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    Chapter 13   
 Possible Functions of Intermediate Filaments 
in Mammalian Ovarian Follicles and Oocytes 

             Hiroyuki     Suzuki    

            Introduction 

 Intermediate fi laments (IFs), microfi laments and microtubules comprise the three 
major cytoskeletal proteins found in most mammalian cells. In contrast to microfi la-
ments and microtubules, various members of the IF protein family are expressed 
abundantly and differentially in complex patterns during cell growth and differen-
tiation (for reviews, see [ 1 – 6 ]). Depending upon the cell type, IFs are composed of 
different members of the cytoskeletal IF protein family (Table  13.1 ).

   Type I and type II IFs are the acidic and basic keratins, respectively, which are 
obligate heteropolymers composed of type I and type II subunits [ 1 ,  3 ,  7 – 9 ]. Keratins 
are the most complex subgroup of the IF family. Vimentin [ 15 ,  16 ], desmin [ 24 ], 
glial fi brillary acidic protein (GFAP) [ 25 ,  26 ] and peripherin [ 26 ] form type III IF 
proteins, that can assemble into fi laments on their own, or in combination with type 
IV and type VI IF proteins [ 3 ,  17 – 19 ]. For example, vimentin can co-assemble with 
desmin, GFAP or peripherin (all type III), or with neurofi lament light and 
α-internexin (both type IV) [ 5 ,  18 ]. In addition, vimentin expression precedes the 
expression of other type III IF proteins during the differentiation and development 
of neural and muscle cells (later replaced by GFAP and desmin, respectively), sug-
gesting important functions for vimentin as an intracellular scaffold [ 5 ]. 

 Neurofi laments, the major IFs found in neurons consist of light (NF-L), medium 
(NF-M), and heavy (NF-H) subunits, are classifi ed as type IV IF proteins along with 
α-internexin [ 27 ,  28 ]. Type V proteins are the nuclear lamins, that organize to form 
the nuclear lamina, a fi brous meshwork of proteins adjacent to the nucleoplasmic 
face of the inner nuclear membrane [ 32 – 36 ]. The type V nuclear lamins do not 
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co- assemble with members of types I to IV. Nestin is a type VI protein of IFs, as 
well as tanabin and transitin [ 54 ]. Nestin expression occurs in proliferating stem 
cells of the developing mammalian central nervous system and other pluripotent 
cells of non-neuronal tissues [ 3 ,  18 ,  38 ,  40 – 42 ,  48 ,  55 ]. Nestin is unable to form fi la-
ments on its own, but it can readily form copolymer IFs when combined with type 
III IF proteins such as vimentin both in vitro and in vivo [ 10 ,  11 ,  18 ,  19 ,  50 – 52 ]. 

 Crosstalk among IFs, microfi laments and/or microtubules via specifi c linking pro-
teins, such as the plakin family, is also important for stable architecture of the cyto-
skeletal system [ 10 – 14 ,  18 ,  20 – 23 ,  29 – 31 ,  37 ,  52 ]. The mechanisms responsible for 
the bidirectional microtubule-dependent movements of vimentin particles are related 
to their association with conventional kinesin and cytoplasmic dynein [ 56 ,  57 ]. 

 Moreover, IFs are highly dynamic intracellular structures and new functional and 
regulatory roles of IFs have been defi ned, thereby suggesting special physiological 
capacity besides their mechanical function [ 1 ,  3 ,  18 ,  58 – 60 ]. These include cell 
growth, organelle distribution, signal transduction, cell polarity, and gene regula-
tion. On the other hand, little information exists concerning the structure of the IF 

   Table 13.1    Types of intermediate fi lament (IF) proteins and notable features   

 Sequence 
type  IF proteins 

 Primary tissue 
distribution  Notable features 

 I  Acid keratins  Epithelium [ 7 ,  8 ]  Obligatory heteropolymers 
composed of type I and type II 
proteins [ 1 ,  3 ,  9 ] 
 Crosstalk with MT a  and/or MF b  
[ 10 – 14 ] 

 II  Neutral-basic 
keratins 

 III  Vimentin  Mesenchymal cells 
[ 15 ,  16 ] 

 Homopolymers or in combination 
with type IV and type VI IF 
proteins [ 3 ,  17 – 19 ] 
 Crosstalk with MT and/or MF 
[ 20 – 23 ] 

 Desmin  Muscle fi bers [ 24 ] 
 GFAP c   Glial cells [ 25 ] 
 Peripherin  Peripheral neurons and 

cranial nerves [ 26 ] 
 IV  NF d -L, NF-M 

and NF-H 
 Astrocytes and other 
glial cells [ 27 ,  28 ] 

 Crosstalk with MT [ 29 ] 
 Copolymer with vimentin [ 30 ,  31 ] 

 V  Lamin A, B, 
and C 

 Nuclear lamina [ 32 – 36 ]  MT motors drives interkinetic 
nuclear migration [ 37 ] 

 VI  Nestin  Neuroepithelial stem 
cells [ 38 ,  39 ] 
 Pluripotent cells [ 40 ,  41 ] 
 Endocrine cells [ 42 – 47 ] 
 Endothelial cells [ 48 ] 
 Metastatic tumors [ 49 ] 

 Crosstalk with MT and MF [ 18 ] 
 Copolymer with vimentin 
[ 10 ,  11 ,  18 ,  19 ,  50 ,  51 ] 
 Copolymer with vimentin/
desmin [ 52 ] 
 Transiently expressed during 
renal development [ 53 ] 

   a Microtubules 
  b Microfi laments 
  c Glial fi brillary acidic protein 

  d Neurofi lament  
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networks performing these functions in the mammalian oocytes. In this chapter, we 
focus mainly on data obtained from studies in mammalian systems to understand 
the role of IFs within ovarian follicles and oocytes.  

    IFs in Ovarian Tissues and Follicles 

 IF proteins studied in mammalian oocytes and granulosa cells are summarized in 
Table  13.2 . Species differences are noted in the specifi c IF proteins. In the mam-
malian ovary, keratin immunoreactivity is consistently demonstrated in the surface 
epithelium of many species, including cattle [ 70 ,  77 ,  80 ,  81 ], pigs ([ 62 ]; Suzuki 
et al. unpublished data), mice [ 73 ,  78 ], rats [ 62 ,  67 ] and humans [ 62 ,  71 ,  75 ]. 
Keratin is detected in the mouse [ 61 ,  63 ,  69 ], hamster [ 65 ,  72 ], sheep [ 64 ] and 
human follicles [ 68 ,  75 ].

   Vimentin is the IF protein characteristic of mesenchymal cells, such as fi broblasts 
and endothelial cells (for reviews, see [ 5 ,  15 ]). Vimentin immunostaining is often 
observed in follicular epithelial cells maintaining a similar distribution in primary, 
secondary, and tertiary follicles (Fig.  13.1 ). Vimentin positivity of follicular cells 
remains unchanged in the granulosa cell layer and increases in mature follicles during 
maturation ([ 70 ,  80 ]; Suzuki et al. unpublished data). The theca interna cells and the 
theca externa cells show a uniformly strong vimentin-positive appearance. The 
endothelial cells of blood capillaries in stroma, atretic follicles and larger blood 
vessels were strongly positive for vimentin. Desmin positivity is mainly localized in 
the wall of blood vessels. Very weak signaling of desmin is noted in the oocytes and 
granulosa cells of pigs and hamsters (Suzuki et al. unpublished data). Since almost 
all proteins composed of IFs are able to be located in the mammalian ovarian tissue, 
the ovary may be suitable for a positive-control tissue in the study of IF proteins.

   In the baboon and human ovaries, some dissimilar distribution patterns of IFs are 
observed, where the surface epithelial cells exhibit keratin staining, whereas vimen-
tin has been primarily localized in the basal regions of these cells [ 62 ,  71 ]. A weak 
to moderate immunoreactivity for desmin has also been present apically in surface 
epithelial cells [ 71 ]. 

    IFs in Growing Follicles 

 Vimentin proteins are expressed at all stages of follicular development (Fig.  13.1 ). 
In primordial follicles, oocytes are individually surrounded by a single layer of 
squamous pre-granulosa cells, also referred to as follicular epithelial cells. Cell-to- cell 
communication between these somatic cells and oocytes is apparent from the for-
mation of primordial follicles onward [ 82 ,  83 ]. A great number of non-growing 
primordial follicles serve as the source of developing follicles and oocytes until 
the end of a female’s reproductive life. Interestingly, vimentin is detected in the 
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       Table 13.2    Summary of intermediate fi lament proteins studied in mammalian oocytes and 
granulosa cells      

 References 
 Fixation a  
(methods) b   Antibodies used c  

 Response d  

 Oocytes  Granulosa cells 

 Lehtonen 
et al. [ 61 ] 

 Me-OH/
Acetone 
(IFT) & (IB) 

 P, keratin  Mouse, +  Mouse, − 
 P/M, vimentin  Mouse, −  ND 
 P, GFAP  Mouse, −  ND 
 P, neurofi lament  Mouse, −  ND 

 Czernobilsky 
et al. [ 62 ] 

 Fr (ICT) 
 Acetone 
(IFT) 

 P/M, keratin  Human/pig/rat, −  Human, +; pig/rat, − 
 P, vimentin  Human/pig/rat, −  Human/pig/rat, + 
 P, desmin  Human/pig/rat, −  Human/pig/rat, − 
 P, desmoplakin  Human/pig/rat, −  Human, +; pig/rat, 

ND 
 Lehtonen [ 63 ]  Me-OH (IFT)  M, keratin  Mouse, +  ND 
 Gall et al. [ 64 ]  Fr w/BF 

(IFT) &
(IEM, IB) 

 P, keratin  Sheep, +  ND 

 Plancha 
et al. [ 65 ] 

 Fr or BF 
(IFT) &
(IEM, IB) 

 M/P, keratin  Hamster, +  ND 

 van Niekerk 
et al. [ 66 ] 

 Fr (ICT)  M, keratin  ND  Human, + ⇒ − e  

 Fridmacher 
et al. [ 67 ] 

 Fr w/ or w/o 
BF (ICT) 

 M, keratin  Rat, −  Rat, + ⇒ −e 

 Santini 
et al. [ 68 ] 

 M (ICT) 
&(EM) 

 M, keratin  Human, +  Human, + 
 M, vimentin  Human, −  Human, + 
 M, actin  Human, −  Human, + 
 M, desmin  Human, −  Human, − 

 Gallicano 
et al. [ 69 ] 

 G (IFT) & 
(IEM, IB) 

 M, keratin  Mouse, +  ND 
 P, vimentin  Mouse, −  ND 

 van den Hurk 
et al. [ 70 ] 

 B (ICT)  P, keratin  Bovine, −  Bovine, − 
 P, vimentin  Bovine, −  Bovine, + 
 P, desmin  Bovine, −  Bovine, − 

 Khan-Dawood 
et al. [ 71 ] 

 B (ICT)  M, keratin  Baboon/human, −  Baboon/human, − 
 M, vimentin  Baboon/human, 

− (+) f  
 Baboon/human, − 

 M, desmin  Baboon/human, −  Baboon/human, − 
 M, neurofi lament  Baboon/human, +  Baboon/human, − 

 Plancha [ 72 ]  BF (IFT) 
& (IEM) 

 M, keratin  Hamster, +  ND 

 Appert 
et al. [ 73 ] 

 Fr (IFT)  M, keratin  Mouse, −  Mouse, + 

 Marettová and 
Maretta [ 74 ] 

 BF (ICT)  M, vimentin  ND  Sheep, + 
 M, desmin  ND  Sheep, − 

 Bukovsky 
et al. [ 75 ] 

 Fr w/aceton 
(ICT) 

 M, keratin  Human, +  Human, + 

(continued)
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Table 13.2 (continued)

 References 
 Fixation a  
(methods) b   Antibodies used c  

 Response d  

 Oocytes  Granulosa cells 

 Takahashi 
et al. [ 48 ] 

 Not specifi ed 
(ICT) 

 M, nestin  Rat, −  Rat, − 

 Kabashima 
et al. [ 76 ] 

 Me-OH (IFT)  M, keratin  Hamster, +  ND 

 Townson 
et al. [ 77 ] 

 Fr w/BF 
(ICT) 

 M, keratin  Bovine, −  Bovine, − (+) g  

 Mora 
et al. [ 78 ] 

 BF or Fr 
(IFT) & 
(mRNA) 

 M, keratin  Mouse, −  Mouse, + 
 M, vimentin  Mouse, +  Mouse, + 

 Takahashi and 
Ishizuka [ 79 ] 

 BF (ICT, IFT)  M, neurofi lament  Rat, +  ND 

 Wendl 
et al. [ 80 ] 

 B (ICT, IFT)  M/P, keratin  Bovine, −  Bovine, + 
 M, vimentin  Bovine, −  Bovine, + 
 M, desmin  Bovine, −  Bovine, − 

 Hummitzsch 
et al. [ 81 ] 

 Fr (ICT)  M, keratin  Bovine, −  Bovine, + or +/− 

 Suzuki et al. 
(unpublished 
data) 

 BF (ICT) 
 B (IFT) 

 M, keratin  Pig, −  Pig, − 
 M, vimentin  Pig, −/hamster, −  Pig, +/hamster, − 
 M, desmin  Pig, +/hamster, +  Pig, +/hamster, + 
 M, GFAP  Pig, +  Pig, + 
 M, neurofi lament h   Pig, +  Pig, − 
 P, neurofi laments i   Pig, +  Pig, + 
 P, nestin  Pig, +/hamster, −  Pig, −/hamster, − 

   a  B  Bouin fi xative,  BF  buffered formalin, Me-OH methanol,  Fr  frozen,  G  glutaraldehyde,  M  metha-
carnoy fi xative 
  b  IFT  immunofl uorescence technique,  ICT  immunocytochemical technique,  IB  immunoblotting 
analysis,  IEM  immunoelectron microscopy,  EM  electron microscopy,  mRNA  mRNA analysis. &() 
shows additional analyses 
  c  M  monoclonal,  P  polyclonal 
  d + positive, − negative,  ND  not determined 
  e Positive signals progressively disappeared in the granulosa cells of growing follicles 
  f Immunoreactivity developed in atretic follicles 
  g Keratin is localized to the cytoplasm of granulosa cells in a growing follicle and to the basal 
granulosa cells in an antral follicle 
  h Antibody for NF-L 
  i Rabbit anti-pan-neurofi laments polyclonal antibody (Enzo Life Sciences, Inc.), which includes 

antibodies for NF-L, NF-M and NF, H, was used  

follicular epithelial cells even at the early stage of the primordial follicle (Fig.  13.1 , 
Suzuki et al. unpublished data; see also [ 78 ,  84 ]). It is suggested, therefore, that 
vimentin might have a role in signaling of the cell-to-cell communication, because 
recent studies have brought light into the role of vimentin that are involved in cell 
signaling along with adhesion and migration [ 85 – 87 ]. Vimentin is also known to 
interact with signaling molecules [ 5 ]. 
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 The transition from the primordial to primary follicle is characterized by a mor-
phological change in the surrounding follicular epithelial cells from squamous to 
cuboidal, where vimentin IF protein was also found ([ 74 ,  78 ,  80 ]; Suzuki et al. 
unpublished data). 

 Secondary follicles contain growing oocytes surrounded by two or more layers 
of follicular epithelial cells (now called granulosa cells). Preantral follicle develop-
ment is gonadotropin-independent and is induced by autocrine and paracrine regu-
latory factors [ 88 ,  89 ]. An additional somatic cell layer, the theca, forms outside the 
basement membrane of the follicle and differentiates as the theca interna and theca 
externa [ 88 ,  89 ]. The theca interna cells include numerous mitochondria with tubular 
cristae, smooth endoplasmic reticulum, and abundant lipid vesicles, corresponding 
with the endocrine function as a source of androgens for neighboring granulosa 
cells to convert to estrogens [ 88 ,  89 ]. The theca externa, composed of fi broblasts 
and smooth muscle-like cells, shows coexistence with actin and myosin and also the 
desmin antibody occasionally gives positive results (Suzuki et al. unpublished data). 
During subsequent oocyte-follicular development, surface adhesion molecules 
are established and maintain contact with appropriate cumulus cells when the zona 
pellucida is produced [ 82 ]. 

  Fig. 13.1    Vimentin immunoreactivity in the pig ovary. Nuclei are stained with hematoxylin.  Bar  
represented in ( c ) shows 50 μm in ( a ), 10 μm in ( b ) and 100 μm in ( c ). ( a )   Primordial     ( arrow-
heads ), primary ( arrows ) and secondary follicles. Vimentin reaction is found in follicular epithelial 
(pre-granulosa) cells of   the primordial     and primary follicles. The granulosa (G) of a secondary 
follicle is stained in two-layered fashion. ( b ) Higher magnifi cation of an upper right part of the 
secondary follicle of ( a ). Vimentin immunoreactivity in the granulosa of the secondary follicles is 
mainly localized in basal and apical granulosa cells. Theca interna (TI) cells are also weakly posi-
tive. ( c ) Cumulus-oocyte complex of a tertiary (antral) follicle. Cumulus oophorus cells are posi-
tively stained. Oocytes showed no signifi cant vimentin reaction irrespective of the growing 
follicular stages       
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 The development of a follicular antrum is clearly dependent on gonadotropins 
and well-developed antral follicles are called tertiary follicles (often referred to as 
Graafi an follicles). At the transition from preantral to antral follicles, most of the 
oocytes become meiotically competent and will resume meiosis spontaneously if 
removed from the follicles and cultured in an appropriate medium [ 90 ]. 

 In granulosa cells of the mouse, rat, bovine and human ovary, keratin immunore-
activity is detected [ 62 ,  70 ,  73 ,  77 ,  78 ], whereas in the other species the granulosa 
cells do not express any keratins (Table  13.2 ). Furthermore, it has been shown that 
keratin 8 (K8) and K19 were detected fi rst in primary and secondary follicles in the 
rat [ 67 ] or K8 and K18 in the human [ 66 ], but progressively disappear in granulosa 
cells of growing or mature (Graafi an) follicles, respectively. The expression of keratin 
in the follicular development remains controversial unlike that of vimentin.  

    IFs in Atretic Follicles 

 Apoptosis has been implicated in the selective elimination of granulosa cells and 
oocytes during atresia of ovarian follicles [ 91 – 93 ]. Atretic follicles contain some 
K18-positive cells with intense cytoplasmic staining [ 77 ]. In early antral atretic folli-
cles, keratin-positive cells are present in the most antral layers of the follicle, whereas 
in advanced atretic follicles, they are distributed throughout the follicle, particularly 
in the basal atretic follicles, in which the granulosa layer has separated from the basal 
lamina [ 77 ]. Ortega et al. [ 94 ] have observed signifi cantly higher intensity of vimen-
tin in the granulosa cell layer of atretic follicles compared to those of healthy antral 
follicles. Similarly, a greater signifi cant immunostaining for vimentin and keratins is 
noted in the granulosa cell layer of atretic follicles [ 70 ,  71 ,  95 ]. The same immunore-
actions of these IF proteins are also observed in the granulosa cell layer of cystic 
follicles in rats [ 96 ] and cows [ 94 ].   

    IFs in Mammalian Oocytes 

 During oocyte maturation, spindle formation, chromosome separation, polar body 
extrusion and organelle movement occur in the ooplasm for subsequent fertilization 
and development [ 97 – 101 ]. Cytoskeletons, such as microfi laments and microtu-
bules, are well known to be important for the progression of those events [ 102 – 105 ]. 
In contrast, research related to IFs remains poorly advanced relative to that of 
microfi laments and microtubules. 

 Scanning electron micrographs of the cytoskeleton network just beneath the 
oolemma are presented in Fig.  13.2 , showing the highly ordered fi lamentous struc-
tures of microfi laments, microtubules and IFs as determined by their size. IF proteins 
studied in mammalian oocytes and granulosa cells are summarized in Table  13.2 . 
Distribution of IFs in the oocytes has been a very controversial issue. The reasons for 
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the discrepancies concerning the presence of keratins in oocytes may depend on (1) 
interspecies differences in the IF protein sequence, expression and organization and 
(2) the use of different fi xatives and/or antibodies. Fridmacher et al. [ 67 ] have pointed 
out that immunoreactivities with keratin monoclonal antibody are affected by fi xa-
tion, where the results observed from fi xed and unfi xed tissues has been different. 
In the course of the study on distribution of IFs in porcine oocytes, we have also 
noticed that the immunoreactivity of certain secondary antibodies were altered as a 
result of different fi xation methods (buffered formalin vs. methanol).

      Keratins in the Oocytes 

 In mouse and human oocytes, some researchers have reported that the oocytes show 
keratin positive detection [ 61 ,  63 ,  68 ,  69 ,  71 ]. For example, Balbiani bodies, which 
contains aggregated mitochondria of the oocytes and persist in resting human pri-
mary follicles [ 106 ], show immunostaining for K8, K18, and K19 [ 68 ,  71 ,  89 ]. On 
the contrary, others have not observed any keratin-positive signals in the oocytes of 
these species [ 62 ,  67 ,  73 ,  81 ]. Furthermore, there are interspecies differences in the 
literature. Keratin IF protein is observed in sheep [ 64 ] and hamsters [ 65 ,  72 ,  76 ], 
whereas not in cattle, pigs and rats ([ 62 ,  67 ,  70 ,  73 ]; Suzuki et al. unpublished data). 

 In our previous study [ 76 ], non-fi brillar keratin particles have been observed. In 
germinal vesicle (GV) oocytes, large and oval-shaped aggregates of non-fi brillar 
keratin have been found in the cortical ooplasm (designated as a ‘cortical’ pattern). 
The delicate network of keratin fi laments is concentrated in the GV periphery. 

  Fig. 13.2    Scanning electron micrograph of the cytoskeleton network of a bovine oocyte.  Bar  
represents 1 μm in ( a ) and 250 nm in ( b ). ( a ) The highly ordered fi lamentous structures just beneath 
the oolemma.  Arrow  shows a part of membrane debris, which has remained even after proteolytic 
digestion.  Arrowheads  show the cytoskeleton network in low density. Note the trans-most cisterna 
of Golgi complex ( asterisks ). ( b ) A high magnifi cation image of a part framed rectangle in ( a ). 
Note three interconnected fi lament systems.  Arrows  show the thickest cytoskeleton, microtubules, 
and  arrowheads  show the thinnest fi laments of the cytoskeleton, actin microfi laments. There is 
very great abundance of intermediate fi laments among them       
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The large keratin aggregates begin to divide into small fragments at the pro-MI/MI 
stage (designated as a ‘fragmented’ pattern). Some keratin fragments have occa-
sionally been broken down into several granules at the peripheral region. In the MII 
oocytes, the fi lament network is extended over the ooplasm and numerous keratin 
granules are scattered across the oocyte (designated as a ‘granular’ pattern). It has 
been suggested, therefore, that non-fi brillar keratin constitute a reservoir of keratin 
protein that can be recruited into keratin IFs, thereby creating a more effective 
distribution of IF protein throughout the ooplasm [ 76 ].  

    Vimentin in the Oocytes 

 Mammalian oocytes show no signifi cant vimentin reaction with any of the antibodies 
applied (Table  13.2 ). As mentioned above, vimentin immunoreactivity is found in 
fl attened follicular epithelial cells of primordial follicles and in cuboidal follicular 
epithelial cells of primary follicles, and numerous granulosa cells of secondary and 
antral follicles (Fig.  13.1 ). Furthermore, vimentin-positive protrusions of the corona 
radiata cells penetrate the zona pellucida and contact the oocyte in cows [ 70 ] and 
pigs (Fig.  13.3 , Suzuki et al. unpublished data; see also [ 84 ]). In various mammalian 
species, similar corona cell processes appear to contain IFs at the ultrastructural 
level [ 107 ]. These cytoskeletal components may have a function in various impor-
tant cellular activities, including aspects of cell–cell adhesions, intercellular trans-
port and mechano-transduction and signaling [ 3 ,  5 ,  108 ].

   Several studies have shown that cell-to-cell communications via gap junctions, 
as well as other junctional complexes, form the major anchorage between the oocyte 
and cumulus cells during all stages of follicle development [ 109 – 116 ]. Our previous 
study has clearly demonstrated by scanning electron microscopy that the cumulus 

  Fig. 13.3    Confocal laser scanning microscopic images of vimentin localization in a porcine 
oocyte. Sequential differential interference contrast (DIC) and fl uorescence imaging.  Bar  repre-
sents 50 μm. ( a ) DIC image, ( b ) overlay of DIC and fl uorescence images, and ( c ) fl uorescence 
image. Vimentin fi laments are  red  and nuclei are  blue . Note transzonal cumulus cell projections 
consisting of vimentin ( arrowheads )       
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cell projections are directed toward and terminate at the oocyte in the pig [ 98 ]. 
These transzonal projections appear as extremely long and thin extensions at the 
GV stage and are intermingled with those arising from the adjacent cumulus, which 
are densely stained for actin but not for tubulin [ 98 ].  

    Desmin in the Oocytes 

 As shown in Table  13.2 , desmin immunoreactivity has not been detected in the 
granulosa cells and oocytes of the bovine [ 70 ,  80 ], pig [ 62 ], sheep [ 74 ], rat [ 62 ], 
baboon [ 71 ] and human ovary [ 62 ,  68 ,  71 ]. However, in our immunofl uorescent 
observations on porcine and hamster oocytes, desmin immunoreactivity has been 
detected in both the oocytes and cumulus cells. Staining with anti-desmin of the 
oocyte has been very low in intensity, but it has changed during oocyte maturation 
(Suzuki et al. unpublished data). Figure  13.4  represents confocal laser microscopic 
images of desmin and actin localization in hamster oocytes. In contrast to the 
intensive cortical actin staining, the desmin intensity is very weak. At the GV and 
MI stage of hamster oocytes, the desmin-positive area has been restricted only to the 
cortical region of the ooplasm, whereas desmin is localized uniformly throughout 
the ooplasm at the MII stage. The average intensity of desmin is 30 % higher at the 
MII stage compared to the GV and MI stages ( P  < 0.05). These observations suggest 
that desmin IF protein may play an important role in maintaining the cell architecture 
during oocyte maturation.

       Nestin in the Oocytes 

 Nestin is widely used as stem cell marker (for review, see [ 41 ]). Nestin has been 
shown to interact with other cytoskeleton proteins, such as vimentin [ 19 ,  50 ,  51 ] or 
desmin [ 52 ], suggesting a role in regulating cellular cytoskeletal structure. The 
physiological signifi cance of nestin in the ovary remains unknown. Nestin is 
expressed during early developmental stages and during regeneration in several 
tissues such as the brain, pancreas, and testis [ 41 ]. This suggests that nestin is neces-
sary in cells with proliferative activity or in cells that are in a dynamic developmental 
phase, both of which require a high degree of cytoplasmic plasticity [ 40 ,  41 ]. 

 In our unpublished observations, nestin immunoreactivity of GV, MI and MII 
porcine oocytes has been evaluated by confocal laser scanning microscopy 
(Fig.  13.5 ). Fluorescent intensity of nestin is decreased during oocyte maturation. 
Because the intensity of nestin staining is negatively correlated with the progression 
of meiosis, it is suggested that nestin may be involved in follicular growth rather 
than oocyte maturation. Takahashi et al. [ 48 ] have reported that nestin is mainly 
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  Fig. 13.4    Confocal laser scanning microscopic images of desmin and actin localization in hamster 
oocytes.  Bar  represents 50 μm. Images of the oocytes at GV ( upper panel ), MI ( middle panel ) and 
MII ( lower panel ) stages. (A) Chromatin of GV, chromosomes and nuclei of cumulus cells are 
visualized by DAPI, (B) staining with anti-desmin, and (C) staining with anti-actin. Desmin immu-
noreactivity (B) is noted in the ooplasm and cumulus cells and staining intensity of the ooplasm is 
higher at MII stage than at GV and MI stages. Actin microfi laments (C) are strongly stained just 
beneath the membrane of the oocytes and cumulus cells. Note transzonal cumulus cell projections 
consisting of actin in the GV oocyte ( upper panel , C)       

expressed in vascular endothelial cells of the theca interna in rat growing follicles 
and that nestin expression increases with follicular growth or hCG administration, 
which promote angiogenesis in the ovary [ 117 ]. These observations suggest that 
nestin may be involved in angiogenesis in growing follicles, which is followed by 
follicle maturation and subsequent ovulation.
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  Fig. 13.5    Confocal laser scanning microscopic images of nestin localization in porcine oocytes. 
 Bar  represents 50 μm. Images of the oocytes at GV ( upper panel ), MI ( middle panel ) and MII 
( lower panel ) stages. (A) Chromatin of GV, chromosomes and nuclei of cumulus cells are visual-
ized by DAPI, and (B) staining with anti-nestin. Nestin immunoreactivity (B) is noted in the 
ooplasm and cumulus cells. Discrete nestin-containing  dots  are strongly stained and the mesh-like 
structure with weak response is noted at GV stage ( upper panel ). During oocyte maturation, 
nestin- containing  dots  decrease in size and have become diffuse throughout the ooplasm. Staining 
intensity of the ooplasm is also decreased until MII stage       
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       Neurofi laments and GFAP in the Oocytes 

 Neurofi laments (NFs) are the main cytoskeleton elements in neurons. The three 
types of NFs have different molecular masses and are referred to as NF-L, NF-M, 
and NF-H. NF proteins synthesized in the neuronal cell body are phosphorylated 
after transfer to the axon, where they accumulate with other cytoskeletal proteins to 
help maintain the axonal structure [ 118 ]. NF protein is immunohistochemically 
detected in rat [ 79 ] and human oocytes [ 71 ], but not in mouse oocytes [ 61 ]. 
Expression of NF-H starts in oocytes at the primary stage of follicles, and continues 
in fertilized one-cell eggs and vanishes at the two-cell stage [ 79 ]. 

 GFAP is the major protein constituent of glial IFs in differentiated fi brous and 
protoplasmic astrocytes of the central nervous system. Lehtonen et al. [ 61 ] have 
failed to detect GFAP along with NFs in mouse oocytes and early embryos. In our 
unpublished observations, however, NFs and GFAP have been detected in the GV, 
MI and MII porcine oocytes. Figure  13.6  shows confocal laser scanning microscopic 

  Fig. 13.6    Confocal laser scanning microscopic images of neurofi lament localization in porcine 
oocytes.  Bar  represents 50 μm. Images of the oocytes at GV ( upper panel ), MI ( middle panel ) and 
MII ( lower panel ) stages. Sequential fl uorescence and differential interference contrast (DIC) 
imaging. (A) A nucleolus of GV, chromosomes and nuclei of cumulus cells are visualized by 
DAPI, (B) staining with anti-neurofi lament, and (C) DIC imaging. Neurofi lament immunoreactiv-
ity (B) is noted in the ooplasm, but not in the cumulus cells. The lipid droplets appear as small 
vacuoles under DIC (C). In the area where the lipid droplets are not seen in the oocyte, abundance 
of neurofi lament is detected       
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images of NF localization in porcine oocytes. NFs are found to be located in inverse 
proportion to accumulation of lipid droplets in the oocytes.

   In the developing nervous system, vimentin is found in both presumptive glial 
and neural cells, and the tissue-specifi c NF, GFAP and nestin appear later in devel-
opment [ 5 ,  10 ,  18 ]. We have observed similar mesh-like structures stained with 
antibodies to these neuronal-related IFs. It is suggested, therefore, that they may 
have been co-assembled and/or replaced often by different IFs even in the mamma-
lian oocytes. In addition, we have observed that transzonal projections of the corona 
radiata cells are stained with anti-GFAP, anti-desmin and anti-vimentin in porcine 
oocytes. The physiological signifi cance of NF, GFAP and nestin expressed in the 
oocytes remains to be determined.   

    Mechanical and Non-mechanical IF Functions in the Oocytes 

 IFs support mechanically the structural integrity of tissues and cells and the best 
example is seen in epithelial cells constituting the epidermis composed of the kera-
tin IFs. Our previous study has shown the increasing complexity of keratin fi lament 
network of hamster oocytes during maturation. Keratin IFs which have assembled 
into extensive cytoskeletal networks in the MII oocytes suggests that keratin may 
play a specifi c role in maintaining cell integrity under physical stress during egg 
transport in the oviduct after ovulation [ 76 ]. The extensive distribution of IFs 
appears to provide the oocytes with important mechanical properties. Keratin fi la-
ments (tonofi brils) appear to respond rapidly to shear stresses which are exerted at 
the surface of epithelial PtK2 cells [ 14 ]. IFs contribute to cell adhesion and migra-
tion [ 119 ,  120 ]. 

 Recent studies have pointed out the functional signifi cance of cellular mechano-
transduction processes in somatic cells [ 121 – 123 ]. Transmission of forces from 
 outside the cell through cell–matrix and cell–cell contacts appears to control the matu-
ration or disassembly of these adhesions and initiates intracellular signaling cascades 
that ultimately alter many cellular behaviors. In response to externally applied forces, 
cells actively rearrange the organization and contractile activity of the cytoskeleton 
and redistribute their intracellular forces. Accumulating evidences suggest that the 
localized concentration of these cytoskeletal tensions at adhesions is also a major 
mediator of mechanical signaling [ 121 ]. IF networks connect the cell surface with the 
outer nuclear membrane which connect to components of the nuclear lamina [ 123 , 
 124 ], thereby regulating the cellular architecture and also providing an important plat-
form to mediate cellular mechanotransduction processes [ 121 ]. Polymerized IF net-
works also play roles in numerous other signal transduction pathways by providing a 
scaffold or platform that interacts with signaling molecules including MAP kinases, 
mTOR, various 14-3-3 protein isoforms, Cdk5, and apoptotic factors [ 3 ,  86 ,  125 –
 130 ]. Environmental or internal stresses initiate stress signaling cascades, which acti-
vate the stress response and transcriptional machineries that induce the expression of 
the classical stress-induced heat shock protein (HSP) genes [ 131 ]. 
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    Non-mechanical Physiological Functions of IFs in the Oocytes 

 IFs provide the cell with a mechanism for resisting mechanical stress and cellular 
mechanotransduction processes. Furthermore, many studies on different types of 
somatic cells have revealed that IFs and their precursors are remarkably dynamic 
and exhibit a complex array of motile activities related to their subcellular assembly 
and organization. As mentioned above, some IF proteins may locate in the ooplasm 
(keratins, vimentin, desmin, nestin, GFAP and neurofi laments), but their physiolog-
ical signifi cances are still to be resolved. We mainly focused on the regulation of 
organelle positioning and regulation of translation as possible functions of IFs in the 
oocytes, because the cytoskeleton participates in the spatial organization and regula-
tion of translation [ 132 ]. These subcellular events may be crucial for cellular growth, 
proliferation and function.  

    Organelle Positioning and IFs 

 Transport of membranous organelles is mainly mediated by microtubule and micro-
fi lament cytoskeletal tracks and their respective molecular motors. In addition, 
organelle positioning in the cytoplasm seems to involve interactions with IFs [ 3 ,  57 , 
 133 ,  134 ]. Here a special interest has been paid to the interactions between IFs 
and membranous organelles, such as mitochondria, the Golgi complex and other 
membranous components. 

    Mitochondria 

 The temporal and spatial dynamic patterns of mitochondrial distribution are impor-
tant for their biological functions; disruption of their distribution can cause cell 
death. The morphology and distribution of mitochondria in cells are coordinated by 
microfi laments and microtubules [ 135 – 139 ]. Evidence that mitochondria associate 
with IFs has also been obtained [ 140 ,  141 ]. Since then, several IF proteins have been 
associated with mitochondrial functions in muscle [ 142 – 148 ] and non-muscle cells 
[ 149 – 154 ]. For example, desmin IFs play a role in mitochondrial positioning and 
respiratory function in cardiac and skeletal muscle [ 142 ,  143 ] and in smooth muscle 
[ 145 ,  146 ]. Immunoelectron microscopic studies of chicken skeletal and cardiac 
muscle have also shown that extensive labeling of desmin is localized to the interfi -
brillar spaces where mitochondria are located [ 147 ,  148 ]. Furthermore, observa-
tions on desmin-defi cient mice have revealed the importance of desmin IFs in 
mitochondrial behavior and function [ 142 ,  155 – 157 ]. 

 There is also evidence that keratin and vimentin have been implicated in docking 
mitochondria in muscle cells [ 144 ] and hepatocytes [ 153 ]. In nerve cells, on the other 
hand, the subcellular organization and movement of mitochondria are  associated with 
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IFs comprising the NFs [ 158 ,  159 ]. It has also been shown that antibodies against the 
NF-H subunit disrupt binding between mitochondria and NFs and the interactions 
between them depend on mitochondrial membrane potential [ 160 ]. 

 A linking protein between mitochondria and IFs, termed IEF 24 (MW 56,000), 
has been extracted from cultured fi broblasts, which is tenaciously associated with a 
subpopulation of IFs and also correlates closely with mitochondrial distribution 
[ 140 ]. Conserved structures on the mitochondrial surface, such as Mdm10p, 
Mmm1p and so on, are suggested to be adapted for interaction with different cyto-
skeletal networks [ 161 ]. Mitochondria can also associate with IFs through interac-
tions with the cytolinker protein, plectin [ 143 ,  162 – 164 ]. Therefore, organization of 
the cytoskeleton network together with associated protein(s) described above could 
be essential in regulating mitochondrial function. Furthermore, IFs can directly or 
indirectly bind the mitochondria, which have been detached from microfi lament or 
microtubule tracks [ 165 ].  

    The Golgi Complex 

 The Golgi complex plays an important role in the post-translational modifi cations 
and sorting of lipids and proteins from the endoplasmic reticulum (ER) and 
ER-Golgi intermediate compartments [ 166 ]. The association of the Golgi complex 
and microtubules has been demonstrated often in several systems [ 167 – 169 ], 
whereas in a certain type of cells microfi laments are essential for the Golgi mor-
phology and cytological positioning [ 170 ], through various actin-associated pro-
teins [ 171 ]. Vimentin IFs are also associated with the Golgi complex, and the Golgi 
58K protein (FTCD) is a candidate linker protein connecting the Golgi complex to 
the vimentin IF cytoskeleton [ 172 ,  173 ]. In addition, a Golgi-associated network 
surrounding the Golgi complex has been proposed [ 174 ], where dense bundles of 
keratin and actin fi laments are observed around the Golgi complex. Interestingly, 
when NFs are induced to aggregate by microinjection of NF-H into cultured neuro-
nal cells, the Golgi complex is fragmented and dispersed. Such a phenomenon is 
seen in diseased neuronal IF aggregate containing neurons derived from amyo-
trophic lateral sclerosis (ALS) patient tissues [ 159 ].  

    Other Membranous Organelles 

 Autophagosomes are cellular organelles thought to be derived from the membranes 
of the ER-mitochondria contact sites that engulf organelles targeted for degradation 
by fusing autophagosomes and lysosomes [ 175 ]. The positioning of endosomes and 
lysosomes and the maturation of autophagosomes have been shown to be tightly 
associated with the assembly of vimentin and its phosphorylation [ 176 ]. It has also 
been shown that interactions between vimentin IFs and the adaptor complex AP-3 
likely control the positioning, content, and subcellular distribution of selected late 
endosome/lysosome membrane proteins [ 177 ]. 
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 Lipid droplets, the cellular organelles for the repositories of fatty acids, are 
thought to arise from the bilayer membrane of endoplasmic reticulum [ 178 ]. 
Vimentin IFs interact with the lipid droplets [ 179 ,  180 ]. Recent studies revealed 
perilipin as linking protein between lipid droplets and vimentin [ 181 ].   

    Translational Components Associated with IFs 

 The cytoskeleton acts as a signaling platform that modulates cellular pathways by 
controlling the activity and/or subcellular localization of signaling proteins and 
their targets [ 132 ]. Polysomes (clustered ribosomes) are observed close to the cyto-
skeleton in various cell types, such as fi broblasts, epithelial lens cells and sea urchin 
eggs [ 132 ]. Although microfi laments are the main cytoskeletal element that partici-
pates in the organization of the translational apparatus [ 132 ,  182 ], there is evidence 
indicating a physical link between IFs and polysomes [ 183 – 185 ]. Ribonucleoprotein 
complexes are reported to bind keratin [ 186 ] or vimentin IFs, too [ 187 ]. 

 Eukaryotic elongation factor-1 (eEF1), composed of 3 subunits (eEF1A, eEF1Bα 
and eEF1Bγ) is essential for peptide-chain elongation during translation. eEF1A 
interacts with the actin microfi laments in a wide range of species from yeasts to 
mammals [ 188 ]. It has been shown that eEF1Bγ, a non-catalytic subunit of the eEF1 
complex, may be a keratin-binding protein, suggesting an involvement of keratin IF 
networks in translation [ 189 ]. The two other components of the eEF1, eEF1Bα and 
eEF1A are also associated with keratin IFs in epithelial cells. Thus, there appears to 
be a remarkable convergence in the reciprocal manner with which two distinct sub-
units of the eEF1 complex, eEF1A and eEF1Bγ, relate to actin microfi laments and 
keratin IFs, respectively [ 132 ]. 

 Post-translational modifi cations (PTMs) play important roles in regulating the 
functional properties of IFs. They include phosphorylation, glycosylation, prenyl-
ation, sumoylation, acetylation, and others [ 130 ]. Furthermore, PTM studies have 
revealed important interactions between IFs and other cellular components and 
structures, such as the interaction of 14-3-3 proteins with multiple IFs [ 190 – 192 ]. 
PTMs may regulate IF organization and the binding of IFs to IF-associated proteins, 
thereby regulating numerous cellular processes and cell-specifi c functions (for 
review, see [ 130 ]).   

    Concluding Remarks 

 Unlike microfi laments or microtubules, IFs show a wide range of molecular diver-
sity. Furthermore, IFs have a non-polar structure and therefore have no IF-specifi c 
associated motor proteins. IFs show versatile functions and properties, due to an 
outstanding degree of the molecular diversity. IF proteins are dynamic components 
of the cytoskeleton characterized by rapid movement and dynamic exchange of the 
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subunits. Non-mechanical IF functions include regulation of the cellular architec-
ture, cell growth, organelle positioning, signaling, and gene expression. IFs are 
clearly well integrated with the microfi lament and microtubule cytoskeletons and 
their motor proteins: movement of IF proteins likely occur through interactions with 
the microtubule-based motors kinesin and dynein; IFs are also associated with the 
microfi lament-based motor myosin. Interactions with microfi laments and microtu-
bules are not only restricted to motors, because a family of proteins directly link the 
microfi laments and microtubules to IFs. Therefore, IFs are dynamically integrated 
with other cytoskeletons capable of the polarization required for directional move-
ment of organelles and motor cargoes. In addition, certain protein(s) linking between 
organelle and IFs remains to be clarifi ed. Further studies are clearly needed before 
the biological signifi cance of IFs and participation in cytoskeletal crosstalk in the 
oocyte/embryo can be fully assessed.     
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