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  Pref ace   

 New research on the cytoskeleton has led to exciting new data on its functions and 
dysfunctions in health and disease, and it has allowed a more complete understand-
ing of cytoskeletal interactions in various cell organizations. 

 Cytoskeletal functions are essential for numerous cellular activities including 
cellular signaling, cell migration, cell division, transport of macromolecular com-
plexes, and cell organelles that play a role in cellular metabolism, and various oth-
ers, while cytoskeletal dysfunctions lead to a wide range of disorders and diseases 
such as cancer, Alzheimer’s, neurodegenerative disorders, reproductive disorders, 
and a variety of metabolic disorders. 

 Much progress has been made in recent years to develop new strategies that tar-
get specifi c cytoskeletal dysfunctions with the goal to restore normal functions; 
other studies have been focused on inhibiting abnormal cytoskeletal activities to 
control cancer cell proliferation. New drugs are being developed to target cytoskel-
etal abnormalities on cell and molecular levels which include targeting cytoskeleton- 
associated proteins and posttranslational modifi cations. 

 This book covers recent advances in the cytoskeletal fi eld and new discoveries 
that have emerged during the past few years related to the three major cytoskeletal 
components, microtubules, intermediate fi laments, microfi laments, their associated 
proteins, interactions partners, and their regulation on cellular and molecular levels. 
It addresses cytoskeletal dynamics, regulation, posttranslational modifi cation, and 
interactions with various cellular components in different cell systems including 
stem cells, reproductive cells, muscle cells, neuronal cells, bone cells, cancer cells, 
and others. 

    This book on the  Cytoskeleton in Health and Disease  features chapters written 
by experts in their specifi c areas of research who have been invited for their signifi -
cant contributions to research on the cytoskeleton in health and disease. Chapters 
include: Brief Overview of the Cytoskeleton (Chap.   1    ); Cytoskeleton Dynamics in 
Health and Disease: Role of Molecular Switches and Rheostats (Chap.   2    ); Regulation 
of the Cytoskeleton by the Rho Family of GTPases in Hematopoietic Stem Cells in 
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Health and Disease (Chap.   3    ); The Role of the Cytoskeleton in Cell Migration, Its 
Infl uence on Stem Cells and the Special Role of GFAP in Glial Functions (Chap.   4    ); 
Centrosome–Microtubule Interactions in Health, Disease, and Disorders (Chap.   5    ); 
Cytoskeletal Elements and the Reproductive Success in Animals (Chap.   6    ); 
Cytoskeleton and Regulation of Mitochondrial Translocation in Mammalian Eggs 
(Chap.   7    ); Tubulin Detyrosination in Epithelial Cells (Chap.   8    ); Mutations in 
 Adenomatous Polyposis Coli , Their Role in Cytoskeletal Dynamics and Cancer 
Onset (Chap.   9    ); Small GTPases Act as Cellular Switches in the Context of Cilia 
(Chap.   10    ); Desmin Plays Dual Structural and Regulatory Functions Through Its 
Interaction with Partners in Muscle (Chap.   11    ); Desmin Filaments and Desmin- 
Related Myopathy (Chap.   12    ); Possible Functions of Intermediate Filaments in 
Mammalian Ovarian Follicles and Oocytes (Chap.   13    ); Actin Organizing Proteins 
in Regulation of Osteoclast Function (Chap.   14    ); The Role of Drebrin-Binding 
Stable Actin Filaments in Dendritic Spine Morphogenesis (Chap.   15    ); The Role of 
the Actin Cytoskeleton in Cancer and Its Potential Use as a Therapeutic Target 
(Chap.   16    ). 

 It has been a privilege to edit this book on the cytoskeleton in health and disease, 
and I would like to thank all authors for their outstanding contributions and for shar-
ing their special expertise with the cytoskeleton biology and biomedical commu-
nity. I hope that the topics covered in this book will inspire further research and new 
approaches leading to new discoveries and new treatment possibilities for cytoskel-
etal diseases.  

  Columbia, MO, USA     Heide     Schatten     
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    Chapter 1   
 Brief Overview of the Cytoskeleton 

             Heide     Schatten    

            Introduction 

    The cytoskeleton consists of a complex network of fi bers primarily including three 
families of protein molecules that assemble to form three main types of fi laments: 
microtubules, intermediate fi laments and microfi laments. Other components such 
as septins and centrosomes have been added in more recent years to be included 
under the larger umbrella of the cytoskeleton. These fi laments are linked to each 
other and to different cellular components by hundreds of accessory proteins to 
allow intra- and intercellular communications and signal transductions for specifi c 
cellular functions. This chapter will briefl y introduce the major cytoskeletal compo-
nents. Several of these components and interactions are highlighted and discussed 
in more detail in specifi c chapters of this book.  

    Microtubules and Tubulins 

 Microtubules (MTs) are highly dynamic cytoskeletal fi bers with an outer diameter 
of ca. 25 nm. They are composed of α/β subunit heterodimers that typically are 
assembled into laterally associated 13 protofi laments to compose one single cylin-
drical complete microtubule. The number of protofi laments can vary in different 
organisms. Microtubules display structural polarity with a slow growing minus end 
and a fast growing plus end. The minus end can be stabilized by attachment to 
cellular structures such as microtubule organizing centers (MTOC; centrosome), 

        H.   Schatten      (*) 
  Department of Veterinary Pathobiology ,  University of Missouri ,   1600 E Rollins Street , 
 Columbia ,  MO   65211 ,  USA   
 e-mail: SchattenH@missouri.edu  
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the Golgi apparatus, or cell membranes. Individual microtubules undergo phases of 
growth (polymerization) and shrinkage (depolymerization) in a process referred to 
as ‘dynamic instability’, allowing dynamic modulation of the microtubule cytoskel-
eton and its varied specifi c functions. 

 Gamma-tubulin is a member of the tubulin family whose functions include 
microtubule nucleation and organization. It is primarily associated with MTOCs 
at centrosomes but it has also been localized to other cellular compartments 
such as the Golgi and the plasma membrane where microtubule nucleation can 
take place. In non-polarized epithelial cells the majority of microtubules are 
nucleated by γ-tubulin from centrosomes and remain associated with centro-
somes with their minus ends but the orientation changes in polarized epithelial 
cells when the majority of microtubules associate with their minus ends with 
γ-tubulin localized at the polarized cell membrane.    The specifi c features of cel-
lular polarization are discussed in Chap.   8     by Zink and Jacob   . 

 Four more tubulins have been discovered in recent years, which are delta (Δ)-, 
epsilon (ε)-, zeta (ζ)- and eta (η)-tubulins [ 1 ]. Functions of these tubulins are mainly 
linked to eukaryotic centrioles and/or basal bodies. 

 Microtubules serve a variety of different functions including maintenance of cell 
shape, cellular transport of membrane vesicles, macromolecules and organelles 
such as mitochondria, cell motility, meiosis, mitosis, and cell division; they are 
critical for the formation of centrioles, immotile primary cilia, and motile cilia and 
fl agella. The many different functions of microtubules are possible due to highly 
specifi c regulations that include a diversity of different factors such as Ca ++ , pH, MT 
associated proteins, and posttranslational modifi cations (PTMs) which allows sig-
nifi cant variability in dynamics and remodeling of the microtubule network to affect 
specifi c microtubule functions. Microtubule PTMs have recently been reviewed in 
detail [ 2 ] and include acetylation and detyrosination/tyrosination, PTMs that are 
oftentimes linked to microtubule stability. These PTMs also allow for specifi c asso-
ciations of microtubules with the microtubule motor proteins dynein and kinesin; 
the plus-end directed microtubule motor protein kinesin and minus-end directed 
microtubule motor protein dynein are important for transport of cargo along micro-
tubules to their functional destinations and therefore serve critical functions in cellular 
metabolism and intracellular signal transduction. The regulation of microtubule 
dynamics and stability further includes a role for a heterogeneous group of non- motor 
microtubule-associated proteins (MAPs) and microtubule-interacting molecules that 
provide additional functional diversity. 

 Several microtubule drugs are known to either inhibit microtubule polymerization 
(colcemid, colchicine, nocodazole, podophyllotoxin, and griseofulvin) or prevent 
depolymerization (taxol, paclitaxel). Several of these drugs have been validated as 
anti-cancer drugs to inhibit abnormal cell divisions based on their ability to interfere 
with microtubule functions in the mitotic apparatus, thereby preventing cancer cells 
from dividing. 

 Microtubule dysfunctions have been implicated in diseases and disorders with 
the best studied dysfunctions known for neuronal cells that is manifested in diseases 
such as Alzheimer’s and Parkinson’s. Microtubule dysfunctions are further observed 
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in aging cells and in mitotic cells in which the highly labile microtubules become 
disorganized resulting in spindle abnormalities and aneuploidy that is associated 
with various diseases including cancer. These topics are specifi cally addressed in 
several chapters of this book.  

    Intermediate Filaments 

 Intermediate fi laments (IFs) are composed of intermediate fi lament proteins that 
comprise a large and heterogeneous family of at least 65 different proteins that are 
subcategorized into six different types or classes in vertebrates. IFs are character-
ized as ropelike fi bers with a diameter of ~10 nm. They are more stable to experi-
mental treatments compared to microtubules and microfi laments. IFs provide 
cellular stability and allow intercellular communications in epithelial cells layers. 
IF are present in all cell types of the human body and they are developmentally 
regulated. Specifi c functions are seen in several cell types such as in epithelia 
(keratins), muscle (desmin), mesenchymal cells (vimentin), glia cells (GFAP), and 
neurons (neurofi lament triplet proteins). 

 While IF dynamics and functions had been less explored compared to MTs and 
microfi laments (MFs), recent interest in IFs has resulted in signifi cant new informa-
tion on their structural and biochemical characteristics as well as IF regulation, 
assembly and disassembly, and their forms and functions [ 3 , 4 ]. 

 Several diseases are associated with IF mutations or dysfunctions and include 
skin diseases with cytokeratin defects such as epidermolytic diseases. Vimentin and 
cytokeratin play a role in intra- and intercellular communications (reviewed in [ 5 ]). 
One type of IFs is organized into the nuclear lamins, a meshwork of fi laments 
underlining the inner nuclear envelope. Defects in this organization, some caused 
by point mutations in IF proteins, is associated with laminopathies and other severe, 
inheritable multi-systemic diseases.  

    Microfi laments 

 Microfi laments (MFs) are composed of actin monomer molecules (g-actin; globular 
actin) to form fi lamentous (F) actin or microfi laments. The actin subunits form 
two- stranded helical polymers resulting in linear strands of polar fi laments with a 
typical diameter of ca. 7–8 nm that are twisted around each other displaying an axial 
stagger of half a subunit. 

 Microfi laments have important functions in cell motility and can form a 
three- dimensional network to line the cell membrane or the lumen of microvilli. 
Other microfi lament functions include membrane traffi cking and shape changes. 
Actin fi laments can be highly dynamic or they can be anchored, such as in muscle 
tissue. Cellular microfi laments can be organized in linear bundles, two-dimensional 
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networks, and three-dimensional gels. The versatility of the actin cytoskeleton is 
achieved through different actin binding proteins that are discussed in detail in 
several specifi c chapters of this book. Microfi lament-associated and microfi lament- 
interacting molecules assure varied microfi lament functions. The Arp2/3 (actin-
related protein 2/3) complex serves as actin nucleation complex that is important for 
the formation of new actin fi laments off the sides of existing microfi laments 
(reviewed by Sun and Kim [ 6 ]).  

    Centrosomes 

 Centrosomes are major Microtubule Organizing Centers (MTOCs) in cells that 
nucleate and organize microtubules during interphase and mitosis. In interphase, the 
centrosome complex is closely associated with the nucleus and organizes a radial 
microtubule formation that becomes reorganized into the mitotic apparatus after 
duplication and separation of the mitotic centrosome complex during S/G2 and 
early prophase, respectively. 

 As mentioned above, the major protein for microtubule nucleation is γ-tubulin 
that is integrated in the large γ-tubulin-ring complex (γTuRC) associated with the 
centrosome structure (reviewed in [ 7 ]). Hundreds of γTuRC-like rings may be asso-
ciated with the centrosome matrix but the number changes with specifi c cell cycle 
stages. As will be discussed in more detail in Chap. 5   , the large γ-TuRC contains 5-7 
small complexes, the γTuSCs (around 280 kDa) that each comprises two molecules 
of γ-tubulin and one molecule each of GCP (γ-tubulin complex protein) 2 and 3 [ 8 ]. 
γTuRCs are enriched in mitotic and meiotic spindles where increased microtubule 
nucleation is important to generate microtubules for attachment to chromosomes, 
pole-to-pole microtubule organization and chromosome separation. As discussed in 
the specifi c chapter on centrosomes (Chap. x) centrosomes are further important for 
cytoskeletal coordination and functions. A typical somatic cell centrosome contains 
a pair of centrioles (reviewed in [ 7 ]) but acentriolar centrosomes are found in mam-
malian oocytes in which acentriolar centrosomes organize meiotic spindles 
(reviewed in [ 9 , 10 ]). Centrosomes have been best studied in somatic cells in which 
it has been shown that they are composed of a large number of centrosomal proteins, 
with at least 60 and perhaps 100 of them being directly associated with the inter-
phase centrosome structure, and numerous others that are associated with centro-
somes to perform cell cycle-specifi c functions (reviewed in [ 7 ]).  

    Septins 

 Septins are mentioned as an emerging class of cytoskeletal components that have 
been called a fourth novel unconventional component of the cytoskeleton [ 11 ]. 
Septins are a family of proteins that can form non-polar fi laments or rings and they 
can interact with the actin and microtubule cytoskeleton. Septins had been 
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 discovered in budding yeast cells in which it was shown that they play a role in 
cytokinesis by recruiting different proteins to the contractile ring. It has been 
shown in mouse oocytes that Septin 2 is posttranslationally modifi ed by 
SUMOylation and required for chromosome congression [ 12 ]. Other studies have 
shown that septin 1 is required for spindle assembly and chromosome congression 
[ 13 ] while Septin 7 is required for meiosis [ 14 ]. 

 Together, the chapters presented in this book provide a selection of topics that are 
of current interest in the cytoskeleton fi eld. They have been selected for their critical 
importance to research on the cytoskeleton and implications for cytoskeletal dis-
eases and/or disorders. New discoveries are being made rapidly in this exciting fi eld 
and the specifi c chapters have been chosen to stimulate new interest and further 
advances in the specifi c research areas.     
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    Chapter 2   
 Cytoskeleton Dynamics in Health and Disease: 
Role of Molecular Switches and Rheostats 

             Mahasin     A.     Osman    

            Introduction: Actin Dynamics Underlies Most 
Cellular Functions 

 Approximately 80 % of cellular proteins are of cytoskeletal nature and they provide 
the platform for nearly all cellular processes [ 1 ], ranging from DNA replication/
repair, transcription, and cell motility to all aspect of vesicular traffi c. An essential 
feature of the cytoskeleton is its dynamic nature, which is particularly important for 
the actin and the microtubule cytoskeleton. A plethora of specialized cellular pro-
teins interact with the actin and microtubule cytoskeleton and mediate their spatio-
temporal dynamics and thus facilitate the diversity and specifi city of their numerous 
cellular functions. It is not surprising therefore that defects in the cytoskeleton asso-
ciate with a wide range of human disease, including, but not limited to, cancer, heart 
disease, myopathies, skin disorders, neurodegenerative diseases like Alzheimer’s 
disease (AD), Amyotropic lateral sclerosis (ALS), as well as cell death arising 
from disruption of mitochondrial function [ 2 ]. Most recently, downregulation of 
β-actin and oxidative posttranslational modifi cations has been suggested as an 
underlying factor in Rett syndrome, thus implicating cytoskeleton disorganization 
in the disease [ 3 ]. Accordingly, targeting the cytoskeleton therapeutically has 
potential for producing undesirable pleiotropic effects, but understanding the basic 
mechanisms that control its context-specifi c dynamics will be crucial to developing 
selective therapies. This chapter focuses on the regulation of the dynamic of fi la-
mentous actin and its crosstalk with the microtubule cytoskeleton through the Rho 
GTPase effector/regulator IQGAP1. 

        M.  A.   Osman      (*) 
  Division of Biology and Medicine ,  Alpert Medical School, Brown University , 
  Providence ,  RI   02912 ,  USA   

  Savannah State University ,   Savannah ,  GA   31404 ,  USA   
 e-mail: Mahasin_Osman@Brown.edu; mo28@cornell.edu  

mailto:Mahasin_Osman@Brown.edu
mailto:mo28@cornell.edu


12

    Rho GTPases, N-WASPs and Arp2/3 Are Main Players 
of Actin Dynamics 

 Actin is a ubiquitous and widely conserved ~42 kDa protein present in all eukaryotic 
cell types [ 4 ]. Vertebrates have three isoforms; alpha, beta and gamma. Alpha actins 
are major components of the contractile apparatus such as muscle tissues whereas 
beta and gamma actins are main components of the cytoskeleton in most cell types. 
Beta-actin is a crucial player in a wide range of cellular functions, including the 
maintenance of cell shape and polarity, cell motility, protein traffi cking and tran-
scriptional regulation [ 5 ]. Actin exists in either a monomer globular form known as 
G-actin or a fi lamentous form known as F-actin that makes up large portions of the 
cytoskeleton. Polymerization of G-actin into F-actin is a highly regulated and 
reversible process, which provides the dynamic necessary for actin to infl uence 
multiple cellular functions. These functions include providing mechanical support 
that keeps cell shape and tracks for protein and organelle transport, facilitating cell 
motility and movement and regulating exocytosis and endocytosis [ 6 ,  7 ]. To carry 
out these functions, actin must interact with a diverse number of actin-binding pro-
teins (ABPs) that cooperate in its cellular functions or most importantly regulate its 
polymerization–depolymerization cycles [ 8 – 10 ], commonly referred to as remodel-
ing of the actin-cytoskeleton or actin dynamics. Assembly of F-actin into networks 
involves the actin branching regulator complex Arp2/3 [ 11 ], which nucleates new 
fi laments from the sides of pre-existing fi laments. This process requires activation 
of the Arp2/3 complex by the Neural Wiskott-Aldrich Syndrome Protein (N-WASP), 
or its relatives the hematopoietic WASP and the WASP-verprolin-homologous 
WAVE/Scar proteins [ 12 ]. WAVE, a subunit of the hetero-pentameric WAVE regu-
latory complex (WRC), is a downstream target of the Rho GTPase Rac1 [ 13 – 15 ] 
whereas N-WASP appears to be directly activated by the Rho GTPase Cdc42 and 
phosphatidylinositol 4,5-bisphosphate (PIP2) [ 16 – 19 ]. This differential interaction 
with two different GTPases suggests involvement of a complex crosstalk between 
Rac1 and Cdc42 in regulating actin dynamics and/or specialization in producing 
distinct actin-based structure–functions, which is discussed below.  

    A Complex Crosstalk Among the Rho GTPases 
in Actin Dynamics 

 The canonical Rho GTPases Cdc42, Rac1 and RhoA comprise a subfamily of the 
Ras superfamily of small GTPases, and are best known for their coordinate regula-
tion of the actin cytoskeleton dynamics and vesicular traffi c involved in both exocy-
tosis and endocytosis [ 20 ,  21 ]. They also impact a plethora of other cellular functions 
that mainly depend on cytoskeleton dynamics. These include, but not limited to, cell-
to-cell and cell-to-extracellular matrix adhesions, gene expression, morphogenesis, 
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cell cycle, cytokinesis, cell migration, neurite outgrowth, and phagocytosis [ 6 ,  21 – 23 ]. 
In addition, Rho GTPases regulate microtubule-dependant cell polarity through 
actin-binding formin proteins like the diaphanous mDia [ 24 ,  25 ], supporting a role 
in regulating crosstalk between the actin and the microtubule cytoskeleton. Rho 
GTPases are molecular switches that, in response to a variety of upstream signals 
like nutrients, hormone and mitogens, cycle between a signaling-active GTP-bound 
and a signaling-inactive GDP-bound states. This cycling is accompanied by confor-
mational changes in their GTP-binding switch 1 and effector-binding switch 2 
regions [ 26 ]. This intrinsic cycling capacity is controlled by signal- dependent inter-
actions with a set of regulatory proteins (reviewed in [ 27 ]). Guanine nucleotide 
exchange factors (Rho-GEFs) catalyze GDP dissociation and GTP binding, thus 
switching the GTPase to the active state, whereas GTPase-activating proteins (Rho-
GAPs) catalyze GTP hydrolysis and thus returning the GTPase to the inactive state. 
Layered upon this, Rho GTPases activity also is regulated spatially by shuttling 
between membrane-bound and cytosolic states. In response to an activating signal, 
the GTPases undergo a series of carboxyl-terminal modifi cations resulting in cova-
lent attachment of prenyl (farnesyl or geranyl) lipid anchors that attach them to 
membranes [ 28 – 30 ]. Dissociation from membrane-anchoring is catalyzed by gua-
nine nucleotide-dissociation inhibitors (RhoGDIs) that bind the geranylgeranyl lip-
ids and release inactive Rho proteins into the cytosol [ 31 – 33 ]. 

 When activated, Rho GTPases interact with numerous effector proteins that help 
decode, amplify and transmit their signal to downstream proteins responsible for 
executing that signal into a specifi c cellular response. The consequence of this pro-
cess is that small changes upstream in a Rho GTPase-pathway can translate into 
profound cellular responses downstream. Earlier studies using genetic analyses 
with classical GTPase dominant mutants revealed a level of specialization in forma-
tion of actin-based structures, where Cdc42 controls fi lapodia and microspike for-
mation [ 34 ,  35 ], Rac1 promotes lamellipodia and membrane ruffl es [ 36 ], and RhoA 
promotes actin stress fi ber and focal adhesion in the back of migrating cells [ 37 ,  38 ]. 
Moreover, as initially revealed from studies in the budding yeast, all three GTPases 
also are required for G 1  to S phase transition of the cell cycle in mammals [ 39 ], and 
they induce gene transcription through the Jun N-terminal kinase (JNK) module of 
the mitogen-activated protein kinase (MAPK) pathways [ 40 ,  41 ]. Signifi cantly, 
while earlier studies have implicated both Rac1 and Cdc42 in membrane traffi c, 
Rac1 in particular was found to impact both exocytic and endocytic pathways [ 42 ]. 
This role may have signifi cance in the hypothesis that Rac1 activity lies at the inter-
face of coupling insulin and glucose homeostasis [ 43 ] that will be discussed under 
the exocytosis section below. 

 However, these earlier studies also revealed a level of complexity in Rho GTPase 
actions and hinted that different GTPases often coordinately regulate cellular func-
tions via highly orchestrated crosstalk [ 44 ]. Indeed, recent advances in live cell 
imaging revealed exquisite spatiotemporal orchestration of the activity of these pro-
teins in leading edge versus retracting back during directional cell migration [ 45 ] or 

2 Cytoskeleton Dynamics in Health and Disease: Role of Molecular Switches…



14

during signal-driven exocytosis in different cell types [ 46 ,  47 ]. This mechanism 
likely applies to the myriad of their cellular functions in which they are involved. 
Adding to this complexity is their ability to bind a large variety of effecter proteins 
by which they gain selectivity to impact multiple functions at once, thus justifying 
their description as being multispecifi c [ 27 ]. This indicates that they gain both func-
tional diversity and specifi city via protein–protein interaction. Moreover, while 
their regulators, GEFs, GAPs and GDIs, can be Rho subfamily-specifi c, often they 
are not GTPase-specifi c, which means that a regulator can impart on multiple 
GTPases and conversely a GTPase can be regulated by multiple regulators of the 
same kind [ 31 ,  48 – 52 ]. Furthermore, Rho regulators themselves are regulated by 
complex mechanisms that include posttranslational modifi cations, auto-inhibition, 
subcellular localization as well as positive and negative feedback loops that deter-
mine specifi city and range of signal durability (reviewed in [ 27 ]). Even more com-
plexity is demonstrated by evidence that Rho regulators may have GTPase-independent 
functions [ 53 ], and that certain Rho GAPs may act as potential effectors of Rho 
GTPases [ 54 ,  55 ], reminiscent of p120RasGAP, which was implicated as an effector 
for Ras signaling in specifi c situations [ 56 ]. 

 For all the reasons Stated above, studies utilizing overexpression of dominant 
mutants or knockdown of GTPases or their regulators will potentially not only glob-
ally interfere with multiple signaling pathways, but also likely will target more than 
one GTPase and produce confusing pleiotropic effects. Importantly, Rho GTPases 
do not bind F-actin directly neither in vitro nor in cells [ 57 ,  58 ], and thus must selec-
tively choose from a menu of actin-binding effector proteins to execute, in a specifi c 
manner, the myriad of cellular functions involving actin dynamics. Furthermore, 
ensuring the selectivity, sensitivity and fi delity of signal transmission requires 
proper communication between a given Rho GTPase, its Rho regulator and cognate 
effector in time and space [ 27 ]. 

 One of the best-known mechanisms to achieving this level of signal specifi city is 
to isolate signaling components into modules via scaffold proteins [ 59 ]. Within a 
given module, scaffolds often play far more important roles than just simple scaf-
folding [ 60 ]. A relevant prototypical regulatory scaffold is IQGAP1 [ 43 ,  61 ], a 
RasGAP domain (GRD)-containing protein with selective affi nity for the GTP- 
bound Rac1 and Cdc42 [ 62 ]. IQGAP1 binds to F-actin directly and cross-links actin 
fi laments into interconnected bundles [ 63 ,  64 ]. For its potent regulatory activity of 
F-actin assembly, it has been dubbed the “master” regulator of actin dynamics [ 65 ]. 
It also binds other cytoskeletal elements [ 61 ] and is capable of not only mediating 
Cdc42 or Rac1 signaling to the cytoskeleton selectively, but also of regulating 
Cdc42 and Rac1 activities and crosstalk to execute a diversity of cellular functions 
with greater specifi city. In addition, IQGAP1 also binds other GTPases like 
RhoA. As such and because of its modular feature, IQGAP1 is uniquely positioned 
both as an effector protein and as a context-specifi c signaling rheostat. These prop-
erties are discussed in the following sections.   
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    Structural Basis of IQGAP1 as a GAP-Mimic 
and Molecular Rheostat 

 IQGAP1 is a modular protein that connects cell signaling and the cytoskeleton 
dynamic to diverse cellular functions. Rather than an inert scaffolding protein, 
IQGAP1 is best described as a rheostat of dynamic cellular functions that includes 
actin and microtubule dynamics. Whereas the budding yeast has one IQGAP ortho-
log; Iqg1p, humans have three isoforms; IQGAP1, IQGAP2 and IQGAP3. The 
three isoforms have similar primary sequence homology and modular structure, but 
they differ in tissue distribution and cellular functions [ 43 ,  61 ,  66 ,  67 ]. For rele-
vance, this chapter is focused on IQGAP1, which is the most studied. Although, it 
has often been referred to as scaffold, its cellular activity can appropriately be 
described as a molecular rheostat [ 43 ]. This is primarily because while it serves as 
a scaffold to assemble a variety of subcellular modules, it modulates the activity of 
these modules in response to extracellular signals by directly or indirectly binding 
to a host of surface receptors. It appears that human cells utilize IQGAP1 where 
dynamic cellular responses must occur rapidly and with precise specifi city. This 
function is facilitated not only by its modular nature that enables it to bind a large 
number of diverse signaling and structural proteins, but also by its ability to undergo 
phosphorylation-dependent conformational switch [ 43 ,  61 ]. Thus IQGAP1 serves 
both as a signaling as well as an effector molecule in many cellular functions, 
including in actin dynamic. Accordingly, IQGAP1 is a large protein containing 
1657 residues that migrates at ~190 kDa on a 10 % polyacrylamide gel and it can 
also exist as an ~380 kDa homodimeric protein in solution [ 63 ]. To date, at least 
seven distinct functional domains and motifs have been identifi ed on its protein 
structure (Fig.  2.1 ), which is discussed briefl y below.

   The N-terminal region of IQGAP1 contains a single calponin homology domain 
(CHD), which directly binds and bundles F-actin [ 63 ]. Downstream of the CHD are 
six putative coiled-coil specifi c IQGAP1 repeats (IR) followed by a Tryptophan- rich 
WW domain that mimics Src Homology (SH) domains in binding Proline rich 
domains. The IR-WW associates with the Exocyst complex, mTORC1, Akt [ 70 – 72 ] 
and with ERK1/2 [ 73 ]. Following the IR-WW domain are four IQ motifs that associ-
ate with calcium/calmodulin, myosin light chain (Mlc1), the MAPK b-Raf, MEK1/2 
[ 74 ], and several surface receptors (see below). The RasGAP-related domain (GRD) 
of IQGAP1 (Fig.  2.1 ) is required, but not suffi cient for binding activated forms of the 
Cdc42 and Rac1 [ 62 ,  63 ,  75 – 79 ]. Because of substitution of the catalytic arginine 
fi nger with a threonine in this GRD domain, IQGAP1 lacks enzymatic GAP activity 
[ 80 ]. This allows it to mimic a GAP and thus traps active Cdc42 at specifi c membrane 
sites without catalyzing GTPase activity, which explains previous observations why 
IQGAP1 expression increases the level of active Cdc42- GTP in cells [ 71 ,  81 ]. This 
feature may play an important unresolved role of IQGAP1 in dynamic cellular func-
tions, such as allowing it to specify regions of polarized growth as in tubulogenesis, 
localized hot spots for signal-regulated  exocytosis, or spatially activating signaling 
pathways for directed cell migration and invasion [ 23 ,  43 ,  61 ]. 

2 Cytoskeleton Dynamics in Health and Disease: Role of Molecular Switches…



16

 At the extreme C-terminal region of IQGAP1, resides the RGCt domain, which 
binds β-catenin and E-cadherin members of the Wnt signaling pathway, involved in 
modulating epithelial adhesion, and the formin mDia1, which catalyzes processive 
barbed end assembly of F-actin [ 82 – 85 ]. This domain also binds the cytoplasmic 
linker protein 170 (CLIP170) and the tumor suppressor adenomatous polyposis coli 
(APC) by which it anchors and modulates the microtubule cytoskeleton [ 86 – 88 ]. 
A nuclear localization signal (NLS) at the end of the RGCt domain mediates 
IQGAP1’s cell cycle-dependent entry into the nucleus [ 89 ] where IQGAP1 may 
serve as transcriptional co-activator with β-catenin or in DNA replication. An atypi-
cal phosphoinositide (aPI)-binding domain, much similar to the Pleckstrin homology 
(PH) domains found in the PI3K-Akt and mTOR family, binds Phosphatidylinositol 
(3,4,5)-triphosphate (PIP3) [ 90 ], a phospholipid that activates signaling components 
such as Akt. PH domains also mediate binding to heterotrimeric G-proteins and pro-
tein kinase C (PKC) [ 91 ,  92 ], which are also binding-partners of IQGAP1 (see 
below). Altogether, these structures facilitate IQGAP1’s spatiotemporal control of 
cell signaling events that impact aspects of cell proliferation such as size, division 
axis orientation, differentiation, epithelial polarity as well as cell migration and 
phagocytosis. The unifying role of IQGAP1’s function in all these processes appears 
to be signal-controlled vesicular transport in which dynamic F-actin assembly plays 
a central role [ 23 ,  43 ,  61 ]. Accordingly, IQGAP1 has been implicated in multiple 
cellular functions, some of which are discussed below.  
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  Fig. 2.1    Schematic diagram of human IQGAP1’s domain structure, some binding-partners, and 
cellular function.  CHD  calponin homology domain,  IR-WW  IQGAP1-repeats (IR) and the trypto-
phan (WW) repeats,  IQ  four isoleucine and glutamine rich motifs,  GRD  Ras GTPase-activating 
protein-related domain,  RGCT  RasGAP-C terminus (RGCT) domain; the critical Ser-1443 is indi-
cated,  NLS  nuclear localization signal,  aPI  C2/PH-like domain that binds the phospholipid PIP3. 
The A-kinase-anchoring protein 220 (AKAP220) appears to bind both the N-terminal and 
C-terminal regions of IQGAP1 with the exclusion of the IQ motifs in human mammary MCF-7 or 
HT1080 human fi brosarcoma cells [ 68 ], whereas AKAP79 was found to bind the C-terminal 
region of IQGAP1 in pancreatic β cells [ 69 ]       
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    Cellular Functions of IQGAP1 

    A Master Regulator of Cytoskeleton Dynamics 

    A Modulator of F-Actin Dynamic 

 IQGAP1, the effector and regulator of Cdc42 and Rac1, has been established as a 
dynamic regulator of branched F-actin formation through direct binding to F-actin 
and activation of N-WASP. 

 Binding to F-actin and Cdc42 is a conserved feature of IQGAP1 across species 
[ 93 ,  94 ]. Co-immunoprecipitation [ 94 ] and co-sedimentation [ 95 ] experiments 
demonstrated that the budding yeast ortholog, Iqg1p, binds F-actin and infl uences 
cell polarity (bud-site selection and growth), cytokinesis and secretion [ 6 ,  94 ,  96 ]. 
In vitro experiments demonstrated that mammalian IQGAP1 cross-links F-actin 
into bundles and gels [ 63 ,  64 ], in a manner that is negatively regulated by calcium/
calmodulin (Ca 2+ /CaM) [ 97 ], which induces its dissociation from Cdc42 [ 76 ]. Thus 
two distinct signaling pathways, Ca 2+ /CaM and Cdc42, appear to orchestrate 
IQGAP1’s regulation of F-actin assembly. Subsequent assays showed that a single 
CHD of monomeric IQGAP1 binds F-actin with an ~47 μM affi nity and that like 
full length IQGAP1, it localized with polymerized actin fi laments at the cell cortex 
[ 98 ]. This evidence was the fi rst to suggest IQGAP1’s role in stimulating F-actin 
nucleation. Indeed, spectrofl uorometric assays combined with direct visualization 
with total internal refl ection (TIRF) microscopy, demonstrated that IQGAP1 binds 
N-WASP and mediates Arp2/3-N-WASP nucleation of F-actin side branches, inde-
pendently of, but also cooperatively with, activated Cdc42 [ 83 ]. Because this activ-
ity occurred within a narrow concentration range, it hinted to interplay of stimulatory 
and inhibitory mechanisms by IQGAP1 [ 83 ]. 

 Several independent studies revealed the existence of such mechanisms. First, 
kinetic assays of branched actin polymerization with N-WASP and Arp2/3 complex 
[ 84 ] and insulin exocytosis and cell migration assays using several mutants of 
IQGAP1 [ 71 ] revealed its positive and negative effects on F-actin assembly and 
exocytosis, respectively and suggested that it undergoes reversible auto-inhibition. 
Cell biological and biochemical assays showed that IQGAP1 controls N-WASP 
activity and localization to Arp2/3 complex at preexisting actin fi laments in a 
Cdc42-dependant manner [ 84 ]. Whereas the C-terminal half of IQGAP1 activates 
N-WASP by binding to its BR-CRIB (basic region-Cdc42-Rac interactive binding) 
domain, the N-terminal half of IQGAP1 inhibited this activation by masking the 
C-terminal half of IQGAP1 through intra-molecular folding [ 84 ]. Second, cell 
transformation and migration assays demonstrated interplay between the N-terminal 
and the C-terminal regions of IQGAP1 [ 72 ]. Whereas the C-terminal domain 
 promoted transformed phenotypes the N-terminal region inhibited such phenotypes, 
but both domains were required for effi cient cell invasion in transwell assays and 
migration in wound-healing assays [ 72 ]. This evidence provided the functional 
framework for IQGAP1 dynamic auto-inhibition (see below), which is regulated by 
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reversible phosphorylation of the C-terminal Serine 1443, as supported by func-
tional analyses of phosphorylation-inhibitory and mimetic point mutant s–mutants 
[ 72 ]. It also suggested that these two functions converge at the plasma membrane 
where IQGAP1’s regulation of F-actin dynamics provides a mechanism for regulat-
ing exocytosis [ 43 ]. 

 However, the mechanics and the functional consequences of IQGAP1’s binding 
and assembly of F-actin are far from being fully understood. Three lines of evidence 
support the notion that interplay of IQGAP1-Cdc42 and IQGAP1-Rac1 complexes 
plays a role in the stimulatory-inhibitory cycles of IQGAP1-mediated actin dynam-
ics. First, N-WASP appears to bind to both C-terminal and N-terminal regions of 
IQGAP1 [ 83 ,  84 ], whereas both Cdc42 and Rac1 bind to sites in the C-terminal 
region of IQGAP1. Second, IQGAP1 and N-WASP bind different regions of Cdc42 
[ 99 ]. Third, IQGAP1 binds either Cdc42 or Rac1 alone and infl uence F-actin nucle-
ation. Together, this evidence hints to a GTPase-independent function of IQGAP1-
N- WASP and likely differential actions of Rac1-bound and Cdc42-bound IQGAP1. 

 Additionally, IQGAP1 appears to regulate actin dynamics through another path-
way that requires the formin mDia1 [ 82 ]. Formins are ubiquitous family of proteins 
that regulate the dynamics and organization of both the actin and the microtubule 
cytoskeletons [ 100 ]. IQGAP1 binds mDia1 and induces phagocytosis [ 82 ], which 
may represent a specialized function of an IQGAP1-mDia pathway in F-actin 
dynamics. However, it is conceivable that mDia1-IQGAP1 cooperate in stress-
responsive actin networks assembly inside the nucleus where both proteins have 
been individually implicated [ 101 ,  102 ]. Yet another possibility involves actin-
microtubule crosstalk, particularly in exocytic vesicle transport (see below). 
Evidence in support of this view is that while the mDia1-IQGAP1 interaction was 
dispensable for actin polymerization, it was required for microtubule capture at the 
leading edge of migrating breast carcinoma cells [ 103 ], a function previously dem-
onstrated for IQGAP1 interaction with APC and CLIP170 [ 86 ,  87 ]. Thus much work 
lies ahead for sorting the mechanics and specifi c functions of the variable IQGAP1 
complexes in a context- dependent manner.  

    A Modulator of Microtubule Dynamics 

 Several studies, both in yeast and mammals, have implicated IQGAP1 in microtu-
bule dynamics associated with cell polarity and traffi cking [ 6 ,  94 ], via binding to 
microtubule plus end tracking proteins [ 86 – 88 ]. The IQGAP1 RGCt directly binds 
the armadillo repeats of APC and the two proteins interdependently couple micro-
tubules and F-actin network at the leading edge of migrating cells as revealed by 
pharmacologic inhibitors, RNAi, and mutant analyses [ 87 ]. A possible mechanism 
by which IQGAP1 couples microtubule and F-actin dynamics is that IQGAP1-APC 
complex is required for targeting CLIP170 to the microtubules and F-actin networks 
at the leading edge of migrating cells [ 86 ,  104 ]. CLIP170 can bind microtubule plus 
ends and nucleate microtubules from pure tubulin near the cell cortex [ 105 ]. In addi-
tion, IQGAP1 directly interacts with the CLIP associated protein 2 (CLASP2), 
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albeit in a GSK-3β-dependent manner [ 88 ]. CLASP2, in turn, docks to the 
microtubule- plus End binding 1 (EB1) protein that links microtubules to the cell 
cortex [ 106 ]. These interactions suggest that IQGAP1 serves as a scaffold not only 
to regulate microtubule-dynamics, but also to mediate spatiotemporal coupling of 
microtubules and F-actin dynamics in different cell types. Interestingly, these inter-
actions require the activity of both Rac1 and Cdc42, and overexpression or knock-
down of either APC, IQGAP1 or CLIP170 affects both microtubules and F-actin 
dynamics, disrupts the localization of cognate partners and impairs directional 
migration [ 86 ,  87 ]. 

 Collectively, this evidence suggests requirement of a fi ne balance between these 
proteins and existence of a regulatory crosstalk between Rac1-Cdc42 as well as 
involvement of additional signaling proteins such as mTOR and the MAPK-Akt axis, 
which control the activity of GSK-3β [ 43 ,  61 ,  70 ]. Evidence for this view is that 
expression of an IQGAP1 mutant defective in Rac1/Cdc42 binding induces multiple 
leading edges [ 86 ,  87 ]. Moreover, both IQGAP1 and CLIP170 are rapamycin- 
sensitive binding-partners of mTOR [ 70 ,  107 ]. Apparently cells adopt this funda-
mental IQGAP1-mediated mechanism universally not only during cell migration and 
likely vesicular transport, but also during developmental events where generating 
polarized structures require asymmetrical cell division, as discussed below.  

    A Mediator of Actin-Microtubule Crosstalk in Asymmetric Cell Growth 

 The role of IQGAP1 in asymmetric cell growth was fi rst discovered in the budding 
yeast  Saccharomyces cerevisiae  (Fig.  2.2 ). Bud-site selection is a highly regulated 
asymmetrical cell growth and division event in which yeast Iqg1p exerts control 
both upstream and downstream of Cdc42 and determines the directional polariza-
tion of actin and microtubules [ 94 ,  96 ]. Likewise, lumen formation, which is 
required for tubulogenesis and cellular elongation, which is required for formation 
of structures like fi lapodia both depend on asymmetric organization of actin and 
microtubule networks [ 109 ]. Numerous actin-binding proteins, including the Ezrin-
Radixin- Moesin (ERM) family of proteins, have been implicated in these processes 
[ 110 ], presumably guided by synaptotegmin [ 111 ]. Synaptotagmins are conserved 
SNARE-binding proteins that induce Ca 2+ -dependent insulin exocytosis [ 112 ]. 
Given the conserved role of IQGAP1 in cell polarity, insulin exocytosis and binding 
to the SNARE Syntaxin 4 [ 23 ,  71 ] as well as to Ezrin [ 113 ], makes it plausible that 
it employs the same fundamental mechanism in tubulogenesis and lamillepodia- 
fi lapodia formation, as well as in regulated exocytosis. Much mechanistic analyses 
will be required for identifying the determinants of each of these distinct functions 
in different cell types.

   Some of these mechanisms have begun to be unraveled. In several cell types, 
IQGAP1 localizes similar to centrosome (the microtubule-organizing centre or 
MTOC) proteins at the midbody (Fig.  2.2a ) of mitotic cells [ 70 ]. Silencing or over-
expressing IQGAP1 results in misorientation of MTOC and impairs directional cell 
migration [ 72 ,  87 ,  114 ]. This function is conserved in yeast, as null mutation of 
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Iqg1p also misorients microtubules and directed cell division, leading to random 
budding (Fig.  2.2b , [ 94 ,  96 ]). Similarly, knockdown of mammalian IQGAP1 causes 
defective morphogenesis and tubulogenesis by misorienting the plane of cell divi-
sion (Fig.  2.2c , [ 108 ]). In several epithelial cells, the IQ motifs of IQGAP1 directly 
bind the kinase domain of the EGFR [ 115 ] and both proteins have been shown to 
localize to the epithelial basolateral membrane [ 104 ,  116 ]. Recent evidence showed 
that EGFR directs the localization of IQGAP1 to the basolateral membrane in 3-D 
cell cultures, which in turn is required for the basolateral localization of the nuclear 
mitotic apparatus protein (NuMA) and formation of a single lumen [ 108 ]. NuMA, 
normally restricted to the interphase nucleus of non-mitotic cells, rapidly redistrib-
utes to the cytoplasm in early mitosis and form a complex with dynein/dynactin to 
tether microtubule minus ends to the spindle pole centrosome and persist in the 
cytoplasm until the onset of anaphase [ 117 ]. Overexpression of NuMA [ 117 ] or 
disruption of IQGAP1-EGFR binding [ 108 ] causes multipolar spindle formation, 
which leads to multilumen formation [ 108 ]. These fi ndings are consistent with the 

  Fig. 2.2    IQGAP1 has a conserved role in directed cell division and morphogenesis. ( a ). Yeast and 
human IQGAP1 localize at the cytokinetic plate and infl uence cytokinesis ([ 96 ]; Osman unpub-
lished; [ 70 ]). ( b) . Yeast Iqg1p controls directed cell division leading to budding. Wildtype (WT) 
haploid yeast bud in axial pattern. Deletion of  iqg1  leads to two types of budding patterns; random, 
indicating upstream effect like in  cdc42  null cells, and bipolar, a feature of diploid cells [ 96 ]. ( c ). 
Human IQGAP1 controls directed cell division leading to tubulogenesis. RNAi-mediated knock-
down of IQGAP1 leads to misorientation of mitotic spindles and multilumen formation in epithe-
lial cells growing in 3D cultures [ 108 ]       
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evidence that overexpression of IQGAP1-IR-WW domain, which acts as a dominant 
negative mutant in cell proliferation, leads to multinuclear formation and cytokine-
sis arrest [ 72 ]. Altogether these fi ndings demonstrate a universal role for IQGAP1 in 
anchoring both cortical microtubules in non-dividing cells and astral microtubules 
in mitotic cells, while mediating F-actin-microtubule crosstalk by cooperating with 
appropriate actin- or microtubule-binding proteins. This function provides more 
mechanistic understanding for its role in morphogenesis and the development of 
cancer. It remains unclear how Cdc42, which has also been implicated in restricting 
lumen formation, infl uences IQGAP1 function in this process. It is likely that unreg-
ulated IQGAP1-Cdc42 binding would promote multilumen formation since this 
binding requires active Cdc42 and phospho-IQGAP1 and disrupts epithelial adhe-
sion and polarity [ 43 ,  61 ] similar to an effect brought about by EGF treatment of 
cells [ 108 ]. Moreover, these interactions likely are dynamic in time and space and 
involve differentially regulated crosstalk. An important role for an IQGAP1-
mediated F-actin-microtubule interaction may occur during viral particles egress. 
Signaling through the RhoA-mDia1 axis was found to increase microtubule dynam-
ics at the peripheries of cells infected with vaccinia virus and enhance the release of 
viral progenies [ 118 ]. Interactions of IQGAP1 with these components and its 
regulation of exocytosis and cytokinesis, support its role as effector in viral egress 
discussed later in this chapter. 

 Finally, although IQGAP1 appears to regulate many cell functions via combin-
ing negative and positive roles to modulate microfi laments dynamics, specialized 
cells may select one of the roles as suited for their specifi c function. One such 
example occurs during T-cell activation where IQGAP1 appears to modulate T-cell 
activity by interplaying microtubules and F-actin dynamics [ 119 ,  120 ]. However, 
unlike its dual roles in microfi lament dynamics in cell motility or in exocytosis, in 
CD8 +  T cells, IQGAP1 negatively regulates the T-cell receptor (TCR)-mediated 
F-actin assembly during immunological synapse formation [ 120 ].  

    IQGAP1 Interacts with Several Other Cytoskeletal Elements 

 Besides F-actin and microtubules, IQGAP1 binds several other types of microfi la-
ments. As this has been reviewed recently [ 61 ], a brief update will be provided in 
this section. IQGAP1 has a conserved role in organizing septin fi laments and func-
tion. Septins comprise a family fi lament-forming GTPases that have been heavily 
studied for their involvement in cytokinesis [ 121 – 123 ]. Increasing evidence sup-
ports their participation in the various cellular functions involving IQGAP1, includ-
ing adheren junctions remodeling [ 124 ], bacterial infection [ 125 ] and membrane 
dynamics at the cell cortex during cell motility [ 126 ]. Septin fi laments polarization 
has been shown to require microtubule-dependent translation-coupled transport of 
septins on endosomes [ 127 ]. The microtubule-binding IQGAP1 also binds septins 
and is required for Sept2 localization and organization in mammalian cells [ 71 ]. 
Similarly, loss of yeast Iqg1p perturbs the localization of the yeast septin Cdc12 as 
well as the polarization of microtubules [ 94 ,  96 ]. This together with evidence for 
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IQGAP1 endosome function [ 128 ] and microtubule capture, support IQGAP1 
participation in septin fi laments polarized transport and/or anchor at the cell cortex. 

 Crosstalk between septin and actin fi laments has also been demonstrated. It has 
long been observed that perturbation of septin organization in mammalian cells 
causes loss of actin bundles, implicating septin in actin bundles organization [ 129 ]. 
New evidence from studies in the fruit fl y show that septins alone crosslink, bundle 
and bend actin fi laments into rings, and thus participate in actin organization [ 130 ]. 
Given the conserved interactions of IQGAP1 with septins and role in cytokinesis 
[ 70 – 72 ,  96 ], it will be important to analyze how it mediates actin–septin function 
during cytokinesis and other cellular processes. 

 In addition, IQGAP1 couples to other types of cellular fi laments; validated 
microarray analyses revealed a correlative stepwise upregulation of IQGAP1 and 
vimentin during development of hepatocellular carcinoma in a rat model [ 131 ]. 
Vimentin is an intermediate fi lament protein involved in the regulation of cell mor-
phology primarily expressed in mesenchymal cells. Its expression in epithelial cells 
marks an epithelial-to-mesenchymal transition (EMT) during morphogenesis or 
cancer development [ 132 – 134 ]. While evidence for physical interaction between 
vimentin and IQGAP1 is lacking, bioinformatics-based network analyses supports 
such interaction [ 131 ]. Similarly, microarray-based data suggest correlation of 
IQGAP1 and cytokeratin (K19) in human hepatocellular cancer [ 135 ]. Taken 
together this evidence implicates IQGAP1 as a master cytoskeletal regulator con-
trolling cell shape and polarity. An important question arises as to how might 
IQGAP1 bind so many partners and impact so many functions. It is clear that its 
modular nature allows for a variety of binding partners, modulated by a variety of 
posttranslational modifi cations in IQGAP1 as well as in the different partners. An 
important feature is that these modifi cations promote conformational changes, 
enabling IQGAP1 to act as a switch (Fig.  2.3 , see below) and in turn allows for more 
interaction diversity. Such switch mechanism is prevalent in regulating the cytoskel-
eton, as it is adopted by many regulators, and is discussed below.  

    Autoinhibition as a Common Regulatory Mechanism in Actin Dynamics 

 A variety of mechanisms are involved in regulating the variable players of actin 
dynamics we discuss in this chapter. Prominent among these are signal-dependent 
recruitment to the plasma membrane and posttranslational modifi cations. However 
it appears that these mechanisms primarily input into autoregulation by intramo-
lecular interactions, resulting in autoinhibition (Fig.  2.3 ). Biochemical and struc-
tural studies have uncovered autoinhibition as an emerging critical mechanism for 
proper response to upstream signals and appropriate selection of regulatory proteins 
and cognate downstream pathways. Furthermore, autoinhibition represents an effi -
cient and reversible mechanism for providing tight “on-site” repression [ 136 ] of 
proteins involved in highly dynamic biological processes. Indeed, one of the best-
known proteins regulated by this mechanism is the Ras GEF son of sevenless or Sos 
[ 137 ,  138 ]. Therefore, it appears to be the mechanism of choice adopted by many 
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factors in the IQGAP1’s pathway, including regulators of small GTPases and the 
actin polymerization machineries. 

 Evidence for this mechanism was initially inferred from biochemical studies, 
and the defi nitive evidence was provided by structural studies of the RhoGEFs 
Vav1, which contains Dbl-homology (DH) domain [ 139 ]. A Vav1 N-terminal region, 
found in the GTPase interaction site and encompassing the Tyr174 Src- family kinase 
recognition site, masks the catalytic DH domain. Phosphorylation or truncation of 
this region results in activation of the GEF [ 139 ]. It is therefore not surprising that 
IQGAP1 activity is regulated by phosphorylation-sensitive autoinhibition (Figs  2.3  
and  2.4  below) and that N-WASP represents a prototype of this mechanism. On this 
basis, N-WASP has been developed into fl uorescence resonance energy transfer 
(FRET) biosensor that allows for in vivo visualization of its cellular activities [ 140 ]. 
Like IQGAP1, N-WASP is a multidomain protein, which remains autoinhibited by 
interaction between the CRIB (Cdc42- and Rac-interactive binding) domain and the 
catalytic VCA (Verprolin, cofi lin, acidic) domain. Binding of active Cdc42 to the 
CRIB and phosphatidylinositol 4,5-bisphosphate (PIP2) to the basic region (BR), 
unmask the VCA domain, thus synergistically activate N-WASP [ 17 ,  141 ]. Similarly, 
Cdc42 binding to IQGAP1 opens its structure, which in turn opens N-WASP struc-
ture. Formins, such as the IQGAP1-binding partner mDia1, also are autoinhibited 
through intramolecular interactions and activated by Rho GTPases and additional 
proteins [ 100 ,  142 ]. Thus the factors involved in relieving the autoinhibition include 
Rho GTPAses, phosphorylation as well as interacting proteins that themselves 
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  Fig. 2.3    IQGAP1 adapts auto-inhibition as a regulatory mechanism. Biochemical and functional 
analyses in multiple model cell lines revealed that the N-terminal region of IQGAP1 interacts with 
the C-terminal regions supporting the notion of a folded autoinhibited structure in quiescent cells 
[ 81 ].  Left , in nutrient-activated cells, opening of the N-terminal region leads to increased insulin 
secretion and cell growth [ 71 ].  Right , in growth factor-activated cells, phosphorylation of IQGAP1 
on Ser 1443  and binding of Cdc42 open the C-terminal fold leading to increased cell division and 
proliferation [ 72 ]. Cell motility requires dynamic conversion of the two forms [ 72 ]       
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might be regulated by autoinhibition. It is possible that this mechanism evolved to 
allow for functional versatility as well as quick response by preformed protein 
modules residing at specifi c cellular sites to different signals.

   The following sections discuss how different cell types selectively utilize this 
property of IQGAP1 to regulate distinct functions like motility, invasion, protein 
traffi c or immune response.   

    IQGAP1 Signaling to the Cytoskeleton 

 The cytoskeleton spans the cytoplasm, extends into the cell nucleus while anchoring 
the cell to the extracellular matrix and to its neighbors. Thereby it mediates the link 
with the environment, facilitates intercellular communications and impacts gene 
expression, by which the cell responds to these communications through signaling 
networks. As an actin-binding protein localized to the cell cortex, the cell–cell con-
tacts and to the nucleus, IQGAP1 plays a central role in facilitating cell–cell, cell–
matrix and cell–environment communications, as discussed below. 

    IQGAP1 Is a Rheostat of mTORC1 and MAPK Signaling 

 The mammalian target of rapamycin complex 1 (mTORC1) and complex 2 
(mTORC2) both have been implicated in regulating the actin cytoskeleton [ 23 ]. 
Components like Rictor, the defi ning subunit of mTORC2, were reported to have an 
mTOR-independent function in actin dynamics in adipocytes [ 143 ]. The mTORC1 
and mTORC2 are composed of shared and distinct subunits and are central regula-
tors of cell growth and metabolism, and cell survival and proliferation respectively 
[ 144 ]. The catalytic “mechanistic” mTOR subunit, which is shared between the two 
complexes, is a serine/threonine protein kinase that belongs to a family of phospha-
tidylinositol kinase-related kinases that includes the Phosphoinositide 3-kinase 
(PI3K), and possibly IQGAP proteins. The effector of PI3K, Akt, also known as 
protein kinase B (PKB), is activated on the crucial S473 by mTORC2 (rictor-mTOR 
complex) in response to growth factor, and facilitates the activation of Akt on T308 
by 3-phosphoinositide-dependent protein kinase 1 (PDK1) [ 145 ]. This sequential 
phosphorylation renders Akt full activity in cell proliferation, survival and metabo-
lism [ 146 ]. However, several independent studies demonstrated that mutation of 
Rictor’s Thr-1135, the site known to be responsible for activating Akt S473 and medi-
ating the mTORC1-S6K-inhibition (Negative Feedback Loop, NFL) of Akt Ser473, 
does not alter the growth factor-dependent phosphorylation of Akt on Ser473, sug-
gesting that mTORC2 or Thr-1135 site is dispensable for Akt activity at Ser473 
[ 147 – 150 ]. Signifi cantly, these data support the existence of alternative mechanism(s) 
for activating AktSer473 by an IQGAP1-dependent mechanism (Fig.  2.4 , [ 70 ]). 
Thus, extensive functional overlap exists between the mTOR complexes and the 
PI3K-Akt pathway, owing to their regulation of one another by complex crosstalk 
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and feedback mechanisms [ 151 ]. Adding to this complexity is that mTOR-PI3K-
Akt crosstalk to regulate and be regulated by the mitogen activated protein kinase 
(MAPK) cascade, encompassing the Raf/MEK/ERK, and co- regulate downstream 
functions [ 152 ]. As a result targeting mTOR-PI3K-Akt and MAPK in human dis-
eases has been challenging, leading to a paradigm shift to identifying their context-
dependent regulators instead (reviewed in [ 43 ]). IQGAP1 represents an attractive 
target, as it binds both the lipid substrate (PIP2) and the product (PIP3) of PI3K, as 
well as mTOR, Akt and MAPK, and modulates their activities (reviewed in [ 43 ]).
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  Fig. 2.4    IQGAP1 is a Rheostat of mTORC1-Akt signaling. A model summarizing IQGAP1’s 
interactions with and regulation of mTORC1-Akt and functional outcomes [ 70 – 72 ]. In presence of 
nutrient signals, IQGAP1, in closed conformation, binds mTORC1 (mTOR-Raptor), activates 
S6K, increases insulin synthesis and secretion, and cell size, leading to obesity and possibly 
T2D. In response to mitogenic signals such as EGF,  p IQGAP1, in open conformation, binds 
Cdc42, mTOR and Akt to suppress S6k activity, thus attenuating its negative feedback (NFL) on 
Akt. This in turn activates Akt S743 , suppresses differentiation and/or apoptosis by attenuating 
ERK1/2 and GSK3αβ, and activates mitosis/cell abscission and cell proliferation leading to trans-
formed phenotypes and possibly cancer via  p IQGAP1 S1443 ↑/mTORC1/S6k1↓ p Akt1 S473 ↑.  Black 
arrows  denote IQGAP1’s regulation of cell size and a known mTORC1/S6k1 NFL. Thus IQGAP1 
may act like a rheostat to modulate the NFL of  p S6K T389 →  p Akt1 S473  and maintain cell homeosta-
sis, dysregulation of which could underlie tumorigenesis and/or aberrant insulin signaling in dia-
betes.  Red arrows  denote the newly identifi ed role of IQGAP1’s action as a rheostat of the novel 
pathway Cdc42-mTORC1/S6K-Akt       
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   In several cell types and model systems, IQGAP1 serves as a scaffold for the 
MAPK cascade by binding b-Raf, c-Raf, MEK1/2 and ERK1/2 [ 153 ,  154 ], and inte-
grating their activity with mTORC1-Akt ([ 70 ], Fig.  2.4 ). Mechanistic analyses See 
notes with dominant mutants of IQGAP1 revealed that IQGAP1 binds Akt and 
mTORC1 (mTOR-Raptor) [ 70 ]. In presence of epidermal growth factor (EGF), 
expression of IQGAP1-IR-WW, the mTORC1-binding domain, attenuates ERK1/2/
GSK3α/β and mTORC1/S6K1T389 and robustly elevates the level of phosphory-
lated AktSer473 [ 70 ]. These fi ndings suggest that IQGAP1 relieves the mTORC1/
S6K1T389 negative feedback (NFL) on pAktS473 [ 43 ,  61 ,  70 ] and position IQGAP1 
as a rheostat that links cytoskeleton dynamics to metabolism. Signifi cantly, IQGAP1 is 
more sensitive to rapamycin than TORC1 subunits both in yeast and mammals [ 70 ], 
suggesting its potential as predictor of therapeutic rapamycin-sensitivity in a subset 
of cancer and/or diabetes marked by deregulation of F-actin and IQGAP1. 

 Three important features in regulating this pathway that are likely to be inter- 
twined must be considered. These are the role of signal dynamics, the interplay of 
kinase-phosphatase balance, and functional versatility gained through binding to dif-
ferent surface receptor. These features can be modulated by different signals to allow 
for a spatiotemporal ultra-sensitive system. The spatiotemporal Phosphatase- kinase 
balance imparting on IQGAP1 is yet to be analyzed. Signal dynamics appears to be 
an important factor in this pathway, as mall changes upstream seem to be translated 
into profound responses downstream. As powerful example, we observed that a small 
change in S6K activity level in response to IQGAP1-IR-WW expression, leads to a 
large change in AktS473 phosphorylation and promotion of robust cellular transfor-
mation [ 70 ]. Similarly signifi cant but relatively modest changes in IQGAP1 level in 
human β-cells isolated from diabetic patients associate with frank type 2 diabetes (see 
below). IQGAP1’s signaling through several surface receptors is considered below.  

    IQGAP1 Gains Functional Specifi city by Relaying Signals from a Variety 
of Surface Receptors to the Cytoskeleton 

 The actin cytoskeleton plays an important role in receptor-mediated signaling. It has 
been noted that the WAVE regulatory complex (WRC) controls lamellipodia forma-
tion by activating Arp2/3 complex at distinct membrane sites downstream of Rac1 
[ 15 ] and ERK [ 155 ]. It is not surprising therefore that a recent study in fl ies has 
identifi ed a sequence motif present in a large number of membrane receptors that 
specifi cally binds to WRC and is required for actin dynamics at membrane sites 
[ 156 ]. In fact, much of the signaling through surface receptors has been shown to 
input into modulation of the cytoskeleton [ 157 ]. Consistent with its role in transduc-
ing extracellular signals, IQGAP1 interacts with diverse types of surface receptors 
in different cell types (Fig.  2.5 ) and impact transport of the receptors or their spe-
cifi c subunits. Many of these interactions and their consequent functions illustrate 
the duality of IQGAP1’s functions as a molecular rheostat utilized by cells in a 
context-dependent manner. IQGAP1 likely serve as a platform on which distinct 
receptor-mediated modules pre-assemble at distinct membrane site, awaiting 
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response to different extracellular cues, leading to modulation of cytoskeletal- 
dependent functions. Indeed, super-resolution imaging suggests that in absence of 
ligands, surface receptors like EGFR rest along cortical F-actin in polymer forms, 
presumably to achieve concentration as an effi cient way to detecting low level of 
ligand molecules and amplify their signal [ 158 ].

   Consistent with this fi nding, several studies linked tyrosine phosphorylated 
IQGAP1 to EGF, PDGF [ 159 ,  160 ], VEGF [ 161 – 163 ], or FGF [ 83 ] signaling, reveal-
ing links with several receptor tyrosine kinases (RTKs) (Fig.  2.5 ). In endothelial cells 
stimulated by VEGF, tyrosine-phosphorylated IQGAP1 binds vascular endothelial 
growth factor receptor 2 (VEGFR2) and promotes migration in wound-healing assays 
[ 161 ]. In animal models, this process likely occurs through IQGAP1’s modulation of 
VE-cadherin/β-catenin complex at adheren junctions and control of reactive oxygen 
species (ROS)-mediated angiogenesis [ 162 ]. However, the non-receptor tyrosine 
kinase c-Src appears to input into this function by interacting with IQGAP1 via its 
SH2 domain and promoting VEGFR-2-mediated angiogenesis, independent of 
IQGAP1’s tyrosine phosphorylation [ 163 ]. Similarly, Platelet-derived growth factor 
(PDGF) stimulation of its receptor PDGFR induces IQGAP1-PDGFR complex for-
mation on focal adhesions of vascular smooth muscle cell (VSMC) leading to 
increased migration [ 164 ]. Although mechanistic details of these processes is still 
lacking, it could involve IQGAP1 nuclear activity. Indeed, IQGAP1 appears to act 
through the redox-sensitive transcription factor NF-E2-related factor 2 (Nrf2) and 
impact migration of human coronary arterial endothelial cells in response to VEGF or 
insulin-like growth factor-1 (IGF-1) downstream of the MAPK pathway [ 165 ,  166 ]. 
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  Fig. 2.5    IQGAP1 relays signals from several surface receptors. In several cell lines, IQGAP1 
binds several different types of receptors, including receptor tyrosine kinases (RTK) and G-protein- 
coupled receptors. Those whose binding sites on IQGAP1 have been reported are indicated above 
the respective domain. Those receptors whose binding sites have not been reported are listed at the 
plasma membrane       

 

2 Cytoskeleton Dynamics in Health and Disease: Role of Molecular Switches…



28

 Serine phosphorylated IQGAP1 has also been linked to EGF-mediated signaling 
(Fig.  2.5 ). IQGAP1 via its IQ domain, binds the kinase domain of the epidermal 
growth factor receptor (EGFR), irrespective of its ligand EGF, and modulates recep-
tor activity [ 115 ]. The EGFR belongs to the ErbB (HER) family of receptors that 
comprises four members, ErbB1-4 (HER1-4). In response to ligand binding these 
receptors homodimerize and transphosphorylate several tyrosines in their cytoplas-
mic tails leading to receptor activation [ 167 ]. The exception is ErbB2, which has no 
known ligand (i.e. orphan receptor) and ErbB3, which lacks a functional kinase 
domain, thus these two are activated via hetero-oligomerization with other ErbB 
receptors [ 167 ]. Whether IQGAP1 mediates ErbB hetero-oligomers is an interest-
ing and plausible hypothesis that could contribute to understanding the signal diver-
sity of these receptors. The IQ motifs of IQGAP1 also bind the hinge region of the 
intracellular estrogen receptor ERα and modulate its estradiol-mediated transcrip-
tional activity [ 168 ]. Moreover, in SK-OV-3.ipl human ovarian tumor cells, interac-
tion of IQGAP1 with the hyaluronan receptor CD44, which is a transmembrane 
glycoprotein, links the ERα signaling to F-actin reorganization and ovarian tumor 
cell invasion [ 169 ]. Although the IQGAP1’s domains that bind to many surface 
receptors has not been mapped, it is of note that many receptors bind to the IQ 
motifs of IQGAP1 in response to different signals in different cell types. Given that 
these IQ motifs also bind Ca/CaM and myosin/Mlc1 and to the Zn 2+ /Ca 2+ -binding 
protein S100B [ 170 ] and the Ca 2+ -sensor S100P [ 171 ], it remains curious whether 
these differential interactions involve CaM/Zn 2+ /Ca 2+  signaling, myosin-dependent 
pathways or combinations of them. 

 IQGAP1 residues 1503-1657 mediate binding to the transforming growth factor 
TGF-β receptor (TβRII) in liver pericytes (stellate cells) [ 172 ]. This interaction 
appears to suppress TβRII receptor internalization that interferes with differentiation 
of pericytes into myofi broblasts. Stromal myofi broblasts are required for supporting 
metastatic colorectal tumors in the liver. Consequently, in stromal myofi broblasts 
associated with human colorectal liver metastases IQGAP1 is downregulated to 
maintain differentiation and tumor growth [ 173 ]. Although the mechanisms underly-
ing this function remain unknown, it would appear that IQGAP1-C-mediated onco-
genic signal, which prevents cell differentiation and polarization [ 72 ], must be 
silenced selectively in stromal cells by metastatic tumors for supporting growth in 
their new environment. One way to achieve this is through autoinhibition of 
IQGAP1 in these cells (Figs  2.3  and  2.4 ). 

 IQGAP1 has also been linked to signaling through G-protein coupled receptors 
(GPCRs). GPCRs are the largest and most diverse super-family of membrane pro-
teins. They mediate much of the vertebrate physiology by transducing signals from 
hormones, growth factors, neurotransmitters, but also ions, lipids, cholesterol, and 
water [ 174 ,  175 ]. They appear to gain functional and cell type specifi city via a 
diversity of interacting proteins [ 176 ]. Vertebrate GPCRs are commonly classifi ed 
into fi ve families on the basis of sequence and structural similarity; rhodopsin, 
secretin, glutamate, adhesion and Frizzled/Taste2 [ 177 ]. IQGAP1 interaction with 
the canonical Wnt/E-Cadherin/β-catenin complex downstream of the Frizzled 
receptor has been described earlier in this chapter. Proteomic analysis suggests that 
IQGAP1 bridges Wnt5a-receptor-actin-myosin-polarity (WRAMP) structure with 
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multivesicular bodies (MVBs) in the rear of motile cells to facilitate membrane 
retraction and motility [ 178 ]. Through interactions with two different glutamate 
receptors, IQGAP1 appears to play a role in brain development and higher brain 
functions such as memory and cognitive activities [ 179 ,  180 ]. Earlier in vitro studies 
have implicated IQGAP1 in promoting neurite outgrowth in N1E-115 neuroblas-
toma cells [ 181 ]. A potential mechanism for this is that IQGAP1 binds the GluR4 
subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) 
receptor and regulates its polarized transport to the surface [ 179 ]. Similarly, it binds 
the NR2 subunits of the NMDAR glutamate receptor and the postsynaptic density 
scaffold PSD-95 and controls dendritic spine numbers in the hippocampus and lat-
eral amygdala [ 180 ]. This effect also arises, at least in part, from IQGAP1’s regula-
tion of NR2A subunit traffi cking and leads to regulation of cognitive behavior in 
mice model [ 180 ]. 

 In neutrophils, IQGAP1’s N-terminal 1-160 residues associates with the inter-
leukin 8, chemokine receptor CXCR2 and promotes chemotaxis in a dynamic man-
ner [ 182 ] that is consistent with its interactive negative and positive roles in cell 
migration and invasion [ 72 ]. This may further implicate IQGAP1 in the response to 
infl ammation signals and will require further analyses. In human mammary cell 
lines, IQGAP1 binds the Kisspeptin receptor, KISSR1 (GPR54) and regulates 
EGFR transactivation, leading to cell invasion in a process modulated by ERα [ 183 ]. 
Because IQGAP1 also binds the ERα and modulates its nuclear activity [ 168 ], this 
evidence demonstrates further the ability of IQGAP1 to regulate functional 
 spatiotemporal crosstalk between different types of receptors, including surface and 
nuclear receptors. 

 In addition to direct binding to surface receptors, IQGAP1 appears to gain func-
tional specifi city and diversity by transmitting receptors’ signals through binding to 
adaptor proteins. The Src Homology (SH2/SH3) domain-containing adapter pro-
teins integrates non-receptor and receptor tyrosine kinase (RTK) signaling and 
remodeling of the actin cytoskeleton by recruiting proline-rich effector proteins 
[ 184 ]. These adaptors are evolutionarily conserved and several of them relay spe-
cifi c functional signal from RTKs to downstream effectors, leading to cell prolifera-
tion, migration or axonal guidance. Downstream of activated ErbB receptors, 
IQGAP1-N, through residues 401-533, interacts with the phosphotyrosine binding 
(PTB) domain of the adaptor protein ShcA independent of tyrosine phosphorylation 
and colocalizes to lamellipodia [ 185 ]. Thus, this type of interaction may infl uence 
distinct cell functions like lamellipodia formation and cell migration mainly through 
Rac1 as opposed to serine-phosphorylated IQGAP1, which infl uences cell prolif-
eration mainly through Cdc42 [ 72 ]. 

 In addition, the identity of Rho regulator pairing with certain adaptors such as 
Nck (non-catalytic region of tyrosine kinase adaptor) may lend functional specifi c-
ity to IQGAP1 in modulating actin dynamics. Recent evidence implicates the Cdc42 
GEF, Intersectin, as a regulator of a Cdc42-Nck-N-WASP-dependent actin polym-
erization [ 186 ]. The extent of IQGAP1 signal versatility leading to functional speci-
fi city in different cell types has yet to be realized through much needed mechanistic 
analyses. In part, the richness of this signal versatility has been revealed from analyses 
of IQGAP1 function in cell motility in different cell types as discussed below.   
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    A Master Regulator of Cell Motility 

 The actin cytoskeleton plays a major role in cell motility by mediating lamellipodia 
formation at the leading edge, which is critical for directional migration [ 187 ]. 
Several N-WASP-independent pathways are known to activate Arp2/3 complex 
mediated cell motility [ 188 ]. Also instead of N-WASP [ 189 ], WAVE2 [ 190 ,  191 ], is 
believed to be the activator of Arp2/3 complex in lamellipodia formation. Regardless 
of these views, in several cell types, IQGAP1 accumulates at the leading edge of 
migrating cells (Fig.  2.6 ) and promotes cell motility, and RNAi-mediated knock-
down of IQGAP1 potently reduced cell motility and inhibited protrusive actin 
meshwork at the leading edge [ 71 ,  72 ,  83 ,  87 ,  104 ,  161 ,  192 ,  193 ]. Given that an 
interaction between IQGAP1 and WAVE was not detected in certain cell types [ 83 ], 
this effect underscores that IQGAP1 plays multiple essential roles in driving cell 
motility not limited to structural projection formation. 

 In this respect, IQGAP1’s signaling and capacity to interface several surface recep-
tors and transduce signals through multiple pathways like MAPK, mTOR- Akt, Cdc42 
and Rac1 points to complex and delicate interplay by which it regulates cell motility 
according to variables such as the cell type and the nature of the signal (Fig.  2.6 ). For 
example, activated Cdc42 and Rac1 directly bind both IQGAP1 and N-WASP [ 14 ,  62 , 
 75 ,  77 ] and they activate N-WASP independently of IQGAP1 [ 194 ]. However, while 
activated Cdc42 and Rac1 each synergistically promote IQGAP1-mediated actin 
nucleation by N-WASP, Cdc42 enhances binding of N-WASP to IQGAP1, whereas 
Rac1 appears to reduce such binding [ 58 ]. Recent evidence implicates phospholipids 
as essential players in IQGAP1-mediated cell motility. Type Iγ phosphatidylinositol 
4-phosphate 5-kinase (PIPKIγ) binds and targets IQGAP1 to the leading edge where 
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it binds the PIPKIγ-byproduct phosphatidylinositol 4,5 bisphosphate (PIP 2 ), which in 
turn promotes IQGAP1 actin polymerization activity and cell migration in response to 
integrin or growth factor receptor activation [ 195 ]. However, different signals appear 
to specify IQGAP1’s protein–protein interactions in a context-dependent manner. In 
chemotactic neutrophil cells, IQGAP1, through its CHD, interacts dynamically and 
colocalizes at the leading edge with the chemokine receptor CXCR2 [ 182 ], analogous 
to its roles in FGF-mediated [ 83 ] and VEGF mediated [ 161 ] cell motility in other cell 
types. Additionally, the role of IQGAP1 in regulating exocytosis (see below) through 
the exocyst complex [ 71 ] may be required for migration [ 72 ] and membrane expan-
sion during lamellipodia formation. Much work will be required to understanding the 
role of the exocytic pathway in IQGAP1-mediated cell motility.

   IQGAP1 has also been implicated in modulating cell motility by modulating 
microtubule dynamics at both the leading and the trailing edges of motile cells 
(Fig.  2.6 ). In PDGF-treated cells, IQGAP1 forms a complex with the A-kinase- 
anchoring protein 220 (AKAP220) and its substrate the cAMP-dependent protein 
kinase (PKA) to suppress GSK3β activity and recruit CLASP2 to the leading edge of 
motile cells [ 68 ]. Similarly, IQGAP1 has been implicated in microtubule-based rear-
end dynamics that propels motile cells forward. Interaction of IQGAP1 with Wnt5a-
mediated WRAMP integrates cortical endoplasmic reticulum, localized Ca 2+  signal, 
actomyosin contraction and adhesion disassembly during the dynamic structural and 
signaling events that lead to membrane retraction [ 178 ]. Furthermore, the ability of 
IQGAP1 to both nucleates branched fi laments and crosslinks them to mother fi la-
ments [ 63 ,  83 ] and to microtubules and other types of microfi laments, may be required 
for providing the mechanical force necessary for directional movement. 

 While mechanism of IQGAP1 in modulating cell migration during wound- 
healing closure in fi broblast has been demonstrated [ 72 ], to date, its exact role in 
collective cell migration remains obscure. Collective cell migration is important 
during developmental events such as embryonic morphogenesis and wound healing 
or in pathological states such as tumor growth and spreading. During collective 
migration leader cells sense and migrate up an external signal gradient while pulling 
along adjacent cells—referred to as follower cells—through strong cell–cell con-
tacts [ 196 ]. Rho GTPases have been implicated in controlling the mechanical and 
biochemical cues that determine the identity of leader versus follower cells during 
collective migration of epithelial sheets [ 197 ,  198 ]. Given its structural and signal-
ing roles in epithelial adhesion and polarity (see below), IQGAP1 must play a cru-
cial role in collective migration during embryonic differentiation as well as cancer 
spreading and should be further investigated.  

    A Crucial Modulator of Epithelial Adhesion and Polarity 

 Epithelial cells that line the cavities (lumens) of animal organs are prototype of 
polarized cells. These cells form columnar shape with structurally and functionally 
distinct apical, lateral and basal plasma membrane domains, and they adhere to one 
another by their lateral membranes to form sheets. The mechanisms underlying 
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epithelial polarization are still incompletely understood. The identity of the different 
membranes is determined and maintained by spatial control of the cytoskeleton and 
polarity protein complexes, including the Rho GTPases and a host of their regula-
tors and effectors [ 199 – 201 ]. Polarized epithelia maintain cell–cell contacts via 
adheren junctions (AJs) that provide mechanical attachments between adjacent 
cells. The AJs control the maturation and the maintenance of the contacts [ 202 ], and 
as such they are dynamic in nature and link directly to the actin cytoskeleton [ 203 ]. 
The main components of the AJs are the Cadherin–Catenin core complex, the regula-
tors of tissue organization. Epithelial Cadherin (E-Cadherin) belongs to the classical 
transmembrane Cadherin receptors. These are glycoproteins containing extracellular 
domains that mediate cell–cell adhesion and cytoplasmic tails that directly bind 
β-catenin, α-catenin and p120 catenin in the cytoplasm [ 204 ]. Actin fi laments con-
centrate at this site along with a number of structural and signaling regulators of 
F-actin dynamic that facilitate the junctional dynamics and homeostasis [ 203 ]. 

 In addition to concentrating at lamellipodia, IQGAP1 preferentially accumulates 
at cell–cell junctions of polarized epithelia (Fig.  2.7 ) and appears to regulate the 
integrity of the AJs [ 62 ,  63 ,  71 ,  78 ,  206 ]. Accordingly, IQGAP1 has been widely 
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linked to cadherin/catenin-mediated adhesion [ 78 ,  207 ] in different epithelial cell 
types, including islet pancreatic β-cells that secrete insulin [ 71 ,  208 ]. Consistent 
with its regulatory role in epithelial structure and function, IQGAP1 appears to 
modulate the AJs by modulating the activities of Rac1 and Cdc42 and their associa-
tion and localization with E-cadherin–catenin core complex in response to different 
stimuli. In general, it appears to act positively, favoring cell–cell contact formation 
by maintaining Rac1GTP-E-Cadherin-actin meshwork formation at the contacts 
[ 104 ]. However, under conditions that favor cell scattering, it acts negatively, pro-
moting cell–cell dissociation by interacting with and delocalizing α-catenin from the 
core complex [ 209 ]. As discussed earlier, IQGAP1 likely controls the dynamics of 
microfi laments at the cell–cell junctions (Fig.  2.7 ). However, Much work is required 
for deciphering the physiological mechanisms underlying IQGAP1’s activities in 
these processes and their relation to human disease. A potential mechanism is 
IQGAP1’s regulation of protein exocytosis at cell–cell contacts at the basolateral 
membranes [ 23 ]. Indeed, cell–cell contacts are considered to be major sites of regu-
lated exocytosis [ 210 – 212 ], where IQGAP1 plays a major role as discussed below.

       A Regulator of Exocytosis: Focus on Insulin Secretion 

 Traffi cking is one of the major roles of the cytoskeleton, in which Rho GTPases are 
pivotal regulators [ 21 ]. Delivery of proteins, hormones or lipids to the plasma mem-
brane or into the extracellular space occurs through regulated exocytosis in which 
vesicles accumulate near the periphery of specialized cells awaiting a signal for 
their fusion with the plasma membrane. Regulated exocytosis is a sequential multi-
step process involving budding of exocytic vesicles from the Trans Golgi Networks 
(TGN) and their transport along microtubule and actin tracks toward the target 
membrane [ 213 ]. Release of vesicles cargo into the extracellular space ensues via a 
cascade of protein–protein interactions, marking a series of distinct steps, including 
vesicle tethering, docking, priming and fusion with the plasma membrane [ 6 ,  214 , 
 215 ]. While the core exocytic machinery is conserved, different cell types adopt sub-
unit combinations suited for their specialized physiological roles [ 216 ], where 
dynamic F-actin remodeling plays a principal role along the different steps [ 217 – 219 ]. 
Insulin exocytosis from neuroendocrine β cells of the islets of Langherans in the pan-
creas follows this process albeit in a specialized manner that has been well described 
(see [ 220 ]). However, the molecular mechanisms remain poorly understood. 

 Thus, the role of actin dynamics in insulin exocytosis has been appreciated early 
on in studies using islets and beta cell culture [ 221 – 224 ]. As Rho GTPases have been 
implicated in a variety of exocytic pathways in several cell types [ 23 ,  47 ,  96 ,  225 ], 
their role in insulin exocytosis has been investigated as well [ 71 ,  226 – 232 ]. Similarly, 
posttranslational modifi cation of RhoGTPases, such as farnesylation, and regulation 
by Rho GDIs have been implicated in glucose-stimulated insulin exocytosis [ 233 , 
 234 ]. However, their specifi c role in pancreatic islet β cells remains elusive. For 
example while expression of wild type Cdc42 in beta cells has no effect [ 71 ,  228 ], 

2 Cytoskeleton Dynamics in Health and Disease: Role of Molecular Switches…



34

expression of dominant active mutants appears to inhibit both mastoparan- and 
glucose-induced insulin exocytosis, consistent with their known growth inhibitory 
effect [ 71 ,  228 ]. On the other hand, expression of the dominant negative Cdc42 
mutants induces insulin secretion [ 71 ]. Most likely, these effects refl ect indirect 
effecting Cdc42’s upstream role on actin dynamics via specialized effectors, if not 
a pleiotropic effect on the exocytic machinery. 

 Rac1 was found not only to play both negative and positive roles in insulin exo-
cytosis [ 235 ,  236 ], but also it has been implicated extensively in glucose uptake by 
regulating traffi cking of the glucose transporter GLUT4 [ 237 – 239 ]. This evidence 
likely refl ects a fi ne balance of the crosstalk between peripheral (muscle, adipose, 
liver) and central (β cells), perhaps via feedback loops and involving multiple 
GTPases [ 43 ]. 

 Moreover, each GTPase has distinct context- and stimulus-dependent effect on 
actin dynamics and studies on insulin secretion have largely relied on pharmaco-
logic inhibitors, global genetic knockout and overexpression approaches, which 
result in pleiotropic effects and mask the exact fi ne role of the GTPase. More selec-
tive reagents such as separation-of-function mutants are required. Moreover, the 
exact player involved in actin remodeling in the β-cells must be analyzed. Small 
GTPases play distinct and separable roles along the exocytic pathway. For example, 
Cdc42 and Rac1 could play a more proximal role during docking, tethering and 
fusion or release of exocytic vesicles, in which crosstalk between Cdc42 and Rac1 
occurs. Antagonistic crosstalk between Rac1 and Cdc42 plays important roles in 
many aspects of epithelial polarity and function [ 44 ,  240 ], a role that likely impacts 
insulin secretion as well. Studies using fl uorescent biosensors revealed different 
pools of the same GTPase act simultaneously to infl uence diverse cellular functions 
[ 20 ], thus supporting complex spatiotemporal actions not only for different GTPases, 
but also for a single GTPase. The precise step in which Cdc42 or Rac1 imparts on 
insulin exocytosis remains unclear. While evidence for Cdc42 interaction with the 
t-SNARE (soluble  N -ethylmaleimide-sensitive factor attachment protein receptor) 
Syntaxin 1A suggests a role in the insulin release step, the interaction appears to be 
indirect as the purifi ed proteins failed to interact [ 228 ], suggesting involvement of 
specialized effector proteins. 

 Several lines of independent evidence support that IQGAP1 is the likely effector. 
IQGAP1 appears to impact insulin homeostasis via three interconnected mecha-
nisms, insulin secretion, insulin synthesis and recycling of the membranes of 
insulin- granules after fusion we discuss here. First, its role in exocytosis is con-
served; in yeast IQGAP1, Iqg1p, interacts with the exocyst and infl uences bud 
growth and septum secretion during cytokinesis [ 96 ]. In pancreatic islet β cells, it 
modulates glucose-stimulated insulin exocytosis through Cdc42, a role that was 
revealed by separation-of-function mutant analyses and protein–protein interactions 
[ 71 ]. The N-terminal domain of IQGAP1 interacts with mTORC1 [ 70 ] and with 
several subunits of the exocyst and enhances insulin exocytosis in response to glu-
cose [ 71 ], leading to increased cell size [ 72 ]. In contrast, the C-terminal domain, 
which interacts with Cdc42 and Rac1, inhibited insulin exocytosis and decreased 
the cell size while increasing cell proliferation and transformed phenotypes [ 71 ,  72 ]. 
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The IQGAP1 ΔMK24 , which disrupt the interaction with Cdc42 and the IQGAP1 S1443A , 
which abolishes phosphorylation by PKCε both were unable to support cellular 
transformation, supporting that Cdc42 and IQGAP1 phosphorylation at S 1443  plays 
negative roles in insulin secretion. Indeed, genetic deletion of PKCε enhances insu-
lin secretion and prevents glucose intolerance in fat-fed mice, and peptide-mediated 
inhibition of PKCε improves insulin availability and glucose tolerance in diabetic 
db/db mice [ 241 ]. 

 Furthermore, IQGAP1 interacts with the exocyst in pancreatic β cells through a 
domain that enhances insulin secretion [ 71 ]. The evolutionarily conserved vesicle- 
tethering exocyst complex is composed of nine subunits, some of which are local-
ized to the exocytic vesicles while other subunits like Sec3 and Exo70 are believed 
to be localized to the plasma membrane [ 242 ,  243 ]. The plasma membrane 
 localization of Sec3 and Exo70 appears to direct the vesicles to specifi c sites on the 
membrane thereby controlling active sites of exocytosis, as in directional migration 
or cytokinesis [ 244 ]. In yeast, Iqg1p interacts and localizes with and controls exo-
cytosis and the localization of the exocyst landmark subunit Sec3 during cytokines 
[ 96 ]. Similarly, in β cells, IQGAP1 interacts, localizes with, and controls the local-
ization of the exocyst proximal subunit Exo70, as well as other subunits like Sec6 
and Sec8 [ 71 ]. Thus, it appears that IQGAP1 has a conserved function in directing 
the secretory vesicles by which it regulates the latest steps of insulin exocytosis. To 
facilitate fusion of vesicles to the plasma membrane, the exocyst interacts with the 
SNAREs [ 245 ]. IQGAP1 interactions with the phospholipids PIP2 and PIP3, as 
well as with the plasma membrane-associated t-SNARE syntaxin1 A [ 71 ], support 
its essential role in the fi nal step of insulin release. This role extends to modulating 
F-actin, by which it regulates this fi nal step whereby F-actin disassembly enhances 
and assembly inhibits insulin granules release [ 43 ]. 

 Second, IQGAP1 localizes to the endoplasmic reticulum and interacts with the 
translocon subunit Sec61β and appears to increase insulin synthesis in pancreatic β 
cells [ 71 ]. Much work is now required to delineate the role of iQGAP1 in insulin 
translational control. Third, in response to glucose, IQGAP1-Cdc42-GTP binds 
Rab27-GDP and the Rab27 effector Coronin 3 and promotes the recycling of 
insulin- granule membranes [ 246 ], a process required for more rounds of exocytosis 
[ 247 ]. Coronin 3 also regulates F-actin dynamic by binding to the IQGAP1-partner 
Arp2/3 [ 248 ]. Following insulin exocytosis from β cells, recycling of the mem-
branes of the insulin-containing granules occurs through the process of endocytosis 
[ 247 ]. Endocytosis s a versatile mechanism required for various cellular functions, 
including nutrient uptake, but it also serve as a balance for exocytosis by recycling 
vesicle membranes after fusion to the plasma membrane, and thus maintaining cell 
homeostasis [ 249 ]. Small G proteins, F-actin and several F-actin regulators like 
Coronins also are important components of endocytosis [ 249 ]. Thus it appears that 
IQGAP1 engages several types of F-actin regulators and signaling molecules to 
regulate distinct aspects of insulin exocytosis. Accordingly, studies employing 
global actin de-polymerization with depolarizing agents cannot identify mecha-
nisms of action required to understanding the molecular basis of normal cell func-
tion or disease. 
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 However, while these data establish the role of IQGAP1-Cdc42 dynamic interac-
tions in regulating insulin exocytosis, they do not exclude interplay of IQGAP1- 
Rac1 vs. IQGAP1-Cdc42 in coordinating insulin exocytosis with insulin-stimulated 
glucose uptake [ 43 ]. As discussed above, IQGAP1 has been implicated in endocy-
tosis [ 246 ] and Rac1 has been widely implicated in glucose uptake via stimulating 
the transport of the glucose transporter GLUT4 [ 237 – 239 ]. Moreover its interaction 
with microtubules suggests a role in intracellular cargo transport or a novel role in 
coupling exocytosis-endocytosis at the cell cortex. Mechanism-based studies will 
be required to reveal its essential roles in insulin and glucose homeostasis, which is 
supported by the fi nding that IQGAP1, but not Cdc42, is downregulated in humans 
with T2D discussed below.   

    IQGAP1’s Role in Human Disease 

 Mutations affecting polymerization in human α-smooth muscle  ACTA2 , α-cardiac 
( ACTC ), α-skeletal ( ACTA1 ), and γ-cytoplasmic actin ( ACTG1 ) have been found to 
associate with an array of congenital and premature acquired cardiovascular, cardio-
myopathies, skeletal myopathies and deafness respectively [ 250 – 255 ]. The mecha-
nisms disrupted by these mutations are unknown. On the other hand, Rho GTPases, 
as regulators of actin dynamics and many other pivotal cellular pathways, are asso-
ciated with a wide range of developmental and acquired human diseases [ 256 – 258 ]. 
Similarly, regulators of actin polymerization have been implicated in a variety of 
human cancers [ 61 ,  259 ,  260 ]. Thus elucidating the molecular mechanisms that 
control actin polymerization is essential to understanding and treating a wide range 
of human disease. Although IQGAP1 dysfunction can infl uence a myriad of human 
diseases, the discussion below is focused on diabetes, cancer and infection for 
which evidence has been accumulated. 

    Diabetes 

 T2D is a complex and multifactorial metabolic disease. In T2D pancreatic islet β 
cells fail to secrete suffi cient insulin to overcome peripheral insulin resistance, 
therefore T2D has been described as a two hit-disease. Dysfunction of β cells occurs 
from reduced cell mass and failure to produce insulin whereas insulin resistance 
occurs in peripheral tissues such as the adipose, the liver and the skeletal muscles 
from failure of adequate glucose uptake in response to insulin. Initially, insulin 
resistance in obesity prompts β cells to produce more insulin, a process that appar-
ently leads to cell demise and the manifestation of acquired T2D [ 261 ,  262 ]. 
Accordingly, a prevailing view is that dysfunction of β-cells is central to the etiol-
ogy of T2D, a notion that has also been supported by genome-wide association 
studies (GWAS) [ 263 ,  264 ]. As is the case with complex diseases, mounting 
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evidence support a polygenetic etiology for T2D, as well as associated genetic 
variations in a large number of cellular processes [ 265 – 267 ]. This complexity 
prompted recommendation for new approaches to interpreting GWAS data in which 
a set of risk loci common to the disease cohort must be analyzed instead of indi-
vidual genomic loci or single nucleotide polymorphisms (SNPs) [ 268 ]. Such 
approach is consistent with the emerging concept implicating pathways, not single 
genes, in disease mechanisms. 

 Like the case in cancer, Rho proteins were not identifi ed in GWAS studies in 
diabetes. The caveat, however, is that GWAS have limited sensitivity (resolution), 
which can obscure small but important changes [ 269 ], particularly in signaling pro-
teins. Importantly, GWAS cannot reveal mechanisms of disease development [ 270 ]. 
Also, disease-development mechanisms can vary between populations. More high- 
resolution studies will require conducting GWAS among environmentally- and 
ethnically-distinct population. Of note, Rho proteins play important regulatory role 
in metabolism albeit indirectly through effector proteins. It has been well appreci-
ated in the fi eld of cell signaling that modest changes in signaling proteins can be 
amplifi ed downstream by effector proteins and signifi cantly impact disease devel-
opment. SNPs in the rhoGEF11 (ARHGEF11) gene associated with T2D and 
glucose intolerance have been identifi ed in Amish and Pima Indian groups [ 271 ]. 
It remains unclear whether this SNP is causal, and whether it affects insulin 
secretion, glucose uptake or both. Moreover, RhoGEFs are multidomain proteins 
and likely have Rho-independent functions [ 27 ] thus mechanistic analysis will be 
required to identifying their specifi c role in diabetes. 

 By contrast GWAS metadata from the DIAGRAM consortium, involving 8130 
T2D cases and 38,987 controls revealed IQGAP1 SNPs associating with T2D [ 272 ]. 
Similarly, transcriptional meta-analyses revealed that while Cdc42 transcript in β 
cells remains unchanged between diabetic patients and non-diabetic control groups, 
IQGAP1 mRNA [ 273 ] and protein [Osman, unpublished] levels both were down-
regulated in humans with T2D. This is consistent with the signaling and structural 
roles of IQGAP1 both upstream and downstream of Cdc42 and Rac1 and mTORC1- 
PI3K pathways in pancreatic β cells. Because of its regulation of cell size and prolif-
eration [ 70 ,  72 ], interaction with the exocytic machinery and role in glucose-stimulated 
insulin secretion [ 71 ], IQGAP1 likely is the direct effector of Cdc42 and Rac1 in 
insulin exocytosis. Thus its dysfunction would have direct impact on the etiology of 
T2D both by affecting β cell function and division. Further support for IQGAP1’s 
role in β cell biology is its association with A-kinase anchoring protein 79 (AKAP79), 
and cAMP-dependent protein kinase (PKA) [ 69 ]. 

 The mechanisms underlying reduced expression of IQGAP1 in T2D patients are 
under investigation, and the cellular consequences of this reduction can provide 
avenues for future intervention with T2D etiology. A likely mechanism must entail 
direct effect on β cell function in insulin secretion by affecting F-actin dynamics, 
leading to dysregulation of docking and tethering of insulin exocytic vesicles or 
dysfunction in the release step. As discussed in the previous section, gain-of- 
function mutations of IQGAP1 in insulin exocytosis that leads to sustained, unregu-
lated insulin secretion are expected to lead to hyperinsulinism and the development 
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of T2D, whereas loss-of-function mutations will lead to β-cell dedifferentiation, and 
also T2D and/or pancreatic cancer [ 43 ]. On this basis, rebalancing intervention 
approaches can be developed to correct the specifi c defect. A crucial consideration 
in such approaches would be the importance of signal dynamics, as small changes 
upstream in the pathway translate into larger changes downstream. In this respect 
IQGAP1 IR-WW  expression in β cells led to small changes in the level of active S6K 
and resulted in greater level of Akt S473  activity, which manifested in increased cell 
proliferation and transformed phenotypes [ 70 ]. This explains why a signifi cant but 
modest reduction of IQGAP1 in human β cells is associated with T2D, presumably 
from reduction in functional β cell mass. Indeed, reduced IQGAP1 expression 
diminishes its phosphorylation level that is required for promoting cell division and 
proliferation [ 72 ].  

    Infectious Diseases 

 Infectious viral and bacterial pathogens may not produce cytoskeletal elements, 
however they employ effector or mimic proteins and effective strategies to hijack 
the host actin polymerization machineries for invading human cells and spreading 
into tissues [ 274 – 277 ]. Among the strategies used by pathogen for invading host 
cells is the modulation of phagocytosis [ 278 ,  279 ] perturpation of epithelial tight 
and adheren junctions [ 277 ] in which IQGAP1 plays major organizing roles [ 240 ]. 
During these actions, pathogens target Rho GTPases signaling pathways at various 
steps of the infection process from membrane modifi cations to internalization and 
spreading [ 258 ,  279 ,  280 ]. Some bacteria use toxin to covalently modify and attenu-
ate Rho GTPase [ 258 ]. Others utilize a Type III or Type IV secretion system to 
inject effector proteins that mimic Rho regulators by which they modulate Rho 
GTPase activity and hijack their cytoskeletal and traffi cking pathways [ 281 – 287 ]. 
Once they gained entry inside the host cell, pathogens generate propelling F-actin 
networks known as comets for spreading from cell to cell [ 288 ]. Comet tails share 
similar motility and dendritic nucleation features with lamellipodia. Detailed mech-
anistic knowledge about the two systems is still lacking, but new technology is 
providing promising insights. Cryo-electron tomography and mathematical simula-
tion suggest a mechanism in which a fi shbone-like array of four actin fi laments 
propels the tethered pathogen by fast continuous polymerization [ 289 ,  290 ]. This 
approach has potential for facilitating comparative visualization of the array of actin 
regulatory proteins and the proteome involved in generating the dynamic comet vs. 
lamellipodia structures. 

 IQGAP1 has been widely implicated in mediating infections by several types of 
human bacterial and viral pathogens and has been subject of recent reviews [ 61 , 
 291 ]. Different pathogens either directly alter IQGAP1’s expression and localiza-
tion or co-opt it via interactions with effector proteins to mediate infection and 
spreading from cell to cell. Several studies demonstrated a crucial role for 
IQGAP1 in viral infection and egress. IQGAP1 co-purifi es with highly purifi ed 
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HIV-1 virions from human monocyte-derived macrophages [ 292 ], suggesting a 
role in AIDS pathobiology. It also directly interacts with the Gag protein of Moloney 
murine leukemia virus (MuLV) [ 293 ], the core protein of classical swine fever 
virus (CSFV) [ 294 ] and with the L-domain of the matrix protein VP40 of Ebola 
virus and appears to promote the viral budding. Together these studies suggest that 
IQGAP1 likely involves in multiple stages of viral infection, including early and 
late stages such as entry and egress. IQGAP1 interacts with the cell abscission 
proteins Alix and Tsg101 [ 128 ], a subunit of the endosomal sorting complex 
required for transport (ESCRT) also implicated in viral budding [ 295 ]. This interac-
tion provides a potential mechanism for membrane pinching required for cytokinesis 
as well as for viral egress [ 295 ]. 

 IQGAP1 has also been implicated in mediating bacterial infections. Microarray 
and proteomic analyses revealed that different pathogens target IQGAP1 differ-
ently, suggesting existence of versatile IQGAP1-mediated mechanisms of infection. 
For example, IQGAP1 binds the type III receptors Tir and Ibe of the enteropatho-
genic  Escherichia coli , and the SseI effector of  Salmonella  [ 296 – 298 ], perhaps to 
facilitate infection. On the other hand, the human pathogen  Pseudomonas aerugi-
nosa  utilizes an interaction between its quorum-sensing molecule  N -acylhomoserine 
lactones and IQGAP1 as a mode of communication with host epithelia during early 
infection [ 299 ]. Infection by  Mycobacteria  and  Yersinia pestis  leads to downregula-
tion of IQGAP1 mRNA and protein levels respectively [ 300 ,  301 ]. By contrast, 
 Helicobacter pylori  ( H. pylori ) infection appears to upregulates IQGAP1 mRNA 
and protein levels in several gastric carcinoma cell lines [ 302 ]. As infection by  H. 
pylori  is believed to underlie the development of gastric carcinoma, it is not surpris-
ing that IQGAP1 is highly expressed in gastric cancer tissues [ 61 ,  303 ]. For this 
reason and for the current challenges posed by the increased  H. pylori  resistance to 
antibiotic, the discussion in this section is focused on IQGAP1’s role in mediating 
 H. pylori  infection. Infection with  H. pylori  has been widely implicated in the devel-
opment of peptic ulcer, gastritis and gastric cancer [ 304 – 306 ]. While the mechanism 
of the infection has been extensively analyzed, the mechanism of the carcinoma devel-
opment has been largely unclear. Accordingly, successful cure of  H. pylori - mediated  
ulcers and gastritis has largely relied on an antibiotic regimen, but gastric cancer 
remains deadly. However, currently increased antibiotic resistance has rendered this 
approach ineffective [ 306 ] and threatens increasing the cases of gastric cancers world-
wide. In addition to formulating new antibiotic-based therapies, delineating the mech-
anisms underlying the infection and the development of gastric cancer has become 
imperative to effective treatment. 

 A body of current research support the idea that the bacteria targets the cytoskel-
eton and epithelial cell polarity to generate and maintain the infection, which ulti-
mately leads to the development of gastric cancer by altering host cell signaling 
[ 61 ]. In addition to increasing the expression level of IQGAP1,  H. pylori  infection 
leads to delocalization of IQGAP1 and E-Cadherin from adheren junctions to inter-
nal cytoplasmic vesicles [ 302 ]. This evidence supports that  H. pylori  targets adheren 
junctions and depolarizes gastric epithelial cells. Loss of epithelial polarity is con-
sidered the fi rst hallmark sign of cellular transformation leading to carcinogenesis 
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[ 199 ,  200 ]. While the bacteria are considered to be un-invasive, a few have been 
observed intracellularly [ 307 ], but mechanisms of invasion have not been investi-
gated, thus the signifi cance of intracellular bacteria to gastric adenocarcinoma 
development remains unknown. 

 A prevailing view is that the  H. pylori  injection of its presumptive oncoprotein 
cytotoxin-associated gene A (CagA) ultimately leads to the development of the ade-
nocarcinoma [ 307 – 309 ], however, this assumption has been controversial and was 
challenged by compelling evidence (reviewed in [ 61 ]). Entry of CagA into epithelial 
cells triggers a cascade of exquisitely delineated molecular and signaling events caus-
ing the host cell to assume an Epithelial-Mesenchymal Transition (EMT)-like pheno-
type, known as ‘hummingbird’ phenotype, marked by considerable actin 
polymerization and cellular elongation (reviewed in [ 308 ]). Although EMT is a 
known factor in cancer metastasis and invasive growth, the contribution of the EMT-
shape to gastric carcinogenesis has been debated (reviewed in [ 61 ]). A recent study 
suggests that it promotes formation of gastric cancer stem cells (CSCs), capable of 
inducing in vitro tumorspheres as well as xenograft tumors [ 310 ]. On the other hand, 
contradictory evidence supports the notion that  H. pylori  prevent cell migration by 
subverting the dynamics of focal adhesions (FAs) [ 311 ,  312 ]. Intriguingly, while half 
of the world population is infected with  H. pylori , gastric carcinoma arises after a 
long period of chronic infection, and only in about 5 % of the infected population 
[ 307 ]. Thus, it is unclear how the CagA-induced CSCs might account for carcinoma 
development in this small population. Another line of evidence suggests that in 25 % 
of  H. pylori -infected mice, chronic infection accompanied by infl ammation leads to 
accumulation of bone marrow-derived cells (BMDC) displastic lesions, which may 
be responsible of preneoplasia development [ 313 ]. While these studies reveal the 
association of gastric carcinoma with CSCs and BMDCs, the molecular mechanism 
underlying the etiology of the disease remain unclear. 

 The mechanisms involved in generating the “hummingbird” elongated shape 
potentially can provide clues for the eventual development of carcinoma and they 
have been previously discussed [ 61 ]. Additionally, new evidence shows that the 
cordate  Ciona intestinalis  co-opt the actomyosin cytoskeleton, to generate a con-
tractile mechanism, analogous to what happens during cytokinesis, for producing 
elongated cell shape during development [ 314 ]. Given that IQGAP1 has a role in 
regulating this conserved machinery, it is curious whether  H. pylori  co-opt IQGAP1 
to produce the hummingbird shape required for maintaining the infection. In fact, 
IQGAP1 involvement potentially can explain the mechanisms underlying bacterial 
invasion, CagA injection, bacterial spreading as well as neoplastic transformation 
leading to gastric cancer (reviewed in [ 61 ]). Recent evidence shows that the motile 
intracellular pathogen  Rickettsia parkeri , a causative agent of human rickettsiosis 
(spotted fever), differentially exploits the N-WASP-Arp2/3 and the formin actin 
nucleation pathways at distinct phases of infection to establish a niche and then 
spread between cells [ 275 ]. 

 It is curios whether the bacteria also utilizes microtubule cytoskeleton. 
Microtubule-mediated transport has been demonstrated for infectious viruses [ 118 , 
 315 ], where actin–microtubule interaction plays a role, as has been demonstrated 
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analogous to several cellular processes [ 213 ,  316 ]. Another line of evidence 
implicates the formin mDia1 in modulating microtubule dynamics at the cell cortex 
to facilitate viral release through RhoA [ 118 ]. Given IQGAP1’s interactions with 
both components, by analogy, it is likely that IQGAP1 links several distinct path-
ways involving actin-microtubule-based functions to disease development and pro-
gression. However, in addition to its structural roles, IQGAP1 signaling appears to 
control these functions upstream, thus providing further mechanism(s) for cancer 
development that can be targeted therapeutically by allosteric inhibitors. The mech-
anisms described below could account for the development of gastric carcinoma 
following the disruption of epithelial polarity by CagA leading to the development 
of the hummingbird shape [ 61 ].  

    Role in Cancer Inception and Metastasis 

 Numerous studies have implicated Rho GTPases in promoting tumorigenesis and 
this has been subject of recent excellent reviews [ 260 ,  317 – 323 ]. Rho GTPases 
likely promote tumorigenesis indirectly via complex mechanisms involving cross-
talk with multiple pathways like Ras and Src. Expression of dominant or constitu-
tively activated mutants of Cdc42 leads to cellular transformation and tumor 
formation in animals [ 324 ], and cellular transformation by oncogenic Ras requires 
the activation of Cdc42 [ 39 ]. However, unlike Ras, which is mutated in a about 
33 % of human cancers, mutations in Rho GTPases are rare; instead, Rho GTPase 
hyper-activation occurs through aberrant overexpression, loss of GAP-mediated 
inactivation, or inappropriate activation of RhoGEFs [ 325 ,  326 ]. Indeed, VAV1, 
which is a common GEF for Rho, Rac1 and Cdc42, largely associates with human 
cancers [ 327 ], essentially through activating actin polymerization and promoting 
tumor invasion [ 328 ,  329 ]. Although VAV1 has a CHD, which potentially binds 
actin, and conceivably can serve both as a GEF and effector of Rho GTPases, such 
hypothesis has yet to be proven. It is more likely that VAV1 docks to the actin 
polymerization machinery that includes WASP [ 330 ] to modulate F-actin dynamics 
by localized activation of Rho proteins. Similarly, effectors of Rho GTPases in reg-
ulating actin polymerization and cell motility like mDia, which interacts with 
IQGAP1, associates with human metastasis by promoting tumor cell invasion [ 331 ]. 
Thus, following initiation of cellular transformation, recruitment of the actin polym-
erization machinery may represent a distal step leading to metastasis by lesion- 
initiator signaling molecules like IQGAP1. 

 To date, only a single mutation, the M1231I in  iqgap1  coding region, has been 
identifi ed in association with gastric cancer [ 332 ]. Although it remains unknown 
whether this variant is causal, it is presumed to constrain fl exibility of a key loop that 
links residue 1231 region to the putative Cdc42-binding site, leading to reduced 
kinetics in IQGAP1-Cdc42 interactions [ 333 ]. By contrast, overexpression or mislo-
calization of IQGAP1 has been reported to associate with a wide range of human 
carcinomas (reviewed in [ 43 ,  61 ,  74 ,  334 ]) and the list continues to grow. 
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Overexpression of IQGAP1 correlates with upregulation of intermediate fi laments 
such as vimentin and cytokeratin and is indicator of poor prognosis and tumor dif-
ferentiation [ 131 ,  135 ]. On the other hand, lack of IQGAP1’s expression has been 
shown to associate with favorable prognosis in certain cancers [ 335 ]. Accordingly, 
IQGAP1 is being sought as a therapeutic target in cancer [ 336 ,  337 ]. However, the 
mechanism(s) by which IQGAP1 initiates the different types of human tumors are 
unclear and may be as variable as its cellular functions and the signaling pathways it 
controls in different cell types. Because of its structural and signaling properties, 
IQGAP1 likely imparts on the initiation steps of cancer-lesion as well as progression 
to metastasis. Indeed, the cellular transforming capacity of Cdc42 requires IQGAP1 
[ 72 ]. Expression of IQGAP1, not only increases the level of  p IQGAP1, but also the 
level of active Cdc42 in cells [ 71 ,  72 ]. Thus regulation of IQGAP1 phosphorylation 
cycles may be at play and could explain why reduced expression of the phosphatase 
PP2A in breast cancer cell lines appears to impair targeting of IQGAP1 to F-actin-
anchored, Rac1-bound E-cadherin-catenins complex, resulting in increased 
E-cadherin endocytosis [ 338 ]. This together with evidence from the budding yeast 
that Iqg1p helps targets Cdc42 and the cell polarity machineries to plasma membranes 
[ 94 ,  96 ], supports the concept that IQGAP1 acts both upstream and downstream of 
Cdc42 and Rac1, thus serving both as regulator and effector [ 72 ]. Furthermore, 
IQGAP1 interaction with several Rho GTPases likely help facilitates crosstalk and 
signal-dependent switch between GTPases involved in cell transformation and pro-
gression to cancer or metastasis. Support for such view can be gleaned from a switch 
observed during cell invasion, where phosphorylated RacGAP1 interacts with 
IQGAP1 at the tips of invasive pseudopodia and locally suppresses Rac while activat-
ing RhoA to promote pseudopodia growth and invasion [ 339 ]. 

 Indeed, IQGAP1 has been implicated in tumor cell invasion in vitro and in vivo 
metastasis of many human cancers [ 72 ,  334 ,  340 – 342 ], largely through modulating 
actin dynamics and membrane traffi c. Invading cancer cells form actin-based pro-
jections called invadopodia, which are enriched with proteases used for breaching 
the extracellular matrix (ECM) and progressing to metastasis. The interaction of 
IQGAP1 with the exocyst complex is required for invadopodia formation down-
stream of Cdc42 and RhoA [ 342 ]. In invasive breast carcinomas, the interaction of 
the exocyst complex with the endosomal WASP and Scar homolog (WASH) on late 
endosomes, is required for delivering the trans-membrane type 1 matrix metallopro-
teinase (MT1-MMP) by invadopodia [ 343 ]. Thus, IQGAP1 likely plays multiple 
roles in invadopodia formation, motility and function, through roles in actin-based 
motility and endosomal traffi cking of metalloproteinase secretion required for ECM 
degradation. However, experimental evidence is now required. 

 Given its multiple roles in cells, the mechanisms of IQGAP1-induction of carci-
noma will likely vary according to the cell types and the underlying signaling path-
way. This is consistent with the current notion that mechanisms of cancer initiation 
are broader than initially thought. A core mechanism by which IQGAP1 likely initi-
ate cancer lesions, involves the signaling pathways it controls and that have been 
implicated in cancer. One such evidence is that expression of the IR-WW domain, 
which binds MAPK and mTOR, attenuates ERK1/2 activity in response to EGF 
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while enhancing AktSer473 level and promoting cell proliferation [ 70 ]. Indeed, Akt 
has been widely implicated in human cancer. However, a recent study showed that 
a peptide for IQGAP1 WW domain disrupted IQGAP1-ERK1/2 interactions, inhib-
ited RAS- and RAF-driven tumorigenesis, bypassed acquired resistance to the 
BRAF inhibitor vemurafenib (PLX-4032) and acted as a systemically deliverable 
therapeutic to signifi cantly increase the lifespan of tumor-bearing mice [ 337 ]. 
Similarly, disruption of IQGAP1-Erk1/2 interaction, with the fl avonoid quercetin, 
inhibited proliferation in human myeloma cell lines [ 344 ]. However the WW 
domain interacts with far more proteins (Fig.  2.1 ), therefore more mechanistic 
studies are required before selective therapy can be developed. The same signaling 
pathway appears to be activated in the pancreatic cancer cell lines PANC1, where a 
recent study reported that the IQGAP1’s IQ motifs interact specifi cally with K-Ras, 
irrespective of K-Ras activity and activated ERK1/2 [ 345 ]. Consistent with the fi ne 
balance known for IQGAP1 activity, this study found either overexpression or 
knockdown of IQGAP1 impacted the K-Ras interaction with B-Raf [ 345 ]. 

 Finally, an important mechanism by which IQGAP1 may induce cellular trans-
formation and potentially cancer could be through its role in stimulating DNA 
synthesis. In fi broblast [ 72 ] and in MDA-MB-231 [ 346 ], overexpression of IQGAP1 
enhances DNA synthesis and induces transformed phenotypes through Cdc42 [ 72 ] 
or RhoA/C [ 346 ]. The mechanism by which IQGAP1 leads to enhanced DNA syn-
thesis and cell cycle progression is still unclear. Interestingly, recent evidence impli-
cates IQGAP1 in regulating actin dynamics during DNA synthesis. Nuclear actin is 
a major component of the nucleoskeleton and it participates in essential nuclear 
processes, including chromatin remodeling, gene transcription, DNA replication 
and double strand repair, which require actin polymerization [ 347 ,  348 ]. Live cell 
imaging studies documented transport of actin, IQGAP1 and Rac1 to the nucleus in 
response to hydroxyurea-induced DNA replication stress [ 102 ]. While the exact 
role played by IQGAP1 remains to be deciphered, it is conceivable that its dysfunc-
tion can contribute to cancer inception, progression and tumor maintenance. Thus 
much work lies ahead to elucidating the cell-type-, cancer-type- and cancer-stage- 
specifi c mechanisms of IQGAP1-driven cancers.   

    Future Directions 

 Despite being heavily investigated, many unknowns remain about IQGAP1’s mech-
anisms in cell and organism physiology and pathobiology. Perhaps one of the most 
compelling evidence for IQGAP1 as a rheostat is that either its downregulation 
(knockout and Knockdown) or overexpression produces similar effect in all of its 
diverse cellular functions. This underscores the delicate balance of its action and 
also emphasizes the importance of signal dynamics where small changes in IQGAP1 
level or signal result in large changes downstream such as those observed on S6K 
and Akt [ 70 ], and leading to manifestation of disease state. Thus, it is becoming 
clearer that cells use IQGAP1 as a universal rheostat (Fig.  2.8 ). This is particularly 
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evident in regulating the dynamics of actin, microtubule, exocytosis and asymmet-
ric cell division. Future research should be directed to unraveling the specifi c deter-
minants of the distinct modules.

   Before proteins can be exocytosed, they must navigate the cytosol viscosity and 
dense meshwork of cytoskeletal fi laments [ 349 ] in their journey to the plasma mem-
brane. This process requires the action of cytoskeletal tracks and specialized motor 
or propeller proteins. Microtubules serve as tracks for the motor proteins Kinesin 
and dynein whereas actin cables serve as tracks for myosin motors to propel cargo- 
containing vesicles to their destinations [ 350 ]. A large body of evidence demon-
strated both regulatory and structural interactions between microtubules and actin in 
diverse cellular processes [ 24 ,  25 ,  213 ,  316 ]. IQGAP1 interactions with actin, 
microtubules and myosin predict involvement in cytoplasmic traffi c, which awaits 
analysis. Such studies will require mechanistic analyses with more sophisticated 
tools and avoidance of microtubule and actin depolymerizing agents that produce 
limited mechanistic insights if not confusing pleiotropic effects. 

 Another area of important investigation is the role of membrane microdomains 
potentially in anchoring and specifying the various modules organized by IQGAP1 
beneath the plasma membrane or at internal membranes. For such studies, super- 
resolution fl uorescence microscopy and/or electron microscopy might be required 
for visualizing the distinct modules. 
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  Fig. 2.8    A model of IQGAP1 as a rheostat of protein traffi cking that underlie different cell func-
tions. The preponderance of evidence from different model cell lines and organisms support a role 
for IQGAP1 as a scaffold signal-regulator of a variety of cell functions with an underlying mecha-
nism in modulating protein traffi cking [ 23 ,  43 ,  61 ,  70 ,  71 ]. In doing so, IQGAP1 relays a variety 
of extracellular signals through direct or indirect interactions with different types of receptors, 
including RTK and GPCR to a multitude of preformed specialized modules to effect specifi c func-
tions. Dysregulation in a module can lead to specifi c human disease. The current challenge is to 
defi ne the specifi c pathway for each module and elucidate the interactions in molecular detail in 
order to rewire that module therapeutically       
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 An emerging area of research is the role of actin dynamics in memory control 
and neuronal plasticity. Translational control of actin nucleating proteins has 
recently been shown to underlie memory decay and forgetting required for neuron 
plasticity [ 351 ]. IQGAP1 plays crucial roles in actin bundling and capping [ 63 ,  85 ] 
as well as in actin nucleation [ 82 – 84 ], processes shown to impact memory duration 
[ 351 ]. This exciting area of research would pave the way for analyses of potential 
role of IQGAP1 in neurodegenerative diseases like Alzheimer. 

 A new fi eld of study has uncovered the role of mechanical stress in modulating 
cell–cell contacts at adheren junctions during developmental, homeostatic and dis-
ease states. At the heart of this, myosin-dependent tension has been shown to reduce 
actin turnover and restrict Cadherins mobility at the junctions [ 352 ]. Given that 
IQGAP1 binds all these components and regulate junctional adhesion, its potential 
role in mechanical signaling must be analyzed. Whereas proteomic studies revealed 
the role of IQGAP1 in actomyosin dynamics in the rear of motile cells [ 178 ], focal 
adhesion turnover has been shown to be regulated by CLASP proteins-mediated 
localized exocytosis and ECM degradation [ 353 ]. Given the role of IQGAP1- 
CLASP in regulating microtubule dynamics discussed earlier, this evidence clearly 
implicates IQGAP1 in focal adhesion turnover-mediated cell motility and opens a 
new direction of investigation. Analysis of the mechanisms utilized by IQGAP1 in 
impacting diverse cellular functions will require more sophisticated approaches and 
tools, least of which are separation-of-function mutants and developing signal- 
sensitive biosensors. Understanding how IQGAP1 serve these multiple but highly 
specialized functions could provide means for targeting human disease in a specifi c 
and context-dependent manner.     
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    Chapter 3   
 Regulation of the Cytoskeleton by the Rho 
Family of GTPases in Hematopoietic Stem 
Cells in Health and Disease 

             Ramesh     C.     Nayak    ,     Kyung-Hee     Chang    , and     Jose     A.     Cancelas    

            Introduction 

 Rho-family GTPases comprise a main branch of the Ras superfamily of small 
GTPases. Twenty-two human members of the Rho family have been identifi ed, and 
can be subdivided into ten groups on the basis of their identity to Cdc42, Rac1, 
RhoA, RhoD, Rif/RhoF, Rnd3/RhoE, TTF/RhoH, Chp/RhoV, mitochondrial Rho 
(Miro1/RhoT1), or Rho-related BTB-domain-containing protein (RhoBTB). They 
are low molecular weight guanine nucleotide binding proteins and function as 
binary molecular switches by cycling between an active GTP-bound state and an 
inactive GDP-bound state [ 1 ]. Rho GTPases are involved in most, if not all, actin- 
dependent processes such as those involved in migration, adhesion, morphogenesis, 
axon guidance, and phagocytosis. In classic fi broblast studies, activation of RhoA, 
Rac1, and Cdc42 led to the reorganization of the actin cytoskeleton into distinct 
structures: stress fi bers and focal adhesions, veil-like lamellipodia, and fi lopodial 
microspikes, respectively [ 2 ,  3 ]. In addition to their regulation of the actin cytoskel-
eton, Rho GTPases have been shown to play vital roles in a number of cellular 
processes such as the regulation of enzymatic activities, cell adhesion, intracellular 
signaling cascades, endocytosis, vesicle traffi cking, G1 cell cycle progression, 
oncogenesis, gene transcription, microtubule dynamics, cell polarity, and asymmetric 
cell division (ACD) [ 1 ,  4 – 14 ]. 
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 In an earlier review, we described the regulation of the actin and microtubule 
cytoskeleton by Rho GTPases [ 15 ]. The actin and microtubule cytoskeleton medi-
ates a variety of essential biological functions in all eukaryotic cells. In addition to 
providing a structural framework around which cell shape and polarity are defi ned, 
its dynamic properties provide the driving force for cells to move and to divide. 
Understanding the biochemical mechanisms by which Rho GTPases control the cell 
cytoskeleton is thus a major goal of cell biology and has implications for human 
health and disease.  

    Regulation of Rho GTPase Activity 

 Rho GTPases are molecular switches and cycle between guanosine triphosphate 
(GTP)-bound (on) and guanosine diphosphate (GDP)-bound (off) state. Cycling 
between GTP- and GDP-bound states is controlled primarily by three classes of regu-
latory molecules: GTPase-activating proteins (GAPs) enhance the relatively slow 
intrinsic GTPase activity of Rho proteins; guanine nucleotide-exchange factors 
(GEFs) catalyze the exchange of GDP for GTP; and Rho GTPase guanine nucleotide 
dissociation inhibitors (Rho GDIs) interact and stabilize the GDP-bound form. GAPs 
suppress Rho activity, whereas GEFs promote it. In cells, GTP is preferentially loaded 
into Rho GTPases during nucleotide exchange, because GTP is found at substantially 
higher concentrations than GDP. Rho GDIs bind to the prenylated forms of Rho-GDP 
and regulate their distribution between cytosol and the membrane [ 15 ]. The number of 
GEFs (>60) and GAPs (>80) identifi ed so far in the human genome is far more than 
the number of Rho GTPases (currently 22), suggesting a tight and spatio-temporal 
regulation of Rho GTPase activity [ 16 – 18 ]. In addition to GEF/GAP regulation, post 
translational modifi cations, such as ubiquitination, phosphorylation, isoprenylation, 
transglutamination, AMPylation, SUMOylation, and oxidation of conserved cyste-
ine residues, critically control the expression and activity of the Rho GTPases 
[ 13 ,  19 – 22 ]. A summary of the regulation of Rho GTPases activity is outlined in 
Fig.  3.1 . Rho GTPase expression is also regulated by various micro RNAs (MiRNAs) 
at the mRNA level [ 20 ]. The constitutively active GTP-bound RhoH and Rnd iso-
forms are regulated by tissue-specifi c differential expression [ 23 ,  24 ].

   The fi rst mammalian GEF, Dbl, isolated in 1985 as an oncogene in an NIH 3T3 
focus formation assay using DNA from a human diffuse B-cell lymphoma [ 25 ], was 
found to contain a region of ~180 amino acids that showed signifi cant sequence simi-
larity to CDC24, a protein identifi ed genetically as an upstream activator of CDC42 in 
yeast [ 26 ,  27 ]. Dbl and Cdc24 represented the initial members of a new family of 
GEFs. The region of homology among the Dbl family members contains an ~200 
residue Dbl homology (DH) domain and an adjacent, C-terminal, ~100 residue 
pleckstrin homology (PH) domain. The GEFs with the same substrate specifi city 
often have ~20 % sequence identity. The breakpoint cluster region (BCR) was identi-
fi ed as the fi rst RhoGAP isoform, and contains a 150 amino acid GAP domain which 
is required to induce the GTPase activity of the Rho GTPases [ 28 ,  29 ].  
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    Rho GTPase Regulation of HSC Activities 

 Hematopoietic stem cells (HSCs) are the most actively dividing somatic cells and 
produce billions of blood cells every day. The two critical features; indefi nite 
self- renewability and multi-lineage differentiation potential, enable the HSCs to 
maintain their own levels while generating mature blood cells indefi nitely. The tight 
regulation and balance between self-renewal and differentiation potential is critical 
for steady-state hematopoiesis. During mammalian embryonic development, HSCs 

  Fig. 3.1    Regulation of Rho GTPase activity by guanine nucleotide-exchange factor/GTPase-
activating protein (GEF/GAP) cycling and post-translational covalent modifi cations. The interac-
tion of cytokines/growth factors and adhesion molecules in the extracellular matrix with their 
cellular receptors expressed on hematopoietic stem cells (HSCs) triggers the activation of GEFs. 
GEFs catalyze the exchange of GDP with GTP resulting in Rho GTPase activation. The activated 
Rho GTPases interact with effector proteins and modulate cytoskeletal rearrangement, leading to 
the formation of actin stress fi bers and focal adhesion contact (FAC), lemellipodia, and fi lopodia. 
The activated Rho GTPases also modulate various enzymatic pathways, cell cycle progression, and 
transcriptional activation, and therefore, regulate a number of cellular processes, such as survival, 
proliferation, adhesion, migration, differentiation etc. Rho GTPase activating proteins (Rho-GAPs) 
inactivate Rho GTPase by inducing intrinsic GTPase activity which hydrolyzes bound GTP. Rho 
GDIs (GDP dissociation inhibitors) bind to the iso-prenylated and GDP-bound form of Rho 
GTPases and regulate membrane versus cytosolic distribution. Rho GDI also prevents spontaneous 
activation as well as degradation of GDP-bound Rho GTPases. The post-translational and covalent 
modifi cations such as ubiquitination, AMPylation, transglutamination, phosphorylation, and 
SUMOylation constitutively activate or inactivate the RhoGTPases.  P  = iso-prenylation       
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fi rst originate in the extra embryonic yolk sac and the para aortic splanchnopleura/aorta 
gonad mesonephros (AGM) of the embryo proper. During the prenatal and perinatal 
period, HSCs migrate to the fetal liver and spleen, and fi nally to the bone marrow 
(BM), where they reside and produce all hematopoietic cells in adequate quantity 
throughout life [ 30 – 35 ]. Various cell types in the BM microenvironment play criti-
cal roles in regulating HSC activities during both steady-state and stress hematopoi-
esis, for example, osteoblasts, endothelial cells, perivascular CXCL12 producing 
reticular cells, nestin +  mesenchymal stem cells, and leptin receptor+ perivascular 
stromal cells [ 36 – 43 ]. The stromal derived factor (SDF-1α) and stem cell factor 
(SCF) produced and secreted by BM niche cells, and the fi bronectin in the extracel-
lular matrix (ECM), interact with the cellular receptors CXCR4, c-Kit, and integ-
rins, respectively, which are expressed on HSCs, and provide signals for the 
maintenance of HSC activities [ 44 – 51 ]. Rho GTPases integrate these niche signals 
into the various cellular processes of HSCs by modulating cytoskeletal rearrange-
ment, gene expression, and the activity of enzymes involved in proliferation and 
survival pathways. At any given time, a small fraction of hematopoietic stem cells 
and progenitors (HSC/P) leave the BM, migrate towards peripheral blood (PB), and 
then migrate back to the BM niche. The migration of HSC/P from the BM niche to 
the PB is called mobilization, and the migration from the PB towards the BM micro-
environment is called homing [ 52 ,  53 ]. Stem cell mobilization and homing are 
exploited therapeutically for HSC/P transplantation in BM failure and leukemic 
patients [ 53 – 56 ]. The migration of HSC/P during embryonic development, steady 
state hematopoiesis, and after stem cell transplantation is critically regulated by Rho 
GTPases. The multidimensional roles of different Rho GTPases in the regulation of 
HSC/P activities are depicted in Fig.  3.2 .

      RhoA Controls the Multilineage Commitment Potential 
of Hematopoietic Progenitor Cells 

 RhoA, a member of the Rho family of GTPases, is well characterized in most cell 
types. Until recently, its role in the activities of HSCs was controversial. Inhibition 
of RhoA through the retroviral mediated expression of the dominant negative (DN) 
mutant RhoA N19 has been found to enhance the self-renewal and engraftment 
potential of HSCs [ 57 ]. Another study showed that elevated RhoA activity after 
deletion of p190-RhoGAP, a negative regulator of RhoA, was advantageous for the 
self-renewal and long-term engraftment potential of HSC/Ps [ 58 ]. The interpreta-
tion of these data is affected by the possible off-target effect of the over-expression 
of the dominant negative mutant form of RhoA in HSC/P. Recently, Zhou et al. [ 59 ] 
conclusively described the functions of RhoA in HSC/P activities using a condi-
tional gene- targeted murine model. The results of this study showed that: RhoA 
defi ciency causes a multilineage hematopoietic failure which is associated with a 
blockage of hematopoiesis at the multipotent progenitor stage; RhoA −/−  HSCs retain 
long-term engraftment potential, but fail to produce multi potent progenitors and 
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mature blood cells; RhoA null HSC/Ps show reduced actomyosin-signaling and 
defective cytokinesis; Defective cytokinesis and programmed necrosis of the hema-
topoietic progenitors result in a bloodless phenotype; and the loss of RhoA results 
in a mitotic failure of progenitors manifested by an accumulation of multinucleated 
cells due to failed cytokinesis and abscission of the cleavage furrow post-telophase, 
and increased programmed necrosis. Recently, in a hyperangiotensinamia murine 
model and in sickle cell patients, we have demonstrated that treatment with angio-
tensin reduces the RhoA activity and actomyosin signaling that leads to de-adhesion 
of the HSC/P from endothelial cells and mobilization to the PB [ 146 ].  
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    Rac GTPases Regulate HSC/P Homing, Retention, 
and Migration 

 Rac GTPases modulate actin cytoskeleton rearrangement and F-actin branching, 
and regulate membrane protrusion, lemellipodia formation, and directional migra-
tion in fi broblasts and many other cell types [ 1 ]. The SDF-1α, SCF, and epidermal 
growth factor (EGF) produced and secreted by niche cells, and the fi bronectin in 
ECM interact with the receptors CXCR4, c-Kit, EGFR and integrin, respectively, 
which are expressed on HSC/P and trigger the activation of Rho GTPases through 
upstream regulator GEFs. The chemotactic migration of HSC/P towards SDF-1α is 
mediated by both Rac1 and Rac2, and regulated by the Rac GEF Tiam1 [ 60 ]. Rac1 
and Rac2 integrate the signals derived from SCF/c-Kit and fi bronectin/b1-integrins 
interactions with various cellular processes, such as homing, migration, and interac-
tion with the microenvironment, and the long-term engraftment potential of HSC/P 
[ 61 – 63 ]. Initial studies employed Rho GTPase inhibitors (bacterial toxins) to under-
stand the role of Rho GTPases in the regulation of HSC/P activities [ 64 ]. However, 
the specifi city of the inhibitors towards individual Rho GTPases was questionable 
due to a high degree of homology between different isoforms of Rho GTPases 
(92 % sequence homology between Rac 1 and Rac2). The Rac GTPase subfamily is 
comprised of three highly homologous isoforms: Rac1, Rac2, and Rac3. Rac1 is 
ubiquitously expressed, Rac2 is hematopoietic specifi c, and Rac3 is highly expressed 
in the central nervous system [ 65 ,  66 ]. Therefore, the non-specifi c and off-target 
effects of GTPase inhibitors are highly predictable. Our group has conclusively 
identifi ed the specifi c and overlapping functions of the individual Rho GTPase iso-
forms using gene-targeted mouse models defi cient in Rac1, Rac2, Cdc42, RhoH, 
and specifi c GAPs and GEFs. Yang et al. studied the role of hematopoietic specifi c 
Rac2 using a gene-targeted mouse model. The Rac2 −/−  mice showed increased num-
bers of circulating HSC/Ps in the PB due to defective adhesion to the BM microen-
vironment. HSC/Ps lacking Rac2 were defective in actin cytoskeleton remodeling 
and α4β1-mediated adhesion to fi bronectin or vascular cell adhesion protein 1 
(VCAM 1) [ 67 ]. Interestingly, the Rac2 null HSC/Ps showed increased migration 
towards a CXCL-12 (SDF-1α) gradient, possibly through the compensatory up-
regulation of Rac1 and Cdc42 activities. This study, for the fi rst time, suggested a 
critical role for Rac2 in the retention of HSC/Ps in the BM microenvironment, and 
indicated the involvement of cross-talk between Rac and Cdc42. Later, Gu et al. 
[ 63 ] studied and dissected the specifi c and overlapping roles of Rac1 and Rac2 in 
HSC/Ps. Deletion of both Rac1 and Rac2 led to massive egress of HSC/Ps into the 
PB from the BM. They also found that Rac1 −/− , but not Rac2 −/− , HSC/Ps failed to 
engraft in lethally irradiated recipient mice. The Rac 2 defi cient HSC/Ps showed 
normal short-term engraftment, however, Rac2 null HSC/Ps showed reduced adhe-
sion to fi bronectin in vitro, which explained the impaired BM retention and increased 
mobilization seen in the Rac2 −/−  HSC/Ps. HSC/Ps lacking Rac2 showed increased 
apoptosis due to defective activation of the PI3K/Akt survival pathways. The Rac1 
and Rac2 mutant phenotypes, such as defective proliferation, reduced adhesion to 
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fi bronectin, impaired migration towards a SDF-1α gradient, and increased mobili-
zation, were more severe in HSC/Ps lacking both Rac1 and Rac2, suggesting that 
Rac1 and Rac2 play overlapping roles. However, when analyzed carefully, it was 
found that deletion of  Rac1  after engraftment did not impair steady-state hemato-
poiesis [ 68 ]. The engraftment failure of Rac1 −/−  HSC/P was due to impaired spatial 
localization with respect to the BM endosteal niche. However, Rac1 −/−  HSC/Ps 
showed normal homing to the BM medullary cavity. Although Rac2 −/−  HSCs showed 
near normal short-term engraftment, they were impaired in their long-term hemato-
poietic reconstitution due to an abnormal interaction with the BM microenviron-
ment [ 69 ]. Sanchez-Aguilera et al. [ 70 ] in a gene-targeted mouse model demonstrated 
that Vav1, an upstream activator of Rac GTPases, controls the retention of quiescent 
HSCs near nestin +  mesenchymal stem cells. Transplanted Vav1 −/−  HSP/Cs showed 
impaired early localization near nestin +  perivascular mesenchymal stem cells. The 
engraftment defect seen in the Vav1 −/−  HSP/Cs was due to impaired responses to 
SDF-1α, decreased circadian- and pharmacologically-induced mobilization in vivo, 
and dysregulated Rac/Cdc42 activation.  

    Cdc42 Controls HSC Polarity and Asymmetric Cell Division 

 Asymmetric cell division (ACD) is a process in which cytokinesis of a mother cell 
generates two daughter cells of unequal fate. This process is a critical regulator of 
embryonic development and adult tissue stem cell homeostasis [ 71 ,  72 ]. In most 
cases one of the daughter cells behaves as a mother cell and replenishes the stem 
cell pool, and the second acquires a matured phenotype for tissue regeneration and 
repair. The molecular and cellular mechanisms of ACD have been extensively studied 
in the development of invertebrate embryos [ 72 ,  73 ]. In higher mammals, ACD is 
well characterized in mature epithelial cells and neural stem/progenitor cells 
[ 74 ,  75 ]. The basic mechanisms and key regulators of ACD between invertebrate 
and higher mammalian cells are highly conserved [ 76 ,  77 ]. ACD is accomplished in 
three sequential steps; (1) establishment of the axis of polarity during late inter-
phase or early prophase; (2) orientation of the mitotic spindles along the axis of 
polarity; and (3) cell division leading to the formation of two unequal daughter cells 
harboring different polarity proteins and cell fate determinants [ 71 ]. During the ini-
tial stages, the cell polarity proteins and cell fate determinants asymmetrically local-
ize to the opposite poles of the cells, and thereby establish an axis of polarity [ 78 ]. 
The process of ACD begins with the polarized localization of apical polarity com-
plex proteins PAR3 (Bazooka in  Drosophila ), PAR6 and atypical protein kinase C 
(aPKC) [ 79 – 82 ]. The apical polarity complex PAR3-PAR6-aPKC recruits other 
polarity regulators such as inscuteable (Ins) [ 79 ,  83 ], partner of inscuteable (Pin) 
[ 84 ,  85 ], and guanine nucleotide binding protein-αi (Gαi) [ 86 ] to the apical side of 
the cells. This is followed by basal recruitment of cell fate determinants such as 
Numb, Brat, Miranda, Prospero, and partner of Numb (PON) at the pro-metaphase 
stage of the cytokinesis [ 87 – 92 ]. The daughter cell harboring Numb, an endocytic 
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protein and Notch signaling inhibitor, is differentiated to the mature phenotype. 
Several studies support the hypothesis that aPKC dependent phosphorylation is 
critical for the asymmetric localization of Numb [ 71 ,  93 ,  94 ]. Following asymmet-
ric distribution of polarity proteins and cell fate determinants, the next step is the 
correct orientation of the mitotic spindle along the axis of polarity. Pin recruits the 
microtubule motor proteins, dynein and kinesin, through its interaction with the 
dynein-binding protein Mud (Drosophila homologue of mammalian NuMA) and 
the Discs-large (Dlg)-kinesin heavy chain (Khc-73) protein complex, respectively, 
and thereby anchors the astral microtubule of the mitotic spindle to the apical cell 
cortex [ 95 ,  96 ]. 

 The continuous rearrangement (assembly and disassembly) of actin and the 
microtubule cytoskeleton plays a decisive role in establishing the polarity of migrat-
ing fi broblasts, stem cells during embryonic development, neural stem/progenitor 
cells, and mature epithelial cells [ 1 ,  97 ]. The Rho family of small GTP-binding 
proteins, mainly Rac1, Rac2 and Cdc42, regulate the cell polarity by modulating the 
rearrangement of actin and the microtubule cytoskeleton through their interactions 
with actin and tubulin-binding protein [ 1 ]. The role of Rho GTPase Cdc42 in the 
establishment of the polarity axis during ACD is well documented in embryonic 
development and stem cell biology. Cdc42 activates the apical polarity complex 
PAR3-PAR6-aPKC by directly interacting with adaptor protein PAR6 through its 
Cdc42- and Rac-interactive binding (CRIB) domain and plays a critical role in 
establishing the axis of polarity in the Drosophila neuroblast, C. elegans zygote, and 
mammalian neural stem/progenitor cells [ 98 ,  99 ]. The interaction of Cdc42 and 
PAR6 activates the aPKC, a Ca ++  and DAG (diacyl glycerol) independent serine/
threonine kinase. The aPKC phosphorylates and directs the localization of the cell 
fate-determinant Numb toward the opposite pole of the cells [ 99 ,  100 ]. 

 Unlike in invertebrate embryogenesis and mammalian neurogenesis, in HSCs, 
the mechanisms of ACD and the roles of polarity proteins and cell fate determinants 
are poorly understood. The development of the in vitro single cell culture and the 
paired daughter cells assay offered, for the fi rst time, clues about the ACD of primi-
tive HSCs [ 101 ,  102 ]. The daughter cells derived from one primitive (Lineage − c-
Kit + Sca1 + CD34 −/lo ) HSC possessed a differential ability for proliferation in vitro 
and hematopoietic reconstitution in vivo, suggesting the occurrence of ACD. Using 
the paired daughter cells assay, it was found that a majority of the primitive HSCs 
underwent ACD, whereas, the hematopoietic progenitors  predominantly divided in 
a symmetric commitment manner. However, these studies did not provide direct 
evidence of the differential distribution of polarity proteins and subsequent ACD in 
HSCs. Using a Notch driven green fl uorescent reporter system in a real-time micro-
scopic imaging method, Wu et al. demonstrated that HSCs undergo both asymmet-
ric and symmetric cell divisions [ 103 ]. In the case of ACD, the Notch inhibitor 
Numb was asymmetrically segregated into one of the daughter cells, and the daugh-
ter cell harboring Numb eventually differentiated and lost the Notch-driven expres-
sion of green fl uorescent protein. Pro differentiation and pro self-renewal 
environments modulate the balance between the asymmetric and symmetric cell 
division of HSCs. Also, the presence of an oncogene has been shown to skew the 
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symmetry of cell division. Mushashi2 (Msi2), a cell polarity RNA binding protein, 
has been shown to regulate normal HSCs and leukemic stem cell activities [ 104 , 
 105 ]. In neural progenitor cells, Msi1 directly binds Numb mRNA in the 3′ untrans-
lated region, inhibits its translation and results in the down-regulation of the level 
of Numb protein, and the subsequent up-regulation of Notch activity [ 106 ]. In 
chronic myelogenous leukemia the progression of the disease from the chronic 
phase to the aggressive blast crisis phase is correlated with an increase in Msi2 and 
a decrease in Numb protein levels. An overexpression of Numb induces the differ-
entiation and slows the disease progression [ 105 ,  107 ]. Together, these results sug-
gest that ACD   , and the expression and distribution pattern of the cell fate determinant 
Numb, regulates the activity of normal and malignant HSCs. However, contradictory 
reports exist about the roles of Numb, Numb-like protein, and the apical polarity 
complex PAR3-PAR6-aPKC, in the regulation of HSC activities. Wilson et al. [ 108 ] 
showed that the conditional and combined deletion of Numb and Numb-like protein 
did not affect the self-renewal or multi-lineage differentiation potential of HSCs. 
Also, the role of Msi2 has been further analyzed using a conditional gene-targeted 
mouse model [ 109 ]. Deletion of Msi2 resulted in depletion of quiescent HSCs due to 
increased differentiation, and the Msi2 loss-of-function phenotype is independent of 
Numb. In a conditional gene-targeted mouse model, Sengupta et al. [ 110 ] have shown 
that the constitutive or inducible deletion of the apical polarity complex proteins 
aPKC ζ and/or aPKC λ does not affect steady-state or stress-induced hematopoiesis. 
The percentage of polarized primitive HSC population remained unaffected in the 
absence of both homologues of aPKC. However, the role of these polarity proteins and 
cell-fate determinants in the regulation of malignant or leukemic stem cell cannot be 
ruled out. 

 Recently, the role of the Rho GTPase Cdc42 and the planar cell polarity proteins 
Frizzled (Fz) and Flamingo (Fmi) in the polarity and ACD of HSCs has been studied 
in detail. A summary of the role of Cdc42, and the core planar cell polarity proteins 
Fz and Fmi, in the regulation of ACD of HSCs is given in Fig.  3.3 . In 2013, Florian 
et al. [ 111 ], fi rst demonstrated the role of Cdc42 in the regulation of HSC polarity 
and ACD. In this study, the polarized distribution of tubulin and Cdc42 was used as 
a surrogate marker for the quantitation of HSC polarity. The level of GTP-bound 
activated Cdc42 critically regulates HSC polarity. Aged HSCs with elevated Cdc42 
activity lost their polarity and long-term repopulation potential in vivo. Casin, a 
Cdc42 specifi c Rho GTPse inhibitor, induced HSC polarity and rejuvenated the 
aged HSCs, with an in vivo long-term reconstitution potential similar to young 
HSC. The pharmacological inhibition of Cdc42 activity in aged HSCs restored the 
level and spatial distribution of histone H4 lysine 16, suggesting a role for Cdc42 in 
the epigenetic regulation of HSCs. The canonical Wnt/β-catenin signaling pathway 
regulates the self-renewal of HSCs [ 112 ]. The non-canonical Wnt signaling path-
way, mediated through the planar cell polarity proteins Fmi, Fz and disheveled (Dsh) 
has been shown to maintain the quiescent long-term primitive HSCs [ 113 ]. Fz, a 
seven-span transmembrane protein, and Fmi, a cadherin family transmembrane pro-
tein, are highly expressed and distributed in a polarized manner in primitive long-
term HSC. Fz mediated non- canonical Wnt signaling  suppresses the Ca 2+ -NFAT-IFNg 
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pathway through the Cdc42-PAK1-CK1 (casein kinase1) complex, and antagonizes 
the canonical Wnt signaling pathway. Another intriguing report describes how the 
switching from the canonical to non-canonical Wnt pathway takes place in aged 
HSCs [ 114 ]. In aged long-term HSCs a dramatic increase in the expression of 
Wnt5B was shown to activate the non- canonical Wnt signaling pathway, while 
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  Fig. 3.3    Cdc42 regulates the polarity and asymmetric cell division of hematopoietic stem cells 
(HSCs). ( a ) The polarized nature of HSCs is determined by analyzing the asymmetric cell distribu-
tion (ACD) of Cdc42, Numb, and tubulin. The polarized distribution of Cdc42 and tubulin estab-
lishes the axis of polarity, with Numb and Cdc42 at the opposite poles. However, the cellular 
distribution of tubulin and Cdc42 with respect to Numb has yet to be analyzed in the same 
HSC. Lis1, a dynein binding protein, regulates the spindle orientation and ensures the occurrence 
of both symmetric and asymmetric division, and thereby, the self-renewal versus differentiation 
potential of HSCs. The committed progenitors generate mature red blood cells (RBC). ( b ) The 
core planar cell polarity (PCP) proteins, Flamingo (Fmi) and Frizzled (Fz), regulate HSC quies-
cence through the activation of non-canonical Wnt signaling in the endosteal niche. The interaction 
of Fmi, a cadherin-like transmembrane receptor expressed in the HSC, with N–cadherin (N-Cadh) 
expressed in the osteoblast (Ob) guides the polarized distribution of seven-span transmembrane 
receptor Fz at the Ob/ HSC interface, and activates non-canonical Wnt signaling mediated through 
the Cdc42/casein kinase-1 (CK1) pathway. The activated Cdc42 regulates HSC ACD and quies-
cence, and long term hematopoiesis. ( c ) The sub-cellular distribution of the apical polarity pro-
tein complex PAR3-PAR6-aPKC has not yet been analyzed in HSCs in detail. The interaction of 
GTP-bound Cdc42 with PAR6 and direct evidence of aPKC mediated Numb phosphorylation and 
asymmetric distribution of p-Numb is yet to be established in HSCs.  Mo  monocyte,  Net  neutrophil, 
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inhibiting the canonical Wnt/β-catenin pathway. Treatment of young HSCs with 
Wnt5B resulted in the activation of Cdc42 and the loss of HSC tubulin polarity, and 
with Wnt5B resulted in the aged HSC phenotype in vivo. These studies offer con-
crete evidence for the role of Cdc42 in the establishment of HSC polarity and sub-
sequent ACD. However, it has yet to be demonstrated in HSC whether PAR6 is the 
direct target of activated Cdc42 for the activation of the apical polarity complex 
PAR3-PAR6-aPKC and the subsequent aPKC-mediated phosphorylation of Numb 
resulting in its asymmetric segregation to one of the daughter cells. It is also possible 
that activated Cdc42, through its interaction with the WASP/Arp2/3 complex, 
induces actin polymerization in a polarized manner, and that the crosstalk between 
actin and the microtubule cytoskeleton regulates the tubulin polarization of HSCs.  

 Two recent reports demonstrating the roles of the dynein binding protein Lis1, 
and the acto-myosin complex protein myosin II (MIIB), in the ACD of HSCs, fur-
ther indicate that actin and the microtubule cytoskeleton regulate HSC polarity and 
asymmetric division. Lis1 facilitates the anchoring of the mitotic spindle to the cell 
cortex through its interaction with dynein and the dynactin complex, and ensures 
the proper orientation of the mitotic spindle during cell division [ 115 ]. The deletion 
of  Lis1  results in the depletion of HSC pools, a bloodless phenotype and embryonic 
lethality. The incorrect positioning of the mitotic spindle and a defective inheritance 
of the cell fate determinant Numb in the absence of Lis1 led to accelerated differen-
tiation of HSCs and exhaustion of the stem cell pool. Recently, MIIB has been 
shown to be distributed in a polarized manner in HSCs and to regulate the ACD. The 
RhoA effector protein, Rho kinase (ROCK), induced the phosphorylation and acti-
vation of the myosin light-chain that in turn induced the acto-myosin contractile 
force required for the formation of actin stress fi bers and focal adhesion contact. 
The regulation of ACD by MIIB tempted us to speculate on a direct role for RhoA 
GTPase in this process [ 116 ].   

    Rho GTPases and Human HSC/P Disease 

 The importance of Rho GTPase regulated signaling pathways in human biology is 
highlighted by the identifi cation of genetic alterations in all classes of protein that 
interact with the GEFs, GAPs, GDIs, receptors, and downstream targets. Rho GEF 
genes rearrangements and deletions, have been identifi ed in developmental and 
neuro-degenerative disorders, and in cancer. 

    Rho GTPases and Leukemia and Lymphoma 

 Many GEFs, including Dbl, Lbc, Lfc, Vav, Net1, Ect2, and Tiam, were originally 
isolated as oncogenes using an in vitro NIH 3T3 fi broblast transformation assay 
with DNA derived from various human tumors [ 25 ,  117 – 120 ]. Further studies 
revealed that constitutively active Rho, Rac, or Cdc42 also induced transformation, 
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strongly suggesting that the oncogenic activity of GEFs is mediated through 
dysregulated activation of Rho GTPases [ 121 ]. 

 In lymphohematopoiesis, Rho GTPase activity has been implicated in the trans-
formation of HSCs or hematopoietic progenitors acquiring self-renewal ability. For 
instance, the Rho family of GTPases has been implicated in the pathogenesis of 
leukemias and lymphomas. 

 BCR-ABL leukemias result from the reciprocal translocation between the BCR 
gene on Chromosome 22 and the Abelson leukemia (ABL) gene on Chromosome 9. 
Several types of fusion protein can be generated including the forms p210-BCR- 
ABL and p190-BCR-ABL. The wild-type BCR fragment contains a DH-PH GEF 
domain located centrally, and a GAP domain in its C-terminus. In BCR-ABL leuke-
mias, the reciprocal, 9:22 chromosome translocation results in a fusion of the 
N-terminal sequences derived from BCR, with the non-receptor tyrosine kinase 
ABL.    The two most common BCR-ABL fusion proteins are a 210 kDa protein, 
which contains the DH-PH domains, but not the GAP domain and is associated with 
chronic myeloid leukemia (CML), and a 190 kDa protein which lacks the DH-PH 
and GAP domains of BCR and is associated with acute lymphoblastic leukemia 
(ALL). 

 CML is a hematological malignancy that is characterized by an uncontrolled 
expansion of immature myeloid cells and their premature release into the circula-
tion. CML is caused by the expression of the fusion oncoprotein p210-BCR-ABL, 
a constitutively active tyrosine kinase which regulates a variety of signaling cas-
cades, including Ras, extracellular-signal regulated kinase (ERK), Akt, c-Jun acti-
vated kinase (JNK), p38, CrkL, signal transducer and activator of transcription 5 
(STAT5), and nuclear factor-κB (NF-κB) [ 122 ]. Expression of p210-BCR-ABL, 
confers a proliferative advantage to cells, and induces abnormal adhesion and 
migration of hematopoietic progenitor cells [ 123 ,  124 ]. These effects can be sup-
pressed by the tyrosine kinase inhibitor, imatinib mesylate. Imatinib is a highly 
effective drug in CML treatment, however, tyrosine kinase inhibition resistance due 
to mutations in p210-BCR-ABL and other causes of HSC resistance to drug treat-
ment have increased the interest in better defi ning the signaling pathways activated 
by p210-BCR-ABL [ 125 ]. 

 p210-BCR-ABL contains additional functional domains of interest. In particular 
a DH domain with GEF that can activate Rho GTPases, and a Src-homology3 (SH3) 
domain which can recruit other proteins with GEF activity as well as Rac proteins, 
which have been shown to activate a variety of signaling molecules that coincide 
with known downstream targets of p210-BCR-ABL. Hyperactivation of Rac1 and 
Rac2 and, to a lesser extent, Rac3 in HSC/P isolated from chronic phase CML 
patients has been demonstrated [ 126 ]. In an experimental model of CML in mice, 
Rac GTPases were also shown to be hyperactivated in primary HSC/P expressing 
p210-BCR- ABL after retrovirus-mediated gene transfer [ 126 ]. While a Rac1 defi -
ciency did not modify the median survival of p210-BCR-ABL-expressing mice, the 
median survival of p210-BCR-ABL-expressing Rac2-defi cient mice was signifi -
cantly increased (from 21 to 43 days), and the median survival of p210-BCR-ABL- 
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expressing Rac1/Rac2-defi cient mice was even more strikingly increased (to 92 
days). Expression of p210-BCR-ABL in Rac1/Rac2-defi cient HSC/Ps also led to an 
altered disease phenotype, with mice showing oligoclonal leukemias of myeloid, 
lymphoid, or bi-lineage immunophenotypes. In this murine model, ERK, JNK, p38, 
Akt, STAT5, and CrkL signaling were all attenuated in splenocytes harvested from 
p210-BCR-ABL-expressing Rac2-defi cient leukemic recipients, and almost com-
pletely abrogated in the Rac1/Rac2-defi cient cells. Mechanistic studies in a binary 
transgenic animal model of inducible CML-like disease further unveiled the spe-
cifi c role of Rac2. These studies demonstrated that Rac2 is required for leukemo-
genesis and is a potent therapeutic target for CML expressing p210-BCR-ABL, 
where it is required for the proliferation and survival of leukemic stem cells and 
progenitors [ 127 ]. 

 These alterations in signaling correlated with the overall survival seen in animals 
from each of these genotypes. The decreased activation of downstream pathways 
was not due to decreased ABL tyrosine kinase activity, as autophosphorylation of 
p210-BCR-ABL was still noted in these cells [ 126 ]. STAT5 phosphorylation was 
also detectable in leukemic cells regardless of the presence or absence of Rac1 and 
Rac2 GTPase activity. Activation of CrkL, which has been suggested as an effector 
that binds directly to p210-BCR-ABL [ 128 ], was decreased in Rac2-defi cient and 
practically abrogated in Rac1/Rac2-defi cient leukemias, suggesting that CrkL acti-
vation is dependent on other proteins as well. These data suggested that Rac1 and 
especially Rac2 were critical for p210-BCR-ABL transformation and myeloprolif-
erative disorder (MPD) development in vivo. Interestingly, Rac3 appeared hyperac-
tivated in splenocytes derived after long latency in Rac1/Rac2-defi cient animals. 
Rac3 was originally discovered by screening the p210-BCR-ABL-expressing ery-
throid blastic-phase CML cell line K562 [ 129 ]. Rac3 activation has been demon-
strated in p190-BCR-ABL-expressing malignant precursor B-lineage lymphoblasts 
[ 130 ] suggesting that Rac3 hyperactivation could play a specifi c role in cancer 
development and invasiveness. These data, along with the observed differences in 
survival mediated by Rac1- versus Rac2-defi cient HSCs, support the hypothesis 
that individual Rac GTPases play unique roles in the development of p210-BCR- 
ABL-mediated disease. 

 Based on these genetic data, the effect of the Rac inhibitor NSC23766 on p210-
BCR- ABL induced transformation was examined. NSC23766, a fi rst-generation, 
Rac-specifi c small molecule inhibitor [ 131 ], was developed using computer-assisted 
virtual screening based on the GEF-Rac1 GTPase complex. NSC23766 was found 
to fi t into a shallow surface groove of Rac1 that has been shown to be critical for 
GEF-specifi cation. It was shown to effectively inhibit Rac protein binding and activa-
tion by the Rac-specifi c GEFs TrioN or Tiam1 in a dose-dependent manner. In con-
trast, NSC23766 did not interfere with the binding or activation of Cdc42 or RhoA 
by their respective GEFs. NSC23766 induced decreased Rac-dependent p21- 
activated kinase (PAK) activation and mobilization of normal HSCs in mouse stud-
ies [ 132 ]. In either the murine model of p210-BCR-ABL-induced MPD or in a 
human xenogeneic transplantation assay, NSC23766 inhibited Rac GTPase activity 
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and impaired leukemogenesis [ 131 ]. These studies defi ned Rac as an attractive 
molecular target in p210-BCR-ABL transformed HSCs. 

 Interestingly, p190-BCR-ABL which lacks a GEF-domain, also induces activation 
of the Rho family of GTPases, specifi cally Rac and Rho, and induces pre-B lympho-
blastic leukemias which are initiated by the transformation of B-cell progenitors. 
p190-BCR-ABL recruits other GEFs to activate the Rho family of GTPases. Vav3, 
but not its homologues Vav1 or Vav2, was found to be required for p190-BCR-ABL 
lymphoblastic leukemogenesis, proliferation, and especially leukemic progenitor 
survival. Forced expression of Vav3 restored leukemogenesis, and a defi ciency of 
Rac2 phenocopied the effect on leukemogenesis impairment which had been 
induced by the Vav3 defi ciency. Vav3 mediated activation of Rac and Rho seems to 
repress the expression and/or activation of pro-apoptotic BH3-only molecules, 
included Bax, Bak, Bad, Bim or Bik [ 133 ]. 

 The mixed-lineage leukemia gene (MLL) on chromosome 11q23 is rearranged 
in both acute myelogenous leukemia (AML) and acute lymphoblastic leukemias 
(ALL) and constitutes a group of leukemias associated with poor prognosis. These 
MLL gene rearrangements consist of reciprocal translocations that fuse the amino 
terminus of  MLL  to a diverse group of partner genes [ 134 ,  135 ]. In a fashion similar 
to p210-BCR-ABL CML, the leukemia initiating cell is a HSC or progenitor with 
HSC-like characteristics [ 136 ], and MLL rearrangements can be found in up to 
7–10 % of acute leukemias. In AML, the most common partner gene for  MLL  is 
 AF9  on chromosome 9p22. Recently, Somervaille and Cleary [ 137 ] showed that the 
activity of the small Rho GTPase proteins Rac1 and Cdc42 are increased in murine 
cells expressing MLL-AF9. In a xenograft model of MLL-AF9 leukemia, Wei et al. 
[ 138 ] targeted the Rac1 signaling pathway pharmacologically or by gene-silencing, 
which resulted in rapid apoptosis of  MLL - AF9 -expressing cells. Confi rming these 
data, in a panel of AML cell lines, Muller et al. demonstrated that the MLL gene-
rearranged cell lines ML-2 and THP-1 displayed a profound dependence on Rac 
signaling, and treatment with NSC23766 inhibited the growth of these cells in vitro, 
and in an xenograft model in vivo [ 139 ]. 

 T-cell lymphomas are a heterogeneous and poorly understood group of non- 
Hodgkin lymphomas. Angioimmunoblastic T-cell lymphomas (AITL) are charac-
terized by skin rash, generalized lymphadenopathy, splenomegaly, pleural effusion, 
ascites, anemia and thrombocytopenia, and an increase of circulating large granu-
lar lymphocytes with CD3(−) and CD16(+), CD56(+) with T-cell receptor γ-chain 
gene rearrangement. Although these lymphomas seem to arise from more differen-
tiated T-cells, the cellular origin of these lymphomas is unclear and a cellular ori-
gin in a T-cell progenitor/precursor cannot be ruled out. In AITL, highly prevalent 
RHOA mutations encoding a p.Gly17Val alteration are present in approximately 
two-thirds of cases. RHOA Gly17Val protein seems to interfere with RHOA signal-
ing in the downstream activation of Rho effectors in biochemical and cellular assays, 
an effect potentially mediated by the sequestration of activated GEF proteins [ 140 ,  141 ]. 
The mechanism behind how this loss-of-function mutation induces lymphomagenesis 
is unknown.  
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    Rho GTPase Activity in HSC Activity in Vasculopathies 
and Sickle Cell Disease 

 Unlike their intrinsic activity in leukemias and lymphomas, Rho GTPase activity 
has also been recognized as a major feature of complications in non-malignant dis-
ease. Patients in organ failure of vasculo-endothelial origin have an increased circu-
lating pool of HSC/P [ 142 ,  143 ] which may represent a homeostatic stress response 
that contributes to vascular damage repair [ 144 ]. An example of systemic vasculo- 
endothelial disease is sickle cell disease (SCD). SCD results from the substitution 
of a single nucleotide, valine to glutamic acid, at the sixth amino acid of the β-globin 
chain of hemoglobin A. SCD is characterized by globin polymerization that results 
in red cell dehydration, hemolysis and subsequent stress erythropoiesis. The com-
mon features of SCD are the activation of multiple signaling pathways associated 
with endothelial damage [ 142 ], and an increased pool of primitive hematopoietic 
progenitors is found in circulation [ 143 ]. Vascular pathology is a common feature of 
SCD patients [ 145 ]. Recent data have associated hyperangiotensinemia in SCD 
with increased circulation of HSC/P, including primitive progenitors at an unmatched 
magnitude with increased levels of circulating erythroid committed progenitors. 
The mechanism postulated is that hyperangiotensinemia results in HSC/P de- 
adhesion from BM endothelial cells through changes in the balance of activated 
Rho family GTPases, Rho and Rac, and cytoskeletal rearrangements in BM endo-
thelial cells (BMEC) and HSC/P [ 146 ].   

    Concluding Remarks 

 After more than 20 years of elucidation of the crucial roles of the Rho family of 
GTPases in the regulation of basic cytoskeletal activities, we are still unveiling 
some of their functions. Changes in activity through induction, repression, activa-
tion, or inhibition, through a complex array of signaling pathways control the migra-
tion, adhesion and transformation of HSC/P. This chapter is far from complete. It 
is expected that in the near future, more information will become available about the 
multiple mechanisms regulated by the Rho family of GTPases which will be crucial 
to our understanding of the basic mechanisms of cell division, migration, and the 
transformation of hematopoietic cells, and enable us to develop novel targeted ther-
apies in hematopoietic disease.     
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  HD1     Hemidesm osomal 1 protein   
  hMSC    Human mesenchymal stem cells   
  HSPC    Hematopoietic stem/progenitor cell   
  IF    Intermediate fi lament   
  JAK    Janus kinase   
  MAPKs    Mitogen-activated protein kinases   
  mDia1    Diaphanous homolog 1 of Drosophila   
  MFs    Microfi laments   
  MLC    Myosin light chain   
  MSCs    Mesenchymal stem cells   
  MTs    Microtubules   
  NSCs    Neural stem cells   
  PBSF    Pre-B cell growth-stimulating factor = SDF1, stromal cell-derived 

factor 1   
  PKB    Protein kinase B   
  PNS    Peripheral nervous system   
  RAC1    Ras-related C3 botulinum toxin substrate 1   
  RDC-1    G protein-coupled receptor = CXCL12   
  RNAi    RNA interference   
  ROCK    Rho-associated coiled-coil forming protein kinases   
  SDF-1    Stromal cell-derived factor-1= CXCL12   
  STAT3    Signal transducer and activator of transcription 3   
  TGFβ1    Transforming growth factor beta 1   
  TNF    Tumor necrosis factor   
  VASP    Vasodilator-stimulated phosphoprotein   
  XCR1    C sub-family of chemokine receptors 1   

          Introduction 

 The cytoskeleton is a dynamic network of proteins organized in fi brillar or globular 
fi laments in the cell cytoplasm [ 1 ]. Three types of fi laments are common to many 
eukaryotic cells: (1) intermediate fi laments provide mechanical strength and resis-
tance to shear stress; (2) microtubules determine the positions of membrane- 
enclosed organelles and direct intracellular transport; and (3) actin fi laments 
determine the shape of the cell’s surface and are necessary for cell migration. Actin 
fi laments also interact with accessory proteins that link them to other cellular com-
ponents, as well as to each other [ 1 ]. 

 This chapter initially addresses the role of the cytoskeleton in one of its main 
functions, cell migration. The dynamics and the mechanical aspects of the actin 
fi laments are essential to this process, as are the signaling pathways induced by the 
chemokines and their receptors. We also give special attention to the cytoskeletal 
proteins of the stem cells, in the origin of cell functions. Finally, the chapter dis-
cusses the participation of the cytoskeleton in functions performed by different 
types of glial cells, focusing on the role of a particular intermediate fi lament, the 
glial fi brillary acidic protein (GFAP), in the health and disease.  

4 The Role of the Cytoskeleton in Cell Migration, Its Infl uence on Stem Cells…
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    An Overview of Cell Migration 

 Cell migration has fascinated cell biologists, biochemists, and recently also physicists 
and mathematicians. This is not surprising, since it is an essential process that 
occurs during different stages and at different times, ranging from organism devel-
opment to normal adult life and also during disease states [ 2 – 4 ]. 

 Cells in multicellular organisms can move in different directions, through the 
extracellular matrix, over each other, or even between each other. Cells move in 
three basic steps: (1) extending the plasma membrane forward at the front, or lead-
ing edge, of the cell in a protrusion; (2) moving the cell body; and (3) retracting the 
rear part of the cell [ 5 ]. These steps involve two main cytoskeleton fi laments, micro-
tubules and actin fi laments; the microtubules are required for polarization [ 6 ,  7 ] 
while the actin fi laments are the main players during migration and protrusion for-
mation [ 8 ]. 

 Cells are able to extend four different types of protrusions at the leading edge, 
lamellipodia, fi lopodia, blebs, and invadopodia. All these structures have their own 
functions and contribute to cell migration in specifi c ways. Lamellipodia are able to 
extend long distances through the extracellular matrix, pulling cells through the 
tissues [ 2 ]. Filopodia explore the cell’s surroundings [ 9 ,  10 ]. Membrane blebs help in 
cell migration during development [ 11 ], and invadopodia are protrusions that allow 
degradation of the extracellular matrix, and help cells to pass through tissues [ 12 ]. 

 In the following parts of this section we discuss the mechanical aspects of the 
formation of a protrusive migratory structure called the lamellipodium, and how 
the plasma membrane regulates the behavior of this structure, as well as its 
infl uence during cell migration. We also discuss some chemokines that induce 
migratory processes followed by cytoskeletal changes. 

    Lamellipodium 

 The thin protrusive region at the leading edge of migrating fi broblasts in culture was 
termed the “lamellipodium” by Abercrombie et al. [ 13 ]. Abercrombie et al. [ 14 ] 
showed that these structures contain actin fi laments arranged in a branched structure, 
but not microtubules. First described in fi broblasts, lamellipodia have also been 
observed in many other cell types such as precursor cells, epithelial cells, and neural 
crest cells [ 2 ,  15 ]. 

 For many years, a group of proteins called the Actin-Related Proteins 2/3 
(Arp2/3) complex was thought to be the primary mediator of actin polymerization 
in lamellipodia. First described as a nucleator of actin polymerization [ 16 ], the 
Arp2/3 complex binds to actin fi laments and induces the formation of branched 
actin networks [ 17 ]. Branched actin networks were also observed in electron- 
microscopy images of lamellipodia [ 18 ]. However, it is now known that the extent 
of actin fi lament branching can vary depending on the cell type and conditions, as a 
recent report found only a few branches in the leading edge of cells [ 19 ]. Not only 
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branching but also the balance of other known actin-binding proteins can contribute 
to the extension of the lamellipodium. For example, more capping protein activity 
reduces actin length and increases nucleation by Arp2/3 [ 20 ]. On the other hand, 
an increase in the expression of vasodilator-stimulated phosphoprotein (VASP) 
(a protein known to promote fi lament elongation) was reported to generate longer 
fi laments [ 21 ,  22 ]. More recently, other actin nucleators were found to contribute to 
lamellipodial protrusion, including several members of the Formin family of pro-
teins. Formins were described as protecting actin fi laments from capping and also 
as promoting fi lament elongation without branching. One of these proteins, diapha-
nous homolog 1 of Drosophila (mDia1), was fi rst reported to localize at the lamel-
lipodia of migrating cells [ 23 ]. 

 The fi nal essential factor in cell movement is the plasma membrane. The lamel-
lipodial protrusion will encounter the physical barrier imposed by the membrane, 
and this barrier will also restrict cell migration [ 24 ].  

    Membrane Mechanical Properties Orchestrates Cell Migration 

 The mechanical characteristics of the plasma membrane, particularly its plasma 
membrane tension and bending modulus, play central roles in cell motility and cyto-
skeleton remodeling [ 25 – 28 ]. 

 A direct way to assess these responses to forces is by measuring two elastic 
parameters of the cell membrane: its bending modulus [ 28 ] and its membrane ten-
sion [ 29 ], using a technique based on extracting the membrane tether from the cell 
by pulling on it with an attached microsphere trapped in an optical tweezers [ 30 ]. 
The experimental procedure is illustrated in Fig.  4.1 . Analysis of the force- extension 
curve, together with measurement of the tether radius, yield these two elastic param-
eters and also information regarding the membrane–cytoskeleton interaction [ 31 ]. 
Tether pulling with optically trapped beads is the only known direct method for 
these measurements [ 26 ].

   The mechanical load exerted by the membrane at the leading edge of cells can 
locally infl uence the dynamic growth and organization of the actin network [ 25 ,  32 – 34 ]. 
The high membrane tension in the lamellipodia of motile cells directly infl uences 
the protrusion [ 35 – 37 ]. Simultaneously at the rear of the cell, the same membrane 
load can exert a pulling force that induces retraction [ 38 ,  39 ]. However, this mechani-
cal load imposed by the membrane was also reported to be infl uenced by forces gener-
ated from the actin cytoskeletal protrusion itself [ 27 ,  31 ,  32 ,  40 ,  41 ]. 

 One possibility is that the membrane mechanical parameters are determined 
primarily through a balance of forces between the cytoskeleton and the hydrostatic 
pressure acting on the membrane [ 29 ,  42 ]. Another possibility is that these param-
eters are controlled mainly by the interaction between the membrane and the cyto-
skeleton [ 31 ,  43 ]. Regardless of the exact mechanism, membrane mechanical 
properties have emerged as important regulators that coordinate local dynamics 
over cellular scales. 
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 Apart from these dynamic aspects, recent data also suggest that cell specialization 
and/or differentiation can account for the differences in the mechanical properties of 
the membrane, and that these differences are refl ected in their specialized functions 
[ 44 ]. A question that remains unanswered is how the threshold value of these mem-
brane parameters are set. The answer is still not clear, and may vary with different 
cell types. Pontes et al. [ 43 ] began to test this hypothesis by measuring the mem-
brane tension and bending modulus for a variety of cells. These authors observed 
that the elastic parameters for neurons are close to those obtained for an isolated cell 
membrane (a membrane disconnected from the cytoskeleton), suggesting a weaker 
interaction between the membrane and the adjacent F-actin cortex in this cell type. 
They also observed that the parameters did not change within the different neuronal 
cell regions, i.e., the cell body, neurite and growth cone. They found very similar 
membrane mechanical parameters for astrocytes and glioblastoma cells, supporting 
the idea that these two cell types have the same origin and also share similar func-
tions, for example giving support to neurons in the brain [ 45 ]. Macrophages and 
microglial cells have substantially higher values for the membrane mechanical 
parameters. When activated, these two phagocytic cells decrease their bending 
modulus by a factor of 3. This reduction can be interpreted as an easier way to bend 
the cell surface, which is advantageous during phagocytosis. 

  Fig. 4.1    Schematic representation of a tether extraction experiment. Situation ( 1 ): a bead is 
trapped in an optical trap. Situation ( 2 ): a bead is placed against the cell surface. Situation ( 3 ): by 
moving the microscope stage, a membrane tether, with radius  R  and force  F   0  , is formed       
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 Taken together, these observations are striking examples which demonstrate that 
different cells performing different functions show different mechanical parame-
ters. These new fi ndings suggest the possibility of characterizing cells based not 
only on morphological and biochemical analyses, but now on their mechanical 
properties as well.  

    Chemokines Induce Migratory Processes 

 Chemokines are  chemo tactic cyto kines , comprising a large superfamily of small 
peptides (approximately 8–17 kDa) that currently number 47 in humans [ 46 ,  47 ]. 
They can be classifi ed according to their amino-acid structure into four groups, 
based on the variations of a conserved cysteine motif in the mature sequence of the 
proteins [ 48 ,  49 ]. Chemokines bind to the chemokine receptor subfamily of class A 
G-protein-coupled receptors (GPCRs), which comprises ten CCR family members, 
seven C-X-C chemokine receptors (CXCR) family members, the “C” sub-family of 
chemokine receptors 1 (XCR1) and CX3C chemokine receptor 1 (CX3CR1) [ 46 ,  50 ]. 
These GPCRs signal through heterotrimeric G-proteins, and regulate a diversity of 
signal transduction pathways involved in chemotaxis and cell survival. 

 Chemokines were fi rst described for their role in chemotaxis and migration 
of leukocytes to lymphoid tissues and sites of injury, and the signaling pathways 
activated by their receptors lead to changes and reorganization within the cytoskel-
eton proteins. They also proved to be important in the development and homeostasis 
of the immune system and various other organs, and in pathophysiological pro-
cesses associated with osteoporosis [ 51 ], obesity and insulin resistance [ 52 ], viral 
infections [ 53 ,  54 ], immune responses [ 55 ,  56 ], mobilization of progenitors to the 
bone marrow [ 57 ] and autoimmune encephalomyelitis [ 58 ]. More recently, chemo-
kines emerged as key mediators of cancer progression, by interfering with the hom-
ing of cancer cells to metastatic sites and the recruitment of a number of different 
cell types to the tumor microenvironment, such as tumor-associated macrophages, 
tumor-associated neutrophils, lymphocytes, cancer-associated fi broblasts, myeloid- 
derived suppressor cells and endothelial cells [ 48 ,  49 ,  59 ,  60 ,  61 ]. 

 Processing the chemokine gradients into migratory or adhesive responses occurs 
in multiple dynamic steps that regulate changes in the cytoskeleton and cellular 
adhesion [ 46 ,  62 – 65 ]. Binding of the chemokines to their G-coupled receptors can 
lead to downstream activation of different signaling pathways (Fig.  4.2 ), such as 
protein kinase B (PKB/Akt) and mitogen-activated protein kinases (MAPKs) [ 66 , 
 67 ]. Another activated pathway may be the Janus kinase family (JAK), activated in 
a Gαi-independent fashion [ 68 ,  69 ]. The Rho family of GTPases and their down-
stream effectors were also implicated in chemokine-elicited migration. One of the 
important groups of Rho effectors is the Rho-associated coiled-coil forming protein 
kinases (ROCK) I and II, which enhance myosin light chain (MLC)  phosphorylation 
by both inhibiting MLC phosphatase and phosphorylating MLC, thereby regulating 
actin–myosin contraction [ 66 ,  70 ]. ROCK isoforms also regulate lymphocyte polarity 
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and migration through members of the Ezrin/Radixin/Moesin (ERM) family of 
proteins [ 66 ,  71 ]. Rho GTPases also control cytoskeletal remodeling through 
effector proteins from the mDia family of formins, which, as mentioned above, are 
actin-nucleating proteins favoring the formation of long straight actin fi laments. 
Lack of mDia1 expression signifi cantly reduces T cell homing to secondary lym-
phoid organs [ 72 ].

   Little is known about the correlation between chemokines and the cytoskeleton. 
At least C-C motif chemokine 19 (CCL19)/CCL21-CCR7 and CXCL12-CXCR4 
constitute an exception. 

    The Infl uence of the Chemokines CCL21/CCL19 and Their Receptor 
CCR7 on the Cytoskeleton 

 From a physiological perspective, all these intracellular events that occur in the 
lymphocyte homing process depend on a combination of interactions between dif-
ferent chemokines and their receptors, according to the cell type involved: T-cell 
homing and traffi c of lymphocytes into and within secondary lymphoid tissues rely 
largely on CCR7 and its ligands CCL21/CCL19 [ 73 ,  74 ], as well as a minor contri-
bution from CXCL12-CXCR4 interactions [ 75 ,  76 ]. Bardi et al. [ 77 ] reported that 

  Fig. 4.2    Signaling pathways involved in cytoskeleton regulation. Chemokines bind to G-protein- 
coupled receptors, and consequently can activate different signaling pathways, such as protein 
kinase B (PKB), mitogen-activated protein kinases (MAPKs), the Janus kinases family (JAK) and 
the Rho family GTPases. All these signaling pathways are involved in modulating the cytoskeleton 
proteins, leading to their reorganization, more specifi cally of the F-actin fi laments       

 

J.M. Coelho-Aguiar et al.



95

both the CCR7-mediated polarization and chemotaxis are dependent on the Rho 
kinases, but not on MAPK extracellular signal-regulated protein kinase (ERK)-2, as 
previously described [ 78 – 80 ]. The C-C chemokine receptor type 7 (CCR7) and 
other chemokine receptors such as CXCR4 also activate leukocyte integrins, which 
are important for the endothelial adhesion and arrest of rolling lymphocytes [ 81 – 83 ], 
possibly through downstream activation of RhoA [ 84 – 86 ]. 

 Although B cell integrin activation is also primarily induced by CCR7 and 
CXCR4, their homing also requires the activation of CXCR5, whose expression is 
restricted to B cells and a subset of CD4+ T cells [ 76 ]. 

 The expression of CCR7 and CCL21 has been described in many cancers 
(especially melanoma, breast cancer, and head and neck cancers), and was corre-
lated with actin polymerization and lamellipodium formation, which contribute to 
increased tumor-cell migration, invasion and metastatic potential [ 87 – 91 ].  

    The Infl uence of the Chemokine CXCL12 and Its Receptor CXCR4 
on the Cytoskeleton 

 CXCL12, better known as stromal cell-derived factor-1 (SDF-1), was fi rst described 
as pre-B cell growth-stimulating factor (PBSF) [ 92 ], and activates integrins in B-cells 
as mentioned above. The chemokine CXCL12 and its receptor CXCR4 are well 
known for their role in the metastasis of breast cancer [ 93 ,  94 ]. However, CXCL12 is 
constitutively expressed in a broad range of tissues, e.g. in bone marrow, spleen, liver, 
lung and brain, as well as in most types of tumors [ 92 ,  95 ]. This chemokine is the only 
known ligand for CXCR4, also known as Fusin/LESTR/CD184 [ 96 – 98 ]. CXCR4 is a 
G-protein-coupled seven transmembrane receptor and is widely expressed by many 
different cell types including hematopoietic cells, leukocytes, endothelial cells, 
central nervous system (CNS) cells, and cells of the gastrointestinal tract. 

 Physiologically, CXCL12 is important for the homing of CXCR4-expressing 
hematopoietic cells to the bone marrow [ 99 ] and for guiding CXCR4-positive cells 
from different tissues to their niche [ 100 ]. CXCL12/CXCR4 knockout is lethal and 
leads to several impairments in CNS development and hematopoiesis in mice [ 101 ]. 
Furthermore, the CXCL12-CXCR4 axis plays a role in angiogenesis and infl amma-
tion (e.g. recruitment of lymphocytes). The chemokine CXCL12 can also bind 
to another chemokine receptor, CXCR7/G Protein-Coupled Receptor (RDC-1) 
[ 102 ,  103 ]. However, the connection between this pathway and the cytoskeleton is 
poorly understood. 

 Li et al. [ 104 ] showed that after CXCR4 stimulation, a signaling pathway that 
leads to the reorganization of the actin-cytoskeleton becomes activated. After bind-
ing of CXCL12 to CXCR4, the heterodimeric G-protein dissociates into the Gαi- 
and Gβγ-subunits. The Gαi2-subunit interacts with the N-terminus of the engulfment 
and cell-motility protein 1 (ELMO1) which forms a complex with the DOCK180 
(Dedicator of cytokinesis) protein. The ELMO1/DOCK180 complex serves as a 
guanine nucleotide exchange factor (GEF), activating the small GTP-binding pro-
tein (G protein) Rac1 [ 104 ]. 
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 It is well known that small GTPases such as RhoA, Rac and CDC42 control the 
dynamics of the cytoskeleton [ 105 ]. Rac, which is activated by ELMO1/DOCK180, 
can remove the capping proteins and activate the Arp2/3 complex, which induces 
the growth of actin fi laments and the formation of new actin branches from existing 
ones [ 106 ,  107 ]. 

 Another cytoskeleton modulation by CXCL12 is the activation of Focal Adhesion 
Kinase (FAK) and Paxillin. After CXCL12 binds to CXCR4, the Janus kinase 2 
(JAK2) and the MAP-kinase ERK1/2 pathways become activated by phosphorylation. 
Activated JAK2 phosphorylates Signal transducer and activator of transcription 3 
(STAT3), and pSTAT3 and pERK are able to phosphorylate FAK and Paxillin, 
activating these proteins, which leads to actin cytoskeleton reorganization [ 108 ]. 
In conclusion, CXCL12 in known to infl uence the cytoskeleton reorganization in 
two different ways, through the Gαi2-ELMO1/Dock180-Rac1 activation and the 
JAK2- pSTAT3/pERK-pFAK/paxillin activation. 

 Apart from the chemokines previously described in detail, the CXCL9/Mig che-
mokine is also known to activate the small GTPases Rac1 and RhoA via its receptor 
CXCR3 on human melanoma cells, also leading to cytoskeletal changes [ 109 ].   

    Role of Cytoskeleton in Maintenance of Stem-Cell Properties 

 Nowadays, the application of stem cells in regenerative medicine is one of the major 
fi elds in biomedical research. Because of their ability to self-renew and differentiate 
into specifi c lineages, stem cells play an important role in the development of cell- 
based therapies [ 110 – 112 ]. The implementation of these new therapies made it nec-
essary to investigate the cellular and molecular mechanisms involved in the 
regulation of stem-cell differentiation, growth, and phenotypic expression. The 
most recent studies have indicated that the regulation of stem-cell growth and fate is 
also dependent on the crosstalk between the extracellular matrix (ECM) ligands and 
the stem-cell surface receptors [ 113 ,  114 ]. Therefore, during their differentiation 
into specifi c lineages, stem cells are subjected to extracellular stimuli that determine 
a number of morphological alterations associated with the expression of cytoskele-
tal proteins, actin fi laments, microtubules, intermediate fi laments, and their down-
stream effectors [ 115 – 117 ]. These alterations are also crucial in establishing the 
migration phenotype observed in different types of stem cells, as was previously 
documented in mesenchymal stem cells (MSCs) and in the embryonic neural stem 
cells (NSCs) [ 113 ,  115 – 118 ]. A brief summary of the most important conclusions 
that explain the role of the cytoskeleton in stemness maintenance and its contribu-
tion to stem-cell migration and differentiation is given below. 

 Increasing evidence shows that a diverse array of environmental factors contrib-
utes to the control of stem-cell activity, differentiation and migration. According to 
the tissue microenvironment factors, stem cells are believed to modulate their 
 cytoskeleton, to migrate and move away from their niche, and then to differentiate 
[ 119 ]. Studies on myocardial development and on capillary endothelial cells have 
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demonstrated that alterations in cell shape might regulate cellular differentiation 
[ 113 ,  115 ,  116 ,  118 ,  120 ]. These results show that the cytoskeleton is a key player 
in the differentiation and migration of stem cells [ 121 ] (Fig.  4.3 ).

   Recent studies showed that during osteogenic differentiation, the actin cytoskel-
eton of MSCs becomes more dispersed, similarly to that of osteoblasts, and the 
disruption of the actin cytoskeleton decreases osteogenesis in favor of adipogenesis 
[ 121 ]. These results have been crucial in the area of tissue engineering of bone and 
cartilage, which attempts to develop new therapeutic strategies for the treatment of 
musculoskeletal trauma and diseases [ 43 ,  122 ,  123 ]. A number of studies have 
shown that the stem-cell fate and the adhesive interactions between the stem cells 
and the substrate can be infl uenced through the control of their shape by artifi cial 
extracellular matrices. 

 Alterations in the cytoskeleton are also dependent on microtubules that contrib-
ute to migration and to stem-cell polarization. The regulation of microtubules is 
usually dependent on the Rho GTPases, in particular RhoA, Rac1 and Cdc42. 
Previous studies have reported that migrating hematopoietic stem and progenitor cells 
growing on MSCs display a polarized morphology, with the formation of an uropod 
at the rear pole and a leading edge at the front, which is involved in microtubule 

  Fig. 4.3    Changes of the cytoskeleton in a neural stem cell during differentiation. During the dif-
ferentiation process, the neural stem cell (represented by radial glia) undergoes cytoskeletal 
changes, in the microfi laments (MFs), microtubules (MTs) and intermediate fi laments (IFs). 
Alterations in the stem-cell cytoskeleton may involve the disorganization of MFs, which become 
more dispersed; destabilization of the MTs; and also modulation of the expression of IF proteins 
such as Nestin and GFAP, leading to the differentiation of stem cells into astrocytes, for example       
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destabilization. The uropod formation seems to be dependent on the activity of 
RhoA and its downstream effector Rho-associated coiled-coil containing protein 
kinase (ROCK I). When RhoA is inhibited using the Rho kinase inhibitor (Y-27652) 
or RNA interference (RNAi), the polarization of the hematopoietic stem/progenitor 
cells (HSPCs) and their migration capability are considerably decreased, indicating 
the crucial role of microtubules in stem-cell migration [ 124 ,  125 ]. Vertelov et al. 
[ 126 ] showed that in hypoxic conditions, the human mesenchymal stem cells 
(hMSCs) showed increased RhoA activity, and consequently it may contribute not 
only to increasing migration, but also to preserving MSCs in an undifferentiated 
state, as compared to normoxic conditions. Moreover, the microtubules seem to be 
important to maintain the migration capacity as well as the polarity of NSCs [ 127 ]. 

 Two of the most thoroughly studied IF proteins are nestin and GFAP [ 128 ] 
(Fig.  4.3 ). In the 1990s, nestin was fi rst identifi ed as a marker of neuroepithelial 
stem/progenitor cells in the CNS by Lendahl and collaborators [ 129 ]. Nowadays, it 
is considered to be a marker for distinguishing precursor from differentiated cells 
[ 130 – 132 ]. A study performed by Mellodew et al. [ 133 ] also showed that loss of 
nestin expression could be a predictive signal for differentiation of NSCs. GFAP is 
classically known as a marker of mature astrocytes. However, several studies have 
been conducted in order to evaluate its contribution to the maintenance of stem-cell 
features. Previous studies suggested that primary astrocyte cultures from the post-
natal and adult mouse brain could contain GFAP-expressing cells that may act as 
multipotent NSCs when transferred to neurogenic conditions [ 134 ,  135 ]. GFAP 
functions are addressed in detail in section “GFAP Expression and Its Functions in 
Astrocytes”. 

    Cytoskeleton Alterations During Disease Progression: The Role of Stem 
Cells in Cancer 

 The cancer stem-cell theory predicts that not all cancer cells in a tumor exhibit the 
same tumor-growing ability, and that only a small population of cells with stem-cell 
properties drives tumor growth. The proliferation, survival and migration of tumor 
stem cells seem to be dependent on the local microenvironment. Although highly 
controlled during embryonic development, the ECM is commonly deregulated in 
cancer [ 136 ,  137 ] and seems to contribute to the development of chemo- and radio-
resistance of tumor cells. Under normal conditions, the ECM receptors allow stem 
cells to anchor to the local microenvironment where their properties can be main-
tained [ 136 ,  137 ]. This anchorage physically constrains stem cells to make direct 
contacts with the microenvironment cells, which produce paracrine-signaling mol-
ecules that are essential for maintaining stem-cell properties [ 136 ,  137 ]. 

 Considering that tumor cells possess an increased proliferation and migration 
ability, we could hypothesize that due to the occurrence of genetic mutations and 
microenvironment alterations, the characteristics of the stem-cell cytoskeleton 
become distorted. The most recent studies have shown that cancer cells express the 
same cytoskeleton markers as benign stem cells [ 130 ]. Therefore, the problem 
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seems to be associated with the degree of expression of the cytoskeleton markers 
and with the signaling pathways that become activated. 

 One of the fi rst lines of evidence that the cytoskeleton is involved in the tumor 
phenotype was the experiment conducted by Vasioukhin et al. [ 138 ], who set up 
conditional gene targeting to knockout genes in the stem cells and basal epidermal 
layer of mouse skin. They started to knock out the α-catenin, and observed that 
mouse skin rapidly took on the appearance of squamous cell carcinoma in situ. 
More recently, Rampazzo et al. [ 139 ] demonstrated that the treatment of tumor stem 
cells isolated from glioblastoma samples, with Wnt ligands, or the induction of 
 β -catenin overexpression mediates neuronal differentiation and halts proliferation 
in primary glioblastoma cells. 

 In prostate cancer, deregulation of the non-canonical Wnt/Ca 2+  pathway leads to 
F-actin fi lament rearrangements and consequently to the reduction of cancer pro-
gression [ 140 ]. 

 Understanding the complexities of the stem cell cytoskeleton in cell homeo-
stasis and in tumor development is a challenging exercise, not only to understand 
the physiology of many diseases but also to implement new therapeutic 
strategies.    

    Role of Intermediate Filaments in Glial Cells: Example 

    Glial Fibrillary Acidic Protein (GFAP) in Health and Disease 

 The intermediate fi laments are components of the cytoskeleton that are specifi c to 
each cell type. These fi laments confer mechanical force and resistance on the cells, 
and are regulated developmentally and tissue-specifi cally. GFAP is the main inter-
mediate fi lament (IF) protein in astrocytes, although other intermediate fi lament 
proteins such as nestin, vimentin and synemin can also be found in these cells [ 141 ]. 
A combination of vimentin and nestin is observed in immature astrocytes, while 
vimentin and GFAP are found in mature astrocytes [ 37 ,  142 ,  143 ] (Fig.  4.3 ). Only 
GFAP seems to be capable of forming homodimers [ 143 ]. 

 GFAP was discovered in the brains of patients with multiple sclerosis. It was 
initially termed ‘plaque protein’ and was fi rst isolated, purifi ed and the amino-acid 
content determined over 40 years ago. Immunostaining for GFAP has been per-
formed since 1975 [ 144 ,  145 ]. 

 Although GFAP was originally thought to be an astrocyte-specifi c IF [ 145 ], curi-
ously, several investigators have shown that it is present in different amounts in vari-
ous types of tissues, such as enteric glia [ 146 ], Schwann cells [ 147 ], and even 
outside the CNS, in chondrocytes, fi broblasts and myoepithelial cells [ 147 ,  148 ], 
lymphocytes [ 149 ] and stellate cells from the liver, kidney, pancreas, lungs, and 
testes [ 150 ,  151 ]. 

 Astrocytes are heterogeneous, and their biology varies according to the particular 
physiological state and time frame, and also to their location in the CNS [ 151 ,  152 ]. 
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It is a challenging task to determine the specifi c role of GFAP in these multiple 
environments and in different physiological and pathological conditions. 

 The human GFAP polypeptide consists of 432 amino acids and has a molecular 
mass of 55 kDa. The gene contains 9 exons and spans over 10 Kb in chromosome 
17p21 [ 153 ]. GFAP belongs to the family of type 3 intermediate fi laments. 

 The constitutional transcription of the human GFAP gene is controlled by a 
TATA-like sequence CATAAA, located 29 base pairs downstream of the RNA start 
site [ 154 ]. Multiple sites seem to be involved in the regulation of GFAP expression, 
with important roles for phosphorylation and DNA methylation in GFAP transcrip-
tion [ 155 ]. The demethylation of the GFAP promoter activates GFAP transcription 
[ 156 ]. GFAP expression during development is also controlled by acetylation in 
neural stem cells, and has been shown to be signifi cantly reduced by acetylation in 
mature astrocytes [ 157 ,  158 ]. 

 The expression of GFAP has multiple regulatory factors, including various hor-
mones, cytokines and growth factors, including interleukins 1 and 2, tumor necrosis 
factor (TNF), ciliary neurotrophic factor (CNTF), basic fi broblast growth factor 
(bFGF), transforming growth factor beta 1 (TGFβ1) and glutamate. Interestingly, 
this regulation seems to be partially controlled by the interaction between astrocytes 
and cortical neurons, mainly through TGFβ1; and varies in different regions of the 
brain [ 159 – 163 ]. 

    GFAP Alternative Splicing-Isoforms 

 At least nine isoforms of GFAP mRNA exist, and are generated by alternative 
mRNA splicing and polyadenylation signal selection [ 155 ,  164 – 169 ]. Please refer 
to Middeldorp and Hol for an excellent review of GFAP biology and GFAP 
isoforms [ 155 ]. Seven of these isoforms are present in humans. 

 GFAPα was the fi rst to be identifi ed, and is also the most abundant and the most 
studied. 

 GFAPβ has a transcription site located 169 nucleotides above the site for 
GFAPα, which corresponds to a 5′ region that is not transcribed in the main iso-
form [ 170 ]. GFAPβ is the main isoform in Schwann cells from the rat peripheral 
nervous system (PNS), but its mRNA comprises only 5–10 % of the total GFAP 
mRNA in the CNS. It has been found in normal hamster brain and in a case of 
human glioma [ 171 ]. 

 GFAPγ was fi rst described in spleen and bone marrow from mice. GFAPγ lacks 
exon 1 and includes the last 126 bp of intron 1–2, comprises around 5 % of all 
GFAP mRNA in the CNS in mice, and is also present in a small proportion in 
humans [ 167 ]. 

 The splice variants GFAPΔEx6, GFAPΔ164, and GFAPΔ135 skip sequences in 
exon 6/7 and have been observed in tissue from patients with Alzheimer’s disease, 
focal lesions in chronic epilepsy, and a specifi c astrocyte subtype. These out-of- frame 
splice forms completely lack the tail domain [ 166 ]. 

 GFAPκ is the result of an alternative splicing at the 3′ end of the GFAP 
pre- mRNA, and the consequent inclusion of an alternative exon termed 7B [ 164 ]. 
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The C-terminal domain of GFAPκ is therefore different from those present in other 
isoforms. 

 GFAPζ was described in mice, originating from the initial report of a transcript 
including the last 284 bp of intron 8–9 [ 167 ,  172 ]. 

 GFAPδ is the most often studied isoform, after the canonical form GFAPα. 
It was initially described in rats in 1999, from an alternative splicing, resulting in 
substitution of the last two exons by an alternative exon called 7+ [ 165 ]. Nielsen and 
coworkers [ 168 ] described the corresponding RNA in humans, terming it 7a, and 
naming the isoform GFAP epsilon; and more recently have come to a consensus on 
the name GFAPδ [ 173 ]. The exon 7a has its own polyadenylation signal inhibiting 
the expression of exons 8 and 9. It has been isolated only in mammals, and seems to 
be subject to a different evolutionary pressure than the other exons [ 174 ]. Among 
the higher primates, the exons 7+ are 100 % identical, with the exception of an ala-
nine on codon 426, conserved in only 9 % of human alleles, and replaced by a valine 
in 21 % and by a threonine in 70 %. The potential phosphorylation of this threonine 
residue could explain a positive selection for this change [ 175 ]. 

 Incorporation of exon 7a results in a substitution of the 42 C-terminal amino 
acids by a new c-terminal domain of 41 amino acids. Among the different isoforms, 
only GFAPδ and GFAPκ show a modifi cation in the C-terminal portion. As a con-
sequence, GFAPδ and GFAPκ are incapable of forming homodimers, but are able to 
form heterodimers with GFAPα and vimentin [ 164 ,  175 ]. GFAPκ mRNA comprises 
around 5–10 % of the total GFAP mRNA in humans [ 164 ,  175 ,  176 ]. 

 GFAPδ is expressed in proliferating neurogenic astrocytes during development, in 
the adult human brain as well as in radial glia cells [ 169 ,  177 – 179 ]. It can be detected 
by immunohistochemistry, particularly in astrocytes of the  glia limitans  and in differ-
ent forms of gliosis [ 172 ,  180 ], in contrast to earlier studies on post- mortem material 
[ 169 ]. Moreover, its expression seems to parallel that of vimentin in normal and reac-
tive astrocytes, but not in glial tumors [ 180 ]. Interestingly, differential GFAP isoform 
expression in mice does not seem to be linked with aging or reactive gliosis [ 172 ]. 
The specifi c functions of the different GFAP isoforms have not been well estab-
lished. These isoforms often differ from GFAPα in the C-tail domain, the region 
responsible for interaction with other cell components. The interaction of GFAPα 
was specifi cally shown with presenilins 1 and 2 [ 168 ] and αβcristallin [ 176 ]. 
Therefore an assembly-compromised role of GFAPδ as a modulator of the GFAP 
fi lament surface has been postulated [ 155 ].  

    GFAP Expression and Its Functions in Astrocytes 

 GFAP is phylogenetically ancient. The human GFAP polypeptide shows a 90 % 
homology with its murine and porcine counterparts, and about 85 % homology with 
goldfi sh GFAP [ 174 ]. 

 During development, GFAP is expressed in radial glia, bipolar cells which 
express vimentin and nestin and which have been shown to be neural precursors 
[ 181 ,  182 ] (Fig.  4.3 ). Studies differ with respect to the exact moment when GFAP 
expression can fi rst be detected in these cells, varying from gestational week 6–12; 
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these differences are probably due to the location in the brain or to the detection 
techniques used [ 155 ,  183 ,  184 ]. Nervous-system neural precursor cells show a pro-
gressive shift in intermediate fi lament expression, from vimentin to GFAP. In the 
normal adult brain, only certain subpopulations of astrocytes seem to co-express 
vimentin and GFAP such as Bergmann Glia, subpopulations of corpus callosum, 
hippocampus, subpial, and rare white-matter astrocytes [ 185 ,  186 ]. 

 The functions of GFAP are not yet completely elucidated, and include a role in 
the long-term maintenance of the brain parenchyma structure, the proper function-
ing of the blood–brain barrier [ 187 ], myelination [ 188 ], astrocyte proliferation [ 189 , 
 190 ], and astrocytic modulation of some neuronal functions, such as the formation 
and protection of synapses [ 191 ,  192 ]. GFAP is involved in other important and 
fundamental cellular processes, and is probably implicated in astrocyte motility 
[ 193 ,  194 ] and exocytosis of astrocytic gliotransmitters [ 195 ,  196 ]. GFAP is also 
important in the regulation and maintenance of glutamate transporters in the astro-
cyte plasma membrane, a key mechanism for glutamate uptake and its metabolism 
and for the formation of GABA [ 197 ].  

    GFAP, Pathological States and Disease 

   GFAP Knockouts 

 Knockout mice for intermediate fi laments (GFAP−/−, Vimentin−/−, GFAP−/−, and 
vimentin−/−) do not show major changes in their development, adult life, and repro-
duction [ 198 – 200 ]. These authors found no major differences in brain architecture 
and cellularity in comparison to wild-type animals. However, another group of 
researchers working on GFAP-null rodents reported contrasting results, showing 
myelination defects in the spinal cord, optic nerve and corpus callosum, and hydro-
cephalus in half GFAP-null mice after 18 months [ 201 ]. Astrocytes lacking interme-
diate fi laments exhibit normal morphology, but lack the ability to form normal glial 
scars [ 202 ], have restricted motility in vitro [ 203 ], and are highly sensitive to isch-
emia and trauma [ 204 ]. GFAP−/− mice are also more sensitive to neurodegeneration 
induced by kainic acid or mechanical trauma, which is not observed in wild-type 
animals [ 205 ].  

   GFAP and Gliosis 

 GFAP expression rises as a consequence of infl ammation and various CNS diseases 
such as trauma, ischemia, genetic diseases, toxic lesions, and degenerative diseases 
[ 206 ]. In all these situations, astrocytes react to injury, in a process usually called 
astrogliosis or simply gliosis. Despite having general morphological features in com-
mon, astrocytes may vary morphologically and chronologically in their responses 
according to the nature, intensity and localization of the lesion. The kinetics of this 
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response is usually rapid, and can be detected 1 h after the insult, with a maximum 
intensity at between 3 and 7 days [ 207 ]. 

 Astrocytic gliosis has classically been described morphologically by the hyper-
trophy of the cell soma and processes, which is roughly proportional to the severity 
of the insult and the proximity of the astrocyte to it. More recently it has been well 
established that there is an increase in the GFAP cellular content, and, depending on 
the severity of the reaction, also an increase in the number of astrocytes [ 208 – 210 ]. 
Constitutional GFAP expression is heterogeneous among different astrocyte popu-
lations, and in the normal state not all astrocytes express detectable levels of 
GFAP. With increasing intensity of gliosis, most astrocytes will express GFAP, and 
in severe gliosis one also observes astrocyte proliferation, with subsequent overlap 
and disruption of individual astrocyte domains [ 151 ]. Therefore, GFAP has been 
generally used as a marker of gliosis [ 206 ], even though astrocyte reactivity and 
GFAP upregulation due to different stimuli may be associated with different changes 
in transcriptome profi les and cell function [ 211 ]. In other words, GFAP levels can 
be generally increased in various CNS pathological states such as trauma, ischemia, 
infections, and neurodegenerative diseases. 

 Interestingly, low levels of GFAP can be detected in the cerebrospinal fl uid (CSF) 
in healthy individuals. The reason has not been well established, but it has been 
postulated that the presence of GFAP might be related to some degree of astrocyte 
death and release of the protein into the extracellular space, as normal astrocytes do 
not secrete GFAP [ 212 ]. GFAP levels in the CSF can be elevated in association with 
several conditions, including traumatic, vascular, developmental, infl ammatory, 
neoplastic, and degenerative diseases. We briefl y describe certain diseases in which 
GFAP seems to have a particular role.  

   Alzheimer’s Disease 

 Alzheimer’s disease (AD) is characterized mainly by two neuropathological alterations, 
the formation of neurofi brillary tangles, and amyloid deposits in the brain [ 213 ]. 
Reactive astrogliosis has been well described in AD, although its role in this disease 
is not yet completely understood. Reactive astrogliosis in AD is usually focal, and 
reactive astrocytes are intimately associated with amyloid plaques or diffuse 
amyloid deposits, surrounding them and forming miniature scars all around [ 151 ]. 
The intensity of reactive astrogliosis, as determined by GFAP levels, has been reported 
to increase in parallel with increasing disease morphological burden [ 214 ,  215 ], and 
in some studies can be correlated with cognitive impairment [ 216 ].  

   Alexander’s Disease 

 A gradual increase in astrocyte GFAP content is usually observed during adult life 
in mice, primates, and humans [ 217 ,  218 ]. Mice induced to overexpress GFAP die 
for reasons that are currently unknown, and their astrocytes exhibit accumulation 
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of the protein in numerous cytoplasmic Rosenthal fi bers [ 219 ]. Likewise, 
Alexander’s disease, a rare human disease, is caused in 95 % of cases by muta-
tions of GFAP, leading to its accumulation in the cytoplasm, associated with pro-
teins such as small heat shock, ubiquitin and β cristallin in the form of Rosenthal 
fi bers [ 220 ,  221 ]. There are two clinical forms, one with early onset, which pro-
gresses with childhood leukodystrophy with striking clinical signs of megalen-
cephaly, seizures and psychomotor delay; and a later-onset form, often revealed 
by diffi culty swallowing and speaking, autonomic dysfunction and ataxia. Several 
different mutations have been reported in the human GFAP gene in Alexander’s 
disease, mostly heterozygous missense changes predicting the production of full-
length mutant and wild-type proteins, and subsequently alterations such as small 
in-frame insertions and deletions, and in-frame skipping of an entire exon or 
frameshifts at the extreme C-terminal end [ 222 ]. The pathophysiology is explained 
by the increase in the toxic function of abnormal tissue deposits [ 223 ]. For the list 
of GFAP mutations in this disease please refer to the Waisman Center of the 
University of Wisconsin-Madison (  http://www.waisman.wisc.edu/alexander/
mutations.html    ). 

 Interestingly, Rosenthal fi bers are also present in certain pathological conditions, 
namely tumors such as pilocytic astrocytomas and gangliogliomas, and even some 
types of chronic gliosis, for example, those observed in the periphery of craniopha-
ryngiomas or hemangioblastomas.  

   GFAP and Gliomas 

 The development of immunohistochemistry for GFAP was an important advance in 
surgical neuropathology, including the diagnosis of brain tumors. The expression of 
GFAP in primary glial tumors has been extensively studied since the beginning of 
the 1980s, and is now widely used in diagnostic neuropathology [ 224 – 226 ]. 
Independently of the histological grade, every tumor with astrocytic differentiation 
is expected to show at least some positivity for GFAP [ 227 ]. GFAP-positive cells 
can also be observed in some other glioma types, such as oligodendroglioma, where 
often small cells named “minigemistocytes” express GFAP [ 227 ]; and in ependy-
momas [ 226 ,  228 ]. A signifi cant proportion of choroid-plexus tumors can also 
express GFAP, even focally [ 226 ]. 

 Some studies have shown in vitro a negative correlation between GFAP expres-
sion levels and the malignant transformation of astrocytes [ 229 – 231 ]. However in 
experimental astrocytoma murine models, GFAP expression does not seem to affect 
tumor progression [ 232 ]. 

 GFAP serum levels seem to be signifi cantly elevated in patients with glioblas-
toma multiforme [ 233 ]. This implies damage to the blood–brain barrier, since this 
protein is not usually detectable in the serum or is present in very low levels. Some 
other conditions that can lead to its rise in the serum are stroke, hemorrhage, trauma 
and multiple sclerosis [ 212 ].    
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    Enteric Glia Cytoskeleton 

 GFAP is also the main marker of enteric glia, a peripheral glial-cell type derived 
from the neural crest cells that has close morphological, molecular and functional 
similarities to astrocytes (reviewed by Coelho-Aguiar et al. [ 234 ]). These glial cells 
are crucial for the proper functioning of the gut. Their disruption in mice by the 
targeting of GFAP-positive cells leads to increased permeability of the mucosal 
epithelium, followed by an infl ammation process and disruption of the ileum and 
jejunum structure [ 235 – 237 ]. 

 Interestingly, as in the CNS, GFAP is also expressed in glia-like progenitors in 
the gut. Some of these GFAP-positive cells can generate multilineage colonies 
in vitro and also give rise to glial and neuronal cells in vivo in graft studies, in injury 
conditions or in experiments of myenteric plexus ablation with benzalkonium chloride 
detergent [ 238 – 245 ]. 

 Similarly to reactive gliosis in the CNS, there is an increase of GFAP levels in 
enteric glia of infl amed gut regions, notably in infl ammatory bowel diseases [ 246 ]. An 
increase in GFAP expression was also observed in colon biopsies of patients with 
 Clostridium diffi cile  infections [ 246 ]. Patients with Parkinson’s disease show α synu-
clein aggregates (the pathological trait of Parkinson’s disease) also in the ENS, and also 
an increased expression and reduced phosphorylation of GFAP, which is also observed 
in neurodegenerative processes in the CNS [ 247 ,  248 ]. These informations suggest an 
association between enteric infl ammation and glial dysregulation. 

 Furthermore, specifi c roles are known for other components of the cytoskeleton 
in enteric glia, the F-actin fi laments and microtubules. Little is known about this, 
but Ca 2+  dependent responses have been identifi ed in enteric glia, related to their 
functions in neurotransmission. Calcium enters enteric glial cells through a mecha-
nism termed capacitative calcium entry, which is responsible for the maintenance of 
calcium storage in different cell types. It has been shown that in cultured myenteric 
glia, the disruption of the actin fi laments or microtubules can decrease and even 
completely inhibit calcium entry [ 249 ]. These experiments confi rmed the impor-
tance of the cytoskeleton for the physical interactions between the calcium storage 
organelle and the plasma membrane as a capacitative calcium-entry mechanism, 
which replenishes the cell after depletion of the intracellular calcium store. It is 
probable that the same events occur in astrocytes and other cell types to maintain 
their intracellular calcium store, but this has not yet been investigated.  

    Schwann Cell Cytoskeleton 

 Another neural crest-derived GFAP-expressing type of glia is the Schwann cells, 
which are responsible for the myelinization of the entire peripheral nervous system 
(PNS). Schwann cells can be found in myelinating or non-myelinating forms. This 
cell type is capable of great migratory and differentiation capacities during 
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development and even in adults, to repair and replace the myelin of injured axons. 
The physical interaction of these cells with the surrounding microenvironment 
involves changes in the cytoskeleton. 

 These cells constitute the other example of peripheral glia that express 
GFAP. However, it is clear that they show a different GFAP isoform expression from 
that of astrocytes and enteric glia. Moreover, they express this IF at lower levels 
than astrocytes, and even more reduced levels in relation to enteric glia [ 250 ]. 

 GFAP expression is a marker of non-myelinating Schwann cells. GFAP appears 
after differentiation of Schwann-cell precursors into immature Schwann cells [ 251 ]. 
Its expression depends on contact with non-myelinated axons, and is downregulated 
in myelinating Schwann cells. On the other hand, vimentin is expressed in myelin- 
forming Schwann cells. In experiments with sciatic-nerve transection, a reduction 
of GFAP mRNA levels was observed. Moreover, the immunodetection of GFAP 
also decreased, while vimentin expression increased [ 252 ]. 

 Interactions among Schwann cells, the extracellular matrix and axons are mediated 
by surface receptors and are transduced by the cytoskeleton proteins. These interac-
tions are essential to the recovery of neuronal transmission after axonal nerve injury. 
The axonal regeneration process follows well-established steps. After disruption of 
myelin sheets, Schwann cells dedifferentiate and proliferate. There is an increase in 
the expression of adhesion molecules and cytoskeleton proteins such as GFAP and 
vimentin. Then, these glial cells form bands of Büngner, which serve as a substrate for 
axonal regrowth. After that, they enwrap the axons and form myelin [ 253 ]. All these 
stages require continuous reorganization of the Schwann cell cytoskeleton. 

 In GFAP-null mice, the development of peripheral axons and their myelin is 
normal, as is their functioning. However, lack of GFAP leads to retardation in nerve 
regeneration after injury, probably because of a problem in Schwann cell prolifera-
tion. This study, developed by Triolo and coworkers [ 253 ], revealed that GFAP 
interacts with integrin αvβ8, which interacts with fi brin, thus acting in the early 
steps of Schwann-cell proliferation. These investigators also showed that vimentin 
interacts with integrin α5β1, which connects to fi bronectin, acting in the subsequent 
steps of Schwann-cell proliferation and nerve regeneration [ 253 ]. 

 Another cytoskeleton protein associated with integrins in Schwann cells is merlin, 
also known as schwannomin. Merlin is a perinuclear protein that translocates to cyto-
plasm during differentiation and becomes associated with integrin β1 in myelinating 
Schwann cells. This study suggests that merlin links the integrin to the microfi laments, 
supporting myelination [ 254 ]. Other proteins associated with intermediate fi laments 
interact with integrins, such as hemidesmosomal 1 protein (HD1), plectin and dystonin 
[ 255 ]. Targeted disruption of dystonin, for example, results in problems in the interac-
tion with the axon basement membrane and in PNS dysmyelination [ 256 ].   

    Conclusion 

 As set out in this chapter, the fi rst step in cell locomotion is the formation of cyto-
skeleton protrusions such as lamellipodia at the periphery of a cell. This protrusion 
is composed of F-actin fi laments. Study of the mechanical characteristics of 
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cytoskeleton proteins and plasma membrane tension in lamellipodia was advanced 
by the use of optical tweezers, which enable measurement of the bending modulus 
and membrane tension. Important inductors of the migratory phenotype are the 
chemokines, small peptides that elicit cytoskeleton responses through signaling by 
their G protein-coupled receptors. CCL19/CCL21 and their receptor CCR7, and 
CXCL12 and its receptor CXCR4 have physiological roles in guiding different cell 
types to their niches, as well as acting in tumor-cell migration by eliciting reorgani-
zation of the actin cytoskeleton. 

 We next discussed the role of the cytoskeleton in the performance of stem cells. 
Actin microfi laments and microtubules are reorganized during differentiation, and 
are important for stem-cell fate and polarization. Intermediate fi laments, specifi c to 
each cell type, may also be involved. Neural stem and precursor cells, for example, 
express nestin, while GFAP is typical for mature astrocytes but is also found in 
neural precursors. In the last section we explored the specifi c characteristics of the 
intermediate fi lament GFAP in its multiple isoforms. GFAP is essential for astrocyte 
functions, and its disruption is implicated in several disorders and diseases. 
Peripheral glial cells that also express GFAP are the enteric glial cells, which are the 
counterparts of astrocytes in the gut; and the Schwann cells, which are responsible 
for the myelination of the peripheral nerves.     

  Acknowledgments   This work was supported by National Institute for Translational Neuroscience 
(INNT) from Ministry of Science and Technology; Brazilian Federal Agency for the Support and 
Evaluation of Graduate Education (CAPES) from the Ministry of Education; National Council for 
Technological and Scientifi c Development (CNPq); Rio de Janeiro State Research Foundation 
(FAPERJ); PhD program on Morphological Sciences (PCM) from the Federal University of Rio 
de Janeiro (UFRJ); Ary Frauzino Foundation to Cancer Research; and Pró-Saúde Hospital 
Administration - Benefi cent Association for Social and Hospital Assistance.  

   References 

        1.   Alberts B (2002) Molecular biology of the cell, 4th edn, vol xxxiv. Garland Science, 
New York, 1464 p  

      2.    Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and 
cancer. Nat Rev Mol Cell Biol 10(7):445–457  

   3.    Mogilner A (2009) Mathematics of cell motility: have we got its number? J Math Biol 
58(1-2):105–134  

    4.    Petrie RJ, Doyle AD, Yamada KM (2009) Random versus directionally persistent cell migra-
tion. Nat Rev Mol Cell Biol 10(8):538–549  

    5.    Ridley AJ et al (2003) Cell migration: integrating signals from front to back. Science 
302(5651):1704–1709  

    6.    Etienne-Manneville S, Hall A (2003) Cdc42 regulates GSK-3beta and adenomatous polypo-
sis coli to control cell polarity. Nature 421(6924):753–756  

    7.    Pletjushkina OJ et al (1994) Taxol-treated fi broblasts acquire an epithelioid shape and a cir-
cular pattern of actin bundles. Exp Cell Res 212(2):201–208  

    8.    Euteneuer U, Schliwa M (1984) Persistent, directional motility of cells and cytoplasmic frag-
ments in the absence of microtubules. Nature 310(5972):58–61  

    9.    Eilken HM, Adams RH (2010) Dynamics of endothelial cell behavior in sprouting angiogen-
esis. Curr Opin Cell Biol 22(5):617–625  

4 The Role of the Cytoskeleton in Cell Migration, Its Infl uence on Stem Cells…



108

    10.   Gupton SL, Gertler FB (2007) Filopodia: the fi ngers that do the walking. Sci STKE 
2007(400):p. re5  

    11.    Charras G, Paluch E (2008) Blebs lead the way: how to migrate without lamellipodia. Nat 
Rev Mol Cell Biol 9(9):730–736  

    12.    Buccione R, Caldieri G, Ayala I (2009) Invadopodia: specialized tumor cell structures for the 
focal degradation of the extracellular matrix. Cancer Metastasis Rev 28(1–2):137–149  

    13.    Abercrombie M, Heaysman JE, Pegrum SM (1970) The locomotion of fi broblasts in culture. 
I. Movements of the leading edge. Exp Cell Res 59(3):393–398  

    14.    Abercrombie M, Heaysman JE, Pegrum SM (1971) The locomotion of fi broblasts in culture. 
IV. Electron microscopy of the leading lamella. Exp Cell Res 67(2):359–367  

    15.    Weijer CJ (2009) Collective cell migration in development. J Cell Sci 122(Pt 18):3215–3223  
    16.    Mullins RD, Heuser JA, Pollard TD (1998) The interaction of Arp2/3 complex with actin: 

nucleation, high affi nity pointed end capping, and formation of branching networks of 
fi laments. Proc Natl Acad Sci U S A 95(11):6181–6186  

    17.    Campellone KG, Welch MD (2010) A nucleator arms race: cellular control of actin assembly. 
Nat Rev Mol Cell Biol 11(4):237–251  

    18.    Svitkina TM, Borisy GG (1999) Arp2/3 complex and actin depolymerizing factor/cofi lin in 
dendritic organization and treadmilling of actin fi lament array in lamellipodia. J Cell Biol 
145(5):1009–1026  

    19.    Urban E et al (2010) Electron tomography reveals unbranched networks of actin fi laments in 
lamellipodia. Nat Cell Biol 12(5):429–435  

    20.    Akin O, Mullins RD (2008) Capping protein increases the rate of actin-based motility by 
promoting fi lament nucleation by the Arp2/3 complex. Cell 133(5):841–851  

    21.    Bear JE, Gertler FB (2009) Ena/VASP: towards resolving a pointed controversy at the barbed 
end. J Cell Sci 122(Pt 12):1947–1953  

    22.    Breitsprecher D et al (2011) Molecular mechanism of Ena/VASP-mediated actin-fi lament 
elongation. EMBO J 30(3):456–467  

    23.    Chesarone MA, DuPage AG, Goode BL (2010) Unleashing formins to remodel the actin and 
microtubule cytoskeletons. Nat Rev Mol Cell Biol 11(1):62–74  

    24.    Keren K (2011) Cell motility: the integrating role of the plasma membrane. Eur Biophys J 
40(9):1013–1027  

     25.    Houk AR et al (2012) Membrane tension maintains cell polarity by confi ning signals to the 
leading edge during neutrophil migration. Cell 148(1–2):175–188  

    26.    Gauthier NC, Masters TA, Sheetz MP (2012) Mechanical feedback between membrane ten-
sion and dynamics. Trends Cell Biol 22(10):527–535  

    27.    Masters TA et al (2013) Plasma membrane tension orchestrates membrane traffi cking, cyto-
skeletal remodeling, and biochemical signaling during phagocytosis. Proc Natl Acad Sci U S 
A 110(29):11875–11880  

     28.    Gittes F et al (1993) Flexural rigidity of microtubules and actin fi laments measured from 
thermal fl uctuations in shape. J Cell Biol 120(4):923–934  

     29.       Diz-Munoz A, Fletcher DA, Weiner OD (2013) Use the force: membrane tension as an orga-
nizer of cell shape and motility. Trends Cell Biol 23(2):47–53  

    30.    Bo L, Waugh RE (1989) Determination of bilayer membrane bending stiffness by tether 
formation from giant, thin-walled vesicles. Biophys J 55(3):509–517  

      31.    Pontes B et al (2011) Cell cytoskeleton and tether extraction. Biophys J 101(1):43–52  
     32.    Gauthier NC et al (2011) Temporary increase in plasma membrane tension coordinates the 

activation of exocytosis and contraction during cell spreading. Proc Natl Acad Sci U S A 
108(35):14467–14472  

   33.    Keren K et al (2008) Mechanism of shape determination in motile cells. Nature 
453(7194):475–480  

    34.    Risca VI et al (2012) Actin fi lament curvature biases branching direction. Proc Natl Acad Sci 
U S A 109(8):2913–2918  

    35.    Sheetz MP, Dai J (1996) Modulation of membrane dynamics and cell motility by membrane 
tension. Trends Cell Biol 6(3):85–89  

J.M. Coelho-Aguiar et al.



109

   36.    Morris CE, Homann U (2001) Cell surface area regulation and membrane tension. J Membr 
Biol 179(2):79–102  

     37.    Apodaca G (2002) Modulation of membrane traffi c by mechanical stimuli. Am J Physiol 
Renal Physiol 282(2):F179–F190  

    38.    Ofer N, Mogilner A, Keren K (2011) Actin disassembly clock determines shape and speed of 
lamellipodial fragments. Proc Natl Acad Sci U S A 108(51):20394–20399  

    39.    Cai Y et al (2010) Cytoskeletal coherence requires myosin-IIA contractility. J Cell Sci 123(Pt 
3):413–423  

    40.    Hissa B et al (2013) Membrane cholesterol removal changes mechanical properties of cells 
and induces secretion of a specifi c pool of lysosomes. PLoS One 8(12):e82988  

    41.    Lieber AD et al (2013) Membrane tension in rapidly moving cells is determined by cytoskeletal 
forces. Curr Biol 23(15):1409–1417  

    42.   Abu Shah E, Keren K (2013) Mechanical forces and feedbacks in cell motility. Curr Opin 
Cell Biol 25(5):550–557  

      43.    Pontes B et al (2013) Membrane elastic properties and cell function. PLoS One 8(7):e67708  
    44.    Janmey PA, McCulloch CA (2007) Cell mechanics: integrating cell responses to mechanical 

stimuli. Annu Rev Biomed Eng 9:1–34  
    45.    Faria J et al (2006) Interactive properties of human glioblastoma cells with brain neurons in 

culture and neuronal modulation of glial laminin organization. Differentiation 
74(9–10):562–572  

      46.    Zlotnik A, Yoshie O (2000) Chemokines: a new classifi cation system and their role in immu-
nity. Immunity 12(2):121–127  

    47.    Lazennec G, Richmond A (2010) Chemokines and chemokine receptors: new insights into 
cancer-related infl ammation. Trends Mol Med 16(3):133–144  

     48.    Vindrieux D, Escobar P, Lazennec G (2009) Emerging roles of chemokines in prostate can-
cer. Endocr Relat Cancer 16(3):663–673  

     49.    Ali S, Lazennec G (2007) Chemokines: novel targets for breast cancer metastasis. Cancer 
Metastasis Rev 26(3–4):401–420  

    50.    Mantovani A, Bonecchi R, Locati M (2006) Tuning infl ammation and immunity by chemo-
kine sequestration: decoys and more. Nat Rev Immunol 6(12):907–918  

    51.    Binder NB et al (2009) Estrogen-dependent and C-C chemokine receptor-2-dependent path-
ways determine osteoclast behavior in osteoporosis. Nat Med 15(4):417–424  

    52.    Chavey C et al (2009) CXC ligand 5 is an adipose-tissue derived factor that links obesity to 
insulin resistance. Cell Metab 9(4):339–349  

    53.    Kohlmeier JE et al (2008) The chemokine receptor CCR5 plays a key role in the early mem-
ory CD8+ T cell response to respiratory virus infections. Immunity 29(1):101–113  

    54.    Yoder A et al (2008) HIV envelope-CXCR4 signaling activates cofi lin to overcome cortical 
actin restriction in resting CD4 T cells. Cell 134(5):782–792  

    55.    Tiwari S et al (2009) Targeting of the GTPase Irgm1 to the phagosomal membrane via 
PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) promotes immunity to mycobacteria. Nat Immunol 
10(8):907–917  

    56.    Molon B et al (2005) T cell costimulation by chemokine receptors. Nat Immunol 6(5):465–471  
    57.    Pitchford SC et al (2009) Differential mobilization of subsets of progenitor cells from the 

bone marrow. Cell Stem Cell 4(1):62–72  
    58.    Reboldi A et al (2009) C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS 

through the choroid plexus is required for the initiation of EAE. Nat Immunol 
10(5):514–523  

    59.    Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized infl ammation in the 
initiation and promotion of malignant disease. Cancer Cell 7(3):211–217  

    60.    Mantovani A (2009) Cancer: infl aming metastasis. Nature 457(7225):36–37  
    61.    Mentlein R, Hattermann K, Held-Feindt J (2013) Migration, metastasis, and more: the role 

of chemokines in the proliferation, spreading, and metastasis of tumors. In: Resende RR, 
Ulrich H (eds) Trends in the cell proliferation and cancer research. Springer, Netherlands, 
pp 339–358  

4 The Role of the Cytoskeleton in Cell Migration, Its Infl uence on Stem Cells…



110

    62.    Moser B, Loetscher P (2001) Lymphocyte traffi c control by chemokines. Nat Immunol 
2(2):123–128  

   63.    von Andrian UH, Mackay CR (2000) T-cell function and migration. Two sides of the same 
coin. N Engl J Med 343(14):1020–1034  

   64.    Sallusto F, Mackay CR, Lanzavecchia A (2000) The role of chemokine receptors in primary, 
effector, and memory immune responses. Annu Rev Immunol 18:593–620  

    65.    Sanchez-Madrid F, del Pozo MA (1999) Leukocyte polarization in cell migration and immune 
interactions. EMBO J 18(3):501–511  

      66.    Ridley AJ (2001) Rho GTPases and cell migration. J Cell Sci 114(Pt 15):2713–2722  
    67.    Thelen M (2001) Dancing to the tune of chemokines. Nat Immunol 2(2):129–134  
    68.    Mellado M et al (1998) The chemokine monocyte chemotactic protein 1 triggers Janus kinase 2 

activation and tyrosine phosphorylation of the CCR2B receptor. J Immunol 161(2):805–813  
    69.    Mellado M et al (2001) Chemokine signaling and functional responses: the role of receptor 

dimerization and TK pathway activation. Annu Rev Immunol 19:397–421  
    70.    Amano M, Fukata Y, Kaibuchi K (2000) Regulation and functions of Rho-associated kinase. 

Exp Cell Res 261(1):44–51  
    71.    Lee JH et al (2004) Roles of p-ERM and Rho-ROCK signaling in lymphocyte polarity and 

uropod formation. J Cell Biol 167(2):327–337  
    72.    Sakata D et al (2007) Impaired T lymphocyte traffi cking in mice defi cient in an actin- 

nucleating protein, mDia1. J Exp Med 204(9):2031–2038  
    73.    Gunn MD et al (1998) A chemokine expressed in lymphoid high endothelial venules pro-

motes the adhesion and chemotaxis of naive T lymphocytes. Proc Natl Acad Sci U S A 
95(1):258–263  

    74.    Stein JV et al (2000) The CC chemokine thymus-derived chemotactic agent 4 (TCA-4, sec-
ondary lymphoid tissue chemokine, 6Ckine, exodus-2) triggers lymphocyte function- 
associated antigen 1-mediated arrest of rolling T lymphocytes in peripheral lymph node high 
endothelial venules. J Exp Med 191(1):61–76  

    75.    Campbell JJ et al (1998) Chemokines and the arrest of lymphocytes rolling under fl ow condi-
tions. Science 279(5349):381–384  

     76.    Okada T et al (2002) Chemokine requirements for B cell entry to lymph nodes and Peyer’s 
patches. J Exp Med 196(1):65–75  

    77.    Bardi G, Niggli V, Loetscher P (2003) Rho kinase is required for CCR7-mediated polariza-
tion and chemotaxis of T lymphocytes. FEBS Lett 542(1–3):79–83  

    78.    Boehme SA et al (1999) Activation of mitogen-activated protein kinase regulates eotaxin- 
induced eosinophil migration. J Immunol 163(3):1611–1618  

   79.    Bonacchi A et al (2001) Signal transduction by the chemokine receptor CXCR3: activation 
of Ras/ERK, Src, and phosphatidylinositol 3-kinase/Akt controls cell migration and prolif-
eration in human vascular pericytes. J Biol Chem 276(13):9945–9954  

    80.    Kampen GT et al (2000) Eotaxin induces degranulation and chemotaxis of eosinophils 
through the activation of ERK2 and p38 mitogen-activated protein kinases. Blood 
95(6):1911–1917  

    81.    Berlin-Rufenach C et al (1999) Lymphocyte migration in lymphocyte function-associated 
antigen (LFA)-1-defi cient mice. J Exp Med 189(9):1467–1478  

   82.    Laudanna C, Alon R (2006) Right on the spot. Chemokine triggering of integrin-mediated 
arrest of rolling leukocytes. Thromb Haemost 95(1):5–11  

    83.    Warnock RA et al (1998) Molecular mechanisms of lymphocyte homing to peripheral lymph 
nodes. J Exp Med 187(2):205–216  

    84.    Giagulli C et al (2004) RhoA and zeta PKC control distinct modalities of LFA-1 activation by 
chemokines: critical role of LFA-1 affi nity triggering in lymphocyte in vivo homing. 
Immunity 20(1):25–35  

   85.    Laudanna C, Campbell JJ, Butcher EC (1996) Role of Rho in chemoattractant-activated leu-
kocyte adhesion through integrins. Science 271(5251):981–983  

    86.    Pasvolsky R et al (2008) RhoA is involved in LFA-1 extension triggered by CXCL12 but not 
in a novel outside-in LFA-1 activation facilitated by CXCL9. J Immunol 180(5):2815–2823  

J.M. Coelho-Aguiar et al.



111

   87.    Cunningham HD et al (2010) Expression of the C-C chemokine receptor 7 mediates metastasis 
of breast cancer to the lymph nodes in mice. Transl Oncol 3(6):354–361  

   88.    Mburu YK et al (2012) Chemokine receptor 7 (CCR7) gene expression is regulated by 
NF-kappaB and activator protein 1 (AP1) in metastatic squamous cell carcinoma of head and 
neck (SCCHN). J Biol Chem 287(5):3581–3590  

   89.    Jung JI et al (2015) High-fat diet-induced obesity increases lymphangiogenesis and lymph 
node metastasis in the B16F10 melanoma allograft model: roles of adipocytes and 
M2-macrophages. Int J Cancer 136(2):258–270  

   90.    Shields JD et al (2007) Chemokine-mediated migration of melanoma cells towards lymphatics–
a mechanism contributing to metastasis. Oncogene 26(21):2997–3005  

    91.    Shields JD et al (2007) Autologous chemotaxis as a mechanism of tumor cell homing to 
lymphatics via interstitial fl ow and autocrine CCR7 signaling. Cancer Cell 11(6):526–538  

      92.    Nagasawa T, Kikutani H, Kishimoto T (1994) Molecular cloning and structure of a pre-B-cell 
growth-stimulating factor. Proc Natl Acad Sci U S A 91(6):2305–2309  

    93.    Muller A et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 
410(6824):50–56  

    94.    Liu Y et al (2010) Correlation effect of EGFR and CXCR4 and CCR7 chemokine receptors 
in predicting breast cancer metastasis and prognosis. J Exp Clin Cancer Res 29:16  

    95.    Tashiro K et al (1993) Signal sequence trap: a cloning strategy for secreted proteins and type 
I membrane proteins. Science 261(5121):600–603  

    96.    Loetscher M et al (1994) Cloning of a human seven-transmembrane domain receptor, 
LESTR, that is highly expressed in leukocytes. J Biol Chem 269(1):232–237  

   97.    Feng Y et al (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven- transmembrane, 
G protein-coupled receptor. Science 272(5263):872–877  

    98.    Bleul CC et al (1996) The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin 
and blocks HIV-1 entry. Nature 382(6594):829–833  

    99.    Aiuti A et al (1997) The chemokine SDF-1 is a chemoattractant for human CD34+ hemato-
poietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ 
progenitors to peripheral blood. J Exp Med 185(1):111–120  

    100.    Reiss K et al (2002) Stromal cell-derived factor 1 is secreted by meningeal cells and acts as 
chemotactic factor on neuronal stem cells of the cerebellar external granular layer. 
Neuroscience 115(1):295–305  

    101.    Ma Q et al (1998) Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron 
migration in CXCR4- and SDF-1-defi cient mice. Proc Natl Acad Sci U S A 95(16):
9448–9453  

    102.    Balabanian K et al (2005) The chemokine SDF-1/CXCL12 binds to and signals through the 
orphan receptor RDC1 in T lymphocytes. J Biol Chem 280(42):35760–35766  

    103.    Odemis V et al (2012) The presumed atypical chemokine receptor CXCR7 signals through 
G(i/o) proteins in primary rodent astrocytes and human glioma cells. Glia 60(3):372–381  

     104.    Li H et al (2013) Association between Galphai2 and ELMO1/Dock180 connects chemokine 
signalling with Rac activation and metastasis. Nat Commun 4:1706  

    105.    Takabayashi T et al (2009) Lipopolysaccharides increase the amount of CXCR4, and modu-
late the morphology and invasive activity of oral cancer cells in a CXCL12-dependent man-
ner. Oral Oncol 45(11):968–973  

    106.    Dong X et al (2005) P-Rex1 is a primary Rac2 guanine nucleotide exchange factor in mouse 
neutrophils. Curr Biol 15(20):1874–1879  

    107.    Sun CX, Magalhaes MA, Glogauer M (2007) Rac1 and Rac2 differentially regulate actin free 
barbed end formation downstream of the fMLP receptor. J Cell Biol 179(2):239–245  

    108.    Gao H et al (2009) Activation of signal transducers and activators of transcription 3 and focal 
adhesion kinase by stromal cell-derived factor 1 is required for migration of human mesen-
chymal stem cells in response to tumor cell-conditioned medium. Stem Cells 27(4):
857–865  

    109.    Robledo MM et al (2001) Expression of functional chemokine receptors CXCR3 and CXCR4 
on human melanoma cells. J Biol Chem 276(48):45098–45105  

4 The Role of the Cytoskeleton in Cell Migration, Its Infl uence on Stem Cells…



112

    110.    Lima FR et al (2012) Glioblastoma: therapeutic challenges, what lies ahead. Biochim 
Biophys Acta 1826(2):338–349  

   111.    Singh A, Settleman J (2010) EMT, cancer stem cells and drug resistance: an emerging axis of 
evil in the war on cancer. Oncogene 29(34):4741–4751  

    112.    Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 
282(5391):1145–1147  

      113.    Guilak F et al (2009) Control of stem cell fate by physical interactions with the extracellular 
matrix. Cell Stem Cell 5(1):17–26  

    114.    Lutolf MP, Gilbert PM, Blau HM (2009) Designing materials to direct stem-cell fate. Nature 
462(7272):433–441  

      115.    Gage FH (2000) Mammalian neural stem cells. Science 287(5457):1433–1438  
    116.    Mamsen LS et al (2012) The migration and loss of human primordial germ stem cells from 

the hind gut epithelium towards the gonadal ridge. Int J Dev Biol 56(10–12):771–778  
    117.    Spradling A, Drummond-Barbosa D, Kai T (2001) Stem cells fi nd their niche. Nature 

414(6859):98–104  
     118.    Treiser MD et al (2010) Cytoskeleton-based forecasting of stem cell lineage fates. Proc Natl 

Acad Sci U S A 107(2):610–615  
    119.    Engler AJ et al (2006) Matrix elasticity directs stem cell lineage specifi cation. Cell 

126(4):677–689  
    120.    Kinney MA, Saeed R, McDevitt TC (2014) Mesenchymal morphogenesis of embryonic stem 

cells dynamically modulates the biophysical microtissue niche. Sci Rep 4:4290  
     121.    McBeath R et al (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage 

commitment. Dev Cell 6(4):483–495  
    122.    Collart-Dutilleul PY et al (2014) Initial stem cell adhesion on porous silicon surface: molecu-

lar architecture of actin cytoskeleton and fi lopodial growth. Nanoscale Res Lett 9(1):564  
    123.    Galkin VE, Orlova A, Egelman EH (2012) Actin fi laments as tension sensors. Curr Biol 

22(3):R96–R101  
    124.    Fonseca AV, Corbeil D (2011) The hematopoietic stem cell polarization and migration: a 

dynamic link between RhoA signaling pathway, microtubule network and ganglioside-based 
membrane microdomains. Commun Integr Biol 4(2):201–204  

    125.    Fonseca AV et al (2010) Polarization and migration of hematopoietic stem and progenitor 
cells rely on the RhoA/ROCK I pathway and an active reorganization of the microtubule 
network. J Biol Chem 285(41):31661–31671  

    126.    Vertelov G et al (2013) High targeted migration of human mesenchymal stem cells grown in 
hypoxia is associated with enhanced activation of RhoA. Stem Cell Res Ther 4(1):5  

    127.    Titushkin I, Cho M (2007) Modulation of cellular mechanics during osteogenic differentiation 
of human mesenchymal stem cells. Biophys J 93(10):3693–3702  

    128.    Hyder CL et al (2011) Insights into intermediate fi lament regulation from development to 
ageing. J Cell Sci 124(Pt 9):1363–1372  

    129.    Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of inter-
mediate fi lament protein. Cell 60(4):585–595  

     130.    Kleeberger W et al (2007) Roles for the stem cell associated intermediate fi lament Nestin in 
prostate cancer migration and metastasis. Cancer Res 67(19):9199–9206  

   131.    Suzuki S et al (2010) The neural stem/progenitor cell marker nestin is expressed in prolifera-
tive endothelial cells, but not in mature vasculature. J Histochem Cytochem 58(8):721–730  

    132.    Wiese C et al (2004) Nestin expression–a property of multi-lineage progenitor cells? Cell 
Mol Life Sci 61(19–20):2510–2522  

    133.    Mellodew K et al (2004) Nestin expression is lost in a neural stem cell line through a 
mechanism involving the proteasome and Notch signalling. Brain Res Dev Brain Res 
151(1–2):13–23  

    134.    Hitoshi S et al (2004) Primitive neural stem cells from the mammalian epiblast differentiate 
to defi nitive neural stem cells under the control of Notch signaling. Genes Dev 
18(15):1806–1811  

    135.    Sachewsky N et al (2014) Primitive neural stem cells in the adult mammalian brain give rise 
to GFAP-expressing neural stem cells. Stem Cell Rep 2(6):810–824  

J.M. Coelho-Aguiar et al.



113

      136.    Jinka R et al (2012) Alterations in cell-extracellular matrix interactions during progression of 
cancers. Int J Cell Biol 2012:219196  

      137.   Moura-Neto V et al (2014) Glioblastomas and the special role of adhesion molecules in their 
invasion. In: Sedo A, Mentlein R (eds) Glioma cell biology. Springer, Vienna, pp 293–315  

    138.    Vasioukhin V et al (2001) Hyperproliferation and defects in epithelial polarity upon condi-
tional ablation of alpha-catenin in skin. Cell 104(4):605–617  

    139.    Rampazzo E et al (2013) Wnt activation promotes neuronal differentiation of glioblastoma. 
Cell Death Dis 4:e500  

    140.    Wang Q et al (2010) A novel role for Wnt/Ca 2+  signaling in actin cytoskeleton remodeling and 
cell motility in prostate cancer. PLoS One 5(5):e10456  

    141.    Jing R et al (2007) Synemin is expressed in reactive astrocytes in neurotrauma and interacts 
differentially with vimentin and GFAP intermediate fi lament networks. J Cell Sci 120(Pt 
7):1267–1277  

    142.    Sancho-Tello M et al (1995) Developmental pattern of GFAP and vimentin gene expression 
in rat brain and in radial glial cultures. Glia 15(2):157–166  

     143.    Eliasson C et al (1999) Intermediate fi lament protein partnership in astrocytes. J Biol Chem 
274(34):23996–24006  

    144.    Eng LF, Ghirnikar RS, Lee YL (2000) Glial fi brillary acidic protein: GFAP-thirty-one years 
(1969–2000). Neurochem Res 25(9–10):1439–1451  

     145.    Eng LF et al (1971) An acidic protein isolated from fi brous astrocytes. Brain Res 
28(2):351–354  

    146.    Kato H et al (1990) Immunocytochemical characterization of supporting cells in the enteric 
nervous system in Hirschsprung’s disease. J Pediatr Surg 25(5):514–519  

     147.    Hainfellner JA et al (2001) Fibroblasts can express glial fi brillary acidic protein (GFAP) 
in vivo. J Neuropathol Exp Neurol 60(5):449–461  

    148.    Viale G et al (1991) Glial fi brillary acidic protein immunoreactivity in normal and diseased 
human breast. Virchows Arch A Pathol Anat Histopathol 418(4):339–348  

    149.    Riol H et al (1997) Detection of the peripheral nervous system (PNS)-type glial fi brillary 
acidic protein (GFAP) and its mRNA in human lymphocytes. J Neurosci Res 48(1):53–62  

    150.    Carotti S et al (2008) Glial fi brillary acidic protein as an early marker of hepatic stellate cell 
activation in chronic and posttransplant recurrent hepatitis C. Liver Transpl 14(6):806–814  

       151.    Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 
119(1):7–35  

    152.    Brenner M (2014) Role of GFAP in CNS injuries. Neurosci Lett 565:7–13  
    153.    Reeves SA et al (1989) Molecular cloning and primary structure of human glial fi brillary 

acidic protein. Proc Natl Acad Sci U S A 86(13):5178–5182  
    154.    Nakatani Y, Brenner M, Freese E (1990) An RNA polymerase II promoter containing 

sequences upstream and downstream from the RNA startpoint that direct initiation of 
transcription from the same site. Proc Natl Acad Sci U S A 87(11):4289–4293  

        155.    Middeldorp J, Hol EM (2011) GFAP in health and disease. Prog Neurobiol 93(3):421–443  
    156.    Namihira M et al (2009) Committed neuronal precursors confer astrocytic potential on residual 

neural precursor cells. Dev Cell 16(2):245–255  
    157.    Kanski R et al (2014) Histone acetylation in astrocytes suppresses GFAP and stimulates a 

reorganization of the intermediate fi lament network. J Cell Sci 127(Pt 20):4368–4380  
    158.    Zhou Q et al (2011) Histone deacetylase inhibitors SAHA and sodium butyrate block G1-to-S cell 

cycle progression in neurosphere formation by adult subventricular cells. BMC Neurosci 12:50  
    159.   de Sampaio e Spohr TC et al (2002) Neuro-glia interaction effects on GFAP gene: a novel 

role for transforming growth factor-beta1. Eur J Neurosci 16(11):2059–2069  
   160.    Gomes FC et al (1999) Neurons induce GFAP gene promoter of cultured astrocytes from 

transgenic mice. Glia 26(2):97–108  
   161.    Romao LF et al (2008) Glutamate activates GFAP gene promoter from cultured astrocytes 

through TGF-beta1 pathways. J Neurochem 106(2):746–756  
   162.    Sousa Vde O et al (2004) Glial fi brillary acidic protein gene promoter is differently modulated 

by transforming growth factor-beta 1 in astrocytes from distinct brain regions. Eur J Neurosci 
19(7):1721–1730  

4 The Role of the Cytoskeleton in Cell Migration, Its Infl uence on Stem Cells…



114

    163.    Rutka JT et al (1997) Role of glial fi laments in cells and tumors of glial origin: a review. 
J Neurosurg 87(3):420–430  

       164.    Blechingberg J et al (2007) Identifi cation and characterization of GFAPkappa, a novel glial 
fi brillary acidic protein isoform. Glia 55(5):497–507  

    165.    Condorelli DF et al (1999) Structural features of the rat GFAP gene and identifi cation of a 
novel alternative transcript. J Neurosci Res 56(3):219–228  

    166.    Hol EM et al (2003) Neuronal expression of GFAP in patients with Alzheimer pathology and 
identifi cation of novel GFAP splice forms. Mol Psychiatry 8(9):786–796  

     167.    Zelenika D et al (1995) A novel glial fi brillary acidic protein mRNA lacking exon 1. Brain 
Res Mol Brain Res 30(2):251–258  

     168.    Nielsen AL et al (2002) A new splice variant of glial fi brillary acidic protein, GFAP epsilon, 
interacts with the presenilin proteins. J Biol Chem 277(33):29983–29991  

      169.    Roelofs RF et al (2005) Adult human subventricular, subgranular, and subpial zones contain 
astrocytes with a specialized intermediate fi lament cytoskeleton. Glia 52(4):289–300  

    170.    Feinstein DL, Weinmaster GA, Milner RJ (1992) Isolation of cDNA clones encoding rat glial 
fi brillary acidic protein: expression in astrocytes and in Schwann cells. J Neurosci Res 
32(1):1–14  

    171.    Galea E, Dupouey P, Feinstein DL (1995) Glial fi brillary acidic protein mRNA isotypes: 
expression in vitro and in vivo. J Neurosci Res 41(4):452–461  

      172.    Kamphuis W et al (2012) GFAP isoforms in adult mouse brain with a focus on neurogenic 
astrocytes and reactive astrogliosis in mouse models of Alzheimer disease. PLoS One 
7(8):e42823  

    173.    Thomsen R et al (2013) Alternative mRNA splicing from the glial fi brillary acidic protein 
(GFAP) gene generates isoforms with distinct subcellular mRNA localization patterns in 
astrocytes. PLoS One 8(8):e72110  

     174.    Singh R et al (2003) Genetic polymorphism and sequence evolution of an alternatively 
spliced exon of the glial fi brillary acidic protein gene, GFAP. Genomics 82(2):185–193  

      175.    Nielsen AL, Jorgensen AL (2004) Self-assembly of the cytoskeletal glial fi brillary acidic 
protein is inhibited by an isoform-specifi c C terminus. J Biol Chem 279(40):41537–41545  

     176.    Perng MD et al (2008) Glial fi brillary acidic protein fi laments can tolerate the incorporation 
of assembly-compromised GFAP-delta, but with consequences for fi lament organization and 
alphaB-crystallin association. Mol Biol Cell 19(10):4521–4533  

    177.    Leonard BW et al (2009) Subventricular zone neural progenitors from rapid brain autopsies 
of elderly subjects with and without neurodegenerative disease. J Comp Neurol 515(3):
269–294  

   178.    Middeldorp J et al (2010) GFAPdelta in radial glia and subventricular zone progenitors in the 
developing human cortex. Development 137(2):313–321  

    179.    van den Berge SA et al (2010) Longterm quiescent cells in the aged human subventricular 
neurogenic system specifi cally express GFAP-delta. Aging Cell 9(3):313–326  

     180.    Andreiuolo F et al (2009) GFAPdelta immunostaining improves visualization of normal and 
pathologic astrocytic heterogeneity. Neuropathology 29(1):31–39  

    181.    Gotz M, Hartfuss E, Malatesta P (2002) Radial glial cells as neuronal precursors: a new per-
spective on the correlation of morphology and lineage restriction in the developing cerebral 
cortex of mice. Brain Res Bull 57(6):777–788  

    182.    Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem 
cells. Annu Rev Neurosci 32:149–184  

    183.    deAzevedo LC et al (2003) Cortical radial glial cells in human fetuses: depth-correlated 
transformation into astrocytes. J Neurobiol 55(3):288–298  

    184.    Sarnat HB (1992) Regional differentiation of the human fetal ependyma: immunocytochemi-
cal markers. J Neuropathol Exp Neurol 51(1):58–75  

    185.    Lazarides E (1982) Intermediate fi laments: a chemically heterogeneous, developmentally 
regulated class of proteins. Annu Rev Biochem 51:219–250  

    186.    Yamada T et al (1992) Vimentin immunoreactivity in normal and pathological human brain 
tissue. Acta Neuropathol 84(2):157–162  

J.M. Coelho-Aguiar et al.



115

    187.    Pekny M et al (1998) Impaired induction of blood-brain barrier properties in aortic endothe-
lial cells by astrocytes from GFAP-defi cient mice. Glia 22(4):390–400  

    188.    Gimenez YRM et al (2000) Comparative anatomy of the cerebellar cortex in mice lacking 
vimentin, GFAP, and both vimentin and GFAP. Glia 31(1):69–83  

    189.    Messing A et al (1998) Fatal encephalopathy with astrocyte inclusions in GFAP transgenic 
mice. Am J Pathol 152(2):391–398  

    190.    Rutka JT et al (1994) Effects of antisense glial fi brillary acidic protein complementary DNA on 
the growth, invasion, and adhesion of human astrocytoma cells. Cancer Res 54(12):3267–3272  

    191.    Emirandetti A et al (2006) Astrocyte reactivity infl uences the number of presynaptic termi-
nals apposed to spinal motoneurons after axotomy. Brain Res 1095(1):35–42  

    192.    Tyzack GE et al (2014) Astrocyte response to motor neuron injury promotes structural synaptic 
plasticity via STAT3-regulated TSP-1 expression. Nat Commun 5:4294  

    193.    Elobeid A et al (2000) Effects of inducible glial fi brillary acidic protein on glioma cell motility 
and proliferation. J Neurosci Res 60(2):245–256  

    194.    Yoshida T et al (2007) The functional alteration of mutant GFAP depends on the location of 
the domain: morphological and functional studies using astrocytoma-derived cells. J Hum 
Genet 52(4):362–369  

    195.    Berg A et al (2013) Axonal regeneration after sciatic nerve lesion is delayed but complete in 
GFAP- and vimentin-defi cient mice. PLoS One 8(11):e79395  

    196.    Potokar M et al (2010) Intermediate fi laments attenuate stimulation-dependent mobility of 
endosomes/lysosomes in astrocytes. Glia 58(10):1208–1219  

    197.    Sullivan SM et al (2007) Cytoskeletal anchoring of GLAST determines susceptibility to brain 
damage: an identifi ed role for GFAP. J Biol Chem 282(40):29414–29423  

    198.    Gomi H et al (1995) Mice devoid of the glial fi brillary acidic protein develop normally and 
are susceptible to scrapie prions. Neuron 14(1):29–41  

   199.    McCall MA et al (1996) Targeted deletion in astrocyte intermediate fi lament (GFAP) alters 
neuronal physiology. Proc Natl Acad Sci U S A 93(13):6361–6366  

    200.    Pekny M et al (1995) Mice lacking glial fi brillary acidic protein display astrocytes devoid of 
intermediate fi laments but develop and reproduce normally. EMBO J 14(8):1590–1598  

    201.    Liedtke W et al (1996) GFAP is necessary for the integrity of CNS white matter architecture 
and long-term maintenance of myelination. Neuron 17(4):607–615  

    202.    Pekny M et al (1999) Abnormal reaction to central nervous system injury in mice lacking 
glial fi brillary acidic protein and vimentin. J Cell Biol 145(3):503–514  

    203.    Lepekhin EA et al (2001) Intermediate fi laments regulate astrocyte motility. J Neurochem 
79(3):617–625  

    204.    Nawashiro H et al (1998) Mice lacking GFAP are hypersensitive to traumatic cerebrospinal 
injury. Neuroreport 9(8):1691–1696  

    205.    Otani N et al (2006) Enhanced hippocampal neurodegeneration after traumatic or kainate 
excitotoxicity in GFAP-null mice. J Clin Neurosci 13(9):934–938  

     206.    Eng LF, Ghirnikar RS (1994) GFAP and astrogliosis. Brain Pathol 4(3):229–237  
    207.    Alonso G, Privat A (1993) Reactive astrocytes involved in the formation of lesional scars 

differ in the mediobasal hypothalamus and in other forebrain regions. J Neurosci Res 
34(5):523–538  

    208.    Faulkner JR et al (2004) Reactive astrocytes protect tissue and preserve function after spinal 
cord injury. J Neurosci 24(9):2143–2155  

   209.    Hatten ME et al (1991) Astroglia in CNS injury. Glia 4(2):233–243  
    210.    Wanner IB et al (2013) Glial scar borders are formed by newly proliferated, elongated astro-

cytes that interact to corral infl ammatory and fi brotic cells via STAT3-dependent mechanisms 
after spinal cord injury. J Neurosci 33(31):12870–12886  

    211.    Anderson MA, Ao Y, Sofroniew MV (2014) Heterogeneity of reactive astrocytes. Neurosci 
Lett 565:23–29  

     212.    Liem RK, Messing A (2009) Dysfunctions of neuronal and glial intermediate fi laments in 
disease. J Clin Invest 119(7):1814–1824  

    213.    Hardy J (2006) A hundred years of Alzheimer’s disease research. Neuron 52(1):3–13  

4 The Role of the Cytoskeleton in Cell Migration, Its Infl uence on Stem Cells…



116

    214.    Muramori F, Kobayashi K, Nakamura I (1998) A quantitative study of neurofi brillary tangles, 
senile plaques and astrocytes in the hippocampal subdivisions and entorhinal cortex in 
Alzheimer’s disease, normal controls and non-Alzheimer neuropsychiatric diseases. 
Psychiatry Clin Neurosci 52(6):593–599  

    215.    Simpson JE et al (2010) Astrocyte phenotype in relation to Alzheimer-type pathology in the 
ageing brain. Neurobiol Aging 31(4):578–590  

    216.    Kashon ML et al (2004) Associations of cortical astrogliosis with cognitive performance and 
dementia status. J Alzheimers Dis 6(6):595–604, discussion 673–681  

    217.    Porchet R et al (2003) Analysis of glial acidic fi brillary protein in the human entorhinal cortex 
during aging and in Alzheimer’s disease. Proteomics 3(8):1476–1485  

    218.    Sloane JA et al (2000) Astrocytic hypertrophy and altered GFAP degradation with age in 
subcortical white matter of the rhesus monkey. Brain Res 862(1–2):1–10  

    219.    Messing A, Brenner M (2003) GFAP: functional implications gleaned from studies of genetically 
engineered mice. Glia 43(1):87–90  

    220.   Alexander WS (1949) Progressive fi brinoid degeneration of fi brillary astrocytes associated 
with mental retardation in a hydrocephalic infant. Brain 72(3):373–381, 3 pl  

    221.    Brenner M et al (2001) Mutations in GFAP, encoding glial fi brillary acidic protein, are associated 
with Alexander disease. Nat Genet 27(1):117–120  

    222.    Flint D et al (2012) Splice site, frameshift, and chimeric GFAP mutations in Alexander 
disease. Hum Mutat 33(7):1141–1148  

    223.    Brenner M, Messing A (2015) A new mutation in GFAP widens the spectrum of Alexander 
disease. Eur J Hum Genet 23(1):1–2  

    224.    Tascos NA, Parr J, Gonatas NK (1982) Immunocytochemical study of the glial fi brillary 
acidic protein in human neoplasms of the central nervous system. Hum Pathol 
13(5):454–458  

   225.    de Armond SJ, Eng LF, Rubinstein LJ (1980) The application of glial fi brillary acidic (GFA) 
protein immunohistochemistry in neurooncology. A progress report. Pathol Res Pract 
168(4):374–394  

      226.    Louis DN et al (2007) The 2007 WHO classifi cation of tumours of the central nervous 
system. Acta Neuropathol 114(2):97–109  

     227.    Herpers MJ, Budka H (1984) Glial fi brillary acidic protein (GFAP) in oligodendroglial 
tumors: gliofi brillary oligodendroglioma and transitional oligoastrocytoma as subtypes of 
oligodendroglioma. Acta Neuropathol 64(4):265–272  

    228.    Cruz-Sanchez FF et al (1988) An immunohistological study of 66 ependymomas. 
Histopathology 13(4):443–454  

    229.    Rutka JT, Smith SL (1993) Transfection of human astrocytoma cells with glial fi brillary 
acidic protein complementary DNA: analysis of expression, proliferation, and tumorigenic-
ity. Cancer Res 53(15):3624–3631  

   230.    Toda M et al (1999) Suppression of glial tumor growth by expression of glial fi brillary acidic 
protein. Neurochem Res 24(2):339–343  

    231.    Weinstein DE, Shelanski ML, Liem RK (1991) Suppression by antisense mRNA demon-
strates a requirement for the glial fi brillary acidic protein in the formation of stable astrocytic 
processes in response to neurons. J Cell Biol 112(6):1205–1213  

    232.    Wilhelmsson U et al (2003) Loss of GFAP expression in high-grade astrocytomas does not 
contribute to tumor development or progression. Oncogene 22(22):3407–3411  

    233.    Gallego Perez-Larraya J et al (2014) Diagnostic and prognostic value of preoperative com-
bined GFAP, IGFBP-2, and YKL-40 plasma levels in patients with glioblastoma. Cancer 
120(24):3972–3980  

    234.       Coelho-Aguiar JM et al (2015) The enteric glia: identity and functions. Glia 63(6):921–935  
    235.    Aube AC et al (2006) Changes in enteric neurone phenotype and intestinal functions in a 

transgenic mouse model of enteric glia disruption. Gut 55(5):630–637  
   236.    Bush TG et al (1998) Fulminant jejuno-ileitis following ablation of enteric glia in adult 

transgenic mice. Cell 93(2):189–201  
    237.    Cornet A et al (2001) Enterocolitis induced by autoimmune targeting of enteric glial cells: a 

possible mechanism in Crohn’s disease? Proc Natl Acad Sci U S A 98(23):13306–13311  

J.M. Coelho-Aguiar et al.



117

    238.    Almond S et al (2007) Characterisation and transplantation of enteric nervous system 
progenitor cells. Gut 56(4):489–496  

   239.    Bondurand N et al (2003) Neuron and glia generating progenitors of the mammalian enteric 
nervous system isolated from foetal and postnatal gut cultures. Development 130(25):
6387–6400  

   240.    Hetz S et al (2014) In vivo transplantation of neurosphere-like bodies derived from the human 
postnatal and adult enteric nervous system: a pilot study. PLoS One 9(4):e93605  

   241.    Joseph NM et al (2011) Enteric glia are multipotent in culture but primarily form glia in the 
adult rodent gut. J Clin Invest 121(9):3398–3411  

   242.    Kruger GM et al (2002) Neural crest stem cells persist in the adult gut but undergo changes in 
self-renewal, neuronal subtype potential, and factor responsiveness. Neuron 35(4):657–669  

   243.    Laranjeira C et al (2011) Glial cells in the mouse enteric nervous system can undergo neuro-
genesis in response to injury. J Clin Invest 121(9):3412–3424  

   244.    Liu MT et al (2009) 5-HT4 receptor-mediated neuroprotection and neurogenesis in the 
enteric nervous system of adult mice. J Neurosci 29(31):9683–9699  

    245.    Rauch U et al (2006) Isolation and cultivation of neuronal precursor cells from the develop-
ing human enteric nervous system as a tool for cell therapy in dysganglionosis. Int J Colorectal 
Dis 21(6):554–559  

     246.    von Boyen GB et al (2011) Distribution of enteric glia and GDNF during gut infl ammation. 
BMC Gastroenterol 11:3  

    247.    Clairembault T et al (2014) Enteric GFAP expression and phosphorylation in Parkinson’s 
disease. J Neurochem 130(6):805–815  

    248.    Devos D et al (2013) Colonic infl ammation in Parkinson’s disease. Neurobiol Dis 50:42–48  
    249.    Lin T et al (2003) The role of the cytoskeleton in capacitative calcium entry in myenteric glia. 

Neurogastroenterol Motil 15(3):277–287  
    250.    Jessen KR, Mirsky R (1985) Glial fi brillary acidic polypeptides in peripheral glia. Molecular 

weight, heterogeneity and distribution. J Neuroimmunol 8(4–6):377–393  
    251.    Jessen KR, Mirsky R (2005) The origin and development of glial cells in peripheral nerves. 

Nat Rev Neurosci 6(9):671–682  
    252.    Bianchini D et al (1992) GFAP expression of human Schwann cells in tissue culture. Brain 

Res 570(1–2):209–217  
      253.    Triolo D et al (2006) Loss of glial fi brillary acidic protein (GFAP) impairs Schwann cell 

proliferation and delays nerve regeneration after damage. J Cell Sci 119(Pt 19):3981–3993  
    254.    Obremski VJ, Hall AM, Fernandez-Valle C (1998) Merlin, the neurofi bromatosis type 2 gene 

product, and beta1 integrin associate in isolated and differentiating Schwann cells. J Neurobiol 
37(4):487–501  

    255.    Rezniczek GA et al (1998) Linking integrin alpha6beta4-based cell adhesion to the interme-
diate fi lament cytoskeleton: direct interaction between the beta4 subunit and plectin at 
multiple molecular sites. J Cell Biol 141(1):209–225  

    256.    Bernier G et al (1998) Dystonin is an essential component of the Schwann cell cytoskeleton 
at the time of myelination. Development 125(11):2135–2148    

4 The Role of the Cytoskeleton in Cell Migration, Its Infl uence on Stem Cells…



119© Springer Science+Business Media New York 2015 
H. Schatten (ed.), The Cytoskeleton in Health and Disease, 
DOI 10.1007/978-1-4939-2904-7_5

    Chapter 5   
 Centrosome–Microtubule Interactions 
in Health, Disease, and Disorders 

             Heide     Schatten      and     Qing-Yuan     Sun   

            Introduction 

 The centrosome, known as the primary microtubule organizing center (MTOC) of 
eukaryotic cells, is a multifunctional organelle of ca. 1 μm in diameter without 
membrane boundaries. It plays essential roles in all cell cycle stages and undergoes 
remodeling during the transition from interphase to mitosis (G2/M) to become 
division- competent and assemble a functional mitotic apparatus that is able to sepa-
rate chromosomes accurately to the dividing daughter cells (reviewed in [ 1 ]). 
Centrosome dysfunctions have been implicated in numerous diseases and disorders 
including Alstrom syndrome, Bardet–Biedl syndrome, retinitis pigmentosa, deaf-
ness, obesity, diabetes mellitus, lissencephaly, mental and behavioral disorders, 
malformations, juvenile autosomal recessive Parkinson disease, rheumatoid arthri-
tis, polycystic kidney disease, ciliopathies, cancer and others (reviewed by Badano 
et al. [ 2 ], Nigg and Raff [ 3 ], Gerdes et al. [ 4 ], Bettencourt-Dias et al. [ 5 ], Schatten 
[ 6 ]). The centrosome is a versatile organelle that functions as major hub for signal 
transduction molecules and orchestrates signal transduction through its microtubule 
network. The centrosome further is involved in Golgi functions, in directing organ-
elle movement such as mitochondria and cargo such as enzyme-containing vesicles 
and therefore, centrosome dysfunctions have wide-ranging impacts on cellular 
metabolism and cellular health. As detailed in    Chap.   10     by Li and Hu, the centro-
some also plays a role in primary cilia formation, thereby interacting with the 
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extra- and intracellular microenvironment. Detailed data are available for primary 
cilia dysfunctions in polycystic kidney disease in which the proteins polycystin-1, 
polycystin- 2, polaris, and cystin are affected [ 7 ]. 

 The structure and functional components of the centrosome and the centrosome 
duplication cycle have been reviewed previously [ 1 ,  8 ,  9 – 12 ,  187 ]    and will only be 
briefl y addressed here while this chapter is focused on centrosome–microtubule 
interactions and their dysfunctions in disease and disorders. As indicated above, 
numerous diseases have directly been linked to centrosome dysfunctions (reviewed 
by Badano et al. [ 2 ], Nigg and Raff [ 3 ], Gerdes et al. [ 4 ], Bettencourt-Dias et al. [ 5 ], 
Schatten [ 6 ]) and others have been linked to centrosome- related signaling dysfunc-
tions. Some of the major diseases and disorders linked to centrosomes will be 
addressed here while others will be mentioned and references will be provided. In this 
chapter we will primarily focus on (1) Centrosome–microtubule dynamics; (2) 
Centrosome dysfunctions in aging cells; (3) Centrosome dysfunctions in cancer 
cells.  

    Section 1: Centrosome–Microtubule Dynamics 

 As indicated above, the centrosome is a multifunctional cellular organelle without 
membrane boundaries that relies on precise regulation to nucleate microtubules for 
specifi c and varying functions throughout the cell cycle. Several regulators of cen-
trosome functions have been determined in which kinases and phosphatases as well 
as post-translational modifi cations play major roles. Such modifi cations allow cen-
trosomes to nucleate and organize different microtubule formations. Whereas the 
interphase centrosome nucleates the large interphase aster that radiates from the 
nucleus-associated interphase centrosome the mitotic centrosomes organize polar 
asters and the central mitotic spindle that is critical for chromosome alignment and 
separation. As will be detailed below signifi cant remodeling of the centrosome 
takes place at the transition from G2/M to modify the interphase centrosome into 
division-competent mitotic centrosomes, a process termed centrosome maturation. 
During this process centrosomes become enabled to nucleate an increased number 
of mitotic microtubules as a result of increased amounts of γ-tubulin that associate 
with the mitotic centrosome. 

 As mentioned above, the centrosome holds key roles in cell cycle regulation and in 
several other complex cellular functions that directly or indirectly affect cell cycle 
progression and cellular metabolism. Numerous kinases are involved in the transition 
from G2 to mitosis [ 9 – 12 ]. These kinases primarily play a role in centrosome protein 
phosphorylation while dephosphorylation takes place when cells exit mitosis. 

 In a typical mammalian somatic cell, a perpendicularly oriented centriole pair is 
embedded in a centrosomal matrix (Fig.  5.1 ) that oftentimes is also referred to as 
pericentriolar material (PCM). The centrosomal matrix (PCM) is composed of a 
lattice of coiled-coil proteins and contains specifi c centrosomal proteins including 
the γ-tubulin ring complexes (γ-TuRCs), pericentrin, centrin, and calcium-sensitive 
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components ([ 14 ]; reviewed in [ 1 ]). The composition of proteins embedded within 
the centrosomal matrix varies in different cell cycle stages while centrioles, on the 
other hand, do not signifi cantly change in their molecular composition throughout 
the cell cycle. However, centriole duplication takes place in a precisely regulated 
process to assure that centrioles are duplicated only once during the cell cycle. In 
mammalian cells, centrioles display a typical composition of nine outer triplet 
microtubules forming a barrel-shaped small tube without containing central micro-
tubules. Centrioles duplicate through a semiconservative duplication process dur-
ing which a younger (daughter) centriole forms perpendicular to the older 
(mother) centriole. The mother centriole is distinguished from the daughter cen-
triole by appendages as a characteristic feature which indicates structural and 
functional differences. In mammalian cells, centrioles are involved in the assembly 
of specifi c centrosome proteins and in the duplication of centrosomal material [ 15 ]. 

  Fig. 5.1    A typical centrosome in somatic cells is composed of centrosomal material, also referred 
to as pericentriolar material (PCM), surrounding two perpendicularly oriented centrioles. 
Embedded in this matrix are centrosomal proteins such as γ-tubulin and the γ-tubulin ring com-
plexes that nucleate microtubules along with numerous associated proteins as described in the text. 
Other components within the centrosomal matrix include the microtubule anchoring complexes. 
Modifi ed from Schatten and Sun [ 13 ]       
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The exact composition of centrosomal material is not yet clear, as it is diffi cult to 
generate precise data with our currently available methods but it has been reported 
that as many as 500 proteins may be associated with the interphase centrosome 
structure [ 16 ] although it is likely that a large number of these proteins may be 
centrosome- associated proteins or proteins that are temporarily localized to centro-
somes during specifi c cell cycle stages. A more conservative estimate may include 
about 60–100 centrosomal proteins to be present in a typical somatic cell interphase 
centrosome (reviewed in [ 17 ]). Of these, centrosome core proteins are tightly asso-
ciated with the centrosome matrix while others are part of the cell cycle-dependent 
structural centrosomal changes in most cell systems.

   So far, purifi ed centrosomes have been analyzed by mass spectrometry, revealing 
several classes of proteins that include  structural proteins  (alpha-tubulin, beta- 
tubulin, γ-tubulin, γ-tubulin complex components 1–6, centrin 2 and 3, AKAP450, 
pericentrin/kendrin, ninein, pericentriolar material 1 (PCM1), ch-TOG protein, 
C-Nap1, Cep250, Cep2, centriole-associated protein CEP110, Cep1, centriolin, 
centrosomal P4.1-associated protein (CPAP), CLIP-associating proteins CLASP1 
and CLASP 2, ODF2, cenexin, Lis1, Nudel, EB1, centractin, myomegalin);  regula-
tory molecules  (cell division protein 2 (Cdc2), Cdk1, cAMP-dependent protein 
kinase type II-alpha regulatory chain, cAMP-dependent protein kinase-alpha cata-
lytic subunit, serine/threonine protein kinase Plk1, serine/threonine protein kinase 
Nek2, serine/threonine protein kinase Sak, Casein kinase I, delta and epsilon iso-
forms, protein phosphatase 2A, protein phosphatase 1 alpha isoform, 14-3-3 pro-
teins, epsilon and gamma isoforms);  motor and motor-related proteins  (dynein 
heavy chain, dynein intermediate chain, dynein light chain, dynactin 1, p150 Glued, 
dynactin 2, p50, dynactin 3); and  heat shock proteins  (heat shock protein Hsp90, 
TCP subunits, and heat shock protein Hsp73). 

  Gamma-tubulin  is an essential centrosomal protein that is primarily found in the 
centrosome matrix structure, but it can also serve as nucleating sites in areas other 
than the centrosome and it can be associated with microtubule walls. It also is impor-
tant for microtubule nucleation from the Golgi and it associates with the plasma mem-
brane during cellular polarization. The major nucleating complex for microtubules 
from centrosomes is the ca. 2.2-MDa γ-TuRC that is present in all cells studied so far 
[ 18 ] and consists of 12 or 14 γ-tubulin molecules. Hundreds of γ-TuRCs may be 
embedded in the centrosome matrix, dependent on the requirements for microtubule 
nucleation which differs in different cell cycle stages. The large γ-TuRC contains 5-7 
small complexes, the γTuSCs (around 280 kDa) that each comprises two molecules of 
γ-tubulin and one molecule each of GCP (γ-tubulin complex protein) 2 and 3 [ 19 ]. 
The γ-TuSCs associate with the γ-TuRC by condensation and association with pro-
teins GCP4, GCP5, GCP6, and GCP-WD/NEDD1. Two functional genes for γ-tubulin 
have been identifi ed for mammalian cells (TUBG1, TUBG2). Posttranslational modi-
fi cations of γ-tubulin have been reported which includes phosphorylation and mono-
ubiquitination. Complexes of γ-tubulin with protein tyrosine kinases of the Src family, 
polo-like kinase, microtubule affi nity-regulating kinase 4 (MARK 4) or phos-
phoinositide 3-kinase have also been documented. Various proteins and protein com-
plexes are needed to anchor the γ-TuRC to the centrosome matrix including the large 
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coiled-coil A-kinase anchoring proteins [ 19 – 22 ,  23 – 26 ], Cep135 [ 27 ], ninein, aug-
min, Cep192/SPD2, AKAP450/CG-NAP, pericentrin/kendrin, and CDK5RAP2/
centrosomin. Dynactin plays a major role in microtubule anchorage at centrosomes 
as well as at non-centrosomal anchorage sites. It is preferentially localized to the 
mother centriole [ 28 – 30 ]. Several of the microtubule minus-end binding proteins 
including those of the γ-TuRC are accumulated at the proximal ends of centrioles. 
Tubulin polyglutamylation of the centriole walls modulates interaction between 
tubulin- and microtubule-associated proteins. Much interest has been focused on 
how the activity of the γ-TuRC is regulated and signifi cant new data have been 
produced that identifi ed new components that interact with or regulate the γ-TuRC 
such as NME7 [ 31 ] and TACC3 Protein [ 32 ]. More specifi c information on γ-TuRC 
regulation is available in several recent original and review papers [ 31 – 34 ]. New 
methods including subdiffraction- resolution fl uorescence microscopy combined 
with site-specifi c antibody analyses have generated new insights into high-order 
spatial organization of the centrosome structure [ 35 – 38 ]. 

 As mentioned above, the number of microtubules nucleated by the γ-TuRC var-
ies in different cell cycle stages. In interphase, fewer but longer microtubules are 
nucleated, while in mitosis, γ-TuRCs become increased to nucleate more microtu-
bules. Mitotic microtubules are shorter, larger in number, and highly dynamic. The 
regulation of microtubule nucleation includes cell cycle-specifi c proteins that par-
ticipate in the centrosome maturation process and include the small GTPase Ran, 
Aurora A kinase, polo-like kinases, and others (reviewed in [ 6 ]). 

  Pericentrin  forms a ca. 3-MDa complex with γ-tubulin and depends on dynein 
for assembly onto centrosomes [ 39 ]. Pericentrin is part of the pericentrin/AKAP450 
centrosomal targeting (PACT) domain [ 40 ] involved in recruiting γ-tubulin to cen-
trosomes [ 20 ,  21 ]. Mutation of the pericentrin gene results in loss of recruitment of 
several other centrosomal proteins which becomes manifested in diseases or disor-
ders (reviewed in [ 2 ]).  Centrins  are primarily associated with centrioles, but are 
also components of centrosomes with an essential role in centrosome duplication 
([ 15 ,  41 – 43 ]; reviewed in [ 44 ]). 

  NuMA  ( Nu clear  M itotic  A pparatus protein): One of the critical proteins enabling 
mitotic and meiotic centrosome functions is NuMA. NuMA becomes a signifi cant 
centrosome-associated protein during mitosis as well as meiosis when it forms an 
insoluble crescent around the centrosome area facing toward the central mitotic or 
meiotic spindle. NuMA is important for cross-linking spindle microtubules and for 
tethering microtubules precisely into the bipolar mitotic or meiotic apparatus [ 45 ]. 
NuMA is a multifunctional protein (reviewed in [ 46 ,  47 ] that serves as nuclear 
matrix protein in the nucleus during interphase but it is not associated with inter-
phase centrosomes. NuMA becomes dispersed into the cytoplasm during nuclear 
envelope breakdown and associates with microtubules for translocation to the 
 centrosomal area. Cdk1/cyclin B-dependent phosphorylation is important for this 
process to take place [ 48 ]; the association with microtubules and translocation to 
centrosomes requires dynein–dynactin-mediation; failure of this mediation will 
result in meiotic and mitotic dysfunctions [ 185 ]. 
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  Regulation of the Centrosome Complex     The regulation of the centrosome com-
plex is critically important for accurate functions throughout the cell cycle and for 
coordination with several cell cycle events. It includes accurate duplication of the 
centrioles as well as the centrosomal material for precise coordination of centro-
some and chromosome dynamics. In mitosis as well as meiosis, centrosomes orga-
nize microtubules that attach to kinetochores as part of a complex molecular 
machinery that assures accurate separation and equal distribution of chromosomes 
to the dividing cells. Centrosomes and chromosomes undergo coordinated duplica-
tion cycles in parallel pathways to assure accurate cell divisions. Cell cycle abnor-
malities occur when these events become misregulated and desynchronized, as will 
be addressed in sections 2 and 3.  

  Centrosome Duplication     It is important that centrosomes are duplicated only once 
during the cell cycle in a process that is well synchronized with the DNA cycle to 
assure precise chromosome partitioning to the dividing daughter cells (Fig.  5.2 ). 
Centrosome duplication and DNA replication both require hyperphosphorylation of 
the retinoblastoma (RB) protein and activation of Cdk2. The program of duplication 
and block for reduplication has been reviewed (reviewed in [ 1 ,  9 – 12 ]) and it has 

  Fig. 5.2    Centrosome cycle in somatic cells. ( A ) The interphase centrosome is located next to the 
nucleus and organizes the interphase microtubule array. ( B ) Centriole and centrosome duplication 
is synchronized with DNA duplication during the S phase. ( C ) Separation of the duplicated centro-
some complex to the forming mitotic poles takes place during early prophase. ( D ) Establishment 
of the bipolar mitotic apparatus with centrosomes localized at the center of the mitotic poles. ( E ) 
Compacted metaphase centrosomes organize a well-focused metaphase spindle. ( F ) Reorganized 
centrosomal material closely associated with the reforming daughter nuclei of dividing cells. ( G – I ) 
Centrosomal abnormalities resulting in tripolar ( G ) or multipolar ( H – I ) spindle formations. 
Modifi ed from Schatten [ 6 ]       
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been shown that centrosome duplication starts to take place shortly before the G2 
cell cycle stage in a precisely orchestrated duplication program. The process begins 
with disorientation of the pair of centrioles, centriole duplication, centriole disjunc-
tion, and separation of sister centrioles (reviewed in [ 49 ,  50 ]). While this process 
has been well studied in somatic cells and quite detailed knowledge has been accu-
mulated on centriole duplication, we still do not yet fully understand duplication of 
centrosomal material and centrosome dynamics throughout the cell cycle. 
Centrosome duplication and separation is frequently correlated to the better under-
stood centriole dynamics and centriole duplication cycle. Our knowledge about cen-
trosome duplication primarily relates to phosphorylation (reviewed in [ 9 – 12 ]). We 
know that the initiation of centrosome duplication is under cytoplasmic control and 
driven by cyclin-dependent kinase 2 (Cdk2) complexed with cyclin E or cyclin A 
that rises during the late G1 stage (reviewed in [ 51 ]). The initiation of centrosome 
duplication further requires calcium/calmodulin-dependent kinase II (CaMKII) 
[ 52 ] that localizes to spindle poles [ 53 ] and phosphorylates centrosome proteins 
in vitro [ 54 ]. Specifi c centrosome proteins depend on multiple signaling to allow the 
transition from G2 to mitosis; the G2/M cell cycle transition is critical for centro-
some phosphorylation to become division competent and allow cell proliferation 
(reviewed in [ 1 ]). Polo-like kinases are required for multiple stages of mitotic pro-
gression and they are further involved in centrosome separation [ 55 – 57 ].

    The block to centriole reduplication may involve ubiquitin-mediated proteolysis 
of centrosomal proteins, as several components of the SCF (Skp1/cullin/Fbox; 
ubiquitin ligase complex) proteolysis pathway as well as the 26S proteasome are 
 localized to centrosomes in human cells [ 9 – 11 ,  58 – 61 ]. The centrosomal protein 
centrin plays a role in centrosome disjunction at the G2/prophase transition, and it 
has also been shown that the Nek2 kinase is involved in this process ([ 62 ]; reviewed 
in [ 63 ]). Centrosome separation is in part driven by plus- and minus end-directed 
microtubule motor proteins which takes place in interphase around the nucleus and 
during mitosis at the mitotic poles. 

 As indicated above, the G2/M transition represents a critical phase during which 
centrosomes mature to become division-competent in a process requiring Cdk1/
cyclin B as well as Cdk1/cyclin A (reviewed in [ 64 ]). Cdk1/cyclin B activation is 
detected in centrosomes during prophase [ 65 ]. During the G2/M phase several 
important centrosomal proteins are acquired including polo-like kinase 1 (Plk1) 
[ 66 ], and NuMA [ 67 ]. On the other hand, interphase centrosome proteins such as 
C-Nap1 [ 68 ] or Nlp [ 69 ] are removed. γ-TuRC recruitment to the centrosome 
increases prior to mitosis to nucleate increased numbers of microtubules for spindle 
formation. Polo and Aurora A kinases [ 70 ] and cdc2/cyclin B kinase [ 65 ] are pre-
cisely regulated during G2/M and during mitosis. Misregulation is associated with 
diseases and disorders as will be addressed in sections 2 and 3. Exit from mitosis 
requires degradation of cyclin B which is achieved by proteins binding to the 
anaphase- promoting complex/cyclosome (APC/C); the activated APC/CCdc20 
degrades cyclin B and securin to allow cell cycle exit from mitosis [ 71 – 74 ]. 
Microtubule motor proteins are important for the assembly of a functional mitotic 
centrosome which includes shuttling of the proteins pericentrin, centrin, ninein, and 
NuMA along microtubules toward the centrosomal area. 
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 As of now we do not yet fully understand how centrosome proteins are associ-
ated with the centrosomal matrix but it is possible that the centrosomal matrix may 
play a role in clustering of centrosome proteins during mitosis ([ 75 ]; reviewed in 
[ 6 ]). Invertebrate models have provided some information on the centrosomal 
matrix structure which revealed that this material may contain fi brous cytoskeleton- 
like material. In the Spisula model, material left after high-salt extraction of centro-
somal proteins contained a fi brous component [ 76 ,  77 ], perhaps composed of 
fi lament-like material that may have intermediate fi lament-like characteristics. Our 
own studies on sea urchin centrosomes revealed fi lament-like proteins that could be 
detected with Ah6, a monoclonal antibody to intermediate fi lament-like proteins 
[ 78 ]. In addition to these proteins microtubule-associated proteins (MAPs) in the 
centrosomal matrix may be involved in centrosome clustering. Other proteins that 
may play a role in functions of the centrosomal matrix includes HSET (kinesin- 
related protein), as HSET depletion blocks centrosome clustering and promotes 
multipolar divisions [ 79 ]. 

 The interactions of microtubules with centrosomes and their interdependent reg-
ulation is complex and we do not yet fully understand the factors that affect centro-
somes and microtubules and their infl uence on each other which includes signal 
transduction pathways that play a role in communication between microtubules and 
centrosomes. Signal transductions that have been explored allowed close insights 
into this important relationship in somatic as well as in reproductive cells and deter-
mined critically important molecular mechanisms that effectively regulate centro-
some and microtubule dynamics, their interactions with each other, and 
communication with other cellular components. Many of the signaling molecules 
that have been identifi ed to colocalize with centrosomes use centrosomes as their 
central docking station for cellular communications in which microtubules provide 
the distribution network. As centrosomes are able to modify the microtubule net-
work they can facilitate changes to accommodate cell cycle-dependent signaling 
requirements. Key signaling molecules that associate with centrosomes include the 
mitogen activated protein kinase (MAPK) that plays a critical role in centrosome 
and microtubule regulation during meiosis, mitosis, and cell division ([ 80 ]; 
reviewed in [ 1 ]). Polo and Aurora A kinases [ 70 ], and cdc2/cyclin B kinase [ 65 ] are 
other important meiotic and mitotic cell cycle regulators that are concentrated at 
the centrosome (reviewed in [ 1 ]). These kinases are critical for centrosome regula-
tion, as abnormalities have been linked to centrosome pathologies affecting cellular 
health. In mouse meiotic maturation p38α MAPK, a centrosome-associated protein, 
has been shown to regulate spindle assembly, spindle length and chromosome seg-
regation [ 81 ]. Depletion of p38α affects other proteins and results in spindle pole 
defects and aneuploidy. 

  Posttranslational Tubulin Modifi cations     The effects of posttranslational modifi cations 
on microtubule dynamics and functions have been reviewed [ 82 – 84 ] and their 
importance for modulations of cytoskeletal and cellular functions have been 
highlighted. PTMs are chemical modifi cations that regulate microtubule activity 
and interactions with other cellular molecules and components by creating marks 
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on microtubules for specialized interactions and function-specifi c activities [ 83 ]. 
PTM- related microtubule dysfunctions have been linked to diseases such as cancer, 
diabetes, heart diseases, neurodegenerative diseases, and various others (reviewed 
in [ 82 ,  84 ]).  

 Several tubulin PTMs have been studied in somatic and reproductive cells and 
include acetylation and detyrosination/tyrosination. These PTMs have been impli-
cated in microtubule stability, in networking with other proteins, and in targeted 
associations with the microtubule motor proteins dynein and/or kinesin that accom-
modate transport of cargo molecules along microtubules. The association of dynein 
with microtubules is important for transport of centrosome proteins such as pericen-
trin and centrosome-associated proteins such as NuMA to remodel centrosomes 
throughout the cell cycle (reviewed in [ 1 ,  82 ]). These PTMs are also important for 
localized function-specifi c stabilization of microtubules [ 83 ,  85 ,  86 ] which is an 
important aspect for stabilizing labile microtubules at the minus ends facing the 
centrosomal area. 

 Acetylation of microtubules is a reversible PTM that is mediated by acetyltrans-
ferase [ 87 ] while tubulin deacetylation is mediated by two known enzymes, the 
histone deacetylase 6 (HDAC6) [ 88 ,  89 ] to reverse acetylation of Lys40, and sirtuin 
2 (SIRT2) [ 90 ]. HDAC6 functions can be inhibited by trichostatin A (TSA) [ 91 ,  92 ] 
and tubastatin A [ 93 ]. The reversible detyrosination/tyrosination cycle plays a role 
in the recruitment of microtubule-binding proteins and specifi c molecular motors. 
Detyrosination is achieved by the removal of a Tyr functional group from tubulin, 
whereas tyrosination is achieved by re-addition of Tyr that returns tubulin to its 
nascent state [ 94 ]. 

  The Primary Cilia-Centrosome Cycle     Primary cilia are tightly correlated with the 
centrosome cycle and the regulatory relationship between primary cilia functions 
and the cell cycle has clearly been established (reviewed in [ 95 ,  186 ]). The primary 
cilium–centriole–centrosome cycle starts during G1 when the distal end of the 
mother centriole becomes associated with a membrane vesicle (reviewed by Pan 
and Snell [ 95 ]) followed by growth into an axoneme that is surrounded by the 
enlarging ciliary vesicle that fuses with the plasma membrane. During the subse-
quent S phase centrioles duplicate and lengthen; the mature length of the primary 
cilium is achieved during G2. As detailed in Chap.   10     by Li and Hu, the primary 
cilium is a non-motile single cilium composed of 9 outer microtubule doublets with 
no central microtubule pair (“9 + 0”); it is covered by a specialized receptor-rich 
plasma membrane. The primary cilium protrudes from almost all cells in our body 
[ 96 – 98 ] and it communicates signals from the external cellular environment to the 
cell body. The molecular aspects of this cilium and functions are addressed in Chap. 
  10     by Li and Hu of this book. Numerous diseases have been associated with primary 
cilia dysfunctions that have been well elaborated for polycystic kidney syndrome 
and include many diseases and disorders grouped under the umbrella of ciliopa-
thies. Several studies have revealed details of signal transduction cascades between 
primary cilia and the centrosome that are essential for accurate cell cycle progres-
sion [ 1 ,  97 – 103 ]. These are reviewed in Chap.   10     by Li and Hu.   
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    Section 2: Centrosome Dysfunctions in Aging Cells 

 By now centrosome dysfunctions in diseases and disorders have been studied by a 
number of different investigators (reviewed by Badano et al. [ 2 ], Nigg and Raff [ 3 ], 
Gerdes et al. [ 4 ], Bettencourt-Dias et al. [ 5 ], Schatten [ 6 ]) but centrosome dysfunc-
tions in aging cells are still largely unexplored although it has clearly been shown that 
centrosomes and the cytoskeleton are affected by aging in reproductive cells [ 13 ], in 
stem cells [ 104 ,  105 ], and in various cultured cells [ 106 ,  107 ]. The best examples of 
centrosome and cytoskeletal changes during aging come from oocyte cells in which 
aging occurs rapidly when fertilization does not take place within a certain time frame 
(reviewed in [ 108 – 110 ]). Furthermore, oocyte aging is well known to be associated 
with aneuploidy primarily in women past 35 years of age which results in low 
fertilization rates, affecting many women in advanced ages who desire to have 
children and seek treatment in in vitro fertilization (IVF) clinics. 

 Oocytes of most mammalian species are arrested at the meiosis II (MII) stage 
and remain arrested until fertilization takes place which typically occurs soon after 
ovulation. The window for optimal fertilization varies in different species. If fertil-
ization does not take place within a certain time frame unfertilized oocytes remain 
in the oviduct or in culture and will undergo time- dependent quality changes in a 
process termed oocyte aging. In unfertilized MII stage oocytes several aging effects 
take place in humans and all mammalian animal models studied so far. In humans, 
oocyte aging occurs within a 24 h time frame and includes changes in calcium 
metabolism, decrease in enzyme activity, decrease in essential organelle functions 
such as mitochondria resulting in decrease in ATP production, destabilization of the 
microfi lament and microtubule cytoskeleton, loss of centrosome integrity associ-
ated with loss of spindle integrity, and loss of cohesion between sister chromatids 
resulting in chromosome mis-segregation and aneuploidy. Loss of spindle integrity 
includes dispersion of centrosomal proteins including γ-tubulin and NuMA from 
the centrosome core structure. The mechanisms underlying these changes and con-
sequences or causes are not well understood but several pieces of information have 
been accumulated in recent years. It has been shown in human oocytes that micro-
tubules become destabilized in aging oocytes which prevents accurate motor-driven 
transport of centrosomal proteins along microtubules to form and maintain a func-
tional centrosome [ 111 ,  185 ]. Because of the high demand to overcome the effects 
of oocyte aging to allow fertilization, embryo development and the birth of healthy 
babies this area of research has progressed more rapidly compared to research on 
aging in somatic cells and studies on oocyte aging have become important for pro-
cedures that can be applied in IVF clinics to overcome the aging effects. One of the 
important goals to overcome the effects of aging is to understand and target the 
mechanisms underlying loss of spindle integrity and prevent aneuploidy [ 13 ]. 

 In fresh oocytes, centrosome dynamics are precisely regulated and include active 
maintenance of centrosomes until fertilization takes place. As mentioned above, the 
MII spindle in mammalian reproductive systems is highly dynamic and becomes 
unstable if regulation by a complex set of kinases and other regulatory proteins fails 
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or if fertilization does not take place within a certain period of time (reviewed in [ 108 , 
 110 ,  112 ,  113 ]). The kinases involved in the process of meiosis includes CDK1/cyclin 
B and other kinases such as PKA, AKT, MAPK, Aurora A, CaMKII, the phosphatases 
CDC5, CDK14s and others that participate in the meiotic process. 

 As mentioned above, aneuploidy resulting from oocyte aging is associated with 
disintegration of centrosomal proteins such as NuMA and γ-tubulin from the centro-
somal core structure of the MII spindle which coincides with the formation of numer-
ous small centrosomal aggregates in the ooplasm. It is not yet clear whether the 
centrosomal core structure itself is affected by oocyte aging or whether microtubule 
destabilization results in loss of microtubule motor activities in which transport of 
centrosomal proteins such as NuMA and pericentrin is impaired, thereby affecting 
proper maintenance of a functional centrosome. It is possible that loss of microtubule 
stability is the result of loss of microtubule acetylation [ 85 ] that prevents accurate 
association of the motor proteins dynein and kinesins with microtubules (reviewed in 
[ 82 ]). Other factors that affect microtubule and centrosome dynamics and stability 
include signal transductions that may be misguided in aging oocytes (reviewed in 
[ 1 ,  13 ]), resulting in an inability to maintain spindle integrity. 

 Dispersion of centrosomal components including NuMA and γ-tubulin from the 
meiotic spindle poles in aging oocytes has been reported for several non-rodent 
mammalian animal models as well as for humans ([ 114 ,  115 ]; reviewed in 
[ 108 ,  111 ,  116 ]). Oocyte aging affects meiotic regulation which not only can lead 
to aneuploidy affecting fertilization but also to subsequent cell and developmental 
abnormalities resulting in abortion, disease, or developmental defects (reviewed in 
[ 108 ,  110 ,  112 ,  113 ,  116 ]). Diseases that may be associated with meiotic aneuploi-
dies to become manifested later in life include childhood cancer with characteristic 
centrosome dysfunctions that may originate from aberrant oocyte centrosomes. 

 Centrosomes are primarily located at the two meiotic spindle poles in mature MII 
oocytes. It is important to emphasize that, while these centrosomes serve functions 
as known for mitotic centrosomes, there are important differences between meiotic 
centrosomes and mitotic centrosomes. Whereas a typical somatic cell centrosome 
contains a pair of centrioles (reviewed in [ 1 ]) centrally located within the centro-
some, centrosomes of the oocyte’s meiotic spindle are acentriolar. These acentriolar 
centrosomes contain centrosomal proteins that are known for mitotic centrosomes 
embedded in the centrosome matrix including γ-tubulin, pericentrin, centrin, and 
the nuclear mitotic apparatus protein, NuMA, but the central centriole pair is absent 
(reviewed in [ 1 ]). As the quantity and specifi c composition of centrosomal proteins 
may differ in different cell systems it can also be different in oocytes of different 
animal species. 

 As mentioned above, in aging oocytes one of the most noticeable features of 
aging is the deterioration of the meiotic spindle with disintegration of centro-
somal proteins from the centrosomal core structure that is correlated with loss of 
microtubule stability (reviewed in [ 13 ]). As we do not yet fully understand the 
underlying reasons for centrosome and microtubule instability in aging MII spin-
dles it is possible that the absence of centrioles plays a role in the rapid loss of 
spindle integrity. In somatic cells centrioles are intimately involved in centrosome 
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dynamics, potentially contributing to stability that may be absent in acentriolar 
centrosomes. 

 In a variety of other cell systems centrosome dysfunctions have also been impli-
cated in aging; for example, supernumerary centrosome abnormalities have been 
observed in senescing cells [ 106 ] which may be the result of cell cycle abnormali-
ties in which signal transductions are altered. As indicated above, centrosomes 
undergo remodeling at the transition from G2/M which is the stage during which 
many of the cell cycle regulators are downregulated in aging cells and affect centro-
some functions. We know that specifi c kinases and phosphatases are important for 
cytoskeletal regulation in meiotic and mitotic spindles (reviewed in [ 82 ,  117 ]); in 
aging cells, studies have shown that centrosomes have lower activity in centrosome- 
associated protein kinases [ 118 ,  119 ] which includes Plk that serves an important 
role in centrosome functions [ 107 ]. Furthermore, mis-orientation of centrosomes 
has been shown in aging stem cells which results in decrease in cell divisions [ 104 ], 
contributing to declines in spermatogenesis during aging. 

 Microtubule associated proteins (MAPs) and posttranslational modifi cations 
play important roles in the regulation of microtubule stability. Such stabilizing fac-
tors may be lost in aging cells contributing to microtubule instability. Other factors 
for microtubule stabilization include interactions with centrosomes and cell mem-
branes (reviewed in [ 82 ]). Individual microtubules if not regulated by specifi c 
kinases and phosphatases undergo individual microtubule aging which becomes 
important when considering aging of microtubules in the meiotic spindle of aging 
oocytes (reviewed in [ 82 ,  117 ]). Changes in posttranslational tubulin modifi cations 
have been associated with loss of microtubule stability with strong effects on micro-
tubule functions in several cell systems. PTM changes resulting in microtubule 
instability during aging have also been determined in neuronal cells in which micro-
tubule PTM dysfunctions have been linked to diseases such as Alzheimer’s and 
Parkinson’s. 

 Our previous experiments have shown that MII spindle microtubules are acety-
lated at the microtubule-centrosome interface area [ 85 ] which was correlated with 
microtubule stabilization. In aging oocytes loss of spindle integrity is fi rst seen in 
this specifi c area which suggests that loss of acetylation plays a role in spindle insta-
bility and is in part a causative factor for aneuploidy. Restoring stability of these 
microtubules may be possible by treatment of aging oocytes with deacetylation 
inhibitors such as inhibitors of HDA6 that have been used in cancer cell therapy 
[ 120 ,  121 ]. This treatment strategy may allow microtubule stabilization in the 
meiotic spindle to prevent de-acetylation-related microtubule instability. 

 Our previous studies have also shown that restoring signal transduction that may 
have been impacted during aging will halt or reverse the aging process (reviewed in 
[ 13 ]). For example, the use of caffeine to delay or prevent oocyte aging has been 
proposed by Kikuchi et al. [ 122 ,  123 ] who found that controlling the activity of 
MPF can reverse oocyte aging (reviewed in [ 108 ]). These investigators also showed 
that both MPF and MAPK are critical for maintaining oocyte spindle integrity, and 
that MPF and MAPK activities gradually decrease during oocyte aging [ 124 – 128 ]. 
Continuous treatment with 10 mM caffeine could prevent the decline in MPF and 
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MAPK activity in aging bovine oocytes ([ 129 ]; reviewed in [ 108 ]) and continuous 
treatment with caffeine could restore spindle integrity in aging porcine oocytes [ 112 ] 
with chromosomes, microtubules and the centrosomal proteins γ-tubulin and NuMA 
displaying normal appearance as known for fresh oocytes (reviewed in [ 13 ]).  

    Section 3: Centrosome Dysfunctions in Cancer Cells 

 The incidence of cancer development and progression increases with aging and 
multiple factors play a role in changes that take place during this process. It is well 
known that the mutation rate increases in cells that have reached replicative senes-
cence. Misguided signal transductions have been implicated in cancer development 
and progression which may in part be similar to those seen during physiological 
aging. One hallmark characteristic common to all cancer cells is abnormal cell division 
which is strongly related to abnormal centrosome functions. It has been recognized 
as early as 1914 [ 130 ] that centrosomes are affected in cancer cells which adversely 
affects chromosome segregation and cell division, two hallmark features that are 
clearly seen in cancer cells and tissue ([ 131 – 133 ]; reviewed in [ 1 ]). 

 Theodor Boveri’s classic remarkable discoveries and brilliant data interpreta-
tions ([ 130 ]; translated into English in [ 134 ]) ignited a new era in modern cancer 
research when the signifi cance of centrosomes was again recognized and when it 
was possible to apply new technologies to explore changes in centrosomes as impor-
tant aspect for abnormal cancer cell proliferation (reviewed in [ 1 ]). While well- 
regulated centrosomes form the bipolar mitotic spindle in mitosis cancer cell 
centrosomes frequently form multipolar spindles with consequences for aneuploidy 
and genomic instability. Abnormal multipolar mitoses resulting from supernumer-
ary centrosomes have been well documented in numerous cancers and have been 
well analyzed in HPV-associated lesions in cervical cancers in which centrosome 
abnormalities are already detected in early stages of tumor development [ 135 ]. 
While environmental insult and in some cases viral infections are known to be 
cancer- inducing factors we do not yet fully understand the underlying mechanisms 
leading to centrosomal abnormalities which in many cases may have multifactorial 
components. As cause and effect studies are still being explored in attempts to 
determine when centrosomes become dysfunctional during the cascade of events 
leading to the observed abnormalities (reviewed in [ 136 ]), it has clearly been deter-
mined that cancer cell centrosomes are signifi cantly different from noncancer cell 
centrosomes which includes their state of abnormal phosphorylation which had fi rst 
been recognized when examining breast adenocarcinoma cells [ 137 ]. Increased 
phosphorylation of cancer cell centrosomes [ 137 ] is associated with increases in 
microtubule nucleation and abnormal organization leading to aberrant attachment 
of microtubules to chromosomes (reviewed in [ 6 ]). Increased γ-tubulin expression 
has been shown in breast carcinoma cells [ 138 ,  139 ] and gliomas. 

 Centrosomes have been recognized as major microtubule organizing centers 
(MTOCs) and their role as major hub for signal transduction molecules that 
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 participate in signal transduction cascades through the microtubule network. The 
effects of misguided signal transduction on the formation of abnormal centrosomes 
and in turn the effects of abnormal centrosomes on signal transduction has been 
recognized. This interdependence may be part of a vicious cycle in which regulation 
of centrosomes and regulation of signal transduction by centrosomes are both 
affected in cancer cells. 

 Several proteins in cancer cell centrosomes are overexpressed or display abnor-
malities and include the centrosome-associated protein NuMA. The NuMA region 
on chromosome 11q13 has been associated with breast cancer susceptibility [ 140 ]. 
NuMA misregulation may further contribute to abnormalities in cancer cells, as 
NuMA requires specifi c signaling for its centrosome-associated functions in which 
signaling of cyclin B is important (reviewed in [ 46 ]); cyclin B signals may be 
affected in cancer cells. For NuMA’s relocation into the nucleus following exit from 
mitosis it has to become dissociated from the mitotic spindle poles. This process 
requires cdc1/cyclin B activity [ 141 ]. Destruction of cyclin B allows exit from mito-
sis. If NuMA does not become relocated properly into the nucleus for its interphase 
functions NuMA can form cytoplasmic focal points in the cytoplasm that organize 
abnormal microtubule asters [ 141 ] that can contribute to mitotic abnormalities. 
Such abnormal mitotic formations in cancer cells have also been observed to origi-
nate from basal bodies of dislodged primary cilia that become located in the cancer 
cell cytoplasm and form supernumerary nucleation sites for microtubule-based 
asters that participate in aberrant chromosome segregation [ 131 – 133 ,  142 ]. 

 Dysfunctions of structural, regulatory, and motor-related proteins may be other 
contributors to centrosome abnormalities. In cancer cells, the cell cycle coordina-
tion between chromosomes and centrosomes are lost, resulting in asynchronous 
misregulation and misguided duplication cycles. Multipolar centrosomes that separate 
chromosomes unequally to the dividing cells will contribute to imbalanced distribu-
tion of chromosomes resulting in cells that may lack tumor suppressor genes while 
others may have increases in tumor promoting genes. 

 Dissociation of centrosome cycles from DNA cycles have been reported after 
irradiation. Loss of proteins that are important for critical cell functions may lead to 
loss of cell polarity and increased cancer cell formations. For example, loss of Plk3 
function will result in loss of cell shape [ 57 ], affecting microtubule functions under-
neath the plasma membrane resulting in loss of cellular polarity in cancer cells and 
tissue. Cascades of events may follow and may include loss of signal transduction 
processes, imbalanced or disrupted transport of centrosome proteins resulting in 
additional centrosomal pathologies related to centrosome and microtubule functions 
with consequences for failures in organelle and vesicle distribution. Secondary 
pathologies can develop as a result of disruption in transport leading to intercon-
nected communication failures for which cause and effects are diffi cult to establish. 
Signal transduction events have been well studied in breast cancer in which numer-
ous centrosomal abnormalities have been reported (reviewed by Kais and Parvin 
[ 58 ,  187 ], Fisk [ 9 ], Fukasawa [ 11 ], Korzeniewski and Duensing [ 143 ], Saladino 
et al. [ 144 ], Yan and Chng [ 145 ]. 
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 The causes for changes leading to aberrant centrosomes in cancer cells are 
known in some cases but not in others. We know that environmental stress can 
result in the formation of aggresomes, aggregates that are thought to be the result of 
misfolded proteins [ 146 – 150 ]; they are oftentimes located in close proximity to 
centrosomes and some of the aggresomes contain γ-tubulin. Aggresomes are associ-
ated with disease or disorders including Parkinson’s and dementia [ 151 ]. 

 Other factors that play a role in cancer initiation and progression include epigen-
etic modifi cations which includes aberrant hypermethylation that has been impli-
cated in inactivation of checkpoint genes that may infl uence cell cycle-dependent 
centrosome abnormalities. Such abnormalities have been reported for pancreatic 
cancer [ 152 ,  153 ]. 

 Among the best-studied changes in cancer cell centrosomes is overexpression of 
specifi c centrosome proteins that results in abnormal centrosome confi gurations and 
aneuploidy [ 133 ,  154 ]. These studies strongly correlate abnormal centrosomes with 
cancer development and progression in which increased centrosome number and 
volume, supernumerary centrioles, accumulation of increased PCM, and abnormal 
phosphorylation of centrosomes are characteristic for cancer cells in which cell 
polarity is lost [ 2 ,  137 ]. Centrosome misregulation is associated with abnormal micro-
tubule nucleation, abnormal spindle formation, and chromosomal mis- segregation. 
As mentioned above, loss of tumor suppressor genes are among the factors that affect 
accurate centrosome functions. 

 Changes in Aurora A have been implicated in centrosome amplifi cation in breast 
cancer and other cancers. In animal models, overexpression of Aurora A kinase 
(AURKA), an important centrosome-associated serine/threonine kinase, was 
strongly associated with tumor development [ 155 ,  156 ]. These experiments showed 
that Aurora A localizes to centrosomes and overexpression of Aurora A causes 
multipolar mitotic spindles that play a role in early development of mammary 
tumors. Further studies [ 156 ] showed that the pro-survival AKT pathway is acti-
vated, preventing cell death while promoting abnormal cell proliferation in which 
tetraploid cells with accumulated centrosomes were generated. 

 Genes implicated in centrosome amplifi cation are in part responsible for deregu-
lation of centrosome duplication and subsequent reactions that lead to cascades of 
cell cycle-related abnormalities. Critical cell cycle regulators are lost in cancer cells 
which includes loss of the tumor suppressor p53, resulting in multiple cycles of 
centrosome duplication in one S phase in which centrosome numbers become 
increased [ 157 ]. Viral oncoproteins can inactivate p53 resulting in cells with super-
numerary centrosomes which has clearly been shown for the papillomavirus 
(reviewed in [ 135 ]). Loss of p53 following genotoxic stress or mitogenic stimulation 
has been documented for breast cancer cells in which changes in the CDK2/cyclin-
dependent pathway has been implicated [ 158 ,  159 ]. 

 Other tumor suppressor genes have directly or indirectly been implicated in 
changes of centrosome functions and include the breast- and ovary-specifi c tumor 
suppressor gene BRCA1 that has been shown to play a role in deregulation of cen-
trosome duplication. BRCA1 is involved in G2/M checkpoint functions and it 
plays a role in preventing centrosome overduplication. While we do not yet fully 
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understand the precise mechanisms by which BRCA1 affects centrosome regula-
tion a model for the regulation of the centrosome by BRCA1 has been presented by 
Kais and Parvin [ 58 ]. The model suggests that in regulated cell cycles BRCA1 
ubiquitinates the already duplicated centrosomes to inhibit reduplication. 
Supernumerary centrosome are the result of loss of BRCA1 during the S phase. 
The model suggests that overexpression of AURKA mimics the effects of BRCA1 
loss. Furthermore, overexpressed AURKA overrides the spindle checkpoint and 
may thereby contribute to abnormal mitosis. 

 In regulated cell cycles BRCA1 forms a complex with the BRCA1-associated 
RING domain 1 (BARD1) functioning as E3 ubiquitin ligase. The BRCA1–BARD1 
complex plays a role in maintaining centrosome homeostasis by ubiquitinating 
γ-tubulin, preventing abnormal duplication and abnormal microtubule nucleation 
by γ-tubulin. Centrosome abnormalities have also been reported in transgenic mice 
in which the BRCA1-associated centrosomal ninein-like protein (Nlp) is overex-
pressed, causing spontaneous breast tumorigenesis perhaps as a result of Nlp mim-
icking BRCA1 loss [ 160 ]. BRCA2 also plays a role in centrosome functions, as in 
regulated cell cycles the BRCA2-associated protein NPM forms a complex with 
ROCK2 to maintain numerical centrosome integrity; centrosome overduplication 
and fragmentation may be the result of aberrant regulation of this protein [ 113 ]. 

 The centrosomal kinase Nek2 is important for centrosome regulation and centro-
some accumulation has been reported in breast epithelial cells in which Nek2 was 
misregulated [ 161 ]. Several other centrosomal components are involved in cancer 
initiation and progression [ 162 – 165 ] that have been detailed in recent reviews [ 6 , 
 58 ,  9 ,  11 ,  143 – 145 ,  187 ]. Other factors also play a role in centrosome abnormalities 
and may include structural defects of the centrosome matrix (reviewed in [ 6 ]). One 
line of research has focused more recently on centrosome clustering as an important 
factor in centrosome abnormalities in cancer cells. Centrosome clustering is impor-
tant for mitosis to accumulate centrosomal material equally at the two mitotic poles. 
Studies have shown that centrosome amplifi cation, cell cycle control dysfunctions, 
and aggregation of centrosomal material at the mitotic spindle poles are associated 
with centrosome clustering abnormalities (reviewed in [ 75 ]). While multipolar 
mitotic cells are easy to identify as abnormalities, amplifi ed cancer cell centrosomes 
can cluster into abnormal bipolar spindles. These abnormalities are not easily dis-
cernible from regular bipolar spindles with non-amplifi ed centrosomes but they will 
nucleate and organize abnormal microtubule formations resulting in chromosome 
mis-segregations and aneuploidy as shown in  Drosophila  cells [ 166 ] as well as in 
cancer cells [ 75 ,  144 ]. We do not yet fully understand the mechanisms underlying 
centrosome clustering in normal cells and dysfunctions in cancer cells; more 
research is needed to analyze the regulation of centrosome clustering. Studies by 
Kwon et al. [ 79 ] have determined that the actin cytoskeleton plays a role in centro-
some clustering. Our previous experiments using the invertebrate sea urchin as 
experimental system revealed that microtubules and microfi laments are required for 
centrosome dynamics (Schatten et al. [ 167 ]) which may also be important for cen-
trosome clustering. We do not yet know whether or not the fi lamentous components 
identifi ed in sea urchin centrosomes [ 78 ] and in Spisula extracts [ 76 ,  77 ] or perhaps 
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other cytoskeletal elements (reviewed in [ 6 ]) play a role in the mechanisms underly-
ing centrosome clustering. Microtubule motor proteins have also been implicated in 
the clustering process which has been discussed in detail by Krämer et al. [ 75 ]. It 
has been proposed that preventing centrosome clustering into an abnormal bipolar 
mitotic apparatus may provide new targets for cancer therapy. Centrosomes that are 
not able to cluster form multiple microtubule asters followed by fragmented cell 
divisions and cell death with fewer chances for cancer cell viability [ 168 ]. 

  The Role of Primary Cilia in Cancer Development and Progression     Because of the 
close relationships between centrosomes and primary cilia centrosome abnormali-
ties may also affect primary cilia formation and functions which may further con-
tribute to cancer development and progression. During progressive stages of cancer 
development the basal body of the primary cilium becomes dislodged and locates in 
the cytoplasm [ 131 ,  132 ,  142 ] where it may form small asters and participate in the 
mitotic process during subsequent cell divisions. As the oncogenic Aurora A kinase 
(Aurora A) is localized to the basal body of primary cilia [ 169 ] it may further play 
a role in centrosome amplifi cation and contribute to primary cilia-cell cycle 
dysfunctions.  

  Centrosomes as Target for Cancer Therapy and Prevention     Cancer is a complex 
heterogeneous disease that can have different causes and different centrosome 
abnormalities which presents complexities for the design of effective treatment 
strategies (reviewed in [ 6 ]) requiring multiple targeted treatment approaches to 
eradicate different subpopulations of cells in cancer tissue. Centrosomes are increas-
ingly being discussed as new targets for cancer treatment, as centrosomes are cen-
tral to cell division and may be a major driver for abnormal cell divisions.  

 Targeting cancer cell centrosomes may include targeting misguided signaling 
pathways, overexpressed centrosome proteins, abnormal centrosome clustering, 
abnormal primary cilia dynamics, overexpressed phosphorylation such as Aurora A 
that is implicated in centrosome hyperphosphorylation or other components in the 
phosphorylation cascade; it further includes different molecules that play a role in 
centrosome function such as the aryl hydrocarbon receptor (AhR) and cyclin E, as 
reported by Korzeniewski et al. [ 164 ], and several others (reviewed in [ 6 ]). Such 
approaches to target multiple centrosome abnormalities are possible either through 
the development of new pharmaceuticals or through plant derivatives or dietary 
ingredients that have been shown to affect centrosome–microtubule interactions 
during mitosis and cell division. 

 Plant derivatives that have been developed into a cancer-targeting pharmaceuticals 
includes paclitaxel (or taxol), originally isolated from the plant  Taxus brevifolia . 
Taxol primarily inhibits microtubule depolymerization, thereby preventing progres-
sion of mitosis and cell division [ 170 ,  171 ]. It has been shown that taxol interacts 
with microtubules at the centrosome–microtubule nucleation sites [ 172 ,  173 ], and it 
had been proposed that centrosomes in taxol-treated cells may lose their capacity to 
nucleate microtubules [ 172 ]. Other drugs that had been explored as anti- cancer 
drugs include colcemid and nocodazole that prevent and disrupt microtubule 
polymerization. 
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 Currently, curcumin, a natural polyphenol found in the rhizomes of  Curcuma 
longa  (turmeric) is being investigated for its anti-cancer activities which led to new 
promising strategies including the use of theragnostic curcumin-encapsulated 
nanoparticles that will increase bioavailability and allow more potent clinical 
applications [ 174 ]. Our recent preliminary experiments showed an effect of cur-
cumin on the microtubule cytoskeleton in several cancer cell lines (Schatten et al. 
unpublished). 

 Other studies have focused on the antimitotic drug griseofulvin that arrests cells 
at the G2/M transition stage in a concentration-dependent manner [ 175 – 178 ]. 
Studies have shown that griseofulvin affects the NFκB pathway and that the NFκB 
pathway and centrosome dynamics are connected [ 179 ]. This fi nding is intriguing, 
as griseofulvin has recently been shown to specifi cally inhibit supernumerary cen-
trosome clustering in cancer cells which indicates its potential as drug that inter-
feres with centrosome dynamics (reviewed in [ 75 ]). This line of potential drug 
development has not yet been explored in detail but it is well worth pursuing, as 
prevention of centrosome clustering may preferentially affect cancer cell centro-
somes leading to cellular fragmentation followed by cell death. Griseofulvin has 
already been approved as an effective orally administered antifungal drug that inter-
feres with microtubule dynamics in vivo and in vitro [ 176 ,  180 – 184 ] and it induces 
multipolar mitoses in tumor cells [ 175 ,  177 ,  178 ,  181 ]. It may interfere with micro-
tubule minus ends at the centrosome–microtubule interacting sites. 

 Other drugs that are currently considered to interfere with the microfi lament 
system in cancer cells are discussed in Chap.   16     of    this book by Brayford et al.  

    Conclusion and Future Directions 

 In recent years, signifi cant progress has been made in our understanding of centro-
some dynamics and centrosome interactions with microtubules in several cell sys-
tems. Centrosome dysfunctions have been identifi ed and characterized in aging cells 
and in cancer cells which allowed targeting of centrosomes for therapeutic interven-
tions. New imaging methods have been applied to analyze centrosome structure in 
more detail than previously possible and new technological advances have allowed 
close insights into the composition and regulation of the centrosome organelle and its 
interactions with other cellular components. Studies in reproductive and somatic cells 
have determined centrosome abnormalities in aging cells in which centrosomal 
proteins disperse from the centrosomal matrix leading to centrosome disintegration 
and microtubule instability. These studies have also determined that the aging pro-
cess is reversible to a certain extent by experimentally manipulating specifi c signal 
transduction processes. New information on cancer cell centrosomes has allowed an 
analysis of detailed signal transductions that are misguided in cancer cells and lead 
to centrosome hyperphosphorylation with centrosomes being phosphorylated 
throughout the cell cycle without undergoing dephosphorylation which takes place 
during exit from mitosis in regulated cell cycles. Centrosome amplifi cation and 
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multipolar centrosomes have further been analyzed in cancer cells and these 
abnormalities suggested new target sites for cancer therapies which includes 
inhibiting misguided signaling pathways, or inhibiting centrosome clustering to 
induce excessive centrosome fragmentation resulting in cancer cell fragmentation 
followed by cell death. 

 Many questions remain to be answered and include questions on the nature of the 
centrosomal matrix and on how centrosomal proteins associate with matrix compo-
nents. We also do not yet fully understand the mechanisms of centrosome duplica-
tion, especially in reproductive cell systems in which centrosome abnormalities 
have been implicated in developmental disorders and/or embryo loss. Understanding 
the mechanisms that play a role in a regulated centrosome cycle will allow to 
determine molecular abnormalities that may be corrected in centrosome-impaired 
diseases or disorders.     
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    Chapter 6   
 Cytoskeletal Elements and the Reproductive 
Success in Animals 

             Alessandra     Gallo      and     Elisabetta     Tosti    

       Abbreviations/Acronyms 

  AR    Acrosome reaction   
  CG    Cortical granules   
  GV    Germinal vesicle   
  GVBD    Germinal vesicle breakdown   
  MI    Metaphase I   
  MII    Metaphase II   
  ZP    Zona pellucida   

          Introduction 

 In animals, sexual reproduction is the biological process by which a new individual 
is generated through the fusion of the gametes, the spermatozoon and oocyte, that 
are formed during gametogenesis which in turn is underlined by meiosis, the pecu-
liar process of cell division that provides haploid cells ready for fertilization. A cor-
rect maturation and reciprocal activation of gametes are pre-requisites for fertilization 
and, although their temporal and spatial sequences are not yet fully clarifi ed, they 
involve numerous cellular structures, molecules, ions and metabolic pathways. 

 In the cell, the shape and structure are due to the cytoskeleton, a complex set of 
structures composed of microtubules, microfi laments and intermediate fi laments 
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that organize cytoplasmic organelles positioning and intracellular compartments, 
thus generating cell polarity and contractile forces [ 1 – 3 ]. 

 Microfi laments are composed of actin proteins and play a crucial role in structur-
ing the cell surface and plasma membrane during oocyte maturation and fertilization. 
They also participate in the maintenance of the meiotic spindle near the cortex, the 
formation of fi rst and second polar body, the pronuclei apposition and cytokinesis. 

 Microtubules are tubular polymers of tubulin essential for chromosome move-
ments as well as other aspects of motility and cytoplasmic architecture [ 4 ]. In most 
of the oocytes, microtubules are essential for the fi rst and second meiotic division, 
furthermore they are fundamental for the swimming of the sperm as well as the 
union of the male and female pronuclei. 

 Many studies have been devoted to examine the factors that may infl uence the 
success of fertilization. This chapter will discuss the modifi cation of gamete ultra-
structure during the processes of oocyte and sperm maturation and fertilization, 
focusing on the crucial role of the cytoskeletal structures in ensuring a successful 
fertilization and normal embryo formation in some key species of marine inverte-
brates and mammals.  

    The Gametes 

 Oogenesis and spermatogenesis are characterized by meiosis, the unique process of 
cell division occurring only in gametes, whose goal is the production of haploid 
cells highly specialized for fertilization. 

    The Spermatozoon: Structure and Maturation 

 The primary function of the spermatozoon is to deliver the male genetic material 
into the oocyte to generate a new diploid individual. The success of fertilization 
depends on a series of processes based on a correct maturation of the spermatozoon, 
its transport toward a receptive oocyte and the ability to recognize and fuse with it. 
In order to perform these functions, the spermatozoon has developed a highly spe-
cialized morphology with different structural components each aimed to a specifi c 
processes. Basic structure of the spermatozoon is common to almost all the species 
and includes three major parts [ 5 ]: (1) the head, that is the site for recognition and 
fusion, has a roundish shape and contains a few structures such as the nucleus, scant 
cytoplasm and the acrosome that is a cap-like structure over the anterior half of the 
head; (2) the midpiece is located at the base of the head and includes the centrioles, 
few mitochondria, axoneme base and related anchoring structures; and (3) the tail is 
a long fl agellum composed of an axoneme, a highly organized microtubule- based 
structure composed of about 250 proteins. A typical structure (9 + 2) is made up of 
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peripheral doublets of longitudinal microtubules on which are fi xed dynein arms 
and radial spokes and a pair of singlet microtubules located in the central core. 

 Unlike the oocyte, the spermatozoon undergoes the fi nal step of the maturation 
process (spermiogenesis) through a dramatic change in shape and morphology passing 
from a round cell to the characteristic tadpole aspect. 

 An important feature of spermatogenesis is the change in the cytoskeleton that 
occurs throughout this pathway. Although primary focus is given to the microtubule 
cytoskeleton, the importance of actin fi laments to the cellular transformation of the 
male germ cell has also been shown [ 6 ]. 

 During spermatogenesis, diverse processes occur such as sequential changes in 
the nucleus and the acrosome in concert with a prominent bundles of microtubules 
called the manchette, a high condensation of chromatin in the nucleus and a cyto-
plasmic remodelling of the sperm body and structures [ 7 ,  8 ]. 

 Actin has been shown to cooperate in various aspects of the spermatogenesis 
along with myosin, an actin-dependent motor protein. Actin is present in the form 
of monomer, oligomer and polymer within cells, the latter are called microfi laments 
and are involved in the shaping and differentiation of spermatids. 

 Three major cytoskeletal proteins, actin, actin-binding proteins such as spectrin 
and various tubulins (e.g. a-, b-, g-tubulin), are present in the head of mammalian 
spermatozoa with a pattern similar for all the species. Changes in localization of 
cytoskeleton support the image of cytoskeletal proteins as highly dynamic structures 
participating actively in processes prior to fertilization [ 9 ,  10 ]. 

 During spermatogenesis, the actin cytoskeleton shows active remodeling. Some 
actin binding or actin regulated proteins have been demonstrated to regulate dynamic 
changes of the actin-containing structures. Myosin plays also an important role in 
acrosome biogenesis, vesicle transport, gene transcription and nuclear shaping [ 11 ].  

    The Oocyte: Structure and Maturation 

 The oocyte is the large cell characterized by a single function of generating a new 
individual. The general organization of a mature oocyte is similar along the species 
but sometime shows unique features [ 12 ], in fact, the oocyte is surrounded by extra-
cellular membranes that appear to be thin in the sea urchin (the vitelline layer) [ 13 ] or 
tick in ascidians (the chorion) [ 14 ] and mammals (the zona pellucida; ZP) [ 15 ]. 

 The oocyte plasma membrane marks the borderline between the internal and 
external compartments, represents a barrier to ions whose passage occurs towards 
the ion channels, specifi c proteins located inside the lipid bilayer [ 16 ]. Plasma 
membrane has many extensions, called microvilli, involved in the fusion process 
[ 17 ]. The cortical granules (CG) are round organelles situated in mono and multiple 
layers under the cell plasma membrane. CG originate from the Golgi complex and 
contain mainly enzymes and mucopolysaccharides; although they show a high vari-
ability in shape and size, they are present in the oocytes of most of the animals, 
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playing a role during oocyte activation when they release their content by exocytosis 
[ 18 ]. The mitochondria are organelles playing key roles in the oxidative cellular 
energy metabolism. Their number and ultrastructural organization change with cell 
function and activity, infact oocytes, zygotes, and embryos present particular types 
of mitochondria [ 19 ]. 

 Oocyte maturation is a complex process occurring at the end of oogenesis during 
which the oocyte completes its growth and undergoes a series of changes that are 
necessary for ovulation, fertilization and early embryo development. In the stage that 
precedes maturation, the oocyte is a large round cell with a big nucleus called germi-
nal vesicle (GV) that at very early stage contains decondensed transcriptionally active 
chromatin [ 20 ]. 

 Oocyte maturation involves two different but interlinked processes based on 
nuclear and cytoplasmic events [ 21 – 23 ]. 

 Nuclear maturation starts when the oocyte under a chemical stimulation resumes 
meiosis inducing the breakdown of the GV (GVBD), the chromosome condensation 
and the spindle formation. A second meiotic arrest then occurs at different stages 
depending on the species such as metaphase I (MI) in ascidians, bivalves and gas-
tropods, whereas mammalian oocytes complete the fi rst round of meiosis with 
extrusion of the fi rst polar body and, without an interphase, progress to the second 
meiotic metaphase (MII). Apart from some exceptions, this process is completed 
upon fertilization in almost all the species studied. 

 Cytoplasmic maturation is a less clear process that starts at the time of oocyte 
growth and occurs with the following events: (1) ultrastructural organelle re-organi-
zation; (2) molecular modifi cations of the plasma membrane; (3) differentiation of 
the calcium signalling machinery and (4) oocyte surface microvilli increase. 
Ultrastructural reorganization involves the redistribution of microfi laments and 
microtubules that in turn support the relocation of cytoplasmic organelles such as 
cortical granules, mitochondria and the Golgi apparatus in several species [ 18 ,  20 , 
 24 – 35 ]. In particular mitochondria redistribution appears to be functional to oocyte 
developmental competence and the regulation of normal embryo development [ 36 ].   

    Fertilization 

 Fertilization is a highly specialized process of cell to cell interaction that marks the 
creation of a new and unique individual [ 23 ,  37 ]. The main steps of the fertilization 
process are gametogenesis, gamete reciprocal activation, sperm-oocyte interaction, 
fusion and syngamy, thereafter these successful events give rise to the beginning of 
development. 

 Reciprocal activation of gametes is fundamental for a successfully fertilization. 
First the oocyte induces sperm activation due mainly to the signals coming from 
the oocyte investments [ 38 ]. After a series of processes, the activated spermato-
zoon reaches the oocyte exerting its dual function: to transport the male genome 
into the oocyte and to trigger the quiescent oocyte into activation [ 39 ]. The latter is 
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underlined by another series of events, that include electrical, structural and molecular 
changes, up to the release of oocyte from meiotic arrest [ 40 ] giving rise to the 
zygote, the fi rst cell of the living organism that becomes an embryo after a series 
of mitotic divisions.  

    Cytoskeletal Elements Modulating Gamete Activation 

    The Spermatozoon 

 Sperm activation triggers in progression: (1) the sperm motility (chemokinesis); 
(2) the attraction toward the oocyte itself (chemotaxis); (3) the fi rst binding medi-
ated by ligands and receptors on the gamete plasma membrane; (4) the acrosome 
reaction (AR); (5) the penetration through the extracellular layers; (6) a second 
binding; and (7) the fusion of the two plasma membranes. 

 Sperm motility is required for sperm transport toward the oocyte, either in the 
aquatic environment or the female genital tract. Sperm motility is an essential con-
dition for male fertility and is fully underlined by the tail. A fl agellar movement is 
provided by the sliding of adjacent microtubules thanks to the ATP hydrolysis 
occurring in the mitochondria located on the close midpiece. In particular, the prop-
agation of a wave is repeated along the fl agellum by a mechanochemical cycle of 
attachment-detachment of dynein arms giving rise to the fl agellar sliding and bend-
ing [ 41 – 43 ]. 

 Recent proteomic analyses have provided insight into novel cellular and func-
tional aspects of sperm actin isoforms in the axoneme of ascidians [ 44 ]. 

 Motility initiation and hyperactivation are also supported by other specifi c cyto-
skeletal elements and dynamics such as major sperm protein (MSP) fi laments in the 
nematodes [ 45 ,  46 ] and polymerization of actin in mammals [ 47 ,  48 ]. 

 Chemotaxis is the process by which spermatozoa are attracted by microenviron-
mental factors mainly released by the oocyte or perioocyte layers [ 49 ]. To provide a 
more effi cient motility, chemotaxis generates dramatic movement changes induced by 
the interaction of external factor with membrane “receptors” and intracellular mes-
sengers such as cyclic AMP, ATP, calcium, or pH changes. All the signaling molecules 
involved in this process are closely arranged in the sperm fl agellum controlling 
dynein-microtubules interaction through a phosphorylation- dephosphorylation pro-
cess of axonemal proteins [ 50 ]. 

 The fi rst contact between the two gametes is the binding of the sperm to the 
extracellular investments of the oocyte, this is a receptor-ligand interaction with a 
high degree of species- specifi city that allows to prevent fusion of sperm and oocytes 
of different species. The carbohydrate groups on the oocyte surface function as 
sperm receptors. The sperm molecules that bind this receptor are not known with 
certainty, and indeed, there may be several proteins that can serve this function. In 
mammals the fi rst association of the spermatozoon with the ZP occurs between the 
zona glycoprotein, ZP3, and sperm receptor, located on the sperm plasma  membrane, 
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such as the 95 kDa tyrosine kinase-protein. This interaction induces the AR [ 51 ]. 
The latter is an exocytotic process mediated by calcium occurring at the fusion of 
the outer acrosomal membrane with the sperm plasma membrane. The breakdown 
of the fused complex results then in the formation of a highly fusible membrane 
enabling the spermatozoon to penetrate into the oocyte and fertilize it. 

 Numerous cytoskeletal elements and proteins appear to be involved in either bind-
ing and AR, involving mainly the actin and mediated by numerous second messen-
gers. Data suggest that actin polymerization may represent an important regulatory 
pathway which is associated with tyrosine phosphorylation in spermatozoa [ 52 ]. 

 In echinoderms, the most important event which occurs during the AR is the 
polymerization of actin, which form the “skeleton” of the acrosomal process, a pro-
tuberance formed at the apex of the sperm head supported by a core of actin micro-
fi laments [ 53 ,  54 ]. Apart this peculiar event in echinoderms, many authors have 
suggested that the acrosomal architecture is supported by a dynamic F-actin skele-
ton, which probably regulates the differential rate of release of the acrosomal 
enzymes during AR [ 55 ]. 

 Changes and regulation of the sperm actin cytoskeleton in fact, take place during 
AR; in mammals, polymerization of actin from its globular (G)- monomeric form to 
fi lamentous (F)-actin occurs during capacitation, depending on phosphorylation 
processes. F-actin formation is important for the translocation of phospholipase C 
from the cytosol to the sperm plasma membrane during capacitation. Before the 
occurrence of AR, depolymerization of F-actin enables the outer acrosomal mem-
brane to fuse with the plasma membrane [ 52 ,  56 ]. In support of this fi nding, an 
important role of actin polymerization has also been shown in human sperm AR 
since actin is present in the acrosomal area and is lost with the AR [ 57 ]. In human 
and other mammalian spermatozoa, cytoskeletal proteins including spectrin, F-actin 
and α-tubulin were mostly localized to the apical and the equatorial acrosomal 
region of the sperm head, and their modifi cation after AR was evidenced suggest-
ing, at least, that they may play more than a role in the development of the AR and 
priming the spermatozoa for other fertilization events [ 9 ,  10 ]. 

 After AR is completed, the spermatozoon can begin penetration through the 
extracellular layers. Penetration may involve enzymatic hydrolysis of the extracel-
lular matrix but also requires the forward physical force of sperm motility [ 58 ]. 

 More specifi c structure are present on the sperm head of murids where two very 
large cytoskeletal structures seem to be involved in binding of the spermatozoon to 
the outer surface of the ZP and/or in aiding the spermatozoon in ZP penetration at 
the time of fertilization [ 59 ]. 

 The possible role of actin fi laments in the penetration of spermatozoa has been 
evidenced by indirect proofs in mammals since cytochalasin D inhibits sperm pen-
etration and sperm head decondensation [ 60 ]. Similar investigations in mammals 
proved that either actin polymerization [ 61 ] and Rho protein(s) regulating actin- 
based cytoskeletal reorganization are involved in the process leading to sperm 
incorporation into the oocyte cytoplasm [ 62 ]. 

 Once the spermatozoon penetrates the oocyte a fusion of the two plasma mem-
brane occurs. 
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 Sperm penetration occurs vertical to the surface of invertebrate oocytes possessing 
a jelly coat, whereas in mammals, sperm lies and fuse tangential to the oocyte 
surface [ 63 ]. In the latter, although the exact sperm fusogenic region is not fully 
established, studies suggest that this is a region overlapping either the equatorial 
segment or the postacrosomal region depending on the species under study [ 23 ]. 
Despite the importance of this fundamental process, little is known about its molec-
ular basis. Although a number of molecules involved in the binding and fusion have 
been disclosed [ 64 ], indirect evidences supported the Izumo, a sperm-specifi c mem-
ber of the immunoglobulin superfamily which relocalization to the equatorial seg-
ment after the AR is essential for gamete fusion and the testis-specifi c serine kinase 
6 that plays a role in the changes of Izumo localization through the regulation of 
actin polymerization [ 65 ,  66 ]. Contrasting data from other authors [ 61 ] showed that, 
although involved in sperm penetration, actin polymerization is not required for 
plasma membrane gametes fusion in guinea pig. 

 Very recently, experiments aimed to investigate a role of proteins enriched in the 
cytoskeletal structures of human spermatozoa demonstrated that signal transducer 
and activator of transcription 3 (STAT3), present mainly in the fl agellar structure, 
affects sperm functions such as motility parameters, AR and depolarization of mito-
chondrial membranes [ 67 ]. 

 Evidences were presented of an involvement of organellar movements in the 
ascidian spermatozoon. This lacks an evident acrosome and midpiece but presents a 
single mitochondrion beside the nucleus in the head that swells at the time of oocyte 
interaction being translocated to the tail. Such a movement appear to be mediated 
by an actin-myosin sliding system [ 68 ]. To conclude, a very recent computational 
and experimental approach pointed out that the “actin polymerization” have some 
important and unique features by linking in a specifi c way all the intracellular com-
partments. Thus, it was suggested that actin polymerization could be involved in the 
signaling coordination of different events and that its functional ablation could com-
promise spermatozoa ability to complete the capacitation. This study strengthen the 
idea that the actin cytoskeleton is not only a mechanical support for the sperm cell, 
but that it exerts a key role in signaling during capacitation [ 69 ] (Fig.  6.1 ).

       The Oocyte 

 In oocyte maturation, GVBD represents the nuclear event strictly related to the fi rst 
meiotic block resumption and the following meiotic spindle formation. The involve-
ment of cytoskeletal elements to GVBD has been investigated in several species. 

 In some mammals, actin fi laments are distributed in a uniform way just around 
the oocyte cortex and close to the GV, and undergo a redistribution after the GVBD 
leading the chromosome to move to a peripheral position [ 70 – 74 ]; however 
this event does not seem to infl uence either GVBD or the spindle formation [ 32 ]. 
The presence of a cortical “organizing pole” of microfi laments has been hypothe-
sized in the maturing mouse oocytes especially during centrosome localization, 
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spindle (or GV) movement to the oocyte periphery [ 75 ]. In other vertebrates, such 
as amphibians, contrasting data exist on the role of cortical actin microfi laments that 
appear to be required for anchoring and rotation of the meiotic spindles [ 76 ] and the 
completion of GVBD [ 77 ]. In the ascidian  Halocynthia roretzi , it has been identifi ed 
the formation of conspicuous actin bundles emanating from the GV during its 
breakdown [ 78 ], and same authors showed that after GVBD a meiotic spindle forms 
in the center of the oocyte migrating toward the animal pole requiring actin cyto-
skeleton to support the polarization [ 79 ]. Although the latter event occurs normally 
in the absence of microtubules, cytoskeletal elements interact by each other giving 
rise to a fruitful interplay; this is the case of actin fi lament modulation of microtu-
bules functions that drive chromosomes segregation in the mitotic and meiotic spin-
dles, their positioning and orientation, processes that appear to be essential for the 
asymmetric cell division [ 80 – 83 ]. In fact, the synergy between microfi laments and 
microtubules has been supported by experiments based on specifi c chemicals such 
as cytochalasins [ 74 ,  84 ] in mammals. Similarly in amphibians, data are provided 
on the involvement of actin fi laments in spindle anchorage [ 76 ,  85 ] and of myo-
sin-10 (a phosphoinositide-binding actin-based protein) in association with micro-
tubules in vitro and in vivo, with a specifi c localization at the point where the meiotic 
spindle contacts the F-actin-rich cortex [ 86 ]. 

 The meiotic spindle consists of bundles of microtubules that emanate from two 
acentriolar poles and hold chromosomes along the metaphase plate. At meiosis 
resumption the spindle segregates sister chromatids or homologous chromosomes 
equally between the pronucleus and the second polar body playing a critical role in 
the generation of right chromosome segregation [ 87 ,  88 ]. Literature reports the 
requirement of microtubule associated motor proteins, for the proper distribution of 
chromosomes or the structural integrity of the mitotic or meiotic spindle [ 89 ]. 

  Fig. 6.1    Involvement of cytoskeletal elements during spermatozoon maturation and activation. 
Microfi laments are involved in the acrosome reaction, formation of the acrosomal process, fi rst bind-
ing to the oocyte, motility initiation and hyperactivation. Microtubules are the constituent of sperm 
fl agellum that is formed during the process of spermiogenesis and allow the fl agellar movement       
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Interestingly, it has been shown that a microtubules perturbation induces negative 
impact on GVBD and the meiotic resumption [ 90 ]. 

 The interaction of the spermatozoon with the oocyte causes a series of physio-
logical changes in the oocyte known as activation. An early event that occurs at 
fertilization is the change in the oocyte plasma membrane electrical properties [ 16 , 
 39 ,  91 ] and the second main universal event is the massive release of calcium that 
traverses the oocyte in a wave [ 92 – 94 ], leading also to relocation of the organelles. 

 Organelles that have been organized in specifi c sites of the oocyte during growth 
and maturation undergo a relocation at the oocyte activation. In the ascidian  Styela 
plicata  we reported a pattern of mitochondria polarization and aggregation in the 
subcortical cytoplasm during oocyte growth [ 95 ]. These data strongly support what 
occurs in ascidian oocytes at the time of activation when the subcortical mitochon-
dria are transported to the vegetal pole [ 96 ,  97 ]. This process called cytoplasmic 
segregation, that is necessary for the establishment of cell lines and in turn for deter-
mining the embryonic axis, involves myoplasmic actin-fi laments network in a fi rst 
phase whereas in the second phase involves extension of microtubules [ 14 ]. 

 On the other hand the requirement of actin in the fi rst phase after sperm contact 
has been shown [ 98 ] since perturbation of fertilization in ascidians with specifi c 
channel inhibitors altered either actin fi laments and mitochondrial migration after 
contraction leading to a disturbance in the following cleavage formation. The regu-
lation of mitochondrial translocation by microfi laments and microtubules observed 
in mammals indicated that either oocyte maturation, fertilization and early embryo 
development in pigs are associated with changes in active mitochondrial distribution 
and that this is mediated exclusively by microtubules [ 99 ]. However more recent 
evidence also indicates that the cytoskeleton network is used to shuttle organelles to 
specifi c sites within the oocyte cytoplasm [ 100 ]. 

 Following the fusion of the spermatozoon with the oocyte plasma membrane, a 
third event occurs when the oocyte secretes the contents of CG by exocytotic fusions 
of these vesicles with the oocyte plasma membrane over the entire cell surface, also 
known as the cortical reaction or CG exocytosis [ 101 ]. This peculiar process is fol-
lowed by an elevation or hardening of the extracellular coat involved in the polisp-
ermy prevention in sea urchin and mammals, however it does not occur in ascidians 
since their oocytes lack CG. Many cell types possess fi nger-like projections termed 
microvilli. In the sea urchin an ultrastructural study localized fi lamentous actin 
immediately subjacent to the microvilli forming an extensive interconnecting net-
work along the inner surface of the plasma membrane with an organization of this 
network correlated to the positioning of the underlying CG [ 102 ]. That the micro-
fi lament assembly is involved in the distribution, movement and exocytosis of CG 
during maturation and fertilization has been shown by confocal microscopy in the 
pig oocyte. Here, it was suggested an integral changes in microfi lament assembly 
and CG distribution during oocyte maturation, parthenogenic activation and in vitro 
fertilization [ 103 ]. Similarly in the rat it was supported the role of  cytoskeletal cor-
tex as a dynamic network that modulate CG exocytosis by activated actin-associated 
proteins and/or by activated protein kinase C [ 104 ]. 
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 As a consequence of cortical reaction the thousands of vesicles fusing with the 
oocyte surface, add their membranes to the oocyte plasma membrane resulting in an 
approximate doubling of the amount of membrane on the oocyte surface in a few 
seconds with the production of a mosaic topography, so the excess surface membrane 
is therefore accommodated by the elongation of oocyte microvilli [ 105 ,  106 ]. 

 Earlier studies in the 1980 showed a dramatic reorganization occurring in the 
structure of the oocyte surface due to the mosaic membrane formed after activation 
and the resulting elongation of numerous short microvilli that covers the surface of 
the unfertilized oocyte. A localization of actin in the microvilli has been also deeply 
investigated in sea urchin species showing the formation of bundles of actin fi la-
ments in microvilli and in cones [ 107 ]. This suggested that this microvillar- 
associated actin was an organizational state composed of very short fi laments 
arranged in a tight network and that these fi lament networks were extended beyond 
the plane of the plasma membrane [ 108 ]. 

 In the cortical region of amphibian and rat oocytes it has been shown a signifi cant 
amount of polymerized actin organized into bundles within the short microvilli cov-
ering the oocyte surface [ 109 ]. In the sea urchin, morphological studies evidenced 
two bursts of microvilli elongation concomitantly to sperm entering and incorpora-
tion, as a result of a massive polymerization of actin and a new assembly of micro-
fi laments in the oocyte cortex reorganization that was suggested to produce the 
forces necessary to held fi rmly the spermatozoon for fusion and subsequently for 
cytokinesis occurrence [ 54 ,  110 ,  111 ]. More recent studies in mammals, further 
support the role of cytoskeletal actin in microvilli formation and their function to 
capture the sperm cell and bring it into close contact with the oocyte plasma mem-
brane [ 17 ]. This data should also support the fact that in some mammalian oocytes 
the spermatozoon do not normally fuse with the microvillus-free area [ 112 ]. 

 That sperm incorporation is a microfi lament-dependent process has been shown 
in Xenopus [ 113 ] but this process has been described to also occur through the for-
mation on the oocyte surface of a specifi c structure named the fertilization cone 
involving the functioning of actin microfi lament organization. This process is 
related to the overmentioned elongation of microvilli and has been described to 
occur in the echinoderms [ 114 – 117 ]. In the sheep at the site of sperm head incorpo-
ration, the fertilization cone develops above the decondensing male chromatin and 
is underlined by a submembranous area rich in microfi laments [ 118 ]. 

 Once the sperm has entered into the oocyte, the proximal centrosome adjacent to 
the sperm nucleus may become the center of the sperm aster that brings the male 
and female pronuclei to the center of the zygote [ 119 ]. Aster is a peculiar structure 
that appears initially after the centriole duplication at the pronuclear stage required 
for the union of the sperm and oocyte nuclei and is formed by the assembly of the 
microtubules mainly composed by the g-tubulin which is also needed for the subse-
quent enlargement and association with the female pronucleus [ 22 ,  120 ,  121 ]. In the 
rabbit, earlier studies showed the presence and continuous deposits of tubulin 
throughout the sperm penetration tunnels and entry point suggesting a role in 
 fertilization, possibly as an enzyme binding or delivery system [ 122 ]. More recently 
it was shown that the microtubules extending from the decondensed sperm head 
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participating in pronuclear migration and organization around the female pronu-
cleus resulted mainly composed by γ-tubulin [ 123 ]. 

 Among the events occurring at oocyte activation the change in the ionic perme-
ability of the oocyte due to the generation of a ion current across the plasma mem-
brane and calcium release play a pivotal role. Depending on the species, specifi c and 
nonspecifi c ion currents are involved at the early sperm-oocyte interaction [ 16 , 
 124 ]. It is well established that actin fi laments are important in ion channel regula-
tion and membrane potential modulation [ 125 ,  126 ], although this does not seem to 
be the case of ascidian oocytes since actin fi laments have no impact on the fertiliza-
tion current or plasma membrane [ 98 ]. Indirect evidences support that spectrin, a 
major component of the membrane skeleton, is a functional link with membrane 
channels and transporters [ 127 ,  128 ]. 

 Calcium release is the universal event occurring at fertilization in all species 
studied [ 94 ]. In the ascidians, fertilization at MI initiates a series of dramatic cyto-
plasmic and cortical reorganizations of the zygote, which occur in two major phases 
[ 129 ]. The fi rst major phase depends on sperm entry which triggers a calcium wave 
leading in turn to an actomyosin-driven contraction wave. The second major phase 
of reorganization occurs between meiosis completion and the fi rst cleavage. Sperm 
aster microtubules and then cortical microfi laments cause the reposition toward the 
posterior side of the zygote of myoplasm and of domain rich in cortical endoplasmic 
reticulum and maternal RNAs [ 130 ]. 

 The possibility that intracellular calcium signaling could be modulated by the 
actin cytoskeleton at the time of gamete interaction has been also recently hypoth-
esized in starfi sh [ 131 ,  132 ] whereas in the sea urchin the calcium-responsive con-
tractility during fertilization is modulated by the myosin II localized to the cortical 
cytoskeleton. This seems also to infl uence the fertilization cone absorption and to 
participate in the remodeling of the cortical actomyosin cytoskeleton during the fol-
lowing fi rst zygotic cell cycle [ 133 ]. Finally a coordinated mobilization of intracel-
lular calcium stores and a precise organization of the cytoskeletal network have 
been shown to be essential for an appropriate activation of the oocyte and chromo-
some migration during human fertilization [ 134 ]. 

 Post-fertilization events include the sperm cell nucleus breakdown and chromatin 
decondensation that is then surrounded by an envelope forming the male pronucleus. 
The latter, together with the female pronucleus located just below the extruded polar 
body, start to move toward the center of the oocyte. These processes are under the 
infl uence of factors in the cytoplasm. Emission of the polar body due to meiosis 
resumption has been shown to be underlined by the formation of a contractile ring of 
actin in the cleavage furrow of the asymmetric division of the oocyte [ 70 ,  135 ] whereas 
migration of the pronuclei depends strictly on the microtubules of the sperm aster 
[ 63 ]. Rotation of meiotic spindle is under the control of microfi laments [ 76 ,  136 ] but 
a peculiar interplay between astral microtubules and cortical actin fi laments has been 
suggested for spindle positioning [ 137 – 139 ] and pronuclear apposition. Although a 
main role of F-actin in the formation of contractile ring during the fi rst cleavage 
division has been well documented [ 140 ], the cooperation between the two main 
cytoskeletal elements has also been identifi ed in the Xenopus [ 141 ] (Fig.  6.2 ).
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        The Zygote 

 Right embryo development relies on the positioning of the cleavage plane which is 
in turn related to the position of the mitotic spindle. In the mouse zygote it has been 
demonstrated an accumulation of F-actin surrounding the spindle and that actin 
network maintains the central spindle position ensuring that the fi rst embryonic 
mitosis is symmetric [ 142 ]. However, in the establishment of the right symmetry in 
cell divisions during differentiation and subsequent embryo development a central 
role is also played by the paternal centrosome [ 143 ] whose role and involvement of 
cytoskeletal elements has been previously reported. In fact, in bovine evidence have 
been provided that γ-tubulin and microtubule dynamics are involved in the migra-
tion and centration of the female pronucleus [ 144 ]. On the other hand indirect evi-
dences exist that perturbation of tubulin polymerization induces meiotic delay and 
spindle defects contributing to formation of aneuploid mouse zygotes [ 145 ]. By 
contrast in human zygotes showing abnormal fertilization, no any kind of microtu-
bule alteration with respect to the ploidy level was observed [ 146 ]. Also in the 
invertebrates the cortical actin cytoskeleton undergoes dramatic rearrangements 
with a level of F-actin decreasing after fertilization and continuing to decrease 

  Fig. 6.2    Involvement of cytoskeletal elements during oocyte maturation and activation. 
Microfi laments are involved in the cortical granules relocalization during growth and the formation 
of microvilli just after the exocytosis of cortical granules occurring at fertilization. They also par-
ticipate to formation of contractile ring that in turn give rise to the polar body extrusion. Sperm 
incorporation and penetration in the oocyte and the following calcium release are also modulated 
by actin microfi laments. Microtubules are involved in the formation of meiotic spindle and of 
sperm aster that drives the male pronucleus toward the female one after fertilization. Either micro-
fi laments and microtubules participate to the mitochondria translocation during maturation and to 
the anchoring and rotation of the meiotic spindle after the sperm-oocyte interaction       
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throughout the fi rst cell cycle of sea urchin [ 147 ]. Such a dynamic nature of cortical 
actin organization during early development demonstrated also that cytokinesis 
occurs at the point of minimum cortical F-actin content suggesting that these 
changes do not function in the establishment of the contractile apparatus for cytoki-
nesis, but rather serve other developmental functions [ 148 ]. Similarly in ascidians 
the determinants for unequal cleavage, gastrulation and further developmental 
events reside in four distinct cortical and cytoplasmic domains localized in the 
oocyte between fertilization and fi rst divisions [ 96 ].  

    Conclusions 

 Involvements of cytoskeleton in reproductive processes have received the special 
attention of many authors. The related large body of literature shows an impressive 
variation along the species, however, common general characteristics of the process 
emerge, allowing to depict a general picture of the complex interplay between cyto-
skeletal elements and the physiology of fertilization. The cytoskeleton has a funda-
mental role in numerous cellular processes, consequently, it has been shown that 
abnormalities in the regulation of cytoskeleton dynamics are typical for many path-
ological states from infection processes up to cancer [ 149 – 151 ]. Fertilization is a 
multistep process in which all physiologically relevant events are intimately con-
nected with each other and in turn are crucial for the entire process of reproduction; 
therefore it appears that only the right combination of multifactorial causes brings 
to a normal embryo and organism development. Here, we have reported that cyto-
skeletal elements as microfi laments and microtubules are involved in all the steps 
from the maturation of gametes, their reciprocal activation to the fi nal interaction 
and the initiation of embryo development. Although sometime results are contro-
versial and come from indirect experimental data, evidence are provided that pertur-
bation of the cytoskeleton, with toxins or heath shock, exerts a wide range of impacts 
on the entire reproductive process including sperm maturation and motility, oocyte 
maturation, fertilization and embryo development [ 152 – 154 ]. Studies on human 
in vitro fertilization evidenced the delicate nature of the oocyte and the instrumental 
role played in fertilization reinforcing the view that: (1) exposure to mechanical 
stressors has the potential to compromise oocyte developmental competence; (2) 
defects in any of the aforementioned reproductive events are lethal to the embryo 
development and might be causes of infertility; (3) cytoskeletal dynamics perturba-
tion of gametes may be considered a factor of human infertility [ 124 ,  155 – 161 ]. In this 
chapter, we wished to bring the general concepts that the major cytoskeletal struc-
tures are involved in the reproductive processes. We would like to apologize with 
the colleagues for not having reported all their valuable studies on animal models 
such as drosophila, zebrafi sh, nematodes etc., but given the vastness of the literature 
on a variety of animal species we have chosen to deal about those species which 
have always been models for the study of reproduction including either invertebrates 
and vertebrates.     
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            Introduction 

 Mammalian oocytes that fully mature in vitro and in vivo are highly desired for 
animal embryonic engineering, but developmental competence of the oocytes 
matured in vitro is less effi cient than that achieved in vivo [ 1 – 8 ]. The oocyte can 
only develop to continue proper fetal development if the nuclear and cytoplasmic 
maturation events are normally coordinated [ 9 ]. Nuclear maturational events are 
characterized by the breakdown of the germinal vesicle (GV), chromosome conden-
sation and segregation, completion of the fi rst meiosis, extrusion of the fi rst polar 
body (PB1), and arrest at metaphase of the second meiotic division (MII). 
Cytoplasmic maturation involves accumulation of ribonucleic acids (RNA) and pro-
teins, oocyte growth, organelle positioning and cytoskeletal translocation [ 4 ,  8 ,  10 ]. 
These points are of particular importance in the fi eld of the animal biotechnology 
and in human assisted reproductive technology, where in vitro oocyte maturation, 
in vitro fertilization, and zygote culture to the blastocyst stage before embryo trans-
fer are routine technologies. This chapter will deal with cytoskeletal changes and 
the rearrangement of organelles, especially mitochondria, in the oocytes to acquire 
competence during nuclear and cytoplasmic maturation.  
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    Cytoskeletal Relocation During Oocyte Maturation 

 Immature oocytes at the GV stage exhibit a dense subcortical MT array and cortical 
MFs just beneath the oolemma [ 11 – 15 ], features which are consistent with the inter-
phase cell cycle. At the onset of GV breakdown (GVBD), chromosomes condense 
and MTs begin to assemble into the spindle at the site of small asters in the mouse, 
containing microtubule-organizing centers (MTOC; [ 16 ]), whereas a microtubular 
network become poorly-stained in the rest of the ooplasm. Then MTs elongate and 
the asters migrate towards opposite poles forming a barrel-shaped structure, the mei-
otic spindle. The spindle fully develops and the highly condensed chromosomes 
align at the metaphase plate between both poles of the meiotic spindle, referred to as 
Metaphase I (MI) [ 17 – 19 ]. MFs are responsible for the positioning and orientation of 
the meiotic spindle, separation of chromosomes, polar body emission, cortical gran-
ule exocytosis, sperm incorporation, and pronuclear centration [ 12 ,  13 ,  20 – 29 ]. 

 As meiosis proceeds, the chromosomes move toward opposite poles of the mei-
otic spindle located at the cell cortex (Anaphase I), and the homologous chromo-
some pairs reach the poles (Telophase I). Then, cytokinesis follows to produce the 
secondary oocyte and PB1 [ 30 – 33 ]. At the end of MI, a contractile ring is associated 
with the plasma membrane to create a cleavage furrow that partitions the cell into 
the oocyte and PB1. The MII oocytes display MFs in the cortex and within the polar 
body and are characterized by the presence of a microfi lament thickening at the 
cortical region over the meiotic spindle. The contractile ring is a network of actin 
MFs and myosin II; myosin II is necessary for the contraction of the cytokinetic 
actomyosin ring [ 34 ,  35 ]. When actin MFs are disrupted, polar body emission is 
blocked in mice [ 25 ], hamsters [ 36 ], cattle [ 37 ], sheep [ 38 ] and pigs [ 39 ,  40 ]. Egg 
asymmetry relies on constant and dynamic remodeling of MFs [ 21 ]. 

 Suzuki et al. [ 41 ] have shown that Y-27632, a selective inhibitor of Rho kinase 
(ROCK), inhibits emission of PB1 in porcine oocytes by disturbing in MF functions. 
They have also pointed out that ROCK inhibition suppressed GVBD in porcine oocytes, 
probably not via organization of MFs, suggesting that GVBD may be involved in direct 
signaling through the Rho-ROCK pathway, which may be different from the pathway 
including organization of MFs in polar body emission. It has been suggested that RhoA 
is required for GVBD by the production of intra-oocyte reactive oxygen species (ROS) 
in mouse oocytes [ 42 ]. ROS is also known to mediate the formation of stress fi bers [ 43 , 
 44 ]. The underlying processes and factors of asymmetry in mammalian oocytes, such 
as Ran and Rac, have recently been reviewed by Brunet and Verlhac [ 21 ].  

    Cytoskeletal Elements Involved in Oocyte Surface 
Morphology During Maturation 

 Scanning electron micrographs of mammalian oocytes show the surface alterations 
during and after maturation and fertilization in mice, hamsters, cattle, pigs and 
humans [ 14 ,  31 ,  45 – 53 ]. Except for the mouse, the cortex of immature oocytes is 
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characterized by a sparse distribution of microvilli (MV) or a mixed distribution of 
MV with micro folds, such as tongue-shaped protrusions [ 53 ]. After maturation, the 
vitelline surface is covered with a uniform and dense population of MV. In contrast, 
mouse oocytes show the polarity in relation to the distribution of MV and the actin 
cytoskeleton. Longo and Chen [ 31 ] have reported that the vitelline surface of mature 
mouse ova overlying the meiotic apparatus is distinguished by an absence of MV 
and a thickened layer of actin (MV-free area), whereas the rest of the egg is covered 
by MV (the MV-rich area). In immature mouse oocytes, the vitelline surface is cov-
ered entirely with a dense population of MV that is underlined by a uniform layer of 
the actin cytoskeleton. 

 MV are supported by an internal actin bundle to which the phospholipid mem-
brane is anchored. At the core of each microvillus, a bundle of actin fi laments, 
cross-linked by linker proteins such as fi mbrin and villin, stabilizes the fi ngerlike 
structure [ 54 ]. Treatment of cytochalasin B, an inhibitor of actin polymerization, 
causes partial disappearance of MV from the vitelline surface of mouse oocytes 
(Fig.  7.1 , Suzuki et al., unpublished data). Disassembly of the actin backbone in the 
MV may account for partial loss of MV from the oocytes.

   Furthermore, our previous reports have demonstrated that cumulus morphol-
ogy, intercellular spaces, and the thick cell projections among cumulus cells 
change dramatically during oocyte maturation and fertilization [ 14 ,  51 – 53 ]. MFs 
are located at the contact surfaces between the cumulus cells, whereas MTs are 
seen in the cytoplasm of the cumulus cells with cell projections between them 
[ 14 ]. The cumulus- oocyte complexes (COCs) are maintained by delicate cell-to-
cell connections among the cumulus cells and with the oocyte [ 55 – 57 ]. The 
cumulus cells have been shown to be linked to each other, and the innermost lay-
ers, the corona radiata cells, often form cytoplasmic processes penetrating through 
the zona pellucida (ZP), maintaining contact with the vitelline membrane of the 
oocyte [ 57 – 66 ]. Thus, the cumulus-corona cell mass may play a role in regulating 
oocyte activity [ 56 ,  57 ,  61 ,  64 ]. Likewise, oocytes produce cumulus expansion 
enabling factor(s) to stimulate expansion of cumulus cells during maturation in 
rodents [ 67 ]. Cumulus cell-oocyte coupling has been shown to be mediated by the 
cytoskeleton, especially by MFs [ 14 ] and occasionally vimentin intermediate fi la-
ments (see Chap.   13    ).  

    Mitochondria – Cytoskeleton Interactions 

    Mitochondrial Translocation During Oocyte Maturation 

 Several studies have examined the organization and distribution of mitochondria 
during oocyte maturation and early development of embryos [ 68 – 73 ]. In immature 
oocytes, the mitochondria are primarily aggregated in the cortex and around the GV 
(Fig.  7.2 ). The peripheral accumulation of mitochondria has been reported by using 
of fl uorescent probes in immature oocytes in mice [ 74 ], hamsters [ 75 ], cows [ 76 ], 
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  Fig. 7.1    Scanning electron micrographs of mouse oocytes before and after a treatment with cyto-
chalasin B (blocking formation of microfi laments). Bar represents 1 μm. ( a ) A zona-free mouse 
oocyte at GV stage recovered from ovarian follicles by puncturing with a 25-gauge needle, show-
ing a sparse distribution of microvilli covering the vitelline surface. ( b ) A mouse GV-oocyte 
treated with 7.5 μg/mL cytochalasin B for 20 min at room temperature (25 °C), showing patchy 
loss of microvilli ( asterisks ). The vitelline surface with no MV can be seen after mere 20 min- 
treatment of actin depolymerization       
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  Fig. 7.2    Scanning electron micrograph of fractured surface of a primary follicle after ODO- 
maceration method for the hamster ovary [ 65 ]. Bar represents 5 μm in ( a ) and 1 μm in ( b ). 
( a ) Cuboidal and polyhedral follicular epithelial cells (F) closely apposed to an oocyte including 
the large germinal vesicle (GV). GV is surrounded by mitochondrial cloud (M). ( b ) Higher mag-
nifi cation of ( a ). Note many spherical and lamellae corresponding to mitochondria (M) and Golgi 
complex (G), respectively, supported by a network of the cytoskeleton. The fi gure contains images 
reproduced from the Animal Science Journal (2001, volume 72, pp. 107–116) with the permission 
of the Japanese Society of Animal Science       
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pigs [ 72 ] and humans [ 70 ,  73 ]. Electron microscopic observations have also shown 
mitochondrial aggregation at the egg cortex in sheep [ 77 ], pigs [ 78 ] and cattle [ 79 ]. 
This pattern of distribution may be related to the high energy requirements in the 
cortex, as oocytes require cumulus cell support at this stage, and intimate associa-
tion between the oocyte and the cumulus cells is maintained with cumulus cell 
processes interacting with the vitelline surface [ 14 ,  58 ,  59 ,  61 ].

   As oocyte maturation proceeds, mitochondria are seen to distribute homoge-
neously throughout the ooplasm between the time of GVBD and MI. Fluorescent 
intensity of mitochondria increases more than twice at the MI and MII stages as 
compared to the GV stage [ 75 ], suggesting a high energy requirement for these 
meiotic processes, which include spindle formation, chromosome condensation and 
movement, and polar body extrusion [ 74 ]. At the MII stage, mitochondria are 
enriched at the center of the ooplasm and around the meiotic spindle, while they 
become scarce in the cortex. After fertilization, mitochondria are aggregated around 
both male and female pronuclei, and the cortical region of the ooplasm has become 
devoid of active mitochondria [ 75 ]. The perinuclear clustering of the mitochondria 
in zygotes is observed in mice [ 80 ], hamsters [ 68 ,  75 ], pigs [ 72 ] and humans [ 71 ]. 
The pronuclear migration and apposition to form syngamy, being related to MF 
reorganization, may require high cellular energy [ 71 ,  76 ].  

    Cytoskeletal Contributions to Mitochondrial Movement 
in Oocytes/Embryos 

 In murine and porcine oocytes, it has been reported that translocation of mitochon-
dria is mediated by MTs, not by MFs [ 72 ,  81 – 83 ]. On the other hand, studies on 
hamster 2-cell embryos suggest that MFs play a role in the distribution of mitochon-
dria [ 68 ,  84 ]. However, our previous studies have shown that both MFs and MTs are 
involved in mitochondrial redistribution in embryos during interphase of the cell 
cycle [ 85 ], and only MFs may function in mitochondrial redistribution during the 
M-phase of the cell cycle (see section “Cell Cycle-Dependent Dynamics of the 
Cytoskeleton Involving Mitochondrial Redistribution”).   

    Factors Affecting Cytoskeletal and Mitochondrial 
Distributions 

 During in vitro manipulation of oocytes/embryos, micro-environments around them 
have to be rigorously controlled. However, the immediate cellular environment may 
infl uence cytoskeletal distribution and mitochondrial movement. This section will 
discuss the effects of fl uctuations in temperature, culture conditions, and cell cycle 
progression on the cytoskeletal and mitochondrial distributions. 
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    Ambient Temperature Affects Cytoskeletal Organization 
in the Oocyte 

 The cytoskeletal components undergo rearrangements in response to many types of 
stimuli such as variations in the local extracellular environment, including fl uctua-
tions in temperature. MFs and MTs may mutually control the function of the mei-
otic spindle apparatus to complete chromosome conformation and segregation. 
Meiotic spindles of oocytes are known to be affected by fl uctuations in temperature 
[ 86 – 98 ]. 

    Effects of Low Temperature on the Oocyte Cytoskeleton 

 Partial and complete depolymerization of MTs and/or altered morphology of the 
spindle have been reported in murine [ 90 ,  92 ,  95 ], bovine [ 87 ], porcine [ 89 ,  96 ], 
ovine [ 91 ] and human oocytes [ 86 ,  93 ,  94 ,  97 ,  98 ]. 

 Our previous study has revealed that exposure of porcine MII oocytes to 5 °C 
produces more detrimental effects on the spindle organization and the cortical MFs 
than exposure to 18 °C, although the cooling effects may be mild on the assembly 
of MFs compared to that of MTs [ 96 ]. Liu et al. [ 89 ] have also reported that disas-
sembly of microtubular spindles in the porcine MII oocytes is quicker at 4 °C than 
at 24 °C. In mouse oocytes, the recovery of the spindle after rewarming has been 
reported by Magistrini and Szöllösi [ 90 ], Pickering and Johnson [ 92 ], and Sun et al. 
[ 95 ]. For example, Magistrini and Szöllösi [ 90 ] have observed that most oocyte 
spindles are restored to normal by rewarming after exposure to 0 °C for 45–60 min. 
Pickering and Johnson [ 92 ] have also found that cooling to 25 °C for 60 min induces 
complete disassembly of the spindle, but subsequent incubation at 37 °C for 60 min 
results in recovery of normal spindles. However, spindles of bovine [ 87 ], porcine 
[ 96 ], ovine [ 91 ] and human [ 86 ,  93 ,  94 ,  97 ,  98 ] oocytes have exhibited only limited 
recovery after temperature fl uctuations of cooling and rewarming. These results 
suggest that microtubular spindles in mouse oocytes are more stable than those in 
other animals, and that certain cytoplasmic factor(s) related to the sensitivity of 
MTs to temperature may be involved in mouse oocytes. 

 In cryopreservation trials, subzero temperature may cause irreversible damage 
to the cytoskeleton of GV- and MII-oocytes in cattle [ 99 ], pigs [ 100 ] and humans 
[ 88 ]. Some kinds of cryoprotectants seem to affect the organization of MFs in the 
oocytes [ 101 ], too. However, Nedambale et al. [ 99 ] have found better reorganiza-
tion of cytoplasmic and spindle MTs in vitrifi ed-thawed bovine oocytes, when 
post-thaw incubation is extended for 120 min prior to fertilization. To avoid a del-
eterious effect on the spindle by freezing, immature prophase I oocytes, in which 
the meiotic spindle is not yet formed, are preferable for cryopreservation of the 
human oocyte [ 88 ,  102 ].  
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    Effects of Low Temperature on Spindle Morphology 

 Suzuki et al. [ 96 ] have pointed out that cooling affects the MII spindle morphology, 
changing from normal barrel-shaped to box-shaped spindles, where both spindle 
poles have broadened in a direction parallel to the equatorial plane. The oocytes 
with box-shaped spindles show more frequently a shortened interpolar distance 
after cooling to 18 °C compared to keeping them at 37 °C. Taken together, it is sug-
gested that in the cooling oocytes the polar areas may fi rst become wider, and then 
the interpolar distance may shorten. 

 Kinetochore MTs, which are attached to the kinetochores on the centromeres of 
chromatids, are involved in generating and/or transmitting the force for chromo-
some movement. Polar MTs are involved in antiparallel interactions within the 
spindle and are required for keeping the two spindle poles apart [ 20 ,  103 ]. The 
kinetochore MTs may be more stable and cold-resistant than the polar MTs [ 104 ]. 
We have observed spindles in which MTs have decreased in number and in fl uores-
cence intensity with a short interpolar distance in cooling porcine oocytes [ 96 ]. 
Such ‘reduced spindles’ may have been the result of disassembly of the polar MTs 
rather than the kinetochore MTs. In addition, we frequently observed movements of 
chromosomes toward the cell surface in the oocytes exposed to 5 or 18 °C [ 96 ]. 
Such movement of chromosomes has also been reported for mitosis [ 103 ]. 
Monopolar spindles have also been observed in porcine MII oocytes cooled to 5 °C 
[ 96 ]. In this case, one microtubular spindle is always observed on the side of the 
outer pole only. The results suggest that the bundles of MTs on the side of the inner 
pole may disassemble fi rst followed by disassembly of those on the side of the outer 
pole, eventually resulting in complete disassembly of spindle MTs. 

 Recently, in a study on network organization of the neuronal cytoskeleton, 
Spedden et al. [ 105 ] have found that the correlation between regions of high tubu-
lin concentration and the high-stiffness areas of the soma decreases dramatically 
as the temperature is dropped from 37 to 25 °C. Temperature-sensitive MTs or 
cellular mechanotransduction [ 106 ] may also affect mechanical stability of 
somatic cells.  

    Effects of Low Temperature on MTOCs 

 The spindle poles of the oocyte, also known as MTOCs [ 16 ,  20 ,  107 ,  108 ]. At low 
temperature, the polar areas become wider and fl attened. The broadened spindle 
fails to recover to the normal spindle after cooling-rewarming, suggesting that alter-
ation in the MTOC area may be irreversible. It is possible, therefore, that other ele-
ments including MTOC-related proteins, such as γ-tubulin and pericentrin [ 107 , 
 108 ], have become damaged during cooling-rewarming. Thus, the oocyte spindles 
failed to recover to the normal status after rewarming, even though some MTs have 
been repolymerized around the chromosomes and the majority of cortical MFs have 
been reassembled. The effect of cooling on MTOC-related proteins and the mecha-
nism controlling the organization of MFs and MTs in the mammalian oocytes 
remain to be elucidated at the cellular and molecular levels.  
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    Effect of Elevated Temperature (Heat Shock) on the Oocyte Cytoskeleton 

 It is well documented that mammalian females subjected to heat stress have 
increased embryonic mortality (for review, see [ 109 ]). Baumgartner and Chrisman 
[ 110 ] have reported in oocytes derived from heat-stressed mice the increased pro-
portions of abnormal confi gurations of the chromosomes due to disruption of the 
spindle. Ju and his colleagues have shown that direct in vitro heat shock at 41 to 
42 °C for 2 to 4 h results in aggregation or condensation of metaphase chromosomes 
in both bovine and porcine oocytes [ 111 ,  112 ]. In some cases, the chromatin of the 
matured oocytes has separated into several groups after severe heat shock [ 113 ]. 
The reason for the condensation and separation of the chromatin is not clear yet, but 
it might be due to alteration of the spindle MTs. 

 It has been shown that exposure of cultured oocytes to elevated temperature (i.e. 
heat shock) during early stages of maturation interferes with the processes of oocyte 
maturation. In our previous studies, in vitro matured bovine oocytes could not sus-
tain development when exposed to 43 °C for 45 min in M199 compared to shorter 
treatments (0, 15, and 30 min of heat shock) [ 114 ], with no deleterious effect on the 
matured oocyte being exposed to lower temperatures (40.5 and 41.5 °C for up to 
1 h) [ 114 ]. Although exposure at 43 °C for 45 min should be detrimental for bovine 
oocytes [ 114 ], resistance to elevated temperature altered as oocytes mature, become 
fertilized, and develop [ 115 ]. 

 Ju and his colleagues have shown clear depolymerization of the meiotic spindle 
and the MF density is altered in both bovine and porcine oocytes exposed to heat 
shock at 41 to 42 °C for 2 to 4 h [ 112 ,  113 ,  116 ,  117 ]. Therefore, aggregation or con-
densation of metaphase chromosomes occurs in these heat-shocked oocytes [ 111 ]. 

 Suzuki et al. [ 118 ] have demonstrated that, with only a brief heat shock (42 °C for 
30 min) to mature bovine oocytes, the surface ultrastructure of the vitelline mem-
branes are changed from a normal MV-dominated pattern to a mixture of MV and 
lamellipodia-like enlargement of cytoplasmic protrusions. They have suggested that 
its effect may manifest itself more quickly and to a greater degree in aged oocytes 
(matured in vitro for 44 h) compared to the young oocytes (matured in vitro for 24 h), 
too. It is likely that the changes in surface morphology of the oocytes are attributable 
to the alteration in distribution of the cortical MFs after heat shock. Furthermore, 
heat shock results in the movement of organelles towards the center of the blastomere 
[ 119 ] and the loss of cortical granules from the vitelline cortex [ 120 ]. Taken together, 
it is suggested that MF and MT structure may be altered in mammalian oocytes sub-
jected to heat shock during maturation. In addition, disruption in resumption of mei-
osis caused by heat shock may be associated with oocyte apoptosis [ 121 – 124 ].   

    In Vitro vs. In Vivo Conditions 

 Due to recent studies, knowledge of the basic cell biology of early embryo develop-
ment and the in vivo environment has substantially increased. It is now generally 
accepted that the development of defi ned embryo culture systems has been one of 
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the key achievements in mammalian embryology. However, changes in culture con-
ditions can alter the organization or structure of mitochondria in the oocytes or 
embryos of mice [ 80 ,  125 ], hamsters [ 68 ,  126 – 128 ] and cattle [ 129 ,  130 ]. Bavister 
and his colleagues have reported that hamster embryos are very sensitive to changes 
in culture milieu, which may severely affect their viability after embryo transfer (for 
review, see [ 131 ]). For example, exposure of hamster 2-cell embryos to suboptimal 
culture conditions (addition of glucose and phosphate which disrupt development) 
causes dispersion of the mitochondria away from the nuclei [ 84 ,  126 ,  127 ]. In par-
ticular, energy substrate requirements for hamster embryo development in vitro are 
markedly different from those for mouse embryos and details of the mitochondrial 
metabolism during preimplantation development is still to be resolved. 

 Suzuki et al. [ 132 ] have demonstrated that mitochondrial localization in embry-
onic cells is changed after the 8-cell stage in the hamster. At the late 8-cell stage, 
hamster embryos are characterized by a concentration of mitochondria to the cell-
to- cell contact region in addition to the perinuclear region in in vivo embryos, but it 
may not be in in vitro ones. Such heterogeneity in mitochondrial distribution may 
be associated with energy production/utilization for compaction. In vitro culture 
may change mitochondrial localization in the cytoplasm of hamster embryos and 
may be dependent on reduced density of the MF and MT networks. In in vivo ham-
ster embryos, nucleus migrates normally from the central cytoplasm to the apical 
cytoplasm around the late 8-cell stage [ 133 ], but some failure may occur in the 
mechanism of nuclear outward migration in more than half of the embryos cultured 
in vitro [ 132 ]. Furthermore, in vitro embryonic development is delayed from the 
late 8-cell to the morula stages, namely around the compaction stage. These data 
suggest that the process for compaction may require increased energy production in 
a particular region of each blastomere and that culture conditions which disrupt 
energy production in the embryo may retard the compaction process.  

    Cell Cycle-Dependent Dynamics of the Cytoskeleton Involving 
Mitochondrial Redistribution 

 The cytoskeleton is remodeled dynamically throughout the cell cycle. During the M 
phase, MTs are assembled into the spindle and MFs are organized to the contractile 
rings at cytokinesis [ 24 ]. To test the dependence of the cytoskeleton on mitochon-
drial localization, hamster embryos in interphase or M phase treated with or without 
assembly inhibitors of the cytoskeleton (20 μM of nocodazole, 5 μM of cytochalasin 
D or a combined treatment of both inhibitors for 1 h) were centrifuged at 10,000× g  
for 2 min. By combining cytoskeleton assembly inhibitor(s) with high-speed cen-
trifugation, mitochondria dissociated from depolymerized cytoskeletal components 
should be easily spun down by centrifugation. Centrifugation is effective in elimi-
nating any confusion regarding the notion that mitochondria are gradually spread-
ing in situ even if the cytoskeleton is depolymerized by the specifi c inhibitors. Our 
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previous results suggest that MTs may strongly associate with mitochondria during 
interphase but dissociate from them during the M phase [ 134 ]. Functional roles of 
MFs and MTs in the translocation of mitochondria are presented schematically in 
Fig.  7.3 . MTs have primary functions in forming the mitotic spindle to facilitate 
chromosome segregation during the M phase. MFs are involved in the orientation, 
positioning and rotation of the spindle [ 135 – 137 ].

   It is well known in somatic cells that both cytoskeletal components are included 
in axonal transport of mitochondria. In the axons, long-distance and fast transport of 
mitochondria requires MTs, and mitochondria can also move along MFs in short- 
range movement [ 138 – 140 ]. Mitochondrial transport involves MT-dependent kine-
sins and dyneins and actin-dependent myosins [ 140 ]. All three types of motor 
proteins are frequently found on the surface of a single mitochondrion and work in 
concert to correctly maintain mitochondrial localization in the cytoplasm [ 138 ]. 
Furthermore, Lee et al. [ 141 ] have reported in HeLa cells that mitochondria in 
mitotic cells displayed a close association with MFs but not with MTs and interme-
diate fi lament keratin. The role of intermediate fi laments on organelle positioning 
will be discussed in Chap.   13    . Crosstalk between MFs, MTs and intermediate fi la-
ments is an important research theme to understand the relationship between the 
cytoskeleton and organelle positioning in the cell.   

  Fig. 7.3    Schematic diagram showing direct interaction of the cytoskeleton with mitochondria 
according to the cell cycle. The images are reproduced from our previous data [ 85 ,  134 ]. ( a ) Both 
microtubules and microfi laments are involved in the mitochondrial redistribution of the oocyte/
blastomere during interphase. ( b ) The redistribution of mitochondria in the oocyte/blastomere is 
mainly modulated by microfi laments during the M phase, when the cytoplasmic microtubules are 
intensively organized into the spindle fi bers       
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    Concluding Remarks 

 Actively anchoring mitochondria at sites where they are needed helps to maintain 
proper organelle distribution. Organelle anchoring is also a cytoskeleton-based pro-
cess, where MF- and MT-dependent anchoring occur in the oocyte/embryo depend-
ing on the cell cycle progression. Cytoskeletal linker proteins are known but their 
roles in organelle distribution are not well characterized [ 142 ]. Several other pro-
teins may also function as mitochondrial motor adaptors or regulators [ 143 ], and a 
regulatory interaction between cytoskeletal signaling [ 144 ] will await further study 
into their dynamics or relative contributions to oocyte meiosis and embryonic devel-
opment. Fluctuations in temperature and in vitro culture conditions induce most of 
the spindle MTs and the cortical MFs to undergo disassembly partially or com-
pletely. Such a disassembly is irreversibly in most situations. Therefore, in associa-
tion with reorganization of MFs and MTs, temperature fl uctuations may infl uence 
crucial events of the cortical ooplasm, such as normal alignment and segregation of 
chromosomes, the eccentric anchorage of the spindle, the polar body formation, and 
the migration of organelles, including mitochondria, and subsequent fertilization 
and development. These points are of particular importance in the fi eld of animal 
biotechnology and human assisted reproductive technology, where in vitro oocyte 
maturation, in vitro fertilization, and zygote culture to the blastocyst stage before 
embryo transfer are routine technologies.     
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    Chapter 8   
 Tubulin Detyrosination in Epithelial Cells 

             Sabrina     Zink     and     Ralf     Jacob    

            Introduction 

 Epithelial cells represent the main contact sites between the internal organism and 
the outside world. They are characterized by a certain asymmetry of the plasma 
membrane as well as of the underlying cytoskeletal architecture to fulfi l their 
functions. 

 The process of epithelial polarization, i.e. the formation of the apical and the 
basolateral cell pole is established by distinct biosynthetic pathways in which cyto-
skeletal elements are involved [ 1 ].  

    Epithelial Cells 

 Epithelial cells cover inner and outer biological surfaces and thus build a natural bar-
rier against the environment. Hence, their functions include protection against mechan-
ical stresses, tightening of body cavities, the resorption and secretion of specifi c 
substances and transport processes. A common feature of epithelial cells is the polarity 
of the plasma membrane with an apical domain facing the lumen and the morphologi-
cally and functionally differing basolateral domain facing neighboring cells or the 
basal lamina [ 2 ]. The distinct membrane regions are maintained by tight junctions 
whereas the adherens junctions and the desmosomes form the actual cell–cell contact 
in the epithelium. The apical and the basolateral membrane domain are composed 
of different subsets of proteins and lipids due to their functional specialization. 
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This requires directional and highly specifi c transport processes dependent among 
others on protein sorting signals [ 3 ], motor proteins [ 4 ], distinct cytoskeletal tracks [ 5 ] 
and the polarization state of the cell [ 6 ,  7 ]. 

 The polarity of epithelial cells is well maintained by their cytoskeletal organiza-
tion which is changing signifi cantly during the polarization process.  

    Microtubule Organization in Epithelial Cells 

 In non-polar cells microtubule fi laments emanate from a centrosome or a microtu-
bule organizing center (MTOC) localized near the nucleus [ 8 ]. During the polariza-
tion process basic alterations of the microtubular cytoskeleton and the whole 
intracellular organization occur. After release of the microtubule minus-ends from 
the centrosome minus-end binding factors anchor the microtubules on cell–cell- 
contacts or at the apical cell pole [ 9 – 11 ]. In polarized cells the fi laments generate a 
network underneath the apical membrane but they are located at the basal cell pole 
as well. Furthermore, microtubules can be organized as bundles along the apico- 
basal axis [ 12 – 14 ]. Remarkably, horizontally stored network microtubules are not 
consistently oriented whereas minus ends in vertical bundles point to the apical and 
plus ends to the basolateral membrane [ 14 – 18 ]. In addition to their subcellular 
orientation, microtubules can be categorized according to their posttranslational 
modifi cation, building the so called “tubulin code”.  

    The Tyrosination/Detyrosination Cycle 

    Posttranslational Detyrosination of Tubulin 

 Posttranslational modifi cations are a common feature of various proteins including 
tubulin to generate a required functional diversity. For tubulin acetylation, de-/
tyrosination, delta2 modifi cation, polyglycylation and -glutamylation, phosphoryla-
tion and palmitoylation are known. Usually the C-Terminus of the alpha tubulin 
subunit is affected [ 19 – 23 ]. As part of the tyrosination/detyrosination cycle the tyro-
sine located at the C-terminus of newly synthesized alpha-tubulin is removed by a 
specifi c carboxypeptidase resulting in detyrosinated tubulin with a C-terminal 
glutamate residue [ 24 ]. This reaction preferably takes place in polymerized micro-
tubule fi laments whereas the opposite re-addition of a tyrosine residue is catalyzed 
by the tubulin tyrosine-ligase (TTL) on soluble tubulin dimers. Therefore, the 
tyrosination process is observed only after depolymerisation of microtubules [ 22 ,  23 , 
 25 – 27 ]. Similar to acetylated tubulin detyrosinated tubulin is a component of stable, 
persistent microtubules. Thus, the modifi cation is linked to microtubule stability 
although it is not a consequence of detyrosination. During cell maturation the fi laments 
are exposed increasingly to carboxypeptidases resulting in the removal of C-terminal 
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tyrosine and accordingly to an accumulation of detyrosinated tubulin towards the 
microtubule minus-ends [ 28 ,  29 ]. In contrast, tyrosinated tubulin is found frequently 
close to newly formed microtubule plus-ends, where the polymerization usually 
takes place [ 30 ].  

    Tubulin Tyrosine-Ligase (TTL) 

 Tubulin tyrosine ligase (TTL) is one of the best-characterized enzymes involved in 
tubulin modifi cation. It triggers the re-addition of tyrosine to the C-terminus of 
detyrosinated tubulin [ 23 ,  31 – 33 ]. The enzyme comprises an N-, a central and a 
C-terminal domain forming the active site of the enzyme. The ligase recognizes the 
conserved, positively charged alpha-tubulin surface and a curved conformation of 
the heterodimer thus forming an elongated structure. Thereby, it caps the tubulin 
dimer preventing its incorporation into the microtubule fi lament [ 33 ,  34 ]. 

 Mice defi cient for the tubulin tyrosine-ligase (TTL−/−) die within few hours 
after birth because of neuronal disorganization. This result was confi rmed in neuro-
nal cell culture leading to morphogenetic anomalies [ 35 ].  

    The Tubulin Carboxypeptidase (TCP) 

 In contrast to TTL the tubulin carboxypeptidase (TCP) could not be characterized 
genetically or biochemically until now. Several researchers were able to show the 
TCP activity in subcellular fractions [ 19 ,  36 ] and on microtubules in living cells 
[ 37 ]. Furthermore, inhibitors of the enzyme could be identifi ed contributing to a 
better understanding of the carboxypeptidase mode of action [ 38 ,  39 ].   

    The Importance of Tubulin Detyrosination for Epithelial Cell 
Growth and Maintenance 

    Detyrosinated Tubulin in the Polarisation Process 
and Protein Traffi cking 

 The two distinct membrane domains of epithelial cells with their specifi c protein 
and lipid composition are maintained by directed and highly specifi c transport and 
sorting processes. 

 Vesicular transport along microtubules requires among others motor proteins 
bound to the fi laments and providing the mechanical force for movement. Dependent 
on the tyrosination/detyrosination state of the microtubule, different motors and 
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accessory proteins are recruited to the fi lament. Kinesin 1, a plus-end directed motor 
preferentially binds to detyrosinated tubulin and allows the transport of different 
molecules on specifi c microtubules [ 40 – 43 ]. A kinesin1 family member, Kif5C, is 
known to move slower along, preferentially binds to and decorates detyrosinated 
microtubules [ 44 ]. Jaulin et al. reported in 2007 that Kif5B mediates apical protein 
transport only in fully polarized cells pointing to a kinesin switch during the polar-
ization process [ 4 ]. This could be associated with a switch of posttranslational mod-
ifi cations as was published in the last few years. The results of these articles 
indicated that the occurrence of posttranslational modifi cations depends on the 
polarization state of the cell. Detyrosinated tubulin is increasingly present early in 
the polarization process in subconfl uent cells and shows a decreased incidence in 
fully polarized cells [ 6 ,  7 ]. Concomitantly, decreasing the levels of detyrosinated 
tubulin by overexpression of TTL results in a dramatic reduction of apical delivery 
of gp80. This suggests that certain apical transport pathways in epithelial cells use 
detyrosinated microtubules as cytoskeletal tracks (Fig.  8.1 ).

  Fig. 8.1    Detyrosinated 
microtubules serve as tracks 
for apical traffi cking.  Post  
Golgi vesicles are transported 
along detyrosinated 
microtubules to the apical 
membrane domain of 
epithelial cells. Minus (−) 
and plus (+) ends of vertical 
bundles are indicated.  ER  
endoplasmic reticulum,  MT  
microtubules,  TGN trans  
Golgi network       
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   Another hint to the importance of tubulin detyrosination in epithelial cell growth 
was provided by experiments investigating the polarization process in cells with low 
levels of detyrosinated tubulin. This reduction leads to an early assembly of epithe-
lial MDCK cells into isolated islands which develop a prematurely polarized archi-
tecture [ 7 ]. This implicates a role of tubulin detyrosination in morphological 
differentiation from non-polarized cells into an epithelial cell layer.  

    Detyrosinated Tubulin in Disease and Cancer 

 Beside its role in growth and maintenance of the integrity of epithelial cells tubulin 
modifi cations and associated enzymes are also known to be involved in certain 
pathomechanisms. 

 Detyrosinated tubulin, respectively, the level of tubulin tyrosine-ligase is associ-
ated with tumor progression, invasiveness and chemoresistance [ 45 – 48 ]. 

 Most human breast cancers are associated with a suppressed TTL activity. The 
same applies for several human tumors of different tissue origin producing sarcoma 
growth in mice. In addition, these tumors from TTL −  cells essentially contain dety-
rosinated and delta2 tubulin and were rescued by TTL cDNA. The results suggest a 
role for TTL as tumor suppressor [ 46 ]. 

 In neuroblastoma, the most common solid cancer in childhood, an unfavorable 
prognosis is mostly associated with deregulation of the tyrosination/detyrosination 
cycle of tubulin. This is caused by a decreased expression of human TTL and 
accompanied by an accumulation of delta2 tubulin whereas favorable neuroblas-
toma cells are positive for tyrosinated, detyrosinated and delta2 tubulin [ 45 ]. 

 Compared to normal human prostate epithelial cells, prostate cancer cells exhibit 
a reduced level of TTL together with an elevated level of detyrosinated tubulin. But 
in contrast to other cancer cell lines normal cells have signifi cantly higher levels of 
delta2 tubulin [ 47 ]. 

 During the epithelial-to-mesenchymal transition (EMT) epithelial cells lose their 
polarity and adhesion to acquire a mesenchymal state. This procedure enables can-
cer cells to become motile and to migrate and invade other tissues. Tumor invasion 
or metastasis following the EMT is accompanied by TTL downregulation and 
increased levels of detyrosinated tubulin. Furthermore, the formation of so called 
microtentacles enriched in detyrosinated tubulin, may enhance the attachment of 
circulating cancer cells to the endothelium [ 48 ]. Interestingly, specifi c treatment of 
the cells with parthenolide and costunolide leads to decreased levels of detyros-
inated tubulin and with that to a reduced frequency of microtentacles and inhibition 
of reattachment [ 49 ]. In 2007 Fonrose and colleagues proposed that parthenolide 
inhibits the action of the tubulin carboxypeptidase resulting in reversal of the accu-
mulation of detyrosinated tubulin in tumor cells [ 39 ].   
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    Conclusions 

 In summary, cells manipulate the composition of posttranslationally modifi ed 
microtubules according to their architecture, morphogenesis and function. 
Alterations in the ratios of tyrosinated and detyrosinated microtubules will then 
affect the lifetime, stability and binding capacity to molecular motors. The last point 
is further strengthened by recent data from the Vale lab, which show that posttrans-
lational tubulin modifi cations can specifi cally regulate the activity of distinct dynein 
and kinesin motors [ 50 ]. It is thus attractive to speculate that microtubules enriched 
in certain posttranslational modifi cation serve as tracks to particular subcellular 
domains. If this is a general concept of cellular targeting remains an open question 
and depends on additional studies in the future.     
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    Chapter 9   
 Mutations in  Adenomatous Polyposis Coli , 
Their Role in Cytoskeletal Dynamics 
and Cancer Onset 

             Alexander     E.     Davies      and     Kenneth     B.     Kaplan    

      Abbreviations 

   APC    Adenomatous polyposis coli   
  CIN    Chromosome instability   
  GAP    GTPase activating protein   
  GEF    GTPase exchange factor   
  LOH    Loss of heterozygosity   
  Min    Multiple intestinal neoplasia   
  TSG    Tumor suppressor genes   

          Introduction 

 Gross changes in cell shape and migration accompany cancer cell transformation 
and have reinforced the idea that changes in cytoskeletal dynamics contribute 
directly to cancer phenotypes. In this view, cytoskeletal changes are downstream of 
cancer onset and arise directly from deregulation of signaling networks. For 
 example, activation of the c-src proto-oncogene gives rise to changes in the actin 
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cytoskeleton. This occurs in part through its activation of the focal-adhesion kinase 
(FAK), which lies upstream of p21-activated kinases (PAKs) that in turn regulate 
small GTPases, such as Rho and Rac; as a result, there is a direct increase in actin 
polymerization [ 1 ]. Similarly, activated Ras mutations through the Rac-GTPase 
exchange protein, Tiam1, also activate the Rac pathway to polymerize actin. A num-
ber of functional studies have linked these changes in actin to altered cell–cell con-
tacts and increased cell migration that ultimately contributes to loss of growth 
control, invasion and metastasis. 

 Changes in microtubule nucleation or dynamics are also common in cancer cells 
and associated with the loss of function of a subset of tumor suppressor genes 
(TSG’s) [ 2 ]. Deregulation of microtubules can impact signaling pathways that con-
trol programmed cell death and contribute to errors in chromosome segregation. 
This combination of changes may allow tumor cells to acquire and adapt to an 
aneuploid state (i.e., elevated levels of gene expression and increased genomic 
instability [ 3 ]), a stressed state that results in cell death in non-cancer cells. For 
example, loss of BRCA1, a TSG found mutated in breast cancers, causes changes in 
the microtubule cytoskeleton by increasing the number of centrosomes, resulting in 
multi-polar spindles and chromosome instability [ 4 ,  5 ]. TSGs such as NF1, NF2 as 
well as LATS1 and LATS2 are also implicated in regulating cytoskeletal organiza-
tion through microtubule dynamics as well as centrosome number [ 2 ,  6 – 8 ]. Thus, a 
variety of TSG mutations affect microtubule organization either by altering their 
dynamic properties or by changing their organizing centers. Here we will focus on 
mutations in  adenomatous polyposis coli  (APC) that predispose patients to colorec-
tal cancer and alter microtubule dynamics. 

 Our work (reviewed below) has shown that mutations in APC result in altered 
microtubule dynamics  prior  to cancer onset, a role for APC distinct from its regula-
tion of β-catenin and gene transcription. An important implication from this work is 
that changes in cytoskeletal dynamics that precede cancer onset might have a role in 
the transformation of normal cells to cancer cells. This idea addresses one of the 
outstanding questions in cancer; what changes must occur in a normal cell before it 
takes on the properties we associate with cancer? This is a deceptively diffi cult ques-
tion to answer. The identifi cation of cells that represent the fi rst step(s) in cancer 
onset is technically challenging as these intermediates are presumably short- lived 
and mature tumors are fi lled with a myriad of accumulated changes. Insights into the 
pre-cancer cell state come from observations of so-called “oncogenic stress”. This 
stress is an immediate outcome of the expression of mutants in TSGs or oncogenes. 
Such mutations often combine with genomic instability and lead to an acute pertur-
bation of overall cellular homeostasis and a state that is antagonistic to cell prolifera-
tion [ 9 ]. To cope, cells may respond by adjusting pathways that restore homeostasis, 
providing pre-cancer cells with a heightened ability to adapt and to tolerate muta-
tions that lead to unregulated cell proliferation. Our studies suggest that APC mutants 
act prior to cancer onset and broadly alter cellular homeostasis by perturbing cyto-
skeletal organization, causing chromosome aneuploidy and affecting the asymmet-
ric inheritance of information. We propose that these changes may synergize to 
create a “permissive” cellular environment for cancer transformation and thus may 
represent a common requirement for all cells destined to become cancer cells.  
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    The Genetics of APC and Colorectal Cancer 

 In the canonical colorectal cancer model, a single inherited mutation in APC is 
 suffi cient to dominantly predispose familial adenomatous polyposis (FAP) patients 
to colorectal cancer [ 10 ]. In FAP patients, the majority of APC alleles result in non- 
sense mutations that produce a truncated protein. Signifi cantly, similar APC muta-
tions are also found in one of the two alleles in sporadic colorectal tumors [ 11 – 13 ]. 
The loss of heterozygosity (i.e., LOH, loss of function of the wild type APC allele) 
observed in all FAP and the majority of sporadic tumors led to the suggestion that 
loss of APC is the fi rst step in colorectal cancer onset. This observation is consistent 
with simple tumor suppressor models as described eloquently in Knudson’s two-hit 
hypothesis [ 14 ]. Such a model presupposes that LOH at APC favors cell survival 
and proliferation. Evidence to support the latter prediction comes from both mouse 
models and from genetic analysis of human patients where full-length APC is 
already lost in small adenomas [ 15 ]. Thus, APC has been described as a “gate-
keeper” tumor suppressor gene, which implies that the key recessive phenotype 
associated with loss of APC is increased cell proliferation [ 10 ]. However, there are 
some complications with this simple model, as detailed below. 

 The main target of APC in regulating cell proliferation appears to lie in its ability 
to control the levels of the cell polarity and cell fate determinant, β-catenin. The 
relevant mechanisms and pathways are well reviewed by others [ 16 ,  17 ] but, briefl y, 
APC forms a multi-protein regulatory complex with Axin and the kinase, GSK3β. 
Together, this complex modifi es β-catenin, a key component of the Wnt-signal 
transduction pathway [ 18 ]. Phosphorylation of β-catenin targets it for interaction 
with the SCF-β-TrCP ubiquitin ligase complex and proteasomal degradation. Thus, 
under conditions where Wnt-signaling is turned off, cytosolic β-catenin pools are 
targeted for phosphorylation and degradation. Under conditions where Wnt signals 
are “on”, the β-catenin degradation pathway is inhibited allowing cytosolic β-catenin 
to accumulate and to interact with the TCF4 transcription factor. Subsequent nuclear 
import of β-catenin/TCF4 results in the transcriptional activation of a wide range of 
direct and indirect targets that include growth regulatory genes such as Myc and 
cyclin D1 [ 17 ,  19 – 21 ]. Therefore, an increase in the levels of β-catenin is one of the 
fi rst molecular hallmarks in cells that have lost APC function and is implicated in 
driving cellular proliferation. 

 Paradoxically, loss of APC function and up regulation of β-catenin does not 
immediately lead to more cell division or promote cell survival, a characteristic 
shared with other oncogenic and TSG mutations [ 9 ]. Mice carrying a homozygous 
deletion of APC die as embryos with defects in neural tube closure [ 22 ,  23 ]. 
Moreover, cell death is elevated in naive intestinal epithelium when APC is condi-
tionally knocked-out, a fi nding that contrasts with the low levels of apoptosis found 
in colorectal cancers [ 24 – 26 ]. The lack of proliferative advantage in cells without 
APC in these experiments may be because many of them lack stem cell characteris-
tics. Indeed, targeting APC knockouts specifi cally to stem cells results in a higher 
frequency of micro-adenomas compared to knockouts made in both stem cells and 
transit amplifying cells [ 27 ]. However, the very high effi ciency of APC gene 

9 Mutations in Adenomatous Polyposis Coli, Their Role in Cytoskeletal Dynamics…



198

 ablation in these compartments raises additional questions as to the relevance for 
bona fi de in situ cancer onset, especially since loss of heterozygosity at APC is 
probably a rare event in familial cases and is certainly rare in sporadic cancers. 
Mutant Cre recombinase that reduces the knockout targeting frequency more faith-
fully recapitulates human disease. In these animals it is clear that single stem cells 
deleted for APC require other changes to advance to adenomas, possibly involving 
crypt fusion to mediate cell expansion [ 28 ]. Additionally, the frequency of transfor-
mation in cells lacking APC is quite low under these conditions (17 %), suggesting 
that simple ablation of APC is not suffi cient to drive cancer onset [ 29 ]. Interestingly, 
Fischer and colleagues found that engineering these sporadically targeted APC 
deletions in mice strains that already have a mutant APC encoding for a truncated 
protein (i.e., APC Min  or APC 1638N ) dramatically increases the rates of cancer trans-
formation in APC null cells. These fi ndings argue strongly that long-term expres-
sion of APC mutant proteins predispose cells for cancer transformation following 
LOH, perhaps by providing a mechanism for cells to withstand the deleterious 
effects associated with losing APC. 

 In summary, APC genetics argue for two distinct phenotypes. The recessive phe-
notype results in the stabilization of β-catenin and in transcriptional re- programming 
of crypt stem cells. However, there is strong evidence to implicate a mono-allelic 
mutation in APC in driving cancer onset. Such a phenotype may be related to the 
truncated APC proteins that frequently arise in tumors or from haplo-insuffi ciency, 
as suggested by transgenic mice [ 30 ]. We will now review a series of studies on the 
biochemical and cellular activities of the truncated APC proteins that have shed 
light on their role in regulating the cytoskeleton and on plausible mechanisms by 
which they may increase cancer risk.  

    APC Domain Organization and Cytoskeletal Functions 

 Despite the initial focus on APC in β-catenin regulation, more comprehensive stud-
ies make a strong case that APC regulation of actin and microtubule dynamics is 
just as important. We will review the evidence for these diverse roles by summariz-
ing the domain organization of APC and their relevant protein interactions. APC 
encodes for a large polypeptide (~2800 amino acids) with a number of identifi able 
sub-domains (see Fig.  9.1 ) [ 12 ,  31 ]. We will fi rst describe the amino (N) terminal 
domains and their connections to proteins that are involved in regulating actin and 
β-catenin. We will then discuss the multiple modes of interaction between APC and 
microtubules, which include both N- and carboxy (C)-terminal domains, and fi nally 
make a case that these activities are part of a larger regulatory circuit important dur-
ing cell migration. Despite our linear approach to reviewing APC domains, it is 
important to acknowledge these domains are likely to function in the context of 
important intra-protein interactions that to date remain poorly understood [ 32 ]. 
As diagrammed in Fig.  9.1 , the amino terminus of APC (amino acids 1–58), a predicted 
coiled coil domain, mediates the dimerization of APC [ 33 – 35 ]. A series of heptad 
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  Fig. 9.1    APC domain organization and activities in normal and cancer cells. ( a ) A schematic of 
protein domains in APC as defi ned by sequence homology and functional experiments. ( b ) Known 
protein interactors are aligned below the relevant APC domain that they bind. For the Armadillo 
domain, each of the multiple interactors are aligned below but this does not imply that they can bind 
at the same time. The  blue boxes  indicate links between binding partners and the specifi c indicated 
cellular functions. ( c ) The text boxes focus on the complex interaction between APC and microtu-
bules. The  yellow boxes  highlight the multiple contexts of microtubule interactions regulated by 
APC and the downstream cellular pathways that are affected by the indicated microtubule interac-
tions. ( d ) A schematic of the translated product of a typical monoallelic APC mutant and its interac-
tion with full length, wild type APC protein. The  red boxes  highlight the defects observed in cells 
that express the dominant APC mutants. See text for details and references       
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repeats (amino acids 250–800) forms a canonical Armadillo domain that interacts 
with a number of other Armadillo containing proteins, including ASEF, a GEF 
( G TP  e xchange  f actor) for Rho, IQGAP1, a GAP ( G TPase  a ctivating  p rotein) for 
Rac1/Cdc42 and KAP3, a protein linked to microtubule motors [ 36 – 38 ]. A large 
region of the middle of APC consists of distinct sets of repeats (i.e., 15 amino acid 
repeats, 20 amino acid repeats and SAMP repeats) that have been implicated in 
interactions with a variety of protein partners. The 15- and 20-amino acid repeat 
regions contribute to the interaction between APC and β-catenin (Fig.  9.1b ). The 
20-amino acid repeats and the SAMP domain link APC to axin and GSK3β [ 39 ]. 
Mutations that eliminate any of the middle domain repeats reduce the affi nity of 
APC for axin and β-catenin, ultimately inhibiting ubiquitination and the degrada-
tion of β-catenin. It is not clear how, or if, regulation of β-catenin and actin dynam-
ics are coordinated but it is increasingly clear that the connection to microtubules is 
integral to all of APC functions.

   APC interacts with microtubules via three distinct domains. First, as mentioned, 
the Armadillo domain in the N-terminus links APC to KAP3 and the kinesin 
KIF3A/3B. There are two additional microtubule interacting domains in the 
C-terminus (Fig.  9.1a ). First, a stretch of basic amino acids is suffi cient to interact 
with and bundle microtubules in a test-tube but this domain is not suffi cient to inter-
act with microtubules in cells [ 40 ]. Second, a region of 170 amino acids at the distal 
C-terminus of APC interacts with EB1, a regulator of microtubule plus-end dynam-
ics [ 41 – 44 ]. APC has been observed to track growing microtubule plus-ends that are 
also associated with EB1 and the C-terminus of APC increases the affi nity of EB1 
for microtubules in a test tube [ 45 ,  46 ]. It is unclear how these distinct modes of 
microtubule interaction are integrated, however unique contributions have been 
described using APC mutants. For example, the interaction of KAP3 with APC is 
required for APC to cluster in bundles of peripheral microtubules in MDCK cells 
[ 37 ]. Dominant fragments of KAP3 that interact with kinesin, but not APC, enhance 
cell migration [ 37 ,  47 ]. Importantly, the interaction between APC and KAP3 is not 
suffi cient for APC to interact directly with microtubules; instead, the accumulation 
of APC on microtubules requires the C-terminus of APC. It is possible that all three 
of these modes of microtubule interaction work together to allow APC to regulate 
the dynamics of a subset of cellular microtubules. For example, KAP3-KIF3A/3B 
may work to enrich APC at the plus ends of microtubules. Once there, APC can 
interact with EB1 to promote plus-end growth and the basic region may act to 
locally bundle microtubules. Although the precise nature of these relationships 
remains to be defi ned, it is increasingly clear that these regions work together inside 
the cell to organize the cytoskeleton at the leading edge of migrating cells. 

 Indeed, studies of directed cell migration have now shed light on how APC inter-
actions with microtubules are important to both stabilize microtubules and to polym-
erize actin at the leading edge of the cell. The induction of directed cell migration 
after monolayer wounding involves reorientation of the microtubule organization 
center, the rearward movement of the nucleus relative to the direction of cell migra-
tion as well as the formation of stable microtubules and actin  polymerization at the 
leading edge of the cell (for review; [ 48 ]). Following wounding, lysophosphatidic 
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acid (LPA) in serum induces a signaling pathway that activates the small GTPase, 
Rho and its effector, mDia, a member of the formin family involved in actin polym-
erization. This pathway is suffi cient to induce stable microtubules (i.e., containing 
glutamine modifi ed tubulin) at the leading edge of migrating fi broblasts and requires 
the interaction of APC and EB1 [ 49 ]. Interestingly, microtubule stabilization also 
requires mDia, but it is important to point out that this activity is separable from the 
role of mDia in inducing actin polymerization [ 50 ,  51 ]. Recent work has suggested 
that the two activities of mDia oppose each other, meaning that microtubule stabili-
zation may happen only when mDia is released from actin at the leading edge of 
migrating cells [ 52 ]. Thus, microtubules that interact with actin at the leading edge 
become stabilized because formins are released and interact with microtubule plus 
end complexes that include APC and EB1. This interplay between APC, actin and 
microtubule stability has been observed in a variety of settings, including cytokine-
sis and axon outgrowth and thus may represent a conserved role for APC in these 
systems [ 53 – 55 ]. Importantly, a similar APC-EB1-formin complex also acts during 
mitosis to stabilize kinetochore microtubule interactions, suggesting this complex 
may perform a common function in migrating and dividing cells [ 56 – 58 ]. This is 
particularly relevant as the region of APC required to form this complex is lost in 
colorectal cancer mutants that exhibit high rates of chromosome instability and 
altered microtubule dynamics. We will discuss the implications of disrupting this 
complex for cancer onset more below.  

    APC Mutants Act Dominantly to Inhibit Spindle 
Microtubule Dynamics 

    Chromosome Instability (CIN) in Colorectal Tumors 

 Chromosome numbers in a subset of cultured colorectal tumor cell lines show con-
stant instability, an observation that led to the proposal that these tumor cells possess 
a mutation that affects mitosis [ 59 ]. This chromosome instability (CIN) is distinct 
from other types of cancer cells that have relatively stable aneuploid genomes. 
Although many reports have suggested that the spindle checkpoint—the feedback 
pathway that monitors attachment of chromosomes to the mitotic spindle—is altered 
in some cancers, the report that checkpoint failures are responsible for CIN in 
colorectal tumor cells has not been born out [ 60 ]. Changes in the mitotic checkpoint 
proteins such as BubR1 seem to be in response to chromosome instability, rather 
than the cause of it [ 61 ,  62 ]. A major clue to the cause of CIN in colorectal cells 
comes from the observation that APC associates with kinetochore microtubules that 
mediate the attachment of chromosomes to the mitotic spindle [ 63 ]. Embryonic 
stem cells from Min (multiple intestinal neoplasia) mice, harboring a single mutant 
copy of APC that results in a protein truncated after amino acid 850, show an 
increase in lagging chromosomes compared to wild type litter-mates, but no defect 
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in the spindle checkpoint after challenges with microtubule poisons. Similarly, 
examination of multiple human colorectal tumor cell lines reveals that only those 
with APC mutations, and not those with the primary mutations in β-catenin, exhibit 
chromosome segregation defects. Furthermore, defects in chromosome segregation 
correlate with aberrant mitotic spindle organization [ 64 ]. In fact, colorectal tumor 
cells exhibit chromosome alignment failures in metaphase, lagging chromosomes in 
anaphase and mis-positioned spindles. Together, these fi ndings directly implicate 
APC mutations in the CIN phenotype found in colorectal cancer cells.  

    Dominant-Negative Action of APC on Microtubule Dynamics 

 A defi nitive test of the causal relationship between monoallelic APC mutants and CIN 
came from reconstituting expression of mutant APC alleles in human cells that only 
express wild type APC. Inducible expression of an APC mutant that expresses a trun-
cated protein that mimics those found in human colorectal tumors (i.e., APC  1-1450  ) 
resulted in mitotic spindle defects that recapitulate those observed in tumor cells, 
including: an increase in lagging chromosomes, a reduction in the number of kineto-
chore microtubules and defects in spindle positioning [ 64 ]. APC 1-1450  directly binds to 
microtubule plus-ends in mitosis and is found specifi cally at kinetochore microtu-
bules. Genetic analysis showed that APC 1-1450  functions in the same pathway as the 
microtubule plus-end binding protein, EB1; siRNA of each gene results in identical 
mitotic defects and combined siRNA of APC and EB1 does not synergize to create 
more severe mitotic defects [ 35 ]. Structure–function studies of APC showed that the 
oligomerization domain of APC is critical for the dominant activity of APC 1-1450 . 
Biochemical analysis confi rmed that the truncated forms of APC interact with full 
length APC via the N-terminal oligomerization domain. The resulting hetero-oligomer 
(full length APC and truncated APC; see Fig.  9.1d ) prevents EB1 from interacting 
with the full length APC, providing evidence that truncated forms of APC found in 
cancers act as dominant negatives, interfering with EB1 function and thus microtubule 
dynamics. Although deletions of the SAMP repeats between amino acids 1020 and 
1309 reduce the potency of APC in interfering with microtubule dynamics, alleles that 
include up to amino acid 638 and remove much of the armadillo domain still have 
dominant microtubule spindle phenotypes [ 35 ]. Measurements of microtubule dynam-
ics in mitotic cells expressing APC 1-1450  show that microtubule pausing increases by 
nearly fourfold compared to control cells [ 35 ]. These fi ndings provide the clearest 
evidence that APC directly impacts microtubule dynamics through inhibition of EB1 
function. Computational modeling of the fourfold increase in microtubule pausing 
shows it dramatically increases the time for microtubules to search out and capture 
kinetochores in mitosis and is suffi cient to explain the spindle defects observed in 
APC mutants [ 35 ]. Similar spindle and chromosome segregation defects are observed 
in cultured cell lines when APC is inhibited by siRNA, consistent with the idea that 
truncated APC interferes with the normal function of APC [ 35 ,  65 ]. Importantly, 
β-catenin levels are not affected by dominant APC alleles, suggesting APC regulation 
of microtubule dynamics is separable from its role in degrading β-catenin. 
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 The mechanism by which APC 1-1450  acts to dominantly interfere with EB1 
 function remains unclear. APC 1-1450  may simply destabilize EB1 interactions with 
microtubule plus-ends; this is consistent with observed change in EB1 association 
with microtubule plus-ends in cells expressing APC 1-1450  [ 35 ]. Alternatively, APC 1-

1450  may interfere with the interaction of EB1 and a modifi er that is needed for EB1 
to promote microtubule growth. Candidate regulators include the formins (e.g., 
mDia2 or mDia3; see discussion below) as well as the kinase, GSK3-β. Formins are 
known as molecular stimulators of actin polymerization but, as discussed, in migrat-
ing cells they interact with EB1 and APC to form a complex that modulates micro-
tubule stability at the actin rich leading edge [ 66 ]. The formin, mDia2, has been 
shown to slow shrinking microtubules, an activity linked to its role in stabilizing 
subsets of microtubules at the leading edge of migrating cells [ 49 ]. It is possible that 
formins, EB1 and APC perform a similar function in mitosis. One possibility is that 
the formin- APC-EB1 complex aids in switching kinetochore-microtubules from 
growing to pausing during the dynamic process of kinetochore-microtubule attach-
ment. When APC 1-1450  prevents EB1 from interacting with APC it may be that mDia3 
activity is unbalanced, increasing the pause time as observed in measurements of 
microtubule dynamics in living cells [ 35 ,  56 ]. Consistent with this idea, the formin, 
mDia3, has been shown to associate with kinetochores and its interaction with EB1 
is important for chromosome alignment [ 56 ,  58 ,  67 ]. It is also possible that GSK3-β 
is involved separately or in conjunction with formins. In migrating cells, GSK3-β 
appears to be inhibited by mDia and, GSK3-β inhibitors (e.g. LiCl 2 ) can induce 
stable microtubules. LiCl 2  treatment can also partially rescue the defects in spindle 
microtubules in cells expressing APC 1-1450  (Green and Kaplan, unpublished results), 
suggesting it is also involved in APC regulation of microtubule dynamics. It is pos-
sible that APC 1-1450  directly interferes with the normal regulation of the kinase, 
although proof of a direct interaction between APC and GSK3-β in mitosis is lack-
ing. In summary, a large amount of evidence from multiple biological contexts 
argues for an APC-EB1-formin regulatory “hub” that regulates microtubule dynam-
ics. The interesting implication of such a regulatory hub is that APC mutations 
found in human cancers that compromise this hub may affect both cell migration 
and chromosomes segregation, potentially contributing to the mis-positioning of 
stem cells in the crypt as well as to increases in genome instability.   

    Monoallelic APC Mutants: A Case for an APC-Mediated 
Cancer Permissive State 

    A Dominant Role for Monoallelic Mutations in APC in Cancer 

 The decrease in microtubule dynamics caused by a reduction in APC activity, either 
through dominant negative mutations found in cancer or by reduction in APC pro-
tein levels, raises the important possibility that the microtubule phenotype actively 
contributes to cancer onset. The fact that we know very little about the fi rst cellular 
changes that lead to cancer transformation means we cannot say with certainty 
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which changes are important. However, a good deal of evidence argues that 
 chromosome instability and changes in cell polarity that impact asymmetric divi-
sions and cell migration are potent drivers of cancer. In considering the idea that 
APC mutants actively drive cancer—as opposed to Knudson’s passive model where 
the only import of a single APC mutant is that LOH is more likely—two major 
questions arise. First, is there evidence that microtubule dynamics are altered in the 
tissue where cancer develops? Second, how might the resulting changes in microtu-
bules and in information transfer (e.g., chromosome segregation, asymmetric cell 
divisions) contribute to cancer progression? We will fi rst review the evidence that 
mitotic errors caused by reduced microtubule dynamics occur at the site of intestinal 
cancer origin. Second we will discuss both experimental evidence and proposed 
models for how changes in microtubule dynamics and increased mitotic errors 
might contribute to cancer initiation and progression.  

    APC Mutants Perturb the Microtubules and Ploidy 
in Intestinal Crypt Cells 

 Mouse models of colorectal cancer provide the most accessible mammalian system 
to test for the presence of mitotic errors in the tissue where intestinal cancer origi-
nates but there are some important caveats to consider. First, APC mutant animals 
(e.g., Min) develop cancer primarily in their small intestine, as opposed to the large 
intestine where the disease manifests in humans. Second, engineered knock-outs of 
APC (i.e. Lox-Cre mediated deletions) give rise to an artifi cially large numbers of 
APC null cells, a scenario that does not refl ect the normal progression of the disease 
in humans, where null cells only arise infrequently, as discussed above. Despite 
these caveats, mouse models faithfully recapitulate at least the early steps of human 
colorectal cancer, beginning with LOH at APC and elevated levels of β-catenin. 
Thus, it is relevant that monoallelic APC mutations result in changes in crypt cells 
that are consistent with inhibition of microtubule dynamics. In APC Min  small intes-
tines, spindle orientation was measured as an indication of astral microtubule func-
tion in anchoring and orienting the mitotic spindle. Compared to wild type transit 
amplifying cells that reproducibly orient their spindles parallel to the basement 
membrane, APC Min  animals displayed a nearly random orientation of mitotic spin-
dles [ 68 ,  69 ]. A similar change in spindle orientation was also observed in the stem 
cell compartment [ 70 ]. In vitro, human cells expressing truncated APC exhibit a 
loss in microtubule-cortical interactions causing spindles to rotate freely; this 
decrease in cortical attachments also leads to a high rate of spindle collapse, fol-
lowed by abortive anaphase, mitotic exit and frequent binucleate cells [ 68 ]. 
Consistent with these in vitro mitotic defects, a signifi cant number of tetraploid 
cells are found in APC Min  crypts, whereas none are found in wild type animals. 
A similar frequency of cells with multi-polar spindles was also observed in APC Min  
crypts, suggesting that mitotic failure was followed by re-entry into the cell cycle 
where the two inherited centrosomes were duplicated. Importantly, mitotic defects 
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are observed in cells that retain the full-length copy of APC, meaning they occur 
prior to the fi rst recognized sign of cancer (i.e., LOH at APC and increased 
β-catenin). When taken together, the phenotypes observed in the gut are consistent 
with the ability of APC mutants to inhibit microtubule dynamics and increase the 
frequency of mitotic errors, prior to cancer onset. The potential for massive changes 
in ploidy raises the contentious issue of whether and how increased numbers of 
chromosomes infl uence cancer onset or progression. It turns out that knowing the 
fate of single tetraploid cell or single aneuploid cells is not straightforward. In an 
engineered mouse model for aneuploidy, reduced levels of the mitotic kinesin, 
CENP-E, result in high rates of tetraploids in cultured MEFs but tetraploids and 
gains of chromosomes are not readily apparent in mouse tissues. Even more surpris-
ingly, CENP-E defi cient animals are resistant to cancer induced by tumor promoters 
(i.e., chemical or oncogenic), although they eventually succumb to age-related can-
cers at a high rate [ 71 ]. One interpretation of this fi nding is that aneuploidy is not 
well tolerated in cells in vivo .  Thus, one might conclude that increases in ploidy are 
not suffi cient for cancer initiation. Yet the prevalence of aneuploid and even tetra-
ploid cells in primary tumors suggests that cellular changes are possible to create a 
permissive state for the survival of aneuploid cells.  

    The Contribution of Aneuploidy to Genome Damage 
and Cancer Onset 

 The idea that aneuploid or tetraploid cells are not by themselves conducive to cancer 
cell proliferation is also supported by studies of aneuploid cells in culture and by 
careful analysis of ploidy in cancer cells in situ. Studies of tetraploid cells suggest 
that these cells experience genomic stress, mostly likely because chromosome rep-
lication and segregation become more challenging as ploidy increases [ 72 – 74 ]. 
Although higher gene dosage has been proposed by some to favor de-regulated cell 
growth, direct analysis of single cell aneuploids shows that increased gene copy 
results in “proteomic stress” that is more likely to repress cell division than to induce 
it [ 75 – 77 ]. The stress experienced by aneuploid cells may help to explain the hetero-
geneity of ploidies found in most tumors. For example, a high rate of tetraploids are 
correlated with the most malignant forms of Barrett’s esophagus, though tetraploids 
are by no means dominant in the tumor cell population (10–25 %; [ 78 ]). Similarly, 
in APC Min  animals, tetraploids are observed in normal crypt cells but very few are 
found in early dysplasias (<2 %) [ 68 ]; cells in dysplasias from these animals appear 
to be near diploid, in contrast with human intestinal cancers with APC mutations 
that exhibit near triploid states and chromosome instability [ 79 ,  80 ]. However, even 
in the near diploid APC Min  tumors, a signifi cant number of aneuploid cells are 
detected by in situ hybridization, suggesting that mitotic errors persist but that 
selection favors cells that have reduced their ploidy (Caldwell and Kaplan, unpub-
lished results). Thus, an initial change in chromosome ploidy (e.g., tetraploidy) may 
represent a transient fi rst step that evolves into alternative genome states more 
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compatible with cell division. A low but constant rate of chromosome instability 
may persist in a sub-population of cancer cells and contribute to their ability to 
continue to evolve even though the bulk of the tumor may appear to have a stabi-
lized ploidy. The ubiquity of burdensome aneuploid genomes in cancer cells begs 
the question of what role if any might these extra chromosomes play in cancer onset 
or progression. 

 Most cancer models posit that cancer occurs after a step-by-step acquisition of 
mutations that gives rise to the mature cancer cell genomic landscape—one fi lled 
with 2–8 driver mutations as well as dozens of so-called “passenger” mutations [ 81 , 
 82 ]. However, an alternative model has been recently proposed where massive 
genomic damage occurs all at once. This so-called “all at once” model argues that a 
catastrophic event is triggered during cell division that results in multiple rearrange-
ments or sequence aberrations limited to small region of the genome (i.e., chro-
mothripsis, chromoanasynthesis and chromsoplexy as reviewed in [ 83 ]). Such local 
rearrangements can result in LOH or expansion of genes and because they are limited 
to discrete regions of the genome, otherwise lethal outcomes may be avoided [ 84 ]. 
Although the precise DNA dependent events that lead to these chromosomal rear-
rangements are not yet clear, one possible mechanism to limit the scope of damage is 
to confi ne it to chromosomes that are present in micronuclei generated from chromo-
some mis-segregation events. Micronuclei are similar to a normal nucleus but contain 
one or several chromosomes that undergo asynchronous DNA replication and accu-
mulate high rates of DNA damage. Importantly, the chromosomes in these micronu-
clei can be reincorporated into the genome and thus can represent an important 
mechanism for focusing massive DNA damage on single chromosomes as a result of 
mitotic errors [ 85 ]. This process may explain how artifi cially induced tetraploid cells 
that develop into tumors in mice exhibit such massive genomic rearrangements [ 86 ]. 
Tetraploid cells, such as present in APC mutants, may directly lead to chromosome 
mis-segregation, in part because it is challenging for the mitotic machinery to align 
and segregate twice as many chromosomes during mitosis [ 87 ]. In addition, APC 
mutants that dominantly inhibit microtubule dynamics also silence the spindle check-
point in the presence of lagging/mis-attached chromosomes resulting in micronuclei 
formation [ 88 ]. In this model of chromosome damage, single chromosome aneu-
ploidy or tetraploidy caused by mitotic failures represents the fi rst step in a path to 
restricted chromosome damage. Repeated mitotic failures would in principle increase 
the chances that a region of the chromosome involved in cell survival and prolifera-
tion is targeted, although these ideas remain important predictions to test.  

    APC Mutants Affect Cortical Microtubule Contacts, 
Asymmetric Cell Divisions and Cell Homeostasis 

 Up until now, we have focused on the potential impact of chromosome aneuploidy 
but there are other signifi cant consequences that arise from the inhibitory effect of 
APC on microtubule dynamics. As observed in cell culture, APC most dramatically 
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disrupts the highly dynamic interactions between spindle astral microtubules and 
the cell cortex, which orients the spindle during cell division [ 35 ,  68 ]. Spindle ori-
entation has long been recognized by developmental biologists as critical for deter-
mining the specifi cation of cell fate in daughter cells. Spindle orientation and the 
asymmetric distribution of information during cell division are conserved from bud-
ding yeast to complex multi-cellular organisms. This process involves the integra-
tion of information from polarity cues at the cell cortex, astral microtubule-mediated 
forces that position spindles as well as mechanisms that asymmetrically localize 
cellular fate determinants (for review; [ 89 ]). Asymmetric cell divisions are particu-
larly important for specifying stem cell identity and alternative cell fates during 
stem cell divisions. As discussed, a number of studies demonstrate that APC mutant 
crypt cells have mis-oriented spindles compared to wild type [ 68 – 70 ]. Although the 
impact of mis-oriented spindles in crypt cells is not understood, similar disruption 
of spindle positioning in  Drosophila  neuroblast stem cells results in cancer like 
phenotypes (i.e., cell proliferation and metastatic properties) that can be indefi nitely 
transplanted to new hosts where they are lethal [ 90 – 92 ]. The majority of cells in 
these tumors remain neuroblast-like although a constant sub-population of differen-
tiated cells also develops, consistent with the loss of asymmetric inheritance in these 
cells. The role of asymmetric inheritance varies between stem cell compartments 
and its role in the gut is not understood. One case where spindle orientation in the 
gut may matter is in the asymmetric inheritance of the template strand of DNA dur-
ing replication; labeling studies have shown that the template strand is retained in 
the crypt stem cells and this asymmetry is eliminated in APC Min  crypts [ 70 ,  93 ]. The 
retention of the template strand in the stem cell has been postulated to protect the 
integrity of the stem cell genome from mutation that may arise during replication. 
Another possibility is that epigenetic marks are also asymmetrically inherited [ 94 ]. 
This could mean that loss of spindle positioning might change the distribution of 
epigenetic marks that infl uence cell specifi cation after crypt stem cells divide. In 
fact, we have observed that epigenetic marks are dramatically altered in normal 
crypts from APC Min  animals as well as in normal cells adjacent to dysplasias, 
although it is unclear if these changes arise from spindle mis-orientation ([ 111 ] 
Fig.  9.2a ). Interestingly, we also observe that the stem cell and transit amplifying 
marker, Musashi [ 95 ], is expanded in normal APC Min  crypts compared to wild type 
crypts (Caldwell and Kaplan, unpublished observations, Fig.  9.2b ). There may be 
other explanations for these changes but the high frequency of spindle orientation 
defects in APC mutant crypts is consistent with the frequency of crypts with atypi-
cal levels of Musashi (Caldwell and Kaplan, unpublished observations). Thus, 
changes in the dynamic properties of astral microtubules in APC mutants may 
impact cancer onset by changing the asymmetric inheritance of information between 
crypt stem cells and differentiating progeny. Although these changes do not have to 
include aneuploidy, aneuploidy may be better tolerated when stem cell-like proper-
ties expand in the crypt.

   Microtubules have a more general role in organizing sub-cellular structures but 
the specifi cs of microtubule interactions with such structures are poorly understood. 
As discussed earlier, the APC, EB1 and formin complex forms an interface between 
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microtubules and actin that is regulated by the Rho small G protein during cell 
migration. It is therefore possible that APC not only regulates microtubule stability 
through the EB1-formin complex but also affects actin polymerization at the cell 
cortex [ 96 ]. This may be particularly relevant during mitosis when microtubule- 
cortical interactions organize actin at the midzone in preparation for cytokinesis. 
This dynamic regulation is dramatically demonstrated when centrosomes/spindles 
are moved by micro-manipulation along the cell cortex, resulting in the stimulation 
of a dynamic zone of active Rho suffi cient to induce furrow ingression [ 97 ,  98 ]. One 
proposed mechanism for astral microtubule regulation of the cell cortex is sug-
gested by studies in Drosophila S2 cells where EB1 was shown to interact with and 
transport the Rho GEF to the cell cortex [ 99 ]. Changes in cortical actin organization 
may also have profound effects on cell organization and maintenance of cell polarity. 
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  Fig. 9.2    Epigenetic and cell programming altered in APC Min/+  cells prior to cancer onset. 
( a ) A cross section of an APC Min/+  small intestine stained with antibodies to β-catenin ( green ), 
acetylated histone H4 ( red ; a mark of active gene transcription) and both staining patterns com-
bined, as indicated. The  white outline  delineates an example of a dysplastic region, in this case 
characterized by elevated levels of both β-catenin and acetylated histone H4 marks. The  white 
arrows  indicate regions of normal cells with low levels of β-catenin and low levels of acetylated 
histone H4.  Yellow arrowheads  indicate a region of low β-catenin but elevated levels of acetylated 
histone H4, similar to levels in the adjacent dysplastic regions. This suggests that epigenetic 
changes occur prior to up-regulation of β-catenin, perhaps caused by defective inheritance of chro-
matin. ( b ) Crypts from the small intestine of APC Min/+  or APC +/+  animals (as indicated) co-stained 
for β-catenin ( green ) to mark cell boundaries and for the stem-cell and transit amplifying cell 
marker, Musashi ( red ).  Arrows  in APC +/+  crypts show the cells near the base of the crypt that are 
positive for Musashi.  Arrowheads  show the elevated levels of Musashi in the base of the crypt, 
extending upward in otherwise normal cells in APC Min/+  animals. Scale bar is 100 μm in ( a ) and 
10 μm in ( b )       
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For example, microtubules and a kinesin motor directly regulate the cell cortex and 
apical-basolateral polarity through the delivery of the Dlg protein to the cell cortex 
[ 100 ]. Dlg in Drosophila acts as a tumor suppressor and in humans is implicated in 
cancers through interaction with the oncoviral proteins from Human papillomavirus 
(HPV) [ 101 ]. Thus, changes in the cell cortex can have profound effects on cellular 
organization as well as cell fate determination. It is therefore possible that APC 
mutants, by disrupting the EB1-formin complex, change cortical actin and thus 
impact cell fate. 

 Is there evidence that APC mutants change cortical actin by changing microtu-
bule dynamics? Major perturbations in actin polymerization can alter epithelial cell 
polarity. However, characterization of apical-basolateral polarity markers in APC Min  
crypts suggest that there is no gross loss of polarity, a fi nding that is perhaps not 
surprising given the subtle defect in microtubule dynamics [ 68 ]. This is also the 
case in organoid cultures made from APC Min  intestinal cells [ 102 ]. On the other 
hand, a closer examination of polarity markers in crypt epithelia shows both apical 
and basolateral zones are in fact altered in a way that is consistent with subtle per-
turbations of microtubules and actin. Specifi cally, ZO-1, an apical marker, no longer 
displays a contiguous decoration of the apical membrane and β-catenin, a marker of 
the basolateral membrane, is notably thicker compared to wild type crypt cells 
(Fig.  9.3a ; see arrows). Importantly, a similar thickening of β-catenin at the cortex 
is observed in cultured cells that express APC mutants or following treatment with 
low doses of microtubule poisons to inhibit dynamics (Fig.  9.3b  and Caldwell and 
Kaplan, unpublished observations). These changes are accompanied by increased 
Rho localization at the cortex and enriched actin polymerization, consistent with the 
idea that APC regulation of microtubule dynamics also affects cortical actin 
(Fig.  9.3c ). Taken together, APC mutants that inhibit microtubule dynamics not 
only cause defects in the mitotic apparatus but also lead to changes in cortical actin 
organization that may further affect asymmetric segregation of information, cell 
polarity, and possibly the stability of cell fate through activation of cell stress 
pathways.  

 The complex interplay between the cytoskeleton, organelle function and protein 
homeostasis raises important new issues when considering cancer-associated 
 mutations that affect cytoskeletal dynamics. Perturbations in both actin and micro-
tubule dynamics have been linked to activation of cell stress pathways, part of an 
evolutionarily conserved response to maintain cell homeostasis [ 103 – 105 ]. Cancer 
cells depend on activation of cell stress pathways not only to survive in the face of 
proteomic stress (both from mutation and gene amplifi cation) but also to adapt in 
the face of chemotherapeutic induced negative selection [ 106 ,  107 ]. Thus, it is pos-
sible that chronic disruption of cytoskeletal dynamics creates a “permissive” state in 
which pre-cancer cells activate cell stress pathways, allowing adaptation to aneu-
ploidy and other cancer mutations. Consistent with such a model, Hsf1, the main 
transcriptional regulator of the stress response, has been shown to be required for 
tumor formation in mice with activated oncogenes [ 108 ,  109 ]. Although the exact 
role of Hsf1-regulated transcription in cancer is not clear, recent work has linked both 
cytoskeletal integrity and Hsf1 to stress tolerance and longevity in  C. elegans  [ 110 ]. 
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It is interesting to speculate that pathways that increase stress tolerance and longevity 
might also be integral to cancer cell survival. In recent studies in our lab, we have 
found that APC-induced perturbations in microtubule dynamics lead to activation of 
these same cell stress pathways [ 111 ]. It now becomes important to ask what effect 
might APC mutations and the resulting chronic perturbation of cytoskeletal dynam-
ics have on cell programming and the permissiveness of cells to oncogenic muta-
tion. Understanding the complex relationships between cytoskeletal regulation, 
cellular homeostasis and disease progression represents an important challenge for 
the future of cancer cell biology and APC is an excellent model system to begin to 
address these issues.   

    Summary and Future Outlook 

 The role of the tumor suppressor gene  adenomatous polyposis coli  (APC) in regu-
lating microtubule dynamics has been clearly established and functions indepen-
dently from its regulation of β-catenin. Inherent in its regulation of microtubule 
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  Fig. 9.3    Markers of polarity and actin regulation are mis-localized at the cell cortex in APC 
mutants. ( a ) A magnifi ed view of crypt cells from APC Min/+  and APC +/+  animals stained with anti-
bodies to the apical marker, ZO-1 ( green ), the basolateral marker, β-catenin ( red ) and with DAPI 
staining to reveal chromosomes ( blue ). The  white boxes  indicate regions that are further magnifi ed 
1.5-fold in the  insets. Arrows  indicate the region of discontiguous ZO-1 staining at the apical 
region of APC Min/+  cells. ( b ) Human kidney epithelial cells (HEK-293) expressing control plasmid 
or APC 1-1450 , as indicated and stained with antibodies to β-catenin ( green ). ( c ) Examples of ana-
phase, HEK-293 cells expressing control or APC 1-1450  as indicated and stained with antibodies to 
RhoA ( red ), a small G protein that regulates actin polymerization, and to tubulin to show the 
mitotic spindle ( green ).  Arrowheads  indicate the enrichment of RhoA at the cytokinetic furrow of 
the control anaphase cell and the contiguous enrichment of RhoA along the entire cell cortex of the 
anaphase cell expressing APC 1-1450 . All scale bars are 10 μm       
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function is the role of APC as a guardian of the genome; down regulation of APC or 
expression of dominant negative cancer-associated mutations leads to defects in 
spindle microtubule dynamics, chromosome segregation errors and mitotic failures. 
The frequency of ploidy changes in normal human intestines expressing an APC 
mutant is unknown but the large number of cell divisions in the crypt during the 
lifetime of a human suggests the real possibility that APC mutants allow cells to 
sample a signifi cant number of aneuploid genomes. Although the latest studies 
speak against aneuploidy being suffi cient for cancer onset, our current model posits 
that changes in cell programming—possibly caused by chronic cell stress—creates 
a permissive cell state that can support heightened genome instability and cell pro-
liferation. The challenge remains to understand the molecular and genetic landscape 
that contributes to a cancer permissive state. Meeting this challenge will require a 
thorough understanding of how changes in cytoskeletal dynamics affect cell homeo-
stasis and cell programming, how changes in inheritance of information (chromo-
somes and cell fate determinants) alter cell fate and how the resulting chronic 
instability combine to allow cells to evolve a cancer state.     
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    Chapter 10   
 Small GTPases Act as Cellular Switches 
in the Context of Cilia 

             Yan     Li     and     Jinghua     Hu    

            Introduction 

 Motile cilia or fl agella have long been recognized as organelles involved in cell 
locomotion, fl uid movement, and sexual reproduction [ 1 ]. However, another type of 
cilia featured as non-motile, also known as primary cilia, have not been exposed 
under the spotlight until the recent two decades. Ironically, as early as in the 1800s, 
primary cilia have been observed on the surface of mammalian cells and a sensory 
role has been suggested, but this had been overlooked for the next ~150 years [ 2 ]. 
Recently, the correlation between cilia and human ciliopathies started to attract 
more and more interest into the fi eld. For example, in 1993, 23 articles with “cilia” 
or “cilium” as a key word in title were published; whereas in 2014, the incomplete 
PubMed record already pushed the number to 213 [ 3 ]. Currently, primary cilia are 
found on virtually all eukaryotic cells and considered as signaling center for various 
extracellular cues. Defects in cilia biogenesis and/or function cause a wide spectrum 
of complex genetic disorders termed ciliopathies, which affect many vital organs 
like brain, liver, and kidney [ 4 ]. 

 Small GTPases are key cellular switches correlated with various human patho-
logical conditions. The unique feature that small GTPases can tune a particular path-
way on and off by simply binding with either GTP or GDP makes them and their 
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binding partners highly favorable therapeutic targets for diverse  clinical/ preclinical 
trials. In this chapter, we focus on the role of several groups of small GTPases, 
including ARFs/ARLs, RABs, and RAN, which are implicated in cilia biogenesis 
and cilia signaling during the last decade [ 5 ]. Understanding of these cellular 
switches is critical for dissecting how cilia formation and function is regulated 
in vivo and for providing seminal insights into the role of various small GTPases in 
the pathogenesis of ciliopathies, and their potential as therapeutic targets.  

    Cilia and Ciliopathy 

    The Cilium Is a Microtubule-Based Structure Protruding 
from the Cell Surface 

 Although tiny, the cilium is composed of distinct functional domains, each of which 
holds different protein components and serves distinct functions. Either motile or 
immotile cilia (primary cilia), are composed of nine outer microtubule doublets, 
covered tightly by a specialized plasma membrane contiguous with the cell mem-
brane. There is an additional pair of central microtubules in motile cilia (9+2 axo-
nemal confi guration), whereas primary cilia exhibit a 9+0 conformation [ 6 ]. At the 
proximal end, the axonemal doublet is attached to the cell body by a modifi ed 
mother centriole called the basal body, which shares the same structure of a hollow 
cylinder formed by nine triplet microtubules. When the cell enters into the resting 
state (G0 or G1 stage of the cell cycle), the mother centriole moves and anchors to 
the apical membrane and then transforms into the basal body to grow the cilium [ 7 ]. 
Above the basal body, there are transition fi bers (TFs, transformed from the distal 
appendages of the mother centriole) and the transition zone (TZ, the proximal part 
of the axoneme that contains Y-links). The transition fi bers, which look like a 
9-bladed propeller-like pinwheel in TEM cross-sections, arise from the B-tubules of 
the centriole’s triplet microtubules and anchor the distal part of the basal body to the 
plasma membrane [ 8 ,  9 ]. Above TFs, the Y-links of the TZ connect the proximal 
segments of axonemal microtubules to the ciliary membrane [ 10 ,  11 ] (Fig.  10.1 ).

   The ciliary base also contains other amorphous subcompartments, like the septin 
ring and nuclear pore-like structures, which contribute to the ciliary traffi cking at its 
base [ 12 ,  13 ]. Along cilia, there are two distinct sub-domains: the Inversin (InV) 
compartment and the ciliary tip. Recently, several ciliopathy proteins, including 
NPHP2/Inversin, NPHP3, NPHP9, and ANKS6, have been found to localize spe-
cifi cally to a distinct cilia segment that covers only the proximal segment of the 
axoneme above the TZ, which is thus termed the InV compartment [ 14 – 17 ]. In the 
 C. elegans  phasmid cilium ,  NPHP2 and ARL13B orthologs (NPHP-2 and ARL-13) 
also localize specifi cally at the proximal segment of the axoneme and regulate cil-
iogenesis [ 15 ,  18 ,  19 ]. Furthermore, the exclusive localization of cyclic nucleotide- 
gated (CNG) cation channels in the InV domain in  C. elegans  supports the 
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  Fig. 10.1    Cilia structure. ( a ) The cilium contains a microtubule-based axoneme that emerges from 
a centriolar structure called the basal body (depicted as  grey box ). The TFs and TZ depicted sche-
matically here are also proposed as the ciliary gate that is responsible for selecting the ciliary entry 
for ciliogenic proteins. The TZ is formed by the Y-link structures (shown in  green ) and the ciliary 
necklace on the ciliary surface (shown as  orange beads ). The  blue box  at the proximal side of TZ 
is the InV-like compartment with no clear function. The conserved IFT machinery is responsible 
for both anterograde (from cilia base to its tip) and retrograde (from cilia tip to its base) movement. 
The motor kinesin-2 plays a role in the anterograde movement, whereas dynein is indispensable for 
the retrograde movement. ( b ) Transverse section of the axoneme, which is found in two confi gura-
tions: with a central pair (9+2) in motile cilia and without the central pair (9+0) in primary cilia. 
( c ) Transverse section of TFs and TZ, which is shown as 9-bladed propeller-like pinwheel for TFs       
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assumption that this domain is functionally important [ 20 ,  21 ]. However, the exact 
role of the InV compartment remains elusive. The ciliary tip, which is the main site 
for the remodeling of intrafl agellar transport (IFT), also encompasses various sig-
naling proteins, including frog olfactory CNG channels and sonic hedgehog signal-
ing proteins such as Gli1/2/3 and Sufu [ 22 – 24 ]. It was found that the BBSome, a 
group of proteins affected in human Bardet–Biedl syndrome, acts as the key player 
in regulating IFT assembly and turnaround at the cilia tip [ 25 ]. 

 Cilia utilize the highly conserved IFT machinery to bi-directionally move cargo 
proteins along the axoneme [ 26 ]. The IFT complex consists of over 20 proteins that 
can be divided to two sub-complexes, IFT-A and IFT-B. Specifi cally, the antero-
grade (towards the ciliary tip) IFT movement is regulated by kinesin-2, whereas the 
retrograde (towards the ciliary base) IFT is regulated by dynein [ 27 ]. IFT is indis-
pensable for cilia growth and maintenance. IFT cargos (membrane receptors, struc-
tural proteins, and signaling molecules) are loaded to the IFT machinery at the cilia 
base, and are then transported to and unloaded at the cilia tip, where they function 
in cilia biogenesis or sensory transduction. The IFT machinery can bind signaling 
molecules, like Glis from the sonic hedgehog pathway, and transport them back to 
the ciliary base by retrograde IFT, and release them to the cytoplasm for signal 
transduction [ 28 ,  29 ].  

    Primary Cilia Are Sensing Antennas of Cells 

 Mounting evidences demonstrated that the primary cilium acts as cell’s antenna, 
which senses the environmental cues and then transduces signals to trigger cellular 
responses. Photoreceptor cells and olfactory neurons are well known sensory cells 
that use cilia to sense light and odor. Primary cilia harbor numerous membrane 
receptors (GPCRs, tyrosine kinase receptors, ion channels) for many important 
physiological and developmental signaling pathways, including Sonic hedgehog, 
PDGF, and canonical and non-canonical Wnt pathways [ 30 – 32 ]. Cilia also function 
as mechanosensors to sense fl ow movement, pressure and touch [ 33 – 35 ]. For exam-
ple, the urine fl ow in kidney tubules causes cilia to bend, and then lead to Ca 2+  infl ux 
through the ciliary polycystin-1 (PC-1)/polycystin-2 (PC-2) calcium channel com-
plex [ 33 ].  

    Ciliopathies: A Fast Growing Disease Spectrum 

 Given the fact that primary cilia exist ubiquitously on cell surfaces and regulate 
various important signaling pathways, it is thus not surprising to see that ciliary 
dysfunctions cause a wide spectrum of human genetic disorders, now collectively 
termed ciliopathies. With rapid advancements in the positional cloning of human 
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disease genes, a wide variety of genetic disorders, such as polycystic kidney disease 
(ADPKD and ARPKD), Bardet–Biedl syndrome (BBS), Joubert syndrome (JBTS), 
nephronophthisis (NPHP), Oral-Facial-Digital Syndrome (OFD), and Meckel- 
Gruber syndrome (MKS), have been characterized molecularly as cilia-related dis-
eases, or ciliopathies [ 36 ,  37 ]. Consistent with the presence of cilia on most cell 
surfaces in the human body, ciliopathies affect many vital organs/systems and share 
a collection of features that include primarily retinal degeneration, renal cyst and 
cerebral abnormalities, as well as additional traits, like congenital fi brocystic dis-
eases of the liver and pancreas, deafness, anosmia, cranio-facial defects, situs inver-
sus to infertility, mental retardation, diabetes, obesity and skeletal dysplasia [ 38 , 
 39 ]. The total population affected by various ciliopathies is estimated to be at a 
collective incidence of at least ~1:1000 (~100 ciliopathies × average incidence of 
1:100,000) [ 4 ]. Despite the physiological and clinical relevance of cilia, the molecu-
lar mechanisms that regulate ciliogenesis, cilia function, and the connections 
between disease gene functions and pathology remain largely elusive. In this regard, 
the greatest challenges for molecular biologists and clinicians are to understand 
how cilia form and function; determine the pathogenesis underlying ciliopathies; 
and design therapies to prevent, delay, or halt disease progression.   

    Small GTPases Are Vital Switches in Cilia Biogenesis 
and Function 

 Small GTPases are a group of GTP hydrolases functioning as key molecular 
switches in various cellular processes and they are implicated in many human dis-
orders. Small GTPases toggle particular signaling pathways to on/off by cycling 
through GTP binding and GDP binding. The GTPase is switched on by guanine 
nucleotide exchange factors (GEFs) that help GDP dissociation, and turned off by 
GTPase activating proteins (GAPs), which accelerate the hydrolysis of GTP. This 
unique enzymatic feature presents them together with their regulators/effectors 
(such as adaptors, motors, kinases, and posttranslational modifi cation enzymes) 
highly promising therapeutic targets for many human diseases [ 40 ,  41 ]. All small 
GTPases share a conserved domain including a six β-stranded sheet encircled by 
fi ve α-helices. GTP and GDP binding sites are highly conserved within most small 
GTPase family members. Several point mutations can lead to constitutive GTP- 
bound or GDP-bound forms of small GTPases, which are termed dominant-active 
(DA) or dominant-negative (DN) mutants [ 42 ]. Dominant-active (DA) and 
dominant- negative (DN) mutants have been widely used as tools to characterize the 
in vivo functions of small GTPases. 

 Recently, mounting evidences have pointed out that several small GTPases, 
including the members in Arf/Arl (Arf-like), Rab and Ran subfamilies, regulate 
cilia formation and/or cilia signaling. Here, we will review the role of these cilia- 
related small GTPases and their regulators/effectors in the context of cilia. 
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    Arf/Arls 

 Arf/Arl GTPases belong to the Ras superfamily, and consist of 29 members, includ-
ing 6 Arfs (ADP ribosylation factors), Sar1, and over 20 Arf-like proteins (Arls) 
[ 43 ]. Arf proteins are well known for their role in regulating vesicular traffi cking 
and actin remodeling [ 44 ,  45 ], while the role of most Arls remains poorly under-
stood. So far, Arf4 and three Arls (Arl3, Arl6, and Arl13b) have been implicated in 
cilia physiology. Notably, Arl6 and Arl13b have been identifi ed as ciliopathy genes 
in humans (Fig.  10.2 ).

  Fig. 10.2    A working model for the role of ciliary Arls. Arl6-GTP recruits the BBSome and cargos 
(like sensory receptors) into cilia. Arl3 stabilizes the binding between IFT-B and KIF17 depending 
on HDAC-6; Arl3-GTP can interact with UNC119/myristoylated-NPHP3 and facilitate the release of 
NPHP3 in cilia, as well as mediate the proper ciliary targeting of transduction to different effectors. 
Arl-13 strengthens the IFT-A and IFT-B association; Arl13b, Arl3, UNC119 and NPHP2 form a 
functional module in the InV compartment of cilia; The SUMOylation of Arl13b by UBC9 is indis-
pensable for the ciliary entry of several sensory receptors; Arl13b-GTP binds with and promotes the 
ciliary targeting of INPP5E.  Dashed lines  indicate that the molecular mechanisms are not clear       
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      Arf4 

 Arf4 is the only cilia-related Arf small GTPase in the Arf/Arl family [ 46 ]. Arf4 
mainly resides at the cilia base and facilitates the sorting and targeting of ciliary 
sensory receptors, but is not required for cilia assembly [ 47 ]. Specifi cally, a com-
plex formed by Arf4, rhodopsin, Arf GAP protein ASAP1, and another small 
GTPases Rab11 and its effector FIP3, controls the transport of the cargo rhodopsin 
from the Trans-Golgi-Network to photoreceptor cilia [ 46 ,  48 ]. In a simple working 
model, Arf4 is probably activated at the TGN budding site by a specifi c GEF, likely 
GBF1, and then activated Arf4 recognizes rhodopsin through VxPx motif. After 
cargo recognition, ASAP1, possibly works together with Rab11 and FIP3, forms a 
complex with Arf4 and cargo rhodopsin. At this point, ASAP1 likely promotes GTP 
hydrolysis of Arf4-GTP and releases Arf4 from TGN, and then the remaining com-
plex containing the cargo rhodopsin will be sorted to cilia. The fact that VxPx motif 
exists in several other cilia sensory proteins, including ADPKD protein polycystin-
 1 and polycystin-2, the cyclic nucleotide-gated (CNG) channel CNGB1b and other 
ciliary localized proteins, suggests that VxPx motifs could function as Arf4 binding 
sites for transport to the cilium [ 49 ,  50 ]. However, a recent study found that Arf4 
can also bind the cilia-targeting-sequence of ARPKD protein fi brocystin, which 
does not contain a VxPx domain, and regulate the effi cient transport of newly syn-
thesized fi brocystin from the Golgi to the cilium. Since the clathrin adaptor AP-1, 
which is identifi ed as one of Arf4 effectors, also plays a role in regulating the proper 
ciliary localization of non-VxPx domain containing odorant receptor ODR-10 in  C. 
elegans  [ 51 ], it would be interesting to examine whether Arf4 might act through 
AP-1 and clathrin for the selective ciliary targeting of fi brocystin and ODR-10.  

    Arl3 

 Although Arl3 has not been identifi ed as a ciliopathy gene, several evidences sug-
gest a cilia-related role for Arl3. First, a comparative genome study suggested that 
 Arl3  exclusively exists in the genome of ciliated organisms during evolution [ 52 ]; 
Secondly, Arl3 locates to the connecting cilia in human retina photoreceptor cells 
[ 53 ]; Thirdly, Arl3 −/−  mice die shortly after birth and display typical ciliopathy phe-
notypes characterized by cysts in kidney, liver and pancreas and impaired photore-
ceptor development [ 54 ]. 

 Functional analyses suggested that Arl3 acts as a negative regulator for cilia 
formation. In  Leishmania , overexpressing the GTP-bound form of Arl-3 induces 
ciliogenesis defects [ 55 ]. In  C. elegans , depletion of ARL-3 can partially rescue the 
ciliogenesis defect in  arl-13  mutant worms through a histone deacetylase 6 (HDAC- 
6)-dependent manner [ 56 ]. Similar observations were also reported for mammalian 
cells in that  Arl3  knockdown shows no effect on ciliogenesis [ 57 ], but can rescue the 
ciliogenesis defect in  Arl-13b -depleted human RPE cells (unpublished data in the 
Hu lab). 
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 Arl3 also plays a role in ciliary signaling.  Arl-3  mutant worms are compromised 
in cilia-mediated male mechanosensory behaviors (response and location of vulva), 
possibly due to the mislocalization of the mechanosensory receptor polycystin 
(unpublished data in the Hu lab). Similar observations were reported in a recent 
paper showing that mammalian Arl3 associates with Rabep1 and GGA1 to regulate 
the proper sorting of the PC1/PC2 complex to the cilium [ 58 ]. Other than polycys-
tins, Arl3 is also involved in regulating several signaling pathways, such as the 
rhodopsin transduction and the heterotrimeric G-protein transducin traffi c in photo-
receptor cells, as well as the transportation of Gli3, a key signaling molecule in the 
Shh pathway [ 54 ,  57 ,  59 ]. 

 Although several interactors/effectors, such as Golgin-245, CCDC104, 
C20orf194, and Binder of Arl Two (BART), have been biochemically characterized 
for ARL3 [ 60 ,  61 ], few have been functionally confi rmed to be cilia-related. 
Notably, HDAC-6 is likely a downstream effector of ARL-3 in regulating the asso-
ciation between IFT complex and IFT motor OSM-3/KIF17 in  C. elegans  [ 56 ]. In 
mammals, activation of HDAC6 promotes cilia disassembly and loss of HDAC6 
stabilizes cilia formation in human retinal epithelial cells, suggesting a role for 
HDAC6 in the Arl3 pathway that is probably highly conserved across ciliated spe-
cies [ 62 ]. Since HDAC6 is a deacetylase, it would be of great interest to identify the 
ciliary substrate(s) for HDAC6. The X-linked retinitis pigmentosa protein RP2 is 
another ciliary interactor for Arl3. RP2 acts as GAP for Arl3 and converts ARL3- 
GTP to ARL3-GDP [ 59 ,  60 ]. In cilia-targeted traffi cking, some myristoylated cili-
ary cargo, such as NPHP3 and transducin α subunit, is fi rst transported to the cilia 
base by UNC119, and then the association between GTP-bound Arl3 and UNC119 
releases the myristoylated cargo to the ciliary membrane. Next, RP2 hydrolyzes 
Arl3-GTP to Arl3-GDP and this will release UNC119 and promote its removal from 
cilia [ 60 ]. Interestingly, mammalian PDE6δ interacts with GTP-bound ARL-3 to 
facilitate the dissociation of farnesylated cargo protein from PDE6δ [ 63 ,  64 ].  

    Arl6 

 Arl6, also known as BBS3, was the fi rst Arl linked to human ciliopathy [ 65 ,  66 ]. 
Bardet–Biedl syndrome (BBS) is an autosomal recessive disease, that can be caused 
by mutations in each of 17 human genes (BBS1, BBS2, BBS3 (ARL6), BBS4, 
BBS5, BBS6 (MKKS), BBS7, BBS8 (TTC8), BBS9, BBS10, BBS11 (TRIM32), 
BBS12, MKS1, CEP290, C2ORF86, SDCCAG8, and LZTFL1) [ 67 – 69 ]. BBS is 
characterized by obesity, polydactyly, mental retardation, retinal degeneration, renal 
cyst, and learning disabilities [ 65 ]. Structural analyses revealed that the mutations 
identifi ed in BBS3 patients cluster around the ARL6 GTP binding domain and 
interfere with its GTP binding capacity, indicating the importance of small GTPase 
activity in its ciliary function [ 70 ,  71 ]. The ciliary role of Arl6 is highly conserved 
through evolution. Both  Arl6  knockdown zebrafi sh and  Arl6  knockout mice develop 
BBS-associated phenotypes [ 72 ,  73 ]. 

Y. Li and J. Hu



225

 Eight BBS proteins (BBS1, BBS2, BBS4, BBS5, BBS7, BBS8, BBS9 and 
BBIP10) form a protein complex known as the BBSome, which shares a similar 
structure with clathrin and other coat protein complexes [ 74 ]. GTP-bound Arl6 is 
suggested to associate with the BBSome and sort membrane proteins, such as mela-
nin concentrating hormone receptor 1 and somatostatin receptor 3, to cilia [ 74 ]. 
Studies in our lab also confi rmed that various sensory receptors consistently mislo-
calize in  arl-6  knockout worms (unpublished data from Hu lab). Loss of Arl6 does 
not affect BBSome formation. Interestingly, other than the ciliary entry of mem-
brane receptors, Arl6 depletion also regulates the retrograde transport of sensory 
receptor Smoothened inside cilia [ 73 ]. Notably, different from other BBS mutants, 
both  Arl-6   −/−   mice and  Arl-6  mutant  worms  possess normal cilia, suggesting that 
ARL6 does not always act together with the BBSome in same genetic pathway [ 75 ]. 
Consistent with this assumption,  Arl6  knockout mice develop some unique non-
BBSome- related phenotypes, like no overt obesity, severe hydrocephalus, and ele-
vated blood pressure [ 73 ]. Taken together, these evidences suggest that the role of 
Arl6 in the context of cilia is conserved and the variety of symptoms found in BBS3 
patients are likely due to the compromised ciliary targeting or removal of various 
sensory receptors and/or signaling molecules. 

 Overall, the role of ARL6 in ciliogenesis still remains unclear. The BBSome is 
thought to regulate IFT integrity and IFT assembly. In  C. elegans , the BBSome is 
one integral sub-complex of the IFT machinery. Arl6 is the only Arf/Arl small 
GTPase that exhibit typical IFT movement inside the cilium, but it actually moves 
much less frequently when compared with IFT structural components or other BBS 
proteins, indicating that ARL-6 is probably a cargo of the IFT machinery. Another 
interesting fi nding is that overexpression of both the GTP-bound and GDP-bound 
form of ARL6 in IMCD3 cells infl uences cilia number and length [ 71 ]. The exact 
determination of the role of ARL6 in ciliogenesis depends on the future character-
ization of ARL6’s GAPs, GEFs, and effectors in cilia.  

    Arl13b 

 Arl13b is the other small GTPase identifi ed as a ciliopathy gene.  ARL13b  mutations 
were identifi ed in families with Joubert Syndrome (JBTS), which exhibit classical 
ciliopathy phenotypes, like abnormalities in the central nervous system, kidney 
cyst, retinal impairment, polydactyly, and obesity [ 76 – 78 ]. Through evolution 
(worm, zebrafi sh, and mouse), Arl13b protein specifi cally enrich in cilia (73, 87, 
88). So far, solid evidences suggest that Arl13b is equally essential for both cilia 
formation and signaling. Arl13b mutant zebrafi sh shows defective cilia in multiple 
organs [ 79 ,  80 ].  Arl13b   hnn   mice show truncated axoneme and defective B-tubule 
closing, as well as ciliopathy-related impairments in neural tube patterning, limbs 
and eyes (88).  arl-13   −/−   worms show truncated cilia that are due to the compromised 
integrity of IFT particles [ 56 ,  81 ]. The GTPase activity of Arl13b is probably 
required for its function. The R79Q mutation identifi ed in patients partially disrupts 
the GTPase activity of ARL13B. Moreover, corresponding worm mutant 
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ARL- 13(R83Q) could not fully rescue the ciliary defect of  arl-13   −/−   worms [ 56 ]. 
Interestingly, another study suggested that Arl13b likely lacks intrinsic GTP hydro-
lysis activity and needs to interact with other GTPases to be fully functional [ 82 ]. 
However, this study used a truncated Arl13B from  C. rheinhardtii , so more  evidences 
are necessary to completely understand the biological function of ARL13B and 
whether it acts as a GTPase in cilia. To date, no GEF or GAP proteins for Arl13b 
have been identifi ed in any ciliated species yet. 

 Arl13b is involved in cilia signaling.  Arl13b   hnn   mice display compromised Shh 
signaling, Bone Morphogenetic Protein (BMP) signaling pathway, as well as abnor-
mally expressed Wnt ligands [ 83 ,  84 ]. Moreover, Shh signaling components are 
mislocalized in  Arl13b   hnn   mice [ 85 ]. In  C. elegans , several chemo- or mechano- 
sensory receptors, such as PKD-2, ODR-10, TAX-2, and OSM-9, are mislocalized 
in  arl-13   −/−   cilia [ 81 ]. We found that UBC9, the sole E2 small ubiquitin-like modi-
fi er (SUMO)-conjugating enzyme, interacts and SUMOylates Arl13b. Arl13b 
SUMOylation is required for proper ciliary targeting of polycystin-2 in both worms 
and mammalian cells [ 86 ]. It would be interesting to study whether Arl13b 
SUMOylation plays a general role in regulating the ciliary entry of other ciliary 
receptors. Except for sorting sensory receptors into cilia, Arl13b also mediates the 
ciliary targeting of other proteins, such as inositol polyphosphate-5-phosphatase E 
(INPP5E), through a function network consisting of Arl13b, INPP5E, PDE6δ, and 
centrosomal protein 164 (CEP164) in mammalian cells [ 87 ]. 

 Arl13b specifi cally locates in the InV-like compartment in both worm cilia and 
mammalian cilia (73, 96, 102) [ 15 ,  56 ,  81 ]. In a recent study, Cevik et al. found that 
the precise localization of Arl13b to the InV compartment is mediated by coopera-
tion between MKS/NPHP modules and the IFT machinery [ 15 ]. However, little is 
known about the function of the InV compartment. We recently found that Arl3, 
Arl13b, NPHP2, and UNC119 form a novel protein module and specifi cally local-
ize in the InV compartment. The association is independent of GTPase activity of 
either Arl3 or Arl13b. We further found that, in  C. elegans , ARL-13, UNC-119 and 
NPHP-2 work synergistically in regulating ciliogenesis, which can be antagonized 
by ARL-3 (unpublished data from Hu lab). Our discoveries about the functional 
module in the InV compartment shed lights on the functional crosstalk between two 
ciliary small GTPases (Arl13b and Arl3) and their interactors (UNC119 and 
NPHP2), in coordinating ciliogenesis (Table  10.1 ).

        Rabs 

 Rab GTPases form the largest family of small GTPases in the Ras superfamily, and 
play general roles in membrane traffi cking and membrane fusion [ 88 ]. It is thus 
expected that specifi c Rabs may be involved in protein transport to primary cilia. 
Several Rabs have recently been found to regulate cilia biogenesis and/or cilia 
signaling. 
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   Table 10.1    The ciliary small GTPases and their interactors   

 Small 
GTPase  Organism  Function  GEF  GAP  Effector 

 Arl4   X. laevis.   Ciliary protein 
targeting [ 46 ,  48 ] 

 ASAP1 
[ 48 ] 

 Rab11/FIP3 [ 46 ,  48 ] 

  C. elegans   Cilia signaling [ 51 ]  AP-1 [ 51 ] 
 Arl3   C. elegans   Ciliogenesis [ 56 ]  HDAC-6 [ 56 ] 

 Mouse  Cilia signaling 
[ 54 ,  57 ] 

 Human  Cilia signaling [ 58 ]  RP2 
[ 59 ] 

 Rabep1 [ 58 ], GGA1 
[ 58 ], Golgin-25 [ 61 ], 
BART [ 61 ], UNC119 
[ 60 ], CCDC104 [ 60 ], 
C20orf194 [ 60 ], 
PDE6δ [ 63 ,  64 ] 

 Arl6   C. elegans   Cilia signaling 
[unpublished data] 

 Mouse  Cilia signaling [ 73 ] 
 Human  Cilia signaling [ 74 ]  The BBSome [ 74 ], 

IFT27 [ 104 ] 
 Arl13b   C. elegans   Ciliogenesis 

[ 56 ,  81 ]; sensory 
receptor 
targeting [ 86 ] 

 UBC-9 [ 86 ] 

 Zebrafi sh  Ciliogenesis [ 80 ] 
 Mouse  Ciliogenesis; cilia 

signaling [ 83 – 85 ] 
 Human  Ciliogenesis; cilia 

signaling [ 77 ] 
 UBC-9 [ 86 ], INPP5E 
[ 87 ], NPHP2/UNC119 
[unpublished data] 

 Rab8   C. elegans   Protein sorting and 
traffi cking [ 89 ,  90 ] 

 Rabaptin5 [ 93 ], 
Elipas/DYF-11 [ 93 ] 

 Human  Rabin8 
[ 92 ] 

 BBSome [ 92 ], 
Talpid3/Cep290 [ 96 ] 

 Rab11  Human  Cilia signaling [ 94 ]  PI3K-C2α [ 95 ] 
 Rab10  Mouse  Cilia signaling [ 97 ]  Sec8 [ 97 ] 
 Rab23  Human  Smo turnover in 

cilia [ 91 ,  98 ] 
 IFTA-2   C. elegans   Cilia signaling 

[ 100 ] 
 IFT27   Chlamydomonas 

Reinhardtii  
 IFT [ 101 ] 

  Trypanosoma 
brucei  

 Bidirectional IFT 
transport [ 102 ] 

 Human, mouse  Cilia signaling 
[ 103 ], protein 
targeting [ 104 ] 

 Ran  Human, mouse  Ciliary protein 
import [ 13 , 
 106 – 108 ] 

 Importin beta-2 [ 106 , 
 108 ], nucleoporins 
[ 13 ,  107 ] 
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    Rabs 

 Rab8 is the fi rst member found to be cilia-related. Rab8 mediates the traffi cking of 
rhodopsin into cilia in photoreceptor cells through a mechanism involving the exo-
cyst and SNARE proteins [ 89 ]. Except for rhodopsin, Rab8 is also connected with 
the ciliary entry of other cilia membrane proteins, such as the ARPKD causal pro-
tein fi brocystin, and Shh receptor Smo [ 90 ,  91 ]. Rab8 tends to function by network-
ing with other proteins. One model proposed that Rab8 can be recruited by the 
BBSome via its GEF, Rabin8, to regulate the fusion of post-Golgi vesicles at the 
cilia base [ 92 ]. Rab8 also acts together with Rab5 effector Rabaptin5 and IFT com-
ponent Elipas/DYF-11 to form a bridging structure between the IFT complex/cargo 
on the cilia membrane [ 93 ]. In addition, Rab8 is also involved in the Rab11/Arf4 
pathway discussed above to target rhodopsin into cilia, as well as in a pathway in 
which PI3K-C2α-derived PtdIns3 P  activates Rab11 to regulate cilia formation, Smo 
ciliary translocation and Shh signaling [ 94 ,  95 ]. In addition to its function in protein 
targeting, Rab8 may also contribute to cilia assembly. A new study showed that 
Talpid3, a component of a CP110-containing protein complex, possibly affects cil-
iogenesis through Rab8 recruitment and/or activation [ 96 ]. Except for Rab8, another 
Rab protein, Rab10, also has cilia-related function. Rab10 directly interacts with the 
exocyst complex protein Sec8 and colocalizes with the exocyst at the cilia base [ 97 ]. 
In addition, the GAPs of Rab8, Rab17, and Rab23 were found to regulate ciliogen-
esis [ 98 ]. The cellular function of Rab17 is unknown, but Rab23 negatively regu-
lates Shh signaling by negatively controlling Smo turnover in the cilia [ 91 ,  99 ] 
(Fig.  10.3 ).

       Rab-Like Proteins 

 Rab-like 5 (IFTA-2) and Rab-like 4 (IFT27), two non-canonical Rab proteins lack-
ing the typical C-terminal prenylation motifs of Rabs, are involved in cilia/fl agellar 
function in  C. elegans  and  C. rheinhardtii  [ 100 ,  101 ]. Unlike other Rabs that 
remain at the cilia base, both Rabl4/IFT27 and Rabl5/IFTA-2 are part of IFT 
machinery and can move bidirectionally inside cilia. In  C. elegans ,  ifta-2  null 
mutants show no defect in ciliogenesis, but affect the activity of ciliary sensory 
IGF-1-like receptor [ 100 ]. In contrast, Rabl4/IFT27 is involved in maintaining the 
stability of IFT complexes [ 101 ]. Intriguingly, a new study found that IFT27, an 
IFT-B component, is crucial for retrograde transport and regulates the import of 
both the IFT-A complex and the IFT dynein into the fl agellum in a GTPase depen-
dent manner in  Trypanosoma brucei  [ 102 ]. Mammalian Rabl4/IFT27 facilitates the 
ciliary transport of Shh molecules, like patched and Smo, through promoting ARL6 
activation and BBSome coat assembly [ 103 ,  104 ]. Consistent with its functional 
crosstalk with BBS proteins,  Rabl4/IFT27  was recently identifi ed as a ciliopathy 
gene in BBS patients [ 105 ]. This is the fi rst member of the Rab family to be 
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identifi ed as a ciliopathy gene, further highlighting the important role of small 
GTPases in cilia biophysiology.   

    Ran 

 The small GTPase Ran is well known for its role in nuclear transport, mitotic spin-
dle assembly and nuclear envelope assembly. Recently, several observations imply 
that Ran also facilitates ciliary import. The fact that soluble molecules above a 

  Fig. 10.3    A working model for the role of ciliary Rabs and Rab like proteins. Rab proteins and 
Rab-like proteins are involved in cilia-targeted traffi cking and IFT transport. Rab8 is fi rst activated 
by Rabin8, and then proposed to help docking and fusion of vesicles bearing transmembrane pro-
teins near the ciliary membrane, including the BBSome. GTP-bound Rab8 in cilia can form a 
bridge with Rabaptin 5 (Rab5 effector) and Elipas between IFT complex and cargo at the cilia 
membrane. Rab11 activates the GEF activity of Rabin8 to deactivate Rab8. The activity of Rab11 
can be turned on by PI3K-C2α-derived PtdIns3 P . Rab23 is a negative regulator of Smo signaling 
and may act on its turnover. Rab-like 4 (IFT27) is indispensable for both anterograde IFT transport 
and retrograde IFT movement. IFT27 facilitates BBSome/ARL6 complex to exit the cilia in a simi-
lar process by which the BBSome mediates cargo entry into cilia       
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specifi c size (~40 kDa) are restricted from passively entering the ciliary lumen 
suggests the existence of a selective ciliary barrier at the cilia base [ 13 ]. Recent 
work demonstrated that the components of the nuclear import machinery, including 
small GTPase Ran, importin beta-2 and nucleoporins (NUP35, 37, 62, 93, 214, 
etc.), localize to the ciliary base and may form the ciliary pore complex to regulate 
selective ciliary entry [ 13 ,  106 – 108 ]. It was thus proposed that the function of the 
periciliary base is analogous to the nuclear pore regarding the selective entry of 
proteins and the exclusion of large soluble proteins [ 13 ,  109 ,  110 ]. Dishinger et al. 
showed that Ran and importin-β2 regulate the ciliary entry of kinesin2 motor 
KIF17 in a similar manner in nuclear transport. Specifi cally, similar to nuclear 
transport, a ciliary- cytoplasmic gradient of Ran with high ciliary Ran-GTP level is 
essential for ciliary import [ 108 ]. This phenomenon suggests that the nuclear import 
could be a useful model for studying the cilia import. Whether and how this path-
way regulates the entry of other ciliogenic proteins as well as the molecular compo-
sition of the proposed ciliary pore remain to be investigated (Fig.  10.4 ).

  Fig. 10.4    A working model for the ciliary import of KIF17 by Ran. Ran-GDP is enriched in the 
cytoplasm, whereas Ran-GTP is concentrated in cilia. In the cytoplasm, Kinesin 2 KIF17 forms a 
complex with importin-β2. Then this complex can shuttle across the ciliary TZ and enter cilia, 
where high amounts of Ran-GTP cause a dissociation of the KIF-importin-β2 complex       
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        Perspectives 

 Cilia are specialized organelles. The formation and maintenance are regulated by 
spatiotemporal integration of cytoskeleton dynamics and polarized membrane traf-
fi cking. Because small GTPases usually work as key switches in controlling mem-
brane and cytoskeleton-related cellular processes, it is not surprising that this group 
of enzymes plays pivotal roles in the context of cilia. However, the molecular 
mechanisms underlying the correlation between small GTPases and cilia still 
remains elusive, majorly due to our poor understanding about the GEF, GAP, and 
effectors of the ciliary small GTPases. The binding partners of small GTPases 
(such as posttranslational modifi cation enzymes, adaptors, motors, kinases, and 
phosphatases) can control the localization, activity, and downstream signaling by 
interacting with and altering different forms of small GTPases [ 42 ]. Identifying and 
characterizing the binding partners of the cilia-related small GTPases would dissect 
the underlying functional networks. Two good examples would be the functional 
network among, Rab11, Rab8, and Arf4, which share the same GAP protein 
Rabin8, as well as the coordination function between ARL-3 and ARL-13 in stabi-
lizing the IFT complex [ 56 ,  94 ]. 

 Characterization of the in vivo function of cilia-related small GTPases and their 
effectors needs to be pursued in animal models. Unfortunately, due to the essential 
role of cilia in embryonic development and tissue pattern formation, it is extremely 
diffi cult to study cilia biology in mammalian model organisms [ 111 ]. To this end, 
simple ciliated model organisms, like  C. elegans  and  zebrafi sh , have emerged as 
powerful tools for studying cilia biology and human ciliopathies. And there are 
several reasons. First, cilia structure, the IFT process, and the sensory function are 
largely conserved through evolution. Secondly, the functions of most human cili-
opathy genes are conserved in genetic models. Thirdly, genetic models offer indis-
pensable experimental advantages. For example, powerful genetics toolkits are 
available for both worm and zebrafi sh, which include genome-wide mutagenesis 
screens, transgenesis, and RNAi [ 112 ]. In  C. elegans,  a number of simple assays 
make it possible to quickly test cilia formation and function in live animals. And 
zebrafi sh cilia can also be easily observed in both living embryos and adults at high 
resolution [ 113 ,  114 ]. Overall, combining the genetic tools and the high-throughput 
methods in genetic models would greatly prompt the identifi cation and character-
ization of players involved in cilia formation and function. 

 Our understanding about the correlation between small GTPases and cilia has 
been advanced signifi cantly in recent decades. Studying the role of ciliary small 
GTPases will extend our view about how cilia develop and function in normal and 
pathological states. Most importantly, small GTPases and many of their effectors 
are highly promising therapeutic candidates. Hopefully, research in this fi eld would 
bring great benefi ts regarding new therapeutic invention or phenotype reversion for 
ciliopathy treatment.     
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      Abbreviations 

   AAV    Adeno-associated virus   
  AGE    Advanced glycation end products   
  AKAP    A-kinase anchoring protein   
  ART    ADP-ribosyl transferase   
  CDK1    Cyclin-dependent kinase 1   
  DRM    Desmin-related myopathy   
  EBS-MD    Epidermolysis bullosa simplex-muscular dystrophy   
  EDL    Extensor digitorum longus   
  ER    Endoplasmic reticulum   
  GGA    Geranylgeranylacetone   
  GSK3    Glycogen synthase kinase 3   
  HSP    Heat shock protein   
  I/R    Ischemia–reperfusion   
  IF    Intermediate fi lament   
  JNK    c-Jun N-terminal kinases   
  KO    Knock-out   
  LCR    Locus control region   
  MAPK    Mitogen-activated protein kinase   
  MFM    Myofi brillar myopathy   
  MHC    Myosin heavy chain   
  OGA    O-GlcNAcase   
  O-GlcNAc    O-linked β- N -acetylglucosamine   
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  OGT    O-GlcNAc transferase   
  OPN    Osteopontin   
  PAK    p21-activated kinase   
  PKA    Protein kinase A   
  PKC    Protein kinase C   
  PKG    Protein kinase G   
  PTM    Post-translational modifi cation   
  SMC    Smooth muscle cell   
  SPRY    SPIa/ryanodine receptor   
  SRF    Serum response factor   
  TUNEL    Terminal deoxynucleotidyl transferase dUTP nick end labeling   
  UPS    Ubiquitin-proteasome system   
  XLCNM    X-linked centronuclear myopathy   

       Desmin was fi rst termed as such by Lazarides and Hubbard in 1976 [ 1 ] for its link-
ing role in muscle (from the Greek delta epsilon sigma mu os = link, bond). It is a 
major component of intermediate fi laments (IF) in cardiac, skeletal and smooth 
muscles. Other IF subunits such as vimentin, synemin, nestin, syncolin, cytokera-
tins and lamins are also present either during muscle development and/or in the 
maintenance of mature muscle tissues. Desmin is also present in other types of cells, 
such as liver stellate cells [ 2 ], vascular pericytes [ 3 ], cardiac purkinje fi bers [ 4 ], 
sertoli cells [ 5 ]. Desmin is used as a marker for identifi cation of tumor origin [ 6 ,  7 ], 
for proteinuria in early stages of membranous nephropathy in elderly patients [ 8 ] 
and podocyte injury [ 9 ]. Desmin is a potential circulating biomarker of human heart 
failure [ 10 ]. Here we review the results concerning the regulation and function of 
desmin gene and its involvement in human diseases. 

    Regulation of the Desmin Gene 

 Desmin is encoded by a single gene in mammals whereas two copies of genes are 
present in some non-mammalian vertebrates such as Xenopus and zebrafi sh. 
Desmin, one of the earliest muscle-specifi c proteins to appear during myogenesis, 
is present in the replicating myoblasts [ 11 ]. The desmin gene is expressed as early 
as embryonic day 7.5 (E7.5) in the precardiac area and on day 9 in the myotomes 
and the smooth muscle cells of the mouse embryo. It has been suggested that the 
level of expression of the desmin gene and the accumulation of desmin fi laments 
during muscle differentiation is regulated at the transcriptional and/or posttranscrip-
tional level but not at the translational level [ 12 ]. The regulation of human, mouse, 
and hamster desmin genes have been investigated [ 13 – 18 ]. Some in vitro experi-
ments have shown that the promoter region upstream of the transcription initiation 
site of the desmin gene is suffi cient to confer low-level, muscle-specifi c gene 
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expression. A negative region is located between −693 and −228 bp in the human 
gene. Active expression of the human and mouse desmin gene depends on a 280 bp 
muscle-specifi c enhancer located at −1 kb. This skeletal enhancer contains two 
regions, a myoblast-specifi c region containing the Sp1, Krox, and Mb sites that 
functions only in myoblasts and a myotube-specifi c region containing MyoD1, 
MEF2, and a Mt site responsible for gene expression in myotubes [ 13 ,  19 ]. The 
results from transgenic mice have shown that the 1.2-kb upstream region of the 
human desmin gene containing muscle-specifi c enhancer directs the expression of 
the reporter gene LacZ in the myotome of the mouse embryo at E9.0 and in the 
skeletal muscle during embryonic and postnatal development, but not in adult mus-
cle [ 20 ]. The MEF2 binding site of the mouse skeletal enhancer is also active in the 
heart, although only in the right ventricle in transgenic mice [ 21 ]. The 4-kb upstream 
region of the mouse desmin promoter directs expression of a LacZ gene throughout 
the heart from E7.5, and in skeletal muscle and vascular smooth muscle cells from 
E9.5. The distal fragment (−4005/−2495) harboring a CArG/octamer overlapping 
element that can bind both the serum response factor (SRF) and an Oct-like factor 
is active in arterial smooth muscle cells, but not in venous smooth muscle cells or in 
the heart in vivo. LacZ expression is abolished when mutations are introduced into 
this CArG element that prevents the binding of SRF and/or the Oct-like factor. 
These data suggest that SRF and the Oct-like factor may cooperate to drive its spe-
cifi c expression in arterial smooth muscle cells [ 22 ]. A remarkable progress in the 
study of desmin gene regulation came from the identifi cation of a muscle-specifi c 
locus control region (LCR) of desmin gene [ 23 ]. LCRs are tissue-specifi c transcrip-
tion regulators that can generate dominantly a transcriptionally active chromatin 
structure and confer highly reproducible, physiological transgene expression. The 
human desmin LCR consists of fi ve regions of muscle-specifi c DNase I hypersensi-
tivity (HS) localized between −9 and −18 kb 5′ of desmin that are highly conserved 
between humans and other mammals. All transgenic mice containing 220-kb 
5′-fl anking and 10-kb 3′-fl anking sequences of the human desmin gene direct the 
complete pattern of tissue-specifi c gene expression in all muscle cell types and 
reproduce the human development expression profi le [ 24 ]. 

 The fi rst epigenetic investigation of the muscle-specifi c LCR of desmin gene has 
been performed on 500 kb of human chromosome 2q35 [ 25 ]. They have shown that 
the desmin gene cluster lies within a hyperacetylated transcriptionally competent 
muscle specifi c gene domain and that H3K4me2 and H3K4me3 mark the LCR. In 
addition, H3K27me3 marks the CpG island of desmin only in non-muscle cells. As 
H3K27me3 correlates with inactive genes, this methylation could contribute to the 
silencing of desmin gene in non-muscle tissues. It has been shown that the histone 
acetylation in myoblasts has been established at an earlier time point before myo-
blast differentiation. Similar histone acetylation has been observed in myotubes, 
suggesting that the increase of desmin expression in myotubes could result from an 
enhancement in transcription factor binding activity rather than a change in overall 
chromatin architecture. The only signifi cant difference between myoblast and myo-
tube modifi cation patterns is that myotubes have 20–30-fold higher H3K4me2 and 
H3K4me3 histone methylation at desmin 3′ of the fi rst exon than the myoblasts. 
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 In conclusion, as shown in Fig.  11.1 , the desmin gene is controlled by a combination 
of different transcription control regions in muscle tissues. In order to obtain a phys-
iological tissue-specifi c concentration of desmin, a muscle-specifi c LCR is required 
which cooperates with different regions and associates with epigenetic regulation.

       Consequences of the Absence of Desmin in Mice 

 Two independent desmin knock-out (KO) mice were obtained in 1996 by using 
exon 1 interruption strategy [ 26 ,  27 ]. The desmin KO mice are viable and fertile. 
The muscle development in the embryo is not affected by the absence of desmin. No 
anatomical or behavioral defects are notable at birth. However, after birth, mice 
lacking desmin show defects in all types of muscle (Fig.  11.2 ). They suffer from a 
cardiomyopathy, skeletal myopathy, and smooth muscle dysfunction. These disor-
ders reduce the life span of the desmin KO mice. We summarize here the defects in 
the different muscle tissues.

      Loss of Desmin Leads to a Dilated Cardiomyopathy 

 Most severe defects are observed in the heart of the desmin KO mice, correlating 
with the highest expression of desmin in the cardiomyocytes. Loss of desmin leads 
to cardiomyocyte hypertrophy and a dilated cardiomyopathy characterized by 
extensive cardiomyocyte death, calcifi cation, multiple ultrastructural alterations, 
cardiac contraction and conduction disturbances [ 26 – 31 ]. Expression of a wild-type 
desmin specifi cally within cardiomyocyte of desmin KO mice indicates that defects 
in the desmin KO heart are due to an intrinsic cardiomyocytes defect rather than 
compromised coronary circulation [ 32 ]. 

 Degenerating cardiomyocytes with Z-disk streaming, hypercontraction, and dis-
organized myofi brils were observed as early as 5 days post-partum in the hearts of 
desmin KO mice. Electron microscopy analysis indicated that the sarcotubular sys-
tem is often dilated and intercalated disks, the contact regions between neighboring 

Fig. 11.1 (continued) expression in the mouse embryo from E7.5 ( b ), E8.5 ( c ) to E9.5 ( d ). LacZ 
expression is evident at E7.5 in the cardiogenic progenitors and at E9.5 in the myotomes and the 
vessels of the embryo. ( e ) Expression of human desmin 1.2 kb-nlacZ transgene in E12.5 mouse 
embryo is observed only in skeletal muscle. ( f ) Skeletal and cardiac expression of LacZ in the 
E12.5 embryo in which Lacz is inserted into exon 1 of desmin gene. ( g ) Faint staining was used 
to see external vessels of E15.5 embryo of mouse desmin 4 kb-LacZ transgenic mice. Expression 
of LacZ in vessels is indicated by  arrowheads. Abbreviations :  ao  aorta,  bc  bulbus cordis,  cv  com-
mon ventricle,  da  dorsal aortae,  dm  dermamyotomal bud,  hl  hindlimbs,  h  heart,  pm  precardio-
genic mesoderm,  so  somite,  ua  umbilical artery,  va  vitelline artery,  v  vessels       
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  Fig. 11.1    Regulation of the desmin gene. ( a ) Schematic representation of the desmin promoter. 
The proximal promoter which contains one MyoD1, one SP1 and one AP1 binding sites and gives 
a low-level muscle-specifi c expression, is followed by a negative region. High-level expression 
depends on a muscle-specifi c enhancer which contains a myotube-specifi c enhancer harboring 
one MyoD1, one MEF2 and one Mt sites and a myoblast-specifi c enhancer having three Krox 
(K1–K3), one Mb and one SP1 binding sites. A SRF/Oct1-like site around −4 kb in mouse des-
min promoter is required for the expression of desmin in arteries. The locus control region (LCR) 
is represented by  yellow line . The positions of fi ve DNase I hypersensitivity (HS) sites (HS1–5) 
are indicated by  vertical arrows . ( b – d ) Developmental patterns of mouse desmin 4 kb-LacZ 
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cardiomyocytes, is altered. The confi guration of many intercalated disks in the des-
min KO hearts is abnormal, with slender, elongated contact regions accompanied 
with a severely altered sarcolemmal membrane including few intermyofi brillar 
regions, fasciae adherens, and few desmosomes. Calcifi ed lesions appeared on the 
outer surface of the heart 2–3 weeks after birth. Extensive fi brosis was observed 
near the calcifi ed region accompanied with up-regulation of osteopontin (OPN), 

  Fig. 11.2    Mice lacking desmin lead to cardiomyopathy, skeletal myopathy, and smooth muscle 
defects. ( a  and  b ) Hearts from 2-month old control (+/+) and desmin KO (−/−) mice. Note the 
presence of calcifi cation region ( white regions , see  arrows ) at the surface of the desmin KO heart. 
( c  and  d ) Skeletal muscle sections from 2-month old control and desmin KO mice are stained by 
Hematoxylin and Eosin. Note the presence of central nuclei in the desmin KO muscle (see  arrows ). 
( e  and  f ) Sections of aorta from 3-month old control (+/+) and desmin KO (−/−) mice are stained 
with orcein and hematoxylin. Note the distances between the layers are reduced for the desmin KO 
mice compared to the control. ( g ) Intercalated disk ( arrows ) with a typical zig-zag pattern in a 
heart of control (+/+) mice. ( h ) Disorganization of intercalated disk ( arrows ) and myofi brils (*) in 
the free right wall of desmin KO mice. ( i ) Disorganization of Z-disk and myofi brils in the soleus 
muscle of adult desmin KO mice ( arrows ). ( j ) The neuromuscular junctions ( arrows ) with regular 
folded form the control (+/+) mice. ( k ) The neuromuscular junctions ( arrows ) are markedly disor-
ganized with abnormal postjunctional folds were observed in desmin KO mice. Bars: 2 mm ( a  and 
 b ); 25 μm ( c – f ); 2 μm ( g – i ); 0.5 μm ( j  and  k )       
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decorin, transforming growth factor-β1, collagen and angiotensin-converting 
enzyme [ 33 ]. 

 The mitochondrial defects can be detected very early in development of desmin 
KO mice. The position, distribution morphology, proliferation, and function of 
mitochondria are all abnormal in mice lacking desmin [ 27 ,  31 ,  34 ]. It has been 
observed that the mitochondria are swollen and accumulate abnormally in some 
area, and there is extensive proliferation of mitochondria in a signifi cant fraction of 
the myocytes, particularly after work overload. The rate of mitochondrial respira-
tion in situ, measured using saponin-skinned muscle fi bers, is signifi cantly altered 
in desmin KO mice [ 34 ,  35 ]. Conventional microtubule (MT)-dependent molecular 
motor kinesin which is associated with the outer mitochondrial membrane remains 
bound to the purifi ed organelle in vitro. However, desmin KO hearts lose this asso-
ciation both in vitro and in vivo [ 36 ]. The fact that kinesin is associated with mito-
chondria in the normal mouse heart raises the possibility that the distribution of 
mitochondria in muscle cells may be more dynamic than previously thought. The 
positioning of mitochondria in restricted subcellular domains in the heart is a 
dynamic event, involving the IF desmin, molecular motor kinesin, and very proba-
bly the MT network. The creatine kinase activity of the mitochondria in desmin KO 
hearts is three times greater than that of the wild-type mice heart. It has been sug-
gested that the disruption of Z-lines and myofi brils that occurs in the desmin KO 
heart may result in the lack of a kinesin- and MT-dependent association of mito-
chondria with the myofi brils, and an insuffi cient supply of the ATP required for the 
contraction of myofi brils. The increased mitochondrial creatine kinase activity in 
the desmin KO heart may also be a way of compensating for the lack of mitochon-
dria close to the contractile process. But desmin KO hearts have signifi cantly less 
cytochrome c and the Bcl-2 is relocated. Thus, the relocation of mitochondria away 
from sites where large amounts of ATP are used could lead to the generation of 
preapoptotic signals (release of cytochrome c and translocation of Bcl-2) [ 36 ], driv-
ing cardiomyocyte degeneration and calcinosis of the heart in desmin KO mice. 
Alternatively, this cardiomyocyte degeneration could be due to cell membrane dam-
age leading to the leakage of cell components from the cell and an infl ux of Ca 2+  
into the cell. The increased osmolarity inside the cells might, as a result of swelling, 
give rise to the rounded appearance of the mitochondria. The dense bodies seen in 
some of the mitochondria in young animals are probably due to increased calcium 
loading of the mitochondria, and would thus be the fi rst sign of calcifi cation. 
Analysis of heart mitochondrial proteome by 2-D electrophoresis associated with 
mass spectrometry has identifi ed a series of proteins that are different between des-
min KO and wild-type mice heart. These proteins are involved in different pathways 
linked or not to mitochondrial function. The most signifi cant changes were observed 
in ketone body and acetate metabolism, NADH shuttle proteins, amino-acid metab-
olism proteins and respiratory enzymes. Several of these changes are consistent 
with the known phenotype of desmin defi ciency [ 37 ]. All these results indicate that 
the desmin network infl uences the position, movement, and respiratory activity of 
mitochondria in cardiac muscle.  
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    Mice Lacking Desmin Develop a Progressive Skeletal Myopathy 

 Mice lacking desmin develop a skeletal myopathy [ 26 ,  27 ,  38 ]. Alterations begin to 
appear after birth, particularly in weight-bearing muscles such as the soleus and 
continually used muscles such as the diaphragm. The organization of myofi bers is 
irregular, with misaligned myofi brils, Z-disk streaming, focal degeneration and dis-
organization of the mitochondria [ 26 ,  27 ,  38 ]. Most of the costameres are lost in the 
tibialis anterior and extensor digitorum longus (EDL), but not quadriceps and gas-
trocnemius muscles of desmin KO mice. This may explain partially why some mus-
cles are more susceptible to damage than others. The reason for this difference is not 
clear, but it is possible to link to the differences in the costamere’s components and 
organization. Surprisingly, some cytokeratins contribute to the structure of the cos-
tameres in skeletal muscle [ 39 ]. The absence of desmin delays and alters muscle 
regeneration, and causes adipocytes accumulation [ 40 ]. This myofi brillogenesis 
during regeneration is often abortive and shows signs of disorganization [ 38 ,  40 , 
 41 ]. The cycles of degeneration and regeneration result in increased relative amounts 
of slow myosin heavy chain (MHC) and a relative decrease in fast MHC in the des-
min KO mice. The neuromuscular junctions are markedly disorganized with abnor-
mal postjunctional folded forms [ 40 ]. Lack of desmin resulted in changes in the 
subcellular distribution of synemin, but not of plectin and nestin [ 42 ,  43 ]. 

 The lack of desmin adversely affects the ability of mice to engage in both chronic 
and acute bouts of endurance running exercise [ 44 ]. Desmin knockout muscles gen-
erate lower stress and are less vulnerable to injury compared with wild-type muscles 
[ 45 ]. Skinned muscle fi bers from desmin KO mice develop also less active force, as 
do intact soleus muscles [ 46 ]. During high-frequency fatigue, tension of isolated 
desmin KO EDL muscles declined faster than wild-type muscle, and this defi ciency 
was offset by adding caffeine that stimulates the release of Ca 2+  from the sarcoplas-
mic reticulum [ 47 ]. 

 It has been proposed that desmin may play a role in regulating the optimal 
arrangement of sarcomeres and sarcomere number regulation within the muscle 
[ 48 ]. Wider fi lament spacing and a slight increase in fi ber volume in muscles of 
desmin KO mice are observed [ 49 ,  50 ]. With a higher sarcomeric length (more than 
2.90 μm), skeletal muscles from desmin KO mice display an increased myofi brillar 
mobility [ 51 ]. The existence of a limit on the extension of desmin suggests a mecha-
nism for the recruitment of desmin into a network of force transmission. Connectivity 
in wild-type fi bers was signifi cantly greater when compared to desmin-null fi bers, 
demonstrating a requirement of desmin in functional connection between myofi -
brils [ 50 ]. 

 In contrast to the fi nding that young and adult desmin KO fi bers are more com-
pliant or equally compliant as wild-type [ 52 ], young and adult desmin KO fi ber 
bundles have higher stress and are stiffer compared with wild-type fi ber bundles 
[ 53 ]. Additionally, desmin KO fi ber bundles exhibited increasing modulus with age, 
a trend that was absent in wild-type bundles [ 53 ]. Stretched skeletal muscles of 
desmin KO mice develop greater passive stiffness than control muscles [ 54 – 56 ]. 
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This increase in passive stiffness is not due to changes of titin modifi cation, but to 
the absence of desmin and a possible change in extraconnective tissue such as 
increased collagen. 

 During chronic stimulation of denervated muscles, desmin plays a role in muscle 
nuclei alignment within muscle [ 57 ]. Linkage of desmin intermediate fi laments to 
muscle nuclei was strongly suggested based on extensive loss of nuclei positioning 
in the absence of desmin during passive fi ber loading [ 48 ] and the results from the 
double desmin and nesprin 1 KO mice [ 58 ]. Nesprin 1 is another protein thought to 
link the nucleus to the cytoskeletal network.  

    Smooth Muscle Defects in Desmin KO Mice 

 Vimentin and desmin are major constituents of the IF networks in smooth muscle 
cells (SMCs). Another IF component, synemin, is also present in SMCs [ 59 ]. SMCs 
are able to adjust their contraction/relaxation status by reorganizing the actin cyto-
skeleton and the IF network in response to external stimulation (for reviews see 
[ 60 ]). SMCs from the respiratory, digestive, and urogenital systems contain both 
desmin and vimentin. Higher concentration of vimentin is present in elastic arteries 
such as aorta whereas a gradient in desmin expression in the arterial tree is observed; 
the desmin content increased from the elastic artery aorta, via the muscular mesen-
teric artery to the resistance-sized mesenteric microarteries [ 61 ]. 

 The results from the study of desmin KO mice demonstrated that desmin is 
essential to maintain proper viscoelastic properties, structure and mechanical 
strength of the vascular wall [ 62 ]. In fact, the distensibility is lower and the viscosity 
of the arterial wall is increased in the desmin KO mice. The vascular wall of desmin 
KO mice had less mechanical strength as evidenced by lower intraluminal pressure 
required to rupture the carotid artery wall in vitro in desmin KO mice. The perime-
ter of fi nger-like cell projections was smaller in desmin KO mice, indicating that the 
cells lost some of their connections to the extracellular matrix. In the bladder hyper-
trophy model induced by a partial obstruction of the urethra, it has been shown that 
desmin muscle is not needed for growth of SMCs, but has a role in the maintenance 
of wall structure [ 63 ]. 

 There was no difference in the passive or active circumference/stress relation-
ships in the aorta and mesenteric arteries between desmin KO and wild-type mice, 
which contain more vimentin and relatively little desmin. However, the microarter-
ies of the desmin KO mice, containing high-level of desmin, developed lower pas-
sive and active stress [ 61 ]. Similar results were obtained with visceral smooth 
muscle like the vas deferens and urinary bladder, which paralleled a relative increase 
in the quantity of the basic, essential myosin light chain [ 64 ]. During bladder hyper-
trophy, desmin KO bladders had slightly lower passive stress and signifi cantly lower 
active stress compared to wild-type mice [ 63 ]. 

 The large compliance arteries use their elastic properties to absorb the energy 
produced by the ejection of blood by the heart at each systole, while resistance 
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arteries use their muscular tone and endothelial relaxing capacity to regulate the 
local blood fl ow in organs. Both the dilation and contraction of the vascular smooth 
muscle is decreased in resistance arteries but not in large, compliance arteries [ 65 ]. 
Agonist-induced muscular tone is reduced in the resistance mesenteric arteries. 
Flow (shear stress), acetylcholine-induced endothelium-dependent dilation, and 
endothelium-independent dilation are all lower in resistance mesenteric arteries. 
In addition, the changes in blood fl ow cause an exaggerated structural adaptation in 
the resistance arteries of mice lacking desmin. The overadaptation might be due to 
a defect in the capacity of the cytoskeleton to rearrange after stimulation [ 66 ]. The 
fact that the concentration of desmin is higher in small arteries may explain why a 
lack of desmin affects mainly the contractility of resistance arteries.   

    Desmin-Related Myopathy 

 Desmin-related myopathy (DRM) (also called: Desminopathies, desmin storage 
myopathy, desmin myopathy) is a clinically heterogeneous group of disorders 
encompassing myopathies, cardiomyopathies, conduction disease, respiratory defi -
ciency, smooth muscle disorders and combinations of these disorders. DRM is one 
type of myofi brillar myopathy (MFM) which is characterized by the loss of desmin 
fi lament network and abnormal aggregates of desmin form in muscle fi bers (for 
reviews see [ 67 – 72 ]). Publication of desmin KO mice in 1996 promoted the screen-
ing for desmin mutations in myopathies. The fi rst description of desmin mutation 
causing myopathy was in 1998 by Goldfarb [ 73 ]. Up to today, more than 60 heredi-
tary or sporadic nucleotide mutations or deletions/insertions of desmin gene linked 
to DRM are reported (Fig.  11.3 ) [ 73 – 115 ]. Eight mutations are found in the head 
domain of desmin gene, seven in the coil 1A, seven in the coil 1B, thirty in the coil 
2 region, seventeen in the tail domain. In these desmin myopathies, the age of clini-
cal symptoms onset is very variable and span from 3-year-old to late adulthood, 
with high frequency between 20- and 40-year-old. Some mutations result in only 
cardiomyopathy, and other skeletal muscle defect, but the majority of mutations 
lead to both skeletal and cardiac phenotypes. The smooth muscle defects such as 
dysfunction of intestine or bladder are observed in some DRM patients. The major-
ity of hereditary desmin mutations are autosomal dominant, few mutations follow 
autosomal recessive mode, and few others are present as sporadic forms. The most 
frequent mutations are missense mutations leading to the change of amino acids. 
For example, 13 residues in the coil 2 (274, 335, 337, 345, 350, 355, 357, 360, 370, 
377, 385, 389, 392) are replaced by proline which is a potent helix breaker and cre-
ates a kink in the rod domain. Several splice site mutations leading to the loss of 
exon 3 (Asp214_Glu245 del) [ 83 ,  92 ,  116 ] or leading to the insertion of 16 amino 
acids (AQPGLGQAECAMDPVT) within the tail domain of desmin, at the amino 
acid residue 428 [ 78 ], small in-frame deletion of 1, 3 or 7 amino acids, and frame 
shift mutation producing truncated desmin have been found in several families.
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   The pathogenic effects of mutated desmin have been investigated using cell cul-
ture ,  in vitro fi lament assembly experiments and transgenic mouse models. In vitro 
assembly studies with wild-type and mutant desmin proteins revealed that the 
in vitro assembly process of mutated desmin is already disturbed at the unit length 
fi lament level and that further association reactions generate huge, tightly packed 
protein aggregates [ 117 – 119 ]. Transfection of mutated desmin cDNA into cells 
with or without endogenous IF fi laments revealed that the majority of desmin 
mutants cannot form correct fi laments, segregates and/or disrupts the endogenous 
vimentin-containing or desmin-containing network, and forms the aggregates 
(Fig.  11.4 ). Loss of IF network and/or presence of aggregates in cells have been 
considered as a major reason of the pathological development. These mutations can 
interfere with the position and movement of cellular organelles such as mitochon-
dria, lead to the dysfunction of protein quality control such as the ubiquitin- 
proteasome system (UPS) and autophagy, and infl uence the cytoskeleton 
organization. It should be noted that some desmin mutations do not disrupt the IF 
fi lament formation (Fig.  11.4 ). It is assumed that these mutations disrupt also the 
interaction of desmin with its protein partners. Some amino acid change such as 

  Fig. 11.3    Desmin mutations in desminopathies. Desmin is composed of head domain, rod domain 
and tail domain. The structure of desmin protein is schematized by colored bars for head ( orange ) 
and tail ( blue ) domains and boxes for the rod domain. The number indicates the position of amino 
acid at the domain borders. Desmin mutations are indicated under the corresponding regions of 
desmin (head and tail domains, coil1A, coil1B and coil2 regions). More desmin mutations are 
found in Coil2 and tail domain       
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A213V has been considered as polymorphism or rare variant by some investigators 
due to the variable penetrance. Rare variants such as K241E and H326R have been 
identifi ed. Analysis of mutated nucleotides should be taken with precaution. New 
generation sequencing provides further accuracy to analyze mutated nucleotides.

  Fig. 11.4    Functional and ultrastructural analyses of desmin mutants. ( a – d ) Functional analysis of 
different desmin mutants were realized after expression of different desmin mutants in C2C12 
muscle cells. Immunostaining of desmin ( green fl uorescence ) 48 h after transfection of wild-type 
desmin ( a ); I451M ( b ); E413K ( c ) and R406W ( d ) desmin mutants. Note fi lamentous network 
organization in C2C12 cells when transfected with I451M desmin mutant. In contrast, E413K and 
R406W desmin mutants form desmin-containing aggregates which are distributed throughout the 
cytoplasm. Nuclei are stained in  blue  by DAPI. ( e  and  f ). Ultrastructural perturbations induced by 
desmin mutants in tibialis anterior muscles of wild-type ( e ) and R406W desmin ( f ) expressing mice. 
Wild-type and mutant desmin were expressed in muscle of wild-type mice using AAV vectors. All 
analyses were realized 1-month after AAV vectors injection. Note that expression of wild- type 
desmin does not seem to modify muscle ultrastructure ( a ) whereas expression of R406W mutant of 
desmin induces the appearance of granulofi lamentous electron-dense material (see  arrows ) located 
at the perinuclear regions.  N  nucleus,  M  mitochondria,  Z  Z-disk. Bar: 5 μm ( a – d ); 2 μm       
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       Desmin Protein Partners and Their Involvement 
in Desmin- Related Myopathy 

 Desmin functions are carried out by its interaction with partners. More and more 
partners that bind to desmin directly have been identifi ed during the last 30 years. 
We describe here desmin partners belonging to the IF family and the other partners 
related to the membrane-associated proteins, sarcomeric and cytoskeletal- associated 
proteins, chaperons, calcium-binding proteins and signaling proteins. The other 
partners concerning apoptosis-related proteins, posttranslational modifying pro-
teins and nucleic acids have been described in previous reviews [ 67 ,  120 ,  121 ]. 

    IF Partners 

 It has been reported that desmin can interact with the type V nuclear B-type lamin 
in cardiomyocytes and myoblasts [ 122 ,  123 ]. In the cytoplasm, desmin can interact 
or copolymerize with vimentin, nestin, synemin, syncoilin. Vimentin is highly 
expressed in the precursor or myoblast of striated muscles and progressively 
replaced by desmin during myogenesis so that very little vimentin is present in the 
mature striated muscle [ 124 ,  125 ]. In the smooth muscle vimentin and desmin are 
co-expressed [ 60 ,  126 ,  127 ]. Nestin is expressed in some muscle during early devel-
opment and its expression is decreased in the mature muscle, but remains high at 
myotendinous junctions and neuromuscular junctions [ 43 ,  128 ]. Syncoilin is pres-
ent in mature muscle but is enriched at myotendinous junctions and neuromuscular 
junctions [ 129 ,  130 ]. Synemin, initially co-purifi ed with desmin and vimentin in 
chicken muscle and identifi ed as IF-associated protein is present in striated muscle 
and smooth muscle [ 131 ]. Several isoforms of synemin or syncoilin have been iden-
tifi ed [ 59 ,  132 ,  133 ]. Nestin, syncoilin and synemin have a unique property in that 
they cannot self-assemble to form fi laments, they necessarily assemble into hetero-
polymers. However, some studies demonstrated that synemin and syncoilin do not 
seem to participate in the formation of mixed fi laments, but bind to pre-formed 
desmin or vimentin IFs [ 134 – 136 ]. The localization of these proteins is altered in 
the desmin KO mice [ 42 ,  43 ,  59 ]. Synemin interacts with α-actinin, plectin 1, zyxin, 
and 3 components of the dystrophin-associated protein complex such as dystrophin, 
utrophin and α-dystrobrevin [ 134 ,  137 – 140 ]. Alpha-synemin, but not β-synemin, 
interacts with vinculin, metavinculin, and talin, suggesting that these isoforms may 
have different roles [ 140 – 142 ]. Synemin participates in focal adhesion dynamics 
and cell migration [ 140 ,  143 ,  144 ]. Synemin has an additional role as an A-kinase 
anchoring protein (AKAP) [ 145 ]. Recently, synemin has been shown to play a role 
in skeletal muscle hypertrophy via participation in the regulation of PKA activity 
[ 146 ]. Syncoilin also binds to α-dystrobrevin, a component of the dystrophin- 
associated protein complex. Synemin and syncoilin seem to play a linker role 
between desmin IF and the dystrophin-associated protein complex. The latter is 
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involved in mechanotransduction, so synemin and syncoilin should play a role in 
mechanical stress signaling transmission from the membrane to the nucleus through 
the desmin IF network. The synemin and syncoilin KO mouse models have shown 
that they are required for generating maximum isometric stress in skeletal muscle 
[ 146 ,  147 ]. No mutation has been found in nestin, synemin and syncoilin genes in 
myopathy patients up to date.  

    Heat Shock Proteins (HSP) and Chaperones 

    Alpha B-Crystallin 

 The αB-crystallin (CRYAB), a member of the small HSP, has been fi rstly shown to 
bind to desmin in cardiac muscle [ 148 ]. We have identifi ed an R120G missense 
mutation in CRYAB in a DRM family [ 149 ]. This R120G CRYAB has an irregular 
quaternary structure with an absence of a clear central cavity, reduced chaperone- 
like function, decreased apparent dissociation constant and increased binding 
capacity, resulting in desmin fi lament aggregation [ 150 ,  151 ]. Transgenic mice 
overexpressing high-level R120G CRYAB exhibit 100 % mortality in early adult-
hood while the wild-type CRYAB expression was relatively benign, with no 
increases in mortality. Transgenic mice with modest R120G CRYAB result in a 
phenotype strikingly similar to that observed for the desmin-related cardiomyopa-
thies with CRYAB and desmin accumulations within cardiac muscle, mitochondrial 
defi ciencies, activation of apoptosis, increased endoplasmic reticulum (ER) stress 
and heart failure [ 152 ,  153 ]. Recently, it has been demonstrated that 28-week-old 
R120G CRYAB transgenic mice exhibit cardiac arrhythmias accompanied with 
decreased expression of SERCA2, phospholamban, ryanodine receptor 2 and calse-
questrin 2 [ 154 ]. 

 The results from Jeffrey Robbins laboratory indicated that CRYAB protects the 
desmin fi laments via preventing abnormal desmin protein from aggregating 
adversely. The double transgenic mouse hearts containing desmin mutant (D7-des) 
and R120G-CRYAB transgenes have signifi cantly higher levels of aberrant desmin 
aggregates than the D7-des transgenic hearts [ 155 ]. They further show that expres-
sion of CRYAB (R120G) leads to amyloid oligomer formation, which are character-
istic of neurodegenerative diseases. These oligomeric amyloid intermediates are 
present also in cardiomyocytes derived from many human dilated and hypertrophic 
cardiomyopathies [ 156 ]. 

 AlphaB-crystallin has three serine residues (positions 19, 45, and 59) that can be 
phosphorylated under various conditions. CRYAB is a direct target of the p38 
mitogen- activated protein kinase (MAPK) cascade. p38 MAPK plays a pro-survival 
role and confers protection of cardiomyocytes during myocardial infarction [ 157 ]. 
Inhibition of p38 MAPK with SB203580 in hypoxic adult cardiomyocytes results in 
the formation of desmin aggregates. In a mouse model of dilated cardiomyopathy 
triggered by cardiomyocyte-specifi c serum response factor (SRF), muscle creatine 
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kinase is the primary down-regulated protein followed by α-actin and α-tropomyosin 
down-regulation leading to a decrease of polymerized F-actin. We found that the 
early response to these defects was an increase in the amount of desmin intermedi-
ate fi laments and phosphorylation of the αB-crystallin chaperon. Desmin and 
αB-crystallin progressively lose their striated pattern and accumulate at the interca-
lated disk and the sarcolemma, respectively [ 158 ].  

    HSP25 

 HSP25, a 25-kDa heat shock protein, binds directly to desmin [ 159 ]. The interaction 
between HSP25 and desmin is strengthened by the phosphorylation of HSP25 at 
serine residue 15. It has been shown that H 2 O 2  pretreatment induces activation of 
p38 MAPK and subsequent HSP25/27 phosphorylation and translocation attenuates 
desmin degradation by calpain-1 activation in ischemia-reperfused hearts [ 160 ]. 
These results indicate that HSP25 contributes to the desmin cytoskeletal 
organization.   

    Sarcomeric and Cytoskeletal-Associated Proteins 

    Plectin 

 Plectin (>500 kDa) is a multifunctional and widely expressed cytoskeletal linker 
protein which binds actin, MT and IF. It has been suggested that plectin plays a role 
in myofi brillogenesis, and its association with Z-discs is an early event in the lateral 
alignment of myofi brils that precedes the formation of the intermyofi brillar desmin 
cytoskeleton [ 161 ]. Plectin interacts directly with desmin via its carboxyl-terminal 
IF-binding domain and acts as a universal mediator of desmin IF anchorage at the 
sarcolemma and Z-disks by linking adjacent Z-disks, tethering desmin fi laments 
into subsarcolemmal dense plaques containing dystrophin and vinculin, preventing 
individual myofi brils from disruption during contraction and ensuring effective 
force generation [ 162 – 166 ]. Plectin plays a linker function between desmin IFs and 
the mitochondrial surface and could be important for the positioning and shape 
formation, in particular branching, of mitochondrial organelles in striated muscle 
tissues [ 164 ]. Alternative splicing of plectin transcripts gives rise to more than eight 
protein isoforms differing only in small N-terminal sequences (5–180 residues), 
which fulfi ll distinct functions in different cell types and tissues. Four isoforms 
(plectins 1, 1b, 1d, and 1f) are found at substantial levels in muscle tissue. Plectins 
1 and 1f are sarcolemma-associated isoforms, whereas plectin 1d localizes exclu-
sively to Z-disks [ 165 ,  167 ]. Using conditional gene targeting in mice, the group of 
Gerhard Wiche has shown that plectin 1d and 1f integrate fi bers by specifi cally tar-
geting and linking desmin IFs to Z-disks and costameres, whereas plectin 1b estab-
lishes a linkage to mitochondria [ 168 ]. 
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 Mutations of the human plectin gene as well as the targeted inactivation of its 
murine analog cause a generalized blistering skin disorder and muscular dystrophy 
[ 167 – 169 ]. The most common disease caused by plectin defi ciency is epidermolysis 
bullosa simplex-muscular dystrophy (EBS-MD), a rare autosomal-recessive skin 
blistering disorder with late-onset muscular dystrophy. EBS-MD patients and 
plectin- defi cient mice display pathologic desmin-positive protein aggregates, degen-
erated myofi brils, and severe mitochondrial abnormalities, the hallmarks of MFM.  

    Nebulin 

 Nebulin is a giant F-actin binding protein that co-extends along the length of actin 
thin fi laments and is expressed specifi cally in skeletal muscle tissues [ 170 ]. The 
central coiled-coil region (150–263) of desmin interacts with nebulin’s C-terminal 
repeats M163-M170 [ 171 ]. The targeted mutation (K190A) in the desmin coil 1B 
region, or desminopathy-causing desmin mutations in the head, rod, or tail domains 
(S46F, E245D, and T453I) exhibit signifi cantly delayed fi lament assembly kinetics 
when bound to nebulin and destabilizes actin thin fi laments [ 79 ,  172 ,  173 ]. A mech-
anism has been proposed a mechanism by which mutant desmin slows desmin 
remodeling in myocytes by retaining nebulin near the Z-disks. The molecular etiol-
ogy of desminopathy for some fi lament-forming desmin mutants could be resulting 
from subtle defi ciencies in their association with nebulin.  

    Calponin 

 Desmin interacts with smooth muscle-specifi c protein calponin, a major actin-, 
tropomyosin-, and calmodulin-binding protein that has been identifi ed. The 
N-terminal 22 kDa fragment of calponin interacts with the central a-helical rod 
domain of the desmin in a concentration-dependent manner in vitro. The addition of 
calmodulin or S100 to the mixture of calponin and desmin causes removal of cal-
ponin from the desmin fi laments and inhibits bundle formation in the presence of 
Ca 2+ . Calponin might bridge IFs with actin in the vicinity of dense bodies 
[ 174 – 176 ].   

    Membrane-Associated Proteins 

    Caveolin-3 

 It has been shown that desmin is associated with caveolin-3, a major component of 
caveolar microdomains in myogenic cells [ 177 ]. In patients suffering myopathy 
with a heterozygous A337P mutation of desmin, aggregates of vesicular and tubular 
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structures contain caveolae. As caveolae occur in the Golgi complex and are 
 transported to the cell surface, the presence of caveolin-3 in aggregates suggests that 
the accumulation of multiple proteins in desminopathies could be partially due to 
inhibited intracellular traffi cking of caveolae to the sarcolemma [ 178 ].  

    Polycystin-1 

 IF proteins such as vimentin, cytokeratin 8, cytokeratin 18 and desmin were found 
to interact with polycystin-1 [ 179 ]. These interactions are mediated by coiled-coil 
motifs in polycystin-1 and IF proteins. Polycystin-1, which is a large membrane- 
associated protein, plays a role in mechanosensation by regulating calcium signal-
ing and nitric oxide release in response to fl uid shear stress in endothelial cells 
[ 180 ]. In vascular SMCs, the polycystins regulate the activity of the stretch- activated 
cation channels [ 181 ]. Polycystin-1 is required for maintaining the structural integ-
rity of the vasculature as well as epithelium [ 182 ]. Polycystin-1 mutation is found 
in a majority of patients with autosomal dominant polycystic kidney disease [ 183 ].  

    Desmoplakin 

 The association of the desmosome component desmoplakin with desmin C-terminal, 
rod portion and tail domain depends on sequences within the linker region and the 
B and C subdomains of C-terminal extremity of desmoplakin [ 184 ,  185 ]. 
Desmosomes are intercellular adhesive complexes that anchor the IF cytoskeleton 
to the cell membrane in cardiac muscle cells. Desmoplakin–desmin interactions are 
important for maintenance of the cytoarchitecture in cardiomyocytes. Mutations 
impairing this interaction in either the C-terminus of desmoplakin or the desmin tail 
lead to cardiomyopathy [ 184 ].   

    Signaling Proteins 

    Myotubularin 

 Myotubularin MTM1, a phosphoinositide 3-phosphatase, is mutated in X-linked 
centronuclear myopathy (XLCNM; myotubular myopathy). MTM1 interacts with 
desmin in vitro and in vivo [ 186 ]. XLCNM-causing mutations in MTM1 result in 
loss of MTM1-desmin interaction, formation of desmin-positive aggregates and 
abnormal mitochondrial positioning, shape, dynamics, and function in both mouse 
and human skeletal muscles [ 186 ]. Conditional deletion of the MTM1 gene via Cre- 
LoxP strategy in adult muscle fi bers has demonstrated that myotubularin is required 
during adulthood [ 187 ]. Viral gene transfer of phosphatase-dead myotubularin 
mutants (MTM1-C375S) signifi cantly improves most histological signs of XLCNM 
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displayed by a MTM1-null mouse, improves muscle performance and restores the 
localization of nuclei, triad alignment, and the desmin intermediate fi lament net-
work, while it does not normalize phosphoinositide 3-phosphatase level, supporting 
a phosphatase-independent role of MTM1 in maintaining normal muscle perfor-
mance and organelle positioning in skeletal muscle [ 188 ].  

    Myospryn 

 The amino-terminal domain of desmin interacts directly with the 24-amino acid- 
long carboxyl-terminal end of the SPRY (SPIa/ryanodine receptor) domain of the 
tripartite motif-like protein myospryn (also called cardiomyopathy-associated 5 or 
TRIM76) [ 189 ]. Myospryn, originally identifi ed as an associated partner to the bio-
genesis of lysosome-related organelle complex 1 protein dysbindin, colocalizes 
with desmin at the periphery of the nucleus of mouse neonatal cardiomyocytes and 
predominantly at intercalated disks and costameres of adult cardiomyocytes. 
Myospryn colocalizes also with the makers of endoplasmic reticulum (KDEL 
receptor) and Golgi sorting machinery (TGN38) and lysosomal markers such as 
cathepsin D. In the absence of desmin, proper perinuclear localization of myospryn 
is lost and shows a diffuse cytoplasmic localization. In addition, extensive mislocal-
ization of the lysosomes is found, suggesting a potential role of desmin IF in vesicle 
traffi cking and in lysosomes and lysosome-related organelle biogenesis and/or posi-
tioning. Myospryn is also an AKAP protein and contains three PKA RII subunit 
anchoring motifs in relation to the TRIM region [ 190 ], raising the possibility that 
together with desmin and other cytoskeletal and signaling proteins, it can participate 
in the subcellular targeting of PKA activity in striated muscle. Disturbance in these 
highly coordinated signaling pathways is thought to compromise effi cient mainte-
nance of structure–function integrity of muscle, leading to different cardiac and 
skeletal myopathies [ 191 ].   

    Calcium-Binding Proteins 

    S100A1/S100B 

 S100A1 and S100B are members of the S100 family of calcium-binding proteins. 
S100A1, which inhibits MT protein assembly and promotes MT disassembly, inter-
acts with desmin in the presence of a few μM concentrations of Ca 2+  [ 192 ]. The 
C-terminal extension of S100A1 or S100B represents a critical part of the sites that 
recognize the N-terminal domain of desmin (a portion of a coiled-coil helix 2A). 
S100A1 and S100B inhibit the assembly of desmin into IFs and stimulate the disas-
sembly of preformed desmin IFs. The activity of S100A1 and S100B is modulated 
by annexin VI, a member of a family of Ca 2+ -dependent phospholipid and membrane- 
binding proteins. Annexin VI blocks the ability of S100A1 and S100B to inhibit the 
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assembly of desmin into IF in a Ca 2+ - and dose-dependent manner. S100A1 and 
S100B may be considered as Ca 2+ -dependent regulators of the assembly of two 
important elements of the cytoskeleton, IFs and MTs, and, potentially, of MT- and 
IF-based activities [ 192 ,  193 ].    

    Post-translational Modifi cations of Desmin 

 Post-translational modifi cations (PTMs) of desmin are described in several recent 
reviews [ 120 ,  121 ]. The PTMs of desmin can be carried out both by enzymatic and 
non-enzymatic reactions. Phosphorylation of desmin is mostly studied. The known 
enzymes that can phosphorylate desmin include protein kinase A and C (PKA, 
PKC) [ 194 – 196 ], cyclin-dependent kinase 1 (CDK1) [ 197 ], p21-activated kinase 
(PAK) [ 198 ], Rho-associated kinase (Rho-kinase) [ 199 ], Aurora kinase B (Aurora-B) 
[ 200 ] and glycogen synthase kinase 3 (GSK3) [ 201 ]. All these kinases function as 
serine/threonine kinase. Phosphorylation is one of the regulatory mechanisms 
involved in the assembly–disassembly of desmin. Phosphorylation of desmin 
induces the disassembly of desmin fi laments and prevents the polymerization of 
soluble protofi laments. The biopsy of DRM patients is frequently associated with 
the presence of desmin-positive aggregates in which desmin is hyperphosphory-
lated [ 85 ,  202 ]. A number of desmin missense mutations affect serine and threo-
nine, some of them are the potential phosphorylatable sites, for example, S7F and 
S13F mutations [ 85 ,  203 ]. Whether these mutations affect the phosphorylated state 
or structural changes needs further investigation. Recently, we found desmin phos-
phorylation at the serine 28 in the mouse model of dilated cardiomyopathy induced 
by conditional inactivation of transcription factor SRF in cardiomyocytes in which 
desmin is not mutated but increasingly disorganized during the time course of the 
disease [ 158 ]. Recently, this serine 28 has been shown to be the target site in vivo of 
GSK3. Desmin is phosphorylated at serine 28 and 32, this modifi ed desmin contains 
a consensus sequence for GSK3 (SXXXS(p), where S is Ser, X is any other amino 
acid and ‘p’ is a phosphate group) [ 201 ]. They confi rmed for the fi rst time that 
GSK3 phosphorylates desmin both in in vitro model and in human heart failure 
samples. They observed increased levels of selectively phosphorylated and cleaved 
desmin in a canine pacing model of dyssynchronous heart failure when compared 
with either controls or animals treated with cardiac resynchronization therapy. 
Desmin-positive oligomers were also increased in dyssynchronous heart failure 
hearts compared with controls. There is a relationship between phosphorylation and 
cleavage of desmin and cardiac toxicity due to desmin amyloid-like oligomers for-
mation. Decrease of amyloid properties by treatment with cardiac resynchroniza-
tion therapy or an anti-amyloid small molecule opens a novel potential therapeutic 
strategy for cardiomyopathy [ 201 ]. 

    Another type of PTM of proteins is monosaccharide O-linked β-N - 
acetylglucosamine (O-GlcNAc). This attachment of O-GlcNAc to Ser/Thr residues 
of proteins is frequently considered to be analogous to protein phosphorylation in that 
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it is a highly dynamic, reversible, and tightly regulated enzyme-catalyzed process. 
The level of O-GlcNAcylation is regulated by O-GlcNAc transferase (OGT; 
uridinediphospho- N   -acetylglucosamine: polypeptide β- N -acetylglucosaminyl- 
transferase), which catalyzes O-GlcNAc synthesis and attachment, and O-GlcNAcase 
(OGA; β- N -acetyl- D -glucosaminidase), which catalyzes its removal. The O-GlcNAc 
modifi cation was demonstrated to be involved in skeletal muscle atrophy [ 204 ]. 
O-GlcNAc desmin has been identifi ed [ 205 ] and is involved in cardiac ischemia–
reperfusion (I/R) injury [ 206 ]. After I/R, there was a marked loss of both cytosolic 
and nuclear O-GlcNAcylation and disruption of Z-line structures. OGA inhibition 
largely preserved structural integrity and attenuated the loss of O-GlcNAcylation. 
Desmin immunofl uorescence following ischemia–reperfusion injury is decreased 
and its localization is altered. Increased O-GlcNAc level which attenuates the loss of 
desmin, prevents its structural disorganization and could be an important contributing 
factor to the improved functional recovery and decreased injury. 

 ADP-ribosylation of desmin has been identifi ed. Arginine-specifi c mono (ADP- 
ribosyl transferase, ART1) is responsible for ADP-ribosylation of desmin [ 207 ]. 
ADP-ribosylation results in potent inhibition of desmin’s ability to assemble into 
fi laments [ 208 ] and phosphorylation of desmin by PKA. Arginine 48 and 68 of 
desmin’s head domain have been shown to be sites of modifi cation, with arginine 48 
being the major ADP-ribosylation site [ 209 ]. 

 Ubiquitylation of desmin by ubiquitin ligase TRIM32 is involved in the loss of 
thin fi laments during atrophy [ 210 ]. Desmin was shown to be ubiquitinated by 
TRIM32 and then degraded. Other substrates of TRIM32 include actin, tropomyo-
sin and α-actinin. Mutations in TRIM32 are associated with myopathies, such as 
limb-girdle muscular dystrophy [ 211 – 214 ] and sarcotubular myopathy [ 215 ]. 
A TRIM32 KO mouse displays myopathic changes, replicating the phenotype of 
limb- girdle muscular dystrophy [ 216 ]. An interesting interplay between desmin 
ubiquitylation and phosphorylation has also been reported in the same study. During 
atrophy, TRIM32 ubiquitinates preferentially phosphorylated desmin, promoting its 
solubilization and degradation. It is unclear which kinases could be responsible for 
the increased desmin phosphorylation during atrophy. 

 PTMs of desmin include also modifi cations that do not require enzymes, such as 
glycation (or non-enzymatic glycosylation), oxidation and nitration. Glycation is a 
reaction between the carbonyl group of reducing sugars and the primary amino 
groups (typically lysine and arginine residues) of proteins. Such glycated proteins 
can react further with intermediate compounds produced through oxidative or non-
oxidative pathways to form stable end products or advanced glycation end products 
(AGEs). Desmin is a preferential target of AGE in the context of dilated cardiomy-
opathy leading to heart failure, both in mice and in humans [ 158 ]. Increased oxida-
tive stress in cardiomyopathy and heart failure due to the dysfunction of mitochondria 
can increase formation of highly reactive dicarbonyls, such as glyoxal and methyl-
glyoxal, generated from triose sugar oxidation or lipid peroxidation and subsequent 
AGE adducts formation on proteins.  
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    Desmin-Related Myopathy Mouse Models and Therapeutic 
Potentials 

    Desmin-Related Myopathy Mouse Models 

 Three transgenic mice expressing mutated desmin in cardiomyocytes have been 
published. The fi rst mouse model expresses a 7-amino acid deletion (R173 through 
E179) desmin (D7-des) mutation linked to DRM, published in 2001 [ 217 ]. 
Expression of the dominant negative D7-des mutant protein using α-MHC pro-
moter leads to the appearance of aberrant intrasarcoplasmic and electron-dense 
granular fi lamentous aggregates in cardiac tissue that are characteristic of human 
desmin- related cardiomyopathy. Further analysis indicated that this desmin mutant 
mouse model shows compromised ability of the heart to respond to β-agonist stimu-
lation, impaired UPS proteolytic function at the level of entry of ubiquitinated pro-
teins into the 20S proteasome [ 218 ], increased autophage fl ux associated with 
up-regulation of p62, a mediator between the aberrant aggregates and autophago-
somes [ 219 ]. The latter has been proposed as an adaptive response to overexpres-
sion of misfolded proteins. The second mouse model expressing a desmin missense 
mutation L345P in skeletal and cardiac muscle using desmin promoter was pub-
lished in 2008 [ 220 ]. In this model, mutated desmin gene is expressed at low-level 
and no protein aggregates were detected. However, L345P desmin transgenic mice 
show mitochondrial swelling vacuolization, increased mitochondrial Ca 2+  level in 
skeletal and cardiac myocytes, decreased motor function, hypertrophy of the left 
ventricular wall and decreased left ventricular chamber dimension. Soleus muscle 
has impaired contractile function and recovery from fatigue. The third model is a 
mouse expressing a desmin missense mutation I451M linked to human dilated car-
diomyopathy in cardiomyocytes using α-MHC promoter [ 221 ]. The mutant desmin 
loses its Z-disk localization but it can still associate with the intercalated disks, 
which, however, have an altered architecture, resembling other examples of dilated 
cardiomyopathy. 

 Recently, R349P (corresponding human desmin missense mutation R350P) des-
min knock-in mice have been obtained [ 222 ]. Compared to the classical transgenic 
mouse model, this R349P knock-in mouse model has the advantage that the expres-
sion of mutant desmin gene is under the control of the endogenous gene regulatory 
elements and presents better at the protein level the situation of the heterozygous 
human mutation carriers. These mice develop age-dependent desmin-positive pro-
tein aggregation pathology, skeletal muscle weakness, dilated cardiomyopathy, as 
well as cardiac arrhythmias and conduction defects. The results from this model 
underline the importance of extrasarcomeric IF network disruption, but not the pres-
ence of protein aggregates, in the development of desminopathies. Disruption of the 
extrasarcomeric IF network increases mechanical vulnerability of muscle fi bers and 
fi nally impacts the entire organ and subsequently causes myopathy and cardiomy-
opathy [ 222 ]. 
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 Alternatively, desmin-related myopathy mouse models can be created by using 
adeno-associated virus (AAV) vectors carrying mutated desmin cDNA (R406W or 
E413K) [ 223 ]. The main advantage of this strategy is that it is easy to quickly obtain 
a large number of viral vectors allowing the expression of various desmin mutants 
and to study the effects of their expression in one genetic background. Expression 
of desmin mutants in mouse muscles induces morphological changes of muscle 
fi bers (irregular shape and size), disruption of Z-disks and the appearance of desmin 
accumulations around the nuclei (for R406W) or in subsarcolemmal regions of 
fi bers (for E413K) (Fig.  11.4 ). Both desmin mutants studied here induce a decrease 
in muscle force generation capacity. 

 In addition, a desmin-related myopathy mouse model has been created by 
expressing R120G-αB-crystallin in cardiomyocytes [ 153 ]. High-level expression of 
CRYAB R120G is deleterious and results in 100 % mortality in early adulthood. 
Modest expression levels resulted in a phenotype that was strikingly similar to that 
observed for the desmin-related cardiomyopathies with aberrant desmin and 
CRYAB aggregation, myofi bril misalignment and cardiac hypertrophy.  

    Therapeutic Potentials 

 There is no effi cient treatment for desmin-related myopathies as of today; some 
strategies have been tested in vitro or in vivo. These strategies aim to reduce the 
oxidative and ER stress, and apoptotic signals, to increase chaperones activity, to 
improve UPS and autophagy activity, and to correct mitochondrial defects. 

   Antioxidant Treatments 

 Pre-treatment with  N -acetyl- L -cysteine, an antioxidant, of myoblasts expressing 
desmin D399Y prevented desmin aggregation in vitro in response to redox- 
associated stress (H 2 O 2  and cadmium chloride), suggesting its potential therapeutic 
function for desminopathies [ 224 ]. The treatment of R120G CRYAB transgenic 
mice with oxypurinol, an inhibitor of superoxide-generating enzyme xanthine oxi-
dase that is upregulated in this model of DRM, restored mitochondrial function and 
morphology by preventing excessive production of reactive oxygen species (ROS), 
but unimproved cardiac contractility and compliance remained [ 225 ].  

   Heat Shock Proteins (HSP) and Chaperones Activity 

 The CRYAB R120G DRM model has been used to test the effects of the HSP 
inducer geranylgeranylacetone (GGA) [ 226 ]. Oral administration of GGA results 
in reduced amyloid oligomer levels and aggregates, decreased heart size and less 
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interstitial fi brosis, as well as improved cardiac function and survival when 
 compared to untreated CRYAB R120G mice. These effects could be linked to a 
reduction in amyloid oligomer and aggregate formation due to an overexpression 
of HSPB8. Treatment with GGA as well as overexpression of HSPB8 also inhibit 
cytochrome c release from mitochondria, activation of caspase-3 and TUNEL-
positive cardiomyocyte death in the CRYAB R120G mice [ 226 ]. Gerhard Wiche 
and his collaborators demonstrated that the treatment with 4-phenylbutyrate, a 
chemical chaperone, in plectin-defi cient myotubes as well as in plectin-defi cient 
mice results in remarkable amelioration of the pathological phenotypes [ 227 ]. 
Hsp27 has been shown to suppress the formation of inclusion bodies induced by 
expression of CRYAB R120G in cell culture. When CRYAB R120G and Hsp27 
are transiently co-expressed in HeLa cells, the amount of CRYAB R120G in the 
soluble fraction was greater when compared to expression of CRYAB R120G 
alone [ 228 ].  

   Anti-apoptotic Agents 

 The earliest ultrastructural defects are observed in mitochondria and the capacity of 
mitochondria to resist exposure to calcium is diminished in desmin KO mice. 
Overexpression of bcl-2, an anti-apoptotic gene, in the desmin null heart results in 
correction of mitochondrial defects, reduced occurrence of fi brotic lesions in the 
myocardium, prevention of cardiac hypertrophy, restoration of cardiomyocyte ultra-
structure, partial rescue of the capacity to calcium exposure and signifi cant improve-
ment of cardiac function [ 229 ]. Overexpression of bcl-2 in R120G CRYAB hearts 
prolongs transgenic mouse survival by 20 % associated with decreased mitochon-
drial abnormalities, restoration of cardiac function, decreased protein aggregation 
and apoptosis. However, inhibition of apoptotic signaling resulted in the upregula-
tion of autophagy and alternative death pathways, the net result being increased 
necrosis [ 230 ]. More than twofold increase in cardiomyocyte autophagic activity 
was observed in R120G CRYAB hearts. This increase of autophagy has been shown 
to be an adaptive response to toxic aggregates [ 231 ].  

   Exercise and Autophagy 

 It seems that voluntary exercise restores normal level of metallomembrane endo-
peptidase neprilysin that is decreased in control CRYAB R120G mice, and slows the 
progression to heart failure in the CRYAB R120G DRM model [ 232 ]. Both overex-
pression of autophagic gene autophagy-related 7 (Atg7) and voluntary exercise that 
upregulate autophagy ameliorate desmin-related cardiomyopathy by the decrease of 
interstitial fi brosis and cardiac hypertrophy, reduction of intracellular aggregates, 
amelioration of ventricular dysfunction and prolongation of life span [ 233 ].  
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   Decrease of Fibrosis 

 Osteopontin (OPN) promotes cardiac dysfunction in the desmin KO model. Double 
KO mice (Des −/− :OPN −/− ) improve left ventricular function, paralleled to a reduction 
in fi brosis. The diminished fi brotic response in the absence of OPN could be in part 
mediated by a dramatic reduction of galectin-3 secretion by OPN-defi cient infi ltrat-
ing macrophages [ 234 ].  

   Channel Opener Nicorandil Treatment 

 The cardioprotective effect of nicorandil, a mitochondrial ATP-sensitive potassium 
channel opener, has been shown to reduce mitochondrial impairment and apoptotic 
cell death and prolonged survival of CRYAB R120G transgenic mice [ 235 ]. 
Nicorandil treatment inhibits the increase in BAX, the decrease in bcl2, the activa-
tion of caspase-3 and apoptotic cell death in mutant CRYAB R120G transgenic 
mice. This treatment also prevents ventricular tachyarrhythmia with increased 
expression of total and phosphorylated connexin-43 in CRYAB R120G transgenic 
mouse hearts [ 236 ].  

   Modulation of Proteasome Activity 

 Sildenafi l treatment signifi cantly increases myocardial protein kinase G (PKG) 
activity and reduces myocardial accumulation of CRYAB R120G, ubiquitin conju-
gates, and aberrant protein aggregates in CRYAB R120G transgenic mouse hearts. 
This could be linked to PKG activation by sildenafi l that positively regulates protea-
some activities and proteasome-mediated degradation of misfolded proteins, likely 
through posttranslational modifi cations of proteasome subunits. This may be a new 
mechanism underlying the benefi t of PKG stimulation in treating cardiac diseases. 
Stimulation of PKG by drugs such as sildenafi l administration is potentially a new 
therapeutic strategy to treat cardiac proteinopathies [ 237 ]. Overexpression of UBC9, 
a SUMO-conjugating enzyme, enhances UPS function in cardiomyocytes while 
knockdown of UBC9 by siRNA causes signifi cant accumulations of aggregated 
protein. It was shown that UBC9 reduces preamyloid oligomer content in cardio-
myocyte and its activity can be exploited to reduce toxic levels of misfolded or 
aggregated proteins in cardiomyopathy [ 238 ].    

    Conclusions and Perspectives 

 Since desmin was identifi ed in 1976, signifi cant progress has been made regarding 
the regulation of desmin gene expression and the role of desmin in muscle homeo-
stasis and the development of DRM. It has been shown that the cooperation between 
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muscle-specifi c LCR and different transcription control regions such as muscle- 
specifi c enhancer is required to obtain a physiological concentration of desmin in 
different muscle tissues. Although desmin is not necessary for myogenic commit-
ment, differentiation, or the fusion of skeletal muscle, it is essential for the structural 
integrity and function of muscles. Mice lacking desmin develop cardiomyopathy, 
skeletal myopathy, and smooth muscle defects. It is clear that the desmin network 
infl uences the position, movement, and respiratory activity in situ of mitochondria. 
Desmin is important for sarcomere alignment and maintaining cell compliance, 
optimal excitation–contraction coupling, neuromuscular junction integrity, cell–
matrix interaction, vascular myogenic tone control, and generation of passive and 
active tension in muscles. More than 60 desmin mutations have been identifi ed in 
patients. These mutations can interfere with the position and movement of cellular 
organelles such as mitochondria, lead to the dysfunction of protein quality control 
such as UPS and autophagy, and infl uence the cytoskeleton organization. For the 
mutations which do not disrupt the IF fi lament formation, the pathology could come 
from defects of interactions between desmin and its partners. More and more part-
ners that bind to desmin have been identifi ed during the last 30 years, and these 
partners are involved in diverse biological processes such as intracellular traffi ck-
ing, organelle biogenesis and/or positioning, chaperone activity, cytoskeleton orga-
nization, calcium homeostasis, mechanosensing, and signaling pathways. From 
these data, it is reasonable to suggest that in addition of its structural role, desmin 
may act as a signaling platform for the integration of mechanotransduction signals 
from the outside to the inside of organelles such as mitochondria or the nucleus. 
Recently, it has been suggested that desmin fi laments form a stress-transmitting and 
stress-signaling network and are required for JNK-mediated stress sensing in mus-
cle [ 239 ]. This stress-transmitting and stress-signaling network should include its 
partners such as synemin and syncoilin. Synemin has been shown recently to play a 
role in skeletal muscle hypertrophy via participation in the regulation of PKA activ-
ity [ 146 ]. Synemin and syncoilin play a linker role between desmin IF and the 
dystrophin- associated protein mechanotransduction complex. It has been reported 
that desmin can act as a novel regulator of microRNA in airway smooth muscle 
hypertrophy through ErK1/2Egr-1//miR-26a/GSK-3β pathway [ 240 ] and could be 
the direct or indirect target of microRNA [ 241 ,  242 ]. Further studies are needed to 
better understand the function of the desmin-containing stress-sensing network, the 
infl uence of epigenetic factors involved in chromatin remodeling, microRNA and 
long non-coding RNA on the expression and function of desmin, PTMs of proteins 
in health and disease situations, and the effects of different desmin mutation vari-
ants on energy metabolism for which few investigations have been pursued as 
of now. 

 The recent R349P desmin knock-in mouse model provides an important advance-
ment in understanding the molecular pathogenesis of desminopathies. These studies 
emphasized that the loss of the IF network rather than the presence of aggregates in 
cells is a major reason for the pathological development. However, more desmin 
mutation knock-in mouse models including the mutations that do not interfere with 
the fi lament formation in vitro are needed to evaluate the real effect of protein 

11 Desmin Plays Dual Structural and Regulatory Functions Through Its Interaction…



266

aggregates on the development of diseases and decipher sequential molecular events 
leading from mutant desmin to progressive muscle damage at the different stages of 
lifespan related to the patients. There is no effi cient treatment for desmin-related 
myopathies up to date; the strategies aiming to reduce the oxidative and ER stress, 
and apoptotic signals, to increase chaperones activity, and to improve UPS and 
autophagy activity have been  tested  in vitro and in vivo. Future studies on the des-
min mutant knock-in mouse models will provide useful information for the design 
of potential therapies.     
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    Chapter 12   
 Desmin Filaments and Desmin-Related 
Myopathy 

             Xuejun     Wang    

            Introduction 

 At the histological level, muscle tissue is one of the four basic tissue types in the body, 
with the other three being epithelial, connective, and nervous tissues. Muscle tissue 
consists primarily of myocytes (muscle cells). Based on the morphology and function-
ality, muscle is further classifi ed into three types: skeletal muscle, cardiac muscle, and 
smooth muscle. Skeletal and cardiac muscles together are also known as striated mus-
cle as their myocytes or muscle fi bers display microscopic striations. Among all cell 
types, myocytes especially striated myocytes have the highest content of cytoskeleton. 
This is because the primary function of myocytes is to generate mechanical force 
through contraction. The contractile apparatus (myofi bril) in myocytes is primarily 
formed by the thick fi lament and the thin fi lament which are considered cytoskeleton. 
In addition to myofi brillar cytoskeleton, myocytes contain extra-myofi brillar cytoskel-
eton, including microtubules, microfi laments, and intermediate fi laments (IFs), similar 
to non-muscle cells. In general IFs are formed by tissue-specifi c IF proteins. The most 
prominent IF protein expressed in muscle tissue is desmin. 

 Desmin was initially purifi ed in 1976 from smooth muscle (chicken gizzard) [ 1 ]. 
As a cytoskeletal protein, desmin is a highly insoluble. Most buffers that solubilize 
myosin and the majority of actin are unable to solubilize desmin in muscle tissue; 
but desmin becomes soluble in presence of urea. Even in presence of 8M urea 
under a variety of conditions, desmin co-migrates with actin during purifi cation. 
The employment of sodium dodecyl sulfate-polyacrylamide gel electrophoresis 
(SDS- PAGE) helped separate desmin from actin, leading to biochemical purifi cation 
of desmin proteins. The fi rst antibodies against desmin were then produced using 
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the purifi ed desmin protein, which allowed the spatial arrangement and structure of 
desmin fi laments in striated and smooth muscles to be initially characterized via 
immunofl uorescence staining. In striated muscle, desmin fi laments were localized 
in between myofi brils at the z line level where they appear to link adjacent myofi -
brils to each other and to the sarcolemma. In cardiac muscle, desmin protein was 
also found to be enriched in the desmosome-like structure at the intercalated disc 
which couples adjacent cardiomyocytes head-to-head [ 1 ]. Lazarides and Hubbard 
termed the protein desmin (from the Greek, δεσμόs = link, bond) to indicate the 
linking function that this molecule might have in muscle cells based on its immuno-
fl uorescence localization [ 1 ]. They named this protein as desmin for also denoting 
that this protein, besides being the subunit of the 10 nm fi laments, is also a compo-
nent of muscle desmosome-like structure in muscle cells [ 1 ]. 

 In the past four decades, signifi cant progresses are made in understanding of the 
structure and function of desmin protein and desmin IFs. Mouse genetic modifi ca-
tion studies reveal desmin is not required for embryonic myogenesis but is essential 
to postnatal maintenance and function of striated muscles. The recent renaissance of 
research into desmin IFs was triggered by the fi rst identifi cation of mutations in the 
desmin gene ( DES ) and the genes encoding the partners of desmin IFs, such as 
αB-crystallin ( CRYAB ), in human familial desmin-related myopathy (DRM) in 
1998 [ 2 – 4 ]. DRM is heterogeneous group of myopathies characterized pathologi-
cally by the presence of desmin-containing aberrant protein aggregates in myocytes. 
Since aberrant protein aggregation is a common process in all proteinopathies, 
insight gained from studying DRM pathogenesis serves also to improve our under-
standing of protein quality control and proteinopathy in general.  

    The Desmin Gene 

 Approximately 5 years after Capetanaki et al. had fi rst identifi ed the  DES  in chicken 
[ 5 ], Paulin and colleague cloned and characterized the human  DES  in 1989 [ 6 ]. 
In the human genome, there is a single copy of  DES , which is 8.4 kbp in length, 
consists of nine exons and eight introns, and is localized to chromosome 2q35 [ 6 ,  7 ]. 
Northern blot analysis revealed that a single desmin mRNA of 2.2 kb is expressed 
in human striated and smooth muscles, which translates a protein of 470 amino 
acids (~53 kDa) [ 1 ,  6 ,  8 ]. From zebrafi sh to humans, DES is highly conserved. 

 A 280-bp muscle-specifi c enhancer located between −693 and −973 bp upstream 
of the transcription initiation site of human  DES  has been shown to confer high level 
expression of  DES  in both myoblasts and myotubes [ 9 ]. Further analysis revealed 
that this enhancer contains two different regions, one active in myoblasts and the 
other in myotubes. The myotube-specifi c region contains two E-box elements, pro-
viding the binding sites for MyoD1 and muscle-specifi c enhancer factor-2 (MEF-2), 
respectively; both are required for full enhancer activity. The myoblast-specifi c 
region is downstream of the myotube enhancer region, containing a region with 
homology to the M-CAT motif (at −587) and multiple regions harboring a GC-rich 
sequence sharing homology with the Krox binding site [ 10 ]. This combination of 
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promoter regulation may help explain why DES, but not contractile proteins, is 
expressed in myoblasts. A transgenic mouse model harboring a LacZ gene under 
the control of a promoter containing these regulatory regions shows transgene 
expression exclusively in skeletal muscle but not cardiac and smooth muscles [ 11 ], 
indicating that these regulatory elements are only suffi cient to drive  DES  expression 
in skeletal muscle and that other regulatory regions must exist for cardiac and 
smooth muscle expression. 

 In mice, the fi rst 85-bp upstream of the transcription initiation site of mouse  DES  
contains an E box (E1), suffi cient to drive low level of muscle-specifi c expression. 
An enhancer located between nucleotides −798 and −976 harbors another E box 
(E2) and a MEF-2 binding site, which drives high levels of  DES  expression. Both 
MyoD and myogenin are capable of binding to the E1 and E2; and MEF-2C, a 
myocyte-restricted member of the MEF-2 family can bind to the MEF-2 site in the 
enhancer [ 12 ]. Subsequent studies using mouse transgenesis demonstrated that a 
single MEF-2C binding site within 1kbp 5’-fl anking sequence of mouse  DES  is 
suffi cient to direct appropriate temporal expression of desmin in both cardiac and 
skeletal muscles during mouse embryogenesis [ 13 ]. 

 In murine embryogenesis, desmin is detected as early as 8.25 days post coitum 
(d.p.c.) in the ectoderm, and then in the heart rudiment at 8.5 d.p.c., with elevated 
expression in cardiogenic cells thereafter [ 14 ]. Desmin protein begins to accumulate 
in somites at 9 d.p.c. and progresses in a rostro-caudal gradient with somatic 
maturation [ 14 ]. Desmin-positive myofi bers are found in limb buds by 14 d.p.c. 
The levels of desmin expression in cardiac, skeletal, and smooth muscles stay high 
throughout subsequent embryonic development and into postnatal life [ 11 ]. Desmin 
is one of the earliest muscle-specifi c genes expressed during development; desmin 
protein has substantially accumulated in myogenic cells before myosin, actin, and 
titin begin to form the contractile apparatus [ 15 – 17 ].  

    Desmin Protein Structure and Filament Formation 

 Desmin belongs to the type III IF protein family. Other members of this family 
include vimentin, glial fi brillary acidic protein (GFAP), and peripherin. As illustrated 
in Fig.  12.1 , a desmin protein molecule is comprised of three domains: an α-helical 
rod domain containing 304 amino acid residues, fl anked by globular amino- and 
carboxyl-terminal structures which are known as the head and tail domains, respec-
tively. The α-helical rod domain is interrupted by three short non- helical linker 
regions, resulting in four consecutive α-helical segments (1A, 1B, 2A, and 2B). 
The helical segments of the rod are highly conserved, sharing a sequence character-
istic of a 7-residue (heptad) repeat pattern with a typical sequence of hydrophobic 
and hydrophilic amino acids. Each heptad forms a full helical turn and the heptad 
repeats of the α-helix in a desmin monomer guide two monomers into formation of 
a coiled-coil dimer, the basic unit of the fi lament. The equivalence of the eighth 
heptad of the 2B segment is interrupted by an insertion of four extra residues 
referred to as a ‘stutter’ (Fig.  12.1 ) [ 18 ]. The ‘stutter’ appears to be an obligatory 
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feature of all IF proteins and its position is strictly conserved among different IF 
proteins. “Stutterless” desmin monomers created experimentally by insertion of the 
three “missing” amino acid to restore a continuous heptad repeat, lose the ability to 
anneal into longer fi laments during fi lament elongation [ 19 ]. The presence of the 
stutter results in a slight unwinding of the coiled coil in the stutter vicinity. The local 
unwinding is apparently essential to the proper assembly of the fi lament. The 
YRKLLEGEE motif at the C-terminal end of the 2B segment is another well- 
studied structure. The coiled-coil interaction starts to loosen in this motif so that the 
two α-helices gradually separate and eventually bend away from each other at the 
EGEE level [ 20 ]. In vitro fi lament assembly studies reveal that the YRKLLEGEE 
motif directs the proper formation of tetramers and dictate the number of subunits 
per fi lament cross section. Approximately 30 % of the ‘tail’ domain is constituted 
by β-sheets, with the remainder of the domain bearing predominantly random struc-
ture and lacking the heptad repeat pattern. The tail domain participates in the longi-
tudinal head-to-tail assembly of tetramers [ 21 ] and is involved in the control of 
lateral packing, as well as stabilization and elongation of the higher order fi lament 
structures [ 22 ,  23 ]. Another major function of the tail is to interact with other cyto-
skeletal proteins, which helps establish a cytoplasmic IF network [ 24 ].

       The Desmin IF Network 

 In mature striated muscle, desmin IFs link myofi brils to each other at the z-disc 
level, to the sarcolemma, and to the nuclear envelope (Fig.  12.2 ) [ 25 ]. Desmin fi la-
ments surround each myofi bril at the z-disc level where they interact with α-actinin 

  Fig. 12.1    A schematic illustration of desmin protein structure. Desmin protein consists of three 
domains: an α-helical rod domain containing 304 amino acid residues, fl anked by globular 
amino- and carboxyl-terminal structures which are known as the head and tail domains, respec-
tively. The α-helical rod domain is separated by three short non-helical linker regions, resulting 
in four consecutive α-helical segments (1A, 1B, 2A, and 2B). The heptad repeat pattern of the 2B 
helical segment is interrupted by an insertion of 4 amino acid residues at position 356–359, 
known as a stutter, and an YRKLLEGEE motif, marked by the  purple  and  orange boxes , respec-
tively in the illustration       

Fig. 12.2 (continued) the nuclear pore. The longitudinal component of desmin fi lament networks 
lay in the inter- myofi brillar space where they interact with and, help the positioning of, mitochon-
dria ( b ) A confocal micrograph of a mouse ventricular myocardial section immunofl uorescence-
stained for desmin ( green ). Desmin staining displays a striated pattern and is enriched at the 
intercalated discs       
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  Fig. 12.2    Desmin fi lament distribution in striated muscle. ( a ) A schematic illustration of desmin 
fi laments in relation to the z-disc of myofi brils, dystrophin complex, the nuclear envelop, and 
mitochondria. Desmin fi laments surround each myofi bril at the z-disc level and interact with 
α-actinin through plectin; desmin fi laments interact with dytrobrevin in the dystrophin complex via 
syncoilin and desmuslin; and desmin fi laments insert into the nuclear envelop at the proximity of 
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through plectin (isoforms 1d and 1f) [ 26 ]; desmin IFs interact with dytrobrevin in 
the dystrophin complex via syncoilin and desmuslin [ 27 ], thereby connecting to 
dystroglycans and sarcoglycans on the cell membrane; desmin IFs also associate 
with integrin via interaction with subsarcolemmal cytoskeleton and costameres; 
and lastly desmin fi laments insert into the nuclear envelop at the proximity of the 
nuclear pore. Plectin (isoform 1b) also mediates the interaction of desmin fi la-
ments with mitochondria [ 26 ]. The longitudinal components of the desmin net-
work insert into the desmosomes of the intercalated disc via desmoplakin. 
Desmin is highly enriched in desmosomes. Desmin showed a normal intracellu-
lar distribution but failed to localize at the intercalated discs in the myocardium 
from a patient with homozygous C-terminal truncation of desmoplakin [ 28 ]. 
Some data suggest that desmin fi laments interact with the nuclear lamina through 
the nuclear pore [ 25 ,  29 ]. The postulated physical interaction is diffi cult to prove 
but a functional relationship is well implicated. For example, transgenic ablation 
of the gene encoding lamin A/C, the major proteins forming the nuclear lamina, 
produced a typical dilated cardiomyopathy (DCM) with markedly altered distri-
bution of the desmin IF network and its relationship with the nuclear pores [ 30 ], 
suggesting an interaction between desmin IFs and lamin A/C and potential sig-
nifi cance of this interaction in mechanotransduction. The unique and ubiquitous 
distribution of the desmin IF network has led to the hypothesis that the desmin IF 
network plays a role in the underlying structural integrity of a muscle cell, as 
well as participating in the signaling processes necessary for integration of cel-
lular responses to external and internal stimuli [ 29 ]. However, this hypothesis has 
not been fully tested.

   Like IFs in epithelia, desmin fi laments in myocytes are mainly organized by 
plectin, a 500 kDa cytolinker protein. A study of conditional knockout of the plectin 
gene in striated muscles in mice demonstrates that plectin defi ciency prevents des-
min fi laments from attaching to Z-disks, costameres, mitochondria, and the nuclear 
envelop, causing the formation of desmin aggregates of distinct morphology and in 
distinct cytoplasmic compartments, depending on which plectin isoforms are miss-
ing [ 26 ]. Striated muscle expresses two major plectin isoforms, plectin 1d and 1f, 
which specifi cally target and link desmin fi laments to Z-disks and costameres, while 
plectin 1b forges a linkage to mitochondria [ 26 ]. On the other hand, desmin fi la-
ments also act as a scaffold for its interacting partner proteins; hence loss of desmin 
or altered distribution of desmin can cause changes in the expression and distribu-
tion of its partner proteins in the cell. For example, in desmin null mice, syncoilin 
was markedly decreased in skeletal muscle, disappeared from sarcomeric z-lines 
and neuromuscular junctions, and relocated from the sub-sarcolemmal cytoskeleton 
to the cytoplasm [ 31 ]; however, immunofl uorescence microscopy revealed that 
knockout of syncoilin did not appear to discernibly change the distribution of desmin 
in striated muscle cells [ 32 ].  

X. Wang



287

    Desmin Loss of Function 

 As one of the earliest expressed genes during embryonic myogenesis,  DES  was 
shown by earlier studies using cell culture systems to be required for myocyte dif-
ferentiation and myogenesis [ 33 ,  34 ]; however, this proposition is not proven by 
subsequent in vivo desmin loss of function studies. Two mouse models of germline 
knockout of  DES  were generated by two independent groups and both showed that 
desmin-null mice are viable and fertile [ 35 ,  36 ]. Studies of these desmin-null mice 
have yielded signifi cant insight into the function of desmin IFs. Desmin is dispens-
able for the formation of skeletal, cardiac and smooth muscles during embryonic 
development but desmin null mice do display postnatal progressive structural disin-
tegration and functional impairment in all three types of muscle [ 35 ,  36 ]. Adult 
desmin-null mice often show a slightly smaller body size, tend to be less strong and 
quicker to become fatigued, and show a signifi cantly shortened lifespan (~12-months 
vs. 2 years in wild type), compared with their wild type littermate controls [ 35 – 39 ]. 
These general abnormalities observed in desmin-null mice are underlined by 
specifi c pathologies occurred in cardiac, skeletal, and smooth muscles, including 
life- threatening cardiomyopathy. 

    Consequence of Desmin Loss of Function in Cardiac Muscle 

 Desmin-null mice develop cardiomyopathy, the primary cause of their premature 
death. A prominent myocardial lesion in desmin-null hearts is focal cardiomyocyte 
degeneration, necrosis, macrophage infi ltration, calcifi cation, and fi brosis. Yellowish-
white lesions ranging from single or multiple spots to confl uent areas corresponding 
to calcifi cation at the surface of the heart are macroscopically visible as early as 
2 weeks postnatal. These lesions seem to affect more frequently the free wall of the 
right ventricle and the right ventricle side of the interventricular septum. At the 
microscopic level, cardiomyocyte degeneration can be detected as early as postnatal 
day 5 and throughout the heart [ 39 ]. Electron microscopy discerns alterations in the 
intercalated disc and sarcolemma of cardiomyocytes. Myofi bril disorganization 
and abnormal nuclear and mitochondrial morphology and positioning are also 
detected via ultrastructural examination of the desmin-null hearts [ 40 ]. Cardiac 
injury caused by desmin defi ciency triggers reactivation of the fetal gene program 
and the loss of cardiomyocytes renders the remaining cardiomyocytes to undergo 
hypertrophy and impairs cardiac mechanical function; ultimately, desmin-null mice 
develop DCM and congestive heart failure [ 38 ]. Cardiomyocyte-restricted overexpres-
sion of desmin completely rescued the cardiac pathology in desmin null mice [ 41 ], 
demonstrating that cardiac lesions observed in desmin-null mice are cardiomyocyte 
autonomous, not secondary to vascular abnormalities. Nevertheless, expression of 
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desmin is high in microarteries, where desmin plays a role in generating both passive 
and active tension [ 42 ]. 

 According to some reports, the earliest ultrastructural defects of desmin-null car-
diomyocytes are observed in mitochondria. In addition to mitochondrial clumping, 
extensive mitochondrial proliferation, swelling, and matrix degeneration are 
observed in a fraction of cardiomyocytes defi cient of desmin, particularly after exer-
cise. Functionally, no difference was discerned in the in vitro maximal rates of res-
piration in isolated cardiac mitochondria from desmin-null and wild-type mice; 
however, ADP-stimulated mitochondrial respiration in situ using saponin skinned 
muscle fi bers was signifi cantly reduced in cardiac and soles muscles from desmin- 
null mice, compared with wild type control [ 43 ]. Bcl-2 is an integral outer mem-
brane protein of mitochondria that protects against apoptosis without affecting 
mitochondrial function. By cross-breeding desmin-null mice with Bcl2 overexpres-
sion transgenic mice, Weisleder et al. found that mitochondrial abnormalities in 
desmin-null hearts were remarkably ameliorated by Bcl-2 overexpression and, more 
intriguingly, that the correction of mitochondrial defects was associated with reduc-
tion in fi brotic lesions in the myocardium, prevention of cardiac hypertrophy, resto-
ration of cardiomyocyte ultrastructure, and signifi cant improvement of cardiac 
function. Furthermore, loss of desmin was found to diminish the capacity of mito-
chondria to resist exposure to calcium, a defect that was also partially restored by 
Bcl-2 overexpression [ 44 ]. These fi ndings demonstrate that desmin fi laments are 
essential for the positioning and functioning of mitochondria and mitochondrial 
dysfunction is a major cause of cardiomyopathy in desmin-null mice.  

    Consequence of Desmin Loss of Function in Skeletal Muscle 

 Skeletal muscle formation starts with the progenitor cell commitment to the myogenic 
lineage, myoblast proliferation, differentiation, and fusion to form fi rst primary, and 
then secondary myotubes. As the primary myotube forms, new generations of myo-
blasts cluster around the primary myotube and use it as a scaffold to form secondary 
myotubes. Detailed analyses of myogenesis in mouse embryos have revealed that 
somites and myotomes form normally and mononucleate muscle precursor cells 
migrate normally in the absence of desmin. The assembly of sarcomeres and myo-
fi brils does not seem to differ between desmin-null and wild type littermate embryos 
[ 37 ]. However, like cardiac muscle, alterations in skeletal muscle are discernible in 
desmin-null mice soon after birth. These pathological changes including focal areas 
of muscle degeneration, regeneration involving satellite cell activation and forma-
tion of new fi bers, and fi brosis are most prominent in the highly solicited muscles, 
such as soleus (a weight-bearing muscle) or diaphragm and tongue (both very active 
muscles). Faulty myofi brillogenesis was frequently observed in regenerating myo-
tubes and fi bers from postnatal day 11 up to 12 weeks, suggesting that the desmin 
fi laments are not required in embryonic muscle formation but are needed for a 
proper myofi brillar assembly during postnatal regeneration. This is perhaps because 
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additional mechanical stress is applied to these muscles after birth as they regenerate, 
which would not occur in utero. At 2 months of age, the force generated by the 
soleus of desmin-null mice is signifi cantly less than in the control mice. At 5 months, 
the soleus of desmin-null mice is no longer able to respond to the stimulation and 
generate very little force. Defective mitochondrial activity may be an underlying 
cause; both NADH staining and ultrastructural examinations show large accumula-
tions of mitochondria in muscle fi bers defi cient of desmin. Hence, it is generally 
concluded that desmin is not required for the proliferation and commitment of the 
early myoblasts to the myogenic lineage or for their migration, fusion, and subse-
quent organization of the muscle fi ber before birth; however, after birth, it is not 
only essential to maintaining structural integrity in mature muscles but also impor-
tant for muscle regeneration.  

    Consequence of Desmin Loss of Function in Smooth Muscle 

 Desmin protein was fi rst isolated from smooth muscle [ 1 ]. It was determined later 
on that in smooth muscle cells, desmin is associated with the dense body, the smooth 
muscle analogue of the z-disk of striated muscle. Wede et al. analyzed the mechani-
cal property of the aorta, the mesenteric artery, and resistance arteries in desmin- 
null mice [ 42 ]. For aorta and mesenteric artery, passive or active circumference- stress 
relations were not different between desmin-null and wild type mice. Both passive 
and active stresses in the microarteries were lower in the desmin-null group. 
Thus, desmin fi laments do not seem to play a major role in the mechanical proper-
ties of the large elastic and muscular arteries where desmin expression is relatively 
low. In the microarteries, which contain a greater amount of desmin protein, desmin 
IFs show discernible contribution to both passive and active tension. 

 Asthma is one of the common chronic obstructive pulmonary diseases with air-
way infl ammation and abnormal airway smooth muscle contraction, which is due to 
an intrinsic abnormality of the airway smooth muscle cells (ASMCs). ASMC 
hyperplasia and hypertrophy are key determinants of airway remodeling and hyper-
responsiveness, characteristic of severe asthma and other chronic obstructive pul-
monary diseases. Analysis of bronchial biopsies of asthmatic patients reveals a 
negative correlation between desmin expression in ASMCs and airway hyperre-
sponsiveness [ 45 ], suggesting an important role for desmin in ASMC homeostasis. 
Indeed, experiments comparing desmin-null mice with wild type mice demonstrate 
that desmin is a load-bearing protein that increases the stiffness of the airways and the 
lung and modulates airway contractile response [ 46 ]. A subsequent study shows that 
desmin defi ciency induces hypertrophy of ASMCs via up-regulation of microRNA-
26a (miR-26a) which targets glycogen synthase kinase-3β, demonstrating a novel 
role for desmin as an anti-hypertrophic protein necessary for ASMC homeostasis 
and identifying desmin as a novel regulator of microRNA [ 47 ]. 

 The role of desmin IFs in smooth muscle hypertrophy has also been examined 
in a urinary bladder growth model created by partial obstruction of the urethra. 
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The results indicate that desmin is not required for urinary bladder smooth muscle 
growth but plays a role in active force transmission and maintenance of wall structural 
integrity during growth of urinary bladder [ 48 ]. 

 Taken together, the desmin loss of function studies have provided strong support 
for the hypothesis proposed originally by Lazarides [ 49 ] that desmin distributed in 
the intracellular space functions to link the Z disks together and to the membrane, 
and is important to maintain structural integrity of the muscle.   

    Desmin-Related Myopathy (DRM) 

 Desmin-related myopathy (DRM), also known as desmin myopathy, is a heteroge-
neous group of myopathies that have a shared pathological characteristic: the pres-
ence of desmin-positive aberrant protein aggregates in muscle cells. Biopsies of the 
affected skeletal and cardiac muscles display intrasarcoplasmic areas containing 
amorphous eosinophilic deposits which are immunostaining positive for desmin. 
Electron microscopic examination reveals that these abnormal structures at the 
ultrastructural level display as electron-dense granular or granulofi lamentous mate-
rial in the intermyofi brillar space; physical contact is sometimes observed between 
the granulofi lamentous material and the z line of the sarcomere. Myofi bril organization 
is apparently altered as evidenced by wavy z lines and z disc widening/streaming 
(Fig.  12.3 ) [ 50 ].

  Fig. 12.3    An electron microphotograph of skeletal muscle biopsy from a human DRM patient 
heterozygous for a missense mutation (Q348P) in the desmin gene. Note that the myofi bril organi-
zation shows dramatic changes and that Z line widening/streaming as well as accumulation of 
granular-fi lamentous materials are prominent. Scale bar = 1 μm. (Adopted from Fichna JP et al. 
PLoS One 2014; 9: e115470) [ 50 ]       
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   DRM belongs to myofi brillar myopathy which is an even more heterogeneous 
group of muscle disorders featured by the presence of myofi brillar proteins positive 
inclusions and myofi brillar disintegration and disorganization. These inclusions are 
desmin-positive as well. Typically, DRM presents with muscle weakness initially in 
distal muscles, which slowly spreads to affect truncal, neck-fl exor, facial, bulbar 
and respiratory muscles [ 51 ]. DRM can present as isolated skeletal myopathy or 
isolated cardiomyopathy but more often it presents in the form of combined skeletal 
and cardiac myopathy, with smooth muscle sometime being involved as well [ 52 ]. 
Cardiomyopathy in DRM is known as desmin-related cardiomyopathy (DRC). 
DRC can present phenotypes of hypertrophic, dilated, or restrictive cardiomyopa-
thies. Conduction blocks and arrhythmias resulting in sudden death are observed as 
a major clinical manifestation of DRC. Age of disease onset varies from early child-
hood to mid-aged adult, seemingly depending on the type of inheritance, location of 
the causative mutation, and the gene mutated. Perhaps for the same reasons, the rate 
of disease progression is not quite uniformed. 

    Human Genetics of DRM 

 The pattern of inheritance pattern in familial DRM includes autosomal dominant or 
autosomal recessive. However, many DRM cases have no family history, at least 
some of which de novo  DES  mutations are identifi ed. The fi rst batch of  DES  muta-
tions were reported in 1998 by Goldfarb et al. [ 2 ]; through genetic linkage analysis, 
they associated mutations in the highly conserved carboxyl-terminal end of the rod 
domain (2B segment) with two families with desmin-related cardiac and skeletal 
myopathy. They identifi ed a heterozygous A337P mutation in a family with an 
adult-onset DRM and compound heterozygosity for two other mutations, A360P 
and N393I, in a second family with childhood-onset aggressive course of 
DRM. Approximately 1 month after Goldfarb’s report, a putative 7-amino acid 
(R173-E179) deletion in the 1B segment of desmin rod domain was identifi ed in a 
patient with generalized myopathy by MunÄoz-MaÂrmol et al. [ 3 ]. A wild type 
allele of  DES  was not found in this patient’s genome; hence, this patient might be 
either hemizygous or homozygous for this mutation [ 3 ]. As summarized in 
Fig.  12.4 , a large number of mutations have been identifi ed in  DES , including point 
substitutions, insertion, small in-frame deletions and a larger exon-skipping dele-
tion. Most mutations are located in the highly conserved alpha-helical rod domain 
of desmin although mutations in the head and tail domains as well as the linker 
regions are also common.

   Many of the missense mutations result in replacement of the original amino acid 
into proline, a known helix breaker. Since the helical structure in the rod domain is 
essential to the orderly polymerization of desmin protein molecules to form desmin 
fi laments, mutations that destroy the α-helixes are believed to impair desmin fi la-
ment formation. Indeed, studies of mutant desmin transfected cell cultures demon-
strate that mutant desmin proteins are often incapable of assembling normal IF but 
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are usually able to disrupt a pre-existing fi lamentous network in a dominant- negative 
manner (see section “Disruption of the Desmin Filament Network in DRM”). 

 Point substitutions can also result in premature stop codon and thereby truncation 
of the protein, in addition to missense mutant proteins. Insertions cause frameshift 
and truncation. All these situations are observed in DRM-associated  DES  muta-
tions. In frame deletion can result from not only a small deletion in a coding exon 
but also splice mutations in introns of  DES  (Fig.  12.4 ). For example, splice site 
mutations in intron 2 or 3 that fl ank exon 3 result in deletion of 32 amino acids 
encoded by exon 3 [ 53 ]. Disease caused by mutations in  DES  is known as desmin-
opathy to differentiate from the DRM caused by mutations in other genes. 

 In a large French pedigree with DRM, no mutation in  DES  was detected but 
Vicart et al. have identifi ed an R120G missense mutation in the αB-crystallin gene 
( CRYAB ) in this pedigree [ 4 ]. CRYAB was initially found in the lens of eyes over a 
century ago but studies published in 1980s have unraveled that CRYAB is also 
constitutively expressed in many non-lenticular tissues, especially in cardiac and 
skeletal muscles [ 54 ]. CRYAB is a highly conserved protein. Human CRYAB con-
tains 175 amino acid residues with a molecular weight of 20 kDa. It turns out 
CRYAB is a member of the small heat shock protein family, is one of the most 
expressed cytosolic non-myofi brillar proteins in cardiomyocytes [ 54 ]. CRYAB had 
been shown to interact with desmin and actin in myocytes, especially under stress 
conditions. Muscle fi bers from patients harboring CRYAB R120G  were shown to con-
tain aberrant protein aggregates that are immunopositive for both DES and CRYAB. 

  Fig. 12.4    A summary of DES mutations in relation to DES protein domain structure. A total of 67 
mutations are identifi ed so far with 8 in the head, 14 in the tail, and 45 in the rod domains       
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Hence, CRYAB R120G  represents the fi rst mutation in molecular chaperones linked to 
muscle disease. To date, several additional mutations in  CRYAB  have been linked to 
DRM. Since the identifi cation of the R120G missense mutation, at least nine addi-
tional  CRYAB  mutations have been reported to associate with human disease 
(Table  12.1 ), including additional missense mutations as well as truncation and 
extension due to frame shift resulting from nucleotide deletion. Most of the mutations 
identifi ed so far are autosomal dominant but autosomal recessive inheritance is also 
seen in two truncation mutations that linked to families with primarily skeletal 
myopathy. Patients with  CRYAB  mutations can develop isolated cardiomyopathy 
(primarily DCM), isolated skeletal myopathy (myofi brillar myopathy), isolated 
posterior polar cataract type 2 (PPC2), or all three in combination. Overall, all dis-
eases caused by mutations in  CRYAB  is also known as αB-crystallinopathy.

   In addition to  DES  and  CRYAB  mutations, mutations in a number of other genes 
that encode partner proteins of DES, such as myotilin, Z-band alternatively spliced 
PDZ-containing protein (ZASP), fi lamin C (FLNC), Bcl-2-associated athanogene-3 
(BAG3) [ 65 ], are linked to myofi brillar myopathy to which DRM belongs.  

    Transgenic Mouse Models of DRM 

 The mechanisms by which DRM-linked genetic mutations cause pathology in DRM 
patients have been investigated primarily using mouse transgenics and cell cultures. 
The author of this Chapter and his colleague created the fi rst mouse model of DRC 
by cardiomyocyte-restricted overexpression of a murine 7-amino-acid (R172-E178) 
deletion mutant desmin (known as D7-des) [ 66 ], which is the mouse homologue of 
human R173-E179 deletion mutant DES linked to DRM [ 3 ]. The D7-des transgenic 

   Table 12.1    Human disease-linked  CRYAB  mutations   

 Nucleotide change  Amino acid change  Type of inheritance  Muscle affected  References 

 c.358A > G  R120G  AD  HCM, SkM, PPC  [ 4 ] 
 c.325G > C  D109H  AD  HCM, SkM, PPC  [ 55 ] 
 c.460G > A  G154S  AD  DCM  [ 56 ] 
 c.470G > A  R157H  AD  DCM  [ 57 ] 
 c.451C > T  Q151X  AD  SkM  [ 58 ] 
 c.464delCT  L155fs_163X  AD  SkM  [ 58 ] 
 c.60delC  S21Afs_24X  AR  SkM  [ 59 ] 
 c.343delT  S115Pfs_129X  AR  SkM  [ 60 ] 
 c.450delA  K150Nfs_184X  AD  PPC  [ 61 ] 
 c.58C > T  P20S  AD  PPC  [ 62 ] 
 c.59C > G  P20R  AD  PPC  [ 63 ] 
 c.557G > A  A171T  AD  cataract  [ 64 ] 

   AD  autosomal dominant,  AR  autosomal recessive,  SkM  skeletal myopathy,  HCM  hypertrophic 
cardiomyopathy,  DCM  dilated cardiomyopathy,  PPC  posterior polar cataract  
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mice displays the characteristic intrasarcoplasmic electron-dense granulofi lamentous 
materials in the intermyofi brillar space in the heart (Fig.  12.5 ) and marked cardiac 
hypertrophy and cardiac dysfunction, recapitulating main aspects of human 
DRC. Subsequently, several additional transgenic mouse models expressing other 
 DES  mutations have also been reported [ 67 ,  68 ]. Notably, an R349P desmin knock-
 in mouse model, which harbors the ortholog of the most frequently occurring human 
 DES  missense mutation R350P, has recently been generated [ 69 ], providing an 
animal model arguably most closely mimicking human DRM for investigating the 
pathogenesis of this mutant desmin in vivo.

   Wang et al. also developed the fi rst transgenic mouse model of CRYAB R120G - 
based DRC via the mouse  myh6  promoter-driven cardiac-specifi c overexpression of 
murine cDNA encoding CRYAB R120G  [ 70 ]. In multiple stable lines of the CRYAB R120G  
transgenic mice, aberrant protein aggregates immune-positive for DES and CRYAB 
are detected in cardiomyocytes throughout the heart. The rate of disease progression 
in this model depends on transgene expression level which is transgene copy num-
ber dependent in the  myh6  promoter-driven transgenics. In a stable line harboring 
three copies of the transgene, DRC progression can be divided into three distinct 
stages. At 1 month of age, these CRYAB R120G  mice show no apparent cardiac mor-
phological and functional changes except for the presence of aberrant protein aggre-
gates characteristic of DRM in cardiomyocytes; at 3 months, concentric cardiac 
hypertrophy is clearly discernible with compensated systolic function but impaired 
diastolic function; by 6 months, typical DCM and congestive heart failure are 
 developed and the mice die prematurely around this age with an average lifespan of 

  Fig. 12.5    Ultrastructural analysis of DRC mouse myocardium. Longitudinal sections of myocar-
dial specimen from an adult non-transgenic mouse ( a ) and a littermate D7-des transgenic mouse 
( b ) were analyzed.  Arrows point  to aberrant granular-fi lamentous desmin aggregates in the inter- 
myofi bril space       
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~6 to 7 months. The disease progression in a stable transgenic line harboring one 
copy of the transgene is much slower [ 70 ]. Six years after the report of this fi rst 
CRYAB R120G  mouse model, Rajasekaran et al. described another similarly devel-
oped CRYAB R120G  transgenic mouse model in which the cDNA of human  CRYAB  
was used [ 71 ]. In fact, the amino acid sequence of CRYAB is highly conserved 
between mice and humans with both being 175 amino acid residues long with only 
4 amino acids being different but all quite distal to the R120G mutation site. Not 
surprisingly, this transgenic mouse expressing human CRYAB R120G  displays exactly 
the same pathology as the strain expressing murine CRYAB R120G . More recently, a 
mouse strain with the R120G mutation knocked in the exact locus of the mouse 
 cryab  gene, which should mimic most closely the human genetic alteration, has 
been reported. Initial characterization of this knock-in mouse shows that CRYAB R120G  
is capable of causing skeletal myopathy and cataract in a dominant manner [ 72 ].  

    Disruption of the Desmin IF Network in DRM 

 As described in earlier sections, desmin-null mice develop generalized myopathy 
affecting skeletal, cardiac and smooth muscle structure and functions. Some of 
the desmin loss-of-function phenotypes resemble the manifestations of DRM [ 69 ]. 
This suggests that loss or disruption of the normal desmin IF network is likely an 
important pathogenic mechanism of DRM-linked  DES  mutations. 

 Based on a “time-lapse” electron microscopy of the in vitro assembly of desmin 
fi laments from denatured purifi ed desmin proteins, the assembly process can be 
divided into four stages: tetramer formation, unit-length fi lament (ULF) formation, 
longitudinal annealing and radial compaction, and IF network formation [ 73 ]. 
A seminal study by Bar et al. has analyzed 14 DES missense mutations and showed 
that two of them (A213V, E245D), both residing in the 1B section of the rod domain, 
can assemble into morphologically normal IFs that are indistinguishable from IFs 
formed by wild type DES, whereas four mutations residing in the 2B section 
(A360P, Q389P, N393I, and D399Y) can also form seemingly normal IFs but these 
IFs display subtle and yet discernible alterations in morphology and physical prop-
erty [ 73 ]. Moreover, the remaining eight mutants interfere with the assembly pro-
cess at distinct stages. The L385P and R406W mutants can yield apparently normal 
ULF but show defective longitudinal annealing and radial compaction; fi lament 
assemblies formed by A337P, N342D, or A357P -DES show enhanced stickiness 
and eventually lead to large aggregates; and for L345P, R350P, or L370P-DES, the 
assembly can be initiated and progresses to the ULF state but after stalling at ULF 
briefl y, the ULF-like structure rapidly breaks down into small aggregates [ 73 ]. 
When transfected to cultured non-myocyte cells which express no endogenous IF 
proteins, the mutants with in vitro assembly defects produce dot-like aggregates 
whereas the mutants that can form IFs in vitro yield a seemingly normal IF network 
in the cellular context. This corroborates well the in vitro assembly fi ndings. 
Since all these tested mutants are DRM causing mutants which lead to formation of 
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aberrant desmin aggregates in myocytes of DRM patients, these in vitro fi ndings 
suggest that aberrant protein aggregation and disruption of desmin fi laments are an 
intrinsic property to only some of the DRM-linked DES mutants but not to others. 
The latter may give rise to the disease phenotype only in the natural physiological 
context of cytoskeletal organization and function in myocytes. For example, patho-
genic posttranslational modifi cations (PTMs) triggered by the mutation might not 
occur in vitro or in non-natural hosting cells. 

 Indeed, desmin is subject to a number of known PTMs, including phosphorylation, 
ADP-ribosylation, and ubiquitination as well as non-enzymatic modifi cations such 
as glycation, oxidation and nitration [ 74 ]. These PTMs are likely crucial to its con-
formation and function. Many of the  DES  mutations directly remove or add amino 
acid residues that can be modifi ed by, for example, phosphorylation (Ser, Thr, Tyr) 
or ubiquitination (Lys) (Fig.  12.4 ), which could potentially alter the PTMs of the 
mutant DES and thereby alter desmin fi lament assembly/disassembly and/or des-
min protein stability under physiological or stress conditions. It was recently 
reported that phosphorylation of desmin triggers Trim32-mediated ubiquitination 
and degradation of desmin during muscle atrophy [ 75 ]. Increased desmin phos-
phorylation, which likely promotes desmin fi lament disassembly, has been reported 
in DRM [ 76 ]. Oxidized and nitrated desmin proteins were also found in affected 
muscle of DRM patients [ 77 ]. In addition, a missense mutation (I451M) at the 
C-terminus of DES, which is the fi rst  DES  mutation identifi ed in human idiopathic 
DCM [ 78 ], is found to promote proteolytic cleavage at its head domain and abolish 
its association with the z-disc in mouse hearts [ 68 ]. Therefore, DRM  DES  mutations 
may cause desmin fi lament disruption in multiple ways. 

 Similar to what observed in desmin-null mice, myofi bril misalignment and mito-
chondrial dislocation and dysfunction are all seen in desminopathy human muscles 
and mouse models of desminopathy [ 67 ]. Mitochondrial dysfunction and cell death 
through a mitochondrial pathway are also observed in CRYAB R120G -based DRC 
mouse hearts [ 79 ,  80 ]. This supports the notion that disruption of the desmin IF 
network contributes to pathogenesis in DRM. Nevertheless, it is not ruled out that 
gained toxicity from the disease-linked mutant proteins might have actually played 
a greater role in causing mitochondrial dysfunction and cell death than loss of 
desmin function.  

    Overburdened Protein Quality Control in DRM 

 Like other cells, myocytes especially cardiomyocytes possess multi-layered protein 
quality control (PQC) mechanisms serving to minimize the level and toxicity of 
misfolded proteins. First, with the help from chaperones, the cell attempts to unfold 
and refold a misfolded polypeptide, and if the repairing effort fails, the misfolded 
protein is then referred to as terminally misfolded protein and targeted for degrada-
tion by primarily the ubiquitin-proteasome system (UPS). The UPS is responsible 
for targeted degradation of most cellular proteins that are either abnormal or normal 
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but no longer needed. The UPS does so by two main steps: fi rst, covalent attachment 
of a chain of ubiquitin (Ub) to the substrate protein molecule via a process known 
as ubiquitination which is catalyzed sequentially by the Ub activating enzyme (E1), 
Ub conjugating enzyme (E2), and Ub ligase (E3); and second, the ubiquitinated 
protein will be shuttled to and recognized and degraded by the 26S proteasome, an 
ATP-dependent multi-units protease complex with its peptidase activity sequestered 
in the interior chamber of the 20S core subcomplex [ 81 ]. When escaped from or 
overwhelmed the surveillance of chaperones and the UPS, misfolded proteins 
undergo aberrant aggregation via hydrophobic interaction to give rise to highly 
active and toxic soluble oligomers and insoluble aggregates. The protein aggre-
gates, which are enriched in ubiquitinated proteins but inaccessible by the protea-
some, are generally believed to be degraded by macroautophagy. Macroautophagy 
(commonly known as autophagy) is a cellular process that sequesters a portion of 
cytoplasm by forming a double-membraned vacuole, known as an autophagosome; 
the latter fuses with the lysosome to form the autolysosome where the delivered 
cytoplasmic content is degraded by lysosomal enzymes [ 82 ]. 

 Both  DES  and  CRYAB  are highly expressed genes in skeletal and cardiac myo-
cytes, with their expression being further induced under stress conditions; therefore, 
one or both alleles of mutated  DES  or  CRYAB  in the genome will result in a consid-
erably high level of mutant proteins, which would conceivably increase PQC burden 
more dramatically than other low-expressing genes. Indeed, a recent study showed 
that the total desmin protein level in muscle biopsies from desminopathy humans 
could be reach a level higher than 3.5-folds of that of the control individuals and the 
soluble desmin proteins could be increased by ~15-folds in human desminopathic 
skeletal muscles [ 50 ]. 

 The fact that CRYAB R120G  causes DRM represents a remarkable real-world illus-
tration for an indispensable role of chaperones in muscle health. Overexpression of 
wild type CRYAB suppresses aberrant aggregation of DRM-linked mutant desmin 
in cultured cardiomyocytes and, conversely, expressing CRYAB R120G  exacerbates 
D7-des aggregation and pathogenesis in mouse hearts [ 83 ]. Biochemical studies 
have revealed that the R120G mutation causes CRYAB misfolding, compromises the 
chaperone function of CRYAB, and alters its interaction with IFs [ 84 ,  85 ]. In mouse 
hearts overexpressing CRYAB R120G , two types of protein aggregates are observed 
with electron microscopy. Type I has a homogenous appearance with clear boundar-
ies and is, as revealed by immunogold staining, positive for CRYAB but not desmin; 
however, type II shows the amorphous appearance of the electron-dense granular-
fi lamentous structures that are similar to the desmin aggregates observed in DRM 
patients, immunopositive for both desmin and CRYAB [ 70 ]. This observation suggests 
that the formation of desmin aggregates is due to lacking protection of functional 
CRYAB rather than attraction of misfolded CRYAB R120G . Hence, in the case of 
CRYAB mutations, both loss of a critical chaperone of desmin and the increased 
burden to remove misfolded CRYAB R120G  are likely in play. 

 Both myocardial total ubiquitinated proteins and in vitro proteasome peptidase 
activities are signifi cantly increased in both D7-des and CRYAB R120G  transgenic 
mice, indicative of UPS dysfunction in the heart of the DRC mouse models [ 86 ,  87 ]. 
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To better assess UPS performance in vivo, an inverse UPS function reporter mouse 
model was created by ubiquitous and constitutive expression of a transgenic modi-
fi ed green fl uorescence protein (GFP) with carboxyl fusion of a known ubiquitina-
tion signal sequence degron CL1, referred to as GFPdgn. In GFPdgn transgenic 
mice, an increase in GFPdgn proteins in absence of changes in protein synthesis 
would indicate a decreased UPS performance and vice versa [ 88 ]. Taking advantage 
of this reporter mouse, myocardial UPS functional insuffi ciency is revealed in both 
DRC transgenic mice [ 86 ,  87 ]. It remains to be investigated whether desmin loss-of- 
function directly impairs UPS function but loss-of-function of CRYAB is unlikely 
the cause of UPS impairment seen in CRYAB R120G  transgenic hearts because knock-
out of  CRYAB  in GFPdgn transgenic mice via cross-breeding failed to increase 
myocardial GFPdgn protein levels [ 86 ]. Aberrant protein aggregation impairs pro-
teasome function in cultured cells [ 89 ]. This provides a reason for UPS function 
impairment in both D7-des and CRYAB R120G  expressing hearts; indeed, inhibition of 
aberrant aggregation of D7-des or CRYAB R120G  by either genetic or pharmacologi-
cal means markedly attenuated these DRM-linked mutant proteins from impairing 
UPS performance in cultured cardiomyocytes [ 86 ,  87 ,  90 ]. These studies provide 
the fi rst demonstration of UPS impairment by aberrant protein aggregation in intact 
animals. A major pathogenic role for proteasome functional insuffi ciency (PFI) in 
DRC or proteinopathies in general has further been demonstrated by subsequent 
studies showing that enhancing proteasome function by either genetic or pharmaco-
logical means can signifi cantly reduce the prevalence of protein aggregates in car-
diomyocytes, slow down disease progression, and delay the premature death of 
CRYAB R120G  mice [ 91 ,  92 ]. 

 Ultrastructural examination of human DRM muscle biopsies shows increased 
abundance of autophagic vacuoles in the myocytes affected, suggesting that the 
alternative proteolytic pathway for PQC in the cell, autophagy might be activated in 
DRM muscles [ 93 ]. Indeed, activation of autophagy in cardiomyocytes has been 
observed in several mouse models of DRC [ 94 ,  95 ]. This activation is compensatory 
for increased proteolytic stress because genetic suppression of autophagy was 
shown to exacerbate pathology and disease progression in a CRYAB R120G -based 
DRC mouse model [ 94 ]. Despite of increased autophagic fl ux, further activation of 
autophagy by overexpression of Atg7 was shown to protect against the toxicity of 
CRYAB R120G  in both cultured cardiomyocytes and DRC transgenic mice [ 96 ,  97 ]. 
Taken together, these studies suggest that the autophagosomal-lysosomal pathway is 
activated but is inadequate and this inadequacy, just like UPS inadequacy, contributes 
to DRM pathogenesis. 

 Overburdening PQC is certainly regarded as gained toxicity from DRM-linked 
mutant proteins. Another example of gained toxicity resulting from CRYAB R120G  is 
redox disturbance, on which confl icting reports exist though. Work from Robbins’ 
group shows that increased oxidative stress derived from mitochondrial malfunction 
contributes to DRC pathogenesis in CRYAB R120G  transgenic mice [ 80 ]; however, 
intriguing data primarily from Benjamin’s group support a major pathogenic role 
for increased reductive stress in the heart of a similar CRYAB R120G  mouse model 
[ 71 ,  98 ,  99 ]. A unifi ed explanation for such controversy is currently lacking but is 
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desperately needed because the completely opposite therapeutic strategies would be 
otherwise implicated. 

 In summary, a number of mutually non-exclusive mechanisms are potentially 
taken by DRM-linked mutations to cause DRM. It is likely that genetic mutations 
per se or its secondary effects (e.g., proteolytic processing, altered PTMs, etc.) 
increase the level of toxic desmin proteins in affected myocytes and disrupt the 
desmin IF network, which in turn either individually or in combination causes PQC 
inadequacy, mitochondrial dysfunction, intercalated disc defects, and perhaps 
impaired mechano-transduction. So far, most mechanistic studies support a central 
role for aberrant protein aggregation (not necessarily the fi nal insoluble aggregates) 
in DRM pathogenesis (Fig.  12.6 ).

       Experimental Therapeutic Exploration for DRM 

 The CRYAB R120G -based DRC mouse model not only has been extensively utilized 
for pathogenic studies but has been facilitating therapeutic exploration as well. 
Sanbe et al. have reported that preamyloid oligomers (PAO) are increased cardio-
myocytes of CRYAB R120G -based DRC mice and voluntary exercise can signifi -
cantly reduce myocardial PAO and remarkably slow down disease progression and 
delay premature death of mice in this mouse model [ 100 ,  101 ]. Zheng et al. show 
that oral administration of high dose of doxycycline leads to reduction of aberrant 
protein aggregation, ameliorates cardiac pathology, and delays premature death in 
CRYAB R120G -based DRC mice [ 102 ]. Ranek et al. demonstrate that phosphodies-
terase fi ve specifi c inhibitor sildenafi l administrated via osmotic minipumps can 
also reduce myocardial aberrant CRYAB aggregation and slow down disease 
progression in the CRYAB R120G -based DRC mice through likely PKG activation 
and thereby priming the proteasome [ 92 ,  103 ]. More recently, McLendon et al. 
show that histone deacetylase (HDAC) inhibition with SAHA further increases 
myocardial levels of acetylated tubulin and cardiac autophagic fl ux, reduces protein 

  Fig. 12.6    A scheme of pathogenic processes of desminopathy.  PTMs  posttranslational modifi cations, 
 IF  intermediate fi lament,  PQC  protein quality control,  ID  intercalate disc       
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aggregates in cardiomyocytes, and attenuates cardiac dysfunction in the CRYAB R120G -
based DRC mice [ 104 ]. 

 Currently, no specifi c therapy is available for treating DRM patients and further 
understanding DRM pathogenesis and search for more effective measures to inter-
vene DRM or DRC are doubtlessly urgently needed. However, the experimental 
treatments summarized above not only target known pathogenic factors revealed by 
basic research but also use clinically readily available drugs or measures, rendering 
it relatively easier to be translated to the clinic.   

    Concluding Remarks 

 It is clear that desmin fi laments play an indispensable role in maintaining the 
structural integrity and mechanical function of muscle tissues after birth but it is 
also equally certain that function of the desmin IF network remains to be fully 
understood. Moreover, the pathogenic mechanisms of DRM are far from fully 
understood and experimental research to target these known mechanisms has just 
begun to emerge, further effort is warranted. For instance, improving the degradation 
of the DRM-causing mutant proteins currently is stalled at grossly enhancing the 
proteasome or autophagy, a thorough understanding of the specifi c factors that sup-
press specifi cally the expression of the mutant gene or increase the targeted degra-
dation of the mutant protein would lead to more specifi c intervention for the disease. 
Such effort will be extremely signifi cant because aberrant protein aggregation and 
inadequate PQC implicated in DRM pathogenesis have also been observed in more 
common forms of life-threatening human disease, such as neurodegenerative disease 
and congestive heart failure.     
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    Chapter 13   
 Possible Functions of Intermediate Filaments 
in Mammalian Ovarian Follicles and Oocytes 

             Hiroyuki     Suzuki    

            Introduction 

 Intermediate fi laments (IFs), microfi laments and microtubules comprise the three 
major cytoskeletal proteins found in most mammalian cells. In contrast to microfi la-
ments and microtubules, various members of the IF protein family are expressed 
abundantly and differentially in complex patterns during cell growth and differen-
tiation (for reviews, see [ 1 – 6 ]). Depending upon the cell type, IFs are composed of 
different members of the cytoskeletal IF protein family (Table  13.1 ).

   Type I and type II IFs are the acidic and basic keratins, respectively, which are 
obligate heteropolymers composed of type I and type II subunits [ 1 ,  3 ,  7 – 9 ]. Keratins 
are the most complex subgroup of the IF family. Vimentin [ 15 ,  16 ], desmin [ 24 ], 
glial fi brillary acidic protein (GFAP) [ 25 ,  26 ] and peripherin [ 26 ] form type III IF 
proteins, that can assemble into fi laments on their own, or in combination with type 
IV and type VI IF proteins [ 3 ,  17 – 19 ]. For example, vimentin can co-assemble with 
desmin, GFAP or peripherin (all type III), or with neurofi lament light and 
α-internexin (both type IV) [ 5 ,  18 ]. In addition, vimentin expression precedes the 
expression of other type III IF proteins during the differentiation and development 
of neural and muscle cells (later replaced by GFAP and desmin, respectively), sug-
gesting important functions for vimentin as an intracellular scaffold [ 5 ]. 

 Neurofi laments, the major IFs found in neurons consist of light (NF-L), medium 
(NF-M), and heavy (NF-H) subunits, are classifi ed as type IV IF proteins along with 
α-internexin [ 27 ,  28 ]. Type V proteins are the nuclear lamins, that organize to form 
the nuclear lamina, a fi brous meshwork of proteins adjacent to the nucleoplasmic 
face of the inner nuclear membrane [ 32 – 36 ]. The type V nuclear lamins do not 
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co- assemble with members of types I to IV. Nestin is a type VI protein of IFs, as 
well as tanabin and transitin [ 54 ]. Nestin expression occurs in proliferating stem 
cells of the developing mammalian central nervous system and other pluripotent 
cells of non-neuronal tissues [ 3 ,  18 ,  38 ,  40 – 42 ,  48 ,  55 ]. Nestin is unable to form fi la-
ments on its own, but it can readily form copolymer IFs when combined with type 
III IF proteins such as vimentin both in vitro and in vivo [ 10 ,  11 ,  18 ,  19 ,  50 – 52 ]. 

 Crosstalk among IFs, microfi laments and/or microtubules via specifi c linking pro-
teins, such as the plakin family, is also important for stable architecture of the cyto-
skeletal system [ 10 – 14 ,  18 ,  20 – 23 ,  29 – 31 ,  37 ,  52 ]. The mechanisms responsible for 
the bidirectional microtubule-dependent movements of vimentin particles are related 
to their association with conventional kinesin and cytoplasmic dynein [ 56 ,  57 ]. 

 Moreover, IFs are highly dynamic intracellular structures and new functional and 
regulatory roles of IFs have been defi ned, thereby suggesting special physiological 
capacity besides their mechanical function [ 1 ,  3 ,  18 ,  58 – 60 ]. These include cell 
growth, organelle distribution, signal transduction, cell polarity, and gene regula-
tion. On the other hand, little information exists concerning the structure of the IF 

   Table 13.1    Types of intermediate fi lament (IF) proteins and notable features   

 Sequence 
type  IF proteins 

 Primary tissue 
distribution  Notable features 

 I  Acid keratins  Epithelium [ 7 ,  8 ]  Obligatory heteropolymers 
composed of type I and type II 
proteins [ 1 ,  3 ,  9 ] 
 Crosstalk with MT a  and/or MF b  
[ 10 – 14 ] 

 II  Neutral-basic 
keratins 

 III  Vimentin  Mesenchymal cells 
[ 15 ,  16 ] 

 Homopolymers or in combination 
with type IV and type VI IF 
proteins [ 3 ,  17 – 19 ] 
 Crosstalk with MT and/or MF 
[ 20 – 23 ] 

 Desmin  Muscle fi bers [ 24 ] 
 GFAP c   Glial cells [ 25 ] 
 Peripherin  Peripheral neurons and 

cranial nerves [ 26 ] 
 IV  NF d -L, NF-M 

and NF-H 
 Astrocytes and other 
glial cells [ 27 ,  28 ] 

 Crosstalk with MT [ 29 ] 
 Copolymer with vimentin [ 30 ,  31 ] 

 V  Lamin A, B, 
and C 

 Nuclear lamina [ 32 – 36 ]  MT motors drives interkinetic 
nuclear migration [ 37 ] 

 VI  Nestin  Neuroepithelial stem 
cells [ 38 ,  39 ] 
 Pluripotent cells [ 40 ,  41 ] 
 Endocrine cells [ 42 – 47 ] 
 Endothelial cells [ 48 ] 
 Metastatic tumors [ 49 ] 

 Crosstalk with MT and MF [ 18 ] 
 Copolymer with vimentin 
[ 10 ,  11 ,  18 ,  19 ,  50 ,  51 ] 
 Copolymer with vimentin/
desmin [ 52 ] 
 Transiently expressed during 
renal development [ 53 ] 

   a Microtubules 
  b Microfi laments 
  c Glial fi brillary acidic protein 

  d Neurofi lament  
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networks performing these functions in the mammalian oocytes. In this chapter, we 
focus mainly on data obtained from studies in mammalian systems to understand 
the role of IFs within ovarian follicles and oocytes.  

    IFs in Ovarian Tissues and Follicles 

 IF proteins studied in mammalian oocytes and granulosa cells are summarized in 
Table  13.2 . Species differences are noted in the specifi c IF proteins. In the mam-
malian ovary, keratin immunoreactivity is consistently demonstrated in the surface 
epithelium of many species, including cattle [ 70 ,  77 ,  80 ,  81 ], pigs ([ 62 ]; Suzuki 
et al. unpublished data), mice [ 73 ,  78 ], rats [ 62 ,  67 ] and humans [ 62 ,  71 ,  75 ]. 
Keratin is detected in the mouse [ 61 ,  63 ,  69 ], hamster [ 65 ,  72 ], sheep [ 64 ] and 
human follicles [ 68 ,  75 ].

   Vimentin is the IF protein characteristic of mesenchymal cells, such as fi broblasts 
and endothelial cells (for reviews, see [ 5 ,  15 ]). Vimentin immunostaining is often 
observed in follicular epithelial cells maintaining a similar distribution in primary, 
secondary, and tertiary follicles (Fig.  13.1 ). Vimentin positivity of follicular cells 
remains unchanged in the granulosa cell layer and increases in mature follicles during 
maturation ([ 70 ,  80 ]; Suzuki et al. unpublished data). The theca interna cells and the 
theca externa cells show a uniformly strong vimentin-positive appearance. The 
endothelial cells of blood capillaries in stroma, atretic follicles and larger blood 
vessels were strongly positive for vimentin. Desmin positivity is mainly localized in 
the wall of blood vessels. Very weak signaling of desmin is noted in the oocytes and 
granulosa cells of pigs and hamsters (Suzuki et al. unpublished data). Since almost 
all proteins composed of IFs are able to be located in the mammalian ovarian tissue, 
the ovary may be suitable for a positive-control tissue in the study of IF proteins.

   In the baboon and human ovaries, some dissimilar distribution patterns of IFs are 
observed, where the surface epithelial cells exhibit keratin staining, whereas vimen-
tin has been primarily localized in the basal regions of these cells [ 62 ,  71 ]. A weak 
to moderate immunoreactivity for desmin has also been present apically in surface 
epithelial cells [ 71 ]. 

    IFs in Growing Follicles 

 Vimentin proteins are expressed at all stages of follicular development (Fig.  13.1 ). 
In primordial follicles, oocytes are individually surrounded by a single layer of 
squamous pre-granulosa cells, also referred to as follicular epithelial cells. Cell-to- cell 
communication between these somatic cells and oocytes is apparent from the for-
mation of primordial follicles onward [ 82 ,  83 ]. A great number of non-growing 
primordial follicles serve as the source of developing follicles and oocytes until 
the end of a female’s reproductive life. Interestingly, vimentin is detected in the 
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       Table 13.2    Summary of intermediate fi lament proteins studied in mammalian oocytes and 
granulosa cells      

 References 
 Fixation a  
(methods) b   Antibodies used c  

 Response d  

 Oocytes  Granulosa cells 

 Lehtonen 
et al. [ 61 ] 

 Me-OH/
Acetone 
(IFT) & (IB) 

 P, keratin  Mouse, +  Mouse, − 
 P/M, vimentin  Mouse, −  ND 
 P, GFAP  Mouse, −  ND 
 P, neurofi lament  Mouse, −  ND 

 Czernobilsky 
et al. [ 62 ] 

 Fr (ICT) 
 Acetone 
(IFT) 

 P/M, keratin  Human/pig/rat, −  Human, +; pig/rat, − 
 P, vimentin  Human/pig/rat, −  Human/pig/rat, + 
 P, desmin  Human/pig/rat, −  Human/pig/rat, − 
 P, desmoplakin  Human/pig/rat, −  Human, +; pig/rat, 

ND 
 Lehtonen [ 63 ]  Me-OH (IFT)  M, keratin  Mouse, +  ND 
 Gall et al. [ 64 ]  Fr w/BF 

(IFT) &
(IEM, IB) 

 P, keratin  Sheep, +  ND 

 Plancha 
et al. [ 65 ] 

 Fr or BF 
(IFT) &
(IEM, IB) 

 M/P, keratin  Hamster, +  ND 

 van Niekerk 
et al. [ 66 ] 

 Fr (ICT)  M, keratin  ND  Human, + ⇒ − e  

 Fridmacher 
et al. [ 67 ] 

 Fr w/ or w/o 
BF (ICT) 

 M, keratin  Rat, −  Rat, + ⇒ −e 

 Santini 
et al. [ 68 ] 

 M (ICT) 
&(EM) 

 M, keratin  Human, +  Human, + 
 M, vimentin  Human, −  Human, + 
 M, actin  Human, −  Human, + 
 M, desmin  Human, −  Human, − 

 Gallicano 
et al. [ 69 ] 

 G (IFT) & 
(IEM, IB) 

 M, keratin  Mouse, +  ND 
 P, vimentin  Mouse, −  ND 

 van den Hurk 
et al. [ 70 ] 

 B (ICT)  P, keratin  Bovine, −  Bovine, − 
 P, vimentin  Bovine, −  Bovine, + 
 P, desmin  Bovine, −  Bovine, − 

 Khan-Dawood 
et al. [ 71 ] 

 B (ICT)  M, keratin  Baboon/human, −  Baboon/human, − 
 M, vimentin  Baboon/human, 

− (+) f  
 Baboon/human, − 

 M, desmin  Baboon/human, −  Baboon/human, − 
 M, neurofi lament  Baboon/human, +  Baboon/human, − 

 Plancha [ 72 ]  BF (IFT) 
& (IEM) 

 M, keratin  Hamster, +  ND 

 Appert 
et al. [ 73 ] 

 Fr (IFT)  M, keratin  Mouse, −  Mouse, + 

 Marettová and 
Maretta [ 74 ] 

 BF (ICT)  M, vimentin  ND  Sheep, + 
 M, desmin  ND  Sheep, − 

 Bukovsky 
et al. [ 75 ] 

 Fr w/aceton 
(ICT) 

 M, keratin  Human, +  Human, + 

(continued)
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Table 13.2 (continued)

 References 
 Fixation a  
(methods) b   Antibodies used c  

 Response d  

 Oocytes  Granulosa cells 

 Takahashi 
et al. [ 48 ] 

 Not specifi ed 
(ICT) 

 M, nestin  Rat, −  Rat, − 

 Kabashima 
et al. [ 76 ] 

 Me-OH (IFT)  M, keratin  Hamster, +  ND 

 Townson 
et al. [ 77 ] 

 Fr w/BF 
(ICT) 

 M, keratin  Bovine, −  Bovine, − (+) g  

 Mora 
et al. [ 78 ] 

 BF or Fr 
(IFT) & 
(mRNA) 

 M, keratin  Mouse, −  Mouse, + 
 M, vimentin  Mouse, +  Mouse, + 

 Takahashi and 
Ishizuka [ 79 ] 

 BF (ICT, IFT)  M, neurofi lament  Rat, +  ND 

 Wendl 
et al. [ 80 ] 

 B (ICT, IFT)  M/P, keratin  Bovine, −  Bovine, + 
 M, vimentin  Bovine, −  Bovine, + 
 M, desmin  Bovine, −  Bovine, − 

 Hummitzsch 
et al. [ 81 ] 

 Fr (ICT)  M, keratin  Bovine, −  Bovine, + or +/− 

 Suzuki et al. 
(unpublished 
data) 

 BF (ICT) 
 B (IFT) 

 M, keratin  Pig, −  Pig, − 
 M, vimentin  Pig, −/hamster, −  Pig, +/hamster, − 
 M, desmin  Pig, +/hamster, +  Pig, +/hamster, + 
 M, GFAP  Pig, +  Pig, + 
 M, neurofi lament h   Pig, +  Pig, − 
 P, neurofi laments i   Pig, +  Pig, + 
 P, nestin  Pig, +/hamster, −  Pig, −/hamster, − 

   a  B  Bouin fi xative,  BF  buffered formalin, Me-OH methanol,  Fr  frozen,  G  glutaraldehyde,  M  metha-
carnoy fi xative 
  b  IFT  immunofl uorescence technique,  ICT  immunocytochemical technique,  IB  immunoblotting 
analysis,  IEM  immunoelectron microscopy,  EM  electron microscopy,  mRNA  mRNA analysis. &() 
shows additional analyses 
  c  M  monoclonal,  P  polyclonal 
  d + positive, − negative,  ND  not determined 
  e Positive signals progressively disappeared in the granulosa cells of growing follicles 
  f Immunoreactivity developed in atretic follicles 
  g Keratin is localized to the cytoplasm of granulosa cells in a growing follicle and to the basal 
granulosa cells in an antral follicle 
  h Antibody for NF-L 
  i Rabbit anti-pan-neurofi laments polyclonal antibody (Enzo Life Sciences, Inc.), which includes 

antibodies for NF-L, NF-M and NF, H, was used  

follicular epithelial cells even at the early stage of the primordial follicle (Fig.  13.1 , 
Suzuki et al. unpublished data; see also [ 78 ,  84 ]). It is suggested, therefore, that 
vimentin might have a role in signaling of the cell-to-cell communication, because 
recent studies have brought light into the role of vimentin that are involved in cell 
signaling along with adhesion and migration [ 85 – 87 ]. Vimentin is also known to 
interact with signaling molecules [ 5 ]. 
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 The transition from the primordial to primary follicle is characterized by a mor-
phological change in the surrounding follicular epithelial cells from squamous to 
cuboidal, where vimentin IF protein was also found ([ 74 ,  78 ,  80 ]; Suzuki et al. 
unpublished data). 

 Secondary follicles contain growing oocytes surrounded by two or more layers 
of follicular epithelial cells (now called granulosa cells). Preantral follicle develop-
ment is gonadotropin-independent and is induced by autocrine and paracrine regu-
latory factors [ 88 ,  89 ]. An additional somatic cell layer, the theca, forms outside the 
basement membrane of the follicle and differentiates as the theca interna and theca 
externa [ 88 ,  89 ]. The theca interna cells include numerous mitochondria with tubular 
cristae, smooth endoplasmic reticulum, and abundant lipid vesicles, corresponding 
with the endocrine function as a source of androgens for neighboring granulosa 
cells to convert to estrogens [ 88 ,  89 ]. The theca externa, composed of fi broblasts 
and smooth muscle-like cells, shows coexistence with actin and myosin and also the 
desmin antibody occasionally gives positive results (Suzuki et al. unpublished data). 
During subsequent oocyte-follicular development, surface adhesion molecules 
are established and maintain contact with appropriate cumulus cells when the zona 
pellucida is produced [ 82 ]. 

  Fig. 13.1    Vimentin immunoreactivity in the pig ovary. Nuclei are stained with hematoxylin.  Bar  
represented in ( c ) shows 50 μm in ( a ), 10 μm in ( b ) and 100 μm in ( c ). ( a )   Primordial     ( arrow-
heads ), primary ( arrows ) and secondary follicles. Vimentin reaction is found in follicular epithelial 
(pre-granulosa) cells of   the primordial     and primary follicles. The granulosa (G) of a secondary 
follicle is stained in two-layered fashion. ( b ) Higher magnifi cation of an upper right part of the 
secondary follicle of ( a ). Vimentin immunoreactivity in the granulosa of the secondary follicles is 
mainly localized in basal and apical granulosa cells. Theca interna (TI) cells are also weakly posi-
tive. ( c ) Cumulus-oocyte complex of a tertiary (antral) follicle. Cumulus oophorus cells are posi-
tively stained. Oocytes showed no signifi cant vimentin reaction irrespective of the growing 
follicular stages       
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 The development of a follicular antrum is clearly dependent on gonadotropins 
and well-developed antral follicles are called tertiary follicles (often referred to as 
Graafi an follicles). At the transition from preantral to antral follicles, most of the 
oocytes become meiotically competent and will resume meiosis spontaneously if 
removed from the follicles and cultured in an appropriate medium [ 90 ]. 

 In granulosa cells of the mouse, rat, bovine and human ovary, keratin immunore-
activity is detected [ 62 ,  70 ,  73 ,  77 ,  78 ], whereas in the other species the granulosa 
cells do not express any keratins (Table  13.2 ). Furthermore, it has been shown that 
keratin 8 (K8) and K19 were detected fi rst in primary and secondary follicles in the 
rat [ 67 ] or K8 and K18 in the human [ 66 ], but progressively disappear in granulosa 
cells of growing or mature (Graafi an) follicles, respectively. The expression of keratin 
in the follicular development remains controversial unlike that of vimentin.  

    IFs in Atretic Follicles 

 Apoptosis has been implicated in the selective elimination of granulosa cells and 
oocytes during atresia of ovarian follicles [ 91 – 93 ]. Atretic follicles contain some 
K18-positive cells with intense cytoplasmic staining [ 77 ]. In early antral atretic folli-
cles, keratin-positive cells are present in the most antral layers of the follicle, whereas 
in advanced atretic follicles, they are distributed throughout the follicle, particularly 
in the basal atretic follicles, in which the granulosa layer has separated from the basal 
lamina [ 77 ]. Ortega et al. [ 94 ] have observed signifi cantly higher intensity of vimen-
tin in the granulosa cell layer of atretic follicles compared to those of healthy antral 
follicles. Similarly, a greater signifi cant immunostaining for vimentin and keratins is 
noted in the granulosa cell layer of atretic follicles [ 70 ,  71 ,  95 ]. The same immunore-
actions of these IF proteins are also observed in the granulosa cell layer of cystic 
follicles in rats [ 96 ] and cows [ 94 ].   

    IFs in Mammalian Oocytes 

 During oocyte maturation, spindle formation, chromosome separation, polar body 
extrusion and organelle movement occur in the ooplasm for subsequent fertilization 
and development [ 97 – 101 ]. Cytoskeletons, such as microfi laments and microtu-
bules, are well known to be important for the progression of those events [ 102 – 105 ]. 
In contrast, research related to IFs remains poorly advanced relative to that of 
microfi laments and microtubules. 

 Scanning electron micrographs of the cytoskeleton network just beneath the 
oolemma are presented in Fig.  13.2 , showing the highly ordered fi lamentous struc-
tures of microfi laments, microtubules and IFs as determined by their size. IF proteins 
studied in mammalian oocytes and granulosa cells are summarized in Table  13.2 . 
Distribution of IFs in the oocytes has been a very controversial issue. The reasons for 
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the discrepancies concerning the presence of keratins in oocytes may depend on (1) 
interspecies differences in the IF protein sequence, expression and organization and 
(2) the use of different fi xatives and/or antibodies. Fridmacher et al. [ 67 ] have pointed 
out that immunoreactivities with keratin monoclonal antibody are affected by fi xa-
tion, where the results observed from fi xed and unfi xed tissues has been different. 
In the course of the study on distribution of IFs in porcine oocytes, we have also 
noticed that the immunoreactivity of certain secondary antibodies were altered as a 
result of different fi xation methods (buffered formalin vs. methanol).

      Keratins in the Oocytes 

 In mouse and human oocytes, some researchers have reported that the oocytes show 
keratin positive detection [ 61 ,  63 ,  68 ,  69 ,  71 ]. For example, Balbiani bodies, which 
contains aggregated mitochondria of the oocytes and persist in resting human pri-
mary follicles [ 106 ], show immunostaining for K8, K18, and K19 [ 68 ,  71 ,  89 ]. On 
the contrary, others have not observed any keratin-positive signals in the oocytes of 
these species [ 62 ,  67 ,  73 ,  81 ]. Furthermore, there are interspecies differences in the 
literature. Keratin IF protein is observed in sheep [ 64 ] and hamsters [ 65 ,  72 ,  76 ], 
whereas not in cattle, pigs and rats ([ 62 ,  67 ,  70 ,  73 ]; Suzuki et al. unpublished data). 

 In our previous study [ 76 ], non-fi brillar keratin particles have been observed. In 
germinal vesicle (GV) oocytes, large and oval-shaped aggregates of non-fi brillar 
keratin have been found in the cortical ooplasm (designated as a ‘cortical’ pattern). 
The delicate network of keratin fi laments is concentrated in the GV periphery. 

  Fig. 13.2    Scanning electron micrograph of the cytoskeleton network of a bovine oocyte.  Bar  
represents 1 μm in ( a ) and 250 nm in ( b ). ( a ) The highly ordered fi lamentous structures just beneath 
the oolemma.  Arrow  shows a part of membrane debris, which has remained even after proteolytic 
digestion.  Arrowheads  show the cytoskeleton network in low density. Note the trans-most cisterna 
of Golgi complex ( asterisks ). ( b ) A high magnifi cation image of a part framed rectangle in ( a ). 
Note three interconnected fi lament systems.  Arrows  show the thickest cytoskeleton, microtubules, 
and  arrowheads  show the thinnest fi laments of the cytoskeleton, actin microfi laments. There is 
very great abundance of intermediate fi laments among them       
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The large keratin aggregates begin to divide into small fragments at the pro-MI/MI 
stage (designated as a ‘fragmented’ pattern). Some keratin fragments have occa-
sionally been broken down into several granules at the peripheral region. In the MII 
oocytes, the fi lament network is extended over the ooplasm and numerous keratin 
granules are scattered across the oocyte (designated as a ‘granular’ pattern). It has 
been suggested, therefore, that non-fi brillar keratin constitute a reservoir of keratin 
protein that can be recruited into keratin IFs, thereby creating a more effective 
distribution of IF protein throughout the ooplasm [ 76 ].  

    Vimentin in the Oocytes 

 Mammalian oocytes show no signifi cant vimentin reaction with any of the antibodies 
applied (Table  13.2 ). As mentioned above, vimentin immunoreactivity is found in 
fl attened follicular epithelial cells of primordial follicles and in cuboidal follicular 
epithelial cells of primary follicles, and numerous granulosa cells of secondary and 
antral follicles (Fig.  13.1 ). Furthermore, vimentin-positive protrusions of the corona 
radiata cells penetrate the zona pellucida and contact the oocyte in cows [ 70 ] and 
pigs (Fig.  13.3 , Suzuki et al. unpublished data; see also [ 84 ]). In various mammalian 
species, similar corona cell processes appear to contain IFs at the ultrastructural 
level [ 107 ]. These cytoskeletal components may have a function in various impor-
tant cellular activities, including aspects of cell–cell adhesions, intercellular trans-
port and mechano-transduction and signaling [ 3 ,  5 ,  108 ].

   Several studies have shown that cell-to-cell communications via gap junctions, 
as well as other junctional complexes, form the major anchorage between the oocyte 
and cumulus cells during all stages of follicle development [ 109 – 116 ]. Our previous 
study has clearly demonstrated by scanning electron microscopy that the cumulus 

  Fig. 13.3    Confocal laser scanning microscopic images of vimentin localization in a porcine 
oocyte. Sequential differential interference contrast (DIC) and fl uorescence imaging.  Bar  repre-
sents 50 μm. ( a ) DIC image, ( b ) overlay of DIC and fl uorescence images, and ( c ) fl uorescence 
image. Vimentin fi laments are  red  and nuclei are  blue . Note transzonal cumulus cell projections 
consisting of vimentin ( arrowheads )       
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cell projections are directed toward and terminate at the oocyte in the pig [ 98 ]. 
These transzonal projections appear as extremely long and thin extensions at the 
GV stage and are intermingled with those arising from the adjacent cumulus, which 
are densely stained for actin but not for tubulin [ 98 ].  

    Desmin in the Oocytes 

 As shown in Table  13.2 , desmin immunoreactivity has not been detected in the 
granulosa cells and oocytes of the bovine [ 70 ,  80 ], pig [ 62 ], sheep [ 74 ], rat [ 62 ], 
baboon [ 71 ] and human ovary [ 62 ,  68 ,  71 ]. However, in our immunofl uorescent 
observations on porcine and hamster oocytes, desmin immunoreactivity has been 
detected in both the oocytes and cumulus cells. Staining with anti-desmin of the 
oocyte has been very low in intensity, but it has changed during oocyte maturation 
(Suzuki et al. unpublished data). Figure  13.4  represents confocal laser microscopic 
images of desmin and actin localization in hamster oocytes. In contrast to the 
intensive cortical actin staining, the desmin intensity is very weak. At the GV and 
MI stage of hamster oocytes, the desmin-positive area has been restricted only to the 
cortical region of the ooplasm, whereas desmin is localized uniformly throughout 
the ooplasm at the MII stage. The average intensity of desmin is 30 % higher at the 
MII stage compared to the GV and MI stages ( P  < 0.05). These observations suggest 
that desmin IF protein may play an important role in maintaining the cell architecture 
during oocyte maturation.

       Nestin in the Oocytes 

 Nestin is widely used as stem cell marker (for review, see [ 41 ]). Nestin has been 
shown to interact with other cytoskeleton proteins, such as vimentin [ 19 ,  50 ,  51 ] or 
desmin [ 52 ], suggesting a role in regulating cellular cytoskeletal structure. The 
physiological signifi cance of nestin in the ovary remains unknown. Nestin is 
expressed during early developmental stages and during regeneration in several 
tissues such as the brain, pancreas, and testis [ 41 ]. This suggests that nestin is neces-
sary in cells with proliferative activity or in cells that are in a dynamic developmental 
phase, both of which require a high degree of cytoplasmic plasticity [ 40 ,  41 ]. 

 In our unpublished observations, nestin immunoreactivity of GV, MI and MII 
porcine oocytes has been evaluated by confocal laser scanning microscopy 
(Fig.  13.5 ). Fluorescent intensity of nestin is decreased during oocyte maturation. 
Because the intensity of nestin staining is negatively correlated with the progression 
of meiosis, it is suggested that nestin may be involved in follicular growth rather 
than oocyte maturation. Takahashi et al. [ 48 ] have reported that nestin is mainly 
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  Fig. 13.4    Confocal laser scanning microscopic images of desmin and actin localization in hamster 
oocytes.  Bar  represents 50 μm. Images of the oocytes at GV ( upper panel ), MI ( middle panel ) and 
MII ( lower panel ) stages. (A) Chromatin of GV, chromosomes and nuclei of cumulus cells are 
visualized by DAPI, (B) staining with anti-desmin, and (C) staining with anti-actin. Desmin immu-
noreactivity (B) is noted in the ooplasm and cumulus cells and staining intensity of the ooplasm is 
higher at MII stage than at GV and MI stages. Actin microfi laments (C) are strongly stained just 
beneath the membrane of the oocytes and cumulus cells. Note transzonal cumulus cell projections 
consisting of actin in the GV oocyte ( upper panel , C)       

expressed in vascular endothelial cells of the theca interna in rat growing follicles 
and that nestin expression increases with follicular growth or hCG administration, 
which promote angiogenesis in the ovary [ 117 ]. These observations suggest that 
nestin may be involved in angiogenesis in growing follicles, which is followed by 
follicle maturation and subsequent ovulation.
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  Fig. 13.5    Confocal laser scanning microscopic images of nestin localization in porcine oocytes. 
 Bar  represents 50 μm. Images of the oocytes at GV ( upper panel ), MI ( middle panel ) and MII 
( lower panel ) stages. (A) Chromatin of GV, chromosomes and nuclei of cumulus cells are visual-
ized by DAPI, and (B) staining with anti-nestin. Nestin immunoreactivity (B) is noted in the 
ooplasm and cumulus cells. Discrete nestin-containing  dots  are strongly stained and the mesh-like 
structure with weak response is noted at GV stage ( upper panel ). During oocyte maturation, 
nestin- containing  dots  decrease in size and have become diffuse throughout the ooplasm. Staining 
intensity of the ooplasm is also decreased until MII stage       
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       Neurofi laments and GFAP in the Oocytes 

 Neurofi laments (NFs) are the main cytoskeleton elements in neurons. The three 
types of NFs have different molecular masses and are referred to as NF-L, NF-M, 
and NF-H. NF proteins synthesized in the neuronal cell body are phosphorylated 
after transfer to the axon, where they accumulate with other cytoskeletal proteins to 
help maintain the axonal structure [ 118 ]. NF protein is immunohistochemically 
detected in rat [ 79 ] and human oocytes [ 71 ], but not in mouse oocytes [ 61 ]. 
Expression of NF-H starts in oocytes at the primary stage of follicles, and continues 
in fertilized one-cell eggs and vanishes at the two-cell stage [ 79 ]. 

 GFAP is the major protein constituent of glial IFs in differentiated fi brous and 
protoplasmic astrocytes of the central nervous system. Lehtonen et al. [ 61 ] have 
failed to detect GFAP along with NFs in mouse oocytes and early embryos. In our 
unpublished observations, however, NFs and GFAP have been detected in the GV, 
MI and MII porcine oocytes. Figure  13.6  shows confocal laser scanning microscopic 

  Fig. 13.6    Confocal laser scanning microscopic images of neurofi lament localization in porcine 
oocytes.  Bar  represents 50 μm. Images of the oocytes at GV ( upper panel ), MI ( middle panel ) and 
MII ( lower panel ) stages. Sequential fl uorescence and differential interference contrast (DIC) 
imaging. (A) A nucleolus of GV, chromosomes and nuclei of cumulus cells are visualized by 
DAPI, (B) staining with anti-neurofi lament, and (C) DIC imaging. Neurofi lament immunoreactiv-
ity (B) is noted in the ooplasm, but not in the cumulus cells. The lipid droplets appear as small 
vacuoles under DIC (C). In the area where the lipid droplets are not seen in the oocyte, abundance 
of neurofi lament is detected       
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images of NF localization in porcine oocytes. NFs are found to be located in inverse 
proportion to accumulation of lipid droplets in the oocytes.

   In the developing nervous system, vimentin is found in both presumptive glial 
and neural cells, and the tissue-specifi c NF, GFAP and nestin appear later in devel-
opment [ 5 ,  10 ,  18 ]. We have observed similar mesh-like structures stained with 
antibodies to these neuronal-related IFs. It is suggested, therefore, that they may 
have been co-assembled and/or replaced often by different IFs even in the mamma-
lian oocytes. In addition, we have observed that transzonal projections of the corona 
radiata cells are stained with anti-GFAP, anti-desmin and anti-vimentin in porcine 
oocytes. The physiological signifi cance of NF, GFAP and nestin expressed in the 
oocytes remains to be determined.   

    Mechanical and Non-mechanical IF Functions in the Oocytes 

 IFs support mechanically the structural integrity of tissues and cells and the best 
example is seen in epithelial cells constituting the epidermis composed of the kera-
tin IFs. Our previous study has shown the increasing complexity of keratin fi lament 
network of hamster oocytes during maturation. Keratin IFs which have assembled 
into extensive cytoskeletal networks in the MII oocytes suggests that keratin may 
play a specifi c role in maintaining cell integrity under physical stress during egg 
transport in the oviduct after ovulation [ 76 ]. The extensive distribution of IFs 
appears to provide the oocytes with important mechanical properties. Keratin fi la-
ments (tonofi brils) appear to respond rapidly to shear stresses which are exerted at 
the surface of epithelial PtK2 cells [ 14 ]. IFs contribute to cell adhesion and migra-
tion [ 119 ,  120 ]. 

 Recent studies have pointed out the functional signifi cance of cellular mechano-
transduction processes in somatic cells [ 121 – 123 ]. Transmission of forces from 
 outside the cell through cell–matrix and cell–cell contacts appears to control the matu-
ration or disassembly of these adhesions and initiates intracellular signaling cascades 
that ultimately alter many cellular behaviors. In response to externally applied forces, 
cells actively rearrange the organization and contractile activity of the cytoskeleton 
and redistribute their intracellular forces. Accumulating evidences suggest that the 
localized concentration of these cytoskeletal tensions at adhesions is also a major 
mediator of mechanical signaling [ 121 ]. IF networks connect the cell surface with the 
outer nuclear membrane which connect to components of the nuclear lamina [ 123 , 
 124 ], thereby regulating the cellular architecture and also providing an important plat-
form to mediate cellular mechanotransduction processes [ 121 ]. Polymerized IF net-
works also play roles in numerous other signal transduction pathways by providing a 
scaffold or platform that interacts with signaling molecules including MAP kinases, 
mTOR, various 14-3-3 protein isoforms, Cdk5, and apoptotic factors [ 3 ,  86 ,  125 –
 130 ]. Environmental or internal stresses initiate stress signaling cascades, which acti-
vate the stress response and transcriptional machineries that induce the expression of 
the classical stress-induced heat shock protein (HSP) genes [ 131 ]. 
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    Non-mechanical Physiological Functions of IFs in the Oocytes 

 IFs provide the cell with a mechanism for resisting mechanical stress and cellular 
mechanotransduction processes. Furthermore, many studies on different types of 
somatic cells have revealed that IFs and their precursors are remarkably dynamic 
and exhibit a complex array of motile activities related to their subcellular assembly 
and organization. As mentioned above, some IF proteins may locate in the ooplasm 
(keratins, vimentin, desmin, nestin, GFAP and neurofi laments), but their physiolog-
ical signifi cances are still to be resolved. We mainly focused on the regulation of 
organelle positioning and regulation of translation as possible functions of IFs in the 
oocytes, because the cytoskeleton participates in the spatial organization and regula-
tion of translation [ 132 ]. These subcellular events may be crucial for cellular growth, 
proliferation and function.  

    Organelle Positioning and IFs 

 Transport of membranous organelles is mainly mediated by microtubule and micro-
fi lament cytoskeletal tracks and their respective molecular motors. In addition, 
organelle positioning in the cytoplasm seems to involve interactions with IFs [ 3 ,  57 , 
 133 ,  134 ]. Here a special interest has been paid to the interactions between IFs 
and membranous organelles, such as mitochondria, the Golgi complex and other 
membranous components. 

    Mitochondria 

 The temporal and spatial dynamic patterns of mitochondrial distribution are impor-
tant for their biological functions; disruption of their distribution can cause cell 
death. The morphology and distribution of mitochondria in cells are coordinated by 
microfi laments and microtubules [ 135 – 139 ]. Evidence that mitochondria associate 
with IFs has also been obtained [ 140 ,  141 ]. Since then, several IF proteins have been 
associated with mitochondrial functions in muscle [ 142 – 148 ] and non-muscle cells 
[ 149 – 154 ]. For example, desmin IFs play a role in mitochondrial positioning and 
respiratory function in cardiac and skeletal muscle [ 142 ,  143 ] and in smooth muscle 
[ 145 ,  146 ]. Immunoelectron microscopic studies of chicken skeletal and cardiac 
muscle have also shown that extensive labeling of desmin is localized to the interfi -
brillar spaces where mitochondria are located [ 147 ,  148 ]. Furthermore, observa-
tions on desmin-defi cient mice have revealed the importance of desmin IFs in 
mitochondrial behavior and function [ 142 ,  155 – 157 ]. 

 There is also evidence that keratin and vimentin have been implicated in docking 
mitochondria in muscle cells [ 144 ] and hepatocytes [ 153 ]. In nerve cells, on the other 
hand, the subcellular organization and movement of mitochondria are  associated with 
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IFs comprising the NFs [ 158 ,  159 ]. It has also been shown that antibodies against the 
NF-H subunit disrupt binding between mitochondria and NFs and the interactions 
between them depend on mitochondrial membrane potential [ 160 ]. 

 A linking protein between mitochondria and IFs, termed IEF 24 (MW 56,000), 
has been extracted from cultured fi broblasts, which is tenaciously associated with a 
subpopulation of IFs and also correlates closely with mitochondrial distribution 
[ 140 ]. Conserved structures on the mitochondrial surface, such as Mdm10p, 
Mmm1p and so on, are suggested to be adapted for interaction with different cyto-
skeletal networks [ 161 ]. Mitochondria can also associate with IFs through interac-
tions with the cytolinker protein, plectin [ 143 ,  162 – 164 ]. Therefore, organization of 
the cytoskeleton network together with associated protein(s) described above could 
be essential in regulating mitochondrial function. Furthermore, IFs can directly or 
indirectly bind the mitochondria, which have been detached from microfi lament or 
microtubule tracks [ 165 ].  

    The Golgi Complex 

 The Golgi complex plays an important role in the post-translational modifi cations 
and sorting of lipids and proteins from the endoplasmic reticulum (ER) and 
ER-Golgi intermediate compartments [ 166 ]. The association of the Golgi complex 
and microtubules has been demonstrated often in several systems [ 167 – 169 ], 
whereas in a certain type of cells microfi laments are essential for the Golgi mor-
phology and cytological positioning [ 170 ], through various actin-associated pro-
teins [ 171 ]. Vimentin IFs are also associated with the Golgi complex, and the Golgi 
58K protein (FTCD) is a candidate linker protein connecting the Golgi complex to 
the vimentin IF cytoskeleton [ 172 ,  173 ]. In addition, a Golgi-associated network 
surrounding the Golgi complex has been proposed [ 174 ], where dense bundles of 
keratin and actin fi laments are observed around the Golgi complex. Interestingly, 
when NFs are induced to aggregate by microinjection of NF-H into cultured neuro-
nal cells, the Golgi complex is fragmented and dispersed. Such a phenomenon is 
seen in diseased neuronal IF aggregate containing neurons derived from amyo-
trophic lateral sclerosis (ALS) patient tissues [ 159 ].  

    Other Membranous Organelles 

 Autophagosomes are cellular organelles thought to be derived from the membranes 
of the ER-mitochondria contact sites that engulf organelles targeted for degradation 
by fusing autophagosomes and lysosomes [ 175 ]. The positioning of endosomes and 
lysosomes and the maturation of autophagosomes have been shown to be tightly 
associated with the assembly of vimentin and its phosphorylation [ 176 ]. It has also 
been shown that interactions between vimentin IFs and the adaptor complex AP-3 
likely control the positioning, content, and subcellular distribution of selected late 
endosome/lysosome membrane proteins [ 177 ]. 
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 Lipid droplets, the cellular organelles for the repositories of fatty acids, are 
thought to arise from the bilayer membrane of endoplasmic reticulum [ 178 ]. 
Vimentin IFs interact with the lipid droplets [ 179 ,  180 ]. Recent studies revealed 
perilipin as linking protein between lipid droplets and vimentin [ 181 ].   

    Translational Components Associated with IFs 

 The cytoskeleton acts as a signaling platform that modulates cellular pathways by 
controlling the activity and/or subcellular localization of signaling proteins and 
their targets [ 132 ]. Polysomes (clustered ribosomes) are observed close to the cyto-
skeleton in various cell types, such as fi broblasts, epithelial lens cells and sea urchin 
eggs [ 132 ]. Although microfi laments are the main cytoskeletal element that partici-
pates in the organization of the translational apparatus [ 132 ,  182 ], there is evidence 
indicating a physical link between IFs and polysomes [ 183 – 185 ]. Ribonucleoprotein 
complexes are reported to bind keratin [ 186 ] or vimentin IFs, too [ 187 ]. 

 Eukaryotic elongation factor-1 (eEF1), composed of 3 subunits (eEF1A, eEF1Bα 
and eEF1Bγ) is essential for peptide-chain elongation during translation. eEF1A 
interacts with the actin microfi laments in a wide range of species from yeasts to 
mammals [ 188 ]. It has been shown that eEF1Bγ, a non-catalytic subunit of the eEF1 
complex, may be a keratin-binding protein, suggesting an involvement of keratin IF 
networks in translation [ 189 ]. The two other components of the eEF1, eEF1Bα and 
eEF1A are also associated with keratin IFs in epithelial cells. Thus, there appears to 
be a remarkable convergence in the reciprocal manner with which two distinct sub-
units of the eEF1 complex, eEF1A and eEF1Bγ, relate to actin microfi laments and 
keratin IFs, respectively [ 132 ]. 

 Post-translational modifi cations (PTMs) play important roles in regulating the 
functional properties of IFs. They include phosphorylation, glycosylation, prenyl-
ation, sumoylation, acetylation, and others [ 130 ]. Furthermore, PTM studies have 
revealed important interactions between IFs and other cellular components and 
structures, such as the interaction of 14-3-3 proteins with multiple IFs [ 190 – 192 ]. 
PTMs may regulate IF organization and the binding of IFs to IF-associated proteins, 
thereby regulating numerous cellular processes and cell-specifi c functions (for 
review, see [ 130 ]).   

    Concluding Remarks 

 Unlike microfi laments or microtubules, IFs show a wide range of molecular diver-
sity. Furthermore, IFs have a non-polar structure and therefore have no IF-specifi c 
associated motor proteins. IFs show versatile functions and properties, due to an 
outstanding degree of the molecular diversity. IF proteins are dynamic components 
of the cytoskeleton characterized by rapid movement and dynamic exchange of the 
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subunits. Non-mechanical IF functions include regulation of the cellular architec-
ture, cell growth, organelle positioning, signaling, and gene expression. IFs are 
clearly well integrated with the microfi lament and microtubule cytoskeletons and 
their motor proteins: movement of IF proteins likely occur through interactions with 
the microtubule-based motors kinesin and dynein; IFs are also associated with the 
microfi lament-based motor myosin. Interactions with microfi laments and microtu-
bules are not only restricted to motors, because a family of proteins directly link the 
microfi laments and microtubules to IFs. Therefore, IFs are dynamically integrated 
with other cytoskeletons capable of the polarization required for directional move-
ment of organelles and motor cargoes. In addition, certain protein(s) linking between 
organelle and IFs remains to be clarifi ed. Further studies are clearly needed before 
the biological signifi cance of IFs and participation in cytoskeletal crosstalk in the 
oocyte/embryo can be fully assessed.     
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    Chapter 14   
 Actin Organizing Proteins in Regulation 
of Osteoclast Function 

             Brooke     K.     McMichael      and     Beth     S.     Lee    

            Introduction 

 Skeletal health requires an ongoing process of bone breakdown and rebuilding, as 
the cellular components of bone respond to mechanical stresses, hormonal stimuli, 
and other external signals. The cell type responsible for breakdown, or resorption, 
of the organic and inorganic components of bone is the osteoclast, a terminally 
differentiated member of the monocyte–macrophage lineage. Osteoclasts not only 
resorb bone, but also are intimately involved in regulation of bone formation, hema-
topoiesis, angiogenesis, and endocrine homeostasis [ 1 ,  2 ]. Further, as members of 
the monocyte–macrophage lineage, osteoclasts are subject to infl ammatory stimuli. 
Excessive osteoclast function can lead to loss of bone mass and fractures in condi-
tions such as osteoporosis, rheumatoid arthritis, and periodontitis, among others. 
Conversely, loss of osteoclast function results in a rare condition called osteopetro-
sis, in which bones are dense, but brittle and prone to fracture. Osteoclasts are 
formed by a process both of differentiation and precursor fusion, resulting in large 
polykaryons with the capacity for rapid motility and bone resorption. Resorption is 
initiated by tight attachment of osteoclasts to the bone surface through a circular, 
actin-rich gasket-like structure called the sealing zone. Enclosed by this structure is 
a specialized apical membrane domain termed the “ruffl ed border”, so named for its 
ruffl ed appearance in electron micrographs [ 3 ]. The ruffl ed border is responsible for 
secretion of protons and proteases onto the bone surface, creating a protease-rich, 
acidic extracellular milieu that degrades the organic component of bone while 
promoting dissolution of the hydroxyapatite mineral component. Formation of the 
unique actin-rich sealing zone is essential to the ability of osteoclasts to perform 
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their primary function of bone resorption. In addition, sealing zones constantly form 
and dissipate as osteoclasts migrate along bone surfaces, necessitating a uniquely 
dynamic regulation of the actin cytoskeleton. 

 The primary structural unit that forms osteoclast sealing zones is the podosome, 
an adhesion structure expressed in monocytic, endothelial, and smooth muscle cells, 
among others. Podosomes contain an actin-rich core that undergoes rapid turnover 
and is surrounded by a plethora of adhesion plaque molecules, including scaffolding 
proteins, kinases, and small GTPases. Podosomes are abundant in cells of the mono-
cyte/macrophage lineage, including osteoclasts, and perform multiple functions 
including cell adhesion, sensing of substrate rigidity, and matrix degradation, among 
others. Recent excellent reviews have detailed the structures, functions, and pattern-
ing of podosomes in osteoclasts and other cell types [ 4 – 6 ]. 

 When labeled by fl uorescent phalloidin and immunocytochemistry, podosomes 
present as dot-like structures (about 0.5–1.0 μm in diameter) with a dense F-actin 
core and a less dense cloud of surrounding F-actin. Under high resolution scanning 
electron microscopy, the densely packed core is shown to consist of branched fi la-
ments that are oriented perpendicular to the plasma membrane, while the cloud 
consists of less dense linear actin fi laments that radiate out from the core and 
eventually interact with the plasma membrane [ 7 ]. This arrangement is shown by 
schematic in Fig.  14.1 , along with many of the actin-binding proteins associated 
with the podosome. Adhesion to the substrate via the podosome core is mediated by 
the hyaluronate receptor, CD44 [ 8 ]. In contrast, actin fi laments within the cloud are 
linked to the substrate through integrin dimers composed of αv, α2, β1, and β3, and 

  Fig. 14.1    Schematic of a podosome. Actin fi laments of the podosome core are indicated in  dark 
green , while those of the podosome cloud are indicated in  light green . Many of the actin-binding 
proteins discussed in this chapter are also indicated. Those not shown here include proteins only 
temporarily (e.g. L-plastin, myosin X), or not (e.g. tropomyosins 2/3) associated with podosomes. 
Others, like the actin bundling protein α-actinin, which are abundant throughout the podosome, are 
also not shown for the sake of simplicity       
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associated adaptors such as talin, kindlin, and vinculin. While these proteins 
traditionally have been viewed as being distributed in a homogeneous ring sur-
rounding the podosome core, super-resolution imaging has instead demonstrated 
their presence in discrete islets or clusters [ 9 ]. Although not discussed here, integrin- 
mediated signaling and subsequent podosome patterning is highly dependent 
on tyrosine kinase signaling, with specifi c kinases (e.g. Src) and phosphatases 
(e.g. PTP-PEST) playing key roles. Further, the small GTPases Rho and Rac are 
critical in patterning of podosomes. Recent reviews have provided excellent discus-
sions of these proteins in osteoclast differentiation and function [ 10 ,  11 ].

   While there are many similarities between the podosomes of osteoclasts and 
other cells, some differences exist [ 4 ], most notably the ability of osteoclast podo-
somes to adopt circular structures such as the sealing zone (when on a mineralized 
bone-like substrate) or a peripheral belt of podosomes (when on a smooth surface 
like glass or plastic). Recent interesting studies have begun to defi ne the chemical 
and physical properties that induce cell “choice” in generating podosome belts or 
sealing zones [ 12 – 15 ]. The ability of osteoclast podosomes to generate these circular 
patterns is a function of cellular maturity, as illustrated in Fig.  14.2 . As osteoclasts 

  Fig. 14.2    Maturation of osteoclast podosome superstructures. This fi gure demonstrates the stages 
of podosome distribution, from clusters to internal rings, and then to peripheral belts when osteo-
clasts are on a smooth, non-mineralized surface, or to dense sealing zones when osteoclasts are on 
mineralized substrates like bone. In the upper row, cells are labeled with  fl uorescent green phal-
loidin  to indicate cellular F-actin. In the lower row, cells are labeled with a  green membrane stain  
and with  fl uorescent red phalloidin  to demonstrate the sealing zone. The XZ view of an osteoclast 
on bone illustrates its dome-like shape; in contrast, osteoclasts on glass or plastic are much more 
fl attened (not shown). Scale bars = 10 μm       

 

14 Actin Organizing Proteins in Regulation of Osteoclast Function



340

differentiate from monocytic precursors to the large polykaryons capable of resorbing 
bone, they fi rst develop the ability to pattern podosomes into clusters. As the cell 
matures, podosomes then adopt a distribution of short-lived internal rings. If the 
osteoclast is on a mineralized substrate such as bone, the ring matures into a sealing 
zone in which the podosome cores become more densely packed and tightly inter-
connected to form a thickened, stable annular structure [ 7 ]. If the osteoclast is on a 
smooth, non-mineralized substrate, the rings continue to expand to the cell periph-
ery where the podosomes also become denser and more interconnected, though not 
to the same degree as those found in sealing zones. These peripheral structures in 
cells not on bone are referred to as podosome belts or sealing zone-like structures. 
The expansion of these annular structures and their stabilization is a microtubule-
dependent process, and indeed, loss of microtubule integrity results in a collapse of 
podosome patterning [ 16 ].

   In this chapter, we will focus not on the enzyme regulators of actin organization in 
osteoclasts (e.g. small GTPases, tyrosine kinases), but rather on discussion of regula-
tory actin binding proteins as previously summarized [ 17 ,  18 ]. These classes include 
actin nucleators, F-actin binding proteins, F-actin depolymerizing/severing proteins, 
actin bundling/cross-linking proteins, linkers that promote actin association with the 
plasma membrane and with integrins, and actin motor proteins and their regulators. 
We will discuss their distribution in osteoclasts and current knowledge of their roles 
in generating the dynamic osteoclast actin cytoskeleton.  

    Actin Nucleators 

    Arp2/3 Complex and Regulators 

 The Arp2/3 complex is a seven-protein composite that binds an existing mother 
actin filament and initiates nucleation of a daughter filament at a ~70° angle. 
The complex consists of Arp2, Arp3, and fi ve additional subunits termed ARPC1-5. 
On its own, the Arp2/3 complex is poor at nucleating formation of new fi laments, 
so this process requires regulators known as nucleation promoting factors (NPFs). 
NPFs include WASP (Wiskott-Aldrich syndrome protein), N- (neural-)WASP, 
WAVE (WASP family verprolin-homologous protein), and cortactin, among oth-
ers [ 19 ,  20 ]. This machinery plays a critical role in creating the branched, high 
F-actin density of podosome cores. The essential roles of these proteins in podo-
some formation were fi rst demonstrated in macrophages and dendritic cells [ 21 , 
 22 ]. In osteoclasts, the Arp2 and 3 proteins were demonstrated to increase in 
abundance during differentiation and to be very closely associated both with 
podosome cores and with sealing zones [ 23 ]. Notably, this complex is enriched 
at the membrane surfaces of these structures, where actin monomers enter the 
podosomes [ 16 ]. SiRNA-mediated knockdown of Arp2 strongly diminishes the 

B.K. McMichael and B.S. Lee



341

appearance of podosome- like structures and almost completely abolishes sealing 
zone formation, demonstrating the essential role of the Arp2/3 complex in podo-
some core formation [ 23 ]. 

 The NFP cortactin binds both to actin fi laments and the Arp2/3 complex and 
can consequently enhance nucleation of daughter fi laments and prevent debranch-
ing [ 24 ]. Although cortactin is not expressed in hematopoietic cells, including 
the monocytic precursors of osteoclasts, its expression is rapidly induced upon 
the onset of osteoclast differentiation [ 25 ,  26 ]. Additionally, cortactin expression 
is further induced when osteoclasts are exposed to bone [ 27 ]. As expected, cor-
tactin strongly co-localizes with Arp2/3 in the core of podosomes. Time-lapse 
microscopy demonstrates that cortactin is notably more enriched in nascent, 
rather than established, podosomes, suggesting its role in formation of these 
structures [ 26 ]. Indeed, cortactin is one of the fi rst actin-binding proteins detected 
in nascent podosomes [ 28 ]. Consistent with this hypothesis, loss of cortactin 
induced by lentivirally- expressed shRNA results in an apparent complete loss of 
podosomes [ 26 ]. 

 Another NFP, Wiskott-Aldrich syndrome protein, similarly is required for func-
tional osteoclast actin organization. WASP is expressed primarily in hematopoietic 
cells and is composed of functional domains that interact with F-actin, Arp2/3, and 
the signaling molecules Cdc42 and phosphatidylinositol 4,5-bisphosphate (PIP 2 ). 
Indeed, both podosome and sealing zone formation require interactions of PIP 2  and 
Cdc42 with WASP [ 29 ]. Osteoclasts from WASP-null mice demonstrate a greater 
degree of multinucleation than wild-type osteoclasts, but they also show a distinct 
lack of podosomes and sealing zones, and have a modest defi ciency in bone resorp-
tion. WASP-null mice do not demonstrate an abnormal bone volume relative to 
wild-type mice; however, when mice are ovariectomized to stimulate osteoclast- 
mediated bone loss, the bone resorption in WASP-null mice is less pronounced, 
indicating functional osteoclast defi ciency [ 30 ]. WASP function also is dependent 
on its interaction with the WASP interacting protein, WIP [ 31 ]. While WIP is essen-
tial for WASP-mediated actin polymerization, WIP also can bind to F- and G-actin 
on its own to promote the formation and stabilization of actin fi laments. WIP is a 
critical component of the podosome F-actin core; indeed, WIP-null osteoclasts lack 
the core structure while still maintaining the podosome cloud [ 8 ]. As might be 
expected, podosome cores in these cells also lack Arp2/3, cortactin, and WASP. 
Further, the cellular expression of WASP is markedly reduced in WIP −/−  cells, con-
sistent with previous studies suggesting that WIP protects WASP from degradation 
in podosomes [ 32 ]. Outside-in activation of CD44, through attachment of WIP −/−  
cells to substrates such as collagen I or osteopontin, or reaction with an anti-CD44 
antibody, is able to restore normal podosome core formation, suggesting that 
 outside-in signaling through CD44 may have WASP stabilizing functions on its own 
[ 8 ]. However, CD44 activation cannot fully compensate for a lack of WIP in the 
bone resorptive process. While WIP −/−  cells are capable of forming sealing zones, 
resorption is diminished by ~30 %.  
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    Formins 

 Formins are a family of conserved proteins that both nucleate actin and act as 
elongation factors, but unlike the Arp2/3 complex, formins elongate fi laments in a 
linear direction. In general, formins nucleate actin monomer assembly, then proces-
sively move in the direction of the growing fi lament barbed end while preventing 
binding of actin capping proteins. Many formins have additional activities that can 
include actin fi lament severing, depolymerization, and bundling, as well as regula-
tion of microtubule dynamics [ 33 ]. Fifteen formins are expressed in mammals, 
including humans, and can be subdivided into eight families [ 34 ]. The best studied 
of these, the Dia formins (named because of similarity to the Drosophila gene 
 diaphanous ) act as Rho effector proteins and have been implicated in polarity and 
migration of both normal and cancer cells [ 35 ]. They also have been shown to bind 
microtubules and regulate their organization and dynamics. Formins have not been 
well-studied in osteoclasts; however, the mouse Dia protein mDia2 was demon-
strated to alter osteoclast podosome patterning through post-translational modifi -
cation of microtubules [ 36 ]. Briefl y, it was demonstrated that Rho activity, which 
is disruptive to the organization of mature podosome belts, activates mDia2. 
mDia2, in turn, binds and activates the microtubule deacetylase activity of histone 
deacetylase 6 (HDAC6), resulting in loss of microtubule stability and podosome 
organization. Therefore, mDia2’s role in podosome dynamics appears to depend 
more on its activity as a regulator of microtubules than its function as a regulator of 
actin nucleation and elongation. Another formin, FRL1, has been shown to reside 
atop the actin core of macrophage podosomes and to be necessary for their stability 
[ 37 ]. However, it has not yet been demonstrated whether the elongation function of 
FRL1 contributes to this activity, and any role for FRL1 in osteoclast podosomes 
has not yet been identifi ed.   

    F-Actin Binding Proteins 

    VASP 

 VASP, or vasodilator-stimulated phosphoprotein, is a member of the Ena/VASP 
family of actin polymerases that also includes Mena and EVL. Like formins, Ena/
VASP proteins promote linear actin fi lament elongation at barbed ends; however, 
unlike formins, they do not nucleate formation of new fi laments. Ena/VASP pro-
teins stimulate elongation of existing fi laments by processively binding barbed 
ends, thereby protecting these ends from capping protein, and by promoting actin 
monomer addition. It is also suggested that Ena/VASP may suppress fi lament 
branching triggered by Arp2/3 [ 38 ]. Although formins and Ena/VASP proteins 
have similar functions at barbed ends, their roles are not interchangeable [ 39 ,  40 ]. 
In osteoclasts, VASP is demonstrated to be a downstream mediator of nitric oxide 
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(NO)-stimulated motility. NO is a potent downregulator of osteoclastic resorptive 
activity, due to its stimulation of cytoskeletal rearrangements that promote motility 
(and, at high concentrations, detachment), but not bone resorption [ 41 ]. In non- 
motile cells, VASP associates with the integrin α v β 3 , but upon NO stimulation of 
motility, cGMP-dependent protein kinase I causes phosphorylation of VASP, result-
ing in its separation from the integrin [ 42 ]. Further, VASP also is necessary for 
activation of μ-calpain, a Ca 2+ -activated protease that is essential for osteoclast 
motility [ 43 ,  44 ]. Therefore, VASP’s involvement in NO-stimulated cell motility is 
clear, but its precise associations with podosomal components in resting and motile 
osteoclasts remain to be determined.   

    Actin Depolymerizing/Severing Proteins 

    Cofi lin 

 The ADF (actin depolymerizing factor)/cofi lin family of proteins consists of three 
members: ADF, cofi lin-1, and cofi lin-2. ADF and cofi lins exhibit qualitative simi-
larities, but differ quantitatively in their abilities to bind actin monomers and nucle-
ate assembly. While cofi lin has numerous functions in cell biology, it is best 
understood as a regulator of actin fi lament non-equilibrium assembly and disassem-
bly [ 45 ]. At low cofi lin/actin ratios, fi lament severing occurs, while at high ratios 
cofi lin can stabilize the severed fi laments and even nucleate new assembly. 

 Cofi lin is encoded by one of the most abundantly expressed genes in osteoclasts 
[ 46 ]. Cofi lin does not appear to be necessary for podosome formation, but rather, for 
organization of mature podosome belts [ 47 ]. Although cofi lin in present in both 
podosome cores and clouds, the fraction present in clouds is inactive due to phos-
phorylation at serine-3, a modifi cation that prevents cofi lin from binding to actin 
and initiating its severing activity. Indeed, experiments with phospho-mimetic or 
phospho-defi cient cofi lin mutants suggest that the phosphorylation state of cofi lin 
directs its distribution in podosomes. Cofi lin activation (dephosphorylation) was 
found to be triggered by the osteoclast differentiation factor RANKL, and the 
phosphatase SSH1 was implicated in this process [ 47 ]. It is of interest that cofi lin 
was found to be a component of mature, and not nascent, podosomes, since mature 
podosomes found in belts are more dynamically active (i.e. less stable) than the 
individual structures [ 48 ]. Cofi lin’s function as a modulator of actin dynamics may 
be key to the lifespan of mature podosomes. 

 Two more modulators of cofi lin phosphorylation recently have been demon-
strated to play roles in osteoclast activity. LIM kinase 1 (LIMK1) phosphorylates 
and inactivates cofi lin, and mice that lack LIMK1 have reduced bone mass, due in 
part to the increased resorptive activity of  Limk1  −/−  osteoclasts [ 49 ]. In addition, the 
small GTPase RhoE is necessary for osteoclast motility and resorptive capacity due 
to its inhibition of ROCK1, a serine-threonine kinase downstream of RhoE that 
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phosphorylates and inactivates cofi lin. RhoE-defi cient osteoclasts have impaired 
migration velocity and directionality, and far less resorptive capacity. Further, in 
keeping with previous studies showing the role of cofi lin in podosome core dynamics, 
RhoE-depleted osteoclasts demonstrate fewer but thicker podosome cores, with 
slower actin turnover, and smaller sealing zones [ 50 ]. These results further under-
score cofi lin’s role as a key regulator of actin dynamics in osteoclasts.  

    Gelsolin Superfamily 

 Gelsolin is the founding member of a superfamily of proteins that bind to and sever 
microfi laments [ 51 ,  52 ]. Following severing, gelsolin remains as a cap on the new 
barbed end, preventing elongation or reannealing of the shortened fi laments. 
However, severing by gelsolin amplifi es the number of fi laments, so regulated gel-
solin activity followed by uncapping can promote actin polymerization and rebuild-
ing of the cytoskeleton as needed. Gelsolin may also nucleate new actin fi lament 
formation through its binding of actin monomers. In osteoclasts, gelsolin is present 
at high levels in both podosome cores and clouds [ 53 ]. Binding of osteopontin to its 
integrin receptor αvβ3, which causes formation of podosomal structures in osteo-
clasts, results in gelsolin’s association with phosphoinositides [ 54 ]. This associa-
tion, which is regulated by proline-rich tyrosine kinase 2 (PYK2) [ 55 ], causes 
uncapping of actin fi lament barbed ends and subsequent fi lament formation [ 54 , 
 56 ]. At the same time, gelsolin also associates with numerous podosome structural 
proteins and kinases in the podosome signaling complex, including vinculin, talin, 
focal adhesion kinase, and Src kinase [ 57 ]. Gelsolin’s presence in these complexes 
is necessary, since gelsolin-defi cient osteoclasts fail to make podosomes, have 
defective αvβ3-stimulated signaling, are hypomotile, and resorb bone poorly. 
Further, mice lacking gelsolin expression demonstrate an age-dependent thickening 
of both cortical and trabecular bone, resulting in increased mechanical strength 
[ 58 ]. This fi nding is consistent with gelsolin’s important role in osteoclast function, 
although the phenotype is subtle relative to the loss of other podosomal proteins that 
result in osteopetroses and accompanying poor bone quality. Interestingly, one 
human study demonstrated seemingly contradictory results by showing that low 
expression of gelsolin in peripheral blood monocytes (which contain osteoclast pre-
cursors) was associated with low bone mineral density in Caucasian women [ 59 ]. 
The discrepancy between the murine and human studies may be due to cell type or 
species specifi city; nonetheless, these results further suggest the importance of gel-
solin in osteoclast function. Indeed, gelsolin may be more critical to the function of 
osteoclasts than to other podosome-containing cells, since a lack of gelsolin has no 
effect on podosomes of dendritic cells [ 60 ]. 

 Recently, another member of the gelsolin superfamily, adseverin (previously 
called scinderin,  SCIN ), was examined for its role in osteoclast function [ 61 ]. 
Adseverin is the superfamily member most closely related to gelsolin, and like gel-
solin, it binds, severs, and caps actin fi laments. However, it differs from gelsolin in 
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its regulation by calcium and phosphoinositides [ 62 ]. In osteoclasts, adseverin was 
found to be strongly upregulated during the early phases of osteoclast differentia-
tion, while gelsolin levels remained constant, indicating a specifi c role for adseverin 
in the differentiation process. Indeed, shRNA-mediated knockdown in osteoclast 
precursors showed that diminished levels of adseverin resulted in failure to express 
tartrate-resistant acid phosphatase, a marker of osteoclastogenesis, and failure to fuse 
into polykaryons. Knockdown precursors also exhibited altered morphology and 
F-actin distribution, and increased migration [ 61 ]. Thus, adseverin plays an impor-
tant role in osteoclast activity, but one that is distinct from gelsolin.   

    Actin Bundling/Crosslinking Proteins 

    Alpha-Actinin 

 Alpha-actinin is a ubiquitously expressed actin binding protein that crosslinks actin 
fi laments and serves as a platform for initiating protein–protein interactions with 
numerous cytoskeletal and regulatory proteins [ 63 ]. It was one of the fi rst actin 
binding proteins demonstrated to be associated with the adhesion structures of 
osteoclasts [ 64 ]. In osteoclasts, α-actinin is most strongly present in podosome 
cores, but also is present in the cloud domain [ 48 ]. Live-cell microscopy has indi-
cated that during de novo assembly of podosomes, α-actinin becomes present in 
podosomes simultaneously with the appearance of the actin core. Further, the abun-
dance and distribution of α-actinin in the podosome core over time parallels that of 
F-actin [ 28 ]. These results suggest that α-actinin’s fi lament bundling properties are 
critical to consolidation of the core during podosome formation.  

    Plastins/Fimbrins 

 Plastins (also known as fi mbrins) similarly were identifi ed as components of 
podosomes in the earliest studies of the osteoclast actin cytoskeleton [ 64 ]. Plastins 
are generally distributed in regions of high actin fi lament turnover such as podo-
somes, focal adhesions, ruffl ed membranes, and fi lopodia, where they crosslink 
fi laments into tight bundles [ 65 ]. Three plastin isoforms are encoded by distinct 
genes that appear to have evolved from a common ancestor [ 66 ], and are called 
I-plastin ( PLS1 ), L-plastin ( LCP1 ), and T-plastin ( PLS3 ). These are expressed in a 
cell- restricted manner, with osteoclasts expressing both L- and T-plastin [ 67 ]. A role 
for L-plastin was later determined when expression of this protein was demon-
strated to be markedly decreased upon osteoclast attachment to bone, suggesting a 
role in sealing zone formation [ 27 ]. L-plastin was found to be a component of actin 
aggregates that form at membrane extensions at the earliest stages of osteoclast 
attachment to bone. Its complete loss resulted in reductions of these extensions and 
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of sealing zones. These results suggest that L-plastin may be involved in an initial 
actin bundling step that is required for actin aggregates that act as precursors to 
sealing zone formation. Interestingly, mutations in the gene that encodes T-plastin, 
or plastin 3 ( PLS3 ), have been associated with X-linked childhood osteoporosis and 
increased bone fracture risk [ 68 ,  69 ]. Skeletal examination of four boys from two 
families with nonsense mutations in  PLS3  revealed low lumbar spine bone mineral 
density, low trabecular bone volume and low osteoid maturation time but a normal 
bone formation rate [ 69 ]. Any potential contribution of osteoclasts to the bone 
phenotype is yet to be determined. These patients presented with normal numbers 
of osteoclasts; however, bone mineral density was improved in the two boys treated 
with oral alendronate (bisphosphonate inhibitors of osteoclast activity), suggesting 
that the osteoclasts may be overactive. Therefore, additional study of the cellular 
basis of bone fragility in patients with  PLS3  mutations is required.  

    Filamins 

 Filamins are hinged, fl exible homodimers that crosslink actin into orthogonal net-
works. Filamin acts as a bracket to arrange actin fi laments perpendicular to each 
other in T-, X-, and L-shaped junctions that adapt to morphological changes such as 
cell migration [ 70 ]. Three fi lamin isoforms, A, B, and C, are expressed in humans, 
with fi lamin A being the most broadly expressed. Filamin A defi ciency in osteoclast 
precursors results in defective osteoclastogenesis. This is due to impairment of the 
cellular migration that allows precursors to come in contact and undergo fusion into 
polykaryons, since the defect can be rescued in vitro by plating precursors at higher 
densities [ 71 ]. This impaired migration is due to attenuated signaling by the Rho 
family GTPases RhoA, Rac, and Cdc42, which bind directly to fi lamin homodi-
mers. The loss of signaling by these GTPases ultimately results in diminished actin 
polymerization at the leading edge of cells, a process required for cellular migra-
tion. Mice that lack fi lamin A are osteoporotic, a somewhat surprising fi nding given 
that these mice have diminished numbers of osteoclasts. However, the mice also 
show decreased bone formation, demonstrating fi lamin A’s importance in cells of 
the osteogenic lineage in addition to osteoclasts [ 71 ].   

    Plasma Membrane Association 

    Annexins 

 Annexins are a family of proteins that bind acidic phospholipids in a calcium- 
dependent manner, and thereby control numerous aspects of cellular membrane 
dynamics, including membrane organization, vesicle traffi cking, and intracellular 
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signaling [ 72 ]. In addition, a number of annexins have been demonstrated to bind 
F-actin in a calcium-dependent manner, suggesting their potential roles in mediating 
cytoskeletal-membrane contacts. One of the actin binding members of this family is 
annexin A2, which can bind and contribute to bundling of F-actin in the presence of 
calcium [ 73 ]. Annexin A2 can function intracellularly to organize membrane 
domains, but it also can work extracellularly to effect intracellular signaling. 
Annexin A2 (AnxA2) has been well studied in osteoclasts, with its major role 
described as a secreted autocrine/paracrine factor that promotes osteoclastogenesis 
through stimulating expression of RANKL, the cytokine most critical for osteoclast 
differentiation and function [ 74 ]. Indeed, elevated levels of AnxA2 in human 
peripheral blood monocytes (which contain osteoclast precursors) are associated 
with low bone mineral density, suggesting increased osteoclast activity [ 75 ]. In con-
trast, another F-actin-binding annexin family member, annexin A8 (AnxA8) [ 76 ], is 
suggested to work intracellularly to regulate sealing zone formation. AnxA8 was 
identifi ed in a profi le of genes that are upregulated when osteoclasts are cultured on 
bone versus plastic. SiRNA-mediated knockdown of AnxA8 results in osteoclasts 
that have a markedly reduced ability to spread on plastic and are unable to form 
sealing zones on bone [ 77 ]. The mechanism by which this defi ciency occurs remains 
to be discovered.  

    MARCKS 

 MARCKS (myristoylated alanine-rich C kinase substrate) is a broadly expressed 
mediator of membrane-actin interactions [ 78 ]. MARCKS binds acidic phospholipids 
through a basic effector domain, and binds the sides of actin fi laments to crosslink 
them into a rigid meshwork at the membrane. The interaction of MARCKS with 
membranes is disrupted by protein kinase C (PKC)-mediated phosphorylation, while 
MARCKS interactions with actin are disrupted both by PKC-mediated phosphoryla-
tion and by binding calcium/calmodulin [ 79 ]. Because of MARCKS’ ability to orga-
nize actin at membranes, it plays key roles in cell motility and membrane traffi cking. 
In bone resorbing osteoclasts, MARCKS is present not in the sealing zone, but at the 
membrane of the ruffl ed border. Osteoclasts defi cient in MARCKS demonstrate 
excessive exocytosis of cathepsin K, a proteolytic enzyme secreted from the ruffl ed 
border that is particularly important to osteoclastic bone resorption [ 80 ]. Not unex-
pectedly, this excessive release of cathepsin K results in enhanced resorptive activ-
ity. This fi nding suggests a mechanism by which MARCKS crosslinks actin in the 
ruffl ed border to act as a barrier to exocytosis of cathepsin K-containing vesicles. 
Further, MARCKS’ presence at the membrane is regulated by PKCδ. Mouse osteo-
clasts lacking PKCδ have defective cathepsin K exocytosis due to their limited ability 
to phosphorylate MARCKS and remove it from the membrane. This defect can be 
corrected by silencing MARCKS expression, demonstrating that the PKCδ-MARCKS 
pathway is a major regulator of cathepsin K secretion [ 80 ].   
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    Cell-Extracellular Matrix Junction 

    Talin 

 Talin is a cytosolic adaptor protein that links β integrins to the actin cytoskeleton 
and thereby acts as a critical mediator of inside-out integrin activation. This activation 
is a process by which intracellular signal transduction pathways result in conforma-
tional alterations of integrins, thus increasing the binding affi nity of integrins toward 
their substrates. The resulting increased binding subsequently promotes down-
stream cellular processes that include reorganization of the cytoskeleton. Humans 
express two talins, talin1 (TLN1) and talin2 (TLN2), but only the former protein is 
present in osteoclasts. Conditional knockout of mouse talin1 in either osteoclast 
precursors or mature osteoclasts (using the LysM-Cre and Ctsk-Cre systems, 
respectively) results in increased bone density and osteopetrosis, an indicator of 
osteoclast dysfunction [ 81 ]. Ex vivo, talin1-defi cient precursors produce a dearth of 
mature osteoclasts when exposed to osteoclastogenic cytokines, and these precur-
sors demonstrate poor adhesion to substrate and impaired directional migration. 
Osteoclast-specifi c deletion of Rap1, a small GTPase that promotes the association 
of talin with β integrins, similarly promotes dysfunctional osteoclasts and osteope-
trosis. Notably, loss of talin, which would affect all osteoclast integrins, produces a 
more severe phenotype in mice than loss of α v β 3  only. This is in line with other fi ndings 
demonstrating that all integrin classes, and not just a single class, play important 
roles in osteoclast function [ 82 ].  

    Kindlin 

 Kindlins are a family of proteins that, like talin, bind to and activate β integrins via 
inside-out signaling. In spite of the similar overall functions of talin and kindlins, they 
are not functionally redundant, since kindlin mutations are associated with human 
disease, and knockouts in mice elicit severe phenotypes [ 83 ]. The three family mem-
bers are designated kindlin-1, -2, and -3. Mutations of kindlin-3, which is expressed 
specifi cally in hematopoietic cells [ 84 ], are associated with the rare inherited disease 
leukocyte adhesion defi ciency type III (LAD-III). This disease is characterized by 
severe bleeding and recurrent bacterial and fungal infections [ 85 – 87 ]. Mice defi cient 
for kindlin-3 similarly have severe bleeding, and their platelets and leukocytes dem-
onstrate a failure of integrin activation, leading to defective platelet aggregation and 
leukocyte adhesion [ 88 ,  89 ]. A relationship between kindlin-3 and bone health became 
evident when it was observed that some LAD-III patients have increased bone density 
[ 86 ,  90 ,  91 ]. Further, kindlin-3-defi cient mice develop a severe osteopetrosis [ 82 ], 
illustrative of osteoclast defects. Osteoclasts from these mice undergo normal, 
though slightly delayed, differentiation, but have an attenuated ability to adhere to 
the bone matrix protein osteopontin. Integrin-mediated signaling is severely 
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compromised in these cells. Further, although kindlin-3-defi cient osteoclasts produce 
podosome cores, they are unable to arrange them into podosome belts or sealing 
zones, and cannot resorb bone. Loss of kindlin-3 produces greater osteoclast dysfunc-
tion and osteopetrosis than loss of a single integrin, demonstrating this protein’s role 
in activation of the entire inventory of osteoclast integrins [ 82 ].  

    Vinculin 

 Vinculin is a ubiquitously expressed protein that localizes to integrin-based adhe-
sion sites and contains binding motifs for numerous proteins, including F-actin and 
talin [ 92 ]. Loss of vinculin from focal adhesions reduces cell adhesion and alters 
motility. In osteoclasts, vinculin is associated with the podosome cloud [ 64 ]. 
Although vinculin levels increase during osteoclastogenesis, its absence in osteo-
clast precursors does not alter the differentiation process ex vivo [ 93 ]. However, 
mature osteoclasts lacking vinculin are smaller than wild-type osteoclasts in size, 
and they correspondingly possess smaller sealing zones and resorb bone poorly. 
Refl ective of the cell culture fi ndings, mice lacking vinculin in the osteoclast lineage 
have increased bone mass relative to wild-type animals, with unchanged osteoclast 
numbers. Vinculin’s activity in promoting osteoclast cytoskeletal rearrangements 
appears to be distinct from integrin activation, since signaling through α v β 3  is unim-
paired in vinculin-defi cient osteoclasts. Rather, vinculin’s association with talin was 
shown to be a key feature of its function, since vinculin molecules with mutated 
talin binding sites were unable to rescue the defects in vinculin-defi cient cells [ 93 ]. 
Thus, vinculin’s primary role in osteoclast function is as an adaptor to link integrin–
talin complexes to the actin cytoskeleton.  

    Paxillin Superfamily 

 Paxillin (PAX) is a widely expressed adaptor protein that binds actin and integrins, 
thereby distributing into the podosome cloud. Paxillin is also one the fi rst actin 
regulatory proteins to associate with nascent podosomes [ 28 ]. Although deletion of 
many cytoskeletal regulators in osteoclasts causes poor cellular spreading, a com-
plete lack of paxillin results in a “superspread” phenotype that is not caused by 
accelerated differentiation [ 94 ]. Nonetheless, PAX-null osteoclasts demonstrate 
poor bone resorption that is likely to be caused by dysfunction in sealing zone for-
mation. Unlike wild-type osteoclasts, which tend to form small sealing zones that 
are smaller than the cell circumference, PAX-null osteoclasts form actin structures 
that are reminiscent of podosome belts in that they encompass the cell periphery. 
In spite of these large actin structures, resorption pits are shallow and lack well-
defi ned margins. The “superspread” phenotype of PAX-null osteoclasts is likely to be 
related to paxillin’s physical association with myosin IIA [ 94 ]. As described below, 
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loss of myosin IIA in osteoclasts also results in increased cell spreading and 
expansion of the sealing zone [ 95 ], suggesting that this myosin–paxillin interaction 
is involved in constricting the actin structures of osteoclasts into a bone-resorptive 
morphology. 

 Leupaxin (LPXN) is a member of the paxillin superfamily whose distribution is 
preferentially expressed in hematopoietic cells, including cells of the monocyte–
macrophage lineage [ 96 ]. Like paxillin, leupaxin is strongly associated with podo-
somal molecules, including the signaling kinase Pyk2. Overexpression of leupaxin 
via TAT-mediated transduction resulted in osteoclasts adopting lamellipodia-like 
projections, although it is unclear whether this is due to cellular retraction or expan-
sion, since cell size was not measured [ 97 ]. Further, knockdown of leupaxin with 
the use of antisense oligonucleotides resulted in increased spreading and decreased 
bone resorptive capacity, similar to the results obtained from paxillin defi ciency. 
Therefore, leupaxin is likely to work in conjunction with paxillin to mediate organi-
zation of actin structures in podosomes and sealing zones.   

    Motor Proteins and Regulators 

    Myosins 

 The myosin superfamily can be divided into at least 35 classes based on their heavy 
chain structure, resulting in expression of about 40 different myosins expressed in 
human tissues [ 98 ]. Class II nonmuscle myosins, considered to be “conventional” 
because of their structural homology to muscle myosins, were the fi rst to be identi-
fi ed in osteoclasts. Their importance to osteoclast function was fi rst revealed in a 
study showing that injection of anti-myosin II antibodies into these cells inhibits 
bone resorptive activity [ 99 ]. In addition, an F-actin/myosin II complex binds and 
aids in traffi cking of V-ATPases, proton-translocating complexes that are required 
for acid secretion and resorption of bone by osteoclasts [ 100 ]. Later immunocyto-
chemical labeling of osteoclasts for the specifi c myosin isoforms IIA and IIB dem-
onstrated that myosin IIA is enriched in osteoclast podosome belts and sealing 
zones, while myosin IIB is absent from these regions and instead is distributed in a 
fi brillar pattern throughout the cell. Rearrangement of podosomes induced by addi-
tion of soluble osteopontin results in redistribution of MyoIIA and heightened 
MyoIIA presence in lateral F-actin fi bers that connect individual podosomes [ 101 ]. 
A similar distribution of MyoIIA was demonstrated in A7r5 smooth muscle cells 
induced to form podosomes by stimulation with phorbol esters [ 102 ]. These and 
other studies in macrophages suggest that myosin IIA-mediated contractility may 
not be required for the integrity of individual podosomes, but rather, for condensa-
tion of podosomes by regulating the tension of radial actin fi laments in the podo-
some cloud [ 28 ,  103 ]. This is consistent with a study in osteoclasts in which it was 
demonstrated that siRNA-mediated loss of MyoIIA results both in increased cell 
spreading and expansion of the sealing zone [ 95 ]. Unexpectedly, this study also 
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demonstrated a role for MyoIIA in regulation of osteoclast precursor fusion. MyoIIA 
heavy chain (MYH9) expression temporarily decreases by about 50 % during the 
osteoclast differentiation process, with its nadir at days 3–4, at the onset of osteo-
clast precursor fusion. This loss of expression is due to proteolytic degradation of 
MYH9 and is both necessary and suffi cient for the onset of fusion, suggesting that 
MyoIIA-mediated contractility of podosomes can serve as a barrier to cell fusion 
[ 95 ]. As described above, the association of MyoIIA with paxillin is likely to be key 
to its contractile function in osteoclasts [ 94 ]. 

 The functions of two unconventional nonmuscle myosins similarly have been 
studied in osteoclasts. The fi rst of these, myosin X (Myo10) is a double-headed 
myosin that contains in its tail three pleckstrin homology (PH) domains, a myosin 
tail homology 4 (MyTH4) domain, and a FERM domain, and is the sole member 
of its class [ 104 ]. While PH domains are involved in protein–protein and protein–
lipid interactions, MyTH4 domains bind microtubules, and FERM domains link 
cell membrane proteins to the cytoskeleton. MyTH4 domains in this myosin are 
particularly of interest since it is well established that maturation of podosome 
belts and sealing zones from internal podosome rings is a microtubule-dependent 
process [ 16 ,  105 – 108 ]. Immunocytochemical studies showed that Myo10 is absent 
from the podosome belts and sealing zones of mature osteoclasts, but in cells con-
taining internal podosome rings, Myo10 is positioned between, and binds to, both 
F-actin and microtubules [ 109 ]. This fi nding suggests that Myo10 acts as a linker 
between the two cytoskeletal systems during maturation of rings into podosome 
belts and sealing zones (as shown in Fig.  14.2 ). Indeed, osteoclasts in which Myo10 
is knocked down do not make podosome belts, but only podosome clusters and 
rings; sealing zones also do not expand properly. Further, overexpression of the 
MyTH4 or the MyTH4/FERM tail domains specifi cally inhibits both podosome 
belt and sealing zone formation in a dominant negative manner [ 109 ]. These fi nd-
ings demonstrate that Myo10 is critical for expansion of podosome rings into func-
tional peripheral belts and sealing zones. Interestingly, studies in endothelial cells 
 demonstrated that Myo10 is stimulated by bone morphogenetic protein (BMP) in 
a positive feedback loop [ 110 ]. Because BMPs are well established regulators of 
bone morphogenesis, this further suggests a role for Myo10 in skeletal develop-
ment and health. Recently, genetic screens showed a coding region variant of 
Myo10 to be associated with hind limb conformation in Swiss Large White boars 
[ 111 ]. Therefore, although Myo10 has not yet been associated with variation in 
humans, it seems likely that this motor protein may play an as-yet undiscovered 
role in skeletal health. 

 Most recently, the unconventional myosin IXB (Myo9B) was demonstrated to be 
critical to osteoclast function [ 112 ]. Class IX myosins (Myo9A and Myo9B) are 
unusual in containing RhoGAP domains in their tails [ 113 ]. RhoGAPs, numbering 
near 70 in mammalian genomes, accelerate hydrolysis of Rho-bound GTP, thereby 
promoting Rho toward an inactive, GDP-bound state [ 114 ]. These myosins appear 
to be able to regulate the local Rho activity of distinct F-actin pools in cells [ 115 ]. 
While Myo9A is restricted primarily to brain, testis, and spleen, Myo9B is most 
highly expressed in leukocytes, including osteoclast precursors and differentiated 
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osteoclasts [ 116 ]. Notably, Myo9B is localized to F-actin structures in osteoclasts 
that require low Rho activity (podosome belts), while being absent from structures 
that require high Rho activity (sealing zones) [ 112 ]. Further, siRNA-mediated 
knockdown of Myo9B alters podosome patterning and diminishes bone resorptive 
capacity in a Rho-dependent manner. Inhibition of excessive Rho activity caused by 
loss of Myo9B is able to restore normal podosome formation and bone resorption. 
Interestingly, the  MYO9B  gene, which is also expressed in the growth plates of long 
bones, has been associated with human height [ 117 ,  118 ], so it will be of interest to 
determine how alteration of Myo9B expression or function in bone and cartilage 
cells may directly affect skeletal health.  

    Tropomyosins 

 Tropomyosins (Tms) are coiled-coil homo- or heterodimers that bind along the 
α-helical groove of actin polymers and regulate access of other regulatory proteins 
(e.g. myosins, actin nucleators, actin depolymerizing/severing proteins) to the actin 
fi lament [ 119 ]. Approximately 40 tropomyosins have been identifi ed in mammals, 
with the bulk of these expressed in nonmuscle cells. They are encoded by four 
genes,  TPM1 - 4 , and are generated by multiple promoters and alternate splicing to 
create a large molecular and functional diversity. Tropomyosins may be structurally 
divided into high molecular weight and low molecular weight forms of about 284 
and 248 amino acids respectively, based on the presence or absence of sequences 
coded by N-terminal exons. Initial screening of osteoclast tropomyosins by Western 
analysis and RT-PCR revealed the presence of at least seven isoforms from genes 
 TPM1 ,  TPM3 , and  TPM4  [ 120 ]. Because of the similarity in sequence of many 
tropomyosin isoforms, it is often not possible to distinguish between related iso-
forms using antibody reagents; nonetheless, available antibodies demonstrated 
markedly different distributions of the isoforms by immunocytochemistry. 

 Tm-2 and 3 are high molecular weight tropomyosins encoded by  TPM1  that dif-
fer only by the presence of exons 2a or 2b, and are distributed rather diffusely 
throughout the osteoclast, with only loose association with podosome belts and 
sealing zones [ 120 ,  121 ]. Notably, these tropomyosins are gradually upregulated 
from undetectable levels in osteoclast precursors to high levels late in osteoclasto-
genesis, suggesting osteoclast-specifi c functions for these proteins. SiRNA- 
mediated knockdown of Tm-2/3 causes marked fl attening and spreading of 
osteoclasts, along with diminished motility and altered bone resorption. This was 
determined to be caused by gelsolin redistributing from podosomes to the cell inte-
rior, where its actin severing activity increases to cause collapse of the osteoclast 
support scaffolding. Conversely, overexpression of Tm-2 induces cells to adopt a 
highly rounded morphology, caused by the failure of gelsolin to bind and sever 
Tm-2-associated fi laments. Overexpression of Tm-2 also causes aberrant effects on 
osteoclast motility and bone resorption. These studies demonstrate that high molec-
ular weight tropomyosins stabilize the internal scaffolding of osteoclasts that is 
required for these very large cells to maintain a functional morphology [ 121 ]. 
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 In contrast to the high molecular weight Tms -2 and -3 that show little presence 
in osteoclast adhesion structures, the low molecular weight tropomyosin-4 (Tm-4), 
encoded by  TPM4 , is highly enriched in podosome cores and sealing zones. 
Specifi cally, Tm-4 is present on the tops of these structures, away from the mem-
brane faces where new actin fi lament formation occurs [ 120 ]. This fi nding suggests 
that Tm-4 stabilizes the “older” end of podosome cores. Indeed, a ~50 % reduc-
tion in Tm-4 expression results in thinning of the sealing zone actin ring to half its 
normal height. This suppression also results in dramatic losses of osteoclast 
motility and bone resorptive capacity. Conversely, only a modest overexpression 
of Tm-4 causes increased podosome height, but thickened, aberrant sealing zone 
formation and an even greater loss of bone resorption [ 122 ]. These fi ndings demon-
strate that minimal changes in Tm-4 expression can severely alter osteoclast adhe-
sion structures and provide evidence for Tm-4’s role in regulating stability of 
podosome cores. 

 Osteoclasts also express the low molecular weight tropomyosins Tm-5a and 
Tm-5b, which, like Tm-2 and Tm-3, are expressed from the  TPM1  gene and differ 
only by inclusion of either exon 2a or 2b. However, where Tm-2 and -3 are 284 
amino acid residues in length, Tm-5a and -5b contain only 248 residues and differ 
from their longer counterparts in the choice of N-terminal exon. These few differ-
ences between Tm-2/3 and Tm-5a/5b are suffi cient to result in completely different 
subcellular distributions for these tropomyosins. Whereas Tm-2/3 are distributed 
throughout the osteoclast, Tm-5a/5b are strongly present in podosome clouds and 
sealing zones. Like Tm-4, these tropomyosins were present on the basal sides of the 
attachment structures, suggesting that they stabilize the more mature fi laments, 
leaving the newly forming fi laments at the apical membrane free to undergo forma-
tion and turnover [ 120 ]. SiRNA-mediated knockdown of Tm-5a/5b to about 20 % 
of normal levels resulted in more densely packed podosomes, suggesting that loss 
of actin stability in the podosome cloud caused aggregation of the core structures. 
Further, the resulting sealing zones were fl attened relative to normal controls. On a 
functional level, loss of Tm-5a/5b resulted in osteoclasts with increased motility 
that generated more, but shallower, resorption pits. Preliminary studies of podo-
some dynamics suggested that loss of Tm-5a/5b resulted in podosome instability, 
consistent with the accompanying increase in cell motility (P. Kotadiya and B.S. Lee, 
unpublished results).   

    Conclusions 

 While the basic nature of the osteoclast actin cytoskeleton has been appreciated for 
several decades, understanding of its intricacies has grown rapidly in this century. 
Advanced imaging techniques, including high resolution scanning electron micros-
copy and live-cell fl uorescence microscopy, have contributed greatly to elucidating 
the structure and dynamics of the unique podosome-based adhesion structures of 
osteoclasts. Advances in the study of podosomes in other cell types such as macro-
phages also have contributed to this understanding. However, osteoclasts, due to their 
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status as syncytial cells and their ability to generate sealing zones and other distinct 
podosomal patterns, present special challenges in cytoskeletal organization. The 
effects of deletions and mutations of actin-regulatory proteins in murine and human 
osteoclasts underscore the importance of the actin cytoskeleton in bone health. 
Although great progress has been made in identifying the roles for numerous regula-
tors of actin organization, there still exist a variety of these proteins whose functions 
have not been discerned. As we continue to expand our appreciation of the role of 
individual proteins in regulating osteoclast adhesion, motility, and bone resorp-
tion, future challenges will include trying to understand how podosomal com-
plexes perform on a three dimensional level to interact with the extracellular 
environment, both chemically and mechanically. In addition, there is ample room for 
exploration of actin-based functions in osteoclasts beyond the podosome. The 
mechanics of cell–cell fusion in osteoclast differentiation are poorly understood, and 
understanding of intracellular traffi cking of secretory vesicles and other internal 
components is still limited. Nonetheless, the unique nature of the osteoclast has made 
its study of great interest, both for understanding its role in skeletal and organismal 
health, and for the lessons it provides about regulation of the actin cytoskeleton.     
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    Chapter 15   
 The Role of Drebrin-Binding Stable Actin 
Filaments in Dendritic Spine Morphogenesis 

             Tomoaki     Shirao      and     Noriko     Koganezawa   

            Actin Cytoskeletons in Dendritic Spines 

    Actin Governs Dynamic Spine Motility 

 Dendritic spines are the postsynaptic receptive regions of most excitatory synapses 
in the brain [ 1 ]. They are small protrusions from the parent dendritic shaft and typi-
cally consist of a head (about 5.1 × 10 −20  m 3 ) and a neck (about 1.2 × 10 −20  m 3 ) [ 2 ]. 
They form various shapes and marked abnormalities in spine morphology in human 
children with mental retardation [ 3 ], suggesting that the differences between shapes 
refl ect functional differences. Furthermore, high-frequency synaptic activity induces 
changes in the population of spine shapes [ 4 ] and the balance among various shapes 
is changed in a close correlation with learning and memory. Time lapse imaging 
analysis of hippocampal slices has shown that dendritic spines rapidly changed their 
shapes [ 5 ]. However, neither blockade nor induction of neuronal activity affect spine 
motility [ 6 ]. This suggests that the basal motility of dendritic spines is intrinsic to the 
neuron, but it does not directly link to the molecular mechanism of learning and 
memory. 

 Dendritic spines contain high concentrations of actin [ 7 ]. In general, high 
concentrations of actin plays a central role in supporting cell motility, suggesting 
that the morphological change of dendritic spines is governed by actin. In 1998, 
Fischer et al. showed using hippocampal neurons expressing actin labeled with 
green fl uorescent protein that the motility of dendritic spines was completely inhib-
ited when the neurons were treated by latrunculin A, a G-actin-sequestering agent 
[ 8 ]. This clearly indicates that actin plays a pivotal role in spine motility. 
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Polymerization of F-actin (fi lamentous actin) against cellular membranes is thought 
to provide the force for cell membrane dynamics, such as the formation of plasma 
membrane protrusions of migrating cells, suggesting that the polymerization of 
dynamic F-actin in the spine head regulates spine motility. However, the molecular 
mechanism on how F-actin polymerization is regulated in the spine head has still 
not yet been clarifi ed. 

 Studies of actin fi laments in spines suggest the presence of two kinds of actin 
fi laments. On the one hand, actin fi laments appear to be stable over many hours and 
exhibit marked resistance to actin depolymerizing drugs such as cytochalasin D [ 9 ], 
which implies that actin fi laments in spines are extremely stable and fulfi ll a purely 
structural role. On the other hand, individual spines undergo shape changes within 
a timespan of seconds or minutes as was described earlier. Actually the spines rap-
idly and continuously change shapes, but this motility seldom involves changes in 
spine size under basal conditions [ 8 ]. Halpain [ 10 ] addressed that dynamic and 
stable confi gurations of actin fi laments fulfi l their needs for motility versus struc-
tural integrity of dendritic spines. Two pools of actin fi laments compose the spine 
head under normal circumstances. ‘Core’ of stable actin fi laments form the struc-
tural foundation of the spine, while the peripheral population of actin fi laments in 
the spine is dynamic.  

    Two Kinds of Actin Filaments in Mature Dendritic Spines 

    Dynamic and Stable Actins 

 In accordance with Halpain’s prediction, Kasai and co-workers have reported the 
presence of dynamic and stable actins in dendritic spines using PAGFP-actin [ 11 ]. 
They photoactivated PAGFP-actin protomers in F-actin of dendritic spines. As the 
fi laments treadmilled, activated PAGFP-actin protomers reached the end of the fi la-
ment, depolymerized, and diffused away. The fl uorescence from activated mole-
cules decayed in two phases with time constants of 40 s and 17 min, indicating that 
there are two pools of F-actin in the spine: a dynamic one with a fast treadmilling 
rate and a stable one with a much slower treadmilling rate. Larger spines have a 
greater proportion of stable F-actin, although the proportion of stable F-actin is usu-
ally less than the dynamic one. While the dynamic F-actin is observed in the spine tip, 
the stable one is largely restricted to the base core of spine heads. The treadmilling 
of dynamic F-actin is observed from the apex to the base, but the actin protomer in 
the dynamic F-actin pool did not fl ow into the stable F-actin pool. This suggests that 
the two F-actin pools are differentially regulated. 

 It is known that polymerization of dynamic F-actin in spine heads regulates 
the spine motility; however, the spine size under basal conditions does not seem to 
be regulated by F-actin polymerization because, as stated previously, the spine size 
remains rather constant in spite of rapid spontaneous motility.  
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    Mathematical Model for Lamellipodium Protrusion 

 It is suggested that protrusion formation is a consequence of the dynamics downstream 
from nucleation promoting factors (NPFs), with signaling setting the dynamic regime 
but not initiating the formation of individual protrusions [ 12 ]. Zimmermann and 
Falcke developed a mathematical model for lamellipodium protrusion. The model 
lamellipodium consists of an actin gel in the bulk and a highly dynamic range at the 
leading edge, called semifl exible region (SR). Signaling cascades that lead to the 
activation of NPFs, activate the actin related protein complex Arp2/3. Arp2/3 initi-
ates the growth of a new fi lament branch from an existing fi lament in SR, pushing 
the lamellipodial membrane forward. Individual lamellipodia form due to random 
supercritical fi lament nucleation events amplifi ed by autocatalytic branching. 
This model can be applied to the incessant lamellipodia formation in many cells 
with a constant state of the signaling pathways upstream from NPFs.  

    Model of Spontaneous Spine Motility 

 Applying Zimmermann and Falcke’s model to the actin cytoskeleton in dendritic 
spine, spontaneous rapid spine motility (periodic lamellipodium formation) may be 
determined by the autocatalytic nature of branching of actin fi laments of the 
dynamic F-actin pool, and by the length dependence of bundling, capping and sev-
ering of them. The stable F-actin core provides a stiff substrate for actin fi laments in 
the lamellipodium to push back against to extend the postsynaptic membrane [ 13 ]. 
Although the nature of the stable F-actin core has not been well elucidated, a spine- 
resident side-binding protein of F-actin named drebrin, which is localized at the 
core region of dendritic spines [ 14 ], is thought to be an important element of the 
stable F-actin pool [ 15 ]. 

 Although spine is too small to directly observe the two kinds of F-actins, we can 
observe fast and slow treadmilling of actin fi laments in axonal growth cones. In the 
lamellipodia at the periphery of the growth cone, actin fi laments are similar to the 
dynamic F-actin in dendritic spines in terms of the absence of drebrin. They fl ow 
retrogradely at rates of approximately 4 μm/min [ 16 ]. F-actin in the actin arc at the 
base of the lamellipodia contains drebrin, which fl ows transversely rather than lon-
gitudinally. This retrograde fl ow of drebrin-binding F-actin occurs more slowly 
(approximately 1 μm/min) [ 17 ]. This indicates that peripheral F-actin that does not 
bind to drebrin shows more rapid treadmilling than drebrin-binding actin fi laments. 
In addition, the drebrin-binding F-actin is resistant to the actin depolymerizing 
agent cytochalasin D, suggesting that they are stable actin fi laments. 

 Together it is suggested that dendritic spines consist of dynamic and stable F-actin 
pools. Basal motility of dendritic spines occurs due to random supercritical fi lament 
nucleation events amplifi ed by autocatalytic branching in the dynamic F-actin pool. 
Drebrin-binding actin fi laments in the stable F-actin pool form a cross- linked gel, 
serving as the structural element for treadmilling of dynamic F-actin to push back 
against the spine membrane.   
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    Drebrin Governs the Formation of Stable F-Actin 

    Modulation of Helical Structure of F-Actin by Drebrin 

 F-actin consists of a double helix of actin protomers decorated with its binding 
proteins. The helical structure plays an important role in modifying the relationship 
(binding activity) between F-actin and actin-regulating proteins [ 18 ]. Variations in 
the helical structure of F-actin are modulated by several side-binding proteins of 
F-actin (the double helix of actin protomers). 

 Tropomyosin is a typical side-binding protein of F-actin found in virtually all 
eukaryotic cells. Brain tropomyosin binds to F-actin with a stoichiometry of 1:7 
(tropomyosin: actin protomer) with a dissociation constant (Kd) of 2.2 × 10 −7  M 
[ 19 ]. Similarly drebrin binds to F-actin with a stoichiometry of 1:5 (drebrin : actin 
protomer) with a dissociation constant (Kd) of 1.2 × 10 −7  M [ 20 ]. In spite of their 
similarity in the biochemical actin-binding property, atomic force microscopy anal-
ysis shows the signifi cant differences in the helical structure. Tropomyosin forms a 
helix pitch of 36.5 nm, which is similar to the pitch of bared double helix of actin 
protomers. In contrast, drebrin forms the 40.0 nm pitch of actin fi laments [ 21 ]. This 
difference makes it possible that the drebrin-binding F-actin and the other F-actins 
respond differently to the same signal within small dendritic spines.  

    Inhibition of F-Actin Depolymerization by Drebrin 

 Mikati et al. [ 22 ] reported that drebrin signifi cantly decreased the depolymerization 
rates of uncapped fi laments, reaching 88 % inhibition at full saturation, and 50 % 
inhibition is achieved at a low binding density of drebrin (∼18 %). Drebrin causes 
stronger inhibition of barbed-end depolymerization compared to pointed-end depo-
lymerization at the same binding density. Even in the presence of latrunculin A, 
drebrin inhibits the full depolymerization of actin fi laments. Furthermore, differential 
scanning calorimetry (DSC) study shows that the T  m   of F-actin was increased by 0.5 °C 
in the presence of saturating amounts of drebrin. Taken together, it is indicated that 
drebrin forms stable actin fi laments.    

    Spine Morphogenesis 

    Drebrin Clustering in Dendritic Filopodia Mediates 
Spine Morphogenesis 

 Dendritic spines have two major structural elements, the postsynaptic density (PSD) 
and the actin cytoskeleton. Although PSD scaffold proteins such as PSD-95, Shank, 
and Homer are known to play pivotal roles in spine morphogenesis [ 23 – 25 ], 
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the initiation of spine morphogenesis precedes synaptic assembly of PSD-95 [ 26 ]. 
Moreover mutant mice which lack PSD-95 expression exhibit standard spine mor-
phology [ 27 ], suggesting that molecules other than PSD scaffold proteins govern 
spine morphogenesis. 

 There are two models for the formation of dendritic spines. One model is that 
dendritic fi lopodia serve as the precursor of dendritic spines, and the other is that 
dendritic spines emerge from shaft synapses. The former model predominates dur-
ing neuronal development. Developmental changes of the actin cytoskeleton within 
fi lopodia during spine morphogenesis have been intensely studied because the actin 
cytoskeleton regulates the morphology of both fi lopodia and spines. 

 In vitro study shows that fi lopodia from the dendrites are classifi ed into two types 
in terms of the presence of drebrin clusters: diffuse-type fi lopodia and cluster-type 
fi lopodia [ 28 ]. Most cluster-type fi lopodia appose presynaptic terminals, but diffuse- 
type fi lopodia do not. This indicates that cluster-type fi lopodia are more matured 
than diffuse-type. On the other hand, the half of cluster-type fi lopodia do not contain 
PSD-95, while most mature spines contain PSD-95 [ 28 ], indicating that cluster-type 
fi lopodia are not mature spines but their precursors. Similarly, drebrin has been 
already observed at the nascent contact site of the dendrite by the axon in vivo [ 29 ]. 
Thus it is indicated that dendritic spines develop via cluster-type fi lopodia that have 
been transformed from diffuse-type fi lopodia. 

 Drebrin-binding stable F-actin seems to play a pivotal role for the establishment 
of postsynaptic structures. Drebrin content in dendritic spines correlates with spine 
head size, suggesting that the proportion of stable F-actin in the spine head seems to 
regulate the spine size [ 14 ]. During development, clustering of drebrin with F-actin 
occurs at postsynaptic sites in dendritic fi lopodia. In parallel with this change, dre-
brin changes its isoform from embryonic-type (drebrin E) to adult-type (drebrin A) 
[ 29 ,  30 ]. Interestingly, synaptic clustering of PSD-95 and NMDARs partially 
depend on drebrin [ 28 ,  31 ]. Additionally, drebrin is involved in the regulation of 
AMPAR traffi cking to the postsynaptic site [ 32 ].  

    AMPA Receptor Facilitates the Drebrin Clustering 
in Dendritic Spines 

 How is drebrin clustered at postsynaptic sites? Although the aforementioned studies 
suggest that the conversion of drebrin isoform expression from drebrin E to drebrin 
A is involved in the drebrin clustering, the premature expression of drebrin A 
induces abnormally large headless protrusions with the unrestricted accumulation 
of F-actin, PSD-95 and drebrin [ 33 ], indicating that the conversion of drebrin 
isoform plays a role for the targeting mechanism of postsynaptic molecules, but is 
not a suffi cient condition for postsynaptic formation. 

 The synchronous development of drebrin clustering and functional turnover of 
synaptic vesicles indicates that synaptic activity is involved in drebrin  clustering at 
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postsynaptic sites. Inhibition of action potentials with TTX decreases drebrin clus-
ter density, while inhibition of GABAA-receptor with picrotoxin, which enhances 
the excitatory component of synaptic transmission, increases drebrin clustering 
[ 34 ]. Thus spontaneous synaptic activity is involved in the drebrin clustering. 
Moreover, the study using subtype-specifi c blockers of glutamate receptors has 
shown that AMPA receptor, but neither NMDA receptor nor metabotropic gluta-
mate receptor, regulates the clustering of drebrin at the postsynaptic site [ 34 ]. 

 Then how does AMPAR regulate drebrin clustering? Using the fl uorescence 
recovery after photobleaching (FRAP) analysis we have explored a cellular basis 
for activity-dependent drebrin clustering and have demonstrated that AMPARs spe-
cifi cally regulates drebrin dynamics within dendritic spines. Neurons were trans-
fected with vectors that encoded drebrin A fused to enhanced green fl uorescent 
protein (eGFP). Individual eGFP molecules can be rendered nonfl uorescent, or 
‘bleached’, with high-intensity laser pulses. Such pulses darken the target area until 
new, unbleached eGFP-drebrin replaces the bleached molecules during normal pro-
tein turnover. Under normal physiological conditions that allow spontaneous neuro-
nal activity, about a quarter of total drebrin within a single spine is stabilized. 
Applications of CNQX or AP5 show that the activity of AMPARs, but not that of 
NMDARs, signifi cantly decreases the level of stable drebrin in spines. Together it is 
indicated that activated AMPAR accumulates the stable F-actin bound by drebrin at 
the postsynaptic site, facilitating the recruitment of PSD-95, NMDAR and other 
postsynaptic proteins, including AMPARs themselves as suggested in the above 
section, into dendritic spines during development.  

    Spikar Is Involved in the Drebrin-Mediated Spine Formation 

 Drebrin initiates spine formation and the decrease of drebrin results in the decrease 
of spine density [ 31 ,  35 ]. However, an increased amount of drebrin does not raise 
the number of normal spines, but forms the large number of small protrusions from 
the dendritic shaft [ 36 ,  37 ]. These facts suggest that there is an unidentifi ed protein 
which mediates the drebrin-dependent spine formation. 

 To explore a drebrin-binding molecule mediating spine formation, we performed 
a yeast two-hybrid screen using drebrin as bait and found a novel drebrin binding 
protein [ 38 ]. This protein localizes in neuronal nuclei as well as in dendritic spines, 
and this is why we named it spikar (localizes in  spi ne and  kar yoplasm). Unlike 
drebrin, the up-regulation and down-regulation of spikar expression results in the 
increase and decrease of the spine density, respectively. Interestingly spikar does 
not affect the spine morphology different from drebrin [ 38 ]. The localization of 
spikar depends on drebrin whereas that of drebrin does not depend on spikar. 
In addition, spine formation activity of spikar depends on drebrin. Together it is 
suggested that drebrin might function to include spikar to the stable F-actin complex 
at postsynaptic sites, resulting in the spine formation.   
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    Conclusion and Perspective 

 Dendritic spines are formed from dendritic fi lopodia in parallel with the appearance 
of stable F-actin instead of dynamic F-actin at postsynaptic sites. Stable F-actin 
consists of drebrin-binding actin double helix polymers, which shows the slow 
treadmilling and the increase of heat stability as well as the elongation of the helix 
pitch. Although the developmental conversion of drebrin isoforms, drebrin E to 
drebrin A, is involved in the accumulation of stable F-actin, which facilitates further 
accumulation of postsynaptic scaffold proteins and neurotransmitter receptors, 
AMPA receptor activation seem to be needed for more precise accumulation of 
stable F-actin at postsynaptic sites. 

 It is believed that the motility of actin fi laments is of importance for synaptic 
plasticity but further investigation, particularly focusing on the stable and dynamic 
F-actin, is needed to reveal the actual role of the actin fi laments. Furthermore, since 
the appearance of the stable actin pool is a good marker of synaptic maturation, we 
suggest drebrin as an appropriate surrogate marker of synaptic function. Recently, it 
has been recognized that mislocalization and dysregulation of postsynaptic cyto-
skeletons are crucial events regarding pathophysiology of so-called “synaptopa-
thies” such as Alzheimer disease. In addition, human induced pluripotent stem cells 
(hiPSCs) provide new possibilities for drug discoveries because human specifi c side 
effects could be tested easily using those cells. Thus, drebrin can be used as the sur-
rogate marker in hiPSCs-derived neurons as well. For this reason we expect drebrin 
be widely used in drug discovery and developmental fi elds.     
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    Chapter 16   
 The Role of the Actin Cytoskeleton in Cancer 
and Its Potential Use as a Therapeutic Target 

             Simon     Brayford    ,     Galina     Schevzov    ,     Julien     Vos    , and     Peter     Gunning    

            Actin; The Building Block of a Functionally Diverse 
Cytoskeleton 

 Actin is the most abundant protein found in eukaryotic cells and represents the basic 
subunit of the microfi lament system. As well as the role of actin fi laments in muscle 
cells as part of the contractile apparatus, non-muscle actin plays a role in almost all 
cellular functions including cell division, polarity, maintenance of cell shape and 
cell motility [ 1 ]. This 42 kDa globular protein undergoes cycles of polymerisation 
and disassembly between its globular and fi lamentous forms. The fi laments formed 
are helical polymers with an overall molecular polarity and exist in a constant 
state of fl ux with new monomers being added to the barbed end, and removed at the 
pointed end to produce free monomers in an ATP dependent process [ 2 ]. This cycli-
cal process, known as tread-milling, gives rise to the dynamic nature of actin fi la-
ments, allowing precise cytoskeletal structures to be quickly and effi ciently 
assembled as needed. Actin fi laments are found as organised assemblies localised in 
discrete areas of the cytoplasm where they perform their functions in response to 
different stimuli. As well as individual fi laments, actin is often found bundled into 
thick cables which traverse the cell, known as stress fi bers. The biochemistry of 
actin alone cannot explain the complexity of function observed under physiological 
conditions. Actin achieves its vast array of functions via its interaction with a rich 
variety of actin binding proteins, of which more than 60 classes have been described 
[ 3 ]. A handful of these are relevant to the role of the actin cytoskeleton in disease, 
and their potential as therapeutic targets will be discussed here.  
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    Actin Nucleating Factors 

 Spontaneous assembly of pure actin monomers is energetically unfavourable due to 
the instability of actin dimers and trimers, but once polymerisation has initiated, 
fi laments grow rapidly. Subunit addition at the barbed end is diffusion limited, 
meaning that the rate of growth is determined by the probability of subunits colliding 
with the end [ 4 ]. Although ADP-actin subunits dissociate faster from the barbed end 
than ATP-actin subunits, the resulting tread-milling would still be very slow [ 5 ]. 
Under physiological conditions, actin assembly proteins or nucleating factors medi-
ate fi lament assembly by bringing monomers within close proximity to one another, 
promoting rapid polymerisation. The actin-related protein 2 and 3 complex (Arp2/3) 
was the fi rst actin nucleating factor to be described [ 6 ]. Upon activation, Arp2/3 
binds to the side of a pre-existing actin fi lament, generating a stable trimer for the 
growth of a daughter fi lament, forming a branch at a 70° angle from the mother fi la-
ment [ 7 ]. Subsequent branching creates a dendritic actin network crucial for the 
production of rapid membrane protrusions associated with cell motility such as 
lamellipodia. Unsurprisingly, the Arp2/3 complex is abundant at the leading edge of 
migrating cells where it functions downstream of WAVE and N-WASp activators, 
respectively, in response to rac signalling [ 8 ]. Furthermore, it has been demonstrated 
that cells lacking Arp2/3 expression are unable to produce lamellipodia. Interestingly 
however, Arp2/3-depleted cells respond normally to shallow gradients of PDGF, 
indicating that lamellipodia are not required for chemotaxis [ 9 ]. Cortactin acts syn-
ergistically with the Arp2/3 complex to stabilise branch junctions [ 10 ]. Another 
family of actin fi lament nucleating factors are the formins which can mediate both 
actin assembly and disassembly to produce a vast array of cytoskeletal structures. 
Formins have been demonstrated to be capable of nucleating, polymerising, 
bundling and severing actin fi laments in vitro [ 11 ]. To date, there are 15 known 
mammalian formins, grouped into 7 families [ 12 ]. Unlike the Arp2/3 complex, 
formins nucleate actin fi laments and remain bound to the barbed end, generating 
unbranched actin fi laments through a processive capping mechanism [ 13 ]. Generally, 
formins exist in an auto-inhibited state between their N-terminal Diaphanous 
Inhibitory Domain (DID) and C-terminal Diaphanous Activating Domain (DAD). 
Activation occurs when an active Rho-GTPase disrupts the interaction between the 
DID and DAD domains [ 14 ]. It is important to note that, while plants express many 
isoforms of actin [ 15 ] suggesting an evolutionary need to diversify function, only 
two cytoskeletal isoforms of actin exist in mammalian cells. Given the functional 
diversity of actin observed in higher organisms, it begs the question of how a puta-
tively more complex system can achieve this with a seemingly simpler array of 
building blocks at its disposal. The answer lies in the fact that, unlike plants, actin 
fi laments in animal and yeast cells are not a homogeneous system but rather consist 
of compositionally distinct fi laments arising from the inclusion of various isoforms 
of tropomyosin [ 16 ].  
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    Tropomyosins as Master Regulators of Actin Filament 
Form and Function 

 Tropomyosin (Tm) is an alpha-helical, coiled-coil protein, dimers of which associate 
head-to-tail to form a continuous polymer which lies along the major groove of 
actin fi laments [ 17 ]. The role of tropomyosin in muscle is very well understood 
where it is responsible for regulating the interaction between actin and myosin [ 18 ]. 
Non-muscle cells also contain tropomyosin where its proposed role is to stabilise 
actin fi laments by modulating their interactions with actin binding proteins [ 19 ]. 
Recent studies in a variety of systems have shown that the diversity of actin cyto-
skeletal function is paralleled by a diversity of tropomyosin isoforms. Isoforms of 
tropomyosin are generated by the alternative splicing of four mammalian genes 
resulting in over 40 isoforms, the majority of which are cytoskeletal. The use of 
alternative promoters at the amino terminus gives rise to either high molecular 
weight (HMW) isoforms or low molecular weight (LMW) isoforms [ 20 ]. Different 
tropomyosin isoforms can differentially regulate actin fi lament function. Actin fi la-
ments decorated by different isoforms of tropomyosin have been shown to recruit 
different actin binding proteins and myosin motors, leading to a difference in fi la-
ment stability [ 21 ,  22 ]. Functionally distinct sub-populations of actin fi laments can 
therefore be defi ned on the basis of their tropomyosin isoform composition. 
Tropomyosin isoforms also display extensive intracellular sorting, resulting in spa-
tially distinct actin fi lament populations. Sorting of Tm isoforms has been observed 
in a number of cell types, including fi broblasts, epithelial cells, osteoclasts, neurons 
and muscle cells [ 23 ]. The exact mechanism underlying the way in which different 
isoforms of tropomyosin are targeted to specifi c actin structures within the cell 
remains unknown but a few independent experiments have provided some insights. 
On one hand, a molecular sink model has been proposed whereby isoforms accumu-
late in actin-based structures where they have the highest affi nity, rather than the 
presence of an intrinsic sorting signal that directs particular isoforms to a single 
geographical location [ 24 ]. Other groups’ work in yeast has revealed the importance 
of the N-terminal acetylation of tropomyosin in effecting its cellular localisation 
and function. Acetylated tropomyosin (Cdc8) is found predominantly in the con-
tractile cytokinetic actomyosin ring (CAR) whereas the un-acetylated form is seen 
exclusively on interphase actin fi laments [ 25 ,  26 ]. In addition, the acetylated state of 
yeast tropomyosin can regulate the motility of myosin, with the motility of class II 
myosin being affected but not that of class I and V myosin [ 27 ,  28 ]. Johnson et al. 
[ 29 ] have recently demonstrated that the formin isoform used to build an actin 
fi lament in yeast determines which tropomyosin is incorporated into the fi lament and 
that in turn dictates the functional characteristics of the fi lament including binding 
of specifi c myosin motors. 

 Data so far provides us with a working model for tropomyosin-directed regulation 
of actin fi lament function (Fig.  16.1 ). Cell culture studies have shown that actin fi la-
ments decorated with different Tm isoforms recruit different actin binding proteins 
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ultimately regulating the organisational and functional properties of the  fi laments 
[ 21 ,  22 ]. Finally, there is the issue of whether a single actin fi lament is restricted to 
being decorated by only one isoform of tropomyosin or if hetero- polymers can lie 
along the same fi lament. With the advancement of super-resolution microscopy 
techniques, answers to these questions are likely on the horizon.

       Cellular Motility Driven by the Assembly and Disassembly 
of Actin Filaments 

 Directional motility is a fundamental cellular process essential for embryonic 
morphogenesis, wound healing, immune surveillance and tissue repair. Dysregulation 
of this process resulting in aberrant cell movement is a hallmark feature of metastatic 
cancer cells. The development of metastases accounts for more than 90 % of  cancer 
related mortality [ 30 ], highlighting the need for an increased understanding of the 

  Fig. 16.1    Working model for tropomyosin-directed regulation of actin filament function. 
When Tm5NM1 binds to actin fi laments, they become permissive for myosin II interaction, and 
this can lead to myosin II recruitment to these fi laments. Simultaneously, Tm5NM1 eliminates 
ADF binding to the fi laments, which results in more-stable fi laments engaged in contractile activity 
[ 22 ]. By contrast, binding of Tm3 is permissive for ADF binding, which promotes severing of the 
fi laments and greater turnover. In parallel, fascin promotes fi lament bundling and the result is 
non- contractile, stable fi lopodia forming fi laments [ 21 ]. In both cases, multiple mechanisms 
reinforce the fi nal outcome       
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regulatory mechanisms underlying cell motility. Almost universally, eukaryotic cell 
migration involves a series of four highly orchestrated steps including protrusion of 
the leading plasma membrane, formation of cell-substrate adhesions, generation of 
acto-myosin contractile force and release of substrate adhesions at the trailing cell 
rear [ 31 ]. Dynamic remodelling of the actin cytoskeleton underlies cell migration, 
with many essential cytoskeletal proteins conserved across eukaryotes. This may 
explain why similar motility phenotypes are observed across a broad range of cells 
such as fi broblasts, neuronal and epithelial cells. As mentioned earlier, rapid 
assembly of actin fi laments by addition of monomers at the barbed end and disas-
sembly at the pointed end results in a tread-milling effect. This retrograde fl ow of the 
actin fi lament in a particular direction underlies the principal step in cell migration, 
being protrusion of the leading edge in the direction of movement. Although this 
process has been widely studied, a detailed mechanism underlying how this process 
is regulated and coupled to the rest of the cell migration cycle to translate a persistent 
protrusive force into whole cell translocation remains to be fully understood. Cells 
extend four different plasma membrane protrusions at the leading edge; lamellipodia 
which can extend long distances through the extracellular matrix to pull cells through 
tissues [ 32 ], fi lopodia which explore the cell’s surroundings, blebs which have been 
described to drive directional migration during development [ 33 ] and invadopodia 
are protrusions which allow invasion through tissues via metalloprotease mediated 
degradation of the extracellular matrix [ 34 ]. Each of these structures uniquely con-
tributes to migration and, depending on the specifi c circumstances can also co-exist 
at the leading edge as has been previously observed in migrating zebrafi sh cells dur-
ing gastrulation [ 35 ]. Perhaps the most well-studied of these structures is the lamel-
lipodium. These thin, sheet-like projections were fi rst described and named by 
Abercrombie in 1970 who observed them at the leading edge of fi broblasts in culture 
[ 36 ]. Through electron microscopy studies, he and colleagues identifi ed the domi-
nant structural component of lamellipodia to be branched actin fi laments [ 37 ]. Later, 
it was demonstrated that the Arp2/3 complex was localised to the branch junctions in 
these networks and that the branches adhered very closely to the 70° angle observed 
in vitro [ 38 ].  

    Early Views on the Composition of the Leading Edge 

 As the lamellipodium continues to advance, it leaves behind a region known as 
the lamella, where actin fi laments are unbranched, and the Arp2/3 complex is absent. 
It has previously been demonstrated in vitro that tropomyosin competes with Arp2/3 
for binding sites on actin fi laments [ 39 ]. Due to the enrichment of Arp2/3 and the 
branched organization of actin fi laments observed in lamellipodia it was proposed 
that tropomyosin must be absent from this region. This model was supported by 
DesMarais et al. [ 40 ] who examined cells stained with anti-tropomyosin antibodies 
and found that none stained the lamellipodium. However, more recent work in neu-
roblastoma cells has shown that, in contrast to Tm5NM1, TmBr3 (previously shown 
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to induce lamellipodia formation in non-neuronal cells [ 22 ]) actually supported 
the activity of the Arp2/3 complex rather than inhibiting it, indicating that TmBr3 
may work simultaneously with the Arp2/3 complex in neuronal cells [ 41 ]. Finally, 
through the use of antibodies and fl uorescently-tagged isoforms it has been demon-
strated that tropomyosins are indeed present in signifi cant amounts in the lamellipo-
dia and fi lopodia of spreading normal and transformed cells [ 42 ]. These observations 
indicate that the view of the role of tropomyosin in regulating actin fi laments within 
the lamellipodium needs to be signifi cantly revised.  

    Two Distinct Actin Filament Networks to Drive 
the Protrusion of Migrating Cells 

 For many years, the Arp2/3 complex was thought to be the sole mediator of actin 
fi lament assembly in lamellipodia. More recently however, other actin nucleators 
have been found to contribute to lamellipodium extension, including several members 
of the formin family. As mentioned earlier, formins promote fi lament elongation 
without branching through a processive capping mechanism and the formin mDia1, 
a RhoA target, has been shown to localise to the leading edge [ 43 ]. It has been pro-
posed that two structurally distinct populations of actin fi laments may actually over-
lap at the leading edge to occupy the same space [ 44 ]. In other words, the actin 
cytoskeleton is organised into two molecularly distinct yet collaborating fi lament 
networks wherein the narrow lamellipodium undergoing fast, Arp2/3-mediated tread-
milling is superimposed by a more stable, linear array of actin fi laments that reach all 
the way to the leading edge [ 45 ]. A critique of this model has raised the question of 
how these two structures, both composed of actin and occupying the same cellular 
region, are differentially regulated and coordinated in time and space to maintain a state 
of persistent protrusion coupled to cell translocation [ 46 ]. With an ever-increasing 
understanding of the biology of formins and tropomyosins, the answer to this key 
regulatory mechanism will likely be revealed in the near future.  

    Stress Fibers Interact with Non-muscle Myosins 
to Generate Contractile Force 

 For coordinated cell migration to occur, persistent membrane protrusions must be 
coupled to contraction of the cell body to generate force. Much like the contractile 
apparatus of the sarcomere in muscle, this is achieved in non-muscle cells via the 
interaction between actin and myosin motor proteins. The non-muscle myosin II is 
a ubiquitous molecular motor which, upon phosphorylation by Rho Kinase, binds 
and contracts actin bundles in an ATP dependent manner [ 47 ]. The tension induced 
by myosin II depends upon the tethering of actin stress fi bers to the substratum via 

S. Brayford et al.



379

focal adhesions. Focal adhesions are integrin-based, large multimolecular assem-
blies that form a structural bridge between the substrate and the actin cytoskeleton 
[ 48 ]. Through fl uorescence microscopy studies it has been established that the 
HMW Tropomyosins; Tms 1, 2, 3 & 6 as well as the LMW Tms 5NM1 & 2 clearly 
localise to actin stress fi bers in a variety of cell types. Studies show that the Tm5NM1 
isoform is able to promote isoform-specifi c recruitment of a myosin II motor to 
stress fi bres containing this Tm. By contrast, a Tm that induces lamellipodia, 
TmBr3, leads to a reduction in active myosin II levels [ 22 ]. This is compatible with 
the observation that Tm isoforms can differentially regulate myosin mechanochem-
istry in a cell-free system and suggests a possible mechanism to explain the effects 
of Tm5NM1 and TmBr3 on myosin location and activity [ 49 ].  

    Aberrant Signalling Leads to Alterations to the Actin 
Cytoskeleton in Cancer 

 Most of the alterations that lead to tumour formation and metastasis can be described 
as being associated with several hallmarks of cancer cells, which represent the 
properties that are necessary for cancer cell survival and tumour spreading. These 
genomic or epigenetic changes target pathways that lead to uncontrolled prolifera-
tion, disruption of apoptotic mechanisms, initiation of angiogenesis, evasion of 
immune surveillance and the ability to invade into surrounding tissues to form 
metastases [ 50 ]. Owing to the critical role of invasion and migration in metastasis, 
there has been considerable interest in targeting cancer cells’ migration machinery 
as a novel therapeutic approach. However, it has become clear that cancer cells use 
a range of motility phenotypes to migrate and invade [ 51 ]. Transitions between 
epithelial and mesenchymal phenotypes of cells are required for normal morphoge-
netic processes and tissue remodelling during embryogenesis. However, sustained 
signalling by oncogenic Ras may result in morphological transformation to a mes-
enchymal phenotype, which is associated with changes in gene expression, loss of 
cell–cell adhesions and increased invasiveness of tumour cells [ 52 ]. Alterations to 
the actin based cytoskeleton are also an established characteristic of transformed 
cells. Oncogenic signalling pathways directly target the actin cytoskeleton leading 
to disruption of stress fi bers (Fig.  16.2 ) [ 53 ], and associated adhesive structures 
which in turn leads to enhanced motility and invasiveness of tumour cells along with 
anchorage-independent growth and cellular tumourigenicity [ 54 ]. These fi ndings are 
supported by studies in which oncogenic-mediated changes to the actin cytoskeleton 
were able to be reversed by ectopic expression of specifi c actin fi lament stabilising 
proteins such as tropomyosin [ 55 – 60 ]. The precise mechanisms by which these 
changes to the actin cytoskeleton contribute to signalling events that provide a tumour 
cell with a selective growth advantage remain to be fully understood. Consequently, 
the observed aberrant organisation of the actin cytoskeleton in transformed cells has 
made it an attractive target for early chemotherapeutic strategies [ 61 ].
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       The Problem with Targeting the Actin Cytoskeleton 
for Chemotherapy 

 To date, little progress has been made with compounds that disrupt the organisation 
of actin fi laments, mainly due to the essential role of actin in the composition of the 
functional unit of muscle contraction, the sarcomere, universal disruption of which 
results in intolerable toxicity to cardiac and respiratory muscle. Furthermore, selec-
tive drug targeting has been hampered by the plasticity of the actin cytoskeleton 
[ 61 ]. As mentioned earlier, the actin cytoskeleton is not a single, uniform system but 
rather a series of unique fi lament populations with distinct functions arising from 
their inclusion of various isoforms of tropomyosin. This opens up the exciting 
possibility that certain fi lament populations may be indispensable for tumour cell 
function, yet molecularly distinct from those found in the contractile apparatus of 
heart and skeletal muscle.  

  Fig. 16.2    The unique organisation of the actin cytoskeleton of cancer cells. Fluorescent staining 
of the actin cytoskeleton with phalloidin ( red ) and DAPI, a nuclear stain ( blue ) of ( a ) primary 
fi broblasts, ( b ) HT29 colon cancer, ( c ) SW480 colon cancer and ( d ) 131W1 astrocytoma cancer 
cells. Scale bar: 10 μm (Schevzov, 2014, unpublished)       
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    Tropomyosin as a Regulator of Cancer Cell Transformation 

 The changes in rearrangement of microfi lament bundles seen in transformed cells 
appear to correlate with alterations in tropomyosin expression. Decreased expres-
sion of non-muscle tropomyosins is commonly associated with the transformed 
phenotype. In addition, these changes in Tm expression occur in cells of all species 
examined including chicken, rodents and human, indicating that alterations of Tm 
expression is a common feature of the transformed phenotype [ 62 ]. In particular, 
the expression of HMW Tm isoforms (Tm1, 2 and 3) is decreased during onco-
genic transformation [ 63 – 65 ]. The drive behind this shift in tropomyosin expres-
sion in transformed cells is not well understood but may refl ect a requirement for 
the cell to eliminate certain functions associated with HMW Tm containing actin 
fi laments [ 66 ].  

    Down-Regulation of HMW Tropomyosins; A Crucial Step 
in Oncogenic Transformation 

 It has been demonstrated that Tm2 expression is reduced in malignant ovarian car-
cinomas compared to benign ovarian tumours [ 67 ] and that Tm1 and Tm2 are 
reduced in prostate carcinoma compared to prostate hyperplasia [ 68 ]. Although it 
remains unclear whether suppression of HMW Tm contributes directly to the dis-
ruption in cyto-architecture, or the loss of these Tms is simply associated with the 
formation of aberrant fi laments, decreased expression of HMW Tms correlates with 
the disruption of stress fi bers seen in transformed cells and is supported by studies 
which also showed that forced expression of HMW Tm1 reverses transformation-
associated changes by restoring the structural components of the cell and abolishing 
anchorage- independent growth [ 58 ,  59 ]. Comparison between low- and highly-
metastatic lung carcinoma cells showed that a decrease in Tm2 is associated with a 
higher level of metastasis [ 69 ,  70 ]. A comprehensive summary of the current litera-
ture on Tm expression in cancer cells can be found in Table (Appendix). Figure  16.3  
shows representative western blot analysis of the expression of Tm isoforms in a 
range of cancer cell lines. All cancer cell lines analysed exhibited expression of 
Tm5NM1 whereas varied expression of HMW isoforms Tm1,2,3,6 and the LMW 
isoform Tm4 was detected.

   While further studies will be required to determine how changes in Tm expression 
contribute to tumour growth and if Tm expression can be utilised as a diagnostic 
tool [ 71 ], these observations have sparked interest in tropomyosins as a potential 
new target for chemotherapy. While traditionally, the approach has been to try and 
restore the expression of HMW Tms in transformed cells in the hope of reversing 
tumourigenicity, another more exciting possibility is that an increased reliance on 
LMW Tms may in fact make tumour cells more vulnerable and therefore a better 
target for cancer chemotherapy.  

16 The Role of the Actin Cytoskeleton in Cancer and Its Potential Use…



  Fig. 16.3    Consistent expression of Tm5NM1 in a range of cancer cell lines. 10 μg of total protein was 
extracted from various cancer cells lines including DU145, LNCaP, PC3 (prostate), HT29, RKO, 
SW480, T84 (colon), A549 (lung), 131W1 (astrocytoma) and primary fi broblasts (MEFs) and SDS 
PAGE electrophoresis followed by western blotting was conducted. Blots were probed with tropo-
myosin antibodies that detect the high molecular weight tropomyosin isoforms (Tm1,2,3,6) and the 
low molecular weight isoforms Tm4 and Tm5NM1 as previously described [ 19 ]. All cancer cell lines 
expressed high levels of the LMW isoform Tm5NM1 ( a ). Apart from two prostate cell lines, all cancer 
cell lines expressed visible amounts of LMW Tm4 ( c ). However, a signifi cant down-regulation of 
HMW Tm isoforms, specifi cally Tm6/1 and Tm 2/3 ( b ), was seen in all cancer cells compared to the 
MEF control cell line. Densitometry was performed for quantitation with bands normalised to 
α-tubulin ( d ) and the data were analysed by One-way ANOVA nonparametric test and Tukey’s mul-
tiple comparison test was used to compare medians. ( e ) The data are presented as a box plot whose 
endpoints are the fi rst and third quartile, with the center line corresponding to the median. **P < 0.01 
and *P < 0.05 (Vos, 2014, unpublished)       
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    Novel Strategies for Anticancer Compounds to Target 
the Actin Cytoskeleton 

 Recently, Stehn et al. (2013) described a novel class of anti-tropomyosin compounds 
which preferentially target Tm5NM1-containing actin fi laments in cancer cells. 
The lead compound, TR100, has been shown to be effective against a panel of neural 
crest-derived tumour cell lines in both 2D and 3D cultures, with minimal impact on 
the contractile properties of isolated rat adult cardiomyocytes. Furthermore, using 
xenograft models, Stehn and colleagues showed that TR100 is effective in reducing 
tumour cell growth in vivo (Fig.  16.4 ) without compromising cardiac function [ 72 ], 
showing that it is indeed possible to selectively target actin fi laments fundamental 
to tumour cell viability based on their tropomyosin isoform composition. This 
improvement in specifi city provides a pathway for the development of a novel class 
of anti-actin compounds for the potential treatment of a wide variety of cancers.

       Concluding Remarks 

 Actin microfi laments are core constituents of the cytoskeletal network fundamental 
to all eukaryotic cells. The actin cytoskeleton is essential for many biological pro-
cesses including cell motility, intracellular organisation, cytokinesis and endocyto-
sis. Structural alterations to the actin cytoskeleton are an established characteristic 
of transformed cancer cells. Despite the disruption of their internal architecture, 
transformed cells retain, or even increase many actin-based functional properties 
such as enhanced motility, invasiveness and metastasis. The actin cytoskeleton 
therefore represents a point for chemotherapeutic intervention. To date, little prog-
ress has been made with compounds that universally disrupt actin fi laments due to 
their essential role in the function of cardiac and skeletal muscle. Tropomyosins are 
actin-associated polymers which form an integral component of the actin fi lament. 
Mammals have over 40 isoforms of tropomyosin which sort to spatially distinct 
actin fi lament populations and differentially regulate the interaction of various actin 
binding proteins. Changes in the expression of tropomyosin isoforms play a crucial 
role in the onset of oncogenic properties of the cell. While most transformed cells 
display a decrease in expression of high molecular weight tropomyosins, one iso-
form, the low molecular weight Tm5NM1 is consistently expressed. This tropo-
myosin is suffi ciently different from those found in muscle cells and therefore 
represents a novel way to target the actin cytoskeleton of cancer cells without 
damaging the contractile apparatus of the heart or diaphragm. Part of a novel class 
of anti- tropomyosin compounds, TR100 selectively targets Tm5NM1 containing 
actin fi laments and has been shown to be effective in vitro and in vivo in reducing 
tumour cell growth in neuroblastoma and melanoma models. Importantly, TR100 
shows no adverse impact on cardiac structure and function. This shows that it is 
possible to target specifi c actin fi lament populations fundamental to tumour cell 
viability based on their tropomyosin isoform composition and represents a novel 
approach to potentially treat a wide variety of cancers.      
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  Fig. 16.4    TR100 inhibits tumour growth in a melanoma mouse model. ( a ) C57/Bl6 animals were 
injected with B16/10F cells and n = 15 per group were treated with DMSO, 20 or 30 mg/kg of 
TR100 for 5 days/week for 15 days.  Graph points  represent tumour volumes at day 15 of treat-
ment ± SEM (P = 0.0005 for both treatment groups compared to control group). ( b ) Photo shows 
fi ve representative tumours from control ( bottom ) and 30 mg/kg TR100 treatment group ( top ) after 
15 days (fi gure generated using raw data from [ 72 ])       
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    Appendix: Table 

 Cell type 

 Tm isoform expression a  

 References  Decreased  Increased  Unaltered 

  Experimentally transformed cells:  
 Jun-transformed rat fi broblasts  Tm2  [ 73 ] 
 Ras-transformed NIH3T3  Tm1–3  Tm4,5  [ 59 ,  74 ] 
 Ras-transformed rat intestinal 
epithelial cell 

 α-Tm  [ 75 ] 

 REF-52 transformed with DNA or 
RNA virus 

 Tm1  Tm3,5  [ 76 ] 

 RSV-transformed NRK  Tm1,2  Tm4,5  [ 76 ] 
 RSV-transformed chick embryo 
fi broblasts 

 (α and β) 
Tm1 

 [ 77 ,  78 ] 

 Src-transformed NIH3T3  Tm1  [ 76 ] 
 Transformed/tumorigenic 267B1 
prostate cell 

 Tm1,3  [ 79 ] 

 Transformed HUT-12 fi broblasts  Tm1,2,6  Tm4,5  [ 80 ] 
 Transformed HUT-14 fi broblasts  Tm1,2,3,4,6  Tm5  [ 80 ] 
 Tumorigenic HUT-14T fi broblasts  Tm1,2,3,4,6  Tm5  [ 80 ] 
 Tumor derived HOS  Tm1,2,6  Tm5  Tm4  [ 80 ] 
  Cultured cancer cell lines:  
 Breast carcinoma cell lines: 

 BT-20  Tm1  Tm5, Tm32 b   [ 81 ] 
 BT-474  Tm1, Tm38 b   [ 81 ] 
 MCF7  Tm1, Tm38 b   Tm3,4,32 b   [ 81 ] 
 MDA-MB-231  Tm1  Tm4,5,32 b   [ 81 ] 
 Novel MCF7 cisplatin resistant  Tm1 c   [ 82 ] 
 T47D  Tm1  Tm3,36 b   [ 81 ] 
 ZR-75.1  Tm1,38 b   Tm5,32 b   [ 81 ] 

 Cholangiocarcinoma cell lines: 
 HuCCT1  Tm1  [ 83 ] 
 QBC939  Tm1  [ 83 ] 

 Esophageal carcinoma cell lines: 
 Novel esophagus squamous cancer 
cell line 

 Tm3  [ 84 ] 

 TE15  Tm1–3  [ 85 ] 
 Gastric carcinoma cell lines: 

 OCUM-1  Tm4  [ 86 ] 
 OCUM-2D  Tm4  [ 86 ] 
 OCUM-2M  Tm4  [ 86 ] 
 OCUM-2MLN  Tm4  [ 86 ] 
 OCUM-D3  Tm4  [ 86 ] 
 OCUM-9  Tm4  [ 86 ] 
 OCUM-12  Tm4  [ 86 ] 

 Neuroblastoma cell lines: 
 IMR32  Tm1–3, 5a,5b  [ 58 ] 
 BE(2)-C  Tm1–3, 5a,5b  [ 58 ] 

(continued)



 Cell type 

 Tm isoform expression a  

 References  Decreased  Increased  Unaltered 

 Prostate cell lines: 
 DU-145  Tm1  Novel β-Tm f   [ 64 ,  87 ] 
 LNCaP  Tm1  Novel β-Tm f   [ 64 ,  87 ] 
 PC3  Tm1  Novel β-Tm f   [ 64 ,  87 ] 

 DLD-1 human colon cancer cell line  α-Tm  [ 75 ] 
 Tumor derived HT1080 fi brosarcoma  Tm2,6  Tm5  Tm4  [ 75 ,  80 ] 
 Lewis lung carcinoma cell line  Tm2  [ 69 ] 
 PLA801D non-small cell lung 
carcinoma cell line 

 Tm3 d   [ 88 ] 

 QRsP-11 fi brosarcoma cell line  Tm1 e   [ 89 ] 
  Patient tumor material:  
 Astrocytoma (high grade)  HMW Tm  [ 90 ] 
 Breast carcinoma:  Tm1–3  [ 63 ,  91 ] 

 Infi ltrating ductal breast carcinoma  Tm4  [ 92 ] 
 Cervical carcinoma  Tm1,2,4  Tm3  [ 93 – 95 ] 
 Colon cancer  β-Tm g   TC22 f , Tm2 h   [ 95 – 97 ] 
 Esophageal cancer  β-Tm, Tm1  α-Tm, Tm4  [ 98 – 101 ] 
 Fibrous histiocytoma  Tm3,4  [ 65 ,  102 ] 
 Gastric carcinoma  α-Tm  LMW Tm  [ 65 ,  103 ] 
 Hepatocellular carcinoma  Tm5  [ 104 ,  105 ] 
 Leiomyosarcoma: 

 Pleomorphic leiomyosarcoma  Tm1,2  Tm3,4  [ 102 ,  106 ] 
 Conventional leiomyosarcoma  Tm3,4  Tm1,2  [ 102 ,  106 ] 

 Lung carcinoma (high grade)  Tm3 i   [ 107 ] 
 Oral squamous cell carcinoma  Tm2  [ 108 ] 
 Oral tongue squamous cell carcinoma  Tm1  LMW Tm  [ 103 ] 
 Ovarian carcinoma  Tm2,4  [ 67 ,  109 ] 
 Prostate cancer  Tm1  [ 64 ,  110 ] j  
 Renal cell carcinoma  Tm4  [ 111 ] 
 Transitional bladder cell carcinoma  Tm1–3  Tm5  [ 112 ] 
 Vaginal carcinoma  Tm1  [ 113 ] 
  Patient plasma material:  
 Ovarian carcinoma  Tm4 k   [ 114 ] 

   a Decreased expression refers to down-regulation or loss of isoform specifi c protein or mRNA and 
increased expression correspondingly refers to the gain of protein or mRNA 
  b None of the isoforms corresponded to previously identifi ed isoforms expressed in fi broblasts 
  c Down-regulation of Tm1 compared to the MCF7 breast cancer cell line 
  d Up-regulation of Tm3 in the highly metastatic PLA801D subline compared to the poorly metastatic 
PLA801C subline 
  e Up-regulation of Tm1 in the progressive cancer cell line QRsP-11 compared to the regressive cell 
line QR-32 
  f A novel Tm isoform 
  g Down-regulation of β-Tm was also found in colorectal adenoma tissue 
  h Tm2 was found to be increased in patients with poor outcome compared to patients with good outcome 
  i Tm3 showed a steady decline with the malignant progression of squamous cell lung carcinoma 
from stage I to stage IV 
  j Down-regulation of β-Tm was observed in only one of the tumors (high grade) assayed 
  k Expression of Tm4 showed an early increase in the fi rst stages of ovarian cancer, followed by a 
steady decrease in later stages 
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