
87© Springer Science+Business Media New York 2015 
H. Schatten (ed.), The Cytoskeleton in Health and Disease, 
DOI 10.1007/978-1-4939-2904-7_4

    Chapter 4   
 The Role of the Cytoskeleton in Cell 
Migration, Its Infl uence on Stem Cells 
and the Special Role of GFAP in Glial 
Functions 

                Juliana     de     Mattos     Coelho-Aguiar     ,     Felipe     Andreiuolo     ,     Henrike     Gebhardt     , 
    Luiz     Henrique     Geraldo     ,     Bruno     Pontes     ,     Diana Isabel Lourenço     Matias     , 
    Joana     Balça-Silva     ,     Diego     Pinheiro     Aguiar     ,     Anália     do     Carmo     , 
    Maria     Celeste     Lopes     ,     Rolf     Mentlein     , and     Vivaldo     Moura-Neto    

        J.      M.   Coelho-Aguiar      •    D.I.L.   Matias      
  Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria do Estado de Saúde do Rio de 
Janeiro ,   Rio de Janeiro ,  Brazil    

  Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro , 
  Rio de Janeiro ,  Brazil   
 e-mail: jumcoelho@gmail.com; dimtias@gmail.com   

    F.   Andreiuolo      
  Department of Pathology ,  Centre Hospitalier Sainte-Anne, Université Paris Descartes , 
  Paris ,  France   
 e-mail: f.andreiuolo@ch-sainte-anne.fr   

    H.   Gebhardt      •    R.   Mentlein      
  Department of Anatomy ,  University of Kiel ,   Kiel ,  Germany   
 e-mail: h.gebhardt@anat.uni-kiel.de; rment@anat.uni-kiel.de   

    L.  H.   Geraldo      •    B.   Pontes      
  Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro , 
  Rio de Janeiro ,  Brazil   
 e-mail: lh_geraldo@icb.ufrj.br; brunoaccpontes@gmail.com   

    J.   Balça-Silva      
  Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging 
and Life Sciences (CNC.IBILI), University of Coimbra ,   Coimbra ,  Portugal   

  Faculty of Medicine, University of Coimbra (FMUC) ,   Coimbra ,  Portugal    
 e-mail: joanabalca.silva@gmail.com   

mailto:jumcoelho@gmail.com
mailto:dimtias@gmail.com
mailto:f.andreiuolo@ch-sainte-anne.fr
mailto:h.gebhardt@anat.uni-kiel.de
mailto:rment@anat.uni-kiel.de
mailto:lh_geraldo@icb.ufrj.br
mailto:brunoaccpontes@gmail.com
mailto:joanabalca.silva@gmail.com


88

     Abbreviations 

   AD    Alzheimer’s disease   
  Arp2/3    Actin-related proteins 2/3   
  bFGF    Basic fi broblast growth factor   
  CCL    C-C motif chemokine   
  CCR7    C-C chemokine receptor type 7   
  CDC42    Cell division control protein 42 homolog   
  CNS    Central nervous system   
  CNTF    Ciliary neurotrophic factor   
  CSF    Cerebrospinal fl uid   
  CX3CR1    CX3C chemokine receptor 1   
  CXCR    C-X-C chemokine receptor   
  DOCK180    Dedicator of cytokinesis protein   
  ECM    Extracellular matrix   
  ELMO1    Engulfment and cell-motility protein 1   
  ERK    Extracellular signal-regulated protein kinase   
  ERM    Ezrin/Radixin/Moesin   
  FAK    Focal adhesion kinase   
  G proteins    guanine nucleotide-binding proteins   
  GABA    Gamma amino butyric acid   
  GEF    Guanine nucleotide exchange factor   
  GFAP    Glial fi brillary acidic protein   
  GPCRs    G-protein-coupled receptors   
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  HD1     Hemidesm osomal 1 protein   
  hMSC    Human mesenchymal stem cells   
  HSPC    Hematopoietic stem/progenitor cell   
  IF    Intermediate fi lament   
  JAK    Janus kinase   
  MAPKs    Mitogen-activated protein kinases   
  mDia1    Diaphanous homolog 1 of Drosophila   
  MFs    Microfi laments   
  MLC    Myosin light chain   
  MSCs    Mesenchymal stem cells   
  MTs    Microtubules   
  NSCs    Neural stem cells   
  PBSF    Pre-B cell growth-stimulating factor = SDF1, stromal cell-derived 

factor 1   
  PKB    Protein kinase B   
  PNS    Peripheral nervous system   
  RAC1    Ras-related C3 botulinum toxin substrate 1   
  RDC-1    G protein-coupled receptor = CXCL12   
  RNAi    RNA interference   
  ROCK    Rho-associated coiled-coil forming protein kinases   
  SDF-1    Stromal cell-derived factor-1= CXCL12   
  STAT3    Signal transducer and activator of transcription 3   
  TGFβ1    Transforming growth factor beta 1   
  TNF    Tumor necrosis factor   
  VASP    Vasodilator-stimulated phosphoprotein   
  XCR1    C sub-family of chemokine receptors 1   

          Introduction 

 The cytoskeleton is a dynamic network of proteins organized in fi brillar or globular 
fi laments in the cell cytoplasm [ 1 ]. Three types of fi laments are common to many 
eukaryotic cells: (1) intermediate fi laments provide mechanical strength and resis-
tance to shear stress; (2) microtubules determine the positions of membrane- 
enclosed organelles and direct intracellular transport; and (3) actin fi laments 
determine the shape of the cell’s surface and are necessary for cell migration. Actin 
fi laments also interact with accessory proteins that link them to other cellular com-
ponents, as well as to each other [ 1 ]. 

 This chapter initially addresses the role of the cytoskeleton in one of its main 
functions, cell migration. The dynamics and the mechanical aspects of the actin 
fi laments are essential to this process, as are the signaling pathways induced by the 
chemokines and their receptors. We also give special attention to the cytoskeletal 
proteins of the stem cells, in the origin of cell functions. Finally, the chapter dis-
cusses the participation of the cytoskeleton in functions performed by different 
types of glial cells, focusing on the role of a particular intermediate fi lament, the 
glial fi brillary acidic protein (GFAP), in the health and disease.  

4 The Role of the Cytoskeleton in Cell Migration, Its Infl uence on Stem Cells…



90

    An Overview of Cell Migration 

 Cell migration has fascinated cell biologists, biochemists, and recently also physicists 
and mathematicians. This is not surprising, since it is an essential process that 
occurs during different stages and at different times, ranging from organism devel-
opment to normal adult life and also during disease states [ 2 – 4 ]. 

 Cells in multicellular organisms can move in different directions, through the 
extracellular matrix, over each other, or even between each other. Cells move in 
three basic steps: (1) extending the plasma membrane forward at the front, or lead-
ing edge, of the cell in a protrusion; (2) moving the cell body; and (3) retracting the 
rear part of the cell [ 5 ]. These steps involve two main cytoskeleton fi laments, micro-
tubules and actin fi laments; the microtubules are required for polarization [ 6 ,  7 ] 
while the actin fi laments are the main players during migration and protrusion for-
mation [ 8 ]. 

 Cells are able to extend four different types of protrusions at the leading edge, 
lamellipodia, fi lopodia, blebs, and invadopodia. All these structures have their own 
functions and contribute to cell migration in specifi c ways. Lamellipodia are able to 
extend long distances through the extracellular matrix, pulling cells through the 
tissues [ 2 ]. Filopodia explore the cell’s surroundings [ 9 ,  10 ]. Membrane blebs help in 
cell migration during development [ 11 ], and invadopodia are protrusions that allow 
degradation of the extracellular matrix, and help cells to pass through tissues [ 12 ]. 

 In the following parts of this section we discuss the mechanical aspects of the 
formation of a protrusive migratory structure called the lamellipodium, and how 
the plasma membrane regulates the behavior of this structure, as well as its 
infl uence during cell migration. We also discuss some chemokines that induce 
migratory processes followed by cytoskeletal changes. 

    Lamellipodium 

 The thin protrusive region at the leading edge of migrating fi broblasts in culture was 
termed the “lamellipodium” by Abercrombie et al. [ 13 ]. Abercrombie et al. [ 14 ] 
showed that these structures contain actin fi laments arranged in a branched structure, 
but not microtubules. First described in fi broblasts, lamellipodia have also been 
observed in many other cell types such as precursor cells, epithelial cells, and neural 
crest cells [ 2 ,  15 ]. 

 For many years, a group of proteins called the Actin-Related Proteins 2/3 
(Arp2/3) complex was thought to be the primary mediator of actin polymerization 
in lamellipodia. First described as a nucleator of actin polymerization [ 16 ], the 
Arp2/3 complex binds to actin fi laments and induces the formation of branched 
actin networks [ 17 ]. Branched actin networks were also observed in electron- 
microscopy images of lamellipodia [ 18 ]. However, it is now known that the extent 
of actin fi lament branching can vary depending on the cell type and conditions, as a 
recent report found only a few branches in the leading edge of cells [ 19 ]. Not only 
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branching but also the balance of other known actin-binding proteins can contribute 
to the extension of the lamellipodium. For example, more capping protein activity 
reduces actin length and increases nucleation by Arp2/3 [ 20 ]. On the other hand, 
an increase in the expression of vasodilator-stimulated phosphoprotein (VASP) 
(a protein known to promote fi lament elongation) was reported to generate longer 
fi laments [ 21 ,  22 ]. More recently, other actin nucleators were found to contribute to 
lamellipodial protrusion, including several members of the Formin family of pro-
teins. Formins were described as protecting actin fi laments from capping and also 
as promoting fi lament elongation without branching. One of these proteins, diapha-
nous homolog 1 of Drosophila (mDia1), was fi rst reported to localize at the lamel-
lipodia of migrating cells [ 23 ]. 

 The fi nal essential factor in cell movement is the plasma membrane. The lamel-
lipodial protrusion will encounter the physical barrier imposed by the membrane, 
and this barrier will also restrict cell migration [ 24 ].  

    Membrane Mechanical Properties Orchestrates Cell Migration 

 The mechanical characteristics of the plasma membrane, particularly its plasma 
membrane tension and bending modulus, play central roles in cell motility and cyto-
skeleton remodeling [ 25 – 28 ]. 

 A direct way to assess these responses to forces is by measuring two elastic 
parameters of the cell membrane: its bending modulus [ 28 ] and its membrane ten-
sion [ 29 ], using a technique based on extracting the membrane tether from the cell 
by pulling on it with an attached microsphere trapped in an optical tweezers [ 30 ]. 
The experimental procedure is illustrated in Fig.  4.1 . Analysis of the force- extension 
curve, together with measurement of the tether radius, yield these two elastic param-
eters and also information regarding the membrane–cytoskeleton interaction [ 31 ]. 
Tether pulling with optically trapped beads is the only known direct method for 
these measurements [ 26 ].

   The mechanical load exerted by the membrane at the leading edge of cells can 
locally infl uence the dynamic growth and organization of the actin network [ 25 ,  32 – 34 ]. 
The high membrane tension in the lamellipodia of motile cells directly infl uences 
the protrusion [ 35 – 37 ]. Simultaneously at the rear of the cell, the same membrane 
load can exert a pulling force that induces retraction [ 38 ,  39 ]. However, this mechani-
cal load imposed by the membrane was also reported to be infl uenced by forces gener-
ated from the actin cytoskeletal protrusion itself [ 27 ,  31 ,  32 ,  40 ,  41 ]. 

 One possibility is that the membrane mechanical parameters are determined 
primarily through a balance of forces between the cytoskeleton and the hydrostatic 
pressure acting on the membrane [ 29 ,  42 ]. Another possibility is that these param-
eters are controlled mainly by the interaction between the membrane and the cyto-
skeleton [ 31 ,  43 ]. Regardless of the exact mechanism, membrane mechanical 
properties have emerged as important regulators that coordinate local dynamics 
over cellular scales. 
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 Apart from these dynamic aspects, recent data also suggest that cell specialization 
and/or differentiation can account for the differences in the mechanical properties of 
the membrane, and that these differences are refl ected in their specialized functions 
[ 44 ]. A question that remains unanswered is how the threshold value of these mem-
brane parameters are set. The answer is still not clear, and may vary with different 
cell types. Pontes et al. [ 43 ] began to test this hypothesis by measuring the mem-
brane tension and bending modulus for a variety of cells. These authors observed 
that the elastic parameters for neurons are close to those obtained for an isolated cell 
membrane (a membrane disconnected from the cytoskeleton), suggesting a weaker 
interaction between the membrane and the adjacent F-actin cortex in this cell type. 
They also observed that the parameters did not change within the different neuronal 
cell regions, i.e., the cell body, neurite and growth cone. They found very similar 
membrane mechanical parameters for astrocytes and glioblastoma cells, supporting 
the idea that these two cell types have the same origin and also share similar func-
tions, for example giving support to neurons in the brain [ 45 ]. Macrophages and 
microglial cells have substantially higher values for the membrane mechanical 
parameters. When activated, these two phagocytic cells decrease their bending 
modulus by a factor of 3. This reduction can be interpreted as an easier way to bend 
the cell surface, which is advantageous during phagocytosis. 

  Fig. 4.1    Schematic representation of a tether extraction experiment. Situation ( 1 ): a bead is 
trapped in an optical trap. Situation ( 2 ): a bead is placed against the cell surface. Situation ( 3 ): by 
moving the microscope stage, a membrane tether, with radius  R  and force  F   0  , is formed       
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 Taken together, these observations are striking examples which demonstrate that 
different cells performing different functions show different mechanical parame-
ters. These new fi ndings suggest the possibility of characterizing cells based not 
only on morphological and biochemical analyses, but now on their mechanical 
properties as well.  

    Chemokines Induce Migratory Processes 

 Chemokines are  chemo tactic cyto kines , comprising a large superfamily of small 
peptides (approximately 8–17 kDa) that currently number 47 in humans [ 46 ,  47 ]. 
They can be classifi ed according to their amino-acid structure into four groups, 
based on the variations of a conserved cysteine motif in the mature sequence of the 
proteins [ 48 ,  49 ]. Chemokines bind to the chemokine receptor subfamily of class A 
G-protein-coupled receptors (GPCRs), which comprises ten CCR family members, 
seven C-X-C chemokine receptors (CXCR) family members, the “C” sub-family of 
chemokine receptors 1 (XCR1) and CX3C chemokine receptor 1 (CX3CR1) [ 46 ,  50 ]. 
These GPCRs signal through heterotrimeric G-proteins, and regulate a diversity of 
signal transduction pathways involved in chemotaxis and cell survival. 

 Chemokines were fi rst described for their role in chemotaxis and migration 
of leukocytes to lymphoid tissues and sites of injury, and the signaling pathways 
activated by their receptors lead to changes and reorganization within the cytoskel-
eton proteins. They also proved to be important in the development and homeostasis 
of the immune system and various other organs, and in pathophysiological pro-
cesses associated with osteoporosis [ 51 ], obesity and insulin resistance [ 52 ], viral 
infections [ 53 ,  54 ], immune responses [ 55 ,  56 ], mobilization of progenitors to the 
bone marrow [ 57 ] and autoimmune encephalomyelitis [ 58 ]. More recently, chemo-
kines emerged as key mediators of cancer progression, by interfering with the hom-
ing of cancer cells to metastatic sites and the recruitment of a number of different 
cell types to the tumor microenvironment, such as tumor-associated macrophages, 
tumor-associated neutrophils, lymphocytes, cancer-associated fi broblasts, myeloid- 
derived suppressor cells and endothelial cells [ 48 ,  49 ,  59 ,  60 ,  61 ]. 

 Processing the chemokine gradients into migratory or adhesive responses occurs 
in multiple dynamic steps that regulate changes in the cytoskeleton and cellular 
adhesion [ 46 ,  62 – 65 ]. Binding of the chemokines to their G-coupled receptors can 
lead to downstream activation of different signaling pathways (Fig.  4.2 ), such as 
protein kinase B (PKB/Akt) and mitogen-activated protein kinases (MAPKs) [ 66 , 
 67 ]. Another activated pathway may be the Janus kinase family (JAK), activated in 
a Gαi-independent fashion [ 68 ,  69 ]. The Rho family of GTPases and their down-
stream effectors were also implicated in chemokine-elicited migration. One of the 
important groups of Rho effectors is the Rho-associated coiled-coil forming protein 
kinases (ROCK) I and II, which enhance myosin light chain (MLC)  phosphorylation 
by both inhibiting MLC phosphatase and phosphorylating MLC, thereby regulating 
actin–myosin contraction [ 66 ,  70 ]. ROCK isoforms also regulate lymphocyte polarity 
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and migration through members of the Ezrin/Radixin/Moesin (ERM) family of 
proteins [ 66 ,  71 ]. Rho GTPases also control cytoskeletal remodeling through 
effector proteins from the mDia family of formins, which, as mentioned above, are 
actin-nucleating proteins favoring the formation of long straight actin fi laments. 
Lack of mDia1 expression signifi cantly reduces T cell homing to secondary lym-
phoid organs [ 72 ].

   Little is known about the correlation between chemokines and the cytoskeleton. 
At least C-C motif chemokine 19 (CCL19)/CCL21-CCR7 and CXCL12-CXCR4 
constitute an exception. 

    The Infl uence of the Chemokines CCL21/CCL19 and Their Receptor 
CCR7 on the Cytoskeleton 

 From a physiological perspective, all these intracellular events that occur in the 
lymphocyte homing process depend on a combination of interactions between dif-
ferent chemokines and their receptors, according to the cell type involved: T-cell 
homing and traffi c of lymphocytes into and within secondary lymphoid tissues rely 
largely on CCR7 and its ligands CCL21/CCL19 [ 73 ,  74 ], as well as a minor contri-
bution from CXCL12-CXCR4 interactions [ 75 ,  76 ]. Bardi et al. [ 77 ] reported that 

  Fig. 4.2    Signaling pathways involved in cytoskeleton regulation. Chemokines bind to G-protein- 
coupled receptors, and consequently can activate different signaling pathways, such as protein 
kinase B (PKB), mitogen-activated protein kinases (MAPKs), the Janus kinases family (JAK) and 
the Rho family GTPases. All these signaling pathways are involved in modulating the cytoskeleton 
proteins, leading to their reorganization, more specifi cally of the F-actin fi laments       
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both the CCR7-mediated polarization and chemotaxis are dependent on the Rho 
kinases, but not on MAPK extracellular signal-regulated protein kinase (ERK)-2, as 
previously described [ 78 – 80 ]. The C-C chemokine receptor type 7 (CCR7) and 
other chemokine receptors such as CXCR4 also activate leukocyte integrins, which 
are important for the endothelial adhesion and arrest of rolling lymphocytes [ 81 – 83 ], 
possibly through downstream activation of RhoA [ 84 – 86 ]. 

 Although B cell integrin activation is also primarily induced by CCR7 and 
CXCR4, their homing also requires the activation of CXCR5, whose expression is 
restricted to B cells and a subset of CD4+ T cells [ 76 ]. 

 The expression of CCR7 and CCL21 has been described in many cancers 
(especially melanoma, breast cancer, and head and neck cancers), and was corre-
lated with actin polymerization and lamellipodium formation, which contribute to 
increased tumor-cell migration, invasion and metastatic potential [ 87 – 91 ].  

    The Infl uence of the Chemokine CXCL12 and Its Receptor CXCR4 
on the Cytoskeleton 

 CXCL12, better known as stromal cell-derived factor-1 (SDF-1), was fi rst described 
as pre-B cell growth-stimulating factor (PBSF) [ 92 ], and activates integrins in B-cells 
as mentioned above. The chemokine CXCL12 and its receptor CXCR4 are well 
known for their role in the metastasis of breast cancer [ 93 ,  94 ]. However, CXCL12 is 
constitutively expressed in a broad range of tissues, e.g. in bone marrow, spleen, liver, 
lung and brain, as well as in most types of tumors [ 92 ,  95 ]. This chemokine is the only 
known ligand for CXCR4, also known as Fusin/LESTR/CD184 [ 96 – 98 ]. CXCR4 is a 
G-protein-coupled seven transmembrane receptor and is widely expressed by many 
different cell types including hematopoietic cells, leukocytes, endothelial cells, 
central nervous system (CNS) cells, and cells of the gastrointestinal tract. 

 Physiologically, CXCL12 is important for the homing of CXCR4-expressing 
hematopoietic cells to the bone marrow [ 99 ] and for guiding CXCR4-positive cells 
from different tissues to their niche [ 100 ]. CXCL12/CXCR4 knockout is lethal and 
leads to several impairments in CNS development and hematopoiesis in mice [ 101 ]. 
Furthermore, the CXCL12-CXCR4 axis plays a role in angiogenesis and infl amma-
tion (e.g. recruitment of lymphocytes). The chemokine CXCL12 can also bind 
to another chemokine receptor, CXCR7/G Protein-Coupled Receptor (RDC-1) 
[ 102 ,  103 ]. However, the connection between this pathway and the cytoskeleton is 
poorly understood. 

 Li et al. [ 104 ] showed that after CXCR4 stimulation, a signaling pathway that 
leads to the reorganization of the actin-cytoskeleton becomes activated. After bind-
ing of CXCL12 to CXCR4, the heterodimeric G-protein dissociates into the Gαi- 
and Gβγ-subunits. The Gαi2-subunit interacts with the N-terminus of the engulfment 
and cell-motility protein 1 (ELMO1) which forms a complex with the DOCK180 
(Dedicator of cytokinesis) protein. The ELMO1/DOCK180 complex serves as a 
guanine nucleotide exchange factor (GEF), activating the small GTP-binding pro-
tein (G protein) Rac1 [ 104 ]. 
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 It is well known that small GTPases such as RhoA, Rac and CDC42 control the 
dynamics of the cytoskeleton [ 105 ]. Rac, which is activated by ELMO1/DOCK180, 
can remove the capping proteins and activate the Arp2/3 complex, which induces 
the growth of actin fi laments and the formation of new actin branches from existing 
ones [ 106 ,  107 ]. 

 Another cytoskeleton modulation by CXCL12 is the activation of Focal Adhesion 
Kinase (FAK) and Paxillin. After CXCL12 binds to CXCR4, the Janus kinase 2 
(JAK2) and the MAP-kinase ERK1/2 pathways become activated by phosphorylation. 
Activated JAK2 phosphorylates Signal transducer and activator of transcription 3 
(STAT3), and pSTAT3 and pERK are able to phosphorylate FAK and Paxillin, 
activating these proteins, which leads to actin cytoskeleton reorganization [ 108 ]. 
In conclusion, CXCL12 in known to infl uence the cytoskeleton reorganization in 
two different ways, through the Gαi2-ELMO1/Dock180-Rac1 activation and the 
JAK2- pSTAT3/pERK-pFAK/paxillin activation. 

 Apart from the chemokines previously described in detail, the CXCL9/Mig che-
mokine is also known to activate the small GTPases Rac1 and RhoA via its receptor 
CXCR3 on human melanoma cells, also leading to cytoskeletal changes [ 109 ].   

    Role of Cytoskeleton in Maintenance of Stem-Cell Properties 

 Nowadays, the application of stem cells in regenerative medicine is one of the major 
fi elds in biomedical research. Because of their ability to self-renew and differentiate 
into specifi c lineages, stem cells play an important role in the development of cell- 
based therapies [ 110 – 112 ]. The implementation of these new therapies made it nec-
essary to investigate the cellular and molecular mechanisms involved in the 
regulation of stem-cell differentiation, growth, and phenotypic expression. The 
most recent studies have indicated that the regulation of stem-cell growth and fate is 
also dependent on the crosstalk between the extracellular matrix (ECM) ligands and 
the stem-cell surface receptors [ 113 ,  114 ]. Therefore, during their differentiation 
into specifi c lineages, stem cells are subjected to extracellular stimuli that determine 
a number of morphological alterations associated with the expression of cytoskele-
tal proteins, actin fi laments, microtubules, intermediate fi laments, and their down-
stream effectors [ 115 – 117 ]. These alterations are also crucial in establishing the 
migration phenotype observed in different types of stem cells, as was previously 
documented in mesenchymal stem cells (MSCs) and in the embryonic neural stem 
cells (NSCs) [ 113 ,  115 – 118 ]. A brief summary of the most important conclusions 
that explain the role of the cytoskeleton in stemness maintenance and its contribu-
tion to stem-cell migration and differentiation is given below. 

 Increasing evidence shows that a diverse array of environmental factors contrib-
utes to the control of stem-cell activity, differentiation and migration. According to 
the tissue microenvironment factors, stem cells are believed to modulate their 
 cytoskeleton, to migrate and move away from their niche, and then to differentiate 
[ 119 ]. Studies on myocardial development and on capillary endothelial cells have 
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demonstrated that alterations in cell shape might regulate cellular differentiation 
[ 113 ,  115 ,  116 ,  118 ,  120 ]. These results show that the cytoskeleton is a key player 
in the differentiation and migration of stem cells [ 121 ] (Fig.  4.3 ).

   Recent studies showed that during osteogenic differentiation, the actin cytoskel-
eton of MSCs becomes more dispersed, similarly to that of osteoblasts, and the 
disruption of the actin cytoskeleton decreases osteogenesis in favor of adipogenesis 
[ 121 ]. These results have been crucial in the area of tissue engineering of bone and 
cartilage, which attempts to develop new therapeutic strategies for the treatment of 
musculoskeletal trauma and diseases [ 43 ,  122 ,  123 ]. A number of studies have 
shown that the stem-cell fate and the adhesive interactions between the stem cells 
and the substrate can be infl uenced through the control of their shape by artifi cial 
extracellular matrices. 

 Alterations in the cytoskeleton are also dependent on microtubules that contrib-
ute to migration and to stem-cell polarization. The regulation of microtubules is 
usually dependent on the Rho GTPases, in particular RhoA, Rac1 and Cdc42. 
Previous studies have reported that migrating hematopoietic stem and progenitor cells 
growing on MSCs display a polarized morphology, with the formation of an uropod 
at the rear pole and a leading edge at the front, which is involved in microtubule 

  Fig. 4.3    Changes of the cytoskeleton in a neural stem cell during differentiation. During the dif-
ferentiation process, the neural stem cell (represented by radial glia) undergoes cytoskeletal 
changes, in the microfi laments (MFs), microtubules (MTs) and intermediate fi laments (IFs). 
Alterations in the stem-cell cytoskeleton may involve the disorganization of MFs, which become 
more dispersed; destabilization of the MTs; and also modulation of the expression of IF proteins 
such as Nestin and GFAP, leading to the differentiation of stem cells into astrocytes, for example       
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destabilization. The uropod formation seems to be dependent on the activity of 
RhoA and its downstream effector Rho-associated coiled-coil containing protein 
kinase (ROCK I). When RhoA is inhibited using the Rho kinase inhibitor (Y-27652) 
or RNA interference (RNAi), the polarization of the hematopoietic stem/progenitor 
cells (HSPCs) and their migration capability are considerably decreased, indicating 
the crucial role of microtubules in stem-cell migration [ 124 ,  125 ]. Vertelov et al. 
[ 126 ] showed that in hypoxic conditions, the human mesenchymal stem cells 
(hMSCs) showed increased RhoA activity, and consequently it may contribute not 
only to increasing migration, but also to preserving MSCs in an undifferentiated 
state, as compared to normoxic conditions. Moreover, the microtubules seem to be 
important to maintain the migration capacity as well as the polarity of NSCs [ 127 ]. 

 Two of the most thoroughly studied IF proteins are nestin and GFAP [ 128 ] 
(Fig.  4.3 ). In the 1990s, nestin was fi rst identifi ed as a marker of neuroepithelial 
stem/progenitor cells in the CNS by Lendahl and collaborators [ 129 ]. Nowadays, it 
is considered to be a marker for distinguishing precursor from differentiated cells 
[ 130 – 132 ]. A study performed by Mellodew et al. [ 133 ] also showed that loss of 
nestin expression could be a predictive signal for differentiation of NSCs. GFAP is 
classically known as a marker of mature astrocytes. However, several studies have 
been conducted in order to evaluate its contribution to the maintenance of stem-cell 
features. Previous studies suggested that primary astrocyte cultures from the post-
natal and adult mouse brain could contain GFAP-expressing cells that may act as 
multipotent NSCs when transferred to neurogenic conditions [ 134 ,  135 ]. GFAP 
functions are addressed in detail in section “GFAP Expression and Its Functions in 
Astrocytes”. 

    Cytoskeleton Alterations During Disease Progression: The Role of Stem 
Cells in Cancer 

 The cancer stem-cell theory predicts that not all cancer cells in a tumor exhibit the 
same tumor-growing ability, and that only a small population of cells with stem-cell 
properties drives tumor growth. The proliferation, survival and migration of tumor 
stem cells seem to be dependent on the local microenvironment. Although highly 
controlled during embryonic development, the ECM is commonly deregulated in 
cancer [ 136 ,  137 ] and seems to contribute to the development of chemo- and radio-
resistance of tumor cells. Under normal conditions, the ECM receptors allow stem 
cells to anchor to the local microenvironment where their properties can be main-
tained [ 136 ,  137 ]. This anchorage physically constrains stem cells to make direct 
contacts with the microenvironment cells, which produce paracrine-signaling mol-
ecules that are essential for maintaining stem-cell properties [ 136 ,  137 ]. 

 Considering that tumor cells possess an increased proliferation and migration 
ability, we could hypothesize that due to the occurrence of genetic mutations and 
microenvironment alterations, the characteristics of the stem-cell cytoskeleton 
become distorted. The most recent studies have shown that cancer cells express the 
same cytoskeleton markers as benign stem cells [ 130 ]. Therefore, the problem 
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seems to be associated with the degree of expression of the cytoskeleton markers 
and with the signaling pathways that become activated. 

 One of the fi rst lines of evidence that the cytoskeleton is involved in the tumor 
phenotype was the experiment conducted by Vasioukhin et al. [ 138 ], who set up 
conditional gene targeting to knockout genes in the stem cells and basal epidermal 
layer of mouse skin. They started to knock out the α-catenin, and observed that 
mouse skin rapidly took on the appearance of squamous cell carcinoma in situ. 
More recently, Rampazzo et al. [ 139 ] demonstrated that the treatment of tumor stem 
cells isolated from glioblastoma samples, with Wnt ligands, or the induction of 
 β -catenin overexpression mediates neuronal differentiation and halts proliferation 
in primary glioblastoma cells. 

 In prostate cancer, deregulation of the non-canonical Wnt/Ca 2+  pathway leads to 
F-actin fi lament rearrangements and consequently to the reduction of cancer pro-
gression [ 140 ]. 

 Understanding the complexities of the stem cell cytoskeleton in cell homeo-
stasis and in tumor development is a challenging exercise, not only to understand 
the physiology of many diseases but also to implement new therapeutic 
strategies.    

    Role of Intermediate Filaments in Glial Cells: Example 

    Glial Fibrillary Acidic Protein (GFAP) in Health and Disease 

 The intermediate fi laments are components of the cytoskeleton that are specifi c to 
each cell type. These fi laments confer mechanical force and resistance on the cells, 
and are regulated developmentally and tissue-specifi cally. GFAP is the main inter-
mediate fi lament (IF) protein in astrocytes, although other intermediate fi lament 
proteins such as nestin, vimentin and synemin can also be found in these cells [ 141 ]. 
A combination of vimentin and nestin is observed in immature astrocytes, while 
vimentin and GFAP are found in mature astrocytes [ 37 ,  142 ,  143 ] (Fig.  4.3 ). Only 
GFAP seems to be capable of forming homodimers [ 143 ]. 

 GFAP was discovered in the brains of patients with multiple sclerosis. It was 
initially termed ‘plaque protein’ and was fi rst isolated, purifi ed and the amino-acid 
content determined over 40 years ago. Immunostaining for GFAP has been per-
formed since 1975 [ 144 ,  145 ]. 

 Although GFAP was originally thought to be an astrocyte-specifi c IF [ 145 ], curi-
ously, several investigators have shown that it is present in different amounts in vari-
ous types of tissues, such as enteric glia [ 146 ], Schwann cells [ 147 ], and even 
outside the CNS, in chondrocytes, fi broblasts and myoepithelial cells [ 147 ,  148 ], 
lymphocytes [ 149 ] and stellate cells from the liver, kidney, pancreas, lungs, and 
testes [ 150 ,  151 ]. 

 Astrocytes are heterogeneous, and their biology varies according to the particular 
physiological state and time frame, and also to their location in the CNS [ 151 ,  152 ]. 
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It is a challenging task to determine the specifi c role of GFAP in these multiple 
environments and in different physiological and pathological conditions. 

 The human GFAP polypeptide consists of 432 amino acids and has a molecular 
mass of 55 kDa. The gene contains 9 exons and spans over 10 Kb in chromosome 
17p21 [ 153 ]. GFAP belongs to the family of type 3 intermediate fi laments. 

 The constitutional transcription of the human GFAP gene is controlled by a 
TATA-like sequence CATAAA, located 29 base pairs downstream of the RNA start 
site [ 154 ]. Multiple sites seem to be involved in the regulation of GFAP expression, 
with important roles for phosphorylation and DNA methylation in GFAP transcrip-
tion [ 155 ]. The demethylation of the GFAP promoter activates GFAP transcription 
[ 156 ]. GFAP expression during development is also controlled by acetylation in 
neural stem cells, and has been shown to be signifi cantly reduced by acetylation in 
mature astrocytes [ 157 ,  158 ]. 

 The expression of GFAP has multiple regulatory factors, including various hor-
mones, cytokines and growth factors, including interleukins 1 and 2, tumor necrosis 
factor (TNF), ciliary neurotrophic factor (CNTF), basic fi broblast growth factor 
(bFGF), transforming growth factor beta 1 (TGFβ1) and glutamate. Interestingly, 
this regulation seems to be partially controlled by the interaction between astrocytes 
and cortical neurons, mainly through TGFβ1; and varies in different regions of the 
brain [ 159 – 163 ]. 

    GFAP Alternative Splicing-Isoforms 

 At least nine isoforms of GFAP mRNA exist, and are generated by alternative 
mRNA splicing and polyadenylation signal selection [ 155 ,  164 – 169 ]. Please refer 
to Middeldorp and Hol for an excellent review of GFAP biology and GFAP 
isoforms [ 155 ]. Seven of these isoforms are present in humans. 

 GFAPα was the fi rst to be identifi ed, and is also the most abundant and the most 
studied. 

 GFAPβ has a transcription site located 169 nucleotides above the site for 
GFAPα, which corresponds to a 5′ region that is not transcribed in the main iso-
form [ 170 ]. GFAPβ is the main isoform in Schwann cells from the rat peripheral 
nervous system (PNS), but its mRNA comprises only 5–10 % of the total GFAP 
mRNA in the CNS. It has been found in normal hamster brain and in a case of 
human glioma [ 171 ]. 

 GFAPγ was fi rst described in spleen and bone marrow from mice. GFAPγ lacks 
exon 1 and includes the last 126 bp of intron 1–2, comprises around 5 % of all 
GFAP mRNA in the CNS in mice, and is also present in a small proportion in 
humans [ 167 ]. 

 The splice variants GFAPΔEx6, GFAPΔ164, and GFAPΔ135 skip sequences in 
exon 6/7 and have been observed in tissue from patients with Alzheimer’s disease, 
focal lesions in chronic epilepsy, and a specifi c astrocyte subtype. These out-of- frame 
splice forms completely lack the tail domain [ 166 ]. 

 GFAPκ is the result of an alternative splicing at the 3′ end of the GFAP 
pre- mRNA, and the consequent inclusion of an alternative exon termed 7B [ 164 ]. 
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The C-terminal domain of GFAPκ is therefore different from those present in other 
isoforms. 

 GFAPζ was described in mice, originating from the initial report of a transcript 
including the last 284 bp of intron 8–9 [ 167 ,  172 ]. 

 GFAPδ is the most often studied isoform, after the canonical form GFAPα. 
It was initially described in rats in 1999, from an alternative splicing, resulting in 
substitution of the last two exons by an alternative exon called 7+ [ 165 ]. Nielsen and 
coworkers [ 168 ] described the corresponding RNA in humans, terming it 7a, and 
naming the isoform GFAP epsilon; and more recently have come to a consensus on 
the name GFAPδ [ 173 ]. The exon 7a has its own polyadenylation signal inhibiting 
the expression of exons 8 and 9. It has been isolated only in mammals, and seems to 
be subject to a different evolutionary pressure than the other exons [ 174 ]. Among 
the higher primates, the exons 7+ are 100 % identical, with the exception of an ala-
nine on codon 426, conserved in only 9 % of human alleles, and replaced by a valine 
in 21 % and by a threonine in 70 %. The potential phosphorylation of this threonine 
residue could explain a positive selection for this change [ 175 ]. 

 Incorporation of exon 7a results in a substitution of the 42 C-terminal amino 
acids by a new c-terminal domain of 41 amino acids. Among the different isoforms, 
only GFAPδ and GFAPκ show a modifi cation in the C-terminal portion. As a con-
sequence, GFAPδ and GFAPκ are incapable of forming homodimers, but are able to 
form heterodimers with GFAPα and vimentin [ 164 ,  175 ]. GFAPκ mRNA comprises 
around 5–10 % of the total GFAP mRNA in humans [ 164 ,  175 ,  176 ]. 

 GFAPδ is expressed in proliferating neurogenic astrocytes during development, in 
the adult human brain as well as in radial glia cells [ 169 ,  177 – 179 ]. It can be detected 
by immunohistochemistry, particularly in astrocytes of the  glia limitans  and in differ-
ent forms of gliosis [ 172 ,  180 ], in contrast to earlier studies on post- mortem material 
[ 169 ]. Moreover, its expression seems to parallel that of vimentin in normal and reac-
tive astrocytes, but not in glial tumors [ 180 ]. Interestingly, differential GFAP isoform 
expression in mice does not seem to be linked with aging or reactive gliosis [ 172 ]. 
The specifi c functions of the different GFAP isoforms have not been well estab-
lished. These isoforms often differ from GFAPα in the C-tail domain, the region 
responsible for interaction with other cell components. The interaction of GFAPα 
was specifi cally shown with presenilins 1 and 2 [ 168 ] and αβcristallin [ 176 ]. 
Therefore an assembly-compromised role of GFAPδ as a modulator of the GFAP 
fi lament surface has been postulated [ 155 ].  

    GFAP Expression and Its Functions in Astrocytes 

 GFAP is phylogenetically ancient. The human GFAP polypeptide shows a 90 % 
homology with its murine and porcine counterparts, and about 85 % homology with 
goldfi sh GFAP [ 174 ]. 

 During development, GFAP is expressed in radial glia, bipolar cells which 
express vimentin and nestin and which have been shown to be neural precursors 
[ 181 ,  182 ] (Fig.  4.3 ). Studies differ with respect to the exact moment when GFAP 
expression can fi rst be detected in these cells, varying from gestational week 6–12; 
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these differences are probably due to the location in the brain or to the detection 
techniques used [ 155 ,  183 ,  184 ]. Nervous-system neural precursor cells show a pro-
gressive shift in intermediate fi lament expression, from vimentin to GFAP. In the 
normal adult brain, only certain subpopulations of astrocytes seem to co-express 
vimentin and GFAP such as Bergmann Glia, subpopulations of corpus callosum, 
hippocampus, subpial, and rare white-matter astrocytes [ 185 ,  186 ]. 

 The functions of GFAP are not yet completely elucidated, and include a role in 
the long-term maintenance of the brain parenchyma structure, the proper function-
ing of the blood–brain barrier [ 187 ], myelination [ 188 ], astrocyte proliferation [ 189 , 
 190 ], and astrocytic modulation of some neuronal functions, such as the formation 
and protection of synapses [ 191 ,  192 ]. GFAP is involved in other important and 
fundamental cellular processes, and is probably implicated in astrocyte motility 
[ 193 ,  194 ] and exocytosis of astrocytic gliotransmitters [ 195 ,  196 ]. GFAP is also 
important in the regulation and maintenance of glutamate transporters in the astro-
cyte plasma membrane, a key mechanism for glutamate uptake and its metabolism 
and for the formation of GABA [ 197 ].  

    GFAP, Pathological States and Disease 

   GFAP Knockouts 

 Knockout mice for intermediate fi laments (GFAP−/−, Vimentin−/−, GFAP−/−, and 
vimentin−/−) do not show major changes in their development, adult life, and repro-
duction [ 198 – 200 ]. These authors found no major differences in brain architecture 
and cellularity in comparison to wild-type animals. However, another group of 
researchers working on GFAP-null rodents reported contrasting results, showing 
myelination defects in the spinal cord, optic nerve and corpus callosum, and hydro-
cephalus in half GFAP-null mice after 18 months [ 201 ]. Astrocytes lacking interme-
diate fi laments exhibit normal morphology, but lack the ability to form normal glial 
scars [ 202 ], have restricted motility in vitro [ 203 ], and are highly sensitive to isch-
emia and trauma [ 204 ]. GFAP−/− mice are also more sensitive to neurodegeneration 
induced by kainic acid or mechanical trauma, which is not observed in wild-type 
animals [ 205 ].  

   GFAP and Gliosis 

 GFAP expression rises as a consequence of infl ammation and various CNS diseases 
such as trauma, ischemia, genetic diseases, toxic lesions, and degenerative diseases 
[ 206 ]. In all these situations, astrocytes react to injury, in a process usually called 
astrogliosis or simply gliosis. Despite having general morphological features in com-
mon, astrocytes may vary morphologically and chronologically in their responses 
according to the nature, intensity and localization of the lesion. The kinetics of this 
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response is usually rapid, and can be detected 1 h after the insult, with a maximum 
intensity at between 3 and 7 days [ 207 ]. 

 Astrocytic gliosis has classically been described morphologically by the hyper-
trophy of the cell soma and processes, which is roughly proportional to the severity 
of the insult and the proximity of the astrocyte to it. More recently it has been well 
established that there is an increase in the GFAP cellular content, and, depending on 
the severity of the reaction, also an increase in the number of astrocytes [ 208 – 210 ]. 
Constitutional GFAP expression is heterogeneous among different astrocyte popu-
lations, and in the normal state not all astrocytes express detectable levels of 
GFAP. With increasing intensity of gliosis, most astrocytes will express GFAP, and 
in severe gliosis one also observes astrocyte proliferation, with subsequent overlap 
and disruption of individual astrocyte domains [ 151 ]. Therefore, GFAP has been 
generally used as a marker of gliosis [ 206 ], even though astrocyte reactivity and 
GFAP upregulation due to different stimuli may be associated with different changes 
in transcriptome profi les and cell function [ 211 ]. In other words, GFAP levels can 
be generally increased in various CNS pathological states such as trauma, ischemia, 
infections, and neurodegenerative diseases. 

 Interestingly, low levels of GFAP can be detected in the cerebrospinal fl uid (CSF) 
in healthy individuals. The reason has not been well established, but it has been 
postulated that the presence of GFAP might be related to some degree of astrocyte 
death and release of the protein into the extracellular space, as normal astrocytes do 
not secrete GFAP [ 212 ]. GFAP levels in the CSF can be elevated in association with 
several conditions, including traumatic, vascular, developmental, infl ammatory, 
neoplastic, and degenerative diseases. We briefl y describe certain diseases in which 
GFAP seems to have a particular role.  

   Alzheimer’s Disease 

 Alzheimer’s disease (AD) is characterized mainly by two neuropathological alterations, 
the formation of neurofi brillary tangles, and amyloid deposits in the brain [ 213 ]. 
Reactive astrogliosis has been well described in AD, although its role in this disease 
is not yet completely understood. Reactive astrogliosis in AD is usually focal, and 
reactive astrocytes are intimately associated with amyloid plaques or diffuse 
amyloid deposits, surrounding them and forming miniature scars all around [ 151 ]. 
The intensity of reactive astrogliosis, as determined by GFAP levels, has been reported 
to increase in parallel with increasing disease morphological burden [ 214 ,  215 ], and 
in some studies can be correlated with cognitive impairment [ 216 ].  

   Alexander’s Disease 

 A gradual increase in astrocyte GFAP content is usually observed during adult life 
in mice, primates, and humans [ 217 ,  218 ]. Mice induced to overexpress GFAP die 
for reasons that are currently unknown, and their astrocytes exhibit accumulation 
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of the protein in numerous cytoplasmic Rosenthal fi bers [ 219 ]. Likewise, 
Alexander’s disease, a rare human disease, is caused in 95 % of cases by muta-
tions of GFAP, leading to its accumulation in the cytoplasm, associated with pro-
teins such as small heat shock, ubiquitin and β cristallin in the form of Rosenthal 
fi bers [ 220 ,  221 ]. There are two clinical forms, one with early onset, which pro-
gresses with childhood leukodystrophy with striking clinical signs of megalen-
cephaly, seizures and psychomotor delay; and a later-onset form, often revealed 
by diffi culty swallowing and speaking, autonomic dysfunction and ataxia. Several 
different mutations have been reported in the human GFAP gene in Alexander’s 
disease, mostly heterozygous missense changes predicting the production of full-
length mutant and wild-type proteins, and subsequently alterations such as small 
in-frame insertions and deletions, and in-frame skipping of an entire exon or 
frameshifts at the extreme C-terminal end [ 222 ]. The pathophysiology is explained 
by the increase in the toxic function of abnormal tissue deposits [ 223 ]. For the list 
of GFAP mutations in this disease please refer to the Waisman Center of the 
University of Wisconsin-Madison (  http://www.waisman.wisc.edu/alexander/
mutations.html    ). 

 Interestingly, Rosenthal fi bers are also present in certain pathological conditions, 
namely tumors such as pilocytic astrocytomas and gangliogliomas, and even some 
types of chronic gliosis, for example, those observed in the periphery of craniopha-
ryngiomas or hemangioblastomas.  

   GFAP and Gliomas 

 The development of immunohistochemistry for GFAP was an important advance in 
surgical neuropathology, including the diagnosis of brain tumors. The expression of 
GFAP in primary glial tumors has been extensively studied since the beginning of 
the 1980s, and is now widely used in diagnostic neuropathology [ 224 – 226 ]. 
Independently of the histological grade, every tumor with astrocytic differentiation 
is expected to show at least some positivity for GFAP [ 227 ]. GFAP-positive cells 
can also be observed in some other glioma types, such as oligodendroglioma, where 
often small cells named “minigemistocytes” express GFAP [ 227 ]; and in ependy-
momas [ 226 ,  228 ]. A signifi cant proportion of choroid-plexus tumors can also 
express GFAP, even focally [ 226 ]. 

 Some studies have shown in vitro a negative correlation between GFAP expres-
sion levels and the malignant transformation of astrocytes [ 229 – 231 ]. However in 
experimental astrocytoma murine models, GFAP expression does not seem to affect 
tumor progression [ 232 ]. 

 GFAP serum levels seem to be signifi cantly elevated in patients with glioblas-
toma multiforme [ 233 ]. This implies damage to the blood–brain barrier, since this 
protein is not usually detectable in the serum or is present in very low levels. Some 
other conditions that can lead to its rise in the serum are stroke, hemorrhage, trauma 
and multiple sclerosis [ 212 ].    
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    Enteric Glia Cytoskeleton 

 GFAP is also the main marker of enteric glia, a peripheral glial-cell type derived 
from the neural crest cells that has close morphological, molecular and functional 
similarities to astrocytes (reviewed by Coelho-Aguiar et al. [ 234 ]). These glial cells 
are crucial for the proper functioning of the gut. Their disruption in mice by the 
targeting of GFAP-positive cells leads to increased permeability of the mucosal 
epithelium, followed by an infl ammation process and disruption of the ileum and 
jejunum structure [ 235 – 237 ]. 

 Interestingly, as in the CNS, GFAP is also expressed in glia-like progenitors in 
the gut. Some of these GFAP-positive cells can generate multilineage colonies 
in vitro and also give rise to glial and neuronal cells in vivo in graft studies, in injury 
conditions or in experiments of myenteric plexus ablation with benzalkonium chloride 
detergent [ 238 – 245 ]. 

 Similarly to reactive gliosis in the CNS, there is an increase of GFAP levels in 
enteric glia of infl amed gut regions, notably in infl ammatory bowel diseases [ 246 ]. An 
increase in GFAP expression was also observed in colon biopsies of patients with 
 Clostridium diffi cile  infections [ 246 ]. Patients with Parkinson’s disease show α synu-
clein aggregates (the pathological trait of Parkinson’s disease) also in the ENS, and also 
an increased expression and reduced phosphorylation of GFAP, which is also observed 
in neurodegenerative processes in the CNS [ 247 ,  248 ]. These informations suggest an 
association between enteric infl ammation and glial dysregulation. 

 Furthermore, specifi c roles are known for other components of the cytoskeleton 
in enteric glia, the F-actin fi laments and microtubules. Little is known about this, 
but Ca 2+  dependent responses have been identifi ed in enteric glia, related to their 
functions in neurotransmission. Calcium enters enteric glial cells through a mecha-
nism termed capacitative calcium entry, which is responsible for the maintenance of 
calcium storage in different cell types. It has been shown that in cultured myenteric 
glia, the disruption of the actin fi laments or microtubules can decrease and even 
completely inhibit calcium entry [ 249 ]. These experiments confi rmed the impor-
tance of the cytoskeleton for the physical interactions between the calcium storage 
organelle and the plasma membrane as a capacitative calcium-entry mechanism, 
which replenishes the cell after depletion of the intracellular calcium store. It is 
probable that the same events occur in astrocytes and other cell types to maintain 
their intracellular calcium store, but this has not yet been investigated.  

    Schwann Cell Cytoskeleton 

 Another neural crest-derived GFAP-expressing type of glia is the Schwann cells, 
which are responsible for the myelinization of the entire peripheral nervous system 
(PNS). Schwann cells can be found in myelinating or non-myelinating forms. This 
cell type is capable of great migratory and differentiation capacities during 
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development and even in adults, to repair and replace the myelin of injured axons. 
The physical interaction of these cells with the surrounding microenvironment 
involves changes in the cytoskeleton. 

 These cells constitute the other example of peripheral glia that express 
GFAP. However, it is clear that they show a different GFAP isoform expression from 
that of astrocytes and enteric glia. Moreover, they express this IF at lower levels 
than astrocytes, and even more reduced levels in relation to enteric glia [ 250 ]. 

 GFAP expression is a marker of non-myelinating Schwann cells. GFAP appears 
after differentiation of Schwann-cell precursors into immature Schwann cells [ 251 ]. 
Its expression depends on contact with non-myelinated axons, and is downregulated 
in myelinating Schwann cells. On the other hand, vimentin is expressed in myelin- 
forming Schwann cells. In experiments with sciatic-nerve transection, a reduction 
of GFAP mRNA levels was observed. Moreover, the immunodetection of GFAP 
also decreased, while vimentin expression increased [ 252 ]. 

 Interactions among Schwann cells, the extracellular matrix and axons are mediated 
by surface receptors and are transduced by the cytoskeleton proteins. These interac-
tions are essential to the recovery of neuronal transmission after axonal nerve injury. 
The axonal regeneration process follows well-established steps. After disruption of 
myelin sheets, Schwann cells dedifferentiate and proliferate. There is an increase in 
the expression of adhesion molecules and cytoskeleton proteins such as GFAP and 
vimentin. Then, these glial cells form bands of Büngner, which serve as a substrate for 
axonal regrowth. After that, they enwrap the axons and form myelin [ 253 ]. All these 
stages require continuous reorganization of the Schwann cell cytoskeleton. 

 In GFAP-null mice, the development of peripheral axons and their myelin is 
normal, as is their functioning. However, lack of GFAP leads to retardation in nerve 
regeneration after injury, probably because of a problem in Schwann cell prolifera-
tion. This study, developed by Triolo and coworkers [ 253 ], revealed that GFAP 
interacts with integrin αvβ8, which interacts with fi brin, thus acting in the early 
steps of Schwann-cell proliferation. These investigators also showed that vimentin 
interacts with integrin α5β1, which connects to fi bronectin, acting in the subsequent 
steps of Schwann-cell proliferation and nerve regeneration [ 253 ]. 

 Another cytoskeleton protein associated with integrins in Schwann cells is merlin, 
also known as schwannomin. Merlin is a perinuclear protein that translocates to cyto-
plasm during differentiation and becomes associated with integrin β1 in myelinating 
Schwann cells. This study suggests that merlin links the integrin to the microfi laments, 
supporting myelination [ 254 ]. Other proteins associated with intermediate fi laments 
interact with integrins, such as hemidesmosomal 1 protein (HD1), plectin and dystonin 
[ 255 ]. Targeted disruption of dystonin, for example, results in problems in the interac-
tion with the axon basement membrane and in PNS dysmyelination [ 256 ].   

    Conclusion 

 As set out in this chapter, the fi rst step in cell locomotion is the formation of cyto-
skeleton protrusions such as lamellipodia at the periphery of a cell. This protrusion 
is composed of F-actin fi laments. Study of the mechanical characteristics of 
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cytoskeleton proteins and plasma membrane tension in lamellipodia was advanced 
by the use of optical tweezers, which enable measurement of the bending modulus 
and membrane tension. Important inductors of the migratory phenotype are the 
chemokines, small peptides that elicit cytoskeleton responses through signaling by 
their G protein-coupled receptors. CCL19/CCL21 and their receptor CCR7, and 
CXCL12 and its receptor CXCR4 have physiological roles in guiding different cell 
types to their niches, as well as acting in tumor-cell migration by eliciting reorgani-
zation of the actin cytoskeleton. 

 We next discussed the role of the cytoskeleton in the performance of stem cells. 
Actin microfi laments and microtubules are reorganized during differentiation, and 
are important for stem-cell fate and polarization. Intermediate fi laments, specifi c to 
each cell type, may also be involved. Neural stem and precursor cells, for example, 
express nestin, while GFAP is typical for mature astrocytes but is also found in 
neural precursors. In the last section we explored the specifi c characteristics of the 
intermediate fi lament GFAP in its multiple isoforms. GFAP is essential for astrocyte 
functions, and its disruption is implicated in several disorders and diseases. 
Peripheral glial cells that also express GFAP are the enteric glial cells, which are the 
counterparts of astrocytes in the gut; and the Schwann cells, which are responsible 
for the myelination of the peripheral nerves.     
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