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Chapter 15
The Pulmonary Vasculature  
in Chronic Obstructive Lung Disease

Michael Seimetz and Norbert Weissmann

15.1  Chronic Obstructive Pulmonary Disease (COPD) 
and its Association with Pulmonary Hypertension 
(PH)

Chronic obstructive lung disease, or chronic obstructive pulmonary disease (COPD), 
a collective term for chronic bronchitis and pulmonary emphysema, is one of the 
major causes of death worldwide. The World Health Organization (WHO) predicts 
that by 2030, COPD will rank as the third greatest cause of death worldwide. It is 
characterized by progressive, poorly reversible airflow limitation associated with an 
abnormal chronic inflammatory response in the lung. COPD is also viewed as a sys-
temic disease, involving skeletal muscle wasting, diaphragmatic dysfunction, and 
systemic inflammation [1]. In industrialized countries, tobacco smoke (80–90 %) 
and air pollution are the major triggers for the development of COPD, whereas in 
developing countries, exposure to biomass smoke, especially during cooking, is 
most relevant [2].

On the one hand, COPD is viewed as a small airway disease, with destruction 
of the elastic architecture of the lung leading to enlargement of distal airspaces [3] 
associated with chronic inflammation of the airways [4, 5]. Influx of inflammatory 
cells, imbalance of proteases/antiproteases, increased oxidative stress with the con-
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comitant rise in the number of apoptotic cells, and decreased proliferation are likely 
important upstream events [4, 6, 7].

On the other hand, there is increasing evidence that COPD is also a vascular 
disease in which cigarette smoke may directly affect the pulmonary vasculature, 
leading to vascular remodeling, pulmonary hypertension (PH), and finally to cor 
pulmonale [8–10]. The mean pulmonary artery pressure (mPAP) in PH related to 
COPD usually ranges between 25 and 35 mmHg, with nearly normal cardiac output 
[11]. However, mPAPs higher than 40 mmHg are quite common in patients with 
severe COPD, especially after at least one previous incident of acute respiratory 
failure [11, 12]. Furthermore, the occurrence of PH in COPD is of prognostic rel-
evance because the presence of PH clearly increases mortality [13, 14].

The exact prevalence of PH in patients with mild or moderate COPD is not 
known because of the lack of extensive epidemiologic studies [2]. According to 
the current literature, 30–70 % of patients with mild or moderate COPD also suf-
fer from PH [15]. There are several reasons for the high variation in the rate of 
observed PH. The necessary right heart catheterization for detection of PH was/is 
not routinely used in patients with COPD. In addition, the respective studies used 
different definitions for the onset of PH and varied in study design (measuring at 
rest/exercise, severity of COPD/PH, methods to measure PH). Some studies have 
investigated PH in mild, moderate, or severe COPD, with frequencies of PH of ap-
proximately 16–44, 43–56, and 59–84 %, respectively [2, 16, 17].

PH is a common complication in advanced COPD [18] and can occur as a con-
sequence of the hypoxia associated with COPD. However, several publications 
showed that vascular alterations can occur before alveolar destruction is detect-
able [19–22], indicating that cor pulmonale and late-stage PH are not necessarily 
secondary to hypoxia in patients with COPD. For instance, in 2003 Santos and col-
leagues showed that pulmonary vascular remodeling can be seen in smokers who 
are not yet suffering from COPD [23].

Thus, although PH can occur prior to lung emphysema, its relevance for the 
pathogenesis of COPD is not yet fully understood. Against this background, in this 
chapter we summarize the current findings of vascular alterations and pathobiology 
in COPD.

15.2  PH as a Cause for Right Ventricular Failure in 
COPD

The progression of PH in COPD is usually slow and pulmonary artery mean pres-
sure (mPAP) can remain stable over periods of 3–12 years [24–26]. In a study fol-
lowing 93 patients during a mean period of 90 months, the average change in mPAP 
was only +0.5 mmHg/year, independent of the presence of initial PH (defined by 
mPAP > 20 mmHg) [26]. Another study investigating the development of PH in 
COPD over time (initial mPAP < 20 mmHg) showed that only 33/121 developed 
PH after 6.8 ± 2.9 years [27]. Nevertheless, approximately 30 % of patients with 



35315 The Pulmonary Vasculature in Chronic Obstructive Lung Disease

severe COPD exhibited a remarkable worsening of mPAP during follow-up [26]; 
these patients were characterized by a progressive worsening of PaO2 and PaCO2 
(partial oxygen/carbon dioxide pressure) during the time course, and there was a 
significant correlation between the changes in PaO2 and mPAP [25, 26]. Typically, 
the development of right heart failure (RHF) in patients with chronic respiratory 
disease is accompanied with the preceding occurrence of PH. The severity of PH 
and the development of RHF correlate. PH increases the workload of the right ven-
tricle, leading to right ventricular enlargement (hypertrophy plus dilatation), which 
can result in right ventricular dysfunction. The RHF is usually accompanied by 
peripheral edema and can be observed in some COPD patients [28, 29]. Periph-
eral edema is frequently observed in advanced COPD patients and is considered 
to reflect RHF, but the possible occurrence of RHF in these patients may simply 
indicate the presence of secondary hyperaldosteronism induced by functional renal 
insufficiency [30].

The role of pressure overload in the development of RHF in these patients has 
also been debated. The comparison of COPD patients with and without clinical 
(edema) and hemodynamic signs of RHF led to the conclusion that RHF was prob-
ably due to causes other than PH [31]. In stable conditions, right ventricular con-
tractility, measured by the end-systolic pressure–volume relation, is near normal in 
COPD patients with PH, but has been found to be decreased during severe exacer-
bations with marked peripheral edema [31]. Hence, many patients with advanced 
COPD will never develop RHF. At least some patients experience sequences of 
RHF during exacerbations associated with a worsening of PH [32]. The level of 
mPAP is a good prognostic indicator in COPD [32, 33] and in other categories of 
chronic respiratory disease, such as idiopathic pulmonary fibrosis [33] (the higher 
the degree of PH the worse the prognosis). It has been shown that life expectancy 
is worse in patients with PH compared with patients without PH [32], and is par-
ticularly poor in patients with a severe degree of PH [33, 34]. The 5-year survival 
rate of COPD patients with PH (mPAP > 20 mmHg) is approximately 50 % [26, 33]. 
Long-term oxygen therapy (LTOT) significantly improves the survival of markedly 
hypoxemic COPD patients also suffering from PH. Accordingly, it can be expected 
that the prognosis of PH will improve with such a therapy in these patients. This 
hypothesis can be explained by the fact that mPAP is a good marker of both the 
duration and severity of alveolar hypoxia in these patients, assuming hypoxia is the 
causing factor for the PH [14].

15.3  Vascular Alterations

15.3.1  The Process of Remodeling

Vascular changes can occur in smokers without COPD, can precede the develop-
ment of emphysema in animal models, and can be seen in COPD patients. The 



354 M. Seimetz and N. Weissmann

respective vessels, especially in end-stage COPD, have thickened walls or are even 
occluded as a result of remodeling. Vascular remodeling is characterized by thick-
ening of the arterial wall by which the vascular lumen and the internal diameter 
are reduced, leading to increased resistance and higher intravascular pressure. Of 
interest, although apparent in vessels of different sizes, muscular arteries and arteri-
oles (small vessels with a diameter < 500 µm) are predominantly affected [35, 36]. 
Pulmonary vascular remodeling has been observed at different degrees of disease 
severity. Indeed, this phenomenon could not only be seen in patients with mild and 
severe COPD but also in heavy smokers with normal lung function [37]. The major 
event is hyperplasia of the intima [35, 36], but the other vessel wall layers, the me-
dia and the adventitia, are also involved [38]. Intimal hyperplasia results from the 
proliferation of α-smooth muscle actin- and vimentin-positive cells (corresponding 
to smooth muscle cells [SMC] associated with elastic and collagen fiber deposition) 
[23]. Interestingly, some SMCs in the intima express vimentin but not desmin fila-
ments [23]. The presence of these filaments facilitates the discrimination between 
differentiated and nondifferentiated SMCs [39, 40]. “Accordingly, vimentin-posi-
tive, desmin-negative SMCs represent a subpopulation of less differentiated SMCs 
that may possess synthetic capacity and take part in an ongoing process of vascular 
remodeling” [9]. Although not fully understood, the occurrence of these not fully 
differentiated cells could be explained by (i) differentiation from resident precursor 
cells; (ii) attraction and differentiation of circulating bone-marrow-derived progeni-
tor cells; (iii) dedifferentiation of mature SMCs from the media which migrate to 
the intima [41]; and (iv) transdifferentiation of endothelial cells (ECs) to SMCs by 
endothelial-to-mesenchymal transition [42]. The underlying mechanisms are still 
not fully resolved and have to be deciphered in future. Interestingly, “bone-marrow-
derived progenitor vascular cells might exert a dual, opposite effect, contributing 
to vascular repair through differentiation into ECs or to vessel remodeling through 
differentiation into SMC”. [42].

The respective pathologic picture can be explained by remodeling and angiogen-
esis induced by inflammation that is related to chronic infection, hypoxia, repeated 
stretching of hyperinflated lungs, and toxicity of cigarette smoke [43, 44].

Chronic hypoxia at high altitudes can cause PH, but the associated PH is com-
pletely reversible a few weeks after return to sea level [11]. This finding may be 
explained by the observation that PH caused by high altitude primarily induces me-
dial hypertrophy. The involvement of all vessel layers in PH associated with COPD 
likely explains why PH in COPD is often not reversible by supplemental oxygen, 
neither acutely [45] nor chronically [46].

15.3.2  Mechanistic Insights into the Remodeling Process

Hypoxemia/hypoxia, chronic inflammation, oxidative and nitrosative stress, endo-
thelial dysfunction, apoptosis, and altered proliferation have all been suggested as 
factors in the pathogenesis of airway and vascular remodeling [6, 9, 47–50]. Classi-
cally, hypoxia has been considered to be the major pathogenic factor for the devel-
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opment of PH in COPD. However, recent studies have shown that pulmonary vas-
cular remodeling and endothelial dysfunction can occur in animal models of lung 
emphysema [19, 20], in patients with mild COPD not suffering from hypoxemia, 
and in smokers with normal lung function [23, 35, 51]. In addition, LTOT is not able 
to reverse PH in many COPD patients [52]. Nevertheless, there are many studies 
showing that hypoxia plays a role in COPD, at least in severe forms of the disease. 
Thus, mechanistic aspects related to hypoxia will be discussed. Furthermore, below 
we give an overview of the most relevant molecules and associated phenomena in 
the context of COPD and vascular remodeling/PH.

15.3.3  Hypoxia as a Causing Factor for Vascular Remodeling

In chronic respiratory diseases, PH is a result of increased vascular resistance (PVR), 
whereas cardiac output is often normal. The factors leading to the increase in PVR 
are manifold [28, 53] but hypoxia secondary to COPD is thought to be a predomi-
nant factor [28, 54, 55]. In terms of hypoxia, two mechanisms should be considered: 
acute hypoxia causing pulmonary vasoconstriction, and chronic hypoxia leading to 
structural vascular changes (remodeling) over time. Acute hypoxia induces a rise 
of PVR and mPAP which is part of hypoxic pulmonary vasoconstriction (HPV). 
Chronic alveolar hypoxia causes precapillary PH in healthy people living in high 
altitude, similar to that observed in COPD patients. Additionally, the morphological 
changes of the pulmonary vascular bed (remodeling) are comparable with those of 
COPD patients with PH (muscularization of pulmonary arterioles, intima thicken-
ing in muscular pulmonary arteries and arterioles) [56], although under hypoxic 
conditions the media is mainly involved in the remodeling.

With regard to hypoxia, it makes sense to distinguish between generalized hy-
poxia (e.g. seen in high altitude) due to the low partial pressure of oxygen, and 
localized, regional alveolar hypoxia [49]. Generalized hypoxia has both systemic 
and organ-specific effects [57, 58]. It results in peripheral vasodilation, general 
pulmonary vasoconstriction, and activation of a sympathico-adrenergic stress re-
sponse to increase cardiac output [59]. Moreover, activation of bone marrow and 
erythropoietin-stimulated red-cell production occurs. Increased cardiac output and 
polycythemia are adaptive responses to improve blood and oxygen delivery to the 
hypoxic tissues. In contrast, local alveolar hypoxia occurs by regional lack of alveo-
lar ventilation, e.g. caused by airway obstruction or even in pulmonary edema. HPV 
here adapts the local blood perfusion to the alveolar ventilation situation, preventing 
hypoxemia.

Hypoxia occurring within tumors is critical for tumorigenesis caused by the el-
evated demand for blood and nutrients of the rapidly growing cancer cells that are 
supplied by structurally abnormal tumor vessels. A similar impairment of the micro-
environment oxygenation can occur in the lung because of parenchyma destruction 
and compression or loss of small vessels. In tumors and in the damaged and remod-
eled lung, the systemic arterial blood partial pressure of oxygen is usually, normal 
whereas the tissue microenvironment can be hypoxic.
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Discovery of the oxygen-dependent transcription factor ‘hypoxia-inducible 
factor-1α’ (HIF-1α) [60] and subsequent discovery of the closely related HIF-2α 
was a breakthrough for the understanding of the molecular response of cells to 
hypoxia (Fig. 15.1, 15.2). HIF controls a variety of hypoxia-dependent genes that 
are involved in protection from hypoxia or pulmonary vascular remodeling, such 
as erythropoietin, glucose transporters, vascular endothelial growth factor (VEGF), 
endothelin-1 (ET-1) and nitric oxide (NO) synthases. HIF-1α and HIF-2α can also 
link hypoxia and inflammation [61–65]. It has been shown that within 24 h of hy-
poxia, inflammatory cells accumulate in the lungs, as measured by increased activ-
ity of myeloperoxidase. Subsequently, investigations at the molecular level showed 
that hypoxia-induced mitogenic factor (HIMF; also known as FIZZ1) is released by 
lung macrophages during stimulation with hypoxia. The proinflammatory and pro-
angiogenic effects of HIMF are mediated by VEGF and its receptor VEGFR2 [66]. 
HIMF is also able to recruit bone-marrow-derived mesenchymal cells to the lung 

Fig. 15.1  Selection of possible hypoxia-dependent mechanisms contributing to pulmonary vas-
cular remodeling in chronic obstructive pulmonary disease-pulmonary hypertension (COPD-PH). 
Cigarette smoke-induced airway obstruction and emphysema can result in hypoxia. Hypoxia, 
amongst others, activates hypoxia-inducible factor (HIF)-1α, which can trigger pathways asso-
ciated with inflammation, the recruitment of bone-marrow-derived cells, and alterations in pro-
liferation/apoptosis balance of vascular endothelial and smooth muscle cells (SMCs). Increased 
proliferation of SMCs causes narrowing of the vessels, resulting in pulmonary hypertension. All 
important acronyms of the molecules are explained in the text
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in mice [67]. Interestingly, hypoxia can also induce toll-like receptors (TLR) 2 and 
6 via HIF-1α [68], which in turn can activate nuclear factor-κB (NF-κB), another 
proinflammatory transcription factor [69, 70]. The excess of chemotactic factors 
such as VEGF, HIMF, leukotriene B4 (LTB4), and others induced by hypoxia in the 

Fig. 15.2  Hypoxia-induced ion channel-mediated increase in proliferation, contraction, and 
decrease of apoptosis of smooth muscle cells (SMCs) contributing to pulmonary vascular remodel-
ing. Kv and TASK-1 channels are downregulated and are less active after chronic hypoxia, leading 
to accumulation of K+  within the cell (mediating apoptosis resistance) and membrane potential 
depolarization of the SMCs. This depolarization causes opening of voltage-operated Ca2+  chan-
nels (VOCC), especially L-type channels, which mediate Ca2+  entry. Hypoxia-dependent reac-
tive oxygen species (ROS) regulation derived from nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidases and/or mitochondria is suggested to inhibit the K+ channels, although it is 
unclear whether an increase or decrease of ROS occurs in hypoxia. Transient receptor potential 
channel (TRPC)-mediated Ca2+  or Na+ influx (speculatively by gating K+ channels) was also 
shown to be essential for the intracellular Ca2+ increase in at least acute hypoxia. Ca2+  release 
from mitochondria and sarcoplasmic reticulum (SR) was shown to additionally increase Ca2+  
within the cell. Thus, mediated contraction and proliferation of the SMCs can contribute to vascu-
lar remodeling. Colored arrows depict either activation (green) or inhibition (red)
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lung can mobilize bone-marrow-derived cells (including mast cells, mesenchymal 
precursor cells, megakaryocytes, dendritic cells) and their chemotaxis to the lung. 
Consequently, hypoxic/hypoxemic inflammation is a systemic response [49].

There are many cytokines mediating inflammation but, in the context of PH, 
special attention was given to HIF-1α-induced interleukin (IL)-6 because its mes-
senger RNA (mRNA), as well as protein levels, were upregulated by chronic hy-
poxia in mice. Although IL-6-deficient mice showed less inflammation under hy-
poxic conditions, chronic hypoxic pulmonary hypertension (CHPH) was, however, 
only marginally reduced [71]. In contrast, IL-6 overexpression, specifically in the 
lungs, showed enhanced muscularization of small pulmonary vessels and PH under 
normoxic conditions, indicating that IL-6 may contribute to vascular remodeling 
in lungs. Of interest, overexpression of IL-6 under hypoxia resulted in severe PH 
and vascular remodeling up to obliteration [72]. Taken together, IL-6 is upregulated 
after chronic hypoxia in mouse lungs, but does not seem to be essential for CHPH 
development. Moreover, the combination of excessive IL-6 and chronic hypoxia 
seems to change the mode of vascular remodeling towards angioproliferation [49]. 
Based on recent results, there are currently two theories put forth to explain this 
observation. The first is that IL-6 is able to exert its effects through modulation of 
‘bone morphogenetic protein receptor type 2’ (BMPR2) through a signal transducer 
and activator of transcription 3 (STAT3)-microRNA cluster 17/92 pathway [73]. 
BMPR2 is a member of the transforming growth factor (TGF)-β superfamily of 
growth factor receptors. It is expressed ubiquitously and is a member of many dif-
ferent signaling pathways, including pERK, JNK, Akt/PI3K [74, 75], pSmad1/5 
[76], and p-p38MAPK [77]. Mutations in the BMPR2 gene are shown to be linked 
to PH development [78], and, moreover, BMPR2 expression is reduced in the pul-
monary vasculature in primary PH patients [79]. The other prevailing theory is 
based on the observation that IL-6 can influence the balance between apoptosis and 
proliferation in pulmonary arterial SMCs (PASMC) and ECs (PAECs), leading to 
vascular remodeling. Overexpression of IL-6 induces the angioproliferative growth 
factor VEGF and intracellular extracellular signal-regulated kinase (ERK), result-
ing in increased proliferation. Simultaneously, IL-6 downregulates the growth in-
hibitor TGFβ and proapoptotic mitogen-activated protein kinases (MAPKs) [JNK1, 
p38MAPK], and upregulates the inhibitors of apoptosis Bcl-2 and survivin, leading 
to decreased apoptosis [72]. In conclusion, inflammatory cytokines, especially IL-
6, can trigger vascular remodeling by influencing signaling pathways which lead to 
more proliferation and less apoptosis of PASMCs and PAECs (Fig. 15.1).

Furthermore, HIF-1α can induce PASMC depolarization by reduction of K+  chan-
nel expression and activity that is associated with intracellular K+  accumulation, 
and increase intracellular Ca2+ concentration and pH by upregulating transient re-
ceptor potential channels (TRPC) and Na+/H+  exchanger [80–83], (Fig. 15.2). It has 
been shown that the currents of voltage-gated K+  channels (Kv) are decreased under 
chronic hypoxic conditions [84–86], most likely mediated by reactive oxygen spe-
cies (ROS) derived from mitochondria [87–91] and/or nicotinamide adenine dinu-
cleotide phosphate (NADPH) oxidases, such as NOX4 [92], and can be associated 
with an influx of calcium via TRPC [93]. With regard to ROS in mediating hypoxic 
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responses, there is current controversy as to whether they are up- or downregulated 
during hypoxia [94, 95].

Moreover, the voltage-independent two-pore-domain K+ channel, TWIK-related 
acid-sensitive K+ channel (TASK)-1 is also inhibited by hypoxia, leading to mem-
brane depolarization and calcium entry through L-type channels [96, 97]. Interest-
ingly, it was recently shown that the inhibition of TASK-1 is also mediated by an 
ET-1-dependent mechanism [98]. In addition to such channels, L-type Ca2+ chan-
nels are shown to be a major cellular Ca2+ entry pathway [99, 100], (Fig. 15.2).

All these ion alterations are associated with more contractile, apoptosis-resistant, 
proliferative, and migratory PASMCs under hypoxic conditions [80–83, 100]. The 
role of HIF-2α in this context is still not clear.

Another recently discovered key player for the development of hypoxia-induced 
but also nonhypoxia-induced PH, is Fhl1, a protein known to be involved in muscle 
development (Fig. 15.1). It could be demonstrated that HIF-1α, as well as HIF-2α, 
induced Fhl-1 expression not only in different animal models of PH but also in 
human patients with idiopathic pulmonary arterial (PA) hypertension [101]. The 
increase in Fhl-1 causes elevated proliferation and migration of PASMCs, contrib-
uting to vascular remodeling [101].

15.3.4  Hypoxia-Independent Mechanisms Leading  
to the Development of COPD and PH

Hypoxia has long been thought to be the primary driving force for the develop-
ment of PH in COPD supported by studies showing a close relationship between 
mPAP and/or pulmonary resistance and alveolar hypoxia [12, 102, 103]. However, 
evidence that the causal factors can be hypoxia-independent and more complex is 
severalfold. (i) It has been shown that oxygen therapy is not able to fully reverse PH 
in COPD [46, 52]. (ii) Histological investigation in lungs from COPD patients with 
PH revealed involvement of all vessel layers characterized by prominent intimal 
thickening, medial hypertrophy, and muscularization of small arterioles [36, 104], 
whereas hypoxia-induced vascular remodeling is mainly restricted to the vessel me-
dia. This finding is supported by the fact that these pulmonary vascular alterations 
also occurred in nonhypoxic patients with mild airflow obstruction and smokers 
without any parenchymal disorder, suggesting that vascular changes may be driven 
by mechanisms independent of hypoxia/hypoxemia [23]. (iii) Consistent with the 
findings described in humans, a recent study demonstrated that in mice chroni-
cally exposed to tobacco smoke, pulmonary vascular remodeling and PH preceded 
the development of emphysema, and these changes were independent of hypoxia; 
there was neither hypoxia in the smoking chamber nor hypoxemia in the mice [20]. 
In addition, this study showed that the expression of genes involved in important 
pathways associated with PH and COPD, such as apoptosis, proliferation, oxidative 
stress, extracellular matrix, and inflammation, followed a completely different pat-
tern compared with that observed in chronic hypoxia-induced vascular remodeling, 
indicating that the smoke- and hypoxia-driven mechanisms were different [20]. The 
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combination of cigarette smoke and hypoxia can have synergistic effects in terms of 
affecting the vasculature. Guinea pigs exposed to cigarette smoke and subsequently 
to hypoxia showed a stronger elevation of pulmonary artery pressure and a more 
pronounced remodeling in small vessels compared with exposure to only one of 
these stimuli [105].

Additional animal studies reported a direct effect of cigarette smoke on the pa-
renchyma and vasculature. Cigarette smoke can increase the expression of vasoac-
tive mediators in pulmonary arteries [106], affecting the gene expression in pulmo-
nary arteries [107]. The exposure of guinea pigs to chronic cigarette smoke induced 
emphysema, which was associated with a reduced lung capillary density [108]. It 
was reported that cigarette smoke extract (CSE) can induce ET-1 in pulmonary ar-
tery ECs [109] and reduce prostacyclin synthase expression [110]. Moreover, CSE 
is able to induce the production of superoxide in ECs, which in turn reacts with NO 
to peroxynitrite [111]. This radical can inactivate VEGFR2 signaling [112], which 
is important for EC maintenance and growth. Of interest, CSE-induced EC apop-
tosis via p53 [113] can be prevented by the phosphodiesterase (PDE)-5 inhibitor 
sildenafil [114], which leads to increased levels of cyclic guanosine monophosphate 
(cGMP), an important second messenger. This finding suggests that the cGMP path-
way is involved in this context and decreased after smoke exposure.

15.4  Impairment of the Endothelium: Endothelial 
Dysfunction

New advances regarding the pathogenesis of PH in COPD suggest that an endothe-
lium-derived vasoconstrictor-dilator imbalance caused by endothelial dysfunction 
associated with decreased expression or uncoupling of endothelial NO synthase 
(eNOS) could be a driving force for PH development (Fig. 15.3). In this context, 
expression of VEGF and serotonin transporters seem to be increased [37, 38, 115, 
116]. ECs are important for the regulation of vascular homeostasis [117]. They re-
duce the vascular tone [118] and regulate pulmonary vessel adaptation to increases 
in blood flow [119] and hypoxia [120, 121]. Endothelial dysfunction has been re-
ported in patients with end-stage COPD who had undergone lung transplantation 
[115], as well as in patients with mild-to-moderate COPD [37]. The endothelial 
function is influenced by the expression of vasoreactive mediators controlling vaso-
constriction (also proproliferative for SMCs) or vasodilation (also antiproliferative 
for SMCs). On the one hand, it has been shown that the vasoconstrictive protein 
ET-1 was increased in patients with primary and secondary PH, including COPD 
patients [122] and, on the other hand, vasodilative mediators such as eNOS [123, 
124] and prostacyclin synthase (PGI2-S) [110] were shown to be downregulated in 
pulmonary arteries of patients with severe COPD. CSE and/or acrolein (a potent 
αβ-unsaturated aldehyde contained in cigarette smoke) can decrease the expression 
of PGI2-S in human pulmonary artery ECs (HPAECs) [110], supporting the hy-
pothesis that its downregulation in COPD patients arises directly from the cigarette 
smoke ingredients. After exposure to cigarette smoke for 8 months, mice developed 
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emphysema and PH, as well as concomitant downregulation of eNOS in lungs and 
vessels, supporting the observation in humans [20]. Of interest, eNOS-deficient 
mice developed emphysema and PH upon exposure to cigarette smoke, whereas 
inducible NO synthase (iNOS)-deficient mice did not [20].

15.5  Inflammatory Cells

Systemic inflammation is a known phenomenon in COPD [125, 126]. Thus, 
inflammation could also contribute to the pathogenesis of PH in patients with 
COPD. In fact, the degree of pulmonary vascular remodeling correlates with the 
amount of inflammatory cells seen in small airways [14, 51]. Compared with 
nonsmokers, COPD patients show increased numbers of inflammatory cells 

Fig. 15.3  Endothelial dysfunction as a causing factor for the development of vascular remod-
eling. Cigarette smoke and inflammatory mediators can cause endothelial dysfunction which is 
triggered by a a disbalance of vasodilative and vasoconstrictive molecules towards an excess of 
vasoconstrictors, and b damage/dysregulation of EC signaling. Additionally, vascular progeni-
tor cells (VPCs) are attracted to the damaged endothelium. Such VPCs can either contribute to 
repair by differentiation into ECs or to remodeling by differentiation into SMCs. Furthermore, an 
endothelial-to-mesenchymal transition (EMT) may occur, resulting in an SMC phenotype. Vaso-
constriction and altered endothelial cell signaling are stimuli for smooth muscle cells (SMCs) to 
proliferate, resulting in vascular remodeling, increased pulmonary artery pressure and, finally, 
pulmonary hypertension
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invading the adventitia of pulmonary muscular arteries [127]. These cells pre-
dominantly consist of activated T lymphocytes, especially CD8+ T cells [115, 
127], which are increased in the arterial adventitia of smokers with normal lung 
function. The ratio of CD4+/CD8+ is reduced compared with nonsmokers, and 
is comparable to the situation in patients with mild-to-moderate COPD [127]. 
The correlation of IL-6 (an inflammatory mediator) expression and elevations 
in mPAP supports a possible role of inflammation in the pathogenesis of PH (in 
COPD) [128].

15.6  Oxidative and Nitrosative Stress and the Influence 
in Vascular (Patho-)Physiology

Evidences for oxidative stress in COPD patients are numerous [7, 129]. Oxida-
tive stress is the result of an imbalance between oxidants and antioxidants in 
favor of oxidants. Cigarette smoke itself contains high concentrations of ROS 
[130]. Elevated concentrations of H2O2 and 8-isoprostane (oxidative stress mark-
ers) can be found in exhaled breath condensate of smokers and ex-smokers, as 
well as during exacerbations [131–133]. ROS can negatively influence the func-
tion of antiproteases, such as α1-antitrypsin and SLPI. This negative influence 
leads to a protease/antiprotease imbalance accelerating the degradation of elastin 
in the lung parenchyma, resulting in emphysema [134]. In addition, ROS play 
an important role in the vasculature. Traditionally, macrophages have been con-
sidered as the major ROS source, even in vessel walls [135]. However, several 
studies showed that all vascular cells (endothelial, smooth muscle, adventitial 
cells) produce ROS in different amounts, depending on the stimuli to modulate 
cellular function [136].

ROS, for example produced by macrophages, are normally involved in the elimi-
nation of pathogens and as such are critical to the organism. ROS and reactive 
nitrogen species (RNS) are able to cause protein modification and DNA damage 
[137]. Indeed, NO, generated by NO synthases, reacts with superoxide (O2•–) to 
form the potent oxidant peroxynitrite (ONOO) [138]. This peroxynitrite can react 
with tyrosine residues from proteins to form nitrotyrosine, shown to be increased in 
COPD patients [47, 48]. In the vasculature, ROS play an important physiological 
role, participating as second messengers in endothelial function, in smooth muscle 
and EC growth and survival, and in the process of remodeling of the vessel wall 
[139]. Under pathophysiological conditions, these responses are uncontrolled and 
imbalanced, respectively [140–142]. The main vascular ROS is the superoxide an-
ion, which can inactivate NO, as mentioned above, by generating peroxynitrite. 
Since NO is an important vasodilator, the reaction with ROS influences the vascular 
tone [143, 144]. Superoxide can be converted to H2O2 by superoxide dismutase 
(SOD), which is a more stable ROS. The depletion of H2O2 is carried out by catalase 
and glutathione peroxidase producing H2O. Hydrogen peroxide and other peroxides 
regulate growth-related signaling in vascular SMCs and inflammatory responses in 
vascular lesions [141, 145]. ROS can activate several vascular signaling cascades, 
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such as ERKs and MAPKs, which are important in cell growth, proliferation, apop-
tosis, and differentiation. Furthermore, receptor and nonreceptor tyrosine kinases 
(shown to be involved in cardiovascular remodeling and damage), and protein tyro-
sine phosphatases and transcription factors such as NF-κB and AP-1, which induce 
vascular inflammation [146, 147], are affected by ROS. Several studies reported 
the role of ROS in growth processes contributing to vascular remodeling and in-
jury. Angiotensin II can lead to NADPH oxidase-generated superoxide production, 
mediated by the angiotensin type I (ATI) receptor, which is converted to H2O2 by 
SOD acting as a second messenger that results in hypertrophy or hyperplasia of 
vascular SMCs [148, 149]. This angiotensin II-induced reaction can be inhibited 
by the flavoprotein inhibitor diphenyleneiodonium (DPI) [148], catalase [149], and 
knockdown of p22phox [150], supporting the involvement of NADPH oxidases in 
the vasculature.

ROS are also able to promote vascular remodeling by increasing deposition of 
extracellular matrix proteins. Collagen and elastic fibers can be degraded by pro-
teinases, especially matrix metalloproteinases (MMPs). These MMPs are secreted 
by macrophages and vascular SMCs in an inactive form [151]. ROS, for example 
peroxynitrite, activate MMP2 and 9 in human SMCs, leading to degradation of 
the basement membrane and elastin [152]. Use of a hypertension model of aldo-
sterone-induced systemic oxidative stress revealed that ET-1-associated processes 
lead to vascular remodeling [153]. Redox-sensitive inflammatory processes can 
also contribute to vascular remodeling. Expression of the inflammation-related 
intracellular adhesion molecule-1 (ICAM-1) is elevated in the aorta from aldo-
sterone-treated rats [153]. Furthermore, Liu et al. [154] reported that angiotensin 
II-induced oxidative stress caused tissue hypertrophy which was associated with 
increased ICAM-1 expression. Of interest, NADPH oxidases were involved in 
this context, producing ROS [154]. It is of note that not only the vascular but also 
the phagocytic NADPH oxidase is involved in superoxide production in cardio-
vascular diseases because monocytes and lymphocytes can infiltrate cardiovascu-
lar tissues [135].

Taken together, elevated occurrence of superoxide, H2O2, and reduced NO bio-
availability by reaction with superoxide forming peroxynitrite can contribute funda-
mentally to vascular remodeling and emphysema development.

15.7  Recent Advances in Molecular Mechanisms of 
COPD Associated with Vascular Remodeling/PH

15.7.1  Inducible Nitric Oxide Synthase as a Key Player 
for the Development of Cigarette Smoke-Induced 
PH and Emphysema

A recent study identified the major NO source in the context of smoke-induced em-
physema and PH in mice [20]. Cigarette smoke led to an upregulation of the iNOS 
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mRNA and protein expression, predominantly in small pulmonary vessels, and was 
associated with increased NO generation. Interestingly, eNOS was downregulated 
when the disease was established, in mice as well as in COPD patients. It is most 
probable that the vasodilative NO effect did not appear because of the simultaneous 
abundance of ROS from both external (cigarette smoke) and internal sources. This 
study suggested that the subsequent formation of peroxynitrite, most probably in-
creased in this context, had proapoptotic effects (as well as antiproliferative effects) 
on alveolar epithelial cells type II (AECII) and ECs, promoting emphysema devel-
opment, vessel loss, and vascular remodeling. Moreover, the level of nitrotyrosine 
was increased in those mice as well as in smokers without COPD and patients with 
severe COPD. It is likely that the downregulation of eNOS was associated with 
uncoupling of this enzyme, leading to the switch of NO to superoxide production, 
which increased the oxidative stress. Mice deficient in iNOS but not eNOS were 
protected from vascular remodeling, PH, and emphysema. Treatment with an iNOS 
inhibitor (L-NIL) could not only prevent disease development but also promote 
lung regeneration in mice previously exposed to cigarette smoke for 8 months.

Moreover, it has been shown that the development of PH was mediated by iNOS-
carrying bone-marrow-derived cells, whereas emphysema development was depen-
dent on iNOS in nonbone-marrow-derived cells [20] (Fig. 15.4). This phenomenon 
shows that PH and emphysema can develop independently of each other, and could 
also explain the discrepancy that not all COPD patients also suffer from PH, if such 
results are transferable to the human situation.

Quite recently, it could be demonstrated in mice and guinea pigs that stimula-
tion of the soluble guanylate cyclase (sGC) could not only prevent the cigarette 
smoke-induced development of vascular remodeling but also emphysema [155]. 
The sGC is an enzyme that uses iNOS-generated NO to produce cGMP from gua-
nosine triphosphate (GTP). cGMP acts as a second messenger, amongst others me-
diating vasodilation, which can decrease the vascular pressure. The combination of 
the iNOS-related findings [20] with this study demonstrates the important role of 
the NO–sGC–cGMP axis for the physiology and pathophysiology of the pulmonary 
vasculature. It has already been suggested that dysregulation of this axis contrib-
utes to pulmonary diseases and PH [156–158]. In line with previous findings [20], 
prevention from vascular remodeling was associated with prevention from emphy-
sema, although causality was not investigated in these studies.

15.7.2  Reactive Oxygen Species as a Trigger for Vascular 
Remodeling

Although cigarette smoke itself produces ROS, causing oxidative stress, the ad-
ditional internal ROS sources produced by the organism are still not fully resolved. 
Depending on the circumstances, several sources such as NADPH oxidases, mito-
chondria, xanthine oxidase, cyclooxygenases, lipooxygenases, and uncoupled eNOS 
come into consideration. As mentioned before, uncoupled eNOS can contribute to 
oxidative stress in terms of COPD [159–163]. Based on experimental and clinical 
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studies, NADPH oxidases are suggested to be the predominant superoxide-produc-
ing enzymes in the context of oxidative stress in cardiovascular diseases [164]. 
The classical NADPH oxidase is expressed in phagocytes; it produces O2•– as a 
defense mechanism against bacterial infections [135]. The intrinsic enzyme consists 

Fig. 15.4  Identification of inducible nitric oxide synthase (iNOS) as an essential factor for the 
development of cigarette smoke-induced emphysema and pulmonary hypertension (PH) in mice. 
Cigarette smoke-mediated upregulation of iNOS leads to excessive NO production. The forma-
tion of peroxynitrite, resulting from the reaction of NO with superoxide, was suggested to medi-
ate emphysema and PH development. Superoxide can derive from cigarette smoke itself and/or 
from uncoupled endothelial NOS (eNOS), nicotinamide adenine dinucleotide phosphate (NADPH) 
oxidases, xanthine oxidases, cyclo- and lipooxidases, and mitochondria. Of interest, iNOS gener-
ated by nonbone-marrow-derived cells (NBMDC), possibly vascular cells, leads to lung destruc-
tion, resulting in emphysema, whereas elevated iNOS expression in bone-marrow-derived cells 
(BMDC) causes vascular remodeling. Treatment with the specific iNOS inhibitor L-NIL prevents 
or even reverses pathological alterations

 



366 M. Seimetz and N. Weissmann

of membrane-bound catalytic subunits that produce the ROS and cytosolic subunits 
which regulate the function of the enzyme. In phagocytes gp91phox (= NOX2; ‘phox’ 
= phagocytic oxidase) is associated with p22phox, being essential for its function 
[165], and both are located in the membrane. They form a complex with the cyto-
solic subunits p40phox, p47phox, and p67phox, as well as the G-protein Rac2 [166]. All 
these subunits, as well as the other membrane-bound enzymes NOX1, NOX4, and 
NOX5, and homologs to p47phox (NOXO1) and p67phox (NOXA1), are expressed 
in vascular cells. NOX5 seems to be active without any regulatory subunit. NOX4 
is constitutively active, is associated with p22phox, and its function appears to be 
independent of regulatory subunits, in contrast to NOX1 and NOX2, which need to 
be activated [167]. The activity of NOX1 is predominantly regulated by NOXO1 
and NOXA1 [168]. Activation by p47phox and p67phox is also possible but is less ef-
fective than involvement of NOXO1 and NOXA1 [168, 169]. In the case of NOX2, 
p47phox is phosphorylated upon cell stimulation, followed by complex formation 
with the other cytosolic subunits, mediating migration to the membrane-bound sub-
unit. Electrons are then transferred from the substrate NADPH to O2, resulting in 
superoxide (O2•–) production [170].

    In addition to inflammatory processes often related to immune defense or ciga-
rette smoking, NADPH oxidases can be stimulated by many factors in cardiopulmo-
nary vascular diseases. Vasoactive agonists such as angiotensin II, ET-1, and tumor 
necrosis factor-α (TNFα) can regulate NADPH oxidases in vascular cells [153, 154, 
171]. Even genetic factors might be involved in NADPH oxidase-dependent super-
oxide production. For instance, polymorphisms in the promoter region of the gene 
encoding p22phox have been identified. Such polymorphisms can increase the activ-
ity of the promoter in vascular SMCs [172], which were shown to be associated 
with essential hypertension [173] and decreased NO bioavailability [174].

In terms of remodeling, ROS can influence several intracellular signaling cas-
cades, e.g. activation of ERKs and MAPKs, which affect cell growth and differen-
tiation; protein tyrosine phosphatases and transcription factors, for instance NF-
κB and AP-1, inducing proinflammatory genes associated with hypertension and 
atherosclerosis; and receptor and nonreceptor tyrosine kinases, which have been 
shown to be involved in cardiovascular remodeling and vascular damage [146].

Because of the fact that monocytes and lymphocytes are able to infiltrate cardio-
vascular tissues and pulmonary vessels, it is important to note that in cardiovascular 
diseases, such as COPD, not only vascular NADPH oxidase can contribute to ROS 
formation, and hence to vascular remodeling, but phagocytic oxidase can also con-
tribute [175].

15.7.3  Neprilysin Downregulation Provokes Pulmonary Vascular 
Remodeling

A recent study demonstrated that neprilysin (neutral endopeptidase [NEP]) might be 
an important factor for the susceptibility of humans to pulmonary vascular remodel-
ing in response to smoke inhalation and hypoxia [176] (Fig. 15.5). NEP is a trans-
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membrane zinc peptidase that is widely expressed, including in PASMCs, PAECs, 
and fibroblasts [177]. Its activity and expression is decreased by cigarette smoke 
[178], hypoxia [179, 180], and ROS [181]; it is particularly important in vascular 
SMCs in terms of remodeling [176]. A genetic depletion of NEP in mice resulted 
in increased severity of PH associated with stronger proliferation of PASMCs com-
pared with wild-type mice. This finding suggests a protective role of NEP against 
PH, partly by suppressing proliferation and migration of PASMCs [180].

    Interestingly, Wick et al. [176] showed that NEP expression was decreased in 
lungs from COPD patients with PH and non-COPD PH patients, especially in the 

Fig. 15.5  Scheme of proposed neprolysin (NEP)-dependent mechanisms leading to vascular 
remodeling. Extracellular stimuli, such as hypoxia and cigarette smoke, activate pathways in vas-
cular cells, causing downregulation of NEP expression and/or activity which was seen in patients 
with COPD associated with pulmonary hypertension (PH). Stimuli can have direct negative effects 
on NEP, and also indirectly by 1) increasing reactive oxygen species (ROS) and platelet-derived 
growth factor (PDGF); and 2) activation of other pathways, in part receptor-mediated. NEP down-
regulation leads to elevated proliferation, migration, inflammation, angiogenesis, and vasocon-
striction mediated, amongst others, by depicted molecules, causing vascular remodeling. The ROS 
effect on NEP can be inhibited by the superoxide dismutase (SOD) mimetic tiron. Colored boxes 
indicate involvement in the respective pathway; red arrows represent inhibition/downregulation; 
green arrows represent activation/upregulation. ET-1 endothelin-1, FGF-2 fibroblast growth fac-
tor, AT-II angiotension-II, PASMC pulmonary artery smooth muscle cells, EC endothelial cells, 
FB fibroblasts
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distal vasculature where prominent remodeling occurs. NEP is involved in many 
peptidase-dependent (e.g. degradation of vasoactive neuropeptides) and -indepen-
dent (e.g. interaction of signaling molecules with NEP’s intracellular cytosolic 
subunit) signaling pathways [182, 183], but its endopeptidase activity-dependent 
pathways influencing vascular remodeling are not yet well understood. Wick et al. 
postulated that increased proliferation/migration of dedifferentiated SMCs or myo-
fibroblasts may promote pulmonary vascular remodeling and PH if NEP is less ac-
tive or downregulated, perhaps mediated by platelet-derived growth factor (PDGF) 
whose expression is inversely correlated to NEP. Recent data from Karoor et al. 
support this assumption. They showed that PDGF receptor (PDGFR) signaling was 
constitutively active in NEP−/− cells and lungs; this effect could be attenuated by the 
endothelin A (ETA) receptor antagonist ambrisentan [184]. Additionally, a loss of 
NEP could have inflammatory, angiogenic, and vasoconstrictive effects on vascular 
cells. The anti-inflammatory action of NEP could be explained by NEP-dependent 
degradation of the proinflammatory substrates substance P and bradikinin. The de-
crease in NEP after cigarette smoke and hypoxia may also enhance the angiogenic 
effect of fibroblast growth factor (FGF)-2 [182], as well as the proproliferative and 
vasoconstrictive properties of ET-1 [185] and bombesin-like peptides [186], all be-
ing substrates of NEP.

Recently, it was demonstrated in PASMCs that FGF-2 and ET-1 synergize with 
PDGF in increasing phosphorylation of Src kinase (amongst others activating PDG-
FR) and PDGFR, which promoted migration and proliferation of the cells [184]. 
The phosphatase PTEN (phosphatase and tensin homolog) also plays an important 
role in vascular biology. The loss of PTEN results in PH [187]. It is inactivated 
by phosphorylation (mediated by Src and PDGFR) and downregulated in NEP-
deficient PASMCs. This downregulation could be rescued by NEP overexpression 
in NEP null cells or by downregulation of Src or PDGFR by small interfering RNA 
(siRNA). These observations suggest that NEP-dependent mechanisms protect 
against the inactivation of PTEN [184]. Moreover, NEP can be inactivated by ROS, 
as shown by decreased activity in the presence of H2O2 and improved NEP activity 
when an antioxidant, the SOD mimetic tiron, was present [176].

Of interest, early studies suggest that inhibition of NEP could be beneficial for 
the treatment of PH [188, 189]. This proposal is based on the fact that NEP can 
inactivate atrial/brain natriuretic peptides (ANP/BNP), which promote vasodilation 
by increasing cGMP mediated via natriuretic peptide receptor-A (NPR-A) [190]. 
cGMP-dependent protein kinase (PKG), cGMP binding PDEs, and cyclic nucleo-
tide-gated ion channels bind cGMP, in which PKG seems to be the main mediator 
of cGMP signals [191–193]. Binding of ANP/BNP-induced cGMP activates PKG, 
leading to the catalytic transfer of phosphate from ATP to target proteins. These 
phosphorylated proteins translate the extracellular stimuli into specific biological 
outputs [194], such as vasodilation.

It has been shown that NEP antagonists, alone and in combination with angioten-
sin-converting enzyme (ACE) and endothelin-converting enzyme (ECE) inhibitors, 
were able to improve cardiac function, decrease systemic blood pressure, and limit 
cardiac hypertrophy [195–198]. Nevertheless, side effects were observed if single 
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NEP inhibitors or dual inhibitors (NEP/ACE or NEP/ECE) were used. Nowadays, 
even triple vasopeptidase inhibitors (NEP/ACE/ECE) are under investigation, with 
promising preliminary results showing fewer side effects; in particular, the increase 
in ET-1 can be reversed by simultaneous application of an ECE inhibitor [196]. 
These combination therapies and the different mechanisms of NEP, ACE, and ECE 
inhibition have been extensively reviewed by Daull et al. [196].

However, recent observations support the possibility that NEP could be protec-
tive against PH [176, 180, 199]. One explanation for the discrepancy between the 
beneficial cardiac effects and harmful pulmonary effects of NEP inhibition is the 
well-known phenomenon that the pulmonary and systemic circulations usually 
respond to hypoxia (a major stimulus for PH) in opposite ways: pulmonary ves-
sels contract to redirect blood flow to better oxygenated areas of the lung, whereas 
systemic vessels dilate to increase the flow of oxygenated blood to areas of tissue 
hypoxia or ischemia [180].

In conclusion, in terms of the lung, it is suggested to increase NEP to treat PH, 
whereas cardiac NEP inhibition could be used for treatment of hypertrophy and im-
provement of cardiac function. This dichotomy clearly demonstrates that a possible 
treatment must be dependent not only on the target itself but also on the localization 
of the target. These data should be kept in mind when considering NEP-related drug 
therapies.

15.8  Conclusions

The mechanisms of COPD and PH in COPD are still far from being fully under-
stood. Studies primarily from the last decade have shown that vascular remodeling 
and PH can occur in COPD, not only in severe cases but also in mild-to-moderate 
forms of the disease, or even in smokers without airflow limitations. Investigations 
of the molecular mechanisms of COPD and the occurrence of pulmonary vascu-
lar remodeling established that COPD associated with PH and pulmonary vascular 
remodeling is a complicated multifactorial disease involving hypoxia-related and 
hypoxia-unrelated mechanisms, inflammation, and endothelial dysfunction. Recent 
advances have changed the long-standing view of the pathobiology of COPD. In the 
past, vascular alterations (vascular remodeling and PH) have been seen to be sec-
ondary events occurring after destruction of the parenchyma, predominantly caused 
by hypoxia/hypoxemia. However, recent studies have demonstrated that such vas-
cular abnormalities can be early events in COPD, preceding airflow limitations and 
emphysema, and can be independent of hypoxia. It has been shown, at least in mice, 
that PH and lung emphysema triggered by tobacco smoke can occur independently, 
and suggest that vascular molecular alterations can be a trigger for lung emphysema 
development.

Further elucidation of the contribution of pulmonary vascular changes to COPD 
development may help to identify new therapeutic concepts for this disease.
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