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    Chapter 3   

 The Development of TALE Nucleases for Biotechnology       

     David     G.     Ousterout     and     Charles     A.     Gersbach        

  Abstract 

   The development of a facile genome engineering technology based on transcription activator-like effector 
nucleases (TALENs) has led to signifi cant advances in diverse areas of science and medicine. In this review, 
we provide a broad overview of the development of TALENs and the use of this technology in basic sci-
ence, biotechnology, and biomedical applications. This includes the discovery of DNA recognition by 
TALEs, engineering new TALE proteins to diverse targets, general advances in nuclease-based editing 
strategies, and challenges that are specifi c to various applications of the TALEN technology. We review 
examples of applying TALENs for studying gene function and regulation, generating disease models, and 
developing gene therapies. The current status of genome editing and future directions for other uses of 
these technologies are also discussed.  
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1      Introduction 

 The emergence of transcription activator-like effector nucleases 
(TALENs) has made genome-editing tools widely accessible to any 
laboratory with basic molecular biology expertise. The develop-
ment of the TALEN technology and its use in various biotechno-
logical applications build on the considerable progress in genome 
editing over the previous decade with other approaches. 
Accordingly, the availability of the TALEN technology over the 
past few years has led to numerous advances in genome editing in 
a diverse range of cell types and organisms. This facile genome 
editing approach has facilitated new strategies to model disease, 
develop novel genetic therapies, or create desired phenotypic prop-
erties through highly specifi c rewriting of the genome. In this 
chapter, the development and use of TALEN technologies are 
reviewed and discussed. 
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   Genome editing with engineered site-specifi c endonucleases has 
emerged as a technology to selectively replace or correct disrupted 
genes, in contrast to conventional genetic engineering methods of 
gene addition [ 1 ,  2 ]. There are numerous platforms for generating 
site-specifi c gene modifi cations in the genome, but to date the 
most successful have been based on zinc fi nger nucleases [ 3 ,  4 ], 
TALENs [ 5 ,  6 ], and, more recently, the RNA-guided CRISPR/
Cas9 system [ 7 – 9 ]. These systems are at present the most devel-
oped publicly available platforms for robust and effi cient targeted 
gene editing. In particular, the recent development of TALENs 
and CRISPR/Cas9 has dramatically advanced genome editing due 
to their ease of engineering and effi cient genetic modifi cation [ 6 –
 20 ]. Other systems in development include meganucleases [ 21 , 
 22 ], triplex-forming oligonucleotide (TFO) complexes [ 23 ], and 
programmable recombinases based on zinc fi nger protein [ 24 – 27 ] 
or TALE DNA-binding domains [ 28 ]. Historically, meganucleases 
have been diffi cult to engineer due to interdependence of the 
DNA-binding and cleavage domains, although recent develop-
ments in directed evolution of meganucleases [ 29 – 31 ] and fusion 
of meganucleases to TALE DNA-binding proteins [ 32 ,  33 ] are 
providing promising new opportunities with this technology. TFO 
complexes have thus far been limited by relatively low levels of 
gene modifi cation, but oligonucleotide-mediated gene editing can 
be improved with the incorporation of TALENs [ 34 ]. 
Programmable recombinases are a promising next-generation gene 
editing technology, but target site requirements, overall effi ciency, 
and unknown off-target effects are still major challenges to the 
widespread adoption of this technology [ 35 ].  

   Engineered nucleases generate targeted genome modifi cations by 
creating a targeted double-strand break in the genome that stimu-
lates cellular DNA repair through either homology-directed repair 
(HDR) or nonhomologous end joining (NHEJ) [ 36 ,  37 ] (Fig.  1 ). 
Briefl y, HDR uses a designed synthetic donor DNA template to 
guide repair and can be used to create specifi c sequence changes to 
genome, including the targeted addition of whole genes. HDR has 
enabled integration of gene cassettes of up to 8 kb in the absence 
of selection at high frequency (~6 %) in human cells [ 38 ]. Generally, 
gene correction strategies have been based solely on HDR, the 
effi ciency of which is dependent on the genomic target, cell type, 
cell-cycle state, and effi cient delivery of an exogenous DNA tem-
plate [ 39 – 43 ]. In many cases, antibiotic selection is used in tandem 
with genome editing for gene correction in cell types with low 
levels of HDR repair [ 40 – 42 ]. In contrast to genome modifi cation 
by HDR, the template-independent religation of DNA ends by 
NHEJ is a stochastic, error-prone repair process that introduces 
random small insertions and deletions at the DNA breakpoint 
(Fig.  1 ). Gene editing by NHEJ has been used in mammalian cells 
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to disrupt genes [ 44 ,  45 ], delete chromosomal segments [ 46 – 48 ], 
or restore aberrant reading frames [ 49 ,  50 ]. This chapter reviews 
how TALENs have been used to exploit NHEJ and HDR DNA 
repair processes to create highly specifi c changes to a desired gene.

2        Development of TALENs 

   In 2009, two landmark studies described the simple and modu-
lar TALE DNA-binding domain [ 14 ,  15 ]. These novel DNA-
binding proteins are naturally occurring transcriptional activators 
from the plant pathogen  Xanthomonas . As reported in these 
studies, the TALE DNA-binding domain consists of numerous 
tandem repeats, with each repeat specifying recognition of a sin-
gle base pair of DNA. Importantly, single-base-pair recognition 
by each repeat is determined by alteration of only two hypervari-
able amino acids, termed repeat variable diresidues (RVDs), and 
each repeat appears to recognize DNA in a modular manner. 
This simple mode of DNA recognition was confi rmed in struc-
tural studies of a naturally occurring TALE bound to its cognate 
DNA target [ 51 ,  52 ]. These discoveries were quickly expanded 
upon to create novel TALE proteins by engineering a custom 
RVD array to recognize a user- specifi ed DNA target [ 53 – 55 ]. 

2.1  TALE DNA 
Recognition

  Fig. 1    Mechanisms of DNA repair following nuclease-induced double-strand breaks. ( a ) In the absence of a 
DNA repair template, the break is repaired by nonhomologous end joining, which is an error-prone process and 
can lead to small insertions or deletions. Alternatively, two adjacent nuclease-induced breaks can be used to 
excise the intervening chromosomal DNA from the genome. ( b ) If a DNA repair template is provided with 
homology to the target site surrounding the break, it will be used to guide homology-directed repair. In this 
way, particular small changes to the DNA sequence or the insertion of whole-gene expression cassettes can 
be directed to specifi c genome target sites       
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The only sequence requirement for TALE binding is that each 
target site be immediately preceded by a 5′-thymine for effi cient 
DNA recognition, although more recently modifi ed proteins 
have been developed to accept other nucleotides at this position 
[ 56 ,  57 ]. These novel DNA-binding domains were then fused to 
transcriptional activator domains [ 53 ,  55 ], nuclease catalytic 
domains [ 11 ,  54 ,  55 ], epigenetic modifying domains [ 58 ,  59 ], 
and recombinases [ 28 ] to generate an array of programmable 
enzymes for manipulating genes in complex genomes. 

 Although naturally occurring TALEs have a modular RVD 
recognition code, several studies have shown that some RVDs, spe-
cifi cally those targeting guanosine, display unexpected recognition 
of degenerate bases in the context of engineered TALE DNA- 
binding domains [ 55 ,  60 ]. However, more specifi c RVDs, such as 
NH or NK for recognition of guanosine, can result in signifi cantly 
reduced activity of the reengineered TALE protein [ 60 – 62 ]. 
Recently, a publicly available web server has been developed that 
generates TALE targets utilizing more specifi c RVDs predicted to 
have minimal impact on activity [ 63 ]. Other publicly available web 
servers are available to assist in generating RVD arrays that are 
predicted to have high activity and specifi city [ 64 – 66 ]. Together, 
these studies demonstrate the overall robustness of TALE DNA 
recognition and its utility in generating highly active nucleases at 
novel targets of interest.  

   Synthesizing custom TALE DNA-binding domains requires con-
tiguous assembly of many RVD repeats, each only differing by 
two amino acids, into a destination TALE array. The large number 
of repeats, typically 15–20, makes this process diffi cult with con-
ventional recombinant DNA technology. To overcome this tech-
nical challenge, several approaches have been developed that 
iteratively assemble new TALE arrays in a highly effi cient and 
rapid manner. Custom TALE arrays can be rapidly created from a 
relatively small library of plasmids using publicly available reagents 
utilizing “Golden Gate” molecular cloning techniques to assem-
ble new arrays within a few days [ 13 ,  53 ]. These methods are 
simple and only require reagents and equipment commonly found 
in molecular biology labs, although the overall throughput of 
assembly is limited. Other protocols are well suited to high-
throughput generation of TALE arrays using solid-phase assembly 
[ 12 ,  67 ] or ligation-independent cloning techniques [ 68 ]. 
Notably, with the proper equipment, these high-throughput 
assembly methods are able to generate dozens to hundreds of 
TALEN constructs in 1 day. Alternatively, TALE arrays can also be 
custom ordered and pre-validated through commercial sources 
such as Life Technologies, Cellectis Bioresearch, Transposagen 
Biopharmaceuticals, and System Biosciences.  

2.2  Assembly of RVD 
Arrays to Create 
Customized TALE 
DNA-Binding Domains
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   Conventionally, TALEN monomers are created as a fusion of the 
TALE DNA-binding domain to the nonspecifi c endonuclease cata-
lytic domain of  Fok I. Site-specifi c double-strand breaks are created 
when two separate nuclease monomers bind to adjacent target 
DNA sequences on opposite strands in a tail-to-tail fashion, thereby 
permitting dimerization of  Fok I and cleavage of the target DNA 
(Fig.  2 ). Thus, since  Fok I acts as a dimer, TALENs are designed in 
pairs to guide two separate  Fok I monomers to a desired target site. 
Several TALEN architectures have been described that demon-
strate improved nuclease activity by truncating the C-terminus of 
the TALE DNA-binding domain [ 11 ,  55 ,  69 ]. These studies also 
show that the translocation domain on the TALE N-terminus can 
be removed without impacting activity. Moreover, these trunca-
tions can be used to restrict the length of the sequence allowed 
between the TALEN monomers [ 55 ] and may be useful for 
restricting potential off-target mutagenesis. Directed evolution of 
the TALE DNA-binding domain has also yielded mutants that 
have higher observed gene editing activity against episomal and 
chromosomal targets [ 70 ]. Alternate nuclease catalytic domains 
are also possible; for example, fusions of TALEs to monomeric 
meganucleases have recently been shown to improve targeting of 
these enzymes [ 32 ].

      Several improvements have been made to enhance the specifi city of 
the  Fok I chimeric nucleases. A major advance was the identifi cation 
of mutations that require heterodimerization of the nuclease pairs 
[ 71 – 73 ], thereby preventing potential homodimerization of nucle-
ase monomers at unintended target loci. Furthermore, introduction 

2.3  TALE Nuclease 
Architectures

2.4  Enhancement 
of Nuclease Activity

  Fig. 2    TALEN architecture and structure. ( a ) The TALE DNA-binding domain consists of the array of RVDs engi-
neered to recognize specifi c sequences, along with fi xed N- and C-terminal domains ( orange ), fused to the 
catalytic domain of the  Fok I endonuclease ( blue ). ( b ) Schematic of the TALEN structure, with TALEs ( orange , 
PDB 3UGM) fused to the  Fok I domain ( blue , PDB 2FOK) on DNA ( green )       
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of distinct obligate heterodimer mutations can be used to create two 
independent TALENs by preventing unexpected interactions 
between monomers from either pair [ 48 ]. Introduction of inactivat-
ing mutations to the  Fok I domain on one of the two nuclease 
domains in each pair can be used to generate targeted nickases. The 
single-strand nicks generated by these enzymes facilitate high levels 
of HDR but do not stimulate error-prone NHEJ repair [ 74 ,  75 ]. 
TALE nickases therefore display signifi cantly reduced mutagenesis at 
off-target loci. Finally, directed evolution was utilized to fi nd muta-
tions that enhance the activity of  Fok I in a target site-independent 
manner [ 76 ].  

   The range of DNA sequences that can be targeted by TALEs is 
constrained by a strict requirement of a thymine base at the zero 
base position (N0) [ 55 ]. The crystal structure of a natural TALE 
protein suggests that there is a cryptic repeat domain in the 
N-terminus of the protein that specifi cally recognizes thymine [ 51 , 
 52 ]. Novel TALE architectures have been developed to overcome 
this requirement by engineering this region of the TALE 
N-terminus to recognize alternative bases at this position [ 56 ,  57 ] 
or by utilizing TALE-like domains from related plant pathogens 
[ 77 ,  78 ] that naturally recognize guanine at the N0 position. 
However, DNA-binding activity of these TALE architectures may 
be reduced, especially for targets with adenosine and cytosine bases 
at the N0 position. Further work in this area may yield TALE scaf-
folds that can readily target sequences with any base at the N0 
position with high effi ciency.  

   The methylation status of the target DNA locus is known to impact 
DNA binding of TALE proteins, particularly with chromosomal 
targets directly containing 5′-methylated cytosine (5mC) [ 79 ,  80 ]. 
As a result, DNA methylation can signifi cantly reduce or completely 
eliminate TALE binding. Methylation analysis of a target loci can be 
used to generate TALENs targeted to open chromatin; however 
this further restricts the utility of TALENs for site-specifi c gene 
modifi cation. Global demethylation of a target genome using 
chemical modifi ers such as 5′-aza-2′-deoxycytidine can rescue 
TALE binding [ 79 ]; however these methods are commonly associ-
ated with undesirable toxicity. More attractive methods have been 
developed that substitute specifi c RVDs in TALE proteins to effi -
ciently bind particular methylated and/or demethylated cytosines 
in the target sequence. Thus, TALE proteins can be reengineered 
either to be insensitive to cytosine methylation by using the N* 
RVD that binds to both cytosine and 5mC [ 81 ] or by utilizing 
RVDs that specifi cally recognize 5mC (NG) or cytosine (HD) [ 82 ]. 
By substituting these particular RVDs, TALENs can be engineered 
to target these sites with high effi ciency. It is also noteworthy that 
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TALEs have been shown to target regions that are insensitive to 
DNase I, indicating that these proteins are able to access sites 
located in heterochromatin [ 83 ]. These studies were performed in 
dividing cells, and future work is necessary to determine the role of 
DNA replication in facilitating access to these target sites.  

   TALEN monomers are readily delivered by DNA expression cassettes 
or directly as mRNA by conventional transfection methods. However, 
the size of TALEN monomers and the highly repetitive array of RVD 
sequences present a signifi cant challenge to viral delivery of TALEN 
constructs, thereby potentially limiting their utility in some gene 
editing applications. Adenovirus presents an attractive delivery vehi-
cle for delivering gene constructs encoding both TALEN monomers 
[ 84 ], although adenovirus has limited tropism in some cell types and 
is highly immunogenic. Interestingly, this study also demonstrated 
that lentivirus was unable to deliver intact TALEN gene cassettes, 
due to rearrangements in the TALEN-coding region caused by the 
repetitive structure of RVD arrays. This limitation was overcome by 
the development of recoded TALEN constructs, termed re-TALEs, 
that can be effi ciently expressed by lentiviral delivery [ 20 ], although 
this method may require reoptimization and synthesis of each new 
TALE gene. In contrast to DNA or mRNA delivery, direct protein 
delivery of TALENs can be achieved by utilizing cell-penetrating 
peptides covalently bound to purifi ed TALEN proteins [ 85 ]. This 
method enables effi cient genome editing in cells without the risk of 
spontaneous integration of the TALEN DNA expression construct 
into the genome that can be caused by non-viral and viral gene deliv-
ery. Furthermore, previous evidence suggests that protein delivery of 
gene-editing nucleases may reduce off-target activity by limiting the 
duration of nuclease exposure [ 86 ].   

3    Applications in Basic Science and Biotechnology 

 Conventional genetic engineering methods involve the addition of 
new genes to cellular genomes by random integration of foreign 
genetic material into the chromosomal DNA. In contrast, genome 
editing using engineered nucleases enables precise manipulation at 
nearly any desired locus with high effi ciency. Importantly, genome 
editing can generate a variety of genetic mutations without leaving any 
exogenous DNA sequences in the target genome. The development of 
high-throughput TALE assembly methods, in combination with high 
success rates of engineering highly active TALEN pairs, has resulted in 
the unprecedented ability to manipulate any gene of interest in a diverse 
array of organisms (Table  1 ). As one example of the breadth of TALEN 
assembly and applicability, libraries of TALENs have been generated to 
target 18,740 human protein-coding genes [ 80 ].

2.7  Delivery 
of TALENs

TALENs for Biotechnology
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     Table 1  
  Examples of biotechnology applications of TALEN-mediated gene modifi cation   

 Type of 
modifi cation  Organism  Genes  References 

 Gene disruption  Human  CCR5  [ 11 ,  55 ,  116 , 
 117 ] 

 Human   MSTN   [ 120 ] 
 Human  Hepatitis B virus  [ 118 ,  119 ] 
 Pig  LDL receptor  [ 93 ] 
 Bovine  ACAN12, p65  [ 93 ] 
  C. elegans    ben-1 ,  rex-1 ,  sdc-2   [ 97 ] 
  C. elegans ,  Pristionchus 

pacifi cus ,  Caenorhabditis 
species 9  

  ben-1 ,  smo-1 ,  rex-1 ,  sdc-2 ,  unc-119   [ 96 ] 

 Rice  OsSWEET14  [ 97 ] 
 Newt   P. waltl  tyrosinase  [ 98 ] 
 Silkworm   BmBlos2   [ 99 ] 
 Rat   IgM   [ 92 ] 
 Mouse   Pibf1   [ 125 ] 
  Arabidopsis thaliana    ADH1 ,  TT4 ,  MAPKKK1 , 

 DSK2B , and  NATA2  
 [ 106 ] 

 Drosophila   ry ,  y ,  Psf2 ,  Sld5 ,  Pcd ,  CG12200 , 
 CG7224 ,  CG11594  

 [ 100 ] 

 Barley  HvPAPhy_a  [ 107 ] 
 Rice   OsDEP1 ,  OsBADH2 ,  OsCKX2 , 

 OsSD1  
 [ 105 ] 

  Brachypodium    BdABA1 ,  BdCKX2 ,  BdSMC6 , 
 BdSPL ,  BdSBP ,  BdCOI1 , 
 BdRHT ,  BdRHTA1  

 [ 105 ] 

 Mosquito ( A. gambiae )  TEP1  [ 101 ] 
 Frog   noggin ,  ptf1a/p48 ,  ets1 ,  hhex ,  vpp1 , 

 foxd3 ,  sox9 , and  grp78/bip  
 [ 102 ] 

 Gene substitution 
and/or 
addition 

 Human   OCT4 ,  PITX4 , AAVS1  [ 10 ] 
 Zebrafi sh   th  (tyrosine hydroxylase),  fam46c , 

 smad5  
 [ 126 ] 

 Drosophila   ry   [ 100 ] 
  C. elegans ,  Pristionchus 

pacifi cus ,  Caenorhabditis 
species 9  

  ben-1 ,  smo-1 ,  rex-1 ,  sdc-2 ,  unc-119   [ 96 ] 

 Mouse   Sry ,  Ury   [ 90 ] 

 Gene deletion or 
inversion 

 Human  Various microRNAs  [ 88 ] 
  Arabidopsis thaliana    GLL22a ,  GLL2b   [ 106 ] 
 Mouse  Various microRNAs  [ 91 ] 
 Zebrafi sh  Multiple genes and noncoding 

regions 
 [ 47 ] 

(continued)
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Table 1
(continued)

 Type of 
modifi cation  Organism  Genes  References 

 Gene correction  Human   DMD   [ 50 ] 
 Human   COL7A1   [ 108 ] 
 Human   HBB   [ 109 – 111 ] 
 Human   APOB ,  SORT1 ,  AKT2 ,  PLIN1   [ 87 ] 
 Human   XPC   [ 112 ] 
 Human  Mitochondrial DNA  [ 114 ] 
 Human   AAT   [ 113 ] 

   A powerful application of the TALEN technology is to rapidly 
and effi ciently generate cellular models of human disease or to 
interrogate disease-related mutations or genes. This approach has 
been exploited to create disease-associated genetic mutations in 
somatic and stem-cell models for a variety of human diseases [ 87 ]. 
Notably, in this study, few if any TALEN-associated off-target 
mutations were detectable in many of the modifi ed cell popula-
tions. High-throughput TALEN assembly was also used to inter-
rogate a large panel of genes related to epigenetic regulation or 
cancer, with successful modifi cation of >85 % of targeted genes 
[ 12 ]. The ease of TALEN technologies has enabled researchers to 
rapidly generate large genomic deletions to quickly interrogate 
microRNA function [ 88 ,  89 ]. These notable examples demon-
strate that TALENs are a versatile tool to interrogate and study 
small and large genetic elements in complex genomes. 

 TALENs have also enabled rapid gene modifi cation to effi -
ciently generate transgenic species or to knockout genes of inter-
est. This has enabled the study of a variety of genes of interest in a 
diverse range of organisms, including mice [ 90 ,  91 ], rats [ 92 ], pigs 
[ 93 ], cows [ 93 ], zebrafi sh [ 47 ,  94 ,  95 ],  C. elegans  [ 96 ,  97 ], newts 
[ 98 ], silkworm [ 99 ], fl ies [ 100 ], mosquitos [ 101 ], and frogs 
[ 102 ]. In addition, genome engineering is an exciting method to 
address challenges in plant engineering [ 103 ,  104 ]. Many plant 
genes are arranged in tandem arrays, making it diffi cult to selec-
tively alter single genes to study or impart new gene function. The 
ability of TALENs to discriminate between relatively few mis-
matches makes this technology particularly powerful for altering 
specifi c gene arrays. An example of this approach is the application 
of TALENs in rice to generate disease resistance, as well as the 
rapid modifi cation of numerous other genes [ 105 ]. Other studies 
have demonstrated that TALENs are a powerful platform to rap-
idly modify plant genes, including  Arabidopsis thaliana  [ 106 ], bar-
ley [ 107 ], and  Brachypodium  [ 105 ].  

TALENs for Biotechnology
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4    Applications for Gene Therapies 

 Gene therapies using designer nucleases have shown promise to 
correct the genetic basis of human diseases [ 1 ,  2 ]. The signifi cant 
advances made in the effi ciency and precision of novel genome 
engineering technologies across the past decade have led to the 
development of TALENs targeted to numerous genes related to a 
range of human diseases (Table  1 ). In contrast to gene replace-
ment therapies, genome editing can directly correct mutations 
associated with disease. For example, we developed TALENs to 
generate small insertions and deletions to restore the reading frame 
of the dystrophin gene as a novel method to correct the molecular 
basis of Duchenne muscular dystrophy [ 50 ]. TALENs have also 
been used to correct mutations associated with epidermolysis bul-
losa [ 108 ], sickle cell disease [ 109 ,  110 ], beta-thalassemia [ 111 ], 
xeroderma pigmentosum [ 112 ], and alpha-1 antitrypsin defi ciency 
[ 113 ] by homologous recombination and to correct mitochon-
drial DNA disorders [ 114 ] by deletion of aberrant sequences. 

 Beyond correction of mutant genes, gene editing strategies 
have been developed to modify genes in order to modulate disease 
phenotypes. ZFNs targeted to the gene encoding the HIV- 
coreceptor CCR5 are currently in clinical trials and have laid the 
groundwork for genome editing as a novel treatment modality 
[ 44 ,  115 ]. Studies have demonstrated that TALENs can also intro-
duce effi cient mutations to CCR5 [ 11 ,  55 ,  116 ,  117 ] and present 
an alternative gene editing technology for this application. TALENs 
have also been designed to target and eliminate hepatitis B viral 
genomes from human cells [ 118 ,  119 ]. TALENs have been uti-
lized to disrupt the myostatin gene [ 120 ], the loss of which leads 
to hypertrophy of skeletal muscle that could be used to treat a 
range of diseases, including muscular dystrophies. Collectively, 
these studies show that TALENs are a powerful technology to gen-
erate a variety of gene modifi cations to correct human diseases.  

5    Discussion 

 Over the past 5 years, the rapid advancement of genome editing 
technologies has led to widespread adoption of various gene edit-
ing platforms for a diverse range of applications [ 1 – 6 ]. TALEN 
technologies have made effective gene-editing tools accessible to 
nearly any researcher at low cost. The robustness of this technol-
ogy has enabled researchers to rapidly and effi ciently interrogate a 
large number of genes in a range of organisms (Table  1 ). 
Importantly, TALENs have impressive observed specifi city and 
several advances in this fi eld have further improved the fi delity 
of this approach [ 56 ,  57 ,  60 ,  61 ,  63 ,  121 ]. The specifi city and 
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effi ciency of these approaches may be further improved as second- 
generation technologies are developed, such as TALE recombinases 
[ 28 ] and single-chain TALE-meganuclease fusions [ 32 ,  33 ]. The 
easily programmable TALE DNA-binding domain has also been a 
boon to creating other synthetic enzymes to regulate gene expres-
sion [ 53 ,  83 ,  122 ] and the epigenome [ 59 ,  58 ]. Although the 
recent advent of CRISPR/Cas9-based genome-engineering tools 
has provided an alternative facile method for gene editing [ 7 ,  123 , 
 124 ], there are many differences between the two technologies 
and various applications could benefi t from the strengths of each 
approach. Collectively, TALENs and other TALE-based gene- 
modifying tools have introduced publicly available, low-cost, effi -
cient, and rapid gene modifi cation that is accessible to any lab and 
has enabled studies for a remarkable variety of applications.     
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