choose C such that H + C has a critical
point at an equilibrium ze and compute the second variation δ2(H+C)(ze).
If this matrix is positive or negative definite, then the equilibrium ze is
stable.
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When the phase space is obtained by reduction, the equilibrium ze is
called a relative equilibrium of the original Hamiltonian system.
The energy-Casimir method has been applied to a variety of problems

including problems in fluids and plasmas (see, for instance Holm, Marsden,
Ratiu, and Weinstein [1985]) and rigid bodies with flexible attachments
(Krishnaprasad and Marsden [1987]). If applicable, the energy-Casimir
method may permit an explicit determination of the stability of the relative
equilibria. It is important to remember, however, that these techniques give
stability information only. As such one cannot use them to infer instability
without further investigation.
The energy-Casimir method is restricted to certain types of systems,

since its implementation relies on an abundant supply of Casimir functions.
In some important examples, such as the dynamics of geometrically exact
flexible rods, Casimirs have not been found and may not even exist. A
method developed to overcome this difficulty is known as the energy-
momentum method, which is closely linked to the method of reduction.
It uses conserved quantities, namely the energy and momentum map, that
are readily available, rather than Casimirs.
The energy momentum method (Simo, Posbergh, and Marsden [1990],

Simo, Posbergh, and Marsden [1991], Simo, Lewis, and Marsden [1991], and
Lewis and Simo [1990]) involves the augmented Hamiltonian defined by

Hξ(q, p) = H(q, p)− ξ · J(q, p) (3.14.6)

where J is the momentum map and ξ may be thought of as a Lagrange
multiplier. When the symmetry group is the rotation group, J is the angular
momentum and ξ is the angular velocity of the relative equilibrium. It is
a theorem that one sets the first variation of Hξ equal to zero to obtain
the relative equilibria. To ascertain stability, the second variation δ2Hξ is
calculated. One is then interested in determining the definiteness of the
second variation.
Definiteness in this context has to be properly interpreted to take into

account the conservation of the momentum map J and the fact that d2Hξ

may have zero eigenvalues due to its invariance under a subgroup of the
symmetry group. The variations of p and q must satisfy the linearized
angular momentum constraint (δq, δp) ∈ ker[DJ(qe, pe)], and must not lie
in symmetry directions; only these variations are used to calculate the
second variation of the augmented Hamiltonian Hξ. These define the space
of admissible variations V.

The energy momentum method has been applied to the stability of rela-
tive equilibria of among others, geometrically exact rods and coupled rigid
bodies (Patrick [1989] and Simo, Posbergh, and Marsden [1990, 1991]). It
has also undergone continued development and maturity, as in, for example,
Patrick [1992, 1995], Lewis [1995] and Leonard and Marsden [1997].

A cornerstone in the development of the energy-momentum method was
laid by Routh [1877] and Smale [1970] who studied the stability of relative
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equilibria of simple mechanical systems. Simple mechanical systems are
those whose Hamiltonian may be written as the sum of the potential and
kinetic energies. Part of Smale’s work may be viewed as saying that there
is a naturally occurring connection called the mechanical connection on
the reduction bundle that plays an important role. A connection can be
thought of as a generalization of the electromagnetic vector potential.
The amended potential Vμ is the potential energy of the system plus a

generalization of the potential energy of the centrifugal forces in stationary
rotation:

Vμ(q) = V (q) +
1

2
μ · I−1(q)μ (3.14.7)

where I is the locked inertia tensor (see Section 3.10). Smale showed
that relative equilibria are critical points of the amended potential Vμ. The
corresponding momentum P need not be zero since the system is typically
in motion.
The second variation δ2Vμ of Vμ directly yields the stability of the relative

equilibria. However, an interesting phenomenon occurs if the space V of
admissible variations is split into two specially chosen subspaces VRIG and
VINT. In this case the second variation block diagonalizes:

δ2Vμ | V × V =

⎡
⎣D

2Vμ | VRIG × VRIG 0

0 D2Vμ | VINT × VINT

⎤
⎦ . (3.14.8)

The space VRIG (rigid variations) is generated by the symmetry group,
and VINT are the internal or shape variations. In addition, the whole
matrix δ2Hξ block diagonalizes in a very efficient manner. This often allows
the stability conditions associated with δ2Vμ | V × V to be recast in terms
of a standard eigenvalue problem for the second variation of the amended
potential.
This splitting, that is, block diagonalization, has more miracles associ-

ated with it. In fact,

the second variation δ2Hξ and the symplectic structure (and
therefore the equations of motion) can be explicitly brought into
normal form simultaneously .

This result has several interesting implications. In the case of pseudo-rigid
bodies (Lewis and Simo [1990]), it reduces the stability problem from an
unwieldy 14 × 14 matrix to a relatively simple 3 × 3 subblock on the di-
agonal. The block diagonalization procedure enabled Lewis and Simo to
solve their problem analytically, whereas without it, a substantial numeri-
cal computation would have been necessary.
The presence of discrete symmetries gives further, or refined, subblocking

properties in the second variation of δ2Hξ and δ2Vμ and the symplectic
form.
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In general, this diagonalization explicitly separates the rotational and
internal modes, a result which is important not only in rotating and elastic
fluid systems, but also in molecular dynamics and robotics. Similar simpli-
fications are expected in the analysis of other problems to be tackled using
the energy momentum method.

The Routhian. As we have indicated, the energy-momentummethod for
mechanical systems with symmetry has its historical roots in what is called
the Routh method for stability. We now review the Routh construction in
a concrete way to bring out this link. One may regard this discussion as a
simple, more explicit version of what is going on in the preceding section.
An abelian version of Lagrangian reduction was known to Routh by

around 1860. A modern account was given in Arnold, Kozlov, and Neish-
tadt [1988], and motivated by that, Marsden and Scheurle [1993a] gave a ge-
ometrization and a generalization of the Routh procedure to the nonabelian
case. We now give an elementary classical description of the Routh proce-
dure so that one can see how it involves, in a concrete way, the amended
potential when the group is abelian.
Assume that Q is a product of a manifold S and a number, say k, of

copies of the circle S1, namely Q = S×(S1×· · ·×S1). The factor S, called
shape space, has coordinates denoted by x1, . . . , xm, and coordinates on
the other factors are written θ1, . . . , θk. Some or all of the factors of S1 can
be replaced by R if desired, with little change. Given a Lagrangian on TQ,
we assume that the variables θa, a = 1, . . . , k, are cyclic, that is, they do
not appear explicitly in the Lagrangian, although their velocities do.
Invariance of L under the action of the abelian group G = S1 × · · · × S1

is another way to express the fact that θa are cyclic variables.
A basic class of examples are those for which the Lagrangian L has the

form kinetic minus potential energy:

L(x, ẋ, θ̇) =
1

2
gαβ(x)ẋ

αẋβ + gaα(x)ẋ
αθ̇a +

1

2
gab(x)θ̇

aθ̇b − V (x), (3.14.9)

where there is a sum over α, β from 1 to m and over a, b from 1 to k. Even
in simple examples, such as the double spherical pendulum or the simple
pendulum on a cart, the matrices gαβ , gaα, gab can depend on x.

Because θa are cyclic, the corresponding conjugate momenta

pa =
∂L

∂θ̇a
(3.14.10)

are conserved quantities, as is seen directly from the Euler–Lagrange equa-
tions. In the case of the Lagrangian (3.14.9), these momenta are given by

pa = gaαẋ
α + gabθ̇

b.

3.14.2 Definition. The classical Routhian is defined by setting pa =
μa = constant and performing a partial Legendre transformation in the
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variables θa :

Rμ(x, ẋ) =
[
L(x, ẋ, θ̇)− μaθ̇

a
]∣∣∣

pa=μa

, (3.14.11)

where it is understood that the variable θ̇a is eliminated using the equation
pa = μa and μa is regarded as a constant.

Now consider the Euler–Lagrange equations

d

dt

∂L

∂ẋa
− ∂L

∂xa
= 0; (3.14.12)

we attempt to write these as Euler–Lagrange equations for a function from
which θ̇a has been eliminated. We claim that the Routhian Rμ does the
job. To see this, we compute the Euler–Lagrange expression for Rμ using
the chain rule:

d

dt

(
∂Rμ

∂ẋα

)
− ∂Rμ

∂xα
=

d

dt

(
∂L

∂ẋα
+

∂L

∂θ̇a
∂θ̇a

∂ẋα

)

−
(

∂L

∂xα
+

∂L

∂θ̇a
∂θ̇a

∂xα

)
− d

dt

(
μa

∂θ̇a

∂ẋα

)
+ μa

∂θ̇a

∂xα
.

The first and third terms vanish by (3.14.12), and the remaining terms
vanish using μa = pa. Thus, we have proved the following result.

3.14.3 Proposition. The Euler–Lagrange equations (3.14.12) for the La-
grangian L(x, ẋ, θ̇) together with the conservation laws pa = μa are equiv-
alent to the Euler–Lagrange equations for the Routhian Rμ(x, ẋ) together
with pa = μa.

The Euler–Lagrange equations for Rμ are called the reduced Euler–
Lagrange equations, since the configuration space Q with variables
(xa, θa) has been reduced to the configuration space S with variables xα.

Let gab denote the entries of the inverse matrix of the m×m matrix [gab],
and similarly, gαβ denote the entries of the inverse of the k×k matrix [gαβ ].
We will not use the entries of the inverse of the whole matrix tensor on Q,
so there is no danger of confusion.

3.14.4 Proposition. For L given by (3.14.9) we have

Rμ(x, ẋ) = gaαg
acμcẋ

α +
1

2
(gαβ − gaαg

acgcβ) ẋ
αẋβ − Vμ(x), (3.14.13)

where

Vμ(x) = V (x) +
1

2
gabμaμb

is the amended potential.
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Proof. We have μa = gaαẋ
α + gabθ̇

b, so

θ̇a = gabμb − gabgbαẋ
α. (3.14.14)

Substituting this in the definition of Rμ gives

Rμ(x, ẋ) =
1

2
gαβ ẋ

αẋβ + (gaαẋ
α)
(
gacμc − gacgcβẋ

β
)

+
1

2
gab
(
gacμc − gacgcβ ẋ

β
) (

gbdμd − gbdgdγ ẋ
γ
)

− μa

(
gacμc − gacgcβẋ

β
)− V (x).

The terms linear in ẋ are

gaαg
acμcẋ

α − gabg
acμcg

bdgdγ ẋ
γ + μag

acgcβẋ
β = gaαg

acμcẋ
α,

while the terms quadratic in ẋ are

1

2
(gαβ − gaαg

acgcβ)ẋ
αẋβ ,

and the terms dependent only on x are −Vμ(x), as required. �

Note that Rμ has picked up a term linear in the velocity, and the potential
as well as the kinetic energy matrix (the mass matrix) have both been
modified.
The term linear in the velocities has the form Aa

αμaẋ
α, where Aa

α =
gabgbα. The Euler–Lagrange expression for this term can be written

d

dt
Aa

αμa − ∂

∂xα
Aa

βμaẋ
β =

(
∂Aa

α

∂xβ
− ∂Aa

β

∂xα

)
μaẋ

β ,

which is denoted by Ba
αβμaẋ

β . If we think of the one-form Aa
αdx

α, then
Ba

αβ is its exterior derivative. The quantities Aa
α are called connection

coefficients, and Ba
αβ are called the curvature coefficients.

Introducing the modified (simpler) Routhian, obtained by deleting the
terms linear in ẋ,

R̃μ =
1

2

(
gαβ − gaαg

abgbβ
)
ẋαẋβ − Vμ(x),

the equations take the form

d

dt

∂R̃μ

∂ẋα
− ∂R̃μ

∂xα
= −Ba

αβμaẋ
β , (3.14.15)

which is the form that makes intrinsic sense and generalizes to the case
of nonabelian groups. The extra terms have the structure of magnetic, or
Coriolis terms.
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The above gives a hint of the large amount of geometry hidden behind
the apparently simple process of Routh reduction. In particular, connec-
tions Aa

α and their curvatures Ba
αβ play an important role in more general

theories, such as those involving nonablelian symmetry groups (like the
rotation group).
Another link with the more general theories in the preceding section is

that the kinetic term in (3.14.13) can be written in the following way:

1

2
(ẋα,−Aa

δ ẋ
δ)

(
gαβ gαb
gaβ gab

)(
ẋβ

−Ab
γ ẋ

γ

)
,

which also exhibits its positive definite nature.
Routh himself (in the mid 1800s) was very interested in rotating mechan-

ical systems, such as those possessing an angular momentum conservation
law. In this context, Routh used the term “steady motion” for dynamic
motions that were uniform rotations about a fixed axis. We may identify
these with equilibria of the reduced Euler–Lagrange equations and with rel-
ative equilibria of the system before reduction. The change of terminology
from steady motions to relative equilibria is due to Poincaré around
1890.
Since the Coriolis term does not affect conservation of energy, we can

apply the Lagrange–Dirichlet test to reach the following conclusion:

3.14.5 Proposition (Routh’s Stability Criterion). Steady motions corres-
pond to critical points xe of the amended potential Vμ. If d

2Vμ(xe) is positive
definite, then the steady motion xe is stable.

Thus, we can see that the Routh stability criterion is a special case of
the energy-momentum method.

3.15 Coupled Planar Rigid Bodies

In this section we discuss the dynamics of coupled planar rigid bodies and
their reduction. This follows work of Sreenath, Oh, Krishnaprasad, and
Marsden [1988]. This is useful as a model of coupled mechanical systems
and for understanding reduction, as well as good background for under-
standing coupled nonholonomic systems. In addition it provides a nice ap-
plication of the energy-momentum method for stability. We begin with two
bodies and discuss the situation for three bodies in the Internet Supple-
ment. See Sreenath, Oh, Krishnaprasad, and Marsden [1988], Oh [1987],
Grossman, Krishnaprasad, and Marsden [1988], and Patrick [1989] for fur-
ther details and for the three-dimensional case. Related references are Kr-
ishnaprasad [1985], Krishnaprasad and Marsden [1987], and Bloch, Krish-
naprasad, Marsden, and Alvarez [1992].
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Summary of Results. Refer to Figure 3.15.1 and define the following
quantities, for i = 1, 2:

di distance from the hinge to the center of mass of body i;
ωi angular velocity of body i;
θ joint angle from body 1 to body 2;
λ(θ) = d1d2 cos θ;
mi mass of body i;
ε = m1m2/(m1 +m2) = reduced mass;
Ii moment of inertia of body i about its center of mass;

Ĩ1 = I1 + εd21; Ĩ2 = I2 + εd22 = augmented moments of inertia;

γ = ελ′/(Ĩ1Ĩ2 − ε2λ2), ′ = d/dθ.

θ
d2

d1

center of
mass of
body 1

body 1

center of
mass of
body 2

body 2

Figure 3.15.1. Two planar linked rigid bodies free to rotate and translate in the plane.

As we shall see, the dynamics of the system is given by the Euler–
Lagrange equations for θ, ω1, and ω2:

θ̇ = ω2 − ω1,

ω̇1 = −γ(Ĩ2ω
2
2 + ελω2

1),

ω̇2 = γ(Ĩ1ω
2
1 + ελω2

2). (3.15.1)

For the Hamiltonian structure it is convenient to introduce the momenta

μ1 = Ĩ1ω1 + ελω2, μ2 = Ĩ2ω2 + ελω1, (3.15.2)

that is, (
μ1

μ2

)
= J

(
ω1

ω2

)
, where J =

(
Ĩ1 ελ

ελ Ĩ2

)
(3.15.3)

(these may be obtained via the Legendre transform). The evolution equa-
tions for μi are obtained by solving for ω1, ω2 from (3.15.3) and substituting
into (3.15.1). The Hamiltonian is

H =
1

2
(ω1, ω2)J

(
ω1

ω2

)
, (3.15.4)
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that is,

H =
1

2
(μ1, μ2)J

−1

(
μ1

μ2

)
, (3.15.5)

which is the total kinetic energy for the two bodies. The Poisson structure
on the (θ, μ1, μ2)-space is

{F,H} = {F,H}2 − {F,H}1, (3.15.6)

where

{F,H}i = ∂F

∂θ

∂H

∂μi
− ∂H

∂θ

∂F

∂μi
.

The evolution equations (3.15.1) are equivalent to Hamilton’s equations
Ḟ = {F,H}. Casimirs for this bracket are readily checked to be

C = Φ(μ1 + μ2) (3.15.7)

for Φ any smooth function of one variable; that is, {F,C} = 0 for any
F . One can also verify directly that, correspondingly, (dμ/dt) = 0, where
μ = μ1 + μ2 is the total system angular momentum.
The symplectic leaves of the bracket are described by the variables ν =

(μ2−μ1)/2, θ, which parametrize a cylinder. The bracket in terms of (θ, ν)
is the canonical one on T ∗S1:

{F,H} =
∂F

∂θ

∂H

∂ν
− ∂H

∂θ

∂F

∂ν
. (3.15.8)

We now set up the phase space for the dynamics of our problem. Refer
to Figure 3.15.2 and define the following quantities:

d12 the vector from the center of mass of body 1 to the hinge
point in a fixed reference configuration;

d21 the vector from the center of mass of body 2 to the hinge
point in a fixed reference configuration;

R(θi) =

(
cos θi − sin θi
sin θi cos θi

)
, the rotation through angle θi giving the

current orientation of body i (written as a matrix relative to
the fixed standard inertial frame);

ri current position of the center of mass of body i;
r current position of the system center of mass;
r0i the vector from the system center of mass to the center of

mass of body i;
θ = θ2 − θ1 joint angle;
R(θ) = R(θ2) ·R(−θ1) joint rotation;

The configuration space we start with is Q, the subset of SE(2)× SE(2)
(two copies of the special Euclidean group of the plane) consisting of pairs
(R(θ1), r1), (R(θ2), r2)) satisfying the hinge constraint

r2 = r1 +R(θ1)d12 −R(θ2)d21. (3.15.9)
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Notice that Q is of dimension 4 and is parametrized by θ1, θ2, and, say,
r1; that is, Q ≈ S1 × S1 × R

2. We form the velocity phase space TQ and
momentum phase space T ∗Q.

The Lagrangian on TQ is the kinetic energy (relative to the inertial
frame) given by summing the kinetic energies of each body. To spell this
out, let Xi denote a position vector in body 1 relative to the center of mass
of body 1, and let ρ1(X1) denote the mass density of body 1. Then the
current position of the point with material label X1 is

x1 = R(θ1)X1 + r1. (3.15.10)

body 2

reference
pointcenter of mass

of the system

r2r1

r0

r0

R (θ1)d12

R(θ2)d21

θ

2

1

body 1

Figure 3.15.2. Quantities needed for setting up the dynamics of two coupled rigid

bodies in the plane.

Thus, ẋ1 = Ṙ(θ1)X1 + ṙ1, and so the kinetic energy of body 1 is

K1 =
1

2

∫
ρ1(X1)‖ẋ1‖2d2X1

=
1

2

∫
ρ1(X1)

〈
ṘX1 + ṙ1, ṘX1 + ṙ1

〉
d2X1

=
1

2

∫
ρ1(X1)

[〈
ṘX1, ṘX1

〉
+ 2
〈
ṘX1, ṙ1

〉
+ ‖ṙ1‖2

]
d2X1.

(3.15.11)

But 〈
ṘX1, ṘX1

〉
= tr(ṘX1, ṘX1)

T = tr(ṘXT
1 X1Ṙ

T ) (3.15.12)

and∫
ρ1(X1)

〈
ṘX1, ṙ1

〉
d2X1 =

〈
Ṙ

∫
ρ1(X1)X1d

2X1, ṙ1

〉
= 0, (3.15.13)
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since X1 is the vector relative to the center of mass of body 1. Substituting
(3.15.12) and (3.15.13) into (3.15.11) and defining the matrix

I1 =

∫
ρ(X1)X1X

T
1 d

2X1 (3.15.14)

we get

K1 =
1

2
tr(Ṙ(θ1)I

1(Ṙ(θ1)
T ) +

1

2
m1‖ṙ1‖2, (3.15.15)

with a similar expression for K2. Now let

L : TQ → R be defined by L = K1 +K2. (3.15.16)

The equations of motion then are the Euler–Lagrange equations for this L
on TQ. Equivalently, they are Hamilton’s equations for the corresponding
Hamiltonian.
For later convenience, we shall rewrite the energy in terms of ω1 = θ̇1,

ω2 = θ̇2, r
0
1, and r02. To do this note that by definition,

mr = m1r1 +m2r2, (3.15.17)

where m = m1 +m2, and so, using r1 = r+ r02,

0 = m1r
0
1 +m2r

0
2 (3.15.18)

and, subtracting r from both sides of (3.15.9),

r02 = r01 +R(θ1)d12 −R(θ2)d21. (3.15.19)

From (3.15.18) and (3.15.19) we find that

r02 =
m1

m
(R(θ1)d12 −R(θ2)d21) (3.15.20)

and
r01 = −m2

m
(R(θ1)d12 −R(θ2)d21). (3.15.21)

Now we substitute

r1 = r+ r01, so ṙ1 = ṙ+ ṙ01, (3.15.22)

and
r2 = r+ r02, so ṙ2 = ṙ+ ṙ02, (3.15.23)

into our expression for the Lagrangian to give

L =
1

2
tr
(
Ṙ(θ1)I

1Ṙ(θ1)
T + Ṙ(θ2)I

2Ṙ(θ2)
T
)

+
1

2
[m1‖ṙ+ ṙ01‖2 +m2‖ṙ+ ṙ02‖2]. (3.15.24)
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But m1

〈
ṙ, ṙ01
〉
+m2

〈
ṙ, ṙ02
〉
= 0, since m1ṙ

0
1 +m2ṙ

0
2 = 0. Thus L simplifies

to

L =
1

2
tr
(
Ṙ(θ1)I

1Ṙ(θ1)
T + Ṙ(θ2)I

2Ṙ(θ2)
T
)

+

(
p2

2m

)
+

1

2
m1‖ṙ01‖2 +

1

2
m2‖ṙ02‖2, (3.15.25)

where p = m‖ṙ‖ is the magnitude of the system momentum.
Now write

Ṙ(θ1) =
d

dt

(
cos θ1 − sin θ1
sin θ1 cos θ1

)
=

(− sin θ1 − cos θ1
cos θ1 − sin θ1

)
ω1

:= R(θ1)

(
0 −ω1

ω1 0

)
:= R(θ1)ω̂1, (3.15.26)

so that

ṙ02 =
m1

m
(R(θ1)ω̂1d12 − (R(θ2)ω̂2d21), (3.15.27)

ṙ01 = −m2

m
(R(θ1)ω̂1d12 − (R(θ2)ω̂2d21). (3.15.28)

Thus we obtain

L =
1

2
tr((ω̂1I

1ω̂T
1 )+ ω̂1I

2ω̂T
2 ))+

p2

2m
+

m1m2

m
‖ω̂1d12 −R(θ2 − θ1)ω̂2d21‖2.

(3.15.29)
Finally, we note that

tr(ω̂1I
1ω̂T

1 ) = tr(ω̂T
1 ω̂1I

1) = tr

((
ω2
1 0
0 ω2

1

)
I1
)

= ω2
1 tr I

1 := ω2
1I1,

(3.15.30)
where

I1 =

∫
ρ(X1, Y1)(X

2
1 + Y 2

1 )dX1dY1

is the moment of inertia of body 1 about its center of mass. One similarly
derives an expression where 1 is replaced by 2 throughout. We note also
that

‖ω̂1d12 −R(θ)ω̂2d21‖2 = ‖ω̂1d12‖2 − 2 〈ω̂1d12, R(θ)ω̂2d21〉+ ‖ω̂2d21‖2
= ω2

1d
2
1 + ω2

2d
2
2 − 2 〈ω̂1d12, ω̂2R(θ)d21〉

= ω2
1d

2
1 + ω2

2d
2
2 − 2ω1ω2 〈d12, R(θ)d21〉 . (3.15.31)

Finally, we get

L =
1

2

[
(ω2

1 Ĩ1 + ω2
2 Ĩ2 + 2ω1ω2ελ(θ)

]
+

p2

2m
, (3.15.32)

where

λ(θ) = −〈d12, R(θ)d21〉 = −[d12 ·d21 cos θ−(d12×d21)·k sin θ]. (3.15.33)
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Remarks.

(i) If d12 and d21 are parallel (that is, the reference configuration is
chosen with d12 and d21 aligned), then λ(θ) = d1d2 cos θ.

(ii) The quantities Ĩ1, Ĩ2 are the moments of inertia of “augmented” bod-
ies; for example, Ĩ1 is the moment of inertia of body 1 augmented by
putting a mass ε at the hinge point.

Reduction to the Center of Mass Frame. Now we reduce the dy-
namics by the action of the translation group R

2. This group acts on the
original configuration space Q by

v · ((R(θ1), r1), (R(θ2), r2)) = ((R(θ1), r1 + v), (R(θ2), r2 + v)). (3.15.34)

This is well defined, since the hinge constraint is preserved by this action.
The induced momentum map on TQ is calculated by the standard formula

Jξ =
∂L

∂q̇i
ξiQ(q), (3.15.35)

or on T ∗Q by
Jξ = piξ

i
Q(q), (3.15.36)

where ξiQ is the infinitesimal generator of the action on Q. To compute
(3.15.36) we parametrize Q by θ1, θ2, and r. The momentum conjugate
to r is

p =
∂L

∂ṙ
= mṙ, (3.15.37)

and so (3.15.36) gives
Jξ = 〈p, ξ〉 , ξ ∈ R

2. (3.15.38)

Thus J = p is conserved, since H is cyclic in r, and so H is translation-
invariant. The corresponding reduced space is obtained by fixing p = p0

and letting
Pp0

= J−1(p0)/R
2.

But Pp0
is isomorphic to T ∗(S1×S1), that is, to the space of θ1, θ2 and their

conjugate momenta. The reduced Hamiltonian is simply the Hamiltonian
corresponding to (3.15.32) with p0 regarded as a constant.
In this case the reduced symplectic manifold is a cotangent bundle, and

the reduced phase space has the canonical symplectic form: One can also
check this directly.
In (3.15.32) we can adjust L by a constant and thus assume that p0 = 0;

this obviously does not affect the equations of motion.
The reduced system is given by geodesic flow on S1×S1, since (3.15.32)

is quadratic in the velocities. Indeed, the metric tensor is just the matrix
J given by (3.15.3), so the conjugate momenta are μ1 and μ2 given by
(3.15.3).
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Reduction by Rotations. To complete the reduction, we reduce by the
diagonal action of S1 on the configuration space S1×S1 that was obtained
above. The momentum map for this action is

J((θ1, μ1), (θ2, μ2)) = μ1 + μ2. (3.15.39)

To facilitate stability calculations, form the Poisson reduced space

P := T ∗(S1 × S1)/S1 (3.15.40)

whose symplectic leaves are the reduced symplectic manifolds

Pμ = J−1(μ)/S1 ⊂ P.

We coordinatize P by θ = θ2 − θ1, μ1, and μ2; topologically, P = S1 ×R
2.

The Poisson structure on P is computed as follows: Take two functions
F (θ, μ1, μ2) and H(θ, μ1, μ2). Regard them as functions of θ1, θ2, μ1, μ2

by substituting θ = θ2 − θ1 and compute the canonical bracket. The as-
serted bracket (3.15.6) is what results. The Casimirs on P are obtained by
composing J with Casimirs on the dual of the Lie algebra of S1, that is,
with arbitrary functions of one variable; thus, (3.15.7) results. This can be
checked directly.
If we parametrize Pμ by θ and set ν = (μ2 − μ1)/2, then the Poisson

bracket on Pμ becomes the canonical one.
The realization of Pμ as T ∗S1 is not unique. For example, we can param-

etrize Pμ by (θ2, μ2) or by (θ1, μ1), each of which also gives the canonical
bracket. The reduced bracket on T ∗(S1 × S1)/S1 can also be obtained
from the general formula for the bracket on (P × T ∗G)/G ∼= P × 3∗ (see
Krishnaprasad and Marsden [1987]): It produces one of the variants above,
depending on whether we take G to be parametrized by θ1, θ2, or θ2 − θ1.
The reduced Hamiltonian on P is (3.15.5) regarded as a function of μ1,

μ2, and θ:

H =
1

2Δ
(μ1, μ2)

(
Ĩ2 −ελ

−ελ Ĩ1

)(
μ1

μ2

)
, (3.15.41)

where Δ = Ĩ1Ĩ2 − ε2λ2. Substituting μ1 = (μ/2) − ν and μ2 = ν + (μ/2)
gives

H =
1

2Δ
(Ĩ1 + Ĩ2 + 2ελ)ν2 +

1

2Δ

[(
Ĩ1 − Ĩ2

)
μ
]
ν

+
1

2Δ

(
1

4
μ2
(
Ĩ1 + Ĩ2 − 2ελ

))
. (3.15.42)

The potential piece here is the amended potential.
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We summarize as follows:

3.15.1 Theorem. The reduced phase space for two coupled planar rigid
bodies is the three-dimensional Poisson manifold P = S1 × R

2 with the
bracket (3.15.6); its symplectic leaves are the cylinders with canonical vari-
ables (θ, ν). Casimirs are given by (3.15.7).

The reduced dynamics are given by Ḟ = {F,H}, or equivalently,

θ̇ =
∂H

∂μ2
− ∂H

∂μ1
, μ̇1 =

∂H

∂θ
, μ̇2 = −∂H

∂θ
, (3.15.43)

where H is given by (3.15.5). The equivalent dynamics on the leaves are
given by

∂θ

∂t
=

∂H

∂ν
,

∂ν

∂t
= −∂H

∂θ
, (3.15.44)

where H is given by (3.15.42).

We shall continue this discussion and illustrate the energy-momentum
and energy-Casimir (or Arnold) method in the Internet Supplement.

3.16 Phases and Holonomy, the Planar
Skater

In this section we give a brief introduction to phases and holonomy, empha-
sizing aspects that apply to control theory. This section is an abbreviated
version of Marsden and Ostrowski [1998]. The main point is that we can
view motion generation as a question of relating internal shape changes
to net changes in position via a coupling mechanism, most often either
interaction with the environment or via some type of conservation law.
Perhaps the best-known example of the generation of rotational motion

using internal shape changes is that of the falling cat (discussed in more
detail later). Released from rest with its feet above its head, the cat is able
to execute a 180◦ reorientation and land safely on its feet. One observes
that the cat achieves this net change in orientation by wriggling to create
changes in its internal shape or configuration. On the surface, this provides
a seeming contradiction—since the cat is dropped from rest, it has zero
angular momentum at the beginning of the fall and hence, by conservation
of angular momentum, throughout the duration of the fall. The cat has
effectively changed its angular position while at the same time having zero
angular momentum.
To understand how the reorientation works we need to keep in mind

that for a rotating articulated structure, the angular momentum is the
sum of the angular momenta of its rigid parts. Each part has its own
angular velocity. At a deeper level this has to do with the changing locked
inertial tensor due to shape changes. In fact, these ideas actually define a
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principal connection as explained in Chapter 2. While the study of this
problem has a long history, e.g., Kane and Scher [1969], new and interesting
insights have recently been obtained using these geometric methods; see
Enos [1993], Montgomery [1990], and the references therein.

One can say that this effect is an example of the holonomy of a natural
connection on the principal bundle associated with symplectic reduction.

Another example to help visualize this effect is to consider astronauts
who wish to reorient themselves in a free space environment. This motion
can again be achieved using internal gyrations, or shape changes. For ex-
ample, consider a motion where the arms are held out forward to lie in a
horizontal plane that goes through the shoulders, parallel to the floor. If
the astronaut carries out one complete cycle of arm movement, the body
undergoes a net rotation in the opposite direction of arm motion. When
the desired orientation is achieved, the astronaut need merely stop the arm
motion in order to come to rest. One often refers to the extra motion that
is achieved by the name geometric phase.

Historical Perspective on Geometric Phases. The history of geo-
metric phases and its applications is a long and complex story. We shall only
mention a few highlights. The shift in the plane of the swing in the Foucault
pendulum (commonly seen in science centers) as Earth rotates around its
axis is certainly one of the earliest known examples of this phenomenon.
Anomalous spectral shifts in rotating molecules is another. Phase formulas
for special problems such as rigid body motion, elastic rods, and polarized
light in helical fibers were understood already by the early 1950s, although
the geometric roots to these problems go back to MacCullagh [1840] and
Thomson and Tait [1879], Sections 123–126. See Berry [1990] and Marsden
and Ratiu [1999] for additional historical information.
More recently this subject has become better understood, through the

work of Berry[1984, 1985] and Simon [1983], whose papers first brought into
clear focus the ubiquity of, and the geometry behind, all these phenomena.
It was quickly realized that the phenomenon occurs in essentially the same
way in both classical and quantum mechanics (see Hannay [1985]). It was
also realized by Shapere and Wilczek [1987] that these ideas for classical
systems were of great importance in the understanding of locomotion of
microorganisms.
That geometric phases can be linked in a fundamental way with the

reduction theory for mechanical systems with symmetry was realized by
Gozzi and Thacker [1987] and Montgomery [1988], and developed exten-
sively in terms of reconstruction theory for mechanical systems with sym-
metry (not necessarily abelian) by Marsden, Montgomery, and Ratiu [1990].
This relation with reduction has played an important role in developing an
understanding of the geometric nature of many general forms of locomo-
tion. Other relations with symplectic geometry were found by Weinstein
[1990].
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The theory of geometric phases has an interesting link with non-Euclidean
geometry. A simple way to explain this link is as follows. Hold your hand
at arms length, but allow rotation in your shoulder joint. Move your hand
along three great circles, forming a triangle on the sphere, and during the
motion, keep your thumb “parallel”; that is, forming a fixed angle with the
direction of motion. After completing the circuit around the triangle, your
thumb will return rotated through an angle relative to its starting position.
See Figure 3.16.1. In fact, this angle (in radians) is given by Θ = Δ − π
where Δ is the sum of the angles of the triangle. The fact that Θ �= 0
is of course one of the basic facts of non-Euclidean geometry: In curved
spaces, the sum of the angles of a triangle is not necessarily π. This angle
is also related to the area A enclosed by the triangle through the relation
Θ = A/r2, where r is the radius of the sphere.

area = A

finish

start

Figure 3.16.1. A parallel movement of your thumb around a spherical triangle produces

a phase shift.

The Role of Geometry in Control Theory. Taking a control-theoretic
perspective, this motion of the thumb above is closely related to nonholo-
nomic control systems: We have two allowable input motions—motion along
the sphere in two directions—and we generate a third, indirectly controlled,
motion, rotation of our thumb. This is similar in spirit to what happens
in the Heisenberg system or rolling wheel. In each case, cyclic motion in
one set of variables (usually called the internal, base, or shape variables)
produces motion in another set of variables (the group or fiber variables).
In fact, the generation of net translational motion via the mechanism of
internal shape changes is common to a wide range of biological and robotic
and mechanical systems. See, e.g., Shapere and Wilczek [1987], Ostrowski
and Burdick [1996], and Brockett [1989], and the large body of literature



184 3. Basic Concepts in Geometric Mechanics

devoted to controlling the reorientation of satellites using only internal
rotors (see later). Central to these ideas is the role of connections, which
we discussed in the previous chapter.

Connections and Bundles. As we have seen, in the general theory, con-
nections are associated with bundle mappings, which project larger spaces
onto smaller ones, as in Figure 3.16.2. The larger space is the bundle, and
the smaller space is the base. Directions in the larger space that project
to zero are vertical directions. The connection is a specification of a set
of directions, the horizontal directions, at each point, which complements
the space of vertical directions.

bundle projection

vertical direction
horizontal directions

bundle

base space

geometric phase

Figure 3.16.2. A connection divides the space into vertical and horizontal directions.

In the example of moving one’s thumb around the sphere, the larger space
is the space of all tangent vectors to the sphere, and this space maps down
to the sphere itself by projecting a vector to its point of attachment on the
sphere. The horizontal directions are the directions with zero acceleration
within the intrinsic geometry of the sphere; that is, the directions deter-
mined by great circles. When the thumb moves along a great circle at a
fixed angle to its path, it is said to be parallel transported. Equivalently,
this motion corresponds to moving in horizontal directions with respect to
the connection. The rotational shift that the thumb undergoes during the
course of its journey is directly related to the curvature of the sphere (and
hence the curvature of the connection) and to the area enclosed by the path
that is traced out.
In general, we can expect that for a horizontal motion in the bundle cor-

responding to a cyclic motion in the base, the vertical motion will undergo
a shift, called a phase shift, between the beginning and the end of its
path. The magnitude of the shift will depend on the curvature of the con-
nection and the area that is enclosed by the path in the base space. This
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shift in the vertical element is often given by an element of a group, such as
a rotation or translation group, and is called the geometric phase. In many
of the examples discussed so far, the base space is the control space in the
sense that the path in the base space can be chosen by suitable control
inputs to the system, e.g., changes in internal shape.
In the locomotion setting, the base space describes the internal shape of

the object, and cyclic paths in the shape space correspond to the movements
that lead to translational and rotational motion of the body.
This setting of connections provides a framework in which one can un-

derstand the phrase “when one variable in a system moves in a periodic
fashion, motion of the whole object can result.” In mechanics, the basic
connection is the mechanical connection that we discussed in Section 3.12.

Connections from Constraints: Momentum and Rolling. In the
control and mechanics literature one confusing point is that “constraints”
are often taken to be either mechanical externally imposed constraints (such
as rolling) or those arising from a conservation law, such as angular mo-
mentum conservation. While these are quite different in principle, from the
point of view of phases they may often be treated in the same fashion.
Momentum constraints are typified by the constraint of zero angular mo-
mentum for the falling cat. This law of conservation of angular momentum
exactly defines the horizontal space of the mechanical connection. (This
connection was defined in a somewhat different, but equivalent, way in Sec-
tion 3.12 above. Recall that it was discovered through the combined efforts
of Smale [1970], Abraham and Marsden [1978], and Kummer [1981]. These
ideas were further developed by many people such as Guichardet [1984]
and Iwai [1987].)

We note that the generation of geometric phases is closely linked with
the reconstruction problem discussed in Section 3.10.
One of the simplest systems in which one can see these phenomena is

called the planar skater. This device consists of three coupled rigid bodies
lying in the plane: the three-body version of the system we analyzed above.
(See also the Internet Supplement for details of the three-body system).
These bodies are free to rotate and translate in the plane, somewhat

like three linked ice hockey pucks. This has been a useful model example
for a number of investigations, and was studied fairly extensively in Oh,
Sreenath, Krishnaprasad, and Marsden [1989], Krishnaprasad [1989], and
the references therein (see Section 3.15).
The only forces acting on the three bodies are the forces they exert

on each other as they move. Because of their translational and rotational
invariance, the total linear and angular momentum remain constant as the
bodies move. This holds true even if one applies controls to the joints of
the device. See Figure 3.16.3.
The planar skater illustrates well some of the basic ideas of geometric

phases. If the device starts with zero angular momentum and it moves its
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ϕ1

ϕ2

Figure 3.16.3. The planar skater consists of three interconnected bodies that are free

to rotate about their joints.

arms in a periodic fashion, then the whole assemblage can rotate, keeping,
of course, zero angular momentum. The definition of angular momentum
allows one to reconstruct the overall attitude of the device in terms of the
motion of the joints. Doing so, one gets a motion generated in the overall
attitude of the skater. This is indeed a geometric phase, dependent only
on the path followed and not on the speed at which it is traversed or the
overall energy of the system.
In the case of the planar skater (and in fact, for all mechanical systems

with Lie group symmetries), we can write down the information encoded
by the connection in a very simple form. Denoting as usual by g the group
position (the vertical direction in the fiber bundle) and by r the internal
shape configuration, we know from Chapter 2 that any horizontal motion,
that is, any motion compatible with the given connection, must satisfy an
equation of the form

g−1ġ = −A(r)ṙ.

In the event that the angular momentum of the planar skater is not zero,
the system experiences a steady drift in addition to the motions caused by
the internal shape changes. If we were to fix the shape variables (φ1, φ2),
this drift would manifest itself as a steady angular rotation of the body
with speed proportional to the momentum. More generally, the reorienta-
tion of the planar skater can always be decomposed into two components:
the geometric phase, determined by the shape of the path and the area
enclosed by it, and the dynamic phase, driven by the internal kinetic en-
ergy of the system characterized by the momentum. Figure 3.16.4 shows a
schematic representation of this decomposition for general rigid body mo-
tion, which also serves to illustrate the motion of the planar skater. In this
figure the sphere represents the reduced space, with a loop in the shape
space shown as a circular path on the sphere. The closed circle above the
sphere represents the fiber of this bundle attached to the indicated point.
Given any path in the reduced (shape) space, there is an associated path,
called the horizontal lift, that is independent of the time parametrization
of the path and of the initial vertical position of the system. Following the



3.16 Phases and Holonomy, the Planar Skater 187

lifted path along a loop in the shape space leads to a net change in vertical
position along the fiber. This net change is just the geometric phase. On
top of that, but decoupled from it, there is the motion of the system driven
by the momentum, which leads to the dynamic phase. Combining these
two provides the actual trajectory of the system.

reduced trajectory

true trajectory

horizontal lift using the 
mechanical connection

dynamic phase

geometric phase

map to body variables

spherical cap with
solid angle Λ

angular mometum sphere

Figure 3.16.4. The geometric phase formula for rigid body motion; motion in the body

angular momentum sphere can be periodic (lower portion of the figure), while the cor-

responding motion in the space of attitudes and their conjugate momenta, which carries

the extra attitude information, is aperiodic (upper portion of the figure). The vertical

arrow represents the map from the material representation to body representation.

Elroy’s Beanie. We now describe an elementary example of geomet-
ric phases—Elroy’s beanie—which still illustrates many of the interesting
features of more complicated examples. This is used as a key example in
the monograph Marsden, Montgomery, and Ratiu [1990]. The main point
here is that conservation of angular momentum implies that a motion by
one part of a system results in a corresponding shift in coordinates of an-
other part of the system. This shift turns out to be important in control
applications, such as reorientation of a system of bodies.
Consider two planar rigid bodies joined by a pin joint at their center of

masses. Let I1 and I2 be their moments of inertia, and θ1 and θ2 the angles
they make with a fixed inertial direction, as in Figure 3.16.5.
Conservation of angular momentum states that I1θ̇1 + I2θ̇2 = μ = con-

stant in time, where the overdot means time derivative. The shape space
of a system is the space whose points give the shape of the system. In
this case, shape space is the circle S1 parametrized by the hinge angle
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θ1

inertial frame

θ2

body #2

body #1

Figure 3.16.5. Elroy and his beanie.

ψ = θ2 − θ1. We parametrize the configuration space of the system not by
θ1 and θ2 but by θ = θ1 and ψ. Conservation of angular momentum reads

I1θ̇ + I2(θ̇ + ψ̇) = μ; that is, dθ +
I2

I1 + I2
dψ =

μ

I1 + I2
dt. (3.16.1)

The left-hand side of the second equation is the mechanical connection.
Suppose that the beanie (body #2) goes through one full revolution, so
that ψ increases from 0 to 2π. Suppose, moreover, that the total angu-
lar momentum is zero: μ = 0. Then we see that the entire configuration
undergoes a net rotation of

Δθ = − I2
I1 + I2

∫ 2π

0

dψ = −
(

I2
I1 + I2

)
2π. (3.16.2)

This is the amount by which Elroy rotates each time his beanie goes around
once.
Notice that this result is independent of the detailed dynamics and de-

pends only on the fact that angular momentum is conserved and the beanie
goes around once. In particular, we get the same answer even if there is
a “hinge potential” hindering the motion or if there is a control present
in the joint. Also note that if Elroy wants to rotate by (−2πk)I1/I1 + I2
radians, where k is an integer, all he needs to do is spin his beanie around
k times, then reach up and stop it. By conservation of angular momentum,
he will stay in that orientation after stopping the beanie.
Here is a geometric interpretation of this calculation: The connection we

used is Amech = dθ+I2/(I1+I2)dψ. This is a flat connection for the trivial
principal S1-bundle π : S1×S1 → S1 given by π(θ, ψ) = ψ. Formula (1.1.2)
is the holonomy of this connection when we traverse the base circle through
an angle of 0 ≤ ψ ≤ 2π.
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3.17 Rigid Body Equations: Symmetric
Representation

In this section we introduce a Hamiltonian system that will be related to
the system (1.10.2) and, later, to optimal control problems. We will call
this system SRBn, standing for the symmetric representation of the rigid
body in n-dimensions—see Bloch, Crouch, Marsden, and Ratiu [2002].

The System SRBn. By definition, the left invariant representation
of the symmetric rigid body system (SRBn) is given by the first order
equations

Q̇ = QΩ, Ṗ = PΩ, (3.17.1)

where Ω is regarded as a function of Q and P via the equations

Ω := J−1(M) ∈ so(n) and M := QTP − PTQ.

It is easy to check that this system of equations on the space SO(n)×SO(n)
is invariant under the left diagonal action of SO(n).

3.17.1 Proposition. If (Q,P ) is a solution of (3.17.1), then (Q,M) where
M = J(Ω) and Ω = Q−1Q̇, satisfies the rigid body equations (1.10.2).

Proof. DifferentiatingM = QTP−PTQ and using the equations (3.17.1)
gives the second of the equations (1.10.2). �

It is because of this proposition that the equations (3.17.1) are called the
symmetric representation of the rigid body equations on SO(n)×SO(n) in
left invariant form.
Recall that the spatial angular momentum for the standard left in-

variant rigid body equations (1.10.2) is defined to be the value of momentum
map for the cotangent lifted left action of SO(n) on T ∗ SO(n).5

3.17.2 Proposition. For a solution of the left invariant rigid body equa-
tions (1.10.2) obtained by means of Proposition 3.17.1, the spatial angular
momentum is given by m = PQT −QPT and hence m is conserved along
the rigid body flow.

Proof. If we start with a solution (Q(t), P (t)) of the symmetric repre-
sentation of the rigid body system, and map this solution to (Q(t),M(t))
where M(t) = QTP − PTQ, then as we have seen, M satisfies the rigid
body system, and so M is the body angular momentum, that is, it is the
value of the momentum map for the right action.

By general Euler–Poincaré and Lie–Poisson theory, m, which is the value
of the momentum map for the left action, is obtained from M using the

5See, for example, Marsden and Ratiu [1999] for these basic notions.
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coadjoint action of SO(n) on so(n)∗ ∼= so(n), namely m = QMQT =
Q(QTP − PTQ)QT = PQT −QPT . From Noether’s theorem, ṁ = 0; one
can also verify this directly by differentiating m along (3.17.1). �

Note that in fact PQT and QPT are also conserved separately along
the flow.

The System RightSRBn. By definition, the symmetric represen-
tation of the rigid body equations in right invariant form on
SO(n) × SO(n), hereafter abbreviated RightSRBn, is given by the first
order equations

Q̇r = ΩrQr, Ṗr = ΩrPr, (3.17.2)

where Ωr := J−1(Mr) ∈ so(n) and where Mr = PrQ
T
r − QrP

T
r . It is easy

to check that this system is right invariant on SO(n)× SO(n).

3.17.3 Proposition. If (Qr, Pr) is a solution of (3.17.2), then (Qr,Mr),
where Mr = J(Ωr) and Ωr = Q̇rQ

−1
r , satisfies the right rigid body equations

(1.10.5).

In the right invariant case it follows that mr := QT
r MrQr = QT

r Pr −PT
r Qr

is conserved along the flow of either (3.17.2) or (1.10.5).

Relating the Left and the Right Systems.

3.17.4 Proposition. If (Q(t), P (t)) satisfies (3.17.1), then the pair
(Qr(t), Pr(t)), where Qr(t) = Q(t)T and Pr(t) = P (t)T , satisfies equations
(3.17.2) with Ωr = −Ω = ΩT .

This is a straightforward verification.

Local Equivalence of the Rigid Body and the Representation of
the Symmetric Rigid Body Equations. Above we saw that solutions
of (3.17.1) can be mapped to solutions of the rigid body system. Now we
consider the converse question. Thus, suppose we have a solution (Q,M)
of the standard left invariant rigid body equations. We seek to solve for P
in the expression

M = QTP − PTQ. (3.17.3)

For the following discussion, it will be convenient to make use of the
operator norm on matrices. Recall that this norm is given by ‖A‖op =
sup {‖Ax‖ | ‖x‖ = 1} , where the norms on the right-hand side are the usual
Euclidean space norms.
Since elements of SO(n) have operator norms bounded by 1 and since the

operator norm satisfies ‖AB‖op ≤ ‖A‖op‖B‖op, we see that if M satisfies
M = QTP − PTQ, then ‖M‖op ≤ 2. Therefore, ‖M‖op ≤ 2 is a necessary
condition for solvability of (3.17.3) for P .

3.17.5 Definition. Let C denote the set of (Q,P ) that map to M ’s with
operator norm equal to 2 and let S denote the set of (Q,P ) that map to
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M ’s with operator norm strictly less than 2. Also denote by SM the set of
points (Q,M) ∈ T ∗ SO(n) with ‖M‖op < 2. For the left invariant system
we trivialize T ∗ SO(n) ∼= SO(n)× so(n)∗ by means of left translation to the
identity and we identify so(n)∗ with so(n) using the Killing metric (1.10.1),
as earlier.

Note that C contains pairs (Q,P ) with the property that QTP is both
skew and orthogonal.
Recall that sinh : so(n) → so(n) is defined by sinh ξ =

(
eξ − e−ξ

)
/2.

One sees that indeed sinh takes values in so(n) by using, for example, its
series expansion:

sinh ξ = ξ +
1

3!
ξ3 +

1

5!
ξ5 + . . . .

Recall from calculus that the inverse function sinh−1(u) has a convergent
power series expansion for |u| < 1 that is given by integrating the power
series expansion of the function 1/

√
1 + u2 term by term. This power series

expansion shows that the map sinh : so(n) → so(n) has an inverse on the
set U = {u ∈ so(n) | ‖u‖op < 1}. We shall denote this inverse, naturally,
by sinh−1, so sinh−1 : U → so(n).

Example of SO(3). As an example, let us consider so(3) which we pa-
rameterize as follows: we write an element of so(3) as μĉ where ĉ is an
element of so(3) of unit operator norm (so c, the corresponding 3-vector
has vector norm one) and μ is a positive scalar. One checks that the opera-
tor norm of ĉ is equal to the Euclidean norm of c. Hence, the set U consists
of the set of elements μĉ where c is a unit vector and μ is a real number
with 0 ≤ μ < 1. From Rodrigues’ formula one finds that

eμĉ = I + sin(μ)ĉ+
(
I − ccT

)
(cosμ− 1). (3.17.4)

Thus, one sees that sinh(μĉ) = sin(μ)ĉ . Notice that from this formula, sinh
is not globally one to one. However, it has an inverse defined on the set U
explicitly given by

sinh−1(μĉ) = sin−1(μ)ĉ.

3.17.6 Proposition. For ‖M‖op < 2, the equation (3.17.3) has the
solution

P = Q
(
esinh

−1 M/2
)
. (3.17.5)

Proof. Notice that M = esinh
−1 M/2 − e− sinh−1 M/2 . �

Similarly, in the right invariant case, we obtain the formula

Pr =
(
esinh

−1 Mr/2
)
Qr . (3.17.6)
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Example of SO(3). We now show that for SO(3) the set C is not empty,
even though there are no points (Q,P ) such that QTP is both skew and
orthogonal (because in SO(3) there are no skew orthogonal matrices, as all
three by three skew matrices are singular). Let QTP = eμĉ where μ = π/2.
Then by equation (3.17.4) QTP = I + ĉ and hence is not skew. Now for x
such that cTx = 0 we have

‖(QTP − PTQ)x‖ = 2‖ĉx‖ = 2‖x‖
and thus ‖(QTP − PTQ)‖op = 2.
In fact, reversing the argument above shows that for SO(3) the set C

consists entirely of elements of form QTP = I + ĉ for some c.

3.17.7 Proposition. The sets C and S are invariant under the double
rigid body equations.

Proof. Notice that the operator norm is invariant under conjugation;
that is, for Q ∈ SO(n) and M ∈ so(n), we have ‖QMQ−1‖op = ‖M‖op.
This is readily checked from the definition of the operator norm. Recall
that under the identification of the dual so(n)∗ with the space so(n), the
coadjoint action agrees with conjugation. Thus, the map f : so(3) → R;
M �→ ‖M‖op is a Casimir function and so is invariant under the dynam-
ics. In particular, its level sets are invariant and so the sets S and C are
invariant. �

One can see that the operator norm is invariant under the dynamics
by a direct argument as well. This is done by writing the operator norm
as ‖M‖op =

√
λ, where λ is the maximum eigenvalue of MTM (by the

Rayleigh–Ritz quotient). Then one differentiates the equation MTMv =
λv along the flow of the rigid body equations, subject to the constraint
‖v‖2 = 1 to see that λ̇ = 0.

Example of SO(3). For the rotation group, the trace norm (up to a
factor of 2) and the operator norm both agree with the standard Euclidean
norm under the identification v ∈ R

3 �→ v̂ ∈ so(3). The standard norm is
indeed a Casimir function for the rotation group and is invariant under the
rigid body equations by conservation of angular momentum.

The Hamiltonian Form of SRBn. Recall that the classical rigid body
equations are Hamiltonian on T ∗ SO(n) with respect to the canonical sym-
plectic structure on the cotangent bundle of SO(n). The following result
gives the corresponding theorem for SRBn.

3.17.8 Proposition. Consider the Hamiltonian system on the symplectic
vector space gl(n)× gl(n) with the symplectic structure

Ωgl(n)(ξ1, η1, ξ2, η2) =
1

2
trace(ηT2 ξ1 − ηT1 ξ2), (3.17.7)
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where (ξi, ηi) , i = 1, 2, are elements of gl(n)× gl(n) and Hamiltonian

H(ξ, η) = −1

8
trace

[(
J−1(ξT η − ηT ξ)

) (
ξT η − ηT ξ

)]
. (3.17.8)

The corresponding Hamiltonian system leaves SO(n)×SO(n) invariant and
induces on it the flow of the symmetric representation of the rigid body
system.

Proof. We first compute the Hamiltonian vector field for the given Hamil-
tonian. Denote it by XH(ξ, η) = X(ξ, η), Y (ξ, η)). Now one computes that

dH(ξ, η) · (δξ, δη) = −1

4
trace

[
J−1(ξT η − ηT ξ)((δξ)T η − ηT δξ)

]

− 1

4
trace

[
J−1(ξT η − ηT ξ)(ξT δη − (δη)T ξ)

]
.

The condition that XH be the Hamiltonian vector field, namely,

Ωgl(n) ((X(ξ, η), Y (ξ, η)) , (δξ, δη)) = dH(ξ, η) · (δξ, δη),
gives

X(ξ, η) = ξJ−1(ξT η − ηT ξ), Y (ξ, η) = ηJ−1(ξT η − ηT ξ).

Keeping in mind that J−1(ξT η− ηT ξ) is an element of so(n), and that the
tangent space to SO(n)×SO(n) at the point (Q,P ) may be identified with
Qso(n) × P so(n), we see that the Hamiltonian vector field XH is tangent
to SO(n)× SO(n) at each of its points (Q,P ). Moreover, the equations

ξ̇ = ξJ−1(ξT η − ηT ξ), η̇ = ηJ−1(ξT η − ηT ξ)

become, on this submanifold, the symmetric representation of the rigid
body system. �

Note that the above Hamiltonian is equivalent to H = 1
4

〈
J−1M,M

〉
, as in

Ratiu [1980].

3.18 An Overview of Discrete Mechanics

A discrete analogue of Lagrangian mechanics can be obtained by consid-
ering a discretization of Hamilton’s principle; this approach underlies the
construction of variational integrators. See Marsden and West [2001], and
the references therein, for a more detailed exposition of discrete mechanics.
Consider a Lagrangian mechanical system with configuration manifold Q

and Lagrangian L : TQ → R. A key notion is that of a discrete La-
grangian , which is a map Ld : Q ×Q → R that approximates the action
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integral along an exact solution of the Euler–Lagrange equations joining
the configurations qk, qk+1 ∈ Q,

Ld(qk, qk+1) ≈ ext
q∈C([0,h],Q)

∫ h

0

L(q, q̇) dt, (3.18.1)

where C([0, h], Q) is the space of curves q : [0, h] → Q with q(0) = qk,
q(h) = qk+1, and ext denotes extremum.
In the discrete setting, the action integral of Lagrangian mechanics is

replaced by an action sum

Sd(q0, q1, . . . , qN ) =

N−1∑
k=0

Ld(qk, qk+1),

where qk ∈ Q, k = 0, 1, . . . , N , is a finite sequence of points in the configura-
tion space. The equations are obtained by the discrete Hamilton principle,
which extremizes the discrete action given fixed endpoints q0 and qN . Tak-
ing the extremum over q1, . . . , qN−1 gives the discrete Euler–Lagrange
equations

D1L
d(qk, qk+1) +D2L

d(qk−1, qk) = 0

for k = 1, . . . , N −1. This implicitly defines the update map Φ : Q×Q →
Q × Q, where Φ(qk−1, qk) = (qk, qk+1) and Q × Q replaces the velocity
phase space TQ of Lagrangian mechanics.
We also need to consider the effect of external forces on Lagrangian sys-

tems. In the context of discrete mechanics, this is addressed by introducing
the discrete Lagrange–d’Alembert principle (see Kane et al. [2000]),
which states that

δ

n−1∑
k=0

Ld (qk, qk+1) +

n−1∑
k=0

F d (qk, qk+1) · (δqk, δqk+1) = 0 (3.18.2)

for all variations δq of q that vanish at the endpoints. Here, q denotes
the vector of positions (q0, q1, . . . , qN ), and δq = (δq0, δq1, . . . , δqN ), where
δqk ∈ TqkQ. The discrete one-form F d on Q×Q approximates the impulse
integral between the points qk and qk+1, just as the discrete Lagrangian Ld

approximates the action integral. We define the maps F d
1 , F

d
2 : Q × Q →

T ∗Q by the relations

F d
2 (q0, q1) δq1 := F d (q0, q1) · (0, δq1) ,

F d
1 (q0, q1) δq0 := F d (q0, q1) · (δq0, 0) .

The discrete Lagrange–d’Alembert principle may then be rewritten as

δ

n−1∑
k=0

Ld (qk, qk+1) +

n−1∑
k=0

[
F d
1 (qk, qk+1) δqk + F d

2 (qk, qk+1) δqk+1

]
= 0
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for all variations δq of q that vanish at the endpoints. This is equivalent
to the forced discrete Euler–Lagrange equations

D1L
d (qk, qk+1) +D2L

d (qk−1, qk) + F d
1 (qk, qk+1) + F d

2 (qk−1, qk) = 0.

3.19 The Moser–Veselov and the Symmetric
Representations of the Discrete
Rigid Body

In this section we discuss some aspects of the discrete rigid body dynamics
following the treatment of Veselov [1988] and Moser and Veselov [1991].
This general method is closely related to the development of variational
integrators for structure-preserving integration of mechanical systems, as
in Marsden, Pekarsky, and Shkoller [1999] and Kane et al. [2000]. Another
approach to integrating differential equations on manifolds is discussed in
Crouch and Grossman [1993]. See also Iserles et al. [1999], Budd and Iserles
[1999], and Bobenko and Suris [1999].

Review of the Moser–Veselov Discrete Rigid Body. We briefly re-
view the Moser and Veselov [1991] discrete rigid body equations. Discretize
the configuration matrix and let Qk ∈ SO(n) denote the rigid body config-
uration at time k, let Ωk ∈ SO(n) denote the discrete rigid body angular
velocity at time k, let I denote the diagonal moment of inertia matrix, and
let Mk denote the rigid body angular momentum at time k.

These quantities are related by the Moser–Veselov equations

Ωk = QT
kQk−1, (3.19.1)

Mk = ΩT
kΛ− ΛΩk, (3.19.2)

Mk+1 = ΩkMkΩ
T
k . (3.19.3)

These equations may be viewed as defining two different algorithms.

MV-Algorithm 1. Define the step ahead map

(Qk, Qk+1) �→ (Qk+1, Qk+2) (3.19.4)

as follows: compute Ωk+1 from (3.19.1), compute Mk+1 from (3.19.2), com-
pute Mk+2 from (3.19.3), compute Ωk+2 from (3.19.2), and then compute
Qk+2 from (3.19.1).

Remark. Given Mk, conditions under which equation (3.19.2) is solvable
for Ωk are discussed in Moser and Veselov [1991] and Cardoso and Leite
[2001]. We will return to this point later.
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MV-Algorithm 2. Define the map:

(Qk,Mk) �→ (Qk+1,Mk+1) (3.19.5)

as follows: compute Ωk from (3.19.2), compute Mk+1 from (3.19.3), com-
pute Ωk+1 from (3.19.2) and compute Qk+1 from (3.19.1).

Discrete Variational Principle. The Moser–Veselov equations (3.19.1)
–(3.19.3) can be obtained by a discrete variational principle, as was done
in Moser and Veselov [1991]. Namely, setting the variation of functional

S =
∑
k

trace(QkΛQ
T
k+1) (3.19.6)

equal to zero on sequences of orthogonal n × n matrices gives the Moser–
Veselov equations. This variational principle has the general form of that
in discrete mechanics described in, for example, Marsden and Wendlandt
[1997], Bobenko and Suris [1999], and Marsden and West [2001]. See also
the following sections on optimal control.
This variational approach can be justified as in Marsden, Pekarsky, and

Shkoller [1999]). We shall justify it from the optimal control point of view
in §7.6. We consider the left invariant generalized rigid body equations on
SO(n).

The Symmetric Representation of the Discrete Rigid Body. We
now define the symmetric representation of the discrete rigid body equa-
tions as follows:

Qk+1 = QkUk, Pk+1 = PkUk, (3.19.7)

where Uk is defined by

UkΛ− ΛUT
k = QT

k Pk − PT
k Qk. (3.19.8)

We will write this as

JDUk = QT
k Pk − PT

k Qk, (3.19.9)

where JD : SO(n) → so(n) (the discrete version of J) is defined by JDU =
UΛ−ΛUT . Notice that the derivative of JD at the identity is J and hence,
since J is invertible, JD is a diffeomorphism from a neighborhood of the
identity in SO(n) to a neighborhood of 0 in so(n). Using these equations,
we have the algorithm (Qk, Pk) �→ (Qk+1, Pk+1) defined by the following
steps: compute Uk from (3.19.8), compute Qk+1 and Pk+1 using (3.19.7).
Note that the update map for Q and P is done in parallel.

3.19.1 Proposition. The symmetric representation of the discrete rigid
body equations (3.19.7) on the invariant set S is equivalent to the Moser–
Veselov equations (3.19.1)–(3.19.3) on the invariant set SM where S and
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SM are defined in Proposition 3.17.5. Equivalence means that every trajec-
tory of (3.19.7) lying is S is mapped by Ψ onto a trajectory of (3.19.1)–
(3.19.3) lying in SM and similarly in the reverse direction under the map
Ψ−1. Further, Ψ is a symplectomorphism between the symplectic manifolds
S and SM .

Proof. Suppose that we have a solution (Qk, Pk) to (3.19.7). We will
now produce a solution (Qk+1,Mk+1) of the Moser–Veselov equations. We
claim that

Mk+1 = QT
k Pk − PT

k Qk (3.19.10)

will give us the required Mk+1 that does the job. To see this, let

Ωk+1 = QT
k+1Qk = UT

k . (3.19.11)

Now substitute (3.19.11) into (3.19.8) and use (3.19.10) to give (3.19.2) with
k replaced by k + 1. Next, substitute the equations (3.19.7) into (3.19.10)
with k replaced by k+1 to yield (3.19.3) with k replaced by k+1. Clearly
(3.19.1) with k replaced by k + 1 is the same as (3.19.11). Thus, we have
shown that (3.19.7) imply the Moser–Veselov equations.

The following remark will be useful for what follows. Recall from MV-
algorithm 2 that Mk+1 = ΩkMkΩ

T
k , so Mk+1 is obtained from Mk by

conjugation, so has the same operator norm. Thus, MV-algorithm 2 leaves
the set SM invariant, as in the continuous rigid body equations (1.10.2).
By the first part of this proof, it follows that the system (3.19.7) leaves the
set S invariant.
To prove the converse, assume we have a solution (Qk+1,Mk+1) ∈ SM of

the Moser–Veselov equations. Note that because (Qk+1,Mk+1) ∈ SM , we
can solve equation (3.19.10) for Pk, as in the continuous case, to give

Pk = Qke
sinh−1 Mk+1/2. (3.19.12)

This then gives us a sequence (Qk, Pk), which we claim satisfies the system
(3.19.7). To see this, we note from (3.19.1) that Qk+1 = QkΩ

T
k+1. We need

to show that ΩT
k+1 satisfies the defining equation (3.19.8) for Uk. That is,

we must show
ΩT

k+1Λ− ΛΩk+1 = QT
k Pk − PT

k Qk. (3.19.13)

That is, in view of (3.19.2),

Mk+1 = QT
k Pk − PT

k Qk. (3.19.14)

But this is valid since Pk was chosen to satisfy this equation. Therefore,
the first equation in (3.19.7) holds and we have shown that ΩT

k+1 = Uk.
To prove the second equation of (3.19.7), we proceed as follows. We have

Pk+1 = Qk+1e
sinh−1 Mk+2/2 = QkUke

sinh−1 Mk+2/2 (3.19.15)



198 3. Basic Concepts in Geometric Mechanics

using the first of (3.19.7). Using (3.19.3), this becomes

Pk+1 = QkUke
sinh−1 UT

k Mk+1Uk/2 = Qke
sinh−1 Mk+1/2Uk = PkUk.

�

Note that if we define mk+1 = PkQ
T
k −QkP

T
k , then mk+1 = QkMk+1Q

T
k .

Thus mk may be interpreted as a discrete analog of the spatial momentum
and from (3.19.3) this is conserved under the algorithm.

Convergence of the Discrete System to the Continuous System.
We now show how to obtain the representation of the symmetric rigid body
equations (in left invariant form) (3.17.1) from their discrete counterpart
(3.19.7). The key to doing this is the introduction of a time step h. It is
interesting that the second order Moser–Veselov equations (3.19.1)–(3.19.3)
do not explicitly involve a time step—the time step is determined by the
fact that one needs to specify initial data at two time points, Q0 and Q1.
Formally, the two points determine a velocity field using a time step h, as
we explained above in the discretization of ξ.
We define Uh

k by

Uh
k = J−1

D

(
h(QT

k Pk − PT
k Qk)

)
. (3.19.16)

We also define

Ω = lim
h→0

(
Uh
k − Id

h

)
, (3.19.17)

where Id denotes the identity. Then we have

3.19.2 Theorem. Taking the derivative with respect to h in (3.19.7) yields
(3.17.1).

Proof. Using (3.19.7), we have

Qk+1 −Qk

h
= Qk

(
Uh
k − I

h

)
,

Pk+1 − Pk

h
= Pk

(
Uh
k − I

h

)
.

Taking the limit on both sides with respect to h yields (3.17.1) subject to
checking that the formula for Uh

k tends to that for Ω. This is a consequence
of the following computation (using (3.19.16)):

lim
h→0

(Uh
k − Id)Λ− Λ(Uh

k − Id)T

h
= lim

h→0

h(QT
k Pk − PT

k Qk)

h
.

Taking the limit we obtain

ΩΛ− ΛΩT = QTP − PTQ, that is, ΩΛ + ΛΩ = QTP − PTQ,

as desired. In taking this limit we write Qk = Q(kh), where kh = t and
similarly for Pk. �



4
An Introduction to Aspects
of Geometric Control Theory

4.1 Nonlinear Control Systems

There are many texts on linear control theory, and a number of intro-
ductions to nonlinear control theory and in particular its differential geo-
metric formulation, which is important for this book. We do not pretend
here to give a comprehensive introduction to this subject; we just touch
on a few aspects that are important to our major topics. We mention
the books by Jurdjevic [1997], Isidori [1995], Nijmeijer and van der Schaft
[1990], Sontag [1990], and Brockett [1970b]. The first three deal with the
differential-geometric approach, Sontag’s book gives a mathematical treat-
ment of both linear theory and various parts of the nonlinear theory, while
Brockett’s book gives an approach to linear theory. We refer the reader
to these books for a detailed treatment of nonlinear control theory as well
as for a more exhaustive list of references. We also mention the important
articles of Sussmann [1987], Sussmann and Jurdjevic [1972], Hermann and
Krener [1977], and Brockett [1970a,b]. Two recent books that are relevant
are van der Schaft [2000] and Ortega, Loria, Nicklasson and Sira-Ramirez
[1998]. A useful recent book on optimal control is Liberzon [2012]. There
are, of course, many other good sources as well, and we shall refer to them
as needed.

Nonlinear Control Systems. We begin with the general notion of a
control system.

© Springer-Verlag New York 2015
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4.1.1 Definition. A finite-dimensional nonlinear control system on
a smooth n-manifold M is a differential equation of the form

ẋ = f(x, u), (4.1.1)

where x ∈ M , u(t) is a time-dependent map from the nonnegative reals
R

+ to a constraint set Ω ⊂ R
m, and f is taken to be C∞ (smooth) or Cω

(analytic) from M ×R
m into TM such that for each fixed u, f is a vector

field on M . The map u is assumed to be piecewise smooth or piecewise
analytic. Such a map u is said to be admissible. The manifold M is said
to be the state space or the phase space of the system.

It is possible to generalize this definition further; for example, Brockett
[1973b] and Bloch and Crouch [1998b] deal with control systems defined
on bundles. It is also possible to specialize the definition to include special
structures; for example, van der Schaft [1982], Crouch and van der Schaft
[1987], and Chang, Bloch, Leonard, Marsden, and Woolsey [2002] deal with
Hamiltonian and Lagrangian control systems.
However, Definition 4.1.1 will be sufficient for the purposes of this chap-

ter. The assumptions on f and u may be weakened; see, for example, Suss-
mann [1973], and Sussmann [1987]. The general definition of a control sys-
tem is quite subtle, as reflected in the “behavioral” approach of Willems
[1986].

An enormous amount can be said about control systems. We restrict
ourselves here to a development of the concepts of accessibility, control-
lability, stabilizability, and feedback linearizability. We also restrict
ourselves primarily to affine nonlinear control systems, which have the
form

ẋ = f(x) +

m∑
i=1

gi(x)ui , (4.1.2)

where f and the gi, i = 1, . . . ,m, are smooth vector fields on M . We usually
suppose that the constraint set Ω contains an open set of the origin in R

m.
Thus u ≡ 0 is an admissible control resulting in trajectories generated by
the vector field f . Hence the vector field f is usually called the drift vector
field, and the gi are called the control vector fields.

General Remarks on Control Systems. Before we go over some of
these concepts in detail, we make a few general remarks about the key
concepts with which one is concerned in analyzing controlled dynamical
systems. In one sense, the basic goals can be divided into two parts: One
goal is being able to drive the given system from one part of the state
space (the phase space for a mechanical system) to another, and a second
goal is being able to stabilize a given system about a given equilibrium or
equilibrium manifold.
For the first goal, one is interested in the first instance in controllability,

the question of whether one can drive the system from one point to another
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with the given class of controls, but one does not concern oneself with the
path taken. On the other hand, one might want to prescribe a given path.
This is the problem of path planning. Or one might want to choose a path
that is optimal in some sense: the problem of optimal control.
Similarly, for the second goal, in analyzing the stabilizability of the given

system, one can consider different definitions of stability. We concern our-
selves in this book for the most part with nonlinear stability, but one
may ask many other questions, regarding, for example, the change in system
output in response to a system input. This is the question of input–output
stability, a subject in which there has been much interest recently; see, for
example, Georgiou, Praly, Sontag, and Teel [1995], Sontag andWang [1996],
Sontag and Wang [1997], and Teel [1996]. One also might wish the output
to remain close to a prescribed one: the problem of output regulation.
There are many other related problems of varying importance; for ex-

ample, a key issue is that of system robustness; once one has stabilized
the system, is it robust to system uncertainty and external perturbations
(noise)? In many cases one does not know the parameters of the system
one is studying, and one can then ask for the best method of identifica-
tion of the system at hand. System parameters may also be changing with
time, and one might wish the system behavior to adapt to the changing
parameters. This is the problem of adaptive control. Also of interest is
the problem of classifying systems; for example, when is there an under-
lying variational or Hamiltonian structure (see, for example, Crouch and
van der Schaft [1987])?
Needless to say, many of the above questions are much easier to analyze

in the linear than the nonlinear setting.
Our concern in this book is mainly with analyzing stability, controllabil-

ity, and optimal control in the nonlinear setting, particularly for nonholo-
nomic mechanical systems. We discuss briefly certain classical aspects of
these ideas in this chapter, and return to them in much more detail in sub-
sequent chapters. This chapter is intended merely as minimal background.

4.2 Controllability and Accessibility

Controllability. We begin by making precise the general notion of con-
trollability that was discussed informally in the previous section. We as-
sume in this section that the set of admissible controls contains the set of
piecewise constant controls with values in Ω.

4.2.1 Definition. The system (4.1.2) is said to be controllable if for any
two points x0 and xf in M there exists an admissible control u(t) defined on
some time interval [0, T ] such that the system (4.1.2) with initial condition
x0 reaches the point xf in time T .
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Controllability is a basic concept in control theory, and much work has
been done on deriving useful sufficient conditions to ensure it. However,
proving that a given system is controllable is not easy in general. A related
property, called (local) accessibility, is often much easier to prove.

Accessibility. To define accessibility we first need the notion of a reach-
able set. This notion will depend on the choice of a positive time T . The
reachable set from a given point at time T will be defined to be, essentially,
the set of points that may be reached by the system by traveling on tra-
jectories from the initial point in a time at most T . In particular, if q ∈ M
is of the form x(t) for some trajectory with initial condition x(0) = p and
for some t with 0 ≤ t ≤ T , then q will be said to be reachable from p in
time T . More precisely:

4.2.2 Definition. Given x0 ∈ M we define R(x0, t) to be the set of all
x ∈ M for which there exists an admissible control u such that there is a
trajectory of (4.1.2) with x(0) = x0, x(t) = x. The reachable set from
x0 at time T is defined to be

RT (x0) =
⋃

0≤t≤T

R(x0, t) . (4.2.1)

4.2.3 Definition. The accessibility algebra C of (4.1.2) is the smallest
Lie algebra of vector fields on M that contains the vector fields f and
g1, . . . , gm.

Note that the accessibility algebra is just the span of all possible Lie
brackets of f and the gi.

4.2.4 Definition. We define the accessibility distribution C of (4.1.2)
to be the distribution generated by the vector fields in C; i.e., C(x) is the
span of the vector fields X in C at x.

4.2.5 Definition. The system (4.1.2) on M is said to be accessible from
p ∈ M if for every T > 0, RT (p) contains a nonempty open set.

Roughly speaking, this means that there is some point q (not necessarily
even close to a desired objective point) that is reachable from p in time no
more than T and that points close to q are also reachable from p in time
no more than T .
Accessibility, while relatively easy to prove, is far from proving control-

lability (see the exercise at the end of this section for an example).

4.2.6 Theorem. Consider the system (4.1.2) and assume that the vector
fields are C∞. If dimC(x0) = n (i.e., the accessibility algebra spans the
tangent space to M at x0), then for any T > 0, the set RT (x0) has a
nonempty interior; i.e., the system has the accessibility property from x0.

When the hypotheses of this theorem, namely dimC(x0) = n, hold, we
say that the accessibility rank condition holds at x0.
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Note that while this spanning condition is an intuitively reasonable
condition, the resulting theorem is quite weak, since it is far from implying
controllability. The problem is that one cannot move “backward” along the
drift vector field f . If f is absent, this is a strong condition; see below.
We remark also that under the conditions of Theorem 4.2.6 not only do

we have a local Frobenius theorem as in Chapter 2, but the manifold M is
partitioned into orbits of the generators of C. This result is a refinement of
the result of Chow [1939] and is elegantly proved, for example, in Krener
[1974]. Its role in control theory was developed in various papers, including
those mentioned at the beginning of Section 4.1. For further references and
history, see, e.g., Nijmeijer and van der Schaft [1990].

We remark that if the system and the underlying manifold is Cω, then the
converse of the above theorem holds: Accessibility implies the accessibility
rank condition. Further refinements of these results may be found in Lobry
[1972], Hermann [1963], Sussmann and Jurdjevic [1972], and Krener [1974].

Accessibility and Controllability. In certain special cases the accessi-
bility rank condition does imply controllability, however. (We assume here
that all vector fields are real analytic; the nonanalytic case can present
difficulties. See, e.g., Jurdjevic [1997].)

4.2.7 Theorem. Suppose the system (4.1.2) is analytic. If dimC(x) = n
everywhere on M and either

1. f = 0, or

2. f is divergence-free and M is compact and Riemannian,

then (4.1.2) is controllable.

The idea behind this result is that one cannot move “backward” along
the drift directions, and hence a spanning condition involving the drift
vector field does not guarantee controllability. A particular case of item 2
above is that in which f is Hamiltonian. This ensures a drift “backward”
eventually.

4.2.8 Example (The Heisenberg System). Recall from Chapter 1 the
Heisenberg system

ẋ = u,

ẏ = v,

ż = vx− uy,

(4.2.2)

which may be written as

q̇ = u1g1 + u2g2, (4.2.3)

where g1 = (1, 0,−y)T and g2 = (0, 1, x)T . As observed in Chapter 1, it
is easy to compute that [g1, g2] = 2g3, where g3 = (0, 0, 1). The three
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vector fields g1, g2, g3 span all of R3, and hence this system is accessible
everywhere and hence controllable everywhere in R

3, since there is no drift
vector field. �
Controllability Rank Condition. Another case of interest where ac-
cessibility implies controllability is a linear system of the form

ẋ = Ax+

m∑
i=1

biui = Ax+Bu, (4.2.4)

where x ∈ R
n, and A ∈ R

n ×R
n and B ∈ R

n ×R
m are constant matrices,

bi being the columns of B.
The Lie bracket of the drift vector field Ax with bi is readily checked to

be the constant vector field −Abi. Bracketing the latter field with Ax and
so on tells us that C is spanned by Ax, bi, Abi, . . . , A

n−1bi, i = 1, . . . ,m.
Thus, the accessibility rank condition at the origin is equivalent to the
classical controllability rank condition

rank[B,AB, . . . , An−1B] = n . (4.2.5)

In fact, the following theorem holds.

4.2.9 Theorem. The system (4.2.4) is controllable if and only if the con-
trollability rank condition holds.

Note that in this case accessibility is equivalent to controllability but that
the drift vector field is involved. See, e.g., Sontag [1990] and the references
therein for the proof.
In this linear setting if the system is not controllable, the reachable

subspace R of the system (the space reachable from the origin) is given
by the range of [B,AB, . . . , An−1B].

Strong Accessibility. In the preceding discussion, note that the term
span{Ax} is not present in the controllability rank condition. This moti-
vates a slightly stronger definition of accessibility in the nonlinear setting,
where the gi (over which we have direct control) play a more prominent
role in the rank condition:

4.2.10 Definition. The system (4.1.2) is said to be strongly accessi-
ble from x0 if the set R(x0, T ) contains a nonempty open set for any T
sufficiently small.

Thus this means that points that we can reach in exactly time t contain
a nonempty open set.

4.2.11 Definition. Let C be the accessibility algebra of (4.1.2). Define C0
to be the smallest subalgebra containing g1, . . . , gn and such that [f,X] ∈ C0
for all X ∈ C0.
4.2.12 Definition. We define the strong accessibility distribution C0

of (4.1.2) to be the distribution generated by the vector fields in C0.
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If dimC0(x0) = n, then the system (4.1.2) can be shown to be strongly
accessible at x0. The proof may be found in Nijmeijer and van der Schaft
[1990]; it relies on augmenting the original system by the equation ṫ = 1.
Strong accessibility can be nicely illustrated by the Euler equations for

the rigid body with external torques, as discussed and analyzed in Crouch
[1984] and discussed in Nijmeijer and van der Schaft [1990]:

4.2.13 Example. Recall the Euler equations for the rigid body from
Chapter 1. With two controls about the first two principal axes one has
the equations

Ω̇1 =
I2 − I3

I1
Ω2Ω3 + a1u1,

Ω̇2 =
I3 − I1

I2
Ω3Ω1 + a2u2,

Ω̇3 =
I1 − I2

I3
Ω2Ω3,

(4.2.6)

where the ai are nonzero constants. Writing the system in the standard
affine form

Ω̇ = f(Ω) + u1g1(Ω) + u2g2(Ω) , (4.2.7)

we find that [g2, [g1, f ]](Ω) = [0, 0, a1a2(I1−I2)/I3]
T . The vectors [a1, 0, 0]

T ,
[a2, 0, 0]

T , and [0, 0, a1a2(I1 − I2)/I3]
T are contained in C0(0), and hence if

I1 �= I2, the system is strongly accessible from Ω = 0. Further, I1 �= I2 is
also necessary, for if I1 = I2, then Ω̇3 = 0. �
Small-Time Local Controllability. An important controllability con-
dition is that of small-time local controllability (see again Sussmann
[1987]).

4.2.14 Definition. We say the system (4.1.2) is small-time locally con-
trollable from x0 if x0 is an interior point of RT (x0) for any T > 0.

This is a genuine local controllability result as opposed to accessibility
and is an important notion for control of dynamic nonholonomic control
systems (which have drift), as we shall see in Chapter 6, where more de-
tails are given. We remark that small-time local controllability can often
be proved for the restricted set of admissible controls that are piecewise
constant (see Sussmann [1987]).

Exercises

� 4.2-1. Show that the dynamic vertical penny system

(I +mR2)θ̈ = u1,

Jϕ̈ = u2,

ẋ = R(cosϕ)θ̇,

ẏ = R(sinϕ)θ̇,
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is accessible at the origin. Does this imply controllability at the origin?
Write down the corresponding kinematic control system and answer the
same questions.

� 4.2-2. Consider the system on R
2 (see Nijmeijer and van der Schaft [1990])

ẋ = y2,

ẏ = u .
(4.2.8)

Show that this system is accessible everywhere but not controllable any-
where.

� 4.2-3. Show that the controllability rank condition fails for the linearized
Heisenberg system.

� 4.2-4. Compute the equations for the linearized cart on a pendulum equa-
tions (linearized about the unstable vertical equilibrium of the pendulum)
and show that for this system the controllability rank condition holds.

� 4.2-5. Consider the symmetric rigid body equations with I1 = I2 and with
a single control that is not aligned along a principal axis (see Crouch [1984]
and Nijmeijer and van der Schaft [1990]):

Ω̇1 =
I1 − I3

I1
Ω2Ω3 + b1u,

Ω̇2 =
I3 − I1

I1
Ω3Ω1 + b2u,

Ω̇3 = b3u,

(4.2.9)

where the bi are constants. Show that if I1 �= I3, b3 �= 0, and at least one
of b1 and b2 is not zero, the system is strongly accessible from the origin.

4.3 Representation of System Trajectories

The previous section considered the general problem of controllability but
did not consider the problem of constructing specific trajectories and cor-
responding controls. In order to attack this latter problem, we will begin
below by considering useful techniques for representing system trajectories.
In the following section we will apply these results to systems with peri-
odically time-varying control functions, as in the work of Gurvitz [1992],
Sussmann and Liu [1991], and Leonard and Krishnaprasad [1993, 1995].
This and the following section are quite technical and can be omitted with-
out loss of continuity.
We employ two different coordinate systems to explore these mechanisms:

coordinates of the first and second kind.
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The Wei–Norman Representation—Coordinates of the Second
Kind In this section we restrict ourselves to analytic affine systems of
the form (4.1.2), and in addition, we assume that the accessibility rank
conditions holds everywhere on M . Assume that X1, . . . , Xn is a set of vec-
tor fields onM that spans the accessibility distribution C in a neighborhood
of a given point x0 ∈ M .
We have the following result (see Crouch [1977, 1981]).

4.3.1 Lemma. Let x(t) be a solution of equation (4.1.2) with x(0) = x0.
Then there exists a t0 > 0 and functions F and G on R

n with components
that are real analytic functions in a neighborhood of 0 ∈ R

n, such that for
|t| < t0,

x(t) = eh1(t)X1eh2(t)X2 · · · ehn(t)Xnx0, (4.3.1)

where the time-dependent parameters h = (h1, · · · , hn)
T satisfy

ḣ = F (h) +G(h)u, h(0) = 0 . (4.3.2)

If the accessibility algebra C is solvable, the spanning set X1, . . . , Xn can be
chosen such that (4.3.1) and (4.3.2) hold globally.

We call h = (h1, . . . , hn)
T the coordinates of x of the second kind.

In the case that M = G is a Lie group, this result is due to Wei and
Norman [1964], and we call (4.3.2) the corresponding Wei–Norman system
associated with the system (4.1.2).

We sketch a proof of Lemma 4.3.1, since it is instructive and will be useful
later. To do this we substitute the expression (4.3.1) into the system (4.1.2).
From the identity

Te−hZxe
hZY

(
e−hZx

)
= exp−h adZ(Y )(x),

where X, Y , and Z are vector fields on M , we obtain

ẋ = ḣ1X1 + ḣ2 exp−h1 adX1
(X2) + · · · (4.3.3)

+ ḣn exp−h1 adX1
· · · exp−hn−1 adXn−1

(Xn)

=
∑
i

fiXi +
m∑
j=1

gijXiuj

= f(x) +

m∑
j=1

ujgj(x),

and fi(x), gij(x) are analytic functions on M in a neighborhood of x0.
By expanding the exponential series, which are analytic, since the data

is analytic, we may rewrite this expression in the form

n∑
i=1

ḣieik(h1, . . . , hi−1, x)Xk =

n∑
i=1

⎛
⎝fk(x) +

m∑
j=1

gkj(x)uj

⎞
⎠Xk,



208 4. Introduction to Aspects of Geometric Control Theory

where the eik are the coefficients in the expansion of (4.3.3). Now for h1 =
h2 = · · · = hn = 0, we have

eik(0, . . . , 0, x) ≡ δik,

so for h in a neighborhood of 0 ∈ R
n we may invert the matrix [eik],

and once more substitute for x(t) using the formula (4.3.1) to obtain the
expression (4.3.2). Note that if f ≡ 0, then we find that F ≡ 0 also. Also,
if we can choose gi = Xi, i = 1, . . . ,m, then the resulting system (4.3.2),
written as

ḣi =

m∑
j=1

Gij(h)uj , (4.3.4)

has the property Gij(0) = δij , 1 ≤ i, j ≤ m, and Gij(0) = 0 for i > m.
The case studied by Wei and Norman, where M = G is a Lie group,

with Lie algebra g, is already interesting. We study this case, where we
additionally assume that we have no drift in the dynamics, so that f ≡ 0
in (4.1.2). We write the system in this case as

ẋ =
m∑
i=1

uiXi(x), x(0) = x0. (4.3.5)

The case where m < n is of special interest for nonholonomic systems
(such as a wheeled robot), and for coupled and articulated systems such as
spacecraft. We may also assume that in this case

X1, . . . , Xm, Xm+1, . . . , Xn

is a basis for the Lie algebra g of G.

4.3.2 Example (The Unicycle). In this example we consider the kine-
matic representation of a unicycle system with steering speed θ̇ = u1 and
rolling speed v = u2 as controls.
The system takes the form

ẋ = u2 cos θ,

ẏ = u2 sin θ, (4.3.6)

θ̇ = u1.

We consider the Lie algebra se(2) spanned by the matrix elements⎛
⎝ 0 1 0
−1 0 0
0 0 0

⎞
⎠ = X1,

⎛
⎝0 0 1
0 0 0
0 0 0

⎞
⎠ = X2,

⎛
⎝0 0 0
0 0 1
0 0 0

⎞
⎠ = X3.

We have

[X1, X2] = −X3,

[X1, X3] = X2,

[X2, X3] = 0.



4.3 Representation of System Trajectories 209

Associated with se(2) we have a system evolving on the corresponding Lie
group SE(2) ⊂ GL(3) by

ẋ = u1X1x+ u2X2x, x(0) = id . (4.3.7)

We may restrict attention to those x ∈ SE(2) parametrized in the form

x =

⎛
⎝ cosφ sinφ a
− sinφ cosφ b

0 0 1

⎞
⎠ , a, b, φ ∈ R.

In terms of these coordinates the system (4.3.7) may be expressed in the
form

φ̇ = u1,

ȧ = bu1 + u2, (4.3.8)

ḃ = −au1.

It is easily seen that the system (4.3.8) is related to the unicycle sys-
tem (4.3.6) via the expression

(
a
b

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x
y

)
, θ = φ.

Thus the group equations (4.3.7) represent the unicycle equations in a frame
that is fixed in the unicycle.
We may also represent x in system (4.3.7) in a Wei–Norman expansion

x = eX1h1eX2h2eX3h3 , (4.3.9)

where we assume that h1(0) = h2(0) = h3(0) = 0, so that x(0) = id. Using
the values for X1, X2, and X3 we obtain

x(t) =

⎛
⎝ cosh1 sinh1 0
− sinh1 cosh1 0

0 0 1

⎞
⎠
⎛
⎝1 0 h2

0 1 0
0 0 1

⎞
⎠
⎛
⎝1 0 0
0 1 h3

0 0 1

⎞
⎠

=

⎛
⎝ cosh1 sinh1 h2 cosh1 +h3 sinh1

− sinh1 cosh1 −h2 sinh1 + h3 cosh1

0 0 1

⎞
⎠ .

Substituting this expression for x(t) into the system (4.3.7) to obtain the
Wei–Norman equations, we obtain

ḣ1 = u1, ḣ2 = cosh1u2, ḣ3 = sinh1u2. (4.3.10)

These equations are, of course, just the unicycle equations (4.3.6) under
the identification

(h1, h2, h3) = (θ, x, y).
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We have shown that the equations (4.3.8) on the Lie group SE(2) generate
a corresponding associated Wei–Norman system that is simply the usual
unicycle system (4.3.6). As we have seen, this is simply a change of reference
frame in which the unicycle system is written. �
Approximations As discussed above, if the system is accessible, we
know that there is a control that will drive the system from any initial
state to any other desired state. However, except in the linear case, there
is no immediate procedure for explicitly constructing the desired controls.
However, through the representation (4.3.1) one can obtain better informa-
tion on the effect of controls. In particular, we study approximations of our
trajectories obtained by truncating perturbation expansions. In the next
section we shall relate this to averaging. We examine these approximations
by introducing a parameter ε into the system (4.3.5):

ẋ = ε

m∑
i=1

uiXi(x), x(0) = x0. (4.3.11)

Applying the Wei–Norman expansion (4.3.1) and the analysis of the cor-
responding Wei–Normann system (4.3.2), we obtain from the expression
(4.3.3)

n∑
i=1

ḣiXi −
∑
j≤k

ḣk[Xj , Xk]hj = ε
m∑
i=1

uiXi +O
(
h2
)
ḣ.

We let γk
ij denote the structure constants of the Lie algebra g, so that

[Xi, Xj ] =

n∑
k=1

γk
ijXk, γk

ij = −γk
ji.

Setting ui = 0 for i > m we may therefore reduce the equation to the form

ḣi −
∑
j<k

γi
jkḣkḣj = εui +O

(
h2
)
ḣ.

Setting hi = εūi + ε2ri +O
(
ε3
)
, where

ūi =

∫ t

0

ui(σ)dσ, (4.3.12)

we obtain
ε2ṙi − ε2

∑
j<k

γi
jkukūj = O

(
ε3
)
,

or
ṙi =

∑
j<k

γi
jkūjuk. (4.3.13)
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Since hi(0) = ūi(0) = 0, we have ri(0) = 0 for 1 ≤ i ≤ n. Thus the
Wei–Norman system corresponding to the system (4.3.11) has a solution

hi = εūi + ε2
∑
j<k

γi
jk

∫ t

0

ūjukdσ +O
(
ε3
)
. (4.3.14)

Setting

h′
i = εui + ε2

∑
j<k

γi
jk

∫ t

0

ūjukdσ (4.3.15)

we may define an approximation x′(t) to the trajectory x(t) of system
(4.3.11) as

x′(t) = eh
′
1(t)X1eh

′
2(t)X2 · · · eh′

n(t)Xnx0. (4.3.16)

In the case of matrix Lie groups it is easy to see that x′(t) = x(t)+O
(
ε3
)
.

We make this approximation more precise in the next section.

4.3.3 Example (Unicycle Continued). We may write the second-order
approximation to the bilinear system (4.3.7) using the expansion (4.3.9)
and the expression (4.3.15) for the second-order approximation to the solu-
tion of the Wei–Norman system (4.3.10). Noting the Lie algebra structure
constants are γ̄3

12 = 1, γ̄2
13 = −1, and all others are zero, we see that

h′
1(t, ε) = εū1(t), h′

2(t, ε) = εū2(t),

h′
3(t, ε) = −ε2

t

T

∫ T

0

ū1(t)u2(t) dt.

�
The Magnus Representation—Coordinates of the First Kind.
The Magnus representation of the solution of a system of differential equa-
tions applies to time-varying matrix systems of the form

ẋ = A(t)x, x ∈ GL(n), x(0) = x0. (4.3.17)

As we explain below, the solution to this system of equations may be ex-
pressed in the form

x(t) = eZ(t), Z(0) = 0, (4.3.18)

and a series expression for Z(t) developed, as investigated by Magnus [1954]
(see also, e.g., Iserles [2002] and Iserles, Nørsett, and Rasmussen [2001] for
further background). In fact, defining

{A,Zn} = [. . . [A,Z], Z] . . . Z],

where we have n repeated commutators [A,Z] = AZ − ZA of matrices,
Magnus showed that formally

dZ

dt
(t) =

{
A,Z

(
I − e−Z

)−1
}
=

∞∑
m=0

βm{A,Zm},
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where β2m = (−1)mB2m/(2m)!, where B2m (for m = 1, 2, 3, . . .) are the
Bernoulli numbers and βm vanish for m = 3, 5, 7, . . ..

Thus,

dZ(t)

dt
= A(t) +

1

2
[A(t), Z(t)] +

1

12
[[A(t), Z(t)], Z(t)] + · · · .

From a process of series expansion one finds an expression for Z(t), which
up to terms involving three brackets is given by

Z(t) =

∫ t

0

A(σ1)dσ1 +
1

2

∫ t

0

[
A(σ1),

∫ σ1

0

A(σ2)dσ2

]
dσ1 (4.3.19)

+
1

12

∫ t

0

[[
A(σ1),

∫ σ1

0

A(σ2)dσ2

]
,

∫ σ1

0

A(σ3)dσ3

]
dσ1

+
1

4

∫ t

0

[
A(σ1),

∫ σ1

0

[
A(σ2),

∫ σ2

0

A(σ3)dσ3

]]
dσ2dσ1

+ · · · .

Letting Ā(t) =
∫ t
0
A(σ)dσ, we may write this in the form

Z(t) = Ā(t) +
1

2

∫ t

0

[
˙̄A(σ1), Ā(σ1)

]
dσ1 (4.3.20)

+
1

12

∫ t

0

[[
˙̄A(σ1), Ā(σ1)

]
, Ā(σ1)

]
dσ1

+
1

4

∫ t

0

∫ σ1

0

[
˙̄A(σ1),

[
˙̄A(σ2), Ā(σ2)

]]
dσ2dσ1

+ · · · .
To determine the convergence properties of this series, we refer the reader
to a generalization of this result in the case of vector fields, where (4.3.17)
is replaced by a system

ẋ = f(t, x), x ∈ M, x(0) = x0, (4.3.21)

where f is a smooth, time-varying vector field on a manifold M . The solu-
tion may be expressed in the form

x(t) = (expZ(t))(x0), Z(0) = 0, (4.3.22)

where Z(t) is another vector field on M , and z(t) = (expZ(t))(x0) is the
solution of the autonomous differential equation

dz(σ)

dσ
= Z(t)(z(σ)), z(0) = x0,

on M . The explicit form and convergence of Z(t) were studied in Strichartz
[1987].
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We call (4.3.18), or more generally (4.3.22), expressions of the solutions
of the corresponding differential equations (4.3.17) and (4.3.21) in coordi-
nates of the first kind.
We now apply the expansion (4.3.20) to the system (4.3.11), where we

now assume that the group G is a subgroup of the matrix group GL(n),
and Xi(x) = Xix are right-invariant vector fields. Hence

A(t) = ε
M∑
i=1

uiXi.

Applying this to (4.3.20) we obtain the following expression for Z(t):

Z(t) = ε
∑
i

ūiXi + ε2
1

2

∑
j,k

∫ t

0

˙̄uj(σ1)ūk(σ1)[Xj , Xk]dσ1

+
ε3

12

∫ t

0

∑
j,k,m

˙̄uj(σ1)ūk(σ1)ūm(σ1)[[Xj , Xk], Xm]dσ1

+
ε3

12

∫ t

0

∫ σ1

0

∑
j,k,m

˙̄uj(σ1) ˙̄uk(σ2)ūm(σ2)[Xj , [Xk, Xm]]dσ2dσ1

+O
(
ε4
)
.

We shall concentrate on the expansion to second order. Since [Xj , Xk] =
−[Xk, Xj ], we may rewrite this expression in the form

Z(t) = ε
∑
i

ūiXi + ε2
∑
j<k

Ajk(t)[Xj , Xk] +O
(
ε3
)
, (4.3.23)

where

Ajk(t) =
1

2

∫ t

0

( ˙̄uj(σ1)ūk(σ1)− ˙̄uk(σ1)ūj(σ1))dσ1. (4.3.24)

It is interesting to compare the two results of expanding solutions of (4.3.11)
in coordinates of the first kind and coordinates of the second kind. We ap-
ply the expression (4.3.1) for coordinates of the second kind in the case
where Xi are now matrices and the coordinates hi are given by the expres-
sion (4.3.14). (Note: By insisting that the Xi(x) be right-invariant vector
fields Xix, we in effect, change the structure constants of the Lie algebra
of γ̄i

j,k = −γi
j,k, where as matrices, [Xi, Xj ] =

∑
k Xkγ̄

k
ij .)

Thus

hi = εūi − ε2
∑
j<k

γ̄i
jk

∫ t

0

ūjukdσ +O
(
ε3
)
. (4.3.25)

To reduce the expression (4.3.1) to a single exponential to compare with our
expression in coordinates of the first kind we need the Baker–Campbell–
Hausdorff formula for matrix exponentials (see Abraham, Marsden, and
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Ratiu [1988])

eεxeεy = eεx+εy+ 1
2 ε

2[x,y]+O(ε3).

Applying this repeatedly to the expression (4.3.1) we see that x(t) =
eZ

′(t)x0, where

Z ′(t) =
n∑

i=1

hiXi +
1

2

∑
i<j

hihj [Xi, Xj ] + h.o.t.

Substituting the formula (4.3.25) we obtain

Z ′(t) = ε

n∑
i=1

ūiXi−ε2
∑
j<k

Xiγ̄
i
jk

∫ t

0

ūj ˙̄ukdσ+
ε2

2

∑
j<k

ūj ūk[Xj , Xk]+O
(
ε3
)
.

Now, ūj ūk =
∫ t
0
( ˙̄uj ūk + ˙̄ukūj)dσ. Thus we may write

Z ′(t) = ε
n∑

i=1

ūiXi + ε2
∑
j<k

Xiγ̄
i
jk

∫ t

0

(
˙̄uj ūk + ˙̄ukūj

2
− ūj ˙̄uk

)
dσ +O

(
ε3
)

= ε

n∑
i=1

ūiXi + ε2
∑
j<k

Xiγ̄
i
jkAjk(t) +O

(
ε3
)
. (4.3.26)

But this expression coincides with the expression (4.3.23) for the coordinate
representation of the first kind.

4.4 Averaging and Trajectory Planning

In this section we apply the results of the previous section to periodically
time-varying control functions. The results of applying these control func-
tions on the trajectory generated by them can be assessed by applying
averaging techniques and the expansion techniques of the previous section.
See, for example, Gurvitz [1992], Sussmann and Liu [1991], and Leonard
and Krishnaprasad [1993, 1995]. We loosely follow the work in the latter
references. Another recent reference of interest is Bullo [2001]. A basic ex-
position on averaging may be found in Guckenheimer and Holmes [1983]
and the references therein.

The Averaging Theorem. A classical averaging result as contained in
Khalil [1992] relates a system of the form

ẋ = εf(t, x, ε), x ∈ R
n, (4.4.1)

where f is a smooth mapping, periodic in t, with period T , to the average
system

˙̄x = εfav(x̄), x ∈ R
n, (4.4.2)

where fav = 1
T

∫ T
0
f(t, x, 0)dt.
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Theorem 7.4 of Khalil [1992] states that if ‖x(0, ε)− x̄(0, ε)‖ = O(ε), then
‖x(t, ε) − x̄(t, ε)‖ = O(ε), where x(t, ε) and x̄(t, ε) are solutions of (4.4.1)
and (4.4.2), respectively, and t ≤ O(1/ε).

Of course, a special case is presented by the system

ẋ = εh(t), x(0) = 0,

where h(t) is periodic of period T . The averaged system is

˙̄x =
ε

T

∫ T

0

h(t)dt, x̄(0) = 0.

Since t
T

∫ T
0
h(σ)dσ − ∫ t

0
h(σ)dσ is also periodic of period T , we have

‖x(t, ε)− x̄(t, ε)‖ = O(ε) (4.4.3)

for all t > 0.

Systems on Lie Groups. We first consider a system on a Lie group G
governed by the equations (4.3.11), where we apply periodic controls ui(t)
with period T . To apply the above averaging result on R

n above to this
system on a Lie group we proceed as follows.
We apply the result to the Wei–Norman system defined by

ḣ = εG(h)u, h(0) = 0, h ∈ R
n, (4.4.4)

corresponding to the expansion (4.3.1).
Let

uT =
1

T

∫ T

0

u(σ)dσ.

Then the corresponding average system is given by

˙̄h = εG(h̄)uT , h̄(0) = 0.

By (4.4.3) ‖h(t, ε) − h̄(t, ε)‖ = O(ε) for t ≤ O(1/ε). The trajectory may
be substituted into the expansion (4.3.1) to obtain an expression for the
averaged trajectory G.
We now consider second-order effects. We assume that u(t) is periodic

as before but with the additional constraint that uT = 0. We let

h(t) = εū0(t) + r(t)

in (4.4.4) and note as in (4.3.4) that G(0)u = u0, where u0 = (u1, . . . , um, 0,
. . . , 0)T , to obtain

ṙ = εG(r + εū0)u, r(0) = 0, (4.4.5)

where G(h) = G(0) +G(h) = G(0) +GL(h) +GN (h) and GL(h) = G(h)−
GN (h) is linear in h. We may therefore rewrite (4.4.5) in the form

ṙ = ε2GL(ū0)u+ (εGL(r)u+ εGN (r + εū0)u).
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4.4.1 Lemma (Leonard and Krishnaprasad [1993]). If

˙̄r =
ε2

T

∫ T

0

GL(ū0)u dt,

with r̄(0) = 0, then
‖r(t, ε)− r̄(t, ε)‖ = O

(
ε3
)

for t ≤ O(1/ε).

The critical element in this result is noting that since u is periodic with
zero average uT = 0, GL(ū0)u is also periodic so that(

t

T

∫ T

0

GL(ū0)u dt−
∫ t

0

GL(ū0)u dt

)
= O(1)

for all t. Now combining this result with the decomposition of h, we obtain
the following theorem:

4.4.3 Theorem (Leonard and Krishnaprasad [1993]). If u is a periodic
control with uT = 0, then the Wei–Norman system (4.4.4) has a solution
h(t, ε) satisfying∥∥∥∥∥h(t, ε)−

(
εū0(t) +

ε2

T
t

∫ T

0

GL(ū0)u dt

)∥∥∥∥∥ = O
(
ε3
)

(4.4.6)

for t ≤ O(1/ε).

By comparing this result with the analysis of the Wei–Norman decom-
position in the previous section (see 4.3.15) we see that

[GL(ū0)u]i =
∑

1≤j<k≤m

γi
jkūjuk. (4.4.7)

Similarly, we can obtain the approximation in coordinates of the first kind,
using the approximation obtained in the previous section, by employing
the Magnus representation in the case of a matrix Lie group. From (4.3.26)
we obtain the following result:

4.4.4 Theorem (Leonard and Krishnaprasad [1993]). For the system

ẋ = ε

m∑
i=1

uiXix,

with x(0) = x0 and x ∈ GL(n), where u is a periodic control with uT = 0,
x(t) = eZ(t)x0 with∥∥∥∥∥∥∥

Z(t)−

⎛
⎜⎝ε

m∑
i=1

ūi(t)Xi + ε2t

i=n∑
1≤j<k≤m

i=1

Xiγ̄
i
jkAjk(T )

⎞
⎟⎠
∥∥∥∥∥∥∥
= O

(
ε3
)

(4.4.8)

for t ≤ O(1/ε).
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Both of the results in Theorems 4.4.3 and 4.4.4 represent the second-order
approximations to the solutions of the bilinear system (4.3.11), expressed
in coordinates of the second and first kind, respectively. They both consist
of an O(ε) periodic term and an O(ε2) secular term (linear in t). In the
case of representation by coordinates of the first kind, the secular term is
proportional to area terms that describe the area bounded by the closed
curves defined by ūi and ūj over one period, namely, Aij(T ).

Motion Planning. We now briefly describe the application of Theo-
rems 4.4.3 and 4.4.4 to trajectory planning. For simplicity we consider only
the result in Theorem 4.4.4 and apply it to the system described there,
consisting of a system on a matrix Lie group G with right-invariant vector
fields. Let us suppose that in system (4.3.11) the Lie algebra g is spanned
by

X1, . . . , Xm, {[Xi, Xj ] | 1 ≤ i < j ≤ m}. (4.4.9)

Let us also suppose we wish to drive the system from x0 to xf , where
x0, xf ∈ G, so we seek Z(tf ) with

xf = eZ(tf )x0,

where we suppose that log(xfx
−1
0 ) is defined on G. From the fact that the

set in (4.4.9) spans g, there exist constants ci, cij such that

log(xfx
−1
0 ) =

m∑
i=1

ciXi +
∑
j<k

cjk[Xj , Xk] (4.4.10)

=

m∑
i=1

ciXi +

m∑
i=1

∑
j<k

cjkγ̄
i
jkXi.

With reference to the expression (4.4.8) we see that by choosing tf and the
controls ui that satisfy the relations

εtf = 1,

εūi(tf ) = ci, (4.4.11)

ε2tfAjk(T ) = cjk,

we have ∥∥Z(tf )− log(xfx
−1
0 )
∥∥ = O(ε2). (4.4.12)

Clearly, equations (4.4.11) can be satisfied by periodic controls u, but more
importantly, they can be satisfied by suitably chosen sinusoids, with vari-
able parameters of amplitude, frequency, and phase. This makes the process
of satisfying the system (4.4.11) very mechanistic.
That we meet the objective of reaching the terminal value xf only to

O(ε2) is clearly a drawback. This can be mitigated by iterating this process.
The first reference to such a process (even in the case where third-order
approximations are required) is described in Crouch [1984], with respect to
the attitude control of spacecraft.
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Exercises

� 4.4-1. Write down the Wei–Norman equations for the kinematic controlled
rigid-body system

Ẋ = Xû, (4.4.13)

where X ∈ SO(3), u = (u1, u2, u3) is the vector of angular velocities viewed
as controls, and

û ≡
⎛
⎝ 0 −u3 u2

u3 0 −u1

−u2 u1 0

⎞
⎠ .

Hint: Use the Euler angles; see Leonard and Krishnaprasad [1993].

4.5 Stabilization

4.5.1 Definition. Let x0 be an equilibrium of the control system ẋ =
f(x, u). The system is said to be nonlinearly (asymptotically) stabi-
lizable at x0 if a feedback control u(x) can be found that renders the system
nonlinearly (asymptotically) stable.

In much of the control literature stabilizability is taken to mean asymp-
totic stabilizability. However, in this book we will distinguish between the
two.
The classical linear case is of interest: In this case the system is stabiliz-

able (in the sense of asymptotic stability) if and only if it is controllable.
More than that, in this case one can show that one can find a feedback
u = Fx such that the closed loop system ẋ = (A+BF )x has an arbitrarily
assigned set of eigenvalues.

Stabilization Techniques. Now we discuss some stabilization techniques
in the literature that are of relevance to the material in this book. Good ref-
erences for classical material on this subject are Sontag [1990] and
Nijmeijer and van der Schaft [1990]. See also Brockett [1983a].
The simplest result on stabilization for nonlinear systems is based on

linearization. Consider the nonlinear control system

ẋ = f(x, u) , (4.5.1)

with x ∈ R
n (for simplicity) and u ∈ R

m, and its linearization about
(x0, u0),

ẋ = Ax+Bu, (4.5.2)

where

A =
∂f

∂x
(x0, u0) and B =

∂f

∂u
(x0, u0).
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Then if R is the reachable subspace of the linearized system (see Sec-
tion 4.2), we may find a change of basis such that the system takes the
form

d

dt

[
xu

xl

]
=

[
A11 A12

0 A22

] [
xu

xl

]
+

[
Bu

0

]
, (4.5.3)

where xu has dimension equal to that of Range[B,AB, . . . , An−1B].
If A22 has all eigenvalues in the left half-plane, a feedback may be found

that stabilizes the system asymptotically to the origin. (For further details
see, e.g., Nijmeijer and van der Schaft [1990].)

Brockett’s Necessary Conditions. A beautiful general theorem on
necessary conditions for feedback stabilization of nonlinear systems was
given by Brockett [1983a].

4.5.2 Theorem (Brockett). Consider the nonlinear system ẋ = f(x, u)
with f(x0, 0) = 0 and f(·, ·) continuously differentiable in a neighborhood
of (x0, 0). Necessary conditions for the existence of a continuously differ-
entiable control law for asymptotically stabilizing (x0, 0) are:

(i) The linearized system has no uncontrollable modes associated with
eigenvalues with positive real part.

(ii) There exists a neighborhood N of (x0, 0) such that for each ξ ∈ N
there exists a control uξ(t) defined for all t > 0 that drives the solution
of ẋ = f(x, uξ) from the point x = ξ at t = 0 to x = x0 at t = ∞.

(iii) The mapping γ : N × R
m → R

n, N a neighborhood of the origin,
defined by γ : (x, u) → f(x, u) should be onto an open set of the
origin.

Proof. Part (i) is clear from equation (4.5.3). Part (ii) holds, since if a
system is asymptotically stabilizable at the origin, solutions near the origin
must approach it.
To prove (iii) consider the closed-loop system

ẋ = f(x, u(x)) ≡ a(x) (4.5.4)

and suppose that x0 is locally asymptotically stable. Now compute the
index of x0: For sufficiently small r the map from the ball of radius r about
x0 into Sn−1 given by

x �→ a(x)

‖a(x)‖ (4.5.5)

has degree (−1)n (see the arguments in Chapter 2 and Milnor [1965]). Since
this degree is nonzero, the map is actually onto. Hence for any small α and
β we can solve

a(x)

‖a(x)‖ =
α

‖α‖ , ‖a(x)‖ = β, (4.5.6)

for a(x). Hence a(x) = f(x, u(x)) = α is solvable for f . �
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In fact, the necessary conditions above hold for continuous control laws
(see Coron [1990]).

Lyapunov Methods for Asymptotic Stability. Another case of in-
terest is that where the free system is Lyapunov stable and the controls may
be used to make the system asymptotically stable. Issues of this sort are
of key importance in the recent works Bloch, Leonard, and Marsden [1997,
1998]; Chang, Bloch, Leonard, Marsden, and Woolsey [2002], for example,
and we shall return to them later. In that case the Hamiltonian structure
of the system is used for energy shaping, and then a suitable dissipation is
added.
For the moment, we just summarize the kind of general argument that

one can find, for example, in Nijmeijer and van der Schaft [1990]. Consider
the affine control system

ẋ = f(x) +

m∑
i=1

uigi(x) . (4.5.7)

Suppose that the free system ẋ = f(x) has an equilibrium x0 and suppose
there exists a Lyapunov function V (x) for the free system about x0 in some
neighborhood U of x0.
Consider a feedback of the following form:

ui(x) = −LgiV (x) . (4.5.8)

Then x0 is an equilibrium point for the closed-loop system and V re-
mains a Lyapunov function for the closed-loop system. The question is
now whether the system is in addition asymptotically stable. For this we
can use a LaSalle invariance principle argument (see Chapter 2).
Consider the set

W = {x ∈ U | LfV (x) = 0, LgiV (x) = 0, i = 1, . . . ,m} . (4.5.9)

Let W0 be the largest invariant set in W under the closed-loop dynamics.
We observe that x0 is in W , since V is a Lyapunov function. If W0 is iden-
tically equal to {x0}, then x0 is locally asymptotically stable equilibrium
point by LaSalle. Notice also that any trajectory of the closed-loop system
in W is also a trajectory of the free dynamics. Hence by the LaSalle theo-
rem, the system is locally asymptotically stable about x0 if the largest in-
variant subset of the free dynamics inW equals x0. If in addition dV (x) �= 0
for x ∈ U\ {x0}, this condition is also necessary, since by the definition of
W , along any trajectory in W of the closed-loop system and hence of the
free system the Lyapunov function is constant, and a nontrivial trajectory
can therefore not approach x0.
Of course, one would like to apply this reasoning without knowing the

free dynamics. Some conditions for this are discussed in Nijmeijer and
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van der Schaft [1990]. The intuitive idea, of course, is that one would like
W to be as small as possible. Locally, a sufficient condition for stability is
simply that the distribution

span{f(x), adkfgi(x), i = 1, . . . ,m, for all k ≥ 0} (4.5.10)

should have rank n at x0. But this is equivalent to the linearized system
being stabilizable.

The Center Manifold. Another important tool in the analysis of the
stabilization of nonlinear control systems is center manifold theory. Given
that there exists a center manifold for the system and the remaining dy-
namics are stable, one can concentrate on stabilizing the center manifold
dynamics. A nice application of this technique to the rigid-body dynam-
ics is given in the work of Aeyels [1989] and the discussion in Nijmeijer
and van der Schaft [1990]. We discussed the general theory of the center
manifold earlier (see Section 2.4) and will return to it when we consider
nonholonomic systems.

Feedback Linearization. An important technique for analyzing non-
linear systems is feedback linearization.
The basic question is to determine when a nonlinear control system of

the form
ẋ = f(x, u) (4.5.11)

satisfying f(x0, u0) = 0 can be transformed by nonlinear feedback u =
α(x, v), v ∈ R

m, into the form of a standard linear system

ż = Az +Bv . (4.5.12)

More specifically, one can ask when an affine system of the form

ẋ = f(x) +
m∑
j=1

ujgj(x) (4.5.13)

can be transformed by suitable feedback of the form

ui = αi(x) +
∑
j

βij(x)vj (4.5.14)

to a linear system.
This question is interesting for many reasons. In particular, it provides

a method of classifying systems. For example, when are they equivalent to
linear systems? Secondly, once the system is in linear form, one can apply
standard linear techniques to it, for example, for achieving stabilization.
It turns out one can give conditions for feedback linearizability in terms

of a nested sequence of vector fields associated with the problem. We will
not give any details here, since we shall not make use of the technique, but
refer the reader to Isidori [1995], Nijmeijer and van der Schaft [1990], and
Krener [1999] and the references therein.
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Exercises

� 4.5-1. Consider again the linearized cart/pendulum equations (linearized
about the unstable equilibrium of the pendulum). Find a linear feedback
control that stabilizes the system.

� 4.5-2. Show that the necessary condition (iii) of Brockett’s theorem fails
for the Heisenberg system.

� 4.5-3. Show that the necessary condition (iii) of Brockett’s theorem fails
for the dynamic vertical penny system.

4.6 The Bundle Picture in Control
and Symmetries

The bundle picture in nonlinear control was introduced by Brockett [1976b]
and the role of symmetries discussed in van der Schaft [1981] and Grizzle
and Marcus [1985]. Brockett noted that local descriptions of nonlinear
control system dynamics in the form

ẋ = f(x, u), (4.6.1)

where f : M ×U → TM , were not adequate descriptions of systems where
the inputs depend on the states, and even on the time histories of the
states. He defined a nonlinear control system as follows:

4.6.1 Definition. A smooth nonlinear control system is defined to be
a triple (B,M, f) such that

(i) (B,M, π) is a fiber bundle with total space B, base space M , and
canonical projection π : B → M , and

(ii) f : B → TM is a bundle morphism such that for each x ∈ M and
u ∈ Ux = π−1(x), f(x, u) ∈ TxM .

One can naturally introduce symmetries into this picture as follows: Let
G be a Lie group and let Θ : G × B → B and Φ : G × M → M denote
left actions of G on B and M , respectively. For fixed g ∈ G denote by
Φg : M → M the map x → Φ(g, x), x ∈ M and similarly for Θ. Let
Σ(B,M, f) denote a nonlinear control system defined as above.

4.6.2 Definition. We say Σ has the symmetry (G,Θ,Φ) if the diagram
in Figure 4.6.1 commutes for all g ∈ G.

The special case of “state-space” symmetry can be defined:

4.6.3 Definition. Suppose B = M × U is a trivial bundle, for U some
manifold. (G,Φ) is a state-space symmetry of Σ(B,M, f) if (G,Θ,Φ)
is a symmetry of Σ for Θg = (Φg, IdU ) : (x, u) → (Φg(x), u).
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B B

TM TM

M M

Θg

f

π π

f

TΦg

πM πM
Φg

Figure 4.6.1. State space symmetry

One can also introduce the notion of infinitesimal symmetry. Let
ξ ∈ g, where g is the Lie algebra of G, and let ξM denote the infinitesi-
mal generator of the action corresponding to Φ. (Recall that this may be
thought of intuitively as infinitesimal group motions of the system. Thus,
for each ξ ∈ g, ξM is a vector field on the manifold M and its value at
a point x ∈ M is denoted ξM (x).) Let Φt denote the flow of the vector
field ξM . Similarly, let ξB denote the infinitesimal generator of the action
corresponding to Θ and Θt the flow of the vector field ξB .

4.6.4 Definition. Let Σ be a nonlinear control system as above. We say
(G,Θ,Φ) is an infinitesimal symmetry of Σ if for each x0 ∈ M there
exists an open neighborhood V of x0 and an ε > 0 such that

TΦtf(b) = f(Θt)(b) (4.6.2)

for all b ∈ π−1(V ), |t| < ε and ξ ∈ g with ||ξ|| < 1 for || · || an arbitrary
fixed norm on g.

Now assume B is endowed with an integrable (Ehresmann) connection.

4.6.5 Definition. (G,Θ,Φ) is said to be an infinitesimal state-space
symmetry if it is an infinitesimal symmetry and the infinitesimal gener-
ators of Θ are horizontal, i.e., ξB is the horizontal lift of ξM .

In this case, since Θ is determined by Φ we will omit mention of Θ. Now
assume M has dimension n, G has dimension k, and the action of G is free.
Then, one can prove various “reduction” theorems in analogy with that for
free (uncontrolled) systems. We will refer the reader to Grizzle and Marcus
[1985] for most of these but will quote here just a simple example:

4.6.6 Theorem. Suppose Σ(B,M, f) has infinitesimal state-space symme-
try (G,Φ). Suppose G is abelian. Then about any point m ∈ M there exist
connection-respecting coordinates (x1, . . . , xn, u) for B such that in these
coordinates Σ is given by

ẋ = f(x1, . . . , xn−k, u) . (4.6.3)

It is also possible to write down a nonabelian and “global” version of
this theorem.
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This section indicates how symmetries are useful in understanding non-
linear control systems in the absence of mechanical structures. However, as
subsequent sections indicate, the combination of symmetries and mechan-
ical structures enables one to say much more.

4.7 Lagrangian, Hamiltonian, and Poisson
Control Systems

In this section we discuss the general theory of Hamiltonian and Poisson
control systems and show how the analysis above extends to this setting. We
begin with the following setup (see van der Schaft [1983] and the references
therein):

4.7.1 Definition. Let P be a smooth manifold of dimension n and E,W
vector spaces of dimensions m, p respectively. A nonlinear control sys-
tem with external variables is a 4-tuple Σ(E,P,W, f) where π : E → P
is a smooth fiber bundle and f = (g, h) : E → TP ×W is a fiber preserving
smooth map, g : E → TP , h : E → W .

Choosing local coordinates x for P , (x, u) fiber-respecting coordinates
for E and w coordinates for W , locally this definition gives

ẋ = g(x, u),

w = h(x, u).
(4.7.1)

We are interested here in mechanical (Lagrangian or Hamiltonian) con-
trol systems. The extension of the notion of Hamiltonian and Lagrangian
systems to the setting of control was formally proposed in Brockett [1976b]
and was generalized and formalized by Willems [1979], van der Schaft [1983,
1986], and others. The book Nijmeijer and van der Schaft [1990] gives a
nice summary of many of the main ideas. Also see Ortega, Loria, Nicklasson
and Sira-Ramirez [1998].

Lagrangian Control Systems. We begin with the Lagrangian side.
The simplest form of Lagrangian control system is a Lagrangian system
with external forces: in local coordinates we have

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= ui, i = 1, . . . ,m,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, i = m+ 1, . . . , n.

(4.7.2)

More generally, we have the system

d

dt

(
∂L(q, q̇, u)

∂q̇i

)
− ∂L(q, q̇, u)

∂qi
= 0 (4.7.3)
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for q ∈ R
n and u ∈ R

m. Similarly, one can define a Hamiltonian control
system. Locally one has:

q̇i =
∂H(q, p, u)

∂pi
,

ṗi = −∂H(q, p, u)

∂qi
(4.7.4)

for q, p ∈ R
n and u ∈ R

m.

Affine Hamiltonian Control Systems. One can easily generalize this
to a Hamiltonian control system on a symplectic or Poisson manifold. Let
M be a Poisson manifold and H0, H1, · · · , Hm be smooth functions on M .
Then an affine Hamiltonian control system on M is given by

ẋ = XH0
(x) +

m∑
i=1

XHj
(x)ui (4.7.5)

where x ∈ M and as usual XHj
is the Hamiltonian vector field correspond-

ing to Hj .
In Sanchez [1986] a generalization of Noether’s theorem on symmetries

and conservation laws to the control setting is given. This extends the local
result of van der Schaft [1981], First, we need the definition of a Poisson
control system with external space (see Sanchez [1986]).

4.7.2 Definition. A Poisson control system with external space is
a nonlinear control system Σ(E,P,W, f) where P and W are Poisson man-
ifolds such that f(E) is an embedded Lagrangian manifold of the Poisson
manifold TP ×W .

Omitting the output space W , we have the following:

4.7.3 Definition. A Poisson control system is a nonlinear control sys-
tem such that the graph of f , Γf , is a Lagrangian submanifold of TP . The
input-state evolution equations take the form ẋ = {x,Hu} where {, } is the
Poisson bracket on P and Hu is the control Hamiltonian.

We now discuss a generalization of Noether’s theorem in this controlled
setting.

4.7.4 Definition. Let Σ(E,P,W, f) be a Poisson control system and let
θ, φ, ψ be the actions of a Lie group G on E,P,W respectively. These ac-
tions are called Poisson actions for Σ if the functions g and h are equiv-
ariant with respect to these actions.

Denote by JP : P → g∗ the momentum map corresponding to the ac-
tion of φ on P and as usual let JP (ξ)(x) =< JP (x), ξ >. Let ξP denote
the infinitesimal generator of the action. Define JW : W → g∗ to be the
momentum map corresponding to the action of ψ on W .
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4.7.5 Proposition. The tangential lift of the momentum map for the lift
action Tφg is J̇P : TP → g∗, and the corresponding infinitesimal generator

for this action is ξ̇P , the complete lift of ξP to TP .

One can then prove the following:

4.7.6 Theorem. Let Σ(E,P,W, f) be a Poisson control system with ex-
ternal space and θ, ψ, φ the Poisson actions of G on Σ as above. Then the
diagram below commutes.

E

TP W

g∗

g h

J̇P
JW

The theorem implies that the state-space momentum map JP (ξ) is con-
stant along the orbits of Hamiltonian vector fields for those Poisson control
systems for which JW (ξ) = 0. This formalizes the idea of a lossless passive
system with storage function JP and supply rate JW introduced in Willems
[1972] and van der Schaft [1983].

Reduction can now be analyzed as follows. One considers a fiber bundle
(E,P, π) and a Lie group G acting freely and properly on E so that E/G
is a manifold. Assume further that the action θ of G on E leaves the fibers
invariant. The submersion τ : E → E/G is a morphism which takes fibers
of E onto fibers of E/G. Then, one has (Sanchez [1986]).

4.7.7 Theorem. Let Σ(E,P, f) be a Poisson control system and G a Lie
group acting freely and properly on E and P by Poisson maps and such that
G leaves the fibers of E invariant. Then the control system Σ̃(E/G,P/G, f̃),
where f = f̃ ◦ τ , is a Poisson control system.

There is also a natural version of this theorem for systems with outputs.

Example 1. A good example of Theorem 4.7.7 is a rigid spacecraft with a
single rotor. In this setting the state space is P = T ∗ SO(3) and the control
space is T ∗S1 (corresponding to the rotor). The reduced state space under
the action of G = SO(3) is

P̃ = P/G = T ∗ SO(3)/SO(3) ≡ so(3)∗

and the reduced total space is Ẽ = E/(G× S1) = so(3)∗ × R.
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Example 2. Another good example is a rigid underwater vehicle with
two internal rotors. In this case the state space is P = T ∗SE(3) and the
control space is T ∗(S1×S1) (corresponding to the two rotors). (See Leonard
[1997a] for details.)
The basic question asked by Brockett [1976a] is how can one take a

generic nonlinear control system of the form

ẋ = f(x, u),

y = h(x, u),
(4.7.6)

where x ∈ M , u ∈ N , y ∈ P are smooth manifolds, f : M × N → TM
is a parametrized smooth vector field on M , and h : M × N → P is an
output mapping, and introduce appropriate additional structure so that one
may systematically study problems in mechanics with external forces. The
output mapping h and manifold P are important, not least in the context
of examining the (output) feedback control u(t) = k(y(t)) for mappings k :
P → N , but also in the context of modeling the duality between input and
output spaces and interpreting in this generality such concepts as work and
dissipation. The duality is especially important in modeling generalizations
of conservative mechanical systems. Obvious candidates for M , P , and N
for mechanical systems are M = TQ, N = V , P = V ∗, where Q models
the generalized configuration space, V is a vector bundle over Q, and V ∗ is
the dual bundle to V . Thus if x = (q, v) ∈ TQ, with v ∈ TqQ, the tangent
space to Q at q ∈ Q, the triple (x, u, y) in (4.7.6) would have the form
u ∈ Vq, y ∈ V ∗

q , where Vq(V
∗
q ) are the fibers above q in V (V ∗). The cases

where N = TQ or T ∗Q arise in this book, while other choices are also used.
Additional structure needs to be added to the model (4.7.6) to reflect

the Hamiltonian or Lagrangian structure, at least for the uncontrolled sys-
tem, nominally modeled by choosing u to be the zero section of the bundle
V , and also to reflect the manner in which controls (external forces or
torques) interact with the uncontrolled system. Understanding this addi-
tional structure and appropriate specializations that reflect specific classes
of mechanical systems with external forces has been a topic of much re-
search in the past two decades, building upon both the existing control
theories and analytical mechanics, but also prompting further work in both
areas separately.
If a system is Hamiltonian, one can use the Hamiltonian structure of the

problem to analyze basic concepts such as accessibility and stabilizability.
Key ideas in this direction may be found in Brockett [1976a], and these

were developed in various ways by van der Schaft; see, for example,
Nijmeijer and van der Schaft [1990] and the references therein. Suppose,
for example, that M is a Poisson manifold of dimension 2n with nondegen-
erate Poisson bracket; let H0, H1, . . . , Hm be smooth functions on M , and
consider the Hamiltonian control system

ẋ = XH0
+

m∑
j=1

ujXHj
(x) . (4.7.7)



228 4. Introduction to Aspects of Geometric Control Theory

Consider the linear space C of functions spanned by all repeated Poisson
brackets of the form

{F1, {F2, {· · · {Fk, Hj}} · · · }} (4.7.8)

for Fi in the set {H0, H1, . . . , Hm}.
Then if dim dC(x0) = 2n, the system (4.7.7) is strongly accessible at x0.
To consider stabilization one wants more structure in the system. In

particular, we want to consider mechanical control systems on the tangent
bundle T ∗Q of a symplectic manifold Q, with local coordinates (qi, pj) and
where the Hamiltonian H0 is of the form

H0(q, p) =
1

2
pig

ij(q)pj + V (q) (4.7.9)

for g a Riemannian metric on Q and

Hj(q, p) = Hj(q) . (4.7.10)

Potential and Kinetic Shaping. If (q, p) = (q, p0) is an equilibrium
and V (q) − V (q0) positive definite, the equilibrium is Lyapunov stable,
but not asymptotically stable. One problem of interest is then to choose a
feedback control u = K(x) such that the system becomes asymptotically
stable. On the other hand, if the potential energy is not definite, one can
think of methods of “shaping” potential energy by feedback so as to sta-
bilize the equilibrium. There has been much interesting work on this by
van der Schaft and others. For instance, a generalization of this approach
to systems with symmetry was given in Jalnapurkar and Marsden [1999,
2000].

The simplest situation occurs when m = n and H1, . . . , Hn are indepen-
dent. Then, setting the system Hi = yi (viewing Hi as the system outputs),
any feedback of the form

ui = −kiyi − ciẏi (4.7.11)

with ki, ci > 0 and ki sufficiently large will asymptotically stabilize the sys-
tem. Indeed, this may be viewed as adding in a shaping potential
1
2

∑m
i=1 kiy

2
i and a Rayleigh dissipation function R(ẏ) = 1

2

∑m
i=1 ciẏ

2
i . (It is

also interesting to consider the notion of the Rayleigh dissipation func-
tion on a manifold; this is analyzed in the paper Bloch, Krishnaprasad,
Marsden, and Ratiu [1996].)

Of course, the interesting case is m < n. In van der Schaft [1986] and
Jalnapurkar and Marsden [1999] conditions are given for the achievement
of asymptotic stabilization in this case. We describe a version of this briefly
here.
Before doing this, however, we note that there are many underactu-

ated systems for which the method of potential shaping just cannot work
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(as the preceding references show). To overcome this, recent works of Bloch,
Leonard, and Marsden [1997, 1998, 1999a,b, 2000, 2001]; Bloch, Chang,
Leonard, Marsden, and Woolsey [2000]; Bloch, Chang, Leonard, and Mars-
den [2001] have considered a method of shaping both the potential and
kinetic energy by the so-called matching method. We discuss some of this
briefly in Chapter 9 as it pertains to nonholonomic systems. (See also re-
cent work by Ortega, Loria, Nicklasson and Sira-Ramirez [1998], Ortega,
van der Schaft, Mashcke and Escobar [1999], Blankenstein, Ortega, and
van der Schaft [2002], Hamberg [1999], Auckly, Kapitanski, and White
[2000], Shiriaev and Fradkov [2000], Polushin, Fradkov, and Khill [2000],
and Chang, Bloch, Leonard, Marsden, and Woolsey [2002].)

Lagrangian Setting. It is convenient to consider the Lagrangian setting:
We assume that the given mechanical system has configuration space Q and
that a Lie group G acts freely and properly on Q. It is useful to keep in
mind the case in which Q = S×G with G acting only on the second factor
by acting on the left by group multiplication. For example, for the inverted
planar pendulum on a cart, we have Q = S1 × R with G = R, the group
of real numbers under addition (corresponding to translations of the cart).
We are interested in the underactuated problem in which the controls act
directly only on the variables lying in G, but that all variables in the state
space are to be controlled. We suppose that G is a symmetry group for the
kinetic energy of the system, but the potential energy V need not be G
invariant.
Let θa be coordinates for G, and let xα be coordinates for Q/G. Let the

metric tensor g(·, ·) define the kinetic energy 1
2g(q̇, q̇) and let L : TQ −→ R

be the original Lagrangian given by the kinetic minus potential energy:

L(xα, θa, ẋα, θ̇a) = K(xα, θa, ẋα, θ̇a)− V (xα, θa)

=
1

2
gαβ ẋ

αẋβ + gαaẋ
αθ̇a +

1

2
gabθ̇

aθ̇b − V (xα, θa).

(4.7.12)

Then (xe, θe, 0, 0) ∈ TQ is the equilibrium of interest, where (xe, θe) is a
critical point of the original potential V . Furthermore, D2K(xe, θe, 0, 0),
the second derivative of the kinetic energy K with respect to (ẋα, θ̇) at the
origin in (x, θ)-space, is taken to be a positive definite matrix.

Now assume that the following definiteness condition holds:

∂2V

∂xα∂xβ
(xe, θe) > 0; (4.7.13)

i.e., the equilibrium is a minimum of the original potential energy in the
xα variables. In the case that (4.7.13) holds, the Lyapunov stabilization of
the equilibrium (xe, θe, 0, 0) can be achieved by just introducing a potential
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shaping. Indeed, choose any function Vε : G −→ R that has a minimum at
θe. Let the control input u be of the form

ua = −∂Vε

∂θa
+ ũa. (4.7.14)

Then, we can check that the Euler–Lagrange equations of the given La-
grangian L with the force u is equal to those of the new Lagrangian L̃
defined by

L̃(xα, θ, ẋα, θ̇) = L(xα, θ, ẋα, θ̇)− Vε(θ
a) = K(xα, θa, ẋα, θ̇a)− Ṽ (xα, θa)

with the force ũ, where Ṽ = V + Vε. Let Ẽ be the energy from the
Lagrangian L̃ defined by

Ẽ = K + Ṽ .

By the choice of Vε, we can see that (xe, θe, 0, 0) is a critical point of Ẽ.
The second derivative of Ẽ at ze = (xe, θe, 0, 0) is

D2Ẽ(ze) =

(
D2Ṽ 0
0 D2K

)∣∣∣∣
z=ze

, (4.7.15)

where D2Ṽ is given by

D2Ṽ =

⎛
⎜⎜⎜⎝

∂2V

∂xα∂xβ

∂2V

∂xα∂θa

∂2V

∂θa∂xα

∂2V

∂θa∂θb
+

∂2Vε

∂θa∂θb

⎞
⎟⎟⎟⎠ ,

and as above, D2K denotes the second derivative of the kinetic energy K
with respect to (ẋα, θ̇). We already know that D2K(xe, θe, 0, 0) is a pos-
itive definite matrix. By simple linear algebra and (4.7.13), we can make
D2Ṽ (xe, θe) positive definite by choosing Vε such that its second deriva-
tive at (xe, θe) is positive definite and the magnitude of its eigenvalues is
very big. Thus, Ẽ has a minimum at (xe, θe, 0, 0), and we can use Ẽ as a
Lyapunov function. We introduce the input term

ũa = cbagbcθ̇
c, (4.7.16)

where cba is a negative definite matrix with respect to the gab metric. Then,
we have

d

dt
Ẽ = cbagbcθ̇

aθ̇c ≤ 0. (4.7.17)

Hence, (xe, θe, 0, 0) is still an equilibrium of the closed-loop system and
becomes Lyapunov stable.
To prove the asymptotic stability of the equilibrium, we will use the

LaSalle invariance principle discussed in Chapter 2.
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By (4.7.17) and the fact that Ẽ has a minimum at (xe, θe, 0, 0), there
exists c ∈ R such that

Ωc :=
{
z = (xα, θa, ẋα, θ̇a) ∈ TQ

∣∣∣ Ẽ(z) ≤ c
}

becomes a nonempty, compact, and invariant set. Define

E :=

{
z = (xα, θa, ẋα, θ̇a) ∈ Ωc

∣∣∣∣ ddtẼ(z) = 0

}

=
{
z = (xα, θa, ẋα, θ̇a) ∈ Ωc

∣∣∣ θ̇a = 0
}
.

Let M be the largest invariant subset of E . Instead of directly looking
into the dynamics on M, we follow the approach given in van der Schaft
[1986] and Jalnapurkar and Marsden [1999]. Let FL̃ : TQ −→ T ∗Q be the
Legendre transform induced from the Lagrangian L̃ (see Chapter 3 for the
definition). Since the Lagrangian L̃ is regular, we can define H̃ : T ∗Q −→ R

by
H̃ = Ẽ ◦ FL̃−1.

Define Gb : TQ −→ R by

Gb(x
α, θa, ẋα, θ̇a) = θ̇b.

Define Fb : T
∗Q −→ R by

Fb = Gb ◦ FL̃−1.

Let (q(t), q̇(t)) ∈ TQ be a trajectory of the closed-loop Lagrangian system
with the force ũ. Then it is well known that the curve (q(t), p(t)) ∈ T ∗Q
defined by

(q(t), p(t)) = FL̃(q(t), q̇(t))

satisfies the following Hamiltonian equations:

q̇i =
∂H̃

∂pi
,

ṗi = −∂H̃

∂qi
+ ũi,

(4.7.18)

where ũi is short for ũi◦FL̃−1. Notice that FL̃(xe, θe, 0, 0) becomes an equi-
librium of the system (4.7.18) and that Ωc, E , and M are diffeomorphically
mapped into T ∗Q via FL̃, if necessary after shrinking Ωc into the domain
of FL̃. Let { , } be the Poisson bracket on T ∗Q induced from the standard
symplectic form on T ∗Q (see Chapter 3 for the definition). Consider the
set of functions defined by

C = span{Fb, {H̃, Fb}, {H̃, {H̃, Fb}}, . . .}, b = 1, . . . ,dimG,
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where by span we mean the collection of all linear combinations with real
coefficients. Define the codistribution dC as follows:

dC = span{dg | g ∈ C}.

Notice that the equilibrium (xe, θe, 0, 0) is an isolated equilibrium by the
Morse lemma, since every equilibrium is a critical point of the energy Ẽ
and (xe, θe, 0, 0) is a nondegenerate critical point. Now one can easily see
(see Jalnapurkar and Marsden [1999]) that when the dimension of dC is 2n
in a neighborhood of FL̃(xe, θe, 0, 0), the only flow in M is the equilibrium.
(Here n is the dimension of the configuration space Q.) This follows simply
by observing that since Fb and all the brackets {H,Fb} are conserved along
the flow of a trajectory z(t), the vector ż lies in the annihilator of dC. But
since dC spans the whole cotangent space, ż(t) must be zero, and thus z(t)
must be an equilibrium.
Now consider a more general case, that there is a subcodistribution of

dC whose locally constant dimension is (2n − 1) around the equilibrium.
The subcodistribution defines a one-dimensional (regular) submanifold of
T ∗Q, which contains the invariant set FL̃(M) as well as the equilibrium.
Since the equilibrium is stable and isolated, the flow in the one-dimensional
submanifold should converge to the equilibrium if necessary after shrinking
the domain. Thus the (bi-)invariant set M is the equilibrium itself. By the
LaSalle invariance principle, the equilibrium is asymptotically stable. We
have thus proved the following:

4.7.8 Theorem. If (4.7.13) holds, then (xe, θe, 0, 0) is Lyapunov stabiliz-
able. If in addition to (4.7.13), the dimension of the codistribution dC is
greater than or equal to (2n−1) in a neighborhood of FL̃(xe, θe, 0, 0), where
n is the dimension of the configuration space Q, then (xe, θe, 0, 0) becomes
an asymptotically stable equilibrium of the closed-loop system with the input
u given by (4.7.14) and (4.7.16).

The work of Bloch, Leonard, and Marsden cited above gives a combina-
tion of kinetic energy and potential energy shaping techniques for achieving
stabilization in the case m < n in the Lagrangian setting. We discuss this
briefly in the final section of this book.
We repeat the obvious here: This section barely touches on the vast and

exciting subject of nonlinear control theory. We have merely introduced
some key ideas related to the subject of this book.

Exercises

� 4.7-1. Formulate the cart–pendulum control system as a Hamiltonian con-
trol system. Can you achieve stabilization of the inverted pendulum via
potential shaping?
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� 4.7-2. Show that a controlled Lagrangian system on a Riemannian mani-
fold may be locally written in the form

M(y)ÿ + Γ̂(y, ẏ) +
∂V

∂y
=

(
u
0

)
, (4.7.19)

where

Γ̂(y, ẏ) =
(
Γ̂1(y, ẏ), . . . , Γ̂n(y, ẏ)

)T
, Γ̂k(y, ẏ) =

∑
i,j

Γijkẏiẏj ,

and

Γijk =
1

2

(
∂mki

∂yj
+

∂mkj

∂yi
− ∂mij

∂yk

)
.



5
Nonholonomic Mechanics

Nonholonomic systems provide an important class of mechanical control
systems. One reason for this importance is that nonintegrability is essen-
tial to both the mechanics and the control: Nonintegrable constraint dis-
tributions are the essence of nonholonomic systems, while a nonintegrable
distribution of control vector fields is the key to controllability of nonlin-
ear systems. We will learn how these two different types of nonintegrability
work together when we study control of nonholonomic mechanical systems.
Nonholonomic mechanical systems—systems with constraints on the ve-

locity that are not derivable from position constraints—arise in mechanical
systems such as rolling contact (wheels) or sliding contact (a skate). How-
ever, such constraints also occur in less obvious ways. For example, one may
view angular momentum constraints, which are really integrals of motion
and are integrable constraints on the phase space (functions of position
and momentum) as nonintegrable constraints on the configuration space.
This point of view is sometimes helpful for controllability. Further, many
first-order control systems may be simply viewed as controlled distributions
lying in the kernel of a nonintegrable constraint. A classic example of the
latter is the Heisenberg system.

Some History. The history of nonholonomic mechanical systems is long
and complex. There has been recurring confusion over the very equations
of motion as well as the deeper questions associated with the geometry and
analysis of these equations.
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First of all, in terms of the equations of motion themselves, the confusion
has mainly centered on whether or not the equations can be derived from
a variational principle in the usual sense; that is, is there an action func-
tion defined on a space of curves that is being extremized? An important
issue is whether the constraints are to be imposed before or after taking
variations. When one first imposes the constraints on the class of curves
being considered, one gets equations that are variational in the usual sense
just explained. This type of approach is certainly appropriate for optimal
control problems, as we shall see. However, for mechanics, this is not what
one should do, as we have already seen in Chapter 1 and shall remark on
further below. Namely, what is correct is that one imposes the constraints
after taking variations. This is the Lagrange–d’Alembert principle.

It is a fundamental fact that the Lagrange–d’Alembert principle can be
derived from balance of forces, or if you like, F = ma, together with balance
of torques. We have seen this already in some of the basic examples in
Chapter 1, and it can be proven the same way in more general contexts, such
as for general rolling rigid bodies (see, for instance, Jalnapurkar [1994]).
Thus, anyone who doubts that the Lagrange–d’Alembert principle is correct
for the dynamical equations of nonholonomic mechanics should take up
the issue with Mr. Newton. In summary, there is no doubt that the correct
equations of motion for nonholonomic mechanical systems are given by the
Lagrange–d’Alembert principle.
This issue of whether the equations of nonholonomic mechanics are vari-

ational or not was discussed extensively and “put to rest” by Korteweg
[1899] in favor of the Lagrange–d’Alembert approach. Despite Korteweg’s
work, the issue concerning the variational nature of the equations curiously
resurfaces from time to time, and the confusion is surprisingly persistent,
perhaps because specific examples can exhibit nonintuitive behavior,1 and
so one is tempted to question the validity of the very equations of motion.
One such recurrence is a different set of equations of motion for nonholo-

nomically constrained mechanical systems proposed by Kozlov [1983]. Re-
call that the Euler–Lagrange equations for the motion of an unconstrained
mechanical system can be derived from Hamilton’s principle: The trajec-
tory followed by the system is the trajectory that is a critical point of the
action integral. Similarly, in Kozlov’s proposed formulation the trajectory
of the constrained system is the trajectory that is a critical point of the
action integral restricted to the space of curves satisfying the constraints.
See also Arnold, Kozlov, and Neishtadt [1988] (and the references therein)

1An example of nonintuitive behavior is the motion of a golf ball as it enters a hole,

drops, circles around a few times, and then pops out again. This example is discussed

further at the end of this section.
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and Chetaev [1959], Rumiantsev [1978, 1979, 1982a], Griffiths [1983], and
Bryant and Griffiths [1983]. Kozlov called the resulting equations the vako-
nomic formulation, a term we strongly discourage using, preferring to use
the term variational nonholonomic systems. The proper place of these
equations is in the setting of optimal control, which we discuss in Chapter 7.
Besides the equations of motion themselves, the geometric foundations

of nonholonomic mechanics have proved to be very useful in the analy-
sis of the equations, including the finding of specific solutions, stability
analysis, bifurcations, and control. In the developments in these directions
there have been many important fundamental contributions, both in books
and papers, such as Chaplygin [1897a,b, 1903, 1911, 1949, 1954], Vrance-
neau [1936], Cartan [1952], Neimark and Fufaev [1972], Rosenberg [1977],
Weber [1986], Koiller [1992], Bloch and Crouch [1995], Karapetyan [1980],
Yang [1992], Yang, Krishnaprasad, and Dayawansa [1993], Bates and Sni-
atycki [1993], Cushman, Kemppainen, Sniatycki, and Bates [1995], Marle
[1998], van der Schaft and Maschke [1994], Bloch, Krishnaprasad, Mars-
den, and Murray [1996], Koon and Marsden [1997a,b, 1998], Cortés and de
León [1999], Cantrijn, Cortés, de León, de Diego [2002],Cortés, de León,
Mart́ın de Diego, and Mart́ınez [2001], Cortés [2002], and Flannery [1911]
and, of course, literally thousands of very interesting papers on applications.
The so-called quasicoordinates or quasivelocities can be a useful tool for

analyzing nonholonomic systems, see, for example, Neimark and Fufaev
[1972], Greenwood [2003], and Bloch, Marsden, and Zenkov [2009a]. Var-
ious other forms of the nonholonomic equations such as Boltzman–Hamel
equations are also discussed in these references.

Dynamic Nonholonomic vs. Kinematic Nonholonomic. Nonholo-
nomic systems come in two varieties. First of all, there are those with
dynamic nonholonomic constraints, i.e., constraints preserved by the ba-
sic Euler–Lagrange or Hamilton equations, such as angular momentum,
or more generally momentum maps. Of course, these “constraints” are not
externally imposed on the system, but rather are consequences of the equa-
tions of motion, and so it is sometimes convenient to treat them as conser-
vation laws rather than constraints per se. On the other hand, kinematic
nonholonomic constraints are those imposed by the kinematics, such as
rolling constraints, which are constraints linear in the velocity.

Examples of Nonholonomic Systems. There have, of course, been
many classical examples of nonholonomic systems studied, and we have
mentioned many of these in Chapter 1. For example, Routh [1860] showed
that a uniform sphere rolling on a surface of revolution is an integrable
system (in the classical sense). For more modern treatments of Routh’s
problem, see Zenkov [1995] and Hermans [1995]. Another example is the
rolling disk (not necessarily vertical), which was treated in Vierkandt [1892];
this paper shows that the solutions of the equations on what we would call
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the reduced space (denoted by D/G later in this chapter) are all periodic.2

A related example is the bicycle; see Getz and Marsden [1995] and Koon
and Marsden [1997b]. The work of Chaplygin [1897a] is a very interesting
study of the rolling of a solid of revolution on a horizontal plane. In this
case, it is also true that the orbits are periodic on the reduced space.3 One
should note that a limiting case of this result (when the body of revolution
limits to a disk) is that of Vierkandt. Chaplygin[1897b, 1903] also studied
the case of a rolling sphere on a horizontal plane that additionally allowed
for the possibility of spheres with an inhomogeneous mass distribution. For
some recent work on this system, see Schneider [2000, 2002] and Tai [2001].

Another classical example is the wobblestone (sometimes called the Celtic
stone or rattleback), studied in a variety of papers and books such as Walker
[1896], Crabtree [1909], Bondi [1986], Pascal [1983], Karapetyan [1983], and
Markeev [1983]. See Hermans [1995], and Burdick, Goodwine and Ostrowski
[1994] for additional information and references. In particular, the paper of
Walker establishes important stability properties of relative equilibria by a
spectral analysis; it shows, under rather general conditions (including the
crucial one that the axes of principal curvature do not align with the inertia
axes), that rotation in one direction is spectrally stable. This implies linear
stability and hence nonlinear asymptotic stability by use of the Lyapunov–
Malkin theorem, as described below in Chapter 8 and in Karapetyan [1983]
and Zenkov, Bloch, and Marsden [1998]. Karaptyan was the first to prove
nonlinear stability of the rattleback.
By time reversibility, rotation in the other direction is unstable. On the

other hand, one can have a relative equilibrium with eigenvalues in both
halfplanes, so that rotations in opposite senses about it can both be unsta-
ble, as Walker has shown. Presumably this is consistent with the fact that
some wobblestones execute multiple reversals (see Markeev [1983]). How-
ever, the global geometry of this mechanism is still not fully understood
analytically.
The vertical rolling disk and the spherical ball rolling on a rotating table

may be used as examples of systems with both dynamic and kinematic
nonholonomic constraints. In either case, the angular momentum about
the vertical axis is conserved; see Bloch, Reyhanoglu, and McClamroch
[1992], Bloch and Crouch [1995], Brockett and Dai [1992], and Yang [1992].

A related modern example is the snakeboard (see Lewis, Ostrowski, Mur-
ray, and Burdick [1994] and Bloch, Krishnaprasad, Marsden, and Murray
[1996] and Section 5.8), which shares some of the features of these exam-
ples but which has a crucial difference as well. This example, like many

2This example is also treated in Appel [1900] and Korteweg [1899]. For this example
from a more modern point of view, see, for example, O’Reilly [1996], and Getz and
Marsden [1994].

3This is proved by a nice technique of Birkhoff utilizing the reversible symmetry in
Hermans [1995].



5.1 Equations of Motion 239

of the others, has the symmetry group SE(2) of Euclidean motions of the
plane, but the corresponding momentum is not conserved. However, the
equation satisfied by the momentum associated with the symmetry is use-
ful for understanding the dynamics of the problem and how group motion
and locomotion can be generated. The nonconservation of momentum oc-
curs even with no forces applied (besides the forces of constraint) and yet
is consistent with the conservation of energy for these systems. In fact,
this nonconservation is crucial to the generation of movement in a control-
theoretic context.

5.1 Equations of Motion

Lagrange’s Equations. The basic equations for holonomic mechanics,
normally derived from F = ma and possibly torque balance as well, were
rewritten by Lagrange in 1760 in a way that is covariant, that is, valid in
general coordinate systems. This achievement is one of the most important
advances in the modeling of mechanical systems in the last two hundred
years. We now recall some of the essential features from Chapters 1 and 3.
To write down the equations of motion for a mechanical system, we first

identify the configuration manifold of the system, which is the set of all
possible configurations. We then choose local coordinates q = (q1, . . . , qn)
on the configuration manifold, which are called generalized coordinates.
Next, we express the kinetic energy K as a function of q and its time
derivative q̇, and the potential energy V as a function of q. The Lagrangian
L is, for most systems, defined to be K − V .4 Lagrange’s equations are

d

dt

∂L

∂q̇i
(q(t), q̇(t))− ∂L

∂qi
(q(t), q̇(t)) = Fi(t), i = 1, . . . , n, (5.1.1)

or in short,
d

dt

∂L

∂q̇
− ∂L

∂q
= F, (5.1.2)

where
∂L

∂q̇
=

[
∂L

∂q̇1
, · · · , ∂L

∂q̇n

]
,

∂L

∂q
=

[
∂L

∂q1
, · · · , ∂L

∂qn

]
,

and where F = [F1, . . . , Fn]. Both sides of (5.1.2) are row vectors, and the
geometric object they represent is a cotangent vector to the configuration
manifold at the point q(t). The quantity F is called the generalized force

4For some systems, such as a particle in a magnetic field, one needs to choose an
appropriate Lagrangian, which is not simply the kinetic minus potential energy.
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vector, and is related to the nonconservative external forces on the system.
The ith component Fi of F is given by

Fi =

〈
F,

∂

∂qi

〉
,

where ∂/∂qi is the ith element of the standard tangent space basis that
we get from the coordinates (q1, . . . , qn). These equations provide a simple
and systematic way of modeling complicated systems, such as a system of
interconnected rigid bodies.
In contrast, an alternative approach (which, for example, has been exten-

sively used in the textbook by Smart [1951]) involves drawing “free body
diagrams” for each body in the system and then using for each body the
laws of balance of linear and angular momentum. In addition, in specific
examples there may be special geometrical features that one can exploit
to simplify the equations obtained (see, e.g., Kane and Levinson [1980]).
This process is generally regarded as equivalent to but less efficient than
Lagrange’s approach.
Our goal in this chapter will be to take a closer look at Lagrange’s equa-

tions, especially the situation where the generalized forces arise from con-
straints on the system.

Constrained Systems. Consider a mechanical system, subject to a lin-
ear velocity constraint that in generalized coordinates can be expressed
as

[a1(q), . . . , an(q)]q̇ = 0, (5.1.3)

where q̇ is regarded as a column vector. The constraint is said to be holo-
nomic or integrable if (locally) there is a real-valued function h of q such
that the constraint can be rewritten as h(q) = constant, or in differenti-
ated form, (∂h/∂qi)q̇i = 0. Thus the configuration of the system is actually
constrained to be on a submanifold of the configuration manifold. This
condition of being holonomic is equivalent by the Frobenius theorem to
the integrability of the corresponding distribution (see Chapter 2). We can
then write Lagrange’s equations using coordinates on this submanifold and
thus get a system of equations with fewer variables.
If no such function h exists, the constraint is said to be nonintegrable or

nonholonomic. As we saw already in Chapter 1, nonholonomic constraints
arise, for example, when one body is constrained to roll without slipping
on another body or surface.

The Nonholonomic Principle. The extension of Lagrange’s equations
for modeling systems subject to nonholonomic constraints was developed
by Ferrers [1871], Neumann [1888], and Vierkandt [1892]. For the simple
case of linear, time-independent constraints, the argument, which can be
found in standard textbooks on mechanics (see, for example, Whittaker
[1988], Pars [1965], Rosenberg [1977], and Neimark and Fufaev [1972]), is
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as follows: Suppose that our system is subject to m velocity constraints,
represented by the equation

A(q)q̇ = 0. (5.1.4)

Here A(q) is an m× n matrix and q̇ is a column vector. (We will see how
to view A(q) intrinsically in the next section.)
At any configuration q, the set of all possible virtual displacements

is defined to be the subspace of the tangent space to the configuration
manifold at q consisting of vectors δq that satisfy the constraints, i.e., the
subspace Dq defined by

Dq = {δq ∈ TqQ | A(q) · δq = 0}.

The (generalized) constraint force, which is regarded as a cotangent vector
at q, is assumed to lie in the annihilator of the space of virtual displace-
ments.
Thus, F has to be a linear combination of the rows of A(q):

F = λA(q).

We shall call this assumption the nonholonomic principle. Here F is
regarded as a row vector, and λ is a row vector whose elements are called
“Lagrange multipliers.”5

The equations we obtain are thus

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= λA(q), A(q)q̇ = 0. (5.1.5)

Note that we have n second-order differential equations (which can be
rewritten as 2n first-order equations) and m constraint equations, which
we need to solve for the 2n+m unknowns q, q̇, λ. As in Chapter 1, we call
the above equations the nonholonomic equations or the Lagrange–
d’Alembert equations for a mechanical system with velocity constraints.

Comments on the Derivation. A problem with the above classical
derivation of the Lagrange–d’Alembert equations is that no adequate jus-
tification is given for the nonholonomic principle, i.e., the assertion that
the vector of generalized forces always has to annihilate all possible virtual
displacements (in the case of “ideal” constraints, which do no work—see
below for more detail). With this assumption, the total energy of the sys-
tem is conserved, and conservation of energy indeed holds for many systems

5The name “Lagrange multipliers” is somewhat inappropriate here, since λ has, at
the moment, nothing to do with the Lagrange multipliers of the Lagrange multiplier
theorem for constrained optimization found in textbooks on multivariable calculus. But
we will continue to use it for historical reasons.
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with nonholonomic constraints—for example, systems involving constraints
of rolling without slipping. The rate of change of the total energy of the
system is equal to the rate of work done by the generalized forces, which is
〈F, q̇〉.

Therefore, conservation of energy requires only that the work done by
the generalized forces at each instant be zero, i.e., that 〈F, q̇〉 = 0. The
constraints ensure that the vector q̇ does lie in the space of all possible
virtual displacements at q, but, and here is the rub, conservation of energy
in itself does not explain why the generalized force vector should annihilate
all the possible virtual displacements.
It has long been the general consensus in the mechanics community that

the Lagrange–d’Alembert equations do indeed provide an accurate model of
the observed behavior of constrained physical systems. However, what the
confusion over the equations mentioned above did do was, quite properly,
to highlight the inadequacies in the classical derivation of the Lagrange–
d’Alembert equations. We shall comment on this further in the next para-
graph.
The final resolution of this situation is quite simple, as we have already

remarked: One can indeed derive the Lagrange–d’Alembert principle from
F = ma along with Newton’s third law and the assumption that the con-
straints do no work.
As discussed in, e.g., Suslov [1946] and Chetaev [1989], it is assumed

in classical mechanics that the constraints imposed on the system can be
replaced with the reaction forces. This means that after the forces are
imposed on the unconstrained system, the constraint distribution becomes
a conditional invariant manifold of the forced unconstrained Lagrangian
system whose dynamics on this invariant manifold is identical to that of
the constrained system.

5.1.1 Definition. Constraints (either holonomic or nonholonomic) are
called ideal if their reaction forces at each q ∈ Q belong to the null space
D◦

q ⊂ T ∗
q Q of Dq.

As shown in Suslov [1946] and Chetaev [1989], the reaction forces of ideal
constraints are defined uniquely at each q ∈ Q.
In summary, for a system subject to ideal constraints, the forced dynam-

ics is equivalent to the Lagrange–d’Alembert principle. We refer the reader
to books Suslov [1946] and Chetaev [1989] for a more detailed exposition
and history of the concept of ideal constraints.

Nonlinear Nonholonomic Constraints. In this text we do not con-
sider, aside from a brief comment here, nonholonomic constraints which are
nonlinear in the velocities. Discussion of such constraints may be found,
for example, in Appell [1911], Benenti [2007], Chetaev [1932–1933], Flan-
nery [1911], Marle [1996, 1998], Rumiantsev [1978, 1999], and Terra and
Kobayashi [2002] and the references therein. There is also a nice treatment
in Hamel [1949].
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One approach to treating these constraints is to differentiate the con-
straint and then use Lagrange multipliers to enforce it. This is equivalent
to employing Gauss’s principle (see Section 6.7) as discussed, for example,
in Evans, Hoover, Failor, Moran and Ladd [1983].

The idea is as follows: Suppose we are given a nonlinear constraint of
the form g(q, q̇) = 0 where g is a smooth function. We differentiate the
constraint to obtain

q̈
∂g

∂q̇
+ q̇

∂g

∂q
= 0, (5.1.6)

which is of the form

n(q, q̇) · q̈ + w(q, q̇) = 0 . (5.1.7)

One then enforces this constraint by adding to Newton’s law an acceler-
ation λn which is normal to the constraint surface with λ chosen to satisfy
the constraint.
A simple but interesting example is the Gauss thermostat where one

imposes a constant kinetic energy constraint on a one-dimensional set of
oscillators. Dynamics of this sort are of interest in nonequilibrium molecular
dynamics—see Evans, Hoover, Failor, Moran and Ladd [1983] and Rojo
and Bloch [2009]. The simplest setting is the case of N particles with equal
mass. In this case the constraint of kinetic energy corresponds to the norm
of the velocity being constant under the flow.
Consider anN -dimensional vector v = (ẋ1, . . . , ẋN ) and anN -dimensional

force F = (f1, . . . , fN ). The constraint of constant kinetic energy is imposed
by a “time dependent viscosity” η(t) (the multiplier):

v̇ = F− η(t)v. (5.1.8)

The crucial ingredient is that the viscosity term can be positive or negative.
The condition that the norm of v is constant (or constant kinetic energy)
means:

v̇ · v = 0 ⇒ η(t) =
F · v
v · v . (5.1.9)

The equation of motion is therefore:

v̇ = F− F · v
v · vv. (5.1.10)

A simple case is that of constant force of N particles in one dimension
subject to a constant gravitational force f = mg and random initial con-
ditions. In the absence of the constraint the particles move independently
and the kinetic energy fluctuates. We can show (see Rojo and Bloch [2009])
that the constraint induces correlations and that the long time behavior
corresponds to all particles moving with the same velocity, regardless of
the initial conditions.
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The equation of motion of the n-th particle in this case is

v̇n = g −
∑N

m=1 gvm
v2

vn, (5.1.11)

where v2 =
∑

vn(t)
2 is preserved by the dynamics.

One can show that in the long time limit,

vn(t → ∞) = vM ,

where vM is a common velocity.

Variational Problems. As we have mentioned, the correct equations
for nonholonomic mechanical systems are not literally variational. However,
the variational approach is very appropriate for optimal control problems
where one by definition wants to optimize some function (usually called
the cost function). Much more will be said about the associated variational
equations of motion in Chapter 7 in conjunction with our study of optimal
control. In fact, the optimal control setting is the only setting known to us
in which these equations are useful for physical applications.
To elaborate on what it means to have a variational problem with non-

holonomic constraints, let q0 : [a, b] → R
n be a trajectory of the constrained

system, with q0(a) = qa, and q0(b) = qb. Let C(qa, qb, [a, b]) denote the
space of smooth curves on the interval [a, b], taking values in R

n and with
endpoints qa and qb. Let S : C(qa, qb, [a, b]) → R be the action integral,
defined as

S(q) =

∫ b

a

L(q(t), q̇(t)) dt.

Let C ′ be the subset of C(qa, qb, [a, b]) consisting of curves that satisfy the
constraints. Then the variational equations require that the curve q0 be a
critical point of S|C ′.
This formulation, in general, leads to equations that are different from

the Lagrange–d’Alembert equations (5.1.5), though in the case of holonomic
constraints, both formulations obviously yield the same equations.
It has long been known (Carathéodory [1933], Neimark and Fufaev [1972])

that the Lagrange–d’Alembert equations can be obtained by starting with
an unconstrained system subject to appropriately chosen dissipative forces,
and then letting these forces go to infinity in an appropriate manner.
The problem of minimization of an action functional in the presence of

velocity-dependent (nonlinear) constraints has a long history. In particular,
this problem was studied by Lagrange. The necessary conditions for such
a minimum are given by the Pontryagin maximum principle. See Kozlov
[1982b] for details.
Kozlov showed that the variational equations too can be obtained as the

result of another limiting process: He added a parameter-dependent “iner-
tial term” to the Lagrangian of the constrained system, and then showed
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that the unconstrained equations approach the variational equations as the
parameter approaches infinity. We will not present the details here; Arnold,
Kozlov, and Neishtadt [1988] gives a nice exposition.
The issue of to what extent the variational formulation is applicable to

actual physical systems has been a matter of some controversy, although,
as we mentioned, it was settled already by Korteweg [1899] (see also Khar-
lamov [1992]). Kozlov [1992], replying to this paper of Kharmalov, points
out that for the Lagrange–d’Alembert equations, “the origin of the ini-
tial axioms [(i.e. the requirement that the generalized force annihilate all
possible virtual displacements] remains unknown,” and that “the question
of applicability of the nonholonomic model . . . cannot, in any specific sit-
uation, be solved within the framework of an axiomatic scheme without
recourse to experimental results.” In fact, there are experimental results
that do confirm that the Lagrange–d’Alembert principle is correct. See, for
example, Lewis and Murray [1995], which studies a rolling ball on a rotating
turntable. They showed that if the ball is sufficiently rigid and if the slip-
page is minimized, then the nonholonomic formulation best approximates
the observed behavior.

5.1.2 Example (A Counterintuitive Example). We now discuss an
interesting example from Smart [1951] that illustrates in how counterintu-
itive a manner systems with rolling constraints can sometimes behave. The
system consists of a spherical body rolling on the inner surface of a vertical
pipe. We assume that the sphere is rolling fast enough around the pipe to
prevent slipping. (See Figure 5.1.1.) Smart actually obtains the equation

Figure 5.1.1. Sphere rolling inside a cylinder

of motion the hard way—using balance of momentum laws and a moving
coordinate frame attached to the body (i.e., not using generalized coordi-
nates). The body initially rolls downwards, as one would expect. But then
it changes direction and moves back up! In fact, the height of the body
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oscillates in a simple harmonic manner. In fact, Routh [1860] considered
the more general problem of a sphere rolling in a surface of revolution and
showed that it is integrable (in the sense that one could in principle write
down the solutions in terms of integrals); see Zenkov [1995]. �

Exercises

� 5.1-1. Study the dynamics of the system (5.1.11) and show that each
particle approaches a common velocity.

5.2 The Lagrange–d’Alembert Principle

With the above considerations behind us, let us “restart” from a somewhat
more general point of view. Namely, we start with a configuration space Q
and a distribution D that describes the kinematic constraints of interest.
Thus, D is a collection of linear subspaces denoted by Dq ⊂ TqQ, one for
each q ∈ Q. A curve q(t) ∈ Q will be said to satisfy the constraints if
q̇(t) ∈ Dq(t) for all t. This distribution will, in general, be nonintegrable
in the sense of Frobenius’s theorem; i.e., the constraints are, in general,
nonholonomic.
The above setup describes linear constraints; for affine constraints, for

example, a ball on a rotating turntable (where the rotational velocity of the
turntable represents the affine part of the constraints), one way to describe
them is to assume that there is a given vector field V0 on Q and then write
the constraints as q̇(t)− V0(q(t)) ∈ Dq(t).

The Lagrange–d’Alembert Principle. Consider a given Lagrangian
L : TQ → R. In (generalized) coordinates, qi, i = 1, . . . , n, on Q with
induced coordinates (qi, q̇i) for the tangent bundle, we write, as before,
L(qi, q̇i). Following the discussion in the preceding section we assume the
following principle of Lagrange–d’Alembert.

5.2.1 Definition. The Lagrange–d’Alembert equations of motion
for the system are those determined by

δ

∫ b

a

L(qi, q̇i) dt = 0, (5.2.1)

where we choose variations δq(t) of the curve q(t) that satisfy δq(t) ∈ Dq(t)
for each t, a ≤ t ≤ b, and δq(a) = δq(b) = 0.

This principle is supplemented by the condition that the curve q(t) itself
satisfy the constraints.
As explained before, in such a principle we take the variation δq before

imposing the constraints; that is, we do not impose the constraints on the
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family of curves defining the variation. The usual arguments in the calculus
of variations show that this constrained variational principle is equivalent
to the equations

− δL =

(
d

dt

∂L

∂q̇i
− ∂L

∂qi

)
δqi = 0, (5.2.2)

for all variations δq such that δq ∈ Dq at each point of the underlying curve
q(t).

Structure of the Equations of Motion. To explore the structure of
the equations determined by (5.2.2) in more detail, let {ωa} be a set of
m independent one-forms whose vanishing describes the constraints on the
system; that is, the constraints on δq ∈ TQ are defined by the m condi-
tions ωa · v = 0, a = 1, . . . ,m. Using the fact that these m one-forms are
independent, we leave it as an exercise for the reader to show that one can
choose local coordinates such that the one-forms ωa have the form

ωa(q) = dsa +Aa
α(r, s)dr

α, a = 1, . . . ,m, (5.2.3)

where q = (r, s) ∈ R
n−m × R

m are local coordinates.
With this choice, the constraints on δq = (δr, δs) are given by the con-

ditions
δsa +Aa

αδr
α = 0. (5.2.4)

The equations of motion for the system are given by (5.2.2), where we
choose variations δq(t) that satisfy the constraints. Substituting (5.2.4)
into (5.2.2) and using the fact that δr is arbitrary gives(

d

dt

∂L

∂ṙα
− ∂L

∂rα

)
= Aa

α

(
d

dt

∂L

∂ṡa
− ∂L

∂sa

)
, α = 1, . . . , n−m. (5.2.5)

The equations (5.2.5) combined with the constraint equations

ṡa = −Aa
αṙ

α, a = 1, . . . ,m, (5.2.6)

give a complete description of the equations of motion of the system. No-
tice that they consist of n − m second-order equations and m first-order
equations.

The Constrained Lagrangian. We now define the “constrained” La-
grangian by substituting the constraints (5.2.6) into the Lagrangian:

Lc(r
α, sa, ṙα) = L(rα, sa, ṙα,−Aa

α(r, s)ṙ
α).

The equations of motion (5.2.5) can be written in terms of the constrained
Lagrangian in the following way, as a direct coordinate calculation shows:6

d

dt

∂Lc

∂ṙα
− ∂Lc

∂rα
+Aa

α

∂Lc

∂sa
= − ∂L

∂ṡb
Bb

αβ ṙ
β , (5.2.7)

6See the Internet Supplement for some details of this calculation
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where

Bb
αβ =

(
∂Ab

α

∂rβ
− ∂Ab

β

∂rα
+Aa

α

∂Ab
β

∂sa
−Aa

β

∂Ab
α

∂sa

)
. (5.2.8)

Letting dωb be the exterior derivative of ωb, another straightforward
computation using properties of differential forms shows that

dωb(q̇, ·) = Bb
αβ ṙ

βdrα,

and hence the equations of motion have the form

−δLc =

(
d

dt

∂Lc

∂ṙα
− ∂Lc

∂rα
+Aa

α

∂Lc

∂sa

)
δra = − ∂L

∂ṡb
dωb(q̇, δr).

This form of the equations isolates the effects of the constraints, and shows
that if the constraints are integrable (which is equivalent to dωb = 0, that
is, to Bb

αβ = 0), then the correct equations of motion are obtained by
substituting the constraints into the Lagrangian and setting the variation
of Lc to zero. However in the nonintegrable case, which is the typical case
for nonholonomic systems, the constraints generate extra forces that must
be taken into account.

Intrinsic Formulation of the Equations. We can now rephrase our
coordinate computations in the language of the Ehresmann connections
that we discussed in Chapter 2. We shall do this first for systems with
homogeneous constraints and then treat the affine case.
Suppose that we have chosen a bundle and an Ehresmann connection

A on that bundle such that the constraint distribution D is given by the
horizontal subbundle associated with A. In other words, we assume that the
connection A is chosen such that the constraints are written as A · q̇ = 0.
Note that this is an intrinsic way of writing the constraints and a way
of thinking of the collection of one-forms that we used in the coordinate
description. In those coordinates one can choose the bundle to be that
given in coordinates by (s, r) �→ r, and the connection is, in this choice of
bundle, defined by the constraints. It is clear that this choice of bundle is
not unique; sometimes this sort of ambiguity is removed for systems with
symmetry, as we shall see later.
In the language of connections, the constrained Lagrangian can be

written as

Lc(q, q̇) = L(q, hor q̇),

and we have the following theorem.

5.2.2 Theorem. The Lagrange–d’Alembert equations may be written as
the equations

δLc = 〈FL,B(q̇, δq)〉,
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where 〈 , 〉 denotes the pairing between a vector and a dual vector and where

δLc =

〈
δqα,

∂Lc

∂qα
− d

dt

∂Lc

∂q̇α

〉
,

in which δq is a horizontal variation (i.e., it takes values in the horizontal
space) and B is the curvature regarded as a vertical-valued two-form, in
addition to the constraint equations

A(q) · q̇ = 0.

Affine Constraints. We next consider the modifications necessary to
allow affine constraints of the form

A(q) · q̇ = γ(q, t),

where A is an Ehresmann connection as described above and γ(q, t) is a
vertical-valued (possibly time-dependent) vector field on Q. The expression
γ here is related to the vector field V0 given in the introduction to this
section by γ(q) = A(q) · V0(q). Affine constraints arise, for example, in
studying the motion of a ball on a spinning turntable. Since the turntable
is moving underneath the ball, the velocity in the constraint directions
is not zero, but is instead determined by the position of the ball on the
turntable and the angular velocity of the turntable.
Since γ(q, t) is vertical, we can define the covariant derivative of γ

along X as
Dγ(X) = ver[horX, γ]

(see Chapter 2 and Marsden, Montgomery, and Ratiu [1990]). Relative to
bundle coordinates q = (r, s), we write γ as

γ(q, t) = γa(q, t)
∂

∂sa
,

and the covariant derivative along a horizontal vector field

X = Xα

(
∂

∂rα
−Aa

α

∂

∂sa

)

is given by

Dγ(X) = Xα

(
∂γa

∂rα
−Ab

α

∂γa

∂sb
+ γb ∂A

a
α

∂sb

)
∂

∂sa
=: γa

αX
α ∂

∂sa
,

which defines the symbols γa
α.

In this affine case, we define the constrained Lagrangian as

Lc(q, q̇, t) = L (q, hor q̇ + γ(q, t)) .
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A long calculation, similar to that for linear (homogeneous) constraints,
shows that the dynamics have the form

δLc = 〈FL,B(q̇, δq)〉+ 〈FL,Dγ(δq)〉,
(5.2.9)

A(q) · q̇ = γ(q, t),

where the δq are, as in the homogeneous case, restricted to satisfy
A(q) · δq = 0. In coordinates, the first of these equations reads as

d

dt

∂Lc

∂ṙα
− ∂Lc

∂rα
+Aa

α

∂Lc

∂sa
= − ∂L

∂ṡb
Bb

αβ ṙ
β − ∂L

∂ṡa
γa
α, (5.2.10)

while the second reads as ṡa+Aa
αṙ

α = γa. Notice that these equations show
how, in the affine case, the covariant derivative of the affine part γ enters
into the description of the system; in particular, note that the covariant
derivative in (5.2.9) is with respect to the configuration variables and not
with respect to the time.

Equations of Motion of a Nonholonomic System with Lagrange
Multipliers. We can obtain the equations of motion of a nonholonomic
system with Lagrange multipliers from the Lagrange–d’Alembert principle
as follows (see, e.g., Neimark and Fufaev [1972]).
Recall that the Lagrange–d’Alembert principle gives us

(
d

dt

∂L

∂q̇i
− ∂L

∂qi

)
δqi = 0, i = 1, . . . , n, (5.2.11)

for variations δqi ∈ D, i.e., for variations in the constraint distribution.
Using the notation in Chapter 1 (see equation (1.3.1)) for the constraints,
we write the constraints on δqi as

n∑
i=1

aji δq
i = 0 , j = 1, . . . ,m , (5.2.12)

where aji constitute an m × n matrix, whose entries depend on q. This
implies, in a trivial way, that for any constants λj ,

m∑
j=1

n∑
i=1

λja
j
i δq

i = 0 . (5.2.13)

Hence we can append this to the Lagrange–d’Alembert equations to obtain

n∑
i=1

(
d

dt

∂L

∂q̇i
− ∂L

∂qi
−

m∑
j=1

λja
j
i

)
δqi = 0. (5.2.14)
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Assuming that our constraints are independent implies that one of the
m×m minors of the m×n matrix aji must be nonzero. Let us assume it to
be that given by letting the indices run from 1 to m. We can then assume
that the variations δqm+1, . . . , δqn are arbitrary, since the constraint equa-
tions (5.2.12) may then be satisfied by a choice of resulting definite values
for variations δq1, . . . , δqm.
We can choose values of the Lagrange multipliers such that the expression

in brackets in (5.2.14) vanishes for each dependent variation δq1, . . . , δqm.
This entails solving a linear systems of algebraic equations in the λi, which
is solvable by virtue of our assumptions on the aji .
Once this is done, equation (5.2.14) becomes

n∑
i=m+1

(
d

dt

∂L

∂q̇i
− ∂L

∂qi
−

m∑
j=1

λja
j
i

)
δqi = 0, (5.2.15)

where the variations are independent. Hence each term in parentheses must
also vanish independently. Putting the observations for the dependent and
independent variables together gives us the set of n equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
=

m∑
j=1

λja
j
i . (5.2.16)

We have seen various applications of this approach, for example, the
Chaplygin sleigh and the rolling ball discussed in the first chapter.

Exercises

� 5.2-1. Use the above formalism to compute the nonholonomic equations
of motion for the Chaplygin sleigh of Chapter 1.

� 5.2-2. Show that if one has a conserved quantity for a holonomic me-
chanical system (treat either the specific case of angular momentum or
the general case of a momentum map associated with a symmetry) and
one treats it as a nonholonomic constraint using the Lagrange–d’Alembert
principle, then one gets the correct holonomic equations restricted to a
surface of constant momentum.

� 5.2-3. Derive equations (5.2.7) using Hamel’s formalism:

(a) Select

uα =
∂

∂rα
−Aa

α

∂

∂sa
,

ua =
∂

∂sa

as (local) vector fields on Q, and evaluate the quantities ψj
i (q) and

ckij(q) (see formulae (3.8.1) and (3.8.2) for the definitions).
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(b) Set q̇ = ξαuα + ξaua and obtain the formulae for quasivelocities ξα

and ξa in terms of ṙα and ṡa. Show that constraints (5.2.6) become
ξa = 0.

(c) Arguing as in the derivation of (5.2.16), write the nonholonomic ana-
logue of Hamel equations, that is, write the Hamel equations with
Lagrange multipliers. Observe that these multipliers appear only in
the ξa-equations.

(d) Observe that the partial derivatives of the Lagrangian with respect
to ξα and directional derivatives of the Lagrangian along the fields
uα are the same regardless of when (before or after differentiation)
the constraints ξa = 0 are imposed on the system, and therefore the
Lagrangian in the ξα-equations can be replaced with the constrained
Lagrangian.

(e) Observe that the ξa-equations do not influence the dynamics and
are only needed for evaluation of the Lagrange multipliers. Thus,
the dynamics is governed by the ξα-equations. Confirm that these
equations coincide with equations (5.2.7). Observe that the quantities
ṙα should be interpreted as quasivelocities.

5.3 Projected Connections and Newton’s
Law

In this section we discuss the formulation of the equations of motion of
nonholonomic systems with forces or controls and indicate how to write
such systems as second-order forced systems (i.e., satisfying Newton’s law)
on the constraint subbundle. This follows an approach due to Vershik and
Faddeev [1981]; see also Montgomery [1990], Yang [1992], and Bloch and
Crouch [1995, 1997].

Let us rewrite the equations of a forced nonholonomic system (see equa-
tion (1.3.6)) on a Riemannian manifold Q. We assume also in this section
that the Lagrangian is pure kinetic energy and any potential forces are part
of the external force F :

D2q

dt2
=

m∑
a=1

λaWa + F, (5.3.1)

where F is an arbitrary external force field and the system is subject to
the independent constraints

ωa(q̇) = 〈Wa, q̇〉 = 0, 1 ≤ a ≤ m, (5.3.2)

where the Wa are vector fields on M .
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Locally, these constraints may be written as in (5.2.3), but we do not use
this local notation here.
The constraint distribution N is given by

Np = {Xp | ωa(X) = 0, 1 ≤ a ≤ m} (5.3.3)

for X a vector field on Q and p a point on Q.
We now use the independence of the one-forms ωa to eliminate the mul-

tipliers: Let aij = ωi(Wj), 1 ≤ i, j ≤ m. Then the matrix with entries aij
is invertible on Q. Differentiating the constraints gives

Dωi

dt
(q̇) + ωi

(∑
j

λjWj + F

)
= 0, 1 ≤ i ≤ m. (5.3.4)

Hence the multipliers have the explicit form

λk = −
∑
j

a−1
kj

(
Dωj

dt
(q̇) + ωj(F )

)
, 1 ≤ k ≤ m. (5.3.5)

Hence the equations of motion may be rewritten as

D2q

dt2
+
∑
k,j

Wka
−1
kj

Dωj

dt
= F −

∑
k,j

Wka
−1
kj ω

j(F ),

ωi(q̇) = 0, 1 ≤ i ≤ m. (5.3.6)

5.3.1 Definition. For X a vector field on Q, let

πN (X) = X −
∑
ki

Wka
−1
ki ωi(X). (5.3.7)

Notice that πN (X) is a projection of X onto the constraint distribu-
tion N . Now apply this projection to D2q/dt2 and observe that differenti-
ating the constraints gives

ωi

(
D2q

dt2

)
+

Dωi

dt
(q̇) = 0.

Thus,

πN

(
D2q

dt2

)
=

D2q

dt2
+
∑
i,k

Wka
−1
ki

Dωi

dt
(q̇). (5.3.8)

Hence, equation (5.3.6) may be written

πN

(
D2q

dt2

)
= πN (F ), q̇ ∈ N. (5.3.9)

We now make the following natural definition:
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5.3.2 Definition. If ∇ is any connection on Q with corresponding covari-
ant derivative D/dt, then the second-order system

D
2
q

dt2
= F , q ∈ Q, (5.3.10)

is said to be a system on Q satisfying Newton’s law with forces F .

Thus our nonholonomic system is a projection of the Newton law system
D2q/dt2 = F to N .

However, as Vershik and Faddeev [1981] pointed out, by redefining the
connection, the system may be written as a system obeying Newton’s law
on N directly. To see this, define a new connection on Q,

∇′
XY = ∇XY +

m∑
i=1

Wia
−1
ik (∇Xωk)(Y ), (5.3.11)

for X,Y vector fields on Q. This in turn defines a covariant derivative
D′/dt. From (5.3.11) we note that

ωi(∇′
XY ) = ωi(∇XY ) + (∇Xωi)(Y ) = X(ωi(Y )). (5.3.12)

Thus since X and Y are vector fields on N , so are ∇′
XY , and thus ∇′|N

defines a connection on the subbundle N of TQ, and the nonholonomic
system (5.3.1) may be viewed as a system of Newton law type on N :

D′2q
dt2

= πN (F ), q̇ ∈ N. (5.3.13)

Thus the nonholonomic system is a system of Newton law type with re-
spect to a modified connection. This connection is not metric, however. In
Bloch and Crouch [1997] we explore extensions of this system to a non-
metric Newton law system on the whole of M . See also the work of Lewis
[1998].

5.4 Systems with Symmetry

We now add symmetry to our nonholonomic system. We will begin with
some general remarks about symmetry.

Group Actions and Invariance. We remind the reader of a few of the
concepts discussed in Chapter 2. Assume that we are given a Lie group G
and an action of G on Q. This action will be denoted by q �→ gq = Φg(q).
The group orbit through a point q, which is an (immersed) submanifold, is
denoted by

Orb(q) := {gq | g ∈ G}.
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When there is danger of confusion about which group is meant, we write
the orbit as OrbG(q).

Let g denote the Lie algebra of the Lie group G. For an element ξ ∈ g, we
write ξQ, a vector field on Q for the corresponding infinitesimal generator;
recall that this is obtained by differentiating the flow Φexp(tξ) with respect
to t at t = 0. The tangent space to the group orbit through a point q is
given by the set of infinitesimal generators at that point:

Tq(Orb(q)) = {ξQ(q) | ξ ∈ g}.
For simplicity, we make the assumption that the action of G on Q is free

(none of the maps Φg has any fixed points) and proper (the map (q, g) �→ gq
is proper; that is, the inverse images of compact sets are compact). The case
of nonfree actions is very important, and the investigation of the associated
singularities needs to be carried out, but that topic is not the subject of
the present book.7

The quotient spaceM = Q/G, whose points are the group orbits, is called
shape space. It is known that if the group action is free and proper, then
shape space is a smooth manifold and the projection map π : Q → Q/G is
a smooth surjective map with a surjective derivative Tqπ at each point. We
will denote the projection map by πQ,G if there is any danger of confusion.
The kernel of the linear map Tqπ is the set of infinitesimal generators of
the group action at the point q, i.e.,

kerTqπ = {ξQ(q) | ξ ∈ g} ,
so these are also the tangent spaces to the group orbits.

Invariance Properties. We now introduce some assumptions concern-
ing the relations among the given group action, the Lagrangian, and the
constraint distribution.

5.4.1 Definition.

(L1) We say that the Lagrangian is invariant under the group action if
L is invariant under the induced action of G on TQ.

(L2) We say that the Lagrangian is infinitesimally invariant if for any
Lie algebra element ξ ∈ g we have dL ◦ ξ̇Q = 0 where, for a vector

field X on Q, Ẋ denotes the vector field on TQ naturally induced by
it (if Ft is the flow of X, then the flow of Ẋ is TFt).

(S1) We say that the distribution D is invariant if the subspace Dq ⊂
TqQ is mapped by the tangent of the group action to the subspace
Dgq ⊂ TgqQ.

7This would take us into the subject of singular nonholonomic reduction; see, for
example, Bates [1998].
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(S2) An Ehresmann connection A on Q (that has D as its horizontal distri-
bution) is invariant under G if the group action preserves the bundle
structure associated with the connection (in particular, it maps verti-
cal spaces to vertical spaces) and if, as a map from TQ to the vertical
bundle, A is G-equivariant.

(S3) A Lie algebra element ξ is said to act horizontally if ξQ(q) ∈ Dq

for all q ∈ Q.

Some relationships among these conditions are as follows: Condition (L1)
implies (L2), as is obtained by differentiating the invariance condition. It
is also clear that condition (S2) implies condition (S1), since the invariance
of the connection A implies that the group action maps its kernel to itself.
Condition (S1) may be stated as follows:

TqΦg · Dq = Dgq. (5.4.1)

In the case of affine constraints, one needs, where appropriate, the assump-
tion that the vector field γ is invariant under the action.
To help explain condition (S1), we will rewrite it in infinitesimal form.

Let XD be the space of sections X of the distribution D; that is, the space
of vector fields X that take values in D. The condition (S1) implies that
for each X ∈ XD, we have Φ∗

gX ∈ XD. Here, Φ∗
gX denotes the pullback of

the vector field X under the map Φg. Differentiation of this condition with
respect to g proves the following result.

5.4.2 Proposition. Assume that condition (S1) holds and let X be a sec-
tion of D. Then for each Lie algebra element ξ, we have

[ξQ, X] ∈ XD, (5.4.2)

which we write as [ξQ,XD] ⊂ XD.

We now have the following result.

5.4.3 Proposition. Under assumptions (L1) and (S1), we can form the
reduced velocity phase space TQ/G and the constrained reduced ve-
locity phase space D/G. The Lagrangian L induces well-defined func-
tions, the reduced Lagrangian

l : TQ/G → R

satisfying L = l ◦πTQ, where πTQ : TQ → TQ/G is the projection, and the
constrained reduced Lagrangian

lc : D/G → R,

which satisfies L|D = lc ◦ πD, where πD : D → D/G is the projection. In
addition, the Lagrange–d’Alembert equations induce well-defined reduced
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Lagrange–d’Alembert equations on D/G. That is, the vector field on
the manifold D determined by the Lagrange–d’Alembert equations (includ-
ing the constraints) is G-invariant, and so defines a reduced vector field on
the quotient manifold D/G.

This proposition follows from general symmetry considerations. For ex-
ample, to get the constrained reduced Lagrangian lc we restrict the given
Lagrangian to the distribution D and then use its invariance to pass to the
quotient. The problem of constrained Lagrangian reduction is the detailed
determination of these reduced structures and will be dealt with later.

The Principal or Purely Kinematic Case. To illustrate how symme-
tries affect the equations of motion, we will start with one of the simplest
cases, in which the group orbits exactly complement the constraints, which
we call the principal or the purely kinematic case , sometimes called
the Chaplygin or the nonabelian Chaplygin case. This case goes back to
Chaplygin [1897a], Hamel [1904], and was put into a geometric context by
Koiller [1992]. See also Bloch, Reyhanoglu, and McClamroch [1992], Yang,
Krishnaprasad, and Dayawansa [1993], and Cantrijn, Cortés, de León, de
Diego [2002].

An example of the purely kinematic case is the vertical rolling disk dis-
cussed in the examples section below. However, in other examples, such
as the snakeboard, this condition is not valid, and its failure is crucial to
understanding the dynamic behavior of this system. Because of this, we
will consider the more general case below in Section 5.7.

5.4.4 Definition. The principal kinematic case is the case in which
(L1) and (S1) hold and where at each point q ∈ Q, the tangent space TqQ
is the direct sum of the tangent to the group orbit and to the constraint
distribution; that is, we require that at each point, Sq = {0} and that

TqQ = Tq Orb(q)⊕Dq =: Vq ⊕Dq.

In other words, we require that the group directions provide a vertical
space for the Ehresmann connection introduced earlier; thus, in this sit-
uation there is a preferred vertical space, and so there is no freedom in
choosing the associated Ehresmann connection whose horizontal space is
the given constraint distribution. In other words, the nonholonomic kine-
matic constraints provide a connection on the principal bundle π : Q →
Q/G, so that we can choose this bundle to be coincident with the bundle
πQ,R : Q → R introduced earlier. If the Lagrangian and the constraints are
invariant with respect to the group action (assumptions (L1) and (S1)),
then as we explained above, the equations of motion in Theorem 5.2.2
drop to the reduced space D/G. As we shall see, in the principal kinematic
case these reduced equations may be regarded as second-order equations on
Q/G together with the constraint equations. The connection that describes
the constraints provides the information necessary to reconstruct the tra-
jectory on the full space. In essence, the constraints provide a connection
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that replaces the mechanical connection that is used in the reduction the-
ory of unconstrained systems with symmetry. The general case, described
in Section 5.7, requires a synthesis of the two approaches.
Since a principal connection is uniquely determined by the specification

of its horizontal spaces as an invariant complement to the group orbits, we
get the following.

5.4.5 Proposition. In the principal kinematic case, there is a unique prin-
cipal connection on Q → Q/G whose horizontal space is the given distri-
bution D.

We now make these considerations more explicit. The vertical space for
the principal bundle π : Q → Q/G is Vq = kerTqπ, which is the tangent
space to the group orbit through q. Thus, each vertical fiber at a point q
is isomorphic to the Lie algebra g by means of the map ξ ∈ g �→ ξQ(q). In
the principal kinematic case, the splitting of the tangent space to Q given
in the preceding definition defines a projection onto the vertical space and
hence defines an Ehresmann connection that, as before, we denote by A. If
condition (S1) holds, then A : TQ → V will be group-invariant (assumption
(S2)), and there exists a Lie-algebra-valued one-form A : TQ → g such that

A(q) · q̇ = (A(q) · q̇)Q (q), or A = AQ.

Thus on a principal bundle we can express our results in terms of A instead
of A. In bundle coordinates, A can be written as

A(r, g) · (ṙ, ġ) = Adg(g
−1ġ +Aloc(r)ṙ),

as in equation (5.2.3).
We now turn to the expression in a local trivialization for the constrained

reduced Lagrangian lc. This is obtained by substituting the constraints
A(q)· q̇ = 0 into the reduced Lagrangian. Thus lc : T (Q/G) → R is given by

lc(r, ṙ) = l(r, ṙ,−Aloc(r)ṙ). (5.4.3)

Alternatively, note that we can write

lc(r, ṙ) = L(q, hor q̇),

where r = π(q) and ṙ = Tqπ(q̇).
Using this notation, the equations of motion can be read off of Theo-

rem 5.2.2 to give the following theorem.

5.4.6 Theorem. In the principal kinematic case, the equations of motion
may be written

δlc =

〈
∂l

∂ξ
,Bloc(ṙ, δr)

〉
,

ġ = −gAloc(r)ṙ,

(5.4.4)

where δr ∈ T (Q/G) and Bloc is the curvature of Aloc and where ξ =
−Aloc(r)ṙ.
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This theorem goes back to the work of Chaplygin [1897a] (see the refer-
ences) for the abelian principal case and was extended to the nonabelian
case by Koiller [1992]. This result is also a consequence of the results of
Marsden and Scheurle [1993a, 1993b]; indeed, they show that the first of
these equations is a consequence of the horizontal variations in the action
(i.e., the Lagrange–d’Alembert principle) and that in this calculation one
can choose any connection, in particular the principal kinematic connec-
tion, in this case. Of course, the second of the equations is just the condition
of horizontality, that is, the kinematic constraints themselves.
We see in local coordinates that the dynamics of the system can be

completely written in terms of the dynamics in base coordinates r ∈ Q/G,
and the full dynamics are given by reconstruction of ġ using the constraints.
Thus, in the purely kinematic case, we recover the process of reduction and
reconstruction with the kinematic connection A replacing the mechanical
connection. We stress, in particular, that in the principal kinematic case,
something special happens, namely there is no dynamic equation for ξ =
g−1ġ, but rather ξ can be expressed directly in terms of r and ṙ using the
constraints, and when this is substituted into the first of equations (5.4.4),
we obtain second-order equations for r. Thus, in this case, the equations
actually reduce from equations onD/G to equations onQ/G. The dynamics
of g itself are then recovered by the constraint equation, which may be
regarded as the reconstruction problem, which is also encountered in the
problem of calculating holonomy, as in Marsden, Montgomery, and Ratiu
[1990]. In particular, for abelian groups, the dynamics of g can be written
in terms of those of r by an explicit quadrature.
The purely kinematic case can easily be extended to allow affine con-

straints.

5.5 The Momentum Equation

In this section we use the Lagrange–d’Alembert principle to derive an equa-
tion for a generalized momentum as a consequence of the symmetries. Un-
der the hypothesis that the action of some Lie algebra element is horizontal
(that is, the infinitesimal generator is automatically in the constraint dis-
tribution), this yields a conservation law in the usual sense. We refer the
reader to Chapter 3 for the classical momentum map.
As we shall see, the momentum equation does not directly involve the

choice of an Ehresmann connection to describe the distribution D, but the
choice of such a connection will be useful for the coordinate versions.
We have already mentioned that simple physical systems that have sym-

metries do not have associated conservation laws, namely the wobblestone
and the snakeboard. It is also easy to see why this is not generally the case
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from the equations of motion. The simplest situation would be the case of
cyclic variables. Recall that the equations of motion have the form

d

dt

∂Lc

∂ṙα
− ∂Lc

∂rα
+Aa

α

∂Lc

∂sa
= − ∂L

∂ṡb
Bb

αβ ṙ
β .

If this had a cyclic variable, say r1, then all the quantities Lc, L,B
b
αβ would

be independent of r1. This is equivalent to saying that there is a transla-
tional symmetry in the r1 direction. Let us also suppose, as is often the
case, that the s variables are also cyclic. Then the above equation for the
momentum p1 = ∂Lc/∂ṙ

1 becomes

d

dt
p1 = − ∂L

∂ṡb
Bb

1β ṙ
β .

This fails to be a conservation law in general. Note that the right-hand
side is linear in ṙ (the first term is linear in pr), and the equation does not
depend on r1 itself. This is a very special case of the momentum equation
that we shall develop in this chapter. Even for systems like the snakeboard,
the symmetry group is not abelian, so the above analysis for cyclic variables
fails to capture the full story. In particular, the momentum equation is not
of the preceding form in that example, and thus it must be generalized.

The Derivation of the Momentum Equation. We now derive a gen-
eralized momentum map for nonholonomic systems. The number of equa-
tions obtained will equal the dimension of the intersection of the orbit with
the given constraints. As we will see, this result will give conservation laws
as a particular case.
To formulate this result, some additional ideas and notation will be use-

ful. As the examples show, in general the tangent space to the group orbit
through q intersects the constraint distribution at q nontrivially. It will be
helpful to give this intersection a name.

5.5.1 Definition. The intersection of the tangent space to the group orbit
through the point q ∈ Q and the constraint distribution at this point is
denoted by Sq, as in Figure 5.5.1, and we let the union of these spaces over
q ∈ Q be denoted by S. Thus,

Sq = Dq ∩ Tq(Orb(q)).

5.5.2 Definition. Define, for each q ∈ Q, the vector subspace gq to be the
set of Lie algebra elements in g whose infinitesimal generators evaluated at
q lie in Sq:

gq = {ξ ∈ g | ξQ(q) ∈ Sq}.
The corresponding bundle over Q whose fiber at the point q is given by gq

is denoted by gD.
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QO
rb(q)

qD
q =

distribution through q 
T

q O
rb(q) =

 Vq

S
q

Q

Figure 5.5.1. The intersection of the tangent space to the group orbit with the con-

straint distribution; here, the tangent spaces are superimposed on the spaces themselves.

Consider a section of the vector bundle S over Q, i.e., a mapping that
takes q to an element of Sq = Dq ∩ Tq(Orb(q)). Assuming that the action
is free, a section of S can be uniquely represented as ξqQ, and it defines a

section ξq of the bundle gD. For example, one can construct the section
by orthogonally projecting (using the kinetic energy metric) ξQ(q) to the
subspace Sq. However, as we shall see in later examples, it is often easy to
choose a section by inspection.
Next, we choose the variation analogously to what we chose in the case

of the standard Noether theorem in the proof of Proposition 3.9.7, given
in Section 3.9, namely, q(t, s) = exp

(
φ(t, s)ξq(t)

) · q(t). The corresponding
infinitesimal variation is given by

δq(t) = φ′(t)ξqQ(q(t)).

Letting ∂ξq denote the derivative of ξq with respect to q, we have

d(δq)

dt
= φ̇′ξq(t)Q + φ′

[
(Tξ

q(t)
Q · q̇) + (∂ξq(t) · q̇)Q

]
.

In this equation the term Tξ
q(t)
Q is computed by taking the derivative of

the vector field ξ
q(t)
Q with q(t) held fixed. By construction, the variation δq
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satisfies the constraints, and the curve q(t) satisfies the Lagrange–d’Alem-
bert equations, so that the following variational equation holds:

0 =

∫ b

a

(
∂L

∂qi
δqi +

∂L

∂q̇i
δ̇q

i
)
dt. (5.5.1)

In addition, the invariance identity of (3.9.7) holds using ξq:

0 =

∫ b

a

(
∂L

∂qi

(
ξ
q(t)
Q

)i
φ′ +

∂L

∂q̇i

(
Tξ

q(t)
Q · q̇

)i
φ′
)
dt. (5.5.2)

Subtracting equations (5.5.1) and (5.5.2) and using the arbitrariness of φ′

and integration by parts shows that

d

dt

∂L

∂q̇i
(ξ

q(t)
Q )i =

∂L

∂q̇i

[
d

dt
(ξq(t))

]i
Q

.

The quantity whose rate of change is involved here is the nonholonomic
version of the momentum map in geometric mechanics.

5.5.3 Definition. The nonholonomic momentum map Jnhc is the
bundle map taking TQ to the bundle (gD)∗ whose fiber over the point q is
the dual of the vector space gq that is defined by

〈
Jnhc(vq), ξ

〉
=

∂L

∂q̇i
(ξQ)

i,

where ξ ∈ gq. Intrinsically, this reads

〈
Jnhc(vq), ξ

〉
= 〈FL(vq), ξQ〉 ,

where FL is the fiber derivative of L and where ξ ∈ gq. For notational
convenience, especially when the variable vq is suppressed, we will often
write the left-hand side of this equation as Jnhc(ξ).

Notice that the nonholonomic momentum map may be viewed as giving
just some of the components of the ordinary momentum map, namely along
those symmetry directions that are consistent with the constraints.
We summarize these results in the following theorem.

5.5.4 Theorem. Assume that condition (L2) of definition 5.4.1 holds
(which is implied by (L1)) and that ξq is a section of the bundle gD. Then
any solution of the Lagrange–d’Alembert equations for a nonholonomic
system must satisfy, in addition to the given kinematic constraints, the
momentum equation

d

dt

(
Jnhc(ξq(t))

)
=

∂L

∂q̇i

[
d

dt
(ξq(t))

]i
Q

. (5.5.3)
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When the momentum map is paired with a section in this way, we will
just refer to it as the momentum. The following is a direct corollary of this
result.

5.5.5 Corollary. If ξ is a horizontal symmetry (see (S3) above), then the
following conservation law holds:

d

dt
Jnhc(ξ) = 0. (5.5.4)

A somewhat restricted version of the momentum equation was given
by Kozlov and Kolesnikov [1978], and the corollary was given by Arnold,
Kozlov, and Neishtadt [1988], page 82 (see Bloch and Crouch [1992, 1995]
for the controlled case).

Remarks.

1. The right-hand side of the momentum equation (5.5.3) can be written
in more intrinsic notation as〈

FL(q̇(t)),

(
d

dt
ξq(t)
)

Q

〉
.

2. In the theorem and the corollary we do not need to assume that the
distribution itself is G-invariant; that is, we do not need to assume
condition (S1). In particular, as we shall see in the examples, one can
get conservation laws in some cases in which the distribution is not
invariant.

3. The validity of the form of the momentum equation is not affected
by any “internal forces,” that is, any control forces on shape space.
Indeed, such forces would be invariant under the action of the Lie
group G and so would be annihilated by the variations taken to prove
the above result.

4. The momentum equation still holds in the presence of affine con-
straints. We do not need to assume that the affine vector field defin-
ing the affine constraints is invariant under the group. However, this
vector field may appear in the final momentum equation (or con-
servation law) because the constraints may be used to rewrite the
resulting equation. We will see this explicitly in the example of a ball
on a rotating table.

5. Assuming that the distribution is invariant (hypothesis (S1)), the
nonholonomic momentum map as a bundle map is equivariant with
respect to the action of the group G on the tangent bundle TQ and
on the bundle (gD)∗. In fact, since the distribution is invariant, using
the general identity (Adg ξ)Q = Φ∗

g−1ξQ, valid for any group action,
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we see that the space gg is mapped to ggq by the map Adg, and
so in this sense, the adjoint action acts in a well-defined manner on
the bundle gD. By taking its dual, we see that the coadjoint action
is well defined on (gD)∗. In this setting, equivariance of the nonholo-
nomic momentum map follows as in the usual proof (see, for example,
Marsden and Ratiu [1999], Chapter 11).

6. One can find an invariant momentum if the section is chosen such
that

(Adg−1 ξg·q)Q = ξqQ.

This can always be done in the case of trivial bundles; one chooses any
ξq at the identity in the group variable and translates it around by
using the action to get a ξq at all points. This direction of reasoning
(initiated by remarks of Ostrowski, Lewis, Burdick, and Murray; see,
e.g., Lewis, Ostrowski, Murray, and Burdick [1994]) is discussed in
the paragraph “The Momentum Equation in Body Representation”
below. As we will see later, this point of view is useful in the case of
the snakeboard.

7. The form of the momentum equation in this section is valid for any
curve q(t) that satisfies the Lagrange–d’Alembert principle; we do not
require that the constraints be satisfied for this curve. The version
of the momentum equation given below will explicitly require that
the constraints be satisfied. Of course, in examples we always will
impose the constraints, so this is really a comment about the logical
structure of the various versions of the equation.

8. In some interesting cases one can get conservation laws without having
horizontal symmetries, as required in the preceding corollary. These
are cases in which, for reasons other than horizontality, the right-hand
side of the momentum equation vanishes. This may be an important
observation for the investigation of completely integrable nonholo-
nomic systems. A specific case in which this occurs is the vertical
rolling disk discussed below. There are also interesting implicit con-
servations laws that do not arise from symmetry; see Chapter 8.

9. Another derivation of the momentum equation and a deeper explo-
ration of the associated geometry can be found in Cendra, Marsden,
and Ratiu [2001b]. �

The Momentum Equation in a Moving Basis. There are several
ways of rewriting the momentum equation that are useful; the examples
will show that each of them can reveal interesting aspects of the system
under consideration. This subsection develops the first of these coordinate
formulas, which is in some sense the most naive, but also the most di-
rect. The next subsection will develop a form that is suitable for a local
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trivialization of the bundle Q → Q/G. Later on, when the nonholonomic
connection is introduced, we shall come back to both of these forms and
rewrite them in a more sophisticated but also more revealing way.
Introduce coordinates q1, . . . , qn in the neighborhood of a given point q0

in Q. At the point q0, introduce a basis

{e1, e2, . . . , em, em+1, . . . , ek}
of the Lie algebra such that the first m elements form a basis of gq0 . Thus,
k = dim g and m = dim gq, which, by assumption, is locally constant.
We can introduce a similar basis

{e1(q), e2(q), . . . , em(q), em+1(q), . . . , ek(q)}
at neighboring points q. For example, one can choose an orthonormal basis
(in either the locked inertia metric or relative to a Killing form) that varies
smoothly with q. We introduce a change of basis matrix by writing

eb(q) =

k∑
a=1

ψa
b (q)ea

for b = 1, . . . , k. Here, the change of basis matrix ψa
b (q) is an invertible

k × k matrix. Relative to the dual basis, we write the components of the
nonholonomic momentum map as Jb. By definition,

Jb =

n∑
i=1

∂L

∂q̇i
[eb(q)]

i
Q.

Using this notation, the momentum equation, with the choice of section
given by

ξq(t) = eb(q(t)), 1 ≤ b ≤ m,

reads as follows:

d

dt
Jb =

n∑
i=1

(
∂L

∂q̇i

[
d

dt
eb(q(t))

]i
Q

)
. (5.5.5)

Next, we define Christoffel-like symbols by

Γc
bl =

k∑
a=1

(ψ−1)ca
∂ψa

b

∂ql
, (5.5.6)

where the matrix (ψ−1)da denotes the inverse of the matrix ψa
b . Observe

that

d

dt
eb(q(t)) =

k∑
c=1

n∑
l=1

Γc
blq̇

lec(q(t)), (5.5.7)
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which implies that

[
d

dt
eb(q(t))

]i
Q

=

k∑
c=1

n∑
l=1

Γc
blq̇

l[ec(q(t))]
i
Q. (5.5.8)

Thus, we can write the momentum equation as

d

dt
Jb =

k∑
c=1

n∑
i,l=1

∂L

∂q̇i
Γc
blq̇

l[ec(q(t))]
i
Q. (5.5.9)

Introducing the shorthand notation eic := [ec(q(t))]
i
Q, the momentum equa-

tion reads

d

dt
Jb =

k∑
c=1

n∑
i,l=1

∂L

∂q̇i
Γc
blq̇

leic, (5.5.10)

Breaking the summation over c into two ranges and using the definition

Jc =
∂L

∂q̇i
eic, 1 ≤ c ≤ m,

gives the following form of the momentum equation.

5.5.6 Proposition (Momentum equation in a moving basis). The mom-
entum equation in the above coordinate notation reads

d

dt
Jb =

m∑
c=1

n∑
l=1

Γc
blJcq̇

l +
k∑

c=m+1

n∑
i,l=1

∂L

∂q̇i
Γc
blq̇

leic. (5.5.11)

Assuming that the Lagrangian is of the form kinetic minus potential en-
ergy, the second term on the right-hand side of this equation vanishes if the
orbit and the constraint distribution are orthogonal (in the kinetic energy
metric), that is, if we can choose the basis so that the vectors [ec(q(t))]Q
for c ≥ m+1 are orthogonal to the constraint distribution. In this case, the
momentum equation has the form of an equation of parallel transport along
the curve q(t). The connection involved is the natural one associated with
the bundle (gD)∗ over Q, using a chosen decomposition of g, such as the
orthogonal one. In the general case, the momentum equation is an equality
between the covariant derivative of the nonholonomic momentum and the
last term on the right-hand side of the preceding equation. Below we shall
write the momentum equation in a body frame, which will be important
for understanding how to decouple the momentum equation from the group
variables.

The Momentum Equation in Body Representation. Next, we de-
velop an alternative coordinate formula for the momentum equation that
is adapted to a choice of local trivialization. Thus, let a local trivialization
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be chosen on the principal bundle π : Q → Q/G, with the local representa-
tion having coordinates denoted by (r, g). Let r have components denoted
by rα as before, being coordinates on the base Q/G, and let g be group
variables for the fiber G. In such a representation, the action of G is the
left action of G on the second factor. We calculate the nonholonomic mo-
mentum map using well-known ideas (see, for example, Marsden and Ratiu
[1999], Chapter 12), as follows. Let vq = (r, g, ṙ, ġ) be a tangent vector at
the point q = (r, g), η ∈ gq, and let ξ = g−1ġ, i.e., ξ = TgLg−1 ġ. Since L is
G-invariant, we can define a new function l by writing

L(r, g, ṙ, ġ) = l(r, ṙ, ξ).

Use of the chain rule shows that

∂L

∂ġ
= T ∗

g Lg−1

∂l

∂ξ
,

and so 〈
Jnhc(vq), η

〉
= 〈FL(r, g, ṙ, ġ), ηQ(r, g)〉

=

〈
∂L

∂ġ
, (0, TRg · η)

〉
=

〈
∂l

∂ξ
,Adg−1 η

〉
.

The preceding equation shows that we can write the momentum map in
a local trivialization by making use of the Ad mapping in much the same
way as we did with the connection and the local formulas in the principal
kinematic case. We define Jnhc

loc : TQ/G → (gD)∗ in a local trivialization by

〈
Jnhc
loc (r, ṙ, ξ), η

〉
=

〈
∂l

∂ξ
, η

〉
.

Thus, as with the previous local forms, Jnhc and its version in a local
trivialization are related by the Ad map; precisely,

Jnhc(r, g, ṙ, ġ) = Ad∗g−1 Jnhc
loc (r, ṙ, ξ).

Secondly, choose a q-dependent basis ea(q) for the Lie algebra such that
the first m elements span the subspace gq. In a local trivialization, this is
done in a very simple way. First, one chooses, for each r, such a basis at
the identity element g = Id, say

e1(r), e2(r), . . . , em(r), em+1(r), . . . , ek(r).

For example, this could be a basis such that the corresponding generators
are orthonormal in the kinetic energy metric. (Keep in mind that the sub-
spaces Dq and Tq Orb need not be orthogonal, but here we are choosing a
basis corresponding only to the subspace Tq Orb.) Define the body fixed
basis by

ea(r, g) = Adg ea(r);
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then the first m elements will indeed span the subspace gq, provided the
distribution is invariant (condition (S1)). Thus, in this basis we have

〈
Jnhc(r, g, ṙ, ġ), eb(r, g)

〉
=

〈
∂l

∂ξ
, eb(r)

〉
:= pb, (5.5.12)

which defines pb, a function of r, ṙ, and ξ. We are deliberately introducing
the new notation p for the momentum in body representation to signal its
special role. Note that in this body representation, the functions pb are
invariant rather than equivariant, as is usually the case with the momen-
tum map. The time derivative of pb may be evaluated using the momentum
equation (5.5.3). This gives

d

dt
pb =

∂L

∂q̇i

[
d

dt
eb(r, g)

]i
Q

=

〈
(TgLg−1)∗

∂l

∂ξ
,

[
d

dt
(Adg ·eb(r))

]
Q

〉
=

〈
∂l

∂ξ
, [ξ, eb] +

∂eb
∂rα

ṙα
〉
.

We summarize the conclusion drawn from this calculation as follows.

5.5.7 Proposition (Momentum equation in body representation). The
momentum equation in body representation on the principal bundle Q →
Q/G is given by

d

dt
pb =

〈
∂l

∂ξ
, [ξ, eb] +

∂eb
∂rα

ṙα
〉
. (5.5.13)

Moreover, the momentum equation in this representation is independent of,
that is, decouples from, the group variables g.

In this representation the variable ξ is related to the group variable g by
ξ = g−1ġ. In particular, in this representation, reconstruction of the group
variable g can be done by means of the equation

ġ = gξ. (5.5.14)

On the other hand, this variable ξ = g−1ġ, as in the case of the reduced
Euler–Poincaré equations, is not the vertical part of the velocity vector q̇
relative to the nonholonomic connection to be constructed below. The ver-
tical part is related to the variable ξ by a velocity shift, and this velocity
shift will make the reconstruction equation look affine, as in the case of the
snakeboard (see Lewis, Ostrowski, Murray, and Burdick [1994]). In that ex-
ample, the decoupling of the momentum equation from the group variables
played a useful role. We also recall (as in the example of the rigid body
with rotors) that it is often the shifted velocity and not ξ that diagonalizes
the kinetic energy, so this shift is fundamental for a number of reasons.
As we shall see later, the same ideas in this section, combined with the
calculations of Marsden and Scheurle [1993b], will show how to calculate
the fully reduced equations.
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In the above local trivialization form of the momentum equation, we may
write the terms (∂eb/∂r

α)ṙα in terms of a connection, as we did in deriving
the momentum equation in a moving basis.
Other noteworthy features of this form of the momentum equation are

the following direct consequences of the preceding proposition.

5.5.8 Corollary.

1. If eb, b = 1, . . . ,m, are independent of r, then the momentum equation
in body representation is equivalent to the Euler–Poincaré equations
projected to the subspace gq.

2. If g is abelian, then the momentum equations reduce to

d

dt
pb =

〈
∂l

∂ξ
,
∂eb
∂rα

ṙα
〉
. (5.5.15)

3. If g is abelian, or more generally, if the bracket of an element of gq

with one in g is annihilated by ∂l/∂ξ, and if eb, b = 1, . . . ,m, are
independent of r, then the quantities pb, b = 1, . . . ,m, are constants
of motion.

Regarding the first item, see Marsden and Ratiu [1999] for a discussion
of the Euler–Poincaré equations; see Chapter 3. In this case, the spatial
form of the momentum is conserved, just as in the case of systems with
holonomic constraints. The last case occurs for the vertical rolling penny.

5.6 Examples of the Nonholonomic
Momentum Map

5.6.1 Example (The Vertical Rolling Disk). We begin by develop-
ing the equations of motion using the Ehresmann connection given by the
constraints and deriving the reduced Lagrangian, thus illustrating the ma-
terial of Section 5.2. The equations are then written explicitly in terms
of the reduced Lagrangian and the curvature of the connection. We then
discuss the momentum equation of Section 5.6. Using different subgroups
of the full symmetry group we show how one gets conservation laws from
both horizontal and nonhorizontal symmetries. The different forms of the
conservation laws are also illustrated.
Thus consider as in Chapter 1 a vertical disk free to roll on the xy-plane

and to rotate about its vertical axis. Let x and y denote the position of
contact of the disk in the xy-plane. The remaining variables are θ and ϕ,
denoting the orientation of a chosen material point P with respect to the
vertical and the “heading angle” of the disk.
Thus, the unconstrained configuration space for the vertical rolling disk

is Q = S1×S1×R
2. The velocities associated with the coordinates θ, ϕ, x, y



270 5. Nonholonomic Mechanics

are denoted by θ̇, ϕ̇, ẋ, and ẏ, which provide the remaining coordinates for
the velocity phase space TQ. The Lagrangian for the problem is taken to
be the kinetic energy

L
(
θ, φ, x, y, θ̇, φ̇, ẋ, ẏ

)
=

1

2
Iθ̇2 +

1

2
Jϕ̇2 +

1

2
m
(
ẋ2 + ẏ2

)
, (5.6.1)

wherem is the mass of the disk, and I and J are its moments of inertia. Note
that so far, we use the full configuration space, ignoring the constraints,
and that the Lagrangian is the standard “free” Lagrangian.
The rolling constraints (assuming that the disk has radius R) may be

written as
ẋ = R(cosϕ)θ̇,

ẏ = R(sinϕ)θ̇.
(5.6.2)

At first one can close one’s eyes to the symmetry of the problem and just
think of the constraints as the horizontal space of an Ehresmann connec-
tion. To do this, one must choose a bundle Q → R. Given the nature of the
constraints and the fact that one imagines that eventually controls would
be added to either the θ or the ϕ variable, one is motivated to choose the
base R to be S1×S1 parametrized by θ and ϕ with the projection to R be-
ing the naive one (r1, r2, s1, s2) = (θ, ϕ, x, y) �→ (r1, r2) = (θ, ϕ). From the
constraints one can read off the components of the Ehresmann connection:

A1
1 = −R(cosϕ),

A2
1 = −R(sinϕ),

(5.6.3)

and the remaining Aa
α are zero. If we choose to regard the bundle Q → R as

a principal bundle with group G = R
2, we get an abelian purely kinematic

system (see Bloch, Reyhanoglu, and McClamroch [1992] and Bloch and
Crouch [1992]). Indeed, note that using the obvious action of G, we get

TqOrb(q) = span

{
∂

∂x
,
∂

∂y

}
. (5.6.4)

Notice that Dq ∩ Tq(Orb(q)) = {0} and that the components of A are
independent of x and y.

The constrained Lagrangian Lc is given by substituting (5.6.2) into (5.6.1):

Lc

(
θ, ϕ, x, y, θ̇, ϕ̇

)
=

1

2
(mR2 + I)θ̇2 +

1

2
Jϕ̇2. (5.6.5)

Note that if the mass density of the disk were constant, then we would
have I = 1

2mR2, and we could simplify the coefficient of θ̇2 to 3
4mR2θ̇2,

but we need not make this assumption. The curvature of the connection A
is computed using formula (5.2.8) to be

B1
21 = −B1

12 = −R sinϕ, B2
12 = −B2

21 = −R cosϕ, (5.6.6)
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with the remaining Ba
αβ zero. The equations of motion

d

dt

(
∂Lc

∂ṙα

)
− ∂Lc

∂rα
= −
(
∂L

∂ṡa

)
Ba

αβ ṙ
β (5.6.7)

become

(mR2 + I)θ̈ = (mR(cosϕ)θ̇)(−R(sinϕ)ϕ̇)

+ (mR(sinϕ)θ̇)(R(cosϕ)ϕ̇) = 0, (5.6.8)

Jϕ̈ = (mR(cosϕ)θ̇)(R(sinϕ)θ̇)

+ (mR(sinϕ)θ̇)(−R cosϕ)θ̇ = 0. (5.6.9)

Thus, θ̇ = Ω and ϕ̇ = ω are constants, so θ = Ωt + θ0, ϕ = ωt + ϕ0, and
equation (5.6.2) gives

ẋ = ΩR cos(ωt+ ϕ0),

ẏ = ΩR sin(ωt+ ϕ0).

Hence,

x =
Ω

ω
R sin(ωt+ ϕ0) + x0 and y = −Ω

ω
R cos(ωt+ ϕ0) + y0.

We now turn to the momentum equation. It is clear that in the example
as presented, one has the whole group S1×SE(2) as a symmetry group. In
such a case, the orbit of the group spans the entire constraint distribution.
While this is certainly allowed by the theory, it is an extreme case that one
does not have in general. In the presence of controls some of the symmetry
will be broken, so it is appropriate to consider a smaller symmetry group,
namely a subgroup of S1 × SE(2), to be the group G in the general theory.
We will, for illustrative purposes, make two choices, namely the subgroup
SE(2) and the direct product S1 × R

2. To keep things clear, we will write
these two choices as

G1 = SE(2) and G2 = S1 × R
2.

It is interesting that, as we shall see, the actions of G1 and G2 give rise
to the two conservation laws θ̇ = Ω and ϕ̇ = ω, respectively, one being
induced by a horizontal symmetry, the other not.
The action of G1 = SE(2) on R

4 is given by

(θ, ϕ, x, y) �→ (θ, ϕ+α, x cosα− y sinα+ a, x sinα+ y cosα+ b), (5.6.10)

where (α, a, b) ∈ SE(2). The S1 × R
2 action is given by

(θ, ϕ, x, y) �→ (θ + β, ϕ, x+ λ, y + μ). (5.6.11)
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The tangent space to the orbits of the SE(2) action is given by

TqOrb(q) = span

{
∂

∂ϕ
,
∂

∂x
,
∂

∂y

}
, (5.6.12)

while for the G2 = S1 × R
2 action, they are

Tq Orb(q) = span

{
∂

∂θ
,
∂

∂x
,
∂

∂y

}
. (5.6.13)

One checks that the Lagrangian and the constraints are invariant under
each of these actions.
We now consider the momentum equations corresponding to these two

actions. The preceding calculations show that the constraint distribution
Dq is given by

Dq = span

{
∂

∂ϕ
,
∂

∂θ
+R cosϕ

∂

∂x
+R sinϕ

∂

∂y

}
. (5.6.14)

Recall that the space Sq is given by the intersection of the tangent space to
the orbit with the constraint distribution itself. Hence, for the SE(2) action
we have

Sq = Dq ∩ Tq OrbG1
(q) = span

{
∂

∂ϕ

}
, (5.6.15)

and for the S1 × R
2 action we have

Sq = Dq ∩ Tq OrbG2
(q) = span

{
∂

∂θ
+R cosϕ

∂

∂x
+R sinϕ

∂

∂y

}
. (5.6.16)

To obtain the corresponding momentum equations, we consider the bun-
dles whose fibers are the span of the tangent vectors in the preceding two
equations in the respective cases, and choose sections of these bundles. The
bundles are, of course, trivial. In the case of the G1 = SE(2) action, note
that the generators corresponding to the Lie algebra elements represented
by the standard basis in R

3 (with rotations being the first component and
translations the last two components) are given by

(1, 0, 0)Q =
∂

∂ϕ
− y

∂

∂x
+ x

∂

∂y
, (0, 1, 0)Q =

∂

∂x
, (0, 0, 1)Q =

∂

∂y
.

To obtain the section of Sq given by vector field

ξqQ =
∂

∂ϕ
, (5.6.17)

we thus choose the Lie algebra element

ξq = (1, y,−x), (5.6.18)
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while for the G2 = S1×R
2 action we take the section to be the vector field

ξqQ =
∂

∂θ
+R cosϕ

∂

∂x
+R sinϕ

∂

∂y
(5.6.19)

with corresponding Lie algebra element

ξq = (1, R cosϕ,R sinϕ). (5.6.20)

For the SE(2) action, the nonholonomic momentum map is

Jnhc(ξq) =
∂L

∂q̇i
(ξqQ)

i
= Jϕ̇, (5.6.21)

and hence the momentum equation becomes

d

dt
Jnhc(ξq) =

d

dt
(Jϕ̇) =

∂L

∂q̇i

[
d

dt
(ξq)

]i
Q

= mẋ(ẏ) +mẏ(−ẋ) + 0 = 0.

This is, of course, an ordinary conservation law (conservation of vertical
component of angular momentum) and is one of the equations of motion.
Note that corresponding to this action,

Dq ∩ Tq(OrbG1
(q)) = Tq(OrbH(q)),

where H = S1, and we obtain a conservation law corresponding to the
horizontal action of S1. This law can, of course, also be obtained by directly
considering the S1 action.
For the G1 action, a straightforward calculation shows that the third

part of Corollary 5.5.8 applies, and so this is one way to find the constants
of motion. Rather than giving the details of this calculation, we will give
them for the G2 = S1 × R

2 action.
Using the G2 action, the nonholonomic momentum map is

Jnhc(ξq) =
∂L

∂q̇i
(ξqQ)

i
= Iθ̇ +mẋR cosϕ+mẏR sinϕ, (5.6.22)

and so the momentum equation becomes

d

dt
(Iθ̇ +mẋR cosϕ+mẏR sinϕ) = mẋ

d

dt
(R cosϕ) +mẏ

d

dt
(R sinϕ),

(5.6.23)

i.e.,

Iθ̈ +R cosϕmẍ+R sinϕmÿ = 0. (5.6.24)

Using the constraints to eliminate ẍ and ÿ from this equation we get

(I +mR2)θ̈ = 0, (5.6.25)
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which we derived in (5.6.8). Alternatively, observe that after imposing the
constraints, the right-hand side of equation (5.6.23) is zero and the left-
hand side reduces to the left-hand side of (5.6.25). Thus the two momentum
equations yield the reduced equations of motion.
We now illustrate, for the case of the G2 = S1 × R

2 action, the mo-
mentum equation in a moving basis (5.5.11) and the momentum equation
in a body frame (5.5.13). The latter is equivalent to the reduced form of
the momentum equation given in Theorem 5.7.3. We first treat the ver-
sion (5.5.11). Choose a fixed basis for the Lie algebra of G2 = S1 × R

2,
namely (1, 0, 0), (0, 1, 0), and (0, 0, 1). From ξq = ξaea we have

ξ1 = 1, ξ2 = R cosϕ, ξ3 = R sinϕ.

Choose the moving basis

e1(q) = (1, R cosϕ,R sinϕ), e2(q) = (0, 1, 0), e3(q) = (0, 0, 1),

and write eb(q) = ψa
b (q)ea. We find that

ψ1
1 = 1, ψ2

1 = R cosϕ, ψ3
1 = R sinϕ, ψ2

2 = 1, ψ3
3 = 1,

and ψa
b = 0 otherwise.

Writing ξiQ = Ki
aξ

a, we find that the infinitesimal generator coefficients

are given by K1
1 = K2

2 = K3
3 = 1, and Ki

a = 0 otherwise. From the formula
Jb = (∂L/∂q̇i)Ki

aψ
a
b , we obtain

J1 = Iθ̇ +mẋR cosϕ+mẏR sinϕ,

noting that Sq is one-dimensional, so the range of the index b in the non-
holonomic momentum map is simply b = 1. We find that

Γ2
12 = (ψ−1)2a

∂ψa
1

∂ϕ
= −R sinϕ,

Γ3
12 = (ψ−1)3a

∂ψa
1

∂ϕ
= R cosϕ,

Γd
1k = 0 otherwise.

With r = 1, n = 4, and k = 3, these calculations show that the momentum
equation (5.5.11) becomes

d

dt
J1 =

4∑
l=1

Γ1
1lJ1q̇

l +

4∑
i,l=1

∂L

∂q̇i
Γ2
1lq̇

l[e2(q(t))]
i
Q +

4∑
i,l=1

∂L

∂q̇i
Γ3
1lq̇

l[e3(q(t))]
i
Q.

(5.6.26)

The first term is zero, and the momentum equation simplifies to

d

dt
J1 = mẋ

d

dt
(R cosϕ) +mẏ

d

dt
(R sinϕ), (5.6.27)
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which is indeed the correct momentum equation. We now discuss the ver-
sion (5.5.13) of the momentum equation, continuing with the G2 action.
Here the shape variable r is ϕ, and ξ = (θ̇, ẋ, ẏ), and so the reduced La-
grangian is

l
(
ϕ, ϕ̇, θ̇, ẋ, ẏ

)
=

1

2
Jϕ̇2 +

1

2
Iθ̇2 +

1

2
m
(
ẋ2 + ẏ2

)
.

We choose e1(ϕ) = (1, R cosϕ,R sinϕ), e2(ϕ) = (0, 1, 0), and e3(ϕ) =
(0, 0, 1). Then (5.5.12) gives

p1 =

〈
∂l

∂ξ
, e1

〉
= Iθ̇ +mẋR cosϕ+mẏR sinϕ,

which, when the constraints are substituted, gives

p1 = (I +mR2)θ̇.

The momentum equation (5.5.13) now becomes, since the group is abelian,

d

dt
p1 =

〈
∂l

∂ξ
,
∂e1
∂ϕ

ϕ̇

〉

=
〈
(Iθ̇,mẋ,mẏ), (0,−Rφ̇ sinϕ,Rφ̇ cosϕ)

〉

= −mφ̇ẋR sinϕ+mφ̇ẏR cosϕ,

which vanishes in view of the constraints. Thus, we recover dp1/dt = 0, as
before. Observe that this formulation directly gives us a conservation law
even though the symmetry is not horizontal. �

5.6.2 Example (A Nonholonomically Constrained Particle). An
instructive academic example due to Rosenberg [1977] that illustrates the
momentum equation is the following example of a nonholonomically con-
strained free particle. This example was also used to illustrate the theory in
Bates and Sniatycki [1993]. We show here that the momentum equation in
an orthogonal body frame is a pure parallel transport equation with respect
to the nonmetric connection for the particle, a result that was observed by
Bates and Sniatycki. We thus provide a general method for deriving such
a connection.
Consider a particle with the Lagrangian

L =
1

2

(
ẋ2 + ẏ2 + ż2

)
(5.6.28)

and the nonholonomic constraint

ż = yẋ. (5.6.29)
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The constraints and Lagrangian are invariant under the R
2 action on R

3

given by
(x, y, z) �→ (x+ λ, y, z + μ). (5.6.30)

The tangent space to the orbits of this action is given by

TqOrb(q) = span

{
∂

∂x
,
∂

∂z

}
, (5.6.31)

and the kinematic constraint distribution is given by

Dq = span

{
∂

∂x
+ y

∂

∂z
,
∂

∂y

}
. (5.6.32)

and thus

Dq ∩ Tq(Orb(q)) = span

{
∂

∂x
+ y

∂

∂z

}
. (5.6.33)

Consider the bundle S with fibers the span of these tangent vectors. To
obtain the momentum equations we begin by taking an arbitrary section
of this bundle. The bundle is of course trivial, and for simplicity we take
the section to be the vector field

ξqQ =
∂

∂x
+ y

∂

∂z
. (5.6.34)

The corresponding Lie algebra element ξq ∈ R
2 is

ξq = (1, y) . (5.6.35)

The nonholonomic momentum map in this case is

Jnhc(ξq) =
∂L

∂q̇i
(ξqQ)

i
= 〈(ẋ, ẏ, ż), (1, 0, y)〉 = ẋ+ yż. (5.6.36)

Hence the momentum equation becomes

dJnhc(ξq)

dt
=

d

dt
(ẋ+ yż) =

∂L

∂q̇i

[
d

dt
(ξq)

]i
Q

= 〈(ẋ, ẏ, ż), (0, 0, ẏ)〉 = żẏ,

i.e.,
ẍ+ yz̈ = 0. (5.6.37)

Using the constraint ż = yẋ, the momentum equation may be rewritten as

ẍ+
y

1 + y2
ẋẏ = 0. (5.6.38)

Together with the Lagrangian equation of motion ÿ = 0, this completely
specifies the motion, and in fact, these two equations are a (nonmetric)
geodesic flow, as pointed out in Bates and Sniatycki [1993]. In this example
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we note that the momentum equation is the total derivative of a first-order
conservation law:

ẋ− c

(1 + y2)
1
2

= 0 (5.6.39)

for c an arbitrary constant. Note, however, that this equation, which is used
in the Bates–Sniatycki reduction, is a conservation law, but is not directly
a component of a conserved momentum map. In other words, the fact that
the second-order momentum equation here is the derivative of a first-order
conservation law is not due to considerations of symmetry.
Note also that if one chooses the right base and fiber, this system is again

an abelian Chaplygin system. Here we take R
2 with coordinates {x, y} to

be the base and R with coordinate z to be the fiber. Then

Tq(Orb(q)) = span

{
∂

∂z

}
(5.6.40)

and Dq ∩ Tq(Orb(q)) = 0.
We again illustrate both coordinate versions of the momentum equation,

namely (5.5.11) and (5.5.13), first treating the version (5.5.11). We choose
a fixed basis for g = R

2, namely e1 = (1, 0) and e2 = (0, 1), then ξq =
ξ1e1 + ξ2e2, where ξ1 = 1, ξ2 = y. As before, choose a moving basis

e1(q) = (1, y), e2(q) = (0, 1).

Then if

eb(q) =
2∑

a=1

ψa
b (q)ea,

clearly ψ1
1 = 1, ψ2

1 = y, ψ1
2 = 0, ψ2

2 = 1. Writing ξiQ = Ki
aξ

a, we obtain

K1
1 = 1, K3

2 = 1, and Ki
a = 0 otherwise. Hence,

J1 =
∂L

∂q̇i
Ki

aψ
a
1 = ẋ+ yż,

where we note that Sq is one-dimensional, so the range of the index b in
the nonholonomic momentum map is simply b = 1.
Next we compute the connection coefficients. We obtain

(ψ−1)11 = 1, (ψ−1)21 = −y, (ψ−1)12 = 0, (ψ−1)22 = 1,

and hence Γ2
12 = 1, and Γ1

bk = 0 otherwise. These calculations with r = 1,
n = 3, and k = 2 show that the momentum equation (5.5.11) becomes

d

dt
J1 =

3∑
l=1

Γ1
1lJ1q̇

l +

3∑
i,l=1

∂L

∂q̇i
Γ2
1lq̇

l[e2(q(t))]
i
Q. (5.6.41)



278 5. Nonholonomic Mechanics

The first term is zero, and so the momentum equation simplifies to

d

dt
J1 = żẏ, (5.6.42)

the correct momentum equation.
Now we discuss the version (5.5.13) of the momentum equation. First,

we must orthogonalize the preceding moving basis. Here the shape variable
r is y, and ξ = (ẋ, ż), and so the reduced Lagrangian is

l(r, ṙ, ξ) =
1

2

(
ẋ2 + ẏ2 + ż2

)
.

We choose e1(r) = (1, y) and e2(r) = (−y, 1). Then (5.5.12) gives p1 =
ẋ(1 + y2). Again the group is abelian, and so the momentum equation
(5.5.13) becomes

d

dt
p1 =

〈
∂l

∂ξ
,
∂e1
∂y

ẏ

〉
= 〈(ẋ, ż), (0, 1)〉 = żẏ,

as before. Writing
∂e1
∂y

= (0, 1) = γ1
11e1 + γ2

11e2,

we see that

γ1
11 =

y

1 + y2
, γ2

11 =
1

1 + y2
,

and so the momentum equation becomes

d

dt
p1 =

yẏ

1 + y2
p1,

which is in parallel transport form. Note that the connection we have just
constructed using the general principles of the momentum equation is the
same nonmetric connection as in Bates and Sniatycki [1993]. �
Remark. There is a rather beautiful mechanical interpretation of this
example due to Andy Ruina (personal communication). Let the variables
above be denoted by (x, y, z) �→ (θ, y, φ) for convenience of exposition,
where we let θ denote the angle of a rotating turntable and φ denote the
angle of a rotating hoop with free rotating balls on it that touches the
turntable at right angles at distance y from the center. This is like a non-
holonomic gear mechanism!

Exercise

� 5.6-1. Compute the (asymptotic) dynamics of the constrained particle
system.
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5.7 More General Nonholonomic Systems
with Symmetries

We consider here the nonholonomic equations of motion and the momentum
equation in the body representation.

The Nonholonomic Connection. Assume that the Lagrangian has the
form kinetic energy minus potential energy, and that the constraints and
the orbit directions span the entire tangent space to the configuration space,
sometimes called the dimension assumption:

Dq + Tq(Orb(q)) = TqQ. (5.7.1)

In this case, the momentum equation can be used to augment the con-
straints and provide a connection on the shape space bundle Q �→ Q/G.

5.7.1 Definition. Under the dimension assumption in equation (5.7.1),
and the assumption that the Lagrangian is of the form kinetic minus poten-
tial energy, the nonholonomic connection A is the connection on the
principal bundle Q �→ Q/G whose horizontal space at the point q ∈ Q is
given by the orthogonal complement to the space Sq within the space Dq.

Let I(q) : gD → (
gD
)∗

be the locked inertia tensor relative to gD,
defined by

〈I(q)ξ, η〉 = 〈〈ξQ, ηQ〉〉, ξ, η ∈ gq,

where 〈〈· , ·〉〉 is the kinetic energy metric. Define a map

Asym
q : TqQ → Sq = Dq ∩ Tq(Orb(q))

given by
Asym

q (vq) = (I−1Jnhc(vq))Q.

This map is equivariant and is a projection onto Sq. Choose Uq ⊂ Tq(Orb(q))
such that Tq(Orb(q)) = Sq ⊕Uq. Let A

kin
q : TqQ → Uq be a Uq-valued form

that projects Uq onto itself and maps Dq to zero; for example, it can be
given by orthogonal projection relative to the kinetic energy metric (this
will be our default choice).

5.7.2 Proposition. The nonholonomic connection regarded as an Ehres-
mann connection is given by

A = Akin +Asym. (5.7.2)

When the connection is regarded as a principal connection (i.e., takes values
in the Lie algebra rather than the vertical space) we will use the symbol A.

Given a velocity vector q̇ that satisfies the constraints, we orthogonally
decompose it into a piece in Sq and an orthogonal piece denoted by ṙh.



280 5. Nonholonomic Mechanics

We regard ṙh as the horizontal lift of a velocity vector ṙ on the shape
space; recall that in a local trivialization, the horizontal lift to the point
(r, g) is given by

ṙh = (ṙ,−Alocṙ) = (ṙα,−Aa
αṙ

α),

where Aa
α are the components of the nonholonomic connection that is a

principal connection in a local trivialization.
We will denote the decomposition of q̇ by

q̇ = ΩQ(q) + ṙh,

so that for each point q, Ω is an element of the Lie algebra and represents
the spatial angular velocity of the locked system. In a local trivialization,
we can write, at a point (r, g),

Ω = Adg Ωloc,

so that Ωloc represents the body angular velocity. Thus,

Ωloc = Alocṙ + ξ,

and at each point q, the constraints are that Ω belongs to gq, i.e.,

Ωloc ∈ span{e1(r), e2(r), . . . , em(r)}.
The vector ṙh need not be orthogonal to the whole orbit, just to the

piece Sq. Even if q̇ does not satisfy the constraints, we can decompose it
into three parts and write

q̇ = ΩQ(q) + ṙh = Ωnh
Q (q) + Ω⊥

Q(q) + ṙh,

where Ωnh
Q and Ω⊥

Q are orthogonal and where Ωnh
Q (q) ∈ Sq. The relation

Ωloc = Alocṙ+ ξ is valid even if the constraints do not hold; also note that
this decomposition of Ω corresponds to the decomposition of the nonholo-
nomic connection, A = Akin +Asym, that was given in equation (5.7.2).

To avoid confusion, we will make the following index and summation
conventions:

1. The first batch of indices range from 1 to m corresponding to the
symmetry directions along the constraint space. These indices will
be denoted by a, b, c, d, . . . , and a summation from 1 to m will be
understood.

2. The second batch of indices range from m+ 1 to k corresponding to
the symmetry directions not aligned with the constraints. Indices for
this range or for the whole range 1 to k will be denoted by a′, b′, c′, . . . ,
and the summations will be given explicitly.

3. The indices α, β, . . . on the shape variables r range from 1 to σ. Thus,
σ is the dimension of the shape space Q/G, and so σ = n − k. The
summation convention for these indices will be understood.
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The Reduced Nonholonomic Equations. The reduced equations of
motion are given as follows.

5.7.3 Theorem. The following reduced nonholonomic Lagrange–d’
Alembert equations hold for each 1 ≤ α ≤ σ and 1 ≤ b ≤ m:

d

dt

∂lc
∂ṙα

− ∂lc
∂rα

= −∂Icd

∂rα
pcpd −Dc

bαI
bdpcpd

− Bc
αβpcṙ

β −DβαbI
bcpcṙ

β −Kαβγ ṙ
β ṙγ , (5.7.3)

d

dt
pb = Cc

abI
adpcpd +Dc

bαpcṙ
α +Dαβbṙ

αṙβ . (5.7.4)

Here lc(r
α, ṙα, pa) is the constrained Lagrangian; rα, 1 ≤ α ≤ σ, are coordi-

nates in the shape space; pa, 1 ≤ a ≤ m, are components of the momentum
map in the body representation, pa = 〈∂lc/∂Ωloc, ea(r)〉; Iad are the com-
ponents of the inverse locked inertia tensor; Ba

αβ are the local coordinates
of the curvature B of the nonholonomic connection A corrected by certain
terms (see below); and the coefficients Dc

bα, Dαβb, Kαβγ are given by the
formulae

Dc
bα =

k∑
a′=1

−Cc
a′bAa′

α + γc
bα +

k∑
a′=m+1

λa′αC
a′
abI

ac,

Dαβb =
k∑

a′=m+1

λa′α

(
γa′
bβ −

k∑
b′=1

Ca′
b′bAb′

β

)
,

Kαβγ =

k∑
a′=m+1

λa′γBa′
αβ ,

where

Ba′
αβ =

∂Aa′
α

∂rβ
− ∂Aa′

β

∂rα
− Ca′

b′c′Ab′
αAc′

β + γa′
b′βAb′

α − γa′
b′αAb′

β ,

for a′ = 1, . . . , k

λa′α = la′α −
k∑

b′=1

la′b′Ab′
α :=

∂l

∂ξa′∂ṙα
−

k∑
b′=1

∂l

∂ξa′∂ξb′
Ab′

α

for a′ = m+ 1, . . . , k. Here Cb′
a′c′ are the structure constants of the Lie al-

gebra defined by [ea′ , ec′ ] = Cb′
a′c′eb′ , a

′, b′, c′ = 1, . . . , k, and the coefficients

γc′
bα are defined by

∂eb
∂rα

=
k∑

c′=1

γc′
bαec′ .
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This result is proved in Bloch, Krishnaprasad, Marsden, and Murray
[1996]; see also the Internet Supplement. A statement of the reduced equa-
tions in intrinsic geometric language is given in Cendra, Marsden, and
Ratiu [2001b]. They also, for good reason, call these reduced equations the
Lagrange–d’Alembert–Poincaré equations.

The derivation of these equations for systems that satisfy the dimension
assumption is presented below. It follows Hamel’s formalism and uses the
result of Theorem 3.13.2. For now, it is not assumed that the Lagrangian is
of a particular structure (e.g., it is not assumed that the Lagrangian equals
kinetic minus potential energy).
Recall that S is the subbundle of D whose fiber at q is Sq = Dq ∩

Tq Orb(q) (see Definition 5.5.1 for details). The subbundle S is invariant
with respect to the action of G on TQ induced by the left action of G on
Q. Choose subspaces Uq ⊂ Orb(q) such that Orb(q) = Sq ⊕Uq and that
the subbundle U is G-invariant. Since the distributions S and U are left-
invariant, there exist subspaces bSq and bUq of the Lie algebra g such that

in a local trivialization Sq = Lg∗bSq and Uq = Lg∗bUq .
Let bS and bU be the bundles over Q/G whose fibers are the subspaces

bSq and bUq of the Lie algebra g. Given ξ ∈ g, we write its components along

these subspaces as ξS and ξU . Let As be a connection defined in a local
trivialization by the formula

As = Adg(ξ +Aṙ),

where ξ ∈ g and where A is a g-valued form on Q/G. This form is such
that the constraints in a local trivialization read

ξU +AU ṙ = 0. (5.7.5)

That is, the U -component of the form A is defined by the constraints. The
S-component of A is arbitrary at the moment; later on we will see how the
structure of the Lagrangian affects the choice of this component.
Let r = (r1, . . . , rσ) be local coordinates in the shape space Q/G, and

let e1(r), . . . , ek(r) be a basis of g = TeG for each r ∈ Q/G such that
e1(r), . . . , em(r) span the subspace bS and em+1(r), . . . , ek(r) span the sub-
space bU . As before, we define the vector fields u1(q), . . . , un(q) by formu-
lae (3.13.14). Thus, the fields uα, α = 1, . . . , σ, span the horizontal space,
the fields uσ+a, a = 1, . . . ,m, span the fibers of S, and the remaining fields
span the fibers of U . The components of the velocity vector q̇ relative to
these vector fields are ṙ and Ω = ξ + Aṙ, where Ω is the body angular
velocity. Note that we use the notation Ω instead of Ωloc in the rest of the
section. The constraints in this representation are ΩU = 0.
Using the Lagrange–d’Alembert principle and taking into account the

G-invariance of the constraint distribution D, one obtains the reduced non-
holonomic equations of motion from (3.13.11) and (3.13.12) by projecting
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equation (3.13.12) onto the fibers of the bundle b∗S , and imposing con-
straints, i.e., setting Ω = ΩS :

d

dt

∂l

∂ṙ
− ∂l

∂r
= −

〈
∂l

∂Ω
, iṙB + 〈iṙγ,A〉 − 〈γ, iṙA〉+ 〈E ,ΩS〉

〉
, (5.7.6)

[
d

dt

∂l

∂Ω

]
S
=

[
ad∗ΩS

∂l

∂Ω
+

〈
∂l

∂Ω
, iṙE
〉]

S
, (5.7.7)

where the forms γ and E are defined by the formulae (3.13.9)and (3.13.10).
Equations (5.7.6) and (5.7.7) can be rewritten as

d

dt

∂lc
∂ṙ

− ∂lc
∂r

= −
〈

∂l

∂Ω
, iṙB + 〈iṙγ,A〉 − 〈γ, iṙA〉+ 〈E ,ΩS〉

〉
,

d

dt

∂lc
∂ΩS =

[
ad∗ΩS

∂l

∂Ω
+

〈
∂l

∂Ω
, iṙE
〉]

S
,

where lc(r, ṙ,Ω
S) := l(r, ṙ,ΩS) is the constrained reduced Lagrangian.

That follows directly from (5.7.6) and (5.7.7) because

∂lc
∂ṙ

=
∂l

∂ṙ

∣∣∣
Ω=ΩS

,
d

dt

∂lc
∂ṙ

=
d

dt

∂l

∂ṙ

∣∣∣
Ω=ΩS

,

∂lc
∂r

=
∂l

∂r

∣∣∣
Ω=ΩS

,
∂lc
∂ΩS =

∂l

∂ΩS

∣∣∣
Ω=ΩS

.

Note that in general
∂lc
∂ΩS �= ∂l

∂Ω

∣∣∣
Ω=ΩS

.

Now, assuming that the Lagrangian equals the kinetic minus potential
energy and that the kinetic energy is given by a Riemannian metric on the
configuration space Q, and setting As to be the nonholonomic connection,
the vertical and horizontal components of q̇ in a local trivialization are

(0, ξ +Aṙ) and (ṙ,−Aṙ).

Rewrite ξ +Aṙ in the formula for the nonholonomic connection as

(ξS +AS ṙ) + (ξU +AU ṙ), ξS +AS ṙ ∈ bS , ξU +AU ṙ ∈ bU .

Recall that the body angular velocity Ω ∈ g is defined by the formula

Ω = ξ +Aṙ.

If the body angular velocity is used, the constraints (5.7.5) read

ΩU = 0.

Let the kinetic energy metric in a local trivialization be written as

〈〈q̇, q̇〉〉 = 〈G(r) ṙ, ṙ〉+ 2〈N (r) ṙ, ξ〉+ 〈I(r) ξ, ξ〉. (5.7.8)
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The constrained locked inertia tensor IS : bS → (bS)∗ is given in a
local trivialization by

〈IS(r)ξ, η〉 = 〈〈Lg∗ξ, Lg∗η〉〉, ξ, η ∈ bS .

Similarly, define IU (r) : bU → (bU )∗, ISU (r) : bU → (bS)∗, and IUS(r) :
bS → (bU )∗ by

〈IU (r)ξ, η〉 = 〈〈Lg∗ξ, Lg∗η〉〉, ξ, η ∈ bU ,

〈ISU (r)ξ, η〉 = 〈〈Lg∗ξ, Lg∗η〉〉, ξ ∈ bU , η ∈ bS ,

〈IUS(r)ξ, η〉 = 〈〈Lg∗ξ, Lg∗η〉〉, ξ ∈ bS , η ∈ bU ,

respectively.
The definition of the nonholonomic connection implies that the con-

strained kinetic energy metric written as a function of (ṙ,ΩS) is block-
diagonal, that is, it reads〈

Gc(r)ṙ, ṙ
〉
+
〈IS(r)ΩS ,ΩS〉.

Substituting ξ = ΩS −Aṙ in (5.7.8), one obtains

〈Gc(r)ṙ, ṙ〉+ 2〈NS(r)ṙ,ΩS〉
+ 〈IS(r)ΩS ,ΩS〉 − 2〈IS(r)AS ṙ,ΩS〉 − 2〈ISU (r)AU ṙ,ΩS〉,

and therefore

AS = I−1
S (r)NS(r)− I−1

S (r)ISU (r)AU .

In the basis ∂/∂r1, . . . , ∂/∂rσ, e1(r), . . . , ek(r), with e1(r), . . . , em(r)
spanning bS and em+1(r), . . . , ek(r) spanning bU , the components of the
nonholonomic connection are

Aa
α = Iab

S Nαb − Iab
S

k∑
a′=m+1

Iba′Aa′
α and Aa′

α .8

Note that the Iab
S need not equal Iab. Here and below, we use the summa-

tion conventions introduced on page 280.
One often uses the nonholonomic momentum relative to the body

frame p = ∂lc/∂Ω
S and writes the reduced dynamics as

d

dt

∂lc
∂ṙ

− ∂lc
∂r

= −
〈
p,

∂I−1
S

∂r
p

〉
−
〈
p+ IUSI−1

S p+ iṙΛ,

iṙB + 〈iṙγ,A〉 − 〈γ, iṙA〉+ 〈E , I−1
S p〉

〉
, (5.7.9)

ṗ =
[
ad∗I−1

S p
p+ 〈p, iṙτ〉+ 〈iṙΛ, iṙE〉

]
S
. (5.7.10)

8Recall that the components Aa′
α are defined by the constraints.
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Equation (5.7.10) is called the momentum equation in body
representation .
In these equations the reduced Lagrangian is represented as a function

of (r, ṙ, p), Λ is a (bU )∗-valued one-form on Q/G given by

Λ = (NU − IUSAS − IUAU )dr,

and τ is a bS ⊗ (bS)∗-valued one-forms on Q/G defined by the formula

〈p, iṙτ〉 =
[
ad∗I−1

S p
iṙΛ +

〈
p+ IUSI−1

S p, iṙE
〉]

S
.

Remark. The first term in the right-hand side of the shape equation
(5.7.9) appears for the following reason. The term 1

2 〈IS ΩS ,ΩS〉 in the con-
strained reduced Lagrangian lc(r, ṙ,Ω

S) produces the term 1
2 〈∂rIS ΩS ,ΩS〉

in the right-hand side of the shape equation. When p is used instead
of Ω, this term becomes 1

2 〈∂rIS I−1
S p, I−1

S p〉 = 1
2 〈I−1

S ∂rIS I−1
S p, p〉 =

− 1
2 〈p, ∂rI−1

S p〉. On the other hand, the contribution of the term 1
2 〈p, I−1

S p〉
in lc(r, ṙ, p) is 1

2 〈p, ∂rI−1
S p〉. Thus, in order to obtain the correct term,

− 1
2 〈p, ∂rI−1

S p〉, one needs to subtract 〈p, ∂rI−1
S p〉 from the right-hand side

of the shape equation.
Sometimes it is desirable to use a slightly different representation of

equations (5.7.6), (5.7.7) and (5.7.9), (5.7.10). Recall that the inertia tensor
is an invertible operator I : g → g∗. Its inverse I−1 maps g∗ to g, and
defines the operators

IS : b∗S → bS , IU : b∗U → bU , ISU : b∗U → bS , IUS : b∗S → bU

(5.7.11)
by the formulae

I−1α = ISα+ IUSα, ISα ∈ bS , IUSα ∈ bU , α ∈ b∗S ,

I−1α = ISUα+ IUα, ISUα ∈ bS , IUα ∈ bU , α ∈ b∗U .

The operators (5.7.11) are uniquely defined by these formulae since g =
bS⊕bU . Note that IDU and IUS normally are not zero operators. However,
it is straightforward to see that

IUSIS + IUIUS : bS → bU

maps every ξ ∈ bS to 0. Therefore,

(IU )−1(IUSIS + IUIUS)I−1
S = (IU )−1IUS + IUSI−1

S = 0,

and one can replace the terms IUSI−1
S p with −(IU )−1IUSp.
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In coordinate notation, the reduced equations of motion become

d

dt

∂lc
∂ṙα

− ∂lc
∂rα

= −Dc
bαIbd

S pcpd −Kαβγ ṙ
β ṙγ

−
(
Bc
αβ −

k∑
a′,c′=m+1

IU
c′a′Ia′cBc′

αβ +DbβαIbc
S

)
pcṙ

β , (5.7.12)

ṗa =

(
Cc

ba −
k∑

a′,c′=m+1

Cc′
baIU

c′a′Ia′c
)
Ibd
S pcpd

+Dc
aαpcṙ

α +Daαβ ṙ
αṙβ . (5.7.13)

Here and below lc(r
α, ṙα,Ωa) is the constrained Lagrangian, and Ibd

S and
IU
a′c′ are the components of the tensors I−1

S and (IU )−1, respectively. We
stress that in general Ibd

S �= Ibd and IU
a′c′ �= Ia′c′ .

Observe that the inertia tensor notations here are different from earlier
notations of equations (5.7.3) and (5.7.4). This is to emphasize that the sub-
spaces Sq and Uq are not, in general, orthogonal. The said subspaces were
assumed orthogonal earlier, see the discussion following Definition 5.7.1
and equations (5.7.3) and (5.7.4).
The coefficients Bc′

αβ , Dc
bα, Dbαβ , and Kαβγ are given by the formulae

Bc′
αβ =

∂Ac′
α

∂rβ
− ∂Ac′

β

∂rα
−

k∑
a′,b′=1

Cc′
b′a′Aa′

α Ab′
β +

k∑
a′=1

(
γc′
a′βAa′

α − γc′
a′αAa′

β

)
,

Dc
bα = −

k∑
a′=1

(
Cc

a′b −
k∑

b′,c′=m+1

Cc′
a′bIU

b′c′Ib′c
)
Aa′

α

+

k∑
c′=m+1

Cc′
abΛc′αIac

S + γc
bα −

k∑
a′,c′=m+1

γc′
bαIU

c′a′Ia′c, (5.7.14)

Dbαβ =

k∑
c′=m+1

Λc′β

(
γc′
bα −

k∑
a′=1

Cc′
a′bAa′

α

)
,

Kαβγ =

k∑
c′=m+1

Λc′γBc′
αβ ,

and γc′
bα are the components of the form γ introduced in (3.13.9). Equa-

tions (5.7.3) and (5.7.4) follow from (5.7.12) and (5.7.13) if a basis is se-
lected in which the locked inertia tensor block-diagonalizes, as assumed in
Theorem 5.7.3.

Relative Equilibria. A relative equilibrium is an equilibrium of the
reduced equations; that is, it is a solution that is given by a one-parameter
group orbit, just as in the holonomic case (see, e.g., Marsden [1992] for a
discussion).
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The Constrained Routhian. This function is defined by analogy with
the usual Routhian by

R(rα, ṙα, pa) = lc(r
α, ṙα, Iabpb)− Iabpapb, (5.7.15)

and in terms of it, the reduced equations of motion become

d

dt

∂R

∂ṙα
− ∂R

∂rα
= −Dc

bαI
bdpcpd − Bc

αβpcṙ
β

−DβαbI
bcpcṙ

β −Kαβγ ṙ
β ṙγ , (5.7.16)

d

dt
pb = Cc

abI
adpcpd +Dc

bαpcṙ
α +Dαβbṙ

αṙβ . (5.7.17)

The Reduced Constrained Energy. The kinetic energy in the vari-
ables rα, ṙα, Ωa, Ωa′

equals

1

2
gαβ ṙ

αṙβ +
1

2
IacΩ

aΩc

+

k∑
a′=m+1

(
la′α − la′c′Ac′

α

)
Ωa′

ṙα +
1

2

k∑
a′,c′=m+1

la′c′Ω
a′
Ωc′ , (5.7.18)

where gαβ are coefficients of the kinetic energy metric induced on the man-
ifold Q/G. Substituting the relations Ωa = Iabpb and the constraint equa-
tions Ωa′

= 0 in (5.7.18) and adding the potential energy, we define the
function E by

E =
1

2
gαβ ṙ

αṙβ + U(rα, pa), (5.7.19)

which represents the reduced constrained energy in the coordinates rα, ṙα,
pa, where U(rα, pa) is the amended potential defined by

U(rα, pa) =
1

2
Iabpapb + V (rα), (5.7.20)

and V (rα) is the potential energy of the system.
Now we show that the reduced constrained energy is conserved along the

solutions of (5.7.16), (5.7.17).

5.7.4 Theorem. The reduced constrained energy is a constant of motion.

Proof. One way to prove this is to note that the reduced energy is a
constant of motion, because it equals the energy represented in coordinates
r, ṙ, g, ξ and because the energy is conserved, since the Lagrangian and
the constraints are time-invariant. Along the trajectories, the constrained
energy and the energy are the same. Therefore, the reduced constrained
energy is a constant of motion.
One may also prove this fact by a direct computation of the time deriva-

tive of the reduced constrained energy (5.7.19) along the vector field defined
by the equations of motion. �
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5.7.5 Example (The Falling Rolling Disk). Consider again the disk
rolling without sliding on the xy-plane as discussed in the introduction and
Zenkov, Bloch, and Marsden [1998].

Recall that we have the following: Denote the coordinates of contact of
the disk in the xy-plane by x, y. Let θ, φ, and ψ denote the angle between
the plane of the disk and the vertical axis, the “heading angle” of the disk
and “self-rotation” angle of the disk, respectively, as was introduced earlier.
The Lagrangian and the constraints in these coordinates are given by

L =
m

2

[
(ξ −R(φ̇ sin θ + ψ̇))2 + η2 sin2 θ + (η cos θ +Rθ̇)2

]

+
1

2

[
A(θ̇2 + φ̇2 cos2 θ) +B(φ̇ sin θ + ψ̇)2

]
−mgR cos θ,

ẋ = −ψ̇R cosφ,

ẏ = −ψ̇R sinφ,

where ξ = ẋ cosφ + ẏ sinφ + Rψ̇, η = −ẋ sinφ + ẏ cosφ. Note that the
constraints may be written as ξ = 0, η = 0.
This system is invariant under the action of the group G = SE(2)×SO(2);

the action by the group element (a, b, α, β) is given by

(θ, φ, ψ, x, y) �→ (θ, φ+ α, ψ + β, x cosα− y sinα+ a, x sinα+ y cosα+ b).

Obviously,

Tq Orb(q) = span

(
∂

∂φ
,
∂

∂ψ
,
∂

∂x
,
∂

∂y

)

and

Dq = span

(
∂

∂θ
,
∂

∂φ
,R cosφ

∂

∂x
+R sinφ

∂

∂y
− ∂

∂ψ

)
,

which imply

Sq = Dq ∩ Tq Orb(q) = span

(
∂

∂φ
,−R cosφ

∂

∂x
−R sinφ

∂

∂y
+

∂

∂ψ

)
.

Choose vectors (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) as a basis of
the Lie algebra g of the group G. The corresponding generators are

∂x, ∂y, −y∂x + x∂y + ∂φ, ∂ψ.

Taking into account that the generators ∂φ, −R cosφ∂x − R sinφ∂y + ∂ψ
correspond to the elements (y,−x, 1, 0), (−R cosφ,−R sinφ, 0, 1) of the Lie
algebra g, we obtain the following momentum equations:

ṗ1 = mR2 cos θ θ̇ψ̇,

ṗ2 = −mR2 cos θ θ̇φ̇,
(5.7.21)
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where

p1 = Aφ̇ cos2 θ + (mR2 +B)(φ̇ sin θ + ψ̇) sin θ,

p2 = (mR2 +B)(φ̇ sin θ + ψ̇),
(5.7.22)

into which the constraints have been substituted. One notices that

p1 =
∂lc

∂φ̇
, p2 =

∂lc

∂ψ̇
.

These equations completely determine the motion together with a single
“shape space” equation for the variable r = θ. (In virtually all examples of
interest the shape space is no more than one-dimensional. For the vertical
penny in this setting there is no shape space.)
The θ equation can be determined from the general formalism above or

more easily directly from the unreduced constrained equations (5.2.7). �
Reduced Constrained Equations in Mechanical Form. As for the
unconstrained reduced equations, we can write the base space equations for
the reduced nonholonomic equations in a standard mechanical form. See,
e.g., Ostrowski [1995].

Let l be the Lagrangian reduced by the group action and and let pb
denote the body momenta in group directions in the constraint manifold
as defined earlier.
Then we can write the constraints as

ξ = −Akin(r)ṙ + Ĩ−1p, (5.7.23)

where Ĩ is used here to denote the locked inertia in the group direction in the
constraint manifold and Akin denotes the kinematic (external) constraints.

5.7.6 Proposition. The reduced constrained Lagrangian, i.e., the reduced
Lagrangian with the constraints substituted,

lc(r, ṙ, p) = l(r, ṙ, ξ)|ξ=−Akinṙ+Ĩ−1p, (5.7.24)

takes the form

lc(r, ṙ, p) =
1

2
ṙT M̃ ṙ +

1

2

〈
p, Ĩ−1p

〉
− V (r), (5.7.25)

where
M̃ = m−AT IA+

(
A−Akin

)T
I
(
A−Akin

)
. (5.7.26)

The proof of this follows simply from substituting the constraints (5.7.23)
into the reduced Lagrangian written in the form (3.13.21).

Then the base dynamics can be written, like those in the reduced uncon-
strained case, as

M̃ r̈ + ṙT C̃ṙ + Ñ +
∂V

∂r
= F, (5.7.27)
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where M̃ is now defined as in the proposition, C̃ is a Coriolis term defined
in the same way as before, and

〈
Ñ , δr

〉
=

〈
∂l

∂ξ
, dAkin(ṙ, δr)− [ξ, Aδr]+ (Ĩ−1p)

δr
δr

〉

− 1

2

〈
(Ĩ−1p)T ,

∂(Ĩ−1p)

∂r
δr

〉
,

where F is a possible external forcing term.
One can read off these coefficients from our general formula, but in prac-

tical calculations one just wants compute them for the specific mechanical
system at hand, as for the satellite done earlier in Chapter 3 and for the
nonholonomic examples in Chapter 8. See also Ostrowski [1995].

5.8 The Poisson Geometry of Nonholonomic
Systems

This section considers in detail the Hamiltonian description of nonholo-
nomic systems. Because of the necessary replacement of conservation laws
with the momentum equation, it is natural to let the value of the mo-
mentum be a variable, and for this reason it is natural to take a Poisson
viewpoint. Some of this theory was initiated in van der Schaft and Maschke
[1994]. What follows builds on their work, further develops the theory of
nonholonomic Poisson reduction, and ties this theory to other work in the
area. We use this reduction procedure to organize nonholonomic dynamics
into a reconstruction equation, a nonholonomic momentum equation, and
the reduced Lagrange–d’Alembert equations in Hamiltonian form. We also
show that these equations are equivalent to those given by the Lagrangian
reduction methods of Bloch, Krishnaprasad, Marsden, and Murray [1996]
discussed above. Because of the results of Koon and Marsden [1997b], this
is also equivalent to the results of Bates and Sniatycki [1993], obtained by
nonholonomic symplectic reduction.
Two interesting complications make this effort especially interesting.

First of all, as we have mentioned, symmetry need not lead to conserva-
tion laws but rather to a momentum equation. Second, the natural Poisson
bracket fails to satisfy the Jacobi identity. In fact, the so-called Jacobi-
ator (the cyclic sum that vanishes when the Jacobi identity holds), or
equivalently, the Schouten bracket, is an interesting expression involving
the curvature of the underlying distribution describing the nonholonomic
constraints. Thus in the nonholonomic setting we really have an almost
Poisson structure as defined in Chapter 3 (see also Cannas Da Silva and
Weinstein [1999], Cantrijn, de León, and de Diego [1999], and Śniatycki
[2001]).
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As before, the setting is a configuration space Q with a (nonintegrable)
distribution D ⊂ TQ describing the constraints. For simplicity, we con-
sider only homogeneous velocity constraints. We are given a Lagrangian
L on TQ and a Lie group G acting on the configuration space that leaves
the constraints and the Lagrangian invariant. In many examples, the group
encodes position and orientation information. For example, for the snake-
board, the group is SE(2) of rotations and translations in the plane. The
quotient space Q/G is called shape space.
As we have seen, the dynamics of such a system are described by a set

of equations of the following form:

M(r)r̈ = δ(r, ṙ, p) + τ, (5.8.1)

ṗ = ṙTH(r)ṙ + ṙTK(r)p+ pTD(r)p, (5.8.2)

g−1ġ = −Anh(r)ṙ + I−1(r)p. (5.8.3)

The first equation is the equation of motion for the reduced variables r
that describe the “shape” of the system, the second is an equation for the
nonholonomic momentum p (strictly speaking, p is the body representation
of the nonholonomic momentum map, which is not conserved in general),
and the third is a reconstruction equation for a group element g. The mo-
mentum equation is bilinear in (ṙ, p). The term τ represents the external
forces applied to the system, and is assumed to affect only the shape vari-
ables; i.e., the external forces are G-invariant. Note that the evolution of
the momentum p and the shape r decouple from the group variables.
This framework has been very useful for studying controllability, gait

selection, and locomotion for systems such as the snakeboard. It has also
helped in the study of optimality of certain gaits, by using optimal con-
trol ideas in the context of nonholonomic mechanics (Koon and Marsden
[1997a], Ostrowski, Desai, and Kumar [1997]). Hence, it is natural to ex-
plore ways to develop a similar framework on the Hamiltonian side.
Bates and Sniatycki [1993] developed the symplectic geometry on the

Hamiltonian side of nonholonomic systems, while [BKMM] explored the La-
grangian side. It was not obvious how these two approaches were equivalent,
especially how the momentum equation, the reduced Lagrange–d’Alembert
equations, and the reconstruction equation correspond to the developments
in Bates and Sniatycki [1993].

Koon and Marsden [1997b] established the specific links between these
two sides and used the ideas and results of each to shed light on the other,
deepening our understanding of both points of view. For example, in prov-
ing the equivalence of Lagrangian reduction and symplectic reduction, they
have shown where the momentum equation lies on the Hamiltonian side and
how this is related to the organization of the dynamics of nonholonomic sys-
tems with symmetry into the three parts displayed above: a reconstruction
equation for the group element g, an equation for the nonholonomic momen-
tum p, and the reduced Hamilton equations for the shape variables r, pr.
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Koon and Marsden [1997b] illustrate the basic theory with the snakeboard,
as well as a simplified model of the bicycle (see Getz and Marsden [1995]).
The latter is an important prototype control system because it is an un-
deractuated balance system.

Poisson Formulation. The approach of van der Schaft and Maschke
[1994] starts on the Lagrangian side with a configuration space Q and a La-
grangian L (possibly of the form kinetic energy minus potential energy, i.e.,

L(q, q̇) =
1

2
〈〈q̇, q̇〉〉 − V (q),

where 〈〈 , 〉〉 is a metric on Q defining the kinetic energy and V is a
potential energy function).
As above, our nonholonomic constraints are given by a distribution D ⊂

TQ. We also let D0 ⊂ T ∗Q denote the annihilator of this distribution.
Using a basis ωa of the annihilator Do, we can write the constraints as

ωa(q̇) = 0,

where a = 1, . . . , k.
As above, the basic equations are given by the Lagrange–d’Alembert

principle and are written as

d

dt

∂L

∂q̇i
− ∂L

∂qi
= λaω

a
i ,

where λa is a set of Lagrange multipliers.
The Legendre transformation FL : TQ → T ∗Q, assuming that it is a

diffeomorphism, is used to define the Hamiltonian H : T ∗Q → R in the
standard fashion (ignoring the constraints for the moment):

H = 〈p, q̇〉 − L = piq̇
i − L.

Here, the momentum is p = FL(vq) = ∂L/∂q̇. Under this change of vari-
ables, the equations of motion are written in the Hamiltonian form as

q̇i =
∂H

∂pi
, (5.8.4)

ṗi = −∂H

∂qi
+ λaω

a
i , (5.8.5)

where i = 1, . . . , n, together with the constraint equations

ωa
i q̇

i = ωa
i

∂H

∂pi
= 0.

We can also write this system in the intrinsic form in the following way:
Suppose that Xnh

H = q̇i∂qi + ṗi∂pi
is the vector field on T ∗Q that defines
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the flow of the system, Ω is the standard symplectic form on T ∗Q, and
πQ : T ∗Q → Q is the cotangent bundle projection. Then we can write
Hamilton’s equations for nonholonomic system as

iXnh
H
Ω = dH − λsπ

∗
Qω

s,

along with

TπQ(X
nh
H ) ∈ D or ωs(TπQ(X

nh
H )) = 0 for s = 1, . . . , p.

Introducing the constrained momentum space M ≡ FL(D) ⊂ T ∗Q, the
above constraints may be replaced by the following:

p ∈ M.

Now, locally the constrained Hamiltonian equations can be rewritten as

(
q̇i

ṗi

)
= J

( ∂H
∂qj

∂H
∂pj

)
+

(
0

λaω
a
i

)
, ωa

i

∂H

∂pi
= 0. (5.8.6)

Recall that the cotangent bundle T ∗Q is equipped with a canonical Poisson
bracket and is expressed in the canonical coordinates (q, p) as

{F,G}(q, p) = ∂F

∂qi
∂G

∂pi
− ∂F

∂pi

∂G

∂qi
=

(
∂FT

∂q
,
∂FT

∂p

)
J

(∂G
∂q

∂G
∂p

)
.

Here J is the canonical Poisson tensor

J =

(
0n In
−In 0n

)
,

which is intrinsically determined by the Poisson bracket {, } as

J =

({qi, qj} {qi, pj}
{pi, qj} {pi, pj}

)
. (5.8.7)

On the Lagrangian side, we saw that one can get rid of the Lagrangian
multipliers. On the Hamiltonian side, it is also desirable to model the
Hamiltonian equations without the Lagrange multipliers by a vector field
on a submanifold of T ∗Q. In van der Schaft and Maschke [1994] it is done
through a clever change of coordinates. We now recall how they do this.
First, a constraint phase space M = FL(D) ⊂ T ∗Q is defined in the

same way as in Bates and Sniatycki [1993] so that the constraints on the
Hamiltonian side are given by p ∈ M. In local coordinates,

M =

{
(q, p) ∈ T ∗Q

∣∣∣ ωa
i

∂H

∂pi
= 0

}
.
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Let {Xα} be a local basis for the constraint distribution D and let {ωa} be
a local basis for the annihilator D0. Let {ωa} span the complementary sub-
space to D such that 〈ωa, ωb〉 = δab , where δab is the usual Kronecker delta.
Here a = 1, . . . , k and α = 1, . . . , n−k. Define a coordinate transformation
(q, p) �→ (q, p̃α, p̃a) by

p̃α = Xi
αpi, p̃a = ωi

api. (5.8.8)

It is shown in van der Schaft and Maschke [1994] that in the new (generally
not canonical) coordinates (q, p̃α, p̃a), the Poisson tensor becomes

J̃(q, p̃) =

({qi, qj} {qi, p̃j}
{p̃i, qj} {p̃i, p̃j}

)
, (5.8.9)

and the constrained Hamiltonian equations (5.8.6) transform into

⎛
⎝ q̇i

˙̃pα
˙̃pa

⎞
⎠ = J̃(q, p̃)

⎛
⎜⎜⎜⎝

∂H̃
∂qj

∂H̃
∂p̃β

∂H̃
∂p̃b

⎞
⎟⎟⎟⎠+

⎛
⎝ 0

0
λa

⎞
⎠ ,

∂H̃

∂p̃a
(q, p̃) = 0, (5.8.10)

where H̃(q, p̃) is the Hamiltonian H(q, p) expressed in the new coordinates
(q, p̃).

Let (p̃α, p̃a) satisfy the constraint equations ∂H̃
∂p̃a

(q, p̃) = 0. Since

M =

{
(q, p̃α, p̃a)

∣∣∣ ∂H̃
∂p̃a

(q, p̃α, p̃a) = 0

}
,

van der Schaft and Maschke [1994] use (q, p̃α) as induced local coordinates
for M. It is easy to show that

∂H̃

∂qj
(q, p̃α, p̃a) =

∂HM
∂qj

(q, p̃α),

∂H̃

∂p̃β
(q, p̃α, p̃a) =

∂HM
∂p̃β

(q, p̃α),

where HM is the constrained Hamiltonian on M expressed in the induced
coordinates.
Now we are ready to eliminate the Lagrange multipliers. Notice that

∂H̃
∂p̃b

(q, p̃) = 0 on M, and by restricting the dynamics on M, we can dis-

regard the last equations involving λ in equations (5.8.10). In fact, we
can also truncate the Poisson tensor J̃ in (5.8.9) by leaving out its last k
columns and last k rows and then describe the constrained dynamics on
M expressed in the induced coordinates (qi, p̃α) as follows:

(
q̇i

˙̃pα

)
= JM(q, p̃α)

(∂HM
∂qj (q, p̃α)

∂HM
∂p̃β

(q, p̃α)

)
,

(
qi

p̃α

)
∈ M. (5.8.11)
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Here JM is the (2n− k)× (2n− k) truncated matrix of J̃ restricted to M
and is expressed in the induced coordinates.
The matrix JM defines a bracket {, }M on the constraint submanifold

M as follows:

{FM, GM}M(q, p̃α) :=

(
∂FT

M
∂qi

,
∂FT

M
∂p̃α

)
JM(qi, p̃α)

(
∂GM
∂qj
∂GM
∂p̃β

)
,

for any two smooth functions FM, GM on the constraint submanifold M.
Clearly, this bracket satisfies the first two defining properties of a Pois-
son bracket, namely, skew symmetry and the Leibniz rule, and one can
show that it satisfies the Jacobi identity if and only if the constraints are
holonomic. Furthermore, the constrained Hamiltonian HM is an integral
of motion for the constrained dynamics on M due to the skew symmetry
of the bracket.
Below we will develop a general formula for the Jacobiator (the cyclic

sum that vanishes when the Jacobi identity holds), which is an interesting
expression involving the curvature of the underlying distribution that de-
scribes the nonholonomic constraints. From this formula one can see clearly
that the Poisson bracket defined here satisfies the Jacobi identity if and only
if the constraints are holonomic.

Remarks. Marle [1998] has shown that the bracket {, }M obtained in
van der Schaft and Maschke [1994] can be given an intrinsic interpretation
as follows:

1. Suppose that we are given a constrained Hamiltonian system
{T ∗Q, {, }, H,M,V}, where the first four objects are defined as above
and the last object V is a vector subbundle of TM(T ∗Q) defined by

Vp = {vertp(η) | η ∈ D0}.

Here TM(T ∗Q) is the restriction of the tangent bundle of T (T ∗Q) to
the constraint submanifoldM, and vertp(η) ∈ Tp(T

∗Q) is the vertical
lift of η ∈ T ∗

q Q, where p ∈ T ∗Q; in coordinates, vert(q,p)(q, η) =
(q, p, 0, η). Marle [1998] uses this subbundle V to encode the fact that
the constraint forces obey the Lagrange–d’Alembert principle.

It can be shown that the sum of the vector subbundles TM and V of
TM(T ∗Q) is a direct sum, and

TM⊕ V = TM(T ∗Q).

Moreover, the restriction XH |M of the Hamiltonian vector field to
the constraint submanifold M splits into a sum

XH |M = XM +XV ,
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where XM is the constrained Hamiltonian vector field that is tangent
toM, andXV is a smooth section of the subbundle V (whose opposite
is the constraint force field).

2. The canonical Poisson tensor Λ (associated with the Poisson bracket
{, }) of T ∗Q can be projected on M, and its projection ΛM is a con-
travariant skew-symmetric 2-tensor on M. More precisely, let p ∈ M,
α and β ∈ T ∗

pM. There exists a unique pair (α̂, β̂) of elements of
T ∗
p (T

∗Q) that vanish on the vector subspace Vp of Tp(T
∗Q), and

whose restrictions to the vector subspace TpM are α and β, respec-
tively. We can therefore define ΛM(p) by setting

ΛM(p)(α, β) = Λ(p)(α̂, β̂).

Then the vector field XM, whose integral curves are the motions of
the system, is

XM = Λ�
M(dHM).

Using the 2-tensor ΛM, Marle [1998] defines an intrinsic bracket {, }M
on the space of smooth functions on M by setting

{f, g}M = ΛM(df, dg).

In the local coordinates (q, p̃), the truncated matrix JM(q, p̃α) ob-
tained in van der Schaft and Maschke [1994] is exactly the matrix
associated with the 2-tensor ΛM and is nothing but the projection of
the Poisson matrix J̃(q, p̃) onto the constraint submanifold M.

The above considerations show that the nonholonomic brackets con-
structed by a quotient operation are also intrinsic.

A Formula for the Constrained Hamilton Equations. In holonomic
mechanics, it is well known that the Poisson and the Lagrangian formu-
lations are equivalent via a Legendre transform. And it is natural to ask
whether the same relation holds for the nonholonomic mechanics as devel-
oped in van der Schaft and Maschke [1994] and [BKMM]. First we use the
general procedures of van der Schaft and Maschke [1994] to write down a
compact formula for the nonholonomic equations of motion.

5.8.1 Theorem. Let qi = (rα, sa) be the local coordinates in which ωa has
the form

ωa(q) = dsa +Aa
α(r, s)dr

α, (5.8.12)

where Aa
α(r, s) is the coordinate expression of the Ehresmann connection

described. Then the nonholonomic constrained Hamilton equations of mo-
tion on M can be written as



5.8 Poisson Geometry of Nonholonomic Systems 297

ṡa = −Aa
β

∂HM
∂p̃β

, (5.8.13)

ṙα =
∂HM
∂p̃α

, (5.8.14)

˙̃pα = −∂HM
∂rα

+Ab
α

∂HM
∂sb

− pbB
b
αβ

∂HM
∂p̃β

, (5.8.15)

where Bb
αβ are the coefficients of the curvature of the Ehresmann connec-

tion. Here pb should be understood as pb restricted to M and more precisely
should be denoted by (pb)M.

Proof. One can always choose local coordinates in which

ωa(q) = dsa +Aa
α(r, s)dr

α.

In this local coordinate system,

D = span{∂rα −Aa
α∂sa}. (5.8.16)

Then the new coordinates (rα, sa, p̃α, p̃a) of van der Schaft and Maschke
[1994] are defined by

p̃α = pα −Aa
αpa, p̃a = pa +Aα

apα, (5.8.17)

and we can use (rα, sa, p̃α) as the induced coordinates on M.
Moreover, we can obtain the constrained Poisson structure matrix

JM(rα, sa, p̃α) by computing {qi, qj}, {qi, p̃α}, {p̃α, p̃β} and then restrict-

ing them to M. Recall that JM is constructed out of the Poisson tensor J̃
in equation (5.8.9) by leaving out its last k columns and last k rows and
restricting its remaining elements to M.

Clearly,
{qi, qj} = 0.

In addition, we have

{rβ , p̃α} = {rβ , pα −Aa
αpa} = {rβ , pα} − {rβ , Aa

αpa} = δβα,

{sb, p̃α} = {sb, pα −Aa
αpa} = {sb, pα} − {sb, Aa

αpa} = −Ab
α,

where δβα is the usual Kronecker delta. It is also straightforward to obtain

{p̃α, p̃β} = {pα −Aa
αpa, pβ −Ab

βpb}
= −{pα, Ab

βpb} − {Aa
αpa, pβ}+ {Aa

αpa, A
b
βpb}

=
∂Ab

β

∂rα
pb − ∂Ab

α

∂rβ
pb +

∂Aa
α

∂sb
paA

b
β −Aa

α

∂Ab
β

∂sa
pb

=

(
∂Ab

β

∂rα
− ∂Ab

α

∂rβ
+Aa

β

∂Ab
α

∂sa
−Aa

α

∂Ab
β

∂sa

)
pb

= −Bb
αβpb.
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After restricting the above results to M, all other terms remain the same,
but the last line should be understood as −Bb

αβ(pb)M. But for notational

simplicity, we keep writing it as −Bb
αβpb. Putting the above computations

together, we can write the nonholonomic equations of motion as

⎛
⎝ṡa

ṙα

˙̃pα

⎞
⎠ =

⎛
⎝ 0 0 −Aa

β

0 0 δαβ
(Ab

α)
T −δβα −pcB

c
αβ

⎞
⎠
⎛
⎜⎜⎝

∂HM
∂sb

∂HM
∂rβ

∂HM
∂p̃β

⎞
⎟⎟⎠ , (5.8.18)

which is the desired result. Notice that the order of the variables rα and
sa has been switched to make the block diagonalization of the constrained
Poisson tensor more apparent. Also, it may be important to point out here
that (pb)M can be expressed in terms of the induced coordinates (q, p̃β) on
the constraint submanifold M by the following formula:

(pb)M = (gbα − gbaA
a
α)ṙ

α = (gbα − gbaA
a
α)

∂HM
∂p̃α

= Kβ
b p̃β ,

where gbα and gba are the components of the kinetic energy metric and Kβ
b

is defined by the last equality.

Equivalence of the Poisson and Lagrange–d’Alembert Formula-
tions. Now we are ready to state and prove the equivalence of the Poisson
and Lagrange–d’Alembert formulations.

5.8.2 Theorem. The Lagrange–d’Alembert equations

ṡa = −Aa
αṙ

α, (5.8.19)

d

dt

∂Lc

∂ṙα
− ∂Lc

∂rα
+Aa

α

∂Lc

∂sa
= − ∂L

∂ṡb
Bb

αβ ṙ
β , (5.8.20)

are equivalent to the constrained Hamilton equations

ṡa = −Aa
β

∂HM
∂p̃β

, (5.8.21)

ṙα =
∂HM
∂p̃α

, (5.8.22)

˙̃pα = −∂HM
∂rα

+Ab
α

∂HM
∂sb

− pbB
b
αβ

∂HM
∂p̃β

, (5.8.23)

via a constrained Legendre transform that is given by

p̃α =
∂Lc

∂ṙα
, ṙα =

∂HM
∂p̃α

. (5.8.24)
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Proof. Recall that

D = {(r, s, ṙ, ṡ) ∈ TQ | ṡ+Aa
αṙ

α = 0},

and we can use (r, s, ṙ) as the induced coordinates for the submanifold D.
Since the constrained Lagrangian is given by

Lc(r
α, sa, ṙα) = L(rα, sa, ṙα,−Aa

α(r, s)ṙ
α),

we have
∂Lc

∂ṙα
=

∂L

∂ṙα
− ∂L

∂sa
Aa

α = pα − paA
a
α = p̃α. (5.8.25)

Hence, ∂Lc

∂ṙα = p̃α does define the right constrained Legendre transform
between the submanifolds D and M with the corresponding induced coor-
dinates (rα, sa, ṙα) and (rα, sa, p̃α).
Now notice that if E = ∂L

∂q̇i q̇
i − L, then restricting it to D we will get

ED =

(
∂L

∂ṙα
ṙα +

∂L

∂ṡa
ṡa
)∣∣∣∣

D
− Lc

=
∂Lc

∂ṙα
ṙα +Aa

α

∂L

∂ṡa
ṙα −Aa

α

∂L

∂ṡa
ṙα − Lc

=
∂Lc

∂ṙα
ṙα − Lc.

Hence, the constrained Hamiltonian is given by

HM = p̃αṙ
α − Lc, (5.8.26)

and it is straightforward to show that

∂HM
∂p̃α

= ṙα + p̃β
∂ṙβ

∂p̃α
− ∂Lc

∂ṙβ
∂ṙβ

∂p̃α
= ṙα,

which gives the equation (5.8.22). Clearly, ṡa = −Aa
β ṙ

β together with equa-
tion (5.8.22) gives equation (5.8.21).
Furthermore, we have

∂HM
∂rβ

= p̃α
∂ṙα

∂rβ
− ∂Lc

∂rβ
− ∂Lc

∂ṙα
∂ṙα

∂rβ
= −∂Lc

∂rβ
(5.8.27)

and
∂HM
∂sb

= p̃α
∂ṙα

∂sb
− ∂Lc

∂sb
− ∂Lc

∂ṙα
∂ṙα

∂sb
= −∂Lc

∂sb
. (5.8.28)

Substituting the results of (5.8.27) and (5.8.28) into equation (5.8.20), we
get the remaining equation (5.8.23).
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A Formula for the Jacobiator. Recall that in the proof of Theo-
rem 5.8.1 we have obtained

{qi, qj}M = 0,

{rβ , p̃α}M = δβα,

{sb, p̃α}M = −Ab
α,

{p̃α, p̃β}M = Bb
αβ(pb)M = Bb

αβK
γ
b p̃γ .

Clearly,

{{qi, qj}M, qk}M + cyclic = 0, (5.8.29)

{{qi, qj}M, p̃α}M + cyclic = 0. (5.8.30)

It is also straightforward to obtain

{{rγ , p̃α}M, p̃β}M + cyclic = Kγ
b B

b
αβ , (5.8.31)

{{sa, p̃α}M, p̃β}M + cyclic = −Ba
αβ −Aa

γK
γ
b B

b
αβ . (5.8.32)

As for {{p̃α, p̃β}M}M + cyclic, it takes slightly more work to obtain{{p̃α, p̃β}M, p̃γ
}
M + cyclic

= p̃τK
τ
aB

a
δγK

δ
bB

b
αβ − p̃τ

(
∂Kτ

b

∂rγ
−Aa

γ

∂Kτ
b

∂sa

)
Bb

αβ

− p̃τK
τ
b

(
∂Bb

αβ

∂rγ
−Aa

γ

∂Bb
αβ

∂sa

)
+ cyclic.

Notice that the right-hand side of the last equation involves the deriva-
tives of the curvature. However, it can be shown that the identity

∂Bb
αβ

∂rγ
−Ac

γ

∂Bb
αβ

∂sc
+Ba

αβ

∂Ab
γ

∂sa
+ cyclic = 0

holds, and we can apply it to rewrite the last equation using only the
curvature but not its derivatives:{{p̃α, p̃β}M, p̃γ

}
M + cyclic

= p̃τK
τ
aB

a
δγK

δ
bB

b
αβ − p̃τ

(
∂Kτ

b

∂rγ
−Aa

γ

∂Kτ
b

∂sa

)
Bb

αβ

+ p̃τK
τ
a

∂Aa
γ

∂sb
Bb

αβ + cyclic. (5.8.33)

Equations (5.8.29) to (5.8.33) give the Jacobiator of the Poisson bracket
on M.9

9One can also use the formalism of the Schouten bracket to do the computations
and obtain the same results.
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Notice that from the formulas for the Jacobiator, one can see clearly that
if the constraints are holonomic and hence the Ehresmann connection has
zero curvature, then the Jacobiator is zero and the Jacobi identity holds.
Conversely, if the Jacobi identity holds, then we have

0 = Kγ
b B

b
αβ ,

0 = −Ba
αβ −Aa

γK
γ
b B

b
αβ .

Therefore, Ba
αβ = 0, and the constraints are holonomic.

Poisson Reduction. Here we focus on reduction from the Poisson point
of view, that is, the Hamiltonian formulation using Poisson brackets. There
is a corresponding symplectic view of nonholonomic mechanics and reduc-
tion that is presented in the Internet Supplement.

As in our discussion of symmetry earlier, let G be the symmetry group of
the system and assume that the quotient space M̄ = M/G of the G-orbit in
M is a smooth quotient manifold with projection map ρ : M −→ M̄. Since
G is a symmetry group, all intrinsically defined vector fields push down
to M. In this section we will write the equations of motion for the reduced
constrained Hamiltonian dynamics using a reduced “Poisson” bracket on
the reduced constraint phase space M̄. Moreover, an explicit expression for
this reduced bracket will be given.
The crucial step here is how to represent the constraint distribution D

in a way that is both intrinsic and ready for reduction. Recall that a body
fixed basis

eb(g, r) = Adg eb(r)

has been constructed such that the infinitesimal generators (ei(g, r))Q of
its first m elements at a point q span Sq = Dq∩Tq(Orb(q)). Assume that G
is a matrix group and edi is the component of ei(r) with respect to a fixed
basis {ba} of the Lie algebra g, where (ba)Q = ∂ga . Then

(ei(g, r))Q = gade
d
i ∂ga .

Since Dq is the direct sum of Sq and the horizontal space of the nonholo-
nomic connection A, it can be represented by

D = span{gadedi ∂ga ,−gabA
b
α∂ga + ∂rα}. (5.8.34)

Before we state the theorem and do some computations, we want to make
sure that the reader understands the index convention used in this section:

1. The first batch of indices is denoted by a, b, c, . . . and range from 1
to k, corresponding to the symmetry direction (k = dim g).
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2. The second batch of indices will be denoted by i, j, k, . . . and range
from 1 to m, corresponding to the symmetry direction along the con-
straint space (m is the number of momentum functions).

3. The indices α, β, . . . on the shape variables r range from 1 to n − k
(n− k = dim (Q/G), i.e., the dimension of the shape space).

Then the induced coordinates (ga, rα, p̃i, p̃α) for the constraint subman-
ifold M are defined by

p̃i = gade
d
i pa = μde

d
i , (5.8.35)

p̃α = pα − gabA
b
αpa = pα − μbA

b
α. (5.8.36)

Here μ is an element of the dual of the Lie algebra g∗, and μa are its
coordinates with respect to a fixed dual basis. Notice that p̃i are nothing
but the corresponding momentum functions on the Hamiltonian side.
We can find the constrained Poisson structure matrix JM(ga, rα, p̃i, p̃α)

by computing {ga, gb}, etc., and then restricting them to M. Recall that
JM is constructed out of the Poisson tensor J̃ in (5.8.9) by leaving out its
last k columns and last k rows and restricting its remaining elements to M.
Clearly,

{ga, gb} = 0, {ga, rα} = 0, {rα, rβ} = 0.

And we also have

{ga, p̃i} = {ga, gbcecipb} = gac e
c
i ,

{ga, p̃α} = {ga, pα − gcbA
b
αpc} = −gabA

b
α,

{rα, p̃i} = {rβ , gbcecipb} = 0,

{rα, p̃β} = {rα, pβ − gcbA
b
βpc} = δαβ .

It is also straightforward to obtain

{p̃i, p̃j} = {gac ecipa, gbdedjpb}

= pb
∂gbc
∂gσ

ecig
σ
d e

d
j − pb

∂gbd
∂gτ

ecig
τ
c e

d
j

= pb

(
∂gbc
∂gσ

gσd − ∂gbd
∂gτ

gτc

)
ecie

d
j

= −pag
a
bC

b
cde

c
ie

d
j

= −μaC
a
cde

c
ie

d
j ,

where Ca
cd are the structure constants of the Lie algebra g. Similarly, we

have

{p̃i, p̃α} = {gac ecipa, pα − gbdA
b
αpd}

= {gac ecipa, pα} − {gac ecipa, gbdAb
αpd}

= μa
∂eai
∂rα

+ μaC
a
bde

b
iA

d
α
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and

{p̃α, p̃β} = {pα − gabA
b
αpa, pβ − gcdA

d
βpc}

= −{pα, gcdAd
βpc} − {gabAb

αpa, pβ}+ {gabAb
αpa, g

c
dA

d
βpc}

= μb

∂Ab
β

∂rα
− μb

∂Ab
α

∂rβ
− μbC

b
acA

a
αA

c
β

= −μbB
b
αβ ,

where Bb
αβ are the coefficients of the curvature of the nonholonomic con-

nection and are given by

Bb
αβ =

∂Ab
α

∂rβ
− ∂Ab

β

∂rα
+ Cb

acA
a
αA

c
β .

Therefore, the constrained Hamilton equations can be written as

⎛
⎜⎜⎝
ġa

˙̃pi
ṙα

˙̃pα

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 gac e
c
j 0 −gacA

c
β

−(gbce
c
i )

T −μaC
a
bde

b
ie

d
j 0 μaF

a
iβ

0 0 0 δαβ
(gbcA

c
α)

T −(μaF
a
jα)

T −δβα −μaB
a
αβ

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

∂HM
∂gb

∂HM
∂p̃j

∂HM
∂rβ

∂HM
∂p̃β

⎞
⎟⎟⎟⎟⎟⎠

,

(5.8.37)

where F a
iβ is defined by

F a
iβ =

∂eai
∂rβ

+ Ca
bde

b
iA

d
β . (5.8.38)

Notice that the order of the variables rα and p̃i has been switched to make
the diagonalization of the constrained Poisson tensor more apparent.
Since G is the symmetry group of the system and the Hamiltonian H is

G-invariant, we have HM = hM̄. Hence

∂HM
∂gb

= 0,

∂HM
∂p̃j

=
∂hM
∂p̃j

,

∂HM
∂rβ

=
∂hM
∂rβ

,

∂HM
∂p̃β

=
∂hM
∂p̃β

.



304 5. Nonholonomic Mechanics

After the reduction by the symmetry group G, we have

⎛
⎜⎜⎝
ξb

˙̃pi
ṙα

˙̃pα

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 ebj 0 −Ab
β

−(eci )
T −μaC

a
bde

b
ie

d
j 0 μaF

a
iβ

0 0 0 δαβ
(Ac

α)
T −μa(F

a
jα)

T −δβα −μaB
a
αβ

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

0
∂hM̄
∂p̃j

∂hM̄
∂rβ

∂hM̄
∂p̃β

⎞
⎟⎟⎟⎟⎟⎠

, (5.8.39)

where ξb = (g−1)baġ
a.

The above computations prove the following theorem.

5.8.3 Theorem. The momentum equation and the reduced Hamilton equa-
tions on the reduced constraint submanifold M̄ can be written as follows:

˙̃pi = −μaC
a
bde

b
ie

d
j

∂hM̄
∂p̃j

+ μaF
a
iβ

∂hM̄
∂p̃β

, (5.8.40)

ṙα =
∂hM̄
∂p̃α

, (5.8.41)

˙̃pα = −∂hM̄
∂rα

− μaF
a
jα

∂hM̄
∂p̃j

− μaB
a
αβ

∂hM̄
∂p̃β

. (5.8.42)

Adding in the reconstruction equation

ξb = −Ab
β

∂hM̄
∂p̃β

+ ebj
∂hM̄
∂p̃j

, (5.8.43)

we recover the full dynamics of the system.

Notice that equation (5.8.40) can be considered as the momentum equa-
tion on the Hamiltonian side, which corresponds to the momentum equa-
tion. It generalizes the Lie–Poisson equation to the nonholonomic case.
Moreover, if we now truncate the reduced Poisson matrix J̃ in equa-

tion (5.8.39) by leaving out its first column and first row, the new matrix
JM̄ given by

JM̄ =

⎛
⎝−μaC

a
bde

b
ie

d
j 0 μaF

a
iβ

0 0 δαβ
−μa(F

a
jα)

T −δβα −μaB
a
αβ

⎞
⎠ (5.8.44)

defines a bracket {, }M̄ on the reduced constraint submanifold M̄ as follows:

{
FM̄, GM̄

}
M̄(p̃i, r

α, p̃α)

:=

(
∂FT

M̄
∂p̃i

,
∂FT

M̄
∂rα

,
∂FT

M̄
∂p̃α

)
JM̄(p̃i, r

α, p̃α)

⎛
⎜⎜⎜⎝

∂GM̄
∂p̃j

∂GM̄
∂rβ

∂GM̄
∂p̃β

⎞
⎟⎟⎟⎠ ,
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for any two smooth functions FM̄, GM̄ on the reduced constraint subman-
ifold M̄ whose induced coordinates are (p̃i, r

α, p̃α). Clearly, this bracket
satisfies the first two defining properties of a Poisson bracket, namely, skew-
symmetry and the Leibniz rule. Moreover, the reduced constrained Hamil-
tonian hM̄ is an integral of motion for the reduced Hamiltonian dynamics
on M̄ due to the skew symmetry of the reduced bracket.

The Equivalence of Poisson and Lagrangian Reduction. That the
Poisson reduction procedure and the Lagrangian reduction procedures give
the same set of reduced equations is proved in the following theorem.

5.8.4 Theorem. Equations (5.8.40) to (5.8.43) given by Poisson reduction
are equivalent to the equations given by Lagrangian reduction,

ξb = −Ab
β ṙ

β + Γbipi = −Ab
β ṙ

β + ebjΩ
j , (5.8.45)

ṗi =
∂l

∂ξa

(
Ca

bdξ
bedi +

∂eai
∂rβ

ṙβ
)
, (5.8.46)

d

dt

(
∂lc
∂ṙα

)
− ∂lc

∂rα
= − ∂l

∂ξb
(Bb

αβ ṙ
β + F b

αiΩ
i), (5.8.47)

via a reduced Legendre transform

p̃α =
∂lc
∂ṙα

, p̃i =
∂lc
∂Ωi

.

Proof. Define the reduced constrained Lagrangian

lc(r, ṙ,Ω) = l(r, ṙ,−Aṙ +Ωe),

where Ω is the body angular velocity and e(r) is the body fixed basis at
the identity defined earlier. Notice first that

∂l

∂ṙα
=

∂L

∂ṙα
= pα.

Since

pb =
∂L

∂ġb
=

∂l

∂ξa
∂ξa

∂ġb
=

∂l

∂ξa
(g−1)ab ,

we have
∂l

∂ξa
= μa.

Hence,

∂lc
∂ṙα

=
∂l

∂ṙα
+

∂l

∂ξa
∂ξa

∂ṙα
=

∂l

∂ṙα
− ∂l

∂ξa
Aa

α = pα − μaA
a
α = p̃α

and
∂lc
∂Ωi

=
∂l

∂ξa
∂ξa

∂Ωi
=

∂l

∂ξa
eai = p̃i.
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That is, p̃α = ∂lc
∂ṙα and p̃i =

∂lc
∂Ωi , do define the right reduced constrained

Legendre transform between the reduced constraint submanifolds D̄ and M̄
with the corresponding reduced coordinates (rα, ṙα,Ωi) and (rα, p̃α, p̃i).

To find the reduced constrained Hamiltonian hM, notice first that since
E is G-invariant, we have

E =
∂L

∂q̇i
q̇i − L =

∂L

∂ġa
ġa +

∂L

∂ṙα
ṙα − L =

∂l

∂ξa
ξa +

∂l

∂ṙα
ṙα − l.

After restricting E to the submanifold D, we have

ED =
∂l

∂ξa
(−Aa

αṙ
α +Ωieai ) +

(
∂lc
∂ṙα

+Aa
α

∂l

∂ξa

)
ṙα − lc

=
∂l

∂ξa
Ωieai +

∂lc
∂ṙα

ṙα − lc

=
∂lc
∂Ωi

Ωi +
∂lc
∂ṙα

ṙα − lc.

Therefore, we have

hM̄ = p̃iΩ
i + p̃αṙ

α − lc, (5.8.48)

via the Legendre transform (rα, ṙα,Ωi) �→ (rα, p̃α, p̃i). Differentiate hM̄
with respect to p̃α and p̃j and use the Legendre transform to obtain

∂hM̄
∂p̃α

= p̃i
∂Ωi

∂p̃α
+ p̃β

∂ṙβ

∂p̃α
+ ṙα − ∂lc

∂ṙβ

∂ṙβ

∂p̃α
− ∂lc

∂Ωi

∂Ωi

∂p̃α
= ṙα,

which is equation (5.8.41). Also, we have

∂hM̄
∂p̃j

= Ωj + p̃i
∂Ωi

∂p̃j
+ p̃α

∂ṙα

∂p̃j
− ∂lc

∂ṙα

∂ṙα

∂p̃j
− ∂lc

∂Ωi

∂Ωi

∂p̃j
= Ωj ,

which, together with equation (5.8.45), gives equation (5.8.43). Moreover,
since ∂l

∂ξb
= gab

∂L
∂ġa = μb and p̃i = pi, we have

˙̃pi =
∂l

∂ξa

(
Ca

bdξ
bedi +

∂eai
∂rβ

ṙβ
)

= μa

(
Ca

bde
d
i

(−Ab
β ṙ

β + ebjΩ
j
)
+

∂eai
∂rβ

ṙβ
)

= μa

(
Ca

bde
d
i

(
−Ab

β

∂hM̄
∂p̃β

+ ebj
∂hM̄
∂p̃j

)
+

∂eai
∂rβ

∂hM̄
∂p̃β

)

= μaC
a
bde

b
ie

d
j

∂hM̄
∂p̃j

+ μa

(
Ca

bde
b
iA

d
β +

∂eai
∂rβ

)
∂hM̄
∂p̃β

,

which is equation (5.8.40).
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Finally, differentiate hM̄ with respect to rα to obtain

∂hM̄
∂rα

= p̃i
∂Ωi

∂r̃α
+ p̃β

∂ṙβ

∂rα
− ∂lc

∂rα
− ∂l̃c

∂ṙβ
∂ṙβ

∂rα
− ∂lc

∂Ωi

∂Ωi

∂rα
= − ∂lc

∂rα
,

which together with equation (5.8.47) gives

˙̃pα = −∂hM̄
∂rα

− μaF
a
jα

∂hM̄
∂p̃j

− μaB
a
αβ

∂hM̄
∂p̃β

,

which is equation (5.8.42).

Remark. Equations (5.8.47) are the same as the reduced Lagrange–
d’Alembert equations. The only difference is that here the reduced con-
strained Lagrangian lc is a function of (r, ṙ,Ω), where in Bloch, Krish-
naprasad, Marsden, and Murray [1996] and in Koon and Marsden [1997b]
it is considered as a function of (r, ṙ, p). Since it is more natural to use the
body angular velocity as a variable on the Lagrangian side, the formulation
here looks better.

5.8.5 Example (The Snakeboard). The snakeboard is modeled as a
rigid body (the board) with two sets of independently actuated wheels,
one on each end of the board. The human rider is modeled as a momentum
wheel that sits in the middle of the board and is allowed to spin about
the vertical axis. Spinning the momentum wheel causes a countertorque
to be exerted on the board. The configuration of the board is given by
the position and orientation of the board in the plane, the angle of the
momentum wheel, and the angles of the back and front wheels. Let (θ, x, y)
represent the orientation and position of the center of the board, ψ the angle
of the momentum wheel relative to the board, and φ1 and φ2 the angles
of the back and front wheels, also relative to the board. Take the distance
between the center of the board and the wheels to be r. See Figure 5.8.1.

(x,y )

φ

φ

θ

r

ψ

Figure 5.8.1. The geometry of the snakeboard.

Following Bloch, Krishnaprasad, Marsden, and Murray [1996], a simpli-
fication is made that we shall also assume here, namely that φ1 = −φ2,
J1 = J2. The parameters are also chosen such that J +J0+J1+J2 = mr2,
where m is the total mass of the board, J is the inertia of the board, J0
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is the inertia of the rotor, and J1, J2 are the inertias of the wheels. This
simplification eliminates some terms in the derivation but does not affect
the essential geometry of the problem. Setting φ = φ1 = −φ2, then the
configuration space becomes Q = S1 × S1 × SE(2), and the Lagrangian
L : TQ → R is the total kinetic energy of the system and is given by

L(q, q̇) =
1

2
J0ψ̇

2 + J1φ̇
2 + J0ψ̇θ̇ +

1

2
mr2θ̇2 +

1

2
m(ẋ2 + ẏ2).

Clearly, L is independent of the configuration of the board, and hence it is
invariant to all possible group actions by the Euclidean group SE(2).

The Snakeboard Constraint Submanifold. The rolling of the front
and rear wheels of the snakeboard is modeled using nonholonomic con-
straints that allow the wheels to spin about the vertical axis and roll in the
direction that they are pointing. The wheels are not allowed to slide in the
sideways direction. This gives the constraint one-forms

ω1(q) = − sin(θ + φ)dx+ cos(θ + φ)dy − r cosφ dθ,

ω2(q) = − sin(θ − φ)dx+ cos(θ − φ)dy + r cosφ dθ,

which are also invariant under the SE(2) action. The constraints determine
the kinematic distribution Dq:

Dq = span{∂ψ, ∂φ, a∂θ + b∂x + c∂y},

where a = sin 2φ, b = −2r cos2 φ cos θ, and c = −2r cos2 φ sin θ. The tan-
gent space to the orbits of the SE(2) action is given by

Tq(Orb(q)) = span{∂θ, ∂x, ∂y}.

The intersection between the tangent space to the group orbits and the
constraint distribution is thus given by

Sq = Dq ∩ Tq(Orb(q)) = span{a∂θ + b∂x + c∂y}.

The momentum can be constructed by choosing a section of S = D ∩
T Orb regarded as a bundle over Q. Since Dq∩Tq Orb(q) is one-dimensional,
the section can be chosen to be

ξqQ = a∂θ + b∂x + c∂y,

which is invariant under the action of SE(2) on Q. The nonholonomic mo-
mentum is thus given by

p =
∂L

∂q̇i
(ξqQ)

i = J0a ψ̇ +mr2a θ̇ +mb ẋ+mc ẏ.
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The kinematic constraints plus the momentum are given by

0 = −r cosφ θ̇ − sin(θ + φ)ẋ+ cos(θ + φ)ẏ,

0 = r cosφ θ̇ − sin(θ − φ)ẋ+ cos(θ − φ)ẏ,

p = J0 sin 2φ ψ̇ +mr2 sin 2φ θ̇

− 2mr cos2 φ cos θẋ− 2mr cos2 φ sin θ ẏ.

Adding, subtracting, and scaling these equations, we can write (away from
the point φ = π/2)

⎡
⎢⎢⎣

θ̇

cos θ ẋ+ sin θ ẏ

− sin θ ẋ+ cos θ ẏ

⎤
⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎣

J0
mr2

sin2 φ ψ̇

− J0
2mr

sin 2φ ψ̇

0

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

tanφ

2mr2
p

−1

2mr
p

0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (5.8.49)

These equations have the form

g−1ġ +A(r)ṙ = Γ(r)p,

where

A(r) =
J0
mr2

sin2 φ eθ dψ − J0
2mr

sin 2φ ex dψ,

Γ(r) =
1

2mr2
tanφ eθ − 1

2mr
ex.

These are precisely the terms that appear in the nonholonomic connection
relative to the (global) trivialization (r, g).

Since Γp = Ωe, we can rewrite the constraints using the angular momen-
tum Ω as follows:

⎡
⎣ξ

1

ξ2

ξ3

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

− J0
mr2

sin2 φ ψ̇

J0
2mr

sin 2φ ψ̇

0

⎤
⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎣

sin 2φΩ

−2r cos2 φΩ

0

⎤
⎥⎦ . (5.8.50)

Recall that the components of ξ = g−1ġ for the group SE(2) are given by
the formulae

ξ1 = θ̇, ξ2 = cos θ ẋ+ sin θ ẏ, ξ3 = − sin θ ẋ+ cos θ ẏ.



310 5. Nonholonomic Mechanics

The Snakeboard Reduced Constrained Hamiltonian. From the
Lagrangian L we obtain the reduced Lagrangian

l(r, ṙ, ξ) = 1
2J0ψ̇

2 + J0ψ̇ξ
1 + J1φ̇

2 + 1
2mr2(ξ1)2 + 1

2m((ξ2)2 + (ξ3)2),

where ξ = g−1ġ. After plugging in the constraints (5.8.50), we have the
reduced constrained Lagrangian

lc(r, ṙ,Ω) =
1

2
J0ψ̇

2 − J2
0

2mr2
sin2 φ ψ̇2 + J1φ̇

2 + 2mr2 cos2 φΩ2. (5.8.51)

Then the reduced constrained Legendre transform is given by

p̃ψ =
∂lc

∂ψ̇
= J0ψ̇ − J2

0

mr2
sin2 φ ψ̇,

p̃φ =
∂lc

∂φ̇
= 2J1φ̇,

p =
∂lc
∂Ω

= 4mr2 cos2 φΩ,

and its inverse is

ψ̇ =
mr2p̃ψ

J0(mr2 − J0 sin
2 φ)

,

φ̇ =
p̃φ
2J1

,

Ω =
p

4mr2 cos2 φ
.

Therefore, the reduced constrained Hamiltonian hM̄ is

hM̄ = p̃ψψ̇+ p̃φφ̇+ pΩ− lc =
mr2

2J0(mr2 − J0 sin
2 φ)

p2ψ +
1

4J1
p2φ +

sec2 φ

8mr2
p2.

The Snakeboard Reduced Poisson Structure Matrix. Recall that
in computing the reduced structural matrix we need only to calculate
{p̃α, p̃β}, etc., and then restrict them to M̄. Since

p = −2r cos2 φ cos θpx − 2r cos2 φ sin θpy + sin 2φpθ,

p̃ψ =
J0

2mr2
sin 2φ cos θpx +

J0
2mr2

sin 2φ sin θpy − J0
mr2

sin2 φpθ + pψ,

p̃φ = pφ,

we have

{p, p̃φ} = {−2r cos2 φμ1, pφ}+ {sin 2φμ3, pφ}
= 2r sin 2φμ1 + 2 cos 2φμ3. (5.8.52)
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Similarly, we obtain

{p̃ψ, p̃φ} =
J0
mr

cos 2φμ1 − J0
mr

sin 2φμ3, (5.8.53)

{p, p̃ψ} = 0. (5.8.54)

As for μ1, μ2, μ3 (restricted to M̄), recall that

μ1 = cos θpx + sin θpy = cos θ(mẋ) + sin θ(mẏ)

=
J0
r

cosφ sinφψ̇ − 1

2r
p =

mr sinφ cosφ

mr2 − J0 sin
2 φ

p̃ψ − 1

2r
p.

We can also obtain μ2, μ3 in a similar way. Therefore,

⎡
⎣μ1

μ2

μ3

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎣

mr sinφ cosφ

(mr2 − J0 sin
2 φ)

p̃ψ

0

mr2 cos2 φ

(mr2 − J0 sin
2 φ)

p̃ψ

⎤
⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎣

−1

2r
p

0

tanφ

2
p

⎤
⎥⎥⎥⎥⎦ . (5.8.55)

So after substituting the constraints (5.8.55) into equations (5.8.52) to
(5.8.54), we have

{p, p̃φ}M̄ = − tanφ p+
2mr2 cos2 φ

mr2 − J0 sin
2 φ

p̃ψ, (5.8.56)

{p̃ψ, p̃φ}M̄ = − J0
2mr2

p− J0 sinφ cosφ

mr2 − J0 sin
2 φ

pψ, (5.8.57)

{p, p̃ψ}M̄ = 0. (5.8.58)

Therefore, the reduced Poisson structure matrix is given by

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 −2r cos2 φ 0 0
J0

2mr sin 2φ 0
0 0 0 0 0 0 0 0
0 0 0 sin 2φ 0 0 − J0

mr2
sin2 φ 0

2r cos2 φ 0 − sin 2φ 0 0 0 0 {p,p̃φ}M̄
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

− J0
2mr sin 2φ 0

J0
mr2

sin2 φ 0 −1 0 0 {p̃ψ,p̃φ}M̄
0 0 0 −{p,p̃φ}M̄ 0 −1 −{p̃ψ,p̃φ}M̄ 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where {p, p̃φ}M̄ and {p̃ψ, p̃φ}M̄ are given as above by (5.8.56) and (5.8.57).
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The Reduced Constrained Hamilton Equations. It is straightfor-
ward to find that

∂hM̄
∂p

=
sec2 φ

4mr2
p,

∂hM̄
∂ψ

= 0,

∂hM̄
∂φ

=
sec2 φ tanφ

4mr2
p2 +

mr2 sin 2φ

2(mr2 − J0 sin
2 φ)2

p̃2ψ,

∂hM̄
∂p̃ψ

=
mr2

J0(mr2 − J0 sin
2 φ)

p̃ψ,

∂hM̄
∂p̃φ

=
1

2J1
p̃φ.

(5.8.59)

Then by using the formula in (5.8.39) and after some computations, we ob-
tain the momentum equation and the reduced constrained Hamilton equa-
tions as follows:

ṗ =

(
− tanφp+

2mr2 cos2 φ

mr2 − J0 sin
2 φ

p̃ψ

)
1

2J1
p̃φ,

ψ̇ =
mr2

J0(mr2 − J0 sin
2 φ)

p̃ψ,

φ̇ =
1

2J1
p̃φ,

˙̃pψ = −
(

J0
mr2

p+
J0 sin 2φ

2(mr2 − J0 sin
2 φ)

p̃ψ

)
1

2J1
p̃φ,

˙̃pφ = 0.

(5.8.60)

Also, we can obtain the following reconstruction equations on the Hamil-
tonian side:

θ̇ = ξ1 = − sin2 φ

mr2 − J0 sin
2 φ

p̃ψ +
tanφ

2mr2
p,

ẋ = ξ2 cos θ − ξ3 sin θ

=

(
r sin 2φ

2(mr2 − J0 sin
2 φ)

p̃ψ − 1

2mr
p

)
cos θ,

ẏ = ξ2 sin θ + ξ3 cos θ

=

(
r sin 2φ

2(mr2 − J0 sin
2 φ)

p̃ψ − 1

2mr
p

)
sin θ.

(5.8.61)
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Together, these two sets of equations give us the dynamics of the full
constrained systems but in a form that is suitable for control-theoretical
purposes. �
We remark that for certain nonholonomic systems it is possible to make

the system Hamiltonian by a change in time parameterization. For some of
the literature in this area, see, for example, Ehlers et al. [2005] and Fernan-
dez, Mestdag, and Bloch [2009] and the references therein and Section 8.9.



6
Control of Mechanical
and Nonholonomic Systems

6.1 Background in Kinematic
Nonholonomic Control Systems

Nonholonomic Motion Planning. There is a large literature on non-
holonomic motion planning, the construction in the nonholonomic setting
of explicit open loop controls as discussed in Chapter 4; see, for example,
Li and Canny [1993] and Murray and Sastry [1993] and the works cited
therein as well as, for example, Sussmann and Liu [1991], Lafferiere and
Sussman [1991], Lewis, Ostrowski, Murray, and Burdick [1994], Ostrowski,
Desai, and Kumar [1997], Lewis and Murray [1999], Ostrowski [2000], Bullo,
Leonard, and Lewis [2000], and Bullo, Lewis, and Lynch [2002]. It is not
our intention in this book to give an exhaustive account of the details of
this theory. We will instead illustrate some aspects of the theory illustrated
by Brockett’s generalization of the Heisenberg system as well as systems in
so-called chained form.
In nonholonomic motion planning one’s goal is to use open-loop control

to reach a desired point in phase space. Nonholonomic systems, by virtue of
the nonintegrable nature of their constraints, are amenable to rather elegant
path planning algorithms. The basic situation considered is usually that
of kinematic control systems, where the vector fields defining the system
velocities do not span the state space, but nonetheless one can move from
any point of the space to any other. This is, as we have seen, a fundamental
property of nonholonomic systems.

© Springer-Verlag New York 2015
A.M. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary
Applied Mathematics 24, DOI 10.1007/978-1-4939-3017-3 6
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We shall consider the class of completely controllable kinematic systems
of the form

ẋ =

m∑
i

ui(t)gi(x), (6.1.1)

where x ∈ R
n for a suitable class of functions gi on R

n and a suitable class
of functions ui on R

+.
The motion planning problem is to find an efficient algorithm that

gives for every pair of points p and q an open loop control t �→ u(t) =(
u1(t), . . . , un(t)

)
that steers the system from p to q.

6.1.1 Example (Generalized Heisenberg System). We consider first
Brockett’s canonical system, a generalization of the Heisenberg system
(Brockett [1981]). (We will treat the stabilization problem for this system
in detail later in this chapter.) The system is the following:

ẋ = u, (6.1.2)

Ẏ = xuT − uxT , (6.1.3)

where x, u ∈ R
n and Y ∈ so(n), n ≥ 2. Here so(n) is the Lie algebra of

n× n skew-symmetric matrices, and elements of Rn are viewed as column
vectors.
In terms of components, the last equation reads

Ẏij = xiuj − xjui. (6.1.4)

The importance of this system is that it is a canonical form for a class
of controllable systems of the form ẋ = B(x)u, u ∈ R

n, x ∈ R
n(n+1)/2.

The class in question is as follows: Let E0 be the subbundle of the tangent
bundle spanned by the control fields, and define the first derived algebra
to be given by E1 = E0 + [E0, E0]. Then this system is a normal form
for the controllable systems of this type, where the first derived algebra
of control vector fields spans the tangent space TRn(n+1)/2 at any point.
That is, Brockett showed that such a system can be transformed to the
form (6.1.2)–(6.1.3) up to a suitable order in a neighborhood of a given
point such as the origin.
The key to controlling this system is being able to change Y without

changing x. Since x is directly controlled, it is easily changed. We present
here a method of changing Y using sinusoids, which is motivated by the
optimal control problem of Brockett [1981] (see Section 1.8 for this analysis
in the special case of the Heisenberg system). We follow the exposition and
some of the ideas of Murray and Sastry [1993], although we use a slightly
different form of the equations.
To solve the motion planning problem for this system, the idea is to

proceed along loops in x-space, which gradually drives one through Y -space.
This is just a reflection of the holonomy in the system as described in
Section 3.16. The use of holonomy loops in stabilizing nonholonomic
mechanical systems is discussed in Section 6.6.
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Motivated by the fact that the optimal solution of the Heisenberg system
(Section 1.8) gives a u that consists of sinusoids, we choose the control law

ui =
∑
k

aik sin kt+
∑
k

bik cos kt, k = 1, . . . , (6.1.5)

where aik and bik are real numbers. Since ẋi = ui, integration gives

xi = −
∑
k

aik
k

cos kt+
∑
k

bik
k

sin kt+ Ci, (6.1.6)

where Ci is a constant depending on the initial value of x.
Substituting these equations for xi(t) and ui(t) into equation (6.1.4) and

integrating yields

Yij(2π) =
∑
k

2π

k
(bikajk − bjkaik) + Yij(0), (6.1.7)

since all integrals except those of the squares of cosine and sine vanish.
Under this input, the x’s remain unchanged.
Thus, this gives the following solution to the motion planning problem:

First drive the x to the desired final value; then use the control (6.1.5) to
drive Y to the desired final value. �
Chained Systems. Similar algorithms may also be given for higher-
order systems (see Brockett and Dai [1992] and Murray and Sastry [1993]).
One such class that may be easily handled is the class of chained systems,
which are systems of the form

ξ̇1 = v1,

ξ̇2 = v2,

ξ̇3 = ξ2v1,

...

ξ̇n = ξn−1v1.

(6.1.8)

One can show that a large class of kinematic two-input systems may be put
into this form. To make this specific, we state a result proved in Murray and
Sastry [1993] and then illustrate the proof of the theorem for the Heisenberg
system.

6.1.2 Proposition. Consider a controllable system

ẋ = u1g1(x) + u2g2(x), (6.1.9)

where g1 and g2 are linearly independent and smooth. Define the distribu-
tions

Δ0 ≡ span
{
g1, g2, adg1 g2, · · · , adn−2

g1 g2
}
,

Δ1 ≡ span
{
g2, adg1 g2, · · · , adn−2

g1 g2
}
,

Δ2 ≡ span
{
g2, adg1 g2, · · · , adn−3

g1 g2
}
.

(6.1.10)
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If there exists an open set U ∈ R
n such that Δ0(x) = R

n for all x ∈ U , Δ1,
and Δ2 are involutive on U , and there exists a smooth function h1 : U → R

such that dh1 · Δ1 = 0 and £g1h1 = 1, then there exists a local feedback
transformation

ξ = φ(x), u = β(x)v (6.1.11)

such that the transformed system is in the chained form (6.1.8).

6.1.3 Example. Consider now the Heisenberg system

ẋ = u1,

ẏ = u2,

ż = xu2 − yu1.

(6.1.12)

In this case Δ0 = R
3, since the system is controllable. Also,

Δ1 = span

{
∂

∂x2
+ x1

∂

∂x3
, 2

∂

∂x3

}
,

Δ2 = span

{
∂

∂x2
+ x1

∂

∂x3

}
.

(6.1.13)

Now we choose ξ1 = h1 = x1. Following the prescription in Murray
and Sastry [1993], we construct a function h2 such that dh2 ·Δ2 = 0 and
dh2 · adn−2

g1 g2 �= 0. This means that

∂h2

∂x2
+ x1

∂h2

∂x3
= 0,

∂h2

∂x3
�= 0 , (6.1.14)

which is satisfied by the function

h2 = x3 − x1x2 .

Now set

ξ2 = £g1h2 = −2x2 (6.1.15)

and

v1 = u1, v2 =
(
£2

g2h2

)
u1 + (£g2£g1h2)u2 = −2u2 . (6.1.16)

Then
ξ̇1 = ẋ1 = u1 = v1,

ξ̇2 = −2ẋ2 = v2,

ξ̇3 = ẋ3 − ẋ1x2 − x1ẋ2 = −2x2u1 = ξ2v1,

(6.1.17)

which puts the system into the chained form desired. �
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Extended Systems. Aside from such special classes of systems it is pos-
sible to use rather general motion planning algorithms as shown in the work
of Sussmann and his collaborators (see, for example, the papers Sussmann
and Liu [1991] and Lafferiere and Sussman [1991]). One of the key ideas in
this work is to use an extended system of the form

ẋ = v1g1(x) + · · ·+ vmgm(x) + vm+1gm+1(x) + · · ·+ vrgr(x), (6.1.18)

where gm+1, . . . , gr(x) are higher-order Lie brackets of the gi chosen so that
g1(x), . . . , gr(x) span all Rn. The idea is then to compute a motion con-
troller for the extended system (which is easy, since we have an independent
control vector field for each independent direction in R

n) and then use that
to construct one for the original system.
One approach is to use bracketed functions from the so-called P. Hall

basis. Sussmann and Lafferiere then show how to construct motion con-
trol algorithms that are exact for nilpotent and nilpotentizable systems
and that are approximate, but converge in a suitable sense, in the general
case. Sussmann and Liu use a similar approach involving highly oscillatory
inputs.

Nonholonomic Stabilization Techniques. We shall show here that
it follows from Brockett’s necessary conditions (see Section 4.5) that non-
holonomic kinematic systems do not satisfy the necessary conditions for
the existence of a smooth or indeed continuous feedback stabilization law.
(The same holds true for dynamic nonholonomic systems; see Section 6.6.)
There are thus two basic approaches to achieving feedback to the origin:
the use of time-varying feedback and the use of discontinuous feedback.
We discuss in Sections 6.2 and 6.3 an approach to the use of the latter in
the kinematic setting. Discontinuous stabilization in the dynamic setting
is discussed in Section 6.6. In this section we discuss briefly some of the
literature on the use of dynamic feedback and combinations of dynamic
and discontinuous feedback.
We have (see, for example, Pomet [1992]):

6.1.4 Proposition. Consider the system

ẋ =

m∑
k=1

ukgk , (6.1.19)

where x ∈ R
n, m < n, and

rank{g1(0), . . . , gm(0)} = m.

There exists no continuous feedback that locally asymptotically stabilizes the
origin.
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Proof. Let v be a nonzero vector linearly independent of g1(0), . . . , gm(0).
By continuity there is an ε > 0 such that for all (x, u1, . . . , um) with ‖x‖ < ε
the vector

∑m
k=1 gk(x) is not a multiple of v. Hence the map

(x, u1, . . . , um) →
m∑

k=1

ukgk(x) (6.1.20)

does not map the ε-neighborhood of 0 (in (x, u)-space) into a neighborhood
of 0 in R

n. Hence the system does not satisfy the necessary condition of
Brockett [1983a] in Section 4.5. �

One way to deal with this problem is to use time-varying feedback. A key
result on stabilization by time-varying feedback is that of Coron [1992].
See also the related work of Pomet [1992], for example. Coron’s result is as
follows:

6.1.5 Theorem (Coron). Consider the system (6.1.19) and suppose that
all the vector fields gi are C∞ and that the Lie algebra of vector fields
generated by the gi spans R

n (i.e., the system is controllable).
Then for any positive T there exists a C∞ feedback law

u(x, t) = (u1(x, t), . . . , un(x, t))

such that

• u(0, t) = 0 for all t ∈ R,

• u(x,t+T)=u(x,t) for all x ∈ R
n and t ∈ R,

• the origin is a globally asymptotically stable point of the system
(6.1.19).

Pomet [1992] gives a more easily derived explicit feedback law and con-
structs an explicit Lyapunov function under a more restrictive controlla-
bility condition, namely, that

rank{g1(x), g2(x), . . . , gm(x), [g1, g2](x), . . . , [g1, gm](x), . . . ,

adjg1 g2(x), . . . , ad
j
g1 gm(x), . . . } = n . (6.1.21)

Here g1 does not, of course, play a special role and may be replaced with
any function gi or linear combination of gi.

General controllers constructed in this fashion may have quite slow con-
vergence rates. In M’Closkey and Murray [1993], for example, convergence
rates of various control laws are examined, and laws are produced that give
exponential convergence. We will not give the details of the general con-
struction here, but indicate the general idea using the Heisenberg system
as an example.
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Consider again the system

ẋ = u1,

ẏ = u2,

ż = yu1.

(6.1.22)

(As discussed above, see (6.1.17). This system is just the Heisenberg system
in chained form.)
Then the idea is to use a combination of time dependent and nonsmooth

feedback. In the first instance one considers a smooth feedback of the form

u1 = −x+ F1(z) cos t,

u2 = −y + F2(z) sin t,
(6.1.23)

and observes that this gives convergence but not asymptotic convergence.
In order to obtain convergence one needs nondifferentiable functions F1

and F2. For example, one can choose

F1(z) = sgn(z)
√

|z|, F2(z) =
√

|z|, (6.1.24)

where sgn(·) is the signum function.
Some related work may be found in Teel, Murray, and Walsh [1995],

where again the system (6.1.22) is considered but with controls

u1 = −x+ z sin t,

u2 = −y − z2 cos t .

It is shown by realizing the controls by the “exosystem”

ẇ1 = w2, w1(0) = 0,

ẇ2 = −w1, w2(0) = 1,

and using center manifold theory that the system is stabilized and the
convergence is exponential in nature. Using the exosystem the control law
becomes

u1 = −x+ zw1,

u2 = −y + z2w2 .

Then there is a local center manifold on which the dynamics is given by

ż = −1

4
z3 (w1 + w2)

2
, (6.1.25)

and hence the system is locally asymptotically stable to the origin.
Other interesting work on time-varying controllers for nonholonomic sys-

tems may be found, for example, in Canudas De Wit and Sørdalen [1992],
Sørdalen and Egeland [1995], Walsh and Bushnell [1995], Morin, Pomet,
and Samson [1999], and Morin and Samson [2000].
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Exercises

� 6.1-1. Carry out the motion planning problem for the following variant to
the generalized Heisenberg system:

ẋi = ui, i = 1, . . . , n,

Ẏij = xiuj , i > j .

� 6.1-2. Carry out the motion planning problem for the following system on
R

5 (see Murray and Sastry [1993]):

ẋ1 = u1,

ẋ2 = u2,

ẋ21 = x2u1,

ẋ211 = x21u1,

ẋ212 = x21u2.

Hint: For steering x1, x2, and x21 use sine and cosine controls as in the
text. To steer x211 independently of the other states use u1 = a sin t and
u2 = b cos 2t, and for x212 use u1 = b cos 2t and u2 = a sin t.

� 6.1-3. Prove that the chained system (6.1.8) is controllable.

� 6.1-4. Show that the time-dependent controls

u1 = − (y + z cos t) y cos t− (yz + x) ,

u2 = z sin t− (y + z cos t) ,

stabilize the system (6.1.22). (Hint: Rewrite the systems as a time-
independent system on R

3 × S1 and use the Lyapunov function

V (t, x, y, z)) =
1

2
(y + z cos t)

2
+

1

2
z2 +

1

2
x2

and LaSalle’s principle— see Pomet [1992].)

� 6.1-5. Complete the details of the center manifold computation, yielding
the dynamics (6.1.25).
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6.2 Stabilization of the Heisenberg System

Here we follow Bloch and Drakunov [1994, 1996] in considering a discontin-
uous approach to the stabilization problem for the nonholonomic integrator
or Heisenberg system. This is the prototypical example for which smooth
feedback fails. The idea is to use the natural algebraic structure of the sys-
tem together with ideas from sliding mode theory (see DeCarlo, Zak, and
Drakunov [1996], Drakunov and Utkin [1992]). Other work on the discon-
tinuous approach to such systems includes Kolmanovsky, Reyhanoglu, and
McClamroch [1994], Khennouf and Canudas de Wit [1995], Astolfi [1996],
Brockett [2000], and Agrachev and Liberzon [2001]. Another interesting
problem for such systems is the problem of tracking, which was also an-
alyzed in Bloch and Drakunov [1996] and in Bloch and Drakunov [1995].
Related work also includes, for example, Ryan [1990], Sira-Ramirez and
Lischinsky-Arenas [1990], Morse [1997], Zhang and Hirschorn [1997], Son-
tag [1999], and Reyhanoglu, Cho, and McClamroch [2000]. There are also
many other references in the literature. Morse [1997] is a good source of
references.
We have the system

ẋ = u, (6.2.1)

ẏ = v, (6.2.2)

ż = xv − yu. (6.2.3)

The problem of stabilizing this system, even locally, is not a trivial task,
since, as can be easily seen, the linearization in the vicinity of the origin
gives the noncontrollable system

ẋ = u,

ẏ = v,

ż = 0.

The main difficulty is the fact that stabilization of x and y leads to a zero
right-hand side of (6.2.3), and therefore, the variable z cannot be steered
to zero. That simple observation implies that to stabilize the system one
needs to make z converge “faster” than x and y.
We consider the control law

u = −αx+ βy sign(z), (6.2.4)

v = −αy − βx sign(z), (6.2.5)

where α and β are positive constants.
Let us show that there exists a set of initial conditions such that trajec-

tories starting there converge to the origin. To do this, consider a Lyapunov
function for the (x, y)-subspace:

V =
1

2
(x2 + y2). (6.2.6)



324 6. Control of Mechanical and Nonholonomic Systems

The time derivative of V along the trajectories of the system (6.2.3) is
negative:

V̇ = −αx2 + βxy sign(z)− αy2 − βxy sign(z) = −α(x2 + y2)

= −2αV.
(6.2.7)

Therefore, under the control (6.2.4), (6.2.5) the variables x and y are sta-
bilized.
Now let us consider the variable z. Using (6.2.3), (6.2.4), and (6.2.5), we

obtain

ż = xv − yu = −β(x2 + y2) sign(z) = −2βV sign(z). (6.2.8)

Since V does not depend on z and is a positive function of time, the absolute
value of the variable z will decrease and will reach zero in finite time if the
inequality

2β

∫ ∞

0

V (τ)dτ > |z(0)| (6.2.9)

holds. If z(0) is such that

2β

∫ ∞

0

V (τ)dτ = |z(0)| , (6.2.10)

then z(t) converges to the origin in infinite time (asymptotically). Oth-
erwise, it converges to some constant nonzero value of the same sign as
z(0).
If the above inequality (6.2.9) holds, the system trajectories are directed

to the surface z = 0, and the variable z(t) is stabilized at the origin in finite
time. (The variables x and y, as follows from (6.2.7), always converge to
the origin while within that surface.)
This phenomenon is known as sliding mode (see Utkin [1992]). The

manifold z = 0 is a stable integral manifold of the closed-loop system (6.2.1)–
(6.2.3), (6.2.4), (6.2.5). Its characteristic feature is reachability in finite
time. Using a smooth control, even a control satisfying a local Lipschitz
condition (in the vicinity of {z = 0}) such fast convergence cannot be
achieved. On the other hand, within the sliding manifold {z = 0} the sys-
tem behavior is described in accordance with the Filippov definition for
systems of differential equations with discontinuous right-hand sides (see
Filippov [1988]).
The version of this definition that we are using is as follows: We consider

the system
ẋ = f(x), (6.2.11)

with f(x) a discontinuous function composed of a finite number of functions

f(x) ≡ fk(x) for x ∈ Mk, (6.2.12)
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where the open regions Mk have piecewise smooth boundaries ∂Mk. Then
we define the right-hand side of (6.2.11) within ∂Mk to be

ẋ =
∑

k∈I(x)

μkfk(x). (6.2.13)

The sum is taken over the set I(x) of all k such that x ∈ ∂Mk and the
variables μk satisfy ∑

k∈I(x)

μk = 1; (6.2.14)

i.e., the right-hand side belongs to the convex closure co{fk(x) : k ∈ I(x)}
of the vector fields fk(x) for all k ∈ I(x). Actually, the Filippov definition
replaces the differential equation (6.2.11) by a differential inclusion

ẋ ∈ co{fk(x) | k ∈ I(x)} (6.2.15)

for the points x belonging to the boundaries ∂Mk. If within the convex
closure there exists a vector field tangent to all or some of the boundaries,
then there is a solution of the differential inclusion belonging to ∂Mk that
corresponds to the sliding mode.
In the above relatively simple case, the Filippov definition provides a

unique solution and implies that the system on the manifold is

ẋ = −αx,

ẏ = −αy.

From (6.2.7) it follows that

V (t) = V (0)e−2αt =
1

2
(x2(0) + y2(0))e−2αt . (6.2.16)

Substituting this expression in (6.2.9) and integrating, we find that the
condition for the system to be stabilized is

β

2α

[
x2(0) + y2(0)

] ≥ |z(0)|. (6.2.17)

The inequality
β

2α
(x2 + y2) < |z| (6.2.18)

defines a parabolic region P in the state space.
The above derivation can be summarized in the following theorem:

6.2.1 Theorem. If the initial conditions for the system (6.2.1)–(6.2.3)
belong to the complement Pc of the region P defined by (6.2.18), then the
control (6.2.4), (6.2.5) stabilizes the state.
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If the initial data are such that (6.2.18) is true, i.e., the state is inside
the paraboloid, we can use any control law that steers it outside. In fact,
any nonzero constant control can be applied. Namely, if u ≡ u0 = const,
v ≡ v0 = const, then

x(t) = u0t+ x0,

y(t) = v0t+ y0,

z(t) = t(x0v0 − y0u0) + z0.

With such x, y, and z, the left-hand side of (6.2.18) is quadratic with
respect to time t, while the right-hand side is linear. Hence, as the time
increases, the state inevitably will leave P.
A global feedback control law in the form of the feedback (although

discontinuous) can be described as follows:

(u, v)T =

{
(u0, v0)

T if (x, y, z)T ∈ P,

6.2.4), (6.2.5)T if (x, y, z)T ∈ Pc.
(6.2.19)

6.2.2 Theorem. The closed system (6.2.1)–(6.2.3), (6.2.19) is globally
asymptotically stable at the origin.

Global asymptotic stability means that:

(i) for all initial conditions we have x(t), y(t), z(t) → 0, when t → ∞;

(ii) for all ε > 0 there exists δ > 0 such that x2
0 + y20 + z20 < δ2 implies

x2(t) + y2(t) + z2(t) < ε2 for any t ≥ 0.

We have already shown above that (i) is true, and (ii) follows from the
fact that outside P and on the surface of the paraboloid ∂P the state
monotonically approaches the origin. For initial conditions inside P we
have

x2(t) + y2(t) + z2(t) = (u0t+ x0)
2 + (v0t+ y0)

2 + [(x0v0 − y0u0)t+ z0]
2.

(6.2.20)

The maximum of the expression (6.2.20) is achieved for t = 0 or t = tf ,
where tf is the first moment of time when the state reaches ∂P. This
moment is defined by an equation

β

2α
(u0tf + x0)

2 + (v0tf + y0)
2 = |(x0v0 − y0u0)tf + z0|. (6.2.21)

As can be easily seen from (6.2.21), for fixed u0, v0, the solution of this
equation tf tends to zero if x0, y0, z0 tend simultaneously to zero. That
proves (ii).
The parameters α, β define the size of the paraboloid.
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Simulations of the algorithm for two types of initial conditions are shown
in Figure 6.2.1. The figure shows the trajectories exiting from the set P
under constant control and then being driven to the origin under the feed-
back (6.2.4), (6.2.5).

When β
α → ∞ the parabolic region P is limited to the z-axis. From

that point of view, to stabilize the system (6.2.1–6.2.3), it is reasonable
to increase β as the state approaches the origin (if we decrease α, the
convergence of x and y will be slower). To realize this idea we can use a
control law where α increases when x and y approach the origin:

u = −αx+ β
y

x2 + y2
sign(z), (6.2.22)

v = −αy − β
x

x2 + y2
sign(z), (6.2.23)
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Figure 6.2.1. Stabilization of the nonholonomic integrator.

or even

u = αx+ β
y

x2 + y2
z, (6.2.24)

v = −αy − β
x

x2 + y2
z. (6.2.25)

(For a detailed analysis in the case (6.2.24), (6.2.25), see Khennouf and
Canudas de Wit [1995].)

Then from (6.2.3) we have

ż = −β sign(z),

for the controls (6.2.22), (6.2.23), or

ż = −βz,

respectively, for the controls (6.2.24), (6.2.25).
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In both cases, the state converges to the origin from any initial conditions,
except the ones belonging to the z-axis. But in contrast to (6.2.4), (6.2.5),
the control laws (6.2.22), (6.2.23) and (6.2.24), (6.2.25) are unbounded in a
neighborhood of the z-axis (on the axis it is not defined). If the initial con-
ditions belong to this set, again we can apply any nonzero constant control
for an arbitrarily small period of time and then switch to (6.2.22), (6.2.23)
or (6.2.24), (6.2.25). A method of dealing with the boundedness problem
is also described by Khennouf and Canudas de Wit [1995].
An ε-stabilizing control (to a neighborhood of the origin) may be ob-

tained by switching α.
Let α be the following function of x and y,

α = α0 sign(x2 + y2 − ε2), (6.2.26)

where α0 > 0, β > 0 are constants, and let the control be

u = −αx+ βyz, (6.2.27)

v = −αy − βxz. (6.2.28)

(One deals with initial data on the z-axis as above.)
Using (6.2.7) we find that from any initial conditions x and y the state

reaches an ε-sphere of the (x, y)-space origin:

x2 + y2 = const = ε2. (6.2.29)

After that, the equation for the variable z is

ż = −βε2z. (6.2.30)

Therefore, z → 0 as t → ∞, while the variables x and y stay in an
ε-vicinity of the origin. Of course, in (6.2.27), (6.2.28) z can be replaced by
any function g(z) that guarantees asymptotic stability of the equation

ż = −βε2g(z), (6.2.31)

for example, g(z) = sign(z).

Exercises

� 6.2-1. Construct a discontinuous stabilizing controller for the control sys-
tem (6.1.22).
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6.3 Stabilization of a Generalized
Heisenberg System

Following Bloch, Drakunov, and Kinyon [2000] we discuss here the stabiliza-
tion of the canonical generalization of the Heisenberg system (6.1.2), (6.1.3),
by discontinuous feedback. We also demonstrate a rather interesting con-
nection with isospectral flows (flows that preserve eigenvalues). Such flows
are fundamental to integrable systems theory; see, for example, the discus-
sion of the Toda lattice in Chapter 1. We note that some of this section
uses a little more Lie algebra theory than we have used up till now in this
book. For the reader unfamiliar with this, a useful reference is Sattinger
and Weaver [1986]. Most of the section can be read, however, by just ig-
noring the Lie-algebraic remarks and viewing the Killing form as the trace
inner product.

Lie-Algebraic Generalization. We consider here a system that gener-
alizes (6.1.2)–(6.1.3) and can be described as follows. Let g be a Lie algebra
with a direct sum decomposition g = m⊕h such that h is a Lie subalgebra,
[h,m] ⊆ m, and [m,m] = h. We will consider the following system in g:

ẋ = u, (6.3.1)

Ẏ = [u, x], (6.3.2)

where x, u ∈ m, Y ∈ h.
The so(n) system (6.1.2)–(6.1.3) is of the type (6.3.1)–(6.3.2), as we

now show. Let h = so(n) and let m = R
n. For x, u ∈ m, define [u, x] ≡

xuT − uxT ∈ h. For Y ∈ h, x ∈ m, define [Y, x] = −[x, Y ] ≡ Y x. It is easy
to see that the Lie algebra g ≡ m ⊕ h is isomorphic to so(n + 1): Identify
Y ∈ so(n) with the matrix (

0 0
0 Y

)

and identify x ∈ R
n with the matrix

(
0 −xT

x 0

)
.

The adjoint action of h on m agrees with the standard action of so(n) on R
n,

and it is straightforward to check that the desired commutation relations
hold.
Our goal is to find a stabilizing control for the system (6.3.1)–(6.3.2).

Since this system fails the necessary condition for the existence of a contin-
uous feedback law, our goal here is to find a discontinuous law. This section
is based on Bloch, Drakunov, and Kinyon [1997, 2000].

The General System. Let g be a real semisimple Lie algebra with
Killing form B : g× g → R. Assume that g has a decomposition g = h⊕m,
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where h is a compactly embedded subalgebra that contains no ideals of g,
and m is the orthogonal complement of h relative to B. Then the commu-
tation relations [h,m] ⊆ m and [m,m] = h hold, the restriction of B to h is
negative definite, and the representation of h on m is faithful. Note that if
g is a simple Lie algebra and g = h⊕m is a Cartan decomposition, then our
hypotheses are satisfied. (See section 2.8 and, e.g., Sattinger and Weaver
[1986] for definitions.)
We will consider stabilization of the system (6.3.1)–(6.3.2) in g, where

x, u ∈ m, Y ∈ h. We may assume without loss of generality that g is either
of noncompact type or of compact-type. (Indeed, under the given hypothe-
ses, g splits into a B-orthogonal direct sum of a compact-type ideal and
one of noncompact type. It is straightforward to show that (6.3.1)–(6.3.2)
decouples into systems in each ideal, and thus stabilization of (6.3.1)–(6.3.2)
follows from stabilization of each of the compact and noncompact cases
separately; see Bloch, Drakunov, and Kinyon [2000].) It follows that the
restriction of B to m is positive definite if g is of noncompact type, and
negative definite if g is of compact type.
Let

ε =

{
1 if g is of noncompact type,

−1 if g is of compact type.
(6.3.3)

We will use the inner product on g defined by the Killing form:

〈x1 + Y1, x2 + Y2〉 ≡ εB(x1, x2)−B(Y1, Y2), (6.3.4)

for x1, x2 ∈ m, Y1, Y2 ∈ h. The corresponding norm will be denoted by ‖ · ‖.
(The reader not familiar with the Killing form, compact real forms, etc.,

can just take ε = −1 and assume the inner product and norm to be given
by the trace on matrices.)
For x ∈ m, let

M(x) = ε(adx)
2
∣∣
h
. (6.3.5)

If g is noncompact, then adx is B-symmetric, while if g is compact, then
adx is B-skew-symmetric. In either case, M(x) = ε(adx)

2 is a nonnegative
symmetric operator on h. Next, for Y ∈ h, let

N(Y ) = −(adY )
2
∣∣
m
. (6.3.6)

Since adY is B-skew-symmetric, N(Y ) is a nonnegative symmetric operator
on m.

We will make frequent use of two identities relating the operators M(x)
and N(Y ). First, the Jacobi identity implies

[Y,M(x)Y ] = ε[x,N(Y )x] (6.3.7)
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for all x ∈ m, Y ∈ h. Second, the invariance of the Killing form implies

〈Y,M(x)Y 〉 = ‖[Y, x]‖2 = 〈x,N(Y )x〉 (6.3.8)

for all x ∈ m, Y ∈ h.
We also require two estimates arising from M(x) and N(Y ). For details

of their proofs, see Bloch, Drakunov, and Kinyon [2000]. First, we have the
inequality

tr(M(x)) ≤ ‖x‖2 (6.3.9)

for all x ∈ m. Second, there exists a constant 0 < η < 1 such that

tr(N(Y )) > η‖Y ‖2 (6.3.10)

for all Y ∈ h.

Controls. We consider the following controls for the system (6.3.1)–
(6.3.2):

u = −αx+ β[Y, x] + γN(Y )x, (6.3.11)

where α, β, γ : g → R are real-valued functions, with α, γ ≥ 0 and βε ≤ 0.
With the control (6.3.11) (and using (6.3.7)), the system (6.3.1)–(6.3.2)
becomes

ẋ = −αx+ β[Y, x] + γN(Y )x, (6.3.12)

Ẏ = βεM(x)Y − γε[Y,M(x)Y ]. (6.3.13)

Using (6.3.12) and the skew-symmetry of adY , we easily compute

d

dt
‖x‖2 = −2α‖x‖2 + 2γ〈x,N(Y )x〉. (6.3.14)

Let λ∗ denote the largest eigenvalue of N(Y ). Then 〈x,N(Y )x〉 ≤ λ∗‖x‖2
for all x ∈ m, and thus the right-hand side of (6.3.14) is nonpositive if
λ∗γ ≥ α. In this case ‖x‖ is nonincreasing, and if α = γ = 0, then ‖x‖ is
constant.
Using (6.3.13), we obtain

d

dt
‖Y ‖2 = 2βε〈Y,M(x)Y 〉. (6.3.15)

Since βε ≤ 0 and M(x) is a nonnegative operator, the right-hand side
of (6.3.15) is nonpositive. Thus ‖Y ‖ is nonincreasing in general, and is
constant if β = 0.

Our (necessarily discontinuous) stabilization algorithm will involve switch-
ing the control (6.3.11) among the following three cases: (i) α > 0, β =
γ = 0; (ii) α = κλ∗, γ = κ, and β = 0, where, as above, λ∗ is the largest
eigenvalue of N(Y ) and where κ is a positive function; (iii) α = γ = 0,
βε < 0. We now discuss the dynamics of the system (6.3.12)–(6.3.13) in
each of these cases.
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Case I: α > 0, β = γ = 0:
In this case, the system (6.3.12)–(6.3.13) is

ẋ = −αx, (6.3.16)

Ẏ = 0. (6.3.17)

Here x is driven to 0 radially while Y remains fixed. If Y was not already
0, implementing (6.3.11) with these parameter values will render the system
unstabilizable. Hence this case will be used only if Y ≡ 0.

Case II: α = κλ∗, γ = κ, β = 0:
As noted above, κ > 0. In this case, the control (6.3.11) has the form

u = −κ (λ∗x−N(Y )x), (6.3.18)

while the system (6.3.12)–(6.3.13) is

ẋ = −κ(λ∗x−N(Y )x), (6.3.19)

Ẏ = −κε[Y,M(x)Y ]. (6.3.20)

In this case, ‖Y ‖ is constant. In addition, (6.3.20) is a Lax equation in Y
(see Section 1.12). It follows that the spectrum of adY is constant. There-
fore, the spectrum of the operator N(Y ) is constant, as are the dimensions
of its eigenspaces. In particular, the eigenvalue λ∗, which occurs in (6.3.19),
is constant.
Let 0 ≤ λ0 < λ1 < · · · < λs = λ∗ denote those eigenvalues of N(Y ) that

are distinct (thus s ≤ dim m− 1). Let x = x0 +x1 + · · ·+xs be the unique
decomposition of x into the eigenspaces of N(Y ). Then the differential
equation (6.3.19) decouples into the following system of equations in m:

ẋ0 = −κ(λ∗ − λ0)x0,

ẋ1 = −κ(λ∗ − λ1)x1,

...

ẋs−1 = −κ(λ∗ − λs−1)xs−1,

ẋs = 0.

(6.3.21)

Since κ(λ∗ − λj) > 0 for j = 0, 1, . . . , s− 1, it follows that xj → 0 asymp-
totically. If we let x∗ denote the projection of x onto the λ∗-eigenspace
of N(Y ), that is, x∗ = xs, then noting that x∗ ≡ x∗

∣∣
t=0

is constant, we
conclude that

x → x∗

asymptotically.
Note that (6.3.19)–(6.3.20) and (6.3.7) imply the following:

Ẏ = −κ[x,N(Y )x] = [x, ẋ]. (6.3.22)
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Since x converges to a λ∗-eigenvector ofN(Y ), the right-hand side of (6.3.19)
converges to 0 and thus ẋ converges to 0. Therefore, (6.3.22) implies that
Ẏ converges to 0.

Summarizing this case, we have that Y evolves isospectrally (with con-
stant spectrum) and with constant norm and asymptotically vanishing ve-
locity, while x is driven to x∗, the (constant) projection of x onto the
λ∗-eigenspace of N(Y ).

Case III: α = γ = 0, βε < 0:
The system (6.3.12)–(6.3.13) for this case is

ẋ = β[Y, x], (6.3.23)

Ẏ = βεM(x)Y. (6.3.24)

In this case, ‖x‖ is constant. In addition, (6.3.23) is a Lax equation in
x, and thus adx has constant spectrum. Therefore, the spectrum of the
operator M(x) is constant, as are the dimensions of its eigenspaces. Let
0 ≤ μ0 < μ1 < · · · < μr denote those eigenvalues of M(x) that are distinct
(thus r ≤ dim h − 1). For Y ∈ h, let Y = Y0 + · · · + Yr denote the unique
decomposition of Y into the eigenspaces of M(x). Then the differential
equation (6.3.24) decouples into the following system of equations in h:

Ẏ0 = βεμ0Y0,

Ẏ1 = βεμ1Y1,

...

Ẏr = βεμrYr.

(6.3.25)

Since βεμj < 0 for j = 1, . . . , r, we have that Yj → 0 asymptotically. If
μ0 > 0, then the same applies to Y0. Otherwise, if M(x) has μ0 = 0 as
an eigenvalue, then Y0 remains constant. Thus we have either Y → 0 or
Y → Y0 asymptotically, where Y0 ≡ Y0

∣∣
t=0

is constant. In either case, if we
let Y# denote the projection of Y onto the nullspace of M(x), then noting
that Y# ≡ Y#

∣∣
t=0

is constant, we conclude that

Y → Y#

asymptotically.
Using system (6.3.23)–(6.3.24), we can derive the equation

d

dt
M(x)nY = βε[Y,M(x)nY ] + βεM(x)n+1Y (6.3.26)

for every nonnegative integer n. Indeed, the case n = 0 is just (6.3.24).
Using the induction hypothesis, we have for n > 0,

d

dt
M(x)nY = ε

[
ẋ,
[
x,M(x)n−1Y

]]
+ ε
[
x,
[
ẋ,M(x)n−1Y

]]

+ M(x)
(
βε
[
Y,M(x)n−1Y

]
+ βεM(x)nY

)
. (6.3.27)
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Now,
[ẋ, [x,M(x)n−1Y ]] = β[[Y, x], [x,M(x)n−1Y ]] (6.3.28)

and
[x, [ẋ,M(x)n−1Y ]] = β[x, [[Y, x],M(x)n−1Y ]], (6.3.29)

while applying the Jacobi identity repeatedly gives

M(x)[Y,M(x)n−1Y ] = [Y,M(x)nY ] + ε[[x, Y ], [x,M(x)n−1Y ]]

+ ε[x, [[x, Y ],M(x)n−1Y ]].
(6.3.30)

Substituting (6.3.28), (6.3.29), and (6.3.30) into (6.3.27) and simplifying
gives (6.3.26).
Then from (6.3.26),

d

dt
f(M(x))Y = βε[Y, f(M(x))Y ] + βεf(M(x))M(x)Y (6.3.31)

follows immediately for every real analytic function f . As an interesting
special case of this, let p(μ) be the minimal polynomial ofM(x) and assume
that μ0 = 0 is an eigenvalue of M(x) (so that Y does not converge to 0).
Then p(μ) = μq(μ) for some polynomial q. Taking f = q in (6.3.31) gives

d

dt
q(M(x))Y = βε[Y, q(M(x))Y ]. (6.3.32)

It follows that the spectrum of q(M(x))Y remains constant; that is, it
evolves isospectrally.
Summarizing this case, we have that x evolves isospectrally with constant

norm, Y is driven to Y#, its (constant) projection onto the nullspace of
M(x), and q(M(x))Y evolves with constant spectrum.

Remark. It is interesting to compare the system of equations of Case
III with the double bracket equations discussed, for example, in Brock-
ett [1988] and Bloch, Brockett, and Ratiu [1992] and briefly in Chapter 1
in connection with the Toda lattice. In these papers the isospectral flow
L̇ = [L, [L,N ]], L,N lying in a compact Lie algebra, N fixed, was con-
sidered. This flow is the gradient flow of 〈L,N〉 on an adjoint orbit of the
corresponding Lie group with respect to the so-called normal metric. Equa-
tion (6.3.24) is, on the other hand, of the form Ẏ = βε[X, [X,Y ]], which is
not isospectral (although it is coupled to the isospectral equation (6.3.23)).
Further, as we have seen, we have a different function, 〈Y, Y 〉, decreasing
along its flow, which is precisely what is needed in this context.
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The Stabilization Algorithm. We now describe our feedback strategy.
As before, λ∗ denotes the largest eigenvalue of the operator N(Y ), x∗ de-
notes the projection of x onto the λ∗-eigenspace of N(Y ), and Y# denotes
the projection of Y onto the nullspace of M(x). Let δ > 0 be a prescribed
error tolerance. In informal pseudocode, the algorithm can be described as
follows:

begin

while ‖Y ‖ ≥ δ

1. Let r = ‖x‖. Implement the control (6.3.11) with α = λ∗κ, γ = κ,
and β = 0. Then Y evolves isospectrally with constant norm, while
x converges to the constant x∗. If x∗ �= 0, then go to Step 3.

2. Let z∗ denote a fixed λ∗-eigenvector of N(Y ) with

‖z∗‖ = r (1− 1/dim m)
1/2

.

Let u = −α(x − z∗), where α > 0. Then x converges to z∗ while Y
remains constant.

3. Implement the control (6.3.11) with α = γ = 0, βε < 0. Then x
evolves isospectrally with constant norm, while Y converges to the
constant Y#.

end while

if ‖x‖ ≥ δ, then

4. implement the control (6.3.11) with α > 0, β = γ = 0. Then x will
converge to 0 radially, while Y remains 0.

end

In Step 1, if α is a constant, then x will converge to x∗ in infinite time; if,
for example, α = 1/‖x− x∗‖, then x will converge in finite time. Similarly,
in Step 3, if β is a constant, then Y will converge to Y# in infinite time;
if, for example, β = 1/‖Y − Y#‖, then Y will converge in finite time. To
establish the convergence claim made in Step 2, we simply note that in this
case x(t) has the form x(t) = f(t)z∗, where f(t) is a scalar-valued function
satisfying

ḟ = −α(f − 1), f(0) = 0.

(For instance, if α > 0 is constant, we have f(t) = 1 − e−αt.) It follows
from (6.3.2) that Ẏ = [u, x] = 0, so that Y is constant, as claimed.

Step 2 is implemented if x converges to 0 in Step 1. One instance where
this could happen occurs if the initial value of x is 0, in which case the
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first implementation of Step 1 is trivial. More generally, the case where the
projection of x onto the λ∗-eigenspace of N(Y ) is 0 seems to be the natu-
ral higher-dimensional analogue of the situation in the Heisenberg system
where the initial value starts on the z-axis. As in Steps 1 and 3, Step 2 can
also be implemented in finite time.
The λ∗-eigenspace ofN(Y ) will, in general, have dimension greater than 1

(since the nonzero eigenvalues of the B-skew-symmetric operator adY come
in complex conjugate pairs). Thus there is no unique choice of eigenvector
z∗ in Step 2. Any lexicographic ordering of the eigenvectors relative to a
coordinate basis will suffice as a selection scheme. The rationale behind the
particular normalization of z∗ will be explained below. (Choices of this type
occur naturally in stabilizing nonholonomic systems; see Sontag [1998] for
comments on this and related robustness issues.)
We will now show that our algorithm successfully stabilizes the sys-

tem (6.3.1)–(6.3.2) by showing that each of ‖x‖ and ‖Y ‖ can be brought
to within the prescribed error tolerance. Note that as soon as the test con-
dition of the while loop fails, that is, as soon as ‖Y ‖ < δ, then the system
will be stabilized whether Step 4 needs to be executed or not. Thus we may
assume that the initial value of Y satisfies ‖Y ‖ ≥ δ so that the while loop
will be executed at least once. If Y ever converges to 0 in Step 3 because
Y# = 0, then the test condition of the while loop will eventually fail. As
noted, this is enough to guarantee that the system is stabilizable.
Assume that for every iteration of Step 3 we have Y# �= 0. We will show

that after finitely many iterations of the while loop, the test condition
will fail. In other words, the projection of Y onto the nullspace of M(x) is
eventually arbitrarily small in norm. In fact, we will show a stronger result,
for when this situation occurs, then it turns out that ‖x‖ is simultaneously
brought to within the error tolerance. Thus as soon as the while loop’s test
condition fails, the test condition of the if–then statement (Step 4) will also
fail, and the system will already be stabilized.
Assume first that Step 3 is about to be executed. Since Step 1 and

possibly Step 2 have already been executed, the initial values x(0) = x∗ and
Y (0) = Y∗ satisfy N(Y∗)x∗ = λ∗x∗. As before, let Yj denote the projection
of Y onto the μj-eigenspace of M(x). Recall that

Y# = Y0 ≡ Y0(0)

throughout Step 3, and that Y (t) → Y# asymptotically. Using the orthog-
onality of the eigenspaces, we compute

‖Y#‖2 = ‖Y∗‖2 −
r∑

j=1

‖Yj(0)‖2

≤ ‖Y∗‖2 − 1∑r
j=0 μj

r∑
j=0

μj‖Yj(0)‖2. (6.3.33)
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Note that we are using μ0 = 0. Now using the orthogonality once again,
we compute

r∑
j=0

μj‖Yj(0)‖2 =

〈
Y∗,

r∑
j=0

μjYj(0)

〉
= 〈Y∗,M(x∗)Y∗〉

= 〈x∗, N(Y∗)x∗〉 (6.3.34)

= λ∗‖x∗‖2. (6.3.35)

Here we have used (6.3.8) to obtain (6.3.34). In addition, using (6.3.9), we
have

r∑
j=1

μj ≤ tr(M(x∗)) ≤ ‖x∗‖2. (6.3.36)

Applying (6.3.35) and (6.3.36) to (6.3.33) yields

‖Y#‖2 ≤ ‖Y∗‖2 − λ∗. (6.3.37)

Now using (6.3.10), we have

λ∗ ≥ 1

dim m
tr(N(Y∗)) >

η

dim m
‖Y∗‖2. (6.3.38)

Applying (6.3.38) to (6.3.37) gives our final estimate for Step 3:

‖Y#‖2 <
(
1− η

dim m

)
‖Y∗‖2. (6.3.39)

Now assume that Step 3 has already been executed and that Step 1
is about to be executed again. Then the initial values x(0) = x# and
Y (0) = Y# in Step 1 satisfy M(x#)Y# = 0. By (6.3.8), this implies
〈x#, N(Y#)x#〉 = 0. As before, let xj denote the projection of x into the
λj-eigenspace of N(Y ). Recall that x∗ = xs ≡ xs(0) throughout Step 1, and
that x(t) → x∗ asymptotically. Using the orthogonality of the eigenspaces,
we compute

‖x∗‖2 = ‖x#‖2 −
s−1∑
j=0

‖xj(0)‖2

≤ ‖x#‖2 − 1∑s
j=0(λs − λj)

s∑
j=0

(λs − λj)‖xj(0)‖2. (6.3.40)

Using orthogonality again, we compute

s∑
j=0

(λs − λj)‖xj(0)‖2 = λs‖x#‖2 −
〈
x#,

s∑
j=0

λsxj(0)

〉

= λs‖x#‖2 − 〈x#, N(Y#)x#〉
= λs‖x#‖2. (6.3.41)
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Also,
s∑

j=0

(λs − λj) = sλs −
s−1∑
j=0

λj . (6.3.42)

Applying (6.3.41) and (6.3.42) to (6.3.40) gives

‖x∗‖2 ≤
(
1− λs

sλs −
∑s−1

j=0 λj

)
‖x#‖2. (6.3.43)

Finally,
λs

sλs −
∑s−1

j=0 λj

≥ 1

s
≥ 1

dim m
, (6.3.44)

and applying (6.3.44) to (6.3.43) gives our final estimate for Step 1:

‖x∗‖2 ≤
(
1− 1

dim m

)
‖x#‖2. (6.3.45)

Now assume that Step 2 is executed because x = 0 (that is, x∗ = 0 in
Step 1). Rename x∗ = z∗, where z∗ is the chosen λ∗-eigenvector. Then the
normalization of z∗ described in Step 2 immediately implies that (6.3.45)
holds as an equality.
Define two sequences of real numbers as follows: Let aj and bj denote,

respectively, the initial values of ‖x‖2 and ‖Y ‖2 prior to the (j + 1)st
iteration of the while loop, where j = 0, 1, . . .. Recall that ‖Y ‖ remains
constant during Steps 1 and 2 and ‖x‖ remains constant during Step 3.
Our estimates (6.3.39) and (6.3.45) imply that the sequences {aj} and
{bj} satisfy

aj+1 ≤
(
1− 1

dim m

)
aj , (6.3.46)

bj+1 <

(
1− η

dim m

)
bj . (6.3.47)

Since

0 < 1− 1

dim m
< 1− η

dim m
< 1, (6.3.48)

it follows from (6.3.46)–(6.3.47) that the sequences {aj} and {bj} each
converge to 0. In particular, it is immediate that each of ‖x‖ and ‖Y ‖ can
be brought to within the prescribed error tolerance δ > 0 in finitely many
iterations of the while loop.
In summary, we have proven the following result.

6.3.1 Theorem. The algorithm given in Steps 1–4 above globally stabilizes
the system (6.3.1) and (6.3.2).
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We remark that while we have used the error tolerance δ above to indi-
cate how the stabilization algorithm works in practice, the formal proof of
stability follows from letting δ approach zero.

For an explicit application of this algorithm to the cases g = so(n) and
in particular so(3), see the web supplement.

Exercises

� 6.3-1. Consider the system (6.1.2) and (6.1.3). Show that stabilization
of this system may be reduced to the stabilization of a three-dimensional
system that may be stabilized as in the Heisenberg example by the use of
the variables

V1 =
1

2
xTx, V2 =

1

2
xTY TY x, V3 =

1

2
Y TY. (6.3.49)

(See Bloch and Drakunov [1998].)

� 6.3-2. Write out the system (6.3.12) and (6.3.13) explicitly in the case of
g = so(3) and g = so(4).

6.4 Controllability, Accessibility,
and Stabilizability

In this and subsequent sections we consider a class of nonholonomic dy-
namic control systems and various control and stabilizability properties,
following the work of Bloch, Reyhanoglu, and McClamroch [1992]. There
is a huge related literature. We mention here briefly some related work in
robotics and control: Li and Montgomery [1988], Li and Canny [1990], Mur-
ray and Sastry [1993], Murray, Li and Sastry [1994], Murray [1995], Krish-
naprasad and Yang [1991], Reyhanoglu, van der Schaft, McClamroch, and
Kolmanovsky [1999], Cortés, Mart́ınez, Ostrowski, and Zhang [2002], Lewis
[2000], Cortés and Mart́ınez [2001], Schneider [2000], Schneider [2002], Hus-
sein and Bloch [2008] . More references may be found throughout the book.
We consider the class of mechanical (Lagrangian) nonholonomic control

systems described by the equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
=

m∑
j=1

λja
j
i +

l∑
j=1

bjiuj , (6.4.1)

n∑
i=1

aji q̇
i = 0, j = 1, . . . ,m. (6.4.2)

These equations are a controlled version of the nonholonomic equations
in Lagrange multiplier form discussed in Section 5.2. As in that section,
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we assume here that we have a Lagrangian on the tangent bundle to an
arbitrary configuration space Q, given by L : TQ → R. In coordinates
qi, i = 1, . . . , n, on Q with induced coordinates (qi, q̇i) for the tangent
bundle, we have L(qi, q̇i). All computations here will be local, however,
and for the moment we will assume Q = R

n. Here L is taken to be the
mechanical Lagrangian

L =
1

2

n∑
i,j=1

gij(q)q̇
iq̇j − V (q). (6.4.3)

Hence equation (6.4.1) takes the explicit form

gij q̈
j +

∂gij
∂qk

q̇kq̇j − 1

2

∂gjk
∂qi

q̇j q̇k +
∂V

∂qk
=

m∑
j=1

λja
j
i +

r∑
j=1

bjiuj . (6.4.4)

For convenience below we shall sometimes rewrite equation (6.4.4) as

gij q̈
j + fi(q, q̇) =

m∑
j=1

λja
j
i +

l∑
j=1

bjiuj . (6.4.5)

All functions are assumed to be smooth. We shall make some assumptions
on the controls later on. As in Chapter 5, we shall assume that the con-
straints may be rewritten as

ṡa +Aa
α(r, s)ṙ

α = 0, a = 1, . . . ,m, (6.4.6)

where q = (r, s) ∈ R
n−m × R

m.
As in Chapter 5, denote the distribution defined by the constraints at q

by Dq.

6.4.1 Definition (Vershik and Gershkovich [1988]). Consider the following
nondecreasing sequence of locally defined distributions:

N1 = D,

Nk = Nk−1 + span{[X,Y ] | X ∈ N1, Y ∈ Nk−1}.

Then there is an integer k∗ such that

Nk = Nk∗

for all k > k∗. If dim Nk∗ = n and k∗1, then the constraints (6.4.6) are
called completely nonholonomic, and the smallest (finite) number k∗ is
called the degree of nonholonomy.

We assume (through Section 6.6) that the constraint equations are com-
pletely nonholonomic everywhere with nonholonomy degree k∗. Note that
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for this to hold, n −m must be strictly greater than one. The constraints
then define a (2n−m)-dimensional smooth submanifold

M =
{
(q, q̇) | aji q̇i = 0 , j = 1, . . . ,m

}
(6.4.7)

of the phase space. This manifold M plays a critical role in the concept of
solutions and the formulation of control and stabilization problems.
As shown in Bloch, Reyhanoglu, and McClamroch [1992], (6.4.1)

and (6.4.2) provide a well-posed set of equations.
We subsequently use the notation (Q(t, q0, q̇0),Λ(t, q0, q̇0)) to denote the

solution of equations (6.4.1), (6.4.2) at time t ≥ 0 corresponding to the
initial conditions (q0, q̇0). Thus for each initial condition (q0, q̇0) ∈ M and
each bounded, measurable input function u : [0, T ) → R

l,

(Q(t, q0, q̇0), Q̇(t, q0, q̇0)) ∈ M

holds for all t ≥ 0 where the solution is defined.
We say that a solution is an equilibrium solution if it is a constant so-

lution; note that if (qe, λe) is an equilibrium solution, we refer to qe as an
equilibrium configuration.

6.4.2 Theorem. Suppose that u(t) = 0, t ≥ 0. The set of equilibrium
configurations of equations (6.4.1), (6.4.2) is given by{

qi
∣∣∣ ∂V (q, 0)

∂qi
− ajiλj = 0, i = 1, . . . , n, for some λ ∈ R

m

}
.

We remark that generically we obtain an equilibrium manifold with di-
mension at least m. On the other hand, for certain cases, there may not
be even a single equilibrium configuration (e.g., the dynamics of a ball on
an inclined plane). However, with our controllability assumptions below we
can always introduce an equilibrium manifold of dimension at least m by
appropriate choice of input. This is, of course, all in the smooth category.

Exercises

� 6.4-1. Consider the following kinematic model of a car (see, e.g., Murray
and Sastry [1993], Abraham, Marsden, and Ratiu [1988]):

ẋ = cos θu1,

ẏ = sin θu1,

φ̇ = u2,

θ̇ = tanφu1.

(6.4.8)

Here (x, y) denotes the position of the rear axle, θ the angle of the car
with respect to the horizontal, and φ the steering angle with respect to
the car body. Show that the system is completely nonholonomic except for
φ = ±π/2 and that the degree of nonholonomy is 3.
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6.5 Smooth Stabilization to a Manifold

As in the kinematic case discussed in Section 6.1 we can show from the
Brockett necessary condition that there is no smooth feedback that will
smoothly stabilize a dynamic nonholonomic system. We can state this for-
mally as follows (see Bloch, Reyhanoglu, and McClamroch [1992]):

6.5.1 Theorem. Let m ≥ 1 and let (qe, 0) denote an equilibrium solu-
tion in M. The nonholonomic control system, defined by equations (6.4.1),
(6.4.2) is not asymptotically stabilizable using C1 feedback to (qe, 0).

Proof. A necessary condition for the existence of a C1 asymptotically
stabilizing feedback law for system (6.5.7), (6.5.8), (6.5.9) is that the image
of the mapping

(x1, x2, x3, v) → (x3, −A(x1, x2)x3, v)

contain some neighborhood of zero. No points of the form⎛
⎝0
ε
α

⎞
⎠ , ε �= 0 and α ∈ R

n−m arbitrary,

are in its image: It follows that Brockett’s necessary condition is not sat-
isfied. Hence system (6.5.7), (6.5.8), (6.5.9) cannot be asymptotically sta-
bilized to (re, se, 0) by a C1 feedback law. Thus the nonholonomic control
system defined by equations (6.4.1), (6.4.2) is not C1 asymptotically sta-
bilizable to (qe, 0). �

We remark that as in the kinematic case even C0 (continuous) feedback
is ruled out (see, e.g., Zabczyk [1989]).

A corollary of this result is that a single equilibrium solution of (6.4.1),
(6.4.2) cannot be asymptotically stabilized using linear feedback, nor can
it be asymptotically stabilized using feedback linearization or any other
control design approach that uses smooth feedback.
As discussed in Bloch, Reyhanoglu, and McClamroch [1992], it turns

out that the best one can achieve in the way of smooth stabilization is
stabilization to an equilibrium manifold. We discuss this in this section
and turn to the problem of stabilization to a point by nonsmooth feedback
in the next section.
We want to consider feedback control of the form ui = Ui(q, q̇), where

U : M → R
l; the corresponding closed loop is described by

gij q̈
j + fi(q, q̇) =

m∑
j=1

λja
j
i +

l∑
j=1

bjiUj(q, q̇) , (6.5.1)

n∑
i=1

aji q̇
i = 0, j = 1, . . . ,m . (6.5.2)
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The set of equilibrium configurations of equations (6.5.1), (6.5.2) is
given by

{
qi
∣∣∣ ∂V (q, 0)

∂qi
− ajiλj =

l∑
j=1

bjiUj(q, 0), i = 1, . . . , n, for some λ ∈ R
m

}
,

which is a smooth submanifold of the configuration space.
We now introduce a suitable stability definition for the closed-loop

system.

6.5.2 Definition. Assume that ui = Ui(q, q̇). Let

Ms = {(q, q̇) | q̇ = 0}

be an embedded submanifold of M. Then Ms is called locally stable if
for any neighborhood U ⊃ Ms there is a neighborhood V of Ms with U ⊃
V ⊃ Ms such that if (q0, q̇0) ∈ V ∩ M, then the solution of equations
(6.5.1), (6.5.2) satisfies (Q(t, q0, q̇0), Q̇(t, q0, q̇0)) ∈ U ∩M for all t ≥ 0. If
in addition, (Q(t, q0, q̇0), Q̇(t, q0, q̇0)) → (qs, 0) as t → ∞ for some (qs, 0) ∈
Ms, then we say that Ms is a locally asymptotically stable equilibrium
manifold of equations (6.5.1), (6.5.2).

Note that if (Q(t, q0, q̇0), Q̇(t, q0, q̇0)) → (qs, 0) as t → ∞ for some
(qs, 0) ∈ Ms, it follows that there is λs ∈ R

m such that Λ(t, q0, q̇0) → λs

as t → ∞.
The usual definition of local stability corresponds to the case that Ms is

a single equilibrium solution; the more general case is required here.
The existence of a feedback function such that a certain equilibrium man-

ifold is asymptotically stable is of particular interest; hence, we introduce
the following definition:

6.5.3 Definition. The system defined by equations (6.4.1), (6.4.2) is said
to be locally asymptotically stabilizable to a smooth equilibrium
manifold Ms in M if there exists a feedback function U : M → R

l such
that for the associated closed loop equations (6.5.1), (6.5.2), Ms is locally
asymptotically stable.

If there exists such a feedback function that is smooth on M, then we say
that equations (6.4.1), (6.4.2) are smoothly asymptotically stabilizable to
Ms; of course, it is possible (and we subsequently show that it is generic
in certain cases) that equations (6.4.1), (6.4.2) might be asymptotically
stabilizable to Ms but not smoothly (even continuously) asymptotically
stabilizable to Ms.

Normal Form Equations. We now show that using feedback, one can
reduce the controlled nonholonomic equations to a normal form that is easy
to analyze.
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We recall that the reduced state space is (2n−m)-dimensional. The state
of the system can be specified by the n-vector of configuration variables
and an (n−m)-vector of velocity variables. Let q = (r, s) be the partition
of the configuration variables corresponding to the constraints introduced
previously.
Define the n× (n−m) matrix C as follows:

Ci
α =

{
δiα , i = 1, . . . , n−m,

−Ai
α , i = n−m+ 1, . . . , n

(6.5.3)

Then
q̇i = Ci

αṙ
α. (6.5.4)

Taking time derivatives yields

q̈ i = Ci
α(q)r̈

α + Ċi
α(q)ṙ

α.

Substituting this into equation (6.4.5) and multiplying both sides of the
resulting equation by CT (q) gives

CiT
α (q)gij(q)C

j
β(q)r̈

β = CiT
α (q)[bji (q)uj − fi(q, Cṙ)− gij(q)Ċ

j
α(q)ṙ

α] .
(6.5.5)

Note that CiT
α (q)gij(q)C

j
β(q) is an (n −m) × (n −m) symmetric positive

definite matrix function.
We also assume that l = n − m (for simplicity) and that the matrix

product CiT
α (q)bji (q) is locally invertible. Hence for any u ∈ R

l there is a
unique v ∈ R

n−m that satisfies

CiT
α (q)gij(q)C

j
β(q)v

β = CiT
α (q)[bji (q)uj − fi(q, Cṙ)− gij(q)Ċ

j
α(q)ṙ

α] .
(6.5.6)

This assumption guarantees that the reduced configuration variables satisfy
the linear equations

r̈α = vα.

Now define the following state variables:

xα
1 = rα, xa

2 = sa, xα
3 = ṙα.

These variables thus satisfy the equations

ẋ1 = x3, (6.5.7)

ẋ2 = −A(x1, x2)x3, (6.5.8)

ẋ3 = v. (6.5.9)

We shall call equations (6.5.7), (6.5.8), (6.5.9) the normal form equa-
tions for the system (6.4.1), (6.4.2).
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Equations (6.5.7), (6.5.8), (6.5.9) define a drift vector field

f(x) = (x3,−A(x1, x2)x3, 0)

and control vector fields gi(x) = (0, 0, ei), where ei is the ith standard basis
vector in R

n−m, i = 1, . . . , n−m, according to the standard control system
form

ẋ = f(x) +
n−m∑
i=1

gi(x)vi . (6.5.10)

We consider local properties of equations (6.5.7), (6.5.8), (6.5.9), near an
equilibrium solution (xe

1, x
e
2, 0).

Note that the normal form equations (6.5.7), (6.5.8), (6.5.9) are a special
case of the normal form equations studied by Byrnes and Isidori [1988].

Stabilization to an Equilibrium Manifold. We now study the prob-
lem of stabilization of equations (6.4.1), (6.4.2) to a smooth equilibrium
submanifold of M defined by

Ne = {(q, q̇) | q̇ = 0 , w(q) = 0} ,

where w(q) is a smooth (n −m)-vector function. We show that, with ap-
propriate assumptions, there exists a smooth feedback such that the closed
loop is locally asymptotically stable to Ne.
The smooth stabilization problem is the problem of giving conditions

such that there exists a smooth feedback function U : M → R
l such that

Ne is locally asymptotically stable. Of course, we are interested not only
in demonstrating that such a smooth feedback exists but also in indicating
how such an asymptotically stabilizing smooth feedback can be constructed.
We now assume that we have here nonholonomic control systems whose

normal form equations satisfy the property that if r(t) and ṙ(t) are expo-
nentially decaying functions, then the solution to

ṡ = −A(r(t), s)ṙ(t)

is bounded (all the physical examples of nonholonomic systems, of which
we are aware, satisfy this assumption).
Note also that the first and second time derivatives of w(q) are given by

ẇ =
∂w(q)

∂q
C(q)ṙ ,

ẅ =
∂

∂q

(
∂w(q)

∂q
C(q)ṡ

)
C(q)ṙ +

∂w(q)

∂q
C(q)v .

We have (see Bloch, Reyhanoglu, and McClamroch [1992]) the following
theorem:
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6.5.4 Theorem. Assume that the above solution property holds. Then the
nonholonomic control system defined by equations (6.4.1) and (6.4.2) is
locally asymptotically stabilizable to

Ne = {(q, q̇) | q̇ = 0 , w(q) = 0}, (6.5.11)

using smooth feedback, if the transversality condition

det

(
∂w(q)

∂r

)
det

(
∂w(q)

∂q
C(q)

)
�= 0 (6.5.12)

is satisfied.

Proof. It is sufficient to analyze the system in the normal form (6.5.7),
(6.5.8), (6.5.9). By the transversality condition, the change of coordinates
from (r, s, ṙ) to (w, s, ẇ) is a diffeomorphism.

Let

v = −
(
∂w(q)

∂q
C(q)

)−1 [
∂

∂q

(
∂w(q)

∂q
C(q)ṙ

)
C(q)ṙ

+K1
∂w(q)

∂q
C(q)ṙ +K2w(q)

]
,

where K1 and K2 are symmetric positive definite (n−m)×(n−m) constant
matrices. Then obviously,

ẅ +K1ẇ +K2w = 0

is asymptotically stable to the origin so that (w, ẇ) → 0 as t → ∞. The re-
maining system variables satisfy equation (6.5.7) of the normal form equa-
tions (with x2 = s) and by our assumption on the constraint matrix A,
these variables remain bounded for all time. Thus (q(t), q̇(t)) → Ne as
t → ∞. �

6.6 Nonsmooth Stabilization

The results in the previous section demonstrate that smooth feedback can
be used to asymptotically stabilize certain smooth manifolds Ne in M.
These results do not guarantee smooth asymptotic stabilization to a single
equilibrium solution if m ≥ 1. In this section we indicate how a single
equilibrium can be asymptotically stabilized by use of piecewise analytic
feedback. However, this is by no means the only approach to stabilization.
As mentioned above, there is a large literature on this subject.
We first demonstrate that the normal form equations (6.5.7), (6.5.8),

(6.5.9) and hence the nonholonomic control system defined by equations
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(6.4.1) and (6.4.2) satisfy certain strong local controllability properties. In
particular, we show that the system is strongly accessible and that the sys-
tem is small-time locally controllable at any equilibrium. These results pro-
vide a theoretical basis for the use of inherently nonlinear control strategies
and suggest constructive procedures for the desired control strategies. We
have (Bloch, Reyhanoglu, and McClamroch [1992]) the following theorems:

6.6.1 Theorem. Let m ≥ 1 and let (qe, 0) denote an equilibrium solu-
tion in M. The nonholonomic control system defined by equations (6.4.1)
and (6.4.2) is strongly accessible at (qe, 0).

Proof. It suffices to prove that system (6.5.7), (6.5.8), (6.5.9) is strongly
accessible at the origin. Let I denote the set {1, . . . , n−m}. The drift and
control vector fields can be expressed as

f =
n−m∑
j=1

x3,jτj ,

gi =
∂

∂x3,i
, i ∈ I,

where

τj =
∂

∂x1,j
−

n−m∑
i=1

Aj
i (x1, x2)

∂

∂x2,i
, j ∈ I,

are considered as vector fields on the (x1, x2, x3) state space and the no-
tation xi,j denotes the jth coordinate of the variable xi. It can be verified
that

[gi1 , f ] = τi1 , i1 ∈ I;

[gi2 , [f, [gi1 , f ]]] = [τi2 , τi1 ], i1, i2 ∈ I;

...

[gik∗ , [f, . . . , [gi2 , [f, [gi1 , f ]]] . . . ]] = [τik∗ , . . . , [τi2 , τi1 ] . . . ],

ik ∈ I, 1 ≤ k ≤ k∗,

hold, where k∗ denotes the nonholonomy degree. Let

G = span{gi, i ∈ I},
H = span{[gi1 , f ], . . . , [gik∗ , [f, . . . , [gi2 , [f, [gi1 , f ]]] . . . ]]; ik ∈ I, 1 ≤ k ≤ k∗}.
Note that dimG(0) = n − m and dimH(0) = n, since the distribution
defined by the constraints is completely nonholonomic; moreover,

dim{G(0) ∩H(0)} = 0.

It follows that the strong accessibility distribution

L0 = span{X | X ∈ G ∪H}
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has dimension 2n − m at the origin. Hence the strong accessibility rank
condition (Sussmann and Jurdjevic [1972]) is satisfied at the origin. Thus
system (6.5.7), (6.5.8), (6.5.9) is strongly accessible at the origin. Hence
the nonholonomic control system (6.4.1), (6.4.2) is strongly accessible at
(qe, 0). �

6.6.2 Theorem. Let m ≥ 1 and let (qe, 0) denote an equilibrium solu-
tion in M. The nonholonomic control system defined by equations (6.4.1)
and (6.4.2) is small-time locally controllable at (qe, 0).

Proof. It suffices to prove that the system (6.5.7), (6.5.8), (6.5.9) is small-
time locally controllable at the origin.
The proof involves the notion of the degree of a bracket. To make this

notion well defined we consider, as in Sussmann [1987], a Lie algebra of
indeterminates and an associated evaluation map (on vector fields) as fol-
lows:
Let X = (X0, . . . , Xn−m) be a finite sequence of indeterminates. Let

A(X) denote the free associative algebra over R generated by the Xj , let
L(X) denote the Lie subalgebra of A(X) generated by X0, . . . , Xn−m, and
let Br (X) be the smallest subset of L(X) that contains X0, . . . , Xn−m and
is closed under bracketing.
Now consider the vector fields f, g1, . . . , gn−m on the manifold M. Each

f, g1, . . . , gn−m is a member of D (M), the algebra of all partial differential
operators on C∞ (M), the space of C∞ real-valued functions on M. Now
let g0 = f , and let g = (g0, . . . , gn−m) and define the evaluation map

Ev(g) : A (X) → D(M)

obtained by substituting the gj for the Xj , i.e.,

Ev(g)
(∑

I

aIXI

)
=
∑
I

aIgI ,

where gI = gi1gi2 · · · gik , I = (i1, . . . , ik). Note that the kernel of Ev(g) :
A (X) → A(g) is the set of all algebraic identities satisfied by the gi, while
the kernel of Ev(g) : L (X) → L(g) is the set of Lie-algebraic identities
satisfied by gi.
Now let B be a bracket in Br(X). We define the degree of a bracket

to be

δ(B) =

n−m∑
i=0

δi(B),

where δ0(B), δ1(B), . . . , δn−m(B) denote the number of times X0, . . . ,
Xn−m, respectively, occur in B. The bracket B is called “bad” if δ0(B) is
odd and δi(B) is even for each i = 1, . . . , n−m. The theorem of Sussmann
tells us that the system is small-time locally controllable (STLC) at the
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origin if it satisfies the accessibility rank condition; and if B is “bad,” there
exist brackets C1, . . . , Ck of lower degree in Br (X) such that

Ev0(g)(β(B)) =

k∑
i=1

ξi Ev0(g)(Ci),

where Ev0 denotes the evaluation map at the origin and (ξ1, . . . , ξk) ∈ R
k.

Here β(B) is the symmetrization operator,

β(B) =
∑

π∈Sn−m

π̄(B),

where π ∈ Sn−m, the group of permutations of {1, . . . , n − m}, and for
π ∈ Sn−m, π̄ is the automorphism of L(X) that fixes X0 and sends Xi to
Xπ(i).
By (6.6.1), the system is accessible at the origin.
The brackets in G are obviously “good” (not of the type defined as

“bad”), and

δ0(h) =

n−m∑
j=1

δj(h) ∀h ∈ H;

thus δ(h) is even for all h in H, i.e., H contains “good” brackets only. It
follows that the tangent space T0M to M at the origin is spanned by the
brackets that are all “good.” Next we show that the brackets that might
be “bad” vanish at the origin. First note that f vanishes at the origin.
Let B denote a bracket satisfying δ(B) > 1. If B is a “bad” bracket, then
necessarily

δ0(B) �=
n−m∑
j=1

δj(B);

that is, δ(B) must be odd. It can be verified that if

δ0(B) <
n−m∑
j=1

δj(B),

then B is identically zero, and if

δ0(B) >

n−m∑
j=1

δj(B),

then B is of the form
n−m∑
i=1

ri(x3)Yi(x1, x2),
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for some vector fields Yi(x1, x2), i ∈ I, where ri(x3), i ∈ I, are homogeneous
functions of degree

(
δ0(B)−

n−m∑
j=1

δj(B)
)
in x3;

thus B vanishes at the origin. Thus the Sussmann condition is satisfied,
and the system is small-time locally controllable. �

We note that “good” and “bad” brackets and associated symmetric prod-
ucts play a key role in the configuration controllability analysis of Lewis
and Murray [1999]. See also Bullo [2001] and Shen [2002].

Piecewise Analytic Stabilizing Controllers. We consider now stabi-
lization for so-called controlled nonholonomic Chaplygin systems.
We first describe the class of controlled nonholonomic Chaplygin systems.

If the functions used in defining equations (6.4.1), (6.4.2) do not depend
explicitly on the configuration variables s, so that the system is locally
described by

gij(r)q̈
j + fi(r, q̇) =

m∑
j=1

λja
j
i (r) +

l∑
j=1

bji (r)uj , (6.6.1)

ṡa +Aa
α(r)ṙ

α = 0, a = 1, . . . ,m, (6.6.2)

then the uncontrolled system is called a nonholonomic Chaplygin system
(see Chapter 5 and Neimark and Fufaev [1972]). In terms of the Lagrangian
formalism for the problem, this corresponds to the Lagrangian of the free
problem being cyclic in (i.e., independent of) the variables s, while the
constraints are also independent of s. The cyclic property is an expression
of symmetries in the problem, as we have discussed. More generally, if a
system can be expressed in the form (6.6.1), (6.6.2) using feedback, then
we refer to it as a controlled nonholonomic Chaplygin system.
For the nonholonomic Chaplygin system described by equations (6.6.1),

(6.6.2), equation (6.5.5) becomes

CiT
α (r)gij(r)C

j
β(r)r̈

β = CiT
α (r)

[
bji (r)uj − fi(r, Cṙ)− gij(r)Ċ

j
α(r)ṙ

α
]
,

(6.6.3)

which is an equation in the variables (r, ṙ) only. As a consequence, the r
variables coordinatize a reduced configuration space for the system (6.6.1),
(6.6.2). This reduced configuration space is also referred to as the base
space (or shape space) of the system. The term shape space arises from
the theory of coupled mechanical systems, where it refers to the internal
degrees of freedom of the system.
As we did earlier, we assume that r = n−m and that the matrix product

CiT
α (q)bji (q) is locally invertible; this assumption is not restrictive. Thus it
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can be shown that the normal form equations for the system (6.6.1), (6.6.2)
are given by

ẋ1 = x3, (6.6.4)

ẋ2 = −A(x1)x3, (6.6.5)

ẋ3 = v, (6.6.6)

where x1 = r, x2 = ṙ, x3 = s, and v satisfies

CiT
α (r)gij(r)C

j
β(r)v

β = CiT
α (r)

[
bji (r)uj − fi(r, Cṙ)− gij(r)Ċ

j
α(r)ṙ

α
]
.

(6.6.7)

Again we shall make use of these normal form equations to obtain control
results.

Relation to Geometric Phases. Clearly, there is no continuous feed-
back that asymptotically stabilizes a single equilibrium. However, the con-
trollability properties possessed by the system guarantee the existence of
a piecewise analytic feedback (see Sussmann [1979]). We now describe the
ideas that are employed to construct such a feedback that achieves the de-
sired local asymptotic stabilization of a single equilibrium solution. These
ideas are based on the use of holonomy (geometric phase), which has proved
useful in a variety of kinematics and dynamics problems (see Section 3.16
and, e.g., Krishnaprasad and Yang [1991], Shapere and Wilczek [1988], and
Marsden, Montgomery, and Ratiu [1990]). The key observation here is that
the holonomy, the extent to which a closed path in the base space fails to
be closed in the configuration space, depends only on the path traversed
in the base space and not on the time history of traversal of the path.
Related ideas have been used for a class of path planning problems, based
on kinematic relations, in Li and Canny [1990], Li and Montgomery [1988],
and Krishnaprasad and Yang [1991].

For simplicity, we consider control strategies that transfer any initial
configuration and velocity (sufficiently close to the origin) to the zero con-
figuration with zero velocity. The proposed control strategy initially trans-
fers the given initial configuration and velocity to the origin of the (q1, q̇1)
base phase space. The main point then is to determine a closed path in
the q1 base space that achieves the desired holonomy. We show that the
indicated assumptions guarantee that this holonomy construction can be
made and that (necessarily piecewise analytic) feedback can be determined
that accomplishes the desired control objective.
Let x0 =

(
x0
1, x

0
2, x

0
3

)
denote an initial state. We now describe two steps

involved in construction of a control strategy that transfers the initial state
to the origin.

Step 1: Bring the system to the origin of the (x1, x3) base phase space; i.e.,
find a control that transfers the initial state

(
x0
1, x

0
2, x

0
3

)
to
(
0, xT

2 , 0
)

in a finite time, for some xT
2 .



352 6. Control of Mechanical and Nonholonomic Systems

Step 2: Traverse a closed path (or a series of closed paths) in the x1 base
space to produce a desired holonomy in the (x1, x2) configuration
space; i.e., find a control that transfers

(
0, xT

2 , 0
)
to (0, 0, 0).

The desired holonomy condition is given by

xT
2 =

∮
γ

A(x1) dx1, (6.6.8)

where γ denotes a closed path traversed in the base space. The holonomy
is reflected in the fact that traversing a closed path in the base space
yields a nonclosed path in the full configuration space. Note that here,
for notational simplicity in presenting the main idea, we assume that the
desired holonomy can be obtained by a single closed path. In general, more
than one loop may be required to produce the desired holonomy; for such
cases, γ can be viewed as a concatenation of a series of closed paths.

Under the weak assumptions mentioned previously, explicit procedures
can be given for each of the above two steps. Step 1 is classical; it is step 2,
involving the holonomy, that requires special consideration. Explicit char-
acterization of a closed path γ that satisfies the desired holonomy equa-
tion (6.6.8) can be given for several specific examples (see below). However,
some problems may require a general computational approach. An algo-
rithm based on Lie-algebraic methods as in Lafferiere and Sussman [1991]
can be employed to approximately characterize the required closed path.
Suppose the closed path γ that satisfies the desired holonomy condition is
chosen. Then a feedback algorithm that realizes the closed path in the base
space can be constructed, since the base space equations represent n −m
decoupled double integrators.
This general construction procedure provides a strategy for transferring

an arbitrary initial state of equations (6.6.4), (6.6.5), (6.6.6) to the origin.
Implementation of this control strategy in a (necessarily piecewise analytic)
feedback form can be accomplished as follows.
Let a = (a1, . . . , an−m) and b = (b1, . . . , bn−m) denote displacement

vectors in the x1 base space and let γ(a, b) denote the closed path (in the
base space) formed by the line segments from x1 = 0 to x1 = a, from
x1 = a to x1 = a+ b, from x1 = a+ b to x1 = b, and from x1 = b to x1 = 0.
Then the holonomy of the parametrized family

{γ(a, b)|a, b ∈ R
n−m}

is determined by the holonomy function γ(a, b) → α(a, b) given as

α(a, b) = −
∮
γ(a,b)

A(x1) dx1.

Now let πs denote the projection map πs : (x1, x2, x3) → (x1, x3). In
order to construct a feedback control algorithm to accomplish the above
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two steps, we first define a feedback function V x∗
1 (πsx) that satisfies the

following condition: For any πsx(t0) there is t1 ≥ t0 such that the unique
solution of

ẋ1 = x3, ẋ3 = V x∗
1 (πsx), (6.6.9)

satisfies πsx(t1) = (x∗
1, 0). Note that the feedback function is parametrized

by the vector x∗
1. Moreover, for each x∗

1, there exists such a feedback func-

tion. One such feedback function V x∗
1 (πsx) = (V

x∗
1

1 (πsx), . . . , V
x∗
1

n−m(πsx))
is given as

V x∗
i (πsx) =

{
−ki sign(x1,i − x∗

1,i + x3,i|x3,i|/2ki), (x1,i, x3,i) �= (x∗
1,i, 0),

0, (x1,i, x3,i) = (x∗
1,i, 0),

where ki, i = 1, . . . , n − m, are positive constants chosen such that the
resulting motion, when projected to the base space, constitutes a straight
line connecting x1(t0) to x1(t1) = x∗

1.
We specify the control algorithm, with values denoted by v∗, according

to the following construction, where x denotes the “current state”:

Control algorithm for v∗.

Step 0: Choose (a∗, b∗) to achieve the desired holonomy.

Step 1: Set v∗ = V a∗
(πsx), until πsx = (a∗, 0); then go to Step 2;

Step 2: Set v∗ = V a∗+b∗(πsx), until πsx = (a∗ + b∗, 0); then go to Step 3;

Step 3: Set v∗ = V b∗(πsx), until πsx = (b∗, 0); then go to Step 4;

Step 4: Set v∗ = V 0(πsx), until πsx = (0, 0); then go to Step 0;

We here assumed that the desired holonomy can be obtained by a single
closed path. Clearly, the above algorithm can be modified to account for
cases for which more than one closed path is required to satisfy the desired
holonomy. The algorithm is illustrated in the example below.
Note that the control algorithm is constructed by appropriate switchings

between members of the parametrized family of feedback functions. On
each cycle of the algorithm the particular functions selected depend on the
closed path parameters a∗, b∗, computed in Step 0, to correct for errors
in x2.
The control algorithm can be initialized in different ways. The most

natural is to begin with Step 4, since v∗ in that step does not depend
on the closed path parameters; however, many other initializations of the
control algorithm are possible.
Justification that the constructed control algorithm asymptotically stabi-

lizes the origin follows as a consequence of the construction procedure: that
switching between feedback functions guarantees that the proper closed
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path (or a sequence of closed paths) is traversed in the base space so that
the origin (0, 0, 0) is necessarily reached in a finite time. This construc-
tion of a stabilizing feedback algorithm represents an alternative to the
approach by Hermes [1980], which is based on Lie-algebraic properties.
It is important to emphasize that the above construction is based on the

a priori selection of simply parametrized closed paths in the base space.
The above selection simplifies the tracking problem in the base space, but
other path selections could be made, and they would, of course, lead to a
different feedback strategy from that proposed above.
We remark that the technique presented in this section can be generalized

to some systems that are not Chaplygin. For instance, this generalization
is tractable to systems for which equation (6.6.5) takes the form

ẋ2 = ρ(x2)A(x1),

where ρ(x2) denotes certain Lie group representation (see, for example,
Marsden, Montgomery, and Ratiu [1990]). The holonomy of a closed path
for such systems is given as a path-ordered exponential rather than a path
integral.

6.6.3 Example (Control of a Rolling Wheel or Disk). Consider again
the control of a vertical wheel rolling without slipping on a plane surface.
As before, let x and y denote the coordinates of the point of contact of the
wheel on the plane, let ϕ denote the heading angle of the wheel, measured
from the x-axis, and let θ denote the rotation angle of the wheel due to
rolling, measured from a fixed reference. Then the equations of motion,
with all numerical constants set to unity, are given by

ẍ = λ1,

ÿ = λ2,

θ̈ = −λ1 cosϕ− λ2 sinϕ+ u1,

ϕ̈ = u2,

(6.6.10)

where u1 denotes the control torque about the rolling axis of the wheel and
u2 denotes the control torque about the vertical axis through the point
of contact; the components of the force of constraint arise from the two
nonholonomic constraints

ẋ = θ̇ cosϕ, ẏ = θ̇ sinϕ, (6.6.11)

which have nonholonomy degree three at any configuration. The constraint
manifold is a six-dimensional manifold and is given by

M =
{(

θ, ϕ, x, y, θ̇, ϕ̇, ẋ, ẏ
) ∣∣ ẋ = θ̇ cosϕ, ẏ = θ̇ sinϕ

}
,

and any configuration is an equilibrium if the controls are zero.
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Define the variables

z1 = θ, z2 = ϕ, z3 = x, z4 = y, z5 = θ̇, z6 = ϕ̇,

so that the reduced differential equations are given by

ż1 = z5,

ż2 = z6,

ż3 = z5 cos z2,

ż4 = z5 sin z2,

ż5 =
1

2
u1,

ż6 = u2.

(6.6.12)

Then we have the following result:

Let ze = (ze1, z
e
2, z

e
3, z

e
4, 0, 0) denote an equilibrium solution of the reduced

differential equations corresponding to u = 0. The rolling wheel dynamics
have the following properties:

1. There is a smooth feedback that asymptotically stabilizes the closed
loop to any smooth two-dimensional equilibrium manifold in M that
satisfies the transversality condition.

2. There is no smooth feedback that asymptotically stabilizes ze.

3. The system is strongly accessible at ze, since the space spanned by the
vectors

g1, g2, [g1, f ], [g2, f ], [g2, [f, [g1, f ]]], [g2, [f, [g1, [f, [g2, f ]]]]]

has dimension 6 at ze.

4. The system is small-time locally controllable at xe, since the brackets
satisfy sufficient conditions for small-time local controllability.

Note here that the base variables are (z1, z2). Consider a parametrized
rectangular closed path γ in the base space with four corner points of the
form

(0, 0), (z1, 0), (z1, z2), (0, z2);

i.e., a = (z1, 0) and b = (0, z2), following the notation introduced above.
By evaluating the holonomy integral in closed form for this case, we find
that the holonomy equations are

zT3 = z1(cos z2 − 1),

zT4 = z1 sin z2.
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These equations can be explicitly solved (inverted) to determine a closed
path (or a concatenation of closed paths) γ∗ that achieves the desired
holonomy. One solution can be given as follows: If zT3 �= 0, then γ∗ is
the closed path specified by

a∗ = −
(((

zT3
)2

+
(
xT
4

)2)
/2zT3 , 0

)
,

b∗ =
(
0,− sin−1

(
2zT3 z

T
4 /
((

zT3
)2

+
(
zT4
)2)))

,

and if xT
3 = 0, then γ∗ is a concatenation of two closed paths specified by

a∗ =
(
0.5zT4 , 0

)
, b∗ = (0, 0.5π),

a∗∗ =
(−0.5zT4 , 0

)
, b∗∗ = (0,−0.5π).

Note that the previously described feedback algorithm can be used (with
the modification indicated in the general development) to asymptotically
stabilize the rolling wheel to the origin. �

In the web supplement a similar stabilization argument is also applied
to a knife edge.

Exercises

� 6.6-1. Verify the accessibility and small-time local controllability results
for the vertical penny system.

� 6.6-2. Verify accessibility and small-time local controllability at the equi-
librium xe = (xe

1, x
e
2, x

3
3, 0, 0) for the system on R

5 given by

ẋ1 = x2,

ẋ2 = x5,

ẋ3 = x1x5,

ẋ4 = u1 + u2x3 − x1x
2
5,

ẋ5 = u2.

(6.6.13)

� 6.6-3. Analyze the geometric phase problem for the controlled rigid body
with two torques (see Chapter 1 for the equations with one torque). This
provides a form of attitude control. For the geometric phase for the free
rigid body, see Montgomery [1991b] and Marsden and Ratiu [1999]. For the
controlled case, see Bloch, Leonard, and Marsden [2001] and the references
therein.
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6.7 Nonholonomic Systems on Riemannian
Manifolds

We consider here the formulation of controlled classical nonholonomic sys-
tems on Riemannian manifolds. Such a formulation is useful for considering
systems with nontrivial geometry, such as the rolling ball, and we follow
the work of Bloch and Crouch [1995] here. We contrast here kinematic and
dynamic control systems in this setting, discuss conservation laws and re-
duction in the presence of controls, and use the bundle structure to get a
nontrivial control result.

Holonomic Control Systems. First, consider the holonomic or uncon-
strained case:
Let (Q, 〈, 〉) be an n-dimensional Riemannian manifold, with metric g( , )

= 〈 , 〉. Denote the norm of a tangent vector X at the point p by

‖Xp‖ = 〈Xp, Xp〉 1
2 . The geodesic flow on Q is then given by

D2q

dt2
= 0, (6.7.1)

where Dq
dt denotes the covariant derivative. This flow minimizes the integral∫ 1

0

∥∥∥Dq
dt

∥∥∥2 dt along parametrized paths.

We define a controlled holonomic system to be a system of the form

D2q

dt2
=

N∑
i=1

uiXi, (6.7.2)

where {Xi} is an arbitrary set of control vector fields, the ui are functions
of time, and N ≤ n. (Note that here we do not consider systems evolving
under the influence of a potential, but the analysis is easily extended to
include a potential.) Such systems are sometimes now called affine con-
nection control systems (see Bullo [2002]).

Equilibrium Controllability. This Riemannian setup is useful for an-
alyzing controllability concepts for mechanical systems, as shown in the
work of Lewis [1995] and Lewis and Murray [1999] (see also Murray [1995]
and Shen [2002], Shen, McClamroch, and Bloch [2004]).

6.7.1 Definition. The system (6.7.2) is said to be equilibrium control-
lable if for any two equilibrium points q0 and q1 there exist a time T and
set of controls ui that drive the system from q0 to q1 in time T .

We can also define a configuration notion of a reachable set (Lewis and
Murray [1999]):

6.7.2 Definition. Given q0 ∈ Q we define RQ(q0, t) to be the set of all
q ∈ Q for which there exists an admissible control u such that there is a
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trajectory of (6.7.2) with q(0) = q0, q(t) = q with arbitrary velocity. The
configuration reachable set from q0 at time T is defined to be

RQ
T (q0) =

⋃
0≤t≤T

RQ(q0, t). (6.7.3)

6.7.3 Definition. The control system (6.7.2) is configuration accessible

if there exists a time T such that RQ
T contains an open subset of Q.

Lewis and Murray [1999] show that this kind of controllability may be
analyzed using the symmetric product (see also Crouch [1981]) on vector
fields X, Y given by

〈X : Y 〉 = ∇XY +∇Y X. (6.7.4)

Defining the sequence of vector fields

G(1) = {X1, . . . , Xm},
G(i) = {∇Y X +∇XY : X ∈ G(j), Y ∈ G(k), i = j + k},

G(∞) =

∞⋃
i=1

G(i),

we can establish (see Lewis and Murray [1999]) the following theorem:

6.7.4 Theorem. If the involutive closure of the vector fields G(∞) spans
TqQ for each q ∈ Q, then the system (6.7.2) is locally configuration acces-
sible at each q ∈ Q.

Local equilibrium controllability can be analyzed using a symmetric ver-
sion of the “good” and “bad” brackets of Sussmann [1987] that we discussed
in Section 6.6. A symmetric product in G(∞) is said to be “bad” if it con-
tains an even number of copies of Xi for each i = 1, . . . ,m. Otherwise, we
say that it is “good.” Then Lewis and Murray [1999] prove the following
result:

6.7.5 Theorem. If every bad symmetric product in G(∞) evaluated at an
equilibrium point can be written as a linear combination of good symmet-
ric products of lower order, then the system (6.7.2) is locally equilibrium
controllable.

See the exercises below for an example.

Nonholonomic Systems. We now consider the formulation of
controlled nonholonomic systems in this Riemannian setting. The global
geometric approach here turns out to be useful for formulating certain con-
trol results and for understanding symmetries in the control setting.
Classical nonholonomic systems are obtained from Lagrange–d’

Alembert’s principle, as discussed in Section 5.2.
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The equations are

D2q

dt2
=

m∑
k=1

λiWi, (6.7.5)

subject to

ωk

(
Dq

dt

)
=

〈
Wk,

Dq

dt

〉
= 0, 1 ≤ k ≤ m,

where ωk(X) = 〈Wk, X〉 and the λi are Lagrange multipliers. The con-
straints are given by the 1-forms ωk, 1 ≤ k ≤ m, which define a (smooth)
distribution H on Q.

We now define a controlled nonholonomic mechanical system to
be a system of the form

D2q

dt2
=

m∑
i=1

λiWi +

N∑
i=1

uiXi (6.7.6)

subject to 〈
Wk,

Dq

dt

〉
= 0, 1 ≤ k ≤ m, (6.7.7)

where the ui(t) are controls and the Xi are arbitrary smooth (control)
vector fields. In fact, the Xi are not as arbitrary as they appear, as the
remark below shows.

Remarks.

1. We now consider which general force fields F are compatible with the
nonholonomic constraints, i.e., which F (q, q̇) are allowed in the system

D2q

dt2
= F

subject to 〈
Wk,

Dq

dt

〉
= 0 , 1 ≤ k ≤ m. (6.7.8)

Differentiating the constraints gives

〈Wk, F 〉+
〈
DWk

dt
,
Dq

dt

〉
= 0 , 1 ≤ k ≤ m

or, if ∇ is the Riemannian connection on (Q, 〈, 〉),
〈Wk, F 〉+ 〈∇q̇Wk, q̇〉 = 0 , 1 ≤ k ≤ m. (6.7.9)

These are the conditions that the force field must satisfy to be compatible
with the constraints. The Lagrange multipliers ensure that the forces satisfy
the above relations. This also shows that the number of independent force
fields is less than or equal to n−m.
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2. We define the kinematic system corresponding to the dynamic sys-
tem (6.7.6), (6.7.7) to be

Dq

dt
=

N∑
i=1

uiX̂i, X̂i ∈ H.

For controllability analysis, the assumption is made that H is completely
nonholonomic (see Vershik and Gershkovich [1988]). We analyze such sys-
tems elsewhere.

3. We note that while the nonholonomic system under discussion is not
variational in the Lagrangian sense, it can be seen as the solution of an
instantaneous variational problem,

min
D2q

dt2

1

2

∥∥∥∥∥
D2q

dt2
−

N∑
i=1

uiXi(q)

∥∥∥∥∥
subject to 〈

Wk,
Dq

dt

〉
= 0 , 1 ≤ k ≤ m. (6.7.10)

This yields the nonholonomic equations as well as the following equations
for λk:

m∑
j=1

〈Wk,Wj〉λj = −
〈
DWk

dt
,
Dq

dt

〉
−

N∑
i=1

ui

〈
Wk, Xi

〉
, 1 ≤ k ≤ m.

(6.7.11)
This approach to obtaining the nonholonomic equations of motion is called
Gauss’s principle of least constraint (see Gauss [1829], Gibbs [1879],
and, e.g., Lewis [1996]). �

Symmetries and Conservation Laws. Symmetries in mechanics give
rise to constants of the motion, and their role in the nonholonomic setting
is particularly interesting, as we have seen in Chapter 5. Here we consider
symmetries in the Riemannian setting and in the presence of controls. We
obtain a result that is a slight generalization of that in Arnold, Kozlov,
and Neishtadt [1988] and that extends to the control setting some of the
momentum equation analysis in Chapter 5.
In the Riemannian context isometries (which preserve the metric) are

generated by Killing vector fields. (Z is a Killing vector field if 〈∇Y Z, Y 〉 =
0 for all vector fields Y ; see, for example, Crouch [1981].) Further, a suffi-

cient condition for
〈
Z, Dq

dt

〉
to be a constant of motion for the geodesic flow

is that Z be a Killing vector field. For controlled nonholonomic systems,
we have the following:
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6.7.6 Theorem. Sufficient conditions for
〈
Z, Dq

dt

〉
to be a constant of

motion for the controlled nonholonomic system (6.7.6) are:

(i) Z ∈ H;

(ii) Zq ∈ Span{X1, . . . , XN}⊥;
(iii) Z is a Killing vector field.

Proof.
d

dt

〈
Z,

Dq

dt

〉
=

〈
DZ

dt
,
Dq

dt

〉
+

〈
Z,

D2q

dt2

〉
.

The first term is zero by (iii), and the second is zero by (6.7.6), (i), and (ii).
Note that when Q = R

n and the metric g is independent of qi, then
∂/∂qi is a Killing vector field. �

Reduction for Nonholonomic Systems on Riemannian Manifolds.
We discuss here an approach to reduction for nonholonomic control sys-
tems; this just extends to this control setting the analysis in Chapter 5.
We introduce a bundle structure in Q,

Q⏐⏐8π
B

with fiber F , dimB = r, and dimF = n − r. This structure must be
compatible with the constraints in the sense that π∗Hq = Tπ(q)B, ∀q ∈ Q
(thus dimH = n −m ≥ dimB = r). Our aim is to reduce the dynamical
system (6.7.6), (6.7.7) so that evolution on the fiber is given by a first-order
equation. To do this we introduce a further assumption, namely, that one
of the following holds:

(1) dimH = dim B, i.e., n = m + r. In this case Ĥ ≡ H clearly defines
a horizontal distribution on the bundle.

(2) dim H − dim B = n − m − r = s > 0, and there exist s linearly
independent vector fields Z1, . . . , Zs that satisfy conditions (i)–(iii)
of Theorem 6.7.6. In particular,〈

Zi,
Dq

dt

〉
= ci (6.7.12)

are constants of the motion for (6.7.6), (6.7.7).

We define a distribution Ĥ0 on Q by setting

X ∈ Ĥ0 if 〈Wk, X〉 = 0 , 1 ≤ k ≤ m,

〈Zk, X〉 = 0 , 1 ≤ k ≤ s . (6.7.13)
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This ensures that Ĥ0 is r-dimensional. We also require that Ĥ0 define a
horizontal distribution of the bundle, i.e.,

TqF ∩ Ĥ0 = {0} ∀q ∈ Q . (6.7.14)

We further define the r-dimensional affine connection Ĥ on Q by setting

q ∈ Ĥ if 〈Wk, X〉 = 0, 1 ≤ k ≤ m,

〈Zk, X〉 = ck, 1 ≤ k ≤ s. (6.7.15)

In either case (1) or (2) we have, as a direct sum of affine subspaces, Ĥq ⊕
TqF = TqQ, and so any vector field on Q can be decomposed uniquely

into components Yq = Y H
q + Y F

q with Y H
q ∈ Ĥq and Y F

q ∈ Fq. With this
structure we can now decompose the velocity:

Dq

dt
= q̇H + q̇F , q̇H ∈ Ĥq, q̇F ∈ TqF. (6.7.16)

Using (6.7.7) we obtain〈
Wk, q̇

F
〉
= − 〈Wk, q̇

H
〉
, 1 ≤ k ≤ m,〈

Zk, q̇
F
〉
=
〈
Zk, q̇

H
〉
+ ck, 1 ≤ k ≤ s. (6.7.17)

Our rank conditions on Zk and Wk allow us to solve these equations, giving

q̇F = fF
(
q, q̇H

)
. (6.7.18)

Equations (6.7.6) now define the second-order set of equations

Dq̇H

dt
= fH(q, q̇, u). (6.7.19)

We have now provided a reduction from the 2n first-order equations
(6.7.6) to n+ r first-order equations.

Now locally we can write q̇H = D
dtq

B for some trajectory qB(t) ∈ B. In
some cases we may be able to rewrite the equations globally in terms of a
trajectory q(t) =

(
qB(t), qF (t)

)
, qB ∈ B, qF ∈ F .

The class of Chaplygin control systems introduced in Bloch, Reyhanoglu,
and McClamroch [1992] and discussed above corresponds to the case where

H = Ĥ and there exists a trivial bundle structure Q = R
n with the Eu-

clidean structure. In this case, since ∂/(∂qFi ) is Killing and symmetries
correspond to invariance with respect to qFi , a global prescription can be
given, in which the equations become

q̇F = fF
(
qB , q̇B

)
,

Dq̇B

dt
= fH

(
qB , q̇B , u

)
,

(6.7.20)

and in fact, fF is affine in q̇B .
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In certain related cases, such as when Q is a principal bundle with its
structure group G being a group of isometries and H = Ĥ is G-invariant,
we can also obtain a global reduction.
Another such case is the class of controlled nonabelian Chaplygin sys-

tems. The class of nonabelian Chaplygin control systems is defined
as follows. We are again given a system of the form above, but with the
following additional properties: The manifold Q is acted on by a Lie group
G, and the bundle structure above is a principal bundle with fiber G. The
group G acts by isometries on the metric on Q, and H is invariant under
G in the sense that Hg.q = g∗Hq. Finally, the control vector fields should
also be invariant under G. (The uncontrolled class of these “nonabelian”
Chaplygin systems was discussed in Chapter 5; see also Koiller [1992].)

Now, such control systems fall into a class of control systems on principal
bundles whose controllability may be assessed by considering the projection
of the system to the base. An analysis of this class of systems is due to San
Martin and Crouch [1984]. Precisely, consider an analytic nonlinear control
system ẋ = f(x, u) defined on a connected principal fiber bundle Q(G,B)
with base B and structure group G. Denote the set of vector fields f(·, u)
on Q by D and suppose that D is projectable in the sense that for each
X ∈ D there exists a unique vector field X ′ on B satisfying π∗X = X ′ ◦ π.
Denote the projected set of vector fields by D′. Note that this is automati-
cally satisfied for systems invariant under G and thus for the nonholonomic
Chaplygin systems defined above. We then have the following:

6.7.7 Theorem (San Martin–Crouch). Let Q(B,G) be a connected prin-
cipal fiber bundle with G a compact Lie group and let D be a G-invariant
projectable family of vector fields on Q defining a control system ΣD that
is accessible. Denote by Σ′

D the system on B defined by D′ = π(D). Then
ΣD is controllable if and only if Σ′

D is controllable.

6.7.8 Theorem. An accessible nonabelian Chaplygin control system with
compact structure group that is controllable on the base of its principal
bundle is controllable.

6.7.9 Example (The Rolling Ball). We consider again the controlled
rolling ball on the plane discussed in Chapter 1. We now illustrate the ideas
above in this specific physical setting.
Recall that we use the coordinates x, y for the linear horizontal displace-

ment and P ∈ SO(3) for the angular displacement of the ball. Thus P gives
the orientation of the ball with respect to inertial axes e1, e2, e3 fixed in
the plane, where the ei are the standard basis vectors aligned with the
x-,y-, and z-axes, respectively.
We let ω ∈ R

3 denote the angular velocity of the ball with respect
to inertial axes. In particular, the ball may spin freely about the z-axis,
and the z-component of angular momentum is conserved. If J denotes the
inertia tensor of the ball with respect to the body axes, then J = PTJP
denotes the inertia tensor of the ball with respect to the inertial axes, and
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Jω is the angular momentum of the ball with respect to the inertial axes.
The conservation law alluded to above is expressed as

eT3 Jω = c . (6.7.21)

The nonholonomic constraints are expressed as

eT2 ω + ẋ = 0,

eT1 ω − ẏ = 0.
(6.7.22)

The kinematics for the rotating ball we express as Ṗ = Ω̂P , where Ω =
Pω is the angular velocity in the body frame.
We now wish to write down equation (6.7.6) for this example using the

global coordinates q = (x, y, P ). The metric onQ = SO(3)×R
2 is defined by

〈(
Ω̂1P, ẋ1, ẏ

)
,
(
Ω̂2P, ẋ2, ẏ2

)〉
= ΩT

1 JΩ2 + ẋT
1 ẋ2 + ẏT1 ẏ2. (6.7.23)

An explicit expression for the Riemannian connection on SO(3) may be
found by consulting Arnold [1989], p. 327. Equation (6.7.6) becomes

ˆ̇ΩP − ̂(J−1Ω̂JΩ)P = λ1
̂(J−1Pe1)P + λ2

̂(J−1Pe2)P,

mẍ = λ2 + u1,

mÿ = −λ1 + u2.

(6.7.24)

In inertial coordinates ω = PTΩ, the system is

ω̇ = J
−1ω̂Jω + λ1J

−1e1 + λ2J
−1e2,

mẍ = λ2 + u1,

mÿ = −λ1 + u2,

Ṗ = Pω̂.

(6.7.25)

From the equations it is easy to see that indeed (6.7.21) is a constant of the
motion. In fact Z, in formula (6.7.12) is given by Z = ( ˆPe3)P . It is easy
to check conditions (i) and (ii) of Theorem 6.7.6, and with more effort, one
can verify condition (iii).
In this example there are two admissible reductions, as described above.

The first takes B = SO(3) and the fiber F = R
2, and the reduction of

system (6.7.25) is obtained simply by substituting the two constraints for

the second-order equations. This corresponds to the case H = Ĥ discussed
above.
For the second reduction we take B = R

2, F = SO(3), and we now
employ the constraints and the constant of motion to obtain the following
expression for ω:

ω = ẋ(α1e3 − e2) + ẏ(e1 − α2e3) + α3e3,
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where

α1 =
eT3 Je1
eT3 Je3

, α2 =
eT3 Je2
eT3 Je3

, α3 =
c

eT3 Je3
. (6.7.26)

The reduced equations become, after substituting for the multipliers,

mẍ = λ2 + u1,

mÿ = −λ1 + u2, (6.7.27)

Ṗ = P ̂(ẋ(α2e3 − e2) + ẏ(e1 − α1e3) + α3e3).

In this case Ĥ is obtained through Assumption (2) above with s = 1.
Note also that here we obtain seven first-order ODEs rather than the eight
obtained from the previous reduction. �

Other aspects of control of nonholonomic systems including optimal con-
trol and stabilization by energy methods are described in the following
chapters. Another topic of interest which is not covered in this book is
nonholonomic stochastic mechanical systems; see, e.g., Hochgerner [2012].
Hochgerner and Ratiu [2012].

Exercises

� 6.7-1. (See, e.g., Murray [1995].) Show that the system (a model of a
controlled planar rigid body)

ẋ = cos θ u1 − sin θ u2

ẏ = sin θ u1 + cos θ u2

θ̇ = u1

is locally configuration accessible and equilibrium controllable.

� 6.7-2. Verify condition (iii) in Theorem 6.7.6 for the rolling ball.
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Optimal Control

Given a set of nonholonomic constraints, there are two interesting associated
problems. One of these is nonvariational (namely, the Lagrange–d’Alembert
principle) appropriate for the dynamics of constrained mechanical systems,
which we studied extensively in Chapter 5, while the other is variational,
which is appropriate for optimal control problems. In this chapter we con-
centrate on these optimal control problems.
This chapter gives a selection of techniques and results in optimal control

theory that are optimization problems for mechanical systems, including
nonholonomic systems. The topics treated here are a small and admittedly
biased selection from a vast literature.1 For related work of the authors
on optimal control on Lie algebras, see the topic “Optimal Control on Lie
Algebras and Adjoint Orbits” in the Internet Supplement section of this
book’s website.

7.1 Variational Nonholonomic Problems

Suppose a submanifold of the tangent bundle is given as the zero set of
a set of constraints on the bundle. Suppose also that we are given a La-
grangian or, more generally, an objective function that we wish to minimize
or maximize. Then we can proceed in the following two ways:

1See, for example, Pontryagin [1959], Sussmann [1998a,b], and the references therein.
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(1) We can consider the conditional variational problem of minimizing a
functional subject to the trajectories lying in the given submanifold
and obtain the Euler–Lagrange equations via the Lagrange method of
appending the constraints to the Lagrangian via Lagrange multipliers.

(2) We can project, via a suitable projection, the vector field of the un-
conditional problem on the whole tangent bundle at every point to
the tangent space of a given submanifold.

The vector fields arising from these two approaches will not, of course,
coincide in general, even though both are tangent to the constraint subman-
ifold. The two approaches were compared earlier in Sections 1.3 and 1.4,
where in the latter section we compared the two types of dynamics for the
vertical rolling disk. The first method gives us variational nonholonomic
problems, while (real) nonholonomic mechanics are obtained by a proce-
dure of the second type. In fact, this is implemented by the Lagrange–
d’Alembert principle, as we have seen in Chapters 1 and 5. As we saw,
nonholonomic mechanics is not variational, since while we allow all pos-
sible variations in taking the variations of the Lagrangian, the variations
have to lie in the nonintegrable constraint distribution and are thus not in-
dependent of one another or reducible to constraints on the configuration
variables.

The Lagrange Problem. Variational nonholonomic problems, on the
other hand, are equivalent to the classical Lagrange problem of minimizing
a functional over a class of curves with fixed extreme points and satisfying
a given set of equalities.
More precisely, we have the following (see, e.g., Bloch and Crouch [1994]):

Let Q be a smooth manifold and TQ its tangent bundle with coordinates
(qi, q̇i). Let L : TQ → R be a given smooth Lagrangian and let Φ : TQ →
R

n−m be a given smooth function.

7.1.1 Definition. The Lagrange problem is given by

minq(·)

∫ T

0

L(q, q̇)dt (7.1.1)

subject to the fixed endpoint conditions q(0) = 0, q(T ) = qT , and subject to
the constraints

Φ(q, q̇) = 0.

7.1.2 Example (The Falling Cat Problem). The falling cat problem
is an abstraction of the problem of how a falling cat should optimally (in
some sense) move its body parts so that it achieves a 180◦ reorientation
during its fall.
In this case we begin with a Riemannian manifold Q (the configuration

space of the problem) with a free and proper isometric action of a Lie group
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G on Q (the group SO(3) for the falling cat). Let A denote the mechanical
connection; that is, it is the principal connection whose horizontal space is
the metric orthogonal to the group orbits (see Section 3.12). The quotient
space Q/G = X, the shape space, inherits a Riemannian metric from that
on Q. Given a curve c(t) in Q, we shall denote the corresponding curve in
the shape space X by r(t).

The problem under consideration is as follows:

Isoholonomic Problem (Falling Cat problem). Fixing two points
q1, q2 ∈ Q, among all curves q(t) ∈ Q, 0 ≤ t ≤ 1, such that q(0) =
q0, q(1) = q1, and q̇(t) ∈ horq(t) (horizontal with respect to the mechanical
connection A), find the curve or curves q(t) such that the energy of the
shape space curve, namely,

1

2

∫ 1

0

‖ṙ‖2dt,

is minimized.
We shall examine the solution of this problem in Section 7.5. �
As we shall see in Section 7.3, many optimal control problems can be

cast in this form. Note that these problems are certainly variational, over
a restricted class of curves satisfying Φ(q, q̇) = 0.

Local Solution. We can proceed to solve the Lagrange problem locally
by forming the modified Lagrangian

Λ(q, q̇, λ) = L(q, q̇) + λ · Φ(q, q̇), (7.1.2)

with λ ∈ R
n−m. The Euler–Lagrange equations then take the form

d

dt

∂

∂q̇
Λ(q, q̇, λ)− ∂

∂q
Λ(q, q̇, λ) = 0, (7.1.3)

Φ(q, q̇) = 0. (7.1.4)

The case we are particularly interested in is the case of classical (linear
in the velocity) nonholonomic constraints:

ωi(q, q̇) =

n∑
k=1

aik(q)q̇
k = 0, i = 1, . . . , n−m. (7.1.5)

In the case that these constraints are integrable (equivalent to functions
of q only) and L is physical, i.e., it is a holonomic mechanical system,
this system will represent physical dynamics. In the nonholonomic case,
these equations will not be physical; one needs the Lagrange–d’Alembert
principle, as we have seen in Chapters 1, 3, and 5. The following theorem
gives the differential equations for the Lagrange problem.
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7.1.3 Theorem. A solution of the Lagrange problem Definition 7.1.1 with
constraints of the form (7.1.5) satisfies the following equations:

d

dt

∂L

∂q̇i
− ∂L

∂qi
+

n−m∑
j=1

λ̇jaji +

n−m∑
j=1

λj

(
ȧji −

n∑
k=1

∂ajk
∂qi

q̇k
)

= 0 (7.1.6)

with the constraints
n∑

k=1

aik q̇
k = 0. (7.1.7)

Contrast these equations of motion with the nonholonomic equations of
motion with Lagrange multipliers obtained in Chapters 1 and 5 from the
Lagrange–d’Alembert principle:

d

dt

∂L

∂q̇i
− ∂L

∂qi
=

n−m∑
j=1

λjaji . (7.1.8)

Observe that if we (formally) set λj = 0 and λ̇j = λj in the variational
nonholonomic equations, we recover the nonholonomic equations of motion.
It is precisely the omission of the λ̇j term that destroys the variational
nature of the nonholonomic equations.
Observe also that if the constraints are the total derivatives of holonomic

functions φi(q), i.e. aji = ∂φi

∂qj , then the last term of the variational non-
holonomic equations vanishes and the variational nonholonomic equations
and Lagrange–d’Alembert equations are identical.

7.1.4 Examples. Here we recall from Chapter 1 two examples that will be
used to illustrate the theory above: the vertical rolling penny (or unicycle)
and the rolling (homogeneous) ball (see Bloch and Crouch [1993]).

A. (Rolling Disk or Unicycle.)
We consider again the vertical disk discussed in Section 1.4, this time with-
out controls. The variational problems yielded the augmented Lagrangian

L =
1

2
m
(
ẋ2 + ẏ2

)
+
1

2
Iθ̇2+

1

2
Jϕ̇2+μ1

(
ẋ−Rθ̇ cosϕ

)
+μ2

(
ẏ −Rθ̇ sinϕ

)
,

giving the Lagrange equations

mẍ+ μ̇1 = 0,

mÿ + μ̇2 = 0,

Jϕ̈+Rμ1θ̇ sinϕ−Rμ2θ̇ cosϕ = 0,

Iθ̈ −R
d

dt
(μ1 cosϕ+ μ2 sinϕ) = 0.

(7.1.9)

As we saw in Section 1.4, we obtain

μ1 = −mRθ̇ cosϕ+A,

μ2 = −mRθ̇ sinϕ+B,
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where A and B are integration constants giving the equations

Jϕ̈ = Rθ̇(A sinϕ−B cosϕ),

(I +mR2)θ̈ = Rϕ̇(−A sinϕ+B cosϕ).

Note that we may obtain the nonholonomic equations of motion (1.4.3)
by setting the constants of integration for the multipliers A and B equal
to zero. However, there is not always so simple a relationship between the
variational and nonholonomic equations. For more details see Cardin and
Favretti [1996], Favretti [1998], Martinez, Cortes, and De León [2000], and
Mart́ınez, Cortés, and De León [2001].

Moreover, setting μj = 0 and μj = μ̇j in equations (7.1.9) gives the
equations

mẍ = 0,

mÿ = 0,

Jϕ̈ = 0,

Iθ̈ = R(μ1 cosϕ+ μ2 sinϕ),

which are precisely the nonholonomic mechanical equations for the vertical
rolling disk (1.4.3), as the theory above indicated.

B. (The Rolling Ball)
Here we treat the example of a controlled rolling ball on the plane as a
variational nonholonomic problem. The nonholonomic mechanical system
was treated in Section 1.9.

We will use the coordinates x, y for the linear horizontal displacement
and P ∈ SO(3) for the angular displacement of the ball. Thus P gives
the orientation of the ball with respect to inertial axes e1, e2, e3, where
the ei are the standard basis vectors aligned with the x-, y-, and z-axes,
respectively. In particular, P maps the position of a fixed point in the
ball measured in the inertial axes to a fixed reference position. This is not
the definition given in many standard texts (e.g., Abraham and Marsden
[1978]), where the inertial and body frames are interchanged. It does give a
right-invariant description of the kinematics expressed in the body frame,
which is useful from some points of view.
Let ω ∈ R

3 denote the angular velocity of the ball with respect to inertial
axes. In particular, the ball may spin freely about the z-axis and the z-
component of angular momentum is conserved. If J denotes the inertia
tensor of the ball with respect to the body axes, then J = PTJP denotes
the inertia tensor of the ball with respect to the inertial axes, and Jω is
the angular momentum of the ball with respect to the inertial axes. The
conservation law alluded to above is expressed as

eT3 Jω = c. (7.1.10)
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The nonholonomic constraints are expressed as

eT2 ω + ẋ = 0,

eT1 ω − ẏ = 0. (7.1.11)

Note that these do not include constraints on the spin about the z-axis,
which can be additionally imposed through applied torques (see, e.g., Brock-
ett and Dai [1992]).

The kinematics of the rotating ball may be expressed as Ṗ = S(ν)P ,
where ν = Pω is the angular velocity in the body frame and S(ν) is the
skew-symmetric matrix satisfying a × b = S(b)a for all a, b ∈ R

3 (see, for
example, Crouch [1984]). Here we will explicitly derive the Euler–Lagrange
equations for the variational nonholonomic problem, from which we may
write down the mechanical nonholonomic system.
To obtain the variational control system we first write down the La-

grangian in the following form, where m denotes the mass of the ball:

L =
1

2
νTJν + μ1

(
νTPe1 − ẏ

)
+ μ2

(
νTPe2 + ẋ

)

+
1

2
m
(
ẋ2 + ẏ2

)
+ traceQT (Ṗ − S(ν)P ). (7.1.12)

Note that we have expressed the constraints (7.1.11) in terms of ν, and we
have treated the kinematic equations themselves as constraints, and have
therefore introduced an extra Lagrange multiplier in the form of a matrix
Q. (The inner product on the space of 3×3 matrices is just the trace form:
〈Q,P 〉 = trace QTP .) In order to manipulate the Lagrangian (7.1.12) it is
convenient to use the identity

aTAb = trace
(
baTA

)
= trace

(
AbaT

)
.

The forced Euler–Lagrange equations corresponding to this Lagrangian can
now be written as

q̇T +QTS(ν)− μ1e1ν
T − μ2e2ν

T = 0, (7.1.13)

wT (Jν + μ1Pe1 + μ2Pe2)− traceQTS(w)P = 0, ∀w ∈ R
3, (7.1.14)

mẍ+ μ̇2 = u1,

mÿ − μ̇1 = u2. (7.1.15)

Differentiating equation (7.1.14) yields

wT (Jν̇ + μ̇1Pe1 + μ̇2Pe2 + μ1S(ν)Pe1 + μ2S(ν)Pe2)

− trace q̇TS(w)P − traceQTS(w)S(ν)P = 0,
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and substituting from (7.1.13) gives

wT (Jν̇ + μ̇1Pe1 + μ̇2Pe2 + μ1S(ν)Pe1 + μ2S(ν)Pe2)

+ traceQT (S(ν)S(w)− S(w)S(ν))P

− μ1ν
TS(w)Pe1 − μ2ν

TS(w)Pe2 = 0. (7.1.16)

But the Jacobi identity for the cross product yields

S(ν)S(w)− S(w)S(ν) = S(S(ν)w), (7.1.17)

and from (49) we obtain

traceQTS(S(ν)w)P = −wTS(ν)(Jν + μ1Pe1 + μ2Pe2),

so (7.1.16) implies the following system of equations describing the varia-
tional controlled rolling ball:

Jν̇ = S(ν)Jν − μ̇1Pe1 − μ̇2Pe2 − μ1S(ν)Pe1 − μ2S(ν)Pe2,

Ṗ = S(ν)P,

mẍ = −μ̇2 + u1, eT2 P
T ν + ẋ = 0,

mÿ = μ̇1 + u2, eT1 P
T ν − ẏ = 0.

(7.1.18)

Following the prescription described above, we can write down the equa-
tions describing the nonholonomic controlled rolling ball in the form

Jν̇ = S(ν)Jν + λ1Pe1 + λ2Pe2,

Ṗ = S(ν)P,

mẍ = λ2 + u1, eT2 P
T ν + ẋ = 0,

mÿ = −λ1 + u2, eT1 P
T ν − ẏ = 0.

(7.1.19)

Note that equations (7.1.18) and (7.1.19) can be rewritten in terms of
the angular velocity ω; the variational equations become

Jω̇ = S(ω)Jω − μ̇1e1 − μ̇2e2 − μ1S(ω)e1 − μ2S(ω)e2,

Ṗ = PS(ω),

mẍ = −μ̇2 + u1, eT2 ω + ẋ = 0,

mÿ = μ̇1 + u2, eT1 ω − ẏ = 0,

while the nonholonomic equations are simply obtained using the usual
prescription. �
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Exercises

� 7.1-1. Show how the variational constrained rolling ball equations become
the nonholonomic mechanical rolling ball equations discussed in Section 1.9
if we make the Lagrange multiplier substitution discussed after equation
(7.1.8).

� 7.1-2. Compute the variational equations of motion for the ball on a ro-
tating plate. (See Section 1.9 for the nonholonomic mechanical case and
also Lewis and Murray [1995].)

Note that more exercises comparing variational dynamics and nonholo-
nomic mechanics may be found in Chapter 1.

7.2 Optimal Control and the Maximum
Principle

This section discusses the maximum principle, which gives necessary condi-
tions for optimal control problems. In the literature, optimal control prob-
lems including such problems as the Bernoulli minimum time problem are
typically cast in a different setting from the classical variational problems,
more closely associated with mechanics.
The basic difference lies in the way in which the trajectories are formu-

lated; in the optimal control setting, the trajectories are “parametrized” by
the controlled vector field, while in the traditional variational setting tra-
jectories are simply “constrained.” We discuss this in detail in this section.
The other basic difference is that the necessary conditions for extremals
in the optimal control setting are typically expressed using a Hamiltonian
formulation using the Pontryagin maximum principle, rather than the La-
grangian setting (see Pontryagin [1959], Pontryagin, Boltyanskii, Gamkre-
lidze and Mischenko [1962], Lee and Markus [1976], and Sussmann [1998a,
1998b].

A General Formulation of Optimal Control Problems. We state
a typical optimal control problem,

min
u(·)

∫ T

0

g(x, u)dt, (7.2.1)

subject to the following conditions:

(i) a differential equation constraint ẋ = f(x, u), and a state space con-
straint x ∈ M , and a constraint on the controls u ∈ Ω ⊂ R

k;

(ii) the endpoint conditions: x(0) = x0 and x(T ) = xT ,
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where f and g ≥ 0 are smooth, Ω is a closed subset of Rk, and M is a
smooth manifold of dimension n that is the state space of the system. The
integrand g is sometimes referred to as the cost function.

7.2.1 Example (Optimal Control of the Heisenberg System). We
recall this optimal control problem from Section 1.8:

Optimal Steering Problem. Given a number a > 0, find time-
dependent controls u1, u2 that steer the trajectory starting at (0, 0, 0) at
time t = 0 to the point (0, 0, a) after a given time T > 0 and that among
all such controls minimizes

1

2

∫ T

0

(
u2
1 + u2

2

)
dt, (7.2.2)

subject to the dynamics

ẋ = u1,

ẏ = u2,

ż = xu2 − yu1. (7.2.3)

A complete solution to this problem was given in Section 1.8. �
The Pontryagin Maximum Principle. To state necessary conditions
dictated by the Pontryagin maximum principle, we introduce a
parametrized Hamiltonian function on T ∗M :

Ĥ(x, p, u) = 〈p, f(x, u)〉 − p0g(x, u), (7.2.4)

where p0 ≥ 0 is a fixed positive constant, and p ∈ T ∗M . Note that p0 is
the multiplier of the cost function and that Ĥ is linear in p.

We denote by t �→ u∗(t) a curve that satisfies the following relationship
along a trajectory t �→ (x(t), p(t)) in T ∗M :

H(x(t), p(t), u∗(t)) = max
u∈Ω

Ĥ(x(t), p(t), u). (7.2.5)

Then if u∗ is defined implicitly as a function of x and p by equation
(7.2.5), we can define H∗ by

H∗(x(t), p(t), t) = H(x(t), p(t), u∗(t)). (7.2.6)

The time-varying Hamiltonian functionH∗ defines a time-varying Hamil-
tonian vector field XH∗ on T ∗M with respect to the canonical symplectic
structure on T ∗M .
One statement of Pontryagin’s maximum principle gives necessary condi-

tions for extremals of the problem (7.2.1) as follows: An extremal trajectory
t �→ x(t) of the problem (7.2.1) is the projection onto M of a trajectory
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of the flow of the vector field XH∗ that satisfies the boundary condition
(7.2.1) (ii), and for which t �→ (p(t), p0) is not identically zero on [0, T ].

The extremal is called normal when p0 �= 0 (in which case we may set
p0 = 1 by normalizing the Hamiltonian function). When p0 = 0 we call
the extremal abnormal, corresponding to the case where the extremal is
determined by constraints alone. Such a case is discussed in Section 7.5.
If the extremal control function u∗ is not determined by the system

(7.2.5) along the extremal trajectory, then the extremal is said to be
singular, in which case further (higher-order) necessary conditions are
needed to determine u∗. See, for example, the work of Krener [1977].
In most of this chapter (see Section 7.5, however) we are interested only

in nonsingular situations in which Ω = R
k (or indeed, more general vector

bundles), since it is these cases that occur in the mechanical situations
we are interested in. There has, however, been much interesting work on
abnormal extremals recently; see, for example, the work of Montgomery
[1994] and Sussmann [1996] and Section 7.5.

We also suppose that the data are sufficiently regular that u∗ is deter-
mined uniquely from the condition

0 ≡ ∂Ĥ

∂u
(x(t), p(t), u∗(t)), t ∈ [0, T ]. (7.2.7)

(Since u∗ maximizes the function Ĥ, its partial derivative in u evaluated
at u∗ must vanish.)
It follows from the implicit function theorem that there exists a function

k such that u∗(t) = k(x(t), p(t)). We then set

H(x, p)
Δ
= Ĥ(x, p, k(x, p)). (7.2.8)

Thus along an extremal,

H(x(t), p(t)) = H∗(x(t), p(t), t). (7.2.9)

We briefly motivate our statement of the Pontryagin maximum principle
in the presence of regularity conditions alluded to above: In particular, we
assume that Ω = R

m and that u∗(t) is uniquely determined by the condi-
tion (7.2.7). Treating the optimal control problem (7.2.1) as a variational
problem with constraints, we augment the cost function and constraints
(in the form of the constraining state differential equation) by multipliers
p0 ∈ R

+ and p ∈ T ∗
M . We obtain necessary conditions in the form

δ

∫ T

0

(p (f(x, u)− ẋ)− p0g(x, u)) dt = 0, (7.2.10)

where the variations are taken over pairs (x, u) satisfying the constraints
ẋ = f(x, u) and the boundary conditions x(0) = x0, x(T ) = xT .
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We may restate the condition (7.2.10) as

δ

∫ T

0

(
Ĥ(x, p, u)− pẋ

)
dt = 0. (7.2.11)

Under the assumed regularity we may eliminate the variation with re-
spect to u, and from (7.2.9) the necessary condition becomes

δ

∫ T

0

(
Ĥ(x, p)− pẋ

)
dt = 0. (7.2.12)

This is, of course, just Hamilton’s principle (see Definition 3.3.1) for
the Hamiltonian H, which yields necessary conditions in terms of the usual
Hamiltonian equations. Now from (7.2.7) and (7.2.9) the Hamiltonian equa-
tions for H may be replaced by the Hamiltonian equations for H∗, resulting
in the statement of the maximum principle above. Note that whereas Ĥ
and H∗ are affine in p, H is in general not affine in p.
The main point of the Pontryagin maximum principle is that the result

stated above is true under far less severe regularity conditions and in par-
ticular where Ω is a proper subset of Rn. Minimum time problems such
as the Bernoulli problem make sense typically only in cases where Ω is a
proper subset of Rn. For a full treatment of the maximum principle when
the constraint equation ẋ = f(x, u) is a linear equation, see Sontag [1990].
For the general nonlinear case, see Sussmann [1998a].
A nice history of the maximum principle and optimal control in gen-

eral is given in Sussmann and Willems [1997]. This includes in particular
the history of the brachystochrone problem. Further history related to the
brachystochrone problem may be found in Rojo and Bloch [2015]. The
brachystochrone problem is the problem of the finding the trajectory that
a particle in constant gravity takes from one point to another such that it
minimizes the time. The name in fact means “least time” in Greek. Johann
Bernoulli posed the problem in 1696 and it was solved by him and others
including Newton. It is often viewed as the “first” optimal control problem.
A nice proof of the maximum principle may be found in Liberzon [2012]
including an analysis of the proof on manifolds.

Exercises

� 7.2-1. Consider the system

ẋ = −2x+ u. (7.2.13)

Show that the optimal control that transfers the system from x(0) = 1 to

x(1) = 0 so as to minimize
∫ 1
0
u2dt is given by u∗(t) = −4e2t/

(
e4 − 1

)
.

(See Barnett [1978].)



378 7. Optimal Control

� 7.2-2. The system

ẋ1 = x2,

ẋ2 = −x2 + u

is to be transferred from x(0) = 0 to the line ax1 + bx2 = c at time T so

as to minimize
∫ T
0
u2dt for a, b, c, T given. Use the maximum principle to

compute u∗. (See Barnett [1978].)

� 7.2-3. Analyze the brachystochrone problem: consider a particle of mass m
that moves under the influence of a constant gravitational potential. Find
the path on which the particle moves from one fixed point to another such
that it minimizes the time, assuming that energy is conserved. (Assume
for convenience the energy is zero.) Show that the path is a cycloid and
compare with the path of a knife edge on an inclined plane.

� 7.2-4. Use the maximum principle to analyze the least time problem for
the double integrator

ẍ = u, u ∈ [−1.1] (7.2.14)

Show the optimal control only takes the values ±1, i.e. the control is
“bang-bang.”

7.3 Variational Nonholonomic Systems and
Optimal Control

Variational nonholonomic problems (i.e., constrained variational problems)
are equivalent to optimal control problems under certain regularity condi-
tions. This issue was investigated in depth in Bloch and Crouch [1994],
employing the classical results (Rund [1966], Bliss [1930]), which relate
classical constrained variational problems to Hamiltonian flows, although
not optimal control problems. We outline the simplest relationship as dis-
cussed in Bloch and Crouch [1994].
Consider a modified Lagrangian

Λ(q, q̇, λ) = L(q, q̇) + λ · Φ(q, q̇) (7.3.1)

with Euler–Lagrange equations

d

dt

∂Λ

∂q̇
(q, q̇, λ)− ∂Λ

∂q
(q, q̇, λ) = 0,

Φ(q, q̇) = 0. (7.3.2)

We will rewrite this equation in Hamiltonian form and show that the
resulting equations are equivalent to the equations of motion given by the
maximum principle for a suitable optimal control problem.
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Set

p =
∂Λ

∂q̇
(q, q̇, λ) (7.3.3)

and consider this equation together with the constraints

Φ(q, q̇) = 0. (7.3.4)

We wish to solve (7.3.3) and (7.3.4) for (q̇, λ).
Now assume that on an open set U the matrix

⎡
⎢⎢⎢⎣
∂2Λ

∂q̇2
(q, q̇, λ)

(
∂Φ

∂q̇
(q, q̇)

)T

∂Φ

∂q̇
(q, q̇) 0

⎤
⎥⎥⎥⎦ (7.3.5)

has full rank. (This generalizes the usual Legendre condition that ∂2

∂q̇2L(q, q̇)

has full rank.) By the implicit function theorem, we can solve for q̇ and λ:

q̇ = φ(q, p),

λ = ψ(q, p). (7.3.6)

We now have the following theorem:

7.3.1 Theorem (Carathéodory [1967], Rund [1966], Arnold, Kozlov, and
Neishtadt [1988], Bloch and Crouch [1994]). Under the transformation
(7.3.6), the Euler–Lagrange system (7.3.2) is transformed to the Hamil-
tonian system

q̇ =
∂H

∂p
(q, p),

ṗ = −∂H

∂q
(q, p), (7.3.7)

where
H(q, p) = p · φ(q, p)− L(q, φ(q, p)). (7.3.8)

Proof. Φ(q, φ(q, p)) = 0 implies

∂Φ

∂q
+

∂Φ

∂q̇

∂φ

∂q
= 0,

∂Φ

∂q̇

∂φ

∂p
= 0.

Hence, using (7.3.3), we have

∂H

∂p
= φ+

(
p− ∂L

∂q̇

)
· ∂φ
∂p

= q̇ + λ ·
(
∂Φ

∂q̇

∂φ

∂p

)
= q̇.
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Similarly,

∂H

∂q
= −∂L

∂q
+

(
p− ∂L

∂q̇

)
· ∂φ
∂q

= −∂L

∂q
+ λ ·

(
∂Φ

∂q̇

∂φ

∂q

)

= −
(
∂L

∂q
+ λ · ∂Φ

∂q

)
= −∂Λ

∂q
= −ṗ . �

We now compare this to the optimal control setup.

7.3.2 Definition. Let the optimal control problem be given by

minu(·)

∫ T

0

g(q, u)dt (7.3.9)

subject to q(0) = 0, q(T ) = qT ,

q̇ = f(q, u),

where q ∈ R
n, u ∈ R

m.

Then we have the following:

7.3.3 Theorem. The Lagrange problem and optimal control problem gen-
erate the same (regular) extremal trajectories, provided that:

(i) Φ(q, q̇) = 0 if and only if there exists a u such that q̇ = f(q, u).

(ii) L(q, f(q, u)) = g(q, u).

(iii) The optimal control u∗ is uniquely determined by the condition

∂Ĥ

∂u
(q, p, u∗) = 0, (7.3.10)

where
∂2Ĥ

∂u2
(q, p, u∗)

is of full rank and

Ĥ(q, p, u) = 〈p, f(q, u)〉 − g(q, u) (7.3.11)

is the Hamiltonian function given by the maximum principle.

Proof. By (iii) we may use the equation

p · ∂f
∂u

(q, u∗)− ∂g

∂u
(q, u∗) = 0

to deduce that there exists a function r such that u∗ = r(q, p).
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The extremal trajectories are now generated by the Hamiltonian

H(q, p) = Ĥ(q, p, r(x, p)) = p · f(q, r(q, p))− g(q, r(q, p)). (7.3.12)

Then the result follows, and we have

H(q, p) = H(q, p),

f(q, r(q, p)) = φ(q, p),

g(q, r(q, p)) = L(q, φ(q, p)). �

7.4 Kinematic Sub-Riemannian Optimal
Control Problems

The Kinematic Sub-Riemannian Optimal Control Problem. Here
we consider the optimal control of underactuated kinematic control prob-
lems of the type discussed in Chapter 6.

The problem is referred to as sub-Riemannian in that it gives rise to a
geodesic flow with respect to a singular metric (see the work of Strichartz
[1983, 1987] and Montgomery [2002]) and the references therein. This prob-
lem has an interesting history in control theory (see Brockett [1973a, 1981],
Baillieul [1975]). See also Bloch, Crouch, and Ratiu [1994] and Sussmann
[1996] and further references in the text below.
We consider control systems of the form

ẋ =
m∑
i=1

Xiui, x ∈ M, u ∈ Ω ⊂ R
m, (7.4.1)

where Ω contains an open subset that contains the origin, M is a smooth
manifold of dimension n, and each of the vector fields in the collection
F := {X1, . . . , Xk} is complete.
We assume that the system satisfies the accessibility rank condition and

is thus controllable, since there is no drift term. Then we can pose the
optimal control problem

min
u(·)

∫ T

0

1

2

m∑
i=1

u2
i (t)dt (7.4.2)

subject to the dynamics (7.4.1) and the endpoint conditions x(0) = x0 and
x(T ) = xT .
To view this as a constrained variational problem we make some addi-

tional regularity assumptions. These are not necessary, but even when they
hold, they produce a very rich class of problems.
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Assumption.

(i) The system defined by (7.4.1) satisfies the accessibility rank
condition.

(ii) The dimension of the distribution DF defined by the span of X1,
. . . , Xk is constant on M and equal to k. (Thus the vector fields
X1, . . . , Xk are everywhere independent.)

(iii) There exist exactly n− k = m one-forms on M ω1, . . . , ωm such that
the codistribution

D⊥
F (x) = {ω̄ ∈ T ∗

xM ; ω̄DF (x) = 0}
is spanned by ω1, . . . , ωm everywhere. (This condition implies that M
is parallelizable.)

Since DF has constant dimension on M , we may define a norm on each
subspace DF (x); if X ∈ DF (x) and X =

∑k
i=1 αiXi(x), then we define

|X| :=
k∑

i=1

α2
i .

This norm defines an inner product on DF (x), denoted by 〈·, ·〉x, which
can be extended to a metric on M . The optimal control problem (7.4.2) is
now equivalent to the following constrained variational problem when the
assumptions (i), (ii), (iii) hold:

min
x(·)

1

2

∫ T

0

〈ẋ, ẋ〉xdt (7.4.3)

subject to the condition that x(·) is a piecewise C1 curve in M such that
x(0) = x0, x(T ) = xT , and ωi(x)(ẋ) = 0, 1 ≤ i ≤ m. This problem is
often referred to as the sub-Riemannian geodesic problem, to distin-
guish it from the Riemannian geodesic problem, in which the constraints
are absent. These problems were studied by Griffiths [1983] from the con-
strained variational viewpoint, and from the optimal control viewpoint by
Brockett [1981, 1983b]. In the sub-Riemannian geodesic problem, abnormal
extremals play an important role. See work by Hermann [1962], Strichartz
[1983], Montgomery [1994 1995], Sussmann [1996], Agrachev and Sarychev
[1996], Agrachev and Sarychev [1998].
The singular nature of the sub-Riemannian geodesic problem is mani-

fested in many ways, such as the existence of distinct abnormal extremals
and the singular nature of the sub-Riemannian geodesic ball, as first inves-
tigated by Brockett [1981]. If we define a metric on M by setting

d(x0, xT ) = min
x(·)

∫ T

0

|ẋ|dt, ẋ ∈ DF (x), x(0) = x0, x(T ) = xT ,

BF
ε (x0) = {x̄ ∈ M ; d(x̄, x0) ≤ ε},
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then the sub-Riemannian geodesic ball SF
ε (x0) is simply the boundary

of BF
ε (x0).

7.4.1 Example. For the Heisenberg sub-Riemannian geodesic problem
that we saw expressed as an optimal control problem in equations (7.2.2),
(7.2.3) (see also Chapter 1) we have

F = {(∂/∂x)− y(∂/∂z), (∂/∂y) + x(∂/∂z)},
while D⊥

F is spanned by ω = x dy− y dx− dz. Here SF
ε (0) has a singularity

along the z-axis. This class of problem continues to evoke a great deal of
interest, especially in the areas of establishing when abnormal extremals
are optimal and obtaining a precise description of SF

ε (x0). We shall return
to the notion of abnormal extremals later. �
Formulation on Riemannian Manifolds. We now set up the problem
on a Riemannian manifold as follows, although the cases of most interest
usually have more structure, such as a group structure. In the following
subsections we will look at such special cases. We follow here the approach
of Bloch, Crouch, and Ratiu [1994].

Let M be a Riemannian manifold of dimension n with metric denoted
by 〈·, ·〉. The corresponding Riemannian connection and covariant deriva-
tive will be denoted by ∇ and D/∂t, respectively. Now assume that M
is such that there exist smooth vector fields X1(q), . . . , Xn(q) satisfying
〈Xi(q), Xj(q)〉 = δij , an orthonormal frame for TqM for all q ∈ M . This,
of course, limits the class of manifolds we consider (to parallelizable man-
ifolds), but is satisfied for the main case of interest to us, namely, when
M is a Lie group G. As we have seen in Chapters 1, 4, and 6, this theory
applies to a large class of practical kinematic control problems of interest,
essentially all underactuated systems where the velocities are directly con-
trolled. This includes the Heisenberg system, the kinematic rolling penny,
and the controlled knife edge.
We now define the kinematic control system on M by

dq

dt
=

m∑
i=1

uiX
i(q), m < n. (7.4.4)

The optimal control problem for (7.4.4) is defined by

min
u

∫ T

0

1

2

m∑
i=1

u2
i (t)dt; q(0) = q0, q(T ) = qT , (7.4.5)

subject to (7.4.4).
This may be posed as a variational problem on M as follows: Define the

constraints

ωk

(
dq

dt

)
=

〈
Xk,

dq

dt

〉
= 0, m < k ≤ n, (7.4.6)
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and let

Zt =
n∑

k=m+1

λk(t)X
k, (7.4.7)

where the λk are Lagrange multipliers. By the orthonormality of the Xi

the optimal control problem then becomes

minq J(q) = minq

∫ T

0

(
1

2

〈
dq

dt
,
dq

dt

〉
+

〈
Zt,

dq

dt

〉)
dt, (7.4.8)

〈
Zt,

dq

dt

〉
= 0. (7.4.9)

We now briefly derive necessary conditions for the regular extremals of
this variational problem following Milnor [1963] and Crouch and Silva-
Leite [1991]. (For interesting recent work on abnormal extremals, see, for
example, Bryant and Hsu [1993], Montgomery [1994], and Sussmann [1996].)

Firstly, we have to define the variations we are going to use: The tangent
space to the space Ω of C2 curves satisfying the boundary conditions of
(7.4.5) is denoted by TqΩ. It is the space of C1 vector fields t → Wt along
q(t) satisfying W0 = 0 = WT . The curve t → DWt

∂t in TM is continuous.
Exponentiating a vector field in TqΩ we obtain a one-parameter variation
of q:

α : [0, T ]× (−ε, ε) → M, (7.4.10)

αu(t) = α(t, u) = expq(t)(uWt), (7.4.11)

where exp is the exponential mapping (integral curve) on M . Note that

αu(0) = q(0) = q0, αu(T ) = q(T ) = qT , α0(t) = q(t),

∂α0(t)

∂u
= Wt, 0 ≤ t ≤ T.

The necessary conditions for regular extremals are obtained from

d

du
J(αu)|u=0 = 0, (7.4.12)

where

J(αu) =

∫ T

0

(
1

2

〈
∂αu

∂t
,
∂αu

∂t

〉
+

〈
Zt(αu),

∂αu

∂t

〉)
dt. (7.4.13)

Now

dJ(αu)

du

∣∣∣∣
u=0

=

∫ T

0

(〈
dq

dt
,
DWt

∂t

〉
+

〈
∇Wt

Zt,
dq

dt

〉
+

〈
Zt,

D

∂t
Wt

〉)
dt

=

∫ T

0

(
−
〈
D

dt
Vt,Wt

〉
−
〈
D

∂t
Zt,Wt

〉

− 〈∇Zt
Vt,Wt〉+ 〈[Wt, Zt], Vt〉

)
dt, (7.4.14)
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where

Vt =
dq

dt
=

m∑
i=1

vi(t)X
i(q).

Note that in this computation we use∇WZ = ∇ZW+[W,Z] and Z[〈V,W 〉]
= 〈∇ZV,W 〉+ 〈V,∇ZW 〉.

Thus these are the necessary conditions on a general Riemannian mani-
fold. We now specialize further:

Necessary Conditions on a Compact Semisimple Lie Group.
In this paragraph we show that if the underlying manifold is a compact
semisimple Lie group, then the sub-Riemannian optimal control problem
discussed in the previous section may be reduced to a computation in the
Lie algebra.
Now let M = G, G a compact semisimple Lie group, with Lie algebra g,

and let 〈〈·, ·〉〉 = − 1
2κ(·, ·), where κ is the Killing form on g.

Let J be a positive definite linear mapping J : g → g satisfying

〈〈JX, Y 〉〉 = 〈〈X, JY 〉〉, (7.4.15)

〈〈JX,X〉〉 ≥ 0 (= 0 if and only if X = 0). (7.4.16)

Now we can define a right-invariant metric on G as follows: If X,Y ∈ g and
Rg is right translation on G by g ∈ G, then

Xr
g = Xr(g) = Rg∗X and Y r

g = Y r(g) = Rg∗Y

are corresponding right-invariant vector fields. Now

〈Xr(g), Y r(g)〉 = 〈〈X, JY 〉〉 (7.4.17)

defines a right-invariant metric on G. Corresponding to the right-invariant
metric 〈·, ·〉 there is a unique Riemannian connection ∇ (see, e.g., Nomizu
[1954] and earlier sections), and ∇ defines a bilinear form on g:

(X,Y ) → ∇XY =
1

2
{[X,Y ] + J−1[X, JY ] + J−1[Y, JX]}, X, Y ∈ g.

(7.4.18)

The expression for ∇ on right-invariant vector fields on G is

(∇XrY r)(g) = (∇XY )rg. (7.4.19)

We now show how to reduce the variational problem to one in the Lie
algebra: Choose an orthonormal basis ei on g, 〈〈ei, Jej〉〉 = δij , and extend
it to a right-invariant orthonormal frame on TgG, Xi(g) = Rg∗ei ≡ Xir(g).

We consider again the computation of d
duJ(αu) |u=0. Suppose in g,

Vt =

m∑
i=1

vi(t)ei, V̇t =

m∑
i=1

v̇i(t)ei, (7.4.20)
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and similarly for Wt =
∑n

i=1 wi(t)ei and Zt. Then at the group level we

have for dg
dt = V r

t ,

DV r
t

dt
=

D

dt

(
m∑
i=1

vi(t)X
i

)
= (V̇t+∇Vt

Vt)
r
g = (V̇t+J−1[Vt, JVt])

r
g (7.4.21)

by (7.4.18) and (7.4.19), and

DZr
t

dt
= (Żt +∇Vt

Zt)
r
g. (7.4.22)

Now, by (7.4.17),

d

du
J(αu) |u=0 =

∫ T

0

(−〈〈V̇t + J−1[Vt, JVt] + Żt +∇V tZt +∇Zt
Vt, JWt〉〉

+ 〈〈[Wt, Zt], JVt〉〉)dt. (7.4.23)

Using
〈〈[X,Y ], Z〉〉+ 〈〈Y, [X,Z]〉〉 = 0 (7.4.24)

the necessary conditions are thus

V̇t + J−1[Vt, JVt] + Żt +∇Vt
Zt +∇Zt

Vt + J−1[JVt, Zt] = 0. (7.4.25)

By (7.4.18)

∇Vt
Zt +∇Zt

Vt = J−1[Vt, JZt] + J−1[Zt, JVt] .

Hence the necessary conditions on g are

V̇t + J−1[Vt, JZt] + Żt + J−1[Vt, JVt] = 0 (7.4.26)

with the constraint 〈
dg

dt
, Zt

〉
= 〈〈Vt, JZt〉〉 = 0 . (7.4.27)

Equations (7.4.26) are identical to equations derived in Brockett [1973a]
in the case J = I. We can see this as follows:

Write the system (7.4.4) as

dg

dt
=

m∑
i=1

uiB
ig, m < n, (7.4.28)

where Bi ∈ g and the Xi(g) = Big are thus right invariant vector fields on
G. Then Vt =

∑m
i=1 ui(t)B

i. Now set Lt = Vt +Zt. Then equation (7.4.26)
becomes

L̇t = J−1[JLt, Vt], (7.4.29)
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or

L̇t =
m∑
i=1

uiJ
−1[JLt, B

i] . (7.4.30)

Setting J = I we recover precisely Brockett’s equations (in the case of
zero drift). Note also that in the case J = I our equations (7.4.26) assume
the symmetric form

V̇t + [Vt, Zt] + Żt = 0. (7.4.31)

Brockett obtained his equations by applying the maximum principle to
Lie groups, while we have taken a direct variational approach.

The Case of Symmetric Space Structure. Suppose now that G/K
is a Riemannian symmetric space (see, e.g., Helgason [2001]), G as above,
K a closed subgroup of G with Lie algebra k. Then g = p⊕ k with [p, p] ⊂
k, [p, k] ⊂ p, [k, k] ⊂ k, and 〈〈k, p〉〉 = 0. We now want to consider the
necessary conditions (7.4.26) in this case. We shall see that they simplify
in an intriguing fashion, giving us a singular case of the so-called generalized
rigid body equations.
The generalized rigid body equations are a natural generalization of the

classical 3-dimensional rigid body equations as discussed in Section 1.10.
We recall that the left-invariant generalized rigid body equations on SO(n)
may be written as

Q̇ = QΩ,

Ṁ = [M,Ω], (7.4.32)

where Q ∈ SO(n) denotes the configuration space variable (the attitude of
the body), Ω = Q−1Q̇ ∈ so(n) is the body angular velocity, and

M := J(Ω) = ΛΩ + ΩΛ ∈ so(n)

is the body angular momentum. Here J : so(n) → so(n) is the symmetric
(with respect to the inner product defined by the Killing form), positive
definite, and hence invertible operator defined by

J(Ω) = ΛΩ + ΩΛ,

where Λ is a diagonal matrix satisfying Λi + Λj0 for all i �= j. For n = 3
the elements of Λi are related to the standard diagonal moment of inertia
tensor I by I1 = Λ2 + Λ3, I2 = Λ3 + Λ1, I3 = Λ1 + Λ2.

For further details see the Internet Supplement and Bloch, Crouch, Mars-
den, and Ratiu [2002].
Assume that e1, . . . , em is a basis for p and em+1, . . . , en is a basis for k.

Suppose that J : p → p and J : k → k. Then 〈〈Vt, JZt〉〉 = 0 for

Zt =

n∑
i=m+1

λi(t)ei ∈ k and Vt =

m∑
k=1

vi(t)ei ∈ p.
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Since V̇t + J−1[Vt, JZt] ∈ p and Żt + J−1[Vt, JVt] ∈ k, the necessary
conditions (7.4.26) become

V̇t = J−1[JZt, Vt],

Żt = J−1[JVt, Vt], (7.4.33)

or, if we define Pt = JVt and Qt = JZt,

Ṗt = [Qt, J
−1Pt],

Q̇t = [Pt, J
−1Pt]. (7.4.34)

We will now show that equations (7.4.34) are Hamiltonian with respect to
the Lie–Poisson structure on g.

Recall that for F , H functions on g, their (−) Lie–Poisson bracket is
given by

{F,H}(X) = −〈〈X, [∇F (X),∇H(X)]〉〉, X ∈ g, (7.4.35)

where dF (X) · Y = 〈〈∇F (X), Y 〉〉.
For H(X) a given Hamiltonian, we thus have the Lie–Poisson equations

Ḟ (X) = {F,H}(X). Letting F (X) = 〈〈A,X〉〉, A ∈ g, we obtain

〈〈A, Ẋ〉〉 = −〈〈X, [A,∇H(X)]〉〉 = 〈〈A, [X,∇H(X)]〉〉 (7.4.36)

and hence
Ẋ = [X,∇H(X)]. (7.4.37)

For H(M) = 1
2 〈〈M,J−1M〉〉, M ∈ g, and J as in the previous subsection,

we obtain the generalized rigid body equations

Ṁ = [M,J−1M ]. (7.4.38)

Now for X = P + Q ∈ p ⊕ k, let H(X) = H(P ) = 1
2 〈〈P, J−1P 〉〉, P ∈ p.

Then ∇H(X) = J−1P ∈ p, and equations (7.4.37) become

˙(Qt + Pt) = [Qt + Pt, J
−1Pt], (7.4.39)

or

Ṗt = [Qt, J
−1Pt],

Q̇t = [Pt, J
−1Pt], (7.4.40)

which are precisely equations (7.4.34).
Thus equations (7.4.34) are Lie–Poisson with respect to the “singular”

Hamiltonian H(P ). Summarizing then, we have the following result:

7.4.2 Theorem. The optimal trajectories for the singular optimal con-
trol problem (7.4.4), (7.4.5) on a Riemannian symmetric space are given
by equations (7.4.34). These equations are Lie–Poisson with respect to a
singular rigid body Hamiltonian on g.
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We see, therefore, that we can obtain the singular optimal trajectories by
letting J |k→ ∞ in the full rigid body Hamiltonian H(X) = 1

2 〈〈X, J−1X〉〉,
thus obtaining the singular Hamiltonian

H(P ) =
1

2
〈〈P, J−1P 〉〉.

This observation also enables us to obtain the singular rigid body equa-
tions directly by a limiting process from the full rigid body equations. The
key is the correct choice of angular velocity and momentum variables cor-
responding to the Lie algebra decomposition g = p⊕ k.
In the notation of equation (7.4.34) we write an arbitrary element of g

as M = JV +Q, JV ∈ p, Q ∈ k. Then the generalized rigid body equations
(7.4.38) become

JV̇t = [Qt, Vt] + [JVt, J
−1Qt],

Q̇t = [Qt, J
−1Qt] + [JVt, Vt]. (7.4.41)

Letting J |k→ ∞ we obtain

JV̇t = [Qt, Vt],

Q̇t = [JVt, Vt]. (7.4.42)

We note that this is a mixture between the Lagrangian and Hamiltonian
pictures. While the variables in k are momenta (and should really be viewed
as lying in k∗), the variables in p are velocities. These variables not only are
the natural ones in which to take the limit in the full rigid body equations,
but are natural from the point of view of the maximum principle, for the
variablesQ correspond to the constraints and therefore are naturally viewed
as costates.
As mentioned in the previous section, the necessary conditions above

may also be derived directly from the maximum principle developed for
Lie groups, yielding an invariant maximum principle (see, e.g., Brockett
[1973a], Jurdjevic [1991]).
The Hamiltonian in the maximum principle of the system (7.4.34) is pre-

cisely 1
2 〈Pt, J

−1Pt〉. This is just the sum of the Hamiltonians corresponding
to each of the vector fields Xi.
We would now like to consider the optimal control problem as J |k→ ∞.
Write M ∈ g as M = JZ + P , Z ∈ k, P ∈ p, which we can do, since

J : p → p and J : k → k. Then the Hamiltonian (in the maximum principle)
becomes

H(M) = 〈M,J−1M〉 = 〈JZ + P, J−1(JZ + P )〉
= 〈JZ,Z〉+ 〈P, J−1P 〉. (7.4.43)

Letting J |k→ ∞ we see that the cost becomes infinite unless Z = 0, i.e.,
unless the constraints are satisfied.
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7.4.3 Example. We consider a simple but nontrivial example: the sym-
metric space SO(3)/SO(2). In this case g = k⊕p becomes so(3) = so(2)⊕R

2

relative to a given choice of z-axis used to embed SO(2) into SO(3). We
may thus represent matrices in so(3) as⎡

⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎦ (7.4.44)

with the lower 2× 2 block in so(2).
This example illustrates the importance of writing the optimal equations

in the natural variables M = JV +Q in order to understand the limiting
process in equations (7.4.41) and (7.4.42).
We write here

M =

⎡
⎣ 0 −J3ω3 J2ω2

J3ω3 0 −m1

−J2ω2 m1 0

⎤
⎦ . (7.4.45)

Here Qt ∈ so(2) has “momentum” variable m1. Then the equations

(JVt +Qt)
· = [JVt +Qt, Vt] (7.4.46)

become, for g = so(3),

ṁ1 = (J2 − J3)ω2ω3,

J2ω̇2 = −m1ω3,

J3ω̇3 = m1ω2. (7.4.47)

The full rigid body equations in these variables are

(JVt +Qt)
· = [JVt +Qt, Vt + J−1Qt], (7.4.48)

which for g = so(3) are

ṁ1 = (J2 − J3)ω2ω3,

J2ω
·
2 =

(
J3
J1

− 1

)
ω3m1,

J3ω̇3 =

(
1− J2

J1

)
m1ω2, (7.4.49)

which clearly approaches to (7.4.47) as J1 → ∞.
Note that if we write the rigid body equations in the usual form,

J(Vt + Zt)
· = [J(Vt + Zt), Vt + Zt] , (7.4.50)

we obtain, for g = so(3),

J1ω̇1 = (J2 − J3)ω2ω3,

J2ω̇2 = (J3 − J1)ω1ω3,

J3ω̇3 = (J1 − J2)ω2ω1. (7.4.51)
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In this formulation, where we do not distinguish between p and k, the
limiting process described above is not obvious. The same is true for the
rigid body in the momentum representation.
We remark that this set of equations, despite its singular nature, is

still integrable, for we still have two conserved quantities, the Hamiltonian
H(ω) = J2ω

2
2 + J3ω

2
3(=

1
2 〈P, J−1P 〉) and the Casimir

C(ω) = m2
1 + J2

2ω
2
2 + J2

3ω
2
2 .

(Recall that a Casimir function for a Poisson structure is a function that
commutes with every other function under the Poisson bracket; Section
3.6.)

It is interesting to consider the case J = I. Equations (7.4.34) then
become

Ṗt = [Qt, Pt],

Q̇t = 0. (7.4.52)

Hence Qt = Q is constant.
Similarly, considering (7.4.33), we obtain

V̇t = [Zt, Vt], Zt = Z, (7.4.53)

Z a constant. This is, of course, solvable: Vt = AdeZt V0 and ui(t) =
〈〈ei,AdeZt V0〉〉.
Consider again the case SO(3)/SO(2). Since Vt ∈ R

2 and Zt ∈ so(2), we
may set

Z =

⎡
⎣0 0 0
0 0 −φ
0 φ 0

⎤
⎦ , (7.4.54)

where φ is fixed. Then

eZt =

⎡
⎣1 0 0
0 cosφt − sinφt
0 sinφt cosφt

⎤
⎦ . (7.4.55)

Hence the optimal evolution of Vt (or equivalently the optimal controls)
is given by rotation. This recovers precisely the result of Baillieul, who
indeed analyzed the case J = I in dimension 3. (See Baillieul [1975],
page III-5.) �

7.5 Optimal Control and a Particle
in a Magnetic Field

We begin by considering the connection between optimal control of the
Heisenberg system and the motion of a particle in a magnetic field. This
will be seen to be a special case of the more general motion of a particle in a
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magnetic or Yang–Mills field. The control analysis of the Heisenberg model
goes back to Brockett [1981] and Baillieul [1975], while a modern treatment
of the relationship with a particle in a magnetic field may be found in
Montgomery [1993], for example. A nice treatment of the pure mechanical
aspects of a particle in a magnetic field may be found in Marsden and Ratiu
[1999].
That the Heisenberg equations are a particular case of planar charged

particle motion in a magnetic field may be seen by considering the slightly
more general problem below. (Compare this analysis with that of original
Heisenberg system in Section 1.8.)

We now consider the optimal control problem

min

∫
(u2 + v2)dt (7.5.1)

subject to the equations

ẋ = u,

ẏ = v,

ż = A1u+A2v, (7.5.2)

where A1(x, y) and A2(x, y) are smooth functions of x and y. (Thus A1 = y
and A2 = −x recovers the Heisenberg equations.)
Form the augmented Lagrangian

L(x, ẋ, y, ẏ, z, ż, λ, λ̇) = 1
2

(
ẋ2 + ẏ2

)
+

λ

2
(ż −A1ẋ−A2ẏ) .

Then the Euler–Lagrange equation for z yields λ = const, while the
equations for x and y are

ẍ =
λ

2

(
∂A2

∂x
− ∂A1

∂y

)
ẏ,

ÿ =
λ

2

(
∂A1

∂y
− ∂A2

∂x

)
ẋ. (7.5.3)

Now let A be the vector (A1, A2, 0). Then

(∇×A)z =
∂A2

∂x
− ∂A1

∂y
≡ Bz.

Hence the Euler–Lagrange equations may be rewritten

ẍ =
λ

2
Bz ẏ,

ÿ = −λ

2
Bzẋ, (7.5.4)
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or, if v = (ẋ, ẏ, 0) and B = (0, 0, Bz), as

dv

dt
+ v × λ

2
B = 0 . (7.5.5)

This is indeed the motion of a planar charged particle in a magnetic field
(see, e.g., Marsden and Ratiu [1999]), where the Lagrange multiplier is
identified with a multiple of the charge.

Solution by the Maximum Principle. This problem may also be
solved via the maximum principle. To do this, form the Hamiltonian

H = p1u+ p2v + p3(A1u+A2v)− u2

2
− v2

2
. (7.5.6)

The optimality conditions

∂H

∂u
= 0 =

∂H

∂v

yield

u = p1 + p3A1,

v = p2 + p3A2. (7.5.7)

Hence the optimal Hamiltonian becomes

H =
1

2

[
(p1 +A1p3)

2 + (p2 +A2p3)
2
]
. (7.5.8)

This is the Hamiltonian for a particle in a magnetic field. Note that to
obtain the sign in, say, Marsden and Ratiu [1999] we replace Ai by −Ai in
the ż equation. Note also that p3 is a cyclic variable and hence is constant
in time. This may be chosen to have the value e/c, the charge over the
speed of light, as in equations for the particle.

Rigid Extremals. A particularly interesting phenomenon that occurs
in sub-Riemannian optimal control problems is the existence of rigid ex-
tremals, i.e., isolated extremals that admit no allowable variations. In such a
situation, we can obtain an optimal solution to the optimal control problem
that does not satisfy the optimal control equations. We can rephrase this,
as does Montgomery [1994], by saying that one has a (sub-Riemannian)
geodesic that does not satisfy the geodesic equations.
We will just consider here the example of Montgomery without attempt-

ing to give a general analysis. The problem has a rather interesting history;
for some details on this, see the paper of Montgomery and, for example,
Strichartz [1983].

We follow here the treatment in Montgomery, casting things in the lan-
guage of optimal control theory. Since we will be considering an optimal
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trajectory with cylindrical geometry, it is best to phrase the problem in
cylindrical coordinates (r, θ, z) in R

3. We thus consider the optimal control
problem

min
u,v

∫
(u2 + r2v2)dt

subject to ṙ = u,

θ̇ = v,

ż = −A(r)v,

(7.5.9)

where A(r) is a smooth function of r with a single nondegenerate maximum

at r = 1. Thus we require dA
dr

∣∣
r=1

= 0 and d2A
dr2

∣∣
r=1

< 0. We can take, for
example,

A =
1

2
r2 − 1

4
r4.

The control vector fields are

X1 =
∂

∂r
,

X2 =
∂

∂θ
−A(r)

∂

∂z
.

(7.5.10)

The system is controllable, since

[X1, X2] = −dA

dr

∂

∂z
, (7.5.11)

so X1, X2, and [X1, X2] span R
3 everywhere except at r = 1. But for r = 1,

[X1, [X1, X2]] = −d2A

dr2
∂

∂z
�= 0,

so the control vector fields still span R
3.

Now consider the helices with pitchA(1) given by (r, θ, z)= (1, θ,−A(1)θ).
These curves clearly lie in the constraint distribution. In what follows we
will sketch some arguments due to Montgomery that show that this helix
is minimizing but does not satisfy the optimal control (or sub-Riemannian
geodesic) equations.
Consider firstly the geodesic equations. They are given in Cartesian form

by equations (7.5.5), where

Bz =
∂A2

∂x
− ∂A1

∂y
.

To compute Bz here observe that we need to replace A(r)dθ by A1dx +
A2dy. Now

A1dx+A2dy = A(r)dθ (7.5.12)
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implies (
∂A2

∂x
− ∂A1

∂y

)
dx ∧ dy =

dA

dr
dr ∧ dθ. (7.5.13)

But dx ∧ dy = r dr ∧ dθ. Hence

1

r

dA

dr
=

∂A2

∂x
− ∂A1

∂y
= Bz.

For our given curve r = 1, and hence Bz is zero. But ẍ and ÿ are clearly
not zero. Hence this curve cannot satisfy the geodesic equations.
We now show that the helix is an isolated point in the space of all piece-

wise C1 curves in the constraint distribution with fixed endpoints. Since it
is isolated, it is automatically a local minimum. However, it is not isolated
in the C0 or H1 topologies. Montgomery, however, shows that it is still a
local minimum, at least for short enough arcs; see Montgomery [1990].

Now consider a curve γ in the constraint distribution connecting the
points (x0, y0, 0) and (x0, y0, z1). The projected curve onto the (x, y)-plane
is thus closed.
Since dz = −Adθ along the curve, we have, using Stokes’s theorem,

z1 = −
∫

Adθ = −
∫∫

Δ

dA

dr
dr dθ = −

∫∫
Δ

B(r)r dr dθ,

where Δ is the region in the plane enclosed by the projected curve. Follow-
ing our earlier magnetic analogy, this quantity can be viewed as the flux
through the region by the plane enclosed by the curve.
Now recall that in our case

B =
1

r

dA

dr
= 1− r2, (7.5.14)

and thus B is positive in the interior of the projected unit disk and negative
on the exterior. Hence, if we perturb the helix so as to push part of the pro-
jected curve into the interior of the disk, we subtract flux since B is positive
in the interior. On the other hand, if we push the projected curve to the
exterior of the disk, we add negative flux. In either case, z1 decreases, vio-
lating the fixed endpoint conditions. Hence there are no allowable piecewise
smooth variations of the helix; that is, it is indeed rigid.

The Falling Cat Theorem. The solution to this related problem dis-
cussed earlier in Section 7.1 is given as follows:

7.5.1 Theorem. ( Montgomery [1984, 1990, 1991a]). If q(t) is a (regular)
optimal trajectory for the isoholonomic problem, then there exists a curve
λ(t) ∈ g∗ such that the reduced curve r(t) in X = Q/G together with λ(t)
satisfies Wong’s equations

ṗα = −λaBa
αβ ṙ

β − 1

2

∂gβγ

∂rα
pβpγ ,

λ̇b = −λaC
a
dbAd

αṙ
α,
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where gαβ is the local representation of the metric on the base space X;
that is,

1

2
‖ṙ‖2 =

1

2
gαβ ṙ

αṙβ ,

gβγ is the inverse of the matrix gαβ, pα is defined by

pα =
∂l

∂ṙα
= gαβ ṙ

β ,

and where we write the components of A as Ab
α and similarly for its cur-

vature B.
Proof. As with the Heisenberg system, by general principles in the cal-
culus of variations, given an optimal solution q(t), there is a Lagrange
multiplier λ(t) such that the new action function defined on the space of
curves with fixed endpoints by

S[q( · )] =
∫ 1

0

[
1

2
‖ṙ(t)‖2 + 〈λ(t),Aq̇(t)〉

]
dt

has a critical point at this curve. Using the integrand as a Lagrangian,
identifying Ω = Aq̇, and applying the reduced Euler–Lagrange equations
discussed in Section 3.13 to the reduced Lagrangian

l(r, ṙ,Ω) =
1

2
‖ṙ‖2 + 〈λ,Ω〉

then gives Wong’s equations by the following simple calculations:

∂l

∂ṙα
= gαβ ṙ

β ;
∂l

∂rα
=

1

2

∂gβγ

∂rα
ṙβ ṙγ ;

∂l

∂Ωa
= λa.

The constraints are Ω = 0, and so the reduced Euler–Lagrange equations
become

d

dt

∂l

∂ṙα
− ∂l

∂rα
= −λa(Ba

αβ ṙ
β),

d

dt
λb = −λa(Ea

αbṙ
α) = −λaC

a
dbAd

αṙ
α.

But

d

dt

∂l

∂ṙα
− ∂l

∂rα
= ṗα − 1

2

∂gβγ
∂rα

ṙβ ṙγ = ṗα +
1

2

∂gκσ

∂rα
gκβgσγ ṙ

β ṙγ

= ṗα +
1

2

∂gβγ

∂rα
pβpγ ,

and so we have the desired equations. �
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Remark. There is a rich literature on Wong’s equations, and it was
an important ingredient in the development of reduction theory. Some
references are Sternberg [1977], Guillemin and Sternberg [1978], Wein-
stein [1978b], Montgomery, Marsden, and Ratiu [1984], Montgomery [1984],
Koon and Marsden [1997a], and Cendra, Holm, Marsden, and Ratiu [1998].

7.6 Optimal Control and the n-dimensional
Rigid Body Equations

In this section we briefly review two results which link the symmetric rep-
resentation of the rigid body equations of section 3.17 with the theory of
optimal control.
This work, developed in Bloch and Crouch [1996] and more generally in

Bloch, Crouch, Marsden, and Ratiu [2002] has been further extended to
optimal control problems for the infinitesimal generators of group actions
(so-called Clebsch optimal control problems) in Gay-Balmaz and Ratiu
[2011] and even further to a class of embedded control problems in Bloch,
Crouch, Nordkvist and Sanyal [2011] and Bloch, Crouch and Nordkvist
[2011]
The first result shows how to derive these equations directly from an

optimal control problem and the second shows how to derive them as a
special case of a more general optimal control problem. The latter problem
is characterized by extremals which are of the coupled double bracket form
studied in Bloch, Brockett, and Crouch [1997].

7.6.1 Definition. Let T > 0, Q0, QT ∈ SO(n) be given and fixed. Let the
rigid body optimal control problem be given by

min
U∈so(n)

1

4

∫ T

0

〈U, J(U)〉dt (7.6.1)

subject to the constraint on U that there be a curve Q(t) ∈ SO(n) such that

Q̇ = QU, Q(0) = Q0, Q(T ) = QT .

7.6.2 Proposition. The rigid body optimal control problem (7.6.1) has
optimal evolution equations (3.17.1) where P is the costate vector given by
the maximum principle. The optimal controls in this case are given by

U = J−1(QTP − PTQ).

Remark. The proof (see Bloch and Crouch [1996]) simply involves writ-
ing the Hamiltonian of the maximum principle as

H = 〈P,QU〉+ 1

4
〈U, J(U)〉 ,
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where the costate vector P is a multiplier enforcing the dynamics, and then
maximizing with respect to U in the standard fashion (see, for example,
Brockett [1973a]). While in general there are no constraints on the costate
vector P ∈ gl(n), one can consider the restriction of the extremal flows
to invariant submanifolds. This limits possible extremal trajectories that
can be recovered. For example, (3.17.1) restricts to a system on SO(n) ×
SO(n). One can make other assumptions on the costate vector. For example,
suppose we assume a costate vector B such that QTB is skew. Then it is
easy to check that the extremal evolution equations become

Q̇ = QJ−1(QTB), Ḃ = BJ−1(QTB),

and that these equations restrict to an invariant submanifold defined by the
condition that QTB is skew symmetric. These are the McLachlan–Scovel
equations (McLachlan and Scovel [1995]). Comparing these equations with
(3.17.1) we see that B = P −QPTQ. There is a similar result for the right
invariant case.

Merging the Left and Right Problems. We will now show both the
symmetric representation of the rigid body equations in both left and right
invariant form arise from a rather general optimal control problem that
includes the one above as a special case. In addition, as we shall see, this
sheds light on the question of integrability of the n-dimensional rigid body.
We begin by recalling a general optimal control problem on matrices (see

Bloch and Crouch [1996]):

7.6.3 Definition. Let u(n) denote the Lie algebra of the unitary group
U(n). Let Q be a p× q complex matrix and let U ∈ u(p) and V ∈ u(q). Let
JU and JV be constant symmetric positive-definite operators on the space
of complex p × p and q × q matrices, respectively, and let 〈·, ·〉 denote the
trace inner product 〈A,B〉 = 1

2 trace(A
†B), where A† is the adjoint; that

is, the transpose conjugate. Let T > 0, Q0, QT be given and fixed. Define
the optimal control problem over u(p)× u(q)

min
U,V

1

4

∫ (〈U, JUU〉+ 〈V, JV V 〉) dt (7.6.2)

subject to the constraint that there exists a curve Q(t) such that

Q̇ = UQ−QV, Q(0) = Q0, Q(T ) = QT . (7.6.3)

This problem was motivated by an optimal control problem on adjoint
orbits of compact Lie groups as discussed in Brockett [1994].

7.6.4 Theorem. The optimal control problem (7.6.3) has optimal controls
given by

U = J−1
U (PQ† −QP †), V = J−1

V (P †Q−Q†P ). (7.6.4)
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The optimal evolution of the states Q and costates P is given by

Q̇ = J−1
U (PQ† −QP †)Q−QJ−1

V (P †Q−Q†P ),

Ṗ = J−1
U (PQ† −QP †)P − PJ−1

V (P †Q−Q†P ). (7.6.5)

Note also that JU and JV are in general different operators acting on dif-
ferent spaces. In certain case (see the rigid body below) the spaces and the
operators may be taken to be the same.

7.6.5 Corollary. The equations (7.6.5) are given by the coupled double
bracket equations

˙̂
Q = [Q̂, Ĵ−1[P̂ , Q̂]],

˙̂
P = [P̂ , Ĵ−1[P̂ , Q̂]], (7.6.6)

where Ĵ is the operator diag(JU , JV ),

Q̂ =

[
0 Q

−Q† 0

]
∈ u(p+ q), (7.6.7)

Q is a complex p × q matrix of full rank, Q† is its adjoint, and similarly
for P .

A formal limiting argument setting JV = J and JU → ∞ gives the
symmetric representation of the rigid body equation in left invariant form.
Similarly to obtain the equations in their right invariant form set JU = J
and let JV → ∞. One sees in fact that the equations (7.6.5) are literally
the sum of the symmetric representations of the rigid body equations in
their left and right invariant forms.

7.7 Discrete Optimal Control Problems
and the Rigid Body

One can obtain the symmetric representation of the rigid body equations
as a special case of a general class of discrete optimal control equations.

7.7.1 Definition. Let N be a positive integer and X0, XN ∈ R
n be given.

Let f(xk, uk), g(xk, uk) be smooth mappings from R
n×R

m into R
n and R

+,
respectively. Let E denote a control constraint set with E ⊂ R

m; specifically,
assume that E is defined as the zero set of a smooth submersion k : Rm →
R

l; that is, u ∈ E if and only if k(u) = 0. Let 〈·, ·〉 denote the pairing
between vectors in R

n. Define the optimal control problem

min
uk∈E

N∑
k=0

g(xk, uk) (7.7.1)

subject to xk+1 = f(xk, uk), with x0 = X0 and xN = XN , for uk ∈ E.
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7.7.2 Proposition. A solution to problem (7.7.1) satisfies the following
extremal solution equations

pk =
∂H

∂xk
(pk+1, xk, u

∗
k), xk+1 =

∂H

∂pk+1
(pk+1, xk, u

∗
k), (7.7.2)

where

H(pk+1, xk, uk) = 〈pk+1, f(xk, uk)〉 − g(xk, uk). (7.7.3)

In these equations, u∗
k is determined as follows: let

Ĥ(pk+1, xk, uk, σ) = H(pk+1, xk, uk) + 〈σ, k(uk)〉 (7.7.4)

for σ ∈ R
l, σ a Lagrange multiplier; then, u∗

k and σ are solutions of the
equations

∂Ĥ

∂uk
(pk+1, xk, u

∗
k, σ) = 0, k(u∗

k) = 0. (7.7.5)

The proof is an application of the discrete maximum principle.
We assume that both u∗

k and σ are determined uniquely by equations
(7.7.5). Also note that u∗

k = u∗
k(pk+1, xk), σ = σ(pk+1, xk). With this no-

tation, we have the following consequence.

7.7.3 Corollary. Assume that the extremal equations (7.7.2) hold. Then,

dpk =
∂2Ĥ

∂x2
k

(pk+1, xk, u
∗
k)dxk +

∂2Ĥ

∂pk+1∂xk
(pk+1, xk, u

∗
k)dpk+1, (7.7.6)

dxk+1 =
∂2Ĥ

∂pk+1∂xk
(pk+1, xk, u

∗
k)dxk +

∂2Ĥ

∂p2k+1

(pk+1, xk, u
∗
k)dpk+1.

We remark that the implicit advance map Φ : (xk, pk) �→ (xk+1, pk+1)
generated by the extremal evolution (7.7.2) is symplectic, i.e.,

Φ∗dxk+1 ∧ dpk+1 = dxk ∧ dpk. (7.7.7)

This is easily demonstrated by using Corollary 7.7.3. One can also derive
symplecticity directly from Hamilton’s phase space principle; see Marsden
and West [2001].

We can then obtain the discrete rigid body equations (3.19.7) as follows:

7.7.4 Definition. Let Λ be a positive definite diagonal matrix. Let Q0,
QN ∈ SO(n) be given and fixed. Let

V̂ =

N∑
k=1

trace(ΛUk). (7.7.8)
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Define the optimal control problem

min
Uk

V̂ = min
Uk

N∑
k=1

trace(ΛUk) (7.7.9)

subject to dynamics and initial and final data

Qk+1 = QkUk, Q0 = Q0, QN = QN (7.7.10)

for Qk, Uk ∈ SO(n).

7.7.5 Theorem. A solution of the optimal control problem (7.7.4) satisfies
the optimal evolution equations (3.19.7)

Qk+1 = QkUk, Pk+1 = PkUk, (7.7.11)

where Pk is the discrete covector in the discrete maximum principle and Uk

is defined by
UkΛ− ΛUT

k = QT
k Pk − PT

k Qk. (7.7.12)

Equation (7.7.12) can be solved for Uk under certain circumstances, as
discussed in Moser and Veselov [1991] and Cardoso and Leite [2001]; we
discuss this issue further below.

Proof. Applying Proposition 7.7.2, we get

H(Pk+1, Qk, Uk) = trace(PT
k+1QkUk)− trace(ΛUk)

= trace
(
(PT

k+1Qk − Λ)Uk

)
. (7.7.13)

Note that

V̂ =
∑
k

trace(ΛUk) =
∑
k

trace(UT
k Λ) =

∑
k

trace(QkΛQ
T
k+1),

the Moser–Veselov functional, but that the functional is linear in the
controls.
We need to find the critical points of H(Pk+1, Qk, Uk) where UT

k Uk = I
since Uk ∈ SO(n). Thus, we need to minimize a functional of the form
trace(AU), A fixed, subject to UTU = I. Set

Ṽ = trace(AU) +
1

2
trace

(
Σ(UTU − I)

)
,

where Σ = ΣT is a matrix of Lagrange multipliers. Then δṼ = trace(AδU+
ΣUT δU) = 0 implies A+ΣUT = 0 where UTU = 0. Hence Σ = −AU . But
since Σ = ΣT the extrema of our optimization problem are obtained when
AU = UTAT . Applying this observation to our case, we have ∇UH = 0
when (

PT
k+1Qk − Λ

)
Uk = UT

k

(
QT

k Pk+1 − Λ
)
,
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that is,
UT
k Λ− ΛUk = UT

k QT
k Pk+1 − PT

k+1QkUk

or, equivalently,

UkΛ− ΛUT
k = −QT

k Pk+1U
T
k + UkP

T
k+1Qk. (7.7.14)

Also,

Pk = ∇Qk
H =

(
UkP

T
k+1

)T
= Pk+1U

T
k . (7.7.15)

Hence we obtain equations (7.7.11). Combining (7.7.11) with (7.7.14) we get

UkΛ− ΛUT
k = PT

k Qk −QT
k Pk. (7.7.16)

Changing the sign of Pk in the extremal equations yields the result. �

7.7.6 Corollary. The Hamiltonian for the flow (7.7.11) is given by

H(Qk, Pk) = trace
(
esinh

−1 Mk/2
)
− trace

(
Λ(JD)−1(Mk)

)
. (7.7.17)

Proof. From (7.7.13) we have

H(Qk, Pk+1, Uk) = trace
(
PT
k+1QkUk

)− trace(ΛUk)

= trace(UT
k PT

k QkUk)− trace(ΛUk)

= trace(PT
k Qk)− trace(ΛUk),

where
Uk = (JD)−1(PT

k Qk −QT
k Pk) . (7.7.18)

The result follows by noting that

Uk = (JD)−1(Mk) and Pk = Qke
sinh−1 Mk/2.

�

7.8 Optimal Control of Mechanical Systems

We discuss here various optimal control problems of mechanical systems
(as opposed to the kinematic case).
We recall from Section 6.7 the following formalism for a general holo-

nomic mechanical system with inputs on a Riemannian manifold M , a
smooth (infinitely differentiable), n-dimensional manifold with a Rieman-
nian metric denoted by g(·, ·).

The norm of a vector Xp ∈ TpM will be denoted by

‖Xp‖g =
√

g(Xp, Xp).
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The notion of an inertia tensor is modeled by a bundle mapping

J : TM → TM

such that J is the identity on M . Thus for each p ∈ M we have a linear
mapping

Jp : TpM → TpM.

We assume that for each p, Jp is an isomorphism satisfying for each Xp,
Yp ∈ TpM :

(i) g(JpXp, Yp) = g(Xp, JpYp);

(ii) g(JpXp, Xp) ≥ 0 (= 0 if and only if Xp = 0).

From J we may define another Riemannian metric on M by setting

〈X,Y 〉 = g(JX, Y )

for all vector fields X,Y on M . We refer to g as the ambient metric, and
〈·, ·〉 as the mechanical metric. The norm of a vectorXp ∈ TpM with respect
to the mechanical metric will be denoted by

‖Xp‖ =
√

〈Xp, Xp〉.

The mechanical metric determines a unique Riemannian connection on
M , denoted by ∇, and thereby determines a covariant derivative, denoted
by D/∂t.
Now let X̂i, 1 ≤ i ≤ N , be N ≤ n independent vector fields on M , and

let ui(·), 1 ≤ i ≤ N , be input or control functions (real-valued functions of
time). We then model a force field F by setting

Fq(t) =

N∑
i=1

ui(t)〈X̂i(q(t)), ·〉.

Let J∗ : TM → T ∗M denote the bundle isomorphism determined on
fibers by

J∗
pXp = 〈Xp, ·〉 = g(JpXp, ·).

Thus we obtain a control system of the form

D2q

∂t2
=

N∑
i=1

uiX̂i(q) . (7.8.1)

Equation (7.8.1) represents a general holonomic mechanical system with
inputs. We ignore for the purposes of exposition here a possible potential
term in this equation, but it may be added without any extra difficulty.
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When F ≡ 0 the equations (7.8.1) reduce to the geodesic equations on
the Riemannian manifold (M, 〈·, ·〉):

D2q

∂t2
= 0.

This flow is known to be an extremal of the variational problem

min
q

∫ T

0

∥∥∥∥dqdt
∥∥∥∥
2

dt (7.8.2)

over trajectories q(t) with q(0) = q0, q(T ) = qT .

Optimal Control on Riemannian Manifolds. We now introduce a
natural optimal control problem for the system (7.8.1). To do this, we first
define a norm on fibers of T ∗M in the usual way:

‖Fq‖ = sup
‖Wq‖g =0

|F (Wq)|
‖Wq‖g . (7.8.3)

Note that we use the ambient metric in this definition. We introduce the
minimum force control problem as

min
q

∫ T

0

1

2
‖Fq(t)‖2 dt (7.8.4)

subject to the dynamics (7.8.1) and the boundary conditions

q(0) = q0,
dq

dt
(0) = q̇0, q(T ) = qT ,

dq

dt
(T ) = q̇T . (7.8.5)

From (7.8.3) we obtain

‖Fq‖ = sup
‖Wq‖g =0

g(Jq
D2q
∂t2 ,Wq)√

g(Wq,Wq)
=

∥∥∥∥JqD
2q

∂t2

∥∥∥∥
g

.

Thus the cost functional (7.8.4) may be reformulated as

min
q

∫ T

0

1

2

〈
D2q

∂t2
, Jq

D2q

∂t2

〉
dt. (7.8.6)

It is now natural to consider the formulation (7.8.1) of the holonomic con-
trol system. It is convenient to assume a little more structure for the force
field F ; we modify the definition as follows:

Fq(t) =

N∑
i=1

ui(t)
〈
J−1
q(t)Xi(q(t)), ·

〉
, (7.8.7)
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where Xi, 1 ≤ i ≤ n, is an orthonormal basis of vector fields with respect
to the ambient metric,

g(Xi, Xj) = δij , 1 ≤ i, j ≤ n. (7.8.8)

Clearly, in general, such a choice of basis cannot be made globally. However,
if M is a Lie group, for example, then such a choice is indeed possible. With
the force field (7.8.7) the system (7.8.1) may be rewritten as

D2q

∂t2
=

N∑
i=1

J−1
q Xi(q)ui(t). (7.8.9)

The orthonormality assumption (7.8.8) now implies that

〈
D2q

∂t2
, Jq

D2q

∂t2

〉
=

N∑
i=1

u2
i (t).

It follows that for system (7.8.9) the minimum force control problem is
defined by the cost functional

min
u

∫ T

0

1

2

N∑
i=1

u2
i (t) dt (7.8.10)

subject to the boundary conditions (7.8.5).
In the case N = n this optimal control problem corresponds to the

higher-order variational problem posed by the functional (7.8.6), with bound-
ary conditions (7.8.5). Similar higher-order variational problems have been
treated in various contexts, most notably as the minimum curvature prob-
lem (Griffiths [1983], Jurdjevic [1991]) and in the context of interpolation
problems in Gabriel and Kajiya [1988], Noakes, Heinzinger, and Paden
[1989], and Crouch and Silva-Leite [1991]. In the latter three works a sim-
pler functional is considered, namely,

min
q

∫ T

0

1

2

∥∥∥∥D
2q

∂t2

∥∥∥∥
2

dt. (7.8.11)

The extremals of such functionals satisfy an equation of the form

D4q

∂t2
+R

(
D2q

∂t2
,
Dq

∂t

)
Dq

∂t
≡ 0, (7.8.12)

where R is the curvature tensor associated with the connection∇. It follows
that for N = n, the minimum force control problem introduced above is
a natural higher-order version of the classical variational problem (7.8.2),
which is often interpreted as a minimum energy problem.
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Thus we wish to consider the variational problem (7.8.6)

min
q

J2(q) = min
q

∫ T

0

1

2

〈
D2q

∂t2
, Jq

D2q

∂t2

〉
dt (7.8.13)

subject to the boundary conditions (7.8.5)

q(0) = q0,
dq

dt
(0) = q̇0, q(T ) = qT ,

dq

dt
(T ) = q̇T .

We examine the conditions

d

du
J2(αu)

∣∣∣∣∣
u=0

= 0,

where α is a variation of a trajectory q meeting the boundary conditions.
Assuming that ∂α0

∂u (t) = Zt, we obtain

dJ2
du

(αu)

∣∣∣∣∣
u=0

=

∫ T

0

[〈
D

∂u

D2

∂t2
αu, Jq

D2q

∂t2

〉 ∣∣∣∣∣
u=0

+
1

2

〈
D2q

∂t2
, (∇Zt

J)q

(
D2q

∂t2

)〉]
dt.

The first term in the integrand is rewritten, using the techniques in Milnor
[1963], in the form

〈
D2

∂t2
Zt +R

(
Zt,

Dq

∂t

)
Dq

∂t
, Jq

D2q

∂t2

〉
.

Using an identity for the curvature tensor R (p. 53 of Milnor [1963]),
integration by parts, and the boundary conditions

Z0 = ZT =
DZ0

∂t
=

DZT

∂t
= 0,

we obtain

d

du
J2(αu)

∣∣∣∣∣
u=0

=

∫ T

0

[〈
Zt,

D2

∂t2
Jq

D2q

∂t2
+R

(
Jq

D2q

∂t2
,
Dq

∂t

)
Dq

∂t

〉

+
1

2

〈
D2q

∂t2
, (∇Zt

J)q

(
D2q

∂t2

)〉]
dt.

Define the mapping J ′ : TM × TM → TM by setting

〈J ′(X,Y ), Z〉 = 1

2
〈(∇ZJ)(X), Y 〉

for all vector fields X, Y , and Z on M . We obtain the following result.
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7.8.1 Lemma. Necessary conditions for the variational problem (7.8.6)
subject to the boundary conditions (7.8.5) are given by

D2

∂t2
Jq

D2q

∂t2
+R

(
Jq

D2q

∂t2
,
Dq

∂t

)
Dq

∂t
+ J ′

q

(
D2q

∂t2
,
D2q

∂t2

)
≡ 0. (7.8.14)

This equation generalizes equation (7.8.12), corresponding to the class
where J is the identity.
Further work on the optimal control of nonholonomic mechanical systems

may be found in Hussein and Bloch [2008] and Bloch, Colombo, Gupta
and Martin [2014].

Optimal Control on Lie Groups We now specialize to the case where
M is a compact semisimple Lie group G, with right-invariant mechanical
metric defined by a positive definite mapping J on the Lie algebra g. In
this case we have the following result.

7.8.2 Lemma. In the situation above, for X,Y, Z ∈ g,

(∇Zr
g
Jg)(X

r
g ) = [(∇ZJ)(X)]rg,

J ′
g(X

r
g , Y

r
g ) = [J ′(X,Y )]rg,

where

(∇ZJ)(X) = 1
2

{
[JZ,X]+J [X,Z]+J−1[Z, J2X]+J−1[JX, JZ]

}
(7.8.15)

and

J ′(X,Y ) = 1
4

{
[X, JY ] + [Y, JX] + J−1[J2Y,X] + J−1[J2X,Y ]

}
. (7.8.16)

Proof.

0 = Zr
〈
Jg(X

r
g ), Y

r
g

〉
=
〈
∇Zr

g
Jg(X

r
g ), Y

r
g

〉
+
〈
Jg(∇Zr

g
Xr

g ), Y
r
g

〉
+
〈
Jg(X

r
g ),∇Zr

g
Xr

g

〉

= 〈〈JY, (∇ZJ)(X)〉〉+ 〈〈JY, J(∇ZX)〉〉+ 〈〈JX, J(∇ZY )〉〉 ,

where 〈〈·, ·〉〉 = − 1
2κ(·, ·), where κ is the Killing form on g.

Corresponding to the right-invariant metric 〈·, ·〉 there exists a unique
Riemannian connection ∇. Explicit formulas for ∇ are given in Arnold
[1989] and Nomizu [1954].

Specifically, ∇ defines a bilinear form on g,

(X,Y ) �→ ∇XY = 1
2

{
[X,Y ] + J−1[X, JY ] + J−1[Y, JX]

}
, (7.8.17)

where ∇ is extended to right-invariant vector fields on G by setting

(∇XrY r)(g) = (∇XY )rg, g ∈ G, X, Y ∈ g,
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Thus we obtain

〈〈JY, (∇ZJ)(X)〉〉 = 〈〈JY,− 1
2{J [Z,X] + [Z, JX] + [X, JZ]}〉〉

+
〈〈
JX,− 1

2{J [Z, Y ] + [Z, JY ] + [Y, JZ]}〉〉 .
Since the operator ad satisfies

〈〈adY (X), Z〉〉+ 〈〈X, adY (Z)〉〉 = 0, X, Y, Z ∈ g, (7.8.18)

we may rewrite this as

− 1
2

〈〈
JY, {J [Z,X] + [Z, JX] + [X, JZ]

− J−1[Z, J2X]− [Z, JX] + J−1[JZ, JX]}〉〉,
from which we obtain〈

J ′
g(X

r
g , Y

r
g ), Z

r
g

〉
= 〈〈J ′(X,Y ), JZ〉〉 = 1

2 〈〈(∇ZJ)(X), JY 〉〉 .
Thus

〈〈J ′(X,Y ), JZ〉〉
= 1

4

〈〈
JY, {[JZ,X] + J [X,Z] + J−1[Z, J2X] + J−1[JX, JZ]}〉〉 .

Using the identity (7.8.18) we obtain (7.8.16). �

In this special case we can reformulate the necessary conditions (7.8.14)
on the Lie algebra g, using a right-invariant frame on G to express vector
fields. In particular, if

Wt =

L∑
i=1

wi(t)Xi ∈ g,

then we set
DWt

∂t
=

∂Wt

∂t
+∇Vt

Wt,

where

∂Wt

∂t
=

L∑
i=1

ẇi(t)Xi,

and ∇ is given in equation (7.8.17). Thus

Dg

∂t
= [Vt]

r
g,

D2g

∂t2
=

(
∂Vt

∂t
+∇Vt

Wt

)r

g

=

(
DVt

∂t

)r

g

.

From Lemma 7.8.2, equation (7.8.14) can be written in this special case as
the following system of equations on g:

D2

∂t2
J
DVt

∂t
+R

(
J
DVt

∂t
, Vt

)
Vt +

1

2

[
DVt

∂t
, J

DVt

∂t

]

+
1

2
J−1

[
J2DVt

∂t
,
DVt

∂t

]
= 0. (7.8.19)
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Nonholonomic Optimal Control and the Rolling Ball. Using a
synthesis of the techniques used above for the Heisenberg system and the
falling cat problem, Koon and Marsden [1997a] generalized these problems
to the nonholonomic case. In addition, these methods allow one to treat
the falling cat problem even in the case that the angular momentum is not
zero.
In this process the momentum equation plays the role of the constraint.

It is inserted as a first-order differential constraint on the nonholonomic
momentum. See also the work Koon and Marsden [1997a] as well as the
Internet Supplement. Some related work on the optimal control of non-
holonomic systems with symmetry may be found in Cortés and Mart́ınez
[2000].
Here we consider optimal control of the rolling ball (see the introduction

and Section 7.3 for notation). We suppose here that J = αI3, I3 the 3× 3
identity matrix, in which case the equations become, after suitable state
feedback, the following control system on R

4 × SO(3):

ẍ = ũ1,

ÿ = ũ2,

Ṗ = PS(−ẋe2 + ẏe1 + ce3); c = c/α.

(7.8.20)

This is evidently controllable (it is accessible, and the uncontrolled trajec-
tories are periodic).
The obvious minimum energy control problem is

min
u

∫ T

0

1

2
(ũ2

1 + ũ2
2)dt (7.8.21)

subject to (7.8.20).
This may be viewed as the following constrained variational problem on

SO(3). Set q = P and

Dq̇

dt
= ẏX1 − ẋX1 + cX3,

Xi(q) = PS(ei). (7.8.22)

Then the variational problem may be posed as

min
q

∫ T

0

〈D2q

dt2
,
D2q

dt2

〉
dt

subject to (7.8.22).
In contrast with minimum energy holonomic control problems, this non-

holonomic problem introduces constraints into the variational problem.
However, this now falls into the class of problems analyzed by Crouch and
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Leite [1991]. Defining the vector of Lagrange multipliers by Λ =
∑
i

λiXi,

the resulting extremals satisfy

x(4) = cy(3) + λ3ẏ − cλ1,

y(4) = −cx(3) − λ3ẋ− cλ2,

λ̇3 = −ẏx(3) + ẋy(3) − λ2ẏ − λ1ẋ,

λ̇1 = 0,

λ̇2 = 0,

(7.8.23)

where here x(k) denotes the kth derivative.
We remark that these equations are variational and are not equivalent to

a nonholonomic problem where one takes the accelerations to lie in some
distribution on the second tangent bundle.

Exercises

� 7.8-1. Compute the optimal control equations for the minimum energy
control problem for the dynamic rolling penny.



8
Stability and Structure
of Nonholonomic Systems

In Chapter 3 we briefly discussed the energy-momentum method for ana-
lyzing stability of relative equilibria of mechanical systems. In the nonholo-
nomic case, while energy is conserved, momentum generally is not. In some
cases, however, the momentum equation is integrable, leading to invariant
surfaces that make possible an energy-momentum analysis similar to that
in the holonomic case. When the momentum equation is not integrable, one
can get asymptotic stability in certain directions, and the stability anal-
ysis is rather different from that in the holonomic case. Nonetheless, to
show stability we will make use of the conserved energy and the dynamic
momentum equation.

8.1 The Nonholonomic Energy-Momentum
Method

Here we analyze the stability of relative equilibria for nonholonomic me-
chanical systems with symmetry using an energy-momentum analysis for
nonholonomic systems that is analogous to that for holonomic systems
given in Simo, Lewis, and Marsden [1991] and discussed briefly in
Chapter 3. This section is based on the paper Zenkov, Bloch, and Mars-
den [1998] and follows the spirit of the paper by Bloch, Krishnaprasad,
Marsden, and Murray [1996], hereinafter referred to as [BKMM] as in
Chapter 5. We will illustrate our energy-momentum stability analysis with

© Springer-Verlag New York 2015
A.M. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary
Applied Mathematics 24, DOI 10.1007/978-1-4939-3017-3 8
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a low-dimensional model example, and then with several mechanical exam-
ples of interest including the falling disk, the roller racer, and the rattle-
back top.
As discussed in Chapter 5, symmetries do not always lead to conserva-

tion laws as in the classical Noether theorem, but rather to an interest-
ing momentum equation. The momentum equation has the structure of
a parallel transport equation for the momentum corrected by additional
terms. This parallel transport occurs in a certain vector bundle over shape
space; this geometry is explained in detail in Cendra, Marsden, and Ratiu
[2001b]. In some instances such as the Routh problem of a sphere rolling
inside a surface of revolution (see Zenkov [1995]) this equation is pure trans-
port, and in fact is integrable (the curvature of the transporting connection
is zero). This leads to nonexplicit conservation laws. In other important
instances, the momentum equation is partially integrable in a sense that
we shall make precise. Our goal is to make use of, as far as possible, the
energy-momentum approach to stability for Hamiltonian systems.

Some History of the Energy-Momentum Method. This method
which was discussed in some detail in Section 3.12 goes back to funda-
mental work of Routh (and many others in this era), and in more modern
works, that of Arnold [1966a] and Smale [1970], and Simo, Lewis, and
Marsden [1991] (see, for example, Marsden [1992] for an exposition and
additional references). This method has also been important in control, as
detailed and referenced elsewhere in this book (but see, for example, Bloch,
Krishnaprasad, Marsden, and Alvarez [1992], Bloch, Leonard, and Marsden
[2000], Ortega, van der Schaft, Mashcke and Escobar [1999], van der Schaft
[1986]). Other useful references on stability that contain many references
of interest are Mikhailov and Parton [1990] and Merkin [1997].

Because of the nature of the momentum equation, the analysis we present
is rather different in several important respects. In particular, our energy-
momentum analysis varies according to the structure of the momentum
equation, and correspondingly, we divide our analysis into several parts.

8.1.1 Example (A Mathematical Example). We now consider an in-
structive, but (so far as we know) nonphysical example. Unlike the rolling
disk, for example (see below), it has asymptotically stable relative equi-
libria, and is a simple example that exhibits the richness of stability in
nonholonomic systems. The general theorems presented later are well illus-
trated by this example, and the reader may find it helpful to return to it
again later.
Consider a Lagrangian on TR3 of the form

L
(
r1, r2, s, ṙ1, ṙ2, ṡ

)
=

1

2

{(
1− [a (r1)]2) (ṙ1)2 − 2a

(
r1
)
b
(
r1
)
ṙ1ṙ2

+
(
1− [b (r1)]2) (ṙ2)2 + ṡ2

}
− V
(
r1
)
,

(8.1.1)
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where a, b, and V are given real-valued functions of a single variable. We
consider the nonholonomic constraint

ṡ = a
(
r1
)
ṙ1 + b

(
r1
)
ṙ2. (8.1.2)

Using the definitions (see Section 5.2 and equation (5.2.8)), straightfor-
ward computations show that

B12 =
∂b

∂r1
= −B12,

where we suppress the index for the s-variable, since there is only one such
variable.
The constrained Lagrangian is

Lc =
1

2

{(
ṙ1
)2

+
(
ṙ2
)2}− V (r1),

and the equations of motion, namely,

d

dt

∂Lc

∂ṙα
− ∂Lc

∂rα
= −ṡBαβ ṙ

β ,

become
d

dt

∂Lc

∂ṙ1
− ∂Lc

∂r1
= −ṡB12ṙ

2,
d

dt

∂Lc

∂ṙ2
= ṡB12ṙ

1.

The Lagrangian is independent of r2, and correspondingly, we introduce
the nonholonomic momentum defined by

p =
∂Lc

∂ṙ2
.

Taking into account the constraint equation and the equations of motion
above, we can rewrite the equations of motion in the form

r̈1 = − ∂V

∂r1
− ∂b

∂r1
(
a
(
r1
)
ṙ1 + b

(
r1
)
p
)
p, (8.1.3)

ṗ =
∂b

∂r1
(
a
(
r1
)
ṙ1 + b

(
r1
)
p
)
ṙ1. (8.1.4)

Observe that the momentum equation does not, in any obvious way, imply
a conservation law.
A relative equilibrium is a point (r0, p0) that is an equilibrium modulo

the variable r2; thus, from equations (8.1.3) and (8.1.4), we require ṙ1 = 0
and

∂V

∂r1
(
r10
)
+

∂b

∂r1
b
(
r10
)
p20 = 0.

We shall see in Section 8.4 that the relative equilibria defined by these
conditions are Lyapunov stable and in addition asymptotically stable in
certain directions if the following two stability conditions are satisfied:
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(i) The energy function E = 1
2

(
ṙ1
)2

+ 1
2p

2 + V , which has a relative
critical point at (r0, p0) (i.e., when E is restricted to leaves of the
integrable transport distribution described in Section 8.4), has a pos-
itive definite second derivative at this point.

(ii) The derivative of E along the flow of the auxiliary system

r̈1 = − ∂V

∂r1
∂b

∂r1
(
a
(
r1
)
ṙ1 + b

(
r1
)
p
)
p, ṗ =

∂b

∂r1
(
r1
)
pṙ1

is strictly negative. �

While the above example is mathematical in nature, there are two phys-
ical examples that are key for this chapter; these are the roller racer and
the rattleback, which were introduced in Sections 1.11 and 1.12. We shall
return to these shortly.

8.2 Overview

In this part of the book we make the following assumption:

Skew Symmetry Assumption. We assume that the tensor Cc
abI

ad is
skew-symmetric in c, d. (See Theorem 5.7.3 for the definition of these
quantities.)
This holds for many physical examples and certainly for the systems dis-

cussed here. (Exceptions include systems with no shape space such as the
homogeneous sphere on the plane and certain cases of the “Suslov” prob-
lem of an inhomogeneous rigid body subject to a linear constraint in the
angular velocities.) The preceding assumption is an intrinsic (coordinate-
independent) condition, since Cc

abI
ad represents an intrinsic bilinear map

of
(
gD
)∗ × (gD)∗ to

(
gD
)∗
.

Under this assumption, the terms quadratic in p in the momentum equa-
tion vanish. We may write the equations of motion in terms of the con-
strained Routhian R defined in Section 5.7, equation (5.7.15). We obtain
(see equations (5.7.16) and (5.7.17))

d

dt

∂R

∂ṙα
− ∂R

∂rα
= −Dc

bαI
bdpcpd − Bc

αβpcṙ
β

−DβαbI
bcpcṙ

β −Kαβγ ṙ
β ṙγ , (8.2.1)

d

dt
pb = Dc

bαpcṙ
α +Dαβbṙ

αṙβ . (8.2.2)

As a result, the dimension of the family of the relative equilibria equals the
number of components of the (nonholonomic) momentum map.
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In the case where Cc
ab = 0 (such as when we have cyclic variables, that is,

internal abelian symmetries) the matrix Cc
abI

ad vanishes, and the preceding
equations of motion are the same as those obtained by Karapetyan [1983].

Below, three principal cases will be considered:

1. Pure Transport Case. In this case, terms quadratic in ṙ are not
present in the momentum equation, so it is in the form of a trans-
port equation; i.e., the momentum equation is an equation of parallel
transport, and the equation itself defines the relevant connection.

Under certain integrability conditions given below, the transport equa-
tion defines invariant surfaces, which allow us to use a type of energy-
momentum method for stability analysis in a similar fashion to the
manner in which the holonomic case uses the level surfaces defined
by the momentum map. The key difference is that in our case, the
additional invariant surfaces do not arise from conservation of mo-
mentum. In this case, one gets stable, but not asymptotically stable,
relative equilibria. Examples include the rolling disk, a body of rev-
olution rolling on a horizontal plane, and the Routh problem.

2. Integrable Transport Case. In this case, terms quadratic in ṙ are
present in the momentum equation, and thus it is not a pure trans-
port equation. However, in this case, we assume that the transport
part is integrable. As we shall also see, in this case relative equilibria
may be asymptotically stable. We are able to find a generalization of
the energy-momentum method that gives conditions for asymptotic
stability. An example is the roller racer.

3. Nonintegrable Transport Case. Again, the terms quadratic in
ṙ are present in the momentum equation, and thus it is not a pure
transport equation. However, the transport part is not integrable.
Again, we are able to demonstrate asymptotic stability using the
Lyapunov–Malkin theorem and to relate it to an energy-momentum-
type analysis under certain eigenvalue hypotheses, as we will see in
Section 8.5. An example is the rattleback top. Another example is
an inhomogeneous sphere with a center of mass lying off the planes
spanned by the principal axis body frame as discussed in Markeev
[1992].

These eigenvalue hypotheses do not hold in some examples, such as
the inhomogeneous (unbalanced) Kovalevskaya sphere rolling on the
plane.

In the sections below where these different cases are discussed we will
make clear at the beginning of each section what the underlying hypotheses
on the systems are by listing the key hypotheses and labeling them by H1,
H2, and H3.
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8.3 The Pure Transport Case

Here we assume that:

H1 Dαβb are skew-symmetric in α, β. Under this assumption, the mo-
mentum equation can be written as the vanishing of the connection
one-form defined by dpb −Dc

bαpcdr
α.

H2 The curvature of the preceding connection form is zero.

An interesting example of this case is that of Routh’s problem of a sphere
rolling without slipping in a surface of revolution. See Zenkov [1995].

Under the above two assumptions, the distribution defined by the mo-
mentum equation is integrable, and so we get invariant surfaces, which
makes further reduction possible. These hypotheses enable us to use the
energy-momentum method in a way that is similar to the holonomic case.
If the number of shape variables is one, the above connection is inte-

grable, because it may be treated as a system of linear ordinary differential
equations with coefficients depending on the shape variable r:

dpb
dr

= Dc
bpc.

As a result, we obtain an integrable nonholonomic system, because after
solving the momentum equation for pb and substituting the result in the
equation for the shape variable, the latter equation may be viewed as a
Lagrangian system with one degree of freedom, which is integrable.

Energy-Momentum for The Pure Transport Case. We now de-
velop the energy-momentum method for the case in which the momentum
equation is pure transport. Under the assumptions H1 and H2 made so far,
the equations of motion become

d

dt

∂R

∂ṙα
− ∂R

∂rα
= −Dc

bαI
bdpcpd − Bc

αβpcṙ
β −Kαβγ ṙ

β ṙγ , (8.3.1)

d

dt
pb = Dc

bαpcṙ
α. (8.3.2)

A relative equilibrium is a point (r, ṙ, p) = (r0, 0, p0) that is a fixed
point for the dynamics determined by equations (8.3.1) and (8.3.2). Under
assumption H1 the point (r0, p0) is seen to be a critical point of the amended
potential (see equation (5.7.20)).
Because of our zero curvature assumption H2, the solutions of the mo-

mentum equation lie on surfaces of the form pa = Pa(r
α, kb), a, b = 1, . . . ,m,

where kb are constants labeling these surfaces.
Using the functions pa = Pa(r

α, kb) we introduce the reduced amended
potential Uk(r

α) = U(rα, Pa(r
α, kb)). We think of the function Uk(r

α) as
being the restriction of the function U to the invariant manifold

Qk = {(rα, pa) | pa = Pa(r
α, kb)}.
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8.3.1 Theorem. Let assumptions H1 and H2 hold and let (r0, p0), where
p0 = P (r0, k

0), be a relative equilibrium. If the reduced amended poten-
tial Uk0(r) has a nondegenerate minimum at r0, then this equilibrium is
Lyapunov stable.

Proof. First, we show that the relative equilibrium

rα = rα0 , p0a = Pa(r
α
0 , k

0
b ) (8.3.3)

of the system (8.3.1), (8.3.2) is stable modulo perturbations consistent
with Qk0 . Consider the phase flow restricted to the invariant manifold
Qk0 , where k0 corresponds to the relative equilibrium. Since Uk0(rα) has
a nondegenerate minimum at rα0 , the function E|Qk0 is positive definite.
By Theorem 5.7.4 its derivative along the flow vanishes. Using E|k0 as a
Lyapunov function, we conclude that equations (8.3.1), (8.3.2), restricted
to the manifold Qk0 , have a stable equilibrium point rα0 on Qk0 .
To finish the proof, we need to show that equations (8.3.1), (8.3.2), re-

stricted to nearby invariant manifolds Qk, have stable equilibria on these
manifolds.
If k is sufficiently close to k0, then by the properties of families of Morse

functions (see Milnor [1963]), the function Uk : Qk → R has a nondegener-
ate minimum at the point rα that is close to rα0 . This means that for all k
sufficiently close to k0 the system (8.3.1), (8.3.2) restricted to Qk has a sta-
ble equilibrium rα. Therefore, the equilibrium (8.3.3) of equations (8.3.1),
(8.3.2) is stable.

The stability here cannot be asymptotic, since the dynamical systems on
Qk have a positive definite conserved quantity: the reduced energy function.

�

Remark. Even though in general Pa(r
α, kb) cannot be found explicitly,

the types of critical points of Uk may be explicitly determined as follows.
First of all, note that

∂pa
∂rα

= Dc
bαpc

as long as (rα, pa) ∈ Qk. Therefore,

∂Uk

∂rα
= ∇αU,

where

∇α =
∂

∂rα
+Dc

bαpc
∂

∂pb
. (8.3.4)

Then the relative equilibria satisfy the condition

∇αU = 0,
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while the condition for stability

∂2Uk

∂r2
� 0

(i.e., positive definiteness) becomes the condition

∇α∇βU � 0.

In the commutative case this was shown by Karapetyan [1983].
Now we give the stability condition in a form similar to that of the

energy-momentum method for holonomic systems given in Simo, Lewis,
and Marsden [1991].

8.3.2 Theorem (The nonholonomic energy-momentum method). Under
assumptions H1 and H2, the point qe = (rα0 , p

0
a) is a relative equilibrium

if and only if there is a ξ ∈ gqe such that qe is a critical point of the
augmented energy Eξ : D/G → R (i.e., Eξ is a function of (r, ṙ, p)),
defined by

Eξ = E − 〈p− P (r, k), ξ〉.
This equilibrium is stable if δ2Eξ restricted to TqeQk is positive definite
(here δ denotes differentiation with respect to all variables except ξ).

Proof. A point qe ∈ Qk is a relative equilibrium if ∂rαUk = 0. This con-
dition is equivalent to d (E|Qk

) = 0. The last equation may be represented
as d (E − 〈p− P (r, k), ξ〉) = 0 for some ξ ∈ gqe . Similarly, the condition for
stability d2Uk � 0 is equivalent to d2 (E|Qk

) � 0, which may be repre-
sented as

(
δ2Eξ

) |TqeQk
� 0. �

Note that if the momentum map is preserved by the dynamics, then the
formula for Eξ becomes

Eξ = E − 〈p− k, ξ〉,

which is the same as the formula for the augmented energy Eξ for holonomic
systems.

8.3.3 Example (The Falling Rolling Disk). There are several exam-
ples that illustrate the ideas above. For instance, the falling disk, Routh’s
problem, and a body of revolution rolling on a horizontal plane are systems
where the momentum equation defines an integrable distribution and we
are left with only one shape variable. Since the stability properties of all
these systems are similar, we consider here only the rolling disk. For the
body of revolution on the plane, see Chaplygin [1897a] and Karapetyan
[1983]. For the Routh problem, see Zenkov [1995].

Consider again the disk rolling without sliding on the xy-plane. Recall
that we have the following: Denote the coordinates of contact of the disk
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in the xy-plane by x, y. Let θ, ϕ, and ψ denote the angle between the
plane of the disk and the vertical axis, the “heading angle” of the disk, and
“self-rotation” angle of the disk, respectively, as introduced earlier.
The Lagrangian and the constraints in these coordinates are given by

L =
m

2

[
(ξ −R(ϕ̇ sin θ + ψ̇))2 + η2 sin2 θ + (η cos θ +Rθ̇)2

]

+
1

2

[
A(θ̇2 + ϕ̇2 cos2 θ) +B(ϕ̇ sin θ + ψ̇)2

]
−mgR cos θ,

ẋ = −ψ̇R cosϕ,

ẏ = −ψ̇R sinϕ,

where ξ = ẋ cosϕ + ẏ sinϕ + Rψ̇, η = −ẋ sinϕ + ẏ cosϕ. Note that the
constraints may be written as ξ = 0, η = 0.
This system is invariant under the action of the group G = SE(2)×SO(2);

the action by the group element (a, b, α, β) is given by

(θ, ϕ, ψ, x, y) �→ (θ, ϕ+ α, ψ + β, x cosα− y sinα+ a, x sinα+ y cosα+ b).

Obviously,

Tq Orb(q) = span

(
∂

∂ϕ
,
∂

∂ψ
,
∂

∂x
,
∂

∂y

)
,

and

Dq = span

(
∂

∂θ
,
∂

∂ϕ
,R cosϕ

∂

∂x
+R sinϕ

∂

∂y
− ∂

∂ψ

)
,

which imply

Sq = Dq ∩ Tq Orb(q) = span

(
∂

∂ϕ
,−R cosϕ

∂

∂x
−R sinϕ

∂

∂y
+

∂

∂ψ

)
.

Choose vectors (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) as a basis of
the Lie algebra g of the group G. The corresponding generators are

∂x, ∂y, −y∂x + x∂y + ∂ϕ, ∂ψ.

Taking into account that the generators ∂ϕ, −R cosϕ∂x − R sinϕ∂y + ∂ψ
correspond to the elements (y,−x, 1, 0), (−R cosϕ,−R sinϕ, 0, 1) of the Lie
algebra g, we obtain the following momentum equations:

ṗ1 = mR2 cos θ θ̇ψ̇,

ṗ2 = −mR2 cos θ θ̇ϕ̇, (8.3.5)

where

p1 = Aϕ̇ cos2 θ + (mR2 +B)(ϕ̇ sin θ + ψ̇) sin θ,

p2 = (mR2 +B)(ϕ̇ sin θ + ψ̇), (8.3.6)
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into which the constraints have been substituted. One may notice that

p1 =
∂lc
∂ϕ̇

, p2 =
∂lc

∂ψ̇
.

Solving (8.3.6) for ϕ̇, ψ̇ and substituting the solutions in the equa-
tions (8.3.5) we obtain another representation of the momentum equations:

dp1
dt

= mR2 cos θ

(
− sin θ

A cos2 θ
p1 +

(
1

mR2 +B
+

sin2 θ

A cos2 θ

)
p2

)
θ̇,

dp2
dt

= mR2 cos θ

(
− 1

A cos2 θ
p1 +

sin θ

A cos2 θ
p2

)
θ̇. (8.3.7)

The right-hand sides of (8.3.7) do not have terms quadratic in the shape
variable θ. The distribution, defined by (8.3.7), is integrable and defines
two integrals of the form p1 = P1(θ, k1, k2), p2 = P2(θ, k1, k2). It is known
that these integrals may be written down explicitly in terms of the hy-
pergeometric function. See Appel [1900], Chaplygin [1897a], and Korteweg
[1899] for details.
To carry out stability analysis, we use the remark following Theorem

8.3.1. Using formulae (8.3.6), we obtain the amended potential

U(θ, p) =
1

2

[
(p1 − p2 sin θ)

2

A cos2 θ
+

p22
B +mR2

]
+mgR cos θ.

Straightforward computation shows that the positive definiteness condition
for stability, ∇2U � 0, of a relative equilibrium θ = θ0, p1 = p01, p2 = p02
becomes

B

A(mR2 +B)
(p02)

2 +
mR2 cos2 θ0 + 2A sin2 θ0 +A

A2
(p01 − p02 sin θ0)

2

− (mR2 + 3B) sin θ0
A(mR2 +B) cos2 θ0

(p01 − p02 sin θ0)p
0
2 −mgR cos θ0 > 0.

Note that this condition guarantees stability here relative to θ, θ̇, p1, p2;
in other words, we have stability modulo the action of SE(2)× SO(2). �

The falling disk may be considered as a limiting case of the body of
revolution that also has an integrable pure transport momentum equation
(this example is treated in Chaplygin [1897a] and Karapetyan [1983]). The
rolling disk has also been analyzed by O’Reilly [1996] and Cushman, Her-
mans, and Kemppainen [1996]. O’Reilly considered bifurcation of relative
equilibria, the stability of vertical stationary motions, as well as the possi-
bility of sliding.
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8.4 The Nonpure Transport Case

In this section we consider the case in which the coefficients Dαβb are not
skew-symmetric in α, β and the two subcases where the transport part of
the momentum equation is integrable or is not integrable, respectively. In
either case one may obtain asymptotic stability.

8.4.1 Example (The Mathematical Example Continued). We first
consider stability for the mathematical example discussed earlier and dis-
cuss the role of the Lyapunov–Malkin theorem. Recall from Section 8.1.1
that the equations of motion are

r̈ = −∂V

∂r
− ∂b

∂r
(a(r)ṙ + b(r)p) p,

ṗ =
∂b

∂r
(a(r)ṙ + b(r)p) ṙ;

(8.4.1)

here and below we write r instead of r1.
Recall also that a point r = r0, p = p0 is a relative equilibrium if r0 and

p0 satisfy the condition

∂V

∂r
(r0) +

∂b

∂r
b(r0) p

2
0 = 0.

Introduce coordinates u1, u2, v in a neighborhood of this equilibrium by

r = r0 + u1, ṙ = u2, p = p0 + v.

The linearized equations of motion are

u̇1 = u2,

u̇2 = Au2 + Bu1 + Cv,
v̇ = Du2,

where

A = −∂b

∂r
ap0,

B = −∂2V

∂r2
−
[
∂2b

∂r2
b+

(
∂b

∂r

)2
]
p20,

C = −2
∂b

∂r
bp0,

D =
∂b

∂r
bp0,

and where V , a, b, and their derivatives are evaluated at r0. The charac-
teristic polynomial of these linearized equations is calculated to be

λ[λ2 −Aλ− (B + CD)].
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It obviously has one zero root. The two others have negative real parts if

B + CD < 0, A < 0. (8.4.2)

These conditions imply linear stability. We discuss the meaning of these
conditions later.
Next, we make the substitution v = y + Du1, which defines the new

variable y. The (nonlinear) equations of motion become

u̇1 = u2,

u̇2 = Au2 + (B + CD)u1 + Cy + U(u, y),
ẏ = Y(u, y),

where U(u, y), Y(u, y) stand for nonlinear terms, and Y(u, y) vanishes when
u = 0. By Lemma 2.4.6 there exists a further substitution u = x + ϕ(y)
such that the equations of motion in coordinates x, y become

ẋ = Px+X(x, y),

ẏ = Y (x, y),

where X(x, y) and Y (0, y) satisfy the conditions X(0, y) = 0, Y (0, y) = 0.
Here,

P =

(
0 1

B + CD A
)
.

This form enables us to use the Lyapunov–Malkin theorem and conclude
that the linear stability implies nonlinear stability and in addition that we
have asymptotic stability with respect to the variables x1, x2.
To find a Lyapunov-function-based approach for analyzing the stability of

the mathematical example, we introduce a modified dynamical system and
use its energy function and momentum to construct a Lyapunov function
for the original system. This modified system is introduced for the purpose
of finding the Lyapunov function and is not used in the stability proof. We
will generalize this approach below, and this example may be viewed as
motivation for the general approach.
Consider then the new system obtained from the Lagrangian (8.1.1) and

the constraint (8.1.2) by setting a(r) = 0. Notice that Lc stays the same,
and therefore, the equation of motion may be obtained from (8.4.1):

r̈ = −∂V

∂r
− ∂b

∂r
b(r)p2, ṗ =

∂b

∂r
b(r)pṙ.

The condition for existence of the relative equilibria also stays the same.
However, a crucial observation is that for the new system, the momentum
equation is now integrable, in fact explicitly, so that in this example,

p = k exp(b2(r)/2).
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Thus, we may proceed and use this invariant surface to perform reduction.
The amended potential, defined by U(r, p) = V (r) + 1

2p
2, becomes

Uk(r) = V (r) +
1

2

(
k exp(b2(r)/2)

)2
.

Consider the function

Wk =
1

2
(ṙ)2 + Uk(r) + ε(r − r0)ṙ.

If ε is small enough and Uk has a nondegenerate minimum, then so does
Wk. Suppose that the matrix P has no eigenvalues with zero real parts.
Then by Theorem 2.4.4 equations (8.4.1) have a local integral p = P(r, ṙ, c).
Differentiate Wk along the vector field determined by (8.4.1). We obtain

Ẇk = −ε

(
∂2V

∂r2
(r0) +

(
∂2b

∂r2
b(r0) + 2

(
∂b

∂r
b(r0)

)2

+

(
∂b

∂r
(r0)

)2
)
p20

)

− ∂b

∂r
a(r0)p0ṙ

2 + εṙ2 + {higher-order terms}.

Therefore, Wk is a Lyapunov function for the flow restricted to the local
invariant manifold p = P(r, ṙ, c) if

∂2V

∂r2
(r0) +

(
∂2b

∂r2
b(r0) + 2

(
∂b

∂r
b(r0)

)2

+

(
∂b

∂r
(r0)

)2
)
p20 > 0 (8.4.3)

and
∂b

∂r
a(r0)p0ṙ

2 > 0. (8.4.4)

Notice that the Lyapunov conditions (8.4.3) and (8.4.4) are the same as
conditions (8.4.2).
Introduce the operator

∇r =
∂

∂r
+

∂b

∂r
b(r)p

∂

∂p

(cf. Karapetyan [1983]).
Then condition (8.4.3) may be rewritten as

∇2
rU > 0,

which is the same as the condition for stability of stationary motions of a
nonholonomic system with an integrable momentum equation (recall that
this means that there are no terms quadratic in ṙ, only transport terms
defining an integrable distribution). The left-hand side of formula (8.4.4)
may be viewed as a derivative of the energy function

E =
1

2
ṙ2 +

1

2
p2 + V
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along the flow

r̈ = −∂V

∂r
− ∂b

∂r
(a(r)ṙ + b(r)p) p, ṗ =

∂b

∂r
b(r)pṙ,

or as a derivative of the amended potential U along the vector field defined
by the nontransport terms of the momentum equations

ṗ =
∂b

∂r
a(r)ṙ2. �

The Nonholonomic Energy-Momentum Method. We now gener-
alize the energy-momentum method discussed above for the mathematical
example to the general case in which the transport part of the momentum
equation is integrable.
Here we assume hypothesis H2 in the present context, namely:

H2 The curvature of the connection form associated with the transport
part of the momentum equation, namely, dpb −Dc

bαpcdr
α, is zero.

The momentum equation in this situation is

d

dt
pb = Dc

bαpcṙ
α +Dαβbṙ

αṙβ .

Hypothesis H2 implies that the form due to the transport part of the mo-
mentum equation defines an integrable distribution. Associated with this
distribution there is a family of integral manifolds

pa = Pa(r
α, kb)

with Pa satisfying the equation dPb = Dc
bαPcdr

α. Note that these man-
ifolds are not invariant manifolds of the full system under consideration
because the momentum equation has nontransport terms. Substituting the
functions Pa(r

α, kb), kb = const, into E(r, ṙ, p), we obtain a function

Vk(r
α, ṙα) = E(rα, ṙα, Pa(r

α, kb))

that depends only on rα, ṙα and parametrically on k. This function will
not be our final Lyapunov function but will be used to construct one in the
proof to follow.
Pick a relative equilibrium rα = rα0 , pa = p0a. In this context we introduce

the following definiteness assumptions:

H3 At the equilibrium rα = rα0 , pa = p0a the two symmetric matrices
∇α∇βU and (Dαβb +Dβαb)I

bcpc are positive definite.

8.4.2 Theorem. Under assumptions H2 and H3, the equilibrium rα = rα0 ,
pa = p0a is Lyapunov stable. Moreover, the system has local invariant man-
ifolds that are tangent to the family of manifolds defined by the integrable
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transport part of the momentum equation at the relative equilibria. The rel-
ative equilibria that are close enough to r0, p0 are asymptotically stable in
the directions defined by these invariant manifolds. In addition, for initial
conditions close enough to the equilibrium rα = rα0 , pa = p0a, the perturbed
solution approaches a nearby equilibrium.

Proof. The substitution pa = p0a+ya+Db
aα(r0)p

0
bu

α, where uα = rα−rα0 ,
eliminates the linear terms in the momentum equation. In fact, with this
substitution, the equations of motion (8.2.1), (8.2.2) become

d

dt

∂R

∂ṙα
− ∂R

∂rα
= −Dc

bαI
bdpcpd − Bc

αβpcṙ
β

−DβαbI
bcpcṙ

β −Kαβγ ṙ
β ṙγ ,

d

dt
yb = Dc

bαycṙ
α + (Dc

bα −Dc
bα(r0))p

0
c ṙ

α +Dαβbṙ
αṙβ .

One can check that H3 implies the hypotheses of Theorem 2.4.4
(see Zenkov, Bloch, and Marsden [1998] for details of this computation).
Thus, the above equations have local integrals ya = fa(r, ṙ, c), where the
functions fa are such that ∂rfa = ∂ṙfa = 0 at the equilibria. Therefore,
the original equations (8.2.1), (8.2.2) have n local integrals

pa = Pa(r
α, ṙα, cb), cb = const, (8.4.5)

where Pa are such that

∂P
∂rα

=
∂P

∂rα
,

∂P
∂ṙα

= 0

at the relative equilibria.
We now use the Vk(r

α, ṙα) to construct a Lyapunov function to determine
the conditions for asymptotic stability of the relative equilibrium rα = rα0 ,
pa = p0a. We will do this in a fashion similar to that used by Chetaev [1959]
and Bloch, Krishnaprasad, Marsden, and Ratiu [1994].

Without loss of generality, suppose that gαβ(r0) = δαβ . Introduce the
function

Wk = Vk + ε

σ∑
α=1

uαṙα.

Consider the following two manifolds at the equilibrium (rα0 , p
0
a): the

integral manifold of the transport equation

Qk0 =
{
pa = Pa(r

α, k0)
}
,

and the local invariant manifold

Qc0 =
{
pa = Pa(r

α, ṙα, c0)
}
.
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Restrict the flow to the manifold Qc0 . Choose (rα, ṙα) as local coordinates
on Qc0 ; then, Vk0 and Wk0 are functions defined on Qc0 . Since

∂Uk0

∂rα
(r0) = ∇αU(r0, p0) = 0

and
∂2Uk0

∂rα∂rβ
(r0) = ∇α∇βU(r0, p0) � 0,

the function Vk0 is positive definite in some neighborhood of the relative
equilibrium (rα0 , 0) ∈ Qc0 . The same is valid for the function Wk0 if ε is
small enough.
Now we show that Ẇk0 (as a function on Qc0) is negative definite. Cal-

culate the derivative of Wk0 along the flow:

Ẇk0 = gαβ ṙ
αr̈β +

1

2
ġαβ ṙ

αṙβ + IabPaṖb

+
1

2
İabPaPb + V̇ + ε

σ∑
α=1

(
(ṙα)2 + uαr̈α

)
. (8.4.6)

Using the explicit representation of equation (8.2.1), we obtain

gαβ r̈
β + ġαβ ṙ

β =
1

2

∂gβγ
∂rα

ṙβ ṙγ − ∂V

∂rα
− 1

2

∂Iab

∂rα
PaPb −Dc

bαI
bdPcPd

−DβαbI
bcPcṙ

β − Bc
αβPcṙ

β −Kαβγ ṙ
β ṙγ . (8.4.7)

Therefore,

gαβ ṙ
αr̈β +

1

2
ġαβ ṙ

αṙβ + IabPaṖb +
1

2
İabPaPb + V̇

=− 1

2
ġαβ ṙ

αṙβ +
1

2

∂gβγ
∂rα

ṙαṙβ ṙγ − ∂V

∂rα
ṙα − 1

2

∂Iab

∂rα
PaPbṙ

α

−Dc
bαI

bdPcPdṙ
α −DβαbI

bcPcṙ
αṙβ − Bc

αβPcṙ
αṙβ

−Kαβγ ṙ
αṙβ ṙγ + IabDc

bαPaPcṙ
α +

1

2

∂Iab

∂rα
PaPbṙ

α + V̇ .

Using the skew symmetry of Bc
αβ and Kαβγ with respect to α, β and can-

celing the terms

−1

2
ġαβ ṙ

αṙβ +
1

2

∂gβγ
∂rα

ṙαṙβ ṙγ − ∂V

∂rα
ṙα + V̇ ,

we obtain

gαβ ṙ
αr̈β

1

2
ġαβ ṙ

αṙβ + IabPaṖb +
1

2
İabPaPb + V̇

= −DβαbI
bcPcṙ

αṙβ +

(
1

2

∂Iab

∂rα
+ IacDb

cα

)
(PaPb − PaPb) ṙ

α. (8.4.8)
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Substituting (8.4.8) in (8.4.6) and determining r̈α from (8.4.7),

Ẇk0 = −DβαbI
bcPcṙ

αṙβ + ε

σ∑
α=1

(ṙα)2

− ε

σ∑
γ=1

gαβuγ

(
∂V

∂rα
+

1

2

∂Iab

∂rα
PaPb +Dc

bαI
bdPcPd

)

+ ε

σ∑
γ=1

gαγuγ

(
−ġαβ ṙ

β +
1

2

∂gβγ
∂rα

ṙβ ṙγ − Bc
αβPcṙ

β

−DβαbI
bcPcṙ

β −Kαβγ ṙ
β ṙγ
)

+
1

2

∂Iab

∂rα
(PaPb − PaPb) ṙ

α + IacDb
cα (PaPb − PaPb) ṙ

α. (8.4.9)

Since
∂V

∂rα
+

1

2

∂Iab

∂rα
PaPb +Dc

bαI
bdPcPd = 0

at the equilibrium and the linear terms in the Taylor expansions of P and
P are the same,

∂V

∂rα
+

1

2

∂Iab

∂rα
PaPb +Dc

bαI
bdPcPd = Fαβu

β + {nonlinear terms}, (8.4.10)

where

Fαβ =
∂

∂rβ

(
∂V

∂rα
+

1

2

∂Iab

∂rα
PaPb +Dc

bαI
bdPcPd

)

=
∂2V

∂rα∂rβ
+

1

2

∂2Iab

∂rα∂rβ
PaPb +

∂Iab

∂rα
Pa

∂Pb

∂rβ

+
∂

∂rβ
(Dc

bαI
bd
)
PcPd +Dc

bαI
bd

(
∂Pc

∂rβ
Pd + Pc

∂Pd

∂rβ

)

=
∂2V

∂rα∂rβ
+

1

2

∂2Iab

∂rα∂rβ
PaPb +

∂Iab

∂rα
PaDc

bβPc

+
∂

∂rβ
(Dc

bαI
bd
)
PcPd +Dc

bαI
bd
(Da

cβPd + PcDa
dβPa

)
= ∇α∇βU.

In the last formula all the terms are evaluated at the equilibrium.
Taking into account that gαβ = δαβ+O(u), that the Taylor expansion of

PaPb −PaPb starts from the terms of the second order, and using (8.4.10),
we obtain from (8.4.9)

Ẇk0 = −DβαbI
bc(r0)p

0
c ṙ

αṙβ − εFαβu
αuβ + ε

σ∑
α=1

(ṙα)2

− ε
(DβαbI

bc(r0)p
0
c + Bc

αβ(r0)p
0
c

)
uαṙβ + {cubic terms}.
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Therefore, the condition (Dαβb +Dβαb)I
bcp0c � 0 implies that Ẇk0 is neg-

ative definite if ε is small enough and positive. Thus, Wk0 is a Lyapunov
function for the flow on Qc0 , and therefore the equilibrium (rα0 , 0) for the
flow on Qc0 is asymptotically stable.
Using the same arguments we used in the proof of Theorem 8.3.1, we

conclude that the equilibria on the nearby invariant manifolds Qk are
asymptotically stable as well. �

There is an alternative way to state the above theorem, which uses the
basic intuition we used to find the Lyapunov function.

8.4.3 Theorem (The nonholonomic energy-momentum method). Under
the assumption that H2 holds, the point qe = (rα0 , p

0
a) is a relative equilib-

rium if and only if there is a ξ ∈ gqe such that qe is a critical point of the
augmented energy Eξ = E − 〈p− P (r, k), ξ〉. Assume that

(i) δ2Eξ restricted to TqeQk is positive definite (here δ denotes differen-
tiation by all variables except ξ);

(ii) the quadratic form defined by the flow derivative of the augmented
energy is negative definite at qe.

Then H3 holds, and this equilibrium is Lyapunov stable and asymptotically
stable in the directions of the invariant manifolds (8.4.5).

Proof. We have already shown in Theorem 8.3.2 that positive definite-
ness of δ2Eξ|TqeQk

is equivalent to the condition ∇α∇βU � 0. To com-
plete the proof, we need to show that the requirement (ii) of the theorem
is equivalent to the condition (Dαβb + Dβαb)I

bc(r0)p
0
c � 0. Compute the

flow derivative of Eξ:

Ėξ = Ė − 〈ṗ− Ṗ , ξ〉 = −〈ṗ− Ṗ , ξ〉
= −(Db

aαpbṙ
α +Dαβaṙ

αṙβ −Db
aαPbṙ

α)ξa + higher-order terms.

Since at the equilibrium p = P , ξa = Iabpb, and Ė = 0 (Theorem 5.7.4),
we obtain

Ėξ = −DαβaI
ab(r0)p

0
b ṙ

αṙβ + higher-order terms.

The condition of negative definiteness of the quadratic form determined by
Ėξ is thus equivalent to (Dαβb +Dβαb)I

bc(r0)p
0
c � 0. �

For some examples, such as the roller racer, we need to consider a de-
generate case of the above analysis. Namely, we consider a nongeneric case,
when U = 1

2I
ab(r)papb (the original system has no potential energy), and

the components of the locked inertia tensor Iab satisfy the condition

1

2

∂Iab

∂rα
+ IacDb

cα = 0. (8.4.11)
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Consequently, the covariant derivatives of the amended potential are equal
to zero, and the equations of motion (8.2.1), (8.2.2) become

d

dt

(
gαβ ṙ

β
)− 1

2

∂gβγ
∂rα

ṙβ ṙγ = −DβαbI
bcpcṙ

β − Bc
αβpcṙ

β −Kαβγ ṙ
β ṙγ ,

(8.4.12)

d

dt
pb = Dc

bαpcṙ
α +Dαβbṙ

αṙβ . (8.4.13)

Thus, we obtain an (m + σ)-dimensional manifold of equilibria r = r0,
p = p0 of these equations. Further, we cannot apply Theorem 8.4.2 because
the condition ∇2U � 0 fails. However, we can do a similar type of stability
analysis as follows.
As before, set

Vk = E(r, ṙ, P (r, k)) =
1

2
gαβ ṙ

αṙβ +
1

2
Iab(r)Pa(r, k)Pb(r, k).

Note that P satisfies the equation

∂Pb

∂rα
= Dc

bαPc,

which implies that

∂

∂rα

(
1

2
Iab(r)PaPb

)
=

1

2

∂Iab

∂rα
PaPb + IabPa

∂Pb

∂rα

=

(
1

2

∂Iab

∂rα
+ IabDc

bα

)
PaPb = 0.

Therefore
1

2
IabPaPb = const

and

Vk =
1

2
gαβ ṙ

αṙβ

(up to an additive constant). Thus, Vk is a positive definite function with
respect to ṙ. Compute V̇k:

V̇k = gαβ ṙ
αr̈β + ġαβ ṙ

αṙβ = −DβαbI
bcpcṙ

αṙβ +O(ṙ3).

Suppose that (Dαβb + Dβαb)(r0)I
bc(r0)p

0
c � 0. Now the linearization of

equations (8.4.12) and (8.4.13) about the relative equilibria given by setting
ṙ = 0 has m+ σ zero eigenvalues corresponding to the r and p directions.
Since the matrix corresponding to the ṙ-directions of the linearized system
is of the form D +G, where D is positive definite and symmetric (in fact,
D = 1

2 (Dαβb +Dβαb)(r0)I
bc(r0)p

0
c) and G is skew-symmetric, the determi-

nant of D +G is not equal to zero. This follows from the observation that
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xt(D + G)x = xtDx > 0 for D positive definite and G skew-symmetric.
Thus using Theorem 2.4.4, we find that the equations of motion have local
integrals

r = R(ṙ, k), p = P(ṙ, k).

Therefore, Vk restricted to a common level set of these integrals is a Lya-
punov function for the restricted system. Thus, an equilibrium r = r0,
p = p0 is stable with respect to r, ṙ, p and asymptotically stable with
respect to ṙ if

(Dαβb +Dβαb)I
bc(r0)p

0
c � 0. (8.4.14)

Summarizing, we have the following theorem:

8.4.4 Theorem. Under assumption H2 if U = 0 and assuming that the
conditions (8.4.11) and (8.4.14) hold, the nonholonomic equations of mo-
tion have an (m+ σ)-dimensional manifold of equilibria parametrized by r
and p. An equilibrium r = r0, p = p0 is stable with respect to r, ṙ, p and
asymptotically stable with respect to ṙ.

8.4.5 Example (The Roller Racer). The roller racer provides an exam-
ple and illustration of Theorem 8.4.4. Recall that the Lagrangian and the
constraints are

L =
1

2
m(ẋ2 + ẏ2) +

1

2
I1θ̇

2 +
1

2
I2(θ̇ + φ̇)2

and

ẋ = cos θ

(
d1 cosφ+ d2

sinφ
θ̇ +

d2
sinφ

φ̇

)
,

ẏ = sin θ

(
d1 cosφ+ d2

sinφ
θ̇ +

d2
sinφ

φ̇

)
.

The configuration space is SE(2)× SO(2) with the angles measured coun-
terclockwise, and as observed earlier, the Lagrangian and the constraints
are invariant under the left action of SE(2) on the first factor of the con-
figuration space.
The nonholonomic momentum is

p = m(d1 cosφ+ d2)(ẋ cos θ + ẏ sin θ) + [(I1 + I2)θ̇ + I2φ̇] sinφ.

See Tsakiris [1995] for details of this calculation. The momentum
equation is

ṗ =
((I1 + I2) cosφ−md1(d1 cosφ+ d2))

m(d1 cosφ+ d2)2 + (I1 + I2) sin
2 φ

pφ̇

+
(d1 + d2 cosφ)(I2d1 cosφ− I1d2)

m(d1 cosφ+ d2)2 + (I1 + I2) sin
2 φ

φ̇2.
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Rewriting the Lagrangian using p instead of θ̇, we obtain the energy
function for the roller racer:

E =
1

2
g(φ)φ̇2 +

1

2
I(φ)p2,

where

g(φ) = I2 +
md22
sin2 φ

−
[
m(d1 cosφ+ d2)d2 + I2 sin

2 φ
]2

sin2 φ
[
m(d1 cosφ+ d2)2 + (I1 + I2) sin

2 φ
]

and

I(φ) =
1

(d1 cosφ+ d2)2 + (I1 + I2) sin
2 φ

. (8.4.15)

The amended potential is given by

U =
p2

2[(d1 cosφ+ d2)2 + (I1 + I2) sin
2 φ]

,

which follows directly from (5.7.20) and (8.4.15).
Straightforward computations show that the locked inertia tensor I(φ)

satisfies the condition (8.4.11). Thus the roller racer has a two-dimensional
manifold of relative equilibria parametrized by φ and p. These relative equi-
libria are motions of the roller racer in circles about the point of intersection
of lines through the axles. For such motions, p is the system momentum
about this point, and φ is the relative angle between the two bodies.
Thus, we may apply the energy-momentum stability conditions (8.4.14)

obtained above for the degenerate case. Multiplying the coefficient of the
nontransport term of the momentum equation, evaluated at φ0, by I(φ)p0
and omitting a positive denominator, we obtain the condition for stability
of a relative equilibrium φ = φ0, p = p0 of the roller racer:

(d1 + d2 cosφ0)(I2d1 cosφ0 − I1d2)p0 > 0.

Note that this equilibrium is stable modulo SE(2) and in addition asymp-
totically stable with respect to φ̇. �

8.5 General Case—the Lyapunov–Malkin
Method

In this section we study stability in a fairly general setting: We do not a pri-
ori assume the hypotheses H1 (skewness of Dαβb in α, β), H2 (a curvature
is zero), and H3 (definiteness of second variations). Thus, we consider the
most general case, when the connection due to the transport part of the mo-
mentum equation is not necessarily flat and when the nontransport terms
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of the momentum equation are not equal to zero. In the case where gqe is
commutative, this analysis was done by Karapetyan [1980]. The extension
of this to the noncommutative case was done in Zenkov, Bloch, and Mars-
den [1998], and we refer the reader to this paper for more details. In this
section we shall be content to give the general form of the linearization of
the equations and discuss the rattleback example.

Linearization Computation. We start by computing the linearization
of equations (8.2.1) and (8.2.2) about a given relative equilibrium (r0, p0).
Introduce coordinates uα, vα, and wa in a neighborhood of the equilibrium
r = r0, p = p0 by the formulas

rα = rα0 + uα, ṙα = vα, pa = p0a + wa.

The linearized momentum equation is

ẇb = Dc
bα(r0)p

0
cv

α.

To find the linearization of (8.2.1), we start by rewriting its right-hand side
explicitly. Since R = 1

2gαβ ṙ
αṙβ − 1

2I
abpapb − V , equation (8.2.1) becomes

gαβ r̈
β + ġαβ ṙ

αṙβ − 1

2

∂gβγ
∂rα

ṙβ ṙγ +
1

2

∂Iab

∂rα
papb +

∂V

∂rα

= −Da
cαI

cdpapd −DβαcI
capaṙ

β − Ba
αβpaṙ

β −Kαβγ ṙ
β ṙγ .

Keeping only the linear terms, we obtain

gαβ(r0)r̈
β +

∂2V

∂rα∂rβ
(r0)u

β +
1

2

∂2Iab

∂rα∂rβ
(r0)p

0
ap

0
b u

β +
∂Iab

∂rα
(r0)p

0
a wb

= −Da
cαI

cd(r0)p
0
a wd −Da

cαI
cd(r0)p

0
d wa − ∂Da

cαI
cd

∂rβ
(r0)p

0
ap

0
d u

β

−DβαcI
ca(r0)p

0
a v

β − Ba
αβ(r0)p

0
a v

β .

Next, introduce matrices A, B, C, and D by

Aαβ = − (DβαcI
ca(r0)p

0
a + Ba

αβ(r0)p
0
a

)
,

Bαβ = −
(

∂2V

∂rα∂rβ
(r0) +

1

2

∂2Iab

∂rα∂rβ
(r0)p

0
ap

0
b +

∂Da
cαI

cb

∂rβ
(r0)p

0
ap

0
b

)
,

(8.5.1)

Ca
α = −

(
∂Iab

∂rα
(r0)p

0
b +Db

cαI
ca(r0)p

0
b +Da

cαI
cb(r0)p

0
b

)
, (8.5.2)

Daα = Dc
aα(r0)p

0
c . (8.5.3)
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Using this notation and making a choice of rα such that gαβ(r0) = δαβ , we
can represent the equation of motion in the form

u̇α = vα, (8.5.4)

v̇α = Aα
βv

β + Bα
βu

β + Cαawa + Vα(u, v, w), (8.5.5)

ẇa = Daαv
α +Wa(u, v, w), (8.5.6)

where V and W stand for nonlinear terms, and where

Aα
β = δαγAγβ ,

Bα
β = δαγBγβ ,

Cαa = δαγCa
γ .

(If gαβ(r0) �= δαβ , then here Aα
β = gαγAγβ , Bα

β = gαγBγβ , Cαa = gαγCa
γ .)

Note that

Wa =
(Dc

aα(p
0
c + wc)−Daα

)
vα +Dαβav

αvβ . (8.5.7)

The next step is to eliminate the linear terms from (8.5.6). Putting

wa = Daαu
α + za,

(8.5.6) becomes
ża = Za(u, v, z),

where Za(u, v, z) represents nonlinear terms. Formula (8.5.7) leads to

Za(u, v, z) = Zaα(u, v, z)v
α.

In particular, Za(u, 0, z) = 0. Equations (8.5.4), (8.5.5), (8.5.6) in the vari-
ables u, v, z become

u̇α = vα,

v̇α = Aα
βv

β + (Bα
β + CαaDaβ)u

β + Cαaza + Vα(u, v, za +Daαu
α),

ża = Za(u, v, w).

Application of the Lyapunov–Malkin Theorem. Using Lemma
2.4.6, we find a substitution xα = uα + φα(z), yα = vα such that in the
variables x, y, z we obtain

ẋα = yα +Xα(x, y, z),

ẏα = Aα
βy

β + (Bα
β + CαaDaβ)x

β + Y α(x, y, z), (8.5.8)

ża = Za(x, y, z),

where the nonlinear terms X(x, y, z), Y (x, y, z, ), Z(x, y, z) vanish if x = 0
and y = 0. Therefore, we can apply the Lyapunov–Malkin theorem and
obtain the following result:
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8.5.1 Theorem. The equilibrium x = 0, y = 0, z = 0 of the system (8.5.8)
is stable with respect to x, y, z and asymptotically stable with respect to x,
y if all eigenvalues of the matrix

(
0 I

B + CD A
)

(8.5.9)

have negative real parts.

8.5.2 Example (The Rattleback). Here we outline the stability theory
of the rattleback to illustrate the results discussed above. The details may
be found in Karapetyan [1980, 1981], Markeev [1992], and Zenkov, Bloch,
and Marsden [1998].

Recall from Section 1.12 that the Lagrangian and the constraints are

L =
1

2

[
A cos2 ψ +B sin2 ψ +m(γ1 cos θ − ζ sin θ)2

]
θ̇2

+
1

2

[
(A sin2 ψ +B cos2 ψ) sin2 θ + C cos2 θ

]
φ̇2

+
1

2

(
C +mγ2

2 sin
2 θ
)
ψ̇2 +

1

2
m
(
ẋ2 + ẏ2

)
+m(γ1 cos θ − ζ sin θ)γ2 sin θ θ̇ψ̇ + (A−B) sin θ sinψ cosψ θ̇φ̇

+ C cos θ φ̇ψ̇ +mg(γ1 sin θ + ζ cos θ)

and

ẋ = α1θ̇ + α2ψ̇ + α3φ̇, ẏ = β1θ̇ + β2ψ̇ + β3φ̇,

where the terms were defined in Section 1.12.
Using the Lie algebra element corresponding to the generator

ξQ = α3∂x + β3∂y + ∂φ

we find the nonholonomic momentum to be

p = I(θ, ψ)φ̇+ [(A−B) sin θ sinψ cosψ −m(γ1 sin θ + ζ cos θ)γ2] θ̇

+
[
C cos θ +m(γ2

2 cos θ + γ1(γ1 cos θ − ζ sin θ))
]
ψ̇,

where

I(θ, ψ) = (A sin2 ψ +B cos2 ψ) sin2 θ + C cos2 θ

+m(γ2
2 + (γ1 cos θ − ζ sin θ)2).

The amended potential (see (5.7.20)) becomes

U =
p2

2I(θ, ψ)
−mg(γ1 sin θ + ζ cos θ).
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The relative equilibria of the rattleback are: θ = θ0, ψ = ψ0, p = p0, where
θ0, ψ0, p0 satisfy the conditions

mg(γ1 cos θ0 − ζ sin θ0)I
2(θ0, ψ0)

+
[
(A sin2 ψ0 +B cos2 ψ0 − C) sin θ0 cos θ0

−m(γ1 cos θ0 − ζ sin θ0)(γ1 sin θ0 + ζ cos θ0)
]
p20 = 0,

mgγ2I
2(θ0, ψ0) + [(A−B) sin θ0 sinψ0 cosψ0

− mγ2(γ1 sin θ0 + ζ cos θ0)
]
p20 = 0,

which follow from the equations ∇θU = 0, ∇ψU = 0.
In particular, consider the relative equilibria: θ = cπ/2, ψ = 0, p = p0,

which represent the rotations of the rattleback about the vertical axis of
inertia. For such relative equilibria ξ = ζ = 0, and therefore the conditions
for existence of relative equilibria are trivially satisfied with an arbitrary
value of p0. Omitting the computations of the linearized equations for the
rattleback (see Karapetyan [1980] and Zenkov, Bloch, and Marsden [1998]
for details), and the corresponding characteristic polynomial, we just state
here the Routh–Hurwitz conditions (see, e.g., Gantmacher [1959]) for all
eigenvalues to have negative real parts:(

R− P
p20
B2

)
p20
B2

− S > 0, S > 0, (8.5.10)

(A− C)(r2 − r1)p0 sinα cosα > 0. (8.5.11)

If these conditions are satisfied, then the relative equilibrium is stable, and
it is asymptotically stable with respect to θ, θ̇, ψ, ψ̇.

In the above formulas r1, r2 stand for the radii of curvature of the body
at the contact point, α is the angle between the horizontal inertia axis ξ
and the r1-curvature direction, and

P = (A+ma2)(C +ma2),

R =
[
(A+ C −B + 2ma2)2

− (A+ C −B + 2ma2)ma(r1 + r2) +m2a2r1r2
] p20
B2

−
[
(A−B)

p20
B2

+m(a− r1 sin
2 α− r2 cos

2 α)

(
g + a

p20
B2

)]
(A+ma2)

−
[
(C −B)

p20
B2

+m(a− r2 sin
2 α− r1 cos

2 α)

(
g + a

p20
B2

)]
(C +ma2),

S = (A−B)(C −B)
p40
B4

+m2(a− r1)(a− r2)

(
g +m

p20
B2

)2

+m
p20
B2

(
g + a

p2

B2

)[
A(a− r1 cos

2 α− r2 sin
2 α)

+ C (a− r1 sin
2 α− r2 cos2 α)−B(2a− r1 − r2)

]
.
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Conditions (8.5.10) impose restrictions on the mass distribution, the
magnitude of the angular velocity, and the shape of the rattleback only.
Condition (8.5.11) distinguishes the direction of rotation corresponding to
the stable relative equilibrium.
The rattleback is also capable of performing stationary rotations with its

center of mass moving at a constant rate along a circle. A similar argument
gives the stability conditions in this case. The details may be found in
Karapetyan [1981] and Markeev [1992]. �

8.6 Euler–Poincaré–Suslov Equations

An important special case of the reduced nonholonomic equations is the
case where there is no shape space at all and the configuration space is
Q = G, a Lie group. Again, the qualitative behavior of these systems is
very interesting, and in particular, the systems may or may not be measure-
preserving and can exhibit asymptotic stability with respect to some of the
variables, as we show in this section.

Formulation of the Equations. In this case the basic equations are
the Euler–Poincaré equations

d

dt
pb = Cc

abI
adpcpd = Cc

abpcω
a, (8.6.1)

where pa = Iabω
b, ω ∈ g, p ∈ g∗ to which we append the left-invariant

constraint

〈a, ω〉 = aiω
i = 0. (8.6.2)

Here a = aie
i ∈ g∗ and ω = ωiei where ei, i = 1, . . . , n is a basis for g

and ei its dual basis.
As mentioned above we will examine here the question of when such

equations exhibit asymptotic behavior. In this context it is key to consider
whether or not the equations of motion has an invariant measure. If there
is an invariant measure, there can be no contraction of the phase space
and hence no asymptotic stability. Unlike Hamiltonian equations of mo-
tion, nonholonomic systems need not preserve volume in the phase space,
since nonholonomic systems are not Poisson; See section 5.8. The existence
of an invariant measure is also key in understanding integrability; we do
not really consider this fascinating subject in this book, but see, for ex-
ample, Arnold, Kozlov, and Neishtadt [1988] and the references therein,
Koiller [1992], Fedorov and Kozlov [1995], Hermans [1995], Zenkov [1995],
Jovanović [1998], Bloch [2000], Zenkov and Bloch [2003], Schneider [2000],
Fernandez, Bloch and Zenkov [2014] and the references therein.
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Unconstrained Case. Following Kozlov [1988b] it is convenient to con-
sider the unconstrained case first. One considers the question of whether
the equations (8.6.1) have an absolutely continuous invariant measure fdnω
with summable density f . If f is a positive function of class C1, one calls
the invariant measure an integral invariant. A measure on a group G is
said to be left-invariant if

∫
G

f(gh)dω =

∫
G

f(h)dω

for every integrable function on the group and elements g, h ∈ G, and
similarly for the right-invariant case.
A group G whose Lie algebra has structure coefficients Ca

bc is said to
be unimodular if it has a bilaterally invariant measure. A criterion for
unimodularity is Cc

ac = 0 (using the Einstein summation convention). One
can show that any compact connected Lie group has a bi-invariant measure,
unique up to a constant factor. However, compactness is not a necessary
condition for the existence of a bi-invariant measure; for example, the Eu-
clidean group in the plane, SE(2), has such a measure. See, e.g., Sattinger
and Weaver [1986] for more details on this topic.

Kozlov proves the following theorem:

8.6.1 Theorem. The Euler–Poincaré equations have an integral invariant
if and only if the group G is unimodular.

Neither direction is hard to prove, but we content ourselves with proving
sufficiency here.

Proof of Sufficiency. We know (Liouville’s theorem) that a flow of a
vector differential equation ẋ = f(x) is volume-preserving if div f = 0.
In this case the divergence of the right-hand side of equation (8.6.1) is
Cc

acI
adpd (by the skew symmetry of Cc

ab in a, b). �

Necessity follows from Kozlov’s observation (Kozlov [1988b]) that a sys-
tem of differential equations with homogeneous right-hand side has an inte-
gral invariant if and only if its phase flow preserves the standard measure.

Constrained Case. Turning to the case where we have the constraint
(8.6.2) using the Lagrange multiplier approach discussed in Section 5.2 we
have the equations (Euler–Poincaré–Suslov)

d

dt
pb = Cc

abI
adpcpd + λab = Cc

abpcω
a + λab (8.6.3)

together with the constraint (8.6.2). This defines a system on the hyper-
plane defined by the constraints. One can then formulate a condition for the
existence of an invariant measure in the case where the group is compact
and we identify g∗ with g by the Killing form (see Section 2.8).
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8.6.2 Theorem (Kozlov [1988b]). The equations (8.6.3) have an invariant
measure if and only if the vector a is an eigenvector for the operator adI−1a,
i.e., if

[I−1a,a] = μa (8.6.4)

for μ ∈ R.

The proof follows from solving for the constraint and computing the di-
vergence of the right-hand side of the flow. A similar result can be obtained
in the noncompact case; see Jovanović [1998] and Zenkov and Bloch [2003].
One can also, of course, formulate the equations of motion in the presence
of several constraints.
In Zenkov and Bloch [2003] measure preservation for general nonholo-

nomic systems where one has internal degrees of freedom as well as group
variables is discussed.

8.6.3 Example (Euler–Poincaré–Suslov Problem on SO(3)). In this
case the problem can be formulated as the standard Euler equations

Iω̇ = Iω × ω, (8.6.5)

where ω = (ω1, ω2, ω3) is the system angular velocity in a frame where the
inertia matrix is of the form I = diag(I1, I2, I3) and the system is subject
to the constraint

a · ω = 0, (8.6.6)

where a = (a1, a2, a3).
The nonholonomic equations of motion are then given by

Iω̇ = Iω × ω + λa (8.6.7)

subject to the constraint (8.6.6). We can easily solve for λ:

λ = −I−1a · (Iω × ω)

I−1a · a . (8.6.8)

If a2 = a3 = 0 (a constraint that is an eigenstate of the moment of
inertia operator), one gets evolution with constant angular velocity. This is
the only situation when the classical Suslov problem is measure preserving.

�
The Generalized Suslov problem. The SO(n) generalization is also
interesting and is known as the Suslov problem (see Fedorov and Kozlov
[1995].) This system may also exhibit asymptotic stability. We only give
somewhat brief comments here. (A different, nonasymptotic form is ana-
lyzed in Zenkov and Bloch [2000, 2001].)

The equations of motion are those of an n-dimensional rigid body (see
equations (1.10.2)) with skew-symmetric angular velocity matrix Ω with
entries Ωij and symmetric moment of inertia matrix I = Iij . One then
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introduces the constraints Ωij = 0, i, j ≥ 2. The resulting nonholonomic
equations of motion are

(I11 + I22) Ω̇12 = I12
(
Ω2

13 +Ω2
14 + · · ·+Ω2

1n

)
− (I13Ω13 + I14Ω14 + · · ·+ I1nΩ1n) Ω12,

(I11 + I33) Ω̇13 = I13
(
Ω2

12 +Ω2
14 + · · ·+Ω2

1n

)
− (I12Ω12 + I14Ω14 + · · ·+ I1nΩ1n) Ω13,

· · ·
(I11 + Inn) Ω̇1n = I1n

(
Ω2

12 +Ω2
13 + · · ·+Ω2

1n−1

)
− (I12Ω12 + I13Ω13 + · · ·+ I1n−1Ω1n−1) Ω1n.

(8.6.9)

This system has the energy integral

H =
1

2

(
(I11 + I22)Ω

2
12 + (I11 + I33)Ω

2
13 + · · ·+ (I11 + Inn)Ω

2
nn

)
.

(8.6.10)

Defining the momenta M1j = (I11 + Ijj)Ω1j by the Legendre transform,

we can write the system as one of almost Poisson form Ṁ = J(M)∇H(M),
where the almost Poisson matrix (in the angular velocity variables) is

J(Ω) =

⎡
⎢⎢⎣

0 I13Ω12 − I12Ω13 · · · I1nΩ12 − I12Ω1n

I12Ω13 − I13Ω12 0 · · · I1nΩ13 − I13Ω1n

· · · · · · · · · · · ·
I12Ω1n − I1nΩ12 · · · · · · 0

⎤
⎥⎥⎦ .

(8.6.11)

Further, the system exhibits asymptotic behavior as indicated by the fact
that the function

F = (I11+I22)I12Ω12+(I11+I33)I13Ω13+ · · ·+(I11+Inn)I1nΩ1n (8.6.12)

satisfies

Ḟ =

n∑
i<j

(I1iΩ1j − I1jΩ1)
2 (8.6.13)

along the flow and is positive everywhere except at points of the line {Ω12 =
I12μ, . . . ,Ω1n = I1nμ}, μ ∈ R.
Thus motion occurs on the energy ellipsoid and is asymptotic to a point

on the line above intersecting the ellipsoid.

Asymptotic Dynamics, the Chaplygin Sleigh, and the Toda
Lattice. Here we discuss the Chaplygin sleigh and its relationship with
the Toda lattice flow (see Bloch [2000]).
Recall firstly the (reduced) Chaplygin sleigh equations from Section 1.7:

v̇ = aω2,

ω̇ = − ma

I +ma2
vω. (8.6.14)
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Normalizing, we have the equations

v̇ = ω2,

ω̇ = −vω. (8.6.15)

We now recall the Toda lattice equations defined in Section 1.13. In the
two-dimensional case the matrices in the Lax pair are simply

L =

(
b1 a1
a1 −b1

)
, B =

(
0 a1

−a1 0

)
,

and the equations of motion are given by

ḃ1 = 2a21,

ȧ1 = −2a1b1. (8.6.16)

As discussed in Section 1.13 these equations may be solved explicitly by
factorization. For the initial data b1 = 0, a1 = c, explicitly carrying out the
factorization yields the solution

b1(t) = −c
sinh 2ct

cosh 2ct
, a1(t) =

c

cosh 2ct
. (8.6.17)

Scaling time by a factor of two, we have the following immediate observa-
tion:

8.6.4 Proposition. The Chaplygin sleigh equations are precisely equiva-
lent to the two-dimensional Toda lattice equations except for the fact that
there is no sign restriction on the variable ω. Hence the system can be
written in Lax pair form and solved explicitly.

As described in Neimark and Fufaev [1972] the Chaplygin sleigh equa-
tions may be explicitly solved also as follows: We have

d

dt

(
ω̇

ω

)
= −v̇ = −ω2.

Multiplying the preceding equation by ω̇/ω and integrating, we obtain

(
ω̇

ω

)2

= c2 − ω2 (8.6.18)

for a suitable constant c. Define the angle ψ by setting ω = c cosψ. For
suitable choice of c, integration of equation (8.6.18) gives

ct =

∫ ψ

0

dθ

cos θ
=

1

2
ln
1 + sinψ

1− sinψ
, (8.6.19)

which can be inverted and solved to give precisely the same solution as
obtained by the factorization method of Toda.
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We now make some remarks on the asymptotic behavior of the Toda
lattice and the Chaplygin sleigh. For more details, see Bloch [2000]. As
mentioned earlier, the equations of the Toda lattice and the Chaplygin
sleigh are identical except for the sign restriction on the variable a1 (in
Toda). But this difference is crucial. Observe firstly that the Toda lattice
system has a set of equilibria defined by setting ai equal to zero in the
closure of its phase space. (In the two-dimensional case this set is a line,
as it is for the Chaplygin sleigh.) Further, the Toda matrix L tends to a
diagonal matrix with the eigenvalues of the matrix defining the initial data
ordered by magnitude on the diagonal.

How is it possible then that one can obtain asymptotic behavior in this
Hamiltonian system? Vital here is the fact that the system is integrable and
that one is evolving on a level set of the integrals: a Lagrange submanifold
of the phase space. By the Arnold–Liouville theorem for integrability (see,
e.g., Arnold [1989] and Abraham and Marsden [1978]), this submanifold
is diffeomorphic to a product of circles and lines. For aperiodic Toda it is
in fact diffeomorphic to a set of lines, and the flow on this set of lines is
a gradient flow. For the two-dimensional Toda the level set is b21 + a21 =
const; a1 > 0. Key also is the fact that the set defined by ai = 0 is reached
only asymptotically but is not actually in the phase space. Thus the system
is asymptotically stable only in a generalized sense.

On the other hand, for the Chaplygin sleigh one is allowing a1 (or ω in
the sleigh notation) to take any value in R. Hence the flow in the phase
plane can asymptotically approach the v-axis from either half-plane, but
cannot, of course, cross this axis; see the figure in Section 1.7. The flow is in
fact the union of two flows: the standard Toda lattice flow and the flow with
a1 < 0. The phase space of the Chaplygin sleigh is the compactification by
a line of the union of the phase spaces of two Toda lattice systems, one with
a1 > 0 and another with a1 < 0. Such “signed” Toda flows are of interest
in general; see Tomei [1984], Davis [1987], Bloch [2000], and the references
given therein.

We remark that the Suslov problem is an example of a class of systems
called LL systems—left-invariant systems with left-invariant constraints.
This is a useful class of systems to study—see, for example, Fedorov and
Zenkov [2005b]. This is in contrast to LR systems—left-invariant systems
with right-invariant constraints, see, for example, Fedorov and Jovanović
[2004]. This latter class includes systems such as the Chaplygin sphere,
a nonhomogeneous ball rolling on the plane; see, for example, Schneider
[2002].

Exercises

� 8.6-1. Show that SO(3) has a bi-invariant measure by testing the relevant
condition on the structure coefficients.



442 8. Stability and Structure of Nonholonomic Systems

� 8.6-2. Show that SE(2) has a bi-invariant measure.

� 8.6-3. Compute the linearized flow equations about the origin for the
Euler–Poincaré–Suslov equations on SO(3) and analyze the linear stability.

8.7 Invariant Measure in Systems
with Internal Degrees of Freedom

Here we extend the results of Kozlov [1988b] and Jovanović [1998] on the
existence of an invariant measure to nonholonomic systems with symmetry
and a nontrivial shape space. Both the Lagrangian and constraints are left-
invariant. One can think of these systems as the Euler–Poincaré–Suslov
systems with internal degrees of freedom. Throughout this section, by an
invariant measure we understand an integral invariant with smooth positive
density. To simplify the exposition, we consider below systems with a single
constraint. The results are valid for systems with multiple constraints as
well.
Existence of an invariant measure is important for Hamiltonization of

nonholonomic systems, a process of representing the dynamics of a non-
holonomic system by a Hamiltonian flow as a result of time reparametriza-
tion. This procedure apparently originated in Appell [1901] and was carried
out for two degree of freedom systems by Chaplygin [1911].

Measure-preserving in systems with a left-invariant Lagrangian and right-
invariant constraints on Lie groups are discussed in Veselov and Veselova
[1986, 1988] and Fedorov and Jovanović [2004].

Consider a nonholonomic system characterized by the reduced Lagran-
gian l(r, ṙ,Ω) and a constraint 〈a(r),Ω〉 = 0. The subspace of the Lie alge-
bra defined by the constraint at the configuration q is denoted here by gq.
The orientation of this subspace in g depends on the shape configuration of
the system, r. The dimension of gq however stays the same. As discussed in
Section 5.5, we choose a special moving frame in which gq is spanned by the
vectors e1(r), . . . , ek−1(r). The constraint in this basis reads Ωk = 0. In the
formulae below, summation over the repeated index k is not understood.
Recall that the horizontal part of the kinetic energy metric is gαβ(r).

8.7.1 Theorem. The system associated with the reduced Lagrangian
l(r, ṙ,Ω) and the constraint 〈a(r),Ω〉 = 0 has an integral invariant with
a C1 shape-dependent density M(r) if and only if

(i)

(
Ca

ba − Ck
ba

Ika

Ikk

)
− gαδDbαδ = 0,

(ii) the form
(
Db

bβ − gαδλkδBk
αβ

)
drβ is exact.
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Proof. Recall that the reduced equations of motion are (5.7.12) and
(5.7.13). Solving the shape equation (5.7.12) for r̈β , we obtain

r̈δ = gδα
(
1

2

∂gβγ
∂rα

− ∂gαβ
∂rα

)
ṙβ ṙγ − gαδ

(
1

2

∂Ibc
S

∂rα
− gαδDc

bαIbd
S

)
pcpd

− gαδ
∂U

∂rα
− gαδ

(
Bc
αβ − Ikc

Ikk
Bk
αβ +DbαβIbc

S

)
pcṙ

β − gαδKαβγ ṙ
β ṙγ .

These equations should be of course coupled with the momentum equation.
According to Liouville’s theorem, the equation for the density M of

an integral invariant of a dynamical system characterized by the vector
field F is

div(MF ) = 0. (8.7.1)

This equation always has a local solution in a neighborhood of a nonsingular
point of the field F . Thus, the existence of an invariant measure should be
studied globally, as equation (8.7.1) may fail to have solutions near singular
points and/or near periodic trajectories of the field F .
For a density that depends on the shape configuration variables only,

equation (8.7.1) becomes

∂M
∂rβ

ṙβ +Mgαδ
∂

∂ṙδ

[(
1

2

∂gβγ
∂rα

− ∂gαβ
∂rα

)
ṙβ ṙγ

−Kαβγ ṙ
β ṙγ −

(
Bc
αβ − Ikc

Ikk
Bk
αβ +DbαβIbc

S

)
pcṙ

β

]

+M ∂

∂pa

[(
Cc

ba − Ck
ba

Ikc

Ikk

)
Ibd
S pcpd +Dc

bαpcṙ
α

]
= 0.

The terms linear in p in this equation vanish if and only if condition (i) of
the theorem is satisfied. The equation for the density M of the invariant
measure therefore becomes

1

M
∂M
∂rβ

ṙβ =

(
gαδ

∂gαδ
∂rβ

+Db
bβ − gαδKαδβ − gαδKαβδ

)
ṙβ .

Using the explicit representation for Kαβγ , and noticing that

gαδ
∂gαδ
∂rβ

dṙβ = d ln det g

we rewrite this condition as

d lnM = d ln det g +
(Db

bβ − gαδλkδBk
αβ

)
drβ . (8.7.2)

We remark that the form d ln det g is the Lagrangian representation of the
phase volume form for the shape metric geodesic flow on the shape space.
Since the first term in the right-hand side of (8.7.2) is exact, the invariant
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measure with density depending on the shape configuration only exists if
and only if condition (ii) of the theorem is satisfied. If the shape space is
simply connected, this condition is equivalent to

d
[(Db

bβ − gαδλkδBk
αβ

)
drβ
]
= 0. (8.7.3)

�

8.7.2 Corollary. The density M is defined uniquely up to a constant
factor.

8.7.3 Corollary. A system that satisfies the conditions of Theorem 8.7.1
retains the invariant measure with the same density if an arbitrary sym-
metry-preserving potential is added to the Lagrangian.

Proof. Conditions (i) and (ii) of Theorem 8.7.1 do not impose restric-
tions on the potential. Adding a symmetry preserving potential to the
Lagrangian does not change the symmetry group and the kinetic energy
metric and therefore keeps (i) and (ii) satisfied. The density of the invariant
measure remains unchanged because equation (8.7.2) is not affected by the
change in the potential energy. �

We now discuss a few situations in which conditions (i) and (ii) of Theo-
rem 8.7.1 are satisfied. We start from condition (i). Taking into account the
formulae for Daαβ and λkβ , we conclude that (i) imposes a restriction on
the position of the constraint subspace in the Lie algebra g, as it is in the
case of systems with trivial shape space. This condition becomes especially
simple if gαβDaαβ vanishes, which is equivalent to the skew symmetry of
Daαβ with respect to α and β. The latter is equivalent to the absence of
the terms quadratic in ṙ in the momentum equation. Recall that generi-
cally the relative equilibria demonstrate asymptotic behavior if these terms
are present in the momentum equation (see Zenkov, Bloch, and Marsden
[1998] for details). If Daαβ are skew, condition (i) can be rewritten, in an
invariant form, as

K(r) ad∗
I−1(r)a(r) a(r) + T (r) = μ(r)a(r), μ : Q/G → R. (8.7.4)

In this equation, K(r) and T (r) are defined by the formulae

K(r) = 1/〈a(r), I−1(r)a(r)〉, 〈T (r), ξ〉 = tr(adξ),

and we do not assume a special choice of the body frame. Recall that this
special choice results in the constraint being represented by Ωk = 0 instead
of the general constraint equation 〈a(r),Ω〉 = 0. Formula (8.7.4) is just a
“shape dependent” analogue of the condition for existence of the density
of an integral invariant in Jovanović [1998].
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Assume now that the nonholonomic connection equals the mechani-
cal connection. Then λkβ = 0 and hence Daαβ vanish. Condition (i) of
Theorem 8.7.1 becomes

CA
bA + Ck

Ab

IkA

Ikk
= 0, (8.7.5)

which is of course equivalent to (8.7.4).
Condition (ii) now requires that the form

[
−
(
Ca

Ba − Ck
Ba

Ika

Ikk

)
AB

β + γa
aβ − γk

aβ

Ika

Ikk

]
drβ

is exact. Using (8.7.5), we rewrite the form in condition (ii) as
[
−
(
CA

kA − Ck
kA

IkA

Ikk

)
Ak

β + γA
Aβ − γk

Aβ

IkA

Ikk

]
drβ . (8.7.6)

Assume now that the group G is unimodular (we keep the requirement
λkβ = 0). Then, since CA

BA = 0, (8.7.5) is equivalent to Ck
ABI

kA = 0.
Using invariant notations, we can rewrite this condition as ad∗

I−1a a = 0.
Hence, (8.7.6) becomes

(
γA
Aβ − γk

Aβ

IkA

Ikk

)
drβ . (8.7.7)

The basis eA(r) of the Lie algebra g can be viewed as a transformation
of a certain shape-dependent basis eA:

eA(r) = RB
A(r)eB .

From the definition of γB
Aα we obtain:

∂eA(r)

∂rα
=

∂RB
A

∂rα
eB = γC

AαR
B
CeB ,

which implies

γC
Aα =

(
R−1∂αR

)C
A
.

If the matrix R(r) can be chosen to be orthogonal for each r, then R−1∂αR
is skew, and thus γA

Aα = 0. In this situation form (8.7.7) becomes

− γk
Aβ

IkA

Ikk
drβ . (8.7.8)

This differential form simplifies if, for example, the body frame eA(r)
was chosen orthogonal with respect to the kinetic energy metric. In this
case (8.7.8) becomes −γk

kβdr
β . The latter is closed if the vector ek(r) is in-

dependent of all shape variables but one. One can of course extend the list
of simple cases of when condition (ii) of Theorem 8.7.1 is satisfied. Below
we discuss and illustrate two important cases.
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Systems with One-Dimensional Shape Space. Assume that con-
dition (i) of Theorem 8.7.1 is satisfied. In this case the equation for the
density of the invariant measure becomes

d lnM = d ln g +Db
bdr. (8.7.9)

The solution of this equation is globally defined if the shape space is either
noncompact (and thus diffeomorphic to R), or compact and the average of
the function Db

b equals zero.

Systems with Conserved Momentum. If the nonholonomic momen-
tum is a constant of motion, then condition (i) of Theorem 8.7.1 is trivially
satisfied. Moreover, condition (ii) now asks that the form

gαδλkδBk
αβdr

β (8.7.10)

is exact. The system thus preserves the measure with the density

M = det g exp

(
−
∫

gαδλkδBk
αβ dr

β

)
.

The Routh Problem. This mechanical system consists of a uniform
sphere rolling without slipping on the inner surface of a vertically oriented
surface of revolution. Apparently Routh [1860] was the first to explore
this problem. He described the family of stationary periodic motions and
obtained a necessary condition for stability of these motions. Routh noticed
as well that integration of the equations of motion may be reduced to
integration of a system of two linear differential equations with variable
coefficients and considered a few cases when the equations of motion can
be solved by quadratures. Modern references that treat this system are
Hermans [1995] and Zenkov [1995].

This problem is SO(2)× SO(2)-invariant, where the first copy of SO(2)
represents rotations of the sphere about the axis of the surface of revolution
while the second copy of SO(2) represents rotations about the line through
the contact point of the surface and the sphere and the center of the sphere.
Let r be the latitude of this contact point, a be the radius of the sphere,

c(r) + a be the reciprocal of the curvature of the meridian of the surface,
and b(r) be the distance from the axis of the surface to the sphere’s center.
The shape metric is c2(r)ṙ2/2 while the momentum equations are

ṗ1 =
c(r) sin r

b(r)
p1ṙ − 2

7
p2ṙ, ṗ2 =

(
1− c(r) cos r

b(r)

)
p1ṙ.

See Zenkov [1995] for details and in particular for the choice of the Lie alge-
bra basis and a physical interpretation of the components of nonholonomic
momentum.
The shape space is one-dimensional, the symmetry group SO(2)× SO(2)

is commutative, and there are no terms proportional to ṙ2 in the momentum
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equations. The trace term in (8.7.9) equals c(r) sin r/b(r), and thus the
density of the invariant measure for the Routh problem is

M = c2(r) exp

(∫
c(r) sin r

b(r)
dr

)
. (8.7.11)

The group action in this problem is singular: the intersection points of
the surface of revolution and its axis have nontrivial isotropy subgroups.
The shape coordinate r equals ±π/2 at these points. As a result,

lim
r→−π/2

M(r) = lim
r→π/2

M(r) = ∞.

The Falling Disk. Consider a homogeneous disk rolling without sliding
on a horizontal plane. This mechanical system is SO(2)× SE(2)-invariant;
the group SO(2) represents the rotational symmetry about the normal
through the center of the disk while the group SE(2) represents the Eu-
clidean symmetry of the system.
Classical references for the rolling disk are Vierkandt [1892], Korteweg

[1899], and Appel [1900]. In particular, Vierkandt showed that on the re-
duced spaceD/SE(2)—the constrained velocity phase space modulo the ac-
tion of the Euclidean group SE(2)—most orbits of the system are periodic.
The shape of the system is specified by a single coordinate—the tilt of

the disk denoted here by θ. The momentum equations are (8.3.7). Hence,
the trace terms Db

b in (8.7.9) vanish, and the density of the invariant mea-
sure equals the component of the shape metric g(θ). The latter equals the
moment of inertia of the disk with respect to the line through the rim of
the disk and parallel to its diameter. Since the density of the measure is de-
termined up to a constant factor, we conclude that the dynamics preserves
the reduced phase space volume.

The 3D Chaplygin Sleigh with an Oscillating Mass. The three-
dimensional Chaplygin sleigh is a free rigid body subject to the nonholo-
nomic constraint v3 = 0, where v3 is the third component of the (linear)
velocity relative to the body frame. The Lagrangian of this system is

1

2
M
[
(v1)2 + (v2)2 + (v3)2

]
+

1

2

[
I1(Ω

1)2 + I2(Ω
2)2 + I3(Ω

3)2
]
.

In this formula M is the mass of the body, Ij are the eigenvalues of its
inertia tensor, and (Ω1,Ω2,Ω3) and (v1, v2, v3) are the angular and linear
velocities relative to the body frame. The dynamics of this system is dis-
cussed in Neimark and Fufaev [1972]. Rand and Ramani [2000] point out
that constraints like this have been used to model fins on an underwater
missile.
We couple this system with an oscillator moving along the third coor-

dinate axis of the body frame. The mass of this oscillator is m and the
displacement from the origin is r. To keep the notation uniform with the
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general theory, we write the components of the linear velocity relative to
the body frame as (Ω4,Ω5,Ω6). The vector (Ω1,Ω2,Ω3,Ω4,Ω5,Ω6) should
be viewed as an element of the Lie algebra se(3). The Lagrangian of this
new system is

L =
1

2

[
I1(Ω

1)2 + I2(Ω
2)2 + I3(Ω

3)2
]
+

M

2

[
(Ω4)2 + (Ω5)2 + (Ω6)2

]

+
m

2

[
(Ω4 +Ω2r)2 + (Ω5 − Ω1r)2 + (Ω6 + ṙ)2

]− U(r). (8.7.12)

The configuration space is R × SE(3), and the system is invariant under
the left action of SE(3) on the second factor. We have not specified the
potential energy as its choice does not affect the existence of the invariant
measure (see Corollary 8.7.3). The shape space is just the first factor of
R×SE(3) and is one dimensional, and thus the above theory is applicable.
To show the existence of the invariant measure, we note the following:

1. The constrained Lagrangian does not contain terms that simultane-
ously depend on ṙ and pa. The constraint is Ω

6 = 0. Therefore, all the
coefficients of the nonholonomic connection as well as its curvature
form vanish. This implies that the terms Daαβ and Kαβγ vanish too.
The differential form from condition (ii) of Theorem 8.7.1 is therefore
trivial.

2. The moving frame is r-independent. Therefore all of the coefficients
γB
Aα are trivial. Condition (i) of Theorem 8.7.1 is satisfied since the

group SE(3) is unimodular and e6 is the eigenvector of the inertia
tensor.

3. The shape metric is r-independent.

Therefore, the system’s dynamics preserves the volume in the reduced phase
space.
This of course can be verified by a straightforward computation of the

divergence of the vector field that defines the equations of motion of the
system,

r̈ = −∂Ua

∂r
,

ṗ1 = −Ω2p3 +Ω3p2 − Ω5ṙ,

ṗ2 = −Ω3p1 +Ω1p3 +Ω4ṙ,

ṗ3 = −Ω1p2 +Ω2p1 − Ω4p5 +Ω5p4,

ṗ4 = Ω3p5 − Ω2ṙ,

ṗ5 = −Ω3p4 +Ω1ṙ.
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The Chaplygin Sphere. This system consists of a sphere rolling with-
out slipping on a horizontal plane. The center of mass of this sphere is
at the geometric center, but the principal moments of inertia are distinct.
Chaplygin [1903] proved integrability of this problem. Modern references
for the Chaplygin sphere include Kozlov [1985] and Schneider [2002].

One may view this system as a nonholonomic version of the Euler top.
The configuration space is diffeomorphic to SO(3) × R

2. We choose the
Euler angles (θ, φ, ψ) and the Cartesian coordinates (x, y) as the configura-
tion parameters of the Chaplygin sphere. The Lagrangian and constraints
written in these coordinates become

L =
I1
2
(θ̇ cosψ + φ̇ sinψ sin θ)2+

I2
2
(−θ̇ sinψ + φ̇ cosψ sin θ)2 +

I3
2
(ψ̇ + φ̇ cos θ)2 +

M

2
(ẋ2 + ẏ2)

and

ẋ− θ̇ sinφ+ ψ̇ cosφ sin θ = 0, ẏ + θ̇ cosφ+ ψ̇ sinφ sin θ = 0,

respectively.
This system is SE(2)-invariant. The action by the group element (α, a, b)

on the configuration space is given by

(θ, ψ, φ, x, y) �→ (θ, ψ, φ+ α, x cosα− y sinα+ a, x sinα+ y cosα+ b).

The shape space for the Chaplygin sphere is diffeomorphic to the two-
dimensional sphere. The nonholonomic momentum map has just one com-
ponent and is moreover preserved. Straightforward computations show that
the form (8.7.10) is exact. The conditions for measure existence are there-
fore satisfied. The density of the invariant measure is computed in overde-
termined coordinates in Chaplygin [1903] (see also Kozlov [1985]).

The invariant manifolds of the Chaplygin sphere are two-dimensional
tori. The phase flow on these tori is measure-preserving and thus there are
angle variables (x, y) on each torus in which the flow equations become

ẋ =
λ

M(x, y)
, ẏ =

μ

M(x, y)
.

See Kolmogorov [1953] and Kozlov [1985] for details. In general, these equa-
tions cannot be rewritten as

ẋ = λ, ẏ = μ.

The flow however becomes quasi-periodic after a time substitution dt =
M(x, y)dτ (Kozlov [1985]). This example thus shows that the flow on the
nonholonomic invariant tori can be more complicated than a Hamiltonian
flow.
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It follows from Corollary 8.7.3 that adding a symmetry-preserving poten-
tial to the Lagrangian of the Chaplygin sphere leaves the system measure-
preserving with the same measure density. This was pointed out in Kozlov
[1985] for a specific potential.

8.8 Chaplygin Sleigh with an Oscillator
and Integrability

Here we analyze the dynamics of the Chaplygin sleigh coupled to an os-
cillator. We show that the phase flow is integrable, and generic invariant
manifolds are two-dimensional tori.

The Lagrangian, Nonholonomic Connection, and Reduced
Dynamics. Consider the Chaplygin sleigh with a mass sliding along the
direction of the blade. The mass is coupled to the sleigh through a spring.
One end of the spring is attached to the sleigh at the contact point, the
other end is attached to the mass. The spring force is zero when the mass is
positioned above the contact point. See Figure 8.8.1 where the sliding mass
is represented by a bold dot and the blade is shown as a bold segment.

e2

e3

(x,y )

θ

ae2

x

y

Figure 8.8.1. The Chaplygin sleigh.

The configuration space for this system is R × SE(2). This system has
one shape (the distance from the mass to the contact point, r) and three
group degrees of freedom.
The reduced Lagrangian l : TR× se(2) → R is given by the formula

l(r, ṙ, ξ) =
1

2
mṙ2 +mṙξ2 +

1

2

(
(J +mr2)(ξ1)2

+ 2mrξ1ξ3 + (M +m)((ξ2)2 + (ξ3)2)
)− 1

2
kr2,
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where ξ = g−1ġ ∈ se(2) and k is the spring constant. The constrained
reduced Lagrangian is

lc(r, ṙ, ξ
1, ξ2) =

1

2
mṙ2 +mṙξ2

+
1

2

(
(J +mr2)(ξ1)2 + (M +m)(ξ2)2

)− 1

2
kr2.

The constrained reduced energy

1

2
mṙ2 +mṙξ2 +

1

2

(
(J +mr2)(ξ1)2 + (M +m)(ξ2)2

)
+

1

2
kr2

is positive-definite, and thus the mass cannot move infinitely far from the
sleigh throughout the motion.
The nonholonomic connection is

ξ +Aṙ,

where
A1 = 0, A2 =

m

M +m
, A3 = 0.

The constraint is given by the formula

Ω3 = 0.

The reduced Lagrangian written as a function of (r, ṙ,Ω) becomes

l(r, ṙ,Ω) =
1

2

Mm

M +m
ṙ2 +

1

2

(
(J +mr2)(Ω1)2

+ 2mrΩ1Ω3 + (M +m)((Ω2)2 + (Ω3)2
)
− 1

2
kr2.

The constrained reduced Lagrangian written as a function of (r, ṙ, p) is

lc(r, ṙ, p) =
1

2

Mmṙ2

M +m
+

1

2

(
p21

J +mr2
+

p22
M +m

)
− kr2

2
.

The reduced dynamics for the sleigh-mass system is computed to be

Mm

M +m
r̈ =

Mmr

(M +m)(J +mr2)2
p21 − kr,

ṗ1 = − mr

(M +m)(J +mr2)

(
p1p2 +mp1ṙ

)
, (8.8.1)

ṗ2 =
mr

(J +mr2)2
p21.

We now select a new frame in the Lie algebra se(2) in order to eliminate
the second term in equation (8.8.1). Put

e1 = ((J +mr2)−
m

2(M+m) , 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).
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The reduced Lagrangian written in this frame becomes

l(r, ṙ,Ω) =
1

2

Mm

M +m
ṙ2 +

1

2

(
(J +mr2)

M
M+m (Ω1)2

+ (M +m)((Ω2)2 + (Ω3)2) + 2mr(J +mr2)−
M

2(M+m)Ω1Ω3
)
− 1

2
kr2.

Using equations (5.7.6) and (5.7.7), the reduced dynamics becomes

Mm

M +m
r̈ =

Mmr

(M +m)(J +mr2)
M

M+m+1
p21 − kr, (8.8.2)

ṗ1 = − mr

(M +m)(J +mr2)
p1p2, (8.8.3)

ṗ2 =
mr

(J +mr2)
M

M+m+1
p21. (8.8.4)

Relative Equilibria of the Sleigh-Mass System. Assuming that
(r, p) = (r0, p0) is a relative equilibrium, equation (8.8.4) implies r0p

0
1 = 0.

Thus, either r0 = 0 and p01 is an arbitrary constant, or, using (8.8.2), p01 = 0
and r0 = 0. Thus, the only relative equilibria of the sleigh-mass system are

r = 0, p = p0.

The Discrete Symmetries and Integrability. It is straightforward to
see that equations (8.8.2)–(8.8.4) are invariant with respect to the following
transformations:

(i) (r, p1, p2) → (r,−p1, p2),

(ii) (r, p1, p2) → (−r, p1,−p2),

(iii) (t, r, p) → (−t,−r, p),

(iv) (t, r, p1, p2) → (−t, r, p1,−p2).

We now use these transformations to study some of the solutions of (8.8.2)–
(8.8.4). Consider an initial condition (r, ṙ, p) = (0, ṙ0, p0). Then the r-
component of the solution subject to this initial condition is odd, and the
p-component is even. Indeed, let

(r(t), p(t)), t > 0, (8.8.5)

be the part of this solution for t > 0. Then

(−r(−t), p(−t)), t < 0, (8.8.6)

is also a solution. This follows from the invariance of equations (8.8.2)–
(8.8.4) with respect to transformation (iii). Using the formula

dr(t)

dt

∣∣∣
t=0

=
d(−r(−t))

dt

∣∣∣
t=0

,
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we conclude that (8.8.5) and (8.8.6) satisfy the same initial condition and
thus represent the forward in time and the backward in time branches of a
the same solution. Thus, r(−t) = −r(t) and p(−t) = p(t).

Next, p1(t) = 0 implies that p2(t) = const and r(t) satisfies the equation

Mm

M +m
r̈ = −kr,

and thus equations (8.8.2)–(8.8.4) have periodic solutions

r(t) = A cosωt+B sinωt, p1 = 0, p2 = C,

where A, B, and C are arbitrary constants and ω =
√

k(M +m)/Mm.
Without loss of generality, we set A = 0 and consider periodic solutions

r(t) = ṙ0/ω sinωt, p1 = 0, p2 = p02, (8.8.7)

which correspond to the initial conditions

r(0) = 0, ṙ(0) = ṙ0, p1(0) = 0, p2(0) = p02.

We now perturb solutions (8.8.7) by setting

r(0) = 0, ṙ(0) = ṙ0, p1(0) = p01, p2(0) = p02. (8.8.8)

Assuming that p01 is small and using a continuity argument, there exists
τ = τp,ṙ0 > 0 such that

r(τp,ṙ0) = 0

for solutions subject to initial conditions (8.8.8). That is, the r-component
is 2τ -periodic if p01 is sufficiently small.
Using equation (8.8.2) and periodicity of r(t), we conclude that p1 is 2τ -

periodic as well. Equation (8.8.3) then implies that p2(t) is also 2τ -periodic.
Thus, the reduced dynamics is integrable in an open subset of the reduced
phase space. The invariant tori are one-dimensional, and the reduced flow
is periodic. A generic periodic trajectory in the direct product of the shape
and momentum spaces is shown in Figure 8.8.2.

Using the quasi-periodic reconstruction theorem (see Ashwin and Mel-
bourne [1997] and Field [1980]), we obtain the following theorem:

8.8.1 Theorem. Generic trajectories of the coupled sleigh-oscillator sys-
tem in the full phase space are quasi-periodic motions on two-dimensional
invariant tori.

Typical trajectories of the contact point of the sleigh with the plane are
shown in Figure 8.8.3. The symmetry observed in these trajectories follows
from the existence, for each group trajectory g(t), of a group element h
such that g(t + 2τ) ≡ hg(t), where 2τ is the period of the corresponding
reduced dynamics.
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r

p

p

2

1

Figure 8.8.2. A reduced trajectory of the sleigh-mass system.

Figure 8.8.3. Trajectories of the contact point of the blade for various initial
states.

8.9 Hamiltonization

Although nonholonomic mechanical systems are not variational and thus
their mechanics cannot be expressed in terms of canonical Hamilton equa-
tions, several authors (dating back at least as early as Chaplygin [1903,
1911] and Appel [1892]) have attempted to express the mechanics of non-
holonomic systems in Hamilton-like forms through several methods. Per-
haps the most well-known of these methods is Chaplygin’s reducibility
theorem, whose first part states that for nonholonomic systems in two
generalized coordinates (q1, q2) possessing an invariant measure with den-
sity N(q1, q2), the equations of motion can be written in Hamiltonian form
after the time reparameterization dτ = Ndt. This is often referred to as
the Hamiltonization of nonholonomic systems, although we shall refer to
it here as Chaplygin Hamiltonization instead,1 and N is known as the
reducing multiplier, or simply the multiplier. The second part of the

1We introduce this term because there are other ways of writing the reduced con-
strained mechanics of a nonholonomic system as a Hamiltonian system that do not
involve a time reparameterization, for example as was done in Bloch, Fernandez, and
Mestdag [2009] and Fernandez and Bloch [2008].
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theorem (see Fedorov and Jovanović [2006]) says that if a nonholonomic
system can be written in Hamiltonian form after the time reparameteriza-
tion dτ = f(q)dt, then the original system has an invariant measure with
density fm−1(q), where m is the number of degrees of freedom. The func-
tion f is again known as the reducing multiplier, or simply the multiplier.

Chaplygin’s original motivation for such a Hamiltonization of nonholo-
nomic systems seems to have been rooted in his interest in the explicit
integrability of nonholonomic systems. Indeed, Chaplygin [1911] applies
his method to integrate what would later become known as the Chaplygin
sleigh, and remarks that his general procedure (using the reducing multi-
plier) for integrating certain two degree of freedom nonholonomic systems
is “interesting from a theoretical standpoint as a direct extension of the Ja-
cobi method to simple nonholonomic systems.” Chaplygin further applied
his theorem to integrate other nonholonomic systems by quadrature in
Chaplygin [1950], as did Kharlamova [1957]. Thus, the reducing multiplier
method has historically been interesting and important from the standpoint
of the integrability of nonholonomic systems (for more historical notes on
the origin of the theorem, see Sumbatov [2002] and for a modern viewpoint
see Balseiro and Garcia-Naranjo [2012], Ehlers et al. [2005] and Fernandez,
Mestdag, and Bloch [2009]).
After the introduction of Chaplygin’s theorem, subsequent research has

resulted in, among other things, an extension to the quasivelocity context
(Neimark and Fufaev [1972]), a study of the geometry behind the the-
orem (Garćia-Naranjo [2010]), discoveries of isomorphisms between non-
holonomic systems through the use of the theorem, (Borisov and Ma-
maev [2007]), an example of an integrable system in higher dimensions
Hamiltonizable through a similar time reparameterization (Fedorov and Jo-
vanović [2004]), and an investigation of the necessary conditions for Hamil-
tonization for Abelian Chaplygin systems (Iliyev [1985]). In addition, the
survey paper Borisov and Mamaev [2008] presents, among other things,
many of the known examples to which Chaplygin’s theorem is applicable.
The paper Fernandez, Mestdag, and Bloch [2009] extends Hamiltonization
to various classes of multiple degree of freedom systems. For another view,
see Rojo and Bloch [2013].

Chaplygin’s Analysis. The simplest (Chaplygin [1950]) setting (see
also Borisov and Mamaev [2005]) is the Abelian Chaplygin setting when
the constraint functions Aa

α and the Lagrangian L are independent of s, in
which case the last term on the left-hand side of equation (5.2.7) vanishes
as do the last two terms of (5.2.8).

For the classical case of Chaplygin Hamiltonization we assume that there
are only two base variables r1 and r2 and that the Aa

α depend only on these
variables. The constraints take the form

ṡa = −Aa
1 ṙ

1 −Aa
2 ṙ

2, a = 1, . . . ,m. (8.9.1)
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In this case we can compute that the equations (5.2.7) become

d

dt

∂Lc

∂ṙ1
− ∂Lc

∂r1
= ṙ2S, (8.9.2)

d

dt

∂Lc

∂ṙ2
− ∂Lc

∂r2
= −ṙ1S, (8.9.3)

where

S = − ∂L

∂ṡb

(
∂Ab

1

∂r2
− ∂Ab

2

∂r1

)
. (8.9.4)

Our goal is to make these equations Lagrangian.
To this end change to the new time variable

dτ = N(q)dt.

Denote the derivative with respect to new time variable as primed, i.e.,
q̇i = N(q)q′i. Also, denote Lc with in terms of this time variable by Lc.
We have

∂Lc

∂ṙα
=

1

N

∂Lc

∂r′α
,

∂Lc

∂rα
=

∂Lc

∂rα
− 1

N

∂N

∂rα

2∑
α=1

r′α
Lc

∂r′α
.

Then a computation shows that the equations (8.9.2) and (8.9.3) become

d

dτ

∂Lc

∂r′1
− ∂Lc

∂r1
= r′2R,

d

dτ

∂Lc

∂r′2
− ∂Lc

∂r2
= −r′1R,

where

R = NS − 1

N

(
∂N

∂r2
∂Lc

∂r′1
− ∂N

∂r1
∂Lc

∂r′2

)
.

Therefore, if we can choose N such that R is zero, we have reduced the
equations to Lagrangian and hence Hamiltonian form. Further generaliza-
tion is possible—for example choosing R to a function of rα only rather
than being zero.

Chaplygin Hamiltonization for the Knife Edge. As a simple ex-
ample, consider a knife edge on the plane with constraint in the form
ẋ = ẏ tan θ. As above, the classical Chaplygin Hamiltonization (Chaplygin
[1950]) proceeds by introducing a time change of the form dτ = N(q)dt,
which makes the reduced dynamics Hamiltonian or Lagrangian. We can
show that N = cos θ satisfies the Hamiltonization condition so that the
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derivative with respect to τ of a variable q, which we will denote q′, is
related to that with respect to t by

q̇ = q′ cos θ.

Setting the potential equal to zero and mass equal to unity for conve-
nience, the constrained kinetic energy becomes

K =
1

2
(ẏ2 sec2 θ + θ̇2)

in the original time and

K =
1

2
(y′2 + θ′2 cos2 θ)

in the τ -time.
Thus, the Euler–Lagrange equations in the τ -time are

y′′ = 0,

θ′′ = (θ′)2 tan θ.

To confirm that these are the correct nonholonomic equations, replace the
τ -derivatives by the derivatives with respect to t:

ÿ = −ẏθ̇ tan θ,

θ̈ = 0,

which are the nonholonomic equations that one can supplement with the
constraint giving the dynamics in x. It is then possible to introduce any
potential function which depends on y and θ.

Chaplygin’s Reducing Multiplier in n dimensions. There are many
interesting generalizations of the Chaplygin work, as discussed and refer-
enced above. We restrict ourselves here to the following observation.
Consider the Lagrangian L(q, q̇) = 1

2gij(q)q̇iq̇j −U(q) on TQ with corre-
sponding Hamiltonian H(q, p) = 1

2g
ij(q)pipj+U(q). Following Fedorov and

Jovanović [2004], we write the equations of motion in Hamiltonian form:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
+Πi(q, p), i = 1, . . . , n. (8.9.5)

Set dτ = f(q)dt, where f(q) is differentiable and nonzero everywhere,
and let p̃i = f(q)pi. In these new variables the Lagrangian and Hamiltonian
read

L∗(q, q′) =
1

2

∑
f(q)2gij

dqi

dτ

dqj

dτ
− V (q),

H∗(q, p̃) =
1

2

∑ 1

f(q)2
gij p̃ip̃j + V (q).
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It is interesting that if one can Hamiltonize the system, it has a natu-
ral invariant measure. In dimension 2, the existence of a suitable invariant
measure implies Hamiltonizability—this is the Chaplygin’s reducibility the-
orem. More precisely we have the following result:

8.9.1 Theorem. Suppose the time substitution dτ = f(q)dt Hamiltonizes
the system (8.9.5), that is, the equations of motion in the τ -time become

dqi

dτ
=

∂H∗

∂p̃i
,

dp̃i
dτ

= −∂H∗

∂qi
.

Then the original system (8.9.5) has the invariant measure

f(q)k−1dq1 ∧ · · · ∧ dqk ∧ dp1 ∧ · · · ∧ dpk.

For k = 2 the reverse holds: existence of the above invariant measure im-
plies that the system is Hamiltonized in the τ -time.

For the proof see Fedorov and Jovanović [2004].

8.10 The Hamilton–Jacobi Equation

There has also been interest in extending the Hamilton–Jacobi equation
to the nonholonomic setting, see Iglesias-Ponte, de Leon, and Martin de
Diego [2008], Ohsawa and Bloch [2009], and Ohsawa, Fernandez, Bloch,
and Zenkov [2011].

Recall the conventional unconstrained theory (see, e.g., Abraham and
Marsden [1978]). Let Q be a configuration space, T ∗Q be its cotangent
bundle, and H be the Hamiltonian; then, the Hamilton–Jacobi equation
can be written as a single equation:

H

(
q,

∂W

∂q

)
= E

or
H ◦ dW (q) = E

for an unknown function W : Q → R.
In the nonholonomic setting we have, as in Ohsawa and Bloch [2009] (for

a somewhat different approach see the earlier work Iglesias-Ponte, de Leon,
and Martin de Diego [2008]):

8.10.1 Theorem (Nonholonomic Hamilton–Jacobi). Consider a nonholo-
nomic system defined on a connected differentiable manifold Q with a La-
grangian L(q, v) = 1

2g(v, v)−U(q), where g is a Riemannian metric on Q,
and a nonintegrable constraint distribution D ⊂ TQ. Let γ : Q → T ∗Q be
a one-form that satisfies

γ(q) ∈ Mq for any q ∈ Q,
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and

dγ|D×D = 0, i.e., dγ(v, w) = 0 for any v, w ∈ D.

Then the following are equivalent:

(i) For every curve c(t) in Q satisfying

ċ(t) = TπQ ·XH(γ ◦ c(t)),

the curve t �→ γ ◦ c(t) is an integral curve of Xnh
H , where XH is the

Hamiltonian vector field of the unconstrained system with the same
Hamiltonian, i.e., iXH

Ω = dH.

(ii) The one-form γ satisfies the nonholonomic Hamilton–Jacobi equa-
tion:

H ◦ γ = E,

where E is a constant.

In the case of the vertical disk, for example, the Hamiltonian is given by

H =
1

2

(
p2x + p2y

m
+

p2ϕ
J

+
p2ψ
I

)
.

In Ohsawa and Bloch [2009] it is shown that in various cases where the non-
holonomic Hamilton–Jacobi equation is separable it is possible to integrate
the system. An elementary example is the vertical disk.

8.11 Nonholonomic Systems as Limits

There is an interesting history behind the question of whether the Lag-
range–d’Alembert equations can be obtained by starting with an uncon-
strained system subject to appropriately chosen dissipative forces, and then
letting these forces go to infinity in an appropriate manner.
Nonholonomic constraints can be regarded in some sense as due to “in-

finite” friction. Several authors have asked if this can be quantified. Inter-
estingly this goes back at least to the work of Caratheodory who asked if
the limiting case of such friction could explain the motion of the Chaply-
gin sleigh. Caratheodory claimed this could not be done, but Fufaev [1964]
showed that this was indeed possible. The general case was considered by
Karapetyan [1983] and Kozlov [1983].

Kozlov [1992] showed also that variational nonholonomic equations (i.e.,
solutions of a constrained variational problem such as an optimal control
problem) can be obtained as the result of another limiting process. He
added a parameter-dependent “inertial term” to the Lagrangian of the
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constrained system, and then showed that the unconstrained equations
approach the variational equations as the parameter approaches infinity.
The key idea in the nonholonomic setting is to take a nonlinear Rayleigh

dissipation function of the form

F = −1

2
k

m∑
j=1

(
n∑

i=1

aji (q)q̇
i

)2

,

where
∑n

i=1 a
j
i (q)q̇

i = 0, i = 1, . . . ,m, are the constraints and k > 0
is a positive constant. Taking the limit as k goes to infinity and using
Tikhonov’s theorem yields the nonholonomic dynamics.
However, the system in this setting is still not Hamiltonian. The goal here

is to keep the system in the class of Hamiltonian systems by emulating the
dissipation by coupling to an external field. We shall consider this issue in
the next section.
Now consider again the Chaplygin sleigh which illustrates in very nice

fashion the approach to limiting friction. This mechanical system has three
configuration coordinates, two for the center of mass (xC , yC) and one
“internal” angular variable θ for the rotation with respect to the knife edge
located at (x, y) = (xC + a cos θ, yC + a sin θ). The system can rotate freely
around (x, y) but is only allowed to translate in the direction (cos θ, sin θ):
Choose the coordinates as q = (x, y, θ). There is a single constraint given by

ẋ sin θ − ẏ cos θ = 0,

or, a1 = (sin θ,− cos θ, 0).
The equations of motion can be obtained using the virtual force method

starting with the unconstrained Lagrangian

L0 =
m

2

[(
ẋ− aθ̇ sin θ

)2
+
(
ẏ + aθ̇ cos θ

)2]
+

I

2
θ̇2

and using a Lagrange multiplier in the equations of motion:

m
d

dt

(
ẋ− aθ̇ sin θ

)
= −λ sin θ,

m
d

dt

(
ẏ + aθ̇ cos θ

)
= λ cos θ,

(I +ma2)θ̈ +maθ̇(ẋ cos θ + ẏ sin θ) = 0.

Caratheodory and Fufaev added a viscous friction force of the from

R = −Nu
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to the sleigh equations, where u is the velocity in the direction perpen-
dicular to the blade. (Note that we interchange u and v compared to the
original paper of Fufaev.) Setting

k2 =
m

I +ma2
, ε =

I

Na2
,

the equations with dissipation become

u = εaω̇,

v̇ = aω2 + εaωω̇,

ak2ω̇ + vω = −εaω̈.

It is clear that, as ε goes to zero, one recovers the original equations.
Caratheodory incorrectly argued however that since no matter how small ε
is, these equations yield trajectories which differ from those of the original
system, and dissipation cannot yield the nonholonomic constraints.
Fufaev realized this is not correct since the system degenerates from a

system of three to two equations and thus there is a singularity. Setting
μ = εa and σ = ω̇, we get

ω̇ = σ,

v̇ = aω2 + μωσ,

μσ̇ = −ak2σ − vω.

Then as μ → 0, we get rapid motion except for the surface

ak2σ + μω = 0.

The slow motion of this surface onto the vω-plane then gives the correct
equations of motion.

8.12 Discrete Nonholonomic Systems

In this section we briefly discuss discrete nonholonomic systems. This area
currently undergoes an active development. Discrete nonholonomic systems
were introduced in Cortés and Mart́ınez [2001]. Some of the further devel-
opment includes Fedorov and Zenkov [2005a,b] and McLachlan and Perel-
mutter [2006] (systems on Lie groups), Kobilarov et al. [2010] (the use
of discrete Hamilton–Pontryagin principle), Iglesias et al. [2008] (groupoid
formalism), Lynch and Zenkov [2009] (structural stability), and Ball and
Zenkov [2015] (discrete Hamel’s formalism and structural stability). We will
mostly concentrate on the discrete systems on Lie groups, thus extending
some of the results of Moser and Veselov to the nonholonomic setting.
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We begin with the review of the construction of Cortés and Mart́ınez
[2001]. According to these authors, a discrete nonholonomic mechanical
system on a smooth n-dimensional manifold Q is specified by:

(i) a discrete Lagrangian Ld : Q×Q → R (see (3.18.1) for the definition
and details);

(ii) an (n−m)-dimensional distribution D on TQ;

(iii) a discrete constraint manifold Dd ⊂ Q × Q, which has the same
dimension as D and satisfies the condition (q, q) ∈ Dd for all q ∈ Q.

The discrete constraint manifold is usually specified by the discrete
constraint functions

Fj(qk, qk+1) = 0, j = 1, . . . ,m. (8.12.1)

The dynamics is given by the following discrete Lagrange–d’Alembert
principle :

N−1∑
k=0

(
D1L

d(qk, qk+1) +D2L
d(qk−1, qk)

)
· δqk = 0,

δqk ∈ Dqk , (qk, qk+1) ∈ Dd.

(8.12.2)

This principle is equivalent to the discrete Lagrange–d’Alembert
equations with multipliers

D1L
d(qk, qk+1) +D2L

d(qk−1, qk) =
m∑
j=1

λj
kA

j(qk), (8.12.3)

where Aj(q) are the constraint one-forms from (5.1.4). Here D1L
d and

D2L
d denote the partial derivatives of the discrete Lagrangian with respect

to the first and the second inputs.
The discrete Lagrange–d’Alembert principle, under a rather generic reg-

ularity condition, defines an update map (qk−1, qk) �→ (qk, qk+1), which is
a local diffeomorphism in a neighborhood of the diagonal of Q×Q.

Remark. Recall that, in the continuous-time setting, the dynamics of a
Lagrangian system with nonholonomic constraints may be reformulated as
the dynamics of an unconstrained system supplemented with the constraint
reaction force. However, as pointed out in Cortés and Mart́ınez [2001], the
discretizations of these two representations, as a rule, are not the same,
which makes the two versions (3.18.2) and (8.12.2) of the discrete Lagrange–
d’Alembert principle incompatible. Lynch and Zenkov [2009] proved that
the discrete dynamics defined by the Lagrange–d’Alembert principle of
Cortés and Mart́ınez may lack structural stability. For example, it is possi-
ble for the discretization of a continuous-time Chaplygin system to change
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the dimension and/or stability of manifolds of relative equilibria of the said
continuous-time system. A modified discrete Lagrange–d’Alembert princi-
ple suggested Ball and Zenkov [2015] addresses and resolves the aforemen-
tioned issues.

Now let the configuration space be the rotation group SO(n). Let L be
the Moser–Veselov Lagrangian and let the constraint distribution be left-
invariant under the standard left action of SO(n) on itself. That is, we
consider the discrete rigid body dynamics in the presence of left-invariant
constraints, which is the discrete Suslov problem .

Recall that the (continuous-time) Suslov problem is the rotating rigid
body subject to the constraint 〈a, ω〉 = 0, where ω is the body angular
velocity and a distinguishes the direction (relative to the body frame) of
its vanishing component. Thus, the angular velocity is forced to the sub-
space d = {ω | 〈a, ω〉 = 0}. There is one such constraint in the classical
three-dimensional setting. Multiple constraints may be introduced in the
generalized rigid body case.
The discrete constraint manifold for the Suslov problem is defined in

Fedorov and Zenkov [2005b] as

Dd = {(Qk, Qk+1) ∈ SO(n)× SO(n) | Q−1
k+1Qk ∈ S},

where
S = {Ω ∈ SO(n) | log Ω ∈ d} ⊂ SO(n), (8.12.4)

log Ω ∈ so(n) being the matrix logarithm. This definition is motivated by
the general procedure for the construction of discrete Lagrangians for sys-
tems on Lie groups of Marsden, Pekarsky, and Shkoller [1999]. See Fedorov
and Zenkov [2005b] for the details on the discrete Suslov constraint.
As discussed in Section 8.6, the dynamics of the continuous-time Suslov

problem is given by the Euler–Poincaré–Suslov equations (8.6.1).
Recall that in the absence of constraints the discrete dynamics is given by

equations (3.19.1)–(3.19.3). As pointed out earlier in the section, imposing
a constraint adds a Lagrange multiplier term to the equations, so that the
dynamics of the discrete Suslov problem becomes

Ωk = QT
kQk−1, (8.12.5)

Mk = ΩT
kΛ− ΛΩk, (8.12.6)

Mk+1 = ΩkMkΩ
T
k + λka, (8.12.7)

where Ωk ∈ SO(n) and Mk ∈ so∗(n) are the discrete analogues of an-
gular velocity and angular momentum. As shown in Fedorov and Zenkov
[2005b], these discrete Euler–Poincaré–Suslov equations are equivalent to
the discrete Lagrange–d’Alembert principle.
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In order to obtain a complete system, these equations are coupled with
the discrete constraint Ωk ∈ S. As pointed out in Fedorov and Zenkov
[2005a,b], the discrete dynamics is very sensitive to how the discrete con-
straint is introduced and may change dramatically depending on the discrete
constraint. For example, it is instructive to compare the continuous-time
momentum dynamics and its discrete counterpart in the general setting
when the direction of the vanishing angular velocity component is not an
eigendirection of the inertia tensor.
In the presence of a constraint, the angular momentum belongs to a

subspace of so∗(3) (in the continuous-time setting), and to a subvariety
of so∗(3) (in the discrete setting). These subspace and subvariety are the
images of the constrained subspace (resp., subvariety) under the Legendre
(discrete Legendre) transform. One can use the first two angular momentum
components, M1 and M2, as (local, in the discrete setting) coordinates on
this subspace (resp., subvariety). Respectively, the momentum dynamics
will be represented by the trajectories on the M1M2-plane.
As illustrated in Figures 8.12.1 and 8.12.2 for the continuous-time and

discrete dynamics, respectively, the momentum trajectories are either the
equilibria or the elliptic arcs that form the heteroclinic connections between
the pairs of asymptotically unstable (empty dots) and stable (filled dots)
equilibria. These elliptic arcs are in fact the reduced energy levels. While
the energy conservation is standard in the continuous-time mechanics, it
is not guaranteed in the discrete setting. One can relate the reduced en-
ergy preservation by the discrete dynamics to how the discrete constraints
are defined. For instance, a different definition of discrete constraints was
studied in McLachlan and Perelmutter [2006], resulting in a different type
of discrete dynamics. The definition (8.12.4) is preferable as it results in a
structurally stable discretization.

M1

M2

Figure 8.12.1. Momentum Dynamics for the Suslov problem: smooth.
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M1

M2

Figure 8.12.2. Momentum Dynamics for the Suslov problem: discrete.

For more details on the discrete Suslov problem and on some of the new
development in discrete nonholonomic dynamics, see Fedorov and Zenkov
[2005a,b], Lynch and Zenkov [2009], Kobilarov et al. [2010], Ball and Zenkov
[2015], and references therein.



9
Energy-Based Methods
for Stabilization of Controlled
Lagrangian Systems

In this final chapter we briefly discuss two recent energy-based methods for
stabilizing second-order nonlinear systems and their application to non-
holonomic systems. The first is the method of controlled Lagrangians (or
Hamiltonians) and “matching.” This is developing into a rather large sub-
ject, which we just touch on here in order to explain something of the role of
connections in the subject and its potential applications to nonholonomic
systems. The second is a geometric approach to averaging second-order
systems that arise as models of controlled superarticulated (or under-
actuated) mechanical (Lagrangian) systems. While not yet constituting a
complete theory, the results of this chapter may be thought of as intrin-
sically second-order versions of the results on kinematically nonholonomic
systems presented in Chapters 4 and 6. Needless to say, this chapter just
touches on the vast subject of energy-based stabilization.

9.1 Controlled Lagrangian Methods

The idea of designing control laws that minimize energy-like functions is
an old one, dating at least as far back as the work of Lyapunov (Lyapunov
[1992], Lyapunov [1907]). For mechanical systems, the approach is espe-
cially natural, with the designs being related to actual physical energies
(kinetic and potential). The main idea in the approach to control design
that we shall treat in the present chapter is to consider classes of control
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designs for Lagrangian (or Hamiltonian) systems with respect to which the
controlled system dynamics remains governed by a set of Euler–Lagrange
(respectively canonical) equations. Within this class of controls, energy
methods can be used to prescribe and analyze stable controlled motions.
While our treatment of controlled Lagrangian methods is intended to

be self-contained, a complete discussion is beyond the scope of the book,
and we refer to primary sources for many details. In particular, Bloch,
Leonard, and Marsden [1997, 2000] and Chang, Bloch, Leonard, Mars-
den, and Woolsey [2002] (and the references therein) treat feedback control
designs, while other recent work—on oscillation mediated control of La-
grangian and Hamiltonian systems (Baillieul [1993], Baillieul [1995], Weibel
[1997], Weibel and Baillieul [1998b], Baillieul [1998], Bullo [2001])—has in-
troduced a class of robust open-loop designs that can be discussed within
essentially the same framework. The aim of the present chapter is to pro-
vide a brief but systematic treatment of both approaches to the control of
Lagrangian and Hamiltonian systems. Further references to work of Ortega,
van der Schaft, and others in this area are given below.

The Setup for Control of Underactuated Lagrangian Systems. In
general we use the following setting for the analysis of controlled Lagrangian
systems (see Chang, Bloch, Leonard, Marsden, and Woolsey [2002]):

9.1.1 Definition. A controlled Lagrangian (CL) system is a triple
(L,F,W ) where the function L : TQ → R is the Lagrangian, the fiber-
preserving map F : TQ → T ∗Q is an external force, and W ⊂ T ∗Q is a
subbundle of T ∗Q, called the control bundle, representing the actuation
directions.

Sometimes, we will identify the subbundle W with the set of bundle
maps from TQ to W . The fact that W may be smaller than the whole
space corresponds to the system being underactuated. The equations of
motion of the system (L,F,W ) may be written as

EL(L)(q, q̇, q̈) = F (q, q̇) + u , (9.1.1)

with a control u selected from W . Here EL is the Euler–Lagrange operator
with coordinate form as in equations (9.1.2) and (9.1.3). When we choose
a specific control map u : TQ → W (so that u is a function of (qi, q̇i)),
then we call the triple (L,F, u) a closed-loop Lagrangian system. We
will typically be interested in such feedback controls in this discussion.
In the special case where W is integrable (that is, its annihilator W o ⊂
TQ is integrable in the usual Frobenius sense) and we choose coordinates
appropriately, then a CL system, that is, equations (9.1.1), can be locally
written in coordinates as
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d

dt

∂L

∂q̇i
− ∂L

∂qi
= Fi + ui, i = 1, . . . , k, (9.1.2)

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Fi, i = k + 1, . . . , n. (9.1.3)

Here the coordinates q1, . . . , qk are chosen so that dq1, . . . , dqk span W , so
W is k-dimensional in this case. The external forces can include gyroscopic
forces, friction forces, etc.
The principal aim of much of the current research on nonlinear control

methods is to understand (and prescribe control laws for) the dynamic re-
sponse of the q-variables in (9.1.3). While various approaches—each having
certain advantages—have been proposed, the present chapter is confined to
a class of powerful techniques developed within the framework of analytical
mechanics and closely related to the methods discussed in earlier chapters.
More specifically, we shall provide an exposition of recent methods that
might all be referred to as controlled Lagrangian methods. The unifying
idea is that control inputs are used to alter (and prescribe) the form of
the Lagrangian governing the behavior of the q-variables. Hence both the
design and analysis of control laws may be carried out using the power-
ful machinery of analytical mechanics. Equations (9.1.2)–(9.1.3) provide
mathematical descriptions of a wide and interesting class of controlled me-
chanical systems, examples of which will be studied in detail.

9.1.2 Example (Cart with Pendulum on an Inclined Plane). Con-
sider the free pendulum on a cart on an inclined plane. This is depicted in
Figure 9.1.1.

θ
ψ

M

m

gl

s

u l = pendulum length
m = pendulum bob mass
M = cart mass
g = acceleration due to gravity

Figure 9.1.1. The pendulum on a cart on an inclined plane.

Let s denote the position of the cart along the incline, and let θ denote
the angle of the pendulum with respect to the downward pointing vertical.
The configuration space for this system is Q = R

1 × S1, with the first
factor being the cart position s and the second factor being the pendulum
angle θ. We assume that s is directly controlled, while θ is controlled only
indirectly through dynamic interactions within the mechanism. Clearly,
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this can be cast in the form (9.1.2), (9.1.3), and this is done by first writing
the Lagrangian

L(s, θ; ṡ, θ̇) =
1

2
(αθ̇2 + 2β cos(θ − ψ)θ̇ṡ+ γṡ2) +D cos θ − γgs sinψ.

The constants are defined in terms of the physical parameters by

α = m�2, β = m�, γ = m+M, D = mg�.

The (controlled) equations of motion are the corresponding Euler–Lagrange
equations:

(
γ β cos(θ − ψ)

β cos(θ − ψ) α

)(
s̈

θ̈

)

+

(−β sin(θ − ψ)θ̇2 + γg sinψ
D sin θ

)
=

(
u
0

)
. (9.1.4)

�

In the remainder of the chapter the cart–pendulum example will serve
to illustrate a number of design methods. In the next two sections we
shall discuss feedback designs based on matching. The power of these
methods lies in the preservation of the Lagrangian structure of the closed-
loop dynamics. In Section 9.4 we shall discuss control designs in which
high-frequency oscillations of the inputs u and/or the configuration variable
r produce prescribed stable responses of q. The latter of these methods
may be viewed as a second-order analogue of the approach discussed in
Sections 4.3 and 4.4.

9.2 Feedback Design and Matching

An introduction to the use of structured feedback that preserves the La-
grangian or Hamiltonian form of physical models is provided by using the
energy–Casimir method to stabilize a rigid body with rotors (see Bloch,
Krishnaprasad, Marsden, and Alvarez [1992]). There has been much work
on rigid body stabilization using various techniques such as center manifold
theory (see, e.g., Aeyels [1985]). Here we simply consider the system as an
illustration of the energy–Casimir method.

9.2.1 Example (Rigid Body with a Rotor). Recall (see Section 1.9)
that this system consists of a rigid body with a rotor aligned along the
minor principal axis of the body. The Lagrangian for this system is

L =
1

2

(
λ1Ω

2
1 + λ2Ω

2
2 + I3Ω

2
3 + J3(Ω3 + α̇)2

)
, (9.2.1)
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where I1 > I2 > I3 are the rigid body moments of inertia, J1 = J2 and J3
are the rotor moments of inertia,

λi = Ii + Ji, Ω = (Ω1,Ω2,Ω3)

is the body angular velocity vector of the carrier, and α is the relative angle
of the rotor.
The body angular momenta are obtained by differentiating the Lagrangian

with respect to the corresponding angular velocities:

Π1 = λ1Ω1,

Π2 = λ2Ω2,

Π3 = λ3Ω3 + J3α̇,

l3 = J3(Ω3 + α̇).

Since the energy is entirely kinetic, the corresponding Hamiltonian is
given by substituting the preceding expressions for the momenta into (9.2.1):

H =
1

2

(
Π2

1

λ1
+

Π2
2

λ2
+

(Π3 − l3)
2

I3

)
+

l23
2J3

. (9.2.2)

One can approach the stabilization problem from either the Lagrangian
or Hamiltonian viewpoint. For the Lagrangian point of view and its gen-
eralization to Euler–Poincaré systems see, Bloch, Leonard, and Marsden
[2000]. Here we recall briefly the Hamiltonian picture from Bloch, Krish-
naprasad, Marsden, and Alvarez [1992].

If u = 0, then the system has an S1 symmetry corresponding to rotations
of the rotor, and correspondingly, l3 is a constant of motion. The reduced
system obtained by taking the quotient by this S1 symmetry is Hamilto-
nian, where the reduced Hamiltonian is obtained from (9.2.2) by simply
setting l3 equal to a constant:

Hl3 =
1

2

(
Π2

1

λ1
+

Π2
2

λ2
+

(Π3 − l3)
2

I3

)
+

l23
2J3

.

Choose the feedback control law

u = ka3Π1Π2,

where k is a gain parameter; then, the system retains the S1 symmetry and
Pk = l3 − kΠ3 is a new conserved quantity. The closed-loop equations are

Π̇1 = Π2

(
(1− k)Π3 − Pk

I3

)
− Π3Π2

λ2
,

Π̇2 = −Π1

(
(1− k)Π3 − Pk

I3

)
+

Π1Π3

λ1
,

Π̇3 = a3Π1Π2.
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These equations are Hamiltonian with

H =
1

2

(
Π2

1

λ1
+

Π2
2

λ2
+

((1− k)Π3 − Pk)
2

(1− k)I3

)
+

1

2

P 2
k

J3(1− k)
,

using the Lie–Poisson (rigid body) Poisson structure on so(3)∗.
Two special cases are of interest: k = 0, the uncontrolled case, and

k = J3/λ3, the driven case, where α̇ = constant.
Now consider the case P = 0 and the special equilibrium (0,M, 0). For

k > 1 − J3/λ2, the equilibrium (0,M, 0) is stable. This is proved by the
energy–Casimir method. We look at H + C, where C = ϕ(||Π||2). Pick ϕ
such that

δ(H + C)|(0,M,0) = 0.

Then one computes that δ2(H + C) is negative definite if k > 1 − J3/λ2

and ϕ′′(M2) < 0. �
Controlled Lagrangians and Matching. There has been a great deal
of work recently on so-called matching methods for nonlinear stabiliza-
tion; see Bloch, Leonard, and Marsden [1997], Bloch, Leonard, and Marsden
[1998], Bloch, Leonard, and Marsden [1999b], Bloch, Leonard, and Mars-
den [2000], Bloch, Chang, Leonard, and Marsden [2001], Hamberg [1999],
Auckly, Kapitanski, and White [2000], Ortega, Loria, Nicklasson and Sira-
Ramirez [1998], Ortega, van der Schaft, Mashcke and Escobar [1999], and
Chang, Bloch, Leonard, Marsden, and Woolsey [2002], to list a few of the
references. This generalizes the work done on the satellite with momentum
wheels discussed at the beginning of this section. Essentially, the idea is
to introduce a feedback into the control system such that the controlled
system is still variational with respect to a modified Lagrangian or Hamil-
tonian. The work of Bloch, Leonard, and Marsden had concentrated on
the Lagrangian side, and several of the other papers have focused on the
Hamiltonian side. Finally, Chang, Bloch, Leonard, Marsden, and Woolsey
[2002] showed that the two approaches are in fact equivalent.
The modified Lagrangian has several adjustable parameters, and modify-

ing them to correspond to the forced (controlled) system is called match-
ing. Having the systems in modified Lagrangian form enables one to use
energy methods for the analysis of stabilization. In addition, one sometimes
requires that symmetries be respected and hence momenta conserved, as
in the satellite with momentum wheels. Finally, one adds dissipation to ob-
tain asymptotic stability. We will not detail all this in this book but refer
to the reader to the website, the papers, and a forthcoming monograph.
Here we will just give a brief summary and an example of how this works
for the simple pendulum on a cart when one wants to respect symmetries.
We also describe a simple application to nonholonomic systems, which are
most relevant to the theme of this book. This application to nonholonomic
systems (a unicycle with rotor) is discussed in detail in Zenkov, Bloch, and
Marsden [2002b].
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Brief Summary of the Method

Here we describe the essence of the simplest case of the method as in
Bloch, Leonard, and Marsden [2000]. This illustrates an interesting use of
the theory of connections.

The Setting. Suppose our system has configuration space Q and that a
Lie group G acts freely and properly on Q. It is useful to keep in mind the
case in which Q = S×G with G acting only on the second factor by acting
on the left by group multiplication.
For example, for the inverted planar pendulum on a cart (which we

consider in detail below), we have Q = S1 × R with G = R, the group of
reals under addition (corresponding to translations of the cart), while for
a rigid spacecraft with a rotor we have Q = SO(3) × S1, where now the
group is G = S1, corresponding to rotations of the rotor.
Our goal will be to control the variables lying in the shape space Q/G (in

the case in whichQ = S×G, thenQ/G = S) using controls that act directly
on the variables lying in G. We assume that the Lagrangian is invariant
under the action of G on Q, where the action is on the factor G alone.
In many specific examples, such as those given below, the invariance is
equivalent to the Lagrangian being cyclic in the G-variables. Accordingly,
this produces a conservation law for the free system. Our construction
will preserve the invariance of the Lagrangian, thus providing us with a
controlled conservation law.
The essence of the modification of the Lagrangian involves changing the

metric tensor g(·, ·) that defines the kinetic energy of the system 1
2g(q̇, q̇).

Our method relies on a special decomposition of the tangent spaces to
the configuration manifold and a subsequent “controlled” modification of
this split. We can describe this as follows:

Horizontal and Vertical Spaces. The tangent space to Q can be split
into a sum of horizontal and vertical parts defined as follows: For each tan-
gent vector vq to Q at a point q ∈ Q, we can write a unique decomposition

vq = Hor vq +Ver vq (9.2.3)

such that the vertical part is tangent to the orbits of the G-action and
where the horizontal part is the metric orthogonal to the vertical space;
that is, it is uniquely defined by requiring the identity

g(vq, wq) = g(Hor vq,Horwq) + g(Ver vq,Verwq) (9.2.4)

where vq and wq are arbitrary tangent vectors to Q at the point q ∈ Q.
This choice of horizontal space coincides with that given by the mechan-
ical connection that we introduced in Section 3.12. We refer to Marsden
[1992] for further details regarding the mechanical connection. One can
think intuitively of this decomposition of vectors as a decomposition into
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a piece in the symmetry, or group direction (the vertical piece), and one
in the shape, or internal direction (the horizontal piece). In terms of the
coordinate description (9.1.2), (9.1.3), tangent vectors in the direction of
the controlled coordinates are vertical, while vectors in the direction of the
uncontrolled (shape) variables are horizontal.

The Controlled Lagrangian. For the kinetic energy of our controlled
Lagrangian, we use a modified version of the right-hand side of equation
(9.2.4). The potential energy remains unchanged. The modification consists
of three ingredients:

1. a different choice of horizontal space, denoted by Horτ ;

2. a change g → gσ of the metric acting on horizontal vectors; and

3. a change g → gρ of the metric acting on vertical vectors.

We now make the following definition:

9.2.2 Definition. Let τ be a Lie-algebra-valued horizontal one-form on Q,
that is, a one-form with values in the Lie algebra g of G that annihilates
vertical vectors. This means that for all vertical vectors v, the infinitesimal
generator [τ(v)]Q corresponding to τ(v) ∈ g is the zero vector field on Q.
The τ-horizontal space at q ∈ Q consists of tangent vectors to Q at q of
the form

Horτvq = Hor vq − [τ(v)]Q(q),

which also defines vq �→ Horτ (vq), the τ-horizontal projection. The
τ-vertical projection operator is defined by

Verτ (vq) := Ver(vq) + [τ(v)]Q(q).

Notice that from these definitions and (9.2.3), we have

vq = Horτ (vq) + Verτ (vq), (9.2.5)

just as we did with τ absent. In fact, this new horizontal subspace can be
regarded as defining a new connection, the τ-connection. The horizontal
space itself, which by abuse of notation we also write as just Hor or Horτ , of
course depends on τ also, but the vertical space does not: It is the tangent
to the group orbit. On the other hand, the projection map vq �→ Verτ (vq)
does depend on τ .

9.2.3 Definition. Given gσ, gρ and τ , we define the controlled La-
grangian to be the following Lagrangian, which has the form of a modified
kinetic energy minus the potential energy:

Lτ,σ,ρ(v) =
1

2
[gσ(Horτ vq,Horτ vq) + gρ(Verτ vq,Verτ vq)]− V (q), (9.2.6)

where V is the potential energy.
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The equations corresponding to this Lagrangian will be our closed-loop
equations. The new terms appearing in those equations corresponding to
the directly controlled variables are interpreted as control inputs. The mod-
ifications to the Lagrangian are chosen so that no new terms appear in the
equations corresponding to the variables that are not directly controlled.
We refer to this process as “matching.”
Another way of expressing what we are doing here is the following. A

principal connection on a bundle Q → Q/G may be thought of as a Lie-
algebra-valued one-form, and one can obtain a new connection by adding
to it a horizontal one-form τ . The new horizontal space described in the
preceding definition is exactly of this sort.

Special Controlled Lagrangians. Here we consider a special class of
controlled Lagrangians in which we take gρ = g. Further, in certain exam-
ples of interest, including the inverted pendulum on a cart, we not only
can choose gρ = g (i.e., there is no gρ modification needed), but we can
also choose the metric gσ to modify the original metric g only in the group
directions by a scalar factor σ. In this case, the controlled Lagrangian takes
the form

Lτ,σ(v) = L(v + [τ(v)]Q(q)) +
σ

2
g([τ(v)]Q, [τ(v)]Q). (9.2.7)

The Inverted Pendulum on a Cart

The system we consider is the inverted pendulum on a cart that we de-
scribed in Chapter 1. We remind the reader of the setup here:

The Lagrangian. Recall that we let s denote the position of the cart on
the s-axis and let θ denote the angle of the pendulum with the vertical, as
in Figure 9.1.1. In the notation depicted in Figure 9.1.1, ψ = 0.
The configuration space for this system is Q = S × G = S1 × R. For

notational convenience we rewrite the Lagrangian as

L(θ, s, θ̇, ṡ) =
1

2
(αθ̇2 + 2β cos θṡθ̇ + γṡ2) +D cos θ, (9.2.8)

where α = ml2, β = ml, γ = M + m, and D = mgl are constants. The
momentum conjugate to θ is

pθ =
∂L

∂θ̇
= αθ̇ + β (cos θ) ṡ,

and the momentum conjugate to s is

ps =
∂L

∂ṡ
= γṡ+ β (cos θ) θ̇.

The relative equilibrium defined by θ = π, θ̇ = 0, and ṡ = 0 is unstable,
since D > 0.
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The equations of motion for the pendulum–cart system with a control
force u acting on the cart (and no direct forces acting on the pendulum)
are, as we saw earlier,

d

dt

∂L

∂θ̇
− ∂L

∂θ
= 0,

d

dt

∂L

∂ṡ
= u,

that is,
d

dt
pθ + β sin θṡθ̇ +D sin θ = 0;

that is,
d

dt
(αθ̇ + β cos θṡ) + β sin θṡθ̇ +D sin θ = 0 (9.2.9)

and
d

dt
ps =

d

dt
(γṡ+ β cos θθ̇) = u.

The Controlled Lagrangian. Next, we form the controlled Lagrangian
by modifying only the kinetic energy of the free pendulum–cart system
according to the procedure given in the preceding section. This involves a
nontrivial choice of τ and gσ, but in this case, as we have remarked, it is
sufficient to let gρ = g.
The most general s-invariant horizontal one-form τ is given by τ =

k(θ)dθ, and we choose gσ to modify g in the group direction by a con-
stant scalar factor σ (in general, σ need not be a constant, but it is for the
present class of examples). Using (9.2.7), we let

Lτ,σ :=
1

2

(
αθ̇2 + 2β cos θ(ṡ+ kθ̇)θ̇ + γ(ṡ+ kθ̇)2

)
+

σ

2
γk2θ̇2 +D cos θ.

(9.2.10)
Notice that the variable s is still cyclic. Following the guidelines
of the theory, we look for the feedback control by looking at the change
in the conservation law. Associated with the new Lagrangian Lτ,σ, we
have the conservation law

d

dt

(
∂Lτ,σ

∂ṡ

)
=

d

dt
(β cos θθ̇ + γ(ṡ+ kθ̇)) = 0, (9.2.11)

which we can rewrite in terms of the conjugate momentum ps for the un-
controlled Lagrangian as

d

dt
ps = u := − d

dt
(γk(θ)θ̇). (9.2.12)

Thus, we identify the term on the right-hand side with the control force
exerted on the cart.
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Using the controlled Lagrangian and equation (9.2.11), the θ equation is
computed to be(

α− β2

γ
cos2 θ + σγk2(θ)

)
θ̈ +

(
β2

γ
cos θ sin θ + σγk(θ)k′(θ)

)
θ̇2

+D sin θ = 0. (9.2.13)

Matching. The next step is to make choices of k and σ so that equation
(9.2.13) using the controlled Lagrangian agrees with the θ equation for the
controlled cart (9.2.9) with the control law given by equation (9.2.12). The
θ equation for the controlled cart is(

α− β2

γ
cos2 θ − βk(θ) cos θ

)
θ̈ +

(
β2

γ
cos θ sin θ − β cos θk′(θ)

)
θ̇2

+ D sin θ = 0. (9.2.14)

Comparing equations (9.2.13) and (9.2.14) we see that we require (twice)

σγ[k(θ)]2 = −βk(θ) cos θ. (9.2.15)

Since σ was assumed to be a constant, we set

k(θ) = κ
β

γ
cos θ, (9.2.16)

where κ is a dimensionless constant (so σ = −1/κ).

The Control Law. Substituting for θ̈ and k in (9.2.12) we obtain the
desired nonlinear control law:

u =
κβ sin θ

(
αθ̇2 + cos θD

)

α− β2

γ (1 + κ) cos2 θ
. (9.2.17)

Stabilization. By examining either the energy or the linearization of
the closed-loop system, one can see that the equilibrium θ = θ̇ = ṡ = 0 is
stable if

κ >
αγ − β2

β2
=

M

m
> 0. (9.2.18)

In summary, we get a stabilizing feedback control law for the inverted pen-
dulum, provided that κ satisfies the inequality (9.2.18).
A simple calculation shows that the denominator of u is nonzero for θ

satisfying sin2 θ < E/F , where E = κ− (αγ − β2)/β2 (which is positive if
the stability condition holds) and F = κ+ 1. This range of θ tends to the
range −π/2 < θ < π/2 for large κ.
The above remark suggests that the region of stability (or attraction

when damping control is added) is the whole range of non-downward-
pointing states. In fact, we assert that this method produces large com-
putable domains of attraction for stabilization (see Chang, Bloch, Leonard,
Marsden, and Woolsey [2002]).
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This approach has advantages because it is done within the context of
mechanics; one can understand the stabilization in terms of the effective
creation of an inverted energy well by the feedback control. (Our feedback
in general creates a maximum for balance systems, since for these systems
the equilibrium is a maximum of the potential energy, which we do not
modify.)
There are numerous powerful extensions and generalizations of these

ideas discussed in the references mentioned. We have introduced just the
main ideas so that we can apply them to a class of nonholonomic systems.
We do this in the next section.

9.3 Stabilization of a Class of Nonholonomic
Systems

To illustrate matching in the nonholonomic context we consider a simple
setting where we can use the integrability of the momentum equation. This
section is based on Zenkov, Bloch, and Marsden [2002b], where more details
may be found.
We consider a class of systems that satisfy the following assumptions:

(A1) The controls act on a subset of the shape variables of the system.

(A2) The momentum equation is in the form of a parallel transport equa-
tion.

(A3) The connection in the parallel transport equation is flat.

(A4) The actuated variables in the Lagrangian are cyclic.

The (reduced constrained) Routhian (see Chapter 5) of the system is
taken to be

R(r, ṙ, p) =
1

2
gαβ(r)ṙ

αṙβ − U(r, p),

where the amended potential U(r, p) (see (5.7.20)) is defined by

U(r, p) =
1

2
Iab(r)papb + V (r),

where Iab(r) are the components of the inverse locked inertia tensor and
V (r) is the potential energy.

Now we divide the shape variables into unactuated and actuated vari-
ables rα

′
and rα

′′
, respectively, and let uα′′ be the control inputs. Defining

the operators ∇α by

∇α =
∂

∂rα
+Db

aαpb
∂

∂pa
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as in Chapter 8 and using Assumption A4 that the actuated variables rα
′′

are cyclic, we obtain reduced equations of the form

d

dt

∂R
∂ṙα′ = ∇α′R, (9.3.1)

d

dt

∂R
∂ṙα′′ = uα′′ , (9.3.2)

ṗa = Db
aα′pbṙ

α′
. (9.3.3)

Note that our definition of cyclic variables allows only noncyclic shape
velocities to be present in the momentum equation (9.3.3).

Elimination of the Momentum Variables. Since the momentum equa-
tion is in the form of a parallel transport equation, it defines a distribution

dpa = Dc
aα′pcdr

α′
. (9.3.4)

We assume now (Assumption A3) that the curvature of this distribution
vanishes (the distribution is flat). This defines the global invariant mani-
folds Qc of (9.3.1)–(9.3.3),

pa = Pa(r
α′
, cb), cb = const. (9.3.5)

Each of these invariant manifolds is diffeomorphic to the tangent bundle
T (Q/G) of the original system’s shape space. The dynamics on these in-
variant manifolds are governed by the equations

d

dt

∂Lc

∂ṙα′ =
∂Lc

∂rα′ ,
d

dt

∂Lc

∂ṙα′′ = uα′′ , (9.3.6)

where
Lc(r

α′
, ṙα) = R(rα

′
, ṙα,Pa(r

α′
, cb)).

We thus obtain a family of underactuated controlled Lagrangian systems
on Q/G depending on the vector parameter c. The Lagrangians Lc of these
systems are represented by the formula

Lc =
1

2
gαβ ṙ

αṙβ − U(rα
′
,P(rα

′
, c)). (9.3.7)

This is in a form where we can apply directly the kinetic energy shaping
discussed above. Note the independence of the kinetic energy from the
vector parameter c. Hence kinetic energy shaping can be accomplished
for the whole family of Lagrangians Lc at once. In particular, if kinetic
shaping is sufficient for stabilization, the control law obtained this way is
represented by the same formula for all of the systems in (9.3.6).

9.3.1 Example (Stabilization of the Unicycle with Rotor). We now
apply the theory developed above to the problem of stabilization of the
slow vertical steady-state motions of the unicycle with rotor.
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The dynamical model of a homogeneous disk on a horizontal plane with
a rotor was discussed briefly in Chapter 1. The rotor is free to rotate in the
plane orthogonal to the disk. The rod connecting the centers of the disk
and rotor keeps the direction of the radius of the disk through the contact
point with the plane.
The configuration space for this system is

Q = S1 × S1 × S1 × SE(2),

which we parametrize with coordinates (θ, χ, ψ, φ, x, y). As in Figure 9.3.1,
θ is the tilt of the unicycle itself, and ψ and χ are the angular positions of
the wheel of the unicycle and the rotor, respectively. The variables (φ, x, y),
regarded as a point in SE(2), represent the angular orientation and position
of the point of contact of the wheel with the ground.

x
(x,y)

z

y

φ

ψ

q

x

Figure 9.3.1. The configuration variables for the unicycle with rotor.

This mechanical system is SO(2)×SE(2)-invariant; the group SO(2) rep-
resents the symmetry of the wheel, that is, the symmetry in the ψ variable,
while the group SE(2) represents the Euclidean symmetry of the overall
system. The action by the group element (α, β, a, b) on the configuration
space is given by

(θ, χ, ψ, φ, x, y) �→
(θ, χ, ψ + α, φ+ β, x cosβ − y sinβ + a, x sinβ + y cosβ + b).
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We will use the following notation:

M = the mass of the disk,

R = the radius of the disk,

A,B = the principal moments of inertia of the disk,

A,B = the principal moments of inertia of the rotor,

r = the rod length,

μ = the rotor mass.

Here A and A are moments of inertia about axes lying in the disks and
passing though the center, and B and B are moments of inertia about axes
through the center and perpendicular to the disks.
The Lagrangian is

L = Kd +Kr +
M

2
v2M +

μ

2
v2μ − V,

where

Kd =
1

2

[
A(θ̇2 + φ̇2 cos2 θ) +B(φ̇ sin θ + ψ̇)2

]
,

Kr =
1

2

[A(φ̇2 sin2 θ) + B(χ̇+ θ̇)2
]
,

v2M = (ẋ−Rφ̇ sin θ cosφ)2 + (ẏ −Rφ̇ sin θ sinφ)2

+ 2Rφ̇ cos θ(ẏ cosφ− ẋ sinφ) +R2θ̇2,

v2μ = (ẋ− (R+ r)φ̇ sin θ cosφ)2

+ (ẏ − (R+ r)φ̇ sin θ sinφ)2

+ 2(R+ r)φ̇ cos θ(ẏ cosφ− ẋ sinφ) + (R+ r)2θ̇2,

V = MgR cos θ + μg(R+ r) cos θ.

The constraints are given by

ẋ = −ψ̇R cosφ, ẏ = −ψ̇R sinφ.

Hence the reduced Lagrangian is

Lc =
1

2

(
αθ̇2 + 2βθ̇χ̇+ βχ̇2 + I11(θ)φ̇

2 + 2I12φ̇ψ̇ + I22ψ̇
2
)− V (θ),

where
α = A+MR2 + μ(R+ r)2 + B, β = B,

are the components of the shape metric, and

I11 = A cos2 θ +A+ (B +MR2 + μR(R+ r)) sin2 θ,

I12 = (B +MR2 + μR(R+ r)) sin θ,

I22 = B +MR2 + μR2,
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are the components of the locked inertia tensor. The components of the
nonholonomic momentum are

p1 =
∂Lc

∂φ̇
= I11φ̇+ I12ψ̇,

p2 =
∂Lc

∂ψ̇
= I12φ̇+ I22ψ̇.

For the unicycle with rotor, p1 is the vertical (i.e., orthogonal to the xy-
plane) component of the angular momentum of the system, while p2 is the
component of the disk’s angular momentum along the normal direction to
the disk.
The reduced dynamics of the unicycle is governed by equations (9.3.1)–

(9.3.3) with r1 = θ, r2 = χ, and the Routhian

R =
1

2

(
αθ̇2 + 2βθ̇χ̇+ βχ̇2 − Iab(θ)papb

)
− V (θ).

Here Iab are the components of the inverse inertia tensor.
The shape equations for (θ, χ) describe the motion of the rod and rotor

system, while the momentum equations for (p1, p2) model the (coupled)
wheel dynamics. The coefficients Db

aα in (9.3.3) for the unicycle with rotor
are computed to be

Da
11 = I2a(MR+ μ(R+ r))R cos θ,

Da
21 = −I1a(MR+ μ(R+ r))R cos θ.

The slow vertical steady-state motions of this system are represented by
the relative equilibria

θ = 0, χ̇ = 0, p1 = 0, p2 = p02.

This system satisfies all Assumption 1–4. In particular, momentum equa-
tions define an integrable distribution. The dynamics on the invariant man-
ifolds Qc are governed by the equations

d

dt

∂Lc

∂θ̇
=

∂Lc

∂θ
,

d

dt

∂Lc

∂χ̇
= uc, (9.3.8)

where

Lc =
1

2
(αθ̇2 + 2βθ̇χ̇+ βχ̇2)− Uc(θ),

and

Uc(θ) =
1

2
Iab(θ)Pa(θ, c),Pb(θ, c) + V (θ)

is the amended potential for the unicycle with rotor restricted to the in-
variant manifolds (9.3.5). Observe that this Lagrangian is now identical in
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form to that for the inverted pendulum on a cart discussed in Section 9.2.
We can now apply the method there directly, constructing controlled La-
grangians of the form

L̃c =
1

2
(αθ̇2 + 2βθ̇(χ̇+ kθ̇) + β(χ̇+ kθ̇)2) +

σ

2
(kθ̇)2 − Uc(θ),

where k and σ are constants.
Again consulting the pendulum on a cart analysis, see equation (9.2.18),

we can conclude stability of the relative equilibria θ = 0, p1 = 0, p2 = p02 us-
ing the nonholonomic energy–momentum method applied to the controlled
Routhian

R̃ =
1

2

(
αθ̇2 + 2βθ̇(ẋ+ kθ̇) + β(ẋ+ kθ̇)2

)
+

σ

2
(kθ̇)2 − 1

2
IabPaPb − V (θ),

if we choose a control parameter k satisfying

k >
α− β

β2
. �

9.4 Nonholonomic Stabilization
with Controls in the Symmetry
Direction

We discuss here stabilization of nonholonomic systems with symmetry. In
the simplest setting, the configuration space Q is the direct product S ×
G, where S is a smooth manifold and G is the symmetry group.1 The
Lagrangian and the constraints are invariant with respect to the action of
G by left translations on the second factor of the decomposition of Q. If
the group G is Abelian, the group variables become cyclic. We assume here
that the Lagrangian L : Q → R equals kinetic minus potential energy of
the system, and that the kinetic energy is given by a quadratic form on the
configuration space.
In the presence of symmetry, we write the configuration coordinates as

q = (r, g), where r ∈ S is the shape variable and g ∈ G is the group variable.
The state coordinates are x = (r, g, ṙ,Ω), where Ω ∈ g is the constrained
group velocity relative to the so-called body frame.2 With these notations
the equations of motion may be written

r̈ = F (r, ṙ,Ω), (9.4.1)

Ω̇ = ṙTΛ(r)Ω + ΩTΓ(r)Ω + ṙTΥ(r)ṙ, (9.4.2)

ġ = gΩ. (9.4.3)

1In general, this direct product structure is observed only locally, while globally one

sees a (principal) fiber bundle.
2Here and below, g denotes the Lie algebra of the group G.
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Note that controls have not been introduced yet. Equations (9.4.1) and
(9.4.2) are called the shape andmomentum equations, respectively. Equation
(9.4.3) is called the reconstruction equation. Below, stability is understood
in the orbital sense, and thus one can study system (9.4.1) and (9.4.2).

Recall that relative equilibria are solutions of the full system (9.4.1)–
(9.4.3) such that the shape and momentum variables are kept constant. In
other words, after reduction relative equilibria of equations (9.4.1)–(9.4.3)
become equilibria of the reduced system (9.4.1) and (9.4.2). Stability of
these equilibria implies orbital stability of corresponding relative equilibria.
The energy momentum method is a stability analysis technique that uses

the restriction of energy on the momentum levels as a Lyapunov function.
The momentum is always conserved in holonomic systems with symmetry.
Unlike the holonomic case, the momentum equation in the nonholonomic

setting generically does not define conservation laws. Examples such as
the rattleback and Chaplygin sleigh are well known. Sometimes, however,
the components of momentum relative to an appropriately selected mov-
ing frame are conserved. This is observed in examples like the balanced
Chaplygin sleigh, where the angular momentum relative to the vertical line
through the contact point of the body and the supporting plane and the
projection of the linear momentum onto the blade direction are conserved.
We remark that this kind of momentum conservation is significantly dif-
ferent from that of in holonomic systems, in which, according to Noether’s
theorem, the spatial momentum is conserved.
In the special case Υ(r) ≡ 0, Γ(r) ≡ 0, the momentum equation can be

rewritten as
dΩ = drTΛ(r)Ω. (9.4.4)

9.4.1 Theorem (Zenkov [2003]). If the distribution (9.4.4) is integrable,
the system has conservation laws

Ω = F(r, c), (9.4.5)

where c are constants.

These conservation laws enable one to extend the energy-momentum
method for stability analysis to nonholonomic setting. Let E(r, ṙ,Ω) be
the energy of the system; since the system is G-invariant, the energy is
independent of the group variable g. The energy itself is often not positive-
definite at an equilibrium (re,Ωe) of the reduced system, and thus the
energy cannot be used as a Lyapunov function. If, however, the conditions
of theorem (9.4.1) are satisfied, we recall one can construct a family of
Lyapunov functions, one for each level (9.4.5).

9.4.2 Theorem. Assume that the energy restricted to the level of the con-
servation law (9.4.5) through the equilibrium (re,Ωe) of equations (9.4.1)
and (9.4.2) is positive-definite. Then this equilibrium is Lyapunov stable,
and the corresponding relative equilibrium is orbitally stable.
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Following Bloch [Marsden], we now apply the energy-momentum ap-
proach to the problem of stabilization of relative equilibria of nonholonomic
systems with symmetry. We assume that control inputs are G-invariant, are
applied in the symmetry directions, and are consistent with constraints.
Thus, the controlled dynamics are G-invariant and the corresponding re-
duced controlled dynamics are given by

r̈ = F (r, ṙ,Ω),

Ω̇ = ṙTΛ(r)Ω + ΩTΓ(r)Ω + ṙTΥ(r)ṙ + T (r)u,

where u are the controls. Our strategy is to assign feedback control in-
puts that have the same structure as the right-hand side of the momentum
equation. That is, the control inputs are given by homogeneous quadratic
polynomials in ṙ and Ω whose coefficients are functions of r. The controls
are selected in such a way that the controlled momentum equation satis-
fies the conditions of Theorem 9.4.1, and thus the controlled momentum
equation defines controlled conservation laws. We then utilize the remain-
ing freedom in the control selection and make the equilibria of the system’s
dynamics, reduced to the levels of the controlled conservation laws, stable.
In other words, the controls are used to shape the momentum levels in such
a way that the energy reduced to the level through the equilibrium of in-
terest becomes positive-definite, thus letting us use the energy-momentum
method to conclude stability.
The proposed strategy is only capable of nonasymptotic stabilization.

If partial asymptotic stabilization is desirable, one should add dissipation-
emulating terms to the control inputs. In this case stability is checked by the
energy-momentum method, although it may be necessary to use methods
for stability analysis for nonconservative systems such as the Lyapunov–
Malkin theorem.
To simplify the exposition, the details are given for systems with one

shape degree of freedom.
Consider a system with Lagrangian

L(r, ṙ,Ω) = K(r, ṙ,Ω)− U(r)

and assume that the momentum equation of the controlled system is

Ω̇ =
(
Λ(r) + Λ̃(r)

)
Ω ṙ.

According to our general strategy, the distribution defined by this equation,

dΩ =
(
Λ(r) + Λ̃(r))Ω dr,

is integrable and defines controlled conservation laws

Ω = Fc(r, c). (9.4.6)
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Dynamics on the levels of these conservation laws reads

r̈ = F (r, ṙ,Fc(r, c)). (9.4.7)

This defines a family of one degree of freedom Lagrangian (or Hamiltonian)
systems. The orbital stability analysis of relative equilibria of the original
system reduces to the stability analysis of equilibria of (9.4.7). This anal-
ysis is somewhat simpler to carry out if the Euler–Lagrange form of the
equations of motion is used instead of equation (9.4.7).

Skipping some technical details, the Euler–Lagrange form of the dynam-
ics on the levels of controlled conservation laws (9.4.6) is

d

dt

(
g(r)ṙ

)
+Q(Fc(r, c)) +

∂U

∂r
= 0, (9.4.8)

where Q(·) is a quadratic form. Therefore, the equilibrium (re,Ωe) is stable
if the following condition is satisfied:

d

dr

(
Q(Fc(r, ce)) +

∂U

∂r

) ∣∣∣∣
r=re

> 0, (9.4.9)

where ce is defined by the condition

Fc(re, ce) = Ωe.

This stability condition is obtained by using the energy of dynamics (9.4.8)
as a Lyapunov function, which is justified by the energy-momentum ap-
proach to stability analysis.
We illustrate the above techniques by the problem of stabilization of slow

motions of a falling rolling disk along a straight line.

Stabilization of a Falling Disk Consider a uniform disk rolling with-
out sliding on a horizontal plane. The disk can reach any configuration,
therefore the constraints imposed on the disk are nonholonomic. It is well
known that some of the steady state motions are the uniform motions of
the disk along a straight line. Such motions are unstable if the angular
velocity of the disk is small. Stability is observed if the angular velocity of
the disk exceeds a certain critical value, see Neimark and Fufaev [1972] for
details. Below we use a steering torque for stabilization of slow unstable
motions of the disk.
We assume that the disk has a unit mass and a unit radius. The moments

of inertia of the disk relative to its diameter and to the line orthogonal to
the disk and through its center are I and J , respectively. The configuration
coordinates for the disk are [θ, ψ, φ, x, y]T . Following Neimark and Fufaev
[1972], we select e1 to be the vector in the xy-plane and tangent to the rim
of the disk, e2 to be the vector from the contact point to the center of the
disk, and e3 to be e1 × e2.
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At each q ∈ Q, the fields e1, e2, and e3 span the subspace Dq defined
by the constraint distribution D, the fields e2 and e3 span the constrained
symmetry directions, and the dual of e2 is the control direction. The compo-
nent of disk’s angular velocity along e1 equals θ̇, the e2 and e3 components
are denoted by ξ and η.

Using this frame, equations of motion are computed to be

(I + 1)θ̈ + Iξ2 tan θ − (J + 1)ξη − g sin θ = 0, (9.4.10)

Iξ̇ − Iξθ̇ tan θ + Jηθ̇ = u, (9.4.11)

(J + 1)η̇ + ξθ̇ = 0, (9.4.12)

where u is the steering torque and g is the acceleration of gravity. In the
absence of the torque, the last two equations can be written as conservation
laws of the form

ξ = Fξ(θ, cξ, cη), η = Fη(θ, cξ, cη); (9.4.13)

here and below the parameters cξ and cη label the levels of these con-
servation laws. These conservation laws are obtained by integrating the
equations

I
dξ

dθ
= Iξ tan θ − Jη, (J + 1)

dη

dθ
= −ξ.

Now consider a steady state motion θ = 0, ξ = 0, η = ηe. This motion is
unstable if ηe is small. Set

u = −f(θ)ηθ̇, (9.4.14)

where f(θ) is a differentiable function. The motivation for the choice (9.4.14)
for u is that it preserves the structure of equations (9.4.11) and (9.4.12),
and thus the controlled system will have conservation laws whose structure
is similar to that of the uncontrolled system. Viewing θ as an independent
variable, we replace equations (9.4.11) and (9.4.12) with the linear system

I
dξ

dθ
= Iξ tan θ − (J + f(θ))η, (J + 1)

dη

dθ
= −ξ. (9.4.15)

The general solution of system (9.4.15),

ξ = Fc
ξ (θ, cξ, cη), η = Fc

η(θ, cξ, cη), (9.4.16)

is interpreted as the controlled conservation laws. The functions that define
these conservation laws are typically difficult or impossible to find explicitly.
Dynamics (9.4.8) on the level set of the conservation laws for the disk

becomes

(I + 1)θ̈ + I tan θ (Fc
ξ (θ, cξ, cη))

2

− (J + 1)Fc
ξ (θ, cξ, cη)Fc

η(θ, cξ, cη)− g sin θ = 0.
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The condition for stability of the relative equilibrium θ = 0, ξ = 0, η = ηe
is obtained using formula (9.4.9). Using (9.4.15), the stability condition
becomes

f(0) >
Ig

(J + 1)η2e
− J. (9.4.17)

That is, any function f(θ) whose value at θ = 0 satisfies inequality (9.4.17)
defines a stabilizing steering torque.
Let us reiterate that in the settings considered here the energy-momentum

method gives conditions for nonlinear Lyapunov (nonasymptotic) stability.
Hence stabilization by the torque (9.4.14) is nonlinear and nonasymptotic.
Partial asymptotic stabilization can be achieved by adding dissipation-
emulating terms to the control input.

9.5 Discrete Shaping

The theory of matching can be extended to the discrete setting. We illus-
trate here kinetic shaping for the simple cart pendulum model introduced
in Bloch et al. [2005].

We adopt the notations

qk+1/2 =
qk + qk+1

2
, Δqk = qk+1 − qk, qk = (φk, sk).

The second-order accurate discrete Lagrangian is defined by the formula

Ld(qk, qk+1) = hL(qk+1/2,Δqk/h).

Thus, for a system with one shape and one group degree of freedom the
discrete Lagrangian is given by the formula

Ld(qk, qk+1) =
h

2

[
α
(Δφk

h

)2

+ 2β(φk+ 1
2
)
Δφk

h

Δsk
h

+ γ
(Δsk

h

)2]
− hV (qk+ 1

2
). (9.5.1)

The discrete dynamics is governed by the equations

∂Ld(qk, qk+1)

∂φk
+

∂Ld(qk−1, qk)

∂φk
= 0, (9.5.2)

∂Ld(qk, qk+1)

∂sk
+

Ld(qk−1, qk)

∂sk
= −uk, (9.5.3)

where uk is the control input.
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Kinetic Shaping

At first, it will be assumed that the potential energy is G-invariant, i.e.,
V (q) = V (φ), and that relative equilibria φk = 0,Δsk = const of (9.5.2)
and (9.5.3) in the absence of control input are unstable. We will see that
one needs to either appropriately select the momentum levels or introduce
a new parameter into the controlled Lagrangian to complete the matching
procedure.
Motivated by the continuous-time matching procedure, we define the

discrete controlled Lagrangian by the formula

Ld
τ,σ(qk, qk+1) = hLτ,σ(qk+1/2,Δqk/h)

= h
[
L
(
φk+ 1

2
,Δφk/h,Δsk/h+ κβ(φk+ 1

2
)Δφk/h

)

+
σγ

2

(
κβ(φk+ 1

2
)Δφk/h

)2]
, (9.5.4)

where Lτ,σ(q, q̇) is the continuous-time controlled Lagrangian. The dynam-
ics associated with (9.5.4) is

∂Ld
τ,σ(qk, qk+1)

∂φk
+

∂Ld
τ,σ(qk−1, qk)

∂φk
= 0, (9.5.5)

∂Ld
τ,σ(qk, qk+1)

∂sk
+

∂Ld
τ,σ(qk−1, qk)

∂sk
= 0. (9.5.6)

Equation (9.5.6) is equivalent to the discrete controlled momentum conser-
vation:

pk = μ, (9.5.7)

where

pk = − ∂

∂sk
Ld
τ,σ(qk, qk+1) =

(1 + γκ)β(φk+1/2)Δφk + γΔsk

h
.

Setting

uk = −γΔφkτ(φk+1/2)− γΔφk−1τ(φk−1/2)

h
(9.5.8)

makes equations (9.5.3) and (9.5.6) identical and allows one to represent
the discrete momentum equation (9.5.3) as the discrete momentum conser-
vation law

pk = p. (9.5.9)

9.5.1 Theorem. The dynamics determined by equations (9.5.2), (9.5.3)
restricted to the momentum level pk = p is equivalent to the dynamics of
equations (9.5.5) and (9.5.6) restricted to the momentum level pk = μ if
and only if the matching conditions

σ = − 1

γκ
, μ =

p

1 + γκ
(9.5.10)

hold.
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Proof. Solve equations (9.5.7) and (9.5.9) for Δsk and substitute the
solutions in equations (9.5.2) and (9.5.5), respectively. This process is a
simple version of discrete reduction. A computation shows that the equa-
tions obtained this way are equivalent if and only if

h

[
μ− p+ γκμ

γ

∂

∂φk

(
β(φk+1/2)

Δφk

h
+ β(φk−1/2)

Δφk−1

h

)

+
κ+ γσκ2

2

∂

∂φk

(
β2(φk+1/2)

(Δφk

h

)2
+ β2(φk−1/2)

(Δφk−1

h

)2)]
= 0.

(9.5.11)

Since β(φ) �= 0 and Δφk �= 0 generically, equations (9.5.2) and (9.5.3) are
equivalent if and only if

μ− p+ γκμ = 0, κ+ γσκ2,

which is equivalent to (9.5.10). Note that the momentum levels p and μ are
not the same. �

Remark. As h → 0, formulae (9.5.8) and (9.5.11) become

u = − d

dt

(
γτ(φ)φ̇

)

and
−(κ+ γσκ2)(β2(φ)φ̈+ β(φ)β′(φ)φ̇2) = 0,

respectively. That is, as h → 0, one recovers the continuous-time control
input and the continuous-time matching condition, σ = −1/γκ. The con-
dition μ = p/(1 + γκ) becomes redundant after taking the limit, i.e., the
reduced dynamics can be matched on arbitrary momentum levels in the
continuous-time case, which agrees with observations made in Section 9.2.

We now discuss an alternative matching procedure. Define the discrete
controlled Lagrangian Λd

τ,σ,λ(qk, qk+1) by the formula

h
[
L
(
φk+ 1

2
,Δφk/h,Δsk/h+ κβ(φk+ 1

2
)Δφk/h

)

+
σγ

2

(
κβ(φk+ 1

2
)Δφk/h

)2
+ λκβ(φk+ 1

2
)Δφk/h

]
.

The discrete dynamics associated with this Lagrangian is

∂Λd
τ,σ,λ(qk, qk+1)

∂φk
+

∂Λd
τ,σ,λ(qk−1, qk)

∂φk
= 0, (9.5.12)

∂Λd
τ,σ(qk, qk+1)

∂sk
+

∂Λd
τ,σ(qk−1, qk)

∂sk
= 0. (9.5.13)
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The discrete controlled momentum is given by the formula

pk = − ∂

∂sk
Λd
τ,σ,λ(qk, qk+1) =

(1 + γκ)β(φk+1/2)Δφk + γΔsk

h

and equation (9.5.13) is equivalent to the discrete momentum conserva-
tion (9.5.9).

9.5.2 Theorem. The dynamics (9.5.2) and (9.5.3) restricted to the mo-
mentum level pk = p is equivalent to the dynamics (9.5.12) and (9.5.13)
restricted to the same momentum level if and only if the matching condi-
tions

σ = − 1

γκ
, λ = −p (9.5.14)

hold.

Proof. Similar to the proof of Theorem 9.5.1, solve equation (9.5.9) for
Δsk and substitute the solution in equations (9.5.2) and (9.5.12), respec-
tively. A computation shows that the equations obtained this way are equiv-
alent if and only if

h

[
(κp+ κλ)

∂

∂φk

(
β(φk+1/2)

Δφk

h
+ β(φk−1/2)

Δφk−1

h

)

+
κ+ γσκ2

2

∂

∂φk

(
β2(φk+1/2)

(Δφk

h

)2
+β2(φk−1/2)

(Δφk−1

h

)2)]
= 0,

which implies (9.5.14). Note that in this case we add an extra term to the
controlled Lagrangian which eliminates the need for adjusting the momen-
tum level. �

Remark. The ratio Λd
τ,σ,λ/h becomes Ld

τ,σ + λκβ(ϕ)ϕ̇ as h → 0. That
is, as we let the time step go to 0, we obtain the continuous-time con-
trolled Lagrangian modified by a term which is a derivative of the function
λκ
∫
β(φ) dφ with respect to time. It is well known that adding such a

derivative term to a Lagrangian does not change the dynamics associated
with this Lagrangian.

The stability properties of the relative equilibria φk = 0, sk = const of
equations (9.5.2) and (9.5.3) are now investigated.

9.5.3 Theorem. The relative equilibria φk =0, Δsk = const of equations
(9.5.2) and (9.5.3), with uk defined by (9.5.8), are spectrally stable if

κ >
αγ − β2(0)

β2(0) γ
. (9.5.15)
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Proof. Let V ′′(0) = −C, where C > 0. The linearization of the reduced
dynamics (9.5.2) and (9.5.3) at φ = 0 is computed to be

αγ − β2(0)− β2(0)γκ

γ

Δφk−1 −Δφk

h2
+

C

4
(φk−1 + 2φk + φk+1) = 0.

(9.5.16)
Observe that the value of p does not affect the linearized dynamics.
The linearized dynamics preserves the quadratic approximation of the

discrete energy

αγ − β2(0)− β2(0)γκ

2γ

(
Δφk

h

)2

− C

2
φ2
k+1/2. (9.5.17)

The equilibrium φk = 0 of (9.5.16) is stable if and only if the func-
tion (9.5.17) is negative-definite at φk = φk+1 = 0. The latter requirement
is equivalent to condition (9.5.15). �

Remark. The stability condition (9.5.15) is identical to the stability con-
dition of the continuous-time cart-pendulum system, and it can be rewrit-
ten as

− β2(0)

αγ − β2(0)
< σ < 0.

The spectrum of the linear map (φk−1, φk) �→ (φk, φk+1) defined by
(9.5.16) belongs to the unit circle. Spectral stability in this situation is
not sufficient to conclude nonlinear stability.
We now modify the control input (9.5.8) by adding the discrete dissipation-

emulating term

D(Δφk−1 +Δφk)

2h

in order to achieve the asymptotic stabilization of the upward position of
the pendulum. In the above, D is a positive constant. The discrete momen-
tum conservation law becomes

pk − Dφk+1/2

h
= p.

Straightforward calculation shows that the spectrum of the matrix of the
linear map (φk−1, φk) �→ (φk, φk+1) defined by the reduced discrete dynam-
ics belongs to the open unit disc. This implies that the equilibrium φ = 0
is asymptotically stable.
For recent development of the discrete matching technique, see Bloch

et al. [2010] and Peng et al. [2012].
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9.6 Averaging for Controlled Lagrangian
Systems

In the previous sections we examined the use of structured feedback to alter
the form of the Lagrangian in order to achieve certain control design objec-
tives. We now turn our attention, by contrast, to open-loop designs, which
may also be analyzed within the context of Lagrangian and Hamiltonian
systems.
Recall that in Chapter 4 we discussed an interesting and important fea-

ture of nonlinear control systems wherein an oscillatory input can be used
to generate a net velocity in a direction determined by taking Lie brackets
of the controlled vector fields. For controlled Lagrangian systems of the
form (9.1.2)–(9.1.3), we shall study the second-order analogue of this phe-
nomenon, where oscillatory inputs are used to create “synthetic force fields”
that organize the system dynamics in prescribed ways. While the theory
is currently less complete than in the first-order case, it has the advantage
that for a broad class of systems, the response to high-frequency forcing
may be understood in terms of a bifurcation and critical point analysis of
an energy-like function called the averaged potential. To emphasize the
distinction between controlled and uncontrolled configuration variable, we
adopt the notation r for the first k components q1, . . . , qk in (9.1.2)–(9.1.3)
and q for the uncontrolled components qk+1, . . . , qn.” (Properly referenced.)

9.6.1 Example (A Simple Example). To illustrate the second-order
theory, we consider the Mathieu equation

q̈(t) + (δ + εu(t))q(t) = 0, (9.6.1)

where the function u(·) is assumed to be periodically varying.
There are several ways to analyze this system as a controlled Lagrangian

system. For instance, if we write

L(q, q̇, ṙ) =
1

2
q̇2 + εqṙq̇ +

1

2
ṙ2 − δ2

2
q2,

the Euler–Lagrange equations specialize precisely to (9.6.1), provided we
replace the variable u(t) with r̈(t). For a physical interpretation, we refer
to the cart–pendulum system described by equation (9.1.4) in which we set
the coefficients α = γ = 1, β = ε/2, D = δ; ψ = π/2, s = r, θ = q, and
we linearize with respect to q about the equilibrium q = 0. The example
illustrates a general observation that it is frequently useful both in theory
and in working with actual physical systems to view r(·) rather than u(·)
as the control input. This will be discussed in greater detail below.
The qualitative behavior and stability of solutions to equation (9.6.1)

have been widely studied; see, for instance, Stoker [1950]. While the stabil-
ity of (9.6.1) has been most deeply examined in the specific case of periodic
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forcing u(t) = cos t, there is also interest in various other types of input
wave forms such as pulse-trains, square waves, sawtooth waves, etc., which
arise naturally in the context of modern small-scale electromechanical ac-
tuation technologies. For the square-wave input

u(t) =

{
−1, if 0 ≤ t < 1

2 ,

1, if 1
2 ≤ t < 1,

(9.6.2)

the regions in the (δ, ε) parameter space for which the origin (q, q̇) = (0, 0)
is a stable rest point for (9.6.1) are depicted in Figure 9.6.1. Qualitatively,
this picture is quite similar to the classical rendering of the stability regions
corresponding to the forcing u(t) = cos t. The boundary of the leftmost
stability region is approximately parabolic near the origin and satisfies
δ = −ε2/48 + o(ε2) (cf. Stoker [1950], pp. 208–213). �
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Figure 9.6.1. Stable and unstable parameter space regions for Mathieu’s equation with

square-wave forcing.

A General Strategy. This example illustrates an important point that
is discussed in detail below. In the general setting of (9.1.2)–(9.1.3), the
input u(·) influences the q-coordinate motions only through the dynamic
interactions with r(·), ṙ(·), and r̈(·), and it is thus possible to view the
entries in the triple (r, ṙ, r̈) as the control inputs (to (9.1.3)). This has
proven to be fruitful in recent work on oscillation-mediated control of La-
grangian systems. It is also a viewpoint that emerges naturally from the
intrinsic definition of second-order control systems discussed in the web
supplement.
In order to treat (r, ṙ, r̈) as the control input, it is assumed that there is

enough control authority so that an input u(·) can be designed to realize any
desired C2 trajectory r(·) via the dynamics (9.1.2). While this assumption
must be verified on a case-by-case basis, the theory discussed below predicts
that for a wide class of systems, high-frequency periodic motion in the
controlled variables r(·) induces stable localized motions in the uncontrolled
(“shape”) variables q(·).
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To enlarge the class of trajectories r(·), say, to include those for which
r̈(·) is piecewise constant (as in the above example), one has to construct
an appropriate approximation. The technical details are relatively unim-
portant, and it is straightforward to faithfully produce such trajectories for
actual physical systems in the laboratory.
Another important (but perhaps subtle) point about the Mathieu equa-

tion example is that it is the Lagrangian system itself (equations (9.6.1))
rather than the control input (9.6.2) to which we have applied a parametric
stability analysis. The primary aim of the present approach is to outline
design procedures that apply to families of (oscillatory) control signals that
are parametrized by physically important variables such as amplitude, fre-
quency, and rms covariance.
The stability analysis of such parametrized families of control proceeds

by making appropriate coordinate and time-scale changes that transform
the model (9.1.3) to a form that allows averaging and stability analysis
to be carried out. The design of control inputs is completed via a para-
metric analysis of the averaged Lagrangian system, and this is completely
analogous to the feedback design procedure described above in Section 9.2.
In the following subsections we describe the basic theory of oscillation-

mediated control of Lagrangian systems using two essentially different con-
trol design approaches, which we label, respectively, force-controlled and
acceleration-controlled designs. In force-controlled systems, an oscilla-
tory input u(·) drives the combined dynamics (9.1.2), (9.1.3). In acceleration-
controlled systems, the triple (r, ṙ, r̈) is regarded as the input to a reduced-
order Lagrangian in terms of which the equations of motion are given by
an Euler–Lagrange equation that is essentially the same as (9.1.3).
For high-frequency inputs of this form, the terms involving r̈ have the

greatest effect on the dynamics (9.1.3), and it is for this reason that these
are called acceleration-controlled systems. As one would expect, the case
in which a prescribed oscillatory input u(·) is “filtered” by the r-dynamics
(9.1.2) produces q-dynamics that differ markedly from what one obtains by
applying a similar oscillatory wave form r(·) (together with ṙ, r̈) directly to
(9.1.3). A remarkable feature of the case in which (r, ṙ, r̈) is viewed as the
input is that the response of (9.1.3) to high-frequency oscillatory forcing
may typically be characterized in terms of the critical point structure of an
energy-like function called the averaged potential associated with (9.1.3).
This simple and elegant characterization is not always possible in the case
in which u(·) is the oscillatory input.

Controlled Lagrangian Systems—with and without Dissipation.
We begin by examining the effect of a high-frequency input u(·) in (9.1.2)–
(9.1.3), deferring the acceleration-controlled case until later. The starting
point for this analysis is classical averaging theory interpreted within the
framework of the geometric mechanics that has been developed in the
earlier chapters of this book. We continue to distinguish between the m
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controlled configuration variables r and the n uncontrolled configuration
variables q and write yT = (rT , qT ). Then, as in (4.7.19), the controlled
Lagrangian equations are

M(y)ÿ + Γ̂(y, ẏ) +
∂V

∂y
=

(
u
0

)
, (9.6.3)

where

Γ̂(y, ẏ) =
(
Γ̂1(y, ẏ), . . . , Γ̂n(y, ẏ)

)T
,

with
Γ̂k(y, ẏ) =

∑
i,j

Γijkẏiẏj ,

and

Γijk =
1

2

(
∂mki

∂yj
+

∂mkj

∂yi
− ∂mij

∂yk

)
.

Averaging Theory. We now summarize a few facts from averaging the-
ory. See, for example, Sanders and Verhulst [1985]. In the standard treat-
ment, classical averaging methods are used to characterize the dynamics of
first-order differential equations of the form

ẋ = εf(x, t, ε); x(0) = x0. (9.6.4)

Here f is a function which is periodic in t (the almost periodic case can
also be treated by the methods described here but we do not consider
this generalization in the text). The theory describes the degree to which
trajectories of this equation may be approximated by trajectories of the
associated autonomous averaged system

ξ̇ = εf̄(ξ), (9.6.5)

where

f̄(ξ) =
1

T

∫ T

0

f(ξ, t, 0) dt.

Under mild regularity assumptions, trajectories of the x and ξ equations
that start at the same initial value x(0) = ξ(0) remain “close” over the
time interval 0 ≤ t < O(1/ε).
In neighborhoods of (9.6.5), one can, in many cases, conclude consid-

erably more about the degree to which solutions of (9.6.5) approximate
solutions of (9.6.4). If ξ0 is a hyperbolic equilibrium of (9.6.5), then there
exists an ε0 > 0 such that for all 0 < ε < ε0, (9.6.4) has a corresponding
hyperbolic periodic solution x(t) = ξ0 + O(ε) with the same (hyperbolic)
stability characteristics as ξ0. In particular, if ξ0 is an equilibrium point of

(9.6.5) and ∂f̄
∂y (ξ0) has all its eigenvalues in the left half-plane, then there

is an asymptotically stable periodic solution x(t) = ξ0 + O(ε) of (9.6.4)
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such that |x(t)− ξ0| ∼ O(ε) for 0 ≤ t < ∞. Because one can appeal to this
strong approximation result, it is convenient in some cases to introduce
dissipation into the models (9.1.2)–(9.1.3), which are rendered as (9.6.3) in
our present notation.

Rayleigh Dissipation. To include rate-dependent (Rayleigh) dissipa-
tion (see equation (3.3.9)) we rewrite (9.6.3) as

M(y)ÿ + Γ̂(y, ẏ) +
∂D̂

∂ẏ
+

∂V

∂y
=

(
u
0

)
, (9.6.6)

where we assume

D̂(y, ẏ) =
1

2
ẏTD(y)ẏ

is a dissipation function that is quadratic in the velocities with D(y) as-
sumed to be positive definite.

Oscillation-Mediated Control: The Force-Controlled Case To re-
write (9.6.6) in a form to which it is convenient to apply the above averaging
results, we write it as a first-order system by letting y1 = y, y2 = ẏ. Then

(
ẏ1
ẏ2

)
=

⎛
⎝ y2

−M−1(y1)
(
Γ̂(y1, y2) +D(y1)y2 +

∂V
∂y1

)
⎞
⎠

+

⎛
⎝ 0

M−1(y1)

(
u
0

)
⎞
⎠ . (9.6.7)

Let y1 =

(
r
q

)
, where r are the controlled and q the uncontrolled variables,

and assume that V (·) depends only on the last n q-components of y1. Hence

∂V

∂y1
=

(
0

∂V
∂q

)
.

Let w(·) be any bounded, piecewise continuous function, and let ϕ(t, z) be
the flow associated with the differential equation

d

dt

(
z1
z2

)
=

⎛
⎝ 0

M−1(z1)

(
w
0

)
⎞
⎠ .

In this case, noting that z1 is constant, ϕ may be explicitly written

ϕ(t, z) =

⎛
⎝ z1

z2 +M−1(z1)

(
v(t)
0

)
⎞
⎠ ,
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where v(t) =
∫ t

w(s) ds and z = (z1, z2)
T . To apply classical averaging

techniques, suppose w(t) is any piecewise continuous periodic function, and
consider inputs to (9.6.3) of the form u(t) = (1/ε)w(t/ε). Next, define the
variable x̃(t) in terms of this flow by writing

y(t) = ϕ(t/ε, x̃(t)).

Then x̃(·) satisfies a differential equation

∂ϕ

∂x̃
˙̃x(t) = f(ϕ(t/ε, x̃(t)),

where f(y) is the vector field defined on R
2(m+n) by

f(y1, y2) =

(
y2

−M−1(y1)
(
Γ̂(y1, y2) +D(y1)y2 +

∂V
∂y1

)
)
.

Let τ = t/ε, and x(τ) = x̃(t). Then we may rewrite our equation for x in
terms of the “slow” time variable τ , and apply classical averaging theory
to the resulting equation

dx

dτ
= ε

∂ϕ

∂x

−1

|(τ,x(τ))

f(ϕ(τ, x(τ))). (9.6.8)

The main result on averaging force-controlled systems will be an im-
mediate consequence of the following two lemmas (see, e.g., Sanders and
Verhulst [1985]).

9.6.2 Lemma. Assume that the integrated input v(τ) =
∫ τ

w(s) ds is a
zero-mean periodic function of period T > 0. Then the autonomous aver-
aged system associated with (9.6.8) may be explicitly written

d

dτ

(
x1

x2

)
= ε

⎧⎪⎨
⎪⎩

⎛
⎜⎝

x2

−M−1(x1)

(
Γ̂(x1, x2) +D(x1)x2 +

∂V

∂q

)
⎞
⎟⎠

+

⎛
⎜⎝

0

−
{

∂

∂x1

[
M−1(x1)

(
v
0

)]}
·M−1(x1)

(
v
0

)
⎞
⎟⎠

+

⎛
⎜⎝

0

−M−1(x1) Γ̂

(
x1,M−1(x1)

(
v
0

))
⎞
⎟⎠
⎫⎪⎬
⎪⎭ ,

where the overbar indicates the result of simple averaging over one period.
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A remark on this lemma may be helpful. Namely, if g(x, τ) is periodic in
τ with fundamental period T > 0, we write

g(x) = g(x, τ) = (1/T )

∫ T

0

g(x, τ) dτ.

The terms {
∂

∂x1

[
M−1(x1)

(
v
0

)]}
·M−1(x1)

(
v
0

)

+ M−1(x1) Γ̂

(
x1,M−1(x1)

(
v
0

))
, (9.6.9)

which are quadratic in v, account for the net averaged effect of the oscilla-
tory input u on the dynamics (9.6.3).
Additional insight is obtained by writing the averaged system as a

(Lagrangian) second-order differential equation. This may be done using
the following lemma.

9.6.3 Lemma. Write the first m columns of M−1(x1) as vector fields
Y1(x1), . . . , Ym(x1), so that

M−1(x1)

(
v
0

)
=

m∑
a=1

va Ya(x1).

The terms in (9.6.8) which are quadratic in v(τ) and which give rise to
(9.6.9) may be rewritten

{
∂

∂x1

[
M−1(x1)

(
v
0

)]}
·M−1(x1)

(
v
0

)

+M−1(x1) Γ̂

(
x1,M

−1(x1)

(
v
0

))
=

m∑
a,b=1

〈Ya : Yb〉 vavb,

where 〈Ya : Yb〉 is a vector product defined componentwise by

2 〈Ya : Yb〉i =
n∑

j=1

(
∂Y i

a

∂xj
1

Y j
b +

∂Y i
b

∂xj
1

Y J
a

)
+

n∑
j,k=1

Γi
jk

(
Y j
a Y

k
b + Y k

a Y j
b

)
,

and where we denote Γi
k� =

∑
j m

ijΓk�j with mij being the ij-th component

of M−1.

The proof of this lemma involves a straightforward but tedious compu-
tation. Together, the lemmas lead immediately to the main approximation
result for force-controlled systems.
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9.6.4 Theorem. Consider the controlled Lagrangian dynamics (9.6.6) with
(quadratic, positive definite) dissipation function D̂(y, ẏ) and with input
u(t) = (1/ε)w(t/ε). Suppose that the integrated input v(τ) =

∫ τ
w(s) ds is

a zero-mean periodic function of period T > 0. Then the trajectories y(t) of
(9.6.6) can be approximated by trajectories x(t) of the averaged Lagrangian
system

M(x)ẍ+Γ̂(x, ẋ)+D(x)ẋ+

(
0
∂V
∂q

)
+M(x)

m∑
a,b=1

〈Ya : Yb〉 vavb = 0, (9.6.10)

in the sense that if both (9.6.6) and (9.6.10) have the same initial conditions

(y(0), ẏ(0)) = (x(0), ẋ(0)) = (y0, ẏ0),

then
|y(t)− x(t)| ∼ O(ε) for 0 ≤ t < ∞.

The bracket terms 〈· : ·〉 of the preceding lemma and theorem are pre-
cisely the symmetric products defined in equation (6.7.4) (see, e.g., Lewis
and Murray [1999]). It is easy to see that 〈Ya : Yb〉 = 〈Yb : Ya〉, and this
product may also be written in a coordinate-free form as

〈Ya : Yb〉 = 1

2
(∇Ya

Yb +∇Yb
Ya).

The theorem on averaging force-controlled systems is essentially due to
Bullo [2001], which we refer to for further details on both the theorem and
the role of the symmetric product in the theory of averaged Lagrangian
systems.

If we set the dissipation function D(q) = 0, we have noted above that
general principles in averaging theory (Sanders and Verhulst [1985]) imply
that trajectories of (9.6.10) approximate trajectories of the nonautonomous
system (9.6.3) on the time interval 0 ≤ t < O(1). According to the theorem,
this approximation may be immediately extended to the semi-infinite time
interval 0 ≤ t ≤ ∞ if we assume, on the other hand, that D(q) is positive
definite. In the paragraph that follows, we shall be primarily interested
in stable motion confined to neighborhoods of equilibrium solutions (rest
points) of the averaged dynamics (9.6.10).

In terms of the unreduced dynamics (9.1.2)–(9.1.3) with v(t) =
∫ t

u(s) ds,
the mapping ρ : T ∗

r R → T ∗
y Y defined by

u �−→ M(y)
m∑

a,b=1

〈Ya : Yb〉 vavb

provides a succinct summary description of the way in which high-frequency
inputs u(·) influence the dynamics of the q-variables in our system.
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Oscillation-Mediated Control: The Acceleration-Controlled Case.
A widely studied alternative to the above averaging analysis for (9.1.2)–
(9.1.3) involves a reduced-order Lagrangian model that is equivalent to
(9.1.3) alone with r(·) (together with ṙ(·) and r̈(·)) playing the role of os-
cillatory input. See, for example, Baillieul[1990, 1993, 1995, 1998], Weibel
and Baillieul [1998b], Weibel, Kaper and Baillieul [1997].
We note that if r(·) is a periodic function of fundamental frequency ω,

the amplitude of ṙ scales as ω ·O(r), and r̈ scales as ω2 ·O(r). Acceleration
terms clearly have the dominant influence on the system’s response, and
thus when the triple (r, ṙ, r̈) is viewed as the input to (9.1.3) we refer to it as
an acceleration-controlled Lagrangian system. Assume that the Lagrangian
appearing in (9.1.2)–(9.1.3) has the form

L(r, q, ṙ, q̇) = 1
2 (ṙ

T , q̇T )

(N (q, r) A(q, r)
A(q, r)T M(q, r)

)(
cṙ
q̇

)
− V (q, r). (9.6.11)

Equation (9.1.3) relates the state variables q and q̇ to the inputs (r, ṙ, r̈), and
this dynamical relationship may also be obtained by applying the Euler–
Lagrange operator

d

dt

∂

∂q̇
− ∂

∂q

to the reduced Lagrangian

L(r, ṙ; q, q̇) = 1
2 q̇

TM(q, r)q̇ + ṙTA(q, r)q̇ − Va(q; r, ṙ), (9.6.12)

where Va(q; r, ṙ) = V (q)− (ṙTN (r, q)ṙ
)
/2 is a time-varying potential sim-

ilar to the augmented potential. The q-dynamics prescribed by (9.1.3) is
formally equivalent to the Euler–Lagrange equations of the reduced La-
grangian:

d

dt

∂L
∂q̇

− ∂L
∂q

= 0.

Writing this out in detail in terms of coordinates, we have

n∑
j=1

mkj q̈j +

m∑
�=1

a�kv̇� +

n∑
i,j=1

Γijk q̇iq̇j +

n∑
j=1

m∑
�=1

Γ̂�jkv�q̇j = F (t), (9.6.13)

where

Γijk =
1

2

(
∂mki

∂qj
+

∂mkj

∂qi
− ∂mij

∂qk

)
,

Γ̂�jk =
∂mkj

∂r�
+

∂a�k
∂qj

− ∂a�j
∂qk

,

and aij and mij are the ijth entries in the m×n and n×n matrices A(q, x)
and M(q, x), respectively. F (t) is a vector of generalized forces

Fi(t) = −∂Va

∂qi
−

m∑
k,�=1

∂a�i
∂rk

v�vk.
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We have referred to this representation of the system dynamics as being
formal, because the generalized forces may be thought of as coming from
a time-varying potential only if

∂2a�i
∂qj∂rk

=
∂2a�j
∂qi∂rk

for all k, � = 1, . . . ,m and i, j = 1, . . . , n.

Hamiltonian Form. To find the analogue of the variational equation
(9.6.8), to which averaging theory applies, we write the equations of motion
in Hamiltonian form, in terms of the conjugate momentum

p =
∂L
∂q̇

= M(q)q̇ +AT (q)ṙ.

This gives rise to the noncanonical Hamiltonian

H(q, p; r, ṙ) = 1
2 (p−AT ṙ)TM−1(p−AT ṙ) + Va. (9.6.14)

Letting v = ṙ, we expand equation (9.6.14) and apply simple averaging
to yield the averaged Hamiltonian

H(q, p) = 1
2p

TM−1p− vTAM−1p+ 1
2 v

TAM−1AT v + Va. (9.6.15)

As above, the overbars indicate that simple averages over one period (T )
have been taken with q and p regarded as constants for the purpose of
averaging each term in the expression.
For the averaged Hamiltonian (9.6.15), there is an obvious decomposition

into kinetic and potential energy terms in the case that vTAM−1 = 0:

H(q, p) = 1
2p

TM−1p︸ ︷︷ ︸
avg. kin.

energy

+ 1
2 v

TAM−1Av + Va︸ ︷︷ ︸
averaged potential

.

In the case that vTAM−1 �= 0, it remains possible to formally decompose
the averaged Hamiltonian (9.6.15) into the sum of averaged kinetic and
potential energies. If v̄ �= 0, then the corresponding input variable r(t)
will not be periodic, and there will be a “drift” in the value of r(t) that
changes by an amount v̄ ·T every T units of time. We rewrite the averaged
Hamiltonian (9.6.15) as



9.6 Averaging for Controlled Lagrangian Systems 503

H(q, p) = 1
2p

TM−1p− vTAM−1p+ 1
2v

TAM−1
(
M−1

)−1

M−1AT v

+ 1
2 v

TAM−1Av − 1
2v

TAM−1
(
M−1

)−1

M−1AT v + Va

= 1
2 (M−1p−M−1AT v)T

(
M−1

)−1

(M−1p−M−1AT v)︸ ︷︷ ︸
averaged kinetic energy

+ 1
2v

TAM−1AT v − 1
2v

TAM−1
(
M−1

)−1

M−1AT v + Va︸ ︷︷ ︸ .
averaged potential

(9.6.16)

The relationship between the dynamics prescribed by this averaged Hamil-
tonian and the dynamics of (9.6.16) has been studied in Weibel, Kaper and
Baillieul [1997] and Weibel and Baillieul [1998b], which may be consulted
for details. It is important to mention that for mechanical systems in which
v̄ �= 0 and M depends explicitly on r in (9.6.14), the averaging analysis
of this chapter may not provide an adequate description of the dynam-
ics. Indeed, in this case, ‖r(t)‖ will not remain bounded as t → ∞, and if
M(r(t), q2) also fails to remain bounded, the averaged potential will inherit
a dependence on time that will make it difficult to apply the critical point
analysis proposed below. Despite this cautionary remark, we shall indicate
how our methods may be applied in many instances where v̄ �= 0.
Our interest in the averaged potential

VA(q) =
1
2v

TAM−1AT v− 1
2v

TAM−1
(
M−1

)−1

M−1AT v+Va (9.6.17)

is that for a broad class of systems, high-frequency oscillatory forcing of
(9.6.13) produces motions that can be fairly completely characterized in
terms of the critical point structure of VA(·). Indeed, we have the follow-
ing averaging principle, which connects the dynamics (9.6.13) with the
critical points of the averaged potential as follows:

1. If q∗ is a strict local minimum of VA(·), then provided the frequency
of the periodic forcing u(·) is sufficiently high, the system (9.6.13)
will execute motions confined to a neighborhood of q∗.

2. If (q, p) = (q∗, 0) is a hyperbolic fixed point of the averaged Hamil-
tonian system associated with (9.6.16), then there is a corresponding
periodic orbit of the system defined by (9.6.14) such that the asymp-
totic stability properties of the fixed point (Q∗, 0) associated with
(9.6.16) are the same as those of the periodic orbit. �
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Conditions under which this principle is valid are discussed in detail in
Weibel and Baillieul [1998a]. This reference also describes a global averag-
ing theory for Hamiltonian systems that provides conditions under which
there is a close relationship between the phase space structures associated
with (9.6.14) and (9.6.16).

An Area Rule for Averaged Acceleration-Controlled Lagrangian
Systems. It was observed in Section 4.4 that if (u1(·), u2(·)) : [0,∞) →
R

2 is [a piecewise smooth] periodic function of period T > 0, then “second-
order” averaging implies that the flow generated by the first-order affine
differential equation,

ẋ = u1(t)f1(x) + u2(t)f2(x)

is approximated by

x(T ) = x0 + 2A · [f1(x0), f2(x0)
]
T + o(T ), (9.6.18)

where A = the areas enclosed by the curve {(u1(t), u2(t)) : 0 ≤ t ≤ T}.
Both the frequency (1/T ) and the area A are important parameters in this
approximation. The frequency determines the sharpness (or accuracy) of
the approximation, while it is in terms of the area of the input curve that
we measure the effect of the nonholonomy in the differential equation (i.e.,
the noncommutativity of the vector fields f1 and f2). The formula (9.6.18)
has appeared in several places, but was probably first written in the form in
which it appears here in Brockett [1989]. In recognition of this, the formula
is frequently referred to as Brockett’s area rule.
For the second-order (controlled Lagrangian) systems treated in this

chapter, there is a corresponding geometric interpretation. Consider the
acceleration-controlled Lagrangian system with scalar input given by

L(q, q̇; v) = 1

2
q̇TM(q)q̇ + a(q)q̇v − V(q)

(cf. (9.6.12)). The equations of motion are written as

M(q)q̈ + Γ(q, q̇) +
∂V
∂q

+ a(q)v̇ +

(
∂a

∂q
− ∂a

∂q

T
)
vq̇ = 0.

According to the theory developed above, the dynamic response to a
periodic input (v(·), v̇(·)) may be understood in terms of the critical points
of the averaged potential

VA(q) = V(q) + 1

2
a(q)TM(q)−1a(q)σ2,

where

σ2 =
1

T

∫ T

0

v(t)2 dt.
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The simplest interpretation of the input-related term of the averaged po-
tential is that it is simply the averaged rms value of the input wave form
v(·). To make contact with the area rule (9.6.18), it is useful to recall how
L(q, q̇; v) arose from a reduction process described in obtaining equation
(9.6.12). Thinking of the input v as the velocity of a (cyclic) exogenous
variable r (i.e., v = ṙ), we may rewrite

σ2 =
1

T

∫ T

0

ṙ(t)2 dt =
1

T

∮
C

ṙ dr, (9.6.19)

where the last quantity represents the line integral of ṙ around the closed
curve C = {(r(t), ṙ(t)) : 0 ≤ t ≤ T}. Appealing to Green’s theorem in the
plane, we find that this line integral is just the area enclosed by the curve
in the (r, ṙ)-phase plane.

Stability of Acceleration-Controlled Lagrangian Systems with
Oscillatory Inputs. As described above, the Lagrangian (9.6.12) gives
rise to the Lagrangian dynamics (9.6.13). To retain our general perspective,
we continue to assume that the terms in these equations may depend on r.
The explicit form of this dependence will play no role in the present sec-
tion, however, and hence we simplify our notation by omitting any further
mention of the variable r. We seek to understand the stability of (9.6.13)
in terms of the corresponding averaged potential

VA(q) =
1

2
vTAM−1AT v− 1

2
vTAM−1

(
M−1

)−1

M−1AT v+V. (9.6.20)

The averaging principle states that the effect of forcing (9.6.13) with
an oscillatory input v(·) will be to produce stable motions confined to
neighborhoods of relative minima of VA(·). While this principle appears to
govern the dynamics encountered in a wide variety of systems, there is as
yet no complete theory describing the observed behavior. Results reported
in Baillieul [1995] show that for a certain class of systems (9.6.13) within
a larger class of so-called linear Lagrangian systems, strict local minima of
the averaged potential are Lyapunov stable rest points of (9.6.13) for all
periodic forcing of a given amplitude and sufficiently high frequency. Here
we shall review this result, and show that the extension of our analysis
to arbitrary systems (9.6.13) is complicated by the fact that in general, a
linearization of (9.6.13) fails to capture the stabilizing effects implied by an
analysis of the averaged potential. Indeed, we shall show that the averaged
potential depends on second-order jets of the coefficient functions A(q) and
M(q). To simplify the presentation, we shall restrict our attention to the

case of zero-mean oscillatory forcing in which M−1AT v = 0.
Suppose q0 is a strict local minimum of VA in (9.6.20). Applying a high-

frequency oscillatory input v(·), we shall look for stable motions of (9.6.13)
in neighborhoods of (q, q̇) = (q0, 0). It is important to note that even when
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there are such stable motions, (q0, 0) need not be a rest point of (9.6.13)
for any choice of forcing function v(·). This will be illustrated below.

We may assume without loss of generality that q0 = 0. (If this is not the
case, we may always change coordinates to make it true.) Write

A(q) = A0 +A1(q) +A2(q) + h.o.t.,

M(q) = M0 +M1(q) +M2(q) + h.o.t.,

where the entries in the n×n matrix Mk(q) are homogeneous polynomials
of degree k in the components of the vector q, and similarly for the m× n
matrix Ak(q). It is easy to show that

M−1(q) = M−1
0 −M−1

0 M1(q)M−1
0 +M−1

0 M1(q)M−1
0 M1(q)M−1

0

−M−1
0 M2(q)M−1

0 + h.o.t.

Using this, we write an expansion of VA up through terms of order 2:

VA(q) = V0 + V1(q) + V2(q) + h.o.t.,

where as above, Vk(q) denotes the sum of terms that are homogeneous poly-
nomials of degree k in the components of the vector q, and “h.o.t.” refers to
a quantity that is of order o(‖q‖2). Explicitly, under our assumption that

M−1AT v = 0,

V0 =
1

2

(
vTA0M−1

0 AT
0 v
)
+ V0,

V1(q) =
1

2

(
vT (A1(q)M−1

0 AT
0 −A0M−1

0 M1(q)M−1
0 AT

0 A0M−1
0 AT

1 (q))v
)

+ V1 · q,

and

V2(q) =
1

2

(
vTA1(q)M−1

0 AT
1 (q)v

)

− 1

2

(
vTA1(q)M−1

0 M1(q)M−1
0 AT

0 v
)

− 1

2

(
vTA0M−1

0 M1(q)M−1
0 AT

1 (q)v
)

+
1

2

(
vTA2(q)M−1

0 AT
0 v
)

+
1

2

(
vTA0M−1

0 M1(q)M−1
0 M1(q)M−1

0 AT
0 v
)

− 1

2

(
vTA0M−1

0 M2(q)M−1
0 AT

0 v
)
+

1

2

(
vTA0M−1

0 AT
2 (q)v

)

+ qTV2q,
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where V0, V1, and V2 define the jets of the potential V(q) of orders 0, 1, and
2, respectively. Writing VA(·) in this way shows its dependence on jets of
coefficient functions of (9.6.13) of order up to 2. This dependence implies
that the observed stabilizing effects produced by high-frequency forcing
cannot be understood in terms of a linearization of the dynamics (9.6.13).
We shall examine this remark in a bit greater detail.
Having assumed that q0 = 0 is a strict local minimum of VA(·), it follows

that
∂VA

∂q
(0) =

∂V1

∂q
= 0.

There are two cases to consider here:

(i) ∂V1/∂q = 0 for a particular choice of oscillatory input v(·), and
(ii) ∂V1/∂q ≡ 0 independent of the choice of zero-mean oscillatory (peri-

odic) forcing v(·).
Case (i) In this case, the location of the local minimum of VA(·) depends

on v(·), and it will not generally coincide with a rest point of (9.6.13).
While the averaging principle suggests that there will be stable mo-
tions of (9.6.13) in neighborhoods of local minima of VA, the analysis
of this case has involved either the introduction of dissipation into the
model (as was done in Baillieul [1993]) or the use of machinery from
the theory of dynamical systems (as was done in the thesis of Weibel
[1997]). The significant point to note here is that the dependence of
VA on v(·) implies that A0 �= 0, which in turn implies both that
q0 = 0 will not be a rest point of (9.6.13) for any oscillatory input
v(·), and also that the stabilizing effect of v(·) on motions of (9.6.13)
will depend on jets of order up to 2 in the coefficient functions. For
further details the reader is referred to Weibel and Baillieul [1998b].

Case (ii) If ∂V1/∂q ≡ 0, by which we mean that the first partial deriva-
tives of VA evaluated at q0 = 0 are zero independent of coefficients
due to v(·), then we also find that V1 = 0. It then follows that

2A0M−1
0 AT

1 (q)−A0M−1
0 M1(q)M−1

0 AT
0 ≡ 0,

and either of two subcases can occur:

(a) A0 = 0, or else

(b) there is a polynomial relationship among the coefficients in the
zeroth- and first-order jets of A(q) and M(q).

In case (b), q0 = 0 will correspond to a rest point of (9.6.13) in the
absence of forcing, but it will not generally define a rest point when
v(t) �= 0. Stabilizing effects of the oscillatory input v(·) appear to
again depend on jets of order up to two in the coefficients of the
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Lagrangian vector field (9.6.13). This case will not be treated further
here. We shall consider case (a), A0 = 0. In this case, the averaged
potential VA depends on terms only up through first order in the
coefficients of (9.6.13).

Slightly refining our notation, let A�(q) denote the �th column of the
n×m matrix AT (q). Then we have

A�(q) = A�
1 · q + (terms of order ≥ 2)

and

M(q) = M0 + (terms of order ≥ 1),

where we interpret M0,A1
1, . . . ,Am

1 as n× n coefficient matrices. The fol-
lowing result is now clear.

9.6.5 Proposition. Suppose v(·) is an R
m-valued piecewise continuous

periodic function of period T > 0 such that

v̄ =
1

T

∫ T

0

v(s) ds = 0.

Suppose, moreover, that A0 = 0. Then the averaged potential of the
Lagrangian system (9.6.13) agrees up to terms of order 2 with the aver-
aged potential associated with the linear Lagrangian system

M0q̈ +

m∑
�=1

(
v̇�A�

1q + v�(A�
1 −A�

1

T
)q̇
)
+ V2 · q = 0. (9.6.21)

Proof. The proof follows immediately from examining the above expan-
sion of VA. �

A deeper connection with stability is now expressed in terms of the fol-
lowing theorem.

9.6.6 Theorem. Suppose w(·) is an R
m-valued piecewise continuous pe-

riodic function of period T > 0 such that w̄ = 1
T

∫ T
0

w(s) ds = 0. Consider
the linear Lagrangian system (9.6.21) with input v(t) = w(ωt), and sup-

pose A�
1
T
= A�

1 for � = 1, . . . ,m. The averaged potential for this system is
given by

VA(q) =
1
2q

T
(
V2 +

m∑
i,j=1

σijAi
1M−1

0 Aj
1

T
)
q, (9.6.22)

where σij = (1/T )
∫ T
0

wi(s)wj(s) ds. If the matrix ∂2VA

∂q2 is positive defi-

nite, the origin (q, q̇) = (0, 0) of the phase space is stable in the sense of
Lyapunov, provided that ω is sufficiently large.
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Note the similarity here with the energy momentum method discussed
in Section 3.14.
This theorem has been proved in Baillieul [1995]. In Baillieul [1993], it

was shown that in the presence of dissipation, the positive definiteness of

the Hessian matrix ∂2VA

∂q2 (0) is a sufficient condition for (9.6.13) to exe-

cute stable motions in a neighborhood of (q0, 0). Theorem 9.6.6 shows that
in Case (ii), it is precisely the conditions of the averaging principle from
which we may infer the Lyapunov stability of (9.6.21) based on the positive
definiteness of the Hessian of the averaged potential. Clearly, this result is
special and related to the property that the averaged potential depends only
on first-order jets of the coefficients of (9.6.13) when A(q0) = 0. In Weibel
and Baillieul [1998b] it has been shown that the condition A(q0) = 0 is also
necessary and sufficient for the local minimum q0 of the averaged potential
to define a corresponding fixed point (rather than a periodic orbit) of the
forced (nonautonomous) Hamiltonian system associated with (9.6.12).

Comparing Force Control and Acceleration Control of Mechani-
cal Systems. Corresponding to the averaged Hamiltonian (9.6.16) there
is an averaged Lagrangian

L̄ =
1

2
q̇TMq̇ − VA(q).

The Euler–Lagrange equations

d

dt

∂L̄
∂q̇

− ∂L̄
∂q

= 0 (9.6.23)

provide a simple description of the averaged system dynamics. This means
that the net averaged effect on (9.6.23) of a high-frequency oscillatory input
r(·) is felt as a conservative (potential) force that is a component of ∂VA

∂q .

The net averaged effect on (9.1.3) of a high-frequency oscillatory input u(·)
applied to (9.1.2), however, is

∂V

∂q
�−→ M(q)

m∑
a,b=1

〈Ya : Yb〉 vavb (9.6.24)

which may be represented as the gradient of a potential function only when
certain symmetry conditions are satisfied. We refer to Bullo [2001] for a
discussion of such symmetry conditions.
The control design approach in both the force and acceleration control

cases involves choosing stabilizing inputs from a parametrized family of con-
trols. For acceleration-controlled systems, stabilizing control laws may be
found through a bifurcation analysis of the averaged potential. In the case
of force-controlled systems, the situation is more complex. The force field
(9.6.24) may not arise as the gradient of a potential. Moreover, the influ-
ence on the q-dynamics (9.1.3) will be determined jointly by the r-dynamics
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(9.1.2) and the choice of input u(·). To illustrate the differences between
the two cases, we return to the pendulum-on-a-cart example (9.1.4).

Suppose the cart is subjected to a zero-mean periodic forcing u(·). Then
the averaged equation (9.6.10) specializes to

M(θ)

(
s̈

θ̈

)
+

(−β sin(θ − ψ)θ̇2

D sin θ

)
+M(θ)G(θ)σ2 =

(
0
0

)
, (9.6.25)

where

M(θ) =

(
γ βc(θ)

βc(θ) α

)
,

G(θ) =

⎛
⎜⎜⎜⎝

αβ3s(θ)c2(θ)

[αγ − β2c2(θ)]3

−αγβ2s(θ)c(θ)

[αγ − β2c2(θ)]3

⎞
⎟⎟⎟⎠ ,

c(θ) = cos(θ − ψ), and s(θ) = sin(θ − ψ). Here σ2 is the rms value of the
periodic input:

σ2 =
1

T

∫ T

0

v(t) dt,

where v(t) =
∫ t

u(τ) dτ .
To facilitate comparison with the acceleration-controlled reduced

Lagrangian, we multiply (9.6.25) through by M−1(θ); this yields a second-
order equation in θ that has no dependence on s:

θ̈ +
β2 sin(θ − ψ) cos(θ − ψ)θ̇2 + γD sin θ

αγ − β2 cos2(θ − ψ)

−αγβ2 sin(θ − ψ)cos(θ − ψ)

[αγ − β2 cos2(θ − ψ)]3
σ2 = 0 (9.6.26)

Reintroducing the length and mass parameters, this equation may be
rewritten

[M +m sin2(θ − ψ)]θ̈ +m sin(θ − ψ) cos(θ − ψ)θ̇2

+
(M +m)g

�
sin θ − (M +m) sin(θ − ψ) cos(θ − ψ)

�2[M +m sin2(θ − ψ)]2
σ2 = 0,

which is an equation of the form

d

dt

∂L

∂θ̇
− ∂L

∂θ
= 0,

with

L(θ, θ̇) =
1

2

[
M +m sin2(θ − ψ)

]
θ̇2 − VA1

(θ),
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where

VA1
(θ) = − (M +m)g

�
cos θ +

(M +m)σ2

�2m (2M +m(1 + cos 2θ))
.

The reduced Lagrangian (9.6.12) for the cart–pendulum model is

L(θ, θ̇; ṡ) = 1

2
αθ̇2 + β cos(θ − ψ)ṡθ̇ +D cos θ. (9.6.27)

This gives rise to the acceleration-controlled θ-dynamics

αθ̈ + β cos(θ − ψ)s̈+D sin θ = 0, (9.6.28)

where the acceleration variable s̈ is regarded as the control input. Looking
at the general form of (9.6.12), we note that in (9.6.27) ṡ plays the role
of ṙ = v, A(θ) = β cos(θ − ψ), M(θ) = α, and Va(θ) = −D cos θ. (There
are no time-dependent terms in Va in this case.) The averaged potential
(9.6.17) thus specializes to

VA2
(θ) =

1

2
m cos2(θ − ψ)σ2 −mg� cos θ,

where now

σ2 =
1

T

∫ T

0

ṡ(t)2 dt.

Because the inputs in the force-controlled and acceleration-controlled
systems ((9.1.4) and (9.6.28), respectively) are physically different, the rms
parameter σ2 does not have the same meaning in VA1

and VA2
. Never-

theless, in both cases, it plays a similar role as a bifurcation parameter.
Suppose ψ = π/2, for instance. For the choice of physical parameters
(m = M = 1, � = 1, g = 10) defining the potential functions in Fig-
ure 9.6.2, we find that for σ2 sufficiently large, θ = π is a local minimum of
both averaged potentials, VA1

and VA2
. (See Figure 9.6.2.) Accordingly, it

can be shown that for all sufficiently high high-frequency inputs (u(·) and
s̈(·), respectively) the pendulum systems (9.1.4) and (9.6.28) will undergo
stable motions in a neighborhood of the inverted equilibrium θ = π. It can
be verified (and the graphs in Figure 9.6.2 suggest) that as the bifurcation
parameter σ2 is increased, the equilibrium θ = π becomes a local mini-
mum of VA1

as a result of a supercritical pitchfork bifurcation, while θ = π
becomes a local minimum of VA2

as a result of a subcritical pitchfork bifur-
cation. This type of stabilization goes back to work of Stephenson [1908]
and Kapitsa [1951], and of course there has been much interesting work
since.
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Figure 9.6.2. A comparison of parametric dependence (on σ2) of the two averaged

potentials, VA1
(left column = force-controlled case) and VA2

(right column = acceler-

ation-controlled case). The figure illustrates the fact that in both cases for sufficiently

large values of σ2, the inverted pendulum equilibrium θ = π is a local minimum of the

averaged potential. As described in the text, the qualitative features of the σ-dependent

bifurcations differ, however.

9.7 Dynamic Nonholonomic Averaging

We can analyze the motion planning problem in the dynamic nonholonomic
context using the following perturbation approach of Ostrowski [2000] and
extending the analysis in the kinematic setting discussed in Chapter 4.
As in Section 5.7 let us write the controlled dynamic nonholonomic equa-

tions in the coordinate form

ξa = (g−1ġ)a = −Aa
α(r)ṙ

α + (I−1)abpb,

d

dt
pb = Cc

abI
adpcpd +Dc

bαṙ
αpc +Dαβbṙ

αṙβ ,

ṙα = uα,

assuming that the base dynamical variables r are fully actuated.
Consider inputs of the form

r(t) = r0 + εu(t),
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where generally u(t) will be chosen to be periodic. Thus, ε measures the size
or amplitude of the oscillatory inputs. Assume that the system is initially
at rest: p(0) = 0. Expanding p in the series p = p0 + εp1 + ε2p2 + · · · and
Taylor expanding the D coefficients about r0, we get (Ostrowski [2000])

pa(t) = ε2Dαβa(r0)

∫ t

0

u̇αu̇βdτ

+ ε3

((
∂Dαβa

∂rk
−Db

aγ

) ∣∣∣∣
r0

× (9.7.1)

∫ t

0

uγ u̇αu̇βdτ +Db
aαDβγb(r0)u

α(t)

∫ t

0

u̇βu̇κdτ

)

+ · · · .
We note that to second order the momentum depends only on the term

Dαβb. Note also that the cubic term of the form

∫ t

0

uγ u̇αu̇βdτ

will be equal to zero after one period for inputs of the form

uα = aα sin 2πmt and uβ = aβ sin 2πnt, m �= n.

Application of the Exponential Expansion. Now to obtain the po-
sition we use the Magnus expansion discussed in Chapter 4.

Let g(t) = ez(t). The solution to the equation g−1ġ = εξ(t) is given

locally, for ξ̃(t) =
∫ t
0
ξ(τ)dτ , by

z(t) = ε

∫ t

0

ξ(τ)dτ +
ε2

2

∫ t

0

[ξ̃(τ), ξ(τ)]dτ

+
ε3

4

∫ t

0

[∫ τ

0

[ξ̃(σ), ξ(σ)]dσξ(τ)

]
dτ

+
ε3

12

∫ t

0

[ξ̃(τ), [ξ̃(τ), xi(τ)]]dτ + · · · .

Then again, using inputs r(t) = r0 + εu(t) for a body initially at rest,
(p(0) = 0), the curve in the Lie algebra that describes the body velocity is
given by

ξa(t) = −εAa
α(r0)u̇

α + ε2
(
−∂Aa

α

∂rβ
|r0 u̇αu̇β + (I−1p2)α(t)

)

+ ε3
(
−1

2

∂2Aa
α

∂rβrγ
|r0uβuγ u̇α + (I−1p3)a +

∂(I−1p2)a

∂rα
uβ

)
+ · · · .

where p(t) = p0 + εp1 + ε2p2 + · · · is defined as above.
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In exponential coordinates the group variables are given, for z(0) = 0, by

za(t) = 0 + ε
(−Aa

αu
α|t0
)

+ ε2
(
−1

2
DAa

αβ

∫ t

0

uαu̇βdτ + (I−1)abDαβb

∫ t

0

∫ τ

0

u̇αu̇βdsdτ

)

+ ε3
(
−1

3

(
∂DAa

αγ

∂rβ
− [Aβ , DAαβ ]

)∫ t

0

uαuβu̇γdτ

+

(
∂(I−1)ab

∂rβ
− [Aβ , (I

−1)ab]

)∫ t

0

uβpbdτ + (I−1)ab
∫ t

0

p3bdτ

)

− ε2
(
1

2

∂Aa
α

∂rβ
(uαuβ)|t0 + [Aα, Aβ ]

auα(0)uβ |t0
)
+ ε3R+ · · · ,

(9.7.2)

where the cubic term R integrates to 0 over one period when cyclic inputs
are used. As Ostrowski observes, we note that the ε2 term consists of an area
term and a term driven by the momentum, thus decoupling into kinematic
and dynamics pieces. We refer to Ostrowski [2000] for specific algorithms
and examples generated using this formalism.
For related work on trajectory generation for nonholonomic systems see

Morgansen [2001]. Also see recent work on locomotion for underactuated
mechanical systems in Vela, Morgansen, and Burdick [2002] as well as
Bullo [2001], Bullo and Lynch [2001], and the references therein.

Using the expansions above one can choose controls giving local changes
in position and momentum using small-scale cyclic inputs. These small
changes can then be concatenated to drive the system toward a given goal.
In Ostrowski [2000], to which we refer the reader for further details, steering
of the snakeboard toward a given target is discussed.
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Arnold, V. I. [1966a], Sur la géométrie differentielle des groupes de Lie de dimension
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Progress in Mathematics, Volume 144, 341–364. Birkhäuser, Basel.
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inverted pendulum on, 475
with pendulum, 41, 158, 164

cart with pendulum
on inclined plane, 469

Cartan
magic formula, 92, 95
structure equations, 118

Casimir function, 139, 167
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methods, 467
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covariant derivative, 115, 249
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critical action

principle of, 8
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cyclic variable, 170

D
Darboux’s theorem, 130
degree, 73
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coordinate transformations,
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orientable, 93

differentiable map, 72
derivative, 72

differentiable variety, 68
differential, 73
differential form, 83
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differential forms, 89
differentials, 73
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directional derivative, 73, 91
discrete mechanics, 193
discrete nonholonomic systems,
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dissipation, 495

Rayleigh, 134
dissipation function, 134
dissipation-induced instabilities,
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distribution, 97, 99

foliation, 100
integrable, 100
invariant, 255
involutive, 100

nonsingular, 100
regular, 100
singular, 100
smooth, 99

divergence, 89, 93
theorem, 98

dot product, 89
double bracket, 50
drift vector field, 200
dynamic bifurcation, 56
dynamic Heisenberg system, 31
dynamic nonholonomic, 237
dynamic nonholonomic

averaging, 512
dynamic nonholonomic

equations of motion, 12
dynamic phase, 186
dynamical system, 55

E
Ehresmann

connection, 110, 297
energy, 10

kinetic, 131
potential, 131

energy-based methods, 467
energy-Casimir method, 167
energy-momentum method,
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nonholonomic , 411

equations
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equilibrium, 65
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equilibrium controllability, 357
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Euler equations, 138
Euler–Lagrange equation

reduced, 171
Euler–Lagrange equations, 7, 131
Euler–Poincaré–Suslov

equations, 436
Euler–Poincaré–Suslov problem,
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Euler–Poincaré equations, 140
evolution operators, 58
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existence

global, 64
local, 60
Peano theorem, 61
theorems, 60

exosystem, 321
exponential expansion, 513
extended systems, 319
exterior derivatives, 85
external forces, 135
extremal trajectory, 375

abnormal, 376
normal, 376

F
falling cat problem, 368, 369
falling cat theorem, 395
falling rolling disk, 22, 288
feedback design, 470
feedback linearization, 221
fiber, 183
fiber bundle, 109

base, 184
base space, 109
bundle coordinates, 111
projection, 109
structure group, 109
vertical, 184
vertical space, 111

fiber derivative, 131

fibration
Hopf, 156

field
magnetic, 155
vector, 57

Filippov definition, 325
first derived algebra, 316
first integral, 64
first variation equation, 166
flat, 89
flow, 59, 64, 72, 128

geodesic, 179
flow box, 62
flow property, 73
flutter, 57
foliation, 100
follower-load, 57
force field, 135
force-controlled, 495
force-controlled case

oscillation-mediated control,
497

form
canonial, 129
closed, 86
degree, 83
differential, 83
exact, 86

free rigid body, 36
Frobenius’s theorem, 99, 100
fundamental theorem of

calculus, 98

G
gauge invariance, 131
Gauss’s principle of least

constraint, 360
general linear group, 69
generalized coordinates, 2, 239
generalized force vector, 239
generalized Heisenberg system,

316
generator
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558 Index

geodesic flow, 179
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geometric phase,
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global change of variables, 99
global existence, 64
global uniqueness, 62
gradient, 89
gradient flow, 99
gradient vector field, 99
gravitating fluid masses, 167
gravitation

Newton’s law, 58
Green’s theorem, 98
Gronwall’s inequality, 61
group, 102, 183

action, 107
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Heisenberg, 104
holonomy, 122
Lie, 102
orbit, 107
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group action, 254
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radius of, 39

H
Hamel equations, 142
Hamilton’s equations, 127
Hamilton’s principle, 6, 8, 131
Hamilton–Jacobi Equation, 458
Hamilton–Pontryagin principle,

137
Hamiltonian, 132
Hamiltonian control system, 225
Hamiltonian control systems,
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Hamiltonian vector field, 127
Hamiltonization, 454
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Heisenberg

holonomy for, 122
Heisenberg algebra, 30, 105

Heisenberg control system, 122
Heisenberg group, 104
Heisenberg system,

30, 203, 323, 329, 375
higher-order variational problem,

405
Hodge star, 89
holonomic, 11, 240
holonomic control systems, 357
holonomic systems, 1
holonomy, 181

Heisenberg control system,
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holonomy groups, 122
Hopf bifurcation, 56
Hopf fibration, 156
horizontal lift, 112, 117
horizontal part, 112
horizontal space, 111, 116
horizontal symmetry, 263
hyperbolic, 76
hyperregular Lagrangian, 132

I
identification, 201
inclined plane

cart with pendulum on, 469
index, 74
inertial frame, 3
infinitesimal equivariance, 150
infinitesimal generator, 107
infinitesimally invariant

Lagrangian, 255
input–output stability, 201
integrable, 100, 240
integrable transport case

nonholonomic
energy-momentum
method, 415

integral, 64
integral curve, 72

vector field, 60
integral invariant, 437
interior products, 85
internal, 183
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invariant distribution, 255
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inverse function theorem, 93
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involutive, 92, 100
isoholonomic problem, 369
isotropic submanifold, 133
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Jacobi identity, 94, 103, 126
Jacobi–Deprit

node elimination, 154
Jacobi–Lie

bracket, 91
Jacobi–Lie bracket, 33, 91
Jacobi–Liouville theorem, 154
Jacobian, 93
Jacobiator, 290, 295, 300

K
Killing form, 104
Killing vector field, 360
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kinematic control system, 383
kinematic controlled disk, 20
kinematic nonholonomic, 237
kinematic nonholonomic control

systems, 315
kinematic sub-Riemannian

optimal control
problem, 381

kinetic energy, 6, 131
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Lagrangian for, 24

L
Lagrange multiplier, 12
Lagrange problem, 368
Lagrange’s equations, 239

Lagrange–d’Alembert, 236
Lagrange–d’Alembert equation

reduced, 256
Lagrange–d’Alembert equations,

13, 241
Lagrange–d’Alembert principle,

8, 13, 136, 246
Lagrange–d’Alembert–Poincaré,

282
Lagrange–Dirichlet criterion, 167
Lagrange–Dirichlet method, 167
Lagrange–Poincaré equations,
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Lagrangian, 6, 10, 131, 239

constrained reduced, 256
cyclic, 158
hyperregular, 132
infinitesimally invariant, 255
invariant, 255
knife edge, 24
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reduced, 162, 256
regular, 10
special controlled, 475
submanifold, 133

Lagrangian control systems, 224
Lagrangian mechanics, 131
Lax pair representation, 50
leaf

symplectic, 130
least action principle, 8
least time principle, 9
left

action, 107
left and right translation maps,

138
left-invariant, 108
Legendre transform, 132
Legendre transformation, 10
Leibniz’s rule, 126
level set

differentiable manifold, 68
tangent space of, 70

Levi-Civita
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representation, 103
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Lie bracket, 103
Lie derivative, 90, 92

algebraic definition, 92
dynamic definition, 90

Lie group, 102
general linear group, 69
matrix, 102
matrix group, 68, 69
matrix groups, 71
orthogonal group, 69
special orthogonal group,

104
symplectic group, 104
unimodular, 437

Lie–Poisson bracket, 137, 138
Lie–Poisson equations, 140
Lie–Poisson reduction, 138, 152
linear

connection, 114
equations, 65

Liouville’s theorem, 129, 437
local

existence, 60
uniqueness, 60
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differentiable manifold, 67
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equilibrium manifold, 343

locally asymptotically
stabilizable, 343

locally stable, 343
locked inertia tensor, 157, 169
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Lorentz force law, 155
Lyapunov methods

for asymptotic stability, 220
Lyapunov stable, 75
Lyapunov’s theorem, 166
Lyapunov–Malkin method, 431

Lyapunov–Malkin theorem,
80, 81, 415, 421, 422, 433

M
magic formula

Cartan, 92, 95
magnetic field, 155
magnetic monopole, 101
magnetic term, 172
Magnus representation, 211
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differentiable, 66
invariant, 76
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symplectic, 127
unstable, 76
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map
degree of, 73
differentiable, 71, 72
momentum, 149
multilinear, 83
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mass frame
reduction to center, 179

mass matrix, 172
matching, 470, 472, 477

controlled Lagrangian, 472
matrix group, 68
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matrix Lie group, 69, 102
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Maurer–Cartan equation, 119
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momentum equation, 28, 259,
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N
Newton’s law, 4, 135
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second, 59

Newton’s second law, 59
Newton–Euler balance law, 5
Newtonian vector field, 135
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Jacobi–Deprit, 154
Noether’s theorem, 149, 150
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nonabelian Chaplygin control
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integrable transport case,
415

nonintegrable transport
case, 415

nonpure transport case, 421
pure transport case, 415, 416

nonholonomic equation, 241
nonholonomic mechanical

systems
accessibility, 339
controllability, 339
stabilizability, 339

nonholonomic momentum map,
262

nonholonomic optimal control,
409

nonholonomic principle, 240, 241
nonholonomic stabilization

techniques, 319
nonholonomic systems, 1, 478

on Riemannian manifold,
361

stability of, 411
nonholonomic systems as limits,

459
nonholonomic systems on

Riemannian manifold
reduction for, 361

nonholonomic systems with
symmetries, 279

nonholonomically constrained
particle, 275

nonintegrable, 240
nonintegrable transport case

nonholonomic
energy-momentum
method, 415

nonlinear control, 199
nonlinear control systems, 199
nonlinear nonholonomic

constraints, 242
nonlinear stability, 75, 201
nonlinearly (asymptotically)

stabilizable, 218
nonpure transport case

nonholonomic
energy-momentum
method, 421

nonsingular, 100
nonsmooth stabilization, 346
normal extremal trajectory, 376
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normal form, 344

O
one-parameter group, 64
optimal control,

201, 367, 374, 378
optimal control of mechanical

systems, 402
optimal control on Lie groups,

407
optimal control on Riemannian

manifolds, 404
optimal steering problem, 34, 375
orbit

group, 107
orbit reduction theorem, 154
orbit symplectic structure, 153
orientable manifold, 93
orthoganal group, 69
oscillation-mediated control

acceleration-controlled case,
501

force-controlled case, 497
output regulation, 201

P
parallel translation, 122
parallel transported, 114, 184
parameters

bifurication, 56
control, 55
system, 55

particle in a magnetic field,
156, 391

path planning, 201
Peano existence theorem, 61
pendulum on a cart, 41, 158, 164
phase

dynamic, 186
geometric, 182, 186, 187
shift, 184

phase plane analysis, 54
phase space, 200
phases, 181
ϕ-related, 91

Picard iteration, 61
piecewise analytic

stabilizing controllers, 350
pitchfork bifurcation, 56
planar skater, 181, 185
Poincaré lemma, 86, 90, 95, 99
Poincaré–Andronov–Hopf

bifurcation, 56
Poisson action, 149
Poisson bracket, 10
Poisson bracket operation, 127
Poisson geometry of

nonholonomic system,
290

Poisson map, 138
Poisson reduction, 152, 301
Pontryagin maximum principle,

375, 376
potential amended, 169, 171,

180
potential and kinetic shaping,

228
potential energy, 6, 131
principal

bundle, 110, 116
connection, 116

principal kinematic case, 257
principle

of critical action, 8
of least action, 8
of least time, 9

product
cross, 89
dot, 89
tensor, 84

projection, 111
fiber bundle, 109
tangent bundle, 70

pull back, 85, 91
pure transport case

nonholonomic
energy-momentum
method, 415, 416

purely kinematic case, 257
push forward, 85, 91
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Q
quotient spaces, 108

R
racer

roller, 46
Tennessee, 46

radius of gyration, 39
rank condition, 68
rattleback, 47, 238, 434
Rayleigh dissipation, 134, 497
Rayleigh dissipation function,

228
reachable set, 202
reachable subspace, 204
rectification, 62
reduced amended potential, 416
reduced bundle, 116
reduced constrained energy, 287
reduced constrained equations in

mechanical form, 289
reduced constrained Hamiltonian

snakeboard, 310
reduced Euler–Lagrange

equation, 171
reduced Lagrange–d’Alembert

equation, 256
reduced Lagrangian, 162, 256
reduced nonholonomic equation,

281
reduced velocity phase space,

256
reduction

for nonholonomic systems
on Riemannian
manifold, 361

reduction by rotations, 180
reduction of dynamics, 139
reduction to center

of mass frame, 179
regular, 100
regular Lagrangian, 10
relative equilibrium,

168, 173, 286, 413, 416
rheonomic, 12

Riemannian connection, 116, 359
Riemannian manifold, 97, 99, 357

nonholonomic systems on,
361

Riemannian metric, 99
Riemannian symmetric space,

387
right action, 107
right-invariant, 108
rigid body, 36, 167

coupled planar, 173
with rotor, 42, 164, 470

rigid body mechanics, 4
rigid body motion, 106
rigid extremal, 393
rigid variations, 169
robustness, 201
roller racer, 46, 430
rolling ball, 37, 363, 371, 409
rolling disk, 370, 418
rolling wheel, 354
rotating hoop

with ball, 53
rotational coadjoint orbits, 153
rotor

rigid body, 42, 164
Routh stability criterion, 173
Routhian

classical, 170

S
scleronomic, 12
semi-simple, 104
shape, 183
shape metric, 481
shape space, 170, 187, 255
shape variations, 169
sharp, 89
shift phase, 184
skew, 83
skew symmetry assumption, 414
sliding mode, 324
small-time local controllability,

205
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small-time locally controllable,
205

smooth distribution, 99
smooth stabilization to a

manifold, 342
snakeboard

constraint submanifold, 308
reduced constrained

Hamiltonian, 310
Snel’s law, 9
Snell’s law, 9
space

shape, 170, 187
tangent, 70

spatial velocity, 108, 162
special controlled Lagrangian,

475
special orthogonal group, 104
spectral stability, 75
stability, 56, 75, 166

asymptotically stable, 75
Lyapunov, 75
nonlinearly, 75
of nonholonomic systems,

411
spectral, 75

stability criterion
Routh’s, 173

stabilizability
nonholonomic mechanical

systems, 339
stabilization, 218, 478

of controlled Lagrangian
systems, 467

class of nonholonomic
systems, 478

of unicycle with rotor, 479
to an equilibrium manifold,

345
stabilization techniques, 218
stabilizing controllers

piecewise analytic, 350
stable equilibrium manifold

locally asymptotically, 343
stable manifold, 76

state space, 200

static

bifurcation, 56

steady motion, 173

Stokes’s theorem, 97, 98

classical, 98

strong accessibility, 204

strong accessibility distribution,
204

strongly accessible, 204

structure constants, 138

structure equations

Cartan, 118

structure group

fiber bundle, 109

sub-Riemannian geodesic
problem, 382

sublinear, 64

submanifold, 68

coisotropic, 133

isotropic, 133

Lagrangian, 133

submersion, 68

summation convention, 73, 83

superarticulated, 467

Suslov Problem, 438

suspension trick, 62

symmetric product, 358

symmetric space, 387

symmetries, 360

symplectic action, 152

symplectic group, 104

symplectic leaf, 130, 154

symplectic manifold, 127

symplectic reduction theorem,
153

symplectic structure

orbit, 153

system

dynamical, 55

parameters, 55

systems on Lie groups, 215

systems with symmetry, 254
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T
tangent bundle, 70
tangent bundle projection, 70
tangent coordinates, 131
tangent map, 72
tangent space, 70

to level set, 70
tangent spaces to matrix groups,

71
tangent vector, 70
τ -horizontal projection, 474
τ -horizontal space, 474
τ -vertical projection operator,

474
Tennessee racer, 46
tensor, 83

curvature, 116
product, 84
torsion, 116

time-varying feedback, 319
Toda lattice, 49, 439, 440
torsion, 116
torsion tensor, 116
tracking, 323
trajectory planning, 214

U
underactuated, 467
underactuated Lagrangian

systems
control of, 468

unicycle, 208, 211, 370
unicycle with rotor, 23

stabilization of, 479
unimodular Lie group, 437
uniqueness

global, 62
local, 60
theorems, 60

unstable manifold, 76

V
variable

cyclic, 170
variational nonholonomic, 237

variational nonholonomic
equations, 14

variational nonholonomic
problems, 367

variational nonholonomic
systems, 378

variational principle, 131
variational problems, 244
variations

rigid, 169
shape, 169

vector bundle, 110
vector calculus, 87
vector field, 57, 72

autonomous, 60
equivariant, 108
gradient, 99
Hamiltonian, 127
integral curve, 60
left-invariant, 108
Newtonian, 135
right-invariant, 108
second order, 132
vertical, 132

vector subbundle, 99
vector tangent, 70
velocity

body, 108
spatial, 108, 162

vertical, 132, 184
vertical lift, 135
vertical rolling disk, 16, 269
vertical space, 111
vertical vector field, 132
virtual displacement, 7, 241
volume forms, 93
volume-preserving, 93

W
wedge product, 84
Wei–Norman representation, 207
Wei–Norman system, 215
Willebord Snel van Royen, 9
wobblestone, 238
Wong’s equation, 395


	Preface
	Control Theory and Nonholonomic Systems. 
	Optimal Control. 
	Physical Examples. 
	A Path Through the Book. 
	Scope of the Book. 
	Prerequisites. 
	A Brief Rundown of the Chapters in This Book. 
	Acknowledgments. 

	Preface to the Second Edition
	Contents
	A Diagram for the Book
	1 Introduction
	1.1 Generalized Coordinates and Newton–Euler Balance
	Coordinates and Kinematics. 
	Newton's Laws. 
	Remarks on Rigid Body Mechanics. 
	Newton–Euler Balance Laws. 

	1.2 Hamilton's Principle
	Mechanical Systems with External Forces. 
	Remarks on the History of Variational Principles. 
	Energy and Hamilton's Equations. 

	1.3 The Lagrange–d'Alembert Principle
	Holonomic and Nonholonomic Constraints. 
	Dynamic Nonholonomic Equations of Motion. 
	Lagrange–d'Alembert Principle. 
	Energy. 
	Nonholonomic Mechanical Systems with External Forces. 
	Variational Nonholonomic Equations. 

	1.4 The Vertical Rolling Disk
	Geometry and Kinematics. 
	Dynamics of the Controlled Disk. 
	The Kinematic Controlled Disk. 
	The Variational Controlled System. 

	1.5 The Falling Rolling Disk
	Unicycle with Rotor. 

	1.6 The Knife Edge
	The Nonholonomic Case. 
	The Variational Nonholonomic Case. 

	1.7 The Chaplygin Sleigh
	1.8 The Heisenberg System
	The Heisenberg Algebra. 
	The Dynamic Heisenberg System. 
	Optimal Control for the Heisenberg System. 
	Relationship Between the Vertical Disk and Heisenberg System. 
	Aside on the Jacobi–Lie Bracket. 
	Return to the Heisenberg System. 

	1.9 The Rigid Body
	The Free Rigid Body. 
	The Rolling Ball. 
	A Homogeneous Ball on a Rotating Plate. 
	The Inverted Pendulum on a Cart. 
	Rigid Body with a Rotor. 

	1.10 The n-dimensional Rigid Body
	Right Invariant System. 
	Relating the Left and the Right Rigid Body Systems. 
	Remark. 

	1.11 The Roller Racer
	1.12 The Rattleback
	1.13 The Toda Lattice
	Discussion. 
	Four-Dimensional Toda. 


	2 Mathematical Preliminaries
	2.1 Vector Fields, Flows, and Differential Equations
	Dynamical Systems. 
	Equilibrium Points, Stability, and Bifurcation. 
	Vector Fields. 
	Newton's Law of Gravitation. 
	Evolution Operators. 
	Newton's Second Law. 
	Integral Curves of Vector Fields. 
	Existence and Uniqueness Theorems. 
	Dependence on Initial Conditions and Parameters. 
	Suspension Trick. 
	Rectification. 
	Global Uniqueness. 
	Completeness. 
	Criteria for Completeness. 
	Linear Equations. 

	2.2 Differentiable Manifolds
	Level Sets as Differentiable Manifolds in Rn.  
	Matrix Groups. 
	The Orthogonal Group. 
	Tangent Vectors to Manifolds. 
	The Tangent Bundle Projection. 
	Manifolds with Boundary. 
	Tangent Spaces to Level Sets. 
	Tangent Spaces to Matrix Groups. 
	Differentiable Maps. 
	Vector Fields and Flows. 
	Differentials. 
	Degree of a Map. 

	2.3 Stability
	Spectral Stability. 
	Invariant Manifolds. 
	The LaSalle Invariance Principle. 

	2.4 Center Manifolds
	Center Manifold Theory in Stability Analysis. 
	The Lyapunov–Malkin Theorem. 
	Historical Note. 
	A Class Satisfying the Lyapunov–Malkin Theorem. 

	2.5 Differential Forms
	Basic Definitions. 
	Tensor and Wedge Products. 
	Pull Back and Push Forward. 
	Interior Products and Exterior Derivatives. 
	Vector Calculus. 

	2.6 Lie Derivatives
	Jacobi–Lie Brackets. 
	Algebraic Definition of the Lie Derivative. 
	Cartan's Magic Formula. 
	Volume Forms and Divergence. 

	2.7 Stokes's Theorem, Riemannian Manifolds, Distributions
	The Integral Theorems of Calculus. 
	Change of Variables. 
	Riemannian Manifolds. 
	Frobenius's Theorem. 

	2.8 Lie Groups
	Lie Algebras. 
	The Special Orthogonal Group. 
	The Symplectic Group. 
	The Heisenberg Group. 
	The Euclidean Group. 
	Remark. 
	Group Actions. 
	Orbits. 
	Infinitesimal Generator. 
	Left- and Right-Invariant Vector Fields. 
	Spatial and Body Velocities. 
	Adjoint and Coadjoint Actions. 
	Quotient Spaces and Equivariance. 

	2.9 Fiber Bundles and Connections
	Fiber Bundles. 
	Connections. 
	Horizontal Lift. 
	Curvature. 
	Linear Connections, Affine Connections, and Geodesics. 
	Affine Connections and the Covariant Derivative. 
	Curvature and Torsion. 
	Riemannian Connections. 
	Principal Connections. 
	Remark. 
	Relationship of Riemannian Curvature to the Curvature of a Principal Connection. 
	Riemmannian Curvature in Local Coordinates. 
	The Weitzenböck Connection. 
	The Maurer–Cartan Equations. 
	Bianchi Identities. 
	Local Formulas for the Connection. 
	Local Formulas for the Curvature. 
	Parallel Translation and Holonomy Groups. 
	Holonomy for the Heisenberg Control System. 


	3 Basic Concepts in Geometric Mechanics
	Geometric Mechanics. 
	3.1 Symplectic and Poisson Manifolds and HamiltonianFlows
	The Flow of a Hamiltonian Vector Field. 

	3.2 Cotangent Bundles
	3.3 Lagrangian Mechanics and Variational Principles
	Second-Order Systems. 
	Additional Holonomic Constraints. 
	Lagrangian Submanifolds. 
	Invariance Under Coordinate Changes and Rayleigh Dissipation. 

	3.4 Mechanical Systems with External Forces
	Newton's Laws. 
	Lagrange–d'Alembert Principle. 

	3.5 The Hamilton–Pontryagin Principle
	3.6 Lie–Poisson Brackets and the Rigid Body
	The Lie–Poisson Bracket. 
	Lie–Poisson Reduction. 
	Euler Equations. 
	Casimir Functions. 
	Reduction of Dynamics. 

	3.7 The Euler–Poincaré Equations
	3.8 The Hamel Equations
	Quasivelocities. 
	Nonholonomic Bases and Frames. 
	Object of Anholonomy. 
	Transpositional Relations. 
	Derivation of Hamel's Equations Using Hamilton's Principle. 
	Derivation of Hamel's Equations Using Hamilton–Pontryagin's Principle. 

	3.9 Momentum Maps
	Definition of Momentum Maps. 
	The Construction of Momentum Maps. 
	Equivariance. 
	The Lagrangian Side. 

	3.10 Symplectic and Poisson Reduction
	Poisson Reduction. 
	Lie–Poisson Reduction. 
	Symplectic Reduction. 
	Coadjoint Orbits. 
	Orbit Reduction Theorem. 

	3.11 A Particle in a Magnetic Field
	3.12 The Mechanical Connection
	Locked Inertia Tensor. 

	3.13 The Lagrange–Poincaré Equations
	Derivation of the Lagrange–Poincaré Equations. 
	Explicit Form of the Reduced Lagrangian. 

	3.14 The Energy-Momentum Method
	The Energy–Momentum Method for Holonomic Systems. 
	Lagrange–Dirichlet Criterion. 
	Energy–Casimir method. 
	The Routhian. 

	3.15 Coupled Planar Rigid Bodies
	Summary of Results. 
	Remarks. 
	Reduction to the Center of Mass Frame. 
	Reduction by Rotations. 

	3.16 Phases and Holonomy, the Planar Skater
	Historical Perspective on Geometric Phases. 
	The Role of Geometry in Control Theory. 
	Connections and Bundles. 
	Connections from Constraints: Momentum and Rolling. 
	Elroy's Beanie. 

	3.17 Rigid Body Equations: Symmetric Representation
	The System SRBn. 
	The System RightSRBn. 
	Relating the Left and the Right Systems. 
	Local Equivalence of the Rigid Body and the Representation of the Symmetric Rigid Body Equations. 
	Example of SO(3). 
	Example of SO(3). 
	Example of SO(3). 
	The Hamiltonian Form of SRBn. 

	3.18 An Overview of Discrete Mechanics
	3.19 The Moser–Veselov and the SymmetricRepresentations of the Discrete Rigid Body
	Review of the Moser–Veselov Discrete Rigid Body. 
	MV-Algorithm 1. 
	Remark. 
	MV-Algorithm 2. 
	Discrete Variational Principle. 
	The Symmetric Representation of the Discrete Rigid Body. 
	Convergence of the Discrete System to the Continuous System. 


	4 An Introduction to Aspects of Geometric ControlTheory
	4.1 Nonlinear Control Systems
	Nonlinear Control Systems. 
	General Remarks on Control Systems. 

	4.2 Controllability and Accessibility
	Controllability. 
	Accessibility. 
	Accessibility and Controllability. 
	Controllability Rank Condition. 
	Strong Accessibility. 
	Small-Time Local Controllability. 

	4.3 Representation of System Trajectories
	The Wei–Norman Representation—Coordinates of the Second Kind 
	Approximations 
	The Magnus Representation—Coordinates of the First Kind. 

	4.4 Averaging and Trajectory Planning
	The Averaging Theorem. 
	Systems on Lie Groups. 
	Motion Planning. 

	4.5 Stabilization
	Stabilization Techniques. 
	Brockett's Necessary Conditions. 
	Lyapunov Methods for Asymptotic Stability. 
	The Center Manifold. 
	Feedback Linearization. 

	4.6 The Bundle Picture in Control and Symmetries
	4.7 Lagrangian, Hamiltonian, and Poisson Control Systems
	Lagrangian Control Systems. 
	Affine Hamiltonian Control Systems. 
	Example 1. 
	Example 2. 
	Potential and Kinetic Shaping. 
	Lagrangian Setting. 


	5 Nonholonomic Mechanics
	Some History. 
	Dynamic Nonholonomic vs. Kinematic Nonholonomic. 
	Examples of Nonholonomic Systems. 
	5.1 Equations of Motion
	Lagrange's Equations. 
	Constrained Systems. 
	The Nonholonomic Principle. 
	Comments on the Derivation. 
	Nonlinear Nonholonomic Constraints. 
	Variational Problems. 

	5.2 The Lagrange–d'Alembert Principle
	The Lagrange–d'Alembert Principle. 
	Structure of the Equations of Motion. 
	The Constrained Lagrangian. 
	Intrinsic Formulation of the Equations. 
	Affine Constraints. 
	Equations of Motion of a Nonholonomic System with Lagrange Multipliers. 

	5.3 Projected Connections and Newton's Law
	5.4 Systems with Symmetry
	Group Actions and Invariance. 
	Invariance Properties. 
	The Principal or Purely Kinematic Case. 

	5.5 The Momentum Equation
	The Derivation of the Momentum Equation. 
	The Momentum Equation in a Moving Basis. 
	The Momentum Equation in Body Representation. 

	5.6 Examples of the Nonholonomic Momentum Map
	Remark. 

	5.7 More General Nonholonomic Systems with Symmetries
	The Nonholonomic Connection. 
	The Reduced Nonholonomic Equations. 
	Remark. 
	Relative Equilibria. 
	The Constrained Routhian. 
	The Reduced Constrained Energy. 
	Reduced Constrained Equations in Mechanical Form. 

	5.8 The Poisson Geometry of Nonholonomic Systems
	Poisson Formulation. 
	Remarks. 
	A Formula for the Constrained Hamilton Equations. 
	Proof. 
	Equivalence of the Poisson and Lagrange–d'Alembert Formulations. 
	Proof. 
	A Formula for the Jacobiator. 
	Poisson Reduction. 
	The Equivalence of Poisson and Lagrangian Reduction. 
	Proof. 
	Remark. 
	The Snakeboard Constraint Submanifold. 
	The Snakeboard Reduced Constrained Hamiltonian. 
	The Snakeboard Reduced Poisson Structure Matrix. 
	The Reduced Constrained Hamilton Equations. 


	6 Control of Mechanical and Nonholonomic Systems
	6.1 Background in Kinematic NonholonomicControl Systems
	Nonholonomic Motion Planning. 
	Chained Systems. 
	Extended Systems. 
	Nonholonomic Stabilization Techniques. 

	6.2 Stabilization of the Heisenberg System
	6.3 Stabilization of a Generalized Heisenberg System
	Lie-Algebraic Generalization. 
	The General System. 
	Controls. 
	Case I: 
	Case II: 
	Case III: 
	The Stabilization Algorithm. 

	6.4 Controllability, Accessibility, and Stabilizability
	6.5 Smooth Stabilization to a Manifold
	Normal Form Equations. 
	Stabilization to an Equilibrium Manifold. 

	6.6 Nonsmooth Stabilization
	Piecewise Analytic Stabilizing Controllers. 
	Relation to Geometric Phases. 
	Control algorithm for v*. 

	6.7 Nonholonomic Systems on Riemannian Manifolds
	Holonomic Control Systems. 
	Equilibrium Controllability. 
	Nonholonomic Systems. 
	Symmetries and Conservation Laws. 
	Reduction for Nonholonomic Systems on Riemannian Manifolds. 


	7 Optimal Control
	7.1 Variational Nonholonomic Problems
	The Lagrange Problem. 
	Isoholonomic Problem (Falling Cat problem). 
	Local Solution. 

	7.2 Optimal Control and the Maximum Principle
	A General Formulation of Optimal Control Problems. 
	Optimal Steering Problem. 
	The Pontryagin Maximum Principle. 

	7.3 Variational Nonholonomic Systems and Optimal Control
	7.4 Kinematic Sub-Riemannian Optimal Control Problems
	The Kinematic Sub-Riemannian Optimal Control Problem. 
	Assumption. 
	Formulation on Riemannian Manifolds. 
	Necessary Conditions on a Compact Semisimple Lie Group. 
	The Case of Symmetric Space Structure. 

	7.5 Optimal Control and a Particle in a Magnetic Field
	Solution by the Maximum Principle. 
	Rigid Extremals. 
	The Falling Cat Theorem. 
	Remark. 

	7.6 Optimal Control and the n-dimensional Rigid BodyEquations
	Remark. 
	Merging the Left and Right Problems. 

	7.7 Discrete Optimal Control Problems and the Rigid Body
	7.8 Optimal Control of Mechanical Systems
	Optimal Control on Riemannian Manifolds. 
	Optimal Control on Lie Groups 
	Nonholonomic Optimal Control and the Rolling Ball. 


	8 Stability and Structure of Nonholonomic Systems
	8.1 The Nonholonomic Energy-Momentum Method
	Some History of the Energy-Momentum Method. 

	8.2 Overview
	Skew Symmetry Assumption. 

	8.3 The Pure Transport Case
	Energy-Momentum for The Pure Transport Case. 
	Remark. 

	8.4 The Nonpure Transport Case
	The Nonholonomic Energy-Momentum Method. 
	

	8.5 General Case—the Lyapunov–Malkin Method
	Linearization Computation. 
	Application of the Lyapunov–Malkin Theorem. 

	8.6 Euler–Poincaré–Suslov Equations
	Formulation of the Equations. 
	Unconstrained Case. 
	Constrained Case. 
	The Generalized Suslov problem. 
	Asymptotic Dynamics, the Chaplygin Sleigh, and the TodaLattice. 

	8.7 Invariant Measure in Systems with Internal Degreesof Freedom
	Systems with One-Dimensional Shape Space. 
	Systems with Conserved Momentum. 
	The Routh Problem. 
	The Falling Disk. 
	The 3D Chaplygin Sleigh with an Oscillating Mass. 
	The Chaplygin Sphere. 

	8.8 Chaplygin Sleigh with an Oscillator and Integrability
	The Lagrangian, Nonholonomic Connection, and ReducedDynamics. 
	Relative Equilibria of the Sleigh-Mass System. 
	The Discrete Symmetries and Integrability. 

	8.9 Hamiltonization
	Chaplygin's Analysis. 
	Chaplygin Hamiltonization for the Knife Edge. 
	Chaplygin's Reducing Multiplier in n dimensions. 

	8.10 The Hamilton–Jacobi Equation
	8.11 Nonholonomic Systems as Limits
	8.12 Discrete Nonholonomic Systems

	9 Energy-Based Methods for Stabilization of ControlledLagrangian Systems
	9.1 Controlled Lagrangian Methods
	The Setup for Control of Underactuated Lagrangian Systems. 

	9.2 Feedback Design and Matching
	Controlled Lagrangians and Matching. 
	The Setting. 
	Horizontal and Vertical Spaces. 
	The Controlled Lagrangian. 
	Special Controlled Lagrangians. 
	The Lagrangian. 
	The Controlled Lagrangian. 
	Matching. 
	The Control Law. 
	Stabilization. 

	9.3 Stabilization of a Class of Nonholonomic Systems
	Elimination of the Momentum Variables. 

	9.4 Nonholonomic Stabilization with Controls in theSymmetry Direction
	Stabilization of a Falling Disk 

	9.5 Discrete Shaping
	Remark. 
	Remark. 
	Remark. 

	9.6 Averaging for Controlled Lagrangian Systems
	A General Strategy. 
	Controlled Lagrangian Systems—with and without Dissipation. 
	Averaging Theory. 
	Rayleigh Dissipation. 
	Oscillation-Mediated Control: The Force-Controlled Case 
	Oscillation-Mediated Control: The Acceleration-Controlled Case. 
	Hamiltonian Form. 
	An Area Rule for Averaged Acceleration-Controlled Lagrangian Systems. 
	Stability of Acceleration-Controlled Lagrangian Systems withOscillatory Inputs. 
	Comparing Force Control and Acceleration Control of Mechanical Systems. 

	9.7 Dynamic Nonholonomic Averaging
	Application of the Exponential Expansion. 


	References
	Index

