
99© Springer Science+Business Media New York 2015 
J.-C. Wang, C. Harris (eds.), Glucocorticoid Signaling, Advances in Experimental 
Medicine and Biology 872, DOI 10.1007/978-1-4939-2895-8_5

    Chapter 5   
 Regulation of Glucose Homeostasis 
by Glucocorticoids       

       Taiyi     Kuo      ,     Allison     McQueen      ,     Tzu-Chieh     Chen      , and     Jen-Chywan     Wang     

    Abstract     Glucocorticoids are steroid hormones that regulate multiple aspects of 
glucose homeostasis. Glucocorticoids promote gluconeogenesis in liver, whereas in 
skeletal muscle and white adipose tissue they decrease glucose uptake and utiliza-
tion by antagonizing insulin response. Therefore, excess glucocorticoid exposure 
causes hyperglycemia and insulin resistance. Glucocorticoids also regulate glyco-
gen metabolism. In liver, glucocorticoids increase glycogen storage, whereas in 
skeletal muscle they play a permissive role for catecholamine-induced glycogenoly-
sis and/or inhibit insulin-stimulated glycogen synthesis. Moreover, glucocorticoids 
modulate the function of pancreatic α and β cells to regulate the secretion of gluca-
gon and insulin, two hormones that play a pivotal role in the regulation of blood 
glucose levels. Overall, the major glucocorticoid effect on glucose homeostasis is to 
preserve plasma glucose for brain during stress, as transiently raising blood glucose 
is important to promote maximal brain function. In this chapter we will discuss the 
current understanding of the mechanisms underlying different aspects of 
glucocorticoid- regulated mammalian glucose homeostasis.  

  Keywords     Glucocorticoids   •   Glucocorticoid receptor   •   Gluconeogenesis   •   Insulin   
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        Introduction 

 Glucocorticoids (GC) are stress hormones that play a key role in the regulation of 
mammalian glucose homeostasis. The name “glucocorticoids” originates from their 
profound effects on plasma glucose levels. GC regulate multiple aspects of glucose 
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homeostasis (Fig.  5.1 ). First, GC promote hepatic gluconeogenesis [ 1 ,  2 ] and reduce 
glucose uptake and utilization in skeletal muscle and white adipose tissue (WAT) [ 3 , 
 4 ]. These effects are critical for metabolic adaptation during stress, such as fasting/
starvation, when plasma glucose needs to be preserved because it is the brains’ pri-
mary energy source, and transiently raising blood glucose is important to promoting 
maximal brain functions [ 5 ]. Insulin, a hormone secreted from pancreatic β cells, 
exerts opposite effects on these physiological processes by inhibiting hepatic gluco-
neogenesis and promoting glucose utilization in skeletal muscle and WAT. Thus, to 
exert their responses, GC need to antagonize insulin actions. These effects are criti-
cal during stress, which in short term does not affect or even enhances glucose toler-
ance. However, chronic GC exposure results in hyperglycemia and insulin resistance 
[ 3 ,  4 ,  6 ]. Second, GC exert tissue-specifi c effects on glycogen metabolism. In liver, 
GC increase glycogen storage, whereas in skeletal muscle GC play a permissive 
role for catecholamine-induced glycogenolysis or inhibit insulin-stimulated glyco-
gen synthesis [ 7 – 9 ]. Third, GC modulate insulin and glucagon secretion from pan-
creas. GC treatment increases plasma glucagon levels [ 10 ,  11 ], whereas the effects 
of GC on insulin secretion are complex [ 12 – 16 ]. GC induce pancreas islet hyperpla-
sia  in vivo  that leads to hyperinsulinemia [ 12 ,  17 – 19 ] and have been shown to exert 
cytotoxic effects on β cells [ 20 ,  21 ]. Overall, in this chapter we will discuss the 
current understanding of the mechanisms underlying these distinct aspects of 
GC-regulated glucose homeostasis.

  Fig. 5.1    Glucocorticoid effects on glucose homeostasis. The effects of cortisol on glucose homeo-
stasis in peripheral tissues       
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       Gluconeogenesis 

 The gluconeogenic pathway generates glucose from non-carbohydrate substrates 
(Fig.  5.2 ) [ 22 ,  23 ]. Gluconeogenesis mainly occurs in liver, though kidney and 
intestine are also contributors. The major gluconeogenic precursors are lactate, 
glycerol and gluconeogenic amino acids, such as alanine. Both lactate and alanine 
can be converted to pyruvate, which is then carboxylated to oxaloacetate (OAA) by 
pyruvate carboxylase (PC) [ 24 ,  25 ], a step that occurs in mitochondria. OAA needs 
to be converted to malate to be shuttled to the cytoplasm where it is converted back 
to OAA. Cytosolic phosphoenolpyruvate carboxykinase (PCK1) [ 26 ,  27 ] then cata-
lyzes OAA to phosphoenolpyruvate (PEP), which then enters the gluconeogenic 
pathway. There is also a mitochondrial form of PCK1 (m-PCK1) that can directly 
convert OAA to PEP in mitochondria, which is then transported to cytoplasm and 
participates in gluconeogenesis. Recent studies suggest that m-PCK1 could also 
play a role in gluconeogenesis [ 28 – 31 ].

   Conversion of PEP to fructose-1,6-phosphate (F1,6BP) requires fi ve enzymatic 
steps that are essentially the reverse of glycolysis (Fig.  5.2 ). The “bifunctional” 
enzyme, phosphofructokinase 2 (PFK2)/fructose bisphosphatase 2 (FBPase2) 
(a.k.a. PFKFB1) [ 32 ,  33 ], plays a critical role in the switch between gluconeogen-
esis and glycolysis. PFKFB1 regulates the production of fructose 2,6 bisphosphate 
(F2,6BP), which is an allosteric activator of phosphofructokinase 1 (PFK1), an 
enzyme in the glycolytic pathway. When circulating glucose levels are low, such as 
during fasting and starvation, glucagon inactivates PFK2, which allows FBPase2 
activity to be favored. This results in decreased production of F2,6BP, and reduced 
glycolysis and enhanced gluconeogenesis. Fructose 1,6-bisphosphatase (FBP1) 
converts F1,6BP to fructose-6-phosphate (F6P) [ 34 ], which is then converted to 
glucose-6-phosphate (G6P). G6P enters the endoplasmic reticulum (ER), where the 
enzyme glucose-6-phosphatase (G6PC) [ 35 – 37 ] converts G6P to glucose (Fig.  5.2 ). 
Notably, distinct gluconeogenic amino acids can be converted to specifi c intermedi-
ates in the tricarboxylic acid (TCA) cycle. These TCA cycle intermediates are con-
verted to OAA to enter the gluconeogenic cycle. Glycerol enters gluconeogenesis 
through conversion to dihydroxyacetone phosphate (DHAP), which can then be 
metabolized to glycerol-3-phosphate (G3P) or directly to F1,6BP (Fig.  5.2 ) thus 
entering the gluconeogenic cycle above PCK1. 

 The positive effect of GC on hepatic gluconeogenesis is well established and has 
been under extensive study for several decades. Injecting GC into humans [ 38 ,  39 ] 
and rodents increases hepatic gluconeogenesis. In addition, GC are important for 
other hormones to activate gluconeogenesis. Although glucagon is regarded as a 
major hormone that activates gluconeogenesis during fasting, fasting-induced 
 gluconeogenesis is reduced in adrenalectomized mice, an effect that is restored by 
treating mice with GC [ 40 – 42 ]. In fact, glucagon-, epinephrine-, or cyclic AMP 
(cAMP)-induced gluconeogenesis are all attenuated in adrenalectomized mice. 
Giving GC to adrenalectomized mice restores the ability of these hormones to induce 
gluconeogenesis. Thus, GC play a “permissive” role promoting the optimal ability of 
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these hormones in gluconeogenesis. GC also provide gluconeogenic  precursors by 
promoting protein degradation in skeletal muscle to generate gluconeogenic amino 
acids [ 1 ,  4 ]. They also enhance lipolysis in WAT. This releases glycerol and fatty 
acids. Glycerol is used as a gluconeogenic precursor, whereas fatty acids provide 
energy to drive the gluconeogenic pathway [ 8 ,  43 ,  44 ]. 

  Fig. 5.2    Gluconeogenic pathway in hepatocytes. Lactate and alanine are converted to pyruvate, 
which enters the mitochondria and is then converted to OAA by enzyme PC. Through malate- 
aspartate shuttle, OAA exits the mitochondria to form PEP. OAA can also be converted to PEP 
directly within the mitochondria. PEP then feeds into the gluconeogenic pathway. In addition, 
glycerol is metabolized to DHAP, which is then converted directly or indirectly through G3P to 
F1,6BP. The fi nal product, glucose, is produced in the ER by enzyme G6PC. The key enzymes are 
boxed, with GR primary targets shown in  yellow. Abbreviation :  OAA  oxaloacetate,  PEP  phospho-
enolpyruvate,  DHAP  dihydroxyacetone phosphate,  G3P  glyceraldehyde-3-phosphate,  F1,6BP  
fructose-1,6-bisphosphate,  2-PG  2-phosphoglycerate,  3-PG  3-phosphoglycerate,  1,3-BPG  
1,3-bisphosphoglycerate,  G3P  glyceraldehyde-3-phosphate,  F1,6BP  fructose-1,6-bisphosphate, 
 F2,6BP  fructose-2,6-bisphosphate,  F6P  fructose-6-phosphate, and  G6P  glucose-6-phosphate. 
 Enzyme abbreviation :  PC  pyruvate carboxylase,  m-PCK1  mitochondrial phosphoenolpyruvate 
carboxykinase,  PCK1  cytosolic phosphoenolpyruvate carboxykinase,  FBP1  fructose-1,6- 
bisphosphatase 1,  PFK1  phosphofructokinase 1,  PFKFB1  phosphofructokinase 2/fructose bispho-
sphatase 2,  G6PC  glucose-6-phosphatase catalytic subunit       
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 GC promote gluconeogenesis mainly through activation of the transcription of 
genes encoding enzymes in the gluconeogenic pathway. The transcription of  PC, 
PCK1, FBP1, PFKFB1, G6PC  and  G6P transporter  ( SLC37A4 ) are all stimulated 
by GC (Fig.  5.2 ). GC convey their signals mainly through an intracellular receptor, 
the glucocorticoid receptor (GR). Before binding to GC, GR resides in cytoplasm 
and is associated with Hsp90 chaperone complex. Upon binding to GC, GR dissoci-
ates from Hsp90 chaperone complex and enters the nucleus, where the GR is 
recruited to specifi c genomic sequences, called glucocorticoid response elements 
(GREs). The GR:GRE association could be a direct GR:DNA interaction or an indi-
rect association through other DNA-binding transcription factors. In any case, once 
GR associates with a specifi c GRE, it recruits a number of transcriptional coregula-
tors. While they do not bind to DNA directly, these coregulators are able to assist the 
GR in modulation of the transcriptional rate of nearby genes through distinct mech-
anisms: altering chromatin structure, inducing histone modifi cations; recruiting 
RNA polymerase II containing basal transcription machinery; and modulating tran-
scriptional elongation. Notably, most genomic GREs are “composite” GREs (also 
called glucocorticoid response units, GRUs) that consist of multiple cis-acting ele-
ments, which include binding sites for GR and other transcription factors (called 
accessory elements and accessory factors, respectively), to mediate a complete GC 
response. Because different DNA binding transcription factors other than GR are 
involved in the regulation of distinct GR primary target genes, the multi-protein 
transcriptional regulatory complex assembled on each GRE is likely distinct. 
Composite GREs could allow GC to differentially regulate distinct target genes in 
different cell types depending on the presence of cell type specifi c accessory factors 
and transcriptional coregulators. Another advantage of employing composite GREs 
is to allow specifi c cross-talk between GC and other signaling pathways at the 
accessory elements and their respective accessory factors. Thus, cross-talk does not 
need to occur directly through GR. 

 The GREs of  Pck1, Pfkfb1 , and  G6pc  genes have been identifi ed. In particular, 
the mechanism of GR-regulated  Pck1  gene transcription has been extensively stud-
ied. By contrast, the mechanisms governing GC-activated  Pc  and  Fbp1  gene are 
unclear. Below we will discuss the mechanisms of GR-stimulated  Pck1, Pfkfb1 , and 
 G6pc  gene transcription. 

    PCK1 

 Rat  Pck1  gene contains two GREs, GRE1 and GRE2 (Fig.  5.3 ) [ 45 ]. GRE1 is 
located between −388 and −374 (relative to transcription start site, TSS), whereas 
GRE2 is located between and −367 and −354 in the  Pck1  gene promoter. When 
GRE1 or GRE2 is placed in front of TATA box in a synthetic reporter gene, neither 
mediates a GC response [ 46 ]. The combination of GRE1 and GRE2 also fails to 
confer GC-induced transcription [ 46 ]. In fact, both GRE1 and GRE2 bind GR very 
weakly  in vitro  [ 46 ]. However, in cooperation with other accessory elements on the 
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 Pck1  promoter, they confer a robust GC response. These accessory elements include 
gAF1 [ 45 ], gAF2 [ 45 ], gAF3 [ 47 ] and the cAMP response element (CRE) [ 48 ]. 
Both gAF1 (between −451 and −434 of rat  PCK1  promoter) and gAF2 (−416 and 
−407) are located 5′ from GRE1 and GRE2, whereas gAF3 and CRE are located in 
3′ of these GREs (Fig.  5.3 ). Hepatic nuclear factor 4 (HNF4, NR2A1) and chicken 
ovalbumin upstream transcription factor (COUP-TF, NR2F2) bind to gAF1 and 
serve as accessory factors for a complete GC response [ 49 ]. The gAF1 element also 
serves as a retinoic acid response element (RARE). An all-trans retinoic acid recep-
tor (RAR) and 9-cis retinoic acid receptor (RXR) heterodimer binds to gAF1 and 
confers retinoic acid (RA)-activated  Pck1  gene transcription [ 50 ]. RA has been 
shown to synergize with GC to stimulate  Pck1  gene transcription [ 51 ].

   The gAF2 element binds to members of the forkhead box transcription factor fam-
ily that include FoxA1 (also called hepatic nuclear factor 3 α, HNF3α), FoxA2 
(hepatic nuclear factor 3 β, HNF3β), FoxO1 (FKHR) and FoxO3A (FKHRL1). 
FoxA2 have been shown to act as accessory factors for GR-regulated  Pck1  gene tran-
scription  in vitro  [ 52 ]. Liver specifi c deletion of FoxO1 but not FoxO3A signifi cantly 
reduces fasting-induced  Pck1  gene expression [ 53 ]. Because GC play an important 
role in fasting-induced  Pck1  gene transcription, these results suggest that FoxO1 may 
serve as an accessory factor for GR  in vivo . The gAF2 element also serves as an insu-
lin response sequence (IRS) that confers at least part of repressive effect of insulin on 
 Pck1  gene transcription [ 54 ,  55 ]. The ability of insulin to suppress  Pck1  gene expres-
sion is compromised in liver specifi c  FoxO1  knockout mice [ 53 ] or mice overex-
pressed dominant negative FoxO1 [ 56 ]. Notably, the ability of insulin to reduce  Pck1  

  Fig. 5.3    Hormone response units in the PEPCK gene. Binding sites for various regulatory and 
transcription factors are shown in the  top row , with the number indicating the center nucleotide 
position of each element with respect to the transcription start site. Four hormone-specifi c response 
units are drawn: proximal glucocorticoid response unit (GRU), cyclic AMP response unit (CRU), 
retinoic acid response unite (RARU), and insulin response unit (IRU). In the absence of the other 
hormones, the components of each response unit are depicted. These units interact functionally, 
cooperating or competing, to comprise the PEPCK promoter. Except for gAF2, DNA elements 
involved in IRU are not yet identifi ed       
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gene expression is not affected in  FoxO3A  deletion mice [ 53 ]. These results support 
the key role of FoxO1 in the regulation of  Pck1  gene expression  in vivo . The potential 
role of FoxA2 inhibiting insulin effects has been reported [ 57 ], although more studies 
are needed to confi rm the importance of FoxA2 in insulin-suppressed  Pck1  gene 
expression. 

 Streptozotocin is a relatively specifi c pancreas β cell cytotoxin. Treatment of 
mice with streptozotocin induces a state that mimics type 1 diabetes. Circulating 
GC levels are increased in such animals and  Pck1  gene expression is augmented. In 
mice bearing a reporter gene containing a construct containing −2 kb rat  Pck1  gene 
promoter with a mutation at gAF2, streptozotocin-induced reporter gene expression 
is markedly reduced [ 58 ]. These results confi rm the importance of the gAF2 ele-
ment in GC-activated  Pck1  gene  in vivo . 

 The gAF3 element (−337 and −321) binds to COUP-TF [ 47 ] and, like gAF1, also 
serves as a RARE that binds to RAR/RXR heterodimer [ 59 ]. The cAMP response 
element (CRE, between −90 and −82) is also required for a complete GC-stimulated 
 Pck1  gene transcription [ 48 ]. CCAAT enhancer binding protein β (C/EBPβ) binds 
to the CRE to mediate the accessory activity for the GC response [ 60 ]. 

 Chromatin immunoprecipitation (ChIP) was used to monitor the recruitment of 
GR and various accessory factors to their respective binding sites in rat H4IIE hepa-
toma cells. GC treatment increases the recruitment of GR, FoxO1, FoxO3A and RNA 
polymerase II (Pol II) to the  Pck1  promoter [ 61 ]. FoxA2, C/EBPβ, HNF4 and 
COUP-TF occupy the  Pck1  promoter before GC treatment and their occupancy is not 
altered after GC treatment [ 61 ]. The recruitment of transcriptional coregulators, SRC-
1, p300 and CREB binding protein (CBP), to the  Pck1  GRU is markedly increased by 
GC treatment [ 61 ]. This suggests that GC treatment initiates the assembly of multi-
protein transcriptional regulatory complex on the  Pck1  promoter. Insulin treatment 
for just 3 min markedly decreases the GC-induced recruitment of GR, FoxO1, 
FoxO3A, FoxA2, SRC-1, p300, CBP, and Pol II, and only the occupancy of C/EBPβ, 
HNF-4 and COUP-TF remains unchanged [ 61 ]. Thus, insulin treatment rapidly dis-
rupts the assembly of GC-induced transcriptional complex on the  Pck1  GRU. Analyzing 
epigenetic marks showed that the most signifi cant change is the methylation at his-
tone H3 arginine residue 17, which is signifi cantly increased upon GC treatment and 
is abolished by insulin [ 61 ]. CARM1/PRMT4, is the histone methyltransferase that 
methylates histone H3 tail arginine 17 residue (H3R17) [ 62 ,  63 ]. CARM1 has been 
shown to serve as a transcriptional coactivator for GR. However, the occupancy of 
CARM1 on the  Pck1  promoter is not signifi cantly changed upon GC or insulin treat-
ment. One way to explain these results is that CARM1 is present on the  Pck1  GRU 
before GC treatment and the activity of CARM1 is modulated by insulin treatment. 
The activity of CARM1 is regulated by post-translational modifi cations [ 64 ]. 
Alternatively, it is possible that an unknown histone methyltransferase is involved in 
the elevation of H3R17 methylation on the  Pck1  GRU. 

 An analysis of the rat  Pck1  promoter in human hepatoma HepG2 cells identifi ed 
two additional accessory elements (dAF1 and dAF2) that are involved in 
GC-stimulated  Pck1  gene transcription. The dAF1 element is located at −993 and 
has sequence similarity to the gAF1 element, whereas the dAF2 element, located at 
−1365, resembles more proximal gAF2 [ 65 ]. HNF4 and peroxisome proliferator 
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activated receptor α (PPARα) and RXR heterodimer (PPARα/RXR) bind to dAF1, 
whereas FoxA1, FoxA2 and FoxO1 bind to dAF2 [ 65 ]. ChIP experiments showed 
that GC treatment increases FoxO1 and PPARα recruitment to the gAF2 and the 
dAF2, and HNF4 to the dAF1 in mouse liver [ 65 ]. Overexpressing PPARα or HNF4 
synergizes with GR to activate a reporter gene harboring 2 kb of rat  Pck1  promoter 
[ 65 ]. A role for PPARα in GC-induced  Pck1  expression  in vivo  is consistent with the 
observation that GC-induced  Pck1  gene expression is markedly reduced in  Pparα  
null mice [ 66 ]. Notably, streptozotocin-induced  Pck1  gene expression and blood 
glucose levels are reduced in transgenic mice that harbor a targeted ablation of the 
dAF1 in the  Pck1  gene promoter. These results support the importance of the 
dAF1 in GC-activated  Pck1  gene expression  in vivo  [ 65 ]. 

 Overall, GC activate  Pck1  gene transcription through a complex GRU. Intriguingly, 
all accessory elements in the  Pck1  GRU are involved in the responses of other hor-
mones that provide potential cross-talk between GC and other hormones, including 
glucagon, retinoic acid and insulin (Fig.  5.3 ). The complexity of GRU also allows 
various signaling pathways to fi ne tune the transcription levels of  Pck1  gene. 
Interestingly, GC repress the transcription of  Pck1  gene in adipocytes [ 67 ,  68 ] where 
the major metabolic role of  Pck1  is glyceroneogenesis [ 69 ,  70 ]. It is not entirely 
clear why  Pck1  GRU is not functional in adipocytes, although it is proposed that GR 
inhibits  Pck1  gene transcription through antagonizing C/EBP family of transcrip-
tion factors in adipocytes [ 67 ,  68 ]. Nonetheless, the requirement of accessory fac-
tors to act with GR on “weak” GREs provides the fl exibility for GC to regulate  Pck1  
gene transcription in a tissue specifi c manner. While it is unknown how accessory 
factors participate in GR-regulated  Pck1  gene transcription, there are two potential 
mechanisms. First, accessory factors may aid in recruitment of transcriptional 
coregulators to the GRU to stimulate the transcription. Previous studies have shown 
that the transactivation domain of HNF4 and FoxA2 are required for their accessory 
activities [ 71 ]. When gAF1, gAF2 or gAF3 is replaced by the binding site of a yeast 
transcription factor Gal4, a fusion protein that consists of GAL4 DNA binding 
domain and a transcriptional coregulator, SRC1, is able to provide accessory activ-
ity [ 72 ]. Moreover, another transcriptional coregulator, peroxisome  proliferator 
activated receptor γ coactivator-1α (PGC1α), has been shown to interact with HNF4 
to participate in GC-activated  Pck1  gene transcription. PGC1α also interacts with 
and coactivates FoxO1 [ 73 ] that binds to the gAF2 element. But the role of PGC1α-
FoxO1 interaction in GC-stimulated  Pck1  gene transcription has not been exam-
ined. Second, accessory factors can potentiate GR:GRE association. Using 
quantitative, real time equilibrium and stopped-fl ow fl uorescence anisotropy mea-
surements of nuclear protein-DNA interactions it was shown that GR binds to the 
 Pck1  GREs poorly. However, the presence of the gAF1 and the gAF2 elements 
markedly enhanced the association between GR and the  Pck1  GREs [ 74 ]. It is pos-
sible that the assembly of a multi-protein complex that includes GR, accessory fac-
tors and transcriptional coregulators enhances the association between GR and the 
two  Pck1  GREs.  
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    G6PC 

  G6PC  gene transcription is induced by GC, whereas insulin suppresses both basal 
and GC-activated  G6PC  gene transcription. Mouse  G6pc  also contains a complex 
GRU in the proximal promoter region. This GRU consists of three GREs, a CRE, a 
HNF4 binding site, a hepatic nuclear factor 1 (HNF1) binding site, and multiple 
FoxO/FoxA binding sites (FREs) [ 75 ]. GC signifi cantly activate the expression of a 
reporter gene that contains the  G6pc  GRU. Mutation at any of these accessory ele-
ments in the  G6pc  GRU reporter gene reduces the GC response [ 75 ]. Mutations at 
FREs that bind FoxO1 and FoxO3A also reduce both the inhibitory effect of insulin 
and basal expression of  G6pc  gene [ 76 ]. In liver specifi c FoxO1 deletion mice the 
expression of  G6pc  in 18 h fasted mice is markedly lower than that of 18 h fasted 
wild type mice [ 53 ]. Moreover, the ability of insulin to suppress the expression of 
 G6pc  is abolished in liver specifi c FoxO1 deletion mice [ 53 ] or mice overexpressed 
dominant negative FoxO1 [ 56 ]. In contrast, liver specifi c FoxO3A deletion does not 
affect basal expression of  G6pc  and the ability of insulin to inhibit  G6pc  remains 
intact [ 53 ]. These results are reminiscent of the regulation of  Pck1  gene and sug-
gests that FoxO1 plays a key role in the regulation of gluconeogenic genes  in vivo . 
Also, similar to the regulation of  Pck1  gene, transcription coregulator PGC1α posi-
tively regulates basal  G6pc  gene transcription and enhances GC-stimulated  G6pc  
gene transcription through interaction with HNF4 [ 77 ,  78 ]. FoxO1 and PGC1α 
appear to synergistically activate  G6pc  gene transcription [ 73 ,  79 ]. 

 GC also activate the transcription of the G6P transporter ( SLC37A4 ) gene, which 
encodes a protein that is responsible for shuttling G6P from the cytoplasm to the ER 
lumen. The mouse  Slc37a4  gene promoter contains a GRE [ 80 ,  81 ] and a FoxO1 
binding site is identifi ed nearby the GRE [ 81 ]. GC increase the activity of a luciferase 
reporter gene under the control of the  Slc37a4  gene promoter in 293 cells, whereas the 
mutation at the FoxO1 binding site reduces the ability of GC to potentiate this reporter 
gene activity [ 81 ]. Overexpression of FoxO1 in 293 cells potentiates the ability of GC 
to activate the reporter gene activity [ 81 ]. These results suggest that GC stimulate the 
 Slc37a4  gene through a GRU that contains at least a GRE and a FoxO1 binding site.  

    PFKFB1 

 Hepatic rat  Pfkfb1  gene transcription is stimulated by GC and a GRU has been 
 identifi ed in the intronic region of this gene. In addition to the GRE, this GRU con-
sists of binding sites for FoxA2, hepatic nuclear factor 6 (HNF6, a.k.a. Onecut1), C/
EBP and Nuclear factor 1 (NF1) [ 82 ]. Insulin antagonizes the stimulatory effect of 
GC on  Pfkfb1  gene [ 82 ,  83 ]. While insulin acts through PI3K and Akt to inhibit 
 Pck1  and  G6pc  gene expression [ 84 ,  85 ], this pathway is apparently not involved in 
the suppressive effect of insulin on GC-induced  Pfkfb1  gene. Instead, insulin acti-
vates the Jun N-terminal Kinase (JNK) pathway to inhibit GC-induced  Pfkfb1  gene 
expression [ 86 ].  
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    Factors Regulating GC-Stimulated Hepatic Gluconeogenesis 

 Many other factors regulate gluconeogenesis by modulating GC signaling. Liver X 
receptor β (LXRβ) is involved in GC-activated  Pck1  gene expression. In  Lxrβ  null 
mice ( Lxrβ   − / −  ) GC-induced  Pck1  gene expression and glucose production are 
reduced, and GC-induced recruitment of GR to the  Pck1  GRE is impaired [ 87 ]. In 
contrast, in  Lxrα  null mice ( Lxra   − / −  ) GC-regulated  Pck1  gene expression is not 
affected. Moreover, GC-stimulated expression of  tyrosine aminotransferase  ( Tat ) 
gene, which encodes the enzyme that converts tyrosine to 4-hydroxyphenolpyruvate, 
is not affected in  Lxrb  −/−  mice. Thus, the role of LXRβ in GC action is relatively 
specifi c to the  Pck1  gene. The mechanisms governing LXRβ action in GC-activated 
 Pck1  gene transcription are unclear, especially in view of another study, which 
showed that treating hepatoma cells with LXR ligands suppresses GC-stimulated 
 Pck1  and  G6pc  gene expression [ 88 ]. Microarray analyses showed that LXR ligands 
affect only a subset of GC-regulated genes. Both gel shift and ChIP experiments sug-
gest that an LXRα/RXRα heterodimer competes with GR for binding at rat  G6pc  
GRE [ 88 ]. In agreement with its effects on GC-induced gluconeogenic gene expres-
sion is the observation that treating rats with an LXR ligand attenuates GC-augmented 
plasma glucose levels [ 88 ]. In summary, unliganded LXRβ is required for maximal 
GC-induced  Pck1  gene transcription and is necessary for GC-induced recruitment of 
GR to the  Pck1  GRE. By contrast, LXR ligands suppress GC-activated gluconeo-
genic gene transcription by inhibiting the recruitment of GR to the GREs of these 
genes. 

 The expression of transcription factor ying yang 1 (YY1) is increased upon fast-
ing and in insulin resistant state [ 89 ]. Overexpression of YY1 in mouse liver increases 
gluconeogenesis [ 89 ]. In contrast, the deletion of YY1 in mouse liver results in 
hypoglycemia. YY1 potentiates gluconeogenesis through the increase of hepatic GR 
expression, which in turn augments the expression of gluconeogenic genes [ 89 ]. 

 The expression of farnesoid x receptor (FXR, NR1H4), a bile acid receptor, is also 
increased during fasting [ 90 ].  Fxr  null mice become hypoglycemic during fasting and 
have a reduced glucose production after a pyruvate challenge and a decreased expres-
sion of  Pck1  and  G6pc  [ 90 ]. The treatment of fasted mice with an FXR ligand, 
6α-ethylchenodeoxycholic acid (6E-CDCA), increases hepatic glucose  production 
and  Pck1  and  G6pc  gene expression. These effects are not observed in  Fxr  null mice, 
nor are they seen in fed mice [ 90 ]. 6E-CDCA elevates the expression of GR. By con-
trast, the expression of GR is decreased in  Fxr  null mice. Reducing GR expression in 
liver abolishes 6E-CDCA-induced glucose production and the expression of  Pck1  
and  G6pc  [ 90 ]. Thus, FXR activation elevates GR expression, which in turn results in 
enhanced gluconeogenesis. 

 Ubiquitin-specifi c protease 2 (USP2) expression is induced by fasting by both 
GC and glucagon, and by PGC1α overexpression [ 91 ]. Overexpression of Usp2 in 
mouse liver increases glucose production and exacerbates high fat diet-induced glu-
cose intolerance, whereas the reduction of Usp2 expression in mouse liver improves 
systemic glycemic control [ 91 ]. Usp2 induces the expression of 11β-hydroxysteroid 
dehydrogenase type 1 (11β-HSD1), the enzyme that converts the inactive GC, 
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11-DHC (rodents) or cortisone (humans), to active corticosterone (rodents) or cor-
tisol (humans) in liver. Thus, Usp2 increases hepatic gluconeogenesis by increasing 
the active GC levels in hepatocytes. Usp2 is a ubiquitin specifi c protease. How Usp2 
increases the expression of 11β-HSD1 is unclear. 

 Transforming growth factor β (TGFβ) decreases hepatic gluconeogenesis. 
TGFβ increases the expression of SMAD6, which directly associates with the 
N-terminus of GR [ 92 ]. When SMAD6 associates with GRE-bound GR, it recruits 
histone deacetylase 3 (HDAC3) which antagonizes the acetylation of histone H3 
and H4 on genomic regions near the GREs [ 92 ]. This results in an inhibition of the 
transactivation activity of GR. Overexpression of SMAD6 in liver reduces 
GC-induced  Pck1  transcription and blood glucose levels, which mimics TGFβ 
effects [ 92 ]. 

 GR associates with the Hsp90-containing chaperone complex in the cytoplasm, 
an interaction that induces a GR conformation favorable for binding GC. The 
Hsp90-containing chaperone complex also plays a role in the translocation of GR 
into the nucleus. Acetylation of the lysine 294 residue of Hsp90 reduces its interac-
tion with GR [ 93 ]. Therefore, keeping lysine 294 in a deacetylated state is critical 
for the GR-Hsp90 interaction. Histone deacetylase 6 (HDAC6) deacetylates lysine 
294 of Hsp90. Ablation of  Hdac6  results in a decreased GR response due to defec-
tive GR translocation into the nucleus [ 93 ]. In  Hdac6  knockout mice, GC-induced 
hepatic  Pck1  and  G6pc  gene expression and glucose production are reduced [ 93 ]. 
GC-induced glucose production in primary hepatocytes isolated from  Hdac6  knock-
out mice is markedly lower than in primary hepatocytes isolated from wild type 
mice [ 93 ]. Notably,  Hdac6  ablation generally reduces GR signaling. Not surpris-
ingly, other GR-regulated processes, including GC-induced insulin resistance and 
lipolysis in adipocytes, are also affected when  Hdac6  is deleted.   

    Glucose Utilization 

 GC inhibit glucose utilization by reducing both glucose uptake and glucose oxida-
tion in skeletal muscle and WAT, two major tissues involved in insulin-responsive 
glucose utilization [ 94 ,  95 ]. These GC effects counteract those of insulin, which 
promote glucose uptake, glycolysis and glucose oxidation. These result in a tran-
sient increase of circulating glucose, which is considered benefi cial during stress 
[ 5 ]. In both mouse and human myotubes GC reduce insulin-stimulated glucose 
uptake [ 96 – 98 ] by attenuating insulin-induced GLUT4 translocation to the cell 
membrane. By contrast, reduced GC signaling improves insulin sensitivity and glu-
cose utilization in mouse and human skeletal muscle. Circulating GC levels are 
increased in genetically obese  ob/ob ,  db/db  and lipotrophic  A-ZIP/F-1  [ 99 ] mice as 
compared to wild type. These mice are insulin resistant, but adrenalectomy improves 
insulin-stimulated muscle glucose disposal [ 100 ,  101 ]. In high fat diet-induced 
obese mice, adrenalectomy or treatment with the GR antagonist, RU-486, improves 
insulin sensitivity and increases glucose utilization in skeletal muscle. Moreover, 
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11β-HSD1-specifi c inhibitors, which reduce corticosterone levels in various tissues, 
improve insulin sensitivity and skeletal muscle glucose utilization in animal models 
of diabetes or insulin resistance [ 96 ]. 

 The ability of GC to inhibit glucose uptake and glucose oxidation in skeletal mus-
cle is due to, at least in part, a direct effect of GCs on myotubes. Treating cultured 
myotubes with GC inhibits insulin-stimulated glucose utilization [ 96 ,  102 ]. One 
mechanism by which GC reduce glucose utilization is the inhibition of insulin sig-
naling [ 96 ,  103 ,  104 ]. Insulin binds to and activates the cell-surface insulin receptor 
(IR) tyrosine kinase, which in turn phosphorylates the members of insulin receptor 
substrate (IRS) protein family [ 105 ] (Fig.  5.4 ). Tyrosine-phosphorylated IRS  proteins 
associate with the IR and initiate downstream signaling events [ 105 ] (Fig.  5.4 ). Mice 
treated with GCs have reduced levels of tyrosine-phosphorylated IR and total IRS-1 
proteins in skeletal muscle [ 96 ], and the activities of phosphoinositide-3- kinase 
(PI3K) and Akt, two signaling molecules downstream of IRS-1, are decreased [ 96 , 
 106 ,  107 ] (Fig.  5.4 ).

  Fig. 5.4    Models of glucocorticoid-regulated insulin action. Mechanisms of glucocorticoid- 
induced insulin resistance are depicted. In myotubes, glucocorticoids (GC) decrease the tyrosine 
phosphorylation of insulin receptor (IR) and the expression of IRS1. They increase the serine 307 
phosphorylation while decrease the tyrosine 608 phosphorylation of IRS1. GC also increase the 
expression of Pik3r1, which results in decreased activity of Akt and p70 S6 kinase (S6K). In the 
liver, GC increase the gene expression of enzymes involved in ceramide synthesis, including 
Sptlc2, Cers1 and Cers6, which results in increased levels of ceramides. These ceramides then 
interfere with insulin signaling. The GC-regulated genes are shown in  yellow        

Ceramide

sphingosine

Ceramidase Cers1
Cers6

S6K

Insulin

IR

mTOR

Akt

p110

Pik3r1

IRS-1

pAkt Ser473
pAkt Thr308

pS6K Thr389 

pIR Tyr

dihydroceramide

Des1

3-keto-dihydro sphingosine

Sptlc2

Palmitoyl-CoA

Myotube Liver

pIRS-1 Ser307

pIRS-1 Tyr608

GC
 

T. Kuo et al.



111

   The ability of GC to inhibit glucose utilization in myotubes requires protein 
 synthesis. A list of potential GR primary target genes that can suppress insulin action 
has been identifi ed in mouse C2C12 myotubes [ 108 ]. Among these genes, the role of 
 Pik3r1  (a.k.a.  p85α ) in the GC response was examined  in vitro. Pik3r1  encodes the 
regulatory subunit of PI3K, which binds to activate IRS1 (Fig.  5.4 ) through its SRC 
homology 2 (SH2) domain to bring the catalytic subunit of PI3K, Pik3ca (a.k.a. 
p110), to the plasma membrane [ 109 ,  110 ]. Pik3ca then catalyzes the conversion of 
phosphatidylinositol (4,5)-bisphosphate (PIP2) to phosphatidylinositol (3,4,5)-bispho-
sphate (PIP3) [ 109 ,  110 ]. PIP3 anchors the protein kinase Akt protein kinase family 
to the plasma membrane and thus initiates downstream signaling events [ 110 ]. Pik3r1 
is a key component in the insulin signaling pathway. But monomeric Pik3r1 is thought 
to compete with the Pik3r1/Pik3ca heterodimer to interact with IRS-1 to suppress 
insulin action [ 111 ,  112 ]. In addition, Pik3r1 is required for the maximal activity of 
phosphatase and tensin homolog (PTEN) [ 113 ], which antagonizes PI3K activity. In 
C2C12 mouse myotubes, GC treatment reduces the activity of several components of 
the insulin signaling pathway. These GC effects are markedly decreased in C2C12 
myotubes that have reduced Pik3r1 expression [ 108 ]. Thus,  Pik3r1  is a potential GR 
primary target gene in the mediation of the suppressive effect of GC on glucose utili-
zation in skeletal muscle, though this notion needs to be confi rmed  in vivo . 
Interestingly, global heterozygous deletion of  Pik3r1  gene in mice has improved 
whole body insulin sensitivity [ 114 ,  115 ]. Elevated expression of  PIK3R1  is found in 
patients with insulin resistance [ 116 ]. Notably,  Pik3r1  is likely not the only GR target 
gene that mediating suppressive effects of GC in insulin response, and additional GR 
primary target genes could also participate in this process. 

 GC also modulate insulin sensitivity and glucose utilization through the genera-
tion of specifi c lipid mediators. GC treatment increases ceramide levels in mouse 
liver and portal circulation [ 117 ]. These ceramides cause hepatic insulin resistance 
[ 118 ]. They are also delivered to skeletal muscle so one might expect systemic 
effects. In fact, hyperinsulinemic-euglycemic clamp studies in mice show that GC 
decrease the glucose infusion rate required to maintain euglycemia, prevent insulin- 
inhibited hepatic glucose output, and inhibit 2-deoxyglucose uptake into skeletal 
muscle, all evidence of reduced insulin sensitivity, whereas mice pretreat with 
myriocin, an inhibitor of serine palmitoyaltransferase (Sptlc1 and Sptlc2), an enzyme 
in the ceramide synthetic pathway, have reduced GC-induced insulin  resistance in 
skeletal muscle and hepatic glucose output (Fig.  5.4 ) [ 117 ]. Notably, GC augment 
the expression of enzymes in the ceramide synthetic and metabolic pathway in liver, 
such as Sptlc2, ceramide synthase 1 (Cers1, a.k.a. Lass1), and ceramide synthase 6 
(Cers6, a.k.a. Lass6) (Fig.  5.4 ) [ 117 ]. However, it is not yet clear whether the genes 
encoding these enzymes are primary targets of GR signaling. 

 In addition to increased ceramide levels in liver, GC-promoted lipolysis in WAT 
could impair whole body glucose homeostasis. Acipimox, an inhibitor of lipolysis 
in adipocytes, improves whole body glucose homeostasis in human subjects treated 
with GC [ 119 ]. Although it is not clear how GC-induced lipolysis affects glucose 
homeostasis, it is likely that the fatty acids generated from lipolysis are mobilized 
to skeletal muscle and liver and converted to lipid mediators, such as diacylglycerol 
(DAG) and ceramides, that cause insulin resistance.
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Notably, Brennan-Speranza et. al. also reported that GC inhibit the expression of 
osteocalcin, a secreted protein from bone that reduce adiposity and hepatic steato-
sis, to decrease insulin sensitivity. 

 GC also inhibit glucose oxidation by stimulating the expression of several mem-
bers of the pyruvate dehydrogenase kinase family (PDK). PDK regulates glucose 
oxidation by inhibiting the pyruvate dehydrogenase complex that converts pyruvate 
to acetyl-CoA [ 120 ]. Among the PDK family,  PDK4  is a GR primary target gene; 
GREs have been identifi ed in human  PDK4  and rat  Pdk4  genes [ 121 ,  122 ]. FoxO1 
binding sites have been identifi ed near the human  PDK4  gene GRE and they are 
required for the maximal induction of  PDK4  gene transcription by GC. These FREs 
also mediate the inhibitory response of insulin on  PDK4  gene transcription [ 122 ]. 
For the rat  Pdk4  gene, an FRE located approximately 6 kb away from the GREs is 
thought to participate in both the insulin and GC responses [ 121 ]. Thus, the mecha-
nisms governing the transcriptional regulation of the  PDK4  gene by GC appear to 
be similar to GC-activated  Pck1  and  G6pc  gene transcription discussed above. 

 In addition to skeletal muscle, GC reduce glucose uptake and glucose oxidation in 
many other tissues. GC inhibit insulin-stimulated glucose uptake in both mouse 3T3-
L1 and primary adipocytes. The mechanisms governing these GC effects are mostly 
unknown. Overexpression of  dual specifi city protein phosphatase 1  ( Dusp1 , a.k.a. 
MAP kinase phosphatase 1,  Mkp1 ), a primary GR target gene, inhibits insulin- 
stimulated glucose uptake in 3T3-L1 adipocytes [ 123 ]. However, the exact role of 
Dusp1 in GC-induced insulin resistance in adipocytes has not been established. Most 
reports indicate that GC inhibit glucose uptake by antagonizing the insulin response, 
though the direct inhibition of glucose transporter 4 (Glut4) traffi cking process by 
GC in 3T3-L1 adipocytes has also been reported [ 124 ].  Pik3r1  expression is also 
increased by GC in adipocytes [ 125 ]. Thus, Pik3r1 may also participate in the 
GC-inhibited insulin response in adipocytes. Studies of human adipocytes found that 
GC inhibit insulin-stimulated glucose uptake and signaling in omental but not subcu-
taneous adipocytes [ 126 ]. In fact, studies in human primary subcutaneous adipocytes 
show that GC pre-treatment potentiates insulin-stimulated glucose uptake [ 102 ,  127 ]. 
This suggests that GC affect insulin signaling in a depot-specifi c manner in humans. 

 The ability of GC to inhibit glucose oxidation has been linked to GC-induced 
apoptosis in leukemia cells. GC inhibit the expression of glucose transporter 1 
(GLUT1) that results in a decreased glucose uptake into leukemia cells [ 128 ]. GC 
also suppress glucose uptake and oxidation in certain regions of brain, such as the 
hypothalamus and hippocampus [ 129 – 131 ]. The exact mechanisms of these GC 
effects on these cell types are mostly unclear.  

    Glycogen Metabolism 

 GC regulate glycogen metabolism in a tissue-specifi c manner. In liver the adminis-
tration of GC to fasted mice increases liver glycogen content [ 40 ,  132 ]. GC induce 
the activity of glycogen synthase [ 7 ,  133 ,  134 ]. Glycogen synthase activity is 
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regulated by post-translational modifi cation. Protein kinase A (PKA) and glycogen 
synthase kinase 3 (GSK3) phosphorylates and inactivates glycogen synthase [ 135 –
 137 ]. In contrast, protein phosphatase 1 (PP1) dephosphorylates glycogen synthase, 
which potentiates its activity [ 138 ,  139 ]. The active form of glycogen phosphory-
lase, glycogen phosphorylase  a , breaks down glycogen to glucose units. Glycogen 
phosphorylase  a  also inhibits the dephosphorylation of glycogen synthase by PP1. 
PKA can also inhibit PP1 activity. Data suggest that the activation of glycogen syn-
thase phosphatase, PP1, by GC [ 140 ,  141 ], though the exact the mechanism of this 
activation is unclear. 

 Epinephrine plays a key role in skeletal muscle glycogenolysis. This effect is 
blunted in adrenalectomized rats [ 142 ]. The stimulatory effects of epinephrine on 
muscle glycogen phosphorylase and phosphorylase kinase are all attenuated in the 
skeletal muscle of adrenalectomized rats. PP1 dephosphorylates glycogen phos-
phorylase and phosphorylase kinase and suppresses their activities. PP1 activity is 
increased in skeletal muscle of adrenalectomized rats and the ability of epinephrine 
to inhibit PP1 is reduced in the skeletal muscle of adrenalectomized rats. Cortisol 
treatment in adrenalectomized rats restores normal epinephrine effects through the 
activation of phosphorylase kinase and glycogen phosphorylase and the inhibition 
of PP1. The induction of  PDK4  gene transcription by GR may contribute to 
GC-regulated glycogen metabolism in myotubes. One report shows that a reduction 
of the expression of PDK4 in human primary myotubes diminishes GC-repressed 
glycogen synthesis [ 143 ]. Notably, GC also inhibits insulin-stimulated glycogen 
synthesis and the activity of glycogen synthase [ 9 ]. These GC effects are mainly due 
to their ability to reduce insulin signaling in skeletal muscle. Interestingly, one 
report shows that glycogen storage is actually increased in soleus muscle by dexa-
methasone treatment despite a decrease of glycogen synthesis [ 9 ]. The mechanisms 
underlying these phenotypes are not clear. 

 In cardiac muscle, adrenalectomy also blocks epinephrine-induced glycogenoly-
sis [ 144 ]. GC treatment, however, has been shown to facilitate glycogen storage in 
cardiac muscle [ 145 ]. GC increase AMP-activated protein kinase (AMPK) activity 
that leads to the elevation of glucose uptake, the induction of glycogen synthase, 
and the reduction of glycogen phosphorylase. These contribute to an augmentation 
of glycogen content in cardiac muscle. Brain stores certain amounts of glycogen, 
though the levels are lower than in skeletal muscle or liver. Astrocytes store most 
of the brain glycogen, whose levels are increased by norepinephrine. In primary 
astrocyte culture norepinephrine induces glycogen synthesis, an effect which is 
 suppressed by GC [ 146 ].  

    GC Effects on Pancreas 

 As an endocrine organ, the pancreas secretes several hormones that include insulin 
(from β cells in the islets of Langerhans), glucagon (from α cells), and somatostatin 
(from δ cells). Insulin secreted during the fed state promotes glucose uptake and 
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utilization, and inhibits gluconeogenesis. In contrast, glucagon secreted during fast-
ing stimulates gluconeogenesis and glycogenolysis. Somatostatin suppresses both 
insulin and glucagon secretion. 

 The effect of GC on insulin secretion is an area of vigorous research; however, the 
direct mechanistic relationship between GC and β cell function  in vivo  remains elu-
sive. This is largely due to the diffi culty of separating the indirect effects of 
GC-induced peripheral insulin resistance from the direct actions of GC on pancreatic 
β cells. Hypercortisolism induces insulin resistance in tissues such as liver, adipose 
and skeletal muscle, as discussed above. In murine models and human studies, this 
GC-induced insulin resistance can lead to compensatory β cell hyperplasia and 
hyperinsulinemia, and consequent normoglycemia. However, long-term GC treat-
ment that exceeds the β cell compensatory capacity leads to insuffi cient insulin secre-
tion, hyperglycemia, and eventually Type 2 diabetes [ 15 ,  17 ,  147 – 150 ]. Overall, the 
effects of GC on β cell function are dependent on the length and dosage of the treat-
ment, the experimental animal model under investigation, as well as the susceptibil-
ity of the strain exposed [ 151 ]. It is important to note that short-term effects of GC on 
β cells are likely reversible [ 152 ]. To begin to dissect the direct  in vivo  effects of GC 
on β cells, a mouse model of insulin promoter-driven GR overexpression was gener-
ated [ 14 ]. These mice show glucose intolerance due to blunted insulin secretion. 

 Insulin secretion is mainly triggered by a postprandial increase in the concentra-
tion of plasma glucose, which enters pancreatic β cells through GLUT2 transport-
ers. Glucokinase phosphorylates glucose to produce glucose-6-phosphate, which 
enters the glycolytic cycle. Through mitochondrial β-oxidation, the ratio of ATP to 
ADP increases, which leads to the closure of ATP-sensitive potassium channels and 
plasma membrane depolarization. The increase in cellular electrical conductivity 
drives the opening of voltage-sensitive calcium ion channels. The consequent infl ux 
of calcium ions eventually leads to exocytosis of insulin-containing granules. 

 Compared to islets isolated from GC-treated animals, isolated islets directly 
treated with GC present opposite results. First, synthetic GC dexamethasone pro-
motes posttranslational degradation of GLUT2 and decreases glucose-stimulated 
insulin secretion (GSIS) in isolated rat pancreatic islets [ 153 ]. Second, dexametha-
sone inhibits glucokinase mRNA expression in RIN cells, a rat pancreatic islet 
tumor cell line [ 154 ]. GC have also been reported to suppress the gene expression 
of insulin [ 155 ] and pancreatic and duodenal homeobox 1 (Pdx1) in β cells [ 156 ]. 
Pdx1 is a transcription factor essential for pancreatic development and β cell matu-
ration. Third, in  ob/ob  mice, GC enhance the activity of glucose-6-phosphatase, 
which dephosphorylates glucose-6-phosphate to produce glucose, resulting in a 
futile cycle [ 157 ]. Fourth, in the INS-1 rat pancreatic β cell line, the transcription of 
voltage- gated potassium channel Kv1.5 is upregulated by dexamethasone treatment 
[ 158 ]. This results in an increase in the repolarizing outward current and reduces the 
infl ux of calcium ions, which compromises GSIS. On the contrary, islets purifi ed 
from GC-treated rats display enhanced insulin secretion, likely due to compensa-
tory hyperinsulinemia [ 159 – 161 ], and have improved glucose sensitivity and oxida-
tive metabolism [ 162 ]. Furthermore, transmission electron microscopy shows an 
increased amount of docked secretory granules in GC-treated β cells [ 148 ]. 
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 GC also regulates the expression of genes that modulate insulin secretion. The 
blunting of GSIS by dexamethasone is signifi cantly restored in islets isolated from 
 serum and glucocorticoid-induced kinase (Sgk1)  knockout mice compared to wild 
type [ 158 ].  Sgk1  is a well-established GR primary target gene. Moreover, GC treat-
ment of MIN6 mouse insulinoma cells and mouse islets augments the expression of 
corticotropin-releasing factor receptor type 2α (CRFR2α) and inhibits the expression 
of CRFR type 1 (CRFR1) [ 163 ]. CRFR1 potentiates both glucose-induced insulin 
secretion  in vitro  and  in vivo  and the proliferation of neonatal rat β cells [ 164 ]. 

 GC can stimulate β cell proliferation in vivo; however, GC exposure could also 
have cytotoxic effects on mouse isolated pancreatic islets of Langerhans and MIN6 
cells [ 165 ]. Interestingly, increased intracellular cAMP levels have previously been 
shown to attenuate dexamethasone-induced β cell death using exendin-4 [ 20 ] and 
forskolin [ 166 ]. Co-treatment with RU486, an antagonist of GC, abolished these 
GC effects. Mitogen-activated protein kinases (MAPK) such as p38 MAPK and 
JNK regulate apoptosis. In MIN6 cells, inhibition of p38 MAPK reduces 
glucocorticoid- induced apoptosis [ 167 ]. This may be due to decreased phosphoryla-
tion of mouse GR at serine residue 220 by p38 MAPK. Phosphorylation of GR at 
serine 220 is positively associated with GR transcriptional activity [ 168 ,  169 ]. 
Moreover, in isolated islets, inhibition of p38 MAPK decreases glucocorticoid- 
induced formation of cleaved caspase 3, which plays a key role in the execution 
phase of apoptosis [ 167 ]. Thus, p38 MAPK is required for glucocorticoid-induced 
cytotoxicity. In contrast, JNK signaling dampens glucocorticoid-induced cytotoxic-
ity, as inhibition of JNK potentiates the cytotoxic effect of GC in MIN6 cells [ 167 ]. 
A plausible explanation is that JNK is responsible for phosphorylating GR at serine 
234, which is negatively associated with the transcriptional activity of GR [ 170 ]. 

 Reactive oxygen species (ROS) may also mediate glucocorticoid-induced cyto-
toxicity [ 171 ]. Thioredoxin-interacting protein (Txnip) could exert its pro-apoptotic 
effect by blocking the activity of thioredoxin, which is involved in a major pro- 
survival thiol-reducing pathway in cells. In  db/db  mice, overexpression of thiore-
doxin suppresses the progression of hyperglycemia, likely through the prevention of 
the reduction of Pdx1 and V-maf musculoaponeurotic fi brosarcoma oncogene 
homologue A (MafA) transcription factors [ 172 ]. GC induces Txnip expression in 
human and mouse islets, and in MIN6 cells [ 165 ]. Overexpressing Txnip mimicked 
pro-apoptotic effect of GC, while knocking down Txnip partially rescued this phe-
notype in MIN6 cells. Furthermore, thioredoxin overexpression protected MIN6 
cells from GC-induced cytotoxicity [ 165 ]. Interestingly, GC-induced Txnip is 
dependent on the presence of p38 MAPK. Studies in leukemia and other cell types 
have shown that Txnip is a primary GR target gene [ 173 ]. 

 In addition to insulin secretion, GC has been shown to modulate glucagon secre-
tion. GC treatment causes both hyperinsulinemia and hyperglucagonemia. Rodents 
treated with GC have unaltered insulin/glucagon ratio from the fasted state to the 
fed state. They tend to have increased α cell mass, and show impaired high glucose- 
suppressed glucagon secretion. This hyperglucagonemia leads to hyperglycemia 
through the activation of hepatic glycogenolysis and gluconeogenesis [ 174 ]. 
Notably, co-treatment of GC and a glucagon receptor antagonist on rats resulted in 
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normoglycemia [ 11 ]. The mechanisms underlying the effects of GC on glucagon 
secretion, however, are unclear.  

    Conclusion and Future Directions 

 The physiological responses of GC that modulate glucose homeostasis have been 
well documented. Signifi cant progress has been made to understand these GC 
actions in the last three decades. However, the precise manner by which GC regu-
lates glucose homeostasis is still unclear. The key to understanding the mechanisms 
of GC-regulated glucose homeostasis is the identifi cation of GR primary target 
genes that mediate GC actions, and understanding how these primary target genes 
are transcriptionally regulated by GR in various processes, including gluconeogen-
esis, glucose uptake and utilization, glycogen metabolism, and pancreatic endocrine 
secretions. For transcriptional regulation, GC-activated  Pck1  gene transcription has 
received the most attention. Nevertheless, further studies are needed to understand 
how different accessory factors coordinate with GR and transcriptional coregulators 
to activate  Pck1  gene transcription. Analyzing the transcriptional regulatory mecha-
nisms of these GC-regulated gluconeogenic genes should allow the identifi cation of 
common molecular features in GR-stimulated gluconeogenesis.  In vivo , GC actions 
are affected by other hormones and environmental cues. Understanding the cross-
talk and integration of these signals should be the focus of future work. 

 The emergence of advanced techniques and technologies during the last decade 
have facilitated the characterization of molecular features of GC-regulated glucose 
homeostasis. Using high throughput DNA sequencing technology, genomic GR 
binding regions, transcriptional coregulator occupancy sites, and global chromatin 
structure changes were identifi ed. The discovery of GC-regulated non-coding RNA 
and enhancer RNA, using genomic run-on sequencing (GRO-seq) and RNA 
sequencing (RNA-seq), unveiled another layer of glucose homeostasis regulation 
[ 175 – 178 ]. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) 
genome editing technology can now be used to effi ciently ablate a GR primary tar-
get gene, and modify a particular residue of GRE to study its role in the natural 
chromosomal context [ 179 – 183 ]. These new approaches in combination with 
refi ned genetic, physiological and biochemical tools will play a critical role in 
improving our understanding of GC-regulated biology in metabolic tissues. 

 Ultimately, the goal of the studying the basic mechanisms of GC-regulated glu-
cose homeostasis is to develop a pharmacotherapy targeting GC signaling for treat-
ing metabolic diseases. Reducing GC signaling  in vivo  improves insulin sensitivity 
and decreases plasma glucose levels, which would largely benefi t type 2 diabetes 
patients. However, reducing GC actions globally is not ideal. For example, the 
body’s infl ammatory status would be elevated with reduced GC signaling. In fact, 
as infl ammation promotes insulin resistance, the anti-infl ammatory activity of GR 
could also improve insulin sensitivity. Overall, identifying approaches to dissociate 
metabolic and anti-infl ammatory actions of GR could provide novel ways to treat 
metabolic disease.   
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