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    Chapter 10   
 Glucocorticoids and the Brain: Neural 
Mechanisms Regulating the Stress Response 

             Shawn     N.     Shirazi    ,     Aaron     R.     Friedman    ,     Daniela     Kaufer      , 
and     Samuel     A.     Sakhai     

    Abstract     In this chapter, we describe the central role of the brain in the glucocor-
ticoid mediated stress response. We describe the mechanisms by which the brain 
gauges the severity of stress, mechanisms of hypothalamic-pituitary-adrenal axis 
(HPA) regulation, and how various sub-systems of the brain respond to glucocor-
ticoid (GC) signaling to regulate stress behavior. In particular, we focus on the 
hippocampus, pre-frontal cortex, and amygdala, where GCs can induce a series 
of changes. Finally, we briefl y discuss an apparent paradox in GC signaling: 
while exposure to glucocorticoids promotes the survival of an organism during 
acute stress, these same hormones in chronic excess can also cause damage and 
promote illness.  

  Keywords     Stress   •   HPA axis   •   Negative feedback   •   Glucocorticoids   •   Behavior   
•   Amygdala   •   Prefrontal cortex   •   Hippocampus  

        Introduction 

 Organisms face a wide variety of environmental conditions that can perturb 
homeostasis. To effectively respond to these “stressors,” the organism must initiate 
a coordinated response across a variety of physiological systems. For example, the 

        S.  N.   Shirazi    •    A.  R.   Friedman    
  Department of Integrative Biology ,  University of California , 
  430 Li Ka Shing Center #3370 ,  Berkeley ,  CA   94720 ,  USA     

    D.   Kaufer ,  Ph.D.      (*) 
  Department of Integrative Biology ,  Kaufer Lab, University of California , 
  400 Li Ka Shing Center ,  Berkeley ,  CA   94720 ,  USA   
 e-mail: danielak@berkeley.edu   

    S.  A.   Sakhai ,  Ph.D.      (*)
  Department of Psychology ,  University of California , 
  3210 Tolman Hall ,  Berkeley ,  CA   94720 ,  USA   
 e-mail: ssakhai@berkeley.edu  

mailto:danielak@berkeley.edu
mailto:ssakhai@berkeley.edu


236

organism must perceive the stressor and select appropriate behavioral strategies 
(brain) and optimize energy resources towards a “fi ght, fl ight or freeze” response 
(cardiac, respiratory, skeletal) in part by shutting down systems that are not imme-
diately essential (digestive, reproductive, growth). 1  In the vertebrate stress response, 
the activation of these various systems is initiated by the release of glucocorticoid 
(GC) stress hormones from the adrenal glands, and also by catecholamine signaling. 
Importantly, the stressful situations that an organism encounters are diverse. 
Stressors may be acute and severe (e.g., predation), chronic and severe (e.g., 
drought), or mild (e.g., social interactions) and each type of stressor requires a 
unique adaptive response. On the other hand, some types of challenges are predict-
able, and in these cases GC secretion can allow the organism to prime its physiolog-
ical response in anticipation of the pending challenge. For example, in diurnal 
animals GCs are secreted in a daily circadian cycle, with high GC secretion induc-
ing arousal during the early morning and a GC trough promoting rest during the 
evening. To respond to these wide variety of environmental challenges, ranging 
from mild to severe and predictable to unpredictable, vertebrates have evolved a 
complex regulatory system, the hypothalamic-pituitary-adrenal (HPA) axis, to 
perceive the severity of environmental challenge and release an appropriate amount 
of GCs for a measured, homeostatic behavioral response. 

 In this chapter, we describe the central role of the brain in the GC-mediated stress 
response. We describe the mechanisms by which the brain gauges the severity of 
stress and initiates an appropriate systemic response—in other words, regulation via 
the HPA axis. Secondly, we describe how various sub-systems of the brain respond 
to GC signaling to regulate stress behavior. In particular, we focus on the hippocam-
pus, pre-frontal cortex, and amygdala, where GCs can induce a series of changes 
(Fig.  10.1 ). These include alterations that underpin behavioral responses such as 
alertness and cognitive function, appetitive versus aversive thresholds to various 
threatening stimuli and rewards (i.e., motivation vs. avoidance), fear, and memory 
formation. On a cellular and molecular level, this entails modulations of neurotrans-
mitter levels, alterations in dendritic morphology, receptor density, and changes in 
signal transduction. Thirdly, we briefl y discuss an apparent paradox in GC signal-
ing: while exposure to glucocorticoids promotes the survival of an organism during 
acute stress, these same hormones in chronic excess can also cause damage and 
promote illness. Chronic stress is a risk factor for multiple diseases, including 
diseases of central and peripheral nervous systems such as stroke, mental illness, 
and multiple sclerosis [ 122 – 127 ]. Within the CNS, chronic glucocorticoid exposure 
can suppress neurogenesis, bias cell fates of neural precursor cells, contribute to 
dendritic atrophy, and alter neuronal excitability in key regions of the brain involved 
in anxiety and depression [reference]. Therefore, an organism’s best option is to 
mount as effi cient a stress response as possible, limiting its exposure to high levels 
of catabolic and metabolically demanding glucocorticoids. Fine-tuning of the stress 

1   Hans Selye, the father of modern stress research defi ned stress as the “non-specifi c response of 
the body to any demand made upon it” [ 96 ]. 
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response can have a dramatic infl uence on health. Importantly, the calibration and 
reactivity of the stress response is partly dependent upon early life environmental 
contexts and developmental programming, which help prepare organisms for 
future and current environmental challenges.

       The Hypothalamic-Pituitary Adrenal Axis 

 As a fi rst step in activating the HPA axis, the brain integrates external and internal 
sensory information pertaining to the immediate challenge, and this information is 
transduced into endocrine responses within the paraventricular nucleus of the hypo-
thalamus (PVN) [ 45 ]. The hypophysiotropic neurons within the PVN secrete 
corticotropin- releasing hormone (CRH) and arginine vasopressin (AVP) into the 
hypophyseal portal system, a system of blood vessels that link the hypothalamus 
with the pituitary gland. Upon reaching the anterior pituitary, CRH stimulates the 
release of adrenocorticotropic hormone (ACTH) into circulation. Elevated ACTH 
levels, in turn, stimulate the synthesis and release of glucocorticoids via binding to 
melancortin-2 receptors within the cortex of the adrenal glands [ 1 ]. HPA activation 
results in a maximal rise in circulating GCs after 15–30 min, and returns to baseline 
levels at roughly one hour after the termination of a stressor [ 93 ]. The crucial ability 
to terminate the stress response, or inhibit the secretion of CRH and ACTH, is via 
glucocorticoid negative feedback on key neural regions, such as the PVN, anterior 
pituitary, medial prefrontal cortex (mPFC), and hippocampus. 

  Fig. 10.1    Selected limbic structures involved with HPA axis regulation       
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 The stress response, as a whole, does not solely depend on GCs to alter physiol-
ogy and behavior—it also requires the concerted actions of several other neuropep-
tides. These include: urocortins, which interact with CRH; vasopressin, which is 
implicated in stress-related social memory and emotionality; and orexins, which are 
involved with stress-related energy and circadian homeostasis. Furthermore, CRH 
acts in many other brain regions outside of the PVN of the hypothalamus. For example, 
CRH is released in the bed nucleus of the stria terminalis (BnST) where it plays a 
role in stress-related anxiety. In the nucleus accumbens, CRH acts to suppress dopa-
mine release in response to rewards, and shift appetitive and aversive behaviors [ 61 , 
 113 ] while in the amygdala and in the hippocampus it is involved in stress- related 
emotional memories, anxiety, and learning processes [ 89 ,  92 ]. A review of the 
actions of GCs on the brain is incomplete without considering the coordinated infl u-
ence of the aforementioned peptide mediators, however, its discussion exists outside 
the scope of this chapter. For an excellent review of CRH, see [ 53 ].  

    HPA Negative Feedback 

 The ability of the HPA axis to respond dynamically to stress or to tonic secretion of 
glucocorticoids via circadian rhythm is determined, in part, by the ability of 
glucocorticoids to adjust ACTH secretion. This negative feedback occurs when GCs 
penetrate the blood–brain barrier and exert rapid (non-genomic) and slower 
(genomic) effects on the various neural regions that regulate ACTH release [ 24 ,  38 , 
 101 ]. Two classes of brain steroid receptors mediate negative feedback: the miner-
alocorticoid receptor (MR), and glucocorticoid receptor (GR). Both MR and GR 
belong to the nuclear receptor superfamily and function as transcription factors 
regulating gene expression [ 85 ]. 

 MRs have a relatively limited distribution, exhibiting the highest expression 
within the subiculum/CA1 fi eld and dentate gyrus of the hippocampus [ 85 ] 
(Fig.  10.2a ). GRs are expressed nearly ubiquitously (Fig.  10.2b ). There are, how-
ever, areas of greater GR density within the hippocampus, amygdala, cerebellum, 
hypothalamus (most notably the PVN), neurons of the ascending aminergic path-
ways of the brainstem, and to a lesser extent, the caudate nucleus and putamen 
[ 34 ,  78 ]. While both receptor subtypes bind corticosterone, MRs have a roughly 
tenfold greater affi nity for GCs relative to GRs (Kd of ~0.5 nM for MR vs. Kd 
~2.0–5.0 nM for GR) [ 85 ]. Consequently, MRs preferentially bind GCs over GRs 
and reach  near- saturation levels during troughs of the circadian cycle (i.e., low basal 
levels), and are fully saturated during circadian peaks and stress. GRs are activated 
only when glucocorticoid levels reach a high concentration beyond the level that 
saturates MRs, such as during an acute stressor or during the zenith of the circadian 
rhythm. It is hypothesized that MRs are a critical component of the circadian regu-
lation of baseline HPA tone (via fast-feedback, non-genomic actions), while GRs, 
occupied at higher corticosteroid concentrations, mediate feedback actions follow-
ing stress [ 7 ]. Thus, the balance of MR and GR receptor types, their occupancy, and 
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their associated mechanism of action are intricately involved in HPA regulation. 
Might be worth citing the papers where they make tissue specifi c KO of GR in 
hypothalamus or hypothalamus + GR and get Cushings syndrome.

       Major Brain Structures Involved in HPA Regulation 

 Four brain regions are strongly implicated as sites for HPA regulation and synthesis 
of CRH and AVP. These include the PVN of the hypothalamus, frontal cortex, 
amygdala and hippocampus. 

    Paraventricular Nucleus of the Hypothalamus 

 The PVN is the main gateway for initiating the hormonal stress response, and thus 
a primary target for regulating HPA negative feedback. It contains one of the densest 
populations of CRH neurons, which express GRs [ 17 ,  110 ]. Exogenous application 
of GCs in the PVN results in a rapid decrease in CRH mRNA expression [ 56 ] lead-
ing to a corollary decrease in HPA activation. Conversely, lesioning PVN afferents 
serves to increase expression of CRH and AVP mRNA demonstrating that neuronal 
inhibitory pathways are also necessary for the maintenance of HPA tone [ 44 ,  45 ]. 

 Non-genomic, fast feedback inhibition of the HPA axis within the PVN is depen-
dent on both endocannabinoid and GABAergic mechanisms [ 106 ]. GCs stimulate 
the synthesis and release of endocannabinoids within the PVN by binding to 
membrane- bound MRs. These endocannabinoids then bind to presynaptic CB1 
receptors to suppress glutamatergic transmission, thus inhibiting the activation of 
PVN neurons and reducing secretion of CRH [ 24 ,  29 ,  48 ]. GCs also bind to receptors 
on inhibitory magnocellular neurons of the PVN to stimulate fast, G-protein- dependent 

  Fig. 10.2    ( a ) MR distribution in the mouse brain. ( b ) GR distribution in the mouse brain       
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release of GABA to inhibit downstream CRH secretion [ 106 ]. In this fashion, MRs 
act in a rapid, non-genomic pathway for negative feedback within the PVN of the 
hypothalamus.  

    Medial Prefrontal Cortex 

 In rodents, the medial prefrontal cortex (mPFC) is comprised of infra-limbic (IL), 
pre-limbic (PL), and anterior cingulate cortices (AC) (based on structural connec-
tivity and function, these areas are thought to be homologous to human Brodman 
areas 25, 32 and 24b respectively) [ 111 ,  112 ]. The mPFC is a region of the brain that 
is involved in cognitive and executive functioning, including working memory, the 
ability to shift attention across perceptual dimensions, and rule-guided action to 
plan and guide behavioral sequences. Receiving diverse afferent inputs from the 
amygdala and ventral hippocampus, as well as providing direct efferent connections 
to hypothalamic and monoamine brain nuclei, the mPFC is well situated to regulate 
cognitive, emotional and physiological responses to stress [ 13 ]. 

 The mPFC is highly involved in autonomic control and HPA inhibition [ 2 ,  6 ,  75 ]. 
Evidence for HPA suppression arises from lesion studies in which mPFC lesions 
lead to signifi cantly increased plasma levels of ACTH and corticosterone following 
restraint stress and increased c-Fos activation in the PVN and medial amygdala [ 10 , 
 27 ,  31 ,  102 ]. Furthermore, local injections of corticosterone into the mPFC are 
capable of dampening plasma levels of these same hormones [ 3 ]. However, expo-
sure to chronic stressors, such as 4 weeks of daily restraint, leads to a down regula-
tion of GR mRNA and protein levels in the PFC, resulting in attenuated PFC-mediated 
HPA negative feedback [ 74 ]. Of note, the primate brain expresses signifi cantly 
different GR and MR distributions compared to rodents. In primates, GR levels are 
in greater abundance in the mPFC than the hippocampus, where there is a relative 
paucity in expression [ 91 ]. This suggests that the primate PFC may play a larger 
role in GR mediated feedback than the hippocampus. 

 The mPFC infl uence over the HPA axis is both intra-region specifi c and exhibits 
hemispheric functional lateralization [ 84 ,  102 ]. Pre-limbic and infra-limbic cortices 
exert opposing control over HPA tone. The pre-limbic cortex can be thought of as 
the ‘brakes’ whereas the infra-limbic cortex can be considered the ‘gas pedal’ of 
HPA regulation. Electrical stimulation of pre-limbic cortex activates parasympa-
thetic systems, whereas infra-limbic stimulation results in robust HPA activation. 
More recent work has confi rmed that this dual control of HPA regulation is GR 
dependent. GR knockdown in pre-limbic or infra-limbic cortices via short-hairpin 
RNA leads to differential regulation of HPA secretion, such that infra-limbic disrup-
tion leads to HPA hyper-reactivity, while pre-limbic GR knockdown contributes to 
stress hypo-reactivity in response to an acute psychogenic stressor [ 70 ]. 

 HPA control also exhibits hemispheric lateralization. HPA activation is markedly 
lower after right mPFC lesions, but not left [ 102 ]. HPA axis down-regulation after 
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right mPFC lesion was found to be greater in response to chronic stress than to acute 
stress, suggesting that the mPFC is associated with regulating HPA activity during 
highly stressful conditions [ 13 ]. 

 Intra-region specifi city of the mPFC (brake vs. gas) is stressor specifi c. It modu-
lates its responses based on the nature of the environmental challenges presented, 
such as psychological stress vs. physical stress. The pre-limbic cortex (brake) is of 
particular note in its role in inhibiting the HPA axis, especially with respect to 
psychogenic stressors. This is evidenced by inhibition of CRH and AVP expression 
after GC infusion into mPFC during restraint stress, a psychological stressor, but 
not the anesthetic ether, a physical stressor. Conversely, the infra-limbic cortex can 
initiate HPA activity. It responds robustly to both physical and psychogenic stress 
[ 70 ,  84 ,  103 ]. For instance, repeated social stress, but not noise stress, signifi cantly 
increases ∆FosB expression, an immediate early gene used as a marker for neuronal 
activation, within the infra-limbic mPFC [ 50 ]. This suggests that the mPFC plays a 
role in the ability to discriminate between psychogenic and physical stressors, 
thereby increasing the effi ciency and specifi city of HPA axis regulation [ 27 ,  31 ,  84 ]. 

 Similarly to the PVN, mPFC-mediated HPA inhibition is dependent in part on 
GR-mediated endocannabinoid signaling. CB1 receptor antagonism within the 
mPFC up-regulates HPA activity and results in prolonged GC secretions. 
Furthermore, GC exposure results in endocannabinoid release, indicating homeo-
static negative feedback. Mechanistically, increases in endocannabinoids lead to a 
decrease in GABA release. This results in a net gain in excitation on pre-limbic 
(brake) neurons [ 49 ]. The pre-limbic cortex has direct afferents onto GABAergic 
neurons within the BnST, which in turn send projections to the neurosecretory cells 
of the PVN. In this fashion, GC-induced CB1 activation of the pre-limbic mPFC 
results in an activation of inhibitory BnST-PVN circuitry. The net result is the sup-
pression of HPA activity. 

 Responding to psychogenic and physiological stressors, the mPFC is a key 
component in the top-down regulation of the HPA axis. Part of this regulation is 
mediated by serotonergic mPFC-amygdala connectivity [ 32 ]. For example, decou-
pling serotonergic mPFC-amygdala circuitry leads to alterations in stress related 
behaviors [ 5 ,  116 ]. However, the amygdala also regulates the mPFC, thus is another 
critical component in the emotional guidance of behavior [ 26 ].  

    Amygdala 

 Receiving direct and indirect connections from limbic structures, including mPFC 
and hippocampus, the amygdala is thought to be a major integrating center for emo-
tional and arousing stimuli. The amygdala is highly involved in the systemic stress 
response and is sensitive to both glucocorticoids and catecholamines. Direct stereo-
tactic infusions of GC to the amygdala greatly increase CRH mRNA expression 
within the PVN during psychogenic stress, illustrating the amygdala’s capacity to 
alter HPA activity during elevated GC exposure [ 97 ]. 
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 Like the mPFC, the amygdala’s infl uence over HPA systems is region specifi c. 
The amygdala is a complex of many sub-nuclei, often segregated into three regions: 
corticomedial (MeA), central (CeA), and basolateral (BLA) nuclei groups [ 100 ]. 
The CeA is further divided into a lateral component (CeL), and a medial (CeM) 
component. The balance of excitation and inhibition in each of these sub-regions 
modulates HPA reactivity [ 12 ,  68 ,  98 ,  100 ]. The amygdala has both “anxiogenic” 
and “anxiolytic” pathways. Stimulation of the BLA itself has been shown to increase 
HPA activity (anxiogenic), while direct stimulation of the CeM, results in anxiolytic 
effects. Since both the CeA and the BLA sends projections to the PVN via the 
BNST, the net effect of amygdala activation on the HPA axis is contingent upon 
the circuitry that is invoked [ 80 ,  109 ].  

    Hippocampus 

 Involved in cognition and memory formation, the hippocampus is a critical locus in 
HPA regulation. It exhibits tremendous plasticity to stress and glucocorticoids. 
Within the rodent brain, the hippocampus expresses the highest level of GR and 
MR, hence, it is of little surprise that it serves as an important negative feedback 
center and regulator of the stress response [ 46 ]. Evidence for HPA negative feed-
back arises from early studies in which lesioning or blocking hippocampal GC 
receptors results in an up-regulation of CRH and AVP mRNA within the PVN. The 
consequence of this is hypersecretion of glucocorticoids [ 52 ,  93 ]. Conversely, acti-
vation of hippocampal GC receptors results in HPA axis inhibition [ 93 ]. 

 However, the relationship between hippocampus and HPA regulation are specifi c 
to particular hippocampal sub-regions. Structurally and functionally heterogeneous, 
the hippocampus can be segregated across a septotemporal axis [ 8 ,  30 ]. In rodents, 
the dorsal hippocampus appears to be more involved in learning and memory, while 
the ventral hippocampus is implicated in the modulation of anxiety-like behavior 
and HPA regulation [ 8 ]. Lesions to dorsal hippocampus result in spatial memory 
defi cits, whereas ventral hippocampal lesions result in anxiety-like behaviors alter-
ations [ 8 ,  30 ,  79 ]. These differences in function can be explained in part by the 
 connectivity of each region. For instance, regions of the ventral hippocampus proj-
ect to areas involved in emotional regulation, most notably, the mPFC, amygdala, 
BnST, and the PVN [ 30 ]. 

 The hippocampus is also one of two brain regions in which resident populations 
of neural stem cells (NSCs) produce new neurons in adult animals [ 33 ,  35 ]. These 
new neurons are thought to contribute to the plasticity of hippocampal networks and 
have roles in the classical hippocampal functions of learning and memory. However, 
several lines of recent evidence also suggest that NSCs play a role in HPA regula-
tion. First, chronic, but not acute, activation of hippocampal GRs is associated with 
a general  increase  in HPA reactivity [ 86 ]. This failure in HPA axis negative feed-
back may be due, in part, to a reduction of the neurogenic pool resulting from 
chronic GC exposure. More direct evidence comes from ablation of hippocampal 
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neurogenesis, through the use of techniques such as irradiation or by transgenic 
animal models, which results in impaired HPA negative feedback and elevated GC 
levels following recovery from restraint stress [ 99 ]. Animals with impaired neuro-
genesis also exhibit a depressed phenotype at baseline that can be reversed by 
antidepressant treatment [ 99 ]. Lastly, hippocampal neurogenesis appears to be 
required for antidepressants to restore HPA axis inhibition following chronic stress 
[ 104 ]. Taken as a whole, these and other fi ndings have implicated hippocampal 
neurogenesis as a component of HPA axis regulation.   

    Effects of GCs on Brain and Behavior 

 As described above, many brain regions that integrate sensory information, such as 
the mPFC, amygdala, and hippocampus, can exert control of the PVN to fi ne tune 
the stress response according to the immediate experiences of the animal. In turn, 
once the stress response is initiated, the animal also has to enact appropriate behav-
ioral strategies to cope with the stressor. Thus, beyond acting as a negative feedback 
signal, GCs also modulate brain function in these same regions to coordinate appro-
priate stress-response behaviors. 

    Medial Prefrontal Cortex 

 Stress, both mild and severe, can lead to functional and structural changes in the 
prefrontal cortex [ 6 ,  39 ,  51 ]. This includes alterations in dendritic arborization and 
spine density in all regions of the mPFC (IL, PL, and AC) and neighboring orbito-
frontal cortex, which is driven in part, by GR signaling [ 11 ,  15 ,  62 ,  63 ,  82 ,  121 ]. For 
instance, 3 weeks of corticosterone administration [ 115 ] or daily restraint stress 
[ 20 ], is capable of reducing dendritic arborization and spine density in the mPFC 
and dorsomedial striatum [ 21 ,  25 ]. Functionally, both glucocorticoid administration 
and stress leads to defi cits in working memory [ 11 ,  15 ,  76 ,  90 ], mPFC dependent 
set-shifting [ 63 ], as well as reversal learning [ 14 ,  15 ,  60 ]. 

 Paradoxically, under some conditions, chronic stress can facilitate reversal 
learning [ 40 ,  41 ]. One hypothesis by Dias-Ferreira and colleagues as well as 
Schwab and Wolf, posits that stress leads to a disinhibition of PFC functions and 
towards striatal mediated learning [ 25 ]. The effect is bias in an organism’s behavior 
towards habit formation [ 25 ,  41 ,  94 ,  95 ]. Indeed, severe, repeated stressors result in 
an increase in apical dendrite arborization in both the dorsolateral striatum and 
orbitofrontal cortex, regions involved in habitual strategies, reward valuation, and 
reversal learning [ 25 ,  63 ]. These studies suggest that the effects of stress and gluco-
corticoids may be benefi cial to shift behaviors toward optimal behavioral adaption 
to environmental stress.  
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    Amygdala 

 Its activation by GCs can lead to alterations in learning and memory [ 88 ]. However, 
it is important to note that amygdala contributions to autonomic functioning are 
with respect to emotional arousal, not circadian or homeostatic HPA regulation. 

 Both acute and chronic stress results in the remodeling of synapses and dendritic 
branching within the amygdala [ 72 ,  73 ]. Stress induced synaptic plasticity is modu-
lated by GABAergic inputs [ 23 ]. These changes are correlated with an increase in 
anxiety-like behaviors and enhanced fear conditioning [ 19 ,  73 ,  118 ]. High levels of 
corticosterone reduce GABA transmission, which results in an increase in the fi ring 
rate of excitatory neurons in the basolateral amygdala [ 28 ]. This suggests that high 
levels of glucocorticoids can change the balance between excitation and inhibition, 
resulting in modifi cations in synaptic connectivity. These changes can infl uence 
neuronal plasticity even in distal brain regions. Recent fi ndings demonstrate that the 
BLA can alter synaptic plasticity and long-term potentiation in the striatum and 
hippocampus. Therefore, it is becoming increasingly clear that glucocorticoids 
within the amygdala can be far-reaching and impactful [ 4 ,  81 ]. 

 Finally, the amygdala also plays a central role in enhancing memory consolida-
tion following emotionally arousing events. High levels of circulating GCs can 
improve the recall of a stressful event [ 9 ,  77 ,  89 ]. However, GCs effects may be 
mediated by ß-adrenergic activation; blockade of ß-ardrenergic receptors within the 
BLA prevents memory enhancements following GR activation. Furthermore, acti-
vation of BLA via emotional arousal is critical in GC-mediated memory enhance-
ments [ 83 ]. Enhanced memory performance following a stressful event can be 
advantageous, as future encounters to similarly arousing stimuli would result in a 
feed-forward HPA activation to prime physiological systems in anticipation of a 
stressor. However, more investigations are needed to fully determine how stress, 
NE, and GCs infl uence different phases of fear learning and its expression in 
memory.  

    Hippocampus 

 The hippocampus responds dynamically to changes in GCs levels by modulating 
neuronal structure and function. GCs directly infl uence hippocampal function by 
acting as neuromodulators to infl uence neural excitability and signaling [ 16 ,  54 ,  55 , 
 59 ,  64 ]. More broadly, GCs also affect the structural connectivity of the hippocam-
pus by affecting dendritic arborization and formation of synapses [ 114 ,  119 ,  120 ]. 
Together, a model has emerged from these studies in which mild or acute stress 
increases hippocampal dendritic branching and long-term potentiation to boost 
hippocampal learning and memory, while chronic or high GC concentrations have 
opposite effects [ 19 ,  47 ,  58 ,  92 ]. However, the distribution of MR and GR receptors 
differs in dorsal versus ventral hippocampus, with ventral hippocampus having a 
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much higher relative concentration of MR [ 87 ]. This suggests that the effect of 
stress on hippocampal function may be more nuanced and region-specifi c, such that 
high levels of GCs do not simply suppress hippocampal memory function in 
general, but rather specifi cally suppress the contextual memory functions of dorsal 
hippocampus while promoting the emotional cognitive functions of the ventral hip-
pocampus [ 65 ,  66 ]. This model fi ts well with the overall paradigm of the stress 
response as an adaptive mechanism that manifests stress-specifi c behavioral strate-
gies suited to overcoming stressful challenges [ 65 ,  66 ]. 

 Stress effects on hippocampal-mediated behaviors may also be regulated 
through the contributions of hippocampal NSCs. NSCs express functional GRs (but 
not MRs) [ 18 ,  36 ], and their rate of proliferation and differentiation, as well as 
the survival of the new neurons that they produce, are altered by GCs [ 58 ,  117 , 
 128 – 130 ]. The effects can be via direct activation of GR in the NSC [ 36 ] or 
 indirectly, through activation of GR-dependent mechanisms in other cells in the 
 hippocampal niche. For instance, acute corticosterone exposure elicits release of 
fi broblast growth factor-2 from astrocytes in the dorsal hippocampus, leading to 
increased proliferation of neural stem cells in the area [ 58 ]. 

 The effects of stress on adult neurogenesis can be divided into the effects of acute 
stress and repeated, chronic stress. Chronic, repeated stressors inhibit NSC survival, 
proliferation, and neuronal differentiation within the dentate gyrus [ 57 ,  71 ,  117 ]. 
However, the effects of acute stress display a more mixed picture, ranging from a 
decrease, increase, or no change in NSC proliferation [ 22 ,  43 ,  107 ,  108 ]. One expla-
nation for discrepancies in the literature may be that, like cognitive performance in 
response to stress, adult hippocampal neurogenesis follows an inverted U function—
increasing in response to acute stressors and decreasing in response to high, chronic 
GC exposure. For example, high levels of transient GCs can inhibit NSC prolifera-
tion in the SGZ, and this effect can be blocked through adrenalectomy [ 105 ]. 

 Beyond proliferation, high levels of GCs may also reduce the total number of 
new neurons by decreasing the survival of immature neurons as they begin to incor-
porate into the network [ 117 ]. Furthermore, GCs cause a shift in the cell fate of 
differentiation NSCs, causing them to more frequently differentiate into oligoden-
drocytes at the expense of neurogenesis [ 18 ]. Given that new neurons ultimately 
confer additional plasticity onto hippocampal networks, by forming new synaptic 
connections and showing enhanced capacity for LTP [ 37 ,  42 ,  67 ], the reductions in 
neurogenesis in response to elevated GCs may be one of the mechanisms underly-
ing reduced memory capacity in stressed animals.   

    Conclusion 

 Glucocorticoids regulate the brain and behavior in multiple domains. They help 
adjust basal and peak HPA axis reactivity [ 93 ], as well as alter limbic structures 
(PVN, mPFC, amygdala, hippocampus), both structurally and functionally. This 
includes alterations in synaptic plasticity, long-term potentiation, and neurogenesis, 
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which result in changes in appetitive and avoidant behaviors, and modifi cations in 
learning and memory. Additionally, the limbic system is responsible for the top-
down and bottom-up regulation of the HPA axis through its complex micro-
circuitry. In this sense, HPA regulation can be a recursive process since 
glucocorticoids modulate both initiators and terminators of the stress response. 

 Ultimately, stress is necessary for the optimization of behavior to environmental 
pressures. With respect to humans, it is HPA axis dysregulation that is implicated in 
the pathogenesis of many disease phenotypes such as anxiety and depression [ 69 ]. 
It is of paramount importance to effi ciently initiate a stress response, as it promotes 
survival, while equally important to terminate the stress response, as glucocorti-
coids are metabolically demanding and can lead to disease.   
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