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    Abstract 

   Cyclin-dependent kinases (CDKs) are core components of the cell cycle machinery that govern the transi-
tion between phases during cell cycle progression. Abnormalities in CDKs activity and regulation are com-
mon features of cancer, making CDK family members attractive targets for the development of anticancer 
drugs. One of the main bottlenecks hampering the development of drugs for kinase is the diffi culty to 
attain selectivity. A huge variety of small molecules have been reported as CDK inhibitors, as potential 
anticancer agents, but none of these has been approved for commercial use. Computer-based molecular 
design supports drug discovery by suggesting novel new chemotypes and compound modifi cations for 
lead candidate optimization. One of the methods known as de novo ligand design technique has emerged 
as a complementary approach to high-throughput screening. Several automated de novo software pro-
grams have been written, which automatically design novel structures to perfectly fi t in known binding 
site. The de novo design supports drug discovery assignments by generating novel pharmaceutically active 
agents with desired properties in a cost as well as time effi cient approach. This chapter describes procedure 
and an overview of computer-based molecular de novo design methods on a conceptual level with success-
ful examples of CDKs inhibitors.  

  Key words     Cyclin-dependent kinases  ,   De novo design  ,   Genetic algorithm  ,   High-throughput screen-
ing  ,   X-ray crystallography  

1      Introduction 

 In drug designing process the search for drug molecules with com-
putational methods is frequently performed by molecular docking 
or to a lesser extent by de novo drug design approaches. While 
virtual screening relies on pre-existing compounds, de novo design 
approaches generate novel molecules out of building blocks con-
sisting of single atoms or fragments [ 1 ]. The de novo design 
involves the design of novel structures based on the structure of 
binding site with which they are meant to interact, which can be 
identifi ed from an X-ray crystallographic study of the receptor pro-
tein with bound ligand. By defi nition, de novo means “from the 
new” and involves the design of complex new molecules from 
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smaller constituent parts. The creation of any new chemical entity 
could be considered de novo design, while in practice the de novo 
design will be defi ned as the creation of novel chemical entities that 
are substantially different from any of the starting materials [ 2 ]. 

 De novo design involves the design of novel structures based 
on the structure of binding site with which they have to interact. A 
drug can be designed which will have the correct size and shape to 
fi t the space available with required functional groups to interact in 
binding sites [ 3 ]. The operator can carry out each of these proce-
dures manually. Automated de novo design of bioactive molecules 
is one of the key aims in computational chemistry. To approach this 
idea, algorithms have to provide two principal tasks: First, the 
search space, i.e., the set of all algorithmically tractable molecules 
must be structured into regions of higher and lower quality to 
allow for prediction of desired properties (protein binding), and 
second, systematic search to make easy navigation in a high- 
dimensional chemical space [ 4 ]. 

 One of the principal attractions of designing drug-like mole-
cules starting from simpler building blocks is the potential to cover 
a larger fraction of the available compounds within the size range of 
interest. A relatively small number of fragments can be compiled to 
cover most of the possible shapes, features, and properties con-
tained in a much larger set of drug-like compounds. This is in con-
trast to the very small amount of the accessible space that can be 
covered in a screening library for molecules of drug-like size [ 2 ,  5 , 
 6 ]. Conceptually, Schneider and Fechner focused on three basic 
questions, which must be addressed by a de novo design program: 
(1) how to assemble the candidate compounds; (2) how to evaluate 
their potential quality; (3) and how to sample the search space effec-
tively. All algorithmic decisions of a de novo design program are 
noticeably appraised by the quality of their outcome, which in turn 
crucially depends on a meaningful reduction of the search space [ 7 ]. 

 In this chapter, we describe strategies and methods used in 
computer-based molecular de novo design methods on a concep-
tual level. The application of this approach is exemplifi ed with a 
detailed description of the design of CDK2 and CDK4 inhibitors 
obtained by fragment-based de novo design program to identify 
promising scaffold candidates.  

2    Materials 

     1.    GANDI (Genetic Algorithm-based de Novo Design of 
Inhibitors).   

   2.    Protein Data Bank (PDB) for protein structures.   
   3.    Molinspiration Cheminformatics (  www.molinspiration.com    ) 

to construct molecules and library of fragments design.   
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   4.    CORINA and Babel for conversion from SMILES strings to 
MOL2 format.   

   5.    SEED software to dock fragment library into the receptor 
binding site.   

   6.    LEGEND de novo design program.   
   7.    MODELLER for homology or comparative modeling of pro-

tein three-dimensional structures.   
   8.    CHARMm force fi eld for model minimization.      

3    Methods 

 The methods described here allow to the top ranking molecules to 
be involved in one to three hydrogen bonds with the backbone 
polar groups in the hinge region of CDK2, an interaction pattern 
observed in potent kinase inhibitors [ 1 ]. Crystallography has 
revealed that the ATP-binding site of CDK2 can accommodate a 
number of diverse molecular frameworks, exploiting various sites 
of interaction. In addition, residues outside the main ATP-binding 
cleft have been identifi ed that could be targeted to increase speci-
fi city and potency [ 8 ]. For simplicity of reference the ATP-binding 
site is generally described by means of the ATP-binding mode as: 
The adenine pocket, the ribose pocket, and the phosphate groove. 
Figure  1  shows a schematic of the naming scheme incorporating 
two additional regions. An important feature in terms of drug 
design is that ATP does not occupy the total volume of the cleft 
and there are nonconserved regions that can be exploited in the 
development of inhibitors [ 9 – 11 ].

   The search for drug molecules with computational methods is 
often performed by high-throughput docking or to a lesser extent 
by de novo drug design approaches [ 7 ]. The de novo procedures 
can also be done manually [ 4 ]; however this procedure would not 
be a good idea ( see   Notes 1  and  2 ). The de novo design approaches 
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  Fig. 1    Schematic presentation of ATP-binding site categorized according to ATP-
binding mode in CDK2 with additional nonconserved regions       
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generate novel molecules out of building blocks consisting of sin-
gle atoms or fragments. Because of the diffi culty to predict syn-
thetic accessibility, de novo drug design tools often generate 
molecules that demand synthesis [ 12 ]. Other important points 
could be also taken into consideration in de novo design ( see   Notes 
3–7 ). Alternatively, there are many software packages available 
which will carry out the process automatically; some of de novo 
design programs are given in Table  1 .

   Table 1  
  Different de novo design programs with their scoring function   

 De novo design 
programs  Scoring function  References 

 GANDI  Force fi eld  [ 1 ] 

 HSITE/2D 
Skeletons 

 Steric constraints and hydrogen bonds  [ 13 ] 

 Diamond Lattice  Steric constraints and hydrogen bonds  [ 14 ] 

 3D skeletons  Steric constraints and hydrogen bonds  [ 15 ] 

 MCDNLG  Potential energy  [ 16 ] 

 GrowMol  Simple empirical scoring function  [ 17 ] 

 MCSS & HOOK  Simplifi ed van der Waals potential of nonpolar interactions  [ 18 ] 

 SPROUT  Solvent accessible surface, hydrogen bonds, electrostatic 
and hydrophobic interactions 

 [ 19 ] 

 GroupBuild  Force fi eld  [ 20 ] 

 CONCEPTS  Empirical scoring function  [ 21 ] 

 GenStar  Steric constraints and ligand-protein contact  [ 22 ] 

 SPLICE  Pharmacophore based and steric constraints  [ 23 ] 

 NEWLEAD  Steric constraints  [ 24 ] 

 LUDI  Empirical scoring function  [ 25 ,  26 ] 

 LEGEND  Force fi eld  [ 27 ] 

 Chemical Genesis  Combined score of shape, grid based and scalar constraints  [ 28 ] 

 PRO_LIGAND  Empirical scoring function  [ 29 ] 

 DLD  Potential-energy function without electrostatic interactions  [ 30 ] 

 SMoG  Knowledge-based scoring function  [ 31 ] 

 BUILDER  Steric constraints  [ 32 ] 

 CONCERTS  Force fi eld  [ 33 ] 

 RASSE  Force fi eld  [ 34 ] 

(continued)
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     In this section a novel approach for Genetic Algorithm-based de 
novo Design of Inhibitors (GANDI) is presented [ 1 ]. GANDI is a 
fragment-based method that generates molecules by joining pre- 
docked fragments with linkers with parallel genetic algorithm [ 47 ], 
employing the simultaneous evolution of multiple populations 
used in GANDI to search for feasible solutions. Only the pre- 
docked fragments are encoded by the genetic algorithm, while 
suitable linker fragments are effi ciently evaluated with a tabu search 
[ 48 – 50 ]. GANDI is evaluated on CDK2, and it is able to suggest 
molecules with new scaffolds or substituents which preserve the 
main binding interaction motifs of known inhibitors of CDK2 [ 1 ]. 

   In order to connect pre-docked fragments with linker fragments 
( see  Fig.  2 ), GANDI uses a combination of two stochastic search 
procedures, namely (1) a genetic algorithm [ 51 ,  52 ] and a tabu 
search [ 48 – 50 ], which are as follows.

     1.    The genetic algorithm in GANDI is an island model, using the 
simultaneous, noninteracting evolution of multiple popula-
tions at the same time. The exchange of genetic material is 

3.1  Fragment-Based 
De Novo Ligand 
Design Strategy 
of CDK2 Inhibitors

3.1.1  GANDI Procedure 
for Design of CDK2 
Inhibitors

Table 1
(continued)

 De novo design 
programs  Scoring function  References 

 PRO_SELECT  Empirical scoring function  [ 35 ] 

 SkelGen  Geometric, connectivity, and chemical constraints  [ 36 ] 

 Nachbar  Target-specifi c QSAR model based on topological 
connectivity descriptor 

 [ 37 ] 

 Globus  Molecular similarity based on all-atom-pairs-shortest-path descriptor  [ 38 ] 

 DycoBlock  Force fi eld and solvent accessible surface  [ 39 ] 

 LEA  Target-specifi c QSAR model based on three-dimensional descriptors  [ 40 ] 

 LigBuilder  Empirical scoring function  [ 41 ] 

 TOPAS  Molecular similarity based on topological pharmacophore 
and substructure fi ngerprints 

 [ 3 ] 

 F-DycoBlock  Force fi eld and solvent accessible surface  [ 42 ] 

 ADAPT  Weighted sum of DOCK score, clogP, MM, number 
of rotatable bonds and hydrogen bonds 

 [ 43 ] 

 CoG  Molecular similarity based on fi ngerprint descriptor  [ 44 ] 

 BREED  –  [ 45 ] 

 CCLD  Force fi eld  [ 46 ] 

Fragment Based De Novo Design of CDK2 Inhibitors
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performed after a certain amount of optimization iterations by 
swapping individuals (i.e., molecules) between neighboring, 
all, or randomly picked islands as reported by Dey and Cafl isch 
[ 1 ]. Every individual contains a single chromosome consisting 
of multiple genes. Contrary to classic genetic algorithms ( see  
 Note 8 ) [ 7 ,  53 ], the implementation in GANDI uses integers 
as gene values encoding indexes of docked fragments.   

   2.    The next step involves linking the encoded fragments for each 
individual by a tabu search [ 48 – 50 ]. GANDI builds a look-up 
table containing all distances and angles of all pairs of linker 
fragment connection vectors. All possible connections of frag-
ment pairs of an individual are generated with cutoff values 
and the look-up table. A connection solution is randomly 
picked, and the two fragments are joined with the linker [ 1 ].    

     The detection of 3D-similarity between molecules may be mea-
sured as reported by several researchers [ 1 ,  54 – 56 ]. The scoring 
function implemented in GANDI is a linear combination, and 
force fi eld-based energy function consists of van der Waals and 
electrostatic terms. The potentials of the receptor are calculated 
and stored on a grid [ 56 ] and used only for the linkers. The next 
term in the scoring function is a fi ngerprint-based 2D measure of 
similarity (2D similarity) as Dey and Cafl isch have used the 
 crystallographic structure of CDK2 with an oxindole-based inhibi-
tor [ 1 ,  57 ] from the protein data bank (PDB ID: 1KE5). The 
crystallographic ligand can be prepared as described for the protein 
but minimized without any constraints inside the rigid protein 
binding site.  

3.1.2  3D-Similarity 
and Selection of Fittest 
Individuals

General
Setup

Select parameter
and input file
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of loop-up table for
connection vectors

Selected docked 
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Generation of receptor
grid

1

2 3

4

a
Genetic Algorithm

Create Initial Population Main Loop

Casual initialization of ‘old’
individuals      with       non-
overlapping docked fragments

Casual tabu search of linkers
and scoring

Shorting of ‘old’ population

Generation of ‘new’ individuals through
crossing over and mutation

Random tabu search of linkers and scoring

Insert ‘new’ individuals into ‘old’
population if the former are not similar to

previously existing one

Exchange individuals between islands

Find particular individuals

Find final particular individuals

b

  Fig. 2    Schematic illustration of GANDI with general procedure ( a ) from top to bottom including two iterative 
procedures, which are the main loop of the genetic algorithm and the random tabu search ( b )       
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   In this step, library of fragments from Molinspiration 
Cheminformatics ( see   Note 9 ) is the source of constructed mole-
cules (  www.molinspiration.com    ). The library consisted of 20,000 
fragments with one and 20,000 fragments with two connection 
points occurring in bioactive molecules. Both sets are converted 
from SMILES strings to MOL2 format with CORINA [ 58 ,  59 ] 
and Babel [ 60 ]. Then, all are docked into the receptor binding site 
with SEED, a program for docking mainly rigid fragments with 
evaluation of protein-fragment energy and electrostatic desolva-
tion [ 56 ] ( see   Note 10 ).  

   The quality of the binding modes generated by GANDI is further 
assessed with an in-house developed suite of programs for fl exible 
ligand docking. First GANDI molecules were decomposed into 
fragments by DAIM [ 61 ]. DAIM prioritizes also the resulting 
fragments according to their suitability as anchors for the docking 
program FFLD [ 62 ]. In the present case study applied to 
CDK2, 2D similarity is used only for analysis (and not during 
GANDI runs) by Tanimoto coeffi cient based on normalized DAIM 
fi ngerprints [ 1 ,  61 ].   

   This section presents the strategy of de novo design program 
LEGEND with structure-based design of novel and potent CDK4 
inhibitors. To obtain the CDK4 protein structure, homology model 
is build, based on monomeric form of CDK2. It has been imple-
mented a new de novo design strategy which combines the de novo 
design program LEGEND with in-house structure selection sup-
porting system SEEDS to generate new scaffold candidates [ 63 ]. 

   According to the level of sequence homology between CDK4 and 
CDK2 (45 %), the CDK4 homology model has been constructed 
based on the CDK2 Protein ( see   Note 11 ). The model is mini-
mized with the CHARMm force fi eld [ 64 ] with the exception of 
the conserved region in CDK4 and CDK2. This minimized struc-
ture is used for scaffold design in the de novo design strategy.  

   In CDK2, the NH group in Leu83 is the most important in bind-
ing of the inhibitors because it serves as a hydrogen-bonding donor 
in every structure reported in earlier studies [ 11 ,  65 ]. The main 
chain carbonyl groups of Glu81 and Leu83 also seemed to be 
important because most inhibitors form hydrogen bonds with 
them. In CDK4, most of the residues that are important for hydro-
gen bonds interactions are conserved. Among the altered amino 
acid residues, those between Leu83 in CDK2 and Val96 in CDK4 
would not be critical since only the main chain is used for hydro-
gen bond(s). Therefore, this information concerning structural 
requirements is also useful to fi nd out new class of CDK4 

3.1.3  Selection 
of Fragment Library 
and Docking with SEED

3.1.4  Quality Assessment 
of Binding Modes

3.2  Generation 
of Potent CDK4 
Inhibitors with De 
Novo Design 
Program LEGEND

3.2.1  Homology Model 
Building of CDK4 Protein

3.2.2  Identifi cation 
of New Scaffolds 
with Structural 
Requirements
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inhibitors and is used to identify new scaffolds that satisfy these 
structural requirements [ 63 ]. LEGEND program is based on the 
atom-by-atom approach and is suitable for generation of drug 
molecules in cavity of the ATP-binding site [ 66 ]. The output 
structures from primary step could not be commercially available 
( see   Note 12 ). In the case of CDK4, a diarylurea scaffold has been 
identifi ed as appropriate for rapid construction of structurally 
diverse libraries [ 63 ]. The data obtained from LEGEND de novo 
design suggested that neighboring NH and CO in the diarylurea 
scaffolds form hydrogen bond(s) with the main chain(s) of Glu94 
and Val96, and aromatic rings are supposed to be located in the 
hydrophobic regions of CDK4. According to these insights, 
Honma and his group also provided further strategy for construct-
ing diarylurea informer libraries based on the structural require-
ments of Cdk inhibitors in the ATP-binding pocket of the Cdk4 
mode. Further, docking study is performed to investigate the bind-
ing mode of Diarylurea in CDK4. Moreover, design and synthesis 
can be also executed based on the predicted binding mode. Finally, 
X-ray analysis could be done for confi rmation of binding mode 
from de novo design.    

4    Notes 

     1.    In general, the structure of the binding site is identifi ed from 
X-ray crystallography and it is possible that the designed mol-
ecule may not bind to the binding site exactly as predicted. If 
the projected    fi t is too rigid, a minor modifi cation in the bind-
ing mode may prevent the molecule binding. It would be bet-
ter to have a fl exible structure in the fi rst instance [ 4 ].   

   2.    It is signifi cant to leave possibility for variation and elaboration 
in the molecule, and this agrees on fi ne modifi cation of the mol-
ecule’s binding affi nity and also on required pharmacokinetics.   

   3.    Flexible molecules are better than rigid molecules, because the 
former are more likely to fi nd an alternative binding confor-
mation. This allows modifi cation to be carried out based on 
the actual binding mode. On other hand, if rigid molecules fail 
to bind as predicted, it may not bind at all.   

   4.    It is pointless designing molecules that are diffi cult or impos-
sible to synthesize.   

   5.    Similarly, it is pointless designing molecules that need to adopt 
an unstable conformation in order to bind.   

   6.    Consideration of the energy losses involved in water desolva-
tion should be taken into account.   

Sunil Kumar Tripathi et al.
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   7.    There may be subtle differences in structure between recep-
tors and enzymes from different species.   

   8.    Evolutionary algorithms are based on the ideas described by 
Charles Darwin, which are population-based optimization 
algorithms that mimic biological evolution with the genetic 
operators. Mutation introduces new information into a popu-
lation, whereas recombination exploits the information inher-
ent in the population [ 7 ].   

   9.    Molinspiration offers a broad range of cheminformatics soft-
ware tools supporting molecule manipulation and processing, 
including SMILES and SDfi le conversion, normalization of 
molecules, generation of tautomers, molecule fragmentation, 
calculation of various molecular properties needed in QSAR, 
molecular modeling and drug design, high quality molecule 
depiction, molecular database tools supporting substructure 
and similarity searches.   

   10.    It is signifi cant to note that in the Dey and Cafl isch studies, 
6882 fragments with two connection vectors were used also as 
linker fragments in GANDI. They have pointed out the proto-
col of GANDI which integrated three different parameter set-
tings with 400 individuals in a single island, 4 islands of 100 
individuals each, and 4 islands with 100 individuals exchang-
ing 5 % of all individuals every 20th iteration with a randomly 
selected island. The minimized oxindole-based inhibitor co- 
crystallized with the protein (PDB code 1KE5) was used as a 
target structure [ 1 ].   

   11.    De Bondt et al. in 1993 have solved the fi rst X-ray structure 
and analysis of CDK2. Although the structures of the 
CDK6- p16 complex and CDK6-p19 complex were already 
reported, their cyclin binding region and the ATP-binding 
pocket in CDK6 were both largely altered by the endogenous 
inhibitors (p16 and p19). Therefore, despite a very high 
sequence identity between CDK4 and CDK6 (70%), CDK6 
structural information could not be used for designing CDK4 
inhibitors [ 63 ].   

   12.    This diffi culty appears to apply to most de novo design pro-
grams that build up structures sequentially. To overcome this 
disadvantage, one can use an in-house program SEEDS [ 63 ].         
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