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    Chapter 15   
 The Role of Drebrin-Binding Stable Actin 
Filaments in Dendritic Spine Morphogenesis 

             Tomoaki     Shirao      and     Noriko     Koganezawa   

            Actin Cytoskeletons in Dendritic Spines 

    Actin Governs Dynamic Spine Motility 

 Dendritic spines are the postsynaptic receptive regions of most excitatory synapses 
in the brain [ 1 ]. They are small protrusions from the parent dendritic shaft and typi-
cally consist of a head (about 5.1 × 10 −20  m 3 ) and a neck (about 1.2 × 10 −20  m 3 ) [ 2 ]. 
They form various shapes and marked abnormalities in spine morphology in human 
children with mental retardation [ 3 ], suggesting that the differences between shapes 
refl ect functional differences. Furthermore, high-frequency synaptic activity induces 
changes in the population of spine shapes [ 4 ] and the balance among various shapes 
is changed in a close correlation with learning and memory. Time lapse imaging 
analysis of hippocampal slices has shown that dendritic spines rapidly changed their 
shapes [ 5 ]. However, neither blockade nor induction of neuronal activity affect spine 
motility [ 6 ]. This suggests that the basal motility of dendritic spines is intrinsic to the 
neuron, but it does not directly link to the molecular mechanism of learning and 
memory. 

 Dendritic spines contain high concentrations of actin [ 7 ]. In general, high 
concentrations of actin plays a central role in supporting cell motility, suggesting 
that the morphological change of dendritic spines is governed by actin. In 1998, 
Fischer et al. showed using hippocampal neurons expressing actin labeled with 
green fl uorescent protein that the motility of dendritic spines was completely inhib-
ited when the neurons were treated by latrunculin A, a G-actin-sequestering agent 
[ 8 ]. This clearly indicates that actin plays a pivotal role in spine motility. 
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Polymerization of F-actin (fi lamentous actin) against cellular membranes is thought 
to provide the force for cell membrane dynamics, such as the formation of plasma 
membrane protrusions of migrating cells, suggesting that the polymerization of 
dynamic F-actin in the spine head regulates spine motility. However, the molecular 
mechanism on how F-actin polymerization is regulated in the spine head has still 
not yet been clarifi ed. 

 Studies of actin fi laments in spines suggest the presence of two kinds of actin 
fi laments. On the one hand, actin fi laments appear to be stable over many hours and 
exhibit marked resistance to actin depolymerizing drugs such as cytochalasin D [ 9 ], 
which implies that actin fi laments in spines are extremely stable and fulfi ll a purely 
structural role. On the other hand, individual spines undergo shape changes within 
a timespan of seconds or minutes as was described earlier. Actually the spines rap-
idly and continuously change shapes, but this motility seldom involves changes in 
spine size under basal conditions [ 8 ]. Halpain [ 10 ] addressed that dynamic and 
stable confi gurations of actin fi laments fulfi l their needs for motility versus struc-
tural integrity of dendritic spines. Two pools of actin fi laments compose the spine 
head under normal circumstances. ‘Core’ of stable actin fi laments form the struc-
tural foundation of the spine, while the peripheral population of actin fi laments in 
the spine is dynamic.  

    Two Kinds of Actin Filaments in Mature Dendritic Spines 

    Dynamic and Stable Actins 

 In accordance with Halpain’s prediction, Kasai and co-workers have reported the 
presence of dynamic and stable actins in dendritic spines using PAGFP-actin [ 11 ]. 
They photoactivated PAGFP-actin protomers in F-actin of dendritic spines. As the 
fi laments treadmilled, activated PAGFP-actin protomers reached the end of the fi la-
ment, depolymerized, and diffused away. The fl uorescence from activated mole-
cules decayed in two phases with time constants of 40 s and 17 min, indicating that 
there are two pools of F-actin in the spine: a dynamic one with a fast treadmilling 
rate and a stable one with a much slower treadmilling rate. Larger spines have a 
greater proportion of stable F-actin, although the proportion of stable F-actin is usu-
ally less than the dynamic one. While the dynamic F-actin is observed in the spine tip, 
the stable one is largely restricted to the base core of spine heads. The treadmilling 
of dynamic F-actin is observed from the apex to the base, but the actin protomer in 
the dynamic F-actin pool did not fl ow into the stable F-actin pool. This suggests that 
the two F-actin pools are differentially regulated. 

 It is known that polymerization of dynamic F-actin in spine heads regulates 
the spine motility; however, the spine size under basal conditions does not seem to 
be regulated by F-actin polymerization because, as stated previously, the spine size 
remains rather constant in spite of rapid spontaneous motility.  
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    Mathematical Model for Lamellipodium Protrusion 

 It is suggested that protrusion formation is a consequence of the dynamics downstream 
from nucleation promoting factors (NPFs), with signaling setting the dynamic regime 
but not initiating the formation of individual protrusions [ 12 ]. Zimmermann and 
Falcke developed a mathematical model for lamellipodium protrusion. The model 
lamellipodium consists of an actin gel in the bulk and a highly dynamic range at the 
leading edge, called semifl exible region (SR). Signaling cascades that lead to the 
activation of NPFs, activate the actin related protein complex Arp2/3. Arp2/3 initi-
ates the growth of a new fi lament branch from an existing fi lament in SR, pushing 
the lamellipodial membrane forward. Individual lamellipodia form due to random 
supercritical fi lament nucleation events amplifi ed by autocatalytic branching. 
This model can be applied to the incessant lamellipodia formation in many cells 
with a constant state of the signaling pathways upstream from NPFs.  

    Model of Spontaneous Spine Motility 

 Applying Zimmermann and Falcke’s model to the actin cytoskeleton in dendritic 
spine, spontaneous rapid spine motility (periodic lamellipodium formation) may be 
determined by the autocatalytic nature of branching of actin fi laments of the 
dynamic F-actin pool, and by the length dependence of bundling, capping and sev-
ering of them. The stable F-actin core provides a stiff substrate for actin fi laments in 
the lamellipodium to push back against to extend the postsynaptic membrane [ 13 ]. 
Although the nature of the stable F-actin core has not been well elucidated, a spine- 
resident side-binding protein of F-actin named drebrin, which is localized at the 
core region of dendritic spines [ 14 ], is thought to be an important element of the 
stable F-actin pool [ 15 ]. 

 Although spine is too small to directly observe the two kinds of F-actins, we can 
observe fast and slow treadmilling of actin fi laments in axonal growth cones. In the 
lamellipodia at the periphery of the growth cone, actin fi laments are similar to the 
dynamic F-actin in dendritic spines in terms of the absence of drebrin. They fl ow 
retrogradely at rates of approximately 4 μm/min [ 16 ]. F-actin in the actin arc at the 
base of the lamellipodia contains drebrin, which fl ows transversely rather than lon-
gitudinally. This retrograde fl ow of drebrin-binding F-actin occurs more slowly 
(approximately 1 μm/min) [ 17 ]. This indicates that peripheral F-actin that does not 
bind to drebrin shows more rapid treadmilling than drebrin-binding actin fi laments. 
In addition, the drebrin-binding F-actin is resistant to the actin depolymerizing 
agent cytochalasin D, suggesting that they are stable actin fi laments. 

 Together it is suggested that dendritic spines consist of dynamic and stable F-actin 
pools. Basal motility of dendritic spines occurs due to random supercritical fi lament 
nucleation events amplifi ed by autocatalytic branching in the dynamic F-actin pool. 
Drebrin-binding actin fi laments in the stable F-actin pool form a cross- linked gel, 
serving as the structural element for treadmilling of dynamic F-actin to push back 
against the spine membrane.   
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    Drebrin Governs the Formation of Stable F-Actin 

    Modulation of Helical Structure of F-Actin by Drebrin 

 F-actin consists of a double helix of actin protomers decorated with its binding 
proteins. The helical structure plays an important role in modifying the relationship 
(binding activity) between F-actin and actin-regulating proteins [ 18 ]. Variations in 
the helical structure of F-actin are modulated by several side-binding proteins of 
F-actin (the double helix of actin protomers). 

 Tropomyosin is a typical side-binding protein of F-actin found in virtually all 
eukaryotic cells. Brain tropomyosin binds to F-actin with a stoichiometry of 1:7 
(tropomyosin: actin protomer) with a dissociation constant (Kd) of 2.2 × 10 −7  M 
[ 19 ]. Similarly drebrin binds to F-actin with a stoichiometry of 1:5 (drebrin : actin 
protomer) with a dissociation constant (Kd) of 1.2 × 10 −7  M [ 20 ]. In spite of their 
similarity in the biochemical actin-binding property, atomic force microscopy anal-
ysis shows the signifi cant differences in the helical structure. Tropomyosin forms a 
helix pitch of 36.5 nm, which is similar to the pitch of bared double helix of actin 
protomers. In contrast, drebrin forms the 40.0 nm pitch of actin fi laments [ 21 ]. This 
difference makes it possible that the drebrin-binding F-actin and the other F-actins 
respond differently to the same signal within small dendritic spines.  

    Inhibition of F-Actin Depolymerization by Drebrin 

 Mikati et al. [ 22 ] reported that drebrin signifi cantly decreased the depolymerization 
rates of uncapped fi laments, reaching 88 % inhibition at full saturation, and 50 % 
inhibition is achieved at a low binding density of drebrin (∼18 %). Drebrin causes 
stronger inhibition of barbed-end depolymerization compared to pointed-end depo-
lymerization at the same binding density. Even in the presence of latrunculin A, 
drebrin inhibits the full depolymerization of actin fi laments. Furthermore, differential 
scanning calorimetry (DSC) study shows that the T  m   of F-actin was increased by 0.5 °C 
in the presence of saturating amounts of drebrin. Taken together, it is indicated that 
drebrin forms stable actin fi laments.    

    Spine Morphogenesis 

    Drebrin Clustering in Dendritic Filopodia Mediates 
Spine Morphogenesis 

 Dendritic spines have two major structural elements, the postsynaptic density (PSD) 
and the actin cytoskeleton. Although PSD scaffold proteins such as PSD-95, Shank, 
and Homer are known to play pivotal roles in spine morphogenesis [ 23 – 25 ], 
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the initiation of spine morphogenesis precedes synaptic assembly of PSD-95 [ 26 ]. 
Moreover mutant mice which lack PSD-95 expression exhibit standard spine mor-
phology [ 27 ], suggesting that molecules other than PSD scaffold proteins govern 
spine morphogenesis. 

 There are two models for the formation of dendritic spines. One model is that 
dendritic fi lopodia serve as the precursor of dendritic spines, and the other is that 
dendritic spines emerge from shaft synapses. The former model predominates dur-
ing neuronal development. Developmental changes of the actin cytoskeleton within 
fi lopodia during spine morphogenesis have been intensely studied because the actin 
cytoskeleton regulates the morphology of both fi lopodia and spines. 

 In vitro study shows that fi lopodia from the dendrites are classifi ed into two types 
in terms of the presence of drebrin clusters: diffuse-type fi lopodia and cluster-type 
fi lopodia [ 28 ]. Most cluster-type fi lopodia appose presynaptic terminals, but diffuse- 
type fi lopodia do not. This indicates that cluster-type fi lopodia are more matured 
than diffuse-type. On the other hand, the half of cluster-type fi lopodia do not contain 
PSD-95, while most mature spines contain PSD-95 [ 28 ], indicating that cluster-type 
fi lopodia are not mature spines but their precursors. Similarly, drebrin has been 
already observed at the nascent contact site of the dendrite by the axon in vivo [ 29 ]. 
Thus it is indicated that dendritic spines develop via cluster-type fi lopodia that have 
been transformed from diffuse-type fi lopodia. 

 Drebrin-binding stable F-actin seems to play a pivotal role for the establishment 
of postsynaptic structures. Drebrin content in dendritic spines correlates with spine 
head size, suggesting that the proportion of stable F-actin in the spine head seems to 
regulate the spine size [ 14 ]. During development, clustering of drebrin with F-actin 
occurs at postsynaptic sites in dendritic fi lopodia. In parallel with this change, dre-
brin changes its isoform from embryonic-type (drebrin E) to adult-type (drebrin A) 
[ 29 ,  30 ]. Interestingly, synaptic clustering of PSD-95 and NMDARs partially 
depend on drebrin [ 28 ,  31 ]. Additionally, drebrin is involved in the regulation of 
AMPAR traffi cking to the postsynaptic site [ 32 ].  

    AMPA Receptor Facilitates the Drebrin Clustering 
in Dendritic Spines 

 How is drebrin clustered at postsynaptic sites? Although the aforementioned studies 
suggest that the conversion of drebrin isoform expression from drebrin E to drebrin 
A is involved in the drebrin clustering, the premature expression of drebrin A 
induces abnormally large headless protrusions with the unrestricted accumulation 
of F-actin, PSD-95 and drebrin [ 33 ], indicating that the conversion of drebrin 
isoform plays a role for the targeting mechanism of postsynaptic molecules, but is 
not a suffi cient condition for postsynaptic formation. 

 The synchronous development of drebrin clustering and functional turnover of 
synaptic vesicles indicates that synaptic activity is involved in drebrin  clustering at 
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postsynaptic sites. Inhibition of action potentials with TTX decreases drebrin clus-
ter density, while inhibition of GABAA-receptor with picrotoxin, which enhances 
the excitatory component of synaptic transmission, increases drebrin clustering 
[ 34 ]. Thus spontaneous synaptic activity is involved in the drebrin clustering. 
Moreover, the study using subtype-specifi c blockers of glutamate receptors has 
shown that AMPA receptor, but neither NMDA receptor nor metabotropic gluta-
mate receptor, regulates the clustering of drebrin at the postsynaptic site [ 34 ]. 

 Then how does AMPAR regulate drebrin clustering? Using the fl uorescence 
recovery after photobleaching (FRAP) analysis we have explored a cellular basis 
for activity-dependent drebrin clustering and have demonstrated that AMPARs spe-
cifi cally regulates drebrin dynamics within dendritic spines. Neurons were trans-
fected with vectors that encoded drebrin A fused to enhanced green fl uorescent 
protein (eGFP). Individual eGFP molecules can be rendered nonfl uorescent, or 
‘bleached’, with high-intensity laser pulses. Such pulses darken the target area until 
new, unbleached eGFP-drebrin replaces the bleached molecules during normal pro-
tein turnover. Under normal physiological conditions that allow spontaneous neuro-
nal activity, about a quarter of total drebrin within a single spine is stabilized. 
Applications of CNQX or AP5 show that the activity of AMPARs, but not that of 
NMDARs, signifi cantly decreases the level of stable drebrin in spines. Together it is 
indicated that activated AMPAR accumulates the stable F-actin bound by drebrin at 
the postsynaptic site, facilitating the recruitment of PSD-95, NMDAR and other 
postsynaptic proteins, including AMPARs themselves as suggested in the above 
section, into dendritic spines during development.  

    Spikar Is Involved in the Drebrin-Mediated Spine Formation 

 Drebrin initiates spine formation and the decrease of drebrin results in the decrease 
of spine density [ 31 ,  35 ]. However, an increased amount of drebrin does not raise 
the number of normal spines, but forms the large number of small protrusions from 
the dendritic shaft [ 36 ,  37 ]. These facts suggest that there is an unidentifi ed protein 
which mediates the drebrin-dependent spine formation. 

 To explore a drebrin-binding molecule mediating spine formation, we performed 
a yeast two-hybrid screen using drebrin as bait and found a novel drebrin binding 
protein [ 38 ]. This protein localizes in neuronal nuclei as well as in dendritic spines, 
and this is why we named it spikar (localizes in  spi ne and  kar yoplasm). Unlike 
drebrin, the up-regulation and down-regulation of spikar expression results in the 
increase and decrease of the spine density, respectively. Interestingly spikar does 
not affect the spine morphology different from drebrin [ 38 ]. The localization of 
spikar depends on drebrin whereas that of drebrin does not depend on spikar. 
In addition, spine formation activity of spikar depends on drebrin. Together it is 
suggested that drebrin might function to include spikar to the stable F-actin complex 
at postsynaptic sites, resulting in the spine formation.   
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    Conclusion and Perspective 

 Dendritic spines are formed from dendritic fi lopodia in parallel with the appearance 
of stable F-actin instead of dynamic F-actin at postsynaptic sites. Stable F-actin 
consists of drebrin-binding actin double helix polymers, which shows the slow 
treadmilling and the increase of heat stability as well as the elongation of the helix 
pitch. Although the developmental conversion of drebrin isoforms, drebrin E to 
drebrin A, is involved in the accumulation of stable F-actin, which facilitates further 
accumulation of postsynaptic scaffold proteins and neurotransmitter receptors, 
AMPA receptor activation seem to be needed for more precise accumulation of 
stable F-actin at postsynaptic sites. 

 It is believed that the motility of actin fi laments is of importance for synaptic 
plasticity but further investigation, particularly focusing on the stable and dynamic 
F-actin, is needed to reveal the actual role of the actin fi laments. Furthermore, since 
the appearance of the stable actin pool is a good marker of synaptic maturation, we 
suggest drebrin as an appropriate surrogate marker of synaptic function. Recently, it 
has been recognized that mislocalization and dysregulation of postsynaptic cyto-
skeletons are crucial events regarding pathophysiology of so-called “synaptopa-
thies” such as Alzheimer disease. In addition, human induced pluripotent stem cells 
(hiPSCs) provide new possibilities for drug discoveries because human specifi c side 
effects could be tested easily using those cells. Thus, drebrin can be used as the sur-
rogate marker in hiPSCs-derived neurons as well. For this reason we expect drebrin 
be widely used in drug discovery and developmental fi elds.     
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