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Abstract A Hamiltonian formulation for three-dimensional nonlinear flexural-
gravity waves propagating at the surface of an ideal fluid covered by a thin ice
sheet is presented. This is accomplished by introducing the Dirichlet-Neumann
operator which reduces the original Laplace problem to a lower-dimensional system
involving quantities evaluated at the fluid-ice interface alone. The ice-sheet model
is based on the special Cosserat theory for hyperelastic shells, which yields a
conservative and nonlinear expression for the bending force. By applying a Hamil-
tonian perturbation approach suitable for such a formulation, weakly nonlinear
envelope equations for small-amplitude waves are derived. The various steps of
this formal derivation are discussed including the modulational Ansatz, canonical
transformations and expansions of the Hamiltonian. In particular, the contributions
from higher harmonics are examined. Both cases of finite and infinite depth are
considered, and comparison with direct numerical simulations is shown.

1 Introduction

Modulation theory is a well-established method in applied mathematics to study
the long-time evolution and stability of oscillatory solutions to partial differential
equations. Typical equations to which the theory is applied are nonlinear dispersive
evolution equations describing wave phenomena that arise in physical applications.
Examples include ocean waves as well as waves in optics and plasmas. The usual
modulational Ansatz is to anticipate a weakly nonlinear monochromatic form for
solutions, and to derive equations describing the evolution of their envelope. In
two space dimensions (i.e. one-dimensional wave propagation), the first nontrivial
terms typically yield the nonlinear Schrodinger (NLS) equation [38], while the
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Benney—Roskes—Davey—Stewartson (DS) system arises in three dimensions. The
rigorous justification of these models is a challenging mathematical problem
[13, 15, 27, 35] and recent breakthroughs have been made in the two-dimensional
case [16, 40].

Of particular interest here are hydroelasticity problems dealing with the interac-
tion between moving fluids and deformable bodies. Such problems not only entail
considerable mathematical challenges but also have many engineering applications
[26]. An important area of application is that devoted to hydroelastic (or flexural-
gravity) waves in polar regions where water is frozen in winter and the resulting ice
cover is transformed e.g. into roads and aircraft runways, and where air-cushioned
vehicles are used to break the ice. A major difficulty in this problem has to do
with modeling the ice deformations subject to water wave motions [36]. Theories
based on potential flow and on the assumption that the ice cover may be viewed as
a thin elastic sheet have been widely used [37]. In this context, most studies have
considered linear approximations of the problem, which are valid only for small-
amplitude water waves and ice deflections.

Intense waves-in-ice events, however, have also been reported and their analysis
indicates that linear theories are not adequate for describing large-amplitude ice
deflections [28]. In the last few decades, a number of numerical and theoretical
investigations have used nonlinear models based on Kirchhoff-Love plate theory
to analyze two-dimensional hydroelastic waves in ice sheets. For example, Forbes
[17] computed finite-amplitude periodic waves by using a Fourier series expansion
technique. Pardu and Dias [32] derived a forced NLS equation for the envelope
of ice-sheet deflections due to a moving load, and showed that solitary waves
of elevation and depression exist for certain ranges of water depth. Bonnefoy
et al. [4] examined numerically the same nonlinear problem of moving load on
ice, through a high-order spectral approach, and found a good agreement with
theoretical predictions of Pdrau and Dias [32]. Hegarty and Squire [25] simulated
the interaction of large-amplitude water waves with a compliant floating raft such
as a sea-ice floe, by expanding the solution as a series and evaluating it with
a boundary integral method. Vanden-Broeck and Pardu [42] computed periodic
waves and generalized solitary waves on deep water by using a series truncation
method. Milewski et al. [29] derived a defocusing NLS equation which indicates
that small-amplitude solitary wavepackets do not exist on deep water. Their direct
numerical simulations, based on conformal mapping, reveal however stable large-
amplitude solitary waves of depression. Another nonlinear formulation is Plotnikov
and Toland’s adaptation of the special Cosserat theory for hyperelastic shells [34],
which explicitly conserves elastic potential energy unlike Kirchhoff-Love theory.
Guyenne and Pédrau [21-23] took advantage of this conservative property to write
a Hamiltonian form of the flexural-gravity wave problem in arbitrary depth. Their
asymptotic and numerical results were found to be consistent with those of Pardu
and Dias [32] and Milewski et al. [29]. In the long-wave regime, Xia and Shen [43]
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established a Sth-order Korteweg—de Vries equation for the nonlinear interaction of
ice cover with shallow-water waves. However, a linear Euler—Bernoulli model was
adopted for the ice cover.

There have been fewer studies of the three-dimensional nonlinear problem
which has drawn serious attention only recently. In a weakly nonlinear setting
similar to Xia and Shen’s [43], Hardgus-Courcelle and Ilichev [24] derived a
Kadomtsev—Petviashvili equation for weakly three-dimensional flexural-gravity
waves on shallow water, while Alam [3] obtained a DS system that admits fully
localized dromion solutions. Pdrau and Vanden-Broeck [33] computed solitary
lumps due to a steadily moving pressure, by solving the full nonlinear equations
for the fluid combined with a linear Euler—Bernoulli ice sheet. More recently,
Milewski and Wang [30] proposed a DS model based on the nonlinear formulation
of Plotnikov and Toland [34]. These previous authors [3, 24, 30] used the standard
method of multiple scales to derive their models.

In the present paper, we extend the theoretical results of Guyenne and Pardu
[21-23] to the three-dimensional case. After establishing the Hamiltonian for-
mulation of the problem, we apply the perturbation approach of Craig et al.
[8, 10] to deriving envelope equations for weakly nonlinear flexural-gravity waves
in the modulational regime. This is accomplished by introducing and expanding
the Dirichlet—-Neumann operator (DNO) which allows us to reduce the original
Laplace problem to a lower-dimensional system involving quantities evaluated at
the fluid-ice interface alone. A new aspect of our contribution to this approach is
the inclusion of higher harmonics in the modulational Ansatz and the associated
canonical transformations. Both cases of finite and infinite depth are considered.
The resulting NLS and DS equations resemble existing ones in their general forms,
but details such as their numerical coefficients and the relation of their dependent
variables to the original physical variables are different. An analysis of these models
in the two-dimensional case is performed and their predictions are compared with
direct numerical simulations of the full equations. We also explore the possibility
of including the exact linear dispersion relation in these approximations to improve
their dispersive properties.

The remainder of the paper is organized as follows. Section 2 presents the
mathematical formulation of the three-dimensional hydroelastic problem in arbi-
trary depth. The DNO is introduced and the Hamiltonian equations of motion
are established. From this Hamiltonian formulation, weakly nonlinear envelope
equations for two- and three-dimensional small-amplitude waves are derived at a
formal level in Sect. 3. The various steps of the perturbation method are discussed
including the modulational Ansatz, canonical transformation and expansions of
the Hamiltonian. Furthermore, comparison with two-dimensional direct numerical
simulations is shown and models incorporating the exact linear dispersion relation
are also examined. Finally, concluding remarks are given in Sect. 4.
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2 Mathematical Formulation

2.1 Egquations of Motion

We consider a three-dimensional fluid (e.g. water) of uniform depth % beneath a
continuous thin elastic plate (e.g. a floating ice sheet). The fluid is assumed to be
incompressible and inviscid, and the flow to be irrotational. The ice sheet is modeled
by using the special Cosserat theory of hyperelastic shells in Cartesian coordinates
(x,y,7) [34], with the horizontal (x, y)-plane being the bottom of the ice sheet at rest
and the z-axis directed vertically upwards (see Fig. 1). The vertical deformation of
the ice is denoted by z = 7n(x, y, f). The fluid velocity potential @(x, y, z, #) satisfies
the Laplace equation

Vi =0, forx = (x,y)" € R*, —h<z<nxy1). (1)
The nonlinear boundary conditions at z = n(x, y, t) are the kinematic condition
N+ P + Pyny = P, 2
and the dynamic condition

1 17
q>,+§|v¢>|2+gn+;ﬁ’=0, 3)
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Fig. 1 Sketch of the
hydroelastic problem
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= ﬁ[(l + 773)77” - anyrlxny +(1+ Ui)’lyy]-

The additional term .% in (3) represents the nonlinear bending force exerted by the
ice sheet onto the fluid surface, as derived by Plotnikov and Toland [34]. It is also
a conservative term and thus can be cast into a Hamiltonian formulation as shown
below. Two simpler expressions of this bending force have been commonly used in
the literature; a linear one based on Euler—Bernoulli theory [3, 24, 33, 37],

y = Nxxxx + 277XXW + nyyyy ’

and a nonlinear one based on Kirchhoff-Love theory [4, 17, 29, 32]. The system is
completed with the boundary condition at the bottom,

. =0, atz=—h. )
In the infinite-depth limit (2 — 00), Eq. (4) is replaced by
V| -0, asz —> —o0.

If 2 = 0, these are the classical governing equations for the gravity water wave
problem [27].

Hereinafter, subscripts are also used as shorthand notation for partial or varia-
tional derivatives (e.g. @, = 09,®). The vertical bars denote either a vector norm
(when applied to a vector) or a complex modulus (when applied to a complex scalar
function). The constant & is the coefficient of flexural rigidity for the ice sheet, p
the density of the fluid and g the acceleration due to gravity. The dynamic condition
(3) stems from the Bernoulli equation [34]. The inertia of the thin elastic plate is
neglected, so the plate acceleration term is not considered here [37]. We also assume
that the elastic plate is not pre-stressed and neglect plate stretching.

The dispersion relation for the linearized problem with solutions of the form
ei(k-x—a)t) is

3
= (5 + 9—k) tanh(/k) | )
k P

where k = |k| and ¢ = w/k is the phase speed. It can be shown that the phase speed
¢(k) has a minimum cp;, at kK = Ky, for any parameter values [32, 37]. At this
minimum, the phase velocity and group velocity are equal. Another critical speed in
finite depth is the long-wave limit co = +/gh as k — 0.

The total energy

L[ (" ) L7 , 42 ,
H= 5// / |V | dzdydx + 5// N’ + — AN |dydx, (6)
—00 J—h —00 p

together with the impulse (or momentum) vector
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0
I= // / V@ dzdydx ,
oo J—h

where Vi = (0,, 8).)—'—, and the volume (or mass)

V= // ndydx, @)

are invariants of motion for (1)—(4). The first integral in (6) represents kinetic energy,
while the second integral represents potential energy due to gravity and elasticity.

2.2 Hamiltonian Formulation

Following Zakharov [45] and Craig and Sulem [14], we can reduce the dimension-
ality of the Laplace problem (1)—(4) by introducing & (x,y, 1) = @(x,y, n(x,y,1),1),
the trace of the velocity potential on z = n(x, y, f), together with the DNO

G)E = (=Van, )T -VO| _ | (8)

=

which is the singular integral operator that takes Dirichlet data £ on z = n(x, y, t),
solves the Laplace equation (1) for @ subject to (4), and returns the corresponding
Neumann data (i.e. the normal fluid velocity there).

In terms of these boundary variables, Eqs. (1)—(4) can be rewritten as

= G, ©)
__ ! 2_ 2 _ :
=~ 5w Vel — (GO~ 2G OVt -V
HVSERITal? = (9 - Van)?] = g0 = 2.5 (10)

which are Hamiltonian equations for the canonically conjugate variables 1 and &,
extending Zakharov’s formulation of the water wave problem to flexural-gravity
waves [21-23]. Equations (9) and (10) have the canonical form

(g) =/ (ZZ) - (—01 c1>) (Zz) (1)

H = % // [gG(n)g +gn* + %%2@} dydx, (12)

whose Hamiltonian

corresponds to the total energy (6).
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The present Hamiltonian formulation involving the DNO can be extended to
account for internal waves propagating e.g. along an interface between two fluid
regions [5, 9, 11, 12] and for variable topography at the bottom of the fluid domain
[6, 7, 20]. However, these effects will not be considered here.

2.3 Dirichlet-Neumann Operator

In light of its analyticity properties [13], the DNO can be expressed as a convergent
Taylor series expansion in 7,

G =Y _Gn). (13)

where each term G; can be determined recursively [14, 31, 44]. More specifically,
forj =2r > 0,

1
Gy (n) = WGOUD ?) Dy

r—1

1
Z (D)~ ") Goy()
Q2(r—s))!

—1

Go(|D Py Gy (n),  (14)
; Q(r—

and, forj =2r—1> 0,

1 _ .
Gor—1(n) = Qr—_l),ﬂDxlz)r 'Dy - 7' Dy
-1
Z Gy = oD G
r—2 1
-y m(|Dx|2)r_s_lUz(r_s_l)stJrl(’I)v 15)
s=0 ’

where Dy = —iVyx and Gy = |Dx| tanh(h|Dy|) are Fourier multiplier operators (Dy
is defined in such a way that its Fourier symbol is k and thus |Dy| corresponds to
k| = k). In the infinite-depth limit (4 — 00), G¢ reduces to |Dy| [21]. Similar
expansions of the DNO can be derived in the presence of an interface between two
fluid layers [5, 12, 19] and for variable bottom topography [6, 20].
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3 Modulational Regime

We now present the derivation of weakly nonlinear models for small-amplitude
waves in the modulational regime. For this purpose, we apply a Hamiltonian
perturbation approach [5, 6, 8, 10], which is especially suitable for the present
Hamiltonian formulation of the flexural-gravity wave problem. An advantage of this
approach is that it naturally associates a Hamiltonian to the equations of motion at
each order of approximation, although we restrict ourselves to approximations up
to the cubic order of nonlinearity in the present paper. Long-wave models can be
treated in a similar way [23] but they will not be examined here. Changing variables
through canonical transformations and expanding the Hamiltonian are the main
ingredients of this approach. We distinguish two cases: finite and infinite depth.

3.1 Finite Depth
3.1.1 Canonical Transformations

The first step is a normal decomposition of the first-harmonic waves, and here we
extend the approach of Craig et al. [8, 10] by accounting for higher harmonics
according to Stokes’ expansion, as assumed in the multiple-scale method [3, 13,
15, 16, 30, 38, 40]. This translates into

1
77=Ea_'(Dx)(v+U)+ﬁ+n2+..., n="Pon, n = Pan,
g:—%a(Dx)(v—ﬁ)+§+§z+..., E=Pk, &H=P¢ (16
where

_ .Jg+2IDs|*/p
a(Dy) = W,

(1, §) are the zeroth harmonics representing the induced mean flow, and (7;, &)
the second harmonics. The overbar represents complex conjugation and Py, [P,
are the projections that associate to (n,&) their zeroth- and second-harmonic
components respectively. Higher harmonics can be taken into account but it is
sufficient to consider only up to the second ones for the purposes of deriving the
cubic NLS and DS equations in the present paper. As will be made clearer later,
we use the terminology “first harmonics” to refer to the solution’s components with
wavenumbers centered around the fundamental (or carrier), “second harmonics” to
those with wavenumbers centered around twice the fundamental, and so on.
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The new variables (v, v, 12, &, 7, E)T are expressed in terms of (1, £) T as

v a(Dx)(H —Po— PZ) ia™! (Dx)(]I —Po— PZ)

v a(DY(I—Py—Py)  —ia~ (Dy)(I— Py — Py)
| (n) _ L V2P, 0 (n)
13} & V2 0 V2P, £)
] V2P, 0

£ 0 V2P,

where I denotes the identity operator. Accordingly, the symplectic structure of the
system is changed to J; = A1JA1T [5, 8] and the equations of motion become

Uy HU 0 —1(]1 — IP() — Pz) 0O 0 0 O Hv
v, Hy i(1—Py—Py) 0 0 0 0 o]f]|Hs
M| — g | P | = 0 0 0 P, 0 0Hp|
EZr H& 0 0 —]pz 0 0 0 HEQ
7 H; 0 0 0 0 0 Py||H;
g H; 0 0 0 0-P, 0) \H;

given the fact that ]P% = Py and similarly for P,. By also decomposing the second
harmonics into normal modes,

1 i
—1 — —
n = —=a (Dx)(v2 +7v3), & = ———=a(Dx)(v2 — V3),
V2 V2
we obtain
Uy H,
vy Hy
U2t —J, Hvz
52; HUz '
i Hj
& Hy
where
0 —i(I— Py — Py) 0 0 0 0
i(I—Py—Py) 0 0 0 0o 0
7, = 0 0 % (aPra™! — a~'Pa) —% (@Pra=' +a"'Pra) 0 0
2= 0 0 I (@Pya™' + a7 'Pra) =i (aPra™' —a 'Pra) 0 0
0 0 0 0 0 Po
0 0 0 0 —Py O
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If higher harmonics were to be considered, this would increase the size of the system
of equations. These higher harmonics can also be expressed in terms of (1,£) T by
using the associated projections as in (16).

The next step introduces the modulational Ansatz

v = eu(X, r)e’*ox, v = eu(X, e kox, 17)

v, = upr (X, 1)eZX0xX | T, = 2y (X, e 2kox (18)

in the spirit of Stokes’ expansion, together with
=X, E=LeX, (19)

where the exponents 8 > 1 and « = B + 1 are dependent on whether the depth
is finite or infinite [8]. This implies that we look for solutions in the form of quasi-
monochromatic waves with nonzero carrier wavenumber ko = (k,, ky)T and with
slowly varying amplitude depending on X = ex. Wave steepness is measured by
the small parameter ¢ ~ |Kg|lag < 1 where qy is a characteristic wave amplitude.
In [8, 10, 21, 23], the second harmonics were assumed to be of higher order than
O(&?) and thus did not contribute to the level of approximation considered. Such a
regime may be interpreted as that for weakly nonlinear waves which are very close
to being monochromatic (or equivalently for a very narrow-banded wave spectrum
centered around Ko). In the present case, these second harmonics give contributions,
albeit small.
The system is now determined by the slowly varying amplitudes

v g lemiKox 0 0 0 0 O v
u v 0 g leikox 0 0 0 0 v
w|_, ] _ 0 0 ¢ 2Zkox 0 0 Vs
7 B S 0 0 0 e2kox o o ||v |
o n 0 0 0 0 e 0 n
£ £ 0 0 0 0 0 e#)\¢&
whose evolution equations read
Uy H,
U n
2573 Huz
=J , 20
o 3 Hy, (20)
To; H'Io
EOt HEO
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where
0 J1n 0 0 0 0
Fa 0 0 0 0 0
0 0 0 Jyu 0 0
J3 = 2A3hA] = & ,
ITEMRAE TS 0 0 g 00 0 0
0 0 0 o0 0 e PP,
0 0 0 0 —2Pfp, 0
and

S = —ig e NI =Py — Py)(e™™), S = 2,
/34 = —i8_4e_21k0.x PZ(GZikO.X.) . f43 = % .

Note that the additional factor &2 in J3 is due to the spatial rescaling x — X [5, 8].
This new symplectic structure reduces to

0 -i 0 0 0 0
i 00 0 0 0

I = 0 0 0 —ig™2 0 0
0 0ic2 0 0 0 ’
00 0 O 0 g2 h
00 0 0 —grF o

when applied to a homogenized Hamiltonian in terms of functions of X alone, as
described next.

3.1.2 Expansion of the Hamiltonian

The modulational Ansatz (17)—(19) also introduces the small parameter ¢ in the
expression of the Hamiltonian (12) which can then be expanded in powers of ¢, by
using the Taylor series expansion (13) of the DNO. The mean-flow exponents are
settoo = 2 and B = 1, as determined in [8] for finite depth. Up to order O(&?), we
find

* T 2
H= // [Eu (w(ko) + eViko(ko) - Dx + %%kﬁw(ko)D}qxé) u+cec.
—0o0
+ 0kl + s (ko) ul* + s (ko) (1 + s

2
+ & (iko - Do + e (ko) o ) luf? + 5 (goIDx 60 + gné)] dYax + 0("), (21)
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where c.c. stands for the complex conjugate of all the preceding terms on the right-
hand side of the equation, and

a1 ho) = 5000 (Kol — G (ko).
1

as (ko) = W

a(2ko) (2|ko|2 - Go(ko)Go(2ko))

+

5 o) ) (af + Gk,
az(ko) = iGO(kO) (Go(ko)Go(Zko) - |ko|2)

59 6 6 472 274\ —4
T (kY + kS + 3kik; + 3kik)) a~* (ko) -

The coefficient

o(k) = v/Go(k)(g + Zk*/p),

denotes the linear dispersion relation in terms of the angular frequency and the
indices j,£ = {1,2} refer to the two horizontal directions. The scale separation
lemma of Craig et al. [6] is applied to homogenize the fast oscillations in X, so
that four-wave resonant terms are retained and non-resonant terms are eliminated.
Note the zeroth- and second-harmonic contributions to this order of approximation
in (21).

The Hamiltonian (21) can be further simplified by subtracting a multiple of the

wave action
o0
M:// |u> dYdX
-0

together with a (scalar) multiple of the impulse

oo
1=// Vi€ dydx,
—0o0
o0
_ 2, &(= oo 2 2, .2
= // [ko|u| + E(MDXM + uDXu) + 2&°ko|up|” + ie r]oDXEO] dYdX ,
—0o0

so that it takes the “renormalized” form

= H = Vo) 1~ (k) — ko - Vio(ko) )M

o
1
= ¢? // [zagj @ (Ko)uD .t + (m(Zko) — 2Kk - Vka)(ko))|u2|2
—00
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+ a3 (ko) |ul* + 2 (ko) (Mzﬁz + ﬁzuz) + (iko - Dx&o + Otl(ko)ﬁo)|u|2

1 1 .
+ ShEolDx o + S g1 — Vi (Ko) - TIODXEO} d¥dx +0(").  (22)

The quantities I and M are conserved by the system, at least at the level of
approximation considered. Therefore, they Poisson commute with H and do not
modify its symplectic structure [5, 8]. The subtraction of a multiple of M from H
reflects the fact that our approximation of the problem is phase invariant, while the
subtraction of Viw(ko) - I is equivalent to changing the coordinate system into a
reference frame moving with the group velocity Vixw (ko).

3.1.3 DS System

By using (22), the equations of motion (20) reduce to

. 1 _
iU, = —Eaijkka)(ko)a}z(jxeu + 2a3(k0)|u|2u + 20 (Ko)u uy

+(iko - Do + 1 (ko)o . 23)

eno, = h|Dx|*& — Ko - Vx|u|* + Vio(Ko) - Vx1o . (24)
eéo, = —<gTIo + a1 (ko) [ul* = Viw(k) - Vxéo) ; (25)
iy, = (a)(2k0) — 2k - ka(ko))u2 + o (ko) (26)

where T = £%t. To lowest order in &, the right-hand sides of (24)—(26) equal zero,
hence

h|Dx &0 — ko - Vx|u|? + Viw (ko) - Vxno = 0, 27
and
1 , 1
no = _gal(k0)|u| + gvkw(ko) - Vx&o, (28)
k
1y = 052( 0) 2 (29)

2Ky - Vi (ko) — w(2Ky)

Then substituting (28)—(29) into (23) and (27) leads to the DS system

. 1
lu, = _Eazjk(w(kO)a?(le” + (ko) |ulu + as(Ko) - uVxéo,

0 = L& —as(ko) - Vx|ul?, (30)
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where
202 (ko) 1
ko) = 2 2a3(ko) — —a? (ko)
a4 (ko) ko Ve (ko) — o(2ko) + 203 (ko) gal( 0)
1
as(ko) = ko + gal(ko)vkw(ko) ,
1
_ 2, 1 2
L = —h|Vx|* + g(akjw(ko)> <3k4w(ko))3x,xe-
As mentioned earlier, setting 2 = 0 in (30) and in the subsequent envelope

equations reduces them to models for surface gravity water waves.

3.14 NLS Equation

In the two-dimensional case, the DS system (30) simplifies to
i 1
U, + Eaia)(ko)a)z(u — a4(k0)|u|2u — as(ko)udx&y = 0,
1 2 2
ot (Do) | 5o - asio)dxlul” = 0.

Integrating the second equation above with respect to X by assuming vanishing
conditions at infinity (as is the case for solitary waves) gives

o5 (ko
aﬁo=g@@é5%j;wﬁ, 31
and then substituting this into the first equation yields the NLS equation
i, + Aaiu + plulPu=0, (32)
where
2= 2 Folk).
2
u = —aq(ko) — a3 (ko)

L@ ko)? =

The corresponding Hamiltonian (with respect to 7) reads

= I
H— / (x|axu|2 - —;L|u|4) dx | (33)
. 2
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so that u, = —iHy; and is obtained by inserting (28), (29), (31) in (22). For
convenience, the hat notation is dropped from (33).

Similarly to the classical water wave problem in finite depth [1, 15], the
coefficient 1 of the nonlinear term may have two singularities at (d;w(ko))> = gh
and w(2ky)/(2ko) = 0Jrw(ky) corresponding to resonances between the zeroth
and first harmonics and between the first and second harmonics, respectively.
The former singularity occurs if the group velocity of the first harmonics equals
the phase velocity of the zeroth harmonics (i.e. the long-wave limit ¢(), while the
latter singularity occurs if the same group velocity equals the phase velocity of the
second harmonics. The presence of the first-harmonic group velocity dyw(kg) in
these singularities is related to the fact that the reference frame is moving with
this velocity, as mentioned above. In the present problem, a natural choice for kg
is kmin. For a given value of A, the corresponding ki, is found numerically where
the dispersion relation (5) achieves its minimum cp;,. Figure 2 reveals that both
C(kain) = w(2kmin)/(2kmin) and Co = N/g tend to Cmin = akw(kmin) ash — 0.
Therefore, the modulational regime becomes inadequate and the long-wave regime
should be preferred in the shallow-water limit, as could be expected [23].

According to (16), the ice-sheet deflection can be expressed in terms of u as

&
V2
2

+% [a™" (2ko + eDy)ur (X, T)e24Y/% 1 ]+ (X, 7), (34)

nX,t) = [a_l (ko + eDy)u(X, 7)e*oX/e 4 c.c.]

where u; is given by (29), and

(ko) + kodrw (ko) lu]?

" T Gk —gh
2.2 22
2 A 2t s
18 18 ’
3 16 2 16
S 14 8 14
; 1.2 § 1.2
g 1 g
0.8 0.8
06 0.6
0.4 0.4

Fig. 2 Left panel: ¢y (solid line) and ¢ (dashed line) versus h. Right panel: ¢y, (solid line) and
¢(2kmin) (dashed line) versus h
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by combining (28) with (31). The zeroth and second harmonics add corrections
to the coefficients in the envelope equation for the first harmonics but also to the
formula recovering the ice-sheet deflection. An expression similar to (34) holds for
n in the three-dimensional case, with 7 determined by (28) and the solution of
the DS system. Equation (34) can be evaluated numerically by a pseudo-spectral
method, which is a natural choice for computing such Fourier multipliers as a™!
[10, 14, 20, 21, 31, 44].

3.1.5 Soliton Solutions

In view of presenting numerical results, we non-dimensionalize the equations by
using the characteristic length and velocity scales

1/4 3\ 1/8
o (2)" ()
rg P

respectively, so that g = 1 and Z/p = 1 as a consequence [4, 29, 39].

The NLS equation (32) is of focusing type and thus admits stable soliton
solutions traveling at the group velocity d;w (ko) if A > 0 [18, 38]. The graphs
of A and u for kg = ki, are shown in Fig. 3. We see that A is increasing and always
positive, while u is decreasing and changes sign at the critical depth 4. ~ 36.75.
Accordingly, the NLS equation (32) is of focusing type if 2 < h. and defocusing
if h > h.. Because u = 0 at h = h,, this implies that higher-order terms must be
included in the equation, but we will not consider this situation here. In the linear
Euler—-Bernoulli case (by setting 2 = 0 in «3), we find A, >~ 5.54, which is close
to the value i, >~ 5.91 reported by Milewski and Wang [30]. For a Kirchhoff-Love
model of the ice sheet, Parau and Dias [32] found h. ~ 7.63, which is smaller
than the present value for the Cosserat model. The fact that 4 — oo ash — 0in
Fig. 3 is consistent with the two resonances in the shallow-water limit as discussed
in Sect. 3.1.4.

Since we are interested in solitary waves, the key parameters to be examined
are the wave speed ¢ < cmin and the water depth & < h.. Figures 4 and 5
present a comparison of solitary wave profiles for various values of (c, &), which
are obtained from direct numerical simulations of (1)—(4) and from the exact NLS
soliton solution

M(X, ‘L') = «/EMQ sech (I/l() \/gX) eip'ufz)r, (35)

which corresponds to solitary waves whose crests are stationary relative to their
envelopes [2]. In the latter case, the ice-sheet deflection (34) is evaluated as

&
V2
2

+% [FTHa™ @k + 6K) FT () [0 ccc. | + mo. 1),

n(X,7) = [FT—‘ {a—‘(ko + K) FT(u)}eikOX/E + c.c.]
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Fig. 3 NLS coefficients A (left panel, solid line) and p (right panel, solid line) versus h. As a
reference, the corresponding values in the infinite-depth limit (see Sect. 3.2) are represented by a
dashed line

where FT denotes the fast Fourier transform [10]. A number of 4096 grid points
are typically used in our computations. For convenience, we set ¢ = 1 and only
vary ug in (35) to match the fully nonlinear profile as closely as possible (which is
equivalent to absorbing ¢ into up). The direct numerical simulations are based on
a boundary-integral method with finite-difference approximations and the reader is
referred to [21-23] for further details.

Overall there is a good agreement, especially regarding the relative amplitude
of the central trough and the wavelength. The agreement is satisfactory even for
moderately large wave amplitudes (compared to &, see Fig. 5), which is remarkable
given the weakly nonlinear nature of the cubic NLS equation. The NLS prediction is
able to capture well the main features, whether the solution is a localized or broader
solitary wavepacket. This confirms in particular that the inclusion of the mean-
flow component 7 in (34) is crucial at reproducing well the vertical asymmetry of
the solution. The second-harmonic corrections, however, are negligible according
to the comparison of the two columns in Figs.4 and 5. The left column of these
figures shows results without second-harmonic contributions as in [23]. Only little
improvement due to these second harmonics is noticeable in Fig. 5 for h = 3.095.
Consistent with statements in Sect.3.1.4, the agreement between numerical and
NLS predictions slowly deteriorates as h decreases. We pay attention to the case
h = 3.095 because it corresponds to Takizawa’s experiments on Lake Saroma
(Japan) [39], where the ice thickness was 0.17 m and the water depth was 6.8 m.
Waves were generated by moving a load (ski-doo snowmobile) at various speeds on
top of the ice sheet. Wavelengths of order O(10) m were observed. For 7 = 3.095,
our results resemble some of his observations. We find similar wave profiles for
larger depths.
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Fig. 4 Comparison of solitary wave profiles obtained from direct numerical simulations (solid
line) and the NLS soliton (35) (dashed line) for (c, h) = (0.7,0.5), (0.985, 1) and (0.9, 1.5) (from
top to bottom). The left and right columns show the solutions without and with second-harmonic
contributions, respectively

3.2 Infinite Depth

In this regime, the mean-flow exponents « = 3 and 8 = 2 are larger than those in
finite depth (see [8] for an explanation). As a consequence, the mean-flow terms do
not contribute to the order of approximation being considered, and the renormalized
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Fig. 5 Comparison of solitary wave profiles obtained from direct numerical simulations (solid
line) and the NLS soliton (35) (dashed line) for (c,h) = (0.658,1.5), (1.3,3.095) and
(1.056, 3.095) (from top to bottom). The left and right columns show the solutions without and
with second-harmonic contributions, respectively

Hamiltonian takes the form

o0
. 1
H=2¢ // [Eaijklw(ko)ﬁDin[u + (a)(2ko) — 2k, - Vka)(ko)) s |2
—o0

1 59 _
+ { Z|k0|3 - g(kf + kS 4 3kik; + 3k§k;‘)a 4(k0)} [u]*
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1
n m|k0|2a—1(2k0)az(k0) (uzuz + ﬁ2u2)} dYdX + O(s%).  (36)

The equations of motion (20) then become
1
V2

1 59 _
+ %§|k0|3 - E(kj + kS + 3kik; + 3k§k§)a 4(k0)} lulu, (37)

. 1 - _
i, = _Eag/_kzw(ko)a;mu + —|ko|?a~" (2ko)a* (ko) 1

. 1 _
ie2us, = ((2Ko) = 2ko - Vio(Ko) )2 + S5 ol ko) (ko)

242

&', =0,
£k, = 0. (38)
which confirms that the mean-flow contributions are negligible, while

_ ko|%a~" (2ko)a? (ko) 2
242 (2K - Vi (Ko) — 0(2ko))

U (39)

to lowest order by virtue of (38). Substituting (39) into (36) and (37) leads to the
NLS equation

ko |*a™2(2ko)a* (ko)
4 (2ko - Vo (ko) — w(2ky))

_ 1
i, = — Eaijkéa)(ko)affjxeu + {

1 3 57 (6, 16 4,2 2,4) —4 2
+ 31kl - E(kx R 3kxky)a o)\ [uPu,  (40)
whose Hamiltonian (with respect to 1) is

(Tl o [Ko|*a™2(2ko)a* (ko)
= //_oo [Eakf"“"(k")(a"f”)(axé u)+ { 8 (2ko - Vi (ko) — w(2kp))

1 3 5'@ 6 6 472 214 —4 4
+ 7 lkol* = g(kx + K 4 3K + 32K )a (ko) ! [uf* | dvax .

xy

In the two-dimensional case, we again obtain an NLS equation of the form (32),
with Hamiltonian (33), where

57k (s +5Zk3/p)

- 57\3/2"°
P/ gko + DKy / p 8(gko + Zky/p)*

1
A= dolk) =
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and
__ 57K k k(g + 2K}/ p) 2k
M= 4G+ 2k0) 2 4 keolko) — (ko)) \| g + 169K/
Without loss of generality, the carrier wavenumber ky = k, is assumed to be

positive. Again the coefficient . may have a singularity at w(2ko)/(2ko) = drw (ko)
due to the first-second harmonic resonance, but the zeroth-first harmonic resonance
is absent here since the mean flow does not come into play. The ice-sheet deflection
can be recovered from u by using (34) as well, but without need for the higher-order
O(&?) contribution from 7.

In infinite depth [21, 37], the phase speed is minimum at

Komin = (%)1/4.

After applying the same non-dimensionalization as in Sect. 3.1.5, we find that Ap <
0if kg = kmin since
37/8

and

31/4(414/38 — 228
= — ( ):—0.016<0.
912(+/38 — 4)

Incidentally, the above-mentioned denominator in p

5/8
M — 0 (kumin) = Lm ~0.717,
2kmin 6
does not vanish, as also indicated in Fig. 2 for large /. Therefore, the NLS equation is
of defocusing type and no soliton solutions exist in this limit. This result is consistent
with the asymptotic behavior of A and y for finite depth as 1 — oo (see Sect. 3.1.5).
Previous studies using different methods of derivation and different models for the
ice sheet (e.g. Kirchhoff-Love theory) also obtained a defocusing NLS equation in

this regime [21, 29].

3.3 Exact Linear Dispersion
3.3.1 Finite Depth
As suggested in [10, 27, 41], the linear dispersive properties of envelope equations

can be improved by retaining the exact linear dispersion relation rather than Taylor
expanding it. For finite depth, a counterpart to (22) is
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H=H-owk\)M,
“T1
=¢ //—w [;ﬂ(ﬂl)(ko + eDx) — w(ko))u + o(2Ko)|ua|* + a3 (Ko) ul*
+ aa(ko) (Mzﬁz + ﬁzuz) + (iko Dx&o + o (ko)ﬂo) Juf?

+ %50G0(€DX)§0 + %gné} dydX + O(e). @1

and the corresponding evolution equations are
i, = Siz(a)(ko + eDx) — a)(ko))u + 203 (ko) [ul?ut + 2062 (Ko)ii 1

+(iko Dx§o + o (ko)ﬂo)u ,
o, = g_lzGO(SDX)EO —ko - Vxul*,

e, = — (g0 + 1 (Ko)lul?)
ie?uy; = w(2Ko)uz + o2 (o)’
By following the same procedure as in Sect. 3.1.3, we find the modified DS system

205(kg) 1 , 5
w(2ko) Q“‘(k‘))) e

1
iu; = ;(w(ko + &eDx) — a)(ko))u + (2053(1(0) -
+uko - Vx&,
1
0 = —Go(eDx)é0 — ko - VxJul’,

where

_ a2 (ko) W2
a)(2ko) ’

1
no = —gal(ko)|u|2, Uy =

to lowest order. In the two-dimensional case, the second equation in this DS system
can be solved for dx&, hence

dax&y = 82k0G51(8DX)3§|u|2.
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Substituting this into the first equation yields the modified NLS equation

2
i, = 81—2<a)(k0 + eDy) — a)(ko))u + (2a3(ko) — i‘j‘(zz(k]:))) — ::af(ko)) |ulu

+&%kj u Gy ' (eDx) 0% |ul?

with Hamiltonian

206%(/(0) 1 ) |1,¢|4

[~ [S—ZE(w(ko—l—er)—w(ko))u—l—— (Zag(ko)— 230 Loz

2

1
+§82k(2) lu*Gy! (EDX)8§|M|{| dX,
as derived from (41). Here again, these modified DS and NLS equations can be
solved numerically by a pseudo-spectral method which is suitable for handling the
Fourier multipliers @ and Gy. Note that the operator G, ' (¢Dx)d% is well-defined,

and in particular it is not singular at k = 0 as can be shown by a Taylor series
expansion in &.

3.3.2 Infinite Depth

For infinite depth, the renormalized Hamiltonian is given by

H=2¢ f/_oo [;—zﬁ(a)(ko + eDy) — a)(ko)>u + 0(2Ko)|ua|?

1 59 _
+ %Z'kOP - g(kj; + kS 4 3K 3k§k;¥)a 4(ko)} Juf*
1 2 —1 2 2— =2 3
+—2ﬁ|ko| a  (2ko)a (ko)(u U + 1 uz) dydx + 0(s”),

whose dynamics obeys

. 1 1 _ _
1w, = ; (a)(k() + {:‘Dx) — a)(ko))u + —2|k()|2a 1(2](())02(](())1/! us

%

1 59 _
+ %§|k0|3 — E(kj + kS 4 3kik; + 3k§k;%)a 4(k0)} lulPu, (42)
. 1 _
ie?ur, = w(2ko)ur + 2—ﬁ|ko|za '(2ko)a® (Ko)u” . (43)
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Combining (42) and (43) as in Sect. 3.2 leads to the modified NLS equation

[ko|*a™2(2ko)a* (ko)
40 (2kg)

. 1
i, = ;(a)(ko + eDx) — a)(ko)>u — {
1 59
— kol + E(kj; + S 43K + 3k§k§)a‘4(ko)} lufu,

such that

_ [ko|*a~" (2ko)a* (ko) ,
22 w(2Ko)

The corresponding Hamiltonian reads

*r1_ ko|*a~2(2ko)a* (ko)
H= /f_oo [E—ZM(w(ko + eDyx) — a)(ko))u - { S0 k)

1 59
kol + g(kf + S+ 3K + 3k§k§)a—4(ko)§ |u|4i| dvdx .

Their expressions in the two-dimensional case follow directly, namely

| . kg a=>(2ko)a* (ko)

i = = (ko + eDx) — (ko) Ju - (W
1 59 « _

_Ekg + Ekga 4(ko)) ||,

and

o 1 _ k4 (1_2(2](0)(14(]{0)
H = /_oo [;M(C()(k() + ED)() — Cl)(k()))lzi — (()&()T

1 59 _
_Zkg + gkga 4(k0)) |u|4] dx .

4 Conclusions

A Hamiltonian formulation for three-dimensional nonlinear flexural-gravity waves
propagating at the surface of an ideal fluid covered by ice is presented. The ice
sheet is modeled as a thin elastic plate, based on the special Cosserat theory for
hyperelastic shells as proposed by Plotnikov and Toland [34]. Weakly nonlinear
models for small-amplitude waves on finite and infinite depth are derived in
the modulational regime, by applying the Hamiltonian perturbation approach of
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Craig et al. [8, 10]. A new contribution of the present paper is the inclusion
of second-harmonic effects, leading to corrections in the cubic coefficient of the
envelope equations and in the expression of the ice-sheet deflection. However,
comparison with two-dimensional direct numerical simulations reveals no much
improvement from these higher-order corrections in the parameter regime consid-
ered.

In the future, it would be of interest to further analyze the resulting NLS and DS
equations, in particular those incorporating exact linear dispersion, and to compute
localized traveling solutions numerically. We also plan to investigate the long-wave
regime for this three-dimensional hydroelastic problem within the Hamiltonian
framework.
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