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  Introd uction   

 The immune response that develops after helminth infection in humans and mice 
exhibits a characteristic pattern of secreted proteins, called cytokines. They include 
interleukins (IL)-4, IL-5, IL-9, and IL-13. This signature motif helps defi ne what is 
now referred to as the type 2 immune response. It is similar to the allergic immune 
response and also has signifi cant similarities to the response occurring during sterile 
infl ammation. It is, however, quite different from the type 1 response triggered by 
microbial pathogens that instead includes elevations in TNF, IL-12, IL-17, and IFN- γ. 
Understanding the events that trigger the initiation of the type 2 immune response 
and how the associated cell lineages interact to coordinate an effective immune 
response is one of the most rapidly developing areas in immunology today. The 
potential for translational applications resulting in new clinical therapeutics seems 
high. In the chapters of this book, world-renowned authorities have been brought 
together to provide a synthesis in our understanding of this dynamic and exciting 
fi eld of study. 

 Type 2 immunity is initiated through signaling pathways quite different from the 
type 1 immune response initiated following infection with many microbial patho-
gens. The type 1 response is largely activated through pathogen-associated molecu-
lar patterns (PAMPS), conserved microbial structures that bind pattern recognition 
receptors (PRRs), such as toll-like receptors, which then trigger a cascade of signal-
ing pathways leading to specifi c activation phenotypes of both innate immune cells, 
such as macrophages, and antigen-specifi c T and B cells. In contrast, danger- 
associated molecular patterns (DAMPS) seem to play a predominant role in the 
development of the type 2 immune response. Host immune and nonimmune cells 
can produce DAMPS, which are essentially endogenous signals that alert neighbor-
ing cells to cell damage and potential danger. Trefoil factor 2 and adenosine, inter-
acting with the A2B adenosine receptor, have recently been identifi ed as DAMPS 
that are released from damaged epithelial cells and have the capability of triggering 
cytokine alarmins, particularly IL-33 [1, 2]. IL-33 along with other cytokines, 
including IL-25 and thymic stromal lymphopoietin (TSLP), then triggers activation 
of various innate immune cells that, acting together, initiate the type 2 innate 
immune response [3–5]. For example, the rather scarce basophils are increasingly 
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being recognized as signifi cant players in the development of the type 2 immune 
response, in some cases providing an essential early source of IL-4. In Chap.   1    , Dr. 
Voehringer discusses these granulocytes in detail and compares their mechanisms 
of activation and function to eosinophils and mast cells. The recently identifi ed 
Group 2 innate lymphoid cells (ILC2s) are also important sources of type 2 cyto-
kines and are often activated at later stages of the response, potentially driven in part 
by T cells. Dr. Tait Wonjo in Chap.   2     reviews recent studies investigating the role of 
ILC2s in resistance to helminths and also in tissue repair and homeostasis. Each of 
these innate immune cells has specifi c activities and functions but also, perhaps as a 
result of the common signaling pathways (e.g., STAT6) activated in these different 
cell lineages, show similar characteristics. Recent studies suggest that even neutro-
phils can differentiate into an alternatively activated (N2) cell phenotype specifi c to 
the type 2 immune response [6]. Although granulocytes, mast cells, and ILC2s all 
play signifi cant roles in the development of the type 2 immune response, including 
providing important sources of type 2 cytokines, it is clear that dendritic cells play 
the essential role in Ag-specifi c Th2 cell activation and differentiation. Dr. 
Lambrecht discusses dendritic cells in the context of the type 2 immune response in 
Chap.   3    . This chapter dovetails nicely with Chap.   4     by Dr. Pearce, which focuses on 
how these T cells develop in the context of helminth infection and how they shape 
and augment the protective response. Dr. Pearce also provides a discussion of B 
cells and how antibodies may contribute to helminth trapping and ultimately para-
site eradication. 

 Also associated with the type 2 immune is the activation of T regulatory cells, 
which are now being harnessed for the treatment of a variety of infl ammatory dis-
eases. Tregs are induced during helminth infection and can control type 2, as well 
as type 1 immunity, mitigating harmful type 2-mediated pathology including fi bro-
sis. The development and role of Tregs during the type 2 immune response is 
described in detail by Dr. Maizels in Chap.   5    . The activation of Treg cells in the 
context of the type 2 immune response results in a formidable regulatory response 
that includes controlling effects of Th2 cytokines as well as Treg cells on harmful 
infl ammatory responses. The type 2 cytokines help shape and amplify a response 
that can mediate host protection against large multicellular parasites. This protec-
tion can take the form of both resistance and tolerance. Resistance mechanisms can 
lead directly to parasite damage and/or expulsion. In Chap.   6    , Dr. Loukas discusses 
new approaches that are being implemented to augment resistance through vaccine 
development and further outlines their associated challenges. Tolerance includes the 
activation of cells to express specifi c molecules that mitigate the tissue damage that 
would otherwise occur as these parasites transit through vital organs. These toler-
ance mechanisms include factors that both control harmful infl ammation and that 
directly promote wound healing. Dr. Nair in Chap.   7     discusses tissue remodeling 
effects of type 2 immune responses with a particular focus on alternatively activated 
macrophages, which are increasingly recognized as central players in helminth- 
induced wound healing. Dr. Loke in Chap.   8     discusses how tolerance mechanisms 
might be harnessed to control harmful infl ammation associated with autoimmune 
diseases ranging from diabetes to infl ammatory bowel disease. He discusses recent 

Introduction

http://dx.doi.org/10.1007/978-1-4939-2911-5_1
http://dx.doi.org/10.1007/978-1-4939-2911-5_2
http://dx.doi.org/10.1007/978-1-4939-2911-5_3
http://dx.doi.org/10.1007/978-1-4939-2911-5_4
http://dx.doi.org/10.1007/978-1-4939-2911-5_5
http://dx.doi.org/10.1007/978-1-4939-2911-5_6
http://dx.doi.org/10.1007/978-1-4939-2911-5_7
http://dx.doi.org/10.1007/978-1-4939-2911-5_8


ix

studies involving both experimental models and clinical applications. Immunity is 
also capable of profoundly affecting metabolism. Dr. Chawla provides an intriguing 
chapter at the crossroads of immunity and metabolism, discussing recent discover-
ies elucidating the intricate links between these formerly distinct disciplines, and 
the potential for therapeutically promoting metabolic health through activation of 
type 2 responses (Chap.   9    ). 

 Taken together, increased understanding of the type 2 immune response has 
broad implications. Its signifi cance ranges from the potential for improved develop-
ment of anti-helminth vaccines to the control of harmful infl ammation that can lead 
to both autoimmune pathogenesis and metabolic disorders associated with obesity. 
However, our understanding of the type 2 immune remains at a rudimentary level 
and considerable research is required before we can fully exploit this ancient 
response for the development of novel and effective immunotherapies. The chapters 
in the book provide an important platform for the development of new insights into 
how this fascinating immune response works and how we may harness its compo-
nents for novel vaccines and for targeted treatments associated with harmful type 1 
and type 2 infl ammation. 
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      Regulation and Function of Basophil, 
Eosinophil, and Mast Cell Responses       

       David     Voehringer    

          Introduction 

 Eosinophils, basophils, and mast cells are effector cells of the innate immune 
system and generally associated with type 2 immunity in response to allergens and 
helminth infections. In addition, all three cell types are implicated in a variety of 
other biological functions that will not be covered in this chapter. About 130 years 
ago, Paul Ehrlich described that eosinophils, basophils, and mast cells can be distin-
guished based on their characteristic staining of cytoplasmic granules with organic 
dyes. The granules store various pro-infl ammatory effector molecules that can be 
released within minutes after activation of the cell. Eosinophils, basophils, and mast 
cells can further express Th2-associated cytokines including IL-4 and IL-13 that are 
critical for induction of effector functions in other cells such as mucus secretion by 
goblet cells, collagen production by fi broblasts, activation of smooth muscle cells, 
class switch recombination to IgE in B cells, secretion of chemokines from endothe-
lial cells, or differentiation of alternatively activated macrophages. In addition to 
their pro-infl ammatory role during the active phase of the immune response, eosin-
ophils, basophils, and mast cells may contribute to resolution of infl ammation, tis-
sue remodeling, and restoration. This chapter describes the regulation of 
development, homeostasis, and effector functions of these three cell types in type 2 
immune responses.  

        D.   Voehringer      (*) 
  Department of Infection Biology at the Microbiology Institute ,  University Hospital Erlangen 
and Friedrich-Alexander University Erlangen-Nuremberg ,   Erlangen ,  Germany   
 e-mail: David.Voehringer@uk-erlangen.de  
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   Development and General Characteristics of Mast Cells, 
Basophils, and Eosinophils 

 Mast cells were named by Paul Ehrlich as fattened cells (Mastzellen) since he thought 
that the numerous cytoplasmic granules store nutrients and it took some time until 
the true nature of the granules was revealed [ 1 ]. The fi rst steps of mast cell develop-
ment take place in the bone marrow where mast cell precursors are generated from 
common myeloid progenitors (CMP) or from more differentiated granulocyte/mono-
cyte progenitors (GMP) with a potential intermediate cell type (basophil/mast cell 
progenitor, BMCP) that has the potential to generate both mast cells and basophils 
(Fig.  1 ) [ 2 ,  3 ]. The development of mast cells is strictly dependent on expression of 
the receptor tyrosine kinase c-KIT and the KIT ligand. Mice with loss-of-function 
mutations in the  c-Kit  gene or  Kitlg  gene lack mast cells. In addition, these mouse 
strains have other defects since c-KIT is expressed not only by mast cells but also by 

  Fig. 1    Development of mast 
cells, basophils, and 
eosinophils. Schematic 
illustration of the cell 
populations, transcription 
factors ( blue ), and cytokines 
( red ) that promote the 
development of eosinophils, 
basophils, and mast cells. 
 HSC  hematopoietic stem cell, 
 CMP  common myeloid 
progenitor,  CLP  common 
lymphoid progenitor,  GMP  
granulocyte/monocyte 
progenitor,  BMCP  basophil/
mast cell progenitor,  MCP  
mast cell progenitor,  EoP  
eosinophil progenitor,  BaP  
basophil progenitor       
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many other cell types [ 4 ]. On the other hand, constitutively active mutants of c-KIT 
cause mastocytosis in many different mammalian species. The number of mast cells 
in peripheral tissues is rather low under steady-state conditions but infl ammatory 
conditions can lead to increased mast cell numbers and this response is believed to 
be mainly caused by cytokines like KITL, IL-3, and IL-9. Transcription factors that 
are involved in mast cell development include MITF, GATA-1, and STAT5. The fi nal 
steps of mast cell development occur outside the bone marrow. Mast cell precursors 
leave the bone marrow and migrate to peripheral tissues where they fi nish their matu-
ration. Mast cells are mainly located in barrier tissues like the skin and the mucosa of 
lung and intestine suggesting that they serve as sentinels for rapid responses to invad-
ing pathogens. Their lifespan ranges from weeks to months and mature mast cells 
can even undergo further proliferation. The fi nal tissue localization determines the 
expression pattern of mast cell-associated proteases that are stored in cytoplasmic 
granules and constitute up to 50 % of the total protein mass of the cell. Mast cells and 
basophils express the metalloprotease carboxypeptidase A3 in addition to several 
different serine proteases of the chymase and tryptase family [ 5 ]. Murine mast cells 
are divided in two subgroups: mucosal mast cells (MMC) and connective tissue mast 
cells (CTMC) which both express distinct sets of proteases. Human mast cells 
express fewer proteases and are grouped in tryptase-expressing mast cells (M T , 
mainly mucosal) and tryptase and chymotryptase- expressing mast cells (M TC , mainly 
connective tissue). Other stored molecules in cytoplasmic granules include hista-
mine, proteoglycans, and some cytokines [ 5 ].

   Basophils are the least abundant population of granulocytes and constitute less 
than 1 % of leukocytes in the peripheral blood. The basophil lineage develops 
mainly from GMPs in the bone marrow [ 3 ]. Basophils fi nish their development in 
the bone marrow and enter the blood and peripheral tissues as fully matured cells 
(Fig.  1 ). The transcription factors STAT5, GATA-2, c/EBPα, and P1-RUNX1 play a 
critical role during basophil development. In addition, a basophil/mast cell- 
committed progenitor was found in the murine spleen and may also exist in the bone 
marrow suggesting that basophils and mast cells evolved from a common progenitor 
cell [ 3 ]. Indeed, a mast cell/basophil-like cell could be identifi ed in the sea squirt 
 Styela plicata  [ 6 ]. The functional similarity between mast cells and basophils is 
refl ected by the fact that both cell types express the high-affi nity receptor for IgE 
(FcεRI), histamine, potent lipid mediators, proteases, and similar sets of chemokines 
and cytokines (Table  1 ). However, in contrast to mast cells, basophils do not require 
c-KIT for development. IL-3 is the main cytokine that promotes basophilia although 
high levels of TSLP can also expand the basophil population in mice [ 7 ]. Interestingly, 
IL-3 and TSLP are dispensable for basophil development under steady-state condi-
tions since basophils are still present in mice that cannot respond to both cytokines 
[ 7 ]. Basophils have a lifespan of about 60 h in the spleen of naïve mice [ 8 ]. But the 
lifespan could be increased in infl amed tissue with high levels of IL-3, GM-CSF, or 
TSLP. Basophils are smaller than mast cells and contain an indented nucleus. 
Although basophils and mast cells express a similar set of effector molecules, 
murine mast cell-associated protease (mMCP) 8 and mMCP11 are only expressed in 
basophils. Human basophils do not express these proteases but they can be distin-
guished from mast cell by high expression levels of basogranulin or CD203c.

Regulation and Function of Basophil, Eosinophil, and Mast Cell Responses
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   Eosinophils develop in the bone marrow from eosinophil-committed progenitors 
(EoP) which are IL-5Rα +  and derived from GMP (Fig.  1 ). The eosinophil lineage is 
critically dependent on the transcription factor GATA-1 since an engineered point- 
mutation in the GATA-1 promoter leads to a selective loss of the eosinophil lineage 
in ΔdblGata mice [ 9 ]. The eosinophil lineage is also lost in mice that lack the tran-
scription factor IRF-8. In addition, the transcription factors c/EBPα, PU.1, and 
GATA-2 promote eosinophil development and maturation from uncommitted 

    Table 1    Similarities and differences between mast cells, basophils, and eosinophils. Some genes 
were only reported to be expressed in either human (h) or murine (m) cells   

 Mast cells  Basophils  Eosinophils 

 Morphology of nucleus  Round  Indented, segmented  Segmented 
 Cytokines that promote 
development 

 KITL, IL-3, IL-9  IL-3, TSLP, GM-CSF  IL-5, GM-CSF 

 Critical transcription 
factors for development 

 MITF, GATA-1, 
STAT5 

 P1-Runx1, c/EBPα, 
GATA-2, STAT5, IRF-8 

 GATA-1, GATA-2, c/
EBPα, PU.1, IRF-8 

 Lifespan (steady state)  Several weeks  60 h  36 h 
 Activating receptors  FcεRI, FcγRI (h), 

FcγRIIA (h), 
FcγRIIIA (m), 
IL3R, IL18R, 
IL33R, 
CD200R2-4 (m), 
TLR4 (m) 

 FcεRI, FcγRI (h), 
FcγRIIA (h), FcγRIIIA 
(m), IL3R, IL18R, 
IL33R, CD200R2-4 
(m), TLR2 (m) 

 FcγRIIIA (m), 
FcγRIIA (h), several 
IgA receptors, PIR-A 

 Inhibitory receptors  FcγRIIb (m), 
CD200R1, 
gp49B, SIRP-α, 
PIR-B, Siglec-5 
and -8 (h), 

 FcγRIIb, CD200R1, 
gp49B, SIRP-α, 
Siglec-5 and -8 (h) 

 FcγRIIb (m), Siglec-F 
(m), Siglec-8 (h), 
PIR-B 

 Chemoattractants the 
cells respond to 

 LTB 4 , PGE 2 , 
KITL, SDF-1α 
(CXCL12) 

 Anaphylatoxins (C3a, 
C5a), IGF-1, IGF-2 

 Eotaxins (CCL11, 
CCL24, CCL26), 
RANTES (CCL5), 
LTB 4 , LTD 2 , PGD 2 , 
PAF, anaphylatoxins 
(C3a, C5a) 

 Effector molecules  Histamine, 
serotonin (m), 
lipid mediators 
(LTB 4 , LTC 4 , 
PGD 2 , PAF), 
proteases 
(chymases, 
tryptases, CPA), 
cytokines (IL-4, 
IL-5, IL-13, and 
many more), 
several 
chemokines 

 Histamine, serotonin 
(m), lipid mediators 
(LTB 4 , LTC 4 , PAF), 
proteases (chymases, 
tryptases, CPA), 
cytokines (IL-4, IL-5, 
IL-13, and many 
more), several 
chemokines 

 MBP, EPX, ECP (h), 
EDN (h), EARs (m) 

D. Voehringer
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precursors. Eosinophil maturation in the bone marrow is associated with up-regula-
tion of the chemokine receptor CCR3 and L-selectin (CD62L) [ 10 ]. Eosinophils 
leave the bone marrow as fully matured cells with a condensed nucleus and numer-
ous cytoplasmic granules that can be stained with the red dye eosin named after 
“eos” the Greek goddess of the dawn. IL-5 is the major cytokine that drives eosino-
phil development and prolongs their lifespan. Th2 cells and ILC2 are probably 
the main sources of IL-5 in vivo. IL-5, IL-3, and GM-CSF are closely related cyto-
kines that bind to receptors composed of a cytokine-specifi c alpha chain and a com-
mon beta chain which transduces the signal and is used by all three receptors. 
Eosinophils express receptors for IL-5 and GM-CSF while basophils express 
receptors for IL-3 and GM-CSF. IL-5 and GM-CSF have synergistic effects on 
eosinophils and can prolong their lifespan which is about 30 h in the spleen of naïve 
mice [ 10 ]. Eosinophils can be identifi ed and isolated by fl ow cytometry based on their 
high  side -scatter profi le and high expression of CCR3 and the sialic acid-binding 
immunoglobulin- like receptor Siglec-F (in mice) or Siglec-8 (in humans). 

 The granules of eosinophils contain cytotoxic proteins and ribonucleases. 
Furthermore, human eosinophils contain so-called Charcot-Leyden crystals (CLC) 
which are aggregates of galectin-10 with unknown function. The crystalloid core of 
the eosinophil-specifi c granules is formed by major basic protein (MBP) that is 
expressed in two isoforms. The matrix contains mainly eosinophil peroxidase (EPX) 
and in human eosinophils eosinophil cationic protein (ECP) and eosinophil-derived 
neurotoxin (EDN) which are members of the RNase A superfamily. Mouse eosino-
phils express four orthologs of ECP and EDN which are named eosinophil- 
associated ribonucleases (EARs). The RNase activity is however not required for 
the cytotoxic activity of ECP [ 11 ]. EDN was shown to reduce the infectivity of RNA 
viruses in vitro, promote the chemotaxis of immature dendritic cells, and enhance 
Th2 responses in vivo [ 12 ]. The cytoplasm of eosinophils also contains lipid bodies 
where leukotrienes and prostaglandins are synthesized. 

 Although development and basic characteristics are very similar between mouse 
and human eosinophils, there are also some differences that may explain discrepan-
cies of eosinophil in vivo functions between mouse and man [ 13 ].  

   Modes of Activation 

 Mast cells and basophils express a similar set of activating receptors on the cell 
surface. The high-affi nity receptor for IgE (FcεRI) binds IgE with 10 −10  M and is 
expressed on mast cells and basophils as a trimeric complex with an IgE-binding 
α chain without signaling capacity and a signal-transducing complex consisting of 
a β chain with four transmembrane domains and a disulfi de-linked homodimer of 
the FcRγ chain which is also part of other activating Fc receptors (Fig.  2 ). The β and 
γ chains of the FcεRI and the two adaptor proteins LAT and NTAL contain ITAM 
motifs that are phosphorylated by tyrosine kinases upon receptor cross-linking and 
initiate signaling cascades which ultimately lead to degranulation, expression of 

Regulation and Function of Basophil, Eosinophil, and Mast Cell Responses
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cytokines and chemokines, and synthesis of arachidonic acid-derived lipid mediators 
like leukotriene B 4  (LTB 4 ), LTC 4 , and prostaglandin D2 (PGD 2 ) (reviewed in [ 14 ]). 
Interestingly, FcRγ is also required as part of the IL-3 receptor complex for induc-
tion of IL-4 production in basophils [ 15 ]. Other cell types including eosinophils, 
monocytes, and dendritic cells can express a dimeric version of FcεRI that lacks the 
β chain and can only poorly activate the cells. Serum concentration of IgE is about 
10 ng/ml which is roughly 100,000 times lower than the concentration of 
IgG. Furthermore, free IgE has a short half-life of only 2 days. However, mast cells 
and basophils can effi ciently capture IgE and thereby get sensitized for long periods 
of time due to the low dissociation rate of IgE from FcεRI. Mast cells and basophils 
can also be activated by murine FcγRIIIA (low-affi nity IgG receptor) and by human 
FcγRI (high-affi nity IgG receptor) or human FcγRIIA (low-affi nity IgG receptors) 
[ 16 ]. Further activating receptors on the cell surface of basophils and mast cells 

  Fig. 2    Mast cell and basophil activation by FcεRI and its counteraction by inhibitory receptors. 
Cross-linking of FcεRI-bound IgE leads to phosphorylation of immunoreceptor tyrosine activation 
motifs (ITAMs,  yellow circles ) and initiates three major signaling cascades that ultimately lead to 
degranulation, expression of cytokines and chemokines, and secretion of lipid mediators. Other 
surface receptors with inhibitory motifs (ITIMs) recruit phosphatases that block the signaling cas-
cades by de-phosphorylation of ITAMs and phosphatidylinositol-(3–5)-trisphosphate (PIP3)       
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include receptors for cytokines of the type I hematopoietin family (IL-3, GM-CSF, 
TSLP) and the IL-1 family (IL-18, IL-33), many different G-protein-coupled recep-
tors including receptors for the anaphylatoxins C3a and C5a and a variety of pattern 
recognition receptors such as Toll-like receptors, C-type lectin receptors, and others 
(Table  1 ). Stimulation of murine basophils with IL-3 or TSLP results in different 
gene expression profi les indicating that basophils can adapt their effector function 
to the local cytokine milieu [ 7 ]. Mast cells and basophils can further be directly 
activated for example by proteases secreted from house dust mites or hookworms 
[ 17 ] and by IPSE/alpha-1, a glycoprotein from  Schistosoma mansoni  that activates 
the cells in an IgE-dependent but antigen-independent manner [ 18 ].

   Surprisingly, the modes of eosinophil activation are not well defi ned. Eosinophils 
express various activating and inhibitory receptors and can be activated in vitro by 
cross-linking of receptors for IgG and IgA or by soluble factors including IL-5, 
GM-CSF, eotaxins, C3a, C5a, platelet activating factor (PAF), and leukotriene B4. 
In addition, eosinophils can be activated via β 2  integrins, especially Mac-1 (CD11b/
CD18). Activated murine eosinophils down-regulate L-selectin (CD62L) and up- 
regulate Siglec-F [ 10 ]. Numerous studies revealed that human and mouse eosinophils 
respond differently to activating stimuli which may explain in part confl icting 
results from studies in both species [ 13 ]. 

 Prolonged activation of mast cells, basophils, and eosinophils can cause severe 
tissue damage. Therefore, inhibitory receptors play an important role to counteract 
the stimulatory function of the activating receptors. Various inhibitory receptors are 
expressed on the cell surface including FcγRIIB, gp49B, and SIRP-α. Many of them 
contain ITIM motifs in the cytoplasmic tail and recruit phosphatases which shut off 
the signaling cascades (Fig.  2 ).  

   Effector Functions 

 The early phase of type 2 immune responses is often characterized by secretion of 
TSLP, IL-33, and IL-25 from tissue-resident cells that respond quickly to invading 
parasites or allergens (Fig.  3 ). TSLP can directly act on dendritic cells and induce 
their differentiation to Th2-promoting antigen-presenting cells. IL-33 can activate 
mast cells, basophils, and eosinophils. In addition, IL-33 and IL-25 promote the 
expansion and activation of type 2 innate lymphoid cells that are a major source of 
IL-5 and IL-13 but also produce some IL-4. Mast cells can induce the release of 
TSLP, IL-25, and IL-33 in response to infection with gastrointestinal helminths sug-
gesting that mast cells may contribute to the orchestration of the early phase of type 
2 immunity independently of IgE [ 19 ]. Mast cells, basophils, and eosinophils can 
present antigen to naïve CD4 T cells and secrete IL-4 under certain conditions but 
they are largely dispensable for Th2 polarization. The main function of mast cells, 
basophils, and eosinophils is, however, to serve as effector cells during the acute 
and late phase of the immune response against parasites and allergens.

Regulation and Function of Basophil, Eosinophil, and Mast Cell Responses
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  Fig. 3    Participation of eosinophils, basophils, and mast cells as source of IL-4 and IL-13 for 
STAT6-dependent effector pathways. Allergens and helminths cause rapid release of IL-25, 
IL-33, and TSLP from cells in barrier tissues like skin and mucosa. This leads to mobilization of 
type 2 innate lymphoid cells (ILC2) and activation of dendritic cells (DC) that promote differen-
tiation of Th2 cells which are required as source of IL-4 for IgE and IgG1 production by B cells. 
IL-4 and IL-13 from eosinophils, basophils, and mast cells act on a variety of different target cells 
that contribute to protective immunity or allergic infl ammation by expression of distinct sets of 
STAT6- regulated genes. Other effector molecules of eosinophils, basophils, and mast cells are not 
depicted       
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     Mast Cells 

 Systemic activation of mast cells causes anaphylaxis, the most severe and often fatal 
form of an allergic response which is characterized by a rapid drop in blood pressure 
and body temperature. These symptoms are mainly caused by antigen-mediated 
cross-linking of receptor-bound IgE on sensitized mast cells which leads to 
degranulation and release of the vasodilating substance histamine. Mast cells also 
play a major role in local allergic reactions of barrier tissues like lung, skin, or intes-
tine. Within minutes of activation they cause local infl ammation, the so-called type 
I hypersensitivity reaction, by release of proteases and histamine. In addition, they 
produce cytokines, chemokines, and lipid mediators that lead to further recruitment 
of Th2 cells, granulocytes, and monocytes which then contribute to the allergic late 
phase reaction, also named type IV hypersensitivity reaction. 

 On the other hand, mast cells have important benefi cial functions for the host. 
They can degrade venom toxins [ 20 ] and contribute to protective type 2 immunity 
against some helminths and ticks [ 5 ]. The observed protective function against gas-
trointestinal helminths is mainly based on studies with KIT-mutant mouse strains or 
mice that are defi cient for certain mast cell-associated proteases. The molecular 
mechanisms of mast cell-mediated protection are poorly understood. Mast cells 
may help to trap larval stages of tissue-dwelling helminths in granulomas or directly 
damage larvae by release of proteases. Furthermore, secretion of IL-4 and IL-13 
from mast cells could promote collagen deposition by fi broblasts, induce mucus 
production from goblet cells, activate smooth muscle cells, and stimulate release of 
effector molecules from intestinal epithelial cells which generates an inhospitable 
environment for adult worms in the intestinal lumen. Mast cells were further shown 
in a mouse model to be important for resistance against secondary infestation with 
ticks. Unexpectedly, the expression of activating Fc receptors on mast cells was not 
required for this protection [ 21 ].  

   Basophils 

 Basophils were detected in the lung of asthma patients and could play an important 
role during the late phase reaction [ 22 ]. They are also recruited to the skin in some 
infl ammatory skin diseases like atopic dermatitis or urticaria [ 23 ]. Studies in mice 
have shown that basophils are essential for IgE-mediated chronic allergic infl amma-
tion of the skin independently of mast cells [ 24 ]. However, it remains unclear to 
what extent basophils contribute to the pathology of infl ammatory skin diseases and 
which basophil-derived effector molecules might be involved in this process. 
Furthermore, it is not known which chemotactic signals promote basophil recruit-
ment to the lung or skin. In contrast to mast cells, basophils play no major role for 
anaphylaxis in the mouse [ 25 ]. 

Regulation and Function of Basophil, Eosinophil, and Mast Cell Responses
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 Despite their pro-infl ammatory function in certain allergic responses, basophils 
can also help to protect against helminths and ticks. This activity is thought to depend 
on pathogen-specifi c antibodies that bind to activating Fc receptors on basophils and 
mediate rapid activation upon antigen encounter. By release of IL-4 and IL-13 baso-
phils may induce the protective pathways against helminths described above. In 
addition, both cytokines can promote the differentiation of alternatively activated 
macrophages which are also involved in protection against helminths and further 
serve to repair and remodel damaged tissues. Basophils also produce other cytokines 
including IL-5 which mobilizes eosinophils. The physiological function of basophil-
derived proteases and other effector molecules remains to be established.  

   Eosinophils 

 Allergic disorders with local accumulation of eosinophils in lung and skin include 
allergic asthma and atopic dermatitis, respectively. Eosinophils are mainly mobi-
lized by IL-5 and recruited into tissues by the C-C chemokines eotaxin-1, -2, and -3 
(CCL11, CCL24, and CCL26, respectively) which bind to the receptor CCR3 
although eosinophils can also respond to RANTES (CCL5) and many other chemo-
kines [ 13 ]. In addition, chemotaxis is induced by the anaphylatoxin C5a and the 
lipid mediators PAF, LTB 4 , LTD 2  and PGD 2 . Eosinophils can cause tissue damage 
by release of their cytotoxic proteins and generation of reactive oxygen species. 
MBP and EPX can directly activate mast cells. Eosinophils can express the Th2- 
associated cytokines IL-4, IL-5, and IL-13 and thereby promote the late phase 
response of allergic infl ammation. Studies in eosinophil-defi cient mice showed that 
eosinophils can promote effector T-cell recruitment, cytokine production, and 
mucus secretion in models of allergic lung infl ammation (reviewed in [ 26 ]). 
Eosinophils are further involved in tissue fi brosis by secretion of TGF-β during the 
chronic stages of the response. However, eosinophils may also dampen the allergic 
response by degradation of histamine, leukotrienes, and PAF (reviewed in [ 27 ]). 
Direct evidence for the pro-infl ammatory role of eosinophils in asthma comes from 
a study where anti-IL-5 treatment of patients with eosinophilic asthma effi ciently 
depleted eosinophils and ameliorated clinic symptoms [ 28 ,  29 ]. 

 Helminth infections often lead to a signifi cant increase of circulating eosinophils 
suggesting that eosinophils are involved in protection against these parasites. 
Indeed, IL-5-transgenic mice that contain large numbers of eosinophils in most tis-
sues can directly kill the L3 larval stage of  Nippostrongylus brasiliensis  in the skin 
[ 30 ]. However, this protective effect was not observed with other helminth species 
and eosinophil-defi cient mice show unimpaired expulsion of  N. brasiliensis  during 
primary infection. Interestingly, eosinophils contributed to protective immunity 
during secondary infection. This suggests that helminth-specifi c antibodies or mem-
ory T cells are involved in activation of eosinophils. In vitro studies showed that 
human eosinophils can directly kill Schistosomula larvae and this activity was 
dependent on activation by IgG or IgA [ 31 ]. Surprisingly, the size and number of 
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granulomas formed around  S. mansoni  eggs was not different between wild-type 
and eosinophil-defi cient mice [ 32 ]. It appears from studies in eosinophil-defi cient 
mice that protective immunity against helminths is not critically dependent on 
eosinophils and can be mediated by redundant mechanisms.   

   Conclusion 

 Mast cells, basophils, and eosinophils are myeloid effector cells with potent 
pro-infl ammatory functions during type 2 immune responses. Mast cells and baso-
phils have a similar gene expression profi le and both cell types can be effi ciently 
activated by cross-linking of FcεRI-bound IgE. Basophils and eosinophils complete 
their development in the bone marrow and have a lifespan of a few days while mast 
cells fi nish their maturation in the tissue and live for several weeks. All three cell 
types store effector molecules in cytoplasmic granules which are rapidly released 
after activation. In addition, they can secrete the Th2-associated cytokines IL-4 and 
IL-13 upon stimulation and thereby contribute to activation of STAT6-dependent 
target genes that mediate protective immunity against helminths and ticks but also 
promote the infl ammatory response against allergens.   
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  Ig    Immunoglobulin   
  IL    Interleukin   
  ILC    Innate lymphoid cell   
  ILC1    Group 1 innate lymphoid cell   
  ILC2    Group 2 innate lymphoid cell   
  ILC3    Group 3 innate lymphoid cell   
  LTD 4     Leukotriene D 4    
  LTi    Lymphoid tissue inducer   
  LXA 4     Lipoxin A 4    
  MHC II    Major histocompatibility class II   
  MPP type2     Multipotent progenitor type 2   
  NFIL3    Nuclear factor interleukin 3 regulated   
  NK    Natural killer   
  PGD 2     Prostaglandin D 2    
  PLZF    Promyelocytic leukemia zinc fi nger protein   
  R    Receptor   
  RORα    Retinoic acid receptor-related orphan receptor α   
  RORγt    Retinoic acid receptor-related orphan receptor γ   
  SCF    Stem cell factor   
  STAT3    Signal transducer and activator of transcription 3   
  T-bet    T-box expressed in T cells   
  TCF1    Transcription factor 1   
  T H 2    T helper type 2   
  TL1A    Tumor necrosis factor-like ligand 1A   
  TNF    Tumor necrosis factor   
  TOX    Thymocyte selection-associated high mobility group box   
  TSLP    Thymic stromal lymphopoietin   
  VIP    Vasoactive intestinal peptide   

         Introduction 

 Type 2 immune responses play a key role in the initiation, maintenance, resolution, 
or prevention of numerous human disease states, including infection with parasitic 
helminths, allergic diseases, fi brosis, and metabolic disorders [ 1 – 5 ]. Type 2 cyto-
kine responses drive protective immunity to parasitic helminths as well as patho-
logic allergic infl ammation associated with diseases such as asthma, atopic 
dermatitis (AD), and food allergy [ 1 – 5 ]. In addition, these responses are also associ-
ated with tissue remodeling and repair and metabolic homeostasis [ 1 – 5 ]. Thus, type 
2 immune responses are linked to a wide array of diseases that together are respon-
sible for a signifi cant public health and economic burden worldwide, and a better 
understanding of the regulation of type 2 infl ammation has the potential to inform 
treatment and management of many of these diseases [ 1 – 5 ]. 
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 Type 2 immune responses begin with the production of epithelial cell-derived 
cytokines including interleukin (IL)-25, IL-33, and thymic stromal lymphopoietin 
(TSLP) and antigen presentation by antigen-presenting cells (APCs) such as den-
dritic cells (DCs) and macrophages [ 1 – 3 ,  6 ,  7 ]. These early responses in turn pro-
mote production of the cytokines IL-4, IL-5, IL-9, and IL-13, development and 
activation of CD4 +  T helper type 2 (T H 2) cells, antigen-specifi c immunoglobulin 
(Ig)E production, and recruitment of innate effector cell populations such as eosino-
phils, mast cells, and basophils to the epithelial barrier [ 1 – 3 ,  6 ]. Together, these 
responses act back upon the epithelial barrier to regulate effector mechanisms such 
as mucus production, smooth muscle contractility, and barrier permeability that 
mediate helminth expulsion, result in signs and symptoms of type 2 infl ammation, 
or contribute to reparative or homeostatic processes [ 1 – 5 ]. 

 While a signifi cant body of literature describes how responses by adaptive T and 
B cells promote type 2 cytokine responses, less is known regarding the regulation of 
innate immune responses that drive the initiation, maintenance, and resolution of 
these responses [ 1 ,  7 ]. Importantly, studies in the last 5 years have identifi ed a novel 
subset of innate immune cells, the group 2 innate lymphoid cells (ILC2s), that is 
found in humans and mice in multiple tissues and is critical in the development of 
type 2 cytokine responses [ 3 ,  7 – 11 ]. This chapter describes recent advances in our 
understanding of the development and activation of ILC2s and how these cells con-
tribute to type 2 infl ammation in the context of helminth infection and allergy. 
Additionally, emerging work is discussed that describes alternative roles of ILC2s 
in promoting tissue remodeling and metabolic homeostasis. In particular, recent 
studies are highlighted that reveal how ILC2 responses could be targeted therapeuti-
cally to treat diseases in which ILC2-associated type 2 infl ammation plays a role. 

   Identifi cation and Defi nition of ILC2s 

 ILC2s are a newly described subset of innate cells within the ILC family, which 
includes classical natural killer (NK) cells and lymphoid tissue-inducer (LTi) cells 
[ 3 ,  7 – 17 ]. All ILCs lack expression of cell lineage markers associated with T cells, 
B cells, DCs, macrophages, and granulocytes, but do express CD90 (Thy1), the 
stem cell factor (SCF) receptor c-Kit, CD25 (IL-2 receptor (R)α), and CD127 
(IL-7Rα) [ 3 ,  7 – 17 ]. As NK cells appear to have distinct developmental and func-
tional characteristics when compared to other ILC subsets described below [ 3 ,  7 –
 17 ], here the term “ILC” will be used to refer to only non-NK cell members of the 
ILC family. 

 The ILC family is currently categorized into three major subsets. These subsets 
are comparable to the three major CD4 +  T helper lineages and are distinguished by 
their differential requirements for transcription factors during development and 
expression of distinct transcription factors and effector cytokines by mature cells 
[ 8 ]. The group 1 ILCs (ILC1s) include newly described innate cells that are T-box 
expressed in T cells (T-bet)-dependent, produce interferon-γ (IFN-γ), and promote 
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immunity to intracellular pathogens and intestinal infl ammation (classical NK cells 
are also categorized into this group). The group 3 ILCs (ILC3s) include retinoic acid 
receptor-related orphan receptor γ (RORγt)-dependent LTis and other RORγt-
dependent cells that respond to IL-23, produce IL-17A and/or IL-22, and support 
lymphogenesis in the fetus and in adults, immunity to extracellular bacteria, and 
infl ammation at multiple mucosal and barrier surfaces [ 8 ,  10 ,  12 ,  13 ,  15 – 19 ]. 

 In contrast, ILC2s are dependent upon and express the transcription factors reti-
noic acid receptor-related orphan receptor α (RORα) [ 20 ,  21 ] and GATA binding 
protein 3 (GATA3) [ 22 – 27 ] (Fig.  1 ). These cells respond specifi cally to the  epithelial 
cell-derived cytokines IL-25, IL-33, and TSLP and the tumor necrosis factor (TNF) 
family member TNF-like ligand 1A (TL1A) to produce IL-4, IL-5, IL-9, IL-13, and/
or the epidermal growth factor receptor (EGFR) ligand amphiregulin (Areg) [ 3 ,  7 –
 11 ]. These effector functions then support the development of type 2 infl ammation 
in the context of immunity and allergic disease, and also contribute to the ability of 
ILC2s to maintain tissue homeostasis by promoting wound healing, tissue remodel-
ing, and metabolic homeostasis [ 3 ,  7 – 11 ,  28 – 48 ].

   While the categorization of ILCs into the distinct subsets described above has 
been useful in providing a rubric for understanding the developmental requirements 
and effector functions of these cells, it remains possible that additional innate cell 
subsets exist, or that there may be functional plasticity among different subsets of 
ILCs [ 8 ,  10 ]. For example, cells termed multipotent progenitor type 2 (MPP type2 ) 

  Fig. 1    A network of transcription factors and cytokines directs ILC2 development. ILC2s arise 
from a CLP that expresses the integrin α 4 β 7 , the common γc receptor, and the transcription factors 
ID2 and PLZF. Signals from the cytokines IL-2, IL-7, IL-25, IL-33, and TSLP and the transcrip-
tion factors GATA3, TOX, NFIL3, and TCF1, along with Notch signaling, guide the differentia-
tion, maturation, and activation of ILC2s. These mature ILC2s are negative for lineage markers of 
T and B cells, monocytes, macrophages, and innate granulocytes, but they do express CD90 
(Thy1), CD25, CD127, IL-25R, IL-33R, TSLPR, and CRTH2       
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cells were originally thought to be an ILC-like population that promoted type 2 
immunity to helminth infection [ 49 ]. However, subsequent studies showed that 
these cells were distinct from ILC2s, as MPP type2  cells responded preferentially to 
IL-25 and exhibited a progenitor-like phenotype and function, while ILC2s 
responded preferentially to IL-33 and were terminally differentiated [ 50 ]. Regarding 
plasticity of ILC subsets, recent studies have shown that murine and human ILC3s 
could respond to IL-12 and IL-18, which mediates dynamic expression of RORγt 
and T-bet [ 51 ], loss of IL-17 and IL-22 expression, and acquisition of the ability to 
produce IFN-γ [ 51 – 54 ]. However, it remains unclear whether ILC2s demonstrate 
similar functional plasticity, and further studies will be required to fully dissect how 
ILC2s respond to changing environmental cues to modulate their characteristic 
effector functions.   

   Requirements for the Development of ILC2s 

 Following the identification of ILC2s and other ILC subsets, there has been 
tremendous interest in understanding the pathways that lead to the development 
and differentiation of ILC2s. All ILCs are derived from a bone marrow-resident 
common lymphoid progenitor that expresses the integrin α 4 β 7  [ 55 – 58 ]. 
Downstream of this precursor, the development of the three ILC subsets has been 
shown to be dependent on the transcription factors inhibitor of DNA binding 2 
(ID2) [ 55 ,  58 – 60 ] and promyelocytic leukemia zinc fi nger protein (PLZF) [ 59 ]. 
In addition, ILC development was dependent upon the common γ-chain (γc or 
CD132), IL-7, the Notch pathway, and the transcription factors thymocyte 
 selection-associated high mobility group box protein (TOX), nuclear factor, interleu-
kin 3 regulated (NFIL3), GATA3, and transcription factor 1 (TCF1) [ 8 ,  10 ,  19 , 
 27 ,  28 ,  31 ,  35 ,  55 ,  59 – 68 ] (Fig.  1 ). 

 The transcription factor GATA3 is particularly key for the development and 
maintenance of ILC2s [ 22 – 27 ]. While deletion of this factor at the earliest stages of 
ILC development in hematopoietic stem cells prevented the development of all 
ILCs [ 27 ,  68 ], deletion of GATA3 in downstream precursors only prevented the 
development of ILC2s, suggesting that sustained GATA3 expression is uniquely 
required for ILC2 differentiation [ 22 – 27 ,  68 ]. Other transcription factors coordinate 
the effects of GATA3 on ILC2 development, including growth factor-independent 1 
transcription repressor (GFI1), a transcription factor that targets the  Gata3  gene and 
helps to maintain GATA3 expression [ 69 ]. In addition to GATA3, other transcrip-
tional regulators contribute to the development of ILC2s [ 20 ,  21 ]. Together, these 
fi ndings suggest a model in which multiple transcription factors converge in a regu-
latory network that controls the development of ILC2s (Fig.  1 ).  
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   Regulation of ILC2 Effector Functions 

 Studies in multiple models and in humans suggest that ILC2s promote type 2 
infl ammation that contributes to protective immunity to helminth parasites and 
allergic disease, while supporting the maintenance of tissue remodeling mecha-
nisms and metabolic homeostasis through production of IL-4, IL-5, IL-9, IL-13, and 
Areg and interactions with other innate and adaptive immune cells [ 3 ,  7 – 11 ]. The 
factors that drive the acquisition of ILC2 effector functions include a diverse array 
of cytokines and lipids derived from epithelial cells and other immune cells that are 
produced in response to helminth parasites, viruses, and fungi as well as allergens 
[ 3 ,  7 – 11 ]. In particular, the epithelial cell-derived cytokines IL-25, IL-33, and TSLP 
are critically important for ILC2 development, activation, and acquisition of effec-
tor function [ 25 ,  28 – 30 ,  32 ,  34 ,  39 ,  42 – 44 ,  48 ,  50 ,  70 – 77 ]. Other cytokines, includ-
ing the γc cytokines IL-2, IL-4, and IL-7, also support the development of ILC2s 
and promote their activation [ 3 ,  7 – 11 ,  77 – 80 ]. Two recent studies have shown that 
the TNF family member TL1A acted on ILC2s that express death receptor 3 (DR3) 
to drive allergic infl ammation in the lung and protective immunity to helminth para-
sites [ 40 ,  41 ]. Finally, autocrine signaling by IL-9 produced by ILC2s was demon-
strated to be important in promoting ILC2 survival [ 45 ] (Fig.  2 ).

   In addition to responding to cytokine stimuli, ILC2s also respond directly to 
bioactive lipids of the eicosanoid family that are produced in the context of allergic 
infl ammation. Specifi cally, ILC2s express the prostaglandin D 2  (PGD 2 ) receptor che-
moattractant receptor-homologous molecule expressed on T H 2 cells (CRTH2), and 
ligation of CRTH2 in vitro elicited chemotaxis of ILC2s and production of IL-5 
and IL-13 [ 81 – 84 ]. ILC2s also responded to leukotriene D 4  (LTD 4 ) [ 85 ] and were 
inhibited by lipoxin A 4  (LXA 4 ) [ 81 ]. Together, these studies suggest that numerous 
proteins and lipids regulate ILC2 activation and effector function. However, additional 
studies will be required to more completely defi ne the factors that regulate ILC2 activi-
ties in various tissues during the steady state or in the context of infl ammation (Fig.  2 ).  

   ILC2s Contribute to Protective Immunity to Helminth Parasites 

 While the role of type 2 cytokines in mediating helminth expulsion has been appre-
ciated for many years, the critical source of these cytokines in vivo was previously 
poorly defi ned [ 1 ,  2 ,  4 ,  6 ,  7 ,  86 ].  Nippostrongylus brasiliensis  is a mouse-adapted 
intestinal nematode parasite used as a model of hookworm infection [ 87 ], and pro-
tective immunity in mice is dependent upon IL-13-mediated changes in the intesti-
nal epithelium, including an increase in mucus production and changes in smooth 
muscle contractility, that lead to parasite expulsion [ 86 ]. Seminal work in 2006 
showed that an innate cell population that expressed c-Kit and produced type 2 
cytokines was required for resistance to  N. brasiliensis , providing the fi rst indica-
tion that innate cells, rather than adaptive CD4 +  T cells, were required as a source of 
type 2 cytokines during helminth infection [ 88 ]. 
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 Subsequent studies formally defi ned this innate cell population as innate helper 
cells, nuocytes, or innate helper type 2 cells, again in the context of infection with 
 N. brasiliensis  [ 28 – 30 ], and these cells are now universally referred to as ILC2s [ 8 ]. 
During  N. brasiliensis  infection, ILC2s are the dominant producers of IL-13, and 
mice lacking ILC2s or IL-13 failed to effi ciently expel parasites [ 28 – 30 ]. Adoptive 
transfer of IL-13-expressing ILC2s to mice defi cient in ILC2s or IL-13 was able to 
promote parasite expulsion, thus identifying ILC2s as key players in mediating 
interactions between the immune system and the epithelial barrier that are required 
for protection against helminth parasites [ 28 – 30 ] (Fig.  3 ). While it remains unclear 
exactly how ILC2s contribute to protective immune responses during infection with 
helminths aside from  N. brasiliensis , there are studies that suggest that ILC2s do 
contribute to immunity to diverse helminth species, such as  Strongyloides venezuel-
ensis  [ 89 ,  90 ]. Similarly, Areg has been shown to be required for expulsion of the 
nematode parasites  Trichuris muris  [ 91 ], and ILC2s are a predominant source of 
Areg in some contexts [ 35 ], suggesting that ILC2s may contribute to immunity to 
 T. muris  as well.

  Fig. 2    Cytokines and bioactive lipids regulate ILC2 acquisition of effector function. The epithe-
lial cell-derived cytokines IL-25, IL-33, and TSLP act on ILC2s, driving cell proliferation and 
production of the type 2 cytokines IL-4, IL-5, IL-9, and IL-13. IL-9 produced by ILC2s, in addition 
to other γc cytokines such as IL-2 and IL-7, promote ILC2 proliferation and survival. In addition, 
the TNF family member TL1A signals to its receptor, DR3, on the surface of ILC2s to elicit 
expression of effector cytokines. Finally, ILC2s also respond to the eicosanoids PGD 2 , LTD 4 , and 
LXA 4  through the receptors CRTH2, cysteinyl leukotriene receptor 2 (CysLT2), and formyl pep-
tide receptor 2/lipoxin A 4  receptor (FPR2/ALX), respectively. PGD 2  and LTD 4  drive the activation 
of ILC2s, while LXA 4  limits ILC2 responses       
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   Numerous factors and pathways regulate ILC2 function during infection with 
helminth parasites. The cytokines IL-25 and IL-33 were required for the activation 
of these cells and subsequent parasite expulsion [ 28 – 30 ,  32 ], and expression of the 
signaling molecule NF-κB activator 1 (ACT1) in epithelial cells was critical for the 
effi cient production of IL-25 and IL-33 following infection [ 92 ]. Another cytokine, 
TL1A, also elicited ILC2 responses in the context of helminth infection [ 40 ,  41 ]. 
Recent work has shown that eicosanoids can also regulate ILC2 responses following 

  Fig. 3    ILC2s respond to cues from the epithelium and interact with innate and adaptive cells to 
promote type 2 infl ammation. Following exposure to helminth antigens or allergens, epithelial cells 
produce the cytokines IL-25, IL-33, and TSLP. ILC2s respond to these cytokines and express IL-5 
and IL-13. IL-5 and IL-13 act on other innate cell types such as eosinophils and macrophages to 
promote tissue eosinophilia and alternative activation of macrophages. These innate responses, 
coupled with the action of ILC2-derived IL-13 directly on the epithelium, serve to mediate changes 
in epithelial barrier physiology that contribute to increased mucin production and smooth muscle 
contractility. In addition, activated ILC2s interact with CD4 +  T cells via expression of MHC II, 
which drives T-cell production of IL-2 that acts back on ILC2s to support their continued prolifera-
tion, activation, and survival. Together, these ILC2-centric pathways contribute to type 2 infl amma-
tion that is protective during helminth infection and pathologic in the context of allergic disease       
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helminth infection, as the PGD2 receptor CRTH2 mediated ILC2 accumulation and 
type 2 infl ammation in the lung of mice that had been infected with  N. brasiliensis  
[ 84 ]. A variety of transcription factors are required for optimal ILC2 responses. 
During  N. brasiliensis  infection, GATA3 was required for ILC2 development and 
function [ 22 ,  23 ], GFI1 regulated ILC2 responsiveness to IL-33 and supported 
maintained GATA3 expression [ 69 ], and TCF1 promoted ILC2 expansion [ 31 ]. 
Finally, very recent  evidence suggests that interactions with T cells during infection 
are important in supporting ILC2 responses. Through expression of major histo-
compatibility class II (MHC II), ILC2s interacted with and activated naïve CD4 +  T 
cells, resulting in the production of Tcell-derived IL-2 that supported ILC2 expan-
sion, effector function, and parasite expulsion [ 33 ]. Collectively, these data show 
that ILC2s are regulated by various cytokines and transcription factors in order to 
allow ILC2s to interact with other immune cells and the epithelium to mediate pro-
tective immunity to helminth infection (Fig.  3 ).  

   ILC2s Promote Allergic Infl ammation 

 ILC2s are potent sources of type 2 cytokines and are subject to complex regulation 
by a variety of pathways and factors [ 3 ,  7 – 11 ]. Thus, it is not surprising that ILC2 
responses are not solely protective during helminth infection, but can also drive 
pathologic type 2 cytokine-associated responses associated with allergy [ 3 ,  7 – 11 ]. 
A signifi cant body of work now supports a key role for ILC2s in the initiation and 
maintenance of allergic infl ammation at mucosal and barrier surfaces in the context 
of multiple allergic diseases, including allergic asthma, allergic airway infl amma-
tion, chronic rhinosinusitis (CRS), AD, and food allergy [ 3 ,  7 – 11 ]. 

 Shortly after the discovery of murine ILC2s in the intestine and fat-associated 
lymphoid clusters [ 28 – 30 ], these cells were also identifi ed in the murine lung [ 35 , 
 93 ]. Numerous studies have now established that IL-25, IL-33, and/or TSLP can 
elicit ILC2-derived IL-5 and IL-13 production that contributes to airway hyperre-
sponsiveness and allergic airway infl ammation in various murine models [ 20 ,  24 , 
 26 ,  31 ,  37 – 41 ,  69 ,  74 – 76 ,  78 ,  85 ,  94 – 98 ] (Fig.  3 ). Notably, bioactive lipids such as 
eicosanoids can also promote ILC2 responses that regulate type 2 infl ammation in 
the lung. For example, murine lung ILC2s responded to LTD 4  by producing IL-4 
and IL-5, which was associated with eosinophilia induced by exposure to  Alternaria  
species [ 85 ]. Similarly, human ILC2s express the receptor for LXA 4 , which regu-
lated IL-13 production by ILC2s [ 81 ]. 

 Importantly, new studies suggest that ILC2s contribute to allergic infl ammation 
in the lung through a variety of mechanisms in addition to their ability to produce 
IL-5 and IL-13. For instance, in response to IL-2 signals, murine lung ILC2s pro-
duced IL-9 that was necessary for their survival and effector function in response to 
challenge with papain [ 99 ]. This dependence on IL-2 signaling suggests that ILC2 
activities are closely tied with those of T cells, which are the primary source of IL-2 
[ 100 ]. In support of this concept, recent work has revealed that ILC2s and T cells 
interact to coordinately drive allergic lung infl ammation. In vitro co-culture of ILC2s 
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and CD4 +  T cells led to Tcell proliferation and type 2 cytokine production, and 
co-transfer of these cells into mice that lacked both T cells and ILC2s drove allergic 
airway infl ammation in response to ovalbumin or the cysteine protease bromelain 
[ 101 ] (Fig.  3 ). In addition, following exposure to papain, IL-13 from ILC2s pro-
moted DC migration to the draining lymph node and priming of naïve T cells [ 102 ]. 

 Notably, there is signifi cant evidence to suggest that ILC2s play a role in asthma 
and upper and lower allergic airway infl ammation in humans. Allergic rhinitis is 
characterized by type 2 cytokine responses in the upper airways and can be 
 associated with the development of CRS [ 103 ]. Nasal polyps, a hallmark of CRS, 
had an enriched population of CRTH2-expressing ILC2s that responded to IL-25, 
IL-33, and TSLP [ 25 ,  34 ,  104 ,  105 ]. Additionally, ILC2s have been identifi ed in the 
human adult and fetal lung that expressed IL-33R, CRTH2, and/or CD161 [ 34 ,  35 , 
 81 ,  84 ], and levels of epithelial cell-derived cytokines and eicosanoids that activate 
ILC2s were elevated in the lung tissues of human asthmatics [ 81 ,  106 – 109 ]. Finally, 
ILC2s isolated from the peripheral blood of asthmatics were more numerous than 
ILC2s in the peripheral blood of healthy controls, and they also produced more IL-5 
and IL-13 in response to stimulation [ 110 ]. Taken together, these studies indicate 
that eicosanoids and epithelial cell-derived cytokines activate ILC2s to produce 
cytokines and interact with innate and adaptive immune cells, leading to allergic 
airway infl ammation in mice and humans (Fig.  3 ). 

 The importance of ILC2s in mediating type 2 infl ammation in the upper and lower 
airways suggests that these cells contribute to other atopic diseases at different 
tissues sites. In support of this idea, levels of the epithelial cell-derived cytokines 
that activate ILC2s, including IL-25, IL-33, and TSLP, have been shown to be 
increased in the skin of patients with AD [ 111 – 114 ] and in the intestine of patients 
with food allergy [ 115 – 117 ]. Indeed, the ILC2 population was expanded in AD and 
AD-like lesions in humans and mice, respectively [ 43 ,  77 ], where these cells 
responded to IL-2, IL-25, IL-33, and TSLP, produced IL-5 and IL-13, and interacted 
with innate granulocyte populations to mediate allergic infl ammation [ 44 ,  73 ,  77 , 
 118 ]. While a role for ILC2s in food allergy has not yet been described, ILC2s in the 
intestine could drive infl ammation in response to IL-25 in a murine model of 
oxazalone- induced colitis [ 119 ], suggesting that further research investigating the 
contribution of ILC2s to type 2 infl ammation in the gastrointestinal tract is war-
ranted. Collectively, studies in murine models of allergic disease and in human 
patients with allergic disease suggest that ILC2s play a key role in driving allergic 
infl ammation at multiple mucosal and barrier surfaces, and that these cells and their 
effector functions could be targeted in the treatment of upper and lower allergic 
airway infl ammation, AD, and potentially food allergy in humans.  

   ILC2s Support Tissue Remodeling and Wound Healing 

 While the role for ILC2s in promoting pathologic and protective type 2 infl amma-
tion is now well-established [ 3 ,  7 – 11 ], new data are emerging that highlight addi-
tional functions of ILC2s. In particular, ILC2s appear to contribute to tissue 
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remodeling, wound healing, and tissue homeostasis in a number of contexts [ 3 ,  7 – 11 ]. 
A role for ILC2s in tissue remodeling was initially described during infl uenza A 
virus infection in mice, in which ILC2 depletion led to a defect in the ability of the 
lung epithelium to repair itself following virus-induced tissue damage [ 35 ]. In this 
context, lung ILC2s produced the EGFR ligand Areg, which was critical in mediat-
ing effi cient repair of the lung tissue [ 35 ]. A recent study supports the idea that 
ILC2s have tissue-protective roles in the lung during infection with other pathogens, 
as IL-9 promoted survival of ILC2s in the lung that produced Areg and contributed 
to tissue repair following migration of the helminth  N. brasiliensis  through the lung 
[ 45 ]. The tissue-protective effects of ILC2s do not appear to be limited to the lung. 
Recent evidence suggests that cholangiocytes, the epithelial cells of the bile duct, 
also derive protective benefi ts from ILC2s. In response to IL-33, expansion of an 
IL-13-producing ILC2 population supported cholangiocyte proliferation in a murine 
model of biliary atresia [ 120 ]. Interestingly, this cholangiocyte hyperplasia was also 
associated with an increase in cholangiocarcinoma in mice, suggesting that precise 
regulation of ILC2-dependent tissue repair mechanisms is required to avoid patho-
logic outcomes [ 120 ]. 

 In keeping with this idea, emerging evidence suggests that ILC2s can also con-
tribute to dysregulated tissue remodeling associated with fi brosis and pathology [ 42 , 
 72 ]. Following challenge with  Schistosoma mansoni  eggs, the development of pul-
monary fi brosis was dependent upon IL-25-elicited ILC2s that produced IL-13, and 
the same study showed that ILC2 frequency and number were increased in the bron-
choalveolar lavage (BAL) fl uid of human patients suffering from idiopathic pulmo-
nary fi brosis [ 48 ]. Also, in a model of hepatic fi brosis, ILC2s that responded to 
IL-33 and produced IL-13 were important in driving fi brotic processes [ 72 ]. Thus, 
similar to the capacity of ILC2s to contribute to both protective immune responses 
against helminth parasites and detrimental type 2 responses during allergic infl am-
mation, the ability of ILC2s to drive tissue remodeling processes can be either ben-
efi cial or pathological. While the regulation of these activities is likely tissue- and 
disease-specifi c, further work is required to dissect the pathways that infl uence 
ILC2-mediated tissue remodeling and to determine whether these cells and their 
activities could be targeted to regulate tissue remodeling and homeostasis in various 
disease states.  

   ILC2s Promote Metabolic Homeostasis 

 Cutting edge studies in ILC2 biology have begun to focus on how ILC2s contribute 
to the maintenance of metabolic homeostasis [ 42 ,  46 ,  47 ,  121 ,  122 ]. Previous work 
has demonstrated that a type 2-polarized cytokine environment in adipose tissue elic-
its alternatively activated macrophage (AAM) activities and the accumulation of 
eosinophils, which in turn are associated with metabolic homeostasis [ 5 ,  123 – 125 ]. 
In contrast, classical activation of macrophages and T H 1-polarized infl ammation in 
the adipose is associated with obesity, insulin resistance, and metabolic disease 
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[ 126 – 130 ]. These previous fi ndings, coupled with the observations that ILC2s 
are potent sources of type 2 cytokines in other tissues [ 3 ,  7 – 11 ], prompted an inves-
tigation of the role of ILC2s in maintaining type 2 cytokine responses that support 
metabolic homeostasis. 

 An initial study demonstrated that IL-13 played a role in limiting hyperglycemia, 
which is associated with insulin resistance. IL-13 limited glucose production by 
inhibiting genes involved in gluconeogenesis in the liver via signal transduction and 
activator of transcription 3 (STAT3) [ 121 ], suggesting that sources of IL-13, such as 
ILC2s, might contribute to glucose homeostasis. In addition, IL-5-responsive eosin-
ophils in the adipose have been associated with the maintenance of healthy adipose 
tissue function in the lean state, and another study has shown that IL-33-elicited 
ILC2s that produced IL-5 maintained eosinophil and AAM populations in the fat 
[ 46 ]. Supporting a role for ILC2 effector functions in promoting metabolic homeo-
stasis in the adipose, IL-25 treatment resulted in an increase in ILC2 populations in 
obese mice, associated with the expansion of eosinophil and AAM in the adipose, 
increased weight loss, and improved glucose tolerance. Similarly, ILC2 depletion in 
obese  Rag1  −/−  mice resulted in increased weight gain and glucose intolerance, and 
transfer of ILC2s to obese mice led to weight loss and improved insulin sensitivity [ 42 ]. 

 In addition to their role in regulating immune cells that contribute to metabolic 
homeostasis in the fat, ILC2s that reside in the intestine produced IL-5 following 
caloric intake in response to vasoactive intestinal peptide (VIP), a neuropeptide 
produced following feeding that is tied to circadian rhythms. These data thus estab-
lish a link between ILC2s, caloric intake, and eosinophil responses that have been 
associated with metabolic homeostasis [ 47 ]. A very recent publication has also 
shown that IL-33-responsive ILC2s in the fat regulate adiposity and the recruitment 
of beige adipocytes that control caloric expenditure [ 122 ]. Together, these studies 
suggest that ILC2s may be key regulators of metabolic processes in the steady state. 
Of note, a very recent study has shown that micronutrient defi ciencies appear to 
infl uence ILC2 responses that mediate protective immunity against pathogens 
[ 131 ], suggesting that ILC2s are also key players in coordinating nutrition and 
metabolism during infection and infl ammation. Further studies will be needed to 
better understand how ILC2s sense nutritional status to regulate metabolic homeo-
stasis during the steady state and following encounters with pathogens.  

   Conclusions and Future Directions 

 A rapidly advancing body of work highlights the key role that ILC2s play in protec-
tive and pathologic type 2 immune responses in the context of helminth infection, 
allergic disease, tissue remodeling and repair, and metabolic homeostasis [ 3 ,  7 – 11 ]. 
Together, these studies provide new insight into how the innate immune system 
contributes to type 2 cytokine responses that participate in a variety of key biologic 
processes [ 1 ]. However, numerous outstanding questions remain regarding the 
development, effector function, and regulation of ILC2s. The precise developmental 

E.D. Tait Wojno



25

paths that lead to ILC2 hematopoiesis remain unclear, and how ILC2 populations 
turn over in the steady state and change in the course of aging is unknown. Also, it 
seems likely that cytokines and factors in addition to the epithelial cell- derived 
cytokines and eicosanoids shape ILC2 responses. In particular, the pathways that 
negatively regulate ILC2 responses and the mechanisms that control ILC2 migration 
are poorly understood. Similarly, ILC2s likely produce cytokines or other factors in 
addition to type 2 cytokines and Areg. Further work will be required to more com-
prehensively profi le the effector molecules produced by ILC2s and how these cells 
interact directly and indirectly with epithelial cells and innate and adaptive immune 
cells. Most importantly, our current understanding of ILC2 biology suggests that 
these cells and their effector functions could be targeted therapeutically in human 
diseases in which type 2 cytokine responses play a role, including helminth  infection, 
allergic disease, fi brosis, and metabolic disease. Future studies that investigate ILC2 
responses in humans and in murine models of human diseases could result in the 
development of innovative new therapies that target innate immune pathways 
involved in the pathogenesis of multiple infl ammatory diseases.     
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           Introduction 

 The immune system is constantly exposed to a large variety of antigens and has to 
distinguish pathogens from harmless antigens. Dendritic cells continuously scan the 
environment to sense potentially harmful pathogens and substances. They are pro-
fessional antigen-presenting cells (APCs) that have the capacity to capture foreign 
antigen, migrate to the draining lymph nodes, present Ag to naïve T cells, and initi-
ate an immune response. It is very established how DCs initiate a protective Th1, 
Th17, and/or CTL immune response against pathogens, tailored to clear the inciting 
pathogen [ 1 ]. By expressing pattern recognition receptors for foreign antigens, and 
by expressing a plethora of antigen uptake receptors, DCs can sense the nature of 
the pathogen and process a large variety of antigens for presentation to naïve T cells. 
In this process they display peptide-MHC complexes on their surface (signal 1 
for T cell activation), display costimulatory molecules (signal 2), and produce 
the polarizing cytokines (signal 3) for driving the expansion and differentiation of 
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various T cell subsets. Not surprisingly, mice lacking DCs have strong defects in 
antibacterial, antifungal, and antiviral immunity that depend on Th1, Th17, and 
CTL response [ 2 ,  3 ]. It has been much more controversial if and how DCs play a 
crucial role in the Th2 type infl ammation that develops in response to environmental 
allergens (like house dust mite (HDM), cockroach allergen, tree and grass pollen, 
fungal spores, and animal dander), tissue-dwelling parasites like helminthes and 
nematodes, adjuvants like aluminum hydroxide, and experimental agents like the 
enzyme papain [ 4 ,  5 ]. Th2 type infl ammation that is commonly seen in allergic 
infl ammation and surrounding tissue-dwelling parasites or their secreted products is 
typically rich in eosinophils, mast cells, basophils, and alternatively activated mac-
rophages (“M2 macrophages”) and is controlled by adaptive Th2 immune cells that 
produce IL-4, IL-5, and IL-13 in collaboration with innate lymphoid type II cells 
(ILC2) that mainly produce IL-5 and IL-13 (Fig.  1 ) [ 6 ]. As our immune system 
constantly encounters environmental allergens, and as helminth-infected individu-
als that are left untreated often carry their parasites for life, chronicity is another 
feature of type 2 infl ammation. Very commonly, type 2 infl ammation therefore 
leads to tissue remodeling and deposition of extracellular matrix components at 
sites of allergen exposure or helminth residence. As exposure is so chronic and not 
particularly damaging to the host, allergens and helminths are also good inducers of 
T regulatory cells (Tregs) and often Th2 immunity is very well balanced by induced 
Treg cells [ 7 – 9 ].

       Dendritic Cells Are Necessary and Suffi cient to Induce 
Th2 Immunity 

 The role of DCs in inducing Th2 immunity has mainly been studied in models of 
asthma and allergic rhinitis [ 6 ], as well as in models employing the proteinase 
papain [ 10 – 12 ]. When allergic individuals encounter certain allergens, they develop 
a Th2-dominated infl ammatory immune response against the allergen, whereas 
healthy individuals mount a balanced Th1 and Treg response [ 13 ,  14 ]. In allergic 
asthma, persistent inhalation of allergens leads to chronic eosinophil-rich infl amma-
tion, goblet cell metaplasia, and bronchial hyperreactivity and eventually to airway 
obstruction. Through production of the cytokines IL-4, IL-5, and IL-13, Th2 lym-
phocytes can control the many features of allergic disease, such as IgE synthesis, 
eosinophil expansion and activation, mucus overproduction, and hyperreactivity of 
smooth muscle cells typically seen in asthma [ 15 ,  16 ]. Although asthma was ini-
tially thought to be controlled by adaptive Th2 immunity exclusively, recent insights 
have demonstrated that innate immune cells like innate lymphoid type 2 cells 
(ILC2s) can also produce IL-5 and IL-13 and contribute to airway infl ammation 
[ 17 – 19 ]. Additional cells like Th17 cells, γδ T cells, and Th9 cells could also play 
a role in disease, particularly in severe forms that are resistant to current therapies 
with inhaled steroids [ 20 – 22 ]. 
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 Before any form of adaptive immunity is induced to inhaled allergens, the 
 allergen must get through the natural barriers of the body (skin, mucus membranes) 
and reach the cells of the immune system that are recirculating in the central lym-
phoid organs. DCs are one of the fi rst immune cells that will come into contact with 
allergens at mucosal surfaces [ 23 ,  24 ]. In the lungs, intestine, and skin, DCs sit at 
the basolateral side of epithelial cells and can sample luminal antigens directly 
by extending dendrites across the epithelial barrier [ 25 – 28 ]. Studies in mice and 

  Fig. 1    Enzymatically active allergens       
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humans have shown that lung DCs and gut DCs express tight junction proteins, 
 suggesting that they form tight junctions with epithelial cells to maintain the epithelial 
barrier function during antigen sampling [ 29 – 31 ]. In a study employing dual- photon 
microscopy to visualize lung DC behavior in situ, the sampling activity of lung DCs 
was shown to be inhomogeneously distributed at distinct sites of the lungs. DCs in 
the alveolar regions project dendrites across epithelial barriers and excel in antigen 
uptake. In contrast, antigen-bearing DCs accumulate near the conducting airways, 
in the same region as activated T cells, and rarely send processes across the airway 
epithelium [ 32 ]. 

 After antigen uptake, the main function of DCs is to migrate to the draining lymph 
nodes and present the processed antigen to T cells, leading to clonal expansion of 
antigen-specifi c T cells. Since allergy is dominated by a Th2 lymphocyte response, it 
is not surprising that DCs have a central role in inducing an allergic response, and 
compelling evidence now proves this proposition. Antigen-loaded GM-CSF-cultured 
BMDCs or splenic DCs administered directly in the lung can sensitize mice, leading 
to a Th2-skewed infl ammation upon antigen challenge [ 33 ,  34 ]. This adoptive transfer 
model also has some induction of Th17 cells, mimicking the mixed Th2/Th17 profi le 
of human asthmatics [ 34 ]. When DCs are repeatedly injected into the lungs, there is 
even induction of irreversible airway remodeling, characterized by deposition of 
extracellular matrix components under the basement membrane [ 35 ]. Similarly, DCs 
originating from the lungs of allergen-exposed mice are also suffi cient to induce sen-
sitization when transferred to naïve recipients [ 36 – 38 ]. 

 In addition to these studies demonstrating that DCs are suffi ciently capable of 
inducing Th2 immunity in the lung, recent studies have also demonstrated that lung 
DCs are necessary for induction of Th2 immunity to allergens. Depletion of lung 
DCs in CD11c-DTR transgenic mice during the fi rst exposure of mice to inhaled 
allergen HDM abolished Th2 cytokine production and cardinal features of asthma 
[ 38 ]. Also in models of sensitization to the enzymatic model allergen papain and to 
helminth allergens, DCs seem to be required for optimal Th2 immunity [ 10 – 12 ,  39 ]. 
Whether innate ILC2 and DCs have functional interactions in asthma remains to be 
investigated, although such interactions failed to be found in the skin during the 
steady state. Along the same lines, depletion of CD11c high cells did not affect the 
induction of ILC2 in a Th2-dependent model of helminth infection [ 40 ]. 

 In the context of allergy and helminth infection, several reports have proposed 
that basophils and eosinophils can also have antigen-presenting capacity and can be 
suffi cient for the induction of allergic responses [ 10 ,  41 – 43 ]. In these studies, an 
antibody to the high-affi nity IgE receptor FcεRI was however used to deplete baso-
phils, potentially also depleting DCs [ 38 ]. Direct evidence that human basophils act 
as APCs for Th2 immunity has also been hard to fi nd [ 44 ]. It is more likely that 
basophils cooperate with DCs to prime for Th2 immunity, perhaps by serving as an 
early source of IL-4 [ 38 ,  45 ]. Studies directly comparing eosinophils with DCs have 
also failed to fi nd a strong APC function in lung eosinophils, except maybe for 
primed Th2 cells [ 46 ,  47 ].  
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    Different Subtypes of DCs Induce Th2 Immunity 

 It is currently believed that various tasks of DCs in the immune system are  performed 
by different subsets of DCs, and these concepts are now also slowly emerging in the 
Th2 fi eld. DCs can be subgrouped based on their ontogeny, differential tissue distri-
bution, surface marker expression, and function [ 48 ]. In the steady state, DCs in 
mice and human are broadly divided into conventional (c)DCs and plasmacytoid (p)
DCs. pDCs express Siglec H, the bone marrow stromal antigen-1, B220, and Ly6C 
and are potent producers of type I interferons in response to viral infections. cDCs 
form the predominant group of DCs and are further subcategorized into lymphoid 
tissue-resident CD8 +  and CD8 −  CD11b +  cDCs and the non-lymphoid CD103 +  and 
CD11b +  cDCs, found o.a. in lungs, skin, and gut, and migrate to the draining nodes 
when encountering a foreign antigen. Both CD8 +  and CD103 +  cDCs depend on the 
transcription factors IRF8 and Batf3 and excel in cross-presentation of exogenous 
antigens to CD8 +  T cells [ 49 ]. The CD11b +  cDCs depend on the transcription factor 
IRF4 and Notch/RBPjκ, and excel in presentation to CD4 T cells. Though these DC 
subsets are present during the steady state, the situation changes during infl amma-
tion, when monocytes migrate to the local tissue and give rise to mo-DCs, or some-
times called infl ammatory DCs [ 48 ,  50 ]. 

 Recent studies have addressed whether DC subsets of the lung are differentially 
able to induce Th1, Th17, or Th2 responses. Ex vivo-sorted subsets of CD103 +  and 
CD11b +  cDC differentially induced, respectively, Th1 and Th2 responses to the 
model allergen OVA [ 51 ]. This problem has also been addressed directly in vivo, but 
it is hard to sort the different subsets under conditions of infl ammation. During 
infl ammation, monocyte-derived DCs are rapidly recruited to the site of infl amma-
tion in a CCR2-dependent fashion. The monocytic marker Ly6C has often been 
used to identify CD11b +  Mo-DC from CD11b +  cDCs. However, as this receptor is 
downregulated when mo-DCs enter the infl amed tissue, staining with customary 
surface markers failed to distinguish mo-DC from CD11b cDCs. In search for better 
markers, we and others recently described that mo-DCs, but not CD11b cDCs, 
expressed the FcεRI (recognized by MAR-1), CD64, and MerTK [ 37 ,  52 ]. Using 
this strategy to separate all DC subsets, DC subsets were sorted from the LN of 
HDM-sensitized mice and both CD11b +  cDC and CD64 +  moDC, but not CD103 +  
DCs, could sensitize acceptor mice after adoptive intratracheal transfer. Mice defi -
cient in Flt3L lacked all cDC subsets and failed to induce Th2 immunity to low 
doses of HDM allergen. However, Ftl3L −/−  mice still mounted Th2 immunity when 
a high dose of HDM was used, thus recruiting moDCs to the lung. Depletion of 
CD103 +  using langerin-DTR mice did not abolish cardinal features of asthma, con-
fi rming that CD103+ DCs play a redundant role in the HDM-driven asthma model 
[ 37 ]. Recent work suggests that CD103+ cDCs might even promote tolerance to 
inhaled allergens [ 53 – 56 ]. The fact that CD11b +  cDCs seem to be necessary for Th2 
immunity was also recently confi rmed in  CD11c Cre x  Irf4  fl /fl   mice that selectively 
lack this subset of cDCs. These mice failed to mount Th2 immunity driven by OVA 
and the Th2 adjuvant alum [ 57 ]. 
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 Following injection of papain in the skin, basophils collaborate with DCs to 
induce Th2 immunity ( see  Fig.  1 ) [ 10 ,  42 ]. Papain is captured by CD11b +  cDCs that 
also express macrophage galactose type C-type lectin 2 (CD301b) in the skin and 
various mucosae [ 58 ]. Using the promoter of this gene to drive expression of the 
diphtheria receptor, it was shown that conditional depletion of CD301b +  CD11b +  
cDCs abolished the early generation of IL-4-producing Th2 cells to papain as well 
as to alum and to  Nippostrongylus brasiliensis , although IgE responses to the para-
site were intact [ 11 ]. Similarly,  CD11c Cre x  Irf4  fl /fl   mice lack PDL-1 +  CD301b +  
cDCs in the skin-draining lymph nodes and there was a defect on Th2 response 
generation to papain [ 12 ]. Despite these reports, others have shown that DCs are 
not necessary to mount Th2 immunity to papain. The most likely explanation is 
that with very high doses of allergen, there might be other APCs that come into 
play [ 42 ].  

    Dendritic Cells Are Also Required for Effector Th2 Immune 
Responses to Allergens 

 Dendritic cells are not only necessary and suffi cient for inducing Th2 immunity in 
naïve animals, studies in mice from which DCs can be conditionally depleted have 
shown that they are also non-redundant during the challenge phase and upon 
repeated encounters of already primed mice to inhaled allergens [ 35 ,  59 ,  60 ]. 
In area of eosinophil-rich type 2 infl ammation, DCs have an activated phenotype 
expressing higher levels of costimulatory molecules OX40L, CD80, CD86, PDL-1, 
and PDL-2 [ 59 ]. At this stage of the immune response, they are closely located to 
effector T cells around the airways and large blood vessels [ 32 ,  61 ]. Here they 
might serve as an important source of chemokines that can attract effector T cells 
to the lungs [ 37 ,  62 ]. Also allergen-specifi c IgE and IgG1, through stimulation of 
FcεRI and FcγRIII, respectively, have a strongly enhancing function as they target 
inhaled allergens to DCs in already primed mice, thus boosting Th2 immunity fur-
ther [ 63 ,  64 ]. 

 Even when moDCs can induce Th2 immunity when adoptively transferred to 
other mice, it is much more likely that they play a more predominant role during the 
effector phase of the response. MoDCs were shown to be poorly migratory to the 
draining nodes due to lack of CCR7 expression, and therefore lung moDCs would 
be predicted to mainly interact with effector Th2 cells that migrate back to the lung 
[ 65 ]. In support of this model, moDCs produced chemokines attracting effector Th 
cells [ 37 ,  62 ]. They are also the predominant APC expressing FcεRI and RcγRIII. The 
exact role of PDL-2 expression on DCs is currently unclear. PDL-2 was identifi ed 
as a marker for the IRF-4-dependent Th2 inducing DCs of the skin [ 12 ].  
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    Direct Activation of DCs in Response to Allergen Exposure 

 In the steady state, DCs are immature and in order to initiate an immune response, 
DCs need to be activated to become mature and migrate to the LN, in a CCR7- 
dependent manner. DCs are equipped with a large variety of PPR for sensing the 
local environment, including TLRs, C-type lectin receptors, NOD-like receptors, 
and RIG-I-like receptors [ 66 ,  67 ]. These PPRs have evolved to detect a variety of 
molecular patterns on microbes, called PAMPS, or molecules released by necrotic 
cells, called DAMPS. DCs also express various cytokine receptors that can induce 
activation upon autocrine or paracrine secretion. Evidence is emerging that most 
allergens are capable of activating different classes of PRRs, but the outcome on Th 
immunity might differ per allergen [ 66 ,  67 ]. For example, glycan structures in the 
peanut glycoallergen ara h 1 can mediate DC activation and Th2 inducting through 
DC-SIGN, whereas others have shown that triggering of DC-SIGN by the HDM 
allergen Der p 1 promotes Th1 immunity [ 68 ,  69 ]. The mannose receptor on DCs 
mediates internalization of a variety of allergens through their carbohydrate moi-
eties, leading to Th2 polarization [ 70 ]. Triggering of the C-type lectin receptor 
dectin- 2 on DCs by HDM induces the production of cysteinyl-leukotrienes (CysLT). 
Subsequently, CysLTs affect the function of DCs in an autocrine manner via posi-
tive effects on CysLT(1)R receptor and negative effects via CysLT(2)R. Mice defi -
cient in CysLT(2)R or adoptive transfer of DCs lacking CysLT(2)R developed 
markedly enhanced Th2 immunity to HDM. One of the main HDM allergens, Der 
p 2, is a functional homolog of a MD-2, the lipopolysaccharide (LPS)-binding 
 component of the Toll-like receptor (TLR) 4 signaling complex, and in this way 
amplifi es TLR4 signaling and DC activation [ 71 ]. Within helminthes, there are also 
specifi c molecules that directly trigger Th2 responses by DCs. Omega-1 is a con-
stituent of  Schistosoma mansoni  soluble egg antigen (SEA) that triggers DCs to 
promote Th2 immunity [ 72 ,  73 ]. Mechanistically, omega-1 is internalized via its 
glycans by the mannose receptor (MR) on DCs and subsequently impairs protein 
synthesis by degrading both ribosomal and messenger RNA through an endonucle-
ase activity. 

 How exactly activated DC prime for Th2 immune responses after migrating to 
the draining nodes is less clear, as the cytokine driving Th2 differentiation like IL-4 
is not produced by DCs, in contrast to IL-12, TGF-β, IL-23, and IL-6 that are 
involved in Th1 and Th17 differentiation. It could be that induction of Th2 immu-
nity is the default pathway when DCs fail to produce Th1- or Th17-polarizing cyto-
kines ( see  Fig.  2 ). Alternatively, ligands acting via Notch receptors on Th cells might 
provide a direct polarizing signal for Th2 immune induction [ 74 ,  75 ]. Also the B7 
family costimulatory molecule PDL2 was identifi ed as a marker of Th2- inducing 
DCs, although it remains to be shown if signaling via PD1 on T cells boosts Th2 
immunity [ 12 ]. After migrating to the draining lymph node, the current concept is 
that DCs move to the T cell zone to activate T cells. In case of Th2 immunity, the 
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validity of this proposition was recently challenged in a model of  H. polygyrus  
infection. In the draining lymph nodes of infected mice, B cells were shown to 
secrete CXCL13 and recruited CXCR5-expressing DCs and T cells, resulting in 
DC-T interactions outside of the T cell zone. These interactions appeared to be 
 necessary for optimal Th2 development, as mice that lacked CXCR5 on either 
T cells or DCs had impaired Th2 immunity to  H. polygyrus  infection [ 76 ]. It remains 
to be investigated whether this model is applicable to all Th2-dependent immune 
responses.

       Indirect Activation of Lung DCs by Epithelial Cells 

 Although DCs express PPRs and are strategically localized to sense the environ-
ment directly, recent studies have now shown that the epithelium is equally impor-
tant in activating DCs in response to allergens ( see  Fig.  2 ) [ 77 ]. This is most certainly 

  Fig. 2    Enzymatically active allergens (papain)       
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the case when one considers the environmental adjuvants like diesel particles, fi ne 
dust particles, and toxic gases like NO 2  that can all promote Th2/TH17 sensitization 
by DCs. By expressing a variety of TLRs, C-type lectin, and protease -activated 
PARs, epithelial cells are not merely a physical barrier to the outside world [ 78 ]. We 
and others have recently shown that TLR4 triggering on epithelial cells is essential 
for DC activation. In radiation-chimera mice lacking TLR4 on either radiosensitive 
hematopoietic or radioresistant epithelial cells, DC activation and migration relied 
on signals given by the radioresistant cells upon HDM administration. Conversely, 
HDM-driven allergic asthma could not be induced when the epithelial cell lacked 
TLR4 [ 25 ,  75 ]. The effects of TLR4 triggering appear to be dose dependent, as 
exposure to high-dose endotoxin can also suppress the development of allergy to 
HDM [ 79 ]. Although it is beyond the scope of this review article to discuss in detail 
how exactly epithelial cells activate lung DCs, we want to point out that cytokines 
like TSLP, IL-33, IL-25, and GM-CSF are made in a TLR4-dependent manner by 
airway epithelial cells and are crucial in causing DC activation and allergic Th2 
sensitization. The relative importance of either of these cytokines depends on the 
type of allergen or the type of respiratory adjuvant [ 80 ,  81 ]. TSLP is not only made 
by epithelial cells, but it can also be made by DCs directly and act on DCs and 
T cells to promote Th2 immunity [ 82 ]. In mice lacking STAT5 only in DCs, there 
was a severe defect in Th2 immune response induction that was similar to TSLPR- 
defi cient mice, suggesting that the main action of TSLP is through effects on DCs 
that require STAT5 to respond to it [ 83 ]. IL-33 also mainly affects DC and ILC2 
activation. The production of the cytokine IL-33 by lung epithelial cells is closely 
regulated, and suppressed by apoptotic cell recognition and clearance in homeo-
static conditions [ 84 ]. Epithelial cells produce trefoil factor 2 (TFF-2) in response 
to allergen exposure and this boosts IL-33 production in epithelial cells and DCs 
further [ 85 ]. IL-33 can also be released by necrotic cells, but few studies support the 
idea that there is predominant necrotic cell death in asthma. IL-33 can also be pro-
duced by lung macrophages and DCs, in a process greatly facilitated by allergen- 
specifi c IgG1 immune complexes triggering the FcγRIII receptor [ 64 ]. 

 In addition to the established role for innate pro-Th2 cytokines, we and others 
have also recently demonstrated a crucial role for IL-1α in epithelial-DC cross talk in 
the context of HDM allergy. In an NLRP3 infl ammasome- and caspase-1- independent 
manner, HDM triggered IL-1α production by epithelial cells, and acted in an auto-
crine fashion leading to IL-33, TSLP, and GM-CSF release. Cytokines downstream 
of IL-1α like GM-CSF and IL-33 contributed to DC activation, and therefore, IL-1R-
defi cient mice were resistant to HDM-driven asthma [ 86 ]. Contrasting the predomi-
nant role for IL-1α in causing DC activation, others have found, in a model of 
NO 2 -enhanced airway infl ammation, that IL-1β and caspase-1 were mediating the 
adjuvant effects on DC activation and Th2 development [ 87 ]. 

 How exactly the innate pro-Th2 cytokines are made is a matter of intense study. 
In addition to producing cytokines, ECs may also activate DCs by producing 
DAMPS in response to allergens. For example, EC can induce DC activation by uric 
acid (UA) production, which is released in response to inhaled HDM in both mice 
and humans, and is involved in boosting cytokine production [ 88 ]. Although UA 
crystals are classical activators of the NLRP3 infl ammasome, HDM- and UA-induced 

Dendritic Cells and Type 2 Infl ammation



42

Th2 responses in the lung were intact in  Nlrp3 -defi cient or  Asc -defi cient mice. 
Another infl ammasome NLRP10, thought to negatively regulate other infl amma-
somes, was shown to be involved in Th2 immune response induction by regulating 
the capacity of DCs to migrate to the draining nodes [ 89 ].  

    A Role for Infl ammatory DCs in Human Allergy 

 Monocyte-derived DCs have been grown in vitro for decades, but have been hard to 
trace in human samples. A recent study however identifi ed and broadly characterized 
Infl DCs recovered from the synovial fl uid of rheumatoid arthritic patients and tumor 
ascites from cancer patients. In addition to CD11c and HLA-DR, these cells expressed 
CD206, CD11b, Sirpα, CD14, CD1a, and FcεR1. Microarray analysis showed that 
the infl DCs were enriched for an in vitro mo-DC gene signature, suggesting that they 
were derived from monocytes and the in vivo counterparts of moDCs. The infDCs in 
this study produced Th17-polarizing cytokines and preferentially induced Th17 
cells. Whether infDCs T helper lymphocyte polarization depends on the nature of the 
pathologic condition remains to be investigated [ 50 ]. 

 In addition to being present in the allergic lungs, infl ammatory FcεR1+ DCs are 
also present in the skin of atopic dermatitis patients, where they are called infl am-
matory dendritic epidermal cells (IDECs) [ 90 ]. Cells with a similar phenotype have 
also been described in the lungs of humans undergoing lung surgery, but it is not yet 
known whether asthmatics have more of these moDCs [ 91 ]. In any case, circulating 
and tissue-resident DCs of asthmatic and allergic patients have higher levels of 
FcεRI armed with IgE [ 92 ,  93 ].  

    A Central Role for DCs in Inducting Tolerance 
in Response to Allergens 

 Foxp3 +  regulatory T cells are masters in dampening immune responses in an 
allergen- specifi c manner and thereby mediate peripheral tolerance and inhibit 
allergy. Regulatory T cells are classifi ed into two categories: thymus-derived T reg  
cells (tT reg  cells) and peripheral derived T reg  cells (pT reg  cells). pT reg  cells can develop 
de novo in lymphoid organs from naïve CD4 T cells, whereas tT reg  cells develop in 
the thymus. Induction of pT reg  cells requires TCR signaling and weak co-stimulation 
in the presence of TGF-b and is facilitated by RA [ 94 ]. RA is a metabolite of vita-
min A and key enzymes responsible for its conversion are the retinal dehydrogenase 
(RALDHs), encoded by the  Aldh1a1 ,  -2 , and  -3  genes. Certain lung DC subsets 
express  Aldh1a2  and therefore have the ability to produce RA, thus contributing to 
tolerance induction [ 54 ,  95 ]. Most interestingly, mice that lack pT reg  cells because 
of a defi ciency in the intronic foxp3 enhancer CNS1 develop spontaneous Th2 
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infl ammation and asthma [ 94 ]. Dendritic cells play a central role in regulating 
 tolerance in several ways. They can mediate deletion and anergy of T cells, and have 
the ability to maintain homeostasis and induce de novo generation of pT reg  cells 
[ 96 ]. In the context of allergic infl ammation, several studies have recently been 
published aiming at identifying the DC subset responsible for induction of pT reg  
cells that damp allergic exacerbations. Almost a decade ago, evidence was provided 
that pDCs could initiate a tolerogenic response during allergic sensitization by 
inducing regulatory T cells. Induction of regulatory T cells most likely occurred in 
the draining lymph nodes, as pDCs could take up antigen and migrated here after 
allergen administration. pDC depletion using anti-Gr-1 or anti-BST2 broke toler-
ance against inhaled harmless antigens and adoptively transferred pDCs protected 
against asthma development [ 97 ,  98 ]. In support of this fi nding, administration of 
the hematopoietic growth factor Fms-like tyrosine kinase receptor-3 ligand (Flt3L) 
suppresses airway infl ammation [ 99 ,  100 ] by enhancing the number of pDCs in the 
lungs [ 101 ]. Although depleting antibodies to Gr-1 and BST2 have often been used 
to study the role of pDC in vivo, these receptors are also broadly expressed on other 
immune cells, particularly during infl ammation. New DT-based mouse models have 
recently been developed that allow specifi c elimination of pDCs [ 102 ]. The group 
of Malissen created a mouse in which an IRES-DTR-GFP cassette was introduced 
into the  Siglech  locus, which encodes the pDC-specifi c receptor Siglec H. These 
mice were defi cient for Siglec H and pDC could be specifi cally ablated after DT 
administration. Using these mice, pDC depletion indeed showed to hamper pT reg  
cell induction, confi rming earlier fi ndings for a role of pDCs in pT reg  cell induction 
[ 103 ]. In an attempt to identify pDC subsets, Lombardi et al. revealed that pDC can 
be subdivided into CD8α − β − , CD8α + β − , and CD8α + β +  cells. While the CD8α − β −  pro-
moted AHR, adoptively transferred CD8α + β −  and CD8α + β +  were tolerogenic. The 
CD8- expressing pDCs exhibited high RALDH activity and promoted the differen-
tiation of naïve CD4 +  T cells into Foxp3 +  regulatory T cells [ 104 ]. Although all these 
studies revealed that pDC can induce pT reg  cells that damp allergic reactions, a 
recent study by Khare failed to fi nd this link. In this study, a tolerization model was 
used in which mice were treated for 10 consecutive days with 1 % OVA aerosols. 
This led to the de novo production of foxp3 regulatory T cells in adoptively trans-
ferred foxp3 − CD4 +  T cells originating from DO11xRAG2 −/−  mice. This pT reg  cell 
induction was drastically reduced upon depletion of CD11c +  cells using CD11c-
DTR-eGFP mice. Detailed analysis revealed that CD103 +  and a proportion of 
CD11b +  DCs were depleted upon DT administration, while numbers of pDCs were 
increased. Using co-culture assays of sorted DC subsets and gene-defi cient mice, 
CD103 +  DCs were shown to mediate induction of pT reg  cells in tolerized mice. 
In addition, CD103 +  DCs, but not pDCs, upregulated  aldh1a2  in tolerized mice, 
showing a role for CD103 +  DCs in inducing tolerance in this specifi c model [ 54 ]. 
This notion is also supported by other studies [ 53 ,  55 ]. In addition to DCs, a recent 
publication showed that tissue-resident lung macrophages can also promote the 
development of pT reg  cells in the steady state and express high levels of TGFβ and 
RALDH [ 9 ].  
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    Macrophages Prevent DC Activation Upon Allergen 
Encounter 

 Besides the role for regulatory T cells in maintaining tolerance during allergy, recent 
studies have now described a role for resident macrophages in maintaining a pulmo-
nary tolerogenic environment by inhibiting DC activation [ 105 – 107 ]. At least two 
types of macrophages reside in the airways of mice during steady state: alveolar 
macrophages and interstitial macrophages. Alveolar macrophages are most abun-
dantly present and are enriched in the airway lumen, whereas interstitial macro-
phages are present in the intersitium. Both subtypes express F4/80, while the 
alveolar macrophages express high levels of CD11c and SiglecF. In the steady state, 
IM were capable of producing high levels of IL-10 and inhibited AHR induced by 
OVA-pulsed BMDCs. Moreover, depletion of IM using anti-F4/80 led to Th2 
responses against harmless inhaled antigens, while AM depletion using liposomal 
clodronate did not induce eosinophilia [ 106 ]. Macrophages were shown to mediate 
tolerance through the transcription factor hypoxia-inducible factor (HIF)1a, which 
is well known for its prominent role in hypoxia. Mice that lacked HIF1a in LysM- 
expressing cells—mostly AM, IM, and a proportion of cDCs—had exacerbated 
AHR in response to inhaled allergens. Allergen sensitization induced by ova-loaded 
BMDCs could be inhibited when sorted HIF1a-suffi cient IM, but not AM or HIF1a- 
defi cient IM, were co-cultured with the BMDCs prior to intratracheal administra-
tion. Mechanistically, Myd88-dependent activation of the HIF1a signaling led to 
inhibition of DC function, leading to reduced airway infl ammation in response to 
allergens [ 105 ]. The ability of pulmonary macrophages to prevent DC activation in 
response to inhaled allergens has recently also been demonstrated in rats. AM were 
depleted using clodronate liposomes, and replaced with AM from naïve or sensi-
tized rats. Naïve AM abolished DC activation and Th2 polarization [ 107 ]. The role 
for IM has not been addressed in rats in this study; however, overall, these novel 
studies suggest that pulmonary macrophages can keep the airways in an tolerogenic 
state by preventing DC activation in response to inhaled allergens. These recent 
studies largely support the work of Holt et al. reaching the same conclusions using 
alveolar macrophages to suppress DC activation [ 108 ].  

    Concluding Remarks 

 Over the last year, much progress has been gathered on how lung dendritic cells 
initiate and maintain Th2 immunity and tolerance to allergens and how this function 
is infl uenced by lung macrophages and lung epithelial cells. This conceptual frame-
work will be crucial in understanding the many genome-wide association studies 
and gene-by-environment interactions that are currently ongoing in large cohorts of 
children. Although much progress has been made in mouse studies, translational 
studies in human asthmatics are still grossly lacking.     
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            Introduction 

 Helminth parasites are multicellular pathogens from two distinct phyla—the 
Platyhelminthes (fl atworms) and Nematoda (roundworms). As a group they infect 
billions of people, largely in the poorest parts of the world where infection transmis-
sion is supported by underdeveloped sanitation and poor vector control [ 1 ]. While 
helminth infections have relatively low fatality rates they are increasingly recog-
nized to be the cause of severe morbidity, and as such have recently gained height-
ened recognition as important but neglected tropical diseases [ 2 ,  3 ]. 

 Despite enormous organismal heterogeneity and life cycle complexity amongst 
parasitic helminths, these pathogens are united immunologically by the fact that 
they nearly always induce pronounced Th2 immune responses. The origins of our 
understanding of this fact date to the observations that elevated IgE levels and eosin-
ophilia are strong indications of helminth infections (see [ 4 – 6 ]). In the 1980s it 
became clear that the expression of IL-4 and IL-5, cytokines that control immuno-
globulin isotype class switching to IgE in B cells, and increased eosinophil release 
from the bone marrow and survival in the periphery, are linked and characteristic of 
a subset of CD4 + T cells defi ned as T helper type 2 cells (Th2 cells) [ 7 ]. From this 
fi nding, it was a relatively straightforward step to the realization that the dominant 
response to helminth parasites was likely to be Th2 in nature [ 8 ]. Helminth infec-
tions are often chronic, and sometimes associated with the development of severe 
pathology, and early work linked Th2 response development during infection with 
the parasitic fl atworm  Schistosoma mansoni  to the onset of disease [ 9 ,  10 ], so there 
was initially some debate as to whether Th2 responses serve any protective function 
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in the context of helminthic disease [ 11 ]. However, it quickly became clear that Th2 
cells regulate a spectrum of protective responses that allow animals to eradicate, or 
live with, helminth parasites [ 12 – 15 ].  

    The “Th2 Response”: Innate and Adaptive Components 

 Put most simply, Th2 cells are MHC class II restricted CD4 T cells which make 
physiologically relevant levels of IL-4, IL-5, and/or IL-13. In humans and mice, the 
IL-4 allele is in a clustered locus with IL-5 and IL-13 and although each allele can 
be expressed independently, all three are often coordinately regulated, such that 
production of these “Th2 cytokines” is considered to be a mark of a Th2 response 
[ 16 ,  17 ]. In detail, the situation is more complex and the production of IL-4, IL-5, 
and IL-13 is often accompanied by the expression of additional genes, such as  Il9 , 
 Il10 , and  Areg , that add to the overall Th2 signature (e.g. [ 18 ,  19 ]). While IL-4 is not 
strictly necessary for the development of Th2 cells, it is strongly supportive of the 
expansion and establishment of Th2 cell responses [ 20 ]. Th cells were named based 
on their perceived role in helping B cells to make antibody, and the production of 
IgG1 and IgE by B cells requires T cell help including the provision of IL-4, and 
increased amounts of specifi c and non-specifi c antibodies in these classes typify 
helminth infections [ 21 ]. It is now clear that a subset of Th cells, T follicular helper 
(Tfh) cells, which differ from naïve or effector cells in being specialized to enter B 
cell follicles and germinal centers, is specialized for helping B cells [ 22 ]. In hel-
minth infections these cells share with Th2 cells the ability to make IL-4 (thus 
accounting for their ability to induce class switching to IgG1 and IgE production) 
but additionally produce IL-21 [ 23 – 25 ], a cytokine that is critical for plasma cell 
differentiation. 

 Helminth infection-induced immune responses in which Th2 cells are prominent 
are best considered “type 2” responses, since they are usually characterized by the 
additional participation of a range of cells of the innate immune system, including 
eosinophils, basophils, mast cells, and type 2 innate lymphoid cells (ILC2s), all of 
which have the potential to produce one or more of the canonical Th2 cytokines 
[ 26 – 30 ].  

    The Protective Roles of Type 2 Responses 
During Helminth Infection 

 Immunity to helminth infections is manifested in at least three ways (Fig.  1 ): 
(1) The resolution of a primary infection; (2) Resistance to reinfection; and 
(3) Protection of vital functions during chronic, immunologically unresolvable 
infection. Specifi c examples of these types of immunity will be discussed below. 
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Functionally, protective responses in each of these categories are largely mediated 
by the direct or indirect effect of type 2 cytokines on other cells, which assume 
effector functions under their infl uence. The primary effector cells of immunity to 
helminth infections are B cells (the antibody products of which can work in con-
junction with other cell types), macrophages, granulocytes, epithelial cells, and 
muscle cells.

  Fig. 1    Immunity to helminth infections is manifested in at least three ways. ( a ) The resolution of 
a primary infection. Some intestinal nematodes are killed as a result of the effects of IL-4/IL-13 
produced by innate type 2 cells and Th2 cells on intestinal epithelial cells, including goblet cells, 
and on associated musculature. ( b ) Following drug treatment of some helminth infections, hosts 
are resistant to reinfection. Immunity may be mediated by cytokines from Th2 cells and cooperat-
ing innate system cells, through mechanisms similar to those that mediate resolution of primary 
infection, but enhanced by faster kinetics associated with the secondary immune response. 
Immunity is additionally more potent in some cases because of antibody that has developed as a 
result of initial infection and clearance, and because of the rapid recruitment of cells such M2 
macrophages to the immune reaction that targets incoming larval parasites and prevents their 
establishment. ( c ) Protection of vital functions during chronic, immunologically unresolvable 
infection. In these settings, the immune response promotes tissue repair and sequesters parasites 
and any toxic molecules that they may make (indicated by the  lightning symbol ). In these settings, 
excessive tissue damage is prevented by immune system intrinsic regulatory mechanisms and 
immunomodulatory molecules released by the parasites themselves       
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      Resolution of Primary Infection 

 The resolution of primary infection is perhaps the exception rather than the rule 
since many parasitic helminths cause chronic infection—indeed, chronicity is often 
considered a hallmark of helminth infection. Nevertheless, various intestinal nema-
todes, including the whipworm  Trichuris muris  and the hookworm  Nippostrongylus 
brasiliensis , are immunologically expelled by murine hosts shortly after adult 
worms establish in the intestine and initiate egg production (Fig.  1a ). These protec-
tive responses are often heavily dependent on the early production of IL-13 and/or 
IL-4, and the ability of these cytokines to stimulate intestinal smooth muscle 
 contraction [ 31 ,  32 ], altered intestinal epithelial cell function leading to increased 
luminal fl uid fl ow [ 33 ,  34 ], increased epithelial cell turnover [ 35 ], and goblet cell exp-
ression of effector RELMβ, which inhibits parasite feeding and chemotaxis [ 36 ,  37 ], 
and Muc5ac, which is directly detrimental to  T. muris  and  N. brasiliensis , as well 
as to another intestinal nematode  Trichinella spiralis  [ 38 ] (Fig.  2 ). Together these 
effects lead to worm expulsion. These processes can be stimulated by IL-4/IL-13 
made by innate type 2 cells, or by Th2 cells and therefore additionally play essential 
roles in the spectrum of protective responses from those that begin to work during 
early primary infection to those recalled in immune animals upon re- exposure to 
infection. Interestingly, the ability of innate type 2 cells to participate in resolution 
of primary infection, as discussed below, is dependent on the presence of CD4 +  
T cells (discussed in [ 28 ,  39 ]). Thus there is an intimate reciprocal link between 
innate and adaptive immunity during the development of responses that will lead to 
expulsion of primary infections and resistance to secondary infection.

   Innate type 2 cells are present in naïve mice, poised to produce Th2 cytokines upon 
appropriate stimulation, and are mobilized within hours/days during the early stage of 
the response to helminth parasites. Because of the kinetics of the innate type 2 response, 
which occurs at a time when the adaptive Th2 response is at its very earliest stage of 
development, there has been a focus on whether the cells that make up this response are 
able to mediate innate protective responses against helminths and/or to help promote 
Th2 cell responses, by perhaps secreting IL-4 and/or IL-13. 
Of special current interest in this regard are ILC2s (Fig.  2 ). Discovered only recently, 
these cells are derived from lymphoid progenitors, but do not express markers of other 
immune cell lineages, or clonotypic antigen receptors [ 40 – 42 ]. ILC2s produce IL-5 and 
IL-13, exist throughout the body and play important homeostatic roles (e.g. [ 43 ]). 
However, ILC2s can become activated and increase in numbers in response to helminth 
infection, a response that is mediated by IL-25 and IL-33 [ 28 ,  40 – 42 ]. These cytokines 
are released by epithelial cells (and possibly other cells such as mast cells and macro-
phages) in response to necrotic damage or other signals (e.g. Trefoil Factor 2 [ 44 ]), and 
through their effects on ILC2s acts as “alarmins” to initiate innate responses [ 28 ] 
(Fig.  2 ). Conceptually, this mode of action fi ts well with the idea 
of intestinal or skin epithelial surfaces being broached by invading or migrating 
 helminth larvae. Indeed, ILC2s are engaged rapidly following infection with 
 N. brasiliensis  [ 42 ,  45 ], and stimulated by IL-25 released by intestinal epithelial 
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  Fig. 2    Innate and adaptive type 2 immunity is tightly integrated. Innate responses to helminth 
parasites can be initiated by epithelial cell damage, leading to the production of the alarmins IL-25, 
IL-33, and TSLP. IL-25 and IL-33 can activate ILC2s to make IL-13 (but not IL-4), which has 
marked effects on epithelial cell (EC), goblet cell (GC), and muscle cell biology that together can 
promote the expulsion of intestinal parasites. IL-13 also alternatively activates macrophages, 
which can then proliferate and begin making mediators that lead to parasite damage, but which 
also promote tissue healing and regulate Th2 cell responses to prevent overt immunopathology. 
TSLP made by epithelial cells can promote basophil hematopoiesis and activation, and by inhibit-
ing IL-12 production by DCs promotes the induction of Th2 cell responses. Many helminths also 
produce molecules that limit the ability of DCs to make IL-12. T-cell response initiation involves 
the extensive proliferation of T cells that are specifi c for the target antigens and the emergence of 
Th2 cells that make IL-13 and IL-4, and of Tfh cells that make IL-4 and IL-21 and are specialized 
to help IgG1 and IgE B-cell responses. Th2 cells can move into sites of infection where the cyto-
kines that they make perpetuate effects on epithelial cells, muscle cells, and macrophages initiated 
by ILC2s. T cells also sustain ILC2 populations. Eosinophils are not depicted in this fi gure. 
However, these cells participate in type 2 immunity due to the strong production of IL-5 by ILC2s 
and Th2 cells. Mast cells are also absent from the fi gure, but would be expected to participate in 
type 2 responses. Mediators in  red  have been shown to have detrimental effects on helminth para-
sites.  PC  plasma cell.  Areg  amphiregulin, a cytokine made by Th2 cells and ILC2s that promotes 
epithelial cell turnover       
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cells [ 46 ]. In the absence of IL-25, or IL-25R, mice have fewer ILC2s and exhibit 
delayed parasite expulsion kinetics [ 41 ,  45 ]. However, injection of IL-25 into infected 
WT mice or transfer of activated WT ILC2s into infected IL-25R- defi cient infected 
mice is suffi cient to mediate rapid expulsion through an  IL-13- dependent mechanism 
[ 41 ,  45 ]. Interestingly, in mice lacking the IL-33R (T1/TS2), or in which T1/TS2 is 
blocked, expansion of the ILC2 population following infection with  N. brasiliensis  
fails to occur, and the mice are unable to rapidly clear the parasite [ 41 ,  44 ], indicating 
that despite their similar roles in promoting ILC2 activation, IL-33 and IL-25 must each 
have essential non-redundant functions in immunity, although what these are is cur-
rently unclear. IL-33 has also been shown to play a role in immunity to the nematode 
parasite to  T. spiralis  [ 47 ], and to be able to induce immunity to  T. muris  [ 48 ]. 

 Multi-potent projenitor type 2 cells (MMP type 2 ), IL-25-dependent but T1/ST2- 
negative and IL-33-independent cells associated with type 2 immunity but distinct 
from ILC2s, have been implicated in resistance to  T. muris  [ 49 ,  50 ]. As their name 
suggests, these cells have the potential to differentiate into other cell types, includ-
ing basophils, monocytes, mast cells, and macrophages, and are thought to promote 
the expression of Th2 immunity in part through extramedullary hematopoiesis to 
produce cell types that contribute to protection. 

 Basophils, circulating cells that enter tissues from the blood, are also activated 
early following helminth infection during which they can rapidly accumulate in 
affected tissues and enter reactive lymphoid organs [ 51 ]. Based on the outcome of 
depletion by antibodies directed at the FcεR, basophils were implicated as antigen- 
presenting cells responsible for activating naïve CD4 +  T cells during the develop-
ment of Th2 responses following infection with helminths [ 52 ]. However, the more 
recent use of engineered mice in which basophils are deleted with high specifi city 
has shown that these cells are dispensable for polarized Th2 responses elicited by 
 N. brasiliensis  or  S. mansoni  [ 53 ]. Nevertheless, IL-4 and IL-13 from these cells 
contribute to the expulsion of primary  N. brasiliensis  infection [ 54 ]. Basophils also 
play an important role in the clearance of primary  T. muris  infection [ 55 ]. Immunity 
to this parasite is dependent on TSLP, another alarmin made by epithelial cells. In 
contrast to the situation in WT mice, peripheral basophil numbers along with Th2 
responses and associated downstream effector functions (discussed below) fail to 
develop in infected  Tslpr  −/−  mice, and adult parasites persist as a chronic infection. 
However, transfer of WT basophils into infected  Tslpr  −/−  mice is able to partially 
restore the spectrum of type 2 immune responses and resulting worm expulsion 
[ 55 ]. This study revealed that TSLP can selectively promote basophil hematopoiesis 
and the emergence of a population of basophils that differs transcriptionally from 
basophils elicited by IL-3 (Fig.  2 ). TSLP has other important functions in Th2 
immunity, as discussed further below. 

 Mast cells are found throughout the body, especially adjacent to epithelia. 
Mastocytosis is a common feature of helminth infections [ 56 ], and mast cells have 
been implicated in resistance to the nematodes  T. spiralis  [ 57 ] and  Strongyloides  
spp. [ 58 ,  59 ]. There is recent evidence that mast cell-defi cient mice have diminished 
Th2 responses and are more susceptible to primary infection with  T. muris  and to 
the trichostrongyle nematode  H. polygyrus  (once known as  Nematospiroides dubius , 
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and more recently referred to as  H. polygyrus bakeri ) [ 60 ], due to a failure of ILC2 
activation resulting from a defi cit in IL-25, IL-33, and TSLP production by epithe-
lial cells. Thus mast cells may play an important role in initiating type 2 immunity 
by provoking the production of alarmins, although the mechanism underlying this 
response is unclear at present.  

    Resistance to Reinfection 

 The second important role for type 2 responses in helminth infection is in adaptive 
immunity to reinfection. This is well illustrated by infection with  H. polygyrus.  
Primary infection in mice with this intestinal nematode can be chronic even when 
the host mounts a type 2 response, but in these cases chemotherapy leaves the cured 
host immunologically resistant to secondary infection [ 61 ] (Fig.  1b ). 

 There is a long-standing recognition that, while IL-4 and IL-13 made by memory 
Th2 cells may contribute heavily to resistance to secondary  H. polygyrus  infection 
by directly modulating epithelial cell, muscle cell, and macrophage responses [ 62 ], 
antibody is also playing a crucial role in adaptive immunity in this system [ 21 ]. 
Thus μMT mice and JhD mice, which lack B cells, and AID mice, which have 
B cells but are unable to secrete antibodies, are unable to resist secondary infection 
with  H. polygyrus , despite developing what for the most part appear to be normal 
Th2 responses [ 63 – 65 ]. Moreover, IgG1 antibody from animals immune to  H. poly-
gyrus  is able to passively confer immunity to naïve animals [ 63 ,  65 ,  66 ], and mice 
defi cient in IL-21 fail to develop IgG1 secreting plasma cells and subsequently are 
unable to resist reinfection following drug cure [ 67 ]. Antibodies are also recognized 
to be important for protection against primary infection with  T. spiralis , or  H. polygy-
rus  following maternal transfer in milk from immune mothers to offspring [ 68 ,  69 ]. 

 Parasite-specifi c antibodies have also been shown to be capable of conferring 
protection against a broad spectrum of other helminth infections following experi-
mental passive transfer, even in cases where there is not demonstrable role for anti-
body in naturally acquired immunity (reviewed in [ 21 ]). However, some of these 
fi ndings have been diffi cult to reproduce, a problem that may be ultimately due to 
differences in antibody titer between different experiments. This would be consis-
tent with the fact that there is a correlation between the effi cacy of immune serum 
in passive immunization and the number of times the donor animals have been 
infected/boosted [ 21 ,  61 ], since titer would be expected to rise with each boost. In a 
real world setting, the role of immunologic boosting due to the death of existing 
parasites and reinfection has been postulated in human immunity to infection 
against schistosomes [ 70 ,  71 ]; in this infection, resistance can develop following 
drug treatment, and is correlated with the amount of IgE antibody against key para-
site antigens [ 72 ]. 

 Antibodies exert protective roles through a variety of mechanisms that vary 
depending on the infection and life stage targeted. For example, in the intestine, 
antibodies promote the entrapment of  T. spiralis  worms in mucus, leading to 
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 expulsion [ 73 ], whereas in tissues antibody can mediate FcR-dependent cytotoxic 
effects by neutrophils and eosinophils, as illustrated in the case of immunity to the 
 nematode  Strongyloides stercoralis  [ 74 ]. In  H. polygyrus  infection, antibodies asso-
ciated with FcR on basophils allow the antigen-specifi c production of IL-4/IL-13 
during challenge infection [ 75 ], leading to the induction of protective intestinal 
responses linked to the activation of epithelial cells, goblet cells, and muscle cells 
(Fig.  2 ), which together promote expulsion of worms from the gut [ 15 ]. Moreover, 
basophils can mediate protection against secondary infection with  N. brasiliensis  
independently of Th2 cells [ 76 ]. 

 In addition to antibody, macrophages also play a crucial role in immunity to 
 H. polygyrus . These cells exist throughout the body as resident components of most 
tissues. These cells are embryonically derived, seeded into tissues in utero, and 
maintained by in situ proliferation [ 77 ,  78 ]. It is well established that during infl am-
mation, additional macrophages of hematopoietic origin can develop from mono-
cytes recruited from the bone marrow [ 77 ]. Macrophages play crucial roles in 
immunity and can adopt different activation states depending on context. Interferon-γ 
in combination with TLR agonists promotes M1 (or classical) activation, whereas 
IL-4 and IL-13 promote M2 (or alternative) activation by the IL-4Rα [ 79 ,  80 ]. From 
the host defense standpoint, M1 macrophages are infl ammatory. In contrast, M2 
macrophages are pro-angiogenic and pro-fi brotic, and make a range of molecules 
that serve to modulate infl ammation, promote tissue repair, and regulate adaptive 
immunity [ 80 ,  81 ] (Fig.  2 ). Recent work has revealed that increases in macrophage 
numbers at sites of infection with helminth parasites can additionally, or exclu-
sively, be driven by IL-4-stimulated proliferation of local macrophages [ 82 ] (Fig.  2 ), 
a fi nding that has spurred signifi cant re-examination of the origin of these cells in 
different infl ammatory settings. 

 M1 macrophages can kill growing schistosomes, and may be important for 
immunity to these pathogens in certain experimental vaccination settings where 
deliberately induced Th1 responses are protective [ 83 ]. However, M2 macrophages 
dominate during naturally developing type 2 responses during helminth infection, 
and play a signifi cant protective role in some instances, such as  H. polygyrus  inf-
ection. In this case, ingested infectious larvae invade the intestinal wall before 
emerging into the intestinal lumen to grow into adult parasites. Whilst in their tissue 
invasive life stages, the parasites become foci of granulomatous infl ammation, 
which by defi nition involves macrophages. Global deletion of macrophages during 
this period of a challenge infection in infected and cured mice effectively ablates 
protective immunity [ 62 ]. Immunity in this setting is sensitive to inhibition of argi-
nase1, which is strongly expressed by M2 macrophages, and it appears as though 
larvae are being killed through a mechanism that induces metabolic stress [ 62 ]. M2 
macrophages also play a role in inducing the IL-4/IL-13-dependent smooth muscle 
contractions that lead to the expulsion of  N. brasiliensis  worms [ 31 ]. 

 Recently, M2 macrophages were shown to be capable of cooperating with 
 neutrophils to kill  S. stercoralis  larvae in vivo [ 84 ]. While not restricted to roles in 
type 2 immunity, neutrophils do participate in infl ammation associated with 
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 helminth infections [ 15 ], playing a role in the promotion of type 2 immune responses 
during  N. brasiliensis  infection, for example [ 85 ]. However, they can assume patho-
logic roles in settings where type 2 immunity is less robust and Th17 responses 
emerge. This has been well documented in mouse strains which are genetically 
susceptible to developing acutely lethal disease when infected with  S. mansoni , and 
in strains which normally develop chronic infection with this parasite, but which 
have been immunized prior to infection with schistosome egg antigens in complete 
Freund’s adjuvant [ 86 ,  87 ].  

    The Protection of Vital Functions During Chronic Infection 

 The third role for protective type 2 responses is to allow host survival during chronic 
infection (Fig.  1c ). This is the case during infection with the parasitic fl atworm 
 S. mansoni . Despite mounting a strong type 2 response during infection with this 
parasite, the host is unable to clear infection, which consequently is chronic. 
Nevertheless, loss of function of IL-4 in this system leads to severe morbidity and 
death associated with excessive infl ammation in the absence of any increase in 
infectious burden [ 14 ]. During infection with this organism, eggs produced by the 
parasites (living in the portal vasculature) can become trapped in the sinusoids of 
the liver where they act as foci for CD4 +  T-cell-dependent granulomatous infl amma-
tion, a process that serves a critical host-protective role by participating in the 
sequestration of parasite eggs and the toxins that they secrete [ 88 ]. In the absence of 
IL-4 or IL-4Rα, schistosomiasis is acutely lethal [ 14 ,  89 ,  90 ], and this phenotype is 
recapitulated in mice that lack IL-4Rα expression on macrophages [ 89 ]; this indi-
cates that the protective effects of IL-4 are mediated by macrophages and therefore, 
presumably, that M2 activation is critical. A failure to heal damage caused by the 
transit of parasite eggs into the gut lumen appears to be at least partially responsible 
for increased morbidity and mortality in the absence of M2 macrophages, although 
the emergence of M1 macrophages and associated infl ammation also appears to 
play a contributing role [ 89 ]. A role for M2 macrophages in controlling acute tissue 
damage has also been noted in mice infected with the  N. brasiliensis . Following 
transcutaneous infection, larval  N. brasiliensis  migrate through the lungs prior to 
entering the digestive system and maturing as adult worms in the intestine. In wild-
type mice, pulmonary migration is associated with rapidly developing hemorrhage, 
infl ammation, and reduced lung function, that resolves coincidently with the appear-
ance of M2 macrophages at the site, but fails to resolve and rather is lethal in mice 
that lack IL-4Rα or are depleted of macrophages [ 91 ]. 

 M2 macrophages also play an important role in regulating the intensity of 
the immune response to the benefi t of the host. Several IL-4-induced genes are impli-
cated in this process. For example, in  S. mansoni  infection, Relmα negatively regu-
lates CD4 +  T-cell responses and in so doing prevents the development of severe type 
2-associated immunopathology [ 92 ,  93 ] and Arginase1 produced by macrophages 
suppresses Th2 cell cytokine production and associated downstream infl ammation 
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and fi brosis [ 94 ,  95 ]. Moreover, following exposure to the fi larial nematode  Brugia 
malayi , M2 macrophages develop the ability to potently suppress the proliferation 
of other cells through a cell contact-dependent mechanism that is presumably dis-
tinct from those mediated by Arginase1 or Relmα [ 96 ]. 

 In the steady state, eosinophils have a clear role in adipose metabolic homeosta-
sis [ 97 ]. During infections with helminths they increase in number and accumulate 
at tissue sites of invasion and infl ammation. However, it has been diffi cult to assign 
eosinophils a defi ning role in either immunity or immunopathology commensurate 
with the magnitude at which they are involved in the response, and there remains a 
sense that the primary role of these cells during infection is yet to be discovered. 
Nevertheless, eosinophils have been shown to be capable of killing helminth larvae 
of various types [ 98 ], and can, along with M2 macrophages, make mediators such 
as Relmα, that regulate the intensity of type 2 infl ammation [ 92 ].  

    The Modulation of Th2 Responses and Associated Infl ammation 
During Chronic Helminth Infection: Everyone Benefi ts? 

 During chronic helminth infections caused by schistosomes and by fi larial nema-
todes, Th2 responses peak during early stages of infection and then decline despite 
the fact that parasites, and therefore parasite antigens, persist [ 99 – 102 ] (Fig.  3 ). This 
process is reminiscent of the development of CD8 +  T-cell exhaustion during chronic 
viral infection [ 103 ]. It has been argued that loss of Th2 cell function over time in 
helminth infections refl ects the development of adaptive immunologic tolerance to 
parasite antigens [ 104 ], resulting from persistent antigenic stimulation [ 105 ], and/or 

  Fig. 3    The modulation of Th2 responses and associated infl ammation during chronic helminth 
infection. Th2 cell responsiveness declines during chronic antigen despite the persistence of para-
sites. Immunomodulation does not refl ect the loss of Th2 cells, but rather their regulation by M2 
macrophages, Treg and Breg cells, cytokines, inhibitory receptor ligation, and parasite-derived 
molecules       
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extrinsic processes in which hyporesponsiveness is imposed by other cells such 
as M2 macrophages (discussed above, and [ 106 ]) or regulatory T (and B) cells 
 (discussed by Maizels in “Regulatory T Cell Control of Type 2 Infl ammation”, and 
[ 107 ,  108 ]) (Fig.  3 ). The regulatory cytokines TGFβ and IL-10 have been impli-
cated in this process [ 109 ], and IL-10 serves the additional function of suppressing 
residual Th1 responses that can occur in certain helminth infections, and therefore 
further polarizes the adaptive response in the Th2 direction [ 110 ,  111 ] (Fig.  3 ).

   Downregulation of Th2 responses during chronic infection is generally thought 
of as being advantageous in settings where the immune response is incapable of 
clearing the infection and Th2 cells are causing immunopathology. This is the 
case in schistosomiasis, where despite the fact that the type 2 response plays a 
vital tissue- protective role there is a risk that the infl ammatory and wound healing 
components of this type of immunity can themselves become pathological. 
Specifi cally, ongoing schistosome egg deposition and focused production of the 
pro-fi brotic cytokine IL-13 (which is linked to protective IL-4 production) in the 
liver can lead to severe fi brosis with portal hypertension [ 112 ]. In the absence of 
appropriate regulatory mechanisms, these processes can become overwhelmingly 
damaging (e.g. [ 94 ]). 

 Antibody can also play a protective role during helminth infection by regulating 
infl ammation [ 21 ]. This is apparent in chronic  S. mansoni  infection in  B-cell- defi cient 
mice, in which immunopathology is exaggerated, leading to greater morbidity and 
mortality than is the case in infected wild-type mice [ 113 ]. Mechanistically, immu-
noregulation by antibody is likely to refl ect the binding of IgG1-containing immune 
complexes to macrophages [ 114 ], with resultant anti-infl ammatory effects, since in 
other systems macrophages that interact with immune complexes assume marked 
regulatory roles [ 115 ,  116 ], by producing IL-10 and TGF-β1, two cytokines which 
play important roles in regulating infl ammation during schistosomiasis [ 117 ]. More 
broadly, the roles of B cells and antibody in survival during chronic schistosomiasis 
may refl ect a mechanism analogous to that mediated by intravenous immunoglobu-
lin therapy (IVIG), which is used successfully in humans for the treatment of auto-
immune diseases [ 118 ]. Recent work has shown that the canonical type 2 cytokine 
IL-4 induces the increased expression of FcγRIIB on monocytes in humans and 
mice, and that mice which lack IL-4 or FcγRIIB are not protected against infl amma-
tion by IVIG [ 119 ]. 

 In some cases, Th2 response downregulation favors parasite persistence. For exam-
ple, reversal of hyporesponsiveness by blockade of the inhibitory receptor PD-1 
expressed by Th2 cells during chronic infection with the fi larial worm  Litomosoides 
sigmodontis  infection allows the expression of effective antiparasite immune 
responses [ 120 ]. The realization that type 2 immunity is often tightly regulated during 
helminth infections, and that these processes can favor parasite survival, led to the 
realization that parasites are able to produce molecules that strongly infl uence the 
immune response [ 121 ] (Fig.  3 ). The characterization of these molecules, and the pos-
sibility that they might be developed for therapeutic use in conditions where immune 
responses (particularly type 2 responses) are pathogenic, such as allergy and asthma, 
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is a subject of considerable current interest (discussed by Loukas in “Developments 
in the Design of Anti-helminth Vaccines,” and [ 122 ]). The fact that many infl amma-
tory conditions are alleviated by helminth infection attests to the promise of this 
approach [ 123 ].  

    How Do Helminth Antigens Promote Type 2 Responses? 

 One of the greatest advances in our understanding of the how type 2 immunity devel-
ops following exposure to helminth parasites has come from recent work on the 
“alarmins,” IL-25, IL-33 and TSLP, cytokines made by damaged or activated epithelial 
cells that trigger innate immune responses and help orchestrate complementary adap-
tive immune responses (Fig.  2 ). IL-25 and IL-33 have been discussed above. The third 
alarmin, TSLP, has at least 2 known functions in type 2 immunity. The fi rst is to sup-
press IL-12 production, thereby favoring the induction of Th2 responses [ 124 ]. TSLP is 
critical for type 2 response development during infection with  T. muris  [ 55 ,  124 ] but 
not during infection with  H. polygyrus ,  N. brasiliensis  [ 125 ] or  S. mansoni  [ 126 ], 
which may refl ect differences in the inherent abilities of these parasites to suppress the 
production of IL-12 by DCs [ 125 ]. The second function of TSLP is to promote baso-
phil hematopoiesis that is independent of IL-3, the cytokine conventionally associated 
with basophilia [ 55 ]. Wild-type basophils induced by TSLP, which are functionally 
distinct from IL-3-elicited basophils, are capable of restoring immunity to  T. muris  in 
otherwise susceptible Tslpr −/−  mice [ 55 ]. 

 The fact that IL-4 is essential for Th2 cell differentiation in vitro led to much 
speculation that an innate source of IL-4 would be critical for Th2 cell development 
in vivo, and consistent with this there have been many reports that type 2 innate 
cells are key players in Th2 cell activation. However, early observations showed 
that DCs exposed to helminth antigens preferentially induce Th2 cell differentia-
tion, suggesting that despite the ability of many other cell types to contribute to 
type 2 immunity, direct contact of parasite products with these APCs is suffi cient 
for Th2 polarization [ 127 ,  128 ]. The subsequent establishment of the primary 
importance of DCs in Th2 response development during helminth infections [ 129 , 
 130 ], and the molecular identifi cation of helminth products such as nematode chitin 
[ 131 ], and  S. mansoni  Omega 1, that possess Th2 adjuvanticity and are, at least in 
the case of the latter, able to drive Th2 cell development through effects on DCs 
[ 132 ,  133 ], has led to considerable interest in specifi c pathways activated in DCs 
that condition them to preferentially induce Th2 responses [ 29 ]. A major focus of 
this work has been on the identifi cation of lectins that recognize and permit the 
uptake of helminth glycoproteins [ 134 ,  135 ], with mannose receptor being impli-
cated as playing a major role in this process [ 136 ]. A detailed discussion of the role 
of distinct dendritic cell subtypes in Th2 immune response induction can be found 
elsewhere in this volume in the chapter “Dendritic Cells and Type 2 Infl ammation” 
by Lambrecht.   
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    Summary 

 The response to helminth infections involves the engagement of innate type 2 cells 
that in the steady state play important roles in metabolic homeostasis and sterile 
wound healing, and the overlapping initiation of adaptive immune responses in 
which Th2 cells, in an antigen-specifi c manner, make many of the same cytokines 
that are made by the innate type 2 cells. The type 2 cytokines IL-4 and IL-13 made 
during these innate and adaptive responses activate a variety of other cell types, 
notably including macrophages, that play crucial roles in parasite expulsion, or in 
establishing an environment in which infected hosts can survive in the face of ongo-
ing tissue damage associated with worm persistence. A key feature of the adaptive 
response is the emergence of B cells making helminth-specifi c antibodies that can 
interact with other cell types, or act directly, to provide protection against further 
infection. During chronic infection with helminths, regulatory mechanisms develop, 
in part stimulated by immunomodulatory parasite products, that promote host and 
(directly or indirectly) parasite survival and have benefi cial effects that can amelio-
rate unrelated infl ammatory conditions. Rapid advancements in our understanding 
of type 2 immunity raise the possibility of the rationale development of new immu-
nologic approaches for preventing or treating helminth infections, and developing 
approaches to minimize the effects of the infl ammatory diseases that emerge in 
areas where helminth parasite transmission is prevented.     
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      Regulatory T-Cell Control 
of Type 2 Infl ammation       

       Rick     M.     Maizels    

            Introduction 

 The adaptive immune response to challenge by exogenous pathogens or toxins, or 
exposure to innocuous commensals and environmental proteins, is orchestrated 
above all by the compartment of CD4 +  T lymphocytes (Fig.  1 ). These provide fi rstly 
a cell population with a vast array of antigen-specifi c receptors enabling each 
foreign specifi city to be recognized and attacked, meanwhile generating an immu-
nological memory for any future engagement. This population constitutes many 
forms of potent effector cell phenotypes which can drive infl ammation, recruit and 
drive differentiation of other immunocytes, and promote infl ammation and patho-
gen clearance. Critically, however, CD4 +  cells also include suppressive regulatory 
cell subsets which dampen reactivity and ensure a return to homeostatic balance 
once danger has passed. The interaction, and interchange, between these effector 
and regulatory populations is as critical in the setting of Th2 infl ammation as in any 
other area of immunology, as detailed below.

   Understanding the interaction and mechanism of Treg suppression is of funda-
mental importance for the control of immunopathology, infection, tumors, and 
transplantation [ 1 ,  2 ]. Exciting new therapies can be envisaged which Tregs may be 
induced or expanded to control major autoimmune diseases, promote allograft 
tolerance or resolve infl ammatory bowel conditions [ 3 ]. Equally importantly, new 
insights may lead to the repression of Tregs in cancer settings where they are detri-
mental. In a similar manner, in the context of the Th2 response, there is a need to 
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both enhance and inhibit Treg activity, to respectively ameliorate Th2 pathologies 
such as allergy, and to boost the protective Th2 response to helminth parasite infec-
tion, as discussed in this chapter.  

    Th2 and T-Cell Subsets 

 The classical dichotomy of CD4 +  T-cell subsets into Th1 and Th2 was established 
in the 1980s and remains a guiding paradigm in immunology, separating the more 
aggressive IFN-γ-mediated infl ammatory cellular pathway suitable for clearing 
intracellular pathogens from a more antibody-dominated mode attacking multicellu-
lar parasites [ 4 ]. In particular, the Th2 mode of responsiveness is closely associated 
with IgE and allergy, as well as with a range of innate cell types such as eosinophils, 
mast cells, and goblet cells which are responsible for localized or systemic infl am-
matory conditions. Each of these components of the Th2 network are activated by 
key cytokines produced by Th2 cells, most predominantly IL-4 which itself induces 
Th2 differentiation and B-cell isotype switching [ 5 ]. Many functions of IL-4 are 
replicated by IL-13, as receptors for these two cytokines share the IL-4Rα receptor 
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  Fig. 1    CD4 +  T cells: decision makers and executors. T-cell responses are induced by professional 
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convert to effector function, or effector cells may switch to regulatory function       

 

R.M. Maizels



75

chain [ 6 ,  7 ], for example driving macrophages into the alternatively activated state, 
and promoting goblet cell hyperplasia [ 8 ]. The cytokines IL-3, IL-5, and IL-9 are 
also major products of Th2 cells, inducing differentiation and expansion of baso-
phils (IL-3) [ 9 ], eosinophils (IL-5) [ 10 ], and mast cells (both IL-3 and IL-9) [ 9 ,  11 ], 
while IL-10 [ 12 ] is a multi-potential cytokine with both inductive and suppressive 
features as detailed in a later section. 

 Importantly, the Th2 response does not operate in isolation but in conjunction, 
competition, or antagonism with a number of other T-cell types (Fig.  1 ). The Th2 
phenotype overlaps with more recently defi ned, distinct subsets including the 
T-follicular helper cell (TFH) [ 13 ,  14 ] and cells dedicated to the production of IL-9 
(“Th9” cells) [ 15 ]. There is a both competition and antagonism with more contrast-
ing Th phenotypes, the Th1 mentioned above (for example through IFN-γ-mediated 
inhibition of Th2 differentiation) as well as newer Th17 [ 16 ,  17 ] and Th22 [ 18 ] 
subsets. However, the most potent antagonist of Th2 responsiveness and the focus 
of this chapter is the repressive pathway of regulatory T cells (Tregs) which block 
the effector phase of the Th2 response.  

    The Broader Type 2 Network 

 Th2 effector responses rely directly upon a portfolio of cell types from the immune 
system (e.g. dendritic cells, macrophages, and granulocytes) as well as non- 
immunological (e.g. epithelial) tissues (Fig.  2 ). As mentioned above, this responder 
network is driven and bound together by the two cytokines which signal through 
the IL-4Rα chain, IL-4, and IL-13 [ 8 ]. Crucially, these cytokines are produced not 
only by activated Th2 cells, but also a range of innate immune cells including 
basophils [ 19 ,  20 ], eosinophils [ 21 ], mast cells [ 22 ], and recently defi ned innate 
lymphoid cells [ 23 – 26 ]. An even wider range of cell subsets and tissues respond 
through IL-4Rα signaling, including T cells differentiating from the naïve state, B 
cells and granulocytes, and epithelial cells (Fig.  2 ). In particular, the macrophage 
compartment responds in a distinct fashion to IL-4/IL-13, by adopting an “alterna-
tive activation” mode, distinct from IFN-γ-mediated classical activation [ 27 ,  28 ]. 
Alternatively activated macrophages adopt a contrasting metabolic state of 
β-oxidation of fatty acids rather than glycolysis associated with classical activation 
[ 21 ], and produce high levels of a chitinase-like protein, Ym1 (Chi3L3), a resistin-
like molecule (RELMα), and the enzyme arginase-1 [ 29 ]. Arginase-1 competes for 
the same substrate, L-arginine, that is required by inducible nitric oxide synthase 
(iNOS) in classically activated macrophages, reinforcing the diametrical relation-
ship between these two phenotypes. Thus, the alternatively activated macrophage 
is both a hallmark of the innate Type 2 response, and a refl ection of a dominant 
Type 2 environment.

   Additional interest has recently focused on the role of innate lymphoid cells in the 
initiation and expression of the Type 2 response [ 24 – 26 ]. These lack markers of 
major hematopoietic lineages, such as B cell, T cell, or myeloid surface proteins, but 
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produce key cytokines at early stages of an immune response, which may be 
IFN-γ in the case of ILC1 cells, IL-4, IL-5 and IL-13 (from ILC2s) or IL-17/IL-22 
(from ILC3s) [ 30 ]. Type 2 cytokines from ILC2s can generate a T-cell-independent 
eosinophilia and alternative activation of macrophages, as well help induce the adap-
tive Th2 response to antigen. Hence, Type 2 immunity encompasses parallel innate 
and adaptive arms which can work independently, or in sequence and in concert.  

    Type 2 Infl ammation 

 In many immunological lexicons, infl ammation is synonymous with Th1/Th17- dependent 
outcomes including leukocyte infi ltration into tissues, edematous permeabilization 
of the vasculature, and systemic effects on body temperature and metabolism. 
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  Fig. 2    Innate Type 2 mechanisms: inducers and effectors. The innate system induces Th2 immune 
responses through activated dendritic cells and innate lymphoid cells reacting to key alarmin 
cytokines (such as IL-33 and TSLP) released from barrier surface cells, e.g. in the mucosa or skin. 
Activated innate cells release key cytokines, including IL-13 which can directly drive alternative 
activation of macrophages (marked by the production of Arginase-1, RELMα, and Ym1). T cells 
driven to the Th2 mode of differentiation produce a wider range of cytokines, which further 
activate innate partners such as basophils, mast cells, eosinophils, and goblet cells. Some of these 
cell types strengthen the Th2 response by producing additional IL-4. B cells also respond to 
Th2- derived IL-4 and IL-10 which co-regulate the production of IgG1 and IgE. The combination 
of these cytokines and effector populations result in benefi cial outcomes of parasite expulsion as 
well as detrimental syndromes such as allergy and asthma       

 

R.M. Maizels



77

However, a specifi c set of infl ammatory processes are mediated by the Th2 pathway. 
These include, most conspicuously, allergic infl ammation which in an IgE-dependent 
manner releases a battery of vasoactive mediators, recruits eosinophils into barrier 
tissues (particularly the lung), and promotes copious goblet cell hyperplasia and 
mucus production. Chronic infl ammatory disorder can lead to tissue remodeling 
and airway remodeling, leading to an aggravated asthmatic state. Other Th2-
associated pathologies include ulcerative colitis in humans, in which IL-13 is pre-
dominant [ 31 ], skin infl ammatory conditions such as atopic dermatitis [ 32 ], and the 
most dramatic of all—systemic anaphylaxis, a life-threatening condition mediated 
by IgE hypersensitivity to allergens. In each of these settings, immunological inter-
vention by manipulating the balance of T-cell subsets represents an attractive but 
untested strategy to alleviate human disease. 

 The interconnection between innate and adaptive mechanisms is nowhere plainer 
than in the chemokine system, mediated by short-range chemotactic factors which 
induce tissue infi ltration and amplify infl ammation [ 33 ]. Committed Th2 cells initi-
ate expression of CCR3, CCR4 and CCR8, as well as CCR7 which is required for 
T-cell entry into and egress from peripheral tissue [ 34 ,  35 ]. CCR3 is expressed by 
eosinophils, mast cells and basophils as well as Th2 cells [ 36 ], and is the principal 
receptor for eotaxin (CCL11), illustrating the commonality between different sub-
units of the Type 2 response. CCR4 binds to two Type-2-associated chemokines, 
CCL17 (TARC, thymus, and activation-regulated chemokine) and CCL22 (MDC, 
Macrophage-derived chemokine), each of which are induced by IL-4 or IL-13, and 
are highly upregulated in allergic asthma and eczema. CCR5 is also shared by 
eosinophils, basophils and T cells and is bound by CCL5 (RANTES), while CCR8 
was reported to be most closely associated with Th2 cells producing IL-5 [ 37 ] or 
IL-10 [ 38 ]. These, and many additional, chemokine interactions can result in intense 
recruitment of cells to a localized focus of infl ammation, which may be centered 
around an invading parasite, a sterile wound or even a reaction to a harmless aller-
genic particle.  

    Regulatory T Cells 

 Regulatory T cells (Tregs) are now universally recognized as the key policing 
population that ensures immunological integrity and balance in a challenging envi-
ronment [ 39 ]. The archetypal marker of Tregs is the transcription factor Foxp3, and 
mutation of this locus leads to dysregulated immunity and severe infl ammatory dis-
ease [ 40 ]. Two pathways lead to the development of this suppressive phenotype: in 
the thymus, a subset of around 10 % of all cells exiting into the periphery are Foxp3 +  
regulatory cells, carrying an apparently stable epigenetic imprint that maintains 
their function. A second pathway acts upon the other 90 % of potentially pro- 
infl ammatory CD4 +  T cells in the periphery: they can be induced into the regulatory 
phenotype by an appropriate environment, for example by exposure to TGF-β at the 
time of TCR engagement [ 41 ]. This subset is thought to be less stable and more 
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prone to revert to an effector status. These two lineages are now termed thymic and 
peripheral regulatory T cells (tTreg and pTreg respectively) [ 42 ]. 

 The role of Tregs was fi rst established in model systems by their ability to suppress 
autoimmunity [ 1 ] and colitic disease [ 43 ,  44 ], and by the fact that Treg- defi cient 
mice rapidly succumb to uncontrolled systemic infl ammation [ 45 ]. Pathology in the 
absence of Tregs is particularly intense in the intestinal tract, indicating a key role 
in controlling responsiveness to commensal bacteria and food antigens [ 46 ]. Thus, 
Tregs may not only block autoimmunity against self-antigens but also deleterious 
responsiveness to harmless exogenous specifi cities [ 47 ]. The importance of the lat-
ter type, presumably induced in the periphery rather than the thymus, is demon-
strated by the intestinal pathology in mice lacking the CNS-1 intronic control region 
of Foxp3, which is targeted by the TGF-β pathway for induction of pTregs [ 48 ]. 
Interestingly, in these latter mice, intestinal infl ammation showed excessive Th2 
characteristics. 

 Thus, while autoimmunity and colitis are predominantly Th1/Th17-dependent 
pathologies, Tregs are also able to suppress Th2 responses, as confi rmed by elevated 
Type 2 cytokines in Foxp3-defi cient mice [ 45 ,  49 ]. Interestingly, Tregs may need to 
adopt some of the characteristics of the effector population they block for suppression 
to take place: for example, Th17-mediated colitis is prevented by Tregs that express 
Stat3, a signaling molecule involved in Th17 function [ 50 ], perhaps to share the 
same migratory properties as the effector population in question. Similarly, Th1 
reactions (e.g. to  Mycobacterium tuberculosis ) are repressed by Tregs that must 
express the canonical Th1-associated transcription factor Tbet, which drives expres-
sion (through Stat1) of CXCR3 and allows Tregs to infi ltrate the same tissues as the 
Th1 effector population [ 51 ]. Most germane to the focus of this article, Th2 responses 
are most potently suppressed by Tregs expressing IRF4, a Th2-associated transcrip-
tion factor, as indicated by selective enhancement of Th2 cytokines, and augmented 
IgE production, in mice carrying a Treg-specifi c deletion of IRF4 [ 52 ].  

    Molecular Pathways of Suppression of the Th2 Response 

 Tregs were originally defi ned by their ability to directly abrogate the pathological 
effect of T cells in vivo, for example when either or both are transferred into a 
T-cell-defi cient mouse [ 53 ,  54 ]. Subsequently, in vitro suppression assays demon-
strated inhibition of effector T-cell proliferation when co-incubated with Tregs [ 55 ], 
demonstrating direct Treg–Teff interactions in the suppressive process. In both 
in vivo and in vitro settings, a series of key mechanistic suppressive pathways have 
now been identifi ed [ 56 – 58 ]. 

 Foremost among these mechanisms is the release of suppressive cytokines, 
which act on a broad range of target cells and tissues, with potential for systemic 
effects beyond the site of Treg activation. The two principal suppressive cytokines, 
discussed below, are TGF-β and IL-10 which have been extensively reviewed else-
where [ 59 ]. In addition, IL-35 is a further immunoregulatory cytokine produced by 
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Tregs that can exert similar down-modulatory effects on helper T cells independently 
of TGF-β or IL-10 [ 60 ]. In each case, these cytokines also act in a  feed- forward loop 
to induce further Tregs of the corresponding subtype, i.e. Foxp3 +  pTreg, IL-10 +  Tr1, 
and Tr35 [ 56 ]. 

 Tregs are marked by high expression of CD25, the high-affi nity IL-2 receptor, 
and by consuming IL-2 in their vicinity may depress levels of this growth factor 
which is required by newly activated effector T cells. Indeed, the ability of Tregs to 
block proliferative responses in vitro has been directly ascribed to IL-2 depletion by 
cells in culture [ 55 ], and effector cells may be driven to apoptosis by the lack of IL-2 
[ 61 ]. With the recent discovery that innate lymphoid cells are also IL-2-dependent 
[ 24 ], Tregs may also be able to restrain undesired innate reactivity through similar 
withdrawal of an essential growth factor. 

 The second generic set of suppressive mechanisms operate through cell signaling 
at the interface between Tregs and their target cells. Among these is TGF-β, which 
may be immobilized at the cell surface, allowing directed delivery of inhibitory 
signals through the TGF-β receptor on any interacting cell [ 62 ]. The most important 
surface signaling molecule associated with downregulation, however, is CTLA-4. 
This member of the CD28 co-stimulatory family acts as an inhibitor of activation of 
T cells, primarily by interfering with positive signaling to effector cells encounter-
ing cognate antigen at the priming phase; CTLA-4 acts by removing ligand from the 
co-stimulatory molecules CD80 and CD86 [ 63 ]. Blocking CTLA-4 antibody abrogates 
the ability of Tregs to suppress in vitro [ 64 ] and in vivo [ 65 ], and the use of a 
Foxp3 Cre -mediated Treg-specifi c deletion of CTLA-4 confi rmed that intrinsic 
expression of this molecule by Tregs in vivo was essential to avoid a panoply of 
infl ammatory outcomes, including excessive IgE production [ 66 ]. 

 Thirdly, some Tregs can exert direct cytotoxic effects on responder populations, 
via the release onto the surface of the target cell of Granzyme B, a serine protease 
more widely associated with CD8 +  cytotoxic T cells and NK cells. In mice, while 
wild-type and perforin-defi cient Tregs were able to prolong skin allograft survival 
in vivo, Granzyme B-defi cient Tregs failed to do so [ 67 ], pointing to a specifi c role 
for this cytotoxic pathway in Treg function. 

 Fourthly, another close-range means by which Tregs can inhibit the effector arm 
of immunity is through the generation of adenosine in the local environment [ 68 ]. 
Adenosine binds to the A2A purinergic receptor of responding T cells leading to an 
inhibitory state of high intracellular cAMP; Tregs express two key ectoenzymes, 
CD39 and CD73 which convert ATP thorough AMP to adenosine [ 69 ], with CD39 
(which metabolizes ATP to AMP) upregulated on Tregs [ 70 ] and CD73 (which 
dephosphorylates AMP to adenosine) induced on all T-cell subsets by the action of 
TGF-β [ 71 ] 

 Finally, Tregs can act indirectly by modulating accessory cells of the innate 
immune system, in particular dendritic cells, leading either to tolerization of the 
effector T-cell population or in some cases their conversion into additional regula-
tory phenotype cells for more complete suppression. For example, when Tregs and 
Teffs are co-cultured with DCs, Tregs preferentially bind and aggregate (through 
LFA-1) around the DCs, obstructing access for the effector T cells, while also induc-
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ing a downshift in CD80/86 co-stimulatory molecules such that any subsequent 
interaction with naïve T cells will be intrinsically tolerogenic [ 72 ].  

    The Role of TGF-β 

 TGF-β is one of the central cytokines in the dynamics of T-cell development and 
regulation [ 73 ,  74 ]. Co-incident ligation of the TCR and the TGF-β receptor induces 
expression of Foxp3 in nonregulatory CD4+ T cells and drives them into the regula-
tory compartment; hence pTregs are highly TGF-β-dependent. In contrast, TGF-β is 
not required for thymic Treg development, although it acts to stabilize and sustain 
tTregs in vivo [ 75 ]. 

 TGF-β also acts on effector T-cell populations in a context-dependent fashion, 
with a correspondingly varied set of outcomes consistent with its biological role as 
an inducer of differentiation rather than a specialized immunosuppressive cytokine. 
In the absence of an infl ammatory milieu, TGF-β will induce Foxp3 expression in 
naïve CD4+ T cells, and drive them into a functionally suppressive Treg phenotype 
[ 76 ,  77 ]. However, in the presence of infl ammatory cytokines such as IL-6, naïve 
T cells exposed to TGF-β develop along the Th17 pathway [ 78 ,  79 ] (Fig.  1 ), while 
if IL-4 is predominant, Th9 expression is favored [ 15 ,  80 ]. 

 TGF-β is also an important inducer of tissue repair pathways, and represents an 
important interface between immunity and wound healing [ 81 ]. Hence, its therapeutic 
application is not straightforward, as it can act in different settings to promote infl am-
mation or repair, or indeed act to excess as in the case of fi brosis in damaged tissue.  

    Role of IL-10 

 IL-10 is viewed as a canonical immunoregulatory cytokine, as evident by the dis-
seminated infl ammatory disease that occur in IL-10-defi cient mice [ 59 ]. It is pro-
duced by a range of immune and innate cells, but in particular by T cells, and is a 
member of a cytokine family (including IL-22) with broader roles in maintaining 
barrier integrity [ 82 ]. IL-10 is expressed both by conventional Foxp3 +  Tregs as well 
as by a subset of Foxp3 −  IL-10-producing T cells which are often regarded as a 
further, Tr1, regulatory subset [ 83 ]. In some Th2 settings, such as in mice develop-
ing hepatic granulomas around schistosome eggs, IL-10 protects animals from 
lethal infl ammation although it does not dampen the overall level of Th2 respon-
siveness [ 84 ,  85 ]. In this regard, Th2 immunity is relatively inured to suppression by 
IL-10, but many other cell types such as dendritic cells and granulocytes are down- 
modulated by this cytokine, which may therefore play an overall dampening role in 
Th2 pathologies [ 86 ]. 

 IL-10 is also responsible for promoting Th2 responsiveness in vivo, most proba-
bly through the differential repression of Th1 leading to reduced IFNγ levels. 
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In the absence of IL-10, protective Th2 responses to helminth infection can be 
ablated [ 87 ]. In addition, IL-10 can suppress Th17 responses [ 88 ], again promoting 
Th2 dominance. Hence, overexpression of IL-10 can provoke symptoms of airway 
hyper-responsiveness, presumably by unbalancing the homeostatic role of IFN-γ 
and inhibiting competing T-cell subsets [ 89 ].  

    Activation and Migration of Tregs 

 For Tregs to exert a suppressive effect, they must co-locate themselves to the site of 
immune activation and/or infl ammation, requiring the expression of a suite of inte-
grin markers and chemokine receptors. It is likely that these are upregulated follow-
ing “activation” of Tregs, although the activation state(s) of this population remain 
poorly defi ned. Like all T cells, Tregs may be stimulated by cognate antigen through 
their TCR, but as thymic-derived Tregs may be in constant contact with self antigen, 
other signals such as TLR ligation or other infl ammatory input may also be required 
to trigger functional suppressive effects. A prominent marker associated with Treg 
activation is CD103, the α Ε β 7  integrin associated with infi ltration of mucosal tissues 
through binding E-cadherin [ 90 ], and highly elevated in Tregs infi ltrating colonic 
tumors [ 91 ]. Alongside CD103, activated Tregs raise levels of ICOS, and monoclo-
nal antibody blockade of ICOS function in diabetes-prone mice accelerated disease 
onset and reduced Treg numbers in the infl amed pancreas [ 92 ]. 

 CD103 is upregulated by stimulation with TGF-β [ 93 ], which is a potent inducer 
and sustainer of Treg populations [ 75 ]. Activated Tregs also express CCR7 as well 
as L-selectin (CD62L) which are required for entry into lymph nodes where they 
may infl uence dendritic cells and potential effector T-cell populations, while CCR9 
may be required for Tregs to enter infl amed tissue as reported in the intestinal set-
ting [ 94 ], just as CCR6 is necessary for Tregs to suppress Th17-mediated infl amma-
tion in autoimmune disease [ 95 ]. Other key factors now known to determine Treg 
infi ltration include GATA-3, which as well as being the central transcription factor 
for committed Th2 cells, is required in activated Foxp3 +  Tregs for both migration 
into intestinal tissue and to maintain a fully suppressive phenotype [ 96 ].  

    Treg Suppression of Type 2 Infl ammation in Allergy 

 It is now clear that Tregs can control Th2 responsiveness in a wide range of pathologi-
cal settings [ 97 – 101 ]. Allergic airway infl ammation, provoked in mice by allergen 
sensitization with the Th2-biasing adjuvant alum, can be alleviated by the transfer of 
Tregs [ 102 ,  103 ] which express Foxp3 [ 104 ]; in these reports, protection was associ-
ated with IL-10 production. Further evidence for Treg suppression of Th2 infl amma-
tion in the airways was found in mice carrying various infections including bacteria 
such as  Mycobacterium vaccae  [ 105 ] and  Helicobacter pylori  [ 106 ] as well as by 

Tregs and Th2 Infl ammation



82

helminth parasites (see below). Thus, a regulatory T-cell population from  M. vaccae -
treated mice transfers protection against airway infl ammation into recipient mice, 
which is blocked by antibodies to either IL-10 or TGF-β [ 105 ], while in the case of 
 H. pylori -induced suppression it was shown that depletion of Foxp3 +  Tregs from the 
transferred population completely ablated protection in recipient mice [ 106 ]. 

 Consistent with these studies in laboratory mice, investigations in human patients 
argue that Tregs are a decisive factor in susceptibility to allergy against pollen or 
house dust mite [ 107 ,  108 ], cow’s milk [ 109 ], and bee venom [ 110 ]. From these 
studies, the balance between regulatory and effector subsets appeared to determine 
allergic or healthy outcomes to allergen exposure, and dynamic shifts in this balance 
switched patients between one status and the other. Localization of Tregs is a further 
important factor, with a defi ciency in skin Tregs evident in atopic dermatitis patients 
[ 111 ]. In human neonates, homeostasis has yet to be established with regulatory 
populations slower to gain function than the effector population [ 112 ], while in 
patients with steroid-resistant asthma the correct balance can be induced by admin-
istration of vitamin D [ 86 ]. Again, IL-10 has been identifi ed as an important sup-
pressive mediator [ 86 ,  110 ].  

    Tregs in Ulcerative Colitis 

 Ulcerative colitis (UC) is one of the two main forms of infl ammatory bowel disease, 
together with Crohn’s disease [ 113 ]. UC is often considered to represent an “atypi-
cal” Th2-mediated pathology due to high levels of IL-5 and IL-13 together with 
more “Type 1” cytokines such as TNF, while Crohn’s disease is a more conventional 
Th1/Th17-dependent syndrome. While the evidence from mouse models of colitis 
unequivocally demonstrate the absolute necessity for Tregs in controlling intestinal 
infl ammation [ 114 ], the relationship in human UC is less well documented. For 
example, while peripheral blood Tregs are sparser and less potent in UC patients 
[ 115 ], there does not appear to be a local defi ciency of Foxp3 +  Tregs in the intestinal 
tissue [ 116 ]. However, a more recent study of patients receiving leukocytapheresis 
therapy found that Treg:Teff ratios increased in cases entering remission, but not in 
those failing to respond to treatment [ 117 ]. While no mechanistic insights are yet 
available into whether this represents a direct Treg:Th2 interaction, these data sup-
port the general concept that the balance between Tregs and Teffs is pivotal in both 
types of infl ammatory bowel disease [ 118 ].  

    Tregs in Helminth Infection 

 Among the strongest known inducers of Th2 responsiveness are the metazoan para-
sites, both helminth worms (e.g. nematodes and trematodes) and ectoparasites such 
as mites, ticks and biting insects [ 8 ]. Notably, many helminth parasites also promote 

R.M. Maizels



83

Treg activation and expansion, a property they may have evolved precisely to con-
tain host-protective but parasite-damaging Th2 immunity [ 119 ,  120 ]. Thus, the fre-
quency of Foxp3 +  Tregs increases in mice infected with the fi larial parasites  Brugia 
malayi  [ 121 ] and  Litomosoides sigmodontis  [ 122 – 124 ], as well as with the intesti-
nal nematodes  Heligmosomoides polygyrus  [ 125 – 127 ] and  Strongyloides ratti  
[ 128 ]. Likewise, Treg expansion occurs in  Schistosoma mansoni -infected mice 
[ 129 ], as well as recipients of schistosome egg antigen [ 123 ] although in the latter 
setting alongside a parallel Th2 response. 

 In  L. sigmodontis- infected mice, Tregs also increased expression of ICOS [ 130 ], 
while CD103 is also sharply upregulated on Tregs during  H. polygyrus  and  S. man-
soni  infections [ 126 ,  127 ,  129 ]. ICOS-defi cient mice show impaired frequencies of 
intestinal Tregs in the latter setting [ 131 ]. In the case of  B. malayi , live parasites are 
required for Treg expansion as injection of heat-killed organisms did not reproduce 
this effect [ 121 ], while Treg induction can be replicated by exposure of naive T cells 
in vitro, or mice in vivo, to secreted (“HES”) products of  H. polygyrus  which can 
ligate and signal through the TGF-β receptor [ 132 ]. The ability of the HES products 
to drive Treg differentiation argues that their expansion in helminth infection may 
be actively promoted by parasites, and not simply refl ect the physiological accom-
paniment of the anti-parasite effector response. 

 Tregs driven by helminth infection appear activated and potently suppress patho-
logical reactions such as allergic airway infl ammation in mice [ 125 ,  133 ]. Activation 
may occur through parasite products such as HES [ 132 ], or through TLR ligands as 
in the case of Schistosome parasites [ 134 ,  135 ]. 

 Manipulation of Treg populations in mice have provided further insights into the 
ability of Tregs to control Th2 immunity. Thus, depletion of Tregs with anti-CD25 
antibody enhances host immunity to infection, resulting in lower worm burdens in 
mice infected with  L. sigmondontis . Expression of effective immunity also required 
neutralizing antibodies to GITR or CTLA-4 [ 122 ,  124 ] to restore Th2 responsive-
ness in a population silenced by prior Treg activity. In  Trichuris muris  infection, 
while anti-CD25 treatment exacerbated pathology, no change in worm numbers 
resulted [ 136 ]. 

 As yet, few studies have reported results with various genetic depletion models 
for Tregs. In the case of  H. polygyrus , no difference in worm burden was noted in 
diphtheria toxin-treated C57BL/6 DEREG mice at day 14 of infection [ 137 ]; how-
ever, Th2 responsiveness was boosted and as genetically resistant strains (e.g. SJL) 
with stronger Th2 reactivity do not expel parasites until after 2 weeks of infection 
[ 138 ], the time point assayed may not have been optimal. In the case of  S. ratti , early 
depletion of Tregs signifi cantly reduced worm loads, but if depletion was delayed to 
day 4 of infection, no signifi cant difference in infection was observed [ 128 ]. 

 Human helminth infections also present abundant evidence of Treg expansion, 
with elevated Foxp3 +  T-cell frequencies in cross-sectional surveys of Bancroftian 
fi lariasis [ 139 ] while Foxp3 expression correlated positively with schistosome 
infection intensity in children [ 140 ]. Following anti-schistosome therapy, Foxp3 
levels fell in patients [ 141 ], while patients developing more severe immunopathol-
ogy of schistosomiasis were found to bear lower steady-state Treg frequencies 
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[ 142 ]. Functional studies on human populations infected with the highly prevalent 
soil-transmitted helminths (such as hookworm and  Ascaris ) revealed Tregs able to 
suppress bystander responses to malaria and BCG [ 143 ], echoing concerns that hel-
minth immunomodulation may compromise vaccine effi cacy. 

 A long-standing observation in human fi lariasis is a marked antigen-specifi c 
hyporesponsiveness in chronically infected patients; generally these cases are 
asymptomatic carriers of the transmission stage (microfi lariae), indicating a state of 
tolerance to the parasite that may be maintained through the action of Tregs [ 144 ]. 
It is interesting therefore that in a recent study, Tregs from asymptomatic microfi la-
remic patients were found to show more active suppression than cells from indi-
viduals who had developed pathology as a result of heightened immune reactivity to 
the parasite [ 145 ]. 

 More broadly, the dampened immune responsiveness of helminth-infected 
humans is refl ected in epidemiological studies showing that these individuals have 
lower levels of skin test atopy (a broad measure of allergic reactivity) [ 146 ,  147 ] and 
anti-nuclear antibody (an early marker of autoimmune reactivity) [ 148 ]. Moreover, 
in both settings, anthelmintic treatment can result in increased reactivity, arguing for 
a causal effect of helminth infection on bystander responses to harmless antigen 
specifi cities. As a result, a concept has emerged that helminth-promoted Treg activ-
ity acts more broadly to down-modulate detrimental immune reactivities, in a 
revised version of the “Hygiene Hypothesis” [ 149 ]. 

 An interesting parallel between human and rodent settings is the importance of 
the regulatory network in restraining IgE responses. In mice with Treg defi ciencies, 
IgE levels can be excessively high as in the case of the CNS-1 defi ciency which 
impairs pTreg induction [ 48 ]. Likewise, high IgE is one of the signs of IPEX 
(immune dysregulation, polyendocrinopathy, enteropathy, X-linked) syndrome 
resulting from mutations at the Foxp3 locus [ 40 ]. In human helminth infections, 
asymptomatic “hyporesponsive” patients with strongest evidence of Treg activity 
have low IgE but very high IgG4 levels [ 150 ], while B-cell switching to IgG4 results 
from IL-10, TGF-β, and GITR expression from Tr1 and Foxp3 +  Tregs [ 151 ,  152 ]. 
Hence, elevated total serum IgG4 can represent a biomarker for a highly immuno-
regulated state in humans [ 153 ].  

    Plasticity and Interconversion of Th2 and Treg 

 The rigid divisions between T-cell subsets are recognized as being, in reality, quite 
fl uid [ 154 ]. Tregs are not an immutably fi xed population, and many examples are 
known of Tregs producing classical “infl ammatory” cytokines or even switching 
their status altogether. In particular, Foxp3 expression may quantitatively but not 
fully repress effector functions of the cell. In mice with an altered Foxp3 locus 
which results in lower protein production per cell, Tregs preferentially expressed 
IL-4 and Th2-associated pathologies (elevated autoantibody, lymphoproliferation, 
and blephartis) ensued [ 155 ]. 
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 A striking example of the reprogramming of Treg cells toward a Th2 function 
was reported in a setting that deletes Dicer (a key microRNA processing enzyme) 
within Foxp3-expressing lineages: these show both Th1 (IFN-γ + ) and Th2 (IL-4 + ) 
progeny of the Foxp3 +  population arise in vivo, accompanying severe infl ammatory 
disease [ 156 ]. However, it is not clear whether in normal Dicer-suffi cient Tregs, 
such conversion is permitted to occur. 

 In further mouse models, the switch from Tregs to infl ammatory cells can be 
tracked by using transgenic constructs such as Rosa26-YFP combined with Cre 
recombinase under the Foxp3 promoter, to permanently mark Foxp3-expressing 
cells whatever their future fate. In one such system, 15 % of peripheral YFP +  cells 
no longer expressed Foxp3, a proportion that increased in mice with the autoimmune- 
prone NOD genetic background [ 157 ]. Moreover, adoptive transfer of these “ex- 
Treg” cells into diabetes-prone recipients induced rapid onset of disease [ 157 ]. In 
another model system, Treg cytokine production associated with Th1/Th17 can be 
evoked by immunization with CpG ligand for TLR9; again conversion occurs 
among Tregs marked by GFP expression under the Foxp3 promoter [ 158 ], provid-
ing further evidence that cells previously committed to the Treg compartment are 
able to change their fate [ 159 ]. 

 In the intestinal tract, an instance of localized conversion in the Peyer’s patches 
occurs, in which Tregs lose Foxp3 expression and re-differentiate into the follicular 
helper T-cell (TFH) phenotype, specifi cally, providing help for IgA switching of B 
cells in germinal centers [ 160 ]. Although the TFH subset does not neatly corre-
spond to Th1, Th2, or Th17 (as TFH express Bcl-6 rather than T-bet, GATA-3 or 
RORγt as the dominant transcription factor), they produce IL-4 and can perhaps be 
viewed as closest to Th2, which produce additional B-cell growth and switch factors 
(e.g. IL-5, IL-6, and IL-10). Indeed, TFH can also arise from Th2 cells during hel-
minth infection [ 161 ] and in this instance retain GATA-3 expression [ 162 ]  

    Treg-Orientated Therapy 

 Therapy to modulate Tregs may have several objectives, and accordingly adopt 
varying strategies. For many allergies and autoimmune diseases, the objective may 
be to generate or sustain antigen-specifi c Tregs. This may require as little as an 
exogenous delivery of vitamin D, which proves benefi cial in cases of steroid- 
resistant asthma [ 163 ], while antigen-specifi c strategies such as specifi c immuno-
therapy of allergy by repeated low-dose allergen exposure may recruit endogenous 
cognate Tregs, or convert effector cells to a Treg status [ 98 ,  164 – 166 ]. For colitis 
and other conditions in which multiple targets (e.g. commensal bacteria) are 
involved, a broader bystander strategy is required to raise the overall level of Treg 
activity. As one example, airway allergy can be suppressed in mice by administering 
a simple IL-2 complex which preferentially expands Tregs [ 167 ]. 

 In contrast, in many infection settings, the objective is to counter Tregs and 
potentiate the host immune system, as illustrated in some of the helminth parasite 
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models [ 122 ,  124 ,  128 ]. A number of possible avenues can be explored beyond 
simple depletion strategies, and as we discover more about the biochemical and 
epigenetic basis of Treg function, means may become available to convert Tregs 
into more appropriate effector cells at the level of intracellular signaling. In addi-
tion, we have already learned that ablating Treg activity may not be suffi cient in a 
chronic setting in which the effector population has become anergized; here it is 
necessary to manipulate the co-stimulatory pathways to rejuvenate immunity [ 120 ]. 
Interestingly, this latter strategy is one showing most promising results in tumor 
immunotherapy [ 168 ,  169 ].  

    Conclusions 

 Tregs are a physiological, and potent, means of repressing Type 2 responsiveness by 
dampening effector Th2 reactivity and acting directly on other cell types (particu-
larly dendritic cells and macrophages), recruiting them into the regulatory network. 
While Tregs play a vital role in maintaining body health, they are part of a delicate 
balance within the immune system which not infrequently goes awry. Consequently, 
understanding the role of Tregs in modulating or permitting Th2-mediated immuno-
pathologies is a crucial task which will illuminate the pathway to future therapy of 
allergic disorders and other maladies. On the other side of the coin, where Tregs are 
restraining a potentially protective Th2 response, as in the case of chronic helminth 
infections, new strategies need to be tested to alter the regulatory:effector balance in 
the patient to allow anti-parasite immunity to be fully expressed, while safeguarding 
them from the risk of allergic or other immunopathologies. These challenges are 
now being addressed.   
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           Parasitic Helminth Infections: Global Health Impact 

 Parasitic helminths are among the most debilitating infectious agents of humans, 
yet they remain neglected tropical diseases with no effective vaccines that can pro-
tect humans from infection. However, the development of effi cacious vaccines 
against some parasites of livestock, along with advances in the understanding of the 
mechanisms of protective immunity to helminths, provide optimism that anti-hel-
minth vaccines will be developed to limit the burden of human disease. 
Epidemiological studies of humans and experimental animal models have high-
lighted the importance of Type-2 immunity in natural and acquired resistance 
against most helminth species. Here, we describe the progress in the development 
of vaccines against major parasites of livestock (cestodes, ascarids, blood-feeding 
nematodes and trematodes) and the major causes of helminthiases of humans (hook-
worm and schistosomiasis), focusing on how understanding of host immunology 
and parasite biology has lead to the rational design and subsequent trials of candi-
date antihelminth vaccines. 

 Unlike bacterial, fungal, protozoan and viral pathogens, most helminths do not 
proliferate within their hosts and hence the severity of the infection depends on 
the level of initial exposure to the parasite. While infections with some helmin-
thes, such as the STHs, do not commonly result in death, infected individuals 
experience signifi cant morbidity, particularly when infections cause high worm 
burdens. School-age children are particularly susceptible to intense infections and 
consequently suffer from impaired nutrition, growth, memory and cognition and 
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educational performance. In addition, individuals are often “polyparasitized” by 
chronic infection with multiple helminth species, and these infections can exacer-
bate the severity of extraneous diseases such as malaria, HIV, and even cancer, 
justifying the implementation of large-scale control and elimination programs for 
helminths in endemic areas.  

    Current Treatment Methods for Parasitic Helminth Infection 

    Anthelmintic Drugs 

 In developed countries over the last century, helminths have been mostly eliminated 
as a health risk for humans by the reduction of poverty, implementation of health 
education and improved sanitation measures and widespread availability of anthel-
mintic drugs. However, in developing countries, waiting for poverty reduction and 
urbanization to occur is not feasible, leading to the implementation of large-scale 
anthelmintic chemotherapy efforts. Beginning in the 1990s [ 1 ,  2 ], these “deworm-
ing” strategies focused on school-age children and used single doses of mebenda-
zole or albendazole to limit prevalence of infection with STHs. However, mass 
deworming programs face signifi cant challenges, such as the focus on school-age 
children that excludes other populations that are at risk of these infections. Such 
control programs require careful and challenging optimization of community 
involvement and participation and subsequent evaluation of the effectiveness of 
these treatment methods. In addition, it is likely that the reliance on albendazole and 
mebendazole for the control of STHs will have less of an impact on reducing hook-
worm transmission, given that hookworm infection intensities are at their highest in 
adults [ 3 ]. Lastly, the arsenal of drugs to treat human helminth infections are 
severely limited, with very few new drugs in the development pipeline, and the 
drugs used currently do not protect against reinfection [ 4 ]. This could cause major 
problems for existing drug administration programs if drug resistance develops and 
spreads, as has been seen for nematode parasites of ruminants [ 5 ]. Hence, future 
efforts in the design of new helminth infection control measures that can limit the 
incidences of reinfection should include the development and integration of effec-
tive anti-helminth vaccines.  

    Anti-helminth Vaccines 

 Efforts to develop anti-helminth vaccines for use in humans and livestock have per-
sisted for many years, with steady progress made in the development of effi cacious 
vaccines in ruminants and several promising vaccine candidates against human hel-
minth diseases. Nevertheless, a vaccine that protects humans against any species of 
helminth remains elusive. In order to develop such a vaccine, more needs to be 
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known about how the mechanisms involved in acquisition (or lack thereof) of long- 
lasting immunity, and how the parasite itself may interfere with this process. Since 
Type 2 immune responses are implicated with enhancing innate and acquired immu-
nity to helminths, determined by the use of experimental animal models and human 
immune-epidemiological investigations, it is logical that targeting the Type 2 arm of 
the immune response will yield the most effective vaccines. The following sections 
review the progress made in vaccine development, including the identifi cation of 
candidate antigens, mechanisms of induced protective immunity, implementation in 
vaccine trials in humans and livestock, and the future for vaccine design.   

    Vaccines Against Parasitic Helminths: An Overview 

 After the fi rst effective vaccine against a helminth species of cattle was developed in 
the 1950s, it was anticipated that many more vaccines would follow, however this has 
proven to be much more diffi cult for other helminth species. In contrast to vaccines 
against bacteria and viruses that replicate in their host, vaccines against helminths 
need not achieve sterile immunity and require only lowering of the parasite burdens 
below pathogenic levels, thereby limiting transmission. Most vaccination strategies 
have involved the use of either (1) attenuated or irradiation-killed infectious parasite 
stages, (2) mixtures of helminth somatic antigens, or (3) purifi ed recombinant parasite 
antigens. Each strategy has its advantages and disadvantages in terms of effi cacy and 
practicality and in general, are quite successful at demonstrating immune protection 
in experimental animal models, domestic animals, and livestock. 

    Lessons from Animal Models of Helminth Infections 

 Experimental animal models have been used extensively in studies investigating 
both the natural protective immune responses elicited by helminths, and for vacci-
nation studies. Much of what we know about the immune mechanisms of how para-
sitic helminth infections elicit protective Type 2 cytokine responses that mediate 
parasite expulsion has been elucidated from rodent models and is discussed in detail 
in other chapters of this book. One limitation of using rodents for vaccine studies is 
that many of the important human pathogenic helminths ( Ascaris , hookworm, and 
 Schistosoma haematobium ) do not have suitable small animal models based on 
parasite life cycle or natural chronicity of infection. However, hamsters can be used 
as models for urogenital schistosomiasis and some species of hookworms, and 
 Ascaris suum  (pig parasite) and  Nippostrongylus brasiliensis  are useful models to 
study human ascariasis and hookworm infection, respectively, in mice. Together, 
the use of rodent models is vital for the development of rational anti-helminth vac-
cines and examples of how these animal models have aided in the design of vaccines 
against helminths are outlined in later sections.  
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    Vaccines in Livestock 

 Helminth infections are a huge problem in the livestock industry, as helminths are 
among the most common infectious agents of ruminants and cause immense eco-
nomic losses, when reduced productivity and cost of anthelmintic drugs are consid-
ered. Thus, much effort has been put into the development of anti-helminth vaccines 
that limit reinfection rates and prevent the continuous development of drug-resistant 
parasites. Tapeworms, ascarids, blood-feeding nematodes and trematodes are some 
of the most common infectious agents for animals of veterinary importance and the 
following subsections discuss successes and failures of vaccine development in 
livestock and how our understanding (or lack of understanding) of the nature of 
protective immune responses has guided rational vaccine design. 

    Cestodes (Tapeworms) 

 Tapeworms of veterinary importance have a global distribution and infect pigs or 
cattle as intermediate hosts, or in the case of  Echinococcus granulosus  infect dogs 
and other carnivorous predators as defi nitive hosts. Humans are infected by ingest-
ing undercooked meat from the intermediate hosts and hence the development of 
vaccines in these hosts will prevent zoonotic parasite transmission. Animals 
infected with cestodes display strong immunity to reinfection, though the primary 
infection persists via concomitant immunity, which is thought to be antibody-
driven [ 6 ]. Studies in mice and pigs have demonstrated that the initial immune 
response to  Taenia  infection is of a T-helper Type 1 (Th1) phenotype, characterized 
by increased IFNγ and TNFα expression, but little change in IL-4 or IgG1 levels 
[ 7 – 9 ]. These Type 1 cytokine responses are thought to be responsible for immune 
protection against  Taenia solium  vaccination [ 10 ] and Type 2 immune responses 
are correlated with increased susceptibility to disease [ 11 ]. Similar to what occurs 
in livestock,  E. granulosus  infection of dogs results in a mixed Type 1/Type 2 cyto-
kine response and the IgG2, IFNγ and IL-12-dependent Th1 immune response is 
implicated for increased protection in mice [ 11 ]. Together, this suggests that pro-
moting a robust Type 1 cytokine response is a rational strategy for developing 
cestode vaccines. The last 25 years has seen the development of highly effective 
stage-specifi c recombinant protein vaccines against cestode parasites of livestock 
and has provided a model for the future design of vaccines against parasites of 
humans [ 12 – 16 ]. While the effi cacious vaccines against  T. ovis ,  T. solium ,  T. sagi-
nata , and  E. granulosus  are not commercially available for use in the livestock 
industry, hope remains that increased commercial interest and resolution of practi-
cality issues will result in the use of these new tools to control cestode infections. 
Clearly however, research involving cestode vaccines has highlighted that target-
ing the Type 2 immune response for vaccine development is not appropriate for all 
helminth species.  

A. Loukas and P. Giacomin



101

    Ascarids 

 Ascarids such as  Ascaris suum  are important pathogens of pigs, where infection 
occurs following ingestion of eggs that hatch and migrate via the liver to the lungs 
and intestine. Eosinophilia occurs in the liver and lung and can lead to liver fi brosis 
or eosinophilic pneumonia if infections become chronic. The importance of Type 2 
immune responses and eosinophilia in controlling infections with the parasite are 
unclear, although primary infections of pigs results in natural clearance of the para-
site from the intestine, correlating with increased IgG1 titers but not with eosinophil 
numbers [ 17 ], suggesting that Type 2 immune responses may be involved in immune 
protection via eosinophil-independent mechanisms. Mast cells and basophils 
degranulate in response to  A. suum  antigens, suggesting that these granulocytes may 
be involved in regulating Type 2 cytokine-dependent infl ammation or anti-parasite 
resistance [ 18 ,  19 ]. Early efforts to develop  A. suum  vaccines used irradiated para-
site eggs and yielded promising results [ 20 ,  21 ]. More recent efforts to develop 
recombinant protein vaccines against  Ascaris  have involved the use of both murine 
and porcine models and highlighted the importance of humoral immunity, particu-
larly IgG1 responses, in the development of vaccination-mediated immune protec-
tion. These vaccines elicited either mixed Th1/Th2 cytokine responses in mice 
[ 22 – 24 ], or biased Type 2 cytokine responses in pigs [ 25 ] though these vaccines did 
not signifi cantly protect from the initial appearance of parasites in the gut. In order 
to develop more effi cacious vaccines, efforts should be focused on antigens released 
by the larval stage of the parasite prior to or during the lung/liver migration phase.  

    Blood-Feeding Nematodes 

  Haemonchus contortus  is a gastrointestinal parasite of sheep and goats that is related 
to the hookworm species infective to humans such as  N. americanus . Similar to 
other parasites of veterinary importance, drug resistance is a major problem for 
 Haemonchus  infections, and there have been signifi cant efforts in recent years in 
developing a vaccine against this parasite [ 26 ]. Infections with  Haemonchus  can 
result in self-cure, which leads to robust protective immunity to reinfection that is 
dependent on Th2 cytokine responses, such as IL-4, IL-10, mast cells, and IgE 
[ 27 ,  28 ]. For vaccination against  Haemonchus , it is critical to target young lambs 
(<6 months) as it is the period in which the lambs harbor potentially lethal worm 
burdens due to an immature immune system [ 29 ]. Parasite-specifi c IgE levels and 
Type 2 cytokine responses are increased greatly during  Haemonchus  infection in 
adult sheep [ 30 ], but not in young lambs, suggesting that protective immunity is 
IgE-mediated [ 31 ]. The immunological mechanisms behind the inability of young 
lambs to mount protective Type 2 immune responses remain incompletely under-
stood [ 32 ].  Haemonchus  larval and cuticular extracts have been trialed as vaccines, 
with mixed success [ 33 ], although immunization of sheep with the larval antigen 
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Hc-sL3 results in a Th2 immune response and signifi cant protection against infec-
tion [ 34 ]. Substantial efforts have been made to utilize “hidden”  Haemonchus  anti-
gens to vaccinate sheep. Two of these, H11—a gut membrane protease, and 
H-gal-GP—a gut membrane protein complex, are leading candidates for commer-
cial vaccine development, either alone or in combination [ 35 ,  36 ], although more 
work is needed to optimize production of recombinant forms of these proteins. 
Lastly, because of the biological and pathological similarities between  Haemonchus  
and hookworms infective to humans, it is hoped that progress in development of 
vaccines against human hookworm will also aid in the development of vaccines 
with veterinary importance, or vice versa.  

     Trematodes 

  Fasciola hepatica  is a trematode pathogen of sheep and cattle with wide geographi-
cal prevalence and is considered an emerging threat to human health. These para-
sites are responsible for billions of dollars of losses annually in the agriculture 
industry. Livestock can be treated with the drug triclabendazole, but resistance to 
this drug is emerging in Europe and Australia.  Fasciola  infection of animals elicits 
a mixed Type 1/Type 2 and regulatory T cell (Treg) immune response in its host, 
leading to chronic infection [ 37 ]. Sheep and cattle do not develop robust naturally 
acquired resistance to reinfection [ 37 ], although there is evidence that resistance to 
infection can be conferred by passive transfer of immune cells [ 38 ]. This transferred 
protective immunity was not correlated with a Th2 immune response and cattle 
could be “trickle” infected to establish chronic infections in the face of ongoing 
Type 2 immune responses. The remarkable ability of  Fasciola  to withstand an 
onslaught of Type 2 immune-dependent effector mechanisms is owed to the inher-
ent ability of the parasite to produce immunoregulatory excretory/secretory (ES) 
proteins [ 39 ], which in turn limits the potential harmful pathological effects of unre-
strained Th2 cytokine-mediated infl ammation. 

 There has been intense interest in developing vaccines against  Fasciola . 
Vaccination studies in ruminants have yielded mixed success and in some cases 
have attempted to use vaccine candidates that are shared with other trematode para-
sites such as  S. haematobium  [ 37 ]. Vaccination with the tegument protein thiore-
doxin provided partial protection in rabbits, but was weakly immunogenic in cattle 
[ 40 ,  41 ]. Glutathione-S-transferases were trialed as a vaccine against fasciolids 
based on their effi cacy in preventing  S. haematobium  infection, though these vac-
cine trials have again yielded mixed results [ 42 ,  43 ]. Similarly, fatty-acid binding 
proteins (FABPs) were trialed as cross-reactive vaccines to protect against schisto-
somes and  Fasciola , and while some FABPs were effective in rabbits [ 44 ,  45 ], the 
results in livestock have been mixed despite some encouraging results with the 
FABP Sm14 [ 46 ]. Vaccination with cathepsin L1 and L2 peptidases, proteins that 
cleave antibodies bound to the parasite surface, provided signifi cant degrees of pro-
tection in sheep and cattle [ 47 ]. Vaccine development strategies such as these that 
target the immunogenic proteins that  Fasciola  produces, and the sophisticated 
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mechanisms that the worm uses to evade the immune system will potentially lead to 
the development of more effi cacious vaccines that have the potential for protecting 
against multiple trematode species.    

    Recent Developments in the Design of Human Helminth 
Vaccines: Focus on Hookworm and Schistosomiasis 

 While research into helminth vaccines of veterinary importance have focused on 
limiting infections with a variety of diverse helminth species, there has been a rela-
tive focus in efforts to develop vaccines against the most harmful parasites of 
humans. Together, hookworms and schistosomes are two of the most prevalent and 
important human infections worldwide, due to their chronic nature and detrimental 
impact on disability-adjusted life years. By targeting these key parasitic infections, 
it is hoped that helminth-induced morbidity such as blood loss and fi brotic infl am-
mation will be lessened by effi cacious vaccines. The optimal strategy for vaccine 
delivery would be to administer them in early childhood, thereby limiting the ane-
mia, malnutrition, impaired physical and cognitive development that each of these 
infections causes in early life. However, vaccine development in humans faces sig-
nifi cant challenges, not the least of which is the diffi culty and limitations of study-
ing natural immune responses in humans in a controlled experimental manner. 

    Hookworm Infection and Natural Immunity 

 Infections with the hookworms  N. americanus ,  Ancylostoma duodenale , and  A. cey-
lanicum  are widespread in impoverished and tropical regions of the world. Chronic 
infection causes continuous blood loss from the intestine and depletion of iron and 
protein stores due to the parasite feeding. While hookworm infection can be effec-
tively treated with anthelmintic drugs, reinfection often occurs rapidly after treat-
ment [ 4 ], necessitating the development of vaccines. However, this has been an 
enormous challenge for helminth vaccinologists, primarily because the evidence for 
natural, acquired immunity to hookworm infection in humans is limited and there is 
evidence that both the frequency and intensity of infections with hookworms can 
increase with age [ 48 ]. Hookworms can survive in humans for years due to sophis-
ticated immunomodulation mechanisms from the very fi rst instances of infection. 
Nevertheless, there have been numerous efforts to develop vaccines against hook-
worms of humans and animals using a variety of approaches. 

 Hookworm-infected individuals display an immune profi le similar to that 
observed with most other helminth infections, i.e. Type 2 cytokine responses, ele-
vated IgG1, IgG4 and IgE titers, eosinophilia, and mastocytosis [ 49 ]. However, this 
naturally acquired immune response is only partially effective at reducing worm 
burdens, though there have been observations of positive correlations between IL-5 
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and IgE titers and reduced fecal egg counts [ 50 ]. In the few studies that have utilized 
controlled, experimental infections with hookworms in humans, it was demon-
strated that  Necator  induces parasite-specifi c Type 2 cytokine responses (IL-4, IL-5, 
IL-9, and IL-13) at the site of infection and in the periphery, along with increased 
regulatory (IL-10, TGF-β) and Type 1 cytokine responses (TNF-α, IFN-γ) [ 51 – 54 ]. 
It remains possible that induction of this diverse regulatory and proinfl ammatory 
cytokine profi le by  Necator , rather than a wholly Type 2-biased immune response, 
is responsible for the establishment of chronic infections and this may in part be due 
to immunomodulatory proteins released by hookworms [ 55 ]. Thus, vaccines that 
protect against hookworm infection may be designed to target immune evasion 
strategies used by the worm, or antigens released by the vulnerable larval stages of 
the parasite soon after infection.  

    Hookworm Vaccines 

 The fi rst vaccine against a hookworm was developed in the 1930s, which was a live 
 A. caninum  larval vaccine that protected laboratory dogs against repeated infections 
[ 56 ]. Later efforts used irradiated-attenuated infective third-stage larvae (irL3), 
which also caused signifi cant reductions in parasite burden after challenge infection 
[ 56 ]. A canine hookworm vaccine consisting of  A. caninum  irL3 was marketed dur-
ing the 1970s, providing high levels of antibody-mediated protection against dis-
ease, but was eventually discontinued due to logistical issues relating to production 
cost, storage requirements, and incomplete protection effi cacy [ 57 ,  58 ]. In more 
recent studies, it was shown that the antibody-mediated protection induced by irL3 
vaccine was associated with induction of Th2 cytokine responses against specifi c 
antigens secreted by  A. caninum  L3, suggesting that at least part of the success of 
the irL3 vaccine could be attributed to its effective induction of a polarized, antigen- 
specifi c Type 2 cytokine response [ 59 ]. 

 More recent efforts to develop vaccines against hookworms have focused on 
identifying (1) soluble factors that L3 produce upon host entry, and (2) proteins 
involved in blood feeding of the adult worm, in an effort to develop a recombinant 
protein vaccine that reduces the ability of the worm to parasitize the host (Fig.  1 ). 
Incubating L3 in vitro with serum provokes the release of three major protein com-
ponents: a zinc metalloprotease ( Ac -MTP-1),  Ancylostoma  Secreted Protein 
(ASP)-1 and ASP-2 [ 60 ], all of which have been subsequently produced as recom-
binant proteins. Critically, in studies with dogs vaccinated against  A. caninum  L3, it 
was determined that  Ac -ASP-2 was the predominant antigen to which the antibody 
response was directed and when  Ac -ASP-2 was used to vaccinate dogs or hamsters 
against experimental hookworm challenge, high levels of protective immunity were 
achieved [ 59 ]. Similar proteins were subsequently isolated from the human hook-
worm  N. americanus  [ 61 ], which were advanced into clinical development given 
the encouraging vaccine effi cacy data of  Ac -ASP-2 in animals, and human studies 
from  N. americanus  endemic areas where titers of anti-ASP-2 IgE were associated 
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with a reduced risk of acquiring severe hookworm infection [ 62 ]. In a phase 1 study 
in hookworm naïve people,  Na -ASP-2 was well-tolerated and immunogenic [ 63 ]. 
However, a follow-up safety and immunogenicity trial of this vaccine in adults from 
a hookworm endemic area in rural Brazil had to be stopped when 3/10 participants 
developed generalized urticarial reactions following injection of the vaccine [ 64 ]. 
These urticarial reactions were likely a result of pre-existing anti- Na -ASP2 IgE lev-
els due to prior hookworm infections, raising important implications for the devel-
opment of vaccines against helminths, given the potent ability of helminths and 
helminth-derived proteins to induce biased Th2 immune responses. Current efforts 
to reduce the allergenic capacity of  Na -ASP-2, while retaining its immunogenicity, 
may yield modifi ed vaccines that could re-enter the clinic if proven effective in 
animal models and safe in hookworm naïve and endemic populations [ 65 ]. 
Alternatively, a  Na- ASP-2-based vaccine may be more suitable for delivery to 
young children, without previous exposure to hookworm infections.

   Since  Na -ASP-2 has been shelved as a vaccine candidate, more recent vaccina-
tion strategies have focused on targeting the feeding and metabolic requirements of 
the intestinal adult stage of the parasite, since blood feeding causes the major detri-
mental sequelae of hookworm disease.  Necator  depends on host hemoglobin for 
nutrition, and the two leading vaccine candidates for hookworm are an aspartic 
protease ( Na -APR-1) which aids in hemoglobin proteolysis, and a glutathione-S- 
transferase ( Na -GST-1) which detoxifi es one of the toxic by-products of  hemoglobin 
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  Fig. 1     Necator americanus  degradation of host blood components by the activities of parasite 
hemolysins and hemoglobinases lining the parasite gut membrane, and detoxifi cation of free heme. 
 Arrows  represent examples where antibodies to recombinant hookworm vaccine antigens have 
been shown to neutralize the enzymatic activity of the target protein       
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digestion, heme [ 66 ]. Challenge studies in laboratory animals demonstrated that 
both recombinant  Na -GST-1 and  Na -APR-1 can induce protective effi cacy against 
hookworm infection (Fig.  1 ) [ 67 – 70 ]. The Human Hookworm Vaccine Initiative 
(HHVI), a partnership between the Sabin Vaccine Institute and academic research-
ers and institutions is currently developing a vaccine that contains both  Na -GST-1 
and  Na -APR - 1 , formulated with an aluminum hydroxide adjuvant for clinical test-
ing in humans. Both vaccine candidates will be tested in Phase 1 trials in hook-
worm-naïve adults and children, then combined into a single product and retested in 
phase 2b and 3 trials in hookworm-endemic regions to evaluate its effi cacy at reduc-
ing blood loss and anemia. Encouragingly, individuals living in hookworm endemic 
regions do not display detectable IgE against  Na -APR-1 [ 68 ], suggesting that urti-
carial reactions are likely not to occur. Whether these vaccine antigens will induce 
high levels of antigen-specifi c antibodies in humans, protective Type 2 cytokine 
responses and reductions in worm burdens and intestinal blood loss remains to be 
seen.  

    Schistosomes and Natural Immunity 

 Schistosomes such as  S. mansoni ,  S. haematobium , and  S. japonicum  are among the 
most important parasites of humans in terms of their impact on global human health 
[ 71 – 73 ].  S. haematobium  is the most prevalent, causing urinary tract schistosomia-
sis and  S. mansoni  and  S. japonicum  are the major causes of intestinal schistosomia-
sis [ 73 ]. While schistosomiasis can be treated with drugs such as praziquantel, this 
does not protect against reinfection [ 74 ] and could lead to the emergence of drug 
resistance [ 75 ]. This, along with the high disease burden caused by these fl atworms 
and the fact that humans living in endemic areas can become resistant or partially 
immune to reinfection over time [ 76 ] has led to a strong justifi cation for the devel-
opment of anti-schistosome vaccines [ 74 ,  77 ,  78 ]. 

 Most experimental research into the immune response to schistosome infection 
has been focused on  S. mansoni , in both rodent models and in humans. The immune 
response to  S. mansoni  is complex, with several tissues infected and multiple sites of 
egg deposition. In mice, initial infection results in a moderate Type 1 cytokine 
response as the parasite transits from the skin to the liver via the blood circulation 
[ 79 ]. After maturation, the worms migrate to the intestine where they lay eggs that 
are shed in the stool, or recirculate back to the liver where they deposit and induce a 
robust Type 2 cytokine response [ 80 ]. This Type 2 cytokine response elicits fi brotic 
granuloma formation, rich in collagen, Th2 cells, alternatively activated macro-
phages (AAMacs), B cells and eosinophils, that acts to sequester the egg from the 
surrounding tissue. This Type 2-mediated granuloma formation is critical for the 
prevention of excessive tissue damage in the liver, as genetic absence of Type 2 cyto-
kine, such as IL-4, causes lethality of infection due to cachexia [ 81 ]. The protective 
effect of IL-4 is dependent on AAMacs, which mediate wound repair and resolution 
of infl ammation [ 82 ]. Further, Type 2 cytokine expression is critical for the forma-
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tion of class-switched anti-schistosome IgG1 antibodies that protect in later stages of 
infection, or during subsequent infections [ 83 ,  84 ]. IgE is also implicated in immune 
protection against schistosomiasis in humans [ 85 ]. Similar Type 2 regulatory immune 
responses could mediate fi brotic pathology in humans, since patients presenting with 
severe liver fi brosis exhibit elevated Type 2 cytokines, and low fi brosis individuals 
displayed higher levels of IFN-γ [ 86 ,  87 ]. Hence, Type 2 immune responses are criti-
cal for immune regulation during schistosome infection and are a rational target for 
the development of human anti-schistosome vaccines. However, evidence from peo-
ple living in schistosome-endemic areas of Brazil paints a more complex story, 
where some individuals are putatively resistant (PR) to infection despite years of 
constant exposure and have no previous use of anthelmintic drugs [ 88 ,  89 ]. These PR 
individuals mount distinct immune responses to  S. mansoni  compared to people with 
drug-induced anti-parasitic resistance, displaying both a Type 1 and Type 2 cytokine 
profi le, while chronically infected individuals exhibited a predominant Type 2 
response [ 76 ,  90 ,  91 ]. Hence, it is hypothesized that a mixed immune response, 
including Type 1 responses to schistosomula antigens and Type 2 responses to adult 
worm and egg antigens may be optimal for anti- schistosome resistance.  

    Schistosome Vaccines 

 Vaccination of animal models of schistosome infection, such as rodents, pigs, and 
baboons with radiation-attenuated larvae confers robust and long-lasting immunity 
against reinfection [ 77 ]. Importantly, multiple recombinant protein vaccines have 
been developed that can elicit modest levels of protective immunity in animal models 
[ 77 ]. Observations made in studies involving the PR cohorts in Brazil have made sig-
nifi cant discoveries related to potential vaccine antigens that elicit appropriate immune 
responses. Two of these antigens, the tegumental proteins  Sm -TSP-2 and Sm29 were 
identifi ed by their ability to be strongly recognized by serum antibodies from PR 
patients, but not chronically infected individuals [ 88 ,  92 ]. The tetraspanin  Sm -TSP-2, 
which is expressed on the surface of live worms and is essential for parasite tegument 
development and maturation [ 93 ], provided high levels of protection as a recombinant 
vaccine in mice and is strongly recognized by serum IgG1 and IgG3 from PR indi-
viduals [ 88 ]. Thus,  Sm -TSP-2 is currently being developed as a recombinant protein 
vaccine to prevent heavy infections with  S. mansoni  in humans [ 94 ]. Related  S. man-
soni  tetraspanin proteins also show promise as vaccines, including Sm23 and  Sm -
TSP-1 [ 95 – 97 ]. Additional schistosome tegument proteins such as Sm29 and Sm28 
have been assessed in trials in mice and hamsters as recombinant vaccines with prom-
ising results [ 98 – 100 ], and Sm28 showed some protective effi cacy in primates [ 101 ], 
though its effi cacy in humans remains unclear. A related protein from  S. haematobium  
(Sh28) has entered clinical trials in Europe and West Africa [ 102 ], though reports of 
its effi cacy are not known at this stage. Recent fi ndings using  S. mansoni  GPI-anchored 
proteins from the parasite tegument as vaccines showed signifi cant protection against 
challenge infection, which correlated with a mixed Th1/Th2 cytokine response [ 103 ]. 

Developments in the Design of Anti-helminth Vaccines



108

 Other schistosome tegument proteins with potential as vaccine antigens have 
been identifi ed, such as calpain, which is the target antigen of a specifi c protective 
CD4 +  Th1 cell clone that induces macrophage-dependent killing of schistosomula 
[ 104 ]. Calpain, also known as Smp80, has been shown to protect via antibody- 
dependent mechanisms against experimental infection in mice and baboons and 
shows great promise as a subunit vaccine for  S. mansoni  infection [ 105 ,  106 ]. The 
FABP Sm14, as described in “ Trematodes ,” has been assessed as a recombinant 
protein vaccine displaying high vaccine effi cacy in some mouse trials [ 107 ], but 
reduced effi cacy in others [ 108 ]. Interest in developing and improving the effi cacy 
of the Sm14 vaccine is high, particularly given its potential uses for improving 
human and veterinary health as a combined schistosome and  Fasciola  vaccine [ 107 , 
 109 ]. Paramyosin has also been tested as a vaccine candidate, providing signifi cant 
protection against challenge infection and is currently undergoing production as a 
 S. japonicum  transmission-blocking vaccine for use in water buffaloes in Asia [ 110 ]. 
Together, it is clear that there is intense research into the development of anti- 
schistosome vaccines, however very little is known about the nature of the protective 
immune mechanisms that a vaccine would need to elicit to provide optimal resis-
tance to infection, though targeting the humoral immune system by eliciting 
 neutralizing antibodies (particularly IgG1) against key proteins that larval schisto-
somes require for their intra-mammalian development is a rational strategy.   

    Conclusions 

 The development of vaccines that protect against helminth infections requires the 
integration of efforts to understand the immunology of helminth infections, the biol-
ogy of the parasite, and the epidemiological implications of transmission in endemic 
areas. Research using rodent models has taught us a lot about the nature of the pro-
tective immune responses that develop naturally in resistant animals. Type 2 immune 
responses are central to the immune- mediated protection against infection with 
most species of helminth. Information about the initiation and regulation of Type 2 
immune responses in mice has been successfully translated to some modes of hel-
minth infection of veterinary importance, leading to the development of vaccines 
that work. However, our severely limited understanding of how humans control 
helminth infections, and our even less developed understanding of the immune 
responses to vaccines and the effector mechanisms by which vaccines exert their 
anti-parasitic effects has hindered the development of vaccines against helminths 
that cause immense problems for human health globally. 

 Clearly, there has been signifi cant progress made into the early stages of devel-
opment of vaccines that protect humans, companion animals, and livestock against 
helminthic infections. However, signifi cant challenges still await helminth vaccin-
ologists before vaccines that protect against human helminth infections become a 
reality. Recent advances in helminth genomics, proteomics, and immunomics have 
opened up a wealth of information available for the helminth vaccinologists to mine 
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[ 111 ], which could aid in the identifi cation of the next generation of candidate hel-
minth vaccine antigens. This, along with the availability of high-throughput protein 
expression techniques such as in vitro translation using prokaryotic or eukaryotic 
ribosomes, has the potential to transform vaccinate candidate discovery and expe-
dite the elucidation of interactions between these factors and human immunoglobu-
lins or immune cells and proteins. Multivalent vaccines such as those proposed to 
protect against both hookworm and schistosomiasis [ 71 ] would be an enormous 
leap forward by improving the logistics for widespread vaccine delivery to affected 
areas. In addition, optimal control of these parasites in human populations in 
endemic areas will require the integration of public health improvement measures 
such as improved sanitation and health education, along with strategic administra-
tion of anthelmintic drugs alongside vaccines.   
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          Introduction 

 Response to injury and subsequent wound repair is an essential survival mechanism 
that occurs in all multicellular organisms at varying degrees of complexity. In mam-
mals, several cellular and molecular pathways have evolved to coordinate wound 
healing. Whether it is an external injury of epithelial surfaces, internal organ wounds 
such as vessel rupture, or invasive pathogen infection, the body must react rapidly 
to prevent excessive infection, fatal infl ammation, or organ failure. Although better 
known for its function in defense against pathogens, the immune response also 
orchestrates critical steps in wound healing via activation of innate and adaptive 
immune cells to generate cytokines and tissue growth factors. In particular, the T 
helper type 2 cytokine (Th2) pathway (Table  1 ), characterized by the cytokines IL-4 
and IL-13, is an essential mediator of wound healing and acts to downregulate 
excessive infl ammation while promoting tissue repair.

   Our understanding of the various cell-types and derived factors that mediate 
wound healing have benefi ted from several injury models including external wounds 
(e.g., skin biopsies or burn models), internal organ wounds (e.g., chemically induced 
injuries) or infection (e.g., helminth) (Table  2 ). Additionally, aberrant wound heal-
ing occurs in several clinical conditions, such as diabetes, where ulcers result from 
defective wound healing, or systemic sclerosis, where an overactive wound healing 
response causes pathologic scar tissue formation, known as fi brosis. Understanding 
the critical balance necessary for optimal tissue repair, including protection from 
excessive blood loss or pathogen invasion, while limiting fi brosis, could provide 
new therapeutic avenues for wound healing.

    Table 1    Glossary of wound healing terms   

  Initiation  
 • Th2 cytokines: secreted proteins, such as IL-4 and IL-13, that are expressed and secreted by 

T helper 2 cells and trigger the wound healing process 
  Remodeling  
 • Tissue remodeling: process of reorganizing tissue through angiogenesis (blood vessel 

formation) and breakdown/reformation of the ECM 
 • AAM: macrophages that respond specifi cally to Th2 cytokines and express arginase1, 

RELMα, YM1, TREM2, and growth factors to induce tissue remodeling and repair 
 • Extracellular matrix: component of the connective tissue that provides the structural support 

for new tissues. Collagen comprises the majority of the ECM 
  Repair  
 • Tissue repair/fi brogenesis: proliferation of fi broblasts and formation of the fi brous 

connective tissue, supported by the ECM 
 • Tissue regeneration: complete renewal of damaged tissue involving replication and/or 

differentiation of stem cells, resulting in restoration of tissue to its previous normal state 
 • Fibrosis: aberrant tissue repair, leading to the formation of excess connective tissue and 

scars. The antagonist to tissue regeneration 
 • Myogenesis: the formation of muscular tissue 
 • Stem cells: multipotent progenitor cells with the potential to differentiate into various cells 

as part of tissue regeneration 
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   The four stages of wound healing consist of coagulation, infl ammation, tissue 
remodeling, and tissue repair/fi brogenesis (Table  1 ) [ 1 ]. Following initial injury, 
activated platelets convert fi brinogen to fi brin forming a clot to prevent excessive 
blood loss. Within hours, neutrophils emigrate from nearby tissue, killing microbes 
via free radicals or phagolysosomes and causing infl ammation. Activated macro-
phages control microbes but also perform housekeeping functions to clear cell 
debris and produce tissue remodeling factors allowing angiogenesis (blood vessel 
formation) for waste removal and access to nutrients and oxygen. Activated fi bro-
blasts at the edge of the wound proliferate and migrate into the wound to replace the 
clot with fi brous granulation tissue, effectively sealing off the wound from potential 
secondary infection. Finally, fi brogenesis is characterized by production of the 
collagen- rich extracellular matrix (ECM) to build the appropriate foundation for the 
new tissue formed by fi broblast and epithelial cell proliferation. 

 The transition from one stage of wound healing to the next requires a tightly 
regulated balance between infl ammation and tissue repair, relying heavily on Th2 
cytokine signaling. Any imbalance can cause insuffi cient wound closure or exces-
sive ECM deposition and chronic infl ammation, leading to detrimental fi brosis [ 2 ]. 
In this chapter, we will explore how the Th2 immune response contributes to wound 
healing, focusing on the cell-types that (I) generate the appropriate type 2 cytokine 
milieu for wound healing, (II) respond to Th2 cytokines to secrete cytokines or 
growth factors, and (III) mediate tissue repair (Fig.  1 ). We will conclude with the 
clinical implications of modulating the Th2 cytokine response in wound healing 
and fi brosis (IV).

     Table 2    Models to study tissue repair and remodeling   

 Injury model  Description  References 

 Chemical 
injury 

 The use of cytotoxic chemicals to infl ict injury. Examples 
include bleomycin for lung fi brosis, carbon tetrachloride for 
liver fi brosis, and cardiotoxin for muscle necrosis 

 [ 24 ,  60 ,  80 ] 

 Colon punch 
biopsy 

 Flexible biopsy forceps attached to an endoscope creates 
lesions in the colon mucosal layer 

 [ 58 ] 

 Evans blue 
assay 

 An azo dye that binds to serum albumin. Large or 
inappropriately healed wounds will show increased dye uptake 
due to vascular leakage 

 [ 60 ] 

 Helminth 
infection 

 The hookworm  Nippostrongylus brasiliensis  colonizes the 
lung as part of its lifecycle and the active burrowing through 
the tissue causes acute damage and infl ammation 

 [ 6 ,  10 ,  81 ] 
(Fig.  2 ) 

 The trematode  Schistosoma mansoni  colonizes the intestine 
while the eggs are trapped in the liver where they induce 
signifi cant fi brosis 

 Skin wound  Predominantly used to study epidermal injury, biopsy 
punchers (punch biopsy) or a scalpel (excisional wound) 
creates similar size wounds. Wound repair can be monitored 
over time or excised for histological analysis 

 [ 30 ,  31 ] 

 Burn model  Can be used to study hypertrophic scarring. Mice are exposed 
to extremely hot water (~90 °C) 

 [ 5 ] 
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       Th2 Cytokine Producers Following Injury 

 The Th2 immune response, characterized by the production of IL-4 and IL-13, is 
predominantly induced by helminths, chronic infection, or allergens. Given that 
helminths are large multicellular pathogens that cause signifi cant tissue damage, it 
is perhaps not surprising that infection triggers a wound healing Th2 immune 
response to either “wall off” the infection by granulation tissue, or to repair the 
wounds resulting from these destructive tissue invasive pathogens [ 3 ]. In the context 
of chronic allergic infl ammation such as asthma, the excessive Th2 cytokine envi-
ronment promotes lung angiogenesis, collagen deposition and epithelial cell and 
fi broblast proliferation, all processes that occur in wound healing. The study of 
helminth infection and allergic infl ammation has therefore provided valuable insight 
into understanding how Th2 cytokines mediate wound healing. 

 Following injury, the stage of wound healing can dictate what T helper cell 
response is initiated. The acute immune response involves the activation of proinfl am-
matory cells, notably Th1/Th17 cells, that protect the host from potential pathogen 
invasion. Studies using a burn model (Table  2 ) have shown that the initial Th1 

  Fig. 1    Model of Th2 cytokine-induced tissue repair. (I) Allergens, helminth infection, or direct 
injury induce epithelial-derived cytokines IL-25, IL-33, and TSLP that activate the production of 
Th2 cytokines. (II) The Th2 cytokines IL-4 and IL-13 promote AAM activation. (III) Together 
with other factors secreted by innate and adaptive immune cells, AAMs act on fi broblasts to medi-
ate ECM deposition for the foundation of new tissue       
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response protects against opportunistic microbial infection, but eventually shifts to a 
Th2 response starting day 3 post injury perhaps out of necessity to keep destructive 
infl ammation at bay [ 4 ,  5 ]. Consistent with this, lung tissue injuries caused by hook-
worm infection or treatment with the cytotoxic chemical bleomycin (Table  2 ), drive 
an acute Th17 cell response that can be fatal if not counter-regulated by a Th2 cyto-
kine response [ 6 – 9 ]. Following infection with the hookworm,  Nippostrongylus brasil-
iensis  [ 6 ,  10 ], the burrowing of the worms in the lung tissue between 1 and 2 days 
results in hemorrhaging that is resolved by day 7 (Fig.  2a–c ). Chen et al. showed that 
the anti-infl ammatory cytokine IL-10 produced by Th2 cells participated in this 
wound resolution by inhibiting IL-17A, a key cytokine in recruiting neutrophils to the 
site of injury [ 6 ]. In addition to downregulating Th1/Th17 cell responses, Th2 cyto-
kines mediate wound healing by inducing expression of proteins that promote fi bro-
genesis [ 10 ,  11 ]. However, if dysregulated, excessive type 2 infl ammation can drive 
fi brotic diseases, as observed in the chronically infl amed lungs following hookworm 
infection (Fig.  2g, h ).

      IL-33, TSLP, and IL-25 

 IL-33, thymic stromal lymphopoietin (TSLP) and IL-25 have recently emerged as 
critical initiators of the Th2 immune response. Allergens, helminth infections and 
chemical signals can cause disruption to the epithelial barrier resulting in the 

  Fig. 2     Nippostrongylus brasiliensis  infection as a model of lung tissue injury and repair. Mice 
were left naïve (Day 0) or infected with 500 larvae, sacrifi ced at indicated time-points and exam-
ined macroscopically ( a – c ) or by H and E-staining ( d – g ). Compared to naïve lungs ( a ,  e ), day 
2-infected lungs exhibit excessive hemorrhaging ( f ,  green arrow ) as a consequence of the parasite 
colonization of the lung tissue ( d ). By day 7, the lungs show remarkable wound repair ( c ) and gross 
morphology is equivalent to naïve mice ( a ). However, at day 30, chronic tissue remodeling results 
in macrophage activation ( g ,  blue arrow ) and excessive collagen deposition evident by Masson’s 
trichrome staining ( h ,  yellow arrow  indicates blue collagen)       
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production of these cytokines. IL-33 is released by necrotic epithelial cells and pro-
vides the initial signal that promotes Th2 cell recruitment. Following helminth 
infection or exposure to allergens, TSLP promotes Th2 cell maturation in several 
ways, which include inducing dendritic cell surface expression of Th2- promoting 
OX40L, inhibition of Th1/Th17 immune responses and mediating basophil activa-
tion to produce Th2 cytokines [ 12 – 15 ]. Likewise, IL-25 is produced by activated T 
cells and epithelial cells and mediates the production of IL-4 while inhibiting Th1/
Th17 cytokine responses [ 16 ,  17 ].  

    Th2 Cytokine Producers 

 CD4 +  Th2 cells produce the cytokines IL-4, IL-5, IL-9, IL-13, and IL-21 [ 3 ]. IL-4 
and IL-13 mediate macrophage alternative activation and directly act on fi broblasts 
to promote tissue repair and wound healing. Despite the fact that both IL-4 and 
IL-13 bind to IL-4Rα and signal through STAT-6, IL-13 is a stronger pro-fi brotic 
signal than IL-4 [ 18 ]. This is likely due to a number of different factors, including 
the specifi city of IL-13 for the receptor IL-13Rα 2 . When bound to IL-13Rα 2 , IL-13 
triggers activation of the promoter for TGF-β, a growth factor that stimulates fi bro-
blasts to synthesize components of the ECM such as collagen [ 19 ]. IL-13 also 
increases collagen accumulation by inducing fi broblasts to decrease secretion of 
matrix metalloproteinases (MMP), which have the ability to break down collagen, 
and increase expression of tissue inhibitor of metalloproteinases (TIMP) [ 20 ,  21 ]. 

 In addition to CD4 +  Th2 cells, innate lymphoid cells (ILC) produce Th2 cyto-
kines and have recently emerged as critical mediators of tissue remodeling and 
repair. The group 2 ILCs, also activated by IL-25 and IL-33, orchestrate CD4 +  Th2 
cell differentiation via production of IL-4, IL-5, and IL-13 [ 17 ,  22 ]. Supporting their 
role in wound healing, ILC depletion resulted in impaired lung function, tissue 
destruction and fatality in a fl u infection of mice [ 23 ]. ILCs express several wound 
healing genes, including the ECM proteins decorin, asporin, and dermatopontin, 
and the epidermal growth factor (EGF) family protein amphiregulin [ 23 ]. Exogenous 
addition of amphiregulin to ILC defi cient mice restored lung function and mediated 
repair. Consistent with an important role in tissue repair, another study employing 
carbon tetrachloride to induce liver fi brosis showed that amphiregulin promoted 
expression of pro-fi brotic signals (TIMP-1, connective tissue growth factor, 
α-smooth muscle actin) and fi broblast survival and proliferation [ 24 ]. These recent 
studies on ILCs suggest there is still much to be understood about their role not only 
in immunity, but also in homeostasis and injury repair. 

 Other than ILCs and Th2 cells, granulocytes such as mast cells can also contrib-
ute to wound healing via production of Th2 cytokines. Following skin biopsies 
from healthy volunteers, mast cells proliferated and were major contributors of 
IL-4 production in the wound [ 25 ]. By producing IL-4 and TGF-β, mast cells regu-
late proliferation and differentiation of fi broblasts into myofi broblasts [ 26 ], which 
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are smooth muscle cell precursors. Mast cells also activate myofi broblasts to 
 synthesize collagen, MMPs, fi bronectin, and proteoglycans, all necessary compo-
nents for the formation of new tissue [ 26 ,  27 ]. Furthermore, other granulocytes 
such as eosinophils and basophils also promote an optimal Th2 cytokine environ-
ment for wound healing. 

 In summary, the fi rst stage of wound healing involves the participation of innate 
and adaptive immune cells that produce Th2 cytokines and other factors that direct 
wound healing. The generation of a type 2 cytokine milieu will mediate the next 
critical steps in this process, notably the alternative activation of macrophages and 
tissue regeneration.   

    Alternatively Activated Macrophages in Tissue Remodeling 
and Fibrogenesis 

 Macrophages are innate phagocytic cells that provide one of the fi rst lines of host 
defense against microbes. This primordial function exists in metazoan organisms as 
primitive as starfi sh. Elie Metchnikoff was awarded the Nobel prize in 1908 for the 
discovery of macrophages when using thorns to infl ict wounds on starfi sh larvae 
[ 28 ]. In alignment with the context in which they were discovered, macrophages are 
critically involved in mediating wound repair. In contrast to the classically activated 
macrophages (CAM) that are induced by IFNγ and kill pathogens, macrophages 
that are alternatively activated by IL-4 and IL-13 (AAM) are more typically associ-
ated with wound healing functions [ 29 ]. AAMs promote wound healing via a vari-
ety of mechanisms, from regulating the infl ammatory response and engulfi ng 
cellular debris to expressing an array of wound healing genes. 

 Macrophage depletion studies following skin punch biopsies in mice revealed 
important roles for these cells in all stages of wound healing. Two independent 
 studies employing either LysMCre or CD11b-Diphtheria toxin receptor (DTR) 
transgenic mice to deplete macrophages at selected time-points following skin 
injury, demonstrated that macrophages downregulated wound hemorrhaging and 
promoted the formation of vascularized granulation tissue, fi brogenesis, and 
 reepithelialization [ 30 ,  31 ]. 

 Several studies have demonstrated that AAMs rather than CAMs are necessary 
for wound healing. Following infection with trematode  Schistosoma mansoni , 
which infects the intestine and the liver, macrophage-specifi c IL-4Rα −/−  mice 
(LysMCre-IL-4Rα −/− ) died from infection suggesting an essential protective role 
for AAMs in  Schistosoma -induced organ injury [ 32 ]. In acute lung injury following 
hookworm infection, both IL-4Rα −/−  mice and CD11b-DTR transgenic mice 
suffered from exacerbated lung hemorrhaging that was ameliorated with the trans-
fer of IL-4 responsive macrophages [ 6 ]. In addition to promoting AAM activation, 
IL-4 is also a strong proliferative factor for tissue macrophages [ 33 ]. Mechanistically, 
AAMs may mediate wound healing via several pathways summarized below. 
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    AAM Signature Genes 

 In the past decade, gene expression studies employing Th2 cytokine defi cient mice 
(STAT-6 −/− , IL-4Rα −/− , or IL-4 −/− ) in wound or helminth infection models have iden-
tifi ed several AAM-specifi c genes that are critically dependent on Th2 cytokines 
[ 34 – 37 ], including Arginase1, RELMα, and Ym1. 

 Arginase1 is a cytosolic enzyme expressed by AAMs and is the counterpart 
enzyme to nitric oxide synthase, which is expressed by CAMs. Whereas nitric oxide 
synthase breaks down arginine to produce microbicidal nitric oxide, AAM- expressed 
arginase uses arginine to generate ornithine and urea. As such, arginase expression 
by AAMs is anti-infl ammatory and inhibits CAM function and nitric oxide produc-
tion. In addition, ornithine, generated from arginase, can be enzymatically processed 
to generate polyamines (spermine and spermidine) and prolines, which participate 
in essential wound healing steps [ 38 ]. Polyamines promote cell proliferation, while 
prolines contribute to the stereochemistry and stability of collagen triple helices that 
are necessary for ECM deposition [ 39 ]. Supportive of a tissue repair function for 
arginase, a recent skin excision study showed that pharmacological inhibition of 
arginase or deletion of arginase in macrophage and endothelial cells (Tie2Cre-Arg1 
transgenic mice) caused delayed wound healing, increased infl ammation and defec-
tive ECM deposition [ 40 ]. Surprisingly, in another study,  Schistosoma  infection of 
macrophage-specifi c arginase defi cient mice (LysMCre- Arg1 transgenic mice) 
caused increased liver fi brosis and Th2 cell responses [ 41 ]. This suggests that the 
involvement of arginase in tissue repair is complex and the outcome may depend on 
the tissue site or other downstream factors such as T cells. In humans, arginase 
expression is upregulated in asthmatic patients [ 42 ], and the clinical signifi cance in 
Th2 infl ammation or asthma-induced fi brosis has yet to be determined. 

 Resistin-like molecule-α (RELM-α) is a cysteine-rich secreted protein that is 
highly induced in Th2 infl ammatory conditions including allergic airway infl amma-
tion [ 43 ,  44 ], bleomycin-induced lung fi brosis [ 45 ,  46 ] and helminth infection [ 34 –
 36 ]. Mechanistically, RELMα may promote tissue remodeling by stimulating cell 
proliferation, mediating tissue vascularization or inducing collagen production. 
However, in response to helminths  Nippostrongylus  or  Schistosoma , RELMα −/−  
mice exhibited exacerbated type 2 infl ammation and fi brosis, and this was in part 
due to RELMα-mediated downregulation of Th2 cell responses [ 47 ,  48 ]. Similar to 
the function of Arginase1, the overall effects of RELMα on wound healing may 
depend on RELMα expression level, the infl ammatory milieu and the downstream 
cellular targets. In humans, the homologous protein RELMβ is expressed in patients 
with scleroderma and idiopathic pulmonary fi brosis [ 49 ,  50 ], suggesting potential 
clinical implications for the study of this protein family in fi brosis. 

 Ym1 belongs to the family of chitinase-like proteins. Chitinases bind and cleave 
chitin, an abundant polysaccharide present in fungi and other invertebrates that may 
contribute to allergic infl ammation and asthma. However, Ym1 binds chitin but has 
no chitinase activity. Putative functions for Ym1 include the promotion of Th2 cell 
responses [ 51 ]. In contrast, the homologous protein AMCase, which has functional 
chitinase activity, acts to reduce allergic airway infl ammation through the breakdown 
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of the potential allergen chitin [ 52 ]. In humans, chitinase-like protein YKL-40 is 
upregulated in asthma and airway fi brosis [ 53 ]. Given the expression of these pro-
teins in Th2 cytokine infl ammation, investigating whether chitinases or chitinase- 
like proteins regulate these responses may identify new targets to promote wound 
healing or reduce allergic infl ammation and fi brosis.  

    Growth Factors 

 AAMs express a number of growth factors that stimulate the activation and prolif-
eration of many cell-types necessary for wound healing. In  Nippostrongylus -induced 
acute lung injury, macrophages suppressed excessive hemorrhaging via expression 
of insulin-like growth factor-1 (IGF-1). IGF-1 expression is induced by Th2 cyto-
kines and can contribute to wound healing by activating fi broblasts [ 54 ]. Likewise, 
platelet-derived growth factors (PDGF) stimulate the early proliferation of fi bro-
blasts, as well as their differentiation into myofi broblasts [ 54 ]. In excision wound 
injury, CCR2 +  infl ammatory monocytes were an essential early source of vascular 
endothelial growth factor (VEGF) that promotes angiogenesis [ 55 ]. In another 
study, delayed wound healing following macrophage depletion was correlated with 
reduced TGF-β expression [ 31 ]. TGF-β contributes to tissue repair both by acting 
on immune cells to inhibit infl ammation while promoting fi broblast activation and 
collagen synthesis. In homeostatic conditions, TGF-β function is inhibited when 
bound to the latency-associated protein (LAP) [ 56 ]. Several proteases including 
MMP-9 can activate TGF-β by cleaving the LAP. Since MMP-9 is expressed by 
AAMs in response to IL-13, macrophages mediate fi broblast activation and colla-
gen synthesis in a two-step process involving TGF-β expression and subsequent 
activation by MMPs. In addition, MMP-9 can induce keratinocyte migration to the 
wound edge, allowing healing of epidermal skin wounds. AAMs also express metal-
loproteinases MMP-12, MMP-19 and inhibitor TIMP-1 that counter-regulate each 
other to balance collagen levels and ECM deposition for optimal tissue repair.  

    TREM2 

 Triggering receptor expressed on myeloid cell 2—(TREM2)—is expressed on the 
surface of myeloid cells and promotes anti-infl ammatory and phagocytic function 
[ 57 ]. In a colonic wound model, TREM2 expression was increased in AAMs and was 
essential for optimal wound healing by promoting epithelial cell proliferation while 
limiting infl ammatory cytokine expression [ 58 ]. AAMs also express other inhibitory 
receptors such as PD-L2, however their contribution to wound healing is unclear [ 59 ]. 

 In summary, AAMs produce a myriad of factors that contribute to wound healing. 
In addition to an anti-infl ammatory function, macrophages also activate non- immune 
cells such as fi broblasts to mediate tissue repair, the fi nal stage in wound healing.   
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    Fibrogenesis and Tissue Regeneration 

 Fibrogenesis, the fi nal stage in wound healing involves four major cell-types: 
 endothelial cells, fi broblasts, myofi broblasts, and epithelial cells. These cells are 
activated by cytokines, chemokines, and growth factors to lay down the ECM foun-
dation for new tissue. The Th2 response instructs this critical process by promoting 
endothelial cell mediated vascularization of the new tissue, stimulating fi broblasts 
to lay down new collagen, and inducing myogenesis (muscular tissue formation) for 
wound contraction in muscle injuries [ 9 ,  60 ]. 

 Angiogenesis is necessary to provide nutrients and resources for new tissue, as 
well as remove waste and debris from the site of injury. It is during the tissue remod-
eling stage that nearby endothelial cells degrade their current basement membrane 
in order to branch out and form new vessels into the site of injury. When IL-4 and 
IL-13 are bound to the IL-4Rα receptor on endothelial cells, the expression of vas-
cular cell adhesion protein 1 and formation of vascular tubules occurs [ 61 ]. Likewise, 
angiogenic factors such as TGF-β, fi broblast growth factor (FGF) and VEGF are 
continuously secreted to promote the recruitment and proliferation of endothelial 
cells from existing capillaries. During this stage, the basement membrane is slowly 
reconstructed, weaving through the ECM to support the newly formed tissue [ 62 ]. 

 In response to Th2 cytokines and growth factors such as TGF-β, fi broblasts pro-
liferate and synthesize collagen precursors procollagen 1 (COL1a1) and procollagen 
3 (COL3a1) through activation of the SMAD pathway [ 63 ]. The synthesis of colla-
gen allows replacement of the temporary platelet clot with a more structured founda-
tion. Collagen is a key component of wound healing and several types of 
collagen-infused wound dressings are available on the market for this purpose [ 64 ]. 
COL3a1 mutations in humans are often associated with Ehlers–Danlos syndrome, a 
connective tissue disorder resulting in fragile blood vessels and skin [ 65 ]. Reduced 
COL3a1 expression in mice resulted in defective wound repair associated with 
increased scar tissue [ 66 ]. This suggests that in addition to its structural role, type 3 
collagen (COL3a1) also contributes to optimal tissue repair with minimal fi brosis. To 
regulate and remodel the collagen-rich ECM, fi broblasts also secrete MMPs, which 
breakdown collagen, and TIMPs, which in turn regulate MMP activity [ 67 ,  68 ]. 

 For muscle injuries, IL-4 and IL-13 responsiveness of the recently identifi ed 
stem cell population—the fi bro/adipogenic progenitors (FAP)—is critical for mus-
cle regeneration [ 60 ]. Following treatment with cardiotoxin to induce muscle necro-
sis, IL-4-producing eosinophils were recruited that stimulated proliferation and 
differentiation of FAPs into myofi broblasts, allowing new muscle formation. IL-4 
also acted directly on FAPs to induce clearance of cellular debris, a function that is 
normally attributed to AAMs. In addition to forming mature myofi bers, the struc-
tural cells of the muscle, myofi broblasts also express α-smooth muscle actin and 
collagen, which act to initiate wound contraction and faster tissue recovery [ 45 ,  69 ]. 
Nevertheless, excessive myofi broblast activation can result in pathological fi brosis; 
following treatment with carbon tetrachloride to induce liver fi brosis, mice treated 
with blocking antibodies to myofi broblasts exhibited reduced disease severity [ 70 ]. 
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 Reepithelialization of the wound, the fi nal step in this process involves proliferation, 
differentiation, and migration of epithelial cells and fi broblasts over the wound edge. 
Although proliferation and migration of epithelial cells is mainly directed by growth 
factors such as EGF, bronchial and intestinal epithelial cells also express IL-4Rα 
[ 71 ,  72 ], and will proliferate and migrate in response to IL-4 and IL-13 for the fi nal 
stage of wound healing.  

    Clinical Implications of Th2 Immune Responses 
in Wound Healing and Fibrosis 

 Defective or aberrant wound healing are debilitating conditions that occur in several 
diseases, and the annual worldwide market for improved wound care products 
exceeds $5 billion [ 73 ]. A better understanding of this complex process may pro-
vide new therapies to improve wound care. As summarized above, Th2 cytokines 
induce an array of pathways that are effective at coordinating several stages of the 
wound healing process. However, studies on the therapeutic manipulation of Th2 
cytokines and Th2 cyokine-activated pathways to improve wound healing are lim-
ited and in their infancy. Employing a rat model of glomerulonephritis where injec-
tion of a nephrotoxin induces severe kidney injury and infl ammation, adenovirally 
transfected macrophages that overexpressed IL-4 could ameliorate disease [ 74 ]. In 
another study of mouse colitis induced by chemical injury with dinitrobenzene sul-
fonic acid, the transfer of AAMs, but not CAMs, reduced disease severity [ 75 ]. 
These studies suggest that treatment with Th2 cytokines or Th2 cytokine-activated 
cells can improve the disease outcome in some organ injury models. However, 
whether these treatments ameliorated disease severity through downregulating 
infl ammation and/or acted further downstream to improve tissue remodeling or 
repair is unclear. Recent preclinical studies of skin wound models have shown 
promising results of tissue regeneration using mesenchymal stem cells (MSC) [ 73 ]. 
MSCs are multipotent progenitor cells that are easily available from a variety of 
adult tissue, including the bone marrow and muscle tissue. Due to their regenerative 
nature and ability to differentiate into several tissue cell-types, MSC are a potential 
new therapy for improved wound healing. It is unclear if Th2 cytokines promote 
MSC function. However, recent studies demonstrating the importance of IL-4 in 
mediating muscle progenitor cell-induced tissue regeneration suggests that the ther-
apeutic effect of Th2 cytokines on stem cell-mediated wound healing warrants fur-
ther investigation [ 60 ]. 

 While the Th2 immune pathway can promote wound healing, excessive Th2 cyto-
kine response occurs in several debilitating clinical conditions. For this reason, many 
therapies employ inhibitors of Th2 cytokine associated factors to improve wound 
healing. In particular, overactive Th2 immune responses result in aberrant wound 
healing, notably the formation of scar tissue (fi brosis) instead of regenerated tissue 
that is identical to the tissue prior injury. In cases of skin wounds, scar tissue is unde-
sirable due to its appearance and reduced tensile strength compared to normal skin. 
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However, fi brosis of organs such as the lung (e.g., idiopathic pulmonary fi brosis) or 
the liver (e.g., schistosomiasis) is even more debilitating as the fi brotic tissue cannot 
perform essential organ functions. Indeed, an estimated 45 % of deaths in the USA 
are linked to fi brotic disorders [ 2 ]. The formation of scar tissue can be due to a vari-
ety of factors, from excess ECM deposition, failed vascularization of new tissue, or 
even an abundance of infl ammatory cells. An exaggerated infl ammatory response is 
one of the most common reasons for scar formation. Infl ammatory cells secrete an 
abnormal concentration of pro-fi brotic cytokines such as TGF-β, PDGF, and IL-4 
that stimulate fi broblasts to secrete excess type 3 collagen and granulation tissue 
[ 62 ]. Although an overactive Th2 response causes several debilitating diseases, the 
generation of such a strong Th2 immune response may have evolved as an important 
survival mechanism. Indeed, suffering from fi brosis is a far more suitable alternative 
to fatal blood loss or secondary infection in the situation where tissue remodeling 
does not occur and there is no protective barrier from the external environment. 

 Nevertheless, understanding the delicate balance between the various T helper 
cytokine responses (including Th1 and Th2) is essential to devise new therapies for 
optimized wound healing. Recent studies have focused on inhibiting TGF-β or its 
downstream signaling pathway. In systemic sclerosis, where excessive collagen 
accumulation occurs in the skin and organs [ 76 ], clinical trials with anti-TGF-β1 are 
underway [ 77 ]. Additionally, recent therapies include targeting the activation site of 
latent TGF-β, or disrupting the downstream TGF-β signaling components such as 
tyrosine kinase or SMAD [ 78 ]. However, a new therapy to reduce scar formation 
involves treatment with Avotermin (human recombinant TGF-β3) [ 79 ], suggesting 
that there is still much complexity in the wound healing process that must be 
resolved for the design of more effi cient and specifi c therapies for wound healing.  

    Conclusion 

 The Th2 immune pathway is not only a dominant cytokine response in helminth 
infection, chronic infection, and allergy but also an integral component of the wound 
healing program (Fig.  1 ). Th2 cytokines IL-4 and IL-13 instruct tissue repair in part 
through activation of AAMs, but can also act directly on non-immune cells such as 
fi broblasts and tissue progenitor cells to orchestrate the later stages of wound healing. 
AAMs express a battery of cytokines, growth factors, and enzymes that act to dampen 
infl ammation while initiating tissue remodeling and tissue regeneration. Finally, in 
response to Th2 cytokines and AAM-derived factors, non-immune cells, including 
fi broblasts and epithelial cells, migrate and proliferate to generate newly formed func-
tional tissue and replace the wound. Although benefi cial in promoting wound healing, 
the Th2 response must be tightly regulated to prevent detrimental fi brosis that is 
observed in several clinical diseases. It is ultimately the interplay between initiator, 
responder, and effector cells that leads to an optimal wound healing process. Whereas 
deep injuries, infections, or infl ammatory diseases can cause malfunctions in the 
wound healing process, we can take advantage of various targets in the Th2 pathway 
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to improve wound resolution. Employing models of injury including infection, burns, 
mechanical or chemical injuries, researchers can develop new therapeutic targets to 
promote wound healing and tissue repair while limiting fi brosis.   
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      Immune Response to Helminth Infections 
and Its Role in Treatment for Autoimmune 
Disorders       

       Rowann     Bowcutt     ,     Martin     J.     Wolff     , and     P’ng     Loke    

           Introduction 

 The term “helminth” originates from the Greek word helmins, for parasitic worms. 
This is a descriptive rather than a phylogenetic term and covers all multicellular 
animals that have adopted parasitic lifestyles, consisting of platyhelminths that 
include the trematodes (Schistosomes) and cestodes (tape worms), as well as the 
nematodes (roundworms). Together helminths affect over one billion of the world’s 
population and have a severe impact on the quality of life, with disease burdens 
estimated to be in the range of 4.5–39 million disability adjusted life years (DALYs) 
for the developing world [ 1 ,  2 ]. Although the impact of helminthiases on poor 
regions of the world continues to cause a cycle of reduced productivity and poverty, 
in this chapter we mainly discuss the immune-regulatory effects of helminths. 
Helminths have a remarkable variety of complex life cycles, from direct fecal-oral 
transmission (e.g.,  Trichuris  and  Ascaris ) to development through free-living stages 
(e.g., hookworm larvae) or dependence on vectors (e.g., schistosome and fi larial 
worms). Helminths invade through many different routes (e.g., orally, through the 
skin by mosquito bite) and live in different locations of the body (e.g., the gastroin-
testinal tract, the blood vessels, lymphatics, and tissues). Because humans and other 
mammalian hosts have coevolved to tolerate these parasites and minimize their 
virulence [ 3 ], the absence of helminths in the developed world may partly infl uence 
the rise of autoimmune disorders over the last few decades, as the immune system 
is no longer being tuned by the presence of helminths [ 4 ]. There are currently efforts 
to determine if the reintroduction of helminths, or their biological products [ 5 ,  6 ], 
can be used therapeutically for the treatment of autoimmune diseases [ 7 ].  
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    The Coevolution of Helminths with Their Mammalian Hosts 

 Hosts and parasites are constantly engaged in evolutionary interactions that alter the 
selection of genes for both parties [ 8 ]. The mammalian immune system has 
coevolved with helminth parasites over time and genes have been selected on both 
sides to optimize what is essentially a biotic partnership. During the course of 
human evolution, the majority of  Homo sapiens  were likely colonized by helminths, 
as are most mammals in the wild [ 9 ]. The fact that such a large number of people 
even today harbor chronic helminth infection without serious adverse effects is 
likely due to the years of coevolution to optimize the relationship between the para-
site and human host [ 10 ]. Children that grow up in regions where helminths are 
endemic carry parasites for much of their lives because they are repeatedly exposed 
to infection and it takes a long time to develop protective immunity [ 11 ,  12 ]. 

 As noted by the classical paper from May and Anderson [ 13 ], helminths are 
unlike “microparasites” such as viruses, bacteria, and protozoa because they gener-
ally do not replicate within their host (with the exception of  Strongyloides stercora-
lis ). Hence, the worm that persists in infected people is the same organism, with the 
same genetic makeup, that infected the person originally [ 13 ,  14 ]. While many mic-
roparasites cause acute infections with long-lived protective immunity, helminths 
induce chronic infections, with the same individual organism living in the host for 
long periods of time [ 14 ]. This difference has important effects on the relationship 
between the host and the parasite, which in turn affects the ecology and evolution of 
the transmission process [ 13 ]. Helminths that are directly transmitted from host to 
host tend to establish persistent infections with continual reinfections [ 14 ]. Since 
the generation time of these helminth parasites within the host is much greater than 
“microparasites”, the strategy of antigenic variation is unlikely to be available for 
immune evasion. Hence, helminths have evolved distinct mechanisms to coexist 
with their host through the activation of an immune regulatory network instead [ 8 , 
 15 ,  16 ]. How helminths can survive in their hosts for years or even decades despite 
immune recognition by the hosts has long fascinated immunologists. 

 Helminths have much more complex genomes than “microparasites” and carry 
similar number of genes as their mammalian hosts (up to 20,000 genes) [ 17 ]. The 
complete reference genomes of  Schistosoma mansoni  [ 18 ],  Schistosoma japonicum  
[ 19 ],  Brugia malayi  [ 20 ],  Trichinella spiralis  [ 21 ] have now been published. Most 
recently, the genomes of four tapeworms [ 22 ] and  Loa loa  [ 23 ] were also published. 
Most of the earlier genomes were sequenced using traditional Sanger technology. 
With next generation sequencing approaches cutting the costs of sequencing down 
dramatically, helminth genomics will be revolutionized and the pace of discovery of 
helminth derived biological active products will surely accelerate. Since helminths 
do not replicate within the hosts, their immune evasion mechanisms are all hard 
wired into their genome by the process of coevolution with their hosts. Their 
genomes could be considered to be treasure troves of potent biologically active mol-
ecules that could be developed for therapeutic use. A better understanding of these 
host–parasite interactions, through a combination of fi eld studies, clinical  trials and 
laboratory studies with animal models, may enable us to develop novel therapeutic 
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strategies to regulate the immune response, either positively or negatively. We may 
also learn how the immune system has evolved over time to minimize the virulence 
of different types of pathogens. 

    Parasite Virulence, Host Resistance and Disease Tolerance 

 While helminth parasites have evolved mechanisms to maximize their goals of 
increasing transmission, the mammalian hosts have evolved mechanisms to mini-
mize “virulence” caused by the parasites [ 24 ,  25 ]. Virulence here is defi ned as the 
reduction of fi tness for the host as a result of the burden of carrying infection by the 
parasite [ 24 ,  25 ]. Two of the main mechanisms that can reduce virulence of the 
parasites are to reduce parasite colonization of the host (or “resistance”) or to mini-
mize the negative impact of carrying the parasites without necessarily reducing 
parasite numbers (or “tolerance”) [ 3 ,  26 ,  27 ] (Fig.  1 ). A symbiotic relationship 
would be one where there is essentially an absence of any negative impact on host 
fi tness from the presence of helminths. While such relationships are possible, some 
helminths are much more virulent than others, and these have a tremendous impact 
on the health of the world’s population.

  Fig. 1    There are various, albeit interlinked, ways in which a host immune system may develop 
tolerance to helminth infection. Physiological tolerance involves innate cells such as alternatively 
activated macrophages that act to minimize damage caused by infection. Regulatory lymphocytes 
such as Tregs, regulatory DCs and macrophages and B regulatory cells release suppressive cyto-
kines that dampen down effector T cell responses in a process called immunosuppression. Finally 
effector T cells can also enter a state of anergy whereby they are not fully activated by DCs and 
thus confer a state of immunological tolerance       
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   Resistance mechanisms that reduce worm burden in individuals are essential 
because morbidity is often directly associated with worm burden [ 2 ]. Both the 
innate and the adaptive arms of the immune system play an important role in resis-
tance. However, it is also clear that there is a “cost” for being able to mount very 
strong effector responses that lead to resistance. This cost could be the bystander 
destruction of the host tissue as a result of immunopathology. Therefore there is a 
tradeoff between resistance and collateral tissue damage [ 3 ,  8 ]. This was elegantly 
demonstrated in a study of Soay sheep in Scotland, where clear evidence was col-
lected that resistance to helminth infection could improve survivability during harsh 
conditions [ 28 ]. However, the cost of this resistance was increased autoimmune 
susceptibility and reduced reproductive ability [ 28 ]. 

 In addition to resistance, the mammalian host also employs the strategy of “tol-
erating” the presence of helminths, for example by reducing the amount of tissue 
damage that is caused by the parasite [ 3 ,  8 ]. While this strategy does not reduce the 
number of parasites that reside within the host, it reduces the virulence of the para-
site in reducing host fi tness. Based on the natural distribution of worm burden 
among infected individuals in an endemic region (discussed below), tolerating the 
presence of a small number of parasites (but resisting heavy worm burdens) appears 
to be the most innocuous strategy for the host, when it is in an environment where 
it is constantly being challenged and reinfected by helminths.  

    Heterogeneity of Infection 

 The number of helminth parasites that are typically carried by each infected individual 
is often described by a negative binomial probability distribution [ 13 ,  14 ]. This model 
shows an aggregated distribution whereby there is a greater variance in worm numbers 
than the mean number of worms per person. This means that most people are infected 
with relatively few worms, but a few people carry large numbers of parasites. 70 % of 
the worm burden in a population may occur in only 15 % of the infected individuals 
[ 2 ]. This heterogeneity in worm burden is likely to be a result of variation in immune 
responses against the parasites, since as people age and become more resistant to 
infections through building immunity against the parasites over time, there is less 
aggregation of the distribution of parasites among the hosts [ 14 ]. For epidemiology 
assessments that affect control strategies, “worm burden” or the number of worms that 
infects an individual is an important measurement [ 1 ,  2 ,  29 ]. Individuals can be clas-
sifi ed into categories of light, moderate and heavy infections by the WHO [ 1 ,  29 ]. 

 However, depending on whether the helminths are tissue dwelling or located in the 
gastrointestinal tract, worm burden may not always correlate with pathology. The tis-
sue dwelling helminths that cause lymphatic fi lariasis, onchocerciasis, and schistoso-
miasis do not always cause greater pathology with greater intensity of infection [ 11 ]. 
For these parasites, individuals with high parasite numbers may be asymptomatic, 
while individuals with lower-level infections may suffer more chronic pathology 
because of higher immune reactivity causing more damaging immunopathology [ 12 , 
 16 ]. This is in contrast with the gastrointestinal nematodes, whereby symptoms such 

R. Bowcutt et al.



135

as diarrhea, weakness and physical, nutritional and cognitive impairment of children 
especially are more directly related to the number of parasites in each individual. 

 This heterogeneity in worm burden and immune responses against helminths, 
bears important consequences for virulence as well as the potential use of helminths 
therapeutically. Genetic variability in the parasite population as well as the human 
population could certainly contribute to this heterogeneity, but there is still a limited 
understanding of the nature of these genetic differences in the two populations. 
With the cost of genomic analyses decreasing with the advent of next generation 
sequencing technology, greater effort should be underway to obtain data character-
izing the genetic variability of host and helminths, in relation to disease pathogen-
esis as well as drug resistance.  

    Coinfections and the Microbiota 

 The widespread prevalence of helminths in the developing world, where many other 
infectious diseases carry important burdens on the health of the population, indi-
cates that coinfection is the norm rather than the exception in many parts of the 
world. Any researcher that has conducted fi eld studies in developing countries will 
appreciate that single infections, while predominant among mouse experiments, is 
uncommon within a human population. Coinfections by helminths may therefore 
exert powerful regulatory effects on the immune response against other pathogens 
(e.g., malaria, TB, and HIV/AIDS), as well as on the priming of the immune 
response by vaccination. More recently, there has been a growing appreciation for 
the impact of the commensal microbiota on immune responses [ 30 ] and helminths 
may have a substantial impact on the intestinal microbiota in particular [ 31 ]. 

 Helminth infections primarily affect the same developing world niche as HIV 
[ 32 ,  33 ], TB [ 33 ,  34 ] and malaria [ 35 ]. A recent series of reviews provides a com-
prehensive picture of our current knowledge for some of these interactions and pro-
vides some interesting hypotheses [ 36 ]. Whereas there is considerable experimental 
evidence in mice that helminth coinfected hosts are less resistant to TB infection as 
a result of diminished Th1 immunity [ 34 ] and increased alternatively activated mac-
rophages [ 37 ], the evidence for a detrimental effect of helminth infection on the 
pathogenesis of human tuberculosis is much less clear cut [ 33 ,  34 ]. There is also a 
surprisingly neutral outcome for many studies on interactions between helminths 
and HIV [ 36 ]. Hence, the epidemiological evidence that helminth infections may 
have a detrimental effect on human susceptibility or pathogenesis to other infectious 
diseases remains rather inconclusive [ 36 ]. 

 As vaccines are being developed for HIV and malaria, the development process 
should take into consideration the helminth infection status of individuals, since spe-
cifi c helminths may suppress vaccine-specifi c immune responses. It will also be 
important to test candidate vaccines in animal models that resemble the intended tar-
get human population. Hence, there may be a need to develop vaccines capable 
of overcoming the suppressive effects of certain helminth infection [ 38 ], or else 
administration of anti-helminthics to the target population may be necessary prior to 
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vaccination. Very few studies to date have addressed whether anti-helminthic 
treatment may reduce pathogenesis of other infections or improve responses to vac-
cines. One exception is schistosomiasis, which has been shown to have a particularly 
detrimental effect on HIV transmission and progression [ 32 ], probably because of the 
strong infl ammatory response driven by the schistosome egg. Anti-helminthic treat-
ment against soil-transmitted nematodes with albendazole during pregnancy did not 
improve responses to BCG, tetanus, or measles, or reduce malaria, diarrhea, and pneu-
monia in infancy [ 39 ]. One possibility to explain these surprisingly neutral epidemio-
logical results is that the immune regulatory effects of helminths have been selected to 
avoid disrupting protective responses against other dangerous pathogens [ 36 ]. 

 In addition to the burden of infections, the intestinal microbiota communities of 
residents of developing countries are also very different to residents from the devel-
oped world [ 40 ,  41 ]. For example, the genus  Prevotella  is more abundant in the 
fecal microbiome of children in developing countries compared to Europe and USA 
[ 41 ]. While it has not yet been investigated, helminth infections may have a substan-
tial impact on the microbiota of residents from developing countries. In animal 
models, the nematode  Heligmosomoides polygyrus  was shown to alter the gut 
microbiota of healthy mice [ 42 ] and members of the Lactobacillaceae family was 
increased after infection [ 42 ].  Trichuris suis  infection of pigs also alters the micro-
biota [ 43 ,  44 ]. Since  Trichuris suis  is under investigation as a therapeutic agent for 
infl ammatory bowel diseases (IBD) and the microbiota is also altered in IBD 
patients, helminth infection may infl uence IBD symptoms either directly or indi-
rectly through alterations to the microbiota. Additional evidence that helminths may 
reverse dysbiosis of the microbiota comes from macaques suffering from chronic 
colitis that have been treated with  Trichuris trichiura  [ 45 ]. An exciting area of future 
research would be to understand the interaction between helminths, the microbiota 
and the host immune responses.   

    Immune Responses to Helminths 

 Helminth infection in humans is characterized by two key features; (1) A predomi-
nantly type 2 immune response [ 46 ], driven by the increased production of the cyto-
kines such IL-4 and IL-13 and (2) downregulation of the immune response as 
depicted by elevated levels of IL-10, TGF-b and frequency of regulatory T cells. 

    Type 2 Immune Responses to Helminths 

 Elevated levels of type 2 cytokines (IL-4, IL-5, IL-9, and IL-13) and CD4+ T helper 
(T H ) 2 cells are found in helminth infected individuals in endemic regions [ 14 ]. IL-4 
is a key cytokine that also plays a critical role in promoting B cell responses 
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secretion of Immunoglobulin E (IgE) [ 46 ]. IgE can engage a positive feedback loop 
to amplify the type 2 response by activating basophils, eosinophils, and mast cells 
through Fc receptors to produce even more IL-4. This type 2 (or T H 2) immune 
response likely evolved to protect mammalian hosts from helminth infections [ 3 ]. 
Since helminths are large multicellular organisms, they can cause considerable 
amounts of tissue damage to their mammalian hosts and the type 2 response may 
have evolved to contain the tissue damage that is cause and to tolerate the presence 
of these organisms [ 3 ,  47 ]. In addition to disease tolerance, the type 2 response is 
also important for mediating resistance against the helminths, especially in the gas-
trointestinal tract [ 48 ]. IL-4 and IL-13 will signal through IL-4Ra and STAT6 in 
intestinal epithelial cells (IECs) to increase goblet cell differentiation and mucus 
production (Fig.  1 ). Additionally, these cytokines will also increase proliferation 
and turnover of the IECs, which may sweep parasites embedded in the epithelial 
layer into the lumen for expulsion [ 49 ]. At the same time, these signaling events will 
act on intestinal muscle cells to increase contraction to help fl ush the worms out of 
the gut [ 48 ]. Indeed human epidemiological studies showed that elevated levels of 
IL-9, IL-10, and IL-13 negatively correlated with  Ascaris lumbricoides  ( A. lumbri-
coides ) infection [ 50 ], and a negative correlation with IgE was observed with 
 T. trichiura  infection intensity [ 51 ]. Additional epidemiological data from studies 
with people infected by hookworm [ 52 ], roundworm and whipworms [ 50 ,  53 ,  54 ] 
have been consistent with the model that increased type 2 responses is associated 
with increased parasite resistance (Fig.  2 ).

   The type 2 responses described above that may mediate parasite resistance may 
also enhance the intestinal mucosal barrier against gut bacteria. The host response 
has the dual aims of parasite expulsion as well as mucosal healing [ 48 ]. In addition 
to T H 2 cytokines, IL-22 is also induced by  T. trichiura  [ 55 ] and  Necator america-
nus  [ 56 ] in the intestinal tract. IL-22 has similar effects as TH2 cytokines on 
colonic epithelial cell function [ 57 ,  58 ], including the stimulation of goblet cell 
and Paneth cell differentiation, as well as increased mucus production and antimi-
crobial peptide expression, and the activation of anti-apoptotic pathways. Other 
cells activated by type-2 cytokines such as alternatively activated macrophages can 
also promote mucosal healing [ 59 ]. Hence, the mechanisms activated by type 2 
responses to mediate parasite resistance also enhance the epithelial barrier and 
these responses have been demonstrated to have protective effects in murine mod-
els of colitis [ 59 – 61 ].  

    Immune Regulation During Helminth Infections 

 In an endemic region where human populations have a high prevalence of helminth 
colonization, a large proportion of individuals have asymptomatic infections, which 
is associated with suppressed reactivity against the parasites [ 12 ,  14 ]. Peripheral T 
cells from these infected patients are unresponsive to stimulation with parasite 
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antigens and responses to other antigens are also reduced [ 12 ]. These original 
immuno- epidemiological observations for many different types of helminths [ 15 , 
 16 ] eventually led to efforts to identify various immune regulatory mechanisms that 
may be induced during helminth infection [ 8 ], in addition to the type 2 responses 
already described above. Since these suppressed responses can be reversed by anti- 
helminthic treatment [ 15 ,  16 ], the assumption is that active suppression by living 
parasites is required. 

 Since regulatory T cells (Tregs) have been extensively studied as one of the most 
potent regulators of the immune response, they have also been investigated during 
helminth infections [ 62 ]. In an endemic population of long-term fi larial exposed 
individuals, the large proportion of asymptomatic cases with patent infections 
(microfi laremic, Mf+, with bloodstream microfi lariae) have increased levels of the 
suppressive cytokine interleukin-10 (IL-10) [ 63 ] and increased number of T cells 
expressing CTLA-4 (cytotoxic T lymphocyte antigen 4) [ 64 ]. In schistosomiasis, 

  Fig. 2    The presence or absence of helminth infection in the gut can have a dramatic infl uence on 
the physiological conditions. Helminth infection promotes mucus production from goblet cells. 
Increased mucous barrier helps protect the underlying epithelium from pathogenic attack. In addi-
tion, helminth infection can affect the host microbiome. In the presence of helminth infection a 
balance between particular microbial populations is maintained, whereas, in the absence of hel-
minth, an otherwise symbiotic bacteria, due to exacerbated proliferation, can become pathogenic 
and thus cause increased infl ammation and pathology       
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individuals with less pathology but are chronically infected have higher frequencies 
of CD4+ CD25 high Tregs [ 65 ]. In gastrointestinal nematode infections such as 
Ascaris, hookworm and  T. trichiura , patients also have a higher frequency of circu-
lating CD4+ CTLA-4+ T cells [ 66 ] and increased levels of the cytokines IL-10 and 
TGF-β are signifi cantly linked with hyporesponsiveness and susceptibility [ 67 ]. 

 In mouse models of helminth infections, treatment with neutralizing antibodies 
against CTLA-4 can enhance cytokine responses [ 68 – 71 ] and in some cases can 
promote parasite clearance [ 69 ,  72 ]. Treatment of helminth infected mice with 
depleting antibodies against CD25 have also demonstrated the importance of 
CD25+ Tregs in reducing CD4+ T cell effector responses and subverting parasite 
clearance [ 62 ]. Mice with FoxP3-expressing Tregs expressing the diphtheria toxin 
receptor (or DEREG mice) have more specifi cally targeted FoxP3-expressing Tregs 
in regulating effector responses that mediate parasite killing [ 71 ] and infl ammatory 
pathology [ 73 ]. In summary, Treg populations that are induced by helminths appear 
to benefi t both parasite and host by limiting pathology and reducing the intensity of 
parasite resistance mechanisms by the host. 

 IL-10 producing regulatory B cells are a more recent discovery that have been 
shown to play an important role in limiting disease severity during autoimmune 
diseases [ 74 ] and then later found to be induced by helminths [ 75 ]. In these mouse 
studies whereby helminths was fi rst shown to suppress allergic infl ammation, it was 
then shown that suppression could be reversed by depleting these B cells or trans-
ferred to a recipient animal by transferring B cells. In a male worm only infection 
model (without infl ammatory schistosome eggs),  S. mansoni  could protect mice 
from anaphylaxis and allergic airway infl ammation through an IL-10 dependent 
mechanism, which was found to be produced by regulatory B cells [ 76 ]. In  H. poly-
gyrus  infected mice, adoptive transfer of mesenteric lymph node B cells could sup-
press DerP1 induced airway infl ammation, but this was independent of IL-10 [ 77 ]. 

 Alternatively activated (or M2) macrophages [ 78 ] have also been shown to 
induce by helminth infections and may be a key part of immune regulation during 
helminth infections [ 8 ]. These cells may directly suppress effector CD4+ T cell 
responses by upregulating arginase 1. This enzyme plays an important role in both 
immune regulation as well as tissue repair, by competing for L-arginine and gener-
ating proline [ 8 ,  78 ]. Alternatively activated macrophages that are expanded during 
helminth infections have also been shown to promote Foxp3+ Treg differentiation 
through the production of retinoic acid [ 79 ] and hence mediate immune regulation 
through an indirect mechanism by promoting Treg differentiation. Increased abun-
dance of alternatively activated macrophages has been noted in several study cohorts 
[ 11 ,  80 ] and has been suggested to be responsible for the bystander suppression of 
autoimmune diseases. 

 While the type 2 responses are important in limiting parasite numbers and reduc-
ing tissue damage caused by the parasites, the immune regulatory network triggered 
by the helminths benefi ts the parasite as well as the host by reducing the effective-
ness of the resistance mechanisms of the host while also limiting tissue damage 
from immune pathology [ 12 ] (Fig.  3 ).
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        Helminths and Autoimmune Diseases 

 As discussed above, there is an intimate relationship between host and parasites that 
profoundly infl uence the immune system. The epidemiology of autoimmune diseases 
and helminth infections has led to the hypothesis that helminth infection could improve 
infl ammatory diseases (Fig.  4 ). Animal models as well as clinical studies have been 
supportive of these concepts, although it is important to note that the very different 
properties of different helminth life cycles infl uence the host in profoundly different 
ways and there are certainly examples of detrimental effects of helminth infections in 
the context of infl ammatory diseases [ 81 ,  82 ]. Nonetheless, there is an increasing inter-
est in the therapeutic use of these parasites for treatment of autoimmune diseases [ 7 ].

  Fig. 3    Intestinal helminth infection causes the intestinal epithelial cells to express a variety of 
alarmins and immunoregulatory cytokines such as IL-33 and TSLP. These have an ability to infl u-
ence intestinal DC responses, guiding them towards a Th2 response. Conditioned DCs then migrate 
to the draining lymph node where they prime naïve CD4 cells into Th2 effector T cells. These cells 
then promote parasite expulsion through the release of Th2 cytokines such as IL-4, Il-13, IL-5, and 
IL-9. In addition, IL-25 and IL-23 release from epithelial cells can promote IL-4 production from 
innate cells such as nuocytes which can then cause the alternative activation of macrophages which 
are involved in tissue repair       
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      Increasing Infl ammatory Diseases of the Modern 
Developed World  

 Autoimmunity occurs through an aberrant immune response triggered by interac-
tions between host genetics and environmental factors in multiple different ways 
that are gradually being elucidated [ 83 ]. During the past 50 years the developed 
world has seen a dramatic rise in infl ammatory diseases such as autoimmunity and 
allergy [ 84 ]. The time scale for these increases has been too short to be accounted 
for by genetic factors, thus environmental changes must have a role. Among the 
hypotheses proposed is the hygiene [ 85 ] and “old friends” hypothesis [ 86 ], which 
suggests that the improvement in living conditions and vaccination strategies has 
reduced exposure to certain infectious agents during childhood, leading to the 
development of unregulated immune responses and the onset of infl ammatory dis-
orders. In the 1960s, it was fi rst noticed that the incidence of rheumatoid arthritis in 
western Nigeria was uncommon [ 87 ] and the authors proposed that malaria and 
other parasitic infections may alter the immune system of African natives such that 
they are protected from the onset of such diseases [ 87 ]. Later on Strachan observed 
an inverse correlation between children suffering from hay fever and the number of 
older siblings [ 88 ] and proposed that this could be a relationship between hygiene 
and immunity. Indeed, the distribution of allergic and autoimmune diseases is a mir-
ror image of the distribution of many common infectious diseases. 

  Fig. 4    The immune response must strike a balance between being strong enough to eliminate 
infection without causing detrimental damage to the host. The coevolution of parasite and host will 
have allowed the positive selection of genes that have a mild suppressive effect on parasite sur-
vival, thus promoting low level parasite infection with little morbidity for the host. The majority 
of the human population living in parasite endemic areas will fall in to this category. However, in 
a small fraction of people the immune system will mount a response that is either too weak result-
ing in high parasite burden, or too strong resulting in excessive infl ammation and pathology ( a ). In 
the developed world, where childhood exposure to parasites is absent, the immune system has 
become more pro-infl ammatory and developed sensitivity to either innocuous or host antigens. 
This has allowed the development of pathology such as allergy and autoimmunity ( b ). Images are 
modifi ed and sourced from:   http://neglected-tropical-diseases.wikispaces.com/Lymphatic+fi lariasis           
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 Even within developed countries (e.g., in Europe), growing up in a rural environ-
ment results in exposure to various allergens and microbes that may decrease the 
chances of contracting allergic disease [ 89 ]. In developing countries also, Gabonese 
school children infected with  Schistosoma haematobium  showed less allergic reac-
tivity to the house dust mite allergen than their non-infected classmates [ 90 ], Later 
studies by the same group showed that long term treatment with anti-helminthic 
drugs to cause clearance of the parasites  A. lumbricoides  or  T. trichiura  resulted in 
an increase in skin sensitivity to house dust mite allergens. When there is movement 
of people from developing to developed countries, migration studies have shown 
that offspring of immigrants coming from a country with low prevalence for type-1 
diabetes [ 91 ] or multiple sclerosis [ 92 ] acquire the same disease incidence as the 
host country within the fi rst generation. Similar observations have since been made 
for various infl ammatory disorders such as infl ammatory bowel disease. As 
 populations in developing countries, such as Brazil [ 93 ] and India [ 94 ], become 
more socioeconomically advanced a rise in cases of IBD has been observed. 

 Other factors are certainly involved in the observed increase in allergy and auto-
immunity in the developed world, beyond helminth infection. Other investigators 
have performed similar anti-helminthic allergy trials to those described above but 
failed to fi nd any increase in atopy or clinical allergy upon deworming of school 
children [ 95 ]. In a large study of children in Denmark,  Enterobius vermicularis  
infection did not reduce risk for any chronic infl ammatory diseases [ 96 ]. 

 We are at an early stage of understanding how host genetics, such as susceptibil-
ity genes that have been identifi ed for diseases such as IBD [ 97 ], multiple sclerosis 
[ 98 ] and type 2 diabetes [ 99 ], interact with changing environmental factors to cause 
disease. Individuals may have genetic predispositions to certain autoimmune dis-
eases and when carrying a helminth infection (or with specifi c microbiota) the 
development of disease is somehow controlled, but upon removal of the parasite (or 
treatment with antibiotics and dietary changes) the predisposition is unmasked and 
disease develops. These complex interactions between the host and the environ-
ment resulting in heterogeneity of outcomes are diffi cult to model with inbred 
strains of mice and additional work with human populations is necessary for a bet-
ter understanding.  

    Clinical Trials of Helminth on Autoimmune Diseases 

 The observation that helminths can regulate infl ammatory responses has led to a 
number of completed and active clinical trials exploring the use of helminths to treat 
autoimmunity and allergic diseases [ 100 ]. The clinical trials to date have used either 
the pig whipworm,  Trichuris suis , or the human hook worm,  N. americanus  [ 101 ]. 

  T. suis  is closely related to the human whipworm  T. trichiura ; however,  T. suis  
differs on a morphological and molecular level [ 102 – 105 ]. TSO, or  Trichuris suis  
ova is now being produced under pathogen-free conditions and has a self life of 
approximately 2 years making it a viable therapeutic product.  T. suis  can transiently 
colonize the human colon but does not cause disease or multiply inside their host, 
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hence direct transmission from one person to another is unlikely. Pig farmers are 
readily exposed to this helminth and have not ever reported symptoms. The fi rst 
therapeutic treatment with  T. suis  was in 2003 by Summers et al. on seven patients 
with infl ammatory bowel disease [ 106 ]. In this trial and subsequent trials by the 
same group TSO treatment signifi cant improved symptoms for both ulcerative coli-
tis and Crohn’s disease without any side effects [ 107 – 110 ]. In a randomized 
placebo- controlled double-blind study for 54 subjects with moderate to severe 
ulcerative colitis, after 12 weeks of therapy, 43.3 % of the individuals treated with 
TSO had improved symptoms compared to 16.7 % in the placebo group. An open 
label study of TSO in 29 patients with active Crohn’s disease showed a remission 
rate of 72.4 % [ 110 ]. Larger phase II dose-escalation trials of TSO in Crohn’s dis-
ease are ongoing in Europe currently (Dr. Falk Pharma, GmbH; NCT01279577) and 
the USA (Coronado Biosciences and OvaMed GmbH; NCT01434693). We are also 
recruiting moderate to severe ulcerative colitis patients to conduct an exploratory 
mechanistic trial of TSO in order to better characterize the mucosal immune 
response at NYU School of Medicine (NCT01433471). Unfortunately, the phase II 
studies of TSO in Crohn’s disease have since failed to show signifi cant benefi t over 
placebo, partly the result of a strong placebo effect. However, a NIAID funded 
Phase II study is still ongoing for ulcerative colitis (NCT01953354). 

 Because of the systemic immune regulatory effects of helminths, helminths 
have also been tested for other diseases [ 111 ,  112 ]. In a study of 12 patients with 
relapsing- remitting multiple sclerosis who happened to be infected with various hel-
minths ( Hymenolepis nana ,  Trichuris trichiura ,  Ascaris lumbricoides ,  Strongyloides 
sterocolaris , and  Enterobius vermicularis ), Correale et al. reported that helminth 
infected patients had a signifi cantly lower number of exacerbations and fewer mag-
netic resonance imaging changes compared with uninfected patients [ 113 ]. This 
was associated with increased regulatory cytokine production (e.g., IL-10 and TGF 
β) and CD4+ CD25+ FoxP3+ T cells and regulatory B cells in the infected cohort 
[ 113 ,  114 ]. Fleming et al. then treated fi ve subjects with treatment- naïve relapsing-
remitting multiple sclerosis with TSO [ 115 ] and observed reduced lesions in treated 
individuals at the end of 12 weeks of TSO treatment. Lesion incidence increased 
again after the completion of the treatment phase, indicating that any protective 
effects were transient. There is an active study for MS and clinically isolated 
syndrome (TRIOMS) in Germany (NCT01413243). 

 Although TSO appears safe so far the possibility of symptomatic infection can-
not be entirely ruled out [ 116 ]. Diarrhea and abdominal pain were reported in 30 % 
of patients receiving TSO for treatment for allergic rhinitis [ 111 ]. However, these 
problems were transient, peaking at about day 40, after which the incidence of 
adverse effects lessened to levels similar with placebo. TSO has been studied in IBD 
patients on concomitant prednisone, thiopurines, and other immunosuppressants, 
suggesting relative safety in immunocompromised hosts [ 117 ]. Thus far, every 
study has shown that TSO is very well tolerated; although biological activity in 
terms of objective measures of benefi cial effect remain elusive. The species barrier 
between the pig parasite and the human host makes appropriate dosing regimens to 
induce substantial biological activity to be particularly diffi cult. It is also diffi cult to 
establish the equivalent of pharmacokinetics for these live organisms. 
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 The hookworm  N. americanus  has also been used in clinical trials but with less 
reported success than TSO. While hookworm can upregulate immunoregulatory 
molecules such as IL-10 and TGF-β [ 85 ,  118 – 120 ], infection can also cause serious 
adverse effects, most notably gastrointestinal symptoms and iron defi ciency anemia 
secondary to chronic blood loss [ 118 ]. Dose-ranging studies of  N. americanus  in 
humans have shown that doses higher than ten larvae correlate with more frequent 
adverse events [ 118 ,  121 ]. This is a very small number compared with the 2500 
TSO being used in Phase II trials, hence having a much narrower therapeutic win-
dow before having adverse effects. Thus far randomized double-blinded studies of 
 N. americanus  as treatment for asthma [ 122 ] and celiac disease [ 123 ] has not dem-
onstrated statistically signifi cant benefi ts. The relatively low inoculation dose of 
hookworm (10–15 worms) used in these trials may have been insuffi cient to induce 
an immunosuppressive phenotype in this patient population. Remarkably, when 
infection with 20  N. americanus  was combined with a 12 week microchallenge 
regimen (10–50 mg), subjects were now able to tolerate a large gluten challenge 
(3 g daily) for 2 weeks [ 124 ]. Hence, we are just beginning to understand the 
nuances of different potential therapeutic strategies. 

 In addition to these clinical trials, some individuals have opted to self-treat with 
helminths and online forums exist where patients can share their experiences with 
each other. One individual who infected himself with the helminth  T. trichiura  for 
his symptoms of ulcerative colitis provided us with longitudinal data on changes to 
his mucosal responses [ 55 ]. Before taking  T. trichiura  the patient had severe disease 
with extensive ulceration of the mucosal epithelium and the development of crypt 
abscesses. The patient ingested 500 embryonated  T. trichiura  eggs with an addi-
tional 1000 eggs 3 months later. The months following this he observed an improve-
ment in his symptoms until he was eventually symptom free with no need for 
additional UC medication [ 55 ]. Additional personal success stories have been noted 
through use of hookworm to treat allergy and Crohn’s disease [ 125 ]. While intrigu-
ing and informative in certain cases, these case reports are no alternative to large and 
rigorous clinical trials that are ongoing.  

    Mechanisms of Action for Helminth Treatment 

 Data from many different mouse models have also demonstrated that helminth 
infection may be benefi cial to the host under specifi c conditions [ 4 ]. One of the fi rst 
studies was with the nonobese diabetic (NOD) mice that spontaneously develop 
type1 diabetes; however, when infected with  S. mansoni  the incidence of diabetes 
dramatically reduced [ 126 ]. Furthermore, diabetes could be prevented in NOD mice 
by administration of the parasite egg alone [ 126 ] and soluble egg or worm extracts 
[ 127 ]. Type-1 diabetes has since been shown to be prevented by  Trichinella spiralis  
[ 128 ],  Litmosoides sigmodontis  [ 129 ], and  Heligmosomoides polygyrus  [ 116 ] infec-
tions. In these particular studies, the induced Th2 response during helminth infec-
tion was the leading cause for the prevention of infl ammatory autoimmune disease. 
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However, many of the mechanism described in the earlier section on immune 
responses to helminths may likely act in concert to suppress infl ammatory diseases. 
For example, the fi larial parasite  Fasciola hepatica  prevents experimental autoim-
mune encephalomyelitis in a TGF-beta dependent manner [ 130 ]. Whereas,  H. poly-
gyrus  infection protected mice lacking the regulatory cytokine IL-10 from the 
development of spontaneous colitis, however, disease resolution was caused by an 
increase in IL-13 rather than IL-4 or IL-5 [ 131 ]. Hence, the different helminths 
could be suppressing different diseases through different mechanisms. 

 Tregs were an obvious candidate and have been studied extensively in mouse 
models of helminth treatment. However, these functional studies of Treg popula-
tions have shown that there is considerable heterogeneity in the role of Treg subsets 
among helminth infections, when used to suppress infl ammatory diseases. There are 
examples of where they are important, as well as irrelevant. 

 Suppression of allergic airway disease by infection with the intestinal nematode 
 H. polygyrus  could be reversed by depleting CD25+ cells with a depleting antibody, 
and adoptive transfer of CD4+ CD25+ T cells from infected mice (of both wild-type 
and IL-10 −/−  genetic backgrounds) can mediate the therapeutic benefi ts of infection 
[ 132 ]. Similarly, reduced airway infl ammation in response to  S. mansoni  eggs was 
dependent on CD25+ cells, but not IL-10 receptor signaling [ 133 ]. However, neither 
the depletion of CD25+ cells nor TGFβ neutralization affected the suppression of 
airway infl ammation mediated by the tissue dwelling fi larial nematode  Litomosoides 
sigmodontis  [ 134 ]. In contrast to the asthma model,  H. polygyrus -mediated inhibition 
of diabetes onset, in NOD mice as well as cyclophosphamide-induced diabetes, was 
not reversed by CD25 depletion or IL-10 neutralization [ 135 ]. The antidiabetic effect 
of schistosomal egg antigens (SEA) was transferable by adoptive transfer of unfrac-
tionated, but not CD25-depleted splenocytes from SEA-exposed mice [ 136 ]. In con-
trast, while the suppression of diabetes by  L. sigmodontis  infection did not appear to 
be dependent on CD25+, FoxP3+ Tregs, or IL-10 signaling, neutralization of TGFβ 
reversed the therapeutic effect [ 137 ]. TGFβ was also shown to be critical in  Fasciola 
hepaticus -mediated protection against experimental autoimmune encephalomyelitis, 
a model of multiple sclerosis [ 130 ]. In a study of DSS-induced colitis, CD25 deple-
tion also did not reverse the protective effect of  S. mansoni  exposure [ 138 ]. 

 Therefore, distinct Treg subsets induced by the same helminth infection may 
mediate protection against different infl ammatory diseases (for example, TGFβ is 
essential for  L. sigmodontis -mediated suppression of diabetes but not allergic air-
way disease). Finally, for some models of helminthic therapy (for example, chemi-
cally induced colitis) a role for helminth-elicited Tregs remains to be demonstrated. 
In summary, the different variety of helminths, living in different tissues and with 
different genomes is suppressing different infl ammatory diseases through different 
mechanisms. There is probably not a “common mechanism” by which helminths 
are eliciting bystander suppression against infl ammatory conditions. Individual 
mechanisms will have to be established for every different disease and helminth 
combination. Furthermore, these are all studies conducted with inbred strains of 
mice, thus in human conditions where different genotypes and environment leads to 
heterogeneity of responses, the situation is likely to be even more complex. 
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 In addition to the Treg compartment, which could be considered part of the adap-
tive immune response, innate immune cells such as dendritic cells (DCs) and mac-
rophages (MFs) are also important for regulating the immune response during 
helminth infection. Since the phenotypic markers and tools for characterizing these 
cells are not as advanced as for T cells, there is even greater gaps in understanding 
how they function to suppress disease. For example, it was demonstrated that Balb/c 
mice infected with male worms of  S. mansoni  are protected from DSS-induced 
colitis through a macrophage dependent pathway and not through IL-10, TGFβ or 
Tregs [ 138 ]. But the type of macrophage responsible was not determined. Extracts 
from the tapeworm  H. diminuta  can reduce infl ammation caused by DNBS-induced 
colitis, perhaps because it suppresses macrophage activation [ 139 ]. But the mecha-
nism by which this may occur is still unknown. Intestinal DCs and MFs are clearly 
important in regulating mucosal homeostasis [ 140 ], but we are still at early stages 
of understanding their regulation under homeostatic as well as infl ammatory condi-
tions. It should not be surprising that their phenotype will be altered by the presence 
of helminths in the intestinal tract. As described above, alternatively activated mac-
rophages (or M2 cells) are induced by helminths to repair tissue damage [ 3 ] and 
have also been shown to suppress colitis [ 141 ], so these could well be important in 
suppressing colitis during helminth infection. 

 For infl ammatory bowel diseases, ulcerative colitis (UC) and Crohn’s disease 
(CD) have different pathophysiologies [ 142 ]. For a substantial subset of UC patients 
the intestinal mucus gel layer has been found to be abnormal in both quantity and 
quality [ 143 ]. Muc2, which is the most important mucin in the intestine [ 144 ], is 
reduced in rectal mucus samples from UC patients [ 145 ] and displays altered glyco-
sylation [ 146 ] and reduced sulfation [ 147 ]. Genetic defi ciency [ 148 ,  149 ] or termi-
nal misfolding [ 150 ] of Muc2 can cause severe and spontaneous colitis in mice 
without experimental perturbation. Impaired glycosylation of mucins due to spe-
cifi c glycosyltransferase defi ciencies also increases susceptibility to colitis [ 151 ]. 

 In addition to mucins, phospholipids such as Phosphatidylcholine (PC) contrib-
ute towards the mucus gel in the intestine. Abnormalities in phospholipid species 
have also been described in UC patients, with a signifi cant decrease in PC [ 152 –
 154 ]. Indeed, clinical trials by oral intake of delayed-release PC have shown prom-
ising results as treatment for some UC patients [ 154 ]. Since helminth infections, 
especially of the intestinal tract are also associated with quantitative and qualitative 
changes in the mucus gel, we have hypothesized that this may be an additional 
mechanism of action for helminths to suppress colitis [ 101 ]. 

 From the case study described above in which an individual self infected with the 
human whipworm  T. trichiura , IL-22 producing CD4+ cells (or TH22 cells) was 
found to be induced in parts of the colon that were colonized by the worms [ 55 ]. 
When larger number of UC patients were examines, TH22 cells was found to be 
depleted in regions of the colon with active infl ammation and this depletion was 
associated with changes to the microbiota [ 155 ]. However, “mono” TH17 cells not 
producing other cytokines (that were examined) were enriched in regions with 
active infl ammation in an inverse relationship with the TH22 cells [ 55 ,  155 ]. TGF-b 
could inhibit the differentiation of TH22 cells from human lamina propria CD4+ 
cells [ 155 ], just as was demonstrated in mice [ 156 ]. 
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 Further evidence for IL-22 induction in the human intestinal mucosa during hel-
minth infection comes from trials with patients suffering from celiac disease [ 56 ]. 
Patients given the hookworm,  Necator americanus  ( N. americanus ), and in vitro 
analysis of intestinal biopsies restimulated with  N. americanus  excretory/secretory 
proteins showed an upregulation of IL-22 mRNA whereas biopsies taken before  N. 
americanus  infection did not [ 157 ]. Hence, the induction of TH22 cells or increased 
production of IL-22, in addition to TH2 cells by Trichuris infection may improve 
the mucosal barrier function by increasing mucus production by goblet cells and 
proliferation of intestinal epithelial cells. IL-22 is a member of the IL-10 cytokine 
family [ 158 ] and downstream signaling events can induce genes involved in antimi-
crobial defense, epithelial repair (wound healing) and mucin production [ 159 ]. 

 A consequence of this response may be to reduce the quantity of attached bacte-
ria to the intestinal mucosa. Evidence to support this comes from a study of 
macaques suffering from chronic colitis [ 45 ]. A previous study had demonstrated 
dysbiosis in these macaques [ 160 ]. When the macaques were treated with  T. trichi-
ura , alterations to the mucosal microbiota in intestinal tissues during colitis and 
after helminth treatment was examined and found to restore bacterial diversity and 
reversed the dysbiosis of mucosal microbiota communities to more closely resem-
ble healthy control animals [ 45 ]. In a fi eld study of indigenous communities in 
Malaysia, helminth colonization was associated with increased diversity of the gut 
microbiota [ 161 ]. As described in a section above, the changes to the mucus gel of 
the intestine during helminth infection will have a major impact on the gut micro-
bial environment. Some of the protective effects of helminth infection may be a 
result of indirect effects downstream of gut microbiota alterations rather than direct 
effects of helminth infection.   

    Conclusion and Future Perspectives 

 Helminths and humans have coevolved to minimize virulence during infection 
while enabling parasite transmission. Usually, helminths infect without causing too 
much damage to the host, but the heterogeneity in responses to helminths leads to 
severe morbidity in a proportion of infected individuals. While there is an increas-
ing interest in the therapeutic use of these parasites for treatment of autoimmune 
diseases, there is still a limited understanding of the heterogeneity of responses to 
different helminths. This could be a complex relationship between host genotype, 
parasite genotype and the intestinal microbiota of infected individuals. Helminths 
may act through different mechanisms for intestinal versus extra-intestinal infl am-
matory diseases (e.g., multiple sclerosis). While regulatory cells and cytokines 
probably play an important role in the mechanism of action, stimulation by the 
helminths of type 2 immunity may have direct effects on mucosal barrier function 
to play an equally important role in infl ammatory bowel diseases. Increased mucus 
production, changes to the composition of mucus, and increased epithelial cell turn-
over, may reduce infl ammatory responses triggered by gut bacteria. Alterations to 
the gut bacteria by the presence of helminths may also be benefi cial against 
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infl ammatory diseases, since there is preliminary evidence that microbial diversity 
is increased by helminth colonization. Through the combination of mechanistic 
clinical trials and animal models of helminth infection and infl ammatory diseases, 
novel pathways that mediate the coexistence of helminths and humans may be iden-
tifi ed and targeted as new strategies for controlling infl ammatory diseases.   
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      Type 2 Immunity and Metabolism       

       Priya     Prahalad    ,     Justin     I.     Odegaard    , and     Ajay     Chawla    

           Introduction 

 Human physiology is the product of a millennia-long evolutionary balancing act of 
mammals caught between the many and varied threats of a brutish world. Starvation, 
infection, predation, and exposure all loomed as ever-present threats, pulling in 
different directions and demanding a portion of generally meager resources. Even 
today, in a signifi cantly less brutish world of hygiene and caloric plenty, we must 
still balance the demands of remaining infectious threats and our own increasingly 
unpredictable behavior (including an evolutionarily eclectic diet). Our great evolu-
tionary talent then is perhaps our remarkable ability to adapt to these pressures and 
fi nd a balance through which limited resources can meet numerous, and often con-
fl icting, demands. 

 Given their millennia of cohabitation and co-regulation, it is unsurprising that 
humans’ various physiologic systems have evolutionarily converged around com-
mon regulatory axes able to coordinately control disparate processes in pursuit of 
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shared biological goals. While examples of inter-system coordination are far from 
rare, much of this concept’s recent acceptance has been driven by the wealth of 
observations concerning immunity and metabolism, two evolutionarily disparate 
and physiologically crucial systems [ 1 ,  2 ]. In this chapter, we discuss immunity’s 
participation in core metabolic processes at the cellular level and in specifi c tissues. 
More specifi cally, we highlight the contribution of type 2 immune responses to 
metabolic function in leukocytes, white and brown adipose tissues, and the liver in 
the contexts of both health and disease. 

    General Principles of Energy Metabolism 

 Much of mammalian homeostasis is organized around the central rhythms of feed-
ing [ 3 ,  4 ]. As such, metabolism, in a very basic sense, can be divided into periods of 
feeding (Fig.  1a ), during which anabolic, nutrient-storing processes dominate, and 
periods of fasting (Fig.  1b ), during which catabolic processes mobilize nutrient 
stores to meet continued energy demands. Each of these basic metabolic states is, in 
turn, regulated by a central axis (or axes) of control. During feeding, for example, 
overall metabolic function focuses on nutrient processing and storage and is coordi-
nated primarily through the insulin regulatory axis [ 3 ,  5 ]. Here, in response to ele-
vated glucose levels (such as occur postprandially), insulin directs its target 
tissues—primarily the liver, adipose tissue, and skeletal muscle—to take up glucose 
from the blood and store it as either glycogen or lipid while simultaneously inhibit-
ing the release of such stores. Without continued feeding, these processes rapidly 
reestablish baseline nutrient levels, removing the stimulus for insulin secretion, 
effectively terminating insulin-stimulated nutrient uptake and storage, and, impor-
tantly, relieving insulin’s inhibitory effect on catabolic, nutrient-liberating processes. 
Even with the termination of postprandial insulin-stimulated uptake, however, met-
abolic consumption continues to remove nutrients from the circulation, lowering 
concentrations below baseline. In the absence of nutrient intake (fasting), declining 
nutrient levels activate a broadly catabolic metabolic program, largely mediated by 
the glucagon control axis, with the overall purpose of mobilizing stored nutrients to 
support continued metabolic activity [ 6 ].

   These descriptions, of course, are vastly simplifi ed. In reality, metabolism spans 
a far greater variety of conditions than simply “fed” and “fasted”; however for the 
purposes of this review, understanding the basic concepts governing storage and 
release of energy provides a framework for understanding the interconnectedness 
between metabolic homeostasis and immune balance.   
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    Metabolism Fuels Immune Responses 

 In addition to organism-wide regulation (e.g., insulin), metabolism is also tightly 
controlled at the cellular level, where cells autonomously and fl exibly regulate 
energy balance by matching substrate availability to physiologic demand and func-
tion [ 7 ]. For example, under conditions of relatively low bioenergetic needs, cells 
catabolize glucose and fatty acids via oxidative metabolism, a process by which 
these substrates are converted fi rst to two-carbon intermediates that are then oxidized 

  Fig. 1    Nutrient handling in 
the fed and fasted states. In 
the fed state ( a ), high 
circulating nutrient levels 
stimulate the release of 
insulin, which simultaneously 
drives nutrient uptake and 
storage in peripheral tissues 
such as skeletal muscle, 
adipose tissue, and liver and 
inhibits their release of stored 
nutrients. Without continued 
feeding, these actions 
decrease circulating nutrient 
levels, abolishing the incident 
stimulus for nutrient storage. 
In fasted mammals ( b ), 
nutrient levels fall below 
baseline, triggering catabolic 
mediators such as glucagon 
that drive mobilization of 
stored nutrients into 
circulation while inhibiting 
their uptake. These catabolic 
mediators also drive a 
parallel effector response of 
increased hunger and, thus, 
feeding behavior, which 
eventually similarly increases 
the circulating concentration 
of nutrients       
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more completely to carbon dioxide and water. This process is highly effi cient, pro-
ducing more ATP per substrate molecule than any other (36 molecules of ATP per 
molecule of glucose); however, it requires both time (oxidative metabolism being 
relatively slow) and oxygen and produces no carbon molecules that may be used 
biosynthetically (at least in mammals). Under conditions of intense cellular energy 
or synthetic demand, these requirements can limit oxidative metabolism’s ability to 
fully support cellular function. In this context, cells switch from this aerobic pro-
gram to an anaerobic that relies instead on glycolysis, the process by which glucose 
is broken down into pyruvate. In oxidative metabolism, this pyruvate is then further 
oxidized, as discussed above; however, when glycolytic fl ux outstrips the capacity 
of the TCA cycle to accept further input (such as occurs when oxygen is limiting), 
it is converted to lactate and discharged from the cell. While this partial oxidation 
only yields two molecules of ATP per molecule glucose (1/18th the yield of full 
oxidation) and, furthermore, is unable to burn fatty acids at all, its relative rapidity 
and independence from oxygen allows the fl ux through this pathway to be increased 
to tremendously high levels, producing much more ATP per unit time than the more 
effi cient oxidative pathway. Moreover, glycolytic metabolism also produces biosyn-
thetically useful carbon intermediates that can be incorporated into macromolecule 
synthesis [ 8 ,  9 ]. While they are common, kinetics and oxygen supply limitations are 
not the only reasons that cells employ a glycolysis-based metabolic program; in 
fact, aerobic glycolysis, also known as the Warburg effect, is often seen in the con-
text of intense biosynthetic requirements, where glycolysis- and TCA cycle-derived 
carbon intermediates are required as precursors molecules [ 10 ]. Indeed, the con-
sumption of intermediate metabolic substrates is such that glucose is often supple-
mented by other carbon sources such as glutamine. 

 Like many other cell types, leukocytes employ these regulatory mechanisms 
to support their own tissue-specifi c functions [ 11 ]. For example, long-term, low- 
intensity states, such as the antiparasitic response and type 2 immune programs in 
general, require the sustained energy provision of oxidative metabolism, while short-
lived, high-intensity states, such as the antibacterial response and type 1 programs 
in general, demand the ATP- and biosynthetic precursor-generating capacity of the 
glycolytic pathway. Indeed, these bioenergetic/biosynthetic programs are so central 
to immune functions that they are cued directly by the same stimuli that activate the 
immunologic effector responses themselves. For example, TLR-4 ligation by LPS 
(Fig.  2a ) initiates both classic type 1 NFκB-/JNK-/IRF-dependent infl ammatory 
effector responses as well as a HIF1α-dependent glycolytic program anchored by 
increased GLUT1 and phosphofructo-2-kinase/fructose- 2,6,bisphosphatase (PFKF) 
B3 expression [ 12 – 16 ]. Type 2 stimuli pathways [ 17 ]. IL-4 stimulation of macro-
phages (Fig.  2b ), for example, activates STAT6, which, in turn, promotes expres-
sion of both type 2 immune effectors as well as metabolic effectors such as PPAR-γ 
and -δ, PGC-1β, and PFKFB1 that drive a broad program of oxidative metabolism 
[ 18 – 22 ]. Importantly, the metabolic programs that associate with either type 1 or 
type 2 responses are not only required for proper immune function but are indeed 
suffi cient to drive these programs even in the absence of canonical immune stimuli. 
For example, forcing expression of the oxidative metabolic program in macrophages 
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not only enhances type 2 immune responses but also abrogates the ability of the cell 
to deploy type 1 responses, indicating that the cell’s metabolic state alone is suf-
fi cient to instruct immune effector responses [ 21 ]. This basic phenomenon has been 
further observed throughout the innate and adaptive immune system in such varied 
contexts as dendritic cell maturation and antigen presentation, T lymphocyte activa-
tion biasing and memory function, and, though the details are yet unclear, B cell 
function, demonstrating that the integration of metabolic and immune responses is 
a conserved coordination strategy [ 11 ].

      Immunity Regulates White Adipose Tissue Function 

 The integration of metabolic and immune responses at the cellular level is critical to 
proper immune function; however, this cooperative paradigm applies also to broader 
metabolic processes as well. Indeed, it is now clear that immunity constitutes one of 

  Fig. 2    Metabolic programs 
of type 1 and type 2 
macrophage responses. Type 
1 stimuli such as LPS ( a ) 
trigger an intracellular 
signaling cascade that 
activates both a HIF-1α- 
dependent glycolytic program 
involving PFKFB3 and 
GLUT1 that supports type 1 
immune responses. Type 2 
stimuli such as IL-4 ( b ), in 
contrast, activate a STAT6- 
dependent program of 
oxidative metabolism 
involving PPARs, PGC-1β, 
and PFKFB1, which, in turn, 
supports the type 2 immune 
response. Induction of either 
metabolic program alone is 
capable of biasing the 
macrophage immune 
response towards the 
associated type of immune 
response       
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the major local and systemic metabolic control axes, acting to support and coordi-
nate the functions of individual cells, tissues, and processes throughout the body 
while metabolic state [ 1 ,  4 ,  23 ]. White adipose tissue, the primary site of long-term 
energy storage in mammals, is the physiologic context in which immunity’s infl u-
ence has been most extensively mapped [ 24 ,  25 ]. Here, adipocyte homeostasis and 
white adipose tissue function as a whole are both carefully regulated by a complex 
immune regulatory circuit [ 4 ]. Under conditions of metabolic normalcy (Fig.  3a ), 
adipose tissue endothelial cell-derived IL-33 drives resident type 2 innate lymphoid 
cell (ILC2) accumulation and production of IL-5 and IL-13 [ 26 ,  27 ]. ILC2-derived 
IL-5, in turn, recruits and maintains a substantial resident population of eosinophils 
that produce IL-4, which in collaboration with ILC2-derived IL-13, supports a large 
population of alternatively activated resident macrophages [ 19 ,  26 ,  28 ]. These mac-
rophages form the nexus of a type 2 immune microenvironment that comprises 
regulatory T cells, invariant natural killer T cells, and other leukocytes with whom 
macrophages collaborate to actively promote adipocyte insulin sensitivity both 
directly and indirectly through suppression of insulin-antagonizing type 1 immune 
activity [ 4 ]. Indeed, congruent with these fi ndings, helminth infection or instillation 
of helminth-derived glycans, potent inducers of type 2 responses, enhances glyce-
mic control and insulin action in obese mice [ 28 ,  29 ]. In this manner, adipocytes 
remain primed for maximal insulin-stimulated nutrient uptake and storage.

   Under conditions of sustained nutrient excess (Fig.  3b ), however, the storage 
capacity of adipocytes is eventually exhausted, leading to super-physiologic levels 
of metabolic substrates overfl owing into cellular compartments ill-suited for sub-
strate handling [ 1 ,  23 ,  30 ]. Such nutrient spillover can lead to both cell-intrinsic and 
-extrinsic dysfunction (such as diacylglycerol and ceramide accumulation, abnormal 
protein stress) and, with continued overnutrition, adipocyte cell death [ 5 ,  31 – 33 ]. 
While these mechanisms each comprise unique pathways and effects, nearly all 
converge upon and inhibit the insulin signaling pathway, generally through serine 
inhibition of insulin receptor substrate (IRS) proteins, blunting insulin action in 
stressed tissues and stemming nutrient infl ux [ 1 ,  23 ]. Moreover, these pathways also 
activate IKKβ and JNK signaling to initiate and support an ongoing type 1 immune 
response within overfed adipose tissue [ 34 – 38 ]. This infl ammatory response dis-
rupts the type 2 milieu of lean adipose tissue directly through production of infl am-
matory mediators such as IL-1β and TNF-α as well as indirectly through the 
recruitment of large numbers of Ly6c Hi  monocytes that differentiate into moderately 
infl ammatory macrophages [ 39 – 42 ]. Despite the absence of marked differences in 
the infl ammatory potential of these macrophages when compared to residents, their 
large number is suffi cient to skew the adipose tissue microenvironment, transform-
ing it into one dominated by type 1 responses. This shift is mirrored in the T lym-
phocyte populations where regulatory T cell and invariant NKT cell dominance is 
diluted by ingressing T h 1 cells, CD8 +  T cells, and NKT cell populations with rear-
ranged T cell receptor loci [ 43 – 45 ]. Moreover, B cells and neutrophils also immi-
grate into infl amed adipose tissue, supporting the type 1 milieu and exacerbating 
metabolic dysfunction and infl ammation through auto-reactive antibodies and elas-
tase production, respectively [ 46 – 48 ].  
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    Immunity Regulates Liver Function 

 While the white adipose tissue serves as the body’s primary site of long-term energy 
storage, the liver is the primary short-term energy-handling depot [ 6 ]. Here, glucose 
is stored as and released from glycogen as well as synthesized via gluconeogenesis, 
while lipids are synthesized, exported, imported, and burned. Despite this increased 
metabolic complexity, insulin’s actions remain similar to other tissues in their pro-
motion of nutrient uptake and storage and inhibition of their release. Unlike in other 

  Fig. 3    Immune programs infl uence adipose tissue function. In lean adipose tissue ( a ), IL-33 sup-
ports a population resident ILC2 cells that recruit and maintain eosinophils within the adipose 
tissue. In conjunction with ILC2-derived IL-13, eosinophil-derived IL-4 maintains adipose tissue 
resident alternatively activated macrophages that, in collaboration with regulatory T cells and other 
leukocytes, maintain a tolerogenic type 2 immune microenvironment. This immunologic milieu 
actively promotes adipocyte insulin sensitivity and function as well as adiponectin secretion that 
supports type 2 macrophage activation. In obese adipose tissue ( b ), in contrast, the physiologic 
stigmata of overnutrition activate tissue resident macrophages and other leukocytes to produce 
type 1 infl ammatory cytokines that exacerbate adipocyte insulin resistance, enhance cellular stress 
responses, and recruit additional leukocytes. Stressed and necrotic adipocytes, in turn, reinforce 
the infl ammatory microenvironment.  STAT  signal transducer and activator of transcription,  KLF  
Kruppel-like factor,  TLRs  Toll-like receptors,  DRRs  danger recognition receptors,  MR  mineralo-
corticoid receptor,  IRF  interferon regulatory factor       
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tissues, however, the liver’s ability to liberate stored or synthesized glucose in addi-
tion to lipids means that insulin resistance manifests as an elevated glucose secre-
tion rate in addition to the more traditional metrics of decreased glucose uptake and 
elevated fatty acid release. 

 As in white adipose tissue, metabolic normalcy in the liver is characterized by a 
type 2-biased immune microenvironment in which resident macrophages (Kupffer 
cells) promote insulin sensitivity and regulate lipid metabolism in hepatocytes and 
maintain the tolerogenic milieu [ 4 ]. Unlike the adipose tissue, however, relatively 
little is known of how this microenvironment is maintained, how its effects are 
exerted, or what roles the various leukocyte lineages play therein. What is clear is 
that Kupffer cell alternative activation is critical for proper tissue function as selec-
tive abrogation of this phenotype via macrophage-specifi c PPAR-δ deletion leads to 
hepatocyte insulin resistance and disrupted lipid metabolism [ 18 ,  20 ], a phenotype 
that can be recapitulated in lean rodents by selective Kupffer cell depopulation 
using gadolinium salts [ 49 ,  50 ]. In addition to promoting insulin sensitivity, some 
observations suggest that type 2 responses in the liver have the ability to exert 
insulin- like infl uences directly on hepatocytes. For example, a recent report 
described a novel metabolic regulatory circuit in which feeding triggers a marked 
increase in the intrahepatic expression of IL-13, which acts directly on hepatocytes 
to inhibit gluconeogenesis [ 51 ]. While the signaling pathway identifi ed is nonca-
nonical and the proximate components remain unclear, the data suggest that type 2 
responses contribute to the liver’s postprandial anabolic shift. 

 Similar to the adipose tissue, overfeeding in the liver leads to exhaustion of nutri-
ent storage capacity and tissue dysfunction via mechanisms similar to those identi-
fi ed in adipocytes (most notably IKKβ and JNK pathway activation). Unlike the 
adipose tissue, however, cellular stress and infl ammatory activation in the liver do 
not result in the large leukocyte population shifts seen in adipose tissue. Instead, 
leukocyte numbers change only incrementally, while phenotypes and activation 
biases shift dramatically. For example, Kupffer cell numbers remain stable through-
out obesity (a small decrease in resident macrophages is offset by new monocyte 
recruitment); however, the overall activation profi le shifts sharply from a type 2 to a 
type 1 bias, suggesting either conversion of individual cells or population replace-
ment [ 18 ,  20 ,  52 ]. Similarly, the NKT cell population shifts from invariant NKT 
cells to those with rearranged T cell receptors with a concurrent shift from type 2 to 
type 1 cytokine profi les. As in the adipose tissue, neutrophils also ingress, solidify-
ing the type 1 environment and exacerbating metabolic dysfunction.  

    Immunity Regulates Brown Adipose Tissue Function 

 The weight of the ongoing obesity epidemic has, with good reason, skewed interest 
disproportionately towards tissues with obvious roles in obesity-related metabolic 
dysfunction, such as the liver and white adipose tissue. More recently, however, 
interest has begun to shift to other, less well-studied tissues with the potential for 
therapeutic intervention. Brown adipose tissue, with its remarkable capacity to burn 
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fat, is of particular interest in this avenue of research. Despite being the primary site 
of non-shivering thermogenesis [ 53 ,  54 ], brown adipose tissue has traditionally 
been largely dismissed in adults as its metabolic contributions were believed to be 
restricted to the neonatal and infant periods, after which they rapidly declined to 
insignifi cance. A spate of recent studies, however, have debunked this view by dem-
onstrating both the existence and functional activity of substantial amounts of brown 
adipose tissue in healthy adults [ 55 – 58 ]. Indeed, one estimate places the average 
adult’s brown adipose depots at ~63 g, which burn ~4.1 kg of fat each year [ 58 ]. 

 In non-shivering thermogenesis, cold exposure elicits an increase in sympathetic 
nervous system tone that directs brown adipocytes to dramatically increase fatty 
acid oxidation while simultaneously increasing the expression of respiratory chain 
uncoupling protein-1 [ 53 ,  54 ,  59 ]. The uncoupled dissipation of such a large proton 
gradient liberates large amounts of heat, combating heat loss in cold environments. 
Until recently, this pathway was thought to be mediated by direct sympathetic 
innervation of brown adipocytes; however, recent work has demonstrated an unex-
pected requirement for alternatively activated macrophages [ 60 ]. Interestingly, 
these cells comprise a critical component of the sympathetic efferent limb, produc-
ing ~50 % of all catecholamines present within cold-stimulated brown adipose tis-
sue. Given the magnitude of their contribution, macrophage-derived catecholamines 
are unsurprisingly necessary for the activation of brown adipocyte responses; how-
ever, they also appear to mediate a second, parallel pathway by which white adipo-
cytes are directed to release the fatty acids necessary to fuel continued thermogenic 
activity in brown adipocytes. Congruent with these fi ndings, abrogation of macro-
phage alternative activation or type 2 immune responses in general results in ther-
mogenic responses that are not only effete but also relatively short-lived. Relatedly, 
metabolic regulators that are critical to and induced by type 2 immune responses 
(such as PPAR-γ) have been shown to promote the acquisition of thermogenic 
capacity by white adipocytes in a so-called “browning” response [ 61 ]. 

 As discussed above, the thermogenic response has become of great interest in 
obesity research for its potential ability to burn away excess calories [ 59 ]; however, 
some have additionally suggested that metabolic derangements within brown adi-
pose tissue contribute directly to obesity itself. While the data supporting this 
hypothesis are currently limited to observational studies describing diminished 
brown adipose depots in the obese, the antagonism between type 1 immune pro-
grams (such as are prevalent in obese white adipose tissue) and type 2 programs 
(such as are necessary for brown adipose tissue function) is well established, pro-
viding a plausible mechanism by which obesity might impair brown adipose tissue 
function and, thus, therapeutic potential.  

    Therapeutic Implications 

 The comingling of immunity and metabolism provides not only important insight 
into basic physiology but also a unique opportunity to intervene therapeutically 
therein, opening a substantial formulary of well-characterized immune- and 
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metabolism- targeted pharmaceuticals to possible use in new clinical contexts. 
Indeed, even the basic pharmacologic classifi cations of immune- and metabolism- 
targeted interventions are being rethought as some well-established “metabolic” 
pharmaceuticals (such as thiazolidinediones, a widely used class of synthetic 
PPAR-γ agonists) have been shown to rely upon immunomodulation for their thera-
peutic effi cacy just as some “immune” agents (such as rapamycin) are now known 
to act through metabolic pathways [ 62 ]. One of the oldest and best-studied exam-
ples of repurposed therapeutics is that of the salicylates, the most commonly used 
pharmacologic family in the world, whose effi cacy in diabetes is documented in the 
medical literature as far back as 1901 [ 63 – 66 ]. While the adverse effect profi le of 
many of these compounds precludes their routine use in this manner, recent trials 
with salsalate have returned encouraging results [ 67 ,  68 ]. Similarly, other immune 
agents targeting type 1-associated cytokines (e.g., canakinumab, infl iximab, and 
entanercept), cellular populations (e.g., CD3- and CD20-targeting antibodies), and 
signaling pathways (e.g., amlexanox) have demonstrated potential for combatting 
metabolic dysfunction [ 45 ,  46 ,  69 ,  70 ]. 

 While strategies utilizing traditional immune agents have largely relied on inhib-
iting type 1 responses, metabolic agents with immune activity more often act by 
actively skewing the immune timbre towards type 2 responses. For example, poly-
unsaturated fatty acids, AMP-activated protein kinase agonists, PPAR agonists, 
DPP-4 inhibitors, and some statins (e.g., pravastatin, rosuvastatin, and fl uvastatin) 
are all metabolic agents that exercise their therapeutic effects at least in part by 
promoting type 2 immune responses [ 71 ,  72 ]. While this does indirectly inhibit type 
1 activity, the active promotion of type 2 responses appears to be important, congru-
ent with the importance of type 2 responses in healthy metabolic function. Even the 
effi cacy of surgical (e.g., gastric bypass) and behavioral (e.g., exercise) interven-
tions has been suggested to involve an ability to skew the immune milieu towards 
type 2 response [ 73 – 76 ]. 

 The potential of type 2-promoting interventions has even lead some to propose 
purposeful parasite infection or administration of parasite-derived material to treat 
obesity-related metabolic disease. The literature clearly supports this approach’s 
effi cacy in inhibiting type 1-associated pathology, including classical infl ammatory 
diseases such as Crohn’s disease, ulcerative colitis, and multiple sclerosis, and even 
suggests potential in type 1-associated metabolic disease; however, this approach 
has understandably failed to attract widespread interest [ 77 – 79 ]. Microbial manipu-
lation, however, also includes approaches targeted at noninfectious agents as well, 
which have gained much broader acceptance. Indeed, the gut microbiome is now 
accepted as a powerful determinant of a variety of systemic pathology including 
obesity-related metabolic disease, and gut fl ora-directed interventions are being 
hotly pursued [ 75 ,  80 ].   
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    Conclusion 

 The research enterprise has long deconstructed physiology into discipline- bounded 
silos with each, at times arbitrarily defi ned, system studied independently from the 
others. While this approach has produced much of our extant knowledge, one of the 
broad trends in biological research over the past two decades has been interdisciplin-
ary investigation in which these divisions are actively bridged. The returns of such 
efforts have been varied; however, as we discuss above, this movement has funda-
mentally changed our understanding of both metabolism and immunity by demon-
strating just how inextricably the two are entwined. Indeed, metabolism is now 
understood to both support and direct immune activation, with oxidative metabolism 
driving type 2 responses while glycolysis drives type 1, just as immunity is under-
stood to both support and direct metabolic processes, with type 2 immunity actively 
directing and maintaining metabolic health while type 1 responses skew metabolism 
away from baseline. Appreciation of this relationship has opened an entirely new 
regulatory axis to therapeutic intervention in both immune and metabolic diseases 
that, hopefully, will provide new tools to improve clinical outcomes.   
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