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    Chapter 11   

 Detection of Non-neuronal Acetylcholine 

           Ignaz     Karl     Wessler      and     Charles     James     Kirkpatrick   

    Abstract 

   The biological role of acetylcholine and the cholinergic system has been revisited within the last 25 years. 
Acetylcholine and the pivotal components of the cholinergic system (high affi nity choline uptake, choline 
acetyltransferase and its endproduct acetylcholine, muscarinic and nicotinic receptors, cholinesterases) are 
expressed by more or less all mammalian cells, i.e., cells not innervated by neurons at all. Moreover, ace-
tylcholine and cholinergic binding sites have been described in plants. Acetylcholine is even detected in 
bacteria and algae and thus represents an extremely old signaling molecule on the evolutionary time scale. 
The following chapter summarizes the detection of acetylcholine beyond neurons with particular emphasis 
on the presence of acetylcholine in so-called primitive organisms. Finally, an overview is given about the 
detection in mammalian non-neuronal cells. The existence of the non-neuronal cholinergic system has 
identifi ed an important new target to illuminate the pathophysiological background of acute and chronic 
infl ammatory diseases as well as heart diseases and cancer.  

  Key words     Non-neuronal acetylcholine  ,   Non-neuronal cholinergic system  ,   HPLC combined 
with bioreactors and electrochemical detection  ,   Evolution  ,   Bacteria  ,   Plants  ,   Unicellular organisms  , 
  Epithelial–mesothelial–endothelial and immune cells  ,   Signaling via muscarinic and nicotinic receptors  

1       Introduction 

 Even in our modern day and age textbooks as well as academic 
education are presenting acetylcholine as a neurotransmitter medi-
ating the communication between neurons, interneurons and 
innervated effector cells such as muscle fi bers and glandular cells. 
An actual upload (  http://en.wikipedia.org/wiki/acetylcholine     [ 1 ]) 
describes acetylcholine as follows: “ acetylcholine has functions both 
in the peripheral nervous system  ( PNS )  and in the central nervous 
system  ( CNS )  as a neuromodulator .” An actual research in PubMed 
shows 150-fold more references in favor of the key words “acetyl-
choline and neurotransmitter” than given for the term “non-neuronal 
acetylcholine.” Of course, our knowledge about acetylcholine and its 
biological functions has substantially increased in the last 130 years, 
when for the fi rst time acetylcholine was extracted from the brain and 
called at fi rst neurin and later on synthesized as acetylcholine [ 2 ,  3 ]. 

http://en.wikipedia.org/wiki/acetylcholine
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It is fascinating today to realize that all the biological systems/
functions in which acetylcholine, released from central, parasympa-
thetic, and peripheral intramural neurons as well as motoneurons, 
is involved by stimulating at least 11 different subunits of nicotinic 
receptors and fi ve subtypes of muscarinic receptors. Thus, acetyl-
choline acts as neurotransmitter in the motoric and sensoric (i.e., 
thermal, pain, taste) system; acetylcholine is involved in complex 
integrative neuronal functions like memory, learning and sexual 
activity; acetylcholine, as a neurotransmitter of autonomic neu-
rons, controls the cardiovascular, respiratory, gastrointestinal, and 
urogenital system. However, this summarizes only the role of ace-
tylcholine within the nervous system, and the role of acetylcholine 
as a general signaling molecule beyond neurons has to be consid-
ered additionally. 

 To discriminate acetylcholine not synthesized by neuronal cells 
and not mediating nervous impulses but acting as autocrine/ 

paracrine signaling molecule from acetylcholine acting as neuro-
transmitter, the nomenclature “non-neuronal acetylcholine” and 
“non-neuronal cholinergic system” has been introduced in 1998 
and 1999 [ 4 ,  5 ]. One should consider that the existence of acetyl-
choline independent of neurons has been known for a long time 
before (for review see ref. [ 6 ]). Unfortunately, the scientifi c com-
munity has forgotten the fi rst experiments by Ewins and Dale who 
investigated the effect of an extract of the ergot fungus ( Claviceps 
purpurea ) on the blood pressure in 1914 [ 7 ,  8 ]. Ergot grows on 
rye particularly during rainy periods in spring and can induce seri-
ous intoxications (called “St. Anthony’s Fire”) which were known 
during the Middle Ages and were based on the vasoactive effects of 
the ergot alkaloids. When Ewins and Dale investigated the hemo-
dynamic effects of an extract of this fungus, they found a depressor 
effect [ 7 ,  8 ]. Later on they could attribute this depressor effect to 
acetylcholine [ 8 ]. In conclusion, the fi rst experiments illuminating 
a biological role of acetylcholine, “the blood pressure lowering 
substance”, the molecule was extracted from fungi, i.e., from non- 
neuronal organisms. Some years later (1921) Otto Loewi pre-
sented the fi rst experimental evidence for the neurotransmitter role 
of acetylcholine, when he used a pair of isolated frog hearts [ 9 ]. 
The fi rst heart with the nerves attached was stimulated and the 
second was used as detector to demonstrate the released substances 
from the fi rst one. He postulated the so-called “Vagus-Stoff” 
or “parasympathin” acting as humoral transmission of nervous 
impulses [ 9 ] and 5 years later the vagus-substance was identifi ed 
as acetylcholine [ 10 ]. Later on (1963) Whittaker stated that 
 “acetyl choline occurs in non-nervous tissues and is so widely dis-
tributed in nature to suggest a non-nervous function of it” [ 11 ] 
and Koelle speculated about acetylcholine representing a phylo-
genetically very old molecule, which, in primitive organisms such 
as plants and unicellular organisms, might be involved in the 
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 regulation of transport processes [ 12 ]. Moreover, important 
 contributions in the last century showed the synthesis of acetylcho-
line in bacteria, algae, yeast, fungi, protozoa, nematodes, sponges, 
and plants [ 4 – 6 ,  13 – 22 ] Thus, acetylcholine is as far as we know 
one of the oldest signaling molecules in the evolutionary process. 

 The present chapter is focused on the detection of non- 
neuronal acetylcholine. In the last years important review articles 
have been published to describe this topic in more detail [ 4 – 7 , 
 23 – 35 ]. Moreover, in 2002, 2006, 2011, and 2014 international 
conferences on non-neuronal acetylcholine were held [ 36 – 38 ].  

2     Detection Methods for Acetylcholine 

 For decades the most sensitive, but less specifi c, method for deter-
mination of acetylcholine was the bioassay, such as the leech longi-
tudinal muscle, the guinea pig small intestine, the frog rectus 
abdominis muscle, and cat blood pressure. Using these detector 
systems together with specifi c antagonists the lower detection limit 
for acetylcholine amounted to about 0.2–5 ng (corresponding to 
about 1–20 μmol) [ 6 ]. In addition acetylcholine can be detected 
by gas chromatography combined with a preceding chemical trans-
formation of the quaternary ammonium compound acetylcholine 
or by ion-pair extraction and using a nitrogen selective detector 
[ 39 ]. The detection limit for these methods is around 50–100 pmol 
acetylcholine. 

 Later on in the 1980 decade acetylcholine is detected by HPLC 
combined with bioreactors, i.e., an analytical column separates ace-
tylcholine from choline and thereafter acetylcholine is converted 
by immobilized acetylcholinesterase to choline which reacts with 
immobilized choline-oxidase to H 2 O 2  and betaine; H 2 O 2  can then 
be detected either by luminescence or by electrochemical detection 
[ 40 ,  41 ]. The HPLC method was further optimized in the follow-
ing years by using microbore columns with an internal diameter of 
1 mm and attained a sensitivity of about 10–50 fmol/20 μl ([ 4 ], 
see also Fig.  1a ). Finally, a radioimmunoassay for acetylcholine has 
also been established [ 42 ]. Very recently a highly sophisticated 
method has been developed which can visualize non-neuronal ace-
tylcholine in the epithelial cell layer of the mouse small intestine 
[ 43 ]; matrix-assisted laser absorption/ionization (MALDI-TOF) 
imaging mass spectrometry has been optimized for the cellular 
detection and visualization of acetylcholine.

   The increase in the detection limit was very important for 
progress in understanding the non-neuronal cholinergic system, 
because mammalian non-neuronal cells contain considerably less 
acetylcholine than neurons. The non-neuronal cells (see Table  3 ) 
do not concentrate acetylcholine in high quantities within small 
vesicles, where acetylcholine is highly concentrated and stored by 
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  Fig. 1       Detection of non-neuronal ACh by HPLC with bioreactors and electrochemi-
cal detection. ( a ) 85 mg of a stem of  Urtica dioica  was placed in 1 ml of 15 vol.% 
formic acid in acetone and minced with scissors. After standing on ice (30 min) and 
centrifugation, the supernatant was evaporated to dryness by nitrogen. The dried 
sample was resuspended in 1 ml of a phosphate buffer, diluted by a factor of 200 
and an aliquot (20 μl) was injected onto the HPLC-system (for details see ref. [ 44 ]). 
 First row : chromatogram of a standard solution containing 1 pmol acetylcholine 
and choline/20 μl using the regular analytical column or, on the  right hand side , an 
analytical column packed with acetylcholine-specifi c esterase, i.e., under this con-
dition the fi rst acetylcholine peak disappeared.  Second row : chromatogram of the 
extract from  Urtica dioica ; the second chromatogram shows the same sample 
spiked with 0.6 pmol acetylcholine/20 μl; still only one peak appears at the reten-
tion time corresponding to acetylcholine; third chromatogram shows the same 
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neurons to generate a super threshold signal upon neuronal activity. 
In contrast, non-neuronal cells appear to release acetylcholine in 
small quantities more or less continuously to maintain cellular 
homeostasis by autocrine and paracrine signaling via muscarinic 
and nicotinic receptors which are abundantly expressed on more or 
less all cells. Thus, a very sensitive method is required to detect 
non-neuronal acetylcholine extracted either from human epithelial 
cells or human skin by dermal microdialysis [ 44 ,  45 ]. 

 However, one has to consider that HPLC measurement 
 combined with bioreactor and electrochemical detection does not 
represent a 100 % specifi c method, as other unknown compounds 
or other choline-esters can produce peaks with a retention rate 
similar to that of acetylcholine. Therefore, one has to prove the 
identity of the acetylcholine peak by spiking the sample with a low 
quantity of applied acetylcholine and by using an acetylcholinester-
ase-packed analytical column. Under this condition the acetylcho-
line peak must disappear and the choline peak should increase 
correspondingly. A typical example is shown in Fig.  1a  using extracts 
of leaves of  Urtica dioica  and for reference a standard sample con-
taining 1 pmol/20 μl of both acetylcholine and choline. Figure  1b  
demonstrates the presence of acetylcholine in human platelets. 

 For detection of non-neuronal acetylcholine in tissue or cells 
(freshly isolated or cultured) it is important to homogenize or lyse 
the cells/tissue in small volumes. For example, pieces of isolated 
airways or small intestine can be fi xed in a Petri dish with the lumi-
nal surface facing upwards and a cotton-tipped applicator can gen-
tly rubbed for 5 s along the luminal surface. Using this approach 
the basal membrane of the surface airway epithelium is not pene-
trated, i.e., the underlying lamina propria remained intact [ 44 ]. 
Likewise, rubbing of the intestinal surface removed tips of villi 
only, the lamina muscularis mucosae with the underlying choliner-
gic submucosal plexus remained intact [ 44 ]. Corresponding sam-
ples can be taken from the lung surface (pulmonary pleura) or 
from the surface epithelium of oral and vaginal mucosa of volun-
teers [ 44 ]. After rubbing, the cotton-part of the applicator is placed 
in 1 ml ice-cold 15 % formic acid in acetone (v/v) for 30 min with 
intermittent vortexing. This medium mediates cell lysis and inacti-
vates all enzymes immediately. Thereafter, the cotton is removed 
and the medium evaporated to dryness by a smooth nitrogen jet. 

 Likewise, tissue can be pulverized by means of liquid nitrogen 
and placed in 1 ml ice-cold 15 % formic acid in acetone (v/v). After 
standing on ice (30 min) with repeated vortexing, the samples 

Fig. 1 (continued) sample using the esterase-packed analytical column; the fi rst acetylcholine peak disappears. 
( b ) 40 ml of a concentrate of human platelets were centrifuged and the pellet was analyzed as described above 
under a; the huge choline peak may be caused by activation of platelets by the separation procedure       
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can be centrifuged (10 min; 4000 rpm), and the supernatant is 
 evaporated to dryness by a smooth gas jet of nitrogen. This will 
take about 30 min and within that time samples can again be placed 
on ice to prevent spontaneous hydrolysis of acetylcholine. The 
dried sample is resuspended in 300–1000 μl of the mobile phase of 
the HPLC system (70 mM phosphate buffer with 0.3 mM EDTA; 
pH 8.5 adjusted). The principle of the detection of acetylcholine 
by HPLC and the use of bioreactors and electrochemical detection 
is described above. The use of microbore columns is helpful bec-
ause the fl ow-front of H 2 O 2  originating from conversion of acetyl-
choline to choline and betaine is concentrated and then, can 
produce a measurable current at the working electrode. Moreover, 
the enzymatic reaction acts as an amplifi er, because 1 mol acetyl-
choline produces 2 mol H 2 O 2 . It is diffi cult to use internal  standard, 
therefore acetylcholine content has to be quantifi ed by comparison 
with external acetylcholine standard which is measured before and 
after an individual sample. 

 In the following sections examples are given of the detection 
of non-neuronal acetylcholine, in which acetylcholine is either 
measured directly or the expression of one of the synthesizing 
enzymes is shown. Acetylcholine can be synthesized by choline 
acetyltransferase (ChAT) or carnitine acetyltransferase (CarAT). 
Both enzymes have been found to mediate the synthesis of non- 
neuronal acetylcholine, for example, in plants but also in verte-
brates and invertebrates [ 6 ,  22 ,  46 – 48 ].  

3     Detection of Acetylcholine in So-Called Primitive Organisms Generated 
Very Early on the Evolutionary Time Scale 

 Bacteria are regarded as one of the fi rst forms of life on earth, aris-
ing about four billion years ago; also archaea represent prokaryotic 
microorganisms and are thought to have populated the earth about 
three billion years ago. Using a radioimmunoassay or HPLC com-
bined with electrochemical detection acetylcholine has been 
detected in bacteria and archaea (see Table  1 ). An acetylcholine- 
synthesizing activity has been isolated from extracts of bacteria or 
archaea, but the properties differ from the mammalian ChAT 
enzyme. The function of acetylcholine in these microorganisms is 
unknown so far. However, bacteria show locomotion and it has 
been shown that motility of two photosynthetic bacteria ( Rhodo-
spirillum rubrum ,  Thiospirillum jenense ) was stopped by 1 mM 
atropine, an antagonist of muscarinic receptors. Furthermore, phy-
sostigmine and other cholinesterase inhibitors also reduced motil-
ity [ 49 ]. It is probable that the system became desensitized in the 
presence of cholinesterase inhibitors. Table  1  gives an overview 
about the presence of acetylcholine in prokaryotic microorganisms 
and unicellular eukaryotic organisms as well as in fungi and lower 
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plants, i.e., in biological systems (including the gill plates of 
 mussels) not regulated by neurons. All these biological systems are 
created very early during evolution.

4        Detection of Acetylcholine in the Plant Kingdom 

 Table  2  gives an overview of the expression of acetylcholine in the 
plant kingdom, i.e., multiple examples for the expression of acetyl-
choline independent of any existing neuronal system. Obviously, 
acetylcholine is expressed in lower and higher plants. It seems 
 inevitable that the list will be enlarged in the future. One has to 
consider that our knowledge about the biological function of ace-
tylcholine is very scanty, and a systematic analysis of the expression 
and biological role of acetylcholine within the plant kingdom is 
lacking. Reports have indicated that the synthesis of acetylcholine 
in plants may be regulated by light [ 50 ]. One very interesting obser-
vation is that the acetylcholine content is very high in rapid grow-
ing plants like  bamboo ,  helianthus  and  Urtica dioica . Moreover, it 
has been shown that at least in  Urtica dioica  acetylcholine is invol-
ved in the regulation of water homeostasis and photosynthesis [ 24 ]. 
Particularly, 1 μM atropine reduced the intracellular space, the cell 
vacuole, and cell size and mediated proliferation of the thylakoid 
membrane [ 24 ,  34 ]. In conclusion, also in the plant kingdom 
binding sites for acetylcholine exist, which can be blocked by 
atropine.

5        Detection of Acetylcholine or Positive Anti-ChAT Immunoreactivity 
in Mammalian Non-neuronal Cells 

 To demonstrate the existence of non-neuronal acetylcholine in 
mammalian cells without any doubt, a contamination of neuronal 
acetylcholine has to be excluded in the respective samples. Thus, it 
has to be shown conclusively that acetylcholine is synthesized by 
cells not innervated at all by neurons and that these cells/tissues 
cannot take up acetylcholine which may be released from possible 
adjacent neurons. The following fi ndings demonstrate without any 
doubt that isolated cells or tissue which lacks any cholinergic inner-
vation synthesize and release acetylcholine:

    (a)    Acetylcholine synthesis has been demonstrated in various 
 cultured cells (keratinocytes, airway epithelial cells, and cardio-
myocytes) and cell lines like leukemic T-cells (MOLT-3), 
embryonic stem cells (CGR8), colon (Caco-2; H508) or lung 
(H82) cancer cell lines [ 26 ,  51 – 60 ]. All these cultured cells are 
free of any neuronal input. Release of acetylcholine was demon-
strated also from cultured bovine arterial endothelial cells [ 61 ].   
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   (b)    Cultured epithelial cells isolated from the airways of monkeys 
release acetylcholine into the supernatant [ 62 ]. In organic-
cation- transporter knockout mice, i.e., a condition limiting the 
release of non-neuronal acetylcholine, airway epithelial acetyl-
choline content was doubled, which indicates an in vivo release 
of acetylcholine from these cells [ 63 ,  64 ]. Likewise, the release of 
non-neuronal acetylcholine becomes evident by the inhibitory 

   Table 2  
  Presence of non-neuronal acetylcholine in the plant kingdom   

 Family  Genus,  Species   Amount  References 

 Amaranthaceae  Spinacia  Spinacia oleracea   ~3–7 nmol/g  [ 21 ,  50 ] 

 Anthophyta  Arabidopsis  Arabidopsis thaliana  
 Eggplant  Solanum melongena  
 Bamboo shoot  Phyllostachys bambusoides  
  Phyllostachys pubescens  

 23.7 pmol/g 
 416 nmol/g 
 2.9 μmol/g 
 0.6–1.7 μmol/g 

 [ 22 ] 

 Apocynaceae  Amsonia  Amsonia angustifolia   [ 82 ] 

 Araceae  Arum  Arum specifi cum ,  Arum 
maculatum  

 ~1.8 nmol/g  [ 24 ] 

 Asteraceae  Helianthus  Helianthus annuus  
 Senecio  Senecio vulgaris  

 3–8 μmol/g 
 ~6.5 nmol/g 

 [ 21 ,  50 ] 

 Brassicaceae  Capsella  Capsella bursa - pastoris  
 Sinapis  Sinapis alba  

 ~4.8 nmol/g  [ 24 ] 

 Bryophyta  Moss  Conocephalum conicum  
  Polytrichum ,  Brachythecium  

 0.03–8.0 nmol/g  [ 22 ,  24 ,  50 ,  83 ] 

 Coniferophyta  Cedar  Cryptomeria japonica  
 Hinoki  Chamaecyparis obtuse  
 Pine  Pinus thunbergii  
 Podocarp  Podocarpus macrophyllus  

 120–343 pmol/g  [ 50 ] 

 Cucurbitales  Cucurbita  Cucurbita pepo   3–10 nmol/g  [ 84 ] 

 Fabaceae  Phaseolus  Phaseolus vulgaris ,  Phaseolus 
aureus  

 Pisum  Pisum sativum  

 ~100 ng/g 
 1–8 nmol/g 

 [ 50 ,  85 ] 

 Moraceae   Malayan jack - fruit Artocarpus integra   564 μg/g  [ 84 ] 

 Plantaginaceae  Digitalis  Digitalis ferruginea   1.6 mg/50 g 
pulverized leaves 

 [ 86 ] 

 Pterophyta  Fern  Pteridium ,  Gleichenia glauca   0.07–1.6 nmol/g  [ 22 ] 

 Rosaceae  Fragaria  Fragaria vesca  
 Crataegus  Crataegus specifi cus  

 ~5.4 nmol/g  [ 24 ,  87 ] 

 Sphenophyta  Horsetail  Equisetum arvense  
  Equisetum robustum  

 38 pmol/g 
 ~2.8 nmol/g 

 [ 22 ,  24 ] 

 Urticaceae  Urtica  Urtica dioica  
  Girardinia heterophylla  

 ~0.5 μmol/g  [ 24 ,  88 ,  89 ] 
 Fig.  1a  
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effect of nicotine receptor antagonists on the migration of cultured 
airway epithelial cells [ 65 ].   

   (c)    The placenta of various species (human, monkey, cow, rabbit, 
rat, mouse), an organ free of cholinergic neurons, synthesizes, 
stores and releases acetylcholine [ 6 ,  15 ,  66 – 70 ].   

   (d)    ChAT mRNA and ChAT protein have been demonstrated in 
most of these cells.   

   (e)    In vivo release of acetylcholine from human skin has been 
demonstrated by dermal microdialysis. Botulinum toxin blocks 
neuronal acetylcholine release but does not inhibit acetylcho-
line release from the human skin [ 45 ].     

 In conclusion, convincing experimental data have been pub-
lished since the third decade of the last century about the presence 
of non-neuronal acetylcholine in mammalian cells. Nevertheless, in 
the following decades the scientifi c community has focussed more 
or less exclusively on the role of neuronal acetylcholine in the brain 
and peripheral nervous system. Possibly, the brain and neurons 
may have drawn more attraction than apparently less specifi ed 
 non- neuronal cells, although the regulation and communication of 
these cells and their respective networks is already extremely com-
plex. It is fascinating that epithelial or immune cells communicate 
by the same molecules and cholinergic receptors as do neurons in 
the brain. Both, the specifi c cholinesterase and the pseudocholin-
esterase, play an important role to clearly separate both systems 
(non-neuronal vs. neuronal) in vivo. This is operating because 
 specifi c cholinesterase represents the enzyme with the highest 
turnover rate created by nature and because of the abundant 
 presence of both enzymes in mammalian organisms thus limiting 
neuronal acetylcholine to act at hot spots only. 

 Table  3  gives an overview about the expression of non- neuronal 
acetylcholine in various mammalian cells. Accordingly, acetylcho-
line has been detected directly after extraction from these cells/
tissues or positive anti-choline acetyltransferase (ChAT) immuno-
reactivity has been found. However, in the case of using the method 
of immunohistochemistry alone some caution is required, because 
false positive staining has been found with antibodies directed 
against muscarinic receptors in corresponding knockout mice [ 71 ].

   When non-neuronal acetylcholine is released and present 
in the extracellular space or plasma [ 26 ], it will diffuse in close 
 proximity to its source but also to neighboring cells, because in 
principle the expression level of cholinesterase activity is lower 
in non-innervated than in innervated cells. For example release of 
acetylcholine from the isolated placenta can be measured without 
preceding inhibition of cholinesterase [ 6 ,  70 ]. Consequently, non- 
neuronal acetylcholine can mediate autocrine and paracrine effects 
by stimulating muscarinic and nicotinic receptors which are ubiq-
uitously expressed in the majority of cells (for review see ref. [ 33 ]).  
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6     Conclusion 

 Research early and late in the last century has substantially broad-
ened our understanding of the role of acetylcholine and the cholin-
ergic system, i.e., choline uptake, synthesizing enzymes, muscarinic 
and nicotinic receptors, and the inactivating enzymes. This system 
has been created extremely early on the evolutionary time scale 
(about three to four billion years ago). Thus, it is not surprising to 
detect the cholinergic system in plants, unicellular organisms and 
in more or less all mammalian cells independently of neurons. 
Neurons have become specialized cells prepared for signaling 
on the milliseconds time scale. Therefore, neurons have taken an 
advantage of the already established cholinergic signaling system 
and have further specialized this system during evolution: storing 
in specialized organelles (vesicles), triggering vesicular release, 
establishing of hot spots for nicotinic receptors and acetylcholines-
terase. In contrast, the non-neuronal cholinergic system does not 
mediate cellular communication on the millisecond time scale 
but establishes a variable cholinergic tone to co-regulate basic 
cell functions like proliferation, differentiation, cell–cell contact, 
 secretion, and absorption. For example, acetylcholine via musca-
rinic receptors causes an increase of intracellular calcium within 
seconds but not within milliseconds [ 58 ]. It is important to learn 
more about the physiological and pathophysiological role of non- 
neuronal acetylcholine and the non-neuronal cholinergic system. 
Recent articles have described an important role of the non- neuronal 
cholinergic system in different diseases [ 30 ,  72 – 77 ]. Particularly, 
chronic airway diseases (COPD and bronchial asthma) have been 
identifi ed to be treated with long acting muscarinic receptor antag-
onists (aclidinium, glycopyrronium, tiotropium) to induce thera-
peutic effects beyond bronchodilation. In animal models provoking 
COPD or asthma these receptor antagonists have been shown 
to reduce airway infl ammation and airway remodeling by suppress-
ing cellular effects of non-neuronal acetylcholine [ 78 ]. Moreover, 
intensive research is required to further illuminate the pathophysi-
ological role of the non-neuronal cholinergic system in other 
infl ammatory diseases, cancer, and heart diseases.     
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