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Preface

Partial differential equations (PDEs) are a fundamental tool in the modeling of
phenomena arising in the physical sciences. PDEs with Hamiltonian structure are
a distinguished subset, which not only model systems with conserved quantities
(e.g., energy and momentum), but also possess an array of special techniques for
their analysis and simulation. They constitute an active area of research where
major innovations have been and continue to be made from both the mathematical
and computational sides. Not only do these innovations benefit the field itself but
also contribute to progress in a vast range of other scientific areas. Applications of
Hamiltonian PDEs are numerous in fluid mechanics, plasma physics, and nonlinear
optics with such notable examples as the Korteweg–de Vries equation and the
nonlinear Schrödinger equation.

In the last few decades, significant progress has been achieved in the mathe-
matical study of these evolutionary PDEs by adopting the “dynamical systems”
approach, extending refined analytical techniques of Hamiltonian dynamical sys-
tems to the setting of PDEs. This point of view has led to the consideration
of the global behavior of orbits for a Hamiltonian PDE in an appropriate phase
space, the pursuit of the mathematical technology of normal forms, the study
of stable orbits and Kolmogorov–Arnold–Moser (KAM) tori, and a number of
results analogous to Nekhoroshev stability and Arnold diffusion. In particular,
building on the experience gained from the qualitative study of finite-dimensional
dynamical systems, the search for periodic and quasi-periodic solutions has been
regarded as a first step towards better understanding the complicated flow evolution
of Hamiltonian PDEs. A central tool is transformation theory including Birkhoff
normal form transformations. In the broad picture, the goal is to understand some
of the important structures of infinite-dimensional phase spaces in which these
evolutionary equations are naturally posed, such as periodic orbits, embedded
invariant tori, center manifolds, and the different effects of resonances in the
non-compact versus compact cases. Techniques from transformation theory for
Hamiltonian PDEs with a small parameter have also been successfully used in recent
work on water waves, allowing for the systematic derivation of Hamiltonian models
in various asymptotic limits.

v
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On 10–12 January 2014, a conference on “Hamiltonian PDEs: Analysis, Com-
putations and Applications” was held at the Fields Institute for Research in Math-
ematical Sciences in Toronto, bringing together a group of world-class researchers
to present and discuss the latest developments in this field. Given the wide range
of applications and mathematical tools, a motivating theme of this event was the
interaction of specialists in dynamical systems, KAM theory, normal form theory,
PDE theory and variational methods, as well as applied and numerical analysts, and
experts in water waves. The program consisted of eighteen lectures by distinguished
faculty, together with three shorter presentations by junior speakers including two
graduate students. The participants came from Canada, Europe, and the USA.

This conference was also an opportunity to honor our friend and colleague Walter
Craig, who has made significant contributions to this field, on the occasion of
his 60th birthday. Walter obtained his Ph.D. degree from the Courant Institute of
Mathematical Sciences (NYU) in 1981. He has held faculty positions at CalTech,
Stanford University and Brown University before joining McMaster University
as a Professor and Canada Research Chair of Mathematical Analysis and its
Applications. He has received a number of prestigious awards including an Alfred
P. Sloan Fellowship, an NSF Presidential Young Investigator Award, a Killam
Research Fellowship and is a Fellow of the AMS, the AAAS, the Fields Institute
and the Royal Society of Canada. He has served on the editorial boards of
several journals including the Philosophical Transactions of the Royal Society,
the Proceedings of the AMS, and the SIAM Journal on Mathematical Analysis.
Walter is a world-renowned mathematical analyst with interests in nonlinear PDEs,
Hamiltonian dynamical systems and their physical applications. He has authored
more than 100 research articles.

This special volume presents a unique selection of both survey and original
research papers by experts who participated in that conference. The various
topics discussed in this volume are representative of the wide scope covered by
Hamiltonian PDEs, and the results range from mathematical modeling to rigorous
analysis and numerical simulation. These topics also reflect Walter Craig’s breadth
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in research interests and his influence in this field. This book will be of particular
interest to graduate students as well as researchers in mathematics, physics, and
engineering, who wish to learn more about the powerful and elegant analytical
techniques for Hamiltonian PDEs.

The editors would like to thank the Fields Institute for Research in Mathematical
Sciences and the Department of Mathematics & Statistics at McMaster University
for their generous support. In particular, we are grateful to Alison Conway, Drs.
Matheus Grasselli and Hans Boden for their assistance with the organization of the
conference, as well as to Debbie Iscoe, Dr. Carl Riehm, and the Springer team for
their assistance with the publication of this special volume. We are also thankful
to the authors for contributing such excellent articles and to the referees for their
invaluable help during the review process. Finally, we dedicate this book to Walter
Craig who has been a constant source of inspiration, and whose enthusiasm and
friendship have never waned. We would like to extend to him our warmest wishes
for many more happy events to come.

Newark, DE, USA Philippe Guyenne
Chicago, IL, USA David Nicholls
Toronto, ON, Canada Catherine Sulem
April 2015
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Hamiltonian Structure, Fluid Representation
and Stability for the Vlasov–Dirac–Benney
Equation

Claude Bardos and Nicolas Besse

Pour Walter Craig, en remerciement pour ses contributions
scientifiques et son amitié.

Abstract This contribution is an element of a research program devoted to the
analysis of a variant of the Vlasov–Poisson equation that we dubbed the Vlasov–
Dirac–Benney equation or in short V–D–B equation. As such it contains both new
results and efforts to synthesize previous observations. One of main links between
the different issues is the use of the energy of the system. In some cases such
energy becomes a convex functional and allows to extend to the present problem the
methods used in the study of conservation laws. Such use of the energy is closely
related to the Hamiltonian structure of the problem. Hence it is a pleasure to present
this article to Walter Craig in recognition to the pioneering work he made for our
community, among other things, on the relations between Hamiltonian systems and
Partial Differential Equations.

1 Introduction

This article extends a program (cf. [1, 2]) devoted to the mathematical analysis of an
avatar of the Vlasov–Poisson equation, where the “Coulomb potential” is replaced
by the Dirac mass. Since it was proposed by Benney [3] and Zakharov [28] for the
description of water waves, it is dubbed Vlasov–Dirac–Benney equation (or in short
V–D–B equation). Therefore the V–D–B equation reads
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N. Besse
Département Physique de la Matière et des Matériaux, Institut Jean Lamour UMR CNRS 7198,
Université de Lorraine, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
e-mail: nicolas.besse@univ-lorraine.fr
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2 C. Bardos and N. Besse

@tf C v � rxf � rx�f � rvf D 0 ; with �f .t; x/ D
Z
Rd

f .t; x; v/dv: (1)

And the classical conservation of mass and energy turn out to be given by the
formula,

@t

Z
Rd
v

f .t; x; v/dv C rx �
Z
Rd
v

vf .t; x; v/dv D 0;

@t

Z
Rd

x

Z
Rd
v

jvj2
2

f .t; x; v/dxdv D �
Z
Rd

x

rx�f .t; x/ �
Z
Rd
v

jvj2
2

rvf .t; x; v/dxdv

D
Z
Rd

x

�f .t; x/rx �
Z
Rd
v

vf .t; x; v/dxdv

D �
Z
Rd

x

�f .t; x/@t�f .t; x/dx;

or eventually

dE

dt
D d

dt

 
1

2

Z
Rd

x

dx

 Z
Rd
v

dv
jvj2
2

f .t; x; v/C .�f .t; x//
2

!!
D 0:

1.1 Some Physical Motivations for the Introduction
of the Dirac Potential

One of the many physical motivations for the introduction of this equation is the
description of a plasma constituted of ions in a background of “adiabatic” electrons
which instantaneously reach a thermodynamical equilibrium (i.e. electrons follow
a Maxwell–Boltzmann distribution). Therefore the charge density of electrons is
given in term of the electrical potential ˚� by the formula

�� D �0e
� e˚�

kBTe ;

with kB the Boltzmann constant, e the electron charge and Te the equilibrium
temperature of electrons. Finally the parameter � represents the Debye length. Hence
the “Coulomb law” couples the electrical potential˚� to the charge density such that

� �2�˚� D �� � �0e� e˚�
kBTe ; with �� D

Z
Rd
v

f�.t; x; v/dv:

Now since the electrical potential energy e˚� is supposed to be small in comparison
to the kinetic energy kBTe, i.e je˚�=.kBTe/j � 1, after linearization on the
exponential function, at first order we get
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��2�˚� D �� � �0 C e�0
kBTe

˚�:

Setting � to zero (quasineutrality assumption) and since �0 and Te are supposed to
be constant, we obtain for the electric field E� the expression

E� D �rx˚� D kBTe

e�0
rx

Z
Rd
v

f�.t; x; v/dv;

which appears in the Vlasov equation (1).

1.2 Some Mathematical Motivations for this Analysis

Since in the Eq. (1) the electric field E is given in term of the electrons density
by an operator of order 1, while in the classical Vlasov–Poisson case it is given
by an operator of degree �1, the solution is much more dependent on the initial
data. Therefore, while for the classical Vlasov–Poisson equation the issue is the
large time asymptotic behavior, here what is at stake is the well-posedness of the
problem in term of the initial data. On the other hand since the electrical potential
is given by a purely local operator there exists a strong connection between the
dynamics of hyperbolic systems of conservation laws and the V–D–B equation. This
connection appears even more clearly when one uses for the Vlasov equation a
kinetic representation of the form (cf. Sect. 3.2)

f .t; x; v/ D
Z

M
�.t; x; �/ı.v � u.t; x; �//d�; (2)

which leads to non local “operator type” conservation laws.
For such conservation laws the invariants play an essential role and as expected,

they coincide (cf. Theorem 6) with the Lax–Godunov conserved quantities. When
such invariants turn out to be convex (with respect to the parameters of the
dynamics) they play the role of convex entropies and ensure the local-in-time
stability and well-posedness of the Cauchy problem.

As this is the case for the most general Vlasov equations (as explained for
instance in [22]) the present V–D–B equation can be viewed as a Hamiltonian
system related to the minimization of an energy. Moreover the same point of view
can be used to formalize the relations between classical and quantum mechanics via
semi-classical (WKB) limits and Wigner measure (cf. Sect. 6). Such convergence
will be always true at the formal level, or with analytical initial data. However,
as expected, proofs in the Distributions (or Sobolev) setting will be available only
when the limit enjoys the same stability i.e. mostly in the case where a convex
entropy is present. Even if the analyticity hypothesis is not “physical”, conclusions
that follow are important, and especially in the case of the one-dimensional space
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variable. Then the cubic nonlinear Schrödinger equation and its generalization as
infinite systems of coupled nonlinear Schrödinger equations (cf. [28]) are integrable
systems with a rich algebraic structure including in particular the construction of
infinite family of conservation laws. In the semi-classical limits these structures
(at least for analytic initial data) do persist and make the one-dimensional-space-
variable V–D–B equation a quasi-integrable system in the sense of [28].

The paper is then organized as follows. First the emphasis is put on the one-
dimensional space variable which as quoted above contains more mathematical
structure and provides also more explicit examples. To underline the dimension
one in the corresponding equations, the symbol rx and rv are replaced by the
symbol @x and @v . In Sect. 2, the analysis of the linearized problems turns out to
be (and this should not be a surprise) in full agreement with the properties of the
fully nonlinear systems. Moreover this produces also a natural tool for the study of
nonlinear perturbations which is the object of the next section.

In the Sect. 3, the Hamiltonian structure and the fluid representation of the kinetic
V–D–B equation are described. In this setting, under strong analyticity hypothesis a
local-in-time stability result can be proven and this is the object of the Theorem 5.
To obtain stability results with finite order regularity, the entropies have to be
introduced and compared with the classical invariants of the Hamiltonian system.
This is the object of the Sect. 4 and Theorem 6. The next Sect. 5 is devoted to several
examples of application.

For the discussion of the semi-classical limits in the Sect. 6, we follow similar
route. First formal computations are given. Then there are validated with analyticity
hypothesis (cf. Theorem 9). Such results are compared with a theorem of Grenier
which is valid in any space variable, with Sobolev type regularity hypothesis, but
which concerns only the Wigner limit of “pure states” i.e. mono-kinetic solutions of
the V–D–B equation.

As a conclusion we return to the relation between Wigner limit and inverse
scattering.

2 Properties of the Linearized Problem and Consequences

Long time ago, it has been observed that x-independent solutions

v 7! G.v/ � 0 with
Z
R

G.v/dv D 1;

are stationary solutions of the Vlasov–Poisson equation. Same simple observation
is also valid for the V–D–B equation. Writing

f .t; x; v/ D G.v/C Qf .t; x; v/;
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retaining only the linear terms in Qf and omitting henceforth the tilde notation, one
obtains the evolution equation

@tf C vrxf � G0.v/@x�f .t; x/ D 0:

It then turns out that in one space dimension the spectral analysis, hence the stability,
can be described in term of the shape of the stationary profile v 7! G.v/. In
particular:

i) One can prove for the classical Vlasov–Poisson equation (this goes back to
Kruskal [19]) that if the profile has only one maximum (one bump profile) then
the solution is described in a convenient Hilbert space by a unitary group and
therefore is stable. This remark can be adapted to the V–D–B equation and is
shortly described below.

ii) In the presence of several extrema, a criterion due to Penrose [25] for the orig-
inal Vlasov–Poisson equation, gives the existence (resp. the non-existence) of
unstable generalized eigenvalues which may imply large time linear instabilities
(cf. [10] for this point of view). However for V–D–B equation, due to the
homogeneity of the dispersion relation, unstable modes whenever they exist are
of the form !.k/ D !�k with =!� 6D 0. Hence the relation to prove their
existence is not a simple adaptation of the Penrose criterion.

Below explicit examples given in [1] and [2] are recalled to show that the
well-posedness of the Cauchy problem depends on the structure of the function
v 7! G.v/. For some initial data the linearized problem may have no solution even in
the sense of distributions. This remark extends to the nonlinear case which illustrates
the natural connections between the stability of the linearized and the full nonlinear
system.

2.1 The Stability for the One Bump Profile

To emphasize the role of the “bumps” in the stationary profile we recall below the
following

Theorem 1. Assume that the stationary profile v 7! G.v/ satisfies for some a 2 R,
the relation

G0.v/ WD �H.v/.v � a/ with H.v/ > 0: (3)

Then any smooth solution f .t; x; v/ of the linearized V–D–B equation

@tf .t; x; v/C v@xf .t; x; v/ � G0.v/@x�f .t; x/ D 0; (4)
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satisfies the energy identity,

d

dt

�Z
R�R

H�1.v/.f .t; x; v//2dxdv C
Z
R

.�.t; x//2dx

�
D 0:

The proof (cf. [19] and [1]) follows from the basic conservation laws of mass and
energy combined with the formula (3). From the above Theorem 1 one deduces the
following

Corollary 1. With the function v 7! G.v/ as in the Theorem 1, and denoting by H
the Hilbert space of functions f such that

Z
R�R

H�1.v/.f .t; x; v//2dxdv C
Z
R

.�.t; x//2dx < 1;

the solutions of the Cauchy problem with initial data f0.x; v/ 2 H are described by
a unitary group of operators.

2.2 Synthesis of Plane Waves and Unstable Modes

Plane waves of the form,

ek.t; x; v/ D A.k; v/ exp .i.kx � !.k/t// ;

are solutions of the Eq. (4) whenever they satisfy the dispersion relation

.�i!.k/C ikv/A.k; v/ � ik

�Z
R

A.k; v/dv

�
G0.v/ D 0;

or with !.k/ D !�k,

1 �
Z
R

G0.v/
v � !� dv D 0: (5)

Then for any !� solution of (5), the functions

f .t; x; v/ D
Z
R

G0.v/
v � !� O�.k/ ei.kx�k!�t/ dk;

are (if they exist) the unique solutions of the linear Cauchy problem with initial data

f .0; x; v/ D
Z
R

G0.v/
v � !� O�.k/ eikx dk:
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As a consequence if there exists a !� solution of (5) with =!� 6D 0, the Cauchy
problem is ill-posed in any Sobolev space (because polynomial decreasing of
Fourier modes with any speed does not compensate exponential growth).

The following statement, which is an adapted version of the Penrose criterion
[25], illustrates the relation between multiple bumps and instabilities.

Theorem 2. Assume that the stationary profile

v 7! G.v/ � 0; and
Z
R

G.v/dv D 1;

has a minimum for v D 0 and is even (i.e. G.v/ D G.�v/), then for some � > 0

small enough, there is at least one non oscillatory unstable mode !� D iˇ for the
equation linearized near G� D ��1G.��1v/.

Proof. Introducing the �-dependent continuous function,

ˇ 7! I�.ˇ/ D
Z
R

G0
�.v/

v � iˇ
dv D

Z
R

G0
�.v/.v C iˇ/

v2 C ˇ2
dv D

Z
R

G0
�.v/v

v2 C ˇ2
dv;

for which one has,

I".1/ D 0; and I".0/ D
Z
R

G0
�.v/

v
dv D

Z
R

G0
�.v/ � G0

�.0/

v
dv D

Z
R

G�.v/

v2
dv:

The last integration by part is justified by the fact that G0.0/ D 0 and the
convergence at ˙1 of the integral of v�2. Eventually one has

I".0/ D
Z
R

G�.v/

v2
dv D 1

�2

Z
R

G.v/

v2
dv > 1; for � small enough:

Therefore by continuity there exists at least one !� D iˇ� solution of the dispersion
relation (5). ut

2.3 Consequences for the Original Nonlinear V–D–B Equation
with General Initial Data

Theorem 3. Let PHm be the space of functions f 2 L1.Rx;L1.Rv// with, for 1 �
` � m , derivatives @`xf 2 L2.RxI L1.Rv//.
For every m, the Cauchy problem for the dynamics S.t/ defined by the V–D–B
equation is not locally ( PHm 7! PH1) well-posed.
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Proof. Let be

�.t; x; v/ D
Z

G0.v/
v � !� O�.k/ ei.kx�!�kt/ dk:

A solution f .t; x; v; s/, with the initial data

f .0; x; v; s/ D G.v/C s�.0; x; v/;

for the nonlinear V–D–B equation gives

Qf .t; x; v/ D d

ds
f .t; x; v; s/jsD0;

as a solution for the linearized one. But we obtain a contradiction since Qf is not well
defined even in the distributional sense. ut

From the structure of the solution

f .t; x; v/ D
Z
R

G0.v/
v � !.k/=k

O�.k/ ei.kx�!.k/t/ dk;

with w.k/ D w�k and =w� ¤ 0 one observes that the linear problem (and a fortiori
the nonlinear one) will be well-posed if the Fourier transform of initial data are
exponentially decreasing, which by use of Paley–Wiener Theorem [24] means that
initial data must be analytic in a strip. And this is in agreement with the following
forerunner result of Jabin and Nouri [17]:

Theorem 4 (Jabin-Nouri 2011). For any .x; v/ analytic function f0.x; v/ with

8˛; m ; n; sup
x

j@m
x @

n
v f0.x; v/j.1C jvj/˛ D C.m; n/o.jvj/;

there exists, for a finite time T, an analytic solution of the Cauchy problem for the
V–D–B equation.

3 Hamiltonian Structure of the Vlasov Equation
and Application to Some Examples

3.1 Hamiltonian Structure

Below we just recall what would be essential for the present contribution. As it is
the case for the classical Vlasov–Poisson equation, one may (cf. [22]) start from the
conservation of the energy
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E D
Z
Rd

x

Z
Rd
v

jvj2
2

f .t; x; v/dxdv C 1

2

Z
Rd

x

.�f .t; x//
2dx ; �f .t; x/ D

Z
Rd
v

f .t; x; v/dv:

With the introduction of the Gâteaux derivative of this energy

ıE

ıf
D jvj2

2
C �f .t; x/;

and of the Poisson bracket

fg; f g D rvg � rxf � rxg � rvf ;

the V–D–B equation is equivalent to the “Hamiltonian system”

@t f D
�

f ;
ıE

ıf

�
: (6)

Remark 1. Following Benney [3], we can obtain a new family of invariants for
the one-dimensional Vlasov–Dirac–Benney and Vlasov–Poisson equations. To this
purpose, let us define the velocity moments of the distribution function f such that

@xA0 D E.t; x/ D �@x�.t; x/; and for n � 1; AnŒf �.t; x/ D
Z
R

vnf .t; x; v/dv:

Velocity integration of V–D–B or V–P equations against polynomial in velocity
leads to the moment hierarchy

@tAn C @xAnC1 C n@xA0.x/@xAn�1 D 0: (7)

Defining the generating function f .t; xI z/ such that

f .t; xI z/ WD
X
n�0

An.t; x/z
n;

it can be easily shown that the moment hierarchy (7) is equivalent to an equation on
the generating function f , given by

z@tf C @xf D .1 � L.zf //@xf .z D 0/; (8)

with L D z2@z. Now rescaling the differential operator L as "z2@z in (8), using a
recursive procedure which involves recursive multiplication of (8) by "z2 and its
z-differentiation, gathering terms of same power in " and making some summation
manipulations (cf. [3]), we obtain the following infinite system of conservation laws
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@

@t

0
@X

n�0
Ln

�
znC1f nC1

.n C 1/Š

�1
AC @

@x

0
@X

n�0
Ln

�
znf nC1

.n C 1/Š

�
� f .0/

1
A D 0: (9)

In (9) each power n of z yields a distinct conservation laws and invariant. These new
invariants for the one-dimensional V–D–B and V–P equations are thus polynomials
of � and velocity moments An, n � 1.

3.2 Zakharov–Grenier Representation and Benney Equation

Observe also that it is always possible to write the solutions of the Vlasov equation
on the form (cf. [14, 28])

f .t; x; v/ D
Z

M
�.t; x; �/ı.v � u.t; x; �//d�; (10)

with .M; d�/ a probability space. These notations are consistent with the macro-
scopic definition of density and momentum, according to the formulas,

�.t; x/ D
Z
Rd
v

f .t; x; v/dv D
Z

M
�.t; x; �/d�;

�.t; x/u.t; x/ D
Z
Rd
v

vf .t; x; v/dv D
Z

M
u.t; x; �/�.t; x; �/d�:

Such decomposition is not unique and depends in particular on the form of this
decomposition at time t D 0. Moreover a distribution function f .t; x; v/ given by
(10) is a distributional solution of the V–D–B equation if and only if the functions
�.t; x; �/ and u.t; x; �/ are solutions of the system

@t�.t; x; �/C rx � .�.t; x; �/u.t; x; �// D 0;

@t .�.t; x; �/u.t; x; �// C rx � .�.t; x; �/u.t; x; �/ ˝ u.t; x; �//

C �.t; x; �/rx

Z
M
�.t; x; �/d� D 0: (11)

In one space dimension with .M; d�/ being respectively the interval .0; 1/ and the
Lebesgue measure, the system (11) turns out to be the Benney system

@t�.t; x; �/C @x.�.t; x; �/u.t; x; �// D 0;

@tu.t; x; �/C u.t; x; �/@xu.t; x; �/C @x

Z 1

0

�.t; x; �/d� D 0; (12)
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which has been derived by Zakharov from the original Benney equation [3] by using
a Lagrangian parametrization (cf. [28]) as a model of water-waves for long waves.
Hence the name “Benney” in the title of this contribution.

3.3 Kinetic Representations

Replacing the Lebesgue measure by the counting measure on the discrete set

M D f1; 2; : : : ;N � 1g;

the formula (10) becomes the multi-kinetic representation

f .t; x; v/ D
X
1�n�N

�n.t; x/ı.v � un.t; x//:

In particular for N D 1 and in any space dimension, the mono-kinetic distribution

f .t; x; v/ D �.t; x/ı.v � u.t; x//;

is a solution of the V–D–B equation if and only if the moments �.t; x/ and u.t; x/
are solutions of an isentropic fluid equations,

@t� C rx � .�u/ D 0 ; @t.�u/C rx � .�u ˝ u/C rx

�
�2

2

�
D 0; (13)

while in a one-dimensional space variable the multi-kinetic distribution function
f .t; x; v/ will be a solution of the V–D–B equation if and only if the unknowns
U D ..�1; �2; : : : ; �N/; .u1; u2; : : : ; uN// are solutions of the system of conservation
laws,

@t�n C rx.�nun/ D 0 ;

@t.�nun/C @x.�nu2n/C �n@x

� X
1�l�N

�l

�
D 0:

3.4 Waterbag Representation and Equations

Assume that the density profile v 7! f .t; x; v/, with 0 � f .t; x; v/ � 1, has only one
bump (say for v D �.t; x/). Then with

f C.t; x; v/ D f .t; x; v/ for v � �.t; x/; and

f �.t; x; v/ D f .t; x; v/ for v � �.t; x/;



12 C. Bardos and N. Besse

one defines on �0; 1Œ, two functions � 7! v˙.t; x; �/ according to the formulas

f˙.t; x; v˙.t; x; �// D �; if � � sup
v

f˙.t; x; v/;

v˙.t; x; �/ D 0; otherwise:

As it was observed in [5] the density profile f can be reconstructed according to the
standard formula (with Y denoting the Heaviside function)

f .t; x; v/ D
Z 1

0

ı.v � vC.t; x; �//Y.v � �.t; x//j@�vC.t; x; �/j�d�

C
Z 1

0

ı.v � v�.t; x; �//Y.�.t; x/ � v/j@�v�.t; x; �/j�d�;

or also as

f .t; x; v/ D
Z 1

0

.Y.vC.t; x; �/ � v/ � Y.v�.t; x; �/ � v//d�;

which is an exact weak solution of the V–D–B equation if and only if

@tv˙ C v˙@xv˙ C @x

Z 1

0

.vC.t; x; �/ � v�.t; x; �//d� D 0: (14)

Remark 2. From the formulas (14) one deduces the relations

@t.vC � v�/C .vC C v�/
2

@x.vC � v�/C .vC � v�/@x
.vC C v�/

2
D 0;

@t.@�v˙/C v˙@x@�v˙ C .@�v˙/@xv˙ D 0;

which imply that the following properties,

8� 2 .0; 1/ v�.x; t; �/ � vC.x; t; �/;

� 7! vC.x; t; �/ is decreasing and � 7! v�.x; t; �/ is increasing; (15)

are preserved by the dynamics [1, 4, 8].

With the infinite set of �-dependent densities � and velocities u,

�.t; x; �/ D vC.t; x; �/ � v�.t; x; �/; u.t; x; �/ D 1

2
.vC.t; x; �/C v�.t; x; �//;
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the .v�; vC/-system (14) is equivalent to the fluid type system,

@t�.t; x; �/C @x.�.t; x; �/u.t; x; �// D 0;

@tu.t; x; �/C @x

�
1

2
u2.t; x; �/C 1

8
�2.t; x; �/

�
C @x

Z 1

0
�.t; x; a/da D 0 : (16)

3.5 Hamiltonian Formulation of Fluid Representations

In fact fluid representations of the V–D–B equation, such as “mono-kinetic” model
(13), the Zakharov–Benney model (12) and the waterbag model (16), inherit of the
Hamiltonian structure of the V–D–B equation (6), with the energy E specified by
the fluid representation that we choose for the distribution function f . To this purpose
we introduce the matrix J defined by

J D �
�
0 1

1 0

�
:

For the “mono-kinetic” model (13), setting m.t; x/ D .�.t; x/; u.t; x//T , we obtain
the Hamiltonian formulation

@tm D fm;E gMoK WD J @x
ıE

ım
;

leading to the Poisson bracket structure [22, 23],

fF.m/;G.m/gMoK D
Z
R

dx
ıF

ım
J @x

ıG

ım
:

For the Zakharov–Benney model (12), setting m.t; x; �/ D .�.t; x; �/; u.t; x; �//T ,
we obtain the Hamiltonian formulation

@tm D fm;E gZB WD J @x
ıE

ım
;

leading to the Poisson bracket structure

fF.m/;G.m/gZB D
Z 1

0

d�
Z
R

dx
ıF

ım
J @x

ıG

ım
:

For the waterbag model (16), setting m.t; x; �/ D .�.t; x; �/; u.t; x; �//T D .vC �
v�; ŒvC C v��=2/T , we obtain the Hamiltonian formulation

@tm D fm;E gWB WD J @x
ıE

ım
;
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leading to the Poisson bracket structure

fF.m/;G.m/gWB D
Z 1

0

d�
Z
R

dx
ıF

ım
J @x

ıG

ım
:

3.6 Analytic Well-Posedness for Solutions in Fluid
Representations

Following Safonov [26], one introduces the Hardy type spaces Hs of x-analytic
vector-valued functions U.t; z; �/ D .�.t; x C iy; �/; u.t; x C iy; �// defined on the
tube f.x C iy; �/ 2 C

d � M W jyij < s; i D 1; : : : ; dg of the d-dimensional complex
plane Cd with norm,

kUk2s D sup
0�jyj�s; �2M

 Z
Rd

ˇ̌
ˇ̌�I C .��x/

1=2
	 d
2C1

U.x C iy; �/

ˇ̌
ˇ̌2 dx

!
;

and the Banach space X	s0 equiped with the norm,

kUk	s0 D sup
0�sC
t<s0

.s0 � s � 
t/	kU.t/ks;

where 	 � 0, s0 > 0 and 
 > 0. Eventually one denotes by B
	
so.r/ the ball of radius

r in such space, i.e.

B	 so.r/ D
(

U 2 X	s0 I sup
0�sC
t<s0

.s0 � s � 
t/	kU.t/ks < r

)
: (17)

Observe that, for all the examples in a one-dimensional space variable, from the
“general Benney equation” (cf. Sect. 3.2) to the “waterbag” (cf. Sect. 3.4), the
Cauchy problem can be written in the form,

f .t; x; v/ D
Z

M
�.t; x; a/ı.v � u.t; x; �//d�;

U.t; x; �/ D .�.t; x; �/; u.t; x; �//; U.t; �/ D U.0; �/C
Z t

0

F .U/.�; �/d�;

(18)

where F is an operator which satisfies the hypothesis of the Safonov version of the
Cauchy–Kowalewski Theorem (namely Assumptions 1.1 in [26]). Indeed one has
F .0/ D 0; For r > 0, the correspondence U 7! F .U/ is a continuous mapping of˚
U 2 Hs W kUk2s < r



into Hs0

with 0 < s0 < s < s0; and for any 0 < s0 < s < s0,
and for all U; V 2 Hs, with kUks < r, kVks < r, we have
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kF .U/ � F .V/ks0 � C.r/

s � s0 kU � Vks:

Finally this leads to the following

Theorem 5. For solutions given by the formula (18) there exists 
 > 0 depending
only the dimension d, and the constant parameters s0 > 0, r > 0, and 	 2 .0; 1/

such that for any initial data

U.0; x; �/ D .�.0; x; �/; u.0; x; �// 2 H s0

with kU.0/ks0 < r, one has on the time interval .0; s0


/ a solution U.t; x; �/ 2

H s0�
t, with kU.t/ks0 � 
t<r of the corresponding Cauchy problem.

Remark 3. In agreement with the representation formula (18), the Theorem 5
concerns (at variance with the Jabin–Nouri Theorem 4) solutions which are analytic
with respect to x and t but which can exhibit singularities in the v variable (Dirac
masses, sum of Dirac masses, step or Heaviside functions, etc : : :).

4 Entropy and Local-in-Time Stability in Sobolev Spaces

4.1 Energy, Conserved Quantities and Entropies

The energy takes the form

E .f / D 1

2

Z
R�R

jvj2f .t; x; v/dxdv C 1

2

Z
R

.�f .t; x//
2dx;

which is the basic conserved quantity of the V–D–B equation written in the
Hamiltonian formalism according to the formula

@tf C
�
ıE

ıf
; f

�
D 0: (19)

Obviously the energy E .f / is not a convex function of f . However with the
representation

f .t; x; v/ D
Z

M
�.t; x; �/ı.v � u.t; x; �//d�;

this energy may become a convex functional of the variable U.t; x; �/ D .�.t; x; �/;
u.t; x; �// solution of the system

@tU C @xF.U/ D 0; (20)
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where the application U 7! F.U/ is a twice continuously Gâteaux-differentiable
nonlinear unbounded operator in L

2.M; d�/ WD L2.M; d�/ � L2.M; d�/, with
domain D.F/ D L

2 \ L
1.M; d�/.

More generally, the invariants �.f / D �.U/ of the dynamics given by (19) or (20)
are characterized by the relation

0 D d

dt

Z
R

�.U/dx D
Z
R

dx DU�.U/@tU D
Z
R

dx DU�.U/DUF.U/@xU; (21)

where the symbol DU denotes the differential with respect to the variable U.
In the classical theory of conservation laws, solutions of (21) are called “conserved
quantities” and are associated to the notion of flux according to the formula
DU�.U/DUF.U/ D DUQ.U/ which implies the relation

D2
U�.U/DUF.U/ D .DUF.U//TD2

U�.U/;

i.e. the fact that D2
U�.U/ is a symmetrizer for the conservation law and a positive

definite symmetrizer when u 7! �.U/ is a convex function.
Extension of these considerations to the system (20) is the object of the next

theorem,

Theorem 6. Let us consider solutions .t; x; �/ 7! U.t; x; �/ of the system,

@tU C @xF.U/ D 0;

where the application U 7! F.U/ is a twice Gâteaux-differentiable local operator
(with respect to the variables .t; x/ which can be considered as fixed parameters)
in L

1.M; d�/. For a twice Gâteaux-differentiable function U 7! �.U/ defined on
Hs.RxIL1.M; d�// with value in R, the following assertions are equivalent:

i) DU�.U/DUF.U/ D DUQ.U/ is a flux.
ii) �.U/ is a conserved quantity.

iii) D2
U�.U/DUF.U/ is a symmetric (self-adjoint) operator.

Proof. ii) follows from i) by integration of the relation

@t�.U/ D �@xQ.U/:

If �.U/ is a conserved quantity, one has

0 D d

dt

Z
�.U.t; x//dx D �

Z
R

DU�.U/DUF.U/@xU: (22)
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Using Gâteaux-derivative of (22), we get for any vector-valued function V ,

0 D d

ds

�Z
R

DU�.U C sV/DU.F.U C sV//@x.U C sV/dx

�
jsD0

D
Z
R

D2
U�.U/ŒV;DUF.U/@xU�dx C

Z
R

DU�.U/D
2
UF.U/ŒV; @xU�dx

C
Z
R

DU�.U/DUF.U/@xVdx;

D
Z
R

.@xU/T.DUF.U//TD2
U�.U/Vdx C

Z
R

fDU.DU�.U/DUF.U//

�D2
U�.U/DUF.U/gŒV; @xU�dx C

Z
R

DU�.U/DUF.U/@xVdx;

D
Z
R

.@xU/T.DUF.U//TD2
U�.U/Vdx �

Z
R

.@xU/TD2
U�.U/DUF.U/Vdx

C
Z
R

@x.DU�.U/DUF.U//Vdx C
Z
R

DU�.U/DUF.U/@xVdx;

D
Z
R

.@xU/T.DUF.U//TD2
U�.U/Vdx �

Z
R

.@xU/TD2
U�.U/DUF.U/Vdx;

which implies the Lax condition

D2
U�.U/DUF.U/ D .DUF.U//TD2

U�.U/; (23)

and shows that ii) implies iii). The proof of the assertion “iii) implies i)” is a
direct adaptation of the same property for functions depending of a finite number
of variables and is done as follows. Assume that U 7! R.U/ is a linear operator in
L

1.M; d�/, with R.U/ D DU�.U/DUF.U/, then define Q.U/ by the formula

Q.U/ D
Z 1

0

R.sU/.U/ds;

and show with one integration by part and self-adjointness of DUR.U/, that one has
for any vector-valued function V ,

d

d�
Q.U C �V/j�D0

D R.U/.V/;

which explicitly means that U 7! R.U/ is the Gâteaux derivative of U 7! Q.U/.
It remains to show that DUR.U/ is self-adjoint, which follows from the Lax
condition (23), the obvious relation: for any vector-valued functions V and W one
has

.D2
UF.U/V/W D .D2

UF.U/W/V;
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and the equation

DUR.U/ D DU.DU�.U/DUF.U// D D2
U�.U/DUF.U/C DU�.U/D

2
UF.U/: ut

Remark 4. If we denote by the bracket f�; �gS , a generic Poisson bracket with S 2
fMoK; ZB; WBg and whose corresponding definitions are established in Sect. 3.5,
from the proof of Theorem 6 we get that

d

dt

Z
R

�.U/ dx D f�.U/;E .U/gS D 0;

which means that the invariant �.U/ is an involution.

4.2 Stability of Mono-Kinetic and Multi-Kinetic Solutions

In any space dimension d, the energy

E .f / D 1

2

Z
Rd

x

.ju.t; x/j2 C �.t; x//�.t; x/dx;

of the isentropic system

@t�C rx � .�u/ D 0;

@t.�u/C rx � .�u ˝ u/C rx

�
�2

2

�
D 0; (24)

(i.e. for a mono-kinetic solution f .t; x; v/ D �.t; x/ı.v � u.t; x//), is strictly convex
near any constant state U0 D .�0; u0/ with �0 > 0. Following the classical theory of
hyperbolic systems of conservation laws [9, 21], this implies the

Theorem 7. The Cauchy problem for the system (24) and initial data of the form
U0C QU0.x/ with QU0.x/ 2 Hs.Rd/ and s > d=2C1, has for a finite time .0 < t < T�/,
a unique solution of the form U0.t; x/C QU.t; x/ with QU.t; x/ 2 C.0;TI Hs.Rd//.

On the other hand in a one-dimensional space variable, the parameters of the multi-
kinetic representation U D ..�1; u1/; .�2; u2/; : : : ; .�N ; uN// are also solutions of a
system of 2N conservation laws,

@t�n C @x.�nun/ D 0 ;

@tun C @x

�u2n
2

�
C @x

� X
1�`�N

�`

�
D 0;
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with an energy,

E .f / D 1

2

Z
Rx

 X
1�n�N

�n.t; x/jun.t; x/j2 C
� X
1�n�N

�n.t; x/
�2!

dx; (25)

which is not (as observed in details in [6]) always convex near a constant state.
For instance with N D 2, it is strictly convex near .��; u�; �C; uC/ D

.1;�a; 1; a/ for a2 > 2, and not convex otherwise. Therefore the Theorem 7 can
be extended near constant states which ensure the convexity of E .U/, while for
perturbations near other initial states the Cauchy problem is ill-posed in any Sobolev
and stability requires analyticity of the initial perturbation as in the Theorem 5.

5 Local-in-Time Stability of the One Bump Profile Solution

As observed in the Sect. 3.4, the evolution of a one bump profile can be described
either with the velocity variables v˙.t; x; �/ or with the fluid variables U.t; x; �/ D
.�.t; x; �/; u.t; x; �// according to the equations,

@tv˙ C @x

�v2˙
2

�
C @x

Z 1

0

.vC.t; x; �/ � v�.t; x; �//d� D 0 ; (26)

or with

�.t; x; �/ D vC.t; x; �/ � v�.t; x; �/ and

u.t; x; �/ D .vC.t; x; �/C v�.t; x; �//=2;

@t�.t; x; �/C @x.�.t; x; �/u.t; x; �// D 0;

@tu.t; x; �/C @x

�
1

2
u2.t; x; �/C 1

8
�2.t; x; �/

�
C @x

Z 1

0

�.t; x; a/da D 0: (27)

This system can be reformulated as

@tU C @xF.U/ D 0; (28)

with U.�/ 7! F.U/.�/ a twice Gâteaux-differentiable operator in L
1.0; 1/. More-

over the energy of these solutions in the v˙.t; x; �/ or in the .�.t; x; �/; u.t; x; �//
representation is given by
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E .f /.t/ D 1

2

�Z
R�R

v2f .t; x; v/dxdv C
Z
R

�
�f .t; x/

	2
dx

�

D
Z
Rx

�
1

6

Z 1

0

.v3C.t; x; �/ � v3�.t; x; �//d�

C1

2

�Z 1

0

.vC.t; x; �/ � v�.t; x; �//d�
�2#

dx;

D 1

2

Z
R

Z 1

0

�
�.t; x; �/u2.t; x; �/C 1

12
�3.t; x; �/

�
d�dx

C1

2

Z
R

�Z 1

0

�.t; x; �/d�

�2
dx: (29)

Therefore, equipped with a convex entropy (29), the system (27) has for the Cauchy
problem a unique solution according to the

Theorem 8. For any set of initial data

. Q�0.x; �/; u0.x; �// 2 L
1.0; 1I H3.Rx//

there exists a finite time T such that the Cauchy problem

@t�.t; x; �/C @x.�.t; x; �/u.t; x; �// D 0;

@tu.t; x; �/C @x

�
1

2
u2.t; x; �/C 1

8
�2.t; x; �/

�
C @x

Z 1

0

�.t; x; a/da D 0;

�.0; x; �/ D C C Q�0.x; �/; u.0; x; �/ D u0.x; �/ with �.0; x; �/ � c > 0;
(30)

has a unique solution .�.t; x; �/ D C C Q�.t; x; �/ � c > 0; u.t; x; �// with

. Q�.t; x; �/; u.t; x; �// 2 L1.0;TIL1.0; 1I H3.Rx///:

Corollary 2. Let us consider an initial profile

f 0.x; v/ D Y.v/f 0C.x; v/C .1 � Y.v//f 0�.x; v/;

with f 0C.v/ decreasing and f 0�.v/ increasing such that the functions
.�0.x; �/; u0.x; �// given by the formulas,

f˙.v˙.�// D �; �0.x; �/ D vC.x; �/ � v�.x; �/;

and

u0.x; �/ D .vC.x; �/C v�.x; �//=2;
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satisfy the hypothesis of the Theorem 8. Then the distribution function,

f .t; x; v/ D
Z 1

0

.Y.vC.t; x; �/ � v/ � Y.v�.t; x; �/ � v//d�; (31)

is, for 0 < t < T (with T given by the Theorem 8), a solution of the problem

@tf C v@xf � @x

�Z
R

f .t; x; v/dv

�
@v f D 0;

with initial data f .0; x; v/ D f 0.x; v/.

Proof. With U.t; x; �/ D .�.t; x; �/; u.t; x; �//, the Cauchy problem (30) can be
written according to the formulas

@tU C @xF.U/ D 0;

F.U/ D

8̂
<
:̂
�.t; x; �/u.t; x; �/;

1

2
u2.t; x; �/C 1

8
�2.t; x; �/C

Z 1

0

�.t; x; a/da :

(32)

This system has the convex energy

�.U/ D 1

2

Z
R

Z 1

0

.�.t; x; �/u2.t; x; �/C 1

12
�3.t; x; �//d�dx

C 1

2

Z
R

�Z 1

0

�.t; x; �/d�

�2
dx:

Therefore (cf. Theorem 6) D2
U�.U/ is a well defined positive symmetrizer and local-

in-time estimates can be obtained by considering the expression

@3x.@tU C DUF.U/@xU D 0/;

on which we can apply the symmetrizer integral operator D2
U�.U/ from the left,

and proceeding as in the classical case (cf. [1, 9, 21]) to complete the proof of the
Theorem 8.

Now, given the functions v˙.t; x; �/, the fluid variables .�.t; x; �/; u.t; x; �// are
recovered by the formulas

v˙.t; x; �/ D u.t; x; �/˙ 1

2
�.t; x; �/:

Obviously one has vC.t; x; �/ � v�.t; x; �/ and the equations

@t.@�v˙/C v˙@x.@�v˙/C .@�v˙/@xvx D 0;
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imply that the monotonicity of the functions � 7! v˙.t; x; �/ are preserved by the
dynamics [1, 4, 8]. Eventually one uses the formula (31) to reconstruct the solution
of the V–D–B equation. ut
Remark 5. Since the equivalent system (26) has also a convex entropy it can be
also diagonalized and this leads to a formulation in term of generalized Riemann
invariants giving also a stability result but with well adapted regularity of the initial
data with respect to the variable � . This was done in [4] by N. Besse following a
method introduced by Teshukov [27].

Remark 6. With no surprise there is a good agreement between the results for
the linearized problem and the nonlinear one. The above theorems concerning the
“waterbag” and the “mono-kinetic” equations are the counterpart of the stability
results near a one bump profile which is the object of the Theorem 2. In particular for
the “mono-kinetic” equation this profile is a Dirac mass. Then direct computation
shows that the dispersion relation has no complex value solution [1]. The same
remarks is also valid for “multi-kinetic model”. For instance with N D 2, the
dispersion relation for the linearized model is

1 D
Z
R

G0.v/
v � ! dv D 1

.a � !/2 C 1

.a C !/2
;

which has real solutions if a2 > 2, and complex solutions, i.e. unstable modes,
otherwise.

6 Wigner or Semi-Classical Limit of Solutions
of the Nonlinear Schrödinger Equation

6.1 Formal Derivations

The connection of the Schrödinger equation with a self-consistent potential to the
Vlasov equation, via the Wigner limit, is at present very well documented. For
instance for the Schrödinger–Poisson equation, i.e. with a self-consistent defocusing
Coulomb type potential of the form

Z
Rd

1

jx � yj.d�2/ j .y/j2dy

not only (with well adapted initial data) the problem is uniformly well-posed but
convergence of the Wigner transform, on an arbitrary large time is proven (cf. for
instance [20] or [12]).
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For the present discussion one starts with a family f �.t; x; �/g�2M , solution of
the following quadratic nonlinear Schrödinger equation

i�@t �.t; x; �/ D ��
2

2
�x �.t; x; �/C

�Z
M

j �.t; x; �/j2d�
�
 �.t; x; �/:

Given the potential

V�.t; x/ D
Z

M
j �.t; x; �/j2d�;

the time-dependent equation

i�@t
�.t; x; �/ D ��
2

2
�x
�.t; x; �/C V�.t; x/
�.t; x; �/;

defines by the formula

f
�.t; x; �/g�2M D U�.t/f
0.t; x; �/g�2M ;

a family of unitary operators U�.t/ acting in the space L1.M I L2.0;TI L2.Rd
x///.

Then one introduces the projection operator

K�.t; x; y/ D
Z

M
 �.t; x; �/˝  �.t; y; �/d�;

with energy

E�.K�/ D Trace

�
��

2

2
�xK� C V�K�

�
< 1:

The operator K� is a solution of the Von Neumann–Heisenberg equation,

d

dt
K� D � 1

i�
ŒH�;K�� D � 1

i�

�
ıE�

ıK�

.K�/;K�

�
;

with

H� D
�

��
2

2
�x C V�

�
:

Eventually for the Wigner transform of the Von Neumann–Heisenberg equation,
which involves the Weyl symbol W�.t; x; v/ defined by the Wigner transform of K�,

W�.t; x; v/ D 1

.2�/d

Z
Rd

e�iy�vK�

�
t; x C �

2
y; x � �

2
y
�

dy;
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one has “at the formal level” (i.e. assuming all sufficient conditions to pass to the
limit) the following convergences as � ! 0 (Wigner or semi-classical limit):

W�.t; x; v/ �! W.t; x; v/;

E�.K�/ �! 1

2

Z
Rd

 Z
Rd

jvj2W.t; x; v/dv C
�Z

Rd
W.t; x; v/dv

�2!
dx;

@tW C v � rxW � rx

�Z
Rd

W.t; x;w/dw

�
� rvW D 0:

In order to consider “mixed states” as in [20] and connect with Zakharov–Grenier
formula (10), we now assume that the functions  �.t; x; �/ can be written as

 �.t; x; �/ D a�.t; x; �/e
i

S�.t;x;�/
� ;

with a� and S� “uniformly regular” with respect to �, then for the Wigner transform
one has:

lim
�!0

W�.K�.t; x; y//

D lim
�!0

Z
M

d�
1

.2�/d

Z
Rd

eiv�ya�.t; x C �

2
y; �/ei

S�.t;xC
�
2 y;�/

�

� a�.t; x � �

2
y; �/e�i

S�.t;x�
�
2 y;�/

� dy

D
Z

M
ja.t; x; �/j2ı.v � rxS.t; x; �//d� D

Z
M
�.t; x; �/ı.v � u.t; x; �//d�:

Taking “formally” the limit � ! 0, one obtains with � D lim�!0 a�a� and u D
lim�!0 rxS�,

@t�.t; x; �/C rx � .�.t; x; �/u.t; x; �// D 0;

@tu.t; x; �/C u.t; x; �/ � rxu.t; x; �/C rx

Z
M
�.t; x; a/da D 0; (33)

which is the Benney or V–D–B equation in the Zakharov–Grenier representation.
Moreover, on the other hand, with

 �.t; x; �/ D a�.t; x; �/e
i

S�.t;x;�/
� ; and w�.t; x; �/ D rxS�.t; x; �/;

the equation

i�@t �.t; x; �/ D ��
2

2
�x �.t; x; �/C

�Z
M

j �.t; x; �/j2d�
�
 �.t; x; �/;
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is equivalent to the system

@ta�.t; x; �/Cw�.t; x; �/ � rxa�.t; x; �/C 1

2
a�.t; x; �/rx � w�.t; x; �/

D i�

2
�xa�.t; x; �/ ;

@tw�.t; x; �/Cw�.t; x; �/ � rxw�.t; x; �/C rx

Z
M

a�.t; x; �/a�.t; x; �/d� D 0:

(34)

Remark 7. The above representation is a variant both of the Madelung transform
(where the amplitude a� is taken real) and of the WKB method which is a Taylor
expansion. As a consequence a�.t; x; �/ does not remain real for t 6D 0 and x real,
while w�.t; x; �/ D rxS�.t; x; �/ remains real for x real. This representation already
appeared in [7] and [13] . It was used by Grenier [15, 16] for the validation of the
semiclassical limit. Here we apply it both in the analytical and the Sobolev setting
(cf. Theorem 9 and Theorem 10) to validate the formal convergence by proving
convenient uniform a priori estimates. With no surprise these estimates are in full
agreement with the well-posedness or ill-posedness results given above for the V–
D–B equation.

6.2 Convergence Proof for Analytic Initial Data

With the notations introduced in the Sect. 3.6, the counterpart of the Theorem 5 turns
out to be the

Theorem 9. There exists 
 > 0, depending only on the dimension d, and the
constant parameters s0 > 0, r > 0 and 	 2 .0; 1/ (and in particular independent
of �) such that for any

.a�.0; x; �/;w�.0; x; �/ D rxS�.0; x; �// 2 H s; (35)

with jj.a�.0/;w�.0//jjs0 < r, there exists on the time interval .0; s0


/ a solution

.a�.t; x; �/;w�.t; x; �/ D rxS�.t; x; �// 2 H s0�
t;

with k.a�.t/;w�.t/kso�
t < r, of the problem (34) with initial data (35). Moreover
these solutions are uniformly bounded (with respect to �) in H s0�
t , so that they
converges, as � ! 0, to the solutions of Zakharov–Benney equation (33) given by
the Theorem 5.

Proof. First observe that any function x 7! f .x/ defined for x 2 R
d, and which is

the restriction of an analytic function f .x C iy/, defined for jyij < s, (i D 1; : : : ; d),
can be represented (with the Payley–Wiener Theorem [24]) by the formula
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f .x/ D
Z
Rd

eix�� Of .�/d�;

with Of .�/ decaying exponentially for j�j ! 1 . Hence the complex conjugate

f .x/ D
Z
Rd

e�ix�� Of .�/d�;

is also the Fourier transform of a function with the same exponential decay and
therefore can be extended as analytic function in the complex domain according to
the formula:

f �.x C iy/ D
Z
Rd

e�i.xCiy/�� Of .�/d�: (36)

Of course such extension does not coincide with the complex conjugate of f .x C iy/
for y 6D 0, but it belongs to the same class (in term of regularity) of analytical
functions. With this remark in mind, one introduces the analytic extension .a�.t; xC
iy; �/; a�

�
.t; x C iy; �/; w�.t; x C iy; �// of .a�.t; x; �/; a�.t; x; �/; w�.t; x; �// and

write the system (34) in the equivalent form: for z D x C iy 2 C
d,

@tw�.t; z; �/C w�.t; z; �/ � rzw�.t; z; �/C rz

Z
M

a�.t; z; �/a
�
�
.t; z; �/d� D 0;

@ta�.t; z; �/ C w�.t; z; �/ � rza�.t; z; �/C 1

2
a�.t; z; �/rz � w�.t; z; �/

D i�

2
�za�.t; z; �/;

@ta
�
�
.t; z; �/C w�.t; z; �/ � rza

�
�
.t; z; �/C 1

2
a�
�
.t; z; �/rz � w�.t; z; �/

D �i�

2
�za

�
�
.t; z; �/: (37)

With the notations

U D
0
@w�.t; z; �/

a�.t; z; �/
a�
�
.t; z; �/

1
A ; L� D

0
@ 0

i�
2
�z

� i�
2
�z

1
A ;

and

F.U/ D �
0
@w�.t; z; �/ � rzw�.t; z; �/C rz

R
M a�.t; z; �/a�

�
.t; z; �/d�

w�.t; z; �/ � rza�.t; z; �/C 1
2
a�.t; z; �/rz � w�.t; z; �/

w�.t; z; �/ � rza�
�
.t; z; �/C 1

2
a�
�
.t; z; �/rz � w�.t; z; �/

1
A ; (38)
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the system becomes

@tU D F.U/C L�.U/;

which, using a Duhamel’s formula, implies

U.t/ D etL�.U0/C
Z t

0

e.t��/L�F.U.�//d� D ˚.U/: (39)

Since F is bilinear (and linear with respect to the first-order derivative) and since
etL� is, for any �, a unitary operator in Hs, then for any 0 < s0 < s < s0, one has

ke.t��/L�F.U.�//�e.t��/L�F.V.�//ks0 � C

s � s0 kU.�/�V.�/ks.kU.�/ksCkV.�/ks/;

with C depending only on the dimension and in particular not on �. Next one uses
the k � k	s0-norm of the Banach space X	s0 , i.e.

kUk	s0 D sup
0�sC
t<s0

.s0 � s � 
t/	kU.t/ks;

and following Safonov [26] shows that

k˚.U/� ˚.V/k	s0 � 2	C1C.kU.�/ks C kV.�/ks/

	

kU.�/ � V.�/k	s0 :

Hence for 
 chosen large enough (with respect to C and r), ˚ preserves the ball
B0

s0
.r/, and is a contraction in X	s0 \ B0

s0
.r/. The rest of the proof follows. ut

Remark 8. The above proof is simpler than the forerunner result of Gérard [11],
and it also provides an extension to mixed states as considered by Lions and Paul
[20]. This is essentially due to the fact that [26] version of the Cauchy–Kowalewski
Theorem is very well adapted to the problem in the representation proposed by
Grenier [15, 16].

6.3 Convergence Proof for Finite Time with Finite
Sobolev Regularity

With no surprise, the stability result for the limit equation should find their
counterpart at the level of the convergence. In particular the local-in-time stability
in Sobolev spaces has been proven for the mono-kinetic solutions. Mono-kinetic
solutions correspond to the (� ! 0)-limit of the Wigner transform of a “pure WKB-
state”, i.e.
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W�

�
a�.t; x/e

i
S�.t;x/

� ˝ a�.t; y/
�e�i

S�.t;y/
�

�
�!
�!0

�.t; x/ı.v � u.t; x//:

The validity of such convergence comes from standard uniform estimates due to
Grenier [15, 16]. For comparison with the rest of the present contribution, this result
is recalled below.

Theorem 10 (Grenier [16]). Let s > d=2C 2, let S0.x/ 2 Hs.Rd/ and a0.x; �/ be
a sequence of functions uniformly bounded in Hs.Rd/. Then there exist T > 0, and
solutions

 �.t; x/ D a�.t; x/e
i

S�.t;x/
� ;

to the Cauchy problem

i�@t � D ��
2

2
�x � C j �j2 �;  �.0; x/ D a0.x; �/ei

S0
�
.x/
� :

Moreover, a�.t; x/ and S�.t; x/ are bounded in L1.0;TI Hs.IRd// uniformly in �.

To prove this theorem, Grenier starts from the following system

@tw�.t; x/C w�.t; x/rxw�.t; x/C rx.˛
2
�
.t; x/C ˇ2

�
.t; x// D 0;

@t˛�.t; x/C w�.t; x/ � rx˛�.t; x/C 1

2
˛�.t; x/rx � w�.t; x/ D ��

2
�xˇ�.t; x/;

@tˇ�.t; x/C w�.t; x/ � rxˇ�.t; x/C 1

2
ˇ�.t; x/rx � w�.t; x/ D �

2
�x˛�.t; x/; (40)

which corresponds to the restriction to the real domain of (37) and where ˛�.t; x/
and ˇ�.t; x/ denote respectively the real and imaginary part of a�.t; x/. He observes
that this system can be symmetrized by a strictly positive matrix S and this will lead
to the standard a priori estimates of hyperbolic systems of conservation laws [9].
In fact the existence of such strictly positive symmetrizer is a consequence of the
fact that the mass (i.e. with ��.t; x/ D ˛�.t; x/2 C ˇ�.t; x/2) and the energy of
the system,

1

2

Z
Rd

�
w�.t; x/

2 C ��.t; x/
	
��.t; x/dx;

are a strictly convex invariants.
Hence in R

d with s > d=2 C 2, there exists an �-independent function
.a0.0; �/;w0.0; �// such that

k.a�.0; �/;w�.0; �//kHs �! k.a0.0; �/;w0.0; �//kHs ; as � ! 0;
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and the system (40) has for t < T.k.a�.0; �/;w�.0; �//kHs/ a unique solution
satisfying the estimate

k.a�.t; �/;w�.t; �//kHs � C.k.a�.0; �/;w�.0; �//kHs/:

7 Conclusion

The fact that in the V–D–B equation, the operator,

f 7! Ef D �@x

Z
f .t; x; v/dv;

is local in x and of degree 1 has in the present contribution the following
consequences. The well-posedness of the Cauchy problem depends drastically on
the initial data and this is related to the convexity of the energy (in a convenient
class of solutions).

With such locality the notion of invariants in the sense of Hamiltonian systems,
and the notion of conserved quantities for conservation laws do coincide.

The V–D–B equation appears also as the semi-classical or Wigner limit (with
� ! 0) of solutions of the nonlinear self-consistent Schrödinger equation. Such
limit can formally be described and proven in the general case, i.e. for mixed WKB-
states initial data only when the initial data are analytic. Otherwise that would be in
contradiction with the cases where the limit Cauchy problem is not well-posed. On
the other hand it is only for pure WKB-states initial data that the limit (which will
be a mono-kinetic solution) is proven with finite Sobolev type regularity.

The above observations remain true in a one-dimensional space variable where
not only the nonlinear Schrödinger equation but also its generalization as system
of coupled equations (for mixed states) are integrable (cf. Zakharov [28]). This
confers to the V–D–B equation a status of quasi-integrable equation with an infinity
of invariant quantities, limit of the corresponding invariants at the level of the
Schrödinger equations. The above properties being in some sense algebraic, the
proof of convergence with analyticity hypothesis seems well adapted to such con-
siderations even if convergence proofs have been obtained (as in the d-dimensional
case) for a genuine scalar equation (not a system) either as above by the theorem of
Grenier, or in the spirit of scattering theory by Jin, Levermore and McLaughlin [18].
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Analysis of Enhanced Diffusion in Taylor
Dispersion via a Model Problem

Margaret Beck, Osman Chaudhary, and C. Eugene Wayne

Dedicated to Walter Craig, with admiration and affection, on
his 60th birthday.

Abstract We consider a simple model of the evolution of the concentration of a
tracer, subject to a background shear flow by a fluid with viscosity � � 1 in an
infinite channel. Taylor observed in the 1950s that, in such a setting, the tracer
diffuses at a rate proportional to 1=�, rather than the expected rate proportional
to �. We provide a mathematical explanation for this enhanced diffusion using a
combination of Fourier analysis and center manifold theory. More precisely, we
show that, while the high modes of the concentration decay exponentially, the
low modes decay algebraically, but at an enhanced rate. Moreover, the behavior
of the low modes is governed by finite-dimensional dynamics on an appropriate
center manifold, which corresponds exactly to diffusion by a fluid with viscosity
proportional to 1=�.

1 Introduction

Taylor diffusion (or Taylor dispersion) describes an enhanced diffusion resulting
from the shear in the background flow. First studied by Taylor in the 1950s
[9, 10] many further authors have proposed refinements or extensions of this theory
[1, 3, 7, 8]. In the present paper we show how in a simplified model of Taylor
diffusion we can use center manifold theory to simply and rigorously predict the
long-time behavior of the concentration of the tracer particle to any desired degree
of accuracy. We note that in terms of prior work on this problem our approach is
closest to that of Mercer and Roberts, [8], who also use a formal center manifold
to approximate the Taylor dispersion problem. However, they construct their center-
manifold in Fourier space, an approach which is difficult to make rigorous because
there is no spectral gap between the center directions and the stable directions.
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By introducing scaling variables we show that a spectral gap is created which allows
us to rigorously apply existing center-manifold theorems to analyze the asymptotic
behavior of the problem. We believe that a similar approach will also apply to the
full Taylor diffusion problem and plan to consider that case in future work.

We consider the simplest situation in which Taylor dispersion is expected to
occur, namely a channel with uniform cross-section and a shearing flow:

@tu D ��u � A.1C �.y//@xu ; �1 < x < 1 ; �� < y < �

u D u.x; y; t/; uy.x;˙1; t/ D 0: (1)

We assume that A is constant and that the background shear flow has been
normalized so that

R �
�� �.y/dy D 0. Thus, the mean velocity of the background

flow is A and we can transform to a moving frame of reference Qx D x � At. In this
new frame of reference (and dropping the tilde’s to avoid cluttering the notation),
we have

@tu D ��u � A�@xu:

We begin with a formal calculation that will be justified in an appropriate sense in
subsequent sections and that provides some intuition about the expected behavior of
(1). Given the geometry of this situation it makes sense to expand u in terms of its
y-Fourier series. Therefore, we write

u.x; y; t/ D
X

n

Oun.x; t/e
iny ; and �.y/ D

X
n

O�neiny;

where

Oun.x; t/ D 1

2�

Z �

��
e�inyu.x; y; t/dy; O�n D 1

2�

Z �

��
e�iny�.y/dy;

and we find (considering separately the case n D 0 and n ¤ 0)

n D 0I @t Ou0 D �@2x Ou0 � A.̂�ux/0

n ¤ 0I @t Oun D �.@2x � n2/Oun � A.̂�ux/n; (2)

where

.̂�ux/n D
X

m

O�m.Oun�m/x:

We now introduce scaling variables. These variables have often been used to analyze
the asymptotic behavior of parabolic partial differential equations and they have
the additional advantage that they frequently make it possible to apply invariant
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manifold theorems to these problems [5]. We expect that the modes with n ¤ 0 will
decay faster than those with n D 0, so we make a different scaling—of course we
have to verify that the behavior of the solutions is consistent with this scaling. Let

Ou0.x; t/ D 1p
1C t

w0

�
xp
1C t

; log.1C t/

�
(3)

Oun.x; t/ D 1

.1C t/
wn

�
xp
1C t

; log.1C t/

�
; n ¤ 0 : (4)

In Sect. 3, below, we show that Oun.x; t/ is basically an x derivative of a Gaussian,
which generates the extra t�1=2 decay. Proceeding, note that if we consider the
advection term, the contribution to the n D 0 equation is of the form

X
m¤0

O�m.Ou�m/x ;

where we have no contribution from the term with m D 0 since O�m D 0 because �
has zero average. The scaling in (3) and (4) was chosen so that the terms in this sum
will have the same prefactor in t as all the remaining terms in the equation for w0.
More precisely, consider the various terms in the equation for Ou0. We find

@t Ou0 D �1
2

1

.1C t/3=2
w0 � 1

2

1

.1C t/3=2
�@�w0 C 1

.1C t/3=2
@�w0 ;

where we have introduced the new independent variables

� D xp
1C t

; � D log.1C t/ :

Likewise, we have

@2x Ou0 D 1

.1C t/3=2
@2�w0;

X
m¤0

O�m.Ou�m/x D 1

.1C t/3=2
X
m¤0

O�m.w�m/� :

Thus, the equation for w0 becomes

@�w0 D L w0 � A
X
m¤0

O�m.w�m/� ; (5)

where

L w D �@2�w C 1

2
@�.�w/ :
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Remark 1. The spectrum of L can be explicitly computed. See Sect. 2 for more
details.

Repeating the calculation above for the evolution of the terms Oun with n ¤ 0,
one finds that the terms are not any longer of the same order in t. Consider first the
advective term which now has the form

X
m

O�m.Oun�m/x D 1

1C t
O�n@�w0 C 1

.1C t/3=2
X
m¤n

O�m@�wn�m :

Working out the form of the remaining terms in (2), one finds

�
�n2wn C A O�n@�w0

	 D e�� ..L C 1=2/wn � @�wn/ � Ae��=2
0
@X

m¤n

O�m@�wn�m

1
A :

(6)

The terms on the right hand side of this expression should go to zero exponentially
fast so that in the limit � ! 1, wn satisfies the simple algebraic equation

�n2wn C A O�n@�w0 D 0 : (7)

Remark 2. This is reminiscent of various geometric singular perturbation argu-
ments and we will expand more upon this point in Sect. 2.

If we are interested in the long time behavior of the system, we can conclude
from (7) that

wn D �A O�n

�n2
@�w0 :

If we now insert this expression into (5) we find that

@�w0 D L w0 C A2

�

X
m¤0

1

m2
O�m O��m@

2
�w0 :

Since � is real, O��m D O�m, and so the last term in the preceding equation can be
rewritten as

0
@A2

�

X
m¤0

j O�mj2
m2

1
A @2�w0;
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which implies that the equation for w0 becomes

@�w0 D
�
� C DT

�

�
@2�w0 C 1

2
@�.�w0/ :

This is just the heat equation written in terms of scaling variables, but we see that
the diffusion constant � has been replaced by the new diffusion constant � C DT=�

where the Taylor correction is

DT D A2
X
m¤0

j O�mj2
m2

:

That is to say, if we “undo” the change of variables, (3), and rewrite this equation in
terms of the original variable Ou0.x; t/, we find

@t Ou0 D .� C DT=�/@
2
x Ou0 :

Thus, we see that Ou0 (which gives the average, cross-channel concentration of the
tracer particle) evolves diffusively, but with a greatly enhanced diffusion coefficient.

Remark 3. One can also check that the Taylor correction DT to the diffusion rate
computed above is the same as that given by the more traditional approaches cited
earlier.

In order to justify the above formal calculation, we need to analyze the system
(5) and (6), which we rewrite here:

@�w0 D Lw0 � A
X
m¤0

O�m.w�m/�

@�wn D .L C 1=2/wn � Ae�=2

0
@X

m¤n

O�m@�wn�m

1
A � e�

�
�n2wn C A O�n@�w0

	
:

In particular, we would need to show that there is a center manifold given
approximately by fwn D �.A O�n=.�n2//@�w0g.

Rather than studying this full model of Taylor diffusion, we focus in this paper
on the simplified model

@�w D L w � @�v
@�v D .L C 1=2/v � e� .�v C @�w/; (8)

which corresponds to just the modes w0 and w1 (or more generally, to w0 and wn,
where n is the first integer for which O�n ¤ 0). The reader should note that this is not
meant to be a physical model, but instead it is meant to be an analysis problem which
reflects the core mathematical difficulties of analyzing the full Taylor Dispersion
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w̃t ∼
(

ν +
1
ν

)
w̃xx

ṽ = −1
ν

w̃x

ṽ

w̃

O(e−σt)

Fig. 1 Illustration of the invariant manifold one would expect for system (9), based upon the
formal calculations

problem. Proceeding, note that the term proportional to e�=2 has disappeared since,
if only w0 and w1 are non-zero, that sum reduces to O�0@�w1, and O�0 D 0. (We have
also rescaled the variables so that the coefficient A O�1 D A O��1 D 1.) Also note that
(8), written back in terms of the original variables, which we denote by Qw.x; t/ and
Qv.x; t/, is given by

Qwt D � Qwxx � Qvx

Qvt D � Qvxx � � Qv � Qwx: (9)

The classical picture of a center manifold would imply (see Fig. 1) that solutions
exponentially approach the invariant manifold (say at some rate �), with the
dynamics on the center manifold given by the heat equation with the new Taylor
diffusion coefficient. However, our analysis of system (9), below, will show that the
Taylor diffusion is really only affecting the lowest Fourier modes for Qw. Thus, the
high Fourier modes still decay like e��jk0j2t for all jkj � jk0j. Although this rate
can be made uniform for jkj sufficiently large, it does not reflect the large diffusion
coefficient of order 1=�. If there really was a center manifold as suggested by the
formal calculations, with dynamics on the manifold given by Qwt D .� C 1=�/ Qwxx,
then on that manifold all Fourier modes would decay like e�.1=�/jkj2t. Note that
this does not contradict the fact that Taylor diffusion seems to be observable in
numerical and physical experiments (see, for example, the original experiments by
Taylor [9, 10]). The reason is that, for high modes with jkj > jk0j, the uniform
exponential decay in Fourier space implies exponential in time decay in physical
space, whereas low modes exhibit only algebraic temporal decay. Since algebraic
decay, even relative to a large diffusion coefficient, is slower than exponential decay,
the fact that the high modes do not experience Taylor dispersion does not prevent
the overall decay from being enhanced by this phenomenon.
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While we believe that the picture sketched above applies to the full Taylor
diffusion problem, as previously mentioned in this paper we analyze instead (8).
For this coupled system of two partial differential equations we will show that

• The long-time behavior of solutions can be computed to any degree of accuracy
by the solution on a (finite-dimensional) invariant manifold.

• To leading order, the long-time behavior on this invariant manifold agrees with
that given by a diffusion equation with the enhanced Taylor diffusion constant.

• The expressions for the invariant manifolds can be computed quite explicitly, but
we are not able to show that these expressions converge as the dimension of the
manifold goes to infinity. Indeed, we believe on the basis of the argument above,
that (8) probably does not have an infinite dimensional invariant manifold.

Our analysis will proceed as follows. First, in Sect. 2, we’ll analyze the dynamics
on the center manifold to see how the coupling between w and v affects the enhanced
diffusion associated with the Taylor dispersion phenomenon. Intuitively, this is the
key point of our result, and the latter sections can be thought of as justification
of this calculation. Next, in Sect. 3, we will obtain some a priori estimates on the
solutions Qw and Qv in Fourier space and show that, to leading order, the long-time
dynamics are determined by the low Fourier modes. Finally, in Sect. 4, we show
that the dynamics of these low Fourier modes are governed only by the dynamics
on the center manifold analyzed in Sect. 2, and thus, to leading order, the solutions
exhibit the above-described enhanced diffusion.

Our main result can be summarized in the following theorem, which is an
abbreviation of Theorem 2.

Theorem 1. Given any M > 0, there exist integers m;N > 0 such that, for initial
data . Qw0; Qv0/ 2 L2.m/ (see Definition 1), there exists a .2N C 3/ dimensional
system of ordinary differential equations possessing an .N C 2/ dimensional center
manifold, such that the long-time asymptotics of solutions of (9), up to terms of
O.t�M/, is given by the restriction of solutions of this system of ODEs to its center
manifold. Moreover, the dynamics on this center manifold correspond to enhanced
diffusion proportional to � C 1=�.

Remark 4. In the more precise version of Theorem 1 stated in Sect. 4, there are
��dependent constants that appear in the error term that make it clear that in order
to actually see Taylor Dispersion in the system, one has to wait at least a time
t > O. j log �j

�
/.

2 Dynamics on the Center Manifold

In this section we focus on a center-manifold analysis of the model equation (8).
Our analysis justifies the formal lowest order approximation �v C @xw D 0 and
shows that to this order the solutions behave as if w was the solution of a diffusion
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equation with “enhanced” diffusion coefficient �T D .� C 1
�
/. Furthermore, the

center-manifold machinery allows one to systematically (and rigorously) compute
corrections to these leading order asymptotics to any order in time.

Remark 5. As noted in the introduction, we do not expect that the model equa-
tion (8) (or the full Taylor dispersion equation) has an exact, infinite dimensional
center-manifold. What we will actually prove is that, up to any inverse power of
time, O.t�M/, there is a finite dimensional system of ordinary differential equations
that approximates the solution of the PDE (8) up to corrections of O.t�M/ and that
this finite dimensional systems of ODE’s has a center-manifold with the properties
described above.

Because we expect v 	 � 1
�
@�w - i.e. because we expect v to behave at least

asymptotically as a derivative, we define a new dependent variable u as

v D @�u : (10)

Inserting into the @�v equation in (8), we get

@� .@�u/ D @�v D .L C 1=2/ v � e�
�
�v C @�w

	
D .L C 1=2/ @�u � e�

�
�@�u C @�w

	
D @�L u � e�

�
�@�u C @�w

	

where we have used the fact that @�L u D L @�u C 1
2
@�u. After antidifferentiating

the last line with respect to �, we get a system in terms of w and u:

@�w D L w � @�2u
@�u D L u � e� .�u C w/ : (11)

Remark 6. Note that, if u 2 L2.m/, the change of variables (10) implies thatR1
�1 v.�; t/d� D 0. We believe that, via minor modifications, our results can be

extended to the case when
R1

�1 v.�; t/d� ¤ 0. We plan to discuss such modifications
in a future work, when we study the full model (5) and (6).

Studies of Taylor dispersion generally focus on localized tracer distributions. For
that reason, and also because of the spectral properties of the operators L which we
discuss further below, it is convenient to work in weighted Hilbert spaces.

Definition 1. The Hilbert space L2.m/ is defined as

L2.m/ D
�

f 2 L2.R/ j kf k2m D
Z
.1C �2/mjf .�/j2d� < 1

�
:

Note that we require the solutions of the equation to lie in these weighted Hilbert
spaces when expressed in terms of the scaling variables. If we revert to the original
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variables then it is appropriate to study them in the time-dependent norms obtained
from these as follows:

kw.�; �/k2L2.m/ D
Z
.1C �2/mjw.�; �/j2d�

D e�=2
Z
.1C �2/mj Qw.e�=2�; e� � 1/j2d�

D
Z
.1C e��x2/mj Qw.x; e� � 1/j2dx

D
mX
`D0

C.m; `/

.1C t/`

Z
x2`j Qw.x; t/j2dx :

Thus, when we study solutions of our model equations in the “original” variables,
as opposed to the scaling variables, we will also consider the weighted L2 norms of
the functions, but the different powers of x will be weighted by a corresponding
(inverse) power of t to account for the relationship between space and time
encapsulated in the definition of the scaling variables. These norms are discussed
further in Sect. 3.

Since we expect �u C w 	 0, we further rewrite (11) by adding and subtracting
1
�
@2�w from the first equation and 1

�
@2�u from the second finally obtaining

@�w D LTw � 1

�

�
@�
2w C �@�

2u
�

@�u D LTu � 1

�
@�
2u � e� .�u C w/ ; (12)

where

LT� D
�
� C 1

�

�
@�2� C 1

2
@�.��/ :

Thus, LT is just the diffusion operator, written in terms of scaling variables, but
with the enhanced, Taylor diffusion rate, �T D � C 1=�.

The operators LT have been analyzed in [6]. In particular, their spectrum can be
computed in the weighted Hilbert spaces L2.m/ and one finds

�.LT/ D
�

 2 C j <.
/ � 1

4
� m

2

�
[
�

� k

2
j k 2 N

�
:

Furthermore, the eigenfunctions corresponding to the isolated eigenvalues

k D �k=2 are given by the Hermite functions
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�0.�/ D 1p
4��T

e��2=.4�T / ; and �k.�/ D @k
��0.�/

and the corresponding spectral projections are given by the Hermite polynomials

Hk.�/ D 2k.�T/
k

kŠ
e�

2=.4�T /@k
�e

��2=.4�T / :

Remark 7. The expressions in [6] for �k and Hk are derived in the case when the
diffusion coefficient is 1. The expressions given here follow easily by the change of
variables � ! �=

p
�T . More explicitly, for the classical Hermite functions Q�0.y/ D

1p
4�

e�y2=4, Q�k.y/ D @k
y�0, and QHk.y/ D 2k

kŠ e
y2=4@k

ye�y2=4, one has the orthonormality

relations
R QHk.y/ Q�`.y/dy D ık;`. Changing variables to y D �=

p
�T leads to the

formulas for the eigenfunctions and spectral projections for LT . Note further that
with this definition, the Hilbert space adjoint of LT satisfies LT

�Hk D � k
2
Hk.

Given the spectrum of LT discussed above, we expect that the leading order
part of the solution as t tends to infinity will be associated with the eigenspace
corresponding to eigenvalues closest to zero. With this in mind, fix an integer N and
assume that m > N C 1=2. This insures that the spectrum of LT has at least N C 1

isolated eigenvalues on the Hilbert space L2.m/ and that the essential spectrum lies
strictly to the left of the half-plane f
 2 C j <.
/ < �N=2g. Now define PN to be
the spectral projection onto the first N C 1 eigenmodes

PNw D
NX

kD0
˛k.�/�k.�/;

where

˛k.�/ D hHk;w.�/iL2 :

We will write the solutions of (12) as

w D PNw C ws

u D PNu C us: (13)

Based on the spectral picture and our discussion above, we expect that ws and us

will decay faster than PNw and PNu (a fact which we demonstrate in Sect. 4) and
hence, since we are interested in the leading order terms in the long time behavior,
we focus our attention on PNw and PNu.

We will show that for any N the equations for PNw and PNu have an attractive
center manifold and that the motion on this manifold reproduces and refines the
expected Taylor diffusion.
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If we apply the projection operator PN to both of the equations in (12), we obtain

NX
kD0

P̨k�k D
NX

kD1
� k

2
˛k�k � 1

�

N�2X
kD0
.˛k C �ˇk/�kC2

NX
kD0

P̌
k�k D

NX
kD0

� k

2
ˇk�k � 1

�

N�2X
kD0

ˇk�kC2 � e�
 

NX
kD0

.�ˇk C ˛k/ �k

!
:

Shifting indices and matching coefficients gives us the following system of ODEs
for the coefficients ˛k and ˇk:

P̨0 D 0

P̨1 D �1
2
˛1

P̨k D � k

2
˛k �

�
1

�
˛k�2 C ˇk�2

�
for 2 � k � N

P̌
0 D �e� .�ˇ0 C ˛0/

P̌
1 D �1

2
ˇ1 � e� .�ˇ1 C ˛1/

P̌
k D � k

2
ˇk � 1

�
ˇk�2 � e� .�ˇk C ˛k/ for 2 � k � N: (14)

Note that these equations contain no contributions from the “stable” modes ws

and us. Note further that, because of the form of the equations, those with even
indices k decouple from those with k odd. Thus, we can analyze these two cases
separately. We’ll provide the details for the case of k even below - the equations
with k odd behave in a very similar fashion.

Remark 8. Note that if we multiply all of the equations in (14) by e�� and set
e�� D � (since we are interested in large times) we get equations that are formally
of classical singularly perturbed form. (However, the small parameter � is time
dependent here.) Invariant manifold theory has been a powerful tool in the rigorous
analysis of singularly perturbed problems and that analogy will guide our use of the
center-manifold theory in what follows.

In order to make the invariant manifold more apparent we rewrite the even index
equations by rescaling the time variable as

� D log.1C t/: (15)

In analogy with the above remark about singularly perturbed systems, we are
essentially switching to a “fast” version of our system by making this change of
time variable. Continuing, we introduce a new dependent variable
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� D e�� D 1

1C t
: (16)

Then, if we denote d
dt by a prime 0, we have

˛0
0 D 0

˛0
k D ��

�
k

2
˛k C 1

�
˛k�2 C ˇk�2

�

ˇ0
0 D � .�ˇ0 C ˛0/

ˇ0
k D � .�ˇk C ˛k/ � �

�
k

2
ˇk C 1

�
ˇk�2

�

�0 D ��2; (17)

where the values 2 � k � N are even. Notice the linearization of this system at
the fixed point ˛k D ˇk D � D 0 has eigenvalues 
c D 0, with an ŒN=2� C 2

dimensional eigenspace and 
s D ��, with an ŒN=2� C 1 dimensional eigenspace
(here ŒM� refers to the greatest integer less than or equal to M). We proceed by
diagonalizing the linear part of the system via

ak D ˛k

bk D 1

�
˛k C ˇk (18)

which transforms (17) into

a0
0 D 0

a0
k D ��

�
k

2
ak C bk�2

�

b0
0 D ��b0

b0
k D ��bk � �

�
k

2
bk � 1

�2
ak�2 C 2

�
bk�2

�

�0 D ��2; (19)

where again 2 � k � N are even.
The remainder of this section is devoted to the analysis of these equations and

we prove two main results:

• We first show that, for any N, (19) has a center-manifold of the type described
in the introduction, and we derive explicit expressions for the functions whose
graphs give the manifold. (See Propositions 1 and 2.)
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• We derive the asymptotic (in �) behavior of solutions of these equations. (See
Propositions 3 and 4, and Corollary 1.)

We begin by noting that the linearization of (19) at the fixed point ak D bk D � D
0 has eigenvalues 
c D 0, with an ŒN=2�C 2 dimensional eigenspace and 
s D ��,
with an ŒN=2�C1 dimensional eigenspace. Thus, from the classical center-manifold
theorem (say, for example, the center-manifold theorem proven in [4]), we know
that (at least in a neighborhood of this point), there will be an invariant ŒN=2� C 2

dimensional center manifold. We also know that, in a neighborhood of the origin,
the center-manifold can be written as the graph of a function with components

bk D hk.aN ; : : : ; a0; �/: (20)

In addition, because of the “lower triangular” form of the equations (i.e. the fact
that the equations for a0

k and b0
k depend only on a` and b` with ` � k), we find that

we can express the manifold as

bk D hk.ak; ak�2; : : : ; a0; �/ :

We now show that we can find explicit expressions for the functions hk

successively, starting with h0 and then progressing through h2, h4, etc. What’s more,
these expressions hold for all ak; ak�2; : : : ; a0; �, i.e. without the restriction to a
small neighborhood that is inherent in general center-manifold theorems like that
of [4].

We start with the equations for a0 and b0 which are just

a0
0 D 0

b0
0 D ��b0 :

From this we see immediately that we can choose the invariant manifold to be the
graph of h0 
 0. However, note that this example also reminds us that the center
manifold is not unique, since we could also choose the center manifold to be given
by the graph of Qh0.a0; �/ D K0e��=�a0. This is consistent with the theorems on the
existence of center manifolds, since both of these manifolds have the same Taylor
expansion to any finite order about a0 D � D 0. For simplicity, in what follows we
will always use the first function - i.e. we will take h0 
 0.

Now consider the center manifold for a2 and b2. Since the equations for a0, a2,
b0, b2, � decouple from all other ak and bk, we expect the center manifold to be
given by the graph of a function b2 D h2.a2; a0; �/. In fact, as we show below, it has
no dependence on a2 - i.e. we can take b2 D h2.a0; �/. In this case the equation for
the invariance of the graph of this function takes the form

.Da0h2/a
0
0 C .D�h2/�

0 D ��h2 � �h2 � 2�

�
h0 C 1

�2
�a0 :
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Inserting the equations for a0
0 and �0 and using the fact that h0 
 0, we find

��2.D�h2/ D ��h2 � �h2 C 1

�2
�a0 :

We now show that h2 is linear in a0, so we write

h2.a0; �/ D �2;0.�/a0 ;

and find

��2�0
2;0 D �.�C �/�2;0 C 1

�2
� :

This equation is hard to solve in general due to the singular point at � D 0, but
remarkably,

�2;0.�/ D �

�3

is an exact solution (which goes to zero as � ! 0), so

h2.a0; �/ D �a0
�3

is a function whose graph (together with that of h0 
 0) gives us the center manifold
for the equations for a0; a2; b0; b2; �. Due to the singular point at � D 0, this may
not be the only solution (just as in the case for h0), but we are free to choose this
special solution for h2.

Next we consider the case of h4.a4; a2; a0; �/. Building on the examples above
we show that

• h4 is independent of a4;
• h4 is linear in a2 and a0.

If this is the case we can write

h4.a2; a0; �/ D �4;2.�/a2 C �4;0.�/a0 :

Inserting this form of the solution into the equation for the center-manifold, we find

�4;2.�/a
0
2 C �4;0.�/a

0
0 C .�0

4;2.�/a2 C �0
4;0.�/a0/�

0

D �.� C 2�/.�4;2.�/a2 C �4;0.�/a0/C �a2
�2

� 2�2a0
�4

where in the last term we have plugged in the expression for h2. Inserting the
equations for a0

2 and �0 and grouping the terms proportional to a2 and a0 we find
two ODE’s for the �0s, namely



Analysis of Enhanced Diffusion in Taylor Dispersion via a Model Problem 45

��2�0
4;2.�/ D �.� C �/�4;2.�/C �

�2

��2�0
4;0.�/ D �.� C 2�/�4;0.�/ � 2�2

�4
:

The first of these equations is the same as the equation for �2;0 above so we have

�4;2.�/ D �

�3
:

The second equation is very similar and we find that it again has a simple, exact
solution, namely

�4;0.�/ D �2�
2

�5
:

Thus, we also have an exact expression for the center-manifold in this case:

h4.a2; a0; �/ D �a2
�3

� 2�2a0
�5

:

One can continue this procedure. For instance, for the function h6, one obtains
the formula

h6.a4; a2; a0; �/ D �a4
�3

� 2�2a2
�5

C 5�3a0
�7

:

This leads to the following

Proposition 1. For any k D 0; 2; 4; : : : , there exist constants f OH.k; k � 2`/g such
that the graph of the function

hk.ak�2; ak�4; : : : ; a0; �/ D
k=2X
`D1

OH.k; k � 2`/�`ak�2` (21)

gives the invariant manifold for bk. Furthermore, for any fixed k, the
coefficients f OH.k; k � 2`/g can be explicitly determined, and the coefficients
OH.k; p/ � O.��.k�p/�1/:

Proof. The proof proceeds inductively. Note that we have already verified the
inductive hypothesis for k D 0; 2; 4. (We take the empty sum that occurs on the
RHS of (21) when k D 0 to correspond to h0 
 0.) Assume that it holds for all even
integers less than or equal to k � 2. We now show that it holds for hk.
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Inserting our inductive hypothesis into the invariance equation we find

k=2X
`D1

OH.k; k � 2`/�`a0
k�2` C

k=2X
`D1

` OH.k; k � 2`/�`�1ak�2`�0

D � k

2
�hk � �hk � 2

�
�hk�2 C 1

�2
�ak�2

D �
k=2X
`D1

k

2
OH.k; k � 2`/�`C1ak�2` �

k=2X
`D1

� OH.k; k � 2`/�`ak�2`

�2
�

k=2�1X
`D1

OH.k � 2; k � 2 � 2`/�`C1ak�2�2` C 1

�2
�ak�2: (22)

Inserting the equations for a0
k�2` and �0 into the first line of (22), one finds

k=2X
`D1

OH.k; k � 2`/�`
�

�
�

k � 2`

2

�
�ak�2` � �hk�2`�2

�

�
k=2X
`D1

` OH.k; k � 2`/�`C1ak�2`

D �
k=2X
`D1

k

2
OH.k; k � 2`/�`C1ak�2` �

k=2X
`D1

OH.k; k � 2`/�`C1hk�2`�2: (23)

Note that the first sum in the last line of (23) cancels the first sum on the RHS of
(22). Thus, we can rewrite (22) and (23) as

k=2X
`D1

� OH.k; k � 2`/�`ak�2` D 1

�2
�ak�2 � 2

�

k=2�1X
`D1

OH.k � 2; k � 2` � 2/�`C1ak�2�2`

C
k=2X
`D1

OH.k; k � 2`/�`C1hk�2`�2: (24)

We now rewrite the last sum in this expression by using the inductive form of
hk�2`�2,

hk�2`�2 D
k=2�.`C1/X

mD1
OH.k � 2.`C 1/; k � 2.`C m C 1//�mak�2.`CmC1/ :
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Thus,

k=2X
`D1

OH.k; k � 2`/�`C1hk�2`�2

D
k=2X
`D1

k=2�.`C1/X
mD1

OH.k; k � 2`/ OH.k � 2.`C 1/; k � 2.`C m C 1//

� �`CmC1ak�2.`CmC1/

D
k=2X
pD3

p�2X
`D1

OH.k; k � 2`/ OH.k � 2.`C 1/; k � 2p/�pak�2p;

where in the last term we set p D `CmC1 and interchanged the order of summation.
If in the last sum in the first line of (24) we also change the summation variable to
p D `C 1 we find that (24) can finally be rewritten as

k=2X
`D1

� OH.k; k � 2`/�`ak�2` D 1

�2
�ak�2 � 2

�

k=2X
pD2

OH.k � 2; k � 2p//�pak�2p

C
k=2X
pD3

p�2X
`D1

OH.k; k � 2`/ OH.k � 2.`C 1/; k � 2p/�pak�2p: (25)

We solve (25) for OH.k; k�2`/, beginning with OH.k; k�2/. Since the only term on
the RHS of (25) proportional to ak�2 is the first term, and we obtain OH.k; k�2/ D 1

�3
,

consistent with the inductive hypothesis. Next consider OH.k; k � 4/. In this case, we
consider all terms in (25) proportional to ak�4. The only one comes from the second
term on the RHS of the equation and we have OH.k; k � 4/ D � 2

�2
OH.k � 2; k � 4/.

The inductive hypothesis implies that OH.k�2; k�4/ � O.��3/, so we find OH.k; k�
4/ � O.��5/ as required by the inductive hypothesis. We now continue to solve for
the coefficients OH.k; k �2`/, ` D 3; 4; : : : , noting that in each case, the terms on the
RHS of the equation proportional to ak�2` have coefficients that have already been
determined at prior stages of the inductive process and that they are all O.��2`�1/ D
O.��.k�p/�1/. �

We now describe the entirely analogous results for the modes ˛k and ˇk with k
odd. If we introduce new variables t and � as in (15) and (16), and diagonalize the
linear part of the resulting equations using the change of variables (18), we find:

a0
1 D �1

2
�a1

a0
k D ��

�
k

2
ak C bk�2

�
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b0
1 D �

�
� C 1

2
�

�
b1 (26)

b0
k D ��bk � �

�
k

2
bk � 1

�2
ak�2 C 2

�
bk�2

�

�0 D ��2;

where the values 3 � k � N are odd this time.
Proceeding as before, consider first the equations for a1, b1, and �which decouple

from all the rest of the equations. Then by inspection we see that, just as for
b0, the graph of the function h1.a1; �/ 
 0 is an invariant center manifold for
these equations. We now include the equations for a3 and b3 and, building on the
experience from the even case, look for an invariant manifold of the form

b3 D h3.a1; �/ D �3;1.�/a1 :

Inserting this into the equations, we see that in order for this graph to be invariant,
�3;1 must satisfy

�3;1a
0
1 C a1�

0
3;1�

0 D �.� C 3

2
�/�3;1a1 C �

�2
a1 � 2�

�
h1 :

From the fact that h1 
 0 and the equation for a0
1, we see that this reduces to the

ODE for �3;1

��2�0
3;1 D �.� C �/�3;1 C �

�2
:

This is the same equation satisfied by �2;0 and thus we find

h3.a1; �/ D �a1
�3

:

Proceeding now as in the even case, we establish the following proposition by
induction.

Proposition 2. For any k D 1; 3; 5; : : : , there exist constants f OHodd.k; k�2`/g such
that the graph of the function

hk.ak�2; ak�4; : : : ; a1; �/ D
k�1
2X

`D1
OHodd.k; k � 2`/�`ak�2`

gives the equation for the invariant manifold for bk. Furthermore, for any fixed k,
the coefficients f OHodd.k; k � 2`/g can be explicitly determined, and the coefficients
OHodd.k; p/ � O.��.k�p/�1/:
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We conclude this section by using our expressions for the center-manifold to
derive the asymptotic behavior of the coefficient functions ak and bk (or equivalently
˛k and ˇk.)

Begin by noting that from the general theory of center-manifolds, any solution
with initial conditions in a neighborhood of the invariant manifold will approach
the manifold at a rate � O.e��t/ D O.e��.e��1//. Thus, we can determine the long
time asymptotics of all solutions in this neighborhood by focusing on the behavior
of solutions on the invariant manifold. Note that this means, for solutions with
sufficiently small initial conditions, that after a time � such that �e� � 1, we will
be very close to the center-manifold and the behavior of solutions on this manifold
will determine the asymptotic behavior of solutions after this time. Reverting from
our rescaled time � to the original time t in the problem this means that solutions
on the center-manifold will determine the behavior of solutions for times t > O. 1

�
/,

which is the expected timescale for Taylor Dispersion to occur. At the moment, it
appears our results only hold for solutions with small initial conditions. However,
it turns out our formulas for the center manifolds (which are defined globally) are
also globally attracting on the timescale t > O. j log �j

�
/. We provide details in the

Appendix.
We proceed with our calculation of the asymptotics of the quantities ak and bk. As

in the case of the calculation of the manifold we focus separately on the coefficients
with even and odd indices. Starting with the coefficients with k even, note that we
obviously have ˛0 D constant, so we begin with k D 2.

Given

a0
2 D ��.a2 C b0/;

we can simplify this by noting that b0 D h0 
 0 on the center-manifold. Finally,
it’s simpler to solve this differential equation by reverting from the t variables to
� D log.1 C t/; keeping Remark 8 about singularly perturbed systems in mind,
notice we are essentially switching to the “slow” version of the system (which gives
the dynamics on the center manifold). The equation then reduces to

Pa2 D �a2 ;

from which we can immediately conclude that

a2.�/ � O.e�� / :

Next consider a4, for which we have (again, rewriting things in terms of the temporal
variable �)

Pa4 D �2a4 � b2 D �2a4 � e��a0
�3

;

where the last equality used the fact that b2 D h2.a0; �/ D �a0
�2

on the center-
manifold. Solving this equation using the method of variation of constants, we find
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that

a4.�/ � O.
e��

�3
/ :

As a last explicit example, consider the case of a6 where we have

Pa6 D �3a6 � b4 D �3a6 � e��a2
�3

C 2e�2�a0
�5

:

Finally, since a0 is constant and a2.�/ � O.e�� /, we see that the asymptotic
behavior of a6 is

a6.�/ � O.
e�2�

�5
/ :

We can generalize these results in the following

Proposition 3. Suppose k D 4; 6; : : : is an even, positive integer. On the center
manifold of the system of equations (19), the variables ak have the following
asymptotic behavior:

jak.�/j �
8<
:

C.N;k/e�
k
4 �

�k�1 W k D 0 mod 4

C.N;k/e�
kC2
4 �

�k�1 W k D 2 mod 4:

Note that once we have these formulas, the expressions for the center-manifold
immediately imply the following.

Corollary 1. Suppose k D 4; 6; : : : is an even, positive integer. On the center
manifold of the system of equations (19), the variables bk have the following
asymptotic behavior:

jbk.�/j �
8<
:

C.N;k/e�
kC4
4 �

�kC1 W k D 0 mod 4

C.N;k/e�
kC2
4 �

�kC1 W k D 2 mod 4:

Proof. The proof of Proposition 3 is a straightforward induction argument. Suppose
that we have demonstrated that the estimates hold for k D 4; 6; : : : ; k0. We then
show that it holds for k0 C 2. The equation of motion for ak0C2 is

Pak0C2 D �k0 C 2

2
ak0C2 � hk0.ak0�2; ak0�4; : : : ; a0; e�� /:

Inserting the formula for hk0 from Proposition 1 and solving using Duhamel’s
formula, we obtain the bound
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jak0C2j � C.N/

�

k0=2X
`D1

ak0�2`
�`

�2`
: (27)

Consider the case k0 D 0 mod 4. Then

k0 � 2` D
�
2 mod 4 if ` is odd
0 mod 4 if ` is even

and correspondingly from the induction hypothesis,

jak0�2`j �
8<
:

C.N/e�

�k0�2`C2
4 �

�k�1 if ` is odd

C.N/e�

�k0�2`
4 �

�k�1 if ` is even.

Inserting into (27), using the fact that � D e�� , and splitting the sum into even and
odd `, we obtain

jak0C2j � C.N/

�

8<
:

k0=2�1X
`D1;`odd

e�
.k0�2`C2/�

4 e�`�

�k0�2`�1�2`
C

k0=2�2X
`D2;`even

e�
.k0�2`/�

4 e�`�

�k0�2`�1�2`
C a0e�

k0�
2

�k0

9=
; : (28)

Notice we have to separate out the ` D k0=2 term because this corresponds to
a0, which is actually constant. We are interested in locating the slowest decaying
terms. These terms will have, in the exponent, the least negative coefficients on � .
For ` � 1 odd, the coefficients in the exponent are

� k0 � 2`C 2

4
� ` D �k0

4
� 1

2
� `

2
(29)

which are least negative when ` D 1. The corresponding coefficient in the exponent

is � k0C4
4

, and so the slowest decaying term from the ` odd sum is O.e� k0C4
4 � /.

We determine the slowest decaying term in the ` even sum. For ` � 2 even, the
coefficients in the exponent are

� k0 � 2`

4
� ` D �k0

4
� `

2
(30)

which are least negative when ` D 2. The corresponding coefficient in the exponent
is again � k0C4

4
, and so the slowest decaying term from the ` odd sum is again

O.e� k0C4
4 � /. Lastly, we determine the � dependence of the constant. The largest

power of � in the denominator comes from ` D k0=2 and is 1

�k0C1 . Therefore we
have

jak0C2j � C.N/

�k0C1 e� k0C4

4 � :
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Recalling that we are in the case k0 D 0 mod 4 (so that k0 C 2 D 2 mod 4), we
have verified the claim in this case. The case k0 D 2 mod 4 follows similarly. Once
Proposition 3 is established, a nearly identical calculation establishes Corollary 1. �

The coefficients ak and bk, with k odd, can be estimated in an entirely analogous
fashion to obtain the following proposition.

Proposition 4. Suppose k D 1; 3; : : : is an odd, positive integer. On the center
manifold of the system of equations (26), the variables ak have the following
asymptotic behavior:

jak.�/j �
8<
:

C.N;k/e�
kC1
4 �

�k�1 W k D 1 mod 4

C.N;k/e�
kC3
4 �

�k�1 W k D 3 mod 4:
(31)

If k D 3; 5; : : : (recall that b1 
 0 on the center manifold), the corresponding
coefficients bk satisfy the estimates

jbk.�/j �
8<
:

C.N;k/e�
5Ck
4 �

�kC1 W k D 1 mod 4

C.N;k/e�
3Ck
4 �

�kC1 W k D 3 mod 4:
(32)

3 A Priori Estimates via the Fourier Transform

In order to show that the center manifold, discussed in the previous section, really
does describe the leading order large-time behavior of solutions of (9), we need
to make our discussion before Theorem 1 in the introduction more precise (which
basically says Taylor Dispersion only happens for low wavenumbers). We’ll have to
undo the scaling variables, and switch to the Fourier side; this way we can precisely
cut-off wavenumbers larger than, say jk0j 	 �

2
and quantify how fast these “high”

wavenumber terms decay. To do this in a way that is consistent with the analysis in
Sect. 2, we need to introduce a new norm jjj�jjj, which, when applied to functions on
the Fourier side, is equivalent to the L2.m/ norm applied to their real-space scaling
variables counterparts.

The main result (see Theorem 2 in Sect. 4) depends on estimates of the solution
in L2.m/. With this in mind, we note that

kw.�/kL2.m/ � C.m/.t C 1/1=4

vuut mX
jD0





 1

.1C t/j=2
@

j
k Ow.�; t/






2

L2
DW jjj Qw.t/jjj;

and below we will bound each partial derivative of Ow.k; t/. Note that k � kL2.m/ and
jjj � jjj are indeed equivalent norms, which follows from the fact that
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k@j
k Ow.�; t/k2L2 � C

Z
.1C xj/2j Qw.x; t/j2dx � C.t C 1/j�1=2kw.�/k2L2.j/;

which in turn implies that jjj Qw.t/jjj � C.m/kw.�/kL2.m/.
Consider Eq. (9). Let Ow D F Qw and Ov D F Qv, where F sends a function to its

Fourier transform. We obtain

d

dt

� Ow
Ov
�

D A.k/

� Ow
Ov
�
; A.k/ D

���k2 �ik
�ik ��.k2 C 1/

�
:

The solution to this equation is

� Ow.k; t/
Ov.k; t/

�
D eA.k/t

� Ow0.k/
Ov0.k/

�
)

� Qw.x; t/
Qv.x; t/

�
D F�1ŒeA.k/t� �

� Qw0.x/
Qv0.x/

�
:

To understand these solutions, we must understand eA.k/t, which we’ll do by
diagonalizing A.k/. The eigenvalues of A are given by


˙.k; �/ D ��k2 � �

2
˙ 1

2

p
�2 � 4k2;

and the corresponding eigenvectors are

v˙.
; k/ D
�

ik
��k2 � 
˙.k; �/

�
D
�

ik
�
2


 1
2

p
�2 � 4k2

�
:

We put these into the columns of a matrix S D ŒvC; v�� and obtain

S D
�

ik ik
1
2
Œ� � p

�2 � 4k2� 1
2
Œ� C p

�2 � 4k2�

�

S�1 D 1

ik
p
�2 � 4k2

 
1
2
Œ� C p

�2 � 4k2� �ik
1
2
Œ�� C p

�2 � 4k2� ik

!
:

We then have A D S�S�1, where � D diag.
C; 
�/.

Remark 9. Note that S becomes singular when k D ˙�=2, because for that value of
k there is a double eigenvalue, and a slightly different decomposition of A, reflecting
the resultant Jordan block structure, is necessary. This will be dealt with in the
proof of Proposition 5. We do not highlight this issue in the below formulas for
the solution, as we wish to focus on the intuition for how to decompose solutions,
which does not depend on this singularity.
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Hence,

eA.k;�/t D S.k; �/

�
e
C.k;�/t 0

0 e
�.k;�/t

�
S�1.k; �/;

or explicitly

Ow.k; t/ D ik.e
�t � e
Ct/p
�2 � 4k2

Ov0

C1

2

 
.�� C p

�2 � 4k2/e
�t C .� C p
�2 � 4k2/e
Ct

p
�2 � 4k2

!
Ow0

Ov.k; t/ D 1

2

 
.�� C p

�2 � 4k2/e
Ct C .� C p
�2 � 4k2/e
�t

p
�2 � 4k2

!
Ov0

� ik.e
C t � e
�t/p
�2 � 4k2

Ow0; (33)

which we’ll abbreviate as

Ow.k; t/ D .f1.k/ Ow0.k/C f2.k/ Ov0.k// e
C.k/t C g.k/e
�.k/t (34)

and similarly for Ov. The motivation for separating the solution in this way is the
fact that Re.
�.k// � ��=2, and so any component of the solution that includes a
factor of e
�.k/t will decay exponentially in time, even for k near zero. Hence, it is
primarily the first term, above, involving e
C.k/t that we must focus our attention on.
We’ll proceed with the analysis only for Ow; all of the results for Ov are analogous.

Remark 10. In order to justify the difference of .t C 1/�1=2 in the scaling variables
for Qw and Qv, corresponding to (3), we need to show that Qv decays faster than Qw by
this amount. This can be seen from the above expression for solutions. In particular,
for k near zero, say jkj < �=2, we have

eA.k;�/t � e��k2t

ik�

 
1 k

�
k
�

� k2

�2

!
:

An extra factor of k corresponds to an x-derivative, and so the v component does
decay faster by a factor of t�1=2.

We will split the analysis into “high” and “low” frequencies using a cutoff
function and Taylor expansion about k D 0. Define

˝> D
(

jkj >
p
15�

8

)
; ˝< D

(
jkj �

p
15�

8

)
;
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and let  .k/ be a smooth cutoff function equalling 1 on ˝< and zero for jkj �p
15�
8

C �2. We then write Ow as

Ow.k; t/ D  .k/ Ow.k; t/C .1 �  .k// Ow.k; t/
DW  .k/ .f1.k/ Ow0.k/C f2.k/ Ov0.k// e
C.k/t C  .k/g.k/e
�.k/t

C Owhigh.k; t/:

Again, the motivation is to focus on the part of the solution that does not decay
exponentially in time. This does not necessarily occur if k is small, which is exactly
where  .k/ ¤ 0.

Notice that, on˝<, we can write 
C.k/ D � �� C 1
�

	
k2 C�.k/, where

�.k/ D �

2

1X
nD2

�
1=2

n

�
.�1/n

�
4k2

�2

�n

: (35)

In ˝<, 4k2=�2 < 15=16 < 1, and so the above series is convergent. It will also be
important that it starts with four powers of k. More precisely,

�.k/ D 8k4

�3

1X
nD0

�
1=2

n C 2

�
.�1/n

�
4k2

�2

�n

:

This representation for �.k/ holds by similar reasoning whenever  .k/ ¤ 0. We
now write

Ow.k; t/ D  .k/e��T k2te�.k/t .f1.k/ Ow0.k/C f2.k/ Ov0.k//C  .k/g.k/e
�.k/t

C Owhigh.k; t/

DW  .k/e��T k2t Nw.k; t/C  .k/g.k/e
�.k/t C Owhigh.k; t/;

where �T D � C 1
�

and

Nw.k; t/ D e�.k/t .f1.k/ Ow0.k/C f2.k/ Ov0.k// : (36)

The purpose of this last part of our decomposition of solutions is to emphasize that,
to leading order, the decay of the low modes will be determined by the term e��T k2t.
Therefore, the Taylor dispersion phenomenon is also apparent in Fourier space.

Finally, we Taylor expand the quantity Nw into a polynomial of degree N, plus a
remainder term:

Nw.k; t/ D
NX

jD0

@
j
k Nw.0; t/

jŠ
kj C

2
4 Nw.k; t/ �

NX
jD0

@
j
k Nw.0; t/

jŠ
kj

3
5 DW NwN

low C Nwres
low:
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Thus, we have (suppressing some of the k and t dependence for notational
convenience)

Ow.k; t/ D  e��T k2t
� NwN

low C Nwres
low

	C  ge
�.k/t C Owhigh: (37)

The main results of this section are

Proposition 5. There exists a constant C, independent of � and the initial data,
such that

k@j
k OwhighkL2 C k@j

k. ge
�t/kL2 � C��2�je� �
8 t.k Ow0kCj C kOv0kCj/:

Proposition 6. There exists a constant C such that







1

.1C t/
j
2

@
j
k

�
 e��T k2t Nwres

low

�





L2

� C

�
N
4 C j

2 t
N
4 C 1

2

.k Ow0kCNCj C kOv0kCNCj/:

The constant C depends on N, but it is independent of �.

Here kf kCj =
Pj

sD0 supk2R j@s
kf .k/j. These results imply that Owhigh and g e
�t

decay exponentially in t, and are thus higher-order, while Owres
low decays algebraically,

at a rate that can be made large by choosing N (which will correspond to the
dimension of the center manifold from Sect. 2) large. In the next section, Sect. 4,
it will be shown that the behavior of the remaining term, NwN

low, is governed by
the dynamics on the center manifold, in which one can directly observe the Taylor
dispersion phenomenon.

Proof of Proposition 5. Notice that, for k 2 ˝> (the support of Owhigh), the
eigenvalues 
˙.k/ both lie in a sector with vertex at .Re
; Im
/ D .��k2��=4; 0/.
Therefore, to obtain the desired bound, we need to determine the effect of the
derivatives @j

k. Such a derivative could potentially be problematic, due to the factors
of

p
�2 � 4k2, which can be zero in ˝>. (This is exactly due to the Jordan block

structure at k D ˙�=2.) To work around this, we use the fact that we can
equivalently write

� Ow.k; t/
Ov.k; t/

�
D eA.k/t

� Ow0.k/
Ov0.k/

�

and bound derivatives of this expression for k 2 ˝>. Such derivatives either fall on
the initial conditions, which leads to the dependence of the constant on the Cj norms
of Ov0 and Ow0, or the derivatives can fall on the exponential. In the latter case, using
the fact that

A0.k/ D
��2�k �i

�i �2�k

�
;
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which behaves no worse that O.k/, we obtain terms of the form (writing OU D
. Ow0; Ov0/ for convenience)

k.kt/peA.k/t@
q
k

OU0k2L2 � Ck OU0k2Cq

Z
jktj2pkeA.k/tk2dk:

Next, note that keA.k/tk � C��2e��.k2C1=4/t. This follows essentially from the above-
mentioned bound on the real part of 
˙ in ˝>. One needs to be a bit careful
when k D ˙�=2, as there 
C D 
�. This changes the bound from � e
C.k/t

to � �te
C.k/t, but this power of t can be absorbed into the exponential since
Re.
C/ < ��k2 � �=4 � ı� for some ı > 0 that is independent of �. The factor of
��2 that appears is related to the fact that kS�1k D O.��2/ for k 2 ˝>, k ¤ ˙�=2.
Thus, we have

k.kt/peA.k/t@
q
k

OU0k2L2 � C��4k OU0k2Cq

Z
jktj2pe�2.�k2C�=4/tdk

� C��4�p�1=2k OU0k2Cq tp�1=2e��t=2

� C��4�2pe��t=4k OU0k2Cq ;

which proves the result for Owhigh. A similar proof works for the k@j
k. ge
�t/kL2

term. ut
Proof of Proposition 6. We now derive bounds on the residual term  e��T k2t Nwres

low.
Recall the integral formula for the Taylor Remainder:

Nwres
low.k; t/ D

Z k

0

Z k1

0

: : :

Z kN

0

@NC1
kNC1

Nw.kNC1; t/dkNC1
dkN : : : dk1 : (38)

With this formula in mind, we want to derive bounds on the derivatives of Nw.k; t/,
but we need only deal with k 2 ˝<, since we are ultimately estimating the size of
 e��T k2t Nwres

low.
Recall that

Nw D e�.k/t .f1 Ow0 C f2 Ov0/ :

The functions f1 and f2 are smooth in˝<, so our estimate will depend on derivatives
of the initial data and derivatives of e�.k/t. However, the reader should note that f1
and f2 are also dependent on �, but their derivatives give us inverse powers of �
no worse than any others appearing in this section, so we choose not to explicitly
keep track of these powers. The following lemma will be used in estimating these
derivatives:
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Lemma 1. Let ˚.k; t/ D kde��T k2t. Then

k˚.�; t/kL2 � C.d/.�T t/�
2dC1
4 :

Proof. Use the fact that
R
R

e�x2=4dx D 2
p
� and change variables. ut

With this lemma in mind, we need to keep track of the powers of k and t that
appear in @j

ke�.k/t. To see why one would expect the powers of � and t appearing
in Proposition 6, consider the following formal calculation. Recall from the Taylor

expansion of �.k/, we have Nw 	 e� k4

�3
t.

We are essentially estimating

k@j
ke��T k2t Nwres

lowkL2 ;

with the aid of the estimate

kkde��T k2tkL2 � C.d/ .�T t/�
d
2� 1

4

and the Taylor Remainder formula

Nwres
low.k; t/ D

Z k

0

Z k1

0

: : :

Z kN

0

@NC1
kNC1

Nw.kNC1; t/dkNC1
dkN : : : dk1 : (39)

We’ll proceed by finding bounds on @J
ke� k4

�3
t, and plug into (39) with J D N C 1.

We’ll make the following changes of variable: we set

T D t

�3

x D T1=4k (40)

so that

Nw D e�x4

and

@J
k Nw D TJ=4@J

x Nw: (41)

Let’s proceed by computing x�derivatives of Nw, only taking into account what
powers of x appear at each stage. In the following, a prime means @x. We compute

Nw0 � x3e�x4

Nw00 � �
x2 C x6

	
e�x4

Nw000 � �
x C x5 C x9

	
e�x4 :

In particular, notice that the powers of x that appear in the J�th derivative can be
obtained from the powers of x that appear in the J � 1st derivative by subtracting
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one from each power appearing (where only nonnegative powers are permitted), and
also adding three to each power appearing:

Nw.4/ � �
x0 C x4 C x8 C x12

	
e�x4

Nw.5/ � �
x3 C x7 C x11 C x15

	
e�x4

Nw.6/ � �
x2 C x6 C x10 C x14 C x18

	
e�x4 :

In general, we have

@J
x Nw �

J�2X
lD0

xRC4le�x4

where R D .�J/ mod 4. In the original variables, we have, using (41) and (40),

@J
k Nw �

� t

�3

�J=4 J�2X
lD0

�� t

�3

�1=4
k

�RC4l

e� k4

�3
t
;

or more precisely,

j@J
k Nwj � C.J/

� t

�3

�J=4 J�2X
lD0

�� t

�3

�1=4
jkj
�RC4l

e� k4

�3
t
:

Combining with the Taylor Remainder formula and setting J D N C 1, we have

k e��T k2t Nwres
lowkL2 � C.N/

N�1X
lD0

t.1=4/.RCNC1/Cl

�.3=4/.RCNC1/C3l
kkNC1CRC4le��T k2tkL2 :

Using the estimate (1), we get

k e��T k2t Nwres
lowkL2 � C.N/

N�1X
lD0

t�1=4R�1=4.NC1/�l�1=4

�1=4RC1=4.NC1/Cl�1=4

D C.N/ .�t/�1=4R�1=4.NC1/ t�1=4

��1=4
N�1X
lD0

�
��1t�1

	l

D C.N/ .�t/�1=4R�1=4.NC1/ t�1=4

��1=4

 
1 � �

��1t�1
	N

1 � .��1t�1/

!
:
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Therefore if t > 2
�
, we have

k e��T k2t Nwres
lowkL2 � 2C.N/ .�t/�1=4R�1=4.NC1/ t�1=4

��1=4 ;

which implies that

k e��T k2t Nwres
lowkL2 � C.N/

�
N
4 t

N
4 C 1

2

as reflected in Proposition 6. This concludes the formal calculation. We proceed
with deriving the precise estimate.

Because k is small in ˝<, powers of k are helpful, so we only need to record the
smallest power of k relative to the largest power of t. We obtain additional powers
of t when a derivative falls on the exponential (as opposed to any factors in front of
it), which creates not only powers of t but powers of .�0.k/t/. When derivatives fall
on factors of �0.k/ in front of the exponential, we obtain fewer powers of k but no
additional powers of t. Using (35), we see that �0.k/ � k3=�3, and so @j

ke�.k/t will
lead to terms of the form

�
k3t

�3

�q �
k2t

�3

�l1 � kt

�3

�l2 � t

�3

�l3
e�.k/t; q C 2l1 C 3l2 C 4l3 D j:

This implies that

j@j
k Nw.k; t/j � C.k Ow0kCj C kOv0kCj /

ˇ̌
ˇ̌
ˇ
�

k3t

�3

�q �
k2t

�3

�l1 � kt

�3

�l2 � t

�3

�l3
e�.k/t

ˇ̌
ˇ̌
ˇ

for any q C 2l1 C 3l2 C 4l3 D j. Using the fact that, on ˝<, je�.k/tj � 1, as well as
(38), we find

k e��T k2t Nwres
lowkL2

� C.k Ow0kCNC1 C kOv0kCNC1 /





 e��T k2t

ˇ̌
ˇ̌� t

�3

�qCl1Cl2Cl3
k3qC2l1Cl2CNC1

ˇ̌
ˇ̌






L2
:

Note the extra N C 1 powers of k come from the N C 1 antiderivatives in the Taylor
Remainder formula. We need to estimate





 e��T k2t
� t

�3

�qCl1Cl2Cl3
k3qC2l1Cl2CNC1






L2
;
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where

q C 2l1 C 3l2 C 4l3 D N C 1 ) N C 1

4
D q

4
C l1
2

C 3l2
4

C l3: (42)

We being by noting that, since k 2 ˝<,

ˇ̌
ˇ̌� t

�3

�qCl1Cl2Cl3
k3qC2l1Cl2CNC1

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
ˇ̌tqCl1Cl2Cl3

k
5
2 qC3l1C 7

2 l2C4l3

�
3
2 qC2l1C 5

2 l2C3l3

�
k

�

� 3
2 qCl1C l2

2

ˇ̌
ˇ̌
ˇ̌

� C

ˇ̌
ˇ̌
ˇtqCl1Cl2Cl3

k
5
2 qC3l1C 7

2 l2C4l3

�
3
2 qC2l1C 5

2 l2C3l3

ˇ̌
ˇ̌
ˇ ;

where C is independent of �. Therefore, since �T � ��1,




 e��T k2t

� t

�3

�qCl1Cl2Cl3
k3qC2l1Cl2CNC1






L2

� C






 e��T k2ttqCl1Cl2Cl3
k
5
2 qC3l1C 7

2 l2C4l3

�
3
2 qC2l1C 5

2 l2C3l3







L2

� C
tqCl1Cl2Cl3

�
3
2 qC2l1C 5

2 l2C3l3
.�T t/�

1
4� 1

2 .
5
2 qC3l1C 7

2 l2C4l3/

� C
tqCl1Cl2Cl3� 1

4� 1
2 .

5
2 qC3l1C 7

2 l2C4l3/

�
3
2 qC2l1C 5

2 l2C3l3� 1
4� 1

2 .
5
2 qC3l1C 7

2 l2C4l3/

D C
t� NC1

4 � 1
4

�
N
4

;

where we used (42) in the last equality.
Using a similar calculation, we can bound the L2 norm of each jth derivative of

this remainder term. One can show that for each integer triple l C sC r D j, we have

k@l
k @

s
ke��T k2t@r

k Nwres
lowk � C.k Ow0kCj C kOv0kCj /

t� N
4 � 1

2

�N=4

� t

�

� sCr
2

:

The proposition follows from the fact that s C r � j. ut
Remark 11. The key point is that we can analyze the asymptotic behavior of Ow
and Ov to any given order of accuracy O.t�M/ (when t > O. 1

�
/) by choosing N

(and hence m) sufficiently large and studying only the behavior of e��T k2t NwN
low and

e��T k2t NvN
low.
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4 Decomposition of Solutions and Proof of the Main Result

In this final section, we state and prove our main result.

Theorem 2. Given any M > 0, let N � 4M, and let m > N C 1=2. If the
initial values Qw0; Qv0 of (9) lie in the space L2.m/, then there exists a constant
C D C.m;N; Qw0; Qv0/ and approximate solutions wapp, vapp, computable in terms
of the 2N C 3 dimensional system of ODEs (14), such that

kw.�; �/ � wapp.�; �/kL2.m/ C kv.�; �/ � vapp.�; �/kL2.m/ � C

�
N
4 C m

2

e�M�

for all � sufficiently large. The approximate solutions wapp and vapp satisfy equations
(49) and (50) respectively. The functions �j.�/ are the eigenfunctions of the operator
LT (corresponding to diffusion with constant �T D � C 1

�
in scaling variables) in

the space L2.m/. The quantities ˛k.�/ and ˇk.�/ solve system (14) and have the
following asymptotics, obtainable via a reduction to an N C 2-dimensional center
manifold:

j˛k.�/j �

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

C.N;k/e�
k
4 �

�k�1 W k D 0 mod 4

C.N;k/e�
kC1
4 �

�k�1 W k D 1 mod 4

C.N;k/e�
kC2
4 �

�k�1 W k D 2 mod 4

C.N;k/e�
kC3
4 �

�k�1 W k D 3 mod 4:

(43)

jˇk.�/j �

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

C.N;k/e�
k
4 �

�kC1 W k D 0 mod 4

C.N;k/e�
kC1
4 �

�kC1 W k D 1 mod 4

C.N;k/e�
kC2
4 �

�kC1 W k D 2 mod 4

C.N;k/e�
kC3
4 �

�kC1 W k D 3 mod 4:

(44)

Remark 12. As we will see in the course of the proof of the theorem,
� > O.log. j log �j

�
// (or equivalently t > O. j log �j

�
/) will suffice for these estimates

to hold.

Proof of Theorem 2. We first concentrate on defining wapp and vapp and establishing
the error estimates in Theorem 2; this process will mainly use results from Sect. 3.
Recall the decomposition of Ow from Sect. 3:

Ow.k; t/ D  e��T k2t
� NwN

low C Nwres
low

	C  ge
�.k/t C Owhigh: (45)

The main results of Sect. 3 essentially said Ow 	  e��T k2t NwN
low, with errors

(measured in the jjj � jjj norm introduced in that section) either algebraically or
exponentially decaying. More precisely, using Propositions 5 and 6, we obtain
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jjj Ow �  e��T k2t NwN
lowjjj � C

�
1

�
N
4 C m

2 t
N
4 C 1

2

C 1

�mC2 e� �
8 t

�
;

where C is independent of �. For some t sufficiently large, we can “absorb” the
exponentially decaying term into the algebraically decaying term; i.e.

1

�mC2 e� �
8 t <

1

�
N
4 C m

2 t
N
4 C 1

2

:

We want to quantify how large t must be for the above inequality to hold. However,
there are several other places in this section where terms of the form ��pe� �

A t appear,
which we wish to absorb into algebraically decaying errors. For this reason, we state
and prove the following lemma:

Lemma 2. Let A;M; `; p > 0 with � > 0 as before. Then there exists a constant
C D C.M;A/ > 0 such that for all t > C

�
log.�`�p�M/, we have the inequality

1

�p
e� �

A t <
1

�`tM
:

Remark 13. Note in particular that since � D log.1 C t/, the inequality
t > C

�
log.�`�p�M/ essentially translates to � > O.log. j log �j

�
//:

Proof of Lemma 2. We introduce a few new quantities to simplify the notation: we
let d D �p�` and we let a D �=A. Then the target estimate in the lemma reads

tMe�at < d:

Now set f
.t/ D tMe�a
t where 0 < 
 < 1 is fixed. Now, the target estimate in the
lemma reads

f
.t/e
�a.1�
/t < d:

Using basic calculus, we find that the maximum value of f
 lies at t D M
a
 , and for

t > M
a
 , we have f
.t/ <

�
M

a
e

	M
. Therefore, if

�
M

a
e

�M

e�a.1�
/t < d;

we have the target estimate. The above inequality holds for

t >
�1

a.1 � 
/ log

 
d

�
a
e

M

�M
!
;



64 M. Beck et al.

or, substituting a D �=A and d D �p�`, we have

t >

�
A

1 � 

�
1

�

�
log.�`�p�M/C M

�
log.M/C log.

A


e
/

��
:

The time estimate in the lemma is just a less precise version of this inequality. This
concludes the proof of lemma 2. ut

Next, we apply the lemma. Using the definition of Qw and inverting the Fourier
Transform, we obtain, for t sufficiently large,

jjj Qw.x; t/ � F�1Œ .k/e��T k2t NwN
low�.x; t/jjj � C

�
N
4 C m

2

.1C t/�N=4: (46)

Proceeding, notice we can “drop” the cutoff function  in the above estimate
with only an exponentially decaying penalty: due to the fact that

j .k/e��T k2t NwN
low � e��T k2t NwN

lowj D j. .k/ � 1/e��T k2t NwN
lowj D 0

for jkj �
p
15�
8

, which implies that

k@j
k

�
. .k/ � 1/e��T k2t NwN

low

�
kL2 � C

�2j
e� �

8 t:

From here on out, we will sometimes suppress the �-dependence of the constants
for notational convenience. Proceeding, we define our approximate solution in x and
t variables:

F�1Œe��T k2t NwN
low�.x; t/ 
 Qwapp.x; t/;

which gives us the estimate

jjj Qw.x; t/ � Qwapp.x; t/jjj � C.1C t/�N=4:

This is just estimate (46) without the cutoff function; it holds for t sufficiently large
as in Lemma 2. Therefore, using scaling variables and defining

Qwapp.x; t/ 
 1p
1C t

wapp.�; �/;

we have the estimate, which holds for � > O.log. j log �j
�
//,

kw.�; �/ � wapp.�; �/kL2.m/ � C

�
N
4 C m

2

e� N
4 � :
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(This holds since the jjj � jjj and jj � jjL2.m/ norms are equivalent in the way made
precise at the beginning of Sect. 3.) Using similar calculations, we have functions
Qvapp.x; t/ and vapp.�; �/ satisfying

jjj Qv.x; t/ � Qvapp.x; t/jjj � C.1C t/�N=4

and

kv.�; �/ � vapp.�; �/kL2.m/ � C

�
N
4 C m

2

e� N
4 � :

This establishes the error estimates in Theorem 2; the remainder of the section is
devoted to making more explicit the relationship between our approximate solutions
wapp, vapp, and our center manifold calculations in Sect. 2.

Observe that

Qwapp.x; t/ D
NX

jD0

@
j
k Nw.0; t/

jŠ
F�1Œkje��T k2t�.x; t/

D
NX

jD0

@
j
k Nw.0; t/
jŠ.i/j

@j
xF

�1Œe��T k2t�.x; t/

D
NX

jD0

@
j
k Nw.0; t/
jŠ.i/j

@j
x

�
1p
4��T t

e� x2
4�T t

�
:

Defining new scaling variables

Q� WD xp
t
; Q� WD log.t/;

and defining

Qwapp.x; t/ WD 1p
t
wapp. Q�; Q�/;

gives us

wapp. Q�; Q�/ D
NX

jD0

@
j
k Nw.0; eQ� /

jŠ.i/j
e� j

2 Q� @j
Q�
�
�0. Q�/

�

D
NX

jD0

@
j
k Nw.0; eQ� /

jŠ.i/j
e� j

2 Q��j. Q�/; (47)

where the �j. Q�/ above are again the eigenfunctions of the operator LT on the space
L2.m/.
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We now show that the coefficients in (47) can be expressed in terms of
the functions f˛k.�/; ˇk.�/g from Sect. 2, demonstrating that the leading order
asymptotic behavior of the solution is determined by the center-manifold.

First, recall from Sect. 3, formulas (34) and (36) that

Nw.k; t/ D e�T k2t Ow.k; t/C g.k/e
�t:

Differentiating, we have

@
j
k Nw.k; t/ D

jX
lD0

 
j

l

!
@

j�l
k .e�T k2t/@l

k Ow.k; t/C @
j
k.g.k/e


�t/

D
jX

lD0

 
j

l

!
.�T t/

j�l
2 Pj�l.

p
�Ttk/e�T k2t@l

k Ow.k; t/C @
j
k.g.k/e


�t/;

where Pj�l is a polynomial of degree j � l. Setting k D 0, and substituting t D eQ� ,
we have

@
j
k Nw.0; eQ� / D

jX
lD0

C�
j;le

.
j�l
2 /Q�@l

k Ow.0; eQ� /C O.e� �
2 eQ�

/; (48)

where C�
j;l D �j

l

	
�

j�l
2

T Pj�l.0/, and @j
k.g.k/e


�t/jkD0 is O.e� �
2 eQ�
/ since 
�.0/ D ��.

We will proceed by computing the derivatives @j
k Ow.0; t/ in terms of the ˛j from

Sect. 2.
Recall from Sect. 2, formula (13), that we have the decomposition (using the

original scaling variables � and �)

w.�; �/ D wc.�; �/C ws.�; �/; wc.�; �/ D
NX

jD0

˛j.�/'j.�/; ws D .w � wc/;

v.�; �/ D vc.�; �/C vs.�; �/; vc.�; �/ D
NX

jD0

ˇj.�/'j.�/; vs D .v � vc/;

and note the following.

Lemma 3.
R
�kws.�; �/d� D R

�kvs.�; �/d� D 0 for all k � N.

Proof. We will prove the result for ws only, as the proof for vs is analogous. Note
that

ws D w � Pnw D w �
NX

jD0
hHj;wi�j;
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and so hHk;wsi D 0 for all k � N. We’ll proceed by induction on k. The k D 0 case
follows because �0 D 1 D H0.�/. Next,

0 D h.HkC1 � Hk/;wsi D ckC1
Z
�kC1ws.�/d� C

kX
jD0

ck

Z
�kws.�/d�

D ckC1
Z
�kC1ws.�/d�

by the inductive assumption. Since ckC1 ¤ 0, the result follows. ut
Using this lemma, we can compute

@l
k Ow.0; t/ D

�
@l

k

Z
eikx Qw.x; t/dx

�
jkD0

D
�
@l

k

Z
eik

p
tC1�w.�; �/d�

�
jkD0

D .i
p

t C 1/l
Z
� lw.�; �/d�

D .i
p

t C 1/l
Z
� lwc.�; �/d�

for all l � N, and similarly for Ov. As a result, we have a relationship between
@l

k Ow.0; t/ and the quantities ˛r: from Sect. 2

@l
k Ow.0; t/ D 1p

1C t

NX
rD0

˛r.log.1C t//
Z

xl�r.
xp
1C t

/dx;

or equivalently

@l
k Ow.0; eQ� / D

NX
rD0

˛r.log.1C eQ� //.1C eQ� / l
2

Z
� l�r.�/d�:

Inserting into (48), we obtain

@
j
k Nw.0; eQ� / D

jX
lD0

C�
j;le

.
j�l
2 /Q�

NX
rD0

˛r.log.1C eQ� //.1C eQ� /
l
2

Z
� l�r.�/d� C O.e� �

2 eQ�

/

D e
j
2 Q�

NX
rD0

˛r.log.1C eQ� //
NX

lD0
.1C e�Q� /

l
2 C�

j;l

Z
� l�r.�/d� C O.e� �

2 eQ�

/:
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Therefore we can replace the coefficients in (47) and write

wapp. Q�; Q�/

D
NX

jD0

 
1

jŠ.i/j

NX
rD0

˛r.log.1C eQ� //
jX

lD0
.1C e�Q� /

l
2 C�

j;l

Z
� l�r.�/d�

!
�j. Q�/; (49)

where C�
j;l � ��j (see the line after (48)), and where we also have omitted an error

term of O.e� �
2 eQ�
/ (This can be absorbed into the estimate in the original definition

of wapp by applying Lemma 2 with Q� D log.t/.) Analogous calculations give us a
similar result for v:

vapp. Q�; Q�/

D
NX

jD0

 
1

jŠ.i/j

NX
rD0

ˇr.log.1C eQ� //
jX

lD0
.1C e�Q� /

l
2D�

j;l

Z
� l�r.�/d�

!
�j. Q�/: (50)

This completes the proof of Theorem 2.

Remark 14. Note that Theorem 2 is stated in terms of the original scaling variables
� and � . Since � D log.1C eQ� /, errors in Q� , for large Q� , are equivalent to errors in � ,
for large � .
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Appendix: Convergence to the Center Manifold

The purpose of this appendix is to show that the center manifold constructed in
Sect. 2 attracts all solutions. We know that we can construct the invariant manifold
for the Eq. (21) (for a0

k and b0
k) globally since we have explicit formulas which hold

for all values of ak and �. In this note we show that any trajectory will converge
toward the center manifold on a time scale of O.1=�/.

Write bk D Bk C hk.ak�2; : : : ; a0; �/. We’ll prove that for any choice of initial
conditions Bk goes to zero like � e��t.

First note that

b0
k D B0

k C
k�2X

`D0;even

.@a`hk/a
0̀ C .@�hk/�

0
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D B0
k �

k�2X
`D2;even

.@a`hk/�
`

2
a` �

k�2X
`D2;even

.@a`hk/�b`�2 � .@�hk/�
2

D B0
k � �

k�2X
`D2;even

.@a`hk/B`�2 C
k�2X

`D2;even

.@a`hk/.��`
2

a` � �h`�2/� .@�hk/�
2:

Thus, using the equation for b0
k in (21) we have

B0
k � �

k�2X
`D2;even

.@a`hk/B`�2 C .� C �
k

2
/Bk C 2�

�
Bk�2

D �.� C �
k

2
/hk C �

�2
ak�2

�
k�2X

`D2;even

.@a`hk/.��`
2

a` � �h`�2/� .@�hk/�
2 � 2�

�
hk�2:

The key observation is that the terms on the right hand side precisely represent the
invariance equation that defines hk (and hence they all cancel), leaving the equation

B0
k D �.� C �

k

2
/Bk � 2�

�
Bk�2 C �

k�2X
`D2;even

.@a`hk/B`�2: (51)

We now see that the system of equations for Bk is homogeneous, linear, upper-
triangular (but non-autonomous), and hence can be analyzed inductively. We’ll show
that

jBk.t/j < C.N/

�k=2
e��t

for t > 1
�
. We’ll only prove this for the even-indexed subsystem; the proof for the

odd-subsystem is analogous. Notice that the base case, k D 0, holds since (51) for
k D 0 reads B0

0 D ��B0, which implies B0 � e��t. Now let’s proceed with the
induction argument: assume for j D 0; 2; : : : k, that

jBj.t/j < C.N/

� j=2
e��t:

Next, we write the equation for BkC2 from (51) with a key difference in the way the
last term is written:

B0
kC2 D �

�
�BkC2 C �

k C 2

2
BkC2

�
� 2�

�
Bk C �

�

k
2X

`D1
CkC2

kC2�2`
�`

�2`
Bk�2`: (52)
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This last sum is obtained from reindexing ` and using the fact that the formula for
hk in Proposition 1 implies that .@a`hk/ consists of a single term. Let’s proceed by
noting that the equation

y0 D � .�y C a�y/

has the exact solution

y D e��.t�t0/.1C t/�a.1C t0/
a:

To derive this solution, it may help to recall that � D 1
1Ct . Applying this to (52) with

a D kC2
2

and using Duhamel’s formula, we obtain

BkC2.t/ D e��.t�t0/.1C t/�
kC2
2 .1C t0/

kC2
2 BkC2.0/C DkC2

k .t/

C
kC2
2 �1X
`D1

DkC2
k�2`.t/ (53)

where the Duhamel terms DkC2
k�2` satisfy

DkC2
k�2`.t/

� C

�2`C1

Z t

t0

e��.t�s/.1C t/�
kC2
2 .1C s/

kC2
2 .1C s/�`�1

1

�
k�2`
2

e��sds:

(54)

Notice in the above Duhamel term, we have substituted, using the induction
hypothesis jBk�2`.t/j � C

�
k�2`
2

e��t (we also assume t > t0 > 1
�

). These Duhamel

terms are the most slowly decaying terms in the solution formula (53). Proceeding,
we simplify (54) and obtain (for all `),

DkC2
k�2`.t/ � C

�
k
2C`C1 e��t.1C t/�

�
kC2
2

� �
.1C t/

k
2�`C1 � .1C t0/

k
2�`C1

�

D C

�
k
2C1 e��t

 
1

�`.1C t/`
� 1

�`.1C t0/`
.1C t0/

k
2C1

.1C t/
k
2C1

!
:

Now since t > t0 > 1
�

, we obtain

jDkC2
k�2`.t/j � C

�
kC2
2

e��t;
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and subsequently we obtain, for t > t0 >
1
�

,

jBkC2.t/j � C

�
kC2
2

e��t

as desired. ut
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Normal Form Transformations
for Capillary-Gravity Water Waves

Walter Craig and Catherine Sulem

Abstract This paper addresses the equations of capillary-gravity waves in a
two-dimensional channel of finite or infinite depth. These equations are considered
in the framework of Hamiltonian systems, for which the Hamiltonian energy has a
convergent Taylor expansion in canonical variables near the equilibrium solution.
We give an analysis of the Birkhoff normal form transformation that eliminates
third-order non-resonant terms of the Hamiltonian. We also provide an analysis of
the dynamics of remaining resonant triads in certain cases, related to Wilton ripples.

1 Introduction

The system of equations for free surface water waves is known to have a formulation
as a Hamiltonian partial differential equation [3, 14]. In this article, we consider the
case of capillary-gravity waves in a two-dimensional channel with periodic lateral
boundary conditions, with either finite of infinite depth. The Hamiltonian is analytic
in natural canonical conjugate variables, and the nth term of its Taylor expansion
about equilibrium is associated with n-wave interactions. We perform a Birkhoff
normal form transformation to eliminate all non-resonant cubic terms from the
Hamiltonian. We show that this transformation is a well-defined and continuous
canonical change of variables in a neighbourhood of zero in a fixed Sobolev space,
and moreover it is C1 in the sense that its Jacobian is a bounded map on a slightly
larger Sobolev space.

This work is motivated by a number of open questions in the theory of water
waves. The first is the question of long-time existence of solutions for small initial
data. In the case of infinite horizontal extent, there have been a number of recent
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results, including [8, 13] who give exponentially long existence times and [1, 10]
who extended this to global solutions. These are results for infinite depth and zero
surface tension. The question in the periodic case is open, and more difficult because
of the lack of dispersive decay estimates. It is important because of the effort to
derive a rigorous justification of the modulational approximation offered by the NLS
equation, in the more natural setting in which the solutions are not dispersing to
zero. The NLS approximation has been given a rigorous justification in the case of
an infinite horizontal domain by Totz and Wu [12] and by Düll, et al. [6], following
the initial analysis of Craig, et al. [4].

Another interesting aspect of a rigorous normal form transformation is that
it exhibits certain classes of special solutions. In the setting of this paper, the
remaining resonant terms after the third order Birkhoff normal form transformation
take the form of coupled resonant triads, related to the classical Wilton ripples. In
the presence of a single resonant triad, the dynamics is that of the integrable three-
wave system. In cases of higher numbers of coupled triads, the dynamics are more
complicated [2, 9]. The normal forms transformation in the present paper gives a
rigorous justification of the behaviour of resonant triads models, over long time
intervals, for the initial value problem.

A useful aspect of normal forms given through canonical transformation is that,
first of all, they preserve the Hamiltonian character of the underlying equations of
motion and the principle of conservation of energy. Secondly, these transformations
can in principle be repeated, resulting in a normal form for higher order terms in the
Hamiltonian, and eliminating non-resonant higher order nonlinearities. On a formal
level, normal forms are described up to fourth order in [7].

Finally, normal form transformations play a central role in Zakharov’s theory
of wave turbulence, In this, nonlinear wave interactions are reduced to resonant
submanifolds under canonical changes of variables [11, 15, 16]. Any effort to make
a rigorous analysis of this picture of wave turbulence will need to understand the
analytic properties of such transformations.

In the present paper, Sect. 2 describes the Hamiltonian for capillary-gravity water
waves, and transforms it to complex symplectic coordinates. In Sect. 3, we describe
the Birkhoff normal form and solve the cohomological equation. Section 4 gives the
key result of the paper, namely that the time-one solution map of the Hamiltonian
vector field is well-defined and continuous in an appropriately defined scale of
energy spaces. This result is based on energy estimates for solutions. Moreover, the
solution map of the vector field is smooth on this scale of spaces in the sense that the
Jacobian of the solution and subsequent higher derivatives are bounded in slightly
larger spaces of the scale. Section 5 is a study of the normal form Hamiltonian
itself, truncated at fourth order, in certain specific cases of triad and multiple triad
interaction. In the case of a single triad, the system reduces to two decoupled
subsystems of one degree of freedom apiece, corresponding to two independent
copies of the three-wave resonant system. We also consider a particular case of
two coupled resonant triads giving rise to a Hamiltonian system with two degrees
of freedom for which we find the stationary points and analyze their respective
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stability. The normal forms transformation gives a rigorous justification of the
relevance of these finite dimensional dynamical systems to model the dynamics of
the full water wave system, at least over long periods of time.

2 Water Waves Equations

2.1 The Classical Equations and Their Hamiltonian
Formulation

The classical water problem refers to the movement of an ideal incompressible fluid
in the presence of gravity and surface tension. Making the usual oceanographers
assumption that the fluid is irrotational, it is described by a potential flow u D r'
satisfying

�' D 0 ; (1)

in the fluid domain S.tI �/ D f.x; y/ W x 2 R;�h < y < �.x; t/g, where � is the
surface elevation. The boundary condition on the fixed bottom fy D �hg of the
fluid is

�@y'.x;�h/ D 0 : (2)

On the interface fy D �.x; t/g, two boundary conditions are imposed, namely

@t� D @y' � @x� @x' ;

@t' C 1

2
jr'j2 C g�� �@x

� @x�

.1C j@x�j2/1=2
�

D 0 ;

where g is the acceleration of gravity and � the coefficient of surface tension.
We assume periodic boundary condition in horizontal direction, �.x C 2�/ D
�.x/; �.x C 2�/ D �.x/.

It is well-known that this system has a Hamiltonian formulation [14] with
canonical variables �.x; t/ and �.x; t/ D '.x; �.x; t/; t/, in the form

@t

�
�

�

�
D
�
0 I

�I 0

��
ı�H
ı�H

�
D J ıH (3)

with the Hamiltonian being given by the expression of the total energy

H.�; �/ D 1

2

Z Z �.x/

�h
jr'j2 dydx C

Z
.
g

2
�2 C �

p
1C j@x�j2/ dx

D
Z
.
1

2
�.x/G.�/�.x/ C g

2
�2.x/C �

p
1C j@x�j2/ dx : (4)
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Here G.�/ is the Dirichlet-Neumann operator which associates to the Dirichlet data
� on the curve y D �.x/ the normal derivative of the harmonic function ', with a
normalized factor, namely, @n'

p
1C j@x�j2. The other conserved quantities are the

mass M.�; �/ D R
�.x/dx and the horizontal momentum I.�; �/ D R

�.x/@x�.x/dx.
Defining the Poisson bracket as

fF;Gg D
Z
.@�F@�G � @�F@�G/dx;

one can check that the conserved quantities M and I Poisson-commute with the
Hamiltonian H,

fH;Mg D 0; fH; Ig D 0:

2.2 Complex Symplectic Coordinates

The Dirichlet-Neumann operator is analytic in �, given in Taylor series by

G.�/� D
1X

mD0
G.m/.�/;

with the property that each term in the Taylor expansion G.m/ is homogeneous of
degree m, G.m/.
�/ D 
mG.m/.�/. In particular, the two first terms in the expansion
are G.0/ D D tanh.hD/, G.1/ D D�D � G.0/�G.0/ where D D .1=i/@x. In turn, the
Hamiltonian has an expansion in the form

H.�; �/ D H.2/ C H.3/ C : : : :C H.m/ C R.mC1/ (5)

where

H.2/ D 1

2

Z 2�

0

�
�G.0/� C g�2 C � j@x�j2

�
dx;

H.3/ D 1

2

Z 2�

0

�.D�D � G.0/�G.0//�dx;

with similar expressions for higher order H.m/, and where R.mC1/ is the Taylor
remainder.

We consider a periodic setting, i.e. �.x C 2�k; t/ D �.x; t/ and �.x C 2�k; t/ D
�.x; t/, writing � and � as Fourier series

�.x/ D 1p
2�

X
k

�keikx; �.x/ D 1p
2�

X
k

�keikx:
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Since mass is conserved, we can assume, without loss of generality, that the zeroth
Fourier coefficient �0 vanishes. Then,

H.2/ D 1

2

X
k

k tanh.hk/j�kj2 C .g C �k2/j�kj2/;

H.3/ D 1

2
p
2�

X
k1Ck2Ck3D0

.�k1k3 � G.0/
k1

G.0/
k3
/ �k1�k2�k3 ;

where G.0/
k D k tanh.hk/. Also note that the zeroth Fourier coefficient �0 of � does

not appear in the Hamiltonian. It is convenient to introduce the complex symplectic
coordinates

zk D 1p
2
.ak�k C ia�1

k �k/; (6)

or equivalently,

�k D 1p
2

a�1
k .zk C Nz�k/ ; �k D 1p

2i
ak.zk � Nz�k/; (7)

with the coefficients ak defined by

a2k D
� g C �k2

k tanh.hk/

�1=2
:

The dispersion relation

!2k D .g C �k2/k tanh.hk/;

expresses the temporal frequencies of the normal modes of the linearized system, as
given by the quadratic Hamiltonian H.2/. A key distinction between the case of pure
gravity waves and gravity—capillary waves is that the dispersion relation grows as
a 3=2 power in wavenumber k in the latter case, as compared with a 1=2 power in
the case of pure gravity waves. Using the dispersion relation, we have the identities
a2k!k D g C �k2 and !k=a2k D k tanh.hk/ D G.0/

k .
In terms of complex symplectic coordinates, the system (3) becomes

@tz D 1

i
@NzH: (8)

The quadratic part H.2/ of the Hamiltonian takes the simple form

H.2/ D
X

k

!kjzkj2 (9)
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while the cubic order term H.3/ is

H.3/ D 1

8
p
�

X
k1Ck2Ck3D0

.k1k3 C G1G3/
a1a3
a2

.z1 � Nz�1/.z2 C Nz�2/.z3 � Nz�3/ (10)

where, for simplicity, we have dropped the k indices and denoted zj D zkj , aj D akj ,

and Gk D G.0/
k . We will use this notation when there is no possible confusion.

3 Birkhoff Normal Forms

A Birkhoff normal form is a canonical change of variables up to a given order m,
so that the Taylor expansion of the transformed Hamiltonian up to order m contains
only resonant terms. A term in the Hamiltonian H.z/ is resonant at order m when

lX
jD1

!kj �
mX

jDlC1
!kj D 0

and k1C : : : kl CklC1C : : : km D 0. We do not include k D 0 in the sums because we
have assumed that the zero modes of � and � vanish. In particular, a resonant triad
takes the form

!k1 � !k2 � !k3 D 0; k1 C k2 C k3 D 0; kj ¤ 0: (11)

In the presence of surface tension and gravity, there are possible non trivial resonant
triads. The resulting gravity-capillary waves are known as Wilton ripples, at least
this applies to the standing wave solutions. In the case of a periodic domain,
generically these resonant triads do not appear, but for certain choices of parameters
(g; h; �) there can be a finite number of such triads. The maximum wave number kj

involved in a resonant triad is bounded by a constant C D C.g; h; �/ that depends
locally uniformly upon these parameters.

3.1 Canonical Transformations

We perform a canonical change of variables

� W v D .�; �/ ! w D .�0; � 0/ (12)

on the Hamiltonian

QH.w/ D H.v/ D H ı ��1.w/
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by the Lie method of giving � as the time-one flow associated to a Hamiltonian K:

d

ds
 s D XK. s/; with  s.w/jsD0 D w; QH.w/ D H. s.w//jsD�1: (13)

This is a canonical transformation preserving the Hamiltonian character of the
system. A Taylor series expansion near s D 0 of the new Hamiltonian QH gives

QH.w/ D H. s.w//jsD0 � d

ds
H. s.w//jsD0 C 1

2

d2

ds2
H. s.w//jsD0 � : : : (14)

As a formal expression at least in the above equation, we have

H. s.w//jsD0 D H.w/

d

ds
H. s.w//jsD0 D

Z
.@�H

d�

ds
C @�H

d�

ds
/ dx D

Z
.@�H@�K � @�H@�K/dx


 fH;Kg ;

with similar formulas for higher orders of s-derivatives, thus giving the expression

QH.w/ D H.w/ � fK;Hg.w/C 1

2
fK; fK;Hgg.w/C : : : : (15)

3.2 Third-Order Cohomological Equation

The expression (15) represents an ordering of H and K in terms of powers of
homogeneity with respect to the variables z; Nz. Returning to the expansion (5) of H
in terms of .�; �/, we apply the canonical transformation associated to Hamiltonian
K on each term: The transformed Hamiltonian has the form [5]

QH.w/ D H.2/.w/C H.3/.w/C : : :

�fK;H.2/g.w/� fK;H.3/g.w/� : : : :

C1

2
fK; fK;H.2/gg.w/C 1

2
fK; fK;H.3/gg.w/C : : : (16)

If K is homogeneous of degree m, its Poisson bracket with H.n/ (homogeneous of
degree n) will be of degree m C n � 2. Thus if we can find K D K.3/ homogeneous
of degree 3 satisfying the relation

fH.2/;K.3/g C H.3/ D 0; (17)

we will have eliminated the cubic terms in the transformed Hamiltonian QH.
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The proposition below states that it is indeed possible to solve the cohomological
equation (17) explicitly, removing all cubic terms except the resonant terms of H.3/.

Proposition 1. The solution of the cohomological equation (17) is given by

K.3/ D 1p
�

X
k1Ck2Ck3D0

.k1k3 C G1G3/
a1a3
a2

z1z2z3 � Nz�1Nz�2Nz�3
!1 C !2 C !3

�
X

k1Ck2Ck3D0
.k1k3 C G1G3/

a1a3
a2

2
z1z2Nz�3 � Nz�1Nz�2z3
!1 C !2 � !3

C
X

k1Ck2Ck3D0
.k1k3 C G1G3/

a1a3
a2

z1Nz�2z3 � Nz�1z2Nz�3
!1 � !2 C !3

C P; (18)

where the three sums are performed for triads .k1; k2; k3/, with k1 C k2 C k3 D 0

excluding the resonant terms for which the corresponding denominator vanishes.
The term P consists of the finite sum of exceptional terms. That is, it consists of
the non resonant terms of K.3/ for which .k1; k2; k3/ possesses a resonant triad.
Generically, P D 0.

Proof. This equation can be solved easily in complex symplectic coordinates which
diagonalize the linear operation of taking Poisson bracket with H.2/ (the adH.2/

action). Indeed, the Poisson bracket of H.2/ acting on monomials of the form
zk1zk2 Nz�k3 is simply a multiplicative factor:

fH.2/; zk1zk2 Nz�k3g D 1

i
.!k1 C !k2 � !k3 /zk1zk2 Nz�k3 : (19)

We thus look for K.3/ in the form of a linear combination of all possible monomials
of degree 3 of the form similar to that above and we identify the coefficients, which
is possible as long as the corresponding mutliplicative factor .!1 ˙ !2 ˙ !3/ does
not vanish. This leads to K.3/ given in the form of (18) where, for simplicity, we
have denoted zj D zkj .

It is useful for the analysis to rewrite K.3/ in terms of the .�; �/ variables. After
some algebraic manipulations, one finds

K.3/ D 1p
2�

X
k1Ck2Ck3D0

k1k3 C G1G3

d.!1; !2; !3/

h
a21!1.!

2
1 � !22 � !23/�k1�k2�k3

C a21a
2
3

a22
!1!2!3�k1�k2�k3 C 1

2a22
!2.!

2
1 � !22 C !23/�k1�k2 �k3

i
C P (20)

where

d.!1; !2; !3/ D .!1C!2C!3/.!1C!2�!3/.!1�!2C!3/.!1�!2�!3/; (21)
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and the summation is performed over all triads .k1; k2; k3/ such that k1Ck2Ck3 D 0

and d.!1; !2; !3/ ¤ 0. Finally, the term P in the RHS of (20) contains finite sums of
the alternate triplets to resonant triads. Namely, it contains the terms in the first and
last sums in (18) corresponding to triads for which the denominator !1 C !2 � !k

of the second sum vanishes, and the terms of the first and second sums in (18)
corresponding to triads for which the denominator !1 � !2 � !k of the third sum
vanishes. ut
Remark 1. This calculation has been performed in the case of finite depth
0 < h < 1. In the case h D 1, the same expression holds, with the substitution
G0/ D jDj.

3.3 Transformation to Third-Order Normal Form

The new coordinates . Q�; Q�/ are obtained as the solutions at s D �1 of the system of
equations

d

ds

�
�

�

�
D
�
0 I

�I 0

��
@�K.3/

@�K.3/

�
WD XK.3/ (22)

with the (initial) condition at s D 0 being the original variables .�; �/.t/.
Equivalently, in Fourier space,

d

ds
��k D @�k K.3/

d

ds
��k D � @�k K.3/ (23)

with the RHS given by

p
2�@�k K.3/ D˙ 0

k1Ck2CkD0
hk1k C G1Gk

dk1k2k
.g C �k21/.!

2
1 � !22 � !2k /�k1�k2

C k1k2 C G1G2

dk1k2k
.g C �k21/.g C �k22/k tanh.hk/�k1�k2

i

C
hk1k C G1Gk

dk1k2k
k2 tanh.hk2/.!

2
1 � !22 C !2k /�k1 �k2

C k1k2 C G1G2

2dk1k2k
k tanh.hk/.!21 � !2k C !22/�k1�k2

i
; (24)



82 W. Craig and C. Sulem

and

p
2�@�k K.3/ D ˙ 0

k1Ck2CkD0
hkk2 C GkG2

dkk1k2

.g C �k2/.!2k � !21 � !22/�k1�k2

C k1k2 C G1G2

dk1kk2

.g C �k21/.!
2
1 � !2k � !22/�k1 �k2

C 2
kk1 C GkG1

dkk2k1

.g C �k2/.g C �k21/k2 tanh.hk2/�k1�k2

i
; (25)

where dk1k2k3 D d.!1; !2; !3/, and the notation ˙ 0 indicates that the summation is
performed over all triads .k1; k2; k3/ satisfying k1 C k2 C k3 D 0 and dk1k2k3 ¤ 0.
In case of the presence of resonances, there is a finite number of exceptional terms.
For convenience of estimates, we assume in this and the following section that we
are in the generic case and there are no resonant triads.

4 Analysis of the Normal Form Transformation

Let Hr denote the Sobolev space of order r, equipped with the norm kf k2Hr DP
khki2rjfkj2, where h k i D .1C jkj2/1=2. Define the energy norm

k.�; �/k2Er D 1

2
.h�; � jDj2�ir C h�;G0�ir/ (26)

and the energy space Er ' HrC1 � HrC1=2. We denote BR be the ball centered
at the origin, of radius R of the energy space. Define a transformation w D
�.v/ WD  s.v/jsD�1 given by the time-one solution map of the Hamiltonian vector
field XK.3/ (22) with the auxiliary Hamiltonian K.3/. This map is well defined and
continuous in a neighbourhood of the origin BR � Er because of the following
result.

Theorem 1. There exists R0 > 0 such that, for all R < R0, the canonical
transformation � W v ! w defined in (13) is continuous on BR � Er, with
continuous inverse ��1, and it satisfies � W BR=2 ! BR and ��1 W
BR=2 ! BR . This transformation removes all non resonant cubic terms from the
Hamiltonian. The Jacobian @.�;�/� of the transformation is bounded on the energy
space Er�1=2 ! Er�1=2.

The proof of the existence of the mapping � is based on an energy estimate for
the vector field (23), and the result for the Jacobian follows from a similar energy
estimate for the variational equation of (23). From this, the existence of the solution
to (22) for s 2 Œ�1; 1� is obtained by a fixed point argument for a sequence of
approximations, under the condition that the ball BR � Er in which one takes the
initial data is of sufficiently small radius.
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Theorem 2. Given .�; �/ 2 Er, the vector field XK.3/ satisfies the following energy
inequality

jh.�; �/;XK.3/ .�; �/iEr j � Ck.�; �/k3Er : (27)

The proof of Theorem 2 is given in Sects. 4.3 and 4.4, using some technical
results presented in Sects. 4.1 and 4.2.

Theorem 3. The flow  s.�; �/ of the vector field XK.3/ satisfies the following
estimates on the scale of energy spaces Ep, 0 � p � r. For k.�; �/kEr � R, and
jsj < sR, the Jacobian satisfies

k�@.�;�/ s.�; �/ � I
	
. Q�; Q�/TkEr�1=2 � C1 R k. Q�; Q�/kEr�1=2 : (28)

Higher derivatives of the flow satisfy

k@q
.�;�/ s.�; �/kEr�q=2 � Cr;q: (29)

It follows from this result that the transformation �.�; �/ D  sD�1.�; �/ is
smooth on the scale of spaces Ep, 0 � p � r, in the sense that for .�; �/ 2 BR � Er,
the derivatives @q

.�;�/� W Er�q=2 ! Er�q=2 are continuous. For this, we require
R � R0, so that the guaranteed existence time for the flow satisfies sR > 1. The
proof of Theorem 3 is given in Sect. 4.5.

Proof of Theorem 1. The canonical transformation that we seek is designed as the
time s D �1 image of the solution map for Eq. (22). The question is whether the
solution exists and its regularity with respect to its initial data .�; �/jsD0 2 Er.
We will show that the solution map exists and is continuous on each ball BR � Er

for some interval �sR < s < sR, and that for sufficiently small R the bound sR > 1.
The desired transformation is � D  sD�1 while ��1 D  sD1. The vector field is not
Lipschitz continuous in any reasonable Banach space, not even locally. We proceed
with a strategy for the existence which is well-known from the theory of symmetric
hyperbolic systems. Namely, one solves an approximate equation which has smooth
solutions and takes the limit. In the case at hand,

d

ds

�
�

�

�
D XK.3/ .�; �/C ˛�

�
�

�

�
(30)

with parameter 0 < ˛ � 1. Using the energy estimates of XK.3/ of Theorem 2,

d

ds
k.�.˛/; �.˛//k2Er � Ck.�.˛/; �.˛//k3Er

� ˛k.�.˛/; �.˛//k2ErC1 : (31)
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With initial data .�.˛/; �.˛// D .�; �/ 2 BR, solutions .�.˛/.s/; �.˛/.s// exist over a
time interval .�sR; sR/ , uniformly in ˛. This gives rise to a family of continuous
curves .�.˛/.s/; �.˛/.s// 2 C..�sR; sR/I Er/ which is bounded and equicontinuous
in C..�sR; sR/I E0/ whose limit points as ˛ ! 0 are solutions of (22). The limit is
unique in E0 and hence in all Er as well. When one takes R < 1=C0, the time of
existence satisfies sR > 1 and the image of BR,  ˙1.BR/ � BR=2. ut

4.1 Lower Bound for the Denominator d.!1; !2; !3/

In this section, we examine the denominator d.!1; !2; !3/ defined in (21) that
appears in the formulas (24) and (25) of the vector field.

Lemma 1. The set of resonant triads .k1; k2; k3/, i.e. such that k1 C k2 C k3 D 0

and d.!1; !2; !3/ D 0 exists only on a compact set W of R3.

Proof. This is due to the change of concavity of the curve ! versus k. Assume
without loss of generality that jk1j > jk2j, k1 > 0 and k2 < 0. For !1 � !2 � !3
to vanish, one needs that the curve given by the graph of !.k/, denoted C , starting
from the origin point of coordinates O intersects the curve C 0 that starts for the point
O0 D .k2; !2/. For this to happen, the origin O’ needs to be in the region where the
curve C is concave. There are thus only a finite number of triads that are resonant.
Because of the periodic boundary conditions, for generic values of the parameters
g; h; � , there are no resonances. However, there are cases in which triads resonances
and multiple coupled triad resonances occur. ut

In order to proceed with the estimates, we divide the plane .k1; k2/ in 4 sectors
represented in Fig. 1 and defined as follows, using that k1 C k2 C k3 D 0,

Sector (i) = f.k1; k2/; jk1j < 1
5
jk2j; and jk3j � jk2jg,

Sector (ii) = f.k1; k2/; jk2j < 1
5
jk1j; and jk3j � jk1jg,

Sector (iii) = f.k1; k2/; jk3j < 1
5
jk1j; and jk2j � jk1jg,

Sector (iv) = f.k1; k2/; all jk3j ; jk1j ; jk2j are comparable sizeg.

Lemma 2. The denominator d.!1; !2; !3/ is bounded from below as follows:

In region (iv), d.!1; !2; !3/ � C
�hk1i3=2 C hk2i3=2 C hk3i3=2

	4
.

In regions (i), (ii) and (iii), d.!1; !2; !3/ � Chk1i2hk2i2hk3i2:
Proof. First of all, !.k/ � hki3=2 for large jkj. Also, the expression d.!1; !2; !3/
is even in k1, k2, k3 and invariant after permutations of the arguments. It is thus
sufficient to find for example a lower bound in sectors .iv/ and .ii/.

In sector (iv), jk3j ; jk1j ; jk2j are comparable size. Thus, each term in the product
d.!1; !2; !3/ is bounded from below by C.hk1i3=2 C hk2i3=2 C hk3i3=2/ and the
estimate given in Lemma 2 is straightforward.
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Fig. 1 Division of the plane .k1; k2/

In sector (ii) where jk2j < 1
5
jk1j, two of the factors appearing in the denominator

are easily bounded :

!1 C !2 C !3 � hk1i3=2 C hk2i3=2 C hk3i3=2

and

!1 � !2 C !3 � !3 � hk3i3=2 :

In this sector, hk3i � hk1i � 5hk2i. Thus

!1 � !2 C !3 � C.hk1i3=2 C hk2i3=2 C hk3i3=2/ :

It remains to bound the two other factors. Consider the factor !1 � !2 � !3. In the
region of (ii) where k1 > 0; k2 > 0, we have that k3 < 0 and jk3j > jk1j. Thus, for
some s0 , jk1j < s0 < jk3j,

!3 � !1 C !2 D .jk3j � jk1j/!0.s0/C !2 � hk2i Chk3i1=2: (32)

However, in the region of (ii) where k1 > 0; k2 < 0, we have that k3 < 0 and
jk3j < jk1j. Thus,

!1 � !3 � !2 D
Z jk1j

jk3j
!0.s/ds �

Z jk2j

0

!0.s/ds

D jk2j .!0.s1/ � !0.s2// ; (33)
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for some jk3j < s1 < jk1j and 0 < s2 < jk2j. Since jk2j � jk1j=5, we have also
jk2j � jk3j=4, and j sups1 !

0.s1/ � infs2 !
0.s2/j � Chk3i1=2 for k3 sufficiently large.

The region of (ii) where k1 < 0 is treated similarly as well as the last factor in
the denominator !1 C !2 � !3. This concludes the proof of the lower bound for
the denominator dk1k2k3 . ut

4.2 Auxiliary Estimates

Lemma 3. Let r0 > 1=2 and A.p; q/ D P
kCk1Ck2D0 Akk1k2pk1qk2 . Suppose that for

k C k1 C k2 D 0, the kernel Akk1k2 satisfies

jAkk1k2 j � C0 minfhk1i�r0 ; hk2i�r0g:

Then,

kA.p; q/k`2 � Ckpk`2 kqk`2 : (34)

Proof. We divide the bilinear form into two sums, the sum over k1 such that jkj �
2jk1j and the sum over k1 such that 2jk1j � jkj .

In the first sum, the argument satisfies jkj � 2jk1 , therefore jk2j � 3jk1j. We first
bound the `2 -norm by the norm of the operator with kernel Akk1k2pk1 ,

C1 WD sup
k

X
k2

jAkk1k2pk1 j � sup
k

X
k2

C0
hk1ir0

jpk1 j

� sup
k
.
X

k2

C2
0

hk C k2i2r0
/1=2 sup

k
.
X

k1

jpk1 j2/1=2

� C0kpk`2 : (35)

Also,

C2 WD sup
k2

X
k

jAkk1k2pk1 j � sup
k2

X
k

C0
hk1ir0

jpk1 j

� sup
k2

X
k

C0
hk C k2ir0

jpkCk2j

� sup
k2

.
X

k

C2
0

hk C k2i2r0
/1=2 sup

k
.
X

k

jpkCk2 j2/1=2

� C0kpk`2 : (36)
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The `2-norm of the first sum A1.p; q/ is thus bounded by

kA1.p; q/k �
p

C1C2kqk`2 � C0kpk`2kqk`2 : (37)

The second summation A2 follows similarly, given that the conditions

k1 C k2 C k D 0 ; and 2jk1j � jkj

imply

2.jkj � jk2j/ � 2jk C k2j D 2jk1j � jkj;

therefore, jkj � 2jk2j. exchanging indices k1 and k2, and the role of p and q, the
estimate for A2 follows. ut

This lemma also holds in the case of k 2 R rather than k 2 Z. That is to say, for
the problem posed on all of R rather than the periodic case.

The estimate obtained in the above lemma is however not strong enough to
control all the terms appearing in estimates of Theorem 2 because the hypothesis
on Akk1k2 is too symmetric with respect to k1; k2. We sometimes need to examine the
different regions separately and establish estimates accordingly.

Lemma 4. Suppose the bilinear form A.p; q/ with kernel Akk1k2 satisfies

A.p; q/ D
X

kCk1Ck2D0
Akk1k2pk1qk2

with

jAkk1k2 j � C0hk1i�r0 ; r0 > 1 :

Then

kA.p; q/k`2 � Cjpj`1 kqk`2 � Ckpk`2 kqk`2 : (38)

The roles of p and q in this lemma can be inverted, therefore one achieves the
same conclusion (38) if jAkk1k2 j � C0hk2i�r0 instead.

Proof. From the hypothesis, we have that

jAkk1k2pk1 j � a.k1/ D C0hk1i�r0 jpj`1 : (39)
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For r0 > 1, this is an `1-sequence. This majorant provides estimates of the norm of
the linear operator with kernel Akk1k2pk1 jkCk1Ck2D0 :

sup
k

X
k2

jAkk1k2pk1 j �
X

k2

C0jpk1 j`1

1

hk C k2ir0

� C0
0jpk1 j`1 when r0 > 1: (40)

Similarly,

sup
k2

X
k

jAkk1k2pk1 j � C0
0jpk1 j`1 : (41)

The bilinear `2 estimate follows from the simple fact that jpj`1 � kpk`2 on
sequence spaces. ut

The analysis also encounters the Dirichlet-Neumann operator in various terms
and sectors. For example, in sector (i) (where jk1j � jk2j; jkj) the terms that stem
from the near-commutator nature of the operator is exhibited by the fact that k and
k2 have opposite signs. Therefore

jkk2 C GkG2j � C e�h.jkjCjk2j/: (42)

As a consequence, we have the following proposition.

Proposition 2. Assume that the bilinear form B.p; q/ D P
kCk1Ck2D0 Bkk1k2pk1qk2

has a kernel b.k; k1; k2/ satisfying one of conditions below :

(a) its support is included in sector (i), and the near-commutator term is given by
kk2 C GkG2.

(b) its support is in sector (ii) and the near-commutator term is given by kk1CGkG1.

Then

kB.p; q/k`2 � Ckpk`2 kqk`2 : (43)

Proposition 3. The bilinear form B.p; q/ D P
kCk1Ck2D0 Bkk1k2pk1qk2 with kernel

Bkk1k2 such that

(a) it is supported in region (iii), and
(b) for s � ˇ D r0 > 1 has growth bounds of the form:

jBkk1k2 j D b.k; k1; k2/
hkis

hk1ishk2is
; with jb.k; k1; k2/j � hkiˇ C hk1iˇ C hk2iˇ

gives rise to the estimate

kB.p; q/k`2 � Ckpk`2 kqk`2 : (44)
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Proof. In region (iii), we have jkj � jk1j and jk2j. Therefore

jBkk1k2 j D jb.k; k1; k2/j 1

hk1is=2hk2is=2

hkis

hk1is=2hk2is=2

� hkiˇ C hk1iˇ C hk2iˇ
hk1is=2hk2is=2

� C

hk1is�ˇ (45)

and because jk1j and jk2j are of the same order, this satisfies the hypothesis of
Lemma 3. ut
Proposition 4. The bilinear form B.p; q/ D P

kCk1Ck2D0 Bkk1k2pk1qk2 with kernel
Bkk1k2 such that

(a) it is supported in region (i), and
(b) for s � ˇ � r0 > 1 has growth bounds of the form:

jBkk1k2 j D b.k; k1; k2/
hkis

hk1ishk2is
; with jb.k; k1; k2/j � hk1iˇ (46)

gives rise to the estimate

kB.p; q/k`2 � Ckpk`2 kqk`2 : (47)

Proof. The region (i) is defined as the sector in the .k1; k2/ plane where jk1j �
jk2j; jkj. Therefore,

jBkk1k2 j D jb.k; k1; k2/j hkis

hk1ishk2is
� hk1iˇ�s: (48)

For s � ˇ D r0 > 1, the kernel satisfies the hypothesis of Lemma 4. ut
Note: The same conclusion holds under the hypothesis that (a) the kernel Bkk1k2

is supported in region (ii) and (b) the estimate (46) is true with the role of k1 and k2
exchanged.

4.3 Energy Estimates for Vector Field XK.3/

In this section, we give energy estimates for the vector field (22), whose solutions
taken at time s D �1 is the desired canonical transformation to the Birkhoff normal
form at third order.

The evolution of energy norms are expressed as

d

ds
k.�; �/k2Er D 2Re

�
h�; � jDj2@s�ir C h�;G0@s�ir

�

D 2Re
�
h� jDj2�; @�K.3/ir � hG0�; @�K

.3/ir

�
: (49)
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The RHS of (49) contains cancellations that are quite subtle, leading to the following
estimate.

Lemma 5. Fix r0 > 2. For all r � r0, there is a bound in the form

jh� jDj2�; @�K.3/ir � hG0�; @�K
.3/irj � Cr0k.�; �/k3Er : (50)

Proof. The proof is somewhat computational, indeed even the expression of the
LHS of (50) is rather long. For convenience, we will assume that there are no
resonant triplets, namely that ŒH.3/� D 0, otherwise stated as P D 0. The difference
in (50) if it were not zero would only lead to a compact perturbation of the RHS. In
this setting,

h� jDj2�; @�K.3/ir � hG0�; @�K
.3/ir

D ˙ 0
k1Ck2Ck3D0

hk1k3 C G1G3

d123
.g C �k21/.!

2
1 � !22 � !23/

C k1k2 C G1G2

d123
.g C �k21/.g C �k22/G3

i
� jk3j2 �1�2�3hk3 i2r

C˙ 0
k1Ck2Ck3D0

hk1k3 C G1G3

d123
G2.!

2
1 � !22 C !23/

C k2k3 C G2G3

2d123
G1.!

2
3 � !21 C !22/

i
� jk1j2 �1�2�3 hk1i2r

�˙ 0
k1Ck2Ck3D0

hk2k3 C G2G3

d123
.g C �k23/.!

2
3 � !21 � !22/

k1k2 C G1G2

d123
.g C �k21/.!

2
1 � !22 � !23/

2
k1k3 C G1G3

d123
.g C �k21/.g C �k23/G2

i
G3�1�2�3 hk3i2r: (51)

The indices have been relabeled to exhibit cancellations. The notation ˙ 0
k1Ck2Ck3D0

is as above, summation over all kj 2 Znf0g, and d123 D dk1k2k3 .
Estimates for the sums involving �1�2�3 an �1�2�3 are treated independently.

We will start with the first quantity in the RHS of (51) involving �1�2�3. Energy
estimates for � in terms of Er-norms are tantamount to `2 estimates for p D
�1=2jDjhDir�, leading to the sum

˙ 0
k1Ck2Ck3D0

hk1k3 C G1G3

d123
.g C �k21/.!

2
1 � !22 � !23/

C k1k2 C G1G2

d123
.g C �k21/.g C �k22/G3

i �1=2jk3j hk3 ir

� jk1jhk1irjk2jhk2ir
p1p2p3:

(52)
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The expression (52) has the form
P

k1Ck2Ck3
bk1k2k3p1p2p3 for which we write

j
X

k1Ck2Ck3D0
bk1k2k3p1p2p3j � k

X
k1Ck2Ck3D0

bk1k2k3p1p2k`2kpk`2 : (53)

In order to bound the above sum, we separate the contribution of each sector
(i)–(iv) of the lattice .k1; k2/. Most of the work consists in finding appropriate
bounds for the kernel bk1k2k3 in order to apply Lemma 4 and Propositions 2–4. This
will be the procedure to estimate each term of (51). For the term (52), the kernel
bk1k2k3 identifies to

bk1k2k3 D k1k3 C G1G3

d123
.g C �k21/.!

2
1 � !22 � !23/

�1=2jk3j hk3 ir

� jk1jhk1irjk2jhk2ir

C k1k2 C G1G2

d123
.g C �k21/.g C �k22/G3

�1=2jk3j hk3 ir

� jk1jhk1irjk2jhk2ir

DW Na

Da
C Nb

Db
(54)

where Na
Da

and Nb
Db

identify respectively to the first and second term of the RHS
of (54). Next, we bound each of these terms in the different sectors.

Sector (i): where jk1j � jk2j; jk3j.
The numerator Na is bounded above by

jNaj � hk1i3 .hk1i3 C hk2i3 C hk3i3/ hk3irC1;

while the denominator Da is bounded below by

jDaj � hk1i3Crhk2i3Crhk3i2:

In this sector, hk2i � hk3i, therefore

jNaj
jDaj � C0hk1i�r: (55)

Taking r � r0 > 1, the result of Lemma 4 applied to this term in the sector (i),
implies the bound kpk3

`2
.

Considering the term Nb=Db in this sector, the analogous estimate is that

jNbj � hk1i3hk2i3hk3i2Cr;

while

jDbj � hk1i3Crhk2i3Crhk3i2;
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with the conclusion that again

jNbj
jDbj � C0hk1i�r: (56)

Sector (ii): where jk2j � jk1j; jk3j.
The numerator Na is bounded above by the quantity

jNaj � jk1k3 C G.0/
1 G.0/

3 jhk1i2.hk1i3 C hk2i3 C hk3i3/hk3i1Cr:

In this sector, both jk1j and jk3j are large and comparable, of opposite sign, and
the commutator estimate (43) holds, which compensates any polynomial growth.
Therefore

jNaj
jDaj � C0e

�h.jk1jCjk3j/=2: (57)

Term Nb=Db: The numerator behaves as

jNbj � hk1i3hk2i3hk3i2Cr;

while the denominator is as above, hence

jNbj
jDbj � C0hk2i�r; (58)

again giving rise the `2-estimates in p.
In Sector (iii) : where jk3j � jk1j; jk2j, the weights in the denominator are

dominant, so that

jNaj � hk1i3.hk1i3 C hk2i3 C hk3i3/hk3i3Cr

jNbj � hk1i3hk2i3hk3i3;

while

jDaj; jDbj � hk1i3Crhk2i3Crhk3i2;

so that

jNbj
jDbj ;

jNbj
jDbj � C0hk1i�r=2hk2i�r=2: (59)
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Finally consider sector (iv) in which all jk1j; jk2j and jk3j are comparable. In this
region,

jDaj; jDbj � hk1i3Crhk2i3Crhk3i2;

which easily dominate the numerators

jNaj; jNbj � hk1i3 .hk1i3 C hk2i3 C hk3i3/ hk3i3Cr;

giving an estimate in terms of kpk3
`2

as long as r � r0 > 1=2.
We now turn to terms in the RHS of (51) that involve �1�2�3. As before, we

introduce the weighted quantities p D �1=2jDjhDir�, q D G.0/hDir�. We rewrite
the last five terms of the RHS of (51) in terms of p1; q2 and q3 and symmetrize with
respect to the indices 2 and 3. This leads to nine terms that we label (a1) to (a9) and
we list below. Each term will be examined in the previously defined four sectors
of the lattice .k1; k2/. In some cases, the estimate will be similar to what we have
already seen and the bound is straightforward. In other cases, the previous analysis
will not be sufficient. However, by combining terms, we will be able to control them
thanks to cancellations. The three first terms are

˙ 0
k1Ck2Ck3D0

1

2d123
p1q2q3

h

.a1/ .k1k3 C G1G3/G2.!
2
1 � !22 C !23/� jk1j2

.a2/ .k1k2 C G1G2/G3.!
2
1 � !22 C !23/� jk1j2

.a3/ .k2k3 C G2G3/G2.!
2
1 � !23 C !22/� jk1j2

i hk1ir

�1=2jk1jhk1irG2hk2irG3hk3ir
:

The next 4 terms are

�˙ 0

k1Ck2Ck3D0

1

2d123
p1q2q3

h

.a4/ .k2k3 C G2G3/.g C �k23/.!
2
3 � !21 � !22/G3

hk3ir

�1=2jk1jhk1irG2hk2irG3hk3ir

.a5/ C .k2k3 C G2G3/.g C �k22/.!
2
2 � !21 � !23 /G2

hk2ir

�1=2jk1jhk1irG2hk2irG3hk3ir

.a6/ C .k1k2 C G1G2/.g C �k21/.!
2
1 � !22 � !23 /G3

hk3ir

�1=2jk1jhk1irG2hk2irG3hk3ir

.a7/ C .k1k3 C G1G3/.g C �k21/.!
2
1 � !23 � !22 /G2

hk2ir

�1=2jk1jhk1irG2/hk2irG3hk3ir

i
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and finally the last two terms are

�˙ 0
k1Ck2Ck3D0

1

2d123
p1q2q3

h

.a8/ 2.k1k3 C G1G3/.g C �k21/.g C �k23/G2G3

hk3ir

�1=2jk1jhk1irG2hk2irG3hk3ir

.a9/ C 2.k1k2 C G1G2/.g C �k21/.g C �k22/G3G2

hk2ir

�1=2jk1jhk1irG2hk2irG3hk3ir

i
:

One has to count the factors of k1; k2; k3 for each term and each sector. The general
principle is that we need at least three factors of jk1j in the numerator for sector (i)
and we check that this is the case for all nine terms. In sector (ii) [resp. (iii)] , we
need at least 2:5 factors of jk2j in the numerator [resp. 2:5 factors of jk3j].

In Sector (ii), the terms that present a difficulty are those labelled
.a2/; .a3/; .a4/; .a6/. Note that all the weight can be shifted to hk1ir or hk3ir

(or hk1ir=2hk3ir=2, modulo a factor of hk1i � hk3i � jk2j). We write only the
relevant terms of the sum of these four contributions, the numerator of which is

�.!21 � !23/hk1ir=2hk3ir=2

h
.k1k2 C G1G2/G3jk1j2 � .k2k3 C G2G3/G1jk1j2

C .k2k3 C G2G3/G3jk3j2 � .k1k2 C G1G2/G3jk1j2
i
:

The first and last term cancel exactly and the expression reduces to

�.!21 � !23/hk1ir=2hk3ir=2
h

� .k2k3 C G2G3/.G1jk1j2 � G3jk3j2/
i

� O.jk2j3/hk1ir=2hk3ir=2.hk1i5 C hk3i5/: (60)

The corresponding denominator is

D D d123�
1=2jk1j G1=2

2 hk2ir G1=2
3 hk3ir

� hk1i3hk2irC5=2hk3irC5=2: (61)

Counting the powers in the numerator and denominator, we have

N

D
� hk2i1=2�rhk1i�1=2; (62)

which allows us to conclude the result in this case.
In Sector (iii), the terms that are critical are .a1/; .a3/; .a5/:.a7/. Proceeding

as above for Sector (ii), we write the relevant terms for the sum of these four
contributions. In the numerator, we have
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.!21 � !22/�hk1ir=2hk2ir=2

h
.k1k3 C G1G3/G2jk1j2 � .k2k3 C G2G3/G1jk1j2

C .k2k3 C G2G3/G2jk2j2 � .k1k3 C G1G3/G2jk1j2
i
: (63)

The first and last term in the brackets cancel and the expression becomes

.!21 � !22/�hk1ir=2hk2ir=2.k2k3 C G2G3/.�G1jk1j2 C G2jk2j2/C O.jk3j4/
D O.jk3j3/:

The numerator N and denominator D of terms .a1/C .a3/ C .a5/C .a7/ in sector
(iii) thus satisfy

N � hk1ir=2hk2ir=2hk3i3.hk1i5 C hk2i5/ I D � hk1i3hk2irC5=2hk3irC5=2;

leading to

N

D
� hk3i1=2�rhk1i1=2

and thus the application of In sector (iv), jk1j � jk2j � jk3j and the bounds are
straightforward. This concludes the proof of Lemma 5. ut

4.4 Energy Estimates for the Variational Equation

The vector field in question is XK.3/ .�; �/ D .@�K.3/;�@�K.3// where
.z D �; �/ 2 Er. Denote the variations of the orbit by Qz D . Q�; Q�/ D .ı�; ı�/.
These satisfy

d

ds

� Q�
Q�
�

D @zX
K.3/ .�; �/

� Q�
Q�
�

D
 
@�@�K.3/ @2�K

.3/

�@2�K.3/ �@�@�K.3/

!� Q�
Q�
�
: (64)

The goal is to prove an energy estimate for solutions of (64) of the form:

Lemma 6.

d

ds
kQzk2Er � C0kzkEr0 kQzk2Er (65)

where r0 � r C 1=2.
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Proof. The first task is to calculate an expression in Fourier coordinates for the
RHS of (64).

p
2�@�@�K

.3/ Q�2 D
X

k1Ck2CkD0

1

d12k

h
.k2k C G2Gk/.g C �k22/.!

2
2 � !21 � !2k /

.k1k C G1Gk/.g C �k21/.!
2
1 � !22 � !2k /

2.k1k2 C G1G2/.g C �k21/.g C �k22/Gk

i
�1 Q�2

p
2�@2�K

.3/ Q�2 D
X

k1Ck2CkD0

1

d12k

h
.k2k C G2Gk/G1.!

2
2 � !21 C !2k /

.k1k C G1Gk/G2.!
2
1 � !22 C !2k /

.k1k2 C G1G2/Gk.!
2
1 � !2k C !22/

i
�1 Q�2

p
2�@2�K

.3/ Q�2 D
X

k1Ck2CkD0

1

d12k

h
2.k2k C G2Gk/.g C �k22/.g C �k2/G1

.k1k C G1Gk/.g C �k2/.!2k � !22 � !2k /

.k1k2 C G1G2/.g C �k22/.!
2
2 � !2k � !21/

i
�1 Q�2

d

ds
kQzk2Er D 2Re

h
h Q�; � jDj2.@�@�K.3/ Q�C @2�K

.3/ Q�/ir

� hQ�; G.@2�K
.3/ Q�C @�@�K

.3/ Q�/ir

i
: (66)

This expression is the sum of 12 terms that we list below and denote .a/ to .`/.

.a/ D
X 1

d123

h
2.k1k2 C G1G2/.g C �k21/.g C �k22/G3

.b/ C .k1k3 C G1G3/.g C �k21/.!
2
1 � !22 � !23/

.c/ C .k2k3 C G2G3/.g C �k22/.!
2
2 � !21 � !23/

i
�k23 �1 Q�2 Q�3hk3i2r

.d/ C
X 1

d123

h
.k1k2 C G1G2/G3.!

2
1 � !23 C !22/

.e/ C .k1k3 C G1G3/G2.!
2
1 � !22 C !23/
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.f / C .k2k3 C G2G3/G1.!
2
2 � !21 C !23/

i
�k23 �1 Q�2 Q�3hk3i2r

.g/ �
X 1

d123

h
2.k1k3 C G1G3/.g C �k21/.g C �k23/G2

.h/ C .k2k3 C G2G3/.g C �k23/.!
2
3 � !21 � !22/

.i/ C .k1k2 C G1G2/.g C �k21/.!
2
1 � !22 � !23/

i
G3 �1 Q�2 Q�3hk3i2r

.j/ �
X 1

d123

h
2.k2k3 C G2G3/.g C �k22/.g C �k23/G1

.k/ C .k1k3 C G1G3/.g C �k23/.!
2
3 � !21 � !22/

.`/ C .k1k2 C G1G2/.g C �k22/.!
2
2 � !23 � !21/

i
G3 �1 Q�2 Q�3hk3i2r:

(67)

Terms .a/; .b/; .c/ of the form �1 Q�2 Q�3 will be estimated in terms of the r0-order
energy norm of z D .�; �/ and r-order energy norm of Qz D . Q�; Q�/. Similarly
to the energy estimates of Sect. 4.3, we introduce p D �1=2jDjhDir0

� and Qp D
�1=2jDjhDir Q�, and write hk3i2r�1 Q�2 Q�3 D p1 Qp2 Qp3 hk3ir

�3=2jk1jhk1ir0 jk2jhk2irjk3j . We seek

estimates in terms of the `2 norm of p and Qp., and we need to examine the
corresponding kernels in order to satisfy the hypotheses of Propositions 1–3. We
consider the expressions of the kernels in sectors:

In sector (i) where jk1j � jk2j � jk3j, we need only to analyze .a/C .b/. Their
numerators and denominators satisfy

jNaj � hk1i3hk2i3hk3i3Cr

jDaj � hk1i3Cr0hk2i3Crhk3i3

jNbj � hk1i3.hk2i3 C hk3i3/hk3i3Cr

jDbj � hk1i3Cr0hk2i3Crhk3i3;
thus

Na

Da
;

Nb

Db
� C0hk1i�r0

;

where we assume r0 > 1.
In sector (ii) where jk2j � jk1j � jk3j, terms .a/C .c/ are relevant.

jNaj � hk1i3hk2i3hk3i3Cr

jDaj � hk1i3Cr0hk2i3Crhk3i3
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thus

Na

Da
� C0hk2i�r: (68)

Here we need r0 � r. Also,

jNcj � hk2i3hk3i3Cr.hk1i3 C hk3i3/

jDcj � hk1i3Cr0hk2i3Crhk3i3

Nc

Dc
� C0hk2i�r (69)

since r0 � r. Estimates in sectors (iii) and (iv) are straightforward, using that r0 > 1.
We turn to terms .g/; .h/; .i/ which are of the form �1 Q�2 Q�3. Introducing Qq D

G1=2hDir Q� , we write hk3i2r�1 Q�2 Q�3 D p1 Qq2 Qq3 hk3ir

�1=2jk1jhk1ir0 jG2j1=2hk2irG
1=2
3

.

In sector (i) where jk1j � jk2j � jk3j, only .g/C .i/ count:

jNgj � hk1i3hk2ihk3i4Cr

jDgj � hk1i3Cr0hk2i2:5Crhk3i2:5

jNij � hk1i3hk2i2hk3i3Cr

jDij � hk1i3Cr0hk2i2:5Crhk3i2:5;

thus in sector (i)

Ng

Dg
;

Ni

Di
� C0hk1i�r0

: (70)

In sector (ii) where jk2j � jk1j � jk3j, .h/C .i/ are relevant.

jNhj � hk2i2hk3i4Cr.hk1i2 C hk3i2/

jDhj � hk1i3Cr0hk2i2:5Crhk3i2:5

jNij � hk1i3hk2i2hk3i1Cr.hk1i2 C hk3i2/

jDij � hk1i3Cr0hk2i2:5Crhk3i2:5:

We have used that j!1 � !3j � jk2jhk1i2. Note that this is where we need the
hypothesis that r0 � r C 1=2. Estimates in sectors (iii) and (iv) are straightforward.
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We now consider the terms involving �1 Q�2 Q�3, that is (.d/C .e/C .f /C .j/C
.k/C .`/. We need to relabel the indices of .d/C.e/C.f / in order to take advantage
of cancellations. We are considering the following sum:

.d/
X 1

d123

h
.k1k3 C G1G3/G2.!

2
1 � !22 C !23/

.e/ C .k1k2 C G1G2/G3.!
2
1 � !23 C !22/

.f / C .k2k3 C G2G3/G1.!
2
2 � !21 C !23/

i
�k22hk2i2r

.j/ �
X 1

d123

h
2.k2k3 C G2G3/.g C �k22/.g C �k23/G1

.k/ C .k1k3 C G1G3/.g C �k23/.!
2
3 � !21 � !22/

.`/ C .k1k2 C G1G2/.g C �k22/.!
2
2 � !23 � !21/

i
G3hk3i2r

� 1

G1=2
1 hk1ir0

�1=2jk2jhk2irG1=2
3 hk3ir

p1 Qq2 Qp3 (71)

where we are using the notation :

p1 D G1=2
1 hk1ir0

�1; Qq2 D �1=2jk2jhk2ir Q�2; Qp3 D G1=2
3 hk3ir Q�3;

and we seek estimates in terms of the `2-norm of p; Qq; Qp.
The critical quantities that one must analyze depend upon sectors. In sector

(iv) where jk1j � jk2j � jk3j, all terms are tame and estimates follow, under the
condition r0 > 1. After inspection, we see that the critical terms are :

.d/C .e/C .k/C .`/ in sector (i)

.j/C .e/ in sector (ii)

.d/C .f / in sector (iii).

Writing the principal terms of .d/C .e/C .k/C .`/ in sector (i) , we get

�

d123
.!22 � !23/

h
.k1k3 C G1G3/.G3k

2
3hk3i2r � G2k

2
2hk2i2r/

C .k1k2 C G1G2/G3k
2
2.hk2i2r � hk3i2r/

i

� 1

G1=2
1 hk1ir0

�1=2jk2jhk2irG1=2
3 hk3ir

p1 Qq2 Qp3:

The numerator and denominator N and D of this expression are bounded as follows:

jNj � hk1i3.hk2i C hk3i/5C2r

jDj � hk1i2:5Cr0hk2i2:5Crhk3i2:5Cr
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leading to

N

D
� Chk1i�r0

:

We can then apply Proposition 3 with r0 > 1.
We now turn to the principal terms of .j/C.`/ in sector (ii). Proceeding as above,

we get

jNjj � hk2i3hk3i4Crhk1i
jN`j � hk2i3hk1ihk3i1C2r.hk1i3 C hk3i3/
jDjj; jD`j � hk1i2:5Cr0hk2i3Crhk3i2:5Cr;

leading to the desired estimate if r � r, and r0 > 1, Finally terms .d/ C .f / are
bounded by:

jNdj � hk3i2hk1i.hk1i2 C hk2i2/hk2i3C2r

jNf j � hk3i2hk2i3C2rhk1i.hk1i2 C hk2i2/
jDdj; jDf j � hk1i2:5Cr0hk2i3Crhk3i2:5Cr:

Again here, one can apply Proposition 3 if r0 � r C 1=2. This concludes the proof
of Theorem 2. ut

4.5 Smoothness Estimates for the Transformation

Proof. This section presents the proof of Theorem 3. The variational equation about
a solution  s.�; �/ is given by (64), and by Lemma 6, the linearized equation has
solutions which satisfy the energy estimate with a loss of 1=2 derivative:

jh. Q�; Q�/; @.�;�/XK.3/ .�; �/
� Q� Q�	TiEr�1=2 j � k. Q�; Q�/k2Er�1=2 (72)

for  s.�; �/ 2 BR � Er. Therefore by Gronwall’s lemma, for s < sR

k@.�;�/ s � IkEr�1=2 � C R: (73)

Estimates of higher derivatives of the flow  s.�; �/, s < sR, follow with a similar
argument. Namely, setting z D .�; �/, higher derivatives of the flow satisfy the
inhomogeneous equations
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@

ds
.@p

z s/ D @zX
K.3/.@p

z s/C
X

p1Cp2Dp
1�p1:p2<p

Cp1p2h@2z XK.3/ .@p1
z  s/; .@

p2
z  s/i: (74)

Since XK.3/ is quadratic in its arguments, no other terms appear. Furthermore, since
p � 2, .@p

z s/jsD0 D 0, therefore by induction,

k@p
z skEr�p=2 � Crp sup

jsj<sR

X
p1Cp2Dp
1�p1:p2<p

k@p1
z  skEr�p=2C1=2k@p2

z  skEr�p=2C1=2

� Crp

using the induction hypothesis that k@p1
z  skEr�p=2C1=2 � Cr;p�1 for all 1 � p1 �

p � 1. ut

5 Resonant Triads

The change of variables that we have introduced eliminates non resonant cubic terms
in the Hamiltonian. In the new variables, the only third order terms that remain
correspond to resonant triads. The dynamics of the resonant subsystems therefore
will dominate the behavior of the full system of water waves for long periods of
time. There have been a number of formal studies of the behavior of resonant triads
for the system of water wave equations with surface tension, including [2, 9]. The
normal forms analysis of our work gives a rigorous justification of these studies.
Several special configurations of coupled resonant triads are considered in these
papers, including of course the simplest triad of three interaction resonant modes
which is isolated (in Fourier space) from the dynamics of the other modes, resonant
or not. In this section we describe this simple configuration in the framework of
a Hamiltonian system, and examine the stability of its periodic orbits. We also
consider the case of two coupled resonant triads, in a different setting of coupled
resonances than those of Hammack and Henderson [9]. We do not give an exhaustive
analysis of all of the possible resonant cases.

5.1 Single Resonant Triad

Assume that the triads .˙k01;˙k02;˙k03/ are resonant; that is, k01 C k02 C k03 D 0

and !1 � !2 � !3 D 0, which is the standard resonant triad (modulo a possible
reindexing of wave numbers). As before we use the notation that !i D !k0i

. For
fixed spatial period such resonances are nongeneric, but they will exist for certain
values of the physical parameters. From the choice of signs we have assumed that
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jk01j > jk02j, and jk01j > jk03j, and therefore we may take k01 > 0 > k02; k
0
3. Returning

to the expression of the transformed Hamiltonian, and retaining only the resonant
modes, the quadratic and cubic terms, the truncated Hamiltonian is given by

HC D H.2/
C C H.3/

C D
˙3X

jD˙1
!jzjNzj

C C.3/
C .z1Nz�2Nz�3 C Nz�1z2z3 C z�1Nz2Nz3 C Nz1z�2z�3/: (75)

This is a system of 6 degrees of freedom, with the three modes .z1; Nz2; Nz3/
decoupled from .Nz�1; z2; z3/. Written in terms of symplectic polar coordinates (phase
and square-root of the amplitude), zj D p

Rjei
j , the Hamiltonian HC takes the form

HC D
3X
1

.!jRj C !�jR�j/C 2C.3/
C
�p

R1R�2R�3 cos.
1 � 
�2 � 
�3/

C
p

R�1R2R3 cos.
�1 � 
2 � 
3/
�
: (76)

Only two angles appear in the expression of HC, one for each system of three
degrees of freedom. Thus there are four conserved quantities, and the system
reduces to two decoupled systems each with one degree of freedom and therefore
integrable, and indeed it consists of two independent copies of the well-known three-
wave resonant system. Specifically, perform a change of variable in the form of a
simultaneous rotation,

˚ D
0
@ �1��2
��3

1
A D A

0
@ 
1
�2

�3

1
A ; I D

0
@ I1

I�2
I�3

1
A D A

0
@ R1

R�2
R�3

1
A (77)

where A D .a/ij is a 3 � 3 rotation, making the natural choice to set, �1 D 1p
3
.
1 �


�2 � 
�3/, and !1R1 C !2R�2 C !3R�3 D ˝3I�3, where ˝3 D
q
!21 C !22 C !23 .

The matrix A has the form

A D
0
@ 1=

p
3 �1=p3 �1=p3

.!3 � !2/=N2 .!3 � !1/=N2 .�!2 � !1/=N2
!1=˝3 !2=˝3 !3=˝3

1
A

with N2
2 D .!3 � !2/

2 C .!3 � !1/
2 C .!2 C !1/

2. In the new variables, the first
term of HC is written as ˝3I3 C˝3I�3. Expressed in these action-angle variables,
the Hamiltonian for the system involving .R1;R�2;R�3; 
1; 
�2; 
�3/ is

HC D ˝3I�3 C 2C.3/
p

R1R�2R�3 cos.
p
3�1/ ;
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where Rj D Rj.I1/ depend linearly upon .I1; I�2; I�3/. The Hamiltonian involving
.R�1;R2;R3; 
�1; 
2; 
3/ is similar. The equations of motion are

PI1 D �@�1HC
P�1 D @I1HC (78)

along with the two cyclic variables .��2; ��3/ and the canonically conjugate
conserved quantities .I�2; I3/ which are considered as parameters.

PI�2 D �@��2HC D 0 ; PI�3 D �@��3HC D 0 (79)

P��2 D @I�2HC ; P��3 D @I�3HC :

The range of I1 such that R1.I/;R�2.I/;R�3 are all positive, which is an interval with
endpoints IC

1 and I�
1 depending parametrically on I�2 and I�3. The endpoint I�

1 is
characterized by the vanishing of R1, while IC

1 is defined by a zero of R�2 or R�3,
whichever vanishes first. There is one exceptional case, determined by a choice of
parameters .I�2; I�3/ such that R�2 and R�3 vanish simultaneously in I1. In this case
the factor

p
R1R�2R�3 vanishes linearly in I1 at IC

1 . The system for .I1; �1/ (and for
.I�1; ��1/ respectively) can be analysed through its phase plane.

Firstly, the phase plane f.I1; �1/ W I�
1 � I1 � IC

1 ; 0 � �1 < 2�=
p
3g is

identified as a sphere S2, with polar coordinate singularities at the endpoints I1 D I�
1

and I1 D IC
1 defining the poles. Typical orbits are time periodic, meaning that a

typical orbit for the full system (78), (79) will be quasiperiodic with three basic
frequencies. Lower dimensional tori are found through the stationary points of the
system (78), which occur when

p
3�1 D 0; � ; @I1 .R1R�2R�3/ D .R�2R�3�R1R�3�R1R�2/=

p
3R1R�2R�3 D 0 :

By inspection, except for one particular case, there are only two such stationary
points per sphere, whose locations are at points �01 D 0; �=

p
3 and I1 D I01.I�2; I�3/

where
p

R1R�2R�3 achieves its maximum. Both are stable periodic orbits, as can
be seen from the variational equation of the vector field at the stationary point in
question, namely

J@2I1;�1HC D
�

0 2C.3/@2I1
p

R1R�2R�3 cos.
p
3�1/

2C.3/
p

R1R�2R�3 cos.
p
3�1/ 0

�

D
�
0 A
B 0

�

where A and B have opposite signs because of the character of a maximum.
The exception occurs in the case in which the parameters .I�2; I�3/ have been

adjusted such that R�2 and R�3 vanish simultaneously in I1. This corresponds to a
stationary point of the vector field itself, rather than a polar coordinate singularity,
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and for the full system (78), (79) this stationary point corresponds to a basic
periodic orbit of Lyapunov type that is guaranteed by the Lyapunov center theorem,
associated with the highest frequency !1 of the resonant triad system. This periodic
orbit is unstable, as the variational equation of the vector field at this point is

J@2I1;�1HC D
��2C.3/@I1

p
R1R�2R�3 sin.

p
3�1/ 2C.3/@2I1

p
R1R�2R�3 cos.

p
3�1/

0 2C.3/@I1

p
R1R�2R�3 sin.

p
3�1/

�

D
�

A C
0 �A

�

for A D �4C.3/

q
R1.I

C
1 / sin.

p
3�1/ real valued, which gives the Lyapunov

exponent in explicit terms. There is a family of orbits homoclinic to this Lyapunov-
type periodic orbit, consisting of I1.t/ running down along the coordinate axis
f�1 D �=2g, through the south pole of the sphere at I1 D I�

1 and then back up
the coordinate axis f�1 D 3�=2g.

5.2 Mutliple Resonant Triads

There are numerous possibilities for multiple coupled resonant triads in this case of a
non-zero coefficient of surface tension, number of which are discussed in references
[2, 9]. In the present paper we will analyse one case that does not appear in these
articles, of a system of two coupled resonant triads satisfying the resonance relations

k1 C k2 C k3 D 0 ; �k1 C k2 C k4 D 0 ;

k2 ; k3 < 0 < k1 < k4

!1 � !2 � !3 D 0 ; !4 � !1 � !2 D 0 :

This is among the simplest situations that is possible with multiple coupled triads.
For further simplicity we consider only standing wave solutions, namely we impose
Neumann boundary conditions on two vertical walls of the fluid domain at fx D 0g
and fx D �g, which has the effect that in our complex symplectic coordinates,
zk D z�k. The water waves Hamiltonian truncated at third order becomes

HC D H.2/
C C H.3/

C D
4X

jD1
!jjzjj2 C �

c.3/1 z1 Nz2 Nz3 C c.3/2 Nz1 Nz2z4 C c:c:
�
: (80)



Normal Form Transformations for Capillary-Gravity Water Waves 105

Introducing symplectic polar coordinates zj D p
Rjei
j , we have

H.2/
C D

4X
jD1

!jRj ;

H.3/
C D 2c.3/1

p
R1R2R3 cos.
1 � 
2 � 
3/C 2c.3/2

p
R1R2R4 cos.
4 � 
1 � 
2/ :

Perform a symplectic change of coordinates I D AR and ˚ D A�, where

A D

0
BBB@

1p
3

� 1p
3

� 1p
3
0

� 1p
3

� 1p
3

0 1p
3

b1 b2 b3 b4
!1
˝4

!2
˝4

!3
˝4

!4
˝4

1
CCCA

where˝2
4 D !21 C!22 C!23 C!24 , and where bj are chosen appropriately so that the

matrix A is orthogonal. The Hamiltonian (80) becomes

HC D ˝4I4 C �
2c.3/1

p
R1R2R3 cos.

p
3�1/C 2c.3/2

p
R1R2R4 cos.

p
3�2/

�
; (81)

with Rj D Rj.I1; I2I I3; I4/ which are affine linear in the action variables .I1; I2/.
The two angles .�3; �4/ do not appear in the Hamiltonian HD in (81), they are
cyclic variables, and their canonically conjugate variables .I3; I4/ are integrals of
motion. This is a Hamiltonian system with two degrees of freedom, given by the
Hamiltonian H.3/

C .I1; I2; �1; �2/ described in (81), and posed on the manifold M WD
f.I1; I2; �1; �2/ W Rj.I/ � 0 ; .�1; �2/ 2 T

2g. Topologically, taking into account
the polar coordinate singularities at the poles Rj.I/ D 0, the manifold M is either a
S
2 � S

2 or a S
3 � S

1, depending upon the values of the parameters .I3; I4/.
The dynamics of a system with two degrees of freedom can be quite complex

in general. We will restrict ourselves to considering special structures in this
phase space, namely periodic orbits and lower dimensional tori (quasi-periodic
motion with two independent frequencies), all of which can be analysed through

an inspection of the vector field XH
.3/

C on the phase space M. From this point on,
denote the relevant action—angle variables by t.I; ˚/ WD .I1; I2; �1; �2/; the phase
space M is coordinatized by .I; ˚/ except for the poles of the spheres corresponding
to one or several of the polar coordinate singularities Rj.I/ D 0. The equations of
motion restricted to M are given by

P̊ D @IH
.3/
C ; PI D �@˚H.3/

C : (82)

Stationary points of (82) give rise to periodic, or more generally quasi-periodic
orbits for the full system governed by the Hamiltonian (80). We first treat stationary
points of (82) interior to the coordinate chart M0 WD fRj.I/ > 0 W 8jg. Such
stationary points satisfy
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@Ij H
.3/
C D �

2c.3/1 @Ij.
p

R1R2R3/ cos.
p
3�1/C 2c.3/2 @Ij.

p
R1R2R4/ cos.

p
3�2/

�

�@�1H.3/
C D 2

p
3c.3/1

p
R1R2R3 sin.

p
3�1/

�@�1H.3/
C D 2c.3/2

p
R1R2R4 sin.

p
3�2/:

Since
p

R1R2R3;
p

R1R2R4 > 0 in M0, stationary points may only occur where
�1 D 0; �=

p
3 and �2 D 0; �=

p
3. The case where both �1; �2 D 0 is called

the in-phase solutions, and when �1 D 0 but �2 D �=
p
3 these are out-of-phase

solutions. All other choices of �j reduce to these two cases, using possibly a time
reversal. Thus such critical points are characterized by the condition that

0 D @I
�p

R1R2.c
.3/
1

p
R3 ˙ c.3/2

p
R4/
	

where the plus sign corresponds to the in-phase case and the minus sign is for the
out-of-phase solutions.

Proposition 5. For fixed parameter values I3 D a3, I4 D a4, the in-phase case
has two stationary points on the manifold M , which are both stable. The resulting
solutions of the full system (80) are generically quasi-periodic with two independent
frequencies, and are geometrically distinct but related one to the other by a time
reversal.

Proof. The Hamiltonian H.3/
C , when evaluated on the hypersurface .�1; �2/ D

0 as indicated as being necessary in the paragraph above, is positive and can
only vanish when either R1.I/ D 0 or R2.I/ D 0, a subset of the boundaries
of the coordinate chart M0. On the boundary sets defined by R3.I/ D 0 or
R4.I/ D 0, the Hamiltonian H.3/

C > 0 while its outward unit normal derivative is
negative. Hence any maximum I� is an interior point. Since both functions R1R2R3
and R1R2R4 are cubic polynomials when considered as functions of .I1; I2/,and
furthermore R3 is independent of I4 while R4 is independent of I3, there can be
at most one interior maximum, and there are no other critical points. This critical
point is identified as the in-phase quasi-periodic solution of the system (80).

The statement of stability of this stationary point follows from an analysis of the
first variation of the vector field J@.˚;I/H

.3/
C at the critical point .˚�; I�/. Namely

 
@˚@IH

.3/
C @2I H.3/

C
�@2˚H.3/

C �@˚@IH
.3/
C

!
D
 

0 @2I H.3/
C

�@2˚H.3/
C 0

!
(83)

where

�@2˚H.3/
C D

 
6c.3/1

p
R1R2R3 0

0 6c.3/2
p

R1R2R4

!
:
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The eigenvalues � of (83) are given by

�2 D 3
�
c.3/1
p

R1R2R3h11 C c.3/2
p

R1R2R4h22
	

(84)

˙3
q�
.c.3/1

p
R1R2R3h11 C c.3/2

p
R1R2R4h22/2 � 4c.3/1 c.3/2 R1R2

p
R3R4 det.h/

	

where h D .hj`/ D @2Ij`
H.3/

C .˚�; I�/, and all other expressions are also evaluated at

.˚; I/ D .˚�; I�/. The constants c.3/j are both positive. Because I� is a nondegen-

erate maximum, h11 D @2I1H
.3/
C .˚�; I�/ < 0 and h22 D @2I2H

.3/
C .˚�; I�/ < 0, while

det.h/ > 0. In addition the radicand of (84) also satisfies

.c.3/1
p

R1R2R3h11 C c.3/2
p

R1R2R4h22/
2 � 4c.3/1 c.3/2 R1R2

p
R3R4 det.h/

D .c.3/1
p

R1R2R3h11 � c.3/2
p

R1R2R4h22/
2 C 4c.3/1 c.3/2 R1R2

p
R3R4h

2
12 ;

which is nonnegative. The radicand also satisfies

.c.3/1
p

R1R2R3h11 C c.3/2
p

R1R2R4h22/
2 � 4c.3/1 c.3/2 R1R2

p
R3R4 det.h/

< .c.3/1
p

R1R2R3h11 C c.3/2
p

R1R2R4h22/
2 :

Therefore both roots �2 of (84) are negative, and the eigenvalues � of (83) arise in
pure imaginary complex conjugate pairs. ut
Proposition 6. For .I3; I4/ D .a3; a4/ fixed, the out-of-phase solutions on M are
either two or four in number, and are geometrically distinct but are interchanged
pairwise by time reversal of the system. The resulting solutions of the full system (80)
are quasi-periodic with generically two independent frequencies, and they are all
unstable.

Proof. The Hamiltonian H.3/
C , when evaluated on the hypersurface˚� WD .�1 D 0,

�2 D �=
p
3/ is either everywhere positive, or else changes sign, and in the latter

case there is only one component of each sign. It is

H.3/
C
ˇ̌
˚D˚�

D 2c.3/1
p

R1R2R3 � 2c.3/2
p

R1R2R4 : (85)

The Hamiltonian H.3/
C vanishes on the boundaries of the region M D f.I1; I2/ W

Rj.I/ > 0g for which either R1.I/ D 0 or R2.I/ D 0. Since R3.I/ is decreasing
in I1 and independent of I2, while R4.I/ is independent of I1 and increasing in
I2, the boundary component on which R4.I/ D 0 is always nonempty, and on it
H.3/

C j˚D˚� > 0. The boundary component defined by R3.I/ D 0 may be empty, in

which case H.3/
C j˚D˚� > 0 throughout the region. If it is not empty, H.3/

C j˚D˚� < 0

on this set, while its outward normal derivative is positive, giving rise to a region in
which H.3/

C j˚D˚� is negative. Because of the monotonicity properties of R3.I/ and
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R4.I/ there can be at most one component of each sign, and because of the affine
linear character of the Rj.I/, the maximum and minimum critical points are unique
and nondegenerate.

As mentioned above, one deduces from the monotonicity of the Rj.I/ that
the boundary components of M0 corresponding to R1.I/ D 0 and R4.I/ D 0

are always nonempty. On the other hand, under different choices of parameters
.I3; I4/ D .a3; a4/ it could be that there are nonempty boundary components for
both R2.I/ and R3.I/, or it could be that one of the two is empty. In the former
case, the manifold M ' S

2 � S
2, while if one boundary component is empty, then

M ' S
3 � S

1.
The statement of instability of these orbits comes again from an inspection of the

spectrum of the variational equation (83) at the stationary points .˚�; I�/, give in
this case by

 
@˚@IH

.3/
C @2I H.3/

C
�@2˚H.3/

C �@˚@IH
.3/
C

!
D
 

0 @2I H.3/
C

�@2˚H.3/
C 0

!
(86)

where as before,

�@2˚H.3/
C D

 
6c.3/1

p
R1R2R3 0

0 �6c.3/2
p

R1R2R4

!
:

The eigenvalues of (86) are expressed by

�2 D 3
�
c.3/1
p

R1R2R3h11 � c.3/2
p

R1R2R4h22
	

˙3
q�
.c.3/1

p
R1R2R3h11 � c.3/2

p
R1R2R4h22/2 C 4c.3/1 c.3/2 R1R2

p
R3R4 det.h/

	
(87)

where h D @2I H.3/
C .˚�; I�/ as above. For I� a maximum critical point, h11; h22 < 0

and det.h/ > 0, and we observe that the radicand is positive and that the radical also
dominates the first term 3.c.3/1

p
R1R2R3h11 � c.3/2

p
R1R2R4h22/ in absolute value.

That is to say, of the roots �2 of (87), one is positive and one is negative, leading
to the eigenvalues � of (86) consisting of a pure imaginary eigenvalue pair and a
pair of real eigenvalues, one of which is positive; this does not give rise to a fully
whiskered torus for the full system, but one whose normal environment consists of
two center tangent vectors as well as a one dimensional stable and a one dimensional
unstable component of the tangent space of M.

In cases in which there is a nontrivial negative minimum critical point, giving rise
to a second pair of stationary points .˚�; I�/, we have det.h/ > 0while h11; h22 > 0.
The radicand of (87) is again positive, the radical dominates the first term, and
therefore there is again a pair of real eigenvalues and a pair of pure imaginary and
complex conjugate eigenvalues of the variational equation (86).
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The remaining phase space orbit of interest is the stationary point at which R1.I/
and R2.I/ vanish simultaneously, which occurs on the boundary of the coordinate
chart M0. ut
Proposition 7. In the situation in which R1.I/ and R2.I/ vanish simultaneously on
the boundary of the coordinate chart M0, there is an additional quasi-periodic orbit
of system (80). This orbit can be either stable or unstable, depending upon the
values of the integrals of motion .I3; I4/. But even in the stable case its variational
equation has double pure imaginary roots, which have opposite Krein signature and
are therefore unstable under generic perturbations.

Proof. For this case one must work in another, and local coordinate system. Both
R1.I/ D 0 D R2.I/ when

R1 D 1p
3
.I1 � I2/C K1 D 0 ; R2 D � 1p

3
.I1 C I2/C K2 D 0 ;

where K1 WD b1I3 C !1=!4I4 and K2 WD b2I3 C !2=!4I4, constants set by the
values of the two integrals of motion. This simultaneous zero exists whenever the
subset of the boundary of M0 defined by fR2.I/ D 0g is nonempty, and it occurs
when I1 D I01 WD �p

3=2.K1 � K2/ and I2 D I02 WD p
3=2.K1 C K2/. Using than

Rj.I/ D jzjj2, j D 1; 2, then the Hamiltonian H.3/
C can be written in terms of z1, z2 as

H.3/
C D 3c.3/1

p
R3jz1jjz2j cos.
1 � 
2 � 
3/˙ 3c.3/2

p
R4jz1jjz2j cos.
4 � 
1 � 
2/

D 3c.3/1 .z1Nz2 Nz3 C Nz1z2z3/˙ 3c.3/2 .Nz1Nz2z4 C z1z2 Nz4/

where to lowest order in .I1�I01 ; I2�I02/, the variables .z3; z4/ are constants .Z3;Z4/,
set by the value of the conserved quantities .I3; I4/. The resulting variational
equation in the variables .z1; z2/ is as follows:

Pz1 D i
�
3c.3/1 Z3z2 ˙ 3c.3/2 Z4Nz2

	
(88)

Pz2 D i
�
3c.3/1 NZ3z1 ˙ 3c.3/2 Z4Nz1

	
;

which is written in the form

0
BB@

Pz1
PNz1
Pz2
PNz2

1
CCA D i

0
BB@
0 0 a b
0 0 �Nb �Na
Na b 0 0

�Nb �a 0 0

1
CCA

0
BB@

z1
Nz1
z2
Nz2

1
CCA ;

where a D 3c.3/1 Z3 and b D ˙3c.3/2 Z4. The eigenvalues of this matrix are
� D ˙i

pjaj2 � jbj2 which are all double roots; they are of course pure imaginary
complex conjugates when jaj2 > jbj2, and real when otherwise, dictating the
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stability of the system (88). However even in the stable case the two pairs of
double eigenvalues have opposite Krein signature, as can be seen by the non-positive
definiteness of the Hamiltonian giving (88). Thus even the pure imaginary case is
libel to instability under perturbation. ut
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On a Fluid-Particle Interaction Model: Global
in Time Weak Solutions Within a Moving
Domain in R

3

Stefan Doboszczak and Konstantina Trivisa

Dedicated to Walter Craig, mentor and friend, in honor of his
60th birthday.

Abstract A fluid-particle interaction model is presented for the evolution of
particles dispersed in a fluid. The fluid flow is governed by the Navier-Stokes
equations for a compressible fluid while the evolution of the particle densities is
given by the Smoluchowski equation. The coupling between the dispersed and dense
phases is obtained through the drag forces that the fluid and particles exert mutually.
In the present context, the flow occupies a physical domain ˝t with boundary �t

both of which vary in time. Global-in-time weak solutions are obtained using an
approach based on penalization of the boundary behavior and viscosity in the weak
formulation.

1 Introduction

Particles in fluids (liquids or gases) appear in many practical applications in
chemical engineering, atmospheric sciences, fluid mechanics, geology and biology
[1, 2, 5, 6]. In this framework, sprays can be thought as gases in which droplets
constitute a dispersed phase, and are typically governed by an equation of fluid
dynamics and a kinetic equation (cf. Williams [23], Caflisch and Papanicolaou [7]).
In this modeling, the gas is characterized by macroscopic variables depending on
time t and the position x, namely, the fluid density � D �.t; x/ and the velocity field
u D u.t; x/:

In order to describe the dispersed phase (the droplets), their distribution function
in the phase space is employed, defined as f" D f".t; x; �/ � 0, and denoting the
density of droplets which at time t and position x have velocity �:More precisely, the
distribution function f".t; x; �/ is the solution to the dimensionless Vlasov-Fokker-
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Planck equation, see [8],

@tf" C 1p
"

�
� � rxf" � rx˚ � r� f"

�
D 1

"
div�

��
� � p

"u"
	
f� C r� f"

�
:

Here, � > 0 is a dimensionless parameter, and ˚ is an external potential (i.e.
gravity). The drag force is independent of the fluid density �"; but follows Stokes’
law and is therefore proportional to the relative velocity of the fluid and the particles
given by

F.t; x; �/ D 6��a.� � u".t; x//;

that is the drag force is in this context proportional to the fluctuations of the
microscopic velocity � 2 R

3 around the fluid velocity field u":
The coupling between the kinetic and the fluid equations is obtained through the

friction forces that the fluid and the particles exert mutually,

@tf" C 1p
"

�
� � rxf" � rx˚ � r� f"

�
D 1

"
div�

��
� � p

"u"
	
f� C r� f"

�
;

@t�" C divx.�"u"/ D 0;

@t.�"u"/C divx.�"u" ˝ u"/C rxp.�"/ � ��xu� C ˇ�"rx˚ D F": (1)

The right hand-side of the momentum equation in the Navier-Stokes system takes
into account the action of the cloud of particles on the fluid through the forcing term

F" D
Z
R3

�
�p
"

� u".t; x/
�

f�.t; x; �/ d�:

The density of the particles �".t; x/ is related to the probability distribution function
f".t; x; �/ through the relation

�".t; x/ D
Z
R3

f".t; x; �/ d�:

The resulting formal macroscopic fluid-particle system obtained via the standard
Hilbert-expansion procedure, as " ! 0; through the scaling limit in (1) is governed
by the primitive conservation equations for fluid-particle flows in the bubbling
regime [9]. In this regime the particles are supposed to have negligible density
with respect to the fluid, and thus, due to buoyancy effects, will typically move
upwards in a system under gravity. From this phenomenon the regime bears the
name of bubbling. We remark that different macroscopic equations can be obtained
by various scaling limits [8].

The resulting system describes the evolution of particles dispersed in a viscous
compressible fluid and is expressed by the conservation of fluid mass, the balance of
momentum and the balance of particle density often referred to as the Smolukowski
equation. The state of such flows is, in general, characterized by the macroscopic
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variables: the total fluid mass density � D �.t; x/, the velocity field u D u.t; x/ as
well as the density of particles in the mixture � D �.t; x/, depending on the time t 2
.0;T/ and the Eulerian spatial coordinate x in the moving domain˝t � R

N ; N D 3:

This system is presented below:

@t� C divx.�u/ D 0; (2a)

@t.�u/C divx.�u ˝ u/C rx.p.�/C �/ D divxS � .�C ˇ�/rx˚; (2b)

@t�C divx.�.u � rx˚// ��x� D 0: (2c)

The physical properties of the mixture are given through the following constitutive
relations.

• The pressure p is taken to be

p.�/ WD a�	 , with a > 0 and 	 >
3

2
: (3)

The total pressure P D P.�; �/ in the mixture depends on the density of the
particles and the density of the fluid and is given by

P.�; �/ D p.�/C �:

• The viscous stress tensor S D S.rxu/ is assumed to satisfy Newton’s Law for
Viscosity which requires that

S D �.rxu C rxuT/C 
 divxu I; (4)

where � and 
 are constant viscosity coefficients satisfying

� > 0; 
C 2

3
� � 0;

and so

divxS.rxu/ D ��xu C 
rxdivxu:

The boundary of the domain ˝t occupied by the fluid and the particles is described
by means of a given velocity field V.t; x/; where t � 0 and x 2 R

3: More precisely,
assuming V is sufficiently regular, we solve the associated system of differential
equations

8<
:

d

dt
X.t; x/ D V.t;X.t; x//; t > 0;

X.0; x/ D x;
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and set

˝t D X.t;˝0/; where ˝0 � R
3 is a given initial domain,

�t D @˝t; and Qf D f.t; x/ j t 2 .0;T/; x 2 ˝tg :

We also define here the “solid” part of the domain,

Qs D ..0;T/ � D/nQf :

The no-slip boundary conditions on the solid wall are imposed, meaning

u.t; �/ˇ̌
�t

D V.t; �/ˇ̌
�t
; for any t � 0: (5)

In addition, a no-flux condition for particle density holds,

.rx�C �rx˚/ � � D 0 on .0;T/ � �t; (6)

with �.t; x/ denoting the outer normal vector to the boundary �t:

The external potential

˚ W R3 ! R
C

typically represents the effects of gravity and buoyancy and ˇ in (2b) is assumed to
be non-zero for bounded domains and positive for unbounded domains.

Several results presented in the literature are obtained under certain assumptions
concerning the geometry of ˝ and the external potential ˚ under the generic name
of confinement conditions. Let us remark that the external potential ˚ is always
defined up to a constant. Therefore, for bounded from below external potentials ˚ ,
we can always assume without loss of generality, by adding a suitable constant, that

inf
x2˝ ˚.x/ D 0: (7)

The following definition will be relevant in the subsequent sections, see [10].

Definition 1. Given a domain ˝ 2 C2;� , � > 0, ˝ � R
3, and given a bounded

from below external potential˚ W ˝ �! R
C
0 satisfying (7), we will say that .˝;˚/

verifies the confinement hypotheses (HC) for the two-phase flow system (2a)–(2c)
coupled with no-flux boundary conditions (5)–(6) whenever:
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(HC-Bounded) If ˝ is bounded, ˚ 2 W1;1.˝/ and the sub-level sets f˚ < kg
are connected in ˝ for any k > 0.
(HC-Unbounded) If ˝ is unbounded, we assume that ˚ 2 W1;1

loc .˝/, ˇ > 0,
the sub-level sets f˚ < kg are connected in ˝ for any k > 0,

e�˚=2 2 L1.˝/;

and

j�˚.x/j � c1jrx˚.x/j � c2˚.x/; jxj > R; (8)

for some large R > 0.

Remark 1. The confinement assumption (HC) has physical relevance in our setting
as it is verified for several domains˝ with ˚ being the gravitational potential. For
instance,

1. when ˝ D fx 2 R
3 j .x1; x2/ 2 Œa; b�2; x3 2 Œ0;H�g and ˚.x/ D gx3; where

ˇ D 1 � �F
�P

.

2. when ˝ D fx 2 R
3 j .x1; x2/ 2 Œa; b�2; x3 > 0g and ˚.x/ D gx3; where

ˇ D 1 � �F
�P

and �F < �P.

3. when ˝ D R
3 n B.0;R/ and ˚.x/ D gjxj, where B.0;R/ is the ball centered at

the origin with radius R and ˇ > 0.

Here, �F and �P are the typical mass density of fluid and particles, respectively. Note
that 1 corresponds to the standard bubbling case (see [8]) in which particles move
upwards due to buoyancy.

Remark 2. For our situation involving a time dependent domain˝t, it suffices that if
˝t � D, where D is a fixed reference domain, then .D; ˚/ satisfies the confinement
hypotheses.

Our problem is supplemented with initial data f�0; �0;u0g such that

�.0; x/ D �0 2 .L2 \ L1C/.R3/;

�.0; x/ D �0 2 .L	 \ L1C/.R3/;

.�u/.0; x/ D m0 2 .L 6
5 \ L1/.R3/:

(9)

Our aim is to study system (2a)–(2c) in a spatial domain with boundary varying in
time, along with the previous assumptions.
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1.1 Strategy

The main ingredients of our approach can be formulated as follows:

• For the construction of a suitable approximating scheme penalizing the boundary
behavior, extra diffusion and viscosity terms are introduced in the weak formu-
lation. The central component of this approach is the addition of a singular term

Z �

0

Z
˝t

�.u � V/
"

� ' dxdt; " > 0 small; (10)

in the momentum equation. This extra term models solid obstacles as porous
media, with porosity and viscous permeability approaching zero, see Angot
et al.[3]. Effectively, the problem is reformulated over a fixed domain such that
the fluid is allowed to “flow” through solid obstacles.

• In addition to (10), we introduce variable shear viscosity coefficients � D �!
and 
 D 
! , vanishing outside the fluid domain and remaining positive within
the fluid domain, to take care of extra stress terms that appear in the “solid”
domain.

• In constructing the approximating problem we employ a number of ingredients:
time discretization h; a parameter ı which enables us to introduce an artificial
pressure essential for the establishment of suitable pressure estimates and
parameters " and ! for the penalization of the boundary behavior and viscosity.
Keeping h; ı; �; ! fixed, we solve the modified problem in a (bounded) reference
domain D � R

3 chosen in such a way that

˝t � ˝t � D for any t � 0:

Letting h ! 0 and ı ! 0 in the spirit of the analysis in [10] we obtain the
solution .�;u; �/!;" within the fixed reference domain.

• We take the initial densities .�0; �0/ vanishing outside ˝0; and letting the
penalization " ! 0 we obtain a “two-phase” model consisting of the fluid
region and the solid region separated by impermeable boundary. We show that
the densities vanish in the “solid” part of the reference domain, specifically on
..0;T/ � D/ n Qf :

• The penalization � is taken to vanish and then we perform the limit ! ! 0.

The main contribution of the present article to the existing theory can be
characterized as follows:

• The present work investigates the dynamics of a mixture of particles dispersed in
a viscous, compressible fluid within a moving domain ˝t � R

3: The global
existence of weak solutions within a moving domain in R

3 is obtained by
establishing the convergence of a Brinkman type penalization.
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• The framework presented here relies on physically grounded principles and
provides a description of the dynamics of fluid-particle interaction. The investiga-
tion of fluid-particle interaction flows have potential applications in atmospheric
sciences, biological sciences and medicine (tumor growth, asthma, etc.).

For related works on the mathematical analysis of models of compressible fluids
within moving domains we refer the reader to Feireisl et. al. [16, 17]. In the context
of tumor growth models in the general three dimensional Euclidean setting we refer
the reader to Donatelli and Trivisa [12–14] and to Friedman [18] in the context of
radially symmetric solutions. There is a substantial literature on the mathematical
analysis of fluid-particle interaction models. We refer the reader to Ballew and
Trivisa [4], Carrillo, et al. [8, 9], Carrillo, et al. [10], Mellet and Vasseur [20, 21] and
the references therein. The existence theory for the barotropic Navier-Stokes system
on fixed spatial domains in the framework of weak solutions was developed in the
seminal work of Lions [19].

1.2 Outline

The paper is organized as follows: Sect. 1 presents the motivation, modeling and
introduces the necessary preliminary material and the overall strategy. Section 2
provides the weak formulations and states the main result. In addition, the penalized
problem is introduced along with a suitable approximation scheme. The central
component of the approximating procedure is the addition of a singular forcing term

Z �

0

Z
˝t

�.u � V/
"

� ' dxdt; " > 0 small;

penalizing the velocity on the boundary of the fluid-particle domain in the vari-
ational formulation of the momentum equation. In order to treat the moving
boundary, an additional penalization on the viscosity is required. In Sect. 3 we
collect all the uniform bounds satisfied by the solution of the penalization scheme.
In Sect. 3.2 through Sect. 3.5 the singular limits for " ! 0; ! ! 0 are performed
successively. A key part in the penalization limit is to get rid of the terms supported
in the solid part ..0;T/ � D/nQf . This part of the analysis is presented in Sect. 3.4
The main issue is to describe the evolution of the interface �t: To that effect we
employ elements from the so-called level set method (cf. Osher and Fedwik [22]).
Finally, an Appendix of earlier results [10] on global existence and asymptotic
analysis of solutions for two different types of domains.
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2 Free Energy Solutions: Global in Time Existence Within
a Moving Domain ˝t 2 R

3

2.1 Weak Formulation and Main Results

We begin with the notion of free energy solutions of the original problem. In
order to state the following definition concisely, we make use of the notation
Lp.0;TI Lq.˝t//, and variants thereof. For such a function F D F.t; x/, this is to
be interpreted in the sense that the maps

t 7! kF.t; �/kLq.˝t/

belong to Lp.0;T/, and similarly for other spaces. Since we make no use of the
structure of such “evolving spaces,”aside from ensuring the weak formulations are
well-defined, this suffices for our purposes.

Definition 2 (Free Energy Solutions). Let us assume that .˝t; ˚/ satisfy the
confinement hypotheses (HC). We say that f�;u; �g is a free-energy solution of
problem (2a)–(2c) with initial and boundary data satisfying (9)–(6) respectively
provided that the following hold:

• � � 0 represents a renormalized solution of Eq. (2a) on a time-space cylinder
.0;1/ � ˝t. More precisely, for any test function ' 2 D.Œ0;T/ � ˝t/, any
T > 0, and any b such that

b 2 L1 \ CŒ0;1/; B.�/ D �B.1/C �

Z �

1

b.z/

z2
dz;

the following integral identity holds:

Z 1

0

Z
˝t

�
B.�/@t' C B.�/u � rx' � b.�/divxu'

�
dxdt D �

Z
˝0

B.�0/'.0; �/dx:

(11)

• The balance of momentum holds in distributional sense, namely

Z 1

0

Z
˝t

�
�u � @t' C �u ˝ u W rx' C .p.�/C �/ divx'

�
dxdt D

Z 1

0

Z
˝t

.�rxu C 
divxuI/ W rx' � .�C ˇ�/rx˚ � ' dxdt

�
Z
˝0

�0u0 � '.0; �/ dx

(12)
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for any test function ' 2 D.Œ0;T/ID.˝tIR3// and any T > 0 satisfying
'j@˝t D 0:

All quantities appearing in (12) are supposed to be at least integrable. In
particular, the velocity field u belongs to the space L2.0;TI W1;2.˝tIR3//,
therefore it is legitimate to require u to satisfy the boundary conditions (5) in
the sense of traces.

• The integral identity

Z 1

0

Z
˝t

�@t'C�u�rx'��rx˚ �rx'�rx��rx' dx dt D �
Z
˝0

�0'.0; �/ dx (13)

is satisfied for test functions ' 2 D.Œ0;T/ �˝t/ and any T > 0.
All quantities appearing in (13) must be at least integrable on .0;T/ � D. In

particular, � belongs to L2.0;TI L3.˝t// \ L1.0;TI W1; 32 .˝t//:

• Given the total free-energy of the system by

E.�;u; �/.t/ WD
Z
˝t

�
1

2
�juj2 C a

	 � 1�
	 C � log �C .ˇ� C �/˚

�
dx;

E.�;u; �/.t/ is finite and bounded by the initial energy of the system, i.e.,
E.�;u; �/.t/ � E.�0;u0; �0/ for a.e. t > 0. Moreover, the following free energy-
dissipation inequality holds

Z 1

0

Z
˝t

.�jrxuj2 C 
jdivxuj2 C j2rx
p
�C p

�rx˚ j2/ dxdt

� E.�0;u0; �0/C C.1C jjVjjL1.0;TI˝t//: (14)

2.2 Penalization

We introduce the penalization as follows. Following the strategy of Angot et. al. [3],
see also [16] we fix a reference spatial domain D � R

3 containing˝0 and such that

Vj@D D 0: (15)

System (2a)–(2c) is replaced by a penalized problem

@t�C divx.�u/ D 0; (16a)

@t.�u/C divx.�u ˝ u/C rx.p.�/C �/

D divxS! � .�C ˇ�/rx˚ � 1

"
�.u � V/ (16b)

@t�C divx.�.u � rx˚// ��x� D 0; (16c)
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considered in the cylinder .0;T/ � D: The function

�.t; x/ D
(
0 if t 2 .0;T/; x 2 ˝t

1 otherwise
(17)

is used to separate the fluid and “solid” domains and represents a weak solution to
the transport equation

(
@t�C V � rx� D 0

�.0; �/ D 1D � 1˝0:
(18)

Problem (16) is supplemented with the boundary conditions

u
ˇ̌
@D D V

ˇ̌
@D; (19)

.rx�C �rx˚/ � � ˇ̌
@D

D 0 (20)

with � denoting the outer normal vector to the boundary @D; and initial conditions

�.0; �/ D �0;" � 0; .�u/.0; �/ D .�u/0;"; �.0; �/ D �0;" � 0; (21)

to be specified in Theorem 2.
In order to eliminate extra stresses that appear we introduce a variable shear

viscosity coefficient � D �!.t; x/ where, � D �! remains strictly positive in Qf

but vanishes in the complement as ! ! 0, namely �! is taken such that

�! 2 C1
c

�
Œ0;T� � R

3
	
; 0 < �

!
� �!.t; x/ � � in Œ0;T� � D;

�! D
(
� D const > 0 in Qf

�! ! 0 a.e. in ..0;T/ � D/nQf :

We penalize the coefficient 
 D 
!.t; x/ exactly the same way. Finally we modify
the initial data

.�u/0;";! D j.�u/0;";! j2
�0;";!

D 0; whenever �0;";! D 0:

The weak formulation of the penalized problem reads.

Definition 3 (Free Energy Solutions of the Penalized Problem). Let us assume
that .D; ˚/ satisfies the confinement hypotheses (HC). We say that
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f�";!;u";!; �";!g is a free-energy solution of problem (16) with initial and boundary
data satisfying (19)–(21) respectively provided that the following hold:

• ��;! � 0 represents a renormalized solution of equation (16c) on a time-space
cylinder .0;1/� D, that is, for any test function ' 2 D.Œ0;T/ � D/, any T > 0,
and any b such that

b 2 L1 \ CŒ0;1/; B.�";!/ D �";!B.1/C �";!

Z �";!

1

b.z/

z2
dz;

the following integral identity holds:

Z 1

0

Z
D

�
B.�";!/@t' C B.�";!/u";! � rx' � b.�";!/divxu";!'

�
dxdt

D �
Z

D
B.�0;";!/'.0; �/ dx: (22)

• The balance of momentum holds in distributional sense, namely

Z
1

0

Z
D

�
�";!u";! � @t' C �";!u";! ˝ u";! W rx' C .p.�";!/C �";!/ divx'

�
dxdt

(23)

D
Z

1

0

Z
D
.�!rxu";! C 
divxu";!I/ W rx' � .�";! C ˇ�";!/rx˚ � ' dxdt

C
Z

1

0

Z
D

�.u";! � V/
"

� ' dxdt �
Z

D
.�u/0;";! � '.0; �/ dx (24)

for any test function ' 2 D.Œ0;T/ID.DIR3// and any T > 0 satisfying
'j@D D 0.

All quantities appearing in (24) are supposed to be at least integrable. In
particular, the velocity field u�;! belongs to the space L2.0;TI W1;2.DIR3//,
therefore it is legitimate to require u�;! to satisfy the boundary conditions (19) in
the sense of traces.

• The integral identity

Z 1

0

Z
D
�";!@t' C �";!u";! � rx' � �";!rx˚ � rx' � rx�";! � rx' dxdt

D �
Z

D
�0;";!'.0; �/ dx (25)
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is satisfied for test functions ' 2 D.Œ0;T/ � D/ and any T > 0. All quantities
appearing in (25) must be at least integrable on .0;T/ � D. In particular, ��;!
belongs to L2.0;TI L3.D// \ L1.0;TI W1; 32 .D//:

• Given the total free-energy of the system by

E.�";!;u";!; �";!/.t/

WD
Z

D

�
1

2
�";! ju";! j2 C a

	 � 1
�	";! C �";! log �";! C .ˇ�";! C �";!/˚

�
dx;

E.�";!;u";! ; �";!/.t/ is finite and the following free energy dissipation inequality
holds

E.�";!;u";!; �";!/.�/C
Z �

0

Z
D
.�! jrxu�;! j2 C 
!jdivxu";! j2

Cj2rx
p
�";! C p

�";!rx˚ j2/ dxdt

� E.�0;";! ;u0;";! ; �0;";!/ �
Z �

0

Z
D

�

�
.u�;! � V/ � u�;! dxdt: (26)

2.3 Main Result

We are now ready to state the main result of this article.

Theorem 1. Let˝0 � ˝0 � D � R
3 be a bounded domain with boundary of class

C2C�; � > 0: Assume that the pressure p is given by (3), with 	 > 3=2; and that ˚
satisfies the confinement hypothesis (HC). Let V be a given vector field belonging
to C2C�.Œ0;T� � DIR3/;

Vj@D D 0:

Finally, we suppose that the initial data satisfy (9) and

�0;" ! �0 in L	 .D/; �0j˝0 > 0; �0jDn˝0 D 0; (27)

.�u/0;" ! .�u/0 in L1.DIR3/; .�u/0jDn˝0 D 0; (28)

Z
D

j.�u/0;"j2
�0;"

dx < c; (29)

�0;" ! �0 in L2.D/; �0j˝0 > 0; �0jDn˝0 D 0; (30)
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where c is independent of " ! 0: Then any sequence f�";u"; �"g">0 of free energy
solutions to problem (16), in the sense of Definition 3, contains a subsequence such
that

�" ! � in Cweak.Œ0;T�I L	 .D// \ L	 .Qf /; (31)

u" * u in L2.0;TI W1;2
0 .DIR3//; u D V a:e: in Qs; (32)

�" * � in L2.0;TI L
3
2 .D//\ Lp.0;TI W1;q.D// with p; q > 1; (33)

with �; � vanishing in Qs. Finally, .�;u; �/ represents a free energy solution of
problem (2a)–(2c) in the sense of Definition 2.

2.4 Construction of Approximate Solutions Within D

The construction of the approximate solutions

.�";!;u";!; �";!/

within the fixed reference domain D relies

– on the time-discretization of the system (16) with the aid of a parameter h
transforming the system into an elliptic-parabolic system, and

– on the artificial pressure with replacing the pressure term p.�/ with the term
pı.�ı/ D p.�ı/C ı�6 with the aid of a parameter ı which enables us to establish
suitable pressure estimates.

Keeping �; ! fixed, we solve the modified problem in a (bounded) reference domain
D � R

3 chosen in such way that

˝t � D for any t � 0:

Letting h ! 0 and ı ! 0 in the spirit of the analysis in (cf. [10]) we obtain the
existence of a weak solution .�;u; �/";! within the fixed reference domain D in
the sense of Definition 3. We refer the reader to Appendix where relevant results
are presented.
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3 Energy Estimates

3.1 Modified Energy Inequality

Choosing as a test function ' D  n.t/V;  n 2 C1
c Œ0;T/;  n ! 1Œ0;�/ in (24) and

adding to the inequality (26), we find that

Z
D

�
1

2
�";! ju";! j2 C a

	 � 1
�	";! C �";! log �";! C .ˇ�";! C �";!/˚

�
.�; �/ dx

C
Z �

0

Z
D

�
�! jrxu";! j2 C 
jdivxu";! j2 C j2rx

p
�";! C p

�";!rx˚ j2	 dxdt

C 1

"

Z �

0

Z
D
�ju";! � Vj2 dxdt

�
Z

D

�
1

2

j.�u/0;";! j2
�0;";!

C a

	 � 1
�
	
0;";! C �0;";! log �0;";! C .ˇ�0;";! C �0;";!/˚

�
dx

C
Z

D
.��;!u�;! � V/.�; �/� .�u/0;";! � V.0; �/ dx

C
Z �

0

Z
D
S";! W rxV � ��;!u�;! � @tV � ��;!u�;! ˝ u�;! W rxV

� .��;! C ˇ��;!/rx˚ � V �
�

a

	 � 1
�	�;! C ��;!

�
divxV dxdt

(34)

for a.a. � 2 .0;T/: This yields uniform bounds on .��;! ;u�;! ; ��;!/ independent of
" ! 0 provided V is sufficiently smooth.

In accordance with the boundary conditions (19) and (20), the total fluid and
particle mass

M�;";! D
Z

D
�";!.t; �/ dx D

Z
D
�0;";! dx (35)

M�;";! D
Z

D
�";!.t; �/ dx D

Z
D
�0;";! dx (36)

are constants of motion (see [10], Lemma 3.13). The following bounds, uniform in
�; !; are evident from a quick inspection of (34):

fp�";!u";!gf";!>0g bounded in L1.0;TI L2.DIR3// (37)

f�";!gf";!>0g bounded in L1.0;TI L	 .D// (38)
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frxu";!gf";!>0g bounded in L2.0;TI L2.DIR3 � R
3// (39)

fdivxu";!gf";!>0g bounded in L2.0;TI L2.D// (40)

frx
p
�";!gf";!>0g bounded in L2.0;TI L2.DIR3//: (41)

In addition,

Z �

0

Z
D
�ju";! � Vj2dx dt D

Z
Qs

ju";! � Vj2 dxdt � "c; (42)

for a.a. � 2 .0;T/ with c independent of "; !; where we used the definition of
�.t; x/:

Using the embedding of W1;2.D/ in L6.D/ (since D � R
3) on the last bound

listed above, it is clear that f�";!gf";!>0g 2b L1.0;TI L3.D//. This, and mass
conservation implies

f�";!gf";!>0g 2b L1.0;TI L3.D//\ L1.0;TI L1.D//: (43)

Using this result, and that

2rx
p
� D rx�p

�
;

it is also clear that

f�";!gf";!>0g 2b L1.0;TI W1; 32 .D//\ L2.0;TI W1;1.D//: (44)

By Poincaré’s inequality and (39), we get that

fu";!gf";!>0g bounded in L2.0;TI W1;2
0 .DIR3//: (45)

3.2 Pressure Estimates and Pointwise Convergence
of the Fluid Density

The detailed analysis in [16] yields the estimates needed to deal with the nonlinear
pressure, p.�/ D a�	 , obtain pointwise convergence of the fluid density �, and pass
to the limit in (22), (23). In particular,
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Z
K

p.�";!/�
�
";! dxdt � c.K/ for any compact K � Qf ; (46)

and these estimates can be extended up to the boundary, and

�";! ! �! in Lq..0;T/ � D/ for any 1 � q < 	:

3.3 Singular Limits

3.3.1 The Limit " ! 0

Combining (38), (45) with equation (22) we may infer that

�";! ! �! in Cweak.Œ0;T�I L	 .D//; (47)

u";! * u! in L2.0;TI W1;2
0 .DIR3//; (48)

passing to subsequences if necessary. Moreover as a consequence of (42),

u! D V a.e. in Qs; (49)

again after passing to a subsequence. From (43) and interpolation we get that

�";! ! �! in L2.0;TI L
3
2 .D//: (50)

To deal with the rx�";! term in (25), we can interpolate in (44) and conclude that

rx�";! * rx�! in Lp.0;TI Lq.D//; (51)

for some p; q > 1.

3.4 Convergence in the Set Qs

The convergence of the densities in the “solid” part of the domain play a crucial role
in the analysis. That

�.t; x/ D 0 for a.a. .t; x/ 2 Qs

holds has been worked out in [16]. The proof relies on regularizing the equation of
continuity (2a) and employing the commutator lemma of DiPerna and Lions [11]. It
remains to show that
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�.t; x/ D 0 for a.a. .t; x/ 2 Qs:

Before proving the following lemmas, first we set some notation. Recall that the
cutoff function �.t; x/ satisfies the transport equation (18). In anticipation of using
a suitable (smooth) test function, consider instead the unique function � 2 C1.R3/
solving

@t�C V � rx� D 0 t > 0; x 2 R
3;

with the initial data satisfying

C1.R3/ 3 �.0; �/ D
(
> 0 x 2 Dn˝0

< 0 x 2 ˝0 [ .R3n ND/
; rx�0 ¤ 0 on @˝0:

We define the level-set test function,

'� D

8̂
ˆ̂̂<
ˆ̂̂̂
:

1 � � �

�

�
0 � � < �

0 � < 0

D min

�
�

�
; 1

�C
; (52)

supported on Dn˝� , see [17, 22].

Lemma 1. Let �";! 2 L2.0;TI L3.D// \ L1.0;TI W1; 32 .D//; �";! � 0, u";! 2
L2.0;TI W1;2.DIR3// be a weak solution of (25), that is,

Z 1

0

Z
D
�";!@t' C �";!u";! � rx' � �";!rx˚ � rx' � rx�";! � rx' dxdt

D �
Z

D
�0;";!'.0; �/ dx; (53)

holds for all ' 2 D.Œ0;T/ � D/ and any T > 0. Let the initial data satisfy

�0 2 L2.D/\ L1C.D/; �0
ˇ̌
Dn˝0 D 0:

Then for � > 0 and � defined as above, it holds that

lim
�!0

1

�

Z �

0

Z
f0� N�<�g

.�rx˚ C rx�/ � rx N� dxdt D 0; (54)

for any � > 0.



128 S. Doboszczak and K. Trivisa

Proof. Plugging (52) into (53) and rearranging we get that

1

�

Z �

0

Z
f0��<�g

.�";!rx˚ C rx�";!/ � rx� dxdt

D 1

�

Z �

0

Z
f0��<�g

�";!.u";! � V/ � rx� dxdt C
Z

D
�0;";!'�.0; �/ dx: (55)

Since we can pass "; ! ! 0 on the left side in (55), it suffices to show that right side
vanishes as we take "; ! ! 0 and � ! 0 successively. First,

lim
";!!0

Z
D
�0;";!'�.0; �/dx D

Z
˝0

�0'�.0; �/ dx D 0;

since on ˝0, we have �.0; �/ < 0 and so '�.0; �/ D 0: Now,

lim
";!!0

1

�

Z �

0

Z
f0��<�g

�";!.u";! � V/ � rx� dxdt

D 1

�

Z �

0

Z
f0��<�g

�.u � V/ � rx� dxdt D 0;

since u D V a.e. in Dn˝0, i.e. where � � 0, using (49). Letting � ! 0 concludes
the proof of the lemma. ut
Lemma 2. Under the same conditions as Lemma 1, the following holds,

�.�; �/jDn˝� D 0 for a.a. � 2 Œ0;T�:

Proof. First note that by choosing a test function having the form

'n D  n.t/'.t; x/; ' 2 C1
c .Œ0;T/ � ND/;  n ! 1Œ0;�/ as n ! 1;

and  n 2 C1Œ0;T/, we can rewrite the weak form (53) as

Z
D
�";!.�; �/'.�; �/� �0;";!'.0; �/ dx D

Z �

0

Z
D
�";!.@t' C u";! � rx'/

� .�";!rx˚ C rx�";!/ � rx' dxdt;

(56)

for any ' 2 C1
c .Œ0;T/ � ND/: It suffices to establish that

Z
Dn˝�

�.�; �/ dx D 0; a:a � 2 .0;T/:
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Inserting '� into (56), using the initial conditions, and letting "; ! ! 0 yields,

Z
D
�.�; �/'�.�; �/ dx D 1

�

Z �

0

Z
f0��<�g

�.u�V/�rx��.�rx˚Crx�/�rx� dx dt: (57)

Since '�.�; �/ ! 1Dn˝� as � ! 0 in any Lp.D/; p < 1, and � 2 L2.0;TI L3.D//,
the left-hand side of (57) converges to

Z
Dn˝�

�.�; �/ dx;

as � ! 0: Finally, using Lemma 1 and that u D V for any � > 0, it is clear the right
hand side of (57) vanishes as � ! 0. ut

3.5 The Limit ! ! 0

Performing the limit " ! 0, we arrive at the weak formulation of the momentum
satisfied, except for the following term

Z 1

0

Z
D
.�!rxu! C 
!divxu!I/ W rx' dxdt: (58)

Using the viscosity penalization (22) (similarly for 
!), vanishing in ..0;T/�D/nQf

and using that u! D V here, we conclude that

Z T

0

Z
Dn˝t

.�!rxu! C 
!divxu!I/ W rx' dxdt ! 0 as ! ! 0:

We can now pass all terms in the weak formulation as ! ! 0, using the same
estimates in the previous sections. In order to obtain the limiting energy inequality,
we first state the following lemma. See Corollary 2.2 in [15] for the proof.

Lemma 3. Let O � R
m be a bounded measurable set, and fvng1

nD1 a sequence of
functions such that

vn ! v weakly in L1.OIRn/:

Let ˚ W Rn ! .1;1� be a convex lower semi-continuous function. Then ˚.v/ W
O ! R is integrable, and

Z
O
˚.v/ dy � lim inf

n!1

Z
O
˚.vn/ dy:

Using this lemma, the previously derived estimates, and Lemma 2, it is now easy to
pass �; ! ! 0 in (26) to derive the energy inequality (14).



130 S. Doboszczak and K. Trivisa

Appendix

Free Energy Solutions: Global in Time Existence Within
Bounded and Unbounded Domains ˝ � R

3

In this section, we present for completeness the main results on global existence of
free energy solutions to (2a)–(2c) for both bounded and unbounded fixed domains.
We impose the no-slip boundary condition for the velocity and no-flux for the
particle density, which in the present context has the form

u
ˇ̌
@˝

D .rx�C �rx˚/ � � ˇ̌
@˝

D 0 for a.a. t 2 .0;T/; (59)

with � denoting the outer normal vector to the boundary @˝: The usual pressure
and stress tensor, (3), (4), are imposed.

Our problem is supplemented with the initial data f�0; �0;u0g such that

�.0; x/ D �0 2 L2.˝/\ L1C.˝/;

�.0; x/ D �0 2 L	 .˝/\ L1C.˝/;

.�u/.0; x/ D m0 2 L
6
5 .˝/\ L1.˝/:

(60)

The total energy of the mixture is given by

E.�; �;u/.t/ WD
Z
˝

1

2
�.t/ju.t/j2 C a

	 � 1
�	.t/C .� log �/.t/C .ˇ� C �/.t/˚ dx:

(61)

At the formal level, the total energy can be viewed as a Lyapunov function satisfying
the energy inequality

dE

dt
C
Z
˝

�jrxuj2 C 
jdivxuj2 C j2rx
p
�C p

�rx˚ j2 dx � 0: (62)

Definition 4. Let us assume that .˝;˚/ satisfy the confinement hypotheses (HC).
We say that f�;u; �g is a free-energy solution of problem (2a)–(2c) with boundary
conditions (59) and initial data satisfying (60) provided that the following hold:

• The fluid density � � 0 represents a renormalized solution of Eq. (2a) on a time-
space cylinder .0;1/ �˝ , that is, for any test function ' 2 D.Œ0;T/ �˝/, any
T > 0, and any b such that

b 2 L1 \ CŒ0;1/; B.�/ D �B.1/C �

Z �

1

b.z/

z2
dz;
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the following integral identity holds:

Z 1

0

Z
˝

�
B.�/@t'CB.�/u�rx'�b.�/divxu'

�
dx dt D �

Z
˝

B.�0/'.0; �/ dx: (63)

• The balance of momentum holds in a distributional sense, namely

Z 1

0

Z
˝

�
�u � @t' C �u ˝ u W rx' C .p.�/C �/divx'

�
dx dt

D
Z 1

0

Z
˝

�.�rxu C 
divxuI/ W rx' C .�C ˇ�/rx˚ � ' dx dt

�
Z
˝

.�u/0 � '.0; �/ dx (64)

for any test function ' 2 D.Œ0;T/ID.˝ IR3// and any T > 0 satisfying
'j@˝ D 0.

All quantities appearing in (64) are supposed to be at least integrable.
In particular, the velocity field u belongs to the space L2.0;TI W1;2.˝IR3//,
therefore it is legitimate to require u to satisfy the boundary conditions (59) in
the sense of traces.

• The particle density � � 0 is a weak solution of (2c). In particular, the integral
identity

Z 1

0

Z
˝

�@t'C�u �rx'��rx˚ �rx'�rx� �rx' dxdt D �
Z
˝

�0'.0; �/ dx (65)

is satisfied for test functions ' 2 D.Œ0;T/ �˝/ and any T > 0.
All quantities appearing in (65) must be at least integrable on .0;T/ � ˝ . In

particular, � belongs L2.0;TI L3.˝//\ L1.0;TI W1; 32 .˝//:

• Given the total free-energy of the system by

E.�;u; �/.t/ WD
Z
˝

�
1

2
�juj2 C a

	 � 1�
	 C � log �C .ˇ�C �/˚

�
dx;

then E.�;u; �/.t/ is finite and bounded by the initial energy of the system, i.e.,
E.�;u; �/.t/ � E.�0;u0; �0/ a.e. t > 0. Moreover, the following free energy-
dissipation inequality holds

Z 1

0

Z �
�jrxuj2 C 
jdivxuj2 C j2rx

p
�C p

�rx˚ j2	 dxdt � E.�0;u0; �0/: (66)

We can now state the main result on global existence. For the details of the proof
we refer the reader to Carrillo, et al. [10].
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Theorem 2. Global Existence Let us assume that .˝;˚/ satisfy the confinement
hypotheses (HC). Then, the problem (2a)–(2c) supplemented with boundary con-
ditions (59) and initial data satisfying (60) admits a weak solution f�;u; �g on
.0;1/ �˝ in the sense of Definition 4. In addition,

i) the total fluid mass and particle mass given by

M�.t/ D
Z
˝

�.t; �/ dx and M�.t/ D
Z
˝

�.t; �/ dx;

respectively, are constants of motion.
ii) the density satisfies the higher integrability result

� 2 L	C�..0;T/ �˝/;

for any T > 0, where � D minf 2
3
	 � 1; 1

4
g.

We can also completely characterize the large time behavior of free-energy
solutions.

Theorem 3. Large-time Asymptotics: Let us assume that .˝;˚/ satisfy the con-
finement hypotheses (HC). Then, for any free-energy solution .�;u; �/ of the
problem (2a)–(2c), in the sense of Definition 4, there exist universal stationary states
�s D �s.x/, �s D �s.x/; such that

8̂
ˆ̂̂<
ˆ̂̂̂
:

�.t/ ! �s strongly in L	 .˝/;

ess sup
�>t

Z
˝

�.�/ju.�/j2 dx ! 0;

�.t/ ! �s strongly in Lp2 .˝/ for p2 > 1:
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Envelope Equations for Three-Dimensional
Gravity and Flexural-Gravity Waves Based
on a Hamiltonian Approach

Philippe Guyenne

Dedicated to Walter Craig on the occasion of his 60th birthday,
with admiration and gratitude.

Abstract A Hamiltonian formulation for three-dimensional nonlinear flexural-
gravity waves propagating at the surface of an ideal fluid covered by a thin ice
sheet is presented. This is accomplished by introducing the Dirichlet–Neumann
operator which reduces the original Laplace problem to a lower-dimensional system
involving quantities evaluated at the fluid-ice interface alone. The ice-sheet model
is based on the special Cosserat theory for hyperelastic shells, which yields a
conservative and nonlinear expression for the bending force. By applying a Hamil-
tonian perturbation approach suitable for such a formulation, weakly nonlinear
envelope equations for small-amplitude waves are derived. The various steps of
this formal derivation are discussed including the modulational Ansatz, canonical
transformations and expansions of the Hamiltonian. In particular, the contributions
from higher harmonics are examined. Both cases of finite and infinite depth are
considered, and comparison with direct numerical simulations is shown.

1 Introduction

Modulation theory is a well-established method in applied mathematics to study
the long-time evolution and stability of oscillatory solutions to partial differential
equations. Typical equations to which the theory is applied are nonlinear dispersive
evolution equations describing wave phenomena that arise in physical applications.
Examples include ocean waves as well as waves in optics and plasmas. The usual
modulational Ansatz is to anticipate a weakly nonlinear monochromatic form for
solutions, and to derive equations describing the evolution of their envelope. In
two space dimensions (i.e. one-dimensional wave propagation), the first nontrivial
terms typically yield the nonlinear Schrödinger (NLS) equation [38], while the
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Benney–Roskes–Davey–Stewartson (DS) system arises in three dimensions. The
rigorous justification of these models is a challenging mathematical problem
[13, 15, 27, 35] and recent breakthroughs have been made in the two-dimensional
case [16, 40].

Of particular interest here are hydroelasticity problems dealing with the interac-
tion between moving fluids and deformable bodies. Such problems not only entail
considerable mathematical challenges but also have many engineering applications
[26]. An important area of application is that devoted to hydroelastic (or flexural-
gravity) waves in polar regions where water is frozen in winter and the resulting ice
cover is transformed e.g. into roads and aircraft runways, and where air-cushioned
vehicles are used to break the ice. A major difficulty in this problem has to do
with modeling the ice deformations subject to water wave motions [36]. Theories
based on potential flow and on the assumption that the ice cover may be viewed as
a thin elastic sheet have been widely used [37]. In this context, most studies have
considered linear approximations of the problem, which are valid only for small-
amplitude water waves and ice deflections.

Intense waves-in-ice events, however, have also been reported and their analysis
indicates that linear theories are not adequate for describing large-amplitude ice
deflections [28]. In the last few decades, a number of numerical and theoretical
investigations have used nonlinear models based on Kirchhoff–Love plate theory
to analyze two-dimensional hydroelastic waves in ice sheets. For example, Forbes
[17] computed finite-amplitude periodic waves by using a Fourier series expansion
technique. Părău and Dias [32] derived a forced NLS equation for the envelope
of ice-sheet deflections due to a moving load, and showed that solitary waves
of elevation and depression exist for certain ranges of water depth. Bonnefoy
et al. [4] examined numerically the same nonlinear problem of moving load on
ice, through a high-order spectral approach, and found a good agreement with
theoretical predictions of Părău and Dias [32]. Hegarty and Squire [25] simulated
the interaction of large-amplitude water waves with a compliant floating raft such
as a sea-ice floe, by expanding the solution as a series and evaluating it with
a boundary integral method. Vanden-Broeck and Părău [42] computed periodic
waves and generalized solitary waves on deep water by using a series truncation
method. Milewski et al. [29] derived a defocusing NLS equation which indicates
that small-amplitude solitary wavepackets do not exist on deep water. Their direct
numerical simulations, based on conformal mapping, reveal however stable large-
amplitude solitary waves of depression. Another nonlinear formulation is Plotnikov
and Toland’s adaptation of the special Cosserat theory for hyperelastic shells [34],
which explicitly conserves elastic potential energy unlike Kirchhoff–Love theory.
Guyenne and Părău [21–23] took advantage of this conservative property to write
a Hamiltonian form of the flexural-gravity wave problem in arbitrary depth. Their
asymptotic and numerical results were found to be consistent with those of Părău
and Dias [32] and Milewski et al. [29]. In the long-wave regime, Xia and Shen [43]
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established a 5th-order Korteweg–de Vries equation for the nonlinear interaction of
ice cover with shallow-water waves. However, a linear Euler–Bernoulli model was
adopted for the ice cover.

There have been fewer studies of the three-dimensional nonlinear problem
which has drawn serious attention only recently. In a weakly nonlinear setting
similar to Xia and Shen’s [43], Hărăguş-Courcelle and Ilichev [24] derived a
Kadomtsev–Petviashvili equation for weakly three-dimensional flexural-gravity
waves on shallow water, while Alam [3] obtained a DS system that admits fully
localized dromion solutions. Părău and Vanden-Broeck [33] computed solitary
lumps due to a steadily moving pressure, by solving the full nonlinear equations
for the fluid combined with a linear Euler–Bernoulli ice sheet. More recently,
Milewski and Wang [30] proposed a DS model based on the nonlinear formulation
of Plotnikov and Toland [34]. These previous authors [3, 24, 30] used the standard
method of multiple scales to derive their models.

In the present paper, we extend the theoretical results of Guyenne and Părău
[21–23] to the three-dimensional case. After establishing the Hamiltonian for-
mulation of the problem, we apply the perturbation approach of Craig et al.
[8, 10] to deriving envelope equations for weakly nonlinear flexural-gravity waves
in the modulational regime. This is accomplished by introducing and expanding
the Dirichlet–Neumann operator (DNO) which allows us to reduce the original
Laplace problem to a lower-dimensional system involving quantities evaluated at
the fluid-ice interface alone. A new aspect of our contribution to this approach is
the inclusion of higher harmonics in the modulational Ansatz and the associated
canonical transformations. Both cases of finite and infinite depth are considered.
The resulting NLS and DS equations resemble existing ones in their general forms,
but details such as their numerical coefficients and the relation of their dependent
variables to the original physical variables are different. An analysis of these models
in the two-dimensional case is performed and their predictions are compared with
direct numerical simulations of the full equations. We also explore the possibility
of including the exact linear dispersion relation in these approximations to improve
their dispersive properties.

The remainder of the paper is organized as follows. Section 2 presents the
mathematical formulation of the three-dimensional hydroelastic problem in arbi-
trary depth. The DNO is introduced and the Hamiltonian equations of motion
are established. From this Hamiltonian formulation, weakly nonlinear envelope
equations for two- and three-dimensional small-amplitude waves are derived at a
formal level in Sect. 3. The various steps of the perturbation method are discussed
including the modulational Ansatz, canonical transformation and expansions of
the Hamiltonian. Furthermore, comparison with two-dimensional direct numerical
simulations is shown and models incorporating the exact linear dispersion relation
are also examined. Finally, concluding remarks are given in Sect. 4.
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2 Mathematical Formulation

2.1 Equations of Motion

We consider a three-dimensional fluid (e.g. water) of uniform depth h beneath a
continuous thin elastic plate (e.g. a floating ice sheet). The fluid is assumed to be
incompressible and inviscid, and the flow to be irrotational. The ice sheet is modeled
by using the special Cosserat theory of hyperelastic shells in Cartesian coordinates
.x; y; z/ [34], with the horizontal .x; y/-plane being the bottom of the ice sheet at rest
and the z-axis directed vertically upwards (see Fig. 1). The vertical deformation of
the ice is denoted by z D �.x; y; t/. The fluid velocity potential ˚.x; y; z; t/ satisfies
the Laplace equation

r2˚ D 0 ; for x D .x; y/> 2 R
2 ; �h < z < �.x; y; t/ : (1)

The nonlinear boundary conditions at z D �.x; y; t/ are the kinematic condition

�t C ˚x�x C ˚y�y D ˚z ; (2)

and the dynamic condition

˚t C 1

2
jr˚ j2 C g�C D

�
F D 0 ; (3)

where

F D 2p
A

"
@x

 
1C �2yp

A
@xH

!
� @x

�
�x�yp
A
@yH

�
� @y

�
�x�yp
A
@xH

�

C @y

�
1C �2xp

A
@yH

��
C 4H 3 � 4K H ;

with

A D 1C �2x C �2y ; K D 1

A 2
.�xx�yy � �2xy/ ;

Fig. 1 Sketch of the
hydroelastic problem
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H D 1

2A 3=2

h
.1C �2y/�xx � 2�xy�x�y C .1C �2x/�yy

i
:

The additional term F in (3) represents the nonlinear bending force exerted by the
ice sheet onto the fluid surface, as derived by Plotnikov and Toland [34]. It is also
a conservative term and thus can be cast into a Hamiltonian formulation as shown
below. Two simpler expressions of this bending force have been commonly used in
the literature; a linear one based on Euler–Bernoulli theory [3, 24, 33, 37],

F D �xxxx C 2�xxyy C �yyyy ;

and a nonlinear one based on Kirchhoff–Love theory [4, 17, 29, 32]. The system is
completed with the boundary condition at the bottom,

˚z D 0 ; at z D �h : (4)

In the infinite-depth limit (h ! 1), Eq. (4) is replaced by

jr˚ j ! 0 ; as z ! �1 :

If D D 0, these are the classical governing equations for the gravity water wave
problem [27].

Hereinafter, subscripts are also used as shorthand notation for partial or varia-
tional derivatives (e.g. ˚t D @t˚). The vertical bars denote either a vector norm
(when applied to a vector) or a complex modulus (when applied to a complex scalar
function). The constant D is the coefficient of flexural rigidity for the ice sheet, �
the density of the fluid and g the acceleration due to gravity. The dynamic condition
(3) stems from the Bernoulli equation [34]. The inertia of the thin elastic plate is
neglected, so the plate acceleration term is not considered here [37]. We also assume
that the elastic plate is not pre-stressed and neglect plate stretching.

The dispersion relation for the linearized problem with solutions of the form
ei.k�x�!t/ is

c2 D
�

g

k
C Dk3

�

�
tanh.hk/ ; (5)

where k D jkj and c D !=k is the phase speed. It can be shown that the phase speed
c.k/ has a minimum cmin at k D kmin for any parameter values [32, 37]. At this
minimum, the phase velocity and group velocity are equal. Another critical speed in
finite depth is the long-wave limit c0 D p

gh as k ! 0.
The total energy

H D 1

2

“ 1

�1

Z �

�h
jr˚ j2dzdydx C 1

2

“ 1

�1

�
g�2 C 4D

�
H 2

p
A

�
dydx ; (6)

together with the impulse (or momentum) vector
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I D
“ 1

�1

Z �

�h
rx˚ dzdydx ;

where rx D .@x; @y/
>, and the volume (or mass)

V D
“ 1

�1
� dydx ; (7)

are invariants of motion for (1)–(4). The first integral in (6) represents kinetic energy,
while the second integral represents potential energy due to gravity and elasticity.

2.2 Hamiltonian Formulation

Following Zakharov [45] and Craig and Sulem [14], we can reduce the dimension-
ality of the Laplace problem (1)–(4) by introducing �.x; y; t/ D ˚.x; y; �.x; y; t/; t/,
the trace of the velocity potential on z D �.x; y; t/, together with the DNO

G.�/� D .�rx�; 1/
> � r˚ ˇ̌

zD� ; (8)

which is the singular integral operator that takes Dirichlet data � on z D �.x; y; t/,
solves the Laplace equation (1) for ˚ subject to (4), and returns the corresponding
Neumann data (i.e. the normal fluid velocity there).

In terms of these boundary variables, Eqs. (1)–(4) can be rewritten as

�t D G.�/� ; (9)

�t D � 1

2.1C jrx�j2/
h
jrx�j2 � .G.�/�/2 � 2.G.�/�/rx� � rx�

Cjrx�j2jrx�j2 � .rx� � rx�/
2
i

� g�� D

�
F ; (10)

which are Hamiltonian equations for the canonically conjugate variables � and �,
extending Zakharov’s formulation of the water wave problem to flexural-gravity
waves [21–23]. Equations (9) and (10) have the canonical form

�
�t

�t

�
D J

�
H�

H�

�
D
�
0 1

�1 0

��
H�

H�

�
; (11)

whose Hamiltonian

H D 1

2

“ 1

�1

�
�G.�/� C g�2 C 4D

�
H 2

p
A

�
dydx; (12)

corresponds to the total energy (6).
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The present Hamiltonian formulation involving the DNO can be extended to
account for internal waves propagating e.g. along an interface between two fluid
regions [5, 9, 11, 12] and for variable topography at the bottom of the fluid domain
[6, 7, 20]. However, these effects will not be considered here.

2.3 Dirichlet–Neumann Operator

In light of its analyticity properties [13], the DNO can be expressed as a convergent
Taylor series expansion in �,

G.�/ D
1X

jD0
Gj.�/ ; (13)

where each term Gj can be determined recursively [14, 31, 44]. More specifically,
for j D 2r > 0,

G2r.�/ D 1

.2r/Š
G0.jDxj2/r�1Dx � �2rDx

�
r�1X
sD0

1

.2.r � s//Š
.jDxj2/r�s�2.r�s/G2s.�/

�
r�1X
sD0

1

.2.r � s/ � 1/ŠG0.jDxj2/r�s�1�2.r�s/�1G2sC1.�/; (14)

and, for j D 2r � 1 > 0,

G2r�1.�/ D 1

.2r � 1/Š
.jDxj2/r�1Dx � �2r�1Dx

�
r�1X
sD0

1

.2.r � s/ � 1/Š
G0.jDxj2/r�s�1�2.r�s/�1G2s.�/

�
r�2X
sD0

1

.2.r � s � 1//Š
.jDxj2/r�s�1�2.r�s�1/G2sC1.�/; (15)

where Dx D �irx and G0 D jDxj tanh.hjDxj/ are Fourier multiplier operators (Dx

is defined in such a way that its Fourier symbol is k and thus jDxj corresponds to
jkj D k). In the infinite-depth limit (h ! 1), G0 reduces to jDxj [21]. Similar
expansions of the DNO can be derived in the presence of an interface between two
fluid layers [5, 12, 19] and for variable bottom topography [6, 20].
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3 Modulational Regime

We now present the derivation of weakly nonlinear models for small-amplitude
waves in the modulational regime. For this purpose, we apply a Hamiltonian
perturbation approach [5, 6, 8, 10], which is especially suitable for the present
Hamiltonian formulation of the flexural-gravity wave problem. An advantage of this
approach is that it naturally associates a Hamiltonian to the equations of motion at
each order of approximation, although we restrict ourselves to approximations up
to the cubic order of nonlinearity in the present paper. Long-wave models can be
treated in a similar way [23] but they will not be examined here. Changing variables
through canonical transformations and expanding the Hamiltonian are the main
ingredients of this approach. We distinguish two cases: finite and infinite depth.

3.1 Finite Depth

3.1.1 Canonical Transformations

The first step is a normal decomposition of the first-harmonic waves, and here we
extend the approach of Craig et al. [8, 10] by accounting for higher harmonics
according to Stokes’ expansion, as assumed in the multiple-scale method [3, 13,
15, 16, 30, 38, 40]. This translates into

� D 1p
2

a�1.Dx/.v C v/C Q�C �2 C : : : ; Q� D P0� ; �2 D P2�;

� D � ip
2

a.Dx/.v � v/C Q� C �2 C : : : ; Q� D P0� ; �2 D P2�; (16)

where

a.Dx/ D 4

s
g C D jDxj4=�

G0.Dx/
;

. Q�; Q�/ are the zeroth harmonics representing the induced mean flow, and .�2; �2/
the second harmonics. The overbar represents complex conjugation and P0, P2
are the projections that associate to .�; �/ their zeroth- and second-harmonic
components respectively. Higher harmonics can be taken into account but it is
sufficient to consider only up to the second ones for the purposes of deriving the
cubic NLS and DS equations in the present paper. As will be made clearer later,
we use the terminology “first harmonics” to refer to the solution’s components with
wavenumbers centered around the fundamental (or carrier), “second harmonics” to
those with wavenumbers centered around twice the fundamental, and so on.
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The new variables .v; v; �2; �2; Q�; Q�/> are expressed in terms of .�; �/> as

0
BBBBBBB@

v

v

�2

�2
Q�
Q�

1
CCCCCCCA

D A1

�
�

�

�
D 1p

2

0
BBBBBBB@

a.Dx/.I � P0 � P2/ ia�1.Dx/.I � P0 � P2/

a.Dx/.I � P0 � P2/ �ia�1.Dx/.I � P0 � P2/p
2P2 0

0
p
2P2p

2P0 0

0
p
2P0

1
CCCCCCCA

�
�

�

�
;

where I denotes the identity operator. Accordingly, the symplectic structure of the
system is changed to J1 D A1JA>

1 [5, 8] and the equations of motion become
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;

given the fact that P20 D P0 and similarly for P2. By also decomposing the second
harmonics into normal modes,

�2 D 1p
2

a�1.Dx/.v2 C v2/ ; �2 D � ip
2

a.Dx/.v2 � v2/ ;

we obtain

0
BBBBBBB@
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Hv2

HQ�
HQ�

1
CCCCCCCA
;

where

J2 D

0
BBBBBBB@

0 �i.I � P0 � P2/ 0 0 0 0

i.I � P0 � P2/ 0 0 0 0 0

0 0 i
2 .aP2a

�1 � a�1
P2a/ � i

2 .aP2a
�1 C a�1

P2a/ 0 0

0 0 i
2
.aP2a�1 C a�1

P2a/ � i
2
.aP2a�1 � a�1

P2a/ 0 0

0 0 0 0 0 P0

0 0 0 0 �P0 0

1
CCCCCCCA
:
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If higher harmonics were to be considered, this would increase the size of the system
of equations. These higher harmonics can also be expressed in terms of .�; �/> by
using the associated projections as in (16).

The next step introduces the modulational Ansatz

v D " u.X; t/eik0�x ; v D " u.X; t/e�ik0�x; (17)

v2 D "2u2.X; t/e2ik0�x ; v2 D "2u2.X; t/e�2ik0�x ; (18)

in the spirit of Stokes’ expansion, together with

Q� D "˛�0.X; t/ ; Q� D "ˇ�0.X; t/ ; (19)

where the exponents ˇ > 1 and ˛ D ˇ C 1 are dependent on whether the depth
is finite or infinite [8]. This implies that we look for solutions in the form of quasi-
monochromatic waves with nonzero carrier wavenumber k0 D .kx; ky/

> and with
slowly varying amplitude depending on X D "x. Wave steepness is measured by
the small parameter " � jk0ja0 � 1 where a0 is a characteristic wave amplitude.
In [8, 10, 21, 23], the second harmonics were assumed to be of higher order than
O."2/ and thus did not contribute to the level of approximation considered. Such a
regime may be interpreted as that for weakly nonlinear waves which are very close
to being monochromatic (or equivalently for a very narrow-banded wave spectrum
centered around k0). In the present case, these second harmonics give contributions,
albeit small.

The system is now determined by the slowly varying amplitudes
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whose evolution equations read
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�0 t

�0 t

1
CCCCCCCA

D J3

0
BBBBBBB@
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; (20)
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where

J3 D "2A3J2A
>
3 D "2

0
BBBBBBB@

0 J12 0 0 0 0

J21 0 0 0 0 0

0 0 0 J34 0 0

0 0 J43 0 0 0

0 0 0 0 0 "�˛�ˇ
P0

0 0 0 0 �"�˛�ˇ
P0 0

1
CCCCCCCA
;

and

J12 D �i"�2e�ik0�x.I � P0 � P2/.eik0�x:/ ; J21 D J12 ;

J34 D �i"�4e�2ik0�x P2.e2ik0�x:/ ; J43 D J34 :

Note that the additional factor "2 in J3 is due to the spatial rescaling x ! X [5, 8].
This new symplectic structure reduces to

J3 D

0
BBBBBBB@

0 �i 0 0 0 0

i 0 0 0 0 0

0 0 0 �i"�2 0 0

0 0 i"�2 0 0 0

0 0 0 0 0 "2�˛�ˇ
0 0 0 0 �"2�˛�ˇ 0

1
CCCCCCCA
;

when applied to a homogenized Hamiltonian in terms of functions of X alone, as
described next.

3.1.2 Expansion of the Hamiltonian

The modulational Ansatz (17)–(19) also introduces the small parameter " in the
expression of the Hamiltonian (12) which can then be expanded in powers of ", by
using the Taylor series expansion (13) of the DNO. The mean-flow exponents are
set to ˛ D 2 and ˇ D 1, as determined in [8] for finite depth. Up to order O."2/, we
find

H D
“ 1

�1

�
1

2
u

�
!.k0/C "rk!.k0/ � DX C "2

2
@2kjk`!.k0/D

2
XjX`

�
u C c:c:

C "2!.2k0/ju2j2 C "2˛3.k0/juj4 C "2˛2.k0/
�

u2u2 C u2u2
�

C "2
�

ik0 � DX�0 C ˛1.k0/�0
�
juj2 C "2

2

�
h�0jDXj2�0 C g�20

��
dYdX C O."3/; (21)
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where c:c: stands for the complex conjugate of all the preceding terms on the right-
hand side of the equation, and

˛1.k0/ D 1

2
a2.k0/

�
jk0j2 � G2

0.k0/
�
;

˛2.k0/ D 1

2
p
2

a.2k0/
�
2jk0j2 � G0.k0/G0.2k0/
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C 1

4
p
2
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�
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4
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�
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a�4.k0/ :

The coefficient

!.k/ D
p

G0.k/.g C Dk4=�/ ;

denotes the linear dispersion relation in terms of the angular frequency and the
indices j; ` D f1; 2g refer to the two horizontal directions. The scale separation
lemma of Craig et al. [6] is applied to homogenize the fast oscillations in x, so
that four-wave resonant terms are retained and non-resonant terms are eliminated.
Note the zeroth- and second-harmonic contributions to this order of approximation
in (21).

The Hamiltonian (21) can be further simplified by subtracting a multiple of the
wave action

M D
“ 1

�1
juj2 dYdX ;

together with a (scalar) multiple of the impulse

I D
“ 1

�1
�rx� dydx ;

D
“ 1

�1

h
k0juj2 C "

2

�
uDXu C uDXu

�
C 2"2k0ju2j2 C i"2�0DX�0

i
dYdX ;

so that it takes the “renormalized” form

OH D H � rk!.k0/ � I �
�
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�
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ju2j2



Envelope Equations for Gravity and Flexural-Gravity Waves 147

C ˛3.k0/juj4 C ˛2.k0/
�

u2u2 C u2u2
�

C
�

ik0 � DX�0 C ˛1.k0/�0
�
juj2

C 1

2
h�0jDXj2�0 C 1

2
g�20 � irk!.k0/ � �0DX�0

�
dYdX C O."3/: (22)

The quantities I and M are conserved by the system, at least at the level of
approximation considered. Therefore, they Poisson commute with H and do not
modify its symplectic structure [5, 8]. The subtraction of a multiple of M from H
reflects the fact that our approximation of the problem is phase invariant, while the
subtraction of rk!.k0/ � I is equivalent to changing the coordinate system into a
reference frame moving with the group velocity rk!.k0/.

3.1.3 DS System

By using (22), the equations of motion (20) reduce to

iu� D �1
2
@2kjk`

!.k0/@2XjX`
u C 2˛3.k0/juj2u C 2˛2.k0/u u2

C
�

ik0 � DX�0 C ˛1.k0/�0
�

u ; (23)

"�0� D hjDXj2�0 � k0 � rXjuj2 C rk!.k0/ � rX�0 ; (24)

"�0� D �
�

g�0 C ˛1.k0/juj2 � rk!.k0/ � rX�0

�
; (25)

i"2u2� D
�
!.2k0/� 2k0 � rk!.k0/

�
u2 C ˛2.k0/u2 ; (26)

where � D "2t. To lowest order in ", the right-hand sides of (24)–(26) equal zero,
hence

hjDXj2�0 � k0 � rXjuj2 C rk!.k0/ � rX�0 D 0 ; (27)

and

�0 D �1
g
˛1.k0/juj2 C 1

g
rk!.k0/ � rX�0 ; (28)

u2 D ˛2.k0/
2k0 � rk!.k0/� !.2k0/

u2 : (29)

Then substituting (28)–(29) into (23) and (27) leads to the DS system

iu� D �1
2
@2kjk`

!.k0/@2XjX`
u C ˛4.k0/juj2u C ˛5.k0/ � urX�0 ;

0 D L �0 � ˛5.k0/ � rXjuj2 ; (30)
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where

˛4.k0/ D 2˛22.k0/
2k0 � rk!.k0/� !.2k0/

C 2˛3.k0/� 1

g
˛21.k0/ ;

˛5.k0/ D k0 C 1

g
˛1.k0/rk!.k0/ ;

L D �hjrXj2 C 1

g

�
@kj!.k0/

��
@k`!.k0/

�
@2XjX`

:

As mentioned earlier, setting D D 0 in (30) and in the subsequent envelope
equations reduces them to models for surface gravity water waves.

3.1.4 NLS Equation

In the two-dimensional case, the DS system (30) simplifies to

iu� C 1

2
@2k!.k0/@

2
Xu � ˛4.k0/juj2u � ˛5.k0/u @X�0 D 0;

�
�h C 1

g

�
@k!.k0/

�2�
@2X�0 � ˛5.k0/@X juj2 D 0:

Integrating the second equation above with respect to X by assuming vanishing
conditions at infinity (as is the case for solitary waves) gives

@X�0 D ˛5.k0/
1
g .@k!.k0//2 � h

juj2 ; (31)

and then substituting this into the first equation yields the NLS equation

iu� C 
@2Xu C �juj2u D 0 ; (32)

where


 D 1

2
@2k!.k0/ ;

� D �˛4.k0/� ˛25.k0/
1
g .@k!.k0//2 � h

:

The corresponding Hamiltonian (with respect to �) reads

H D
Z 1

�1

�

j@Xuj2 � 1

2
�juj4

�
dX ; (33)
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so that u� D �iHu and is obtained by inserting (28), (29), (31) in (22). For
convenience, the hat notation is dropped from (33).

Similarly to the classical water wave problem in finite depth [1, 15], the
coefficient � of the nonlinear term may have two singularities at .@k!.k0//2 D gh
and !.2k0/=.2k0/ D @k!.k0/ corresponding to resonances between the zeroth
and first harmonics and between the first and second harmonics, respectively.
The former singularity occurs if the group velocity of the first harmonics equals
the phase velocity of the zeroth harmonics (i.e. the long-wave limit c0), while the
latter singularity occurs if the same group velocity equals the phase velocity of the
second harmonics. The presence of the first-harmonic group velocity @k!.k0/ in
these singularities is related to the fact that the reference frame is moving with
this velocity, as mentioned above. In the present problem, a natural choice for k0
is kmin. For a given value of h, the corresponding kmin is found numerically where
the dispersion relation (5) achieves its minimum cmin. Figure 2 reveals that both
c.2kmin/ D !.2kmin/=.2kmin/ and c0 D p

gh tend to cmin D @k!.kmin/ as h ! 0.
Therefore, the modulational regime becomes inadequate and the long-wave regime
should be preferred in the shallow-water limit, as could be expected [23].

According to (16), the ice-sheet deflection can be expressed in terms of u as

�.X; �/ D "p
2

�
a�1.k0 C "DX/u.X; �/e

ik0X=" C c:c:
�

C "2p
2

�
a�1.2k0 C "DX/u2.X; �/e

2ik0X=" C c:c:
�C "2�0.X; �/; (34)

where u2 is given by (29), and

�0 D ˛1.k0/h C k0@k!.k0/

.@k!.k0//2 � gh
juj2 ;
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Fig. 2 Left panel: cmin (solid line) and c0 (dashed line) versus h. Right panel: cmin (solid line) and
c.2kmin/ (dashed line) versus h
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by combining (28) with (31). The zeroth and second harmonics add corrections
to the coefficients in the envelope equation for the first harmonics but also to the
formula recovering the ice-sheet deflection. An expression similar to (34) holds for
� in the three-dimensional case, with �0 determined by (28) and the solution of
the DS system. Equation (34) can be evaluated numerically by a pseudo-spectral
method, which is a natural choice for computing such Fourier multipliers as a�1
[10, 14, 20, 21, 31, 44].

3.1.5 Soliton Solutions

In view of presenting numerical results, we non-dimensionalize the equations by
using the characteristic length and velocity scales

L D
�
D

�g

�1=4
; V D

�
Dg3

�

�1=8
;

respectively, so that g D 1 and D=� D 1 as a consequence [4, 29, 39].
The NLS equation (32) is of focusing type and thus admits stable soliton

solutions traveling at the group velocity @k!.k0/ if 
� > 0 [18, 38]. The graphs
of 
 and � for k0 D kmin are shown in Fig. 3. We see that 
 is increasing and always
positive, while � is decreasing and changes sign at the critical depth hc ' 36:75.
Accordingly, the NLS equation (32) is of focusing type if h < hc and defocusing
if h > hc. Because � D 0 at h D hc, this implies that higher-order terms must be
included in the equation, but we will not consider this situation here. In the linear
Euler–Bernoulli case (by setting D D 0 in ˛3), we find hc ' 5:54, which is close
to the value hc ' 5:91 reported by Milewski and Wang [30]. For a Kirchhoff–Love
model of the ice sheet, Părău and Dias [32] found hc ' 7:63, which is smaller
than the present value for the Cosserat model. The fact that � ! 1 as h ! 0 in
Fig. 3 is consistent with the two resonances in the shallow-water limit as discussed
in Sect. 3.1.4.

Since we are interested in solitary waves, the key parameters to be examined
are the wave speed c < cmin and the water depth h < hc. Figures 4 and 5
present a comparison of solitary wave profiles for various values of .c; h/, which
are obtained from direct numerical simulations of (1)–(4) and from the exact NLS
soliton solution

u.X; �/ D p
2 u0 sech

�
u0

r
�



X

�
ei�u20� ; (35)

which corresponds to solitary waves whose crests are stationary relative to their
envelopes [2]. In the latter case, the ice-sheet deflection (34) is evaluated as

�.X; �/ D "p
2

h
FT�1na�1.k0 C "K/ FT.u/

o
eik0X=" C c:c:

i

C "2p
2

h
FT�1na�1.2k0 C "K/ FT.u2/

o
e2ik0X=" C c:c:

i
C "2�0.X; �/ ;
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Fig. 3 NLS coefficients 
 (left panel, solid line) and � (right panel, solid line) versus h. As a
reference, the corresponding values in the infinite-depth limit (see Sect. 3.2) are represented by a
dashed line

where FT denotes the fast Fourier transform [10]. A number of 4096 grid points
are typically used in our computations. For convenience, we set " D 1 and only
vary u0 in (35) to match the fully nonlinear profile as closely as possible (which is
equivalent to absorbing " into u0). The direct numerical simulations are based on
a boundary-integral method with finite-difference approximations and the reader is
referred to [21–23] for further details.

Overall there is a good agreement, especially regarding the relative amplitude
of the central trough and the wavelength. The agreement is satisfactory even for
moderately large wave amplitudes (compared to h, see Fig. 5), which is remarkable
given the weakly nonlinear nature of the cubic NLS equation. The NLS prediction is
able to capture well the main features, whether the solution is a localized or broader
solitary wavepacket. This confirms in particular that the inclusion of the mean-
flow component �0 in (34) is crucial at reproducing well the vertical asymmetry of
the solution. The second-harmonic corrections, however, are negligible according
to the comparison of the two columns in Figs. 4 and 5. The left column of these
figures shows results without second-harmonic contributions as in [23]. Only little
improvement due to these second harmonics is noticeable in Fig. 5 for h D 3:095.
Consistent with statements in Sect. 3.1.4, the agreement between numerical and
NLS predictions slowly deteriorates as h decreases. We pay attention to the case
h D 3:095 because it corresponds to Takizawa’s experiments on Lake Saroma
(Japan) [39], where the ice thickness was 0:17m and the water depth was 6:8m.
Waves were generated by moving a load (ski-doo snowmobile) at various speeds on
top of the ice sheet. Wavelengths of order O.10/ m were observed. For h D 3:095,
our results resemble some of his observations. We find similar wave profiles for
larger depths.
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Fig. 4 Comparison of solitary wave profiles obtained from direct numerical simulations (solid
line) and the NLS soliton (35) (dashed line) for .c; h/ D .0:7; 0:5/, .0:985; 1/ and .0:9; 1:5/ (from
top to bottom). The left and right columns show the solutions without and with second-harmonic
contributions, respectively

3.2 Infinite Depth

In this regime, the mean-flow exponents ˛ D 3 and ˇ D 2 are larger than those in
finite depth (see [8] for an explanation). As a consequence, the mean-flow terms do
not contribute to the order of approximation being considered, and the renormalized
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Fig. 5 Comparison of solitary wave profiles obtained from direct numerical simulations (solid
line) and the NLS soliton (35) (dashed line) for .c; h/ D .0:658; 1:5/, .1:3; 3:095/ and
.1:056; 3:095/ (from top to bottom). The left and right columns show the solutions without and
with second-harmonic contributions, respectively

Hamiltonian takes the form

OH D "2
“ 1

�1

�
1

2
@2kjk`

!.k0/uD2
XjX`

u C
�
!.2k0/ � 2k0 � rk!.k0/

�
ju2j2

C
�
1

4
jk0j3 � 5D

8�

�
k6x C k6y C 3k4xk2y C 3k2xk4y

�
a�4.k0/

�
juj4
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C 1

2
p
2

jk0j2a�1.2k0/a2.k0/
�

u2u2 C u2u2
��

dYdX C O."3/ : (36)

The equations of motion (20) then become

iu� D �1
2
@2kjk`

!.k0/@2XjX`
u C 1p

2
jk0j2a�1.2k0/a2.k0/u u2

C
�
1

2
jk0j3 � 5D

4�

�
k6x C k6y C 3k4xk2y C 3k2xk4y

�
a�4.k0/

�
juj2u ; (37)

i"2u2� D
�
!.2k0/� 2k0 � rk!.k0/

�
u2 C 1

2
p
2

jk0j2a�1.2k0/a2.k0/u2;

"3�0� D 0;

"3�0� D 0; (38)

which confirms that the mean-flow contributions are negligible, while

u2 D jk0j2a�1.2k0/a2.k0/

2
p
2 .2k0 � rk!.k0/ � !.2k0//

u2 ; (39)

to lowest order by virtue of (38). Substituting (39) into (36) and (37) leads to the
NLS equation

iu� D � 1

2
@2kjk`

!.k0/@2XjX`
u C

� jk0j4a�2.2k0/a4.k0/
4 .2k0 � rk!.k0/ � !.2k0//

C 1

2
jk0j3 � 5D

4�

�
k6x C k6y C 3k4xk2y C 3k2xk4y

�
a�4.k0/

�
juj2u ; (40)

whose Hamiltonian (with respect to �) is

H D
“ 1

�1

�
1

2
@2kjk`

!.k0/.@Xj u/.@X`u/C
� jk0j4a�2.2k0/a4.k0/
8 .2k0 � rk!.k0/ � !.2k0//

C 1

4
jk0j3 � 5D

8�

�
k6x C k6y C 3k4xk2y C 3k2xk4y

�
a�4.k0/

�
juj4

�
dYdX :

In the two-dimensional case, we again obtain an NLS equation of the form (32),
with Hamiltonian (33), where


 D 1

2
@2k!.k0/ D 5Dk30

�

q
gk0 C Dk50=�

� .g C 5Dk40=�/
2

8.gk0 C Dk50=�/
3=2
;
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and

� D 5Dk70
4�.g C Dk40=�/

� k30
2

� k30.g C Dk40=�/

4 .2k0@k!.k0/� !.2k0//

s
2k0

g C 16Dk40=�
:

Without loss of generality, the carrier wavenumber k0 D kx is assumed to be
positive. Again the coefficient � may have a singularity at !.2k0/=.2k0/ D @k!.k0/
due to the first-second harmonic resonance, but the zeroth-first harmonic resonance
is absent here since the mean flow does not come into play. The ice-sheet deflection
can be recovered from u by using (34) as well, but without need for the higher-order
O."3/ contribution from �0.

In infinite depth [21, 37], the phase speed is minimum at

kmin D
� g�

3D

�1=4
:

After applying the same non-dimensionalization as in Sect. 3.1.5, we find that 
� <
0 if k0 D kmin since


 D 37=8

2
' 1:307 > 0;

and

� D �3
1=4.41

p
38� 228/

912.
p
38 � 4/ ' �0:016 < 0 :

Incidentally, the above-mentioned denominator in �

!.2kmin/

2kmin
� @k!.kmin/ D 35=8.

p
38� 4/

6
' 0:717 ;

does not vanish, as also indicated in Fig. 2 for large h. Therefore, the NLS equation is
of defocusing type and no soliton solutions exist in this limit. This result is consistent
with the asymptotic behavior of 
 and � for finite depth as h ! 1 (see Sect. 3.1.5).
Previous studies using different methods of derivation and different models for the
ice sheet (e.g. Kirchhoff–Love theory) also obtained a defocusing NLS equation in
this regime [21, 29].

3.3 Exact Linear Dispersion

3.3.1 Finite Depth

As suggested in [10, 27, 41], the linear dispersive properties of envelope equations
can be improved by retaining the exact linear dispersion relation rather than Taylor
expanding it. For finite depth, a counterpart to (22) is
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OH D H � !.k0/M ;

D "2
“ 1

�1

�
1

"2
u
�
!.k0 C "DX/� !.k0/

�
u C !.2k0/ju2j2 C ˛3.k0/juj4

C ˛2.k0/
�

u2u2 C u2u2
�

C
�

ik0 � DX�0 C ˛1.k0/�0
�
juj2

C 1

2"2
�0G0."DX/�0 C 1

2
g�20

�
dYdX C O."3/ ; (41)

and the corresponding evolution equations are

iu� D 1

"2

�
!.k0 C "DX/� !.k0/

�
u C 2˛3.k0/juj2u C 2˛2.k0/u u2

C
�

ik0 � DX�0 C ˛1.k0/�0
�

u ;

"�0� D 1

"2
G0."DX/�0 � k0 � rXjuj2 ;

"�0� D �
�

g�0 C ˛1.k0/juj2
�
;

i"2u2� D !.2k0/u2 C ˛2.k0/u2 :

By following the same procedure as in Sect. 3.1.3, we find the modified DS system

iu� D 1

"2

�
!.k0 C "DX/� !.k0/

�
u C

�
2˛3.k0/ � 2˛22.k0/

!.2k0/
� 1

g
˛21.k0/

�
juj2u

Cu k0 � rX�0 ;

0 D 1

"2
G0."DX/�0 � k0 � rXjuj2 ;

where

�0 D �1
g
˛1.k0/juj2 ; u2 D � ˛2.k0/

!.2k0/
u2 ;

to lowest order. In the two-dimensional case, the second equation in this DS system
can be solved for @X�0, hence

@X�0 D "2k0G
�1
0 ."DX/@

2
X juj2 :
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Substituting this into the first equation yields the modified NLS equation

iu� D 1

"2

�
!.k0 C "DX/� !.k0/

�
u C

�
2˛3.k0/� 2˛22.k0/

!.2k0/
� 1

g
˛21.k0/

�
juj2u

C"2k20 u G�1
0 ."DX/@

2
X juj2 ;

with Hamiltonian

H D
Z 1

�1

�
1

"2
u
�
!.k0C"DX/�!.k0/

�
uC1

2

�
2˛3.k0/�2˛

2
2.k0/

!.2k0/
�1

g
˛21.k0/

�
juj4

C1

2
"2k20 juj2G�1

0 ."DX/@
2
Xjuj2

�
dX ;

as derived from (41). Here again, these modified DS and NLS equations can be
solved numerically by a pseudo-spectral method which is suitable for handling the
Fourier multipliers ! and G0. Note that the operator G�1

0 ."DX/@
2
X is well-defined,

and in particular it is not singular at k D 0 as can be shown by a Taylor series
expansion in ".

3.3.2 Infinite Depth

For infinite depth, the renormalized Hamiltonian is given by

OH D "2
“ 1

�1

�
1

"2
u
�
!.k0 C "DX/� !.k0/

�
u C !.2k0/ju2j2

C
�
1

4
jk0j3 � 5D

8�

�
k6x C k6y C 3k4xk2y C 3k2xk4y

�
a�4.k0/

�
juj4

C 1

2
p
2

jk0j2a�1.2k0/a2.k0/
�

u2u2 C u2u2
��

dYdX C O."3/ ;

whose dynamics obeys

iu� D 1

"2

�
!.k0 C "DX/� !.k0/

�
u C 1p

2
jk0j2a�1.2k0/a2.k0/u u2

C
�
1

2
jk0j3 � 5D

4�

�
k6x C k6y C 3k4xk2y C 3k2xk4y

�
a�4.k0/

�
juj2u ; (42)

i"2u2� D !.2k0/u2 C 1

2
p
2

jk0j2a�1.2k0/a2.k0/u2 : (43)
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Combining (42) and (43) as in Sect. 3.2 leads to the modified NLS equation

iu� D 1

"2

�
!.k0 C "DX/ � !.k0/

�
u �

� jk0j4a�2.2k0/a4.k0/
4!.2k0/

�1
2

jk0j3 C 5D

4�

�
k6x C k6y C 3k4xk2y C 3k2xk4y

�
a�4.k0/

�
juj2u ;

such that

u2 D �jk0j2a�1.2k0/a2.k0/

2
p
2 !.2k0/

u2 :

The corresponding Hamiltonian reads

H D
“ 1

�1

�
1

"2
u
�
!.k0 C "DX/� !.k0/

�
u �

� jk0j4a�2.2k0/a4.k0/
8!.2k0/

�1
4

jk0j3 C 5D

8�

�
k6x C k6y C 3k4xk2y C 3k2xk4y

�
a�4.k0/

�
juj4

�
dYdX :

Their expressions in the two-dimensional case follow directly, namely

iu� D 1

"2

�
!.k0 C "DX/� !.k0/

�
u �

�
k40 a�2.2k0/a4.k0/

4!.2k0/

�1
2

k30 C 5D

4�
k60 a�4.k0/

�
juj2u ;

and

H D
Z 1

�1

�
1

"2
u
�
!.k0 C "DX/� !.k0/

�
u �

�
k40 a�2.2k0/a4.k0/

8!.2k0/

�1
4

k30 C 5D

8�
k60 a�4.k0/

�
juj4

�
dX :

4 Conclusions

A Hamiltonian formulation for three-dimensional nonlinear flexural-gravity waves
propagating at the surface of an ideal fluid covered by ice is presented. The ice
sheet is modeled as a thin elastic plate, based on the special Cosserat theory for
hyperelastic shells as proposed by Plotnikov and Toland [34]. Weakly nonlinear
models for small-amplitude waves on finite and infinite depth are derived in
the modulational regime, by applying the Hamiltonian perturbation approach of
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Craig et al. [8, 10]. A new contribution of the present paper is the inclusion
of second-harmonic effects, leading to corrections in the cubic coefficient of the
envelope equations and in the expression of the ice-sheet deflection. However,
comparison with two-dimensional direct numerical simulations reveals no much
improvement from these higher-order corrections in the parameter regime consid-
ered.

In the future, it would be of interest to further analyze the resulting NLS and DS
equations, in particular those incorporating exact linear dispersion, and to compute
localized traveling solutions numerically. We also plan to investigate the long-wave
regime for this three-dimensional hydroelastic problem within the Hamiltonian
framework.
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Dissipation of Narrow-Banded Surface
Water Waves

Diane Henderson, Girish Kumar Rajan, and Harvey Segur

We dedicate this paper to our friend and colleague,
Walter Craig.

Abstract Our overall objective is to find mathematical models that describe
accurately how waves in nature propagate and evolve. One process that affects
evolution is dissipation (Segur et al., J Fluid Mech 539:229–271, 2005), so in
this paper we explore several models in the literature that incorporate various
dissipative physical mechanisms. In particular, we seek theoretical models that (1)
agree with measured dissipation rates in laboratory and field experiments, and (2)
have the mathematical properties required to be of use in weakly nonlinear models
of the evolution of waves with narrow-banded spectra, as they propagate over long
distances on deep water.

1 Introduction

The equations for water waves were first proposed by Stokes [21] as an energy-
conserving system. More recently it was discovered [10, 11, 17, 20, 25] that
dissipation is important in the long-time evolution of narrow-banded wavetrains.
So, our objective is to find physically realistic models of dissipation of gravity-
driven surface water waves. In this paper we report on comparisons of measured
vs. predicted dissipation rates of such waves, under a variety of conditions. The
laboratory generated waves have frequencies in the range of 1–4 Hz, and the waves
propagate on water of either finite or infinite depth, when the air/water interface
is either cleaned or else contaminated with olive oil, or with plastic wrap spread
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across the interface, or from ambient conditions in the laboratory. We also consider
previously published observations of dissipation rates for ocean swell, with much
lower frequencies. These measured dissipation rates are compared to dissipation
rates predicted by several theories in the published literature. The various theories
assume: (1) a clean interface in either a fluid/vacuum system or a fluid/fluid system;
(2) two limits of a surfactant-covered interface in a fluid/vacuum system—either
infinite elasticity or else maximum dissipation rate due to a resonance; or (3) a thin
layer of a viscoelastic fluid at the interface of a fluid/vacuum system.

Interest in dissipation of the energy of ocean swell goes back at least to Pliny
the Elder in the first century AD (as referenced by Miles [18], who reviewed the
origins of observations and modeling). In addition to understanding mechanisms for
energy dissipation during wave propagation, we also are concerned with the effects
of dissipation on the nonlinear evolution of both laboratory waves and narrow-
banded ocean waves, such as ocean swell. In particular, narrow-banded spectra of
deep-water, surface gravity waves are known to undergo a modulational instability,
or Benjamin-Feir [1] instability, if modeled using inviscid, nonlinear Schrödinger
(NLS)—type equations, first developed for water waves and other applications in
[2, 19, 26, 27] and extended to higher orders by Dysthe [8] and others (e.g. [9, 23].)
However, the inclusion of non-zero linear dissipation stabilizes this instability
[20]. Predictions of the growth of perturbation amplitudes from dissipative NLS
models that use measured dissipation rates agree quantitatively with measurements
from laboratory experiments on waves with both one-dimensional [17, 20] and
two-dimensional [11] surface patterns, and have been shown to be relevant for
understanding the propagation of ocean swell [10]. Measured values of damping
rates are sometimes significantly larger than values typically predicted by published
theories. For example, Dias et al. [6] derived a dissipative NLS model following
Lamb’s approach in §349 of [15] that assumed a shear-free boundary condition at the
vacuum/water interface. The resulting prediction for dissipation rate agrees fairly
well with laboratory experiments for which care is taken to “clean” the air/water
interface, but is four orders of magnitude smaller than a typical value measured for
ocean swell [10]. On the other hand, Lamb’s “inextensible film model” in §351 of
[15] makes no assumption on the shear stress at the interface, but assumes that the
tangential velocities are zero there. This model results in a prediction of dissipation
rates that agrees with measurements of dissipation of ocean swell [10], but has the
drawback that its boundary condition cannot be used for nonlinear models.

In the remainder of the paper, we present in Sect. 2 several models from the
published literature that predict dissipation rates. These models assume either a
clean interface between a fluid and a vacuum or between two fluids; or they assume
some type of contamination at the interface. The models are listed in Table 1 with
references, the equation number in this paper for the formula for dissipation rate,
distinguishing characteristics of the model, and a list of the rheological parameters
required for its application. The model name given in the table is for reference
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Table 1 List of dissipation models considered herein

Model name Material parameters
Reference equation number Distinguishing feature(s) required

Van Dorn [24] Sidewall & bottom(1) Damping from sidewall Fluid viscosity

and bottom boundary layers

Does not account for dissipa-
tion at the interface

Lamb [15] Clean-surface Shear-free Fluid viscosity

§349 (2) vacuum/fluid interface

Dore [7] Two-fluid Shear-free Viscosities of 2 fluids

(3) fluid/fluid interface

Lamb [15] Inextensible-surface Zero-tangential velocities Fluid viscosity

§351 (4) at vacuum/fluid

interface

Miles [18] Surfactant-surface Surfactant film at the 1 Elasticity coefficient

(5) vacuum/fluid interface 2 Surface viscosities

1 Surface tension

1 Fluid viscosity

Surfactant solubility

Huhnerfuss et al. Surfactant-max Surfactant film at the Fluid viscosity

[13] (9) vacuum/fluid interface

Fluid wave - Marangoni

wave resonance

Jenkins & Jacobs [14] Thin-layer(10) Thin-fluid/fluid interface
Vacuum/thin-fluid interface

Elasticity coefficients of
2 interfaces

Viscosities of 2 fluids

Surface tensions at 2
interfaces

Shear viscosities at 2
interfaces

1 Thin-fluid thickness

in this paper. In some cases, the reference listed is not the original reference, but
instead one that provides a literature review of the theoretical development as well
as the formulae used in this paper. The theoretical models under consideration in this
paper share a common assumption, that dissipation is a linear effect. We consider
no models that include nonlinear dissipation. In Sect. 3 we describe laboratory
experiments using waves with frequencies from 1–4 Hz, in which we vary the
condition of the air/water interface. The measurements of resulting dissipation rates
are reported in Sect. 4 with comparisons from the various models. The experiments
include (1) clean-surface experiments, in which we clean contamination off of the



166 D. Henderson et al.

air/water interface and measure dissipation rates as a function of frequency; (2)
exposed-surface experiments, in which we clean the air/water interface and then
leave it exposed to the ambient atmosphere, measuring dissipation rates as a function
of surface age for two frequencies; (3) oil-contaminated experiments, in which we
clean the air/water interface and then add known amounts of olive oil, measuring
dissipation rates as a function of concentration of oil for two frequencies; and (4)
cling-wrap experiments, in which we clean the air/water interface and then coat
it with sheets of thin plastic wrap, measuring dissipation rates as a function of
frequency. Our conclusions are listed in Sect. 5. In brief, we find that the clean-
interface models are adequate for laboratory waves with frequencies less than about
3 Hz if the air/water interface is cleaned; the model that assumes a thin layer of
viscoelastic fluid at the vacuum/fluid interface is required to predict the larger
dissipation rates observed when the air/water interface is exposed to the ambient
atmosphere for several days, but is inadequate to predict the largest dissipation rates,
measured with waves on an oil-contaminated interface; and the surfactant-model
limit that assumes a resonance between elastic waves and the underlying fluid best
predicts the dissipation rates of waves when the air/water interface is covered with
plastic wrap. Dissipation rates for ocean swell are most accurately predicted by the
surfactant model in the limit of infinite elasticity.

2 Models of Dissipation Rates

Here we present formulae for the predicted spatial rate, ı, of amplitude dissipation
from the models listed in Table 1, which assume various interfacial boundary
conditions. So, assume the amplitude, a, decays like a D a0e�ıx. For comparisons
of predictions with measured results from the laboratory wavetank, we include the
contributions from the sidewall and bottom boundary layers.

2.1 Sidewall and Bottom Boundary-Layer Model

Dissipation due to boundary layers along the sidewalls and bottom of the fluid
domain do not affect ocean waves on deep water. However, these boundary layers
are an important source of dissipation for waves in wavetanks, so we include the
contribution, worked out by van Dorn [24], here. He showed that the dissipation
rate due to boundary layers at the sidewalls and bottom of the tank for waves with
wavenumber, k, and frequency, !, at a vacuum/fluid interface in a tank of width W
and fluid depth h is

ısb D
� �
2!

�1=2�2jkj
W

�� jkjW C sinh.2jkjh/
2jkjh C sinh.2jkjh/

�
; (1)
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where � is the kinematic viscosity of the fluid. The wavenumber, k 2 R, can be
positive or negative, depending on the direction of propagation, while ! > 0.

In the remainder of this section, we present models for dissipation that are due to
conditions at the air/water interface. For laboratory experiments, the total dissipation
rate is the sum of ısb and the rate due to the movable surface.

2.2 Clean-Surface Model

The clean-surface model was first worked out by Lamb [15], §349, and predicts the
damping rate of waves at an interface between a fluid with weak viscosity and a
vacuum. The name “clean surface” comes from the dynamic boundary conditions
at the interface, which are that both the normal and tangential components of stress
are zero there. The resulting spatial dissipation rate is

ıc D 4
�jkj3
!.k/

: (2)

This model is commonly used in practice. For example, Dias et al. [6] used
it to derive a dissipative nonlinear Schrödinger equation from the Navier-Stokes
equations. Lo and Mei [16] stated that it is the model for waves “in the open ocean
or a very wide tank.” However, Henderson and Segur [10] (HS) used previously
published observations of ocean data to show that predictions using (2) do not agree
with observed dissipation rates of ocean swell, as noted in Sect. 1. For laboratory
data, for which the frequencies are typically 1 Hz and higher, this model does
reasonably well if the air/water interface is cleaned (as described, for example
in Sect. 3). However, as shown in Sect. 4, when the interface ages, or if it has a
contaminating film, then this model significantly underpredicts observed dissipation
rates.

2.3 Two-Fluid Model

The clean-surface model in Sect. 2.2 ignores the dynamics of the air above the
water. Dore [7] took into account energy loss to the air in the two-fluid model,
which predicts the damping rate of waves at an interface between two fluids with
weak viscosities. The dynamic boundary conditions at the air/water interface are
that both the normal and tangential components of stress are continuous there.
Dore found that for waves with lengths appropriate for ocean swell, the effects of
air are significant, increasing the dissipation rate over that predicted by the clean-
surface model by two orders of magnitude. Dore’s prediction for dissipation rate is
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ı2fluid D
"p

2
�a

�w

�
�ak2

	1=2�
gjkj	1=4 C 2�wk2

# 
2

s
jkj
g

!
; (3)

where �a=w is the density of the air/water, and �a=w is the kinematic viscosity of the
air/water. Although the prediction of dissipation rate from the two-fluid model is a
substantial improvement over predictions from the clean-surface model for waves
on the scale of ocean swell, HS [10] found that it nevertheless also underpredicts
observed dissipation rates of ocean swell.

2.4 Inextensible-Surface Model

Recognizing that in nature the interface between air and water rarely behaves as if
“clean” (as required in Sects. 2.2 and 2.3) without special care to approximate that
condition, Lamb [15], §351, also derived a model that assumed a “rigid-lid” surface,
which has also been called a “fully contaminated” or “inextensible” surface. In this
model, the vacuum/water interface can oscillate vertically as a rigid lid; it cannot
stretch horizontally. So the dynamic boundary conditions at the inextensible surface
are that the normal stress vanishes, but the shear stress is unconstrained. Instead,
there is a no-slip condition that causes the tangential velocity to vanish. HS [10]
generalized Lamb’s result to include finite depth; their prediction for dissipation
rate is

ıin D
r

�

2!

"
2k2 cosh2.jkjh/

2jkjh C sinh.2jkjh/

#
: (4)

HS [10] showed that this model agrees well with observed dissipation rates of ocean
swell, but pointed out that it cannot be used in a model that allows for nonlinearity.
The condition of zero tangential velocity at the interface is inconsistent with wave
motion with finite amplitude.

2.5 Surfactant-Surface Model

The inextensible-surface model of Sect. 2.4 describes a fully-contaminated
surface—one for which further contamination does not change the dissipation
rate. The surfactant-surface model allows for partial contamination. It describes a
system in which a viscoelastic, massless film with its own constitutive law is at
the vacuum/fluid interface. Then the stress balance at the interface has to account
for the rheological properties of the film. Miles [18] reviewed the development of
the corresponding prediction for the resulting dissipation rate. In its generality, the
prediction takes into account the elasticity of the surfactant surface, the shear and
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dilational viscosities of the surfactant surface and the solubility of the surfactant.
The elasticity is due to gradients in surface tension that arise when the film is
stretched and compressed due to the presence of waves, so that the coefficient of
elasticity is proportional to the gradient in surface tension with respect to the rest-
concentration of the surfactant. The prediction for dissipation rate that takes into
account a surfactant film is

ıs D jkj
g

r
�!3

2

�.� C �/C �.� C 2/

.� � 1/2 C .1C �/2 C �.� C 2/
; (5)

where

� D p
2
� k2�

�
p
�!3

�
; (6)

� D p
2
�k2.�1 C �2/

�
p
�!

�
; (7)

� D .2D=!/1=2

.d� =d	/0
: (8)

Here, � is a dimensionless elasticity parameter, � is a dimensionless viscous
parameter, and � is a dimensionless solubility parameter. Then � is the kinematic
viscosity of the fluid; � is the fluid density; � D ��0.dT=d� /0 is a measure
of the elasticity, which arises from gradients in (dynamic) surface tension, T,
due to changes in surfactant concentration, � , on the vacuum/water interface; the
subscript, 0, indicates the interface at rest; �1 and �2 are the dilational and shear
viscosities of the surfactant film; D, the bulk diffusion coefficient, is a measure of
solubility of the surfactant, and 	 is a measure of the bulk concentration. This model
assumes that D � �, so that bulk diffusion is confined to a thin boundary layer; and
�� � 1, which is valid for both capillary and gravity waves.

The prediction, (5), for dissipation rate works fairly well in a controlled
laboratory setting when one is able to clean the air/water interface and apply known
quantities of a monomolecular film. For example, see Davies and Vose [5] or [12].

There are two limits that are of particular interest. One limit corresponds to the
inextensible model discussed in Sect. 2.4. It is obtained by considering an infinite
elasticity for which � ! 1. The other limit corresponds to a resonance between the
water wave and elastic waves in the surfactant film. This limit gives the maximum
decay rate possible for a water/vacuum system with a surfactant-film surface and is
discussed in Sect. 2.6.
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2.6 Surfactant-Maximum Model

Miles [18] showed that the maximum dissipation rate possible from the surfactant-
surface model described in Sect. 2.5 is twice that obtained from the inextensible
surface model described in Sect. 2.4. This result was also found by others. In the
notation of Huhnerfuss et al. [13], the prediction for maximum dissipation rate of
gravity waves due to a surfactant film at the vacuum/water interface is

ısm D p
2

"
�2jkj7

g

#1=4
: (9)

This model underpredicts measured rates in laboratory experiments using aged
interfaces and oil-covered interfaces, but predicts decay rates in reasonable agree-
ment with experiments that used a cling-wrap covered interface as discussed in
Sect. 4.

2.7 Thin-Layer Model

Jenkins and Jacobs [14] generalized the surfactant-surface model discussed in
Sect. 2.5 to consider a two-fluid system that consists of two interfaces: an interface
between a weakly viscous fluid and a thin fluid layer (with mass and dynamics);
and an interface between the thin fluid layer and a vacuum above it. Each interface
has its own elasticity and shear viscosity. The dynamic boundary conditions at the
two interfaces are continuity of normal and tangential stresses. The prediction of
dissipation rate due to this model is

ı D
p

gjkj Re

�
ı1 C ı2

ı3

�
=Cg.k/; (10)

where the (nondimensional) parameters are

ı1 D 2�2.k/C i d.k/
h	.k/.1� �f /� 	w.k/p

� .k/

i
C
h�T .k/�f d.k/� 1=4.k/

2�.k/
p

i

i
; (11)

ı2 D 1

2
�T .k/C 1

2�.k/

p
i �2f d2.k/� 3=4.k/.R2.k/� 1/; (12)

ı3 D 1C
p

i �T .k/

�.k/� 1=4.k/
C �f d.k/� 1=4.k/p

i �.k/
(13)

�.k/ D
s

jkj3=2 O�w

g1=2
; (14)
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	f .k/ D O	f
k2

g O�w
; (15)

	w.k/ D O	w
k2

g O�w
; (16)

n.k/ D �i
p
1C 	.k/� 2�2.k/; (17)

�sf .k/ D O�sf
jkj5=2

g1=2 O�w
; (18)

�sw.k/ D O�sw
jkj5=2

g1=2 O�w
; (19)

�T.k/ D
��w.k/C �f .k/

n.k/

�
C �sf .k/C �sw.k/C .4�f �f .k/d.k// (20)

C
h�Ef .k/�Ew.k/d.k/

�f �f .k/

i
; (21)

	.k/ D 	w.k/C 	f .k/; (22)

� .k/ D
p
1C 	.k/; (23)

R.k/ D �f C 	f .k/

�f� .k/
; (24)

�f .k/ D O�f
k2

g O�w
; (25)

�w.k/ D O�w
k2

g O�w
; (26)

�Ef .k/ D �f .k/

n.k/
C �sf ; (27)

�Ew.k/ D �w.k/

n.k/
C �sw; (28)

p
i D C

p
2

2
.1C i/: (29)

Here Re indicates the real part; d.k/ D Odk is a nondimensional thickness of the
thin layer with dimensional thickness Od; O�w and O�f are the dimensional kinematic
viscosities of the bottom fluid and thin layer, respectively; O�w and O�f are the
dimensional densities of the bottom fluid and thin layer; and �f D O�f = O�w and
�w D O�w= O�w D 1. The interface between the bottom fluid and thin layer has
a dimensional (dynamic) surface tension O	w, a dimensional elasticity O�w, and a
dimensional shear viscosity O�sw. The interface between the thin layer and the
vacuum above has a dimensional surface tension O	f a dimensional elasticity O�f ,
and a dimensional shear viscosity O�sf . To make (10) a spatial decay rate, we have
divided by the group velocity, Cg.k/ D d!.k/=dk. For computations used in
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sect. 4, we used the inviscid dispersion relation that includes surface tension, so
that Cg.k/ D .g C 3k2 O	w= O�w/=.2

p
gk C k3 O	w= O�w/.

This model is difficult to apply unless one is able to measure all of the rheological
properties of the fluids and surfaces. Nevertheless, one can ask—does this model
provide the capability to predict the large dissipation rates that are observed in the
experiments discussed in Sect. 4?

3 Experimental Facility

Experiments were conducted in a wave channel that is 50 ft long, W D 10 in wide,
and 1 ft deep. The tank was cleaned with alcohol and filled with tap water to a depth
of h > 20 cm. Typically, the air/water interface was then cleaned by blowing wind
on the water surface at one end of the tank. The wind set up a surface current that
pushed a thin, top layer of the water down the tank. This top layer was vacuumed
with a wet-vac at the other end of the tank (50 ft away from the source) to a depth
of h D 20 cm, which was measured with a Lory Type C point gage.

Waves were generated with a plunger-type paddle with a triangular cross-section
attached to a ball-screw, which is attached to a motor. The motor was programmed
using LabView software to oscillate at a particular frequency. Time series of
surface displacement were measured using fifteen, capacitance-type surface wave
gages separated by 43 cm in the direction of wave propagation. This coverage
corresponds to about 600 cm, which was chosen to avoid reflections from the end
wall. Each gage consisted of a coated-wire probe connected to an oscillator. The
difference frequency between this oscillator and a fixed oscillator was read by a
field programmable gate array (FPGA), NI PCI-7833R. Thus, no D/A conversion,
filtering, or A/D conversion was required. The surface capacitance gage was held
in a rack on wheels that are attached to a programmable belt. We calibrated the
capacitance gage by traversing the rack at a known speed over a precisely machined,
trapezoidally shaped speed bump that is 1 cm high. The amplitudes of waves
generated on a clean surface as measured at the first gage site and the corresponding
wave slopes are listed in Table 2.

Table 2 Frequencies,
amplitudes and corresponding
slopes of waves measured at
the first gage site from the
experiments using a clean
surface

f0 (Hz) a0 (cm) a0k

4.00 0.050 0.032

3.50 0.077 0.038

3.33 0.12 0.053

3.00 0.082 0.030

2.50 0.12 0.030

2.00 0.14 0.022

1.50 0.11 0.010
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We used a Fourier Transform of the time-series to obtain its L2 norm. We fit a
line to the logarithm of these values as a function of distance from the wavemaker.
The dissipation rate then corresponds to half the line’s slope.

In Sect. 4 we present measurements of dissipation rates and comparisons
with predictions discussed in Sect. 2 for four types of experiments: (1) clean-
surface experiments; (2) aged-surface experiments; (3) oil-surface experiments and
(4) experiments in which a plastic wrap (Glad Cling Wrap) was laid on the air/water
interface.

For the clean-surface experiments discussed in Sect. 4.1, the dissipation rates
were measured within two hours of cleaning during which time the frequency of
the waves was varied.

For the aged-surface experiments discussed in Sect. 4.2, the dissipation rates
were measured for 2 and 3.33 Hz waves during a time period of about a week. The
water surface was exposed to the laboratory environment—nothing was done to treat
the air/water interface. At about 100 h, we cleaned the air/water interface to see if
the measured dissipation rates would return to the values measured for the clean
interface. Then the interface was allowed to age again without further cleaning the
water or tank.

For the oil-surface experiments discussed in Sect. 4.3, the dissipation rates were
measured for a clean air/water interface and then for interfaces that had olive oil
added. We used a micropipette to add to the air/water interface drops of oil with
known (equal) volumes at fifteen evenly spaced locations that spanned the long
dimension of the tank along the centerline of the tank. We measured dissipation
rates, and then added another set of fifteen drops. We did this five times. The addition
of olive oil decreases the surface tension at the interface—a gradient in surface
tension causes a flow along the interface, so theoretically, the oil should have spread
to a uniform thickness. However, after the first about three sets of drops were added,
we could see nonuniformities in the oil-film thickness.

For the cling wrap-surface experiments discussed in Sect. 4.4, the air/water
interface was cleaned and then covered with pieces of cling wrap that each spanned
the width of the tank. So, there were small gaps between the pieces of cling wrap,
and each sheet had some wrinkles. The sheets were not taut. The wave gages had to
fit between sheets, so we could not spread one long sheet of cling wrap that spanned
the tank width, down the length of the air/water interface.

4 Results

Here we present measurements of dissipation rates of surface waves with fre-
quencies 1–4 Hz and compare them with the models discussed in Sect. 2. In the
experiments, we varied the properties of the air/water interface to observe the
corresponding effect on dissipation rates. The first set of experiments used a “clean”
air/water interface, where we defined “clean” in Sect. 3. The second set used a clean
interface that was allowed to age with no additional treatment. The third set used
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a clean interface to which measured amounts of olive oil were added. The fourth
set used a clean interface that had sheets of cling wrap laid on top. In all cases, the
predictions include two parts: a part that incorporates sidewall and bottom boundary
layers, (1), and a part that takes into account one of the models of surface dissipation
(2)–(10). We also present observations and comparisons with models of dissipation
rates from the ocean.

In experiments with an aged surface (Sect. 4.2), oil-contaminated surface
(Sect. 4.3), and cling-wrap surface, (Sect. 4.4), the measured dissipation rates
were larger than those predicted by the models that assume either a clean surface
(Sects. 2.2 and 2.3) or a surfactant-covered surface (Sects. 2.4 and 2.6). For
these comparisons, we also used the model that assumes a thin layer of fluid at
the surface (Sect. 2.7). The values used for the rheological properties required by
that model are listed in Table 3.

4.1 Clean Surface

Figure 1 shows measured and predicted dissipation rates when the surface was
cleaned as described in Sect. 3. (The data are also discussed in [10].) The models
that are most likely to apply to this situation are the clean-surface model discussed
in Sect. 2.2 and the (clean-surface) two-fluid model discussed in Sect. 2.3. The
clean-surface model (2) and the two-fluid model (3) predict almost the same rates
for these frequencies, so one assumes that for these frequencies, dissipation due
to air dynamics is not significant. These models’ assumption of a clean surface
underpredicts somewhat the measured dissipation rates, with the discrepancy
increasing with increasing frequency. Presumably, there is some contamination on
the surface, regardless of our effort at cleaning, but not enough to cause the extreme
condition of no tangential flow required by the inextensible surface model (4), which
over-predicts the dissipation rates.

Table 3 List of parameters used in (10) to obtain the dotted curves in Figs. 2b and 4b

Parameter Value for surface age experiments Value for surface oil experiments
Od (cm) 0.012 0–0.0005 (black, dashed-dotted curve in Fig. 4b)

0–0.013 (gray, dashed-dotted curve in Fig. 4b)

O�w (m2/s) 1� 10�6 1� 10�6

O�f (m2/s) 1� 10�4 8.7 � 10�6

O�w (kg/m3) 998 998

O�f (kg/m3) 900 915

O	w (mN/m) 25–73 30

O	f (mN/m) 30 32

O�w (mN/m) 30 30

O�f (mN/m) 30 30

O�sw (kg/s) 0 0

O�sf (kg/s) 0 0
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Fig. 1 Dissipation rates as a function of frequency for the clean-surface experiments. The dots
are measurements. The black dashed curve is from the clean-surface model, (2), plus (1). The gray
dashed curve (almost identical to the black dashed curve) is from the two-fluid model, (3), plus (1).
The black solid curve is from the inextensible surface model, (4), plus (1). The gray solid curve is
from the surfactant maximum model, (9), plus (1)

4.2 Exposed Surface

Figure 2 shows measured and predicted dissipation rates for 2 and 3.33 Hz waves
when the surface was cleaned as described in Sect. 3 and then exposed to the
laboratory atmosphere for several days. The models that are most likely to apply
to this situation are the clean-surface model discussed in Sect. 2.2 and the (clean-
surface) two-fluid model discussed in Sect. 2.3 for small surface ages; the surfactant-
surface model discussed in Sect. 2.5 and the surfactant-maximum model discussed
in Sect. 2.6 for larger surface ages; and the inextensible-surface model discussed in
Sect. 2.4 for large surface ages when the contamination becomes saturated in some
sense.

Figure 2a shows that the dissipation rate for the 2 Hz waves was fairly insensitive
to surface contamination. However, Fig. 2b shows that after about 1 day of exposure,
the dissipation rate for the 3.33 Hz waves increased by an order of magnitude to a
value much larger than predictions from all of these models.

Does the thin-layer model discussed in Sect. 2.7 apply to this experimental
configuration? One imagines that for small surface ages, the surface is contaminated
with dust and particulate matter that rises from the bulk of the fluid. However, after
a surface age of about 2 days, there appears to be a continuous film at the surface,
which could be biological in nature and could behave as a thin layer of fluid. After
several days, the film is quite visible. If one pushes the surface horizontally with a
vertical plate in the water, one sees short-wavelength (a few millimeters) waves in
the film. If the plate is removed, the film bounces back. If one continues to push
the plate, the film buckles and may tear. Thus, we were interested to determine
if we could find rheological properties that when used in (10) would result in a
prediction from the thin-layer model that is about as large as the largest dissipation
rate measured.
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Fig. 2 Dissipation rates of a (a) 2Hz wave and (b) 3.33 Hz wave as a function of the time a cleaned
surface was exposed to ambient contamination. The dots are measurements. The black dashed
curve is from the clean-surface model, (2), plus (1). The gray dashed curve (almost identical to
the black dashed curve) is from the two-fluid model, (3), plus (1). The black solid curve is from
the inextensible-surface model, (4), plus (1). The gray solid curve is from the surfactant-maximum
model, (9), plus (1). In (b) the dashed-dotted curve is from the thin-layer model, (10), plus (1)
that assumes an interfacial fluid thickness of 0.12 mm. See Table 3 for other values used. At about
100 h, the surface was cleaned

We do not know the rheological properties of the contamination at the air/water
interface when it is exposed to the atmosphere. We did measure the surface tension
of the air/water interface from water that was in a beaker in the same room as
the wavetank—these measurements are shown in Fig. 3. Each time we measured
dissipation rates, we also measured the surface tension from the beaker system using
a DuNuoy-type tensiometer. One cannot conclude that the surface tension from the
beaker system was the same as that from the wavetank system. For example, the film
observed on the air/water interface in the tank did not grow on the air/water interface
in the beaker. The beaker surface was initially cleaned by vacuuming off the surface
with a pipette attached to a pump, and the measured value of surface tension agrees
with the theoretical value for a clean surface at the measured temperature. The
value decreased with age to about 58 mN/m at 114.75 h. When we cleaned the
surface again at 115.25 h, the measured value of surface tension again agreed with
the theoretical value for a clean surface. Then after waiting another 116.42 h, the
surface tension dropped to about 68 mN/m, not as low as the previous value of
58 mN/m. Apparently, the film that grows with surface age is not reproducible, so
that after about 10 h, the measured value of surface tension shows scatter.

It is not clear how to translate the surface tension measurements into coefficients
of elasticity to apply the thin-layer model; however, Jenkins and Jacobs [14] give
a range of surface elasticities of 10–50 mN/m for surfactant materials on water. To
compute a dissipation rate using (10), we looked at this range of elasticities: the
maximum dissipation rate we were able to compute did not depend significantly
on the choice of O�f . It did depend significantly on the choice of O�w. The value
of O�w that gives the largest dissipation rate is typically not at the limits of this
elasticity range, but at the mid-values. The dissipation rate is fairly insensitive to
the choice of surface tension at both interfaces, and following Jenkins and Jacobs,
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Fig. 3 Measured values of surface tension (dots) as a function of surface age at the surface of
air and the water in a beaker. The horizontal line is the value corresponding to a clean surface at
21.3ı C. At about 100 h, the surface was cleaned

we neglected the interfacial viscosities, O�sf and O�sw. However, varying the thickness
of the layer makes a significant difference. For the values of viscosities, elasticities,
surface tensions, and densities listed in Table 3, we found a layer thickness (also
listed in Table 3), at which a maximum dissipation rate resulted. Figure 2b shows
that this maximum is quite close to the largest dissipation rate measured when the
surface age was large.

To obtain the dashed-dotted curve in Fig. 2b, which shows predictions from the
thin-layer model (10), we varied the value of surface tension at the fluid/water
interface, O	w, used in (10). The variable O	w allows for the changing surface
tension with surface age that occurs in the experiments. However, the prediction
of dissipation rate is insensitive to the variable surface tension value, as shown by
the almost constant dashed-dot curve.

The discontinuous jump in the measured dissipation rate in Fig. 2b at about 100 h
corresponds to the surface’s being cleaned at that time. This return to the value
measured for the initially clean surface provides further evidence that the enhanced
dissipation is due to surface contamination, as opposed to bulk fluid properties or
sidewall boundary layers.

4.3 Oil-Contaminated Surface

Figure 4 shows measured and predicted dissipation rates for 2 and 3.33 Hz waves
when the surface was cleaned as described in Sect. 3 and then oil was added as
described in Sect. 3. The models that are most likely to apply to this situation are the
clean-surface model discussed in Sect. 2.2 and the (clean-surface) two-fluid model
discussed in Sect. 2.3 for the clean-surface before oil was added; the surfactant-
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Fig. 4 Dissipation rates of a (a) 2-Hz wave and (b) 3.33 Hz wave as a function of the amount of
oil added per unit area of cleaned surface. The dots are measurements. The black dashed curve
is from the clean-surface model, (2), plus (1). The gray dashed curve (almost identical to the
black dashed curve) is from the two-fluid model, (3), plus (1). The black solid curve is from the
inextensible-surface model, (4), plus (1). The gray solid curve is from the surfactant-maximum
model, (9), plus (1). In (b) the dashed-dotted black curve is from the thin-layer model, (10), plus
(1) that assumes a thin layer with varying thickness that corresponded to that of the experiment;
the dashed-dotted gray curve is from the thin-layer model, (10), plus (1) that assumes a thin layer
with varying thickness that was chosen to increase the predicted dissipation rate. See Table 3 for
the values used

model discussed in Sect. 2.5 and the surfactant-maximum model discussed in
Sect. 2.6 for the surfaces with non-saturated levels of oil; the inextensible-model
discussed in Sect. 2.4 for the oil-saturated surfaces, which occur when the oil that
is added no longer spreads; and the thin-fluid model discussed in Sect. 2.7 for the
addition of any amount of oil.

Figure 4a shows that the dissipation rate for the 2 Hz waves increased by about
a factor of 2 due to the addition of the oil. Figure 4b shows that the dissipation
rate for the 3.33 Hz waves increased by an order of magnitude to a value much
larger than predictions from all of the models except perhaps the one that takes
into account a thin layer of fluid at the interface between the water and a vacuum
(Sect. 2.7); although, even this model could not account for the largest dissipation
rate measured.

Figure 4b shows two curves from the thin-layer model. The black, dot-dashed
curve was computed using different film thicknesses, Od, equal to the ratio of the
volume of the fifteen drops and the surface area in the tank. (See Table 3.) However,
as discussed in Sect. 3, after the first set of fifteen drops were applied to the surface,
the additional sets of drops did not spread uniformly in thickness. Thus, the gray,
dot-dashed curve was computed using different layer thicknesses, Od, from zero to
just above the value, Od = 0.012 cm, that gives the maximum dissipation rate that we
found for this model. The thin-layer model assumes an interfacial layer of fluid with
a uniform thickness, which we do not think was the case for the experiments; so
comparing its predictions with our data is pushing the assumptions of the model.
We used a value of viscosity for olive oil at room temperature consistent with
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Fig. 5 Dissipation rates as a function of frequency for the cling wrap surface experiments. The
dots are measurements. The black dashed curve is from the clean-surface model, (2), plus (1). The
gray dashed curve (almost identical to the black dashed curve) is from the two-fluid model, (3),
plus (1). The black solid curve is from the inextensible surface model, (4), plus (1). The gray solid
curve is from the surfactant maximum model, (9), plus (1)

measurements reported in [3]. We used a value of density for olive oil at room
temperature consistent with values reported in

http://www.engineeringtoolbox.com/liquids-densities-d_743.html. We used a
value of surface tension between the olive oil and air at room temperature consistent
with values reported in

http://physics.about.com/od/physicsexperiments/a/surfacetension_5.htm.

4.4 Cling Wrap Covered Surface

Figure 5 shows measured and predicted dissipation rates for waves with seven
frequencies spread evenly between 1 and 4 Hz when the surface was cleaned as
described in Sect. 3 and then covered with sheets of cling wrap. The models that are
most likely to apply to this situation are the inextensible-surface model discussed
in Sect. 2.4 and the surfactant-maximum model discussed in Sect. 2.6. Both of
these models underpredict the measured dissipation rate, but predictions from the
surfactant-maximum model are fairly close. This model corresponds to a resonance
between elastic waves of a surface film and the underlying water wave. Since
the cling wrap had tiny wrinkles, it was allowed to stretch and compress, so that
this resonance could potentially occur. The thin-layer model (Sect. 2.7) would not
seem to apply to this experimental configuration. Nevertheless, we did try to find
rheological parameters, along with measurements of the cling wraps’ density and
thickness, in (10) to see if that model could predict measured dissipation rates. We
could not find a set of parameters that gave even qualitative agreement.

http://www.engineeringtoolbox.com/liquids-densities-d_743.html
http://physics.about.com/od/physicsexperiments/a/surfacetension_5.htm
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Fig. 6 Dissipation rates as a function of frequency for oceanographic observations. The solid
circles are based on measurements from [22]. The hollow circle is a measurement from [4]. The
black dashed curve is from the clean-surface model, (2). The gray dashed curve is from the two-
fluid model, (3). The black solid curve is from the inextensible surface model, (4). The gray solid
curve is from the surfactant maximum model, (9)

4.5 Oceanographic Observations

Figure 6 shows measured and predicted dissipation rates for ocean swell as reported
in [10] from data measured by Snodgrass et al [22], and Collard et al [4]. For the
surfactant maximum model, we used the deep-water limit of (Sect. 2.4), which is

ıin1 D k2
r

�

2!.k/
: (30)

This inextensible-surface model (Sect. 2.4) does the best job of predicting the
measurements. So, it can be useful for taking into account dissipation in linear
models of ocean swell. It does not generalize to nonlinear models, but it is a limit
of both the surfactant-surface model (Sect. 2.5) and the thin-layer model (Sect. 2.7),
which can be generalized to nonlinear models. Of note is that, as pointed out in
[10], the observed dissipation rates of ocean swell are orders of magnitude larger
than predicted by the clean-surface, vacuum/water model, so that model (Sect. 2.2),
simply does not apply to ocean swell. The two-fluid model, (Sect. 2.3), shows that
on the scale of ocean swell, the dynamics of the air are important, but even this
model underpredicts measurements by a couple of orders of magnitude. So, surface
dynamics are important in modeling dissipation of ocean swell.
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5 Summary and Conclusions

In this paper we present several models for the dissipation rates of surface waves
and compare their predictions with laboratory measurements and oceanographic
observations. We make the following summary and conclusions.

• The clean-surface model is adequate for laboratory waves with “small enough”
frequencies (less than about 3 Hz) if the surface is adequately cleaned (for
example, as described in Sect. 3).

• The clean-surface two-fluid model predicts dissipation rates a couple of orders
of magnitude larger than those of the (fluid/vacuum) clean surface model for
waves on the scale of ocean swell. Thus, it is likely that air plays an important
role in understanding the dynamics of ocean swell. Nevertheless, this model
underpredicts observed dissipation rates of ocean swell. It is not clear what the
“correct” boundary conditions are at the ocean-atmosphere surface, or what the
“best” conditions are that could be used in practice to predict both dissipative
behaviour and nonlinear evolution.

• We did not apply the surfactant model (of an infinitely thin, massless film), but
instead looked at predictions from two of its limits.

– The inextensible surface-model corresponds to the limit of infinite elasticity of
the surfactant film. Its predictions agreed well with observations of dissipation
rates of ocean swell. However, this model cannot be generalized to nonlinear
models of ocean swell.

– The surfactant-maximum model corresponds to a resonance between elastic
waves in the surfactant film and the water waves. It can occur for surfactant
concentrations less than saturation. It did the best job of predicting dissipation
rates that occurred when the surface was covered with cling wrap that was
allowed to wrinkle—thereby compressing and expanding.

• The thin-layer model is the most general of all of the models considered here.
All of the other models discussed here except for Dore’s [7] model in Sect. 2.3,
which includes the effects of air, are limits that can be obtained from the thin-
layer model. This model was able to predict the large damping rate observed in
the 3.33 Hz waves propagating on a air/water interface that had been exposed to
the ambient atmosphere for several days. Under this laboratory condition, a film
grows on the air/water interface that may then be modeled as a thin viscoelastic
fluid. This model was inadequate in predicting the largest dissipation rates
observed with waves propagating on a air/water interface that was contaminated
with variable amounts of olive oil. One possible explanation for the discrepancies
is that the olive oil did not spread uniformly. Other possibilities are also being
investigated. We point out, though, that the thin-layer model has numerous free
parameters, so it is difficult to use in practice.

The goal of this work is to find a model for dissipation that predicts all of the
observed dissipation rates from the laboratory and the ocean, and could be used
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in nonlinear models of wave evolution. We find that different models are useful for
different situations, as discussed above, and that none of the models is adequate
when we add over-saturated amounts of olive oil to the surface.
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Abstract The goal of this paper is to describe the formation of Kelvin-Helmholtz
instabilities at the interface of two fluids of different densities and the ability
of various shallow water models to reproduce correctly the formation of these
instabilities.
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1 Introduction

Describing the motion of the surface of a non viscous fluid of constant den-
sity is known as the water waves problems and is now quite well-understood.
The equations are known to be well-posed for smooth data under the Rayleigh-
Taylor criterion stating that the vertical derivative of the pressure must be negative
at the surface

.Rayleigh-Taylor criterion / � @zPjsurf > 0;

which is equivalent to saying that the downward acceleration of the fluid must
not exceed gravity; away from singularities, this condition is known to be always
satisfied [31, 42]. The solutions of the water waves equations are also known to be
well-approximated by simpler asymptotic models in several asymptotic regimes.
In particular, in the so called shallow water regime which is relevant for most
applications to coastal oceanography or tsunami propagation for instance, many
asymptotic models have been derived and justified, one of the pioneer works being
Walter Craig’s justification of the KdV approximation [17]. The so-called Nonlinear
Shallow Water (or Saint-Venant) equations and the Green-Naghdi (or fully nonlinear
Boussinesq, or Serre) equations are two examples of widely used models in the
shallow water regime (in the sense that the depth is much smaller than the typical
horizontal length); we refer to [33] for more details on these aspects.

The related problem consisting in describing the interface between two fluids
of different density happens to be much more complicated due to the presence of
a new kind of instabilities that do not exist in the water waves problem, the so-
called Kelvin-Helmholtz instabilities, created by the discontinuity of the tangential
velocity at the interface. If interfacial waves can be observed in spite of these
instabilities, this is because some extra mechanism is involved which prevents the
growth of Kelvin-Helmholtz instabilities. It has for instance been shown in [32]
that a small amount of surface tension may be enough to control these instabilities,
leading to the following generalization of the Rayleigh-Taylor criterion for the
stability of two-fluids interfaces,

��@zP
˙
jinterf

� >
1

4

.�C��/2

�.�C C ��/2
c.�/

ˇ̌
�U˙

jinterf
�
ˇ̌4
1; (1)

where �˙ denote the densities of both fluids, � the surface tension coefficient,
c.�/ a constant of little importance, and �U˙

jinterf
� the velocity jump at the interface.

This criterion is the result of two mechanisms: gravity stabilizes the low frequency
components of the interfacial waves, while surface tension stabilizes the high
frequency modes. The stability of the low frequency modes is not always granted:

the relative gravity g0 D g �
C���

�CC��
must be large enough. From the analysis of [32]

this can be expressed as follows,
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g0 >
�C��

.�C C ��/2
C.�/j�U˙

jinterf
�j21; (2)

for some constant C.�/ depending on � (and homogeneous to the inverse of a
length).

If this condition is satisfied, then there is a critical wave number kKH such that
Kelvin-Helmholtz instabilities appear above this wave number in the absence of
surface tension. If kKH is large enough, then we may expect a regularization by
small scale processes: capillarity (as in [32]), viscosity, etc. A precise description of
kKH is therefore important.

A precise evaluation of kKH in the general nonlinear case seems out of reach
because the computations based on the linearization around any solution is
extremely technical. It is however possible to get some interesting insight on the
formation of Kelvin-Helmholtz instabilities by considering the linearization around
a constant shear, and this is the approach we shall use in this paper. For instance,
we shall show that a necessary and sufficient condition for the stability of the low
frequency modes for the linearized system around a shear flow with constant speeds
cC and c� is

j�c˙�j2 < ˝KH WD g0H0

�C�� ; with H0 D �CH� C ��HC (3)

(with �˙ D �˙

�CC��
denoting the relative densities of the fluids), a condition which is

both consistent with (2), and more explicit. Moreover, the technical simplifications
brought by linearizing around a constant state allow us to give a formula for kKH

when the above condition is satisfied. We are also able to derive a condition for the
stability of all modes, which is therefore a linear but more precise version of (1),

�c˙�2 � ˝cr with ˝cr � 2p
Bo
˝KH; (4)

and where Bo is the Bond number

Bo D .�C C ��/g0H2
0

�
: (5)

Since the Bond number is very large in most cases, this condition is much more
restrictive than (3).

As for the one fluid (water waves) case, simpler asymptotic models are often used
to describe the propagation of interfacial waves. We will stick here to the shallow
water regime (in which the depth of both fluids are small compared to the typical
horizontal length); we refer to [8] for a systematic derivation of asymptotic models
in this context (see also [25] for a spectacular application of such models for the
explanation of the dead water phenomenon).
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Since shallow water models somehow only keep the low frequency part of
the wave, they behave differently with respect to Kelvin-Helmholtz instabilities
and may be well posed without stabilizing phenomenons such as surface tension.
Their well-posedness is however subject to additional conditions on the data, and it
turns out that these conditions are actually what remains of the Kelvin-Helmholtz
instabilities for these models. The singularity corresponding to the violation of
these extra conditions must therefore be interpreted as the prediction of a Kelvin-
Helmholtz instability. One of the questions we raise here is: how well do the various
shallow water models approximate the scenario of formation of Kelvin-Helmholtz
instabilities of the full Euler equations? This is to our knowledge the first time this
issue is addressed.

Our strategy to answer this question is to consider the same problem as for the
full Euler equations and that we described above. Namely, we consider the stability
of the linearization of the various shallow water models around a constant shear.
We exhibit a condition for the low frequency stability that we compare to (3), and
a critical wave number kapp

KH for the apparition of the Kelvin-Helmholtz instabilities,
and that we compare to kKH . We also compute a condition for the stability of all
modes of the form �c˙�2 � ˝cr;app that we compare to (4).

The asymptotic models we consider here are the so-called Shallow
Water/Shallow Water (SW/SW) model which is the model obtained at first order
in the shallow water limit. We show that this model underestimates the Kelvin-
Helmholtz instabilities. We then consider the Green-Naghdi/Green-Naghdi model
which is obtained in the same regime as the SW/SW model, but which is precise
up to second order. This model overestimates the Kelvin-Helmholtz instabilities.
Moreover, we derive two new families of regularized GN/GN model (one of which
being a generalization of the models derived in [13]), and we show that they are able
to reproduce exactly the singularity formation scenario of the full Euler equations.
These results are summed up in the following table, and used to interpret some
experimental measurements (see Sect. 4.3).

All the results described above are obtained in the framework of the rigid lid
approximation for which the fluid above is bounded from above by a rigid bottom.
We also consider here the free surface case where the upper boundary is now,
like the interface, a free surface. This framework is of course relevant for many
applications and has been considered for instance in [1, 3, 11, 19–21, 24, 26, 40].
We follow the same approach as above: we exhibit a condition for the stability of
low frequency modes, and a stronger condition for the stability of all modes. The
problem is however much more technical than for the rigid lid case, and we resort to
numerical computations. As noticed in [1, 11, 35, 40], the free surface case is also
marked by a peculiar phenomenon: low frequency modes are stable for small shears
as in the rigid lid case, but also for large enough shears (Table 1).

As in the rigid lid case, we compare the formation of Kelvin-Helmholtz
instabilities for the full Euler equations and for a Shallow Water/Shallow Water
model with free surface. Except for a special configuration (the depth of both
fluids is the same) where we can carry the computations out, this comparison is
numerical. The investigation of the next order models (GN/GN) is not done in this
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Table 1 Stability criteria for Euler system and different models

LF stability Critical wave number Stability of all modes

Euler �c˙� < ˝KH 0 < kKH < 1 ˝cr � 2
p

Bo
˝KH < ˝KH

SW/SW idem kSW D 1 ˝cr
SW D ˝KH > ˝

cr

GN/GN idem kGN;� < kKH ˝cr
GN� < ˝

cr

GN/GNreg idem kGNr D kKH possible ˝cr
GNr

D ˝cr possible

paper because it is highly technical, and because it can be done following the same
approach as in the rigid lid case. Note that GN/GN type models have been studied in
the free surface case in [1], and that it is possible to generalize this study by deriving
regularized models with the techniques used here in the rigid lid case in order to
obtain a better description of the formation of Kelvin-Helmholtz instabilities.

The last point we address in this paper is a study of the behavior of the additional
stability area observed for large shears in the free surface case. More precisely, we
want to understand how this stability area behaves in the so called rigid lid limit.
We infer from this study that the rigid lid approximation can only be true for very
small density contrast between both fluids, and that the large shear stability area
disappears in the rigid lid case because it corresponds only to infinite shears.

1.1 Organization of the Paper

We first recall in Sect. 2 the equations of motions, both in the rigid lid and in the
free surface cases. We also derive the reduced formulations that are used throughout
the paper for the computations. The Kelvin-Helmholtz instabilities are then studied
in Sect. 3 for the full equations in the rigid lid case. In Sect. 4, we study several
shallow water models, focusing our attention on their ability to describe the Kelvin-
Helmholtz instabilities. An experimental application is also given. We then turn to
study, in Sect. 5, the formation of Kelvin-Helmholtz instabilities for the full Euler
equations in the free surface case. The shallow water behavior of these instabilities
and the behavior of the large shear stability area is then investigated in Sect. 6.

1.2 Notations

– If AC and A� are two quantities (real numbers, functions, etc.), the notations
�A˙� and hA˙i stand for

�A˙� D AC � A� and hA˙i D AC C A�

2
:
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– We use relative densities

�C D �C

�C C �� ; �� D ��

�C C ��

as the ratios of densities �C; �� for the lower and upper layers respectively.
– Parameters ı and 	 stand for the depth ratio ı D H�=HC and the density ratio
	 D ��=�C respectively.

– The notations th˙, cth˙, sh˙ and ch˙ stand for the hyperbolic Fourier multipliers
tanh.H˙jDj/, coth.H˙jDj/, sinh.H˙jDj/ and cosh.H˙jDj/, with iD D r and
H˙ the average depths for the upper and lower fluids. When no misunderstanding
is possible, we also take th˙, cth˙, sh˙ and ch˙ as their Fourier modes
tanh.H˙jkj/, coth.H˙jkj/, sinh.H˙jkj/ and cosh.H˙jkj/.

2 The Equations of Motion

In this section, we introduce briefly the equations of motion for both the rigid lid
case and the free surface case.

2.1 The Rigid Lid Case

We consider first the case of a rigid lid; in such a configuration (see Fig. 1), the
inferior fluid domain ˝C

t is delimited from below by a flat bottom � C at height
z D �HC and from above by the interface �t D f.X; z/ 2 R

d �R; z D �.t;X/g, and
the superior fluid is bounded from below by �t and from above by a rigid lid � � at
height z D H�.

2.1.1 Basic Equations

We denote by U˙ the velocity field in ˝ṫ ; the horizontal component of U˙ is V˙
and its vertical one w˙. The pressure is denoted by P˙. The equations of motion are
then the following,

• Equations in the fluid layers. In both fluid layers, the velocity field U˙ and the
pressure P˙ satisfy the equations

div U˙.t; �/ D 0; curl U˙.t; �/ D 0; in ˝ṫ .t � 0/; (6)

which express the incompressibility and irrotationality assumptions, and

�˙�@tU˙ C .U˙ � rX;z/U˙	 D �rX;zP
˙ � gez in ˝ṫ .t � 0/; (7)

which expresses the conservation of momentum (Euler equation).
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n

X ∈ Rd

z

H−

0

H+

Ω+(t)

Ω−(t)
ρ−

ρ+

ζ (t,X)

Fig. 1 The rigid lid configuration

• Boundary conditions at the rigid bottom and lid. Impermeability of these two
boundaries is classically rendered by

wC.t; �/j
�C

D 0; and w�.t; �/j�� D 0 .t � 0/: (8)

• Boundary conditions at the moving interface. The fact that the interface is a
bounding surface (the fluid particles do not cross it) yields the equations

@t� �
p
1C jr�j2Uṅ D 0; .t � 0/; (9)

where Uṅ WD U˙j�t
� n, n being the upward unit normal vector to the interface

�t. A direct consequence of (9) is that there is no jump of the normal component
of the velocity at the interface. Finally, the continuity of the stress tensor at the
interface gives

�P˙.t; �/j�t
� D ��.�/; .t � 0/; (10)

where � � 0 is the surface tension coefficient and

�.�/ D �r � � r�p
1C jr�j2

	

is the mean curvature of the interface.
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2.1.2 Reduction to the Interface

As stressed above, the normal component of the velocity field U˙ � n is continuous
at the interface. This is not the case for the tangential component of the velocity.
Since the vertical component of this vector can be deduced from its horizontal
components, we will focus our attention on these horizontal components and more
specifically on the quantity U˙

k defined as

U˙
jzD�

� N D
 

�.U˙
k /

?

�.U˙
k /

? � r�

!
; with N D

p
1C jr�j2n:

Taking the vector product of the trace of (7) at the interface with N, and considering
only the horizontal components of the resulting equation, one readily gets

@tU
˙
k C gr� C 1

2
rjU˙

k j2 � 1

2
r�.1C jr�j2/jw˙j2	 D � 1

�˙ rP˙;

where we denoted

P˙ WD P˙
jzD�
; U˙ D .V˙;w˙/ WD U˙

jzD�
D .V˙

jzD�
;w˙

jzD�
/:

The interfacial waves equations (6)–(10) can therefore be recast as two sets of two
equations on the fixed domain R

C
t � R

d
X , i.e. on the interface

8<
:
@t� � U˙ � N D 0;

@tU
˙
k C gr� C 1

2
rjU˙

k j2 � 1

2
r�.1C jr�j2/jw˙j2	 D � 1

�˙ rP˙; (11)

with the jump condition

�P˙.t; �/j�t
� D ��r � � r�p

1C jr�j2
	
: (12)

Remark 1. i- In (11), the incompressibility and irrotationality conditions (6)
imply1 that one can express U˙ � N in terms of � and the tangential component
U˙

k .
ii- It is possible to reduce further (11) to one set of two equations. Let us define

Uk D �CUC
k � ��U�

k I

1It has been proved recently [12] in the particular case of one single fluid (�� D 0) that the
irrotationality condition is not needed and that (11), together with the standard evolution equation
for the vorticity, form a closed, well-posed, set of equations.
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multiplying the second equation of (11)˙ by �C and subtracting the resulting
C and � equations, we obtain

8̂
ˆ̂<
ˆ̂̂:

@t� � U˙ � N D 0;

@tUk C g0r� C 1

2
r��˙jU˙

k j2� � 1

2
r�.1C jr�j2/��˙jw˙j2�	

D � �

�C C �� r�.�/;
(13)

where g0 D g.�C � ��/ is the reduced gravity. It is possible to show that UC �
N D U� � N, U˙

k and w˙ can be expressed in terms of � and Uk, so that (13) is
a closed set of equations on � and Uk.

iii- From the incompressibility and irrotationality assumptions (6), we infer that
the velocity fields U˙ derive from a scalar harmonic potential ˚˙ (i.e. U˙ D
rX;z˚

˙, with �X;z˚
˙ D 0 in ˝ṫ ). Denoting by  ˙ the traces of ˚˙ at the

interface,  ˙ D ˚˙
jzD�

, one can check that U˙
k D r ˙. Introducing

 D �C C � �� �;

one has Uk D r and the second equation in (13) can be replaced by a scalar
equation on  , leading to

8<
:
@t� �

p
1C jr�j2Uṅ D 0;

@t C g0� C 1

2
��˙jU˙

k j2� � 1

2
.1C jr�j2/��˙jw˙j2� D � �

�C C �� �.�/:
(14)

This is the formulation used in [32] to establish the nonlinear well posedness of
the two-fluids interfaces equations. In the case of one fluid (water waves), these
equations coincide with the Zakharov-Craig-Sulem formulation of the water
waves equations [22, 43]. One of the main features of this formulation is its
Hamiltonian structure; it is remarkable that the two-fluid generalization of the
Zakharov-Craig-Sulem formulation is also Hamiltonian, as remarked in [4] (see
in particular Sect. 5 of that reference for considerations on Kelvin-Helmholtz
instabilities). Using asymptotic expansions of the Hamiltonian, Craig, Guyenne
and Kalisch derived in [19] a family of Hamiltonian approximations to the two-
fluids equations (14).

2.2 The Free Surface Case

We consider here the case of a free surface (see Fig. 2). The configuration is the
same as in Sect. 2.1 except that the superior fluid is now bounded from above by a
free surface � s

t D f.X; z/ 2 R
d � R; z D �s.t;X/g.
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n
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0
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Ω+(t)

Ω−(t)
ρ−

ρ+

ζ (t,X)

ζs(t,X)

Fig. 2 The free surface configuration

2.2.1 Basic Equations

The only difference between the free surface and rigid lid cases is that the boundary
condition (8) must be replaced by the kinematic condition

@t�
s �

p
1C jr�sjU�

ns D 0; (15)

where U�
ns WD U�

j� s
t
�ns, ns being the upward unit normal vector to the free surface� s

t ,

and that the value of the pressure at the free surface must be prescribed; neglecting
the effects of surface tension at the surface, the pressure is constant, and since it is
defined up to a constant, we take it equal to zero,

PjzD�s D 0: (16)

2.2.2 Reduction to the Interface

Consistently with the notations previously used, we define the quantity Us
k as

U�
jzD�s � Ns D

 
�.Us

k/
?

�.Us
k/

? � r�s

!
; with Ns D

p
1C jr�sj2ns:
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Taking the vector product of the trace of (7) at the free surface with Ns, and
considering only the horizontal components of the resulting equation, one readily
gets

@tU
s
k C gr�s C 1

2
rjUs

kj2 � 1

2
r�.1C jr�sj2/jwsj2	 D 0;

where we denoted

Us D .Vs;ws/ WD U�
jzD�s D .V�

jzD�s ;w
�
jzD�s /

and the surface tension at the top free surface is neglected. The interfacial waves
equations (6)–(10) can therefore be recast as three sets of two equations on the fixed
domain R

C
t � R

d
X , namely,

8<
:
@t�

s � Us � Ns D 0;

@tU
s
k C gr�s C 1

2
rjUs

kj2 � 1

2
r�.1C jr�sj2/jwsj2	 D 0;

(17)

and
8<
:
@t� � U˙ � N D 0;

@tU
˙
k C gr� C 1

2
rjU˙

k j2 � 1

2
r�.1C jr�j2/jw˙j2	 D � 1

�˙ rP˙; (18)

with the jump condition

�P˙.t; �/j�t
� D ��.�/: (19)

Remark 2. Proceeding as in Remark 1, it is possible to reduce this set of seven
equations into a set of four equations on .�s;Us

k; �;Uk/, with Uk D �CUC
k � ��U�

k
These equations are

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

@t�
s � Us � Ns D 0;

@tU
s
k C gr�s C 1

2
rjUs

kj2 � 1

2
r�.1C jr�sj2/jwsj2	 D 0;

@t� � U˙ � N D 0;

@tUk C g0r� C 1

2
r��˙jU˙

k j2� � 1

2
r�.1C jr�j2/��˙jw˙j2�	

D � �

�C C �� r�.�/;

(20)

where g0 D g.�C ���/ is the reduced gravity. Giving a version of these equations in
terms of velocity potential similar to (14) in the rigid lid case is of course possible.
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3 The Kelvin-Helmholtz Instability in the Rigid Lid Case

The formation of Kelvin-Helmholtz instabilities for two-fluids interfaces and in
the case of a rigid lid is investigated here. In this setting, it is known [32] that
the full nonlinear equations are well posed under the generalized Rayleigh-Taylor
criterion (1). This criterion is a sufficient condition ensuring the stability of all
frequency modes. By sticking to the much simpler linear theory, we want to get
additional information that will also be used to compare with the formation of
Kelvin-Helmholtz instabilities in shallow water asymptotic models and in the free
surface case, where the nonlinear analysis is still an open problem. More precisely,
we consider the linear stability of perturbations to a constant shear flow. We insist
on three important aspects: (1) the existence of a critical value of the shear flow
below which low frequency modes are stable (2) the existence for such flows of a
critical wavenumber delimiting this stability region, and (3) the possible existence of
a second critical shear flow below which all modes are stable. These stability criteria
are studied in detail, and explicit formulas or accurate approximations are provided,
which allows one to comment on the influence of the density ratio 	 D ��=�C and
of the depth ratio ı D H�=HC for instance.

3.1 Linearization Around a Constant Shear .cC; c�/

We consider here the linear equations governing small perturbations of the constant
horizontal shear � D 0, V˙ D c˙, w˙ D 0 (and therefore U˙

k D c˙).

Linearizing (10)–(11) around � D 0, V˙ D c˙ and w˙ D 0 we find the
following linear equations for the perturbation . P�; PV˙; Pw˙/

8<
:
@t

P� C c˙ � r P� � Pw˙ D 0;

@t PV˙ C gr P� C c˙ � r PV˙ D � 1

�˙ rP˙;

with

�P˙� D ��� P�:

In the same spirit as in Remark 1, we can derive a reduced formulation for these
equations; denoting PV D �C PVC � �� PV� and remarking that

��˙c˙ � PV˙� D hc˙i � PV C �c˙� � h�˙ PV˙i;
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we first get

8<
:
@t

P� C c˙ � r P� � Pw˙ D 0;

@t PV C hc˙i � r PV C g0r P� C �c˙� � rh�˙ PV˙i D �

�C C �� r� P�: (21)

In order to prove that these equations are in closed form, we still need to express
PV˙ and Pw˙ in terms of P� and PV . This is done in the following lemma.

Lemma 1. One has

PVC D ��

��thC C �Cth�
�c˙� � r

jDj r P� C th�

��thC C �Cth� PV

PV� D �C

��thC C �Cth�
�c˙� � r

jDj r P� � thC

��thC C �Cth� PV;

and Pw˙ D 
th˙ r
jDj � PV˙.

Proof. From the first equation of (21), we get

PwC � Pw� D �c˙� � r P�

(this is the linear version of the continuity of the normal component of the velocity).
For the same reason as in the third point of Remark 1, we can also write PV˙ D r P ˙
and PV D r P , with P D �C P C � �� P �, and where

P ˙ D ˚˙
jzD0

with �X;z˚
˙ D 0 in � H˙ < ˙z < 0 and @z˚

˙
j
zD�H˙

D 0:

From a simple linear analysis, we get therefore

Pw˙ D ˙jDjth˙ P ˙:

Since moreover, one has by definition P D �C P C � �� P �, one can express P ˙

(and therefore PV˙ D r P ˙ and Pw˙ through the above relation) in terms of PV D r P 
and P� by solving the system

(
jDjthC P C C jDjth� P � D �c˙� � r P�;
�C P C � �� P � D P ;

which leads to the formula of the lemma. ut
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Thanks to the lemma, we can rewrite (21) under the form

8<
:
@t

P� C c.D/ � r P� C thCth�

��thCC�Cth�

r
jDj � PV D 0;

@t PV C c.D/ � r PV C .g0 � e.D/� �

�CC��
�/r P� D 0;

(22)

with

c.D/ D cC�Cth� C c���thC

��thC C �Cth� ; e.D/ D �C��

��thC C �Cth�
.�c˙� � D/2

jDj : (23)

3.2 Kelvin-Helmholtz Instabilities for the Linearized
Two-Fluids Equations

A brief look at (22) shows that the Fourier modes .F P�.k/;F P .k// are stable (i.e.
they are not exponentially2 amplified) if and only if

g0 � e.k/C �

�C C �� jkj2 > 0:

From the explicit expression of e.k/ stemming from (23), the most unstable
direction corresponds to k parallel to �c˙�, and we therefore restrict our stability
analysis to wave numbers k oriented along this most unstable direction. Without
loss of generality, we can assume that

�c˙� D �c˙�ex; .�c˙� D j�c˙�j/;

and we consider therefore the stability of the Fourier modes .F P�.k/;F P .k//
corresponding to k D kex, with k D jkj.

From (23), we deduce easily that for all k D kex,

g0 � e.k/C �

�C C �� jkj2 > 0 () �c˙�
2
< ˝KH˛� .k/; (24)

where we used the notations

˝KH D g0H0

�C�� .and H0 D ��HC C �CH�/; (25)

˛� .k/ D
�
1C �

g0.�C C ��/
k2
�
˛.k/; (26)

2The endpoint case g0 � e.k/ D 0 actually corresponds to a linear amplification.
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˛.k/ D �� thC

H0k
C �C th�

H0k
: (27)

Since ˛.�/ is a decreasing function on R
C with maximal value 1 at the origin, the

modes with low wavenumber are stable if and only if

(Stab 1) �c˙�
2
< ˝KHI

if it is satisfied, there is a unique kKH 2 R
C� [ fC1g for each �c˙�, such that all the

modes corresponding to 0 � k < kKH are stable,

(Critical wavenumber) kKH D min˛�1
�

��c˙�
2

˝KH

�
I

the quantity kKH is therefore the critical wavenumber above which Kelvin-
Helmholtz instabilities appear for the perturbation of the constant shear flow.
Since one obviously has

˛.k/ � ˛1.k/ WD 1

kH0

;

one obtains the following upper bound for kKH (see Fig. 3a),

kKH � k1
KH WD min˛�1

�;1
��c˙�

2

˝KH

�
;

where ˛�;1.k/ D .1C �

g0.�CC��/
k2/˛1.k/. Direct computations yield

k1
KH D �c˙�

2

˝KH

Bo

2H0

�
1 �

s
1 � 4

˝2
KH

Bo�c˙�
4

�
. with surface tension/;

k1
KH D ˝KH

�c˙�
2

1

H0

. without surface tension/:

Note that this upper bound coincides with the critical wavenumber kKH when both
fluid layers are of infinite depth (HC D H� D 1).

It is straightforward to analyze the influence on the stable area (i.e. the set all
the couples .�c˙�; k/ such that (24) is satisfied) of the depth HC, the depth ratio
ı D H�=HC and the density ratio 	 D ��=�C. One can see from (24) that, when
the surface tension is neglected (� D 0), the interface problem is more stable when
HC increases, ı increases, or 	 decreases (see Fig. 3b–d in the case without surface
tension).
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Fig. 3 Surface tension is neglected (� D 0). Unless otherwise specified, the parameters are ı D
0:15=0:62, HC D 0:62, 	 D 0:494=0:506 and g D 9:81. We write �c˙� simply as Œc� in all the
figures through this paper. (a) An upper bound for the stable area. (b) Influence of HC on the stable
area. (c) Influence of the depth ratio ı. (d) Influence of the density ratio 	

Remark 3. We chose to present the linear stability criteria derived in this paper
in terms of �c˙� to make the comparison with the nonlinear criterion (1) more
transparent. Another possibility, often used in the literature, would have been to
use instead the (dimensionless) Froude number

Fr D �c˙�p
g0H0

:
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Using this notation, the criterion (Stab 1) derived above can be restated as

Fr < .�C��/�1=2I

the right-hand-side depends only on the density ratio of the two layers, and is always
greater than 2. This indicates that this stability criterion is quite reasonable, even
when the density ratio goes to 1, even though g0 goes to zero. This approach is
consequently used in Sect. 6.2 to study the rigid limit in the case of two layers with
a free surface.

In absence of surface tension (� D 0), ˛� .�/ D ˛.�/ is a decreasing function and
goes to zero at infinity. One then easily deduces that in presence of a nonzero shear
�c˙� there are always unstable modes. In presence of surface tension, the situation
is different. If (Stab 1) is satisfied, then there the modes with low wave numbers
are stable; since ˛� .�/ grow to infinity at infinity, one directly infers from (24) that
modes with high wavenumbers are stable. It is then possible to have stability of all
Fourier modes if the shear does not exceed a critical value �c˙� D p

˝cr; more
precisely, all modes are stable if and only if

(Stab 2) �c˙�2 � ˝cr WD ˝KH min
RC

˛�

(note that this criterion can be understood as the linear approximation of (1)). When
� D 0, one gets ˝cr D 0 < ˝KH; in presence of surface tension, ˝cr � ˝KH and
equality holds if the capillary effects are strong enough (see Fig. 4), in which case
the existence of some stable modes implies that all modes are stable.
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Fig. 4 Stable area with surface tension. Parameters are ı D 0:15=0:62, 	 D 0:494=0:506, �C C
�� D 2021, � D 0:073 and g D 9:81. (a) ˝cr < ˝KH (here, HC D 0:62). (b) ˝cr D ˝KH (here,
HC D 0:03)
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There does not seem to be any simple explicit formula for the critical value
˝cr. However, it is possible to give upper and lower bounds for this quantity. Note
that these bounds are very precise in most situations (for the experiment studied in
Sect. 4.3 below for instance, there is an error of only 3% between˝cr� and˝crC). We
also point out that the upper bound given in the proposition coincides with Kelvin’s
criterion derived in the setting HC D H� D 1 [23].

Proposition 1. One has

˝cr� < ˝cr < ˝crC;

with

˝cr� D ˝KH ˛
� 1

2H0

p
Bo
�
; ˝crC D ˝KH

2p
Bo
;

where ˛.�/ is as in (27) and the Bond number Bo as defined in (5).

Remark 4. Note that the approximation˝cr � ˝crC is in perfect agreement with the
nonlinear criterion (1) derived in [32], namely,

��@zP
˙
jinterf

� >
1

4

.�C��/2

�.�C C ��/2
c.�/

ˇ̌
�U˙

jinterf
�
ˇ̌4
1:

Indeed, replacing U˙
jinterf

by c˙ in the above formula, and replacing the pressure by

its hydrostatic approximation @zP˙ D ��˙g, this nonlinear criterion yields

�c˙�2 < c.�/�1=2˝crC :

Sticking to the linear theory as we do in this article allows us to carry the
computations further and to get an explicit expression for the constant c.�/ (or more
precisely of its equivalent for the linear theory); we get in particular from the above
proposition some upper and lower bounds for c.�/ (for the experiment considered
in Sect. 4.3, one deduces that c.�/ � 1).

Proof. Let us first prove a lower bound ˛�
� to ˛� . Let k0 > 0. One has obviously

˛�.k/ � ˛.k/ for all k � 0 and, since ˛.�/ is a decreasing function, we get

80 � k � k0; ˛.k/ � ˛.k0/:

For k � k0, let us remark first that

g0 C �

�C C �� k2 � ˇk;
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if ˇ > 0 is small enough. The largest possible value for ˇ is ˇ D 2
p

g0�p
�CC��

, so that

˛�.k/ D .1C �

g0.�C C ��/
k2/˛.k/ � 2

p
�p

g0.�C C ��/
k˛.k/:

Since the function k 7! k˛.k/ is increasing on R
C, we get that

8k � k0; ˛� .k/ � 2

p
�p

g0.�C C ��/
k0˛.k0/:

It follows from the above that

8k � 0; ˛� .k/ � minf˛.k0/; 2
p
�p

g0.�C C ��/
k0˛.k0/g:

We now choose k0 such that the two quantities in the right-hand-side are equal,
namely,

k0 D 1

2

p
g0.�C C ��/p

�
;

to get

8k � 0; ˛� .k/ � ˛�
� ; with ˛�

� D ˛
�1
2

p
g0.�C C ��/p

�

�
:

We now turn to derive an upper bound ˛C
� for the minimum of ˛� . It is obtained

simply by observing that ˛.k/ � .kH0/
�1. This yields

˛� .k/ � 1

kH0

�
1C �

g0.�C C ��/
k2
�

and an upper bound for the minimum of ˛� is therefore given by the minimum of
the right-hand-side

8k � 0; ˛� .k/ � ˛C
� ; with ˛C

� D 2

H0

p
�p

g0.�C C ��/
:

The expressions for˝cr
˙ follow easily from ˛�̇ . ut
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4 Shallow Water Approximations in the Rigid lid Case

The goal of this section is to investigate whether shallow water models are able to
give a good account of the formation of Kelvin-Helmholtz instabilities for two-fluids
interfaces, in the rigid lid case. We investigate several shallow water models (some
of them new) and study the same stability issues as in Sect. 3 for the full Euler
equations. This allows us to give some insight on the ability of these asymptotic
models to describe the Kelvin-Helmholtz instabilities correctly.

Notation: When the fluid layers are both of finite depth, the first equation in (11)
can equivalently be written under the form (conservation of mass)

@t� ˙ r � .H˙.�/V˙
/ D 0; with H˙.�/ D H˙ ˙ �; (28)

and where V
˙

is the vertically averaged horizontal velocity,

V
˙
.t;X/ D ˙ 1

H˙.�/

Z �

	H˙

V˙.t;X; z/dz:

Shallow water approximations consist in writing the second equation of (11)

as an approximate evolution equation on V
˙

. In order to do so, U˙
k is related to

V
˙

through an asymptotic expansion in terms of the shallowness parameter �˙ D
.H˙/2=L2, where L is the typical horizontal length of the interfacial waves (see for
instance [8] for a systematic approach). With a first order expansion, one obtains
the Shallow water/Shallow water system (SW/SW) described in Sect. 4.1, while a
second order expansion gives the Green-Naghdi/Green-Naghdi system (GN/GN) in
Sect. 4.2. We also consider in Sects. 4.2.4 and 4.2.5 two classes of “regularized”
models. We show in particular that these news models allow one to reproduce the
same values for the critical shear as for the full Euler equations (which is not the
case with the standard GN/GN model, even in presence of surface tension). Finally,
we apply in Sect. 4.3 some of our results to experiments reported in [29].

4.1 First Order Approximation

We consider here the first order approximation under the Shallow Water/Shallow
Water regime. We derive the so called Shallow Water/Shallow Water system first,
and then the system is linearized near a constant shear flow. The stability criterion
is obtained as in the full system case.
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4.1.1 The Shallow Water/Shallow Water equations

Up to terms that are O.�/ times smaller, one can write

U˙
k � V

˙
and w˙ � 0

(see for instance [8, 14, 15, 34, 41]), and the second equation of (11) can be written
at leading order under the form

@tV
˙ C gr� C 1

2
rjV˙j2 D � 1

�˙ rP˙:

The first order shallow water approximation of (11) is then given by

8<
:
@t� ˙ r � .H˙.�/V˙

/ D 0;

@tV
˙ C gr� C 1

2
rjV˙j2 D � 1

�˙ rP˙;
(29)

with

H˙.�/ D H˙ ˙ �:

Remark 5. As in Remark 1 for the full equations, one can derive a reduced

formulation of (11) in terms of � and V D �CV
C � ��V

�
. In dimension d D 1

(writing v D V) this system is

8<
:
@t� C @x

�
H.�/v

� D 0

@tv C g0@x� C 1

2
@x
�
H0.�/v2

� D � �

�C C �� �.�/;
(30)

with

H.�/ D H�.�/HC.�/
�CH�.�/C ��HC.�/

I

in dimension d D 2, one can also obtain a reduced formulation, but it is more
complicated and involves non local operators [8, 30]. Note also that this model can
be simplified under the so called Boussinesq approximation when the two densities
are very close [9].
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4.1.2 Linearization Around a Constant Shear .cC; c�/

We consider here the linear equations governing small perturbations of the constant

horizontal shear � D 0, V˙ D c˙ (and therefore V
˙ D c˙).

Linearizing (29) around � D 0, V˙ D c˙, we find the following equations for
the perturbations . P�; PV˙/,

8<
:
@t

P� C c˙ � r P� ˙ H˙r � PV˙ D 0;

@t PV˙ C gr P� C c˙ � r PV˙ D � 1

�˙ rP˙I

note that since the flow is assumed to be potential at leading order in order to derive
the nonlinear shallow water equations (30), we restrict to perturbations PV˙ such that
r? � PV˙ D 0.

In the same spirit as in Remark 1, we can derive a reduced formulation for these
equations; denoting PV D �C PVC � �� PV�, we first get

8<
:
@t

P� C c˙ � r P� ˙ H˙r � PV˙ D 0;

@t PV C hc˙i � r PV C g0r P� C �c˙� � rh�˙ PV˙i D �

�C C ���r P�I (31)

in order to put this system in a closed system of equations on . P�; PV/, we need the
following lemma.

Lemma 2. One has, with H0 D �CH� C ��HC,

PVC D H�

H0

PV � ��

H0

˘
�
�c˙� P�	; PV� D �HC

H0

PV � �C

H0

˘
�
�c˙� P�	;

where ˘ D rrT

�
is the projector onto gradient vector fields.

Proof. From the first equation of (31), we get

HCr � PVC C H�r � PV� D ��c� � r P�I

recalling that the perturbations PV˙ are such that r? � PV˙ D 0, we get after
integrating in space that

HC PVC C H� PV� D �˘��c� P�	:
Together with the definition of PV , namely,

�C PVC � �� PV� D PV;

this yields a system on PV˙ whose solution is provided by the formulas stated in
the lemma. ut
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Using the lemma, we can rewrite (31) under the form as a system of . P�; PV/
8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

@t
P� C

�
cC � �� HC

H0

�c˙�
�

� r P� C HCH�

H0

r � Pv D 0;

@t PV C
�

cC � �� HC

H0

�c˙�
�

� r PV

C
�

g0 � �C��

H0

.�c˙� � D/2

D2
� �

�C C ���
�
r P� D 0:

(32)

4.1.3 The SW/SW Model and the Kelvin-Helmholtz Instabilities

In Sect. 3.2 we derived a stability condition (Stab 1) ensuring the existence of stable
modes with low wave number, derived the expression of the critical wave number at
the boundary of the stability area, and derived a stronger stability condition (Stab 2)
ensuring the stability of all modes. We derive here similar conditions for the SW/SW
model, which allows us to conclude that this model underestimates the Kelvin-
Helmholtz instabilities.

A brief look at (32) shows that the Fourier modes .F P�.k/;F P .k// are stable if
and only if

g0 � �C��

H0

.�c˙� � k/2

jkj2 C �

�C C �� jkj2 > 0:

As for the full equations in Sect. 3.2, the most unstable modes are those for which
k is parallel to the shear, and we again focus on these most unstable modes. As in
Sect. 3.2, we write �c˙� D �c˙�ex and k D kex, with �c˙� D j�c˙�j and k D jkj.
We readily get that a Fourier mode corresponding to the wavenumber k is stable
for (32) if and only if

g0�1 � �c˙�2

˝KH

�
C �

�C C �� k2 > 0 () �c˙�
2
< ˝KH

�
1C �

g0.�C C ��/
k2
�
:

(33)
It follows easily that the modes with low wavenumber are stable if and only if

(Stab 1)SW �c˙�
2
< ˝KH;

which is exactly the same as the condition (Stab 1) derived for the full equations in
Sect. 3.2. If it is satisfied, then all the modes are stable, so that in the SW/SW model,
we have for each �c˙�

(Critical wavenumber)SW kSW D C1;
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and the critical shear
p
˝cr

SW below which all modes are stable coincides withp
˝KH: all modes are stable if and only if

(Stab 2)SW �c˙�2 � ˝cr
SW with ˝cr

SW D ˝KH:

This condition differs in general from (Stab 2) derived in Sect. 3.2 for the full
equation since we always have ˝cr � ˝KH and, in general, ˝cr < ˝KH (this
is the case for small capillary effects, see Fig. 3). Therefore, the SW/SW model
underestimates Kelvin-Helmholtz instabilities.

Remark 6. The full, nonlinear, analysis can be carried out for the SW/SW equa-
tions. This has been done in [30] and improved in [10]; in particular, the SW/SW
equations (29) (or equivalently, (30) when d D 1) are locally well-posed provided

that the initial condition .�0;V
˙;0
/ satisfies

�V
˙;0

�2 < ˝KH.�
0/ with ˝KH.�

0/ D g0.��H�.�0/C �CHC.�0//
�C�� ;

and H˙.�0/ D H˙˙�0. The stability condition (Stab 1)SW is therefore the condition
one naturally expects from the condition above when linearizing around the constant

shear .� D 0;V
˙ D c˙/.

4.2 Second Order Approximation

This section is devoted to the second order approximation under the SW/SW
regime, which is the so called Green-Naghdi/Green-Naghdi (or GN/GN) system. We
linearize the system again near a constant shear flow. A different stability criterion
is then obtained based on the linearized system. Besides, we also derive and discuss
two “regularized” GN/GN models in order to get a better approximation on the
critical shear and therefore a better description of the formation of Kelvin-Helmholtz
instabilities.

4.2.1 The Green-Naghdi/Green-Naghdi Equations

We proceed as in Sect. 4.1, but go one step further in the asymptotic expression of
PV˙ in terms of V

˙
, namely

U˙
k � �

1C T ˙	V˙
and w˙ � 
H˙.�/@xV

˙
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where

T ˙� D � 1

3H˙.�/
r�H˙.�/3r � �	 with H˙.�/ D H˙ ˙ � (34)

(we refer to [15, 34] for the derivation of this asymptotic expansion).
Putting the first equation of (11) under the equivalent form (28), and plugging the

above approximations for U˙
k and w˙ into the second equation of (11), we obtain

the second order shallow water approximation [15, 18, 36] from which many other
asymptotic models can be derived [27],

8<
:
@t� ˙ r � .H˙.�/V˙

/ D 0;

.1C T ˙/@tV
˙ C gr� C 1

2
rjV˙j2 C Q˙ D � 1

�˙ rP˙;
(35)

with �P˙� D ��.�/ and

Q˙.V˙
/ D � 1

3H˙.�/
r
�

H˙.�/3
�
V

˙ � r.r � V
˙
/� jr � V

˙j2	�:

In the one fluid case �� D 0, these equations coincide with the Green-Naghdi
(or Serre) equations; adopting the terminology of [8], we therefore refer to these
equations as the Green-Naghdi/Green-Naghdi (or GN/GN) equations. As shown in
[15] these equations have a (non-canonical) Hamiltonian structure.

4.2.2 Linearization Around a Constant Shear .cC; c�/

Though it is possible to work with the two dimensional case d D 2 as in Sect. 4.1,
we focus our interest here on the one dimensional case d D 1 for the sake of clarity.
We therefore denote by v the horizontal velocity instead of V (and similarly, we
write v, etc). Linearizing (35) around � D 0, v˙ D c˙, we find the following
equations,

8<
:
@t

P� C c˙@x
P� ˙ H˙@x Pv˙ D 0;�

1 � 1

3
.H˙/2@2x

�
.@t Pv˙ C c˙@x Pv˙/C g@x

P� D � 1

�˙ @xP˙:

Using the formulas of Lemma 2, we can rewrite the second equation under the form

8̂
<̂
ˆ̂:
@t

P� C
�

cC � �� HC

H0

�c˙�
�
@x

P� C HCH�

H0

@x Pv D 0;

�
1 � 1

3
.H˙/2@2x

��
.@t C c˙@x/

�˙ H	

H0

Pv � �	

H0

�c˙� P�	�C g@x
P� D � 1

�˙ @xP˙:
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Eliminating the pressure from these equations, we get after some computations,

8̂
ˆ̂̂<
ˆ̂̂̂
:

@t
P� C c0@x

P� C HCH�

H0

@x Pv D 0;

.1� ˛H2
0@
2
x/
�
@t Pv C c0@x Pv	C 	�c˙�H2

0@
3
x Pv

C
�

g0 � �C��

H0

�c˙�2.1 � ˇH2
0@
2
x/� �

�C C �� @
2
x

�
@x

P� D 0;

(36)
with

c0 D
�

cC � �� HC

H0

�c˙�
�
; ˛ D 1

3
.�CHC C ��H�/

HCH�

H3
0

;

ˇ D ��.HC/3 C �C.H�/3

3H3
0

; 	 D �2
3

�C��

H0

�
.HC/2 � .H�/2

	HCH�

H3
0

:

4.2.3 The GN/GN Model and the Kelvin-Helmholtz Instabilities

As in Sect. 4.1.3 with the SW/SW model, we want to study the linear stability of (36)
and compare it with the behavior of the full equations investigated in Sect. 3.2.

With a simple analysis, one gets that the Fourier mode .F P�.k/;F Pv.k// is stable
(in the sense of Sect. 3.2) for the equations (36) if and only if

g0�1C �

g0.�C C ��/
k2
�
.1C ˛H2

0k2/

> �C�� 1

H0

�c˙�
2
�
1C 1

3
.HC/2k2

��
1C 1

3
.H�/2k2

�
;

or equivalently

�c˙�2 < ˝KH ˛GN� .k/;

with

˛GN� .k/ D .1C 1

Bo
H2
0k2/˛GN.k/

and

˛GN.k/ D 1

H0

� �CH�
�
1C 1

3
.H�/2k2

	 C ��HC
�
1C 1

3
.HC/2k2

	�:

It follows immediately that the modes with low wavenumber are stable if and only if

(Stab 1)GN� �c˙�
2
< ˝KH;
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Fig. 5 Stables areas for the full system (Euler) and the GN/GN model without or with surface
tension (� D 0:073). Parameters �C C �� D 2021, 	 D 0:494=0:506, HC D 0:62, ı D
0:15=0:62 and g D 9:81. (a) Without surface tension. (b) With surface tension

which is exactly the same as the condition (Stab 1) and (Stab 1)SW derived
respectively for the full equations and the SW/SW model. If it is satisfied, there is a
unique kGN� 2 R

C� [ fC1g for each �c˙�, such that all the modes corresponding to
� 2 R

d with j�j < kGN� are stable,

(Critical wavenumber)GN� kGN� D min˛�1
GN�

� j�c˙�j2
˝KH

�
:

In fact, one always has (at least for reasonable values of � as in Footnote 3) that
˛GN� .k/ < ˛� .r/ for � � 0, with ˛� as in (26). Therefore we find kGN� < kKH

(see Fig. 5b), and the GN/GN model (35) therefore overestimates Kelvin-Helmholtz
instabilities (see Fig. 5).

In absence of surface tension (� D 0), ˛GN� .�/ D ˛GN.�/ is a decreasing function
and goes to zero at infinity. As for the full equations, there are therefore always
unstable modes in presence of a nonzero shear �c˙�, as noted in [13]. In presence of
surface tension, the function ˛GN� .�/ is still decaying3 but tends to a non zero limit

3If � is very large, ˛GN� .�/ is no longer decreasing over RC. However, if � satisfies

� � 1

3
g0.�C C ��/minf.HC/2; .H�/2g;

which is always satisfied in realistic physical configurations, then ˛GN� .�/ is indeed a decreasing
function. We always assume that we are in such a regime.
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at infinity. There exists therefore a critical value ˝cr
GN�

WD ˝KHmin
RC

˛GN� such that

all modes are stable if and only if

(Stab 2)GN� �c˙�2 � ˝cr
GN�

D ˝KH
3

Bo

�
1C �C�� .HC � H�/2

HCH�
�
I

the same analysis as for the discussion on the critical wave number shows that
˝cr

GN�
< ˝cr; the GN/GN model being unable to reproduce correctly the threshold

for Kelvin-Helmholtz instabilities, we are led to derive other models in the next
sections. Note that contrary to the standard GN/GN model which has a Hamiltonian
structure [15], these regularized models are in general not Hamiltonian (see Sect. 4
of [6] for a discussion on this aspect in the weakly nonlinear case).

4.2.4 A First Class of Regularized Models

As shown in Sect. 4.2.3, the second order shallow water model (or Green-
Naghdi/Green-Naghdi) is always unstable for large wave numbers in absence
of surface tension (even if the shear �c˙� is very small). This led Choi, Barros and
Jo [13] to derive an asymptotically equivalent model with better high frequency
behavior in the sense that for a small enough shear �c˙�, all Fourier modes are
stable.

Their idea was to use a technique commonly used in the one fluid case (water
waves) to improve the dispersion relation of asymptotic models; it consists in
working with a velocity variable that differs from the averaged velocity v; this can
typically be the velocity at some fixed depth or a given level line, of the fluid domain
(see [5, 7, 39] and more generally Sect. 5.2 of [33]). This approach has also been
used in the context of interfacial waves [8, 38]; the idea in [13] (see also [2], and [16]
for a related approach) was to use it to remove the Kelvin-Helmholtz instabilities
from the standard GN/GN model. The authors rewrote the GN/GN equations (35)
in the variables .�; Ovṙ / instead of .�; v˙/, where Ovṙ is the horizontal velocity at the
fixed height Ozṙ , with

Ozṙ D 
H˙�1 �p�2r C 1=3
	
; �1=3 � r � 1=6

(so that Ozṙ D 0 if r D �1=3 and Ozṙ D 
H˙ if r D 1=6). Using a standard
shallow water expansion of the velocity field in the fluid domain (see for instance
[41], Sect. 13.11 or [33], Sect. 5.6.2), Ovṙ can be related to v˙ through the relation

v˙ � Ovṙ � 1

6
H˙.�/2@2x Ovṙ C

�
� r C 1

6

�
.H˙/2@2x Ovṙ .H˙.�/ D H˙ ˙ �/:

The regularized equations of [13] are obtained by replacing v˙ by this approxi-
mation in (35) and dropping smallest order terms. For r D 0, the linearization of
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these equations around the rest state coincides with the linearization of the standard
GN/GN model, but the nonlinear terms differ. Inspired by Sect. 5.2 of [33] we
therefore propose a slight modification (and generalization to the two dimensional
case d D 2) to the approach of [13] which consists in working with the velocity Vṙ
defined as

Vṙ D .1C 3r˙T ˙/�1V˙
.r � 0/ .with r˙ D H2

0

.H˙/2
r and r � 0/;

so that, with T ˙ as in (34),

V
˙ D Vṙ C 3r˙T ˙Vṙ :

Replacing V
˙

by this approximation in (35) and dropping the O..�˙/2/ terms (with
�˙ D .H˙/2=L2, L being the typical horizontal scale), one obtains the following
family of regularized GN/GN models indexed by the parameter r � 0,

8<
:
@t� ˙ r � �H˙.�/.1C 3r˙T ˙/Vṙ

� D 0;�
1C .1C 3r˙/T ˙�@tVṙ C gr� C 1

2
rjVṙ j2 C Qṙ D � 1

�˙ rP˙ (37)

where

Qṙ WD Q˙.Vṙ /C 3r˙r.Vṙ � T ˙Vṙ /C 3r˙.@tT
˙/Vṙ ;

where Q˙.�/ as defined before in original GN/GN model and

.@tT
˙/Vṙ D � 1

3H˙.�/2
r � �H˙.�/Vṙ

	r�H˙.�/3r � Vṙ

	

C 1

H˙.�/
r
�

H˙.�/2r � �H˙.�/Vṙ

	
.r � Vṙ /

�
:

In its one dimensional form d D 1, this model is a small variant of the system
(3.7) and (3.8) of [13]; the first interest of working with (37) is that the standard
GN/GN model (35) is a particular case (corresponding to r D 0) of (37), while it
does not belong to any of the regularized systems derived in [13]. The second and
main advantage is that the definition of vṙ makes sense4 for all r � 0 while the
definition of Ovr in [13] requires that r � 1=6.

4When r � 1=6, there is no obvious physical meaning for v˙

r . For 0 � r � 1=6, and for small

amplitude waves v˙

r is the horizontal velocity evaluated on the level line fz D Oz˙

r .1˙ �

H˙
/C �g

(see [33], Sect. 5.6.2).
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As for the previous examples, we now restrict to the case d D 1 to investigate
how this regularized model handles the Kelvin-Helmholtz instabilities. Linearizing
around the constant shear .�; vṙ / D .0; c˙/, we get

8<
:
@t

P� C c˙@x
P� ˙ H˙.1 � rH2

0@
2
x/@x Pvṙ D 0;�

1� 1

3
.3rH2

0 C .H˙/2/@2x
�
.@t Pvṙ C c˙@x Pvṙ /C g@x

P� D � 1

�˙ @xP˙:

The formulas of Lemma 2 must now be replaced by

PvC
r D H�

H0

Pvr�
��

H0

�c˙�.1�rH2
0@
2
x/

�1 P�; Pv�
r D �HC

H0

Pvr�
�C

H0

�c˙�.1�rH2
0@
2
x/

�1 P�

so that, proceeding as for (36), we are led (in absence of surface tension) to the
system

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

@t
P� C c0@x

P� C HCH�

H0

.1 � rH2
0@
2
x/@x Pvr D 0;�

1 � .˛ C r/H2
0@
2
x

�
.@t Pvr C c0@x Pvr/C 	�c˙�H2

0@
3
x Pvr

C
�

g0 � �C��

H0

�c˙�2.1 � rH2
0@
2
x/

�1�1 � .ˇ C r/H2
0@
2
x

	�
@x

P� D 0;

(38)

where Pv D �C PvC � �� Pv�. The Fourier mode .F P�.k/;F Pv.k// is therefore stable
for the system (38) if and only if

j�c˙�j2 � ˝KH˛GNr .�/

where, for all r � 0,

˛GNr.k/ D �C H�

H0

1C rH2
0k2

1C �
1
3
.H�/2 C rH2

0

	
k2

C �� HC

H0

1C rH2
0k2

1C �
1
3
.HC/2 C rH2

0

	
k2
:

Comparing ˛GNr with ˛GN from the standard GN/GN model, one of course finds
that ˛GNr.k/ D ˛GN.k/ when r D 0, since the standard GN/GN model then exactly
coincides with (37). Both ˛GNr and ˛GN are decreasing functions but when r > 0,
˛GNr.k/ tends to a nonzero value as k ! 1 while ˛GN.k/ tends to 0 as k ! 1. It
follows similarly as before that there exists stable modes for low wavenumber if and
only if

(Stab 1)GNr
j�c˙�j2 < ˝KH:
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With this condition, the critical wave number corresponding to �c˙� is

(Critical wavenumber)GNr
kGNr D min˛�1

GNr

� j�c˙�j2
˝KH

�
;

and there is a critical value ˝cr
GNr

such that all modes are stable if and only if

(Stab 2)GNr
�c˙�2 � ˝cr

GNr
I

one has ˝cr
GNr

D ˝KH min˛GN;r , that is

˝cr
GNr

D ˝KH

h
�C H�

H0

rH2
0

1
3
.H�/2 C rH2

0

C �� HC

H0

rH2
0

1
3
.HC/2 C rH2

0

i
:

In [13], the authors choose r D 1=6, which gives the largest possible value for
˝cr

GNr
(namely, ˝cr

GNr
D 1=3˝KH) for a system written in .�; Ovṙ / and therefore

subject to the constraint r � 1=6. Writing the regularized GN/GN model in terms
of .�; Vṙ / as suggested here, it is possible to take any r � 0, and therefore ˝cr

GNr

can take any value in Œ0;˝KH/. The lower bound of this interval is achieved when
r D 0; the standard GN/GN is therefore the most unstable of the whole family of
regularized models (37). The fact that the whole range Œ0;˝KH/ can be covered with
our approach implies in particular that it is possible to find some r0 � 0 such that the
regularized model (37) has exactly the critical shear as the full equations (11)–(12)
with surface tension, i.e. such that ˝cr

GNr0
D ˝cr. One readily finds that

r0 D �b C p
b2 � 4ac

2a
; (39)

with

a D
�
1 � ˝cr

˝KH

�
H4
0 ;

b D H2
0

3

�
HCH� �

CHC C ��H�

H0

� ˝cr

˝KH

�
..H�/2 C .HC/2

	�
;

c D �1
9

˝cr

˝KH
.HCH�/2:

Remark 7. The lines above show that it is possible to reproduce the same behavior
with respect to the apparition of Kelvin-Helmholtz instabilities as for the full
Euler equations with surface tension, even though surface tension is not taken into
account in (37). This is because the regularization used here can behave as a control
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mechanism for high frequencies that can be tuned to reproduce the surface tension
effects in the full Euler equations. Taking surface tension into account in (37) would
lead to a stability condition of the form

j�c˙�j2 � ˝KH˛GN�;r.k/ with ˛GN�;r.k/ D
�
1C 1

Bo
H2
0k2
�
˛GNr.k/:

4.2.5 A Second Class of Regularized Models

In the previous section, we extended the approach of [13] and obtained a very
flexible approach to describe the formation of Kelvin-Helmholtz instabilities. There
is however a drawback when working with the models of [13] and more generally
with the regularized models (37). Indeed, the first equation in (35) is exact
(conservation of mass), while the first equation in (37) is only valid up to order
O..�˙/2/ when r ¤ 0 (we recall that �˙ D .H˙/2=L2 where L is the typical
horizontal scale).

We propose here a second family of regularized models, that keeps the same
advantages as (37) to handle Kelvin-Helmholtz instabilities, but for which the
conservation of mass is also exact.

We recall that at first order in the shallowness parameter �˙, the full equa-
tions (11) can be approximated by the SW/SW equations (29) and that the GN/GN
equations (35) are a second order approximation. In particular, the second equation
of (35) can be written under the form

@tV
˙ D �gr� � 1

2
rjV˙j2 � 1

�˙ rP˙ C O.�˙/:

We now use a generalization of the so called BBM trick, namely, we write

T ˙@tV
˙ D .1C 3s˙/T ˙@tV

˙ C 3s˙gT ˙r� C 3s˙ 1
2
T ˙rjV˙j2

C3s˙ 1

�˙T ˙rP˙ C O.�˙/

(with s˙ D H2
0

.H˙/2
s where s 2 R), and plug this into the second equation of (35)

to obtain the following family of regularized GN/GN systems indexed by the
parameters s˙ as

8<
:
@t� ˙ r � .H˙.�/V˙

/ D 0;�
1C .1C3s˙/T ˙	@tV

˙Cgr� C 1

2
rjV˙j2CQṡ D� 1

�˙ .1C3s˙T ˙/rP˙

(40)
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with

Qṡ D Q˙ C 3s˙
�

gT ˙r� C 1

2
T ˙rjV˙j2

�
:

Focusing on the 1-D case and linearizing this system around the constant shear
.cC; c�/, one finds the following linear system

8̂
ˆ̂<
ˆ̂̂:

@t
P� C c˙@x

P� ˙ H˙@x Pv˙ D 0;�
1 � .

1

3
C s˙/.H˙/2@2x

�
.@t Pv˙ C c˙@x Pv˙/C g

�
1 � s˙.H˙/2@2x

	
@x

P�
D � 1

�˙
�
1 � s˙.H˙/2@2x

	rP˙:

Using Lemma 2 again to express Pv˙ in terms of Pv D �C PvC � �� Pv� and P�, and
proceeding as for (36), this system can be rewritten as

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

@t
P� C c0@x

P� C HCH�

H0

@x Pv D 0;�
1 � .˛ C s/H2

0@
2
x

��
@t Pv C c0@x Pv	C 	�c˙�H2

0@
3
x Pv

C
�

g0.1�sH2
0@
2
x/� �C��

H0

�c˙�2
�
1 � .ˇ C s/H2

0@
2
x

	�
@x

P� D 0;

(41)

where ˛, ˇ, 	 and c0 are the same as before.
With a simple analysis, one gets that the Fourier mode .F P�.k/;F Pv.k// is stable

(in the sense of Sect. 3.2) for the equations (41) if and only if

�c˙�2 < ˝KH ˛GNs.k/;

with

˛GNs.k/ D �C H�

H0

1C sH2
0k2

1C �
1
3
.H�/2 C sH2

0

	
k2

C �� HC

H0

1C sH2
0k2

1C �
1
3
.HC/2 C sH2

0

	
k2

I

this is exactly the same as the function ˛GNr derived for the first regularization (37).
Consequently, keeping an exact equation for the conservation of mass, the second
regularization (40), provides the same description of the formation of Kelvin-
Helmholtz instabilities as (37).

4.3 Application

We apply here some of the results derived above to analyze some experimental data
that can be found in [29], where the propagation of interfacial solitary waves is
studied; it is in particular shown that large amplitude solitary waves are destroyed
by Kelvin-Helmholtz instabilities.



218 D. Lannes and M. Ming

First of all, in the case of solitary waves, one can express the shear speed �c˙�
with the wave speed c and the amplitude of solitary wave a. In fact, plugging the
transverse solution �.x � ct/ into the first equation of (35) and integrating with
respect to x in 1-D case results in

�c� ˙ H˙.�/v˙ D 0

where we assume �; v ! 0 when x goes to 1. This implies that at the bottom point
of the solitary wave, i.e. � D a (with a < 0 for a depression solitary wave), one has

v˙ D ˙ c a

H˙ 
 a
:

If we define the jump of speed �c˙� as �c˙� WD vC � v�, we can have

�c˙� D ca.HC C H�/
.HC � a/.H� C a/

:

One can also find this formula in [13].
Now we want to fix the value of surface tension coefficient � for the linearized

full system (22) according to this expression, the critical value ˝cr for (22) and the
experimental data in [29].

One has from [29] that �C D 1022 g=m3, �� D 999 kg=m3 (hence �C D 0:506,
�� D 0:494), HC D 0:62m and H� D 0:15m. Taking the experimental values
c=c0 � 1 D 0:24 and a=H� D 1:23 (corresponding to the last experiment
before the apparition of Kelvin-Helmholtz instabilities in Fig. 7 in [29]), where

c20 D g0HCH�

�CH�C�CHC
is the linear long wave speed from KdV equation, one can

compute that �c˙� D 0:20m=s at the onset of Kelvin-Helmholtz instabilities. This
means that, with the notations of Sect. 3.2, one has ˝cr D �c˙�2 D 0:04 .m=s/2.
Using Proposition 1, we use the approximation˝crC � ˝cr and the definition of˝crC
to get

1

Bo
D 1

4

� ˝crC
˝KH

	2 � 1

4

� 0:04
˝KH

	2I

from the definition (5) of the Bond number, we deduce that

� � 1

4g0 .0:04/
2 .�C��/2

.�C C ��/3
D 0:45

(using this value of � , on can compute that the lower bound estimate for ˝cr

provided by Proposition 1 is ˝�
cr D 0:038 so that the error made by approximating

˝cr by ˝C
cr to compute � is only 3%). This value of � is significantly larger than

the air-water surface tension (� � 0:07), which was to be expected because we
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treat here the surface tension as a model to describe the various different stabilizing
effects (such as the mixing layer) between two miscible fluids. Note however that
even though � is larger than usual, it does not significantly affect the behavior of
the wave while Kelvin-Helmholtz instabilities do not destroy it. Indeed, surface
tension in (36) plays a role through a term of the form ��=.�C C ��/@3x� while
the dispersive term coming from non-hydrostatic terms is �˛H2

0@
2
x@tv � ˛g0H2

0@
3
x�.

Using the above data then shows that the dispersive effects coming from surface
tension are only about 5:9% of non hydrostatic ones. This confirms the general
picture exhibited in [32], namely, that surface tension is necessary for the wave to
exist, but that it does not affect significantly its propagation.

As shown in Sect. 4.2.4, it is also possible to find some r0 such that the
regularized model (37) reproduces the same critical value for the apparition of
Kelvin-Helmholtz instabilities (i.e. let ˝cr

GNr
D ˝cr); according to (39), one gets

r0 D 0:12. Note in particular that 0 < r0 < 1=6 and is therefore in the range
allowed by the regularized models of [13], but close to its upper range. Slightly
more stable configurations would therefore fall out of the range of validity of [13],
but would stay within the range allowed for (37); Since the stability criterion for the
second family of regularized systems (40) is the same as for (37), these comments
hold for these models also.

5 The Kelvin-Helmholtz Instability in the Free Surface Case

We investigate here the formation of (linear) Kelvin-Helmholtz instabilities for two-
fluids interfaces in the case of a free top surface. In fact, we consider again the linear
stability of perturbations near a constant shear flow as we did in the rigid lid case,
and we follow the formulation above.

With a free top surface, we get a more complex system of .�s; Us
k; �; U˙

k / (see
Sect. 2.2), and the linear stability analysis becomes more difficult. We perform some
numerical computations, and are able to find the expressions of the foot points for
the stable area in some special cases. A comparison with the rigid lid case is also
done in this section, where we discuss in particular the presence of a new range of
stable frequencies.

5.1 Linearization Around a Constant Shear .cC; c�/

We consider here the linear equations governing small perturbations of the constant
horizontal shear �s D � D 0, V˙ D c˙, w˙ D 0 (and therefore U˙

k D c˙,
Us

k D c�).



220 D. Lannes and M. Ming

Linearizing (17)–(19) around �s D � D 0, Vs D c�, V˙ D c˙ we find the
following linear equations for the perturbation . P�s; PVs; P�; PV˙/

8̂
ˆ̂̂<
ˆ̂̂̂
:

@t
P�s C c� � r P�s � Pws D 0;

@t PVs C gr P�s C c� � r PVs D 0;

@t
P� C c˙ � r P� � Pw˙ D 0;

@t PV˙ C gr P� C c˙ � r PV˙ D � 1

�˙ rP˙

(we refer to Lemma 3 for an expression of Pw˙), with

�P˙� D ��� P�:

As for (21), this can be further reduced by introducing PV D �C PVC � �� PV�; one
gets the following free surface version of (21)

8̂
ˆ̂̂<
ˆ̂̂̂
:

@t
P�s C c� � r P�s � Pws D 0;

@t PVs C gr P�s C c� � r PVs D 0;

@t
P� C c˙ � r P� � Pw˙ D 0;

@t PV C hc˙i � r PV C g0r P� C �c˙� � rh�˙ PV˙i D �

�C C �� r� P�:
(42)

We then need the following lemma (similar to Lemma 1) to handle the free surface
case.

Lemma 3. One has

PVC D ��

b.D/
.�c˙� � r/r P� C cth�jDj

b.D/
PV C ��jDj

sh�b.D/
PVs

PV� D �C

b.D/
.�c˙� � r/r P� � thCjDj

b.D/
PV C �CjDj

sh�b.D/
PVs;

and

PwC D �thC r
jDj � PVC; Pw� D cth� r

jDj � PV� � 1

sh�
r
jDj � PVs;

and

Pws D 1

sh�
r
jDj � PV� � cth� r

jDj � PVs

with the notation b.D/ D .�Ccth� C ��thC/jDj.
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Proof. As in the proof of Lemma 1, we write PV˙ D r P ˙, PV D r P with P D �C
P C � �� P �, we also write PVs D r P s.

Let P�� be the harmonic potential in the upper strip 0 < z < H� and such that
P��
jzD0

D P � and P��
jzDH�

D P s. Explicit computations show that

P�� D sinh.zjDj/
sinh.H�jDj/

P s � sinh..z � H�/jDj/
sinh.H�jDj/

P �;

from which we deduce that

w� D @z P��
jzD0

D 1

sh� jDj P s � cth�jDj P �:

Proceeding as in the proof of Lemma 1, we are therefore led to solve

8<
:

jDjthC P C C jDjcth� P � D �c˙� � r P� C 1

sh� jDj P s;

�C P C � �� P � D P I

this leads to

P C D ��

b.D/
�c˙� � r P� C cth�jDj

b.D/
P C ��jDj

sh�b.D/
P s

P � D �C

b.D/
�c˙� � r P� � thCjDj

b.D/
P C �CjDj

sh�b.D/
P s;

and the formulas of the lemma follow easily after remarking that

Pws D cth�jDj s � jDj
sh� P �:

This ends the proof. ut
Thanks to the lemma, we can rewrite (42) under the form

@tW C A.D/W D 0 (43)

where W D . P�s; PVs; P�; PV/ and

A.D/ D

0
BBBBBB@

c� � r b0.D/r
b.D/th� � �CjDj�c˙��r

b.D/sh�

thCr
b.D/sh� �

gr c� � r 0 0

0
��thCr
b.D/sh� � Nc.D/ � r thCcth�r

b.D/ �
0

�C��jDj
b.D/sh� .�c˙� � r/ a.D/r Nc.D/ � r

1
CCCCCCA
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where b.D/ D .�Ccth� C ��thC/jDj is already defined in Lemma 3, b0.D/ D �C

th� C ��thC, and moreover

Nc.D/ D .cC�Ccth� C c���thC/jDj
b.D/

; a.D/ D g0C�C��

b.D/
.�c˙��r/2� �

�C C ���:

5.2 Kelvin-Helmholtz Instabilities for the Linearized
Two-Fluids Equations with Free Surface

In this section we only focus on the d D 1 case for the sake of clarity. As in Sect. 3.2,
we write �c˙� D �c˙�ex and k D kex, with �c˙� D j�c˙�j and k D jkj.

In order to find out the stability criterion for the linearized system (43), we need
to explore the eigenvalue ! for the Fourier mode A.k/ of operator A.D/. Indeed, !
satisfies the equation

a0x
4 C a1x

3 C a2x
2 C a3x C a4 D 0

where x D c� � !
ik and

a0 D 1; a1 D 2�Ccth�k�c˙�

b.k/

a2 D cth�

b.k/

�
�Ck�c˙�2 � gb0.k/ � �

g0 C �

�C C �� k2
	
thC

�
;

a3 D �2g�C�c˙�

b.k/
; a4 D �g�C�c˙�2

b.k/
C g thC

b.k/k

�
g0 C �

�C C �� k2
�
;

and we write b D b.k/ and b0 D b0.k/ for short in the following text. The linear
system (43) is stable if and only if all the eigenvalues ! are pure imaginary, that is,
all the roots x for the equation above are real. As in [1], we use [28] to express the
stability criterion under the form

�3 > 0; �5 > 0; �7 > 0 or �3 � 0; �5 D 0; �7 D 0 (44)

where

�7 D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

a0 a1 a2 a3 a4 0 0

0 a0 a1 a2 a3 a4 0

0 0 a0 a1 a2 a3 a4
0 0 0 4a0 3a1 2a2 a3
0 0 4a0 3a1 2a2 a3 0

0 4a0 3a1 2a2 a3 0 0

4a0 3a1 2a2 a3 0 0 0

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

and�3; �5 are the 3 � 3; 5 � 5 inner center determinants.
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Fig. 6 The stable area for the linear system (43) in free surface case with surface tension on the
interface. The dashed line represents the bound for the stable area in the corresponding rigid lid
case. Parameters HC D 0:62, ı D 0:15=0:62, �C C �� D 2021, 	 D 0:4, � D 0:073 and
g D 9:81. (a) the two parts of the stable area. (b) a closer look at the left part

Since these conditions are far more complicated than the stability criterion for the
rigid lid case, we cannot write down the exact stability expressions and we prefer to
use numerical computations.

Compared to the stable area for the rigid lid case in Sect. 3.2, Fig. 6 tells us that
there are two parts for the stable area of system (43). The left part is similar and
close to the stable area for the rigid lid case, while there is a new stable part in the
free surface case on the right-hand side. This means that the linear system can also
be stable for high shear and low frequency, which is completely different from the
rigid lid case.

When surface tension is neglected, i.e. � D 0, there are also two parts of stable
area for the system (43). Similarly as the surface tension case above, the left part is
also close to the stable area of the corresponding rigid lid case. In fact, the stable
area is pretty much the same as the surface tension case in the low frequency part.

Summing up the numerical analysis, the stability condition for system (43) can
be described roughly as

j�c˙�j2 � ˝KH;1.k/ or ˝KH;2.k/ � j�c˙�j2 � ˝KH;3.k/

where ˝KH;i.k/ .i D 1; 2; 3/ can be expressed in terms of k, and ˝KH;1.k/ is close
to˝KH˛�.k/ from the rigid lid case. So the modes with low wave number are stable
if and only if

(Stab 1) j�c˙�j2 � ˝KH;1.0/ or j�c˙�j2 � ˝KH;2.0/:
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We shall provide in Sect. 6.1.3 exact values of˝KH;1.0/ and˝KH;2.0/ that will allow
us to show another striking difference with the rigid lid case: one has ˝KH;1.0/ ¤
˝KH (in fact˝KH;1.0/ < ˝KH in our numerical computations), that is, the threshold
for the stability of small wavenumbers is not the same as in the rigid lid model
(even if we restrict it to its left part corresponding to small shears. One can have the
condition (Stab 2) for the stability of all wave numbers:

(Stab 2) j�c˙�j2 � ˝cr
FS WD min

RC

˝KH;1.k/ > 0;

where we know from the numeral computations that ˝cr
FS is close to the one ˝cr in

the corresponding rigid lid case and therefore can be estimated approximately by
Proposition 1.

Remark 8. In absence of surface tension, i.e. � D 0, we obtain that the stability
condition for all wave numbers holds only for a zero shear, and there is therefore
no difference with the rigid lid case as far as the stability condition (Stab 2) is
concerned.

6 Shallow Water Approximations in the Free Surface Case

This section investigates the (linear) Kelvin-Helmholtz instabilities of the shallow
water approximation when the upper bound is a free surface. We consider here only
a first-order approximation leading to a free surface version of the SW/SW system,
where we are able to derive the exact expressions for stability criterion in the case
when the two layers have the same average depths (HC D H�). Based on this
observation, we can understand more about the differences between the rigid lid
case and the free surface case.

Notation: We need to adapt the definition of V
˙

in Sect. 4 to the free surface case
as follows

V
C D 1

HC.�/

Z �

�HC

VC.t;X; z/dz;

V
� D 1

H�.�s; �/

Z H�C�s

�

V�.t;X; z/dz;

where HC.�/ D HC C � and H�.�s; �/ D H� C �s � �.
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6.1 First Order Approximation

A first order approximation is discussed here in this section, similarly as in the
SW/SW part in the rigid lid case. We linearize the system around a constant shear
as before, and study numerically its stability; we also derive an explicit criterion in
the particular case where both fluid layers have the same depth at rest.

6.1.1 The Shallow Water/Shallow Water Equations with Free Surface

At first order, one writes

Us
k � V

�
; U˙

k � V
˙
; and ws � 0; w˙ � 0:

Plugging this into system (17) and (18) one has the nonlinear SW/SW system as

8̂
ˆ̂̂<
ˆ̂̂̂
:

@t�
s C r � .H�.�s; �/V

�
/C r � .HC.�/VC

/ D 0;

@tV
� C gr�s C 1

2
rjV�j2 D 0;

@t� C r � .HC.�/VC
/ D 0;

@tV
˙ C gr� C 1

2
rjV˙j2 D � 1

�˙
rP˙jzD� I

(45)

this system has been derived and studied in [3, 14, 19], and justified in [24].

6.1.2 Linearization Around a Constant Shear .cC; c�/

For the sake of clarity, we only consider the 1-D case here, so we write c˙ to be c˙.
After linearizing around the constant shear as before one obtains

8̂
ˆ̂<
ˆ̂̂:

@t�
s C c�@x�

s C H�@x Pv� C �c˙�@x� C HC@x PvC D 0;

@t Pv� C g@x�
s C c�@x Pv� D 0;

@t� C cC@x� C HC@x PvC D 0;

@t Pv C g0r� C ��˙c˙@x Pv˙� D 0;

where as usual Pv D �C PvC � �� Pv�. Proceeding as for Lemma 3 to derive a free
surface version of Lemma 2, one readily obtains that the free surface version of the
linearized SW/SW system (32) takes the following form,

@tW C ASW.D/W D 0 (46)
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where W D .�s; Pv�; �; Pv/ with the notation

ASW.D/ D

0
BBBBB@

c� H0
�C

�c˙� HC

�C

g c� 0 0

0
��HC

�C
cC HC

�C

0 ���c˙� g0 � �

�CC��
@2x cC

1
CCCCCA
@x:

6.1.3 The Free Surface SW/SW Model and the Kelvin-Helmholtz
Instabilities

Similar as for the full system case, the stability criterion for (46) is equivalent to the
fact that the Fourier mode ASW.k/ has purely imaginary eigenvalues for all k, which
leads to the following condition

x4 C 2�c˙�x3 C
�
�c˙�2 � g.HC C H�/ � �HC

�C.�C C ��/
k2
�

x2 � 2gH��c˙�x

�gH��c˙�2 C g
HCH�

�C
�
g0 C �

�C C �� k2
	 D 0 has four real roots.

With the same notations as in Sect. 5.2, this equation has four real roots if and only if

�SW
3 > 0; �SW

5 > 0; �SW
7 > 0 or �SW

3 � 0; �SW
5 D 0; �SW

7 D 0:

Since the surface tension at the interface affects only the high frequency part, we
omit the surface tension i.e. set � D 0 in the following computations. Direct
computations show that

�SW
3 D 4�c˙�2 C 8g.HC C H�/ > 0;

and

�SW
5 D 8g

h
.HC C H�/

�
�c˙�2 � g.HC � H�/

	2 C 4�c˙�2g.3HC � H�/H�i

C16g2��HCH���c˙�2 C 2g.HC C H�/
	
=�C:

We can tell from the expression above that �SW
5 > 0 at least when 3HC > H�

(our data in figures fit the case), therefore the stability is governed by the condition
�SW
7 > 0; but the sign of�SW

7 in general can only be assessed numerically. Figure 7
shows how the free surface SW/SW model behaves compared to the full system.
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Fig. 7 Stable areas of the free surface SW/SW model compared to the full system (� D 0).
Parameters HC D 0:62, ı D 0:15=0:62, 	 D 0:4 and g D 9:81

In the particular case where HC D H� D H, the expression for the inner
determinants�SW

5 and�SW
7 can be simplified considerably and one finds

�SW
5 D 16�c˙�4gH C 16�c˙�2.4C ��=�C/g2H2 C 64.��=�C/g3H3 > 0;

and

�SW
7 D 16g2H2

�
�c˙�2C.��=�C/gH

�2�
�c˙�4�8�c˙�2gHC16.1���=�C/g2H2

�
:

Therefore the stability criterion for the linear SW/SW system (46) generated from
�SW
7 > 0 reads

�c˙�4 � 8�c˙�2gH C 16.1� ��=�C/g2H2 > 0:

So the stability is achieved if and only if

�c˙�2 < 4gH.1� p
	/ or �c˙�2 > 4gH.1C p

	/;

where we recall that 	 is the density ratio: 	 D ��=�C 2 Œ0; 1/. Remarking that the
threshold ˝KH obtained in the rigid lid case for the stability of low wavenumbers

can be written ˝KH D gH 1�	2
	

, we obtain the following condition for the stability
of the free surface SW/SW model,
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(Stab 1)SW �c˙�
2
< ˝KH � 4	 1 � p

	

1 � 	2
or �c˙�

2
> ˝KH � 4	 1C p

	

1 � 	2 I

this is consistent with [37] where it is proved the free surface SW/SW model is
hyperbolic5 if and only if �c˙� < ˝�

KH or �c˙� > ˝C
KH where ˝K̇H are two non

explicit constants). This is of course equivalent to the condition for the stability of
low wavenumbers derived in Sect. 5.2 for the full system. As in the rigid lid case,
stability of low wavenumbers for the SW/SW model is equivalent to the stability of
all wavenumbers, i.e.

(Stab 2)SW () (Stab 1)SW :

6.2 Behavior of the Kelvin-Helmholtz Instabilities in the Rigid
Lid Limit

We have seen in the previous section that there are at least two major differences for
the behavior of Kelvin-Helmholtz instabilities in the rigid lid and in the free surface
cases. Namely,

(1) In both cases, the linearized equations are stable for small shears, but the (Stab
1) condition for the stability of low frequencies differ. These conditions are
given by

�c˙� < ˝KH . rigid lid / and �c˙� < ˝KH;1.0/ ¤ ˝KH . free surface /

(the fact that˝KH;1.0/ ¤ ˝KH is either checked numerically or, in the particular
case where HC D H�, using the explicit expression computed in Sect. 6.1.3).

(2) There exists in the free surface case a zone of stability for low frequency modes
when the shear is large. This stability area represented in Fig. 6 and also noticed
in [1, 11, 35, 40] does not exist in the rigid lid case.

Since the rigid lid approximation is much simpler and often used in applications,
we discuss here whether the two differences described above are compatible with
the rigid lid approximation.

From (1), one can infer that the rigid lid approximation can only be correct if
˝KH;1.0/ ! ˝KH in the rigid lid limit (i.e. when the amplitude of the surface
perturbations is much smaller than the interface displacement). From the explicit
expression of ˝KH;1.0/ computed in Sect. 6.1.3, this implies that one necessarily
has 	 ! 1, i.e. that the densities �˙ of both fluids become very similar (which

5Hyperbolicity does not imply well posedness of the nonlinear system (45); a stronger sufficient
well-posedness condition is derived in [24, 37]; contrary to (Stab 1)SW , this condition is satisfied
only for small shears.
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is the case for oceanographic applications). This is in this context that the rigid lid
approximation for the SW/SW model (45) has been justified in [26]; note also that
it is possible to derive a simpler model in this framework by making the so called
Boussinesq approximation [9].

The question raised by (2) is: what happens to the second stability area in the rigid
lid limit? This question is best answered by working in dimensionless variables

QX D X

L
; Q�s D ˛

�s

H0

; Q� D �

H0

; Qv D v

v0
; Qt D t

v0

L
;

where v stand here for all the velocities involved in the equations (v D v˙; vs,
c˙; : : :), L is the typical horizontal length, H0 D �CH� C ��HC, and v0 is the
typical speed of the linearized equations in shallow water and in the rigid lid case,
v20 D g0H0 (and the rigid lid limit corresponds to ˛ ! 0). In these dimensionless
variables, the (Stab 1)SW condition for the free surface SW/SW model derived in
Sect. 6.1.3 is written

(Stab 1)SW �Qc˙�
2
< 4.1C 	/2

1 � p
	

1 � 	2
or �Qc˙�

2
> 4.1C 	/2

1C p
	

1 � 	2

with �Qc˙� D �c˙�=
p

g0H0.
As seen above, the rigid lid limit can only be relevant if � WD 1� 	 goes to zero.

The above stability criterion is therefore asymptotically equivalent to

(Stab 1)SW �Qc˙�
2
< 4 or �Qc˙�

2
>
16

�
:

In the rigid lid limit, the behavior of the two stability areas observed in the free
surface case is the following: the left part (small shear) converges to the stability
area of the rid lid model, while the right part (large shear) is shifted more to the
right (see Fig. 8). In the rigid lid limit, the large shear stability condition is therefore
trivial in the sense that it requires an infinite shear to be satisfied.

6.3 Remarks on Other Interesting Limits

6.3.1 The One-Fluid Limit � ! 0

It is proved in [32] that, in the rigid-lid case, the full (nonlinear) two-fluids equations
converge to the one-fluid (water waves) equation as 	 ! 0 (it is in particular shown
that it is possible to consider simultaneously 	 ! 0 and Bo ! 1 and to get
convergence to the water waves equations without surface tension).
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Fig. 8 The stable areas for the linear system (43) with different parameter 	 D 1 � �. The
horizontal axis is rescaled to be �Qc˙� (written as ŒQc� in the figures) in order to compare with the
rigid lid case. The dashed lines represent the bounds for the stable area in the corresponding rigid
lid cases. Parameters �C C �� D 2021, HC D 0:62 D H�, � D 0:073 and g D 9:81. (a) the
stable areas with different �. (b) a closer look at the left part

It is natural to wonder what happens in the free surface case for which it is
expected that the stability region grows larger as 	 ! 0 since for the linearized
water waves equations, all wave numbers are stable (there is no Kelvin-Helmholtz
instability). As shown in Fig. 9, we numerically get that when 	 ! 0, the left and
the right parts of the stable area in the free surface case become closer and closer
and get united as one piece in the limit. For the small numbers, this phenomenon
becomes transparent by looking into the condition (Stab 1)SW and setting 	 ! 0.

6.3.2 The Small Aspect Ratio Limit ı ! 0

To different configurations lead to a small aspect ratio ı D H�=HC:

• When HC is fixed and H� gets smaller and smaller. In this case, the one fluid case
is expected to be recovered. Consequently, the stable area in the corresponding
two-fluids case with free surface should grow to cover the whole range of wave-
numbers. This scenario is numerically confirmed, as shown in Fig. 10. The right
part of the stable area gets larger and larger. Meanwhile, the left part becomes
closer and closer to the stable area in the rigid lid case.

• When H� is kept fixed and HC grows larger and larger. In this case, the rigid
lid limit is expected to be valid, and it is interesting to look at the behavior of
the high frequency stable area specific to the free surface case. This behavior is
represented in Fig. 11.
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Fig. 9 The stable areas for the linear system (43) with parameter 	 ! 0. The dashed lines
represent the bounds for the stable area in the corresponding rigid lid cases. Parameters �CC�� D
2021, HC D 0:62 D H�, � D 0:073 and g D 9:81. (a) Stable area when 	 D 0:4. (b) Stable
area when 	 D 0:01
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Fig. 10 The stable areas for the linear system (43) with different parameter ı where HC D 0:62

kept fixed. The dashed lines represent the bounds for the stable area in the corresponding rigid lid
cases. Parameters �C C �� D 2021, 	 D 0:4, � D 0:073 and g D 9:81. (a) the stable areas with
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232 D. Lannes and M. Ming

2 4 6 8 10
[c]

2

4

6

8

10

k

1
0.2
0.01

Fig. 11 The stable areas for the linear system (43) with different parameter ı where H� D 0:15

kept fixed. The dashed lines represent the bounds for the stable area in the corresponding rigid lid
cases again. Parameters �C C �� D 2021, 	 D 0:4, � D 0:073 and g D 9:81
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Some Analytic Results on the FPU Paradox

Dario Bambusi, Andrea Carati, Alberto Maiocchi, and Alberto Maspero

Dedicato a Walter Craig il cui entusiasmo è sempre contagioso.

Abstract We present some analytic results aiming at explaining the lack of
thermalization observed by Fermi Pasta and Ulam in their celebrated numerical
experiment. In particular we focus on results which persist as the number N of
particles tends to infinity. After recalling the FPU experiment and some classical
heuristic ideas that have been used for its explanation, we concentrate on more
recent rigorous results which are based on the use of (i) canonical perturbation
theory and KdV equation, (ii) Toda lattice, (iii) a new approach based on the
construction of functions which are adiabatic invariants with large probability in
the Gibbs measure.

1 Introduction

In their celebrated paper of the year 1954 Fermi Pasta and Ulam (see [20]) studied
the dynamics of a chain of nonlinear oscillators by numerical integration of the
equations of motion, with the aim of testing the dynamical foundation of equilibrium
statistical mechanics. They looked at the evolution of the normal mode energies
and of their time averages. FPU considered initial data with all the energy in the
first Fourier mode and observed that, for the initial data and the ranges of time
considered, (1) the harmonic energies seem to have a recurrent behaviour, and
(2) the time averages of the harmonic energies quickly relax to a distribution which
is exponentially decreasing with the wave number (the so called FPU packet of
modes). This was quite surprising since the solution was expected to explore a
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whole energy surface in phase space in such a way that the normal mode energies
would relax to equipartition, according to the prescription of equilibrium statistical
mechanics. For this reason the FPU result is sometimes referred to as the FPU
paradox.

A qualitatively new result was then obtained by Izrailev and Chirikov in the year
1966 [29] (confirmed by Bocchieri et al. [16]), who discovered that the paradox
disappears if initial data with sufficiently high energy are considered. In the same
period Zabuski and Kruskal [39] used the KdV equation in order to try to describe
analytically the recurrent behaviour observed by FPU.

Thus two kind of analytic problems naturally arise. The first one is to describe
the FPU recurrent behaviour, maybe along the lines of Zabuski and Kruskal; the
second one is to establish whether the FPU paradox persists in the thermodynamic
limit, i.e. the limit in which the number N of particles in the chain tends to infinity
while keeping the specific energy E=N fixed, which is the relevant limit for the
foundations of statistical mechanics.

The aim of the present paper is to present a short review of the status of the
research, focusing only on analytic results and in particular on a couple of results
recently obtained by the authors [5, 31].

The paper is organized as follows: in Sect. 2 we present some numerical
computations which essentially coincide with those by FPU. We also add a further
numerical computation showing the existence of an energy threshold above which
the paradox disappears. In Sect. 3 we will discuss some theoretical heuristic ideas
which have been used in order to try to explain and to understand the FPU paradox.
In particular, in Sect. 3.1 we will discuss the relation between FPU lattice and
KdV equation, while in Sect. 3.2 we discuss the use of KAM theory and canonical
perturbation theory (and Nekhoroshev’s theorem) in the context of FPU dynamics.
In Sect. 4 we present some rigorous results that have been obtained in the last ten
years on the problem and which give some explanation of the existence of the so
called FPU packet of modes. The limitation of all these results is that they apply to a
regime in which the specific energy goes to zero as N ! 1. The section is split into
three subsection, the first one deals with a result based on the KdV approximation,
the second one deals with a result based on multifrequency expansion and the third
one deals with a result based on the approximation by Toda lattice. The subsection
on Toda lattice contains the best results now available on the FPU packet of modes.
In Sect. 5 we will present an averaging theorem for the FPU chain valid in the
thermodynamic limit. This last result in particular deals with a slightly different
problem, namely the exchange of energy among the different degrees of freedom
when one starts with an initial datum belonging to a set of large Gibbs measure. We
conclude the paper with a short discussion in Sect. 6.

2 The FPU Paradox

The Hamiltonian of the FPU–chain can be written, in suitably rescaled variables, as

HFPU D H0 C H1 C H2 (1)
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where

H0
defD
X

j

 
p2j
2

C
�
qjC1 � qj

	2
2

!
;

H1
defD 1

3Š

X
j

�
qjC1 � qj

	3

H2
defD A

4Š

X
j

�
qjC1 � qj

	4
;

where .p; q/ are canonically conjugated variables. We will consider either periodic
boundary conditions or Dirichlet boundary conditions: the index j runs from 0 to N
in the case of Dirichlet boundary conditions, namely q0 D qNC1 D 0 D p0 D pNC1,
while it runs from �.N C 1/ to N in the case of periodic boundary conditions, i.e.
q�N�1 D qNC1 and p�N�1 D pNC1.

In order to introduce the Fourier basis consider the vectors

Oek.j/ D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

ıPDp
NC1 sin

�
jk�

NC1
�
; k D 1; : : : ;N;

1p
NC1 cos

�
jk�

NC1
�
; k D �1; : : : ;�N;

1p
2NC2 ; k D 0;

.�1/jp
2NC2 ; k D �N � 1:

(2)

Then the Fourier basis is formed by Oek, k D 1; : : : ;N and ıPD D p
2 in the case of

Dirichlet boundary conditions, and by Oek, k D �N � 1; : : : ;N and ıPD D 1 in the
case of periodic boundary conditions.

Introducing the Fourier variables .Opk; Oqk/ by

pj D
X

k

Opk Oek.j/ ; qj D
X

k

Oqk Oek.j/ (3)

with

!k D 2 sin

� jkj�
2.N C 1/

�
; (4)

the system takes the form

H D H0 C H1 C H2 (5)
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where

H0.Op; Oq/ D
X

k

Op2k C !2k Oq2k
2

; H1 D H1.Oq/ ; H2 D H2.Oq/ : (6)

We also introduce the harmonic energies

Ek D Op2k C !2k Oq2k
2

;

and their time averages

Ek.T/ WD 1

T

Z T

0

Ek.t/dt : (7)

We will often use also the specific harmonic energies defined by

ek WD Ek

N
: (8)

We recall that according to the principles of classical statistical mechanics, at
equilibrium at temperature T, each of the harmonic oscillators should have an energy
equal to ˇ�1, where ˇ D .kBT/�1 is the standard parameter entering in the Gibbs
measure (and kB is the Boltzmann constant). Furthermore, if the system has good
statistical properties, the time averages of the different quantities should quickly
relax to their equilibrium value.

Fermi Pasta and Ulam studied the time evolution of Ek and of the corresponding
time averages Ek under Dirichlet boundary conditions. Figure 1 shows the results
of the numerical computations by FPU1; the initial data are chosen with E1.0/ 6D 0

and Ek.0/ D 0 for any jkj > 1.
From Fig. 1 one sees that the energy flows quickly to some modes of low

frequency, but after a short period it returns almost completely to the first mode;
in the right part of the figure the final values of Ek.t/ are plotted in a linear scale.
The final distribution turns out to be exponentially decreasing with k.

If one continues the integration one sees that the return phenomenon repeats itself
almost identically for a very long time (see Fig. 2). The distribution of the Ek.t/, too,
is almost unchanged: one usually says that a packet of modes has formed.

In Fig. 3 the time averages Ek.t/ are plotted versus time in a semi-log scale. One
sees that the quantities Ek.t/ quickly relax to well defined values which, as shown
in Fig. 2 (right figure), decay exponentially with the wave number. To describe the
situation with the words by Fermi Pasta and Ulam “The result shows very little, if

1Actually these figures where obtained more recently by Antonio Giorgilli by repeating the
computations of FPU.
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Fig. 1 Mode energies vs time (left) and final values of their time averages vs mode number k
(right)
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Fig. 2 Energy of the first mode and final values of Ek.t/ at longer time scales

any, tendency towards equipartition of energy among the degrees of freedom.” This
is what is usually known as the Fermi Pasta Ulam paradox.

All the above results correspond to initial data with small energy. It was however
discovered by Izrailev and Chirikov [29] that the results qualitatively change when
the energy per particle is increased. This is illustrated in Fig. 4 from which one sees
that the FPU paradox disappears in this regime, because equipartition is quickly
attained.

The FPU numerical experiment originated a huge amount of scientific research
and in particular subsequent numerical computations have established the shape of
the packet of modes to which energy flows (see e.g. [13]) into FPU regime and have
put into evidence that the FPU packet is only metastable [21], namely that after a
quite long time, whose precise length is not yet precisely established, the system
relaxes to equipartition (see e.g. [12, 14]).
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Fig. 3 Ek.t/ versus time
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Fig. 4 Ek.t/ versus time at
large energy
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3 Heuristic Theoretical Analysis

We remark that the theoretical understanding of the FPU paradox would be
absolutely fundamental: indeed it is clear that the phenomenon would have a strong
relevance for the foundations of statistical mechanics if it were proven to persist in
the thermodynamic limit, i.e., in the limit in which the number of particles N ! 1
while the energy per mode, namely

P
k Ek=N, is kept fixed. Of course numerics can

just give some indications, while a definitive result can only come from a theoretical
result, which is the only one able to attain the limit N D 1.
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3.1 KdV

One of the first attempts to explain the FPU paradox was based on the use of the
Korteweg de Vries equation (KdV). The point is that on the one hand KdV is known
to approximate the FPU and on the other one KdV is also known to be integrable,
so that it displays a recurrent behaviour.

We now recall briefly the way KdV is introduced as a modulation equation for the
FPU. We consider the case of periodic boundary conditions and confine the study to
the subspace

X
j

qj D 0 D
X

j

pj (9)

which is invariant under the dynamics. The idea is to consider initial data with large
wavelength and small amplitude, namely to interpolate the difference qj � qjC1
through a smooth small function slowly changing in space (and time). This is
obtained through an Ansatz of the form

qj � qjC1 D �u.�j; t/; � WD 1

N
; � � 1 (10)

with u periodic of period 2. It turns out that in order to fulfill the FPU equations, the
function u should have the form

u.x; t/ D f .x � t; �3t/C g.x C t; �3t/

with f .y; �/ and g.y; �/ fulfilling the equations

f� C �2

�
fyyy C ffy D O.�2/ ; g� � �2

�
gyyy � ggy D O.�2/ ; (11)

namely, up to higher order corrections, the system is described by a couple of
KdV equations with dispersion of order �2=�. The origin of this group of ideas
is the celebrated paper by Zabuski and Kruskal [39] on the dynamics of the KdV
equation, which was the starting point of soliton theory and led in particular to the
understanding that KdV is integrable. Thus, the enthusiasm for the discovery of such
a beautiful and important phenomenology, led to the idea that also the FPU paradox
might be an integrable phenomenon, or more precisely could be the shadow of the
fact that KdV is an integrable system nearby FPU.

In order to transform such a heuristic idea into a theorem one should fill two
gaps. The first one consists in showing that in the KdV equation a phenomenon of
the kind of the formation and persistence of the packet of modes occurs; the second
one consisting in showing that the solutions of the KdV equation actually describe
well the dynamics of the FPU, namely that the higher order corrections neglected in
(11), are actually small.
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As discussed below, both problems can be solved in the case � D �2, in which
the KdV equation turns out to be the standard one.

In particular, in this case one can exploit some analytic properties of action angle
variables for KdV (see [30]) in order to show that if one puts all the energy in the
first Fourier mode, then the energy remains forever localized in an exponentially
localized packet of Fourier modes. However, if one wants to take the limit N ! 1
while keeping � fixed (as needed in order to get a result valid in the thermodynamic
limit), one has to study the dispersionless limit of the KdV equation and very little
is known on the behaviour of action angle variables in such a limit. Thus we can
say that, in the KdV equation, the phenomenon of formation and persistence of the
packet is not explained in the limit which corresponds to the thermodynamic limit
of the FPU lattice.

The second problem (justification of KdV as an approximation of FPU) is far
from trivial, since FPU is a singular perturbation of KdV, namely the O.�2/ terms in
(11) contain higher order derivatives: the proof of theorems connecting the solutions
of KdV and the solutions of FPU have only recently been obtained [6, 36], and only
in the case � D �2.

3.2 KAM Theory and Canonical Perturbation Theory

Izrailev and Chirikov [29] in 1966 suggested an explanation of the FPU paradox
through KAM theory. We recall that KAM theory deals with perturbations of
integrable systems and ensures that, provided the perturbation is small enough, most
of the invariant tori in which the phase space of the unperturbed system is foliated
persist in the complete system. In the case of FPU the simplest integrable system
is the linearized chain for which the perturbation is provided by the nonlinearity.
So the size of the nonlinearity increases with the energy of the initial datum and
KAM theory should apply for energy smaller than some N-dependent threshold �N .
This approach has the advantage of potentially explaining the FPU paradox and
also to predict that it should disappear for energy larger then some threshold (as
actually observed numerically). From the argument of Izrailev and Chirikov (based
on Chirikov’s criterion of overlapping of resonances) one can extract also an explicit
estimate of �N which should go to zero like N�4 
 �4. Such an estimate is
derived by Izrailev and Chirikov by considering initial data on high frequency
Fourier modes, while they do not deduce any explicit estimate for the case of initial
data on low frequency modes. Their argument was extended to initial data on low
frequency Fourier modes by Shepeliansky [37] leading to the claim that also in
correspondence to such a kind of initial data the FPU phenomenon should disappear
as N ! 1. However a subsequent reanalysis of the problem led Ponno [33] to
different conclusions, so, we can at least say that the situation is not yet clear.
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We emphasize that the actual application of KAM theory to the FPU lattice is
quite delicate since the hypotheses of KAM theory involve a Diophantine type
nonresonance condition and also a nondegeneracy condition. The two conditions
have been verified only much later by Rink [35] (see also [26, 32]). Then one
has to estimate the dependence of the threshold �N on N and it turns out that a
rough estimate gives that �N goes to zero exponentially with N (essentially due
to the Diophantine type nonresonance condition). This is the main reason which
led Izrailev and Chirikov to conjecture that the FPU paradox disappears in the
thermodynamic limit.

In order to weaken this condition on �N , Benettin, Galgani, Giorgilli and
collaborators [1, 8–11, 22] started to investigate the possibility of using averaging
theory and Nekhoroshev’s theorem to explain the FPU paradox. This a quite
remarkable change of point of view, since at variance with KAM theory averaging
theory and Nekhoroshev’s theorem give results controlling the dynamics over long,
but finite times, so that such a point of view leaves open the possibility that the FPU
paradox disappears after a finite but long time, which is what is actually observed
in numerical investigations (see also the remarkable theoretical paper [21]). Results
along this line have been obtained for chains of rotators ([1, 9]) and FPU chains with
alternate masses [1, 22]. An application to the true FPU model is given in the next
section.

4 Some Rigorous Results at Vanishing Specific Energy

4.1 KdV and FPU

The unification of the two points of view illustrated above was obtained in the
paper [6]. In that paper, first of all canonical perturbation theory is used in order
to deduce a couple of KdV equations as resonant normal form for the FPU lattice
and, secondly, the KdV equations are used in order to describe the phenomenon of
formation and metastability of the FPU packet. We briefly recall the result of [6].

We consider here the case of periodic boundary conditions. Consider a state of
the form (10) and write the equation for the evolution of the function u. Then it turns
out that such an equation is a Hamiltonian perturbation of the wave equation, so one
can use canonical perturbation theory for PDEs in order to simplify the equation.
Passing to the variables f ; g the normal form turns out to be the Hamiltonian of a
couple of non interacting KdV equations. In [6] a rigorous theory estimating the
error was developed, and the main results of that paper are contained in Theorem 1
and Corollary 1 below.

Consider the KdV equation

f� C fyyy C ffy D 0 I



244 D. Bambusi et al.

it is well known [30] that if the initial datum extends to a function analytic in a
complex strip of width � , then the solution (as a function of the space variable y) is
also analytic (in general in a smaller complex strip).

Consider now a couple of solutions f ; g of KdV with analytic initial data and let
qKdV

j .t/ be the unique sequence such that

qKdV
j .t/ � qKdV

jC1 .t/ D �2
�
f
�
�.j � t/; �3t

	C g
���.j C t/; �3t

	�
;

X
j

qKdV
j .t/ 
 0 ; (12)

where, as above, � WD N�1. Then the result of Theorem 1 below is that qKdV
j

approximates well the true solution of the FPU lattice.
Let qj.t/ be the solution of the FPU equations with initial data qj.0/ D qKdV

j .0/,
Pqj.0/ D PqKdV

j .0/; denote by Ek.t/ the energy in the kth Fourier mode of the solution
of the FPU with such initial data and ek WD Ek=N.

The following theorem holds

Theorem 1 ([6]). Fix an arbitrary Tf > 0. Then there exists �� such that, if � <
�� then for all times t fulfilling

jtj � Tf

�3
(13)

one has

sup
j

ˇ̌
rj.t/ � rKdV

j .t/
ˇ̌ � C�3 ; (14)

where rj WD qj � qjC1 and similarly for rKdV
j . Furthermore, there exists � > 0 s.t.,

for the same times, one has

ek.t/ � C�4e�� jkj C C�5 : (15)

Exploiting known results on the dynamics of KdV (and of Hill’s operators [34]) one
gets the following corollary which is directly relevant to the FPU paradox.

Corollary 1. Fix a positive R and a positive Tf ; then there exists a positive constant
��, with the following property: assume � < �� and consider the FPU system with
an initial datum fulfilling

e1.0/ D e�1.0/ D R2�4 ; ek.0/ 
 ek.t/
ˇ̌
tD0 D 0 ; 8jkj 6D 1 : (16)

Then, along the corresponding solution, Eq. (15) holds for the times (13).
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Furthermore there exists a sequence of almost periodic functions fFk.t/g such
that one has

ˇ̌
ek.t/ � �4Fk.t/

ˇ̌ � C2�
5 ; jtj � Tf

�3
: (17)

Remark 1. One can show that the following limit exists

NFk WD lim
T!1

1

T

Z T

0

Fk.t/dt : (18)

It follows that up to a small error the time average of ek.t/ relaxes to the limit
distribution obtained by rescaling NFk. Of course NFk is exponentially decreasing with
k, but one can also show that actually one has NFk 6D 0 8k 6D 0

The strong limitation of the above results rests in the fact that they only apply
to initial data with specific energy of order �4, thus they do not apply to the
thermodynamic limit.

4.2 Longer Time Scales at Smaller Energy

We present here a result by Hairer and Lubich [24] which is valid in a regime of
specific energy smaller then that considered above, but controls the dynamics for
longer time scales. The proof of the result is based on the technique of modulated
Fourier expansion developed by the authors and their collaborators. In some sense
such a technique can be considered as a variant of classical perturbation theory. The
key tool that they use for the proof is an accurate analysis of the small denominators
entering in the perturbative construction.

To be precise [24] deals with the case of periodic boundary conditions.

Theorem 2. There exist positive constants R�, N�, T, with the following property:
consider the FPU system with an initial datum fulfilling (16) with R < R�. Then,
along the corresponding solution, one has

ek.t/ � R2�4R2.jkj�1/ ; 8 1 � jkj � N ; 8jtj � T

�2R5
; (19)

where as above ek WD Ek=N.

It is interesting to compare the time scale covered by this theorem with the time
scale of Corollary 1. It is clear that the time scale (19) is longer than (13) as far as

R < N�1=5 (20)
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(where we made the choice Tf WD T), namely in a regime where the specific energy
goes to zero faster than in Theorem 1.

One has also to remark that in Theorem 2 one gets an exponential decay of the
Fourier modes valid for all k’s (the term of order �5 present in (15) is here absent).

4.3 Toda Lattice

It is well known that close to the FPU lattice there exists a remarkable integrable
system, namely the Toda lattice [25, 38] whose Hamiltonian is given by

HToda.p; q/ D 1

2

X
j

p2j C
X

j

eqj�qjC1 ; (21)

so that one has

HFPU.p; q/ D HToda.p; q/C .A � 1/H2.q/C H.3/.q/;

where

Hl.q/ WD
X

j

.qj � qjC1/lC2

.l C 2/Š
; 8l � 2 ;

H.3/ WD �
X
l�3

Hl ;

which shows the vicinity of HFPU and HToda.
The idea of exploiting the Toda lattice in order to deduce information on the

dynamics of the FPU chain is an old one; however in order to make it effective,
one has first to deduce information on the dynamics of the Toda lattice itself, and
this is far from trivial. The most obvious way to proceed consists in constructing
action angle coordinates for the Toda lattice and using them to study the dynamics
of the Toda lattice itself. An important result along this program was obtained
by Henrici and Kappeler [26, 27] who constructed action angle coordinates and
Birkhoff coordinates (a kind of cartesian action angle coordinates) showing that, for
any N, such coordinates are globally analytic (see Theorem 3 below for a precise
statement). However the construction by Henrici and Kappeler is not uniform in the
number N of particles, thus it is not possible to exploit it directly in order to get
results in the limit N ! 1.

Results on the behaviour of the integrable structure of Toda for large N have been
recently obtained in a series of papers [2–5, 15]. In particular in [2–4], exploiting
ideas from [15], it has been shown that, as N ! 1, the actions and the frequencies
of the Toda lattice are well described by the actions and the frequencies of a couple
of KdV equations, at least in a regime equal to that of Theorem 1, namely of specific
energy of order �4.
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Further results (exploiting some ideas from [2–4]) directly applicable to the
FPU metastability problem have been obtained in [5] and now we are going to
present them. In [5] the regularity properties of the Birkhoff map, namely the map
introducing Birkhoff coordinates for the FPU lattice, have been studied and lower
and upper bounds to the radius of the ball over which such a map is analytic have
been given.

To come to a precise statement we start by recalling the result by Henrici and
Kappeler.

Consider the Toda lattice in the submanifold (9) and introduce the linear Birkhoff
variables

Xk D Opkp
!k
; Yk D p

!k Oqk ; jkj D 1; : : : ;N I (22)

using such coordinates, H0 takes the form

H0 D
NX

jkjD1
!k

X2k C Y2k
2

: (23)

With an abuse of notations, we re-denote by HToda the Hamiltonian (21) written in
the coordinates .X;Y/.

Theorem 3 ([28]). For any integer N � 2 there exists a global real analytic
canonical diffeomorphism ˚N W R

2N � R
2N ! R

2N � R
2N, .X;Y/ D ˚N.x; y/

with the following properties:

(i) The Hamiltonian HToda ı ˚N is a function of the actions Ik WD x2kCy2k
2

only, i.e.
.xk; yk/ are Birkhoff variables for the Toda Lattice.

(ii) The differential at the origin is the identity: d˚N.0; 0/ D 1l.

In order to state the analyticity properties fulfilled by the map ˚N as N ! 1 we
need to introduce suitable norms: for any � � 0 define

k.X;Y/k2� WD 1

N

X
k

e2� jkj !k
jXkj2 C jYkj2

2
: (24)

We denote by B� .R/ the ball in C
2N � C

2N of radius R and center 0 in the topology
defined by the norm k:k� . We will also denote by B�

R
WD B�.R/ \ .R2N � R

2N/ the
real ball of radius R.

Remark 2. We are particularly interested in the case � > 0 since, in such a case,
states with finite norm are exponentially decreasing in Fourier space.

The main result of [5] is the following Theorem.
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Theorem 4 ([5]). Fix � � 0 then there exist R;R0 > 0 s.t.˚N is analytic on B�
�

R
N˛

	
and fulfills

˚N

�
B�
�

R

N˛

��
� B�

�
R0

N˛

�
; 8N � 2 (25)

if and only if ˛ � 2. The same is true for the inverse map ˚�1
N .

Remark 3. A state .X;Y/ is in the ball B�.R=N2/ if and only if there exist
interpolating periodic functions .ˇ; ˛/, namely functions s.t.

pj D ˇ

�
j

N

�
; qj � qjC1 D ˛

�
j

N

�
; (26)

which are analytic in a strip of width � and have an analytic norm of size R=N2.
Thus we are in the same regime to which Theorem 1 apply.

Theorem 4 shows that the Birkhoff coordinates are analytic only in a ball of
radius of order N�2, which corresponds to initial data with specific energy of
order N�4.

We think this is a strong indication of the fact that standard integrable techniques
cannot be used beyond such a regime.

As a corollary of Theorem 4, one immediately gets that in the Toda Lattice
the analogous of the FPU metastable packet of modes is actually stable, namely
it persists for infinite times. Precisely one has the following result.

Corollary 2. Consider the Toda lattice (21). Fix � > 0, then there exist constants
R0; C1; such that the following holds true. Consider an initial datum fulfilling (16)
with R < R0. Then, along the corresponding solution, one has

ek.t/ � R2.1C C1R/�
4e�2� jkj ; 8 1 � jkj � N ; 8t 2 R : (27)

We recall that this was observed numerically by Benettin and Ponno [7, 12].
One has to remark that according to the numerical computations of [12], the packet
exists and is stable over infinite times also in a regime of finite specific energy
(which would correspond to the case ˛ D 0 in Theorem 4). The understanding of
this behaviour in such a regime is still a completely open problem.

Concerning the FPU chain, Theorem 4 yields the following result.

Theorem 5. Consider the FPU system. Fix � � 0; then there exist constants R0
0;

C2; T; such that the following holds true. Consider a real initial datum fulfilling (16)
with R < R0

0, then, along the corresponding solution, one has

ek.t/ � 16R2�4e�2� jkj ; 8 1 � jkj � N ; jtj � T

R2�4
� 1

jA � 1j C C2R�2
: (28)
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Furthermore, for 1 � jkj � N, consider the action Ik WD x2kCy2k
2

of the Toda lattice
and let Ik.t/ be its evolution according to the FPU flow. Then one has

1

N

NX
jkjD1

e2� jkj!kjIk.t/ � Ik.0/j � C3R
2�5 for t fulfilling (28): (29)

So this theorem gives a result which covers times one order of magnitude longer
then those covered by Theorem 1. Furthermore the small parameter controlling the
time scale is the distance between the FPU and the Toda

This is particularly relevant in view of the fact that, according to Theorem 1 the
time scale of formation of the packet is ��3, thus the present theorem shows that
the packet persists at least over a time scale one order of magnitude longer then the
time needed for its formation.

5 An Averaging Theorem in the Thermodynamic Limit

In this section we discuss a different approach to the study of the dynamics of the
FPU system, which allows to give some results valid in the thermodynamic limit.
Such a method is a development of the one introduced in [17] in order to deal with
a chain of rotators (see also [19]), and developed in [18] in order to study a Klein
Gordon chain.

We consider here the case of Dirichlet boundary conditions and endow the phase
space with the Gibbs measure �ˇ at inverse temperature ˇ, namely

d�ˇ.p; q/
defD e�ˇHFPU .p;q/

Z.ˇ/
dpdq I (30)

where as usual

Z.ˇ/ WD
Z

e�ˇHFPU.p;q/dpdq

is the partition function (the integral is over the whole phase space). In the following
we will omit the index ˇ from �. Given a function F on the phase space, we define

hFi defD
Z

Fd� ; (31)

kFk2 defD hF2i 

Z

jFj2d� ; (32)

�2F
defD kF � hFik2 ; (33)
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which are called respectively the average, the L2 norm and the variance of F. The
time autocorrelation function CF of a dynamical variable F is defined by

CF.t/ WD hF.t/Fi � hF2i ; (34)

where F.t/ WD F ı Gt and Gt is the flow of the FPU system.
Remark that the Gibbs measure is asymptotically concentrated on the energy

surface of energy N=ˇ. Thus, when studying the system in the above setting one is
typically considering data with specific energy equal to ˇ�1.

Let g 2 C2.Œ0; 1�;RC/ be a twice differentiable function; we are interested in the
time evolution of quantities of the form

˚g
defD

NX
kD1

Ek g

�
k

N C 1

�
:

We are thinking of a function g with a small support close to a fixed wave vector
Nk=.N C 1/, so that the quantity ˚g represents the energy of a packet of modes
centered at Nk=.N C 1/.

The following theorem was proved in [31]

Theorem 6. Let g 2 C2.Œ0; 1�IRC/ be a function fulfilling g0.0/ D 0. There exist
constants ˇ� > 0, N� > 0 and C > 0 s.t., for any ˇ > ˇ� and for any N > N�, any
ı1; ı2 > 0 one has

�
�ˇ̌
˚g.t/ �˚g.0/

ˇ̌ � ı1�˚g

	 � ı2 ; jtj � ı1
p
ı2

C
ˇ (35)

where, as above, ˚g.t/ D ˚g ı Gt.

This theorem shows that, with large probability, the energy of the packet of modes
with profile defined by the function g remains constant over a time scale of order
ˇ�1. We also emphasize that the change in the quantity ˚g is small compared to
its variance, which establishes the order of magnitude of the difference between the
biggest and the smallest value of ˚g on the energy surface.

Theorem 6 is actually a corollary of a result controlling the evolution of the
time autocorrelation function of ˚g. We point out that, in some sense the time
autocorrelation function is a more important object, at least if one is interested in
the problem of the dynamical foundations of thermodynamics. Indeed, it is known
by Kubo linear response theory, that the specific heat of system in contact with a
thermostat is the time autocorrelation function of its energy. Of course we are here
dealing with an isolated system, so the previous theorem is not directly relevant to
the problem of foundations of statistical mechanics.

Remark 4. Of course one can repeat the argument for different choices of the
function g. For example one can partition the interval Œ0; 1� of the variable k=.N C1/
in K sub-intervals and define K different functions g.1/; g.2/; : : : ; g.K/, with disjoint
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support, each one fulfilling the assumptions of Theorem 6, so that one gets that

the quantities ˚g.l/
defD P

k g.l/
�

k
NC1

	
Ek are adiabatic invariants, i.e. the energy

essentially does not move from one packet to another one.

The scheme of the proof of Theorem 6 is as follows: first, following standard
ideas in perturbation theory (see [23]), one performs a formal construction of an
integral of motion as a power series in the phase space variables. As usual, already
at the first step one has to solve the so called homological equation in order to find
the third order correction of the quadratic integral of motion. The solution of such
an equation involves some small denominators which are usually the source of one
of the problems arising when one wants to control the behaviour of the system in
the thermodynamical limit. We show that, if one takes as the quadratic part of the
integral the quantity ˚g, then every small denominator appears with a numerator
which is also small, so that the ratio is bounded. The subsequent step consists in
adding rigorous estimates on the variance of the time derivative of the so constructed
approximate integral of motion. This allows to conclude the proof.

We emphasize that this procedure completely avoids to impose the time invari-
ance of the domain in which the theory is developed, which is the requirement that
usually prevents the applicability of canonical perturbation theory to systems in the
thermodynamic limit. Indeed in the probabilistic framework the relevant estimates
are global in the phase space.

6 Conclusions

Summarizing the above results, we can say that all analytical results available
nowadays can be split into two groups: the first group consisting of those which
describe the formation of the packet observed by FPU and give some estimates
on its time of persistence. Such results do not survive in the thermodynamic limit;
indeed they are all confined to the regime in which the specific energy is order
N�4. We find particularly surprising the fact that very different methods lead to the
same regime and of course this raises the suspect that there is some reality in this
limitation. However one has to say that numerics do not provide any evidence of
changes in the dynamics when energy is increased beyond this limit.

A few more comments on this point are the following ones: the limitations
appearing in constructing the Birkhoff variables in the Toda lattice (which are the
source of the limitations in the applicability of Theorem 5) are related to the fact
that one is implicitly looking for an integrable behaviour of the system, namely
a behaviour in which the system is essentially decoupled into non interacting
oscillators. On the contrary the construction leading to Theorem 1 is based on a
resonant perturbative construction in which the small denominators are not present.
The main limitation for the applicability of Theorem 1 comes from the need of
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considering the zero dispersion limit of the KdV equation. So, it is surprising that
the regime at which the two results apply is the same.

So the question on whether the phenomenon of formation of a metastable
packet persists in the thermodynamic limit or not is still completely open. An
even more open question is that of the length of the time interval over which it
persists. Up to now the best result we know is that of Theorem 5, but from the
numerical experiments one would expect longer time scales (furthermore in the
thermodynamic limit). How to reach them is by now not known.

At present the only known result valid in the thermodynamic limit is that of
Theorem 6. However we think that this should be considered only as a preliminary
one. Indeed it leaves open many important questions. The first one is the optimality
of the time scale of validity: the technique used for its proof does not extend to
higher order constructions. This is due to the fact that at order four new kinds
of small denominators appear and up to now we were unable to control them.
Furthermore there is no numerical evidence of the optimality of the time scale
controlled by such a theorem.

An even more important question is the relevance of the result for the foundations
of statistical mechanics. Indeed, one expects that the existence of many integrals of
motion independent of the energy should have some influence on the measurement
of thermodynamic quantities, for example the specific heat. In particular, since the
time needed to exchange energy among different packets of modes increases as
one lower the temperature, one would expect that some new behaviour appears as
the temperature is lowered towards the absolute zero. However up to now we were
unable to put into evidence some clear effect of the mathematical phenomenon
described by Theorem 6. This is one of the main goals of our group for the next
future.
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A Nash-Moser Approach to KAM Theory

Massimiliano Berti and Philippe Bolle

Dedicated to Walter Craig for his 60th birthday.

Abstract Any finite dimensional embedded invariant torus of a Hamiltonian
system, densely filled by quasi-periodic solutions, is isotropic. This property allows
us to construct a set of symplectic coordinates in a neighborhood of the torus
in which the Hamiltonian is in a generalized KAM normal form with angle-
dependent coefficients. Based on this observation we develop an approach to KAM
theory via a Nash-Moser implicit function iterative theorem. The key point is to
construct an approximate right inverse of the differential operator associated to the
linearized Hamiltonian system at each approximate quasi-periodic solution. In the
above symplectic coordinates the linearized dynamics on the tangential and normal
directions to the approximate torus are approximately decoupled. The construction
of an approximate inverse is thus reduced to solving a quasi-periodically forced
linear differential equation in the normal variables. Applications of this procedure
allow to prove the existence of finite dimensional Diophantine invariant tori of
autonomous PDEs.

1 Introduction

In the last years much work has been devoted to the existence theory of quasi-
periodic solutions of PDEs. The main strategies developed to overcome the well
known “small divisors” problem are:

1. KAM (Kolmogorov-Arnold-Moser) theory,
2. Newton-Nash-Moser implicit function theorems.
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The KAM approach consists in generating iteratively a sequence of canonical
transformations of the phase space which bring, up to smaller and smaller remain-
ders, the Hamiltonian system into a normal form with an invariant torus “at the
origin”: in the new coordinates, the invariant torus is the zero section of the trivial

linear bundle T
� � R

� � E
��! T

� , see Sect. 2. In the usual KAM scheme the
normal form has constant coefficients (see (30)). This iterative procedure requires,
at each step, to solve the so called linear “homological equations”. The normal form
depends on a frequency vector ! 2 R

� , whose components are the “tangential
frequencies” of the invariant torus, and the normal frequencies ˝i at the invariant
torus. Solving the homological equations requires lower bounds for the moduli of
! � k C˝i (first order Melnikov non-resonance conditions) and of ! � k C˝i ˙˝j

(second order Melnikov conditions), for k 2 Z
� . The final KAM torus is linearly

stable.
This scheme has been effectively implemented by Kuksin [20] and Wayne [28]

for 1-d nonlinear wave (NLW) and Schrödinger (NLS) equations with Dirichlet
boundary conditions. The required second order Melnikov non resonance conditions
are violated in presence of multiple normal frequencies, for example, already for
periodic boundary conditions (two eigenvalues of @xx are equal).

Thus a more direct bifurcation approach was proposed by Craig and Wayne [13],
see also [12], for 1-d NLW and NLS equations with periodic boundary conditions.
After a Lyapunov-Schmidt decomposition, the search of the invariant torus is
reduced to solve a functional equation by some Newton-Nash-Moser implicit
function theorem in Banach scales of analytic functions of time and space. The
main advantage of this approach is to require only the “first order Melnikov” non-
resonance conditions for inverting the linearized operators obtained at each step of
the iteration: such conditions mean that the eigenvalues of these linear (self-adjoint)
operators are bounded away from zero. On the other hand, the main difficulty is
that the linearized equations are PDEs with non-constant coefficients, represented
by differential operators that are small perturbations of a diagonal operator having
arbitrarily small eigenvalues. Hence it is hard to estimate their inverses in high
norms. Craig-Wayne [13] solved this problem for periodic solutions and Bourgain
[9] also for quasi-periodic solutions. This approach is particularly useful for PDEs
in higher dimension due to the large (possibly unbounded) multiplicities of the
normal frequencies. It has been effectively implemented by Bourgain [10, 11], for
analytic NLS and NLW with Fourier multipliers on T

d, d � 2, and by Berti-Bolle
[4, 5] for forced NLS and NLW equations with a multiplicative potential and finite
differentiable nonlinearities. In Berti-Corsi-Procesi [8] this scheme has been then
generalized into an abstract Nash-Moser implicit function theorem with applications
to NLW and NLS on general compact Lie groups and homogeneous spaces.

We remark that in the above papers the transformations used to prove estimates in
high norms for the inverse linearized operators at the approximate solutions are not
maps of the phase space, as in the usual KAM approach, and therefore the dynamical
system structure of the transformed system is lost.
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The aim of this Note is to present a new strategy to KAM theory for PDEs
which contains the advantages of both the previous approaches. It is a Nash-Moser
implicit function iterative scheme for the search of a torus embedding with the
advantages of the normal form KAM approach, as developed in [15, 23], and for
PDEs in [16, 20, 21, 25, 28] (and references therein). Instead of applying directly
a sequence of canonical maps of the phase space which, at the limit, conjugate the
Hamiltonian to another one which possesses an invariant torus “at the origin” (this
is the usual normal form approach), we construct an embedded invariant torus by a
Nash-Moser iterative scheme in scales of Banach spaces. Then Theorem 1 proves
that, in a neighborhood of an invariant Diophantine torus (a torus supporting quasi-
periodic orbits of Diophantine frequency vector), it is always possible to construct
a set of analytic symplectic variables in which the Hamiltonian system assumes
the KAM normal form (28). Note that the quadratic terms of the normal form (28)
are, in general, angle dependent. In these coordinates the linearized equations in
the tangential and normal directions are decoupled, see (31). Theorem 1 is relevant
for implementing a Nash-Moser iterative scheme which constructs better and better
approximate invariant tori of the PDE (Sects. 3–4). Actually the existence of an
approximate KAM normal form, near an approximate invariant torus, as in (28),
simplifies the analysis of the linearized system at such approximate solution: in
a set of symplectic coordinates, adapted to each approximate torus, the linearized
equations in the tangential and normal directions are approximately decoupled. This
reduces the problem to the study of the quasi-periodically forced linearized equation
in the normal directions. An advantage is that, when working with autonomous
PDEs, one can essentially decouple the problems coming from the study of the
bifurcation equation from those coming from the small divisors. The present
strategy applies well to NLW on T

d with multiplicative potential (see [6]) and to
quasi-linear PDEs (see [3]); in both cases the usual standard normal form approach
does not seem to apply.

The above symplectic construction preserves the Hamiltonian dynamical struc-
ture of the equations. Thus it is a decomposition of tangential/normal dynamics
sharper than the usual Lyapunov-Schmidt reduction based on the splitting into
bifurcation/range equations. The present KAM approach applies well also to PDEs
whose flow is ill-posed.

We now present more in detail the main ideas of this KAM strategy. As already
mentioned, the main difficulty for implementing a Newton-Nash-Moser iterative
scheme is to solve the (non homogeneous) linearized equations at each approximate
quasi-periodic solution. This is a difficult matter for the presence of small divisors
and because the tangential and normal components to the torus of the linearized
equations are coupled by the nonlinearity.

It was noted by Zehnder [29] that, in order to get a “quasi Newton-Nash-
Moser” scheme with still quadratic speed of convergence, it is sufficient to invert
the linearized equation only approximately. In [29] Zehnder introduced the precise
notion of approximate right inverse linear operator, see (43). Its main feature is to
be an exact inverse of the linearized equation at an exact solution.
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In this approach we construct an approximate right inverse for the functional
equation satisfied by the embedding of an invariant torus of a Hamiltonian system,
see (16), or (34)–(35). The first observation is that an embedded invariant torus sup-
porting a non-resonant rotation is isotropic. This is classical for finite dimensional
Hamiltonian systems, see [19] or [17]-Lemma 33. Actually this property is also
true for infinite dimensional Hamiltonian systems (Lemma 1) since it requires only
that the Hamiltonian flow is well defined on the invariant torus and preserves the
symplectic 2-form on it. Near an isotropic torus it is then possible to introduce the
symplectic set of coordinates (23) in which the torus is “at the origin”. It follows
that the existence of an invariant torus and a nearby normal form like (28) are
equivalent statements, see Theorem 1. Clearly, with second order Melnikov non-
resonance conditions, it is also possible to obtain a constant coefficients normal
form as (30), i.e. to prove the reducibility of the torus.

The introduction of such symplectic coordinates adapted to the torus is the bridge
with the usual KAM proof based on normal forms transformations. The point is that
the normal form (28) means more than the existence of the invariant torus, since
it also provides a control of the linearized equations in the normal bundle of the
torus. Actually, in the normal form coordinates, the linearized equations at the torus
simplify, see (31). In particular the second component in (31) is decoupled from the
others and the system (31) can be solved in a “triangular” way.

Of course, there is little interest in inverting the linearized equation at a torus that
is already a solution. The point is that, at an approximate invariant torus, it is still
possible to construct an approximate right inverse of the linearized equation, which
is enough to get a “quasi-Nash-Moser” scheme à la Zehnder.

With this aim, in Sect. 4 we extend the symplectic construction developed in
Sect. 2 for an invariant torus, to an approximate solution. Needless to say, an
approximate invariant torus is only approximately isotropic (Lemma 5). Thus the
first step is to deform it into a nearby exactly isotropic torus (Lemma 6). This enables
to define the set of symplectic coordinates (66) in which the isotropic torus is “at
the origin”. In these new coordinates also the linearized equations (73) simplify and
we may invert them approximately, namely solve only (74) and (75). Such system
is obtained by neglecting in (73) the terms which are zero at an exact solution, see
Lemmas 8 and 3. The linear system (74) and (75) may be solved in a triangular
way, first inverting the action-component equation (76) (see (77) and (78)), which
is decoupled from the other equations.

In the case of a Lagrangian (finite dimensional) torus, there is not the last normal
component in (75), and one may immediately solve equation (82) for the angle
component, see (83) and (84). This completes the construction of an approximate
inverse. This is another way to recover the classical results of Zehnder [29] and
Salomon-Zehnder [27] for maximal dimensional tori, and it is closely related to the
method in [14] by De la Llave, Gonzalez, Jorba, Villanueva.

On the contrary, in the general case of an isotropic torus, the present strategy has
reduced the search of an approximate right inverse for the embedded torus equation,
to the problem of solving the linear equation (79). This is a quasi-periodically forced
linear PDE which is a small perturbation of the original linearized PDE, restricted
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to the normal directions. The existence of a solution for such an equation is very
simple for partially hyperbolic (whiskered) tori, because there is no resonance in
the normal directions. In the more difficult case of elliptic tori, where small divisors
appear, this equation has the same feature as the quasi-periodically forced linear
PDE restricted to the normal directions. It makes possible to exploit KAM results
that have already been proved for the corresponding forced PDEs, as, for example,
[2, 4, 5, 8].

For finite dimensional systems, this construction is deeply related to the Herman-
Fejoz KAM normal form theorem used in [17] to prove the existence of elliptic
invariant tori in the planetary solar system. Actually le “Théorème de conjugaison
tordue” of Herman (Theorem 38 in [17]) is deduced by a Nash-Moser implicit
functions theorem in Fréchet spaces.

This scheme may be effectively implemented for autonomous Hamiltonian
PDEs, like, for example,

1. (NLW) Nonlinear wave equation

ytt ��y C V.x/y D f .x; y/ ; x 2 T
d ; y 2 R ; (1)

with a real valued multiplicative potential (we may clearly consider also a
convolution potential V � y as in [11]) and a real valued nonlinearity f .

2. (NLS) Hamiltonian nonlinear Schrödinger equation

iut ��u C V.x/u D f .x; u/ ; x 2 T
d ; u 2 C ; (2)

where f .x; u/ D @NuF.x; u/ and the potential F.x; u/ 2 R, 8u 2 C, is real valued.
For u D a C ib, a; b 2 R, the operator @Nu is by definition 1

2
.@a C i@b/.

3. (KdV) Quasi-linear Hamiltonian perturbed KdV equations

ut C uxxx C @xu2 C N .x; u; ux; uxx; uxxx/ D 0 ; x 2 T ; (3)

where N .x; u; ux; uxx; uxxx/ WD �@x
�
.@uf /.x; u; ux/ � @x..@ux f /.x; u; ux//

�
is the

most general Hamiltonian (local) nonlinearity, see (4).

The NLW and NLS equations are studied in [6] and the quasi-linear KdV in [3].
All the above PDEs are infinite dimensional Hamiltonian systems. Also in view

of the abstract setting of Sect. 2, we present their Hamiltonian formulation:

1. The NLW equation (1) can be written as the Hamiltonian system

d

dt

�
y
p

�
D
�

p
�y � V.x/y C f .x; y/

�
D
�
0 Id

�Id 0

��
ıyH.y; p/
ıpH.y; p/

�
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where ıyH, ıpH denote the L2.Td
x/-gradient of the Hamiltonian

H.y; p/ WD
Z
Td

p2

2
C 1

2

�jryj2 C V.x/y2
	C F.x; y/ dx

and @yF.x; y/ D �f .x; y/. The variables .y; p/ are “Darboux coordinates”.
2. The NLS equation (2) can be written as the infinite dimensional complex system

ut D iıNuH.u/ ; H.u/ WD
Z
Td

jruj2 C V.x/juj2 � F.x; u/ dx :

Actually (2) is a real Hamiltonian PDE in the variables .a; b/ 2 R
2, real and

imaginary part of u. Denoting the real valued potential W.a; b/ WD F.x; a C ib/,
so that

@NuF.x; a C ib/ WD 1

2
.@a C i@b/W.a; b/ D f .x; a C ib/ ;

the NLS equation (2) reads

d

dt

�
a
b

�
D
�
�b � V.x/b C 1

2
@bW.a; b/

��a C V.x/a � 1
2
@aW.a; b/

�
D 1

2

�
0 �Id
Id 0

��
ıaH.a; b/
ıbH.a; b/

�

with real valued Hamiltonian H.a; b/ WD H.a C ib/, ıa; ıb denoting the L2-real
gradients.

3. The KdV equation (3) is the Hamiltonian PDE

ut D @xıH.u/ ; H.u/ D
Z
T

u2x
2

� u3

3
C f .x; u; ux/ dx ; (4)

where ıH denotes the L2.Tx/ gradient. A natural phase space for (4) is

H1
0.Tx/ WD

n
u.x/ 2 H1.T;R/ W

Z
T

u.x/dx D 0
o
:

In the present paper we shall focus on the geometric construction of the
approximate right inverse for the equation satisfied by an embedded torus of a
Hamiltonian system, stressing the algebraic aspects of the proof. In the papers [3, 6]
the analytic estimates, and small technical variations, may disturb the geometric
clarity of the approach.
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2 Normal Form Close to an Invariant Torus

We consider the toroidal phase space

P WD T
� � R

� � E where T
� WD R

�=.2�Z/�

is the standard flat torus and E is a real Hilbert space with scalar product h ; i. We
denote by u WD .
; I; z/ the variables ofP . We call .
; I/ the “action-angle” variables
and z the “normal” variables. We assume that E is endowed with a constant exact
symplectic 2-form

˝E.z;w/ D hNJz;wi ; 8z;w 2 E ; (5)

where NJ W E ! E is an antisymmetric bounded linear operator with trivial kernel.
Thus P is endowed with the symplectic 2-form

˝ WD .dI ^ d
/ ˚ ˝E (6)

which is exact, namely

˝ D d
 (7)

where d denotes the exterior derivative and 
 is the 1-form on P defined by


.
;I;z/ W R� � R
� � E ! R ;


.
;I;z/Œ O
; OI; Oz� WD I � O
 C 1

2
hNJz; Ozi ; 8. O
; OI; Oz/ 2 R

� � R
� � E : (8)

The dot “ � ” denotes the usual scalar product of R� .

Remark 1. For the NLW equation E D L2 � L2 with L2 WD L2.Td;R/, the operator

defining the symplectic structure is NJ D
�
0 �Id
Id 0

�
and h ; i is the L2 real scalar

product on E. The transposed operator NJT D �NJ (with respect to h ; i) and the
inverse NJ�1 D NJT . The same setting holds for the NLS equation with real valued
Hamiltonian, writing it as a real Hamiltonian system in the real and imaginary part.
For the KdV equation E D L20.T;R/ WD fz 2 L2.T;R/ W R

T
z.x/ dx D 0g the

operator NJ D @�1
x and h ; i is the L2 real scalar product. Here the transposed operator

NJT D �NJ and the inverse NJ�1 D @x is unbounded.



262 M. Berti and P. Bolle

Given a Hamiltonian function H W D � P ! R, we consider the Hamiltonian
system

ut D XH.u/ ; where dH.u/Œ�� D �˝.XH.u/; �/ (9)

formally defines the Hamiltonian vector field XH. For infinite dimensional systems
(i.e. PDEs) the Hamiltonian H is, in general, well defined and smooth only on a
dense subset D D T

� � R
� � E1 � P where E1 � E is a dense subspace of E.

We require that, for all .
; I/ 2 T
� � R

� , 8z 2 E1, the Hamiltonian H admits a
gradient rzH, defined by

dzH.
; I; z/Œh� D hrzH.
; I; z/; hi ; 8h 2 E1 ; (10)

and that rzH.
; I; z/ 2 E is in the space of definition of the (possibly unbounded)
operator J WD �NJ�1. Then by (9), (5), (6), (10) the Hamiltonian vector field XH W
T
� � R

� � E1 7! R
� � R

� � E writes

XH D .@IH;�@
H; JrzH/ ; J WD �NJ�1 : (11)

A continuous curve Œt0; t1� 3 t 7! u.t/ 2 T
��R

��E is a solution of the Hamiltonian
system (9) if it is C1 as a map from Œt0; t1� to T

� � R
� � E1 and ut.t/ D XH.u.t//,

8t 2 Œt0; t1�. For PDEs, the flow map ˚ t
H may not be well-defined everywhere. The

next arguments, however, will not require to solve the initial value problem, but only
a functional equation in order to find solutions which are quasi-periodic, see (16).

We refer to [21] for a general functional setting of Hamiltonian PDEs on scales
of Hilbert spaces.

Remark 2. In the example of remark 1 for NLW and NLS, we can take E1 WD
H2 � H2. Then the Hamiltonian vector field JrzH W H2 � H2 ! L2 � L2. For KdV
we can take E1 D H3

0.T/ so that JrzH D �@xrzH W H3
0.T/ 7! L20.T/.

We suppose that (9) possesses an embedded invariant torus

' 7! i.'/ WD .
0.'/; I0.'/; z0.'// ; (12)

i 2 C1.T� ;P/\ C0.T�;P \ T
� � R

� � E1/ ; (13)

which supports a quasi-periodic solution with non-resonant frequency vector ! 2
R
� , more precisely

i ı � t
! D ˚ t

H ı i ; 8t 2 R ; (14)

where ˚ t
H denotes the flow generated by XH and

� t
! W T� ! T

� ; � t
!.'/ WD ' C !t ; (15)
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is the translation flow of vector ! on T
� . Since ! 2 R

� is non-resonant, namely
! � k ¤ 0, 8k 2 Z

� n f0g, each orbit of .� t
!/ is dense in T

� . Note that (14) only
requires that the flow ˚ t

H is well defined and smooth on the compact manifold T WD
i.T�/ � P and .˚ t

H/jT D i ı� t
! ı i�1. This remark is important because, for PDEs,

the flow could be ill-posed in a neighborhood of T . From a functional point of view
(14) is equivalent to the equation

! � @' i.'/ � XH.i.'// D 0 : (16)

Remark 3. In the sequel we will formally differentiate several times the torus
embedding i, so that we assume more regularity than (13). In the framework of
a Nash-Moser scheme, the approximate torus embedding solutions i are indeed
regularized at each step.

We require that 
0 W T� ! T
� is a diffeomorphism of T� isotopic to the identity.

Then the embedded torus T WD i.T�/ is a smooth graph over T� . Moreover the lift
on R

� of 
0 is a map


0 W R� ! R
�; 
0.'/ D ' C�0.'/ ; (17)

where �0.'/ is 2�-periodic in each component 'i, i D 1; : : : ; �, with invertible
Jacobian matrix D
0.'/ D Id C D�0.'/, 8' 2 T

� . In the usual applications D�0
is small and ! is a Diophantine vector, namely

j! � kj � 	

jkj� ; 8k 2 Z
� n f0g : (18)

In such a case we say that the invariant torus embedding ' 7! i.'/ is Diophantine.
The torus T is the graph of the function (see (12) and (17))

j WD i ı 
�1
0 ; j W T� ! T

� � R
� � E ; j.
/ WD .
; QI0.
/; Qz0.
// ; (19)

namely

T D ˚
.
; QI0.
/; Qz0.
// I 
 2 T

�


; where QI0 WD I0 ı 
�1

0 ; Qz0 WD z0 ı 
�1
0 : (20)

We want to introduce a symplectic set of coordinates . ; y;w/ near the invariant
torus T WD i.T�/ such that T is described by fy D 0;w D 0g and the restricted flow
is simply  .t/ D ' C !t. We look for a diffeomorphism of the phase space of the
form

0
@ 
I

z

1
A D G

0
@ y

w

1
A WD

0
@ 
0. /I0. /C B1. /y C B2. /w

z0. /C w

1
A
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where B1. / W R� ! R
� , B2. / W E ! R

� are linear operators. Note that in the
first component G is just the diffeomorphism of T� induced by the torus embedding
and that G is linear in y;w (actually the third component of G is a translation in w).

Remark 4. The above change of variables G is a particular class of those used by
Moser in [23], which also allow to “rotate” linearly the third component as z0. /C
C1. /y C C2. /w.

In order to find a symplectic set of coordinates as above, namely to find B1. /,
B2. / such that G is symplectic, we exploit the isotropy of the invariant torus i.T�/,
i.e. the fact that the 2-form˝ vanishes on the tangent space to i.T�/ � P ,

0 D i�˝ D i�d
 D d.i�
/ : (21)

In other words, the 1-form i�
 on T
� is closed. It is natural to use such property:

also in the proof of the classical Arnold-Liouville theorem (see e.g. [24]), the first
step for the construction of the symplectic action-angle variables is to show that a
maximal torus supporting a non-resonant rotation is Lagrangian. We first prove the
isotropy of an invariant torus as in [17, 19] (Lemma 5 will provide a more precise
result).

Lemma 1. The invariant torus i.T�/ is isotropic.

Proof. By (14) the pullback

.i ı � t
!/

�˝ D .˚ t
H ı i/�˝ D i�˝ : (22)

For smooth Hamiltonian systems in finite dimension (22) is true because the 2-
form ˝ is invariant under the flow map ˚ t

H (i.e. .˚ t
H/

�˝ D ˝). In our setting,
the flow .˚ t

H/ may not be defined everywhere, but ˚ t
H is well defined on i.T�/ by

the assumption (14), and still preserves ˝ on the manifold i.T�/, see the proof of
Lemma 5 for details.

Next, denoting the 2-form .i�˝/.'/ D P
i<j Aij.'/d'i ^ d'j, we have

.i ı � t
!/

�˝ D .� t
!/

� ı i�˝ D
X

i<j
Aij.' C !t/d'i ^ d'j ;

and so (22) implies that Aij.' C !t/ D Aij.'/, 8t 2 R. Since the orbit f' C !tg is
dense on T

� (! is non-resonant) and each function Aij is continuous, it implies that

Aij.'/ D cij ; 8' 2 T
� ; i:e: i�˝ D

X
i<j

cijd'i ^ d'j

is constant. But, by (7), the 2-form i�˝ D i�d
 D d.i�
/ is also exact. Thus each
cij D 0 namely i�˝ D 0. ut

We now consider the diffeomorphism of the phase space
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0
@ 
I

z

1
A D G

0
@ y

w

1
A WD

0
B@


0. /

I0. /C ŒD
0. /�
�Ty � �

DQz0.
0. //
�T NJw

z0. /C w

1
CA (23)

where Qz0.
/ WD .z0 ı 
�1
0 /.
/, see (20). The transposed operator

�
DQz0.
/

�T W
E ! R

� is defined by the duality relation

�
DQz0.
/

�T
w � O
 D hw;DQz0.
/Œ O
�i ; 8w 2 E ; O
 2 R

� :

Lemma 2. Let i be an isotropic torus embedding. Then G is symplectic.

Proof. We may see G as the composition G WD G2 ı G1 of the diffeomorphisms
0
@ 
I

z

1
A D G1

0
@ y

w

1
A WD

0
@ 
0. /

ŒD
0. /�
�Ty

w

1
A

and
0
@ 
I

z

1
A 7! G2

0
@ 
I

z

1
A WD

0
B@




QI0.
/C I � �
DQz0.
/

�T NJz
Qz0.
/C z

1
CA (24)

where QI0 WD I0 ı 
�1
0 , Qz0 WD z0 ı 
�1

0 , see (20). We claim that both G1, G2 are
symplectic, whence the lemma follows.

G1 IS SYMPLECTIC. Since G1 is the identity in the third component, it is suffi-
cient to check that . ; y/ 7! .
0. /; ŒD
0. /��T y/ is a symplectic diffeomorphism
on T

� � R
� , which is a direct calculus.

G2 IS SYMPLECTIC. We prove that G�
2 
 � 
 is closed and so (see (7)) G�

2˝ D
G�
2d
 D dG�

2 
 D d
 D ˝ . By (24) and the definition of pullback we have

.G�
2 
/.
;I;z/Œ

O
; OI; Oz� D �QI0.
/C I � �
DQz0.
/

�T NJz
	 � O


C 1

2
hNJ.Qz0.
/C z/; Oz C DQz0.
/Œ O
�i :

Therefore (recall (8))

�
.G�

2 
/.
;I;z/ � 
.
;I;z/
	
Œ O
; OI; Oz� D �QI0.
/ � �

DQz0.
/
�T NJz

	 � O
 C 1

2
hNJQz0.
/; Ozi

C 1

2
hNJQz0.
/;DQz0.
/Œ O
�i C 1

2
hNJz;DQz0.
/Œ O
�i

D QI0.
/ � O
 C 1

2
hNJQz0.
/;DQz0.
/Œ O
�i

C 1

2
hNJQz0.
/; Ozi C 1

2
hNJDQz0.
/Œ O
�; zi ; (25)
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having used that NJT D �NJ. We first note that the 1-form

. O
; OI; Oz/ 7! hNJQz0.
/; Ozi C hNJDQz0.
/Œ O
�; zi D d.hNJQz0.
/; zi/Œ O
; OI; Oz� (26)

is exact. Moreover

QI0.
/ � O
 C 1

2
hNJQz0.
/;DQz0.
/Œ O
�i D .j�
/
 Œ O
� (27)

(recall (8)) where j WD i ı 
�1
0 see (19). Hence (25), (26), (27) imply

.G�
2 
/.
;I;z/ � 
.
;I;z/ D ��.j�
/.
;I;z/ C d

�1
2

hNJQz0.
/; zi
�
;

where � W T� � R
� � E ! T

� is the canonical projection.
Since the torus j.T�/ D i.T�/ is isotropic (Lemma 1) the 1-form j�
 on T

� is
closed (as i�
, see (21)). This concludes the proof. ut
Remark 5. A torus which is a graph over T� , i.e. 
 7! j.
/ D .
; I1.
/; z1.
// is
isotropic if and only if I1.
/ D � C rU.
/ � 1

2
ŒDz1.
/�T NJz1.
/ for some constant

� 2 R
� and U W T� ! R. This follows from (27) and Corollary 1 of Sect. 4.

Since G is symplectic (note that Lemma 2 only requires i to be isotropic), the
transformed Hamiltonian vector field

G�XH WD .DG/�1 ı XH ı G D XK ; K WD H ı G ;

is still Hamiltonian. By construction (see (23)) the torus fy D 0;w D 0g is invariant
and (16) implies XK. ; 0; 0/ D .!; 0; 0/ (see also Lemma 8). As a consequence,
the Taylor expansion of the transformed Hamiltonian K in these new coordinates
assumes the normal form

K D const C ! � y C 1

2
A. /y � y C hC. /y;wi C 1

2
hB. /w;wi C O3.y;w/ (28)

where O3.y;w/ collects all the terms at least cubic in .y;w/, and the operators A and
B are symmetric. If, furthermore, ! is Diophantine we can perform, by standard
perturbation theory, a symplectic change of coordinates which conjugates K to
another Hamiltonian of the form

K1 WD ! � y C 1

2
NAy � y C hC1. /y;wi C 1

2
hB1. /w;wi C O3.y;w/ (29)

where the constant matrix NA is the average NA WD R
T�

A. /d . This is the general
normal form for a Hamiltonian near a Diophantine invariant torus.

Summarizing we have proved the following theorem:
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Theorem 1. Let T D i.T�/ be an embedded torus, see (12) and (13), which is a
smooth graph over T� , see (19) and (20), invariant for the Hamiltonian vector field
XH, and on which the flow is conjugate to the translation flow of vector !, see (14)
and (15). Assume moreover that T is ISOTROPIC, a property which is automatically
verified if ! is non-resonant.

Then there exist symplectic coordinates . ; y;w/ in which T is described by T��
f0g � f0g and the Hamiltonian assumes the normal form (28), i.e. the torus T D
G.T� � f0g � f0g/ where G is the symplectic diffeomorphism defined in (23), and
the Hamiltonian H ı G has the Taylor expansion (28) in a neighborhood of the
invariant torus. If, moreover,! is Diophantine, see (18), there is a symplectic change
of coordinates in which the Hamiltonian assumes the normal form (29).

Remark 6. If the torus T is isotropic, even if it is filled by periodic orbits (resonant
torus), i.e. ! D 2�k=T for some k 2 Z

� , the previous theorem provides the normal
form (28). For an application to Lagrangian tori see [1].

What is usually called a KAM normal form for isotropic Diophantine invariant
tori is a Hamiltonian of the form

K2 WD ! � y C 1

2
NAy � y C h NCy;wi C 1

2
h NBw;wi C O3.y;w/ (30)

where also the matrices NB; NC are constant, see e.g. [15, 20, 25, 28]. The possibility to
obtain such a normal form is related to the verification of the so called “second order
Melnikov” non resonance conditions. This may be a difficult task for PDEs in higher
space dimension because of the possible multiplicity of the normal frequencies, see
e.g. [16, 26] for NLS.

The normal form (28) is relevant also in view of a Nash-Moser approach,
because it provides a control of the linearized equations in the normal bundle of
the torus. The linearized Hamiltonian system associated to K at the trivial solution
. ; y;w/.t/ D .!t; 0; 0/ is

8̂
<̂
ˆ̂:

P � A.!t/y � ŒC.!t/�T w D 0

Py D 0

Pw � J
�
B.!t/w C C.!t/y

	 D 0:

(31)

For applying the Nash-Moser scheme (Sect. 4) we have to solve, at each step, the
system of equations (31) with non-zero second members. Note that the second
equation is decoupled from the others. Inserting its solution in the third equation
we are reduced to solve a quasi-periodically forced linear equation in w. This may
vary considerably for different PDEs. The difficulty is that B.!t/ is not constant.
A way to solve it is to conjugate it to a constant coefficient equation (with second
order Melnikov non resonance conditions), as for the normal form (30). For PDEs
in higher space dimension this is not always possible and one proceeds with a
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multiscale analysis as in [4–8, 10, 11] which requires only the first order Melnikov
non-resonance conditions. Finally one solves the first equation in (31) for the angle
component.

3 A Nash-Moser Functional Approach to KAM

We now describe the strategy for proving an abstract normal form KAM theorem
by using a Nash-Moser implicit function theorem. We choose the setting of a
perturbation of a parameter dependent family of isochronous linear Hamiltonian
systems.

Let O � R
� be an open set of parameters. We consider a family of Hamiltonians

H W Œ0; "0/ � O � P ! R like

H D H."; ˛; u/ D N .˛; 
; I; z/C "P."; ˛; 
; I; z/ ; (32)

which are perturbations of a parameter-dependent normal form

N .˛; 
; I; z/ D ˛ � I C 1

2
hN.˛; 
/z; zi (33)

where N.˛; 
/ is a symmetric operator. We suppose that, as in (10), (11), the
Hamiltonian vector fields z 7! JN.˛; 
/z , JrzP.˛; 
; I; z/ are well defined and
smooth maps from a dense subspace E1 � E into E. Note that N may depend on
the angle variables 
 (in the normal directions z).

Remark 7. In applications, the parameters ˛ may vary with the “actions” of the
unperturbed invariant tori (this approach was first used in [23]), or depend on the
mass of a planet as in [17], or may be “external” parameters induced, for example,
by the potential as in [21, 28], etc. . .

The normal form N possesses the invariant torus T� � f0g � f0g on which the
motion is endowed by the constant field ˛.

Remark 8. If the normal form N.˛; 
/ D N.˛/ is constant, i.e. it does not depend on
the angles 
 , the unperturbed torus T��f0g�f0g is said “reducible”. In applications
this is the common situation in order to start with perturbation theory.

The goal is then to prove that:

• for " small enough, for “most” Diophantine vectors ! 2 C � O, there exists
a value of the parameters ˛ WD ˛1.!; "/ D ! C O."/ and a �-dimensional
embedded torus T D i.T�/ close to T

� � f0g � f0g, invariant for the Hamiltonian
vector field XH.";˛1.!;"/;�/ and supporting quasi-periodic solutions with frequency
!. In view of (16), this is equivalent to looking for a solution ' 7! i.'/ 2
T
� � R

� � E, close to .'; 0; 0/, of the embedding equation
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.! � @'/i.'/ � XH.";˛1.!;"/;�/.i.'// D 0 ; (34)

for some value ˛ WD ˛1.!; "/ of the parameters to be determined. In order to
have a unique determination of ˛1, one needs to impose another condition, such
as : the mean value of the I component of the map i vanishes.

The set of frequencies ! 2 C � O for which the invariant torus exists
usually is a Cantor like set. The measure of the set C (in particular that C ¤ ;)
clearly depends on the properties of the Hamiltonian H, in particular for infinite
dimensional Hamiltonian system. The parameter ˛ WD ˛1.!; "/ is adjusted along
the iterative Nash-Moser proof in order control the average of the first component of
the Hamilton’s equation (36), in particular for solving the linearized equation (82).

The function ! 7! ˛1.!; "/ is invertible and it may be proved to be smooth in
! (if the Hamiltonian H is smooth). Then, in applications, one may ask if, given
ˇ 2 R

� , there exists a value of ! D ˛�11 .ˇ/ in the Cantor set of parameters C � O
for which (34) has a solution. In such a case one has proved the existence of a
quasi-periodic solution of the given Hamiltonian ˇ � I C 1

2
hN.ˇ; 
/z; zi C "P. This

perspective is the spirit of the Théorème de conjugaison hypothétique of Herman
presented in [17].

Remark 9. Variants are possible. For example we could develop a KAM theorem
for Hamiltonians which are perturbations of a non-isocronous (or Kolmogorov)
normal form

H D ˛ � I C 1

2
L.˛; 
/I � I C hM.˛; 
/I; zi C 1

2
hN.˛; 
/z; zi C "P :

This is the setting, for example, considered in [29]. Actually this case may be
reduced to (32) by a rescaling R" W .I; z/ 7! ."2aI; "az/. Note that the transformed
symplectic 2-form is R�

" ˝ D "2a˝ . A technical advantage of dealing with the
parameter dependent family of isochronous normal forms (33) is that the linearized
equations are simpler.

In order to find solutions of (34) we look for zeros of the nonlinear operator

F.";X/ WD .! � @'/i.'/ � XH�.˛;�/.i.'// (35)

D
0
@ @!
0.'/ � @IH."; ˛; i.'//
@!I0.'/C @
H."; ˛; i.'//C �

@!z0.'/ � JrzH."; ˛; i.'//

1
A

D
0
@ @!
0.'/ � ˛ � "@IP.˛; i.'//
@!I0.'/C 1

2
@
 hN.˛; 
0.'//z0.'/; z0.'/i C "@
P.˛; i.'//C �

@!z0.'/ � JN.˛; 
0.'//z0.'/ � "JrzP.˛; i.'//

1
A (36)

in the unknowns



270 M. Berti and P. Bolle

X WD .˛; �; i.'//

where the torus embedding

i.'/ WD .
0.'/; I0.'/; z0.'// WD .'; 0; 0/C .�0.'/; I0.'/; z0.'// (37)

and we use the shorter notation

@! WD ! � @' :

Note that F.";X/ D 0 is the equation @! i.'/ � XH�.˛;�/.i.'// D 0 for an embedded
invariant torus of the non-exact Hamiltonian system generated by the Hamiltonian

H� WD H�.˛; �/ W R� � R
� � E ! R ; H� WD H C � � 
 : (38)

Remark that the Hamiltonian vector field XH� is periodic in 
 , unlike H�. Non-
exact here means that ˝.XH�; �/ D �dH � � is a closed, non-exact 1-form on the
phase space T

� � R
� � E. It is well-known that a non-exact Hamiltonian system

does not possess invariant tori for � ¤ 0. Actually, as proved in Lemma 3 below, if
F.";X/ D 0 then � D 0 and so ' 7! i.'/ is an invariant torus for XH itself. The
“counter-term” � 2 R

� is introduced as a technical trick to control the average of
the second component of the equation (36), in particular for solving the linearized
equation (76).

Lemma 3. Let us define the “error function”

Z.'/ D .Z1;Z2;Z3/.'/ WD F."; i; ˛; �/ D .! � @'/i.'/ � XH�.˛; �/.i.'// (39)

where ' 2 T
� . Then

� D 1

.2�/�

Z
T�

�ŒDI0.'/�
TZ1.'/C ŒD
0.'/�

TZ2.'/C ŒDz0.'/�
T NJZ3.'/ d' : (40)

In particular, if @! i.'/ � XH�.i.'// D 0 then � D 0 and so ' 7! i.'/ is the
embedding of an invariant torus of XH.

Proof. Let i 0.'/ WD i.' C  0/ be the translated torus embedding, for all  0 2 T
� .

Since H is autonomous the “restricted” Hamiltonian action functional (recall (8))

˚. 0/ WD
Z
T�


i 0 .'/
Œ@! i 0.'/�� H.i 0.'// d' D ˚.0/

is constant. Differentiating ˚ at  0 D 0 and integrating by parts @! we get, for all
� 2 R

� , (see (9))
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0 D D 0˚.0/Œ�� D �
Z
T�

˝
�
@! i.'/ � XH.i.'//;Di.'/Œ��

	
d'

D �
Z
T�

˝
�
Z.'/ � � � @

@I
;Di.'/Œ��

	
d' (41)

by the definition of Z in (39), (38), and denoting the vector field .0; �; 0/ D � � @
@I .

Recalling (6) and (7) the integral

Z
T�

˝
�
� � @

@I
;Di.'/Œ��

�
d' D

Z
T�

� � D
0.'/Œ�� d' D .2�/�� � �

because the periodic function D.
0�id/ D D�0 (see (37)) has zero average. Hence,
by (41) we deduce

� � � D 1

.2�/�

Z
T�

˝
�
Z.'/;Di.'/Œ��

	
d' ; 8� 2 R

� ;

which, recalling (5) and (6), gives (40). ut
The optimal expected smallness condition for the KAM existence result, namely

for finding solutions of the nonlinear equation F.X; "/ D 0, is

"	�1 � 1 (42)

where 	 is the Diophantine constant in (18) of the frequency vector !. This is
certainly the case for finite dimensional Lagrangian tori (the optimality follows
for example by a time rescaling argument). If ! has to satisfy other Diophantine
conditions of first and second order Melnikov type the required smallness conditions
may be stronger, see e.g. [3].

Remark 10. Other functional formulations are possible. We could look for zeros of

F."; j; ˛; c/ D
0
@@!
0.'/ � @IH."; ˛; i.'//

H."; ˛; j.
//� c
@!z0.'/ � JrzH."; ˛; i.'//

1
A

where j.
/ D .
; I1.
/; z1.
// defines an isotropic torus as described in remark 5
and i D j ı 
0. The unknowns are the diffeomorphism 
0 of T

� , the component
z0 D z1 ı 
0 of the torus embedding, the constant � 2 R

n, the potential U W T� ! R,
and the value of the Hamiltonian c 2 R and ˛. Actually, because of the presence of
the parameter ˛, we may impose � D 0.

As already said, a solution of the nonlinear equation F.";X/ D 0 is obtained by
a Nash-Moser iterative scheme. The first approximate solution is

X0 D .!; 0; '; 0; 0/



272 M. Berti and P. Bolle

(namely ˛ D !;� D 0, i.'/ D .'; 0; 0/) so that

F.0;X0/ D O."/ :

Then the strategy is to obtain iteratively better and better approximate solutions
of the equation F.";X/ D 0 by a quasi-quadratic scheme. Given an approximate
solution X, we look for a better approximate solution X0 D X C h by a Taylor
expansion (for simplicity we omit to write the dependence on ")

F.X0/ D F.X C h/ D F.X/C dXF.X/Œh�C O.jhj2/ :

The idea of the classical Newton iterative scheme is to define h as the solution
of F.X/ C dXF.X/Œh� D 0. Since the invertibility of the linear operator dXF.X/
may be a quite difficult task, Zehnder [29] noted that it is sufficient to find only an
approximate right inverse of dXF.X/, namely a linear operator T.X/ such that

dXF.X/ ı T.X/� Id D O.jF.X/j/ : (43)

Remark that, at a solution F.X/ D 0, the operator T.X/ is an exact right inverse of
dXF.X/. Thus, defining the new approximate solution

X0 D X C h ; h WD �T.X/F.X/ ; (44)

we get by (43) that

F.X0/ D F.X/� dXF.X/ŒT.X/F.X/�C O.jhj2/ D O.jF.X/j2/ : (45)

This scheme can be called a “quasi-Newton” scheme. In typical PDEs applications,
the approximate right inverse T.X/ “loses derivatives” due to the small divisors.
However, since the scheme (44) is quadratic by (45), it can nevertheless converge
to a solution if F.X0/ is sufficiently small (depending also on the norm of T). The
scheme (44) is usually implemented in Banach scales of analytic functions, as, for
example,

A� WD
n
u.'/ D

X
k2Z�

uk eik�' W kuk2� WD
X
k2Z�

jukj2 e2jkj� .1C jkj2s0/ < C1
o

(46)

for some � > 0, s0 > �=2. The approximate inverse operator T is usually
“unbounded”, satisfies Cauchy type estimates like

kTgk� 0 � C

	.� � � 0/�
kgk� ; 8� 0 < � ; (47)

and there is ˇ > 0 such that, 8� 0 < � , 8g 2 A� ,
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�dXF.X/ ı T.X/� Id
	
g



� 0

� C
kF.";X/k�
	.� � � 0/ˇ

kgk� : (48)

The constants �; ˇ > 0 are the “loss of derivatives”.
On the other hand, in Banach spaces of functions with finite differentiability, as

the Sobolev scale

Hs WD
n
u.'/ D

X
k2Z�

ukeik�' W kuk2s WD
X
k2Z�

jukj2.1C jkj2s/ < C1
o
; (49)

the quasi-Newton scheme (44) does not converge because after finitely many
steps the approximate solutions are no longer regular. Following Moser [22], it is
necessary to insert a smoothing procedure at each step (Nash-Moser scheme). The
approximate inverse usually satisfies estimates like: there are constants p, � > 0

(“loss of derivatives”) such that, for all s 2 Œs0; S�, 8g 2 HsC�,

kT.X/gks � C.s; kXks0Cp/
�kgksC� C kgks0kXksC�

	
; (50)

and



�dXF .X/ ı T.X/� Id
	
g




s
�C.s; kXks0Cp/

�
kF .X/ks0kgksC� C

C kF .X/ksC�kgks0 C kXksC�kF .X/ks0kgks0

�
:

(51)

In this note we will not insist in the analytical aspects of the convergence, for which
we refer to [7, 29], or [3, 6].

The linearized operator of (35) is

dXF.";X/Œ OX� D .! � @'/O{ � DiXH�.˛;�/.i/ŒO{� � D˛XH�.˛;�/.i/Œ Ǫ �C .0; O�; 0/ :

It is rather difficult to invert it because all the components of the Hamiltonian
vector field are coupled by O."/-non-constant coefficient terms. In the next section,
following the ideas of Sect. 2, we present a symplectic change of variable which
approximately decouples the tangential directions (i.e. . O
; OI/) and the normal ones
(i.e. Oz), and thus enables to find an approximate right inverse of dXF.";X/.

4 Approximate Right Inverse

We first report a basic fact about 1-forms on a torus. We regard a 1-form a DP�
iD1 ai.'/d'i equivalently as the vector field a.'/ D .a1.'/; : : : ; a�.'//.
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Given a function g W T� ! R with zero average, we denote by u WD ��1g the
unique solution of �u D g with zero average.

Lemma 4 (Helmotz decomposition). A smooth vector field a on T
� may be

decomposed as the sum of a conservative and a divergence-free vector field:

a D rU C c C � ; U W T� ! R ; c 2 R
� ; div� D 0 ;

Z
T�

�d' D 0 : (52)

The above decomposition is unique if we impose that the mean value of U vanishes.
We have U D ��1.div a/, the components of � are

�j.'/ D ��1X�

kD1@'k Akj.'/ ; Akj WD @'k aj � @'j ak ; (53)

and cj D .2�/��
R
T�

aj.'/ d', j D 1; : : : ; �.

Proof. div.a � rU/ D 0 if and only if div a D �U. This equation has the solution
U WD ��1.div a/ (note that div a has zero average). Hence (52) is achieved with
� WD a�rU�c. By taking the '-average we get that each cj D .2�/��

R
T�

aj.'/ d'.
Let us now prove the expression (53) of �j. We have @'k�j �@'j�k D @'k aj �@'j ak DW
Akj because @'j@'k U � @'k@'j U D 0. For each j D 1; : : : ; � we differentiate @'k�j �
@'j�k D Akj with respect to 'k and we sum in k, obtaining

��j �
X�

kD1@'k'j�k D
X�

kD1@'k Akj :

Since
P�

kD1 @'k'j�k D @'j div� D 0 then��j D P�
kD1 @'k Akj and (53) follows. ut

Corollary 1. Any closed 1-form on T
� has the form a.'/ D c C dU for some

c 2 R
� .

Corollary 2. Let a.'/ be a 1-form on T
� , and let � be defined by (53). Then a �P�

jD1�j.'/d'j is closed.

We quantify how an embedded torus i.T�/ is approximately invariant for the
Hamiltonian vector field XH� in terms of the “error function” Z.'/, defined in
(39). A torus embedding i.'/ D .
0.'/; I0.'/; z0.'// which is only approximately
invariant may not be isotropic. Consider the pullback 1-form on T

� (see (8))

.i�
/.'/ D
X�

kD1ak.'/d'k ; (54)

where

ak.'/ WD
h�

D
0.'/
�T

I0.'/C 1

2
ŒDz0.'/�

T NJz0.'/
i

k

D I0.'/ � @
0
@'k

.'/C 1

2
hNJz0.'/;

@z0
@'k

.'/i : (55)
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The 1-form i�
 is only approximately closed, namely the 2-form (recall (7))

i�˝ D d.i�
/ D
X

k<j
Akj.'/d'k ^ d'j ; (56)

Akj.'/ D @'k aj.'/ � @'j ak.'/ ;

is small. We call the coefficients .Akj/ the “lack of isotropy” of the approximate
torus embedding ' 7! i.'/. In Lemma 5 below we quantify their size in terms of
the error function Z defined in (39).

We first recall that the Lie derivative of a k-form ˇ with respect to the vector field
Y is LYˇ WD d

dt

�
.˚ t

Y/
�ˇ
�

jtD0 where ˚ t
Y denotes the flow generated by Y.

Given a function g.'/ with zero average, we denote by u WD @�1
! g the unique

solution of @!u D g with zero average.

Lemma 5. The “lack of isotropy” coefficients Akj satisfy, 8' 2 T
� ,

.! � @'/Akj.'/ D ˝
�
DZ.'/ek;Di.'/ej

	C˝
�
Di.'/ek;DZ.'/ej

	
(57)

where .e1; : : : ; e�/ denotes the canonical basis of R� . Thus, since each Akj has zero
mean value, if the frequency vector ! 2 R

� is non-resonant,

Akj.'/ D @�1
!

�
˝
�
DZ.'/ek;Di.'/ej

	C˝
�
Di.'/ek;DZ.'/ej

		
: (58)

Proof. We use Cartan’s formula L!.i�˝/ D d
�
.i�˝/.!; �/	C�d.i�˝/	.!; �/. Since

d.i�˝/ D i�d˝ D 0 by (7) we get

L!.i
�˝/ D d

�
.i�˝/.!; �/	 : (59)

Now we compute, for O 2 R
� (denoting the vector field .0; �; 0/ D � � @

@I )

.i�˝/.!; O / D ˝.Di.'/!;Di.'/ O / D ˝.XH.i.'//C � � @
@I

C Z.'/;Di.'/ O /

D �dH.i.'//ŒDi.'/ O �C � � D
0.'/Œ O �C˝.Z.'/;Di.'/ O / :

We obtain

.i�˝/.!; �/ D
X�

jD1bj.'/d'j

bj.'/ D .i�˝/.!; ej/ D �@.H ı i/

@'j
.'/C � � @
0

@'j
.'/C˝.Z.'/;Di.'/ej/ :

Hence, by (59), the Lie derivative
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L!.i
�˝/ D

X
k<j

Bkj.'/d'k ^ d'j (60)

with

Bkj.'/ D @bj

@'k
.'/ � @bk

@'j
.'/

D @

@'k
.˝.Z.'/;Di.'/ej// � @

@'j
.˝.Z.'/;Di.'/ek//

D ˝.DZ.'/ek;Di.'/ej/C˝.Di.'/ek;DZ.'/ej/ : (61)

Recalling (15) and (56) we have, 8' 2 T
� ,

. t
!/

�.i�˝/.'/ D i�˝.' C !t/ D
X

k<j
Akj.' C !t/d'k ^ d'j :

Hence the Lie derivative

L!.i
�˝/.'/ D

X
k<j
.! � @'/Akj.'/d'k ^ d'j : (62)

Comparing (60), (61) and (62) we deduce (57). ut
The previous lemma provides another proof of Lemma 1. For an invariant torus

embedding i.'/ the “error function” Z.'/ D 0 (see (39)) and so each Akj D 0. If !
is Diophantine (see (18)) then, by (58) the following size estimate holds

Akj D O.Z	�1/ : (63)

This estimate can be made quantitative once the norms are specified. For example,
in scales of analytic functions as (46), it gives kAkjk� 0 � 	�1.��� 0/�.�C1/kZk� , for
all � 0 < � . In the Sobolev spaces (49) it implies kAkjks � 	�1kZksC�C1. Since in the
sequel of this note we will only focus on the algebraic aspect of the proof, we shall
write only formal estimates as (63). We refer to [3, 6] for the analytic quantitative
estimates.

We now prove that near an approximate isotropic torus there is an isotropic torus.

Lemma 6 (Isotropic torus).
The torus embedding iı.'/ D .
0.'/; Iı.'/; z0.'// defined by

Iı.'/ D I0.'/ � ŒD
0.'/��T�.'/ ; �j WD ��1
�X�

kD1@'j Akj.'/
�

(64)

is isotropic. Thus Iı � I0 D O.	�1Z/.
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Proof. By Corollary 2 the 1-form i�
 � � is closed with �j defined in (64), see also
(53), (54). Actually i�
�� D i�ı 
 is the pullback of the 1-form
 under the modified
torus embedding iı defined in (64), see (55). Thus the torus iı.T�/ is isotropic. ut

Let

Zı.'/ WD F."; iı; ˛; �/ D @! iı.'/ � XH�.˛;/.iı.'// (65)

be the error function of the isotropic torus embedding iı. We now show that the
isotropic torus embedding iı is a good approximate solution as i. This is needed
for proving the convergence of the iterative Nash-Moser scheme under the minimal
smallness condition "	�1 � 1, see (42).

Lemma 7. Zı D O.Z/.

Proof. Let Zı.'/ D .Z1;ı;Z2;ı;Z3;ı/.'/. Since the difference between the torus
embeddings iı and i affects only the I-component (Lemma 6), and the normal form
Hamiltonian vector field XN is independent of I (see (35)), the components Z1;ı;Z3;ı
differ from Z1;Z3 for O."jIı � I0j/ D O.Z	�1"/ D O.Z/. Moreover

Z2;ı � Z2 D @!.Iı � I0/C "
�
@
P.iı/� @
P.i/

	 D �@!v C O."Z	�1/

where v.'/ WD ŒD
0.'/��T�.'/. We claim that @!v D O.Z/ whence the lemma
follows. We have @!v D .@!ŒD
0.'/��T/� C ŒD
0.'/��T@!�. The second term�
D
0.'/

��T
@!� D O.Z/ because (see (64)) each @!�j D ��1P�

kD1@'j@!Akj D
O.Z/ by (57). We now prove that also the first term .@!ŒD
0.'/��T /� D O.Z/.
Since � D O.Z	�1/ (see (63), (64)) it is sufficient to prove that

@!ŒD
0.'/�
�T D ��D
0.'/��T�

@!ŒD
0.'/�
T
	�

D
0.'/
��T D O."/ :

Differentiating in ' the first component @!
0.'/ D ˛ C ".@IP/.˛; i.'//C Z1.'/ of
(36), we deduce

@!D
0.'/ D "Di.@IP/.i.'//Di.'/C DZ1.'/

D ".D
 .@IP/D
0 C DI.@IP/DI0 C Dz.@IP/Dz0/.'/C DZ1.'/

and so its transposed @!
�
D
0.'/

�T D O."C Z/ D O."/. ut
In analogy with Sect. 2 we now introduce a symplectic set of coordinates

. ; y;w/ near the isotropic torus Tı WD iı.T�/ via the symplectic diffeomorphism

0
@ 
I

z

1
A D Gı

0
@ y

w

1
A WD

0
B@


0. /

Iı. /C ŒD
0. /�
�Ty � �

DQz0.
0. //
�T NJw

z0. /C w

1
CA (66)
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where Qz0 WD z0 ı 
�1
0 . The map Gı is symplectic by Lemma 2 because iı is isotropic

(Lemma 6). In the new coordinates . ; y;w/ the isotropic torus embedding iı is
trivial, namely iı. / D Gı. ; 0; 0/.

Under the symplectic change of variable (66), the Hamiltonian vector field XH�
changes into

XK� D G�
ı XH� D .DGı/

�1XH� ı Gı (67)

where (recall (38))

K� WD H� ı Gı D K C 
0. / � � ; K WD H ı Gı : (68)

In the above formula, 
0 is the lift to R
� of the first component of iı (see Lemma 6).

The Taylor expansion of the new Hamiltonian K� W R� � R
� � E ! R at the trivial

torus . ; 0; 0/ is

K� D 
0. / � �C K00.˛;  /C K10.˛;  / � y C hK01.˛;  /;wi (69)

C 1

2
K20.˛;  /y � y C hK11.˛;  /y;wi C 1

2
hK02.˛;  /w;wi C K�3.˛;  ; y;w/

where K�3 collects all the terms at least cubic in the variables .y;w/. The Taylor
coefficients of K (in the sequel we may omit to write their dependence on ˛) are
K00. / 2 R, K10. / 2 R

� , K01. / 2 E, K20. / 2 Mat.� � �/ is a real symmetric
matrix, K02. / is a self-adjoint operator of E and K11. / 2 L.R�;E/.

The Hamiltonian system associated to K� then writes

8̂
ˆ̂̂<
ˆ̂̂̂
:

P D K10.˛;  /C K20.˛;  /y C KT
11.˛;  /w C @yK�3. ; y;w/

Py D �ŒD
0. /�T�� @ K00.˛;  / � ŒD K10.˛;  /�T y � ŒD K01.˛;  /�T w

�@ 
�
1
2
K20.˛;  /y � y C hK11.˛;  /y;wi C 1

2
hK02.˛;  /w;wi C K�3. ; y;w/

	
Pw D J

�
K01.˛;  /C K11.˛;  /y C K02.˛;  /w C rwK�3. ; y;w/

	
:

(70)

As seen in Sect. 2, if iı were an invariant torus embedding, the coefficient K00. / D
const, K10. / D ! and K01. / D 0. Moreover also � D 0 by Lemma 3. We now
express these coefficients in terms of the error function Zı of iı defined in (65)
(equivalently Z, by Lemma 7).

Lemma 8. The vector field

XK�. ; 0; 0/
(70)D

0
@ K10.˛;  /

�ŒD
0. /�T� � @ K00.˛;  /
JK01.˛;  /

1
A

D
0
@!0
0

1
A � �

DGı. ; 0; 0/
	�1

Zı. / : (71)



A Nash-Moser Approach to KAM Theory 279

Proof. By (67) and iı. / D Gı. ; 0; 0/, we have

XK�. ; 0; 0/ D DGı. ; 0; 0/
�1XH�.iı. // D DGı. ; 0; 0/

�1�@! iı. / � Zı. /
	

and (71) follows because DGı. ; 0; 0/
�1Diı. /Œ!� D .!; 0; 0/. ut

We now write the coefficient K10.˛;  / which describes in (69) and (70) how
the tangential frequencies vary with respect to ˛, and the coefficients K11.˛;  /,
K20.˛;  / which are O."/.

Lemma 9. The coefficients

K10.˛;  /D ŒD
0. /��1˛ C "ŒD
0. /�
�1.@IP/."; ˛; iı. //

K11.˛;  /D"DIrzP.iı. //ŒD
0. /�
�TC "NJ.DQz0/.
0. //.D2

I P/.iı. //ŒD
0. /�
�T

K20.˛;  /D"ŒD
0. /��1.D2
I P/.iı. ///ŒD
0. /�

�T :

Proof. Differentiating K D H ı Gı we get K10. / D ŒD
0. /��1.@IH/.iı. // and
the lemma follows by (32), (33). Similarly we deduce that

K11. / D DIrzH.iı. //ŒD
0. /�
�TC NJ.D
 Qz0/.
0. //.D2

I H/.iı. //ŒD
0. /�
�T

K20. / D ŒD
0. /�
�1.D2

I H/.iı. ///ŒD
0. /�
�T

and by (32)–(33) the lemma follows. ut
Under the linear change of variable (obtained linearizing (66) at . ; y;w/ D

.'; 0; 0/)

0
@

O

OI
Oz

1
A D DGı.'; 0; 0/

0
@

O 
Oy
Ow

1
A (72)

the linearized operator di;˛;�F."; iı; ˛0; �0/ is transformed approximately (see (88)
for the precise expression of the error) into the one obtained when we linearize the
Hamiltonian system (70) at . ; y;w/ D .!t; 0; 0/ and differentiating also in ˛, � at
˛0; �0, namely

L. O ; Oy; Ow; Ǫ ; O�/ WD (73)
0
BB@
@! O � D˛K10.˛; '/Œ Ǫ � � D K10.˛; '/Œ O � � K20.˛; '/Oy � KT

11.˛; '/ Ow
@! Oy C ŒD
0.'/�T O�C ŒD2
0.'/ O �T Œ�0�C @ 

�
D˛K00.˛; '/Œ Ǫ �

	
CD  K00.˛; '/ O C ŒD K10.˛; '/�T Oy C ŒD K01.˛; '/�T Ow

@! Ow � J
�
D˛K01.˛; '/Œ Ǫ �C D K01.˛; '/Œ O �C K11.˛; '/Oy C K02.˛; '/ Ow	

1
CCA :
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For the convergence of the Nash Moser scheme, it is sufficient to invert the operator
L defined in (73) only approximately, namely, in view of Lemmas 8 and 3, solve
only the linear system

D. O ; Oy; Ow; Ǫ ; O�/ WD g.'/ D
0
@g1.'/

g2.'/
g3.'/

1
A (74)

with the “simpler” operator

D. O ; Oy; Ow; Ǫ ; O�/ WD
0
@ @! O � D˛K10.˛; '/Œ Ǫ � � K20.˛; '/Oy � KT

11.˛; '/ Ow
@! Oy C ŒD
0.'/�T O�C @ 

�
D˛K00.˛; '/Œ Ǫ �

	
@! Ow � J

�
D˛K01.˛; '/Œ Ǫ �C K11.˛; '/Oy C K02.˛; '/ Ow	

1
A : (75)

D is obtained from L in (73) neglecting the terms which are zero at an exact solution
.˛0; �0; i0/ (with �0 D 0) . System (74) may be solved in a triangular way. We first
solve the second equation

@! Oy D �@ 
�
D˛K00.˛0; '/Œ Ǫ �

	 � ŒD
0.'/�
T O�C g2 : (76)

We choose O� such that the '-average of the right hand side

hh�@ .D˛K00.˛0; '/Œ Ǫ �/ � ŒD
0.'/�
T O�C g2ii D 0 :

Note that the average of the total derivative @ 
�
@˛K00.˛0; '/Œ Ǫ �

	
is zero, and the

averaged matrix hhŒD
0.'/�Tii D Id C hhŒD�0.'/�Tii D Id because �0.'/ is periodic
in '. Hence we find

O� WD hhg2ii ; (77)

and, by (76), we define

Oy D �@�1
!

�
@ 
�
D˛K00.˛0; '/Œ Ǫ �

	C ŒD
0.'/�
Thhg2ii � g2

	C c1 (78)

for some c1 2 R
� .

Next we consider the third equation

@! Ow � JK02.˛0; '/ Ow D J.D˛K01.˛0; '/Œ Ǫ �/C JK11.˛0; '/Oy C g3 : (79)

Remark that (79) is a linear quasi-periodically forced PDE with a self adjoint
operator K02 which is a perturbation of the normal form operator N.˛; 
/ in (33).
The solvability of (79) has to be checked case by case for a given PDE. We
can say something when N.˛; 
/ D N.˛/ does not depend on 
 , see remark 8.
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What is relevant is the nature of spectrum of the Hamiltonian vector field JN.˛/: if
their eigenvalues are real or purely imaginary, simple or multiple, their asymptotic
expansions, etc. . . If, for example, JN.˛/ has real spectrum, bounded away from
zero, then also the linear operator

@! � JK02.˛0; '/ (80)

is invertible with good bounds for the inverse. This is the case for the continuation
of isotropic tori of hyperbolic type, as considered in [29] and in [18]. If JN.˛/ has
purely imaginary discrete spectrum (elliptic tori) the main work is to prove that
for “most” frequencies ! the quasi-periodic linear operator (80) is invertible, and
its inverse satisfies good estimates in high norms. This may be hard work, see the
forced PDEs [2, 4, 5, 8]. However, if it is solved, it is possible to define the solution
Ow of the linear equation (79) by

Ow WD �
@! � JK02.˛0; '/

	�1�
J.D˛K01.˛0; '/Œ Ǫ �/C JK11.˛0; '/Oy C g3

�
: (81)

Finally we solve also the first equation of (75), namely

@! O D D˛K10.˛0; '/Œ Ǫ �C K20.˛0; '/Oy C KT
11.˛0; '/ Ow C g1 : (82)

We look for Ǫ such that the right hand side in (82) has zero average, namely

hhD˛K10.˛0; '/iiŒ Ǫ �C hhK20.˛0; '/Oyii C hhKT
11.˛0; '/ Owii C hhg1ii D 0 : (83)

By Lemma 9, D˛K10.˛0; '/ D D
0.'/�1 C O."/, hence

hhD˛K10.˛0; '/ii D hhD
0.'/
�1ii C O."/ D Id C O."	�1/

because D
0 D Id C O."	�1/. Note that Oy and Ow depend on Ǫ (see (78), (81)) but,
since K20, KT

11 are O."/ by Lemma 9, the equation (83) takes the form

.Id C R"/Œ Ǫ � D � with R" ! 0 as " ! 0 :

For " small enough, Id C R" is invertible and (83) has a unique solution Ǫ .

Remark 11. Above we suppose that, for example, the size of the inverse .@! �
JK02.˛0; '//�1 D O.	�1/ and "	�1 is small. Variants are possible.

Next, from (82) we find

O D @�1
!

�
D˛K10.˛0; '/Œ Ǫ �C K20.˛0; '/Oy C KT

11.˛0; '/ Ow C g1
	C c2 (84)

for some constant c2 2 R
� .
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Remark 12. The constants c1; c2 2 R
� in the definition of Oy in (78) and O in (84)

are free (we can set for instance c1 D c2 D 0). Thus the operator di;˛;�F."; i; ˛; �/
has only a right inverse. About c1, the presence of the parameter ˛ gives the freedom
to impose an additional condition for I0 (for instance I0.0/ D 0, or the mean value
of I0 vanishes). The presence of the constant c2 is connected to the fact that if i.'/
is a solution then all the translates i.' C c/ are solutions too. It is usual to impose
that the mean value of 
.'/ � ' is 0.

In conclusion, the solution of the linear system (74) is

D
�1g WD � O ; Oy; Ow; Ǫ ; O�	

defined in (77), (78), (81), (83), (84). Recalling (72) we finally define the linear
operator

Ti;˛;� WD D QGı.'; 0; 0/ ı D
�1 ı DGı.'; 0; 0/

�1 ; (85)

where we include in QGı also the parameters components, namely

QGı. ; y;w; ˛; �/ WD �
Gı. ; y;w/; ˛; �

	
:

By construction, the operator Ti;˛;� is an approximate right inverse of di;˛;�F ,
because it has been obtained neglecting terms which vanish at an exact solution: we
first substituted the approximate torus embedding i with the isotropic one iı (which
coincide at a solution by Lemma 6) and then we neglected the terms K00, K10, K01,
�0 which are naught at a solution (Lemmas 8, 3). Let us give a more formal proof.

Lemma 10. The operator Ti;˛;� is an approximate right inverse of di;˛;�F."; i; ˛; �/.

Proof. By (35), since XN does not depend on I, and iı differs from i only for the I
component, we have

di;˛;�F.i; ˛0/ � di;˛;�F.iı; ˛0/ D "
�
di;˛;�XP.i; ˛0/� di;˛;�XP.iı; ˛0/

	
(86)

D "

Z 1

0

@Idi;˛;�XP.iı C s.i � iı/; ˛0/ŒI0 � Iı�ds

DW E0
which is O.Z/ by Lemma 6 and (42).

We denote by u WD . ; y;w/ the symplectic coordinates induced by Gı in (66).
Under the symplectic map Gı , the nonlinear operator F in (35) is transformed into

F.Gı.u.'//; ˛; �/ D DGı.u.'//
�
@!u.'/ � XK�.u.'/; ˛/

	
(87)

where K� D H� ı Gı, see (68). Differentiating (87) at the trivial torus embedding
uı.'/ WD G�1

ı .iı.'// D .'; 0; 0/ for the values of the parameters .˛; �/ D .˛0; �0/,
we get
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di;˛;�F.iı; ˛0; �0/ D DGı.uı/
�
@! � du;˛;�XK�.uı; ˛0; �0/

	
D QGı.uı/

�1 C E1 ;

E1 WD D2Gı.uı/
�
DGı.uı/

�1F.iı; ˛0; �0/; DGı.uı/
�1˘Œ��� ; (88)

where ˘ is the projection .O{; Ǫ ; O�/ 7! O{. In expanded form du;˛;�XK�.uı; ˛0; �0/ is
provided in (73). We split @! � du;˛;�XK�.uı; ˛0; �0/ D DC RZ where D is defined
in (75) and RZ is the part which vanishes in Z. By (86) and (88)

di;˛;�F.i; ˛/ D DGı.uı/ ı D ı D QGı.uı/
�1 C E0 C E1 C E2

E2 WD DGı.uı/ ı RZ ı D QGı.uı/
�1 :

Applying T defined in (85) to the right, since D ı D
�1 D Id we get

di;˛;�F.i; ˛0; �0/ ı T � Id D E ı T

where E WD E0 C E1 C E2 is O.Z/. ut
Remark 13. In order to construct an approximate inverse for dF , it is sufficient to
have an approximate inverse of D in (74), i.e. we need in (81) only an approximate
inverse for @! � JK02.˛0; '/.

The operator T usually satisfies estimates like (47) and (48) (in an analytic
setting) or (50) and (51) (in a Sobolev scale) and the Nash-Moser iterative scheme
with approximate right inverse converges.
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On the Spectral and Orbital Stability
of Spatially Periodic Stationary Solutions
of Generalized Korteweg-de Vries Equations

Todd Kapitula and Bernard Deconinck

This paper is dedicated to Walter Craig on the occasion of his
60th birthday.

Abstract In this paper we generalize previous work on the spectral and orbital
stability of waves for infinite-dimensional Hamiltonian systems to include those
cases for which the skew-symmetric operator J is singular. We assume that
J restricted to the orthogonal complement of its kernel has a bounded inverse.
With this assumption and some further genericity conditions we (a) derive an
unstable eigenvalue count for the appropriate linearized operator, and (b) show that
the spectral stability of the wave implies its orbital (nonlinear) stability, provided
there are no purely imaginary eigenvalues with negative Krein signature. We use our
theory to investigate the (in)stability of spatially periodic waves to the generalized
KdV equation for various power nonlinearities when the perturbation has the same
period as that of the wave. Solutions of the integrable modified KdV equation are
studied analytically in detail, as well as solutions with small amplitudes for higher-
order pure power nonlinearities. We conclude by studying the transverse stability of
these solutions when they are considered as planar solutions of the generalized KP-I
equation.

1 Introduction

The study of the stability of spatially periodic stationary solutions of nonlinear wave
equations has seen different advances the past few years. There are advances both in
the numerical investigation of spectral stability [14, 43], as well as in the analytical
study of spectral and orbital stability (see [5, 7, 18, 19, 24, 41] and the references
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therein). We focus specifically on the study of the stability of periodic solutions
of Hamiltonian partial differential equations, as in [24]. However, the results also
apply to the study of localized waves for systems in which the appropriate linearized
system has a compact resolvent, e.g., the Gross-Pitaevski equation (see [36] and the
references therein). The equations of interest are written abstractly as

ut D JE 0.u/; u.0/ D u0; (1)

on a Hilbert space X, where J W X ! range.J / � X is skew symmetric, and
E W X ! R is a C2-functional. In previous works (see [24, 34] and the references
therein) it was assumed that J is nonsingular with bounded inverse. We do not
make that assumption here. We allow ker.J / to be nontrivial; however, we do
assume that J jker.J/? has a bounded inverse.

We are interested in the spectral and orbital stability of spatially periodic waves
to (1). The waves are realized as critical points of a constrained energy, and
the stability of the waves is determined by closely examining the Hessian, say
L , of the constrained energy. It will henceforth be assumed that n.L / < 1,
where the notation n.S / is used to denote the number of negative eigenvalues
(counting multiplicities) of the self-adjoint operator S . If J is nonsingular with
bounded inverse, then it was seen in [20] that there is a symmetric matrix D such
that if n.L / � n.D/ D 0, then the wave is orbitally stable. The matrix D is
intimately related to the conserved quantities of (1) which are generated by its group
invariances. It was shown in [24, 35] and the references therein that if this difference
is positive, then there exists a close relationship between this difference and the
structure of �.JL /, where JL is the linearization of (1) about the critical point.
As we demonstrate, this formula must be modified if J is singular. In particular,
the formula must take into account the fact that the only nontrivial flow of (1) occurs
on ker.J /? (see Theorem 1 for a precise statement).

A concrete example to which the theory is applicable is the determination of
the orbital (in)stability of spatially periodic stationary solutions of the generalized
Korteweg-de Vries (gKdV) equations (p 2 N0)

ut D @x
��uxx ˙ upC1	 : (2)

Here J D @x, and u 2 ker.J /? if u D 0, where u represents the spatial average.
Note that the ˙ sign is irrelevant when p is odd, but not so when p is even. With
p D 1 Eq. (2) is the integrable KdV equation, and with p D 2 it is the integrable
modified KdV (mKdV) equation. For p � 3 the equation is not integrable by any
definition. If p 2 R

C is not an integer in the gKdV, then unless we know that
solutions are always positive the nonlinear term must be replaced via upC1 7! jujpu.
When we consider the integrable cases we can do all calculations explicitly for even
large amplitude waves, providing examples that are far more robust than for the
non-integrable cases. The stability theory we develop is applicable for all cases, as
long as there is a local well-posedness theory for the initial value problem.
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In this paper we restrict ourselves to proving the orbital stability of spatially
periodic stationary solutions of gKdV for p � 2 with respect to perturbations of
the same period. This corresponds to the case of zero Floquet exponent in [24], for
which the determination of �.JL / was left open there because it results in J
being singular. For the mKdV equation the results depend on the period of the wave
as well as on which sign is considered. A few non-integrable examples are discussed
as well in the regime of small amplitude waves.

The paper is organized as follows. In Sect. 2 we discuss the spectral theory and
the orbital stability theory for relative equilibria to (1) under the assumption that
ker.J / is nontrivial. In Sect. 3 we apply the results of the theory to (2) in the case
of periodic perturbations of the same period as the underlying solution. We consider
the case of the mKdV equation (p D 2) in detail for three of its periodic solutions.
We find that two of the solutions are orbitally stable, whereas the stability of the third
solution depends upon its period. We finish the section by considering the case of
small solutions for any p 2 N, and find that all of the solutions under consideration
are orbitally stable. Finally, in Sect. 4 we consider the transverse stability of the
gKdV solutions when they are considered as solutions of the generalized KP-I
equation.

Addendum. This paper has a long history. The original work was completed in
2009, and a major revision was done in 2010. In its original form this paper
was joined with the companion paper by Deconinck and Kapitula [13]. At the
suggestion of an editor the two papers were severed, and the second was soon
thereafter published. This paper was submitted elsewhere, where after some time
and consideration the editors decided that it was not appropriate for the journal. We
subsequently submitted this paper to another journal in the fall of 2011. As far as
we can tell, the paper then fell through the cracks in the editor/referee system of that
journal (we joked that it had fallen into a “Refereeing Purgatory”). While the paper
as of Fall 2014 is still unpublished, the work has been noticed in the community.
From the time of original submission to Fall 2014 the paper has been referenced to
at least 31 times (according to Google Scholar). Some of the referencing papers are
Benzoni-Gavage [3], Bottman et al. [6], Bronski et al. [8, 9], Chen et al. [11], Farah
and Scialom [16], Hakkaev et al. [22], Johnson [27], Johnson and Zumbrun [28, 29],
Johnson et al. [30], Kapitula and Promislow [31], Kapitula and Stefanov [33],
Nivala and Deconinck [38], Pava and Natali [40], Pelinovsky [42], Stanislavova and
Stefanov [45]. The results and ideas presented herein are also a highlighted example
in the recent book on stability theory by Kapitula and Promislow [32, Chap. 6.1.2].

2 Theoretical Results

Much of the following discussion can be found in [34, Sect. 2]. It is included here
for the sake of completeness. Let U;V;X denote three real Hilbert spaces with
U � X � V being dense and continuous embeddings. Throughout this paper, we use
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only the scalar product h�; �i on the space V . In particular, we have U � X � V � X�
where X� denotes the dual space of X. Adjoint operators are always taken with
respect to the scalar product on V .

We are interested in relative equilibria of (1). These are solutions of (1) whose
functional form is in some sense invariant under the dynamics. Typical examples
include traveling wave solutions which are invariant under translation in x (as for (2),
or which are invariant under multiplication by a unitary scalar (as for nonlinear
Schrödinger-type equations). In order to make this notion of invariance precise so
as to formally define what is meant by relative equilibria, we need a few elements
from the theory of Lie groups and Lie algebras.

Let G be a finite-dimensional abelian Lie group with Lie algebra g. Denote by
exp.!/ D e! for ! 2 g the exponential map from g into G. Next, assume that
T W G ! L.V/ is a unitary representation of G on V so that T 0.e/ maps g into
the space of closed skew-symmetric operators on V with domain X. Since J is
nonsingular with bounded inverse on ker.J /?, we make the additional assumption
that:

Assumption 1. The derivative of the group action T.�/ satisfies T! W X 7!
ker.J /?.

In Assumption 1 the notation T! WD T 0.e/! is used for the linear skew-symmetric
operator which is the generator of the semigroup T.e!t/. Note that T! is also linear
in ! 2 g. We assume that U is contained in the domain of T2! . The group orbit Gu
of an element u 2 X is defined by Gu WD fT.g/uI g 2 Gg.

2.1 Existence of Relative Equilibria

We need two compatibility assumptions. First, we assume that E is invariant under
G so that

E .T.g/u/ D E .u/

for all u 2 X and all g 2 G. Second, there is a type of commutation between the
group action and the skew operator,

T.g/J D J T.g�1/�; all g 2 G: (3)

As a consequence of Assumption 1 we can define the bounded functional M! W X 7!
R by

M!.u/ WD 1

2
hJ �1T!u; ui; ! 2 g:
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Its second derivative M00
!.u/ D J �1T! W X 7! ker.J /? is a bounded symmetric

linear operator by (3). Note that M!.T.g/u/ D M!.u/, i.e., that M! is a conserved
functional under the group action.

We are now positioned to define what we mean by relative equilibria of (1).
These are solutions u.t/ whose time orbit is contained in the group orbit Gu0 so
that u.t/ 2 Gu.0/ for all t. Thus, � 2 X is a relative equilibrium of (1) if and only
if there is an ! 2 g so that u.t/ D T.e!t/� satisfies (1). Substituting the ansatz
u.t/ D T.e!t/� into (1) we get

T!� D JE 0.�/; ! 2 g: (4)

As a consequence of Assumption 1 both sides are in ker.J /?. Let the operator
PJ W X 7! ker.J /? be the orthogonal projection onto the range of J . Since
PJ T! D T!PJ , (4) is equivalent to

PJ

�
E 0.�/ � J �1T!�

� D 0: (5)

Note that (5) implies that

E 0.�/� J �1T!� 2 ker.J /:

In conclusion, we see from (5) that � 2 X is a relative equilibrium if and only if
PJH 0

!.�/ D 0, where

H! WD E � M!; ! 2 g:

Note that this does not necessarily imply that � is a critical point of H! . We assume
throughout that there exists a smooth family of bound states:

Assumption 2 (Relative Equilibria). There exists a non-empty open set ˝ � g
and a C 1 function � W ˝ ! U, ! 7! �! such that �! is a relative equilibrium of (1),
i.e., PJH 0

!.�!/ D 0 for each ! 2 ˝ . We assume that the isotropy subgroups
fg 2 GI T.g/�! D �!g are discrete for all ! so that the group orbits G�! satisfy
dim.G�!/ D dim.G/.

Remark 1. Since G is abelian, the entire group orbit T.g/�! with g 2 G consists of
relative equilibria with time evolution T.e!t/.

2.2 Formulation of the Evolution Equation

Without loss of generality we will henceforth assume that the relative equilibrium
is a critical point of H! . Indeed, if the relative equilibrium satisfies

H 0
!.�!/ D z; z 2 ker.J /;
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then the mapping

fH!.u/ D H!.u/� hz; ui

yields that the relative equilibrium is a critical point of fH!.u/. The self-adjoint
Hessian of the energy at the relative equilibrium �! is defined as

L WD H 00
! .�!/ W U 7! V: (6)

Note that the linearization of (1) around the relative equilibrium �! in the “co-
moving” frame is given by JL . Due to the invariance of H! under the abelian
group G, one has that the tangent space of the group orbit G�! at �! is contained in
ker.L /. As a consequence of Assumption 2 it follows from [20, p. 314] that

ker.L / WD spanfT˛�! I ˛ 2 gg: (7)

Upon writing X D ker.J / ˚ H1, where H1 WD ker.J /?, let QJ WD 1 � PJ W
X 7! ker.J / be the orthogonal projection onto ker.J /, where PJ was defined in
the previous subsection. One may rewrite the system

ut D JH 0
!.�! C u/; u.0/ D u0; (8)

for which the relative equilibrium �! satisfies PJH 0
!.�!/ D 0, as the system,

@tPJ u D J PJH 0
!.�! C PJ u C QJ u/; PJ u.0/ D PJ u0

@tQJ u D 0; QJ u.0/ D QJ u0:
(9)

From (9) it is seen that QJ u.t/ D QJ u.0/ for all t � 0; in other words, nontrivial
evolution of the initial data only occurs in H1. Consider an initial condition for (9)
which satisfies QJ u0 D 0. One sees from (9) that QJ u.t/ D 0 for all t > 0. Using
PJ u D u for all t � 0, the evolution equation of interest is given by

ut D J PJH 0
!.�! C u/; u.0/ D u0: (10)

Since the evolution occurs on H1; J is now skew symmetric with bounded inverse.

2.3 The Eigenvalue Count

The spectral problem associated with the stability problem for relative equilibria
of (10) is

JL jH1u D 
u; L jH1 WD PJL PJ : (11)
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By assumption J is skew-symmetric, and it has bounded inverse on H1. It is
clear that L , and hence L jH1 , are self-adjoint. In what follows, the following
assumptions are used:

Assumption 3. It is assumed that:

1. L has a compact resolvent, and �.L /\ R
� is a finite set,

2. There is a self-adjoint operator L0 with compact resolvent such that:

a. L D L0 C A , where A is L0-compact and satisfies

kA uk � akuk C bk jL0jruk;

for some positive constants a; b and r 2 Œ0; 1/,
b. The increasing sequence of nonzero eigenvalues !j of L0 satisfies

1X
jD1

j!jj�s < 1;

for some s � 1,
c. There exists a subsequence of eigenvalues f!nk gk2N and constants c > 0 and

r0 > r such that

!nkC1 � !nk � c!r0

nkC1:

3. Im.J / D Im.L jH1 / D 0, where Im denotes the imaginary part.

Remark 2. Assumption 3(a)–(b) are also assumed in [24]. It is known that these
assumptions are not absolutely necessary (see [34] where the assumptions are
removed), but they are satisfied for the applications we have in mind. It is clear
that Assumption 3(a)–(b) for L imply that L jH1 has the same properties. As seen
in [24], Assumption 3(c) is not necessary, and it is assumed here only for the sake
of simplicity. As a consequence of this assumption, eigenvalues for (11) come in
quartets f˙
;˙
�g.

In contrast to [24] we do not assume that L jH1 is nonsingular. In fact, as a
consequence of Assumption 1 one has ker.L / � H1; consequently, ker.L / �
ker.L jH1 /. One has that ker.L / � H1 and ker.J / � ker.L /?. Upon defining

kera.L / WD fz 2 ker.J / W L �1z 2 H1g;

one has

ker.L jH1 / D ker.L /˚ kera.L /:
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The definition of kera.L / makes sense because ker.J / � ker.L /?. Let
ker.J / D Span.z1; : : : ; zm/, where fz1; : : : ; zmg are orthonormal. Let J 2 C

m�m be
the Hermitian matrix whose entries are given by

Jij D hzi;L
�1zji; (12)

i.e., J is a matrix representation for the quadratic form hu;L �1jker.J /ui. Note that

dimŒker.J/� D dimŒkera.L /�I

hence, ker.L / D ker.L jH1 / if and only if J is nonsingular. This is henceforth
assumed.

With J nonsingular, one has

ker.L jH1 /
? D ker.L /? \ H1:

Using the notation

A .S/ WD fy W y D A s for some s 2 Sg;

one has that as a consequence of [34, Eq. (3.2)],

J �1.ker.L jH1// � ker.L jH1 /
?: (13)

Since ker.L jH1/ � H1 one can refine (13) to say that J �1.ker.L jH1 // �
ker.L jH1 /

? \ H1; hence, there is a generalized eigenspace XL � H1 such that

L jH1XL D J �1.ker.L jH1 //:

Define

Dij WD hyi;L jH1yji; (14)

where fyig � XL is any basis for XL . If D is nonsingular, then by the Fredholm
alternative

gker.JL jH1 / D ker.L jH1 /˚ XL ; (15)

with mg.0/ D dim.ker.L jH1 // and ma.0/ D 2mg.0/. Here mg.
/ is the geometric
multiplicity of the eigenvalue 
, ma.
/ � mg.
/ is the algebraic multiplicity, and
gker.A / refers to the generalized kernel of the operator A .

In order to apply the results of [24] we must recast the eigenvalue problem in the
appropriate subspace so that the operator L jH1 no longer has a nontrivial kernel.
Let P1 W H1 7! ker.L jH1 /

? be the orthogonal projection, and set Q1 WD 1� P1. For

 ¤ 0 rewrite (11) as
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L jH1u D 
J �1u: (16)

Upon using the projections P1;Q1 one sees that (16) is equivalent to the system,

P1L jH1P1 � P1u D 
P1J
�1P1u C 
P1J

�1Q1u

0 D 
Q1J
�1P1u C 
Q1J

�1Q1u: (17)

As a consequence of (13) one has that Q1J �1Q1u D 0; thus, from the second line
of (17) one has for 
 ¤ 0 the identities,

P1J
�1P1u D .P1 C Q1/J

�1P1u D J �1P1u

P1J
�1Q1u D .P1 C Q1/J

�1Q1u D J �1Q1u:

The first line of (17) can be rewritten as

J P1L jH1P1 � P1u D 
P1u C 
Q1u; (18)

which, upon using P1Q1 D 0, becomes

P1J P1 � P1L jH1P1 � P1u D 
P1u: (19)

In other words, when looking for nonzero eigenvalues (11) is equivalent to (19).
Once (19) is solved, then Q1u is uniquely determined by (18). It is an exercise to
show that the same conclusion holds when considering generalized eigenfunctions.

By the Fredholm alternative, the solvability of (19) requires that

P1u 2 ker.P1L jH1P1 � P1J P1/
?:

Since P1L jH1P1 is nonsingular on ker.L jH1 /
?, the above is equivalent to requiring

that

P1u 2 ker.P1J P1/
? D ŒJ �1.ker.L jH1 //�

?:

Next, define the orthogonal projection P2 W H1 7! ŒJ �1.ker.L jH1 //�
? and set

Q2 D 1 � P2. Note that as a consequence of (13), P1P2 D P2P1, and that
P2.P1J P1/ D .P1J P1/P2. Applying the operator P2 to (19) yields

˘J˘ �˘L jH1˘ �˘uC˘J˘ �˘L jH1˘ �Q2P1u D 
˘u; ˘ WD P1P2: (20)

Applying the operator Q2 to (19) and using the fact that Q2 W H1 7! ker.P1J P1/
one gets

0 D 
Q2P1u: (21)
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Thus, by (21) for nonzero 
 (20) becomes

˘J˘ �˘L jH1˘ �˘u D 
˘u; (22)

which is equivalent to (19) and hence (11).
Set

RL WD Œker.L /˚ J �1.ker.L //�?;

and note that˘ W RL 7! RL and˘J˘ �˘L jH1˘ W RL 7! RL . By construction
it is clear that ˘J˘ W RL 7! RL is nonsingular. In addition,

ker.˘L jH1˘/ D ker.L jH1 /˚ XL ;

and since D is nonsingular one has that

ker.˘L jH1˘/\ RL D f0g:

This follows from P1XL D XL and the fact that for any y 2 XL ,

P2y D y �
X

hy;J �1`iiJ �1`i D y �
X

hy;L jH1yiiJ �1`i;

where f`ig � ker.L jH1 / are chosen so that fJ �1`ig is an orthonormal basis for
J �1.ker.L jH1 //, and JL jH1yi D `i. In conclusion, both of the operators˘J˘

and ˘L jH1˘ are nonsingular when acting on RL . Furthermore, these operators
satisfy Assumption 3.

Before continuing our study of the eigenvalue problem in (22), we need to
briefly discuss the notion of the Krein signature of purely imaginary eigenvalues.
For a nonzero purely imaginary eigenvalue 
 let E
 � RL be its associated
eigenspace. The Krein signature of 
 is determined via the nonsingular quadratic
form hw; .L jH1 /jE
wi. For a self-adjoint operator A , let n.hw;A wi/ denote the
dimension of the maximal subspace for which hw;A wi < 0. The eigenvalue is said
to have negative Krein signature if

k�
i .
/ WD n.hw; .L jH1/jE
wi/ � 1I

otherwise, if k�
i .
/ D 0, then the eigenvalue is said to have positive Krein signature.

If the eigenvalue 
 is geometrically and algebraically simple with eigenfunction u
,
then

k�
i .
/ D

(
0; hu
;L jH1u
i > 0
1; hu
;L jH1u
i < 0

:
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We set the total Krein signature to be

k�
i WD

X

2iRnf0g

k�
i .
/:

Since Assumption 3(c) implies that k�
i .
/ D k�

i .
/, one has that k�
i is necessarily

even.
The theoretical ideas and results in [24] can now be applied to (22). For a given

w 2 H1 one has

w D wL C wX C wRI wL 2 ker.L /; wX 2 J �1.ker.L jH1 //; wR 2 RL :

Since L jH1 W XL 7! J �1.ker.L jH1 //, and since D is nonsingular, one may write
alternatively

w D wL C y C wRI wL 2 ker.L /; y 2 XL ; wR 2 RL : (23)

A simple modification of the proof leading to [24, Proposition 2.8] yields

hw;L jH1wi D hwL ;L jH1wL i C hy;L jH1yi C hwR;L jH1wRi
D hy;L jH1yi C hwR;L jH1wRi: (24)

By [24, Theorem 2.13] applied to (22) one has that

kr C kc C k�
i D n.hwR;L jH1wRi/: (25)

Here kr refers to the number of real eigenvalues of JL jH1 in the open right-half
plane, kc (even) is its number of complex-valued eigenvalues in the open right-half
plane, and k�

i (even) is the total negative Krein signature. In conclusion, upon noting
that n.A / D n.hw;A wi/ for self-adjoint operators A , one has from (24) and (25)
that

n.L jH1 / D n.D/C kr C kc C k�
i : (26)

We wish to further refine (26). For x 2 X write x D z1 C w1, where z1 2 ker.J /

and w1 2 H1. Since J is nonsingular one can alternatively write x D L �1z C w,
where z 2 ker.J / and w 2 H1. Since

hx;L xi D hz;L �1zi C hw;L wi;

and since hw;Lwi D hw;L jH1wi, one has from the above that

n.L / D n.J/C n.L jH1 /: (27)
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Combining (26) and (27) leads to the following theorem:

Theorem 1. Suppose that Assumption 1 and Assumption 3 hold, and that J given
in (12) and D given in (14) are nonsingular. Then for the eigenvalue problem of (11)

kr C kc C k�
i D n.L / � n.J/ � n.D/:

2.4 Orbital Stability

Assume that there is a local well-posedness theory for (10); in other words, the
initial value problem has a unique solution for at least some time. The key condition
that must be verified in order to demonstrate orbital stability is that n.L jH1 / D n.D/
[20, Theorem 4.1]. By (27) one has that

n.L jH1 / D n.L / � n.J/I

thus, by applying Theorem 1 one has:

Theorem 2. Under the assumptions of Theorem 1, if kr D kc D k�
i D 0, then

the relative equilibria of (4) are orbitally stable. In other words, when considering
solutions of (8) it is true that for each " > 0 there is a ı > 0 such that

QJ u0 D 0; ku0 � �!k < ı H) inf
g2G

ku.t/ � T.g/�!k < ":

Here QJ is the orthogonal projection onto ker.J /.

Remark 3. Theorem 2 can be considered as a natural generalization of the results
of [4], as well as the related works of [2, 41]. Unfortunately, the result cannot be
used to furnish an alternate proof of the results in [4], for in this work the operator
PJJ PJ does not have a bounded inverse.

3 Application: Generalized KdV

Consider the generalized KdV equation with power nonlinearity,

ut C .uxx ˙ upC1/x D 0; p � 1: (28)

The equation with the plus sign is referred to as the focusing gKdV, whereas that
with the minus sign is the defocusing gKdV. As discussed in [12], if p is odd then
the sign is irrelevant, but if p is even then the two cases are genuinely distinct.
Our interest in this section is in the orbital stability of 2L-periodic solutions of (28)
with respect to perturbations of period 2L, i.e., harmonic perturbations, using the



Stability of Periodic Waves to gKdV 297

terminology of [5]. It is seen in [12] that global solutions exist to (28) for integer
1 � p � 3 for initial data of any size in the appropriate space, whereas solutions
are known to exist globally for integer p � 4 for sufficiently small initial data in the
appropriate space. For explicit calculations we focus most of our attention on the
cases p D 1 (KdV) and p D 2 (mKdV). As stated in Sect. 1, both of these cases
are completely integrable.

Following the notation of the previous section one has that J D @x. The space
H1 is given by

H1 D fu 2 L2perŒ�L;L� W u D 0g; u WD 1

2L

Z L

�L
u.x/ dx:

The projection operator is PJ u D u � u, so QJ u has zero mean. The relevant
group action is T.!/u.x; t/ D u.x C !; t/. Since T! D !@x D !J , Assumption 1
holds. The Hamiltonian associated with (28) is

E .u/ D
Z L

�L

�
1

2
u2x 
 1

p C 2
upC2

�
dx; (29)

while the functional M! is given by

M! D !

2

Z L

�L
u2 dx;

leading to

H!.u/ D E .u/ � M!.u/ D
Z L

�L

�
1

2
u2x 
 1

p C 2
upC2 � !

2
u2
�

dx:

We find that the relative equilibria of interest satisfy

uxx D cu 
 upC1; (30)

with c D �!. This familiar result is usually obtained by writing (28) in a moving
frame via x 7! x � ct, and looking for stationary solutions. The point of introducing
the functional M! is that our approach works equally well for other equations where
different symmetry reductions lead to the relative equilibria, such as the nonlinear
Schrödinger equation.

Remark 4. Note that the solutions we use by no means exhaust the stationary
periodic solutions of the gKdV equation; in particular, the full class of solutions
can be found only by considering the ODE

uxx D cu 
 upC1 C a0; a0 2 R (31)
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(for instance, see [25], where a larger class of stationary solutions is constructed).
We restrict ourselves to the case a0 D 0 because the functional form of the solutions
is the simplest, enabling explicit calculations. The case of a0 ¤ 0 was carried out in
[8, 26].

Let a 2L-periodic solution to (30) be denoted by U.x/. Upon linearizing, we
obtain a linear eigenvalue problem of the form (11) with

J D @x; L D �@2x C c 
 .p C 1/Up.x/: (32)

Note that L is a Hill operator [37]. In the space L2perŒ�L;L� it is known that the
countable set of eigenvalues for L can be ordered as 
0 < 
1 � 
2 � � � � with
limn!1 
n D C1, and that the associated normalized eigenfunctions �j form an
orthonormal basis.

Before continuing, we need to verify Assumption 3. Since L is a Hill operator, it
has compact resolvent, and the number of negative eigenvalues is finite. Moreover,
using L0 D �@2x the Hill operator satisfies the compactness condition of (b)-(1)
with b D r D 0. Since the eigenvalues are explicitly given by .j�=L/2 (double
eigenvalues for j � 1), the growth conditions on the eigenvalues, (b)-(2) and (b)-(3),
are also satisfied. The final condition (c) clearly holds.

As a consequence of the spatial translation invariance associated with (28) one
knows that LUx D 0. Using the notation from Sect. 2,

ker.J / D Spanf1g; ker.L / D SpanfUxg
J �1.ker.L // D SpanfU � Ug; L �1.ker.J // D SpanfL �1.1/g:

Note that the assumption that J is nonsingular in Theorem 1 is equivalent to
hL �1.1/; 1i ¤ 0.

In order to construct the one-by-one dimensional matrix D one must first find
a basis for the one-dimensional generalized eigenspace XL . Assume that J is
nonsingular. Let

uC D L �1.U/� CL �1.1/; C D hL �1.U/; 1i
hL �1.1/; 1i : (33)

It is clear that

L uC D U � C;

and since uC 2 H1 one has that

L jH1uC D U � U:
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It follows that uC provides a basis for XL , where C is given in (33). Since uC 2 H1

one has that

huC;L jH1uCi D huC;L uCi;

which upon using (33) and simplifying finally yields

D D

ˇ̌
ˇ̌ hL �1.U/;Ui hL �1.U/; 1i

hL �1.U/; 1i hL �1.1/; 1i
ˇ̌
ˇ̌

hL �1.1/; 1i ; (34)

where we have used that L �1 is self adjoint.

Remark 5. Assuming that J is nonsingular, one sees from (34) that D D 0 if and
only uC satisfies huC;Ui D 0.

The expression in (34) is difficult to calculate in general, hence we wish to
simplify it. Assume that U.x/ is even, which in particular implies that L maps
even (odd) functions to even (odd) functions. As stated, one solution of L � D 0 is
� D U0.x/. Reduction of order provides a second solution � , which satisfies

L� D 0;

ˇ̌
ˇ̌ U0 �
U00 � 0

ˇ̌
ˇ̌ D 1: (35)

Formally,

�.x/ D U0.x/
Z x 1

ŒU0.s/�2
ds:

The above formulation is problematic because U0 will generally have at least one
zero. For any even f which is 2L-periodic one has by variation of parameters that

L �1.f / D U0.x/
Z x

0

�.s/f .s/ ds � �.x/
Z x

0

U0.s/f .s/ ds C cf�.x/; (36)

where

cf WD
Z L

0

U0.s/f .s/ ds � 1

2
U00.L/

h�; f i
� 0.L/

is chosen so that

d

dx
L �1.f /jxDL D 0:
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This final condition guarantees that L �1.f / is 2L-periodic. Using (36) it is
straightforward to check that

hL �1.1/; 1i D
�
2U.L/� 1

2
U00.L/

h�; 1i
� 0.L/

�
h�; 1i � 2h�;Ui

hL �1.U/; 1i D 1

2
U2.L/h�; 1i � 3

2
h�;U2i C

�
U.L/� 1

2
U00.L/

h�; 1i
� 0.L/

�
h�;Ui

hL �1.U/;Ui D �h�;U3i C
�

U2.L/� 1

2
U00.L/

h�;Ui
� 0.L/

�
h�;Ui: (37)

Further simplification of these expressions is possible for specific values of p,
and for a choice of focusing or defocusing. An example of such simplifications is
found below, where we consider specific instances of the generalized KdV equation.

3.1 Modified KdV: p D 2

With p D 2 and for the focusing case, we simplify the expressions in (37) even
more. Integration by parts and use of the fact that U and � are even yields

h� 00;Ui D 2U.L/� 0.L/C h�;U00i:

Consequently,

0 D hL�;Ui D �2U.L/� 0.L/C h�;LUi;
and since LU D �2U3

0 D �2U.L/� 0.L/ � 2h�;U3i H) h�;U3i D �U.L/� 0.L/:

Similarly,

0 D hL�; 1i H) h�;U2i D 1

3
ch�; 1i � 2

3
� 0.L/:

Substitution of the above into (37) gives

hL �1.1/; 1i D
�
2U.L/ � 1

2
U00.L/

h�; 1i
� 0.L/

�
h�; 1i � 2h�;Ui

hL �1.U/; 1i D 1

2
.U2.L/ � c/h�; 1i C � 0.L/C

�
U.L/ � 1

2
U00.L/

h�; 1i
� 0.L/

�
h�;Ui

hL �1.U/;Ui D U.L/� 0.L/C
�

U2.L/ � 1

2
U00.L/

h�;Ui
� 0.L/

�
h�;Ui: (38)
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In order to evaluate (34) one must compute the expressions in (38). This is done in
subsequent sections for two explicit cases.

For the focusing case with p D 2 we work with the two families of stationary
periodic solutions given by

U D p
2� dn.�x; k/; c D �2.2 � k2/;

U D p
2�k cn.�x; k/; c D �2.�1C 2k2/:

Here � > 0; 0 � k < 1, and dn.y; k/ and cn.y; k/ are Jacobi elliptic functions. For
the defocusing case we use

U D p
2�k sn.�x; k/; c D ��2.1C k2/:

The waves proportional to cn.y; k/ and sn.y; k/ have period 4K.k/=�, where K.k/ is
the complete elliptic integral of the first kind. The wave proportional to dn.y; k/ has
period 2K.k/=�. The function K.k/ is smooth, strictly increasing, and satisfies the
limits

lim
k!0C

K.k/ D �

2
; lim

k!1�

K.k/ D C1:

Thus, the inclusion of the parameter � allows us to consider the entire family of
cnoidal solutions for fixed L. In all that follows we set � D 1, as the effect of
including � is simply an overall eigenvalue scaling in all of the calculations listed
below. In particular, the parameter � is needed only to consider the entire family of
cnoidal waves for a fixed period.

Define

L0 WD � d2

dx2
C 6k2 sn2.x; k/:

Since L0 has a two-gap potential, when considering �.L0/ on L2per.Œ�2K.k/;
2K.k/�IC/ it is known that the first five eigenvalues are simple, and that all other
eigenvalues have multiplicity two. In particular, the first five eigenvalues, as well as
the associated eigenfunctions, are given by


0 D 2.1C k2 � a.k//I �0.x/ D k2 sn2.x; k/ � 1

3
.1C k2 C a.k//;


1 D 1C k2I �1.x/ D @x sn.x; k/;


2 D 1C 4k2I �2.x/ D @x cn.x; k/;


3 D 4C k2I �3.x/ D @x dn.x; k/;


4 D 2.1C k2 C a.k//I �4.x/ D k2 sn2.x; k/ � 1

3
.1C k2 � a.k//; (39)
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where a.k/ WD p
1 � k2 C k4 [17]. The following proposition is useful for all

subsequent calculations. As a consequence of Proposition 1 the evaluation of
hL �1.1/; 1i will be straightforward.

Proposition 1. For j … f0; 4g; h�j; 1i D 0.

Proof. An observation of (39) reveals that the result holds for j D 1; 2; 3. Now
consider j � 5. Upon using the fact that L0�j D 
j�j and integrating both sides
over one period one sees that


jh�j; 1i D 6h�j; k
2 sn2.x; k/i:

Set b.k/ WD .1Ck2�a.k//=3. Using the representation of �4.x/ given in (39) allows
one to rewrite the above as

.
j � 6b.k//h�j; 1i D 6h�j; �4i D 0;

where the second inequality follows from the orthogonality of the eigenfunctions.
Since 
j � 6b.k/ > 0 for j � 5, the desired conclusion follows. �

3.1.1 Focusing mKdV: Solution
p

2 dn.x; k/

The wave is given by

U.xI k/ WD p
2 dn.x; k/; c.k/ WD 2 � k2: (40)

The fundamental period of U.xI k/ is 2K.k/, so that L D K.k/. Upon using the
identity 1 � k2 dn2.x; k/ D k2 sn2.x; k/ one finds that the linearization around U
yields the operator

L WD � d2

dx2
C c � 3U2 D L0 � .4C k2/: (41)

The spectrum of L is derived from that of L0 via 
j 7! 
j � .4C k2/ in (39). Set
Q
j WD 
j�.4Ck2/. Since the fundamental period is 2K.k/, the eigenvalues associated
with 
1; 
2 are not relevant, as the associated eigenfunctions have fundamental
period 4K.k/. Consequently, n.L / D 1 for all k 2 Œ0; 1/.

As a consequence of Proposition 1 one has that for any 0 � k < 1,

hL �1.1/; 1i D h�0; 1i2
Q
0

C h�4; 1i2
Q
4

: (42)
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Using the explicit expressions given in (39), and using the identities

Z K.k/

�K.k/
k2 sn2.x; k/ dx D 2.K.k/� E.k//

Z K.k/

�K.k/
k4 sn4.x; k/ dx D 2

3
Œ.2C k2/K.k/� 2.1C k2/E.k/�; (43)

we have explicitly

hL �1.1/; 1i D 2K.k/� .2C k2/E.k/

k4
> 0; (44)

for k > 0. This inequality is easily verified using the series expansions of K.k/ and
E.k/ [39]. As a consequence, it is now known that n.J/ D 0.

In order to complete the calculation, we compute D. Recall that formally

�.x/ D U0.x/
Z x 1

ŒU0.s/�2
ds:

Upon using the identities

1

Œ@x dn.xI k/�2
D 1

k4

�
1

sn2.xI k/
C 1

cn2.xI k/

�
;

@

@x

sn.xI k/

cn.xI k/
D dn.xI k/

cn2.xI k/
;

@

@x

cn.xI k/

sn.xI k/
D � dn.xI k/

sn2.xI k/
;

integrating by parts, and normalizing with (35) to get �.0/ D 1=.
p
2 k2/, one

eventually gets

�.x/ D 1p
2 k2

�
1 � 2 sn2.xI k/

dn.xI k/
� k2 sn.xI k/ cn.xI k/

Z x

0

1 � 2 sn2.tI k/

dn2.tI k/
dt

�
:

Differentiating and evaluating at x D L D K.k/ yields

� 0.L/ D 1

2
U.L/

Z L

0

1 � 2 sn2.tI k/

dn2.tI k/
dt:

Upon integrating by parts one has that

h�; 1i D 1

k2
U.L/

Z L

0

1 � 2 sn2.tI k/

dn2.tI k/
dt H) � 0.L/ D 1

2
k2h�; 1i:
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Since U00.L/ D k2U.L/, one can now rewrite (38) as

hL �1.1/; 1i D U.L/h�; 1i � 2h�;Ui;

hL �1.U/; 1i D 1

2
.U2.L/ � c C k2/h�; 1i D 0;

hL �1.U/;Ui D U2.L/h�;Ui C 1

2
k2U.L/h�; 1i � U.L/

h�;Ui2
h�; 1i : (45)

Using the results of (45) in (34) one sees that

D D hL �1.U/;Ui:

An expression for h�; 1i is given above. Upon integrating by parts and simplifying
with (43) one sees that

h�;Ui D 1

k4

�
2E.k/� .2 � k2/K.k/C k2.1 � k2/

Z L

0

1 � 2 sn2.tI k/

dn2.tI k/
dt

�
:

In order to complete the calculation the integral must be computed. Using the fact
that the integrand is even in t and 2L-periodic one has that

Z L

0

1� 2 sn2.tI k/

dn2.tI k/
dt D

Z 2L

L

1 � 2 sn2.tI k/

dn2.tI k/
dt:

Since

sn.t C LI k/ D sn.tI k/

dn.tI k/
; dn.t C LI k/ D

p
1 � k2

dn.tI k/
;

one has

Z 2L

L

1 � 2 sn2.tI k/

dn2.tI k/
dt D 1

1 � k2

Z L

0

Œ�1C .2 � k2/ sn2.tI k/� dt:

The latter integral can be computed with (43) to finally get

Z L

0

1 � 2 sn2.tI k/

dn2.tI k/
dt D 1

k2.1 � k2/
.2.1� k2/K.k/ � .2 � k2/E.k//:

Consequently, one concludes that

h�; 1i D U.L/

k4.1 � k2/
.2.1� k2/K.k/� .2 � k2/E.k//; h�;Ui D �K.k/ � E.k/

k2
:



Stability of Periodic Waves to gKdV 305

Plugging these expressions into (45) and evaluating the resulting expression yields

hL �1.U/;Ui D � .1 � k2/K2.k/ � E2.k/

2.1� k2/K.k/ � .2 � k2/E.k/
< 0;

for k > 0. Here the inequality follows as before, using the series expansions of E.k/
and K.k/ [39] to establish that the denominator has a definite sign. The definite sign
of the numerator follows similarly from E.k/ >

p
1 � k2K.k/, for k > 0.

In conclusion, from Theorem 1 it is seen that kr D kc D k�
i D 0. Recalling that

the scaling � was unimportant in the above calculations, and applying Theorem 2,
the following result is obtained.

Theorem 3. Consider the solution U�.x/ D p
2� dn.�x; k/ on

L2per.Œ�K.k/=�;K.k/=��IR/ endowed with the natural inner-product. For a
given " > 0 sufficiently small there is a ı > 0 such that if ku.0/ � U�k < ı with
u.0/ D U�, then

inf
!2R ku.t/ � U�.� C !/k < ":

Thus the dn solution of the focusing mKdV equation is orbitally stable with respect
to periodic perturbations of the same period for all values of the elliptic modulus.

Remark 6. The result of Theorem 3 was recently established in [1]; however, the
proof there is different than that presented here. In particular, the proof in [1] fails
when n.L / D 2, which will be the case in next problem.

3.1.2 Focusing mKdV: Solution
p

2 k cn.x; k/

Next set

U.xI k/ WD p
2 k cn.x; k/; c.k/ WD �1C 2k2: (46)

For this second case, the fundamental period of U.xI k/ is 4K.k/, so that now L D
2K.k/. The linearization around U gives the operator

L WD � d2

dx2
C c � 3U2 D L0 � .1C 4k2/: (47)

The spectrum of L is derived from that of L0 via 
j 7! 
j � .1C 4k2/ in (39). Set
Q
j WD 
j � .1C 4k2/. Since the fundamental period is 4K.k/, all of the eigenvalues
in (39) are relevant. Consequently, n.L / D 2 for all k.
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The result of Proposition 1 still holds. Thus, hL �1.1/; 1i is still given by (42)
with the appropriate substitution. Using the explicit expressions given in (39), and
using (43), allows one to explicitly compute

hL �1.1/; 1i D �4.2E.k/� K.k// D �4 d

dk
kE.k/: (48)

Since

lim
k!0C

d

dk
kE.k/ D E.0/ > 0; lim

k!1�

d

dk
kE.k/ D �1;

d2

dk2
kE.k/ < 0;

there is a unique k� � 0:909 such that hL �1.1/; 1i D 0 for 0 � k < k�. In
conclusion,

n.hL �1.1/; 1i/ D
(
1; 0 � k < k�;
0; k� < k < 1:

(49)

Now we compute D in order to complete the calculation. The calculation is
similar to that presented in the previous subsection, and hence only the highlights
will be given. One has

�.x/ D 1p
2 k

�
cn.xI k/ � k2 sn.xI k/ dn.xI k/

Z x

0

2 � sn2.tI k/

dn2.tI k/
dt

�
;

from which one gets that

� 0.L/ D �1
2

U.L/
Z L

0

2 � sn2.tI k/

dn2.tI k/
dt D �1

2
h�; 1i:

The second equality is again found by integrating by parts. The analogue of (45)
with U00.L/ D �U.L/ is now

hL �1.1/; 1i D U.L/h�; 1i � 2h�;Ui;
hL �1.U/; 1i D 0;

hL �1.U/;Ui D U2.L/h�;Ui � 1

2
U.L/h�; 1i � U.L/

h�;Ui2
h�; 1i I (50)

hence, as in the previous subsection we conclude with

D D hL �1.U/;Ui:

Note that the potential singularity at k D k� has been removed.
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Calculating as before one has that

Z L

0

2 � sn2.tI k/

dn2.tI k/
dt D 2

Z L

L=2

2 � sn2.tI k/

dn2.tI k/
dt

D 2

k2.1 � k2/
..1� k2/K.k/� .1 � 2k2/E.k//;

from which one eventually gets that

h�; 1i D 2U.L/

k2.1 � k2/
..1 � k2/K.k/ � .1 � 2k2/E.k//; h�;Ui D 2

1 � k2
E.k/:

The second equality requires the use of (43) and the identity

@

@x

cn.xI k/

dn.xI k/
D �.1 � k2/

sn.xI k/

dn2.xI k/
:

Substituting the above into the expression for hL �1.U/;Ui yields a negative sign
for k > 0, as before. Thus n.D/ D 1.

Upon using the result of Theorem 1 one has that

kr C kc C k�
i D

(
0; 0 � k < k�;
1; k� < k < 1:

Since k�
i and kc are even, it then follows that kc D k�

i D 0, but

kr D
(
0; 0 � k < k�;
1; k� < k < 1:

(51)

Hence, for k < k� the cn wave of period 2L is a constrained minimizer and thus
stable with respect to periodic perturbations of period 2L. On the other hand, the cn
wave is unstable for k > k�.

Theorem 4. Consider the solution U�.x/ D p
2�k cn.�x; k/ on

L2per.Œ�2K.k/=�; 2K.k/=��IR/ endowed with the natural inner-product. Define k�
as the unique value satisfying K.k�/ D 2E.k�/. If k < k� � 0:909, then for a
given " > 0 sufficiently small there is a ı > 0 such that if ku.0/ � U�k < ı with
u.0/ D U�, then

inf
!2R ku.t/ � U�.� C !/k < ":
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Thus, the cn solution of the focusing mKdV equation is orbitally stable with respect
to periodic perturbations of the same period, provided the elliptic modulus k < k�.
If k > k�, then the wave is unstable.

Remark 7. Since n.D/ D 1 for all k, the spectral structure at k D k� is such that
the origin is an eigenvalue of JL jH1 of algebraic multiplicity four and geometric
multiplicity two; furthermore, there are two nontrivial Jordan blocks.

Remark 8. If the operator J were nonsingular, then n.L / D 2 with n.D/ D 1

would imply that kr D 1 for all values of k. This example shows that the modification
of the result of [35] presented in Theorem 1 is indeed necessary, and is not simply a
technical detail.

Remark 9. Without loss of generality assume that � D 1. A numerical calculation
of �.JL / shows that the cnoidal wave for focusing mKdV is unstable for
any value of k in the space L2per.Œ�2nK.k/; 2nK.k/�IR/ for any integral n � 2.
This is illustrated in Fig. 1. The spectra illustrated there were computed using
SpectrUW2.0, using 20 Fourier modes and 400 equally-spaced Floquet exponents,
with P D 1 [10]. Note the different scalings of the different figures. Since the
density of the eigenvalues computed is not uniform, there are some parts of the
spectrum where we have less information than elsewhere. Nevertheless, between
what is known theoretically about the spectra and what we observe numerically, we
feel the statements made below are safe inferences based on the numerical results
plotted. For all plots in Fig. 1, the entire imaginary axis is part of the spectrum,
whereas the real axis is not (except for the origin, and perhaps two other points, see
below). It should also be pointed out that all plots are consistent with the results of
Bronski and Johnson [7]: at the origin, the spectrum should generically consist of
either the imaginary axis (with multiplicity three), or of three distinct components,
all intersecting at the origin. In our case, the second scenario unfolds for all but one
value of k, see below. From the numerical results, it appears that all self-intersection
points of the spectrum occur at eigenvalues corresponding to eigenfunctions with
period 4K.k/.

• For k < k�, in addition to the imaginary axis, the spectrum consists of the
boundary of two lobes, each cut in half by the imaginary axis. Of course, the
lobes are symmetric with respect to the real and imaginary axes. The lobes touch
at the origin. The boundary of the upper lobe has a second intersection point
with the imaginary axis which approaches the origin as k ! k��. One of the
eigenfunctions corresponding to this point is periodic with period 4K.k/. It is the
first (in terms of distance to the origin) non-zero eigenvalue on the imaginary
axis corresponding to a period 4K.k/ eigenfunction. This case is illustrated in
Fig. 1a–c. For the last panel k D 0:908, very close to k� � 0:909. For k < k�,
the origin is the only point on the real axis that is in the spectrum.

• It appears that three eigenvalues with periodic eigenfunctions collide at the origin
for k D k�. For k < k� all three eigenvalues are on the imaginary axis. For
k > k� all three are on the real axis, giving rise to unstable and stable directions.
For k D k�, it appears the spectrum near the origin appears to consists of more
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than three components (counting multiplicities), leading to the conclusion that
for k D k� the discriminant of Bronski and Johnson [7] is zero. The case of a
zero discriminant is not discussed in [7].

• For k > k�, in addition to the imaginary axis, the spectrum consists of additional
curves, bounding a total of six regions in C, three in the right-half plane, three in
the left-half plane. We describe the ones in the right-half plane. Using the left-
right symmetry of the spectrum completes the picture. There is a region touching
the origin, which has a point furthest from the origin, which is a self-intersection
point of the spectrum. This point corresponds to an eigenfunction with period
4K.k/. It is the unstable eigenvalue given by (48). To the right of this point are two
more lobes, one above the real axis, one below. For k greater than but close to k�,
the region touching the origin is small, and the two remaining lobes are relatively
large. This is illustrated in Fig. 1d–e. Figure 1e is a zoom-in of Fig. 1d near the
origin. Due to the low density of computed eigenvalues the left (right) side of the
right (left) upper and lower lobes is not visible in Fig. 1e. For Fig. 1f, k D 0:95,
and the outer lobes have decreased in size, whereas the regions touching the
origin have grown.

In summary, the numerical results show that the cn solution of the mKdV equation
is unstable with respect to perturbations of period 4nK.k/ for any n � 2, even if it
is stable with respect to perturbations of period 4K.k/.

3.1.3 Defocusing mKdV: Solution
p

2 k sn.x; k/

In the defocusing regime there exists a branch of solutions

U.xI k/ WD p
2 k sn.x; k/; c.k/ WD �.1C k2/: (52)

The linearization around U yields the operator

L WD � d2

dx2
C c C 3U2 D L0 � .1C k2/: (53)

The spectrum of L is derived from that of L0 via 
j 7! 
j � .1 C k2/ in (39).
Setting Q
j WD 
j � .1 C k2/, one sees that n.L / D 1. Arguing as in the previous
cases gives that hL �1.1/; 1i < 0 (the explicit calculations are left for the interested
reader). Since n.L / D n.J/ D 1, by applying Theorem 1 one has the following:

Theorem 5. Consider the solution U�.x/ D p
2�k sn.�x; k/ on

L2per.Œ�2K.k/=�; 2K.k/=��IR/ endowed with the natural inner-product. For a
given " > 0 sufficiently small there is a ı > 0 such that if ku.0/ � U�k < ı with
u.0/ D U�, then
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Fig. 1 Numerical computations of �.JL / for the cnoidal wave of focusing mKdV using the
space L2per.Œ�2nK.k/=�; 2nK.k/=��IR/ with n D 400. For a detailed explanation, see the main
text. (a) k D 0:7 < k�. (b) k D 0:9 < k�. (c) k D 0:908 < k�. (d) k D 0:91 > k�. (e)
k D 0:91 > k� (zoom). (f) k D 0:95 > k�

inf
!2R ku.t/ � U�.� C !/k < ":

Thus the sn solution of the defocusing mKdV equation is orbitally stable with respect
to perturbations of the same period.
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Remark 10. The comments of Remark 8 also apply here, except now n.L / D 1

with n.D/ D 0.

Remark 11. Using the integrability of the mKdV equation extensively, more
explicit statements are possible, see [15], where the stability and instability of
all stationary solutions of the mKdV equation is discussed. For instance, it is shown
there that the stationary solutions of the defocusing equation are orbitally stable
with respect to subharmonic perturbations. For the focusing equation, the stability
with respect to these perturbations depends on whether the solutions have higher
(dn-like solutions; stable) or lower (cn-like solutions; unstable) energy than the
soliton solutions which act as a separatrix between these two classes in the phase
plane of the stationary equation (31).

3.2 Perturbative Results: p � 3

As a consequence of [26, Theorem 5.6] it is known that for any p ¤ 2 the periodic
waves which are analogous to the dn-wave when p D 2 are orbitally stable if they are
sufficiently small perturbations of the appropriate nonzero constant state. For this
reason, these waves are not discussed here. Instead, we focus on the orbital stability
of the small waves analogous to the cn-wave (focusing) and sn-wave (defocusing)
when p 2 N0.

After rescaling x; t; u (28) can be rewritten as

ut C .!uxx C u C "ıupC1/x D 0; ı 2 f�1;C1g; (54)

where the interest will be on the orbital stability of 2�-periodic solutions for
0 < " � 1. Note that the wave speed has been fixed. The free parameter ! allows
us to perturbatively construct the desired steady-state solutions via the Poincaré-
Lindstedt method.

First consider the existence problem for the steady-state solutions, i.e.,

!u00 C u C "ıupC1 D a0; a0 2 R: (55)

Looking for even solutions yields the expansions

u.x/ D U.x/ � a0 C b cos x„ ƒ‚ …
U0

C"U1.x/; ! � 1C "!1:

Setting L0 WD �.@2x C 1/, one sees that at O."/,

L0U1 D 2!1@
2
xU0 C ıUpC1

0 : (56)
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The standard solvability condition for (56) that removes the secular terms is

!1 D ı

2�b2
hUpC2

0 � a0U
pC1
0 ; 1i: (57)

Furthermore, using a finite cosine-series representation,

U1.x/ D � ı

2�
hUpC1

0 ; 1i C
pC1X
jD2

cj cos.jx/; (58)

for suitably chosen constants cj.
The linearization about the wave U gives the linear operator

L � L0 C "L"I L" WD �!1 d2

dx2
� ı.p C 1/Up

0.x/: (59)

The principal eigenvalue is given by 
0 D �1 C O."/, and the associated
eigenfunction �0 D 1=

p
2� CO."/ satisfies h�0; 1i D 1CO."/. The next nonzero

eigenvalue is given by 
1 D "
" C O."2/, and the associated eigenfunction is

�1 D �01 C "�" C O."2/; �01 WD 1p
�

cos x:

Using regular perturbation theory results in


" D 1

�
hcos x;L".cos x/i

D � ı

�b2

�
phUpC2

0 � a0U
pC1
0 ; 1i � a0.p C 1/hUpC1

0 � a0U
p
0 ; 1i

�
:

(60)

A Maple-assisted calculation reveals that when p D 1; 
" D 0; otherwise, for p odd
one has 
" D �ıa0f .a0; b; p/, where f > 0, while for p even 
" D �ıg.a0; b; p/,
where again g > 0. The above calculations characterize �.L / in the following
manner: if 
1 < 0, then a left band edge of �.L / is at 
 D 0; otherwise, the right
band edge is at the origin (see Fig. 2). In conclusion, for 0 < " � 1,

n.L / D
(
1; 
1 > 0

2; 
1 < 0:
(61)

Remark 12. For p D 1 one finds by continuing the perturbation expansion that


1 �
�
2a20 C 11

6
b2 C b3

�
"2 > 0:
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0

n(L)=1

0

n(L)=2

Fig. 2 The spectrum of the operator L for the perturbative solutions is marked with thick (red)
lines. The eigenvalues associated with eigenfunctions which are 2�-periodic are marked with filled
(blue) circles

Furthermore, note that 
" ¤ 0 for all .a0; b/ if p is even, and for p odd it is true as
long as a0 ¤ 0.

Next, we compute J and D. Using the expansion of (59),

L �1.1/ D �1C O."/I

hence,

hL �1.1/; 1i D �2� C O."/ H) n.J/ D 1:

Since

hL �1.U0/; 1i D hL �1.1/;U0i D �2�a0 C O."/;

an examination of (34) reveals that the dominant term for D follows from the
calculation of hL �1.U0/;U0i. This in turn requires an expansion for � . First write

Q� D cos x C "�" C O."2/:

Then

L0�" D �L" cos x;

which upon solving yields the existence of constants ej such that

�" D 1

2

"x sin x C e0 C

pC1X
jD2

ej cos.jx/:

Setting

� D 1

b

�
cos x C "

�
ŒU00

1 .0/� �".0/� cos x C �"
	C O."2/
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yields the normalization

U00
0 .0/�.0/ D �1C O."2/:

Since

� 0.�/ D � �

2b

""C O."2/;

an examination of the last line of (37) yields that

hL �1.U0/;U0i D b2�


1
C O.1/:

In conclusion, for p � 2 and " > 0 sufficiently small one has

n.D/ D
(
0; 
1 > 0;

1; 
1 < 0:
(62)

Upon using (61) and (62), along with the fact that n.J/ D 1, one can conclude via
Theorem 1 that kr D kc D k�

i D 0. By Theorem 2 this yields:

Theorem 6. Let p � 2, and let .a0; b/ be such that 
" given in (60) is nonzero.
Consider the solution U0.x/ D a0 C b cos x C O."/ to (54) on the space
L2per.Œ��; ��IR/ endowed with the natural inner product. If " > 0 is sufficiently
small, then U0 is orbitally stable.

4 Transverse Instabilities of gKP-I

Recently Rousset and Tzvetkov [44] considered the parameter-dependent eigen-
value problem

J .`/L .`/u D 
u; ` 2 Œ0;C1/: (63)

They considered the situation where J .`/ is skew symmetric and invertible for all
`, and where the self-adjoint operator L .`/ satisfies the assumptions:

1. there is an L > 0 and ˛ > 0 such that L .`/ � ˛1 for ` � L,
2. if `1 > `2, then L .`1/ > L .`2/; furthermore, if for some ` > 0 the operator

L .`/ has a nontrivial kernel, then hL 0.`/�; �i > 0 for any � 2 ker.L .`// (here
L 0.`/ is the derivative of L .`/ with respect to `),

3. n.L .0// D 1.
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There is also an assumption on the essential spectrum; however, we do not state it
here, since it is not relevant for our considerations. Under these assumptions Rousset
and Tzvetkov [44] showed there is an ` > 0 such that (63) has a bounded solution
for Re
 > 0. In other words, they developed an instability criterion. The goal in
this section is to restate the instability result in terms of the index theory from our
previous results. The theoretical result will be applied to the spectral stability study
of periodic waves of the generalized Kadomtsev-Petviashvili equation with strong
surface tension (gKP-I).

Consider the theory and arguments leading to the result of Theorem 1. They
are clearly independent of any parameter dependence of the operators. For the
parameter-dependent problem it is often the case that the operatorL .`/ is invertible
except for a finite number of values `; hence, without loss of generality, we assume
that L .`/ is nonsingular. We further assume that J .`/ is nonsingular with bounded
inverse. The theorem can be restated to say:

Theorem 7. Consider the eigenvalue problem (63). Suppose that L .`/ satisfies
Assumption 3 for each ` � 0, and further assume that J .`/ has bounded inverse
for each ` � 0. If L .`/ is nonsingular, then for each ` � 0,

kr C kc C k�
i D n.L .`//:

In particular, if n.L / is odd, then kr � 1.

Remark 13. The instability proof used in [44] required that n.L .0// D 1. The other
assumptions are clearly not necessary for the statement of Theorem 7; however, if it
is the case that n.L .`// D 0 for ` � L, then there will be no unstable spectrum for
` � L.

Let us apply the result of Theorem 7 to the study of spatially periodic waves of
the generalized KP-I equation (gKP-I), which is a two-dimensional version of the
gKdV given by

ut D @x.�uxx C cu 
 upC1/C @�1
x uyy: (64)

This problem was recently studied in [21] as an application of the results of [44]
(also see [29] for an Evans function analysis). We consider solutions to (64) that are
spatially periodic in both x and y; in particular, we assume that

u.x; y C 2�=`/ D u.x; y/; ` > 0: (65)

The period in x, say 2Lx, will be determined by one of the y-independent solutions
considered in the previous sections. In order for the operator @�1

x to make sense, it
must be assumed that

Z Lx

�Lx

uyy.x; y/ dx D 0; (66)
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i.e., in the language of the previous sections, it must be the case that

uyy 2 H1;x;

where the notation H1;x denotes the fact that the spatial average must be zero in the
x-direction only.

Let U.x/ represent a y-independent spatially periodic steady-state solution, i.e.,

�U00 C cU 
 UpC1 D 0; U.x C 2Lx/ D U.x/;

and set the linearization about this wave to be

L0 D �@2x C c 
 .p C 1/Up:

Writing the perturbation as

u.x; y/ D U.x/C v.x; y/;

the linearized eigenvalue problem is

@xL0v C @�1
x vyy D 
v; v.x C 2Lx; y/ D v.x; y/: (67)

Using the fact that the perturbation is 2�=`-periodic in y implies that we can write

v.x; y/ D
C1X
`D�1

v`.x/ei`y:

Plugging this expansion into (67) yields the parameter dependent eigenvalue
problem

@xL0v` � `2@�1
x v` D 
v`; v`.x C 2Lx/ D v`.x/: (68)

The system (68) is not yet in the desired form of (63). Write

v` D @xu; (69)

so that (68) becomes

�@xL0@xu C `2u D �
@xu; u.x C 2Lx/ D u.x/: (70)

Equating J D �@�1
x yields

J
��@xL0@x C `2

	
„ ƒ‚ …

L .`/

u D 
u; u.x C 2Lx/ D u.x/: (71)

This is the desired Hamiltonian form for the eigenvalue equation.
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As for (71), some care must be taken regarding the space in which it is being
considered. The transformation (69), and the periodicity condition of (68), require
that u 2 H1;x. As we have already seen, in this space @x has bounded inverse; hence,
for (71) J is a skew-symmetric operator with bounded inverse. The operator L .`/

on the space of 2Lx-periodic functions is self adjoint and has a compact resolvent.
Hence, the same is true for the operator L .`/jH1;x . Assuming that L .`/jH1;x is
nonsingular, by Theorem 7 we have for the eigenvalue problem (71)

kr C kc C k�
i D n

�
L .`/jH1;x

	
: (72)

We wish to make (72) more definitive. Let us first consider the problem (71) for
` � 1. With ` D 0 the problem is

L0@xu D 
u ) .@xL0/
au D .�
/u;

where T a is used to denote the adjoint of the operator T . This is precisely
the adjoint problem for the problem studied in the previous sections; hence, the
spectrum is completely known for the worked examples. If hL �1

0 .1/; 1i ¤ 0, then

 D 0 is an eigenvalue with mg.0/ D 1 and ma.0/ D 2. For ` > 0 but small the
double eigenvalue at zero splits into a pair of eigenvalues, each of which is O.`/
(see [34, Theorem 4.1]). Since eigenvalues come in quartets, it must be the case that
the pair is either purely real, and thus contributes to a linear instability, or purely
imaginary. Furthermore, if there are any eigenvalues with Re
 > 0 when ` D 0,
these continue to have positive real part for small `.

In order to compute the right-hand side of (72) for ` D O.1/, we need to consider
�
�
L .`/jH1;x

	
. The eigenvalue problem

L .`/u D 
u

is equivalent to

�@xL0@xu D 	u; 	 D 
 � `2: (73)

Thus, if one can compute n.�@xL0@xjH1;x/, one can readily compute the desired
quantity n.L .`/jH1;x/. In particular, if the negative eigenvalues of �@xL0@xjH1;x are
ordered as 
0 < 
1 � � � � � 
N < 0, then the (potential) negative eigenvalues
of L .`/jH1;x are given by 
0 C `2 < � � � < 
N C `2. It is clearly the case that if
`2 > �
0, then L .`/jH1;x is a positive operator; otherwise, the operator will have a
finite number of negative directions, and this number will decrease as increasing `
moves a negative eigenvalue 
j across the origin.

In conclusion, in order to refine (72) we must compute n.�@xL0@xjH1;x/. We will
show that it will be enough to consider n.L0jH1;x/. Integrating (73) yields that for
	 ¤ 0,

0 D h.�@xL0@x/u; 1i D 	hu; 1i:
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This implies that all eigenfunctions associated with nonzero eigenvalues are in H1;x,
so that

n
��@xL0@xjH1;x

	 D n.�@xL0@x/:

Regarding the computation of n.�@xL0@x/, let us consider the quadratic form

h�@xL0@xv; vi D hL0u; ui; u D @xv:

In order for the two quadratic forms to be equivalent it must be the case that both u
and v are 2Lx-periodic, which in turn implies that u 2 H1;x. In other words, we have

h�@xL0@xv; vi D hL0jH1;xu; ui ) n.�@xL0@x/ D n
�
L0jH1;x

	
:

But, from (27) we have

n
�
L0jH1;x

	 D n.L0/� n.hL �1
0 .1/; 1i/I

thus, we conclude that

n
��@xL0@xjH1;x

	 D n.L0/� n.hL �1
0 .1/; 1i/: (74)

The computation of the right-hand side of (74) has been done in the previous
sections for specific examples. Summarizing, we have that for p D 2,

U.x/ D p
2 dn.x; k/ W n.L0/� n.hL �1

0 .1/; 1i/ D 1;

U.x/ D p
2 k cn.x; k/ W n.L0/� n.hL �1

0 .1/; 1i/ D
(
1; 0 � k < k�;
2; k� < k < 1;

U.x/ D p
2 k sn.x; k/ W n.L0/� n.hL �1

0 .1/; 1i/ D 0:

While we do not prove it here, it is not difficult to show in the second case, i.e.,
U.x/ / cn.x; k/, that the two negative eigenvalues are simple. For the perturbative
results proved for p � 3, we have that

n.L0/ � n.hL �1
0 .1/; 1i/ D

(
0; 
1 > 0;

1; 
1 < 0:

In other words, the count is zero when the right band edge is at the origin (left panel
of Fig. 2), and is one when the left band is at the origin (right panel of Fig. 2). In
all of the above cases except when U.x/ / cn.x; k/ for k > k� we saw that the
waves were orbitally stable; otherwise, we saw that kr D 1, and that the unstable
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eigenvalue is O.1/. We can now apply the result of Theorem 7 to say the following
about transverse instabilities of these waves:

Theorem 8. Suppose that for a gKdV spatially periodic wave n.L0/ D 1 (left
panel of Fig. 2). If hL �1

0 .1/; 1i < 0, then the wave is spectrally transversely stable.
Otherwise, the wave is spectrally unstable transversely with kr D 1 to perturbations
of period 2�=` for 0 < ` <

p�
0, where 0 > 
0 2 �.L0jH1;x/ is the ground
state eigenvalue. All waves are spectrally stable for ` >

p�
0. If n.L0/ D 2 (right
panel of Fig. 2), the wave is spectrally transversely unstable.

Remark 14. For all of the unstable waves considered in this paper we have that
kr D 1 expect when p D 2 with U.x/ / cn.x; k/. In this case, if 0 < k < k�, then
kr D 1, whereas if k� < k < 1, we have that kr D 1 for

p�
0 < ` <
p�
1, and

kr D 2 for 0 < ` <
p�
1. Here 0 > 
1 > 
0 2 �.L0jH1;x/. It should be noted that

these cnoidal waves were not studied in [21]; furthermore, the methods of [21] fail
for k > k�.

Remark 15. If p D 1, then we saw in Remark 12 that for small waves, n.L0/ D 1.
The following calculation which led to hL �1

0 .1/; 1i D �2� C O."/ was indepen-
dent of p; hence, by Theorem 8 we can conclude the wave is spectrally transversely
stable. This is precisely the result of Hǎrǎguş [23], which was derived by a careful
perturbation calculation for the entire spectrum for the problem (68).

Remark 16. When p D 2, the wave proportional to sn.x; k/ is spectrally stable for
all ` > 0, as �.L0/ � R

C. This answers an open question posed in [21, Sect. 5].

Remark 17. If p � 3, then if the right band edge is at the origin, the wave is
spectrally stable for all ` > 0, while if the left band edge is at the origin, then
kr D 1 for 0 < ` <

p�
0 D O.1/.

Remark 18. While stated in a different way, the result of theorem 8 regarding
transverse instability to long wavelengths (0 < ` � 1) is precisely that given
by Johnson and Zumbrun [29, Theorem 1]. In that paper the transverse instability
criteria for gKP-I required a calculation of the quantity fT;MgE;a; in particular,

fT;MgE;a > 0 ) transversely unstable:

Now, Bronski et al. [8] show that

fT;MgE;a D TEhL �1
0 .1/; 1i;

where for the problems at hand,

TE

(
< 0; n.L0/ D 2;

> 0; n.L0/ D 1:
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Thus, if TE > 0 .n.L0/ D 1/, the instability criteria becomes hL �1
0 .1/; 1i > 0,

which is precisely what we have. On the other hand, if TE < 0 .n.L0/ D 2/, then
[29] provide only a partial instability result. In particular, they show that the wave
is transversely unstable if hL �1

0 .1/; 1i < 0, which implies kr D 1. The reason for
the lack of a complete description on their part is that their results depend upon the
calculation of a parity (orientation) index, which yields definitive results only if kr

is odd for small `.
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Abstract Consider weakly nonlinear complex Ginzburg–Landau (CGL) equation
of the form:

ut C i.�4u C V.x/u/ D "��u C "P.ru; u/; x 2 R
d ; (*)

under the periodic boundary conditions, where � � 0 and P is a smooth function.
Let f�1.x/; �2.x/; : : : g be the L2-basis formed by eigenfunctions of the operator
�4 C V.x/. For a complex function u.x/, write it as u.x/ D P

k�1 vk�k.x/ and set
Ik.u/ D 1

2
jvkj2. Then for any solution u.t; x/ of the linear equation .�/"D0 we have

I.u.t; �// D const. In this work it is proved that if equation .�/ with a sufficiently
smooth real potential V.x/ is well posed on time-intervals t � "�1, then for any
its solution u".t; x/, the limiting behavior of the curve I.u".t; �// on time intervals
of order "�1, as " ! 0, can be uniquely characterized by a solution of a certain
well-posed effective equation:

ut D "�4u C "F.u/;

where F.u/ is a resonant averaging of the nonlinearity P.ru; u/. We also prove
similar results for the stochastically perturbed equation, when a white in time and
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smooth in x random force of order
p
" is added to the right-hand side of the equation.

The approach of this work is rather general. In particular, it applies to equations in
bounded domains in R

d under Dirichlet boundary conditions.

1 Introduction

Equations. We consider a weakly nonlinear CGL equation on a rectangular d-torus
Td D R=.L1Z/ � R=.L2Z/ � � � � � R=.LdZ/, L1; : : : ;Ld > 0,

ut C i.��C V.x//u D "��u C "P.ru; u/; u D u.t; x/; x 2 Td; (1)

where � � 0, P W CdC1 ! C is a C1-smooth function, " is a small parameter and
V.�/ 2 Cn.Td/ is a sufficiently smooth real-valued function on Td (we will assume
that n is large enough). If � D 0, then the nonlinearity P should be independent
of the derivatives of the unknown function u. For simplicity, we assume that � > 0.
The case � D 0 can be treated exactly in the same way (even simpler).

For any s 2 R we denote by Hs the Sobolev space of complex-valued functions
on Td, provided with the norm k � ks,

kuk2s D h.��/su; ui C hu; ui; if s � 0 ;

where h�; �i is the real scalar product in L2.Td/,

hu; vi D <
Z

Td
u Nvdx; u; v 2 L2.Td/:

For any s > d=2C1, it is known that the mappingP W Hs ! Hs�1; u 7! P.ru; u/,
is smooth and locally Lipschitz, see below Lemma 3.

Our goal is to study the dynamics of Eq. (1) on time intervals of order "�1 when
0 < " � 1. Introducing the slow time � D "t, we rewrite the equation as

Pu C "�1i.��C V.x//u D ��u C P.ru; u/; (2)

where u D u.�; x/, x 2 Td, and the upper dotPstands for d
d� . We assume

Assumption A. There exists a number s� 2 .d=2 C 1; n� and for every M0 > 0

there exists T D T.s�;M0/ > 0 such that if u0 2 Hs� and ku0ks�
� M0, then

Eq. (2) has a unique solution u.�; x/ 2 C.Œ0;T�;Hs�/ with the initial datum u0, and
jju.�; x/jjs�

� C.s�;M0;T/ for � 2 Œ0;T�.
This assumption can be verified for Eq. (1) with various nonlinearities P . For

example when� D 0 and V.x/ 
 0 it holds if P.u/ is any smooth function. Indeed,
taking the scalar product in the space Hs� of eq. (2) with u.t/ and using the Gronwall
lemma we get the Assumption A with suitable positive constants T.s�;M0/ and
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C.s�;M0;T/.

p 2 N; p < 1; if d D 1; 2; and p D 1; 2 if d D 3:

When� > 0, the assumption with any T > 0 is satisfied by Eq. (1) with nonlinearity
P.u/ D �	Rfp.juj2/u � i	I fq.juj2/u, where 	R; 	I > 0, the functions fp.r/ and fq.r/
are the monomials jrjp and jrjq, smoothed out near zero, and

0 � p; q < 1 if d D 1; 2 and 0 � p; q < min

�
d

2
;

2

d � 2

�
if d � 3;

see, e.g. [8].
We denote by AV the Schrödinger operator

AVu WD ��u C V.x/u:

Let f
kgk�1 be its eigenvalues, ordered in such a way that


1 � 
2 � 
3 � � � � ;

and let f�k; k � 1g of L2.Td/ be an orthonormal basis, formed by the corresponding
eigenfunctions. We denote � D .
1; 
2; : : : / and call � the frequency vector of
Eq. (2). For a complex-valued function u 2 Hs, we denote by

�.u/ WD v D .v1; v2; : : : /; vk 2 C; (3)

the vector of its Fourier coefficients with respect to the basis f�kgk�1: u D P
k�1

vk�k. Note that � is a real operator: it maps real functions u.x/ to real vectors v.
In the space of complex sequences v D .v1; v2; : : : /, we introduce the norms

jvj2s D
C1X
kD1

.j
kjs C 1/ jvkj2; s 2 R ;

and denote hs D fv W jvjs < 1g. Clearly � defines an isomorphism between the
spaces Hs and hs.

Now we write Eq. (2) in the v-variables:

Pvk C "�1i
kvk D ��
kvk C Pk.v/; k 2 N; (4)

where

P.v/ WD .Pk.v/; k 2 N/ D �
�
�V.x/u C P.ru; u/

�
; u D ��1v: (5)

For every k 2 N we set
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Ik.v/ D 1

2
vk Nvk; and 'k.v/ D Arg vk 2 T

1 D R=.2�Z/ if vk ¤ 0; else 'k D 0:

(6)
Then vk D p

2Ikei'k . Notice that the quantities Ik are conservation laws of the linear
equation .1/"D0, and that the variables .I; '/ 2 R

1C � T
1 are its action-angles. For

any .I; '/ 2 R
1C � T

1 we denote

v D v.I; '/ if vk D
p
2Ikei'k ; 8 k : (7)

If this relation holds, we will write v � .I; '/ : We introduce the weighted l1-
space hs

I:

hs
I WD fI D .Ik; k 2 N/ 2 R

1 W jIj�s D
C1X
kD1

2.j
kjs C 1/jIkj < 1g:

Then jvj2s D jI.v/j�s , for each v 2 hs. Using the action-angle variables .I; '/, we
write Eq. (4) as a slow-fast system:

PIk D vk � � � �
kvk C Pk.v/
	
; P'k D �"�1
k C jvkj�2 � � � ; k 2 N:

Here a � b denotes <.aNb/, for a; b 2 C, and the dots stand for a factor of order 1 (as
" ! 0).
Effective Equations. Our task is to study the evolution of the actions Ik when " � 1

and 0 � � � 1. An efficient way to deal with this problem is through the so-called
interaction representation. Let us define

ak.�/ D ei"�1
k� vk.�/ : (8)

Then

jakj2 D jvkj2 D 2Ik ; (9)

so to study the evolution of the actions we can use the a-variables instead of the
v-variables. Using Eq. (4), we obtain for a D .a1; a2; : : : / the system of equations

Pak.�/ D ��
kak C ei"�1
k�Pk.˚�"�1��a/; k 2 N ; (10)

where for each 
 D .
k; k 2 N/ 2 R
1, ˚
 stands for the linear operator in hs

defined by

˚
v D v0; v0
k D ei
kvk 8 k :

Clearly ˚
 defines isometries of all Hilbert spaces hs, and in the action-angle
variables it reads ˚
.I; '/ D .I; ' C 
/ :
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To approximately describe the dynamics of Eq. (10) with " � 1 we introduce an
effective equation:

PQak D ��
k Qak C Rk.Qa/; k 2 N; (11)

where R.Qa/ WD .Rk.Qa/; k 2 N/ and

R.Qa/ D lim
T!1

1

T

Z T

0

˚�tP.˚��t Qa/dt: (12)

We will see in Sects. 2 and 3 that the limit in (12) is well defined and that Eq. (11)
is well posed, at least locally in time.
Results. In Sect. 4 we prove that the actions of solutions for the effective equation
approximate well the actions Ik.v.�// of solutions v for (4). Let us fix any M0 > 0.

Theorem 1. Let u.�; x/, 0 � � � T D T.s�;M0/, be a solution of (2), such that
u.0; x/ D u0.x/, ku0ks�

� M0, existing by Assumption A. Denote v.�/ D �.u.�; �//,
0 � � � T. Then a solution Qa.�/ of (11), such that Qa.0/ D v.0/, exists for 0 � � �
T, and for any s1 < s� we have

sup
0���T

jI.v.�// � I.Qa.�//j�s1 ! 0; as " ! 0 :

The rate of the convergence does not depend on u0, if ku0ks�
� M0.

This theorem may be regarded as a PDE-version of the Bogolyubov averaging
principle, see [3] and [1], Sect. 6.1. The result and its proof may be easily recasted
to a theorem on perturbations of linear Hamiltonian systems with discrete spectrum.
Instead of doing this, below we briefly discuss its generalisations to other nonlinear
PDE problems.

In the second part of the paper (Sects. 5–7) we consider the CGL equation (1)
with added small random force:

ut C i.��C V.x//u D "��u C "P.ru; u/C p
"

d

dt

X
l�1

blˇl.t/el.x/; (13)

where u D u.t; x/; x 2 Td, the coefficients bl decay fast enough with jlj,
fˇl.t/g are standard independent complex Wiener processes and fel.x/g is the
usual trigonometric basis of the space L2.Td/, parametrized by natural numbers.
It turns out that the effective equation for (13) is the equation (11), perturbed by a
suitable stochastic forcing, see Sect. 5. Assuming that the function P has at most a
polynomial growth and that the equation satisfies a suitable stochastic analogy of the
Assumption A we prove a natural stochastic version of Theorem 1 (see Theorem 2).
Next, supposing that the stochastic effective equation is mixing and has a unique
stationary measure �0, we prove in Theorem 3 that if �" is a stationary measure for
Eq. (13), then � ı�" converge to �0 as " ! 0. So if the stochastic effective equation
is mixing, then it comprises asymptotical properties of solutions for Eq. (13) as
t ! 1 and " ! 0.
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The proof of the theorems in this work follows the Anosov approach to averaging
in finite-dimensional systems (see in [1, 18]), its version for averaging in resonant
systems (see in [1]) and its stochastic version due to Khasminski [12]. The crucial
idea that for averaging in PDEs the averaged equations for actions (which are
equations with singularities) should be considered jointly with suitable effective
equations (which are regular equations) was suggested in [13] for averaging in
stochastic PDEs, and later was used in [14] and [8, 9, 15, 16]. It was realised in the
second group of publications that for perturbations of linear systems the method may
be well combined with the interaction representation of solutions, well known and
popular in nonlinear physics (see [3, 19]), and which already was used for purposes
of completely resonant averaging, corresponding to constant coefficient PDEs with
small nonlinearities on the square torus (see [5, 7]).

For the case when the spectrum of the unperturbed linear system is non-resonant
(see below Example 1), the results of this paper were obtained in [8, 14], while for
the case when the spectrum is completely resonant—in [9, 15]. The novelty of this
work is a version of the Anosov method of averaging, applicable to nonlinear PDEs
with small nonlinearities, which does not impose restrictions on the spectrum of the
unperturbed equation.

Alternatively, the averaging for weakly nonlinear PDEs may be studied, using
the normal form techniques, e.g. see [2] and references therein. Compared to the
Anosov approach, exploited in this work, the method of normal form is much
more demanding to the spectrum of the unperturbed equation, and more sensitive
to its perturbations. So usually it applies only in small vicinities of equilibriums. Its
advantage is that it may imply stability on longer time intervals, while the method of
this work is restricted to the first-order averaging. So in the deterministic setting it
allows to control solutions of "-perturbed equations only on time-intervals of order
"�1 (still, in the stochastic setting it also allows to control the stationary measure,
which describes the asymptotic behaviour of solutions as t ! 1).
Generalizations. The Anosov-like method of resonant averaging, presented in this
work, is very flexible. With some slight changes, it easily generalizes to weakly
nonlinear CGL equations, involving high order derivatives,

ut C i.�4u C V.x/u/ D "P.r2u;ru; u; x/; x 2 Td; (14)

provided that the Assumption A holds and the corresponding effective equation is
well posed locally in time. See in Appendix (also see [8], where a similar result is
proven for the case of non-resonant spectra).

The method applies to Eqs. (1) and (13) in a bounded domain O � R
d under

Dirichlet boundary conditions. Indeed, if d � 3, then to treat the corresponding
boundary-value problem we can literally repeat the argument of this work, replacing
there the space Hs with the Hilbert space H2

0.O/ D fu 2 H2.O/ W u j@OD 0g. If
d � 4, then Hs should be replaced with an Lp-based Banach space W2;p

0 .O/, where
p > d=2.
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Obviously the method applies to weakly nonlinear equations of other types; e.g.
to weakly nonlinear wave equations. In [16] the method in its stochastic form was
applied to the Hasegawa-Mima equation, regarded as a perturbation of the Rossby
equation .�� C K/ t.t; x; y/ �  x D 0, while in [4] it is applied to systems of
non-equilibrium statistical physics, where each particle is perturbed by an "-small
Langevin thermostat, and is studied the limit " ! 0 (similar to the same limit in
Eq. (13)).

The averaging for perturbations of nonlinear integrable PDEs is more compli-
cated. Due to the lack in the functional phase-spaces of an analogy of the Lebesgue
measure (required by the Anosov approach to the finite-dimensional deterministic
averaging), in this case the results for stochastic perturbations are significantly
stronger than the deterministic results. See in [10].

2 Resonant Averaging in Hilbert Spaces

The goal of this section is to show that the limit in (12) is well-defined in
some suitable settings and study its properties. Below for an infinite-vector v D
.v1; v2; : : : / and any m 2 N we denote

vm D .v1; : : : ; vm/; or vm D .v1; : : : ; vm; 0; : : : /;

depending on the context. This agreement also applies to elements ' D .'1; '2; : : : /

of the torus T1. For m-vectors Im; 'm; vm we write vm � .Im; 'm/ if (7) holds for
k D 1; : : : ;m. By ˘m, m � 1, we denote the Galerkin projection

˘m W h0 ! h0; .v1; v2; : : : / 7! vm D .v1; : : : ; vm; 0; : : : /:

For a continuous complex function f on a Hilbert space H, we say that f is locally
Lipschitz and write f 2 Liploc.H/ if

ˇ̌
f .v/ � f .v0/

ˇ̌ � C .R/kv � v0k; if kvk; kv0k � R; (15)

for some continuous non-decreasing function C W RC ! R
C which depends on f .

We write

f 2 LipC .H/ if (15) holds and jf .v/j � C .R/ if kvk � R : (16)

If f 2 LipC .H/, where C .�/ D Const, then f is a bounded (globally) Lipschitz
function. If B is a Banach space, then the space Liploc.H;B/ of locally Lipschitz
mappings H ! B and its subsets LipC .H;B/ are defined similarly.
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For any vector W D .w1;w2; : : : / 2 R
1 we set

hf iT
W;l.v/ D 1

T

Z T

0

eiwltf .˚�Wtv/dt; (17)

and if the limit of hf iT
W;l.v/ when T ! 1 exists, we denote

hf iW;l D lim
T!1hf iT

W;l.v/:

Concerning this definition we have the following lemma. Denote

B.M; hs/ D fv 2 hs W jvjs � Mg; M > 0:

Lemma 1. Let f 2 LipC .hs0/ for some s0 � 0 and some function C as above.
Then

(i) For every T ¤ 0, hf iT
W;l 2 LipC .hs0/.

(ii) The limit hf iW;l.v/ exists for v 2 hs0 and this function also belongs to
LipC .hs0/.

(iii) For s > s0 and any M > 0, the functions hf iT
W;l.v/ converge, as T ! 1, to

hf iW;l.v/ uniformly for v 2 B.M; hs/.
(iv) The convergence is uniform for f 2 LipC .hs0/ with a fixed function C .

Proof. (i) It is obvious since the transformations˚
 are isometries of hs0 .
(ii) To prove this, consider the restriction of f to B.M; hs0 /, for any fixed M > 0.

Let us take some v 2 B.M; hs0/ and fix any � > 0. Below in this proof by O.v/,
O1.v/, etc, we denote various functions g.v/ D g.I; '/, defined for jvjs0 � M
and bounded by 1.

Let us choose any m D m.�;M; v;C / such that

C .M/ jv �˘mvjs0 � � :

Then jf .v/ � f .˘mv/j < �; and by (i)

ˇ̌hf iT
W;l.v/ � hf iT

W;l.˘
mv/

ˇ̌
< � ;

for every T > 0.
Let us set

Fm.Im; 'm/ D Fm.vm/ D f
�
vm
	
; 8 vm � .Im; 'm/ 2 C

m ;

where in the r.h.s. vm is regarded as the vector .vm; 0; : : : /. Clearly, the function
'm 7! Fm.Im; 'm/ is Lipschitz-continuous on T

m. So its Fejer polynomials

�K.F
m/ D

X
k2Zm; jkj1�K

aK
k eik�.'m/; K � 1 ;
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where aK
k D aK

k .m; I
m/, converges to Fm.Im; 'm/ uniformly on T

m. Moreover,
the rate of convergence depends only on its Lipschitzian norm and the dimension
m (see e.g. Theorem 1.20, Chap. XVII of [22]). Therefore, there exists K D
K.C ;M; �;m/ > 0 such that

Fm.Im; 'm/ D
X

k2Zm;jkj1�K

aK
k eik�'m C �O1.I

m; 'm/ : (18)

Now we define

F res
K .Im; 'm/ D

X
k2S.K/

aK
k eik�'m

; S.K/ D fk 2 Z
m W jkj1 � K;wl �

mX
jD1

kiwi D 0g:

Since

Fm
�
˚�Wmt.˘

mv/
	 D Fm.Im; 'm � Wt/ ;

then

heik�'miT
W;l D eik�'m

if k 2 S.K/ ;

ˇ̌
ˇheik�'miT

W;l

ˇ̌
ˇ � 2T�1

jwl � k � Wmj if jkj1 � K; k … S.K/ ;

where we regard eik�'m
as a function of v. Accordingly,

hf iT
W;l.v/ D hFm.Im; 'm/iT

W;l C �O2.v/

D F res
K .Im; 'm/C C.�;M;W; f ; I/T�1O3.v/C �O4.v/ :

So there exists NT D T.�;M;W; f ; I/ > 0 such that if T � NT , then

ˇ̌hf iT
W;l � F res

K .Im; 'm/
ˇ̌
< 2� ;

and for any T 0 � T 00 � NT , we have

ˇ̌hf iT0

W;l.v/ � hf iT00

W;l.v/
ˇ̌
< 4�:

This implies that the limit hf iW;l.v/ exists for every v 2 B.M; hs0/. Using (i) we
obtain that hf iW;l.�/ 2 LipC .hs0/.

(iii) This statement follows directly from (ii) since the family of functions
fhf iT

W;l.v/g is uniformly continuous on balls B.R; hs0/ by (i) and each ball
B.M; hs/, s > s0, is compact in hs0 .
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(iv) From the proof of (ii) we see that for any � > 0 and v 2 hs0 , there exists
T D T.W; �; v;C / such that if T 0 � T, then jhf iT0

W;l.v/ � hf iW;l.v/j � �. This
implies the assertion. ut

We now give some examples of the limits hf iW;l.

Example 1. If the vector W is non-resonant, i.e., non-trivial finite linear combi-
nations of wj’s with integer coefficients do not vanish (this property holds for
typical potentials V.x/, see [14]), then the set S.K/ reduces to one trivial resonance
el D .0; : : : ; 0; 1; 0; : : : 0/, where 1 stands on the l-th place (if m < l, then
S.K/ D ;). Let f .v/ be any finite polynomial of v. We write it in the formP

k;l2N1;jkj;jlj<1 fk;l.I/vk Nvl, where fk;l are polynomials of I and finite vectors k; l
are such that if kj ¤ 0, then lj D 0, and vice versa. Then hf iW;l D fel;I.I/vl.

Example 2. If f is a linear functional, f D P1
iD1 bivi, then for any l 2 N,

hf iW;l D
X

i2A 1
l

bivi; A 1
l D fi 2 N W wi � wl D 0g:

If f is polynomial of v, e.g. f D P
iCjCmDk ai;j;kvivjvk, then

hf iW;l D
X

.i;j;m/2A 3
l

ai;j;kvivjvk; A 3
l D f.i; j;m/ 2 N

3 W wl � wi � wj � wm D 0g:

We may also consider the averaging

hhf iiT
W.v/ D 1

T

Z T

0

f .˚�Wtv/ dt ; hhf iiW.v/ D lim
T!1hhf iiT

W.v/ : (19)

Lemma 2. Let f 2 LipC .hs0/. Then

(a) for the averaging hh�iiW hold natural analogies of all assertions of Lemma 1.
(b) The function hhf iiW commutes with the transformations ˚Wt, t 2 R.

Proof. To prove (a) we repeat for the averaging hh�iiW the proof of Lemma 1,
replacing there wl by 0. Assertion (b) immediately follows from the formula for
hhf iiT

W in (19). ut

3 The Effective Equation

Let V.x/ 2 Cn.Td/. As in the introduction, AV is the operator ��C V and f
k; k 2
Ng are its eigenvalues.

The following result is well known, see Sect. 5.5.3 in [20].
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Lemma 3. If f .x/ W C ! C is C1, then the mapping

Mf W Hs ! Hs; u 7! f .u/;

is C1-smooth for s > d=2. Moreover, Mf 2 LipCs.H
s;Hs/ for a suitable

function Cs.

Consider the map P.v/ defined in (5). From Lemma 3, we have

P.�/ 2 LipCs.h
s; hs�1/; 8 s 2 .d=2C 1; n� ; (20)

for some Cs. We recall that � is the frequency vector of Eq. (2). For any T 2 R, we
denote

hPiT
�.v/ WD .hPkiT

�;k.v/; k 2 N/ D 1

T

Z T

0

˚�tP.˚��tv/dt ;

and

R.v/ D hPi�.v/ WD .hPki�;k.v/; k 2 N/ :

Example 3. If P is a diagonal operator, Pk.v/ D 	kvk for each k, where 	k’s are
complex numbers, then in view of Example 2, hPi� D P.

We have the following lemma:

Lemma 4. (i) For every d=2 < s1 < s � 1 � n � 1 and M > 0, we have

ˇ̌
ˇhPiT

�.v/� R.v/
ˇ̌
ˇ
s1

! 0; as T ! 1; (21)

uniformly for v 2 B.M; hs/;
(ii) R.�/ 2 LipCs.h

s; hs�1/, s 2 .d=2C 1; n�;
(iii) R commutes with ˚�t , for each t 2 R.

Proof. (i) There exists M1 > 0, independent from v and T, such that

ˇ̌hPiT
�.v/� R.v/

ˇ̌
s�1 � M1; v 2 B.M; hs/:

So for any � > 0 we can find m� > 0 such that

ˇ̌
ˇ.Id �˘m� /

�hPiT
�.v/ � R.v/

�ˇ̌ˇ
s1
< �=2; v 2 B.M; hs/:

By Lemma 1(iii), there exists T� such that for T > T�,

ˇ̌
ˇ˘m�

�hPiT
�.v/� R.v/

�ˇ̌ˇ
s1
< �=2; v 2 B.M; hs/:
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Therefore if T > T�, then

ˇ̌hPiT
�.v/� R.v/

ˇ̌
s1
< �; v 2 B.M; hs/:

This implies the first assertion.
(ii) Using the fact that the linear maps ˚�t, t 2 R are isometries in hs, we obtain

that for T 2 R and v0; v00 2 B.M; hs/,

ˇ̌hPiT
�.v

0/ � hPiT
�.v

00/
ˇ̌
s�1 � Cs.M/

ˇ̌
v0 � v00 ˇ̌

s
:

Therefore

ˇ̌
R.v0/ � R.v00/

ˇ̌
s�1 � Cs.M/

ˇ̌
v0 � v00 ˇ̌

s
; v0; v00 2 B.M; hs/:

This estimate, the convergence (21) and the Fatou lemma imply that R is a
locally Lipschitz mapping with a required estimate for the Lipschitz constant.
A bound on its norm may be obtained in a similar way, so the second assertion
follows.

(iii) We easily verify that

ˇ̌hPiTCt
� .v/ �˚�thPiT

�.˚��tv/
ˇ̌
s�1 � 2Cs.jvjs/

jtj
jT C tj :

Passing to the limit as T ! 1 we recover (iii).

Corollary 1. For d=2 < s1 < s � 1 � n � 1 and any v 2 hs,

hPiT
�.v/ D R.v/C κ.TI v/;

where jκ.TI v/js1 � κ.TI jvjs/. Here for each T, κ.TI r/ is an increasing function
of r, and for each r � 0, κ.TI r/ ! 0 as T ! 1.

Example 4. In the completely resonant case, when

L1 D � � � D Ld D 2� and V D 0 ; (22)

the frequency vector is � D .jkj2;k 2 Z
d/. If P.u/ D ijuj2u, then

P.v/ D .Pk.v/;k 2 Z
d/; v D .vk;k 2 Z

d/; u D
X
k2Zd

vkeik�x;

with

Pk.v/ D
X

k1�k2Ck3Dk

ivk1 Nvk2vk3 ; k 2 Z
d :
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Therefore hPi� D .hPki�;k;k 2 Z
d/, with

hPki�;k D
X

.k1;k2;k3/2Res.k/

ivk1 Nvk2vk;

where Res.k/ D f.k1;k2;k3/ W jk1j2 � jk2j2 C jk3j2 � jkj2 D 0g.

Lemma 4 implies that the effective equation (11) is a quasi-linear heat equation.
So it is locally well-posed in the spaces hs, s 2 .d=2C 1; n�.

4 Proof of the Averaging Theorem

In this section we will prove Theorem 1. We recall that d=2 C 1 < s� � n and
s1 < s�, where s� is the number from Assumption A and n is a sufficiently big
integer (the smoothness of the potential V.x/). Without loss of generality we assume
that

s1 > d=2C 1 and s1 > s� � 2 ;

and that Assumption A holds with T D 1.
Let u".�; x/ be the solution of Eq. (2) from Theorem 1,

ku".0; x/ks�
� M0 ;

and v".�/ D �.u".�; �//: Then there exists M1 � M0 such that

v".�/ 2 B.M1; h
s�/; � 2 Œ0; 1� ;

for each " > 0. The constants in estimates below in this section may depend on M1,
and this dependence may be non-indicated.

Let

a".�/ D ˚�"�1�.v
".�//

be the interaction representation of v".�/ (see Introduction),

a".0/ D v.0/ DW v0 :
For every v D .vk; k 2 N/, denote

OAV.v/ D .
kvk; k 2 N/ D �.AVu/ ; u D ��1v :

Then

Pa".�/ D �� OAV.a
".�//C Y

�
a".�/; "�1�

	
; (23)
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where

Y
�
a; t
	 D ˚t�

�
P
�
˚�t�.a/

	�
: (24)

Let r 2 .d=2C 1; n�. Since the operators ˚t�, t 2 R, define isometries of hr, then,
in view of (20), for any t 2 R we have

Y.�; t/ 2 LipCr.H
r;Hr�1/ : (25)

For any s � 0 we denote by Xs the space

Xs D C.Œ0;T�; hs/ ;

given the supremum-norm. Then

ja"jXs� � M1; jPa"jXs��2 � C.M1/ : (26)

Since for 0 � 	 � 1 we have

jvj	.s��2/C.1�	/s�
� jvj	s��2jvj1�	s�

by the interpolation inequality, then in view of (26) for any s� � 2 < Ns < s� and
0 � �1 � �2 � 1 we have

ja".�2/ � a".�1/jNs � C.M1/
	 .�2 � �1/	 .2M1/

1�	 ; (27)

for a suitable 	 D 	.Ns; s�/ > 0, uniformly in ".
Denote

Y .v; t/ D Y.v; t/ � R.v/:

Then by Lemma 4 relation (25) also holds for the map v 7! Y .v; t/, for any t.
The following lemma is the main step of the proof.

Lemma 5. For every s0 > d=2C 1, s� � 2 < s0 < s� we have

ˇ̌
ˇ
Z Q�

0

Y .a".�/; "�1�/d�
ˇ̌
ˇ
s0

� ı.";M1/; 8 Q� 2 Œ0; 1�; (28)

where ı.";M1/ ! 0 as " ! 0.

Proof. Below in this proof we write a".�/ as a.�/. We divide the time interval Œ0; 1�
into subintervals Œbl�1; bl�, l D 1; � � � ;N of length L D "1=2:

bk D Lk for k D 0; : : : ;N � 1; bN D 1 ; bN � bN�1 � L ;

where N � 1=L C 1 � 2=L.
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In virtue of (25) and Lemma 4(ii),

ˇ̌
ˇ
Z bN

bN�1

Y .a.�/; "�1�/ d�
ˇ̌
ˇ
s0

� LC.s0; s;M1/ : (29)

Similar, if N� 2 Œbr; brC1/ for some 0 � r < N, then j R N�
br
Y d� js0 is bounded by the

r.h.s. of (29).
Now we estimate the integral of Y over any segment Œbl; blC1�, where l � N � 2.

To do this we write it as

Z blC1

bl

Y .a.�/; "�1�/ d� D
Z blC1

bl

�
Y.a.bl/; "

�1�/ � R.a.bl//
	

d�

C
Z blC1

bl

�
Y.a.�/; "�1�/ � Y.a.bl/; "

�1�/
	

d�

C
Z blC1

bl

�
R.a.bl//� R.a.�//

	
d� :

In view of Lemma 4 and (27) the hs0

-norm of the second and third terms in the r.h.s.
are bounded by C.s0; s;M1/L1C	 : Since

"

Z "�1L

0

Y.a.bl/; "
�1bl C s/ ds

D L˚�"�1bl

1

L�1

Z L�1

0

˚�sP.˚��s.˚��"�1bl
a.bl//

	
ds ;

then using Corollary 1 and Lemma 4(iii) we see that this equals LR.a.bl// C
κ1.L�1/; where jκ1.L�1/js0 � κ.L�1I M1/ and κ ! 0 when L�1 ! 1. We have
arrived at the estimate

ˇ̌
ˇ
Z blC1

bl

Y .a.�/; "�1�/ d�
ˇ̌
ˇ
s0

� L
�
κ.L�1I M1/C CL	

�
: (30)

Since N � 2=L and L D "1=2, then by (30) and (29) the l.h.s. of (28) is bounded by
2κ."�1=2I M1/C C"	=2 C C"1=2: It implies the assertion of the lemma. ut

Consider the effective equation (11). By Lemma 4 this is the linear parabolic
equation Pu � �u C V.x/u D 0, written in the v-variables, perturbed by a locally
Lipschitz operator of order one. So its solution Qa.�/ such that Qa.0/ D v0 exists (at
least) locally in time. Denote by QT the stopping time

QT D minf� 2 Œ0; 1� W jQa.�/js�
� M1 C 1g ;

where, by definition, min ; D 1.
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Now consider the family of curves a".�/ 2 Xs� . In view of (26), (27) and the
Arzelà-Ascoli theorem (e.g. see in [11]) this family is pre-compact in each space
Xs1 , s1 < s�. Hence, for any sequence "0

j ! 0 there exists a subsequence "j ! 0

such that

a"j.�/ �!
"j!0

a0.�/ in Xs1 :

By this convergence, (26) and the Fatou lemma,

ja0.�/js� � M1 8 0 � � � 1 : (31)

In view of Lemma 5, the curve a0.�/ is a mild solution of Eq. (11) in the space
hs1 , i.e,

a.�/� a.0/ D
Z �

0

� � � OAVa.s/C R.a.s// ds ; 8 0 � � � 1

(the equality holds in the space hs1�2). So a0.�/ D Qa.�/ for 0 � � � QT. In view
of (31) and the definition of the stopping time QT we see that QT D 1. That is, Qa 2 Xs�

and

a".�/ �! Qa.�/ in Xs1 ; (32)

where " D "j ! 0. Since the limit Qa does not depend on the sequence "j ! 0, then
the convergence holds as " ! 0.

Now we show that the convergence (32) holds uniformly for v0 2 B.M0; hs�/.
Assume the opposite. Then there exists ı > 0, sequences �j 2 Œ0; 1�; aj

0 2
B.M0; hs�/, and "j ! 0 such that if a"j.�/ is a solution of (23) with initial data
aj
0 and " D "j, and Qaj.�/ is a solution of the effective equation (11) with the same

initial data, then

ja"j.�j/� Qaj.�j/js1 � ı: (33)

Using again the Arzelà-Ascoli theorem and (27), replacing the subsequence
"j ! 0 by a suitable subsequence, we have that

�j ! �0 2 Œ0; 1�;
aj
0 ! a0 in hs1 ; where a0 2 hs� ;

a"j.�/ ! a0.�/ in Xs1 ;

Qaj.�/ ! Qa0.�/ in Xs1 :
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Clearly, Qa0.�/ is a solution of Eq. (11) with the initial datum a0. Due to Lemma 5,
a0.�/ is a mild solution of Eq. (11) with a0.0/ D a0. Hence we have a0.�/ D Qa0.�/;
� 2 Œ0; 1�, particularly, a0.�0/ D Qa0.�0/. This contradicts with (33), so the
convergence (32) is uniform in v0 2 B.M0; hs�/.

Since

jI.a/� I.Qa/j�s1 � 4ja � Qajs1.jajs1 C jQajs1/;

then the convergence (32) implies the statement of Theorem 1.

5 The Randomly Forced Case

We study here the effect of the addition a random forcing to Eq. (1). Namely, we
consider equation (13). We suppose that

Bs D 2

1X
jD1


2s
j b2j < 1 for s D s� 2 .d=2C 1; n�,

and impose a restriction on the nonlinearity P by assuming that there exists NN 2 N

and for each s 2 .d=2C 1; n� there exists Cs such that

kP.ru; u/ks�1 � Cs.1C kuks/
NN ; 8 u 2 Hs (34)

(this assumption holds e.g. if P.ru; u/ is a polynomial in .u;ru/).
Passing to the slow time � D "t, Eq. (13) becomes (cf. (2))

Pu C "�1i.��C V.x//u D ��u C P.ru; u/C d

d�

1X
kD1

bkˇkek.x/; u D u.�; x/;

(35)
which, in the v-variables, takes the form (cf. (4))

dvk C "�1i
kvk d� D .��
kvk C Pk.v// d� C
1X

lD1
�klbldˇl ; k 2 N ; (36)

where we have denoted by f�kl; k; l � 1g the matrix of the operator � (see (3)) with
respect to the basis fekg in H0 and f�kg in h0. We assume

Assumption A0. There exist s� 2 .d=2 C 1; n� and an "-independent T > 0 such
that for any u0 2 Hs� , Eq. (35) has a unique strong solution u.�; x/, 0 � � � T,
equal to u0 at � D 0. Furthermore, for each p there exists a C D Cp.ku0ks�

;Bs�
;T/

such that

E sup
0���T

ku.�/kp
s�

� C : (37)
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Remark 1. The Assumption A0 is not too restrictive. In particular, in [14] it is
verified for Eq. (13) if � > 0 and P.u/ D �u C zfp.juj2/u, where fp.r/ is a smooth
function, equal jrjp for jrj � 1, and =z � 0;<z � 0. The degree p is any real
number if d D 1; 2 and p < 2=.d � 2/ if d � 3.

Under this assumption, a result analogous to Theorem 1 holds. Namely, the lim-
iting behaviour of the action variables Ik (see (6)) is described by the stochastically
forced effective equation (cf. (11))

d Qak D .��
k Qak C Rk.Qa// d� C
1X

lD1
Bkldˇl ; k 2 N ; (38)

where we have defined fBkr; k; r � 1g as the principal square root of the real matrix

Akr D
� P

l b2l�kl�rl if 
k D 
r ;

0 else ;
(39)

which defines a nonnegative selfadjoint compact operator in h0. Note that since R is
locally Lipschitz by Lemma 4, then strong solutions for (38) exist and are unique till
the stopping time �K D inff� � 0 W jQa.�/js�

D Kg, where K is any positive number.
In the theorem below v".�/ denotes a solution of (36) with the initial value

v0 2 hs� .

Theorem 2. If Assumption A0 holds, there exists a unique strong solution Qa.�/, 0 �
� � T, of Eq. (38) such that Qa.0/ D v0 D �.u0/ 2 hs� , and

D .I.v".�/// * D .I.Qa.�/// as " ! 0 ;

in C.Œ0;T�; hs1
I /, for any s1 < s�.

In the theorem’s assertion and below the arrow * stands for the weak conver-
gence of measures. Let us assume further:

Assumption B0. (i) Equation (13) has a unique strong solution u.�/; u.0/ D u0 2
Hs� , defined for � � 0, and

E sup

���
C1

ku.�/kp
s�

� C for any 
 � 0 ; (40)

where C D C.ku0ks�

;Bs�
/.

(ii) Equation (38) has a unique stationary measure �0 and is mixing.

Remark 2. The assumption (i) is fulfilled, for example, for equations, discussed in
Remark 1. Assumption (ii) holds trivially if for a.e. realisation of the random force
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any two solutions of Eq. (38) converge exponentially fast.1 For less trivial examples,
corresponding to perturbations of linear systems with non-resonant or completely
resonant spectra, see [14, 15].

Assumption B0 (i) and the Bogolyubov-Krylov argument, applies for solutions,
starting from 0, imply that Eq. (13) has a stationary measure �", supported by the
space Hs� , and inheriting estimates (40).

Theorem 3. Let us suppose that Assumptions A0 and B0 hold. Then

lim
"!0

�" D �0 ; (41)

weakly in hs1 , for any s1 < s�. The measure �0 is invariant with respect to
transformations ˚t�, t 2 R. If, in addition, (13) is mixing and �" is its unique
stationary measure, then for any solution u".t/ of (13) with "-independent initial
data u0 2 Hs� , we have

lim
"!0

lim
t!1D .v".t// D �0 ;

where v".t/ D � .u".t//.

For examples of mixing Eq. (13) see [14] and references in that work. In
particular, (13) is mixing if P.u;ru/ D P.u/ is a smooth function such that all its
derivatives are bounded uniformly in u, cf. Remark 2.

For the case when the spectrum � is non-resonant (see Example 1) or is
completely resonant, i.e. (22) holds, the theorem was proved in [14, 15].

The proofs of Theorem 2 and 3 closely follow the arguments in [14–16]. Proof of
Theorem 3, in addition, uses some technical ideas from [4] (see there Corollary 4.2).
The proofs are given, respectively, in Sects. 6 and 7.

6 Proof of Theorem 2

As in the proof of Theorem 1, let us assume, without loss of generality, that T D 1,
s1 > d=2C 1 and s1 > s� � 2 (recall that s1 < s� and s� 2 .d=2C 1; n�).

Following the suite of [15] (see also [16]) we pass once again to the a-variables,
defined in (8)). In view of (36), they satisfy the system (cf. (10))

dak D ���
kak C Yk.a; "
�1�/

	
d� C ei"�1
k�

X
l

�klbldˇl; k 2 N ; (42)

1This is fulfilled, for example, if (i) holds and P.u/ D �u CP0.u/, where the Lipschitz constant
of P0 is less than one.
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where Y is defined in (24). For any p we denote

Xp D C.Œ0; 1�; hp/ ; Xp
I D C.Œ0; 1�; hp

I / :

Let a" be a solution of (42) such that a".0/ D v0 D �.u0/ 2 hs� ; we will often
write a for a" to shorten notation. Denote the white noise in (42) as P�.t; x/ and denote
U1.�/ D Y.a.�/; "�1�/, U2.�/ D � OAVa.�/. Then

Pa � P� D U1 C U2 :

In view of (34), kU1ks��1 D jP.v/js��1 � C.1C ku.�/k NN
s�

/. So, by (37),

E
Z .�C� 0/^1

�

kU1ks��1 dt � C
Z .�C� 0/^1

�

EC.1C ku.t/k NN
s�

/ dt � C.ku0ks�

;Bs�
/� 0 ;

for any � 2 Œ0; 1� and � 0 > 0. Similar,

E
Z .�C� 0/^1

�

kU2ks��2 dt � �CE
Z .�C� 0/^1

�

kuks�

� �C.ku0ks�

;Bs�
/� 0 :

Hence, there exists 	 > 0 such that

E


.a � �/..� C � 0/ ^ 1/� .a � �/.�/

s1

� C.ku0ks�

;Bs�
/� 0	 ;

in virtue of the interpolation and Hölder inequalities (cf. (27)). It is classical that

Pfk�kC1=3.Œ0;1�;hs1 / � R3g ! 1 as R3 ! 1 :

In view of what was said, for any ı > 0 there is a set Q1
ı � Xs1 , formed by

equicontinuous functions, such that

Pfa" 2 Q1
ıg � 1 � ı ;

for each ". By (37),

Pfka"kXs� � Cı�1g � ı ;

for a suitable C, uniformly in ". Consider the set

Qı D ˚
a" 2 Q1

ı W kakXs� � Cı�1
 :
Then Pfa" 2 Qıg � 1 � 2ı, for each ". By this relation and the Arzelà-Ascoli
theorem (e.g., see [11], x8), the set of laws fD.a".�//; 0 < " � 1g, is tight in Xs1 .
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So by the Prokhorov theorem there is a sequence "l ! 0 and a Borel measure Q0

on Xs1 such that

D.a"l.�// * Q0 as "l ! 0 : (43)

Accordingly, due to (9), for actions of solutions v" we have the convergence

D .I .v"l.�/// * I ı Q0 as "l ! 0 ; (44)

in Xs1
I .

Theorem 2 follows then as a simple corollary from

Proposition 1. There exists a unique weak solution a.�/ of the effective equa-
tion (38) such that D.a/ D Q0, a.0/ D v0 a.s.; and the convergences (43) and (44)
hold as " ! 0.

Proof. The proof follows the Khasminski scheme (see [6, 12]), as expounded in
[15]. Namely, we show that the limiting measure Q0 is a martingale solution of the
limiting equation, which turns out to be exactly the Eq. (38). Since the equation has
a unique solution, then the convergences (43), (44) hold as " ! 0.

For � 2 Œ0; 1� consider the processes

N"l
k D a"l

k .�/�
Z �

0

���
ka"l
k .s/C Rk.a

"l.s//
	

ds ; k � 1

(cf. Eq. (38)). Due to (42) we write N"l
k as

N"l
k .�/ D QN"l

k .�/C N
"l

k .�/ ;

where QN"l
k .�/ D a"l.�/ � R �

0
.��
ka"l.s/ C Yk.a"l.s/; "�1

l s//ds is a Q0 martingale
and the disparity N

"l

k is

N
"l

k .�/ D
Z �

0

Yk.a
"l.s/; "�1

l s/ds

(as before, Y .a; t/ D Y.a; t/ � R.a/).
The key point is then a stochastic counterpart of Lemma 5, which is proved

below:

Lemma 6. For every k 2 N, EA"k ! 0 as " ! 0, where

A"k D max
0�Q��1

ˇ̌
ˇ̌
ˇ
Z Q�

0

Yk.a
".�/; "�1�/d�

ˇ̌
ˇ̌
ˇ :
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This lemma and the convergence (43) imply that the processes

Nk.�/ D ak.�/ �
Z �

0

.��
kak C Rk.a// ds ; k � 1 ;

are Q0 martingales, considered on the probability space .˝ D Xs1 ;F ;Q0/ (F is
the Borel sigma-algebra), given the natural filtration .F� ; 0 � � � 1/. For details
see [17], Proposition 6.3).

Consider then the diffusion matrix fAkr; k; r � 1g for the system (42), i.e.,

Akr D exp.i"�1�.
k � 
r//

1X
lD1

b2l�kl N�rl :

Clearly,
R Q�
0
Akrd� ! Akr Q� , as " ! 0, where A denotes the diffusion matrix for the

system (38) (cf. (39)). Similar to Lemma 6, we also find that

E max
0�Q��1

ˇ̌
ˇ̌
ˇ
Z Q�

0

Yk.a
".�/; "�1�/d�

ˇ̌
ˇ̌
ˇ
2

! 0 as " ! 0 :

Then, using the same argument as before, we see that the processes

Nk.�/Nr.�/ � Akr� D
�

QNk QNr �
Z �

0

Akrds

�

C
�

NkNr C Nk QNr C QNkNl �
Z �

0

.Akr � Akr/ ds

�

are Q0 martingales. That is, Q0 is a solution of the martingale problem with the
drift R and the diffusion A (see [21]), so the assertion follows. ut
Proof of Lemma 6. We adopt a convenient notation from our previous publications.
Namely, we denote by κ.r/ various functions of r such that κ ! 0 as r ! 1. We
write κ.rI M/ to indicate that κ.r/ depends on a parameter M. Besides for events Q
and O and a random variable f we write PO.Q/ D P.O \ Q/ and EO.f / D E.�O f /.

The constants below may depend on k, but this dependence is not indicated since
k is fixed through the proof. By M � 1 we denote a constant which will be specified
later. Denote by ˝M D ˝"

M the event

˝M D
(

sup
0���1

ja".�/js�

� M

)
:

Then, by (37),

P.˝c
M/ � κ.M/: (45)
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In view of Lemma 4(ii) and (34), for any t 2 Œ0; "�1� and any a 2 hs� the
difference Y D Y � R satisfies

jYk.a; t/j � jYk.a; t/j C jRk.a/j � jPk.v/j C jRk.a/j � C.1C jajs�

/
NN : (46)

Using this and (45) we get

E˝c
M
A"k �

Z 1

0

E˝c
M

jYk.a.�/; "
�1�/jd�

� C
�
P.˝c

M/
	1=2 Z 1

0

�
E.1C jajs�

/2
NN�1=2 d� � κ.M/ :

(47)

To estimate E˝MA
"
k, as in Lemma 5 we consider a partition of Œ0; 1� by the points

bn D nL; 0 � n � N � 1; bN�1 � 1 � L; bN D 1 ; L D "1=2 ;

N � 1=L. Let us denote

�l D
Z blC1

bl

Yk.a.�/; "
�1�/d� ; 0 � l � N � 1 :

Since for ! 2 ˝M and any � 0 < � 00 such that � 00 � � 0 � L, in view of (46) we haveˇ̌
ˇR � 00

� 0 Yk.a.�/; "�1�/d�
ˇ̌
ˇ � LC.M/, then

E˝MA
"
k � LC.M/C E˝M

N�1X
lD0

j�lj : (48)

Let us fix any Ns > d=2 C 1, s� � 2 < Ns < s�, sufficiently small 	 > 0, and
consider the event

Fl D
(

sup
bl���blC1

ja".�/ � a".bl/jNs � L	
)
:

By the equicontinuity of the processes fa".�/g on suitable events with arbitrarily
close to one "-independent probability (as shown above), the probability of P.Fl/

goes to zero with L, uniformly in l and ". Since j�lj � C.M/L for ! 2 ˝M and
each l, then

N�1X
lD0

ˇ̌
E˝M j�lj � E˝M nFl j�lj

ˇ̌ � C.M/L
N�1X
lD0

P˝M.Fl/ � C.M/κ.L�1/ ; (49)

and it remains to estimate
P

l E˝MnFl j�lj.
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We have

j�lj �
ˇ̌
ˇ̌Z blC1

bl

�
Yk.a.�/; "

�1�/ � Yk.a.bl/; "
�1�/

	
d�

ˇ̌
ˇ̌

C
ˇ̌
ˇ̌Z blC1

bl

�
Yk.a.bl/; "

�1�/
	

d�

ˇ̌
ˇ̌ DW � 1

l C � 2
l :

By (20) and Lemma 4(ii), in ˝M the following inequality hold:

ˇ̌
Yk.a.�/; "

�1�/ � Yk.a.bl/; "
�1�/

ˇ̌ � C.M/ ja.�/� a.bl/jNs :

So that, by the definition of Fl,

X
l

E˝M nFl�
1

l � L	C.M/ D κ."�1I M/ : (50)

It remains to estimate the expectation of
P
� 2

l . In view of (30) (with M1 D M)
we have

X
l

E˝MnFl�
2

l � NLκ1."
�1I M/ D κ."�1I M/: (51)

Now the inequalities (47)–(51) jointly imply that

EA"k �κ.M/C κ."�1I M/ :

Choosing first M large and then " small we make the r.h.s. arbitrarily small. This
proves the lemma.

Lemma 6 estimates integrals of the differences

ei"�1�
k Pk
�
˚�"�1�
k

.a".�/
	 � hPi�;k.a".�// :

Similar result holds if we replace the averaging h�i�;k by hh�ii� and the function Pk

by any Lipschitz function:

Lemma 7. Let f 2 Lip1.hs1/ DW Lip1 (i.e., f is a bounded Lipschitz function on
hs1). Then

(i) E
R 1
0

�
f .˚��"�1�a".�// � hhf ii�.a".�//

	
d� ! 0 as " ! 0 I

(ii) if in (i) f is replaced by f 
 D f ı˚
 , 
 2 T
1, then the rate of convergence does

not depend on 
 .

Proof. To get (i) we literally repeat the proof of Lemma 6, using Lemma 2 instead
of Lemma 1. The assertion (ii) follows from Lemma 2 and item (iv) of Lemma 1.

ut
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7 Proof of Theorem 3

Let v".�/; 0 � � � 1, be a stationary solution for Eq. (13) such that D.v".�// 
 �",
and let a".�/ D ˚"�1�� v

".�/ be its interaction representation. Since v inherits the a-
priori estimate (40) (with u0 D 0), then an analogy of the convergence (43) holds for
a suitable sequence "l ! 0. The argument from the proof of Proposition 1 applies
and imply that

D.a"l.�// * D.a0.�// in Xs1 as "l ! 0 ; (52)

where a0 is a weak solution of (38). We may also assume that

�"l * N�0 in hs1 ; (53)

for some measure N�0.
Let us take any f 2 Lip1.hs1/. Then

E
Z 1

0

f .v".�// d� D E
Z 1

0

f .˚�"�1��a".�// d� :

Applying to the second integral Lemma 7 we find that

Z 1

0

Ef .v".�// d� D
Z 1

0

Ehhf ii�.a".�// d� C κ."�1/ : (54)

Since the function hhf ii� is invariant with respect to transformations ˚�t, t 2 R

(see item b) of Lemma 2), then hhf ii�.a".�// D hhf ii�.v".�//. So both integrands
in (54) are independent from � , and

Ef .v".�// D Ehhf ii�.a".�//C κ."�1/ 8 � : (55)

Now let us take for f the function Qf D Qf"�1� D f ı ˚"�1�� (which also belongs to
Lip1.hs1/). Then

Ef .a".�// D EQf .v".�// D EhhQf ii�.a".�//C κ."�1/ D Ehhf ii�.a".�//C κ."�1/ ;

where κ may be chosen the same for all functions Qf in view of Lemma 7(i).
Comparing this with (55) and using (53) we find that

Ef .a"l.�// * hf ; N�0i as "l ! 0;

for each � . Therefore, in virtue of (52), D.a0.�// 
 N�0. So a0.�/ is a stationary
solution for (38), and N�0 is a stationary measure for this equation. Since the latter is
unique, N�0 
 �0, and (53) implies the convergence (41).
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Replacing in (55) f by Qft and using Lemma 2 b) we see that

hf ; ˚�t ı �"i D hQft; �"i D hf ; �"i C κ."�1/:

Passing to the limit as " ! 0 we get the claimed invariance of the measure �0.
Finally, the last assertion immediately follows from (41). �
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Appendix

Consider the CGL equation (14), where P W Cd.dC1/=2CdC1 � Td ! C is a C1-
smooth function. We write it in the v-variables and slow time � D "t:

Pvk C "�1i
kvk D Pk.v/; k 2 N;

where

P.v/ WD .Pk.v/; k 2 N/ D �.P.r2u;ru; u; x//; u D ��1v;

and introduce the effective equation

PQa D hPi�.Qa/: (56)

By Lemma 3 P defines smooth locally Lipschitz mappings hs ! hs�2 for s >
2 C d=2. So by a version of Lemma 4, hPi� 2 Liploc.hsI hs�2/ for s > 2 C d=2.
Assume that

Assumption E. There exists s0 2 .d=2; n� such that the effective equation (56) is
locally well posed in the Hilbert spaces hs, with s 2 Œs0; n� \ N.

Let u".t; x/ be a solution of Eq. (14) with initial datum u0 2 Hs, v".�/ D
�.u."�1�; x//, and Qa.�/ be a solution of Eq. (56) with initial datum �.u0/. Then
we have the following result:

Theorem 4. If Assumptions A and E hold and s > maxfs0 C 2; d=2C 4g, then the
solution of the effective equation exists for 0 � � � T, and for any s1 < s we have

I.v".�// ���!
"!0

I.Qa.�// in C.Œ0;T�; hs1
I /:

The proof of this theorem follows that of Theorem 1, with slight modifications.
Cf. [8], where the result is proven for the non-resonant case.
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Partial Differential Equations with Random
Noise in Inflationary Cosmology

Robert H. Brandenberger

Abstract Random noise arises in many physical problems in which the observer is
not tracking the full system. A case in point is inflationary cosmology, the current
paradigm for describing the very early universe, where one is often interested only
in the time-dependence of a subsystem. In inflationary cosmology it is assumed that
a slowly rolling scalar field leads to an exponential increase in the size of space.
At the end of this phase, the scalar field begins to oscillate and transfers its energy
to regular matter. This transfer typically involves a parametric resonance instability.
This article reviews work which the author has done in collaboration with Walter
Craig studying the role which random noise can play in the parametric resonance
instability of matter fields in the presence of the oscillatory inflation field. We find
that the particular idealized form of the noise studied here renders the instability
more effective. As a corollary, we obtain a new proof of finiteness of the localization
length in the theory of Anderson localization.

1 Background

This article reviews work done in collaboration with Walter Craig applying rigorous
results from the theory of random matrix differential equations to problems
motivated by early Universe cosmology [1, 2]. As a corollary, we obtain a new
proof of the positivity of the Lyapunov exponent, corresponding to the finiteness of
the localization length in the theory of Anderson localization [3].

Over the past two decades, cosmology has developed into a data-driven field.
Thanks to new telescopes we are obtaining high precision data about the structure of
the universe on large scales. Optical telescopes are probing the distribution of stellar
matter to greater depths, microwave telescopes have allowed us to make detailed
maps of anisotropies in the cosmic microwave background radiation at fractions of
10�5 of the mean temperature. In the coming years microwave telescopes outfitted
with polarimeters will allow us to produce polarization maps of the microwave

R.H. Brandenberger (�)
Physics Department, McGill University, Montreal, QC, Canada H3A 2T8
e-mail: rhb@physics.mcgill.ca

© Springer Science+Business Media New York 2015
P. Guyenne et al. (eds.), Hamiltonian Partial Differential Equations
and Applications, Fields Institute Communications 75,
DOI 10.1007/978-1-4939-2950-4_12

351

mailto:rhb@physics.mcgill.ca


352 R.H. Brandenberger

background, and prototype telescopes are being developed which will allow us to
measure the three-dimensional distribution of all baryonic matter (not just the stellar
component): this is by measuring the redshifted 21 cm radiation.

The data from optical telescopes yield three dimensional maps of the density
distribution of stellar matter in space. This data can be quantified by taking a Fourier
transform of the data and determining the density power spectrum, the square of the
amplitude of the Fourier modes, as a function of wavenumber k. Similarly, the sky
maps of the temperature of the cosmic microwave background can be quantified
by expanding the maps in spherical harmonics and determining the square of the
amplitudes of the coefficients as a function of the angular quantum number l. One
of the goals of modern cosmology is to find a causal mechanism which can explain
the origin of these temperature and density fluctuations.

The data are being interpreted in a theoretical framework in which space-time is a
four dimensional pseudo-Riemannian manifold M with a metric g�� with signature
.C;�;�;�/, and evolves in the presence of matter as determined by the Einstein
field equations

G�� D 8�GT�� ; (1)

where G�� is the Einstein tensor constructed from the metric and its first and second
derivatives, G is Newton’s gravitational constant, and T�� is the energy-momentum
tensor of matter.

In physics, it is believed that all fundamental equations of motion follow from
an action principle. The physical trajectories extremize the action when considering
fluctuations of the fields. The total action for space-time and matter is

S D
Z

d4x
p�g

� R

8�G
C Lm.'i/

�
; (2)

where 'i are matter fields (functions of space-time which represent matter), LM is
the Lagrangian for the matter fields (which is obtained by covariantizing the matter
action in Special Relativity), g is the determinant of the metric tensor, and R is
the Ricci scalar. For simplicity, cosmologists usually consider scalar matter fields
(and not the fermionic and gauge fields which represent most of the matter particles
which are known to exist in Nature—the only scalar field known to exist is the Higgs
field).

The gravitational field Equations (1) follow from varying the joint gravitational
and matter action S with respect to the metric, and the equations for matter follow
from varying S with respect to each of the matter fields, leading to

D2
g .'i/ D � @V

@'i
; (3)

where D2
g is the covariant d’Alembertian operator in the metric g, and V.'/ is the

total potential energy density of the matter fields. We have assumed above that the
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kinetic terms of the matter fields are independent of each other and of canonical
form (the reader not familiar with this physics jargon can simply take (3) to define
what the form of the matter Lagrangian is).

Cosmologists are lucky since observations show that the metric of space-time
is to a first order homogeneous and isotropic on large length scales, and hence
describable by the metric

ds2 D dt2 � a.t/2
�
dx2 C dy2 C dz2

	
: (4)

In the above, t is physical time, and x; y; and z are Cartesian coordinates on the
three-dimensional constant time hypersurfaces. For simplicity (and because current
observations show that this is an excellent approximation) we have assumed that
the spatial hypersurfaces are spatially flat as opposed to positively curved three
spheres or negatively curved hyperspheres (the three possibilities for the spatial
hypersurfaces consistent with homogeneity and isotropy).

The function a.t/ is called the “cosmic scale factor”. In the presence of matter,
space-time cannot be static. In the absence of external forces, matter follows
geodesics, and matter initially at rest remains at constant values of x; y; and z. Hence,
these coordinates are called “comoving”. The function a.t/ thus represents the
spatial radius of a ball of matter locally at rest. Currently, the Universe is expanding
and hence a.t/ is an increasing function of time. The Einstein equation (1) yield the
following equations for the scale factor:

H2 D 8�G

3
� ; (5)

P� D �3H.�C p/ ; (6)

where � and p are the energy density and pressure density of matter, respectively,
and

H.t/ 
 Pa
a

(7)

is the Hubble expansion rate.
In Standard Big Bang cosmology matter is given as a superposition of pressure-

less “cold matter” with p D 0 and relativistic radiation with p D �=3. At late times,
the cold matter dominates and it then follows from (5) and (6) that

a.t/ � � t

t0

	2=3
; (8)

where t0 is the normalization time (often taken to be the present time). With and
without radiation, Standard Big Bang cosmology suffers from a singularity at t D 0.
At that time, the curvature of space-time as well as temperature and density of matter
blow up. This is clearly unphysical: no physical detector can ever measure an infinite
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t

xc
dc

t0

teq

0

H-1 (t)

Fig. 1 Space-time sketch depicting the “structure formation problem” of Standard Big Bang
cosmology. The vertical axis is time, the horizontal one denotes comoving spatial coordinates.
The solid vertical line denotes the wavelength of a mode for which fluctuations are observed,
the diagonal curve through the origin is the cosmological horizon which denotes the limit of causal
influence. As depicted, at early times (in particular at the time teq when structures can start to grow)
the wavelength of the mode is larger than the horizon and hence no causal structure formation
scenario is possible

result, and in addition the assumption that matter can be treated as an ideal classical
fluid breaks down at the high energy densities when quantum and particle physics
effects become important.

In addition, Standard Big Bang cosmology cannot explain the observed homo-
geneity and isotropy of the universe, and it cannot provide a causal mechanism
for the generation of the structure in the universe which current data reveal. The
last point is illustrated in the space-time sketch of Fig. 1. The vertical axis is time,
the horizontal axis gives the comoving dimension of space. The region of causal
influence of a point at the initial time is bounded by the “horizon”, the forward light
cone of the initial point. In Standard Big Bang cosmology the horizon increases as
t. In contrast, the physical length of a particular structure in the universe (which is
not gravitationally bound) grows in proportion to a.t/ which in Standard cosmology
grows much more slowly than t. Hence, if we trace back the wavelength 
.t/ of
structures seen at the present time on large cosmological scales, we see that 
.t/ > t
at early times. Hence, it is impossible to explain the origin of the seeds which
develop into the structures observed today in a causal way (since the seeds have
to be present in the very early universe). These problems of Standard Big Bang
cosmology motivated the development of the “Inflationary Universe” scenario.
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2 The Inflationary Universe

The idea behind the Inflationary Universe scenario is very simple [4]: it is postulated
that there is an epoch in the very early stage of cosmology during which the scale
factor expands exponentially, i.e.

a.t/ � eHt ; (9)

where here H is a constant. This period lasts from some initial time ti to a final
moment tR (see Fig. 2).

In inflationary cosmology the time evolution of the horizon and of 
.t/ are
modified compared to what happens in Standard Cosmology: the horizon expands
exponentially in the interval between ti and tR, and so does 
.t/. In contrast, the
Hubble radius lH.t/ defined as the inverse Hubble expansion rate

lH.t/ D H�1.t/ (10)

is constant. Provided that the period of inflation is sufficiently long, then the horizon
will at all times be larger than 
.t/ for any wavelength which can currently be
observed (see Fig. 3). Thus, there is no causality problem to have homogeneity
and isotropy on scales currently observed. As follows from the study of linearized
fluctuations about the background (4), the Hubble radius is the upper limit on the
length scales on which fluctuations can be created. From Fig. 3 it can be seen that in
inflationary cosmology perturbation modes originate with a length smaller than the
Hubble radius. Thus, it is possible that inflation could provide a causal mechanism
for the formation of the structures which are currently observed. In fact, it turns out
the quantum vacuum fluctuations in the exponentially expanding phase yield such
a mechanism [5], but this is not the focus of this article (see [6] for a review of this
topic).

In order to obtain inflationary expansion in the context of Einstein’s theory of
space and time, it follows from Eqs. (5) and (6) that a form of matter with

p D �� (11)

Fig. 2 Time line of inflationary cosmology. The period of inflation begins at the time ti and ends
at tR



356 R.H. Brandenberger

Fig. 3 Space-time sketch of inflationary cosmology. The vertical axis denotes time, the horizontal
axis is physical distance. During the period of inflation, the horizon expands exponentially.
Similarly, the physical wavelength of a perturbation mode (the curve denoted by k) grows
exponentially, and it is smaller than the Hubble radius at the beginning of the period of inflation,
provided the period of inflation lasts sufficiently long

is required. No such equation of state can be obtained using classical fluids, nor can
it be obtained from fields representing the usual fermionic and gauge degrees of
matter, at least in the context of renormalizable matter theories. Hence, a scalar field
is required to obtain inflation. Even with scalar fields, it is not easy to obtain inflation
since we must ensure that the potential energy density dominates over kinetic and
spatial gradient energies over a long period of time. This follows from the following
expressions for the energy density and pressure of scalar field matter

� D 1

2
. P'/2 C 1

2
.r'/2 C V.'/ ; (12)

p D 1

2
. P'/2 � 1

6
.r'/2 � V.'/ : (13)

A typical potential for a scalar field which can lead to inflation is [7]

V.'/ D 1

2
m2'2 : (14)

The equation of motion for ' which follows from (3) is
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R' C 3H P' � r2

a2
' D �V 0.'/ ; (15)

where the prime indicates the derivative with respect to '. Inflation can arise if '
is slowly rolling, i.e. R' � H P' and P'2 � V.'/. Slow rolling is possible for field
values j'j > mpl, where mpl is the Planck mass which is given by

m2
pl D �8�

3
G
	�1

: (16)

The slow roll trajectory is given by

'.t/ D ��2
9

	1=2
mmplt ; (17)

and it is in fact a local attractor in initial condition space for large field values [8].
Once j'j drops below mpl, the slow-roll approximation breaks down, the

inflationary period ends, and ' begins to oscillate about the minimum of its potential
at ' D 0. The amplitude of the oscillations is damped by the expansion of space,
i.e. by the second term on the left hand side of (15).

3 The Reheating Challenge

The field ' which leads to inflation cannot be any of the fields whose particles we
have observed (except possibly the Higgs field if the latter is non-minimally coupled
to gravity [9]). Any regular matter (matter which is not ') which might have been
present at the beginning of the period of inflation is exponentially diluted during
inflation. Thus, at the end of inflation we have a state in which no regular matter is
present (the regular matter fields are in their vacuum state), and all energy is locked
up in the ' field. Thus, to make inflation into a viable model of the early universe, a
mechanism is needed to convert the energy density in ' at the end of inflation into
Standard Model particles.

As was discovered in [10, 11] and worked out later in more detail in [12–14]
(see [15] for a recent review) the initial energy transfer proceeds via a parametric
resonance instability which is described in more generality by Floquet theory. Let
us represent regular matter by a scalar field � which is weakly coupled to ' by an
interaction term of the form

LI D 1

2
g�2' ; (18)

where g is a constant which has dimensions of mass. The free action for� is assumed
to be that of a canonical massless scalar field with no bare potential (i.e. no self-
interactions). In this case, the equation of motion for � becomes



358 R.H. Brandenberger

R�C 3H P�� �r2

a2
C g'

	
� D 0 : (19)

Since this is a linear differential equation, each Fourier mode �k of � will evolve
independently according to

R�k C 3H P�k C � k2

a2
� g'

	
�k D 0 : (20)

After the end of the period of inflation, ' undergoes damped oscillations. This leads
to a periodic variation of the mass term in (20). This, in turn, leads to a resonant
instability and to energy transfer from ' to �.

Let us for a moment neglect the expansion of space. In this case H D 0 and
a D 1 and then the basic matter equation (20) becomes

R�k C �
k2 � gA cos.!t/

	
�k D 0 ; (21)

where A is the amplitude of the oscillations of ' (constant if the expansion of
space is neglected), and ! is the frequency of the oscillations (which equals m
in our case). Readers will recognize this equation as the Mathieu equation [16],
an equation which has exponentially growing solutions in resonance bands for k
which are centered around half integer multiples of !. Because of this instability,
there will be conversion of energy between the ' field driving the resonance and the
matter fields, as first pointed out in [10]. This instability was later given the name
“preheating” [12]. Since the instability is exponential, we expect that the time scale
of the energy conversion is small compared to the expansion time H�1, and that
hence the approximation of neglecting the expansion of space is self-consistent.

As discussed in [12–14], the expansion of space can be included in an elegant
way. In terms of a rescaled field Xk D a3=2�k, the equation of motion (20) becomes
an equation of the form

RXk C˝2
k .t/Xk D 0 ; (22)

with an effective frequency ˝ which contains a periodically oscillating term. An
exponential instability persists in this setup, and this justifies the simplified approach
which we focus on in this article, where we neglect the expansion of space. In the
following, we will extract the periodic term from the effective frequency, i.e.

˝2
k .t/ D !2k C p.!t/ : (23)

Our starting equation will be

R�k C �
!2k C p.!t/

	
�k D 0 ; (24)



Partial Differential Equations with Random Noise in Inflationary Cosmology 359

where !2k generalizes the previous setup to the case in which the � field has a non-
vanishing mass m�

!2k D k2 C m2
� ; (25)

and p is a function with period 2� . Let us denote the amplitude of p by P.
Previous work (see [15] for a review) has shown that if P � !2 there is “narrow-
band resonance” (only k modes within narrow resonance bands experience the
instability), whereas if P � !2 then there is “broad-band resonance” in which all
modes with k � ! undergo exponential instability. In inflationary universe modes
with broad-band resonance the reheating process is very rapid on Hubble time scale.

The Mathieu equation (24) is a special case of a Floquet type equation. According
to Floquet theory [16, 17], the solutions of (24) scale as

�k.t/ � e�k tCi˛kt ; (26)

where the constant�k Ci˛k is called the Floquet exponent, and the real part of it, �k,
is the Lyapunov exponent. The constant ˛k is the rotation number of the solution,
which in the context of the theory of Schrödinger operators is the “integrated density
of states”.

The above setup is, however, too idealized for the purposes of real cosmology.
The field ' which yields the inflationary expansion and the field � are only two
of many fields. All of them are excited in the early universe, and they are directly
or indirectly coupled to �, and they will hence give correction terms to the basic
equation (24). The extra fields are called the “environment” in which the system
under consideration lives. The environment is typically describable by random
noise, which is uncorrelated in time with the time-dependence of '.t/. We will now
consider an idealized equation which includes effects of the noise:

R�C ��r2 C p.!t/C q.x; t/
	
� D 0 ; (27)

where q.x; t/ is a stochastic variable whose time-dependence is uncorrelated with
that of '.t/.

4 Homogeneous Noise

Our basic equation (27) is a second order partial differential equation with random
coefficients. In phase space, we obtain a random matrix equation which is first order
in time.

To simplify the analysis, we will first consider the case of homogeneous noise,
i.e. we will assume that the noise function q depends only on time. In this case, each
Fourier mode of � continues to evolve independently and satisfies the equation
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R�k C �
k2 C p.!t/C q.t/

	
� D 0 : (28)

This dramatically reduces the mathematical complexity of the problem: we now
have a second order ordinary differential equation rather than a PDE.

To re-write this equation in the form of a random matrix equation we introduce
the transfer matrix ˚q.t; 0/ made up of two independent solutions �1.tI q/ and
�2.tI q/ of (28) and their time derivatives:

˚q.t; 0/ D
�
�1.tI q/ �2.tI q/
P�1.tI q/ P�2.tI q/

�
;

which satisfies the first order matrix equation

P̊q D M.q.t/; t/˚q ; (29)

where the matrix M is given by

M D
�

0 1

�.!2k C p C q/ 0

�
:

The transfer matrix describes the evolution of the system from initial time t D 0 to
final time t.

Let us denote the transfer matrix in the absence of noise by ˚0.t; 0/. According
to Floquet theory (see e.g [16, 17]) for mathematical background), this matrix takes
the form

˚0.t; 0/ D P0.t/e
Ct ; (30)

where P0.t/ is a periodic matrix function with period!�1, and C is a constant matrix
whose spectrum is

spec.C/ D f˙�.0/g ; (31)

where �.0/ is called the Lyapunov exponent in the absence of noise.
To study the effects of noise, we re-write the full transfer matrix by extracting

the transfer matrix in the absence of noise:

˚q.t; 0/ D ˚0.t; 0/�q.t; 0/ ; (32)

where the non-triviality of the reduced matrix �q describes the effects of the noise.
The reduced transfer matrix satisfies the equation

P�q D S�q ; (33)
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where S is the following matrix:

S D '�1
0

�
0 0

�q 0

�
'0 :

Let T be the period of the oscillation of �. We can now write the transfer matrix
as a product of transfer matrices over individual oscillation times:

˚q.NT; 0/ D
NY

jD1
˚q.jT; .j � 1/T/ ; (34)

where N is an integer.
Let us assume that the noise is uncorrelated in time when considered in different

oscillation periods. In addition, let us assume that the noise is drawn from some
probability measure on C .R/ such that q restricted to a period fills a neighborhood
of C .R/. In this case, the overall Lyapunov exponent is well defined and can be
extracted using the limit [1]

�.q/ D limN!1
1

NT
logjj

NY
jD1
˚q.JT; .j � 1/T/jj ; (35)

where k � k indicates a matrix norm. Note that the dependence on the particular
matrix norm vanishes in the limit N ! 1.

The key result of [1] is that noise which obeys the above-mentioned conditions
renders the instability stronger. More specifically, we have the following theorem:

Theorem 1. Given a random noise function q.t/ which is uncorrelated on the time
scale T and which is drawn from a probability measure on C .R/ such that q
restricted to a period fills a neighborhood of C .R/, then

�.q/ > �.0/ : (36)

Note the strict inequality in the above theorem. At first sight, this result could
be surprising since one might expect that noise could cut off an instability which
occurs in the absence of noise. However, a physical way to understand the result
of the above theorem is to realize that the noise we have introduced can only add
energy to the system rather than drain energy. Thus, it is consistent to find that noise
renders the resonant instability more effective.

The above theorem follows from the Furstenberg Theorem [18] on random
matrices. This theorem takes the following form:

Theorem 2. Given a probability distribution dA on � 2 SL.2n;R/ and defining
GA as the smallest subgroup of SL.2n;R/ containing the support of dA, then if GA

is not compact, and GA restricted to lines has no invariant measure, then for almost
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all independent random sequences f�jg1
jD1 distributed according to dA we have

limN!1
1

N
logjj

NY
jD1
�jjj D 
 > 0 : (37)

In addition, for almost all vectors v1 and v2 in R2n the exponent 
 can be extracted
via


 D limN!1
1

N
log < v1;

NY
jD1
�jv2 > : (38)

Note once again the strict inequality in the above theorem. Applied to our
reheating problem, then for any mode k, the above theorems in the case of n D 1

can be used, and they imply that, in the presence of noise, the Floquet exponent
increases for each value of k. In particular, if for a particular value of k there is
no instability in the absence of noise, an instability will develop in the presence of
noise.

The way that our result (36) follows1 from Furstenberg’s Theorem is the
following. Let us take v1 to be an eigenvector of ˚0.T; 0/t, the transverse of the
noiseless transfer matrix with eigenvalue exp.�.0/T/. Then,

�.q/ D limN!1
1

NT
log
�
< v1;˚q.NT; 0/v2 >

	

D limN!1
1

NT
log
�
e�0NT < v1;

NY
jD1
�j.jT; .j � 1/T/v2 >

	

D �.0/C 
 > �.0/ ; (39)

where in the last step we have used Furstenberg’s Theorem.
From the point of view of physics, the restriction to homogeneous noise is not

realistic. We must allow for inhomogeneous noise functions q.x; t/. This is the topic
we turn to in the following section.

1There is, in fact, a small hole in our proof of Theorem 1: in the case of values of k in the resonance
band of the noiseless system, the �j are not necessarily identically distributed on SL.2/ because of
the exponential factor which enters. We still obtain the rigorous result �.q/ > 0 for all values of
k, and numerical evidence confirms the validity of the statement �.q/ > �.0/ even for values of
k which are in the resonance band. The application of our result to Anderson localization involves
values of k which are in the stability bands of the noiseless system and is hence robust - I thank
Walter Craig for pointing out this issue.
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5 Inhomogeneous Noise

In the case of inhomogeneous noise we must return to the original partial differential
equation (27) with random noise. By going to phase space we obtain a first order
matrix operator differential equation

P̊q D M.q.t; �/; t/˚q (40)

for the fundamental solution matrix operator ˚q. The Floquet exponent for the
inhomogeneous system is defined by

�q D limN!1logjj˚q.NT; 0/jj ; (41)

where, as before, k � k indicates a norm on the matrix operator space, and T is the
period of the unperturbed system.

As in the previous section, we will separate out the effects of the noise by defining

˚q.t/ D ˚qD0.t/�q.t/ ; (42)

where ˚qD0 is the fundamental solution matrix in the absence of noise, and �q.t/
is the matrix which encodes the effects of the random noise. We wish to compare
the value of the Floquet exponent in the presence of noise with that of the noiseless
system.

To dramatically reduce the complexity of the problem we apply a trick which
is commonly used in physics. First, we introduce an infrared cutoff by replacing
the infinite spatial sections R3 by a three-dimensional torus of side length L. This
renders Fourier space discrete. Secondly, we impose an ultraviolet cutoff, namely
we eliminate high “energy” modes with k < �, where � is the cutoff scale. The
fundamental solution matrix of the cutoff problem is denoted by ˚L;�

q .t/, and the
corresponding Floquet exponents are also denoted by superscripts.

After the above steps, our problem can be written in Fourier space as a ordinary
matrix differential equation in R2n, where n is the number of Fourier modes which
are left. The first pair of coordinates corresponds to the phase space coordinates of
the first Fourier mode and so forth. In the absence of noise, the fundamental solution
matrix is block diagonal—there is no mixing between different Fourier modes. In
each block, ˚L;�

qD0 reduces to the transfer matrix of the corresponding Fourier mode
discussed in the previous section. The noise term �q introduces mixing between the
different blocks.

Since Furstenberg’s Theorem is valid on R2n, the results of the previous section
immediately apply and we have

�L;�
q > �

L;�
0 : (43)
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Note the fact that we have a strict inequality. Note also that the Floquet exponent in
the noiseless case is the maximum of the Floquet exponents over all values of k:

�
L;�
0 D maxk.�k;0/ ; (44)

where �k;0 is the Floquet exponent for Fourier mode k in the absence of noise.
Let us now consider removing the limits, i.e. taking L ! 1 and� ! 1. Since

in the absence of noise, there is no resonance for large k modes, the limit of the right
hand side of (43) is well defined (in fact, the right hand side is independent of the
cutoffs). For any finite value of the cutoffs, the result (43) is true. Hence, the result
persists in the limit when the cutoffs are taken to infinity. However, one loses the
strict inequality sign. Hence, assuming that the limit of the left hand side of (43) in
fact exists, we obtain our final result

�q � maxk.�k;0/ : (45)

We in fact expect a stronger result. Let us denote by �q.k/ the Floquet exponent
of the dynamical system restricted to the k’th Fourier mode (the restriction made at
the end of the evolution). Then we expect that due to the mode mixing the maximal
growth rate over all Fourier modes of the noiseless system will influence all Fourier
modes of the system with noise, and that hence

�q.k/ � maxk.�k;0/ : (46)

Although we have numerical evidence [2] for the validity of this result, we have not
been able to provide a proof.

6 New Proof of Anderson Localization

It is well known that there is a correspondence between classical time-dependent
problems and a time-independent Schrödinger equation. Let us start from the second
order differential equation (28) in the case of homogeneous noise. Let us now make
the following substitutions:

� !  

t ! x

!2k ! 2mE

p.!t/ ! �2mVp.!x/

q.t/ ! �2mVR.x/ : (47)

Then, the Eq. (28) becomes
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H D E ; (48)

with the operator H given by

H D � 1

2m

@2

@x2
C Vp.!x/C Vq.x/ ; (49)

which is the time-independent Schrödinger equation for the wavefunction  of an
electron of mass m in a periodic potential Vp.!x/ of period !�1 in the presence of a
random noise term VR in the potential.

In the absence of noise there are bands of values of E where there is no instability,
and where hence the wave functions are oscillatory. In condensed matter physics,
the corresponding solutions for  are known as Bloch wave states. Theorem 1 now
implies that if a random potential is added, then the solutions for become unstable.
This means that there is one exponentially growing mode and one exponentially
decaying mode. In quantum mechanics the growing mode is unphysical since it
is not normalizable. Hence, the decaying mode is the only physical mode. This
solution corresponds to a localized wave function. Thus, we have obtained a
new proof of the finiteness of the localization length in the theory of “Anderson
localization” [19] (for reviews see e.g. [20]).

Theorem 3. Consider the time-independent Schrödinger equation for a particle
in a periodic potential Vp.!x/, and consider a random noise contribution Vq.x/
which is uncorrelated on the length scale of the period of Vp and which is drawn
from a probability measure on C .R/ such that q restricted to a period fills a
neighborhood of C .R/. Then the presence of the noise localizes the wavefunction,
and the localization strength is exponential, i.e. the wavefunction q in the presence
of noise scales as

 q.x/ � exp.��.q/x/ ; (50)

where �.q/ is strictly positive on the basis of Theorem 1.

Note that our method can only be applied to study Anderson localization in one
spatial dimension.

7 Conclusions

We have applied rigorous results from random matrix theory to study the effects
of noise on reheating in inflationary cosmology. We have found that the type
of noise studied here, namely a random noise contribution to the mass term in
the Klein-Gordon equation for a scalar field representing Standard Model matter,
renders the parametric resonance instability of matter production in the presence
of an oscillating inflation field more effective. After the standard duality mapping
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between a time-dependent classical field theory problem and a time-independent
quantum mechanical Schrödinger problem, we obtain a new proof of the finiteness
of the localization length in the theory of “Anderson localization”, a famous result
in condensed matter physics. Our work is an example of how the same rigorous
mathematics result can find interesting applications to diverse physics problems.
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Local Isometric Immersions of Pseudo-Spherical
Surfaces and Evolution Equations

Nabil Kahouadji, Niky Kamran, and Keti Tenenblat

To Walter Craig, with friendship and admiration.

Abstract The class of differential equations describing pseudo-spherical surfaces,
first introduced by Chern and Tenenblat (Stud. Appl. Math. 74, 55–83, 1986), is
characterized by the property that to each solution of a differential equation within
the class, there corresponds a two-dimensional Riemannian metric of curvature
equal to �1. The class of differential equations describing pseudo-spherical surfaces
carries close ties to the property of complete integrability, as manifested by the
existence of infinite hierarchies of conservation laws and associated linear problems.
As such, it contains many important known examples of integrable equations, like
the sine-Gordon, Liouville and KdV equations. It also gives rise to many new
families of integrable equations. The question we address in this paper concerns the
local isometric immersion of pseudo-spherical surfaces in E3 from the perspective
of the differential equations that give rise to the metrics. Indeed, a classical theorem
in the differential geometry of surfaces states that any pseudo-spherical surface can
be locally isometrically immersed in E3. In the case of the sine-Gordon equation,
one can derive an expression for the second fundamental form of the immersion
that depends only on a jet of finite order of the solution of the pde. A natural
question is to know if this remarkable property extends to equations other than the
sine-Gordon equation within the class of differential equations describing pseudo-
spherical surfaces. In an earlier paper (Kahouadji et al., Second-order equations and
local isometric immersions of pseudo-spherical surfaces, 25 pp. [arXiv:1308.6545],
to appear in Comm. Analysis and Geometry (2015), we have shown that this
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property fails to hold for all other second order equations, except for those belonging
to a very special class of evolution equations. In the present paper, we consider a
class of evolution equations for u.x; t/ of order k � 3 describing pseudo-spherical
surfaces. We show that whenever an isometric immersion in E3 exists, depending
on a jet of finite order of u, then the coefficients of the second fundamental form are
universal, that is they are functions of the independent variables x and t only.

1 Introduction and Statement of Results

The notion of a partial differential equation describing pseudo-spherical surfaces
was defined and studied extensively in a paper by Chern and Tenenblat [3]. The
class of these equations is of particular interest because it enjoys a remarkable
set of integrability properties in the case when a parameter playing the role of
a spectral parameter is present in the 1-forms associated to the pseudo-spherical
structure. Indeed, one obtains in that case an infinite sequence of conservation
laws and an associated linear problem whose integrability condition is the given
partial differential equation.1 We begin by recalling some basic definitions. A partial
differential equation

�.t; x; u; ut; ux; : : : ; utlxk�l / D 0; (1)

is said to describe pseudo-spherical surfaces if there exist 1-forms

!i D fi1dx C fi2dt; 1 � i � 3; (2)

where the coefficients fij; 1 � i � 3; 1 � j � 2; are smooth functions of t; x; u
and finitely many derivatives of u, such that the structure equations for a surface of
Gaussian curvature equal to �1,

d!1 D !3 ^ !2; d!2 D !1 ^ !3; d!3 D !1 ^ !2 (3)

are satisfied if and only if u is a solution of (1) for which!1^!2 ¤ 0. In other words,
for every smooth solution of (1) such that !1 and !2 are linearly independent, we
obtain a Riemannian metric

ds2 D .!1/2 C .!2/2; (4)

1It is worth pointing out at this stage that the conservation laws arising from the geometry of
pseudo-spherical surfaces may be non-local. We refer to [18] and the references therein for an
explicit treatment of the relationship between the conservation laws obtained in [2] and the standard
series of conservation laws obtained via the classical Wahlquist-Estabrook construction. We also
refer to [9, 19, 20] for the study of the integrability properties of some specific families of equations
describing pseudo-spherical surfaces.
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of constant Gaussian curvature equal to �1, with !3 being the Levi-Civita connec-
tion 1-form. This condition is equivalent to the integrability condition for the linear
problem given by

dv1 D 1

2
.!2v1 C .!1 � !3/v2/; dv2 D 1

2
..!1 C !3/v1 � !2v2/: (5)

For the purposes of this paper, the motivating example of a partial differential
equation describing pseudo-spherical surfaces is the sine-Gordon equation

utx D sin u; (6)

for which a choice of 1-forms (2) satisfying the structure equations (3) is given by

!1 D 1

�
sin u dt; !2 D � dx C 1

�
cos u dt; !3 D ux dx; (7)

where � is a non-vanishing real parameter. This continuous parameter is closely
related to the parameter appearing in the classical Bäcklund transformation for the
sine-Gordon equation and is central to the existence of infinitely many conservation
laws for the sine-Gordon equation. It is noteworthy that there may be different
choices of 1-forms satisfying the structure equations (3) for a given differential
equation. For example, for the sine-Gordon equation (6), a choice different from
the one given in (7) is given by

!1 D cos
u

2
.dx C dt/; !2 D sin

u

2
.dx � dt/; !3 D ux

2
dx � ut

2
dt: (8)

Partial differential equations (1) which describe pseudo-spherical surfaces and for
which one of the components fij can be chosen to be a continuous parameter
will be said to describe � pseudo-spherical surfaces. One important feature of
the differential equations describing �-pseudo-spherical surfaces is that each such
differential equation is the integrability condition of a linear system of the form (5),
which may be used as a starting point in the inverse scattering method and lead to
solutions of the differential equation (see for example [1]).

It is therefore an interesting problem to characterize the class of differential
equations describing �-pseudo-spherical surfaces, and this is precisely what Chern
and Tenenblat [3] did for k-th order evolution equations

ut D F.u; ux; : : : ; uxk/: (9)

These results were extended to more general classes of differential equations in
[13–15], and [16]. One can also remove the assumption that f21 D � and perform
a complete characterization of evolution equations of the form (9) which describe
pseudo-spherical surfaces, as opposed to � pseudo-spherical surfaces [12]. It is also
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noteworthy that the classification results obtained by Chern and Tenenblat [3] for �-
pseudo-spherical surfaces were extended in [17] to differential equations of the form
ut D F.x; t; u; ux; : : : ; @u=@xk/. Finally we mention that the concept of a differential
equation that describes pseudo-spherical surfaces has a spherical counterpart [4],
where similar classification results have been obtained. Further developments can
be found in [2, 5–8, 10, 17, 18].

The property of a surface being pseudo-spherical is by definition intrinsic since it
only depends on its first fundamental form. It is only recently [11] that the problem
has been considered of locally isometrically immersing in E3 the pseudo-spherical
surfaces arising from the solutions of partial differential equations describing
pseudo-spherical surfaces. Let us first recall that any pseudo-spherical surface can
be locally isometrically immersed into three-dimensional Euclidean space E3. This
means that to any solution u of a partial differential equation (1) describing pseudo-
spherical surfaces (for which !1 ^ !2 ¤ 0), there corresponds a local isometric
immersion into E3 for the corresponding metric of constant Gaussian curvature
equal to �1. The problem investigated in [11] was to determine to what extent
the second fundamental form of the immersion could be expressed in terms of
the solution u of a second-order equation and finitely many of its derivatives. The
motivation for this question came from a remarkable property of the sine-Gordon
equation, which we now explain. Let us first derive a set of necessary and sufficient
conditions that the components a; b; c of the second fundamental form of any local
isometric immersion into E3 of a metric of constant curvature equal to �1 must
satisfy. Recall that a; b; c are defined by the relations

!31 D a!1 C b!2; !32 D b!1 C c!2; (10)

where the 1-forms !31 ; !
3
2 satisfy the structure equations

d!31 D �!32 ^ !21 ; d!32 D �!31 ^ !12 ; (11)

equivalent to the Codazzi equations, and the Gauss equation

ac � b2 D �1: (12)

For the sine-Gordon equation, with the choice of 1-forms !1; !2 and !3 D !21
given by (8), it is easily verified that the 1-forms !31 ; !

3
2 are given by

!31 D sin
u

2
.dx C dt/ D tan

u

2
!1;

!32 D � cos
u

2
.dx � dt/ D � cot

u

2
!2:

It is a most remarkable fact that the components a; b; c of the second fundamental
form that we have just obtained depend only on the solution u of the sine-Gordon
equation. Our main goal in [11] was to investigate to what extent this property
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was true for all second-order equations describing pseudo-spherical surfaces, in the
sense that a; b; c should only depend on u and at most finitely many derivatives of
u. We showed that this is an extremely rare event, essentially confined to the sine-
Gordon equation. Indeed, what we proved was that except for the equation

uxt D F.u/; F00.u/C ˛u D 0; (13)

where ˛ is a positive constant, every second-order partial differential equation
describing �-pseudo-spherical surfaces is such that either a; b; c are universal
functions of t; x, meaning that they are independent of u, or they do not factor
through any finite-order jet of u. The starting point of the proof of this result is a
set of necessary and sufficient conditions, given in terms of the coefficients fij of the
1-forms (2), for a; b and c to be the components of the second fundamental form of
a local isometric immersion corresponding to a solution of (1). These are equivalent
to the Gauss and Codazzi equations, and are easily derived. We consider the pair of
vector fields .e1; e2/ dual to the coframe .!1; !2/. It is given by

ˇ̌
ˇ̌ f11 f21
f12 f22

ˇ̌
ˇ̌ e1 D f22@x � f21@t;

ˇ̌
ˇ̌ f11 f21
f12 f22

ˇ̌
ˇ̌ e2 D �f12@x C f11@t: (14)

By feeding these expressions into the structure equations (11), we obtain

d!31 D
�

db.e1/� da.e2/
�
!1 ^ !2 � a!2 ^ !3 C b!1 ^ !3; (15)

d!32 D
�

dc.e1/� db.e2/
�
!1 ^ !2 � b!2 ^ !3 C c!1 ^ !3: (16)

Denoting by Dt and Dx the total derivative operators, these are equivalent to

f11Dta C f21Dtb � f12Dxa � f22Dxb � 2b

ˇ̌
ˇ̌ f11 f31
f12 f32

ˇ̌
ˇ̌C .a � c/

ˇ̌
ˇ̌ f21 f31
f22 f32

ˇ̌
ˇ̌ D 0; (17)

f11Dtb C f21Dtc � f12Dxb � f22Dxc C .a � c/

ˇ̌
ˇ̌ f11 f31
f12 f32

ˇ̌
ˇ̌C 2b

ˇ̌
ˇ̌ f21 f31
f22 f32

ˇ̌
ˇ̌ D 0: (18)

These differential constraints, which amount to the Codazzi equations, have to be
augmented by the Gauss equation

ac � b2 D �1: (19)

The proof of the main result of [11] consists in a detailed case-by-case analysis of
the Eqs. (17), (18) and (19), where use is made of the expressions and constraints
on the fij’s that result from the classification results of [3, 15], and where we assume
that a; b and c depend on t; x; u and only finitely many derivatives of u.
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Our goal in the present paper is to extend the results of [11] concerning the
components a; b; c of the second fundamental form to the case of k-th order
evolution equations. Our main result is given by:

Theorem 1. Let

ut D F.u; ux; : : : ; uxk/ (20)

be an evolution equation of order k describing �-pseudo-spherical surfaces. If there
exists a local isometric immersion of a surface determined by a solution u for which
the coefficients of the second fundamental form depend on a jet of finite order of
u, i.e., a; b and c depend on x; t; u; : : : ; uxl , where l is finite, then a; b and c are
universal, that is l D 0 and a; b and c depend at most on x and t only.

In Sect. 2, we give a proof of Theorem 1 based on a careful order-by-order
analysis of the Codazzi equations (17), (18) and the Gauss equation (19). In Sect. 3,
we show by means of an example that the class of evolution equations of order
k � 3 for which the components a; b; c are universal in the sense of Theorem 1, that
is independent of u and its derivatives, is non-empty.

2 Proof of the Main Result

In the case of a differential equation describing �-pseudo-spherical surfaces, the
structure equations (3) are equivalent to

Dtf11 � Dxf12 D �23 (21)

Dxf22 D �13 (22)

Dtf31 � Dxf32 D ��12 (23)

where Dt and Dx are the total derivative operators and

�12 WD f11f22 � �f12I �13 WD f11f32 � f31f12I �23 D �f32 � f31f22: (24)

We shall use the notation

zi D uxi D @iu

@xi
; 0 � i � k; (25)

introduced in [3] to denote the derivatives of u with respect to x and write the
evolution equation (20) as

z0;t D F.z0; z1; : : : ; zk/: (26)
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We will thus think of .t; x; z0; : : : ; zk/ as local coordinates on an open set of the sub-
manifold of the jet space Jk.R2;R/ defined by the differential equation (20). We
first recall the following lemma from [3]:

Lemma 1. Let (26) be a k-th order evolution equation describing �-pseudo-
spherical surfaces, with associated 1-forms (2) such that f21 D �. Then necessary
conditions for the structure equations (3) to hold are given by

f11;zk D � � � D f11;z0 D 0 (27)

f21 D � (28)

f31;zk D � � � D f31;z0 D 0 (29)

f12;zk D 0 (30)

f22;zk D f22;zk�1 D 0 (31)

f32;zk D 0 (32)

f 211;z0 C f 231;z0 ¤ 0: (33)

We now proceed with the proof of Theorem 1. If a; b; c depend of a jet of finite
order, that is a; b; c are functions of x; t; z0; : : : ; zl for some finite l, then (17) and (18)
become

f11at C �bt � f12ax � f22bx � 2b�13 C .a � c/�23 �
lX

iD0
.f12azi C f22bzi/ziC1

C
lX

iD0
.f11azi C �bzi/zi;t D 0;

and

f11bt C �ct � f12bx � f22cx C .a � c/�13 C 2b�23 �
lX

iD0
.f12bzi C f22czi/ziC1

C
lX

iD0
.f11bzi C �czi/zi;t D 0:

Differentiating (17) and (18) with respect to zlCk, and using the fact that Fzk ¤ 0

and � ¤ 0, it follows that

bzl D � f11
�

azl ; czl D
�

f11
�

�2
azl : (34)
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Differentiating the Gauss equation (19) with respect to zl leads to cazlCaczl�2bbzlD0,
and substituting (34) in the latter leads to

�
c C

�
f11
�

�2
a C 2

f11
�

b

�
azl D 0: (35)

We therefore have two cases to deal with. The first case corresponds to

c C
�

f11
�

�2
a C 2

f11
�

b ¤ 0: (36)

It follows then by (35) that azl D 0, and hence by (34) that bzl D czl D 0. Successive
differentiating leads to azi D bzi D czi D 0 for all i D 0; : : : ; l. Finally, if the
functions a; b and c depend on a jet of finite order, then there are universal, i.e.,
they are functions of x and t only. We now turn to the second case, defined by the
condition

c C
�

f11
�

�2
a C 2

f11
�

b D 0; (37)

on an open set, for which the analysis is far more elaborate. Substituting the
expression of c in the Gauss equation �ac C b2 D 1 leads to .f11a=�C b/2 D 1 so
that

b D ˙1 � f11
�

a; c D
�

f11
�

�2
a 
 2

f11
�
: (38)

We have then

Dtb D � f11
�

Dta � a
�
f11;z0F; Dtc D

�
f11
�

�2
Dta C 2

�

�
f11
�

a 
 1

�
f11;z0F;

Dxb D � f11
�

Dxa � a
�
f11;z0z1; Dxc D

�
f11
�

�2
Dxa C 2

�

�
f11
�

a 
 1

�
f11;z0z1;

and hence

f11Dta C �Dtb D �af11;z0F; (39)

f11Dtb C �Dtc D
�

f11
�

a 
 2

�
f11;z0F; (40)

f12Dxa C f22Dxb D ��12

�
Dxa � af22

�
f11;z0z1; (41)
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f12Dxb C f22Dxc D f11
�

�12

�
Dxa C �12

�2
af11;z0z1 C f22

�

�
f11
�

a 
 2

�
f11;z0z1: (42)

Substituting the latter four equalities in (17) and (18) leads to

�af11;z0F C �12

�
Dxa C af22

�
f11;z0z1 � 2b�13 C .a � c/�23 D 0 (43)

and
�

f11
�

a 
 2

�
f11;z0F � f11�12

�2
Dxa � �12

�2
af11;z0z1 �

f22
�

�
f11
�

a 
 2

�
f11;z0z1 C .a � c/�13 C 2b�23 D 0

which are equivalent to

�af11;z0F C�12

�
ax C�12

�

lX
iD0

aziziC1C af22
�

f11;z0z1�2b�13C.a�c/�23 D 0 (44)

and
�

f11
�

a 
 2

��
F � f22

�
z1

�
f11;z0 � f11�12

�2
ax � (45)

f11�12

�2

lX
iD0

aziziC1 � �12

�2
af11;z0z1 C .a � c/�13 C 2b�23 D 0:

We are now led to several cases depending on the value of l.

• If l � k, then differentiating (44) with respect to zlC1 leads to �12azl=� D 0.
Thus azl D 0 and also bzl D czl D 0 for l � k since �12 ¤ 0.

• If l D k � 1, then differentiating (44) and (45) with respect to zk leads to

� af11;z0Fzk C �12

�
azk�1 D 0; (46)

�
f11
�

a 
 2

�
f11;z0Fzk � f11

�

�12

�
azk�1 D 0: (47)

Taking into account (46), Eq. (47) becomes 
2f11;z0Fzk D 0. It follows then
from (46) that azk�1 D 0, and therefore that bzk�1 D czk�1 = 0.

• If l � k � 2, then differentiating (44) and (45) with respect to zk leads to

� af11;z0Fzk D 0; (48)
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�
f11
�

a 
 2

�
f11;z0Fzk D 0; (49)

which imply that

f11 D �; (50)

for some real constant �. Equations (44) and (45) then become

�12

�
ax C .�f22 � �f12/

�

lX
iD0

aziziC1 � 2b.�f32 � f31f12/ (51)

C .a � c/.�f32 � f31f22/ D 0

and

� f11�12

�2
ax � �.�f22 � �f12/

�2

lX
iD0

aziziC1 C .a � c/.�f32 � f31f12/ (52)

C 2b.�f32 � f31f22/ D 0;

where

�12 D �f22 � �f12: (53)

Note that when f11;z0 D 0, the structure equation (21) becomes Dxf12 D ��23, or
equivalently

f12;zk�1zk C � � � C f12;z0z1 D f31f22 � �f32: (54)

Differentiating (54) with respect to zk leads then to f12;zk�1 D 0. If l D k � 2,
then taking into account the latter, and differentiating (51) and (52) with respect
to zk�1 lead to

�f22 � �f12
�

azk�2 � 2b�f32;zk�1 C .a � c/�f32;zk�1 D 0; (55)

��.�f22 � �f12/

�2
azk�2 C .a � c/�f32;zk�1 C 2b�f32;zk�1 D 0: (56)

Note that f11 D � ¤ 0, otherwise we would have b D ˙1 and therefore (56)
would become ˙2�f32;zk�1 D 0 which would lead to a contradiction. Indeed,
differentiating the structure equation (23) with respect to zk, we obtain f31;z0Fzk D
f32;zk�1 . The vanishing of f32;zk�1 would then imply the vanishing of f31;z0 , but this
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is not possible because f 211;z0Cf 231;z0 ¤ 0. Therefore, f11 D � ¤ 0 and f32;zk�1 ¤ 0.
Now, multiplying (55) by �=� and adding (56), we now obtain that

�.a � c/C 2�b D 2b�2=�� .a � c/�; (57)

which is equivalent to

��.a � c/ D .�2 � �2/b: (58)

If �2 D �2, then (58) leads to a � c D 0 which runs into a contradiction because
it follows from (37), (50) and the hypothesis �2 D �2 that a � c D 
2�=� ¤ 0.
We have then �2 � �2 ¤ 0. Substituting (38) in (58) leads to

��

��
1 � �2

�2

�
a ˙ 2

�

�

�
D .�2 � �2/

�
˙ 1 � �

�
a

�
; (59)

which simplifies to �2 C �2 D 0 which runs into a contradiction. Finally, if
l < k � 2, where k � 3, then differentiating (51) and (52) with respect to zk�1
and using the non-vanishing of f32;zk�1 leads to

�.a � c/� 2�b D 0 (60)

�.a � c/C 2�b D 0: (61)

Since �2 C �2 ¤ 0, we have a D c and b D 0 which runs into a contradiction
with the Gauss equation.

Therefore, for all l, (17), (18) and the Gauss equation form an inconsistent system.
Hence, if the immersion exists then (36) holds and a, b and c are functions of x and
t only. This completes the proof of our theorem.

3 An Example

We now show by displaying an example that the class of evolution equations of order
k � 3 for which the components a; b; c are universal in the sense of Theorem 1, that
is independent of u and its derivatives, is non-empty. Consider the following fourth-
order evolution equation obtained in [5]

ut D uxxxx C m1uxxx C m2uxx � uux C m0u
2; (62)

where m0;m1;m2 are arbitrary real constants. Letting
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� D .m1 C 2m0/uxx C Bux � u2

2
C 2m0B; r0 D �4m2

0B; (63)

where

B D 4m2
0 C 2m0m1 C m2; (64)

it is straightforward to check that the 1-forms

!1 D udx C .uxxx C �/dt; (65)

!2 D �2m0dx C r0dt; (66)

!3 D udx C .uxxx C �/dt; (67)

satisfy the structure equations (3) whenever u is a solution of (62). Let now

h D e2.�2m0xCr0t/; (68)

and let 	 and l be real constants such that l > 0 and l2 > 4	2. The functions a; b; c
defined by

a D
p

lh � 	2h2 � 1; b D 	h; c D 	2h2 � 1
a

; (69)

satisfy the Gauss equation (19) and the Codazzi equations (17), (18) whenever u is
a solution of (62).

Acknowledgements Research partially supported by NSERC Grant RGPIN 105490-2011 and by
the Ministério de Ciência e Tecnologia, Brazil, CNPq Proc. No. 303774/2009-6.

References

1. Beals, R., Rabelo, M., Tenenblat, K.: Bäcklund transformations and inverse scattering for some
pseudospherical surface equations. Stud. Appl. Math. 81, 121–151 (1989)

2. Cavalcante, D., Tenenblat, K.: Conservation laws for nonlinear evolution equations. J. Math.
Phys. 29, 1044–1049 (1988)

3. Chern, S.-S., Tenenblat, K.: Pseudospherical surfaces and evolution equations. Stud. Appl.
Math. 74, 55–83 (1986)

4. Ding, Q., Tenenblat, K.: On differential equations describing surfaces of constant curvature. J.
Diff. Equ. 184, 185–214 (2002)

5. Ferraioli, D.C., Tenenblat, K.: Fourth order evolution equations which describe pseudospheri-
cal surfaces. J. Differ. Equ. 257, 3165–3199 (2014)

6. Foursov, V., Olver, P.J., Reyes, E.: On formal integrability of evolution equations and local
geometry of surfaces. Differ. Geom. Appl. 15, 183–199 (2001)



Local Isometric Immersions of Pseudo-Spherical Surfaces and Evolution Equations 381

7. Gomes Neto, V.P.: Fifth-order evolution equations describing pseudospherical surfaces. J.
Differ. Equ. 249, 2822–2865 (2010)

8. Gorka, P., Reyes, E.: The modified Hunter-Saxton equation. J. Geom. Phys. 62, 1793–1809
(2012)

9. Huber, A.: The Cavalcante–Tenenblat equation—does the equation admit physical signifi-
cance? Appl. Math. Comput. 212, 14–22 (2009)

10. Jorge, L., Tenenblat, K.: Linear problems associated to evolution equations of type utt D
F.u; ux; : : : ; uxk /. Stud. Appl. Math. 77, 103–117 (1987)

11. Kahouadji, N., Kamran, N., Tenenblat, K.: Second-order equations and local isometric
immersions of pseudo-spherical surfaces, 25 pp. [arXiv:1308.6545], to appear in Comm.
Analysis and Geometry (2015)

12. Kamran, N., Tenenblat, K.: On differential equations describing pseudo-spherical surfaces. J.
Differ. Equ. 115, 75–98 (1995)

13. Rabelo, M.: A characterization of differential equations of type uxt D F.u; ux; : : : ; uxk / which
describe pseudo-spherical surfaces. An. Acad. Bras. Cienc. 60, 119–126 (1988)

14. Rabelo, M.: On equations which describe pseudo-spherical surfaces. Stud. Appl. Math. 81,
221–148 (1989)

15. Rabelo, M., Tenenblat, K.: On equations of the type uxt D F.u; ux/ which describe pseudo-
spherical surfaces. J. Math. Phys. 29, 1400–1407 (1990)

16. Rabelo, M., Tenenblat, K.: A classification of equations of the type ut D uxxx C G.u; ux; uxx/

which describe pseudo-spherical surfaces. J. Math. Phys. 33, 1044–149 (1992)
17. Reyes, E.: Pseudospherical surfaces and integrability of evolution equations. J. Differ. Equ.

147, 195–230 (1998)
18. Reyes, E.: Pseudopotentials, nonlocal symmetries and integrability of some shallow water wave

equations. Sel. Math. N. Ser. 12, 241–270 (2006)
19. Sakovich, A., Sakovich, S.: Solitary wave solutions of the short pulse equation. J. Phys. A 39,

L361-L367 (2006)
20. Sakovich, A., Sakovich, S.: On transformations of the Rabelo equations. SIGMA Symmetry

Integrability Geom. Methods Appl. 3, 8 p., paper 086 (2007)



IST Versus PDE: A Comparative Study

Christian Klein and Jean-Claude Saut
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Abstract We survey and compare, mainly in the two-dimensional case, various
results obtained by IST and PDE techniques for integrable equations. We also
comment on what can be predicted from integrable equations on non integrable
ones.

1 Introduction

The theory of nonlinear dispersive equations has been flourishing during the last
thirty years. Partial differential equations (PDE) techniques (in the large) have led
to striking results concerning the resolution of the Cauchy problem, blow-up issues,
stability analysis of various “localized” solutions. On the other hand, a few nonlinear
dispersive equations or systems are integrable by Inverse Scattering Transform
(IST) techniques. This allows, as already pointed out in [209], to have a deep
understanding of the equation dynamic and also to make relevant conjectures on
close, non integrable equations. The best example is the Korteweg-de Vries (KdV)
equation for which IST allows to prove that any solution to the Cauchy problem
with sufficiently smooth and decaying initial data decomposes into a finite train of
solitons traveling to the right and a dispersive tail traveling to the left (see [207] and
the references therein and Sect. 1).

The aim of the present paper is to survey and compare, on specific examples,
the advantages and shortcomings of PDE and IST techniques and also how they can
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benefit from each other. We also hope to bring closer two communities that work on
very similar objects by quite different tools. We will restrain to the Cauchy problem
posed on the whole space R or R2 since the corresponding periodic problems lead
to rather different issues, both by the two approaches.

The paper will be organized as follows. The first section is devoted to one-
dimensional (spatial) problems. After recalling the KdV case for which the IST
techniques yield the more complete results and which can be seen as a paradigm
of what is expected for “close”, possibly not integrable equations, we then consider
two nonlocal integrable equations, the Benjamin-Ono (BO) and Intermediate Long
Wave (ILW) equations that have a much less complete IST theory than the KdV
equation. We will in this section present some numerical simulations from Klein
and Saut [127] showing that the long time dynamics of KdV solutions seems to
be inherited by those of some non integrable equations, such as the fractional
KdV or BBM equations. We close this Section by the one-dimensional Gross-
Pitaevskii equation, a defocusing nonlinear Schrödinger equation for which non
trivial boundary conditions at infinity provide some focusing behavior. At this
example, one can compare, for the specific problem of the stability of the black
soliton, the differences between the two methods. We will provide here some details
since this example might be less known than for instance the KdV equation.

We then turn to two-dimensional equations. Section two is devoted to the
Kadomtsev-Petviashvili equations (KP). Finally, the last section deals with
the family of Davey-Stewartson systems, two members of which are integrable
(the so-called DSI and DS II system). An important issue is whether or not
some of the remarkable properties of the integrable DS systems persist in the
non integrable case.

We conclude by a short mention of two other integrable two-dimensional
systems, the Ishimori and the Novikov-Veselov systems.

2 Notations

The following notations will be used throughout this article. The partial derivative
will be denoted by ux; : : : or @x�; ::. For any s 2 R; Ds D .��/ s

2 and Js D .I ��/ s
2

denote the Riesz and Bessel potentials of order �s, respectively.
The Fourier transform of a function f is denoted by Of or F .f / and the dual

variable of x 2 R
d is denoted �: For 1 � p � 1, Lp.R/ is the usual Lebesgue

space with the norm j � jp, and for s 2 R, the Sobolev spaces Hs.R2/ are defined via
the usual norm k�ks D jJs�j2.

S .Rd/ will denote the Schwartz space of smooth rapidly decaying functions in
R

d, and S 0.Rd/ the space of tempered distributions.
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3 The One-Dimensional Case

3.1 The KdV Equation

The KdV equation is historically the first nonlinear dispersive equation which has
been written down. It was in fact derived formally by Boussinesq (1877). We refer
to Darrigol [53] for a complete historical account. The full rigorous derivation
from the water wave system is due to Craig [51]. We refer to Darrigol [53] for
historical aspects and to Lannes [142] for the systematic rigorous derivation of
water waves models in various regimes. The KdV equation is (as in fact most of
the classical nonlinear dispersive equations or systems) a “universal” asymptotic
equation describing a specific dynamic (in the long wave, weakly nonlinear regime)
of a large class of complex nonlinear dispersive systems.1

The KdV equation

ut � 6uux C uxxx D 0; (1)

is also the first nonlinear PDE for which the Inverse scattering technique was
successively applied (see for instance [73, 145]). For the sake of simplicity we will
summarize the traditional approach to IST through the Gelfand-Levitan-Marchenko
equation. Much recent progress in IST has been made using the Riemann-Hilbert
(RH) formulation of the problem. We refer to the survey article [55] and to the key
papers [56–60] where the RH method is used to obtain asymptotic behavior of NLS,
mKdV and KdV equations.

The KdV equation is associated to the spectral problem for the Schrödinger
operator

L.t/ D �d2 

dx2
C u.�; t/ 

considered as an unbounded operator in L2.R/:
We thus consider the spectral problem

 xx C .k2 � u.x; t// D 0; �1 < x < C1:

Given u0 D u.�; 0/ sufficiently smooth and decaying at ˙1; say in the Schwartz
space S .R/; one associates to L.0/ its spectral data, that is a finite (possibly empty)
set of negative eigenvalues ��21 < ��22 � �� < ��2N ; together with right normalization
coefficients cr

j and right reflection coefficients br.k/ (see [207] for precise definitions
and properties of those objects).

1Note however that the KdV equation is a one-way model. For waves traveling in both directions,
the same asymptotic regime would lead to the class of Boussinesq systems (see eg [32] in the
context of water waves) which are not integrable.
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The spectral data consist thus in the collection of fbr.k/; �j; cr
j g: It turns out that if

u.x; t/ evolves according to the KdV equation, the scattering data evolves in a very
simple way:

�j.t/ D �j;

cr
j .t/ D cr

j exp.4�3j t/; j D 1; 2; � � �;N;
br.k; t/ D br.k/ exp.8ik3t/; �1 < k < C1:

The potential u.x; t/ is recovered as follows. Let

˝.�I t/ D 2

NX
jD1
Œcr

j .t/�
2e�2�j� C 1

�

Z 1

�1
br.k; t/e

2ik�dk:

One then solves the linear integral equation (Gelfand-Levitan-Marchenko equation):

ˇ.yI x; t/C˝.xCyI t/C
Z 1

0

˝.xCyCzI t/ˇ.zI x; t/dz D 0; y > 0; x 2 R; t > 0:

(2)

The solution of the Cauchy problem (1) is then given by

u.x; t/ D � @

@x
ˇ.0CI x; t/; x 2 R; t > 0:

One obtains explicit solutions when br D 0: A striking case is obtained when
the scattering data are f0; �j; cr

j .t/g: This corresponds to the so-called N � soliton
solution ud.x; t/ according to its asymptotic behavior obtained by Tanaka [218]:

lim
t!1 sup

x2R

ˇ̌
ˇ̌
ˇ̌ud.x; t/ �

NX
pD1

��2�2psech2Œ�p.x � xC
p � 4�2p t/�

	
ˇ̌
ˇ̌
ˇ̌ D 0; (3)

where

xC
p D 1

2�p
log

( �
cr

p

�2
2�p

p�1Y
lD1

�
�l � �p

�l C �p

�2)
:

In other words, ud.x; t/ appears for large positive time as a sequence of N solitons,
with the largest one in the front, uniformly with respect to x 2 R:

For u0 2 S .R/,2 the solution of (1) has the following asymptotics

2This condition can be weakened, but a decay property is always needed.
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sup
x��t1=3

ju.x; t/j D O.t�2=3/; as t ! 1; (4)

in the absence of solitons (that is when L.0/ has no negative eigenvalues) and

sup
x��t1=3

ju.x; t/� ud.x; t/j D O.t�1=3/; as t ! 1 (5)

in the general case, the N in ud being the number of negative eigenvalues of L.0/:
One has moreover the convergence result

lim
t!C1 sup

x��t1=3

ˇ̌
ˇ̌
ˇ̌u.x; t/ �

NX
pD1

��2�2p sech2Œ�p.x � xC
p � 4�2p t/�

	
ˇ̌
ˇ̌
ˇ̌ D 0: (6)

In both cases, a “dispersive tail” propagates to the left.

Remark 1. The shortcoming of those remarkable results is of course that they apply
only to the integrable KdV equation and also to the modified KdV equation

ut C 6u2ux C uxxx D 0:

However, though they are out of reach of “classical” PDE methods, they give hints
on the behavior of other, non integrable, equations whose dynamics could be in
some sense similar.

Remark 2. As previously noticed, the results obtained by IST methods necessitate
a decay property of the initial data, the minimal condition being

I.0/ D
Z 1

�1
.1C jxj/ju0.x/jdx < 1: (7)

This condition ensures in particular [156] that L.0/ has a finite number of discrete
eigenvalues, more precisely [41], the number N of eigenvalues of L.0/ is bounded
by 1C I.0/.

This excludes for instance initial data in the energy space H1.R/ in which the
Cauchy problem is globally well-posed [115]. The global behavior of the flow might
thus be different from the aforementioned results for such initial data.

Remark 3.

1. Stemming from the seminal work of Bourgain [39], PDE techniques allow to
prove the well-posedness of the Cauchy problem for the KdV equation with
initial data in very large spaces, namely Hs.R/; s > � 3

4
; see [116] which includes

in particular measures, for instance the Dirac distribution.
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2. PDE techniques yield also the asymptotic stability of the solitary waves for
subcritical KdV equations with a rather general nonlinearity [10, 157, 158] which
can be seen as a first step towards the soliton resolution conjecture, see eg [220].

In order to see to what extent the long time dynamics of the KdV equation is
in some sense generic, we will consider as a toy model the fractional KdV (fKdV)
equation

ut C uux � D˛ux D 0; u.:; 0/ D u0; (8)

where dD˛f .�/ D j�j˛ Of .�/; ˛ > �1: Using the Fourier multiplier operator notation

bLu.�/ D p.�/Ou.�/; p.�/ D j�j˛;

it can be rewritten as

ut C uux � Lux D 0; u.:; 0/ D u0: (9)

When ˛ D 2 (resp. 1) (8) reduces to the KdV (resp. Benjamin-Ono) equation. If
the symbol j�j˛ is replaced by

p.�/ D
�

tanh �

�

�1=2
;

one gets the so-called Whitham equation [224] that models surface gravity waves in
an appropriate regime. This symbol behaves like j�j�1=2 for large frequencies.

When surface tension is included in the Whitham equation, one gets

p.�/ D .1C ˇj�j2/1=2
�

tanh �

�

�1=2
; ˇ � 0

which behaves like j�j1=2 for large j�j:
The following quantities are formally conserved by the flow associated to (8),

M.u/ D
Z
R

u2.x; t/dx; (10)

and the Hamiltonian

H.u/ D
Z
R

�1
2

jD ˛
2 u.x; t/j2 � 1

6
u3.x; t/

	
dx: (11)

One notices that the values ˛ D 1=3 and ˛ D 1=2 correspond respectively to
the so-called energy critical and to the L2 critical cases. Actually, Eq. (8) is invariant
under the scaling transformation
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u
.x; t/ D 
˛u.
x; 
˛C1t/; (12)

for any positive number 
. A straightforward computation shows that ku
k PHs D

sC˛� 1

2 ku
k PHs , and thus the critical index corresponding to (8) is s˛ D 1
2

�˛. Thus,
Eq. (8) is L2-critical for ˛ D 1

2
. On the other hand the Hamiltonian does not make

sense in the energy space H˛=2.R/ when ˛ < 1
3
. The numerical simulations in [127]

suggest that the Cauchy problem (8) has global solutions (for arbitrary large suitably
localized and smooth initial data) if and only if ˛ > 1=2: This has been rigorously
proven when ˛ � 1 see [69, 70] but is an open problem when 1=2 < ˛ < 1:

On the other hand, the local Cauchy problem is for ˛ > 0 locally well-posed in
Hs.R/; s > 3

2
� 3˛

8
; [150].

More surprising is the fact that the resolution into solitary waves plus dispersion
seems to be still valid when ˛ > 1=2 as also suggested from the numerical
simulations in [127] from which we extract the following figures. In Fig. 1, one
can see the solution for the fKdV equation in the mass subcritical case ˛ D 0:6 for
the initial data 5sech2x.

In Fig. 2 we have fitted the humps with the computed solitary waves. This is an
evidence for the above mentioned soliton resolution conjecture.

A similar behavior seems to occur for the fractional BBM equation (fBBM)

ut C ux C uux C D˛ut D 0 (13)

in the subcritical case ˛ > 1
3
: Again the simulations in [127] suggest that the soliton

resolution also holds (see Fig. 3 below). See [159, 160] for the inelastic collision of
solitons when ˛ D 2.
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Fig. 1 Solution to the fKdV equation (8) for ˛ D 0:6, for the initial data u0 D 5sech2x



390 C. Klein and J.-C. Saut

20

15

10

5

u

0

−20 −10 0 10

x

20

Fig. 2 Solution to the fKdV equation (8) for ˛ D 0:6, and the initial data u0 D 5sech2x for t D 5

in blue, fitted solitons at the humps in green
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Fig. 3 Solution to the fBBM equation (13) for ˛ D 0:5, and the initial data u0 D 10sech2x for
t D 10 in blue, fitted solitons at the humps in green

3.2 The Benjamin-Ono and Intermediate
Long Wave Equations

The Intermediate Long Wave Equation (ILW) and the Benjamin-Ono equation (BO)
are asymptotic models in an appropriate regime for a two-fluid system when the
depth ı of the bottom layer is very large with respect to the upper one (ILW) or
infinite (BO) see [33].
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The ILW corresponds (in the notations of [1]) to

p.�/ D 2��coth .2�ı�/ � 1

ı

and the BO equation to

p.�/ D 2�j�j:

Alternatively they can be respectively written in convolution form

ut C uux C 1

ı
ux C Tı.uxx/ D 0; (14)

Tı.u/.x/ D � 1

2ı
PV

Z 1

�1
coth

�
�.x � y/

2ı

�
u.y/dy

and

ut C uux C H uxx D 0 (15)

where H is the Hilbert transform

H u.x/ D 1

�
PV

Z 1

�1
u.y/

x � y
dy:

3.2.1 The Benjamin-Ono Equation

A striking difference between KdV and BO equations is that the latter is quasilinear
rather that semilinear. This means that the Cauchy problem for BO cannot be solved
by a Picard iterative scheme implemented on the integral Duhamel formulation, for
initial data in any Sobolev spaces Hs.R/, s 2 R. Alternatively, this implies that the
flow map u0 7! u.t/ cannot be smooth in the same spaces [167], and actually not
even locally Lipschitz [133]. We will give a precise statements of those facts later
on for the KP I equation which also is quasilinear in this sense.

The Cauchy problem has been proven to be globally well-posed in Hs.R/; s >
3=2 by a compactness method using the various invariants3 of the equations [1]
and actually in much bigger spaces (see [94, 166, 219] and the references therein),
in particular in the energy space H1=2.R/; by sophisticated methods based on the
dispersive properties of the equations.

3The existence of an infinite sequence of invariants [42, 163] is of course a consequence of the
complete integrability of the Benjamin-Ono equation.
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Moreover it was proven in [1] that the solution uı of (14) with initial data u0
converges as ı ! C1 to the solution of the Benjamin-Ono equation (15) with the
same initial data.

Furthermore, if uı is a solution of (14) and setting

vı.x; t/ D 3

ı
uı.x;

3

ı
t/;

vı tends as ı ! 0 to the solution u of the KdV equation

ut C uux C uxxx D 0 (16)

with the same initial data.

Remark 4. The hierarchy of conserved quantities of the Benjamin-Ono equation
leads to a hierarchy of higher order BO equations BOn (by considering the
associated Hamiltonian flow). Those equations have order n

2
, n D 4; 5; : : : It was

established in [173] that a family of order 3 equations containing BO6 is globally
well-posed in the energy space H1.R/: A similar result is expected for the whole
hierarchy.

Both the BO and the ILW equations are classical examples of equations solvable
by IST methods. The situation is however less satisfactory than for the KdV
equation. Actually the present state of the art in IST only allows for a complete
solution of the Cauchy problem with small data. The small data assumption is
used to insure that integral equations in the direct spectral problem for a Jost-
type function  .x; k/ have solutions for all values of the complex parameter k (the
spectral variable). Whether or not this obstruction is a fundamental one or merely a
technical one is an interesting open question.

The formal IST theory has been given by Ablowitz and Fokas [3] (see also [12]).
They found the inverse spectral problem and Beals and Coifman [15, 16] observed
that it is equivalent to a nonlocal N@ problem.

Unfortunately, the direct scattering problem can be only solved for small data
and a complete theory for IST (as for the KdV equation) is a challenging open
problem. In particular, one does not know (but expects) that any localized initial
data decompose into a train of solitary waves and a dispersive tail. The rigorous
theory of the Cauchy problem for small initial data is given in [48].

As previously recalled, the BO equation has an infinite number of conserved
quantities ([42], the first ones are displayed in [1]). The Hamiltonian flow of those
invariants define the aforementioned Benjamin-Ono hierarchy.

The BO equation possesses explicit soliton and multi-solitons [43, 161–163]. The
one soliton reads

Q.x/ D 4

1C x2
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Fig. 4 Solution to the BO equation for the initial data u0 D 10sech2x in dependence of t

and is unique (up to translations) among all solitary wave solutions [11]. Its slow
(algebraic) decay is due (by Paley-Wiener type arguments) to the fact that the BO
symbol �j�j is not smooth at the origin. Actually similar arguments imply that the
solution to the Cauchy problem cannot decay fast at infinity see [96]. The BO
solitary wave is orbitally stable (see [34, 35] and the references therein).

On the other hand Kenig and Martel [112] have proven the asymptotic stability
of the BO solitary wave as well as that of the explicit multi-solitons in the energy
space, a fact which reinforces the above conjecture on the long time dynamic of
BO solutions. They do not use the integrability of the equation except for the
exact expressions for the solitons (that help to study the spectral properties of the
linearized operators).

Remark 5. The H1 stability of the 2-soliton has been proven in [175] by variational
methods.

We show the formation of solitons from localized initial data in Fig. 4. Again
there is a tail of dispersive oscillations propagating to the left.

3.2.2 The ILW Equation

The formal IST theory has been given in [135, 136]. The direct scattering problem
is associated with a Riemann-Hilbert problem in a strip of the complex plane. As
the BO equation, the ILW equation possesses an infinite sequence of conserved
quantities (see eg [146]) which leads to a ILW hierarchy. They can be used to
provide the global well-posedness of the Cauchy problem in Hs.R/; s > 3=2, [1].
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Moreover, the fact that for large j�j, j�jcoth � D j�j.1 C O.e�j�j// implies that
the well-posedness results are similar to those obtained for the BO equation, for
instance in the energy space H1=2.R/:

On the other hand, we do not know of rigorous results for the Cauchy problem
using the IST method (see however [208]). It is likely that they would require a
smallness condition on the initial data.

Explicit N-soliton solutions are given in [100, 161]. Contrary to those of the
Benjamin-Ono equation, they decay exponentially at infinity (the ILW symbol is
smooth). For instance, when the ILW equation is written in the form

ut C 2uux C 1

ı
ux � Lıux D 0; (17)

where

dLıu.�/ D .�coth �ı/Ou.�/;

the 1-soliton reads see [8, 99, 100]

u.x; t/ D Qc;ı.x � ct/; Qc;ı.x/ D a sin aı

cosh ax C cos aı
; x 2 R

for arbitrary c > 0 and ı > 0; and a is the unique positive solution of the
transcendental equation

aı coth aı D .1 � cı/; a 2 .0; �=ı/:

Its uniqueness (up to translations) is proven in [8]. The orbital stability of this
soliton is proven in [7, 9] (see also [34, 35]). We do not know of asymptotic stability
results for the 1 or N-soliton similar to the corresponding ones for the BO equation.
Those results should be in some sense easier than the corresponding ones for BO
since the exponential decay of the solitons should make the spectral analysis of the
linearized operators easier.

We show the decomposition of localized initial data into solitons and radiation in
Figs. 5 and 6. Note that this case is numerically easier to treat with Fourier methods
since the soliton solutions are more rapidly decreasing (exponentially instead of
algebraically) than for the fKdV, fBBM and BO equations before. The different
shape of the solitons is also noticeable in comparison to Fig. 4.

One also sees the change in the number of emerging solitons according to the
size of the initial data. As in the case of BO, fKdV, fBBM equations, predicting the
number of solitary waves which seem to form from a given (smooth and localized)
initial data is a challenging open question. Except for the KdV case where the
solitons are related to the discrete spectrum of the associated Schrödinger equation,
there does not appear to be a clear characterization of the solitons emerging from
given initial data for t ! 1 even for integrable equations.
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Fig. 5 Solution to the ILW equation with ı D 1 for the initial data u0 D 10sech2x in
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Fig. 6 Solution to the ILW equation with ı D 1 for the initial data u0 D 20sech2x in
dependence of t

3.3 The Gross-Pitaevskii Equation

The Gross-Pitaevskii equation (GP) is a version of a nonlinear Schrödinger equation
(NLS), namely

i@t� D �� C �.1 � j� j2/ on R
d � R; .d D 1; 2; 3/: (18)
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It is a relevant model in nonlinear optics (“dark” and “black” solitons, optical
vortices [176]), fluid mechanics (superfluidity of Helium II), Bose-Einstein con-
densation of ultra cold atomic gases.

At least on a formal level, the Gross-Pitaevskii equation is hamiltonian. The
conserved Hamiltonian is a Ginzburg-Landau energy, namely

E.�/ D 1

2

Z
Rd

jr� j2 C 1

4

Z
Rd
.1 � j� j2/2 


Z
Rd

e.�/; (19)

associated to the natural energy space

E .Rd/ D fv 2 H1
loc.R

d/;E.v/ < C1g:

In order for E.�/ to be finite, j� j should in some sense tend to 1 at infinity.
Actually this “non trivial” boundary condition provides (GP) with a richer dynamics
than in the case of null condition at infinity which, for a defocusing NLS type
equation, is essentially governed by dispersion and scattering. For instance, in
nonlinear optics, the “dark solitons” are localized nonlinear waves (or “holes”)
which exist on a stable continuous wave background. The boundary condition
j�.x; �/j ! 1 is due to this non-zero background.

Similarly to the energy, the momentum P.�/ D 1
2

R
RN hir� ;� i; is formally

conserved. We will denote by p D Im
R
RN i� N�x, the first component of P, which

is hence a scalar. Justifying the momentum (and its conservation) is one of the
difficulties one has to face when dealing with the (GP) equation. We will restrict
here to the one-dimensional case, d D 1 since the GP equation is then completely
integrable [231]. We just consider

i@tu C @2xu C .1 � juj2/u D 0: (20)

In fact Zakharov-Shabat [231] consider the case when ju.x; t/j2 ! c > 0, jxj ! 1
(propagation of waves through a condensate of constant density).

More precisely, the GP has a Lax pair .Bu;Lu/, where (for c D 1)

Lu D i

�
1C p

3 0

0 1 � p
3

�
@x C

�
0 Nu
u 0

�
(21)

Bu D �p
3

�
1 0

0 1

�
@2x C

0
@ juj2�1p

3C1 i@x Nu
�i@x Nu juj2�1p

3�1

1
A (22)

so that u satisfies (GP) if and only if

d

dt
Lu D ŒLu;Bu�: (23)
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As a consequence, the 1D Gross-Pitaevskii equation has an infinite number of
(formally) conserved energies Ek; k 2 N and momentum Pk; k 2 N: For instance,

I5 D
Z
R

f2juj6 C 6juj2juxj2 C .
d

dx
juj2/2 C juxxj2 � 2g:

It is of course necessary to prove rigorously that the Ek and the Pk are well defined
and conserved by the GP flow, in a suitable functional setting.

We do not know of a complete resolution of the Cauchy problem by IST methods,
including a possible decomposition into solitons. We will see however that one can
get a proof of stability of the solitons by using IST techniques. One can prove that
the energy space in one dimension is identical to the Zhidkov space see [234]

X1.R/ D fu 2 H1
loc.R/; ux 2 L1.R/; .1 � juj2/ 2 L2.R/g

and actually Zhidkov [234] proved that the Cauchy problem for (20) is globally
well-posed in X1.R/.4

The one-dimensional GP equation possesses two types of solitary waves of
velocity c, 0 � c <

p
2 :

• The “dark” solitons : vc.x/ 

q

2�c2

2
th
�p

2�c2

2
x
�

� i cp
2
.

• The “black” soliton :

v0.x/ D th
� xp

2

�
:

Note that when 0 < c <
p
2; vc.x/ 6D 0;8x while the black soliton vanishes at

x D 0. The orbital stability of the dark soliton has been proven in [27] (see also [148]
for the cubic-quintic case and the numerics in [61]). This case is easier since the dark
soliton does not vanish and the momentum can be defined in a straightforward way.
The orbital stability of the black soliton is more delicate since it vanishes at 0: Both
PDE and IST techniques provide the result, in a slightly different form though, and
this is a good opportunity to compare them.

The first method is used in [29]. This is the “Hamiltonian” method (see [20, 31]
for the stability of the KdV solitary wave or [44] for the stability of the focusing
NLS ground states), that is one considers the black soliton as a minimizer of the
energy with fixed momentum. As previously noticed, serious difficulties arise here
from the momentum (definition, conservation by the flow,: : :) because the black
soliton vanishes at 0.

Given any A > 0, we consider on the energy space X1.R/ D X1 the distance
dA;X1 defined by

4P. Gérard has proven in fact [74] that the Cauchy problem for the GP equation is globally well
-posed in the energy space E .Rd/ equipped with a suitable topology when d � 4.
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dA;X1.v1; v2/ 
 kv1 � v2kL1.Œ�A;A�/ C kv0
1 � v0

2kL2.R/ C kjv1j � jv2jkL2.R/:

One can show that for v 2 X1; jv.x/j ! 1 as jxj ! 1; (but not v itself). We have
the orbital stability result [29]:

Theorem 1. Assume that v0 2 X1 and consider the global in time solution v to
(GP) with initial datum v0. Given any numbers " > 0 and A > 0, there exists some
positive number ı, such that if

dA;X1.v0; v0/ � ı; (24)

then, for any t 2 R, there exist numbers a.t/ and 
.t/ such that

dA;X1
�
v.� C a.t/; t/; exp.i
.t// v0.�/

	
< ": (25)

We also have a control of the shift a.t/:

Theorem 2. Given any numbers " > 0, sufficiently small, and A > 0, there exists
some constant K, only depending on A, and some positive number ı > 0 such that,
if v0 and v are as in the previous Theorem, then

ja.t/j � K".1C jtj/; (26)

for any t 2 R, and for any of the points a.t/ as above.

We will not give a proof of the previous results see [29] but just explain how to
extend the definition of the momentum P.v/ D 1

2

R
R
hiv; v0i for general functions

in X1:

• Assume v 2 X1 and v D exp.i�/:

Then hiv; v0i D �0 2 L2.R/ and P.v/ 
 1
2
Œ�.C1/��.�1/�: This is meaningful if

v 2 Z1 D
n
v 2 X1; s:t: v˙1 D lim

x!˙1 v.x/ exist
o
;

but not for any arbitrary phase � whose gradient is in L2.
Let

QX1 D fv 2 X1; s:t: jv.x/j > 0; 8x 2 Rg:

For v 2 QX1, v D � exp.i�/, so that hiv; v0i D �2�0. If v 2 QZ1 
 QX1 \ Z1, one has

P.v/ D 1

2

Z
R

�2�0 D 1

2

Z
R

.�2�1/�0C 1

2

Z
R

�0 D 1

2

Z
R

.�2�1/�0C 1

2

�
�
�C1
�1 : (27)

This is well controlled since by Cauchy-Schwarz



IST Versus PDE: A Comparative Study 399

j
Z
R

.�2 � 1/�0j � 2

ı2
E.v/

where

ı D inf fjv.x/j; x 2 Rg:

• The momentum for maps with zeroes:

Lemma 1. Let v 2 Z1. Then, the limit

P.v/ D lim
R!C1PR.v/ 
 lim

R!C1

Z R

�R
hiv; v0i

exists. Moreover, if v belongs to QZ1, then

P.v/ D 1

2

Z
R

.�2 � 1/�0 C 1

2

�
�
�C1
�1 :

• Example is the black soliton v0: since v0 is real-valued, hiv0; v0
0i D 0 and

P.v0/ D 0:

• Elementary observation. Let V0 2 Z1 and w 2 H1.R/: Then, V0 C w 2 Z1 and

P.V0 C w/ D P.V0/C 1

2

Z
R

hiw;w0i C
Z
R

hiw;V 0
0i:

• Note that besides P.V0/ the integrals are definite ones.
• The renormalized and the untwisted momentum.

The renormalized momentum p is defined for v 2 QX1 by

p.v/ D 1

2

Z
R

.%2 � 1/' 0; (28)

as seen before, if v belongs to QZ1, then,

p.v/ D P.v/� 1

2

�
'
�C1
�1 :

If v 2 Z1 n QZ1, the integral is a priori not well-defined since the phase ' is not
globally defined. Nevertheless, the argument argv of v is well-defined at infinity as
an element of R=2�Z. For v 2 Z1, one introduces the untwisted momentum

Œp�.v/ D
�
P.v/ � 1

2

�
arg v.C1/� argv.�1/

	�
mod �;
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which is hence an element of R=�Z. A remarkable fact concerning Œp� is that its
definition extends to the whole space X1, although for arbitrary maps in X1, the
quantity argv.C1/ � argv.�1/ may not exist.

Lemma 2. Assume that v belongs to X1. Then the limit

Œp�.v/ D lim
R!C1

�Z R

�R
hiv; v0i � 1

2

�
arg v.R/� argv.�R/

	�
mod �

exists. Moreover, if v belongs to QX1, then

Œp�.v/ D p.v/ mod �: (29)

One has also:

• Let V0 2 X1 and w 2 H1.R/. Then, V0 C w 2 X1 and

Œp�.V0 C w/ D Œp�.V0/C 1

2

Z
R

hiw;w0i C
Z
R

hiw;V 0
0i mod �: (30)

• The evolution preserves the untwisted momentum:

Lemma 3. Assume v0 2 X1, and let v be the solution to (GP) with initial datum v0.
Then,

Œp�.v.�; t// D Œp�.v0/; 8t 2 R:

If moreover v0 2 Z1, then v.t/ belongs to Z1 for any t 2 R, and

P.v.�; t// D P.v0/; 8t 2 R:

The orbital stability of the dark soliton (0 < c <
p
2/ is based on the minimization

problem:

Emin.p/ D inffE.v/; v 2 QX1 s.t. p.v/ D pg:

For map having zeroes like v0, one should use the untwisted momentum and
consider instead

Emin

��
2

�

 inf

˚
E.v/; v 2 X1 s.t. Œp�.v/ D �

2
mod �



: (31)

We now turn to the second approach using IST in [75] which avoids the
renormalization by factors of modulus 1 in Theorem 1, at least for sufficiently
smooth and decaying perturbations.
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Theorem 3. Assume that the initial datum of (1.1) has the form: u0.x/ D U0.x/C
�u1.x/;U0.x/ D tanh

�
xp
2

�
; where u1.x/ satisfies the following condition,

sup
x2R

j.1C x2/2@ku1.x/j � 1; for k � 3:

8t 2 R; 9 y.t/ 2 R; j�y.t/u.:; t/ � U0j1 � C�; for 0 � t < C1:

Using a classical functional analytic argument, Theorem 3 easily yields the orbital
stability, at least for sufficiently smooth and decaying perturbations [75]:

Corollary 1. For every ı > 0 there exists � > 0 such that, if

sup
x2R

j.1C x2/2@ku1.x/j � 1; for k � 3;

then the solution u of (20) satisfies:

8t 2 R; 9y.t/ 2 R; dE.�y.t/u.t/;U0/ � ı:

Remark 6. As previously noticed Theorem 3 improves on Theorems 1, 2 since it
does not require a rotation factor. On the other hand it deals with a narrower class
of perturbations and does not provide an evaluation of the time shift.

One can combine PDE and IST techniques as for instance in the long wave
limit of the GP equation which we describe now. The transonic (long wave, small
amplitude) limit of GP to KP I in 2D or KdV in 1D is quite a generic phenomenon
for nonlinear dispersive systems. A good example is that of the water wave
systems (incompressible Euler with upper free surface). While the consistency of the
approximation is relatively easy to obtain, the stability (and thus the convergence)
of the approximation is much more delicate, specially if one looks for the optimal
error estimates on the correct time scales.

Kuznetsov and Zakharov [229] have observed formally that the KdV equation
provides a good approximation of long-wave small amplitude solutions to the 1D
Gross-Pitaevskii equation. We recall here briefly a rigorous proof of this fact [25]
(see also [45] for a different approach which dose not provide an error estimate and
[26] for a similar analysis for two-way propagation leading to a coupled system of
KdV equations). We thus start from the 1D GP equation

i@t� C @2x� D �.j� j2 � 1/ on R � R; �.:; 0/ D �0; (32)

j�.x; t/j ! 1; as jxj ! C1; (33)

and recall the formal conserved quantities

E.�/ D 1

2

Z
R

j@x� j2 C 1

4

Z
R

.1 � j� j2/2 

Z
R

e.�/;
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P.�/ D 1

2

Z
R

hi@x�;� i:

One can prove (see for instance [72]) well-posedness in Zhidkov spaces :

Xk.R/ D fu 2 L1loc.R;C/; s:t: E.u/ < C1; and @xu 2 Hk�1.R/g:

Theorem 4. Let k 2 N
� and �0 2 Xk.R/. Then, there exists a unique solution

�.�; t/ in C 0.R;Xk.R// to (32) with initial data �0. If �0 belongs to XkC2.R/, then
the map t 7! �.�; t/ belongs to C 1.R;Xk.R// and C 0.R;XkC2.R//. Moreover, the
flow map �0 7! �.�;T/ is continuous on Xk.R/ for any fixed T 2 R.

Remark 7. One can prove conservation of energy and momentum (under suitable
assumptions).

We recall that if � does not vanish, one may write (Madelung transform)

� D p
� exp i':

This leads to the hydrodynamic form of the equation, with v D 2@x';

(
@t�C @x.�v/ D 0;

�.@tv C v:@xv/C @x.�
2/ D �@x

�
@2x�

�
� j@x�j2

2�2

�
;

(34)

which can be seen as a compressible Euler system with pressure law p.�/ D �2 and
a quantum pressure term. It is shown in [24] that (32) or (34) can be approximated
by the linear wave equation. We justify here the long wave approximation on larger
time scales O."�3/ and, following Kuznetsov and Zakharov, introduce the slow
variables :

X D ".x C p
2t/; and � D "3

2
p
2

t: (35)

This corresponds to a reference frame traveling to the left with velocity
p
2 in the

original variables .x; t/. In this frame the left going wave is stationary while the right
going wave has a speed 8"�2 and is appropriate to study waves traveling to the left
(we need to impose additional assumptions which imply the smallness of the right
going waves).

We define the rescaled functions N" and�" as follows

N".X; �/ D 6

"2
�.x; t/ D 6

"2
�
�X

"
� 4�

"3
;
2
p
2�

"3

�
;

�".X; �/ D 6
p
2

"
'.x; t/ D 6

p
2

"
'
�X

"
� 4�

"3
;
2
p
2�

"3

�
; (36)

where � D % exp.i'/ and � D 1 � %2 D 1 � j� j2.
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Theorem 5. [25] Let " > 0 be given and assume that the initial data �0.�/ D
�.�; 0/ belong to X4.R/ and satisfy the assumption

kN0
" kH3.R/ C "k@4xN0

" kL2.R/ C k@x�
0
"kH3.R/ � K0: (37)

Let N" and M" denote the solutions to the Korteweg-de Vries equation

@�N C @3xN C N@xN D 0 (38)

with initial data N0
" , respectively @x�

0
" . There exist positive constants "0 and K1,

depending possibly only on K0 such that, if " � "0, we have for any � 2 R,

kN".�; �/� N".�; �/kL2.R/ C kM".�; �/� @x�".�; �/kL2.R/

� K1
�
"C kN0

" � @x�
0
"kH3.R/

	
exp.K1j� j/:

(39)

• This is a convergence result to the KdV equation for appropriate prepared initial
data.

• Since the norms involved are translation invariant, the KdV approximation can
be only valid if the right going waves are negligible. This is the role of the term
kN0

" � @x�
0
"kH3.R/:

• In particular, if kN0
" � @x�

0
"kH3.R/ � C"˛ , with ˛ > 0, then the approximation

is valid on a time interval t 2 Œ0; S"� with S" D o."�3j log."/j/. Moreover, if
kN0

" �@x�
0
"kH3.R/ is of order O."/, then the approximation error remains of order

O."/ on a time interval t 2 Œ0; S"� with S" D O."�3/.

The functions N" and @X�" are rigidly constrained one to the other:

Theorem 6. Let � be a solution to GP in C 0.R;H4.R// with initial data �0.
Assume that (37) holds. Then, there exists some positive constant K, which does
not depend on " nor � , such that

kN".�; �/˙ @X�".�; �/kL2.R/ � kN0
" ˙ @X�

0
"kL2.R/ C K"2

�
1C j� j	; (40)

for any � 2 R.

The approximation errors provided by the previous theorems diverge as time
increases. Concerning the weaker notion of consistency, we have the following
result whose peculiarity is that the bounds are independent of time.

Theorem 7. Let � be a solution to GP in C 0.R;H4.R// with initial data �0.
Assume that (37) holds. Then, there exists some positive constant K, which does
not depend on " nor � , such that

k@�U" C @3XU" C U"@XU"kL2.R/ � K."C kN0
" � @X�"kH3.R//; (41)

for any � 2 R, where U" D N"C@x�"
2

.
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• One gets explicit bounds for the traveling wave solutions

�.x; t/ D vc.x C ct/:

Solutions do exist for any value of the speed c in the interval Œ0;
p
2/. Next, we

choose the wave-length parameter to be " D p
2 � c2, and take as initial data �" the

corresponding wave vc. We consider the rescaled function

�".X/ D 6

"2
�c

�x

"

�
;

where �c 
 1� jvcj2. The explicit integration of the travelling wave equation for vc

leads to the formula

�".X/ D �.x/ 
 3

ch2
�

X
2

	 :

The function � is the classical soliton to the Korteweg-de Vries equation, which is
moved by the KdV flow with constant speed equal to 1, so that

N".X; �/ D �.X � �/:

On the other hand, we deduce from (36) that N0
" D �, so that

N".X; �/ D �
�

X � 4

"2

�
1 �

r
1 � "2

2

�
�
�
:

Therefore, we have for any � 2 R,

kN".�; �/� N".�; �/kL2.R/ D O."2�/:

This suggests that the " error in the main theorem should be of order "2. This is
proved in [26] at a cost of higher regularity on the initial data (and also for a two
way propagation, described by a system of two KdV equations).

We now give some elements of the proofs which rely on energy methods. We
first write the equations for N" and �":

@XN" � @2x�" C "2

2

�1
2
@�N" C 1

3
N"@

2
X�" C 1

3
@XN"@X�"

�
D 0; (42)

and

@X�" � N" C "2

2

�1
2
@��" C @2XN"

1 � "2

6
N"

C 1

6
.@X�"/

2
�

C "4

24

.@XN"/2

.1 � "2

6
N"/2

D 0: (43)



IST Versus PDE: A Comparative Study 405

The leading order in this expansion is provided by N" � @X�" and its spatial
derivative, so that an important step is to keep control on this term. In view of (42)
and (43) and d’Alembert decomposition, we are led to introduce the new variables
U" and V" defined by

U" D N" C @X�"

2
; and V" D N" � @X�"

2
;

and compute the relevant equations for U" and V",

@�U" C @3XU" C U"@XU" D �@3XV" C 1

3
@X
�
U"V"

	C 1

6
@X
�
V2
"

	 � "2R"; (44)

and

@�V"C 8

"2
@xV" D @3XU"C@3XV"C 1

2
@x.V

2
" /�

1

6
@x.U"/

2� 1

3
@X.U"V"/C"2R"; (45)

where the remainder term R" is given by the formulae

R" D N"@3XN"

6.1� "2

6
N"/

C .@XN"/.@2XN"/

3.1 � "2

6
N"/2

C "2

36

.@XN"/3

.1 � "2

6
N"/3

: (46)

The main step is to show that the RHS of the equation for U" is small in suitable
norms. In particular one must show that V" which is assumed to be small at time
� D 0 remains small, and that U", assumed to be bounded at time � D 0,
remains bounded in appropriate norms. We use in particular various conservation
laws provided by the integrability of the one-dimensional Gross-Pitaevskii equation.

• For instance we use the conservation of momentum and energy to get the L2

estimates.
• It turns out that the other conservation laws behave as higher order energies and

higher order momenta. We use them to get :

Theorem 8. Let � be a solution to (GP) in C 0.R;H4.R// with initial data �0.
Assume that (37) holds. Then, there exists some positive constant K, which does not
depend on " nor � , such that

kN".�; �/kH3.R/ C "k@4XN".�; �/kL2.R/ C k@X�".�; �/kH3.R/ � K; (47)

and

kN".�; �/˙ @X�".�; �/kH3.R/ � K
�kN0

" ˙ @X�
0
"kH3.R/ C "

	
; (48)

for any � 2 R.
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The proof of the previous result led to a number of facts linked to integrability
which have independent interest:

• It provides expressions for the invariant quantities of GP5 and prove that they are
well-defined in the spaces Xk.R/. Their expressions are not a straightforward
consequence of the induction formula of Zakharov and Shabat since many
renormalizations have to be performed to give them a sound mathematical
meaning.

• It establishes rigorously that they are conserved by the GP flow in the appropriate
functional spaces.

• It displays a striking relationship between the conserved quantities of the Gross-
Pitaevskii equation and the KdV invariants:

Ek.N; @X�/ � p
2Pk.N; @x�/ D EKdV

k

�N � @X�

2

�
C O."2/:

It would be interesting to investigate further connections between the IST theories
of the KdV and GP equations.

Remark 8. We do not know of a rigorous result by IST methods describing
the qualitative behavior of a solution (solitons+radiation,: : :) of the GP equation
corresponding to a smooth and localized initial data.

4 The Kadomtsev-Petviashvili Equation

The Kadomtsev-Petviashvili equations are universal asymptotic models for disper-
sive systems in the weakly nonlinear, long wave regime, when the wavelengths in
the transverse direction are much larger than in the direction of propagation.

The (classical) Kadomtsev-Petviashvili (KP) equations read

.ut C uxxx C uux/x ˙ uyy D 0: (49)

Actually the (formal) analysis in [101] consists in looking for a weakly transverse
perturbation of the one-dimensional transport equation

ut C ux D 0: (50)

This perturbation amounts to adding a nonlocal term, leading to

ut C ux C 1

2
@�1

x uyy D 0: (51)

5They appear in pairs: generalized energies Ek and generalized momenta Pk.
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Here the operator @�1
x is defined via Fourier transform,

d@�1
x f .�/ D i

�1
Of .�/; where � D .�1; �2/:

When this same formal procedure is applied to the KdV equation written in the
context of water waves (where T � 0 is the Bond number measuring the surface
tension effects)

ut C ux C uux C .1 � 1

3
T/uxxx D 0; x 2 R; t � 0; (52)

this yields the KP equation in the form

ut C ux C uux C .1 � 1

3
T/uxxx C 1

2
@�1

x uyy D 0: (53)

By change of frame and scaling, (53) reduces to (49) with the C sign (KP II) when
T < 1

3
and the � sign (KP I) when T > 1

3
.

Of course the same formal procedure could be applied to any one-dimensional
weakly nonlinear dispersive equation of the form

ut C ux C f .u/x � Lux D 0; x 2 R; t � 0; (54)

where f .u/ is a smooth real-valued function (most of the time polynomial) and L a
linear operator taking into account the dispersion and defined in Fourier variable by

F.Lu/.�/ D p.�/Fu.�/; (55)

where the symbol p.�/ is real-valued. The KdV equation corresponds for instance
to f .u/ D 1

2
u2 and p.�/ D ��2: This leads to a class of generalized KP equations

ut C ux C f .u/x � Lux C 1

2
@�1

x uyy D 0; x 2 R; t � 0: (56)

Thus one could have KP versions of the Benjamin-Ono, Intermediate Long Wave,
Kawahara, etc: : : equations, but only the KP I and KP II equations are completely
integrable (in some sense).

Let us notice, at this point, that alternative models to KdV-type equations (54)
are the equations of Benjamin–Bona–Mahony (BBM) type

ut C ux C uux C Lut D 0 (57)

with corresponding two-dimensional “KP–BBM-type models” (in the case p.�/ � 0)

ut C ux C uux C Lut C @�1
x @2yu D 0 (58)
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or, in the derivative form

.ut C ux C uux C Lut/x C @2yu D 0 (59)

and free group

S.t/ D e�t.ICL/�1Œ@xC@�1
x @2y � :

It was only after the seminal paper [101] that Kadomtsev-Petviashvili type equations
have been derived as asymptotic weakly nonlinear models (under an appropriate
scaling) in various physical situations (see [4] for a formal derivation in the context
of water waves [142–144] for a rigorous one in the same context) and [102] in a
different context.

Remark 9. In some physical contexts (not in water waves!) one could consider
higher dimensional transverse perturbations, which amounts to replacing @�1

x uyy

in (66) by @�1
x �?u, where �? is the Laplace operator in the transverse variables.

For instance, as in the one-dimensional case the KP I equation (in both two and
three dimensions) also describes after a suitable scaling the long wave transonic
limit of the Gross-Pitaevskii equation (see [28] for the solitary waves and [45] for
the Cauchy problem).

Note again that in the classical KP equations, the distinction between KP I and
KP II arises from the sign of the dispersive term in x.

4.1 KP by Inverse Scattering

It is usual in the Inverse Scattering community to write the Kadomtsev-Petviashvili
equations as

@x.@tu C 6u@xu C @3xu/ D �3�2@2t u; (60)

where �2 D 1 corresponding to KP II and �2 D �1 to KP I.

4.1.1 The KP II Equation

The direct scattering problem is associated to the heat equation with the initial
potential u0.x; y/ W

�@y� C @2x� C 2ik@x� C u0� D 0; �jkj!1 D 1; (61)

and the scattering data are calculated by
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F.k/ D .2�/�1sign.Re k/
Z
R2

u0.x; y/�.x; y; k/expf�i.k C Nk/x � .k2 � Nk2/ygdxdy:

The time evolution of the scattering data is trivial:

F .k; t/ D F.k/exp.4it.k3 C Nk3//:

The inverse scattering problem, that is the reconstruction of the potential u.x; y; t/
reduces to a N@ problem:

�
@k� D  F.�k/exp.itS/;
@k D ��F.k/exp.�itS/

(62)

�
�

 

�
!
�
1

1

�
as jkj ! 1; and where

S D 4.k3 C Nk3/C .k C Nk/� � i.k2 � Nk2/�; � D x=t; and � D y=t:

It turns out that, for reasons we already mentioned in the BO and ILW cases, the best
known result on the direct scattering problem required that the initial data is small
in spaces of type L1 \ L2; yielding global existence of uniformly bounded (in the
space of L2 functions with bounded Fourier transform) solutions of KP II provided
u0 has small derivatives up to order 8 in L1 \ L2.R2/ [225]. We will see that PDE
methods provide a much better result.

Remark 10. In [82], Grinevich has proven that the direct spectral problem is
nonsingular for real nonsingular exponentially decaying at infinity, arbitrary large
potentials. Unfortunately, this does not mean that the solution of the direct scattering
problem belongs to an appropriate functional class for existence of an inverse
scattering problem when t > 0: In fact, the direct problem and inverse problem are
different and the solvability of the first one does not give the automatic solvability
of the second one.

Remark 11. Since KP II type equations do not have localized solitary waves [36],
one expects the large time behavior of solutions to be just governed by scattering.
In particular, one can conjecture safely than the global solutions of KP II (that exist
by the result of Bourgain, see [40] and the discussion below) should decay in the
sup-norm as 1=t: This is also suggested by our numerical simulations [126].

A very precise asymptotics as t ! 1 is given in [120] (see also [121]) for
a specific class of scattering data. It differs according to different domains in the
.x; y; t/ space, expressed in terms of the variables � D x=t and � D y=t. The main
term of the asymptotics has order O.1=t/ (which is exactly the decay rate of the free
linear evolution, see [202]) and rapidly oscillates. In one of the domains, the decay
is o.1=t/: It is not clear however how the hypothesis on the scattering data translate
to the space of initial data.
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On the other hand, the Inverse Scattering method has been used formally in [5]
and rigorously in [6] to study the Cauchy problem for the KP II equation with
nondecaying data along a line, that is u.0; x; y/ D u1.x � vy/ C �.x; y/ with
�.x; y/ ! 0 as x2 C y2 ! 1 and u1.x/ ! 0 as jxj ! 1. Typically, u1
is the profile of a traveling wave solution U.k:x � !t/ with its peak localized
on the moving line k:x D !t: It is a particular case of the N- soliton of the
KP II equation discovered by Satsuma [200] (see the derivation and the explicit
form when N D 1; 2 in the Appendix of [181]). As in all results obtained for KP
equations by using the Inverse Scattering method, the initial perturbation of the non-
decaying solution is supposed to be small enough in a weighted L1 space (see [6]
Theorem 13).

4.1.2 The KP I Equation

The direct scattering problem for KP I is associated to the Schrödinger operator with
potential (see [63])

i t C  xx D �u :

As for the KP II case, there is a restriction on the size of the initial data to solve the
direct scattering problem see [152]. In [235] the nonlocal Riemann-Hilbert problem
for inverse scattering is shown to have a solution leading to the global solvability
of the Cauchy problem (with a smallness condition on the initial data). A formal
asymptotic of small solutions is given in [155]. It would be interesting to provide a
rigorous proof of this result.

It is proven in [216] that the solution constructed by the IST belongs to the
Sobolev spaces Hs.R2/; s � 0; provided the initial data is a small function in the
Schwartz space S .R2/; thus not assuming the zero mass constraint (see Sect. 4.2.1
below) contrary to the result in [235] (see also [67] where the IST solution is shown
to be C1 for a small Schwartz initial data).

Finally the Cauchy problem of the background of a one-line soliton is solved
formally (for small initial perturbations) in [64].

4.1.3 Conservation Laws

The KP equations being integrable have an infinite set of (formally) conserved
quantities. For instance, see [232] the KP I equation has a Lax pair representation.
This in turn provides an algebraic procedure generating an infinite sequence of
conservation laws. More precisely, if u is a formal solution of the KP I equation
then

d

dt

h Z
�n

i
D 0;
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where �1 D u, �2 D u C i@�1
x @yu and for n � 3,

�n D
� n�2X

kD1
�k �nC1�k

�
C @x�n�1 C i@�1

x @y�n�1 :

For n D 3, we find the conservation of the L2 norm, n D 5 corresponds to the
energy functional giving the Hamiltonian structure of the KP I equation, that is the
following quantities are well defined and conserved by the flow (in an appropriate
functional setting, see [169])

M.�/ D
Z
R2

juj2;

E.u/ D 1

2

Z
R2

u2x C 1

2

Z
R2

.@�1
x uy/

2 � 1

6

Z
R2

u3;

F.u/ D 3

2

Z
R2

u2xx C 5

Z
R2

u2y C 5

6

Z
R2

.@�2
x uyy/

2 � 5

6

Z
R2

u2@�2
x uyy

�5
6

Z
R2

u.@�1
x uy/

2 C 5

4

Z
R2

u2 uxx C 5

24

Z
R2

u4:

As was noticed in [169], there is a serious analytical obstruction to give sense to �9
as far as R2 is considered as a spatial domain. More precisely the conservation law
which controls ku3x.t; �/kL2 involves the L2 norm of the term @�1

x @y.�
2/which has

no sense for a nonzero function � in H3.R2/ say. Actually one easily checks that if
@�1

x @y.�
2/ 2 L2.R2/; then

R
R2
@y.u2/dx D @y

R
R2

u2dx 
 0; 8y 2 R; which, with
u 2 L2.R2/; implies that u 
 0: Similar obstructions occur for the higher order
“invariants”.

The fact that the invariants �n; n � 9 do not make sense for a nonzero function
yields serious difficulties to define the so-called KP hierarchy.

4.2 KP by PDE Methods

The basic difference between KP I and KP II as far as PDE techniques are
concerned, is that KP I is quasilinear while KP II is semilinear. We recall
that this means that the Cauchy problem for KP I cannot be solved by a Picard
iterative scheme implemented on the integral Duhamel formulation, for any initial
data in very general spaces (that is the Sobolev spaces Hs.R2/;8s 2 R; or the
anisotropic ones Hs1;s2 .R2/;8s1; s2 2 R/ . Alternatively, this implies that the flow
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map u0 7! u.t/ cannot be smooth in the same spaces. Here are precise statements of
those results from [168].

Theorem 9. Let s 2 R and T be a positive real number. Then there does not exist a
space XT continuously embedded in C.Œ�T;T�;Hs.R// such that there exists C > 0

with

kS.t/�kXT � Ck�kHs.R/; � 2 Hs.R/; (63)

and





Z t

0

S.t � t0/
�
u.t0/ux.t

0/
�

dt0






XT

� Ckuk2XT
; u 2 XT : (64)

Note that (63) and (64) would be needed to implement a Picard iterative scheme
on the integral (Duhamel) formulation of the equation in the space XT . As a
consequence of Theorem 9 we can obtain the following result.

Theorem 10. Let .s1; s2/ 2 R
2 (resp. s 2 R). Then there exists no T > 0 such that

KPI admits a unique local solution defined on the interval Œ�T;T� and such that the
flow-map

St W � 7�! u.t/; t 2 Œ�T;T�

for (1) is C2 differentiable at zero from Hs1;s2 .R2/ to Hs1;s2 .R2/, (resp. from Hs.R2/

to Hs.R2/).

Remark 12. It has been proved in [134] that the flow map cannot be uniformly
continuous in the energy space.

Proof. We merely sketch it (see [168] for details). Let

�.�; �; �/ D � � �3 � �2

�
;

�1.�1; �1; �1/ D �.�1; �1; �1/;

�2.�1; �; �1; �1; �1; �1/ D �.� � �1; � � �1; � � �1/:

We then define

�.�; �1; �; �1/ WD 3��1.� � �1/ � .��1 � �1�/2
��1.� � �1/

:

Note that �.�; �1; �; �1/ D �1 C �2 � � . The “resonant” function �.�; �1; �; �1/
plays an important role in our analysis. The “large” set of zeros of �.�; �1; �; �1/
is responsible for the ill-posedness issues. In contrast, the corresponding resonant
function for the KP II equation is
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�.�; �1; �; �1/ WD 3��1.� � �1/C .��1 � �1�/
2

��1.� � �1/ :

Since it is essentially the sum of two squares, its zero set is small and this is the key
point to establish the crucial bilinear estimate in Bourgain’s method [40].

Remark 13. It is worth noticing that the property of the resonant set of the KP II
equation was used by Zakharov [228] to construct a Birkhoff formal form for the
periodic KP II equation with small initial data. On the other hand, the fact that
for the KP I equation the corresponding resonant set is non trivial is crucial in the
construction of the counter-examples of [168] and is apparently an obstruction to
the Zakharov construction for the periodic KP I equation.

Since the next property of KP equations is only based on the presence of the
operator @�1

x @2y we will consider it in the context of generalized KP type equations:

ut C ux C f .u/x � Lux C 1

2
@�1

x uyy D 0; .x; y/ 2 R
2; t � 0; (65)

where bLu.�/ D p.�/Ou.�/; p real and f .u/ is a nonlinear function, for instance f .u/ D
1

qC1uqC1: An important particular case is the generalized KP equation

ut C ux C urux C uxxx ˙ @�1
x uyy D 0; .x; y/ 2 R

2; t � 0; (66)

where r 2 N or r D p
q ; p; q relatively prime integers, q odd.

4.2.1 The Zero Mass Constraint

In (65) or (66), it is implicitly assumed that the operator @�1
x @2y is well defined, which

a priori imposes a constraint on the solution u, which, in some sense, has to be an
x-derivative. This is achieved, for instance, if u 2 S 0.R2/ is such that

��1
1 �22 Ou.t; �1; �2/ 2 S 0.R2/ ; (67)

thus in particular if ��1
1 Ou.t; �1; �2/ 2 S 0.R2/. Another possibility to fulfill the

constraint is to write u as

u.t; x; y/ D @

@x
v.t; x; y/; (68)

where v is a continuous function having a classical derivative with respect to x,
which, for any fixed y and t ¤ 0, vanishes when x ! ˙1. Thus one has

Z 1

�1
u.t; x; y/dx D 0; y 2 R; t ¤ 0; (69)
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in the sense of generalized Riemann integrals. Of course the differentiated version
of (65), (66), for instance

.ut C ux C uux � Lux/x C @2yu D 0; (70)

can make sense without any constraint of type (67) or (69) on u, and so does the
Duhamel integral representation of (66), (65), for instance

u.t/ D S.t/u0 �
Z t

0

S.t � s/.u.s/ux.s//ds; (71)

where S.t/ denotes the (unitary in all Sobolev spaces Hs.R2/) group associated
with (65),

S.t/ D e�t.@x�L@xC@�1
x @2y / : (72)

In particular, the results established on the Cauchy problem for KP type equations
which use the Duhamel (integral ) formulation (see for instance [39] for the KP II
equation and [205] for the KP II BBM equation) are valid without any constraint on
the initial data.

One has however to be careful in which sense the differentiated equation is taken.
For instance let us consider the integral equation

u.x; y; t/ D S.t/u0.x; y/ �
Z t

0

S.t � t0/Œu.x; y; t0/ux.x; y; t/�dt0; (73)

where S.t/ is here the KP II group, for initial data u0 in Hs.R2/; s > 2, (thus u0 does
not satisfy any zero mass constraint), yielding a local solution u 2 C.Œ0;T�I Hs.R2//.
By differentiating (73) first with respect to x and then with respect to t; one obtains
the equation

@t@xu C @x.uux/C @4xu C @2yu D 0 in C.Œ0;T�I Hs�4.R2//:

However, the identity @t@xu D @x@tu holds only in a very weak sense, for example
in D0..0;T/ � R

2/:

On the other hand, a constraint has to be imposed when using the Hamiltonian
formulation of the equation. In fact, the Hamiltonian for (70) is

1

2

Z �
�u Lu C .@�1

x uy/
2 C u2 C u3

3

�
(74)

and the Hamiltonian associated with (59) is
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1

2

Z �
.@�1

x uy/
2 C u2 C u3

3

�
: (75)

It has been established in [170] that, for a rather general class of KP or KP–
BBM equations, the solution of the Cauchy problem obtained for (70), (59) (in
an appropriate functional setting) satisfies the zero-mass constraint in x for any
t ¤ 0 (in a sense to be made precise below), even if the initial data does not. This
is a manifestation of the infinite speed of propagation inherent to KP equations.
Moreover, KP type equations display a striking smoothing effect : if the initial data
belongs to the space L1.R2/\ H2;0.R2/ and if u 2 C.Œ0;T�I H2;0.R2//6 is a solution
in the sense of distributions, then, for any t > 0; u.:; t/ becomes a continuous
function of x and y (with zero mean in x). Note that the space L1.R2/ \ H2;0.R2/ is
not included in the space of continuous functions.

The key point when proving those results is a careful analysis of the fundamental
solution of KP-type equations7 which turns out to be an x derivative of a continuous
function of x and y, C1 with respect to x; which, for fixed t ¤ 0 and y, tends to zero
as x ! ˙1. Thus its generalized Riemann integral in x vanishes for all values of
the transverse variable y and of t ¤ 0. A similar property can be established for the
solution of the nonlinear problem see [170]. Those results have been checked in the
numerical simulations of [130] as can be seen in Fig. 7 taken from this reference. It
can be seen that for initial data not satisfying the constraint, after an arbitrary short
time some sort of infinite trench forms the integral over which just ensures that the
constraint holds at all t.

We have already referred to [67, 216] for a rigorous approach to the Cauchy
problem with (small) initial data which do not satisfy the zero-mass condition via
the Inverse Spectral Method in the integrable case.

Nevertheless, the singularity at �1 D 0 of the dispersion relation of KP type
equations make them rather bad asymptotic models. First the singularity at �1 D 0

yields a very bad approximation of the dispersion relation of the original system (for
instance the water wave system) by that of the KP equation.

Another drawback is the poor error estimate between the KP solution and the
solution of the original problem. This has been established clearly in the context of
water waves see [142–144].

4.2.2 The Cauchy Problem by PDE Techniques

All the KP type equations can be viewed as a linear skew-adjoint perturbation
of the Burgers equation. Using this structure, it is not difficult (for instance by a
compactness method) to prove that the Cauchy problem is locally well-posed for

6We will see below that KP type equations (in particular the classical KP I and KP II equations) do
possess solutions in this class.
7In the case of KP II, one can use the explicit form of the fundamental solution found in [195].
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Fig. 7 Solution at time t D 4:8 � 10�4 to the KP-I solution with initial data sech 2
p

x2 C y2,
which are not subject to the zero mass constraint

data in the Sobolev spaces Hs.R2/; s > 2 (see [97, 202, 222] for results in this
direction).

Unfortunately, this kind of result does not suffice to obtain the global well-
posedness of the Cauchy problem. This would need to use the conservation laws
of the equations. For general KP type equations, there are only two of them, the
conservation of the L2 norm and the conservation of the energy (Hamiltonian). For
the general equation (66) where f .u/ D 1

pC1upC1; and without the transport term ux

(which can be eliminated by a change of variable), we recall that the Hamiltonian
reads

E.u/ D 1

2

Z �
�u Lu C .@�1

x uy/
2 C upC2

p C 2

�
; (76)

and for the classical KP I/II equations

E.u/ D 1

2

Z �
u2x ˙ .@�1

x uy/
2 � u3

3

�
; (77)

where the C sign corresponds to KP I and the � sign to KP II. We recall that the
“integrable” KP I and KP II equations possess more conservation laws, but only a
finite number of them make sense rigorously (see above).

In any case, it is clear that for KP II type equation, the Hamiltonian is useless to
control any Sobolev norm, and to obtain the global well-posedness of the Cauchy
problem one should consider L2 solutions, a very difficult task. On the other hand,
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for KP I type equations, one may hope (for a not too strong nonlinearity) to have a
global control in the energy space, that is

E D fu 2 L2; uLu 2 L2; @�1
x uy 2 L2g: (78)

For the usual KP I equation, E reduces to

Y D fu 2 L2; ux 2 L2; @�1
x uy 2 L2g:

The problem is thus reduced to proving the local well-posedness of the Cauchy
problem in spaces of very low regularity, a difficult matter which has attracted a lot
of efforts in the recent years.

Remark 14. By a standard compactness method, one obtains easily the existence of
global weak finite energy solutions (without uniqueness) to the KP I equation see
eg [221].

A fundamental step for KP II is made in [39] who proved that the Cauchy
problem for the KP II equation is locally (thus globally in virtue of the conservation
of the L2 norm) for data in L2.R2/; and even in L2.T2/: This result is based on
an iterative method implemented on the Duhamel formulation, in the functional
framework of the Fourier restriction Xs;b spaces of Bourgain (see a nice description
of this framework in [80]). The basic bilinear estimate which aims to regain the
loss of one x-derivative uses in a crucial way the fact (both in the periodic and full
space case) that the dispersion relation of the KP II equation induces the triviality
of a resonant set (the zero set of the aforementioned resonant function). With
in particular the injection of various linear dispersive estimates (see for instance
[18, 202]), Bourgain’s result was later improved (see [87, 88, 93, 217] and the
references therein) to allow the case of initial data in negative order Sobolev spaces.

We also would like to mention the paper by Kenig and Martel [113] where the
Miura transform is used to prove the global well-posedness of a modified KP II
equation. Moreover it was proven in [172] that the Cauchy problem for KP II is
globally well-posed with initial data

u.0; x; y/ D �.x; y/C  c.x; y/; (79)

where c is the profile8 of a non-localized (i.e. not decaying in all spatial directions)
traveling wave of the KP II equation moving with speed c ¤ 0.

We recall ([36]) that, contrary to the KP I equation, the KP II equation does not
possess any localized in both directions traveling wave solution. The background
solution  c could be for instance the line soliton (1-soliton) of the Korteweg-de
Vries (KdV) equation

8This means that  .x � ct; y/ solves KP II.
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sc.x; y/ D 3c

2
cosh�2

�p
c x

2

�
; (80)

or the N-soliton solution of the KdV equation, N � 2: The KdV N-soliton is of
course considered as a two dimensional (constant in y) object.

There are two suitable settings for an initial perturbation �, either localized in x
and periodic in y (eg � 2 L2.R � T/) or localized (eg � 2 L2.R2/:/ Solving the
Cauchy problem in both those functional settings can be viewed as a preliminary
step towards the study of the dynamics of the KP II equation on the background of
a non fully localized solution, in particular towards a PDE proof of the nonlinear
stability of the KdV soliton or N-soliton with respect to transversal perturbations
governed by the KP II flow. This has been established in [6] Proposition 17 by
Inverse Scattering methods. The advantage of the PDE approach is that it can be
straightforwardly applied to non integrable equations such as the higher order KP II
equations see [203, 204].

We now state the main result of [172] in the two aforementioned functional
settings.

Theorem 11. The Cauchy problem associated with the KP II equation is globally
well-posed in Hs.R � T/ for any s � 0.

Theorem 12. Let  c.x � ct; y/ be a solution of the KP II equation such that for
some s � 0,

Js c W R
2 �! R

is bounded and belongs to L2xL1
y .9 Then for every � 2 Hs.R2/ there exists a unique

global solution u of KP II with initial data (79) satisfying for all T > 0,

Œu.t; x; y/ �  c.x � ct; y/� 2 X1=2C;sT \ X3=4C;sT \ C.Œ0;T�I Hs.R2//:

Furthermore, for all T > 0, the map � 7! u is continuous from Hs.R2/ to
C.Œ0;T�I Hs.R2///.

Remark 15. As was previously noticed, the hypothesis on  c in Theorem 12 is
satisfied by the N-soliton solutions of the KdV equation, but not by a function  
which is non-decaying along a line f.x; y/jx � vy D x0g; as for instance the line-
soliton of the KP II equation which has the form .x�vy�ct/:However, the change
of variables .X D x;Y D x � vy/ transforms the KP II equation into

ut � 2vuY C v2uX C uXXX C uuX C @�1
X uYY D 0

9The bounds can of course depend on the propagation speed c.
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and the analysis applies to this equation with an initial datum which is a localized
(in .X;Y/) perturbation of  .X/:

As was previously mentioned the Cauchy problem for the KP I cannot be solved
by a Picard iteration on the integral formulation and one has to implement instead
sophisticated compactness methods to obtain the local well-posedness and to use
the conservation laws to get global solutions. For the classical KP I equation, the
first global well-posedness result for arbitrary large initial data in a suitable function
space was obtained in [169] in the space

Z D f� 2 L2.R2/ W k�kZ < 1g;

where

k�kZ D j�j2 C j�xxxj2 C j�yj2 C j�xyj2 C j@�1
x �yj2 C j@�2

x �yyj2:

By an anisotropic Sobolev embedding theorem cf. [22] if � 2 Z then �; �x 2
L1.R2/; so the global solution is uniformly bounded in space and time. Moreover,
if � 2 Z then the first three formal invariants M.�/;E.�/;F.�/ are well defined and
conserved. Furthermore it is easily checked that any finite energy solitary waves (in
particular the lumps, see below) of the KP I equation belong to Z.

The proof is based on a rather sophisticated compactness method and uses the
first invariants of the KP I equation to get global in time bounds. As already
mentioned, only a small number of the formal invariants make sense and in order
to control j�xxxj2 one is thus led to introduce a quasi-invariant (by skipping the non
well defined terms) which eventually will provide the desired bound. There are also
serious technical difficulties to justify rigorously the conservation of the meaningful
invariants along the flow and to control the remainder terms

The result of [169] was extended by Kenig [111] (who considered initial data
in a larger space), and by Ionescu, Kenig and Tataru [95] who proved that the KP I
equation is globally well-posed in the energy space Y. Moreover it is proven in [171]
that the Cauchy problem for the KP I equation is globally well-posed for initial
data which are localized perturbations (of arbitrary size) of a non-localized i.e. not
decaying in all directions) traveling wave solution (e.g. the KdV line solitary wave
or the Zaitsev solitary waves which are localized in x and y periodic or conversely
(see Sect. 4.2 below).

4.2.3 Long Time Behavior

The results above do not give information on the behavior of the global solution
for large time. Actually no result in this direction is known by PDE techniques.
However, one can make precise the large time behavior of small solutions to the
generalized KP equation (66) when r � 2.
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Actually, it is shown in [92, 177] that for initial data small in an appropriate
weighted Sobolev space, (66) for r � 2 has a unique global solution satisfying

ju.:; t/j1 � C.1C jtj/�1.Log.1C jtj//�;
j@xu.:; t/j1 � C.1C jtj/�1;

where � D 1 when r D 2 and � D 0 when r > 2: This result does not distinguish
between the KP I and KP II case since it relies on the (same) large time asymptotic
of the KP I and KP II groups S˙.t/ D eit.�@3x˙@�1x@

2
y /; namely see [202]

jS˙.t/�j1 � C

jtj j�j1:

Remark 16. Since this phenomena does not happen for the classical KP I and KP
II equation, we do not comment on the possible blow-up in finite time of solutions
to the generalized KP I equation (66) when r � 4

3
: We refer to Liu [151] for a

theoretical study and to [122, 126] for numerical simulations.

Remark 17. Issues on the dispersionless limit of KP equations can be found in [123,
129].

4.3 Solitary Waves

We are interested here in localized solitary wave solutions to the KP equations, that
is solutions of KP equations of the form

u.x; y; t/ D  c.x � ct; y/;

where y is the transverse variable and c > 0 is the solitary wave velocity. The
solitary wave is said to be localized if  c tends to zero at infinity in all directions.
For such solitary waves, the energy space Y is natural. Recall that

Y D Y.R2/ D fu 2 L2.R2/; ux 2 L2.R2/; @�1
x uy 2 L2.R2/g;

and throughout this section we will deal only with finite energy solitary waves.
Due to its integrability properties, the KP I equation possesses a localized, finite

energy, explicit solitary wave, the lump:

�c.x � ct; y/ D 8c.1� c
3
.x � ct/2 C c2

3
y2/

.1C c
3
.x � ct/2 C c2

3
y2/2

: (81)

The formula was found in [154] where one can also find a study of the interaction
of lumps. The interactions do not result in a phase shift as in the case of line
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solitons (KdV solitons). More general rational solutions of the KPI equation were
subsequently found [140, 187, 188, 200, 201]. These solutions were incorporated
within the framework of the IST in [223] where it was observed that, in general,
the spectral characterization of the potential must include, in addition to the usual
information about discrete and continuous spectrum, an integer-valued topological
quantity (the index or winding number), defined by an appropriate two-dimensional
integral involving both the solution of the KP equation and the corresponding
scattering eigenfunction.

Another interesting explicit solitary wave of the KP I equation which is localized
in x and periodic in y has been found by Zaitsev [226]. It reads

Zc.x; y/ D 12˛2
1 � ˇ cosh.˛x/ cos.ıy/

Œcosh.˛x/ � ˇ cos.ıy/�2
; (82)

where

.˛; ˇ/ 2 .0;1/� .�1;C1/;

and the propagation speed is given by

c D ˛2
4 � ˇ2

1 � ˇ2
:

Let us observe that the transform ˛ ! i˛, ı ! iı, c ! ic produces solutions of
the KP I equation which are periodic in x and localized in y. No real non-singular
rational solutions are known for KP II. Moreover, it was established in [36] that
no localized solitary waves exist for the KP II equation (and generalized KP II
equations).

For obvious (stability) issues it is important to characterize the solitary waves
by variational principles. We will consider in fact the slightly more general class of
generalized KP I equations

ut C ux C upux C uxxx � @�1
x uyy D 0; .x; y/ 2 R

2; t � 0; (83)

where again p 2 N or p D p1
q1
; p1; q1 relatively prime integers, q1 odd.

Solitary waves are looked for in the energy space Y.R2/ which can also be
defined see [36] as the closure of the space of x derivatives of smooth and compactly
supported functions in R

2 for the norm

k@xf kY.R2/ 

�
krf k2L2.R2/ C k@2x f k2L2.R2/

� 1
2
:

The equation of a solitary wave  of speed c is given by

c@x �  @x � @3x C @�1
x .@2y / D 0; (84)
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which implies

c@xx � . @x /x � @4x C @2y D 0: (85)

When  2 Y.R2/, the function @�1
x @2y is well-defined see [36], so that (84) makes

sense. Given any c > 0, a solitary wave  c of speed c is deduced from a solitary
wave  1 of velocity 1 by the scaling

 c.x; y/ D c 1.
p

cx; cy/: (86)

We now introduce the important notion of ground state solitary waves. We set

EKP. / D 1

2

Z
R2

.@x /
2 C 1

2

Z
R2

.@�1
x @y /

2 � 1

2.p C 2/

Z
R2

 pC2;

and we define the action

S.N/ D EKP.N/C c

2

Z
R2

N2:

We call ground state, a solitary wave N which minimizes the action S among all
finite energy non-constant solitary waves of speed c (see [36] for more details). It
was proven in [36] that ground states exist if and only if c > 0 and 1 � p < 4.
Moreover, when 1 � p < 4

3
; the ground states are minimizers of the Hamiltonian

EKP with prescribed mass (L2 norm).

Remark 18. When p D 1 (the classical KP I equation), we should emphasize
that it is unknown (but conjectured) whether the lump solution is a ground state.
This important issue is of course related to the uniqueness of the ground state or
of localized solitary waves, up to symmetries. A similar question stands for the
focusing nonlinear Schrödinger equation but it can be solved there because the
ground state is shown to be radial and uniqueness follows from (non trivial!) ODE
arguments see [141]. Of course such arguments cannot work in the KP I case since
the lump (or the ground states) are not radial.

It turns out that qualitative properties of solitary waves which are that of the lump
solution can be established for a large class of KP type equations. Ground state
solutions are shown in [37] to be cylindrically symmetric, that is radial with respect
to the transverse variable up to a translation of the origin. On the other hand, any
finite energy solitary wave is infinitely smooth (at least when the exponent p is an
integer) and decays with an algebraic rate r�2 [37]. Actually the decay rate is sharp
in the sense that a solitary wave cannot decay faster that r�2: Moreover a precise
asymptotic expansion of the solitary waves has been obtained by Gravejat [81].

Remark 19. Whether or not the ground states are minimizers of the Hamiltonian is
strongly linked to the orbital stability of the set Gc of ground states of velocity c.
We recall that the uniqueness, up to the obvious symmetries, of the ground state of
velocity c is a difficult open problem, even for the classical KP I equation.
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Saying that Gc is orbitally stable in Y means that for �c 2 Gc; then for all � > 0;
there exists ı > 0 such that if u0 2 Y10 is such that jju0��cjjY � ı; then the solution
u.t/ of the Cauchy problem initiating from u0 satisfies

sup
t�0

inf
 2G jju.t/�  jjY � �:

Of course, the previous inequality makes full sense only if one knows that the
Cauchy problem is globally well-posed. As we have previously seen, this is the
case for the classical KP I equation [171], even in the energy space [95], but is still
an open problem for the generalized KP I equation when 1 < p < 4=3: Actually
it is proved in [38] that the ground state solitary waves of the generalized KP I
equations (83) are orbitally stable in dimension two if and only if 1 � p < 4

3
.

4.4 Transverse Stability of the Line Soliton

The KP I and KP II equations behave quite differently with respect to the transverse
stability of the KdV 1-soliton. Zakharov [227] has proven, by exhibiting an explicit
perturbation using the integrability, that the KdV 1-soliton is nonlinearly unstable
for the KP I flow. Rousset and Tzvetkov [197–199] have given an alternative proof of
this result, which does not use the integrability, and which can thus be implemented
on other problems (eg for nonlinear Schrödinger equations). The nature of this
instability is not known (rigorously) and one has to rely on numerical simulations
[126, 189].

On the other hand, Mizomachi and Tzvetkov [165] have recently proved the
L2.R�T/ orbital stability of the KdV 1-soliton for the KP II flow. The perturbation
is thus localized in x and periodic in y. The proof involves in particular the Miura
transform used in [113] to established the global well-posedness for a modified KP
II equation. Such a result is not known (but expected) for a perturbation which is
localized in x and y.

The transverse stability of the KdV soliton has been numerically studied in [126]
from which the figures in this subsection are taken. We considered perturbations of
the form

up D 6.x � x1/ exp.�.x � x1/
2/
�
exp.�.y C Ly�=2/

2/C exp.�.y � Ly�=2/
2/
	
;

(87)
which are in the Schwartz class for both variables and satisfy the zero mass
constraint. They are of the same order of magnitude as the KdV soliton, i.e., of
order 0.1/, and thus test the nonlinear stability of the KdV soliton. As discussed in
[126], the computations are carried out in a doubly periodic setting, i.e., T2 and not
on R

2.

10Some extra regularity on u0 is actually needed.
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Fig. 8 Difference of the solution to the KP II equation for initial data given by the KdV soliton
plus perturbation, u.0; x; y/ D usol.x C 2Lx; 0/ and perturbation up D 6.x � x1/ exp.�.x �
x1/2/

�
exp.�.y C Ly�=2/

2/C exp.�.y � Ly�=2/
2/
	
, x1 D �Lx and the KdV soliton for various

values of t

For KP II we consider the initial data u0.x; y/ D 12sech2.x C 2Lx/ � up

(x1 D x0=2), i.e., a superposition of the KdV soliton and the not aligned perturbation
which leads to the situation shown in Fig. 8. The perturbation is dispersed in the
form of tails to infinity which reenter the computational domain because of the
imposed periodicity. The soliton appears to be unaffected by the perturbation which
eventually seems to be smeared out in the background of the soliton.

The situation is somewhat different if the perturbation and the initial soliton are
centered around the same x-value initially, i.e., the same situation as above with
x1 D x0 D �2Lx. In Fig. 9 we show the difference between the numerical solution
and the KdV soliton usol for several times for this case. It can be seen that the initially
localized perturbations spread in y-direction, i.e., orthogonally to the direction of
propagation and take finally themselves the shape of a line soliton. It appears that the
perturbations lead eventually to a KdV soliton of slightly higher mass. As discussed
in [126], different types of perturbation all indicate the stability of the KdV soliton
for KP II.

It was shown in [197–199, 227] that the KdV soliton is nonlinearly unstable
against transversal perturbations in the KP I setting if its mass is above a critical
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Fig. 9 Difference of the solution to the KP II equation for initial data given by
the KdV soliton usol.x C 2Lx; 0/ plus perturbation up D 6.x � x1/ exp.�.x �
x1/2/

�
exp.�.y C Ly�=2/

2/C exp.�.y � Ly�=2/
2/
	
, x1 D �2Lx, and the KdV soliton for various

values of t

value. The proof in [227] relies on the integrability of the KP I equation, but the
methods in [197–199] apply to general dispersive equations.

However, the type of the instability is unknown. Therefore in [126], this question
was addressed numerically. In Fig. 10 we show the KP I solution for the perturbed
initial data of a line soliton with the perturbation (87) and x1 D x0 D �2Lx, i.e., the
same setting as studied in Fig. 9 for KP II. Here the initial perturbations develop into
2 lumps which are traveling with higher speed than the line soliton. The formation
of these lumps essentially destroys the line soliton which leads to the formation of
further lumps. It appears plausible that for sufficiently long times one would only
be able to observe lumps and small perturbations which will be radiated to infinity
if studied on R

2.
We can give some numerical evidence for the validity of the interpretation of

the peaks in Fig. 10 as lumps in an asymptotic sense. We can identify numerically
a certain peak, i.e., obtain the value and the location of its maximum. With these
parameters one can study the difference between the KP solution and a lump with
these parameters to see how well the lump fits the peak. This is illustrated for
the two peaks, which formed first and which have therefore traveled the largest
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Fig. 10 Solution to the KP I equation for initial data given by the KdV soliton usol.x C 2Lx; 0/

plus perturbation up D 6.x � x1/ exp.�.x � x1/2/
�
exp.�.y C Ly�=2/

2/C exp.�.y � Ly�=2/
2/
	
,

x1 D �2Lx, for various values of t

distance in Fig. 11. A multi-lump solution might be a better fit, but here we mainly
want to illustrate the concept which obviously cannot fully apply at the studied
small times. Nonetheless Fig. 11 illustrates convincingly that the observed peaks
will asymptotically develop into lumps.

Further examples for the nonlinear instability of the KdV soliton in this setting
are given in [126]. However, the nonlinear stability discussed in [197, 198] can
be seen in Fig. 12 where the KP I solution is given for a perturbation of the line
soliton as before u0.x; y/ D 12sech2.x C 2Lx/ C up, but this time with x1 D x0=2,
i.e., perturbation and soliton are well separated. The figure shows the difference
between KP I solution and line soliton. It can be seen that the soliton is essentially
stable on the shown time scales. The perturbation leads to algebraic tails towards
positive x-values and to dispersive oscillations as studied in [130]. Due to the
imposed periodicity both of these cannot escape the computational domain and
appear on the respective other side. The important point is, however, that though
the oscillations of comparatively large amplitude hit the line soliton quickly after
the initial time, its shape is more or less unaffected till t D 6. The KdV soliton
eventually decomposes into lumps once it comes close to the boundaries of the
computational domain.
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Fig. 11 Difference of the solution to the KP I equation in Fig. 10 for t D 4 and two lump solutions
fitted at the peaks farthest to the right. Only very small peaks remain of these ‘lumps’ indicating
that they develop asymptotically into true lumps

5 The Davey-Stewartson Systems

The Davey-Stewartson (DS) systems are derived as asymptotic models in the so-
called modulation regime from various physical situations (water waves, plasma
physics, ferromagnetism, see [4, 49, 54, 62, 78, 147, 174, 233]). They provide also a
good approximate solution to general quadratic hyperbolic systems using diffractive
geometric optics [49, 50]. They have the general form, where a; b; c; �1; �2 are real
parameters depending on the physical context

i@t C a@2x C b@2y D .�1j j2 C �2@x�/ ;

@2x� C c@2y� D �ı@xj j2; (88)

where one can assume (up to a change of unknown) a > 0 and ı > 0: Using the
terminology of Ghidaglia and Saut [76], one says that (88) is

elliptic-elliptic if .sgn b; sgn c/ D .C1;C1/;
hyperbolic-elliptic if .sgn b; sgn c/ D .�1;C1/;
elliptic-hyperbolic if .sgn b; sgn c/ D .C1;�1/;

hyperbolic-hyperbolic if .sgn b; sgn c/ D .�1;�1/:
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Fig. 12 Difference of the solution to the KP I equation for initial data given by
the KdV soliton usol.x C 2Lx; 0/ plus perturbation up D 6.x � x1/ exp.�.x �
x1/2/

�
exp.�.y C Ly�=2/

2/C exp.�.y � Ly�=2/
2/
	
, x1 D �Lx and the KdV soliton for various

values of t

It is worth noticing that the Davey-Stewartson systems are “degenerate” versions of
a more general class of systems describing the interaction of short and long waves,
the Benney-Roskes, Zakharov-Rubenchik systems [21, 230]. None of those systems
is known to be integrable.

It turns out that a very special case of the hyperbolic-elliptic and the elliptic-
hyperbolic DS systems are completely integrable ([206, 233]). They are then
classically known respectively as the DS II and DS I systems. Since we want
to compare IST and PDE methods, we will focus on the hyperbolic-elliptic and
elliptic-hyperbolic cases (referred to as DS II type and DS I type). We refer to
[46, 47, 76, 78, 182–184, 186] for results on the elliptic-elliptic DS systems.

We will from now on write the DS II system in the form

i@t C @xx � @yy C 2�
�
ˇ˚ C j j2

�
 D 0;  W R2 � R ! C;

@xx˚ C @yy˚ C 2@xx j j2 D 0; ˚ W R2 � R ! R;

 .:; 0/ D  0;

(89)
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where the integrable DS II system corresponds to ˇ D 1 and � takes the values �1
(focusing) and 1 (defocusing).

The DS II system can be viewed as a nonlocal cubic nonlinear Schrödinger
equation. Actually one can solve ˚ as

˚ D 2Œ.��/�1@xx�j j2;

where .��/�1@xx D R21 is a zero order operator with Fourier symbol � �21
j�j2 and is

thus bounded in all Lp.R2/ spaces, 1 < p < 1 and all Sobolev spaces Hs.R2/;

allowing to write (89) as

i@t C @xx � @yy C 2�
�
2ˇR21.j j2/C j j2

�
 D 0: (90)

One easily finds that (89) has two formal conservation laws, the L2 norm

Z
R2

j .x; y; t/j2dxdy D
Z
R2

j .x; y; 0/j2dxdy

and the energy (Hamiltonian)

E. .t// D
Z
R2

�j@x j2 � j@y j2 � �.j j2 C ˇ˚/j j2/� dxdy

D E. .0//: (91)

Note that the integrable case ˇ D 1 is distinguished by the fact that the same
hyperbolic operator appears in the linear and in the nonlinear part. In this case the
equation is invariant under the transformation x ! y and  ! N and (90) can be
written in a “symmetric” form as

i@t C � � 2�Œ.��1�/j j2� D 0; (92)

where� D @xx�@yy: This extra symmetry in the integrable case could be responsible
for properties (existence of localized lump solutions and to blow-up phenomena in
case of DS II and existence of coherent “dromion” structures in case of DS I) that
exist in the integrable case and might not persist in the non integrable cases as the
following discussion will suggest.

We summarize now some issues discussed in [128] where one can also find many
numerical simulations. (see also [124, 125, 196])
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5.1 DS II Type Systems

Systems (90) (whatever the value of � or ˇ) can be seen as nonlocal variants of the
hyperbolic nonlinear Schrödinger equation [79]

i t C  xx �  yy ˙ j j2 D 0;  .�; 0/ D  0 (93)

and actually one can obtain (using Strichartz estimates in the Duhamel formulation)
exactly the same results concerning the Cauchy problem see [76]. Namely the
Cauchy problem for (90) is locally well-posed for initial data  0 in L2.R2/ or
H1.R2/; and globally if j 0j2 is small enough. Nevertheless, since the existence time
does not depend only on j 0j2 but on 0 in a more complicated way, one cannot infer
from the conservation of the L2 norm that the L2 solution is a global one. Actually,
proving (or disproving) the global well-posedness of the Cauchy problem for (93)
is an outstanding open problem.

As for the KP II equation, the inverse scattering problem for the (integrable) DS
II is a N@ problem. It turns out that in the integrable case (ˇ D 1) inverse scattering
techniques provide far reaching results which seem out of reach of purely PDE
methods. In particular, Sung [211–214] has proven the following

Theorem 13. Assume that ˇ D 1: Let  0 2 S .R2/: Then (89) possesses a unique
global solution  such that the mapping t 7!  .�; t/ belongs to C1.R;S .R2// in
the two cases:

(i) Defocusing.
(ii) Focusing and jc 0j1jc 0j1 < C; where C is an explicit constant.

Moreover, there exists c 0 > 0 such that

j .x; t/j � c 0
jtj ; .x; t/ 2 R

2 � R
�:

Remark 20. 1. Sung obtains in fact the global well-posedness (without the decay
rate) in the defocusing case under the assumption that O 0 2 L1.R2/ \ L1.R2/
and  0 2 Lp.R2/ for some p 2 Œ1; 2/; see [214].

2. Recently, Perry [193] has given a more precise asymptotic behavior in the
defocusing case for initial data in H1;1.R2/ D ff 2 L2.R2/ such that rf ; .1 C
j � j/f 2 L2.R2/g; proving that the solution obeys the asymptotic behavior in the
L1.R2/ norm:

 .x; t/ D u.�; t/C o.t�1/;

where u is the solution of the linearized problem.

On the other hand, using an explicit localized lump like solution (see below)
and a pseudo-conformal transformation, Ozawa [185] has proven that the integrable
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focusing DS II system possesses an L2 solution that blows up in finite time T�.
In fact the mass density j .:; t/j2 of the solution converges as t ! T� to a Dirac
measure with total mass j .:; t/j22 D j 0j22 (a weak form of the conservation of the
L2 norm). Every regularity breaks down at the blow-up point but the solution persists
after the blow-up time and disperses in the sup norm when t ! 1 as t�2: The
numerical simulations in [127] suggest that a blow-up in finite time may also happen
for other initial data, eg a sufficiently large Gaussian. Other numerical simulations
suggest that the finite time blow-up does not persist in the non integrable, ˇ ¤ 1

case, both for the defocusing and focusing cases.
The family of lump solutions (solitons) to the integrable focusing DS II system

reads [2, 14, 154]

 .x; y; t/ D 2c
exp

��2i.�x � �y C 2.�2 � �2/t/
	

jx C 4�t C i.y C 4�t/C z0j2 C jcj2 (94)

where .c; z0/ 2 C
2 and .�; �/ 2 R

2 are constants. The lump moves with constant
velocity .�4�;�4�/ and decays as .x2 C y2/�1 for x; y ! 1.

As explained in [14], there is a one-to-one correspondence between the lumps
and the pole of the matrix solution of the direct scattering problem. It is shown
formally in [71] and rigorously in [121] (modulo an unproven assumption about the
integral operator for the soliton potential) that the lump is unstable in the following
sense. The soliton structure of the scattering data is unstable with respect to a small
compactly supported perturbation of the soliton-like potential. It was also proven in
[190, 191] that the lump is spectrally unstable. We refer to [65, 192] for the study of
interaction of lumps with a line soliton.

The stability of the lump was numerically studied in [131, 164]. It was shown
that the lump is both unstable against an L1 blow-up in finite time and against
being dispersed away. In Fig. 13 taken from [131], we consider an initial condition
of the form  .x; y;�3/ D 0:9 l; where  l is the lump solution (94) with c D 1.
The solution travels at the same speed as before, but its amplitude varies, growing
and decreasing successively.

If instead the initial data .x; y;�3/ D 0:9 l; is considered, the solution appears
to blow up in finite time as can be seen in Fig. 14. Note that also the Ozawa solution
[185] was in [131] numerically shown to be unstable against both an earlier blow-
up and being dispersed away. In [128] it was shown that the blow-up of the Ozawa
solution is not generic.

5.1.1 Localized Solitary Waves of DS II Type Systems

It is well known that hyperbolic NLS equations such as (93) do not possess solitary
waves of the form ei!t .x/ where  is localized see [77]. It was furthermore
proven in [77] that non trivial solitary waves may exist for DS II type systems
only when � D �1 (focusing case) and ˇ 2 .0; 2/: Note that the (focusing)
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Fig. 13 Solution to the focusing DS II equation (89) for an initial condition of the form
 .x; y;�3/ D 0:9 l

Fig. 14 Solution to the focusing DS II equation (89) for an initial condition of the form
 .x; y;�3/ D 1:1 l

integrable case corresponds to ˇ D 1: Moreover solitary waves with radial (up
to translation) profiles can exist only when � D �1 and ˇ D 1, that is in the
focusing integrable case. Those results (and the numerical simulations in [127, 131])
suggest that localized solitary waves for the focusing DS II systems exist only in the
integrable case and this might be due to the new symmetry of the system we were
alluding to above in this case.
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To summarize, one is led to conjecture that neither the existence of the lump nor
the associated Ozawa blow-up persist in the focusing DS II non integrable case.
One can also conjecture that the solution of DS II type solution is global and decays
in the sup norm as 1=t as was shown by Sung and Perry in the (integrable) DS II case.

Remark 21. The previous results and conjectures do not of course exclude the
existence of nontrivial, non localized, traveling waves. In the context of the
hyperbolic cubic NLS, see for instance Remark 2.1 in [77] or [117]. We do not
know of existence of similar solutions for DS II type systems.

5.2 DS I Type Systems

The DS I type systems are quite different from the other DS systems. Actually,
solving the hyperbolic equation for � (with suitable conditions at infinity) yields a
loss of one derivative in the nonlinear term and the resulting NLS type equation is no
more semilinear. Even proving the rigorous conservation of the Hamiltonian leads
to serious problems. We describe now how to solve the equation for � in a H1 frame-
work see [76]. The elliptic-hyperbolic DS system can be written after scaling as

8̂
<
:̂

i@t C� D �j j2 C b �x

�xx � c2�yy D @

@x
j j2:

The integrable DS I system corresponds to �C b
2

D 0:

We now solve the equation for �: Let c > 0: Consider the equation

@2�

@x2
� c2

@2�

@y2
D f in R

2 (95)

with the boundary condition

lim
�!C1�.x; y/ D lim

�!C1�.x; y/ D 0 (96)

where � D cx � y and � D cx C y: Let K D Kc the kernel

K.x; yI x1; y1/ D 1

2
H.c.x1 � x/C y � y1/H.c.x1 � x/C y1 � y/

where H is the usual Heaviside function.

Lemma 4 ([76]). For every f 2 L1.R2/; the function � D K .f / defined by

�.x; y/ D
Z
R2

K.x; yI x1; y1/f .x1; y1/dx1dy1 (97)
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is continuous on R
2 and satisfies (95) in the sense of distributions. Moreover, � 2

L1.R2/; .@�=@x/2 � c2.@�=@y/2 2 L1.R2/ and we have the following estimates

sup
.x;y/2R2

j�.x; y/j �
Z
R2

jf jdxdy (98)

Z
R2

ˇ̌
ˇ̌
ˇ
�
@�

@x

�2
� c2

�
@�

@y

�2ˇ̌ˇ̌
ˇ dxdy � 1

2c

�Z
R2

jf jdxdy

�2
: (99)

Remark 22. 1. No condition is required as � or � tends to �1:

2. In general, r� … L2.R2/ even if f 2 C1
0 .R

2/; but Lemma 4 allows to solve the
� equation as soon as  2 H1.R2/ for instance.

The DS I type system possesses the formal Hamiltonian

E.t/ D
Z
R2

�
jr j2 C �

2
j j4 C b

2
.�2x � c2�2y /

�
dxdy:

Lemma 4 allows to prove that this Hamiltonian makes sense in an H1 setting for  
see [76]. Proving its conservation on the time interval of the solution is an open
problem as far as we know (this would lead to global existence of a weak H1

solution).

5.2.1 DS I Type by PDE Methods

The first local well-posedness result is due to Linares-Ponce [149] and we summa-
rize below the best known results, due to Hayashi-Hirata [90, 91] and Hayashi [89].
After rotation, one can write the DS-I type systems as

8̂
<̂
ˆ̂:

i@t C� D i.c1 C c2
2
/j j2 � c2

4

�Z 1

x
@yj j2dx0 C

Z 1

y
@xj j2dy0

�
 

C c2p
2

�
.@x�1/C @y�2/

	
 ;

where c1; c2 2 R and � satisfies the radiation conditions

lim
y!1�.x; y; t/ D �1.x; t/; lim

x!1�.x; y; t/ D �2.y; t/:

Theorem 14 ([89]). Assume  0 2 H2.R2/; �1 2 C.RI H2
x / and �2 2 C.RI H2

y /:

Then there exist T > 0 and a unique solution  2 C.Œ0;T�I H1/ \ L1.0;TI H2/

with initial data  0:



IST Versus PDE: A Comparative Study 435

• The proof uses in a crucial way the smoothing properties of the Schrödinger
group.

The next result concerns global existence and scattering of small solutions in the
weighted Sobolev space

Hm;l D ff 2 L2.R2/I j.1 � @2x � @2y/
m=2.1C x2 C y2/l=2f jL2 < 1g:

Theorem 15 ([91]). Let  0 2 H3;0 \ H0;3; @jC1
x �1 2 C.RI L1

x /; @jC1
y �2 2

C.RI L1
y /; .0 � j � 3/; “small enough”. Then

• There exists a solution  2 L1
loc.RI H3;0 \ H0;3/\ C.RI H2;0 \ H0;2/:

• Moreover

jj .�; t/jjL1 � C.1C jtj/�1.jj jjH3;0 C jj jjH0;3/:

There exist u˙ such that

jj .t/ � U.t/u˙jjH2;0 ! 0; as ! ˙1;

where U.t/ D eit.@2xC@2y /:

5.2.2 DS I by IST: Comparison with Elliptic-Hyperbolic DS

Contrary to the results of the previous subsection which were valid for arbitrary
values of ˇ we focus here on the integrable case, ˇ D 1: The first set of results
concerns coherent structures (dromions) for DS I with nontrivial conditions (on �)
at infinity. The existence of dromions is established in [30, 66] and the perturbations
of the dromion are investigated in [119] (see also Sect. 7 of [121]). We do not know
of any study of dromions by PDE techniques or of existence of similar structures in
the non-integrable case. Actually they might have no physical relevance.

Concerning the Cauchy problem, the global existence and uniqueness of a
solution  2 C.RIS .R2// of DS I for data  0 2 S .R2/; �1; �2 2 C.RIS .R//

is proven in [68]. Under a smallness condition, the solutions with trivial boundary
conditions �1 D �2 D 0 disperse as 1=t (Kiselev [119], see also [121]). A precise
asymptotics is also given. The numerical simulations in [23] for general DS I type
systems confirm the dispersion of solutions of DS I with trivial boundary conditions
and suggest that the dromion is not stable with respect to the coefficients, that is it
does not persist in the non-integrable case.
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6 Final Comments

We briefly comment here on two other integrable equations.

6.1 The Ishimori System

The Ishimori systems were introduced in [98] as two-dimensional generalizations
of the Heisenberg equation in ferromagnetism. They read

St D S ^ .Sxx � Syy/C b.�xSy C �ySx/

�xx C �yy D 2S � .Sx ^ Sy/

S.�; 0/ D S0;
(100)

St D S ^ .Sxx C Syy/C b.�xSy C �ySx/

�xx � �yy D �2S � .Sx ^ Sy/

S.�; 0/ D S0;
(101)

where S is the spin, S.�; t/ W R2 ! R
3; jSj2 D 1; S ! .0; 0; 1/ as j.x; y/j ! 1 and

^ is the wedge product in R
3: The coupling potential � is a scalar unknown related

to the topological charge density q.S/ D 2S � .Sx ^ Sy/: b is a real coupling constant.
When b D 1, (100), (101) are completely integrable [137, 138]. Note the formal
analogy11 of (100), (101) with DS II and DS I type systems.

It is proven in [210] that the Cauchy problem for (100) (for arbitrary values of b)
is locally well-posed in Hm.R2/;m � 3 provided the initial spins are almost parallel.
Under a stronger regularity assumption on the initial data it is furthermore proven
that the solution is global and converges to a solution of the linear “hyperbolic”
Schrödinger equation as t goes to infinity.

The idea is to reduce (100), (101) to a nonlinear (hyperbolic) Schrödinger type
equation by the stereographic projection

u W R2 ! C; u D S1 C iS2

1C S3
;

reducing (100) to

8̂
<
:̂

iut C uxx � uyy D 2Nu
1Cjuj2 .u

2
x � u2y/C ib.�xuy C �xux/

�� D 4i ux Nuy� Nuxuy

.1Cjuj2/2
u.�; 0/ D u0;

(102)

11Which is clearer after the stereographic projection below.
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with the condition ju.x; y/j ! 0 as j.x; y/j ! 1: The initial condition on S becomes
thus a smallness condition on ujtD0:

The local well-posedness of the Cauchy problem for (100) for arbitrary initial
data in Hm.R2/;m � 4 is proven in [114]. This result is improved in [17] where local
well-posedness is proven for arbitrary large initial data in Hs.R2/; s > 3

2
having a

range that avoids a neighborhood of the north pole.
Concerning the IST method for (100), the rigorous justification of the procedure

in [137, 138] is not trivial and Sung [215] used instead a gauge transform which
relates (100) (when b D 1) to the focusing integrable DS II system. This allows to
prove the global well-posedness of the Cauchy problem for small initial data (in a
different functional setting than [210]).

The connection between the (integrable) Ishimori system (100) is nicely used
in [17] to prove the global well-posedness of the Cauchy problem for (100) in
the defocusing case, that is when the target of S is no more the sphere S

2, but the
hyperbolic space H2 D f.x; y; z/ 2 R

3I x2�y2�z2 D 1; x > 0g: The gauge transform
relates in this case the defocusing Ishimori system (100) to the defocusing DS II
system. Such a result is not known in the non integrable case, b ¤ 1:

We do not know of any finite time blow-up for (100) or of any rigorous result (by
PDE or IST methods) for (101).

6.2 The Novikov-Veselov Equation

The Novikov-Veselov system

�
vt D 4Re .4@3zv C @z.vw/ � E@zw/;
@Nzw D �3@zv; v D Nv (103)

where @z D 1
2

�
@x � i@y

	
; @Nz D 1

2

�
@x C i@y

	
; was introduced in [179, 180] as

a two dimensional analog of the Korteweg-de Vries equation, integrable via the
inverse scattering transform for the following 2-dimensional stationary Schrödinger
equation at a fixed energy E:

L D E ; L D ��C v.x; y; t/; (104)

where� D @2

@x2
C @2

@y2
and E is a fixed real constant.

The Novikov-Veselov equation has the Manakov triple representation [153]

PL D ŒA;L � � BL ; (105)

where

L D ��C v C E;
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A D 8.@3 C N@3/C 2.w@C NwN@/;
NB D �2.@w C N@ Nw/;

that is .v;w/ solves (107) if and only if (105) holds.

Remark 23. There is an interesting formal limit of (103) to KP I (resp. KP II) as
E ! C1 (resp. E ! �1/, under an appropriate scaling, see [83, 139], assuming
that the wavelengths in y are much larger than those in x.

Remark 24. As far as we know, and contrary to the integrable equations studied
above, the Novikov-Veselov equation does not seem be derived as an asymptotic
model from a more general system.

To make the equation more “PDE like”, we first write the equation in a slightly
different form. Setting w D w1 C iw2; (103) becomes:

8̂
<̂
ˆ̂:

vt D 2vxxx � 6vxyy C 2Œ.vw1/x C .vw2/y� � 2E.@xw1 C @yw2/;
.x; y/ 2 R

2; t > 0;
@xw1 � @yw2 D �3vx

@xw2 C @yw1 D 3vy:

(106)

Note that the last two equations imply

.@xx � @yy/w2 C 2@xyw1 D 0

and that w1 et w2 are defined up to an additive constant. One can express w D
.w1;w2/ in dependence of v, in a unique way via the Fourier transform

Ow1 D 3.�22 � �21 /
j�j2 Ov; Ow2 D 6�1�2

j�j2 Ov:

We denote L1 and L2 the zero order corresponding operators,

w1 D L1v; w2 D L2v:

With these notations, the equation reads

vt � 2vxxx C 6vxyy C 2E.L1vx C L2vy/ � 2Œ.vL1v/x C .vL2v/y� D 0: (107)

One remarks that the dispersive part in (107) is reminiscent of that of the Zakharov-
Kuznetzov equation [230]

ut C ux C�ux C uux D 0;
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another two-dimensional extension of the KdV equation, which is not integrable
though. We refer to [19] for a systematic study of the dispersive properties of general
third order (local) operators in two-dimensions.

6.2.1 The Zero Energy Case E D 0

We refer to the excellent survey [52] for a rather complete account of what is known
in this case and which comprises some interesting numerics and a rich bibliography.
We extract from [52] the following definition :

Definition 1. The operator L D ��C v is said to be:

(i) subcritical if the operator L has a positive Green’s function and the equation
L D 0 has a strictly positive distributional solution,

(ii) critical if L D 0 has a bounded strictly positive solution but no positive Green’s
function, and

(iii) supercritical otherwise.

The following conjecture is made in [52].

Conjecture. The Novikov-Veselov equation with zero energy has a global solution
for critical and subcritical initial data, but its solution may blow up in finite time
for supercritical initial data.12 We refer to [52] for some partial results toward its
resolution.

Added in proofs. This conjecture is partially solved in [173] (see also [194])
where global well-posedness results with initial data of arbitrary size in suitable
functional spaces are proved.

6.2.2 The Case E ¤ 0

For nonzero energy E and potentials v which vanish at infinity, the scattering
transform and inverse scattering method was developed by P. Grinevich, R. G.
Novikov, and S.-P. Novikov (see Kazeykina’s thesis [103] for an excellent survey
and [83, 85, 86] for the original papers).

We also refer to [103] and to the papers [104–106, 108–110, 178] for many
interesting results on the soliton solutions (absence, decay properties,..) and the long
time asymptotics. More precisely it is proven that the rational, non singular solutions
introduced in [83, 84] at positive energy are multi-solitons. It is also proven that
solitons cannot decay faster than O.jxj�3/ when E ¤ 0 and than O.jxj�2/ when
E D 0: Finally, the evolution solutions corresponding to non singular scattering
data are shown to decay asymptotically as O.t�1/ when E > 0 and as O.t�3=2/
when E < 0:

12By the result in [13] mentioned below, the Novikov-Veselov equation with zero energy has a
local solution for a very general class of initial potentials.
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6.2.3 Novikov-Veselov by PDE Techniques

There are few results on Novikov-Veselov by PDE techniques. Angelopoulos [13]
has proven the local well-posedness in H1=2.R2/ of the Cauchy problem in the zero
energy case (E D 0) case following the method used in [173]. It is very likely that
the methods in [132] for the Dysthe type systems13 would also lead to a local well-
posedness result when E D 0; not in the “optimal” space though. The case E ¤ 0 is
more delicate and is considered in [107] where local well-posedness is obtained in
Hs.R2/; s > 1=2:

Note than one cannot perform simple energy estimates on (107) (as in the KP
or Zakharov-Kuznetsov case) leading “for free” to a local result in Hs.R2/; s > 2

(actually even the L2 estimate on (107) fails).
Also PDE methods might solve the aforementioned problem of the “long wave”

KP limit when E ! ˙1: Actually similar questions are already solved for the
Gross-Pitaevskii equation see [25, 26, 45].

Finally we do not know of any stability results (by PDE methods) for the
Novikov-Veselov solitary waves.
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