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      Th2 Cell Responses in Immunity 
and Infl ammation Following Helminth 
Infection       

       Edward     J.     Pearce    

            Introduction 

 Helminth parasites are multicellular pathogens from two distinct phyla—the 
Platyhelminthes (fl atworms) and Nematoda (roundworms). As a group they infect 
billions of people, largely in the poorest parts of the world where infection transmis-
sion is supported by underdeveloped sanitation and poor vector control [ 1 ]. While 
helminth infections have relatively low fatality rates they are increasingly recog-
nized to be the cause of severe morbidity, and as such have recently gained height-
ened recognition as important but neglected tropical diseases [ 2 ,  3 ]. 

 Despite enormous organismal heterogeneity and life cycle complexity amongst 
parasitic helminths, these pathogens are united immunologically by the fact that 
they nearly always induce pronounced Th2 immune responses. The origins of our 
understanding of this fact date to the observations that elevated IgE levels and eosin-
ophilia are strong indications of helminth infections (see [ 4 – 6 ]). In the 1980s it 
became clear that the expression of IL-4 and IL-5, cytokines that control immuno-
globulin isotype class switching to IgE in B cells, and increased eosinophil release 
from the bone marrow and survival in the periphery, are linked and characteristic of 
a subset of CD4 + T cells defi ned as T helper type 2 cells (Th2 cells) [ 7 ]. From this 
fi nding, it was a relatively straightforward step to the realization that the dominant 
response to helminth parasites was likely to be Th2 in nature [ 8 ]. Helminth infec-
tions are often chronic, and sometimes associated with the development of severe 
pathology, and early work linked Th2 response development during infection with 
the parasitic fl atworm  Schistosoma mansoni  to the onset of disease [ 9 ,  10 ], so there 
was initially some debate as to whether Th2 responses serve any protective function 
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in the context of helminthic disease [ 11 ]. However, it quickly became clear that Th2 
cells regulate a spectrum of protective responses that allow animals to eradicate, or 
live with, helminth parasites [ 12 – 15 ].  

    The “Th2 Response”: Innate and Adaptive Components 

 Put most simply, Th2 cells are MHC class II restricted CD4 T cells which make 
physiologically relevant levels of IL-4, IL-5, and/or IL-13. In humans and mice, the 
IL-4 allele is in a clustered locus with IL-5 and IL-13 and although each allele can 
be expressed independently, all three are often coordinately regulated, such that 
production of these “Th2 cytokines” is considered to be a mark of a Th2 response 
[ 16 ,  17 ]. In detail, the situation is more complex and the production of IL-4, IL-5, 
and IL-13 is often accompanied by the expression of additional genes, such as  Il9 , 
 Il10 , and  Areg , that add to the overall Th2 signature (e.g. [ 18 ,  19 ]). While IL-4 is not 
strictly necessary for the development of Th2 cells, it is strongly supportive of the 
expansion and establishment of Th2 cell responses [ 20 ]. Th cells were named based 
on their perceived role in helping B cells to make antibody, and the production of 
IgG1 and IgE by B cells requires T cell help including the provision of IL-4, and 
increased amounts of specifi c and non-specifi c antibodies in these classes typify 
helminth infections [ 21 ]. It is now clear that a subset of Th cells, T follicular helper 
(Tfh) cells, which differ from naïve or effector cells in being specialized to enter B 
cell follicles and germinal centers, is specialized for helping B cells [ 22 ]. In hel-
minth infections these cells share with Th2 cells the ability to make IL-4 (thus 
accounting for their ability to induce class switching to IgG1 and IgE production) 
but additionally produce IL-21 [ 23 – 25 ], a cytokine that is critical for plasma cell 
differentiation. 

 Helminth infection-induced immune responses in which Th2 cells are prominent 
are best considered “type 2” responses, since they are usually characterized by the 
additional participation of a range of cells of the innate immune system, including 
eosinophils, basophils, mast cells, and type 2 innate lymphoid cells (ILC2s), all of 
which have the potential to produce one or more of the canonical Th2 cytokines 
[ 26 – 30 ].  

    The Protective Roles of Type 2 Responses 
During Helminth Infection 

 Immunity to helminth infections is manifested in at least three ways (Fig.  1 ): 
(1) The resolution of a primary infection; (2) Resistance to reinfection; and 
(3) Protection of vital functions during chronic, immunologically unresolvable 
infection. Specifi c examples of these types of immunity will be discussed below. 
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Functionally, protective responses in each of these categories are largely mediated 
by the direct or indirect effect of type 2 cytokines on other cells, which assume 
effector functions under their infl uence. The primary effector cells of immunity to 
helminth infections are B cells (the antibody products of which can work in con-
junction with other cell types), macrophages, granulocytes, epithelial cells, and 
muscle cells.

  Fig. 1    Immunity to helminth infections is manifested in at least three ways. ( a ) The resolution of 
a primary infection. Some intestinal nematodes are killed as a result of the effects of IL-4/IL-13 
produced by innate type 2 cells and Th2 cells on intestinal epithelial cells, including goblet cells, 
and on associated musculature. ( b ) Following drug treatment of some helminth infections, hosts 
are resistant to reinfection. Immunity may be mediated by cytokines from Th2 cells and cooperat-
ing innate system cells, through mechanisms similar to those that mediate resolution of primary 
infection, but enhanced by faster kinetics associated with the secondary immune response. 
Immunity is additionally more potent in some cases because of antibody that has developed as a 
result of initial infection and clearance, and because of the rapid recruitment of cells such M2 
macrophages to the immune reaction that targets incoming larval parasites and prevents their 
establishment. ( c ) Protection of vital functions during chronic, immunologically unresolvable 
infection. In these settings, the immune response promotes tissue repair and sequesters parasites 
and any toxic molecules that they may make (indicated by the  lightning symbol ). In these settings, 
excessive tissue damage is prevented by immune system intrinsic regulatory mechanisms and 
immunomodulatory molecules released by the parasites themselves       
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      Resolution of Primary Infection 

 The resolution of primary infection is perhaps the exception rather than the rule 
since many parasitic helminths cause chronic infection—indeed, chronicity is often 
considered a hallmark of helminth infection. Nevertheless, various intestinal nema-
todes, including the whipworm  Trichuris muris  and the hookworm  Nippostrongylus 
brasiliensis , are immunologically expelled by murine hosts shortly after adult 
worms establish in the intestine and initiate egg production (Fig.  1a ). These protec-
tive responses are often heavily dependent on the early production of IL-13 and/or 
IL-4, and the ability of these cytokines to stimulate intestinal smooth muscle 
 contraction [ 31 ,  32 ], altered intestinal epithelial cell function leading to increased 
luminal fl uid fl ow [ 33 ,  34 ], increased epithelial cell turnover [ 35 ], and goblet cell exp-
ression of effector RELMβ, which inhibits parasite feeding and chemotaxis [ 36 ,  37 ], 
and Muc5ac, which is directly detrimental to  T. muris  and  N. brasiliensis , as well 
as to another intestinal nematode  Trichinella spiralis  [ 38 ] (Fig.  2 ). Together these 
effects lead to worm expulsion. These processes can be stimulated by IL-4/IL-13 
made by innate type 2 cells, or by Th2 cells and therefore additionally play essential 
roles in the spectrum of protective responses from those that begin to work during 
early primary infection to those recalled in immune animals upon re- exposure to 
infection. Interestingly, the ability of innate type 2 cells to participate in resolution 
of primary infection, as discussed below, is dependent on the presence of CD4 +  
T cells (discussed in [ 28 ,  39 ]). Thus there is an intimate reciprocal link between 
innate and adaptive immunity during the development of responses that will lead to 
expulsion of primary infections and resistance to secondary infection.

   Innate type 2 cells are present in naïve mice, poised to produce Th2 cytokines upon 
appropriate stimulation, and are mobilized within hours/days during the early stage of 
the response to helminth parasites. Because of the kinetics of the innate type 2 response, 
which occurs at a time when the adaptive Th2 response is at its very earliest stage of 
development, there has been a focus on whether the cells that make up this response are 
able to mediate innate protective responses against helminths and/or to help promote 
Th2 cell responses, by perhaps secreting IL-4 and/or IL-13. 
Of special current interest in this regard are ILC2s (Fig.  2 ). Discovered only recently, 
these cells are derived from lymphoid progenitors, but do not express markers of other 
immune cell lineages, or clonotypic antigen receptors [ 40 – 42 ]. ILC2s produce IL-5 and 
IL-13, exist throughout the body and play important homeostatic roles (e.g. [ 43 ]). 
However, ILC2s can become activated and increase in numbers in response to helminth 
infection, a response that is mediated by IL-25 and IL-33 [ 28 ,  40 – 42 ]. These cytokines 
are released by epithelial cells (and possibly other cells such as mast cells and macro-
phages) in response to necrotic damage or other signals (e.g. Trefoil Factor 2 [ 44 ]), and 
through their effects on ILC2s acts as “alarmins” to initiate innate responses [ 28 ] 
(Fig.  2 ). Conceptually, this mode of action fi ts well with the idea 
of intestinal or skin epithelial surfaces being broached by invading or migrating 
 helminth larvae. Indeed, ILC2s are engaged rapidly following infection with 
 N. brasiliensis  [ 42 ,  45 ], and stimulated by IL-25 released by intestinal epithelial 
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  Fig. 2    Innate and adaptive type 2 immunity is tightly integrated. Innate responses to helminth 
parasites can be initiated by epithelial cell damage, leading to the production of the alarmins IL-25, 
IL-33, and TSLP. IL-25 and IL-33 can activate ILC2s to make IL-13 (but not IL-4), which has 
marked effects on epithelial cell (EC), goblet cell (GC), and muscle cell biology that together can 
promote the expulsion of intestinal parasites. IL-13 also alternatively activates macrophages, 
which can then proliferate and begin making mediators that lead to parasite damage, but which 
also promote tissue healing and regulate Th2 cell responses to prevent overt immunopathology. 
TSLP made by epithelial cells can promote basophil hematopoiesis and activation, and by inhibit-
ing IL-12 production by DCs promotes the induction of Th2 cell responses. Many helminths also 
produce molecules that limit the ability of DCs to make IL-12. T-cell response initiation involves 
the extensive proliferation of T cells that are specifi c for the target antigens and the emergence of 
Th2 cells that make IL-13 and IL-4, and of Tfh cells that make IL-4 and IL-21 and are specialized 
to help IgG1 and IgE B-cell responses. Th2 cells can move into sites of infection where the cyto-
kines that they make perpetuate effects on epithelial cells, muscle cells, and macrophages initiated 
by ILC2s. T cells also sustain ILC2 populations. Eosinophils are not depicted in this fi gure. 
However, these cells participate in type 2 immunity due to the strong production of IL-5 by ILC2s 
and Th2 cells. Mast cells are also absent from the fi gure, but would be expected to participate in 
type 2 responses. Mediators in  red  have been shown to have detrimental effects on helminth para-
sites.  PC  plasma cell.  Areg  amphiregulin, a cytokine made by Th2 cells and ILC2s that promotes 
epithelial cell turnover       
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cells [ 46 ]. In the absence of IL-25, or IL-25R, mice have fewer ILC2s and exhibit 
delayed parasite expulsion kinetics [ 41 ,  45 ]. However, injection of IL-25 into infected 
WT mice or transfer of activated WT ILC2s into infected IL-25R- defi cient infected 
mice is suffi cient to mediate rapid expulsion through an  IL-13- dependent mechanism 
[ 41 ,  45 ]. Interestingly, in mice lacking the IL-33R (T1/TS2), or in which T1/TS2 is 
blocked, expansion of the ILC2 population following infection with  N. brasiliensis  
fails to occur, and the mice are unable to rapidly clear the parasite [ 41 ,  44 ], indicating 
that despite their similar roles in promoting ILC2 activation, IL-33 and IL-25 must each 
have essential non-redundant functions in immunity, although what these are is cur-
rently unclear. IL-33 has also been shown to play a role in immunity to the nematode 
parasite to  T. spiralis  [ 47 ], and to be able to induce immunity to  T. muris  [ 48 ]. 

 Multi-potent projenitor type 2 cells (MMP type 2 ), IL-25-dependent but T1/ST2- 
negative and IL-33-independent cells associated with type 2 immunity but distinct 
from ILC2s, have been implicated in resistance to  T. muris  [ 49 ,  50 ]. As their name 
suggests, these cells have the potential to differentiate into other cell types, includ-
ing basophils, monocytes, mast cells, and macrophages, and are thought to promote 
the expression of Th2 immunity in part through extramedullary hematopoiesis to 
produce cell types that contribute to protection. 

 Basophils, circulating cells that enter tissues from the blood, are also activated 
early following helminth infection during which they can rapidly accumulate in 
affected tissues and enter reactive lymphoid organs [ 51 ]. Based on the outcome of 
depletion by antibodies directed at the FcεR, basophils were implicated as antigen- 
presenting cells responsible for activating naïve CD4 +  T cells during the develop-
ment of Th2 responses following infection with helminths [ 52 ]. However, the more 
recent use of engineered mice in which basophils are deleted with high specifi city 
has shown that these cells are dispensable for polarized Th2 responses elicited by 
 N. brasiliensis  or  S. mansoni  [ 53 ]. Nevertheless, IL-4 and IL-13 from these cells 
contribute to the expulsion of primary  N. brasiliensis  infection [ 54 ]. Basophils also 
play an important role in the clearance of primary  T. muris  infection [ 55 ]. Immunity 
to this parasite is dependent on TSLP, another alarmin made by epithelial cells. In 
contrast to the situation in WT mice, peripheral basophil numbers along with Th2 
responses and associated downstream effector functions (discussed below) fail to 
develop in infected  Tslpr  −/−  mice, and adult parasites persist as a chronic infection. 
However, transfer of WT basophils into infected  Tslpr  −/−  mice is able to partially 
restore the spectrum of type 2 immune responses and resulting worm expulsion 
[ 55 ]. This study revealed that TSLP can selectively promote basophil hematopoiesis 
and the emergence of a population of basophils that differs transcriptionally from 
basophils elicited by IL-3 (Fig.  2 ). TSLP has other important functions in Th2 
immunity, as discussed further below. 

 Mast cells are found throughout the body, especially adjacent to epithelia. 
Mastocytosis is a common feature of helminth infections [ 56 ], and mast cells have 
been implicated in resistance to the nematodes  T. spiralis  [ 57 ] and  Strongyloides  
spp. [ 58 ,  59 ]. There is recent evidence that mast cell-defi cient mice have diminished 
Th2 responses and are more susceptible to primary infection with  T. muris  and to 
the trichostrongyle nematode  H. polygyrus  (once known as  Nematospiroides dubius , 
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and more recently referred to as  H. polygyrus bakeri ) [ 60 ], due to a failure of ILC2 
activation resulting from a defi cit in IL-25, IL-33, and TSLP production by epithe-
lial cells. Thus mast cells may play an important role in initiating type 2 immunity 
by provoking the production of alarmins, although the mechanism underlying this 
response is unclear at present.  

    Resistance to Reinfection 

 The second important role for type 2 responses in helminth infection is in adaptive 
immunity to reinfection. This is well illustrated by infection with  H. polygyrus.  
Primary infection in mice with this intestinal nematode can be chronic even when 
the host mounts a type 2 response, but in these cases chemotherapy leaves the cured 
host immunologically resistant to secondary infection [ 61 ] (Fig.  1b ). 

 There is a long-standing recognition that, while IL-4 and IL-13 made by memory 
Th2 cells may contribute heavily to resistance to secondary  H. polygyrus  infection 
by directly modulating epithelial cell, muscle cell, and macrophage responses [ 62 ], 
antibody is also playing a crucial role in adaptive immunity in this system [ 21 ]. 
Thus μMT mice and JhD mice, which lack B cells, and AID mice, which have 
B cells but are unable to secrete antibodies, are unable to resist secondary infection 
with  H. polygyrus , despite developing what for the most part appear to be normal 
Th2 responses [ 63 – 65 ]. Moreover, IgG1 antibody from animals immune to  H. poly-
gyrus  is able to passively confer immunity to naïve animals [ 63 ,  65 ,  66 ], and mice 
defi cient in IL-21 fail to develop IgG1 secreting plasma cells and subsequently are 
unable to resist reinfection following drug cure [ 67 ]. Antibodies are also recognized 
to be important for protection against primary infection with  T. spiralis , or  H. polygy-
rus  following maternal transfer in milk from immune mothers to offspring [ 68 ,  69 ]. 

 Parasite-specifi c antibodies have also been shown to be capable of conferring 
protection against a broad spectrum of other helminth infections following experi-
mental passive transfer, even in cases where there is not demonstrable role for anti-
body in naturally acquired immunity (reviewed in [ 21 ]). However, some of these 
fi ndings have been diffi cult to reproduce, a problem that may be ultimately due to 
differences in antibody titer between different experiments. This would be consis-
tent with the fact that there is a correlation between the effi cacy of immune serum 
in passive immunization and the number of times the donor animals have been 
infected/boosted [ 21 ,  61 ], since titer would be expected to rise with each boost. In a 
real world setting, the role of immunologic boosting due to the death of existing 
parasites and reinfection has been postulated in human immunity to infection 
against schistosomes [ 70 ,  71 ]; in this infection, resistance can develop following 
drug treatment, and is correlated with the amount of IgE antibody against key para-
site antigens [ 72 ]. 

 Antibodies exert protective roles through a variety of mechanisms that vary 
depending on the infection and life stage targeted. For example, in the intestine, 
antibodies promote the entrapment of  T. spiralis  worms in mucus, leading to 
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 expulsion [ 73 ], whereas in tissues antibody can mediate FcR-dependent cytotoxic 
effects by neutrophils and eosinophils, as illustrated in the case of immunity to the 
 nematode  Strongyloides stercoralis  [ 74 ]. In  H. polygyrus  infection, antibodies asso-
ciated with FcR on basophils allow the antigen-specifi c production of IL-4/IL-13 
during challenge infection [ 75 ], leading to the induction of protective intestinal 
responses linked to the activation of epithelial cells, goblet cells, and muscle cells 
(Fig.  2 ), which together promote expulsion of worms from the gut [ 15 ]. Moreover, 
basophils can mediate protection against secondary infection with  N. brasiliensis  
independently of Th2 cells [ 76 ]. 

 In addition to antibody, macrophages also play a crucial role in immunity to 
 H. polygyrus . These cells exist throughout the body as resident components of most 
tissues. These cells are embryonically derived, seeded into tissues in utero, and 
maintained by in situ proliferation [ 77 ,  78 ]. It is well established that during infl am-
mation, additional macrophages of hematopoietic origin can develop from mono-
cytes recruited from the bone marrow [ 77 ]. Macrophages play crucial roles in 
immunity and can adopt different activation states depending on context. Interferon-γ 
in combination with TLR agonists promotes M1 (or classical) activation, whereas 
IL-4 and IL-13 promote M2 (or alternative) activation by the IL-4Rα [ 79 ,  80 ]. From 
the host defense standpoint, M1 macrophages are infl ammatory. In contrast, M2 
macrophages are pro-angiogenic and pro-fi brotic, and make a range of molecules 
that serve to modulate infl ammation, promote tissue repair, and regulate adaptive 
immunity [ 80 ,  81 ] (Fig.  2 ). Recent work has revealed that increases in macrophage 
numbers at sites of infection with helminth parasites can additionally, or exclu-
sively, be driven by IL-4-stimulated proliferation of local macrophages [ 82 ] (Fig.  2 ), 
a fi nding that has spurred signifi cant re-examination of the origin of these cells in 
different infl ammatory settings. 

 M1 macrophages can kill growing schistosomes, and may be important for 
immunity to these pathogens in certain experimental vaccination settings where 
deliberately induced Th1 responses are protective [ 83 ]. However, M2 macrophages 
dominate during naturally developing type 2 responses during helminth infection, 
and play a signifi cant protective role in some instances, such as  H. polygyrus  inf-
ection. In this case, ingested infectious larvae invade the intestinal wall before 
emerging into the intestinal lumen to grow into adult parasites. Whilst in their tissue 
invasive life stages, the parasites become foci of granulomatous infl ammation, 
which by defi nition involves macrophages. Global deletion of macrophages during 
this period of a challenge infection in infected and cured mice effectively ablates 
protective immunity [ 62 ]. Immunity in this setting is sensitive to inhibition of argi-
nase1, which is strongly expressed by M2 macrophages, and it appears as though 
larvae are being killed through a mechanism that induces metabolic stress [ 62 ]. M2 
macrophages also play a role in inducing the IL-4/IL-13-dependent smooth muscle 
contractions that lead to the expulsion of  N. brasiliensis  worms [ 31 ]. 

 Recently, M2 macrophages were shown to be capable of cooperating with 
 neutrophils to kill  S. stercoralis  larvae in vivo [ 84 ]. While not restricted to roles in 
type 2 immunity, neutrophils do participate in infl ammation associated with 
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 helminth infections [ 15 ], playing a role in the promotion of type 2 immune responses 
during  N. brasiliensis  infection, for example [ 85 ]. However, they can assume patho-
logic roles in settings where type 2 immunity is less robust and Th17 responses 
emerge. This has been well documented in mouse strains which are genetically 
susceptible to developing acutely lethal disease when infected with  S. mansoni , and 
in strains which normally develop chronic infection with this parasite, but which 
have been immunized prior to infection with schistosome egg antigens in complete 
Freund’s adjuvant [ 86 ,  87 ].  

    The Protection of Vital Functions During Chronic Infection 

 The third role for protective type 2 responses is to allow host survival during chronic 
infection (Fig.  1c ). This is the case during infection with the parasitic fl atworm 
 S. mansoni . Despite mounting a strong type 2 response during infection with this 
parasite, the host is unable to clear infection, which consequently is chronic. 
Nevertheless, loss of function of IL-4 in this system leads to severe morbidity and 
death associated with excessive infl ammation in the absence of any increase in 
infectious burden [ 14 ]. During infection with this organism, eggs produced by the 
parasites (living in the portal vasculature) can become trapped in the sinusoids of 
the liver where they act as foci for CD4 +  T-cell-dependent granulomatous infl amma-
tion, a process that serves a critical host-protective role by participating in the 
sequestration of parasite eggs and the toxins that they secrete [ 88 ]. In the absence of 
IL-4 or IL-4Rα, schistosomiasis is acutely lethal [ 14 ,  89 ,  90 ], and this phenotype is 
recapitulated in mice that lack IL-4Rα expression on macrophages [ 89 ]; this indi-
cates that the protective effects of IL-4 are mediated by macrophages and therefore, 
presumably, that M2 activation is critical. A failure to heal damage caused by the 
transit of parasite eggs into the gut lumen appears to be at least partially responsible 
for increased morbidity and mortality in the absence of M2 macrophages, although 
the emergence of M1 macrophages and associated infl ammation also appears to 
play a contributing role [ 89 ]. A role for M2 macrophages in controlling acute tissue 
damage has also been noted in mice infected with the  N. brasiliensis . Following 
transcutaneous infection, larval  N. brasiliensis  migrate through the lungs prior to 
entering the digestive system and maturing as adult worms in the intestine. In wild-
type mice, pulmonary migration is associated with rapidly developing hemorrhage, 
infl ammation, and reduced lung function, that resolves coincidently with the appear-
ance of M2 macrophages at the site, but fails to resolve and rather is lethal in mice 
that lack IL-4Rα or are depleted of macrophages [ 91 ]. 

 M2 macrophages also play an important role in regulating the intensity of 
the immune response to the benefi t of the host. Several IL-4-induced genes are impli-
cated in this process. For example, in  S. mansoni  infection, Relmα negatively regu-
lates CD4 +  T-cell responses and in so doing prevents the development of severe type 
2-associated immunopathology [ 92 ,  93 ] and Arginase1 produced by macrophages 
suppresses Th2 cell cytokine production and associated downstream infl ammation 
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and fi brosis [ 94 ,  95 ]. Moreover, following exposure to the fi larial nematode  Brugia 
malayi , M2 macrophages develop the ability to potently suppress the proliferation 
of other cells through a cell contact-dependent mechanism that is presumably dis-
tinct from those mediated by Arginase1 or Relmα [ 96 ]. 

 In the steady state, eosinophils have a clear role in adipose metabolic homeosta-
sis [ 97 ]. During infections with helminths they increase in number and accumulate 
at tissue sites of invasion and infl ammation. However, it has been diffi cult to assign 
eosinophils a defi ning role in either immunity or immunopathology commensurate 
with the magnitude at which they are involved in the response, and there remains a 
sense that the primary role of these cells during infection is yet to be discovered. 
Nevertheless, eosinophils have been shown to be capable of killing helminth larvae 
of various types [ 98 ], and can, along with M2 macrophages, make mediators such 
as Relmα, that regulate the intensity of type 2 infl ammation [ 92 ].  

    The Modulation of Th2 Responses and Associated Infl ammation 
During Chronic Helminth Infection: Everyone Benefi ts? 

 During chronic helminth infections caused by schistosomes and by fi larial nema-
todes, Th2 responses peak during early stages of infection and then decline despite 
the fact that parasites, and therefore parasite antigens, persist [ 99 – 102 ] (Fig.  3 ). This 
process is reminiscent of the development of CD8 +  T-cell exhaustion during chronic 
viral infection [ 103 ]. It has been argued that loss of Th2 cell function over time in 
helminth infections refl ects the development of adaptive immunologic tolerance to 
parasite antigens [ 104 ], resulting from persistent antigenic stimulation [ 105 ], and/or 

  Fig. 3    The modulation of Th2 responses and associated infl ammation during chronic helminth 
infection. Th2 cell responsiveness declines during chronic antigen despite the persistence of para-
sites. Immunomodulation does not refl ect the loss of Th2 cells, but rather their regulation by M2 
macrophages, Treg and Breg cells, cytokines, inhibitory receptor ligation, and parasite-derived 
molecules       
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extrinsic processes in which hyporesponsiveness is imposed by other cells such 
as M2 macrophages (discussed above, and [ 106 ]) or regulatory T (and B) cells 
 (discussed by Maizels in “Regulatory T Cell Control of Type 2 Infl ammation”, and 
[ 107 ,  108 ]) (Fig.  3 ). The regulatory cytokines TGFβ and IL-10 have been impli-
cated in this process [ 109 ], and IL-10 serves the additional function of suppressing 
residual Th1 responses that can occur in certain helminth infections, and therefore 
further polarizes the adaptive response in the Th2 direction [ 110 ,  111 ] (Fig.  3 ).

   Downregulation of Th2 responses during chronic infection is generally thought 
of as being advantageous in settings where the immune response is incapable of 
clearing the infection and Th2 cells are causing immunopathology. This is the 
case in schistosomiasis, where despite the fact that the type 2 response plays a 
vital tissue- protective role there is a risk that the infl ammatory and wound healing 
components of this type of immunity can themselves become pathological. 
Specifi cally, ongoing schistosome egg deposition and focused production of the 
pro-fi brotic cytokine IL-13 (which is linked to protective IL-4 production) in the 
liver can lead to severe fi brosis with portal hypertension [ 112 ]. In the absence of 
appropriate regulatory mechanisms, these processes can become overwhelmingly 
damaging (e.g. [ 94 ]). 

 Antibody can also play a protective role during helminth infection by regulating 
infl ammation [ 21 ]. This is apparent in chronic  S. mansoni  infection in  B-cell- defi cient 
mice, in which immunopathology is exaggerated, leading to greater morbidity and 
mortality than is the case in infected wild-type mice [ 113 ]. Mechanistically, immu-
noregulation by antibody is likely to refl ect the binding of IgG1-containing immune 
complexes to macrophages [ 114 ], with resultant anti-infl ammatory effects, since in 
other systems macrophages that interact with immune complexes assume marked 
regulatory roles [ 115 ,  116 ], by producing IL-10 and TGF-β1, two cytokines which 
play important roles in regulating infl ammation during schistosomiasis [ 117 ]. More 
broadly, the roles of B cells and antibody in survival during chronic schistosomiasis 
may refl ect a mechanism analogous to that mediated by intravenous immunoglobu-
lin therapy (IVIG), which is used successfully in humans for the treatment of auto-
immune diseases [ 118 ]. Recent work has shown that the canonical type 2 cytokine 
IL-4 induces the increased expression of FcγRIIB on monocytes in humans and 
mice, and that mice which lack IL-4 or FcγRIIB are not protected against infl amma-
tion by IVIG [ 119 ]. 

 In some cases, Th2 response downregulation favors parasite persistence. For exam-
ple, reversal of hyporesponsiveness by blockade of the inhibitory receptor PD-1 
expressed by Th2 cells during chronic infection with the fi larial worm  Litomosoides 
sigmodontis  infection allows the expression of effective antiparasite immune 
responses [ 120 ]. The realization that type 2 immunity is often tightly regulated during 
helminth infections, and that these processes can favor parasite survival, led to the 
realization that parasites are able to produce molecules that strongly infl uence the 
immune response [ 121 ] (Fig.  3 ). The characterization of these molecules, and the pos-
sibility that they might be developed for therapeutic use in conditions where immune 
responses (particularly type 2 responses) are pathogenic, such as allergy and asthma, 
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is a subject of considerable current interest (discussed by Loukas in “Developments 
in the Design of Anti-helminth Vaccines,” and [ 122 ]). The fact that many infl amma-
tory conditions are alleviated by helminth infection attests to the promise of this 
approach [ 123 ].  

    How Do Helminth Antigens Promote Type 2 Responses? 

 One of the greatest advances in our understanding of the how type 2 immunity devel-
ops following exposure to helminth parasites has come from recent work on the 
“alarmins,” IL-25, IL-33 and TSLP, cytokines made by damaged or activated epithelial 
cells that trigger innate immune responses and help orchestrate complementary adap-
tive immune responses (Fig.  2 ). IL-25 and IL-33 have been discussed above. The third 
alarmin, TSLP, has at least 2 known functions in type 2 immunity. The fi rst is to sup-
press IL-12 production, thereby favoring the induction of Th2 responses [ 124 ]. TSLP is 
critical for type 2 response development during infection with  T. muris  [ 55 ,  124 ] but 
not during infection with  H. polygyrus ,  N. brasiliensis  [ 125 ] or  S. mansoni  [ 126 ], 
which may refl ect differences in the inherent abilities of these parasites to suppress the 
production of IL-12 by DCs [ 125 ]. The second function of TSLP is to promote baso-
phil hematopoiesis that is independent of IL-3, the cytokine conventionally associated 
with basophilia [ 55 ]. Wild-type basophils induced by TSLP, which are functionally 
distinct from IL-3-elicited basophils, are capable of restoring immunity to  T. muris  in 
otherwise susceptible Tslpr −/−  mice [ 55 ]. 

 The fact that IL-4 is essential for Th2 cell differentiation in vitro led to much 
speculation that an innate source of IL-4 would be critical for Th2 cell development 
in vivo, and consistent with this there have been many reports that type 2 innate 
cells are key players in Th2 cell activation. However, early observations showed 
that DCs exposed to helminth antigens preferentially induce Th2 cell differentia-
tion, suggesting that despite the ability of many other cell types to contribute to 
type 2 immunity, direct contact of parasite products with these APCs is suffi cient 
for Th2 polarization [ 127 ,  128 ]. The subsequent establishment of the primary 
importance of DCs in Th2 response development during helminth infections [ 129 , 
 130 ], and the molecular identifi cation of helminth products such as nematode chitin 
[ 131 ], and  S. mansoni  Omega 1, that possess Th2 adjuvanticity and are, at least in 
the case of the latter, able to drive Th2 cell development through effects on DCs 
[ 132 ,  133 ], has led to considerable interest in specifi c pathways activated in DCs 
that condition them to preferentially induce Th2 responses [ 29 ]. A major focus of 
this work has been on the identifi cation of lectins that recognize and permit the 
uptake of helminth glycoproteins [ 134 ,  135 ], with mannose receptor being impli-
cated as playing a major role in this process [ 136 ]. A detailed discussion of the role 
of distinct dendritic cell subtypes in Th2 immune response induction can be found 
elsewhere in this volume in the chapter “Dendritic Cells and Type 2 Infl ammation” 
by Lambrecht.   
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    Summary 

 The response to helminth infections involves the engagement of innate type 2 cells 
that in the steady state play important roles in metabolic homeostasis and sterile 
wound healing, and the overlapping initiation of adaptive immune responses in 
which Th2 cells, in an antigen-specifi c manner, make many of the same cytokines 
that are made by the innate type 2 cells. The type 2 cytokines IL-4 and IL-13 made 
during these innate and adaptive responses activate a variety of other cell types, 
notably including macrophages, that play crucial roles in parasite expulsion, or in 
establishing an environment in which infected hosts can survive in the face of ongo-
ing tissue damage associated with worm persistence. A key feature of the adaptive 
response is the emergence of B cells making helminth-specifi c antibodies that can 
interact with other cell types, or act directly, to provide protection against further 
infection. During chronic infection with helminths, regulatory mechanisms develop, 
in part stimulated by immunomodulatory parasite products, that promote host and 
(directly or indirectly) parasite survival and have benefi cial effects that can amelio-
rate unrelated infl ammatory conditions. Rapid advancements in our understanding 
of type 2 immunity raise the possibility of the rationale development of new immu-
nologic approaches for preventing or treating helminth infections, and developing 
approaches to minimize the effects of the infl ammatory diseases that emerge in 
areas where helminth parasite transmission is prevented.     
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